
i

IBM SPSS Modeler 18.0 Algorithms
Guide

Note: Before using this information and the product it supports, read the general information
under “Notices” on p. 403.

This edition applies to IBM SPSS Modeler 18 and to all subsequent releases and modifications
until otherwise indicated in new editions.
Adobe product screenshot(s) reprinted with permission from Adobe Systems Incorporated.
Microsoft product screenshot(s) reprinted with permission from Microsoft Corporation.

Licensed Materials - Property of IBM

© Copyright IBM Corporation 1994, 2016.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Preface
IBM® SPSS® Modeler is the IBM Corp. enterprise-strength data mining workbench. SPSS
Modeler helps organizations to improve customer and citizen relationships through an in-depth
understanding of data. Organizations use the insight gained from SPSS Modeler to retain
profitable customers, identify cross-selling opportunities, attract new customers, detect fraud,
reduce risk, and improve government service delivery.

SPSS Modeler’s visual interface invites users to apply their specific business expertise, which
leads to more powerful predictive models and shortens time-to-solution. SPSS Modeler offers
many modeling techniques, such as prediction, classification, segmentation, and association
detection algorithms. Once models are created, IBM® SPSS® Modeler Solution Publisher
enables their delivery enterprise-wide to decision makers or to a database.

About IBM Business Analytics

IBM Business Analytics software delivers complete, consistent and accurate information that
decision-makers trust to improve business performance. A comprehensive portfolio of business
intelligence, predictive analytics, financial performance and strategy management, and analytic
applications provides clear, immediate and actionable insights into current performance and the
ability to predict future outcomes. Combined with rich industry solutions, proven practices and
professional services, organizations of every size can drive the highest productivity, confidently
automate decisions and deliver better results.

As part of this portfolio, IBM SPSS Predictive Analytics software helps organizations predict
future events and proactively act upon that insight to drive better business outcomes. Commercial,
government and academic customers worldwide rely on IBM SPSS technology as a competitive
advantage in attracting, retaining and growing customers, while reducing fraud and mitigating
risk. By incorporating IBM SPSS software into their daily operations, organizations become
predictive enterprises – able to direct and automate decisions to meet business goals and achieve
measurable competitive advantage. For further information or to reach a representative visit
http://www.ibm.com/spss.

Technical support

Technical support is available to maintenance customers. Customers may contact Technical
Support for assistance in using IBM Corp. products or for installation help for one of the
supported hardware environments. To reach Technical Support, see the IBM Corp. web site
at http://www.ibm.com/support. Be prepared to identify yourself, your organization, and your
support agreement when requesting assistance.

© Copyright IBM Corporation 1994, 2016. iii

http://www-01.ibm.com/software/data/businessintelligence/
http://www-01.ibm.com/software/data/businessintelligence/
http://www-01.ibm.com/software/analytics/spss/
http://www-142.ibm.com/software/products/us/en/category/SWQ30
http://www-142.ibm.com/software/products/us/en/category/SWQ10
http://www-142.ibm.com/software/products/us/en/category/SWQ10
http://www.ibm.com/spss
http://www.ibm.com/support

Contents
Adjusted Propensities Algorithms 1

Model-Dependent Method . 1
General Purpose Method . 1

Anomaly Detection Algorithm 3

Overview . 3
Primary Calculations. 3

Notation . 3
Algorithm Steps . 4
Blank Handling . 7

Generated Model/Scoring . 7
Predicted Values . 7
Blank Handling . 7

Apriori Algorithms 9

Overview . 9
Deriving Rules . 9

Frequent Itemsets . 9
Generating Rules . 10
Blank Handling . 11
Effect of Options . 11

Generated Model/Scoring . 12
Predicted Values . 12
Confidence . 12
Blank Handling . 12

Automated Data Preparation Algorithms 13

Notation . 13
Date/Time Handling . 14
Univariate Statistics Collection . 15
Basic Variable Screening . 17
Checkpoint 1: Exit? . 17

© Copyright IBM Corporation 1994, 2016. v

Measurement Level Recasting . 17
Outlier Identification and Handling . 18
Missing Value Handling . 19
Continuous Predictor Transformations . 20

Z-score Transformation . 20
Min-Max Transformation . 20

Target Handling . 21
Bivariate Statistics Collection . 22
Categorical Variable Handling . 25

Reordering Categories . 25
Identify Highly Associated Categorical Features . 26
Supervised Merge . 26
P-value Calculations . 27
Unsupervised Merge . 30

Continuous Predictor Handling . 31
Supervised Binning . 32
Feature Selection and Construction . 32
Principal Component Analysis . 33
Correlation and Partial Correlation . 34

Discretization of Continuous Predictors . 35
Predictive Power . 35
References . 36

Bayesian Networks Algorithms 37

Bayesian Networks Algorithm Overview . 37
Primary Calculations. 37

Notation . 37
Handling of Continuous Predictors . 38
Feature Selection via Breadth-First Search . 38
Tree Augmented Naïve Bayes Method . 40
Markov Blanket Algorithms . 43
Blank Handling . 47

Model Nugget/Scoring . 47

vi

Binary Classifier Comparison Metrics 49

C5.0 Algorithms 51

Scoring. 51

Carma Algorithms 53

Overview . 53
Deriving Rules . 53

Frequent Itemsets . 53
Generating Rules . 54
Blank Handling . 55
Effect of Options . 55

Generated Model/Scoring . 56
Predicted Values . 56
Confidence . 56
Blank Handling . 57

C&RT Algorithms 59

Overview of C&RT. 59
Primary Calculations. 59

Frequency and Case Weight Fields . 59
Model Parameters . 60
Blank Handling . 61
Effect of Options . 62

Secondary Calculations . 68
Risk Estimates . 68
Gain Summary . 69

Generated Model/Scoring . 69
Predicted Values . 70
Confidence . 71
Blank Handling . 71

vii

CHAID Algorithms 73

Overview of CHAID . 73
Primary Calculations. 73

Frequency and Case Weight Fields . 73
Binning of Scale-Level Predictors . 74
Model Parameters . 75
Blank Handling . 81
Effect of Options . 81

Secondary Calculations . 82
Risk Estimates . 82
Gain Summary . 83

Generated Model/Scoring . 84
Predicted Values . 84
Confidence . 85
Blank Handling . 85

Cluster Evaluation Algorithms 87

Notation . 87
Goodness Measures . 87

Data Preparation . 88
Basic Statistics . 88
Silhouette Coefficient . 89
Sum of Squares Error (SSE) . 89
Sum of Squares Between (SSB) . 89

Predictor Importance . 89
References . 91

COXREG Algorithms 93

Cox Regression Algorithms . 93
Estimation . 93
Estimation of Beta . 94
Estimation of the Baseline Function . 96
Selection Statistics for Stepwise Methods . 97

Score Statistic . 98
Wald Statistic . 98

viii

LR (Likelihood Ratio) Statistic . 98
Conditional Statistic . 98

Statistics . 99
Initial Model Information . 99
Model Information . 99
Information for Variables in the Equation . 100
Information for the Variables Not in the Equation . 101
Survival Table . 101

Plots . 101
Survival Plot . 102
Hazard Plot . 102
LML Plot . 102

Blank Handling . 102
Scoring . 102

Blank Handling . 102
References . 102

Decision List Algorithms 105

Algorithm Overview . 105
Terminology of Decision List Algorithm . 105
Main Calculations. 106

Notation . 106
Primary Algorithm . 106
Decision Rule Algorithm. 107
Decision Rule Split Algorithm. 108

Secondary Measures . 111
Blank Handling . 111
Generated Model/Scoring . 111

Blank Handling . 111

DISCRIMINANT Algorithms 113

Notation . 113
Basic Statistics . 113

Mean . 113
Variances . 113
Within-Groups Sums of Squares and Cross-Product Matrix (W) . 114
Total Sums of Squares and Cross-Product Matrix (T) . 114

ix

Within-Groups Covariance Matrix . 114
Individual Group Covariance Matrices . 114
Within-Groups Correlation Matrix (R) . 114
Total Covariance Matrix . 114
Univariate F and Λfor Variable I . 114

Rules of Variable Selection . 114
Method = Direct . 115
Stepwise Variable Selection . 115
Ineligibility for Inclusion . 115

Computations During Variable Selection . 116
Tolerance . 116
F-to-Remove . 116
F-to-Enter . 116
Wilks’ Lambda for Testing the Equality of Group Means . 116
The Approximate F Test for Lambda (the “overall F”), also known as Rao’s R (Tatsuoka, 1971) 117
Rao’s V (Lawley-Hotelling Trace) (Rao, 1952; Morrison, 1976) . 117
The Squared Mahalanobis Distance (Morrison, 1976) between groups a and b 117
The F Value for Testing the Equality of Means of Groups a and b (Smallest F ratio) 117
The Sum of Unexplained Variations (Dixon, 1973) . 117

Classification Functions . 117
Canonical Discriminant Functions . 118

Percentage of Between-Groups Variance Accounted for . 118
Canonical Correlation . 118
Wilks’ Lambda . 119
The Standardized Canonical Discriminant Coefficient Matrix D . 119
The Correlations Between the Canonical Discriminant Functions and the Discriminating
Variables . 119
The Unstandardized Coefficients . 119
Tests For Equality Of Variance . 120

Blank Handling . 121
Generated model/scoring . 121

Cross-Validation (Leave-one-out classification) . 122
Blank Handling (discriminant analysis algorithms scoring) . 123

References . 123

Ensembles Algorithms 125

Bagging and Boosting Algorithms . 125
Notation . 125
Bootstrap Aggregation . 126
Bagging Model Measures . 127
Adaptive Boosting . 128

x

Stagewise Additive Modeling using Multiclass Exponential loss . 129
Boosting Model Measures . 130
References . 130

Very large datasets (pass, stream, merge) algorithms . 130
Pass . 131
Stream . 132
Merge . 132
Adaptive Predictor Selection . 132
Automatic Category Balancing . 133
Model Measures . 134
Scoring . 136

Ensembling model scores algorithms . 136
Notation . 136
Scoring . 136

Factor Analysis/PCA Algorithms 139

Overview . 139
Primary Calculations. 139

Factor Extraction . 139
Factor Rotation . 145
Factor Score Coefficients . 151
Blank Handling . 151

Secondary Calculations . 152
Field Statistics and Other Calculations . 152

Generated Model/Scoring . 152
Factor Scores . 152
Blank Handling . 152

Feature Selection Algorithm 153

Introduction . 153
Primary Calculations. 153

Screening . 153
Ranking Predictors . 154
Selecting Predictors . 160

Generated Model . 160

xi

GENLIN Algorithms 163

Generalized Linear Models . 163
Notation . 163
Model . 163
Estimation . 169
Model Testing . 177
Blank handling. 183
Scoring . 183

References . 184

Generalized linear mixed models algorithms 187

Notation . 187
Model . 188

Fixed effects transformation . 191
Estimation . 192

Linear mixed pseudo model . 192
Iterative process . 194
Wald confidence intervals for covariance parameter estimates . 195
Statistics for estimates of fixed and random effects . 196

Testing . 199
Goodness of fit . 199
Tests of fixed effects . 199
Estimated marginal means . 200
Method for computing degrees of freedom . 203

Scoring . 204
Nominal multinomial distribution . 206

Notation . 206
Model . 207
Estimation . 208
Post-estimation statistics . 209
Testing . 211
Scoring . 212

Ordinal multinomial distribution . 213
Notation . 213
Model . 214
Estimation . 216
Post-estimation statistics . 217

xii

Testing . 218
Scoring . 219

References . 220

Imputation of Missing Values 223

Imputing Fixed Values. 223
Imputing Random Values . 224
Imputing Values Derived from an Expression. 225
Imputing Values Derived from an Algorithm . 225

K-Means Algorithm 227

Overview . 227
Primary Calculations. 227

Field Encoding . 227
Model Parameters . 229
Blank Handling . 230
Effect of Options . 230

Model Summary Statistics . 231
Generated Model/Scoring . 231

Predicted Cluster Membership . 231
Distances . 231
Blank Handling . 232

KNN Algorithms 233

Notation . 233
Preprocessing . 233
Training . 234

Distance Metric . 234
Crossvalidation for Selection of k . 235
Feature Selection . 235
Combined k and Feature Selection . 236

Blank Handling . 236
Output Statistics . 237

xiii

Scoring . 238
Blank Handling . 238

References . 239

Kohonen Algorithms 241

Overview . 241
Primary Calculations. 241

Field Encoding . 241
Model Parameters . 242
Blank Handling . 244
Effect of Options . 244

Generated Model/Scoring . 245
Cluster Membership . 245
Blank Handling . 245

Linear modeling algorithms 247

Notation . 247
Model . 248
Least squares estimation . 248
Model selection . 249

Forward stepwise . 250
Best subsets . 253

Model evaluation . 255
Coefficients and statistical inference . 256
Scoring . 258
Diagnostics . 258
Predictor importance . 259
References . 259

Linear Regression Algorithms 261

Overview . 261
Primary Calculations. 261

Notation . 261
Model Parameters . 261

xiv

Automatic Field Selection . 263
Blank Handling . 265

Secondary Calculations . 265
Model Summary Statistics . 265
Field Statistics and Other Calculations . 265

Generated Model/Scoring . 265
Predicted Values . 265
Blank Handling . 266

Logistic Regression Algorithms 267

Logistic Regression Models . 267
Multinomial Logistic Regression . 267

Primary Calculations . 267
Secondary Calculations . 272
Stepwise Variable Selection . 274
Generated Model/Scoring . 279

Binomial Logistic Regression . 279
Notation . 279
Model . 280
Maximum Likelihood Estimates (MLE) . 280
Stepwise Variable Selection . 281
Statistics . 284
Generated Model/Scoring . 289

Neural Networks Algorithms 291

Multilayer Perceptron . 291
Notation . 291
Architecture . 291
Training . 294

Radial Basis Function . 298
Notation . 298
Architecture . 299
Training . 299

Missing Values . 301
Output Statistics . 301
Confidence . 302
References . 302

xv

OPTIMAL BINNING Algorithms 305

Notation . 305
Simple MDLP . 305

Class Entropy . 305
Class Information Entropy . 306
Information Gain . 306
MDLP Acceptance Criterion . 306
Algorithm: BinaryDiscretization . 307
Algorithm: MDLPCut . 307
Algorithm: SimpleMDLP . 308

Hybrid MDLP . 308
Algorithm: EqualFrequency . 308
Algorithm: HybridMDLP . 308

Model Entropy . 309
Merging Sparsely Populated Bins . 309
Blank Handling . 309
References . 310

Predictor Importance Algorithms 311

Notation . 311
Variance Based Method . 311
References . 314

QUEST Algorithms 315

Overview of QUEST. 315
Primary Calculations. 315

Frequency Weight Fields . 315
Model Parameters . 316
Blank Handling . 319
Effect of Options . 321

Secondary Calculations . 324
Risk Estimates . 324
Gain Summary . 325

Generated Model/Scoring . 325
Predicted Values . 325

xvi

Confidence . 326
Blank Handling . 326

Self-Learning Response Model Algorithms 327

Primary Calculations. 327
Naive Bayes Algorithms. 327
Notation . 327
Naive Bayes Model . 327

Secondary Calculations . 328
Model Assessment . 328

Blank Handling . 329
Updating the Model . 329
Generated Model/Scoring . 329

Predicted Values and Confidences. 329
Variable Assessment . 330

Sequence Algorithm 333

Overview of Sequence Algorithm . 333
Primary Calculations. 333

Itemsets, Transactions, and Sequences . 333
Sequential Patterns . 335
Adjacency Lattice . 336
Mining for Frequent Sequences . 337
Generating Sequential Patterns . 339
Blank Handling . 340

Secondary Calculations . 340
Confidence . 340

Generated Model/Scoring . 341
Predicted Values . 341
Confidence . 342
Blank Handling . 342

Simulation algorithms 343

Simulation algorithms . 343
Notation . 343

xvii

Distribution fitting . 343
Goodness of fit measures . 352
Anderson-Darling statistic with frequency weights . 360
References . 360

Simulation algorithms: run simulation . 361
Generating correlated data . 361
Sensitivity measures . 363
References . 365

Support Vector Machine (SVM) Algorithms 367

Introduction to Support Vector Machine Algorithms . 367
SVM Algorithm Notation . 367
SVM Types . 367

C-Support Vector Classification (C-SVC) . 368
ε-Support Vector Regression (ε-SVR) . 368

Primary Calculations. 369
Solving Quadratic Problems. 369
Variable Scale . 370
Model Building Algorithm . 370

Model Nugget/Scoring . 377
Blank Handling . 377

Time Series Algorithms 379

Notation . 379
Models . 379

Exponential Smoothing Models . 379
ARIMA and Transfer Function Models . 382

Outlier Detection in Time Series Analysis . 387
Notation . 388
Definitions of Outliers . 388
Estimating the Effects of an Outlier . 390
Detection of Outliers . 390

Goodness-of-Fit Statistics. 391
Mean Squared Error . 392
Mean Absolute Percent Error . 392
Maximum Absolute Percent Error . 392
Mean Absolute Error . 392

xviii

Maximum Absolute Error . 392
Normalized Bayesian Information Criterion . 392
R-Squared . 392
Stationary R-Squared . 392

Expert Modeling . 393
Univariate Series . 393
Multivariate Series . 394

Blank Handling . 396
Generated Model/Scoring . 396

Blank Handling . 396
References. 396

TwoStep Cluster Algorithms 397

Overview . 397
Model Parameters . 397

Pre-cluster . 397
Cluster . 398
Distance Measure . 398
Number of Clusters (auto-clustering) . 399

Blank Handling . 400
Effect of Options . 400

Outlier Handling. 400
Generated Model/Scoring . 401

Predicted Values . 401
Blank Handling . 401

Appendix

A Notices 403

Bibliography 407

Index 413

xix

Adjusted Propensities Algorithms
Adjusted propensity scores are calculated as part of the process of building the model, and will
not be available otherwise. Once the model is built, it is then scored using data from the test or
validation partition, and a new model to deliver adjusted propensity scores is constructed by
analyzing the original model’s performance on that partition. Depending on the type of model,
one of two methods may be used to calculate the adjusted propensity scores.

Model-Dependent Method
For rule set and tree models, the following method is used:

1. Score the model on the test or validation partition.

2. Tree models. Calculate the frequency of each category at each tree node using the test/validation
partition, reflecting the distribution of the target value in the records scored to that node.

Rule set models. Calculate the support and confidence of each rule using the test/validation
partition, reflecting the model performance on the test/validation partition.

This results in a new rule set or tree model which is stored with the original model. Each time
the original model is applied to new data, the new model can subsequently be applied to the raw
propensity scores to generate the adjusted scores.

General Purpose Method
For other models, the following method is used:

1. Score the model on the test or validation partition to compute predicted values and predicted
raw propensities.

2. Remove all records which have a missing value for the predicted or observed value.

3. Calculate the observed propensities as 1 for true observed values and 0 otherwise.

4. Bin records according to predicted raw propensity using 100 equal-count tiles.

5. Compute the mean predicted raw propensity and mean observed propensity for each bin.

6. Build a neural network with mean observed propensity as the target and predicted raw propensity
as a predictor. For the neural network settings:

Use a random seed, value 0
Use the "quick" training method
Stop after 250 cycles
Do not use prevent overtaining option
Use expert mode
Quick Method Expert Options:

Use one hidden layer with 3 neurons and persistence set to 200
Learning Rates Expert Options:

Alpha 0.9

© Copyright IBM Corporation 1994, 2016. 1

2

Adjusted Propensities Algorithms

Initial Eta 0.3
High Eta 0.1
Eta decay 50
Low Eta 0.01

The result is a neural network model that attempts to map raw propensity to a more accurate
estimate which takes into account the original model’s performance on the testing or validation
partition. To calculate adjusted propensities at score time, this neural network is applied to the raw
propensities obtained from scoring the original model.

Anomaly Detection Algorithm

Overview

The Anomaly Detection procedure searches for unusual cases based on deviations from the
norms of their cluster groups. The procedure is designed to quickly detect unusual cases for
data-auditing purposes in the exploratory data analysis step, prior to any inferential data analysis.
This algorithm is designed for generic anomaly detection; that is, the definition of an anomalous
case is not specific to any particular application, such as detection of unusual payment patterns
in the healthcare industry or detection of money laundering in the finance industry, in which the
definition of an anomaly can be well-defined.

Primary Calculations

Notation

The following notation is used throughout this chapter unless otherwise stated:

ID The identity variable of each case in the data file.
n The number of cases in the training data Xtrain .
Xok, k = 1, …, K The set of input variables in the training data.
Mk, k ∈ {1, …, K} If Xok is a continuous variable, Mk represents the grand mean, or average of

the variable across the entire training data.
SDk, k ∈ {1, …, K} If Xok is a continuous variable, SDk represents the grand standard deviation,

or standard deviation of the variable across the entire training data.
XK+1 A continuous variable created in the analysis. It represents the percentage of

variables (k = 1, …, K) that have missing values in each case.
Xk, k = 1, …, K The set of processed input variables after the missing value handling is

applied. For more information, see the topic “Modeling Stage ” on p. 4.
H, or the boundaries of H:
[Hmin, Hmax]

H is the pre-specified number of cluster groups to create. Alternatively, the
bounds [Hmin, Hmax] can be used to specify the minimum and maximum
numbers of cluster groups.

nh, h = 1, …, H The number of cases in cluster h, h = 1, …, H, based on the training data.
ph, h = 1, …, H The proportion of cases in cluster h, h = 1, …, H, based on the training

data. For each h, ph = nh/n.
Mhk, k = 1, …, K+1, h = 1,
…, H

If Xk is a continuous variable, Mhk represents the cluster mean, or average
of the variable in cluster h based on the training data. If Xk is a categorical
variable, it represents the cluster mode, or most popular categorical value of
the variable in cluster h based on the training data.

SDhk, k ∈ {1, …, K+1}, h
= 1, …, H

If Xk is a continuous variable, SDhk represents the cluster standard deviation,
or standard deviation of the variable in cluster h based on the training data.

{nhkj}, k ∈ {1, …, K}, h =
1, …, H, j = 1, …, Jk

The frequency set {nhkj} is defined only when Xk is a categorical variable.
If Xk has Jk categories, then nhkj is the number of cases in cluster h that fall
into category j.

m An adjustment weight used to balance the influence between continuous and
categorical variables. It is a positive value with a default of 6.

VDIk, k = 1, …, K+1 The variable deviation index of a case is a measure of the deviation of
variable value Xk from its cluster norm.

© Copyright IBM Corporation 1994, 2016. 3

4

Anomaly Detection Algorithm

GDI The group deviation index GDI of a case is the log-likelihood distance d(h,
s), which is the sum of all of the variable deviation indices {VDIk, k = 1,
…, K+1}.

anomaly index The anomaly index of a case is the ratio of the GDI to that of the average
GDI for the cluster group to which the case belongs.

variable contribution
measure

The variable contribution measure of variable Xk for a case is the ratio of
the VDIk to the case’s corresponding GDI.

pctanomaly or nanomaly A pre-specified value pctanomaly determines the percentage of cases to be
considered as anomalies. Alternatively, a pre-specified positive integer value
nanomaly determines the number of cases to be considered as anomalies.

cutpointanomaly A pre-specified cutpoint; cases with anomaly index values greater than
cutpointanomaly are considered anomalous.

kanomaly A pre-specified integer threshold 1≤kanomaly≤K+1 determines the number of
variables considered as the reasons that the case is identified as an anomaly.

Algorithm Steps

This algorithm is divided into three stages:

Modeling. Cases are placed into cluster groups based on their similarities on a set of input
variables. The clustering model used to determine the cluster group of a case and the sufficient
statistics used to calculate the norms of the cluster groups are stored.

Scoring. The model is applied to each case to identify its cluster group and some indices are
created for each case to measure the unusualness of the case with respect to its cluster group.
All cases are sorted by the values of the anomaly indices. The top portion of the case list is
identified as the set of anomalies.

Reasoning. For each anomalous case, the variables are sorted by its corresponding variable
deviation indices. The top variables, their values, and the corresponding norm values are presented
as the reasons why a case is identified as an anomaly.

Modeling Stage

This stage performs the following tasks:

1. Training Set Formation. Starting with the specified variables and cases, remove any case with
extremely large values (greater than 1.0E+150) on any continuous variable. If missing value
handling is not in effect, also remove cases with a missing value on any variable. Remove variables
with all constant nonmissing values or all missing values. The remaining cases and variables are
used to create the anomaly detection model. Statistics output to pivot table by the procedure are
based on this training set, but variables saved to the dataset are computed for all cases.

2. Missing Value Handling (Optional). For each input variable Xok, k = 1, …, K, if Xok is a continuous
variable, use all valid values of that variable to compute the grand mean Mk and grand standard
deviation SDk. Replace the missing values of the variable by its grand mean. If Xok is a
categorical variable, combine all missing values into a “missing value” category. This category is
treated as a valid category. Denote the processed form of {Xok} by {Xk}.

5

Anomaly Detection Algorithm

3. Creation of Missing Value Pct Variable (Optional). A new continuous variable, XK+1, is created that
represents the percentage of variables (both continuous and categorical) with missing values in
each case.

4. Cluster Group Identification. The processed input variables {Xk, k = 1, …, K+1} are used to create
a clustering model. The two-step clustering algorithm is used with noise handling turned on (see
the TwoStep Cluster algorithm document for more information).

5. Sufficient Statistics Storage. The cluster model and the sufficient statistics for the variables by
cluster are stored for the Scoring stage:
 The grand mean Mk and standard deviation SDk of each continuous variable are stored,

k ∈ {1, …, K+1}.
 For each cluster h = 1, …, H, store the size nh. If Xk is a continuous variable, store the cluster

mean Mhk and standard deviation SDhk of the variable based on the cases in cluster h. If Xk is
a categorical variable, store the frequency nhkj of each category j of the variable based on the
cases in cluster h. Also store the modal category Mhk. These sufficient statistics will be used
in calculating the log-likelihood distance d(h, s) between a cluster h and a given case s.

Scoring Stage

This stage performs the following tasks on scoring (testing or training) data:

1. New Valid Category Screening. The scoring data should contain the input variables {Xok, k = 1, …,
K} in the training data. Moreover, the format of the variables in the scoring data should be the
same as those in the training data file during the Modeling Stage.

Cases in the scoring data are screened out if they contain a categorical variable with a valid
category that does not appear in the training data. For example, if Region is a categorical variable
with categories IL, MA and CA in the training data, a case in the scoring data that has a valid
category FL for Region will be excluded from the analysis.

2. Missing Value Handling (Optional). For each input variable Xok, if Xok is a continuous variable, use
all valid values of that variable to compute the grand mean Mk and grand standard deviation SDk.
Replace the missing values of the variable by its grand mean. If Xok is a categorical variable,
combine all missing values and put together a missing value category. This category is treated
as a valid category.

3. Creation of Missing Value Pct Variable (Optional depending on Modeling Stage). If XK+1 is created in
the Modeling Stage, it is also computed for the scoring data.

4. Assign Each Case to its Closest Non-Noise Cluster. The clustering model from the Modeling Stage
is applied to the processed variables of the scoring data file to create a cluster ID for each case.
Cases belonging to the noise cluster are reassigned to their closest non-noise cluster. See the
TwoStep Cluster algorithm document for more information on the noise cluster.

5. Calculate Variable Deviation Indices. Given a case s, the closest cluster h is found. The variable
deviation index VDIk of variable Xk is defined as the contribution dk(h, s) of the variable to its
log-likelihood distance d(h, s). The corresponding norm value is Mhk, which is the cluster sample
mean of Xk if Xk is continuous, or the cluster mode of Xk if Xk is categorical.

6

Anomaly Detection Algorithm

6. Calculate Group Deviation Index. The group deviation index GDI of a case is the log-likelihood
distance d(h, s), which is the sum of all the variable deviation indices {VDIk, k = 1, …, K+1}.

7. Calculate Anomaly Index and Variable Contribution Measures. Two additional indices are calculated
that are easier to interpret than the group deviation index and the variable deviation index.

The anomaly index of a case is an alternative to the GDI, which is computed as the ratio of the
case’s GDI to the average GDI of the cluster to which the case belongs. Increasing values of this
index correspond to greater deviations from the average and indicate better anomaly candidates.

A variable’s variable contribution measure of a case is an alternative to the VDI, which is
computed as the ratio of the variable’s VDI to the case’s GDI. This is the proportional contribution
of the variable to the deviation of the case. The larger the value of this measure, the greater
the variable’s contribution to the deviation.

Odd Situations

Zero Divided by Zero

The situation in which the GDI of a case is zero and the average GDI of the cluster that the case
belongs to is also zero is possible if the cluster is a singleton or is made up of identical cases and
the case in question is the same as the identical cases. Whether this case is considered as an
anomaly or not depends on whether the number of identical cases that make up the cluster is large
or small. For example, suppose that there is a total of 10 cases in the training and two clusters are
resulted in which one cluster is a singleton; that is, made up of one case, and the other has nine
cases. In this situation, the case in the singleton cluster should be considered as an anomaly as it
does not belong to the larger cluster. One way to calculate the anomaly index in this situation is to
set it as the ratio of average cluster size to the size of the cluster h, which is:

Following the 10 cases example, the anomaly index for the case belonging to the singleton cluster
would be (10/2)/1 = 5, which should be large enough for the algorithm to catch it as an anomaly.
In this situation, the variable contribution measure is set to 1/(K+1), where (K+1) is the number of
processed variables in the analysis.

Nonzero Divided by Zero

The situation in which the GDI of a case is nonzero but the average GDI of the cluster that the case
belongs to is 0 is possible if the corresponding cluster is a singleton or is made up of identical cases
and the case in question is not the same as the identical cases. Suppose that case i belongs to cluster
h, which has a zero average GDI; that is, average(GDI)h = 0, but the GDI between case i and
cluster h is nonzero; that is, GDI(i, h) ≠ 0. One choice for the anomaly index calculation of case i
could be to set the denominator as the weighted average GDI over all other clusters if this value is
not 0; else set the calculation as the ratio of average cluster size to the size of cluster h. That is,

7

Anomaly Detection Algorithm

if

otherwise

This situation triggers a warning that the case is assigned to a cluster that is made up of identical
cases.

Reasoning Stage

Every case now has a group deviation index and anomaly index and a set of variable deviation
indices and variable contribution measures. The purpose of this stage is to rank the likely
anomalous cases and provide the reasons to suspect them of being anomalous.

1. Identify the Most Anomalous Cases. Sort the cases in descending order on the values of the anomaly
index. The top pctanomaly % (or alternatively, the top nanomaly) gives the anomaly list, subject
to the restriction that cases with an anomaly index less than or equal to cutpointanomaly are not
considered anomalous.

2. Provide Reasons for Considering a Case Anomalous. For each anomalous case, sort the variables by
their corresponding VDIk values in descending order. The top kanomaly variable names, its value
(of the corresponding original variable Xok), and the norm values are displayed as reasoning.

Blank Handling

Blanks and missing values are handled in model building as described in “Algorithm Steps ” on p.
4, based on user settings.

Generated Model/Scoring

The Anomaly Detection generated model can be used to detect anomalous records in new data
based on patterns found in the original training data. For each record scored, an anomaly score is
generated and a flag indicating anomaly status and/or the anomaly score are appended as new fields

Predicted Values

For each record, the anomaly score is calculated as described in “Scoring Stage ” on p. 5, based on
the cluster model created when the model was built. If anomaly flags were requested, they are
determined as described in “Reasoning Stage ” on p. 7.

Blank Handling

In the generated model, blanks are handled according to the setting used in building the model.
For more information, see the topic “Scoring Stage ” on p. 5.

Apriori Algorithms

Overview

Apriori is an algorithm for extracting association rules from data. It constrains the search space
for rules by discovering frequent itemsets and only examining rules that are made up of frequent
itemsets (Agrawal and Srikant, 1994).

Apriori deals with items and itemsets that make up transactions. Items are flag-type conditions
that indicate the presence or absence of a particular thing in a specific transaction. An itemset is a
group of items which may or may not tend to co-occur within transactions.

IBM® SPSS® Modeler uses Christian Borgelt’s Apriori implementation. Full details on this
implementation can be obtained at
http://fuzzy.cs.uni-magdeburg.de/~borgelt/doc/apriori/apriori.html.

Deriving Rules

Apriori proceeds in two stages. First it identifies frequent itemsets in the data, and then it
generates rules from the table of frequent itemsets.

Frequent Itemsets

The first step in Apriori is to identify frequent itemsets. A frequent itemset is defined as an
itemset with support greater than or equal to the user-specified minimum support threshold smin.
The support of an itemset is the number of records in which the itemset is found divided by
the total number of records.

The algorithm begins by scanning the data and identifying the single-item itemsets (i.e.
individual items, or itemsets of length 1) that satisfy this criterion. Any single items that do
not satisfy the criterion are not be considered further, because adding an infrequent item to an
itemset will always result in an infrequent itemset.

Apriori then generates larger itemsets recursively using the following steps:

E Generate a candidate set of itemsets of length k (containing k items) by combining existing
itemsets of length :

For every possible pair of frequent itemsets p and q with length , compare the
first items (in lexicographic order); if they are the same, and the last item in q is
(lexicographically) greater than the last item in p, add the last item in q to the end of p to create a
new candidate itemset with length k.

E Prune the candidate set by checking every length subset of each candidate itemset; all
subsets must be frequent itemsets, or the candidate itemset is infrequent and is removed from
further consideration.

E Calculate the support of each itemset in the candidate set, as

© Copyright IBM Corporation 1994, 2016. 9

http://fuzzy.cs.uni-magdeburg.de/%7Eborgelt/doc/apriori/apriori.html

10

Apriori Algorithms

where is the number of records that match the itemset and N is the number of records in the
training data. (Note that this definition of itemset support is different from the definition used for
rule support.)

E Itemsets with support ≥ smin are added to the list of frequent itemsets.

E If any frequent itemsets of length k were found, and k is less than the user-specified maximum rule
size kmax, repeat the process to find frequent itemsets of length .

Generating Rules

When all frequent itemsets have been identified, the algorithm extracts rules from the frequent
itemsets. For each frequent itemset L with length k > 1, the following procedure is applied:

E Calculate all subsets A of length of the itemset such that all the fields in A are input fields
and all the other fields in the itemset (those that are not in A) are output fields. Call the latter
subset . (In the first iteration this is just one field, but in later iterations it can be multiple fields.)

E For each subset A, calculate the evaluation measure (rule confidence by default) for the rule
as described below.

E If the evaluation measure is greater than the user-specified threshold, add the rule to the rule table,
and, if the length k’ of A is greater than 1, test all possible subsets of A with length

Evaluation Measures

Apriori offers several evaluation measures for determining which rules to retain. The different
measures will emphasize different aspects of the rules, as detailed in the IBM® SPSS® Modeler
User’s Guide. Values are calculated based on the prior confidence and the posterior confidence,
defined as

and

where c is the support of the consequent, a is the support of the antecedent, r is the support of
the conjunction of the antecedent and the consequent, and N is the number of records in the
training data.

Rule Confidence. The default evaluation measure for rules is simply the posterior confidence
of the rule,

Confidence Difference (Absolute Confidence Difference to Prior). This measure is based on the
simple difference of the posterior and prior confidence values,

11

Apriori Algorithms

Confidence Ratio (Difference of Confidence Quotient to 1). This measure is based on the ratio of
posterior confidence to prior confidence,

Information Difference (Information Difference to Prior). This measure is based on the information
gain criterion, similar to that used in building C5.0 trees. The calculation is

where r is the rule support, a is the antecedent support, c is the consequent support, is
the complement of antecedent support, and is the complement of consequent support.

Normalized Chi-square (Normalized Chi-squared Measure). This measure is based on the chi-squared
statistical test for independence of categorical data, and is calculated as

Blank Handling

Blanks are ignored by the Apriori algorithm. The algorithm will handle records containing blanks
for input fields, but such a record will not be considered to match any rule containing one or
more of the fields for which it has blank values.

Effect of Options

Minimum rule support/confidence. These values place constraints on which rules may be entered
into the table. Only rules whose support and confidence values exceed the specified values can be
entered into the rule table.

Maximum number of antecedents. This determines the maximum number of antecedents that will
be examined for any rule. When the number of conditions in the antecedent part of the rule equals
the specified value, the rule will not be specialized further.

Only true values for flags. If this option is selected, rules with values of false will not be considered
for either input or output fields.

Optimize Speed/Memory. This option controls the trade-off between speed of processing and
memory usage. Selecting Speed will cause Apriori to use condition values directly in the frequent
itemset table, and to load the transactions into memory, if possible. Selecting Memory will
cause Apriori to use pointers into a value table in the frequent itemset table. Using pointers in

12

Apriori Algorithms

the frequent itemset table reduces the amount of memory required by the algorithm for large
problems, but it also involves some additional work to reference and dereference the pointers
during model building. The Memory option also causes Apriori to process transactions from
the file rather than loading them into memory.

Generated Model/Scoring
The Apriori algorithm generates an unrefined rule node. To create a model for scoring new
data, the unrefined rule node must be refined to generate a ruleset node. Details of scoring for
generated ruleset nodes are given below.

Predicted Values

Predicted values are based on the rules in the ruleset. When a new record is scored, it is compared
to the rules in the ruleset. How the prediction is generated depends on the user’s setting for
Ruleset Evaluation in the stream options.
 Voting. This method attempts to combine the predictions of all of the rules that apply to the

record. For each record, all rules are examined and each rule that applies to the record is used
to generate a prediction. The sum of confidence figures for each predicted value is computed,
and the value with the greatest confidence sum is chosen as the final prediction.

 First hit. This method simply tests the rules in order, and the first rule that applies to the record
is the one used to generate the prediction.

There is a default rule, which specifies an output value to be used as the prediction for records
that don’t trigger any other rules from the ruleset. For rulesets derived from decision trees, the
value for the default rule is the modal (most prevalent) output value in the overall training data.
For association rulesets, the default value is specified by the user when the ruleset is generated
from the unrefined rule node.

Confidence

Confidence calculations also depend on the user’s Ruleset Evaluation stream options setting.
 Voting. The confidence for the final prediction is the sum of the confidence values for rules

triggered by the current record that give the winning prediction divided by the number of rules
that fired for that record.

 First hit. The confidence is the confidence value for the first rule in the ruleset triggered by
the current record.

If the default rule is the only rule that fires for the record, it’s confidence is set to 0.5.

Blank Handling

Blanks are ignored by the algorithm. The algorithm will handle records containing blanks for
input fields, but such a record will not be considered to match any rule containing one or more of
the fields for which it has blank values.

Automated Data Preparation
Algorithms

The goal of automated data preparation is to prepare a dataset so as to generally improve the
training speed, predictive power, and robustness of models fit to the prepared data.

These algorithms do not assume which models will be trained post-data preparation. At the end
of automated data preparation, we output the predictive power of each recommended predictor,
which is computed from a linear regression or naïve Bayes model, depending upon whether the
target is continuous or categorical.

Notation
The following notation is used throughout this chapter unless otherwise stated:

X A continuous or categorical variable
Value of the variable X for case i.

Frequency weight for case i. Non-integer positive values are rounded to the nearest
integer. If there is no frequency weight variable, then all . If the frequency
weight of a case is zero, negative or missing, then this case will be ignored.
Analysis weight for case i. If there is no analysis weight variable, then all . If
the analysis weight of a case is zero, negative or missing, then this case will be ignored.

n Number of cases in the dataset
is not missing , where expression is the indicator function taking

value 1 when the expression is true, 0 otherwise.
is not missing

and are not missing

and are not missing

The mean of variable X, is not missing

and are not missing

A note on missing values

Listwise deletion is used in the following sections:
 “Univariate Statistics Collection ” on p. 15

© Copyright IBM Corporation 1994, 2016. 13

14

Automated Data Preparation Algorithms

 “Basic Variable Screening ” on p. 17
 “Measurement Level Recasting ” on p. 17
 “Missing Value Handling ” on p. 19
 “Outlier Identification and Handling ” on p. 18
 “Continuous Predictor Transformations ” on p. 20
 “Target Handling ” on p. 21
 “Reordering Categories ” on p. 25
 “Unsupervised Merge ” on p. 30

Pairwise deletion is used in the following sections:
 “Bivariate Statistics Collection ” on p. 22
 “Supervised Merge ” on p. 26
 “Supervised Binning ” on p. 32
 “Feature Selection and Construction ” on p. 32
 “Predictive Power ” on p. 35

A note on frequency weight and analysis weight

The frequency weight variable is treated as a case replication weight. For example if a case has
a frequency weight of 2, then this case will count as 2 cases.

The analysis weight would adjust the variance of cases. For example if a case of a variable X
has an analysis weight , then we assume that .

Frequency weights and analysis weights are used in automated preparation of other variables, but
are themselves left unchanged in the dataset.

Date/Time Handling

Date Handling

If there is a date variable, we extract the date elements (year, month and day) as ordinal variables.
If requested, we also calculate the number of elapsed days/months/years since the user-specified
reference date (default is the current date). Unless specified by the user, the “best” unit of duration
is chosen as follows:

1. If the minimum number of elapsed days is less than 31, then we use days as the best unit.

2. If the minimum number of elapsed days is less than 366 but larger than or equal to 31, we use
months as the best unit. The number of months between two dates is calculated based on average
number of days in a month (30.4375): months = days / 30.4375.

3. If the minimum number of elapsed days is larger than or equal to 366, we use years as the best
unit. The number of years between two dates is calculated based on average number of days in a
year (365.25): years = days / 365.25.

15

Automated Data Preparation Algorithms

Once the date elements are extracted and the duration is obtained, then the original date variable
will be excluded from the rest of the analysis.

Time Handling

If there is a time variable, we extract the time elements (second, minute and hour) as ordinal
variables. If requested, we also calculate the number of elapsed seconds/minutes/hours since
the user-specified reference time (default is the current time). Unless specified by the user, the
“best” unit of duration is chosen as follows:

1. If the minimum number of elapsed seconds is less than 60, then we use seconds as the best unit.

2. If the minimum number of elapsed seconds is larger than or equal to 60 but less than 3600, we
use minutes as the best unit.

3. If the minimum number of elapsed seconds is larger than or equal to 3600, we use hours as the
best unit.

Once the elements of time are extracted and time duration is obtained, then original time predictor
will be excluded.

Univariate Statistics Collection

Continuous Variables

For each continuous variable, we calculate the following statistics:
 Number of missing values: is missing
 Number of valid values:
 Minimum value:
 Maximum value:
 Mean, standard deviation, skewness. (see below)
 The number of distinct values I.
 The number of cases for each distinct value :
 Median: If the distinct values of X are sorted in ascending order, , then the

median can be computed by , where .

Note: If the number of distinct values is larger than a threshold (default is 5), we stop updating
the number of distinct values and the number of cases for each distinct value. Also we do not
calculate the median.

Categorical Numeric Variables

For each categorical numeric variable, we calculate the following statistics:
 Number of missing values: is missing

16

Automated Data Preparation Algorithms

 Number of valid values:
 Minimum value: (only for ordinal variables)
 Maximum value: (only for ordinal variables)
 The number of categories.
 The counts of each category.
 Mean, Standard deviation, Skewness (only for ordinal variables). (see below)
 Mode (only for nominal variables). If several values share the greatest frequency of

occurrence, then the mode with the smallest value is used.
 Median (only for ordinal variables): If the distinct values of X are sorted in ascending order,

, then the median can be computed by ,
where .

Notes:

1. If an ordinal predictor has more categories than a specified threshold (default 10), we stop
updating the number of categories and the number of cases for each category. Also we do not
calculate mode and median.

2. If a nominal predictor has more categories than a specified threshold (default 100), we stop
collecting statistics and just store the information that the variable had more than threshold
categories.

Categorical String Variables

For each string variable, we calculate the following statistics:
 Number of missing values: is missing
 Number of valid values:
 The number of categories.
 Counts of each category.
 Mode: If several values share the greatest frequency of occurrence, then the mode with the

smallest value is used.

Note: If a string predictor has more categories than a specified threshold (default 100), we stop
collecting statistics and just store the information that the predictor had more than threshold
categories.

Mean, Standard Deviation, Skewness

We calculate mean, standard deviation and skewness by updating moments.

1. Start with .

2. For j=1,..,n compute:
is not missing

17

Automated Data Preparation Algorithms

is not missing

3. After the last case has been processed, compute:
Mean:

Standard deviation:

Skewness:

If or , then skewness is not calculated.

Basic Variable Screening
1. If the percent of missing values is greater than a threshold (default is 50%), then exclude the

variable from subsequent analysis.

2. For continuous variables, if the maximum value is equal to minimum value, then exclude the
variable from subsequent analysis.

3. For categorical variables, if the mode contains more cases than a specified percentage (default
is 95%), then exclude the variable from subsequent analysis.

4. If a string variable has more categories than a specified threshold (default is 100), then exclude the
variable from subsequent analysis.

Checkpoint 1: Exit?

This checkpoint determines whether the algorithm should be terminated. If, after the screening
step:

1. The target (if specified) has been removed from subsequent analysis, or

2. All predictors have been removed from subsequent analysis,

then terminate the algorithm and generate an error.

Measurement Level Recasting

For each continuous variable, if the number of distinct values is less than a threshold (default
is 5), then it is recast as an ordinal variable.

18

Automated Data Preparation Algorithms

For each numeric ordinal variable, if the number of categories is greater than a threshold (default
is 10), then it is recast as a continuous variable.

Note: The continuous-to-ordinal threshold must be less than the ordinal-to-continuous threshold.

Outlier Identification and Handling

In this section, we identify outliers in continuous variables and then set the outlying values to a
cutoff or to a missing value. The identification is based on the robust mean and robust standard
deviation which are estimated by supposing that the percentage of outliers is no more than 5%.

Identification

1. Compute the mean and standard deviation from the raw data. Split the continuous variable into
non-intersecting intervals: , where

, and .

2. Calculate univariate statistics in each interval:

,

,

3. Let , , and .

4. Between two tail intervals and , find one interval with the least number of cases.

5. If , then . Check if is less than a threshold (default
is 0.05). If it does, then and , go to step 4; otherwise, go to step 6.

Else . Check if is less than a threshold, . If it is, then
and , go to step 4; otherwise, go to step 6.

6. Compute the robust mean and robust standard deviation within the range
. See below for details.

7. If satisfies the conditions:

or

where cutoff is positive number (default is 3), then is detected as an outlier.

Handling

Outliers will be handled using one of following methods:
 Trim outliers to cutoff values. If then replace by

, and if then replace
by .

 Set outliers to missing values.

19

Automated Data Preparation Algorithms

Update Univariate Statistics

After outlier handling, we perform a data pass to calculate univariate statistics for each continuous
variable, including the number of missing values, minimum, maximum, mean, standard deviation,
skewness, and number of outliers.

Robust Mean and Standard Deviation

Robust mean and standard deviation within the range are calculated
as follows:

and

where and .

Missing Value Handling
Continuous variables. Missing values are replaced by the mean, and the following statistics are
updated:

 Standard deviation: , where .

 Skewness: , where and

 The number of missing values:
 The number of valid values:

Ordinal variables. Missing values are replaced by the median, and the following statistics are
updated:
 The number of cases in the median category: , where is the

original number of cases in the median category.
 The number of missing values:
 The number of valid values:

Nominal variables. Missing values are replaced by the mode, and the following statistics are
updated:
 The number of cases in the modal category: , where is the original

number of cases in the modal category.
 The number of missing values:
 The number of valid values:

20

Automated Data Preparation Algorithms

Continuous Predictor Transformations
We transform a continuous predictor so that it has the user-specified mean (default
0) and standard deviation (default 1) using the z-score transformation, or minimum

(default 0) and maximum (default 100) value using the min-max transformation.

Z-score Transformation

Suppose a continuous variable has mean and standard deviation sd. The z-score transformation is

where is the transformed value of continuous variable X for case i.

Since we do not take into account the analysis weight in the rescaling formula, the rescaled values
follow a normal distribution .

Update univariate statistics

After a z-score transformation, the following univariate statistics are updated:
 Number of missing values:
 Number of valid values:

 Minimum value:

 Maximum value:

 Mean:
 Standard deviation:

 Skewness:

Min-Max Transformation

Suppose a continuous variable has a minimum value and a minimum value . The
min-max transformation is

where is the transformed value of continuous variable X for case i.

Update univariate statistics

After a min-max transformation, the following univariate statistics are updated:
 The number of missing values:

21

Automated Data Preparation Algorithms

 The number of valid values:

 Minimum value:

 Maximum value:

 Mean:

 Standard deviation:

 Skwness:

Target Handling

Nominal Target

For a nominal target, we rearrange categories from lowest to highest counts. If there is a tie on
counts, then ties will be broken by ascending sort or lexical order of the data values.

Continuous Target

The transformation proposed by Box and Cox (1964) transforms a continuous variable into one
that is more normally distributed. We apply the Box-Cox transformation followed by the z score
transformation so that the rescaled target has the user-specified mean and standard deviation.

Box-Cox transformation. This transforms a non-normal variable Y to a more normally distributed
variable:

where are observations of variable Y, and c is a constant such that all values
are positive. Here, we choose .

The parameter λ is selected to maximize the log-likelihood function:

where and .

We perform a grid search over a user-specified finite set [a,b] with increment s. By default a=−3,
b=3, and s=0.5.

The algorithm can be described as follows:

1. Compute where j is an integer such that .

22

Automated Data Preparation Algorithms

2. For each , compute the following statistics:

Mean:

Standard deviation:

Skewness:

Sum of logarithm transformation:

3. For each , compute the log-likelihood function . Find the value of j with the largest
log-likelihood function, breaking ties by selecting the smallest value of . Also find the
corresponding statistics , and .

4. Transform target to reflect user’s mean (default is 0) and standard deviation (default
is 1):

where and .

Update univariate statistics. After Box-Cox and Z-score transformations, the following univariate
statistics are updated:
 Minimum value:

 Maximum value:
 Mean:
 Standard deviation:
 Skewness:

Bivariate Statistics Collection

For each target/predictor pair, the following statistics are collected according to the measurement
levels of the target and predictor.

Continuous target or no target and all continuous predictors

If there is a continuous target and some continuous predictors, then we need to calculate the
covariance and correlations between all pairs of continuous variables. If there is no continuous
target, then we only calculate the covariance and correlations between all pairs of continuous
predictors. We suppose there are there are m continuous variables, and denote the covariance
matrix as , with element , and the correlation matrix as , with element .

We define the covariance between two continuous variables X and Y as

23

Automated Data Preparation Algorithms

where and are not missing and
and are not missing .

The covariance can be computed by a provisional means algorithm:

1. Start with .

2. For j=1,..,n compute:

and are not missing

and are not missing

After the last case has been processed, we obtain:

3. Compute bivariate statistics between X and Y:

Number of valid cases:

Covariance:

Correlation:

Note: If there are no valid cases when pairwise deletion is used, then we let and .

Categorical target and all continuous predictors

For a categorical target Y with values and a continuous predictor X with values
, the bivariate statistics are:

Mean of X for each Y=i, i=1,...,J:

24

Automated Data Preparation Algorithms

Sum of squared errors of X for each Y=i, i=1,...,J:

Sum of frequency weight for each Y=i, i=1,...,J:

is not missing

Number of invalid cases

Sum of weights (frequency weight times analysis weight) for each Y=i, i=1,...,J:

is not missing

Continuous target and all categorical predictors

For a continuous target Y and a categorical predictor X with values i=1,...,J, the bivariate statistics
include:

Mean of Y conditional upon X:

Sum of squared errors of Y:

Mean of Y for each , i=1,...,J:

25

Automated Data Preparation Algorithms

Sum of squared errors of Y for each , i=1,...,J:

Sum of frequency weights for , i=1,...,J:

is not missing

Sum of weights (frequency weight times analysis weight) for , i=1,...,J:

is not missing

Categorical target and all categorical predictors

For a categorical target Y with values j=1,...,J and a categorical predictor X with values i=1,...,I,
then bivariate statistics are:

Sum of frequency weights for each combination of and :

Sum of weights (frequency weight times analysis weight) for each combination of and
:

Categorical Variable Handling

In this step, we use univariate or bivariate statistics to handle categorical predictors.

Reordering Categories

For a nominal predictor, we rearrange categories from lowest to highest counts. If there is a tie on
counts, then ties will be broken by ascending sort or lexical order of the data values. The new field
values start with 0 as the least frequent category. Note that the new field will be numeric even if
the original field is a string. For example, if a nominal field’s data values are “A”, “A”, “A”, “B”,
“C”, “C”, then automated data preparation would recode “B” into 0, “C” into 1, and “A” into 2.

26

Automated Data Preparation Algorithms

Identify Highly Associated Categorical Features

If there is a target in the data set, we select a ordinal/nominal predictor if its p-value is not larger
than an alpha-level (default is 0.05). See “P-value Calculations ” on p. 27 for details of
computing these p-values.

Since we use pairwise deletion to handle missing values when we collect bivariate statistics,
we may have some categories with zero cases; that is, for a category i of a categorical
predictor. When we calculate p-values, these categories will be excluded.

If there is only one category or no category after excluding categories with zero cases, we set the
p-value to be 1 and this predictor will not be selected.

Supervised Merge

We merge categories of an ordinal/nominal predictor using a supervised method that is similar to a
Chaid Tree with one level of depth.

1. Exclude all categories with zero case count.

2. If X has 0 categories, merge all excluded categories into one category, then stop.

3. If X has 1 category, go to step 7.

4. Else, find the allowable pair of categories of X that is most similar. This is the pair whose test
statistic gives the largest p-value with respect to the target. An allowable pair of categories for an
ordinal predictor is two adjacent categories; for a nominal predictor it is any two categories. Note
that for an ordinal predictor, if categories between the ith category and jth categories are excluded
because of zero cases, then the ith category and jth categories are two adjacent categories. See
“P-value Calculations ” on p. 27 for details of computing these p-values.

5. For the pair having the largest p-value, check if its p-value is larger than a specified alpha-level
(default is 0.05). If it does, this pair is merged into a single compound category and

at the same time we calculate the bivariate statistics of this new category. Then a new set of
categories of X is formed. If it does not, then go to step 6.

6. Go to step 3.

7. For an ordinal predictor, find the maximum value in each new category. Sort these maximum
values in ascending order. Suppose we have r new categories, and the maximum values are:

, then we get the merge rule as: the first new category will contain all original
categories such that , the second new category will contain all original categories such that

,…, and the last new category will contain all original categories such that .

For a nominal predictor, all categories excluded at step 1 will be merged into the new category
with the lowest count. If there are ties on categories with the lowest counts, then ties are broken
by selecting the category with the smallest value by ascending sort or lexical order of the original
category values which formed the new categories with the lowest counts.

27

Automated Data Preparation Algorithms

Bivariate statistics calculation of new category

When two categories are merged into a new category, we need to calculate the bivariate statistics
of this new category.

Scale target. If the categories i and can be merged based on p-value, then the bivariate statistics
should be calculated as:

Categorical target. If the categories i and can be merged based on p-value, then the bivariate
statistics should be calculated as:

Update univariate and bivariate statistics

At the end of the supervised merge step, we calculate the bivariate statistics for each new category.
For univariate statistics, the counts for each new category will be sum of the counts of each
original categories which formed the new category. Then we update other statistics according to
the formulas in “Univariate Statistics Collection ” on p. 15, though note that the statistics only
need to be updated based on the new categories and the numbers of cases in these categories.

P-value Calculations

Each p-value calculation is based on the appropriate statistical test of association between the
predictor and target.

Scale target

We calculate an F statistic:

28

Automated Data Preparation Algorithms

where .

Based on F statistics, the p-value can be derived as

where is a random variable following a F distribution with and
degrees of freedom.

At the merge step we calculate the F statistic and p-value between two categories i and of X as

where is the mean of Y for a new category merged by i and :

and is a random variable following a F distribution with 1 and
degrees of freedom.

Nominal target

The null hypothesis of independence of X and Y is tested. First a contingency (or count) table is
formed using classes of Y as columns and categories of the predictor X as rows. Then the expected
cell frequencies under the null hypothesis are estimated. The observed cell frequencies and the
expected cell frequencies are used to calculate the Pearson chi-squared statistic and the p-value:

where is the observed cell frequency and is the estimated
expected cell frequency for cell following the independence model. If ,
then . How to estimate is described below.

The corresponding p-value is given by , where follows a chi-squared
distribution with degrees of freedom.

When we investigate whether two categories i and of X can be merged, the Pearson chi-squared
statistic is revised as

29

Automated Data Preparation Algorithms

and the p-value is given by .

Ordinal target

Suppose there are I categories of X, and J ordinal categories of Y. Then the null hypothesis of
the independence of X and Y is tested against the row effects model (with the rows being the
categories of X and columns the classes of Y) proposed by Goodman (1979). Two sets of expected
cell frequencies, (under the hypothesis of independence) and (under the hypothesis that
the data follow a row effects model), are both estimated. The likelihood ratio statistic is

where

The p-value is given by .

Estimated expected cell frequencies (independence assumption)

If analysis weights are specified, the expected cell frequency under the null hypothesis of
independence is of the form

where and are parameters to be estimated, and if , otherwise .

Parameter estimates , , and hence , are obtained from the following iterative procedure.

1. , ,

2.

3.

4.

30

Automated Data Preparation Algorithms

5. If (default is 0.001) or the number of iterations is larger than a
threshold (default is 100), stop and output and as the final estimates

. Otherwise, and go to step 2.

Estimated expected cell frequencies (row effects model)

In the row effects model, scores for classes of Y are needed. By default, (the order of a
class of Y) is used as the class score. These orders will be standardized via the following linear
transformation such that the largest score is 100 and the lowest score is 0.

Where and are the smallest and largest order, respectively.

The expected cell frequency under the row effects model is given by

where , in which , and , , and are unknown
parameters to be estimated.

Parameter estimates and hence are obtained from the following iterative procedure.

1. , ,

2.

3.

4.
,

5.
otherwise

6.

7. If (default is 0.001) or the number of iterations is larger than a
threshold (default is 100), stop and output and as the final estimates

. Otherwise, and go to step 2.

Unsupervised Merge

If there is no target, we merge categories based on counts. Suppose that X has I categories which
are sorted in ascending order. For an ordinal predictor, we sort it according to its values, while
for nominal predictor we rearrange categories from lowest to highest count, with ties broken

31

Automated Data Preparation Algorithms

by ascending sort or lexical order of the data values. Let be the number of cases for the ith
category, and be the total number of cases for X. Then we use the equal frequency method
to merge sparse categories.

1. Start with and g=1.

2. If , go to step 5.

3. If , then ; otherwise the original categories will
be merged into the new category g and let , and , then go to step 2.

4. If , then merge categories using one of the following rules:

i) If , then categories will be merged into category g and I will be left
unmerged.

ii) If g=2, then will be merged into category g=2.

iii) If g>2, then will be merged into category .

If , then go to step 3.

5. Output the merge rule and merged predictor.

After merging, one of the following rules holds:
 Neither the original category nor any category created during merging has fewer than

cases, where b is a user-specified parameter satisfying (default is
10) and [x] denotes the nearest integer of x.

 The merged predictor has only two categories.

Update univariate statistics. When original categories are merged into one new
category, then the number of cases in this new category will be . At the end of the
merge step, we get new categories and the number of cases in each category. Then we update
other statistics according to the formulas in “Univariate Statistics Collection ” on p. 15, though
note that the statistics only need to be updated based on the new categories and the numbers
of cases in these categories.

Continuous Predictor Handling

Continuous predictor handling includes supervised binning when the target is categorical,
predictor selection when the target is continuous and predictor construction when the target is
continuous or there is no target in the dataset.

After handling continuous predictors, we collect univariate statistics for derived or constructed
predictors according to the formulas in “Univariate Statistics Collection ” on p. 15. Any derived
predictors that are constant, or have all missing values, are excluded from further analysis.

32

Automated Data Preparation Algorithms

Supervised Binning

If there is a categorical target, then we will transform each continuous predictor to an ordinal
predictor using supervised binning. Suppose that we have already collected the bivariate statistics
between the categorical target and a continuous predictor. Using the notations introduced in
“Bivariate Statistics Collection ” on p. 22, the homogeneous subset will be identified by the
Scheffe method as follows:

If then and will be a homogeneous subset, where
if ; otherwise , where

and , .

The supervised algorithm follows:

1. Sort the means in ascending order, denote as .

2. Start with i=1 and q=J.

3. If , then can be considered a homogeneous subset. At the
same time we compute the mean and standard deviation of this subset: and

, where and ,
then set and ; Otherwise .

4. If , go to step 3.

5. Else compute the cut point of bins. Suppose we have homogeneous subsets and we
assume that the means of these subsets are , and standard deviations are

, then the cut points between the ith and (i+1)th homogeneous subsets are
computed as .

6. Output the binning rules. Category 1: ; Category 2: ;…; Category
: .

Feature Selection and Construction

If there is a continuous target, we perform predictor selection using p-values derived from the
correlation or partial correlation between the predictors and the target. The selected predictors are
grouped if they are highly correlated. In each group, we will derive a new predictor using principal
component analysis. However, if there is no target, we will do not implement predictor selection.

To identify highly correlated predictors, we compute the correlation between a scale and a group as
follows: suppose that X is a continuous predictor and continuous predictors form
a group G. Then the correlation between X and group G is defined as:

where is correlation between X and .

33

Automated Data Preparation Algorithms

Let be the correlation level at which the predictors are identified as groups. The predictor
selection and predictor construction algorithm is as follows:

1. (Target is continuous and predictor selection is in effect) If the p-value between a continuous
predictor and target is larger than a threshold (default is 0.05), then we remove this predictor from
the correlation matrix and covariance matrix. See “Correlation and Partial Correlation ” on p.
34 for details on computing these p-values.

2. Start with and i=1.

3. If , stop and output all the derived predictors, their source predictors and coefficient
of each source predictor. In addition, output the remaining predictors in the correlation matrix.

4. Find the two most correlated predictors such that their correlation in absolute value is larger than
, and put them in group i. If there are no predictors to be chosen, then go to step 9.

5. Add one predictor to group i such that the predictor is most correlated with group i and the
correlation is larger than . Repeat this step until the number of predictors in group i is
greater than a threshold (default is 5) or there is no predictor to be chosen.

6. Derive a new predictor from the group i using principal component analysis. For more
information, see the topic “Principal Component Analysis ” on p. 33.

7. (Both predictor selection and predictor construction are in effect) Compute partial correlations
between the other continuous predictors and the target, controlling for values of the new predictor.
Also compute the p-values based on partial correlation. See “Correlation and Partial Correlation ”
on p. 34 for details on computing these p-values. If the p-value based on partial correlation
between a continuous predictor and continuous target is larger than a threshold (default is 0.05),
then remove this predictor from the correlation and covariance matrices.

8. Remove predictors that are in the group from the correlation matrix. Then let i=i+1 and go to
step 4.

9. , then go to step 3.

Notes:

 If only predictor selection is needed, then only step 1 is implemented. If only predictor
construction is needed, then we implement all steps except step 1 and step 7. If both predictor
selection and predictor construction are needed, then all steps are implemented.

 If there are ties on correlations when we identify highly correlated predictors, the ties will be
broken by selecting the predictor with the smallest index in dataset.

Principal Component Analysis

Let be m continuous predictors. Principal component analysis can be described
as follows:

1. Input , the covariance matrix of .

2. Calculate the eigenvectors and eigenvalues of the covariance matrix. Sort the eigenvalues (and
corresponding eigenvectors) in descending order, .

34

Automated Data Preparation Algorithms

3. Derive new predictors. Suppose the elements of the first component are , then
the new derived predictor is .

Correlation and Partial Correlation

Correlation and P-value

Let be the correlation between continuous predictor X and continuous target Y, then the
p-value is derived form the t test:

where is a random variable with a t distribution with degrees of freedom,
and . If , then set p=0; If , then set p=1.

Partial correlation and P-value

For two continuous variables, X and Y, we can calculate the partial correlation between them
controlling for the values of a new continuous variable Z:

Since the new variable Z is always a linear combination of several continuous variables, we
compute the correlation of Z and a continuous variable using a property of the covariance rather
than the original dataset. Suppose the new derived predictor Z is a linear combination of original
predictors :

Then for any a continuous variable X (continuous predictor or continuous target), the correlation
between X and Z is

where , and .

If or is less than , let . If is larger than 1, then set it to
1; If is less than −1, then set it to −1. (This may occur with pairwise deletion). Based on
partial correlation, the p-value is derived from the t test

where is a random variable with a t distribution with degrees of freedom,
and . If , then set p=0; if , then set p=1.

35

Automated Data Preparation Algorithms

Discretization of Continuous Predictors

Discretization is used for calculating predictive power and creating histograms.

Discretization for calculating predictive power

If the transformed target is categorical, we use the equal width bins method to discretize a
continuous predictor into a number of bins equal to the number of categories of the target.
Variables considered for discretization include:
 Scale predictors which have been recommended.
 Original continuous variables of recommended predictors.

Discretization for creating histograms

We use the equal width bins method to discretize a continuous predictor into a maximum of 400
bins. Variables considered for discretization include:
 Recommended continuous variables.
 Excluded continuous variables which have not been used to derive a new variable.
 Original continuous variables of recommended variables.
 Original continuous variables of excluded variables which have not been used to derive a

new variable.
 Scale variables used to construct new variables. If their original variables are also continuous,

then the original variables will be discretized.
 Date/time variables.

After discretization, the number of cases and mean in each bin are collected to create histograms.

Note: If an original predictor has been recast, then this recast version will be regarded as the
“original” predictor.

Predictive Power

Collect bivariate statistics for predictive power

We collect bivariate statistics between recommended predictors and the (transformed) target. If
an original predictor of a recommended predictor exists, then we also collect bivariate statistics
between this original predictor and the target; if an original predictor has a recast version, then
we use the recast version.

If the target is categorical, but a recommended predictor or its original predictor/recast version is
continuous, then we discretize the continuous predictor using the method in “Discretization of
Continuous Predictors ” on p. 35 and collect bivariate statistics between the categorical target and
the categorical predictors.

36

Automated Data Preparation Algorithms

Bivariate statistics between the predictors and target are same as those described in “Bivariate
Statistics Collection ” on p. 22.

Computing predictive power

Predictive power is used to measure the usefulness of a predictor and is computed with respect
to the (transformed) target. If an original predictor of a recommended predictor exists, then we
also compute predictive power for this original predictor; if an original predictor has a recast
version, then we use the recast version.

Scale target. When the target is continuous, we fit a linear regression model and predictive power
is computed as follows.

 Scale predictor:

 Categorical predictor: , where and .

Categorical target. If the (transformed) target is categorical, then we fit a naïve Bayes model and
the classification accuracy will serve as predictive power. We discretize continuous predictors
as described in “Discretization of Continuous Predictors ” on p. 35, so we only consider the
predictive power of categorical predictors.

If is the of number cases where and , , and ,
then the chi-square statistic is calculated as

where

and Cramer’s V is defined as

References

Box, G. E. P., and D. R. Cox. 1964. An analysis of transformations. Journal of the Royal
Statistical Society, Series B, 26, 211–246.

Goodman, L. A. 1979. Simple models for the analysis of association in cross-classifications
having ordered categories. Journal of the American Statistical Association, 74, 537–552.

Bayesian Networks Algorithms

Bayesian Networks Algorithm Overview
A Bayesian network provides a succinct way of describing the joint probability distribution
for a given set of random variables.

Let V be a set of categorical random variables and G = (V, E) be a directed acyclic graph with
nodes V and a set of directed edges E. A Bayesian network model consists of the graph G together
with a conditional probability table for each node given values of its parent nodes. Given the value
of its parents, each node is assumed to be independent of all the nodes that are not its descendents.
The joint probability distribution for variables V can then be computed as a product of conditional
probabilities for all nodes, given the values of each node’s parents.

Given set of variables V and a corresponding sample dataset, we are presented with the task of
fitting an appropriate Bayesian network model. The task of determining the appropriate edges in
the graph G is called structure learning, while the task of estimating the conditional probability
tables given parents for each node is called parameter learning.

Primary Calculations
IBM® SPSS® Modeler offers two different methods for building Bayesian network models:
 Tree Augmented Naïve Bayes. This algorithm is used mainly for classification. It efficiently

creates a simple Bayesian network model. The model is an improvement over the naïve
Bayes model as it allows for each predictor to depend on another predictor in addition to the
target variable. Its main advantages are its classification accuracy and favorable performance
compared with general Bayesian network models. Its disadvantage is also due to its simplicity;
it imposes much restriction on the dependency structure uncovered among its nodes.

 Markov Blanket estimation. The Markov blanket for the target variable node in a Bayesian
network is the set of nodes containing target’s parents, its children, and its children’s parents.
Markov blanket identifies all the variables in the network that are needed to predict the target
variable. This can produce more complex networks, but also takes longer to produce. Using
feature selection preprocessing can significantly improve performance of this algorithm.

Notation

The following notation is used throughout this algorithm description:

A directed acyclic graph representing the Bayesian Network model

A dataset

Categorical target variable

The ith predictor

The parent set of the ith predictor besides target . For TAN models, its size is ≤1.

The number of cases in

© Copyright IBM Corporation 1994, 2016. 37

38

Bayesian Networks Algorithms

The number of predictors

Denote the number of records in for which take its jth value and for which
takes its kth value.

Denote the number of records in for which takes its jth value.

The number of non-redundant parameters of TAN

The Markov blanket boundary about target

A subset of

A subset of , such that variables and are conditionally independent
with respect to

An undirected arc between variables in G. and are adjacent to each
other.
A directed arc from to in G. is a parent of , and is a child of .

A variable set which represents all the adjacent variables of variable in G,
ignoring the edge directions.
The conditional independence (CI) test function which returns the p-value of the test.

The significance level for CI tests between two variables. If the p-value of the test is
larger than then they are independent, and vice-versa.
The cardinality of ,

The cardinality of the parent set of .

Handling of Continuous Predictors

BN models in IBM® SPSS® Modeler can only accommodate discrete variables. Target variables
must be discrete (flag or set type). Numeric predictors are discretized into 5 equal-width bins
before the BN model is built. If any of the constructed bins is empty (there are no records with a
value in the bin’s range), that bin is merged to an adjacent non-empty bin.

Feature Selection via Breadth-First Search

Feature selection preprocessing works as follows:

E It begins by searching for the direct neighbors of a given target Y, based on statistical tests of
independence. For more information, see the topic “Markov Blanket Conditional Independence
Test” on p. 43. These variables are known as the parents or children of Y, denoted by .

E For each , we look for , or the parents and children of X.

E For each , we add it to if it is not independent of Y.

The explicit algorithm is given below.

39

Bayesian Networks Algorithms

RecognizeMB
(

D : Dataset, eps : threshold
)
{

// Recognize Y's parents/children
CanADJ_Y = X \ {Y};
PC = RecognizePC(Y,CanADJ_Y,D,eps);
MB = PC;

// Collect spouse candidates, and remove false
// positives from PC
for (each X_i in PC){

CanADJ_X_i = X \ X_i;
CanSP_X_i = RecognizePC(X_i,CanADJ_X_i,D,eps);
if (Y notin CanSP_X_i) // Filter out false positive

MB = MB \ X_i;
}
// Discover true positives among candidates
for (each X_i in MB)

for (each Z_i in CanSP_X_i and Z_i notin MB)
if (I(Y,Z_i|{S_Y,Z_i + X_i}) ≤ eps) then

MB = MB + Z_i;
return MB;

}

40

Bayesian Networks Algorithms

RecognizePC (
T : target to scan,
ADJ_T : Candidate adjacency set to search,
D : Dataset,
eps : threshold,
maxSetSize :)

{
NonPC = {empty set};
cutSetSize = 0;
repeat

for (each X_i in ADJ_T){
for (each subset S of {ADJ_T \ X_i} with |S| = cutSetSize){

if (I(X_i,T|S) > eps){
NonPC = NonPC + X_i;
S_T,X_i = S;
break;

}
}

}
if (|NonPC| > 0){

ADJ_T = ADJ_T \ NonPC;
cutSetSize +=1;
NonPC = {empty set};

} else
break;

until (|ADJ_T| ≤ cutSetSize) or (cutSetSize > maxSetSize)
return ADJ_T;

}

Tree Augmented Naïve Bayes Method

The Bayesian network classifier is a simple classification method, which classifies a case
by determining the probability of it belonging to the ith target category .

These probabilities are calculated as

where is the parent set of besides , and it maybe empty. is the conditional
probability table (CPT) associated with each node . If there are n independent predictors,
then the probability is proportional to

41

Bayesian Networks Algorithms

When this dependence assumption (conditional independence between the predictors given the
class) is made, the classifier is called naïve Bayes (NB). Naïve Bayes has been shown to be
competitive with more complex, state-of-the-art classifiers. In recent years, a lot of work has
focused on improving the naïve Bayes classifier. One important method is to relax independence
assumption. We use a tree augmented naïve Bayesian (TAN) classifier (Friedman, Geiger, and
Goldszmidt, 1997), and it is defined by the following conditions:
 Each predictor has the target as a parent.
 Predictors may have one other predictor as a parent.

An example of this structure is shown below.

Figure 5-1
Structure of an simple tree augmented naïve Bayes model.

X1 X2 ... Xn

YTAN

TAN Classifier Learning Procedure

Let represent a categorical predictor vector. The algorithm for the TAN
classifier first learns a tree structure over using mutual information conditioned on . Then it
adds a link (or arc) from the target node to each predictor node.

The TAN learning procedure is:

1. Take the training data D, and as input.

2. Learn a tree-like network structure over by using the Structure Learning algorithm outlined
below.

3. Add as a parent of every where .

4. Learning the parameters of TAN network.

42

Bayesian Networks Algorithms

TAN Structure Learning

We use a maximum weighted spanning tree (MWST) method to construct a tree Bayesian network
from data (Chow and Liu, 1968). This method associates a weight to each edge corresponding to
the mutual information between the two variables. When the weight matrix is created, the MWST
algorithm (Prim, 1957) gives an undirected tree that can be oriented with the choice of a root.

The mutual information of two nodes is defined as

Pr
Pr

Pr Pr

We replace the mutual information between two predictors with the conditional mutual
information between two predictors given the target (Friedman et al., 1997). It is defined as

Pr
Pr

Pr Pr

The network over can be constructed using the following steps:

1. Compute between each pair of variables.

2. Use Prim’s algorithm (Prim et al., 1957) to construct a maximum weighted spanning tree with
the weight of an edge connecting to by .

This algorithm works as follows: it begins with a tree with no edges and marks a variable at a
random as input. Then it finds an unmarked variable whose weight with one of the marked
variables is maximal, then marks this variable and adds the edge to the tree. This process is
repeated until all variables are marked.

3. Transform the resulting undirected tree to directed one by choosing as a root node and setting
the direction of all edges to be outward from it.

TAN Parameter Learning

Let be the cardinality of . Let denote the cardinality of the parent set of , that
is, the number of different values to which the parent of can be instantiated. So it can be
calculated as . Note implies . We use to denote the number of
records in D for which takes its jth value. We use to denote the number of records in
D for which take its jth value and for which takes its kth value.

Maximum Likelihood Estimation

The closed form solution for the parameters and
that maximize the log likelihood score is

43

Bayesian Networks Algorithms

where denotes the number of cases with in the training data.

Note that if , then .

The number of parameters K is

TAN Posterior Estimation

Assume that Dirichlet prior distributions are specified for the set of parameters as
well as for each of the sets , , and (Heckerman, 1999). Let

and denote corresponding Dirichlet distribution parameters such that and

. Upon observing the dataset D, we obtain Dirichlet posterior distributions with the

following sets of parameters:

The posterior estimation is always used for model updating.

Adjustment for small cell counts

To overcome problems caused by zero or very small cell counts, parameters can be estimated
as posterior parameters and using
uninformative Dirichlet priors and .

Markov Blanket Algorithms

The Markov blanket algorithm learns the BN structure by identifying the conditional independence
relationships among the variables. Using statistical tests (such as chi-squared test or G test),
this algorithm finds the conditional independence relationships among the nodes and uses these
relationships as constraints to construct a BN structure. This algorithm is referred to as a
dependency-analysis-based or constraint-based algorithm.

Markov Blanket Conditional Independence Test

The conditional independence (CI) test tests whether two variables are conditionally independent
with respect to a conditional variable set. There are two familiar methods to compute the CI test:

(Pearson chi-square) test and (log likelihood ratio) test.

44

Bayesian Networks Algorithms

Suppose are two variables for testing and S is a conditional variable set such that .
Let be the observed count of cases that have and , and is
the expect number of cases that have and under the hypothesis that are
independent.

Chi-square Test

We assume the null hypothesis is that are independent. The test statistic for this
hypothesis is

Suppose that N is the total number of cases in D, is the number of cases in D where
takes its ith category, and and are the corresponding numbers for Y and S. So

is the number of cases in D where takes its ith category and takes its jth category.
, and are defined similarly. We have:

Because where is the degrees of freedom for the
distribution, we get the p-value for as follows:

As we know, the larger p-value, the less likely we are to reject the null hypothesis. For a given
significance level , if the p-value is greater than we can not reject the hypothesis that are
independent.

We can easily generalize this independence test into a conditional independence test:

The degree of freedom for is:

Likelihood Ratio Test

We assume the null hypothesis is that are independent. The test statistic for this
hypothesis is

45

Bayesian Networks Algorithms

or equivalently,

The conditional version of the independence test is

The test is asymptotically distributed as a distribution, where degrees of freedom are the
same as in the test. So the p-value for the test is

In the following parts of this document, we use to uniformly represent the p-value of
whichever test is applied. If , we say variable X and Y are independent, and if

, we say variable X and Y are conditionally independent given variable set S.

Markov Blanket Structure Learning

This algorithm aims at learning a Bayesian networks structure from a dataset. It starts with a
complete graph G. Let , and compute for each variable pair in G. If

, remove the arc between . Then for each arc perform an exhaustive
search in to find the smallest conditional variable set S such that .
If such S exist, delete arc . After this, orientation rules are applied to orient the arcs in G.

Markov Blanket Arc Orientation Rules

Arcs in the derived structure are oriented based on the following rules:

1. All patterns of the of the form or are updated to if

2. Patterns of the form are updated so that

3. Patterns of the form are updated to

4. Patterns of the form

46

Bayesian Networks Algorithms

are updated so that

After the last step, if there are still undirected arcs in the graph, return to step 2 and repeat until
all arcs are oriented.

Deriving the Markov Blanket Structure

The Markov Blanket is a local structure of a Bayesian Network. Given a Bayesian Network G
and a target variable Y, to derive the Markov Blanket of Y, we should select all the directed
parents of Y in G denoted as , all the directed children of Y in G denoted as and all the
directed parents of in G denoted as . and their arcs inherited from G
define the Markov Blanket .

Markov Blanket Parameter Learning

Maximum Likelihood Estimation

The closed form solution for the parameters that maximize
the log likelihood score is

Note that if , then .

The number of parameters K is

Posterior Estimation

Assume that Dirichlet prior distributions are specified for each of the sets
(Heckerman et al., 1999). Let denote corresponding

Dirichlet distributed parameters such that . Upon observing the dataset D, we

obtain Dirichlet posterior distributions with the following sets of parameters:

The posterior estimate is always used for model updating.

47

Bayesian Networks Algorithms

Adjustment for Small Cell Counts

To overcome problems caused by zero or very small cell counts, parameters can be estimated as
posterior parameters using uninformative Dirichlet priors
specified by .

Blank Handling

By default, records with missing values for any of the input or output fields are excluded from
model building. If the Use only complete records option is deselected, then for each pairwise
comparison between fields, all records containing valid values for the two fields in question
are used.

Model Nugget/Scoring

The Bayesian Network Model Nugget produces predicted values and probabilities for scored
records.

Tree Augmented Naïve Bayes Models

Using the estimated model from training data, for a new case , the probability of
it belonging to the ith target category is calculated as . The target category
with the highest posterior probability is the predicted category for this case, , is predicted by

Markov Blanket Models

The scoring function uses the estimated model to compute the probabilities of Y belongs to
each category for a new case . Suppose is the parent set of Y, and denotes the
configuration of given case , denotes the direct children set of Y,

denotes the parent set (excluding Y) of the ith variable in . The score for each category
of Y is computed by:

,
,

where the joint probability that and is:

,

48

Bayesian Networks Algorithms

where

Note that c is never actually computed during scoring because its value cancels from the numerator
and denominator of the scoring equation given above.

Binary Classifier Comparison Metrics
The Binary Classifier node generates multiple models for a flag output field. For details on how
each model type is built, see the appropriate algorithm documentation for the model type.

The node also reports several comparison metrics for each model, to help you select the optimal
model for your application. The following metrics are available:

Maximum Profit

This gives the maximum amount of profit, based on the model and the profit and cost settings. It
is calculated as

Profit

where is defined as

if is a hit
otherwise

r is the user-specified revenue amount per hit, and c is the user-specified cost per record. The sum
is calculated for the j records with the highest , such that

Maximum Profit Occurs in %

This gives the percentage of the training records that provide positive profit based on the
predictions of the model,

Profit

where n is the overall number of records included in building the model.

Lift

This indicates the response rate for the top q% of records (sorted by predicted probability), as a
ratio relative to the overall response rate,

Lift

where k is q% of n, the number of training records used to build the model. The default value of q
is 30, but this value can be modified in the binary classifier node options.

Overall Accuracy

This is the percentage of records for which the outcome is correctly predicted,

© Copyright IBM Corporation 1994, 2016. 49

50

Binary Classifier Comparison Metrics

if
otherwise

where is the predicted outcome value for record i and is the observed value.

Area Under the Curve (AUC)

This represents the area under the Receiver Operating Characteristic (ROC) curve for the model.
The ROC curve plots the true positive rate (where the model predicts the target response and the
response is observed) against the false positive rate (where the model predicts the target response
but a nonresponse is observed). For a good model, the curve will rise sharply near the left axis and
cut across near the top, so that nearly all the area in the unit square falls below the curve. For an
uninformative model, the curve will approximate a diagonal line from the lower left to the upper
right corner of the graph. Thus, the closer the AUC is to 1.0, the better the model.

Figure 6-1
ROC curves for a good model (left) and an uninformative model (right)

The AUC is computed by identifying segments as unique combinations of predictor values that
determine subsets of records which all have the same predicted probability of the target value.
The s segments defined by a given model’s predictors are sorted in descending order of predicted
probability, and the AUC is calculated as

where is the cumulative number of false positives for segment i, that is, false positives for
segment i and all preceding segments , is the cumulative number of true positives, and

.

C5.0 Algorithms
The code for training C5.0 models is licensed from RuleQuest Research Ltd Pty, and the algorithms
are proprietary. For more information, see the RuleQuest website at http://www.rulequest.com/.

Note: Modeler 13 upgraded the C5.0 version from 2.04 to 2.06. See the RuleQuest website
for more information.

Scoring

A record is scored with the class and confidence of the rule that fires for that record.

If a rule set is directly generated from the C5.0 node, then the confidence for the rule is calculated
as

number correct in leaf
total number of records in leaf

If a rule set is generated from a decision tree generated from the C5.0 node, then the confidence
is calculated as

number correct in leaf
total number of records in leaf number of categories in the target

Scores with rule set voting

When voting occurs between rules within a rule set the final scores assigned to a record are
calculated in the following way. For each record, all rules are examined and each rule that applies
to the record is used to generate a prediction and an associated confidence. The sum of confidence
figures for each output value is computed, and the value with the greatest confidence sum is
chosen as the final prediction. The confidence for the final prediction is the confidence sum for
that value divided by the number of rules that fired for that record.

Scores with boosted C5.0 classifiers (decision trees and rule sets)

When scoring with a boosted C5.0 rule set the n rule sets that make up the boosted rule set (one
rule set for each boosting trial) vote using their individual scores (as obtained above) to arrive
at the final score assigned to the case by the boosted rule set.

The voting for boosted C5 classifiers is as follows. For each record, each composite classifier
(rule set or decision tree) assigns a prediction and a confidence. The sum of confidence figures for
each output value is computed, and the value with the greatest confidence sum is chosen as the
final prediction. The confidence for the final prediction by the boosted classifier is the confidence
sum for that value divided by confidence sum for all values.

© Copyright IBM Corporation 1994, 2016. 51

http://www.rulequest.com/

Carma Algorithms

Overview

The continuous association rule mining algorithm (Carma) is an alternative to Apriori that
reduces I/O costs, time, and space requirements (Hidber, 1999). It uses only two data passes and
delivers results for much lower support levels than Apriori. In addition, it allows changes in
the support level during execution.

Carma deals with items and itemsets that make up transactions. Items are flag-type conditions
that indicate the presence or absence of a particular thing in a specific transaction. An itemset is a
group of items which may or may not tend to co-occur within transactions.

Deriving Rules

Carma proceeds in two stages. First it identifies frequent itemsets in the data, and then it generates
rules from the lattice of frequent itemsets.

Frequent Itemsets

Carma uses a two-phase method of identifying frequent itemsets.

Phase I: Estimation

In the estimation phase, Carma uses a single data pass to identify frequent itemset candidates.
A lattice is used to store information on itemsets. Each node in the lattice stores the items
comprising the itemset, and three values for the associated itemset:
 count: number of transactions containing the itemset since the itemset was added to the lattice
 firstTrans: the record index of the transaction for which the itemset was added to the lattice
 maxMissed: upper bound on the number of occurrences of the itemset before it was added to

the lattice

The lattice also encodes information on relationships between itemsets, which are determined
by the items in the itemset. An itemset Y is an ancestor of itemset X if X contains every item in
Y. More specifically, Y is a parent of X if X contains every item in Y plus one additional item.
Conversely, Y is a descendant of X if Y contains every item in X, and Y is a child of X if Y contains
every item in X plus one additional item.

For example, if X = {milk, cheese, bread}, then Y = {milk, cheese} is a parent of X, and Z =
{milk, cheese, bread, sugar} is a child of X.

Initially the lattice contains no itemsets. As each transaction is read, the lattice is updated in
three steps:

E Increment statistics. For each itemset in the lattice that exists in the current transaction, increment
the count value.

© Copyright IBM Corporation 1994, 2016. 53

54

Carma Algorithms

E Insert new itemsets. For each itemset v in the transaction that is not already in the lattice, check all
subsets of the itemset in the lattice. If all possible subsets of the itemset are in the lattice with

, then add the itemset to the lattice and set its values:
 count is set to 1
 firstTrans is set to the record index of the current transaction
 maxMissed is defined as

where w is a subset of itemset v, is the ceiling of σ up to transaction i for varying
support (or simply σ for constant support), and |v| is the number of items in itemset v.

E Prune the lattice. Every k transactions (where k is the pruning value, set to 500 by default), the
lattice is examined and small itemsets are removed. A small itemset is defined as an itemset for
which maxSupport < σi, where maxSupport = (maxMissed + count)/i.

Phase II: Validation

After the frequent itemset candidates have been identified, a second data pass is made to compute
exact frequencies for the candidates, and the final list of frequent itemsets is determined based
on these frequencies.

The first step in Phase II is to remove infrequent itemsets from the lattice. The lattice is pruned
using the same method described under Phase I, with σn as the user-specified support level for
the model.

After initial pruning, the training data are processed again and each itemset v in the lattice is
checked and updated for each transaction record with index i:

E If firstTrans(v) < i, v is marked as exact and is no longer considered for any updates. (When all
nodes in the lattice are marked as exact, phase II terminates.)

E If v appears in the current transaction, v is updated as follows:
 Increment count(v)
 Decrement maxMissed(v)
 If firstTrans(v) = i, set maxMissed(v) = 0, and adjust maxMissed for every superset w of v in

the lattice for which maxSupport(w) > maxSupport(v). For such supersets, set maxMissed(w)
= count(v) - count(w).

 If maxSupport(v) < σn, remove v from the lattice.

Generating Rules

Carma uses a common rule-generating algorithm for extracting rules from the lattice of itemsets
that tends to eliminate redundant rules (Aggarwal and Yu, 1998). Rules are generated from the
lattice of itemsets (see “Frequent Itemsets” on p. 53) as follows:

E For each itemset in the lattice, get the set of maximal ancestor itemsets. An itemset Y is a maximal
ancestor of itemset X if , where c is the specified confidence threshold for rules.

55

Carma Algorithms

E Prune the list of maximal ancestors by removing maximal ancestors of all of X’s child itemsets.

E For each itemset in the pruned maximal ancestor list, generate a rule , where X−Y is
the itemset X with the items in itemset Y removed.

For example, if X the itemset {milk, cheese, bread} and Y is the itemset {milk, bread}, then the
resulting rule would be milk, bread cheese

Blank Handling

Blanks are ignored by the Carma algorithm. The algorithm will handle records containing blanks
for input fields, but such a record will not be considered to match any rule containing one or
more of the fields for which it has blank values.

Effect of Options

Minimum rule support/confidence. These values place constraints on which rules may be entered
into the table. Only rules whose support and confidence values exceed the specified values can be
entered into the rule table.

Maximum rule size. Sets the limit on the number of items that will be considered as an itemset.

Exclude rules with multiple consequents. This option restricts rules in the final rule list to those
with a single item as consequent.

Set pruning value. Sets the number of transactions to process between pruning passes. For more
information, see the topic “Frequent Itemsets” on p. 53.

Vary support. Allows support to vary in order to enhance training during the early transactions in
the training data. For more information, see “Varying support” below.

Allow rules without antecedents. Allows rules that are consequent only, which are simple
statements of co-occuring items, along with traditional if-then rules.

Varying support

If the vary support option is selected, the target support value changes as transactions are
processed to provide more efficient training. The support value starts large and decreases in four
steps as transactions are processed. The first support value s1 applies to the first 9 transactions,
the second value s2 applies to the next 90 transactions, the third value s3 applies to transactions
100-4999, and the fourth value s4 applies to all remaining transactions. If we call the final
support value s, and the estimated number of transactions t, then the following constraints are
used to determine the support values:

E If or , set .

E If , set , such that .

E If , set , such that .

56

Carma Algorithms

E If , set , such that .

In all cases, if solving the equation yields s1 > 0.5, s1 is set to 0.5, and the other values adjusted
accordingly to preserve the relation , where s(i) is the target support (one of the
values s1, s2, s3, or s4) for the ith transaction.

Generated Model/Scoring

The Carma algorithm generates an unrefined rule node. To create a model for scoring new data,
the unrefined rule node must be refined to generate a ruleset node. Details of scoring for generated
ruleset nodes are given below.

Predicted Values

Predicted values are based on the rules in the ruleset. When a new record is scored, it is compared
to the rules in the ruleset. How the prediction is generated depends on the user’s setting for
Ruleset Evaluation in the stream options.
 Voting. This method attempts to combine the predictions of all of the rules that apply to the

record. For each record, all rules are examined and each rule that applies to the record is used
to generate a prediction. The sum of confidence figures for each predicted value is computed,
and the value with the greatest confidence sum is chosen as the final prediction.

 First hit. This method simply tests the rules in order, and the first rule that applies to the record
is the one used to generate the prediction.

There is a default rule, which specifies an output value to be used as the prediction for records
that don’t trigger any other rules from the ruleset. For rulesets derived from decision trees, the
value for the default rule is the modal (most prevalent) output value in the overall training data.
For association rulesets, the default value is specified by the user when the ruleset is generated
from the unrefined rule node.

Confidence

Confidence calculations also depend on the user’s Ruleset Evaluation stream options setting.
 Voting. The confidence for the final prediction is the sum of the confidence values for rules

triggered by the current record that give the winning prediction divided by the number of rules
that fired for that record.

 First hit. The confidence is the confidence value for the first rule in the ruleset triggered by
the current record.

If the default rule is the only rule that fires for the record, it’s confidence is set to 0.5.

57

Carma Algorithms

Blank Handling

Blanks are ignored by the algorithm. The algorithm will handle records containing blanks for
input fields, but such a record will not be considered to match any rule containing one or more of
the fields for which it has blank values.

There is an exception to this: when a numeric field is examined based on a split point,
user-defined missing values are included in the comparison. For example, if you define -999 as a
missing value for a field, Carma will still compare it to the split point for that field, and may return
a match if the rule is of the form (X < 50). You may need to preprocess specially coded numeric
missing values (replacing them with $null$, for example) before scoring data with Carma.

C&RT Algorithms

Overview of C&RT
C&RT stands for Classification and Regression Trees, originally described in the book by the
same name (Breiman, Friedman, Olshen, and Stone, 1984). C&RT partitions the data into two
subsets so that the records within each subset are more homogeneous than in the previous subset.
It is a recursive process—each of those two subsets is then split again, and the process repeats
until the homogeneity criterion is reached or until some other stopping criterion is satisfied (as do
all of the tree-growing methods). The same predictor field may be used several times at different
levels in the tree. It uses surrogate splitting to make the best use of data with missing values.

C&RT is quite flexible. It allows unequal misclassification costs to be considered in the tree
growing process. It also allows you to specify the prior probability distribution in a classification
problem. You can apply automatic cost-complexity pruning to a C&RT tree to obtain a more
generalizable tree.

Primary Calculations
The calculations directly involved in building the model are described below.

Frequency and Case Weight Fields

Frequency and case weight fields are useful for reducing the size of your dataset. Each has a
distinct function, though. If a case weight field is mistakenly specified to be a frequency field, or
vice versa, the resulting analysis will be incorrect.

For the calculations described below, if no frequency or case weight fields are specified, assume
that frequency and case weights for all records are equal to 1.0.

Frequency Fields

A frequency field represents the total number of observations represented by each record. It is
useful for analyzing aggregate data, in which a record represents more than one individual. The
sum of the values for a frequency field should always be equal to the total number of observations
in the sample. Note that output and statistics are the same whether you use a frequency field or
case-by-case data. The table below shows a hypothetical example, with the predictor fields sex
and employment and the target field response. The frequency field tells us, for example, that 10
employed men responded yes to the target question, and 19 unemployed women responded no.
Table 9-1
Dataset with frequency field

Sex Employment Response Frequency

M Y Y 10
M Y N 17
M N Y 12
M N N 21
F Y Y 11
F Y N 15

© Copyright IBM Corporation 1994, 2016. 59

60

C&RT Algorithms

Sex Employment Response Frequency

F N Y 15
F N N 19

The use of a frequency field in this case allows us to process a table of 8 records instead of
case-by-case data, which would require 120 records.

Case weights

The use of a case weight field gives unequal treatment to the records in a dataset. When a case
weight field is used, the contribution of a record in the analysis is weighted in proportion to
the population units that the record represents in the sample. For example, suppose that in
a direct marketing promotion, 10,000 households respond and 1,000,000 households do not
respond. To reduce the size of the data file, you might include all of the responders but only a
1% sample (10,000) of the nonresponders. You can do this if you define a case weight equal to
1 for responders and 100 for nonresponders.

Model Parameters

C&RT works by choosing a split at each node such that each child node created by the split is
more pure than its parent node. Here purity refers to similarity of values of the target field. In a
completely pure node, all of the records have the same value for the target field. C&RT measures
the impurity of a split at a node by defining an impurity measure. For more information, see the
topic “Impurity Measures” on p. 62.

The following steps are used to build a C&RT tree (starting with the root node containing all
records):

Find each predictor’s best split. For each predictor field, find the best possible split for that field,
as follows:
 Range (numeric) fields. Sort the field values for records in the node from smallest to largest.

Choose each point in turn as a split point, and compute the impurity statistic for the resulting
child nodes of the split. Select the best split point for the field as the one that yields the largest
decrease in impurity relative to the impurity of the node being split.

 Symbolic (categorical) fields. Examine each possible combination of values as two subsets.
For each combination, calculate the impurity of the child nodes for the split based on that
combination. Select the best split point for the field as the one that yields the largest decrease
in impurity relative to the impurity of the node being split.

Find the best split for the node. Identify the field whose best split gives the greatest decrease in
impurity for the node, and select that field’s best split as the best overall split for the node.

Check stopping rules, and recurse. If no stopping rules are triggered by the split or by the parent
node, apply the split to create two child nodes. (For more information, see the topic “Stopping
Rules” on p. 65.) Apply the algorithm again to each child node.

61

C&RT Algorithms

Blank Handling

Records with missing values for the target field are ignored in building the tree model.

Surrogate splitting is used to handle blanks for predictor fields. If the best predictor field to be
used for a split has a blank or missing value at a particular node, another field that yields a split
similar to the predictor field in the context of that node is used as a surrogate for the predictor
field, and its value is used to assign the record to one of the child nodes.

Note: If Surrogate splitting is used (where a particular rule does not fit into a node) the Confidence
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

For example, suppose that X* is the predictor field that defines the best split s* at node t. The
surrogate-splitting process finds another split s, the surrogate, based on another predictor field X
such that this split is most similar to s* at node t (for records with valid values for both predictors).
If a new record is to be predicted and it has a missing value on X* at node t, the surrogate split s is
applied instead. (Unless, of course, this record also has a missing value on X. In such a situation,
the next best surrogate is used, and so on, up to the limit of number of surrogates specified.)

In the interest of speed and memory conservation, only a limited number of surrogates is
identified for each split in the tree. If a record has missing values for the split field and all
surrogate fields, it is assigned to the child node with the higher weighted probability, calculated as

where Nf,j(t) is the sum of frequency weights for records in category j for node t, and Nf(t) is the
sum of frequency weights for all records in node t.

If the model was built using equal or user-specified priors, the priors are incorporated into the
calculation:

where π(j) is the prior probability for category j, and pf(t) is the weighted probability of a record
being assigned to the node,

where Nf,j(t) is the sum of the frequency weights (or the number of records if no frequency
weights are defined) in node t belonging to category j, and Nf,j is the sum of frequency weights
for records belonging to category in the entire training sample.

62

C&RT Algorithms

Predictive measure of association

Let (resp.) be the set of learning cases (resp. learning cases in node t) that has
non-missing values of both X* and X. Let be the probability of sending a case in

to the same child by both and , and be the split with maximized probability
.

The predictive measure of association between s* and at node t is

where (resp.) is the relative probability that the best split s* at node t sends a case with
non-missing value of X* to the left (resp. right) child node. And where

if is categorical

if is continuous

with

,

,

and being the indicator function taking value 1 when both splits s* and send
the case n to the same child, 0 otherwise.

Effect of Options

Impurity Measures

There are three different impurity measures used to find splits for C&RT models, depending on the
type of the target field. For symbolic target fields, you can choose Gini or twoing. For continuous
targets, the least-squared deviation (LSD) method is automatically selected.

Gini

The Gini index g(t) at a node t in a C&RT tree, is defined as

63

C&RT Algorithms

where i and j are categories of the target field, and

where π(j) is the prior probability value for category j, Nj(t) is the number of records in category
j of node t, and Nj is the number of records of category j in the root node. Note that when the
Gini index is used to find the improvement for a split during tree growth, only those records in
node t and the root node with valid values for the split-predictor are used to compute Nj(t) and
Nj, respectively.

The equation for the Gini index can also be written as

Thus, when the records in a node are evenly distributed across the categories, the Gini index takes
its maximum value of 1 - 1/k, where k is the number of categories for the target field. When all
records in the node belong to the same category, the Gini index equals 0.

The Gini criterion function Φ(s, t) for split s at node t is defined as

where pL is the proportion of records in t sent to the left child node, and pR is the proportion sent
to the right child node. The proportions pL and pR are defined as

and

The split s is chosen to maximize the value of Φ(s, t).

64

C&RT Algorithms

Twoing

The twoing index is based on splitting the target categories into two superclasses, and then
finding the best split on the predictor field based on those two superclasses. The superclasses
C1 and C2 are defined as

and

where C is the set of categories of the target field, and p(j|tR) and p(j|tL) are p(j|t), as defined as
in the Gini formulas, for the right and left child nodes, respectively. For more information, see
the topic “Gini” on p. 62.

The twoing criterion function for split s at node t is defined as

where tL and tR are the nodes created by the split s. The split s is chosen as the split that
maximizes this criterion.

Least Squared Deviation

For continuous target fields, the least squared deviation (LSD) impurity measure is used. The
LSD measure R(t) is simply the weighted within-node variance for node t, and it is equal to the
resubstitution estimate of risk for the node. It is defined as

where NW(t) is the weighted number of records in node t, wi is the value of the weighting field for
record i (if any), fi is the value of the frequency field (if any), yi is the value of the target field, and
y(t) is the (weighted) mean for node t. The LSD criterion function for split s at node t is defined as

The split s is chosen to maximize the value of Φ(s,t).

65

C&RT Algorithms

Stopping Rules

Stopping rules control how the algorithm decides when to stop splitting nodes in the tree. Tree
growth proceeds until every leaf node in the tree triggers at least one stopping rule. Any of the
following conditions will prevent a node from being split:
 The node is pure (all records have the same value for the target field)
 All records in the node have the same value for all predictor fields used by the model
 The tree depth for the current node (the number of recursive node splits defining the current

node) is the maximum tree depth (default or user-specified).
 The number of records in the node is less than the minumum parent node size (default or

user-specified)
 The number of records in any of the child nodes resulting from the node’s best split is less

than the minimum child node size (default or user-specified)
 The best split for the node yields a decrease in impurity that is less than the minimum change

in impurity (default or user-specified).

Profits

Profits are numeric values associated with categories of a (symbolic) target field that can be used
to estimate the gain or loss associated with a segment. They define the relative value of each value
of the target field. Values are used in computing gains but not in tree growing.

Profit for each node in the tree is calculated as

where j is the target field category, fj(t) is the sum of frequency field values for all records in node
t with category j for the target field, and Pj is the user-defined profit value for category j.

Priors

Prior probabilities are numeric values that influence the misclassification rates for categories of
the target field. They specify the proportion of records expected to belong to each category of the
target field prior to the analysis. The values are involved both in tree growing and risk estimation.

There are three ways to derive prior probabilities.

Empirical Priors

By default, priors are calculated based on the training data. The prior probability assigned to each
target category is the weighted proportion of records in the training data belonging to that category,

66

C&RT Algorithms

In tree-growing and class assignment, the Ns take both case weights and frequency weights
into account (if defined); in risk estimation, only frequency weights are included in calculating
empirical priors.

Equal Priors

Selecting equal priors sets the prior probability for each of the J categories to the same value,

User-Specified Priors

When user-specified priors are given, the specified values are used in the calculations involving
priors. The values specified for the priors must conform to the probability constraint: the sum of
priors for all categories must equal 1.0. If user-specified priors do not conform to this constraint,
adjusted priors are derived which preserve the proportions of the original priors but conform
to the constraint, using the formula

where π’(j) is the adjusted prior for category j, and π(j) is the original user-specified prior for
category j.

Costs

Gini. If costs are specified, the Gini index is computed as

where C(i|j) specifies the cost of misclassifying a category j record as category i.

Twoing. Costs, if specified, are not taken into account in splitting nodes using the twoing criterion.
However, costs will be incorporated into node assignment and risk estimation, as described in
Predicted Values and Risk Estimates, below.

LSD. Costs do not apply to regression trees.

Pruning

Pruning refers to the process of examining a fully grown tree and removing bottom-level splits
that do not contribute significantly to the accuracy of the tree. In pruning the tree, the software
tries to create the smallest tree whose misclassification risk is not too much greater than that of the
largest tree possible. It removes a tree branch if the cost associated with having a more complex
tree exceeds the gain associated with having another level of nodes (branch).

67

C&RT Algorithms

It uses an index that measures both the misclassification risk and the complexity of the tree,
since we want to minimize both of these things. This cost-complexity measure is defined as
follows:

R(T) is the misclassification risk of tree T, and is the number of terminal nodes for tree T. The
term α represents the complexity cost per terminal node for the tree. (Note that the value of α is
calculated by the algorithm during pruning.)

Any tree you might generate has a maximum size (Tmax), in which each terminal node contains
only one record. With no complexity cost (α = 0), the maximum tree has the lowest risk, since
every record is perfectly predicted. Thus, the larger the value of α, the fewer the number of
terminal nodes in T(α), where T(α) is the tree with the lowest complexity cost for the given α. As
α increases from 0, it produces a finite sequence of subtrees (T1, T2, T3), each with progressively
fewer terminal nodes. Cost-complexity pruning works by removing the weakest split.

The following equations represent the cost complexity for {t}, which is any single node, and
for Tt, the subbranch of {t}.

If is less than , then the branch Tt has a smaller cost complexity than the single
node {t}.

The tree-growing process ensures that for (α = 0). As α increases from 0,
both and grow linearly, with the latter growing at a faster rate. Eventually, you
will reach a threshold α’, such that for all α > α’. This means that when α
grows larger than α’, the cost complexity of the tree can be reduced if we cut the subbranch Tt
under {t}. Determining the threshold is a simple computation. You can solve this first inequality,

, to find the largest value of α for which the inequality holds, which is also
represented by g(t). You end up with

You can define the weakest link (t) in tree T as the node that has the smallest value of g(t):

Therefore, as α increases, is the first node for which . At that point, { }
becomes preferable to , and the subbranch is pruned.

With that background established, the pruning algorithm follows these steps:

E Set α1 = 0 and start with the tree T1 = T(0), the fully grown tree.

68

C&RT Algorithms

E Increase α until a branch is pruned. Prune the branch from the tree, and calculate the risk estimate
of the pruned tree.

E Repeat the previous step until only the root node is left, yielding a series of trees, T1, T2, ... Tk.

E If the standard error rule option is selected, choose the smallest tree Topt for which

E If the standard error rule option is not selected, then the tree with the smallest risk estimate R(T)
is selected.

Secondary Calculations

Secondary calculations are not directly related to building the model, but give you information
about the model and its performance.

Risk Estimates

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for
the tree as a whole.

Risk Estimates for Symbolic Target Field

For classification trees (with a symbolic target field), the risk estimate r(t) of a node t is computed
as

where C(j*(t)|j) is the misclassification cost of classifying a record with target value j as j*(t),
Nf,j(t) is the sum of the frequency weights for records in node t in category j (or the number of
records if no frequency weights are defined), and Nf is the sum of frequency weights for all
records in the training data.

If the model uses user-specified priors, the risk estimate is calculated as

Note that case weights are not considered in calculating risk estimates.

Risk Estimates for numeric target field

For regression trees (with a numeric target field), the risk estimate r(t) of a node t is computed as

69

C&RT Algorithms

where fi is the frequency weight for record i (a record assigned to node t), yi is the value of the
target field for record i, and is the weighted mean of the target field for all records in node t.

Tree Risk Estimate

For both classification trees and regression trees, the risk estimate R(T) for the tree (T) is
calculated by taking the sum of the risk estimates for the terminal nodes r(t):

where T’ is the set of terminal nodes in the tree.

Gain Summary

The gain summary provides descriptive statistics for the terminal nodes of a tree.
If your target field is continuous (scale), the gain summary shows the weighted mean of the

target value for each terminal node,

If your target field is symbolic (categorical), the gain summary shows the weighted percentage of
records in a selected target category,

where xi(j) = 1 if record xi is in target category j, and 0 otherwise. If profits are defined for the
tree, the gain is the average profit value for each terminal node,

where P(xi) is the profit value assigned to the target value observed in record xi.

Generated Model/Scoring

Calculations done by the C&RT generated model are described below

70

C&RT Algorithms

Predicted Values

New records are scored by following the tree splits to a terminal node of the tree. Each terminal
node has a particular predicted value associated with it, determined as follows:

Classification Trees

For trees with a symbolic target field, each terminal node’s predicted category is the category with
the lowest weighted cost for the node. This weighted cost is calculated as

where C(i|j) is the user-specified misclassification cost for classifying a record as category i when
it is actually category j, and p(j|t) is the conditional weighted probability of a record being in
category j given that it is in node t, defined as

where π(j) is the prior probability for category j, Nw,j(t) is the weighted number of records in node
t with category j (or the number of records if no frequency or case weights are defined),

and Nw,j is the weighted number records in category j (any node),

Regression Trees

For trees with a numeric target field, each terminal node’s predicted category is the weighted mean
of the target values for records in the node. This weighted mean is calculated as

where Nw(t) is defined as

71

C&RT Algorithms

Confidence

For classification trees, confidence values for records passed through the generated model are
calculated as follows. For regression trees, no confidence value is assigned.

Classification Trees

Confidence for a scored record is the proportion of weighted records in the training data in the
scored record’s assigned terminal node that belong to the predicted category, modified by the
Laplace correction:

Note: If Surrogate Splitting is used (where a particular rule does not fit into a node) the Confidence
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

Blank Handling

In classification of new records, blanks are handled as they are during tree growth, using
surrogates where possible, and splitting based on weighted probabilities where necessary. For
more information, see the topic “Blank Handling” on p. 61.

CHAID Algorithms

Overview of CHAID

CHAID stands for Chi-squared Automatic Interaction Detector. It is a highly efficient statistical
technique for segmentation, or tree growing, developed by (Kass, 1980). Using the significance of
a statistical test as a criterion, CHAID evaluates all of the values of a potential predictor field. It
merges values that are judged to be statistically homogeneous (similar) with respect to the target
variable and maintains all other values that are heterogeneous (dissimilar).

It then selects the best predictor to form the first branch in the decision tree, such that each
child node is made of a group of homogeneous values of the selected field. This process continues
recursively until the tree is fully grown. The statistical test used depends upon the measurement
level of the target field. If the target field is continuous, an F test is used. If the target field is
categorical, a chi-squared test is used.

CHAID is not a binary tree method; that is, it can produce more than two categories at any
particular level in the tree. Therefore, it tends to create a wider tree than do the binary growing
methods. It works for all types of variables, and it accepts both case weights and frequency
variables. It handles missing values by treating them all as a single valid category.

Exhaustive CHAID

Exhaustive CHAID is a modification of CHAID developed to address some of the weaknesses
of the CHAID method (Biggs, de Ville, and Suen, 1991). In particular, sometimes CHAID may
not find the optimal split for a variable, since it stops merging categories as soon as it finds
that all remaining categories are statistically different. Exhaustive CHAID remedies this by
continuing to merge categories of the predictor variable until only two supercategories are left.
It then examines the series of merges for the predictor and finds the set of categories that gives
the strongest association with the target variable, and computes an adjusted p-value for that
association. Thus, Exhaustive CHAID can find the best split for each predictor, and then choose
which predictor to split on by comparing the adjusted p-values.

Exhaustive CHAID is identical to CHAID in the statistical tests it uses and in the way it treats
missing values. Because its method of combining categories of variables is more thorough than
that of CHAID, it takes longer to compute. However, if you have the time to spare, Exhaustive
CHAID is generally safer to use than CHAID. It often finds more useful splits, though depending
on your data, you may find no difference between Exhaustive CHAID and CHAID results.

Primary Calculations

The calculations directly involved in building the model are described below.

Frequency and Case Weight Fields

Frequency and case weight fields are useful for reducing the size of your dataset. Each has a
distinct function, though. If a case weight field is mistakenly specified to be a frequency field, or
vice versa, the resulting analysis will be incorrect.

© Copyright IBM Corporation 1994, 2016. 73

74

CHAID Algorithms

For the calculations described below, if no frequency or case weight fields are specified, assume
that frequency and case weights for all records are equal to 1.0.

Frequency Fields

A frequency field represents the total number of observations represented by each record. It is
useful for analyzing aggregate data, in which a record represents more than one individual. The
sum of the values for a frequency field should always be equal to the total number of observations
in the sample. Note that output and statistics are the same whether you use a frequency field or
case-by-case data. The table below shows a hypothetical example, with the predictor fields sex
and employment and the target field response. The frequency field tells us, for example, that 10
employed men responded yes to the target question, and 19 unemployed women responded no.
Table 10-1
Dataset with frequency field

Sex Employment Response Frequency

M Y Y 10
M Y N 17
M N Y 12
M N N 21
F Y Y 11
F Y N 15
F N Y 15
F N N 19

The use of a frequency field in this case allows us to process a table of 8 records instead of
case-by-case data, which would require 120 records.

Case weights

The use of a case weight field gives unequal treatment to the records in a dataset. When a case
weight field is used, the contribution of a record in the analysis is weighted in proportion to
the population units that the record represents in the sample. For example, suppose that in
a direct marketing promotion, 10,000 households respond and 1,000,000 households do not
respond. To reduce the size of the data file, you might include all of the responders but only a
1% sample (10,000) of the nonresponders. You can do this if you define a case weight equal to
1 for responders and 100 for nonresponders.

Binning of Scale-Level Predictors

Scale level (continuous) predictor fields are automatically discretized or binned into a set of
ordinal categories. This process is performed once for each scale-level predictor in the model,
prior to applying the CHAID (or Exhaustive CHAID) algorithm. The binned categories are
determined as follows:

1. The data values yi are sorted.

75

CHAID Algorithms

2. For each unique value, starting with the smallest, calculate the relative (weighted) frequency of
values less than or equal to the current value yi:

where wk is the weight for record k (or 1.0 if no weights are defined).

3. Determine the bin to which the value belongs by comparing the relative frequency with the ideal
bin percentile cutpoints of 0.10, 0.20, 0.30, etc.

where W is the total weighted frequency for all records in the training data, , and

 If the bin index for this value is different from the bin index for the previous data value, add a
new bin to the bin list and set its cutpoint to the current data value.

 If the bin index is the same as the bin index for the previous value, update the cut point for
that bin to the current data value.

Normally, CHAID will try to create k = 10 bins by default. However, when the number of records
having a single value is large (or a set of records with the same value has a large combined
weighted frequency), the binning may result in fewer bins. This will happen if the weighted
frequency for records with the same value is greater than the expected weighted frequency in a bin
(1/kth of the total weighted frequency). This will also happen if there are fewer than k distinct
values for the binned field for records in the training data.

Model Parameters

CHAID works with all types of continuous or categorical fields. However, continuous predictor
fields are automatically categorized for the purpose of the analysis.For more information, see the
topic “Binning of Scale-Level Predictors” on p. 74.

Note that you can set some of the options mentioned below using the Expert Options for
CHAID. These include the choice of the Pearson chi-squared or likelihood-ratio test, the level of
αmerge, the level of αsplit, score values, and details of stopping rules.

76

CHAID Algorithms

The CHAID algorithm proceeds as follows:

Merging Categories for Predictors (CHAID)

To determine each split, all predictor fields are merged to combine categories that are not
statistically different with respect to the target field. Each final category of a predictor field X
will represent a child node if X is used to split the node. The following steps are applied to each
predictor field X:

1. If X has one or two categories, no more categories are merged, so proceed to node splitting below.

2. Find the eligible pair of categories of X that is least significantly different (most similar) as
determined by the p-value of the appropriate statistical test of association with the target field. For
more information, see the topic “Statistical Tests Used” on p. 77.

For ordinal fields, only adjacent categories are eligible for merging; for nominal fields, all pairs
are eligible.

3. For the pair having the largest p-value, if the p-value is greater than αmerge, then merge the pair
of categories into a single category. Otherwise, skip to step 6.

4. If the user has selected the Allow splitting of merged categories option, and the newly formed
compound category contains three or more original categories, then find the best binary split
within the compound category (that for which the p-value of the statistical test is smallest). If that
p-value is less than or equal to αsplit-merge, perform the split to create two categories from the
compound category.

5. Continue merging categories from step 1 for this predictor field.

6. Any category with fewer than the user-specified minimum segment size records is merged
with the most similar other category (that which gives the largest p-value when compared with
the small category).

Merging Categories for Predictors (Exhaustive CHAID)

Exhaustive CHAID works much the same as CHAID, except that the category merging is more
thoroughly tested to find the ideal set of categories for each predictor field. As with regular
CHAID, each final category of a predictor field X will represent a child node if X is used to split
the node. The following steps are applied to each predictor field X:

1. For each predictor variable X, find the pair of categories of X that is least significantly different
(that is, has the largest p-value) with respect to the target variable Y. The method used to
calculate the p-value depends on the measurement level of Y. For more information, see the
topic “Statistical Tests Used” on p. 77.

2. Merge into a compound category the pair that gives the largest p-value.

3. Calculate the p-value based on the new set of categories of X. This represents one set of categories
for X. Remember the p-value and its corresponding set of categories.

77

CHAID Algorithms

4. Repeat steps 1, 2, and 3 until only two categories remain. Then, compare the sets of categories
of X generated during each step of the merge sequence, and find the one for which the p-value
in step 3 is the smallest. That set is the set of merged categories for X to be used in determining
the split at the current node.

Splitting Nodes

When categories have been merged for all predictor fields, each field is evaluated for its
association with the target field, based on the adjusted p-value of the statistical test of association,
as described below.

The predictor with the strongest association, indicated by the smallest adjusted p-value, is
compared to the split threshold, αsplit. If the p-value is less than or equal to αsplit, that field is
selected as the split field for the current node. Each of the merged categories of the split field
defines a child node of the split.

After the split is applied to the current node, the child nodes are examined to see if they warrant
splitting by applying the merge/split process to each in turn. Processing proceeds recursively until
one or more stopping rules are triggered for every unsplit node, and no further splits can be made.

Statistical Tests Used

Calculations of the unadjusted p-values depend on the type of the target field. During the merge
step, categories are compared pairwise, that is, one (possibly compound) category is compared
against another (possibly compound) category. For such comparisons, only records belonging to
one of the comparison categories in the current node are considered. During the split step, all
categories are considered in calculating the p-value, thus all records in the current node are used.

Scale Target Field (F Test).

For models with a scale-level target field, the p-value is calculated based on a standard
ANOVA F-test comparing the target field means across categories of the predictor field under
consideration. The F statistic is calculated as

and the p-value is

where

78

CHAID Algorithms

, ,

and F(I − 1, Nf − I) is a random variable following an F-distribution with (I − 1) and (Nf − I)
degrees of freedom.

Nominal Target Field (Chi-Squared Test)

If the target field Y is a set (categorical) field, the null hypothesis of independence of X and Y is
tested. To do the test, a contingency (count) table is formed using classes of Y as columns and
categories of the predictor X as rows. The expected cell frequencies under the null hypothesis of
independence are estimated. The observed cell frequencies and the expected cell frequencies are
used to calculate the chi-squared statistic, and the p-value is based on the calculated statistic.

Pearson Chi-squared test

The Pearson chi-square statistic is calculated as

where is the observed cell frequency and is the expected
cell frequency for cell (xn = i, yn = j) from the independence model as described below. The
corresponding p value is calculated as , where follows a chi-square
distribution with d = (J − 1)(I − 1) degrees of freedom.

Expected Frequencies for Chi-Square Test

Likelihood-ratio Chi-squared test

The likelihood-ratio chi-square is calculated based on the expected and observed frequencies, as
described above. The likelihood ratio chi-square is calculated as

and the p-value is calculated as

Expected frequencies for chi-squared tests

For models with no case weights, expected frequencies are calculated as

79

CHAID Algorithms

where

If case weights are specified, the expected cell frequency under the null hypothesis of
independence takes the form

where αi and βj are parameters to be estimated, and

The parameter estimates , , and hence , are calculated based on the following iterative
procedure:

1. Initially, k = 0, , .

2. .

3.

4. .

5. If , stop and output , , and as the final estimates of
, , and . Otherwise, increment k and repeat from step 2.

Ordinal Target Field (Row Effects Model)

If the target field Y is ordinal, the null hypothesis of independence of X and Y is tested against
the row effects model, with the rows being the categories of X and the columns the categories
of Y(Goodman, 1979). Two sets of expected cell frequencies, (under the hypothesis of
independence and (under the hypothesis that the data follow the row effects model), are both
estimated. The likelihood ratio statistic is computed as

and the p-value is calculated as

80

CHAID Algorithms

Expected Cell Frequencies for the Row Effects Model

For the row effects model, scores for categories of Y are needed. By default, the order of each
category is used as the category score. Users can specify their own set of scores. The expected
cell frequency under the row effects model is

where sj is the score for category j of Y, and

in which , αi, γj and γi are unknown parameters to be estimated.

Parameter estimates , , , and hence are calculated using the following iterative
procedure:

1.

2.

3.

4.

5.
otherwise

6.

7. If , stop and set , , , and as the final

estimates of , , , and . Otherwise, increment k and repeat from step 2.

Bonferroni Adjustment

The adjusted p-value is calculated as the p-value times a Bonferroni multiplier. The Bonferroni
multiplier controls the overall p-value across multiple statistical tests.

Suppose that a predictor field originally has I categories, and it is reduced to r categories after
the merging step. The Bonferroni multiplier B is the number of possible ways that I categories
can be merged into r categories. For r = I, B = 1. For 2 ≤ r < I,

81

CHAID Algorithms

Ordinal predictor

Nominal predictor

Ordinal with a missing value

Blank Handling

If the target field for a record is blank, or all the predictor fields are blank, the record is ignored in
model building. If case weights are specified and the case weight for a record is blank, zero, or
negative, the record is ignored, and likewise for frequency weights.

For other records, blanks in predictor fields are treated as an additional category for the field.

Ordinal Predictors

The algorithm first generates the best set of categories using all non-blank information. Then the
algorithm identifies the category that is most similar to the blank category. Finally, two p-values
are calculated: one for the set of categories formed by merging the blank category with its most
similar category, and the other for the set of categories formed by adding the blank category as a
separate category. The set of categories with the smallest p-value is used.

Nominal Predictors

The missing category is treated the same as other categories in the analysis.

Effect of Options

Stopping Rules

Stopping rules control how the algorithm decides when to stop splitting nodes in the tree. Tree
growth proceeds until every leaf node in the tree triggers at least one stopping rule. Any of the
following conditions will prevent a node from being split:
 The node is pure (all records have the same value for the target field)
 All records in the node have the same value for all predictor fields used by the model
 The tree depth for the current node (the number of recursive node splits defining the current

node) is the maximum tree depth (default or user-specified).
 The number of records in the node is less than the minumum parent node size (default or

user-specified)
 The number of records in any of the child nodes resulting from the node’s best split is less

than the minimum child node size (default or user-specified)
 The best split for the node yields a p-value that is greater than the αsplit (default or

user-specified).

82

CHAID Algorithms

Profits

Profits are numeric values associated with categories of a (symbolic) target field that can be used
to estimate the gain or loss associated with a segment. They define the relative value of each value
of the target field. Values are used in computing gains but not in tree growing.

Profit for each node in the tree is calculated as

where j is the target field category, fj(t) is the sum of frequency field values for all records in node
t with category j for the target field, and Pj is the user-defined profit value for category j.

Score Values

Scores are available in CHAID and Exhaustive CHAID. They define the order and distance
between categories of an ordinal categorical target field. In other words, the scores define the
field’s scale. Values of scores are involved in tree growing.

If user-specified scores are provided, they are used in calculation of expected cell frequencies,
as described above.

Costs

Costs, if specified, are not taken into account in growing a CHAID tree. However, costs will be
incorporated into node assignment and risk estimation, as described in Predicted Values and
Risk Estimates, below.

Secondary Calculations

Secondary calculations are not directly related to building the model, but give you information
about the model and its performance.

Risk Estimates

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for
the tree as a whole.

Risk Estimates for Symbolic Target Field

For classification trees (with a symbolic target field), the risk estimate r(t) of a node t is computed
as

83

CHAID Algorithms

where C(j*(t)|j) is the misclassification cost of classifying a record with target value j as j*(t),
Nf,j(t) is the sum of the frequency weights for records in node t in category j (or the number of
records if no frequency weights are defined), and Nf is the sum of frequency weights for all
records in the training data.

Note that case weights are not considered in calculating risk estimates.

Risk Estimates for numeric target field

For regression trees (with a numeric target field), the risk estimate r(t) of a node t is computed as

where fi is the frequency weight for record i (a record assigned to node t), yi is the value of the
target field for record i, and is the weighted mean of the target field for all records in node t.

Tree Risk Estimate

For both classification trees and regression trees, the risk estimate R(T) for the tree (T) is
calculated by taking the sum of the risk estimates for the terminal nodes r(t):

where T’ is the set of terminal nodes in the tree.

Gain Summary

The gain summary provides descriptive statistics for the terminal nodes of a tree.
If your target field is continuous (scale), the gain summary shows the weighted mean of the

target value for each terminal node,

If your target field is symbolic (categorical), the gain summary shows the weighted percentage of
records in a selected target category,

where xi(j) = 1 if record xi is in target category j, and 0 otherwise. If profits are defined for the
tree, the gain is the average profit value for each terminal node,

84

CHAID Algorithms

where P(xi) is the profit value assigned to the target value observed in record xi.

Generated Model/Scoring
Calculations done by the CHAID generated model are described below

Predicted Values

New records are scored by following the tree splits to a terminal node of the tree. Each terminal
node has a particular predicted value associated with it, determined as follows:

Classification Trees

For trees with a symbolic target field, each terminal node’s predicted category is the category with
the lowest weighted cost for the node. This weighted cost is calculated as

where C(i|j) is the user-specified misclassification cost for classifying a record as category i when
it is actually category j, and p(j|t) is the conditional weighted probability of a record being in
category j given that it is in node t, defined as

where π(j) is the prior probability for category j, Nw,j(t) is the weighted number of records in node
t with category j (or the number of records if no frequency or case weights are defined),

and Nw,j is the weighted number records in category j (any node),

Regression Trees

For trees with a numeric target field, each terminal node’s predicted category is the weighted mean
of the target values for records in the node. This weighted mean is calculated as

where Nw(t) is defined as

85

CHAID Algorithms

Confidence

For classification trees, confidence values for records passed through the generated model are
calculated as follows. For regression trees, no confidence value is assigned.

Classification Trees

Confidence for a scored record is the proportion of weighted records in the training data in the
scored record’s assigned terminal node that belong to the predicted category, modified by the
Laplace correction:

Note: If Surrogate Splitting is used (where a particular rule does not fit into a node) the Confidence
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

Blank Handling

In classification of new records, blanks are handled as they are during tree growth, being treated as
an additional category (possibly merged with other non-blank categories). For more information,
see the topic “Blank Handling” on p. 81.

For nodes where there were no blanks in the training data, a blank category will not exist for
the split of that node. In that case, records with a blank value for the split field are assigned a
null value.

Cluster Evaluation Algorithms
This document describes measures used for evaluating clustering models.
 The Silhouette coefficient combines the concepts of cluster cohesion (favoring models which

contain tightly cohesive clusters) and cluster separation (favoring models which contain
highly separated clusters). It can be used to evaluate individual objects, clusters, and models.

 The sum of squares error (SSE) is a measure of prototype-based cohesion, while sum of
squares between (SSB) is a measure of prototype-based separation.

 Predictor importance indicates how well the variable can differentiate different clusters. For
both range (numeric) and discrete variables, the higher the importance measure, the less
likely the variation for a variable between clusters is due to chance and more likely due to
some underlying difference.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Continuous variable k in case i (standardized).

The sth category of variable k in case i (one-of-c coding).

N Total number of valid cases.
The number of cases in cluster j.

Y Variable with J cluster labels.
The centroid of cluster j for variable k.

The distance between case i and the centroid of cluster j.

The distance between the overall mean and the centroid of cluster j.

Goodness Measures

The average Silhouette coefficient is simply the average over all cases of the following calculation
for each individual case:

where A is the average distance from the case to every other case assigned to the same cluster and
B is the minimal average distance from the case to cases of a different cluster across all clusters.

Unfortunately, this coefficient is computationally expensive. In order to ease this burden, we use
the following definitions of A and B:
 A is the distance from the case to the centroid of the cluster which the case belongs to;
 B is the minimal distance from the case to the centroid of every other cluster.

© Copyright IBM Corporation 1994, 2016. 87

88

Cluster Evaluation Algorithms

Distances may be calculated using Euclidean distances. The Silhouette coefficient and its average
range between −1, indicating a very poor model, and 1, indicating an excellent model. As found
by Kaufman and Rousseeuw (1990), an average silhouette greater than 0.5 indicates reasonable
partitioning of data; less than 0.2 means that the data do not exhibit cluster structure.

Data Preparation

Before calculating Silhouette coefficient, we need to transform cases as follows:

1. Recode categorical variables using one-of-c coding. If a variable has c categories, then it is stored
as c vectors, with the first category denoted (1,0,...,0), the next category (0,1,0,...,0), ..., and the
final category (0,0,...,0,1). The order of the categories is based on the ascending sort or lexical
order of the data values.

2. Rescale continuous variables. Continuous variables are normalized to the interval [−1, 1] using the
transformation [2*(x−min)/(max−min)]−1. This normalization tries to equalize the contributions
of continuous and categorical features to the distance computations.

Basic Statistics

The following statistics are collected in order to compute the goodness measures: the centroid
of variable k for cluster j, the distance between a case and the centroid, and the overall mean u.

For with an ordinal or continuous variable k, we average all standardized values of variable
k within cluster j. For nominal variables, is a vector of probabilities of occurrence
for each state s of variable k for cluster j. Note that in counting , we do not consider cases with
missing values in variable k. If the value of variable k is missing for all cases within cluster j,

is marked as missing.

The distance between case i and the centroid of cluster j can be calculated in terms of the
weighted sum of the distance components across all variables; that is

where denotes a weight. At this point, we do not consider differential weights, thus
equals 1 if the variable k in case i is valid, 0 if not. If all equal 0, set .

The distance component is calculated as follows for ordinal and continuous variables

For binary or nominal variables, it is

89

Cluster Evaluation Algorithms

where variable k uses one-of-c coding, and is the number of its states.

The calculation of is the same as that of , but the overall mean u is used in place of and
is used in place of .

Silhouette Coefficient

The Silhouette coefficient of case i is

where denotes cluster labels which do not include case i as a member, while is the cluster
label which includes case i. If equals 0, the Silhouette of case i is
not used in the average operations.

Based on these individual data, the total average Silhouette coefficient is:

Sum of Squares Error (SSE)

SSE is a prototype-based cohesion measure where the squared Euclidean distance is used. In order
to compare between models, we will use the averaged form, defined as:

Average SSE

Sum of Squares Between (SSB)

SSB is a prototype-based separation measure where the squared Euclidean distance is used. In
order to compare between models, we will use the averaged form, defined as:

Average SSB

Predictor Importance

The importance of field i is defined as

90

Cluster Evaluation Algorithms

where denotes the set of predictor and evaluation fields, is the significance or
p-value computed from applying a certain test, as described below. If equals zero, set

, where MinDouble is the minimal double value.

Across Clusters

The p-value for categorical fields is based on Pearson’s chi-square. It is calculated by

p-value = Prob(),

where

where .
 If , the importance is set to be undefined or unknown;
 If , subtract one from I for each such category to obtain ;
 If , subtract one from J for each such cluster to obtain ;
 If or , the importance is set to be undefined or unknown.

The degrees of freedom are .

The p-value for continuous fields is based on an F test. It is calculated by

p-value = Prob{ },

where

 If N=0, the importance is set to be undefined or unknown;
 If , subtract one from J for each such cluster to obtain ;
 If or , the importance is set to be undefined or unknown;
 If the denominator in the formula for the F statistic is zero, the importance is set to be

undefined or unknown;
 If the numerator in the formula for the F statistic is zero, set p-value = 1;

The degrees of freedom are .

91

Cluster Evaluation Algorithms

Within Clusters

The null hypothesis for categorical fields is that the proportion of cases in the categories in
cluster j is the same as the overall proportion.

The chi-square statistic for cluster j is computed as follows

If , the importance is set to be undefined or unknown;

If , subtract one from I for each such category to obtain ;

If , the importance is set to be undefined or unknown.

The degrees of freedom are .

The null hypothesis for continuous fields is that the mean in cluster j is the same as the overall
mean.

The Student’s t statistic for cluster j is computed as follows

with degrees of freedom.

If or , the importance is set to be undefined or unknown;

If the numerator is zero, set p-value = 1;

Here, the p-value based on Student’s t distribution is calculated as

p-value = 1 − Prob{ }.

References

Kaufman, L., and P. J. Rousseeuw. 1990. Finding groups in data: An introduction to cluster
analysis. New York: John Wiley and Sons.

Tan, P., M. Steinbach, and V. Kumar. 2006. Introduction to Data Mining. : Addison-Wesley.

COXREG Algorithms

Cox Regression Algorithms
Cox (1972) first suggested the models in which factors related to lifetime have a multiplicative
effect on the hazard function. These models are called proportional hazards models. Under the
proportional hazards assumption, the hazard function h of t given X is of the form

where x is a known vector of regressor variables associated with the individual, is a vector of
unknown parameters, and is the baseline hazard function for an individual with .
Hence, for any two covariates sets and , the log hazard functions and should
be parallel across time.

When a factor does not affect the hazard function multiplicatively, stratification may be useful in
model building. Suppose that individuals can be assigned to one of m different strata, defined
by the levels of one or more factors. The hazard function for an individual in the jth stratum is
defined as

There are two unknown components in the model: the regression parameter and the baseline
hazard function . The estimation for the parameters is described below.

Estimation
We begin by considering a nonnegative random variable T representing the lifetimes of individuals
in some population. Let denote the probability density function (pdf) of T given a regressor
x and let be the survivor function (the probability of an individual surviving until time
t). Hence

The hazard is then defined by

Another useful expression for in terms of is

Thus,

For some purposes, it is also useful to define the cumulative hazard function

© Copyright IBM Corporation 1994, 2016. 93

94

COXREG Algorithms

Under the proportional hazard assumption, the survivor function can be written as

where is the baseline survivor function defined by

and

Some relationships between , and , and which will be used later are

To estimate the survivor function , we can see from the equation for the survivor function
that there are two components, and , which need to be estimated. The approach we use
here is to estimate from the partial likelihood function and then to maximize the full likelihood
for .

Estimation of Beta

Assume that
 There are m levels for the stratification variable.
 Individuals in the same stratum have proportional hazard functions.
 The relative effect of the regressor variables is the same in each stratum.

Let be the observed uncensored failure time of the individuals in the jth
stratum and be the corresponding covariates. Then the partial likelihood function is
defined by

where is the sum of case weights of individuals whose lifetime is equal to and is
the weighted sum of the regression vector x for those individuals, is the case weight of
individual l, and is the set of individuals alive and uncensored just prior to in the jth
stratum. Thus the log-likelihood arising from the partial likelihood function is

95

COXREG Algorithms

and the first derivatives of l are

is the rth component of . The maximum partial likelihood estimate
(MPLE) of is obtained by setting equal to zero for , where p is the number of
independent variables in the model. The equations can usually be
solved by using the Newton-Raphson method.

Note that from its equation that the partial likelihood function is invariant under
translation. All the covariates are centered by their corresponding overall mean. The overall mean
of a covariate is defined as the sum of the product of weight and covariate for all the censored and
uncensored cases in each stratum. For notational simplicity, used in the Estimation Section
denotes centered covariates.

Three convergence criteria for the Newton-Raphson method are available:
 Absolute value of the largest difference in parameter estimates between iterations divided

by the value of the parameter estimate for the previous iteration; that is,

BCON parameter estimate for previous iteration
 Absolute difference of the log-likelihood function between iterations divided by the

log-likelihood function for previous iteration.
 Maximum number of iterations.

The asymptotic covariance matrix for the MPLE is estimated by where I
is the information matrix containing minus the second partial derivatives of . The (r, s)-th
element of I is defined by

We can also write I in a matrix form as

96

COXREG Algorithms

where is a matrix which represents the p covariate variables in the model evaluated
at time , is the number of distinct individuals in , and is a matrix with
the lth diagonal element defined by

and the (l, k) element defined by

Estimation of the Baseline Function
After the MPLE of is found, the baseline survivor function is estimated separately for
each stratum. Assume that, for a stratum, are observed lifetimes in the sample.
There are at risk and deaths at , and in the interval there are censored times.
Since is a survivor function, it is non-increasing and left continuous, and thus must be
constant except for jumps at the observed lifetimes .

Further, it follows that

and

Writing , the observed likelihood function is of the form

where is the set of individuals dying at and is the set of individuals with censored times in
. (Note that if the last observation is uncensored, is empty and)

If we let , can be written as

Differentiating with respect to and setting the equations equal to zero, we get

We then plug the MPLE of into this equation and solve these k equations separately.

97

COXREG Algorithms

There are two things worth noting:
 If any , can be solved explicitly.

 If , the equation for the cumulative hazard function must be solved iteratively for
. A good initial value for is

where is the weight sum for set . (See Lawless, 1982, p. 361.)

Once the , are found, is estimated by

Since the above estimate of requires some iterative calculations when ties exist, Breslow
(1974) suggests using the equation for when as an estimate; however, we will use
this as an initial estimate.

The asymptotic variance for can be found in Chapter 4 of Kalbfleisch and Prentice
(1980). At a specified time t, it is consistently estimated by

where a is a p×1 vector with the jth element defined by

and I is the information matrix. The asymptotic variance of is estimated by

Selection Statistics for Stepwise Methods

The same methods for variable selection are offered as in binary logistic regression. For more
information, see the topic “Stepwise Variable Selection ” on p. 281. Here we will only define the
three removal statistics—Wald, LR, and Conditional—and the Score entry statistic.

98

COXREG Algorithms

Score Statistic

The score statistic is calculated for every variable not in the model to decide which variable should
be added to the model. First we compute the information matrix I for all eligible variables based
on the parameter estimates for the variables in the model and zero parameter estimates for the
variables not in the model. Then we partition the resulting I into four submatrices as follows:

where and are square matrices for variables in the model and variables not in the model,
respectively, and is the cross-product matrix for variables in and out. The score statistic
for variable is defined by

where is the first derivative of the log-likelihood with respect to all the parameters associated
with and is equal to , and and are the submatrices
in and associated with variable .

Wald Statistic

The Wald statistic is calculated for the variables in the model to select variables for removal.
The Wald statistic for variable is defined by

where is the parameter estimate associated with and is the submatrix of associated
with .

LR (Likelihood Ratio) Statistic

The LR statistic is defined as twice the log of the ratio of the likelihood functions of two models
evaluated at their own MPLES. Assume that r variables are in the current model and let us call the
current model the full model. Based on the MPLES of parameters for the full model, l(full) is
defined in “Estimation of Beta ”. For each of r variables deleted from the full model, MPLES
are found and the reduced log-likelihood function, l(reduced), is calculated. Then LR statistic is
defined as

–2(l(reduced) – l(full))

Conditional Statistic

The conditional statistic is also computed for every variable in the model. The formula for
conditional statistic is the same as LR statistic except that the parameter estimates for each
reduced model are conditional estimates, not MPLES. The conditional estimates are defined as

99

COXREG Algorithms

follows. Let be the MPLES for the r variables (blocks) and C be the asymptotic
covariance for the parameters left in the model given is

where is the MPLE for the parameter(s) associated with and is without , is
the covariance between the parameter estimates left in the model and , and is the
covariance of . Then the conditional statistic for variable is defined by

b

where is the log-likelihood function evaluated at .

Note that all these four statistics have a chi-square distribution with degrees of freedom equal to
the number of parameters the corresponding model has.

Statistics

The following output statistics are available.

Initial Model Information

The initial model for the first method is for a model that does not include covariates. The
log-likelihood function l is equal to

where is the sum of weights of individuals in set .

Model Information

When a stepwise method is requested, at each step, the −2 log-likelihood function and three
chi-square statistics (model chi-square, improvement chi-square, and overall chi-square) and their
corresponding degrees of freedom and significance are printed.

–2 Log-Likelihood

where is the MPLE of for the current model.

100

COXREG Algorithms

Improvement Chi-Square

(–2 log-likelihood function for previous model) – (–2 log-likelihood function for current model).

The previous model is the model from the last step. The degrees of freedom are equal to the
absolute value of the difference between the number of parameters estimated in these two models.

Model Chi-Square

(–2 log-likelihood function for initial model) – (–2 log-likelihood function for current model).

The initial model is the final model from the previous method. The degrees of freedom are equal
to the absolute value of the difference between the number of parameters estimated in these
two model.

Note: The values of the model chi-square and improvement chi-square can be less than or equal to
zero. If the degrees of freedom are equal to zero, the chi-square is not printed.

Overall Chi-Square

The overall chi-square statistic tests the hypothesis that all regression coefficients for the variables
in the model are identically zero. This statistic is defined as

where represents the vector of first derivatives of the partial log-likelihood function evaluated
at . The elements of u and I are defined in “Estimation of Beta ”.

Information for Variables in the Equation

For each of the single variables in the equation, MPLE, SE for MPLE, Wald statistic, and its
corresponding df, significance, and partial R are given. For a single variable, R is defined by

Wald
2 log-likelihood for the intial model sign of MPLE

if Wald . Otherwise R is set to zero. For a multiple category variable, only the Wald statistic,
df, significance, and partial R are printed, where R is defined by

Wald df
2 log-likelihood for the intial model

if Wald df. Otherwise R is set to zero.

101

COXREG Algorithms

Information for the Variables Not in the Equation

For each of the variables not in the equation, the Score statistic is calculated and its corresponding
degrees of freedom, significance, and partial R are printed. The partial R for variables not in the
equation is defined similarly to the R for the variables in the equation by changing the Wald
statistic to the Score statistic.

There is one overall statistic called the residual chi-square. This statistic tests if all regression
coefficients for the variables not in the equation are zero. It is defined by

where is the vector of first derivatives of the partial log-likelihood function with
respect to all the parameters not in the equation evaluated at MPLE and is equal to

and A is defined in “Score Statistic ”.

Survival Table

For each stratum, the estimates of the baseline cumulative survival and hazard function
and their standard errors are computed. is estimated by

and the asymptotic variance of is defined in “Estimation of the Baseline Function ”. Finally,
the cumulative hazard function and survival function are estimated by

and, for a given x,

The asymptotic variances are

and

Plots

For a specified pattern, the covariate values are determined and is computed. There are three
plots available for Cox regression.

102

COXREG Algorithms

Survival Plot

For stratum j, , are plotted where

Hazard Plot

For stratum j, , are plotted where

LML Plot

The log-minus-log plot is used to see whether the stratification variable should be included as
a covariate. For stratum j, , are plotted. If the plot shows
parallelism among strata, then the stratum variable should be a covariate.

Blank Handling
All records with missing values for any input or output field are excluded from the estimation of
the model.

Scoring
Survival and cumulative hazard estimates are given in “Survival Table ” on p. 101.

Conditional upon survival until time t0, the probability of survival until time t is

Blank Handling

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.

Additionally, records with “total” survival time (past + future) greater than the record with the
longest observed uncensored survival time are also assigned a predicted value of $null$.

References
Breslow, N. E. 1974. Covariance analysis of censored survival data. Biometrics, 30, 89–99.

103

COXREG Algorithms

Cain, K. C., and N. T. Lange. 1984. Approximate case influence for the proportional hazards
regression model with censored data. Biometrics, 40, 493–499.

Cox, D. R. 1972. Regression models and life tables (with discussion). Journal of the Royal
Statistical Society, Series B, 34, 187–220.

Kalbfleisch, J. D., and R. L. Prentice. 2002. The statistical analysis of failure time data, 2 ed.
New York: John Wiley & Sons, Inc.

Lawless, R. F. 1982. Statistical models and methods for lifetime data. New York: John Wiley &
Sons, Inc..

Storer, B. E., and J. Crowley. 1985. A diagnostic for Cox regression and general conditional
likelihoods. Journal of the American Statistical Association, 80, 139–147.

Decision List Algorithms
The objective of decision lists is to find a group of individuals with a distinct behavior pattern; for
example, a high probability of buying a product. A decision list model consists of a set of decision
rules. A decision rule is an if-then rule, which has two parts: antecedent and consequent. The
antecedent is a Boolean expression of predictors, and the consequent is the predicted value of the
target field when the antecedent is true. The simplest construct of a decision rule is a segment
based on one predictor; for example, Gender = ‘Male’ or .

A record is covered by a rule if the rule antecedent is true. If a case is covered by one of the
rules in a decision list, then it is considered to be covered by the list.

In a decision list, order of rules is significant; if a case is covered by a rule, it will be ignored
by subsequent rules.

Algorithm Overview

The decision list algorithm can be summarized as follows:

E Candidate rules are found from the original dataset.

E The best rules are appended to the decision list.

E Records covered by the decision list are removed from the dataset.

E New rules are found based on the reduced dataset.

The process repeats until one or more of the stopping criteria are met.

Terminology of Decision List Algorithm

The following terms are used in describing the decision list algorithm:

Model. A decision list model.

Cycle. In every rule discovery cycle, a set of candidate rules will be found. They will then be
added to the model under construction. The resulting models will be inputs to the next cycle.

Attribute. Another name for a variable or field in the dataset.

Source attribute. Another name for predictor field.

Extending the model. Adding decision rules to a decision list or adding segments to a decision rule.

Group. A subset of records in the dataset.

Segment. Another name for group.

© Copyright IBM Corporation 1994, 2016. 105

106

Decision List Algorithms

Main Calculations

Notation

The following notations are used in describing the decision list algorithm:

Data matrix. Columns are fields (attributes), and rows are records (cases).

A collection of list models.

The ith list model of L.

A list model that contains no rules.

The estimated response probability of list Li.

N Total population size
The value of the mth field (column) for the nth record (row) of X.

The subset of records in X that are covered by list model Li.

Y The target field in X.
The value of the target field for the nth record.

A Collection of all attributes (fields) of X.
The jth attribute of X.

R A collection of rules to extend a preceding rule list.
The kth rule in rule collection R.

T A set of candidate list models.
ResultSet A collection of decision list models.

Primary Algorithm

The primary algorithm for creating a decision list model is as follows:

1. Initialize the model.

E Let d = Search depth, and w = Search width.

E If L = ∅, add to L.

E T = ∅.

2. Loop over all elements of L.

E Select the records not covered by rules of :

E Call the decision rule algorithm to create an alternative rule set R on . For more information,
see the topic “Decision Rule Algorithm” on p. 107.

107

Decision List Algorithms

E Construct a set of new candidate models by appending each rule in R to .

E Save extended list(s) to T.

3. Select list models from T.

E Calculate the estimated response probability of each list model in T as

E Select the w lists in T with the highest as .

4. Add to ResultSet.

5. If d = 1 or = ∅, return ResultSet and terminate; otherwise, reduce d by one and repeat from
step 2.

Decision Rule Algorithm

Each rule is extended in decision rule cycles. With decision rules, groups are searched for
significantly increased occurrence of the target value. Decision rules will search for groups
with a higher or lower probability as required.

Notation

The following notations are used in describing the decision list algorithm:

Data matrix. Columns are fields (attributes), and rows are records (cases).

R A collection of rules to extend a preceding rule list.
The ith rule in rule collection R.

A special rule that covers all the cases in X.

The estimated response probability of Ri.

N Total population size.
The value of the mth field (column) for the nth record (row) of X.

The subset of records in X that are covered by rule Ri.

Y The target field in X.
The value of the target field for the nth record.

A Collection of all attributes (fields) of X.
The jth attribute of X. If Allow attribute re-use is false, A excludes
attributes existing in the preceding rule.

SplitRule(X, Aj) The rule split algorithm for deriving rules about Aj and records in X.
For more information, see the topic “Decision Rule Split Algorithm”
on p. 108.

T A set of candidate list models.
ResultSet A collection of decision list models.

108

Decision List Algorithms

Algorithm Steps

The decision rule algorithm proceeds as follows:

1. Initialize the rule set.

E Let d = Search depth, and w = Search width.

E If R = ∅, add to R.

E T = ∅.

2. Loop over all rules in R.

E Select records covered by rule .

E Create an empty set S of new segments.

E Loop over attributes in A.
 Generate new segments based on attribute :

SplitRule

 Add new segments to S.

E Construct a set of new candidate rules by extending with each segment in S.

E Save extended rules to T. If S = ∅, add to ResultSet.

3. Select rules from T.

E Calculate the estimated response probability for each extended rule in T as

E Select the w rules with the highest as .

Add to ResultSet.

E If d = 1, return ResultSet and terminate. Otherwise, set R = , T = ∅, reduce d by one, and
repeat from step 2.

Decision Rule Split Algorithm

The decision rule split algorithm is used to generate high response segments from a single attribute
(field). The records and the attribute from which to generate segments should be given. This
algorithm is applicable to all ordinal attributes, and the ordinal attribute should have values that
are unambiguously ordered. The segments generated by the algorithm can be used to expand an
n-dimensional rule to an (n + 1)-dimensional rule. This decision rule split algorithm is sometimes
referred to as the sea-level method.

109

Decision List Algorithms

Notation

The following notations are used in describing the decision rule split algorithm:

Data matrix. Columns are fields (attributes), and rows are records (cases).

C A sorted list of attribute values (categories) to split. Values are sorted
in ascending order.
The ith category in the list of categories C.

The value of the split field (attribute) for the nth record (row) of X.

Y The target field in X.
The value of the target field for the nth record.

N Total population size.
M Number of categories in C.

Observed response probability of category .

A segment of categories, .

The confidence interval (CI) for the response probability of .

The category with the higher response probability from .

The category with the larger number of records from .

Algorithm Steps

The decision rule split algorithm proceeds as follows:

1. Compute of each category .

If , will be skipped.

2. Find local maxima of to create a segment set.

where I is a positive integer satisfying the conditions

The segment set is the ordered segments based on

110

Decision List Algorithms

3. Select a segment in SegmentSet.

E If SegmentSet is empty, return ResultSet and terminate.

E Select the segment with the highest response probability .

E If or , remove the segment from SegmentSet and choose another.

4. Validate the segment.

E If the following conditions are satisfied:
 The size of the segment exceeds the minimum segment size criterion

where

 Response probability for the segment is significantly higher than that for the overall sample,
as indicated by non-overlapping confidence intervals

For more information, see the topic “Confidence Intervals” on p. 110.
 Extending the segment would lower the response probability

and

then add the segment to ResultSet, and remove any segments from ResultSet that have
as parent and for which .

5. Extend the segment.

E Add to , where

if
if and
otherwise

E Adjust R or L accordingly, i.e. if , set ; if , set
.

E Return to SegmentSet, and repeat from step 3.

Confidence Intervals

The confidence limits for are calculated as

111

Decision List Algorithms

if
if

if
if

where n is the coverage of the rule or list, x is the response frequency of the rule or list, α is the
desired confidence level, and is the inverse cumulative distribution function for F with a
and b degrees of freedom, for percentile .

Secondary Measures

For each segment, the following measures are reported:

Coverage. The number of records in the segment, .

Frequency. The number of records in the segment for which the response is true,
.

Probability. The proportion of records in the segment for which the response is true, ,

or FrequencyCoverage .

Blank Handling

In decision list models, blank values for input fields can be treated as a separate category that can
be used to define segments, or can be excluded from the model, depending on the expert model
option. The default is to use blanks as a category for defining segments. Records with blank
values for the target field are excluded from model building.

Generated Model/Scoring

The decision list generated model consists of a set of segments. When scoring new data, each
record is evaluated for membership in each segment, in order. The first segment in model order
that describes the record based on the predictor fields claims the record and determines the
predicted value and the probability. Records where the predicted value is not the response value
will have a value of $null. Probabilities are calculated as described above.

Blank Handling

In scoring data with a decision list generated model, blanks are considered valid values for
defining segments. If the model was built with the expert option Allow missing values in conditions

disabled, a record with a missing value for one of the input fields will not match any segment
that depends on that field for its definition.

DISCRIMINANT Algorithms
No analysis is done for any subfile group for which the number of non-empty groups is less
than two or the number of cases or sum of weights fails to exceed the number of non-empty
groups. An analysis may be stopped if no variables are selected during variable selection or
the eigenanalysis fails.

Notation

The following notation is used throughout this chapter unless otherwise stated:
Table 14-1
Notation

Notation Description
g Number of groups
p Number of variables
q Number of variables selected

Value of variable i for case k in group j

Case weights for case k in group j

Number of cases in group j

Sum of case weights in group j

n Total sum of weights

Basic Statistics

The procedure calculates the following basic statistics.

Mean

variable in group

variable

Variances

variable in group

variable

© Copyright IBM Corporation 1994, 2016. 113

114

DISCRIMINANT Algorithms

Within-Groups Sums of Squares and Cross-Product Matrix (W)

Total Sums of Squares and Cross-Product Matrix (T)

Within-Groups Covariance Matrix

Individual Group Covariance Matrices

Within-Groups Correlation Matrix (R)

if
SYSMIS otherwise

Total Covariance Matrix

Univariate F and Λfor Variable I

with g−1 and n−g degrees of freedom

with 1, g−1 and n−g degrees of freedom

Rules of Variable Selection

Both direct and stepwise variable entry are possible. Multiple inclusion levels may also be
specified.

115

DISCRIMINANT Algorithms

Method = Direct

For direct variable selection, variables are considered for inclusion in the order in which they are
passed from the upstream node. A variable is included in the analysis if, when it is included,
no variable in the analysis will have a tolerance less than the specified tolerance limit (default
= 0.001).

Stepwise Variable Selection

At each step, the following rules control variable selection:
 Eligible variables with higher inclusion levels are entered before eligible variables with lower

inclusion levels.
 The order of entry of eligible variables with the same even inclusion level is determined by

their order in the upstream node.
 The order of entry of eligible variables with the same odd level of inclusion is determined

by their value on the entry criterion. The variable with the “best” value for the criterion
statistic is entered first.

 When level-one processing is reached, prior to inclusion of any eligible variables, all
already-entered variables which have level one inclusion numbers are examined for removal.
A variable is considered eligible for removal if its F-to-remove is less than the F value for
variable removal, or, if probability criteria are used, the significance of its F-to-remove
exceeds the specified probability level. If more than one variable is eligible for removal, that
variable is removed that leaves the “best” value for the criterion statistic for the remaining
variables. Variable removal continues until no more variables are eligible for removal.
Sequential entry of variables then proceeds as described previously, except that after each step,
variables with inclusion numbers of one are also considered for exclusion as described before.

 A variable with a zero inclusion level is never entered, although some statistics for it are
printed.

Ineligibility for Inclusion

A variable with an odd inclusion number is considered ineligible for inclusion if:
 The tolerance of any variable in the analysis (including its own) drops below the specified

tolerance limit if it is entered, or
 Its F-to-enter is less than the F-value for a variable to enter value, or
 If probability criteria are used, the significance level associated with its F-to-enter exceeds the

probability to enter.

A variable with an even inclusion number is ineligible for inclusion if the first condition above
is met.

116

DISCRIMINANT Algorithms

Computations During Variable Selection

During variable selection, the matrixW is replaced at each step by a new matrix using the
symmetric sweep operator described by Dempster (1969). If the first q variables have been
included in the analysis,W may be partitioned as:

whereW11 is q×q. At this stage, the matrix is defined by

In addition, when stepwise variable selection is used, T is replaced by the matrix , defined
similarly.

The following statistics are computed.

Tolerance

TOL
if
if variable is not in the analysis and
if variable is in the analysis and

If a variable’s tolerance is less than or equal to the specified tolerance limit, or its inclusion in the
analysis would reduce the tolerance of another variable in the equation to or below the limit, the
following statistics are not computed for it or any set including it.

F-to-Remove

with degrees of freedom g−1 and n−q−g+1.

F-to-Enter

with degrees of freedom g−1 and n−q−g.

Wilks’ Lambda for Testing the Equality of Group Means

with degrees of freedom q, g−1 and n−g.

117

DISCRIMINANT Algorithms

The Approximate F Test for Lambda (the “overall F”), also known as Rao’s R (Tatsuoka,
1971)

where

if
otherwise

with degrees of freedom qh and r/s+1−qh/2. The approximation is exact if q or h is 1 or 2.

Rao’s V (Lawley-Hotelling Trace) (Rao, 1952; Morrison, 1976)

When n−g is large, V, under the null hypothesis, is approximately distributed as with q(g−1)
degrees of freedom. When an additional variable is entered, the change in V, if positive, has
approximately a distribution with g−1 degrees of freedom.

The Squared Mahalanobis Distance (Morrison, 1976) between groups a and b

The F Value for Testing the Equality of Means of Groups a and b (Smallest F ratio)

The Sum of Unexplained Variations (Dixon, 1973)

Classification Functions
Once a set of q variables has been selected, the classification functions (also known as Fisher’s
linear discriminant functions) can be computed using

for the coefficients, and

118

DISCRIMINANT Algorithms

for the constant, where is the prior probability of group j.

Canonical Discriminant Functions

The canonical discriminant function coefficients are determined by solving the general eigenvalue
problem

where V is the unscaled matrix of discriminant function coefficients and λ is a diagonal matrix of
eigenvalues. The eigensystem is solved as follows:

The Cholesky decomposition

is formed, where L is a lower triangular matrix, and .

The symmetric matrix is formed and the system

is solved using tridiagonalization and the QL method. The result is m eigenvalues, where
and corresponding orthonormal eigenvectors, UV. The eigenvectors of the

original system are obtained as

For each of the eigenvalues, which are ordered in descending magnitude, the following statistics
are calculated.

Percentage of Between-Groups Variance Accounted for

Canonical Correlation

119

DISCRIMINANT Algorithms

Wilks’ Lambda

Testing the significance of all the discriminating functions after the first k:

The significance level is based on

which is distributed as a with (q−k)(g−k−1) degrees of freedom.

The Standardized Canonical Discriminant Coefficient Matrix D

The standard canonical discriminant coefficient matrix D is computed as

where

S=diag

S11= partition containing the first q rows and columns of S

V is a matrix of eigenvectors such that =I

The Correlations Between the Canonical Discriminant Functions and the Discriminating
Variables

The correlations between the canonical discriminant functions and the discriminating variables
are given by

If some variables were not selected for inclusion in the analysis (q<p), the eigenvectors are
implicitly extended with zeroes to include the nonselected variables in the correlation matrix.
Variables for which are excluded from S andW for this calculation; p then represents
the number of variables with non-zero within-groups variance.

The Unstandardized Coefficients

The unstandardized coefficients are calculated from the standardized ones using

120

DISCRIMINANT Algorithms

The associated constants are:

The group centroids are the canonical discriminant functions evaluated at the group means:

Tests For Equality Of Variance

Box’s M is used to test for equality of the group covariance matrices.

log log

where

= pooled within-groups covariance matrix excluding groups with singular covariance matrices

= covariance matrix for group j.

Determinants of and are obtained from the Cholesky decomposition. If any diagonal
element of the decomposition is less than 10-11, the matrix is considered singular and excluded
from the analysis.

where is the ith diagonal entry of L such that . Similarly,

where

= sum of weights of cases in all groups with nonsingular covariance matrices

The significance level is obtained from the F distribution with t1 and t2 degrees of freedom
using (Cooley and Lohnes, 1971):

if
if

where

121

DISCRIMINANT Algorithms

if
if

If is zero, or much smaller than e2, t2 cannot be computed or cannot be computed
accurately. If

the program uses Bartlett’s statistic rather than the F statistic:

with t1 degrees of freedom.

For testing the group covariance matrix of the canonical discriminant functions, the procedure is
similar. The covariance matrices and are replaced by and , where

is the group covariance matrix of the discriminant functions.

The pooled covariance matrix in this case is an identity, so that

where the summation is only over groups with singular .

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

Generated model/scoring

The basic procedure for classifying a case is as follows:
 If X is the 1×q vector of discriminating variables for the case, the 1×m vector of canonical

discriminant function values is

122

DISCRIMINANT Algorithms

 A chi-square distance from each centroid is computed

where is the covariance matrix of canonical discriminant functions for group j and is
the group centroid vector. If the case is a member of group j, has a distribution with
m degrees of freedom. P(X|G), labeled as P(D>d|G=g) in the output, is the significance
level of such a .

 The classification, or posterior probability, is

where is the prior probability for group j. A case is classified into the group for which
is highest.

The actual calculation of is

if

otherwise

If individual group covariances are not used in classification, the pooled within-groups covariance
matrix of the discriminant functions (an identity matrix) is substituted for in the above
calculation, resulting in considerable simplification.

If any is singular, a pseudo-inverse of the form

replaces and replaces . is a submatrix of whose rows and columns
correspond to functions not dependent on preceding functions. That is, function 1 will be excluded
only if the rank of , function 2 will be excluded only if it is dependent on function 1, and
so on. This choice of the pseudo-inverse is not optimal for the numerical stability of , but
maximizes the discrimination power of the remaining functions.

Cross-Validation (Leave-one-out classification)

The following notation is used in this section:
Table 14-2
Notation

Notation Description

123

DISCRIMINANT Algorithms

Notation Description

Sample mean of jth group

Sample mean of jth group excluding point

Polled sample covariance matrix

Sample covariance matrix of jth group

Polled sample covariance matrix without point

Cross-validation applies only to linear discriminant analysis (not quadratic). During
cross-validation, all cases in the dataset are looped over. Each case, say , is extracted once and
treated as test data. The remaining cases are treated as a new dataset.

Here we compute and . If there is an i that

satisfies (), then the extracted point
is misclassified. The estimate of prediction error rate is the ratio of the sum of misclassified

case weights and the sum of all case weights.
To reduce computation time, the linear discriminant method is used instead of the canonical

discriminant method. The theoretical solution is exactly the same for both methods.

Blank Handling (discriminant analysis algorithms scoring)

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.

References

Anderson, T. W. 1958. Introduction to multivariate statistical analysis. New York: John Wiley &
Sons, Inc..

124

DISCRIMINANT Algorithms

Cooley, W. W., and P. R. Lohnes. 1971. Multivariate data analysis. New York: John Wiley &
Sons, Inc..

Dempster, A. P. 1969. Elements of Continuous Multivariate Analysis. Reading, MA:
Addison-Wesley.

Dixon, W. J. 1973. BMD Biomedical computer programs. Los Angeles: University of California
Press.

Tatsuoka, M. M. 1971. Multivariate analysis. New York: John Wiley & Sons, Inc. .

Ensembles Algorithms
Ensembles are used to enhance model accuracy (boosting), enhance model stability (bagging),
build models for very large datasets (pass, stream, merge), and generally combine scores from
different models.
 For more information, see the topic “Very large datasets (pass, stream, merge) algorithms”

on p. 130.
 For more information, see the topic “Bagging and Boosting Algorithms” on p. 125.
 For more information, see the topic “Ensembling model scores algorithms” on p. 136.

Bagging and Boosting Algorithms

Bootstrap aggregating (Bagging) and boosting are algorithms used to improve model stability and
accuracy. Bagging works well for unstable base models and can reduce variance in predictions.
Boosting can be used with any type of model and can reduce variance and bias in predictions.

Notation

The following notation is used for bagging and boosting unless otherwise stated:

K The number of distinct records in the training set.
Predictor values for the kth record.

Target value for the kth record.

Frequency weight for the kth record.

Analysis weight for the kth record.

N The total number of records; .
M The number of base models to build; for bagging, this is the number of

bootstrap samples.
The model built on the mth bootstrap sample.

Simulated frequency weight for the kth record of the mth bootstrap sample.

Updated analysis weight for the kth record of the mth bootstrap sample.

Predicted target value of the kth record by the mth model.

For a categorical target, the probability that the kth record belongs to
category , i=1, ..., C, in model m.
For any condition , is 1 if holds and 0 otherwise.

© Copyright IBM Corporation 1994, 2016. 125

126

Ensembles Algorithms

Bootstrap Aggregation

Bootstrap aggregation (bagging) produces replicates of the training dataset by sampling with
replacement from the original dataset. This creates bootstrap samples of equal size to the original
dataset. The algorithm is performed iteratively over k=1,..,K and m=1,...,M to generate frequency
weights:

otherwise

Then a model is built on each replicate. Together these models form an ensemble model. The
ensemble model scores new records using one of the following methods; the available methods
depend upon the measurement level of the target.

Scoring a Continuous Target

 Mean

 Median
Sort and relabel them

if is odd

if is even

Scoring a Categorical Target

 Voting

where
 Highest probability

 Highest mean probability

127

Ensembles Algorithms

Bagging Model Measures

Accuracy

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated
with each ensemble method), and base models.

For categorical targets, the classification accuracy is

For continuous targets, it is

where

Note that R2 can never be greater than one, but can be less than zero.

For the naïve model, is the modal category for categorical targets and the mean for continuous
targets.

Diversity

Diversity is a range measure between 0 and 1 in the larger-is-more-diverse form. It shows how
much predictions vary across base models.

For categorical targets, diversity is

where .

For continuous targets, diversity is

D

128

Ensembles Algorithms

Adaptive Boosting

Adaptive boosting (AdaBoost) is an algorithm used to boost models with continuous targets
(Freund and Schapire 1996, Drucker 1997).

1. Initialize values.

Set
if analysis weights specified

otherwise

Set m=1, , and . Note that analysis weights are initialized even if the method
used to build base models does not support analysis weights.

2. Build base model m, , using the training set and score the training set.

Set the model weight for base model m,

where .

3. Set weights for the next base model .

where . Note that analysis weights are always updated. If

the method used to build base models does not support analysis weights, the frequency weights
are updated for the next base model as follows:

otherwise

If m<M, set m=m+1 and go to step 2. Otherwise, the ensemble model is complete.

Note: base models where or are removed from the

ensemble.

Scoring

AdaBoost uses the weighted median method to score the ensemble model.

Sort and relabel them , retaining the association of the model weights, ,
and relabeling them

129

Ensembles Algorithms

The ensemble predicted value is then , where i is the value such that

Stagewise Additive Modeling using Multiclass Exponential loss

Stagewise Additive Modeling using a Multiclass Exponential loss function (SAMME) is an
algorithm that extends the original AdaBoost algorithm to categorical targets.

1. Initialize values.

Set
if analysis weights specified

otherwise

Set m=1, , and . Note that analysis weights are initialized even if the method
used to build base models does not support analysis weights.

2. Build base model m, , using the training set and score the training set.

Set the model weight for base model m,

where .

3. Set weights for the next base model.

where . Note that analysis weights are always updated. If the
method used to build base models does not support analysis weights, the frequency weights are
updated for the next base model as follows:

otherwise

If m<M, set m=m+1 and go to step 2. Otherwise, the ensemble model is complete.

Note: base models where or are removed from the ensemble.

Scoring

SAMME uses the weighted majority vote method to score the ensemble model.

The predicted value of the kth record for the mth base model is .

The ensemble predicted value is then . Ties are resolved

at random.

130

Ensembles Algorithms

The ensemble predicted probability is .

Boosting Model Measures

Accuracy

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated
with each ensemble method), and base models.

For categorical targets, the classification accuracy is

For continuous targets, it is

where

Note that R2 can never be greater than one, but can be less than zero.

For the naïve model, is the modal category for categorical targets and the mean for continuous
targets.

References

Drucker, H. 1997. Improving regressor using boosting techniques. In: Proceedings of the 14th
International Conferences on Machine Learning , D. H. Fisher,Jr., ed. San Mateo, CA: Morgan
Kaufmann, 107–115.

Freund, Y., and R. E. Schapire. 1995. A decision theoretic generalization of on-line learning and
an application to boosting. In: Computational Learning Theory: 7 Second European Conference,
EuroCOLT ’95, , 23–37.

Very large datasets (pass, stream, merge) algorithms

We implement the PSM features PASS, STREAM, and MERGE through ensemble modeling.
PASS builds models on very large data sets with only one data pass; STREAM updates the
existing model with new cases without the need to store or recall the old training data; MERGE
builds models in a distributed environment and merges the built models into one model.

131

Ensembles Algorithms

In an ensemble model, the training set will be divided into subsets called blocks, and a model will
be built on each block. Because the blocks may be dispatched to different threads (here one process
contains one thread) and even different machines, models in different processes can be built at the
same time. As new data blocks arrive, the algorithm simply repeats this procedure. Therefore it
can easily handle the data stream and perform incremental learning for ensemble modeling.

Pass

The PASS operation includes following steps:

1. Split the data into training blocks, a testing set and a holdout set. Note that the frequency weight,
if specified, is ignored when splitting the training set into blocks (to prevent blocks from being
entirely represented by a single case) but is accounted for when creating the testing and holdout
sets.

2. Build base models on training blocks and build a reference model on the testing set. A single
model is built on the testing set and each training block.

3. Evaluate each base model by computing the accuracy based on the testing set. Select a subset
of base models as ensemble elements according to accuracy.

4. Evaluate the ensemble model and the reference model by computing the accuracy based on
the holdout set. If the ensemble model’s performance is not better than the reference model’s
performance on the holdout set, we use the reference model to score the new cases.

Computing Model Accuracy

The accuracy of a base model is assessed on the testing set. For each vector of predictors and
the corresponding label observed in the testing set T, let be the label predicted by the
given model. Then the testing error is estimated as:

Categorical target.

Continuous target.

Where is 1 if and 0 otherwise.

The accuracy for the given model is computed by A=1−E. The accuracy for the whole ensemble
model and the reference model is assessed on the holdout set.

132

Ensembles Algorithms

Stream

When new cases arrive and the user wants to update the existing ensemble model with these
cases, the algorithm will:

1. Start a PASS operation to build an ensemble model on the new data, then

2. MERGE the newly created ensemble model and the existing ensemble model.

Merge

The MERGE operation has the following steps:

1. Merge the holdout sets into a single holdout set and, if necessary, reduce this set to a reasonable
size.

2. Merge the testing sets into a single testing set and, if necessary, reduce this set to a reasonable size.

3. Build a merged reference model on the merged testing set.

4. Evaluate every base model by computing the accuracy based on the merged testing set. Select a
subset of base models as elements of the merged ensemble model according to accuracy.

5. Evaluate the merged ensemble model and the merged reference model by computing the accuracy
based on the merged holdout set.

Adaptive Predictor Selection

There are two methods, depending upon whether the method used to build base models has an
internal predictor selection algorithm.

Method has predictor selection algorithm

The first base model is built with all predictors available to the method’s predictor selection
algorithm. Base model j (j > 1) makes the ith predictor available with probability

where is the number of times the ith predictor was selected by the method’s predictor selection
algorithm in the previous j−1 base models, is the number of times the ith predictor was made
available to the method’s predictor selection algorithm in the previous j−1 base models, C is a
constant to smooth the value of , and is a lower limit on .

Method does not have predictor selection algorithm

Each base model makes the ith predictor available with probability

133

Ensembles Algorithms

if
otherwise

where is the p-value of a test for the ith predictor, as defined below.
 For a categorical target and categorical predictor, is a chi-square test of

where
else

and with degrees of

freedom . is the number of cases with X=i and Y=j, ,
, and .

 For a categorical target and continuous predictor, is an F test of

with degrees of freedom . is the

number of cases with Y=j, and are the sample mean and sample variance of X given
Y=j, and

 For a continuous target and categorical predictor, is an F test of
with degrees of freedom . is the

number of cases with X=i, and are the sample mean and sample variance of Y given
X=i, and .

 For a continuous target and continuous predictor, is a two-sided t test of where

and with degrees of freedom . is the sample variance

of X and is the sample variance of Y.

Automatic Category Balancing

When a target category occurs relatively infrequently, many models do a poor job of predicting
members of that rarely occurring category, even if the overall prediction rate of the model is fairly
good. Automatic category balancing should improves the model’s accuracy when predicting
infrequently occurring values.

As records arrive, they are added to a training block until it is full. Then the proportion of records
in each category is computed: , where is the weighted number of records taking
category i and w is the total weighted number of records.

E If there is any category such that , where is the number of target categories
and = 0.3, then randomly remove each record from the training block with probability

This operation will tend to remove records from frequently-occurring categories. Add new records
to the training block until it is full again, and repeat this step until the condition is not satisfied.

E If there is any category such that , then recompute the frequency weight for record k as
, where is the category of the kth record. This operation

gives greater weight to infrequently occurring categories.

134

Ensembles Algorithms

Model Measures

The following notation applies.

N Total number of records
M Total number of base models

The frequency weight of record k

The observed target value of record k

The predicted target value of record k by the ensemble model

The predicted target value of record k by base model m

Accuracy

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated
with each ensemble method), and base models.

For categorical targets, the classification accuracy is

where

if
otherwise

For continuous targets, it is

where

Note that R2 can never be greater than one, but can be less than zero.

For the naïve model, is the modal category for categorical targets and the mean for continuous
targets.

Diversity

Diversity is a range measure between 0 and 1 in the larger-is-more-diverse form. It shows how
much predictions vary across base models.

For categorical targets, diversity is

135

Ensembles Algorithms

where and is defined as above.

Diversity is not available for continuous targets.

Scoring

There are several strategies for scoring using the ensemble models.

Continuous Target

Mean.

Median.

where is the final predicted value of case i, and is the mth base model’s predicted
value of case i.

Categorical Target

Voting. Assume that represents the label output of the mth base model for a given vector of
predictor values. if the label assigned by the mth base model is the kth target category
and 0 otherwise. There are total of M base models and K target categories. The majority vote
method selects the jth category if it is assigned by the plurality of base models. It satisfies the
following equation:

Let be the testing error estimated for the mth base model. Weights for the weighted majority
vote are then computed according to the following expression:

Probability voting. Assume that is the posterior probability estimated for the kth target
category by the mth base model for a given vector of predictor values. The following rules
combine the probabilities computed by the base models. The jth category is selected such that it
satisfies the corresponding equation.

 Highest probability. M
m 1 (maxMm 1

 Highest mean probability.

136

Ensembles Algorithms

Ties are resolved at random.

Softmax smoothing. The softmax function can be used for smoothing the probabilities:

where is the rule-based confidence for category i and is the smoothed value.

Ensembling model scores algorithms

Ensembling scores from individual models can give more accurate predictions. By combining
scores from multiple models, limitations in individual models may be avoided, resulting in a
higher overall accuracy. Models combined in this manner typically perform at least as well as the
best of the individual models and often better.

Note that while the options for general ensembling of scores are similar to those for boosting,
bagging, and very large datasets, the specific options for combining scoring are slightly different.

Notation

The following notation applies.

N Total number of records
M Total number of base models

The observed target value of record i

The predicted target value of record i by the ensemble model

The predicted target value of record i by base model m

Scoring

There are several strategies for scoring using the ensemble models.

Continuous Target

Mean.

where is the final predicted value of case i, and is the mth base model’s predicted
value of case i.

Standard error.

137

Ensembles Algorithms

Categorical Target

Voting. Assume that represents the label output of the mth base model for a given vector of
predictor values. if the label assigned by the mth base model is the kth target category
and 0 otherwise. There are total of M base models and K target categories. The majority vote
method selects the jth category if it is assigned by the plurality of base models. It satisfies the
following equation:

Confidence-weighted (probability) voting. Assume that is the posterior probability estimated
for the kth target category by the mth base model for a given vector of predictor values. The
following rules combine the probabilities computed by the base models. The jth category is
selected such that it satisfies the corresponding equation.

Highest confidence (probability) wins.

M
m 1 (maxMm 1

Raw propensity-weighted voting. This is equivalent to confidence-weighted voting for a flag target,
where the weights for true are the propensities and the weights for false are 1−propensity.

Adjusted propensity-weighted voting. This is similar to raw propensity-weighted voting for a
flag target, where the weights for true are the adjusted propensities and the weights for false
are 1−adjusted propensity.

Average raw propensity. The raw propensities scores are averaged across the base models. If the
average is > 0.5, then the record is scored as true.

Average adjusted propensity. The adjusted propensities scores are averaged across the base models.
If the average is > 0.5, then the record is scored as true.

Factor Analysis/PCA Algorithms

Overview

The Factor/PCA node performs principal components analysis and six types of factor analysis.

Primary Calculations

Factor Extraction

Principal Components Analysis

The matrix of factor loadings based on factor m is

where

The communality of variable i is given by

Analyzing a Correlation Matrix

are the eigenvalues and are the corresponding eigenvectors of , where
is the correlation matrix.

Analyzing a Covariance Matrix

are the eigenvalues and are the corresponding eigenvectors of , where
is the covariance matrix.

The rescaled loadings matrix is .

The rescaled communality of variable i is .

© Copyright IBM Corporation 1994, 2016. 139

140

Factor Analysis/PCA Algorithms

Principal Axis Factoring

Analyzing a Correlation Matrix

An iterative solution for communalities and factor loadings is sought. At iteration i, the
communalities from the preceding iteration are placed on the diagonal of , and the resulting is
denoted by . The eigenanalysis is performed on , and the new communality of variable j
is estimated by

The factor loadings are obtained by

Iterations continue until the maximum number (default 25) is reached or until the maximum
change in the communality estimates is less than the convergence criterion (default 0.001).

Analyzing a Covariance Matrix

This analysis is the same as analyzing a correlation matrix, except is used instead of the
correlation matrix . Convergence is dependent on the maximum change of rescaled communality
estimates.

At iteration i, the rescaled loadings matrix is . The rescaled
communality of variable i is .

Maximum Likelihood

The maximum likelihood solutions of and are obtained by minimizing

with respect to and , where p is the number of variables, is the factor loading matrix, and
is the diagonal matrix of unique variances.
The minimization of F is performed by way of a two-step algorithm. First, the conditional

minimum of F for a given y is found. This gives the function , which is minimized
numerically using the Newton-Raphson procedure. Let be the column vector containing the
logarithm of the diagonal elements of y at the sth iteration. Then

where is the solution to the system of linear equations

and where

141

Factor Analysis/PCA Algorithms

and is the column vector containing . The starting point is

for ML and GLS

for ULS

where m is the number of factors and is the ith diagonal element of .
The values of , , and can be expressed in terms of the eigenvalues

and corresponding eigenvectors , ,..., of matrix . That is,

where

The approximate second-order derivatives

are used in the initial step and when the matrix of the exact second-order derivatives is not positive
definite or when all elements of the vector are greater than 0.1. If (Heywood
variables), the diagonal element is replaced by 1 and the rest of the elements of that column and
row are set to 0. If the value of is not decreased by step , the step is halved and halved
again until the value of decreases or 25 halvings fail to produce a decrease. (In this case, the
computations are terminated.) Stepping continues until the largest absolute value of the elements
of is less than the criterion value (default 0.001) or until the maximum number of iterations
(default 25) is reached. Using the converged value of (denoted by), the eigenanalysis is
performed on the matrix . The factor loadings are computed as

where

142

Factor Analysis/PCA Algorithms

Unweighted and Generalized Least Squares

The same basic algorithm is used in ULS and GLS as in maximum likelihood, except that

for ULS
for GLS

for the ULS method, the eigenanalysis is performed on the matrix , where
are the eigenvalues. In terms of the derivatives, for ULS,

and

For GLS,

and

Also, the factor loadings of the ULS method are obtained by

The chi-square statistic for m factors for the ML and GLS methods is given by

143

Factor Analysis/PCA Algorithms

with degrees of freedom.

Alpha Factoring

Alpha factoring involves an iterative procedure, where at each iteration i:

The eigenvalues () and eigenvectors () of

are computed.

The new communalities are

The initial values of the communalities, , are

and all
otherwise

where is the ith diagonal entry of .

If and all are equal to one, the procedure is terminated. If for some i, ,
the procedure is terminated.

Iteration stops if any of the following are true:

for any

The communalities are the values when iteration stops, unless the last termination criterion is true,
in which case the procedure terminates. The factor pattern matrix is

where f is the final iteration.

144

Factor Analysis/PCA Algorithms

Image Factoring

Analyzing a Correlation Matrix

Eigenvalues and eigenvectors of are found.

where is the ith diagonal element of

The factor pattern matrix is

where and correspond to the m eigenvalues greater than 1 (and the associated
eigenvectors). If , the procedure is terminated.

The communalities are

The image covariance matrix is

The anti-image covariance matrix is

Analyzing a Covariance Matrix

When analyzing a covariance matrix, the covariance matrix is used instead of the correlation
matrix . The calculation is similar to the correlation matrix case.

The rescaled factor pattern matrix is

and the rescaled communality of variable i is .

145

Factor Analysis/PCA Algorithms

Factor Rotation

Orthogonal Rotations

Rotations are done cyclically on pairs of factors until the maximum number of iterations is
reached or the convergence criterion is met. The algorithm is the same for all orthogonal rotations,
differing only in computations of the tangent values of the rotation angles.

The factor pattern matrix is normalized by the square root of communalities:

where

is the factor pattern matrix

The tranformation matrix is initialized to .

At each iteration i:
 The convergence criterion is

where the initial value of is the original factor pattern matrix. For subsequent iterations,
the initial value is the final value of when all factor pairs have been rotated.

For all pairs of factors (,) where , the following are computed:
 The angle of rotation is

where

Varimax
Equamax
Quartimax

Varimax

Equamax
Quartimax

146

Factor Analysis/PCA Algorithms

If , no rotation is done on the pair of factors.
 The new rotated factors are

where are the last values for factor j calculated in this iteration.
 The accrued rotation transformation matrix is

where and are the last calculated values of the jth and kth columns of .
 Iteration is terminated when

or the maximum number of iterations is reached.

Final rotated factor pattern matrix

where is the value of the last iteration.

Reflect factors with negative sums. If

then

Rearrange the rotated factors such that

The communalities are

147

Factor Analysis/PCA Algorithms

Direct Oblimin Rotation

The direct oblimin method (Jennrich and Sampson, 1966) is used for oblique rotation. The user
can choose the parameter . The default value is .

The factor pattern matrix is normalized by the square root of the communalities

where

If no Kaiser is specified, this normalization is not done.

Initializations

The factor correlation matrix is initialized to . The following are also computed:

if Kaiser
if no Kaiser

148

Factor Analysis/PCA Algorithms

At each iteration, all possible factor pairs are rotated. For a pair of factors and (),
the following are computed:

A root a of the equation is computed, as well as

The rotated pair of factors is

149

Factor Analysis/PCA Algorithms

These replace the previous factor values.

New values are computed for

All values designated with a tilde (~) replace the original values and are used in subsequent
calculations.

The new factor correlations with factor p are

After all factor pairs have been rotated, iteration is terminated if:

MAX iterations have been done, or

where

150

Factor Analysis/PCA Algorithms

Otherwise, the factor pairs are rotated again.

The final rotated factor pattern matrix is

where is the value in the final iteration.

The factor structure matrix is

where is the factor correlation matrix in the final iteration.

Promax Rotation

The promax rotation is a computationally fast rotation (Hendrickson and White, 1964). The speed
is achieved by first rotating to an orthogonal varimax solution and then relaxing the orthogonality
of the factors to better fit the simple structure.

Varimax rotation is used to get an orthogonal rotated matrix .

The matrix is calculated, where

Here, is the power of promax rotation .

The matrix is calculated.

The matrix is normalized by column to a transformation matrix

where is the diagonal matrix that normalizes the columns of .

At this stage, the rotated factors are

151

Factor Analysis/PCA Algorithms

Because , and the diagonal elements do not equal 1, we must
modify the rotated factor to

where

The rotated factor pattern is

The correlation matrix of the factors is

The factor structure matrix is

Factor Score Coefficients

IBM® SPSS® Modeler uses the regression method of computing factor score coefficients
(Harman, 1976).

PCA without rotation
PCA with rotation

otherwise

where is the factor structure matrix. For orthogonal rotations .
For principal components analysis without rotation, if any , factor score coefficients

are not computed. For principal components with rotation, if the determinant of is less
than , the coefficients are not computed. Otherwise, if is singular, factor score coefficients
are not computed.

Blank Handling

By default, a case that has a missing value for any input or output field is deleted from the
computation of the correlation matrix on which all consequent computations are based. If the Only

use complete records option is deselected, each correlation in the correlation matrix is computed
based on records with complete data for the two fields associated with the correlation, regardless
of missing values on other fields. For some datasets, this approach can lead to a nonpositive
definite matrix, so that the model cannot be estimated.

152

Factor Analysis/PCA Algorithms

Secondary Calculations

Field Statistics and Other Calculations

The statistics shown in the advanced output for the regression equation node are calculated in the
same manner as in the FACTOR procedure in IBM® SPSS® Statistics. For more details, see the
SPSS Statistics Factor algorithm document, available at http://www.ibm.com/support.

Generated Model/Scoring

Factor Scores

Factor scores are assigned to scored records by applying the factor score coefficients to the input
field value for the record,

where is the factor score for the kth factor, is the factor score coefficient for the ith input
field (from the matrix) and the kth factor, and is the value of the ith input field for the record
being scored.For more information, see the topic “Factor Score Coefficients” on p. 151.

Blank Handling

Records with missing values for any input field in the final model cannot be scored and are
assigned factor/component score values of $null$.

http://www.ibm.com/support

Feature Selection Algorithm

Introduction

Data mining problems often involve hundreds, or even thousands, of variables. As a result,
the majority of time and effort spent in the model-building process involves examining which
variables to include in the model. Fitting a neural network or a decision tree to a set of variables
this large may require more time than is practical.

Feature selection allows the variable set to be reduced in size, creating a more manageable set
of attributes for modeling. Adding feature selection to the analytical process has several benefits:
 Simplifies and narrows the scope of the features that is essential in building a predictive model.
 Minimizes the computational time and memory requirements for building a predictive model

because focus can be directed to the subset of predictors that is most essential.
 Leads to more accurate and/or more parsimonious models.
 Reduces the time for generating scores because the predictive model is based upon only a

subset of predictors.

Primary Calculations

Feature selection consists of three steps:
 Screening. Removes unimportant and problematic predictors and cases.
 Ranking. Sorts remaining predictors and assigns ranks.
 Selecting. Identifies the important subset of features to use in subsequent models.

The algorithm described here is limited to the supervised learning situation in which a set of
predictor variables is used to predict a target variable. Any variables in the analysis can be either
categorical or continuous. Common target variables include whether or not a customer churns,
whether or not a person will buy, and whether or not a disease is present.

The terms features, variables, and attributes are often used interchangeably. Within this
document, we use variables and predictors when discussing input to the feature selection
algorithm, with features referring to the predictors that actually get selected by the algorithm for
use in a subsequent modeling process.

Screening

This step removes variables and cases that do not provide useful information for prediction and
issues warnings about variables that may not be useful.

The following variables are removed:
 Variables that have all missing values.
 Variables that have all constant values.
 Variables that represent case ID.

© Copyright IBM Corporation 1994, 2016. 153

154

Feature Selection Algorithm

The following cases are removed:
 Cases that have missing target values.
 Cases that have missing values in all its predictors.

The following variables are removed based on user settings:
 Variables that have more than m1% missing values.
 Categorical variables that have a single category counting for more than m2% cases.
 Continuous variables that have standard deviation < m3%.
 Continuous variables that have a coefficient of variation |CV| < m4%. CV = standard

deviation / mean.
 Categorical variables that have a number of categories greater than m5% of the cases.

Values m1, m2, m3, m4, and m5 are user-controlled parameters.

Ranking Predictors

This step considers one predictor at a time to see how well each predictor alone predicts the target
variable. The predictors are ranked according to a user-specified criterion. Available criteria
depend on the measurement levels of the target and predictor.

The importance value of each variable is calculated as , where p is the p value of the
appropriate statistical test of association between the candidate predictor and the target variable,
as described below.

Categorical Target

This section describes ranking of predictors for a categorical target under the following scenarios:
 All predictors categorical
 All predictors continuous
 Some predictors categorical, some continuous

All Categorical Predictors

The following notation applies:

Table 17-1
Notation

Notation Description
X The predictor under consideration with I categories.
Y Target variable with J categories.
N Total number of cases.

The number of cases with X = i and Y = j.

155

Feature Selection Algorithm

Notation Description

The number of cases with X = i.

The number of cases with Y = j.

The above notations are based on nonmissing pairs of (X, Y). Hence J, N, and may be
different for different predictors.

P Value Based on Pearson’s Chi-square

Pearson’s chi-square is a test of independence between X and Y that involves the difference
between the observed and expected frequencies. The expected cell frequencies under the null
hypothesis of independence are estimated by . Under the null hypothesis,
Pearson’s chi-square converges asymptotically to a chi-square distribution with degrees
of freedom d = (I−1)(J−1).

The p value based on Pearson’s chi-square X2 is calculated by p value = Prob(> X2), where

.

Predictors are ranked by the following rules.

1. Sort the predictors by p value in the ascending order

2. If ties occur, sort by chi-square in descending order.

3. If ties still occur, sort by degree of freedom d in ascending order.

4. If ties still occur, sort by the data file order.

P Value Based on Likelihood Ratio Chi-square

The likelihood ratio chi-square is a test of independence between X and Y that involves the ratio
between the observed and expected frequencies. The expected cell frequencies under the null
hypothesis of independence are estimated by . Under the null hypothesis, the
likelihood ratio chi-square converges asymptotically to a chi-square distribution with degrees
of freedom d = (I−1)(J−1).

The p value based on likelihood ratio chi-squareG2 is calculated by p value = Prob(>G2), where

, with
else.

Predictors are ranked according to the same rules as those for the p value based on Pearson’s
chi-square.

Cramer’s V

156

Feature Selection Algorithm

Cramer’s V is a measure of association, between 0 and 1, based upon Pearson’s chi-square. It is
defined as

.

Predictors are ranked by the following rules:

1. Sort predictors by Cramer’s V in descending order.

2. If ties occur, sort by chi-square in descending order.

3. If ties still occur, sort by data file order.

Lambda

Lambda is a measure of association that reflects the proportional reduction in error when values of
the independent variable are used to predict values of the dependent variable. A value of 1 means
that the independent variable perfectly predicts the dependent variable. A value of 0 means that
the independent variable is no help in predicting the dependent variable. It is computed as

.

Predictors are ranked by the following rules:

1. Sort predictors by lambda in descending order.

2. If ties occur, sort by I in ascending order.

3. If ties still occur, sort by data file order.

All Continuous Predictors

If all predictors are continuous, p values based on the F statistic are used. The idea is to perform a
one-way ANOVA F test for each continuous predictor; this tests if all the different classes of Y
have the same mean as X.

The following notation applies:
Table 17-2
Notation
Notation Description

The number of cases with Y = j.

The sample mean of predictor X for target class Y = j.

The sample variance of predictor X for target class Y = j.

The grand mean of predictor X.

157

Feature Selection Algorithm

The above notations are based on nonmissing pairs of (X, Y).

P Value Based on the F Statistic

The p value based on the F statistic is calculated by p value = Prob{F(J−1, N−J) > F}, where

,

and F(J−1, N−J) is a random variable that follows an F distribution with degrees of freedom J−1
and N−J. If the denominator for a predictor is zero, set the p value = 0 for the predictor.

Predictors are ranked by the following rules:

1. Sort predictors by p value in ascending order.

2. If ties occur, sort by F in descending order.

3. If ties still occur, sort by N in descending order.

4. If ties still occur, sort by the data file order.

Mixed Type Predictors

If some predictors are continuous and some are categorical, the criterion for continuous predictors
is still the p value based on the F statistic, while the available criteria for categorical predictors are
restricted to the p value based on Pearson’s chi-square or the p value based on the likelihood ratio
chi-square. These p values are comparable and therefore can be used to rank the predictors.

Predictors are ranked by the following rules:

1. Sort predictors by p value in ascending order.

2. If ties occur, follow the rules for breaking ties among all categorical and all continuous predictors
separately, then sort these two groups (categorical predictor group and continuous predictor group)
by the data file order of their first predictors.

Continuous Target

This section describes ranking of predictors for a continuous target under the following scenarios:
 All predictors categorical
 All predictors continuous
 Some predictors categorical, some continuous

158

Feature Selection Algorithm

All Categorical Predictors

If all predictors are categorical and the target is continuous, p values based on the F statistic are
used. The idea is to perform a one-way ANOVA F test for the continuous target using each
categorical predictor as a factor; this tests if all different classes of X have the same mean as Y.

The following notation applies:
Table 17-3
Notation

Notation Description
X The categorical predictor under consideration with I categories.
Y The continuous target variable. yij represents the value of the continuous

target for the jth case with X = i.
The number of cases with X = i.

The sample mean of target Y in predictor category X = i.

The sample variance of target Y for predictor category X = i.

The grand mean of target Y.

The above notations are based on nonmissing pairs of (X, Y).

The p value based on the F statistic is p value = Prob{F(I−1, N−I) > F}, where

,

in which F(I−1, N−I) is a random variable that follows a F distribution with degrees of freedom
I−1 and N−I. When the denominator of the above formula is zero for a given categorical predictor
X, set the p value = 0 for that predictor.

Predictors are ranked by the following rules:

1. Sort predictors by p value in ascending order.

2. If ties occur, sort by F in descending order.

3. If ties still occur, sort by N in descending order.

4. If ties still occur, sort by the data file order.

All Continuous Predictors

If all predictors are continuous and the target is continuous, the p value is based on the asymptotic
t distribution of a transformation t on the Pearson correlation coefficient r.

159

Feature Selection Algorithm

The following notation applies:
Table 17-4
Notation

Notation Description
X The continuous predictor under consideration.
Y The continuous target variable.

The sample mean of predictor variable X.

The sample mean of target Y.

The sample variance of predictor variable X.

The sample variance of target variable Y.

The above notations are based on nonmissing pairs of (X, Y).

The Pearson correlation coefficient r is

.

The transformation t on r is given by

.

Under the null hypothesis that the population Pearson correlation coefficient ρ = 0, the p value
is calculated as

if
2 Prob else.

T is a random variable that follows a t distribution with N−2 degrees of freedom. The p value
based on the Pearson correlation coefficient is a test of a linear relationship between X and Y. If
there is some nonlinear relationship between X and Y, the test may fail to catch it.

Predictors are ranked by the following rules:

1. Sort predictors by p value in ascending order.

2. If ties occur in, sort by r2 in descending order.

3. If ties still occur, sort by N in descending order.

4. If ties still occur, sort by the data file order.

Mixed Type Predictors

If some predictors are continuous and some are categorical in the dataset, the criterion for
continuous predictors is still based on the p value from a transformation and that for categorical
predictors from the F statistic.

160

Feature Selection Algorithm

Predictors are ranked by the following rules:

1. Sort predictors by p value in ascending order.

2. If ties occur, follow the rules for breaking ties among all categorical and all continuous predictors
separately, then sort these two groups (categorical predictor group and continuous predictor group)
by the data file order of their first predictors.

Selecting Predictors

If the length of the predictor list has not been prespecified, the following formula provides an
automatic approach to determine the length of the list.

Let L0 be the total number of predictors under study. The length of the list Lmay be determined by

,

where [x] is the closest integer of x. The following table illustrates the length L of the list for
different values of the total number of predictors L0.

L0 L L/L0(%)
10 10 100.00%
15 15 100.00%
20 20 100.00%
25 25 100.00%
30 30 100.00%
40 30 75.00%
50 30 60.00%
60 30 50.00%
100 30 30.00%
500 45 9.00%
1000 63 6.30%
1500 77 5.13%
2000 89 4.45%
5000 141 2.82%
10,000 200 2.00%
20,000 283 1.42%
50,000 447 0.89%

Generated Model

The feature selection generated model is different from most other generated models in that it does
not add predictors or other derived fields to the data stream. Instead, it acts as a filter, removing
unwanted fields from the data stream based on generated model settings.

161

Feature Selection Algorithm

The set of fields filtered from the stream is controlled by one of the following criteria:
 Field importance categories (Important,Marginal, or Unimportant). Fields assigned to any

of the selected categories are preserved; others are filtered.
 Top k fields. The k fields with the highest importance values are preserved; others are filtered.
 Importance value. Fields with importance value greater than the specified value are preserved;

others are filtered.
 Manual selection. The user can select specific fields to be preserved or filtered.

GENLIN Algorithms
Generalized linear models (GZLM) are commonly used analytical tools for different types of data.
Generalized linear models cover not only widely used statistical models, such as linear regression
for normally distributed responses, logistic models for binary data, and log linear model for count
data, but also many useful statistical models via its very general model formulation.

Generalized Linear Models

Generalized linear models were first introduced by Nelder and Wedderburn (1972) and later
expanded by McCullagh and Nelder (1989). The following discussion is based on their works.

Notation

The following notation is used throughout this section unless otherwise stated:
Table 18-1
Notation

Notation Description
n Number of complete cases in the dataset. It is an integer and n ≥ 1.
p Number of parameters (including the intercept, if exists) in the model. It is an integer

and p ≥ 1.
px Number of non-redundant columns in the design matrix. It is an integer and px ≥ 1.
y n × 1 dependent variable vector. The rows are the cases.
r n × 1 vector of events for the binomial distribution; it usually represents the number of

“successes.” All elements are non-negative integers.
m n × 1 vector of trials for the binomial distribution. All elements are positive integers

and mi ≥ ri, i=1,...,n.
μ n × 1 vector of expectations of the dependent variable.
η n × 1 vector of linear predictors.
X n × p design matrix. The rows represent the cases and the columns represent the

parameters. The ith row is T i=1,...,n with if the model has an
intercept.

O n × 1 vector of scale offsets. This variable can’t be the dependent variable (y) or one of
the predictor variables (X).
p × 1 vector of unknown parameters. The first element in is the intercept, if there is one.

ω n × 1 vector of scale weights. If an element is less than or equal to 0 or missing, the
corresponding case is not used.

f n × 1 vector of frequency counts. Non-integer elements are treated by rounding the value
to the nearest integer. For values less than 0.5 or missing, the corresponding cases are
not used.

N
Effective sample size. If frequency count variable f is not used, N = n.

Model

A GZLM of y with predictor variables X has the form

© Copyright IBM Corporation 1994, 2016. 163

164

GENLIN Algorithms

E

where η is the linear predictor; O is an offset variable with a constant coefficient of 1 for each
observation; g(.) is the monotonic differentiable link function which states how the mean of
y, , is related to the linear predictor η ; F is the response probability distribution.
Choosing different combinations of a proper probability distribution and a link function can
result in different models.

In addition, GZLM also assumes yi are independent for i=1,….,n. Then for each observation,
the model becomes

T

Notes
 X can be any combination of scale variables (covariates), categorical variables (factors),

and interactions. The parameterization of X is the same as in the GLM procedure. Due to
use of the over-parameterized model where there is a separate parameter for every factor
effect level occurring in the data, the columns of the design matrix X are often dependent.
Collinearity between scale variables in the data can also occur. To establish the dependencies
in the design matrix, columns of XTΨX, where diag , are examined by
using the sweep operator. When a column is found to be dependent on previous columns,
the corresponding parameter is treated as redundant. The solution for redundant parameters
is fixed at zero.

 When y is a binary dependent variable which can be character or numeric, such as
“male”/”female” or 1/2, its values will be transformed to 0 and 1 with 1 typically representing
a success or some other positive result. In this document, we assume to be modeling the
probability of success. In this document, we assume that y has been transformed to 0/1
values and we always model the probability of success; that is, Prob(y = 1). Which original
value should be transformed to 0 or 1 depends on what the reference category is. If the
reference category is the last value, then the first category represents a success and we are
modeling the probability of it. For example, if the reference category is the last value, “male”
in “male”/”female” and 2 in 1/2 are the last values (since “male” comes later in the dictionary
than “female”) and would be transformed to 0, and “female” and 1 would be transformed to 1
as we model the probability of them, respectively. However, one way to change to model the
probability of “male” and 2 instead is to specify the reference category as the first value. Note
if original binary format is 0/1 and the reference category is the last value, then 0 would be
transformed to 1 and 1 to 0.

 When r, representing the number of successes (or number of 1s) and m, representing
the number of trials, are used for the binomial distribution, the response is the binomial
proportion y = r/m.

Probability Distribution

GZLMs are usually formulated within the framework of the exponential family of distributions.
The probability density function of the response Y for the exponential family can be presented as

165

GENLIN Algorithms

where θ is the canonical (natural) parameter, is the scale parameter related to the variance of y
and ω is a known prior weight which varies from case to case. Different forms of b(θ) and c(y,
/ω) will give specific distributions. In fact, the exponential family provides a notation that allows

us to model both continuous and discrete (count, binary, and proportional) outcomes. Several are
available including continuous ones: normal, inverse Gaussian, gamma; discrete ones: negative
binomial, Poisson, binomial.

The mean and variance of y can be expressed as follows

where and denote the first and second derivatives of b with respect to θ, respectively;
is the variance function which is a function of .

In GZLM, the distribution of y is parameterized in terms of the mean (μ) and a scale parameter
() instead of the canonical parameter (θ). The following table lists the distribution of y,
corresponding range of y, variance function (V(μ)), the variance of y (Var(y)), and the first
derivative of the variance function (), which will be used later.
Table 18-2
Distribution, range and variance of the response, variance function, and its first derivative

Distribution Range of y V(μ) Var(y) V’(μ)
Normal (−∞,∞) 1 0

Inverse Gaussian (0,∞) μ3 μ3 3μ2

Gamma (0,∞) μ2 μ2 2μ
Negative binomial 0(1)∞ μ+kμ2 μ+kμ2 1+2kμ
Poisson 0(1)∞ μ μ 1
Binomial(m) 0(1)m/m μ(1−μ) μ(1−μ)/m 1−2μ

Notes
 0(1)z means the range is from 0 to z with increments of 1; that is, 0, 1, 2, …, z.
 For the binomial distribution, the binomial trial variable m is considered as a part of the

weight variable ω.
 If a weight variable ω is presented, is replaced by /ω.
 For the negative binomial distribution, the ancillary parameter (k) can be user-specified.

When k = 0, the negative binomial distribution reduces to the Poisson distribution. When
k = 1, the negative binomial is the geometric distribution.

166

GENLIN Algorithms

Scale parameter handling. The expressions for V(μ) and Var(y) for continuous distributions include
the scale parameter which can be used to scale the relationship of the variance and mean (Var(y)
and μ). Since it is usually unknown, there are three ways to fit the scale parameter:

1. It can be estimated with jointly by maximum likelihood method.

2. It can be set to a fixed positive value.

3. It can be specified by the deviance or Pearson chi-square. For more information, see the
topic “Goodness-of-Fit Statistics ” on p. 178.

On the other hand, discrete distributions do not have this extra parameter (it is theoretically equal
to one). Because of it, the variance of y might not be equal to the nominal variance in practice
(especially for Poisson and binomial because the negative binomial has an ancillary parameter k).
A simple way to adjust this situation is to allow the variance of y for discrete distributions to have
the scale parameter as well, but unlike continuous distributions, it can’t be estimated by the ML
method. So for discrete distributions, there are two ways to obtain the value of :

1. It can be specified by the deviance or Pearson chi-square.

2. It can be set to a fixed positive value.

To ensure the data fit the range of response for the specified distribution, we follow the rules:
 For the gamma or inverse Gaussian distributions, values of y must be real and greater than

zero. If a value of y is less than or equal to 0 or missing, the corresponding case is not used.
 For the negative binomial and Poisson distributions, values of y must be integer and

non-negative. If a value of y is non-integer, less than 0 or missing, the corresponding case is
not used.

 For the binomial distribution and if the response is in the form of a single variable, y must
have only two distinct values. If y has more than two distinct values, the algorithm terminates
in an error.

 For the binomial distribution and the response is in the form of ratio of two variables denoted
events/trials, values of r (the number of events) must be nonnegative integers, values of m
(the number of trials) must be positive integers and mi ≥ ri, ∀ i. If a value of r is not integer,
less than 0, or missing, the corresponding case is not used. If a value of m is not integer, less
than or equal to 0, less than the corresponding value of r, or missing, the corresponding
case is not used.

The ML method will be used to estimate and possibly . The kernels of the log-likelihood
function (ℓk) and the full log-likelihood function (ℓ), which will be used as the objective function
for parameter estimation, are listed for each distribution in the following table. Using ℓ or ℓk won’t
affect the parameter estimation, but the selection will affect the calculation of information criteria.
For more information, see the topic “Goodness-of-Fit Statistics ” on p. 178.

167

GENLIN Algorithms

Table 18-3
The log-likelihood function for probability distribution

Distribution ℓk and ℓ
Normal

Inverse Gaussian

Gamma

Negative
binomial

Poisson

Binomial(m)

where

When an individual y = 0 for the negative binomial or Poissondistributions and y = 0 or 1 for the
binomial distribution, a separate value of the log-likelihood is given. Let ℓk,i be the log-likelihood
value for individual case i when yi = 0 for the negative binomial and Poisson and 0/1 for the
binomial. The full log-likelihood for i is equal to the kernel of the log-likelihood for i; that is,
ℓi=ℓk,i.
Table 18-4
Log-likelihood

Distribution ℓk,i
Negative binomial if

168

GENLIN Algorithms

Distribution ℓk,i
Poisson if

Binomial(m) if
if

 Γ(z) is the gamma function and ln(Γ(z)) is the log-gamma function (the logarithm of the
gamma function), evaluated at z.

 For the negative binomial distribution, the scale parameter is still included in ℓk for flexibility,
although it is usually set to 1.

 For the binomial distribution (r/m), the scale weight variable becomes in ℓk; that
is, the binomial trials variable m is regarded as a part of the weight. However, the scale
weight in the extra term of ℓ is still .

Link Function

The following tables list the form, inverse form, range of , and first and second derivatives
for each link function.
Table 18-5
Link function name, form, inverse of link function, and range of the predicted mean

Link function η=g(μ) Inverse μ=g−1(η) Range of

Identity μ η

Log ln(μ) exp(η)

Logit

Probit Φ , where

Φ

Φ(η)

Complementary
log-log

ln(−(ln(1−μ)) 1−exp(−exp(η))

Power(α) if or is odd integer
otherwise

Log-complement ln(1−μ) 1−exp(η)

Negative log-log −ln(−ln(μ)) exp(−exp(−η))

Negative binomial

Odds
power(α)

Note: In the power link function, if |α| < 2.2e-16, α is treated as 0.
Table 18-6
The first and second derivatives of link function

Link function First derivative Second derivative

Identity 1 0

169

GENLIN Algorithms

Link function First derivative Second derivative
Log

Logit

Probit
Φ , where Φ

Complementary log-log

Power(α)

Log-complement

Negative log-log

Negative binomial

Odds power(α)

When the canonical parameter is equal to the linear predictor, , then the link function is
called the canonical link function. Although the canonical links lead to desirable statistical
properties of the model, particularly in small samples, there is in general no a priori reason why
the systematic effects in a model should be additive on the scale given by that link. The canonical
link functions for probability distributions are given in the following table.
Table 18-7
Canonical and default link functions for probability distributions

Distribution Canonical link function

Normal Identity
Inverse Gaussian Power(−2)
Gamma Power(−1)
Negative binomial Negative binomial
Poisson Log
Binomial Logit

Estimation

Having selected a particular model, it is required to estimate the parameters and to assess the
precision of the estimates.

Parameter estimation

The parameters are estimated by maximizing the log-likelihood function (or the kernel of the
log-likelihood function) from the observed data. Let s be the first derivative (gradient) vector of
the log-likelihood with respect to each parameter, then we wish to solve

170

GENLIN Algorithms

0

In general, there is no closed form solution except for a normal distribution with identity link
function, so estimates are obtained numerically via an iterative process. A Newton-Raphson
and/or Fisher scoring algorithm is used and it is based on a linear Taylor series approximation
of the first derivative of the log-likelihood.

First Derivatives

If the scale parameter is not estimated by the ML method, s is a p×1 vector with the form:

where and are defined in Table 18-5“Link function name, form, inverse of link
function, and range of the predicted mean” on p. 168, Table 18-2“Distribution, range and variance
of the response, variance function, and its first derivative” on p. 165 and Table 18-6“The first and
second derivatives of link function” on p. 168, respectively.

If the scale parameter is estimated by the ML method, it is handled by searching for ln() since
is required to be greater than zero.

Let τ = ln() so = exp(τ) , then s is a (p+1)×1 vector with the following form

where is the same as the above with is replaced with exp(τ), has a different form
depending on the distribution as follows:
Table 18-8
The 1st derivative functions w.r.t. the scale parameter for probability distributions
Distribution

Normal

Inverse Gaussian

Gamma

Note: is a digamma function, which is the derivative of logarithm of a gamma function,
evaluated at z; that is, .

171

GENLIN Algorithms

As mentioned above, for normal distribution with identity link function which is a classical linear
regression model, there is a closed form solution for both and τ, so no iterative process is
needed. The solution for , after applying the SWEEP operation in GLM procedure, is

xTx xT XTΨX XTΨ ,

where Ψ diag and Z is the generalized inverse of a matrix Z. If the scale
parameter is also estimated by the ML method, the estimate of τ is

xT

Second Derivatives

Let H be the second derivative (Hessian) matrix. If the scale parameter is not estimated by the ML
method, H is a p×p matrix with the following form

T
T

whereW is an n×n diagonal matrix. There are two definitions forW depending on which
algorithm is used: We for Fisher scoring andWo for Newton-Raphson. The ith diagonal element
for We is

and the ith diagonal element forWo is

where and are defined in Table 18-2“Distribution, range and variance of the
response, variance function, and its first derivative” on p. 165 and Table 18-6“The first and second
derivatives of link function” on p. 168, respectively. Note the expected value ofWo isWe and
when the canonical link is used for the specified distribution, thenWo =We.

If the scale parameter is estimated by the ML method, H becomes a (p+1)×(p+1) matrix with the
form

T

T

172

GENLIN Algorithms

where is a p×1 vector and T is a 1×p vector and the transpose of .
For all three continuous distributions:

x

The forms of are listed in the following table.
Table 18-9
The second derivative functions w.r.t. the scale parameter for probability distributions

Distribution

Normal

Inverse Gaussian

Gamma

Note: is a trigamma function, which is the derivative of , evaluated at z.

Iterations

An iterative process to find the solution for (which might include) is based on Newton-Raphson
(for all iterations), Fisher scoring (for all iterations) or a hybrid method. The hybrid method
consists of applying Fisher scoring steps for a specified number of iterations before switching
to Newton-Raphson steps. Newton-Raphson performs well if the initial values are close to the
solution, but the hybrid method can be used to improve the algorithm’s robustness from bad initial
values. Apart from improved robustness, Fisher scoring is faster due to the simpler form of
the Hessian matrix.

The following notation applies to the iterative process:
Table 18-10
Notation

Notation Description
I Starting iteration for checking complete separation and quasi-complete separation. It

must be 0 or a positive integer. This criterion is not used if the value is 0.
J The maximum number of steps in step-halving method. It must be a positive integer.
K The first number of iterations using Fisher scoring, then switching to Newton-Raphson.

It must be 0 or a positive integer. A value of 0 means using Newton-Raphson for all
iterations and a value greater or equal to M means using Fisher scoring for all iterations.

M The maximum number of iterations. It must be a non-negative integer. If the value is
0, then initial parameter values become final estimates.

p, Tolerance levels for three types of convergence criteria.

Abs A 0/1 binary variable; Abs = 1 if absolute change is used for convergence criteria
and Abs = 0 if relative change is used.

173

GENLIN Algorithms

And the iterative process is outlined as follows:

1. Input values for I, J, K, M, p, and Abs for each type of three convergence criteria.

2. For () compute initial values (see below), then calculate log-likelihood ℓ(0), gradient vector
and Hessian matrix based on ().

3. Let ξ=1.

4. Compute estimates of ith iteration:

() () ((, where is a generalized inverse of H. Then compute the

log-likelihood based on ().

5. Use step-halving method if : reduce ξ by half and repeat step (4). The set of values
of ξ is {0.5 j : j = 0, …, J – 1}. If J is reached but the log-likelihood is not improved, issue a
warning message, then stop.

6. Compute gradient vector and Hessian matrix based on (). Note thatWe is used to
calculate if i ≤ K;Wo is used to calculate if i > K.

7. Check if complete or quasi-complete separation of the data is established (see below) if
distribution is binomial and the current iteration i ≥ I. If either complete or quasi-complete
separation is detected, issue a warning message, then stop.

8. Check if all three convergence criteria (see below) are met. If they are not but M is reached,
issue a warning message, then stop.

9. If all three convergence criteria are met, check if complete or quasi-complete separation of
the data is established if distribution is binomial and i < I (because checking for complete or
quasi-complete separation has not started yet). If complete or quasi-complete separation is
detected, issue a warning message, then stop, otherwise, stop (the process converges for binomial
successfully). If all three convergence criteria are met for the distributions other than binomial,
stop (the process converges for other distributions successfully). The final vector of estimates is
denoted by (and). Otherwise, go back to step (3).

Initial Values

Initial values are calculated as follows:

1. Set the initial fitted values i for a binomial distribution (yi can be
a proportion or 0/1 value) and i for a non-binomial distribution. From these derive
= , and If becomes undefined, set .

2. Calculate the weight matrix with the diagonal element , where is
set to 1 or a fixed positive value. If the denominator of becomes 0, set = 0.

3. Assign the adjusted dependent variable z with the ith observation
for a binomial distribution and for a non-binomial

distribution.

174

GENLIN Algorithms

4. Calculate the initial parameter values

β XT X XT z

and

= z Xβ
T

z Xβ

if the scale parameter is estimated by the ML method.

Scale Parameter Handling

1. For normal, inverse Gaussian, and gamma response, if the scale parameter is estimated by the ML
method, then it will be estimated jointly with the regression parameters; that is, the last element
of the gradient vector s is with respect to τ.

2. If the scale parameter is set to be a fixed positive value, then it will be held fixed at that value for
in each iteration of the above process.

3. If the scale parameter is specified by the deviance or Pearson chi-square divided by degrees of
freedom, then it will be fixed at 1 to obtain the regression estimates through the whole iterative
process. Based on the regression estimates, calculate the deviance and Pearson chi-square values
and obtain the scale parameter estimate.

Checking for Separation

For each iteration after the user-specified number of iterations; that is, if i > I, calculate (note
here v refers to cases in the dataset)

where

if success
if failure

(is the probability of the observed response for case v) and xTβ

If we consider there to be complete separation. Otherwise, if
or and if there are very small diagonal elements (absolute value

) in the non-redundant parameter locations in the lower triangular matrix
in Cholesky decomposition of –H, where H is the Hessian matrix, then there is a quasi-complete
separation.

175

GENLIN Algorithms

Convergence Criteria

The following convergence criteria are considered:

Log-likelihood convergence:

() ()

() if relative change

() () if absolute change

Parameter convergence:
p if relative change

p if absolute change

Hessian convergence:

() T () ()

() if relative change

() T () () if absolute change

where p and are the given tolerance levels for each type.

If the Hessian convergence criterion is not user-specified, it is checked based on absolute change
with H = 1E-4 after the log-likelihood or parameter convergence criterion has been satisfied. If
Hessian convergence is not met, a warning is displayed.

Parameter Estimate Covariance Matrix, Correlation Matrix and Standard Errors

The parameter estimate covariance matrix, correlation matrix and standard errors can be
obtained easily with parameter estimates. Whether or not the scale parameter is estimated by
ML, parameter estimate covariance and correlation matrices are listed for only because the
covariance between and should be zero.

Model-Based Parameter Estimate Covariance

The model-based parameter estimate covariance matrix is given by

Σm Η

where is the generalized inverse of the Hessian matrix evaluated at the parameter estimates.
The corresponding rows and columns for redundant parameter estimates should be set to zero.

Robust Parameter Estimate Covariance

The validity of the parameter estimate covariance matrix based on the Hessian depends on the
correct specification of the variance function of the response in addition to the correct specification
of the mean regression function of the response. The robust parameter estimate covariance
provides a consistent estimate even when the specification of the variance function of the response
is incorrect. The robust estimator is also called Huber’s estimator because Huber (1967) was

176

GENLIN Algorithms

the first to describe this variance estimate; White’s estimator or HCCM (heteroskedasticity
consistent covariance matrix) estimator because White (1980) independently showed that this
variance estimate is consistent under a linear regression model including heteroskedasticity; or
the sandwich estimator because it includes three terms. The robust (or Huber/White/sandwich)
estimator is defined as follows

Σr Σm
T

Σm Σm T Σm

Parameter Estimate Correlation

The correlation matrix is calculated from the covariance matrix as usual. Let be an element of
Σm or Σr, then the corresponding element of the correlation matrix is . The corresponding
rows and columns for redundant parameter estimates should be set to system missing values.

Parameter Estimate Standard Error

Let denote a non-redundant parameter estimate. Its standard error is the square root of the
ith diagonal element of Σm or Σr:

The standard error for redundant parameter estimates is set to a system missing value. If the
scale parameter is estimated by the ML method, we obtain and its standard error estimate

, where can be found in Table 18-9“The second derivative functions w.r.t. the

scale parameter for probability distributions” on p. 172. Then the estimate of the scale parameter
is and the standard error estimate is

Wald Confidence Intervals

Wald confidence intervals are based on the asymptotic normal distribution of the parameter
estimates. The 100(1 – α)% Wald confidence interval for j is given by

,

where is the 100pth percentile of the standard normal distribution.

If exponentiated parameter estimates are requested for logistic regression or log-linear models,
then using the delta method, the estimate of is , the standard error estimate of

is and the corresponding 100(1 – α)% Wald confidence interval for
is

.

Wald confidence intervals for redundant parameter estimates are set to system missing values.

177

GENLIN Algorithms

Similarly, the 100(1 – α)% Wald confidence interval for is

Chi-Square Statistics

The hypothesis is tested for each non-redundant parameter using the chi-square
statistic:

which has an asymptotic chi-square distribution with 1 degree of freedom.

Chi-square statistics and their corresponding p-values are set to system missing values for
redundant parameter estimates.

The chi-square statistic is not calculated for the scale parameter, even if it is estimated by ML
method.

P Values

Given a test statistic T and a corresponding cumulative distribution function G as specified
above, the p-value is defined as . For example, the p-value for the chi-square
test of is .

Model Testing

After estimating parameters and calculating relevant statistics, several tests for the given model
are performed.

Lagrange Multiplier Test

If the scale parameter for normal, inverse Gaussian and gamma distributions is set to a fixed value
or specified by the deviance or Pearson chi-square divided by the degrees of freedom (when the
scale parameter is specified by the deviance or Pearson chi-square divided by the degrees of
freedom, it can be considered as a fixed value), or an ancillary parameter k for the negative
binomial is set to a fixed value other than 0, the Lagrange Multiplier (LM) test assesses the
validity of the value. For a fixed or k, the test statistic is defined as

178

GENLIN Algorithms

where and T T evaluated at the
parameter estimates and fixed or k value. has an asymptotic chi-square distribution with 1
degree of freedom, and the p-values are calculated accordingly.

For testing , see Table 18-8“The 1st derivative functions w.r.t. the scale parameter for probability
distributions” on p. 170 and see Table 18-9“The second derivative functions w.r.t. the scale
parameter for probability distributions” on p. 172 for the elements of s and A, respectively.

If k is set to 0, then the above statistic can’t be applied. According to Cameron and Trivedi (1998),
the LM test statistic should now be based on the following auxiliary OLS regression (without
constant)

where and is an error term. Let the response of the above OLS regression

be and the explanatory variable be . The estimate of the above
regression parameter α and the standard error of the estimate of α are

and

where and . Then the LM test statistic is a z statistic

and it has an asymptotic standard normal distribution under the null hypothesis of equidispersion
in a Poisson model (). Three p-values are provided. The alternative hypothesis
can be one-sided overdispersion (), underdispersion () or two-sided
non-directional () with the variance function of . The calculation
of p-values depends on the alternative. For -value Φ where Φ is the
cumulative probability of a standard normal distribution; for -value Φ and for

-value Φ

Goodness-of-Fit Statistics

Several statistics are calculated to assess goodness of fit of a given generalized linear model.

Deviance

The theoretical definition of deviance is:

y y y

179

GENLIN Algorithms

where y is the log-likelihood function expressed as the function of the predicted mean values
(calculated based on the parameter estimates) given the response variable, and y y is the

log-likelihood function computed by replacing with y. The formula used for the deviance is
, where the form of for the distributions are given in the following table:

Table 18-11
Deviance for individual case

Distribution

Normal

Inverse Gaussian

Gamma

Negative Binomial

Poisson

Binomial(m)

Note
 When y is a binary dependent variable with 0/1 values (binomial distribution), the deviance

and Pearson chi-square are calculated based on the subpopulations; see below.
 When y = 0 for negative binomial and Poisson distributions and y = 0 (for r = 0) or 1 (for r

= m) for binomial distribution with r/m format, separate values are given for the deviance.
Let be the deviance value for individual case i when yi = 0 for negative binomial and
Poisson and 0/1 for binomial.

Table 18-12
Deviance for individual case

Distribution

Negative Binomial if

Poisson if

Binomial(m) if or
if or

Pearson Chi-Square

where for the binomial distribution and for other distributions.

Scaled Deviance and Scaled Pearson Chi-Square

The scaled deviance is and the scaled Pearson chi-square is .

180

GENLIN Algorithms

Since the scaled deviance and Pearson chi-square statistics have a limiting chi-square distribution
with N – px degrees of freedom, the deviance or Pearson chi-square divided by its degrees
of freedom can be used as an estimate of the scale parameter for both continuous and discrete
distributions.

or .

If the scale parameter is measured by the deviance or Pearson chi-square, first we assume ,
then estimate the regression parameters, calculate the deviance and Pearson chi-square values
and obtain the scale parameter estimate from the above formula. Then the scaled version of both
statistics is obtained by dividing the deviance and Pearson chi-square by . In the meantime, some
statistics need to be revised. The gradient vector and the Hessian matrix are divided by and
the covariance matrix is multiplied by . Accordingly the estimated standard errors are also
adjusted, the Wald confidence intervals and significance tests will be affected even the parameter
estimates are not affected by .

Note that the log-likelihood is not revised; that is, the log-likelihood is based on because the
scale parameter should be kept the same in the log-likelihood for fair comparison in information
criteria and model fitting omnibus test.

Overdispersion

For the Poisson and binomial distributions, if the estimated scale parameter is not near the
assumed value of one, then the data may be overdispersed if the value is greater than one or
underdispersed if the value is less than one. Overdispersion is more common in practice. The
problem with overdispersion is that it may cause standard errors of the estimated parameters to be
underestimated. A variable may appear to be a significant predictor, when in fact it is not.

Deviance and Pearson Chi-Square for Binomial Distribution with 0/1 Binary Response Variable

When r andm (event/trial) variables are used for the binomial distribution, each case represents m
Bernoulli trials. When y is a binary dependent variable with 0/1 values, each case represents a
single trial. The trial can be repeated for several times with the same setting (i.e. the same values
for all predictor variables). For example, suppose the first 10 y values are 2 1s and 8 0s and x
values are the same (if recorded in events/trials format, these 10 cases is recorded as 1 case
with r = 2 and m = 10), then these 10 cases should be considered from the same subpopulation.
Cases with common values in the variable list that includes all predictor variables are regarded as
coming from the same subpopulation. When the binomial distribution with binary response is
used, we should calculate the deviance and Pearson chi-square based on the subpopulations. If we
calculate them based on the cases, the results might not be useful.

If subpopulations are specified for the binomial distribution with 0/1 binary response variable, the
data should be reconstructed from the single trial format to the events/trials format. Assume the
following notation for formatted data:
Table 18-13
Notation

Notation Description
ns Number of subpopulations.

181

GENLIN Algorithms

Notation Description
rj1 Sum of the product of the frequencies and the scale weights associated with y = 1 in the

jth subpopulation. So rj0 is that with y = 0 in the jth subpopulation.
mj Total weighted observations; mj = rj1 + rj0.
yj1 The proportion of 1s in the jth subpopulation; yj1 = rj1/ mj.

The fitted probability in the jth subpopulation (would be the same for each case in the
jth subpopulation because values for all predictor variables are the same for each case.)

The deviance and Pearson chi-square are defined as follows:

and ,

then the corresponding estimate of the scale parameter will be

and .

The full log likelihood, based on subpopulations, is defined as follows:

where is the kernel log likelihood; it should be the same as the kernel log-likelihood computed
based on cases before, there is no need to compute again.

Information Criteria

Information criteria are used when comparing different models for the same data. The formulas
for various criteria are as follows.

Akaike information criteria (AIC).

Finite sample corrected (AICC).

Bayesian information criteria (BIC).

Consistent AIC (CAIC).

where ℓ is the log-likelihood evaluated at the parameter estimates. Notice that d = px if only is
included; d = px + 1 if the scale parameter is included for normal, inverse Gaussian, or gamma.

Notes
 ℓ (the full log-likelihood) can be replaced with ℓk (the kernel of the log-likelihood) depending

on the user’s choice.
 When r and m (event/trial) variables are used for the binomial distribution, then the N used

here would be the sum of the trials frequencies; . In this way, the same value

results whether the data are in raw, binary form or in summarized, binomial form.

182

GENLIN Algorithms

Test of Model Fit

The model fitting omnibus test is based on –2 log-likelihood values for the model under
consideration and the initial model. For the model under consideration, the value of the –2
log-likelihood is

Let the initial model be the intercept-only model if intercept is in the considered model or the
empty model otherwise. For the intercept-only model, the value of the –2 log-likelihood is

For the empty model, the value of the –2 log-likelihood is

Then the omnibus (or global) test statistic is

for the intercept-only model or

for the empty model.

S has an asymptotic chi-square distribution with r degrees of freedom, equal to the difference in
the number of valid parameters between the model under consideration and the initial model.
r = for the intercept-only model,; r = for the empty model. The p-values then can
be calculated accordingly.

Note if the scale parameter is estimated by the ML method in the model under consideration, then
it will also be estimated by the ML method in the initial model.

Default Tests of Model Effects

For each regression effect specified in the model, type I and III analyses can be conducted.

Type I Analysis

Type I analysis consists of fitting a sequence of models, starting with a model with only an
intercept term (if there is one), and adding one additional effect, which can be covariates, factors
and interactions, of the model on each step. So it depends on the order of effects specified in the
model. On the other hand, type III analysis won’t depend on the order of effects.

Wald Statistics. For each effect specified in the model, type I test matrix Li is constructed
and H0: Li = 0 is tested. Construction of matrix Li is based on the generating matrix

T T where Ω is the scale weight matrix with ith diagonal element and
such that Li is estimable. It involves parameters only for the given effect and the effects
containing the given effect. If such a matrix cannot be constructed, the effect is not testable.

183

GENLIN Algorithms

Since Wald statistics can be applied to type I and III analysis and custom tests, we express Wald
statistics in a more general form. The Wald statistic for testing , where Li is a r×p full
row rank hypothesis matrix and K is a r×1 resulting vector, is defined by

T T

where is the maximum likelihood estimate and Σ is the parameter estimates covariance matrix. S
has an asymptotic chi-square distribution with degrees of freedom, where LΣLT .

If , then LΣLT is a generalized inverse such that Wald tests are effective for a restricted
set of hypotheses containing a particular subset C of independent rows from H0.

For type I and III analysis, calculate the Wald statistic for each effect i according to the
corresponding hypothesis matrix Li and K=0.

Type III Analysis

Wald statistics. See the discussion of Wald statistics for Type I analysis above. L is the type III
test matrix for the ith effect.

Blank handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

Scoring

Scoring is defined as assigning one or more values to a case in a data set.

Predicted Values

Due to the non-linear link functions, the predicted values will be computed for the linear predictor
and the mean of the response separately. Also, since estimated standard errors of predicted values
of linear predictor are calculated, the confidence intervals for the mean are obtained easily.

Predicted values are still computed as long all the predictor variables have non-missing values
in the given model.

Predicted Values of the Linear Predictors

T o

Estimated Standard Errors of Predicted Values of the Linear Predictors

TΣ

Predicted Values of the Means

184

GENLIN Algorithms

T

where g−1 is the inverse of the link function. For binomial response with 0/1 binary response
variable, this the predicted probability of category 1.

Confidence Intervals for the Means

Approximate 100(1−α)% confidence intervals for the mean can be computed as follows

T o

If either endpoint in the argument is outside the valid range for he inverse link function, the
corresponding confidence interval endpoint is set to a system missing value.

Blank handling

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.

References

Aitkin, M., D. Anderson, B. Francis, and J. Hinde. 1989. Statistical Modelling in GLIM. Oxford:
Oxford Science Publications.

Albert, A., and J. A. Anderson. 1984. On the Existence of Maximum Likelihood Estimates in
Logistic Regression Models. Biometrika, 71, 1–10.

Cameron, A. C., and P. K. Trivedi. 1998. Regression Analysis of Count Data. Cambridge:
Cambridge University Press.

Diggle, P. J., P. Heagerty, K. Y. Liang, and S. L. Zeger. 2002. The analysis of Longitudinal
Data, 2 ed. Oxford: Oxford University Press.

Dobson, A. J. 2002. An Introduction to Generalized Linear Models, 2 ed. Boca Raton, FL:
Chapman & Hall/CRC.

Dunn, P. K., and G. K. Smyth. 2005. Series Evaluation of Tweedie Exponential Dispersion Model
Densities. Statistics and Computing, 15, 267–280.

Dunn, P. K., and G. K. Smyth. 2001. Tweedie Family Densities: Methods of Evaluation. In:
Proceedings of the 16th International Workshop on Statistical Modelling, Odense, Denmark: .

Gill, J. 2000. Generalized Linear Models: A Unified Approach. Thousand Oaks, CA: Sage
Publications.

Hardin, J. W., and J. M. Hilbe. 2001. Generalized Estimating Equations. Boca Raton, FL:
Chapman & Hall/CRC.

185

GENLIN Algorithms

Hardin, J. W., and J. M. Hilbe. 2003. Generalized Linear Models and Extension. Station, TX:
Stata Press.

Horton, N. J., and S. R. Lipsitz. 1999. Review of Software to Fit Generalized Estimating Equation
Regression Models. The American Statistician, 53, 160–169.

Huber, P. J. 1967. The Behavior of Maximum Likelihood Estimates under Nonstandard
Conditions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, Berkeley, CA: University of California Press, 221–233.

Lane, P. W., and J. A. Nelder. 1982. Analysis of Covariance and Standardization as Instances of
Prediction. Biometrics, 38, 613–621.

Lawless, J. E. 1984. Negative Binomial and Mixed Poisson Regression. The Canadian Journal
of Statistics, 15, 209–225.

Liang, K. Y., and S. L. Zeger. 1986. Longitudinal Data Analysis Using Generalized Linear
Models. Biometrika, 73, 13–22.

Lipsitz, S. H., K. Kim, and L. Zhao. 1994. Analysis of Repeated Categorical Data Using
Generalized Estimating Equations. Statistics in Medicine, 13, 1149–1163.

McCullagh, P. 1983. Quasi-Likelihood Functions. Annals of Statistics, 11, 59–67.

McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

Miller, M. E., C. S. Davis, and J. R. Landis. 1993. The Analysis of Longitudinal Polytomous Data:
Generalized Estimating Equations and Connections with Weighted Least Squares. Biometrics,
49, 1033–1044.

Nelder, J. A., and R. W. M. Wedderburn. 1972. Generalized Linear Models. Journal of the
Royal Statistical Society Series A, 135, 370–384.

Pan, W. 2001. Akaike’s Information Criterion in Generalized Estimating Equations. Biometrics,
57, 120–125.

Pregibon, D. 1981. Logistic Regression Diagnostics. Annals of Statistics, 9, 705–724.

Smyth, G. K., and B. Jorgensen. 2002. Fitting Tweedie’s Compound Poisson Model to Insurance
Claims Data: Dispersion Modelling. ASTIN Bulletin, 32, 143–157.

White, H. 1980. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test
for Heteroskedasticity. Econometrica, 48, 817–836.

Williams, D. A. 1987. Generalized Linear Models Diagnostics Using the Deviance and Single
Case Deletions. Applied Statistics, 36, 181–191.

Zeger, S. L., and K. Y. Liang. 1986. Longitudinal Data Analysis for Discrete and Continuous
Outcomes. Biometrics, 42, 121–130.

Generalized linear mixed models
algorithms

Generalized linear mixed models extend the linear model so that:
 The target is linearly related to the factors and covariates via a specified link function.
 The target can have a non-normal distribution.
 The observations can be correlated.

Generalized linear mixed models cover a wide variety of models, from simple linear regression to
complex multilevel models for non-normal longitudinal data.

Notation

The following notation is used throughout this chapter unless otherwise stated:

n Number of complete cases in the dataset. It is an integer and n ≥ 1.
p Number of parameters (including the constant, if it exists) in the model. It is an integer

and p ≥ 1.
px Number of non-redundant columns in the design matrix of fixed effects. It is an integer

and px ≥ 1.
K Number of random effects.
y n× 1 target vector. The rows are records.
r n× 1 events vector for the binomial distribution representing the number of “successes”

within a number of trials. All elements are non-negative integers.
m n× 1 trials vector for the binomial distribution. All elements are positive integers and mi

≥ ri, i=1,...,n.
μ n× 1 expected target value vector.
η n× 1 linear predictor vector.
X n× p design matrix. The rows represent the records and the columns represent the

parameters. The ith row is xT where the superscript T means transpose
of a matrix or vector, with if the model has an intercept.

Z n× r design matrix of random effects.
O n× 1 offset vector. This can’t be the target or one of the predictors. Also this can’t be

a categorical field.
β p× 1 parameter vector. The first element is the intercept, if there is one.
γ r× 1 random effect vector.
ω n× 1 scale weight vector. If an element is less than or equal to 0 or missing, the

corresponding record is not used.
f n× 1 frequency weight vector. Non-integer elements are treated by rounding the value

to the nearest integer. For values less than 0.5 or missing, the corresponding records
are not used.

N
Effective sample size, . If frequency weights are not used, N = n.

θ covariance parameters of the kth random effect

θ
covariance parameters of the random effects, θ θT θT

T

© Copyright IBM Corporation 1994, 2016. 187

188

Generalized linear mixed models algorithms

θ covariance parameters of the residuals

θ
θ θT θT

T
θT θT θT

T

VY Covariance matrix of y, conditional on the random effects

Model
The form of a generalized linear mixed model for the target y with the random effects γ is

η E y O,y ,

where η is the linear predictor; g(.) is the monotonic differentiable link function; γ is a (r× 1)
vector of random effects which are assumed to be normally distributed with mean 0 and variance
matrix G, X is a (n× p) design matrix for the fixed effects; Z is a (n× r) design matrix for the
random effects; O is an offset with a constant coefficient of 1 for each observation; F is the
conditional target probability distribution. Note that if there are no random effects, the model
reduces to a generalized linear model (GZLM).

The probability distributions without random effects offered (except multinomial) are listed in
Table 19-1 on p. 188. The link functions offered are listed in Table 19-3 on p. 189. Different
combinations of probability distribution and link function can result in different models.

See “Nominal multinomial distribution ” on p. 206 for more information on the nominal
multinomial distribution.

See “Ordinal multinomial distribution ” on p. 213 for more information on the ordinal multinomial
distribution.

Note that the available distributions depend on the measurement level of the target:
 A continuous target can have any distribution except multinomial. The binomial distribution

is allowed because the target could be an “events” field. The default distribution for a
continuous target is the normal distribution.

 A nominal target can have the multinomial or binomial distribution. The default is
multinomial.

 An ordinal target can have the multinomial or binomial distribution. The default is
multinomial.

Table 19-1
Distribution, range and variance of the response, variance function, and its first derivative
Distribution Range of y V(μ) Var(y) V’(μ)
Normal (−∞,∞) 1 0

Inverse Gaussian (0,∞) μ3 μ3 3μ2

Gamma (0,∞) μ2 μ2 2μ
Negative binomial 0(1)∞ μ+kμ2 μ+kμ2 1+2kμ
Poisson 0(1)∞ μ μ 1
Binomial(m) 0(1)m/m μ(1−μ) μ(1−μ)/m 1−2μ

189

Generalized linear mixed models algorithms

Notes

 0(1)z means the range is from 0 to z with increments of 1; that is, 0, 1, 2, …, z.
 For the binomial distribution, the binomial trial variable m is considered as a part of the

weight variable ω.
 If a scale weight variable ω is presented, is replaced by /ω.
 For the negative binomial distribution, the ancillary parameter (k) is estimated by the

maximum likelihood (ML) method. When k = 0, the negative binomial distribution reduces to
the Poisson distribution. When k = 1, the negative binomial is the geometric distribution.

The full log-likelihood function (ℓ), which will be used as the objective function for parameter
estimation, is listed for each distribution in the following table.

Table 19-2
The log-likelihood function for probability distribution

Distribution ℓ
Normal

Inverse Gaussian

Gamma

Negative
binomial

Poisson

Binomial(m)
where

The following tables list the form, inverse form, range of , and first and second derivatives
for each link function.

Table 19-3
Link function name, form, inverse of link function, and range of the predicted mean

Link function η=g(μ) Inverse μ=g−1(η) Range of

Identity μ η

Log ln(μ) exp(η)

Logit

Probit Φ , where

Φ

Φ(η)

Complementary
log-log

ln(−(ln(1−μ)) 1−exp(−exp(η))

190

Generalized linear mixed models algorithms

Link function η=g(μ) Inverse μ=g−1(η) Range of

Power(α) if or is odd integer
otherwise

Log-complement ln(1−μ) 1−exp(η)

Negative log-log −ln(−ln(μ)) exp(−exp(−η))

Note: In the power link function, if |α| < 2.2e-16, α is treated as 0.

Table 19-4
The first and second derivatives of link function

Link function First derivative Second derivative

Identity 1 0
Log

Logit

Probit
Φ , where Φ

Complementary log-log

Power(α)

Log-complement

Negative log-log

When the canonical parameter is equal to the linear predictor, , then the link function is
called the canonical link function. Although the canonical links lead to desirable statistical
properties of the model, particularly in small samples, there is in general no a priori reason why
the systematic effects in a model should be additive on the scale given by that link. The canonical
link functions for probability distributions are given in the following table.

Table 19-5
Canonical and default link functions for probability distributions

Distribution Canonical link function

Normal Identity
Inverse Gaussian Power(−2)
Gamma Power(−1)
Negative binomial Negative binomial
Poisson Log
Binomial Logit

The variance of y, conditional on the random effects, is

y γ A RA

191

Generalized linear mixed models algorithms

The matrix A is a diagonal matrix and contains the variance function of the model, which
is the function of the mean μ, divided by the corresponding scale weight variable; that is,
Α diag . The variance functions, V(μ), are different for different
distributions. The matrix R is the variance matrix for repeated measures.

Generalized linear mixed models allow correlation and/or heterogeneity from random effects
(G-side) and/or heterogeneity from residual effects (R-side). resulting in 4 types of models:

1. If a GLMM has no G-side or R-side effects, then it reduces to a GZLM; G=0 and R I where I
is the identity matrix and is the scale parameter. For continuous distributions (normal, inverse
Gauss and gamma), is an unknown parameter and is estimated jointly with the regression
parameters by the maximum likelihood (ML) method. For discrete distributions (negative
binomial, Poisson, binomial and multinomial), is estimated by Pearson chi-square as follows:

where for the restricted maximum pseudo-likelihood (REPL) method.

2. If a model only has G-side random effects, then the G matrix is user-specified and R I. is
estimated jointly with the covariance parameters in G for continuous distributions and for
discrete distributions..

3. If a model only has R-side residual effects, then G = 0 and the R matrix is user-specified. All
covariance parameters in R are estimated using the REPL method, defined in “Estimation ”
on p. 192.

4. If a model has both G-side and R-side effects, all covariance parameters in G and R are jointly
estimated using the REPL method.

For the negative binomial distribution, there is the ancillary parameter k, which is first estimated
by the ML method, ignoring random and residual effects, then fixed to that estimate while other
regression and covariance parameters are estimated.

Fixed effects transformation

To improve numerical stability, the X matrix is transformed according to the following rules.

The ith row of X is x T, i=1,...,n with if the model has an intercept.
Suppose x is the transformation of x then the jth entry of x is defined as

x

192

Generalized linear mixed models algorithms

where cj and sj are centering and scaling values for , respectively, for j=1,...,p and choices
of cj and sj , are listed as follows:
 For a non-constant continuous predictor or a derived predictor which includes a continuous

predictor, if the model has an intercept, and where is the sample

mean of the jth predictor, and and where is

the sample standard deviation of the jth predictor and . Note

that the intercept column is not transformed. If the model has no intercept, and

 For a constant predictor , and , that is, scale it to 1.
 For a dummy predictor that is derived from a factor or a factor interaction, and ;

that is, leave it unchanged.

Estimation

We estimate GLMMs using linearization-based methods, also called the pseudo likelihood
approach (PL; Wolfinger and O’Connell (1994)), penalized quasi-likelihood (PQL; Breslow
and Clayton (1993)), marginal quasi-likelihood (MQL; Goldstein (1991)). They are based on
the similar principle that the GLMMs are approximated by an LMM so that well-established
estimation methods for LMMs can be applied. More specifically, the mean target function; that is,
the inverse link function is approximated by a linear Taylor series expansion around the current
estimates of the fixed-effect regression coefficients and different solutions of random effects (0
is used for MQL and the empirical Bayes estimates are used for PQL). Applying this linear
approximation of the mean target leads to a linear mixed model for a transformation of the original
target. The parameters of this LMM can be estimated by Newton-Raphson or Fisher scoring
technique and the estimates then are used to update the linear approximation. The algorithm
iterates between two steps until convergence. In general, the method is a doubly iterative process.
The outer iterations are to update the transformed target for an LMM and the inner iterations are to
estimate parameters of the LMM.

It is well known that parameter estimation for an LMM can be based on maximum likelihood
(ML) or restricted (or residual) maximum likelihood (REML). Similarly, parameter estimation
for a GLMM in the inner iterations can based on maximum pseudo-likelihood (PL) or restricted
maximum pseudo-likelihood (REPL).

Linear mixed pseudo model

Following Wolfinger and O’Connell (1993), a first-order Taylor series of μ in (1) about and
yields

μ X Z O X Z γ

193

Generalized linear mixed models algorithms

where Z O is a diagonal matrix with elements consisting of evaluations of

the 1st derivative of . Since Z O , this equation can be
rearranged as

μ Z Zγ

If we define a pseudo target variable as

v y Z y O

then the conditional expectation and variance of v, based on E y γ and y γ A RA ,
are

E v γ μ Z

v γ A RA

where A diag

Furthermore, we also assume v is normally distributed. Then we consider the model of v

v Zγ ε

as a weighted linear mixed model with fixed effects β, random effects γ 0 G , error terms
ε 0 A RA , because ε v γ and diagonal weight matrix

A . Note that the new target v (with O if an offset variable exists) is a Taylor
series approximation of the linked target y . The estimation method of unknown parameters
of β and θ, which contains all unknowns in G and R, for traditional linear mixed models can
be applied to this linear mixed pseudo model.

The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which
are expressed as the functions of covariance parameters in θ, corresponding to the linear mixed
model for v are the following:

θ v V θ r θ TV θ r θ

θ v V θ r θ TV θ r θ XTV θ X

where
V θ ZG θ Z R θ r θ v X XTV θ X XTV θ v v X N
denotes the effective sample size, and px denotes the rank of the design matrix of X or the number
of non-redundant parameters in X. Note that the regression parameters in β are profiled from the
above equations because the estimation of β can be obtained analytically. The covariance

194

Generalized linear mixed models algorithms

parameters in θ are estimated by Newton-Raphson or Fisher scoring algorithm. Following the
tradition in linear mixed models, the objection functions of minimization for estimating θ would
be θ v or θ v Upon obtaining , estimates for β and γ are computed as

XTV X XTV v

ZTV

where is the best linear unbiased estimator (BLUE) of β and is the estimated best linear
unbiased predictor (BLUP) of γ in the linear mixed pseudo model. With these statistics, v and

are recomputed based on and the objective function is minimized again to obtain updated
. Iteration between θ v and the above equation yields the PL estimation procedure and
between θ ν and the above equation the REPL procedure.

There are two choices for (the current estimates of γ):

1. for PQL; and

2. 0 for MQL.

On the other hand, is always used as the current estimate of the fixed effects. Based on the two
objective functions (PL or REPL) and two choices of random effect estimates (PQL or MQL), 4
estimation methods can be implemented for GLMMs:

1. PL-PQL: pseudo-likelihood with = ;

2. PL-MQL: pseudo-likelihood with = ;

3. REPL-PQL: residual pseudo-likelihood with = ;

4. REPL-MQL: residual pseudo-likelihood with = .

We use method 3, REPL-PQL.

Iterative process

The doubly iterative process for the estimation of θ is as follows:

1. Obtain an initial estimate of μ, μ . Specifically, for a binomial
distribution (yi can be a proportion or 0/1 value) and for a non-binomial distribution. Also
set the outer iteration index j = 0.

2. Based on , compute

v O y and A

Fit a weighted linear mixed model with pseudo target v, fixed effects design matrix X, random
effects design matrix Z, and diagonal weight matrix . The fitting procedure, which is called
the inner iteration, yields the estimates of θ, and is denoted as θ . The procedure uses the

195

Generalized linear mixed models algorithms

specified settings for parameter, log-likelihood, and Hessian convergence criteria for determining
convergence of the linear mixed model. If j = 0, go to step 4; otherwise go to the next step.

3. Check if the following criterion with tolerance level is satisfied:

If it is met or maximum number of outer iterations is reached, stop. Otherwise, go to the next step.

4. Compute by setting θ then set . Depending on the choice of random effect
estimates, set = .

5. Compute the new estimate of μ by

Z O

set j = j + 1 and go to step 2.

Wald confidence intervals for covariance parameter estimates

Here we assume that the estimated parameters of G and R are obtained through the above doubly
iterative process. Then their asymptotic covariance matrix can be approximated by Η , where
H is the Hessian matrix of the objective function (θ v or θ v) evaluated at . The
standard error for the ith covariance parameter estimate in the vector, say , is the square root of
the ith diagonal element of Η .

Thus, a simple Wald’s type confidence interval or test statistic for any covariance parameter
can be obtained by using the asymptotic normality. However, these can be unreliable in small
samples, especially for variance and correlation parameters that have a range of and

respectively. Therefore, following the same method used in linear mixed models, these
parameters are transformed to parameters that have range . Using the delta method, these
transformed estimates still have asymptotic normal distributions.

For variance type parameters in G and R, such as in the autoregressive, autoregressive moving
average, compound symmetry, diagonal, Toeplitz, and variance components, and in the
unstructured type, the 100(1 – α)% Wald confidence interval is given, assuming the variance
parameter estimate is and its standard error is se from the corresponding diagonal element
of Η , by

se

For correlation type parameters inG and R, such as in the autoregressive, autoregressive moving
average, and Toeplitz types and in the autoregressive moving average type, which usually come
with the constraint of , the 100(1 – α)% Wald confidence interval is given, assuming the
correlation parameter estimate is and its standard error is se from the corresponding diagonal
element of Η , by

se

196

Generalized linear mixed models algorithms

where and are hyperbolic tangent and inverse
hyperbolic tangent, respectively.

For general type parameters, other than variance and correlation types, in G and R, such as in
the compound symmetry type and (off-diagonal elements) in the unstructured type, no
transformation is done. Then the 100(1 – α)% Wald confidence interval is simply, assuming the
parameter estimate is and its standard error is se from the corresponding diagonal element
of Η ,

se se

The 100(1 – α)% Wald confidence interval for is

where ln .

Note that the z-statistics for the hypothesis where is a covariance parameter in
θ vector, are calculated; however, the Wald tests should be considered as an approximation and
used with caution because the test statistics might not have a standardized normal distribution.

Statistics for estimates of fixed and random effects

The approximate covariance matrix of β, −γ is

XTR X XTR Z
ZTR X ZTR Z G

−
C CT
C C

where R v γ A RA is evaluated at the converged estimates and

T 1

ΖT 1

ΖT 1Z+ 1 T 1Z

Statistics for estimates of fixed effects on original scale

If the X matrix is transformed, the restricted log pseudo-likelihood (REPL) would be different
based on transformed and original scale, so the REPL on the transformed scale should be
transformed back on the final iteration so that any post-estimation statistics based on REPL can
be calculated correctly. Suppose the final objective function value based on the transformed and

197

Generalized linear mixed models algorithms

original scales are θ v and θ v , respectively, then θ v can be obtained
from θ v as follows:

θ v θ v A

Because REPL has the following extra term involved the X matrix

X TV θ X XA TV θ XA

AT XV θ X A

XV θ X A AT

XV θ X A

then XV θ X X TV θ X A and θ v θ v A . Please
note that PL values are the same whether the X matrix is transformed or not.

In addition, the final estimates of β, C11, C21 and C22 are based on the transformed scale, denoted
as and respectively. They are transformed back to the original scale, denoted as

and respectively, as follows:

Α

T

AT

Note that A could reduce to S ; hereafter, the superscript * denotes a quantity on the transformed
scale.

Estimated covariance matrix of the fixed effects parameters

Two estimated covariance matrices of the fixed effects parameters can be calculated: model-based
and robust.

The model-based estimated covariance matrix of the fixed effects parameters is given by

Σm

The robust estimated covariance matrix of the fixed effects parameters for a GLMM is defined as
the classical sandwich estimator. It is similar to that for a generalized linear model or a generalized
estimating equation (GEE). If the model is a generalized linear mixed model and it is processed by
subjects, then the robust estimator is defined as follows

198

Generalized linear mixed models algorithms

Σr=Σm T 1 T 1 Σm

where v X

Standard errors for estimates in fixed effects and predictions in random effects

Let denote a non-redundant parameter estimate in fixed effects. Its standard error is the square
root of the ith diagonal element of Σm or Σr,

The standard error for redundant parameter estimates is set to a system missing value.

Let denote a prediction in random effects. Its standard error is the square root of the ith
diagonal element of :

Test statistics for estimates in fixed effects and predictions in random effects

The hypothesis is tested for each non-redundant parameter in fixed effects using the
t statistic:

which has an asymptotic t distribution with degrees of freedom. See “Method for computing
degrees of freedom ” on p. 203 for details on computing the degrees of freedom.

Wald confidence intervals for estimates in fixed effects and predictions in random effects

The 100(1 – α)% Wald confidence interval for is given by

where is the 100th percentile of the distribution.

For some models (see the list below), the exponentiated parameter estimates, their standard
errors, and confidence intervals are computed. Using the delta method, the estimate of is

, the standard error estimate is and the corresponding 100(1 – α)% Wald
confidence interval for is

199

Generalized linear mixed models algorithms

The list of models is as follows:

1. Logistic regression (binomial distribution + logit link).

2. Nominal logistic regression (nominal multinomial distribution + generalized logit link).

3. Ordinal logistic regression (ordinal multinomial distribution + cumulative logit link).

4. Log-linear model (Poisson distribution + log link).

5. Negative binomial regression (negative binomial distribution + log link).

Testing

After estimating parameters and calculating relevant statistics, several tests for the given model
are performed.

Goodness of fit

Information criteria

Information criteria are used when comparing different models for the same data. The formulas
for various criteria are as follows.

Finite sample corrected (AICC)

Bayesian information criteria (BIC)

where ℓ is the restricted log-pseudo-likelihood evaluated at the parameter estimates. For REPL,
N is the effective sample size minus the number of non-redundant parameters in fixed effects

() and d is the number of covariance parameters.

Note that the restricted log-pseudo-likelihood values are of the linearized model, not on the
original scale. Thus the information criteria should not be compared across models with different
distribution and link function and they should be interpreted with caution.

Tests of fixed effects

For each effect specified in the model, a type III test matrix L is constructed and H0: Liβ = 0 is
tested. Construction of L and the generating estimable function (GEF) is based on the generating
matrix H XTΨX XTΨX where Ψ diag such that Liβ is estimable; that
is, L L H . It involves parameters only for the given effect and the effects containing the given
effect. For type III analysis, L does not depend on the order of effects specified in the model. If
such a matrix cannot be constructed, the effect is not testable.

Then the L matrix is then used to construct the test statistic

200

Generalized linear mixed models algorithms

T T ∑ T 1

where ∑ T . The statistic has an approximate F distribution. The numerator
degrees of freedom is and the denominator degrees of freedom is . See “Method for computing
degrees of freedom ” on p. 203 for details on computing the denominator degrees of freedom.

In addition, we test a null hypothesis that all regression parameters (except intercept if there is
one) equal zero. The test statistic would be the same as the above F statistic except the L matrix is
from GEF. If there is no intercept, the L matrix is the whole GEF. If there is an intercept, the L
matrix is GEF without the first row which corresponds to the intercept. This test is similar to the
“corrected model” in linear models.

Estimated marginal means

There are two types of estimated marginal means calculated here. One corresponds to the
specified factors for the linear predictor of the model and the other corresponds to those for the
original scale of the target.

Estimated marginal means are based on the estimated cell means. For a given fixed set of factors,
or their interactions, we estimate marginal means as the mean value averaged over all cells
generated by the rest of the factors in the model. Covariates may be fixed at any specified value.
If not specified, the value for each covariate is set to its overall mean estimate.

Estimated marginal means are not available for the multinomial distribution.

Estimated marginal means for the linear predictor

Calculating estimated marginal means for the linear predictor

Estimated marginal means for the linear predictor are based on the link function transformation,
and constructed such that LB is estimable.

Suppose there are r combined levels of the specified categorical effect. This r×1 vector can be
expressed in the form . The variance matrix of is then computed by

V =LΣLT

The standard error for the jth element of is the square root of the jth diagonal element of V .
Let the jth element of and its standard error be and , respectively, then the corresponding
100(1 – α)% confidence interval for is given by

201

Generalized linear mixed models algorithms

where is the percentile of the t distribution with degrees of freedom.
See “Method for computing degrees of freedom ” on p. 203 for details on computing the degrees
of freedom.

Comparing estimated marginal means for the linear predictor

We can compare estimated marginal means for the linear predictor based on a selected contrast
type, for which a set of contrasts for the factor is created. Let this set of contrasts define matrix
C used for testing the hypothesis C 0. An F statistic is used for testing given set of
contrasts for the factor as follows:

C T CV CT C

which has an asymptotic F distribution with degrees of freedom, where rank CV CT .
See “Method for computing degrees of freedom ” on p. 203 for details on computing the
denominator degrees of freedom. The p-values can be calculated accordingly. Note that adjusted
p-values based on multiple comparisons adjustments won’t be computed for the overall test.

Each row cT of matrix C is also tested separately. The estimate for the ith row is given by cT and
its standard error by cTV c . The corresponding 100(1 – α)% confidence interval is given by

cT

The test statistic for cT is

cT

It has an asymptotic t distribution. See “Method for computing degrees of freedom ” on p. 203
for details on computing the degrees of freedom. The p-values can be calculated accordingly. In
addition, adjusted p-values for multiple comparisons can also computed.

Estimated marginal means in the original scale

Estimated marginal means for the target are based on the original scale. As a conditional predictor
defined by Lane and Nelder (1982), estimated marginal means for the target are derived from
those for the linear predictor.

Calculating estimated marginal means for the target

The estimated marginal means for the target are defined as

L

202

Generalized linear mixed models algorithms

The variance of estimated marginal means for the target is

where is a r×r matrix and is the derivative of the inverse of
the link with respect to the jth value in and where is
from Table 19-4 on p. 190.

The 100(1 – α)% confidence interval for is given by

Note: is estimated marginal means for the proportion, not for the number of events when
events and trials variables are used for the binomial distribution.

Comparing estimated marginal means for the target

This is similar to comparing estimated marginal means for the linear predictor; just replace with
and with . For more information, see the topic “Estimated marginal means for the

linear predictor” on p. 200.

Multiple comparisons

The hypothesis can be tested using the multiple row hypotheses testing technique.
Let be the ith row vector of matrixC. The ith row hypothesis is . Testing is the
same as testing multiple non-redundant row hypotheses simultaneously, where R is the
number of non-redundant row hypotheses, and represents the ith non-redundant hypothesis. A
hypothesis is redundant if there exists another hypothesis such that .

Adjusted p-values. For each individual hypothesis , test statistics can be calculated. Let
denote the p-value for testing and denote the adjusted p-value. The conclusion from

multiple testing is, at level (the family-wise type I error),

reject if ;

reject if .

Several different methods to adjust p-values are provided here. Please note that if the adjusted
p-value is bigger than 1, it is set to 1 in all the methods.

Adjusted confidence intervals. Note that if confidence intervals are also calculated for the above
hypothesis, then adjusting confidence intervals is required to correspond to adjusted p-values.
The only item needed to be adjusted in the confidence intervals is the critical value from the
standard normal distribution. Assume that the original critical value is and the adjusted
critical value is .

203

Generalized linear mixed models algorithms

LSD (Least Significant Difference)

The adjusted p-values are the same as the original p-values:

The adjusted critical value is:

Sequential Bonferroni

The adjusted p-values are:

The adjusted critical values will correspond to the ordered adjusted p-values as follows:

if
if = for
if = for

Sequential Sidak

The adjusted p-values are:

The adjusted critical values will correspond to the ordered adjusted p-values as follows:

if
if for
if = for

where .

Method for computing degrees of freedom

Residual method

The value of degrees of freedom is given by X , where N is the effective sample size
and X is the design matrix of fixed effects.

204

Generalized linear mixed models algorithms

Satterthwaite’s approximation

First perform the spectral decomposition where Γ is an orthogonal matrix of
eigenvectors and D is a diagonal matrix of eigenvalues. If is the mth row of , is the
mth eigenvalues and

where and is the asymptotic covariance matrix of obtained from the
Hessian matrix of the objective function; that is, H . If

then the denominator degree of freedom is given by

Note that the degrees of freedom can only be computed when E>q.

Scoring
For GLMMs, predicted values and relevant statistics can be computed based on solutions of
random effects. PQL-type predictions use as the solution for the random effects to compute
predicted values and relevant statistics.

PQL-type predicted values and relevant statistics

Predicted value of the linear predictor

xT zT

Standard error of the linear predictor

= xTΣx zT z zT x

Predicted value of the mean

xT zT

For the binomial distribution with 0/1 binary target variable, the predicted category x is

x (or sucess) if
(or failure) otherwise

Approximate 100(1−α)% confidence intervals for the mean

205

Generalized linear mixed models algorithms

xT zT

Raw residual on the link function transformation

Raw residual on the original scale of the target

Pearson-type residual on the link function transformation

γ

where γ is the ith diagonal element of v γ and v γ A A where
is an n× 1 vector of PQL-type predicted values of the mean.

Pearson-type residual on the original scale of the target

γ

where γ is the ith diagonal element of y A A and .

Classification Table

Suppose that is the sum of the frequencies for the observations whose actual target
category is j (as row) and predicted target category is (as column), (note that J =
2 for binomial), then

where is indicator function.

Suppose that is the
th
element of the classification table, which is the row

percentage, then

206

Generalized linear mixed models algorithms

The percentage of total correct predictions of the model (or “overall percent correct”) is

Nominal multinomial distribution

The nominal multinomial distribution requires some extra notation and explanation.

Notation

The following notation is used throughout this section unless otherwise stated:

S Number of super subjects.
Number of cases in the sth super subject.

Nominal categorical target for the tth case in the sth super subject. Its category values
are denoted as 1, 2, and so on.

J The total number of categories for target.

Dummy vector of , T, where if ,
otherwise . The superscript T means the transpose of a matrix or vector.

y yT yT
T

T T T

Probability of category j for the tth case in the sth super subject; that is,
.

T

T T T

T T T

207

Generalized linear mixed models algorithms

Linear predictor value for category j of the tth case in the sth super subject.

T

T T T

(n (J−1)) × 1 vector of linear predictor. T
1

T T

p× 1 vector of predictor variables for the tth case in the sth super subject. The first
element is 1 if there is an intercept.

X (n (J−1)) × (J−1)p design matrix of fixed effects,
r× 1 vector of coefficients for the random effect corresponding to the tth case in the
sth super subject.

Z
Design matrix of random effects, , where ⊕ is the direct sum of matrices.

O n× 1 vector of offsets, , where is the offset value of
the tth case in the sth super subject. This can’t be the target (y) or one of the predictors
(X). The offset must be continuous.

1 , where 1 is a length q vector of 1.

p× 1 vector of unknown parameters for category j, , .
The first element in is the intercept for the category j, if there is one.

r × 1 vector of random effects for category j in the sth super subject, .

Random effects for the sth super subject, T T T
.

Scale weight of the tth case in the sth super subject. It does not have to be integers. If
it is less than or equal to 0 or missing, the corresponding case is not used.

ω
n× 1 vector of scale weight variable, ω T.
Frequency weight of the tth case in the sth super subject. If it is a non-integer value, it
is treated by rounding the value to the nearest integer. If it is less than 0.5 or missing,
the corresponding cases are not used.

f n× 1 vector of frequency count variable, T

N
Effective sample size, . If frequency count variable f is not used, N = n.

Model

The form of a generalized linear mixed model for nominal target with the random effects is

208

Generalized linear mixed models algorithms

where is the linear predictor; X is the design matrix for fixed effects; Z is the design matrix for
random effects; γ is a vector of random effects which are assumed to be normally distributed with
mean 0 and variance matrix G; is the logit link function such that

And its inverse function is

The variance of y, conditional on the random effects is

where T and R I which means that R-side effects

are not supported for the multinomial distribution. is set to 1.

Estimation

Linear mixed pseudo model

Similarly to “Linear mixed pseudo model ” on p. 192, we can obtain a weighted linear mixed
model

where v D y O and error terms ε D D with

D D
d

d
T

and

T

And block diagonal weight matrix is

209

Generalized linear mixed models algorithms

D D= D

The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which
are expressed as the functions of covariance parameters in θ, corresponding to the linear mixed
model for v are the following:

θ v V θ r θ TV θ r θ

θ v V θ r θ TV θ r θ XTV θ X

where V θ G θ R θ θ N denotes the effective sample
size, and denotes the total number of non-redundant parameters for .

The parameter can be estimated by linear mixed model using the objection function θ v or
θ v , and are computed as

T T

T

Iterative process

The doubly iterative process for the estimation of is the same as that for other distributions, if we
replace and with and O respectively, and set initial estimation
of as

For more information, see the topic “Iterative process ” on p. 194.

Post-estimation statistics

Wald confidence intervals

The Wald confidence intervals for covariance parameter estimates are described in “Wald
confidence intervals for covariance parameter estimates ” on p. 195.

Statistics for estimates of fixed and random effects

Similarly to “Statistics for estimates of fixed and random effects ” on p. 196, the approximate
covariance matrix of is

210

Generalized linear mixed models algorithms

Where with = T , and

Statistics for estimates of fixed and random effects on original scale

If the fixed effects are transformed when constructing matrix X, then the final estimates of ,
, , and above are based on transformed scale, denoted as , , and ,

respectively. They would be transformed back on the original scale, denoted as , , ,
and , respectively, as follows:

T

T

where A .

Estimated covariance matrix of the fixed effects parameters

Model-based estimated covariance

Robust estimated covariance of the fixed effects parameters

211

Generalized linear mixed models algorithms

where , and is a part of corresponding to the sth super subject.

Standard error for estimates in fixed effects and predictions in random effects

Let denote a non-redundant fixed effects parameter estimate. Its standard error is the square
root of the diagonal element of

The standard error for redundant parameter estimates is set to system missing value.

Similarly, let denote the ith random effects prediction. Its standard error is the square root
of the ith diagonal element of :

Test statistics for estimates in fixed effects and predictions in random effects

Test statistics for estimates in fixed effects and predictions in random effects are as those described
in “Statistics for estimates of fixed and random effects ” on p. 196.

Wald confidence intervals for estimates in fixed effects and random effects predictions

Wald confidence intervals are as those described in “Statistics for estimates of fixed and random
effects ” on p. 196.

Testing

Information criteria

These are as described in “Goodness of fit ” on p. 199.

Tests of fixed effects

For each effect specified in the model, a type III test matrix L is constructed from
the generating matrix , where and

. Then the test statistic is

where and L. The statistic has an approximate F distribution.
The numerator degrees of freedom is and the denominator degree of freedom is . For more
information, see the topic “Method for computing degrees of freedom ” on p. 203.

212

Generalized linear mixed models algorithms

Scoring

PQL-type predicted values and relevant statistics

predicted vector of the linear predictor

T z T

Estimated covariance matrix of the linear predictor

z z

z z

where is a diagonal block corresponding to the sth super subject, the approximate covariance
matrix of ; is a part of corresponding to the sth super subject.

The estimated standard error of the jth element in , , is the square root of the jth diagonal
element of ,

Predicted value of the probability for category j

Predicted category

x

If there is a tie in determining the predicted category, the tie will be broken by choosing the

category with the highest If there is still a tie, the one with the lowest

category number is chosen.

Approximate 100(1−α)% confidence intervals for the predicted probabilities

The covariance matrix of can be computed as

213

Generalized linear mixed models algorithms

where

...
...

...

with

then the confidence interval is

where is the jth diagonal element of and the estimated variance of
.

Ordinal multinomial distribution

The ordinal multinomial distribution requires some extra notation and explanation.

Notation

The following notation is used throughout this section unless otherwise stated:

S Number of super subjects.
Number of cases in the sth super subject.

Ordinal categorical target for the tth case in the sth super subject. Its category values
are denoted as consecutive integers from 1 to J.

J The total number of categories for target.

Indicator vector of , T, where if ,
otherwise . The superscript T means the transpose of a matrix or vector.

y yT yT
T

T T T

Cumulative target probability for category j for the tth case in the sth super subject;

λ
λ λT λT

T
, where λ λT λT

T
and λT ,

and
Probability of category j for the tth case in the sth super subject; that is,

and .

214

Generalized linear mixed models algorithms

T

T T T

T T T

Linear predictor value for category j of the tth case in the sth super subject.

T

T T T

(n (J−1)) × 1 vector of linear predictor. T
1

T T

p× 1 vector of predictors for the tth case in the sth super subject.

r× 1 vector of coefficients for the random effect corresponding to the tth case in the
sth super subject.

O n× 1 vector of offsets, , where is the offset value of
the tth case in the sth super subject. This can’t be the target (y) or one of the predictors
(X). The offset must be continuous.

1 , where 1 is a length q vector of 1’s.

ψ
J−1 × 1 vector of threshold parameters, ψ T and

p× 1 vector of unknown parameters.

(J−1+p) × 1 vector of all parameters Β= ψT βT
T

Scale weight of the tth case in the sth super subject. It does not have to be integers. If
it is less than or equal to 0 or missing, the corresponding case is not used.

ω
n× 1 vector of scale weight variable, ω T.
Frequency weight of the ith case in the sth super subject. If it is a non-integer value, it
is treated by rounding the value to the nearest integer. If it is less than 0.5 or missing,
the corresponding cases are not used.

f n× 1 vector of frequency count variable, T

N
Effective sample size, . If frequency count variable f is not used, N = n.

A B
direct (or Kronecker) product of A and B, which is equal to

B B B
B B B
B B B

m× 1 vector of 1’s; T

Model

The form of a generalized linear mixed model for an ordinal target with random effects is

λ γ

215

Generalized linear mixed models algorithms

where is the expanded linear predictor vector; λ is the expanded cumulative target probability
vector; is a cumulative link function; X is the expanded design matrix for fixed effects
arranged as follows

X
X
...
X

X
X
...

X

X I xT

xT
...

...
xT

...
...

...

Β= ψT βT
T

ψ ψ βT
T
Z is the expanded design matrix for random effects

arranged as follows

Z
Z 0 0
0 . . . 0
0 0 Z

Z
Z
...

Z

Z zT ,

γ is a vector of random effects which are assumed to be normally distributed with mean 0 and
variance matrix G.

The variance of y, conditional on the random effects is

where T and R I which means that R-side effects

are not supported for the multinomial distribution. is set to 1.

216

Generalized linear mixed models algorithms

Estimation

Linear mixed pseudo model

Similarly to “Linear mixed pseudo model ” on p. 192, we can obtain a weighted linear mixed
model

where v D y O and error terms ε D D T with

D D
d

d
d
d

D
...

. . .

and

T

And block diagonal weight matrix is

DT D

The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which
are expressed as the functions of covariance parameters in , corresponding to the linear mixed
model for are the following:

θ v V θ r θ TV θ r θ

θ v V θ r θ TV θ r θ XTV θ X

where V θ G θ R θ θ N denotes the effective sample
size, and denotes the total number of non-redundant parameters for .

The parameter can be estimated by linear mixed model using the objection function θ v or
θ v , and are computed as

217

Generalized linear mixed models algorithms

T T

T

Iterative process

The doubly iterative process for the estimation of is the same as that for other distributions, if we
replace and with and O respectively, and set initial estimation
of as

For more information, see the topic “Iterative process ” on p. 194.

Post-estimation statistics

Wald confidence intervals

The Wald confidence intervals for covariance parameter estimates are described in “Wald
confidence intervals for covariance parameter estimates ” on p. 195.

Statistics for estimates of fixed and random effects

is the approximate covariance matrix of and in should be

D D T

Statistics for estimates of fixed and random effects on original scale

If the fixed effects are transformed when constructing matrix X, then the final estimates of B,
denoted as . They would be transformed back on the original scale, denoted as , as follows:

B ψ
β

...

β

A ψ
β AB

where

A I 1 TS

S

218

Generalized linear mixed models algorithms

Estimated covariance matrix of the fixed effects parameters

The estimated covariance matrix of the fixed effects parameters are described in “Statistics for
estimates of fixed and random effects ” on p. 196.

Standard error for estimates in fixed effects and predictions in random effects

Let be threshold parameter estimates and denote
non-redundant regression parameter estimates. Their standard errors are the square root of the
diagonal elements of Σm or Σr: and , respectively, where

is the ith diagonal element of Σm or Σr.

Standard errors for predictions in random effects are as those described in “Statistics for estimates
of fixed and random effects ” on p. 196.

Test statistics for estimates in fixed effects and predictions in random effects

The hypotheses are tested for threshold parameters using the
t statistic:

Test statistics for estimates in fixed effects and predictions in random effects are otherwise as
those described in “Statistics for estimates of fixed and random effects ” on p. 196.

Wald confidence intervals for estimates in fixed effects and random effects predictions

The 100(1 – α)% Wald confidence interval for threshold parameter is given by

Wald confidence intervals are otherwise as those described in “Statistics for estimates of fixed and
random effects ” on p. 196.

The degrees of freedom can be computed by the residual method or Satterthwaite method. For the
residual method, . For the Satterthwaite method, it should be similar to that
described in “Method for computing degrees of freedom ” on p. 203.

Testing

Information criteria

These are as described in “Goodness of fit ” on p. 199, with the following modifications.

219

Generalized linear mixed models algorithms

For REPL, the value of N is chosen to be effective sample size minus number of non-redundant

parameters in fixed effects, , where is the number of non-redundant

parameters in fixed effects, and d is the number of covariance parameters.

For PL, the value of N is effective sample size, , and d is the number of number of

non-redundant parameters in fixed effects, , plus the number of covariance parameters.

Tests of fixed effects

For each effect specified in the model excluding threshold parameters, a type I or III test
matrix Li is constructed and H0: LiB = 0 is tested. Construction of matrix Li is based on
matrix H XT X XT X , where X 1 X and such that LiB is estimable.
Note that LiB is estimable if and only if L0 L0H , where L0 l L β . Construction
of L0 considers a partition of the more general test matrix L L ψ L β first, where
L ψ l l consists of columns corresponding to the threshold parameters and
L β is the part of Li corresponding to regression parameters, then replace L ψ with their

sum l l to get L0.

Note that the threshold-parameter effect is not tested for both type I and III analyses and
construction of Li is the same as in GENLIN. For more information, see the topic “Default Tests
of Model Effects ” on p. 182. Similarly, if the fixed effects are transformed when constructing
matrix X, then H should be constructed based on transformed values.

Scoring

PQL-type predicted values and relevant statistics

predicted vector of the linear predictor

Estimated covariance matrix of the linear predictor

T Z T Z T T T

where is a diagonal block corresponding to the sth super subject, the approximate covariance
matrix of ; is a part of corresponding to the sth super subject.

The estimated standard error of the jth element in , , is the square root of the jth diagonal
element of ,

220

Generalized linear mixed models algorithms

Predicted value of the cumulative probability for category j

=

with

Predicted category

x

where

If there is a tie in determining the predicted category, the tie will be broken by choosing the

category with the highest If there is still a tie, the one with the lowest

category number is chosen.

Approximate 100(1−α)% confidence intervals for the cumulative predicted probabilities

If either endpoint in the argument is outside the valid range for the inverse link function, the
corresponding confidence interval endpoint is set to a system missing value.

The degrees of freedom can be computed by the residual method or Satterthwaite method.
For the residual method, . For Satterthwaite’s approximation,
the L matrix is constructed by X Z where X and Z are the jth rows of
X and Z , respectively, corresponding to the jth category. For example, the L matrix is

xT zT for the 1st category. The computation should then be
similar to that described in “Method for computing degrees of freedom ” on p. 203.

References
Agresti, A., J. G. Booth, and B. Caffo. 2000. Random-effects Modeling of Categorical Response
Data. Sociological Methodology, 30, 27–80.

Diggle, P. J., P. Heagerty, K. Y. Liang, and S. L. Zeger. 2002. The analysis of Longitudinal
Data, 2 ed. Oxford: Oxford University Press.

Fahrmeir, L., and G. Tutz. 2001. Multivariate Statistical Modelling Based on Generalized Linear
Models, 2nd ed. New York: Springer-Verlag.

Hartzel, J., A. Agresti, and B. Caffo. 2001. Multinomial Logit Random Effects Models. Statistical
Modelling, 1, 81–102.

Hedeker, D. 1999. Generalized Linear Mixed Models. In: Encyclopedia of Statistics in Behavioral
Science, B. Everitt, and D. Howell, eds. London: Wiley, 729–738.

221

Generalized linear mixed models algorithms

McCulloch, C. E., and S. R. Searle. 2001. Generalized, Linear, and Mixed Models. New York:
John Wiley and Sons.

Skrondal, A., and S. Rabe-Hesketh. 2004. Generalized Latent Variable Modeling: Multilevel,
Longitudinal, and Structural Equation Models. Boca Raton, FL: Chapman & Hall/CRC.

Tuerlinckx, F., F. Rijmen, G. Molenberghs, G. Verbeke, D. Briggs, W. Van den Noortgate, M.
Meulders, and P. De Boeck. 2004. Estimation and Software. In: Explanatory Item Response
Models: A Generalized Linear and Nonlinear Approach, P. De Boeck, and M. Wilson, eds.
New York: Springer-Verlag, 343–373.

Wolfinger, R., and M. O'Connell. 1993. Generalized Linear Mixed Models: A Pseudo-Likelihood
Approach. Journal of Statistical Computation and Simulation, 4, 233–243.

Wolfinger, R., R. Tobias, and J. Sall. 1994. Computing Gaussian likelihoods and their derivatives
for general linear mixed models. SIAM Journal on Scientific Computing, 15:6, 1294–1310.

Imputation of Missing Values
The following methods are available for imputing missing values:

Fixed. Substitutes a fixed value (either the field mean, midpoint of the range, or a constant that
you specify).

Random. Substitutes a random value based on a normal or uniform distribution.

Expression. Allows you to specify a custom expression. For example, you could replace values
with a global variable created by the Set Globals node.

Algorithm. Substitutes a value predicted by a model based on the C&RT algorithm. For each field
imputed using this method, there will be a separate C&RT model, along with a Filler node that
replaces blanks and nulls with the value predicted by the model. A Filter node is then used to
remove the prediction fields generated by the model.

Details of each imputation method are provided below.

Imputing Fixed Values

For fixed value imputation, three options are available:

Mean. Substitutes the mean of the valid training data values for the field being imputed,

where is the value of field x for record i, excluding missing values, and is the number of
records with valid values for field x.

Midrange. Substitutes the value halfway between the minimum and maximum valid values for the
field being imputed,

where and are the minimum and maximum observed valid values for field x,
respectively.

Constant. Substitutes the user-specified constant value.

For imputing fixed missing values in set or flag fields, only the Constant option is available.

Note: Using fixed imputed values for scale fields will artificially reduce the variance for that field,
which can interfere with model building using the field. If you impute using fixed values and
find that the field no longer has the expected effect in a model, consider imputing with a different
method that has a smaller impact on the field’s variance.

© Copyright IBM Corporation 1994, 2016. 223

224

Imputation of Missing Values

Imputing Random Values
For random value imputation, the options depend on the type of the field being imputed.

Range Fields

For range fields, you can select from a uniform distribution or a normal distribution.

Uniform distribution. Values are generated randomly on the inverval , where each value
in the interval is equally likely to be generated.

Normal distribution. Values are generated from a normal distribution with mean and variance
, where and are derived from the valid observed values of x in the training data,

Set Fields

For set fields, random imputed values are selected from the list of observed values. By default, the
probabilities of all values are equal,

for the j possible values of k. The Equalize button will return any modified values to the default
equal probabilities.

If you select Based on Audit, probabilities are assigned proportional to the relative frequencies of
the values in the training data

where is the number of records for which .

If you select Normalize, values are adjusted to sum to 1.0, maintaining the same relative
proportions,

This is useful if you want to enter your own weights for generated random values, but they aren’t
expressed as probabilities. For example, if you know you want twice as many No values as Yes
values, you can enter 2 for No and 1 for Yes and click Normalize. Normalization will adjust the
values to 0.667 and 0.333, preserving the relative weights but expressing them as probabilities.

225

Imputation of Missing Values

Imputing Values Derived from an Expression

For expression-based imputation, imputed values are based on a user-specified CLEM expression.
The expression is evaluated just as it would be for a filler node. Note that some expressions
may return $null or other missing values, with the result that missing values may exist even
after imputation with this method.

Imputing Values Derived from an Algorithm

For the Algorithm method, a C&RT model is built for each field to be imputed, using all other
input fields as predictors. For each record that is imputed, the model for the field to be imputed
is applied to the record to produce a prediction, which is used as the imputed value. For more
information, see the topic “Overview of C&RT” on p. 59.

K-Means Algorithm

Overview

The k-means method is a clustering method, used to group records based on similarity of values
for a set of input fields. The basic idea is to try to discover k clusters, such that the records within
each cluster are similar to each other and distinct from records in other clusters. K-means is an
iterative algorithm; an initial set of clusters is defined, and the clusters are repeatedly updated until
no more improvement is possible (or the number of iterations exceeds a specified limit).

Primary Calculations

In building the k-means model, input fields are encoded to account for differences in measurement
scale and type, and the clusters are defined and updated to generate the final model. These
calculations are described below.

Field Encoding

Input fields are recoded before the values are input to the algorithm as described below.

Scaling of Range Fields

In most datasets, there’s a great deal of variability in the scale of range fields. For example,
consider age and number of cars per household. Depending on the population of interest, age
may take values up to 80 or even higher. Values for number of cars per household, however, are
unlikely to exceed three or four in the vast majority of cases.

If you use both of these fields in their natural scale as inputs for a model, the age field is
likely to be given much more weight in the model than number of cars per household, simply
because the values (and therefore the differences between records) for the former are so much
larger than for the latter.

To compensate for this effect of scale, range fields are transformed so that they all have the
same scale. In IBM® SPSS® Modeler, range fields are rescaled to have values between 0 and 1.
The transformation used is

where x’i is the rescaled value of input field x for record i, xi is the original value of x for record i,
xmin is the minimum value of x for all records, and xmax is the maximum value of x for all records.

Numeric Coding of Symbolic Fields

For modeling algorithms that base their calculations on numerical differences between records,
symbolic fields pose a special challenge. How do you calculate a numeric difference for two
categories?

© Copyright IBM Corporation 1994, 2016. 227

228

K-Means Algorithm

A common approach to the problem, and the approach used in IBM® SPSS® Modeler, is to
recode a symbolic field as a group of numeric fields with one numeric field for each category or
value of the original field. For each record, the value of the derived field corresponding to the
category of the record is set to 1.0, and all the other derived field values are set to 0.0. Such
derived fields are sometimes called indicator fields, and this recoding is called indicator coding.

For example, consider the following data, where x is a symbolic field with possible values A,
B, and C:

Record # X X1’ X2’ X3’
1 B 0 1 0
2 A 1 0 0
3 C 0 0 1

In this data, the original set field x is recoded into three derived fields x1’, x2’, and x3’. x1’ is an
indicator for category A, x2’ is an indicator for category B, and x3’ is an indicator for category C.

Applying the Set Encoding Value

After recoding set fields as described above, the algorithm can calculate a numerical difference
for the set field by taking the differences on the k derived fields (where k is the number of
categories in the original set). However, there is an additional problem. For algorithms that
use the Euclidean distance to measure differences between records, the difference between two
records with different values i and j for the set is

where J is the number of categories, and xkn is value of the derived indicator for category k for
record n. But the values will be different on two of the derived indicators, xi and xj. Thus, the
sum will be , which is larger than 1.0. That means that
based on this coding, set fields will have more weight in the model than range fields that are
rescaled to 0-1 range.

To account for this bias, k-means applies a scaling factor to the derived set fields, such that a
difference of values on a set field produces a Euclidean distance of 1.0. The default scaling
factor is . You can see that this value gives the desired result by inserting the value
into the distance formula:

The user can specify a different scaling factor by changing the Encoding value for sets parameter in
the K-Means node expert options.

229

K-Means Algorithm

Encoding of Flag Fields

Flag fields are a special case of symbolic fields. However, because they have only two values in
the set, they can be handled in a slightly more efficient way than other set fields. Flag fields are
represented by a single numeric field, taking the value of 1.0 for the “true” value and 0.0 for the
“false” value. Blanks for flag fields are assigned the value 0.5.

Model Parameters

The primary calculation in k-means is an iterative process of calculating cluster centers and
assigning records to clusters. The primary steps in the procedure are:

1. Select initial cluster centers

2. Assign each record to the nearest cluster

3. Update the cluster centers based on the records assigned to each cluster

4. Repeat steps 2 and 3 until either:
 In step 3, there is no change in the cluster centers from the previous iteration, or
 The number of iterations exceeds the maximum iterations parameter

Clusters are defined by their centers. A cluster center is a vector of values for the (encoded) input
fields. The vector values are based on the mean values for records assigned to the cluster.

Note: The structure of the model can differ depending on the input order of the records. To
minimize the input order effect, randomly order the records before building the model.

Selecting Initial Cluster Centers

The user specifes k, the number of clusters in the model. Initial cluster centers are chosen using a
maximin algorithm:

1. Initialize the first cluster center as the values of the input fields for the first data record.

2. For each data record, compute the minimum (Euclidean) distance between the record and each
defined cluster center.

3. Select the record with the largest minimum distance from the defined cluster centers. Add a new
cluster center with values of the input fields for the selected record.

4. Repeat steps 2 and 3 until k cluster centers have been added to the model.

Once initial cluster centers have been chosen, the algorithm begins the iterative assign/update
process.

Assigning Records to Clusters

In each iteration of the algorithm, each record is assigned to the cluster whose center is closest.
Closeness is measured by the usual squared Euclidean distance

230

K-Means Algorithm

where Xi is the vector of encoded input fields for record i, Cj is the cluster center vector for cluster
j, Q is the number of encoded input fields, xqi is the value of the qth encoded input field for the ith
record, and cqj is the value of the qth encoded input field for the jth record.

For each record, the distance between the record and each cluster center is calculated, and the
cluster center whose distance from the record is smallest is assigned as the record’s new cluster.
When all records have been assigned, the cluster centers are updated.

Updating Cluster Centers

After records have been (re)assigned to their closest clusters, the cluster centers are updated. The
cluster center is calculated as the mean vector of the records assigned to the cluster:

where the components of the mean vector are calculated in the usual manner,

where nj is the number of records in cluster j, xqi(j) is the qth encoded field value for record i
which is assigned to cluster j.

Blank Handling

In k-means, blanks are handled by substituting “neutral” values for the missing ones. For range
and flag fields with missing values (blanks and nulls), the missing value is replaced with 0.5. For
set fields, the derived indicator field values are all set to 0.0.

Effect of Options

There are several options that affect the way the model calculations are carried out.

Maximum Iterations

The maximum iterations parameter controls how long the algorithm will continue searching
for a stable cluster solution. The algorithm will repeat the classify/update cycle no more than
the number of times specified. If and when this limit is reached, the algorithm terminates and
produces the current set of clusters as the final model.

231

K-Means Algorithm

Error Tolerance

The error tolerance parameter provides another means of controlling how long the algorithm will
continue searching for a stable cluster solution. The maximum change in cluster means for an
iteration t is calculated as

where Cj(t) is the cluster center vector for the jth cluster at iteration t and Cj(t - 1) is the cluster
center vector at the previous iteration. If the maximum change is less than the specified tolerance
for the current iteration, the algorithm terminates and produces the current set of clusters as
the final model.

Encoding Value for Sets

The encoding value for sets parameter controls the relative weighting of set fields in the k-means
algorithm. The default value of provides an equal weighting between range fields
and set fields. To emphasize set fields more heavily, you can set the encoding value closer to 1.0;
to emphasize range fields more, set the encoding value closer to 0.0. For more information, see
the topic “Numeric Coding of Symbolic Fields” on p. 227.

Model Summary Statistics
Cluster proximities are calculated as the Euclidean distance between cluster centers,

Generated Model/Scoring
Generated k-means models provide predicted cluster memberships and distance from cluster
center for each record.

Predicted Cluster Membership

When assigning a new record with a predicted cluster membership, the Euclidean distance
between the record and each cluster center is calculated (in the same manner as for assigning
records during the model building phase), and the cluster center closest to the record is assigned as
the predicted cluster for the record.

Distances

The value of the distance field for each record, if requested, is calculated as the Euclidean
distance between the record and its assigned cluster center,

232

K-Means Algorithm

Blank Handling

In k-means, scoring records with a generated model handles blanks in the same way they are
handled during model building. For more information, see the topic “Blank Handling” on p. 230.

KNN Algorithms
Nearest Neighbor Analysis is a method for classifying cases based on their similarity to other
cases. In machine learning, it was developed as a way to recognize patterns of data without
requiring an exact match to any stored patterns, or cases. Similar cases are near each other and
dissimilar cases are distant from each other. Thus, the distance between two cases is a measure
of their dissimilarity.

Cases that are near each other are said to be “neighbors.” When a new case (holdout) is presented,
its distance from each of the cases in the model is computed. The classifications of the most
similar cases – the nearest neighbors – are tallied and the new case is placed into the category that
contains the greatest number of nearest neighbors.

You can specify the number of nearest neighbors to examine; this value is called k. The pictures
show how a new case would be classified using two different values of k. When k = 5, the new
case is placed in category 1 because a majority of the nearest neighbors belong to category 1.
However, when k = 9, the new case is placed in category 0 because a majority of the nearest
neighbors belong to category 0.

Nearest neighbor analysis can also be used to compute values for a continuous target. In this
situation, the average or median target value of the nearest neighbors is used to obtain the
predicted value for the new case.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Y Optional 1×N vector of responses with element , where n=1,...,N
indexes the cases.

X0 P0×N matrix of features with element , where p=1,...,P0 indexes the
features and n=1,...,N indexes the cases.

X P×N matrix of encoded features with element , where p=1,...,P
indexes the features and n=1,...,N indexes the cases.

P Dimensionality of the feature space; the number of continuous features
plus the number of categories across all categorical features.

N Total number of cases.
The number of cases with Y = j, where Y is a response variable with
J categories
The number of cases which belong to class j and are correctly classified
as j.
The total number of cases which are classified as j.

Preprocessing

Features are coded to account for differences in measurement scale.

© Copyright IBM Corporation 1994, 2016. 233

234

KNN Algorithms

Continuous

Continuous features are optionally coded using adjusted normalization:

where is the normalized value of input feature p for case n, is the original value of the
feature for case n, is the minimum value of the feature for all training cases, and

is the maximum value for all training cases.

Categorical

Categorical features are always temporarily recoded using one-of-c coding. If a feature has
c categories, then it is is stored as c vectors, with the first category denoted (1,0,...,0), the next
category (0,1,0,...,0), ..., and the final category (0,0,...,0,1).

Training

Training a nearest neighbor model involves computing the distances between cases based upon
their values in the feature set. The nearest neighbors to a given case have the smallest distances
from that case. The distance metric, choice of number of nearest neighbors, and choice of the
feature set have the following options.

Distance Metric

We use one of the following metrics to measure the similarity of query cases and their nearest
neighbors.

Euclidean Distance. The distance between two cases is the square root of the sum, over all
dimensions, of the weighted squared differences between the values for the cases.

City Block Distance. The distance between two cases is the sum, over all dimensions, of the
weighted absolute differences between the values for the cases.

235

KNN Algorithms

The feature weight is equal to 1 when feature importance is not used to weight distances;
otherwise, it is equal to the normalized feature importance:

See “Output Statistics ” for the computation of feature importance .

Crossvalidation for Selection of k

Cross validation is used for automatic selection of the number of nearest neighbors, between a
minimum and maximum . Suppose that the training set has a cross validation variable
with the integer values 1,2,..., V. Then the cross validation algorithm is as follows:

E For each , compute the average error rate or sum-of square error of k:
, where is the error rate or sum-of square error when we apply the Nearest

Neighbor model to make predictions on the cases with ; that is, when we use the other
cases as the training dataset.

E Select the optimal k as: .

Note: If multiple values of k are tied on the lowest average error, we select the smallest k among
those that are tied.

Feature Selection

Feature selection is based on the wrapper approach of Cunningham and Delany (2007) and uses
forward selection which starts from features which are entered into the model. Further
features are chosen sequentially; the chosen feature at each step is the one that causes the largest
decrease in the error rate or sum-of squares error.

Let represent the set of J features that are currently chosen to be included, represents the
set of remaining features and represents the error rate or sum-of-squares error associated
with the model based on .

The algorithm is as follows:

E Start with features.

E For each feature in , fit the k nearest neighbor model with this feature plus the existing features
in and calculate the error rate or sum-of square error for each model. The feature in whose
model has the smallest error rate or sum-of square error is the one to be added to create .

E Check the selected stopping criterion. If satisfied, stop and report the chosen feature subset.
Otherwise, J=J+1 and go back to the previous step.

Note: the set of encoded features associated with a categorical predictor are considered and added
together as a set for the purpose of feature selection.

236

KNN Algorithms

Stopping Criteria

One of two stopping criteria can be applied to the feature selection algorithm.

Fixed number of features. The algorithm adds a fixed number of features, , in addition to those
forced into the model. The final feature subset will have features. may be
user-specified or computed automatically; if computed automatically the value is

When this is the stopping criterion, the feature selection algorithm stops when features
have been added to the model; that is, when , stop and report as the chosen
feature subset.

Note: if , no features are added and with is reported as the chosen
feature subset.

Change in error rate or sum of squares error. The algorithm stops when the change in the absolute
error ratio indicates that the model cannot be further improved by adding more features.
Specifically, if or and

where is the specified minimum change, stop and report as the chosen feature subset.

If and

stop and report as the chosen feature subset.

Note: if for , no features are added and with is reported as
the chosen feature subset.

Combined k and Feature Selection

The following method is used for combined neighbors and features selection.

1. For each k, use the forward selection method for feature selection.

2. Select the k, and accompanying feature set, with the lowest error rate or the lowest sum-of-squares
error.

Blank Handling
All records with missing values for any input or output field are excluded from the estimation of
the model.

237

KNN Algorithms

Output Statistics
The following statistics are available.

Percent correct for class j

Overall percent for class j

Intersection of Overall percent and percent correct

Error rate of classification

Sum-of-Square Error for continuous response

where is the estimated value of .

Feature Importance

Suppose there are in the model from the forward selection
process with the error rate or sum-of-squares error e. The importance of feature in the
model is computed by the following method.

E Delete the feature from the model, make predictions and evaluate the error rate or
sum-of-squares error based on features .

E Compute the error ratio .

The feature importance of is

238

KNN Algorithms

Scoring

After we find the k nearest neighbors of a case, we can classify it or predict its response value.

Categorical response

Classify each case by majority vote of its k nearest neighbors among the training cases.

E If multiple categories are tied on the highest predicted probability, then the tie should be broken by
choosing the category with largest number of cases in training set.

E If multiple categories are tied on the largest number of cases in the training set, then choose the
category with the smallest data value among the tied categories. In this case, categories are
assumed to be in the ascending sort or lexical order of the data values.

We can also compute the predicted probability of each category. Suppose is the number of
cases of the jth category among the k nearest neighbors. Instead of simply estimating the predicted
probability for the jth category by , we apply a Laplace correction as follows:

where J is the number of categories in the training data set.

The effect of the Laplace correction is to shrink the probability estimates towards to 1/J when the
number of nearest neighbors is small. In addition, if a query case has k nearest neighbors with the
same response value, the probability estimates are less than 1 and larger than 0, instead of 1 or 0.

Continuous response

Predict each case using the mean or median function.

Mean function. , where is the index set of those cases
that are the nearest neighbors of case n and is the value of the continuous response variable
for case m.

Median function. Suppose that are the values of the continuous response
variable, and we arrange from the lowest value to the highest value and
denote them as , then the median is

is odd

is even

Blank Handling

Records with missing values for any input field cannot be scored and are assigned a predicted
value and probability value(s) of $null$.

239

KNN Algorithms

References

Arya, S., and D. M. Mount. 1993. Algorithms for fast vector quantization. In: Proceedings of the
Data Compression Conference 1993, , 381–390.

Cunningham, P., and S. J. Delaney. 2007. k-Nearest Neighbor Classifiers. Technical Report
UCD-CSI-2007-4, School of Computer Science and Informatics, University College Dublin,
Ireland, , – .

Friedman, J. H., J. L. Bentley, and R. A. Finkel. 1977. An algorithm for finding best matches in
logarithm expected time. ACM Transactions on Mathematical Software, 3, 209–226.

Kohonen Algorithms

Overview

Kohonen models (Kohonen, 2001) are a special kind of neural network model that performs
unsupervised learning. It takes the input vectors and performs a type of spatially organized
clustering, or feature mapping, to group similar records together and collapse the input space
to a two-dimensional space that approximates the multidimensional proximity relationships
between the clusters.

The Kohonen network model consists of two layers of neurons or units: an input layer and
an output layer. The input layer is fully connected to the output layer, and each connection has
an associated weight. Another way to think of the network structure is to think of each output
layer unit having an associated center, represented as a vector of inputs to which it most strongly
responds (where each element of the center vector is a weight from the output unit to the
corresponding input unit).

Primary Calculations

Field Encoding

Scaling of Range Fields

In most datasets, there’s a great deal of variability in the scale of range fields. For example,
consider age and number of cars per household. Depending on the population of interest, age
may take values up to 80 or even higher. Values for number of cars per household, however, are
unlikely to exceed three or four in the vast majority of cases.

If you use both of these fields in their natural scale as inputs for a model, the age field is
likely to be given much more weight in the model than number of cars per household, simply
because the values (and therefore the differences between records) for the former are so much
larger than for the latter.

To compensate for this effect of scale, range fields are transformed so that they all have the
same scale. In IBM® SPSS® Modeler, range fields are rescaled to have values between 0 and 1.
The transformation used is

where x’i is the rescaled value of input field x for record i, xi is the original value of x for record i,
xmin is the minimum value of x for all records, and xmax is the maximum value of x for all records.

Numeric Coding of Symbolic Fields

For modeling algorithms that base their calculations on numerical differences between records,
symbolic fields pose a special challenge. How do you calculate a numeric difference for two
categories?

© Copyright IBM Corporation 1994, 2016. 241

242

Kohonen Algorithms

A common approach to the problem, and the approach used in IBM® SPSS® Modeler, is to
recode a symbolic field as a group of numeric fields with one numeric field for each category or
value of the original field. For each record, the value of the derived field corresponding to the
category of the record is set to 1.0, and all the other derived field values are set to 0.0. Such
derived fields are sometimes called indicator fields, and this recoding is called indicator coding.

For example, consider the following data, where x is a symbolic field with possible values A,
B, and C:

Record # X X1’ X2’ X3’
1 B 0 1 0
2 A 1 0 0
3 C 0 0 1

In this data, the original set field x is recoded into three derived fields x1’, x2’, and x3’. x1’ is an
indicator for category A, x2’ is an indicator for category B, and x3’ is an indicator for category C.

Encoding of Flag Fields

Flag fields are a special case of symbolic fields. However, because they have only two values in
the set, they can be handled in a slightly more efficient way than other set fields. Flag fields are
represented by a single numeric field, taking the value of 1.0 for the “true” value and 0.0 for the
“false” value. Blanks for flag fields are assigned the value 0.5.

Model Parameters

In a Kohonen model, the parameters are represented as weights between input units and output
units, or alternately, as a cluster center associated with each output unit. Input records are
presented to the network, and the cluster centers are updated in a manner similar to that used in
building a k-means model, with an important difference: the clusters are arranged spatially in a
two-dimensional grid, and each record affects not only the unit (cluster) to which it is assigned
but also units within a neighborhood about the winning unit. For more information, see the
topic “Neighborhoods” on p. 243.

Training of the Kohonen network proceeds as follows:

E The network is initialized with small random weights.

E Input records are presented to the network in random order. As each record is presented, the
output unit with the closest center to the input vector is identified as the winning unit.For more
information, see the topic “Distances” on p. 243.

E The weights of the winning unit are adjusted to move the cluster center closer to the input vector.
For more information, see the topic “Weight Updates” on p. 243.

E If the neighborhood size is greater than zero, then other output units that are within the
neighborhood of the winning unit are also updated so their centers are closer to the input vector.

E At the end of each cycle, the learning rate parameter (eta) is updated.

243

Kohonen Algorithms

E This process repeats until one of the stopping criteria is met. Training proceeds in two phases,
a gross structure phase and a fine tuning phase. Typically the first phase has a relatively large
neighborhood size and large eta to learn the overall structure of the data, and the second phase
uses a smaller neighborhood and smaller eta to fine tune the cluster centers.

Distances

Distances in a Kohonen network are calculated as Euclidean distance between the encoded input
vector and the cluster center for the output unit,

where is the value of the kth input field for the ith record, and is the weight for the kth
input field on the jth output unit.

The activation of an output unit is simply the Euclidean distance between the output unit’s
weight vector (its center) and the input vector. Note that for Kohonen networks, the output unit
with the lowest activation is the winning unit. This is in contrast to other types of neural networks,
where higher activation represents stronger response.

Neighborhoods

The neighborhood function is based on the Chebychev distance, which considers only the
maximum distance on any single dimension:

where is the location of unit x on dimension i of the output grid, and is the location of
another unit y on the same dimension.

An output unit is considered to be in the neighborhood of another output unit if
, where n is the neighborhood size.

Neighborhood size remains constant during each phase, but different phases usually use
different neighborhood sizes. By default, for Phase 1 and for Phase 2.

Weight Updates

For the winning output node, and its neighbors if the neighborhood is > 0, the weights are
adjusted by adding a portion of the difference between the input vector and the current weight
vector. The magnitude of the change is determined by the learning rate parameter (eta). The
weight change is calculated as

where W is the weight vector for the output unit being updated, I is the input vector, and is the
learning rate parameter. In individual unit terms,

244

Kohonen Algorithms

where is the weight corresponding to input unit j for the output unit being updated, and is
the jth input unit.

Eta Decay

At the end of each cycle, the value of is updated. The value of generally decreases across
training cycles. The user can control the rate of decrease by selecting either linear or exponential
decay.

Linear decay. This is the default decay rate. When this option is selected, the value of decays in a
linear fashion, decreasing by a fixed amount each cycle, according to the formula

where is the initial eta value for the current phase, and is the low eta for the current
training phase, calculated as the lesser of the initial eta values for the current phase and the
following phase, and c is the number of cycles set for the current phase.

Exponential decay. When this option is selected, the value of decays in an exponential fashion,
decreasing by a fixed proportion each cycle, according to the formula

The value of has a minimum value of 0.0001 to prevent arithmetic errors in taking the
logarithm.

Blank Handling

In Kohonen networks, blanks are handled by substituting “neutral” values for the missing ones.
For range and flag fields with missing values (blanks and nulls), the missing value is replaced
with 0.5. For range fields, numeric values outside the range limits found in the field’s type
information are coerced to the type-defined range. For set fields, the derived indicator field
values are all set to 0.0.

Effect of Options

Stop on. By default, training executes the specified number of cycles for each phase. If the Time

option is selected, training stops when the elapsed time reaches the specified limit (or sooner if the
specified number of cycles for both phases is completed before the time limit is reached).

245

Kohonen Algorithms

Random seed. Sets the seed for the random number generator used to initialize the weights of the
new network as well as the order of presentation for training records. Select a fixed seed value to
create a reproducible network.

Generated Model/Scoring

Cluster Membership

Cluster membership for a new record is derived by presenting the input vector for the record
to the network and identifying the output neuron with the closest weight vector, as described
in Distances above. The predicted value is returned as the x and y coordinates of the winning
neuron in the output grid.

Blank Handling

Blank handling for scoring is the same as during model building. For more information, see the
topic “Blank Handling” on p. 244.

Linear modeling algorithms
Linear models predict a continuous target based on linear relationships between the target and
one or more predictors.

For algorithms on enhancing model accuracy, enhancing model stability, or working with very
large datasets, see “Ensembles Algorithms” on p. 125.

Notation

The following notation is used throughout this chapter unless otherwise stated:

n Number of distinct records in the dataset. It is an integer and .
p Number of parameters (including parameters for dummy variables but

excluding the intercept) in the model. It is an integer and .
Number of non-redundant parameters (excluding the intercept) currently in
the model. It is an integer and .
Number of non-redundant parameters currently in the model.

Number of effects excluding the intercept. It is an integer and

y target vector with elements .
f frequency weight vector.
g regression weight vector.
N

Effective sample size. It is an integer and . If there is no

frequency weight vector, N=n.
X design matrix with element . The rows represent the records

and the columns represent the parameters.
vector of unobserved errors.

vector of unknown parameters; . is the
intercept.

vector of parameter estimates.

b vector of standardized parameter estimates. It is the result of a
sweep operation on matrix R. is the standardized estimate of the intercept
and is equal to 0.

vector of predicted target values.

Weighted sample mean for ,

Weighted sample mean for y.

Weighted sample covariance between and , .

Weighted sample covariance between and y.

Weighted sample variance for y.

R weighted sample correlation matrix for X (excluding the
intercept, if it exists) and y.
The resulting matrix after a sweep operation whose elements are .

© Copyright IBM Corporation 1994, 2016. 247

248

Linear modeling algorithms

Model

Linear regression has the form

y Xβ ε

where ε follows a normal distribution with mean 0 and variance D , where
D . The elements of ε are independent with respect to each other.

Notes:

 X can be any combination of continuous and categorical effects.
 Constant columns in the design matrix are not used in model building.
 If n=1 or the target is constant, no model is built.

Missing values

Records with missing values are deleted listwise.

Least squares estimation

The coefficients are estimated by the least squares (LS) method. First, we transform the model
by pre-multiplying D as follows:

D y D Xβ D ε

so that the new unobserved error D ε follows a normal distribution 0 , where I is an
identity matrix and D . Then the least squares estimates of β can be
obtained from the following formula

β
D y D

T
D D

where F diag . Note that

D D
T

D D
TD D

T

where diag diag , so the closed form solution of is

T T

249

Linear modeling algorithms

is computed by applying sweep operations instead of the equation above. In addition, sweep
operations are applied to the transformed scale of X and y to achieve numerical stability.
Specifically, we construct the weighted sample correlation matrix R then apply sweep operations
to it. The R matrix is constructed as follows.

First, compute weighted sample means, variances and covariances among Xi, Xj,
and y :

Weighted sample means ofXi and y are and ;

Weighted sample covariance for Xi and Xj is ;

Weighted sample covariance for Xi and y is ;

Weighted sample variance for y is .

Second, compute weighted sample correlations , and .

Then the matrix R is

R ...
...

R R
RT

If the sweep operations are repeatedly applied to each row of , where contains the
predictors in the model at the current step, the result is

T T

The last column R R contains the standardized coefficient estimates; that is, .
Then the coefficient estimates, except the intercept estimate if there is an intercept in the model,
are:

Model selection

The following model selection methods are supported:
 None, in which no selection method is used and effects are force entered into the model. For

this method, the singularity tolerance is set to 1e−12 during the sweep operation.

250

Linear modeling algorithms

 Forward stepwise, which starts with no effects in the model and adds and removes effects one
step at a time until no more can be added or removed according to the stepwise criteria.

 Best subsets, which checks “all possible” models, or at least a larger subset of the possible
models than forward stepwise, to choose the best according to the best subsets criterion.

Forward stepwise

The basic idea of the forward stepwise method is to add effects one at a time as long as these
additions are worthy. After an effect has been added, all effects in the current model are checked
to see if any of them should be removed. Then the process continues until a stopping criterion
is met. The traditional criterion for effect entry and removal is based on their F-statistics and
corresponding p-values, which are compared with some specified entry and removal significance
levels; however, these statistics may not actually follow an F distribution so the results might be
questionable. Hence the following additional criteria for effect entry and removal are offered:
 Maximum adjusted R2;
 Minimum corrected Akaike information criterion (AICC); and
 Minimum average squared error (ASE) over the overfit prevention data

Candidate statistics

Some additional notations are needed describe the addition or removal of a continuous effect Xj or
categorical effect , where ℓ is the number of categories.

The number of non-redundant parameters of the eligible effect Xj or
.

The number of non-redundant parameters in the current model (including
the intercept).
The number of non-redundant parameters in the resulting model (including
the intercept). Note that for entering an effect

for removing an effect
The weighted residual sum of squares for the current model.

The weighted residual sum of squares for the resulting model after entering
the effect.
The weighted residual sum of squares for the resulting model after removing
the effect.
The last diagonal element in the current R matrix.

The last diagonal element in the resulting matrix.

F statistics. The F statistics for entering or removing an effect from the current model are:

251

Linear modeling algorithms

and their corresponding p-values are:

Adjusted R-squared. The adjusted R2 value for entering or removing an effect from the current
model is:

adj.

Corrected Akaike Information Criterion (AICC). The AICC value for entering or removing an effect
from the current model is:

Average Squared Error (ASE). The ASE value for entering or removing an effect from the current
model is:

where x are the predicted values of yt and T is the number of distinct testing cases in
the overfit prevention set.

The Selection Process

There are slight variations in the selection process, depending upon the model selection criterion:
 The F statistic criterion is to select an effect for entry (removal) with the minimum (maximum)

p-value and continue doing it until the p-values of all candidates for entry (removal) are equal
to or greater than (less than) a specified significance level.

 The other three criteria are to compare the statistic (adjusted R2, AICC or ASE) of the
resulting model after entering (removing) an effect with that of the current model. Selection
stops at a local optimal value (a maximum for the adjusted R2 criterion and a minimum
for the AICC and ASE).

The following additional definitions are needed for the selection process:

FLAG A index vector which records the status of each effect. FLAGi =
1 means the effect i is in the current model, FLAGi = 0 means it is not.

denotes the number of effects with FLAGi = 1.
MAXSTEP The maximum number of iteration steps. The default value is .
MAXEFFECT The maximum number of effects (excluding intercept if exists). The default

value is .

252

Linear modeling algorithms

Pin The significance level for effect entry when the F-statistic criterion is used.
The default is 0.05.

Pout The significance level for effect removal when the F statistic criterion is
used. The default is 0.1.
The F statistic change. It is or for entering or removing
an effect Xj (here Xj could represent continuous or categorical for simpler
notation).
The corresponding p-value for .

MSCcurrent The adjusted R2, AICC, or ASE value for the current model.

1. Set and iter = 0. The initial model is . If the adjusted R2, AICC, or ASE
criterion is used, compute the statistic for the initial model and denote it asMSCcurrent.

2. If , iter ≤ MAXSTEP and , go to the
next step; otherwise stop and output the current model .

3. Based on the current model, for every effect j eligible for entry (see Condition below),

If FC (the F statistic criterion) is used, compute and ;

If MSC (the adjusted R2, AICC, or ASE criterion) is used, compute MSCj.

4. If FC is used, choose the effect and if < Pin, enter to the
current model.

If MSC is used, choose the effect and if < ,
enter to the current model. (For the adjusted R2 criterion, replace min with max and reverse
the inequality)

If the inequality is not satisfied, stop and output the current model.

5. If the model with the new effect is the same as any previously obtained model, stop and output the
current model; otherwise update the current model by doing the sweep operation on corresponding
row(s) and column(s) associated with in the current R matrix. Set and iter
= iter + 1.

If FC is used, let and ;

If MSC is used, let .

6. For every effect k in the current model; that is, ,

If FC is used, compute and ;

If MSC is used, compute MSCk.

7. If FC is used, choose the effect and if > Pout, remove
from the current model.

If MSC is used, choose the effect and if < ,
remove from the current model. (For the adjusted R2 criterion, replace min with max and
reverse the inequality)

If the inequality is met, go to the next step; otherwise go back to step 2.

253

Linear modeling algorithms

8. If the model with the effect removed is the same as any previously obtained model, stop and
output the current model; otherwise update the current model by doing the sweep operation
on corresponding row(s) and column(s) associated with in the current R matrix. Set

and iter = iter + 1.

If FC is used, let and ;

If AC is used, let . Then go back to step 6.

Condition. In order for effect j to be eligible for entry into the model, the following conditions
must be met:

For continuous a effect Xj , ; (t is the singularity tolerance with a value of 1e−4)

For categorical effect , ;

where t is the singularity tolerance, and and are diagonal elements in the
current R matrix (before entering).

For each continuous effect Xk that is currently in the model, .

For each categorical effect with levels that is currently in the model,
.

where and are diagonal elements in the resulting R matrix; that is, the
results after doing the sweep operation on corresponding row(s) and column(s) associated with Xk
or in the current R matrix. The above condition is imposed so that entry of the effect
does not reduce the tolerance of other effects already in the model to unacceptable levels.

Best subsets

Stepwise methods search fewer combinations of sub-models and rarely select the best one, so
another option is to check all possible models and select the “best” based upon some criterion.
The available criteria are the maximum adjusted R2, minimum AICC, and minimum ASE over
the overfit prevention set.

Since there are free effects, we do an exhaustive search over models, which include
intercept-only model (). Because the number of calculations increases exponentially with
, it is important to have an efficient algorithm for carrying out the necessary computations.

However, if is too large, it may not be practical to check all of the possible models.

We divide the problem into 2 tiers in terms of the number of effects:
 when , we search all possible subsets
 when > 20, we apply a hybrid method which combines the forward stepwise method and

the all possible subsets method.

254

Linear modeling algorithms

Searching All Possible Subsets

An efficient method that minimizes the number of sweep operations on the R matrix (Schatzoff
1968), is applied to traverse all the models and outlined as follows:

Each sweep step(s) on an effect results in a model. So models can be obtained
through a sequence of exactly sweeps on effects. Assuming that the all possible
models on effects can be obtained in a sequence of exactly sweeps
on the first pivotal effects, and sweeping on the last effect will produce a new
model which adds the last effect to the model produced by the sequence , then
repeating the sequence will produce another distinct models (including
the last effect). It is a recursive algorithm for constructing the sequence; that is,

and so on.

The sequence of models produced is demonstrated in the following table:

k Sk Sequence of models produced
0 0 Only intercept
1 1 (1)
2 121 (1),(12),(2)
3 1213121 (1),(12),(2),(23),(123),(13),(3)
4 121312141213121 (1),(12),(2),(23),(123),(13),(3),(34),(134),(1234),(234),(24),(124),(14),(4)
...

, , All models including the intercept model.

The second column indicates the indexes of effects which are pivoted on. Each parenthesis in the
third column represents a regression model. The numbers in the parentheses indicate the effects
which are included in that model.

Hybrid Method

If >20, we apply a hybrid method by combining the forward stepwise method with the all
possible subsets method as follows:

Select the effects using the forward stepwise method with the same criterion chosen for best
subsets. Say that ps is the number of effects chosen by the forward stepwise method.

Apply one of the following approaches, depending on the value of ps, as follows:
 If ps ≤ 20, do an exhaustive search of all possible subsets on these selected effects, as

described above.
 If 20 < ps ≤ 40, select ps – 20 effects based on the p-values of type III sum of squares tests from

all ps effects (see ANOVA in “Model evaluation ” on p. 255) and enter them into the model,
then do an exhaustive search of the remaining 20 effects via the method described above.

 If 40 < ps, do nothing and assume the best model is the one with these ps effects (with a
warning message that the selected model is based on the forward stepwise method).

255

Linear modeling algorithms

Model evaluation

The following output statistics are available.

ANOVA

Weighted total sum of squares

with d.f.

where d.f. means degrees of freedom. It is called “SS (sum of squares) for Corrected Total”.

Weighted residual sum of squares

with d.f. = dfe = N – pc. It is also called “SS for Error”.

Weighted regression sum of squares

with d.f. = . It is called “SS for Corrected Model” if there is an intercept.

Regression mean square error

Residual mean square error

F statistic for corrected model

which follows an F distribution with degrees of freedom dfr and dfe, and the corresponding
p-value can be calculated accordingly.

Type III sum of squares for each effect

256

Linear modeling algorithms

To compute type III SS for the effect j, the type III test matrix Li
needs to be constructed first. Construction of Li is based on the generating matrix
H XTDX XTDX where D , such that Liβ is estimable. It involves
parameters only for the given effect and the effects containing the given effect. For type III
analysis, Li doesn’t depend on the order of effects specified in the model. If such a matrix cannot
be constructed, the effect is not testable. For each effect j, the type III SS is calculated as follows

T T T

where .

F statistic for each effect

The SS for the effect j is also used to compute the F statistic for the hypothesis test H0: Liβ
= 0 as follows:

where is the full row rank of . It follows an F distribution with degrees of freedom and
, then the p-values can be calculated accordingly.

Model summary

Adjusted R square

adj.

where

Model information criteria

Corrected Akaike information criterion (AICC)

Coefficients and statistical inference
After the model selection process, we can get the coefficients and related statistics from the swept
correlation matrix. The following statistics are computed based on the R matrix.

257

Linear modeling algorithms

Unstandardized coefficient estimates

for .

Standard errors of regression coefficients

The standard error of is

Intercept estimation

The intercept is estimated by all other parameters in the model as

The standard error of is estimated by

where

and is the
kth row and jth column element in the parameter estimates covariance matrix.

t statistics for regression coefficients

for , with degrees of freedom and the p-value can be calculated accordingly.

100(1−α)% confidence intervals

258

Linear modeling algorithms

Note: For redundant parameters, the coefficient estimates are set to zero and standard errors, t
statistics, and confidence intervals are set to missing values.

Scoring

Predicted values

Diagnostics

The following values are computed to produce various diagnostic charts and tables.

Residuals

Studentized residuals

This is the ratio of the residual to its standard error.

where s is the square root of the mean square error; that is, , and is the leverage
value for the kth case (see below).

Cook’s distance

where the “leverage”

G T

is the kth diagonal element of the hat matrix

H W X XTWX XTW W X XTW

A record with Cook’s distance larger than is considered influential (Fox, 1997).

259

Linear modeling algorithms

Predictor importance

We use the leave-one-out method to compute the predictor importance, based on the residual sum
of squares (SSe) by removing one predictor at a time from the final full model.

If the final full model contains p predictors, , then the predictor importance can be
calculated as follows:

1. i=1

2. If i > p, go to step 5.

3. Do a sweep operation on the corresponding row(s) and column(s) associated with in the
matrix of the full final model.

4. Get the last diagonal element in the current and denote it . Then the predictor importance of
is . Let i = i + 1, and go to step 2.

5. Compute the normalized predictor importance of :

References

Belsley, D. A., E. Kuh, and R. E. Welsch. 1980. Regression diagnostics: Identifying influential
data and sources of collinearity. New York: John Wiley and Sons.

Dempster, A. P. 1969. Elements of Continuous Multivariate Analysis. Reading, MA:
Addison-Wesley.

Fox, J. 1997. Applied Regression Analysis, Linear Models, and Related Methods. Thousand
Oaks, CA: SAGE Publications, Inc..

Fox, J., and G. Monette. 1992. Generalized collinearity diagnostics. Journal of the American
Statistical Association, 87, 178–183.

Schatzoff, M., R. Tsao, and S. Fienberg. 1968. Efficient computing of all possible regressions.
Technometrics, 10, 769–779.

Velleman, P. F., and R. E. Welsch. 1981. Efficient computing of regression diagnostics. American
Statistician, 35, 234–242.

Linear Regression Algorithms

Overview

This procedure performs ordinary least squares multiple linear regression with four methods for
entry and removal of variables (Neter, Wasserman, and Kutner, 1990).

Primary Calculations

Notation

The following notation is used throughout this chapter unless otherwise stated:

Output field for record i with variance

Case weight for record i; in IBM® SPSS® Modeler,

Regression weight for record i; if regression weight is not specified
l Number of distinct records

The sum of weights across records,

Number of input fields

Sum of case weights,

The value of the kth input field for record i

Sample mean for the kth input field,

Sample mean for the output field,

Sample covariance for input fields and

Sample variance for output field Y

Sample covariance for and

Number of coefficients in the model. if the intercept is not included; otherwise

Sample correlation matrix for ... and

Model Parameters

The summary statistics and covariance are computed using provisional means algorithms
to update the values as each record is read:

and

© Copyright IBM Corporation 1994, 2016. 261

262

Linear Regression Algorithms

where, if the intercept is included,

or if the intercept is not included,

where is the cumulative weight up to record k, and is the estimate of up to record k.

For a regression model of the form

sweep operations are used to compute the least squares estimates of and the associated
regression statistics (Dempster, 1969). The sweeping starts with the correlation matrix ,

where

and

Let be the new matrix produced by sweeping on the kth row and column of . The elements of
are

and

263

Linear Regression Algorithms

If the above sweep operations are repeatedly applied to each row of in

where contains the input fields in the equation at the current step, the result is

The last row of

contains the standardized coefficients (also called beta), and

can be used to obtain the partial correlations for the variables not in the equation, controlling for
the variables already in the equation. Note that this routine is its own inverse; that is, exactly the
same operations are performed to remove an input field as to enter it.

The unstandardized coefficient estimates are calculated as

and the intercept , if included in the model, is calculated as

Automatic Field Selection

Let be the element in the current swept matrix associated with and . Variables are
entered or removed one at a time. is eligible for entry if it is an input field not currently in
the model such that

and

where t is the tolerance, with a default value of 0.0001.

264

Linear Regression Algorithms

The second condition above is imposed so that entry of the variable does not reduce the
tolerance of variables already in the model to unacceptable levels.

The F-to-enter value for is computed as

with 1 and degrees of freedom, where is the number of coefficients currently in
the model and

The F-to-remove value for is computed as

with 1 and degrees of freedom.

Methods for Variable Entry and Removal

Four methods for entry and removal of variables are available. The selection process is repeated
until no more independent variables qualify for entry or removal. The algorithms for these four
methods are described below.

Enter

The selected input fields are all entered in the model, with no field selection applied.

Stepwise

If there are independent variables currently entered in the model, choose such that
is minimum. is removed if (default = 2.71) or, if

probability criteria are used, (default = 0.1). If the inequality does
not hold, no variable is removed from the model.

If there are no independent variables currently entered in the model or if no entered
variable is to be removed, choose such that is maximum. is entered if

(default = 3.84) or, (default = 0.05). If the
inequality does not hold, no variable is entered.

At each step, all eligible variables are considered for removal and entry.

Forward

This procedure is the entry phase of the stepwise procedure.

265

Linear Regression Algorithms

Backward

This procedure starts with all input fields in the model and applies the removal phase of the
stepwise procedure.

Blank Handling

By default, a case that has a missing value for any input or output field is deleted from the
computation of the correlation matrix on which all consequent computations are based. If the Only

use complete records option is deselected, each correlation in the correlation matrix is computed
based on records with complete data for the two fields associated with the correlation, regardless
of missing values on other fields. For some datasets, this approach can lead to a non-positive
definite matrix, so that the model cannot be estimated.

Secondary Calculations

Model Summary Statistics

The multiple correlation coefficient R is calculated as

R-square, the proportion of variance in the output field accounted for by the input fields, is
calculated as

The adjusted R-square, which takes the complexity of the model relative to the size of the training
data into account, is calculated as

Field Statistics and Other Calculations

The statistics shown in the advanced output for the regression equation node are calculated in the
same manner as in the REGRESSION procedure in IBM® SPSS® Statistics. For more details, see
the SPSS Statistics Regression algorithm document, available at http://www.ibm.com/support.

Generated Model/Scoring

Predicted Values

The predicted value for a new record is calculated as

http://www.ibm.com/support

266

Linear Regression Algorithms

Blank Handling

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.

Logistic Regression Algorithms

Logistic Regression Models

Logistic regression is a well-established statistical method for predicting binomial or multinomial
outcomes. IBM® SPSS® Modeler now offers two distinct algorithms for logistic regression
modeling:

Multinomial Logistic. This is the original logistic regression algorithm used in SPSS Modeler,
introduced in version 6.0. It can produce models when the target field is a set field with more
than two possible values. See below for more information. It can also produce models for flag or
binary outcomes, though it doesn’t give the same level of statistical detail for such models as the
newer binomial logistic algorithm.

Binomial Logistic. This algorithm, introduced in SPSS Modeler 11, is limited to models where the
target field is a flag, or binary field. This algorithm provides some enhanced statistical output,
relative to the output of the multinomial algorithm, and is less susceptible to problems when the
number of cells (unique combinations of predictor values) is large relative to the number of
records. For more information, see the topic “Binomial Logistic Regression” on p. 279.

For models with a flag output field, selection of a logistic algorithm is controlled in the modeling
node by the Procedure option.

Multinomial Logistic Regression

The purpose of the Multinomial Logistic Regression procedure is to model the dependence of a
nominal (symbolic) output field on a set of symbolic and/or numeric predictor (input) fields.

Primary Calculations

Field Encoding

In logistic regression, each symbolic (set) field is recoded as a group of numeric fields, with one
numeric field for each category or value of the original field, except the last category, which is
defined as a reference category. For each record, the value of the derived field corresponding to
the category of the record is set to 1.0, and all of the other derived field values are set to 0.0. For
records which have the value of the reference category, all derived fields are set to 0.0. Such
derived fields are sometimes called dummy fields, and this recoding is called dummy coding.

For example, consider the following data, where x is a symbolic field with possible values A,
B, and C:

Record # X X1’ X2’
1 B 0 1
2 A 1 0
3 C 0 0

© Copyright IBM Corporation 1994, 2016. 267

268

Logistic Regression Algorithms

In this data, the original set field x is recoded into two derived fields x1’ and x2’. x1’ is an
indicator for category A, and x2’ is an indicator for category B. The last category, category C, is
the reference category; records belonging to this category have both x1’ and x2’ set to 0.0.

Notation

The following notation is used throughout this chapter unless otherwise stated:

The output field, which takes integer values from 1 to J.

The number of categories of the output field.

The number of subpopulations.

matrix with vector-element , the observed values at the ith
subpopulation, determined by the input fields specified in the command.

matrix with vector-element , the observed values of the location
model’s input fields at the ith subpopulation.
The sum of frequency weights of the observations that belong to the cell
corresponding to at subpopulation i.

The sum of all ’s.

The cell probability corresponding to at subpopulation i.

The logit of response category j relative to response category k.

vector of unknown parameters in the jth logit (that is, logit of response
category j to response category J).
Number of parameters in each logit. .
Number of non-redundant parameters in logit j after maximum likelihood
estimation. .
The total number of non-redundant parameters after maximum likelihood
estimation. .

vector of unknown parameters in the model.

The maximum likelihood estimate of .

The maximum likelihood estimate of .

Data Aggregation

Observations are aggregated by the definition of subpopulations. Subpopulations are defined by
the cross-classifications of the set of input fields.

Let be the marginal count of subpopulation i,

269

Logistic Regression Algorithms

If there is no observation for the cell of at subpopulation i, it is assumed that ,
provided that . A non-negative scalar may be added to any zero cell (that is, cell
with) if its marginal count is nonzero. The value of is zero by default.

Generalized Logit Model

In a generalized logit model, the probability of response category j at subpopulation i is

where the last category J is assumed to be the reference category.
In terms of logits, the model can be expressed as

for j = 1, …, J-1.
When J = 2, this model is equivalent to the binary logistic regression model. Thus, the above

model can be thought of as an extension of the binary logistic regression model from binary
response to polytomous nominal response.

Log-Likelihood

The log-likelihood of the model is given by

A constant that is independent of parameters has been excluded here. The value of the constant
is .

Model Parameters

Derivatives of the Log-Likelihood

For any j = 1, …, J-1, s = 1, …, p, the first derivative of l with respect to is

270

Logistic Regression Algorithms

For any j, j’= 1, …, J-1 and s, t = 1, …, p, the second derivative of l with respect to and is

where if , 0 otherwise.

Maximum Likelihood Estimate

To obtain the maximum likelihood estimate of , a Newton-Raphson iterative estimation method
is used. Notice that this method is the same as Fisher-Scoring iterative estimation method in
this model, since the expectation of the second derivative of l with respect to is the same
as the observed one.

Let be the vector of the first derivative of l with respect to . Moreover,
let be the matrix of the second derivative of l with respect to .
Notice that where is a matrix as

in which and is a diagonal matrix of . Let be
the parameter estimate at iteration , the parameter estimate at iteration is updated as

and is a stepping scalar such that , is a matrix
of independent vectors,

...
... . . .

and is and is , both evaluated at .

Stepping

Use step-halving method if . Let V be the maximum number of steps in
step-halving, the set of values of is .

Starting Values of the Parameters

If intercepts are included in the model, set where

271

Logistic Regression Algorithms

for j = 1, …, J-1.

If intercepts are not included in the model, set

for j = 1, …, J-1.

Convergence Criteria

Given two convergence criteria and , the iteration is considered to be converged
if one of the following criteria are satisfied:

1. .

2. .

3. The maximum above element in is less than .

Checking for Separation

The algorithm checks for separation in the data starting with iteration (20 by default). To
check for separation:

1. For each subpopulation i , find .

2. If , then there is a perfect prediction for subpopulation i.

3. If all subpopulations have perfect prediction, then there is complete separation. If some patterns
have perfect prediction and the Hessian of is singular, then there is quasi-complete separation.

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

272

Logistic Regression Algorithms

Secondary Calculations

Model Summary Statistics

Log-Likelihood

Initial model with intercepts. If intercepts are included in the model, the predicted probability for
the initial model (that is, the model with intercepts only) is

and the value of –2 log-likelihood of the initial model is

Initial model with no intercepts. If intercepts are not included in the model, the predicted
probability for the initial model is

and the value of –2 log-likelihood of the initial model is

Final model. The value of –2 log-likelihood of the final model is

Model Chi-Square

The model chi-square is given by

If the final model includes intercepts, then the initial model is an intercept-only model. Under
the null hypothesis that , the model chi-square is asymptotically chi-squared
distributed with degrees of freedoms.

273

Logistic Regression Algorithms

If the model does not include intercepts, then the initial model is an empty model. Under the
null hypothesis that , the Model Chi-square is asymptotically chi-squared distributed
with degrees of freedoms.

Pseudo R-Square Measures

Cox and Snell. Cox and Snell’s is calculated as

Nagelkerke. Nagelkerke’s is calculated as

McFadden. McFadden’s is calculated as

Goodness-of-Fit Measures

Pearson. The Pearson goodness-of-fit measure is

Under the null hypothesis, the Pearson goodness-of-fit statistic is asymptotically chi-squared
distributed with degrees of freedom.

Deviance. The deviance goodness-of-fit measure is

Under the null hypothesis, the deviance goodness-of-fit statistic is asymptotically chi-squared
distributed with degrees of freedom.

Field Statistics and Other Calculations

The statistics shown in the advanced output for the logistic equation node are calculated in the
same manner as in the NOMREG procedure in IBM® SPSS® Statistics. For more details, see the
SPSS Statistics Nomreg algorithm document, available at http://www.ibm.com/support.

http://www.ibm.com/support

274

Logistic Regression Algorithms

Stepwise Variable Selection

Several methods are available for selecting independent variables. With the forced entry method,
any variable in the variable list is entered into the model. The forward stepwise, backward
stepwise, and backward entry methods use either the Wald statistic or the likelihood ratio statistic
for variable removal. The forward stepwise, forward entry, and backward stepwise use the score
statistic or the likelihood ratio statistic to select variables for entry into the model.

Forward Stepwise (FSTEP)

1. Estimate the parameter and likelihood function for the initial model and let it be our current model.

2. Based on the MLEs of the current model, calculate the score statistic or likelihood ratio statistic
for every variable eligible for inclusion and find its significance.

3. Choose the variable with the smallest significance (p-value). If that significance is less than the
probability for a variable to enter, then go to step 4; otherwise, stop FSTEP.

4. Update the current model by adding a new variable. If this results in a model which has already
been evaluated, stop FSTEP.

5. Calculate the significance for each variable in the current model using LR or Wald’s test.

6. Choose the variable with the largest significance. If its significance is less than the probability for
variable removal, then go back to step 2. If the current model with the variable deleted is the same
as a previous model, stop FSTEP; otherwise go to the next step.

7. Modify the current model by removing the variable with the largest significance from the previous
model. Estimate the parameters for the modified model and go back to step 5.

Forward Only (FORWARD)

1. Estimate the parameter and likelihood function for the initial model and let it be our current model.

2. Based on the MLEs of the current model, calculate the score or LR statistic for every variable
eligible for inclusion and find its significance.

3. Choose the variable with the smallest significance. If that significance is less than the probability
for a variable to enter, then go to step 4; otherwise, stop FORWARD.

4. Update the current model by adding a new variable. If there are no more eligible variable left, stop
FORWARD; otherwise, go to step 2.

Backward Stepwise (BSTEP)

1. Estimate the parameters for the full model that includes the final model from previous method and
all eligible variables. Only variables listed on the BSTEP variable list are eligible for entry and
removal. Let current model be the full model.

2. Based on the MLEs of the current model, calculate the LR or Wald’s statistic for every variable
in the BSTEP list and find its significance.

275

Logistic Regression Algorithms

3. Choose the variable with the largest significance. If that significance is less than the probability
for a variable removal, then go to step 5. If the current model without the variable with the largest
significance is the same as the previous model, stop BSTEP; otherwise go to the next step.

4. Modify the current model by removing the variable with the largest significance from the model.
Estimate the parameters for the modified model and go back to step 2.

5. Check to see any eligible variable is not in the model. If there is none, stop BSTEP; otherwise,
go to the next step.

6. Based on the MLEs of the current model, calculate LR statistic or score statistic for every variable
not in the model and find its significance.

7. Choose the variable with the smallest significance. If that significance is less than the probability
for the variable entry, then go to the next step; otherwise, stop BSTEP.

8. Add the variable with the smallest significance to the current model. If the model is not the
same as any previous models, estimate the parameters for the new model and go back to step
2; otherwise, stop BSTEP.

Backward Only (BACKWARD)

1. Estimate the parameters for the full model that includes all eligible variables. Let the current
model be the full model.

2. Based on the MLEs of the current model, calculate the LR or Wald’s statistic for all variables
eligible for removal and find its significance.

3. Choose the variable with the largest significance. If that significance is less than the probability
for a variable removal, then stop BACKWARD; otherwise, go to the next step.

4. Modify the current model by removing the variable with the largest significance from the model.
Estimate the parameters for the modified model. If all the variables in the BACKWARD list are
removed then stop BACKWARD; otherwise, go back to step 2.

Stepwise Statistics

The statistics used in the stepwise variable selection methods are defined as follows.

Score Function and Information Matrix

The score function for a model with parameter B is:

The (j,s)th element of the score function can be written as

276

Logistic Regression Algorithms

Similarly, elements of the information matrix are given by

where if , 0 otherwise.

(Note that in the formula are functions of B)

Block Notations

By partitioning the parameter B into two parts, B1 and B2, the score function, information matrix,
and inverse information matrix can be written as partitioned matrices:

where

where

Typically, B1 and B2 are parameters corresponding to two different sets of effects. The dimensions
of the 1st and 2nd partition in U, I and J are equal to the numbers of parameters in B1 and
B2 respectively.

Score Test

Suppose a base model with parameter vector with the corresponding maximum likelihood
estimate . We are interested in testing the significance of an extra effect E if it is added to the
base model. For convenience, we will call the model with effect E the augmented model. Let

be the vector of extra parameters associated with the effect E, then the hypothesis can be
written as

277

Logistic Regression Algorithms

v.s.

Using the block notations, the score function, information matrix and inverse information of the
augmented model can be written as

Then the score statistic for testing our hypothesis will be

where and are the 2nd partition of score function and inverse
information matrix evaluated at and .

Under the null hypothesis, the score statistic has a chi-square distribution with degrees of
freedom equal to the rank of . If the rank of is zero, then the score
statistic will be set to 0 and the p-value will be 1. Otherwise, if the rank of is

, then the p-value of the test is equal to , where is the cumulative
distribution function of a chi-square distribution with degrees of freedom.

Computational Formula for Score Statistic

When we compute the score statistic s, it is not necessary to re-compute and

from scratch. The score function and information matrix of the base model can be
reused in the calculation. Using the block notations introduced earlier, we have

and

In stepwise logistic regression, it is necessary to compute one score test for each effect that are not
in the base model. Since the 1st partition of and depend only on the

base model, we only need to compute , and for
each new effect.

278

Logistic Regression Algorithms

If is the s-th parameter of the j-th logit in and is the t-th parameter of k-th logit in
, then the elements of , and can be expressed

as follows:

where , are computed under the base model.

Wald’s Test

In backward stepwise selection, we are interested in removing an effect F from an already fitted
model. For a given base model with parameter vector , we want to use Wald’s statistic to
test if effect F should be removed from the base model. If the parameter vector for the effect F is

, then the hypothesis can be formulated as

vs.

In order to write down the expression of the Wald’s statistic, we will partition our parameter vector
(and its estimate) into two parts as follows:

and

The first partition contains parameters that we intended to keep in the model and the 2nd partition
contains the parameters of the effect F, which may be removed from the model. The information
matrix and inverse information will be partitioned accordingly,

and

Using the above notations, the Wald’s statistic for effect F can be expressed as

Under the null hypothesis, w has a chi-square distribution with degrees of freedom equal to the
rank of . If the rank of is zero, then Wald’s statistic will be
set to 0 and the p-value will be 1. Otherwise, if the rank of is , then

279

Logistic Regression Algorithms

the p-value of the test is equal to , where is the cumulative distribution
function of a chi-square distribution with degrees of freedom.

Generated Model/Scoring

Predicted Values

The predicted value for a record i is the output field category j with the largest logit value ,

for j = 1, ..., J-1. The logit for reference category J, , is 1.0.

Predicted Probability

The probability for the predicted category for scored record i is derived from the logit for
category ,

If the Append all probabilities option is selected, the probability is calculated for all J categories
in a similar manner.

Blank Handling

Records with missing values for any input field cannot be scored and are assigned a predicted
value and probability value(s) of $null$.

Binomial Logistic Regression
For binomial models (models with a flag field as the target), IBM® SPSS® Modeler uses an
algorithm optimized for such models, as described here.

Notation

The following notation is used throughout this chapter unless otherwise stated:

n The number of observed cases
p The number of parameters
y vector with element , the observed value of the ith case of the

dichotomous dependent variable
X matrix with element , the observed value of the ith case of the

jth parameter

280

Logistic Regression Algorithms

vector with element , the coefficient for the jth parameter

w vector with element , the weight for the ith case
l Likelihood function
L Log-likelihood function
I Information matrix

Model

The linear logistic model assumes a dichotomous dependent variable Y with probability π, where
for the ith case,

or

Hence, the likelihood function l for n observations , with probabilities and
case weights , can be written as

It follows that the logarithm of l is

and the derivative of L with respect to is

Maximum Likelihood Estimates (MLE)

The maximum likelihood estimates for satisfy the following equations

, for the jth parameter

where for .

Note the following:

1. A Newton-Raphson type algorithm is used to obtain the MLEs. Convergence can be based on
 Absolute difference for the parameter estimates between the iterations

281

Logistic Regression Algorithms

 Percent difference in the log-likelihood function between successive iterations
 Maximum number of iterations specified

2. During the iterations, if is smaller than 10−8 for all cases, the log-likelihood function
is very close to zero. In this situation, iteration stops and the message “All predicted values
are either 1 or 0” is issued.

After the maximum likelihood estimates are obtained, the asymptotic covariance matrix is
estimated by , the inverse of the information matrix I, where

and

Stepwise Variable Selection

Several methods are available for selecting independent variables. With the forced entry method,
any variable in the variable list is entered into the model. There are two stepwise methods:
forward and backward. The stepwise methods can use either the Wald statistic, the likelihood
ratio, or a conditional algorithm for variable removal. For both stepwise methods, the score
statistic is used to select variables for entry into the model.

Forward Stepwise (FSTEP)

1. If FSTEP is the first method requested, estimate the parameter and likelihood function for the
initial model. Otherwise, the final model from the previous method is the initial model for FSTEP.
Obtain the necessary information: MLEs of the parameters for the current model, predicted
probability, likelihood function for the current model, and so on.

2. Based on the MLEs of the current model, calculate the score statistic for every variable eligible for
inclusion and find its significance.

3. Choose the variable with the smallest significance. If that significance is less than the probability
for a variable to enter, then go to step 4; otherwise, stop FSTEP.

4. Update the current model by adding a new variable. If this results in a model which has already
been evaluated, stop FSTEP.

5. Calculate LR or Wald statistic or conditional statistic for each variable in the current model.
Then calculate its corresponding significance.

282

Logistic Regression Algorithms

6. Choose the variable with the largest significance. If that significance is less than the probability
for variable removal, then go back to step 2; otherwise, if the current model with the variable
deleted is the same as a previous model, stop FSTEP; otherwise, go to the next step.

7. Modify the current model by removing the variable with the largest significance from the previous
model. Estimate the parameters for the modified model and go back to step 5.

Backward Stepwise (BSTEP)

1. Estimate the parameters for the full model which includes the final model from previous method
and all eligible variables. Only variables listed on the BSTEP variable list are eligible for entry
and removal. Let the current model be the full model.

2. Based on the MLEs of the current model, calculate the LR or Wald statistic or conditional statistic
for every variable in the model and find its significance.

3. Choose the variable with the largest significance. If that significance is less than the probability for
a variable removal, then go to step 5; otherwise, if the current model without the variable with the
largest significance is the same as the previous model, stop BSTEP; otherwise, go to the next step.

4. Modify the current model by removing the variable with the largest significance from the model.
Estimate the parameters for the modified model and go back to step 2.

5. Check to see any eligible variable is not in the model. If there is none, stop BSTEP; otherwise,
go to the next step.

6. Based on the MLEs of the current model, calculate the score statistic for every variable not in
the model and find its significance.

7. Choose the variable with the smallest significance. If that significance is less than the probability
for variable entry, then go to the next step; otherwise, stop BSTEP.

8. Add the variable with the smallest significance to the current model. If the model is not the
same as any previous models, estimate the parameters for the new model and go back to step
2; otherwise, stop BSTEP.

Stepwise Statistics

The statistics used in the stepwise variable selection methods are defined as follows.

Score Statistic

The score statistic is calculated for each variable not in the model to determine whether the
variable should enter the model. Assume that there are variables, namely, in the
model and variables, , not in the model. The score statistic for is defined as

283

Logistic Regression Algorithms

if is not a categorical variable. If is a categorical variable with m categories, it is converted to
a -dimension dummy vector. Denote these new variables as . The
score statistic for is then

where and the matrix is

with

in which is the design matrix for variables and is the design matrix for dummy
variables . Note that contains a column of ones unless the constant term
is excluded from . Based on the MLEs for the parameters in the model, V is estimated by

. The asymptotic distribution of the score statistic is a
chi-square with degrees of freedom equal to the number of variables involved.

Note the following:

1. If the model is through the origin and there are no variables in the model, is defined by
and is equal to .

2. If is not positive definite, the score statistic and residual chi-square statistic are set to be zero.

Wald Statistic

The Wald statistic is calculated for the variables in the model to determine whether a variable
should be removed. If the ith variable is not categorical, the Wald statistic is defined by

If it is a categorical variable, the Wald statistic is computed as follows:

Let be the vector of maximum likelihood estimates associated with the dummy variables,
and the asymptotic covariance matrix for . The Wald statistic is

The asymptotic distribution of the Wald statistic is chi-square with degrees of freedom equal to
the number of parameters estimated.

284

Logistic Regression Algorithms

Likelihood Ratio (LR) Statistic

The LR statistic is defined as two times the log of the ratio of the likelihood functions of two
models evaluated at their MLEs. The LR statistic is used to determine if a variable should
be removed from the model. Assume that there are variables in the current model which is
referred to as a full model. Based on the MLEs of the full model, l(full) is calculated. For each of
the variables removed from the full model one at a time, MLEs are computed and the likelihood
function l(reduced) is calculated. The LR statistic is then defined as

LR is asymptotically chi-square distributed with degrees of freedom equal to the difference
between the numbers of parameters estimated in the two models.

Conditional Statistic

The conditional statistic is also computed for every variable in the model. The formula for the
conditional statistic is the same as the LR statistic except that the parameter estimates for each
reduced model are conditional estimates, not MLEs. The conditional estimates are defined as
follows. Let be the MLE for the variables in the model and C be the
asymptotic covariance matrix for . If variable is removed from the model, the conditional
estimate for the parameters left in the model given is

where is the MLE for the parameter(s) associated with and is with removed, is
the covariance between and , and is the covariance of . Then the conditional statistic
is computed by

where is the log-likelihood function evaluated at .

Statistics

The following output statistics are available.

Initial Model Information

If is not included in the model, the predicted probability is estimated to be 0.5 for all cases and
the log-likelihood function is

with . If is included in the model, the predicted probability is estimated as

285

Logistic Regression Algorithms

and is estimated by

with asymptotic standard error estimated by

The log-likelihood function is

Model Information

The following statistics are computed if a stepwise method is specified.

–2 Log-Likelihood

Model Chi-Square

2(log-likelihood function for current model − log-likelihood function for initial model)

The initial model contains a constant if it is in the model; otherwise, the model has no terms.
The degrees of freedom for the model chi-square statistic is equal to the difference between the
numbers of parameters estimated in each of the two models. If the degrees of freedom is zero, the
model chi-square is not computed.

Block Chi-Square

2(log-likelihood function for current model − log-likelihood function for the final model from
the previous method)

The degrees of freedom for the block chi-square statistic is equal to the difference between the
numbers of parameters estimated in each of the two models.

Improvement Chi-Square

2(log-likelihood function for current model − log-likelihood function for the model from the
last step)

The degrees of freedom for the improvement chi-square statistic is equal to the difference between
the numbers of parameters estimated in each of the two models.

286

Logistic Regression Algorithms

Goodness of Fit

Cox and Snell’s R-Square (Cox and Snell, 1989; Nagelkerke, 1991)

where is the likelihood of the current model and l(0) is the likelihood of the
initial model; that is, if the constant is not included in the model;

if the constant is included in the model, where
.

Nagelkerke’s R-Square (Nagelkerke, 1981)

where .

Hosmer-Lemeshow Goodness-of-Fit Statistic

The test statistic is obtained by applying a chi-square test on a contingency table. The
contingency table is constructed by cross-classifying the dichotomous dependent variable with
a grouping variable (with g groups) in which groups are formed by partitioning the predicted
probabilities using the percentiles of the predicted event probability. In the calculation,
approximately 10 groups are used (g=10). The corresponding groups are often referred to as the
“deciles of risk” (Hosmer and Lemeshow, 2000).

If the values of independent variables for observation i and i’ are the same, observations i and
i’ are said to be in the same block. When one or more blocks occur within the same decile, the
blocks are assigned to this same group. Moreover, observations in the same block are not divided
when they are placed into groups. This strategy may result in fewer than 10 groups (that is,

) and consequently, fewer degrees of freedom.
Suppose that there are Q blocks, and the qth block has mq number of observations, .

Moreover, suppose that the kth group () is composed of the q1th, …, qkth blocks of
observations. Then the total number of observations in the kth group is . The total
observed frequency of events (that is, Y=1) in the kth group, call it O1k, is the total number of
observations in the kth group with Y=1. Let E1k be the total expected frequency of the event in the
kth group; then E1k is given by , where is the average predicted event probability
for the kth group.

The Hosmer-Lemeshow goodness-of-fit statistic is computed as

287

Logistic Regression Algorithms

The p value is given by Pr where is the chi-square statistic distributed with
degrees of freedom (g−2).

Information for the Variables Not in the Equation

For each of the variables not in the equation, the score statistic is calculated along with the
associated degrees of freedom, significance and partial R. Let be a variable not currently in
the model and the score statistic. The partial R is defined by

if
otherwise

where df is the degrees of freedom associated with , and is the log-likelihood
function for the initial model.

The residual Chi-Square printed for the variables not in the equation is defined as

g g

where g

Information for the Variables in the Equation

For each of the variables in the equation, the MLE of the Beta coefficients is calculated along with
the standard errors, Wald statistics, degrees of freedom, significances, and partial R. If is not a
categorical variable currently in the equation, the partial R is computed as

if
otherwise

If is a categorical variable with m categories, the partial R is then

if
otherwise

Casewise Statistics

The following statistics are computed for each case.

Individual Deviance

The deviance of the ith case, , is defined as

if
otherwise

288

Logistic Regression Algorithms

Leverage

The leverage of the ith case, , is the ith diagonal element of the matrix

where

Studentized Residual

Logit Residual

where

Standardized Residual

Cook’s Distance

DFBETA

Let be the change of the coefficient estimates from the deletion of case i. It is computed as

Predicted Group

If , the predicted group is the group in which y=1.

Note the following:

For the unselected cases with nonmissing values for the independent variables in the analysis,
the leverage is computed as

where

289

Logistic Regression Algorithms

For the unselected cases, the Cook’s distance and DFBETA are calculated based on .

Generated Model/Scoring

For each record passed through a generated binomial logistic regression model, a predicted value
and confidence score are calculated as follows:

Predicted Value

The probability of the value y = 1 for record i is calculated as

where

If , the predicted value is 1; otherwise, the predicted value is 0.

Confidence

For records with a predicted value of y = 1, the confidence value is . For records with a predicted
value of y = 0, the confidence value is .

Blank Handling (generated model)

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.

Neural Networks Algorithms
Neural networks predict a continuous or categorical target based on one or more predictors by
finding unknown and possibly complex patterns in the data.

For algorithms on enhancing model accuracy, enhancing model stability, or working with very
large datasets, see “Ensembles Algorithms” on p. 125.

Multilayer Perceptron
The multilayer perceptron (MLP) is a feed-forward, supervised learning network with up to two
hidden layers. The MLP network is a function of one or more predictors that minimizes the
prediction error of one or more targets. Predictors and targets can be a mix of categorical and
continuous fields.

Notation

The following notation is used for multilayer perceptrons unless otherwise stated:

Input vector, pattern m, m=1,...M.

Target vector, pattern m.

I Number of layers, discounting the input layer.
Number of units in layer i. J0 = P, Ji = R, discounting the bias unit.

Set of categorical outputs.

Set of continuous outputs.

Set of subvectors of containing 1-of-c coded hth categorical field.

Unit j of layer i, pattern m, .

Weight leading from layer i−1, unit j to layer i, unit k. No weights connect
and the bias ; that is, there is no for any j.

, i=1,...,I.

Activation function for layer i.

w Weight vector containing all weights .

Architecture

The general architecture for MLP networks is:

Input layer: J0=P units, ; with .

ith hidden layer: Ji units, ; with and where
.

© Copyright IBM Corporation 1994, 2016. 291

292

Neural Networks Algorithms

Output layer: JI=R units, ; with and where

.

Note that the pattern index and the bias term of each layer are not counted in the total number
of units for that layer.

Activation Functions

Hyperbolic Tangent

tanh

This function is used for hidden layers.

Identity

This function is used for the output layer when there are continuous targets.

Softmax

This function is used for the output layer when all targets are categorical.

Error Functions

Sum-of-Squares

where

This function is used when there are continuous targets.

293

Neural Networks Algorithms

Cross-Entropy

where

This function is used when all targets are categorical.

Expert Architecture Selection

Expert architecture selection determines the “best” number of hidden units in a single hidden layer.

A random sample is taken from the entire data set and split into training (70%) and testing samples
(30%). The size of random sample is N = 1000. If entire dataset has less than N records, use all of
them. If training and testing data sets are supplied separately, the random samples for training and
testing should be taken from the respective datasets.

Given Kmin and Kmax , the algorithm is as follows.

1. Start with an initial network of k hidden units. The default is k=min(g(R,P),20,h(R,P)), where

otherwise

where denotes the largest integer less than or equal to x. is the maximum
number of hidden units that will not result in more weights than there are records in the entire
training set.

If k < Kmin, set k = Kmin. Else if k > Kmax, set k = Kmax. Train this network once via the alternated
simulated annealing and training procedure (steps 1 to 5).

2. If k > Kmin, set DOWN=TRUE. Else if training error ratio > 0.01, DOWN=FALSE. Else stop and
report the initial network.

3. If DOWN=TRUE, remove the weakest hidden unit (see below); k=k−1. Else add a hidden unit;
k=k+1.

4. Using the previously fit weights as initial weights for the old weights and random weights for the
new weights, train the old and new weights for the network once through the alternated simulated
annealing and training procedure (steps 3 to 5) until the stopping conditions are met.

5. If the error on test data has dropped:

If DOWN=FALSE, If k< Kmax and the training error has dropped but the error ratio is still above
0.01, return to step 3. Else if k> Kmin, return to step 3. Else, stop and report the network with the
minimum test error.

294

Neural Networks Algorithms

Else if DOWN=TRUE, If |k−k0|>1, stop and report the network with the minimum test error. Else
if training error ratio for k=k0 is bigger than 0.01, set DOWN=FALSE, k=k0 return to step 3. Else
stop and report the initial network.

Else stop and report the network with the minimum test error.

If more than one network attains the minimum test error, choose the one with fewest hidden units.

If the resulting network from this procedure has training error ratio (training error divided by error
from the model using average of an output field to predict that field) bigger than 0.1, repeat the
architecture selection with different initial weights until either the error ratio is <=0.1 or the
procedure is repeated 5 times, then pick the one with smallest test error.

Using this network with its weights as initial values, retrain the network on the entire training set.

The weakest hidden unit

For each hidden unit j, calculate the error on the test data when j is removed from the network.
The weakest hidden unit is the one having the smallest total test error upon its removal.

Training

The problem of estimating the weights consists of the following parts:

E Initializing the weights. Take a random sample and apply the alternated simulated annealing
and training procedure on the random sample to derive the initial weights. Training in step 3 is
performed using all default training parameters.

E Computing the derivative of the error function with respect to the weights. This is solved via
the error backpropagation algorithm.

E Updating the estimated weights. This is solved by the gradient descent or scaled conjugate
gradient method.

Alternated Simulated Annealing and Training

The following procedure uses simulated annealing and training alternately up to K1 times.
Simulated annealing is used to break out of the local minimum that training finds by perturbing
the local minimum K2 times. If break out is successful, simulated annealing sets a better initial
weight for the next training. We hope to find the global minimum by repeating this procedure K3
times. This procedure is rather expensive for large data sets, so it is only used on a random sample
to search for initial weights and in architecture selection. Let K1=K2=4, K3=3.

1. Randomly generate K2 weight vectors between [a0−a, a0+a], where a0=0 and a=0.5. Calculate
the training error for each weight vector. Pick the weights that give the minimum training error
as the initial weights.

2. Set k1=0.

3. Train the network with the specified initial weights. Call the trained weights w.

295

Neural Networks Algorithms

4. If the training error ratio <= 0.05, stop the k1 loop and use w as the result of the loop. Else set
k1 = k1+1.

5. If k1 < K1, perturb the old weight to form K2 new weights by adding K2 different
random noise between [a(k1), a(k1)] where . Let be the weights that
give the minimum training error among all the perturbed weights. If , set the
initial weights to be , return to step 3. Else stop and report w as the final result.

Else stop the k1 loop and use w as the result of the loop.

If the resulting weights have training error ratio bigger than 0.1, repeat this algorithm until either
the training error ratio is <=0.1 or the procedure is repeated K3 times, then pick the one with
smallest test error among the result of the k1 loops.

Error Backpropagation

Error-backpropagation is used to compute the first partial derivatives of the error function with
respect to the weights.

First note that tanh
identity

The backpropagation algorithm follows:

For each i,j,k, set .

For each m in group T; For each p=1,...,JI, let

if cross-entropy error is used
otherwise

For each i=I,...,1 (start from the output layer); For each j=1,...,Ji; For each k=0,...,Ji−1

E Let , where

E Set

E If k > 0 and i > 1, set

This gives us a vector of elements that form the gradient of .

Gradient Descent

Given the learning rate parameter (set to 0.4) and momentum rate (set to 0.9), the gradient
descent method is as follows.

1. Let k=0. Initialize the weight vector to , learning rate to . Let .

296

Neural Networks Algorithms

2. Read all data and find and its gradient . If , stop and report
the current network.

3. If , . This step is to make sure that the steepest gradient descent
direction dominates weight change in next step. Without this step, the weight change in next step
could be along the opposite direction of the steepest descent and hence no matter how small is,
the error will not decrease.

4. Let

5. If , then set , , and , Else and
return to step 3.

6. If a stopping rule is met, exit and report the network as stated in the stopping criteria. Else let
k=k+1 and return to step 2.

Model Update

Given the learning rate parameters (set to 0.4) and (set to 0.001), momentum rate (set
to 0.9), and learning rate decay factor β = (1/pK)*ln(η0/ηlow), the gradient descent method for
online and mini-batch training is as follows.

1. Let k=0. Initialize the weight vector to , learning rate to . Let .

2. Read records in (is randomly chosen) and find and its gradient .

3. If , . This step is to make sure that the steepest gradient descent
direction dominates weight change in next step. Without this step, the weight change in next step
could be along the opposite direction of the steepest descent and hence no matter how small is,
the error will not decrease.

4. Let .

5. If , then set and , Else
.

6. . If , then set .

7. If a stopping rule is met, exit and report the network as stated in the stopping criteria. Else let
k=k+1 and return to step 2.

Scaled Conjugate Gradient

To begin, initialize the weight vector to , and let N be the total number of weights.

1. k=0. Set scalars E E . Set , and
success=true.

2. If success=true, find the second-order information: , ,
, where the superscript t denotes the transpose.

297

Neural Networks Algorithms

3. Set .

4. If , make the Hessian positive definite: , , .

5. Calculate the step size: , .

6. Calculate the comparison parameter: .

7. If , error can be reduced. Set , , If
, return as the final weight vector and exit. Set , success=true. If k mod

N=0, restart the algorithm: , else set , . If
, reduce the scale parameter: . else (if): Set , success=false.

8. If , increase the scale parameter: .

9. If success=false, return to step 2. Otherwise if a stopping rule is met, exit and report the network
as stated in the stopping criteria. Else set k=k+1 , , and return to step 2.

Note: each iteration requires at least two data passes.

Stopping Rules

Training proceeds through at least one complete pass of the data. Then the search should be
stopped according to following criteria. These stopping criteria should be checked in the listed
order. When creating a new model, check after completing an iteration. During a model update,
check criteria 1, 3, 4, 5 and 6 is after completing a data pass, and only check criterion 2 after an
iteration. In the descriptions below, a “step” means an iteration when building a new model and
a data pass when performing a model update. Let E1 denote the current minimum error and
K1 denote the iteration where it occurs for the training set, E2 and K2 are that for the overfit
prevention set, and K3=min(K1,K2).

1. At the end of each step compute the total error for the overfit prevention set. From step K2, if the
testing error does not decrease below E2 over the next n=1 steps, stop. Report the weights at step
K2. If there is no overfit prevention set, this criterion is not used for building a new model; for a
model update when there is no overfit prevention set, compute the total error for training data at
the end of each step. From step K1, if the training error does not decrease below E1 over the next
n=1 steps, stop. Report the weights at step K1.

2. The search has lasted beyond some maximum allotted time. For building a new model, simply
report the weights at step K3. For a model update, even though training stops before the
completion of current step, treat this as a complete step. Calculate current errors for training and
testing datasets and update E1, K1, E2, K2 correspondingly. Report the weights at step K3.

3. The search has lasted more than some maximum number of data passes. Report the weights
at step K3.

4. Stop if the relative change in training error is small: for and
, where are the weight vectors of two consecutive steps. Report weights

at step K3.

298

Neural Networks Algorithms

5. The current training error ratio is small compared with the initial error: for
and , where is the total error from the model using the average of an

output field to predict that field; is calculated by using in the error function,

where is the weight vector of one step. Report weights at step K3.

6. The current accuracy meets a specified threshold. Accuracy is computed based on the overfit
prevention set if there is one, otherwise the training set.

Note: In criteria 4 and 5, the total error for whole training data is needed. For model updates,
these criteria will not be checked if there is an overfit prevention set.

Model Updates

When new records become available, the synaptic weights can be updated. The new records are
split into groups of the size R = min(M,2N,1000), whereM is the number of training records and N
is the number of weights in the network. A single data pass is made through the new groups to
update the weights. If the last of the new groups has more than one-quarter of the records of a
normal group, then it is processed normally; otherwise, it remains in the internal buffer so that
these records can be used during the next update. Thus, after the last update there may be some
unused records remaining in the buffer that will be lost.

Radial Basis Function

A radial basis function (RBF) network is a feed-forward, supervised learning network with only
one hidden layer, called the radial basis function layer. The RBF network is a function of one or
more predictors that minimizes the prediction error of one or more targets. Predictors and targets
can be a mix of categorical and continuous fields.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Input vector, pattern m, m=1,...M.

Target vector, pattern m.

I Number of layers, discounting the input layer. For an RBF network, I=2.
Number of units in layer i. J0 = P, Ji = R, discounting the bias unit. J1
is the number of RBF units.
jth RBF unit for input , j=1, …,J1.

center of , it is P-dimensional.

width of , it is P-dimensional.

h the RBF overlapping factor.

299

Neural Networks Algorithms

Unit j of layer i, pattern m, .

weight connecting rth output unit and jth hidden unit of RBF layer.

Architecture

There are three layers in the RBF network:

Input layer: J0=P units, ; with .

RBF layer: J1 units, , ; with and

.

Output layer: J2=R units, ; with .

Error Function

Sum-of-squares error is used:

where

The sum-of-squares error function with identity activation function for output layer can be
used for both continuous and categorical targets. For continuous targets, approximates the
conditional expectation of the target value . For categorical targets, approximates
the posterior probability of class k: .

Note: though (the sum is over all classes of the same categorical target field), may
not lie in the range [0, 1].

Training

The network is trained in two stages:

1. Determine the basis functions by clustering methods. The center and width for each basis function is
computed.

2. Determine the weights given the basis functions. For the given basis functions, compute the
ordinary least-squares regression estimates of the weights.

300

Neural Networks Algorithms

The simplicity of these computations allows the RBF network to be trained very quickly.

Determining Basis Functions

The two-step clustering algorithm is used to find the RBF centers and widths. For each cluster, the
mean and standard deviation for each continuous field and proportion of each category for each
categorical field are derived. Using the results from clustering, the center of the jth RBF is set as:

if pth field is continuous
if pth field is a dummy field of a categorical field

where is the jth cluster mean of the pth input field if it is continuous, and is the proportion
of the category of a categorical field that the pth input field corresponds to. The width of the
jth RBF is set as

if pth field is continuous
if pth field is a dummy field of a categorical field

where is the jth cluster standard deviation of the pth field and h>0 is the RBF overlapping
factor that controls the amount of overlap among the RBFs. Since some may be zeros, we
use spherical shaped Gaussian bumps; that is, a common width

in for all predictors. In the case that is zero for some j, set it to be . If all
are zero, set all of them to be .

When there are a large number of predictors, could be easily very large and hence

is practically zero for every record and every RBF unit if is

relatively small. This is especially bad for ORBF because there would be only a constant term in
the model when this happens. To avoid this, is increased by setting the default overlapping
factor h proportional to the number of inputs: h=1 + 0.1 P.

Automatic Selection of Number of Basis Functions

The algorithm tries a reasonable range of numbers of hidden units and picks the “best”. By
default, the reasonable range [K1, K2] is determined by first using the two-step clustering method
to automatically find the number of clusters, K. Then set K1 = min(K, R) for ORBF and K1
=max{2, min(K, R)} for NRBF and K2=max(10, 2K, R).

301

Neural Networks Algorithms

If a test data set is specified, then the “best” model is the one with the smaller error in the test
data. If there is no test data, the BIC (Bayesian information criterion) is used to select the “best”
model. The BIC is defined as

where is the mean squared error and k= (P+1+R)J1 for

NRBF and (P+1+R)J1+R for ORBF is the number of parameters in the model.

Model Updates

When new records become available, you can update the weights connecting the RBF layer and
output layer. Again, given the basis functions, updating the weights is a least-squares regression
problem. Thus, it is very fast.

For best results, the new records should have approximately the same distribution as the
original records.

Missing Values

The following options for handling missing values are available:
 Records with missing values are excluded listwise.
 Missing values are imputed. Continuous fields impute the average of the minimum and

maximum observed values; categorical fields impute the most frequently occurring category.

Output Statistics

The following output statistics are available. Note that, for continuous fields, output statistics are
reported in terms of the rescaled values of the fields.

Accuracy

For continuous targets, it is

where

Note that R2 can never be greater than one, but can be less than zero.

For the naïve model, is the modal category for categorical targets and the mean for continuous
targets.

302

Neural Networks Algorithms

For each categorical target, this is the percentage of records for which the predicted value matches
the observed value.

Predictor Importance

For more information, see the topic “Predictor Importance Algorithms” on p. 311.

Confidence
Confidence values for neural network predictions are calculated based on the type of output field
being predicted. Note that no confidence values are generated for numeric output fields.

Difference

The difference method calculates the confidence of a prediction by comparing the best match with
the second-best match as follows, depending on output field type and encoding used.
 Flag fields. Confidence is calculated as , where o is the output activation

for the output unit.
 Set fields. With the standard encoding, confidence is calculated as , where is

the output unit in the fields group of units with the highest activation, and is the unit
with the second-highest activation.
With binary set encoding, the sum of the errors comparing the output activation and the
encoded set value is calculated for the closest and second-closest matches, and the confidence
is calculated as , where is the error for the second-best match and is the
error for the best match.

Simplemax

Simplemax returns the highest predicted probability as the confidence.

References
Bishop, C. M. 1995. Neural Networks for Pattern Recognition, 3rd ed. Oxford: Oxford University
Press.

Fine, T. L. 1999. Feedforward Neural Network Methodology, 3rd ed. New York: Springer-Verlag.

Haykin, S. 1998. Neural Networks: A Comprehensive Foundation, 2nd ed. New York: Macmillan
College Publishing.

Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge: Cambridge University
Press.

Tao, K. K. 1993. A closer look at the radial basis function (RBF) networks. In: Conference
Record of the Twenty-Seventh Asilomar Conference on Signals, Systems, and Computers, A.
Singh, ed. Los Alamitos, Calif.: IEEE Comput. Soc. Press, 401–405.

303

Neural Networks Algorithms

Uykan, Z., C. Guzelis, M. E. Celebi, and H. N. Koivo. 2000. Analysis of input-output clustering
for determining centers of RBFN. IEEE Transactions on Neural Networks, 11, 851–858.

OPTIMAL BINNING Algorithms
The Optimal Binning procedure performs MDLP (minimal description length principle)
discretization of scale variables. This method divides a scale variable into a small number of
intervals, or bins, where each bin is mapped to a separate category of the discretized variable.

MDLP is a univariate, supervised discretization method. Without loss of generality, the
algorithm described in this document only considers one continuous attribute in relation to a
categorical guide variable — the discretization is “optimal” with respect to the categorical guide.
Therefore, the input data matrix S contains two columns, the scale variable A and categorical
guide C.

Optimal binning is applied in the Binning node when the binning method is set to Optimal.

Notation

The following notation is used throughout this chapter unless otherwise stated:

S The input data matrix, containing a column of the scale variable A and a
column of the categorical guide C. Each row is a separate observation, or
instance.

A A scale variable, also called a continuous attribute.
S(i) The value of A for the ith instance in S.
N The number of instances in S.
D A set of all distinct values in S.
Si A subset of S.
C The categorical guide, or class attribute; it is assumed to have k

categories, or classes.
T A cut point that defines the boundary between two bins.
TA A set of cut points.
Ent(S) The class entropy of S.
E(A, T, S) The class entropy of partition induced by T on A.
Gain(A, T, S) The information gain of the cut point T on A.
n A parameter denoting the number of cut points for the equal frequency

method.
W A weight attribute denoting the frequency of each instance. If the weight

values are not integer, they are rounded to the nearest whole numbers before
use. For example, 0.5 is rounded to 1, and 2.4 is rounded to 2. Instances
with missing weights or weights less than 0.5 are not used.

Simple MDLP

This section describes the supervised binning method (MDLP) discussed in Fayyad and Irani
(1993).

Class Entropy

Let there be k classes C1, ..., Ck and let P(Ci, S) be the proportion of instances in S that have
class Ci. The class entropy Ent(S) is defined as

© Copyright IBM Corporation 1994, 2016. 305

306

OPTIMAL BINNING Algorithms

Class Information Entropy

For an instance set S, a continuous attribute A, and a cut point T, let S1 ⊂ S be the subset of
instances in S with the values of A ≤ T, and S2 = S−S1. The class information entropy of the
partition induced by T, E(A, T; S), is defined as

Information Gain

Given a set of instances S, a continuous attribute A, and a cut point T on A, the information
gain of a cut point T is

MDLP Acceptance Criterion

The partition induced by a cut point T for a set S of N instances is accepted if and only if

and it is rejected otherwise.

Here in which ki is the
number of classes in the subset Si of S.

Note: While the MDLP acceptance criterion uses the association between A and C to determine
cut points, it also tries to keep the creation of bins to a small number. Thus there are situations in
which a high association between A and C will result in no cut points. For example, consider the
following data:

D Class

2 3
1 1 0
2 0 6

Then the potential cut point is T = 1. In this case:

307

OPTIMAL BINNING Algorithms

Since 0.5916728 < 0.6530774, T is not accepted as a cut point, even though there is a clear
relationship between A and C.

Algorithm: BinaryDiscretization

1. Calculate E(A, di; S) for each distinct value di∈ D for which di and di+1 do not belong to the same
class. A distinct value belongs to a class if all instances of this value have the same class.

2. Select a cut point T for which E(A, T; S) is minimum among all the candidate cut points, that is,

Algorithm: MDLPCut

1. BinaryDiscretization(A, T; D, S).

2. Calculate Gain(A, T; S).

3. If then

a) .

b) Split D into D1 and D2, and S into S1 and S2.

c) MDLPCut(A, TA; D1, S1).

d) MDLPCut(A, TA; D2, S2). where S1 ⊂ S be the subset of instances in S with A-values ≤ T, and
S2 = S−S1. D1 and D2 are the sets of all distinct values in S1 and S2, respectively.

Also presented is the iterative version of MDLPCut(A, TA; D, S). The iterative implementation
requires a stack to store the D and S remaining to be cut.

First push D and S into stack. Then, while (stack≠∅) do

1. Obtain D and S by popping stack.

2. BinaryDiscretization(A, T; D, S).

3. Calculate Gain(A, T; S).

4. If then

i) .

ii) Split D into D1 and D2, and S into S1 and S2.

iii) Push D1 and S1 into stack.

iv) Push D2 and S2 into stack.

308

OPTIMAL BINNING Algorithms

Note: In practice, all operations within the algorithm are based on a global matrixM. Its element,
mij, denotes the total number of instances that have value di ∈ D and belong to the jth class in S.
In addition, D is sorted in ascending order. Therefore, we do not need to push D and S into stack,
but only two integer numbers, which denote the bounds of D, into stack.

Algorithm: SimpleMDLP

1. Sort the set S with N instances by the value A in ascending order.

2. Find a set of all distinct values, D, in S.

3. TA = ∅.

4. MDLPCut(A, TA; D, S)

5. Sort the set TA in ascending order, and output TA.

Hybrid MDLP
When the set D of distinct values in S is large, the computational cost to calculate E(A, di; S)
for each di ∈ D is large. In order to reduce the computational cost, the unsupervised equal
frequency binning method is used to reduce the size of D and obtain a subset Def ∈ D. Then the
MDLPCut(A, TA; Ds, S) algorithm is applied to obtain the final cut point set TA.

Algorithm: EqualFrequency

It divides a continuous attribute A into n bins where each bin contains N/n instances. n is a
user-specified parameter, where 1 < n < N.

1. Sort the set S with N instances by the value A in ascending order.

2. Def = ∅.

3. j=1.

4. Use the aempirical percentile method to generate the dp,i which denote the th
percentiles.

5. ; i=i+1

6. If i≤n, then go to step 4.

7. Delete the duplicate values in the set Def.

Note: If, for example, there are many occurrences of a single value of A, the equal frequency
criterion may not be met. In this case, no cut points are produced.

Algorithm: HybridMDLP

1. D = ∅;

309

OPTIMAL BINNING Algorithms

2. EqualFrequency(A, n, D; S).

3. TA = ∅.

4. MDLPCut(A, TA; D, S).

5. Output TA.

Model Entropy

The model entropy is a measure of the predictive accuracy of an attribute A binned on the class
variable C. Given a set of instances S, suppose that A is discretized into I bins given C, where
the ith bin has the value Ai. Letting Si ⊂ S be the subset of instances in S with the value Ai, the
model entropy is defined as:

where and .

Merging Sparsely Populated Bins

Occasionally, the procedure may produce bins with very few cases. The following strategy deletes
these pseudo cut points:

E For a given variable, suppose that the algorithm found nfinal cut points, and thus nfinal+1 bins. For
bins i = 2, ..., nfinal (the second lowest-valued bin through the second highest-valued bin), compute

where sizeof(bin) is the number of cases in the bin.

E When this value is less than a user-specified merging threshold, is considered sparsely populated
and is merged with or , whichever has the lower class information entropy. For more
information, see the topic “Class Information Entropy ” on p. 306.

The procedure makes a single pass through the bins.

Blank Handling

In optimal binning, blanks are handled in pairwise fashion. That is, for every pair of fields
{binning field, target field}, all records with valid values for both fields are used to bin that
specific binning field, regardless of any blanks that may exist in other fields to be binned.

310

OPTIMAL BINNING Algorithms

References

Fayyad, U., and K. Irani. 1993. Multi-interval discretization of continuous-value attributes for
classification learning. In: Proceedings of the Thirteenth International Joint Conference on
Artificial Intelligence, San Mateo, CA: Morgan Kaufmann, 1022–1027.

Dougherty, J., R. Kohavi, and M. Sahami. 1995. Supervised and unsupervised discretization
of continuous features. In: Proceedings of the Twelfth International Conference on Machine
Learning, Los Altos, CA: Morgan Kaufmann, 194–202.

Liu, H., F. Hussain, C. L. Tan, and M. Dash. 2002. Discretization: An Enabling Technique. Data
Mining and Knowledge Discovery, 6, 393–423.

Predictor Importance Algorithms
Predictor importance can be determined by computing the reduction in variance of the target
attributable to each predictor, via a sensitivity analysis. This method of computing predictor
importance is used in the following models:
 Neural Networks
 C5.0
 C&RT
 QUEST
 CHAID
 Regression
 Logistic
 Discriminant
 GenLin
 SVM
 Bayesian Networks

Notation

The following notation is used throughout this chapter unless otherwise stated:

Y Target
Predictor, where j=1,...,k

k The number of predictors
Model for Y based on predictors through

Variance Based Method

Predictors are ranked according to the sensitivity measure defined as follows.

where V(Y) is the unconditional output variance. In the numerator, the expectation operator E
calls for an integral over ; that is, over all factors but , then the variance operator V implies
a further integral over .

Predictor importance is then computed as the normalized sensitivity.

© Copyright IBM Corporation 1994, 2016. 311

312

Predictor Importance Algorithms

Saltelli et al (2004) show that is the proper measure of sensitivity to rank the predictors in order
of importance for any combination of interaction and non-orthogonality among predictors.

The importance measure Si is the first-order sensitivity measure, which is accurate if the set of
the input factors (X1 , X2 ,…, Xk) is orthogonal/independent (a property of the factors), and
the model is additive; that is, the model does not include interactions (a property of the model)
between the input factors. For any combination of interaction and non-orthogonality among
factors, Saltelli (2004) pointed out that Si is still the proper measure of sensitivity to rank the
input factors in order of importance, but there is a risk of inaccuracy due to the presence of
interactions or/and non-orthogonality. For better estimation of Si, the size of the dataset should
be a few hundred at least. Otherwise, Si may be biased heavily. In this case, the importance
measure can be improved by bootstrapping.

Computation

In the orthogonal case, it is straightforward to estimate the conditional variances by computing
the multidimensional integrals in the space of the input factors, via Monte Carlo methods as
follows.

Let us start with two input sample matrices and , each of dimension N× k:

and

where N is the sample size of the Monte Carlo estimate which can vary from a few hundred to one
thousand. Each row is an input sample. From and , we can build a third matrix .

We may think of as the “sample” matrix, as the “resample” matrix, and as the matrix
where all factors except are resampled. The following equations describe how to obtain the
variances (Saltelli 2002). The ‘hat’ denotes the numeric estimates.

313

Predictor Importance Algorithms

where

where

and

When the target is continuous, we simply follow the accumulation steps of variance and
expectations. For a categorical target, the accumulation steps are for each category of Y. For each
input factor, is a vector with an element for each category of Y. The average of elements of is
used as the estimation of importance of the ith input factor on Y.

Convergence. In order to improve scalability, we use a subset of the records and predictors when
checking for convergence. Specifically, the convergence is judged by the following criteria:

where , D=100 and denotes the width of interest, ,

and defines the desired average relative error.

This specification focuses on “good” predictors; those whose importance values are larger than
average.

Record order. This method of computing predictor importance is desirable because it scales well to
large datasets, but the results are dependent upon the order of records in the dataset. However, with
large, randomly ordered datasets, you can expect the predictor importance results to be consistent.

314

Predictor Importance Algorithms

References

Saltelli, A., S. Tarantola, F. , F. Campolongo, and M. Ratto. 2004. Sensitivity Analysis in Practice
– A Guide to Assessing Scientific Models. : John Wiley.

Saltelli, A. 2002. Making best use of model evaluations to compute sensitivity indices. Computer
Physics Communications, 145:2, 280–297.

QUEST Algorithms

Overview of QUEST

QUEST stands for Quick, Unbiased, Efficient Statistical Tree. It is a relatively new binary
tree-growing algorithm (Loh and Shih, 1997). It deals with split field selection and split-point
selection separately. The univariate split in QUEST performs approximately unbiased field
selection. That is, if all predictor fields are equally informative with respect to the target field,
QUEST selects any of the predictor fields with equal probability.

QUEST affords many of the advantages of C&RT, but, like C&RT, your trees can become
unwieldy. You can apply automatic cost-complexity pruning (see “Pruning” on p. 323) to a
QUEST tree to cut down its size. QUEST uses surrogate splitting to handle missing values. For
more information, see the topic “Blank Handling” on p. 319.

Primary Calculations

The calculations directly involved in building the model are described below.

Frequency Weight Fields

A frequency field represents the total number of observations represented by each record. It is
useful for analyzing aggregate data, in which a record represents more than one individual. The
sum of the values for a frequency field should always be equal to the total number of observations
in the sample. Note that output and statistics are the same whether you use a frequency field or
case-by-case data. The table below shows a hypothetical example, with the predictor fields sex
and employment and the target field response. The frequency field tells us, for example, that 10
employed men responded yes to the target question, and 19 unemployed women responded no.

Table 30-1
Dataset with frequency field

Sex Employment Response Frequency

M Y Y 10
M Y N 17
M N Y 12
M N N 21
F Y Y 11
F Y N 15
F N Y 15
F N N 19

The use of a frequency field in this case allows us to process a table of 8 records instead of
case-by-case data, which would require 120 records.

QUEST does not support the use of case weights.

© Copyright IBM Corporation 1994, 2016. 315

316

QUEST Algorithms

Model Parameters

QUEST deals with field selection and split-point selection separately. Note that you can specify
the alpha level to be used in the Expert Options for QUEST—the default value is αnominal = 0.05.

Field Selection

1. For each predictor field X, if X is a symbolic (categorical), or nominal, field, compute the p value
of a Pearson chi-square test of independence between X and the dependent field. If X is scale-level
(continuous), or ordinal field, use the F test to compute the p value.

2. Compare the smallest p value to a prespecified, Bonferroni-adjusted alpha level αB.
 If the smallest p value is less than αB, then select the corresponding predictor field to split

the node. Go on to step 3.
 If the smallest p value is not less thanαB, then for each X that is scale-level (continuous), use

Levene’s test for unequal variances to compute a p value. (In other words, test whether X
has unequal variances at different levels of the target field.)

 Compare the smallest p value from Levene’s test to a new Bonferroni-adjusted alpha level αL.
 If the p value is less than αL, select the corresponding predictor field with the smallest p

value from Levene’s test to split the node.
 If the p value is greater than αL, the node is not split.

Split Point Selection—Scale-Level Predictor

1. If Y has only two categories, skip to the next step. Otherwise, group the categories of Y into
two superclasses as follows:
 Compute the mean of X for each category of Y.
 If all means are the same, the category with the largest weighted frequency is selected as one

superclass and all other categories are combined to form the other superclass. (If all means
are the same and there are multiple categories tied for largest weighted frequency, select
the category with the smallest index as one superclass and combine the other categories
to form the other.)

 If the means are not all the same, apply a two-mean clustering algorithm to those means to
obtain two superclasses of Y, with the initial cluster centers set at the two most extreme class
means. (This is a special case of k-means clustering, where k = 2. For more information, see
the topic “Overview” on p. 227.)

2. Apply quadratic discriminant analysis (QDA) to determine the split point. Notice that QDA
usually produces two cut-off points—choose the one that is closer to the sample mean of the
first superclass.

Split Point Selection—Symbolic (Categorical) Predictor

QUEST first transforms the symbolic field into a continuous field ξ by assigning discriminant
coordinates to categories of the predictor. The derived field ξ is then split as if it were any other
continuous predictor as described above.

317

QUEST Algorithms

Chi-Square Test

The Pearson chi-square statistic is calculated as

where is the observed cell frequency and is the expected
cell frequency for cell (xn = i, yn = j) from the independence model as described below. The
corresponding p value is calculated as , where follows a chi-square
distribution with d = (J − 1)(I − 1) degrees of freedom.

Expected Frequencies for Chi-Square Test

For models with no case weights, expected frequencies are calculated as

where

F Test

Suppose for node t there are Jt classes of target field Y. The F statistic for continuous predictor X
is calculated as

where

The corresponding p value is given by

where F(Jt − 1, Nf(t) − Jt) follows an F distribution with degrees of freedom Jt − 1 and Nf(t) − Jt.

318

QUEST Algorithms

Levene’s Test

For continuous predictor X, calculate , where is the mean of X for records in
node t with target value yn. Levene’s F statistic for predictor X is the ANOVA F statistic for zn.

Bonferroni Adjustment

The adjusted alpha level αB is calculated as the nominal value divided by the number of possible
comparisons.

For QUEST, the Bonferroni adjusted alpha level αB for the initial predictor selection is

where m is the number of predictor fields in the model.

For the Levene test, the Bonferroni adjusted alpha level αL is

where mc is the number of continuous predictor fields.

Discriminant Coordinates

For categorical predictor X with values {b1,...,bI}, QUEST assigns a score value from a continuous
variable ξ to each category of X. The scores assigned are chosen to maximize the ratio of
between-class to within-class sum of squares of ξ for the target field classes:

For each record, transform X into a vector of dummy fields , where

otherwise

Calculate the overall and class j mean of ν:

where fn is the frequency weight for record n, gn is the dummy vector for record n, Nf is the
total sum of frequency weights for the training data, and Nf,j is the sum of frequency weights
for records with category j.

Calculate the following matrices:

319

QUEST Algorithms

Perform singular value decomposition on T to obtain , where Q is an orthogonal
matrix, D = diag(dl,...,dI) such that . Let where

if di > 0, 0 otherwise. Perform singular value decomposition on to
obtain its eigenvector a which is associated with its largest eigenvalue.

The largest discriminant coordinate of g is the projection

Quadratic Discriminant Analysis (QDA)

To determine the cutpoint for a continuous predictor, first group the categories of the target field Y
to form two superclasses, A and B, as described above.

If , order the two superclasses by their variance in increasing order and denote
the variances by , and the corresponding means by . Let ε be a very small positive
number, say ε = 10−12. Set the cutpoint d based on and ε:

if
otherwise

Blank Handling

Records with missing values for the target field are ignored in building the tree model.

Surrogate splitting is used to handle blanks for predictor fields. If the best predictor field to be
used for a split has a blank or missing value at a particular node, another field that yields a split
similar to the predictor field in the context of that node is used as a surrogate for the predictor
field, and its value is used to assign the record to one of the child nodes.

Note: If Surrogate splitting is used (where a particular rule does not fit into a node) the Confidence
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

For example, suppose that X* is the predictor field that defines the best split s* at node t. The
surrogate-splitting process finds another split s, the surrogate, based on another predictor field X
such that this split is most similar to s* at node t (for records with valid values for both predictors).
If a new record is to be predicted and it has a missing value on X* at node t, the surrogate split s is
applied instead. (Unless, of course, this record also has a missing value on X. In such a situation,
the next best surrogate is used, and so on, up to the limit of number of surrogates specified.)

In the interest of speed and memory conservation, only a limited number of surrogates is
identified for each split in the tree. If a record has missing values for the split field and all
surrogate fields, it is assigned to the child node with the higher weighted probability, calculated as

320

QUEST Algorithms

where Nf,j(t) is the sum of frequency weights for records in category j for node t, and Nf(t) is the
sum of frequency weights for all records in node t.

If the model was built using equal or user-specified priors, the priors are incorporated into the
calculation:

where π(j) is the prior probability for category j, and pf(t) is the weighted probability of a record
being assigned to the node,

where Nf,j(t) is the sum of the frequency weights (or the number of records if no frequency
weights are defined) in node t belonging to category j, and Nf,j is the sum of frequency weights
for records belonging to category in the entire training sample.

Predictive measure of association

Let (resp.) be the set of learning cases (resp. learning cases in node t) that has
non-missing values of both X* and X. Let be the probability of sending a case in

to the same child by both and , and be the split with maximized probability
.

The predictive measure of association between s* and at node t is

where (resp.) is the relative probability that the best split s* at node t sends a case with
non-missing value of X* to the left (resp. right) child node. And where

if is categorical

if is continuous

with

,

321

QUEST Algorithms

,

and being the indicator function taking value 1 when both splits s* and send
the case n to the same child, 0 otherwise.

Effect of Options

Stopping Rules

Stopping rules control how the algorithm decides when to stop splitting nodes in the tree. Tree
growth proceeds until every leaf node in the tree triggers at least one stopping rule. Any of the
following conditions will prevent a node from being split:
 The node is pure (all records have the same value for the target field)
 All records in the node have the same value for all predictor fields used by the model
 The tree depth for the current node (the number of recursive node splits defining the current

node) is the maximum tree depth (default or user-specified).
 The number of records in the node is less than the minumum parent node size (default or

user-specified)
 The number of records in any of the child nodes resulting from the node’s best split is less

than the minimum child node size (default or user-specified)

Profits

Profits are numeric values associated with categories of a (symbolic) target field that can be used
to estimate the gain or loss associated with a segment. They define the relative value of each value
of the target field. Values are used in computing gains but not in tree growing.

Profit for each node in the tree is calculated as

where j is the target field category, fj(t) is the sum of frequency field values for all records in node
t with category j for the target field, and Pj is the user-defined profit value for category j.

322

QUEST Algorithms

Priors

Prior probabilities are numeric values that influence the misclassification rates for categories of
the target field. They specify the proportion of records expected to belong to each category of the
target field prior to the analysis. The values are involved both in tree growing and risk estimation.

There are three ways to derive prior probabilities.

Empirical Priors

By default, priors are calculated based on the training data. The prior probability assigned to each
target category is the weighted proportion of records in the training data belonging to that category,

In tree-growing and class assignment, the Ns take both case weights and frequency weights
into account (if defined); in risk estimation, only frequency weights are included in calculating
empirical priors.

Equal Priors

Selecting equal priors sets the prior probability for each of the J categories to the same value,

User-Specified Priors

When user-specified priors are given, the specified values are used in the calculations involving
priors. The values specified for the priors must conform to the probability constraint: the sum of
priors for all categories must equal 1.0. If user-specified priors do not conform to this constraint,
adjusted priors are derived which preserve the proportions of the original priors but conform
to the constraint, using the formula

where π’(j) is the adjusted prior for category j, and π(j) is the original user-specified prior for
category j.

Costs

If misclassification costs are specified, they are incorporated into split calculations by using
altered priors. The altered prior is defined as

323

QUEST Algorithms

where .

Misclassification costs also affect risk estimates and predicted values, as described below (on p.
324 and on p. 325, respectively).

Pruning

Pruning refers to the process of examining a fully grown tree and removing bottom-level splits
that do not contribute significantly to the accuracy of the tree. In pruning the tree, the software
tries to create the smallest tree whose misclassification risk is not too much greater than that of the
largest tree possible. It removes a tree branch if the cost associated with having a more complex
tree exceeds the gain associated with having another level of nodes (branch).

It uses an index that measures both the misclassification risk and the complexity of the tree,
since we want to minimize both of these things. This cost-complexity measure is defined as
follows:

R(T) is the misclassification risk of tree T, and is the number of terminal nodes for tree T. The
term α represents the complexity cost per terminal node for the tree. (Note that the value of α is
calculated by the algorithm during pruning.)

Any tree you might generate has a maximum size (Tmax), in which each terminal node contains
only one record. With no complexity cost (α = 0), the maximum tree has the lowest risk, since
every record is perfectly predicted. Thus, the larger the value of α, the fewer the number of
terminal nodes in T(α), where T(α) is the tree with the lowest complexity cost for the given α. As
α increases from 0, it produces a finite sequence of subtrees (T1, T2, T3), each with progressively
fewer terminal nodes. Cost-complexity pruning works by removing the weakest split.

The following equations represent the cost complexity for {t}, which is any single node, and
for Tt, the subbranch of {t}.

If is less than , then the branch Tt has a smaller cost complexity than the single
node {t}.

The tree-growing process ensures that for (α = 0). As α increases from 0,
both and grow linearly, with the latter growing at a faster rate. Eventually, you
will reach a threshold α’, such that for all α > α’. This means that when α
grows larger than α’, the cost complexity of the tree can be reduced if we cut the subbranch Tt
under {t}. Determining the threshold is a simple computation. You can solve this first inequality,

, to find the largest value of α for which the inequality holds, which is also
represented by g(t). You end up with

324

QUEST Algorithms

You can define the weakest link (t) in tree T as the node that has the smallest value of g(t):

Therefore, as α increases, is the first node for which . At that point, { }
becomes preferable to , and the subbranch is pruned.

With that background established, the pruning algorithm follows these steps:

E Set α1 = 0 and start with the tree T1 = T(0), the fully grown tree.

E Increase α until a branch is pruned. Prune the branch from the tree, and calculate the risk estimate
of the pruned tree.

E Repeat the previous step until only the root node is left, yielding a series of trees, T1, T2, ... Tk.

E If the standard error rule option is selected, choose the smallest tree Topt for which

E If the standard error rule option is not selected, then the tree with the smallest risk estimate R(T)
is selected.

Secondary Calculations

Secondary calculations are not directly related to building the model but give you information
about the model and its performance.

Risk Estimates

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for
the tree as a whole.

Risk Estimates for Symbolic Target Field

For classification trees (with a symbolic target field), the risk estimate r(t) of a node t is computed
as

325

QUEST Algorithms

where C(j*(t)|j) is the misclassification cost of classifying a record with target value j as j*(t),
Nf,j(t) is the sum of the frequency weights for records in node t in category j (or the number of
records if no frequency weights are defined), and Nf is the sum of frequency weights for all
records in the training data.

If the model uses user-specified priors, the risk estimate is calculated as

Gain Summary

The gain summary provides descriptive statistics for the terminal nodes of a tree.
If your target field is continuous (scale), the gain summary shows the weighted mean of the

target value for each terminal node,

If your target field is symbolic (categorical), the gain summary shows the weighted percentage of
records in a selected target category,

where xi(j) = 1 if record xi is in target category j, and 0 otherwise. If profits are defined for the
tree, the gain is the average profit value for each terminal node,

where P(xi) is the profit value assigned to the target value observed in record xi.

Generated Model/Scoring

Calculations done by the QUEST generated model are described below.

Predicted Values

New records are scored by following the tree splits to a terminal node of the tree. Each terminal
node has a particular predicted value associated with it, determined as follows:

For trees with a symbolic target field, each terminal node’s predicted category is the category with
the lowest weighted cost for the node. This weighted cost is calculated as

326

QUEST Algorithms

where C(i|j) is the user-specified misclassification cost for classifying a record as category i when
it is actually category j, and p(j|t) is the conditional weighted probability of a record being in
category j given that it is in node t, defined as

where π(j) is the prior probability for category j, Nw,j(t) is the weighted number of records in node
t with category j (or the number of records if no frequency or case weights are defined),

and Nw,j is the weighted number records in category j (any node),

Confidence

Confidence for a scored record is the proportion of weighted records in the training data in the
scored record’s assigned terminal node that belong to the predicted category, modified by the
Laplace correction:

Note: If Surrogate Splitting is used (where a particular rule does not fit into a node) the Confidence
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

Blank Handling

In classification of new records, blanks are handled as they are during tree growth, using
surrogates where possible, and splitting based on weighted probabilities where necessary. For
more information, see the topic “Blank Handling” on p. 319.

Self-Learning Response Model
Algorithms

Self-Learning Response Models (SLRMs) use Naive Bayes classifiers to build models that can
be easily updated to incorporate new data, without having to regenerate the entire model. The
methods used for building, updating and scoring with SLRMs are described here.

Primary Calculations

The model-building algorithm used in SLRMs is Naive Bayes. A Bayesian Network consisting of
a Naive Bayes model for each target field is generated.

Naive Bayes Algorithms

The Naive Bayes model is an old method for classification and predictor selection that is enjoying
a renaissance because of its simplicity and stability.

Notation

The following notation is used throughout this chapter unless otherwise stated:
Table 31-1
Notation

Notation Description
J0 Total number of predictors.
X Categorical predictor vector X’ = (X1, ..., XJ), where J is the number of

predictors considered.
Mj Number of categories for predictor Xj.
Y Categorical target variable.
K Number of categories of Y.
N Total number of cases or patterns in the training data.
Nk The number of cases with Y= k in the training data.
Njmk The number of cases with Y= k and Xj=m in the training data.
πk The probability for Y= k.
pjmk The probability of Xj=m given Y= k.

Naive Bayes Model

The Naive Bayes model is based on the conditional independence model of each predictor given
the target class. The Bayesian principle is to assign a case to the class that has the largest posterior
probability. By Bayes’ theorem, the posterior probability of Y given X is:

© Copyright IBM Corporation 1994, 2016. 327

328

Self-Learning Response Model Algorithms

Let X1, ..., XJ be the J predictors considered in the model. The Naive Bayes model assumes that
X1, ..., XJ are conditionally independent given the target; that is:

These probabilities are estimated from training data by the following equations:

Where Nk is calculated based on all non-missing Y, Njmk is based on all non-missing pairs
of XJ and Y, and the factors λ and f are introduced to overcome problems caused by zero or
very small cell counts. These estimates correspond to Bayesian estimation of the multinomial
probabilities with Dirichlet priors. Empirical studies suggest (Kohavi, Becker, and
Sommerfield, 1997).

A single data pass is needed to collect all the involved counts.

For the special situation in which J = 0; that is, there is no predictor at all,
. When there are empty categories in the target variable or

categorical predictors, these empty categories should be removed from the calculations.

Secondary Calculations

In addition to the model parameters, a model assessment is calculated.

Model Assessment

For a trained model, we need to assess how reliable it is. Given this problem, we face two
conditions which will result with different solutions:
 A sample of test data (not used in training or updating the model) is available. In this case we

can directly feed these data into the model, and observe the outcome.
 No extra testing data are available. This is more common since users normally apply all

available data to train the model. In this case, we have to simulate data first based on the
calibrated model parameters, such as and , then assess the trained model by scoring
these pseudo random data.

Testing with Simulated Data

In our simulation, data are generated. For each round, we can
determine the corresponding accuracy; across all rounds, average accuracy and variance can be
calculated, and they are explained as reliability statistics.

329

Self-Learning Response Model Algorithms

E For each round, we generate random cases as follows:
 y is assigned a random value based on the prior probabilities .
 Each is randomly assigned based on conditional probabilities

E The accuracy of each round is calculated by comparing the model’s predicted value for each case
to the case’s generated outcome y,

E The mean, variance, minimum and maximum of the accuracy estimates are calculated across
rounds.

Blank Handling
If the target is missing, or all predictors for a case are missing, the case is ignored. If every
value for a predictor is missing, or all non-missing values for a predictor are the same, that
predictor is ignored.

Updating the Model
The model can be updated by updating the cell counts , to account for the new records
and recalculating the probabilities and as described in “Naive Bayes Model” on p. 327.
Updating the model only requires a data pass of new records.

Generated Model/Scoring
Scoring with a generated SLRM model is described below.

Predicted Values and Confidences

By default, the first M offers with highest predicted value will be returned. However, sometimes
low-probability offers are of interest for marketing strategy. Model settings allow you to bias the
results toward particular offers, or include random components to the offers.

Some notation for scoring offers:

Number of offers modeled already

Scores for each offer

Randomly generated scores for offers

Randomization factor, ranging from 0.0 (offer based
only on model prediction) to 1.0 (offer is completely
random)
Number of cases used for training each offer

Empirical value of the amount of training cases that
will result in a reliable model. When “Take account
of model reliability” is selected in the Settings tab,
this is set to 500; otherwise 0.

330

Self-Learning Response Model Algorithms

User’s preferences for offers, or the ratings of the
offers. Can be any non-negative value, where
larger values means stronger recommendations for
the corresponding offers. The default setting is

Mandatory inclusion/exclusion filters. ,
where 0 indicates an excluded offer.

The final score for each offer is calculated as

The outcomes are ordered in specified order, ascending or descending, and the first M offers in
the list are recommended. The calculated score is reported as the confidence for the score.

Variable Assessment

Among all the features modeled, some are definitely more important to the accuracy of the model
than others. Two different approaches to measuring importance are proposed here: Predictor
Importance and Information Measure.

Predictor Importance

The variance of predictive error can be used as the measure of importance. With this method,
we leave out one predictor variable at a time, and observe the performance of remaining model.
A variable is regarded as more important than another if it adds more variance compared to
that of the complete model (with all variables).

When test data are available, they can be used for predictor importance calculations in a direct way.
When test data are not available, they are simulated based on the model parameters and .

In our simulation, data are generated. For each round, we determine
the corresponding accuracy for each submodel, excluding for each of the j predictors; across
all rounds, average accuracy and variance can be calculated.

E For each round, we generate random cases as follows:
 y is assigned a random value based on the prior probabilities .
 Each is randomly assigned based on conditional probabilities

Within a round, each of the predictors is excluded from the model, and the accuracy is
calculated based on the generated test data for each submodel in turn.

E The accuracies for each round are calculated by comparing the submodel’s predicted value for
each case to the case’s generated outcome y, , for each
of the j submodels.

331

Self-Learning Response Model Algorithms

E The mean and variance of the accuracy estimates are calculated across rounds for each submodel.
For each variable, the importance is measured as the difference between the accuracy of the full
model and the mean accuracy for the submodels that excluded the variable.

Information Measure

The importance of an explanatory variable X for a response variable Y is the extent to which the
use of X reduces uncertainty in predicting outcomes of Y. The uncertainty about predicting an
outcome Y is measured by the entropy of its distribution (Shannon 1948):

Based on a value x of the explanatory variable, the probability distribution of the outcomes Y is
the conditional distribution . The information value of using the value x for the prediction
is assessed by comparing the concentrations of the marginal distribution and the conditional
distribution . The difference between the conditional and marginal distribution entropy is:

where denotes the entropy of the conditional distribution . The value is informative
about Y if the conditional distribution is more concentrated than .

The importance of a random variable X for predicting Y is measured by the expected uncertainty
reduction, referred to as the mutual information between two variables:

The expected fraction of uncertainty reduction due to X is a mutual information index given by

This index ranges from zero to one: if and only if the two variables are independent,
and if and only if the two variables are functionally related in some form, linearly
or nonlinearly.

Sequence Algorithm

Overview of Sequence Algorithm

The sequence node in IBM® SPSS® Modeler detects patterns in sequential data, such as
purchases over time. The sequence node algorithm uses the following two-stage process for
sequential pattern mining (Agrawal and Srikant, 1995):

E Mine for the frequent sequences. This part of the process extracts the information needed for quick
responses to the pattern queries, yielding an adjacency lattice of the frequent sequences. This
structure provides an optimal configuration for the second stage.

E Generate sequential patterns online. This stage uses a pre-computed adjacency lattice. You can
extract the patterns according to specified criteria, such as support and confidence bounds, or
place restrictions on the antecedent sequence.

Primary Calculations

Itemsets, Transactions, and Sequences

A group of items associated at a single point in time constitutes an itemset, which will be
identified here using braces “{ }”. Consider the hypothetical data below representing sales at a
gourmet store.
Table 32-1
Example data - product purchases

Customer Time 1 Time 2 Time 3 Time 4

1 cheese & crackers wine beer -
2 wine beer cheese -
3 bread wine cheese & beer -
4 crackers wine beer cheese
5 beer cheese & crackers bread -
6 crackers bread - -

Customer 1 yields three itemsets: {cheese & crackers}, {wine}, and {beer}. The ampersand
denotes items appearing in a single itemset. In this case, items separated by an ampersand appear
in the same purchase. Notice that some itemsets may contain a single item only.

The complete group of itemsets for a single object, in this case a customer, constitutes a
transaction. Time refers to a purchase occasion for a particular customer and does not represent a
specific time across all customers. For example, the first purchase occasion for customer 1 may
have been on January 23 while the first occasion for customer 4 was February 12. Although the
dates are not identical, each itemset was the first for that customer. The analysis focuses on time
relative to a specific customer instead of on absolute time.

Ordering the itemsets by time yields sequences. The symbol “>” denotes an ordering of
itemsets, with the itemset on the right occurring after the itemset on the left. For example,
customer 6 yields a sequence of [{crackers} > {bread}].

© Copyright IBM Corporation 1994, 2016. 333

334

Sequence Algorithm

Two common characteristics used to describe sequences are size and length. The number of
items contained in a sequence corresponds to the sequence size. The number of itemsets in the
sequence equals its length. For example, the three timepoints for customer 5 correspond to a
sequence having a length of three and a size of four.

A sequence is a subsequence of another sequence if the first can be derived by deleting
itemsets from the second. Consider the sequence:

[{wine} > {beer} > {cheese}]

Deleting the itemset cheese results in the sequence of length two [{wine} > {beer}]. This two
itemset sequence is a subsequence of the original sequence. Similar deletions reveal that the
three itemset sequence can be decomposed into three singleton subsequences ({wine}, {beer},
{cheese}) and three subsequences involving two itemsets ([{wine} > {beer}], [{beer} >
{cheese}], [{wine} > {cheese}]). A sequence that is not a subsequence of another sequence is
referred to as a maximal sequence.

Support

The support for a sequence equals the proportion of transactions that contain the sequence. The
table below shows support values for sequences that appear in at least one transaction for a set of
gourmet store sales data (note that this is a different data set from the one shown previously).

For example, the support for sequence [{wine} > {beer}] is 0.67 because it occurs in four of the
six transactions. Similarly, support for a sequential rule equals the proportion of transactions that
contain both the antecedent and the consequent of the rule, in that order. The support for the
sequential rule:

If [{cheese} >
{wine}] then [{beer}]

is 0.17 because only one of the six transactions contains these three itemsets in this order.
Sequences that do not appear in any transaction have support values of 0 and are excluded

from the mining analysis.
Table 32-2
Nonzero support values

Sequence Support Sequence Support

{cheese} 0.83 {crackers} > {cheese} 0.17
{crackers} 0.67 {beer} > {cheese & crackers} 0.17
{wine} 0.67 {cheese & crackers} > {wine} 0.17
{beer} 0.83 {cheese & crackers} > {beer} 0.17
{bread} 0.50 {bread} > {cheese & beer} 0.17
{cheese &
crackers}

0.33 {wine} > {cheese & beer} 0.17

{cheese & beer} 0.17 {cheese & crackers} > {bread} 0.17
{cheese} > {wine} 0.17 {cheese} > {wine} > {beer} 0.17
{cheese} > {beer} 0.17 {crackers} > {wine} > {beer} 0.33
{wine} > {beer} 0.67 {wine} > {beer} > {cheese} 0.33
{crackers} >
{wine}

0.33 {bread} > {wine} > {beer} 0.17

335

Sequence Algorithm

Sequence Support Sequence Support

{crackers} > {beer} 0.33 {bread} > {wine} > {cheese} 0.17
{wine} > {cheese} 0.50 {beer} > {cheese} > {bread} 0.17
{beer} > {cheese} 0.50 {beer} > {crackers} > {bread} 0.17
{bread} > {wine} 0.17 {crackers} > {wine} > {cheese} 0.17
{bread} > {beer} 0.17 {crackers} > {beer} > {cheese} 0.17
{bread} > {cheese} 0.17 {cheese & crackers} > {wine} > {beer} 0.17
{beer} > {bread} 0.17 {bread} > {wine} > {cheese & beer} 0.17
{beer} > {crackers} 0.17 {beer} > {cheese & crackers} > {bread} 0.17
{cheese} > {bread} 0.17 {crackers} > {wine} > {beer} > {cheese} 0.17
{crackers} >
{bread}

0.33

Typically, the analysis focuses on sequences having support values greater than a minimum
threshold, the support level. This value, defined by the user, determines the minimum level for
which sequences will be kept. Sequences with support values exceeding the threshold, referred to
as frequent sequences, form the basis of the adjacency lattice. For example, for a threshold of
0.40, sequence [{wine} > {beer}] is a frequent sequence because its support level is 0.67. By
relaxing the threshold, more sequences are classified as frequent.

Time Constraints

Defining the time at which events occur has a dramatic impact on sequences. For instance, each
purchase occasion in the gourmet data yields a new timed itemset. However, suppose a customer
bought wine and realized while walking to his car that beer was needed too. He immediately
returns to the store and buys the forgotten item. Should these two purchases be considered
separately?

One method for controlling for itemsets that occur very close in time is through a timestamp
tolerance parameter. This tolerance defines the length of time covering a single itemset.
Specifying a tolerance larger than the difference between two consecutive times results in a single
itemset at one time, such as {wine & beer} in the scenario described above.

Another time issue commonly arising in the analysis of sequences is gap. This statistic
measures the difference in time between two items and can be used to make time-based predictions
of future behavior. Gap statistics can be based on the gap between the last and penultimate sets in
sequences, or on the gaps between the last and first sets in sequences.

Sequential Patterns

Sequential patterns, or sequential association rules,identify items that frequently follow other
items in transaction-based data. A sequential pattern is simply an ordered list of itemsets. All
itemsets leading to the final itemset form the antecedent sequence, and the last itemset is the
consequent sequence. These statements have the following form:

If [antecedent] then [consequent]

336

Sequence Algorithm

For example, a sequential pattern for wine, beer, and cheese is: “if a customer buys wine, then
buys beer, he will buy cheese in the future”. Wine and beer form the antecedent, and cheese is
the consequent.

Notationally, the symbol “=>” separates the antecedent from the consequent in a sequential
rule. The sequence to the left of this symbol corresponds to the antecedent; the sequence on the
right is the consequent. For instance, the rule above is denoted:

[{wine} > {beer } => {cheese}]

The only notational difference between a sequence and a sequential rule is the identification
of a subsequence as a consequent.

Adjacency Lattice

The number of itemsets and sequences for a collection of transactions grows very quickly as the
number of items appearing in transactions gets larger. In practice, analyses typically involve many
transactions and these transactions include a variety of itemsets. Larger datasets require complex
methods to process the sequential patterns, particularly if rapid feedback is needed.

An adjacency lattice provides a structure for organizing sequences, permitting rapid generation
of sequential patterns. Two sequences are adjacent if adding a single item to one yields the
other, resulting in a hierarchical structure denoting which sequences are subsequences of other
sequences. The lattice also includes sequence frequencies, as well as other information.

The adjacency lattice of all observed sequences is usually too large to be practical. It may be
more useful to prune the lattice to frequent sequences in an effort to simplify the structure. All
sequences contained in the resulting structure reach a specified support level. The adjacency
lattice for the sample transactions using a support level of 0.40 is shown below.

Figure 32-1
Adjacency lattice for a threshold of 0.40 (support values in parentheses)

337

Sequence Algorithm

Mining for Frequent Sequences

IBM® SPSS® Modeler uses a non-sequential association rule mining approach that performs
very well with respect to minimizing I/O costs, time, and space requirements. The continuous
association rule mining algorithm (Carma), uses only two data passes and allows changes in the
support level during execution (Hidber, 1999). The final guaranteed support level depends on the
provided series of support values.

For the first stage of the mining process, the component uses a variation of Carma to apply the
approach to the sequential case. The general order of operations is:

E Read the transaction data.

E Identify frequent sequences, discarding infrequent sequences.

E Build an adjacency lattice of frequent sequences.

Carma is based upon transactions and requires only two passes through the data. In the first data
pass, referred to as Phase I, the algorithm generates the frequent sequence candidates. The second
data pass, Phase II, computes the exact frequency counts for the candidate sequences from Phase I.

Phase I
Phase I corresponds to an estimation phase. In this phase, Carma generates candidate sequences

successively for every transaction. Candidate sequences satisfy a version of the “apriori” principle
where a sequence becomes a candidate only if all of its subsequences are candidates from the
previous transactions. Therefore, the size of candidate sequences can grow with each transaction.
To prevent the number of candidates from growing too large, Carma periodically prunes candidate
sequences that have not reached a threshold frequency. Pruning may occur after processing any
number of transactions. While pruning usually lowers the memory requirements, it increases the
computational costs. At the end of the Phase I, the algorithm generates all sequences whose
frequency exceeds the computed support level (which depends on the support series). Carma can
use many support levels, up to one support level per transaction.

The table below represents support values during transaction processing with no pruning for
the gourmet data. As the algorithm processes a transaction, support values adjust to account for
items appearing in that transaction, as well as for the total number of processed transactions. For
example, after the first transaction, the lattice contains cheese, crackers, wine, and beer, each
having a support exceeding the threshold level. After processing the second transaction, the
support for crackers drops from 1.0 to 0.50 because that item appears in only one of the two
transactions. The support for the other items remains unchanged because both transactions contain
the items. Furthermore, the sequences [{wine} > {beer}] and [{beer} > {cheese}] enter the lattice
because their constituent subsequences already appear in the lattice.
Table 32-3
Carma transaction processing

Transaction

Sequence 1 2 3 4 5 6

{cheese} 1 1 1 1 1 0.83
{crackers} 1 0.50 0.33 0.50 0.60 0.67
{wine} 1 1 1 1 0.80 0.67
{beer} 1 1 1 1 1 0.83

338

Sequence Algorithm

Transaction

Sequence 1 2 3 4 5 6

{wine} > {beer} 1 1 1 0.80 0.67
{beer} > {cheese} 0.50 0.33 0.50 0.60 0.50
{bread} 0.33 0.25 0.40 0.50
{wine} > {cheese} 0.67 0.75 0.60 0.50
{cheese & beer} 0.33 0.25 0.20 0.17
{crackers} > {wine} 0.50 0.40 0.33
{crackers} > {beer} 0.50 0.40 0.33
{crackers} > {cheese} 0.25 0.20 0.17
{wine} > {beer} > {cheese} 0.50 0.40 0.33
{cheese & crackers} 0.40 0.33
{beer} > {crackers} 0.20 0.17
{beer} > {bread} 0.20 0.17
{cheese} > {bread} 0.20 0.17
{crackers} > {bread} 0.20 0.33

After completing the first data pass, the lattice contains five sequences containing one item, twelve
sequences involving two items, and one sequence composed of three items.

Phase II
Phase II is a validation phase requiring a second data pass, during which the algorithm

determines accurate frequencies for candidate sequences. In this phase, Carma does not generate
any candidate sequences and prunes infrequent sequences only once, making Phase II faster
than Phase I. Moreover, depending on the entry points of candidate sequences during Phase I,
a complete data pass my not even be necessary. In an online application, Carma skips Phase II
altogether.

Suppose the threshold level is 0.30 for the lattice. Several sequences fail to reach this level and
subsequently get pruned during Phase II. The resulting lattice appears below.

339

Sequence Algorithm

Figure 32-2
Adjacency lattice for a threshold of 0.30 (support values in parentheses)

{NULL}
(1.00)

{cheese}
(0.83)

{crackers}
(0.67)

{wine}
(0.67)

{beer}
(0.83)

{bread}
(0.50)

{wine} > {beer} > {cheese}
(0.33)

{crackers} > {bread}
(0.33)

{cheese & crackers}
(0.33)

{beer} > {cheese}
(0.50)

{crackers} > {beer}
(0.33)

{crackers} > {wine}
(0.33)

{wine} > {cheese}
(0.50)

{wine} > {beer}
(0.67)

Notice that the lattice does not contain [{crackers} > {wine} > {beer}] although the support for
this sequence exceeds the threshold. Although [{crackers} > {wine} > {beer}] occurs in one-third
of the transactions, Carma cannot add this sequence to the lattice until all of its subsequences
are included. The final two subsequences occur in the fourth transaction, after which the full
three-itemset sequence is not observed. In general, however, the database of transactions will be
much larger than the small example shown here, and exclusions of this type will be extremely rare.

Generating Sequential Patterns

The second stage in the sequential pattern mining process queries the adjacency lattice of the
frequent sequences produced in the first stage for the actual patterns. Aggarwal and Yu (1998a)
IBM® SPSS® Modeler uses a set of efficient algorithms for generating association rules online
from the adjacency lattice (Aggarwal and Yu, 1998). Applying these algorithms to the sequential
case takes advantage of the monotonic properties for rule support and confidence preserved by
the adjacency lattice data structures. The lattice efficiently saves all the information necessary
for generating the sequential patterns and is orders of magnitude smaller than all the patterns
it could possibly generate.

The queries contain the constraints that the resulting set of sequential patterns needs to satisfy.
These constraints fall into two categories:
 constraints on statistical indices
 constraints on the items contained in the antecedent of the patterns

340

Sequence Algorithm

Statistical index constraints involve support, confidence, or cause. These queries require returned
patterns to have values for these statistics within a specified range. Usually, lower confidence
bound is the primary criterion. The lower bound for the pattern support level is given by the
support level for the sequences in the corresponding adjacency lattice. Often, however, the support
specified for pattern generation exceeds the value specified for lattice creation.

For the lattice shown above, specifying a support range between 0.30 and 1.00, a confidence
range from 0.30 to 1.0, and a cause range from 0 to 1.0 results in the following seven rules:
 If [{crackers}] then [{beer}].

 If [{crackers}] then [{wine}].

 If [{crackers}] then [{bread}].

 If [{wine} > {beer}] then [{cheese}].

 If [{wine}] then [{beer}].

 If [{wine}] then [{cheese}].

 If [{beer}] then [{cheese}].

Limiting the set to only maximal sequences omits the final three rules because they are
subsequences of the fourth.

The second type of query requires the specification of the sequential rule antecedent. This type
of query returns a new singleton itemset after the final itemset in the antecedent. For example,
consider an online shopper who has placed items in a shopping cart. A future item query looks at
only the past purchases to derive a recommended item for the next time the shopper visits the site.

Blank Handling

Blanks are ignored by the sequence rules algorithm. The algorithm will handle records containing
blanks for input fields, but such a record will not be considered to match any rule containing one
or more of the fields for which it has blank values.

Secondary Calculations

Confidence

Confidence is a measure of sequential rule accuracy and equals the proportion obtained by dividing
the number of transactions that contain both the antecedent and consequent of the rule by the
number of transactions containing the antecedent. In other words, confidence is the support for the
rule divided by the support for the antecedent. For example, the confidence for the sequential rule:

If [{wine}] then
[{cheese}]

is 3/4, or 0.75. Three-quarters of the transactions that include wine also include cheese at a later
time. In contrast, the sequential rule:

If [{cheese}] then
[{wine}]

341

Sequence Algorithm

includes the same itemsets but has a confidence of 0.20. Only one-fifth of the transactions that
include cheese contain wine at a later time. In other words, wine is more likely to lead to cheese
than cheese is to lead to wine.

displays the confidence for every sequential rule observed in the gourmet data. Rules with
empty antecedents correspond to having no previous transaction history.

Table 32-4
Nonzero confidence values

Sequence Confidence Sequence Confidence

{cheese} 1.00 {crackers} => {cheese} 0.25
{crackers} 1.00 {beer} => {cheese & crackers} 0.20
{wine} 1.00 {cheese & crackers} => {wine} 0.50
{beer} 1.00 {cheese & crackers} => {beer} 0.50
{bread} 1.00 {bread} => {cheese & beer} 0.33
{cheese & crackers} 1.00 {wine} => {cheese & beer} 0.25
{cheese & beer} 1.00 {cheese & crackers} => {bread} 0.50
{cheese} => {wine} 0.20 {cheese} > {wine} => {beer} 1.00
{cheese} => {beer} 0.20 {crackers} > {wine} => {beer} 1.00
{wine} => {beer} 1.00 {wine} > {beer} => {cheese} 0.50
{crackers} => {wine} 0.50 {bread} > {wine} => {beer} 1.00
{crackers} => {beer} 0.50 {bread} > {wine} => {cheese} 1.00
{wine} => {cheese} 0.75 {beer} > {cheese} => {bread} 0.33
{beer} => {cheese} 0.60 {beer} > {crackers} => {bread} 1.00
{bread} => {wine} 0.33 {crackers} > {wine} => {cheese} 0.50
{bread} => {beer} 0.33 {crackers} > {beer} => {cheese} 0.50
{bread} => {cheese} 0.33 {cheese & crackers} > {wine} => {beer} 1.00
{beer} => {bread} 0.20 {bread} > {wine} => {cheese & beer} 1.00
{beer} => {crackers} 0.20 {beer} > {cheese & crackers} => {bread} 1.00
{cheese} => {bread} 0.20 {crackers} > {wine} > {beer} => {cheese} 0.50
{crackers} =>
{bread}

0.50

Generated Model/Scoring

Predicted Values

When you pass data records into a Sequence Rules model, the model handles the records in a
time-dependent manner (or order-dependent, if no timestamp field was used to build the model).
Records should be sorted by the ID field and timestamp field (if present).

For each record, the rules in the model are compared to the set of transactions processed
for the current ID so far, including the current record and any previous records with the same
ID and earlier timestamp. The k rules with the highest confidence values that apply to this set
of transactions are used to generate the k predictions for the record, where k is the number of
predictions specified when the model was built. (If multiple rules predict the same outcome for
the transaction set, only the rule with the highest confidence is used.)

342

Sequence Algorithm

Note that the predictions for each record do not necessarily depend on that record’s transactions.
If the current record’s transactions do not trigger a specific rule, rules will be selected based on
the previous transactions for the current ID. In other words, if the current record doesn’t add any
useful predictive information to the sequence, the prediction from the last useful transaction for
this ID is carried forward to the current record.

For example, suppose you have a Sequence Rule model with the single rule

Jam -> Bread (0.66)

and you pass it the following records:

ID Purchase Prediction

001 jam bread
001 milk bread

Notice that the first record generates a prediction of bread, as you would expect. The second record
also contains a prediction of bread, because there’s no rule for jam followed by milk; therefore the
milk transaction doesn’t add any useful information, and the rule Jam -> Bread still applies.

Confidence

The confidence associated with a prediction is the confidence of the rule that produced the
prediction. For more information, see the topic “Confidence” on p. 340.

Blank Handling

Blanks are ignored by the sequence rules algorithm. The algorithm will handle records containing
blanks for input fields, but such a record will not be considered to match any rule containing one
or more of the fields for which it has blank values.

Note that the sequence algorithm generates rules that have a max length of the users in the dataset. For
example, if you have transactions such as the following, the algorithm won't find a sequence of event codes
A -> B -> C, because there are only two users in the dataset.

User Event Code
1 A
1 B
1 C
1 A
1 B
1 C
2 A
2 B
2 C

Simulation algorithms
Simulation in IBM® SPSS® Modeler refers to simulating input data to predictive models using
the Monte Carlo method and evaluating the model based on the simulated data. You do this
by using the Simulation Generation (also known as SimGen) source node. The distribution of
predicted target values can then be used to evaluate the likelihood of various outcomes.

Simulation algorithms

Creating a simulation includes specifying distributions for all inputs to a predictive model that are
to be simulated. When historical data are present, the distribution that most closely fits the data
for each input can be determined using the algorithms described in this section.

Notation

The following notation is used throughout this section unless otherwise stated:
Table 33-1
Notation

Notation Description

Value of the input variable in the ith case of the historical data

Frequency weight associated with the ith case of the historical data

Total effective sample size accounting for frequency weights

Sample mean

Sample variance

Sample standard deviation

Distribution fitting

The historical data for a given input is denoted by:

The total effective sample size is:

The observed sample mean, sample variance and sample standard deviation are:

© Copyright IBM Corporation 1994, 2016. 343

344

Simulation algorithms

Parameter estimation for most distributions is based on the maximum likelihood (ML) method,
and closed-form solutions for the parameters exist for many of the distributions. There is no
closed-form ML solution for the distribution parameters for the following distributions: negative
binomial, beta, gamma and Weibull. For these distributions, the Newton-Raphson method is used.
This approach requires the following information: the log-likelihood function, the gradient vector,
the Hessian matrix, and the initial values for the iterative Newton-Raphson process.

Discrete distributions

Distribution fitting is supported for the following discrete distributions: binomial, categorical,
Poisson and negative binomial.

Binomial distribution: parameter estimation

The probability mass function for a random variable x with a binomial distribution is:

where is the probability of success. The binomial distribution is used to describe
the total number of successes in a sequence of N independent Bernoulli trials. The parameter
estimates for the binomial distribution using the method of moments (see Johnson & Kotz (2005)
for details) are:

where NaN implies that the binomial distribution would not be an appropriate distribution to fit
the data under this criterion, and where

If is not an integer, then the parameter estimates are:

345

Simulation algorithms

where denotes the integer part of .

Categorical distribution: parameter estimation

The categorical distribution can be considered a special case of the multinomial distribution in
which N = 1. Suppose , i = 1, 2, …, n, has the categorical distribution and its categorical values
are denoted as 1, 2, …, J. Then an indicator variable of for category can be denoted as

if
otherwise

and the corresponding probability is . Then the probability mass function for a random variable
with the categorical distribution can be described based on and as follows:

with

The parameter estimates for are:

Poisson distribution: parameter estimation

The probability mass function for a random variable with a Poisson distribution is:

where is the rate parameter of the Poisson distribution. The parameter of the Poisson
distribution can be estimated as:

Negative binomial distribution: parameter estimation

The distribution fitting component for simulation supports the parameterization of the negative
binomial distribution that describes the distribution of the number of failures before the
th success. For this parameterization, the probability mass function for a random variable is:

for

346

Simulation algorithms

where are the two distribution parameters. There is no closed-form solution
for the parameters r and θ, so the Newton-Raphson method with step-halving will be used. The
method requires the following information:

(1) The log likelihood function

ln ln ln

(2) The gradient (1st derivative) vector with respect to r and θ

ln

where Γ'
Γ is a digamma function, which is the derivative of the logarithm of the gamma

function, evaluated at α.

(3) The Hessian (2nd derivative) matrix with respect to r and θ (since the Hessian matrix is
symmetric, only the lower triangular portion is displayed)

where is the trigamma function, or the derivative of the digamma function.

(4) The initial values of θ and r can be obtained from the closed-form estimates using the method
of moments:

if
otherwise

Note

An alternative parameterization of the negative binomial distribution describes the distribution of
the number of trials before the th success. Although it is not supported in distribution fitting, it is
supported in simulation when explicitly specified by the user. The probability mass function for
this parameterization, for a random variable is:

for

where are the two distribution parameters.

347

Simulation algorithms

Continuous distributions

Distribution fitting is supported for the following continuous distributions: triangular, uniform,
normal, lognormal, exponential, beta, gamma and Weibull.

Triangular distribution: parameter estimation

The probability density function for a random variable with a triangular distribution is:

such that . Parameter estimates of the triangular distribution are:

Since the calculation of the mode for continuous data may be ambiguous, we transform the
parameter estimates and use the method of moments as follows (see Kotz and Rene van Dorp
(2004) for details):

From the method of moments we obtain

from which it follows that

348

Simulation algorithms

Note: For very skewed data or if the actual mode equals a or b, the estimated mode, , may be
less than a or greater than b. In this case, the adjusted mode, defined as below, is used:

if
if

Uniform distribution: parameter estimation

The probability density function for a random variable with a uniform distribution is:

where is the minimum and is the maximum among the values of . Hence, the parameter
estimates of the uniform distribution are:

Normal distribution: parameter estimation

The probability density function for a random variable with a normal distribution is:

Here, is the measure of centrality and is the measure of dispersion of the normal distribution.
The parameter estimates of the normal distribution are:

Lognormal distribution: parameter estimation

The lognormal distribution is a probability distribution where the natural logarithm of a random
variable follows a normal distribution. In other words, if has a lognormal distribution,
then ln() has a normal(ln(),) distribution. The probability density function for a random
variable with a lognormal distribution is:

349

Simulation algorithms

Define

Parameter estimates for the lognormal distribution are:

Exponential distribution: parameter estimation

The probability density function for a random variable with an exponential distribution is:

for and

The estimate of the parameter for the exponential distribution is:

Beta distribution: parameter estimation

The probability density function for a random variable with a beta distribution is:

B α β

where,

Γ Γ
Γ

There is no closed-form solution for the parameters α and β, so the Newton-Raphson method with
step-halving will be used. The method requires the following information:

(1) The log likelihood function

ln Γ ln Γ ln Γ

(2) The gradient (1st derivative) vector with respect to α and β

350

Simulation algorithms

where Γ'
Γ is a digamma function, which is the derivative of the logarithm of the gamma

function, evaluated at α.

(3) The Hessian (2nd derivative) matrix with respect to α and β (since the Hessian matrix is
symmetric, only the lower triangular portion is displayed)

where is the trigamma function, or the derivative of the digamma function.

(4) The initial values of α and β can be obtained from the closed-form estimates using the method
of moments:

Gamma distribution: parameter estimation

The probability density function for a random variable with a gamma distribution is:

Γ
for and

If is a positive integer, then the gamma function is given by: Γ

There is no closed-form solution for the parameters α and β, so the Newton-Raphson method with
step-halving will be used. The method requires the following information:

(1) The log likelihood function

lnΓ

(2) The gradient (1st derivative) vector with respect to α and β

351

Simulation algorithms

where Γ'
Γ is a digamma function, which is the derivative of the logarithm of the gamma

function, evaluated at α.

(3) The Hessian (2nd derivative) matrix with respect to α and β (since the Hessian matrix is
symmetric, only the lower triangular portion is displayed)

where is the trigamma function, or the derivative of the digamma function.

(4) The initial values of α and β can be obtained from the closed-form estimates using the method
of moments:

Weibull distribution: parameter estimation

Distribution fitting for the Weibull distribution is restricted to the two-parameter Weibull
distribution, whose probability density function is given by:

for and

There is no closed-form solution for the parameters β and γ, so the Newton-Raphson method with
step-halving will be used. The method requires the following information:

(1) The log likelihood function

(2) The gradient (1st derivative) vector with respect to β and γ

ln

(3) The Hessian (2nd derivative) matrix with respect to β and γ (since the Hessian matrix is
symmetric, only the lower triangular portion is displayed)

352

Simulation algorithms

where

(4) The initial values of β and γ are given by:

Goodness of fit measures

Goodness of fit measures are used to determine the distribution that most closely fits the
data. For discrete distributions, the Chi-Square test is used. For continuous distributions, the
Anderson-Darling test or the Kolmogorov-Smirnov test is used.

Discrete distributions

The Chi-Square goodness of fit test is used for discrete distributions (Dirk P. Kroese, 2011). The
Chi-Square test statistic has the following form:

where,
Table 33-2
Notation

Notation Description

k The number of classes, as defined in the table below for each discrete distribution
The total observed frequency for class i

353

Simulation algorithms

Notation Description

PDF(i) Probability density function of the fitted distribution. For the Poisson and negative
binomial distributions, the density function for the last class is computed as
PDF PDF

Expected frequency for class i: = W*PDF(i)

The total effective sample size

For large W, the above statistic follows the Chi-Square distribution:

where r = number of parameters estimated from the data. The following table provides the values
of k and r for the various distributions. The valueMax in the table is the observed maximum value.

Distribution Notation k (classes) r (parameters)
Binomial N+1 2

Categorical J J-1

Poisson Max + 1 1

Negative binomial Max + 1 2

This Chi-Square test is valid only if all values of .

The p-value for the Chi-Square test is then calculated as:

where CDF of the Chi-Square distribution.

Note: The p-value cannot be calculated for the Categorical distribution since the number of
degrees of freedom is zero.

Continuous distributions

For continuous distributions, the Anderson-Darling test or the Kolmogorov-Smirnov test is used
to determine goodness of fit. The calculation consists of the following steps:

1. Transform the data to a Uniform(0,1) distribution

2. Sort the transformed data to generate the Order Statistics

3. Calculate the Anderson-Darling or Kolmogorov-Smirnov test statistic

4. Compute the approximate p-value associated with the test statistic

354

Simulation algorithms

The first two steps are common to both the Anderson-Darling and Kolmogorov-Smirnov tests.
The original data are transformed to a Uniform(0,1) distribution using the transformation:

where the transformation function is given in the table below for each of the supported
distributions.

Distribution Transformation F(x)

Φ

Φ

B α β

Γ

The transformed data points are sorted in ascending order to generate the Order Statistics:

Define to be the corresponding frequency weight for . The cumulative frequency up to and
including is defined as:

and where we define .

355

Simulation algorithms

Anderson-Darling test

The Anderson-Darling test statistic is given by:

For more information, see the topic “Anderson-Darling statistic with frequency weights” on
p. 360.

The approximate p-value for the Anderson-Darling statistic can be computed for the following
distributions: uniform, normal, lognormal, exponential, Weibull and gamma. The p-value is not
available for the triangular and beta distributions.

Uniform distribution: p-value

The p-value for the Anderson-Darling statistic is computed based on the following result, provided
by Marsaglia (2004):

where

Normal and lognormal distributions: p-value

The p-value for the Anderson-Darling statistic is computed based on the following result, provided
by D’Agostino and Stephens (1986):

where

356

Simulation algorithms

Exponential distribution: p-value

The p-value for the Anderson-Darling statistic is computed based on the following result, provided
by D’Agostino and Stephens (1986):

where

Weibull distribution: p-value

The p-value for the Anderson-Darling statistic is computed based on Table 33-3 below, provided by
D’Agostino and Stephens (1986). First, the adjusted Anderson-Darling statistic is computed from:

If the value of is between two probability levels (in the table), then linear interpolation is used
to estimate the p-value. For example, if which is between and ,
then the corresponding probabilities of and are p and p respectively. Then
the p-value of is computed as

If the value of is less than the smallest critical value in the table, then the p-value is 0.25; and
if is greater than the largest critical value in the table, then the p-value is 0.01.
Table 33-3
Upper tail probability and corresponding critical values for the Anderson-Darling test, for the Weibull
distribution
p-value 0.25 0.10 0.05 0.025 0.01

0.474 0.637 0.757 0.877 1.038

Gamma distribution: p-value

Table 33-4, which is provided by D’Agostino and Stephens (1986), is used to compute the p-value
of the Anderson-Darling test for the gamma distribution. First, the appropriate row in the table
is determined from the range of the parameter α. Then linear interpolation is used to compute
the p-value, as done for the Weibull distribution. For more information, see the topic “Weibull
distribution: p-value” on p. 356.

357

Simulation algorithms

If the test statistic is less than the smallest critical value in the row, then the p-value is 0.25; and
if the test statistic is greater than the largest critical value in the row, then the p-value is 0.005.
Table 33-4
Upper tail probability and corresponding critical values for the Anderson-Darling test, for the gamma
distribution with estimated parameter α
p-value 0.25 0.10 0.05 0.025 0.01 0.005

α 1 0.486 0.657 0.786 0.917 1.092 1.227

α 1 8 0.473 0.637 0.759 0.883 1.048 1.173

α 0.470 0.631 0.752 0.873 1.035 1.159

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test statistic, , is given by:

Computation of the p-value is based on the modified Kolmogorov-Smirnov statistic, which is
distribution specific.

Uniform distribution: p-value

The procedure proposed by Kroese (2011) is used to compute the p-value of the
Kolmogorov-Smirnov statistic for the uniform distribution. First, the modified
Kolmogorov-Smirnov statistic is computed as

The corresponding p-value is computed as follows:

1. Set k=100

2. Define

3. Calculate and

4. If set k=k+1 and repeat step 2; otherwise, go to step 5.

5. p-value

Normal and lognormal distributions: p-value

The modified Kolmogorov-Smirnov statistic is

358

Simulation algorithms

The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 33-5 below,
provided by D’Agostino and Stephens (1986). If the value of D is between two probability
levels, then linear interpolation is used to estimate the p-value. For more information, see the
topic “Weibull distribution: p-value” on p. 356.

If D is less than the smallest critical value in the table, then the p-value is 0.15; and if D is
greater than the largest critical value in the table, then the p-value is 0.01.
Table 33-5
Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the
Normal and Lognormal distributions
p-value 0.15 0.10 0.05 0.025 0.01
D 0.775 0.819 0.895 0.995 1.035

Exponential distribution: p-value

The modified Kolmogorov-Smirnov statistic is

The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 33-6 below,
provided by D’Agostino and Stephens (1986). If the value of D is between two probability
levels, then linear interpolation is used to estimate the p-value. For more information, see the
topic “Weibull distribution: p-value” on p. 356.

If D is less than the smallest critical value in the table, then the p-value is 0.15; and if D is
greater than the largest critical value in the table, then the p-value is 0.01.
Table 33-6
Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the
Exponential distribution
p-value 0.15 0.10 0.05 0.025 0.01
D 0.926 0.995 1.094 1.184 1.298

Weibull distribution: p-value

The modified Kolmogorov-Smirnov statistic is

The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 33-7 below,
provided by D’Agostino and Stephens (1986). If the value of D is between two probability
levels, then linear interpolation is used to estimate the p-value. For more information, see the
topic “Weibull distribution: p-value” on p. 356.

359

Simulation algorithms

If D is less than the smallest critical value in the table, then the p-value is 0.10; and if D is
greater than the largest critical value in the table, then the p-value is 0.01.

Table 33-7
Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the
Weibull distribution

p-value 0.10 0.05 0.025 0.01
D 1.372 1.477 1.557 1.671

Gamma distribution: p-value

The modified Kolmogorov-Smirnov statistic is

The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 33-8 below,
provided by D’Agostino and Stephens (1986). If the value of D is between two probability
levels, then linear interpolation is used to estimate the p-value. For more information, see the
topic “Weibull distribution: p-value” on p. 356.

If D is less than the smallest critical value in the table, then the p-value is 0.25; and if D is
greater than the largest critical value in the table, then the p-value is 0.005.

Table 33-8
Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the
Gamma distribution

p-value 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005
D 0.74 0.780 0.800 0.858 0.928 0.990 1.069 1.13

Determining the recommended distribution

The distribution fitting module is invoked by the user, who may specify an explicit set of
distributions to test or rely on the default set, which is determined from the measurement level
of the input to be fit. For continuous inputs, the user specifies either the Anderson-Darling test
(the default) or the Kolmogorov-Smirnov test for the goodness of fit measure (for ordinal and
nominal inputs, the Chi-Square test is always used). The distribution fitting module then returns
the values of the specified test statistic along with the calculated p-values (if available) for each of
the tested distributions, which are then presented to the user in ascending order of the test statistic.
The recommended distribution is the one with the minimum value of the test statistic.

The above approach yields the distribution that most closely fits the data. However, if the p-value
of the recommended distribution is less than 0.05, then the recommended distribution may not
provide a close fit to the data.

360

Simulation algorithms

Anderson-Darling statistic with frequency weights

To obtain the expression for the Anderson-Darling statistic with frequency weights, we first give
the expression where the frequency weight of each value is 1:

If there is a frequency weight variable, then the corresponding four terms of the above expression
are given by:

where and are defined in the section on goodness of fit measures for continuous
distributions. For more information, see the topic “Continuous distributions ” on p. 353.

References

D’Agostino, R., and M. Stephens. 1986. Goodness-of-Fit Techniques. New York: Marcel Dekker.

Johnson, N. L., S. Kotz, and A. W. Kemp. 2005. Univariate Discrete Distributions, 3rd ed.
Hoboken, New Jersey: John Wiley & Sons.

Kotz, S., and J. Rene Van Dorp. 2004. Beyond Beta, Other Continuous Families of Distributions
with Bounded Support and Applications. Singapore: World Scientific Press.

Kroese, D. P., T. Taimre, and Z. I. Botev. 2011. Handbook of Monte Carlo Methods. Hoboken,
New Jersey: John Wiley & Sons.

Marsaglia, G., and J. Marsaglia. 2004. Evaluating the Anderson-Darling Distribution. Journal of
Statistical Software, 9:2, .

361

Simulation algorithms

Simulation algorithms: run simulation
Running a simulation involves generating data for each of the simulated inputs, evaluating the
predictive model based on the simulated data (along with values for any fixed inputs), and
calculating metrics based on the model results.

Generating correlated data

Simulated values of input variables are generated so as to account for any correlations between
pairs of variables. This is accomplished using the NORTA (Normal-To-Anything) method
described by Biller and Ghosh (2006). The central idea is to transform standard multivariate
normal variables to variables with the desired marginal distributions and Pearson correlation
matrix.

Suppose that the desired variables are , , with the desired Pearson correlation
matrix Σ , where the elements of Σ are given by . Then the NORTA algorithm is as follows:

1. For each pair and , where , use a stochastic root finding algorithm (described in the
following section) and the correlation to search for an approximate correlation of standard
bivariate normal variables.

2. Construct the symmetric matrix Σ whose elements are given by , where and .

3. Generate the standard multivariate normal variables with Pearson correlation matrix Σ .

4. Transform the variables to using

where is the desired marginal cumulative distribution, and is the cumulative standard
normal distribution function. Then the correlation matrix of will be close to the
desired Pearson correlation matrix Σ .

Stochastic root finding algorithm

Given a correlation , a stochastic root finding algorithm is used to find an approximate
correlation such that if standard bivariate normal variables and have the Pearson
correlation , then after transforming and to and (using the transformation described
in Step 4 of the previous section) the Pearson correlation between and is close to . The
stochastic root finding algorithm is as follows:

1. Let and

2. Simulate N samples of standard normal variables and , and , such that the
Pearson correlation between and is LowCorr and the Pearson correlation between

and is HighCorr. The sample size N is set to 1000.

3. Transform the variables , , and to the variables , , and
using the transformation described in Step 4 of the previous section.

362

Simulation algorithms

4. Compute the Pearson correlation between and and denote it as . Similarly, compute
the Pearson correlation between and and denote it as .

5. If the desired correlation or then stop and set if or set
if . Otherwise go to Step 6.

6. Simulate N samples of standard bivariate normal variables and with a Pearson
correlation of . As in Steps 3 and 4, transform and

to and and compute the Pearson correlation between and , which
will be denoted .

7. If or where ε is the tolerance level (set to 0.01), then
stop and set . Otherwise go to Step 8.

8. If , set , else set and return to Step 6.

Inverse CDF for binomial, Poisson and negative binomial distributions

Use of the NORTA method for generating correlated data requires the inverse cumulative
distribution function for each desired marginal distribution. This section describes the method for
computing the inverse CDF for the binomial, Poisson and negative binomial distributions. Two
parameterizations of the negative binomial distribution are supported. The first parameterization
describes the distribution of the number of trials before the th success, whereas the second
parameterization describes the distribution of the number of failures before the th success.

The choice of method for determining the CDF depends on the mean of the distribution. If
, where Threshold is set to 20, the following approximate normal method will be

used to compute the inverse CDF for the binomial distribution, the Poisson distribution and the
second parameterization of the negative binomial distribution.

For the first parameterization of the negative binomial distribution, the formula is as follows:

The parameters and σ are given by:
 Binomial distribution. and σ , where N is the number of trials and P

is the probability of success.
 Poisson distribution. μ λ and σ , where λ is the rate parameter.

 Negative binomial distribution (both parameterizations). μ and σ , where is
the specified number of successes and is the probability of success.

The notation used above denotes the integer part of .

If then the bisection method will be used.

363

Simulation algorithms

Suppose that x and z are the values of X and Z respectively, where X is a random variable with a
binomial, Poisson or negative binomial distribution, and Z is a random variable with the standard
normal distribution. The objective function to be used in the bisection search method is
as follows:
 Binomial distribution. Φ
 Poisson distribution. Φ z
 Negative binomial distribution (second parameterization). Φ z

where and are random variables with the beta distribution and gamma
distribution, respectively, with parameters and .

The bisection method is as follows:

1. If then stop and set . Otherwise go to step 2 to determine two values
and such that .

2. If then let and . If then let μ and ,
where is the minimum integer such that .

3. Let . If or where is a tolerance level, which is set to
, then stop and set . Otherwise go to Step 4.

4. If , let , else let and return to Step 3.

Note: The inverse CDF for the first parameterization of the negative binomial distribution is
determined by taking the inverse CDF for the second parameterization and adding the distribution
parameter , where is the specified number of successes.

Sensitivity measures

Sensitivity measures provide information on the relationship between the values of a target and
the values of the simulated inputs that give rise to the target. The following sensitivity measures
are supported (and rendered as Tornado charts in the output of the simulation):
 Correlation. Measures the Pearson correlation between a target and a simulated input.
 One-at-a-time measure. Measures the effect on the target of modulating a simulated input by

plus or minus a specified number of standard deviations of the input.
 Contribution to variance. Measures the contribution to the variance of the target from a

simulated input.

Notation

The following notation is used throughout this section unless otherwise stated:
Table 33-9
Notation

Notation Description
Number of records of simulated data

364

Simulation algorithms

An matrix of values of the inputs to the predictive model. The
rows ; contain the values of the inputs
for each simulated record, excluding the target value. The columns

; represent the set of inputs.
An vector of values of the target variable, consisting of

A known model which can generate from

The value of a sensitivity measure for the input

Correlation measure

The correlation measure is the Pearson correlation coefficient between the values of a target
and one of its simulated predictors. The correlation measure is not supported for targets with a
nominal measurement level or for simulated inputs with a categorical distribution.

One-at-a-time measure

The one-at-a-time measure is the change in the target due to modulating a simulated input by plus
or minus a specified number of standard deviations of the distribution associated with the input.
The one-at-a-time measure is not supported for targets with an ordinal or nominal measurement
level, or for simulated inputs with any of the following distributions: categorical, Bernoulli,
binomial, Poisson, or negative binomial.

The procedure is to modulate the values of a simulated input by the specified number of standard
deviations and recompute the target with the modulated values, without changing the values of
the other inputs. The mean change in the target is then taken to be the value of the one-at-a-time
sensitivity measure for that input.

For each simulated input for which the one-at-a-time measure is supported:

1. Define the temporary data matrix

2. Add the specified number of standard deviations of the input’s distribution to each value of
in .

3. Calculate F

4. Calculate

5. Repeat Step 2, but now subtracting the specified number of standard deviations from each value of
. Continue with Steps 3 and 4 to obtain the value of in this case.

Contribution to variance measure

The contribution to variance measure uses the method of Sobol (2001) to calculate the total
contribution to the variance of a target due to a simulated input. The total contribution to variance,
as defined by Sobol, automatically includes interaction effects between the input of interest
and the other inputs in the predictive model.

365

Simulation algorithms

The contribution to variance measure is not supported for targets with an ordinal or nominal
measurement level, or for simulated inputs with any of the following distributions: categorical,
Bernoulli, binomial, Poisson, or negative binomial.

Let be an additional set of simulated data, in the same form as and with the same number
of simulated records.

Define the following:

For each simulated input for which the contribution to variance measure is supported, calculate

where:
 denotes the set of all inputs excluding
 is a derived data matrix where the column associated with is taken from

and the remaining columns (for all inputs excluding) are taken from

The total contribution to variance from is then given by

Note: When interaction terms are present, the sum of the over all simulated inputs for which
the contribution of variance is supported, may be greater than 1.

References

Biller, B., and S. Ghosh. 2006. Multivariate input processes. In: Handbooks in Operations
Research and Management Science: Simulation, B. L. Nelson, and S. G. Henderson, eds.
Amsterdam: Elsevier Science, 123–153.

Sobol, I. M. 2001. Global sensitivity indices for nonlinear mathematical models and their Monte
Carlo estimates. Mathematics and Computers in Simulation, 55, 271–280.

Support Vector Machine (SVM)
Algorithms

Introduction to Support Vector Machine Algorithms

The Support Vector Machine (SVM) is a supervised learning method that generates input-output
mapping functions from a set of labeled training data. The mapping function can be either a
classification function or a regression function. For classification, nonlinear kernel functions are
often used to transformed input data to a high-dimensional feature space in which the input data
become more separable compared to the original input space. Maximum-margin hyperplanes are
then created. The produced model depends on only a subset of the training data near the class
boundaries.

Similarly, the model produced by Support Vector Regression ignores any training data that is
sufficiently close to the model prediction. (Support Vectors can appear only on the error tube
boundary or outside the tube.)

SVM Algorithm Notation
The ith training sample

The class label for the ith training sample

The number of training samples

The kernel function value for the pair of samples i, j

The kernel matrix element at row i and column j

Coefficients for training samples (zero for
non-support vectors)
Coefficients for training samples for support vector
regression models
Decision function

The number of classes of the training samples

The upper bound of all variables

The vector with all elements equal to 1

The sign function: if
otherwise

SVM Types

This section describes the types of SVM available, based on the descriptions in the LIBSVM
technical report(Chang and Lin, 2003). is the kernel function selected by the user. For
more information, see the topic “SMO Algorithm” on p. 371.

© Copyright IBM Corporation 1994, 2016. 367

368

Support Vector Machine (SVM) Algorithms

C-Support Vector Classification (C-SVC)

Given training vectors , i = 1, ..., l, in two classes, and a vector such that
, C-SVC solves the following dual problem:

such that and , where

and is an matrix,

The decision function is

where b is a constant term.

ε-Support Vector Regression (ε-SVR)

In regression models, we estimate the functional dependence of the dependent (target) variable
on an n-dimensional input vector x. Thus, unlike classification problems, we deal with

real-valued functions and model an mapping. Given a set of data ,
such that is an input and is a target output, the dual form of ε-Support Vector
Regression is

such that and for , and

where , , and is an matrix,

The approximate function is

where b is a constant term.

369

Support Vector Machine (SVM) Algorithms

Primary Calculations

The primary calculations for building SVM models are described below.

Solving Quadratic Problems

In order to find the decision function or the approximate function, the quadratic problem must be
solved. After the solution is obtained, we can get different coefficients :
 if , the corresponding training sample is a free support vector.
 if , the corresponding training sample is a boundary support vector.
 if , the corresponding training sample is a non-support vector, which doesn’t affect the

classification or regression result.

Free support vectors and boundary support vectors are called support vectors.

This document adapts the decomposition method to solve the quadratic problem using second
order information (Fan, Chen, and Lin, 2005). In order to solve all the SVM’s in a unified
framework, we’ll introduce a general form for C-SVC and ε-SVR.

For ε-SVR, we can rewrite the dual form as

such that and for i = 1, ... , l, where y is a vector with
for i = 1, ..., l and for i = l + 1, ... , 2l.

Given this, the general form is

such that for i = 1, ... , l, and

α in W(α)

C-SVC

ε-SVR

370

Support Vector Machine (SVM) Algorithms

The Constant in the Decision Function

After the quadratic programming problem is solved, we get the support vector coefficients in the
decision function. We need to compute the constant term in the decision function as well. We
introduce two accessory variables r1 and r2:

E For yi = 1:

If ,

Otherwise,

E For yi = −1:

If ,

Otherwise,

After r1 and r2 are obtained, calculate

Variable Scale

For continuous input variables, linearly scale each attribute to [-1, 1] or [0, 1]:

For categorical input fields, if there are m categories, then use (0, 1, 2, ..., m) to represent the
categories and scale the values as for continuous input variables.

Model Building Algorithm

In this section, we provide a fast algorithm to train the SVM. A modified sequential minimal
optimization (SMO) algorithm is provided for C-SVC binary and ε-SVR models. A fast SVM
training algorithm based on divide-and-conquer is used for all SVMs.

371

Support Vector Machine (SVM) Algorithms

SMO Algorithm

Due to the density of the kernel matrix, traditional optimization methods cannot be directly applied
to solve for the vector . Unlike most optimization methods which update the whole vector in
each step of an iterative process, the decomposition method modifies a subset of per iteration.
This subset, denoted as the working set B, leads to a small sub-problem to be minimized in each
iteration. Sequential minimal optimization (SMO) is an extreme example of this approach which
restricts B to have only two elements. In each iteration no optimization algorithm is needed to
solve a simple two-variable problem. The key step of SML is the working set selection method,
which determines the speed of convergence for the algorithm.

Kernel functions

The algorithm supports four kernel functions:

Linear function

Polynomial function

RBF function

Hyperbolic tangent function

Base Working Set Selection Algorithm

The base selection algorithm derives the selection set B = {i, j} based on τ, C, the target vector
y, and the selected kernel function K(xi, xj).

Let

and

if
otherwise

where τ is a small positive number.

Select

where

372

Support Vector Machine (SVM) Algorithms

or

or

Return B = {i, j}, where .

Shrink Algorithm

In order to speed up the convergence of the algorithm near the end of the iterative process, the
decomposition method identifies a possible set A containing all final free support vectors. Hence,
instead of solving the whole problem, the decomposition method works on a smaller problem:

s. t.

where is the set of shrunken variables.

Afer every min(l, 1000) iterations, we try to shrink some variables. During the iterative process
. Until is satisfied, we can shrink variables in the

following set:

or
or

Thus the set A of activated variables is dynamically reduced every min(l, 1000) iterations.

E To account for the tendency of the shrinking method to be too aggressive, we reconstruct the
gradient when the tolerance reaches

After reconstructing the gradient, we restore some of the previously shrunk variables based on
the relationship

or
or

Gradient Reconstruction

To decrease the cost of reconstruction of the gradient , during the iterations we always keep

373

Support Vector Machine (SVM) Algorithms

Then for the gradient , we have

and for the gradient we have

where t and s are the working set indices.

Unbalanced Data Strategy

For some classification problems, the algorithm uses different parameters in the SVM formulation.
The differences only affect the procedure for updating . Different conditions are handled
as follows:

For :

Conditions Update parameters
and

and

and

and

and

and

and

and

374

Support Vector Machine (SVM) Algorithms

SMO Decomposition

The following steps are used in the SMO decomposition:

1. Find as the initial feasible solution, and set k = 1.

2. If is a stationary solution, stop.

A feasible solution is stationary if , where

or

or

Find a two-element working set using the working set selection algorithm. (For more
information, see the topic “Base Working Set Selection Algorithm” on p. 371.)

3. If the shrink algorithm is being used to speed up convergence, apply the algorithm here. (For more
information, see the topic “Shrink Algorithm” on p. 372.)

4. Derive as follows:

E If , or if solving a classification problem, use the unbalanced data strategy. (For more
information, see the topic “Unbalanced Data Strategy” on p. 373.)

E If , solve the subproblem

cont

Subject to the constraints

and let

E Otherwise, solve the subproblem

375

Support Vector Machine (SVM) Algorithms

subject to the same constraints described above, where τ is a small positive number and
, and let

Finally, set to be the optimal point of the subproblem.

Set , set , and go to step 2.

Fast SVM Training

For binary SVM models, the dense kernel matrix cannot be stored in memory when the number of
training samples l is large. Rather than using the standard decomposition algorithm which depends
on a cache strategy to compute the kernel matrix, a divide-and-conquer approach is used, dividing
the original problem into a set of small subproblems that can be solved by the SMO algorithm
(Dong, Suen, and Krzyzak, 2005). For each subproblem, the kernel matrix can be stored in a
kernel cache defined as part of contiguous memory. The size of the kernel matrix should be large
enough to hold all the support vectors in the whole training set and small enough to satisfy the
memory constraint. Since the kernel matrix for the subproblem is completely cached, each element
of the kernel matrix needs to be evaluated only once and must be calculated using a fast method.

There are two steps in the fast SVM training algorithm:

E Parallel optimization

E Fast sequential optimization

These steps are described in more detail below.

Parallel Optimization

Since the kernel matrix Q is symmetric and semi-positive definite, its block diagonal matrices are
semi-positive definite, and can be written as

. . .

376

Support Vector Machine (SVM) Algorithms

where matrices are block diagonal. Then we obtain k

optimization subproblems as described in “Base Working Set Selection Algorithm” on p. 371. All
the subproblems are optimized using the SMO decomposition algorithm in parallel. After this
parallel optimization, most non-support vectors will be removed from the training set. Then a new
training set can be obtained by collecting support vectors from the sub-problems. Although the
size of the new training set is much smaller than that of the original one, the memory may not be
large enough to store the kernel matrix, especially when dealing with a large dataset. Therefore a
fast sequential optimization technique is used.

Fast Sequential Optimization

The technique for fast sequential optimization works by iteratively optimizing subsets of the
problem. Initially, the training set is shuffled, all are set to zero, and a subset
Sub is selected from the training set S. The size of the subset d is set ().

Optimization proceeds as follows:

E Apply the SMO algorithm to optimize a subproblem in Sub with kernel caching, and update and
the kernel matrix. For more information, see the topic “SMO Algorithm” on p. 371.

E Select a new subset using the queue subset method. The size of the subset is chosen to be large
enough to contain all support vectors in the training set but small enough to satisfy the memory
constraint. For more information, see the topic “Queue Method for Subset Selection” on p. 376.

E Return to step 1 unless any of the following stopping conditions is true:
 and (Number of learned samples) > l


 Number of learned samples

where is the change in number of support vectors between two successive subsets, l
is the size of the new training set, and T (> 1.0) is a user-defined maximum number of loops
through the data allowed.

Queue Method for Subset Selection

The queue method selects subsets of the training set that can be trained by fast sequential
optimization. For more information, see the topic “Fast Sequential Optimization” on p. 376..

The method is initialized by setting the subset to contain the first d records in the training data and
the queue QS to contain all the remaining records, and computing the kernel matrix for the subset.

Once initialized, subset selection proceeds as follows: each non-support vector in the subset
is added to the end of the queue, and replaced in the subset with the record at the front of the
queue (which is consequently removed from the queue). When all non-support vectors have been
replaced, the subset is returned for optimization. On the next iteration, the same process is applied,
starting with the subset and the queue in the same state they were in at the end of the last iteration.

377

Support Vector Machine (SVM) Algorithms

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

Model Nugget/Scoring

The SVM Model Nugget generates predictions and predicted probabilities for output classes.
Predictions are based on the category with the highest predicted probability for each record.

To choose a predicted value, posterior probabilities are approximated using a sigmoid
function(Platt, 2000). The approximation used is

.

The optimal parameters A and B are the estimated by solving the following
regularized maximum likelihood problem with a set of labeled examples

, and N+ is the number of positive examples
and N− is the number of negative examples:

and
if
if

Blank Handling

Records with missing values for any input field cannot be scored and are assigned a predicted
value and probability value(s) of $null$.

Time Series Algorithms
The Time Series node builds univariate exponential smoothing, ARIMA (Autoregressive
Integrated Moving Average), and transfer function (TF) models for time series, and produces
forecasts. The procedure includes an Expert Modeler that identifies and estimates an appropriate
model for each dependent variable series. Alternatively, you can specify a custom model.

This algorithm is designed with help from professor Ruey Tsay at The University of Chicago.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Yt (t=1, 2, ..., n) Univariate time series under investigation.
n Total number of observations.

Model-estimated k-step ahead forecast at time t for series Y.

S The seasonal length.

Models

The Time Series node estimates exponential smoothing models and ARIMA/TF models.

Exponential Smoothing Models

The following notation is specific to exponential smoothing models:

Level smoothing weight

Trend smoothing weight

Damped trend smoothing weight

Season smoothing weight

Simple Exponential Smoothing

Simple exponential smoothing has a single level parameter and can be described by the following
equations:

It is functionally equivalent to an ARIMA(0,1,1) process.

© Copyright IBM Corporation 1994, 2016. 379

380

Time Series Algorithms

Brown’s Exponential Smoothing

Brown’s exponential smoothing has level and trend parameters and can be described by the
following equations:

It is functionally equivalent to an ARIMA(0,2,2) with restriction among MA parameters.

Holt’s Exponential Smoothing

Holt’s exponential smoothing has level and trend parameters and can be described by the
following equations:

It is functionally equivalent to an ARIMA(0,2,2).

Damped-Trend Exponential Smoothing

Damped-Trend exponential smoothing has level and damped trend parameters and can be
described by the following equations:

It is functionally equivalent to an ARIMA(1,1,2).

381

Time Series Algorithms

Simple Seasonal Exponential Smoothing

Simple seasonal exponential smoothing has level and season parameters and can be described
by the following equations:

It is functionally equivalent to an ARIMA(0,1,(1,s,s+1))(0,1,0) with restrictions among MA
parameters.

Winters’ Additive Exponential Smoothing

Winters’ additive exponential smoothing has level, trend, and season parameters and can be
described by the following equations:

It is functionally equivalent to an ARIMA(0,1,s+1)(0,1,0) with restrictions among MA parameters.

Winters’ Multiplicative Exponential Smoothing

Winters’ multiplicative exponential smoothing has level, trend and season parameters and can be
described by the following equations:

There is no equivalent ARIMA model.

382

Time Series Algorithms

Estimation and Forecasting of Exponential Smoothing

The sum of squares of the one-step ahead prediction error, , is minimized
to optimize the smoothing weights.

Initialization of Exponential Smoothing

Let L denote the level, T the trend and, S, a vector of length s, denote the seasonal states. The
initial smoothing states are made by back-casting from t=n to t=0. Initialization for back-casting is
described here.

For all the models .

For all non-seasonal models with trend, T is the negative of the slope of the line (with intercept)
fitted to the data with time as a regressor.

For the simple seasonal model, the elements of S are seasonal averages minus the sample mean;
for example, for monthly data the element corresponding to January will be average of all January
values in the sample minus the sample mean.

For the additive Winters’ model, fit to the data where t is time and

are seasonal dummies. Note that the model does not have an intercept. Then , and
.

For the multiplicative Winters’ model, fit a separate line (with intercept) for each season with time
as a regressor. Suppose is the vector of intercepts and is the vector of slopes (these vectors
will be of length s). Then and .

The initial smoothing states are:

ARIMA and Transfer Function Models

The following notation is specific to ARIMA/TF models:

at (t = 1, 2, ... , n) White noise series normally distributed with mean zero and variance
p Order of the non-seasonal autoregressive part of the model
q Order of the non-seasonal moving average part of the model
d Order of the non-seasonal differencing
P Order of the seasonal autoregressive part of the model
Q Order of the seasonal moving-average part of the model
D Order of the seasonal differencing

383

Time Series Algorithms

s Seasonality or period of the model
AR polynomial of B of order p,

MA polynomial of B of order q,

Seasonal AR polynomial of BS of order P,

Seasonal MA polynomial of BS of order Q,

Differencing operator

B Backward shift operator with and
Prediction variance of

Prediction variance of the noise forecasts

Transfer function (TF) models form a very large class of models, which include univariate ARIMA
models as a special case. Suppose is the dependent series and, optionally, are
to be used as predictor series in this model. A TF model describing the relationship between the
dependent and predictor series has the following form:

The univariate ARIMA model simply drops the predictors from the TF model; thus, it has the
following form:

The main features of this model are:
 An initial transformation of the dependent and predictor series, f and fi. This transformation

is optional and is applicable only when the dependent series values are positive. Allowed
transformations are log and square root. These transformations are sometimes called
variance-stabilizing transformations.

 A constant term .
 The unobserved i.i.d., zero mean, Gaussian error process with variance .
 The moving average lag polynomial MA= and the auto-regressive lag

polynomial AR= .
 The difference/lag operators and .
 A delay term, , where is the order of the delay
 Predictors are assumed given. Their numerator and denominator lag polynomials are

of the form: = and
= .

 The “noise” series

384

Time Series Algorithms

is assumed to be a mean zero, stationary ARMA process.

Interventions and Events

Interventions and events are handled like any other predictor; typically they are coded as 0/1
variables, but note that a given intervention variable’s exact effect upon the model is determined
by the transfer function in front of it.

Estimation and Forecasting of ARIMA/TF

There are two forecasting algorithms available: Conditional Least Squares (CLS) and Exact Least
Squares (ELS) or Unconditional Least Squares forecasting (ULS). These two algorithms differ in
only one aspect: they forecast the noise process differently. The general steps in the forecasting
computations are as follows:

1. Computation of noise process through the historical period.

2. Forecasting the noise process up to the forecast horizon. This is one step ahead forecasting
during the historical period and multi-step ahead forecasting after that. The differences in CLS
and ELS forecasting methodologies surface in this step. The prediction variances of noise
forecasts are also computed in this step.

3. Final forecasts are obtained by first adding back to the noise forecasts the contributions of the
constant term and the transfer function inputs and then integrating and back-transforming the
result. The prediction variances of noise forecasts also may have to be processed to obtain the
final prediction variances.

Let and be the k-step forecast and forecast variance, respectively.

Conditional Least Squares (CLS) Method

assuming for t<0.

where are coefficients of the power series expansion of .

Minimize .

Missing values are imputed with forecast values of .

Maximum Likelihood (ML) Method (Brockwell and Davis, 1991)

385

Time Series Algorithms

Maximize likelihood of ; that is,

where , and is the one-step ahead forecast variance.

When missing values are present, a Kalman filter is used to calculate .

Error Variance

in both methods. Here n is the number of non-zero residuals and k is the number of parameters
(excluding error variance).

Initialization of ARIMA/TF

A slightly modified Levenberg-Marquardt algorithm is used to optimize the objective function.
The modification takes into account the “admissibility” constraints on the parameters. The
admissibility constraint requires that the roots of AR and MA polynomials be outside the unit circle
and the sum of denominator polynomial parameters be non-zero for each predictor variable. The
minimization algorithm requires a starting value to begin its iterative search. All the numerator and
denominator polynomial parameters are initialized to zero except the coefficient of the 0th power
in the numerator polynomial, which is initialized to the corresponding regression coefficient.

The ARMA parameters are initialized as follows:

Assume that the series follows an ARMA(p,q)(P,Q) model with mean 0; that is:

In the following and represent the lth lag autocovariance and autocorrelation of
respectively, and and represent their estimates.

Non-Seasonal AR Parameters

For AR parameter initial values, the estimated method is the same as that in appendix A6.2 of
(Box, Jenkins, and Reinsel, 1994). Denote the estimates as .

Non-Seasonal MA Parameters

Let

The cross covariance

386

Time Series Algorithms

Assuming that an AR(p+q) can approximate , it follows that:

The AR parameters of this model are estimated as above and are denoted as .

Thus can be estimated by

And the error variance is approximated by

with .

Then the initial MA parameters are approximated by and estimated by

So can be calculated by , and . In this procedure, only are used and all
other parameters are set to 0.

Seasonal parameters

For seasonal AR and MA components, the autocorrelations at the seasonal lags in the above
equations are used.

Calculation of the Transfer Function

The transfer function needs to be calculated for each predictor series. For the predictor series ,
let the transfer function be:

387

Time Series Algorithms

It can be calculated as follows:

1. Calculate

2. Recursively calculate

where and are the coefficients of in the polynomials and
respectively. Likewise, the summation limits and are the maximum degree of in

the polynomials and respectively.

All missing in the first term of are taken to be and missing in the second term
are taken to be , where is the first non-missing measurement of . is given by

where and are the and polynomials evaluated at .

Diagnostic Statistics

ARIMA/TF diagnostic statistics are based on residuals of the noise process, .

Ljung-Box Statistic

where is the kth lag ACF of residual.

Q(K) is approximately distributed as , where m is the number of parameters other than
the constant term and predictor related-parameters.

Outlier Detection in Time Series Analysis

The observed series may be contaminated by so-called outliers. These outliers may change the
mean level of the uncontaminated series. The purpose of outlier detection is to find if there are
outliers and what are their locations, types, and magnitudes.

The Time Series node considers seven types of outliers. They are additive outliers (AO),
innovational outliers (IO), level shift (LS), temporary (or transient) change (TC), seasonal additive
(SA), local trend (LT), and AO patch (AOP).

388

Time Series Algorithms

Notation

The following notation is specific to outlier detection:

U(t) or The uncontaminated series, outlier free. It is assumed to be a univariate ARIMA or
transfer function model.

Definitions of Outliers

Types of outliers are defined separately here. In practice any combination of these types can
occur in the series under study.

AO (Additive Outliers)

Assuming that an AO outlier occurs at time t=T, the observed series can be represented as

where is a pulse function and w is the deviation from the true U(T) caused
by the outlier.

IO (Innovational Outliers)

Assuming that an IO outlier occurs at time t=T, then

LS (Level Shift)

Assuming that a LS outlier occurs at time t=T, then

where is a step function.

TC (Temporary/Transient Change)

Assuming that a TC outlier occurs at time t=T, then

where , is a damping function.

SA (Seasonal Additive)

Assuming that a SA outlier occurs at time t=T, then

389

Time Series Algorithms

where is a step seasonal pulse function.

LT (Local Trend)

Assuming that a LT outlier occurs at time t=T, then

where is a local trend function.

AOP (AO patch)

An AO patch is a group of two or more consecutive AO outliers. An AO patch can be described
by its starting time and length. Assuming that there is a patch of AO outliers of length k at time
t=T, the observed series can be represented as

Due to a masking effect, a patch of AO outliers is very difficult to detect when searching for
outliers one by one. This is why the AO patch is considered as a separate type from individual
AO. For type AO patch, the procedure searches for the whole patch together.

Summary

For an outlier of type O at time t=T (except AO patch):

where

with . A general model for incorporating outliers can thus be written as
follows:

where M is the number of outliers.

390

Time Series Algorithms

Estimating the Effects of an Outlier

Suppose that the model and the model parameters are known. Also suppose that the type and
location of an outlier are known. Estimation of the magnitude of the outlier and test statistics
are as follows.

The results in this section are only used in the intermediate steps of outlier detection procedure.
The final estimates of outliers are from the model incorporating all the outliers in which all
parameters are jointly estimated.

Non-AO Patch Deterministic Outliers

For a deterministic outlier of any type at time T (except AO patch), let be the residual and
, so:

From residuals e(t), the parameters for outliers at time T are estimated by simple linear regression
of e(t) on x(t).

For j = 1 (AO), 2 (IO), 3 (LS), 4 (TC), 5 (SA), 6 (LT), define test statistics:

(T) Var

Under the null hypothesis of no outlier, (T) is distributed as N(0,1) assuming the model and
model parameters are known.

AO Patch Outliers

For an AO patch of length k starting at time T, let for i = 1 to k, then

Multiple linear regression is used to fit this model. Test statistics are defined as:

Assuming the model and model parameters are known, has a Chi-square distribution with k
degrees of freedom under the null hypothesis .

Detection of Outliers

The following flow chart demonstrates how automatic outlier detection works. Let M be the total
number of outliers and Nadj be the number of times the series is adjusted for outliers. At the
beginning of the procedure, M = 0 and Nadj = 0.

391

Time Series Algorithms

Figure 35-1

Goodness-of-Fit Statistics

Goodness-of-fit statistics are based on the original series Y(t). Let k= number of parameters in the
model, n = number of non-missing residuals.

392

Time Series Algorithms

Mean Squared Error

Mean Absolute Percent Error

Maximum Absolute Percent Error

Mean Absolute Error

Maximum Absolute Error

Normalized Bayesian Information Criterion

Normalized

R-Squared

Stationary R-Squared

A similar statistic was used by Harvey (Harvey, 1989).

where

The sum is over the terms in which both and are not missing.

is the simple mean model for the differenced transformed series, which is equivalent to the
univariate baseline model ARIMA(0,d,0)(0,D,0).

393

Time Series Algorithms

For the exponential smoothing models currently under consideration, use the differencing orders
(corresponding to their equivalent ARIMA models if there is one).

Brown, Holt
other ,

Note: Both the stationary and usual R-squared can be negative with range . A negative
R-squared value means that the model under consideration is worse than the baseline model. Zero
R-squared means that the model under consideration is as good or bad as the baseline model.
Positive R-squared means that the model under consideration is better than the baseline model.

Expert Modeling

Univariate Series

Users can let the Expert Modeler select a model for them from:
 All models (default).
 Exponential smoothing models only.
 ARIMA models only.

Exponential Smoothing Expert Model

Figure 35-2

394

Time Series Algorithms

ARIMA Expert Model

Figure 35-3

Note: If 10<n<3s, set s=1 to build a non-seasonal model.

All Models Expert Model

In this case, the Exponential Smoothing and ARIMA expert models are computed, and the model
with the smaller normalized BIC is chosen.
Note: For short series, n<max(20,3s), use Exponential Smoothing Expert Model on p. 393.

Multivariate Series

In the multivariate situation, users can let the Expert Modeler select a model for them from:
 All models (default). Note that if the multivariate expert ARIMA model drops all the

predictors and ends up with a univariate expert ARIMA model, this univariate expert ARIMA
model will be compared with expert exponential smoothing models as before and the Expert
Modeler will decide which is the best overall model.

 ARIMA models only.

395

Time Series Algorithms

Transfer Function Expert Model

Figure 35-4

Note: For short series, n<max(20,3s), fit a univariate expert model.

396

Time Series Algorithms

Blank Handling

Generally, any missing values in the series data will be imputed in the Time Intervals node used
to prepare the data for time series modeling. If blanks remain in the series data submitted to
the modeling node, ARIMA models will attempt to impute values, as described in “Estimation
and Forecasting of ARIMA/TF” on p. 384.

Missing values for predictors will result in the field containing the missing values to be
excluded from the time series model.

Generated Model/Scoring

Predictions or forecasts for Time Series models are intricately related to the modeling process
itself. Forecasting computations are described with the algorithm for the corresponding model
type. For information on forecasting in exponential smoothing models, see “Exponential
Smoothing Models” on p. 379. For information on forecasting in ARIMA models, see “Estimation
and Forecasting of ARIMA/TF” on p. 384.

Blank Handling

Blank handling for the generated model is very similar to that for the modeling node.
If any predictor has missing values within the forecast period, the procedure issues a warning

and forecasts as far as it can.

References

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 1994. Time series analysis: Forecasting and
control, 3rd ed. Englewood Cliffs, N.J.: Prentice Hall.

Brockwell, P. J., and R. A. Davis. 1991. Time Series: Theory and Methods, 2 ed. :
Springer-Verlag.

Gardner, E. S. 1985. Exponential smoothing: The state of the art. Journal of Forecasting, 4, 1–28.

Harvey, A. C. 1989. Forecasting, structural time series models and the Kalman filter. Cambridge:
Cambridge University Press.

Makridakis, S. G., S. C. Wheelwright, and R. J. Hyndman. 1997. Forecasting: Methods and
applications, 3rd ed. ed. New York: John Wiley and Sons.

Melard, G. 1984. A fast algorithm for the exact likelihood of autoregressive-moving average
models. Applied Statistics, 33:1, 104–119.

Pena, D., G. C. Tiao, and R. S. Tsay, eds. 2001. A course in time series analysis. New York:
John Wiley and Sons.

TwoStep Cluster Algorithms

Overview

The TwoStep cluster method is a scalable cluster analysis algorithm designed to handle very large
data sets. It can handle both continuous and categorical variables or attributes. It requires only one
data pass. It has two steps 1) pre-cluster the cases (or records) into many small sub-clusters; 2)
cluster the sub-clusters resulting from pre-cluster step into the desired number of clusters. It can
also automatically select the number of clusters.

Model Parameters

As the name implies, the TwoStep clustering algorithm involves two steps: Pre-clustering and
Clustering.

Pre-cluster

The pre-cluster step uses a sequential clustering approach. It scans the data records one by one
and decides if the current record should be merged with the previously formed clusters or starts a
new cluster based on the distance criterion (described below).

The procedure is implemented by constructing a modified cluster feature (CF) tree. The CF
tree consists of levels of nodes, and each node contains a number of entries. A leaf entry (an entry
in the leaf node) represents a final sub-cluster. The non-leaf nodes and their entries are used to
guide a new record quickly into a correct leaf node. Each entry is characterized by its CF that
consists of the entry’s number of records, mean and variance of each range field, and counts for
each category of each symbolic field. For each successive record, starting from the root node, it is
recursively guided by the closest entry in the node to find the closest child node, and descends
along the CF tree. Upon reaching a leaf node, it finds the closest leaf entry in the leaf node. If
the record is within a threshold distance of the closest leaf entry, it is absorbed into the leaf entry
and the CF of that leaf entry is updated. Otherwise it starts its own leaf entry in the leaf node. If
there is no space in the leaf node to create a new leaf entry, the leaf node is split into two. The
entries in the original leaf node are divided into two groups using the farthest pair as seeds, and
redistributing the remaining entries based on the closeness criterion.

If the CF tree grows beyond allowed maximum size, the CF tree is rebuilt based on the existing
CF tree by increasing the threshold distance criterion. The rebuilt CF tree is smaller and hence
has space for new input records. This process continues until a complete data pass is finished.
For details of CF tree construction, see the BIRCH algorithm (Zhang, Ramakrishnon, and Livny,
1996).

All records falling in the same entry can be collectively represented by the entry’s CF. When a
new record is added to an entry, the new CF can be computed from this new record and the old CF
without knowing the individual records in the entry. These properties of CF make it possible to
maintain only the entry CFs, rather than the sets of individual records. Hence the CF-tree is much
smaller than the original data and can be stored in memory more efficiently.

Note that the structure of the constructed CF tree may depend on the input order of the cases or
records. To minimize the order effect, randomly order the records before building the model.

© Copyright IBM Corporation 1994, 2016. 397

398

TwoStep Cluster Algorithms

Cluster

The cluster step takes sub-clusters (non-outlier sub-clusters if outlier handling is used) resulting
from the pre-cluster step as input and then groups them into the desired number of clusters. Since
the number of sub-clusters is much less than the number of original records, traditional clustering
methods can be used effectively. TwoStep uses an agglomerative hierarchical clustering method,
because it works well with the auto-cluster method (see the section on auto-clustering below).
Hierarchical clustering refers to a process by which clusters are recursively merged, until

at the end of the process only one cluster remains containing all records. The process starts by
defining a starting cluster for each of the sub-clusters produced in the pre-cluster step. (For more
information, see the topic “Pre-cluster” on p. 397.) All clusters are then compared, and the pair
of clusters with the smallest distance between them is selected and merged into a single cluster.
After merging, the new set of clusters is compared, the closest pair is merged, and the process
repeats until all clusters have been merged. (If you are familiar with the way a decision tree is
built, this is a similar process, except in reverse.) Because the clusters are merged recursively in
this way, it is easy to compare solutions with different numbers of clusters. To get a five-cluster
solution, simply stop merging when there are five clusters left; to get a four-cluster solution, take
the five-cluster solution and perform one more merge operation, and so on.

Distance Measure

The TwoStep clustering method uses a log-likelihood distance measure, to accommodate both
symbolic and range fields. It is a probability-based distance. The distance between two clusters
is related to the decrease in log-likelihood as they are combined into one cluster. In calculating
log-likelihood, normal distributions for range fields and multinomial distributions for symbolic
fields are assumed. It is also assumes that the fields are independent of each other, and so are
the records. The distance between clusters i and j is defined as

where

and

In these expressions,

KA is the number of range type input fields,

KB is the number of symbolic type input fields,

399

TwoStep Cluster Algorithms

Lk is the number of categories for the kth symbolic field,

Nv is the number of records in cluster v,

Nvkl is the number of records in cluster v which belongs to the lth category of the kth symbolic
field,

is the estimated variance of the kth continuous variable for all records,

is the estimated variance of the kth continuous variable for records in the vth cluster, and

< i, j > is an index representing the cluster formed by combining clusters i and j.

If is ignored in the expression for ξv, the distance between clusters i and j would be exactly the
decrease in log-likelihood when the two clusters are combined. The term is added to solve the
problem caused by , which would result in the natural logarithm being undefined. (This
would occur, for example, when a cluster has only one case.)

Number of Clusters (auto-clustering)

TwoStep can use the hierarchical clustering method in the second step to assess multiple cluster
solutions and automatically determine the optimal number of clusters for the input data. A
characteristic of hierarchical clustering is that it produces a sequence of partitions in one run: 1, 2,
3, … clusters. In contrast, a k-means algorithm would need to run multiple times (one for each
specified number of clusters) in order to generate the sequence. To determine the number of
clusters automatically, TwoStep uses a two-stage procedure that works well with the hierarchical
clustering method. In the first stage, the BIC for each number of clusters within a specified range is
calculated and used to find the initial estimate for the number of clusters. The BIC is computed as

where

and other terms defined as in “Distance Measure”. The ratio of change in BIC at each
successive merging relative to the first merging determines the initial estimate. Let be
the difference in BIC between the model with J clusters and that with (J + 1) clusters,

. Then the change ratio for model J is

400

TwoStep Cluster Algorithms

If , then the number of clusters is set to 1 (and the second stage is omitted).
Otherwise, the initial estimate for number of clustersk is the smallest number for which

In the second stage, the initial estimate is refined by finding the largest relative increase in distance
between the two closest clusters in each hierarchical clustering stage. This is done as follows:

E Starting with the model Ck indicated by the BIC criterion, take the ratio of minimum inter-cluster
distance for that model and the next larger model Ck+1, that is, the previous model in the
hierarchical clustering procedure,

where Ck is the cluster model containing k clusters and dmin(C) is the minimum inter-cluster
distance for cluster model C.

E Now from model Ck-1, compute the same ratio with the following model Ck, as above. Repeat for
each subsequent model until you have the ratio R2(2).

E Compare the two largest R2 ratios; if the largest is more that 1.15 times the second largest, then
select the model with the largest R2 ratio as the optimal number of clusters; otherwise, from those
two models with the largest R2 values, select the one with the larger number of clusters as the
optimal model.

Blank Handling

The TwoStep cluster node does not support blanks. Records containing blanks, nulls, or missing
values of any kind are excluded from model building.

Effect of Options

Outlier Handling

An optional outlier-handling step is implemented in the algorithm in the process of building the
CF tree. Outliers are considered as data records that do not fit well into any cluster. We consider
data records in a leaf entry as outliers if the number of records in the entry is less than a certain
fraction (25% by default) of the size of the largest leaf entry in the CF tree. Before rebuilding the
CF tree, the procedure checks for potential outliers and sets them aside. After rebuilding the CF
tree, the procedure checks to see if these outliers can fit in without increasing the tree size. At the
end of CF tree building, small entries that cannot fit in are outliers.

401

TwoStep Cluster Algorithms

Generated Model/Scoring

Predicted Values

When scoring a record with a TwoStep Cluster generated model, the record is assigned to the
cluster to which it is closest. The distance between the record and each cluster is calculated, and
the cluster with the smallest distance is selected as the closest, and that cluster is assigned as the
predicted value for the record. Distance is calculated in a similar manner to that used during
model building, considering the record to be scored as a “cluster” with only one record. For more
information, see the topic “Distance Measure” on p. 398.

If outlier handling was enabled during model building, the distance between the record and the
closest cluster is compared to a threshold C = log(V), where

where Rk is the range of the kth numeric field and Lm is number of categories for the mth symbolic
field.

If the distance from the nearest cluster is smaller than C, assign that cluster as the predicted
value for the record. If the distance is greater than C, assign the record as an outlier.

Blank Handling

As with model building, records containing blanks are not handled by the model, and are assigned
a predicted value of $null$.

Appendix

A
Notices

This information was developed for products and services offered worldwide.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently
available in your area. Any reference to an IBM product, program, or service is not intended to
state or imply that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual property right
may be used instead. However, it is the user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785,
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing, Legal and Intellectual Property Law, IBM Japan Ltd., 1623-14,
Shimotsuruma, Yamato-shi, Kanagawa 242-8502 Japan.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties
in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions
of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and
do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites
are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including
this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Software Group, Attention: Licensing, 233 S. Wacker Dr., Chicago, IL 60606, USA.

© Copyright IBM Corporation 1994, 2016. 403

404

Notices

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore,
the results obtained in other operating environments may vary significantly. Some measurements
may have been made on development-level systems and there is no guarantee that these
measurements will be the same on generally available systems. Furthermore, some measurements
may have been estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal
without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not
appear.

Trademarks

IBM, the IBM logo, ibm.com, and SPSS are trademarks of IBM Corporation, registered in
many jurisdictions worldwide. A current list of IBM trademarks is available on the Web at
http://www.ibm.com/legal/copytrade.shtml.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel
Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other product and service names might be trademarks of IBM or other companies.

http://www.ibm.com/legal/copytrade.shtml

405

Notices

Bibliography
Aggarwal, C. C., and P. S. Yu. 1998. Online generation of association rules. In: Proceedings of the
14th International Conference on Data Engineering, Los Alamitos, Calif: IEEE ComputerSociety
Press, 402–411.

Agrawal, R., and R. Srikant. 1994. Fast Algorithms for Mining Association Rules. In:
Proceedings of the 20th International Conference on Very Large Databases, J. B. Bocca, M. Jarke,
and C. Zaniolo, eds. San Francisco: Morgan Kaufmann, 487–499.

Agrawal, R., and R. Srikant. 1995. Mining Sequential Patterns. In: Proceedings of the Eleventh
International Conference on Data Engineering, Los Alamitos, Calif.: IEEE Computer Society
Press, 3–14.

Agresti, A., J. G. Booth, and B. Caffo. 2000. Random-effects Modeling of Categorical Response
Data. Sociological Methodology, 30, 27–80.

Aitkin, M., D. Anderson, B. Francis, and J. Hinde. 1989. Statistical Modelling in GLIM. Oxford:
Oxford Science Publications.

Albert, A., and J. A. Anderson. 1984. On the Existence of Maximum Likelihood Estimates in
Logistic Regression Models. Biometrika, 71, 1–10.

Anderson, T. W. 1958. Introduction to multivariate statistical analysis. New York: John Wiley &
Sons, Inc..

Arya, S., and D. M. Mount. 1993. Algorithms for fast vector quantization. In: Proceedings of the
Data Compression Conference 1993, , 381–390.

Belsley, D. A., E. Kuh, and R. E. Welsch. 1980. Regression diagnostics: Identifying influential
data and sources of collinearity. New York: John Wiley and Sons.

Biggs, D., B. de Ville, and E. Suen. 1991. A method of choosing multiway partitions for
classification and decision trees. Journal of Applied Statistics, 18, 49–62.

Biller, B., and S. Ghosh. 2006. Multivariate input processes. In: Handbooks in Operations
Research and Management Science: Simulation, B. L. Nelson, and S. G. Henderson, eds.
Amsterdam: Elsevier Science, 123–153.

Bishop, C. M. 1995. Neural Networks for Pattern Recognition, 3rd ed. Oxford: Oxford University
Press.

Box, G. E. P., and D. R. Cox. 1964. An analysis of transformations. Journal of the Royal
Statistical Society, Series B, 26, 211–246.

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 1994. Time series analysis: Forecasting and
control, 3rd ed. Englewood Cliffs, N.J.: Prentice Hall.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and Regression
Trees. New York: Chapman & Hall/CRC.

Breslow, N. E. 1974. Covariance analysis of censored survival data. Biometrics, 30, 89–99.

Brockwell, P. J., and R. A. Davis. 1991. Time Series: Theory and Methods, 2 ed. :
Springer-Verlag.

Cain, K. C., and N. T. Lange. 1984. Approximate case influence for the proportional hazards
regression model with censored data. Biometrics, 40, 493–499.

Cameron, A. C., and P. K. Trivedi. 1998. Regression Analysis of Count Data. Cambridge:
Cambridge University Press.

© Copyright IBM Corporation 1994, 2016. 407

408

Bibliography

Chang, C. C., and C. J. Lin. 2003. LIBSVM: A library for support vector machines. Technical
Report. Taipei, Taiwan: Department of Computer Science, National Taiwan University.

Chow, C. K., and C. N. Liu. 1968. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14, 462–467.

Cooley, W. W., and P. R. Lohnes. 1971. Multivariate data analysis. New York: John Wiley &
Sons, Inc..

Cox, D. R. 1972. Regression models and life tables (with discussion). Journal of the Royal
Statistical Society, Series B, 34, 187–220.

Cunningham, P., and S. J. Delaney. 2007. k-Nearest Neighbor Classifiers. Technical Report
UCD-CSI-2007-4, School of Computer Science and Informatics, University College Dublin,
Ireland, , – .

Dempster, A. P. 1969. Elements of Continuous Multivariate Analysis. Reading, MA:
Addison-Wesley.

Diggle, P. J., P. Heagerty, K. Y. Liang, and S. L. Zeger. 2002. The analysis of Longitudinal
Data, 2 ed. Oxford: Oxford University Press.

Dixon, W. J. 1973. BMD Biomedical computer programs. Los Angeles: University of California
Press.

Dobson, A. J. 2002. An Introduction to Generalized Linear Models, 2 ed. Boca Raton, FL:
Chapman & Hall/CRC.

Dong, J., C. Y. Suen, and A. Krzyzak. 2005. Fast SVM training algorithm with decomposition
on very large data sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27,
603–618.

Dougherty, J., R. Kohavi, and M. Sahami. 1995. Supervised and unsupervised discretization
of continuous features. In: Proceedings of the Twelfth International Conference on Machine
Learning, Los Altos, CA: Morgan Kaufmann, 194–202.

Drucker, H. 1997. Improving regressor using boosting techniques. In: Proceedings of the 14th
International Conferences on Machine Learning , D. H. Fisher,Jr., ed. San Mateo, CA: Morgan
Kaufmann, 107–115.

Dunn, P. K., and G. K. Smyth. 2005. Series Evaluation of Tweedie Exponential Dispersion Model
Densities. Statistics and Computing, 15, 267–280.

Dunn, P. K., and G. K. Smyth. 2001. Tweedie Family Densities: Methods of Evaluation. In:
Proceedings of the 16th International Workshop on Statistical Modelling, Odense, Denmark: .

D’Agostino, R., and M. Stephens. 1986. Goodness-of-Fit Techniques. New York: Marcel Dekker.

Fahrmeir, L., and G. Tutz. 2001. Multivariate Statistical Modelling Based on Generalized Linear
Models, 2nd ed. New York: Springer-Verlag.

Fan, R. E., P. H. Chen, and C. J. Lin. 2005. Working set selection using the second order
information for training SVM. Technical Report. Taipei, Taiwan: Department of Computer
Science, National Taiwan University.

Fayyad, U., and K. Irani. 1993. Multi-interval discretization of continuous-value attributes for
classification learning. In: Proceedings of the Thirteenth International Joint Conference on
Artificial Intelligence, San Mateo, CA: Morgan Kaufmann, 1022–1027.

Fine, T. L. 1999. Feedforward Neural Network Methodology, 3rd ed. New York: Springer-Verlag.

409

Bibliography

Fox, J., and G. Monette. 1992. Generalized collinearity diagnostics. Journal of the American
Statistical Association, 87, 178–183.

Fox, J. 1997. Applied Regression Analysis, Linear Models, and Related Methods. Thousand
Oaks, CA: SAGE Publications, Inc..

Freund, Y., and R. E. Schapire. 1995. A decision theoretic generalization of on-line learning and
an application to boosting. In: Computational Learning Theory: 7 Second European Conference,
EuroCOLT ’95, , 23–37.

Friedman, J. H., J. L. Bentley, and R. A. Finkel. 1977. An algorithm for finding best matches in
logarithm expected time. ACM Transactions on Mathematical Software, 3, 209–226.

Friedman, N., D. Geiger, and M. Goldszmidt. 1997. Bayesian network classifiers. Machine
Learning, 29, 131–163.

Gardner, E. S. 1985. Exponential smoothing: The state of the art. Journal of Forecasting, 4, 1–28.

Gill, J. 2000. Generalized Linear Models: A Unified Approach. Thousand Oaks, CA: Sage
Publications.

Goodman, L. A. 1979. Simple models for the analysis of association in cross-classifications
having ordered categories. Journal of the American Statistical Association, 74, 537–552.

Hardin, J. W., and J. M. Hilbe. 2003. Generalized Linear Models and Extension. Station, TX:
Stata Press.

Hardin, J. W., and J. M. Hilbe. 2001. Generalized Estimating Equations. Boca Raton, FL:
Chapman & Hall/CRC.

Harman, H. H. 1976. Modern Factor Analysis, 3rd ed. Chicago: University of Chicago Press.

Hartzel, J., A. Agresti, and B. Caffo. 2001. Multinomial Logit Random Effects Models. Statistical
Modelling, 1, 81–102.

Harvey, A. C. 1989. Forecasting, structural time series models and the Kalman filter. Cambridge:
Cambridge University Press.

Haykin, S. 1998. Neural Networks: A Comprehensive Foundation, 2nd ed. New York: Macmillan
College Publishing.

Heckerman, D. 1999. A Tutorial on Learning with Bayesian Networks. In: Learning in Graphical
Models, M. I. Jordan, ed. Cambridge, MA: MIT Press, 301–354.

Hedeker, D. 1999. Generalized Linear Mixed Models. In: Encyclopedia of Statistics in Behavioral
Science, B. Everitt, and D. Howell, eds. London: Wiley, 729–738.

Hendrickson, A. E., and P. O. White. 1964. Promax: a quick method for rotation to oblique simple
structure. British Journal of Statistical Psychology, 17, 65–70.

Hidber, C. 1999. Online Association Rule Mining. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, New York: ACM Press, 145–156.

Horton, N. J., and S. R. Lipsitz. 1999. Review of Software to Fit Generalized Estimating Equation
Regression Models. The American Statistician, 53, 160–169.

Hosmer, D. W., and S. Lemeshow. 2000. Applied Logistic Regression, 2nd ed. New York: John
Wiley and Sons.

Huber, P. J. 1967. The Behavior of Maximum Likelihood Estimates under Nonstandard
Conditions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, Berkeley, CA: University of California Press, 221–233.

410

Bibliography

Jennrich, R. I., and P. F. Sampson. 1966. Rotation for simple loadings. Psychometrika, 31,
313–323.

Johnson, N. L., S. Kotz, and A. W. Kemp. 2005. Univariate Discrete Distributions, 3rd ed.
Hoboken, New Jersey: John Wiley & Sons.

Kalbfleisch, J. D., and R. L. Prentice. 2002. The statistical analysis of failure time data, 2 ed.
New York: John Wiley & Sons, Inc.

Kass, G. 1980. An exploratory technique for investigating large quantities of categorical data.
Applied Statistics, 29:2, 119–127.

Kaufman, L., and P. J. Rousseeuw. 1990. Finding groups in data: An introduction to cluster
analysis. New York: John Wiley and Sons.

Kohavi, R., B. Becker, and D. Sommerfield. 1997. Improving Simple Bayes. In: Proceedings of
the European Conference on Machine Learning, , 78–87.

Kohonen, T. 2001. Self-Organizing Maps, 3rd ed. New York: Springer-Verlag.

Kotz, S., and J. Rene Van Dorp. 2004. Beyond Beta, Other Continuous Families of Distributions
with Bounded Support and Applications. Singapore: World Scientific Press.

Kroese, D. P., T. Taimre, and Z. I. Botev. 2011. Handbook of Monte Carlo Methods. Hoboken,
New Jersey: John Wiley & Sons.

Lane, P. W., and J. A. Nelder. 1982. Analysis of Covariance and Standardization as Instances of
Prediction. Biometrics, 38, 613–621.

Lawless, R. F. 1982. Statistical models and methods for lifetime data. New York: John Wiley &
Sons, Inc..

Lawless, J. E. 1984. Negative Binomial and Mixed Poisson Regression. The Canadian Journal
of Statistics, 15, 209–225.

Liang, K. Y., and S. L. Zeger. 1986. Longitudinal Data Analysis Using Generalized Linear
Models. Biometrika, 73, 13–22.

Lipsitz, S. H., K. Kim, and L. Zhao. 1994. Analysis of Repeated Categorical Data Using
Generalized Estimating Equations. Statistics in Medicine, 13, 1149–1163.

Liu, H., F. Hussain, C. L. Tan, and M. Dash. 2002. Discretization: An Enabling Technique. Data
Mining and Knowledge Discovery, 6, 393–423.

Loh, W. Y., and Y. S. Shih. 1997. Split selection methods for classification trees. Statistica
Sinica, 7, 815–840.

Makridakis, S. G., S. C. Wheelwright, and R. J. Hyndman. 1997. Forecasting: Methods and
applications, 3rd ed. ed. New York: John Wiley and Sons.

Marsaglia, G., and J. Marsaglia. 2004. Evaluating the Anderson-Darling Distribution. Journal of
Statistical Software, 9:2, .

McCullagh, P. 1983. Quasi-Likelihood Functions. Annals of Statistics, 11, 59–67.

McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

McCulloch, C. E., and S. R. Searle. 2001. Generalized, Linear, and Mixed Models. New York:
John Wiley and Sons.

411

Bibliography

Melard, G. 1984. A fast algorithm for the exact likelihood of autoregressive-moving average
models. Applied Statistics, 33:1, 104–119.

Miller, M. E., C. S. Davis, and J. R. Landis. 1993. The Analysis of Longitudinal Polytomous Data:
Generalized Estimating Equations and Connections with Weighted Least Squares. Biometrics,
49, 1033–1044.

Nelder, J. A., and R. W. M. Wedderburn. 1972. Generalized Linear Models. Journal of the
Royal Statistical Society Series A, 135, 370–384.

Neter, J., W. Wasserman, and M. H. Kutner. 1990. Applied Linear Statistical Models, 3rd ed.
Homewood, Ill.: Irwin.

Pan, W. 2001. Akaike’s Information Criterion in Generalized Estimating Equations. Biometrics,
57, 120–125.

Pena, D., G. C. Tiao, and R. S. Tsay, eds. 2001. A course in time series analysis. New York:
John Wiley and Sons.

Platt, J. 2000. Probabilistic outputs for support vector machines and comparison to regularized
likelihood methods. In: Advances in Large Margin Classifiers, A. J. Smola, P. Bartlett, B.
Scholkopf, and D. Schuumans, eds. Cambridge, MA: MITPress, 61–74.

Pregibon, D. 1981. Logistic Regression Diagnostics. Annals of Statistics, 9, 705–724.

Prim, R. C. 1957. Shortest connection networks and some generalisations. Bell System Technical
Journal, 36, 1389–1401.

Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge: Cambridge University
Press.

Saltelli, A., S. Tarantola, F. , F. Campolongo, and M. Ratto. 2004. Sensitivity Analysis in Practice
– A Guide to Assessing Scientific Models. : John Wiley.

Saltelli, A. 2002. Making best use of model evaluations to compute sensitivity indices. Computer
Physics Communications, 145:2, 280–297.

Schatzoff, M., R. Tsao, and S. Fienberg. 1968. Efficient computing of all possible regressions.
Technometrics, 10, 769–779.

Skrondal, A., and S. Rabe-Hesketh. 2004. Generalized Latent Variable Modeling: Multilevel,
Longitudinal, and Structural Equation Models. Boca Raton, FL: Chapman & Hall/CRC.

Smyth, G. K., and B. Jorgensen. 2002. Fitting Tweedie’s Compound Poisson Model to Insurance
Claims Data: Dispersion Modelling. ASTIN Bulletin, 32, 143–157.

Sobol, I. M. 2001. Global sensitivity indices for nonlinear mathematical models and their Monte
Carlo estimates. Mathematics and Computers in Simulation, 55, 271–280.

Storer, B. E., and J. Crowley. 1985. A diagnostic for Cox regression and general conditional
likelihoods. Journal of the American Statistical Association, 80, 139–147.

Tan, P., M. Steinbach, and V. Kumar. 2006. Introduction to Data Mining. : Addison-Wesley.

Tao, K. K. 1993. A closer look at the radial basis function (RBF) networks. In: Conference
Record of the Twenty-Seventh Asilomar Conference on Signals, Systems, and Computers, A.
Singh, ed. Los Alamitos, Calif.: IEEE Comput. Soc. Press, 401–405.

Tatsuoka, M. M. 1971. Multivariate analysis. New York: John Wiley & Sons, Inc. .

412

Bibliography

Tuerlinckx, F., F. Rijmen, G. Molenberghs, G. Verbeke, D. Briggs, W. Van den Noortgate, M.
Meulders, and P. De Boeck. 2004. Estimation and Software. In: Explanatory Item Response
Models: A Generalized Linear and Nonlinear Approach, P. De Boeck, and M. Wilson, eds.
New York: Springer-Verlag, 343–373.

Uykan, Z., C. Guzelis, M. E. Celebi, and H. N. Koivo. 2000. Analysis of input-output clustering
for determining centers of RBFN. IEEE Transactions on Neural Networks, 11, 851–858.

Velleman, P. F., and R. E. Welsch. 1981. Efficient computing of regression diagnostics. American
Statistician, 35, 234–242.

White, H. 1980. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test
for Heteroskedasticity. Econometrica, 48, 817–836.

Williams, D. A. 1987. Generalized Linear Models Diagnostics Using the Deviance and Single
Case Deletions. Applied Statistics, 36, 181–191.

Wolfinger, R., R. Tobias, and J. Sall. 1994. Computing Gaussian likelihoods and their derivatives
for general linear mixed models. SIAM Journal on Scientific Computing, 15:6, 1294–1310.

Wolfinger, R., and M. O'Connell. 1993. Generalized Linear Mixed Models: A Pseudo-Likelihood
Approach. Journal of Statistical Computation and Simulation, 4, 233–243.

Zeger, S. L., and K. Y. Liang. 1986. Longitudinal Data Analysis for Discrete and Continuous
Outcomes. Biometrics, 42, 121–130.

Zhang, T., R. Ramakrishnon, and M. Livny. 1996. BIRCH: An efficient data clustering method
for very large databases. In: Proceedings of the ACM SIGMOD Conference on Management
of Data, Montreal, Canada: ACM, 103–114.

Index
absolute confidence difference to prior
Apriori evaluation measure, 10

accuracy
Binary Classifier node, 49
neural networks algorithms, 301
Pass, Stream, Merge algorithms, 134

activation functions
multilayer perceptron algorithms, 292

AdaBoost
boosting algorithms, 128

adaptive boosting
boosting algorithms, 128

adjacency lattice
in sequence rules, 336

adjusted propensities algorithms, 1
adjusted R-square
in regression, 265

advanced output
in factor analysis/PCA, 152
in logistic regression, 273
in regression, 265

AICC
linear modeling algorithms, 256

Akaike information criterion
generalized linear models algorithms, 181, 199

allow splitting of merged categories (CHAID), 76
alpha factoring
in factor analysis/PCA, 143

anomaly detection
blank handling, 7
generated model, 7
overview, 3
predicted values, 7
scoring, 7

anomaly index, 6
Apriori
blank handling, 11–12
confidence (predicted values), 12
deriving rules, 9
evaluation measures, 10
frequent itemsets, 9
generated model, 12
generating rules, 10
items and itemsets, 9
maximum number of antecedents, 11
maximum number of rules, 11
minimum rules support/confidence, 11
only true values for flags, 11
options, 11
overview, 9
predicted values, 12
ruleset evaluation options, 12

area under curve
Binary Classifier node, 49

association rules, 341
Apriori, 9

Carma, 53
sequence rules, 333

auto-clustering
in TwoStep clustering, 399

automated data preparation algorithms, 13
bivariate statistics collection, 22
categorical variable handling, 25
checkpoint, 17
continuous variable handling, 31
date/time handling, 14
discretization of continuous predictors, 35
feature construction, 32
feature selection, 32
measurement level recasting, 17
missing values, 19
notation, 13
outliers, 18
predictive power, 35
principal component analysis, 33
references, 36
supervised binning, 32
supervised merge, 26
target handling, 21
transformations, 20
univariate statistics collection, 15
unsupervised merge, 30
variable screening, 17

automatic field selection
regression, 263

backward elimination
multinomial logistic regression algorithms, 275

backward field selection
in regression, 265

backward stepwise
multinomial logistic regression algorithms, 274

bagging algorithms, 125–126
accuracy, 127
diversity, 127
notation, 125
references, 130

Bayes Information Criterion (BIC)
in TwoStep clustering, 399

Bayesian information criterion
generalized linear models algorithms, 181, 199

Bayesian network algorithms, 37
binning, 38
blank handling, 47
feature selection, 38
Markov blanket algorithms, 43, 45–47
notation, 37
scoring, 47
tree augmented naïve Bayes (TAN) models, 40–43
variable types, 38

best subsets selection
linear modeling algorithms, 253

© Copyright IBM Corporation 1994, 2016. 413

414

Index

binary classifier comparison metrics, 49
binning
automatic binning in BN models, 38
CHAID predictors, 74

binomial logistic regression
algorithms, 279

BIRCH algorithm
in TwoStep clustering, 397

blank handling
Apriori, 11–12
Carma, 55, 57
Cox regression algorithms, 102
in anomaly detection, 7
in Bayesian network algorithms, 47
in C&RT, 61, 71
in CHAID, 81, 85
in Decision List algorithm, 111
in discriminant analysis, 121, 123
in factor analysis/PCA, 151–152
in k-means, 230
in k-means clustering, 232
in Kohonen models, 244–245
in logistic regression, 271, 279
in nearest neighbor algorithms, 236
in optimal binning algorithms, 309
in QUEST, 319, 326
in regression, 265–266
in scoring Decision List models, 111
in support vector machines (SVM), 377
in TwoStep clustering, 400–401
nearest neighbor algorithms, 238

blanks
imputing missing values, 223

Bonferroni adjustment
in CHAID tests, 80

boosting algorithms, 125
accuracy, 130
adaptive boosting (AdaBoost), 128
notation, 125
stagewise additive modeling (SAMME), 129

Borgelt, Christian, 9
Box-Cox transformation
automated data preparation algorithms, 21

C&RT
blank handling, 61, 71
confidence values, 71
finding splits, 60
gain summary, 69
Gini index, 62
impurity measures, 62, 64
least squared deviation index, 64
misclassification costs, 66
overview, 59
predicted values, 70
prior probabilities, 65
profits, 65

pruning, 66
risk estimates, 68
stopping rules, 65
surrogate splitting, 61
twoing index, 64
weight fields, 59

C5.0, 51
scoring, 51

Carma
blank handling, 55, 57
confidence (predicted values), 56
deriving rules, 53
exclude rules with multiple consequents, 55
frequent itemsets, 53
generated model, 56
generating rules, 54
maximum rule size, 55
minimum rules support/confidence, 55
options, 55
overview, 53
predicted values, 56
pruning value, 55
ruleset evaluation options, 56

Carma (sequence rules algorithm), 337
case weights, 60, 74
CF (cluster feature) tree
TwoStep clustering, 397

CHAID
binning of continuous predictors, 74
blank handling, 81, 85
Bonferroni adjustment, 80
chi-squared tests, 78
compared to other methods, 73
confidence values, 85
costs, 82
Exhaustive CHAID, 73
expected frequencies, 78
gain summary, 83
merging categories, 76
predicted values, 84
profits, 82
risk estimates, 82
row effects chi-squared test, 79
score values, 82
splitting nodes, 77
statistical tests, 77–80
stopping rules, 81
weight fields, 73

Chebychev distance
in Kohonen models, 243

chi-square
generalized linear models algorithms, 177

chi-square test
in QUEST, 317

class entropy
optimal binning algorithms, 305

415

Index

class information entropy
optimal binning algorithms, 306

cluster assignment
in k-means, 229

cluster evaluation algorithms, 87
goodness measures, 87
notation, 87
predictor importance, 89
references, 91
Silhouette coefficient, 89
sum of squares between, 89
sum of squares error, 89

cluster feature tree
TwoStep clustering, 397

cluster membership
in k-means, 231
in Kohonen models, 245
in TwoStep clustering, 401

cluster proximities
in k-means, 231

clustering
k-means, 227
TwoStep algorithm, 397

coefficients
in factor analysis/PCA, 151
in regression, 261

comparison metrics
Binary Classifier node, 49

complete separation
in logistic regression, 271

component extraction
in factor analysis/PCA, 139

conditional statistic
Cox regression algorithms, 98

confidence
in Apriori, 10
in C&RT models, 71
in CHAID models, 85
in QUEST models, 326
in sequence rules, 340, 342
neural networks algorithms, 302

confidence difference
Apriori evaluation measure, 10

confidence ratio
Apriori evaluation measure, 11

confidence values
rulesets, 12, 56

consistent AIC
generalized linear models algorithms, 181

convergence criteria
logistic regression, 271

Cook’s distance
linear modeling algorithms, 258
logistic regression algorithms, 288

corrected Akaike information criterion (AICC)
linear modeling algorithms, 256

costs
in C&RT, 66
in CHAID, 82
in QUEST, 322

Cox and Snell R-square
in logistic regression, 273

Cox regression
blank handling, 102

Cox regression algorithms, 93
baseline function estimation, 96
blank handling, 102
output statistics, 99
plots, 101
regression coefficient estimation, 94
stepwise selection, 97

cross-entropy error
multilayer perceptron algorithms, 292

data aggregation
in logistic regression, 268

Decision List algorithm, 105
blank handling, 111
blank handling in scoring, 111
confidence intervals, 110
coverage, 111
decision rule algorithm, 107–108
decision rule split algorithm, 108–109
frequency, 111
primary algorithm, 106
probability, 111
scoring, 111
secondary measures, 111
terminology, 105

deviance
generalized linear models algorithms, 178
logistic regression algorithms, 287

deviance goodness-of-fit measure
in logistic regression, 273

DfBeta
logistic regression algorithms, 288

difference of confidence quotient to 1
Apriori evaluation measure, 11

direct oblimin rotation
factor analysis/PCA, 147

discretization
see binning, 74

discriminant analysis
blank handling, 121

discriminant analysis algorithms, 113
basic statistics, 113
blank handling, 123
canonical discriminant functions, 118
classification, 121
classification functions, 117
cross-validation, 122
notation, 113
references, 123

416

Index

variable selection, 114
distances
in k-means, 229, 231
in Kohonen models, 243
in TwoStep clustering, 398

diversity
Pass, Stream, Merge algorithms, 134

dummy coding
in logistic regression, 267

encoding value for sets
in k-means, 228, 231

ensembles algorithms, 125
ensembling model scores, 136
equamax rotation
in factor analysis/PCA, 145

error backpropagation
multilayer perceptron algorithms, 295

estimated marginal means
generalized linear mixed models algorithms, 200

eta decay
in Kohonen models, 244

evaluation measures
in Apriori, 10

Exhaustive CHAID
merging categories, 76
see CHAID, 73

expected frequencies
CHAID tests, 78
in CHAID tests, 80

F-test
in CHAID, 77

factor analysis/PCA
advanced output, 152
alpha factoring, 143
blank handling, 151–152
chi-square statistics, 142
direct oblimin rotation, 147
equamax rotation, 145
factor score coefficients, 151
factor scores, 152
factor/component extraction, 139
generalized least squares extraction, 142
image factoring, 144
maximum likelihood extraction, 140
overview, 139
principal axis factoring, 140
principal components analysis (PCA), 139
promax rotation, 150
quartimax rotation, 145
rotations, 145
unweighted least squares extraction, 142
varimax rotation, 145

factor equations
in factor analysis/PCA, 151

factor extraction
in factor analysis/PCA, 139

factor score coefficients
in factor analysis/PCA, 151

factor scores
in factor analysis/PCA, 152

feature selection
in Bayesian network algorithms, 38

field encoding
encoding of flag fields, 229, 242
encoding of symbolic fields, 227, 241
Kohonen models, 241
scaling of range fields, 227, 241

finite sample corrected AIC
generalized linear models algorithms, 181, 199

flag fields
encoding, 229, 242

forward entry
multinomial logistic regression algorithms, 274

forward field selection
in regression, 264

forward stepwise
multinomial logistic regression algorithms, 274

forward stepwise selection
linear modeling algorithms, 250

frequency weights, 59, 74, 315
frequent itemsets
in Apriori, 9
in Carma, 53

frequent sequences, 335

gain summary
in C&RT, 69
in CHAID, 83
in QUEST, 325

GDI
see Group Deviation Index, 5

generalized least squares
in factor analysis/PCA, 142

generalized linear mixed models algorithms, 187, 204
estimated marginal means, 200
fixed effects transformation, 191
goodness of fit statistics, 199
link function, 189
model, 188
model for nominal multinomial, 207
model for ordinal multinomial, 214
multiple comparisons, 202
notation, 187, 206
references, 220
scale parameter, 190
tests of fixed effects, 199

generalized linear models algorithms, 163
chi-square statistic, 177
default tests of model effects, 182
estimation, 169
goodness of fit, 178

417

Index

link function, 168
model, 163
model fit test, 182
model testing, 177
notation, 163
probability distribution, 164
references, 184
scoring, 183

generalized logit model
in logistic regression, 269

Gini index
in C&RT, 62

goodness of fit
generalized linear models algorithms, 178

goodness-of-fit measures
in logistic regression, 273

gradient descent
multilayer perceptron algorithms, 295

Group Deviation Index, 5

hazard plots
Cox regression algorithms, 102

hierarchical clustering
in TwoStep clustering, 398

Hosmer-Lemeshow goodness-of-fit statistic
logistic regression algorithms, 286

hyperbolic tangent activation function
multilayer perceptron algorithms, 292

hyperbolic tangent kernel function (SVM), 371

identity activation function
multilayer perceptron algorithms, 292

image factoring
in factor analysis/PCA, 144

impurity measures (C&RT), 62, 64
imputing missing values, 223
indicator coding, 227, 241
information criteria
generalized linear models algorithms, 181, 199

information difference
Apriori evaluation measure, 11

information gain
optimal binning algorithms, 306

initial cluster centers
in k-means, 229

items
in Apriori, 9

itemsets
in Apriori, 9
in sequence rules, 333

k-means
assigning records to clusters, 229
blank handling, 230
cluster centers, 229–230, 232
cluster proximities, 231

distance field (predicted values), 231
distance measure, 229
encoding value for sets, 228, 231
error tolerance, 231
field encoding, 227
initial cluster centers, 229
iterating, 229
maximum iterations, 230
overview, 227
predicted cluster membership, 231

Kohonen models
blank handling, 244–245
cluster centers, 242
cluster membership, 245
distances, 243
learning rate (eta), 242, 244
model parameters, 242
neighborhoods, 243
overview, 241
random seed, 244
scoring, 245
stopping criteria, 244
weights, 242–243

Lagrange multiplier test
generalized linear models algorithms, 177

learning rate (eta)
in Kohonen models, 242, 244

least significant difference
generalized linear mixed models algorithms, 203

least squared deviation index
in C&RT, 64

leave-one-out classification
discriminant analysis algorithms, 122

legal notices, 403
length
of sequences, 334

Levene’s test
in QUEST, 318

leverage
linear modeling algorithms, 258
logistic regression algorithms, 288

lift
Binary Classifier node, 49

likelihood ratio chi-squared test
in CHAID, 78

likelihood ratio statistic
Cox regression algorithms, 98

likelihood-based distance measure
in TwoStep clustering, 398

linear kernel function (SVM), 371
linear modeling algorithms, 247
coefficients, 256
diagnostics, 258
least squares estimation, 248
model, 248
model evaluation, 255

418

Index

model selection, 249–250, 253
notation, 247
predictor importance, 259
references, 259
scoring, 258

linear regression, 261
link function
generalized linear mixed models algorithms, 189
generalized linear models algorithms, 168

log-likelihood
in logistic regression, 269, 272

log-minus-log plots
Cox regression algorithms, 102

logistic regression
advanced output, 273
binomial logistic regression algorithms, 279
blank handling, 271, 279
checking for separation, 271
convergence criteria, 271
Cox and Snell R-square, 273
data aggregation, 268
field encoding, 267
generalized logit model, 269
goodness-of-fit measures, 273
log-likelihood, 269, 272
maximum likelihood estimation, 270
McFadden R-square, 273
model chi-square, 272
Nagelkerke R-square, 273
notation, 279
overview, 267
parameter start values, 270
predicted probability, 279
predicted values, 279
pseudo R-square measures, 273
reference category, 267
stepping, 270

logistic regression algorithms
maximum likelihood estimates, 280
model, 280
notation, 279
output statistics, 284
stepwise variable selection, 281

logit residuals
logistic regression algorithms, 288

logits
in logistic regression, 269

Markov blanket Bayesian network models
adjustment for small cell counts, 47
algorithms, 43, 45
chi-square independence test, 44
conditional independence tests, 43
deriving the Markov blanket, 46
G2 test, 44
likelihood ratio test, 44
parameter learning, 46

posterior estimation, 46
structure learning algorithm, 45

maximal sequences, 334
maximum likelihood
in factor analysis/PCA, 140
in logistic regression, 270

maximum profit
Binary Classifier node, 49

maximum profit occurs in %
Binary Classifier node, 49

McFadden R-square
in logistic regression, 273

MDLP
optimal binning algorithms, 305

merging categories
CHAID, 76
Exhaustive CHAID, 76

min-max transformation
automated data preparation algorithms, 20

misclassification costs
in C&RT, 66
in QUEST, 322

missing values
imputing, 223

model chi-square
in logistic regression, 272

model information
Cox regression algorithms, 99

model updates
multilayer perceptron algorithms, 298

multilayer perceptron algorithms, 291
activation functions, 292
architecture, 291
error functions, 292
expert architecture selection, 293
model updates, 298
notation, 291
training, 294

multinomial logistic regression, 267
multinomial logistic regression algorithms
stepwise variable selection, 274

Nagelkerke R-square
in logistic regression, 273

naive bayes
see self-learning response models, 327

Naive Bayes algorithms, 327
model, 327
notation, 327

nearest neighbor algorithms, 233
blank handling, 236, 238
distance metric, 234
feature selection, 235
feature weights, 234
k selection, 235
notation, 233
output statistics, 237

419

Index

preprocessing, 233
references, 239
scoring, 238
training, 234

neighborhoods
in Kohonen models, 242–243

network architecture
multilayer perceptron algorithms, 291
radial basis function algorithms, 299

neural networks algorithms, 291
confidence, 302
missing values, 301
multilayer perceptron (MLP), 291
output statistics, 301
radial basis function (RBF), 298
references, 302
simplemax, 302

nominal regression, 267
normalized chi-square
Apriori evaluation measure, 11

number of clusters
auto-selecting in TwoStep clustering, 399

optimal binning algorithms, 305
blank handling, 309
class entropy, 305
class information entropy, 306
hybrid MDLP, 308
information gain, 306
MDLP, 305
merging bins, 309
notation, 305
references, 310

ordinal fields
in CHAID, 79

ordinary least squares regression, 261
outlier handling
in TwoStep clustering, 400

overall accuracy
Binary Classifier node, 49

overdispersion
generalized linear models algorithms, 180

Pass, Stream, Merge algorithms, 130
accuracy, 134
adaptive feature selection, 132
category balancing, 133
diversity, 134
Merge, 132
Pass, 131
scoring, 135
Stream, 132

Pearson chi-square
generalized linear models algorithms, 179

Pearson chi-squared test
in CHAID, 78

Pearson goodness-of-fit measure
in logistic regression, 273

polynomial kernel function (SVM), 371
pre-clustering
in TwoStep clustering, 397

predicted group
logistic regression algorithms, 288

predicted values
anomaly detection, 7
generalized linear models algorithms, 183
rulesets, 12, 56

predictive power
automated data preparation algorithms, 35

predictor importance
cluster evaluation algorithms, 89
linear modeling algorithms, 259

predictor importance algorithms, 311
notation, 311
references, 314
variance based method, 311

principal axis factoring
in factor analysis/PCA, 140

principal component analysis
automated data preparation algorithms, 33

principal components analysis (PCA), 139
priors
in C&RT, 65
in QUEST, 322

profits
in C&RT, 65
in CHAID, 82
in QUEST, 321

promax rotation
in factor analysis/PCA, 150

pruning
in C&RT, 66
in QUEST, 323

quartimax rotation
in factor analysis/PCA, 145

quasi-complete separation
in logistic regression, 271

QUEST
blank handling, 319, 326
chi-square test, 317
confidence values, 326
F-test, 317
finding splits, 316
gain summary, 325
Levene’s test, 318
misclassification costs, 322
overview, 315
predicted values, 325
prior probabilities, 322
profits, 321
pruning, 323
risk estimates, 324

420

Index

stopping rules, 321
surrogate splitting, 319
weight fields, 315

R-square
in regression, 265

radial basis function algorithms, 298
architecture, 299
automatic selection of number of basis functions, 300
center and width for basis functions, 300
model updates, 301
notation, 298
training, 299

random seed
in Kohonen models, 244

range fields
rescaling, 227, 241

RBF kernel function (SVM), 371
regression
adjusted R-square, 265
advanced output, 265
automatic field selection, 263
backward field selection, 265
blank handling, 265–266
forward field selection, 264
model parameters, 261
notation, 261
overview, 261
predicted values, 265
R-square, 265
stepwise field selection, 264

replacing missing values, 223
risk estimates
in C&RT, 68
in CHAID, 82
in QUEST, 324

row effects model
in CHAID tests, 79

RuleQuest Research, 51
rulesets
confidence (predicted values), 12, 56
predicted values, 12, 56

SAMME
boosting algorithms, 129

Satterthwaite approximation
generalized linear mixed models algorithms, 203

scale parameter
generalized linear mixed models algorithms, 190

scaled conjugate gradient
multilayer perceptron algorithms, 296

scaled deviance
generalized linear models algorithms, 179

scaled Pearson chi-square
generalized linear models algorithms, 179

score coefficients
in factor analysis/PCA, 151

score statistic
Cox regression algorithms, 98

score test
multinomial logistic regression algorithms, 276

score values (CHAID), 82
scoring
Decision List algorithm, 111
in anomaly detection, 7

self-learning response model algorithms, 327
information measure, 331
model assessment, 328
predictor importance, 330–331
scoring, 329
updating the model, 329

separation
checking for in logistic regression, 271

sequence rules, 341
adjacency lattice, 336
antecedents, 335
blank handling, 340, 342
Carma algorithm, 337
confidence, 340, 342
consequents, 335
frequent sequences, 335
gap, 335
itemsets, 333
length of sequences, 334
maximal sequences, 334
overview, 333
predictions, 341
sequential patterns, 339
size of sequences, 334
subsequences, 334
support, 334
timestamp tolerance, 335
transactions, 333

sequences
in sequence rules, 333

sequential Bonferroni
generalized linear mixed models algorithms, 203

sequential minimal optimization (SMO) algorithm
support vector machines (SVM), 371

sequential sidak
generalized linear mixed models algorithms, 203

set encoding value
in k-means, 228

Silhouette coefficient
cluster evaluation algorithms, 89

simplemax
neural network confidence, 302

simulation
algorithms, 343

simulation algorithms, 343, 361
beta distribution fitting, 349
binomial distribution fitting, 344
categorical distribution fitting, 345
contribution to variance measure of sensitivity, 364

421

Index

correlation measure of sensitivity, 364
distribution fitting, 343
exponential distribution fitting, 349
gamma distribution fitting, 350
generating correlated data, 361
goodness of fit measures, 352
goodness of fit measures: Anderson-Darling test , 355
goodness of fit measures: continuous distributions, 353
goodness of fit measures: discrete distributions, 352
goodness of fit measures: Kolmogorov-Smirnov test ,
357
lognormal distribution fitting, 348
negative binomial distribution fitting, 345
normal distribution fitting, 348
one-at-a-time measure of sensitivity, 364
Poisson distribution fitting, 345
references, 360, 365
sensitivity measures, 363
tornado charts, 363
triangular distribution fitting, 347
uniform distribution fitting, 348
Weibull distribution fitting, 351

size
of sequences, 334

softmax activation function
multilayer perceptron algorithms, 292

splitting
of merged categories (CHAID), 76

splitting nodes
CHAID, 77

stagewise additive modeling
boosting algorithms, 129

standardized residuals
logistic regression algorithms, 288

stepping
in logistic regression, 270

stepwise field selection
in regression, 264

stepwise selection
Cox regression algorithms, 97

stopping rules
in C&RT, 65
in CHAID, 81
in QUEST, 321
multilayer perceptron algorithms, 297

studentized residuals
linear modeling algorithms, 258
logistic regression algorithms, 288

subpopulations, 268
subsequences, 334
sum of squares between
cluster evaluation algorithms, 89

sum of squares error
cluster evaluation algorithms, 89
multilayer perceptron algorithms, 292

support
sequence rules, 334

support vector machines (SVM), 367
ε-Support Vector Regression (ε-SVR), 368
algorithm notation, 367
blank handling, 377
C-support vector classification, 368
decision function constant, 370
fast training algorithm, 375
gradient reconstruction, 372
kernel functions, 371
model building algorithm, 370
parallel optimization, 375
predicted probabilities, 377
predictions, 377
queue method, 376
scoring, 377
sequential minimal optimization (SMO) algorithm, 371
sequential optimization, 376
shrinking, 372
SMO decomposition, 374
solving quadratic problems, 369
subset selection, 376
types of SVM models, 367
unbalanced data, 373
variable scaling, 370
working set selection, 371

surrogate splitting
in C&RT, 61
in QUEST, 319

survival plots
Cox regression algorithms, 102

symbolic fields
recoding, 227, 241

Time Series algorithms, 379
additive outliers, 388
all models expert model, 394
AO (additive outliers), 388
AO patch (AOP), 389
AO patch outliers, 390
AOP, 389
ARIMA and transfer function models, 382
ARIMA expert model, 394
Brown’s exponential smoothing, 380
CLS, 384
conditional least squares (CLS) method, 384
damped-trend exponential smoothing, 380
definitions of outliers, 388
detection of outliers, 390
diagnostic statistics, 387
error variance, 385
estimating the effects of an outlier, 390
estimation and forecasting of ARIMA/TF, 384
estimation and forecasting of exponential smoothing,
382
expert modeling, 393
exponential smoothing expert model, 393
exponential smoothing models, 379

422

Index

goodness-of-fit statistics, 391
Holt’s exponential smoothing, 380
initialization of ARIMA/TF, 385
initialization of exponential smoothing, 382
innovational outliers, 388
IO (innovational outliers), 388
level shift, 388
Ljung-Box statistic, 387
local trend, 389
LS (level shift), 388
LT (local trend), 389
maximum absolute error, 392
maximum absolute percent error, 392
maximum likelihood (ML) method, 384
mean absolute error, 392
mean absolute percent error, 392
mean squared error, 392
ML, 384
models, 379
multivariate series, 394
non-AO patch deterministic outliers, 390
normalized bayesian information criterion, 392
notation, 379, 388
outlier detection in time series analysis, 387
outliers summary, 389
R-squared, 392
references, 396
SA (seasonal additive), 388
seasonal additive, 388
simple exponential smoothing, 379
simple seasonal exponential smoothing, 381
stationary R-squared, 392
TC (temporary/transient change), 388
temporary/transient change, 388
transfer function calculation, 386
transfer function expert model, 395
univariate series, 393
Winters’ additive exponential smoothing, 381
Winters’ exponential smoothing, 381

timestamp tolerance
in sequence rules, 335

trademarks, 404
transactions
in sequence rules, 333

tree augmented naïve Bayes (TAN) models
adjustment for small cell counts, 43
algorithms, 40
learning algorithm, 41
parameter learning, 42
posterior estimation, 43
structure learning, 42

twoing index
in C&RT, 64

TwoStep clustering
auto-clustering, 399
blank handling, 400–401
cluster feature tree, 397

clustering step, 398
distance measure, 398
model parameters, 397
outlier handling, 400
overview, 397
pre-clustering step, 397
predicted values, 401

unweighted least squares
in factor analysis/PCA, 142

updating
self-learning response models, 329

variable contribution measure
in anomaly detection, 6

Variable Deviation Index, 5
varimax rotation
in factor analysis/PCA, 145

VDI
see Variable Deviation Index, 5

Wald statistic
Cox regression algorithms, 98

weight fields
CHAID, 73

weights
in Kohonen models, 242–243

z-score transformation
automated data preparation algorithms, 20

TwoStep-AS Cluster Algorithms

1. Introduction

Clustering technique is widely used by retail and consumer product companies who need to learn more
about their customers in order to apply 1-to-1 marketing strategies. By means of clustering technique,
customers are partitioned into groups by their buying habits, gender, age, income level, etc., and retail
and consumer product companies can tailor their marketing and product development strategy to each
customer group.

Traditional clustering algorithms can broadly be classified into partitional clustering and hierarchical
clustering. Partitional clustering algorithms divide data cases into clusters by optimizing certain criterion
function. A well-known representative of this class is the k-means clustering. Hierarchical clustering
algorithms proceed by stages producing a sequence of partitions in which each partition is nested into the
next partition in the sequence. Hierarchical clustering can be agglomerative and divisive. Agglomerative
clustering starts with a singleton cluster (for example, a cluster that contains one data case only) and
proceeds by successively merging the clusters at each stage. On the contrary, divisive clustering starts
with one single cluster that contains all data cases and proceeds by successively separating the cluster
into smaller clusters. Notice that no initial values are needed for hierarchical clustering.

However, traditional clustering algorithms do not adequately address the problem of large datasets. This
is where the two-step clustering method can be helpful (see ref. [1][2]). This method first performs a pre-
clustering step by scanning the entire dataset and storing the dense regions of data cases in terms of
summary statistics called cluster features. The cluster features are stored in memory in a data structure
called the CF-tree. Then an agglomerative hierarchical clustering algorithm is applied to cluster the set of
cluster features. Since the set of cluster features is much smaller than the original dataset, the hierarchical
clustering can perform well in terms of speed. Notice that the CF-tree is incremental in the sense that it
does not require the whole dataset in advance and only scans the dataset once.

One essential element in the clustering algorithms above is the distance measure that reflects the relative
similarity or dissimilarity of the clusters. Chiu et al proposed a new distance measure that enables
clustering on data sets in which the features are of mixed types. The features can be continuous, nominal,
categorical, or count. This distance measure is derived from a probabilistic model in the way that the
distance is equivalent to the decrease in log-likelihood value as a result of merging two clusters. In the
following, the new distance measure will be used in both the CF-tree growth and the clustering process,
unless otherwise stated.

In this chapter, we extend the two-step clustering method into the distributed setting, specifically under
the map-reduce framework. In addition to generating a clustering solution, we also provide mechanisms
for selecting the most relevant features for clustering given data, as well as detecting rare outlier points.
Moreover, we provide an enhanced set of evaluation and diagnostic features enabling insight,
interactivity, and an improved overall user experience as required by the Analytic Catalyst application.

The chapter is organized as follows. We first declare some general notes about algorithms, development,
etc. Then we define the notations used in the document. Operations for data pre-processing are
introduced in section 4. In section 5, we briefly describe the data and the measures such as distance,
tightness, and so on. In section 6, 7, and 8, we present the key algorithms used in model building,
including CF-tree growth, Hierarchical Agglomerative Clustering (HAC), and determination of the

TwoStep-AS Cluster Algorithms

number of clusters, respectively. Section 9 describes the entire solution of distributed clustering on
Hadoop. Section 10 describes how to score new cases (to assign cluster memberships). Finally, Section 11
includes various measures used for model evaluation and model diagnostics. Insights and interestingness
are also derived.

2. Notes

 To create CF-trees efficiently, we assume that operations within a main memory environment (for
example, RAM) is efficient, and the size of the main memory can be allocated or controlled by
user.

 We assume that the data is randomly partitioned. If this assumption is not allowed, sequential
partition can still be applied. But note that the clustering result can be impacted, particularly if
the data is ordered in some special way.

 CE is implemented in the Analytic Framework.

3. Notations

The following notations are used throughout this chapter unless otherwise stated:

 Number of data partitions/splits.

 Number of cases in cluster .

Number of cases in cluster which have non-missing values in

the th feature.

 Number of features used for clustering.

 The th data case. is a K-dimensional vector.

Value of the th continuous feature of the th data case . There
are number of continuous features.

Value of the th categorical feature of the th data case . There are
number of categorical features.

 Number of categories of the th categorical feature in the entire data.

Number of cases in cluster whose th categorical feature takes

the th category.

 Sum of values of the th continuous feature in cluster .

 Sum of squared values of the th continuous feature in cluster .

 Distance between clusters and .

 Cluster formed by combining clusters and .

4. Data Pre-processing

Data pre-processing includes the following transformations:

 Trailing blanks are trimmed

 Date/time features are transformed into continuous ones

 Normalize continuous features

 Category values of a categorical feature are mapped into integer. As such, the expression “

 ” indicates that the th categorical feature of the th case takes the th category.

 System/user missing and invalid values are all considered as missing.

TwoStep-AS Cluster Algorithms

 Cases with missing values in all features are discarded.

5. Data and Measures

Let be the th data case. Denote as the index set of cluster , . Let be the

total number of features in which of them are continuous and are categorical. Without loss of
generality, write as

 (1)

where
 is the value of the th continuous feature, , and

 is the value of the th
categorical feature, . Express

 as a vector

 of values in which each entry is

either zero or one:

 . (2)

5.1. Cluster Feature of a Cluster

The cluster feature (sufficient statistics set) of a cluster is a collection of statistics that summarizes

the characteristics of a cluster. A possible set is given as

 (3)

where is the number of data cases in cluster ,

 is a -dimensional

vector; the th entry is the number of data cases in cluster which have non-missing values in the th

feature. is a -dimensional vector; the th entry is the sum of the non-missing values

of the th continuous feature in cluster , i.e.

 (4)

for . Similarly,

 is a -dimensional vector such that the th entry is the sum

of squared non-missing values of the th continuous feature in cluster , i.e.

 (5)

for .

Similarly,

 is a

 -dimensional vector where the th sub-vector
 is

 dimensional, given by

 (6)

for . The th entry represents the total number of cases in cluster whose th categorical

feature takes the th category, , i.e.

TwoStep-AS Cluster Algorithms

. (7)

5.2. Updating Cluster Feature when Merging Two Clusters

When two clusters and are said to merge, it simply means that the two corresponding sets of data

points are merged together to form a union. In this case, the for the merged cluster can be

calculated by simply adding the corresponding elements in and , that is,

 . (8)

5.3. Tightness of a Cluster

The interpretation of tightness of a cluster is that the smaller of the value of tightness, the less variation of
the data cases within the cluster. In CE, there are two tightness measures, and they will be used
depending on the specified distance measure, log-likelihood distance or Euclidean distance.

5.3.1. Tightness based on Log-likelihood Distance

The tightness of a cluster can be defined as average negative log-likelihood function of the cluster

evaluated at the maximum likelihood estimates of the model parameters. See Ref. 1 for statistical
reasoning for definition.

The tightness of a cluster is given by

 (9)

where
 is the maximum likelihood variance estimate of the th continuous feature in cluster .

 (10)

in which is the sample mean,

. (11)

 is the entropy of the th categorical feature in cluster ,

 (12)

in which is the portion of data cases in cluster whose th categorical feature takes the th category,

. (13)

Finally is appositive scalar which is added to handle the degenerating conditions and balance the
contributions between a continuous feature and a categorical one. The default value of is 0.01.

TwoStep-AS Cluster Algorithms

To handle missing values, the definition of tightness assumes that the distribution of missing values is the
same as for the observed non-missing points in the cluster.

Moreover, the following assumption is always applied:

 . (14)

5.3.2. Tightness based on Euclidean Distance

The tightness of a cluster can be defined as the average Euclidean distance from member cases to the

center/centroid of the cluster.

The tightness of a cluster is given by

 . (15)

Notice that if any feature in cluster has all missing values, the feature will not be used in the

computation.

5.4. Distance Measures between Two Clusters

Suppose clusters and are merged to form a new cluster that consists of the union of all data

cases in and . Two distance measures are available.

5.4.1. Log-likelihood Distance

The distance between and can be captured by observing the corresponding decrease in log-

likelihood as the result of combining and to form .

The distance measure between two clusters and is defined as

 (16)

where

 (17)

and

 (18)

TwoStep-AS Cluster Algorithms

Note that since can be calculated by using the statistics in , the distance can be calculated by

first updating the of the merged cluster .

To handle missing values, the definition of distance assumes that the contribution of missing values
equals zero.

5.4.2. Euclidean Distance

The Euclidean distance can only be applied if all features are continuous.

The distance between two cases is clearly defined. The distance between two clusters is here defined by
the Euclidean distance between the two cluster centers. A cluster center is defined as the vector of cluster
means of each feature.

Suppose the centers/centroids of clusters and are and respectively, then

 (19)

where

 . (20)

Again, any feature in cluster with all missing values will not be used in the computation.

6. CF-Tree Building

CF-tree is a very compact summary of dataset in the way that each entry (leaf entry) in the leaf node is a
sub-cluster which absorbs the data cases that are close together, as measured by the tightness index and
controlled by a specific threshold value . CF-tree is built dynamically as new data case is inserted, it is
used to guide to a new insertion into the correct sub-cluster for clustering purposes.

CF-tree is a height-balanced tree with four parameters:

1. The branching factor for the non-leaf nodes. It is the maximum number of entries that a non-
leaf node can hold. A non-leaf entry is of the form , in which is a
pointer to its th child node and is the cluster feature of the sub-cluster represented by this
child.

2. The branching factor for the leaf nodes. It is the maximum number of entries that a leaf node
can hold. A leaf entry is similar to a non-leaf entry except that is does not have a pointer. It is of
the form .

3. The threshold parameter that controls the tightness of any leaf entries. That is, all leaf entries
in a leaf node must satisfy a threshold requirement that the tightness has to be less than ,
i.e. .

4. Maximum tree height .

In addition, each leaf node has two pointers: “ ” and “ ” which are used to chain all leaf nodes
together for efficient scanning.

TwoStep-AS Cluster Algorithms

Figure 1 illustrates a CF-tree of branching factors , , and .

Figure 1. Example of a CF-tree.

6.1. Inserting a Single Case or a Sub-cluster into a CF-Tree

The procedure for inserting a data case or a sub-cluster (abbrev. “ ”) into a CF-tree is as follows.

Step 1. Identify the appropriate leaf node.
Starting from the root node, recursively descend the CF-tree by choosing the closest child node
according to the distance measure .

Step 2. Modify the leaf node.
Upon reaching a leaf node, find the closest leaf entry , say, and see if can be absorbed
into without violating the threshold requirement . If so, update the CF information
in to reflect the absorbing action. If not, add a new entry for to the leaf. If there is space
on the leaf for this new entry to fit in, then we are done. Otherwise, split the leaf node by
choosing the farthest pair of entries as seeds, and redistribute the remaining entries based on the
closest criteria.

Step 3. Modify the path to the leaf node.
After inserting into a leaf node, update the CF information for each non-leaf entry on the
path to the leaf node. If there is no leaf split, then only the corresponding CF information is
needed to update to reflect the absorbing of . If a leaf split happens, then it is necessary to
insert a new non-leaf entry into the parent node in order to describe the newly created leaf. If the
parent has space for this entry, at all higher levels, only the CF information is needed to update to
reflect the absorbing of . In general, however, the parent node has to split as well, and so on
up to the root node. If the root node is split, the tree height increases by one.

Notice that the growth of CF-tree is sensitive to case order. If the same data case is inserted twice but at
different time, the two copies might be entered into two distinct leaf entries. It is possible that two sub-
clusters that should be in one cluster are split across nodes. Similarly, it is also possible that two sub-
clusters that should not be in one cluster are kept together in the same node.

6.2. Threshold Heuristic

In building the CF-tree, the algorithm starts with an initial threshold value (default is 0). Then it scans the
data cases and inserts into the tree. If the main memory runs out before data scanning is finished, the
threshold value is increased to rebuild a new smaller CF-tree, by re-inserting the leaf entries of the old
tree into the new one. After the old leaf entries have been re-inserted, data scanning is resumed from the
case at which it was interrupted. The following strategy is used to update the threshold values.

TwoStep-AS Cluster Algorithms

Suppose that at step , the CF-tree of the threshold is too big for the main memory after data cases in
the data have been scanned, and an estimate of the next (larger) threshold is needed to rebuild a new
smaller CF-tree.

Specifically, we find the first two closest entries whose tightness is greater than the current threshold, and
take it as the next threshold value. However, searching the closest entries can be tedious. So we follow
BIRCH’s heuristic to traverse along a path from the root to the most crowded leaf that has the most
entries and find the pair of leaf entries that satisfies the condition.

6.3. Rebuilding CF-Tree

When the CF-tree size exceeds the size of the main memory, or the CF-tree height is larger than , the CF-
tree is rebuilt to a smaller one by increasing the tightness threshold.

Assume that within each node of CF-tree , the entries are labeled contiguously from 0 to ,
where is the number of entries in that node. Then a path from an entry in the root (level 1) to a leaf
node (level) can be uniquely represented by , where , is the label of the th

level entry on that path. So naturally, path

 is before (or <) path

if

,…,

, and

 for . It is obvious that each leaf node corresponds

to a path, since we are dealing with tree structure, and we will just use “path” and “leaf node”
interchangeably from now on.

With the natural path order defined above, it scans and frees the old tree, path by path, and at the same
time creates the new tree path by path. The procedure is as follows.

Step 1. Let the new tree start with NULL and OldCurrentPath be initially the leftmost path in the old
tree.

Step 2. Create the corresponding NewCurrentPath in the new tree.
Copy the nodes along OldCurrentPath in the old tree into the new tree as the (current) rightmost
path; call this NewCurrentPath

Step 3. Insert leaf entries in OldCurrentPath to the new tree.
With the new threshold, each leaf entry in OldCurrentPath is tested against the new tree to see if
it can either by absorbed by an existing leaf entry, or fit in as a new leaf entry without splitting, in
the NewClosestPath that is found top-down with the closest criteria in the new tree. If yes and
NewClosestPath is before NewCurrentPath, then it is inserted to NewClosestPath, and deleted
from the leaf node in NewCurrentPath.

Step 4. Free space in OldCurrentPath and NewCurrentPath.
Once all leaf entries in OldCurrentPath are processed, the nodes along OldCurrentPath can be
deleted from the old tree. It is also likely that some nodes along NewCurrentPath are empty
because leaf entries that originally corresponded to this path have been “pushed forward.” In this
case, the empty nodes can be deleted from the new tree.

Step 5. Process the next path in the old tree.
OldCurrentPath is set to the next path in the old tree if there still exists one, and go to step 2.

6.4. Delayed-Split Option

If the CF-tree that resulted by inserting a data case is too big for the main memory, it may be possible that
some other data cases in the data can still fit in the current CF-tree without causing a split on any node in
the CF-tree (thus the size of the current tree remains the same and can still be in the main memory).

TwoStep-AS Cluster Algorithms

Similarly, if the CF-tree resulted by inserting a data case exceeds the maximum height, it may be possible
that some other data cases in the data can still fit in the current CF-tree without increasing the tree height.

Once any of the two conditions happens, such cases are written out to disk (with amount of disk space
put aside for this purpose) and data scanning continues until the disk space runs out as well. The
advantage of this approach is that more data cases can fit into the tree before a new tree is rebuilt. Figure
2 illustrates the control flow of delayed-split option.

Figure 2. Control flow of delayed-split option.

6.5. Outlier-Handling Option

Outlier is defined as leaf entry (sub-cluster) of low density, which contains less than (default 10)
cases.

Similar to the delayed-split option, some disk space is allocated for handling outliers. When the current
CF-tree is too big for the main memory, some leaf entries are treated as potential outliers (based on the
definition of outlier) and are written out to disk. The others are used to rebuild the CF-tree. Figure 3
shows the control flow of the outlier-handling option.

Implementation notes:

 The size of any outlier leaf entry should also be less than 20% of the maximal size of leaf entries.

 The CF-tree t1 should be updated once any leaf entry is written to disk space .

No

Yes

No

Yes

Start

Is disk space S1
currently empty?

Done

Continue receiving
data case

If current data case is to insert
to current CF-tree t1, will main
memory be empty, or tree
height larger than H?

Write current data case to disk
space S1, and update size of S1

Insert current
data case to t1

TwoStep-AS Cluster Algorithms

 Outliers identified here are local candidates, and they will be analyzed further in later steps,
where the final outliers will be determined.

Figure 3. Control flow of outlier-handling option.

6.6. Overview of CF-Tree Building

Figure 4 provides an overview of building a CF-tree for the whole algorithm. Initially a threshold value is
set, data is scanned, and the CF-tree is built dynamically. When the main memory runs out, or the tree
height is larger than the maximum height before the whole data is scanned, the algorithm performs the
delayed-split option, outlier-handling option, and the tree rebuilding step to rebuild a new smaller CF-
tree that can fit into the main memory. The process continues until all cases in the data are processed.
When all data is scanned, cases in disk space are absorbed and entries in disk space are scanned
again to verify if they are indeed outliers.

Implementation notes:

 When all data is scanned, all cases in disk space will be inserted into the tree. This may result
in rebuilding the tree if necessary.

The following table shows the parameters involved in CF-tree building and their default values.

Parameter Default value

Assigned main memory () 80*1024 bytes (TBD)

Assigned disk space for outlier-handling () 20% of

Yes

No

No

Yes

No

Yes

Start

Is disk space S2
currently empty?

Done

Check each leaf entry in
current CF-tree t1 for outlier

Current leaf
entry is outlier?

Write current leaf entry
to disk space S2, and
update size of S2

Keep current leaf
entry to rebuild t1

Any more
leaf entries?

TwoStep-AS Cluster Algorithms

Assigned disk space for delayed-split () 10% of

Adjustment constant to the tightness and
distance measures,

0.01

Distance measure (Log-
likelihood/Euclidean)

Log-likelihood

Initial threshold value () 0

Branching factor () 8

Branching factor () 8

Maximum tree height () 3

Delayed-split option (on/off) On

Outlier-handling option (on/off) On

Outlier definition () Leaf entry which contains less than cases, default 10

Figure 4. Control flow of CF-tree building.

7. Hierarchical Agglomerative Clustering

Hierarchical Agglomerative Clustering (HAC) proceeds by steps producing a sequence of partitions in
which each partition is nested into the next partition in the sequence. See ref. [3] for details.

HAC can be implemented using two methods, as described below.

No Yes

No

Yes

Start CF-tree t1 of initial T

Has data scanning
finished?

Done

Continue receiving
data case

If current data case
is to insert to current
CF-tree t1, will main
memory be empty,
or tree height larger
than H?

Re-absorb cases in S1
and entries in S2 into t1

Delayed-split option

Outlier-handling option

Increase threshold T

Rebuild t1 with new T

Re-absorb cases in S1 and
entries in S2 into t1. Update

sizes of S1 and S2.

Insert data
case to t1

TwoStep-AS Cluster Algorithms

7.1. Matrix Based HAC

Suppose that matrix based HAC starts with clusters. At each subsequent step, a pair of clusters is
chosen. The two clusters and in the pair are closest together in terms of the distance measure .

A new cluster is formed to replace one of the clusters in the pair, , say. This new cluster contains

all data cases in and . The other cluster is discarded. Hence the number of clusters is reduced by

one at each step. The process stops when the desired number of clusters is reached. Since the distance
measure between any two clusters that are not involved in the merge does not change, the algorithm is
designed to update the distance measures between the new cluster and the other clusters efficiently.

The procedure of matrix based HAC is as follows.

Step 1. For , {
 Compute for ;
 Find and ;

}
Find and , the closest pair is ;

Step 2. For , {
 Merge the closest pair , and replace by ;

 For , {
 If , recompute all distances , , and update and ;

If , {

 Compute ;
 If , update and ;

 If , no change;

If and ,

Recompute all distances , , and update and ;

If and , no change;

}
 }
 For , recompute all distances , , and update and ;

 For , {

 If , recompute all distances , , and update and ;

If , no change;

 }
 For , no change;

 Erase
;

 Find and , the closest pair is
 ;

}

Implementation notes:

 In order to reduce the memory requirement, it is not necessary to create an actual distance matrix
when determining the closest clusters.

 If the Euclidean distance is used, the ward measure will be used to find the closest clusters. We

just replace the distance measure by

 . This also applies below for CF-tree based

HAC.

TwoStep-AS Cluster Algorithms

7.2. CF-tree Based HAC

Suppose that CF-tree based HAC starts with CF-trees
 , which contain leaf

entries , . Let be the index of the CF-tree which contains the leaf entry . For

convenience, suppose if .

At each subsequent step, a pair of leaf entries is chosen. The two leaf entries and in the pair are

closest together in terms of the distance measure . A new leaf entry is formed to replace one

of the leaf entries in the pair, , say. This new leaf entry contains all data cases in and . The other leaf

entry is discarded. Hence the number of leaf entries is reduced by one at each step. Meanwhile, the
involved CF-trees will be updated accordingly. The process stops when the desired number of leaf
entries is reached. The output is the set of updated CF-trees, whose leaf entries indicate the produced
clusters.

The procedure of CF-tree based HAC is as follows.

Step 1. For , {

 Find the closest leaf entry in each CF-tree
 for , following the involved

tree structure;
 Find

 and
 ;

}
Find and , the closest pair is ;

Step 2. For , {

 Merge the closest pair , update CF-tree

 by the new leaf entry , and

remove the leaf entry
 from CF-tree

;

 For , {
 If , {

 Find the closest leaf entry in each CF-tree
 for ;

 Find
 and

 ;

 }
If , {

 Compute ;
 If , update and ;

 If , no change;

If and , {

 Find the closest leaf entry in each CF-tree
 for ;

 Find
 and

 ;

 }
If and , no change;

}
 }
 For , {

 Find the closest leaf entry in each CF-tree
 for ;

 Find
 and

 ;

 }
 For , {

 If , {

TwoStep-AS Cluster Algorithms

 Find the closest leaf entry in each CF-tree
 for ;

 Find
 and

 ;

 }
If , no change;

 }
 For , no change;

 Find and , the closest pair is
 ;

}
Step 3. Export updated non-empty CF-trees;

Clearly, CF-tree based HAC is very similar to matrix based HAC. The only difference is that CF-tree
based HAC takes advantage of CF-tree structures to efficiently find the closest pair, rather than checking
all possible pairs as in matrix based HAC.

8. Determination of the Number of Clusters

Assume that the hierarchical clustering method has been used to produce 1, 2 … clusters already. We
consider the following two criterion indices in order to find the appropriate number of final clusters.

Bayesian Information Criterion (BIC):

 , (23)

where is the total number of cases in all the clusters,

 . (24)

Akaike Information Criterion (AIC):

 . (25)

Let be the criterion index (BIC or AIC) of clusters, be the distance measure between the two
clusters merged in merging clusters to clusters, and be the total number of sub-clusters from
which to determine the appropriate number of final clusters.

Users can supply the range for the number of clusters in which they believe the “true” number
of clusters should lie. Notice that if , reset .

The following four methods are proposed:

Method 1. Finding the number of clusters by information convergence.

Let , where can be either or depending on user’s choice.

If , . Else, let ;

TwoStep-AS Cluster Algorithms

Let be the smallest in [,] which satisfies , If none satisfies the condition,
let .

Method 2. Finding the number of cluster by the largest distance jump.

To report as the number of clusters.

Method 3. Finding the number of clusters by combining distance jump and information
convergence aggressively

The process goes as follows:

a) Let .
b) Let be the largest in [,] which satisfies . If none satisfies the condition,

let .
c) Calculate for in [,]. Suppose that the max and the second max of occurred

at and .

d) If

 , report as the cluster number.

e) Otherwise, report .

Method 4. Finding the number of clusters by combining distance jump and information
convergence conservatively

This method performs the same steps from a) to d) in method 3. But in step e), method 4 reports

 .

By default, method 3 is used with BIC as the information criterion.

9. Overview of the Entire Clustering Solution

Figure 5 illustrates the overview of the entire clustering solution.

Figure 5. Control flow of the entire clustering solutin.

Done

Filter features based
on summary statistics

Start

Select features adaptively
based on clustering models

With selected features,
perform distributed
clustering with optional
outlier detection

TwoStep-AS Cluster Algorithms

9.1. Feature Selection

9.1.1. Feature Filtering

Based on the summary statistics produced by DE, CE will perform an initial analysis and determine the
features that are not useful for making the clustering solution. Specifically, the following features will be
excluded.

Rule Status Comment

1 Frequency/analysis weight features Required

2 Identity features Required

3 Constant features Required

4 The percentage of missing values in any feature is
larger than (default 70%)

Required

5 The distribution of the categories of a categorical
feature is extremely imbalanced, that is
(default 0.7)

Discarded The statistic of is
the effect size for one
sample chi-square test.

6 One category makes up the overwhelming majority of
total population above a given percentage threshold
(default 95%)

Required

7 The number of categories of a categorical feature is
larger than (default 24)

Required

8 There are categories of a categorical feature with
extremely high or low frequency, that is, the outlier
strength is larger than (default 3)

Discarded

9 The absolute coefficient of variation of a continuous
feature is smaller than (default 0.05)

Required

The remaining features will be saved for adaptive feature selection in the next step.

9.1.2. Adaptive Feature Selection

Adaptive feature selection selects the most important features for the final clustering solution.
Specifically, it performs the following steps.

Step 1. Divide the distributed data into data splits.
Step 2. Build a local CF-tree on each data split.
Step 3. Distribute local CF-trees into multiple computing units. A unique key is assigned to each CF-tree.
Step 4. On each computing unit, start with all available features:

a. Perform matrix based HAC with all features on the leaf entries to get an approximate
clustering solution, S0. Suppose there are final clusters.

b. Compute importance for the set of all features.
c. Let and be the information criteria of S0.

d. Remove features with non-positive importance as many as possible, and update and .

e. Repeat to do the follows:
i. Select the most unimportant feature from remaining features which are not checked.

ii. Perform matrix based HAC with remaining features (not including the selected one)
on the leaf entries to get a new approximate clustering solution, S1, with the fixed
number of clusters.

TwoStep-AS Cluster Algorithms

iii. If the information criteria of S1 plus the information of all discarded features
determined by S1 is lower than , then remove the selected feature, and let .

iv. Continue to check the next feature.
f. Select the set of features corresponding to .

Step 5. Pour together all the sets of features produced by different computing units. Discard any feature
if its occurring frequency is less than (default). The remaining features will be
used to build the final clustering solution.

The process described above can be implemented in parallel using one map-reduce job under the Hadoop
framework, as illustrated in Figure 6. See appendix A for details the map-reduce implementation.

Figure 6. One map-reduce job for feature selection.

Implementation notes:

 In default, the information based feature importance is used for the log-likelihood distance
measure, and the effect size based feature importance is for the Euclidean distance.

 If no features are selected, just report all features.

9.2. Distributed Clustering

The Clustering Engine (CE) can identify clusters from distributed data with high performance and
accuracy. Specifically, it performs the following steps:

Step 1. Divide the distributed data into data splits.
Step 2. Build a local CF-tree on each data split.
Step 3. Distribute local CF-trees into multiple computing units. Note that multiple CF-trees may be

distributed to the same computing unit.
Step 4. On each computing unit, with all CF-entries in the involved CF-trees, perform a series of CF-tree

based HACs, and get a specified number of sub-clusters.

Mapper 1

1. Pass data and build a
local CF-tree with all
available features,
turning off the option of
outlier detection.

2. Assign a proper key to
the built CF-tree.

3. Pass the CF-tree to a
certain reducer
according to the
assigned key.

Data split 1

Reducer 1 Controller

Mapper R

Do the same as Mapper 1

Data split K

Reducer G

Do the same as Reducer 1

For each key,
1. Pour together all leaf entries

in the involved CF-tree.
2. Start with all available

features:
a. Build an approximate

clustering solution with
the selected features.

b. Remove the most
unimportant features.

c. Repeat step a) and b)
until all relevant features
for clustering have been
selected.

3. Pass the set of selected
features to the controller.

1. Pour together all the
sets of features
produced by different
reducers.

2. Select those features
which appear
frequently. The
selected features will
be used in the next
map-reduce job to
build the final
clustering solution.

TwoStep-AS Cluster Algorithms

Step 5. Pour together all the sub-clusters produced by different computing unit, and perform matrix
based HAC to get the final clusters.
The number of final clusters is determined automatically or using a fixed one depending on the
settings.

The process described above can be implemented in parallel using one map-reduce job under the Hadoop
framework, as illustrated in Figure 7. See appendix B for details of the map-reduce implementation.

Figure 7. One map-reduce job for distributed clustering with outlier delection.

Implementation notes:

 The number of computing units is
 , (28)
where (default 50,000) is the number of data points which are suitable to perform CF-tree
based HAC, (default 5,000) is the number of data points which are suitable to perform matrix
based HAC, is the minimal number of sub-clusters produced by each computing unit, and
is the maximal number of leaf entries, i.e. , in a single CF-tree.

 The number of sub-clusters produced by each computing unit is
 . (29)

9.3. Distributed Outlier Detection

Outlier detection in the Clustering Engine will be based and will build upon the outlier handling method
described previously in section 6. It is also extended to the distributed setting with the following steps:

Mapper 1

Data split 1

Reducer 1 Controller

1. Pour together all sub-clusters and CF-outliers from
reducers.

2. Perform matrix based HAC on sub-clusters to get
final regular clusters.

3. Check if CF-outliers fit with any regular clusters,
and determine true outliers.

4. Compute model evaluation measures, insights,
interestingness, etc.

5. Export PMML and StatXML.

Mapper R

Do the same as Mapper 1

Data split K

Reducer G

Do the same as Reducer 1

For each key,
1. Pour together all CF-trees

and CF-outliers with the
same key under
consideration.

2. Check if the allocated CF-
outliers fit with any leaf
entries in the CF-trees.

3. Perform a series of CF-tree
based HACs on the
(merged) leaf entries to get
a specified number of sub-
clusters.

4. Pass sub-clusters and
remaining CF-outliers to the
controller.

1. Pass data and build a
local CF-tree with the
set of specified
features. Suppose the
option of outlier
detection is turned on.

2. Assign a proper key to
the built CF-tree and
also CF-outliers.

3. Pass the CF-tree and
CF-outliers to a certain
reducer according to
the assigned key.

TwoStep-AS Cluster Algorithms

Step 1. On each data split, perform the following:
1) Generate local candidate outliers according to the method described in section 6.
2) Distribute the local candidate outliers together with the associated CF-tree to a certain

computing unit.
Step 2. Each computing unit is allocated with a set of candidate outliers and also a set of CF-trees

containing regular leaf entries. For each member in the set of candidate outliers, it will be merged
with the closest regular leaf entry only if the merging does not break the maximal tightness
threshold among the involved CF-trees. Note that we will pass the CF-trees in order to enhance
the performance of finding the closest regular leaf entry.

Step 3. Pour together all the remaining candidate outliers and sub-clusters produced by computing
machines. Do the following:
1) Perform matrix based HAC on sub-clusters, and get the final regular clusters.
2) Keep only candidate outliers whose distance from the closest regular cluster to the center of

the outlier candidate is greater than the corresponding cluster distance threshold
3) Merge the rest of candidate outliers with the corresponding closest regular clusters and

update the distance threshold for each regular cluster.
4) For each remaining outlier cluster, compute its outlier strength.
5) Sort remaining outlier clusters according to outlier strength in descending order, and get the

minimum outlier strength for the top P (default 5%) percent of outliers, and use it as an
outlier threshold in scoring.

6) Export a specified number of the most extreme outlier clusters (default 20), along with the
following measures for each cluster: cluster size, outlier strength, probabilities of belonging
to each regular cluster.

Outlier strength of a cluster is computed as

 , (30)

where is the distance threshold of cluster , which is the maximum distance from cluster to each

center of its starting sub-clusters in matrix based HAC, is the distance from cluster to the center

of cluster , and is the probability of cluster belonging to cluster , that is

. (31)

Notice that the distance between the cluster center and a cluster is computed by considering the center

of cluster as a singleton cluster . The cluster center herein is defined as the mean for a continuous
feature, while being the mode for a categorical feature.

10. Cluster Membership Assignment

10.1. Without Outlier-Handling

Assign a case to the closest cluster according to the distance measure. Meanwhile, produce the
probabilities of the case belonging to each regular cluster.

TwoStep-AS Cluster Algorithms

10.2. With Outlier-Handling

10.2.1. Legacy Method

Log-likelihood distance

Assume outliers follow a uniform distribution. Calculate both the log-likelihood resulting from assigning
a case to a noise cluster and that resulting from assigning it to the closest non-noise cluster. The case is
then assigned to the cluster which leads to the larger log-likelihood. This is equivalent to assigning a case
to its closest non-noise cluster if the distance between them is smaller than a critical value

 , where is the product of ranges of continuous fields, and is the product of
category numbers of categorical fields. Otherwise, designate it as an outlier.

Euclidean distance

Assign a case to its closest non-noise cluster if the Euclidean distance between them is smaller than a

critical value

 . Otherwise, designate it as an outlier.

10.2.2. New Method

When scoring a new case, we compute the outlier strength of the case. If the computed outlier strength is
greater than the outlier threshold, then the case is an outlier and otherwise belongs to the closest cluster.
Meanwhile, the probabilities of the case belonging to each regular cluster are produced.

Alternatively, users can specify a customized outlier threshold (3, for example) rather than using the one
found from the data.

11. Clustering Model Evaluation

Clustering model evaluation enables users to understand the identified cluster structure, and also to learn
useful insights and interestingness derived from the clustering solution.

Note that clustering model evaluation can be done using cluster features and also the hierarchical
dendrogram when forming the clustering solution.

11.1. Across-Cluster Feature Importance

Across-cluster feature importance indicates how influential a feature is in building the clustering
solution. This measure is very useful for users to understand the clusters in their data. Moreover, it helps
for feature selection, as described in section 12.2.

Across-cluster feature importance can be defined using two methods.

11.1.1. Information Criterion Based Method

If BIC is used as the information criterion, the importance of feature is

TwoStep-AS Cluster Algorithms

 , (32)

where

 ,

 ,

 ,

and , is the total valid count of feature in the data,
 is the grand variance, and is the grand

entropy.

Notice that the information measure for the overall population has been decomposed as

 .

While if AIC is used, across-cluster importance is

 , (33)

where

 ,

 ,

 .

Notice that, if the importance computed as above is negative, set it as zero. This also applies in the
following.

Notice that the importance of a feature will be zero if the information difference corresponding to the
feature is negative. This applies for all the calculations of information-based importance.

11.1.2. Effect Size Based Method

This method is similar to that used for defining association interestingness for bivariate variables. See ref.
6 for details.

TwoStep-AS Cluster Algorithms

Categorical Feature

For a categorical feature , compute Pearson chi-square test statistic

 , (34)

where

, (35)

and

 , (36)

 , (37)

 . (38)

The p-value is computed as

 , (39)

in which is a random variable that follows a chi-square distribution with freedom degree of
 . Note that categories with or will be excluded when computing the statistic

and degrees of freedom.

The effect size, Cramer’s V, is

, (40)

where

 . (41)

The importance of feature is produced by the following mapping function

 (42)

where is significance level (default 0.05), is a set of threshold values to assess effect size
(default), is a set of corresponding thresholds of importance (default
), and is a monotone cubic interpolation
mapping function between and .

TwoStep-AS Cluster Algorithms

Continuous Feature

For a continuous feature , compute F test statistic

, (43)

where

 , (44)

 ,

 (45)

 , (46)

. (47)

The F statistic is undefined if the denominator equals zero. Accordingly, the p-value is calculated as

 (48)

in which is a random variable that follows a F-distribution with degrees of freedom
and .

The effect size, Eta square, is

 , (49)

where

. (50)

The importance of feature is produced using the same mapping function as (42), and default
 .

11.2. Within-Cluster Feature Importance

Within-cluster feature importance indicates how influential a feature is in forming a cluster. Similar to
across-cluster feature importance, within-cluster feature importance can also be defined using two
methods.

TwoStep-AS Cluster Algorithms

11.2.1. Information Criterion Based Method

If BIC is used as the information criterion, the importance of feature within cluster () is

 , (51)

where

 , (52)

 . (53)

Notice that jc represents the complement set of j in J.

If AIC is used as the information criterion, the importance of feature within cluster () is

 , (54)

where

 (55)

 . (56)

11.2.2. Effect Size Based Method

Within-cluster importance is defined by comparing the distribution of the feature within a cluster with
the overall distribution.

Categorical Feature

For cluster () and a categorical feature , compute Pearson chi-square test statistic

 , (57)

where

. (58)

The p-value is computed as

 , (59)

TwoStep-AS Cluster Algorithms

in which is a random variable that follows a chi-square distribution with freedom degree of .
Note that importance for feature within cluster will be undefined if equals zero.

The effect size is

. (60)

The importance of feature within cluster is produced using the same mapping function as (42), and

default .

Continuous Feature

For cluster () and a continuous feature , compute t test statistic

, (61)

where

 . (62)

The p-value is calculated as

 (63)

in which is a random variable that follows a t-distribution with degrees of freedom .

The effect size is

.

(64)

The importance of feature within cluster is produced using the same mapping function as (42), and

default .

11.3. Clustering Model Goodness

Clustering model goodness indicates the quality of a clustering solution. This measure will be computed
for the final clustering solution, and it will also be computed for approximate clustering solutions during
the process of adaptive feature selection.

Suppose there are regular clusters, denoted as ,..., . Let be the regular cluster label assigned to

sub-cluster .

TwoStep-AS Cluster Algorithms

Then for each sub-cluster , the Silhouette coefficient is computed approximately as

, (65)

where

 is the weighted average distance from the center of sub-cluster to the center of every other sub-cluster
assigned to the same regular cluster, that is,

, (66)

 is the minimal average distance from the center of sub-cluster to the center of sub-clusters in a
different regular cluster among all different regular clusters, that is,

 . (67)

Clustering model goodness is defined as the weighted average Silhouette coefficient over all starting sub-
clusters in the final stage of regular HAC, that is,

. (68)

The average Silhouette coefficient ranges between -1 (indicating a very poor model) and +1 (indicating an
excellent model). As found by Kaufman and Rousseeuw (1990), average Silhouette greater than 0.5
indicates reasonable partitioning of data; lower than 0.2 means that data does not exhibit cluster
structure. In this regard, we can use the following function to map into an interestingness
score:

 , (69)

where , and .

Implementation notes:

 Please refer to section 9.3 for the definition of cluster center and also for the calculation of
distance.

 When there is only a single sub-cluster in the regular cluster, let be the tightness of the sub-
cluster.

11.4. Special Clusters

With the clustering solution, we can find special clusters, which could be regular clusters with high
quality, extreme outlier clusters, and so on.

TwoStep-AS Cluster Algorithms

11.4.1. Regular Cluster Ranking

To select the most useful or interesting regular clusters, we can rank them according to any of the
measures described below.

Cluster tightness

Cluster tightness is given by equation (9) or (15).

Cluster tightness is not scale-free, and it is a measure of cluster cohesion.

Cluster importance

Cluster importance indicates the quality of the regular cluster in the clustering solution. A higher
importance value means a better quality of the regular cluster.

If BIC is used as the information criterion, the importance for regular cluster is

 , (70)

where

 ,

 ,

 .

If AIC is used as the information criterion, the importance for regular cluster is

 , (71)

where

 ,

 ,

 .

Cluster importance is scale-free, and in some sense it is a normalized measure of cluster cohesion.

Cluster goodness

The goodness measure for regular cluster is defined as the weighted average Silhouette coefficient over

all starting sub-clusters in regular cluster , that is,

TwoStep-AS Cluster Algorithms

. (72)

We can also map into an interestingness score using equation (69).

Cluster goodness is also scale-free, and it is a measure of balancing cluster cohesion and cluster
separation.

11.4.2. Outlier Clusters Ranking

For each outlier cluster, we have the following measures: cluster size, outlier strength. Each of the
measures can be used to rank outlier clusters, so as to find the most interesting ones.

11.4.3. Outlier Clusters Grouping

Outlier clusters can be grouped by the nearest regular cluster, using probability values.

TwoStep-AS Cluster Algorithms

Appendix A. Map-Reduce Job for Feature Selection

Mapper

Each mapper will handle one data split and use it to build a local CF-tree. The local CF-tree is assigned
with a unique key. Notice that if the option of outlier handling is turned on, outliers will not be passed to
reducers in case of feature selection.

Let

 be the CF-tree with the key of on data split ().

The map function is as follows.

Inputs:

 Data split //

 //

 <Parameter settings>

 MainMemory // Default 80*1024 bytes

 OutlierHandling // {on, off}, default on

 OutlierHandlingDiskSpace // Default 20% of MainMemory

 OutlierQualification // Default 10 cases

 DelayedSplit // {on, off}, default on

 DelayedSplitDiskSpace // Default 10% of MainMemory

 Adjustment // Default 0.01

 DistanceMeasure // {Log-likelihood, Euclidean}, default

 // Log-likelihood

 InitialThreshold // Default 0

 NonLeafNodeBranchingFactor // Default 8

 LeafNodeBranchingFactor // Default 8

 MaxTreeHeight // Default 3

Outputs:



Procedure:

1. Build a CF-tree on data split based on specified features and settings;

2. Assign to the CF-tree;

3. Export

 ;

Reducer

Each reducer can handle several keys. For each key, it first pours together all CF-trees which have the
same key. Then it builds approximate clustering solutions iteratively in order to find the most influential
features. The selected features will be passed to the controller.

Let be the set of features produced for the key of , .

The reduce function for each key is as follows.

Inputs:

TwoStep-AS Cluster Algorithms



 <Parameter settings>

 Adjustment // Default 0.01

 DistanceMeasure // {Log-likelihood, Euclidean}, default Log-

 // likelihood

 AutoClustering // {on, off}, default on

 MaximumClusterNumber // Default 15

 MinimumClusterNumber // Default 2

 FixedClusterNumber // Default 5

 ClusteringCriterion // {BIC, AIC}, default BIC

 AutoClusteringMethod // {information criterion, distance jump,

 // maximum, minimum}, default minimum

Outputs:


Procedure:

1. Let be the set of all available features;

2. With all leaf entries in CF-tree
 and using features , perform

matrix based HAC to get an approximate cluster solution S0. Suppose the

number of approximate final clusters is , which is determined automatically

or using a fixed one depending on the settings;

Compute importance for each feature in ;
// Importance values should not be truncated

Compute I(S0), the information criterion of S0;

3. Let and I(S0);

Find , the set of features in with non-positive importance;

Let ;

4. With all leaf entries in CF-tree
 and using features , perform

matrix based HAC to get a new solution S1 with fixed ;

Compute I(S1), the information criterion of S1;

Compute the information of all discarded features I(),

determined by S1, as , or , depending on the

setting, where

 ;

 ;

// Though the discarded features are not used to build S1, their

// statistics are still available in CFs of final clusters in S1.

5. While (I(S1)+I()>){

Find the most important feature in ;

Let , and ;

With all leaf entries in CF-tree

 and using features ,

perform matrix based HAC to get a new solution S1 with fixed ;

Compute I(S1), the information criterion of S1;

Compute I(), the information of all discarded features;
 }

Let and I(S1)+I();

6. While (is not empty){

Find the most unimportant feature in ;

TwoStep-AS Cluster Algorithms

Let ;

If (is empty), break;

With all leaf entries in CF-tree
 and using features

 , perform matrix based HAC to get a new solution S1

with fixed ;

Compute I(S1), the information criterion of S1;

Compute I(), the information of all discarded features;

If (I(S1)+ I()<=){

Let ;

Let ;

Let ;

Let ;
}

 }

7. Export ;

Controller

The controller pours together all sets of features produced by reducers, and selects those features which
appear frequently. The selected features will be used in the next map-reduce job to build the final
clustering solution.

The controller runs the following procedure.

Inputs:

 <Parameter settings>

 MinFrequency // Default 50%

Outputs:

 // Set of selected features
Procedure:

1. Let = MinFrequency, and be empty;

2. Launch a map-reduce job, and get , for from the reducers;

3. Compute

 ;

4. For each feature in ,

 If the occurring frequency is larger than , add the feature into ;

5. Export ;

TwoStep-AS Cluster Algorithms

Appendix B. Map-Reduce Job for Distributed Clustering

Mapper

Each mapper will handle one data split and use it to build a local CF-tree.

Local outlier candidates and the local CF-tree will be distributed to a certain reducer. This is achieved by

assigning them a key, which is randomly selected from the key set . The number of keys

is computed by equation (28).

For convenience, in the following we call leaf entries as pre-clusters. Let

 and

 be the

CF-tree and the set of outliers, respectively, with the key of (), on data split ().

The map function is as follows.

Inputs:

 Data split //

 //

 <Parameter settings>

 MainMemory // Default 80*1024 bytes

 OutlierHandling // {on, off}, default on

 OutlierHandlingDiskSpace // Default 20% of MainMemory

 OutlierQualification // Default 10 cases

 DelayedSplit // {on, off}, default on

 DelayedSplitDiskSpace // Default 10% of MainMemory

 Adjustment // Default 0.01

 DistanceMeasure // {Log-likelihood, Euclidean}, default

 // Log-likelihood

 InitialThreshold // Default 0

 NonLeafNodeBranchingFactor // Default 8

 LeafNodeBranchingFactor // Default 8

 MaxTreeHeight // Default 3

Outputs:

 // Tightness threshold





Procedure:

1. Build a CF-tree on data split based on specified features and settings;
2. If (DelayedSplit=’on’),

Absorb cases in disk space with tree rebuilding if necessary;

2. If (OutlierHandling=’on’),{

 Absorb entries in disk space without tree rebuilding;

Check the final CF-tree for outliers;

 Mark the identified outliers and remaining entries in disk space as

local outlier candidates;

 }

3. Assign to the CF-tree and the set of outlier candidates;

4. Export ,

 , and

 ;

TwoStep-AS Cluster Algorithms

Reducer

Each reducer can handle several keys. For each key, it first pours together all CF-trees which have the
same key. Then with all leaf entries in the involved CF-trees, it performs a series of CF-tree based HACs
to get a specified number of sub-clusters. Finally, the sub-clusters are passed to the controller. The
number of sub-clusters produced for each key is computed by equation (29).

Let be the set of data split indices whose key is , and be the set of sub-
clusters and the set of outliers, respectively, produced for the key of , .

The reduce function for each key is as follows.

Inputs:

 ,


 ,


 ,

 <Parameter settings>

 OutlierHandling // {on, off}, default on

 Adjustment // Default 0.01

 DistanceMeasure // {Log-likelihood, Euclidean}, default Log-

 // likelihood

 NumSubClusters // Number of sub-clusters produced for each key

 MinSubClusters // Minimum sub-clusters produced for each key

 // default 500

 MaximumDataPoitsCFHAC // Maximum data points for HAC, default 50,000

Outputs:




Procedure:

1. Let = NumSubClusters, = MinSubClusters, and = MaximumDataPoitsCFHAC;

2. Compute ;

3. Compute
 ;

4. If OutlierHandling is ‘on’,{

 Compute

;

 For each member in ,{

 Find the closest leaf entry in the set of CF-trees ;
 If the closest leaf entry can absorb the outlier member without

 violating the threshold requirement , then merge them, and

 update and the involved CF-tree;
 }

 }

5. Let be the total number of leaf entries in ;

 While ,{

 Divide the set of CF-trees randomly into groups,

 where ;

 For each group which has a larger number of leaf entries than , perform

CF-tree based HAC to get leaf entries, where ;

 Update with new CF-trees produced in the above step;

 Compute the total number of remaining leaf entries ;

TwoStep-AS Cluster Algorithms

 }

6. With the set of CF-trees , perform CF-tree based HAC to get a set of

sub-clusters, i.e. ;

7. Export

 and ;

Controller

The controller pours together all sub-clusters produced by reducers, and performs matrix based HAC to
get the final clusters. It identifies outlier clusters as well if the option of outlier handling is turned on.
Moreover, it computes model evaluation measures, and derives insights and interestingness from the
clustering results.

The controller runs the following procedure.

Inputs:

 <Parameter settings>

 MainMemory // Default 80*1024 bytes

 OutlierHandling // {on, off}, default on

 OutlierHandlingDiskSpace // Default 20% of MainMemory

 OutlierQualification // Default 10 cases

 ExtremeOutlierClusters // Default 20

 DelayedSplit // {on, off}, default on

 DelayedSplitDiskSpace // Default 10% of MainMemory

 Adjustment // Default 0.01

 DistanceMeasure // {Log-likelihood, Euclidean}, default

 // Log-likelihood

 InitialThreshold // Default 0

 NonLeafNodeBranchingFactor // Default 8

 LeafNodeBranchingFactor // Default 8

 MaximumTreeHeight // Default 3

 AutoClustering // {on, off}, default on

 MaximumClusterNumber // Default 15

 MinimumClusterNumber // Default 2

 FixedClusterNumber // Default 5

 ClusteringCriterion // {BIC, AIC}, default BIC

 AutoClusteringMethod // {information criterion, distance jump,

 // maximum, minimum}, default minimum

 MinSubClusters // Minimum sub-clusters produced for each key,

 // default 500

 MaxDataPoitsCFHAC // Maximum data points for CF-tree based HAC,

 // default 50,000

 MaxDataPoitsMatrixHAC // Maximum data points for matrix based HAC,

 // default 5,000

Outputs:

 PMML

 StatXML

Procedure:

1. Let = MinSubClusters, = MaximumDataPoitsCFHAC, and =

MaximumDataPoitsMatrixHAC;

2. Compute the number of keys

TwoStep-AS Cluster Algorithms

 NumKeys = ;

 // Each mapper is assigned a key which is selected randomly from the keys
3. Compute the number of sub-clusters produced for each key

 NumSubClusters = ;

4. Launch a map-reduce job, and get and , for ;

5. Compute

 ;

6. Perform matrix based HAC on to get the set of final regular clusters
 ,

where the number of final clusters is determined automatically or using a

fixed one depending on the settings;

7. If OutlierHandling is ‘on’, perform the steps from 2) to 7) in Step 3 in

 section 9.3;

8. Compute model evaluation measures, insights, and interestingness;

9. Export the clustering model in PMML, and other statistics in StatXML;

Implementation notes:

 The general procedure of the controller consists of both the controller procedure in appendix A
and that in appendix B.

TwoStep-AS Cluster Algorithms

Appendix C. Procedure for MonotoneCubicInterpolation()

 ,

where

x is the input statistic that characterizes fields or field pairs in particular aspects (for example,

distribution), association strength, etc. Its value range must be bounded below, and it must have a
monotonically increasing relationship with the interestingness score threshold values. If the two

conditions are not met, a conversion (e.g. , etc) should be carried out.

 is a set of distinct threshold values for the input statistics, which have been accepted and commonly
used by expert users to interpret the statistics. The positive infinity (+∞) is included if the input statistic is
not bounded from above.

is a set of distinct threshold values for the interestingness scores that

corresponds to. The threshold
values must be between 0 and 1.

The size of and must be the same. There are at least two values in
excluding positive infinity (+∞).

Pre-processing

Let such that , where is the number of values in .

Let such that .

Condition A: There are more than two threshold values for input statistics, and they are all finite
numbers

Preparing for cubic interpolation

The following steps should be taken for preparing a cubic interpolation function construction.

Step 1, compute the slopes of the secant lines between successive points.

for .

Step 2, Initialize the tangents at every data point as the average of the secants,

for ; these may be updated in further steps. For the endpoints, use one-sided
differences: and .

TwoStep-AS Cluster Algorithms

Step 3, let αk = mk / k and βk = mk + 1 / k for .

If α or β are computed to be zero, then the input data points are not strictly monotone. In such cases,
piecewise monotone curves can still be generated by choosing mk = mk + 1 = 0, although global strict
monotonicity is not possible.

Step 4, update

If , then set mk = τkαk k and mk + 1 = τkβk k where

.

Note:

1. Only one pass of the algorithm is required.

2. For , if k = 0 (if two successive yk = yk + 1 are equal), then set mk = mk + 1 = 0, as the spline
connecting these points must be flat to preserve monotonicity. Ignore step 3 and 4 for those k.

Cubic interpolation

After the preprocessing, evaluation of the interpolated spline is equivalent to cubic Hermite spline, using
the data xk, yk, and mk for k = 1,...,n.

To evaluate x in the range [xk, xk+1] for k = 1,...,n-1, calculate

 and

then the interpolant is

where hii(t) are the basis functions for the cubic Hermite spline.

h00(t) 2t3 − 3t2 + 1

h10(t) t3 − 2t2 + t

h01(t) − 2t3 + 3t2

h11(t) t3 − t2

Condition B: There are two threshold values for input statistics

As we have clarified in the beginning that there are at least two values in excluding positive infinity
(+∞), they must be both finite numbers when there are only two threshold values.

In this case the mapping function is a straight line connecting and .

TwoStep-AS Cluster Algorithms

Condition C: Threshold values include infinity

Note that there are at least two values in
excluding positive infinity (+∞). Take the last three statistic

threshold values and threshold values for the interestingness scores from the sorted lists, we have three
pairs of data , and .

An exponential function

can be defined by the pairs, where

If , which means there are only two distinct values in
excluding positive infinity (+∞), the

exponential function is employed for evaluating x in the range [x1, +∞).

Otherwise, the exponential function is for evaluating x in the range [xn-1, +∞). To evaluate x in the range
[x1, xn-1), use procedures under “condition A: There are more than two threshold values for input

statistics, and they are all finite numbers” with data set and where . To
insure a smooth transition to the exponential function, the tangent at data point is given as

again

TwoStep-AS Cluster Algorithms

References

[1] Chiu, T. (2000a). mBIRCH Clustering Algorithm (Phase 1 – Preclustering). IBM SPSS Internal
Document.

[2] Chiu, T., Fang, D., Chen, J., Wang, Y., and Jeris, C. (2001). A Robust and Scalable Clustering
Algorithm for Mixed Type Attributes in Large Database Environment. Proceedings of the seventh
ACM SIGKDD international conference on knowledge discovery and data mining, 263.

[3] Chiu, T. (1999b). Hierarchical Agglomerative Clustering Algorithm. IBM SPSS Internal
Document.

[4] Chiu, T. (2004). Algorithm Design: Enhancements of Two-Step Clustering. IBM SPSS Internal
Document.

[5] Fang, D. (2000). Auto-Cluster in SPSS Clustering Component. IBM SPSS Internal Document.
[6] Xu, J. (2011). ADD – Interestingness and Insights. IBM SPSS Internal Document
[7] Zhang, T., Ramakrishnon, R., and Livny M. (1996). BIRCH: An Efficient Data Clustering

Method for Very Large Databases. Proceedings of the ACM SIGMOD conference on Management of
Data, p. 103-114, Montreal, Canada.

[8] Kaufman, L., and Rousseeuw, P., J. (1990). Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley Series in Probability and Statistics. John Wiley and Sons, New York.

Generalized Linear Engine (GLE) Algorithm

1. Introduction – Phase I

Generalized linear models (GZLMs) have been commonly used analytical tools for different types of

data for quite some time because they cover not only widely used statistical models, such as linear

regression for normally distributed targets, logistic models for binary data, and log linear model for

count data, but also many useful statistical models via its very general model formulation. Since those

models are under the independence assumption, we have a new “Generalized Linear Engine” (GLE) to

build them for large and distributed data and run within Analytic Engine (AE).

GLE Phase I is mainly to replace GENLIN functionality in a Big Data situation in addition to adding

the nominal multinomial model. Section 2 describes the model. Section 3 describes parameter

estimation. Inference and model summary is given in Section 4. Scoring is presented in the last section.

2. Model

There are two subsections under the model section: (1) notations and (2) model formation. Then for the

model formation subsection, four sub-subsections are furthered derived: (1) probability distribution;

(2) link function; (3) combination of probability distribution and link function; (4) data transformation.

2.1. Notations

n Number of distinct records in the dataset. It is an integer and n  1.

p Number of parameters (including the constant, if exists) in the model. It is an integer and p 
1.

px Number of non-redundant columns in the design matrix. It is an integer and 1 .xp p 

y n  1 vector of target variable consists of , 1, , .iy i n 

r n  1 vector of event variable for binomial distribution. It is usually the number of successes or
the number of 1’s. All elements are non-negative integers.

m n  1 vector of trial variable for binomial distribution. All elements are positive integers and mi

 ri, 1, ,i n  .

 n  1 vector of expectation of target variable.

 n  1 vector of linear predictor.

X n  p design matrix. The rows represent the records and the columns represent the parameters.
The ith row is  T

1, , ,i i ipx xx  where superscript T means transpose of a matrix or vector,

1, ,i n  with 1 1ix  if model has an intercept.

O n  1 vector of offset variable. This variable can’t be the dependent variable (y) or one of the
predictor variables (X). Also this variable can’t be a categorical variable (factor).

 p  1 vector of unknown parameters. The first element in  is the intercept, if there is one.

 n  1 vector of scale weight variable. The elements don’t have to be integers. If an element is
less than or equal to 0 or missing, the corresponding record is not used.

f n  1 vector of frequency count variable. Non-integer elements are treated by rounding the
value to the nearest integer. For values less than 0.5 or missing, the corresponding records are
not used.

N Effective sample size.
1

.
n

i
i

N f


 If frequency count variable f is not used, N = n.

2.2. Model formation

A GZLM of the target y with predictor variables X and offset variable O has the form

(E()) , ,g F= y Xβ + O y ~

where  is the linear predictor; O is an offset variable with a constant coefficient of 1 for each

observation; g(.) is the monotonic differentiable link function which states how the mean of y,

Ε() y  , is related to the linear predictor ; F is the target probability distribution. Choosing

different combinations of a proper probability distribution and a link function can result in different

models. Some combinations are well known models and have been provided in different SPSS

procedures. The following table lists these combinations and corresponding SPSS procedures.

Table 1: Distribution, Link Function and Corresponding SPSS Procedure

Distribution Link function Model SPSS procedure

Normal Identity Linear regression model GLM, REGRESSION

Binomial Logit Logistic regression model LOGISTIC REGRESSION

Poisson Log Log- linear model GENLOG

Nominal
multinomial

Generalized
logit

Generalized logistic regression model NUMREG

Ordinal
multinomial

Cumulative
logit

Ordinal proportional-odds model PLUM

In addition, GZLM also assumes yi are independent for record 1, , ,i n  then the model becomes

T() , ~ .i i i ig o y F   ix 

Notes:

 To improve numerical stability, the X matrix will be transformed, see Section 2.2.4 for details.

Note that the computation of transformation can be implemented in map/reduce environment.

 The X matrix can be any combination of continuous variables (covariates), categorical variables

(factors) and interactions. The parameterization of design matrix X is the same as in GLM

procedure. See Lam (1995a) for further details on the model parameterization.

Due to use of over-parameterized model where there is a separate parameter for every factor effect

level occurring in the data, the columns of the design matrix X are often dependent. Collinearities

among continuous variables in the data can also occur. To establish the dependencies in the design

matrix, columns of T ,X X where  1 1diag , ,n nf f   are examined by using the sweep

operator. When a column is found to be dependent on previous columns, the corresponding

parameter is treated as redundant. The solution for redundant parameters is fixed at zero. Details

of the sweep operator employed can be found in Lam (1995b).

 When the target variable is in a binary format which can be character or numeric, such as the form

of male/female, 1/2, a/b, its values will be transformed to 0 and 1 with 1 as typically representing a

success or some other positive result. In this document, we assume that y has been transformed to

0/1 values and we always model the probability of success, i.e., Prob(y = 1). Which original value

should be transformed to 0 or 1 depends on what the reference category is. If the reference

category is the last value, then the first category represents a success and we are modeling the

probability of it. For example, if the reference category is the last value, “male”, “2” and “b” in

“male/female”, “1/2” and “a/b” binary forms are the last values and would be transformed to 0,

and “female”, “1” and “a” would be transformed to 1 as we model the probability of them,

respectively. However, one way to change to model the probability of “male”, “2” and “b” instead

is to specify the reference category to be the first value. Note if original binary format is 0/1 and

the reference category is the last value, then 0 would be transformed to 1 and 1 to 0.

 For the binomial distribution and the target is a number of events (r) occurring in a set of trials

(m), in this document, we assume that y is the binomial proportion, i.e., y = r/m.

GLE would also include ordinal and nominal multinomial distributions. However, since the model

form is not the same as that of the above traditional generalized linear models, we include them in

Appendix A and Appendix B, respectively.

2.2.1. Probability distribution

GLE will include 9 distributions which include 3 continuous ones: normal, inverse Gaussian, gamma;

5 discrete ones: binomial, Poisson, negative binomial, ordinal multinomial, nominal multinomial; and

1 mixed distribution: Tweedie.

Table 2 lists distribution of y, corresponding range of y, the variance function (V()), the variance of y

(Var(y)) and the 1st derivative of the variance function (()V ), which will be used later. Again

ordinal multinomial and nominal multinomial would be handled in Appendices A and B, respectively.

Table 2: Distribution, Range and Variance of the Target, Variance Function and Its 1st Derivative

Distribution Range of y V() Var(y) ()V 

Normal (, ) 1  0

Inverse Gaussian (0, ) 3 3 23

Gamma (0, ) 2 2 2

Negative binomial 0(1) 2k  2k  1 2k

Poisson 0(1)    1

Binomial(m)
0(1)m

m
(1) 

(1)
m

  1 2

Tweedie [0, ) q q 1qq 

Notes:

 0(1)z means the range is from 0 to z with increment of 1 (i.e. 0, 1, 2, …, z).

 For the binomial distribution, the binomial trial variable m is considered as a part of the weight

variable .

 If a weight variable  is included,  is replaced by /.

 For the negative binomial distribution, there is an ancillary parameter (k) and there are two ways

to handle it:

1. It can be estimated with  jointly by the maximum likelihood (ML) method.

2. It can be set to a fixed positive value.

In general, only when k is known, the target y with a negative binomial distribution is a

generalized linear model. Furthermore, the default for k should be the fixed value provided by the

user because, according to McCullagh and Nelder (1989), the interpretation of using negative

binomial distribution and canonical link function might be problematical as it makes the linear

predictor a function of a parameter of the variance function.

Typical values of k range between 0.01 and 2, but we will also allow k = 0, which reduces the

negative binomial distribution to the Poisson distribution. When k = 0, we simply apply the

Poisson distribution to do the estimation. When k = 1, the negative binomial is the geometric

distribution.

 The Tweedie’s class of distributions includes discrete, continuous and mixed densities as long as q

 0 or q  1, where q is the exponent in the variance function, q . Special cases include the

normal (q = 0), Poisson (q = 1), gamma (q = 2) and inverse Gaussian (q = 3). Except those special

cases, the Tweedie distributions with other values of q cannot be written in closed form, and hence

evaluation of the density is difficult. Here, we only consider the Tweedie distributions for 1 < q <

2 which can be represented as Poisson mixtures of gamma distributions and are mixed

distributions with mass at zero and with support on the non-negative real values. These

distributions have been called “compound Poisson”, “compound gamma” and “Poisson-gamma”

distributions, but we will still call “Tweedie”. Here, the q value is set a fixed value. Thus, the user

has to give a q  (1, 2).

 From the expressions for V() and Var(y), continuous distributions (normal, inverse Gaussian and

gamma) and Tweedie distributions for 1 < q < 2 include the scale parameter  which can be used

to scale the relationship of the variance and mean (Var(y) and ). Since it is usually unknown,

there are three ways to fit the scale parameter :

1. It can be estimated with  jointly by ML method.

2. It can be set to a fixed positive value.

3. It can be specified by the deviance or Pearson chi-square (see Section 4.3.3).

On the other hand, discrete distributions (binomial, Poisson, negative binomial) do not have this

extra parameter (it is theoretically equal to one). Because of it, the variance of y might not be equal

to the nominal variance in practice (especially for Poisson and binomial because negative binomial

has an ancillary parameter k). A simple way to adjust this situation is to allow the variance of y of

discrete distributions to have the scale parameter  as well. That’s why / is included in the log

likelihood function of each discrete distribution below, but, unlike  for continuous distributions,

it can’t be estimated by ML method. So for discrete distributions, there are two ways to obtain the

value of :

1. It can be set to a fixed positive value.

2. It can be specified by the deviance or Pearson chi-square.

To ensure the data fit the range of target y (or r and m for the binomial distribution) for the specified

distribution, the following rules are enforced:

(a) For the gamma or inverse Gaussian distributions, values of y must be real and greater than

zero. If a value of y is less than or equal to 0 or missing, the corresponding record is not used.

(b) For the negative binomial and Poisson distributions, values of y must be integer and non-

negative. If a value of y is non-integer, less than 0 or missing, the corresponding record is not

used.

(c) For the binomial distribution and if the target is in the form of a single variable, y must have

only two distinct values. If y has more than two distinct values, then we stop the program and

issue an error message, such as “The target variable has more than 2 levels. A binary target

must have 2 levels.”

(d) For the binomial distribution and if the target is a number of events (r) occurring in a set of

trials (m), values of r must be non-negative integers, values of m must be positive integers

and mi  ri,  i. If a value of r is not integer, less than 0, or missing, the corresponding record

is not used. If a value of m is not integer, less than or equal to 0, less than the corresponding

value of r, or missing, the corresponding record is not used.

(e) For the Tweedie distributions, values of y must be zero or positive real. If a value of y is less

than 0 or missing, the corresponding record is not used.

The ML method will be used to estimate  and possibly  for continuous distributions and Tweedie

distribution or k for negative binomial. The kernels of the log likelihood function (k) and the full log

likelihood function (), which will be used as the objective function for parameter estimation, are

listed for each distribution in the following table. Using  or k won’t affect the parameter

estimation, but the selection will affect the calculation of information criteria in Section 4.3.4.

Table 3: The Log Likelihood Function for Probability Distribution

Distribution k and 

Normal

 
2

1

ln
2

n
i i ii

k
i i

yf   

 

    
    

   


 
1

ln(2)
2

n
i

k
i

f




   

Inverse Gaussian

 
2 3

2
1

ln
2

n
i i ii i

k
i ii i

yf y

y

  

 

    
    

   


 
1

ln(2)
2

n
i

k
i

f




   

Gamma
1

ln ln
n

i i i i i i
k i

i i i

y y
f

   


   

      
       

      


  
1

ln
n

k i i
i

f y


   

Negative binomial
            

1

ln 1 ln 1 ln 1 ln 1
n

i
k i i i i i i

i

f y k y k k y k k


   


      

   
1

ln 1
n

i
k i i

i

f y





    

Poisson
  

1

ln
n

i
k i i i i

i

f y


 


 

  
1

ln !
n

i
k i i

i

f y




   

Binomial(m)

      
1

ln 1 ln 1
n

i
k i i i i i

i

f y y


 






   

1
ln ,

n
ii

k i
i i

m
f

r





   
    

   
  where

 
!

! !
i i

i i i i

m m

r r m r

 
 

 

Tweedie
 

   

1 2

1

ln
1 2

q qn
i i i i

k i i
i

y
f V

q q

  



 



   
         


  
1

ln
n

k i i
i

f y


    (note that the  term won’t include yi = 0)

Notes:

 The computation of k or  can be implemented in map/reduce environment.

 When individual y = 0 for negative binomial, Poisson and Tweedie distributions and y = 0 or 1 for
binomial distribution, separate value of the log likelihood is given. Let ,k i be the log likelihood

value for individual record i when yi = 0 for negative binomial, Poisson and Tweedie and 0/1 for

binomial.

Distribution ,k i

Negative binomial
 ln 1

if 0ii
i i

k
f y

k






 

Poisson if 0i
i i if y





 

Binomial(m)
 

 

ln 1 if 0

ln if 1

i
i i i

i
i i i

f y

f y












 



 


Tweedie
 

2

if 0
2

q
i i

i if y
q

 





 


Note that the full log likelihood for i is equal to the kernel of the log likelihood for i, i.e., ,i k i  ,

for negative binomial, Poisson and Tweedie. However, for binomial with 0/1 binary target

variable, they should be different (the full log likelihood has additional term. The full log

likelihood, like deviance and Pearson chi-square, should be computed based on subpopulations.

Please see Section 4.3.3.2 for details).

  z is a gamma function and   ln z is a log-gamma function (the logarithm of the gamma

function), evaluated at z. In general,   ln z is calculated by using Sterling's formula, rather

than first calculating the gamma function and then taking the natural logarithm because numerical

calculation of  z with large values of z may cause an overflow.

 For binomial distribution (r/m), the scale weight variable becomes
i i im   in k , i.e., the

binomial trials variable m is regarded as a part of weight. However, the scale weight in the extra

term of  is still i .

 Vi in Tweedie distribution is an infinite series and the computational details are described in

Appendix C.

2.2.2. Link function

Table 4 lists the link functions, inverse forms of them and ranges of  for all distributions and Table 5

lists the 1st and 2nd derivatives for each link function in Table 4 which they will be used in Section 2.

Table 4: Link Function Name, Form, Inverse Form and Range of the Predicted Mean

Link function name  g 
Inverse

 1g  Range of ̂

Identity   ̂

Log  ln   exp  ˆ 0 

Logit ln
1




 
 

 

exp()
1 exp()




 ˆ 0, 1

Probit
 1  , where

 
2 21

2
ze dz









  

   ˆ 0, 1

Complementary log-log   ln ln 1  
  1 exp exp    ˆ 0, 1

Power(*)
0
0








  ln







  

1/

exp









ˆ if or 1 is an odd integer
ˆ 0 otherwise (including 0)
  

 




 

Log-complement  ln 1   1 exp  ˆ 1 

Negative log-log   ln ln  
  exp exp    ˆ 0, 1

Negative binomial† ln
1
k





 
 
 
  
 

 
  

exp
1 expk




ˆ 0 

Odds power(*)
0
0










  1 1

ln
1


 







  




 
   

 

 

1/

1/

1

1 1
exp()

1 exp()













 

  


 

 ˆ 0, 1

*  can be a real number. If || < 2.2e-16,  is treated as 0.

† The negative binomial link function becomes unavailable for negative binomial distribution with k = 0.

Table 5: The First and Second Derivatives of Link Function

Link function name First derivative  g






   


Second derivative  

2

2g






 



Identity 1 0

Log
1


2

Logit  
1
1 

 2 2 1 

Probit   1

1
 

, where  
2 21

2
zz e



  2 1  

Complementary log-log    
1

1 ln 1  
  2 1 ln 1   

Power()
0
0










1

1











2

1








Log-complement
1

1 




2

Negative log-log  
1

ln 


  2 1 ln  

Negative binomial 2

1
k 

 2 1 2k 

Odds power()
0
0










 

 

1

1

1
1
1







 









 

 2

1 1
1

2 1

 

 



   
   

 
 

2.2.3. Combination of probability distribution and link function

Choosing different combinations of a proper probability distribution and a link function can result in

different models. Table 6 gives a guideline for all distributions except ordinal and nominal multinomial

distributions. Cumulative link functions in Table A.1 of Appendix A are only available for ordinal

multinomial distribution and generalized logit link function specified in Appendix B is for nominal

multinomial distribution. If improper combinations were specified, an error message will be issued.

Note that the available distributions depend on the measurement level of the target and there are 4

different levels in the applications:

a. If a target is continuous, all distributions except nominal and ordinal multinomial would be

allowed. Note that binomial is allowed because target could be an “events” variable and user has

to also specify “trials” variable). The default is normal distribution.

b. If a target is nominal, then nominal multinomial and binomial distributions are allowed. The

default is nominal multinomial.

c. If a target is ordinal, then ordinal, nominal and binomial distributions are allowed. The default is

ordinal multinomial.

d. If a target is flag, only binomial distribution is allowed.

Table 6: Proper Combinations of Probability Distribution and Link Function

Distribution
Link

Normal Inverse
Gaussian Gamma Negative

binomial Poisson Binomial Tweedie

Identity x x x x x x x

Log x x x x x x x

Logit x

Probit x

Complementary log-log x

Power() x x x x x x x

Log-complement x

Negative log-log x

Negative binomial x

Odds power() x

2.2.4. Data transformation

To improve numerical stability, the ࢄ matrix will be transformed by default (the GLE component has

the option to turn it off) according to the following rules:

According to the definition of ࢄ , the ith row is =௜࢞ ൫ݔ௜ଵ, ⋯ ௜௣൯ݔ,
்

,݅= 1,⋯ , ,݊ with ௜ଵݔ = 1 if the

model has an intercept. Suppose ∗௜࢞ is the transformation of ௜࢞ then the jth entry of ∗௜࢞ is defined as

௜௝ݔ
∗ =

−௜௝ݔ ௝ܿ

௝ݏ

where ௝ܿ and ௝ݏ are centering and scaling values for ,௜௝ݔ respectively, for ݆= 1,⋯ ݌, and choices of ௝ܿ

and ,௝ݏ are listed as follows:

 For a non-constant continuous predictor or a derived predictor which includes continuous

predictor,

o if the model has an intercept, ଵܿ = 0 and ௝ܿ = ≠݆,ҧ௝ݔ 1, where ҧ௝ݔ is the sample mean of

the jth predictor, ҧ௝ݔ =
ଵ

ே
∑ ௜݂ݔ௜௝
௡
௜ୀଵ and ௝ݏ = 1 and ௝ݏ = ටݏ௫ೕ

ଶ ,݆≠ 1 , whereටݏ௫ೕ
ଶ is the

sample standard deviation of the jth predictor and ௫ೕݏ
ଶ =

ଵ

ேିଵ
∑ ௜݂൫ݔ௜௝− ҧ௝൯ݔ

ଶ௡
௜ୀଵ . Note that

the intercept column is not transformed.

o if the model has no intercept,�ܿ௝ = 0 and ௝ݏ = ටݏ௫ೕ
ଶ + ҧ௝ݔ

ଶ.

 For a constant predictor, say ௜௝ݔ = ܽ≠ 0, ௝ܿ = 0 and ௝ݏ = ,ܽ i.e., only scaled it to be 1 but not

centered.

 For a dummy predictor that is derived from a factor or a factor interaction, leave it unchanged, i.e.,

௝ܿ = 0 and ௝ݏ = 1.

In terms of matrix format, if the model (including nominal multinomial distribution) has no intercept,

∗ࢄ = ,ଵିࡿࢄ where = diag൫ݏଵ, ⋯ .௣൯ݏ,

If the model (including nominal multinomial distribution) has an intercept,

∗ࢄ = ࢄ ൤
1 ଵࢉ−

ଵࡿ்
ିଵ

૙ ଵࡿ
ିଵ ൨= ,࡭ࢄ where ଵࢉ = ൫ܿ ଶ,⋯ , ௣ܿ൯

்
and ଵࡿ = diag൫ݏଶ, ⋯ .௣൯ݏ,

Then ࢄ is replaced by ∗ࢄ during estimation.

For ordinal multinomial model, we have

ଵࢄ
∗ = ሾ૚௡, [∗ࢄ− = ሾ૚௡, ሿ൤ࢄ−

1 ଵࢉ
ଵࡿ்

ିଵ

૙ ଵࡿ
ିଵ ൨= ሾ૚௡, ࡭ሿࢄ− = ,࡭ଵࢄ

where ૚௤ is a length ݍ vector of 1.

Implementation notes:

 Some predictors may be derived from the original predictors, say interaction term =ସ௜ݔ ×ଶ௜ݔ .ଷ௜ݔ

For derived predictors (or composite effects), transformation is done only when all original

predictors are covariates, i.e., no transformation is needed when there is a factor in derived

predictors. And their means and standard deviations are calculated using the derived predictors.

 If the setting of a model includes intercept, normal distribution and identity link function, then the

target is centered by its mean (but not scale it due to complication scale may result) for numerical

stability, i.e., ∗௜ݕ = −௜ݕ ,തݕ ∀ ,݅ along with the ࢄ transformation. We will use ∗࢟ instead of ࢟ and

treat തݕ− as an offset value during estimation. Note this is done internally without the users

knowing.

 The whole transformation process will affect the estimates of β. After estimation, we need to

transform the estimates of β and their covariance matrix back from transformed scale to original

scale. And all post-estimation statistics and scoring would also be displayed on original scale, no

matter if they are calculated on original or transformed scale. The transform back formulae would

be described below and we will simply use ∗ࢄ = ࡭ࢄ and notice that ࡭ reduces to ଵିࡿ if the model

has no intercept.

 The log likelihood value, ℓ, is the same on original or transformed scale.

 If the scale parameter, , for continuous distributions and Tweedie distribution is estimated with

regression parameters, then its estimate will be the same based on original or transformed scale.

 If the ancillary parameter, k, in negative binomial distribution is estimated with regression

parameters, then its estimate will be the same based on original or transformed scale.

 When iteration history tables are displayed, the parameter estimates in each iteration need to

transform back. In addition, it will also display the final gradient vector and Hessian matrix.

Suppose the gradient vectors based on original and transformed scale are and࢙ ,∗࢙ respectively;

and the Hessian matrices based on original and transformed scale are ࡴ and ࡴ ∗ , respectively.

Then

=࢙ ∗࢙૚ି(୘࡭) andࡴ� = ࡴ૚ି(୘࡭) ଵି࡭∗

 In the following sections, we will still use ࢄ and ࢟ no matter whether they are transformed or not,

unless we need to distinguish them.

3. Estimation

Having selected a particular model, it is required to estimate the parameters (, ) or (, k) and to

assess the precision of the estimates. Here we only include parameter estimation first and will add

other subsections later.

3.1. Parameter estimation

The parameters (, , k) is estimated by maximizing the log likelihood function  (or the kernel of the

log likelihood function k) from the observed data. Let s be the first derivative (gradient) vector of

the log likelihood with respect to  (and possible  or k, see below), then we wish to solve

1

.
p

 
   


s 0

In general, there is no closed form solution except a normal distribution with identity link function, so

estimates are obtained numerically via an iterative process. A Newton-Raphson and/or Fisher scoring

algorithm is used and it is based on a linear Taylor series approximation of the first derivative of the

log likelihood, so the first and second derivatives are needed and will be discussed in the first two

subsections. Then the iterative process is discussed in the third subsection.

3.1.1. First derivatives

If the scale parameter  for normal, inverse Gaussian, gamma and Tweedie is not estimated by ML

method, s is a 1p vector with the form:

   
1 1

1
() () () ()

n n
i i i i i i i i

i i
i ii i i i

f y f y

V g V g

   

      

 
   

  x xs ,

where , () and ()i i iV g   are defined in Table 4, Table 2 and Table 5, respectively.

Notes:

 The computation of s can be implemented in map/reduce environment. I.e., assume there are J

mappers, in the jth mapper with
jn records,

 
1

1 ,
() ()

jn
i i i i

j i
i i i

f y

V g

 

  


 


s x then combine the results

from all mappers in the reducer,
1

.
J

j
j

s s


1 T()i i ig o  x  is an estimate of the mean of the ith observation, obtained from an estimate of

the parameter vector .

 For binomial distribution (r/m), i is replaced with
i  .

 If the scale parameter is specified by the deviance or Pearson chi-square, then assume  =1 to

estimate .

If the scale parameter  for normal, inverse Gaussian gamma and Tweedie is estimated by ML method,

it is handled by searching for ln() since  is required to be greater than zero. Similarly, if the ancillary

parameter k for negative binomial is estimated by ML method, it is still handled by searching for ln(k)

(just replace  with k) since k is also required to be greater than zero.

Let  = ln() so  = exp() (or  = ln(k) and k = exp() for negative binomial) , then s is a (1) 1p  

vector with the following form

 
 

1

(1) 1

1
exp () () ,

n
i i i i

i
i i i

p

f y

V g

 

  

 



 

   
       

   
     


s



 

x
β

where  β is the same as the above with  is replaced with exp() (for negative binomial,  is not

replaced),   has a different form depending on the distribution as follows:

Table 7: The First Derivative Functions w.r.t. τ for Probability Distributions

Distribution








Normal
 

2

1

1
2 exp()

n
i i ii

i

yf  



  
 

  


Inverse Gaussian
 

2

2
1

1
2 exp()

n
i i ii

i i i

yf

y

 

 

  
 

  


Gamma
1

ln 1
exp() exp() exp()

n
i i i i i i

i i i

f y y  


    

       
         

      


Negative binomial

For all appropriate link functions other than negative binomial link function,

 
 

 
1

exp() 1 1ln 1 exp() ;
exp() 1 exp() exp() exp()

n
i ii i

i i
i i

yf
y

 
   

      

       
         

      




for the negative binomial link function,

 
1

1 1ln 1 exp()
exp() exp() exp()

n
i i

i i
i

f
y


   

    

      
        

      


 .

Tweedie

1
,

n
i

i
i

f








where

 

   

2

1 2

for 0
exp() 2

for 0
exp() 1 exp() 2

q
i i

i

i

i q q
i i i i i

i

i

y
q

V
y

y
V q q

 



    
 



 


 

      
 



Notes:

  z is a digamma function, which is the derivative of logarithm of a gamma function, evaluated

at z, i.e.  
 ln () () .

()
z z

z
z z

 




 
 


The method to compute digamma and trigamma functions

is described in Appendix D.

  
1

1 .i
ij

j

V
jV








 


 To avoid the possibility of floating point overflow for

1
ij

j

V





1
and ,ij

j

jV





we will evaluate
i

i

V

V



 directly. See Appendix C for details.

As mentioned above, for normal distribution with identity link function which is a classical linear

regression model, there is a closed form solution for both  and , so no iterative process is needed.

The solution for , after applying the SWEEP operation, is

      T T T T

1 1

,ˆ
n n

i i i i i i i i i
i i

f f y o 




 

   
      
   
 x x x X X X y o  

where  1 1diag , n nf f   and  


Z is the generalized inverse of a matrix Z. If the scale

parameter  is also estimated by ML method, the estimate of  (= ln()) is

̂   ˆln    
2

T

1

1 ˆln .
n

i i i i i
i

f y o
N




 
  

 
 x 

3.1.2. Second derivatives

Let H be the second derivative (Hessian) matrix. If the scale parameter  for normal, inverse
Gaussian, gamma and Tweedie is not estimated by ML method, H is a p p matrix with the form:

2
T

TH
p p

 
   

  
X W X

 



where W is an n n diagonal matrix. There are two definitions for W depending on which algorithm is

used: We for Fisher scoring and Wo for Newton Raphson. The ith diagonal element for We is

 
, 2

1 ,
() ()

i i
e i

i i

f
w

V g



  
 



and the ith diagonal element for Wo is

 
   

, , 2 3
() () () () ,

() ()
i i i i i i

o i e i i i

i i

f V g V g
w w y

V g

    


  

  
   



where () and ()i iV g   are defined in Table 2 and Table 5, respectively. Then

 ,1 ,diag ,e e nw weW  and  ,1 ,diag , , .o o nw woW  Note the expected value of Wo is We and when

the canonical link is used for the specified distribution, then Wo = We. Be aware that for binomial

distribution (r/m), i is replaced with i
 .

Notes:

 The computation of H can be implemented in map/reduce environment. I.e., assume there are J

mappers with
jX and

jW as the design matrix and an
j jn n diagonal matrix in the jth mapper,

respectively, so
1

J

 
 
 
  

,

X

X=

X

 1diag , , JW= W W and T
j j j j H X W X then combine the results

from all mappers in the reducer,
2

T
1

J

j
jp p 

 
  

  
H H .



 

If the scale parameter  for normal, inverse Gaussian, gamma and Tweedie is estimated by ML

method, H becomes a (1) (1)p p   matrix with the form

2 2

T

2 2

T 2
(1) (1)

H

p p



 
  

  
 
    
  
 
    

  



 

 

where 2   β is a 1p vector and 2 T  β is a 1 p vector and the transpose of 2   β .

The form of 2   β for all three continuous distributions is given below:

 2

1

.
exp() () ()

n
i i i i

i
i i i

f y

V g

 

   

 
    

  
 x

β β

 

Note that in theory ˆ 0  β , so 2 ˆ 0   β when evaluated at the estimates of ˆ, .β β In practice

they might not be exact 0, but they should be very close to 0.

The forms of 2   β for negative binomial are as follows depending on the link functions:

For all appropriate link functions other than negative binomial link function,

 
 

2

2
1

exp()
;

1 exp() ()

n
i i i i

i
i i i

f y

g

  

    


  

  
 x

β



for the negative binomial link function,

2

1

.
n

i i i
i

i

f 

 


 

 
 x

β



The forms of 2 2  are listed in Table 8.

Table 8: The Second Derivative Functions w.r.t. τ for Probability Distributions

Distribution
2

2







Normal  
2

1 2exp()

n
i i

i i
i

f
y






 

Inverse Gaussian  
2

2
1 2exp()

n
i i

i i
i i i

f
y

y




 

 

Gamma
1

ln 2
exp() exp() exp() exp() exp()

n
i i i i i i i i

i i i

f y y    
 

      

         
           

        


Negative binomial

For all appropriate link functions other than negative binomial link function,

 
 

2

22

2
1

exp() 2exp() 1 ln 1 exp()
exp()1 exp()

;
1 1 1 1 1 1

exp() exp() exp() exp(2) exp() exp()

i i i i
i

n
ii i

i

i i

y

f

y y

    
 

 


   

     



   
   

  
  

                            
           




for the negative binomial link function,

 
2

2
1

1 ln 1 exp()
exp()

.
1 1 1 1 1 1

exp() exp() exp() exp(2) exp() exp()

i
n

i i

i

i i

f

y y

 



   

     



 
   

  
  

                                       




Tweedie

2

2
1

,
n

i
i

i

f








where

 

   

2

2
22

2 1 22

for 0
exp() 2

for 0
exp() 1 exp() 2

q
i i

i

i

i i q q
i i i i i

i

i i

y
q

V V
y

y
V V q q

 



     
 



 


 


 

                 



Notes:

  z  is a trigamma function, which is the derivative of  z , evaluated at z. See Appendix D

for details.

 For normal and inverse Gaussian, 2 2ˆ 2N    when evaluated at β̂ and ̂ .

  
2

2 2
2

1
1 .i

ij
j

V
j V








 


 Again, we will evaluate

2

2
i

i

V

V



 directly. See Appendix C for details.

 For normal distribution with identity link function, Hessian matrix is

۶ = −
ࢄࢸ்ࢄ

߶෠
,

and augmented Hessian matrix including the parameter ߬= ln߶ is

۶ = ቈ
෠߶/(ࢄࢸ்ࢄ)− ૙

૙் −
ே

ଶ

቉.

In addition, the gradient is 0.

3.1.3. The iterative process

Note that we will implement the step-halving with Newton Raphson or Fisher scoring method first, but

will implement other methods, described in Du and Zheng (2009) and more, in the future.

An iterative process to find the solutions for  (which might include , k for negative binomial or  for

multinomial) is based on (1) Newton Raphson (for all iterations), (2) Fisher scoring (for all iterations)

or (3) a hybrid method. The hybrid method consists of applying Fisher scoring steps for a specified

number of iterations before switching to Newton Raphson steps. It is done easily by applying different

formula for the Hessian matrix at each iteration. Newton Raphson performs well if the initial values

are close to the solution, but the hybrid method can be used to improve the algorithm’s robustness to

bad initial values. Apart from improved robustness, the Fisher scoring is faster due to the simpler form

of the Hessian matrix.

Some definitions are needed for an iterative process:

I
Starting iteration for checking complete separation and quasi-complete separation. It
must be 0 or a positive integer. This criterion is not used if the value is 0.

J The maximum number of steps in step-halving method. It must be a positive integer.

K

The first number of iterations using Fisher scoring, then switching to Newton
Raphson. It must be 0 or a positive integer. A value of 0 means using Newton
Raphson for all iterations and a value greater or equal to M means using Fisher
scoring for all iterations.

M
The maximum number of iterations. It must be a non-negative integer. If the value is
0, then initial parameter values become final estimates.

p H, ,   Tolerance levels for three types of convergence criteria (see Section 3.1.3.2 below).

Abs
A 0/1 binary variable; Abs = 1 if absolute change is used for convergence criteria and
Abs = 0 if relative change is used (see Section 3.1.3.2 below).

And the iterative process is outlined as follows:

(1) Input values for I, J, K, M, p H, ,  
and Abs for each type of three convergence criteria.

(2) Input initial values 0β () or if no initial values are given, compute initial values 0β () (see Section

3.1.3.1 below), then calculate log likelihood (0) , gradient vector (0)s and Hessian matrix (0)H

based on 0β () .

(3) Let  = 1.

(4) Compute estimates of ith iteration:

 1 1) 1)i i i i
  β β() () ((= H s ,

where  


H is a generalized inverse of .H Then compute log likelihood ()i based on iβ () .

(5) Use step-halving method if () (1)i i  : reduce  by half and repeat step (4). I.e., the set of values

of  is {  1 2 :j
j = 0, …, J – 1}. If J is reached but the log likelihood is not improved, issue a

warning message, then stop.

(6) Compute gradient vector ()is and Hessian matrix ()iH based on iβ () . Note that We is used to

calculate ()iH if i  K; Wo is used to calculate ()iH if i > K.

(7) Check if complete or quasi-complete separation of the data is established (see the note below on

how to check them) if distribution is binomial or multinomial and the current iteration i  I. If

either complete or quasi-complete separation is detected, issue a warning message, then stop.

(8) Check if all three convergence criteria (see Section 3.1.3.2 below) are met. If they are not but M is

reached, issue a warning message, then stop.

(9) If all three convergence criteria are met, check if complete or quasi-complete separation of the

data is established if distribution is binomial or multinomial and i < I (because checking for

complete or quasi-complete separation has not started yet). If complete or quasi-complete

separation is detected, issue a warning message, then stop, otherwise, stop (the process converges

for binomial or multinomial successfully). If all three convergence criteria are met for the

distributions other than binomial and multinomial, stop (the process converges for other

distributions successfully). The final vector of estimates is denoted by β̂ (and ̂ and ̂ for

multinomial). Otherwise, go back to step (3). See Figure 1: The Flowchart of the Iterative Process

of Parameter Estimation below.

Notes:

 How the scale parameter  is handled in the above iterative process:

1. If  (), for normal, inverse Gaussian, gamma and Tweedie distributions, is estimated by the

ML method, then  will be estimated jointly with regression parameters . I.e., the last

element of the gradient vector s is with respect to 

2. If  is set to be a fixed positive value, then  will be held fixed at that value for in each

iteration of the above process.

3. If  is specified for all distributions by the deviance or Pearson chi-square divided by degrees

of freedom (see Section 4.3.3), then  will be fixed at 1 to obtain the estimates of  (and  for

multinomial) in the whole iterative process. Based on β̂ (and ̂ for multinomial), calculate

the deviance and Pearson chi-square values and obtain ̂ , then revise some statistics, such as

the gradient vector, the Hessian matrix, the covariance matrix, etc. see Section 4.1 for details.

 Complete separation or quasi-complete separation of the data is checked for binomial, nominal

multinomial and ordinal multinomial distributions here just like what we did in CSLOGISTIC and

CSORDINAL procedures. The method is briefly described as follows, see Fang (2004) case-wise

data for details):

For each iteration after a user-specified number of iterations, i.e., if i > I, and for binomial models,

calculate (note here v refers to records in the dataset)

min min v
v

p p

max max ,v
v

p p

  *
min min min ,1 ,v v

v
p   

where
if success (1)

1 if failfure (0)
v v

v

v v

y
p

y





 
 

  
(vp is the probability of the observed target for record

v) and 1 T();v v vg o  x  for multinomial model, the definitions of *
min max min, andp p p are

modified as follows:

min ,min
vv y

v
p 

max ,max ,
vv y

v
p 

 *
min ,min min .v j

v j
p 

Note that , vv y has been defined before for multinomial models. Then the rules of checking

complete separation or quasi-complete separation for binomial or multinomial models would be

the same. If min max 1p p  (actually  min max minmin , 0.99p p p  is checked) there is a

complete separation. Else if (1) max 0.99p  or *
min 0.001p  and if (2) there are very small

diagonal elements (absolute value 7 410 3.16 10   ) in the non-redundant parameter locations
in matrix A, where A is the lower triangular matrix in Cholesky decomposition of –H, where H is

the Hessian matrix, such that Τ   , then there is a quasi-complete separation.

The developers will evaluate whether the implementation of complete separation or quasi-

complete separation checking makes sense in map/reduce environment.

 Whenever a warning message is issued, the procedure continues and results based on the last

iteration are given, though the validity of the model fit is questionable.

 If the hybrid method converges with Fisher scoring step, the process will continue with Newton

Raphson steps till it converges again.

3.1.3.1. Initial values

The users can specify their own initial values. The order is the intercept (if there is one), regression

parameters (and the scale parameter  if it will be estimated by the ML method for normal, inverse

Gaussian and gamma and the ancillary parameter k if it is estimated by the ML method for negative

binomial) for all distributions except multinomial. For ordinal multinomial, the order is threshold

parameters and regression parameters. For nominal multinomial, the order is regression parameters for

each category (except the reference category). See Appendices A and B for details. If the users didn’t

specify them, we have to compute initial values internally. For all distributions except multinomial, the

initial values 0β () and/or the scale parameter 0 () (if it is estimated by ML method) are calculated as

follows:

(1) Set the initial fitted values (0.5) (1)i i iy m m   i
 for a binomial distribution (yi can be a

proportion or 0/1 value) and iy i
 for a non-binomial distribution. From them deriving

= (), () and ().i i i ig g V       If i becomes undefined, 1.i 

(2) Calculate the weight matrix e
W with the diagonal element

 
2

1 ,
() ()

i i
ei

i i

f
w

V g



  
 




 
where 

is set to 1 or a fixed positive value. If the denominator of eiw becomes 0, eiw = 0.

(3) Assign the adjusted target variable z with the ith observation () () ()i i i i i iz o y g        for a

binomial distribution and ()i i iz o  for a non-binomial distribution.

(4) Calculate the initial parameter values

(0) T 1 T() ,e e
 = X W X X W z and/or

߶(଴) =
1

ܰ
൫ࢠ− ൯(଴)ࢼࢄ

்
෪ࢃ ௘൫ࢠ− ൯(଴)ࢼࢄ

=
1

ܰ
ቀࢃ்ࢠ෪ ௘ࢠ− 2൫ࢼ(଴)൯

்
෪ࢃ்ࢄ ௘ࢠ+ ൫ࢼ(଴)൯

்
෪ࢃ்ࢄ ௘ࢼࢄ

(଴)ቁ

For the ancillary parameter k of negative binomial, initial k = 1, so  = 0 for now.

Notes:

 The computation of the initial values can be implemented in map/reduce environment. I.e., assume
there are J mappers, the first 3 steps would result ௝ࢠ and ෪ࢃ ௘,௝ as an 1jn  adjusted target vector

and an
j jn n diagonal matrix in the jth mapper, respectively, along with .௝ࢄ And ෪ࢃ௝்ࢄ ௘,௝ࢄ௝,

௝ࢠ
෪ࢃ் ௘,௝ࢄ௝, ෪ࢃ௝்ࢠ ௘,௝ࢠ௝ can be computed in the jth mapper. Then combine the results from all

mappers in the reducer as ෪ࢃ்ࢄ ௘ࢄ = ∑ ௝ࢄ
෪ࢃ் ௘,௝ࢄ௝

௃
௝ୀଵ , ෪ࢃ்ࢄ ௘ࢠ= ∑ ௝ࢄ

෪ࢃ் ௘,௝ࢠ௝
௃
௝ୀଵ and ෪ࢃ்ࢠ ௘ࢠ=

∑ ௝ࢠ
෪ࢃ் ௘,௝ࢠ௝

௃
௝ୀଵ . Finally, compute (଴)ࢼ based on ෪ࢃ்ࢄ ௘ࢄ and ෪ࢃ்ࢄ ௘ࢠ, and then ߶(଴) based on

෪ࢃ்ࢠ ௘ࢠ, ൫ࢼ(଴)൯
்
෪ࢃ்ࢄ ௘ࢠ, and ൫ࢼ(଴)൯

்
෪ࢃ்ࢄ ௘ࢼࢄ

(଴).

3.1.3.2. Convergence criteria

We consider 3 types of convergence criteria here: log-likelihood convergence, parameter convergence,

and Hessian convergence. For each type, we consider both absolute and relative change. Let

p H, and  
be given tolerance levels for each type, then the criteria can be written as follows:

(1) Log-likelihood convergence:

() (1)

(1) 6

() (1)

if relative change
10 .

if absolute change

i i

i

i i







 



 
  


 





 



 

(2) Parameter convergence:

 

() (1)

(1)

() (1)

p6

p

max

max

if relative change
10 .

if absolute change

i i

i

i i

j j

j
j

j j
j

 




  









  
   
    
  


 


(3) Hessian convergence:

     

     

T() () ()

H() 6

T() () ()
H

if relative change
10 .

if absolute change

i i i

i

i i i












  






s H s

s H s

Notes:

 Depending on a user’s choice, either relative or absolute change is considered.

 If the user doesn’t specify Hessian convergence criterion, we would check if it is met based on

absolute change with H = 1.0e-4 after specified log-likelihood convergence criterion and/or

parameter convergence criterion has been satisfied. If Hessian convergence criterion was not met,

a warning message, such as “All default or specified convergence criteria are satisfied, but Hessian

convergence criterion is not. The convergence is uncertain.” would be displayed.

3.1.3.3. Null model and intercept-only model

For the null model and intercept-only model, we provide an approximation method by considering the

tradeoff between the performance and the computational cost.

(a) Null models

If the scale parameter ߶ or the ancillary parameter ݇ is estimated by ML method,

Let Ƹ଴ߤ = ݃ିଵ(݋௜)

 For normal distribution,

߶෠=
1

ܰ
෍ ௜݂߱ ௜(ݕ௜− Ƹ଴)ଶߤ
௡

௜ୀଵ

 For inverse Gaussian distribution,

߶෠=
1

ܰ
෍

௜݂߱ ௜(ݕ௜− Ƹ଴)ଶߤ

Ƹ଴ߤ௜ݕ
ଶ

௡

௜ୀଵ

 For gamma and tweedie, there is no closed form solution for ߶෠, and it needs a iterative

process. Herein, it is approximated by its initial value calculated in Section 3.1.3.1.

 For the ancillary parameter ,݇ it is set to 1.0.

(b) Intercept-only models

 For all distributions except multinomial

Let ଴ߚ be parameters of the intercept-only model (excluding ߶ and)݇.

There is no closed form solution for መ଴ߚ in addition to ߶෠ or ݇ . መ଴ߚ and ߶෠(or�݇) are

approximated by their initial values calculated in Section 3.1.3.1.

 For ordinal multinomial

Let ଴࡮ = ൫࣒ (଴)்,૙୘൯
୘
be parameters of the threshold-only model.

If there is no offset variable,

߰௝
(଴)

= ݃ቆ
∑ ܰ௟
௝
௟ୀଵ

ܰ
ቇ ,݆= 1,⋯ −ܬ, 1,

and if there is an offset variable, there is no close form solution, and it needs a iterative

process. Herein, they are approximated by their initial values given in Appendix A.

 For nominal multinomial

Let ଴ࢼ = ൫ࢼଵ
(଴)୘

, ⋯ ௃ିࢼ, ଵ
(଴)୘

൯
୘
be parameters for the intercept-only model.

If there is no offset variable,

௝ଵߚ
(଴)

= lnቆ
௝ܰ

ܰ௃
ቇ ௝௞ߚ,

(଴)
= 0,݆= 1,⋯ −ܬ, 1,

and if there is an offset variable, there is no close form solution, and it needs a iterative

process. Herein, they are approximated by their initial values given in Appendix B.

Note that when there is no closed form solution for the model under consideration and the approximate

model is used, then a warning message, such as “The parameter estimates may not be accurate for the

approximate model being used”, would be displayed.

Figure 1: The Flowchart of the Iterative Process of Parameter Estimation in GLE

3.1.4. Parameter estimation on original scale

If the X matrix is transformed, then the final estimates of β above are based on transformed scale,

denoted it as .∗෡ࢼ They would be transformed back on original scale, denoted it as ,෡ࢼ as follows:

෡ࢼ = ∗෡ࢼ࡭

Note that ࡭ could reduce to ଵିࡿ and hereafter in the document, superscript ∗ is added to a quantity to

denote the quantity on transformed scale.

For ordinal multinomial model, we have

෡࡮ = ቈ
෡࣒

෡ࢼ
቉= ቈࢀ

∗෡࣒

∗෡ࢼ
቉= ∗෡࡮ࢀ

where ࢀ = ቈ
௃ିࡵ ଵ ௃ିࡵ ଵ⨂(ࢉଵ

ଵࡿ்
ିଵ)

૙ ଵࡿ
ିଵ

቉.

For nominal multinomial model, we have

෡ࢼ = ∗෡ࢼࢀ

where ࢀ = ⨁௝ୀଵ
௃ି ଵ࡭௝, and ௝࡭ = ࡭ if the model has an intercept and ௝࡭ = ଵିࡿ if the model has no

intercept.

Notes:

 If ࡭ is an ݉ × ݊ matrix and ࡮ is a ×݌ ݍ matrix, then the Kronecker product ⊗࡭ ࡮ is the

×݌݉ ݍ݊ block matrix,

࡮⨂࡭ = ൥
ଵܽଵ࡮ ⋯ ଵܽ௡࡮
⋮ ⋱ ⋮

௠ܽ ଵ࡮ ⋯ ௠ܽ ௡࡮
൩.

 If ࡭ is an ݉ × ݊matrix and ࡮ is a ×݌ ,matrixݍ then the direct sum ࡮⨁࡭ is defined as

࡮⨁࡭ = ቂ
࡭ ૙
૙ ࡮

ቃ=

⎣
⎢
⎢
⎢
⎢
⎡

ଵܽଵ ⋯ ଵܽ௡

⋮ ⋱ ⋮

௠ܽ ଵ ⋯ ௠ܽ ௡

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

ଵܾଵ ⋯ ଵܾ௤

⋮ ⋱ ⋮

௣ܾଵ ⋯ ௣ܾ௤⎦
⎥
⎥
⎥
⎥
⎤

In general, the direct sum of ݊matrices is

⨁௜ୀଵ
௡ =௜࡭ diag(࡭ଵ, ⋯ (௡࡭, = ൦

ଵ࡭ ૙ ⋯ ૙
૙ ଶ࡭ ⋯ ૙
⋮
૙

⋮
૙

⋱
⋯

⋮
௡࡭

൪.

4. Inference and Model Summary

4.1 Parameter inference

4.1.1 Parameter estimate covariance matrix, correlation matrix
and standard error

The parameter estimate covariance matrix, correlation matrix and standard errors can be obtained

easily with parameter estimates. Whether or not the scale parameter ߶()߬ is estimated by ML method,

parameter estimate covariance and correlation matrices are listed for ෡ࢼ only because the covariance

between ෡ࢼ and Ƹ߬should be zeros. For the ancillary parameter ݇�()߬ of negative binomial is estimated

by ML method, parameter estimate covariance and correlation matrices are still listed for ෡ࢼ only for

simplicity purpose even though the covariance between ෡ࢼ and Ƹ߬is generally not zero. For ordinal

multinomial model, parameter estimate covariance and correlation matrices are listed for ෡࡮ =

.୘(෡୘ࢼ,෡୘࣒)

4.1.1.1 Parameter estimate covariance

Two parameter estimate covariance matrices can be calculated: model-based and robust.

(a) Model-based parameter estimate covariance

The parameter estimate covariance matrix is given by

઱௠ = −۶ି

where ۶ି is the generalized inverse of Hessian matrix H evaluated at ෡ࢼ (and ෡࡮ for ordinal

multinomial) (and ߶�෡ if the scale parameter is estimated for normal, inverse Guassian, gamma and

Tweedie distributions by ML method or specified for all distributions by the deviance or Pearson chi-

square divided by degrees of freedom).

Notes:

 For normal distribution with identity link function (linear regression model), ઱௠ = ି(ࢄࢸ்ࢄ)

where  1 1diag , n nf f   .

 For hybrid method, ࢃ ௢ is used to calculate ઱௠ even ෡ࢼ converges within iterations of Fisher

scoring steps. Naturally, ࢃ ௢ and ࢃ ௘ are used for Newton Raphson and Fisher scoring method,

respectively.

 The corresponding rows and columns for redundant parameter estimates should be set to zero.

(b) Robust parameter estimate covariance

The validity of the parameter estimate covariance matrix based on the Hessian depends on the correct

specification of the variance function of the response in addition to the correct specification of the

mean regression function of the response. The robust parameter estimate covariance provides a

consistent estimate even when the specification of the variance function of the response is incorrect.

The robust estimator is also called Huber’s estimator because Huber (1967) was the first one described

this variance estimate; White’s estimator or HCCM (heteroskedasticity consistent covariance matrix)

estimator because White (1980) independently showed that this variance estimate is consistent under a

linear regression model including heteroskedasticity; or sandwich estimator because the formula has a

gradient factor “sandwiched” between two Hessian matrices. The robust (or Huber/White/sandwich)

estimator is defined as follows

઱௥ = ઱௠ ൭෍ ൤
∂ℓ௜
ࢼ∂

൨൤
∂ℓ௜
ࢼ∂

൨
୘௡

௜ୀଵ

൱઱௠ = ઱௠ ൭෍ ௜݂∙ ൬
߱௜(ݕ௜− (௜ߤ

(௜ߤ)ܸ߶ (௜ߤ)݃′
൰

ଶ

∙ ∙௜࢞ ௜࢞
୘

௡

௜ୀଵ

൱઱௠

Notes:

 The robust parameter estimate covariance matrix is justified by asymptotic arguments, but the

small sample performance might not be good. For linear regression model, some modifications

can be installed to improve small sample performance, but it is not clear if these modifications are

applicable to other generalized linear models as well.

For ordinal multinomial model,

઱௥ = ઱௠ ൭෍ ൤
∂ℓ௜
࡮∂

൨൤
∂ℓ௜
࡮∂

൨
୘௡

௜ୀଵ

൱઱௠

where பℓ೔

ப࡮
is the first derivative for the ith record and can be found in Appendix A.

For nominal multinomial model,

઱௥ = ઱௠ ൭෍ ൤
∂ℓ௜
ࢼ∂

൨൤
∂ℓ௜
ࢼ∂

൨
୘௡

௜ୀଵ

൱઱௠

Where பℓ೔

பࢼ
is the first derivative for the ith record and can be found in Appendix B.

4.1.1.2 Parameter estimate correlation

The correlation matrix is calculated from the covariance matrix as usual. Let ௜௝ߪ be an element of ઱௠

or ઱௥, then the corresponding element of the correlation matrix is
ఙ೔ೕ

ඥఙ೔೔ඥఙೕೕ
. The corresponding rows

and columns for redundant parameter estimates should be set to system missing values.

4.1.1.3 Parameter estimate standard error

Let መ௜denoteߚ a non-redundant parameter estimate for all distributions except multinomial. Its standard

error is the square root of the i-th diagonal element of ઱௠ or ઱௥:

ොఉ೔ߪ = ඥߪ௜௜

The standard error for redundant parameter estimates is set to a system missing value.

If the scale parameter is estimated by ML method, the standard estimate of Ƹ߬is

ොఛߪ = ඩ−
1

߲ଶℓ
߲ ଶ߬

where డమℓ

డఛమ
can be found on Table 8. However, people are usually more interested in the original than

the transformed ,߬ so we will only list the estimation result for ߶. The estimate of ߶ is exp (Ƹ߬), the

standard error estimated of ߶෠is (exp (Ƹ߬) ∙ .(ොఛߪ

For ordinal multinomial model:

Let ෠߰௝,݆= 1,⋯ −ܬ, 1, be threshold parameter estimates and =݅,መ௜ߚ 1,⋯ ,݌, denote the non-redundant

regression parameter estimates. Their standard errors are the square root of the i-th diagonal element of

઱௠ or ઱௥:

ොటೕߪ = ඥߪ௝௝ and ොఉೕߪ = ඥߪ(௃ି ଵା௜),(௃ି ଵା௜), respectively.

For nominal multinomial model,

Let መ௝௞ߚ denote a non-redundant parameter estimate. It standard error is the square root of the ൫(݆−

+݌(1 ݇൯th diagonal element of ઱௠ or ઱௥,

ොఉೕೖߪ = ටߪ൫(௝ି ଵ)௣ା௞,(௝ି ଵ)௣ା௞൯

Notes

 For normal distribution with identity link function (linear regression model), the standard error of

߶෠is

ොథ෡ߪ = ߶෠ඨ
2

ܰ
.

4.1.1.4 Parameter estimate covariance matrix, correlation matrix
and standard error on original scale

If the X matrix is transformed, then the model-based parameter estimate covariance matrices above are

also based on transformed scale. They should be transformed back to original scale.

(a) Model-based parameter estimate covariance

Denote the model-based parameter estimate covariance matrices based on original and transformed

scale are ௠ࢳ and ∗௠ࢳ , respectively.

௠ࢳ = ௠ࢳ࡭
∗ ୘࡭

For ordinal and multinomial models,

௠ࢳ = ௠ࢳࢀ
∗ ୘ࢀ

(b) Robust parameter estimate covariance

Denote the robust parameter estimate covariance matrices based on original and transformed scale are

௥ࢳ and ∗௥ࢳ , respectively.

௥ࢳ = ௥ࢳ࡭
.୘࡭∗

For ordinal and multinomial models,

௥ࢳ = ௥ࢳࢀ
.୘ࢀ∗

(c) Parameter estimate correlation

They are calculated based on ௠ࢳ or ௥ࢳ rather than ∗௠ࢳ or ∗௥ࢳ .

(d) Parameter estimate standard error

For regression parameters, they are calculated based on ௠ࢳ or ௥ࢳ . For the scale parameter and

ancillary parameter, parameter estimate standard errors are the same no matter which scale is used.

4.1.2 Wald confidence intervals

Wald confidence interval is provided for each non-redundant parameter. Wald confidence intervals are

based on the asymptotically normal distribution of the parameter estimators. The parameter estimators

includes ෡ࢼ (and ෡࣒ for multinomial), ߶෠(Ƹ߬) if ߶ is estimated by ML.

The 100(1 − %(ߙ Wald confidence interval for ௝ߚ is given by

ቀߚመ௝− መ௝ߚ,ොఉೕߪଵିఈ/ଶݖ + ොఉೕቁߪଵିఈ/ଶݖ

where ௣ݖ is the (100p)th percentile of the standard normal distribution.

If exponentiated parameter estimates of ࢼ are required, then the estimate of exp (௝ߚ) is exp ,(መ௝ߚ) the

standard error estimate of exp (መ௝ߚ) is ቀexp (መ௝ߚ) ∙ σෝఉೕቁ and the corresponding 100(1 − %(ߙ Wald

confidence interval for exp (௝ߚ) is

ቀexpቀߚመ௝− ,ොఉೕቁߪଵିఈ/ଶݖ expቀߚመ௝ + ොఉೕቁቁߪଵିఈ/ଶݖ

Wald confidence intervals for redundant parameter estimates are set to system missing values.

Similarly, the 100(1 − %(ߙ Wald confidence interval for ߬is defined as

൫߬ Ƹ− ,ොఛߪଵିఈ/ଶݖ Ƹ߬+ ොఛ൯ߪଵିఈ/ଶݖ

where Ƹ߬is the maximum likelihood estimate of ,߬ ොఛߪ is the standard error estimate of Ƹ߬and the

corresponding 100(1 − %(ߙ Wald confidence interval for ߶ (or k) is defined as

ቀexp൫߬ Ƹ− ,ොఛ൯ߪଵିఈ/ଶݖ exp൫߬ Ƹ+ .ොఛ൯ቁߪଵିఈ/ଶݖ

For ordinal multinomial distribution, in addition to ,ࢼ the 100(1 − %(ߙ Wald confidence interval for

߰௝ is given by

ቀ߰෠௝− ,ොటೕߪଵିఈ/ଶݖ ෠߰௝+ .ොటೕቁߪଵିఈ/ଶݖ

The estimate of exp൫߰ ௝൯is exp൫߰෠௝൯, the standard error estimate of exp൫߰෠௝൯is ቀexp൫߰෠௝൯∙ σෝటೕቁand

the corresponding 100(1 − %(ߙ Wald confidence interval for exp൫߰ ௝൯

ቀexp ቀ߰෠௝− ,ොటೕቁߪଵିఈ/ଶݖ exp ቀ߰෠௝+ .ොటೕቁቁߪଵିఈ/ଶݖ

For nominal multinomial distribution, the 100(1 − %(ߙ Wald confidence interval for ௝௞ߚ is given by

ቀߚመ௝௞ − ොఉೕೖߪଵିఈ/ଶݖ መ௝௞ߚ, + ොఉೕೖቁߪଵିఈ/ଶݖ

The estimate of exp൫ߚ௝௞൯is exp൫ߚመ௝௞൯, the standard error estimate of exp൫ߚመ௝௞൯ is ቀexp൫ߚመ௝௞൯�∙ ොఉೕೖቁߪ

and the corresponding 100(1 − %(ߙ Wald confidence interval for exp൫ߚ௝௞൯is

ቀexpቀߚመ௝௞ − ,ොఉೕೖቁߪଵିఈ/ଶݖ expቀߚመ௝௞ + ොఉೕೖቁቁߪଵିఈ/ଶݖ

Note that Wald confidence intervals are based on estimates on the original scale.

4.1.3 Chi-square statistics

The hypothesis =௜ߚ:଴௜ܪ 0 is tested for each non-redundant parameter using the chi-square statistic

௜ܿ= ቆ
መ௜ߚ
ොఉ೔ߪ
ቇ

ଶ

which has an asymptotic chi-square distribution with 1 degree of freedom, ଵ߯
ଶ.

Note that the chi-square statistic will not be calculated for the scale parameters ߶�()߬, even it is

estimated by ML method.

For ordinal multinomial distribution, the hypothesis ଴௝:߰௝ܪ = 0,݆= 1,⋯ −ܬ, 1, and ௝ߚ:଴௜ܪ = 0,݅=

1,⋯ ,݌, are tested for threshold parameters and regression parameters using the chi-square statistic

టܿೕ
= ቆ

ట෡ೕ

ఙෝഗ ೕ

ቇ

ଶ

and ఉܿ೔
= ൬

ఉ෡೔

ఙෝഁ೔

൰
ଶ

, respectively.

Similarly, టܿೕ
and ఉܿ೔

has an asymptotic chi-square distribution with 1 degree.

For nominal multinomial distribution, the test statistics for the hypothesis ௝௞ߚ:଴,௝௞ܪ = 0,݆= 1,⋯ −ܬ,

1,݇= 1,⋯ ,݌, is

ఉܿೕೖ
= ቆ

መ௝௞ߚ

ොఉೕೖߪ
ቇ

ଶ

which has an asymptotic chi-square distribution with 1 degree of freedom.

Chi-square statistics and their corresponding p-value are set to system missing values for redundant

parameter estimates.

Note that Chi-square statistics are based on estimates on the original scale.

4.1.4 P-values

The general form for calculating p-values for the tests above and below, given a test statistic T and a

corresponding cumulative distribution function ܩ as specified above, is defined as =݌ 1 − .(ܶ)ܩ For

example, the p-value for ଵ߯
ଶ test ߚ�:଴ܪ = 0 is =݌ 1 − ܾ݋ݎ݌ (ଵ߯

ଶ ≤)ܿ.

4.2 Tests

After estimating parameters and calculating relevant statistics, several tests for the given model are

performed: (1) Lagrange multiplier (LM) test for fixed  value or k value for negative binomial

distribution; (2) model fitting test; (3) model effect tests; (4) custom tests; and (5) estimating marginal

means (EMMEANS).

4.2.1 Lagrange multiplier test

If the scale parameter ߶ for normal, inverse Gaussian, gamma and Tweedie distributions is set to a

fixed value or specified by the deviance or Pearson chi-square divided by the degrees of freedom (the

latter case, ߶ can be considered as a fixed value), or an ancillary parameter ݇ is set to a fixed value for

negative binomial, then the LM test is offered to assess the validity of the value. For a fixed ߶ value

which can be any positive value or a fixed ݇ value other than 0, the test statistic is defined as

௅ܶெ =
ଶݏ

ܣ

where =ݏ ℓ߲ ߲߬⁄ (Table 7) and ܣ = −ቀ
డమℓ

డఛమ
ቁ− ቀ−

డమℓ

డఛడࢼ೅
ቁቀ−

డమℓ

డࢼడࢼ೅
ቁ
ି

ቀ−
డమℓ

డࢼడఛ
ቁ(Table 8) evaluated at

෡ࢼ and fixed ߶ or ݇ value (߬= ln(߶) , or ln ()݇). Then ௅ܶெ is an asymptotic chi-square with 1 degree

of freedom. The p-value can be calculated accordingly.

If the ancillary parameter ݇ for negative binomial is set to a fixed value, the LM test is provided to

assess the validity of the value.

For ݇ is set to 0, the LM test statistic is based on following auxiliary OLS regression (Cameron and

Trivedi, 1998).

−௜ݕ) (Ƹ௜ߤ
ଶ− ௜ݕ

Ƹ௜ߤ
= +Ƹ௜ߤߙ ௜ߝ

where =Ƹ௜ߤ ݃ିଵ(࢞௜
ࢼ் + (௜݋ and ௜ߝ is an error term. Let the response of the above OLS regression

−௜ݕ)] (Ƹ௜ߤ
ଶ− ௜ݕ ⁄Ƹ௜ߤ] be ௜andݖ the explanatory variable Ƹ௜beߤ .௜ݓ The estimate of the above regression

parameter ߙ and the standard error of the estimate of ߙ are

=ොߙ
∑ ௙೔௪೔௭೔
೙
೔

∑ ௙೔௪೔
మ೙

೔

and ොఈߪ = ඨ
భ

ಿషభ
∑ ௙೔(௭೔ି ఈෝ௪೔)

మ೙
೔

∑ ௙೔௪೔
మ೙

೔

Then the LM test statistic is z statistic

=ݖ
ොߙ

ොఈߪ

and it has an asymptotically standard normal distribution under the null hypothesis of equidispersion in

a Poisson model =݇:଴ܪ) 0). The alternative hypothesis can be one-sided overdispersion <݇:௔ܪ) 0),

underdispersion >݇:௔ܪ) 0) or two-sided non-directional ≠݇:௔ܪ) 0) with the variance function of

(ߤ)ܸ = +ߤ ଶߤ݇ . The calculation of p-value depends on the alternative. For <݇:௔ܪ 0 , p-value

= 1 − Φ(ݖ), where Φ(∙) is the cumulative probability of a standard normal distribution; for >݇:௔ܪ 0,

p-value = Φ(ݖ); and for ≠݇:௔ܪ 0, p-value= 2൫1 − Φ(|ݖ|)൯. We will show all three p-values.

Implementation note:

The z statistic can be calculated in one data pass under map/reduce environment as follows:

=ݖ ඨ
(ܰ − 1) ଶܵ

ଶ

ଵܵ ଷܵ− ଶܵ
ଶ

where ଵܵ = ∑ ௜݂ݖ௜
ଶ௡

௜ୀଵ , ଶܵ = ∑ ௜݂ݖ௜ߤ௜
௡
௜ୀଵ and ଷܵ = ∑ ௜݂ߤƸ௜

ଶ௡
௜ୀଵ .

In each mapper, compute ௜andݖ,Ƹ௜ߤ also accumulate ଵܵ, ଶܵ and ଷܵ, then in the reducer, combine all

parts of ଵܵ, ଶܵ and ଷܵ from all mappers to compute the z statistic.

4.2.2 Model fitting test

The model fitting omnibus test is based on –2 log-likelihood values for the model under consideration

and the initial model. For the model under consideration, the value of –2 log-likelihood is

−2ℓ൫ࢼ෡൯.

Let initial model be the intercept-only model if intercept is in the considered model or the null model

otherwise.

 For the intercept-only model, let the value of –2 log-likelihood is

−2ℓ൫ࢼ෡଴൯.

 For the null model, let the value of –2 log-likelihood is

−2ℓ(૙).

(a) The omnibus (or global) test statistic for all distribution except multinomial distribution is

ܵ= 2ቀℓ൫ࢼ෡൯− ℓ൫ࢼ෡଴൯ቁ for the intercept only model or

ܵ= 2ቀℓ൫ࢼ෡൯− ℓ(૙)ቁ for the null model

ܵhas an asymptotic chi-square distribution with r degrees of freedom, equal to the difference in the

number of valid parameters between the model under consideration and the initial model. =ݎ ௫݌ − 1

for the intercept-only model; =ݎ ௫݌ for the null model. The p-values then can be calculated

accordingly.

(b) For ordinal multinomial model,

 The value of –2 log-likelihood for the model under consideration is

−2ℓ൫࡮෡൯.

 The value of –2 log-likelihood for the thresholds-only model is

−2ℓ൫࡮෡଴൯.

where ෡଴࡮ = ൫࣒෡(଴)்,૙୘൯
୘
is the parameters estimated for thresholds-only model.

Then the omnibus test statistic is

ܵ= 2ቀℓ൫࡮෡൯− ℓ൫࡮෡଴൯ቁ,

and it is asymptotically chi-square distributed with ௫݌ degrees of freedom.

(c) For nominal multinomial model,

 The value of –2 log-likelihood for the model under consideration is

−2ℓ൫ࢼ෡൯.

 The value of –2 log-likelihood for the intercept-only model is

−2ℓ൫ࢼ෡଴൯.

where ෡଴ࢼ = ൫ࢼ෡ଵ
(଴)୘

, ⋯ ෡௃ିࢼ, ଵ
(଴)୘

൯
୘

is the parameters estimated for intercept-only model the

value of –2 log-likelihood for the null model is

−2ℓ(૙),

where ℓ(૙) = lnቀ
ଵ

௃
ቁ∑

௙೔ఠ೔

థ

௡
௜ୀଵ + ,ܿ and c is computed based on subpopulations (see Section

4.3.3.2 for details.)

Then the omnibus test statistics is

ܵ= 2ቀℓ൫ࢼ෡൯− ℓ൫ࢼ෡଴൯ቁ for the intercept only model or

ܵ= 2ቀℓ൫ࢼ෡൯− ℓ(૙)ቁ for the null model

and it is asymptotically chi-square distributed with degreesݎ of freedom. =ݎ ∑ ൫݌௫
௝
− 1൯௃ି ଵ

௝ୀଵ for

the intercept-only model, where ௫݌
௝ is the number of non-redundant parameters in ;௝ࢼ =ݎ ∑ ௫݌

௝௃ି ଵ
௝ୀଵ

for the null model.

When calculating the value of –2 log-likelihood of initial model we need to setup the rules to handle

the scale parameter  or the ancillary parameter k in the initial model and they depend on how it is

handled in the model under consideration.

(1) If the scale parameter ߶ or the ancillary parameter k is estimated by the ML method in the model

under consideration, then it will also be estimated by the ML method in the initial model.

(2) If the scale parameter  or the ancillary parameter k is held fixed in the model under consideration,

then the same value is fixed in the initial model.

(3) If the scale parameter  is specified by the deviance or Pearson chi-square divided by degrees of

freedom in the model under consideration, then that value will be held fixed in the initial model.

Note that the log likelihood for the model under consideration, would be adjusted, i.e., based on

߶ = ߶෠, so the log likelihoods for both models (the model under consideration and initial model)

are calculated based on the same scale parameter value.

The details of the calculation of initial model are given in Section 3.1.3.3. Please note that for a part of null

and intercept-only models, there are no closed form solutions, thus approximate models will be used. Thus,

when the initial model is different from the model under consideration and the approximate initial model is

used, then a warning message, such as “The omnibus test may not be accurate for the approximate initial

model being used”, would be displayed.

4.2.3 Tests for model effects

For each regression effect specified in the model, two analyses can be conducted: type I analysis and

type III analysis. The can request to do one of them, both of them or none.

4.2.3.1 Type I analysis

Type I analysis consists of fitting a sequence of models, starting with the null model as the baseline

model (for all distributions except ordinal multinomial), adding one additional effect, which can be an

intercept term (if there is one), covariates, factors and interactions, of the model on each step. For

ordinal multinomial model, the baseline model will be thresholds-only model. So it depends on the

order of effects specified in the model. On the other hand, type III analysis will not depend on the

order of effects. The reason for using the null model as the baseline model is to obtain the chi-square

statistic for the first parameter ଵࢼ which might be for an intercept or the first predictor variable.

(a) All distributions except multinomial distributions

For each effect specified in the model, type I test matrix ௜ࡸ is constructed and ࢼ௜ࡸ�:଴ܪ = ૙ is tested.

The Wald statistic is defined by

ܵ= ൫ࡸ௜ࢼ෡൯
ࢀ

௜ࡸࢳ௜ࡸ)
.෡ࢼ௜ࡸି(்

௜ࡸ is a ×ݎ ݌ full row rank hypothesis matrix and is constructed based on the generating matrix

ఠࡴ = ,ࢄࢹ்ࢄି(ࢄࢹ்ࢄ) where ࢹ is the scale weight matrix with the ith diagonal element being ߱௜and

such that ࢼ௜ࡸ is estimable. ෡ࢼ is the maximum likelihood estimate and ࢳ is the estimated covariance

matrix ࢳ) could be ௠ࢳ or .(௥ࢳ The asymptotic distribution of ܵ is ௥߯಴
ଶ , where ஼ݎ = rank(ࡸ௜ࡸࢳ௜

்), If

஼ݎ < ,ݎ ௜ࡸࢳ௜ࡸ)
்)ି is a generalized inverse such that Wald tests are effective for restricted set of

hypothesis ௜ࡸ
஼ࢼ containing a particular subset ܥ of independent rows from .଴ܪ See Fang and Spisic

(2004) for details. Then the p-values can be calculated accordingly.

Note that for type I analysis, ௜dependsࡸ on the order of effects specified in the model, but for type III

analysis, it does not. If such a matrix cannot be constructed, the effect is not testable. See Chiu (1995a,

b) and Zhong (2006a) for computational details on construction of type I and III test matrices.

(b) Ordinal multinomial distributions

For ordinal multinomial model, first consider partition more general test matrix =ࡸ ൫࣒)ࡸ ,൯(ࢼ)ࡸ,(

where ࣒)ࡸ) = ൫࢒ଵ, ⋯ ௃ି࢒, ଵ൯consists of columns corresponding to threshold parameters and (ࢼ)ࡸ be

the part of ࡸ corresponding to regression parameters. Consider matrix ଴ࡸ = ൫࢒଴,(ࢼ)ࡸ൯where the

column vectors corresponding to threshold parameters are replaced by their sum ଴࢒ = ∑ ௝࢒
௃ି ଵ
௝ୀଵ . Then ࡮ࡸ

is estimable if and only if ଴ࡸ = ఠࡴ଴ࡸ , where ఠࡴ = ଵࢄ)
ଵࢄି(ଵࢄࢹ்

ଵࢄࢹ் is a (1 + (݌ × (1 + (݌ matrix

constructed using ଵࢄ = (૚, (ࢄ− . The Wald statistic for testing ࡮ࡸ = ૙, where ࡸ is a ×ݎ −ܬ) 1 + (݌

full row rank hypothesis matrix is defined by

ܵ= ൫࡮ࡸ෡൯
்

෡࡮ࡸି(ࢀࡸࢳࡸ)

where ෡࡮ = ൫࣒෡்,ࢼ෡்൯
்
is the maximum likelihood estimate and ࢳ is the estimated covariance ࢳ) could

be ௠ࢳ or .(௥ࢳ The asymptotic distribution of S is�߯௥಴
ଶ , where ஼ݎ = rank(ࡸ઱்ࡸ).

For each effect specified in the model excluding threshold parameters, type I test matrix ௜ࡸ is

constructed and H଴:ࡸ�௜࡮ = 0 is tested. Construction of matrix ௜ࡸ is based on matrix

ఠࡴ = ଵࢄ)
ଵࢄି(ଵࢄࢹ்

ଵࢄࢹ் and such that ࡮௜ࡸ is estimable. Thus, the way to construct ௜ࡸ (type I and III)

for ordinal multinomial is the same as that for other distributions. Note that the threshold-parameter

effect is not tested for both type I and III analyses.

(c) Nominal multinomial distributions

For each effect specified in the model, ௜ࡸ is constructed based on the generating matrix ఠࡴ =

,ࢄࢹ்ࢄି(ࢄࢹ்ࢄ) where ࢹ is the scale weight matrix with the ith diagonal element being ߱௜and such

that ࢼ௜ࡸ is estimable.

ܵ= ൫ࡸ௜
ᇱࢼ෡൯

ࢀ
௜ࡸ)

ᇱࡸࢳ௜
ᇱ் ௜ࡸି(

ᇱࢼ෡

where =௜ᇱࡸ ௃ିࡵ ଵ⊗ ௜andࡸ ஼ݎ = rank(ࡸ௜
ᇱࡸࢳ௜

ᇱ்) ; ࢳ could be ௠ࢳ or .௥ࢳ The asymptotic distribution of ܵ

is ௥߯಴
ଶ .

4.2.3.2 Type III analysis

The computation of Wald statistics for type III analysis is similar to that for type I analysis. The only

difference is that type III L matrix is constructed.

4.2.4 Custom tests

Contrasts defined as linear combination of regression parameters can be tested. For a user specified ࡸ

and ࡷ , the hypothesis ࢼࡸ:଴ܪ = ࡷ is tested only when each row of the ࡸ matrix is checked for

estimablility (i.e. check if ఠࡴࡸ = whereࡸ ఠࡴ = ,ࢄࢹ்ࢄି(ࢄࢹ்ࢄ) and ࢹ is the scale weight matrix

with the ith diagonal element is ߱௜). Then test statistics, exponential estimation and multiple test p-

value adjustment are the three subsections to be discussed. For checking on estimability for ordinal and

nominal multinomial model, please see Section 4.2.3.1 for details.

4.2.4.1 Test statistics

The test statistics used is Wald statistics (see Section 4.2.3). Then the p-values are calculated

accordingly.

4.2.4.2 Exponential estimation

If ࡸ is a 1 × ݌ row vector, we can calculate the estimate of ,ࢼࡸ its approximate standard error and its

Wald confidence interval. In the meantime, for logistic regression or log-linear models, we can also

calculate exp(ࢼࡸ), its standard error, and its confidence interval. Note for other models, exp(ࢼࡸ)

might not make sense. The following table is shown the formulae:

Table 11: Estimate, Standard Error and Wald Conference Interval for ࢼࡸ and exp(ࢼࡸ)

ࢼࡸ exp(ࢼࡸ)

Estimate ෡ࢼࡸ exp൫ࢼࡸ෡൯

Std. Error ࢼࡸොߪ = ඥࢀࡸࢳࡸ ൫exp൫ࢼࡸ෡൯∙ ൯ࢼࡸොߪ

Wald confidence
interval

൫ࢼࡸ෡− ,ࢼࡸොߪଵିఈ/ଶݖ +෡ࢼࡸ ൯ࢼࡸොߪଵିఈ/ଶݖ ൫exp൫ࢼࡸ෡− ,൯ࢼࡸොߪଵିఈ/ଶݖ exp൫ࢼࡸ෡+ ൯൯ࢼࡸොߪଵିఈ/ଶݖ

4.2.4.3 Multiple test p-value adjustment

The above hypothesis ࢼࡸ:଴ܪ = ࡷ can be tested using the multiple row hypotheses testing technique.

Let ௜்࢒ be the ith row vector of matrix ࡸ and ௜݇be the ith element of vector ࡷ . The ith row hypothesis is

௜࢒:଴௜ܪ
ࢼ் = ௜݇ . Testing ଴ܪ is the same as testing multiple non-redundant row hypotheses ଴௜ܪ}

∗ }௜ୀଵ
ோ

simultaneously, where ܴ is the number of non-redundant row hypotheses, and ∗଴௜ܪ represents the ith

non-redundant hypothesis. A hypothesis ଴௜ܪ is redundant if there exists another hypothesis ≠݆,଴௝ܪ ݅

such that =௜࢒ ,௝ܿ࢒ ௜݇= c ௝݇, ܿ≠ 0.

For each individual hypothesis ,଴௜ܪ test statistics can be calculated. Let ௜݌ denotes the p-value for

testing ,଴௜ܪ and ∗௜݌ denotes the adjusted p-value. The conclusion from the multiple testing is, at level ߙ

(the family-wise type I error),

reject ࢼ௜்࢒:଴௜ܪ = ௜݇, if ∗௜݌ < ;ߙ

reject ࢼࡸ:଴ܪ = ࡷ , if min௜(݌௜
∗) < .ߙ

There are different methods to adjust p-values. Five methods are provided here. Please note that if the

adjusted p-value is bigger than 1, it is set to 1 in all the methods.

(a) LSD (Least Significant Difference)

The adjusted p-values are the same as the original p-values: ∗௜݌ = .௜݌

(b) Bonferroni

The adjusted p-values are ∗௜݌ = .௜݌ܴ

(c) Sidak

The adjusted p-values are ∗௜݌ = 1 − (1 − (௜݌
ோ.

(d) Sequential Bonferroni

In sequential test, the p-values are first ordered from the smallest to the biggest, and then adjusted

depending on the order. Let the ordered p-values for the non-redundant row hypotheses be (ଵ)݌ ≤

(ଶ)݌ ≤ ⋯ ≤ (ோ)݌ with corresponding non-redundant hypotheses being be ଴(ଵ)ܪ ≤ ଴(ଶ)ܪ ≤ ⋯ ≤ .଴(ோ)ܪ

The adjusted p-value of (௜)݌ is (௜)݌
∗ = ൝

(ଵ)݌ܴ if�݅= 1

maxቀ(ܴ − ݅+ ௜ି)݌,(௜)݌(1 ଵ)
∗ ቁ if�݅≥ 2

�.

Note: if a row hypothesis is made redundant by ଴(௜)ܪ
∗ , the p-value and adjusted p-value of this row are

the same as that of ଴(௜)ܪ
∗ . This applies to both sequential Bonferroni and Sidak tests.

(e) Sequential Sidak

The adjusted p-value of (௜)݌ is (௜)݌
∗ = ቐ

1 − ൫1 − ൯(ଵ)݌
ோ

if�݅= 1

maxቀ1 − ൫1 − ൯(௜)݌
ோି௜ାଵ

௜ି)݌, ଵ)
∗ ቁ if�݅≥ 2

�.

See Fang and Spisic (2004) for comparison of adjustment methods.

Note that if confidence intervals are also calculated for the above hypothesis, then adjusting confidence

intervals is required to correspond to adjusted p-values. The only item needed to be adjusted in the

confidence intervals is the critical value from the standard normal distribution. Assume that the

original critical value is ଵିఈ/ଶݖ and the adjusted critical value is .∗ݖ

(a) LSD (Least Significant Difference)

The adjusted critical value is ∗ݖ = ଵିഀݖ
మ
.

(b) Bonferroni

The adjusted critical value is ∗ݖ = ଵିݖ ഀ

మೃ
.

(c) Sidak

The adjusted critical value is ∗ݖ = ݖ
ଵି

భష(భషഀ)భ/ೃ

మ

.

(d) Sequential Bonferroni

The adjusted ∗ݖ values will correspond to the ordered adjusted p-values ,(ଶ)݌,(ଵ)݌ ⋯ (ோ)݌, as follows:

(௜)ݖ
∗ = ቐ

ݖ
ଵି

ఈ
ଶோ

if�݅= 1

min൬ݖ
ଵି

ఈ
ଶ(ோି௜ାଵ)

௜ି)ݖ, ଵ)
∗ ൰ if�݅≥ 2

�.

(e) Sequential Sidak

(௜)ݖ
∗ =

⎩
⎨

⎧
ݖ
ଵି

ଵି(ଵିఈ)భ/ೃ

ଶ

if�݅= 1

minቆݖ
ଵି

ଵି(ଵିఈ)భ/(ೃష೔శభ)

ଶ

௜ି)ݖ, ଵ)
∗ ቇ if�݅≥ 2

�.

4.2.5 EMMEANS

There are two types of estimated marginal means (EMMEANS) calculated here. One corresponds to

the specified factors for the linear predictor of the model and the other corresponds to those for the

response of the model.

EMMEANS are based on the estimated cell means. For a given fixed set of factors, or their

interactions, we estimate marginal means as the mean value averaged over all cells generated by the

rest of the factors in the model. Covariates may be fixed at any specified value. If not specified, the

value for each covariate is set to its overall mean estimate.

For ordinal and nominal multinomial model, EMMEANS are not available.

4.2.5.1 EMMEANS for the linear predictor

(a) Calculating EMMEANS for the linear predictor

EMMEANS for the linear predictor are based on the link function transformation. They are computed

for the linear predictor. Since the given model with respect to the linear predictor is a linear model (i.e.

the model is ࣁ = ࢼࢄ + offset), so the way to construct ࡸ is the same as that for the GLM procedure.

Each EMMEAN for the linear predictor is constructed in the form ෡ࢼࡸ such that ࢼࡸ is estimable.

Briefly, for a given set of factors in the model, a vector of EMMEANS for the linear predictor is

created for all combined levels of the factors. Assume there are ݎ levels. This ×ݎ 1 vector can be

expressed in the form =ෝ࢜ ෡ࢼࡸ where each row of matrixࡸ is generated as described above. Variance

matrix of ෝ࢜ is then computed by the following formula

(ෝ࢜)ࢂ = .்ࡸ઱ࡸ

Note that ࢳ could be ௠ࢳ or .௥ࢳ The standard error for the jth element of ෝ࢜ is the square root of the jth

diagonal element of .(ෝ࢜)ࢂ Let the jth element of ෝ࢜ and its standard error be ො௝ݒ and ,ො௩ೕߪ respectively,

then the corresponding 100(1 – a)% Wald confidence interval for =݆,௝ݒ 1,⋯ ݎ, is given by

ቀݒො௝− +ො௝ݒ,ො௩ೕߪଵିఈ/ଶݖ .ො௩ೕቁߪଵିఈ/ଶݖ

(b) Comparing EMMEANS for the linear predictor

We can compare EMMEANS for the linear predictor based on a selected contrast type which a set of

contrasts for the factor is created. Let this set of contrasts define matrix ࡯ used for testing the following

hypothesis ࢜࡯:଴ܪ = ૙ (an overall test). A Wald statistic is used for testing given set of contrasts for

the factor as follows:

S = .(ෝ࢜࡯)ି(்࡯(ෝ࢜)ࢂ࡯)்(ෝ࢜࡯)

Asymptotic distribution of the Wald statistic is chi-square with ூdegreesݎ of freedom, whereݎ�ூ =

rank(ࢂ࡯(࢜ෝ)்࡯). The p-value can be calculated accordingly. Note that the adjusted p-value based on

multiple test p-value adjustments (see Section 4.2.4.3) won’t be given.

Each row ௜ࢉ
் of matrix ࡯ is also tested separately (individual tests). Estimate for the ith row is given by

௜ࢉ
ෝ்࢜ and its standard error by ඥࢉ௜்ࢂ(࢜ෝ)ࢉ௜. The corresponding 100(1 – a)% Wald confidence interval

for ࢜௜்ࢉ is given by

൬ࢉ�௜
−ෝ்࢜ ௜ࢉଵିఈ/ଶටݖ

,௜ࢉ(ෝ࢜)ࢂ் ௜ࢉ
+ෝ்࢜ ௜ࢉଵିఈ/ଶටݖ

.௜൰ࢉ(ෝ࢜)ࢂ்

The Wald statistic for ௜ࢉ�:଴ܪ
்࢜ = 0 is

௜ܵ= ቆ
௜ࢉ
ෝ்࢜

௜ࢉ
௜ࢉ(ෝ࢜)ࢂ்

ቇ

ଶ

.

And it has an asymptotic chi-square distribution with 1 degree of freedom. The p-values can be

calculated accordingly. In addition, the adjusted p-values can also computed, see Section 4.2.4.3 for

details.

Note:

 The usual contrast types used in ࡯ are included

 Deviation

 Simple

 Helmert

 Difference

 Polynomial

 Repeated

See Appendix of SPSS Advanced Statistics 7.5 (1997) for definitions of these contrasts. Note the

definition of deviation is revised: each level of the factor is compared to the grand mean.

 In addition, we would like to offer pair-wise contrast (the differences between EMMEANS for each

pair of levels for the effect), ࡯ can be constructed similarly as that in GLM procedure.

4.2.5.2 EMMEANS for the response

EMMEANS for the response are based on the original scale of the dependent variable except for the

binomial response with events/trials format (see note below). They can be defined as the estimator of

the expected response for a subject conditional on his/her belonging to a specified effect and having

the averages of covariates.

(a) Calculating EMMEANS for the response

The way to construct EMMEANS for the response is based on EMMEANS for the linear predictor. Let

෡௖ࡹ be EMMEANS for the response and it is defined as

෡௖ࡹ = ݃ିଵ൫ࢼࡸ෡൯= ݃ିଵ(࢜ෝ).

The variance of EMMEANS for the response is

=෡௖൯ࡹ൫ࢂ diagቆ
∂݃ିଵ൫ݒො௝൯

ො௝ݒ∂
ቇ்ࡸࢳࡸdiagቆ

∂݃ିଵ൫ݒො௝൯

ො௝ݒ∂
ቇ

Where diag൫∂݃ିଵ൫ݒො௝൯ ො௝ൗݒ∂ ൯a ×ݎ matrixݎ and ∂݃ିଵ൫ݒො௝൯ ො௝ൗݒ∂ is the derivative of the inverse of the

link with respect to the jth value in ෝ࢜ and ∂݃ିଵ൫ݒො௝൯ ො௝ൗݒ∂ = 1 ′݃൫ܯ෡௖௝൯⁄ where ′݃൫ܯ෡௖௝൯is from Table 5.

The standard error for the jth element of ෡௖ࡹ and the corresponding confidence interval are calculated

similar to those of ,ෝ࢜ see Section 4.2.5.1-(a) for details.

Note:

෡௖ࡹ is EMMEANS for the proportion, not for the number of events when ݎ and ݉ (events/trials)

variables are used for the binomial distribution. See P. 62 for discussion about binomial response with

events/trials format.

(b) Comparing EMMEANS for the response

It is similar to comparing EMMEANS for the linear predictor, just replace ෝwith࢜ ෡௖ࡹ and (ෝ࢜)ࢂ with

.෡௖൯ࡹ൫ࢂ See Section 4.2.5.1-(b) for details.

4.2.5 Tests on original scale

(a) Lagrange multiplier test (Section 4.2.1)

(b) Model fitting test (Section 4.2.2)

All statistics calculated are the same on either original or transformed scale. Since parameters have

been estimated based on transformed scale and a lot of values are available, those statistics should be

calculated based on transformed scale.

(c) Tests for model effects (Section 4.2.3)

(d) EMMEANS and custom tests (Section 4.2.4)

For each effect specified in the model, type I or III test matrix ࡸ is constructed from the generating

matrix, ఠࡴ = .ࢄષ்ࢄି(ࢄષ்ࢄ) We may have trouble to calculate ఠࡴ directly. Use the transformed

variables, we will first calculate ఠࡴ
∗ = .∗ࢄષ்∗ࢄି(∗ࢄષ்∗ࢄ) Since ఠࡴ = ఠࡴ࡭

∗ ,ଵି࡭ we can obtain ఠࡴ

from ఠࡴ
∗ , then construct type I or III test matrix ௜ࡸ for the ith effect based on original scale from ఠࡴ .

For ordinal multinomial, use ఠࡴ = ଵࢄ)
ଵࢄି(ଵࢄષࢀ

ଵࢄષࢀ , ࣓ࡴ
∗ = ଵࢄ)

ଵࢄષࢀ∗
ଵࢄି(∗

ଵࢄષࢀ∗
∗ and ఠࡴ =

ఠࡴࢀ
∗ ଵିࢀ to construct type I or III test matrix .ࡸ

For nominal multinomial, use ఠࡴ = ,ࢄષ்ࢄି(ࢄષ்ࢄ) ఠࡴ
∗ = ∗ࢄષ்∗ࢄି(∗ࢄષ்∗ࢄ) and ఠࡴ = ఠࡴࢀ

∗ ଵିࢀ

to construct type I or III test matrix .ࡸ

4.3 Goodness of fit

To assess goodness of fit of a given generalized linear model, we calculate three statistics: deviance,

Pearson chi-square, and information criteria.

Note that all statistics are the same on either or transformed scale. Since parameters have been

estimated based on the transformed scale and a lot of values are available, those statistics should be

calculated based on the transformed scale.

4.3.1 Deviance

The theoretical definition of deviance is as follows:

ܦ = 2߶൫ℓ(࢟;࢟) − ℓ(ࣆෝ;࢟)൯

where ℓ(ࣆෝ;࢟) is the log likelihood function expressed as the function of the predicted mean values of

ෝࣆ (calculated based on the parameter estimates) given the response variable࢟� and ℓ(࢟;࢟) is the log

likelihood function by replacing ෝwithࣆ .࢟ The formula used for the deviance is ∑ ௜݂݀ ௜
௡
௜ୀଵ where the

form of ௜݀ for the distributions is given in the following table:

Table 9: The Form of ௜݀ for Probability Distributions

Distribution ௜݀

Normal  
2

i i iy 

Inverse Gaussian  
2

2
i

i i

i i

y
y







Gamma 2 ln i i i
i

i i

y y 


 

    
   
   

Negative binomial  
12 ln 1 ln
1

i i
i i i

i i

y y k
y y k

k


 

     
     

     

Poisson  2 ln i
i i i i

i

y
y y 



   
   

   

Binomial(m)  
12 ln 1 ln
1

i i
i i i

i i

y y
y y

 

     

     
     

Tweedie
   

   

2 1 22 1
2

1 2

q q q
i i i i

i

y q y q

q q

 


       
 

   

Note:

 When y is a binary dependent variable with 0/1 values (binomial distribution), and categorical

variable (multinomial distribution), the deviance and Pearson chi-square are calculated based on

the subpopulations, see Section 4.3.3.2 below.

 When y = 0 for negative binomial and Poisson distributions and y = 0 (for r = 0) or 1 (for r = m)

for binomial distribution with r/m format, separate values are given the deviance. Let ௜݀be the

deviance value for individual case i when yi = 0 for negative binomial and Poisson and 0/1 for

binomial.

Distribution id

Negative binomial
 ln 1

2 if 0i

i i

k
y

k







Poisson 2 if 0i i iy  

Binomial(m)
 

 

2 ln 1 if 0 or 0

2 ln if 1 or
i i i i

i i i i i

y r

y r m

 

 





   

  

4.3.2 Pearson chi-square

Pearson chi-square statistic is defined as follows

߯ଶ = ෍ ௜݂ߛ௜
௡

௜ୀଵ

where =௜ߛ
ఠ೔
∗(௬೔ି ఓ೔)

మ

௏(ఓ೔)
for binomial distribution and =௜ߛ

ఠ೔(௬೔ି ఓ೔)
మ

௏(ఓ೔)
for other distributions.

4.3.3 Scaled deviance and Pearson chi-square

The scaled deviance is ∗ܦ = ܦ ߶⁄ and the scaled Pearson chi-square is ߯ଶ∗ = ߯ଶ ߶⁄ if ߶ is known

from estimating as a parameter or setting as a fixed value.

Since the scaled deviance and Pearson chi-square statistics, have a limiting chi-square distribution with

degrees of freedom equal to the number of observations (effective sample size) minus the number of

non-redundant regression parameters estimated, i.e. d.f. = N – px, the deviance or Pearson chi-square

divided by its degrees of freedom can be used as an estimate of the scale parameter ߶ for both

continuous and discrete distributions.

߶෠=
ܦ

ܰ − ௫݌
or��߶෠=

߯ଶ

ܰ − ௫݌

If the ancillary parameter k of negative binomial is estimated by the ML method, the scale parameter ߶

is measured by the deviance or Pearson chi-square divided by its degrees of freedom, then the degrees

of freedom is ܰ − ௫݌ − 1 not usual ܰ − ௫݌ because k is the extra parameter estimated by ML method.

Note that the values of the deviance and Pearson chi-square divided by the degrees of freedom (they

might be called D/df and Pearson/df, respectively) will be computed no matter how the scale parameter

is treated.

If the scale parameter is measured by the deviance or Pearson chi-square, first we assume ߶ = 1,

estimate ,෡ࢼ calculate the deviance and Pearson chi-square values and obtain ߶෠from the above formula.

Then the scaled version of both statistics is obtained by dividing the deviance and Pearson chi-square

by ߶෠. In the meantime, some statistics need to be revised. The gradient vector and the Hessian matrix

are divided by ߶෠and the covariance matrix is multiplied by�߶෠. Accordingly the estimated standard

errors are also adjusted, the Wald confidence intervals and significance tests will be affected even the

parameter estimates are not affected by�߶෠.

Note that two log likelihood values would be displayed: original one (based on ߶ = 1) and adjusted

one (based on ߶ = ߶෠ which is plugged into the log likelihood function of the corresponding

distribution).

4.3.3.1 Overdispersion

For the Poisson, binomial distributions and multinomial distribution, if the estimated scale parameter ߶෠

is not near the assumed value of one, then the data may be overdispersed if the value is greater than

one or underdispersed if the value is less than one. Overdispersion is more common in practice. The

problem with overdispersion is that it may cause standard errors of the estimated parameters to be

underestimated. A variable may appear to be a significant predictor, when in fact it is not.

4.3.3.2 Deviance and Pearson chi-square for binomial distribution with 0/1
binary response variable and multinomial distribution

When r and m (event/trial) variables are used for the binomial distribution, each case represents m

Bernoulli trials. When y is a binary dependent variable with 0/1 values, each case represents a single

trial. The trial can be repeated for several times with the same setting (i.e. the same values for all

predictors). For example, suppose the first 10 y values are 2 1s and 8 0s and x values are the same (if

recorded in events/trials format, these 10 cases is recorded as 1 case with r = 2 and m = 10), then these

10 cases should be considered from the same subpopulation. Cases with common values in the variable

list that includes all predictors are regarded as coming from the same subpopulation. When the

binomial distribution with binary response is used, we should calculate the deviance and Pearson chi-

square based on the subpopulations. If we calculate them based on the cases, the results might not be

useful.

If subpopulations are specified for the binomial distribution with 0/1 binary response variable, the data

should be reconstructed from the single trial format to the events/trials format. Assume the following

notations for reconstructed data:

ns Number of subpopulations.

rj1 Sum of the product of the frequencies and the scale weights associated with y = 1 in the jth

subpopulation. So rj0 is that with y = 0 in the jth subpopulation.

mj Total weighted observations and mj = rj1 + rj0.

yj1 The proportion of 1s in the jth subpopulation and yj1= rj1/ mj.

The fitted probability in the jth subpopulation (ˆ
j would be the same for each case in the jth

subpopulation because values for all predictors are the same for each case.)

The deviance and Pearson chi-square are defined as follows:

ܦ = 2෍ ݉௝൝ݕ௝ଵlnቆ
௝ଵݕ

௝ߤ
ቇ+ ൫1 − ௝ଵ൯lnቊݕ

1 − ௝ଵݕ

1 − ௝ߤ
ቋൡ

௡ೞ

௝ୀଵ

and

χଶ = ෍
݉௝൫ݕ௝ଵ − ௝൯ߤ

ଶ

௝൫1ߤ − ௝൯ߤ

௡ೞ

௝ୀଵ

The degrees of freedom equal to the number of subpopulations minus the number of non-redundant

regression parameters estimated, i.e. d. f. = ௦݊− ௫݌ then the values of the deviance and Pearson chi-

square divided by the degrees of freedom can be computed accordingly, and the corresponding

estimate of the scale parameter ߶�will be

j

߶෠=
ܦ

௦݊− ௫݌
and��߶෠=

߯ଶ

௦݊− ௫݌

For ordinal and nominal multinomial models, similarly, the data will be reconstructed based on

subpopulations. Assume the following notations for reconstructed multinomial data:

ns Number of subpopulations.

,i jr Sum of the product of the frequencies and the scale weights associated with the jth category
in the ith subpopulation.

mi Total weighted observations for the ith subpopulation and ,
1

J

i i j
j

m r




,ˆ i j The fitted probability for the jth category in the ith subpopulation.

The deviance and Pearson chi-square are defined as follows:

ܦ = 2෍ ෍ ௜௝lnቆݎ
௜௝ݎ

݉ ௜ߨො௜,௝
ቇ

௃

௝ୀଵ

௡ೞ

௜ୀଵ
and���߯ ଶ = ෍ ෍

൫ݎ௜௝− ݉ ௜ߨො௜,௝൯
ଶ

݉ ௜ߨො௜,௝

௃

௝ୀଵ

௡ೞ

௜ୀଵ

The degrees of freedom equal to ௦݊(ܬ− 1) − ݀ where ݀ = −ܬ 1 + ௫݌ for the ordinal multinomial

distribution; ݀ = ∑ ௫݌
௝௃ି ଵ

௝ୀଵ for the nominal multinomial distribution, then the values of the deviance and

Pearson chi-square divided by the degrees of freedom can be computed accordingly, and the

corresponding estimate of the scale parameter ߶ will be

߶෠=
ܦ

௦݊(ܬ− 1) − ݀�
and��߶෠=

߯ଶ

௦݊(ܬ− 1) − ݀�

Notes

 For the situation of a large volume of data (“Big Data”), the number of subpopulations may be

very large when all predictors are used to define subpopulations. Thus, in the Map-Reduce

environment, it may cause a network traffic jam. The three alternating methods will be considered

below based on their priorities from high to low.

(1) A record is defined as a subpopulation;

(2) All factors in predictors are used to define subpopulations; if there are no factors in predictors,

a record forms a subpopulation;

(3) All predictors first are binned into ݇ bins; the subpopulations are defined on all predictors

binned. ݇ is set to 5 by default.

 The value of the constant ܿfor binomial models is calculated as follow

ܿ= ෍ ln�ቆ
݉௝!

!௝ଵݎ!௝଴ݎ
ቇ

௡ೄ

௝ୀଵ

.

The value of the constant ܿfor ordinal and nominal multinomial models is calculated as follow,

ܿ= ෍ ln�ቆ
݉ ௜!

!௜ଵݎ !௜௃ݎ�⋯
ቇ

௡ೄ

௜ୀଵ

.

4.3.4 Information Criteria

Information criteria are used when comparing different models for the same data, the following criteria

are given in smaller is better form. If we let ℓ be the log likelihood evaluated at ,෡ࢼ the formula for

various criteria are given as below. Note that for all distributions except multinomial, ݀ = ௫݌ if only ࢼ

is included; ݀ = ௫݌ + 1 if ࢼ and ߶ for normal, inverse Gaussian, gamma and Tweedie distributions or

 and k for negative binomial distribution are included; ݀ = −ܬ 1 + ௫݌ for ordinal multinomial

distribution; ݀ = ∑ ௫݌
௝௃ି ଵ

௝ୀଵ for the nominal multinomial distribution.

(1) Akaike information criteria (AIC)

−2ℓ + 2݀

(2) Finite sample corrected AIC (AICC)

−2ℓ +
2݀ܰ

(ܰ − ݀− 1)

(3) Bayesian information criteria (BIC)

−2ℓ + ݀ ln(ܰ)

(4) Consistent AIC (CAIC)

−2ℓ + ݀(ln(ܰ) + 1)

Notes:

 ℓ (the full log likelihood) can be replaced with ℓ௞ (the kernel of the log likelihood) depending on

the user’s choice.

 If the scale parameter is specified by the deviance or Pearson chi-square, the log likelihood, ℓ or

ℓ௞ would be original one, i.e., based on ߶ = 1, for fair comparison among different models.

 When r and m (event/trial) variables are used for the binomial distribution, then N used here would

be the sum of the trials frequencies, i.e. ܰ = ∑ ௜݂
௡
௜ୀଵ ݉ ௜. In this way, the same value results

whether the data are in raw, binary form (using single-trial syntax) or in summarized, binomial

form (events/trials syntax).

5. Scoring

Scoring is defined as assigning one or more values to a case in a data set. Two types are considered

here: predicted values and model diagnostics.

Note that if the target is not transformed, then all predicted and diagnostics values calculated are the

same on either original or transformed scale. However, if the target is transformed, then predicted

values of the linear predictors and the means (they are the same here) and their confidence intervals

would be a different on original or transformed scale. If calculated on transformed scale, those values

should be added .തݕ To avoid confusion, all values should be calculated on original scale.

5.1 Predicted values

Due to the non-linear link functions, the predicted values will be computed for the linear predictor and

the mean of the response separately. Also, since estimated standard errors of predicted values of linear

predictor are calculated, the confidence intervals for the mean are obtained easily.

Notice that the predicted values can be computed for the case not used in the model-building phrase.

That is the response variable can be missing and the predicted values are still computed as long all the

predictor variables have non-missing values in the given model. An additional requirement is that

given predictor variable values could be properly parameterized by using only the existing model

parameters. See Woods (2004), “Guidelines for Scoring under Various Data and Model Conditions,”

for details.

5.1.1 Predicted values of the linear predictors

A predicted value of the linear predictor ௜correspondingߟ to ௜࢞ is given by

=Ƹ௜ߟ ௜࢞
+෡ࢼ் .௜݋

For ordinal multinomial model, a predicted value of the linear predictor for category j ௜,௝ߟ

corresponding to ௜࢞ is given by

Ƹ௜,௝ߟ = ෠߰
௝− ௜࢞

+෡ࢼ் =݆,௜݋ 1, … −ܬ, 1.

For nominal multinomial model, a predicted value of the linear predictor for category j ௜,௝ߟ

corresponding to ௜࢞ is given by

Ƹ௜,௝ߟ = ௜࢞
+෡௝ࢼ் =݆,௜݋ 1, … −ܬ, 1.

5.1.2 Estimated standard errors of predicted values of linear
predictor

The estimated standard error of Ƹ௜ߟ is given by

ොఎ೔ߪ = ට࢞௜
௜࢞ߑ்

where ࢳ could be ௠ࢳ or .௥ࢳ

For ordinal multinomial model, the estimated standard error of Ƹ௜,௝ߟ is given by

ොఎ೔,ೕߪ = ඨ(1, ௜࢞−
௝൬ࢳ(்

1
௜࢞−

൰,݆= 1, … −ܬ, 1,

where ௝ࢳ is a reduced parameter estimates covariance (1 + p) (1 + p) matrix from .ࢳ Suppose ࢳ for

ordinal multinomial models has the following form:

ࢳ = ൤
టࢳ ,ట టࢳ ࢼ,

ట,ࢼࢳ ࢼ,ࢼࢳ
൨=

⎣
⎢
⎢
⎢
⎢
⎡

൥

ଵ,ଵߪ ⋯ ଵ,(௃ିߪ ଵ)

⋮ ⋱ ⋮
௃ି)ߪ ଵ),ଵ ⋯ ௃ି)ߪ ଵ,௃ି �ଵ)

൩ ൥

ଵ,௃ߪ ⋯ ଵ,(௃ିߪ ଵା௣)

⋮ ⋱ ⋮
௃ି)ߪ ଵ),௃ ⋯ ௃ି)ߪ ଵ,௃ି �ଵା௣)

൩

൥

௃,ଵߪ ⋯ ௃,(௃ିߪ ଵ)

⋮ ⋱ ⋮
௃ି)ߪ ଵା௣),ଵ ⋯ ௃ି)ߪ ଵା௣,௃ି �ଵ)

൩ ൥

௃,௃ߪ ⋯ ௃,(௃ିߪ ଵା௣)

⋮ ⋱ ⋮
௃ି)ߪ ଵା௣),௃ ⋯ ௃ି)ߪ ଵା௣,௃ି �ଵା௣)

൩
⎦
⎥
⎥
⎥
⎥
⎤

then ௝willࢳ have the following form as it takes the corresponding elements in the j-th row and column

of ࢳ and :ࢼ,ࢼࢳ

௝ࢳ =

⎣
⎢
⎢
⎡

௝,௝ߪ ,௝,௃ߪൣ ⋯ ௝,(௃ିߪ, ଵା௣)൧

൥

௃,௝ߪ

⋮
௃ି)ߪ ଵା௣),௝

൩ ࢼ,ࢼࢳ

⎦
⎥
⎥
⎤

For nominal multinomial model, the estimated standard error of Ƹ௜,௝ߟ is given by

ොఎ೔,ೕߪ = ට࢞௜
=݆,௜࢞௝ࢳ் 1, … −ܬ, 1,

where ௝ࢳ is part of covariance matrix ࢳ corresponding to the covariance matrix of .෡௝ࢼ

5.1.3 Predicted values of the means

A predicted value, or fitted value, of the mean ௜correspondingߤ to ௜࢞ is given by

=Ƹ௜ߤ ݃ିଵ൫࢞௜
+෡ࢼ் ௜൯݋

where ݃ିଵ is the inverse of the link function. For binomial distribution with 0/1 binary response

variable, Ƹ௜ߤ is the predicted probability of category 1.

For ordinal multinomial model, a predicted value, or fitted value, of the cumulative response

probability for category j, ௜,௝ߛ corresponding to ௜࢞ is given by

ො௜,௝ߛ = ݃ିଵ൫߰෠௝− ௜࢞
+෡ࢼ் =݆,௜൯݋ 1, … −ܬ, 1 withߛ�ො௜,௃ = 1.

For nominal multinomial model, the predicted value of the probability for category j corresponding ௜࢞
is given by

ො௜,௝ߨ = ݃ିଵ൫ߟƸ௜,௝൯=

⎩
⎪
⎨

⎪
⎧

exp�൫ߟƸ௜,௝൯

1 + ∑ exp ௃ି(Ƹ௜,௞ߟ) ଵ
௞ୀଵ

, ݆= 1,⋯ −ܬ, 1,

1

1 + ∑ exp ௃ି(Ƹ௜,௞ߟ) ଵ
௞ୀଵ

, ݆= .ܬ

�

5.1.4 Confidence intervals for the means

Approximate 100(1-a)% confidence intervals for the mean ௜canߤ be computed as follows

݃ିଵ൫࢞௜
+෡ࢼ் ±௜݋ ොఎ൯ߪଵିఈ/ଶݖ

For ordinal multinomial model, approximate 100(1-a)% confidence intervals for the cumulative

response probability ො௜,௝ߛ can be computed as follows

݃ିଵ ቀ߰෠௝− ௜࢞
+෡ࢼ் ±௜݋ =݆,ොఎ೔,ೕቁߪଵିఈ/ଶݖ 1,⋯ −ܬ, 1.

If either endpoint in the argument is outside the valid range for the inverse link function, the

corresponding confidence interval endpoint is set to a system missing value.

For nominal multinomial model, approximate 100(1-a)% confidence intervals for the probability,

ො௜,௝ߨ can be computed as follows

±ො௜,௝ߨ =݆,ොగ೔,ೕߪଵିఈ/ଶݖ 1,⋯ .ܬ,

where ොగ೔,ೕߪ can be computed by

ොగ೔,ೕߪ = ቈ
ො௜,௝ߨ߲

Ƹ௜,ଵߟ߲
, ⋯ ,

ො௜,௝ߨ߲

Ƹ௜,௃ିߟ߲ ଵ

቉Cov(ࣁෝ௜)ቈ
ො௜,௝ߨ߲

Ƹ௜,ଵߟ߲
, ⋯ ,

ො௜,௝ߨ߲

Ƹ௜,௃ିߟ߲ ଵ

቉

୘

,

ො௜,௝ߨ߲

Ƹ௜,௞ߟ߲
= ቊ

ො௜,௝൫1ߨ − ො௜,௝൯ߨ ݆= ݇

ො௜,௞ߨො௜,௝ߨ− ݆≠ ݇
�,

Cov(ࣁෝ௜) = Covቌ቎

Ƹ௜,ଵߟ
⋮

Ƹ௜,௃ିߟ ଵ

቏ቍ = ൫ࡵ௃ି ଵ⨂࢞௜
்൯ࢳ൫ࡵ௃ି ଵ⨂࢞௜൯

and ௃ିࡵ ଵ is a −ܬ) 1) × −ܬ) 1) identity matrix and ࢳ could be ௠ࢳ or .௥ࢳ

5.1.5 Predicted category for binomial and multinomial
distributions

For binomial distribution with 0/1 binary response variable, the predicted category (௜࢞ܿ) is

(௜࢞ܿ) = ൜
1 (or success) ifߤ�௜≥ 0.5
0 (or failure) otherwise

�.

For ordinal and nominal multinomial model, the predicted category (௜࢞ܿ) is the one with the highest

predicted probability, i.e.,

(௜࢞ܿ) = arg max
௝

ො௜,௝ߨ

If there is a tie in determining ,(௜࢞ܿ) then tie will be broken by choosing the category with

1) Higher ௝ܰ = ∑ ௜݂ݕ௜,௝
௡
௜ୀଵ .

2) If it ties in 1), choose the one with lower category number.

5.1.6 Classification table for binomial and multinomial
distributions

Suppose that (ܿ ,݆ ′݆) is the sum of the frequency for the observations whose actual target category is ݆

(as row) and predicted target category is ′݆ (as column), ,݆݆ᇱ= 1,⋯ note)ܬ, that =ܬ 2 for binomial),

then

(ܿ ,݆݆ᇱ) = ෍ ௜݂ݕ)ܫ௜= ,݆ (௜࢞ܿ) = ′݆)

௡

௜ୀଵ

where (∙)ܫ is indicator function.

Suppose that ௝,௝ᇲis݌ the (,݆݆ᇱ)th element of the classification table, which is row percentage, then

௝,௝ᇲ݌ = ቆ
(ܿ ,݆݆ᇱ)

∑ (ܿ ,݆)݇௃
௞ୀଵ

ቇ× 100%

The percentage of total correct predictions of the model is

=௧௢௧௔௟݌ ൭
∑ (ܿ ,݆)݆௃
௝ୀଵ

∑ ∑ (ܿ ,݆ ′݆)௃
௝ᇲୀଵ

௃
௝ୀଵ

൱× 100%.

5.2 Model diagnostics

In addition to predicted values, we can calculate some values which would be good for model

diagnostics for all distributions except multinomial. They include leverage values, residuals and cook’s

distance values.

5.2.1 Leverage values

The leverage value ℎ௜is defined as the i-th diagonal element of the hat matrix

ࡴ = ࢃ ௘
ଵ/ଶ
ࢃ்ࢄ)ࢄ ௘ࢃ்ࢄି(ࢄ ௘

ଵ/ଶ

where the i-th diagonal element for ࢃ ௘ is

=௘,௜ݓ
߱௜

߶
∙

1

)(௜ߤ)ܸ ଶ((௜ߤ)݃′
.

5.2.2 Residuals

We will offer 5 different residuals:

(a) Raw residual

The raw residual is defined as

௜ݎ
ோ = −௜ݕ Ƹ௜ߤ

where ௜ݕ is the i-th response and Ƹ௜ߤ is the corresponding predicted mean. Note for binomial response

with a binary format, ݕ values are 0 for the reference category and 1 for the category we are modeling.

(b) Pearson residual

The Pearson residual is the square root of the i-th contribution to the Pearson chi-square, with the sign

of the raw residual.

௜ݎ
௉ = sign(ݕ௜− =௜ߛƸ௜)ඥߤ −௜ݕ) Ƹ௜)ඨߤ

߱௜

(Ƹ௜ߤ)ܸ
.

(c) Deviance residual

The deviance residual is defined as the square root of the contribution of the i-th observation to the

deviance, with the sign of the raw residual.

௜ݎ
஽ = sign(ݕ௜− Ƹ௜)ඥߤ ௜݀.

where ௜݀ is the contribution of the i-th case to the deviance, see Table 9, and sign(ݕ௜− (Ƹ௜ߤ is 1 if

−௜ݕ Ƹ௜ߤ is positive and −1 if −௜ݕ Ƹ௜ߤ is negative.

(d) Standardized (and studentized) Pearson residual

The standardized (and studentized) Pearson residual is that the Pearson residual is multiplied by the

factor (߶(1 − ℎ௜))ିଵ/ଶ

௜ݎ
ௌ௉ = −௜ݕ) Ƹ௜)ඨߤ

߱௜

1)(Ƹ௜ߤ)ܸ߶ − ℎ௜)
= ௜ݎ

௉ඨ
1

߶(1 − ℎ௜)
.

(e) Standardized (and studentized) deviance residual

The standardized (and studentized) deviance residual is that the deviance residual is multiplied by the

factor (߶(1 − ℎ௜))ିଵ/ଶ

௜ݎ
ௌ஽ = sign(ݕ௜− Ƹ௜)ඥߤ ௜݀ඨ

1

߶(1 − ℎ௜)
= ௜ݎ

஽ඨ
1

߶(1 − ℎ௜)
.

(f) Likelihood residual

The likelihood residuals are defined by

௜ݎ
௅ = sign(ݕ௜− ௜ݎ)Ƹ௜)ටℎ௜ߤ

ௌ௉)ଶ+ (1 − ℎ௜)(ݎ௜
ௌ஽)ଶ.

5.2.3 Cook’s distance

Cook’s distance measures the change to the solution that results from omitting each observation. The

formula is

=௜ܥ
1

௫݌
∙

ℎ௜
1 − ℎ௜

௜ݎ)
ௌ௉)ଶ.

Note on calculating scoring for binomial response with events/trials format

When ݉/ݎ format for the binomial distribution is used, the response we used is the binomial proportion

=ݕ ݉/ݎ , but to many people, the response for binomial distribution should be the number of events (r).

Thus for ݉/ݎ binomial distribution, the predicted value of the mean we are going to list is the expected

number of trials, not the expected proportion. Then some of the above formulae in Section 5 should be

modified. We will list the modified ones below and those unmodified ones are still the same as before.

Some notations for events/trials format we used before calculating scoring:

௜ݎ # of events

݉ ௜ # of trials

௜ݕ proportion =௜ݕ) ݉/௜ݎ ௜)

௜ߤ expected proportion obtained from parameter estimation

 A predicted value of the mean: =Ƹ௜ߤ ݃ିଵ൫࢞௜
+෡ࢼ் ×௜൯݋ ݉ ௜.

 Approximate 100(1)% confidence interval for the mean: ݃ିଵ൫࢞௜்ࢼ෡+ ±௜݋ ×ොఎ൯ߪଵିఈ/ଶݖ ݉ ௜.

 The raw residual: ௜ோݎ = ௜݉ݕ ௜− .Ƹ௜ߤ

 The Pearson residual: ௜௉ݎ = ௜݉ݕ) ௜− Ƹ௜)ටߤ
ఠ೔

௎೔
, where ܷ௜= Ƹ௜൫1ߤ − ݉/Ƹ௜ߤ) ௜)൯(base on # of events)

௜ݎ
௉ = −௜ݕ) ௜)ටߤ

ఠ೔

௏(ఓ)
, where (௜ߤ)ܸ =

ఓ೔(ଵିఓ೔)

௠ ೔
(based on proportion)

 The deviance residual: ௜஽ݎ = sign(ݕ௜݉ ௜− Ƹ௜)ඥߤ ௜݀, where ௜݀ is from Table 9 (based on # of events)

௜ݎ
஽ = sign(ݕ௜− ௜)ඥߤ ௜݀ (based on proportion)

Note:

 Unlike other distributions which ௜andߤ Ƹ௜areߤ interchangeable, we need to distinguish ௜andߤ Ƹ௜ߤ for

binomial distribution with events/trials format:

:௜ߤ the expected proportion used before calculating scoring;

:Ƹ௜ߤ the expected number of events for calculating scoring (the predicted value of the mean).

However, the Pearson residual and deviance residual are the same no matter they are based on # of

events or proportion.

Appendix A - Ordinal Multinomial Distribution

For multinomial distribution, the GENLIN procedure supports only the ordinal multinomial model (or

threshold model). The model form is not the same as the above traditional generalized linear model

and would be consistent with other SPSS procedures, such as PLUM and CSORDINAL. The target

variable y is assumed to be ordinal, its values have an intrinsic linear ordering and correspond to

consecutive integers from 1 to J. The design matrix X includes model predictors, but not an intercept.

We need some new notations to define the model form:

J The number of values for the ordinal target variable, 2.J 

iy
Ordinal target variable for the record i. Its category values are denoted consecutive integers
from 1 to J.

jiy ,
Indicator variable of record i for category j , i.e. ,

1 if
.

0 otherwise
i

i j

y j
y


 


X

Design matrix  
T

1 , ,X x xn  , where  T
1 , , ,i i ipx xx  is for record i , the superscript

T means transpose of a matrix or vector. Note that X includes model predictors, but not an
intercept.

 J – 1  1 vector of threshold parameters ,  
T

1 2 1, , , J   ψ  and 1 2 1.J     


p  1 vector of regression parameters associated with model predictors,

 
T

1 2, , , .p   

B (J – 1 + p)  1 vector of all parameters,  
TT T, .ψ  

,i j Conditional cumulative target probability for category j given observed independent
variable vector ix , i.e., , (|).i j iP y j   ix

,i j Conditional target probability for category j given observed independent variable vector ix

, i.e., , (|)i j iP y j   ix and , , , 1 for 1, , .i j i j i j j J      

,i j Linear predictor value of record i for category j. It is related to ,i j through a cumulative
link function.

The form for ordinal target y is

T
, ,() , ~ .i j i j j i i ig o y F     x 

Note:

 To check the dependencies here in the design matrix, columns of    
T1, 1, , X X where

 1 1diag , ,n nf f   are examined by using the sweep operator.

Log likelihood function

Given a record ix , iy follows a multinomial distribution. The kernel log likelihood function is

 , ,
1 1

ln ,
n J

i i
k i j i j

i j

f
y




 

  where ,

1 if
,

0 otherwise
i

i j

y j
y


 


and the full log likelihood function ,k c   where c is computed based on subpopulations (see

Section 4.3.3.2 for details.)

Table A.1: Cumulative Link Function Name, Form, Inverse Form and Range of the Predicted Cumulative Probability

Link function name  g  Inverse  1g  Range of ̂

Cumulative logit ln
1




 
 
 

exp()
1 exp()




 ˆ 0, 1 

Cumulative probit
 1  , where

 
2 21

2
ze dz









  

   ˆ 0, 1 

Cumulative complementary log-log   ln ln 1     1 exp exp    ˆ 0, 1 

Cumulative negative log-log   ln ln     exp exp    ˆ 0, 1 

Cumulative Cauchit   tan 0.5 


  0.5 arctan  


  ˆ 0, 1 

*  in the formula is denoted pi, not the target probability.

Table A.2: The Inverse First and Second Derivatives of Cumulative Link Function

Link function name
Inverse first derivative





 



Inverse second derivative
2

2









Cumulative logit  1   1 2 

Cumulative probit
  1  , where

 
2 21

2
zz e




 1 

Cumulative complementary log-log    1 ln 1     1 ln 1   

Cumulative negative log-log  ln    1 ln  

Cumulative Cauchit   2cos 0.5  


  sin 2 


*  in the formula is denoted pi, not the target probability.

First derivatives

(1) 1

.s 0
J p  

 
           
  

ψ











T

1 1 1

, , , , , ,s
J p   

    
  

     

   
  i.e.,

, , , 1

1 , , , 1

, 1, , 1
n

i j i j i ji i

ij i j i j i j

y yf
j J



    


 

 
        



 and

, , 1 ,

1 1 , , 1 ,

, 1, , ,
n J

i j i j i ji i
it

i jt i j i j i j

yf
x t p

 

    


  

  
        





where , , , 1 for 1, ,i j i j i j j J       and  1 T
,

0 0

1, , 1,

1
i j j i i

j

g o j J

j J

 




    




x   which is from

Table A.1 and
,

,

i j

i j








is defined in Table A.2 for 1, , 1j J  and by the definition

,0 ,

,0 ,

0i i J

i i J

 

 

 
 

 
.

Note if , ,0 or 1i j i j     then
,

,

0i j

i j









for all cumulative link functions.

Second derivatives

2 2

T T2

T 2 2
1 1

T T

.
() ()

H
J p J p    

  
 
              
 
     

   

 

   

 



 

The elements of H have two forms: (1) the expected first derivatives of the estimating equation s

which is applied to Fisher scoring and (2) the first derivatives of the estimating equation s which is

applied to Newton Raphson.

(1) Expected second derivatives have the following expressions:

2
, 1 ,

11 , 1 , ,

1 , 2, , 1,
n

i j i ji i

ij j i j i j i j

f
j J

 

     


 

 
  

   





2
2

,
2

1 , , , 1

1 1 , 1, , 1,
n

i ji i

ij i j i j i j

f
j J



     

   
              





2

0, for - 1,
l j

l j
 


 

 



2
, , 1 , 1 , ,

1 , , 1 , , 1 , , 1 ,

1 1 ,

1, , 1, 1, , ,

n
i j i j i j i j i ji i

it
ij t i j i j i j i j i j i j i j

f
x

j J t p

    

         
 

   

        
                     

  




 

2
2

, , 1

1 1 , , 1 ,

1 , , 1, , .
n J

i j i ji i
it iu

i jt u i j i j i j

f
x x t u p

 

     



  

  
         





(2) Second derivatives have the following expressions:

2
, 1 , ,

2
11 , 1 , ,

, 2, , 1,
n

i j i j i ji i

ij j i j i j i j

yf
j J

 

     


 

 
  

   





222
, , , 1 , , , 1

2 2 2 2
1 , , , 1 , , , 1

, 1, , 1,
n

i j i j i j i j i j i ji i

ij i j i j i j i j i j i j

y y y yf
j J

 

       

 

  

                                 





2

0, for - 1,
l j

l j
 


 

 



2
, , , , 1 ,

,2 2
1 , , , , 1 ,

2
, , , 1 , , 1

, 12 2
1 , , , 1 , , 1

,

n
i j i j i j i j i ji i

i j it
ij t i j i j i j i j i j

n
i j i j i j i j i ji i

i j it
i i j i j i j i j i j

yf
x

yf
x

j

   


       

   


     



 

 


  

     
               

     
          









1, , 1, 1, , ,J t p  

22 2
, , 1 , , 1 ,

,2 2 2
1 1 , , 1 , , 1 ,

,

, 1, , ,

n J
i j i j i j i j i ji i

i j it iu
i jt u i j i j i j i j i j

yf
x x

t u p

   


       
 

   

                            








where
2

,
2
,

i j

i j








is defined in Table 5.2 for 1, , 1j J  and by the definition

2 2
,0 ,
2 2
,0 ,

0i i J

i i J

 

 

 
 

 
.

Initial values

Let ,
1

n

j i i j
i

N f y


 be the number of responses in category j, for 1, , ,j J  and
1

n

i
i

N f


 be the

effective sample size. Initial values for threshold parameters without and with offset variable, ,io are

then computed according to the following formulae:

(0) 1

j

l
l

j

N

g
N

 

 
 
 
 
 
 


and (0) 1

j

l
l

j j

N

g o
N

 

 
 
  
 
 
 


for 1, , 1,j J  respectively;

where , ,
1 1 1 1

.
j jn n

j i i l i i i l
i l i l

o f y o f y
   

  Initial values for all regression parameters are set to zero,

i.e. (0) 0, for 1, , .t t p   

Notes:

 Similarly, the computation of , , ,k s H  as well as , ,j jN N o in initial values can be

implemented in map-reduce environment.

Appendix B - Nominal Multinomial Distribution

Like ordinal multinomial distribution, the form of nominal multinomial model is not same as the other

traditional generalized linear model. So we need to introduce some new notations.

iy Nominal categorical target variable for the record i . Its category values are denoted as 1, 2, etc.

J The total number of categories for target variable.

jiy , Indicator variable for category j , i.e. 1, jiy if jyi  , otherwise 0, jiy .

X Design matrix T
1(, ,)nX x x . The ith row is  T

1 , , ,i i ipx xx  where superscript T means

transpose of a matrix or vector, 1, ,i n  with 1 1ix  if model has an intercept.

ji, The target probability for category j given observed independent variable vector ix , i.e.

)Pr(, jyiji  .

ji, Linear predictor value of record i for category j .

jβ p  1 vector of unknown parameters for the category j , 1,,1  Jj  . The first element in

jβ is the intercept for the category j , if there is one.

β T T T
1 1(, ,)J β β β

The form of a generalized linear model for nominal target y is

T
, ,() , ~i j i j i j i ig o y F   x β

where ji, is linear predictor value of record i for category j ; io is the offset variable value of the

record i and)(g is logit link function such that :

1,,1,log)(
,

,
, 













 Jjg

Ji

ji

ji 





Or

 

 

 

T

1
T

1 1
, ,

1
T

1

exp
, 1, , 1,

1 exp
()

1 ,
1 exp

i j i

J

i k i
k

i j i j

J

i k i
k

o
j J

o
g

j J

o

 



 





 
  
  


  
 
 







x β

x β

x β



where
T

1(, ,)j j jp β  is the regression parameter vector for target category j . There are

)1(Jp regression parameters in total T T T
1 1(, ,)J β β β .

Log likelihood function

Given a record ix , iy follows a multinomial distribution. The log likelihood function for probability

distribution is

, ,
1 1

() ln() ,
n J

i i
i j i j

i j

f
y c




 

  β

where c is computed based on subpopulations (see Section 4.3.3.2 for details.)

First derivatives

The first derivative for jβ is

, ,
1

()() ()
n

i i
j i j i j i

ij

f
s y







  




β
β x

β


, 1,,1  Jj 

So the first derivative for β is

T T T
1 1

1
(() , , ()) ()

n
i i

J i i i
i

f
s s








   s β β x y π

where
T

Jiii yy),,(1,1,  y and
T

Jiii],,[1,1,   π .  is the Kronecker product such that

BA produce a matrix with A ’s element ija being replaced by a matrix Baij .

Second derivatives

The second derivative (Hessian) matrix,H , is a)1()1( JpJp matrix with the form:

2 2

T T
1 1 1 -12

T
(1) (1) 2 2

T T
-1 1 -1 -1

J

p J p J

J J J

  

  
 
     

   
    

  
     

β β β β

β β

β β β β

 



  

 


H

where the (k, j)th block element of H , for 1,,1,  Jjk  is

T
, ,2

1
T

T
, ,

1

(1

n
i i

i k i j i i
i

n
k j i i

i j i j i i
i

f
k j

f
k j


 




 










 
 

    






x x

β β
)x x



Initial values

For all non-intercept regression parameters, set their initial values to be zero. For intercepts, if there are

any, set for 1,,1  Jj  ,











J

j

j
N

N
log)0(

1 if there is no offset variable, and

j
J

j

j o
N

N











 log)0(

1 if there is an offset variable,

where 



n

i
jiij yfN

1
, , and








n

i
jii

n

i
ijii

j

yf

oyf

o

1
,

1
,

.

Notes:

 Similarly, the computation of , , ,k s H  as well as ,j jN o in initial values can be implemented

in map-reduce environment.

Appendix C - Tweedie Distribution

 Vi in Tweedie distribution is an infinite series as follows:

1
i ij

j

V V




 and
   

     

1

1

1

2 !

jj j
i i

ij jj

y q
V

q j j

 





  

 






 
,

where
2 ,
1

q

q






and note  is negative for 1 < q < 2. To evaluate the infinite summation for iV ,

the value of j is determined for which
ijV reaches a maximum (we evaluate  max ln ij

j
V here) and

sum the necessary terms of the series in that region. The method proposed by Dunn and Smyth

(2005) is adopted here and summarized as follows:

(1) Approximate the gamma functions in  ln ijV by using Stirling’s approximation as

       
1 1ln ! ln 1 ln ln 2 ,
2 2

j j j j j 
 

      
 

         
1 1ln ln 1 ln ln 2 ,
2 2

j j j j j       
 

          
 

and  ln ijV becomes

       

              

ln ln ln ! ln

1ln 1 1 ln ln ln ln ln 2 ,
2

ij i

i

V j z j j

j z j j

 

    

   

           

where
 

 

1

1

1
.

2
i i

i

y q
z

q

 







 








(2) Treat j as continuous and  ln ijV is differentiated with respect to j

 
       

       

ln 1ln ln 1 ln

ln ln 1 ln ,

ij

i

i

V
z j

j j

z j

  

  


     



    

since the term 1/j is ignored for j large.

(3) Set the above derivative to zero to obtain the value of j at which  ln ijV reaches a maximum

 

2

max .
2

q
i iy

j
q










If yi is large, i large,  small or q near 2, jmax would be large. The approximate maximum

value of  ln ijV is

         
max, max max

1ln 1 ln ln ln 2 .
2i jV j j       

(4) Find the lower and upper bounds of j to approximate iV with .
U

L

j

i ij
j j

V V


  We simply search

max1 Lj j  and maxUj j such that    max, ,ln ln 37
Li j i jV V  and

   max, ,ln ln 37,
Ui j i jV V  respectively.

(5) Compute  ln iV in the following way to avoid the possibility of floating point overflow:

        max max, ,ln ln ln exp ln ln .
U

L

j

i i j ij i j
j j

V V V V


  

 The value of j at which the series 2

1 1

andij ij
j j

jV j V
 

 
  reach their maximums can be still

approximated by
 

2

max .
2

q
i iy

j
q










Then

       
maxmax , max

1ln 1 ln ln 2
2i jj V j        and

         
max

2
max , max max

1ln 1 ln ln ln 2 .
2i jj V j j       

Note that there are n jmax values corresponding to n complete records. Thus, jL and jU should be

different for each record. In addition, jL and jU should be different for
1

,ij
j

V





1
ij

j

jV



 and

2

1
ij

j

j V



 as well. However, Dunn and Smyth (2005) have found it useful to choose common jL and

jU for all records and all summations. Basic idea is that searching jL and jU based on
1

ij
j

jV



 for

each record then the minimum of jL and maximum of jU from all records would be the common jL

and jU, respectively.

1. Search jL and jU:

 For 1,i n

             ln ln 1 ln ln 1 ln 2 1i i iz y q q              

   2 / exp 2q
i i ij y q      



   max 1, ,
ln max ln i

i n
z z





;    max 1, ,
ln min ln i

i n
z z






     maxln 1 lncpart z          ;      maxln 1 lncpart z         

 max 1, ,
max i
i n

j j





;  max 1, ,

min i
i n

j j






 max maxln 1V j     ;  max maxln 1V j    

limit 37

 maxmax 1,j j ; maxln lnest V V 

  maxWhile ln ln limitest V V  

1j j  (or 2j j  as Dunn did which might speed the result)

    ln 1 *lnest V j cpart j   



Uj j

 maxmax 1,j j ; maxln lnest V V 

  maxWhile ln ln limitest V V  

 max 1, 1j j  (or  max 1, 2j j  as Dunn did which might speed the

result)

    ln 1 *lnest V j cpart j   



Lj j

2. Compute  ln ln ,
U

L

j

i ij
j j

V V


  ,iV
U

L

j

i ij
j j

jV jV


  and 2 2
U

L

j

i ij
j j

j V j V


  in the following way to

avoid the possibility of floating point overflow:

 For ,L Uj j j

       ln ln ln 1 lnij iV j z j j      

     ln ln lnij ijjV V j 

     2ln ln 2 lnij ijj V V j  



   max, , ,
ln max ln ;

L U
i j ij

j j j
V V





   max , ,

ln max ln ;
L U

ij ij
j j j

jV jV





   2 2

max , ,
ln max ln

L U
ij ij

j j j
j V j V






1 0; 2 0; 3 0i i isum sum sum  

 For ,L Uj j j

    max,exp ln lnij ij i jv V V  ; 1 1i i ijsum sum v 

    max
exp ln lnij ij ijjv jV jV  ; 2 2i i ijsum sum jv 

    2 2 2

max
exp ln lnij ij ijj v j V j V  ; 23 3i i ijsum sum j v 



     
max,ln ln ln 1i i j iV V sum 

    max,max

2
exp ln ln

1
i i

ij i j

ii

jV sum
jV V

sumV
  





    max

2
2

,max

3
exp ln ln

1
i i

ij i j

ii

j V sum
j V V

sumV
  





 1 *
i

i

i i

V
jV

V V
 


  





 

2
22 21 *

i

i

i i

V
j V

V V
 


  





Appendix D - Digamma and Trigamma Function

This part is based on Zhong (2006b).

This document descries the computational algorithm of the digamma and Trigamma function based on

the formulas in Abramowitz and Stegun (1972).

z A complex number

x A real number

)(z The gamma function

)(z Digamma function

)(z Trigamma function

Bn The Bernoulli number

The gamma function,)(z , is defined by the following integral,

0)(,)(
0

1  


 zrealdtetz tz

 )(ln z is a log-gamma function evaluated at z.

)(z is digamma function, which is the derivative of logarithm of a gamma function evaluated at z,

 
)(
)()(ln)(

z

z

z

z
z














)(z is a Trigamma function, which is the derivative of)(z , evaluated at z.

Digamma Function

The two main mathematical properties of the digamma function,

(1) Recurrence formulas

z
zz

1)()1( 

(2) Asymptotic formulas

 

 




zz
zzzz

z

nz

B

z
zz

n
n

n

arg
252
1

120
1

12
1

2
1)ln(

22
1)ln(~)(

642

1
2

2

in



The Bernoulli number Bn can be defined by the contour integral,

 
 112

!
nzn

z

dz

e

z

i

n
B



where the contour encloses the origin, has radius less than 2, and is traversed in a counterclockwise

direction (Arfken, 1985). The first few Bernoulli number Bn are

138
854513
330

174611
798
43867
510
3617

6
7

2730
691
66
5
30
1
42
1
30
1
6
1
2
1

22

20

18

16

14

12

10

8

6

4

2

1

0 1



























B

B

B

B

B

B

B

B

B

B

B

B

B

Therefore, we have following formula to calculate the digamma function,

  


m

i ix
mxx

1 1
1)()(

where m is a positive integer.

According two formulas above, we have the following computational algorithm of digamma function

for real number x.

Algorithm 1: Digamma(x)

If (510)(xabs) then

x
.-p

16512015328606057721566490  .

Return (p).

End if.

m = 10.

x = x + m.

2
1
x

p 

ppppppp



























































12
1

120
1

252
1

240
1

132
1

32760
691 .

x
xpp

2
1)ln( .

For i = 1 to m do

ix
pp




1

End for.

Return (p).

The algorithm 1 has a computed precision of 1210||  , but in practice, appears to 15 significant

digits for all positive real argument.

Trigamma Function

The nth derivative of)(z is called the polygamma function, denoted)()(zn ,

,,,nx
dz

d
z

dz

d
z

n

n

n

n
n 321),(ln)()(1

1
)(







Trigamma function,)(z , has two main mathematical properties,

(1) Recurrence formulas

2)()1( zzz 

(2) Asymptotic formulas

 



 


 

zz
zzzzzz

z

B

zz
z

k k
k

arg
30
1

42
1

30
1

6
1

2
11
2
11~)(

97532

1 12
2

2

in





Similarly, we have following formula to calculate the digamma function,

21

1() ()
(1)

m

i
x x m

x i
 


  

 


where m is a positive integer.

According to two formula above, we have the following computational algorithm of trigamma function

for real number x.

Algorithm 2: Trigamma(x)

If (410)(xabs) then

xx
p




1
.

Return (p).

End for.

m = 10.

x = x + m.

2
1
x

p  .

p
x

ppppppp
2
111

6
1

30
1

42
1

30
1

66
5

2730
691










































































 .

For i = 1 to m do

2)(
1

ix
pp


 .

End for

Return (p).

The algorithm 2 has a computed precision of 1310||  , but in practice, appears to 15 significant

digits for all positive real argument.

References – Phase I

[1]. Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables, 9th printing. New York: Dover. Chapter 6: Gamma and

Related Functions.

[2]. Arfken, G. (1985). Mathematical Methods for Physicists, 3rd printing. Orlando, FL: Academic

Press. Chapter 10: Digamma and Polygamma Functions.

[3]. Cameron, A. C. and Trivedi, P. K. (1998), Regression Analysis of Count Data, Cambridge:

Cambridge University Press.

[4]. Chiu, T. (1995a), “The four types of sum of square for univariate β-model,” SPSS Internal

Document.

[5]. Chiu, T. (1995b), “Calculation of the four types of sums of squares,” SPSS Internal Document.

[6]. Chu, J. and Zhong, W. (2005), “Algorithm: Generalized Linear Models and Generalized

Estimating Equation,” SPSS Internal Document.

[7]. Chu, J. (2009), “Algorithm: Data Transformation in GENLIN,” SPSS Internal Document.

[8]. Chu, J. and Han, S. (2011), “Algorithm: Linear Engine”, IBM SPSS Internal Document.

[9]. Du, Z. and Zheng, P. (2009) “Algorithm: Unconstrained and Linearly Constrained

Optimization,” SPSS Internal Document.

[10]. Dunn, P. K. and Smyth, G. K. (2005), “Series Evaluation of Tweedie Exponential Dispersion

Model Densities,” Statistics and Computing, 15, 267–280.

[11]. Dunn, P. K. and Smyth, G. K. (2001), “Tweedie Family Densities: Methods of Evaluation,”

Proceedings of the 16th International Workshop on Statistical Modelling, Odense, Denmark,

2–6 July.

[12]. Fang, D. P (2004), “Logistic Regression in Complex Sampling,” SPSS Internal Document.

[13]. Hardin, J. W. and Hilbe, J. M. (2001), Generalized Linear Models and Extension, College

Station, TX: Stata Press.

[14]. Lam, M. L. (1995a), “Constructing the Design Matrix for the -Model”, SPSS Internal

Document.

[15]. Lam, M. L. (1995b), “Algorithm: the symmetric sweep operator”, SPSS Internal Document.

[16]. McCullagh, P. and Nelder, J. A. (1989), Generalized Linear Models, Second Edition, London:

Chapman and Hall.

[17]. Zhong, W. (2006a), “Algorithm: The construction of Type I and III L matrix”, SPSS Internal

Document.

[18]. Zhong, W. (2006b), “Algorithm: Diagamma and trigamma”, SPSS Internal Document.

[19]. Dagli, A. (2012), “Simple random sampling in Map-Reduce”, IBM SPSS Internal Document.

6. Introduction – Phase II

Generalized Linear Engine Phase II (GLE Phase II) adds five main functions based on GLE Phase I

(Chu and Zhong, 2012).

 Automatic two-way interaction detection.

 Model selection, including distribution, link function and effects.

 Influential outliers for all distributions except multinomial distribution.

 Diagnostic plots for all distributions except multinomial distribution.

 Grouping analysis for all distributions, and influential target category analysis for multinomial

distributions and unusual categories detection for other distributions.

Section 7 describes automatic interaction detection. Section 8 describes model selection. Scoring and

model diagnostics are presented in Section 9 and 10. In addition, Appendix A gives grouping analysis

and unusual category detection.

7. Automatic two-way interaction detection

This section gives a method to detect two-way factor interaction ଵܺ ∗ ܺଶ given specific probability

distribution and link function, where ଵܺ and ܺଶ are two factors. In order to achieve this goal, log-

likelihood ratio test between reduced model and full model is used. Here the reduced model means a

GZLM in which only predictors ଵܺ and ܺଶ are involved, and full model means the model contains ଵܺ ,

ܺଶ and ଵܺ ∗ ܺଶ.

Since the computation will be complex for multinomial distribution, the log-likelihood ratio test for the

distributions except the multinomial distribution is provided from Sections 7.1 to Section 7.4. Then

Section 7.5 and 7.6 introduce nominal and ordinal multinomial distribution, respectively.

However, even with this original limitation, it might not be possible to check all candidate pairs of two

factors for the model selection methods in Section 8. The reason is, if there are large number of main

effects in X, the whole process might require too much memory (so user might receive “run out of

memory” message and no output at all) or too much computational cost (so user might wait for a long

time to receive output). Hence, we provide a two-way-test pair search strategy to restrict number of

the pairs in those which are more likely to be selected to the final model in the model selection method.

See Section 7.7 for details.

7.1 Notations

The notations below are just used for distributions except multinomial distribution:

ܴ The total number of categories for factor ଵܺ.

ܵ The total number of categories for factor Xଶ.

௜݊௝ The number of records in the combination ଵܺ = ݅ and ܺଶ = .݆

௜௝௞ݕ The target value for the kth record in the combination ଵܺ = ݅ and ܺଶ = .݆ If the distribution
if binomial(m), then ௜௝௞ݕ =

௥೔ೕೖ

௠ ೔ೕೖ
,where ௜௝௞ݎ and ݉ ௜௝௞ are the events value and trials value,

respectively.

௜݂௝௞ The frequency weight for the kth record in the combination ଵܺ = ݅ and ܺଶ = .݆

ܰ௜௝ The total number of cases in the combination ଵܺ = ݅ and ܺଶ = .݆

ത௜௝ݕ The target mean in the combination ଵܺ = ݅ and ܺଶ = .݆

௜ߙ The parameter of ଵܺ = .݅

௝ߚ The parameter of ܺଶ = .݆

௜௝ߤ The expectation of target in the combination of ଵܺ = ݅ and ܺଶ = .݆

7.2 Basic statistics

The below basic statistics are needed to collect:

 The total number of records: ܰ௜௝ = ∑ ௜݂௝௞

௡೔ೕ
௞ୀଵ

 Target mean: ത௜௝ݕ =
∑ ௙೔ೕೖ௬೔ೕೖ
೙೔ೕ
ೖసభ

ே೔ೕ

 The sum of square term of target: ௜ܿ௝ = ∑ ௜݂௝௞൫ݕ௜௝௞ − ത௜௝൯ݕ
ଶ௡೔ೕ

௞ୀଵ

7.3 Two-way interaction test

The interaction test based on pseudo log-likelihood ratio test can be described as following steps:

1. Compute pseudo log-likelihood function, ℓ୤୳୪୪ , for full model. Please see Section 7.4 for

details.

2. Compute pseudo log-likelihood function, ℓ௥௘ௗ௨௖௘ௗ for the model. Please see section 7.4 for

detail.

3. Estimate the scale parameter based on full model:

߶෠=
1

݂݀
෍ ෍

௜ܿ௝

(ത௜௝ݕ)ܸ

ௌ

௝ୀଵ

ோ

௜ୀଵ

where ݂݀= ∑ ∑ ܰ௜௝− ܴ ∗ ܵ+ ܿௌ
௝ୀଵ

ோ
௜ୀଵ , here ܿ is the number of invalid categorical

combinations.

4. Compute the log-likelihood ratio statistics

߯ଶ =
2(ℓ௙௨௟௟− ℓ௥௘ௗ௨௖௘ௗ)

߶෠

Compute the p value

=݌ 1 −)�ݎܲ ௗ߯௙
ଶ ≤ ߯ଶ)

where ௗ߯௙
ଶ is the random variable following chi-square distribution with degree freedom

݂݀= (ܴ − 1) ∗ (ܵ− 1) − ,ܿ where ܿ is the number of invalid categorical combinations.

5. If ≥݌ ,ߙ where ߙ is a significant level(the default is 0.05) then the interaction is significant.

7.4 Pseudo log-likelihood value computation

The pseudo log-likelihood functions for interaction detection are listed in the Table 7.1. Please note

that compared with the kernels of log-likelihood function, some terms are omitted because these terms

are the same for the full model and reduced model.

Table 7.1. Distribution and pseudo log-likelihood function

Target distribution Pseudo log-likelihood

Normal ℓ = −
1

2
෍ ෍ ܰ௜௝൫ݕത௜௝− ௜௝൯ߤ

ଶ
ୗ

୨ୀଵ

ୖ

୧ୀଵ

Inverse Gaussian ℓ = −
1

2
෍ ෍ ܰ௜௝ቆ

−ത௜௝ݕ ௜௝ߤ2

௜௝ߤ
ଶ ቇ

ௌ

௝ୀଵ

ோ

௜ୀଵ

Gamma ℓ = −෍ ෍ ܰ௜௝ቆlnߤ௜௝ +
ത௜௝ݕ

௜௝ߤ
ቇ

ௌ

௝ୀଵ

ோ

௜ୀଵ

Negative binomial

ℓ = ∑ ∑ ܰ௜௝ቀݕത௜௝ ln൫݇ ∗ −௜௝൯ߤ ቀݕത௜௝ +
ଵ

௞
ቁln൫1 + ݇ ∗ ௜௝൯ቁߤ

ୗ
୨ୀଵ

ୖ
୧ୀଵ ,

where ݇ is a parameter which will be specified by user. If user do not

specify it, we automatically set it as 1.

Poisson ℓ = ෍ ෍ ܰ௜௝൫ݕത௜௝ ln൫ߤ௜௝൯− ௜௝൯ߤ

ௌ

௝ୀଵ

ோ

௜ୀଵ

Binomial ℓ = ෍ ෍ ܰ௜௝൫ݕത௜௝ ln൫ߤ௜௝൯+ ൫1 − ത௜௝൯ln൫1ݕ − ௜௝൯൯ߤ

ௌ

௝ୀଵ

ோ

௜ୀଵ

Tweedie

ℓ = ∑ ∑ N୧୨ቆ
୷ഥ౟ౠ∗ஜ౟ౠ

భష౧

ଵି୯
+

ஜ౟ౠ
మష౧

ଶି୯
ቇୗ

୨ୀଵ
ୖ
୧ୀଵ ,

where ݍ is a parameter which will be specified by user. If user do not

specify it, we automatically set it as 1.5.

For the full model, ℓ୤୳୪୪can be got by above formula directly by replacing ௜௝withߤ .ത௜௝ݕ

For reduced model, the pseudo log-likelihood value will be computed by following iterative process:

1. Input values for ଵܶ (maximum number of iterations in the outer iterative process, tentatively

set to 100), ଵ(toleranceߝ level of stopping criterion in the outer iterative process, tentatively

set to 10-6), ଶܶ (maximum number of iterations in the inner iterative process, tentatively set to

5), ଶ(toleranceߝ level of stopping criterion in the inner iterative process, tentatively set to 10
-6)

2. Set initial values of ௜ߙ
(଴)

= ܧ1.0 − 6 andߚ௝
(଴)

= ܧ1.0 − 6. Then compute expectation value,

௜௝ߤ
(଴)

= ݃ିଵ൫ߙ௜
(଴)

+ ௝ߚ
(଴)
൯ , and initial pseudo log-likelihood value ℓ௥௘ௗ௨௖௘ௗ

(଴) by plugging ௜௝ߤ
(଴)

into formulae in Table 1 .

3. Set the iteration number ଵݐ = 1.

4. Compute the weight, ௜௝ݓ
(௧భିଵ) , and gradient, ௜௝ݏ

(௧భିଵ) in each combination of ଵܺ = ,݅݅=

1,⋯ ,ܴ, and ܺଶ = ,݆݆= 1,⋯ , :ܵ

௜௝ݓ�
(௧భିଵ)

=
ܰ௜௝

ܸቀߤ௜௝
(௧భିଵ)

ቁ൬݃ ᇱቀߤ௜௝
(௧భିଵ)

ቁ൰
ଶ

+ܰ௜௝൫ݕത௜௝− ௜௝ߤ
(௧భିଵ)

൯×
ܸ൫ߤ௜௝

(௧భିଵ)
൯݃ ᇱᇱ൫ߤ௜௝

(௧భିଵ)
൯+ ܸᇱ൫ߤ௜௝

(௧భିଵ)
൯݃ ᇱ൫ߤ௜௝

(௧భିଵ)
൯

൬ܸ ቀߤ௜௝
(௧భିଵ)

ቁ൰
ଶ

൬݃ ᇱቀߤ௜௝
(௧భିଵ)

ቁ൰
ଷ

and

௜௝ݏ
(௧భିଵ)

=
1

௜௝ݓ�
(௧భିଵ)

×
ܰ௜௝൫ݕത௜௝− ௜௝ߤ

(௧భିଵ)
൯

ܸቀߤ௜௝
(௧భିଵ)

ቁ݃ᇱቀߤ௜௝
(௧భିଵ)

ቁ

5. Compute the parameters increment α୧∗ and β୨∗ based on w୧୨
(௧భିଵ) and ௜௝ݏ

(௧భିଵ) with the

following iterative process:

a) Create a ܴ × ܵ contingency table with the ௜௝ݓ
(௧భିଵ) and ௜௝ݏ

(௧భିଵ)for each combination of

ଵܺ = ,݅݅= 1,⋯ ,ܴ and ܺଶ = ,݆݆= 1,⋯ , :ܵ

X2

X1

1 2  S

1 ଵଵݓ
(௧భିଵ) , ଵଵݏ

(௧భିଵ)
ଵଶݓ

(௧భିଵ) , ଵଶݏ
(௧భିଵ)  ଵௌݓ

(௧భିଵ) , ଵௌݏ
(௧భିଵ)

2 ଶଵݓ
(௧భିଵ) , ଶଵݏ

(௧భିଵ)
ଶଶݓ

(௧భିଵ) , ଶଶݏ
(௧భିଵ)  ଶௌݓ

(௧భିଵ) , ଶௌݏ
(௧భିଵ)

    

R ோଵݓ
(௧భିଵ) , ோଵݏ

(௧భିଵ)
ோଶݓ

(௧భିଵ) , ோଶݏ
(௧భିଵ)  ோௌݓ

(௧భିଵ) , ோௌݏ
(௧భିଵ)

b) Initial ∗௜ߙ = 0,݅= 1,⋯ ,ܴ and ∗௝ߚ = 0,݆= 1,⋯ , ,ܵ and the iteration number ଶݐ = 1.

c) Compute marginal mean of gradient for each row ,݅ ݅= 1,⋯ ,ܴ

∙௜ݏ
(௧భିଵ)

=
∑ ௜௝ݏ

(௧భିଵ)
×ௌ

௝ୀଵ ௜௝ݓ
(௧భିଵ)

∑ ௜௝ݓ
(௧భିଵ)ௌ

௝ୀଵ

Update the ∗௜ߙ for each ,݅ ݅= 1,⋯ ,ܴ:

௜ߙ
∗ = ௜ߙ

∗ + ∙௜ݏ
(௧భିଵ)

Update the ௜௝ݏ
(௧భିଵ) for ݅= 1,⋯ ,ܴ and ݆= 1,⋯ ,ܵ in the table

௜௝ݏ
(௧భିଵ)

= ௜௝ݏ
(௧భିଵ)

− ∙௜ݏ
(௧భିଵ)

d) Based on the updated table, compute the marginal mean of gradient for each column

,݆ ݆= 1,⋯ , :ܵ

௝∙ݏ
(௧భିଵ)

=
∑ ௦೔ೕ

(೟భషభ)
×ೃ

೔సభ ௪೔ೕ
(೟భషభ)

∑ ௪
೔ೕ
(೟భషభ)ೃ

೔సభ

Update the ∗௝ߚ for each ,݆ ݆= 1,⋯ , :ܵ

௝ߚ
∗ = ௝ߚ

∗ + ௝∙ݏ
(௧భିଵ)

Update the ௜௝ݏ
(௧భିଵ) for ݅= 1,⋯ ,ܴ and ݆= 1,⋯ ,ܵ in the table

௜௝ݏ
(௧భିଵ)

= ௜௝ݏ
(௧భିଵ)

− ௝∙ݏ
(௧భିଵ)

e) If maxቄቚݏ௜∙
(௧భିଵ)

�ቚ,ቚݏ∙௝
(௧భିଵ)

ቚቅ≤ εଶ or ଶݐ > ଶܶ, then stop and output the parameter ∗௜ߙ and

௝ߚ
∗. Otherwise let ଶݐ = ଶݐ + 1, and go to step c).

6. Update parameter estimates for iteration

௜ߙ
(௧భ)

= ௜ߙ
(௧భିଵ)

+ ௜ߙ
∗

௜ߚ
(௧భ)

= ௜ߚ
(௧భିଵ)

+ ௝ߚ
∗

then update expectation value

௜௝ߤ
(௧భ)

= ݃ି൫ߙ௜
(௧భ)

+ ௝ߚ
(௧భ)

൯

And pseudo log-likelihood value ℓ௥௘ௗ௨௖௘ௗ
(௧భ) based on ௜௝ߤ

(௧భ) using the formula listed in Table 1.

7. If ℓ௥௘ௗ௨௖௘ௗ
(௧భ)

< ℓ௥௘ௗ௨௖௘ௗ
(௧భିଵ)

, then stop and output ℓ௥௘ௗ௨௖௘ௗ
(௧భିଵ) .

8. If |ℓ௥௘ௗ௨௖௘ௗ
(௧భ)

− ℓ௥௘ௗ௨௖௘ௗ
(௧భିଵ)

| < ଵߝ or ଵݐ > ଵܶ, then stop and output ℓ௥௘ௗ௨௖௘ௗ
(௧భ) , otherwise, ଵݐ =

ଵݐ + 1, go back to step 4.

7.5 Nominal multinomial distribution

This sub-section discusses the interaction detection for nominal multinomial distribution using log-

likelihood ratio test.

The following notations are used for nominal multinomial distribution

ܬ The total number of categories for target variable.

ܴ The total number of categories for factor Xଵ.

ܵ The total number of categories for factor Xଶ.

௜݊௝ The number of records in the combination ଵܺ = ݅ and ܺଶ = .݆

௜݂௝௠ The frequency weight for the mth record in the combination ଵܺ = ݅ and ܺଶ = .݆

௜௝௠ݕ The target value for the mth record in the combination ଵܺ = ݅ and ܺଶ = .݆

ෝ௜௝࣊ ෝ௜௝࣊ = ൫ߨො௜௝,ଵ,⋯ ො௜௝,௃ିߨ, ଵ൯
்
, where πෝ୧୨,୩ is the estimated probability of the kth target category

when ଵܺ = ݅ and ܺଶ = ݆and the superscript ܶmeans transpose of a matrix or vector. Please
note that ො௜௝,௃ߨ = 1 − ∑ ො௜௝,୩ߨ

୎ି ଵ
୩ୀଵ and is not included in the vector .ෝ௜௝࣊

௜ࢻ =௜ࢻ ൫ߙ௜ଵ,⋯ ௜௃ିߙ, ଵ൯
்
, where ௜௞isߙ the parameter of ଵܺ = ݅ for the kth target category.

௝ࢼ ௝ࢼ = ൫ߚ௝ଵ,⋯ ௝௃ିߚ, ଵ൯
்

, where ௝௞ߚ is the parameter of ܺଶ = ݆ for the kth target category.

The interaction detection for nominal multinomial distribution is similar to that in the previous

sections. Therefore, just some implementation notes are given as following:

Implementation notes:

(1) The following basic statistics are needed to collect:

 The total number of records for the kth target category in the combination ଵܺ = ݅ and

ܺଶ = :݆

�ܰ ௜௝,௞ = ෍ ௜݂௝௠ ∗ ௜௝௠ݕ)ܫ =)݇
௡೔ೕ

௠ ୀଵ

where (y୧୨୫ = k) = ൜
1, y୧୨୫ = k

0, ℎݐ݋ ݓݎ݁ ݏ݅݁
�.

 The observed probability of the kth target category in the combination ଵܺ = ݅ and ܺଶ = :݆

ത௜௝,௞ݕ =
ܰ௜௝,௞

ܰ௜௝

 The total number of records in the combination Xଵ = i and Xଶ = j:

ܰ௜௝ = ෍ ܰ௜௝,௞

௃

௞ୀଵ

(2) The scale parameter is estimated as 1.

(3) The degree of freedom of the log-likelihood ratio test is (R ∗ S − c) ∗ (J − 1), where c is the

number of invalid categorical combinations.

(4) The parameters, ௜andߙ ௝ߚ , are extended to vector, ௜andࢻ .௝ࢼ

(5) Since only the logit link function will used for nominal multinomial distribution, the log-

likelihood value will be computed as

ℓ = ෍ ෍ ෍ ܰ௜௝,௞ ∗ ln൫ߨ௜௝,௞൯

௃

௞ୀଵ

ௌ

௝ୀଵ

ோ

௜ୀଵ

For the full model, the ௜௝,௞ߨ will be estimated as ො௜௝,௞ߨ = ത௜௝,௞ݕ for�݇ = 1,⋯ −ܬ, 1, and ො௜௝,௞ߨ = 1 −

∑ ത௜௝,௞ݕ
௃ି ଵ
௞ୀଵ . And for the reduced model, the ௜௝,௞ߨ will be estimated by the parameter estimates and

link function, i.e. suppose we have the parameter estimates =ෝ௜ࢻ ൫ߙො௜ଵ, ⋯ ො௜௃ିߙ, ଵ൯
்
and ෡௝ࢼ =

൫ߚመ௝ଵ, ⋯ መ௝௃ିߚ, ଵ൯
்
, then

ො௜௝,௞ߨ =

⎩
⎪
⎨

⎪
⎧

exp൫ߙො௜௞ + መ௝௞൯ߚ

1 + ∑ exp൫ߙො௜௞ + መ௝௞൯ߚ
௃ି ଵ
௞ୀଵ

, ݇= 1,⋯ −ܬ, 1

1

1 + ∑ exp൫ߙො௜௞ + መ௝௞൯ߚ
௃ି ଵ
௞ୀଵ

݇= ܬ

�

(6) The weight, ௜௝ݓ
(௧భିଵ) , and mean of score, ௜௝ݏ

(௧భିଵ) in Section 2.4 will be matrix ௜௝࢝
(௧భିଵ) and vector

௜௝࢙
(௧భିଵ) which can be computed as:

௜௝࢝
(௧భିଵ)

= ܰ௜௝ ∗ ቀ݀ ݅ܽ ݃൫࣊௜௝
(௧భିଵ)

൯− ௜௝࣊
(௧భିଵ)

∗ ൫࣊௜௝
(௧భିଵ)

൯
்
ቁ

and

௜௝࢙
(௧భିଵ)

= ൫࢝௜௝
(௧భିଵ)

൯
ିଵ
∗ ܰ௜௝ ∗ ൫࢟ഥ௜௝− ௜௝࣊

(௧భିଵ)
൯

where ത௜௝ݕ = ൫ݕത௜௝,ଵ, ⋯ ത௜௝,௃ିݕ, ଵ൯
୘
.

(7) The marginal mean for each row and column in Section 2.4 can be computed as

∙௜࢙
(௧భିଵ)

= ቌ෍ ௜௝࢝
(௧భିଵ)

ௌ

௝ୀଵ

ቍ

ିଵ

∗ ቌ෍ ௜௝࢝
(௧భିଵ)

∗

ௌ

௝ୀଵ

௜௝࢙
(௧భିଵ)

ቍ

and

௝∙࢙
(௧భିଵ)

= ൭෍ ௜௝࢝
(௧భିଵ)

ோ

௜ୀଵ

൱

ିଵ

∗ ൭෍ ௜௝࢝
(௧భିଵ)

∗

ோ

௜ୀଵ

௜௝࢙
(௧భିଵ)

൱

respectively.

7.6 Ordinal multinomial distribution

This sub-section discusses the interaction detection for ordinal multinomial distribution using log-

likelihood ratio test.

The following notations are used if the distribution is ordinal multinomial.

ܬ The total number of categories for target variable.

ܴ The total number of categories for predictor ଵܺ.

ܵ The total number of categories for predictor Xଶ.

௜݊௝ The number of records in the combination ଵܺ = ݅ and ܺଶ = .݆

௜௝௠ݕ The target value for the mth record in the combination ଵܺ = ݅ and ܺଶ = .݆

௜݂௝௠ The frequency weight for the mth record in the combination ଵܺ = ݅ and ܺଶ = .݆

௜௝,௞ߛ Conditional cumulative target probability for the kth category in the combination Xଵ = i and
Xଶ = j.

௜௝,୩ߨ Conditional target probability for for the kth category in the combination ଵܺ = ݅ and ܺଶ = ,݆
௜௝,୩ߨ = ௜௝,௞ߛ − .௜௝,௞ିଵߛ

ࢸ −ܬ) 1) × 1 vector of threshold parameter, ࢸ = ൫߰ ଵ,⋯ ,߰௃ି ଵ൯
்
and ߰ଵ < ߰ଶ < ⋯ < ߰௃ି ଵ.

௜ߙ The parameter of ଵܺ = .݅

ࢻ (ܴ − 1) × 1 parameter vector , ࢻ = ⋯,ଵߙ) .்(ோିଵߙ,

௝ߚ The parameter of ܺଶ = ݆ .

ࢼ (ܵ− 1) × 1 parameter vector , ࢼ = ⋯,ଵߚ) .்(ௌିଵߚ,

௜௝ߣ The parameter of the combination of ଵܺ = ݅ and ܺଶ = ݆.

ࣅ ܴ × ܵparameter vector, =ࣅ ⋯,ଵଵߣ) ⋯,ோଵߣ⋯,ଵௌߣ, .்(ோௌߣ,

௜௝,௞ߟ Linear predictor value for the kth target category in the combination ଵܺ = ݅ and ܺଶ = .݆

Basic statistics

The following basic statistics are needed to collect:

 The total number of records for the kth target category in the combination ଵܺ = ݅ and ܺଶ = :݆

�ܰ ௜௝,௞ = ෍ ௜݂௝௠ ∗ ௜௝௠ݕ)ܫ =)݇
௡೔ೕ

௠ ୀଵ

where ௜௝௠ݕ) =)݇ = ൜
1, ௜௝௠ݕ = ݇

0, ℎݐ݋ ݓݎ݁ ݏ݅݁
�.

 The observed probability of the kth target category in the combination ଵܺ = ݅ and ܺଶ = :݆

ത௜௝,௞ݕ =
ܰ௜௝,௞

ܰ௜௝

 The total number of records in the combination ଵܺ = ݅ and ܺଶ = :݆

ܰ௜௝ = ෍ ܰ௜௝,௞

௃

௞ୀଵ

Interaction detection

The interaction detection is also based on the log-likelihood ration test. Please note that

 The reduced model is

௜௝,௞ߟ = ݃൫ߛ௜௝,௞൯= ߰௞ − −௜ߙ ௝ߚ

where ݇= 1,⋯ −ܬ, 1, ݅= 1,⋯ ,ܴ and ݆= 1,⋯ , .ܵ And the full model is

௜௝,௞ߟ = ݃൫ߛ௜௝,௞൯= ߰௞ − ௜௝ߣ

where ݇= 1,⋯ −ܬ, 1, ݅= 1,⋯ ,ܴ and ݆= 1,⋯ , .ܵ

 The scale parameter is 1.

 The degree of freedom of log-likelihood ratio test is ݂݀= (ܴ − 1) ∗ (ܵ− 1) − ,ܿ where ܿ is

the number of invalid categorical combinations.

Log-likelihood value

The log-likelihood value is

ℓ = ෍ ෍ ෍ ܰ௜௝,௞ ∗ ln൫ߨ௜௝,௞൯

௃

௞ୀଵ

ௌ

௝ୀଵ

ோ

௜ୀଵ

For both full model and reduced model, the log-likelihood value will be computed by following

iterative process:

1. Input values for ଵܶ (maximum number of iterations, tentatively set to 100), ଵ(toleranceߝ level

of stopping criterion, tentatively set to 10-6) .

2. Set initial values:

௜ߙ
(଴)

= 0, ݅= 1,⋯ ,ܴ;

௝ߚ
(଴)

= 0,݆= 1,⋯ , ;ܵ

and

߰௞
(଴)

= ݃൬
∑ ∑ ே೔ೕ,ೖ

ೄ
ೕసభ

ೃ
೔సభ

∑ ∑ ே೔ೕ
ೄ
ೕసభ

ೃ
೔సభ

൰,݇= 1,⋯ −ܬ, 1

3. Compute ௜௝,௞ߨ
(଴)

= ௜௝,௞ߛ
(଴)

− ௜௝,௞ିଵߛ
(଴) for ݇= 1,⋯ −ܬ, 1 and

௜௝,௞ߛ
(଴)

= ቐ

0 ݇= 0

݃ିଵ൫߰ ௞
(଴)

− ௜ߙ
(଴)

− ௝ߚ
(଴)
൯ ݇= 1,⋯ −ܬ, 1

1 ݇= ܬ

�

Then compute log-likelihood value ℓ(଴) based on ௜௝,௞ߨ
(଴) and ܰ௜௝,௞ using the formula of log-

likelihood value for ordinal distribution.

4. Set the iteration number ଵݐ = 1.

5. Compute estimates of ଵݐ
th iteration

ઠ(௧భ) = ઠ(௧భିଵ) − ൫ࡴ (௧భିଵ)൯
ି
(௧భିଵ)࢙

where ઠ = ࢸ) ࢀ(ࢀࢼ,ࢀࢻ,ࢀ if model is reduced model and ઠ = ࢸ) ࢀ(ࢀࣅ,ࢀ if model is full model.

The hessian matrix ࡴ and gradient vector ܛ will be computed later, and ࡴ))ି is the

generalized inverse of ࡴ .

6. Similar to the step 3, compute ௜௝,௞ߨ
(௧భ)

 and log-likelihood value ℓ(௧భ).

7. If ℓ௥௘ௗ௨௖௘ௗ
(௧భ)

< ℓ௥௘ௗ௨௖௘ௗ
(௧భିଵ)

, then stop and output ℓ௥௘ௗ௨௖௘ௗ
(௧భିଵ) .

8. If |ℓ(௧భ) − ℓ(௧భିଵ) | < ଵߝ or ଵݐ > ଵܶ, then stop and output ℓ(�௧భ), otherwise, ଵݐ = ଵݐ + 1, go

back to step 5.

Gradient vector and hessian matrix for reduced model

The gradient vector s can be computed as following:

=࢙ ൤
డℓ

డటభ
, ⋯ ,

డℓ

డట಻షభ
,
డℓ

డఈభ
, ⋯ ,

డℓ

డఈೃషభ
,
డℓ

డఉభ
, ⋯ ,

డℓ

డఉ಻షభ
൨
்

,

where

డℓ

డటೖ
= ∑ ∑

డఊ೔ೕ,ೖ

డఎ೔ೕ,ೖ
൬
ே೔ೕ,ೖ

గ೔ೕ,ೖ
−

ே೔ೕ,ೖశభ

గ೔ೕ,ೖశభ
൰ௌ

௝ୀଵ
ோ
௜ୀଵ ,݇= 1,⋯ −ܬ, 1,

ℓ߲

݅ߙ߲
= −∑ ∑ ൬

ߛ߲݅ ,݆݇

ߟ߲݅ ,݆݇

−
ߛ߲݅ ,݆݇−1

ߟ߲݅ ,݆݇−1

൰
݆ܰ݅,݇

݇,݆݅ߨ
,���݅= 1,⋯ ,ܴ − 1

௃
௞ୀଵ

ௌ
௝ୀଵ ,

ℓ߲

݆ߚ߲
= −∑ ∑ ൬

ߛ߲݅ ,݆݇

ߟ߲݅ ,݆݇

−
ߛ߲݅ ,݆݇−1

ߟ߲݅ ,݆݇−1

൰
݆ܰ݅,݇

݇,݆݅ߨ
,���݆ = 1,⋯ ,ܵ− 1

௃
௞ୀଵ

ோ
௜ୀଵ ,

And the hessian matrix is

ܪ =

⎝

⎜⎜
⎛

߲2ℓ

શ߲ ߲શ ܶ

߲2ℓ

શ߲ ߲હܶ

߲2ℓ

શ߲ ߲઺ܶ

߲2ℓ

હ߲߲શ ܶ

߲2ℓ

હ߲߲હܶ

߲2ℓ

હ߲߲઺ܶ

߲2ℓ

઺߲߲શ ܶ

߲2ℓ

઺߲߲હܶ

߲2ℓ

઺߲߲઺ܶ⎠

⎟⎟
⎞

,

where

߲2ℓ

߲߰ ݇−1߲߰ ݇

= ∑ ∑
ߛ߲݅ ,݆݇−1

ߟ߲݅ ,݆݇−1

ߛ߲݅ ,݆݇

ߟ߲݅ ,݆݇

ௌ
௝ୀଵ

ோ
௜ୀଵ

݆ܰ݅,݇

݇,݆݅ߨ
2 ,݇= 2,⋯ −ܬ, 1,

డమℓ

డటೖ
మ = ∑ ∑ ቈ

డమఊ೔ೕ,ೖ

డఎ೔ೕ,ೖ
మ ൬

ே೔ೕ,ೖ

గ೔ೕ,ೖ
−

ே೔ೕ,ೖశభ

గ೔ೕ,ೖశభ
൰− ൬

డఊ೔ೕ,ೖ

డఎ೔ೕ,ೖ
൰
ଶ

൬
ே೔ೕ,ೖ

గ೔ೕ,ೖ
మ +

ே೔ೕ,ೖశభ

గ೔ೕ,ೖశభ
మ ൰቉,݇= 1,⋯ −ܬ, 1ௌ

௝ୀଵ
ோ
௜ୀଵ ,

డమℓ

డటೖడట೘
= 0, for |݇− ݉ | > 1,

డమℓ

డఈ೔
మ = ∑ ∑ ቈ൬

డమఊ೔ೕ,ೖ

డఎ೔ೕ,ೖ
మ −

డమఊ೔ೕ,ೖషభ

డఎ೔ೕ,ೖషభ
మ ൰ߨ௜௝,୩− ൬

డఊ೔ೕ,ೖ

డఎ೔ೕ,ೖ
−

డఊ೔ೕ,ೖషభ

డఎ೔ೕ,ೖషభ
൰
ଶ

቉൬
ே೔ೕ,ೖ

గ೔ೕ,ೖ
మ ൰௃

௞ୀଵ
ௌ
௝ୀଵ ,݅= 1,⋯ ,ܴ − 1,

డమℓ

డఈ೔డఈೕ
= 0, for�݅≠ ,݆

డమℓ

డఉೕ
మ = ∑ ∑ ቈ൬

డమఊ೔ೕ,ೖ

డఎ೔ೕ,ೖ
మ −

డమఊ೔ೕ,ೖషభ

డఎ೔ೕ,ೖషభ
మ ൰ߨ௜௝,୩ − ൬

డఊ೔ೕ,ೖ

డఎ೔ೕ,ೖ
−

డఊ೔ೕ,ೖషభ

డఎ೔ೕ,ೖషభ
൰
ଶ

቉൬
ே೔ೕ,ೖ

గ೔ೕ,ೖ
మ ൰௃

௞ୀଵ
ோ
௜ୀଵ ,݆= 1,⋯ ,ܵ− 1,

డమℓ

డఉ೔డఉೕ
= 0, for�݅≠ ,݆

߲ଶℓ

߲߰௞߲ߙ௜
= −෍ ቈ

߲ଶߛ௜௝,௞

௜௝,௞ߟ߲
ଶ −௜௝,୩ߨ

௜௝,௞ߛ߲

௜௝,௞ߟ߲

ቆ
௜௝,௞ߛ߲

௜௝,௞ߟ߲

−
௜௝,௞ିଵߛ߲

௜௝,௞ିଵߟ߲

ቇ቉
ܰ௜௝,௞

௜௝,௞ߨ
ଶ

ௌ

௝ୀଵ

+෍ ቈ
߲ଶߛ௜௝,௞

௜௝,௞ߟ߲
ଶ −௜௝,୩ାଵߨ

௜௝,௞ߛ߲

௜௝,௞ߟ߲

ቆ
௜௝,௞ାଵߛ߲

௜௝,௞ାଵߟ߲

−
௜௝,௞ߛ߲

௜௝,௞ߟ߲

ቇ቉
ܰ௜௝,௞ାଵ

௜௝,௞ାଵߨ
ଶ ,

ௌ

௝ୀଵ

݇= 1,⋯ −ܬ, 1,���݅= 1,⋯ ,ܴ − 1,

߲ଶℓ

߲߰௞߲ߚ௝
= −෍ ቈ

߲ଶߛ௜௝,௞

௜௝,௞ߟ߲
ଶ −௜௝,୩ߨ

௜௝,௞ߛ߲

௜௝,௞ߟ߲

ቆ
௜௝,௞ߛ߲

௜௝,௞ߟ߲

−
௜௝,௞ିଵߛ߲

௜௝,௞ିଵߟ߲

ቇ቉
ܰ௜௝,௞

௜௝,௞ߨ
ଶ

ோ

௜ୀଵ

+෍ ቈ
߲ଶߛ௜௝,௞

௜௝,௞ߟ߲
ଶ −௜௝,୩ାଵߨ

௜௝,௞ߛ߲

௜௝,௞ߟ߲

ቆ
௜௝,௞ାଵߛ߲

௜௝,௞ାଵߟ߲

−
௜௝,௞ߛ߲

௜௝,௞ߟ߲

ቇ቉
ܰ௜௝,௞ାଵ

௜௝,௞ାଵߨ
ଶ ,

ோ

௜ୀଵ

݇= 1,⋯ −ܬ, 1,���݆= 1,⋯ ,ܵ− 1,

߲ଶℓ

௜߲ߙ߲ ௝ߚ
= ෍ ൥ቆ

߲ଶߛ௜௝,௞

௜௝,௞ߟ߲
ଶ −

߲ଶߛ௜௝,௞ିଵ

௜௝,௞ିଵߟ߲
ଶ ቇߨ௜௝,୩− ቆ

௜௝,௞ߛ߲

௜௝,௞ߟ߲

−
௜௝,௞ିଵߛ߲

௜௝,௞ିଵߟ߲

ቇ

ଶ

൩
ܰ௜௝,௞

௜௝,௞ߨ
ଶ ,

௃

௞ୀଵ

݅= 1,⋯ ,ܴ − 1,݆= 1,⋯ ,ܵ− 1

Gradient vector and hessian matrix for full model

The gradient vector s can be computed as following:

=࢙ ൤
డℓ

డటభ
, ⋯ ,

డℓ

డట಻షభ
,
డℓ

డఒభభ
, ⋯ ,

డℓ

డఒభೄ
, ⋯ ,

డℓ

డఒమభ
, ⋯ ,

డℓ

డఒೃೄ
൨
்

,

where

డℓ

డటೖ
= ∑ ∑

డఊ೔ೕ,ೖ

డఎ೔ೕ,ೖ
൬
ே೔ೕ,ೖ

గ೔ೕ,ೖ
−

ே೔ೕ,ೖశభ

గ೔ೕ,ೖశభ
൰ௌ

௝ୀଵ
ோ
௜ୀଵ ,݇= 1,⋯ −ܬ, 1,

డℓ

డఒ೔ೕ
= −∑ ൬

డఊ೔ೕ,ೖ

డఎ೔ೕ,ೖ
−

డఊ೔ೕ,ೖషభ

డఎ೔ೕ,ೖషభ
൰
ே೔ೕ,ೖ

గ೔ೕ,ೖ
,���݅= 1,⋯ ,ܴ,݆= 1,⋯ ,ܵ

ܬ
݇=1 ,

And the hessian matrix is

ܪ = ቌ

߲2ℓ

શ߲ ߲શ ܶ

߲2ℓ

શ߲ ܶࣅ߲

߲2ℓ

શ߲ࣅ߲ ܶ

߲2ℓ

ࣅ߲ ܶࣅ߲

ቍ,

where

߲2ℓ

߲߰ ݇−1߲߰ ݇

= ∑ ∑
ߛ߲݅ ,݆݇−1

ߟ߲݅ ,݆݇−1

ߛ߲݅ ,݆݇

ߟ߲݅ ,݆݇

ௌ
௝ୀଵ

ோ
௜ୀଵ

݆ܰ݅,݇

݇,݆݅ߨ
2 ,݇= 2,⋯ −ܬ, 1,

డమℓ

డటೖ
మ = ∑ ∑ ቈ

డమఊ೔ೕ,ೖ

డఎ೔ೕ,ೖ
మ ൬

ே೔ೕ,ೖ

గ೔ೕ,ೖ
−

ே೔ೕ,ೖశభ

గ೔ೕ,ೖశభ
൰− ൬

డఊ೔ೕ,ೖ

డఎ೔ೕ,ೖ
൰
ଶ

൬
ே೔ೕ,ೖ

గ೔ೕ,ೖ
మ +

ே೔ೕ,ೖశభ

గ೔ೕ,ೖశభ
మ ൰቉,݇= 1,⋯ −ܬ, 1ௌ

௝ୀଵ
ோ
௜ୀଵ ,

డమℓ

డటೖడట೘
= 0, for |݇− ݉ | > 1,

డమℓ

డఒ೔ೕ
మ = ∑ ቈ൬

డమఊ೔ೕ,ೖ

డఎ೔ೕ,ೖ
మ −

డమఊ೔ೕ,ೖషభ

డఎ೔ೕ,ೖషభ
మ ൰ߨ௜௝,୩− ൬

డఊ೔ೕ,ೖ

డఎ೔ೕ,ೖ
−

డఊ೔ೕ,ೖషభ

డఎ೔ೕ,ೖషభ
൰
ଶ

቉
ே೔ೕ,ೖ

గ೔ೕ,ೖ
మ ,௃

௞ୀଵ ݅= 1,⋯ ,ܴ,݆= 1,⋯ , ,ܵ

డమℓ

డఒ೔ೕడఒೠೡ
= 0, for�݅≠ ≠�or�݆ݑ ,ݒ

߲ଶℓ

߲߰௞ ௜௝ߣ߲
= −ቈ

߲ଶߛ௜௝,௞

௜௝,௞ߟ߲
ଶ −௜௝,୩ߨ

௜௝,௞ߛ߲

௜௝,௞ߟ߲

ቆ
௜௝,௞ߛ߲

௜௝,௞ߟ߲

−
௜௝,௞ିଵߛ߲

௜௝,௞ିଵߟ߲

ቇ቉
ܰ௜௝,௞

௜௝,௞ߨ
ଶ

+ቈ
߲ଶߛ௜௝,௞

௜௝,௞ߟ߲
ଶ −௜௝,୩ାଵߨ

௜௝,௞ߛ߲

௜௝,௞ߟ߲

ቆ
௜௝,௞ାଵߛ߲

௜௝,௞ାଵߟ߲

−
௜௝,௞ߛ߲

௜௝,௞ߟ߲

ቇ቉
ܰ௜௝,௞ାଵ

௜௝,௞ାଵߨ
ଶ ,

݇= 1,⋯ −ܬ, 1,݅= 1,⋯ ,ܴ,݆= 1,⋯ , ,ܵ

7.7 Two-way-test pair search strategy

Suppose there are ݉ ୤ୟୡ factors and ݉ ୡ୭୴ covariates, thus there are ݉ (= ݉ ୤ୟୡ+ ݉ ୡ୭୴) main effects.

Suppose the number of parameters for them is ௠݌ (including the intercept).

Input values (integers) for ݉ ଵ (threshold value to conduct interaction effect detection; the default is

100), ݉ ଶ (threshold value to select main effects (factors) for interaction effect detection; the default is

20) and ୫݌ ୟ୶ (maximum number of parameters the system can handle; the default is 5000), where

݉ ଵ ≥ ݉ ଶ.

When (p୫ ୟ୶ ≤ p௠ + �݉ ୡ୭୴), the strategy will not be conducted. That is to say, no any interactions of

two factors and squared term of covariates are output.

When (݉ ୤ୟୡ < 2) and (p୫ ୟ୶ > p୫ + �݉ ୡ୭୴), only squared term of covariates are output.

When(݉ ୤ୟୡ > ݉ ଶ) and (p୫ ୟ୶ > p୫ + �݉ ୡ୭୴) then the strategy will be conducted with the following

steps:

1. Build a generalized linear model using all main effects ,ଶࢄ,ଵࢄ ⋯ ௠ࢄ, .

2. Select the significant main effects >݌) 0.05) based on Type 3 analysis (using Wald statistics in

Section 3.1.1). Assume there are ݉ ′ significant effects and ݉ ୤ୟୡ
ᇱ significant effects of factors.

3. If (݉ ୤ୟୡ
ᇱ < 2) or (݉ ᇱ> ݉ ଵ), then stop and no interaction detection is conducted. Otherwise,

sort the main effects using p-value in ascending order.

4. Select the top ݉ ୤ୟୡ
ᇱᇱ (= min(݉ ୤ୟୡ

ᇱ ,݉ ଶ)) main effects to construct two-way interaction effects (of

two factors) among these ݉ ୤ୟୡ
ᇱᇱ main effects.

5. Test all candidate interaction effects using the methods given Sections 7.3 and 7.6.

6. Calculate the total number of parameters for all significant interaction effects, denoted by ,௜௡௧௘௥݌

if ௜௡௧௘௥݌ < 0.5 × ୫݌) ୟ୶− ௠݌ − ݉ ୡ୭୴), then stop and output all significant interaction effects

and all squared term of covariates; otherwise go to step 7.

7. Calculate effect size for each significant two-way interaction effect

݂݂ܧ ݁ܿ ݐܵ ݖ݅݁ = ℓ௙௨௟௟− ℓ௥௘ௗ௨௖௘ௗ − ݀ ௜݂௡௧௘௥௔௖௧௜௢௡

where ݀ ௜݂௡௧௘௥௔௖௧௜௢௡ denotes the difference of degrees of freedom of full and reduced models.

8. Sort all significant two-way interaction effects using their effect sizes in descending order and

select and output top-݇ interaction effects and all squared term of covariates, where ݇ is the

maximum number satisfying the number of parameters for top-݇ interaction effects is less than

or equal to 0.5 × ୫݌) ୟ୶− ௠݌ − ݉ ୡ୭୴).

When (݉ ୤ୟୡ≤ ݉ ଶ) and ୫݌) ୟ୶ > ୫݌ + �݉ ୡ୭୴), the strategy will be similar to the one given above,

except that the step of constructing two-way interaction effects: here, two-way interaction effects are

directly constructed among all ݉ ୤ୟୡ main effects rather than based on ݉ ୤ୟୡ
ᇱᇱ significant main effects.

That is to say, it doesn’t need building a model of all main effects.

Note that the parameters settings for the model of all main effects may be different from the user’s

setting for speeding up the process of the two-way interaction detection:

 For the ancillary parameter ()݇ in negative binomial distribution, it is set to 1.0 when ݇ is

estimated by MLE.

 For the scale parameter ߶, it is fixed to 1.0 for the following two cases: (1) the ߶ is estimated

by MLE; (2) the ߶ is estimated by Pearson chi-square or Deviance divided by degree of

freedom.

8. Model selection

Model selection for generalized linear models involves 2 aspects:

(1) Distribution and/or link function specification: if both or one of them is unspecified, then we need

to select them which would be based on measurement level and storage type of the target.

(2) Variable selection or regularization: the option of variable selection can be on or off. If it is on,

then the available methods are forward stepwise, lasso (L1 regularization), elastic net (L1+L2

regularization) and ridge regression (L2 regularization).

Notes:

(a) We assume that the inputs list is given.

(b) Two-way interaction detection is a sub-option under variable selection. Only when the

variable selection flag is on and the variable selection or regarulization method is selected as

Forward-Stepwise/L1/L1+L2/L2, user can specify the two-way interaction flag (default is off).

Interaction detection is disabled if the user specifies any higher-order effects (beyond main

effects).

Hence there will be 4 scenarios from the combinations of the above 2 aspects and we will describe how

each scenario would be processed:

(1) Distribution and link function are specified and variable selection flag is off:

The main task is parameter estimation and the estimation methods would be different depending

on the inputs list size:

(1.1) If the inputs list falls into the small to median p situation, then use the Newton-Raphson in

GLE phase 1 to estimate parameters (by whole data).

Note that the list with null or intercept-only will fall into this scenario.

(1.2) If the inputs list falls into the large p situation, then use the L-BFGS in ADMM to estimate

parameters (by whole data).

(2) Distribution and link function are specified and variable selection flag is on.

The main tasks are variable selection and parameter estimation:

(2.1) If the inputs list falls into the small to median p situation and the variable selection method

is forward stepwise, then apply Section 8.1 to select variables (by sample data) and use the

Newton-Raphson to estimate parameters (by whole data).

(2.2) If the inputs list falls into the large p situation and the variable selection method is forward

stepwise, switch to the lasso method in ADMM to select variable and estimate parameters

(by whole data). A warning will be issued to let user know that variable selection method is

changed.

(2.3) If the variable selection or regularization is L1, L2, or L1+L2, no matter whether the inputs

list falls into the small to medium or large p situation, use ADMM with Newton Raphson or

L-BFGS to select variable and estimate parameters (by whole data).

Note that for the list with null or intercept-only in (2.1) and (2.3), we use the Newton-Raphson to

build a null or intercept only model directly (by whole data) and issue a warning message such as

"Variable selection method is ignored because of no predictor. A null model or intercept-only

model is built."

(3) Distribution and/or link function are unspecified and variable selection is off.

The main task is distribution/link function selection:

(3.1) If the inputs list falls into the small to medium p situation, then apply Section 8.2 to select

distribution and/or link function (by sample data) and use the Newton-Raphson to estimate

parameters (by whole data) for the selected distribution/link function.

Note that the list with null or intercept-only will fall into this scenario.

(3.2) If the inputs list falls into the large p situation, then apply Section 8.2 to select distribution

and/or link function (by sample data) and use the L-BFGS in ADMM ADD to estimate

parameters (by whole data) for the selected distribution/link function.

(4) Distribution and/or link function are unspecified and variable selection is on.

The main tasks are distribution/link function selection, variable selection and parameter

estimation:

(4.1) If the inputs list falls into the small to medium p situation and the variable selection method

is forward stepwise, then apply Section 8.3.1 to select distribution/link function and

variables (by sample data) and use the Newton-Raphson to estimate parameters (by whole

data) for the selected distribution/link function.

(4.2) If the inputs list falls into the large p situation and the variable selection method is forward

stepwise, then apply Section 8.3.2, i.e., switch to the lasso method in ADMM to select

distribution/link function (by sample data), and use the lasso method in ADMM and

selected lambda to select variables and estimate parameters (by whole data) for the selected

distribution/link function. A warning will be issued to let user know that variable selection

method is changed.

(4.3) If the variable selection/regularization is L1, L2, or L1+L2, no matter whether the inputs

list falls into the small to medium or large p situation, apply Section 8.3.2 (based on

ADMM) to select distribution/link function (by sample data), and use with Newton

Raphson or L-BFGS with selected lambda to select variables and estimate parameters (by

whole data) for the selected distribution/link function.

Note that for the list with null or intercept-only in (4.1) or (4.3), we apply Section 8.2 to select

distribution/link function based on the null or intercept only model (by sample data), and use the

Newton-Raphson to estimate parameters (by whole data) for the selected distribution/link function.

Issue a warning message such as "Variable selection method is ignored because of no predictor. A

null model or intercept-only model is built to select distribution and link function."

Implementation notes:

Regarding the initial value when using ADMM for variable selection and model building:

 When the inputs list falls into the small to medium situation, compute the initial value according

to section 3.1.3.1 in GLE phase 1.

 When the inputs list falls into the large p situation and the distribution is not binomial, ordinal or

nominal, set 1.0e-6 as the initial value for all the regression parameters.

 When ordinal multinomial distribution, no matter whether the inputs list falls into the small to

medium or large p situation, compute the initial value according to Appendix A (Ordinal

Multinomial Distribution) in GLE phase 1; When nominal multinomial distribution, no matter

whether the inputs list falls into the small to medium or large p situation, compute the initial

value according to Appendix B (Nominal Multinomial Distribution) in GLE phase 1.

8.1 Variable selection or regularization

For the small to median p situations >�݌) ୫݌ ୟ୶), four variable selection or regularization methods are

supported: (1) forward stepwise; (2) the lasso ଵܮ) regularization); (3) elastic net (the ଵܮ) + (ଶܮ

regularization); (4) ridge regression ଶܮ) regularization). For the large p situations ≤�݌ ୫݌ ୟ୶) , the

lasso, elastic net and ridge regression would be supported, but not forward stepwise. We will utilize

ADMM to do the lasso, elastic net and ridge regression and details are provided in GLE phase 3, so

only forward stepwise is described in details here.

The basic idea of the forward stepwise method is to start off by choosing the best effect in addition to

the intercept if exists and then tries to enter additional effect one at a time. After an effect has been

added, all effects in the current model are checked to see if any of them should be removed. The

process continues until a stopping criterion is met.

The five candidate statistics will be supported for the effect entry or removal: (1) Likelihood ratio (LR)

statistic; (2) Score statistic (SCORE); (3) Wald statistic (WALD); (4) Finite sample corrected Akaike

information criteria (AICC); and (5) Average square error (ASE) over the testing data. More

specifically, six combinations (Table 8.2) of candidate statistics are available for the effect entry and

removal. The default statistics for the effect entry and removal are SCORE and WALD, respectively.

Table 8.2. Six combinations of statistics for effect entry and removal

No Statistics

Effect entry Effect removal

1 SCORE WALD

2 SCORE LR

3 LR WALD

4 LR LR

5 AICC AICC

6 ASE ASE

It is noted that LR statistic, AICC and ASE might consume considerable computation time since a

model is fitted for each effect. Score and Wald statistic use less computation time but may be less

accurate in the significance test of the effect of interest.

The details of statistics calculations and the selection process are described below.

Implementation note:

 We only implement #1 so far and will implement other options later if time permits.

8.1.1 Candidate statistics

௝ܺ A continuous effect.

൛ܺ ௝ೞൟ௦ୀଵ
௠ A categorical effect.

௖௨௥࡮ The parameters for the current model

௝࡮ The parameters for the effect j which is continuous or categorical

݉ ∗ The difference in the number of non-redundant parameters estimated of two successive
models

ℓ௖௨௥ The log likelihood for the current model.

ℓ௖௨௥ା௝ The log likelihood for the resulting model after entering the effect j.

ℓ௖௨௥\௝ The log likelihood for the resulting model after removing the effect j.

(1) LR statistic

The LR statistic is defined as two times the log of the ratio of the likelihood functions of two models

evaluated at their MLEs. The LR statistics for an effect j ቀܺ ௝or�൛ܺ ௝ೞൟ௦ୀଵ
௠

ቁentering and removing from

the current model are calculated as follows:

௘ܵ௡௧௘௥ೕ
= 2൫ℓ௖௨௥ା௝− ℓ௖௨௥൯

௥ܵ௘௠ ௢௩௘ೕ
= 2൫ℓ௖௨௥− ℓ௖௨௥\௝൯

The asymptotic distribution of the LR statistic, under the hypothesis that the additional or removal

parameters in the model are equal to 0, is a chi-square with ݉ ∗ degrees of freedom, where ݉ ∗ equal to

the difference in the number of non-redundant parameters estimated in two successive models, i.e.,

௠߯ ∗
ଶ .

Then the p-values corresponding to the above LR statistic are

௘௡௧௘௥ೕ݌ = 1 − ܲ ቀ߯ ௠ ∗
ଶ ≤ ௘ܵ௡௧௘௥ೕ

ቁ

௥௘௠݌ ௢௩௘ೕ = 1 − ܲ ቀ߯ ௠ ∗
ଶ ≤ ௥ܵ௘௠ ௢௩௘ೕ

ቁ

(2) AICC

The AICC values for the resulting model when an effect j enters to or is removed from the current

model are calculated as follows:

=௖௨௥ା௝ܥܥܫܣ −2ℓ௖௨௥ା௝+
2 ௖݀௨௥ା௝ ∙ ܰ

ܰ − ௖݀௨௥ା௝− 1

=௖௨௥\௝ܥܥܫܣ −2ℓ௖௨௥\௝+
2 ௖݀௨௥\௝ ∙ ܰ

ܰ − ௖݀௨௥\௝− 1

where ݀�(௖݀௨௥ା௝or�݀௖௨௥\௝) denote the degrees of freedom of the resulting model. For all distributions

except ordinal and nominal multinomial, ௫݌�=�݀ if only  is included; ௫݌�=�݀ + 1 if  and  for

normal, inverse Gaussian, gamma and Tweedie distributions or  and k for negative binomial

distribution are included. For ordinal and nominal multinomial, d is just the number of non-redundant

parameters.

(3) Score statistic

The score statistic is calculated for each effect not in the model to determine whether the effect should

enter the model.

Suppose the current model’s maximum likelihood estimate is .෡௖௨௥࡮ Using the block notations, the

score function ,࢙) the gradient vector) and information matrix =ࡵ) ࡴ− , the negative Hessian matrix)

of the resulting model (the current model with additional effect j) are calculated as

=௝൯࡮,௖௨௥࡮൫࢙ ቆ
(௝࡮,௖௨௥࡮)௖௨௥࢙

(௝࡮,௖௨௥࡮)௝࢙
ቇ

=௝൯࡮,௖௨௥࡮൫ࡵ ቆ
(௝࡮,௖௨௥࡮)௖௨௥,௖௨௥ࡵ (௝࡮,௖௨௥࡮)௖௨௥,௝ࡵ

(௝࡮,௖௨௥࡮)௝,௖௨௥ࡵ (௝࡮,௖௨௥࡮)௝,௝ࡵ
ቇ

The inverse information matrix is

=௝൯࡮,௖௨௥࡮൫ࡶ ቆ
(௝࡮,௖௨௥࡮)௖௨௥,௖௨௥ࡶ (௝࡮,௖௨௥࡮)௖௨௥,௝ࡶ

(௝࡮,௖௨௥࡮)௝,௖௨௥ࡶ (௝࡮,௖௨௥࡮)௝,௝ࡶ
ቇ

Then the score statistic for the null hypothesis ௝࡮:଴ܪ = ૙ is

௘ܵ௡௧௘௥ೕ
= ෡௖௨௥,૙൯࡮௝൫࢙

்
(෡௖௨௥,૙࡮)௝࢙෡௖௨௥,૙൯࡮௝,௝൫ࡶ

Under the null hypothesis, the score statistic has a chi-square distribution with ௦ݎ degrees of freedom,

where ௦ݎ equals to the rank of .(෡௖௨௥,૙࡮)௝,௝ࡶ If ௦ݎ is zero, then the score statistic will be set to 0 and

the p-value will be 1. Otherwise, the p-value is calculated as

௘௡௧௘௥ೕ݌ = 1 − ܲ ቀ߯ ௥ೞ
ଶ ≤ ௘ܵ௡௧௘௥ೕ

ቁ.

(4) Wald statistic

The Wald statistic is calculated for each effect in the model to determine whether the effect can be

removed from the model.

The current model’s parameter vector and its estimate can be partitioned into two parts as follows:

௖௨௥࡮ = ൬
௖௨௥\௝࡮

௝࡮
൰�and࡮�෡௖௨௥ = ቆ

෡௖௨௥\௝࡮

෡௝࡮
ቇ

Similarly, the information matrix and its inverse can be partitioned as follow,

(௖௨௥࡮)ࡵ = ቆ
(௝࡮,௖௨௥\௝࡮)௖௨௥\௝,௖௨௥\௝ࡵ (௝࡮,௖௨௥\௝࡮)௖௨௥\௝,௝ࡵ

(௝࡮,௖௨௥\௝࡮)௝,௖௨௥\௝ࡵ (௝࡮,௖௨௥\௝࡮)௝,௝ࡵ
ቇ

(௖௨௥࡮)ࡶ = ቆ
(௝࡮,௖௨௥\௝࡮)௖௨௥\௝,௖௨௥\௝ࡶ (௝࡮,௖௨௥\௝࡮)௖௨௥\௝,௝ࡶ

(௝࡮,௖௨௥\௝࡮)௝,௖௨௥\௝ࡶ (௝࡮,௖௨௥\௝࡮)௝,௝ࡶ
ቇ

Then the Wald statistic for the null hypothesis ௝࡮:଴ܪ = ૙ is

௥ܵ௘௠ ௢௩௘ೕ
= ൫࡮෡௝൯

்
൧(෡௝࡮,෡௖௨௥\௝࡮)௝,௝ܬൣ

ି
෡௝࡮

Under the null hypothesis, ܵhas a chi-square distribution with ௦ݎ degrees of freedom, where ௦ݎ equals

to the rank of .(෡௝࡮,෡௖௨௥\௝࡮)௝,௝ࡶ If ௦ݎ is zero, then the score statistic will be set to 0 and the p-value will

be 1. Otherwise, the p-value is calculated as

௥௘௠݌ ௢௩௘ೕ = 1 − ܲ ቀ߯ ௥ೞ
ଶ ≤ ௥ܵ௘௠ ௢௩௘ೕ

ቁ.

(5) ASE

For distributions except ordinal and nominal distributions, the ASE value over the testing data for the

resulting model when an effect enters to or is removed from the current model is

ܣ ܧܵ =
1

∑ ௜݂
௡೅
௜ୀଵ

෍ ௜݂(ݕ௜− (ො௜ݕ
ଶ

௡೅

௜ୀଵ

where =ො௜ݕ ݃ିଵ൫࢞௜
+෡ࢼ் ௜൯is࢕ the predicted value of ,௜ݕ and ்݊ is the number of distinct cases in the

testing data.

For ordinal and nominal distributions, the ASE value is calculated as

ܣ ܧܵ =
1

∑ ௜݂
௡೅
௜ୀଵ

෍ ௜݂ܫ൫ݕ௜≠ ൯(௜࢞ܿ)

௡೅

௜ୀଵ

(௜࢞ܿ) = arg max
௝

ො௜௝ߨ

Where (∙)ܫ is indicator function, ்݊ is the number of distinct cases in the testing data, (௜࢞ܿ) denotes

the predicted category for ,௜࢞ and ො௜௝ߨ denotes the probability for category ݆corresponding to .௜࢞ The

detailed calculation of ො௜௝ߨ is given in Section 5.1 of “Algorithm: Generalized Linear Engine Phase I”.

Implementation notes:

 If ASE criterion is chosen, the data would be divided into two parts: training data and testing

data. For the current phase, the partition would be set to 30% for testing data, and users have

no control over this part. However, users can select the seed so the results can be reproduced.

 The ASE value for ordinal and nominal multinomial distribution represents the classification

error actually.

8.1.2 The selection process

When distribution, link function and effects are all specified but the user requests the selection of

effects, candidate effects are effects specified; when both distribution and link function are specified,

but the effects have not been specified, the candidate effects includes all main effects, and some

interaction effects obtained in Section 7.

The criteria could be grouped into two categories: (1) LR, SCORE and WALD; (2) AICC and ASE.

The former is to select an effect for entry (removal) with minimum (maximum) p-value and continue

doing it until the p-values of all candidates for entry (removal) are equal to or greater than (less than) a

specified significance level. The latter is to compare the goodness of fit statistics (AICC or ASE) of the

resulting model after entering (removing) an effect with that of the current model and selection would

be stopped at a local optimal value.

Some definitions are needed for the selection process.

FLAG A ௘݌ × 1 index vector which records the status of each effect. =௜ܩܣܮܨ 1 means the
effect i is in the current model; =௜ܩܣܮܨ 0 means it is not. Note that =௜ܩܣܮܨ|݅�}| 1}|
denotes the number of effects with =௜ܩܣܮܨ 1.

MAXSTEP The maximum number of iteration steps. The tentative default value is 3 × .௘݌

MAXEFFECT The maximum number of effects (excluding intercept if exists). The default value is
.௘݌

௜௡݌ The significance level for effect entry when LR or SCORE is used. The default is
0.05.

௢௨௧݌ The significant level for effect removed when LR or WALD is used. The default is
0.1.

௖௨௥ܥܥܫܣ The AICC value for the current model.

ܣ ௖௨௥ܧܵ The ASE value for the current model.

(1) Set ௜ୀଵ{௜ܩܣܮܨ}
௣೐

= 0 and�݅݁ݐ =ݎ 0. The initial model is ࣁ = .࢕

If LR is used, compute the log-likelihood value;

If AICC (ASE) is used, compute AICC (ASE) for the initial model and denote it as ௖௨௥ܥܥܫܣ
ܣ) .(௖௨௥ܧܵ

(2) If =௜ܩܣܮܨ|݅�} 1} ≠ ∅, ݐ݅݁ >ݎ ܯ ܶܵܺܣ ܲܧ and =௜ܩܣܮܨ|݅�}| 1}| < ܯ ,ܶܥܧܨܨܧܺܣ go to next step

(3); otherwise stop and output the model.

(3) Based on the current model, for every effect j with =௜ܩܣܮܨ 0

If LR or SCORE is used, compute ௘ܵ௡௧௘௥ೕ
and .௘௡௧௘௥ೕ݌

If AICC (ASE) is used, compute ௝ܥܥܫܣ ܣ) .(௝ܧܵ

(4) If LR or SCORE is used, choose the effect ௝ܺ∗ , ݆∗ = arg min
௝
ቄ݌௘௡௧௘௥ೕቅ, and enter ௝ܺ∗ to the

current model if ∗௘௡௧௘௥ೕ݌ < .௜௡݌

If AICC (ASE) is used, choose the effect ௝ܺ∗, ݆∗ = arg min
௝
൛ܥܥܫܣ௝ൟ(arg min

௝
൛ܣ ,(௝ൟܧܵ and enter

௝ܺ∗ to the current model if ∗௝ܥܥܫܣ < ௖௨௥ܥܥܫܣ ܣ) ∗௝ܧܵ < ܣ .(௖௨௥ܧܵ

Then go to (5); otherwise stop and output the current model.

(5) If the model with new effect is the same as any previous ones, stop and output the current model;

otherwise update the current model: set ∗௝ܩܣܮܨ = 1 and ݐ݅݁ =ݎ ݐ݅݁ +ݎ 1.

If AICC (ASE) is used, let ௖௨௥ܥܥܫܣ = ∗௝ܥܥܫܣ ܣ) ௖௨௥ܧܵ = ܣ .(∗௝ܧܵ

(6) For every effect k in the current model (i.e.,ܩܣܮܨ�௞ = 1, ∀݇),

If LR or WALD is used, compute ௥ܵ௘௠ ௢௩௘ೖ
and ௥௘௠݌ ௢௩௘ೖ.

If AICC (ASE) is used, compute ௞ܥܥܫܣ ܣ) .(௞ܧܵ

(7) If LR or WALD is used, choose the effect ܺ௞∗, ݇∗ = arg max
௞
൛݌௥௘௠ ௢௩௘ೖൟ, and remove ܺ௞∗ from

the current model if ௥௘௠݌ ௢௩௘ೖ∗ > .௢௨௧݌

If AICC (ASE) is used, choose the effect ܺ௞∗ , ݇∗ = arg min
௞

{௞ܥܥܫܣ} (arg min
௞

ܣ} ,({௞ܧܵ and

remove ܺ௞∗ from the current model if ∗௞ܥܥܫܣ < ௖௨௥ܥܥܫܣ ܣ) ∗௞ܧܵ < ܣ .(௖௨௥ܧܵ

Then go to (8); otherwise go back to (2).

(8) If the model with the effect removed is the same as any previous one, stop and output the current

model; otherwise update the current model: set ∗௞ܩܣܮܨ = 0 and ݐ݅݁ =ݎ ݐ݅݁ +ݎ 1.

If AICC (ASE) is used, let ௖௨௥ܥܥܫܣ = ∗௞ܥܥܫܣ ܣ) ௖௨௥ܧܵ = ܣ .(∗௞ܧܵ

Notes:

 The estimate method for ߶ or ݇ should be kept consistent for the model sequence generated by

entering or removing the effect. More specifically, when ߶ is estimated by ML method, or the

deviance or Pearson chi-square divided by degrees of freedom, estimated ߶෠would be different for

a pair of models. That is to say, score and Wald statistics will use ߶෠of the current model rather

than of the final model (full model), because ߶ for the full model would be not obtained. For the

same reason, 2൫ℓଵ,థ෡భ
− ℓଶ,థ෡మ

൯will be used in the LR statistics. Similar for .݇

 Let =ࡵ ൬
ଵଵࡵ ଵଶࡵ
ଶଵࡵ ଶଶࡵ

൰denote the information matrix, then its inverse =ࡶ ൬
ଵଵࡶ ଵଶࡶ
ଶଵࡶ ଶଶࡶ

൰= ିࡵ can be

calculated as follows,
ଵଵࡶ = ଵଵࡵ

ିଵ + ଵଵࡵ
ିଵࡵଵଶࡶଶଶࡵଶଵࡵଵଵ

ିଵ

ଵଶࡶ = ଵଵࡵ−
ିଵࡵଵଶࡶଶଶ

ଶଵࡶ = ଵଶࡶ
்

ଶଶࡶ = −ଶଶࡵ] ଵଵࡵଶଵࡵ
ିଵࡵଵଶ]ି

 For LR, AICC and ASE, a model is fitted for each effect adding or being removed; For SCORE

and WALD, only one model is fitted for the effect which is finally determined to add to or remove

from the current model.

 The cold start for the initial model ࣁ = ૙ and power link family: ࣆ = ૙ when power link

(including identity) is used. Thus, the score vector ࢙ is missing because (௜ߤ)ܸ and (௜ߤ)݃′ are zero.

Consequently, the score statistic could not be conducted. To overcome this issue, we first build a

intercept-only model, then use score statistics to select the best effect for entering the model for

the time based on the intercept-only model.

 For effect entry in step (4), when LR or SCORE is used, if there is a tie in determining the effect
݆∗(min

௝
,({௘௡௧௘௥ೕ݌} then select the effect with the smallest degrees of freedom. If effects still have

the same degrees of freedom, then select the one with ordering earlier in the effect list.

For effect entry in step (4), when AICC or ASE is used, if there is a tie in determining optimal

value, then select the one with the smallest degrees of freedom. If effects still have the same

degrees of freedom, then select the one with ordering earlier in the effect list.

 Similarly, for effect removal in step (7), when LR or WALD is used, if there is a tie in

determining optimal value (max௞{݌௥௘௠ ௢௩௘ೖ}), then select the effect with the largest degrees of

freedom. If effects still have the same degrees of freedom, then select the one with ordering later

in the effect list.

For effect removal in step (7), when AICC or ASE is used, if there is a tie in determining optimal

value, then select the one with the largest degrees of freedom. If effects still have the same degrees

of freedom, then select the one with ordering later in the effect list.

 Regarding rules for entering for removing effects when interaction effects are presented, please

refer to Chu and Han (2011).

8.2 Distribution and link function selection

The distribution and link function selection is to select an appropriate distribution and/or link for the

given data when distribution and/or link function are not specified by user. Table 8.3 gives candidate

combinations of distribution and link function. Since there are too many link functions potentially, it

will be too time consuming to check every combination of distribution and link function. Thus we will

only consider the combinations listed on Table 8.3 and Table 8.4 according to the target’s

measurement level and the storage type.

Please note that if the distribution (link function) is specified, then the distribution (link function) will

not be detected any more.

Table 8.3: List of combinations of distribution and link function

Candidate distribution Candidate link functions

Normal Identity, log, power(0.5)

Inverse Gaussian Identity, log, power(-2)

Gamma Identity, log, power(-1)

Tweedie(ݍ) Identity, log, power(1 − (ݍ

Negative binomial()݇ Identity, log, Negative binomial

Poisson Identity, log, power(0.5)

Binomial Logit, Probit, complementary log-log

Nominal multinomial Generalized logit

Ordinal multinomial Cumulative logit, cumulative probit, cumulative
complimentary log-log

Table 8.4 List of candidate distributions based on measurement level and storage type of the target

Measurement level of the target Storage type of the target Candidate distribution

Continuous Positive real Normal

Inverse Gaussian

Gamma

Tweedie(ݍ)

Positive real with zeros Normal

Tweedie(ݍ)

Real or integer with
negative values

Normal

Positive integer with
zeros

Negative binomial()݇

Poisson

Normal

Positive integer Negative binomial()݇

Poisson

Normal

Inverse Gaussian

Gamma

Nominal #categories = 2 Binomial

#categories > 2 Nominal multinomial

Ordinal #categories = 2 Binomial

#categories > 2 Ordinal multinomial

Flag Binomial

Notes:

 For the case that the distribution is given, the candidate link functions are determined using Table

8.3 after checking the given distribution is compatible with the measurement level and storage

type of the target in Table 8.4.

 For the case that the link function is given, the following rules are used to determine the candidate

distributions

(1) If the link function is one of cumulative logit, cumulative probit, cumulative complimentary

log-log, cumulative negative log-log and cumulative cauchit, then the candidate distribution is

ordinal multinomial after checking the measurement level is ordinal. Otherwise, an error

message should be issued.

(2) If the link function is generalized logit, the candidate distribution is nominal multinomial after

checking the measurement level is nominal. Otherwise, an error message should be issued.

(3) If the link function is one of identity, log, and power, the candidate distributions are

determined by Table 8.4.

(4) If the link function is negative binomial, the candidate distribution is negative binomial.

(5) If other link functions are used, the candidate distribution is binomial.

8.2.1 Candidate statistics

8.2.1.1 ASE

The definition is the same to that in Section 8.1.2.

8.2.2 The selection process

A model is run for each combination of distribution and link function, given a set of effects, depending

the measurement level and the storage type of the target given in Table 8.3 and Table 8.4 on the

training data, then the best model with minimum value of ASE on the testing data is selected. Thus, the

corresponding distribution and link function are selected and output.

Implementation note:

 For the small to median p situation(݌�< ୫݌ ୟ୶), there are two ways the model is built: (1) using

the Newton-Raphson with MapReduce, see GLE phase 1 for details; (2) using ADMM with the

Newton-Raphson method, see GLE phase 3 for details.

 For the large p situation ≤�݌) ୫݌ ୟ୶), the model is built using ADMM with L-BFGS method,

see GLE phase 3 for details.

8.3 Automatic detection of distribution, link function and
effects

When the effects in addition to at least one of distribution and link function have not been specified,

we will apply different methods, depending on the variable selection methods, to detect distribution,

link function and effects automatically.

8.3.1 The variable selection method is forward stepwise:

The two-stage model selection method is applied and its basic idea is to apply distribution and link

function selection and variable selection alternately. It starts off by getting an initial estimate of the

distribution ෠andܨ the link function ො݃based on a given effect set ;ࢄ then estimate the optimal effects ෡ࢄ

based on estimated ෠ܨ and ො݃. These two steps are performed alternatively until the convergence

criterion is satisfied. In addition, an enhancement stage of adding two-way interaction effects is

provided when the size of the optimal variable set is less than a predefined threshold.

ℂ = {௜ܥ} The set of potential combination of distribution and link function based on the type of the
target, where =௜ܥ ,௜ܨ) ௜݃), and ௜andܨ ௜݃denotes the distribution and the link function,
respectively.

௟ࢄ The effects for the -݈th iteration, including both main and interaction effects

݁௟ The ASE value for the -݈th iteration.

௠ߝ The tolerance level for the convergence criteria. Its default value is set to 10ିସ.

୫݈ ୟ୶ The maximum number of iterations. Its default value is set to 2.

Λଵ,Λଶ The significant and non-significant predictors for the optimal combination of distribution
and link function, respectively.

ଶܧ,ଵܧ The candidate set of effects for variable selection.
݉ ଷ Threshold value to provide an enhancement stage; the default is 100.

݉ ସ Threshold value to select main effects for constructing interaction effects; the default is
20.

The detailed process is given below,

(1) Determine candidate combinations ℂ = =݅,{௜ܥ} 1,⋯ , ௙݊௚ of distributions and link functions

based on the target’s measure level and storage type based on Table 8.3 and 8.4.

(2) Let ଴ࢄ be the initial effect set, which only includes all main effects (predictors). Let

൫ࢄ෡ୠ ୱୣ୲,ܥመୠ ୱୣ୲, Ƹ݁ୠ ୱୣ୲൯denote the optimal model.

(3) Select 3 best combinations, denoted by ℂᇱ, from candidate combination ℂ.

(a) Build one model for each combination in ℂ based on ଴ࢄ using the training data.

(b) Calculate ASE value for each model built using the testing data.

(c) Select top 3 models with minimum ASE.

(d) Denote the optimal combination by መଵܥ and ASE value by Ƹ݁ଵ/ଶ. Let ෡ୠࢄ ୱୣ୲= መୠܥ,଴ࢄ ୱୣ୲= ,መଵܥ

and Ƹ݁ୠ ୱୣ୲= �݁ Ƹଵ/ଶ.

(4) Perform Type 3 analysis (using Wald statistics in Section 8.1.1) for the current optimal model.

Based on p values of effects, divide effects (predictors) into two groups: one (Λଵ) is for

significant predictors >݌) 0.05), and the other (Λଶ) is for the non-significant predictors.

(5) Obtain the optimal effects ෡ଵࢄ based on ,መଵܥ from the candidate effects set of =)ଵܧ Λଵ) and

=)ଶܧ Λଶ), where ଵܧ is considered as the initial model, and forward stepwise is used to select

among .ଶܧ

(6) Calculate the ASE value, Ƹ݁ଵ, of the model ൫ࢄ෡ଵ,ܥመଵ൯on the testing data.

(7) If ൫݁ Ƹଵ < Ƹ݁ୠ ୱୣ୲൯, then ൫ࢄ෡ୠ ୱୣ୲= መୠܥ,෡ଵࢄ ୱୣ୲= ,መଵܥ Ƹ݁ୠ ୱୣ୲= �݁ Ƹଵ൯.

(8) Let ݈= 1. If ݈> (୫݈ ୟ୶− 1), then stop and output the optimal model ൫ࢄ෡ୠ ୱୣ୲,ܥመୠ ୱୣ୲, Ƹ݁ୠ ୱୣ୲൯.

(9) Build one model for each combination in ℂᇱbased on ෡௟usingࢄ the training data, calculate ASE

for each model using the testing data.

(10) Obtain the optimal combination (denoted by (መ௟ାଵܥ with minimum ASE value (denoted by

Ƹ݁௟ାଵ/ଶ).

(11) If Ƹ݁௟ାଵ/ଶ < Ƹ݁ୠ ୱୣ୲, then ෡ୠࢄ ୱୣ୲= መୠܥ,෡௟ࢄ ୱୣ୲= ,መ௟ାଵܥ and Ƹ݁ୠ ୱୣ୲= �݁ Ƹ௟ାଵ/ଶ.

(12) Obtain the optimal effects ෡௟ାଵࢄ based on ,መ௟ାଵܥ from the candidate effects set of ଵܧ = ෡௟andࢄ

ଶܧ = ଴ࢄ − ,ଵܧ where ଵܧ is considered as the initial model, and forward stepwise is used to select

among .ଶܧ

(13) Calculate the ASE value, Ƹ݁௟ାଵ, of the model ൫ࢄ෡௟ାଵ,ܥመ௟ାଵ�൯on the testing data.

(14) If ൫݁ Ƹ௟ାଵ < Ƹ݁ୠ ୱୣ୲൯, then ൫ࢄ෡ୠ ୱୣ୲= መୠܥ,෡௟ାଵࢄ ୱୣ୲= ,መ௟ାଵܥ Ƹ݁ୠ ୱୣ୲= �݁ Ƹ௟ାଵ൯.

(15) If ൫ൣࢄ෡௟ାଵ,ܥመ௟ାଵ൯= ൫ࢄ෡௟,ܥመ௟൯൧or [݈≥ (୫݈ ୟ୶− 1)] or ቂ�|௘̂೗శభି௘̂೗|
௘̂೗ାଵ଴

షల < ௠ߝ ቃ, then stop and output the

optimal model ൫ࢄ෡ୠ ୱୣ୲,ܥመୠ ୱୣ୲, Ƹ݁ୠ ୱୣ୲൯; otherwise, ݈= ݈+ 1 and go to step (9).

If หࢄ෡ୠ ୱୣ୲ห< ݉ ଷ, an enhancement stage of adding two-way interaction effects will be provided as

follows:

(1) Perform Type 3 analysis (using Wald statistics in Section 8.1.1) for the current optimal model.

(2) Sorting the main effects using p-value in ascending order and select top ݉ ᇱ= min൫หࢄ෡ୠ ୱୣ୲ห,݉ ସ൯

main effects.

(3) Construct of two-way interaction effects (of any two different main effects, and squared term of

covariates) among the ݉ ′ main effects.

(4) Test all candidate interaction effects (using Score statistics in Section 8.1.1) based on the current

optimal model.

(5) Select the significant interaction effects >݌) 0.05), and sort them using their p-values in

descending order and select and output top-݇ interaction effects (Denoted by ෡୧୬୲ୣࢄ ୰), where ݇ is

the maximum number satisfying the number of parameters for top-݇ interaction effects is less

than or equal to 0.5 × ୫݌) ୟ୶− ௠݌ ௦), where ௠݌ ௦ denotes the number of parameters for ෡ୠࢄ ୱୣ୲

(including the intercept).

(6) Obtain the optimal effects ෡௟ାଶࢄ based on መୠܥ ୱୣ୲, ଵܧ = ෡ୠࢄ ୱୣ୲and ଶܧ = ෡୧୬୲ୣࢄ ୰ using the method of

variable selection given in Section 8.1, where ଵܧ is considered as the initial model, and stepwise

is used to select among .ଶܧ

(7) Calculate the ASE value, Ƹ݁௟ାଶ, of the model ൫ࢄ෡௟ାଶ,ܥመୠ ୱୣ୲�൯on the testing data.

(8) If ൫݁ Ƹ௟ାଶ < Ƹ݁ୠ ୱୣ୲൯, then ൫ࢄ෡ୠ ୱୣ୲= መୠܥ,෡௟ାଶࢄ ୱୣ୲= መୠܥ ୱୣ୲, Ƹ݁ୠ ୱୣ୲= �݁ Ƹ௟ାଶ൯.

(9) Stop and output the optimal model ൫ࢄ෡ୠ ୱୣ୲,ܥመୠ ୱୣ୲, Ƹ݁ୠ ୱୣ୲൯.

Note that parameter settings of model selection are given below:

 For the scale parameter ߶, it is estimated by MLE for normal, inverse Gaussian, gamma and

Tweedie distribution; it is fixed at 1.0 for binomial, Poisson, negative binomial, and

multinomial.

 If both distribution and link function are not specified, then,

(1) For the ancillary parameter ()݇ in negative binomial distribution, it is estimated by MLE;

(2) For the parameter ݍ in the tweedie distribution, it is set to 1.5, namely, =ݍ 1.5;

(3) The parameter in power function is given from Table 8.3.

 If only the distribution is given,

(1) For ,݇ it equals to the parameter specified by user.

(2) For ,ݍ it equals to the parameter specified by user.

 If only the link function is given

(1) For the parameter in power function, it equals to the parameter specified by user.

(2) For ,݇ it is estimated by MLE.

(3) For ,ݍ it is set to 1.5.

 For the variable selection, the statistics for effect entry and removal are SCORE and WALD,

respectively.

8.3.2 The variable selection method or regularization is the lasso, elastic
net or ridge regression:

(1) Choose the candidate combinations of distributions and link functions based on the measurement

level and storage type of target.

(2) Detect the interaction terms if interaction detection flag is on based on a combination chosen with

the following rules, and then form the set of candidate effects.

When distribution and link function both are unknown, the rules are as follows:

(a) If normal is a possible distribution candidate, then normal + identify will be chosen.

(b) If binomial is a possible distribution candidate, then binomial + logit will be chosen.

(c) If measurement level is nominal, distribution is nominal multinomial, then nominal

multinomial + generalized logit will be chosen.

(d) If measurement level is ordinal, distribution is ordinal multinomial (even nominal

multinomial is a candidate), then ordinal multinomial + cumulative logit will be chosen.

When distribution is known, link function is unknown, the rules are listed in the follow table:

Distribution Link function

Normal Identity

Inverse Gaussian Power(–2)

Gamma Power(–1)

Tweedie (q) Power(1 – q)

Negative binomial (k) Log

Poisson Log

Binomial Logit

Nominal multinomial Generalized logit

Ordinal multinomial Cumulative logit

When link function is known, distribution is unknown, the rules are as below.

(a) If link function is identify, log or power, then normal will be chosen.

(b) If link function is negative binomial, then negative binomial will be chosen.

(c) If link function is generalized logit, then nominal multinomial will be chosen.

(d) If link function is one of 5 cumulative link functions (logit, probit, complimentary log-log,

negative log-log, cauchit), then ordinal multinomial will be chosen.

(e) If link function is logit, probit, complementary log-log, log-complement, negative log-log or

odds power, then binomial will be chosen.

(3) Select lambda from the grid search method described in GLE phase 3 with the chosen combination

and the set of candidate effects.

(4) Run ADMM (the lasso, ridge or elastic net) to select effects for each combination based on the

selected lambda and the training data, then compute ASE in the testing set.

(5) Choose the combination with the selected effects with the minimum ASE.

(6) If the chosen combination of distribution and link function is not the same as the one in step (2),

then another round of lambda selection based on the chosen combination is conducted to update

the effect selection.

Implementation notes:

 When running ADMMs in step (3) for each combination, we should use the results from step (2)

as the initial values.

 The more complete process should be to select the lambda for each combination, instead of

finding a lambda based on a particular combination and applying the same lambda for other

combinations, in Step (2). Since it might be too time consuming, we propose the above process.

However, the grid search method with the warm-start strategy might not take much longer than

the one with a fixed lambda. Thus we should implement both processes and do some testing to

compare the performance.

 If using user-specified lambda, step 3 and step 6 will be ignored.

8.4 Handle large volume of data

The model selection will be time-consuming when there is a large volume of data, because the model

building might involve many data passes. To speed up the process of model selection, the sampling

techniques are employed, which sample a small dataset from the whole data. In addition, from a

practical viewpoint, it is not necessary to use all data for selecting an approximately best model.

Two sampling techniques are needed: (1) simple random sampling; (2) stratified random sampling.

The former is used for all distributions except binomial distribution with 0/1 format and multinomial

distribution (ordinal and nominal); the latter is used when the distribution is binomial distribution with

0/1 format and multinomial distribution.

8.4.1 Simple Random Sampling

A subset of records is chosen from the larger set. Each record is chosen randomly such that each record

has the same probability of being chosen at any stage during the sampling process, and each subset of

݇ records has the same probability of being chosen for the sample as any other subset of ݇ records.

The sampling will be triggered when ܰ > ்ܰ (=20,000 by default). The default sample size is ܰௌ =

10,000. Please note that both exact and approximate simple random sampling can be used.

The details of simple random sampling methods see Dagli (2012).

8.4.2 Stratified Random Sampling

Stratified random sampling is a probability sampling technique wherein the entire population is

divided into different subgroups or strata, then randomly selects the final samples proportionally from

the different strata.

Some definitions are needed for the stratified random sampling.

ܰ∙௝ The number of records for the -݆th target category, ݆= 1,⋯ ,ܬ, in the whole data

ܰ The total number of records in the whole data, ܰ = ∑ ܰ∙௝
௃
௝ୀଵ

ܰௌ,௝ The sample size for the -݆th target category, ݆= 1,⋯ ܬ,

ܰௌ The total sample size, ܰௌ = ∑ ܰௌ,௝
௃
௝ୀଵ .

ௌ,௝݌ The sampling rate for the -݆th target category, ݆= 1,⋯ ܬ,

The sample size for the -݆th target category is determined by the following equation

ܰௌ,௝ = ඃ݌ௌ,௝ܰ ∙௝ඇ

The sampling will be triggered when ܰ > ்ܰ (=20,000 by default). The default sample size is ܰௌ =

20,000, and default values for sampling rates are ௌ,ଵ݌ = ௌ,௃݌⋯ =
ேೄ

ே
.

Note that (1) the sampling rate ௌ,௝݌ should ensure ܰௌ,௝≥ 1; (2) the sampling rate ௌ,௝may݌ be different

for handling the imbalanced data.

The details of stratified random sampling methods can be seen in Dagli (2013). From the viewpoint of

generalized linear engine, our requirements for stratified random sampling method are: given the

parameters ܰௌ,௝ (≥ 1),݆= 1,⋯ ,ܬ, it returns a subset of data which contains ܰௌ,௝
ᇱ (≥ 1) records drew

randomly for the -݆th target category. Note that generally, ܰௌ,௝
ᇱ = ܰௌ,௝ for small ܰௌ,௝, and ܰௌ,௝

ᇱ ≈ ܰௌ,௝

for large ܰௌ,௝, because it is easier to ensure the sample method will not return empty set of records for

large ܰௌ,௝.

It is noted that if ܰௌ,௝
ᇱ = ܰௌ,௝, then the sampling method is exact, otherwise, it is approximate.

9. Scoring

9.1 Prediction for binomial distribution with 0/1 binary response
variable

9.1.1 Predicted category

Given the critical probability ௧݌ ௧݌) = 0.5 by default), the predicted category (௜࢞ܿ) is

(௜࢞ܿ) = ൜
1 (or success) ifߤ�௜≥݌�௧
0 (or failure) otherwise

�.

If there is a tie in determining ,(௜࢞ܿ) then tie will be broken by choosing the category with

3) Higher ௝ܰ = ∑ ௜݂ݕ௜,௝
௡
௜ୀଵ .

4) If it ties in 1), choose the one with lower category index number.

It should be noted that the classification table should be updated accordingly as well.

9.1.2 Critical probability selection

We select the optimal critical probability based on the following two measures: (1) G-mean and (2) F-

measure, which are defined on sensitivity, specificity, and precision measures. Using the notation in Table

9.1, we give their definitions.

Table 9.1 Classification table

Predicted class

success (positive) failure (negative)

Actual
class

success

(positive)
ܶܲ = ෍ ௜݂ݕ)ܫ௜= 1, (௜࢞ܿ) = 1)

௡

௜ୀଵ

ܰܨ = ෍ ௜݂ݕ)ܫ௜= 1, (௜࢞ܿ) = 0)

௡

௜ୀଵ

failure

(negative)
ܲܨ = ෍ ௜݂ݕ)ܫ௜= 0, (௜࢞ܿ) = 1)

௡

௜ୀଵ

ܶܰ = ෍ ௜݂ݕ)ܫ௜= 0, (௜࢞ܿ) = 0)

௡

௜ୀଵ

where (∙)ܫ is indicator function.

Sensitivity and specificity denotes are two measures of the classification performance. Sensitivity (also

called the recall) measures the proportion of actual positives which are correctly identified, which is

defined as

ଵߩ =
ܶܲ

ܶܲ + ܰܨ

Specificity measures the proportion of negatives which are correctly identified, which is defined as

ଶߩ =
ܶܰ

+ܲܨ ܶܰ

Precision (also called positive predictive value) measures the ratio of true positives to combined true

and false positives, which is defined as

ଷߩ =
ܶܲ

ܶܲ + ܲܨ

The G-mean and F-measure are defined as

–ܩ mean = ඥߩଵ × ଶߩ

–ܨ measure =
ଵߩ × ଷߩ
ଵߩ + ଷߩ

The process to select a critical probability that maximize the G-mean or F-measure is given below

1) Using equal width method to define ௖݊ + 1 (௖݊ = 400 by default) critical probabilities,

,௧,଴݌ ⋯ ,௧,௡೎݌, between the range of [0,1], where =௧,௜݌ /݅ ௖݊.

2) For each critical probability ,௧,௜݌ calculate the corresponding ܰܨ,ܲܶ ܲܨ, and ܶܰ , and then

calculate sensitivity and specificity measures if G-mean is used for each critical probability, thus,

we obtain sensitivity and specificity vectors, respectively

ଵ࣋ = ,ଵ,଴ߩൣ ⋯ ଵ,௡೎൧ߩ,

ଶ࣋ = ,ଶ,଴ߩൣ ⋯ ଶ,௡೎ߩ,
൧

If F-measure is used, sensitivity and precision measures are computed for each critical probability,

thus, we obtain sensitivity and precision vectors, respectively

ଵ࣋ = ,ଵ,଴ߩൣ ⋯ ଵ,௡೎ߩ,
൧

ଷ࣋ = ,ଷ,଴ߩൣ ⋯ ଷ,௡೎൧ߩ,

3) Compute the G-mean or F-measure vectors for each critical probability, and find the critical

probability with maximum G-mean or F-measure

௧݌
∗ = arg max

௣೟,೔

൛ඥߩଵ,௜× ଶ,௜ൟߩ

or

௧݌
∗ = arg max

௣೟,೔

ቊ
×ଵ,௜ߩ ଷ,௜ߩ

+ଵ,௜ߩ ଷ,௜ߩ

ቋ

Implementation notes

 Only one data pass is need for calculating ଶ࣋,ଵ࣋ or ଷ࣋,ଵ࣋ if we store a tetrad (TP, FN, FP, TN)

for each critical probability.

9.2 ROC curve for binomial distribution with 0/1 binary response
variable

A ROC curve is a graphical plot which illustrates the performance of a binary classifier as its critical

probability is varied. It is created by plotting true positive rate (sensitivity, (ଵߩ by false positive rate (1-

specificty, ߮ = 1 − (ଶߩ at various critical probability settings.

The process to obtain the information for ROC curve is given below

1) Using equal width method to define ௖݊ + 1 (௖݊ = 400 by default) critical probabilities,

,௧,଴݌ ⋯ ,௧,௡೎݌, between the range of [0,1], where =௧,௜݌ /݅ ௖݊.

2) For each critical probability ,௧,௜݌ calculate the corresponding ܰܨ,ܲܶ ܲܨ, and ܶܰ , then compute

true positive rate and false positive rate for each critical probability, thus, we obtain a vector of

triads, namely

൥൭

ଵ,଴ߩ

߮଴
௧,଴݌

൱ , ⋯ ,൭

ଵ,௡೎ߩ
߮௡೎
௧,௡೎݌

൱൩

where ߮௜= 1 − .ଶ,௜ߩ

3) Remove the redundancy by deleting ൫ߩଵ,௜,߮௜,݌௧,௜൯
்
if =ଵ,௜ߩ ଵ,௜ିߩ ଵ and ߮௜= ߮௜ି ଵ, ݅= 1,⋯ , ௖݊−

1.

4) Save ൫ߩଵ,௜,߮௜,݌௧,௜൯
்
,where ൫ߩଵ,௜,߮௜൯is used to plot ROC curve and ௧,௜݌ is the corresponding

critical probability that might be shown in the plot, i.e., using a tooltip.

Implementation notes

 Only one data pass is need for calculating ࣐,ଵ࣋ if we store a tetrad (TP, FN, FP, TN) for each

critical probability.

http://en.wikipedia.org/wiki/Graph_of_a_function
http://en.wikipedia.org/wiki/Binary_classifier

10.Model diagnostics

10.1 Influential outlier

We will identity a record to be an influential outlier based on the following two statistics for all

distribution except multinomial:

(1) Cook’s distance is larger than 4 (ܰ − ݀)⁄ , where ݀ = ௫݌ if only ࢼ is included; ݀ = ௫݌ + 1 if ࢼ

and ߶ for normal, inverse Gaussian, gamma and Tweedie distributions or ࢼ and k for negative

binomial distribution are included.

(2) The absolute of standardized deviance residual is larger than 2 (or 2.5).

The definitions of Cook’s distance and standardized deviance residual are given in Section 5.2 of

Generalized Linear Engine Phase I (Chu and Zhong, 2012)

10.2 Diagnostic plots

A scatter plot is provided for all distributions except ordinal and nominal multinomial distributions,

which is used to check whether the fitted regression model adequately represents the data.

10.2.1 Scatter plot of standardized deviance residual by predicted linear
predictor

The expected pattern of this plot is that a distribution of standardized deviance residuals for varying the

linear predictors with mean 0 and constant range.

Let Ƹ௞ௌ஽andݎ Ƹ௞ߟ be the standardized deviance residual and the predicted linear predictor of the -݇th

record, respectively, where ݇= 1,⋯ , .݊ Note that because ݅has been used below, here we use ݇ as a

subscript. Then the information needed for a binned scatter plot of standardized deviance residual by

the predicted linear predictor is created as follows:

1) Using equal width method to compute ௖݊ (=19 by default) cut points ଵܿ
(ଵ)
, ⋯ , ௡ܿ೎

(ଵ) between the range

[ܷ,ܮ] for the x-axis, where =ܮ ݃൫min௞(ݕ௞)൯ and ܷ = ݃൫max௞(ݕ௞)൯, i.e., ௜ܿ
(ଵ)

= +ܮ ݅× (ܷ −

)/(ܮ ௖݊ + 1). Then we have (௖݊ + 1) intervals by letting ଴ܿ
(ଵ)

= −∞ and ௡ܿ೎ାଵ
(ଵ)

= ∞,

൫ܿ ଴
(ଵ)

, ଵܿ
(ଵ)
൧, ൫ܿ ଵ

(ଵ)
, ଶܿ

(ଵ)
൧,⋯ , ൫ܿ ௡೎

(ଵ)
, ௡ܿ೎ାଵ

(ଵ)
൧.

2) Similarly, compute ௖݊ cut points ଵܿ
(ଶ)
, ⋯ , ௡ܿ೎

(ଶ) between the range [−8,8] for the y-axis: ௜ܿ
(ଶ)

=

−8 + ݅× 16/(௖݊ + 1) . Then we have another (௖݊ + 1) intervals by letting ଴ܿ
(ଶ)

= −∞ and

௡ܿ೎ାଵ
(ଶ)

= ∞,

൫ܿ ଴
(ଶ)

, ଵܿ
(ଶ)
൧, ൫ܿ ଵ

(ଶ)
, ଶܿ

(ଶ)
൧, ⋯ , ൫ܿ ௡೎

(ଶ)
, ௡ܿ೎ାଵ

(ଶ)
൧.

3) For each two-dimension interval ൫ܿ ௜
(ଵ)

, ௜ܿାଵ
(ଵ)
൧× ൫ܿ ௝

(ଶ)
, ௝ܿାଵ

(ଶ)
൧, ,݆݅= 0,⋯ , ௖݊, obtain the number of

records that fall into this interval incorporating the frequency weight:

௜݊௝ = ෍ ௞݂ܫ௜௝(ߟƸ௞,ݎƸ௞
ௌ஽)

௡

௞ୀଵ

and the corresponding mean ൫ߟƸ̅௜௝,ݎƸ̅௜௝
ௌ஽൯incorporating the frequency weight:

Ƹ̅௜௝ߟ =
1

௜݊௝

෍ ௞݂ܫ௜௝(ߟƸ௞,ݎƸ௞
ௌ஽)

௡

௞ୀଵ

Ƹ௞ߟ

Ƹ̅௜௝ݎ
ௌ஽ =

1

௜݊௝

෍ ௞݂ܫ௜௝(ߟƸ௞,ݎƸ௞
ௌ஽)

௡

௞ୀଵ

Ƹ௞ݎ
ௌ஽

where

Ƹ௞ݎ,Ƹ௞ߟ)௜௝ܫ
ௌ஽) = ቊ

1, ifߟ�Ƹ௞ ∈ ൫ܿ ௜
(ଵ)

, ௜ܿାଵ
(ଵ)
൧�andݎ�Ƹ௞

ௌ஽ ∈ ൫ܿ௝
(ଶ)

, ௝ܿାଵ
(ଶ)
൧

0, otherwise
�

4) Save the mean, ൫ߟƸ̅௜௝,ݎƸ̅௜௝
ௌ஽൯and the corresponding number of records, ௜݊௝ (,݆݅= 0,⋯ , ௖݊) for the

scatter plot of standardized deviance residual by predicted linear predictor. Note that if ௜݊௝ = 0,

there is no need to save it and the corresponding ൫ߟƸ̅௜௝,ݎƸ̅௜௝
ௌ஽൯.

Implementation notes

 If ݊≤ ୮݊୪୭୲(= 3(௖݊ + 1) = 60 by deafult), then the data will not be binned. The data point

Ƹ௞ݎ,Ƹ௞ߟ)
ௌ஽) and the corresponding number of records, ௜݊௝, will be used for scatter plot directly.

 In addition, we consider a special case: All effects contain only factors and the number of

combinations of all factors (௖݊௙) in the model is less than ௖݊௙
௠ ௔௫(=100 by default), namely,

௖݊௙ < ௖݊௙
௠ ௔௫. Let ݉ = ௖݊௙.

(a) Compute the linear predictors =݇,Ƹ௞ߟ 1,⋯ ,݉ .

(b) Sorting Ƹ௞ߟ by an ascending order.

(c) Divide Ƹ௞ߟ into ݉ intervals as follows

൬−∞,
Ƹଵߟ + Ƹଶߟ

2
൨,൬

Ƹଵߟ + Ƹଶߟ
2

,
Ƹଶߟ + Ƹଷߟ

2
൨, ⋯ ,൬

Ƹ௠ߟ ିଵ + Ƹ௠ߟ
2

, +∞൰

(d) The intervals for Ƹ௞ௌ஽ݎ are the same to those given above, in addition, we use the same

method to compute ൫ߟƸ̅௜௝,ݎƸ̅௜௝
ௌ஽൯. Note that Ƹ̅௜௝ߟ = Ƹ௜ߟ for any .݆

 ௜݊௝, Ƹ̅௜௝ߟ and Ƹ̅௜௝ௌ஽ݎ can be computed in parallel in the map-reduce environment.

 For binomial distribution with ݉/ݎ format, the standardized deviance residuals can be the one

based on proportion or the one based on the number of events, because they are the same.

10.3 Trend analysis from diagnostics plots

The plot in Section 10.2.1 provides the informal checks on whether a fitted regression model

adequately represents the data. It still needs the experienced analyst to make such a decision. Here we

provide a trend analysis to give a formal check which can automatically determine whether a fitted

model is adequate.

By analyzing the trend of the plot, the expected pattern can be a horizontal line through 0.

The process of trend analysis contains three steps: (1) calculate the data points representing the trend;

(2) remove outliers in the trend data; (3) fit a simple linear model on given trend data points; (4) test

whether the simple linear model adequately represents the trend data.

Calculate the trend data

We consider the following three cases:

Denote ൫ݔெ ா஽ ,௜,ݕெ ா஽ ,௜, ெ݊ ா஽ ,௜൯,݅= 0,⋯ ,݉ by the trend data.

 when ݊ > ୮݊୪୭୲, we denote ൫ݔ௜௝,ݕ௜௝, ௜݊௝൯, ,݆݅∈ {0,⋯ , ௖݊} by the binned data obtained from

Section 5.2.1, where ௜௝ݔ = ,Ƹ̅௜௝ߟ and ௜௝ݕ = Ƹ̅௜௝ݎ
ௌ஽ . Then, we have

⎩
⎪⎪
⎨

⎪⎪
⎧
ெݔ ா஽ ,௜= median(ݔ௜଴, ⋯ ௜଴ᇣᇧᇧᇤᇧᇧᇥݔ,

௡೔బ

, ⋯ ,௜௡೎ݔ, ⋯ ௜௡೎ᇣᇧᇧᇧᇤᇧᇧᇧᇥݔ,
௡೔೙೎

)

ெݕ ா஽ ,௜= median(ݕ௜଴, ⋯ ௜଴ᇣᇧᇧᇤᇧᇧᇥݕ,
௡೔బ

, ⋯ ,௜௡೎ݕ, ⋯ ௜௡೎ᇣᇧᇧᇧᇤᇧᇧᇧᇥݕ,
௡೔೙೎

)

ெ݊ ா஽ ,௜= ෍ ௜݊௝

௡೎

௝ୀ଴

�

and ݉ = ௖݊.

 when ݊≤ ୮݊୪୭୲, we denote ,௜ݕ,௜ݔ) ௜݊),݅= 0,⋯ ,݊− 1 by the non-aggregated data obtained from

Section 5.2.1, we have

൝

ெݔ ா஽ ,௜= ௜ݔ
ெݕ ா஽ ,௜= ௜ݕ
ெ݊ ா஽ ,௜= ௜݊

�

and ݉ = .݊

 For the special case: all effects contain only factors and the number of combinations of all factors

(௖݊௙) in the model is less than ௖݊௙
௠ ௔௫, namely, ௖݊௙ < ௖݊௙

௠ ௔௫. We denote ൫ݔ௜௝,ݕ௜௝, ௜݊௝൯,݅=

1,⋯ ,݉ ,݆= 0,⋯ , ௖݊ by the aggregated data obtained from Section 5.2.1, where ௜௝ݔ = ,Ƹ̅௜௝ߟ and

௜௝ݕ = Ƹ̅௜௝ݎ
ௌ஽ .

⎩
⎪
⎨

⎪
⎧
ெݔ ா஽ ,௜= ௜ଵݔ
ெݕ ா஽ ,௜= median(ݕ௜଴, ⋯ ௜଴ᇣᇧᇧᇤᇧᇧᇥݕ,

௡೔బ

, ⋯ ,௜௡೎ݕ, ⋯ ௜௡೎ᇣᇧᇧᇧᇤᇧᇧᇧᇥݕ,
௡೔೙೎

)

ெ݊ ா஽ ,௜= ෍ ௜݊௝

௡೎

௝ୀ଴

�

Notes:

 For binomial distribution with 0/1 binary response, weighted mean function is used to replace

median function for calculating ெݕ ா஽ ,௜and (or) ெݔ ா஽ ,௜.

Remove the outliers

Without loss of generality, we assume that the trend data records are ,௜ݕ,௜ݔ) ௜݊),݅= 0,⋯ ,݉ . Here, we

use modified z score to remove the outliers.

(1) Calculate the median (MED) and the median absolute deviation (MAD) for ெݕ ா஽ ,௜,݅= 0,⋯ ,݉

ܯ ܦܧ = median(ݕ଴, ⋯ ଴ᇣᇧᇧᇤᇧᇧᇥݕ,
௡బ

¸ ⋯ ௠ݕ, , ⋯ ௠ᇣᇧᇧᇤᇧᇧᇥݕ,
௡೘

)

ܯ ܦܣ = median(|ݕ଴ − ܯ ,|ܦܧ ⋯ , ଴ݕ| − ܯ ,|ܦܧ ⋯ , ௠ݕ| − ܯ ,|ܦܧ ⋯ , ௠ݕ| − ܯ (|ܦܧ

(2) Compute the modified z-score for ∋݅,௜ݕ {݉ ݅݊ ܫ݊ ݀ ,ݔ݁ ݉ ܫ݊ݔܽ ݀ ,{ݔ݁ where ݉ ݅݊ ܫ݊ ݀ ݔ݁ and

݉ ܫ݊ݔܽ ݀ ݔ݁ are the index of minimum and maximum value of ,଴ݕ} ⋯ ௠ݕ, }, respectively.

=௜ݖ ൞

−௜ݕ ܯ ܦܧ

1.4826 × ܯ ܦܣ
ifܯ� ܦܣ ≠ 0

−௜ݕ ܯ ܦܧ

1.2533 × ܯ ݁ܽ ܦܣ݊
ifܯ� ܦܣ = 0

�

where ܯ ݁ܽ ܦܣ݊ =
ଵ

∑ ௡೔.
೘
೔సబ

∑ ௜݊|ݕ௜− ܯ ௠.|ܦܧ
௜ୀଵ

(3) ,௜ݕ,௜ݔ) ௜݊) is removed from the trend data if |௜ݖ| > 3 for ݅∈ {݉ ݅݊ ܫ݊ ݀ ,ݔ݁ ݉ ܫ݊ݔܽ ݀ .{ݔ݁

Fit a simple linear model

For the trend data ,௜ݕ,௜ݔ) ௜݊),݅= 0,⋯ ,݉ , we fit a simple linear model =ݕ) ଴ܾ + ଵܾݔ) incorporating

the frequency weight.

Let

=ҧݔ
1

∑ ௜݊
௠
௜ୀ଴

෍ ௜݊ݔ௜

௠

௜ୀ଴

=തݕ
1

∑ ௜݊
௠
௜ୀ଴

෍ ௜݊ݕ௜

௠

௜ୀ଴

௫ܵ௫ = ෍ ௜݊(ݔ௜− ҧ)ଶݔ
௠

௜ୀ଴

௫ܵ௬ = ෍ ௜݊(ݔ௜− −௜ݕ)(ҧݔ (തݕ

௠

௜ୀ଴

௬ܵ௬ = ෍ ௜݊(ݕ௜− ത)ଶݕ
௠

௜ୀ଴

Then the estimates ෠ܾ଴ and ෠ܾଵ are given below

෠ܾ
ଵ =

௫ܵ௬

௫ܵ௫

෠ܾ
଴ = −തݕ ෠ܾ

ଵݔҧ

The variance ොଶߪ can be computed as

ොଶߪ� =
∑ ௜݊(ݕ௜− (ො௜ݕ

ଶ௠
௜ୀ଴

∑ ௜݊
௠
௜ୀ଴ − 2

where =ො௜ݕ ෠ܾ
଴ + ෠ܾ

ଵݔ௜.

Tests for the trend

The statistic for the hypothesis :଴ܪ ଵܾ = 0 is

=ݐ
෠ܾ
ଵඥ ௫ܵ௫

ොߪ

which has an asymptotic t-distribution with df (= ∑ ௜݊
௠
௜ୀ଴ − 2) degrees of freedom. Then calculate the

corresponding p value. If p value is less than 0.05, then the hypothesis is rejected.

The partial correlation of ݔ and ݕ adjusted for ݖ is calculated as follows

=�஺஻|஼ݎ
஺஻ݎ − ஻஼ݎ஺஼ݎ

ඥ(1 − ஺஼ݎ
ଶ)(1 − ஻஼ݎ

ଶ)

where ஺஻ݎ denotes the correlation between ܣ and ,ܤ ஺஻ݎ =
ௌಲಳ

ඥௌಲಲඥௌಳಳ
. It should be noted that if

஺஼ݎ = 0 or ஻஼ݎ = 0, then ஺஻|஼�isݎ set to 0.

For the plot, we provide the following insights

 If p value is less than 0.05, the current model does not represent the data

 If p value is greater than or equal to 0.05, we calculate the partial correlation �௬௫మ|௫ݎ

 If หݎ௬௫మ|௫�ห< 0.775, the current model may represent the data

 If หݎ௬௫మ|௫�ห≥ 0.775, the current model does not represent the data

Appendix A: Grouping analysis and unusual category
detection

For a significant factor or factor interaction, we can infer that some categories or category

combinations should have a statistically significant impact on the target. Here, we provide analyses to

indentify which factor’s (factor interaction’s) categories have large impacts on the target. For the sake

of brevity, the description is for a significant factor, but it also works for a significant factor interaction.

For all distributions except multinomial distribution and binomial distribution with 0/1 binary

response, we propose two analyses which follow the analyses in the reference Shyr et al. (2011).

(1) Grouping analysis: Partitions all factor’s categories into a high group and a low group (with a

possible medium group) by conducting tests on whether the EMMEAN in each category is

different from that in the category with the largest or smallest EMMEAN.

(2) Unusual category detection analysis: detects possible unusual categories in the high and low

groups.

For multinomial distribution (including ordinal and multinomial) and binomial distribution with 0/1

binary response, we propose two analyses which are based on tests described in the reference Agresti

(2002).

(1) Grouping analysis: partitions all categories into a significant group and an insignificant group by

conducting tests on whether the target’s categorical distribution in each category is different from

that the overall distribution (population distribution).

(2) Influential target category analysis: identifies influential target categories for each significant

category.

A.1. All distributions except multinomial and binomial
distribution with 0/1 binary response

Let the ݉ categories of a significant factor ܣ be ,ଵܣ ⋯ ௠ܣ, , and their corresponding EMMEANS are

,ଵܯ ⋯ ௠ܯ, , respectively. Let the number of records in ,ଵܣ ⋯ ௠ܣ, be ଵ݊, ⋯ , ௠݊ , respectively.

A.1.1 Grouping analysis

The following process is used to find the high and low groups and the possible medium group among

all categories of a significant factor with more than 3 categories based on the EMMEANS for the

target rather than the linear predictor.

1) For a significant factor ܣ with ݉ categories, compute the EMMEANS, ࡹ = ,ଵܯ} ⋯ ௠ܯ, }, and the

corresponding variance matrix .ࢂ See Chu and Zhong (2005, 2012), and Zheng (2009) for details

of calculations of ࡹ and .ࢂ

2) Sort the EMMEAN =݅)௜ܯ 1,⋯ ,݉) by a descending order. Without loss of generality, assume

that they are ,ଶܯ,ଵܯ ⋯ ௠ܯ, , namely, ଵܯ has the largest EMMEAN and ௠ܯ has the smallest one.

3) The category with the largest EMMEAN is firstly formed as the high group. Then test whether

there is a significant difference between the second largest EMMEAN and the largest one. The test

statistic is Wald chi-square statistics,

=ݏ
−ଵܯ) ଶ)ଶܯ

ଶߪ

with 1 degree of freedom, where ଶߪ = ଵଵࢂ + −ଶଶࢂ .ଵଶࢂ2 The corresponding p-value is calculated

accordingly.

If the null hypothesis −ଵܯ ଶܯ = 0 is not rejected, i.e., the p-value is greater than ߙ (significance

level specified by the user, default is 0.05), then the category with ଶܯ will be added to the high

group.

It is noted that (a) if −ଵܯ� ଶܯ = 0, then it does not need to compute ଶߪ and assign the p-value =

1.0, i.e., the category with the second largest target mean will be added to the high group. (b) If

−ଵܯ� ଶܯ ≠ 0 and ଶߪ� = 0, then the p-value = 0.0 and stops.

4) Repeat the same process for the next EMMEAN in line, i.e., compare ଷܯ with ,ଵܯ until there is

no category can be added to the high group.

5) Similarly, form the low group from the smallest EMMEAN for those categories not assigned to

the high group.

6) If there still exist some categories after forming the high and low groups, they are grouped into the

medium group.

The method used above is an extension of that in Chu and Han (2011) to the case of generalized linear

models. It should be noted that a Chi-square test is used rather than t-test.

Implementation notes

 When =௜ܯ ௝ܯ and ௜݊≠ ௝݊, if ௜݊> ௝݊, then ௜willܯ be first to be compared to ଵܯ or ௠ܯ ; if

௜݊< ௝݊, then ௝willܯ be first to be compared to ଵܯ or ௠ܯ .

http://miamoss1/RD/products/components/Documents/Algorithm EMMEANS and Custom Tests.doc

A.1.2 Unusual category detection analysis

The process to detect unusual categories for a significant factor is described as follows:

1) Calculate the median of ݉ EMMEANS incorporating the number of records in each category.

Denote MED by the median,

ܯ ܦܧ = median(ܯଵ, ⋯ ଵᇣᇧᇧᇤᇧᇧᇥܯ,
௡భ

¸ ⋯ ௠ܯ, , ⋯ ௠ᇣᇧᇧᇤᇧᇧᇥܯ,
௡೘

)

2) Calculate the median absolute deviation (MAD) of ݉ target means, again incorporating with the

number of records in each cell

ܯ ܦܣ = median(|ܯଵ− ܯ ,|ܦܧ ⋯ , −ଵܯ| ܯ ,|ܦܧ ⋯ , ௠ܯ| − ܯ ,|ܦܧ ⋯ , ௠ܯ| − ܯ (|ܦܧ

3) Compute the modified z-score for the category =݅,௜ܣ 1,⋯ ,݉

=௜ݖ ൞

−௜ܯ ܯ ܦܧ

1.4826 × ܯ ܦܣ
ifܯ� ܦܣ ≠ 0

−௜ܯ ܯ ܦܧ

1.2533 × ܯ ݁ܽ ܦܣ݊
ifܯ� ܦܣ = 0

�

where ܯ ݁ܽ ܦܣ݊ =
ଵ

ே
∑ ௜݊|ܯ௜− ܯ ௡.|ܦܧ
௜ୀଵ

4) Detect unusual categories

If <௜ݖ 3, the category ௜hasܣ an unusually high EMMEAN in the high group.

If >௜ݖ −3, the category ௜hasܣ an unusually low EMMEAN in the low group.

A.2. Multinomial distribution and binomial distribution with 0/1
binary response

Notations

⋯,ଵܣ ௠ܣ, The ݉ categories of a significant factor .ܣ

௜݊ The number of records in .௜ܣ

௜௝̂݌ The EMMEAN value for -݆th target category of the category ,௜ܣ where
∑ ௜௝̂݌
௃
௝ୀଵ = 1.

௝∙݌ The overall probability of the -݆th target category, ݆= 1,⋯ fromܬ, the whole
dataset.

A.2.1 Grouping analysis

Under the assumption that the overall target distribution is known and fixed, it will partition all

categories into two groups: a significant group and an insignificant group by the following steps:

1) Compute the EMMEANS values for the category ,௜ܣ ൫݌Ƹ௜ଵ, ⋯ ,Ƹ௜௃൯݌, ݅= 1,⋯ ,݉ :

ቐ

Ƹ௜௝݌ = ݃ିଵ൫ࡸ௜ࢼ௝൯�������for�݆= 1,⋯ −ܬ, 1

Ƹ௜௃݌ = 1 − ෍ Ƹ௜௝݌
௃ି ଵ

௝ୀଵ
for�݆ = ܬ

�

where ௜ࡸ is L matrix for the category .௜ܣ

2) Compute the Pearson’s one sample chi-square statistics and the corresponding p-value for each

category ,௜ܣ ݅= 1,⋯ ,݉

௜߯
ଶ = ௜݊෍

൫݌Ƹ௜௝− ௝൯∙݌
ଶ

௝∙݌

௃

௝ୀଵ

=௜݌ 1 − Pr൫߯ (௃ି ଵ)
ଶ ≤ ௜߯

ଶ൯

where (߯௃ି ଵ)
ଶ is a random variable which following a chi-square distribution with df = −ܬ) 1)

degrees of freedom.

3) Compute the effect size for each category

=௜ݓ ඨ ௜߯
ଶ

௜݊(ܬ− 1)

4) Sort the category ,ଵܣ ⋯ ௠ܣ, using ,ଵݓ ⋯ ௠ݓ, by a descending order. Without loss of the

generality, assume that the order is ,ଵܣ ⋯ ௠ܣ, .

If >௜݌ ߙ , where ߙ is a significant level (the default is 0.05), then the category ௜ܣ has a

significantly different distribution from the overall distribution and will be added into the

significant group.

If ≤௜݌ ,ߙ then the category ௜andܣ ,௜ାଵܣ ⋯ ௠ܣ, will be assigned to the insignificant group

5) The results are a list of the categories in the significant group with relevant test statistics, e.g.

௜߯
ଶ, df,݌௜, and .௜ݓ

Implementation notes

 When =௜ݓ ௝ݓ and ௜݊≠ ௝݊, if ௜݊> ௝݊, then the cell ௝willܣ be first to be compared to the root

node; if ௜݊< ௝݊, then the cell with ௜willܣ be first to be compared to the root node.

A.2.2 Influential target category analysis

It identifies target categories, which have significantly large frequency differences from that of the root

node, based on another chi-square test in the significant group (suppose it is Λ) by the following steps:

1) Compute the chi-squared statistics, and the corresponding p-value for the category ݅∈ Λ and for

the -݆th target category

௜߯௝
ଶ =

௜݊൫݌Ƹ௜௝− ௝൯∙݌
ଶ

×௝∙݌ (1 − (௝∙݌

=݌ 1 − Pr൫߯ ଵ
ଶ ≤ ௜߯௝

ଶ൯

where ଵ߯
ଶ is a random variable which following a chi-square distribution with df = 1 degree of

freedom.

If >݌ ,ߙ where ߙ is a significant level (the default is 0.05 ⁄ܬ based on the Bonferroni adjustment

method), then the -݆th target category is an influential target category for the category ݅∈ Λ.

2) The results are a list of influential target categories for each significant category with relevant test

statistics.

Influential target category detection analysis is only performed on the non-binary target. If the target is

binary, the chi-square statistic ௜߯,௝
ଶ (݆= 1,2) is equal to ௜߯

ଶ, namely, ௜߯,ଵ
ଶ = ௜߯,ଶ

ଶ = ௜߯
ଶ . It could be

expected that both two categories are influential for each significant cell .݅

References – Phase II

[20]. Agresti, A. (2002), Categorical Data Analysis, Second Edition, Hoboken, NJ: John Wiley &

Sons, Inc.

[21]. Chu, J. and Han, S. (2011), “Algorithm: Linear Engine”, IBM SPSS Internal Document..

[22]. Chu, J. and Zhong, W. (2005), “Algorithm: Generalized linear models and generalized

estimating equation,” SPSS Internal Document.

[23]. Chu, J. and Zhong, W. (2012), “Algorithm: Generalized linear engine phase I”, IBM SPSS

Internal Document.

[24]. Dagli, A. (2012), “Simple random sampling in Map-Reduce”, IBM SPSS Internal Document

[25]. Dunn, P. K. and Smyth, G. K. (2008). “Evaluation of Tweedie exponential dispersion model

densities by Fourier inversion”. Statistics and Computing, 18, 73-86.

[26]. Mittlbock, M. and Heinzl, H. “Pseudo R-squared measures for generalized linear models,” The

1st European Workshop on the Assessment of Diagnostic Performance, 2004, 71-80.

[27]. Shyr, J., Chu, J. and Han, S. (2011), “Category profiling and unusual category detection based

on Estimated Marginal Means (EMMEANS)”, In JSM Proceedings, Social Statistics

Section, Alexandria, VA: American Statistical Association. 4289-4300.

[28]. Zheng, P. (2009), “Algorithm: EMMEANS and custom tests,” SPSS Internal Document.

11. Introduction – Phase III

Generalized Linear Engine Phase III (GLE Phase III) adds two main features on top of GLE Phase I

(Chu and Zhong, 2012) and Phase II (Zhong and Han, 2013):

 Estimation of generalized linear models for the large p situations (the number of parameters (݌) is

greater than or equal to a threshold ,௖݌) the default = 5000), i.e., ≤݌ .௖݌

Besides the optimization issue for parameter estimation, the other difficult issue is the post-

estimation statistics.

 Estimation of regularized generalized linear models: ଵܮ (the lasso), ଶܮ (ridge regression) and

mixtures of two penalties (the elastic net). This feature is applicable for both the large p situations

and the small and medium p situations.

Both features will be solved by using the new optimization engine ADMM (Zhong, 2014) which is

distributed optimization framework and can solve the problems with large numbers of parameters and

records.

Besides the optimization issue of parameter estimation, the other difficult issue introduced by the large

p situations is the post-estimation statistics. The reason is that a large number of parameters, even after

the variable selection, would cause difficulty to calculate the parameter estimate covariance matrix

(minus inverse of Hessian matrix) and thus many statistics, such as Wald test, etc., based on it. Here,

we will firstly transform the original problem of calculating the statistics into a linear system, and then

use ADMM to solve it.

The organization of this document is Section 12 describes parameter estimation for the large p

situation. Section 13 describes parameter estimation with regularizations. Finally, how to compute

post-estimation statistics without the parameter estimate covariance matrix when p is large is given in

Section 14.

Notations

ܰ The number of data blocks (parts)

݌
The number of parameters. Note that it doesn’t include the scale parameter for continuous
distributions or the auxiliary parameter for the negative binomial distribution.

௜ࢼ ∋௜ࢼ ܀
௣ denotes parameters for the -݅th data block

ࢠ The common global parameters, where ∋ࢠ ௣܀

௜࢛ ∋௜࢛ ܀
௣ denotes the Lagrange multipliers of the -݅th term in the objective

௜݂(∙) The -݅th term in the objective for the -݅th data block

݃(∙) The regularization (penalty function)

ߩ The augmented Lagrange parameter

࢟ The target variable

ࢄ ࢄ = ⋯,ଵࢄ] [௣ࢄ, denotes the design matrix, where ௝ࢄ denotes the -݆th column

ଵ‖ࢠ‖ The ଵܮ norm of the vector ,ࢠ which is defined as ଵ‖ࢠ‖ = |ଵݖ| + ⋯+ |௣ݖ|

ଶ‖ࢠ‖ The ଶܮ norm of the vector ,ࢠ which is defined as ଶ‖ࢠ‖ = ൫ݖଵ
ଶ + ⋯+ ௣ݖ

ଶ൯
ଵ/ଶ

௖݌
The threshold denoting whether there is a large number of parameters (large p). If ≤݌ ,௖݌ it
is called large p situation, otherwise, it is called small to medium p situation.

࢙ The gradient vector (function)

۶ The Hessian matrix (function)

12. Parameter estimation for the large p situations

For the generalized linear models, the parameter estimation is based on the maximum likelihood

method as maxࢼ ℓ(ࢼ). Since ADMM usually solves the optimization problem in the form of

minimization, the maximum likelihood method can be written as

min
ࢼ

−ℓ(ࢼ)

The ℓ(ࢼ) is separable with respect to the partition of the records, ℓ(ࢼ) = ∑ ℓ௜(ࢼ)ே
௜ୀଵ . If we optimize

ℓ௜(ࢼ) for each data block ,݅ then we obtain the following form for ADMM

minࢼ೔,ࢠ −∑ ℓ௜(ࢼ௜)
ே
௜ୀଵ

.ݐ.ݏ −௜ࢼ =ࢠ ૙,݅= 1,⋯ ,ܰ .
(12.1)

For the large p situations ≤݌) ,(௖݌ the L-BFGS method in ADMM will be used to solve Equation

(12.1). In order to call ADMM, GLE needs to prepare three pieces of information: the fitting function,

the gradient function, and initial values.

The fitting function ௜݂(ࢼ௜) is

௜݂(ࢼ௜) = −ℓ௜(ࢼ௜) (12.2)

The gradient of ௜݂(ࢼ௜) is

=௜ܛ −∇ℓ௜(ࢼ௜) (12.3)

The initial values can be computed as

଴ࢼ = ૙ (12.4)

Implementation notes:

 The forms of ℓ௜and ௜ܛ for different distributions can be found in GLE Phase I.

 If the scale parameter for continuous distributions or the auxiliary parameter for the negative

binomial distribution is estimated with regression parameters, then ௜ܛ should include it and the

initial value is also set to 0.

13. Parameter estimation with regularizations

For the regularized generalized linear models, a penalty function will be added into Equation (12.1)

then we obtain the following form for ADMM

minࢼ೔,ࢠ −∑ ℓ௜(ࢼ௜)
ே
௜ୀଵ + (ࢠ)݃

.ݐ.ݏ −௜ࢼ =ࢠ ૙,݅= 1,⋯ ,ܰ .
(13.1)

GLE will support the following penalty functions:

(1) The ଵܮ regularization (the lasso): (ࢠ)݃ = .ଵ‖ࢠ‖ߣ

(2) The ଶܮ regularization (ridge regression): (ࢠ)݃ = ଶ‖ࢠ‖ߣ
ଶ.

(3) The ଵܮ) + (ଶܮ regularization (elastic net): (ࢠ)݃ = ଵ‖ࢠ‖ଵߣ + ଶ‖ࢠ‖ଶߣ
ଶ.

Note that ,ߣ ଵߣ and ଶߣ are penalty parameters to regulate the strength of penalty. For lasso or ridge

regression, =ߣ 0 implies unconstrained solution and =ߣ ∞ implies totally constrained solution

=ࢠ) ૙). For elastic net, ଵߣ = ଶߣ = 0 implies unconstrained solution and one of ଵߣ orߣ��ଶ = ∞

implies totally constrained solution (=ࢠ ૙). Both ଵܮ and ଶܮ regulations prevent overfitting by

shrinking (imposing a penalty) on the parameters. The ଵܮ regulation can shrink some parameters to

zero, performing variable selection, while the ଶܮ regulation shrinks all the parameters by the same

proportions but eliminates none. In terms of model fits, the ଶܮ regulation usually performs better than

the ଵܮ regulation in practice. Even the ଵܮ) + (ଶܮ regularization might perform better than the ଵܮ
regularization.

There are two ways to choose these parameters:

(1) They are set to fixed values in the range of [0, ∞].

(2) They are chosen by a grid search method as follows:

a) Partition the data into two parts: training and testing sets. By default, the ratio of training to

testing is 0.7: 0.3.

b) Specify the maximum value, ୫ߣ ୟ୶�:

(i) For the lasso, use the method in Park and Hastie (2007): if the target does not follow

nominal multinomial distribution or ordinal distribution,

୫ߣ ୟ୶�= max௝∈{ଵ,⋯,௣}หࢄ௝
୘ࢃ −ܡ) ห(തݕ)ത૚)gᇱݕ (13.2)

where ࢃ is ݊× ݊ diagonal matrix with the ݅th diagonal element

=௜௜ݓ
௜݂߱ ௜

ଶ((തݕ)gᇱ)(തݕ)ܸ

where ܸ(∙) is variance function and g(∙) is the link function.

If target follows nominal multinomial distribution

୫ߣ ୟ୶�= max௝∈{ଵ,⋯,௣} ൜ max
௞∈{ଵ,⋯,௃ି ଵ}

หࢄ௝
୘ࢃ ൫(ܓ)ܡ − ത(୩)૚൯หൠݕ (13.3)

where isܬ the number of categories of target, ࢃ is ݊× ݊ diagonal matrix with the ݅th

diagonal element ௜݂߱ ௜, (୩)ܡ = ,ଶ௞ݕ,ଵ௞ݕ) ⋯ ௡௞)୘andݕ, ത(୩)ݕ =
∑ ௙೔௬೔ೖ
೙
೔సభ

∑ ௙೔
೙
೔సభ

, Here, ௜௞ݕ = 1 if

the target value of the ݅th record takes the ݇th category, otherwise ௜௞ݕ = 0.

If target follows ordinal distribution

λ୫ ୟ୶�= max୨∈{ଵ,⋯,୮}ห࢐ࢄ
ࢃࢀ หࢊ (13.4)

where ࢃ is ݊× ݊ diagonal matrix with the ݅th diagonal element ௜݂߱ ௜, ࢊ is a ݊× 1 vector

with the ݅th element

௜݀= ෍ ቆ
௜,௞ߛ߲
௜,௞ߟ߲

−
௜,௞ିଵߛ߲
௜,௞ିଵߟ߲

ቇ

௃

௞ୀଵ

௜,௞ݕ
௜,௞ߨ

where isܬ the number of categories of target; ௜,௞ݕ = 1 if the target value of the ith record

takes the ݇th category, otherwise ௜,௞ݕ = 0; ௜,௞ߨ =
௡ೖ,೑

௡೑
for ݇= 1,⋯ withܬ, ௞݊,௙ being the

number of records for the kth category of target incorporating the frequency weight and

௙݊ being the total number of records incorporating frequency weight. The
డఊ೔,ೖ

డఎ೔,ೖ
is defined

in the GLE phase I. Since the maximum value of డఊ೔,ೖ
డఎ೔,ೖ

−
డఊ೔,ೖషభ

డఎ೔,ೖషభ
is less than 0.5, we will

use 0.5 ∗ ∑
௬೔,ೖ

గ೔,ೖ

௃
௞ୀଵ as approximate ௜݀, i.e. ௜݀≈ 0.5 ∗ ∑

௬೔,ೖ

గ೔,ೖ

௃
௞ୀଵ .

(ii) For ridge regression, there is no limitation of the maximum value. User could specify it.

By default we use follow value.

୫ߣ ୟ୶�= ݁ଶ଴

(iii) For elastic net, which includes lasso and ridge regression, we will set two regularization

parameters for L1 and L2 respectively when invoking ADMM. But they can be specified

with the relationship as follows.

ଵߣ = =�ଶߣ��,ߣߙ (1 − ߣ(ߙ

Where 0 < ࢻ < 1 , ଵߣ is for L1 regularization and ଶߣ is for L2 regularization. The

value of ଶߣ can be got easily with given value of .ଵߣ Therefore, only the maximum value

for ଵneedsߣ to be determined. We will specify the maximum value of ଵߣ using the same

method as that we specify the maximum value of λ for lasso in (i).

c) Set the minimal value ୫ߣ ୧୬�= ݁ିଵ଴.

d) Select the number of search points, ఒ݊ (the default is 100), and determine those points:

୫ߣ ୟ୶�,ߣ�୫ ୧୬�݁
(୬λିଶ)୼,ߣ୫ ୧୬�݁

(୬λିଷ)୼, … ୫ߣ, ୧୬�݁
୼,ߣ୫ ୧୬�

where Δ = ୪୭୥ఒౣ ౗౮�–୪୭୥ఒౣ ౟౤�

௡ഊିଵ
.

Note: For elastic net, the search points of ଵߣ are set as above. Then for each search point, the

corresponding value of ଶߣ will be determined with a fixed value of α by following formula:

=�ଶߣ
(1 − (ߙ

ߙ
ଵߣ

We will do a grid search with different combinations of λଵ and λଶ, which are generated by the

combinations of search points of λଵ and search points of α.

Regarding to the sequence of the search points of α, we will use {0.1, 0.2, ... 0.9} by default.

User could specify this sequence, with each element in the sequence in the range of (0.0, 1.0).

Note that the values 0.0 and 1.0 are not allowed.

e) We will build a model for each ߣ (for lasso), or build a model for each ߣ (for ridge

regression), or build a model for each combination of ଵߣ and ଶߣ (for elastic net) on the

training set, and calculate the ASE value on the testing set.

f) Output the model with orߣ the combination of ଵߣ and ଶߣ and the corresponding the minimal

ASE value.

Implementation notes:

 The warm-start strategy will be used to speed up the grid search process. It means that we will

build the models from ୫ߣ ୟ୶�toߣ୫ ୧୬� sequentially and the next model will use the solution

obtained from the current model as the initial values.

 ݆∈ {2,⋯ {݌, in Equation (13.2) and (13.3) if there is an intercept. For ordinal distribution, the

index j is always from 1 to p because the design matrix ࢄ = ,ଵࢄ] ⋯ [௣ࢄ, does not contain

intercept in the GLE phase I.

 The definition of ASE is given in GLE Phase II.

For the large p situations, the same three pieces of information shown above need to be prepared. For

the small and medium p situations, one extra piece of information is needed: the Hessian matrix of

௜݂(ࢼ௜):

۶௜= −∇ଶℓ௜(ࢼ௜) (13.5)

Implementation notes:

 If the scale parameter for continuous distributions or the auxiliary parameter for the negative

binomial distribution is estimated with regression parameters, then (a) partial penalty in hybrid

penalty functions (Section 3.2.2 in ADMM ADD) should be used because no penalty is applied on

the scale parameter or auxiliary parameter.

 If some predictors are categorical, i.e., factors, then (b) group penalty in hybrid penalty functions

should be used.

 If the above conditions exist at the same time, then (c) partial group penalty in hybrid penalty

functions should be used.

 We will not include two-way interaction effects in the regularized generalized linear models.

 The threshold value for judging any regression parameter ߚ = 0 is 1.0e-12, i.e., if ߚ < 1.0e − 12,

then the corresponding predictor is not entered into the model.

 If a sample is used for model selection in the regularized generalized linear models, then it is

possible that�ܰ = 1 (there is only one data block). In this case, the mean of local solutions would

be just from one local solution,ࢼ�ഥ௞ାଵ = ଵࢼ
௞ାଵ and ഥ௞࢛� = ଵ࢛

௞, then they would be used to update the

global parameterࢠ�௞ା૚.

14. Post-estimation statistics

Many post-estimation statistics will be based on the parameter estimate covariance matrix, ઱= −۶ିଵ.

For instance, confidence interval and chi-square statistics for parameters, Lagrange multiplier test,

model effect test, custom test, EMMEANS, standard errors of predicted values, and leverage values.

However, it is impossible to directly calculate the inverse of Hessian matrix ۶ in the large p situations

because its computational cost scales as .(ଷ݌)ܱ

After analysis, we found that the post-estimation statistics have two ways to use the parameter estimate

covariance matrix

(1) Involving .୘ۺ઱ۺ

(2) Involving the diagonal values of ઱.

We would solve these two problems by transferring them into linear system problems.

14.1. Solving ܂ۺ઱ۺ

Let ܄ = ઱ۺ୘ ∈ ,௣×௥܀ then we have ୘ۺ઱ۺ = .܄ۺ Usually, ݎ is quite small comparing with ,݌ so it is

easier to calculate ܄ۺ with ܄ than to calculate ୘ۺ઱ۺ with ઱. The key problem is to compute .܄

To compute ,܄� we do the transformation as follows:

܄ = ઱ۺ୘ ⟹ ઱ି܄ = ୘ۺ ⟹ ܄(۶−) = ୘ۺ (14.1)

which is a linear system problem. We could use the ADMM to solve it.

Note that when <ݎ ۺ�,1 is a matrix, thus, ܄ is a matrix as well. We will use vec operator (Lam, 1995)

to convert ۺ to a vector form, vec(ۺ). Thus, Equation (4.1) becomes

[૚௥⊗ (−۶)]vec(܄) = vec(ۺ୘) (14.2)

14.1.1 ADMM for a linear system problem

Considering a general linear system =ܞۯ ,܊ the three pieces of information used to call ADMM are

(1) the fitting function: (ܞ݂) =
ଵ

ଶ
−ܞۯ୘ۯ୘ܞ) ૛܊୘ܞۯ+ ;(܊୘܊

(2) the gradient of :(ܞ݂) =ܛ −ܞۯ୘ۯ ;܊୘ۯ

(3) the initial value: ଴ܞ = ૙.

14.2. Calculating diagonal values of ઱

Similar to the previous section, we convert the problem of estimating the diagonal values of ઱ to a

linear system problem.

To obtain the ݅th diagonal value, we could first generate a vector, =௜ܟ ,ଵݓ] ⋯ ,௜ݓ, ⋯ ,்[௣ݓ, where

=௜ݓ 1, and ௝ݓ = 0 for ݆≠ .݅ Then we have =௜ܞ ઱ܟ௜and the ݅
th element in ௜ܞ is the ݅

th diagonal value

of ઱.

Further, we can see that to obtain ௜ܞ is equivalent to solve the following linear system problem

=௜ܞ(۶−) ௜ܟ (14.3)

which we could use ADMM method to get the solution of .௜ܞ

Implementation notes:

 Even there is a method to calculate ୘ۺ઱ۺ and diagonal values of ઱, we still need to compute the

Hessian matrix ۶ after the parameter estimation process. For the large p situations, all elements in

۶ might not be saved in memory, not to mention the computation of ୘ۺ઱ۺ for all effects and

diagonal values of ઱ is extremely time consuming, so we will try to keep the final # of parameters

is less than .௖݌ For example, conduct feature selection (in the SDP (Smart Data Preprocessing) or

DE (Descriptive Engine)) before running GLE and/or select the lasso penalty to perform variable

selection within GLE.

References

[29]. Chu, J. and Zhong, W. (2012), “Algorithm: Generalized linear engine phase I”, IBM SPSS

Internal Document.

[30]. Lam, M.L (1995), “A general overview of the multivariate -model” , SPSS Internal Document.

[31]. Park, M. Y. and Hastie, T. (2007), “L1-regularization path algorithm for generalized linear

models”, J. R. Statist. Soc. B, 69 (4): 659-677.

[32]. Zhong, W. and Han, S. (2013), “Algorithm: Generalized linear engine phase II”, IBM SPSS

Internal Document.

[33]. Zhong, W. (2014), “Algorithm: ADMM”, IBM SPSS Internal Document.

Linear-AS Modeling Algorithms

1. Linear AS (Phase I)
A linear regression model usually analyzes the relationship between one target variable (also called

responses) and a list of feature variables (also called predictors). Linear-AS, also known as the

“Linear Engine”, builds linear regression models for large and distributed data and runs within

Analytic Engine (AE).

2. Notations
The following notation is used throughout the document unless otherwise stated:

n Number of distinct records in the dataset. It is an integer and 1n .

p Number of parameters (including parameters for dummy variables but excluding intercept)
in the model. It is an integer and 0p .

p Number of non-redundant parameters (excluding intercept if exists) currently in the model.
It is an integer and 0 .p p 

cp Number of non-redundant parameters currently in the model, so
*

*

1 if there is an intercept
if there is no intercept

c p
p

p

 
 


.

pe Number of effects excluding intercept. it is an integer and 0 ep p 

y 1n vector of single target variable consists of iy .

f 1n vector of frequency count variable. If an element is not an integer, it is computed by
rounding the value to the nearest integer. If it is less than 0.5 or if it is missing, the
corresponding case is not used.

g 1n vector of regression weight. If there is no regression weight specified, 1g . If
regression weight ig for case i is zero, negative or missing. The corresponding case is not
used.

N Effective sample size. it is a integer number, 



n

i

ifN
1

.If frequency count variable f is not

use, N=n.

X)1( pn design matrix. The rows represent the cases and the columns represent the

parameters. The ith row is 0(, ...,)xi i ipx x , ni ,...,2,1 , with 10 ix , The jth column is
T

1(,...,) ,X j j njx x , pj ,...,1,0 , with T
0 (1, ...,1) .X  . If there is no intercept,

1{ }X X p
j j is a pn  matrix.

 1n vector of unobserved errors .

 1)1(p vector of unknown parameters.),,(10 p  . 0 is the intercept, if exist.

If there is no intercept, T
p),(1   is a 1p vector.

̂ 1)1(p vector of estimated  .)ˆ,ˆ,ˆ(ˆ
10 p  . If there is an intercept, 0̂ is its

estimate, else T
p)ˆ,ˆ(ˆ

1   is a 1p vector.

b 1)1(p vector of standardized estimate of  .It is the result from sweep operation on
matrix R.),,(10 pbbbb  . If there is an intercept, 0b is its standardized estimate, else

T
pbbb),(1  is a 1p vector.

ŷ Predicted value of y , consists of iŷ

jX Weighted sample mean for jX , pj ,2,1

y Weighted sample mean for the dependent variable y.

ijS Weighted sample covariance between iX and jX . pji ,2,1, 

iyS Weighted sample covariance between iX and y.

yyS Weighted sample variance for y.

R)1()1( pp weighted sample correlation matrix for X (exclude intercept, if exist)
and y. It is also used to represent the current sweeping matrix before each sweep operation
step.

R
~ The result matrix after sweep operation whose elements are ijr~ .

3. Model

Linear regression of single target variable y and design matrix X has the form

 y X   (1)

where  follows a normal distribution with mean 0 and variance 2 1 D , i.e.,  2 1~ ,nN  D 0

with  1
1diag 1 , ,1 ng g D  . Note that the kth case will be ignored if 0kg  . Then the target

variable y also follows a normal distribution with mean X  and variance 2 1 D ,

 2 1~ ,nN  y X D .

Notes:

1. The elements of  are independent with each other, so are those of y.

2. X can be any combination of continuous and categorical effects and interaction effects (up to

two-way). The parameterization of design matrix X is the same as that in GLM procedure. See

Lam (1995a) for further details on the model parameterization. Please note that we might

expand interaction effects to include more than two-way and nested effects used in old SPSS

procedures.

3.1. Missing values

List-wise deletion is used.

If missing value handling feature has been conducted in “Bivariate Data Preparation” component,

then only the target variable still has missing values and those records would be excluded.

4. Least Squares Coefficient Estimation

The coefficients would be estimated by least squares (LS) method with the following closed form

solution

 T Tˆ ,X WX X Wy


 (2)

where    1 1 1diag , , diag , .W n n nw w g f , g f  

The actual computation of ̂ is done by applying sweep operations instead of applying equation (2).

In addition, sweep operations would be applied to transformed scale of X and y to achieve numerical

stability. Specifically, we construct the weighted sample correlation matrix R then apply sweep

operations to it. The construction the R matrix is described as follows.

First, compute weighted sample means, variances and covariances among Xi, Xj, , 1, , ,i j p  and

y :

Weights sample means of Xi and y are
1

1

1 n

i k kin
k

k
k

X w x
w 






 (3)

and
1

1

1 n

k kn
k

k
k

y w y
w 






 ; (4)

Weighted sample covariance for Xi and Xj is ijS))((
1

1

1
jkjiki

n

k

k XxXxw
N


 



; (5)

Weighted sample covariance for Xi and y is))((
1

1

1

yyXxw
N

S kiki

n

k

kiy 


 


; (6)

Weighted sample variance for y is 






n

k

kkyy yyw
N

S
1

2)(
1

1
. (7)

If there is no intercept,
1

1
1

n

ij k ki kj

k

S w x x
N




  , (8)

kki

n

k

kiy yxw
N

S 





11
1

, (9)







n

k

kkyy yw
N

S
1

2

1
1

. (10)

Second, compute weighted sample correlations
jjii

ij
ij

SS

S
r  , ypji &,...,1,  . (11)

Implementation notes: All statistics are computed in map/reduce environment, see Section A.2 in

Appendix A of this section for details.

Then the matrix R is

11 12 1 1

21 22 2 2
11 12
T
12 22

1 2

1 2

p y

p y

p p pp py

y y yp yy

r r r r

r r r r

R
r r r r

r r r r

 
 
   
    
   
 
 
  

R R
R =

R





   





. (12)

If the sweep operations are repeatedly applied to each row of 11R (see Appendix B in this section),

where 11R contains predictors in the model at the current step, the result is

1 1
11 11 12
T 1 T 1
12 11 22 12 11 12R

 

 

 
  

  

R R R
R

R R R R R
 . (13)

The last column 1
11 12
R R contains the standardized coefficient estimates, i.e., 12

1
11 RRb  . Then the

coefficient estimates β̂ , except the intercept estimate if there is an intercept in the model could be

obtained as follows:

ˆ ,yy

j j

jj

S
b

S
  j = 1,..., p. (14)

5. Automatic Interaction Effect Detection

We’d like to catch two-way interaction among main effects in X in the model selection phase, but

including all possible pairs would make model selection difficult and inefficient. Thus we will limit

to the following steps.

1. For all covariates (continuous variables), a squared term of each covariate will be created and

included in the design matrix X, but not the cross product terms, i.e. suppose there are two

continuous variables, say 1 2andX X , then 2 2
1 2andX X will be created, but not 1 2X X .

2. For each pair of two factors (categorical variables), say 1 2andX X , the ANOVA method will be

used to test whether the interaction effect 1 2X X should be included. See Section 5.1 for

details.

3. For each pair of one covariate and one factor, the ANOVA method is used as well. See Section

5.2 for details.

However, even with this original limitation, it might not be possible to check all candidate pairs in

Steps 2 and 3 or include all eligible pairs from all 3 steps for the model selection methods in Section

6. The reason is, if there are large number of main effects in X, the whole process might require too

much memory (so user might receive “run out of memory” message and no output at all) or too

much computational cost (so user might wait for a long time to receive output). Hence, we provide a

two-way-test pair search strategy to restrict number of the pairs in those which are more likely to be

selected to the final model in the model selection method. See Section 5.3 for details.

5.1. Interaction of two factors

Suppose the pair of two factors is X1 with known R levels (1, , R) and X2 with known S levels

(1, ,).S Instead of fitting a model for each pair, we will compute some statistics to implement the

ANOVA method by the following steps:

1. Create a R S contingency table based on 1 2andX X with the following statistics for each

combination of 1 , 1, , ,X i i R   and 2 , 1, , :X j j S  

ijn : the number of distinct records;

ijkf : the frequency weight for the kth distinct record, 1, , ;ijk n 

ijky : the target value for the kth distinct record, 1, , ;ijk n 

ijN : effect sample size (including frequency weights), i.e.,
1

;
ijn

ij ijk
i

N f




ijy : the target mean;
1

1 ;
ijn

ij ijk ijk
iij

y f y
N 

 

,yy ijC : the sum of squared terms of target, i.e.  
2

,
1

.
ijn

yy ij ijk ijk ij
k

C f y y


 

X2

X1

1 2  S

1 11 11 ,11, , yyN y C 12 12 ,12, , yyN y C  1 1 ,1, ,S S yy SN y C

2 21 21 ,21, , yyN y C 22 22 ,22, , yyN y C  2 2 ,2, ,S S yy SN y C

    

R 1 1 , 1, ,R R yy RN y C 2 2 , 2, ,R R yy RN y C  ,, ,RS RS yy RSN y C

2. Compute residual sum of squares for the full model which contains two main effects

1 2andX X and the interaction effect 1 2X X :

 
2

,
1 1 1

ijnR S

e ijk ijk ijfull
i j k

SS f y y
  

  (15)

3. Denote
e ,interaction

SS to be the difference of residual sum of squares between the full model and

the main effects only model and we will approximate it by the following iterative process:

(a) Input values for M (maximum number of iterations and the default is 10) and  (tolerance

level of stopping criterion and the default is 1.0e-6).

(b) Compute the initial value  
2(0) (0)

,
1 1

R S

e interaction ij ij
i j

SS y N
 

  , where (0)
ijy is the means from

the above table.

(c) Set the iteration number m = 1.

(d) Update () , 1, , , 1, , ,m
ijy i R j S   as follows:

(1)

1* (1)

1

;

S
m

ij ij
jm

ij ij S

ij
j

y N

y y

N









 



(16)

*

() * 1

1

.

R

ij ij
m i

ij ij R

ij
i

y N

y y

N







 



(17)

(e) Compute  
2() ()

,
1 1

.
R S

m m
e interaction ij ij

i j

SS y N
 

  (18)

(f) If () (1)
, ,
m m

e interaction e interactionSS SS   or ,m M then stop and output ()
,
m

e interactionSS . Otherwise, set

m = m + 1 and go back to step (d).

4. Compute the F statistic

,

,

,e interaction interaction

e full full

SS df
F

SS df
 (19)

where interactiondf and
fulldf are the degrees of freedom corresponding to ,e interactionSS and

, ,e fullSS respectively. And    1 1interactiondf R S     , where  is the number of category

combinations where there are no valid record and 1 .full interactiondf N R S df N RS        

Then the F statistic follows an asymptotic F distribution with degrees of freedom interactiondf and

fulldf .

5. Compute the p-value

 ,1 Pr .
interaction fulldf dfp F F   (20)

If 0.05,p  then the interaction effect 1 2X X would be included in the design matrix X.

Please see Han (2010) for details.

5.2. Interaction of a covariate and a factor

Suppose a covariate is X1 and a factor is X2 with known S levels (1, ,).S similar to the method used

in Section 5.1, the F statistic is computed by the following steps:

1. Create a 1 S table based on 2 , 1, , ,X j j S   with the following statistics:

jn : the number of distinct records;

jkf : the frequency weight for the kth distinct record, 1, , ;jk n 

jky : the target value for the kth distinct record, 1, , ;jk n 

jN : effective sample size (including frequency weights), i.e.,
1

;
jn

j jk
i

N f




1, ,j jX y : the means of X1 and y; i.e., 1, 1,
1 1

1 1and ;
j jn n

j jk jk j jk jk
i ij j

X f X y f y
N N 

    

1 1 , ,,x x j yy jC C : the sum of squared terms of X1 and Y, i.e.,  1 1

2

, 1, 1,
1

,
jn

x x j jk jk j
k

C f X X


 

 
2

,
1

;
jn

yy j jk jk j
k

C f y y


 

1 ,x y jC : the sum of cross product terms of X1 and Y, i.e.,   1 , 1, 1,
1

.
jn

x y j jk jk j jk j
k

C f X X y y


  

2. Compute residual sum of squares for the full model which contains two main effects

1 2andX X and the interaction effect 1 2X X :

 1

1 1

2

,
,,

1 1 ,

.
S S

x y j

e yy jfull
j j x x j

C
SS C

C 

   (21)

3. Compute residual sum of squares for the main effects model which contains two main effects

only:

1

1 1

2

,
1

,,
1

,
1

.

S

x y jS
j

e yy jmain S
j

x x j
j

C

SS C

C







 
 
  





(22)

4. Compute the F statistic

   
 

, ,

,

1
,

2
e main e full

e full

SS SS S
F

SS N S

 



(23)

and it follows an asymptotic F distribution with degrees of freedom 1S  and 2N S .

5. Compute the p-value

 1, 21 Pr .S N Sp F F    (24)

If 0.05,p  then the interaction effect 1 2X X would be included in the design matrix X.

Please see Zheng (2010) for details.

Implementation notes:

 All statistics are computed in map/reduce environment, see Section A.4 in Appendix A of

this chapter for details.

 If there is no valid record in any category then adjust S value accordingly.

 Regression weights will not be used even it is specified.

 If ,0, fulleSS then F statistics is assigned as sysmis and the p value for F statistic is as

follows:

 
 

,main ,

,main ,

0 if 0
-value =

sysmis if = 0,

e e full

e e full

SS SS
p

SS SS

  




If -value sysmis,p  then the interaction effect 1 2X X would NOT be included in the

design matrix X.

Please note that we will treat 0, fulleSS or  ,main , 0e e fullSS SS  when two criteria are

met: **
, pSSSS tfulle   and 80.1,  eSS fulle or   * *

,main ,e e full tSS SS SS p   

and  ,main , 1.0 8,e e fullSS SS e   respectively, where   is machine epsilon (about 2.2e-

16), p is the number of non-redundant estimated parameters for the full model and

1p RS    here, tSS is total sum of squares for the target and it can be computed by

2

1

()
n

t i i

i

SS f y y


  and please see Section A.2 in Appendix A on how to compute it in

map/reduce environment.

 Regarding Eq. (5), if ௫భ௫భ,௝ܥ = 0, then the item ൫ܥ௫భ௬,௝൯
ଶ
௫భ௫భ,௝ൗܥ is set to 0.

 Regarding Eq. (6), if ∑ ௫భ௫భ,௝ܥ
ௌ
௝ୀଵ = 0, then ܵܵ ௘,௠ ௔௜௡ is set to missing. That is to say, the

interaction of ଵܺ and ܺଶ is not significant.

5.3. Two-way-test pair search strategy

Suppose there are m main effects (factors and covariates), the number of parameters for them is ௠݌

(excluding the intercept) and the number parameters for covariates is ௖௠݌ .

Input values (integers) for ݉ ଵ (threshold value to conduct interaction effect detection; the default is

100), ݉ ଶ (threshold value to select main effects for interaction effect detection; the default is 50) and

୫݌ ୟ୶ (maximum number of parameters the system can handle; the default is 5000), where ݉ ଵ ≥ ݉ ଶ.

When ୫݌) ୟ୶ > ௠݌ �௖௠݌�+) and ݉ > ݉ ଶ, then the strategy will be conducted with the following

steps:

1. Build a linear model using all main effects ,ଶࢄ,ଵࢄ ⋯ ௠ࢄ, using the sweep operation method

described in Section 4.

2. Select the significant main effects >݌) 0.05) based on tests of model effects based on Wald

test. Assume there are ݉ ′ significant effects.

3. If (݉ ᇱ< 2) or (݉ ᇱ> ݉ ଵ), then stop and no interaction detection is conducted. Otherwise, sort

the main effects using p-value in ascending order.

4. Select the top ݉ ᇱᇱ(= min(݉ ᇱ,݉ ଶ)) main effects to construct two-way interaction effects (of

two factors, and one covariate and one factor) among these ݉ ′′ main effects.

5. Test all candidate interaction effects using the methods given Sections 5.1 and 5.2.

6. Calculate the total number of parameters for all significant interaction effects, denoted by ,௜௡௧௘௥݌

if ௜௡௧௘௥݌ < ୫݌) ୟ୶− ௠݌ − �௖௠݌) , then output all significant interaction effects and stop;

otherwise go to step 7.

7. Calculate effect size for each significant two-way interaction effect

ଶߟ =
ௌௌ೐,೔೙೟೐ೝೌ೎೟೔೚೙

ௌௌ೟
(25)

where ܵܵ ௘,௜௡௧௘௥௔௖௧௜௢௡ denotes to be difference of weighted residual sum of squares between the

full model and the main effects only model, please see Sections 5.1 and 5.2 for formulae and

ܵܵ ௧ denotes the weighted sum of squares for the target, please see Section 5.1 for formula.

8. Sort all significant two-way interaction effects using their effect sizes in descending order and

select and output top-݇ interaction effects, where ݇ is the maximum number satisfying the

number of parameters for top-݇ interaction effects is less than or equal to ୫݌) ୟ୶− ௠݌ − �௖௠݌).

When ୫݌) ୟ୶ > ௠݌ �௖௠݌�+) and ݉ ≤ ݉ ଶ, the strategy will be similar to the one given above, except

that the step of constructing two-way interaction effects: here, two-way interaction effects are

directly constructed among all ݉ main effects rather than based on ݉ ′′ significant main effects.

After the strategy is conducted, the total number of parameters of candidate effects for model

selection methods is smaller than a threshold value and the candidate effects will include (1) all main

effects; (2) square terms of all covariates; (3) some (or all) significant interaction effects.

6. Model Selection

For the small to median p situations ୫݌) ୟ୶ ≥ (݌ which means the R matrix can be fit into memory

or, we will support three model selection methods: (1) none; (2) forward stepwise; and (3) best

subsets.

For the large p situations ୫݌) ୟ୶ < ,(݌ we will utilize ADMM to conduct model selection which is

similar to LASSO and details would be provided later.

6.1. None

No selection method is used.

6.2. Forward stepwise

The basic idea of the forward stepwise method is to start off by choosing the best effect in addition

to the intercept if exists and then tries to enter additional effect one at a time as long as these

additions are worthy. After an effect has been added, all effects in the current model are checked to

see if any of them should be removed. Then the process continues until a stop criterion is met.

The traditional criterion for effect entry and removal is based on the F-statistics, which their

corresponding p-values are used to compare with some specified entry and removal significance

levels, but they do not follow an F distribution so the results might be questionable. Hence three

additional criteria for effect entry and removal are offered: (1) maximum adj. R2; (2) minimum

corrected Akaike information criterion (AICC); and (3) minimum average square error (ASE) over

the overfit prevention data.

How to calculate these statistics and the selection process are described in details below.

6.2.1. Candidate statistics

Some clearer notations are needed to calculate the following 4 statistics for a continuous effect Xj or
categorical effect 1{ }

sj sX 
 entering to and removing from the current model as follows in each step.

* The number of non-redundant parameters of the eligible effect Xj or 1{ }
sj sX 
 .

cp The number of non-redundant parameters in the current model (including an intercept
if exists).

rp The number of non-redundant parameters in the resulting model (including the

intercept if exists). Note that
*

*

for entering an effect
for removing an effect

c

r

c

p
p

p

 
 







pSSe The weighted residual sum of squares for the current model.

pSSe  The weighted residual sum of squares for the resulting model after entering the effect.

pSSe  The weighted residual sum of squares for the resulting model after removing the
effect.

yyr The last diagonal element in the current R matrix.

yyr The last diagonal element in the resulting R matrix.

(1) F-statistics:

The F-statistics are different for an effect Xj or 1{ }
sj sX 
 entering to and removing from the

current model as follows:

*

*

() / ()()
/()j

r
p p yy yy

enter r
p yy

SSe SSe r r N p
F

SSe N p r





  
 

 







 
and (26)

 
 

  *

*

/

/j

c
yy yyp p

remove c
yyp

r r N pSSe SSe
F

rSSe N p

  
 







, respectively. (27)

Then the p-values corresponding to the above F-statistics are

   * *, ,1r r
j j jenter enter enterN p N p

p P F F P F F
 

    
 

and (28)

   * *, ,1c c
j j jremove remove removeN p N p

p P F F P F F
 

    
 

, respectively. (29)

(2) adj. R2:

The adj. R2 value for the resulting model when an effect entering to or removing from the

current model is as follows:

 

2

1
1 if there is an intercept

adj.
1 if there is no intercept

yy

r

yy

r

N r

N p
R

N r

N p

 



 


 




(30)

(3) AICC:

The AICC value for the resulting model when an effect entering to or removing from the current

model is as follows:

(1) 2ln
1

r
yy yy

r

N S r p N
AICC N

N N p

  
  

  


(31)

(4) ASE:

The ASE value over the overfit prevention data for the resulting model when an effect entering to or

removing from the current model is as follows:

 
2

1

1

1 ˆ
T

t t tT
t

t

t

ASE w y y

f 



 


(32)

where ˆˆt ty  x  is the predicted values of yt and T is the number of distinct testing cases in the

testing (overfit prevention) data.

6.2.2. The selection process

The nature of F-statistics criterion is different from the other three criteria. The F-statistics criterion

is to select an effect for entry (removal) with the minimum (maximum) p-value and continue doing it

until the p-values of all candidates for entry (removal) are equal to or greater than (less than) a

specified significance level. The other three criteria are to compare the statistic (adj. R2, AICC or

ASE) of the resulting model after entering (removing) an effect with that of the current model and

selection would be stopped at a local optimal value (a maximum for the adj. R2 criterion but a

minimum for the AICC criterion and ASE criterion). Hence the following selection process is

described in terms of the F-statistics criterion (denoted as FC) and AICC criterion (denoted as AC),

then it should be easy to change from AICC criterion to the other two criteria).

Some definitions are needed for the selection process:

FLAG A 1ep  index vector which records the status of each effect. FLAGi = 1 means
the effect i is in the current model, FLAGi = 0 means it is not. Note that
{ | 1}ii FLAG  denotes the number of effects with FLAGi = 1.

MAXSTEP The maximum number of iteration steps. The tentative default value is 3 ep .

MAXEFFECT The maximum number of effects (excluding intercept if exists). The default value
is ep .

Pin The significance level for effect entry when F-statistics criterion is used. The
default is 0.05.

Pout The significance level for effect removal when F-statistics criterion is used. The
default is 0.1.

F The F-statistic change. It is
jenterF or

jremoveF for entering or removing an effect

Xj (here Xj could represent continuous or categorical for simpler notation).

Fp The corresponding p-value for F .

AICCcurrent The AICC value for the current model.

(1) Set 1{ } 0
ep

i iFLAG   and iter = 0. If there is an intercept, the initial model is yy ˆ , otherwise it

is 0ˆ y . If AC (AICC criterion, similarly for other two criteria) is used, compute AICC for the

initial model and denote it as AICCcurrent.

(2) If { | 0}ii FLAG   , iter < MAXSTEP and { | 1}ii FLAG MAXEFFECT  , go to next step

(3); otherwise stop and output the model .

(3) Based on the current model, for every effect j eligible for entry (see Condition below) ,

if FC (F-statistics criterion) is used, compute
jenterF and

jenterp ;

if AC is used, compute AICCj.

(4) If FC is used, choose the effect  * , argmin
jenterj j

X j p  and if
*j

enterp < Pin, enter j
X to the

current model.

IF AC is used, choose the effect  *
*, argmin jj j

X j AICC and if *j
AICC < currentAICC , enter

j
X to the current model.

(Note that for adj. R2 criterion,  * 2argmax adj. j
j

j R and *
2 2adj. adj. currentj

R R .)

Then go to (5); otherwise stop and output the current model.

(5) If the model with new effect is the same as any previous ones, stop and output the current

model; otherwise update the current model by doing sweep operation on corresponding row(s)

and column(s) associated with j
X in the current R matrix. Set 1j

FLAG and iter = iter + 1.

If FC is used, let
*j

enterF F  and
*j

F enterp p  ;

if AC is used, let *jcurrent AICCAICC  .

(6) For every effect k in the current model (i.e., 1,kFLAG k ),

if FC is used, compute
kremoveF and

kremovep ;

if AC is used, compute AICCk.

(7) If FC is used, choose the effect  *
*, argmax

kremovek k
X k p and if

*k
removep > Pout, remove k

X

from the current model.

If AC is used, choose the effect  *
*, argmin kk k

X k AICC and if *k
AICC < currentAICC ,

remove k
X from the current model.

(Note that for adj. R2 criterion,  * 2argmax adj. k
k

k R and *
2 2adj. > adj. currentk

R R .)

Then go to (8); otherwise go back to (2).

(8) If the model with the effect removed is the same as any previous one, stop and output the

current model; otherwise update the current model by doing sweep operation on corresponding

row(s) and column(s) associated with k
X in the current R matrix. Set 0

k
FLAG   and iter =

iter + 1.

If FC is used, let
*k

removeF F  and
*k

F removep p  ;

if AC is used, let *current k
AICC AICC . Then go back to (6).

Condition

Eligible for entry conditions for the effect j: (i.e., 0,jFLAG j )

a) For continuous effect Xj , jjr t (singularity tolerance t with a default of 1e-4);

For categorical effect 1{ }
sj sX 
 ,

1 1 2 2
max{ , , , }j j j j j jr r r t

 
 .

Note that here
jjr and , 1, , ,

s sj jr s    are diagonal elements in the current R matrix (before

entering).

b) For each continuous effect Xk that is currently in the model, 1kkr t  .

For each categorical effect '
1{ }

sk sX 
 with ' levels that is currently in the model,

1 1 2 2 ' '
max{ , , , } 1k k k k k kr r r t 

 
   .

Note that here kkr and , 1, , ',
s sk kr s    are diagonal elements in the resulting R matrix, i.e.,

the results after doing sweep operation on corresponding row(s) and column(s) associated
with Xk or '

1{ }
sk sX 
 in the current R matrix.

The above condition is imposed so that entry of the effect does not reduce the tolerance of

other effects already in the model to unacceptable levels.

Rules for entering or removing effects when interaction effects are present:

1. NONE

No requirement need be satisfied for any effects in the model.

2. SINGLE (default)

Hierarchy requirement is satisfied for all effects in the model. It stipulates that, for any effect

to be in a model, all lower-order effects that are part of the former effect must also be in the

model. For example, given A, X, and A*X, then for A*X to be in a model, the effects A and

X must also be in the model.

3. SFACTOR

Hierarchy requirement is satisfied for all factor-only effects in the model.

4. CONTAINMENT

Containment requirement is satisfied for all effects in the model. It stipulates that, for any

effect to be in the model, all effects contained in the former effect must also be in the model.

The meaning of containment is that, for any two effects F and F’, F is contained in F’, if:

 Both effects F and F’ involve the same covariate effect, if any. (Note that effects A*X and

A*X*X are not considered to involve the same covariate effect because the first involves

covariate effect X and the second involves covariate effect X**2.)†

 F’ consists of more factors than F.

 All factors in F also appear in F’.

The following table illustrates how the hierarchy and containment requirements mean for effect

entering and removing. The cells contain the order in which effects must occur in the model.

Effects SINGLE SFACTOR CONTAINMENT

A,B,A*B 1. A, B

2. A*B

1. A, B

2. A*B

1. A, B

2. A*B

X, X**2, X**3 1. X

2. X**2

3. X**3

Effects can occur in the model
in any order.

Effects can occur in the
model in any order.

A, X, X(A) 1. A, X

2. X(A)

Effects can occur in the model
in any order.

1. X

2. X(A)

Effect A can occur in the
model in any order.

A, X, X**2(A) 1. A, X

2. X**2(A)

Effects can occur in the model
in any order.

Effects can occur in the
model in any order.

† A B are factors and X is covariate effect.

‡ The intercept effect is contained in all the pure factor effect. However it is not contained in any

effect involving a covariate. No effect is contained in the intercept effect.

£ This is an important definition, since all type II, type III and Type IV estimable functions rely

on this definition.

§ In the implementing, it is useful to store “hierarchy” and “contained” information for each

effect in order to define the order of sweeping and calculation of the Type III sums of square.

6.3. Best subsets (will update the relevant default values later)

Stepwise method based on adding or removing effect one at a time with respect to some criterion is a

method to do model selection. However, these methods search fewer combinations of sub-models

and rarely select the best one, so to select the best one according to some criterion is to check all

possible models. The available criteria are (1) maximum adj. R2; (2) minimum AICC; and (3)

minimum ASE over the overfit prevention data.

Since there are ep free effects no matter whether there is an intercept in the model or not, we do

exhaustive search over
ep2 models, which include intercept-only model (ˆ y y) if there is an

intercept, or the null model (ˆ y 0) otherwise. Because the number of calculations increases

exponentially with ep , it is important to have an efficient algorithm for carrying out the necessary

computations. However, if ep is too large, it may not be practical to check all of the possible

models.

We divide the problem into 2 tiers in terms of the number of effects: (1) when 20ep  , we do all-

possible-subset search; (2) when ep > 20, we apply a hybrid method which combines forward

stepwise method and all possible subset method.

6.3.1. All possible subset method for the first tier problem

If ep ≤ 20, we do exhaustive search of all the possible sub-models.

An efficient method, which was proposed by Schatzoff (1968) and would have the minimum number

of sweep operations on the R matrix, is applied to traverse all the models and outlined as follows:

Each sweep step(s) on one effect results a model. So
ep2 models can be obtained through a sequence

of exactly
ep2 sweeps on effects. Assume that the all possible models on 1ep effects can be

obtained in a sequence 1ep
S of exactly 12 ep sweeps on the first 1ep pivotal effects. And sweeping

on the last effect will produce a new model which adds the last effect to the model produced by the

sequence 1ep
S . Then repetition of the sequence 1ep

S will produce another 12 ep distinct models

(including the last effect). It is a recursive algorithm for constructing the sequence ep
S , i.e.,

1 1 2 2 2 2, , , 1, , , , 1, ,e e e e e e ep p p p p p p
S S k S S k S k S k S

     
          
   

 etc.

The sequence of model produced is demonstrated in the following table:

k Sk
* Sequence of models produced

0 0 Only intercept

1 1 (1)**

2 121 (1),(12),(2)

3 1213121 (1),(12),(2),(23),(123),(13),(3)

4 121312141213121 (1),(12),(2),(23),(123),(13),(3),(34),(134),(1234),(234),(24),(124),(14),(4)

… … …

pe Sp
e
-1, pe, Sp

e
-1 All

ep2 models including the intercept model.

* The indexes of effects which are pivoted on.

** Each parenthesis in the third column represents a regression model. The numbers in the

parentheses indicate the effects which are included in that model.

6.3.2. Hybrid method for the second tier problem

If ep > 20, we apply a hybrid method by combining the forward stepwise method with possibly all

possible subset method as follows:

(1) Select the effects by the stepwise method (note that the same criterion used to select the best

model is also used in the forward stepwise and see Section 6.2.2 for details). Assume ps is the

number of these effects.

(2) Apply different approaches, depending on the value of ps, as follows:

(a) If ps ≤ 20, do exhaustive search of all possible subsets on these selected effects via the

method in Section 6.3.1.

(b) If 20 < ps ≤ 40, select ps – 20 effects based on the p-values of type III sum of squares tests

from all ps effects (see Section 7.2) and enter them to the model as a constant part, then do

exhaustive search of all remaining 20 effects via the method in Section 6.3.1, i.e., do

exhaustive search on remaining 20 effects with ps – 20 effects always in the model.

(c) If 40 < ps, do nothing and assume the best model is the one with these ps effects (with a

warning message that the selected model is based on the forward stepwise method).

7. Model and Predictor Summary

7.1. Coefficients and statistical inference

After the model selection process, we can get the coefficients and related statistics in or not in from

the swept correlation matrix. The following statistics are computed for each effect in the model or

not in.

All the effects with FLAGj =1 are currently in the model, as well as intercept (if exists). We calculate

these below base on the R
~ matrix.

 Unstandardized coefficient estimates

ˆ yy yy
j j jy

jj jj

S S
b r

S S
    1, , ,j p  (33)

The redundant coefficient estimates are set to zero.

 Standard errors of regression coefficients

The standard error of j̂ is

 ˆ
ˆˆ var()

1j

jj yy yy jj e
j

jj e jj e

r r S r SS

S df S N df
 


  

 

  
(34)

 Intercept estimation

If the model includes an intercept, the intercept is estimated by all other parameters in the

model as

0
1

ˆ ˆ
p

j j

j

y X 


  (35)

The standard error of 0̂ is estimated by

0 0

2
ˆ ˆˆ ˆ
 

  with

 

 

0

1
2 2 2
ˆ ˆ*

1 1 1

1
2 2

ˆ
1 1 1

(1) ˆ ˆˆ ˆ 2 cov ,
(1)

ˆ 2 .
1

j

j

p p p
yy yy

j k j k j

j j k j

p p p
kj ee

j k j
e kk jj ej j k j

N r S
X X X

N N p

r SSSS
X X X

N df S S N df

 



   





   



   


  

 


  

  

  

  




(36)

 t-statistics for regression coefficients

t - statistic for j̂ is

ˆ

ˆ

ˆ
j

j e
jy

yy jj

df
t r

r r





  

 
, j = 0,1,…, p, (37)

and it follows an asymptotic t distribution with the degree of freedom edf . Then the p-

value is computed as

  2 1
edfp prob t t    . (38)

 100(1)% confidence internals

ˆ 2,
ˆ ˆ .

ej
j dft

   (39)

7.2. ANOVA (Tests of model effects)

 Weighted total sum of squares (SSt)

2

1

2

1

() (1) with d.f. = = 1 if there is an intercept

(1) with d.f. = = if there is no intercept

n

i i yy t

i
t n

i i yy t

i

w y y N S df N

SS

w y N S df N






   


 


 





, (40)

where d.f. means degrees of freedom. It is called “SS (sum of squares) for Corrected Total”

if there is an intercept or “SS for Total” if there is no intercept.

 Weighted residual sum of squares (SSe)

2

1

ˆ() (1)
n

e i i i yy yy

i

SS w y y r N S


     with d.f. = dfe = N – pc. (41)

It is also called “SS for Error”.

 Weighted regression sum of squares (SSr)

2

1

2

1

ˆ() (1)(1) if there is an intercept

ˆ (1)(1) if there is no intercept

n

i i yy yy t e

i
r n

i i yy yy t e

i

w y y r N S SS SS

SS

w y r N S SS SS






     


 


    










, (42)

with d.f. = rdf p . It is called “SS for Corrected Model” if there is an intercept, or “SS

for Model” if there is no intercept.

 Regression mean square error

/r rSS df . (43)

 Residual mean square error

/e eSS df . (44)

 F statistic for corrected model

/
/

r er r

e e e r

SS dfSS df
F

SS df SS df


 


, (45)

which follows an F distribution with degrees of freedom dfr and dfe , and the

corresponding p-value can be calculated accordingly.

 Type III sum of squares for each effect

To compute type III SS for the effect j, 1, , ,ej p  type III test matrix Li needs to be

constructed first. Construction of matrix Li is based on the generating matrix

 T T ,



H X DX X DX where 1diag(, ,)ng gD  , such that Li is estimable. It

involves parameters only for the given effect and the effects containing the given effect. For

type III analysis, Li doesn’t depend on the order of effects specified in the model (but it

does for type I analysis). If such a matrix cannot be constructed, the effect is not testable.

See Chiu (1995a, b) for computational details on construction of type III test matrices.

For each effect j, type III SS is calculated as follows

T T T 1ˆ ˆ()j j j j j
S β L L GL L β (46)

where ()T G X WX .

Implementation notes:

 The X matrix in G only includes the effects selected into the final model, so does R .

Obtain G from 11R (the upper left-hand p p block matrix of R) as follows:

T
01 01

11 11 11

11 11 11

1 1 1
if there is an intercept

if there is no intercept

nW     
           



A A

G A R A

A R A





0

0 0 0 (47)

where
1

n

k
k

wnW


 ,     11 11diag 1 1 , ,1 1 ,ppN S N S  A  and

T
01 11 1 11, , pX X     A X A A . Note that and , 1, , ,i iiX S i p  are weighted

sample mean and variance for iX , respectively; and p denotes the number of

parameters (excluding intercept) in the final model.

After some algebra, G can be expressed as follows if there is an intercept

T T
11 11 11 11 11 11

11 11 11 11 11 11

1 nW  
  

  

X A R A X X A R A
G

A R A X A R A

 

 
. (48)

 Obtain jS by sweeping the following matrix

T

T 0

j j j

j

 
 
 
 

L GL L β

L β

ˆ

ˆ()
, (49)

then the last diagonal element of the resulting matrix corresponds to jS .

 F statistic for each effect

The above SS for the effect j is also used to compute the F statistic for hypothesis test H0:

Lj = 0 as follows:

j j

j

e e

r
F

SS df


S
(50)

where jr is the full row rank of iL . It follows an F distribution with degrees of freedom

ir and edf , then the p-values can be calculated accordingly.

Note that the parameter estimate covariance matrix is used in the above F statistic

implicitly as it is e eSS df G .

7.3. Model quality measures

The squared multiple correlation coefficient (R square) or coefficient of determination is to measure

of how much of the variation in the data is explained by the model. It denoted by R2, is expressed as

2 1 1 .er
yy

t t

SSSS
R r

SS SS
     

 Adjusted R square

2
2 2 (1)adj. 1 1 t yye e

t t e e

df rSS df R p
R R

SS df df df

 
     


. (51)

 Corrected Akaike information criterion (AICC)

2ln .
1

c
e

c

SS p N
AICC N

N N p

 
     

(52)

7.4. Predictor importance (PI)

The predictor importance computation for all modelling engines would be based on “variance-based

sensitivity analysis” which is a model free method and has been used many models in Modeler, such

as Regression (older version of ALM), Tree, Logistic regression, genlin, etc. (see Zhong (2008) and

Xu (2011) for details).

7.5. EMMEANS
The EMMEANS for significant effects would be computed and compared based on some contrasts.

Please see Zheng (2009) for details.

However, the contrast types and adjustment methods would be determined later.

7.6. Grouping and unusual category detection

For a significant factor or factor interaction from the ANOVA table, some categories or category

combinations must have statistically significant impact on the target and we can partition them into

high and low groups. The following process is used to find the high and low groups and the

possible middle group among all categories of a significant factor with at least 3 categories. Note

that grouping and unusual category detection analyses would not be conducted for any insignificant

factors or factor interactions, i.e., their p-values are larger than the significance level (including

sysmis); and the description is for a significant factor, but it should be applied to a factor interaction

similarly.

1) For a significant factor with m categories, mCC ,,1  , compute the EMMENS,

1, , mEM EM and their corresponding standard errors,
1

ˆ ˆ, , .
mEM EM 

2) Sort the EMMEANS by a descending order. Without loss of generality, assume they are

1, , mEM EM so 1EM has the largest EMMEAN and mEM has the smallest EMMEAN.

3) At first, the category with largest EMMEAN is formed the high group. Then test if there is a

difference between the second largest EMMEAS and the largest EMMEAN. The test statistic

is similar to the pairwise contrast statistics described in Zheng (2009),

 1 2

1 2
1 ˆ

EM EM

EM EM
t





 (53)

where  1 2
ˆ

EM EM  is the corresponding standard error for 1 2 .EM EM It has an asymptotic t

distribution with dfe (= N – pc) degrees of freedom. The corresponding p-value could be

computed as follows:

|)|(1 1ttprobp
edf  (54)

If the null hypothesis is not rejected, i.e., the p-value >  (significance level specified by

user, default is 0.05), then the category with the second largest EMMEAN will be added to

the high group.

Implementation notes:

(1) If 021 EMEM , then there is no need to compute  1 2
ˆ

EM EM  and assign 1p , i.e.,

the category with the second largest EMMEAN will be added to the high group.

(2) If 021 EMEM and 0ˆ)(21
EMEM , then 0p and stops. Please note that

0ˆ)(21
EMEM should only happen when there is a perfect fit, i.e., e tSS SS p   

and 1.0 8,eSS e  where , andtSS p   are defined in Section 7.2.

http://miamoss1/RD/products/components/Documents/Algorithm EMMEANS and Custom Tests.doc

4) Repeat the same process for the next EMMEANS in line, i.e., compare 3EM with 1EM ,

compare 4EM with 1EM , etc. until there is no category can be added into the high group.

5) Similarly, form the low group from the smallest EMMEAN for those categories not assigned

to the high group.

6) If there still exist some categories after forming the high and low groups, they are grouped

into the middle group.

Furthermore, there might exist few categories or category combinations with extremely high or low

EMMEANS in the high or low group. We call such categories or category combinations “unusual

categories”. The process to detect those “unusual categories” for a significant factor is described as

follows:

First, suppose there are m categories, mCC ,,1  , for a significant and corresponding EMMEANS

are mEMEM ,1 respectively. The number of records in mCC ,,1  are mnn ,,1  ,

respectively. Then the unusual category detection process is described as follows:

(1) Find the median of m EMMEANS, incorporating the number of records in each category

(suppose The number of records in mCC ,,1  are mnn ,,1  , respectively). Denote the

median as M , then  
mnmn EMEMmedianM ,,1 ,,

1
 , where

iniEM , is a set which

contains only iEM value with in of them.

(2) Compute the median absolute deviation (MAD) of m EMMEANS, again incorporating with

the number of records in each category

),||,,|(|
11 mnmn MEMMEMmedianMAD   (55)

where
ini MEM ||  is a set which contains only || MEM i  value with but the in of

them.

(3) Compute the modified z-score for each Ci

if 0
1.4826

if 0,
1.253314

i

i

i

EM M
MAD

MAD
z

EM M
MAD

MeanAD


 

 
 

 

(56)

where
1

1

1 | |.
m

i im
i

i
i

MeanAD n EM M

n 



 


(4) Detect unusual category as follows:

If <௜ݖ 3, a category iC has an unusually high EMMEAN in the high group.

If >௜ݖ −3, a category iC has an unusually low EMMEAN in the low group.

Repeat the processes for grouping and unusual category detection analyses for all significant factors

and factor interactions.

8. Scoring

8.1. Predictive and residual values

After the model has been fit, predicted and residual values are usually calculated and output.

Notice that the predicted values can be computed for the case not used in the model-building phase.

That is the response variable can be missing and the predicted values are still computed as long all

the predictor variables have non-missing values in the given model. An additional requirement is

that given predictor variable values could be properly parameterized by using only the existing

model parameters. See Woods (2004), “Guidelines for Scoring under Various Data and Model

Conditions,” for details.

 Predicted values

0

ˆˆ , 1, , .
p

k ki i

i

y x k n


   (57)

 Residuals

kkk yye ˆ (58)

 Studentized residuals

This is the ratio of the residual to its standard error.

(1)k

k

k
k

h
g

e
SRES

s 
 , (59)

where s is the square root of the mean square error, i.e., e es SS df and kh is the

leverage value for the case k (see section 8.2 below).

 Deleted residuals

The deleted residual for case k is defined as the residual for the kth case that results from

dropping the kth case from the parameter estimates.

(1)k k kDRESID e h  . (60)

 Studentized deleted residuals

   1
k

k

k kk

e
SDRESID

s h g



, (61)

where        

2
2 2 21with

1 1
k k

ek k k
e k

g e
s s s df s

df h

 
       

.

8.2. Influence statistics
These statistics can be calculated for each case to measure the influence of each case on the

estimates.

 Leverage values

The leverage value kh is defined as the kth diagonal element of the hat matrix H with

 1 2 T T 1 2 1 2 T 1 2
 H W X X WX X W W XGX W (62)

so T
k k k kh g x Gx , 1,2, ,k n  .

Implementation note:

We can compute kh in two ways and it is up to software engineer to decide which one is

easier and faster:

(a) Plug  T 
G X WX , which how to compute is described in Section 6.1, into

T
k k k kh g x Gx .

(b) Compute kh directly as follows:

  
1 1

1

1 1

if there is an intercept
1

if there is no intercept
1

p p
ki i kj jk k

ij n
ii jji j

t

k t

p p
ki kjk

ij

ii jji j

x X x Xg g
r

N S S
w

h

x xg
r

N S S

 

 



 

 

  
 
 


 


 











(63)

Computing hk is just related to the effects in the model, that is, we exclude the indices i

and j corresponding to the effects out of the model in the sum from 1 to p. but since we

have constructed the G matrix in computing type III SS, we could turn back to formula in

(a) to get hk.

 Cook’s distance

 

2

22 1
k k k

k c
k

e h g
COOK

s h p



. (64)

8.3. Influential outliers

We will identity a record to be an influential outlier based on the following two statistics:

(1) Cook’s distance is larger than
4

cN p
(Fox, 1997).

(2) The absolute of studentized delete residual is larger than 2 (or 2.5).

The definition of Cook’s distance is in Section 8.2 and and the definition of studentized delete

residual is in Section 8.1.

9. Model diagnostics

For all assumptions in linear regression, we will only test homoskedasticity formally. If the test is

rejected, the robust (or heteroskedasticity consistent or sandwich estimator) for covariance matrix of

coefficient estimates would be computed then relevant statistics/tests would be updated accordingly.

There are several assumptions entered the inferences for the estimators of the model. If all these

assumptions are held, we can be confident about the estimated coefficients and their statistics are

unbiased, efficient and consistent. The model diagnostics is to check whether these assumptions are

held, how serious the consequence if one or more assumptions were found being violated indeed and

what should be done in this situation. Currently, we focus on testing the assumptions of normality

and homoscedasticity.

9.1. Homoskedasticity

The homoskedasticity assumption is about variance of the error (2) is constant across records.

When the assumption is violated, the OLS coefficient estimates are still consistent, but not efficient.

So for valid inference, according to Huber (1967) or White (1980), a heteroskedastic consistent (HC)

or robust estimator of covariance matrix of the estimated coefficient should be used. To investigate

the homoskedasticity assumption properly and automatically, there are 3 steps:

(1) A test to determine if the homoskedasticity assumption is violated: a modified Breusch Pagan

(BP) test would be used.

However, keep in mind that Long and Ervin (2000) recommend that “a test for

heteroskedasticity should not be used to determine whether [an HC estimator] should be used.”

So the test is only used in automatic modeling process.

(2) If the test is rejected, compute a robust estimator to replace the model-based estimator: 4

variations would be provided.

(3) All statistics related to inference, such as t-statistics, p-values, confidence intervals in

coefficient estimates, etc., should be computed based on robust estimators.

Three subsections describe each step in details.

9.1.1 The modified Breusch Pagan test

The original test is proposed by Breusch and Pagan (1979) based on Normality assumption on the

error, then Koenker (1981) and Koenker and Bassett (1982) release Normality assumption so it is

called the modified BP test and the test statistic is defined as follows:

 
1 2

MBP 2
,

u Z Z Z Z u

u u

Nu
S N

Nu

   
 

 
(65)

where N is total sample size, 



n

i
ifN

1
, u be a n  1 vector of squared weighted residuals, i.e.,

 
T2 2 2

1 1 2 2, , ,u n ng e g e g e  ,
1

1 ,
n

i i
i

u f u
N 

  and Z is a set of regressors which are related to u. Note

that typical Z would include all predictors in the design matrix X and their squares and cross

products terms, but here we will assume Z = X, then MBPS will follow an asymptotic chi-square

distribution with cp degrees of freedom and the p-value can be computed accordingly.

Implementation note:

 In addition to Z = X, we also assume  
1 ()Z Z G X WXT    to simplify the computational

process such that

T
2

1 1
MBP

2 2

1

,
x G x

n n

i i i i i i
i i

n

i i
i

f u f u Nu

S N

f u Nu

 



   
     

    
 

 
 

 


(66)

where 0(, ...,)xi i ipx x is the ith row of X. Three summation terms should be straightforward

to compute in map/reduce environment.

9.1.2 Robust estimator of coefficient estimate covariance

When the p-value < a significance level (default = 0.05), reject the null hypothesis of

homoskedasticity and compute a robust estimator as follows:

1 2 1 2ˆ ˆ' ,GX W W XG  (67)

where ̂ is a diagonal matrix of variance estimates of weighted residuals, 1
ˆ (, ,),ndiag   

and there are 4 estimators differ in their choice of the i :

HC0: 2
i i i iu g e   (68)

HC1: i ic

N
u

N p
 


(69)

HC2:
1

1i i

i

u
h

 


(70)

HC3:
 

2
1

1
i i

i

u
h

 


(71)

Notes:

 The estimator HC0 is introduced by White (1980), is justified by asymptotic arguments.

 The estimator HC1 – HC3 are suggested by MacKinnon and White (1985) to improve the

performance in small samples and Long and Ervin (2000) conclude that HC3 provide the

best performance in sample samples based on Monte Carlo simulation.

 Under homoskedasticity assumption, 2
i e e

SS df s   (variance estimate of weighted

residuals is constant), nI2ˆ s and 2 Gˆ s .

9.1.3 Affected statistics

Many statistics computed previously would be affected by replacing the original or model-based

covariance matrix 2 Gˆ s with the robust estimator 1 2 1 2ˆ ˆ'G GX W W X  (assume the (i, j)

element in ̂ is ,i j) and they are listed according to areas:

 Statistics related to coefficient estimates (in Section 7.1):

ˆ 1, 1ˆ ,
j

j j
    0, ,j p  (note that ̂ includes intercept term if there is one); then t-

statistics, p-values and confidence intervals should be updated as well.

 Statistics related to tests of individual effects (in Section 7.2):

When the robust estimator is used, the F-statistics listed in ANOVA table cannot be

computed based on sum of squares anymore, included (corrected) model. For each effect j,

the F-statistic should be computed as

 
1T T Tˆ ˆˆβ L L L L βj j j j

j

j

F
r






(72)

and the F-statistics for corrected model (with intercept) and model (without intercept) can

be computed similarly except the L matrix is from GEF (general estimable function). If

there is no intercept, the L matrix is the whole GEF. If there is an intercept, the L matrix is

GEF without the first row which corresponds to the intercept. (Please see the GLMM

document for details).

 Statistics related to EMMEANS (in Section 7.5):

When standard errors and comparison statistics are computed related to EMMEANS, the

covariance matrix of coefficient estimates should be replaced by 1 2 1 2ˆ ˆ'G GX W W X 

(note that the notation used is)̂(V in Zheng (2009)).

9.2. Plots (in Model Viewer)

In this section, we will show what information should be saved for the StatXML file to create a

scatter plot of observed by predicted target values, a scatter plot of predicted target values by

residuals, histogram and PP plot of residuals in model viewer from binned data of the whole training

set.

9.2.1. Scatter plot of predicted by observed target values

Let ky and kŷ be the target observed and predicted value of the kth record, respectively,

nk ,,1 . Then the information needed for a binned scatter plot of predicted by observed target

values is created as follows:

Step 1. Using equal width method to compute 19 cut points 191 ,, cutcut  between the range

],[ba , where }min{ kya  and }max{ kyb  , i.e., 20/)(abiacuti  . Then

we have 20 intervals],(],(,],,(],(192019110  cutcutcutcutcutcut  .

Step 2. For each two-dimension interval 19,,0,],,(],(11   jicutcutcutcut jjii , using

map/reduce algorithm in Appendix A, we can get the number of cases that fall into this

interval incorporating the frequency weight:




 
n

k
jkjikikfij cutycutandcutycutIfn

1
11,)ˆ(

and the corresponding mean of)ˆ,(yy incorporating the frequency weight (note that

regression weight is not included):









 



n

k
kkkijk

n

k
kkkijk

fij

yyyIfyyyIf
n

jiMean
11,

ˆ)ˆ,(,)ˆ,(1),(

where (.)I is an indictor function defined as follows:



 




otherwise

cutycutandcutycutif
yyI

jkjiki

kkij ,0

;ˆ,1
)ˆ,(11

Step 3. Save the mean,),,(jiMean and the corresponding number of cases, ,, fijn

,19,,0, ji for the StatXML file. Note that if 0, fijn , there is no need to save it and

corresponding),(jiMean which is (0, 0) as well.

9.2.2. Scatter plot of residuals by predicted target values

The construction of the scatter plot of predicted target values by residuals is very similar to that in

Section 9.2.1, nonetheless it is described in details as follows:

Let kŷ and ke be the predicted value and the residual of the kth case, respectively, nk ,,1 .

Then the information needed for a binned scatter plot of predicted values by residuals is created as

follows:

Step 1. Using equal width method to compute 19 cut points)1(
19

)1(
1 ,, cutcut  between the range

],[ba for the x-axis, where }min{ kya  and },max{ kyb  , i.e.,

20/)()1(abiacuti  . Then we have 20 intervals :

],(],(,],,(],()1(
20

)1(
20

)1(
19

)1(
1

)1(
1

)1(
0  cutcutcutcutcutcut  .

Step 2. Similarly, compute 19 cut points)2(
19

)2(
1 ,, cutcut  between the range]8,8[ss for the

y-axis: ,20/168)1(siscuti  where s is the square root of the mean square error,

i.e. ee dfSSs / . Then we have another 20 intervals :

],(],(,],,(],()2(
20

)2(
20

)2(
19

)2(
1

)2(
1

)2(
0  cutcutcutcutcutcut  .

Step 3. For each two-dimension interval 19,,0,],,(],()2(
1

)2()1(
1

)1(  jicutcutcutcut jjii ,

using map/reduce algorithm in Appendix A, we can get the number of cases that fall into

this interval incorporating the frequency weight:





n

k
kkijkfij eyIfn

1
,),ˆ(

and the corresponding mean of),ˆ(ey incorporating the frequency weight (note that

regression weight is not included):









 



n

k
kkkijk

n

k
kkkijk

fij

eeyIfyeyIf
n

jiMean
11,

),ˆ(,ˆ),ˆ(1),(

where





 

 

otherwise

cutecutandcutycutif
eyI jkjiki

kkij ,0

;ˆ,1
),ˆ(

)2(
1

)2()1(
1

)1(

Step 4. Save the mean,),,(jiMean and the corresponding number of cases, ,, fijn

,19,,0, ji for scatter plot of predicted values by residuals. Note that if 0, fijn ,

there is no need to save it and corresponding),(jiMean which is (0, 0) as well.

9.2.3. Histogram and PP plot

The information needed for binned histogram and PP plot of residuals is created as follows:

Step 1. Find out 400 cut points, 4001 ,, cutcut  , between]8,8[ss , such that

,)400/16(8 siscuti  where s is the square root of the mean square error,

i.e., .e es SS df

Step 2. For each bin],(1 ii cutcut  , using map/reduce algorithm in Appendix A, we can get the

number of cases of ke that fall into this bin incorporating the frequency weight:

400,,1,)(
1

1, 


 icutecutIfn
n

k
ikikfi

and the corresponding mean incorporating the frequency weight(note that regression weight

is not included):

400,,1,)(1
1

1
,

 


 iecutecutIf
n

Mean
n

k
kikik

fi

i

where (.)I is an indictor function and scut 80  .

For those ke that are outside the range]8,8(ss , we also need to record each distinct value

of ke and the number of cases that equal to this distinct value, incorporating the frequency

weight.

Step 3. After step 2, suppose we have 1m distinct values,)()1(1mee  , that are less than or

equal to s8 , and 2m distinct values ,)()1(2 nmn ee   , that are greater than s8 .

And the numbers of cases that ke equal to these distinct values are fmff ccc ,,2,1 1
,,, 

and *
,

*
,1 ,,

2 fnfmn cc  .

Then we can get mean vector

],,,,,,,,[)()1(4001)()1(21 nmnm eeMeanMeaneeMean   ,

and quantile vector of residuals

],,,,,,,,[)()1(4001)()1(21 nmnm eecutcuteeQuan   .

Frequency in bins

],,,,,,,,,[*
,

*
,1,400,1,,2,1 21 fnfmnfffmff ccnncccFreInBin   ,

and cumulative percentage of residuals:

],,,[1 ,400,2,1 21 fmmff cccccc
N

CumPer   .

where i

k

i
fk FreInBincc 




1

, , and iFreInBin is the ith element of FreInBin.

Step 4. For histogram, save the Mean vector, FreInBinvectors, mean and standard deviation of

residuals. Here the mean and standard deviation of residual is 0 and s , respectively. Again

if the ith element of FreInBin is 0, there is no need to save it and the corresponding

element ofMean .

Step 5. For a PP plot, compute the cumulative probabilities vector of standard normal distribution

from Quan as follows:

],,,[Pr
2140021 mmpppobCum  

where)(ii Quanp  , and iQuan is the ith element of vector Quan .

Then save the vectors CumPer and obCumPr for the StatXML file as a PP plot is a

plot of CumPer by obCumPr . Again if the ith element of FreInBin is 0, there is no

need to save the corresponding element ofCumPer and obCumPr .

Implementation note:

 If 400n , then the data will not be binned. The histogram and PP plot of residual are

created as follows:

1. The residual ke , the corresponding number of case kf , mean and standard deviation of

residuals are used for histogram of residual directly.

2. For PP plot, the residual ke are needed to sort first. Suppose after sort, the residuals are

)()2()1(neee   , and the corresponding number of case are **
2

*
1 ,,, nfff  ,

then the vector of cumulative percentage of residuals is

],,,[1 ,,2,1 fnff cccccc
N

CumPer 

where 



k

i
ifk fcc

1

*
, .

And the cumulative probabilities vector of standard normal distribution is

],,,[Pr 21 npppobCum 

where)()(ii ep  .

References – Phase I
[1]. Belsley, D. A., Kuh, E. and Welsch, R. E. (1980), Regression Diagnostics, New York: John

Wiley & Sons, Inc.

[2]. Chiu, Y. M. (1995a), “The four types of sum of squares for univariate -Model,” SPSS Internal

Document.

[3]. Chiu, Y. M. (1995b), “Calculation of the four types of sums of squares,” SPSS Internal

Document.

[4]. Dempster, A. P. (1969), Elements of Continuous Multivariate Analysis, Reading, MA: Addison-

Wesley.

[5]. Fox, J. (1997), Applied Regression Analysis, Linear Models, and Related Methods, Thousand

Oaks, CA: SAGE Publications, Inc.

[6]. Han, S. (2010), “Interaction Detection for Two Factors,” SPSS Internal Document.

[7]. Han, S. and Zheng, P. (2010), “Linear Model Output List for NextGen,” SPSS Internal

Document.

[8]. Lam, M. L. (1995a), “Constructing the Design Matrix for the -Model,” SPSS Internal

Document.

[9]. Lam, M. L. (1995b), “Algorithm: the symmetric sweep operator,” SPSS Internal Document.

[10]. SAS Institute Inc. (2004), “Chapter 61 the REG Procedure,” SAS/STAR 9.1 User’s Guide, Cary,

NC, USA.

[11]. SPSS Inc. “REGRESSION Algorithm,” SPSS Internal Document.

[12]. Schatzoff, M., Tsao, R. and Fienberg, S. (1968), “Efficient computing of all possible

regressions,” Technometrics, 10,769–779.

[13]. Smirnov, N.V. (1948), “Table for estimating the goodness of fit of empirical distribution,”

Annals of the Mathematical Statistics, 19,279-281.

[14]. Velleman, P. F. and Welsch, R. E. (1981), “Efficient computing of regression diagnostics,”

American Statistician, 35, 234–242.

[15]. Woods, M. (2004), “Guideline for Scoring under Various Data and Model Conditions,” SPSS

Internal Document.

[16]. Xu, J. (2011), “Evaluation of Algorithms for Predictor Importance,” SPSS Internal Document.

[17]. Zheng, P. (2009), “Algorithm: EMMEANS and Custom Tests,” SPSS Internal Document.

[18]. Zheng, P. (2010), “Detecting Factor-Covariate interaction,” SPSS Internal Document.

[19]. Zhong, R. (2008), “Algorithm: Variable Importance,” SPSS Internal Document.

Appendix A: Map Reduce Algorithm for Some

Statistics

A.1. Notation

The following notation is used throughout the appendix unless otherwise stated:

n Number of distinct records in the whole dataset. It is an integer and 1n .

if Frequency count for record i.

ig Regression weight for record i.

iw Combined weight for record i, .i i iw f g 

N Effective sample size. it is a integer number, 



n

i

ifN
1

.If frequency count variable f is not

use, N=n.

W Total combined weight,
1

.
n

i
i

W w




X Weighted mean of a continuous variable X with iy is the value for record i.

Y Weighted mean of a continuous variable Y with iy is the value for record i.

xyC

  
1

1

if centered or a model with the intercept;

if non-centered or a model without the intercept.

n

i i i
i

xy n

i i i
i

w x X y Y

C

w x y






 


 







xyS Weighted covariance between X and Y, so ;
1

xy

xy

C
S

N



and xxS and

yyS would be

weighted variance of X and Y, respectively.

xyr Weighted correlation between X and Y, so .xy

xy

xx y

S
r

S S


A.2. Computing Correlation

For constructing the correlation matrix R which is a    1 1p p   matrix, where p is the number

of parameters, there are  1 2p p pairs of correlation to compute. Without loss generality,

suppose a pair of variables is X and Y. Then also suppose there are M mappers and more than one

reducer, then the correlation can be computed in map/reduce environment as follows:

(1) Provisional means algorithm in each mapper:

Denote
jN is the cumulative frequency weight up to record j,

1
.

j

j i
i

N f




jW is the cumulative combined weight up to record j,
1

.
j

j i
i

W w




jX is the estimate of X up to record j; jY is the estimate of Y up to record j.

,xy jC is the estimate of
xyC up to record j.

Start with 0 0 0 0 ,0 0xyN W X Y C     , then compute the following statistics recursively for

all records in the mapper:

1 ,j j jN N f 

1j j jW W w  ,

 1 1
j

j j j j

j

w
X X x X

W
    ,

 1 1
j

j j j j

j

w
Y Y y Y

W
    ,

  
2

, 1

1

1 1
,

,

if centered or a model with intercept;

if non-centered or a model without intercept.

j j

j

xy j j j j

jxy j

xy j j j j

w
C w x X y Y

WC

C w x y

 



  
         




(2) Combine statistics from K mappers to one reducer or from more than one reducers (without loss

generality, assume it is also K) to the “finalizer”:

Denote          , , , , andk k k k k

xyN W X Y C are the resulting statistics from the kth mapper or reducer.

Compute

 

1

,
K

k

k

N N




 

1

,
K

k

k

W W




   

1

1 ,
K

k k

k

X W X
W 

 

   

1

1 ,
K

k k

k

Y W Y
W 

 

       

 

1 1

1

if centered or a model with intercept;

if non-centered or a model without intercept.

K K
k k k k

xy
k k

xy K
k

xy
k

C W X Y WXY

C

C

 




 


 



 



If it is in the “finalizer” for constructing the R matrix, then also calculate the weighted

variances, covariance and correlation ,
1

xx
xx

C
S

N



,

1
yy

yy

C
S

N



,

1
xy

xy

C
S

N



and

.xy

xy

xx y

S
r

S S


A.3. Computing statistics for interaction detection for two
factors

Without loss generality, suppose a pair of factors is X1 with known R levels and X2 with known S

levels and continuous target is Y. Then the statistics needed in the R S matrix are the number of

records (
ijN), the target mean (

ijY), and the sum of squared terms of target (,yy ijC) for all

combinations of 1 , 1, , ,X i i R   and 2 , 1, , .X j j S   Please note that regression weights will

not be used here even it is specified and ,yy ijC would be computed based on “centered or a model

with intercept” condition. The computation of the matrix with
ijN ,

ijY and ,yy ijC in each cell is

similar to that in Section A.2 with frequency weight and Y value putting in the right cell. The results

from the finalizer are the table:

X2

X1

1 2  S

1 11 11 ,11, , yyN Y C 12 12 ,12, , yyN Y C  1 1 ,1, ,S S yy SN Y C

2 21 21 ,21, , yyN Y C 22 22 ,22, , yyN Y C  2 2 ,2, ,S S yy SN Y C

    

R 1 1 , 1, ,R R yy RN Y C 2 2 , 2, ,R R yy RN Y C  ,, ,RS RS yy RSN Y C

A.4. Computing statistics for interaction detection for a
covariate and a factor

Without loss generality, suppose a covariate is X1, a factor is X2 with known S levels and continuous

target is Y. The statistics needed in the 1 S matrix are the number of records (
jN), the means for X1

and Y (1, andj jX Y), the sum of squared terms for X1 and Y (
1 1 , ,andx x j yy jC C), and the sum of cross

product terms for X1 and Y (
1 ,x y jC) for 2 , 1, , .X j j S   Please note that regression weights will

not be used here even it is specified and
1 1 1, , ,, andx x j yy j x y jC C C would be computed based on “centered

or a model with intercept” condition. The computation of the matrix with

1 1 11 , , ,, , , , andj j j x x j yy j x y jN X Y C C C in each cell is similar to that in Section 1.2 with frequency weight

and X1 and Y values putting in the right cell. The results from the finalizer are the table:

X2 = 1  X2 = S

1 1 11 1,1 1 ,1 ,1 ,1, , , , ,x x yy x yN X Y C C C  1 1 11, , , ,, , , , andS S S x x S yy S x y SN X Y C C C

Appendix B: Sweep operations
Sweep operations on matrix R (Dempster, 1969) are used to compute the standardized least squares

estimation b and the associated regression statistics. The sweeping starts with the correlation matrix

R . Let R
~ be the new matrix produced by sweeping on the kth row and column of R . The elements

of R
~ are

kjki
r

rr
rr

kk

kjik
ijij  ,,~ ;

ki
r

r
r

kk

ik
ik  ,~ ;

kj
r

r
r

kk

kj
kj  ,~ ;

and
kk

kk
r

r
1~  .

For a partition matrix, 









DC

BA
R , where A is a ss  matrix. Sweep operation is performed on

the s pivot elements in A. resulting matrix 




















BCADCA

BAA
R 11

11~
.

If the above sweep operations are repeatedly applied to each row of 11R , where 11R contains

independent variables in the model at the current step, the result is






















12
1

112122
1

1121

12
1

11
1

11~
RRRRRR

RRR
R .

Sweep operation computes the determinant of a matrix.





p

i

iirRDET
1

~)(.

Appendix C: A method to search (1)
e sp p
C  models

1. Notations & Definitions:

a) Each model can be denoted by an array of numbers 1 2{ , , , }ep
t t t ,

0 if the corresponding effect is not in the model
the # of levels of the effect (for continuous variable 1)it

l l


 


, (1, ,)ei p  .

b) The search space of models 1 2S S S  . 1S represents the set of models have been detected,

and 2S represents not yet.

c) The length ijd of two distinct models, that is two distinct vectors 1{ , }ei ip
t t and 1{ , }ej jp

t t is

computed as follows
1

ep

ij ik jk

k

d t t


  .

Notes:

1. Since the number of effect is fixed at the number sp from forward stepwise, the number of

non-zero elements in vector { }it is sp .

2. The length ijd means the steps of sweep operation between two distinct models. The

minimum is 2. One continuous variable is swept out and another continuous variable is

swept in, but the others holds on.

2. Algorithm:

This is an algorithm used for searching all the models with fixed effect size, when ep >30 and sp

>60. Here variable RESTART in the algorithm is an integer. For numerical stability and avoiding

many round errors of sweeping operation, we refresh the current swept matrix from initial matrix

R, after doing sweeping operations up to an extent.

Step 1. 0
1 01 02 0{ , , , },ep

S t t t t   0
2 \S S t , 0t can be select by the last sp effects are in the

model. Set 0t as the current model and calculate the corresponding criterion value of

the current model. step = 0.

Step 2. If 2S  , stop, sort the criterion value of all the models searched and output the best

one, else go to Step 3.

Step 3. Computing all the length value between current model and the models in 2S . Select

* , 2min{argmin{ }}, 1, | |current jj
t d j S   .

Step 4. If step <RESTRAT, do sweep operation based on the current model to the model *j
t ,

step=step+1. Else calculate the model *j
t from the initial sweep matrix R, step=0.

Step 5. *1 1 j
S S t  and *2 2 \ j

S S t , Set *j
t as the current model; calculate the criterion

value of the current model. go to Step 2.

Notes:

1. For set S we collect all the models whose number of positive elements in vector 1{ } ep
i iFLAG 

is fixed at sp , from 0 to 2 1
ep  . We do not need to store S1, but only S2.

2. In Step 3, if there are models with , 1 , 2current j current jd d , we select *
1 2min{ , }j j j .

3. As we know that the minimum length is 2, so if get the length value is 2 for the first time,

we can stop and choose the model as *j
t .

4. After searching all the models, we sort all the criteria value and give out the best one. For

adjusted R square criterion, we output the model with max value. For other criterion, we

output the one with min value.

3. Example:

Here we give out an example with 5 effects, 3 are continuous, and the other 2 are categorical

variables with 2 levels and 3 levels.

The length of {1,0,0,2,3} and {1,0,1,0,3} is d = 1+2=3.

All the models we search is S = {(0,0,1,2,3);(0,1,0,2,3);(0,1,1,0,3);(0,1,1,2,0); (1,0,0,2,3);(1,0,1,0,3);

(1,0,1,2,0); (1,1,0,0,3); (1,1,0,2,0); (1,1,1,0,0)}. The table below shows the detailed steps of all

possible subset searching with fixed effect size.

step
Current

model
S1 S2

Distance

vector

0 (0,0,1,2,3) (0,0,1,2,3) (0,1,0,2,3);(0,1,1,0,3);(0,1,1,2,0);
(1,0,0,2,3);(1,0,1,0,3); (1,0,1,2,0);
(1,1,0,0,3); (1,1,0,2,0); (1,1,1,0,0)

{2,…}

1 (0,1,0,2,3) (0,0,1,2,3);(0,1,0,2,3) (0,1,1,0,3); (0,1,1,2,0); (1,0,0,2,3);
(1,0,1,0,3); (1,0,1,2,0); (1,1,0,0,3);
(1,1,0,2,0); (1,1,1,0,0)

{3,4,2,…}

2 (1,0,0,2,3) (0,0,1,2,3); (0,1,0,2,3);
(1,0,0,2,3)

(0,1,1,0,3); (0,1,1,2,0); (1,0,1,0,3);
(1,0,1,2,0); (1,1,0,0,3); (1,1,0,2,0);
(1,1,1,0,0)

{5,6,3,4,5,4,7}

3 (1,0,1,0,3); (0,0,1,2,3); (0,1,0,2,3);
(1,0,0,2,3); (1,0,1,0,3);

(0,1,1,0,3); (0,1,1,2,0); (1,0,1,2,0);
(1,1,0,0,3); (1,1,0,2,0); (1,1,1,0,0)

{2,…}

4 (0,1,1,0,3); (0,0,1,2,3); (0,1,0,2,3); (0,1,1,2,0); (1,0,1,2,0); (1,1,0,0,3); {5,7,2,…}

(1,0,0,2,3); (1,0,1,0,3);
(0,1,1,0,3);

(1,1,0,2,0); (1,1,1,0,0)

5 (1,1,0,0,3) (0,0,1,2,3); (0,1,0,2,3);
(1,0,0,2,3); (1,0,1,0,3);
(0,1,1,0,3); (1,1,0,0,3)

(0,1,1,2,0); (1,0,1,2,0); (1,1,0,2,0);
(1,1,1,0,0)

{7,7,5,4}

6 (1,1,1,0,0) (0,0,1,2,3); (0,1,0,2,3);
(1,0,0,2,3); (1,0,1,0,3);
(0,1,1,0,3); (1,1,0,0,3);
(1,1,1,0,0)

(0,1,1,2,0); (1,0,1,2,0); (1,1,0,2,0); {3,3,3}

7 (0,1,1,2,0) (0,0,1,2,3); (0,1,0,2,3);
(1,0,0,2,3); (1,0,1,0,3);
(0,1,1,0,3); (1,1,0,0,3);
(1,1,1,0,0); (0,1,1,2,0)

(1,0,1,2,0); (1,1,0,2,0); {2,…}

8 (1,0,1,2,0) (0,0,1,2,3); (0,1,0,2,3);
(1,0,0,2,3); (1,0,1,0,3);
(0,1,1,0,3); (1,1,0,0,3);
(1,1,1,0,0); (0,1,1,2,0);
(1,0,1,2,0);

(1,1,0,2,0);

9 (1,1,0,2,0) S none

10.Linear AS (Phase II)
For Linear AS (Linear Engine) phase II, only effect size measures and the corresponding confidence

intervals (CIs) would be included. The document describes how to compute them in details. The

effect size measures and confidence intervals are complementary to significance tests because,

unlike significance tests, they would not be affected by the sample size.

The document is organized as follows: Section 11 gives notations. Then Section 12 gives definitions

of effect sizes for model effects and coefficients and computational details of their confidence

intervals. To construct a confidence interval, the bisection method is used to find the solution of

probability equation for the noncentrality parameter and it is described in Section 13.

11.Notations
The following notation is used throughout the document unless otherwise stated:

tSS Weighted total sum of squares

eSS Weighted residual sum of squares

rSS Weighted regression sum of squares

jS Type III sum of square for the jth effect, epj ,,1 , where ep is the
number of effects excluding intercept

tdf Degrees of freedom of tSS

edf Degrees of freedom of eSS

rdf Degrees of freedom of rSS

jr Degrees of freedom of jS

F F statistic for corrected model ,
ee

rr

dfSS

dfSS
F 

jF F statistics for the jth effect,
ee

jj

j
dfSS

rS
F 

j̂ The estimation of the jth parameter j

j̂ The standard error of j̂

jt t statistic for the jth parameter,
j

j

jt




ˆ

ˆ


),,(21 dfdfF

A random variable follows the non-central F distribution with degrees of
freedom 1df and 2df , and a noncentrality parameter . If ,0 then it is
a random variable following the central F distribution with degree of freedom

1df and 2df .



Significance level. Please note that we only assign a confidence interval level
related to model effects and coefficient estimates in FDD (F0401 but not
F0405 in Linear Engine FDD), so the significance level here should be related
to it. For example, the default confidence interval = 95, then .05.0

12.Effect Size
For model effects, the effect size measures include partial eta squared and eta squared. Their

definitions and the confidence intervals are described in Section 12.1. Then for coefficient estimates,

the effect size measure is the partial eta squared. The definition and computation of confidence

interval would be given in Section 12.2.

12.1. Effect sizes and confidence intervals for effects

The partial eta squared for (corrected) model and the jth effect are defined as

er

r
rp

SSSS

SS


2

, and ,2
,

ej

j

ep
SSS

S
j 
 respectively.

Note if there is an intercept, then SSr is “SS for Corrected Model” and if there is no intercept, then

SSr is “SS for Model”. So we use (corrected) model to represent both situations.

To construct confidence intervals for those effects sizes, we need to connect the effect size with the

noncentrality parameter of test distribution which is F distribution for tests of model effects. Based

on the definition in GLM procedure, the noncentrality parameters for (corrected) model and the

defined as jth effect are defined as

e

re
r

SS

SSdf 
 and ,

e

je

e
SS

Sdf
j


 respectively.

Thus the relationships between F statistics and noncententrality parameters for (corrected) model and

the jth effect are

r

r

ee

rr

dfdfSS

dfSS
F


 and

j

e

ee

jj

j
rdfSS

rS
F

j


 respectively.

Then the partial eta squared for (corrected) model and the jth effect can be written based on the

noncentrality parameter as

er

r
rp

df




 2

, and ,2
,

ee

e

ep
df

j

j

j 




 respectively.

If we want the confidence intervals for effect sizes to be equivalent to the F tests of model effects,

which employs a one-sided and upper tailed probability with significance level of  , we should

employ a confidence coefficient of  21 . Thus  %21100  confidence interval of partial eta

squared for both (corrected) model and the jth effect is

,, 








 eu

u

el

l

dfdf 







where l and u are the lower and upper noncentrality parameters corresponding to the F statistics,

respectively. l for (corrected) model and the jth effect could be obtained by solving the following

equations

0)1()),,(Pr(  FdfdfF ler and ,0)1()),,(Pr(  jlej FdfrF

respectively. u for both (corrected) model and the jth effect could be obtained solving the following

equations

0)),,(Pr(  FdfdfF uer and ,0)),,(Pr(  juej FdfrF

respectively. Please see Section 4 for details on how to obtain l and .u

The eta squared for (corrected) model and the jth effect are defined as

t

r

SS

SS
2 and ,2

t

j

e
SS

S
j
 respectively.

An exact confidence interval for eta squared is not available, but if we write the formula for 2 as

 
,2

rtr

r

t

r

SSSSSS

SS

SS

SS




then a conservative confidence interval can be constructed as for 2
,rp by treating rt SSSS  as eSS

and rt dfdf  as edf . Thus  %21100  confidence of eta squared for (corrected) model is

defined as

,, 








 rtu

u

rtl

l

dfdfdfdf 







where l and u can be computed by solving the below equation:

0)1(
)/()(

/),,(Pr 









 

rtrt

rr
lrtr

dfdfSSSS

dfSS
dfdfdfF

and

0
)/()(

/),,(Pr 









 

rtrt

rr
urtr

dfdfSSSS

dfSS
dfdfdfF

Similarly,  %21100  confidence of eta squared for the jth effect is defined as

,,














 jtu

u

jtl

l

rdfrdf 







where l and u can be computed by solving the below equation:

0)1(
)/()(

/
),,(Pr 
















 

jtjt

jj

ljtj
rdfSSS

rS
rdfrF

and

,0
)/()(

/
),,(Pr 
















 

jtjt

jj

ujtj
rdfSSS

rS
rdfrF respectively.

12.2. Effect sizes and confidence intervals for coefficients

The partial eta squared for the jth coefficient is defined as



















Otherwise

0ˆand0ˆif1

0ˆand0if)ˆˆ/(ˆ

2

222

2
,

SYSMIS

dfdf

j

jeejj

p j

j

j




 





Then the noncentrality parameter, ,
j and the test statistic related to it are defined as

2

2

ˆ

ˆ

j

j

j







  and ,2

jjj tF  respectively.

If 0edf and 0ˆ j , then  %21100  confidence interval of partial eta squared for j̂ is

,, 








 eu

u

el

l

dfdf 







where l and u can be computed by solving the below equations:

  0)1(),,1(Pr 2   jle tdfF

and

  ,0),,1(Pr 2   jue tdfF respectively.

If partial eta squared is 1 or system missing, then confidence interval will not be computed.

13.Bisection method for noncentality parameter

We would use the bisection method to solve the following equation for noncentrality parameter ()

of noncentral F distribution

,0)),,(Pr(21  probFvaluedfdfF 

where ,1df ,2df Fvalue and prob are known value.

Denote ,)),,(Pr()(21 probFvaluedfdfFf   then the bisection method is described as follows:

Step 1. If ,0)0(f then stop and output .0

Step 2. Let 1dfFvaluex  . If ,0)(xf then stop and output x ; otherwise, go to step 3

to find out two values, 1x and 2x ,such that 0)()(21  xfxf .

Step 3. If ,0)(xf then xx J  1
1 2 and xx J  22 , where J is the minimum positive

integer such that 0)()(21  xfxf .

If 0)(xf , then xx
J


2
1

1 and xx
J


12 2
1 , where J is the minimum positive

integer such that .0)()(21  xfxf

Step 4. If 0)(1 xf or 0)(2 xf , then stop and output 1x if 0)(1 xf or 2x if

0)(2 xf ; otherwise, let
2

21 xx
x


 and go to step 5.

Step 5. If )(xf and  12 xx , where  is a tolerance level and the default is

tentatively set to ,10 6 then stop and output x . Otherwise, go to step 6.

Step 6. If 0)(xf , let xx 1 , else let xx 2 . Let
2

21 xx
x


 , and go back to step 5.

References – Phase II
[20]. Maxwell, S. E. (2000), “Sample Size and Multiple Regression Analysis,” Psychological

Methods, 5, 434–458.

[21]. Smithson, M. (2003), Confidence Intervals, Thousand Oaks, CA: Sage Publications.

[22]. Steiger, J. H. and Fouladi, R. T. (1997), “Noncentrality Interval Estimation and the Evaluation

of Statistical Models,” in L. Harlow, S. Mulaik, and J. H. Steiger, eds., What If There Were

No Significance Tests?, 222–257, Hillsdale, NJ: Erlbaum.

Linear SVM Algorithm

1. Introduction

The support vector machine (SVM) is a supervised learning method that generates input-output mapping
functions from a set of labeled training data. The mapping function can be either a classification function or a
regression function. For classification, non-linear kernel functions are often used to transform input data to a
high-dimensional feature space in which the input data become more separable compared to the original input
space. Maximum-margin hyperplanes are then created. The produced model depends on only a subset of the
training data near the class boundaries. Similarly, the model produced by support vector regression ignores any
training data that is sufficiently close to the model prediction (support vectors can appear only on the error tube
boundary or outside the tube). SVMs are also said to belong to “kernel methods”.

SVMs improve on classic classification models in the following ways: (1) Avoids underfitting. When the
sample size is small, the model may be too simple. Simple models don’t generalize well—that is, they aren’t
very valid on test data. (2) Avoids overfitting. When the sample size is large, the model may be too complex.
Complex models also do not generalize well. (3) Work well when the number of predictors is small. (4) Work
well when the number of predictors is large. Outperforms and is more valid than C5.0, C&RT, and Neural Net.

The disadvantage of the traditional SVMs is their high time complexity w.r.t the number of records, that is, the
time complexity is ܱ(݊ଶ), although it can be solved by a fast algorithm, sequential minimal optimization
(SMO). In addition, the SMO algorithm is hard to be parallelized. To overcome it, linear SVM (LSVM) is often
used.

LSVM, its feature space being the same as the input space of the problem, is the newest extremely fast machine
learning algorithm. LSVM can be linearly scalable, which means that it builds a SVM model in a CPU time
which scales linearly with the number of the records. Thus, LSVM is very suited to the large scale problems in
terms of the volume of records and the number of variables (parameters). In addition, LSVM can easily handle
the sparse data where the average number of non-zero elements in one record is small.

LSVM is different from the existing SVM in IBM SPSS Modeler in the following aspects: (1) the former is
linear while the latter can be linear or nonlinear; (2) they use different optimization methods, wherethe former
focuses on the primal optimization while the latter goes directly the dual formation; (3) the former can handle
large number of records, while it is hard for the latter.

This document describes LSVM. The functions of LSVM will contain two main data mining tasks: (1)
classification, including binary and multi-class classification; (2) regression. In addition, we provide a few post-
estimation statistics: for the task of classification, we will provide an approximation probability for each
prediction, and for regression, we will provide the standard deviation of the predictive value.

All optimization included in the LSVM will be solved by ADMM algorithm (Zhong, 2014), which will be
implemented in a distributed computing environment, specifically, the map-reduce environment.

Section 2 describes the classification and regression models of LSVM. Section 3 presents the parameter
estimation. Section 4 gives the post-estimation statistics.

2. Models

݊ The total number of records

݌ The number of parameters

௜ܠ The -݅th record, ∋௜ܠ ℝ௣

߱௜ The case weight for the -݅th record

௜ݕ
The target, ∋௜ݕ {+1,−1} for the binary classification, ∋௜ݕ {1, 2,⋯ ,݉ } for the multi-class
classification, and ∋௜ݕ ℝ for the regression.

ܟ
The parameter vector for classification and regression; ܟ ∈ ℝ௣for the binary classification
and regression; ܟ = ܟ] ଵ,்,⋯ ܟ, ௠ ,்]் ∈ ℝ௣௠ for the multi-class classification.

ܟ ଵ,⋯ ܟ, ௠ The parameter vectors for the multi-class classification, and ܟ ௝ ∈ ℝ௣,݆∈ [1,݉]

ଵ‖ܠ‖ The ଵܮ norm of the vector ,࢞ which is defined as ଵ‖࢞‖ = |ଵݔ| + ⋯+ |௣ݔ|

ଶ‖ܠ‖ The ଶܮ norm of the vector ,࢞ which is defined as ଶ‖࢞‖ = ൫ݔଵ
ଶ + ⋯+ ௣ݔ

ଶ൯
ଵ/ଶ

ܰ The number of data blocks (parts)

௜ܤ ⋯,ଵܤ} ேܤ, } be a partition of all data indices {1,⋯ , }݊.

௖݌
The threshold denoting whether there is a large number of parameters (large p). If <݌ ,௖݌ it
is called large p situation, otherwise, it is called small to medium p situation.

࢙ The gradient vector (function)

۶ The Hessian matrix (function)

ߣ The parameter denoting the penalty

߳ The parameter denoting the sensitivity of the loss for regression

Two main tasks, classification and regression, are included. Their mathematical representations are given in
Section 2.1 and 2.2.

2.1 Classification

The classification is used to classify cases into a group of defined categories of a target (response) variable of
interest using a set of predictors. If the target has two categories, it is called the binary classification problem; if
the target has more than two categories, it is called the multi-class classification problem.

2.1.1 Binary classification

For the binary classification, let ௜ୀଵ{௜ݕ,௜ܠ}
௡ denote a dataset, where ∋௜ݕ {+1,−1}, then LSVM has a general

form

minܟ
ଵ

௤
௤‖ܟ‖

௤
+ ∑ܥ ߱௜[max(0, 1 − ܟ௜ݕ

௜)]ଶ௡ܠ்
௜ୀଵ (2.1)

where ݍ ∈ {1,2} and ܥ denotes a penalty parameter.

When =ݍ 1, it is called L1-regularized L2-loss LSVM, while when =ݍ 2, it is called L2-regularized L2-loss
LSVM. You could find more details related to Eq. (2.1) in Fan et al. (2008).

Eq. (1) can often be represented as another form

minܟ ∑ ߱௜[max(0, 1 − ܟ௜ݕ
௜)]ଶ௡ܠ்

௜ୀଵ + ௤‖ܟ‖ߣ
௤ (2.2)

Whereߣ�has a relationship with ,ܥ =ߣ
ଵ

௤×஼
.

The decision function is

(ܠ)݀ = sgn(ܟ ୘ܠ) (2.3)

where sgn denotes the sign function, denoting the sign of a real number.

Notes:

 If the binary target is not a form of {+1,−1}, it should be mapped into {+1,−1}.

2.1.2 Multi-class classification

For the multi-class classification, LSVM has a general form of

min{ܟ భ,⋯,ܟ ೘ } ∑ ߱௜∑ [max(0, 2 − ܟ) ௬೔− ܟ ௝)்ܠ௜)]ଶ௝ஷ௬೔
௡
௜ୀଵ + ∑ߣ ฮܟ ௝ฮ

௤

௤௠
௝ୀଵ (2.4)

The decision function is

(ܠ)݀ = arg max௝(ܟ ௝)்ܠ (2.5)

Notes:

 If the target is not a form of {1, 2,⋯ ,݉ }, it should be mapped into {1, 2,⋯ ,݉ }.
 For ݉ = 2, let ܟ ାଵ = ܟ− ିଵ = ܟ and ′ߣ = ఒ

ଶ
, the optimization problem becomes

4෍ ߱௜[max(0, 1 − ܟ ௜)]ଶܠ்
௡

௜ୀଵ
+ ௤‖ܟ‖ߣ2

௤

∝ ෍ ߱௜[max(0, 1 − ܟ௜ݕ
௜)]ଶܠ்

௡

௜ୀଵ
+ ௤‖ܟ‖′ߣ

௤

This means that the binary classification problem is a special case of the multi-class classification
problem.

 Eq. (2.4) originally comes from Eq. (2) of Weston and Watkins (1999). The main difference is that we
use L2-loss while they use L1-loss.

2.2 Regression

Support vector regression solves the following primal problems

minܟ ∑ ߱௜[max(0, −௜ݕ| ܟ |௜ܠ் −)߳]ଶ௡
௜ୀଵ + ௤‖ܟ‖ߣ

௤ (2.6)

where ߳ is a parameter to specify the sensitiveness of the loss. By default, ߳= 0.1.

The prediction function is

(ܠ)݀ = ܟ ୘ܠ (2.7)

3. Parameter estimation

The problems (Eqs.2.2, 2.4 and 2.6) can be written as a general form

minܟ ܟ݂)) + ܟ)݃) (3.1)

where ܟ݂)) denotes the fitting function corresponding to the first term of Eqs.(2.2), (2.4) and (2.6), while
ܟ)݃) denotes the penalty function corresponding to the second term ൫ܟ‖ߣ‖௤

௤
൯.

We use ADMM algorithm (Zhong, 2014) to solve the optimization problems. ADMM denotes Alternating
Direction Method of Multipliers algorithms, which is to solve large scale problems in terms of the volume of
records and the number of variables. In addition, it is implemented in distributed computing environment,
more specifically, the map-reduce environment.

If ܟ݂)) can be separable w.r.t records, the form of ADMM for solving Eq. 3.1 can be written as,

min࢞೔,ࢠ ∑ ௜݂(ܟ௜)
ே
௜ୀଵ + (ࢠ)݃

.ݐ.ݏ −௜ܟ =ࢠ ૙,݅= 1,⋯ ,ܰ .
(3.2)

The steps of ADMM can be described as follows:

௜ܟ
௞ାଵ = arg min

೔ܟ
ቀ݂ ௜(ܟ௜) + −௜ܟฮ(2/ߩ) ௞ܢ + ௜ܝ

௞ฮ
ଶ

ଶ
ቁ

௞ାଵܢ = arg min
ܢ

(ܢ)݃) + −ܢ‖(2/ߩܰ) −ഥ௞ାଵܟ ഥ௞‖ଶܝ
ଶ)

௜ܝ
௞ାଵ = ௜ܝ

௞ + ௜ܟ
௞ାଵ− ௞ାଵܢ

(3.3)

where ഥ௞ାଵܟ =
ଵ

ே
∑ ௜ܟ

௞ାଵே
௜ୀଵ is the average of ଵܟ

௞ାଵ, ⋯ ேܟ,
௞ାଵ; Similarly, ഥ௞ܝ =

ଵ

ே
∑ ௜ܝ

௞ே
௜ୀଵ .

In order to call ADMM algorithm, LSVM should prepare four pieces of information: optimization function,
gradient function and Hessian function of ܟ݂)), and initial values. Please note that for the large p situation
(where the number of parameters ݌ is greater than a threshold value of ,(௖݌ it does not need to provide the
information of Hessian function.

3.1 Classification

Although the binary classification is a special case of the multi-class classification problem, we still estimate
parameters for it rather than estimate them by solving the multi-class classification problem. The reasons are:
(1) the number of parameters of the multi-class classification problem is twice of that of the binary
classification problem, thus, it may lead to a slow convergence of the optimization method, especially for
large p situation; (2) the initial values for the multi-class classification problem is not as good as those for the
binary classification, because the multi-class classification is more complicated than the binary one and it is
hard to obtain good initial values.

3.1.1 Binary classification

For the binary classification, ௜݂(ܟ௜) is defined as

௜݂(ܟ௜) = ∑ ߱ℓ[max(0, 1 − ௜ܟℓݕ
ℓ)]ଶℓ∈஻೔ܠ்

(3.4)

The gradient for ௜݂(ܟ௜) is

=௜ܛ ∑ 2߱ℓ(−ݕℓ + ௜ܟ
ℓℓ∈஻೔ܠ(ℓܠ்

౩౬ (3.5)

The Hessian matrix for ௜݂(ܟ௜) is

۶௜= ∑ 2߱ℓܠℓܠℓ
்

ℓ∈஻೔
౩౬ (3.6)

where ௜ୱ୴ܤ = {ℓ ∈ ௜|1ܤ − ௜ܟℓݕ
ℓܠ் > 0} denotes the index set of support vectors.

For the small to medium p situations, the initial values can be the least square solution using all data

ܟ ଴ = +܆ષ்܆) ܡ்܆ି(۷ߣ (3.7)

where ܆ = [⋯ ,௜ܠ, ⋯]் denotes the data matrix, and ષ = diag(߱ଵ, ⋯ ,߱௡) denotes the weight matrix.

For the large p situation (where ≤݌ ,(௖݌ the initial values are computed as follows

ܟ ଴ =
−തାଵܠ)ߟ (തିଵܠ

−തାଵܠ‖ തିܠ ଵ‖ଶ
ଶ൘ (3.8)

where <ߟ 2, and we tentatively choose =ߟ 2.5; തାଵܠ and തିଵܠ denote the weighted mean predictor vectors for
class +1 and class −1, respectively.

Notes:

 To call ADMM, the settings of parameters are: =ݍ 2 ,(ଶ-penaltyܮ) =ߣ 0.1; =ߩ 1; use function value
convergence and parameter convergence; use default settings for other parameters of ADMM.

 If want to select variables, we will set =ݍ 1 .(ଵ-penaltyܮ) In addition, if there are factor variables, we
would use group penalty (or regularization) rather .ଵ-penaltyܮ This means that all parameters related to a
factor variable will bind together, and they will be selected or removed together.

 The threshold ௖݌ = 5000 by default.

3.1.2 Multi-class classification

For the multi-class classification, ௜݂(ܟ௜) is defined as

௜݂(ܟ௜) = ∑ ߱ℓ ∑ ቂmaxቀ0, 2 − ൫ܟ௜
௬ℓ − ௜ܟ

௝
൯
்
ℓቁቃܠ

ଶ

௝ஷ௬೗ℓ∈஻೔
(3.9)

The gradient for ௜݂(ܟ௜) is

=௜ܛ
డ௙೔(ܟ೔)

డܟ೔
= ቎

⋮
డ௙೔(ܟ೔)

డܟ೔
ೌ

⋮

቏,ܽ ∈ [1,݉] (3.10)

where

డ௙೔(ܟ೔)

డܟ೔
ೌ =

⎩
⎪
⎨

⎪
⎧∑ −2߱ℓ ቂ2 − ൫ܟ௜

௬ℓ − ௜ܟ
௝
൯
்
ℓℓ,௝ܠℓቃܠ

(ℓ,௝)∈஻೔
౩౬

ܽ= ℓݕ

∑ 2߱ℓ ቂ2 − ൫ܟ௜
௬ℓ − ௜ܟ

௝
൯
்
ℓℓܠℓቃܠ

(ℓ,௝)∈஻೔
౩౬

ܽ= ݆

� (3.11)

and ௜ୱ୴ܤ = ቄ�(ℓ,)݆|2 − ൫ܟ௜
௬ℓ − ௜ܟ

௝
൯
்
ℓܠ > 0,݈∈ ∋݆,௜ܤ [1,݉ ℓݕ,[≠ ቅ݆, and thoseℓ’s belonging to ௜ୱ୴ܤ which

denotes the index set of support vectors.

The Hessian matrix for ௜݂(ܟ௜) is

۶௜= ቎

⋯ ⋮ ⋯

⋯
డ௙೔(ܟ೔)

డܟ೔
ೌడܟ೔

್,೅ ⋯

⋯ ⋮ ⋯

቏ (3.12)

where

డ௙೔(ܟ೔)

డܟ೔
ೌడܟ೔

್,೅ =

⎩
⎪⎪
⎨

⎪⎪
⎧
∑ 2߱ℓܠℓܠℓ

்
ℓ,௝

(ℓ,௝)∈஻೔
౩౬

ܽ= ܾ= ℓݕ

∑ −2߱ℓܠℓܠℓ
்

ℓ
(ℓ,௝)∈஻೔

౩౬
ܽ= =ܾ,ℓݕ �݆or�ܽ = ,݆ܾ= ℓݕ

∑ 2߱ℓܠℓܠℓ
்

ℓ
(ℓ,௝)∈஻೔

౩౬

૙

ܽ= ܾ= ݆
otherwise

� (3.13)

Note that for a record with target value ,௟ݕ we need to update the ℓݕ 's portion of the gradient and the (ℓݕ,ℓݕ)
block of the Hessian for all indices ,݆ where (ℓ,)݆ belongs to ;௜ୱ୴ܤ and for each such a pair we will also update
the '݆s portion of the gradient and (,݆)݆, (,(ℓݕ݆, and ,ℓݕ))݆ blocks of the Hessian.

The initial values can be calculated, no matter it’s large p situation or not, as

ܟ ଴ = ൥
⋮

ܟ ௔,଴

⋮
൩, whereܟ�� ௔,଴ =

ఎܠതೌ

തೌܠ‖ ‖మ
మ (3.14)

3.2 Regression

For the regression, ௜݂(ܟ௜) is defined as

௜݂(ܟ௜) = ∑ ߱௟[max(0, ℓݕ| − ௜ܟ
|ℓܠ் −)߳]ଶℓ∈஻೔

(3.15)

The gradient for ௜ܟ is

=௜ܛ ∑ 2߱ℓ(−ݕℓ + ௜ܟ
ℓܠ் + ℓℓ∈஻೔ܠ߳(

౩౬భ + ∑ 2߱ℓ(−ݕℓ + ௜ܟ
ℓܠ் − ℓℓ∈஻೔ܠ߳(

౩౬మ (3.16)

The Hessian matrix for ௜ܟ is

۶௜= ∑ 2߱ℓܠℓܠℓ
்

ℓ∈஻೔
౩౬భ⋃஻೔

౩౬మ (3.17)

where ௜ୱ୴ଵܤ = {ℓ ∈ ℓݕ|௜ܤ − ௜ܟ
ℓܠ் − ߳> 0} and ௜ܤ

ୱ୴ଶ = {ℓ ∈ |௜ܤ − ℓݕ + ௜ܟ
ℓܠ் − ߳> 0} denote the sets of

support vectors.

For the small to medium p situations, the initial values can be the least square solution using all data

ܟ ଴ = +܆ષ்܆) ܡષ்܆ି(۷ߣ (3.18)

For the large p situation, the initial values are computed as follows: generate a random vector ෥ܟ with
Gaussian distribution ܰ(૙௣×ଵ,۷௣×௣), then the initial values are

ܟ ଴ = ൮
ܡષ்܆෥்ܟ

෥‖ଶܟ‖ߣ
ଶ + ෥‖ષܟ܆‖

ଶ൘ ൲ ෥ܟ (3.19)

where ෥‖ષଶܟ܆‖ = .෥ܟ܆ષ்܆෥்ܟ

Notes:

 The settings of parameters are the same to those given in Section 3.1.

4. Post-estimation statistics
For the task of classification, we provide the probability output; while for the task of regression, we provide
the standard deviation.

4.1 Prediction

For the task of binary classification, the predicted category for a given ℓܠ (not limit to the training records) is

ොℓݕ = sgn(ܟෝ்ܠℓ) (4.1)

where sgn()ܽ = ൝
+1 ܽ> 0
0 ܽ= 0
−1 ܽ< 0

�.

Note that if ℓܠෝ்ܟ = 0, then it is assigned to the majority class. If two classes have the same number of
records, it is assigned the positive class.

For the multi-class classification, the predicted category for given ℓܠ is given by

ොℓݕ = arg max௝(ܟෝ௝)்ܠℓ (4.2)

Please note that if there are ties, it is assigned to the class with the maximal number of records. If there are
still ties, it is assigned to the class with the smallest superscript.

For the task of regression, the predicted value for given ℓܠ is

ොℓݕ = ℓܠෝ்ܟ (4.3)

4.2 Performance measure

For the classification task, we will provide the percentage of total correct predictions of the model as well as
the classification table, while for the regression task, we will provide the average square error of the model.

The process of calculating the percentage of total correct predictions of the model and the classification table
is

(1) Suppose that (ܿ ,݆ ′݆) is the sum of the frequency for the observations whose actual target category is ݆(as
row) and predicted target category is ′݆ (as column), ,݆݆ᇱ= 1,⋯ ,݉ (note that ݉ = 2 for binary
classification), then

(ܿ ,݆݆ᇱ) = ෍ ߱ℓݕ)ܫℓ = ,݆ (ℓ࢞ܿ) = ′݆)

௡

ℓୀଵ

where (∙)ܫ is indicator function and (ℓ࢞ܿ) denotes the predicted category.

(2) Suppose that ௝,௝ᇲis݌ the (,݆݆ᇱ)th element of the classification table, which is row percentage, then

௝,௝ᇲ݌ = ቆ
(ܿ ,݆݆ᇱ)

∑ (ܿ ,݆)݇௠
௞ୀଵ

ቇ× 100%

(3) The percentage of total correct predictions of the model is

=௧௢௧௔௟݌ ቆ
∑ ௖(௝,௝)೘
ೕసభ

∑ ∑ ௖(௝,௝ᇱ)೘
ೕᇲసభ

೘
ೕసభ

ቇ× 100% (4.4)

The average square error (ASE) for the regression can be calculated as

ܣ ܧܵ =
ଵ

∑ ఠ ℓ
೙
ℓసభ

∑ ߱ℓ(ݕℓ − ොℓ)ଶ௡ݕ
ℓୀଵ (4.5)

4.3 Probability
For the binary classification problem, we provide a probability model to approximate the posterior class
probability. For a given ℓܠ and ,ොℓݕ we have

Ƹℓ݌ = 1
൫1 + ݁ି ௬ොℓܟෝ

೅ܠℓ൯൘ (4.6)

Notes

 We usually give the probability of being positive class, that is,

Ƹℓ݌ = 1
൫1 + ݁ି ℓ൯൘ܠෝ೅ܟ

 The probability model is not very accurate, thus it may not make sense to compute gain, lift, etc.
based on the sorting probabilities.

 We do not use Platt (2000) method used by SVM node in SPSS Modeler (Tian and Zhong, 2007).
The reason is that Platt method involves two additional parameters, which needs an iterative
optimization method (Newton-Raphson). This means that multiple data passes are needed to obtain
the estimation of parameters.

For the multi-class classification, the probability for ,ݕ =ݕ 1, … ,݉ , can be calculated as

Pr(ܠ|ݕℓ) = 1

ቀ1 + ∑ ൫݁ܟ ೕି ܟ ೤൯
೅
ℓ௠ܠ

௝ୀଵ,௝ஷ௬ ቁ
൘ (4.7)

Please note that we will provide a probability for each class, that is to say, we have ݉ probabilities for each
record.

4.4 Standard deviation

Lin and Wen (2004) pointed out that residuals Ƹℓݎ = ℓݕ − ℓܠෝ்ܟ can be fit for a Laplace distribution with zero
mean, which is given as follow

Prob(ݎ) =
ଵ

ଶఙ
݁ି

|ೝ|

഑ (4.8)

Here ߪ > 0 is a scale parameter.

Assume that Ƹ௜areݎ independent, the scale parameter can be estimated by ML method, that is, the ොisߪ

=ොߪ
ଵ

∑ ఠ ℓ
೙
ℓసభ

∑ ߱ℓ|ݎƸℓ|௡
௟ୀଵ (4.9)

But the ML method will be affected by some “very extreme” Ƹℓݎ and causes inaccurate estimation of .ߪ One
improved method is to estimate the scale parameter by discarding Ƹℓݎ which exceed .ොߪ±5 The other method is
to use median of |Ƹℓݎ| as an estimation of ,ߪ especially when there is a large number of examples. The first
method is accurate but needs two data passes, while the second method needs only one data pass but it is
approximate. We let the software engineers to decide which method is used.

Thus, for any record ,ℓܠ the confidence interval for the prediction of ℓݕ with 100(1-a)% confidence is given
by

ොℓݕ] ± [ଵିఈ/ଶߟ (4.10)

where ௣ߟ is the (100p)th percentile of the Laplace distribution with zero mean and standard deviation .ොߪ

References

[1] Zhong, W. (2014), Algorithm: ADMM, IBM SPSS Internal Document.

[2] Fan et al. (2008), “LIBLINEAR: A library for large linear classification”, Journal of Machine Learning
Research, 9, 1871-1874.

[3] Platt, (2000), “Probabilistic outputs for support vector machines and comparison to regularized
likelihood methods”: Advances in Large Margin Classifiers. Cambridge, MA.

[4] Tian, G. and Zhong, W. (2007), Algorithm: SVM, SPSS Internal Document.

[5] Lin C.J. and Wen R.C. Simple probabilistic predictions for support vector regression. Technical report,
Department of Computer Science, National Taiwan University, 2004.

[6] Weston, J. and Watkins, C., Support vector machine for multi-class pattern recognition, ESANN’1999,
219-224.

Random Trees Modeling Algorithms

1. Introduction
Random Trees is a powerful new approach for strong (accurate) predictive models. It is comparable and

sometimes better than other state-of-the-art methods in classification or regression problems.

Random Trees is an ensemble model consisting of multiple CART-like trees. Each tree grows on a
bootstrap sample which is obtained by sampling the original data cases with replacement. Moreover,

during tree growth, for each node the best split variable is selected from a specified smaller number of

variables which are drawn randomly from the full set of variables. And each tree grows to the largest
extent possible. There is no pruning. In scoring, random trees combines individual tree scores by majority

voting (for classification) or average (for regression).

Because each tree model can be built independently, random trees are very suitable to be applied in
distributed setting. However, a big challenge is to handle massive data, since building even a single tree

is expensive in this case. There are several implementations which have addressed this issue. One

implementation in Apache Mahout just partitions the data and builds trees on smaller data blocks.
Clearly this method could result in weak and biased trees because data blocks could have biased

distributions from the training data. Another implementation on Apache Spark follows Google’s
PLANET implementation which can build single tree models efficiently on massive data. Spark has the

ability to cache data in memory for interactive data analysis. This implementation has benefited from this
ability greatly. For example, it can remember the last node that a case belongs to. This speeds up the

process considerably since it does not need to pass large trees to executors any more.

Our implementation is based on Apache Hadoop framework. We also adopt Google’s PLANET

implementation to build single trees. But unfortunately, Hadoop does not have the ability of caching data
for interactive data analysis. We will have to resort to other solutions to achieve desired performance.

Meanwhile, the challenging issues about large data, imbalance data, etc., will also be considered in our
implementation.

In this chapter, we describe the algorithms used to build a random trees model under the map-reduce
framework. In addition to generating the predictive solution, we also provide an enhanced set of

evaluation and diagnostic features enabling insight, interactivity, and an improved overall user
experience as required by the Analytic Catalyst and other applications.

The document is organized as follows. We first declare some general notes about algorithms,

development, etc. Then we define the notations used in the document. In section 4, we present the

general workflow of the random trees engine. Operations for data pre-processing are introduced in
section 5, along with some summary statistics that are required for model building. Section 6 describes

the key components in model building. In section 7, we present various measures used for model
evaluation and model diagnostics, and they will be computed along with the process of model building.

Insights and interestingness are also derived. Finally section 8 shows how to score new cases.

Random Trees

2. Notes
1. The Random Trees engine is implemented in a parallel distributed algorithm within Analytic

Engine (AE), based on the map-reduce framework.

3. Notations
The following notations are used throughout the document unless otherwise stated:

ܻ
Dependent variable or target. If ܻ is categorical with ,categoriesܬ its

set of categories is given by ܥ = {1, … .{ܬ,

ܺ௠ , ݉ = 1, … ܯ,
Set of all predictor variables. If ܺ௠ is categorical with ௠ܫ categories, its
categories are given by ܦ = {1, … ௠ܫ, }.

ℋ = ൛ݔ௠ ,௞,ݕ௞ൟ௞ୀଵ
௄

Complete set of training cases

ℋ௤, =ݍ 1, … ,ܳ Bootstrap sample ,ݍ =ݍ 1, … ,ܳ

ℋ(ݐ) Cases that belong to node ݐ

௞ݓ Analysis weight associated with case ݇

௞݂
Frequency weight associated with case .݇ Non-integral positive value
is rounded to its nearest integer.

Ι(ܽ=)ܾ Indicator function taking value 1 when ܽ= ܾ and 0 otherwise.

)ߨ)݆, ݆= 1, … ܬ, Priority probability of ܻ = ,݆ ݆= 1, … ܬ,

)݌ ,(ݐ݆, ݆= 1, … ܬ, Probability of a case in class ݆and node ݐ

(ݐ)݌ Probability of a case in node ݐ

)݌ ,(ݐ݆| ݆= 1, … ܬ, Probability of a case in class ݆given that it falls into node ݐ

)ܥ |݅)݆ Cost of miss-classifying a class ݆case as a class c݅ase

4. General Workflow
The Random Trees engine builds random trees through several stages in sequence. In each stage, one or
more map-reduce jobs will be launched. The general workflow is typically as follows.

Random Trees

Figure 1. General workflow

5. Data Pre-processing
The Random Trees engine supports distributed data in column-based format. It requires at least one

predictor that can be flag, ordinal categorical, nominal categorical, or continuous, and a single target that
can be categorical or continuous. Flag or ordinal target is considered as categorical.

5.1. Filtering Variables

Based on the summary statistics produced by DE, the Random Trees engine will perform an initial
analysis and determine the variables which are not useful for modelling.

Specifically, the following variables will be excluded.

Rule Status Comment

1 Identity variables Required

2 Constant variables Required

3 The percentage of missing values in any variable is

larger than ߜ (default 0.7)

Required

4 One category makes up the overwhelming majority of
total population above a given percentage threshold ߜ

(default 95%)

Required

5 The number of categories of a categorical variable is
larger than ߜ (default 49)

Required

6 The absolute coefficient of variation of a continuous
variable is smaller than ߜ (default 0.05)

Required

Random Trees

7 Date/time variables Required

5.2. Transformations

The Random Trees engine supports frequency/analysis weights. Real frequency weights are rounded to

the nearest integer.

System/user missing and invalid values are all considered as missing. If the target of a case is missing,

this case will be ignored in the analysis. If all predictor variables of a case are missing, this case will also
be ignored. If the analysis or frequency weight is missing, zero, or negative, the case is ignored.

Otherwise, missing values will be imputed with mean for a continuous predictor or mode for a
categorical predictor.

For each continuous predictor, a list of points ,ଶ݌,ଵ݌ … ூ೘݌, (in ascending order) is determined by the tiling

method, i.e. equal-frequency binning, which has been implemented by the Descriptive engine. Notice that

the transformation rule of equal-frequency binning will not be actually applied on the variables. Instead,
it just provides the set of bin boundaries that will be checked as candidate splitting points. In default, we

set the number of bins as 10, which means we will have 9 splitting points to check for each continuous
variable.

Another transformation is to encode categorical predictors, that is, to map category values into integer.
This transformation is particularly useful for string predictors.

5.3. Summary Statistics

The following summary statistics are required and computed by DE:

 Total number of cases

 Distribution of target categories (required if the option of imbalance classification is turned on)
 Interestingness indexes of the associations between predictors and target (required if the option of

weighted sampling of predictors is turned on)

6. Building Base Trees
A specified number of base trees will be built in parallel. Firstly, we initialize each tree with a root node.
Then a series of map-reduce jobs will be used to grow the trees, and each of the jobs will be responsible

for expanding a particular set of tree nodes.

For a certain map-reduce job, we suppose that the involved trees are�ܶ௤,ݍ� ∈ ℚ, where ℚ is the set of labels

of involved trees, and the set of tree nodes to expandܧ� = ∋ݍ|௤,௥ݐ} ℚ,ݎ∈ ܴ௤, }, where�ܴ ௤ is the set of node

IDs in�ܶ௤ which are to expand. For example, in the first map-reduce job, base trees ௤ܶ are only with root

nodes and the set of tree nodesܧ� contains root nodes as well.

Notice that when creating the root nodes ௤,଴ݐ we will have an initial estimation of the number of training

cases, as follows.

หݐ௤,଴ห= ൜ ௝ܰ೘
∗ ,ܬ in case of imbalance�������ϐ�������

ܰ ∗ ,ߙ otherwise
�,

Random Trees

where�݆௠ is the minority class,ߙ� is the ratio for under-bagging, and

ܰ = ∑ ௞݂
௄
௞ୀଵ ,

௝ܰ೘ = ∑ ௞݂I(ݕ௞ = ௠݆)௄
௞ୀଵ .

6.1. Generating Bootstrap Samples

Base trees are built on ܳ bootstrap samples. To generate bootstrap samples, cases will be sampled with

replacement. But notice that frequencies will be produced on the fly for each case at the time when it is
processed.

In a regular bootstrap sample, the sampling rate for each case�݇ is�݂௞/ܰ . Then the times replicated for
case�݇ will beݒݎ�. ܾ݅ ݉݋݊ (ܰ ∗ ,ߙ ௞݂/ܰ).

If the option of imbalance classification is turned on, random trees will be built on balanced bootstrap

samples. We achieve this by adjusting the sampling rates specific for each target category. Suppose that
theܬ�target categories are with counts of�ܰ ଵ,ܰଶ, … ,ܰ௃, respectively. Let�݆௠ = ݎܽ݃ min { ௝ܰ}. Then for each

case�݇ with target category�݆, the sampling rate is�݂௞/ ௝ܰ, and the times replicated for case�݇ will

beݒݎ�. ܾ݅ ݉݋݊ (௝ܰ೘ , ௞݂/ ௝ܰ). This is equivalent to drawing a bootstrap sample from the minority category

and drawing randomly the same number of cases, with replacement, from the other categories.

Denote the generated bootstrap frequencies as�݂௞
௤
,�݇ = 1,2, … ܭ, =ݍ, 1,2, … ,ܳ.

Notice that drawn bootstrap samples should be identical across different map-reduce jobs. This can be
achieved by using the same random seeds across different jobs. But notice that the seeds should be

different across mappers within a single job in order to get different bootstrap frequencies in each data

split.

6.2. Defining <key, value> Pairs

Pairs of <key, value> indicate the minimal unit of tasks. They are defined and generated by Mappers, and
passed to Reducers.

One definition of keys is by tree id, node id, and predictor id. Such keys are defined when the condition

of in-memory building is not satisfied.

Given the setܧ� = ݍ|௤,௥ݐ} ∈ ℚ,ݎ∈ ܴ௤}, for eachݐ�௤,௥, we randomly selectܯ�௧ (default value is ܯ)ݐݎݍݏ⌋)⌋ for

classification and ܯ⌋ /3⌋ for regression) predictors from the total set of predictors. If the option of

weighted sampling is turned off, each predictor will be selected with equal probability. Otherwise, the

selection probabilities will be
ூ೔೙೏೐ೣ
೘

∑ூ೔೙೏೐ೣ
೘ , whereܫ�௜௡ௗ௘௫

௠ is the interestingness index corresponding to

predictor�݉ , as computed in section 5.3.

Notice that different random seeds should be used in order to make the selection of predictors different
across nodes, but on the other hand the selection should be the same for each node across all mappers.

For this purpose, we define random seed as a Hash function of tree id and node id.

Random Trees

Denote the set of selected predictors forݐ�௤,௥ as�ܺ ௤,௥. Then the keys are defined as triplets of< ݉,ݎ,ݍ ∋ݍ�,<

ℚ,ݎ�∈ ܴ௤, and�݉ ∈ ܺ௤,௥.

The value corresponding to a triplet key < ݉,ݎ,ݍ > is a set of statistics used to determine the best
splitting point. These statistics are summarized in appendix A.

The other form of keys is to define them as pairs of < ݍ�,<ݎ,ݍ ∈ ℚ, andݎ�∈ ܴ௤
ᇱ, where�ܴ ௤

ᇱ denotes the set

of nodes in treeݍ�which satisfy the condition of in-memory building. The value corresponding to such
keys is just the cases of interest including all predictors, target, analysis weightݓ�௞, and frequency

weight�݂௞
௤
.

Notice that if the option of correcting importance bias is turned on, the value will include two sets of
statistics, one computed on training cases while the other computed on validation cases. These statistics

can be computed by setting ℵ(ݎ,ݍ) = ℓ௦(ݎ,ݍ) and ℵ(ݎ,ݍ) = ℊ௦(ݎ,ݍ) in the calculation of local statistics,
where ℓ௦(ݎ,ݍ) and ℊ௦(ݎ,ݍ) denote the training and validation cases in data splitݏ�which fall in nodeݐ�௤,௥,

respectively.

Notice that the number of distinct cases in ℓ௦(ݎ,ݍ) and ℊ௦(ݎ,ݍ) will also be computed.

6.3. Partitioning OOB Cases

Bootstrap sample is generated by sampling each case with replacement. That means some cases will be
selected in the sample while the others are not included. We call the cases that are not included out-of-

bag (OOB) cases. Clearly, OOB cases are defined for a particular bootstrap sample. Given multiple

bootstrap samples, a case can be a training case for some trees, and it can be an OOB case for other
trees.OOB cases will be partitioned into validation data and testing data if the option of correcting

importance bias is turned on. To partition OOB cases, instead of generate separate partitions for each tree,
we partition the data once into validataion and testing. In this way, each case can be scored by a complete

set of trees that take it as an OOB case.

The size of the validation data could be very large if users take a small ratioߙ� for under-bagging. This is

likely to incur performance issue for tree growth, particularly for in-memory building as described later.
In this regard, we propose the following procedure to limit its size:

1. Letܭ�෩= ܭ ∗ ߙ ∗ 63% be the expected number of distinct cases used by a single bootstrap sample.

2. Suppose the initial sampling rate for validation data isߚ� (default 50%). Then we let the actual

sampling rate beߚ�෨= ܯ ܫܰ .(ܭ/෩ܭ,ߚ)

3. For each case in the data, determine whether it is a validation case or a testing case according to
the actual sampling rate.

The option of correcting importance bias is disabled for imbalance classification.

6.4. Processing Each Case

Each mapper handles a particular local data split, and cases in the data split are processed sequentially.

Each case can be used by any base tree with three roles, i.e. training, validation, or testing. If the case has

a non-zero bootstrap frequency, it will be considered as a training case for the involved tree. Otherwise, it

Random Trees

will be used as either validation or testing, depending on how the OOB sample is partitioned for the base

tree.

For each training or validation case, we will pass the tree and find the node that the case falls into. Then

we will update the training or validation values collected on the data split for related keys.

Specifically, the procedure is as follows.

ProcessingCase()
Inputs:

 ௤ܶ, ∋ݍ ℚ // Current base trees

 ∋ݎ�,௤,௥ݐ ܴ௤,ݍ ∈ ℚ // Set of nodes to expand

 ܺ௤,௥,ݎ�∈ ܴ௤,ݍ∈ ℚ // Set of predictors selected forݐ�௤,௥

 < ݇݁ ,ݕ ݒܽ ௞ିଵ<݁ݑ݈ // Current <key, value> pairs

 Case�݇ �� // A valid case

 Sampling rate(s)
// Generating bootstrap frequencies, and partitioning OOB samples

Outputs:

 < ݇݁ ,ݕ ݒܽ ௞<݁ݑ݈ // New <key, value> pairs
Procedure:

For each tree ௤ܶ, ݍ ∈ ℚ, repeat the follows:

1. Generate bootstrap frequencies�݂௞
௤
, as described in section 6.1;

2. If (௞݂
௤

> 0),{
Pass tree�ܶ௤, and get nodeݐ�௤,௥ that case�݇ falls in;

If ∋ݎ) ܴ௤), update < ݇݁ ,ݕ ݒܽ ௞ିଵ<݁ݑ݈ with case�݇;
}

3. Else if the option of importance correction is turned on,{

Determine whether case�݇ is a validation case using sampling rateߚ�෨;
If yes,{

Pass tree�ܶ௤, and get nodeݐ�௤,௥ that case�݇ falls in;

If ∋ݎ) ܴ௤), update < ݇݁ ,ݕ ݒܽ ௞ିଵ<݁ݑ݈ with case�݇;
}

}

6.5. Splitting Nodes

We first introduce the splitting criterion and also the impurity measure which will be used to split nodes.

For a categorical target, the Gini impurity measure is

൫݅ݐ௤,௥൯= ∑)ܥ |݅ ൫݅݌݆()݌௤,௥൯ݐ| ௤,௥)௜,௝ݐ݆| ,

where we let

൫݆݌ =௤,௥൯ݐ,
గ(௝)ேೢ ,ೕ(௧೜,ೝ)

ேೢ ,ೕ
,

=௤,௥൯ݐ൫݌ ∑ ൫݆݌ ௤,௥൯௝ݐ, ,

Random Trees

൫݆݌ =௤,௥൯ݐ|
௣(௝,௧೜,ೝ)

௣(௧೜,ೝ)
.

And the splitting criterion is the decrease of the Gini impurity measure defined as

∆ ൫݅ݐ,݌௤,௥൯= ൫݅ݐ௤,௥൯− ௅ܲ (௅ݐ݅) − ோܲ ,(ோݐ݅)

where�ܲ௅ and�ܲோ are probabilities of sending a case to the left child node�ܶ௅ and to the right child node�ܶோ

respectively. They are estimated as�ܲ௅ =
௣(௧ಽ)

௣൫௧೜,ೝ൯
,�ܲோ =

௣(௧ೃ)

௣൫௧೜,ೝ൯
.

Notice that when user-specified costs are involved, the altered priors can optionally be used to replace

the priors. The altered prior is defined asߨ�ᇱ()݆ =
஼(௝)గ(௝)

∑ ஼(௝)గ(௝)ೕ
, whereܥ�()݆ = ∑)ܥ |݅)݆௜ .

For a continuous target, the splitting criterion ∆ ൫݅ݐ,݌௤,௥൯= ൫݅ݐ௤,௥൯− ௅ܲ (௅ݐ݅) − ோܲ (ோݐ݅) is used with the Least

Squares Deviation (LSD) impurity measures�݅൫ݐ௤,௥൯= ܸ൫ݐ௤,௥൯, where we let�ܲ௅ =
ேೢ (௧ಽ)

ேೢ (௧೜,ೝ)
,�ܲோ =

ேೢ (௧ೃ)

ேೢ (௧೜,ೝ)
.

For nodeݐ�௤,௥ and predictor�ܺ ௠ , we denote the set of splitting points as Ω௠ . Then we find the best splitting

point of�ܺ ௠ by݌�௑೘ = ݎܽ݃ max௣∈ஐ೘ ൫∆ ,൯(௤,௥ݐ,݌݅) and we let ∆ ௑݅೘
= ∆ ௑೘݌݅) ݉�,(௤,௥ݐ, ∈ ܺ௤,௥.

Selecting the best splitting point from Ω௠ for a continuous or ordinal predictor is efficient because there

are only a few points to check. But for a categorical predictor with many categories, the searching is

nontrivial. Instead of making an exhaustive search, we find the splitting point using the optimal

partitioning algorithm proposed by Chou (1991), as described in appendix B.

Notice that when computing ௑೘݌ and ∆ ௑݅೘
, we set ℵ(ݎ,ݍ) = ℓ௦(ݎ,ݍ), that is to compute them on training

cases. The node will be split by the point݌�௑೘
∗ which corresponds to max௠ ∈௑೜,ೝ

൫∆ ௑݅೘
൯.

If the option of correcting importance bias is turned on, we will also compute the splitting criterion on

validation cases for the splitting point݌�௑೘ . We denote this splitting criterion as ∆ ௑݅೘
ᇱ . Then the node will

be split by the point݌�௑೘
∗ which corresponds to max௠ ∈௑೜,ೝ

൫∆ ௑݅೘
ᇱ ൯. Here, the splitting criterion is recomputed

for the OOB cases based on the splitting point obtained from the training data at each node. Furthermore,

we will use only the OOB cases later to compute the importance measure. The principle here is similar to

a conditional inference framework. The predictor selection criterion and splitting criterion are separated.

Please refer to Deng (2011) for details.

6.6. In-Memory Building

As tree induction progresses, the size of the input dataset for many nodes becomes small enough to fit in

memory. At any such point, rather than continuing tree induction using map-reduce jobs, we load the

training cases into memory and complete sub-tree construction. We call this process in-memory building.

Suppose that the number of distinct training cases that fall in nodeݐ�௤,௥ is |ℓ(ݎ,ݍ)|. Then whenever the

condition |ℓ(ݎ,ݍ)| < ௜௡ܭ is satisified, in-memory building will be triggered, whereܭ�௜௡ is a specified

Random Trees

threshold with default 5,000. Mappers simply output all the cases that belong to the node ௤,௥ݐ as values in

the <key,values> pairs according to the description in 6.2. Reducer that collects all the cases for the given

node will perform all subsequent node splitting through the following steps.

InMemoryBuilding()
Inputs:

 ℓ(ݎ,ݍ) // Training cases that fall in node ௤,௥ݐ

 ℊ(ݎ,ݍ) // Required to correct importance bias

 ௤ܶ // Current base tree ௤ܶ

Outputs:

 ௤ܶ // Updated base tree ௤ܶ

Procedure:
A tree is grown starting from node ௤,௥ݐ by repeatedly using the following steps on
each node:
1. Randomly selectܯ�௧ predictors from the total set of predictors;
// Using simple or weighted sampling depending on the setting.
2. Find the best split for each selected predictor using data ℓ(ݎ,ݍ);
// For each continuous predictor, rather than checking a limited number of
// points, we sort and check all its values from the smallest to the largest.
3. If the option of correcting importance bias is turned on, recompute the

splitting criterion for each predictor’s best split using data ℊ(ݎ,ݍ);
4. Among the best splits found in step 2, choose the one that maximizes the
splitting criterion;
5. Split the node using its best split found in step 4 if the stopping rules 1-4
in section 6.7 are not satisfied;

6.7. Stopping Rules

Stopping rules control if the tree growing process should be stopped or not. The following stopping rules

are used:

1. If a node becomes pure; that is, all cases in a node have identical values of the target variable, the
node will not be split.

2. If all cases in a node have identical values for each selected predictor, the node will not be split.
3. If the current tree depth reaches the user-specified maximum tree depth limit value, the node will

not be split.

4. If the split of a node results in a child node whose node size is less than the user-specified minimum
child node size value, the node will not be split.

5. If the number of nodes in the current tree exceeds the maximum number (default 10,000), the
involved tree will stop growing.

6. If the accuracy of the random trees is not improved any more, the modeling process will stop. The
accuracy measure is R-square for regression, classification accuracy for regular classification, and

Gmean for imbalance classification.

The following procedure is used to implement stopping rule 6:

1. Letߜ�= 1% and trials=10;

2. Let the ensemble contain the first tree�ܶଵ that has grown completely, and denote its accuracy asܿܿܣ� ;
3. Let Count=0 and BestAcc=ܿܿܣ ;

4. Continue to check if there are new trees that have grown completely. If yes, suppose the new trees
are�ܶ௤భ, ௤ܶభାଵ, … , ௤ܶమ;

Random Trees

5. For i=ݍଵ:ݍ�ଶ, {

Add the�݅th tree to the ensemble, and compute the new accuracyܿܿܣ� ᇱ;
Count++;

If ܿܿܣ ᇱ>BestAcc, { BestAcc=ܿܿܣ ᇱ; BestPos=Count;}
If Count==trials, {

If (BestAcc-ܿܿܣ ܿܿܣ/(,ߜ�< {
ܿܿܣ =BestAcc;

Count=Count-BestPos;
}

Else, return the ensemble with the best accuracy;

}
}

6. Go to step 4;

In random trees, we allow base trees with much larger depth, e.g. 10. The minimum node size is one for
classification, and five for regression. Alternatively, users can also set the minimum node size by

percentage values, say one percent with respect to the root node.

6.8. Controller Design

The controller maintains a set of tree nodes that need to be expanded. In particular, we use a stack to

manage these nodes in order to support stepwise random trees building. The controller schedules a series

of map-reduce jobs off of the stack until the stack is empty. Each job is responsible for expanding a

specified number of nodes. When a job is finished, the stack is updated with the new nodes that can now

be expanded. Notice that when some nodes are expanded by in-memory building, no updates are made

to the stack because tree induction at such nodes is complete.

Specifically, the controller does as follows:

1. Initialize the stack to be empty.

2. Push the root nodes belonging to tree�ܶொ , ொܶିଵ, … , ଵܶ into the stack respectively.

3. Let ܰா nodes off the stack. If there are multiple data splits, run a mixture pattern of map-reduce job

to expand the nodes; Otherwise, run a task parallel pattern of map-reduce job. See sections 6.8.1,

6.8.2, and 6.8.3 for details.

4. Meanwhile, checking if there are new evaluation measures available. If yes, check stopping rule 6. If

the rule is satisfied, go to step 10. Otherwise, update the best ensemble model and report particular

evaluation measures.

5. For some new nodes, if the involved trees satisfy stopping rule 5, such new nodes will not enter the

stack, and the involved trees are considered to be fully grown.

6. For remaining new nodes, we sort them by tree labels,ݍ�= 1,2, … ,ܳ. And push the nodes belonging

to tree�ܶொ , ொܶିଵ, … , ଵܶ into the stack respectively.

7. Check if there are a specified number of new trees (default 5) that have been fully grown. If yes, we

will add the new trees one by one into the current ensemble model, and compute evaluation

measures for the new ensemble models by launching a map-reduce job that runs separately and in

parallel with the next job for tree growth.

8. Repeat step 3 until the stack is empty.

9. If the process is interrupted, return the ensemble model that consists of all fully grown trees.

Random Trees

10. Perform post-modelling analysis, including model evaluation if there are new trees generated but

not evaluated, and model interpretation.

Model evaluation measures and interpretations will be described below in section 7.

6.8.1. Mixture Pattern of Map-Reduce Job

Mixture pattern of map-reduce job, as illustrated in Figure 2, is a mixture of data parallel and task parallel

jobs.

Figure 2. An example of mixture pattern of map-reduce job

In this example, mapper 1 and mapper 2 share the same data split, but they are fed with different settings.

In our case, we let them generate and handle different bootstrap samples or trees.

Given the trees�ܶ௤,ݍ�∈ ℚ, that are involved in a certain job for tree growth, and the set of tree nodes to

expandܧ� = ∋ݎ|௤,௥ݐ} ܴ௤,ݍ∈ ℚ}, we apply the following procedure to allocate the trees to mappers that

are working on the same data split:

1. Sort trees�ܶ௤ according to tree labels in ascending order. Suppose the sorted trees

are�ܶ(ଵ),�ܶ(ଶ),…,�ܶ(|ℚ|), and the sets of nodes to expand are�ܴ (ଵ),�ܴ (ଶ),…,�ܴ (|ℚ|);

2. Letܯ� ܫܰ ௠ = 20 andܯ� ܫܰ ௡ = 10;

// ܯ ܫܰ ௠ is the minimum number of mappers, default 20
// ܯ ܫܰ ௡ is the minimum number of nodes handled by a mapper, default 10

3. Get the number of data spits�ܵ ;
4. If�ܵ < ܯ ܫܰ ௠ , {

Compute�݊݉ݑ = min൬ቒ
ெ ூே೘

ௌ
ቓ,ቔ

|ா|

ெ ூே೙
ቕ,ඌ

|ா|

หோ(భ)ห
ඐ൰;

Compute�ܰ ݀݋ ௠݁ ௜௡ =
|ா|

௡௨௠
;

Initialize�݆ = 1 and�݊ ௘ = 0;

For�݅ in 1: |ℚ|, {
Assign the�݅th tree to the�݆th mapper;

Compute�݊௘ = ௘݊ + หܴ (௜)ห;

If (௘݊ ≥ �ܰ ݀݋ ௠݁ ௜௡) and�݅≠ |ℚ|, {

Let�݆ = ݆+ 1;

௘݊ = 0;

Random Trees

}

}
Let�݆ be the number of mappers for each data split;

}
Else, assign all trees to every mapper;

// A data parallel pattern of map-reduce job will be used for tree growth

6.8.2. Task Parallel Pattern of Map-Reduce Job

If there is only one data split, task parallel pattern of map-reduce jobs will be used to build trees. In each

job, we have multiple mappers and each mapper builds a tree on a replicate of the data split.

The mapper first generates a particular bootstrap sample, and then it builds a tree on the sample in a way
that is similar to the option of in-memory building. OOB cases will be partitioned as usual if necessary.

The number of mappers in each job is determined by the running environment, and the maximum
number of mappers equals to the total number of base trees.

6.8.3. Selecting Nodes to Expand

In a task parallel pattern of job, the number of nodes off the stack equals to the number of mappersܯ� ܫܰ ௠ .

For a mixture pattern of job, we select the nodes as follows:

1. Suppose the first node in the current stack belongs to tree�ܶ௤. We let all the following nodes in the

stack that belong to tree�ܶ௤ off the stack. Denote the number of such nodes as�ܰ ா.

2. Repeat the follows if�ܰ ா < ܯ ,௡ܺܣ

// ܯ ௡ܺܣ is the maximum number of nodes to expand by a single job, default 100 (needs to tune),

a) Let the first node in the current stack belongs to tree�ܶ௜. We let all the following nodes in the

stack that belong to tree�ܶ௜off the stack.

b) Update�ܰ ா.

The maximum number of nodes to expand by a single job is a setting which could be deployed with

respect to concrete clusters. Basically we can set much higher maximum numbers for clusters with high

computing capability.

Note that the procedure described above ensures that each tree grows in a width-first way. This point is

important to the stopping rule of limiting the total number of nodes in a tree.

7. Model Evaluation and Insights
Suppose the ensemble model under evaluation consists of base trees�ܶ௤,ݍ�= 1,2, … ,ܳ. Then we let each

case in the testing partition of the OOB samples traverse the corresponding tree(s), and take the final

prediction of a case as the combination of individual predictions by average or voting.

For convenience, we summarize the notations used for computing evaluation measures as follows.

Random Trees

௤ܶ, =ݍ 1,2, … ,ܳ ܳ trees form an ensemble model to evaluate.

ℒ௤ The testing partition corresponding to the thݍ tree.

ො௞ݕ
௤ The prediction of the thݍ tree on case ,݇ ݇ ∈ ℒ௤.

ො௞ݕ The prediction of the ensemble model on case ,݇ ݇= 1,2, … ܭ, .

௞࣮ The set of trees that take case ݇ as a testing case.

7.1. Evaluation Measures

7.1.1. Classification Model Evaluation

For a classification model, we compute

ܿܿܣ =
ଵ

ே
∑ ௞݂Ι(ݕො௞ = ௞)௄ݕ
௞ୀଵ ,

whereݕ�ො௞ = ݎܽ݃ max௝∑ Ι(ݕො௞
௤

=)݆௤∈ ೖ࣮
, breaking ties arbitrarily.

Moreover, we compute the classification table. Suppose�݆ is one of the observed category, and�݆∗ is one of
the predicted category, then the count of cell < ݆∗,݆> in the classification table is computed

=�ழ௝∗,௝வܥ ∑ ௞݂Ι(ݕො௞ = ௞ݕ�݀݊ܽ�∗݆ =)݆௄
௞ୀଵ , ݆∗ = 1,2, … =݆,ܬ, 1,2, … .ܬ,

Note that if the option of imbalance classification is turned on, the evaluation measures above will not be

computed.

7.1.2. Regression Model Evaluation

For a regression model, we compute

ܯܴ ܧܵ = ට
ଵ

ே
∑ ௞݂(ݕ௞ − ො௞)ଶ௄ݕ
௞ୀଵ ,

whereݕ�ො௞ =
ଵ

| ೖ࣮|
∑ ො௞ݕ

௤
௤∈ ೖ࣮

. If�࣮௞ is empty, case�݇ will be ignored.

Moreover, we compute

ݑݍݏܴ ݎܽ݁ = 1 −
∑ ௙ೖ(௬ೖି௬ොೖ)మ಼
ೖసభ

∑ ௙ೖ(௬ೖି௬ത)మ಼
ೖసభ

,

whereݕ�ത=
ଵ

ே
∑ ௞݂ݕ௞
௄
௞ୀଵ .

7.1.3. Imbalance Classification Model Evaluation

If the option of imbalance classification is turned on, we will compute some measures that are specific to

imbalance classification.

For target class�݆, we compute true positive rate, i.e. recall rate,

Random Trees

ܶܲ ௝ܴ =
஼ಬೕ,ೕಭ�

∑ ஼ಬ೔,ೕಭ�
಻
೔

,�݆ = 1, … .ܬ,

Then we compute G-mean

݉ܩ ݁ܽ ݊ = ൫∏ ܶܲ ௝ܴ
௃
௝ୀଵ ൯

ଵ/௃
.

Notice that any class whose recall rate is constant zero across groups will be excluded from the

calculation of the G-mean measure, and the number ofܬ�in the formula will be adjusted accordingly.

7.2. Interpretation and Insights

7.2.1. Gini Importance

Every time a split of a node is made on predictor�ܺ ௠ the Gini impurity criterion for the two descendent
nodes is less than the parent node. Adding up the Gini decreases for each individual predictor over all

trees in the trees gives a fast predictor importance measure that is often very consistent with the

permutation importance measure.

Denote�݉ܫ ൫ܺ݌ ௠ , ௤ܶ൯as the importance of predictor�ܺ ௠ at tree�ܶ௤, then

ܫ݉ ൫ܺ݌ ௠ , ௤ܶ൯= ∑ ∆ ௑೘݌݅)
∗ ∋௧(ݐ, ೜்

,

where݌�௑೘
∗ denotes the splitting point used by nodeݐ�. Note that if predictor�ܺ ௠ is not the splitting

variable, the corresponding Gini decrease from nodeݐ�will be zero.

The Gini importance of predictor�ܺ ௠ is

ܫ݉ ௠ܺ)݌) = ∑ ܫ݉ ൫ܺ݌ ௠ , ௤ܶ൯
ொ
௤ୀଵ .

Alternatively, the importance values can be normalized relative to the predictor having the largest
measure of importance. That is,

ܫ݉ ෪݌ (ܺ௠) =
ூ௠ ௣(௑೘)

୫ ୟ୶೘ ൫ூ௠ ௣(௑೘)൯
.

Notice that if the option of correcting importance bias is turned on, the Gini decreases ∆ ௑೘݌݅)
∗ (ݐ, will be

computed using the validation OOB cases, as described in section 6.5.

7.2.2. Interesting Decision Rules

Random trees is formed by multiple decision trees, and each of them consists of tree nodes that represent

decision rules. Since the rules will work together as a committee in scoring, it is not easy to interpret the
results by individual rules. But on the other hand, the number of nodes or rules could be very large in

random trees. This also provides the potency to dig out some interesting rules for the purpose of model
interpretation.

For convenience, the following notations are defined.

Random Trees

௧ܫ Set of candidate nodes from which to detect interesting decision rules

ߜ Threshold of minimal support of candidate nodes, default 1000

ூ݊ Number of interesting decision rules to report, default 5

ூߜ
Interestingness threshold of filtering interesting decision rules to

report, default 0.9

(ݐ)ܣ
Event that the prediction of random trees is correct on the data group
determined by node ݐ

(ݐ)ܣ̅
Event that the prediction of random trees is wrong on the data group
determined by node ݐ

(ݐ)ܤ
Event that the prediction of node isݐ correct on the data group

determined by node ݐ

ܲ(∙) Probability of an event

Interesting decision rules are defined as those which have high prediction accuracy and also high
agreement with the predictions of random trees. Clearly, such rules can be used to interpret random trees

predictions. Specifically, the following procedure is used for the detection.

1. Identify the set of candidate interesting nodesܫ�௧.

a) Compute and save the count of testing cases for each leaf node in the job of model evaluation.
b) Collapse any pair of nodes into their parent node if they have the same parent and both of their

counts of testing cases are less thanߜ�.
c) Letܫ�௧ be the set of remaining leaf nodes whose counts of test cases are not less thanߜ�.

2. For each nodeݐ�inܫ�௧, obtain its node assignment and letܲ((ݐ)ܤ) be the prediction accuracy of nodeݐ�

on the data group determined by nodeݐ�.
3. Launch a map-reduce job and for each nodeݐ�inܫ�௧,

a) Let�ܲ ((ݐ)ܣ) be the prediction accuracy of random trees (not collapsed) on the data group

determined by nodeݐ�. Clearly, ܲ൫̅(ݐ)ܣ൯= 1 − .((ݐ)ܣ)ܲ

b) Let ((ݐ)ܤ(ݐ)ܣ)ܲ be the ratio of cases that are predicted correctly by both random trees and nodeݐ�

to the total cases in the data group determined by nodeݐ�.

c) Let ((ݐ)തܤ(ݐ)ܣ̅)ܲ be the ratio of cases that are predicted wrong by both random trees and nodeݐ�
to the total cases in the data group determined by nodeݐ�.

d) Compute the interestingness indexܫ�௜௡ௗ௘௫(ݐ) = ((ݐ)ܣ)ܲ ∗ ((ݐ)ܤ)ܲ ∗ ((ݐ)ܤ(ݐ)ܣ)ܲ) + .(((ݐ)തܤ(ݐ)ܣ̅)ܲ
4. Report the top ூ݊nodes with the highest interestingness indexܫ�௜௡ௗ௘௫(ݐ); Optionally, users can select

to report all nodes whose interestingness index is larger thanߜ�ூ.

8. Random Trees Scoring
8.1. Node Assignment

Suppose a random trees model consists of trees�ܶ௤,ݍ�= 1,2, … ,ܳ. An assignment (also called action or

decision) is computed for each node in the trees. To predict the target value for an incoming case, we first

find in which terminal nodes it falls, and then we combine the assignments of these terminal nodes for
the final prediction.

For any nodeݐ�, let ௧݀ be the assignment given to nodeݐ�,

௧݀ = ൜
,(ݐ)∗݆ ܻ�is categorical

,(ݐ)തݕ ܻ�is continuous
�

Random Trees

(ݐ)∗݆ = ݎܽ݃ min௜∑)ܥ |݅)݌݆(୨(ݐ݆| ,

(ݐ)തݕ =
∑ ௪ೖ௙ೖ

೜
௬ೖೖ∈ℋ(೟)

ேೢ (௧)
.

If there is more than one category�݆ that achieves the minimum, choose�݆∗(ݐ) to be the smallest such�݆ for

which�ܰ ௙,௝(ݐ) = ∑ ௞݂
௤
Ι(ݕ௞ =)݆௞∈ℋ(௧) is greater than 0, or just the smallest�݆ if�ܰ ௙,௝(ݐ) is zero for all of them.

8.2. Case Assignment

Given a case�݇ , we first compute the score from tree�ܶ௤ asݕ�ො௞
௤
, that is, the assignment of the terminal node

in which the case fall. Then we combine the individual scores as

ො௞ݕ = ൝
ݎܽ݃ max௝∑ Ι(ݕො௞

௤
=)݆ொ

௤ୀଵ , ܻ�is categorical
ଵ

ொ
∑ ො௞ݕ

௤ொ
௤ୀଵ , ܻ�is continuous

�.

If the target variable is categorical, for each target category�݆, a confidence value will be calculated as

)Ƹ௞݌)݆ =
∑ Ι(௬ොೖ

೜
ୀ௝)

ೂ
೜సభ

ொ
.

Note that trees with null predictions will not be counted in case assignment.

8.3. Predictor Contribution

Predictor contribution is an evaluation of the influence of each predictor on the model prediction for an

individual case. Please see Kuz’min (2011) and Palczewska (2013) for more details.

8.3.1. Regression Predictor Contribution

Each tree node, except the root node, has an associated rule according to which cases fall into this node.

The difference between mean values in the current and parent nodes represents a local increment of

contribution of the corresponding predictor, which is included in the rule of this node.

We let�ܵܮ ௠ ,௧ = (ݐ)തݕ − ,௣௔௥௘௡௧൯ݐത൫ݕ whereݐ�௣௔௥௘௡௧denotes the parent node of nodeݐ�. Then the contribution of

predictor�ܺ ௠ on the prediction of case�݇ is

௞ܵ,௠ =

1
ܳ
∑ ܮܵ ௠ ,௧௧∈஀೘

ො௞ݕ − ത௜௡௧௘௥௖௘௣௧ݕ

where Θ௠ is the set of nodes in all trees of the trees, which contain case�݇ and have predictor�ܺ ௠ in their

rule, and

ത௜௡௧௘௥௖௘௣௧ݕ =
ଵ

ொ
∑ ௥௢௢௧ݐ)തݕ

௤
)ொ

௤ୀଵ ,

Random Trees

whereݐ�௥௢௢௧
௤

is the root node of tree�ܶ௤.

In default, we report the top 3 predictors which have the largest contributions.

8.3.2. Classification Predictor Contribution

To present the predictor contribution procedure for a classification model, we need a probabilistic

interpretation of the trees prediction process.

Let�݁௝ be aܬ�-dimensional vector with 1 at position�݆, and 0 otherwise. If tree�ܶ௤ predicts that case�݇ belongs

to class�݆, then we write�ܻ෠௞
௤

= ௝݁. The prediction of the random trees for case�݇ is

෠ܻ
௞ =

ଵ

ொ
∑ ෠ܻ

௞
௤ொ

௤ୀଵ .

We let തܻ(ݐ) be aܬ�-dimensional vector whose�݆th coordinate,�݆ = 1,2, … ,ܬ, is defined as݌�(.(ݐ݆| Then, we

define local contribution as�ܵܮ ௠ ,௧ = തܻ(ݐ) − തܻ൫ݐ௣௔௥௘௡௧൯. The overall contribution of predictor�ܺ ௠ on the

prediction of case�݇ is

௞ܵ,௠ =

భ

ೂ
∑ ௅ௌ೘ ,೟೟∈౸೘

௒෠ೖି௒ത೔೙೟೐ೝ೎೐೛೟
,

where�ܻത௜௡௧௘௥௖௘௣௧ =
ଵ

ொ
∑ തܻ(ݐ௥௢௢௧

௤
)ொ

௤ୀଵ , and the contributions are computed coordinate-wise.

Suppose the predicted target labelݕ�ො௞ = .݆ Then in default, we report the top 3 predictors which have the

largest contributions at position�݆ in�ܵ௞,௠ .

Random Trees

Appendix A. Computing Statistics
A.1. Local Statistics

Specifically, for a categorical predictor and a categorical target, the local statistics collected by a mapper

on data splitݏ�will be

ܹ ௜,௝
௦ = ∑ ௞௞∈ℵ(௤,௥)ݓ ௞݂

௤
I(ݔ௠ ,௞ = �݅andݕ�௞ =)݆,�݅= 1, … ௠ܫ, ,�݆ = 1, … ,ܬ,

where ℵ(ݎ,ݍ) denotes the cases of interest in the data split that fall in nodeݐ�௤,௥. These cases may be

training ℓ௦(ݎ,ݍ) or validation ℊ௦(ݎ,ݍ) cases in particular scenarios.

For a categorical predictor and a continuous target, the statistics are

ܹ ௜
௦ = ∑ ௞௞∈ℵ(௤,௥)ݓ ௞݂

௤
I(ݔ௠ ,௞ =)݅,�݅= 1, … ௠ܫ, ,

തܻ
௜
௦ =

∑ ௪ೖೖ∈ℵ(೜,ೝ) ௙ೖ
೜
௬ೖ (୍௫೘ ,ೖୀ௜)

ௐ೔
ೞ ,�݅= 1, … ௠ܫ, ,

௜ܸ
௦ =

∑ ௪ೖೖ∈ℵ(೜,ೝ) ௙ೖ
೜
൫௬ೖି௒ത೔

ೞ൯
మ

(୍௫೘ ,ೖୀ௜)

ௐ೔
ೞ ,�݅= 1, … ௠ܫ, .

For a continuous predictor�ܺ ௠ , suppose the splitting points are݌�ଵ,݌ଶ, … ூ೘݌, (in ascending order). Then if

the target is categorical, the statistics will be

ܹ ௣೔,௝
௦ = ∑ ௞௞∈ℵ(௤,௥)ݓ ௞݂

௤
I(ݔ௠ ,௞ ≤ ௞ݕ�௜and݌ =)݆,�݅= 1, … ௠ܫ, ,�݆ = 1, … ,ܬ,

ܹ ∙௝
௦ = ∑ ௞௞∈ℵ(௤,௥)ݓ ௞݂

௤
I(ݕ௞ =)݆,�݆ = 1, … .ܬ,

For a continuous predictor and a continuous target, the statistics are

ܹ௣೔
௦ = ∑ ௞௞∈ℵ(௤,௥)ݓ ௞݂

௤
I(ݔ௠ ,௞ ≤ =݅�,(௜݌ 1, … ௠ܫ, ,

തܻ
௣೔
௦ =

∑ ௪ೖೖ∈ℵ(೜,ೝ) ௙ೖ
೜
௬ೖ (୍௫೘ ,ೖஸ௣೔)

ௐ೛೔
ೞ ,�݅= 1, … ௠ܫ, ,

௣ܸ೔
௦ =

∑ ௪ೖೖ∈ℵ(೜,ೝ) ௙ೖ
೜
ቀ௬ೖି௒ത೛೔

ೞቁ
మ

(୍௫೘ ,ೖஸ௣೔)

ௐ೛೔
ೞ ,�݅= 1, … ௠ܫ, ,

ܹ ௦ = ∑ ௞௞∈ℵ(௤,௥)ݓ ௞݂
௤
,

തܻ௦ =
∑ ௪ೖೖ∈ℵ(೜,ೝ) ௙ೖ

೜
௬ೖ

ௐ ೞ ,

ܸ௦ =
∑ ௪ೖೖ∈ℵ(೜,ೝ) ௙ೖ

೜
(௬ೖି௒ത

ೞ)మ

ௐ ೞ .

Random Trees

A.2. Global Statistics

Local statistics computed on data splits are merged into global statistics as follows.

For a categorical predictor and a categorical target,

ܹ ௜,௝ = ∑ ܹ ௜,௝
௦

௦ ,�݅= 1, … ௠ܫ, ,�݆ = 1, … .ܬ,

For a categorical predictor and a continuous target,

ܹ ௜= ∑ ܹ ௜
௦

௦ ,�݅= 1, … ௠ܫ, ,

തܻ
௜= ∑

ௐ೔
ೞ

ௐ ೔

തܻ
௜
௦

௦ ,�݅= 1, … ௠ܫ, ,

௜ܸ= ∑
ௐ೔
ೞ

ௐ ೔
௜ܸ
௦

௦ + ∑
ௐ೔
ೞ

ௐ ೔
(തܻ௜

௦− തܻ
௜)(തܻ௜

௦ + തܻ
௜)௦ ,�݅= 1, … ௠ܫ, .

For a continuous predictor and a categorical target,

ܹ ௣೔,௝
= ∑ ܹ ௣೔,௝

௦
௦ ,�݅= 1, … ௠ܫ, ,�݆ = 1, … ,ܬ,

ܹ ∙௝ = ∑ ܹ ∙௝
௦

௦ ,�݆ = 1, … .ܬ,

For a continuous predictor and a continuous target,

ܹ௣೔
= ∑ ܹ௣೔

௦
௦ ,�݅= 1, … ௠ܫ, ,

തܻ
௣೔

= ∑
ௐ೛೔
ೞ

ௐ೛೔

തܻ
௣೔
௦

௦ ,�݅= 1, … ௠ܫ, ,

௣ܸ೔
= ∑

ௐ೛೔
ೞ

ௐ೛೔
௣ܸ೔
௦

௦ + ∑
ௐ೛೔
ೞ

ௐ೛೔

൫ܻത௣೔
௦ − തܻ

௣೔
൯൫ܻത௣೔

௦ + തܻ
௣೔
൯௦ ,�݅= 1, … ௠ܫ, ,

ܹ = ∑ ܹ ௦
௦ ,

തܻ= ∑
ௐ ೞ

ௐ
തܻ௦

௦ ,

ܸ = ∑
ௐ ೞ

ௐ
ܸ௦

௦ + ∑
ௐ ೞ

ௐ
(തܻ௦− തܻ)(തܻ௦ + തܻ)௦ .

The statistics above will be computed with ℵ(ݎ,ݍ) = ℓ௦(ݎ,ݍ), and ℵ(ݎ,ݍ) = ℊ௦(ݎ,ݍ) if necessary.

Moreover, if the condition of in-memory building is satisfied, we will get

ℓ(ݎ,ݍ) = ⋃ ℓ௦(ݎ,ݍ)௦ ,

ℊ(ݎ,ݍ) = ⋃ ℊ௦(ݎ,ݍ)௦ .

Random Trees

A.3. Splitting Points and Statistics

For a continuous predictor�ܺ ௠ , the set of splitting points Ω௠ consists of݌�ଵ,݌ଶ, … ூ೘݌, (in ascending order),

which are determined by the tiling method, i.e. equal-frequency binning.

For nodeݐ�௤,௥ and each splitting point݌�௜, if the target is categorical, we have

ܰ௪ ,௝ = ∑ ௞ݓ ௞݂
௤

I(ݕ௞ =)݆௞∈ℋ೜
,

ܰ௪ ,௝(ݐ௤,௥) = ܹ ∙௝,

ܰ௪ ,௝(ݐ௅) = ܹ ௣೔,௝
,

ܰ௪ ,௝(ݐோ) = ܹ ∙௝− ܹ ௣೔,௝
,

whereݐ�௅ andݐ�ோ denote the left child and the right child split by point݌�௜, respectively.

While if the target is continuous, we have

ܰ௪ (௤,௥ݐ) = ܹ ,

ܰ௪ (௅ݐ) = ܹ௣೔
,

ܰ௪ (ோݐ) = ܹ − ܹ௣೔
,

തܻ(ݐ௅) = തܻ
௣೔

,

തܻ(ݐோ) =
ௐ ௒തି ௐ೛೔

௒ത೛೔

ௐ ିௐ೛೔

,

ܸ൫ݐ௤,௥൯= ܸ,

(௅ݐ)ܸ = ௣ܸ೔
,

(ோݐ)ܸ =
ௐ ௏ିேೢ (௧ಽ)௏(௧ಽ)ିேೢ (௧ಽ)(௒ത(௧ಽ)ି௒ത)(௒ത(௧ಽ)ା௒ത)ିேೢ (௧ೃ)(௒ത(௧ೃ)ି௒ത)(௒ത(௧ೃ)ା௒ത)

ேೢ (௧ೃ)
.

For an ordinal categorical predictor�ܺ ௠ withܫ�௠ categories, splitting points just fall between two

consecutive categories. While for a nominal categorical predictor�ܺ ௠ withܫ�௠ categories, the set of splitting

points Ω௠ is the power set of the ௠ܫ categories. Suppose that one of the splitting points ݌ corresponds to a

set of predictor categoriesܥ�௣. Then if the target is categorical, we have

ܰ௪ ,௝ = ∑ ௞ݓ ௞݂
௤

I(ݕ௞ =)݆௞∈ℋ೜
,

ܰ௪ ,௝(ݐ௤,௥) = ∑ ܹ ௜,௝௜ ,

Random Trees

ܰ௪ ,௝(ݐ௅) = ∑ ܹ ௜,௝௜∈஼೛ ,

ܰ௪ ,௝(ݐோ) = ܰ௪ ,௝(ݐ௤,௥) − ܰ௪ ,௝(ݐ௅).

While if the target is continuous, we have

ܰ௪ (௤,௥ݐ) = ∑ ܹ ௜௜ ,

ܰ௪ (௅ݐ) = ∑ ܹ ௜௜∈஼೛ ,

ܰ௪ (ோݐ) = ܰ௪ (௤,௥ݐ) − ܰ௪ ,(௅ݐ)

തܻ= ∑
ௐ ೔

ேೢ (௧)
തܻ
௜௜ ,

തܻ(ݐ௅) = ∑
ௐ ೔

ேೢ (௧ಽ)
തܻ
௜௜∈஼೛ ,

തܻ(ݐோ) = ∑
ௐ ೔

ேೢ (௧ೃ)
തܻ
௜௜∉஼೛ ,

ܸ൫ݐ௤,௥൯= ∑
ௐ ೔

ேೢ (௧೜,ೝ) ௜ܸ௜ + ∑
ௐ ೔

ேೢ (௧೜,ೝ)
(തܻ௜− തܻ)(തܻ௜+ തܻ)௜ ,

(௅ݐ)ܸ = ∑
ௐ ೔

ேೢ (௧ಽ) ௜ܸ௜∈஼೛ + ∑
ௐ ೔

ேೢ (௧ಽ)
൫ܻത௜− തܻ(ݐ௅)൯൫ܻത௜+ തܻ(ݐ௅)൯௜ ,

(ோݐ)ܸ = ∑
ௐ ೔

ேೢ (௧ೃ) ௜ܸ௜∉஼೛ + ∑
ௐ ೔

ேೢ (௧ೃ)
൫ܻത௜− തܻ(ݐோ)൯൫ܻത௜+ തܻ(ݐோ)൯௜ .

Appendix B. Optimal Partitioning
Chou (1991) proposed a K-means like clustering algorithm that uses a generalization of Kullback’s

information divergence as its distance measure. It has been demonstrated to be very efficient to find the
best splitting point for a predictor with a large number of categories.

Let�ܺ be a nominal predictor with a category setܣ� = { ଵܿ, … , ேܿ }. The partitioning problem is to find a
binary partitionܣ�଴,ܣ�ଵ ofܣ� that minimizes the average impurity,

(ݐ|ଵܣ,଴ܣ)ܫ = (ݐ|଴ݐ)݌ (଴ݐ݅) + (ݐ|ଵݐ)݌ ,(ଵݐ݅)

whereݐ�଴ andݐ�ଵ are child nodes determined by the partition,݌�(ݐ଴|ݐ) = (଴ݐ)݌ ⁄(ݐ)݌ , and݌�(ݐଵ|ݐ) =
(ଵݐ)݌ ⁄(ݐ)݌ .

Firstly, we introduce the notion of divergence. This is the key to formulating the partitioning algorithm as

an iterative descent.

For a continuous target, the centroid of nodeݐ�is

Random Trees

(ݐ)ݑ = [ݐ|ܻ]ܧ ≈ തܻ(ݐ).

Letݕ�ොbe an approximation of the centroid. Then the divergence ofݕ�ොfrom(ݐ)ݑ� is given by

(ොݕ,ݐ)݀ = (ݐ)ݑ) − .ො)ଶݕ

For a categorical target withܬ�categories, the centroid of nodeݐ�is a J-dimensional class probability vector
of݌�(.(ݐ݆| LetΨ be a real nonnegative definite ×ܬ ,matrixܬ where it has the element�߮ ௜௝ = 1 −)ܥ |݅)݆. Then

the divergence ofݕ�ොfrom(ݐ)ݑ� is given by

(ොݕ,ݐ)݀ = (ݐ)ݑ) − (ݐ)ݑ)ො)ᇱΨݕ − .(ොݕ

Letܣ:ߙ� → {0,1} be the function that assigns each category inܣ� to one of the two binsܣ�଴, orܣ�ଵ, and letߚ�(∙)

be the function on {0,1} that assigns a centroid to each bin. That is, for each�ܿ ∈ ,ܣ let

)ߙ)ܿ = ൜
0 if�ܿ ∈ ଴ܣ
1 if�ܿ ∈ ଵܣ

�,

and for�݇ = 0,1, let

)ߚ)݇ = .(௞ݐ)ݑ

The partitioning algorithm is as follows.

1. Letܣ�଴,ܣ�ଵ be an initial random partition ofܣ�, and computeߚ�()݇ for�݇ = 0,1.

2. Updateߙ� toߙ�ᇱfor fixedߚ�, by reassigning each�ܿ to its nearest neighbor in the divergence sense. That

is, letߙ�ᇱ()ܿ = arg݉ ݅݊ ௞݀൫ܿ)ߚ,)݇൯, breaking ties arbitrary if݌�((ݐܿ| = 0 or if the divergences are equal.

3. Updateߚ� toߚ�ᇱfor fixedߙ�ᇱ, by recomputing the centroid of each bin.

4. Iterative steps 2 and 3 until the average impurityܫ�(ܣ଴,ܣଵ|ݐ) is not reduced, or it reaches the maximal

number of iterations (default 20).

Random Trees

References
[1] Jing Xu. Descriptives - ADD - Map Reduce Algorithms for Bivariate Statistics. IBM SPSS

internal design document. https://w3-
connections.ibm.com/files/form/anonymous/api/library/3e2f9545-db12-46b9-8787-

59d138d415d9/document/e71b3790-6316-4009-87db-c2c2477de27e/media/Descriptives%20-
%20ADD%20-%20Map%20Reduce%20Algorithms%20for%20Bivariate%20Statistics.docx.

[2] H. T. Deng, G. Runger, and E. Tuv (2011). Bias of importance measures for multi-valued
attributes and solutions. Proceedings of the 21st international conference on Artificial neural networks

- Volume Part II. Pages 293-300.

[3] L. Breiman, J. H. Friedman, R. Olshen, and C. Stone (1984). Classification and Regression Trees.
Wadsworth and Brooks.

[4] P. A. Chou (1991). Optimal Partitioning for Classification and Regression Trees. IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 13, No. 4. Pages 340-354.

[5] V. E. Kuz’min, P. G. Polishchuk, A. G. Artemenko, and S. A. Andronati (2011). Interpretation of
QSAR Models Based on Random Forests Methods. Molecular Informatics, 30(6-7), Pages 593-603.

[6] A. Palczewska, J. Palczewski, R. M. Robinson, and D. Neagu (2013). Interpreting random forest
models using a feature contribution method. IEEE IRI 2013, San Francisco, California, USA,

Pages 112-119.

https://w3-connections.ibm.com/files/form/anonymous/api/library/3e2f9545-db12-46b9-8787-59d138d415d9/document/e71b3790-6316-4009-87db-c2c2477de27e/media/Descriptives - ADD - Map Reduce Algorithms for Bivariate Statistics.docx
https://w3-connections.ibm.com/files/form/anonymous/api/library/3e2f9545-db12-46b9-8787-59d138d415d9/document/e71b3790-6316-4009-87db-c2c2477de27e/media/Descriptives - ADD - Map Reduce Algorithms for Bivariate Statistics.docx
https://w3-connections.ibm.com/files/form/anonymous/api/library/3e2f9545-db12-46b9-8787-59d138d415d9/document/e71b3790-6316-4009-87db-c2c2477de27e/media/Descriptives - ADD - Map Reduce Algorithms for Bivariate Statistics.docx
https://w3-connections.ibm.com/files/form/anonymous/api/library/3e2f9545-db12-46b9-8787-59d138d415d9/document/e71b3790-6316-4009-87db-c2c2477de27e/media/Descriptives - ADD - Map Reduce Algorithms for Bivariate Statistics.docx

SNA - Diffusion Analysis Algorithms

1. Introduction
A diffusion process starts with the construction of a call graph and a seed. The call
graph is a directed graph in which each node corresponds to a subscriber in the
network and the weight on each directed edge reflects the strength of connection
between the caller (head of edge) and callee (tail of edge). The weight associated with
each edge is based on call data, such as the total number of calls or the total duration
of calls over a period of time. The seed is a list of subscribers that are known to have
churned during a predefined period of time, typically a subset of the time period that
was used to construct the graph (e.g., the same period, the last two weeks, etc.).

Each such churner is assigned with an initial positive energy and all other subscribers
are assigned with zero energy. Finally, a diffusion-like process is initiated in the
graph, where at each iteration nodes transfer a fraction of their energy to their
outgoing neighbors in the graph. The exact value depends linearly on the weight
associated with the edge and on a spreading coefficient  1,0d , which determines the
fraction of energy that can be given away. After the stopping condition is met, each
subscriber is associated with a certain amount of energy, where higher values are
considered higher probability candidates for churning. A diffusion process like the
one described here mimics a word of mouth scenario where the information spreads
among people.

The Diffusion Analysis (DA) component implements a certain type of diffusion
process. For each node, the DA component computes the amount of energy at the end
of the process described above, as well as additional features related to this graph.
These features or key performance indicators (KPIs) can be used to build a churn
prediction model for the telecommunications industry. It should be noted that
diffusion processes such as the one described in this document can be used for
additional targets such as customer retention or viral marketing.

In this document we overview the different stages of the diffusion algorithm.

2. Notations
The following notation will be used in each part of the algorithm unless stated
otherwise:

adjW Adjacency weights matrix, which can be the social graph
representation as a connectivity matrix. The matrix has

mm elements
jiw , The (i,j) entry of adjW representing the weight (i.e.,

connection strength) from node i to node j

adjT adjW normalized according to lines:

    
k

ikadjadj wjiWjiT /,, . For each line,  jiTadj ,

represents the proportional strength of the edge  ji, ,
compared to all other outgoing edges  ki,

 nCT
Total energy vector at the end of iteration n . This is a row
vector whose dimensions are m1

 nc k
T

k th element of  nCT , representing the total energy of the
k th node at the end of iteration n

 nCF
Fresh energy vector at the end of iteration n . This is a row
vector, whose dimensions are m1

 nc k
F

k th element of  nCF - fresh energy of the k th node at the
end of iteration n

 nCG
Given away energy vector at the end of iteration n . This is a
row vector, whose dimensions are m1

 nc k
G

k th element of  nCG - given away energy of the k th node
at the end of iteration n

d Spreading coefficient. Fraction of fresh energy that is given
away in every iteration

m Number of nodes in the graph

iN The i th node
 A small constant value. Used for indicating convergence of

the process.
ITER Maximal allowed number of iterations

3. Creating the Adjacency Matrix

The adjacency matrix adjW , which corresponds to the calls matrix, is a matrix whose
entries represent the strength of connection between two nodes. The matrix will be
sparse by definition since each caller only calls a small fraction of the available
callees. Technically, the adjacency matrix is created by the loader component. The
weights of the matrix are computed according to the settings given to the loader
component. While these exact settings are described in the relevant document, we
now provide two examples of such computation.

3.1 Counting the Number of Calls as Weight

The simplest option to weight the strength of the connection between caller i and
callee j is by counting the number of calls from i to j . In this case,

)(#, jicallsw ji  .
Note: The matrix does not have to be symmetric and the weights defined here are
integers.

3.2 Counting the Total Duration as Weight

Another option to weight the strength of the connection between caller i and callee
j is the summation over the total duration of calls from i to j . In this case,





)(

,)(_
jicalls

ji jicalldurationw . As in the previous case, the matrix does not have

to be symmetric and the weights defined here are also integer (duration of calls is
measured in seconds).

4. Description of the Diffusion Algorithm

4.1 Initialization

We initialize the total energy, free energy, and given away energy vectors as follows:
   enCT  where ie equals 1 if i is in the list of churners and 0 otherwise:

 





else

churneraisiif
c i

T 0
1

0

   enCF  where ie equals 1 if i is in the list of churners and 0 otherwise:

 





else

churneraisiif
c i

F 0
1

0

   0nCG , all zeros vector

4.2 Normalization of the Adjacency Matrix

The adjacency matrix is normalized as follows:
    

k
ikadjadj wjiWjiT /,,

Where adjW is the original adjacency matrix.

4.3 Diffusion Update Equations

The diffusion process is updated according to the following equations:
1.     adjFF TnCdnC 1 . This equation corresponds to the fresh energy

received by the node from all its incoming neighbors. The neighbors give
away a fraction governed by the spreading coefficient; this fraction is relative
to the normalized connection strength.
A slightly different view of this equation follows. Each node that has outgoing
edges, distributes a d fraction of its fresh energy to its outgoing neighbors.
Each neighbor gets an amount that is proportional to its relative weight.
Therefore, each node obtains the sum over the energies obtained from the
incoming neighbors.

2.    )(iiFG cdiagnCnC  where























mm

ii

c

c

c

cdiag

,...,0,0,0
...

0,...,0,,0
0,....,0,0,

)(22

11

and



 


else

Noutifd
c i

ii 0
0)deg(

which can be rewritten as      nCdnC FG where
)0)deg(( iNoutdiag - a diagonal matrix whose diagonal elements are 1

if the corresponding node has at least 1 outgoing edge, and 0 otherwise.

This equation corresponds to the given away energy of each node. This energy
is only positive if there is at least 1 outgoing edge. Each node only gives away
a d fraction of its fresh energy.

3.        111  nCnCnCnC GFTT . This equation represents the update
of the total energy. It is the sum of the total energy from the last iteration plus
the free received energy, minus the given away energy.

4.4 Simplification of the Update Equations

The third update equation can be rewritten as follows:
       

     
     





adjFT

FadjFT

GFTT

TnCdnC

nCdTnCdnC

nCnCnCnC 111

Where as before,)0)deg(( iNoutdiag .
This leaves us with only two update equations: one for the total energy and one for the
fresh energy:

   
       



adjFTT

adjFF

TnCdnCnC

TnCdnC

1
1

4.5 Convergence Criterion

The following criterion is used for stopping the diffusion process (indication of
convergence):

     nCnCi i
T

i
T 1,

The process stops at the smallest n for which this criterion holds.

5. Implementation Issues

5.1 Algorithm State Machine

The following state machine describes the algorithm presented above.

Circles represent states and edges represent the transitions between states. The process
begins with the normalizing state (bold circle on the left hand side). During
normalization in and out degrees are also calculated. The process continues with the

computation of the weighted in and out degrees. The next step of updating the
diffusion equations is recurrent and repeats until the termination condition is met.

5.2 Saved Data Structures

As seen in the previous section, the update equations can be rewritten in a manner that
allows for the updating and storing of    nCnC TF , only. The algorithm
implementation follows this description.
The following vectors are also stored: in and out degree, weighted in and out degree.

5.3 Termination of the Computation

The natural termination condition of the algorithm is when the convergence criterion
is met, as explained in the previous section. However, the diffusion process can be
very slow, either due to an incorrect choice of  or as a result of the problem
structure and initial conditions. To allow forced termination, the code implements a
hard stop: if the number of update equations has reached a predefined value, the
computation stops. Therefore, the stopping condition is as follows:

     nCnCi i
T

i
T 1,

Or
Number of iterations > ITER

The user can control ITER (see DA Input Settings.doc).

5.4 Parallelization Scheme

The parallelization schema of the Group Analysis (GA) algorithm is based on the
PML architecture [2]. For this section, it is assumed that the reader is familiar with the
basic PML event flow model.

In general, each worker is responsible for
n

1 lines of the adjacency matrix (namely,
n

1

of the callers). The various stages of the DA algorithm are parallelized as follows:
Normalization of the adjacency matrix – each worker performs parallelization of

n

1 lines

Update equations – each worker updates the values of
n

1 callers (that correspond

to the
n

1 lines provided to the worker). After the computation, the master

collects all the sub vectors and assigns them to the full vectors. The new
(updates) ones are then transferred to the workers for the next iteration.

Convergence check – performed by the master after each iteration.

6. References
[1] K. Dasgupta, R. Singh, B. Viswanathan, D. Chakraborty, S. Mukherjea, A. A. Nanavati, and A.
Joshi, “Social ties and their relevance to churn in mobile telecom networks,” in EDBT ’08:
Proceedings of the 11th international conference on Extending database technology. ACM, 2008,
pp. 668–677

[2] The PMLUser Guide with CGA and SNA

SNA - Group Analysis Algorithms

1. Introduction
This document describes the group analysis (GA) algorithm of TABI. A more
comprehensive description of the scientific ideas behind the algorithm can be found
in [1]. The algorithm gets as input records of interaction between pairs of individuals.
For the sake of this document we will assume that these are Call Details Records
(CDRs). The algorithm then outputs the following objects:

(1) a graph of individuals in which each edge denotes an alleged strong relation
between a pair of individuals. This graph is the core of the social network that
the algorithm outputs;
(2) a partition of the social network into disjoined reference groups.
(3) A set of basic key performance indices (KPIs) per each group.
(4) A set of basic key performance indices per each individual.

By this the algorithm extracts social relationships, social structures, and social
features of groups and individuals. The algorithm is composed of several phases. We
will describe the logic behind them as well as the various parameters that governs
each one of these steps. Most of the phases of the algorithm are computed in parallel
over the Parallel Machine Learning toolbox (PML) [2]. We also briefly describe the
parallelization schema as well.

2. Input, Output, and Parameters
In general, the input for TABI is the output of the loader [3] which can be comprised
from a single or multiple files. The output is composed of two comma separated files
including the basic KPIs of the groups and individuals in the network. Another file
containing the kernel relations can be output if the appropriate parameter in the
kernel section is turned on (see Section 3.1).

2.1 Running the Algorithm from a Command Line
Running the algorithm from the command line can be done via one the following
commands:

Single core, single partition
“Pmlexec” <param-file> <loader-outfile> <model.xml>

Multiple cores
mpiexec -n <ncpus> <pmlexec> <param-file> <loader-outfile> <model.xml>

Multiple partitions
 Suppose the loader output file name is foo.out

– It will generate output files called foo.out.0 etc. and well as
foo.out.0.info etc.

 Copy foo.out.0.info to foo.out.info
 Run the GA using foo.out

– The multiple training file option in the parameter file should be on

2.2 Basic information flow
The information flow of TABI is depicted in the figure below. The CDRs are collected
and presented either in a directory or in a single file of CDRs. They are processed by
the TABI loader into either a single binary file in which the most recent calls are kept
for each caller, or into a collection of such files, such that at each file about 1/n
fraction of the callers are represented where n denotes the number of loader
partitions. The loader’s output then serves as an input for the GA algorithm that
produces the group and individual KPIs. These can then be used by various
applications.

2.3 Sample Parameter File
The file below is an example of a complete parameter file for the GA algorithm. The
file adheres to an XML format, contains a general section, and an inner section is
referring to the kernel parameters.

3. The Various Stages of the Algorithm

3.1 Building the Kernel Graph
The goal of this stage is to build a graph of individuals in which an edge denotes an
alleged strong relationship between pairs of individuals. In a nutshell, the algorithm
defines two individuals as related if (1) They have interacted; and (2) They interacted
with similar people. The actual kernel building is done using the following process:

1. Quantifying the relationships between every pair of individuals who have
interacted.

2. Constructing the kernel graph from only the strong relations.

In order to quantify the relations, we define the following metric. We assign to each
caller i, a vector of its recent called numbers. The length of this vector is governed by
a TABI loader [4] parameter called CyclicTableSize. For each pair i and j that
interacted at least once, we define a probability space that is based on four events:
both called the same person k, both did not call k, i called k and j did not, and vice
versa. The mutual information is then measured on that space. A more elaborate
description of this metric is available [1]. In various experiments it was found superior
to more direct approaches. The actual computation of the TABI metric is depicted in
the figure below. The code can be found in the method:
IDMPBKernelFunctionFriends::ComputeKernel(.)

<PMLInput>
<AlgorithmName>CGA</AlgorithmName>
<MinClusterSize>1</MinClusterSize>
<MaxClusterSize>100</MaxClusterSize>
<OutputFileName>my_out.xml</OutputFileName>
<NumIterationsConnectingNodes>1</NumIterationsConnectingNodes>
<VerbosityLevel> 20 </VerbosityLevel>

<OutputFormat> CSV </OutputFormat>
<MultipleTrainFiles> True </MultipleTrainFiles>

<KernelParams>
<MultipleTrainFiles> True </MultipleTrainFiles>

<SparsityLevel>0.80</SparsityLevel>
<KernelType>Friends</KernelType>
<NormalizingFactor>50000000</NormalizingFactor>

</KernelParams>
</PMLInput>

Given the SparsityLevel parameter s, let p = 1-s. Next, the goal is to construct a
graph containing as edges only the highest p-fraction of the edges in terms of the
quantification above. Due to the distributed nature of the algorithm, each processor
(worker) holds its own part of the computed relations and we do not want it to
communicate this large amount of data further. Therefore, the graph construction is a
twofold process. First, each worker samples its own edges, computes a threshold
value t such that only p fraction of the edge weights are above this threshold (p-
percentile). These values are then averaged by the master node to compute a
common threshold t*. Next, each worker broadcasts back to the master all the edges
in the graph which are above t*. It should be noted that the resulted kernel graph in
undirected.

Kernel Parameters
The parameters below belong to the kernel section of the parameter file.

Nu
m

Parameter name Description Data
type

Defa
ult
value

Data
range

Restriction

1 MultipleTrainFiles True if multiple
partitions were used by
the loader

int 0 0,1

2 KernelVerbosity Controls the amount of
kernel printouts

int 1 1 - 100 Should be a small
number
(EndConditionValue
<< 1)

3 KernelType Type of the kernel
metric

string Frien
ds

Must be Friends

4 OutputFileName If on, The algorithm will
output the kernel graph
to that file, otherwise,
the graph will not be
output

string - -

5 NumberOfComputeIt
erations

If greater than 1, the
kernel computation will
be done in several
iterations

int 1 >0 Must be 1

6 NormalizingFactor Used in the
computation of the
metric. Recommended
to be at the same
ballpark as the size of
the population

doubl
e

50,00
0,000

> 0

Due to historical or future reasons, the other parameters are fixed. These include:
IsSparseKernel, isSparseData, IndicesData, EmptyMarker, and FilterSimilarities.

3.2 Building the Core Groups
Once the kernel graph is computed, the next step is to partition it into groups. These
are called the core groups or initial clusters. The algorithm partitions the kernel graph
using a BFS like process (with some high degree preference heuristic) for finding
connected components. A parameter called MaxClusterSize that governs the
maximum size of a cluster. The process stops adding to a group once its size limit
has been reached. The underlying assumption is that groups that are too small or
too large are not informative for various applications [1].

Relevant Parameters

Nu
m

Parameter name Description Data
type

Defa
ult
value

Data
range

Restriction

1 MinClusterSize Miminal cluster size int 1 >0

2 MaxClusterSize Maximal cluster size int 100 >
MinClu
sterSiz
e

3.3 Building the Final Groups: Linking Non Core Nodes
In order to increase the coverage of the social network we are building, the next step
that TABI takes is to add individuals who are not linked to any core group via the
following heuristic: For each such individual we go again over the call graph (not the
kernel). If a caller i called members of core clusters cluster c we will add it as a non-
core user to the cluster it called the most. This process will be done iteratively if the
parameter NumIterationsConnectingNodes is greater than 1. In this case, at each
phase j the heuristic above will be applied to the groups of iteration j-1. The whole
process is done in parallel so each worker responsible only to its own fraction of the
callers. Note that not all the callers end up in the social network. A caller who did not
communicate with any core group will be left out. There is an essential tradeoff
between the strength of the relations controlled by the sparsity threshold, the number
of connecting nodes iteration, and the coverage. As a rule of thumb, at least for churn
prediction, shooting for coverage of 50% – 75% is often desirable. The heuristics for
linking non core nodes is depicted below.
Linking a non-core member
For each caller i not already in the core

Let S1, S2, … Sl be the core groups to whom i called

If (l > 0)

Let k1, … ,kl denote the number of times I called each group

Let j = argmax kj
Add caller i to Sj as a non-core group member

Relevant Parameters

Nu
m

Parameter name Description Data
type

Defa
ult
value

Data
range

Restriction

1 NumIterationsConne
ctingNodes

The number of
iterations in which non-
cluster nodes will be
connected using the
above hueristic

int 1 >0

2 MaxClusterSize Maximal cluster size int 100 >
MinClu
sterSiz
e

3.4 Analyzing Social Influence in the Final Groups
The next stage is to perform a basic analysis on each group in order to extract basic
KPIs of groups and individuals. The analysis is done in parallel and on the call
graph.
The main analysis done at this stage is importance analysis on the call graph
projected into each group. This is essentially done via a random walk, once in the
direction of the calls to analyze authority leadership and once in the opposite
direction to analyze information spreading roles. A more elaborate description can be
found in [1].

3.5 Computing the Final KPIs
In the final stage of the algorithm, we go over all the clusters and individuals in the
social network and compute the final KPIs for them. Note that TABI outputs only
basic social KPIs. These can be enhanced using various techniques. More
specifically, individual demographics, usage, and other data can be aggregated (e.g.,
averaged) at the group level.

This stage is done serially on the master processor. The KPIs are then written into
two files, one for the clusters and one for the individual nodes. Note that only those
who appear in the final groups will have KPIs.

Relevant Parameters

Nu
m

Parameter name Description Data
type

Defa
ult
value

Data
range

Restriction

1 OutputFileName The name prefix of the
output file. The right
suffix will be appended
for it

string

2 OutputFormat Maximal cluster size string XML/C
SV/
Normal
/
Compa
ct

Fixed to CSV

4. Implementation Issues

4.1 Algorithm State Machine
The following state machine describes the algorithm presented above.

Circles represent states and edges represent the transitions between states. Dashed
edges represent transitions which are possible under some parameter combinations,
but are not common. The actual logic of the algorithm is complicated and should be
learned from the code. In the current implementation of TABI, the algorithm always
starts from the building kernel state.

4.2 Parallelization Model
The parallelization schema of the GA algorithm is based on the PML architecture [2].
For this section, it is assumed that the reader is familiar with the basic PML event
flow model.

The various stages of the GA algorithm are parallelized as follows:

Kernel computation
 Each worker is responsible to 1/n of the callers.

 Threshold computation: Each worker independently computes all the
relations of the form S(i,j) such that both i and j belong to its partition

 Kernel metric; Each worker computes all the relations of the form S(i,j) such
that I belongs to the worker’s partition and I called j. Note that in order to
accomplish that the worker must get all the calls matrix

Building the core groups
Done by the master. Not parallelized

Linking non core members
Each worker is responsible to about 1/n of the callers

Group analysis
At the beginning of this stage all workers have the same data and no data is
communicated via the PML. The parallelization is obtained via partitioning of the
group ids. Each worker i analyzes all the groups k such that (k modulo n) == i so
about 1/n fraction of the groups.

General note
The method getWorkerDataRequirements() of the IDMPBCGAData object defines to
the PML whether the worker needs to see all the data, just its own partition (1/n of
the callers), or no data. A similar method exists in the kernel object.

4.3 A Note on Time and Space Complexity
The most time and space consuming phase in the algorithm is the kernel building.
Let d denote the cyclic table size parameter of the loader. Roughly speaking, each
caller in the loader output graph contributes up to d computations of the kernel
metric. Each such computation involves going over to lists of length up to d. Thus,
the overall space complexity is about O(nd). TABI makes a heavy use of STL
containers which typically have a logarithmic complexity. Thus, the overall time is
about O(nd2 log(nd)). The actual time is heavily governed by the amount of page
swapping of the underlying machine. Thus, it is strongly recommended that each
core will be able to hold its own partition in the memory. As a rule of thumb, the
recommended architectural guidelines are as follows:
 At least one core per each 1M callers
 At least 2GBytes of RAM per each core

These guidelines refer to d = 100.

4.4 The GA Code
The main class that implements the GA algorithm is called IDMPBCGAData.
The computation of the kernel is delegated to a class called IDMPBKernelData with
some specific kernel functions that reside in a file called idmpb_kernel_functions.hpp.
The code of these classes can be found in a subdirectory named
src/lib/simple_algorithm.

5. References

[1] Yossi Richter, Elad Yom-Tov, Noam Slonim, Predicting customer churn in
mobile networks through analysis of social groups”, The Tenth SIAM
International Conference on Data Mining, SDM 2010

[2] The PML User Guide with CGA and SNA

[3] TABI Loader User Manual

Spatial Temporal Prediction Algorithms

1. Introduction
Spatio-temporal statistical analysis has many applications. For example, energy management for
buildings or facilities, performance analysis and forecasting for service branches, or public
transport planning. In these applications, measurements such as energy usage are often taken over
space and time. The key questions here are what factors will affect future observations, what can
we do to effect a desired change, or to better manage the system. In order to address these
questions, we need to develop statistical techniques which can forecast future values at different
locations, and can explicitly model adjustable factors to perform what-if analyses.

However, these analytical needs are not the focus of traditional spatio-temporal statistical research.
In traditional statistical research, spatio-temporal analysis is treated just as an extension of spatial
analysis and focuses more on looking for patterns in past data rather than forecasting future values.
The traditional spatio-temporal research targets different application areas such as environmental
research. There are, however, different types of spatio-temporal problems in which time is the key
component. We therefore need to treat spatio-temporal analysis as a unique type of problem itself,
not an extension to spatial analysis. Moreover, we need to explicitly model these factors to allow
for what-if analysis. Although these kinds of problems could be addressed by traditional methods,
the emphasis is quite different.

This algorithm assumes a fixed set of spatial locations (either point location or center of an area)
and equally spaced time stamps common across locations. It can issue predicted or interpolated
values at locations with no response measurements (but with available covariates). We call our
model spatio-temporal prediction (STP).

The goal of the STP algorithm is to address the needs for solving the spatio-temporal problems.
STP can generate predictions at any location within a 3D space for any future time. It also
explicitly models the external factors so we can perform what-if analysis.

1.1 Handling of missing data
The algorithm is designed to accommodate missing values in the response variable, as well as in
the predictors. We consider an observation at a given time point and location ‘complete’ if all
predictors and the response are observed at that time and location. To allow for model fitting in
spite of missing data, all of the following conditions must be met:

1. At each location, observations need to be complete for at least one sequence of at least
+ܮ 2 consecutive time points.

2. At each location ,௜ݏ for any pair of locations ,௝ݏ,௜ݏ ≠௝ݏ ,௜ݏ observations must be complete
at both locations simultaneously for at least two sequences of +ܮ 2 consecutive time
points.

Spatial Temporal Prediction Algorithms

3. Overall, at least ܮ sequences of at least +ܮ 2 consecutive time points must be present in
the data (to allow for estimation of .(ߙ

4. The total number of complete samples must be at least equal to ܦ + +ܮ 2, where ܦ is the
number of predictors, including the intercept, and ܮ the user-specified lag.

5. After removing locations according to the rules above, no more than 5% of the remaining
records should be incomplete. As an example, if after removing locations, ݊ locations and
݉ time stamps remain, no more than ݊× ݉ × .05 records should be incomplete.

The above conditions should be verified in the following order:

Step 1. Remove locations that do not meet condition 1.

Step 2. Remove locations that violate condition 2 in the following order:

(a) Let ℐ be the set of points that violate condition 2.

(b) Eliminate from the data set the observation(s) that violate condition 2 for the greatest
number of pairs. In case of a tie, remove all observations that are tied.

(c) Update ℐ by removing any observations that now no longer violate Condition 2.
That is, remove observation that only violated the condition 2 in a pair with the
observations that were removed in Step 2b.

(d) Iterate steps 2b and 2c until ℐ is empty.
Step 3. If after Steps 1 and 2, conditions 3-5 are violated, the model cannot be fit.

2 Model
2.1 Notation
The following notation is used for the model inputs:

Name Symbol Type Dimensions
Number of time stamps ݉ > ܮ integer 1
Number of measurement locations ݊≥ 3 integer 1
Number of prediction grid points ܰ integer 1
Number of predictors (including intercept) ܦ integer 1
Index of time stamps ∋ݐ {1, … ,݉ } integer 1
Spatial coordinates ∋ݏ ,ଵݏ} … ௝ݏ;{௡ݏ, = ᇱ(௝ݓ,௝ݒ,௝ݑ) vector 3 × 1

Targets observed at location ݏ and time ݐ ௧ܻ(ݏ) scalar 1
Targets observed at location ݏ (ݏ)ܻ vector ݉ × 1
Targets observed at time ݐ ௧ܻ vector ݊× 1
Predictors observed at location ݏ and time ݐ ܺ௧(ݏ) = (ܺ௧,ଵ(ݏ), … ,ܺ௧,஽(ݏ))ᇱ vector ܦ × 1

Predictors observed at location ݏ (ݏ)ܺ = (ଵܺ(ݏ), … ,ܺ௠ ᇱ((ݏ) matrix ݉ × ܦ
Predictors observed at time ݐ ܺ௧ = (ܺ௧(ݏଵ), … ,ܺ௧(ݏ௡))ᇱ matrix ݊× ܦ
Maximum autoregressive time lag <ܮ 0 integer 1
Length of prediction steps ܪ > 0 integer 1

Notes
i. For a predictor that does not vary over space, ܺ௧,ௗ(ݏଵ) = ܺ௧,ௗ(ݏଶ) = ⋯ = ܺ௧,ௗ(ݏ௡);

Spatial Temporal Prediction Algorithms

ii. For a predictor that does not evolve over time, ܺଵ,ௗ(ݏ) = ܺଶ,ௗ(ݏ) = ⋯ = ܺ௠ ,ௗ(ݏ).

The following notation is used for model definition and computation:

Name Symbol Type Dimension
Coefficient vector for linear model ࢼ = ,ଵߚ) … (஽ߚ, vector ܦ
Coefficient vector for AR model ࢻ = ,ଵߙ) … (௅ߙ, vector ܮ
Vector of 1’s 1 = (1, … ,1)ᇱ vector variable
Kronecker product ⊗ operator NA

2.1 Model structure

௧ܻ(ݏ) = ෍ ௗߚ

஽

ௗୀଵ

ܺ௧,ௗ(ݏ) + ௧ܼ(ݏ) (1)

where ௧ܼ(ݏ) is mean-zero space-time correlated random process. Users can specify whether an
“intercept” term needs to be included in the model. The inference algorithm works with general
“continuous” variables, and with or without intercept.

 Autoregressive model, AR(ܮ) for time autocorrelation (Brockwell and Davis, 2002):

௧ܼ(ݏ) = ෍ ௟ߙ

௅

௟ୀଵ

௧ܼି ௟(ݏ) + ௧߳(ݏ) (2)

Note that users need to specify the maximum AR lag .ܮ

Let ௧߳ = (௧߳(ݏଵ), … , ௧߳(ݏ௡))ᇱ be the AR residual vector at time .ݐ Since the time autocorrelation
effect has already been removed, ௅߳ାଵ, … , ௠߳ are independent.

 Parametric or nonparametric covariance model for spatial dependence:
ܸ(௧߳) = Σௌ,ݐ= +ܮ 1, … ,݉ (3)

where Σௌ = ௜,௝ୀଵ,…,௡{(௝ݏ,௜ݏ)ܴ} is a ݊× ݊ covariance matrix of spatial covariance functions
(ᇱݏ,ݏ)ܴ =)ݒ݋ܥ ௧ܻ(ݏ), ௧ܻ(ݏ

ᇱ)) at observed locations. Two alternative ways of modeling the spatial
covariance function (௝ݏ,௜ݏ)ܴ are implemented - a variogram-based parametric model (Cressie,
1993) and a Empirical Orthogonal Functions (EOF)-based nonparametric model (Cohen and
Johnes, 1969; Creutin and Obled, 1982).

Note that users can specify which covariance model to be used.
 If a “parametric model” is chosen, the algorithm will automatically test for the

goodness-of-fit. If the test suggests a parametric model is not adequate, the algorithm
switch to EOF model fitting and issue prediction based on EOF model.

 If a EOF model is chosen, the switching test part will be skipped, and both model fitting
and prediction will follow EOF-based algorithm.

Under this model decomposition, the covariance structure for the spatio-temporal process
ܻ = (௅ܻାଵ

ᇱ , … , ௠ܻ
ᇱ)ᇱ is of separable form

ܸ(ܻ) = ܸ(ܼ) = Σ = Σ்⊗Σௌ (4)
where Σ் = ߛ்} −ݐ) ᇱ)}௧ୀ௅ାଵ,…,௠ݐ ;௧ᇲୀ௅ାଵ,…,௠ is the (݉ − (ܮ × (݉ − (ܮ AR(L) covariance

Spatial Temporal Prediction Algorithms

matrix with the autocovariance function.

3 Estimation algorithm
This section provides details on the multi-step procedure to fit the STP model (see Figure 1) when
the user specifies a “parametric model”. If an “empirical model” is specified, the switching test
part will be skipped, and both model fitting and prediction follows EOF-based algorithm.

Figure 1. Flowchart of algorithm steps for model fitting when a “parametric model” is specified.

Step 1: Fit regression model by ordinary least squares (OLS) regression using only observations
that have no missing values (see Section 3.1).

We first ignore the spatio-temporal dependence in the data and simply estimate the fixed
regression part by OLS and obtain the regression residuals ௧ܼ(ݏ).

Step 2: Fit autoregressive model using only data without missing values (see Section 3.2).

Ignoring spatial dependence in OLS residuals ௧ܼ(ݏ), we estimate autoregressive

Spatial Temporal Prediction Algorithms

coefficients by fitting the regression model (2) and obtain the AR residuals ௧߳(ݏ).
Step 3: Fit spatial covariance model and test for goodness of fit on data without missing values

(see Section 3.3).

We fit a parametric spatial covariance model. We perform two Goodness of Fit tests to
decide whether to continue with the parametric covariance model or the empirical
covariance matrix.

Step 4: Refit autoregressive model using augmented data (see Section 3.4).

We refit autoregressive model accounting for spatial dependence by generalized least
squares (GLS) and obtain improved AR coefficients .ߙ

Step 5: Refit Regression model using augmented data (see Section 3.5).

We obtain improved regression coefficients ߚ by GLS to account for spatio-temporal
correlation in the data.

Step 6: Save the results for use in output and prediction.

3.1 Fit regression model
We first ignore the spatio-temporal dependence in the data and simply estimate the fixed
regression part by OLS. Assume that out of ݊݉ location-time combinations, ݍ samples have
missing values in either ܺ or ܻ. Let ܻ = (ଵܻ

ᇱ, … , ௠ܻ
ᇱ)ᇱ, a (݊݉ − (ݍ × 1-vector and�ܺ =

(ଵܺ
ᇱ, … ,ܺ௠

ᇱ)ᇱ, a (݉݊− (ݍ × ܦ matrix, such that ܺ and ܻ contain only complete observations,
i.e., observations without any missing values. The OLS estimates of the regression coefficients
are:

෡ࢼ = (ܺᇱܺ)ିଵܺᇱܻ (5)

The residuals are:
መܼ= ܻ− .෡ࢼܺ (6)

3.2 Fit autoregressive model
We estimate autoregressive coefficients by OLS assuming no spatial correlation and AR(L) as
model for time-series autocorrelation,

መܼ
௧ = ଵߙ መܼ௧ି ଵ + ⋯+ ௅ߙ መܼ௧ି ௅ + ௧ࣕ, (7)

where መܼ
௧ is a ௧݊× 1 vector. Note that due to the existence of missing values, the number of

locations ௧݊ varies among different time points. Moreover, for each time points t, only locations
with no missing values at +ܮ 1 consecutive time points, i.e., −ݐ,ݐ) 1,… −ݐ, (ܮ can be used for
model fitting, therefore, ∑ ௧݊

௠
௧ୀ௅ାଵ ≤ [(݊݉ − (ܮ − .[ݍ

Step 1: Construct ௧݊× ܮ time lag matrix
መܼ
௧ି ௟௔௚ = ൫ܼመ௧ି ଵ, መܼ௧ି ଶ, … , መܼ௧ି ௅൯,ݐ= +ܮ 1, … ,݉ (8)

Step 2: Let መܼ
௟௔௚ = ൫ܼመ௅ାଵି௟௔௚

ᇱ , … , መܼ௠ ି௟௔௚
ᇱ ൯

ᇱ
and መܼ∗ = ൫ܼመ௅ାଵ

ᇱ , … , መܼ௠
ᇱ൯

ᇱ
. Solve the linear system

൫ܼመ௟௔௚
ᇱ መܼ

௟௔௚൯ࢻ = መܼ
௟௔௚
ᇱ መܼ∗ (9)

Spatial Temporal Prediction Algorithms

which is equivalent to solving

൭ ෍ መܼ
௧ି ௟௔௚
ᇱ መܼ

௧ି ௟௔௚

௠

௧ୀ௅ାଵ

൱ࢻ = ෍ መܼ
௧ି ௟௔௚
ᇱ መܼ

௧

௠

௧ୀ௅ାଵ

(10)

using the sweep operation to find estimate .ොߙ
Step 3: Compute the de-autocorrelated AR(L) residuals

ො߳ݐ= ෡ܼ
−ݐ ෝ1ߙ

෡ܼ
1−ݐ −⋯− =ݐ,ܮ−ݐ෡ܼܮෝߙ +ܮ 1, … ,݉ (11)

3.3 Fit model and check goodness of fit for spatial covariance
structure

We explicitly model the spatial covariance structure among locations, rather than using variogram
estimation.

Under the assumption of the model (stationarity, AR-relationship removed), the mean of the
residuals is 0 at all locations. We therefore estimate the unadjusted empirical covariances ௜௝ݏ and
correlations ௜௝ݎ assuming mean 0, i.e.,

=ࡿ ௜௝൧௜,௝ୀଵ,…,௡ݏൣ
௜௝ݏ, =

1

௜௝ݐ
෍ ߳̂௧(ݏ௜)߳̂௧൫ݏ௝൯

௧

(12)

where ௜௝ݐ is the number of complete residual pairs between locations ௜ݏ and ,௝ݏ and ݐ indexes
these pairs, i.e., the time points for which both Ƹ߳௧(ݏ௜) and Ƹ߳௧()݆ are non-missing.

௜௝ݎ =
௜௝ݏ

ඥݏ௜௜ݏ௝௝
(13)

To determine whether to model the spatial covariance structure parametrically or to use the
nonparametric EOF model, we perform the following two tests sequentially:

1. Fit parametric model to covariances using the parameter vector ࣒ = (ଶ߬,ߠ,ଶߪ) (Cressie
1993)

൫߳ݒ݋ܥ ௧(ݏ௜), ௧߳൫ݏ௝൯; ෠߰൯= ቊ
ොଶߪ ൫−൫ℎ௜௝݌ݔ݁ ⁄෠ߠ ൯

௣
൯, ݂݅ ℎ௜௝ > 0;

ොଶߪ + ߬̂ଶ, ℎݐ݋ ݓݎ݁ ݏ݅݁ .

� (14)

where ℎ௜௝ = ฮݏ௜− ௝ฮଶݏ is the Euclidean distance between locations ௜ݏ and .௝ݏ Users
need to specify the values for the order parameter .݌

݌ ∈ [1, 2] is a user-defined parameter that determines the class of covariance models to be
fit. =݌ 1 corresponds to an exponential covariance model, =݌ 2 results in a Gaussian
covariance model and ݌ ∈ (1, 2) belongs to the powered exponential family.

Next, determine if there is a significant decay over space by testing :଴ܪ − 1 ⁄௣ߠ ≥ 0. If we
fail to reject ,଴ܪ we conclude that the decay over space is not significant, and EOF
estimation will be used. If EOF estimation is used, there is not need to calculate ,ߠ ߪ or ,߬
as we have concluded that they are invalid descriptions of the covariance matrix. In fact,
there may not be valid solutions for these parameters, therefore they should not be

Spatial Temporal Prediction Algorithms

estimated.

2. If the previous test rejects ,0ܪ test for homogeneity of variances among locations: if
homogeneity of variances is rejected, EOF estimation will be used. Otherwise, the
parametric covariance model will be used.

3.3.1 Fit and test parametric model

a) Enforce a minimum correlation of +.01: if >݆ݎ݅ .01, set =݆ݏ݅ .01ඥ݅ݏ ݆ݏ݆݅ and =݆ݎ݅ .01.

b) Let ࢙ be the vectorized lower triangular of the covariance matrix (excluding the diagonal, i.e.,
excluding variances), ࢘ be the vectorized lower triangular of the correlation matrix (excl.
diagonal), and ࢎ the corresponding vector of pairwise distances between the ݊ locations. ࢘,࢙
and ࢎ are each vectors of length (݊݊− 1) 2⁄ .

Define ߮ = −1 ⁄௣ߠ . Fit the linear model ln࢙�= lnߪ�ଶ + ௣ࢎ߮ using a GLS fit:

࡭ = [௣ࢎ,1] (15)

ଵିࢂ =
1

2
−ଵି࡮)ࢀ ܾܿ ࢀ(ܾ′ (16)

where࢈ = ଶ࢘2 (1 − ⁄(ଶ࢘ , 2࢘ is obtained by squaring each element of vector ,࢘ 1−࡮
=

diag(࢈), and scalar ܿ= 1 (1 + ૚′ି࡮ଵ૚)⁄ . Also, let ࢀ = diag ඥൣݐ௞൧,݇= 1, … , (݊݊− 1) 2⁄ ,
where ௞ݐ is the number of pairs of de-autocorrelated residuals in the calculation of the
corresponding element ௞ݎ in ,࢘ i.e., the number of observations pairs that went into
calculating ,௞ݎ which may be different for each entry of the covariance matrix, depending on
missing values. Note that ௞ݐ corresponds to the vectorized lower triangular of ݐൣ݅ ൧݆

,݅ =݆1,…,݊
,

where ݆ݐ݅ are as defined in (12).

Let ࣁ = (lnߪ�ଶ,߮), the GLS estimator can be calculated as

ෝࣁ = ቀࢂ′࡭−૚࡭ቁ
−1
࢙�1ln−ࢂ′࡭

The standard error for ෝࣁ will be ݏ݁ (ෝࣁ) = ඥdiag[(ିࢂ′࡭૚࡭)ିଵ].

Calculate the test statistic 1ݖ =
ෝ߮

ݏ݁ (ෝ߮)
. If 1ݖ ≥ ,05.ݖ where 05.ݖ is the .05 quantile of the standard

normal distribution (or critical value for selected level of significance ,(1ߛ then all following
calculations will be performed using the empirical spatial covariance matrix, i.e., Σࡿ = ,ࡿ and
the nonparametric EOF model will be used for prediction. Equivalently, a p-value 1݌ can be
calculated by evaluating the standard Normal cumulative distribution function (CDF) at 1ݖ

(i.e., 1݌ = ܲ(ܼ < .((1ݖ If 1݌ ≥ level of significance ,1ߛ then all following calculations will be
performed using the empirical covariance matrix.

c) If the previous test does reject ଴ܪ (i.e., we have not yet decided to continue with the empirical
covariance matrix), continue to perform the following test: Let =ݒ ,ଶଶݏ,ଵଵݏ) … ′(௡௡ݏ, be the
(݊× 1)-vector of location-specific variances. Calculate the weighted mean variance ҧݒ

=ݒ̅ ࢃ1′ ିଵݒ ࢃ1′) ିଵ1)⁄ = ࢃ1′ ିଵݒ ෍ ݓ ݆݅
∗

௜,௝

൘ (17)

Spatial Temporal Prediction Algorithms

where ࢃ = =௜௝൧ݓൣ ௜௝ݏൣ
ଶ ௜௝ൗݐ ൧

௜,௝ୀଵ,…,௡
is an ݊× ݊ matrix, where ݆ݐ݅ is defined as in (12), and

ࢃ −1
= ௜௝ݓൣ

∗ ൧
,݅ =݆1,…,݊

.

Calculate the test statistic 2ݖ = −࢜) ࢃ′(ഥݒ −࢜)1− .(ഥݒ If 2ݖ ≥ ௡߯ିଵ,.ଽହ
ଶ (or critical value for

[1 − selected level of������ϐ�����,([ଶߛ�� all following calculations will be performed using
the empirical spatial covariance matrix, i.e., Σࡿ = ,ࡿ and the nonparametric EOF model will
be used for prediction. Equivalently, one may compute a p-value 2݌ by evaluating 1 minus the
௡߯ିଵ
ଶ − CDF:2݌ = ܲ(௡߯ିଵ

ଶ > .(2ݖ If 2݌ < level of������ϐ�����,2ߛ�� then all following
calculations will be performed using the empirical spatial covariance matrix.

d) If the two tests in b) and c) do not indicate a switch to the EOF model, all following
calculations will be performed using the parametric covariance model, i.e., the spatial
covariance matrix ௌߑ is constructed according to (14). Recall that =ߟ (݈݊ ,ଶߪ� − 1 ⁄௣ߠ). The
missing parameter ߬ଶ is derived as ଶ߬෢ = ,ቄ0ݔܽ݉

ଵ

௡
∑ ௜௜௜ୀଵ,…,௡ݏ − ଶ෣ߪ�݈݊ൣ݌ݔ݁ ൧ቅ.

3.4 Re-fit autoregressive model
We refit the autoregressive model accounting for spatial dependence using GLS with augmented
data:

Step 1: Compute the Cholesky factorization ઱ௌ = ௌࡴௌࡴ
ᇱ and the inverse matrix ࡿࡴ

ᇱ.

Step 2: Substitute 0 for missing values such that ݈ܽ−ݐ෡ࢆ ,݃݅݉ ݐ݁ݑ݌ is an ݊× ܮ matrix and ݉݅,ݐ෡ࢆ ݐ݁ݑ݌ is
a vector of length .݊

Step 3: Augment predictor matrix as follows. Let
෡݈ܽࢆ ,݃݅݉ ݐ݁ݑ݌ = ቀࢆ෡1+ܮ−݈ܽ ,݃݅݉ ݐ݁ݑ݌

′
, … ݈ܽ−෡݉ࢆ, ,݃݅݉ ݐ݁ݑ݌

′
ቁ′ be a (݊݉ − (ܮ × ܮ matrix and

෡݅݉ࢆ ݐ݁ݑ݌ = ቀࢆ෡1+ܮ,݅݉ ݐ݁ݑ݌
′

, … ෡݉ࢆ, ,݅݉ ݐ݁ݑ݌
′

ቁ′ is a vector of length (݊݉ − ,(ܮ then

෡݈ܽࢆ ݃ݑܽ݃, = ൫ࢆ෡݈ܽ ,݃݅݉ ݐ݁ݑ݌ , … , ۷ܼ݉ ൯ݏݏ݅

where ۷௓௠ ௜௦௦ is a (݊݉ − (ܮ × ௓ݍ indicator matrix given ௓ݍ the total number of rows
with missing values in either ∗෡ࢆ or .෡௟௔௚ࢆ If there is a missing value in the ith row of either
∗෡ࢆ or ,෡௟௔௚ࢆ and if this is the jth out of all ௓ݍ rows that have missing values, then the jth
column of ۷௓௠ ௜௦௦ is all 0 except for the ith element, which is set to 1.

Step 4: Remove the spatial correlation: ෩௧ିࢆ ௟௔௚,௔௨௚ = ௌࡴ
ିଵࢆ෡௧ି ௟௔௚,௔௨௚ and ෩௧,௜௠ࢆ ௣௨௧௘ =

ௌࡴ
ିଵࢆ෡௧,௜௠ ௣௨௧௘, where ݈ܽ−ݐ෡ࢆ ݃ݑܽ݃, are the submatrices of ෡݈ܽࢆ ݃ݑܽ݃, that correspond to the

rows of the matrices ݈ܽ−ݐ෡ࢆ ,݃݅݉ ݐ݁ݑ݌ .

Step 5: Use the same computational steps as for the linear system in equation (10) to solve the
linear system

൭ ෍ ෩௧ିࢆ ௟௔௚,௔௨௚
ᇱ

෩௧ିࢆ ௟௔௚,௔௨௚

௠

௧ୀ௅ାଵ

൱ࢻ௔௨௚ = ෍ ෩௧ିࢆ ௟௔௚,௔௨௚
ᇱ ෩௧,௜௠ࢆ ௣௨௧௘

௠

௧ୀ௅ାଵ

(18)

where ௔௨௚ࢻ is a vector of length +ܮ ,௓ݍ and there are ∗ܮ + ௓ݍ
∗ non-redundant

Spatial Temporal Prediction Algorithms

parameters in above linear system. The AR coefficient estimate ෝࢻ is the subvector
consisting of the first ܮ elements of ,ෝ௔௨௚ࢻ there are ∗ܮ non-redundant parameters in first
ܦ elements of ,ෝ௔௨௚ࢻ and ∗௓ݍ non-redundant parameters in last ௓ݍ elements of .ෝ௔௨௚ࢻ

3.5 Re-fit Regression model
Refit regression model by GLS using augmented data to account for spatio-temporal correlation in
the data.

Step 1: Substitute the following for missing values such that ௜௠ࢄ ௣௨௧௘ is a ݊݉ × ܦ matrix and
௜௠ࢅ ௣௨௧௘ is a vector of length ݊݉ : at location ,௜ݏ use the mean of (௜ݏ)ࢅ and the mean of
each predictor in .(௜ݏ)ࢄ

Step 2: Augment predictor matrix as follows.

௔௨௚ࢄ = ൫ࢄ௜௠ ௣௨௧௘,ࡵ௑௠ ௜௦௦൯

where ۷௑௠ ௜௦௦ is a ݊݉ × ݍ indicator matrix given ݍ the total number of rows with
missing values in either ࢄ or .ࢅ If there is a missing value in ith row of either ࢄ or ,ࢅ and
if this is the jth out of all ݍ rows that have missing value, then the jth column of ۷௑௠ ௜௦௦ is
all 0 except for the ith element, which is 1.

Step 3: Remove the spatial correlation: ෩௧,௔௨௚ࢄ = ௌࡴ
ିଵࢄ௧,௔௨௚ and ෩௧,௜௠ࢅ ௣௨௧௘ = ௌࡴ

ିଵࢅ௧,௜௠ ௣௨௧௘.

Step 4: Remove the autocorrelation:

݃ݑܽ,ݐෙࢄ = −݃ݑܽ,ݐ෩ࢄ −⋯−݃ݑܽ,1−ݐ෩ࢄෝ1ߙ ,ܮ−ݐ෩ࢄܮෝߙ =ݐ,݃ݑܽ +ܮ 1, … ,݉ (19)

݉݅,ݐෙࢅ ݐ݁ݑ݌ = ݉݅,ݐ෩ࢅ ݐ݁ݑ݌ − ݉݅,1−ݐ෩ࢅෝ1ߙ ݐ݁ݑ݌ −⋯− ݉݅,ܮ−ݐ෩ࢅܮෝߙ ݐ݁ݑ݌ =ݐ, +ܮ 1, … ,݉ (20)

Step 5: Solve the linear system

൫ࢄෙ௔௨௚
ᇱ

௔௨௚ࢼෙ௔௨௚൯ࢄ = ෙ௔௨௚ࢄ
ᇱ

ෙ௜௠ࢅ ௣௨௧௘ (21)

where ෙ݅݉ࢅ ݐ݁ݑ݌ = ൫ࢅෙ1+ܮ,݅݉ ݐ݁ݑ݌
′ , … ෙ݉ࢅ, ,݅݉ ݐ݁ݑ݌

′ ൯′, an (݊݉ − (ܮ × 1-vector and ݃ݑෙܽࢄ =

൫ࢄෙ1+ܮ, ݃ݑܽ
′ , … ෙ݉ࢄ, , ݃ݑܽ

′ ൯′, a (݊݉ − (ܮ × ܦ) + (ݍ matrix, ௔௨௚ࢼ is a vector of length ܦ + ,ݍ
and there are ∗ܦ + ∗ݍ non-redundant parameters in above linear system. The regression
coefficients estimate ෡ࢼ is the subvector consisting of first ܦ elements of ,෡௔௨௚ࢼ there are
∗ܦ non-redundant parameters in first ܦ elements of ,෡௔௨௚ࢼ and ∗ݍ non-redundant
parameters in last ݍ elements of .෡௔௨௚ࢼ

3.6 Statistics to display

3.6.1 Goodness of Fit statistics

We present statistics referring to the three main elements of the model: the mean structure, the
spatial covariance structure, and the temporal structure.

1. Goodness of fit mean structure model :ࢼࢄ

Spatial Temporal Prediction Algorithms

Let ࣫ be the set of observations (௧ܻ(ݏ),ࢄ௧(ݏ)) that have missing values in either ௧ܻ(ݏ) or
.(ݏ)௧ࢄ Note that ݍ has been defined as the number of observations in ࣫.

Calculate the mean squared error (MSE) and an ܴଶ statistic based only on complete
observations:

MSE = ෍ ൫ܻ ௧(ݏ) − ෠ܻ
௧(ݏ)൯

ଶ
(݊݉ − −ݍ ൗ(∗ܦ

௦∈{௦భ,…,௦೙};
௧ୀଵ,…,௠ ;
௒೟(ࡿ)∉࣫

(22)

ܴଶ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

1 − ෍ ൫ܻ ௧(ݏ) − ෠ܻ
௧(ݏ)൯

ଶ

௦∈{௦భ,…,௦೙};
௧ୀଵ,…,௠ ;
௒೟(ࡿ)∉࣫

෍ ௧ܻ(ݏ)ଶ

௦∈{௦భ,…,௦೙};
௧ୀଵ,…,௠ ;
௒೟(ࡿ)∉࣫

൚ , if there is no intercept

1 − ෍ ൫ܻ ௧(ݏ) − ෠ܻ
௧(ݏ)൯

ଶ

௦∈{௦భ,…,௦೙};
௧ୀଵ,…,௠ ;
௒೟(ࡿ)∉࣫

෍ (௧ܻ(ݏ) − തܻ
௧(ݏ))ଶ

௦∈{௦భ,…,௦೙};
௧ୀଵ,…,௠ ;
௒೟(ࡿ)∉࣫

൚ , if there is an intercept

� (23)

where ෠ܻ
௧(ݏ) = ௧ࢄ

ᇱ(ݏ)ࢼ, ∗ܦ is the number of non-redundant parameters of re-fitted
regression in first ܦ elements of ,෡௔௨௚ࢼ and തܻ

௧(ݏ) is the mean of ܻ only on complete
observations. Note that for this calculation the original (untransformed) observations ࢅ and
covariates ࢄ are used. Alternatively, we can calculate the adjusted ܴଶ

ܴ௔ௗ௝
ଶ = 1 −

݊݉ − ݍ

݊݉ − −ݍ ∗ܦ
(1 − ܴଶ) (24)

2. Goodness of fit for AR model:

Present t-tests for AR parameters based on variance estimates in item 3 in Section 3.6.2.

3. Goodness of fit of spatial covariance model:

Present the test statistics listed in item 5 in Section 3.6.2.

3.6.2 Model and parameter estimates

The following information should be displayed as a summary of the model:

1. Model coefficients ෝࢻ�,෡ࢼ obtained in Sections 3.4 and 3.5

2. Standard errors of elements of ࢼ based on ܸ൫ࢼ෡൯, the covariance matrix of ,෡ࢼ which is the
upper ܦ × ܦ submatrix of�ܸ ൫ࢼ෡௔௨௚൯:

Spatial Temporal Prediction Algorithms

ܸ൫ࢼ෡௔௨௚൯=
ܵܵ ௘

݀ ௘݂
× ൫ࢄෙ௔௨௚

ᇱ
ෙ௔௨௚൯ࢄ

ିଵ
=
ܵܵ ௘

݀ ௘݂
× ൭ ෍ ෙ௧,௔௨௚ࢄ

ᇱ
ෙ௧,௔௨௚ࢄ

௠

௧ୀ௅ାଵ

൱

ିଵ

(25)

where
 ܵܵ ௘ = ∑ ൫ࢅෙ௜௠ ௣௨௧௘− ൫ࢅෙ௜௠ ௣௨௧௘൯

∗
൯
ଶ

ே
௜ୀଵ =)ǁ௒ෘ௒ෘݎ (݊݉ − (ܮ − 1)ܸ൫ࢅෙ௜௠ ௣௨௧௘൯,

- ൫ࢅෙ௜௠ ௣௨௧௘൯
∗
is the predicted value based on estimated ,෡ࢼ

- ǁ௒ෘ௒ෘݎ is corresponding element of ෙ௜௠ࢅ ௣௨௧௘ in the correlation matrix of re-fitted
regression after sweep operation,

- (݊݉ − (ܮ is number of transformed records used in equation (21) for re-fit
regression ,

- and ܸ൫ࢅෙ௜௠ ௣௨௧௘൯ is variance of ෙ௜௠ࢅ ௣௨௧௘.
 ݀ ௘݂ = (݊݉ − (ܮ − ,݌ and =݌ ∗ܦ + ∗ݍ is the number of non-redundant parameters

in re-fitted regression.

Based on these standard errors, t-test statistics and/or p-values may be computed and
displayed according to standard definitions and output scheme of linear models (please refer
to linear model documentation):

(a) For each element ௝ߚ of ෡ࢼ and the corresponding j-th diagonal element of ܸ൫ࢼ෡൯,

݆= 1, … ,ܦ, compute the t-statistic ௝ݐ = ௝ߚ ටܸ൫ࢼ෡൯
௝௝

ൗ

(b) The p-value corresponding to ௝ݐ is 2 × the value of the cumulative distribution function
of a t-distribution with ݊݉ − −ݍ ∗ܦ degrees of freedom, i.e., =௝݌ 2 ∙ ቀ1 −

ܲ൫ݐ௡௠ ି௤ି஽∗ ≤ หݐ௝ห൯ቁ.

Note that depending on the implementation of the GLS estimation in Section 3.5,
൫ࢄෙ௔௨௚

ᇱ
ෙ௔௨௚൯ࢄ

ିଵ
may have already been computed, in which case this expression does not

need to be recalculated.

3. Standard errors of ࢻ based on ,(ෝࢻ)ܸ the covariance matrix of ,ෝࢻ which is the upper ×ܮ ܮ

submatrix of ܸ൫ࢻෝ௔௨௚൯:

ܸ൫ࢻෝ௔௨௚൯=
ܵܵ ௘

∗

݀ ௘݂
∗

× ൭ ෍ ෩௧ିࢆ ௟௔௚,௔௨௚
ᇱ

෩௧ିࢆ ௟௔௚,௔௨௚

௠

௧ୀ௅ାଵ

൱

ିଵ

(26)

where

 ܵܵ ௘
∗ = ∑ ൫ܼ෨௧,௜௠ ௣௨௧௘− ൫ܼ෨௧,௜௠ ௣௨௧௘൯

∗
൯
ଶ

ே
௜ୀଵ =)ǁ௓෨௓෨ݎ (݊݉ − (ܮ − 1)ܸ൫ܼ෨௧,௜௠ ௣௨௧௘൯,

- ൫ܼ෨௧,௜௠ ௣௨௧௘൯
∗
is the predicted value based on estimated ොߙ and ෨ܼ

௧ି ௟௔௚,௔௨௚

- ǁ୞෩୞෩isݎ corresponding element of ෨ܼ
௧,௜௠ ௣௨௧௘ in the correlation matrix of re-fitted

autoregressive model after sweep operation,
- (݊݉ − (ܮ is number of transformed records used in equation (18) for re-fit

autoregressive,

Spatial Temporal Prediction Algorithms

- and ܸ൫Z෨୲,୧୫ ୮୳୲ୣ ൯ is variance of ෨ܼ
௧,௜௠ ௣௨௧௘.

 ݀ ௘݂
∗ = (݊݉ − (ܮ − ,஺ோ݌ and ஺ோ݌ = ∗ܮ + ௓ݍ

∗ is the number of non-redundant
parameters in re-fitted autoregressive model.

Based on these standard errors, t-test statistics and/or p-values may be computed and
displayed according to standard definitions and output scheme of linear models.

(a) For each element ௝ߙ of ෝࢻ and the corresponding -݆th diagonal element of ,(ෝࢻ)ܸ
݆= 1, … ,ܮ, compute the t-statistic ௝ݐ = ௝ߙ ඥܸ(ࢻෝ)௝௝⁄

(b) The p-value corresponding to ௝ݐ is 2 ×the value of the cumulative distribution function
of a t-distribution with ∑ ௧݊− ௠∗ܮ

௧ୀଵ degrees of freedom, i.e., =௝݌ 2 ∙ ቀ1 −

ܲ൫ݐ∑ ௡೟ି ௅∗೘
೟సభ

≤ หݐ௝ห൯ቁ.

4. Indicator of which method has been automatically chosen to model spatial covariances,
either empirical covariance (EOF) or parametric variogram model.

5. Test statistics from goodness of fit tests for parametric model:

- Test statistic ,ଵݖ p-value ,ଵ݌ level of significance ଵߛ used for automated test for fit of
slope parameter

- Test statistic ,ଶݖ p-value ,ଶ݌ level of significance ଶߛ used for testing homogeneity of
variances

6. Parametric covariance parameters ෡࣒ if parametric model has been chosen

3.6.3 Tests of effects in Mean Structure Model (Type III)

For each effect specified in the model, type III test matrix L is constructed and ߚ௜ܮ:଴ܪ = 0 is
tested. Construction of type III matrix L as well as generating estimable function (GEF) is based on
the generating matrix ܪ , which is the upper ܦ × ܦ submatrix of ൫ܺෘ௔௨௚ᇱ ෘܺ

௔௨௚൯
ିଵ ෘܺ

௔௨௚
ᇱ ෘܺ

௔௨௚ , such
that ߚ௜ܮ is estimable. It involves parameters only for the given effect. For type III analysis, L does
not depend on the order of effects specified in the model. If such a matrix cannot be constructed,
the effect is not testable.

Then the L matrix is then used to construct the test statistic

ܨ =
መߚܮଵି(′ܮߑܮ)′ܮ′መߚ

௖ݎ

where

 መߚ is the subvector of the first D elements of መ௔௨௚ߚ obtained in Step 5 of Section 3.5,
 ௖ݎ = ݎܽ ݊ ,(ᇱܮߑܮ݇)
 ߑ is the covariance matrix of ,መߚ which is the upper ܦ × ܦ submatrix of ܸ൫ߚመ௔௨௚൯ defined

in equation (25).

The statistic has an approximate F distribution. The numerator degrees of freedom ݀ 1݂ is ௖ݎ and
the denominator degrees of freedom ݀ 2݂ is ݊݉ − −ݍ ,∗ܦ where ∗ܦ is the number of

Spatial Temporal Prediction Algorithms

non-redundant parameters in the first ܦ parameters of refitted regression model obtained in
Section 3.5. Then the p-values can be calculated accordingly.

An additional test also should be computed, which is similar to “corrected model” if there is an
intercept or “model” if there is no intercept in ANOVA table in linear regression. Essentially, the
null hypothesis is regression parameters (except intercept if there is on) are zeros. The test statistic
would be the same as the above F statistic except the L matrix is from GEF. If there is no intercept,
the L matrix is the whole GEF. If there is an intercept, the L matrix is GEF without the first row
which corresponds to the intercept.

Statistics saved for Test of effects in Mean Structure Model (including corrected model or model):

 F statistics
 ݀ 1݂

 ݀ 2݂

 p-value

3.6.4 Location clustering for spatial structure visualization

Large spatial covariance matrix or correlation matrix are not suitable to demonstrate the relation
among the locations. Grouping method, also called community detection or position analysis
(Wasserman, 1994), can be used to identify some representative location clusters. To simplify the
implementation, hierarchical clustering (Johnson, 1967) is used to detect clusters among locations
based on STP model spatial statistics.

Please note location clustering is only supported when empirical nonparametric covariance model
is used.

Given a set of n locations ,ଵݏ} … {௡ݏ, in STP to be clustered, and their corresponding spatial
correlation matrix ܴ, a n*n matrix, as the similarity matrix

ܴ = ௜௝൧௜,௝ୀଵ,…,௡ݎൣ

Given similarity threshold ߙ with default value 0.2, and ܰ஼ with default value 10, the process of
location clustering is described in following steps, which is based on the basic process of
hierarchical clustering.

Step 1. Initialize the clusters and similarities:

 Assign each location ௜ݏ to a cluster =݅)௜ܥ 1, … ,)݊. So that for n locations, the total
number of clusters ஼݊ = ݊ at the beginning, and each cluster has just one location,

 Define the set of clusters: ,ܥ
 Define similarity matrix

ܴ஼ = ௜௝ݎൣ
஼൧
௜,௝ୀଵ,…,௡

where the similarity ௜௝஼ݎ between the clusters ௜ܥ and ௝ܥ is the similarity ௜௝ݎ between
location ௜ݏ and .௝ݏ

Step 2. Find 2 clusters ௜ܥ and ௝ܥ in ܥ with largest similarity ,௜௝஼൯ݎ൫ݔܽ݉
If <௜௝஼൯ݎ൫ݔܽ݉ :ߙ

Spatial Temporal Prediction Algorithms

 Merge ௜ܥ and ௝ܥ into a new cluster 〈௜,௝〉ܥ to include all locations in ௜ܥ and ,௝ܥ
 Compute similarities between the new cluster 〈௜,௝〉ܥ and other clusters ௞ܥ ,݇≠ �݅ܽ݊݀�݆

௞,〈௜,௝〉ݎ
஼ = ݉ ݅݊ ൫ݎ௜௞

஼ ௝௞ݎ,
஼൯

 Update ܥ by adding ,〈௜,௝〉ܥ discarding ௝ܥ andܥ�௜. So ஼݊ = ஼݊ − 1.
 Update similarity matrix ܴ஼ by adding ௞,〈௜,௝〉ݎ

஼ , discarding ௜௞஼ݎ and ௝௞஼ݎ , go to step 3.

If ≥௜௝஼൯ݎ൫ݔܽ݉ ,ߙ go to step 4.

Step 3. Repeat step 2.

Step 4. For all the detected clusters with more than 1 location, compute following statistics:

 Cluster size: ஼݊೔
is the number of locations in ,௜ܥ

 Closeness:

௜݀=
1

஼݊೔
൫݊ ஼೔

− 1൯ 2⁄
෍ ,௞௟ݎ ∋௟ݏ,௞ݏ�∀ ݇�݀݊ܽ,௜ܥ ≠ .݈

Step 5. Define clusters for interactive visualization:

 :௖௟௢௦௘௡௘௦௦ܥ The first ܰ஼ clusters sorted by descending closeness ௜݀,
 :௦௜௭௘ܥ The first ܰ஼ clusters sorted by descending cluster size ஼݊೔

.

Step 6. Output the union for location cluster visualization:

∗ܥ = ∪௖௟௢௦௘௡௘௦௦ܥ ௦௜௭௘ܥ

Statistics saved for spatial structure visualization including:

1. Number of excluded locations during handling of missing data
2. Spatial correlation matrix ࡾ = ௜௝൧௜,௝ୀଵ,…,௡ݎൣ

3. Statistics of each output location cluster in :∗ܥ
 Closeness ௜݀

 Cluster size ஼݊೔

 Coordinates of locations in this cluster

3.7 Results saved for prediction
1. Model coefficients ,෡ࢼ ෝࢻ and the covariance estimate ܸ൫ࢼ෡൯ as defined in (25).

2. Transformed regression residuals and predictors of ܮ most recent observations for
prediction:

෱௠ࢆ ି௟ାଵ = ࡴ ′ௌ
ିଵࡴௌ

ିଵ൫ࢅ௠ ି௟ାଵ,௜௠ ௣௨௧௘− ௠ࢄ ି௟ାଵ,௔௨௚ࢼ෡௔௨௚൯,݈= 1, … ܮ, (27)

෱௠ࢄ ି௟ାଵ,௜௠ ௣௨௧௘ = ࡴ ′ௌ
ିଵࡴௌ

ିଵࢄ௠ ି௟ାଵ,௜௠ ௣௨௧௘,݈= 1, … ܮ, (28)

3. Indicator of which method has been chosen to model spatial covariances, either empirical

Spatial Temporal Prediction Algorithms

covariance (EOF) or parametric variogram model.

4. Parametric covariance parameters ෠߰ if parametric model has been chosen.

5. Coordinates of locations .ݏ

6. Number of unique time points used for model build, ݉ .

7. Number of records with missing values in the data set used in model building, .ݍ

8. Spatial covariance matrix .ௌߑ

9. ,ௌିଵܪ inverse of Cholesky factor of spatial covariance matrix.

4 Prediction
We perform the following procedure to issue predictions for future time ݉ + 1, … ,݉ + ܪ at
prediction locations ࡳ = ,ଵࢍ) … ேࢍ,) using the results saved in the output file (see Figure 2). The
input data set format should include location ,ࡳ predictors ࢄ for =ݐ ݉ + 1, … ,݉ + ܪ .

Figure 2. Flowchart of algorithm steps for model prediction

Spatial Temporal Prediction Algorithms

4.1 Point prediction

Step 1: Construct the ܰ × ݊ spatial covariance matrix to capture the spatial dependence between
prediction grids ࢍ ∈ ࡳ and original sample locations .࢙

 If variogram-based spatial covariance matrix

ௌܸ(ࢍ) = ܸ൫߳ ௧(ࢍ)൯= ଶߪ + ߬ଶ (29)

and

(ࡳ)ௌ࡯ = ൛ݒ݋ܥ൫߳ ௧(ࢍ௜), ௧߳൫࢙௝൯; ෠߰൯ൟ݅
=1,…,ܰ; =݆1,…,݊

(30)

according to (14) for all locations ࢍ (whether locations were included in the model
build or not).

 If EOF-based spatial covariance function is used:

For locations g୧ that are included in the original sample locations ,ݏ
ாைி൫߳ݒ݋ܥ ௧(௜݃), ௧߳(ݏ)൯ is equal to the row corresponding to location ௜݃ in the
empirical covariance matrix ௌߑ and ௌܸ(௜݃) is equal to the empirical variance at that
location, i.e., the diagonal element of ௌߑ corresponding to that location.

For locations ௜݃ that were not included in the model build, calculate the spatial
covariance in the following way:

(a) Perform eigendecomposition on the empirical covariance matrix

=ࡿ ઴઩઴ ′

where ઴ = (߶ଵ, … ,߶௡) with ௞ߔ = ൫߶௞(ݏଵ), … ,߶௞(ݏ௡)൯′ is the ݊× ݊ matrix of
eigenvectors and ઩ = diag(ߣଵ, … (௡ߣ, is the ݊× ݊ matrix of eigenvalues.

(b) Apply inverse distance weighting (IDW) (Shepard 1968) to interpolate eigenvectors
to locations with no observations.

߶௞(ࢍ) = ෍
(௜࢙)௞߶(ࢍ)௜ݓ

∑ ௡(ࢍ)௝ݓ
௝ୀଵ

௡

௜ୀଵ

,݇= 1, … ,݊

where

(ࢍ)௜ݓ =
1

dist(࢙,ࢍ௜)ఘ

is an Inverse Distance Weighting (IDW) function with ≥ߩ ݀ for d-dimensional
space and dist(࢙,ࢍ௜) may be any distance function. As a default value, use
Euclidean distance with =ߩ 2 and dist(࢙,ࢍ௜)

ଶ = ࢍ) − ࢍ)′(௜࢙ − .(௜࢙
(c) The EOF-based spatial variance-covariance functions are

ௌܸ(ࢍ) = ܸ൫߳ ௧(ࢍ)൯= ෍ ௡߶௞ߣ
ଶ(ࢍ)

௡

௞ୀଵ

(31)

and

Spatial Temporal Prediction Algorithms

ቀ߳ݒ݋ܥ ࢍ൫ݐ ൯݅, =൯ቁ݆࢙൫ݐ߳ ෍ ߣ݊ ߶݇൫ࢍ ൯݅߶݇൫݆࢙൯

݊

݇=1

(32)

and the corresponding ܰ × ݊ spatial covariance matrix

(ࡳ)ௌ࡯ = ቄܨܱܧݒ݋ܥ ቀ߳ ௧(ࢍ௜), ௧߳൫࢙௝൯ቁቅ
=݅1,…,ܰ; =݆1,…,݊

(33)

Note that under the EOF model, we allow for space-varying variances.

Step 2: Spatial interpolation to prediction locations g for the most recent L time units,
௠ܼ ି௅ାଵ, … , ௠ܼ

෡௠ࢆ ି௟ାଵ(ࡳ) = ࡿ઱(ࡳ)ௌ࡯
ିଵࢆ௠ ି௟ାଵ = ෱௠ࢆ(ࡳ)ௌ࡯ ି௟ାଵ,݈= 1, … ܮ, (34)

where ෡௠ࢆ ି௟ାଵ(ࡳ) is a vector of length ܰ .

Step 3: Iteratively forecast for future time m + 1, … , m + H at prediction locations .ࡳ

෡௠ࢆ ାଵ(ࡳ) = ෡௠ࢆොଵߙ (ࡳ) + ⋯+ ෡௠ࢆො௅ߙ ି௅ାଵ(ࡳ) (35)

෡௠ࢆ ାଶ(ࡳ) = ෡௠ࢆොଵߙ ାଵ(ࡳ) + ⋯+ ෡௠ࢆො௅ߙ ି௅ାଶ(ࡳ) (36)

෡௠ࢆ ାு(ࡳ) = ෡௠ࢆොଵߙ ାுିଵ(ࡳ) + ⋯+ ෡௠ࢆො௅ߙ ାுି௅(ࡳ) (37)

where ෡௠ࢆ ାு(ࡳ), ℎ = 1,… ܪ, are vectors of length ܰ .

Step 4: Incorporate predicted systematic effect

෡௠ࢅ ାு(ࡳ) = ෡௠ࢆ ାு(ࡳ) + ܺ௠ ା௛(ࡳ)ࢼ෡, ℎ = 1, … ܪ, (38)

where ෡௠ࢅ ାு(ࡳ), ℎ = 1,… ܪ, are vectors of length ܰ .

4.2 Prediction intervals
Under the assumption of Gaussian Process and known variance components, the prediction error
෠ܻ
௠ ାு(ࢍ௜) − ௠ܻ ା௛(ࢍ௜) comes from two sources:

 The prediction error that would be incurred even if regression coefficients ࢼ were known.

 The error in estimating regression coefficients ࢼ
The variance of prediction error is thus

ܸൣܻ෠௠ ାு(ࢍ௜) − ௠ܻ ା௛(ࢍ௜)൧

= ൫ࢄ′௠ ା௛(ࢍ௜) − ௠′࡯ ା௛(ࢍ௜)઱
ି૚ࢄ௜௠ ௣௨௧௘൯ࢂ൫ࢼ෡൯൫ࢄ′௠ ା௛(ࢍ௜) − ௠′࡯ ା௛(ࢍ௜)઱

ି૚ࢄ௜௠ ௣௨௧௘൯′ (39)

௠ࢂ+ ା௛(ࢍ௜) − ௠′࡯ ା௛(ࢍ௜)઱
ି૚࡯௠ ା௛(ࢍ௜) (40)

Expression (39) arises from the variance expression for universal kriging, while (40) is the
variance of a predicted random effect with known variance of the random effects

Spatial Temporal Prediction Algorithms

(McCulloch et al. 2008, p.171).

 ௠ܥ ା௛(௜݃) = ݉)்ܥ + ℎ) ⊗)ௌܥ ௜݃) is the covariance vector of length nm between the
prediction ௠ܻ ା௛(௜݃) and measurements ଵܻ(ݏ), … , ௠ܻ .(ݏ) Note that ݉)்ܥ + ℎ) =
ߛ்} (݉ + ℎ − ௧ୀଵ,…,௠{(ݐ is the AR(L) covariance vector of length m and)ௌܥ ௜݃) =

ቄݒ݋ܥቀܻ ௧(௜݃), ௧ܻ൫ݏ௝൯ቁቅ
௝ୀଵ,…,௡

is the spatial covariance vector of length .݊

 The nm × nm covariance matrix ߑ is defined as to ߑ = ⊗்ߑ ௌߑ and ்ߑ =
ߛ்} −ݐ| ௧,௧ᇲୀଵ,…,௠{|′ݐ . Note that Σୗ is a quantity stored after the model build step.

 ௠ܸ ା௛(௜݃) = ܸ൫ܻ ௠ ା௛(௜݃)൯= ߛ் (0) ௌܸ(௜݃) is the variance of ௠ܻ ା௛(௜݃).

 Note that expressions (39) and (40) are not computed explicitly, but instead are
implemented as described in the following.

Computational process:

Step 1: Compute the error in estimating regression coefficients ߚ in (39).

For ݈= 1, … ,ܮ, interpolate ࢄ to prediction locations ࢍ for the most recentܮ� time units

௠ࡼ ାଵି௟(ࢍ௜) = ௠′ࢄ ାଵି௟,௜௠ ௣௨௧௘઱ࡿ
ିଵ࡯ௌ(ࢍ௜) = ෱′௠ࢄ ାଵି௟,௜௠ ௣௨௧௘࡯ௌ(ࢍ௜) (41)

where ௠ࡼ ାଵି௟(ࢍ௜) is a vector of dimension ܦ × 1. Define

෡௠ࢄ ା௛ି௟(ࢍ௜) = ൜
௠ࡼ ା௛ି௟(ࢍ௜), ݂݅ ℎ − ݈≤ 0;

௠ࢄ ା௛ି௟(ࢍ௜), otherwise.
� (42)

For =ݐ ݉ − +ܮ 1, … ,݉�(ℎ ≤)݈, we only have ܺ at sample locations ,ݏ so ෠ܺ
௧(௜݃) =

௧ܲ(௜݃), the interpolated values from ܺ௧(ݏ); for <ݐ ݉ (or ℎ >)݈, we already input ܺ at
prediction locations ݃, so there is no need to interpolate and ෠ܺ

௧(௜݃) = ܺ௧(௜݃).

Then, for ℎ = 1,… ܪ, , recursively compute the ܦ × 1 vectors ܹ ௠ ା௛(௜݃)

ܹ ௠ ା௛(௜݃) = ܺ௠ ା௛(௜݃) + ෍ ො௟ߙ

௅

௟ୀଵ

(෡ܹ௠ ା௛ି௟(௜݃) − ෠ܺ
௠ ା௛ି௟(௜݃)) (43)

where

෡ܹ
௠ ା௛ି௟(௜݃) = ൜

0, if ℎ − ݈≤ 0; (7)
ܹ ௠ ା௛ି௟(௜݃), otherwise.

� (44)

The prediction error in estimating ,ߚ that is, expression (39) is thus

ܹ ᇱ
௠ ା௛(௜݃)ܸ(ߚመ)ܹ ௠ ା௛(௜݃) (45)

where (መߚ)ܸ is computed in (25).

Step 2: Compute the prediction error that would be incurred if regression coefficients ߚ were
known, i.e., equation (40).

Spatial Temporal Prediction Algorithms

• Compute ݉)்ܥ + ℎ) by AR(L) autocovariance function ߛ் ()݇ (McLeod 1975).

First, compute ߛ் (0), … , ߛ் (ܮ) by solving a linear system ܺܣ = ,ܾ

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1 ොଵߙ− ොଶߙ− … ො௅ିଵߙ− ො௅ߙ−
ොଵߙ− 1 − ොଶߙ ොଷߙ− … ො௅ߙ− 0
ොଶߙ− ොଵߙ)− + (ොଷߙ 1 − ොସߙ … 0 0

ොଷߙ− ොଶߙ)− + (ොସߙ ොଵߙ)− + (ොହߙ … 0 0

⋮ ⋮ ⋮ ⋱ ⋮
ො௅ିଶߙ− ො௅ିଷߙ)− + (ො௅ିଵߙ ො௅ିସߙ)− + (ො௅ߙ … 0 0
ො௅ିଵߙ− ො௅ିଶߙ)− + (ො௅ߙ ො௅ିଷߙ− … 1 0

ො௅ߙ− ො௅ିଵߙ− ො௅ିଶߙ− … ොଵߙ− 1 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎜
⎜
⎛

ߛ் (0)

ߛ் (1)

ߛ் (2)
ߛ் (3)
⋮

ߛ் −ܮ) 2)

ߛ் −ܮ) 1)

ߛ் (ܮ) ⎠

⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎛

1
0
0
0
⋮
0
0
0⎠

⎟
⎟
⎟
⎟
⎞

(46)

Note that the first element of the vector on the right hand side (the variance of the
measurement error) is fixed to be one, to account for the normalization through the spatial
variance-covariance structure.

For ݇= +ܮ 1, … ,݉ + ܪ − 1, recursively compute

ߛ் ()݇ = ߛොଵ்ߙ (݇− 1) + ⋯+ ߛො௅்ߙ (݇− (ܮ (47)

Remark: To construct the +ܮ) 1) × +ܮ) 1) matrix ,ܣ

௜௝ܣ = ൜
௜ିߙ]− ଵ], ݆= 1;݅= 1, … +ܮ, 1
௜ିߙ]− ௝] − ௜ା௝ିߙ] ଶ], ݆= 2, … +ܮ, 1;݅= 1, … +ܮ, 1.

� (48)

where

[௞ߙ] = ൝
−1, ݇= 0;
0, ݇< 0 or ݇> ;ܮ
,ො௞ߙ 0 < ݇≤ .ܮ

� (49)

• Compute the approximated factorization of Σ்ିଵ such that ܴᇱܴ ≈ Σ்
ିଵ, where ܴ is a

(݉ − (ܮ × ݉ matrix (follows from Cholesky or Gram-Schmidt orthogonalization, see for
example Fuller 1975):

ܴ =

⎝

⎜
⎛

ො௅ߙ− … ොଵߙ− 1 0 0 … ⋮
⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋮
… 0 ො௅ߙ− … ොଵߙ− 1 0 0
… … 0 ො௅ߙ− … ොଵߙ− 1 0
… … … 0 ො௅ߙ− … ොଵߙ− 1⎠

⎟
⎞

(50)

• Compute the value of expression (40):

ߛ் (0) ௌܸ(௜݃) − ݉)ᇱ்ܥ) + ℎ) ⊗)ᇱௌܥ ௜݃))(ܴᇱܴ⊗ ௌܪ
ିଵᇲܪௌ

ିଵ)(்ܥ(݉ + ℎ) ⊗)ௌܥ ௜݃))
(51)

where)ᇱௌܥ ௜݃) is a the row of (ܩ)ௌܥ corresponding to location ௜݃.

Step 3: The (1 − α%) prediction interval is

Spatial Temporal Prediction Algorithms

෠ܻ
௠ ା௛(௜݃) ± ௡௠ݐ ି௤ି஽∗,ఈ/ଶටܸ[෠ܻ௠ ା௛(௜݃) − ௠ܻ ା௛(௜݃)] (55)

where ܸ[෠ܻ௠ ା௛(௜݃) − ௠ܻ ା௛(௜݃)] is the sum of equations (39) and (40) as computed in
expressions (45) and (51), respectively. ௡௠ݐ ି௤ି஽ ,ఈ/ଶ is defined as
ܲ(ܺ ≤ ௡௠ݐ ି௤ି஽∗,ఈ/ଶ) = 1 − 2/ߙ where ܺ follows t-distribution with degree freedom
݊݉ − −ݍ .∗ܦ The default value for ߙ is 0.05.

As final output from the prediction step, point prediction, variances of point predictions and
prediction interval (lower and upper bounds) are issued for each specified (location, time).

We remark that to perform what-if-analysis, a set of ࢄ variables under the new settings need to be
provided. Then we re-run the prediction algorithm described in Section 4 to obtain prediction
results under adjusted settings.

References
[1] Brockwell, P., Davis, R.A. (2002), Introduction to Time Series and Forecasting, Second

Edition, New York: Springer.

[2] Cohen, A., Johnes, R. (1969), “Regression on a Random Field”, Journal of the American
Statistical Association, 64 (328), 1172-1182.

[3] Cressie, N. (1993), Statistics for Spatial Data, Revised Edition, Wiley-Interscience.

[4] Creutin, J.D., Obled, C. (1982), “Objective Analyses and Mapping Techniques for Rainfall
Fields: an Objective Comparison”, Water Resources Research, 18(2), 413-431.

[5] Fuller, W.A. (1975), Introduction to Statistical Time Series, JohnWiley & Sonse, NewYork,
New York.

[6] Johnson S. (1967), “Hierarchical Clustering Schemes”, Psychometrika, 32(3), 241-254.

[7] McCulloch, C.E., Searle, S.R., Neuhaus, J.M. (2008), Generalized, Linear and Mixed
Models, Second Edition, John Wiley & Sons, Hoboken, New Jersey.

[8] McLeod, I. (1975), “Derivation of the Theoretical Autocovariance Function of
Autoregressive-Moving Average Time Series”, Applied Statistics, 24(2), 255-256.

[9] Shepard, D. (1968), “A two-dimensional interpolation function for irregularly-spaced data”,
Proceedings of the 1968 ACM National Conference, 517-524.

[10] Wasserman S. (1994), Social network analysis: Methods and applications. Cambridge
university press.

Temporal Causal Modeling Algorithms

1. Introduction
Forecasting and prediction are important tasks in real world applications that involve decision making. In such

applications, it is important to go beyond discovering statistical correlations and unravel the key variables that

influence the behaviors of other variables using an algebraic approach. Many real world data, such as stock price

data, are temporal in nature; that is, the values of a set of variables depend on the values of another set of variables at

several time points in the past. Temporal causal modeling, or TCM, refers to a suite of methods that attempt to

discover key temporal relationships in time series data. This chapter describes a particular method to discover

temporal relationships using a combination of Granger causality and regression algorithms for variable selection.

Although this treatment strives to be self-contained, a minimal set of papers describing the design principles behind

the method can be found in [Lozano et al., 2011, Lozano et al., 2009, Arnold et al., 2007]
1
.

The rest of the chapter is organized as follows. Section 2 lays the groundwork for the TCM algorithm (notation and

brief history) and explains the greedy orthogonal matching pursuit (GOMP) [Lozano et al., 2011] algorithm that is

used. Section 3 describes the techniques used to fit and forecast time series and compute approximated forecasting

intervals. Section 4 describes scenario analysis, which refers to a capability of the TCM product to “play-out” the

repercussions of artificially setting the value of a time series. Section 5 describes the detection of outliers, and

Section 6 discusses how potential causes for outliers can be established using root cause analysis.

2. Model
Introduced by Clive Granger [Granger, 1980], Granger causality in time series is based on the intuition that a cause

should necessarily precede its effect, and that if time series causally affects time series , then the past values of

should be useful in predicting the future values of . More specifically, time series is said to “Granger cause” time

series if the accuracy of regressing for in terms of past values of both and is statistically significantly better

than regressing just with past values of . If the time series have time points and are denoted by
 and

 , then the following regressions are performed:

 (1)

 (2)

Here is the number of lags; that is, the value of at time can only be determined by values of other time series at

times . If Equation (1) is statistically more significant (using some test for significance) than

Equation (2), then is deemed to Granger cause .

1
 The methods described in this chapter are particularly useful for under-determined systems, where the number of time

series () far exceeds the number of samples (); that is . Although these methods function for both over-

determined () and fully-determined () systems, there are other approaches to pursue for such systems.

Temporal Causal Modeling Algorithms

2.1 Graphical Granger Modeling

The classical definition of Granger causality is defined for a pair of time series. In the real world, we are interested

in finding not one, but all the significant time series that influence the target time series. In order to accomplish this,

we use group greedy () regression algorithms with variable selection (see Section 2.3). An important feature of

our TCM algorithm is that it groups influencer/predictor variables; that is, we are interested in predicting whether

time series as a whole – – has influence over time series . Such grouping is a more natural

interpretation of causality and also helps sparsify the solution set. For example, without such grouping we may

select the time-lagged series to model but not select any other value of , which increases the number of

choices for variable selection -fold, where is the number of lags that is allowed.

2.2 Notation

The following notation is used throughout this chapter unless otherwise stated:

Table 1: Notation

Notation Type Description

 — Set of natural numbers

 — Set of real numbers

\ — Regression solve operator

 Size operator

 norm of a vector, i.e.,

 Number of time points

 Number of time series

 Number of lags for each target,

 Design matrix of input series

 Target series vector

 Computes lag matrix

 , for the set of column indices in J

 Computes means for series

 Computes standard deviations for series

 Tolerance value for stopping criterion

Max number of predictors selected or

maximum number of iterations

Actual number of predictors selected for a

target series

Estimated coefficients for predictors on the

transformed scale

In this section, we introduce the algorithm that is used to construct the temporal causal model. The list of symbols

used in the rest of this chapter is summarized in Table 1. Most of the symbols are self-explanatory; however, the

function , which stands for grouping, requires some additional explanation. is a function that takes a matrix

(), a set of column indices , and a lag value and constructs a lag matrix that has rows and

columns. Basically, for every column index , constructs a lag matrix by carefully unrolling the

j
th

 column of the input matrix. An example of action is shown below:

Temporal Causal Modeling Algorithms

In this example, the input matrix has 4 time series () and five time points per time series ().

The lag matrix associated with the time series in column 1, when (lag) is 2, is produced by invoking

Note that the lag matrix consists of the lag-1 vector of as the first column, the lag-2 vector as the second column,

up to the lag- vector as the column. Similarly, the functions accept any input matrix and compute the

mean and the standard deviation, respectively, of the matrix’s columns. For purposes of numerical stability, and to

increase interpretability during modeling, columns of the lagged matrix are both centered by the column means and

scaled by the column standard deviations
2
. On the other hand, the target is only centered. An example of mean

centering and scaling for the lagged matrices is shown below:

Here, () and are the means and standard deviations of the first and the second columns, ()

respectively.

2.3 Group Orthogonal Matching Pursuit (GOMP)
Algorithm 1: GOMP

Input:

Output: ,
 .

1

 ;

2 for do

;

3
 ;

4
 ;

5 if any redundant series are found, delete them in
 ;

6 if (
), then

 , update , return

 , and stop;

7 otherwise update and ;

8 for
 do

9

 ;

10 if , return

 and and stop;

11

 ;

2 Although each column of the lagged matrix has a different mean and standard deviation, due to the structure of these

columns, it is possible to compute the mean and the standard deviation of the time series itself and use those to center and

scale the lagged columns.

Temporal Causal Modeling Algorithms

12 for do

13

;

14
 ;

15
 ;

16

 ;

17 if

 , break;

18 return
 , .

We begin by describing Algorithm 1: GOMP, which will be used to establish causality of time-series data. This

algorithm receives the variables (described in Table 1) as input. Briefly, is a

target vector for which we want to establish the Granger causality (note that we have excluded the first values of

). In contrast, is the input unlagged time series data. is the number of lags for each predictor in each

target series, is the maximum number of predictors to be selected per-target, and determines whether a new

predictor needs to be added. In addition, and are grouping, centering, and scaling functions which have been

described in Section 2.2.
 is the set of pre-selected predictor indices for , and always contains the lagged .

is the set of forbidden predictors, if any, for . If there are no forbidden predictors, then
 . Given these, the

goal is to greedily find predictors that solve the system subject to sparsity constraints.

The greedy algorithm approximates an –sparse solution by itertively choosing the best predictor for addition at

each iteration. We use superscripts to denote the iteration number in Algorithm 1. For example,
 represents the

initial values of at the 0
th

 iteration (before the actual iteration starts). The first part of the algorithm (lines 1 – 4)

constructs and solves a linear system consisting of the predictors in
 to obtain , the coefficient vector for

predictors on the transformed scale. At the end of this first part, we have , the initial residual. Then check whether

there are redundant predictor series in
 . If yes, then delete them. If the number of predictor series in the (updated)

 is equal to or larger than the maximum number of iterations (i.e.,

) then keep the first predictor

series in
 , update , return

 and , and stop the process (line 6); otherwise (i.e.,
), update

and (line 7) if any redundant predictor series were deleted. Then start the iterative process to add one predictor

series at a time (line 8). The first step in predictor selection (line 9) consists of an argmin function that

systematically goes over each eligible predictor and evaluates its goodness (see Algorithm 2). This step is the

performance critical portion of the algorithm and can be searched in parallel. At the end of the step, , the index

corresponding to the best predictor is available. However, if no suitable predictor is found in the argmin function

(i.e.,), then return
 and and stop (line 10). The next part (lines 11 – 14) re-estimates the model

coefficients by adding to the model. Line 15 updates the residual, , for this model and line 16 adds to the

model. Finally, if the norm of the current residuals is equal to or smaller than the tolerance value (i.e.,

), then the iterative process is terminated.

Note that if the tolerance is achieved by adding , then no new iterations are required and the iterative process is

terminated. Thus the actual number of predictors selected, , can be less than the maximum number of iterations,

(i.e.,). However, if the tolerance is set very small, then it is highly unlikely that such a situation will

happen.

Algorithm 2: argmin

Input:

Temporal Causal Modeling Algorithms

Output: : Selected group index.

1
 , ;

2 for do

3 if
 continue;

4

5 for do

;

6
 ;

7

;

8 if

 , then

 ;

9 return .

The implementation of the argmin function (line 8, Algorithm 1) is shown in Algorithm 2. The algorithm first

assigns the initial cost to be the square of the norm of the current residuals, and the selected group index to be

(line 1). Then it loops over each series group, first checking if the time series being considered for addition has

already been added to the solution or if it is a forbidden predictor (line 3). If the current group is not yet

selected, the lagged transformed matrix corresponding to this time series (
) is constructed using the and

functions (lines 4 and 5). After grouping and transforming
, the residual corresponding to the candidate time

series j is computed by first regressing on
 (line 6), and then computing the residual (line 7). Finally, the

current time series is selected as the leading candidate if the square of the norm of its residual is lower than

the previous estimate minus a threshold value, . Including such a threshold value prevents selecting an (almost)

identical series.

The loop in Algorithm 2 (line 2) can be thought of as iterating over all candidate series. For each candidate series,

the following computations are carried out: (1) a filter is applied in line 3 to ensure that it is a valid candidate; (2)

lines 4 and 5 map the current candidate to the transformed matrix (
) that represents the lag matrix to be used; (3)

lines 6 and 7 evaluate the goodness of the current candidate by first solving a dense linear system and then

computing the residual; (4) line 8 applies a predicate to check if the current candidate series is better than previously

evaluated candidates. Notice that the predicate (line 8) is associative and commutative; therefore, Algorithm 2 can

be parallelized by dividing the iteration space ([1,n]) into chunks and executing each chunk in parallel. To get the

globally best group, it is sufficient to reduce the groups that were selected by each parallel instance in a tree-like

fashion by applying the predicate in line 8.

2.4 Selecting

Both Algorithms 1 and 2 accept as an input parameter which can be specified by user. If is not explicitly

specified then the following heuristic approach can be used to determine based on (# of time points) and

(periodicity or seasonal length):

(1) If and , then .

(2) If or , then .

Temporal Causal Modeling Algorithms

2.5 AR() Model

Out of the series in the data, some series may be used as predictors only, so no TCM models are built for them.

However, if they are selected as predictors for some target series, then simple models need to be built for them in

order to do forecasting. For example, suppose that time series 1 is a selected predictor for time series 2, but there is

no model built for time series 1. While a model for time series 1 is not needed in order to forecast time series 2 at

time (where is the latest time in the data), forecasts for time (t + 2) require values of time series 1 for time

 , which then requires a model for time series 1.

Hence, for each predictor-only series, a simple auto-regressive (AR) model is built using the same lag, , as used for

the target series. This model, called an AR() model, can be constructed using Algorithm 1 by specifying
 to be

the target itself and setting the maximum number of predictors to be 1.

2.6 Post-estimation steps

Algorithm 1 selects the best predictors (time series) to model a target series . Without loss of generality, we assume

that the model for is
 , where

 is the selected predictor series matrix with the lagged

terms on the transformed scale, is the estimated standardized coefficient vector, and is the residual

vector.

However, this is not the end of modeling. Several post processing steps are needed in order to complete the

modeling process for . The steps include three parts: (1) coefficients and statistics inference; (2) tests of model

effects; (3) model quality measures.

2.6.1 Coefficients and statistical inference

The results of Algorithm 1 include and (by solving the linear system from Cholesky decomposition),

where superscript T means the transpose of a matrix or vector, and is a generalized inverse of the matrix.

Based on these quantities, the first step is to compute coefficient estimates, their standard errors, and statistical

inference on the original scale.

Table 2: Additional notation

Notation Description

 Actual number of predictors selected (including target itself) for , i.e., .

 Number of coefficient estimates in , i.e.,

 Number of non-redundant coefficient estimates in ,

Selected predictor series matrix with lagged terms on the transformed scale. This is an

 matrix as

 with

 =

 (an

 matrix).

Selected predictor series matrix on the original scale. This is an

matrix as

 , where is a

column vector of 1’s corresponding to an intercept.

 Unstandardized coefficient estimates vector (corresponding to), which is a

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDQQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FWithout_loss_of_generality&ei=Xm5qU6W-O8SZyAT-sIHoCA&usg=AFQjCNHMzQT8qYnVk6kEv6pO03hPrLZliQ&sig2=eNA7O9dKOI53vqHQqWUE8w
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDQQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FWithout_loss_of_generality&ei=Xm5qU6W-O8SZyAT-sIHoCA&usg=AFQjCNHMzQT8qYnVk6kEv6pO03hPrLZliQ&sig2=eNA7O9dKOI53vqHQqWUE8w

Temporal Causal Modeling Algorithms

 vector. The first element, , is the intercept estimate.

 Estimated variance of the model based on residuals.

Covariance matrix of standardized coefficient estimates on the transformed scale, i.e.,

 . The diagonal element is

 and its square root,
 , is the

standard error of the standardized coefficent estimate.

Covariance matrix of unstandardized coefficient estimates on the original scale. The

diagonal element is

 and its square root,
, is the standard error of the

unstandardized coefficent estimate.

 Centering vector of , i.e.,

, where is the mean of .

Scaling matrix of , i.e., , where is the standard deviation

of .

Transformation matrix of to , i.e.,

 , which is a vector.

Note that
 .

The relationship between and is and the relationship between and is

 . The relevant statistics are computed as follows:

 Unstandardized coefficient estimates

 (3)

 (4)

 Standard errors of unstandardized coefficient estimates

 (5)

 (6)

where

 and with

 and

 .

 t-statistics for coefficient estimates

 (7)

which follows an asymptotic t distribution with degrees of freedom. Then the p-value is computed as

Temporal Causal Modeling Algorithms

 (8)

 confidence internals

 (9)

where is the significance level and is the percentile of the distribution with

 degrees of freedom.

2.6.2 Tests of model effects

For each selected predictor series for , there are lagged columns associated with it. The columns can be grouped

together, considered as an effect, and tested with a null hypothesis of zero for all coefficients. This is similar to the

test of a categorical effect with all dummy variables in a (generalized) linear model setting. Only type III tests are

conducted here. For each selected predictor series , the type III test matrix is constructed and is

tested based on an F-statistic.

 F-statistics for effects

 (10)

where
 . The statistic follows an approximate F distribution with the numerator degrees

of freedom and the denominator degrees of freedom . Then the p-value is computed as follows:

 (11)

2.6.3 Model quality measures

In addition to statistical inferences, the goodness of the model can be evaluated. The following model quality

measures are provided:

 Root Mean Squared Error (RMSE)

 (12)

Note that .

 Root Mean Squared Percentage Error (RMSPE)

 (13)

 R squared

Temporal Causal Modeling Algorithms

 (14)

 Bayesian Information Criterion (BIC)

 (15)

 Akaike Information Criterion (AIC)

 (15’)

3. Scoring
Once the models for all the required targets () are built and post-estimation statistics are computed, the

next task is to use these models to do scoring. There are two types of scoring: (1) fit: in-sample prediction for the

past and current values of the target series; (2) forecast: out-of-sample prediction for future values of the target

series.

3.1 Fit

Without loss of generality, we assume and are the selected predictor series matrices without lagged terms and with

lagged terms, respectively; and is the coefficient estimates vector for the target , so ,

 and

. Given that all series have time points,

in-sample prediction of is one-step ahead prediction and can be written as

 (16)

 . (17)

The corresponding confidence interval of is

 . (18)

3.2 Forecast

Given that data is available up to time interval , the one-step ahead forecast for is

 (19)

The -step ahead forecast for is

 (20)

Temporal Causal Modeling Algorithms

where

Thus, forecasting the value of requires us to first forecast the values of all the predictors up to time .

Forecasting the values of all the predictors up to time requires us to use Equation (19) on all the

predictors . Similarly, to predict the value of , we need to forecast the values of predictors at

time by using Equation (20). This task poses a bigger problem; to forecast the values of at

time , we first need to forecast the values of the predictors of at time . That is, as we

increasingly look into the future, we need to forecast more and more values to determine the value of .

3.3 Approximated forecasting variances and intervals

In this subsection, we outline how forecasting variances and intervals can be computed for TCM models. We start

by using the following representation for the linear model built by TCM for target :

 (21)

where and is estimated as (computed in Section 2.6.1). Please note that we don’t include

parameter estimation error when defining forecasting error in TCM.

The forecasting error at is defined as the difference between and , which can be written as

 (22)

The forecasting variance for one-step ahead forecasts is computed as . For multi-step ahead forecasts, the

forecasting error at is

 (23)

where
 and

 if .

In general,

 are not independent of each other. The larger the is, the more complex the

dependence is. In addition,
 and

 might not be independent for . In order to fully

consider the dependence, we need to write all time series in vector autoregressive (VAR) format. Since we assume

the number of series is usually large, the parameter matrix, which is an matrix, might be too large to handle

in computation of the forecasting variances. Therefore, we make the assumption that all forecasting error terms in

Equation (23),
 are independent, so it is easier to compute the forecasting

variances.

Based on the above independence assumption, the approximated variance of the forecasting error, , is

 (24)

Temporal Causal Modeling Algorithms

where
 is the variance of the forecasting error in the series at .

Then the corresponding approximated forecasting interval of can be expressed as

 (25)

4. Scenario analysis
Scenario analysis refers to a capability of TCM to “play-out” the repercussions of artificially setting the value of a

time series. A scenario is the set of forecasts that are generated by substituting the values of a root time series by a

vector of substitute values, as illustrated in Figure 1.

Figure 1: Causal graph of a root time series and the specification of the vector of substitute values

During scenario analysis, we specify the targets that we want to analyze as a response to changes in the values of the

root series (“a” in Figure 1), along with the time window. In Figure 1, we are interested in the behavior of time

series “c”, “d”, “g”, “h”, and “j” only. The rest of the time series are ignored. The figure also depicts the vector

of values for “a” that should be used instead of the observed or predicted values of “a”. The values

specify the beginning and end of the replacement values for the root series, the current time, and the farthest time for

analysis, respectively.

The partial Granger causal graph of time series “a” is shown in Figure 1. That is, “a” is the parent of itself, “b”, “c”,

and “d”. Similarly, it is the grand-parent of “e”, “f”, “g”, “h”, “i”, and “j”. Further descendents are possible, but only

two generations suffice for the sake of explanation. Figure 1 also displays the specification of the vector , of

length , that contains the replacement values of the root series. In the example shown in the figure, starts at

time , where is the current time, and ends at , which is in the future. We are also given , the last

time point () for which we want to perform scenario analysis on the target variables. Finally, we are given a

set of time series for which the scenario predictions are carried out. In the figure, these are “c”, “d”, “g”, “h”, and

“j”, which are marked with a thick red border. Since “b” is required to model “g”, “b” is marked with a thick blue

border to signify that it is an induced target. Given this information, the goal of scenario analysis is to forecast the

Temporal Causal Modeling Algorithms

values of the target time series (“c”, “d”, “g”, “h”, and “j”) up to time , based on the values of the root time series

 .

Notice that we have to predict values of targets up to time , where can be or . When

 , we need to compute the values of the predictors of the target time series at time . Similarly,

when , we need to compute the values of the predictors’ predictors at time and the values of

the predictors at time before predicting the values of the target time series at time .

Figure 2: Scenarios with and without predicting future values

The left-hand panel in Figure 2 depicts a scenario where the values of ancestors of targets of interest also have to be

predicted. In this particular case, and therefore it is necessary to predict the values of the predictors of

the targets at and , and values of the predictors’ predictors at time . The right-hand panel

depicts a scenario where the entire period of prediction is earlier than the current time (i.e.,). In this case,

all the values of the predictors and their ancestors are readily available.

Determining

In the discussion above, we have neglected the issue of , the substitute values for time series “a”, which is the

root time series. For purposes of scenario analysis, it is sufficient to consider that is readily available. In a typical

use case for scenario analysis, will come from the values specified by the user’s direct input, although its values

could also come as input from a calling meta-process (as is the case with the use of scenario analysis as a sub-

procedure in root cause analysis, as shown in Section 6).

Caveat on scenario analysis

It is possible to carry out scenario analysis for a time period that is entirely in the future; that is . However,

forecasting errors in the remaining predictors may make such scenario analysis inherently low-precision. That is, if

 , then the precision of scenario analysis decreases with an increase in .

4.1 SA, the scenario analysis algorithm

Input:

The inputs to SA are: (1) : the root time series; (2) : the vector of replacement values for time series ; (3)

 : the beginning and end time for the modified values of , the current time, and the last time point for

Temporal Causal Modeling Algorithms

which target values need to be predicted, respectively; (4) : a set of descendant target time series of interest along

with their relation to (which may be input as the Granger causal graph,). Notice that the length of is

 and . Furthermore, it is erroneous to have a target , where is not an ancestor of .

Output:

For each in , we output a vector containing values that pertain to the scenario analysis of these time

series and the corresponding confidence intervals (when) or apprxomiated forecasting intervals (when

). Please note that the time period for the children series in is , for the grand-children series is

 , etc.

Preparation:

To prepare for SA, we first calculate the closure on the set of targets that need to be predicted, which is

determined by the relationship between and each of the targets in . Essentially, is computed by iteratively

looking at the path from each and adding all those intermediate nodes that are ancestors of and are also

descendents of . In the example shown in Figure 1, the time series “b” is itself not of primary interest, but since it is

a parent of “g”, which is of interest, “b” is also added as a target of interest to the set {“c”, “d”, “g”, “h”, “j”}.

Next, we compute , the set of models that need to be included in order to perform scenario analysis on .

Obviously, contains the models for each of the series in , i.e., ; however, depending on the time span of

the scenario analysis, additional models of some time series might have to be brought in (see Figure 2). Basically,

depending on how far ahead is from , we may need to compute the values of the ancestors (other than) of the

targets of interest at time points . That is, the set (which may be) contains all series

that are needed for scenario analysis and are not descendants of .

At the end of the preparation phase we have and , which allows us to predict all the time series of interest.

Computation:

The computation in scenario analysis is exactly that of scoring the values of a set of time series (see Section 3). For

each target in , we have a range of time points for which we need to fit/forecast values. For example, for

immediate children of the root (“c”, “d”, and the induced child “b” in Figure 1), this range is . Similarly,

for grand-children (“g”, “h”, and “j” in Figure 1), this range is . Using the models in and substituted

values for , this task can be carried out.

5. Outlier detection
One of the advantages of building TCM models is the ability to detect model-based outliers. Outliers can be defined

in several ways. For now, we shall define an outlier in a time series to be a value that strays too far from its expected

(fitted) value based on the TCM models. The detection process is based on the normal distribution assumption for

series . Consider the value of a time series at time . Let and be the observed and expected values of at

time , respectively; and be the variance of from the TCM model (based on residuals). Given these inputs, we

call an outlier if the likelihood of when modeled as a normal random variable with mean and variance is

below a particular threshold.

Temporal Causal Modeling Algorithms

Input:

The inputs to OD (outlier detection) are: (1) ; (2) ; (3) ; (4) the outlier threshold value (the

default is 0.95).

Computation:

a) Under the assumption that the observed value is a normal random variable with mean and variance ,

compute the square score at time as

 (26)

b) Compute the outlier probability as

 (27)

where
 is a random variable with a chi-squared distribution with 1 degree of freedom.

c) Flag as an outlier if .

Output:

The output to OD for series is a set of time points with their corresponding outlier probabilities.

6. Outlier root cause analysis
In Section 5, we saw how to detect outliers. The next logical step is to find the likely causes for a time series whose

value has been flagged as an outlier. Outlier root cause analysis refers to the capability to explore the Granger causal

graph in order to analyse the key/root values that resulted in the outlier under question. To formalize this notion,

consider a time series , whose observed value at time (that is,) has been flagged as an outlier due to its

abnormal deviation from its expected value . The goal of outlier root cause analysis (ORCA) is to output the set of

time series that can be considered as root causes of the anomalous value of . The idea is that setting the values

of time series in the predictor set to their normal/expected values, instead of their observed values, will bring the

outlying back to normal. The normal value of is unknown so we specify it with the expected value of at time

 as predicted by ’s univariate model, which is an AR(L) model, and denoted as .

The result of ORCA has the following objective function with a constraint as follows:

 (28)

where corresponds to the set of ancestors of according to the Granger causal graph . The quantity

should be interpreted as the likely predicted value of at time had the value of its ancestor been set to its

expected value of . We see that Equation (28) is made up of two parts: (1) the portion , which is the

Temporal Causal Modeling Algorithms

degree of “outlier-ness” of at as predicted by the “Granger model”, where the outlier-ness is judged based on

what is expected from the history of ; (2) the portion , which is the degree of “outlier-ness” of at

as predicted by the “Granger model”, if was corrected. In other words, Equation (28) amounts to replacing the

observed value by its “expected” value, given by a simpler, univariate model. Therefore Equation (28) expresses

the reduction in the degree of outlier-ness in brought about by correcting .

6.1 ORCA, the outlier root cause analysis algorithm

Input:

The inputs to ORCA are: (1) , the anomalous time series; (2) , the time at which the anomaly was detected; (3) ,

the anomalous value; (4) , the expected value of ; (5) , the oldest generation of ancestors to search based on the

Granger causal graph, .

Output:

ORCA outputs the set of root causes of the anomaly in , where each maximizes the objective function in

Equation (28) by the same amount.

Preparation:

To prepare for ORCA, we first compute , the set of ancestors that need to be examined as the potential root

causes of the anomaly in .

Figure 3: Outlier root cause analysis for a time series

In the example shown in Figure 3, assuming that =“a” and , then = { “b”, “c”, “d”, “e”, “f”, “g”, “h”,

“i”, “j”}. can be computed by performing a reverse breadth-first search from to levels.

Second, each potential root cause is prepped for scenario analysis by computing the vector of substitute

values of to be used during scenario analysis. Note that the length of this substitute vector is , the lag. For

Temporal Causal Modeling Algorithms

example, consider , the substitute for time series “b” in Figure 3. As “b” is a parent of “a”, we need to compute

the fits of “b” from to . On the other hand, as “g” is a grand-parent of “a”, contains the fits for “g”

from the time to (see Section 3.1 for computation of fits). Please note that this approach

assumes that any anomalies are purely in “b” (the parent series) or “g” (the grandparent series). In particular, it is

assumed that anomalies in “b” are not caused by values in the grandparent series, including anomalous values in the

grandparent series.

Third, for each potential root cause , scenario analysis is carried out (see Section 4) using the substitute

values computed in the previous step. For the example in Figure 3, scenario analysis is called for series “b” with the

parameters . And the result of scenario analysis

is .

Computation:

The process of ORCA is as follows:

 Initiaize , the set of potential root causes for , to .

Initialize , the maximum objective function value, to 0.

 Suppose there are series in , .

For each , , compute
 .

If , set and store in .

Temporal Causal Modeling Algorithms

References

[1]. Arnold, A., Liu, Y., and Abe, N. (2007). Temporal causal modeling with graphical granger methods. In

Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data

mining, KDD ’07, pages 66–75, New York, NY, USA. ACM.

[2]. Darema, F., George, D. A., Norton, V. A., and Pfister, G. F. (1988). A single-program-multiple-data

computational model for EPEX/FORTRAN. Parallel Computing, 7(1):11–24.

[3]. Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data processing on large clusters. volume 51.

[4]. Duchi, J., Gould, S., and Koller, D. (2008). Projected subgradient methods for learning sparse gaussians.

In Proceedings of the Twenty-fourth Conference on Uncertainty in AI (UAI).

[5]. Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the

graphical lasso. Biostatistics, 9(3):432–441.

[6]. Granger, C. W. J. (1980). Testing for causality : A personal viewpoint. Journal of Economic Dynamics

and Control, 2(1):329–352.

[7]. Hsieh, C.-J., Sustik, M. A., Dhillon, I. S., and Ravikumar, P. (2011). Sparse inverse covariance matrix

estimation using quadratic approximation. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and

Weinberger, K., editors, Advances in Neural Information Processing Systems 24, pages 2330–2338.

http://nips.cc/.

[8]. Kambadur, P. and Lozano, A. C. (2013). A parallel, block greedy method for sparse inverse covariance

estimation for ultra-high dimensions. In Sixteenth International Conference on Artificial Intelligence and

Statistics (AISTATS).

[9]. Li, L. and chuan Toh, K. (2010). An inexact interior point method for l1-regularized sparse covariance

selection. Technical report, National University Of Singapore.

[10]. Lozano, A. C., Abe, N., Liu, Y., and Rosset, S. (2009). Grouped graphical granger modeling methods for

temporal causal modeling. In Proceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining, KDD ’09, pages 577–586, New York, NY, USA. ACM.

[11]. Lozano, A. C., Swirszcz, G., and Abe, N. (2011). Group orthogonal matching pursuit for logistic

regression. Journal of Machine Learning Research - Proceedings Track, 15:452–460.

[12]. MPI Forum (1995). Message Passing Interface. http://www.mpi-forum.org/.

[13]. MPI Forum (1997). Message Passing Interface-2. http://www.mpi-forum.org/.

[14]. O.Banerjee, El Ghaoui, L., and d’Aspremont, A. (2008). Model selection through sparse maximum

likelihood estimation for multivariate gaussian or binary data. Journal of Machine Learning Research,

9:485–516.

[15]. Scheinberg, K., Ma, S., and Goldfarb, D. (2010). Sparse inverse covariance selection via alternating

linearization methods. CoRR, abs/1011.0097.

Temporal Causal Modeling Algorithms

[16]. Scheinberg, K. and Rish, I. (2010). Learning sparse gaussian markov networks using a greedy coordinate

ascent approach. In Proceedings of the 2010 European conference on Machine learning and knowledge

discovery in databases: Part III, ECML PKDD’10, pages 196–212, Berlin, Heidelberg. Springer-Verlag.

[17]. Strang, G. (1993). Introduction to Linear Algebra. Wellesley-Cambridge Press.

Tree-AS (CHAID) Modeling Algorithms

1. Introduction

CHAID stands for Chi-squared Automatic Interaction Detector. It is a highly efficient statistical

technique for segmentation, or tree growing, developed by (Kass, 1980). Using the significance of

a statistical test and effect size as criteria, CHAID evaluates all of the values of a potential

predictor. It merges values that are judged to be statistically homogeneous (similar) with respect

to the target variable and maintains all other values that are heterogeneous (dissimilar). It then

selects the best predictor to form the first branch in the decision tree, such that each child node is

made of a group of homogeneous values of the selected predictor. This process continues

recursively until the tree is fully grown.

Exhaustive CHAID is a modification of CHAID developed to address some of the weaknesses of

the CHAID method (Biggs, de Ville, and Suen, 1991). In particular, sometimes CHAID may not

find the optimal split for a variable, since it stops merging categories as soon as it finds that all

remaining categories are statistically different. Exhaustive CHAID remedies this by continuing to

merge categories of the predictor variable until only two super categories are left. It then

examines the series of merges for the predictor and finds the set of categories that gives the

strongest association with the target variable, and computes an adjusted p-value for that

association. Thus, Exhaustive CHAID can find the best split for each predictor, and then choose

which predictor to split on by comparing the adjusted p-values.

Although CHAID or Exhaustive CHAID is efficient for data mining, there could be performance

issues. For example, the collection of summary statistics required for the tree growth will be

expensive when the raw data is distributed and massive. Moreover, the decision of splitting rules

will also be heavy when the number of predictors becomes very large since conducting category

merge for each predictor is not trivial. In these regard, parallel calculation is necessary in order to

improve the performance.

The document is concerned with CHAID and Exhaustive CHAID related algorithms. These

algorithms will be implemented in parallel within Analytic Engine (AE), based on the map-

reduce framework.

Tree AS Algorithm

Notice that the document provides technical details for engineers to develop the Tree engine. For

a more readable document, please refer to the algorithm document in Statistics or Modeler.

2. Notes

1. To prepare training data, invalid, system missing, and user missing values in predictors

will be considered as a single missing category.

2. The Tree engine relies on the Descriptive engine through SmartModeler doing the

following transformations:

a. Zero inflation handling

Zero inflated cases are imputed with missing values.

b. Binning continuous variables

The tiling method is used withߜ� (default 5) as the number of bins.

c. Supervised category merging

If the number of categories in a categorical variable is larger thanߜ� (default 12),

supervised category merging will be used.

d. Feature selection

If the number of predictors is larger thanߜ� (default 500), feature selection will be

applied.

e. Trim trailing blanks

f. Date/time handling

Date/time variables are transformed into continuous ones with Jan 1st, 1970 as

default reference data and 00:00:00 as default reference time.

3. Notations

The following notations are used throughout the document unless otherwise stated:

ܻ
Dependent, or target, variable. If ܻ is categorical with ,categoriesܬ
its category takes values in ܥ = {1, … {ܬ,

ܺ௠ , ݉ = 1, … ܯ,
Set of all predictor variables. If ܺ௠ is categorical with ௠ܫ categories,
its category takes values in ܦ = {1, … ௠ܫ, }

ℏ = ൛ݔ௠ ,௡,ݕ௡ൟ௡ୀଵ
ே

Whole training cases

ℏ(ݐ) Training cases that fall in node ݐ

௡ݓ Case weight associated with case ݊

௡݂
Frequency weight associated with case .݊ Non-integral positive
value is rounded to its nearest integer

Tree AS Algorithm

)ܥ |݅)݆ Cost of miss-classifying a category ݆case as a category ݅case,)ܥ |݆)݆

Ι(ܽ=)ܾ Indicator function taking value 1 when ܽ= ,ܾ 0 otherwise

4. Binning Continuous Predictors

CHAID and Exhaustive CHAID algorithms only accept nominal or ordinal categorical predictors.

When predictors are continuous, they are transformed into ordinal predictors before tree growth.

For a given set of break points ଵܽ, ଶܽ, … , ூܽି ଵ (in ascending order), a given ݔ is mapped into

category (ݔ)ܥ as follows:

(ݔ)ܥ = ൝

1 ≥ݔ ଵܽ

݅+ 1 ௜ܽ< ≥ݔ ௜ܽାଵ,݅= 1, … −ܫ, 2
ܫ ூܽି ଵ < ݔ

�

For binning continuous predictors, we use the tiling method which has been implemented by the

Descriptive engine. We use 5 as the default number of bins. For algorithm details, please refer to

Ref. 3.

The choice of the tiling method is based on some experimental results. Please refer to the

document of ‘Comparison of binning methods’ in Ref. 6.

5. CHAID Algorithm

CHAID tree grows level-by-level from the root node. The general procedure is as follows:

1. Create the root node, and mark it as the initial non-terminal leaf node.

2. Repeat the following steps until no non-terminal leaf nodes exist in the current tree:

a) Pass the training data, and collect summary statistics for each predictor and non-

terminal leaf node.

b) Merging – For each predictor and non-terminal leaf node, merge predictor

categories.

c) Splitting – For each non-terminal leaf node, select the best predictor to be used to

best split the node. If the best predictor is valid for splitting, split the node using

this predictor. Else, mark it as a terminal leaf node.

d) Stopping – For each node that was split in step c), check the child nodes to see

which nodes should be marked as terminal leaf nodes.

Tree AS Algorithm

In the following, we will describe how each step in tree growth can be accomplished.

5.1. Creating Root Node

To grow a tree, the root node should be created in the first step.

CreateRootNode()

Inputs:

 ܰ௙ // Count of valid training cases

 ௠ܫ ,�݉ = 1, … ܯ, // Number of categories of predictor�ܺ ௠

<Continuous target>

 ௙ܸ(ܻ) // Variance of target variable
<Categorical target>

 �ܬ // Number of target categories

<Parameter settings>

 MinParentCasesABS // Default 100

 NodeSizeRequirement // {‘absolute’, ‘percentage’}, default ‘absolute’
Outputs:

 ܶ(0) // Initial tree

 ݐ // Root node
Procedure:
1. If (ܰ௙ = 0),

or(NodeSizeRequirement=’absolute’ and�ܰ ௙ < MinParentCasesABS),

or((target is continuous)and(௙ܸ(ܻ) = 0)),

or((target is categorical)and(ܬ= 1)),

or(ܫ௠ = 1,݉ = 1, … ܯ,),
Return a null tree;

2. Else,{

Create root nodeݐ�;

Create tree ܶ(0) which has only the root node;
}

5.2. Collecting Summary Statistics

Summary statistics are collected for each predictor and non-terminal leaf node.

According to the type of target variable, we compute different sets of summary statistics. If the

target variable is categorical, summary statistics for a non-terminal leaf nodeݐ�, predictor�ܺ ௠

(withܫ�௠ categories), and categorical target ܻ (withܬ�categories), consist of the following statistics:

Cell frequency: ௜݊,௝
ழ௠ ,௧வ = ∑ ௡݂Ι(ݔ௠ ,௡ = ݅∩ ௡ݕ =)݆௡∈ℏ(௧) ,

Cell weighted frequency: ௜,௝ݓ
ழ௠ ,௧வ = ∑ ௡ݓ ௡݂Ι(ݔ௠ ,௡ = ݅∩ ௡ݕ =)݆௡∈ℏ(௧) ,

Tree AS Algorithm

where�݅= 1, … ௠ܫ, ,�݆ = 1, … .ܬ,

If the target variable is continuous, summary statistics for a non-terminal leaf nodeݐ�,

predictor�ܺ ௠ (withܫ�௠ categories), and continuous target ܻ consist of the following statistics:

Count: ܰ௙,௜
ழ௠ ,௧வ = ∑ ௡݂Ι(ݔ௠ ,௡ =)݅௡∈ℏ(௧) ,

Mean: ത௙,௜ݕ
ழ௠ ,௧வ =

∑ ௙೙௬೙஁(௫೘ ,೙ୀ௜)೙∈ℏ(೟)

ே೑,೔
ಬ೘ ,೟ಭ ,

Variance: ௙ܸ,௜
ழ௠ ,௧வ =

ଵ

ே೑,೔
ಬ೘ ,೟ಭ ∑ ௡݂Ι(ݔ௠ ,௡ = ௡ݕ)݅(− ത௙,௜ݕ

ழ௠ ,௧வ)ଶ௡∈ℏ(௧) ,

Weighted count: ܰ௪ ,௜
ழ௠ ,௧வ = ∑ ௡ݓ ௡݂Ι(ݔ௠ ,௡ =)݅௡∈ℏ(௧) ,

Weighted mean: ത௪ݕ ,௜
ழ௠ ,௧வ =

∑ ௪೙௙೙௬೙஁(௫೘ ,೙ୀ௜)೙∈ℏ(೟)

ேೢ ,೔
ಬ೘ ,೟ಭ ,

Weighted variance: ௪ܸ ,௜
ழ௠ ,௧வ =

ଵ

ேೢ ,೔
ಬ೘ ,೟ಭ ∑ ௡ݓ ௡݂Ι(ݔ௠ ,௡ = ௡ݕ)݅(− ത௪ݕ ,௜

ழ௠ ,௧வ)ଶ௡∈ℏ(௧) ,

where�݅= 1, … ௠ܫ, .

5.3. Merging

Based on summary statistics, non-significant categories are merged for each predictor and non-

terminal leaf node.

CHAID_Merging()

Inputs:

// Global summary statistics for predictor ܺ௠ and node ݐ
<Continuous target>

 ܰ௙,௜
ழ௠ ,௧வ

 ത௙,௜ݕ
ழ௠ ,௧வ

 ௙ܸ,௜
ழ௠ ,௧வ

 ܰ௪ ,௜
ழ௠ ,௧வ

 ത௪ݕ ,௜
ழ௠ ,௧வ

 ௪ܸ ,௜
ழ௠ ,௧வ

<Categorical target>

 ௜݊,௝
ழ௠ ,௧வ

 ௜,௝ݓ
ழ௠ ,௧வ

Tree AS Algorithm

where ݅= 1, … ௠ܫ, and ݆= 1, … ܬ,

<Parameter settings>

 TreeGrowingMethod // {‘p-value’, ‘effectsize’}

 AlphaMerge // Default 0.05

 AlphaSplitMerge // Default 0.025

 EffectSizeThreshold

 BonferroniAdjustment // {true, false}, default true

 ChiSquareType // {‘pearson’, ‘likelihood’}, default ‘pearson’

 Epsilon // Default 0.001

 MaxIterations // Default 100

 MinChildCasesABS // Default 50

 MinChildCasesPct // Default 1

 NodeSizeRequirement // {‘absolute’, ‘percentage’}, default ‘absolute’

 Scores // Vector value, scores for categories of ܻ

 SplitMergedCategories // {true, false}, default false
Outputs:

 Θழ௠ ,௧வ // Set of merged categories

 ௩௔௟௨௘݌
ழ௠ ,௧வ // P-value, computed for Θழ௠ ,௧வ

 TestStatistic // Test statistic associated with݌�௩௔௟௨௘
ழ௠ ,௧வ

 FreedomDegrees // Freedom degrees associated with݌�௩௔௟௨௘
ழ௠ ,௧வ

 ௦ܧ
ழ௠ ,௧வ // Effect size

<Continuous target>

 ܰ௙,௜
ழ௠ ,௧வ

 ത௙,௜ݕ
ழ௠ ,௧வ

 ௙ܸ,௜
ழ௠ ,௧வ

 ܰ௪ ,௜
ழ௠ ,௧வ

 ത௪ݕ ,௜
ழ௠ ,௧வ

 ௪ܸ ,௜
ழ௠ ,௧வ

<Categorical target>

 ௜݊,௝
ழ௠ ,௧வ

 ௜,௝ݓ
ழ௠ ,௧வ

where ݅∈ Θழ௠ ,௧வ, ݆= 1, … ܬ,
Procedure:
1. If (target is continuous),

Θழ௠ ,௧வ = ൛݅|ܰ௪ ,௜
ழ௠ ,௧வ > 0,݅= 1, … ௠ܫ, ൟ;

If (target is categorical),

Θழ௠ ,௧வ = ൛݅|∑ ௜݊௝
ழ௠ ,௧வ௃

௝ୀଵ > 0,݅= 1, … ௠ܫ, ൟ;

// Notice that if the predictor is ordinal, Θழ௠ ,௧வ will not include the
missing category initially.

2. If (|Θழ௠ ,௧வ| ≤ 1),
Go to step 6;

3. If (TreeGrowingMethod=‘p-value’),{
If (predictor is nominal),{

=ݐ݌ −1;

For ∀݅∈ Θழ௠ ,௧வ,{

For ∀݆∈ Θழ௠ ,௧வ and�݆ > ,݅{

Compute p-value݌� and effect size for category�݅ and�݆;

If <݌) },(ݐ݌

=ݐ݌ ;݌

Tree AS Algorithm

ܿܽ =݅_ݐ ;݅

ܿܽ =݆_ݐ ;݆
}

Else if݌�= ,ݐ݌ resolve tied maximum p-values;
}

}
}
If (predictor is ordinal),{

=ݐ݌ −1;

For ∀݅∈ Θழ௠ ,௧வ,{

Get category�݆ in Θழ௠ ,௧வ which is subsequent to�݅, if exists;

Compute p-value݌� and effect size for category�݅ and�݆;

If <݌) },(ݐ݌

=ݐ݌ ;݌

ܿܽ =݅_ݐ ;݅

ܿܽ =݆_ݐ ;݆
}

Else if݌�= ,ݐ݌ resolve tied maximum p-values;
}

}

If <ݐ݌) AlphaMerge),{

Merge�ܿ ݅_ݐܽ and�ܿ ݆_ݐܽ into a compound category�ܿ.

Compute summary statistics for the compound category�ܿ;

Update Θழ௠ ,௧வ;
}
Else,

Go to step 6;
}
If (TreeGrowingMethod=‘effectsize’),{

If (predictor is nominal),{

=ݐ݁ 100;

For ∀݅∈ Θழ௠ ,௧வ,{

For ∀݆∈ Θழ௠ ,௧வ and�݆ > ,݅{

Compute effect size�݁ݏ for category�݅ and�݆;

If (>ݏ݁ },(ݐ݁

=ݐ݁ ;ݏ݁

ܿܽ =݅_ݐ ;݅

ܿܽ =݆_ݐ ;݆
}

}
}

}
If (predictor is ordinal),{

=ݐ݁ 100;

For ∀݅∈ Θழ௠ ,௧வ,{

Get category�݆ in Θழ௠ ,௧வ which is subsequent to�݅, if exists;

Compute effect size�݁ݏ for category�݅ and�݆;

If (>ݏ݁ },(ݐ݁

=ݐ݁ ;ݏ݁

ܿܽ =݅_ݐ ;݅

ܿܽ =݆_ݐ ;݆
}

}

Tree AS Algorithm

}

If (>ݐ݁ EffectSizeThreshold),{

Merge�ܿ ݅_ݐܽ and�ܿ ݆_ݐܽ into a compound category�ܿ.

Compute summary statistics for the compound category�ܿ;

Update Θழ௠ ,௧வ;
}
Else,

Go to step 6;
}

4. Let Α be the set of original categories in the new category�ܿ;
If (TreeGrowingMethod=‘p-value’),
and(SplitMergedCategories=true),

and(3 ≤ |A| ≤ 15),{
If (predictor is nominal),{

=ݐ݌ 2; // Any value larger than 1 should be ok

For (݇= 1: ⌊|A|/2⌋),{

For 1ܣ∀) with�݇ categories belonging to Α),{

Let2ܣ� = −ܣ ;1ܣ

Compute p-value݌� and effect size for category�ܿ 1ܣ_ݐܽ and�ܿ ;2ܣ_ݐܽ

// Category ܿܽ 1ܣ_ݐ and�ܿ 2ܣ_ݐܽ corresponds to1ܣ� and2ܣ� respectively

If >݌) },(ݐ݌

=ݐ݌ ;݌

ܿܽ =݅_ݐ ܿܽ ;1ܣ_ݐ

ܿܽ =݆_ݐ ܿܽ ;2ܣ_ݐ
}

Else if݌�= ,ݐ݌ resolve tied minimum p-values;
}

}
}

If (predictor is ordinal),{ // Set Α consists of ordered categories

=ݐ݌ 2;

Let1ܣ� be the set consisting of the first category inܣ�;

Let2ܣ� = −ܣ ;1ܣ

While 2ܣ) is not empty),{

Compute p-value݌� and effect size for category�ܿ 1ܣ_ݐܽ and�ܿ ;2ܣ_ݐܽ

// Category ܿܽ 1ܣ_ݐ and�ܿ 2ܣ_ݐܽ corresponds to1ܣ� and2ܣ� respectively

If >݌) },(ݐ݌

=ݐ݌ ;݌

ܿܽ =݅_ݐ ܿܽ ;1ܣ_ݐ

ܿܽ =݆_ݐ ܿܽ ;2ܣ_ݐ
}

Else if݌�= ,ݐ݌ resolve tied minimum p-values;

Move the first category in2ܣ� into1ܣ�;
}

}

If ≥ݐ݌) AlphaSplitMerge),{

Split category�ܿ into two categories�ܿ ݅_ݐܽ and�ܿ _ݐܽ ;݆

Compute summary statistics for categories�ܿ ݅_ݐܽ and�ܿ _ݐܽ ;݆

Update Θழ௠ ,௧வ;
}

}
If (TreeGrowingMethod=‘effectsize’),
and(SplitMergedCategories=true),

Tree AS Algorithm

and(3 ≤ |A| ≤ 15),{
If (predictor is nominal),{

=ݐ݁ −1;

For (݇= 1: ⌊|A|/2⌋),{

For 1ܣ∀) with�݇ categories belonging to Α),{

Let2ܣ� = −ܣ ;1ܣ

Compute effect size�݁ݏ for category�ܿ 1ܣ_ݐܽ and�ܿ ;2ܣ_ݐܽ

// Category ܿܽ 1ܣ_ݐ and�ܿ 2ܣ_ݐܽ corresponds to1ܣ� and2ܣ� respectively

If (<ݏ݁ },(ݐ݁

=ݐ݁ ;ݏ݁

ܿܽ =݅_ݐ ܿܽ ;1ܣ_ݐ

ܿܽ =݆_ݐ ܿܽ ;2ܣ_ݐ
}

}
}

}
If (predictor is ordinal),{

=ݐ݁ −1;

Let1ܣ� be the set consisting of the first category inܣ�;

Let2ܣ� = −ܣ ;1ܣ

While 2ܣ) is not empty),{

Compute effect size�݁ݏ for category�ܿ 1ܣ_ݐܽ and�ܿ ;2ܣ_ݐܽ

// Category ܿܽ 1ܣ_ݐ and�ܿ 2ܣ_ݐܽ corresponds to1ܣ� and2ܣ� respectively

If (<ݏ݁ },(ݐ݁

=ݐ݁ ;ݏ݁

ܿܽ =݅_ݐ ܿܽ ;1ܣ_ݐ

ܿܽ =݆_ݐ ܿܽ ;2ܣ_ݐ
}

Move the first category in2ܣ� into1ܣ�;
}

}

If (≤ݐ݁ EffectSizeThreshold),{

Split category�ܿ into two categories�ܿ ݅_ݐܽ and�ܿ _ݐܽ ;݆

Compute summary statistics for categories�ܿ ݅_ݐܽ and�ܿ _ݐܽ ;݆

Update Θழ௠ ,௧வ;
}

}
5. Go to step 2;
6. If (TreeGrowingMethod=‘p-value’),

and(predictor is ordinal),

and(ܰ௙,௖௔௧_௠ ௜௦௦௜௡௚
ழ௠ ,௧வ > 0),{

// We use subscript ‘cat_missing’ to denote summary statistics for the
// missing category. Notice that this is only for ordinal predictors and we
// do not distinguish the missing category with other categories for nominal
// predictor.

Θଵ
ழ௠ ,௧வ = Θழ௠ ,௧வ ∪{cat_missing};

Compute p-value݌�ଵ and effect size�݁ଵ for the set of merged categories Θଵ
ழ௠ ,௧வ;

=ݐ݌ −1;

ܿܽ ;cat_missing=݅_ݐ

For ∀݆∈ Θழ௠ ,௧வ,{

Compute p-value݌� and effect size for category�݆ and cat_missing;

If <݌) },(ݐ݌

=ݐ݌ ;݌

Tree AS Algorithm

ܿܽ =݆_ݐ ;݆
}

Else if݌�= ,ݐ݌ resolve tied maximum p-values;
}

Merge�ܿ ݅_ݐܽ and�ܿ ݆_ݐܽ into a compound category�ܿ;

Compute summary statistics for the compound category�ܿ;

Let Θଶ
ழ௠ ,௧வ be the new set of categories;

Compute p-value݌�ଶ and effect size�݁ଶ for Θଶ
ழ௠ ,௧வ;

If ଵ݌) ≠ },(ଶ݌

௩௔௟௨௘݌
ழ௠ ,௧வ = ଵ݌) < ;ଶ݌:ଵ݌?(ଶ݌

Θழ௠ ,௧வ = ଵ݌) < ?(ଶ݌ Θଵ
ழ௠ ,௧வ : Θଶ

ழ௠ ,௧வ;

௦ܧ
ழ௠ ,௧வ = ଵ݌) < ?(ଶ݌ ଵ݁: ଶ݁;

}
Else, resolve tied minimum p-values;

}
If (TreeGrowingMethod=‘effectsize’),
and(predictor is ordinal),

and(ܰ௙,௖௔௧_௠ ௜௦௦௜௡௚
ழ௠ ,௧வ > 0),{

=ݐ݁ 100;

ܿܽ ;cat_missing=݅_ݐ

For ∀݆∈ Θழ௠ ,௧வ,{

Compute p-value and effect size�݁ݏ for category�݆ and cat_missing;

If (>ݏ݁ },(ݐ݁

=ݐ݁ ;ݏ݁

ܿܽ =݆_ݐ ;݆
}

}

Merge�ܿ ݅_ݐܽ and�ܿ ݆_ݐܽ into a compound category�ܿ;

Compute summary statistics for the compound category�ܿ;

Let Θଶ
ழ௠ ,௧வ be the new set of categories;

Compute p-value݌�ଶ and effect size�݁ଶ for Θଶ
ழ௠ ,௧வ;

௩௔௟௨௘݌
ழ௠ ,௧வ = (ଵ݁ > ଶ݁)?݌ଵ:݌ଶ;

Θழ௠ ,௧வ = (ଵ݁ > ଶ݁)? Θଵ
ழ௠ ,௧வ : Θଶ

ழ௠ ,௧வ;

௦ܧ
ழ௠ ,௧வ = (ଵ݁ > ଶ݁)? ଵ݁: ଶ݁;

}
7. If (TreeGrowingMethod=‘p-value’),{

While ∃݅∈ Θழ௠ ,௧வ,((NodeSizeRequirement=’absolute’)and(((target is

continuous)and(ܰ௙,௜
ழ௠ ,௧வ < MinChildCasesABS))or((target is

categorical)and(∑ ௜݊,௝
ழ௠ ,௧வ

௝ < MinChildCasesABS)))),

or((NodeSizeRequirement=’percentage’)and(((target is

continuous)and(ܰ௙,௜
ழ௠ ,௧வ < MinChildCasesPct*ܰ௙))or((target is

categorical)and(∑ ௜݊,௝
ழ௠ ,௧வ

௝ < MinChildCasesPct*ܰ௙)))),{

If (predictor is nominal),{

=ݐ݌ −1;

ܿܽ =݅_ݐ ;݅

For ∀݆∈ Θழ௠ ,௧வ and�݆≠ ,݅{

Compute p-value݌� and effect size for category�݅ and�݆;

If <݌) },(ݐ݌

=ݐ݌ ;݌

ܿܽ =݆_ݐ ;݆
}

Tree AS Algorithm

Else if =݌ ,ݐ݌ resolve tied maximum p-values;
}

Merge�ܿ ݅_ݐܽ and�ܿ ݆_ݐܽ into a compound category�ܿ;

Compute summary statistics for the compound category�ܿ;

Update Θழ௠ ,௧வ;
}
If (predictor is ordinal),{

=ݐ݌ −1;

ܿܽ =݅_ݐ ;݅

Get category�݆ in Θழ௠ ,௧வ which is antecedent to�݅, if exists;

Compute p-value݌� and effect size for category�݅ and�݆;

If <݌) },(ݐ݌

=ݐ݌ ;݌

ܿܽ =݆_ݐ ;݆
}

Else if݌�= ,ݐ݌ resolve tied maximum p-values;

Get category�݆ in Θழ௠ ,௧வ which is subsequent to�݅, if exists;

Compute p-value݌� and effect size for category�݅ and�݆;

If <݌) },(ݐ݌

=ݐ݌ ;݌

ܿܽ =݆_ݐ ;݆
}

Else if݌�= ,ݐ݌ resolve tied maximum p-values;

Merge�ܿ ݅_ݐܽ and�ܿ ݆_ݐܽ into a compound category�ܿ;

Compute summary statistics for the compound category�ܿ;

Update Θழ௠ ,௧வ;
}

}
}
If (TreeGrowingMethod=‘effectsize’),{

While ∃݅∈ Θழ௠ ,௧வ,((NodeSizeRequirement=’absolute’)and(((target is

continuous)and(ܰ௙,௜
ழ௠ ,௧வ < MinChildCasesABS))or((target is

categorical)and(∑ ௜݊,௝
ழ௠ ,௧வ

௝ < MinChildCasesABS)))),

or((NodeSizeRequirement=’percentage’)and(((target is

continuous)and(ܰ௙,௜
ழ௠ ,௧வ < MinChildCasesPct*ܰ௙))or((target is

categorical)and(∑ ௜݊,௝
ழ௠ ,௧வ

௝ < MinChildCasesPct*ܰ௙)))),{

If (predictor is nominal),{

=ݐ݁ 100;

ܿܽ =݅_ݐ ;݅

For ∀݆∈ Θழ௠ ,௧வ and�݆≠ ,݅{

Compute effect size�݁ݏ for category�݅ and�݆;

If (>ݏ݁ },(ݐ݁

=ݐ݁ ;ݏ݁

ܿܽ =݆_ݐ ;݆
}

}

Merge�ܿ ݅_ݐܽ and�ܿ ݆_ݐܽ into a compound category�ܿ;

Compute summary statistics for the compound category�ܿ;

Update Θழ௠ ,௧வ;
}
If (predictor is ordinal),{

=ݐ݁ 100;

Tree AS Algorithm

ܿܽ =݅_ݐ ;݅

Get category ݆ in Θழ௠ ,௧வ which is antecedent to ,݅ if exists;

Compute effect size�݁ݏ for category�݅ and�݆;

If (>ݏ݁ },(ݐ݁

=ݐ݁ ;ݏ݁

ܿܽ =݆_ݐ ;݆
}

Get category�݆ in Θழ௠ ,௧வ which is subsequent to�݅, if exists;

Compute effect size�݁ݏ for category�݅ and�݆;

If (>ݏ݁ },(ݐ݁

=ݐ݁ ;ݏ݁

ܿܽ =݆_ݐ ;݆
}

Merge�ܿ ݅_ݐܽ and�ܿ ݆_ݐܽ into a compound category�ܿ;

Compute summary statistics for the compound category�ܿ;

Update Θழ௠ ,௧வ;
}

}
}

8. Compute݌�௩௔௟௨௘
ழ௠ ,௧வ and effect sizeܧ�௦

ழ௠ ,௧வ for the set of merged categories Θழ௠ ,௧வ;

// If (|Θழ௠ ,௧வ| = 1),{

// ௩௔௟௨௘݌
ழ௠ ,௧வ = 1;

// ௦ܧ
ழ௠ ,௧வ = 0;

// }
9. If (BonferroniAdjustment=true),{

Compute adjusted p-value by applying Bonferroni adjustments;

Let݌�௩௔௟௨௘
ழ௠ ,௧வ be the adjusted p-value;

}
// Bonferroni adjustments are described in section 5.3.2.

The function of CHAID_Merging() will be used by each Reducer in the map-reduce

environment, see Appendix A for details.

Summary statistics for a compound category can be derived from those for original categories in

the compound category. Denote the compound category as c, and the set of original categories in

the compound category as Ω, the new summary statistics are calculated as,

ܰ௙,௖
ழ௠ ,௧வ = ∑ ܰ௙,௜

ழ௠ ,௧வ
௜∈ஐ ,

ത௙,௖ݕ
ழ௠ ,௧வ = ∑

ே೑,೔
ಬ೘ ,೟ಭ

ே೑,೎
ಬ೘ ,೟ಭ ത௙,௜ݕ

ழ௠ ,௧வ
௜∈ஐ ,

௙ܸ,௖
ழ௠ ,௧வ = ∑

ே೑,೔
ಬ೘ ,೟ಭ

ே೑,೎
ಬ೘ ,೟ಭ ௙ܸ,௜

ழ௠ ,௧வ +௜∈ஐ ∑
ே೑,೔
ಬ೘ ,೟ಭ

ே೑,೎
ಬ೘ ,೟ಭ ൫ݕത௙,௜

ழ௠ ,௧வ − ത௙,௖ݕ
ழ௠ ,௧வ൯൫ݕത௙,௜

ழ௠ ,௧வ + ത௙,௖ݕ
ழ௠ ,௧வ൯௜∈ஐ ,

ܰ௪ ,௖
ழ௠ ,௧வ = ∑ ܰ௪ ,௜

ழ௠ ,௧வ
௜∈ஐ ,

Tree AS Algorithm

ത௪ݕ ,௖
ழ௠ ,௧வ = ∑

ேೢ ,೔
ಬ೘ ,೟ಭ

ேೢ ,೎
ಬ೘ ,೟ಭ ത௪ݕ ,௜

ழ௠ ,௧வ
௜∈ஐ ,

௪ܸ ,௖
ழ௠ ,௧வ = ∑

ேೢ ,೔
ಬ೘ ,೟ಭ

ேೢ ,೎
ಬ೘ ,೟ಭ ௪ܸ ,௜

ழ௠ ,௧வ +௜∈ஐ ∑
ேೢ ,೔
ಬ೘ ,೟ಭ

ேೢ ,೎
ಬ೘ ,೟ಭ ൫ݕത௪ ,௜

ழ௠ ,௧வ − ത௪ݕ ,௖
ழ௠ ,௧வ൯൫ݕത௪ ,௜

ழ௠ ,௧வ + ത௪ݕ ,௖
ழ௠ ,௧வ൯௜∈ஐ ,

௖݊,௝
ழ௠ ,௧வ = ∑ ௜݊,௝

ழ௠ ,௧வ
௜∈ஐ ,

௖,௝ݓ
ழ௠ ,௧வ = ∑ ௜,௝ݓ

ழ௠ ,௧வ
௜∈ஐ .

5.3.1. p-Value and Effect Size Calculations

Calculations of (unadjusted) p-values and effect sizes in the merging step depend on the type of

target variable.

The merging step sometimes needs the p-value and effect size for a pair of original/compound

categories, and sometimes needs the p-value and effect size for all the original/compound

categories. For convenience, we denote the set of nonempty original/compound categories, for

which the p-value and effect size are computed, as Γழ௠ ,௧வ .

Continuous Target Variable

If the target variable�ܻ is continuous, perform an ANOVA F test that tests if the means of�ܻ for

different categories in Γழ௠ ,௧வ are the same. This ANOVA F test calculates the F-statistic as

ܨ =
∑ ேೢ ,೔

ಬ೘ ,೟ಭ
൬௬തೢ ,೔

ಬ೘ ,೟ಭ
ି௬ത

ೢ ,౳ಬ೘ ,೟ಭ
ಬ೘ ,೟ಭ

൰
మ

೔∈౳ಬ೘ ,೟ಭ (ூି ଵ)ൗ

∑ ேೢ ,೔
ಬ೘ ,೟ಭ

௏ೢ ,೔
ಬ೘ ,೟ಭ

೔∈౳ಬ೘ ,೟ಭ (ே೑
ᇲିூ)ൗ

,

where�ܰ ௙
ᇱ= ∑ ܰ௙,௜

ழ௠ ,௧வ
௜∈୻ಬ೘ ,೟ಭ =ܫ�, |Γழ௠ ,௧வ|.

Accordingly, the p-value is calculated as

p-value=ቐ

����ϐ����, If both numerator and denominator of F are zero;
0, Else if denominator of F is zero;

Prob൛ܨ൫ܫ− 1,ܰ௙
ᇱ− <൯ܫ ,ൟܨ Otherwise.

�

And −ܫ൫ܨ 1,ܰ௙
ᇱ− ൯isܫ a random variable that follows a F-distribution with degrees of

freedomܫ�− 1 and�ܰ ௙
ᇱ− .ܫ

Tree AS Algorithm

The effect sizeܧ�௦ is evaluated by the measure ofݐܽܧ� ݑݍܵ ݎܽ݁ , i.e.

௦ܧ = 1 −
∑ ேೢ ,೔

ಬ೘ ,೟ಭ
௏ೢ ,೔
ಬ೘ ,೟ಭ

೔∈౳ಬ೘ ,೟ಭ

∑ ேೢ ,೔
ಬ೘ ,೟ಭ௏

ೢ ,౳ಬ೘ ,೟ಭ
ಬ೘ ,೟ಭ

೔∈౳ಬ೘ ,೟ಭ
.

Nominal Target Variable

If the target variable�ܻ is nominal categorical, the null hypothesis of independence of

predictor�ܺ ௠ and�ܻ is tested. According to the parameter of ChiSquareType, the p-value is

computed based on either Pearson chi-squared statistic or likelihood ratio statistic.

The Pearson’s chi-square statistic and likelihood ratio statistic are, respectively,

ܺଶ = ෍ ෍
൫݊ ௜,௝

ழ௠ ,௧வ − ෝ݉௜,௝൯
ଶ

ෝ݉௜,௝
௝∈୼ಬ೘ ,೟ಭ௜∈୻ಬ೘ ,೟ಭ

ଶܩ = 2 ෍ ෍ ௜݊,௝
ழ௠ ,௧வ݈݊ ൫݊ ௜,௝

ழ௠ ,௧வ ෝ݉௜,௝ൗ ൯

௝∈୼ಬ೘ ,೟ಭ௜∈୻ಬ೘ ,೟ಭ

where Δழ௠ ,௧வ denotes the set of nonempty target categories, and�݉ෝ௜,௝ is the estimated expected

frequency following the independence model. The corresponding p-value is given by Prob{ ௗ߯
ଶ >

ܺଶ} for Pearson’s chi-square test or Prob{ ௗ߯
ଶ > {ଶܩ for likelihood ratio test, where�߯ௗ

ଶ follows a chi-

squared distribution with degrees of freedom�݀ = −ܬ) −ܫ)(1 1), hereinܬ�= |Δழ௠ ,௧வ | andܫ�=

|Γழ௠ ,௧வ|.If case weight is not specified, the expected frequency is estimated by

ෝ݉௜,௝ =
௜݊∙ ∙݊௝

∙݊∙

where�݊௜∙ = ∑ ௜݊,௝
ழ௠ ,௧வ

௝∈୼ಬ೘ ,೟ಭ ,�݊ ∙௝ = ∑ ௜݊,௝
ழ௠ ,௧வ

௜∈୻ಬ೘ ,೟ಭ , and�݊ ∙∙ = ∑ ∑ ௜݊,௝
ழ௠ ,௧வ

௝∈୼ಬ೘ ,೟ಭ௜∈୻ಬ೘ ,೟ಭ .

Else if case weight is specified, the expected frequency under the null hypothesis of

independence is of the form

݉ ௜,௝ = ഥ௜,௝ݓ
ିଵߙ௜ߚ௝

whereߙ�௜andߚ�௝ are parameters to be estimated, and

ഥ௜,௝ݓ =
௪೔,ೕ
ಬ೘ ,೟ಭ

௡೔,ೕ
ಬ೘ ,೟ಭ .

Tree AS Algorithm

Parameters estimatesߙ�ො௜,ߚ�መ௝, and hence�݉ෝ௜,௝, are resulted from the following iterative procedure.

1. Initialize�݇ = ௜ߙ�,0
(଴)

= ௝ߚ
(଴)

= 1,�݉ ௜,௝
(଴)

= ഥ௜,௝ݓ
ିଵ.

2. Computeߙ�௜
(௞ାଵ)

= ௜ߙ
(௞) ௡೔∙

∑ ௠
೔,ೕ
(ೖ)

ೕ∈౴ಬ೘ ,೟ಭ
.

3. Computeߚ�௝
(௞ାଵ)

=
௡∙ೕ

∑ ௪ഥ೔,ೕ
షభఈ

೔
(ೖశభ)

೔∈౳ಬ೘ ,೟ಭ
.

4. Compute�݉ ௜,௝
(௞ାଵ)

= ഥ௜,௝ݓ
ିଵߙ௜

(௞ାଵ)
௝ߚ

(௞ାଵ)
.

5. If�݇ + 1=MaxIterations or max௜,௝ห݉ ௜,௝
(௞ାଵ)

− ݉ ௜,௝
(௞)
ห< Epsilon, stop and

outputߙ�௜
(௞ାଵ)

௝ߚ�,
(௞ାଵ)

, and�݉ ௜,௝
(௞ାଵ)

as the final estimates. Otherwise,�݇ = ݇+ 1, go to step 2.

Given the chi-square test statistic�߯ௗ
ଶ, the effect sizeܧ�௦ is computed as

௦ܧ = ൬
ఞ೏
మ

௡∙∙ௗ೑
൰
ଵ/ଶ

,

where�݀௙ = min(ܬ,ܫ) − 1,�߯ௗ
ଶ = ܺଶ,ܩ�ଶ, orܪ�ଶ in below.

Ordinal Target Variable

If the target variable�ܻ is categorical ordinal, the null hypothesis of independence of predictor�ܺ ௠

and�ܻ is tested against the row effects model, with rows being the categories of�ܺ ௠ and columns

the categories of�ܻ , proposed by Goodman (1979). Two sets of expected frequencies�݉ෝ௜,௝ (under

the hypothesis of independence) and�݉ෝ෡௜,௝ (under the hypothesis that the data follow a row effects

model), are both estimated. The likelihood ratio statistic is

ଶܪ = 2∑ ∑ ෝ݉෡௜,௝݈݊ ൫݉ෝ෡௜,௝ ෝ݉௜,௝ൗ ൯௝∈୼ಬ೘ ,೟ಭ௜∈୻ಬ೘ ,೟ಭ .

The corresponding p-value is given by Prob{ ௗ߯
ଶ > {ଶܪ for likelihood ratio test, where�߯ௗ

ଶ follows a

chi-squared distribution with degrees of freedom�݀ = −ܫ 1, hereinܫ�= |Γழ௠ ,௧வ|.

In the row effects model, Scores for categories of�ܻ are needed. By default, the order of a

category of�ܻ is used as the category score. Users can specify their own set of scores. Scores are set

at the beginning of the tree and kept unchanged afterward. Letݏ�௝ be the score for category�݆

of�ܻ ,�݆ ∈ Δழ௠ ,௧வ . The expected cell frequency under the row effects model is given by

݉ ௜,௝ = ഥ௜,௝ݓ
ିଵߙ௜ߚ௝ߛ௜

(௦ೕି ௦̅)

Tree AS Algorithm

where

=ҧݏ
∑ ݓ ∙௝ݏ௝௝∈୼ಬ೘ ,೟ಭ

∑ ݓ ∙௝௝∈୼ಬ೘ ,೟ಭ

in whichݓ�∙௝ = ∑ ௜,௝ݓ
ழ௠ ,௧வ

௜∈୻ಬ೘ ,೟ಭ ,௝ߚ�,௜ߙ�, andߛ�௜are unknown parameters to be estimated.

Parameters estimatesߙ�ො෠௜,ߚ�መ
መ
௝,ߛ�ො෠௜and hence�݉ෝ෡௜,௝, are resulted from the following iterative procedure.

1. Initialize�݇ = ௜ߙ�,0
(଴)

= ௝ߚ
(଴)

= ௜ߛ
(଴)

= 1,�݉ ௜,௝
(଴)

= ഥ௜,௝ݓ
ିଵ.

2. Computeߙ�௜
(௞ାଵ)

= ௜ߙ
(௞) ௡೔∙

∑ ௠
೔,ೕ
(ೖ)

ೕ∈౴ಬ೘ ,೟ಭ
.

3. Computeߚ�௝
(௞ାଵ)

=
௡∙ೕ

∑ ௪ഥ೔,ೕ
షభఈ

೔
(ೖశభ)

ቀఊ
೔
(ೖ)

ቁ
(ೞೕషೞത)

೔∈౳ಬ೘ ,೟ಭ

.

4. Compute�݉ ௜,௝
∗ = ഥ௜,௝ݓ

ିଵߙ௜
(௞ାଵ)

௝ߚ
(௞ାଵ)

൫ߛ௜
(௞)
൯

(௦ೕି ௦̅)
=௜ܩ�, 1 +

∑ ൫௦ೕି ௦̅൯(௡೔,ೕ
ಬ೘ ,೟ಭ

ି௠ ೔,ೕ
∗)ೕ∈౴ಬ೘ ,೟ಭ

∑ (௦ೕି ௦̅)మ௠ ೔,ೕ
∗

ೕ∈౴ಬ೘ ,೟ಭ
.

5. Computeߛ�௜
(௞ାଵ)

= ൝
௜ߛ

(௞)
,௜ܩ Ifܩ�௜> 0;

௜ߛ
(௞)

, Otherwise.
�

6. Compute�݉ ௜,௝
(௞ାଵ)

= ഥ௜,௝ݓ
ିଵߙ௜

(௞ାଵ)
௝ߚ

(௞ାଵ)
൫ߛ௜

(௞ାଵ)
൯

(௦ೕି ௦̅)
.

7. If�݇ + 1=MaxIterations or max௜,௝ห݉ ௜,௝
(௞ାଵ)

− ݉ ௜,௝
(௞)
ห< Epsilon, stop and

outputߙ�௜
(௞ାଵ)

௝ߚ�,
(௞ାଵ)

௜ߛ�,
(௞ାଵ)

, and�݉ ௜,௝
(௞ାଵ)

as the final estimates. Otherwise,�݇ = ݇+ 1, go to

step 2.

5.3.2. Bonferroni Adjustments for CHAID

The adjusted p-value is calculated as the p-value times a Bonferroni multiplier. The Bonferroni

multiplier adjusts for multiple tests.

Suppose that there areܫ�original categories of predictor�ܺ ௠ , including missing category if exists,

in the set of merged categories Θழ௠ ,௧வ , and it is reduced to�݈,�݈= |Θழ௠ ,௧வ|, categories after the

merging step. The Bonferroni multiplierܤ� is the number of possible ways thatܫ�categories can be

merged into�݈ categories.

For�݈= ܤ�,ܫ = 1. For 2 ≤ ݈< ,ܫ use the following equation

Tree AS Algorithm

ܤ =

⎩
⎪⎪
⎨

⎪⎪
⎧ ቀ

−ܫ 1
݈− 1

ቁ, Ordinal predictor;

෍ (−1)௩
(݈− ூ(ݒ

!ݒ (݈− !(ݒ

௟ି ଵ

௩ୀ଴

, Nominal predictor;

ቀ
−ܫ 2
݈− 2

ቁ+ ቀ݈
−ܫ 2
݈− 1

ቁ, Ordinal with a missing category.

�

5.4. Splitting

When categories have been merged for all predictors, each predictor is evaluated for its

association with the target variable, based on the p-value or effect size of the statistical test of

association. The predictor with the strongest association, indicated by the smallest p-value or the

largest effect size, is compared to the split threshold, AlphaSplit or

EffectSizeThreshold. If the p-value is less than or equal to AlphaSplit, or the effect size is

larger than or equal to EffectSizeThreshold, that predictor is selected as the split variable for

the current node. Each of the merged categories of the split variable defines a child node of the

split.

In map-reduce environment, the selection of the smallest p-value or the largest effect size can be

performed efficiently in parallel. Firstly, each Reducer finds the locally smallest p-value or the

locally largest effect size and passes it to the Controller. Then, the Controller sorts the local ones

and gets the globally smallest p-value or the globally largest effect size. The following procedure

is used during the process.

FindLocalBest()

Inputs:

 ௩௔௟௨௘݌
ழ௠ ,௧வ

 ௦ܧ
ழ௠ ,௧வ

where < ݉ ∋<ݐ, Ψ௥,Ψ௥ denotes the set of keys that are allocated to theݎ�th
Reducer

<Parameter settings>

 TreeGrowingMethod // {‘p-value’, ‘effectsize’}

 AlphaSplit // Default 0.05

 EffectSizeThreshold
Outputs:

 Ψ௥
∗

// Set of keys with locally smallest p-values or largest effect sizes
Procedure:

1. Initially letΨ௥
∗ be empty;

2. If (TreeGrowingMethod=‘p-value’),{

For ∀߰௥(ݐ) ⊆ Ψ௥,{ // Set ߰௥(ݐ) contains all keys inΨ௥ corresponding to node ݐ

< ݉ =∗<ݐ, ݎܽ݃ minழ௠ ,௧வ൛݌௩௔௟௨௘
ழ௠ ,௧வ , < ݉ ∋<ݐ, ߰௥(ݐ)ൟ; // Resolve tied minimum p-values

Tree AS Algorithm

If ௩௔௟௨௘݌)
ழ௠ ,௧வ∗ ≤ AlphaSplit),

Ψ௥
∗ = Ψ௥

∗ ∪ {< ݉ ;{∗<ݐ,
}

}
If (TreeGrowingMethod=‘effectsize’),{

For ∀߰௥(ݐ) ⊆ Ψ௥,{

< ݉ =∗<ݐ, ݎܽ݃ maxழ௠ ,௧வ൛ܧ௦
ழ௠ ,௧வ , < ݉ ∋<ݐ, ߰௥(ݐ)ൟ;

If ௦ܧ)
ழ௠ ,௧வ∗ > EffectSizeThreshold),

Ψ௥
∗ = Ψ௥

∗ ∪ {< ݉ ;{∗<ݐ,
}

}

3. ReturnΨ௥
∗;

FindGlobalBest()

Inputs:

 ௩௔௟௨௘݌
ழ௠ ,௧வ

 ௦ܧ
ழ௠ ,௧வ

where < ݉ ∋<ݐ, Ψ௥
=ݎ�,∗ 1, … ,ܴ

<Parameter settings>

 TreeGrowingMethod // {‘p-value’, ‘effectsize’}
Outputs:

 Ψ∗

// Set of keys with globally smallest p-values or largest effect sizes
Procedure:

1. LetΨ = ⋃ Ψ௥
∗ோ

௥ୀଵ , andΨ∗ be empty;

2. If(TreeGrowingMethod=‘p-value’)and(Ψ is not empty),{

For (ݐ)߰∀ ⊆ Ψ,{ // Set�߰ (ݐ) contains all keys inΨ corresponding to nodeݐ�

< ݉ =∗<ݐ, ݎܽ݃ minழ௠ ,௧வ൛݌௩௔௟௨௘
ழ௠ ,௧வ , < ݉ ∋<ݐ, ;ൟ(ݐ)߰

// Resolve tied minimum p-values

Ψ∗ = Ψ∗ ∪ {< ݉ ;{∗<ݐ,
}

}

If(TreeGrowingMethod=‘effectsize’)and(Ψ is not empty),{

For (ݐ)߰∀ ⊆ Ψ,{

< ݉ =∗<ݐ, ݎܽ݃ maxழ௠ ,௧வ൛ܧ௦
ழ௠ ,௧வ , < ݉ ∋<ݐ, ;ൟ(ݐ)߰

Ψ∗ = Ψ∗ ∪ {< ݉ ;{∗<ݐ,
}

}

3. ReturnΨ∗;

If the set Ψ∗ is not empty, then the Controller will perform the splitting step. That is to split the

node using the predictor suggested by each key in Ψ∗.

Splitting()

Inputs:

 ܶ(݀) // Current tree of depth ݀

 Θழ௠ ,௧வ

 ௩௔௟௨௘݌
ழ௠ ,௧வ // P-value, computed for Θழ௠ ,௧வ

 TestStatistic // Test statistic associated with ௩௔௟௨௘݌
ழ௠ ,௧வ

Tree AS Algorithm

 FreedomDegrees // Freedom degrees associated with ௩௔௟௨௘݌
ழ௠ ,௧வ

 ௦ܧ
ழ௠ ,௧வ // Effect size

<Continuous target>

 ܰ௙,௜
ழ௠ ,௧வ

 ത௙,௜ݕ
ழ௠ ,௧வ

 ௙ܸ,௜
ழ௠ ,௧வ

 ܰ௪ ,௜
ழ௠ ,௧வ

 ത௪ݕ ,௜
ழ௠ ,௧வ

 ௪ܸ ,௜
ழ௠ ,௧வ

<Categorical target>

 ௜݊,௝
ழ௠ ,௧வ

 ௜,௝ݓ
ழ௠ ,௧வ

where < ݉ ∋<ݐ, Ψ∗,Ψ∗ denotes the set of keys for splitting
Outputs:

 ܶ(݀+ 1) // New tree of depth ݀+ 1

 ܳ // Set of candidate non-terminal leaf nodes
Procedure:

1. Let ܳ be empty;

2. For ∀< ݉ ∋<ݐ, Ψ∗,{

Save the following statistics for node݌�:ݐ�௩௔௟௨௘
ழ௠ ,௧வ, TestStatistic,

FreedomDegrees, andܧ�௦
ழ௠ ,௧வ;

Split nodeݐ� using predictor�ܺ ௠ according the set of categories Θழ௠ ,௧வ;

Letݍ� be the set of child nodesݐ�௜,�݅ ∈ Θ
ழ௠ ,௧வ;

Q = Q ∪ ;ݍ

For ∋௜ݐ∀ },ݍ

// Compute and save the following statistics for child nodeݐ�௜
// For continuous target

ܰ௙(ݐ௜) = ܰ௙,௜
ழ௠ ,௧வ;

(௜ݐ)ത௙ݕ = ത௙,௜ݕ
ழ௠ ,௧வ;

௙ܸ(ݐ௜) = ௙ܸ,௜
ழ௠ ,௧வ;

ܰ௪ (௜ݐ) = ܰ௪ ,௜
ழ௠ ,௧வ;

ത௪ݕ (௜ݐ) = ത௪ݕ ,௜
ழ௠ ,௧வ;

௪ܸ (௜ݐ) = ௪ܸ ,௜
ழ௠ ,௧வ;

// For categorical target

ܰ௙,௝(ݐ௜) = ௜݊,௝
ழ௠ ,௧வ,�݆ = 1, … ;ܬ,

ܰ௪ ,௝(ݐ௜) = ௜,௝ݓ
ழ௠ ,௧வ,�݆ = 1, … ;ܬ,

}
}

3. Denote the new tree as ܶ(݀+ 1);

4. Return ܶ(݀+ 1) and ܳ;

5.5. Stopping

After the split is applied to a node, the child nodes are examined to see if they warrant splitting

further.

Stopping()

Tree AS Algorithm

Inputs:

 ݀ // Current tree depth

 ݐ݊ݑܿ݋ // Current number of tree nodes

 ܳ // Set of candidate non-terminal leaf nodes
<Continuous target>

 ܰ௙(ݐ)

 ௙ܸ(ݐ)
<Categorical target>

 ܰ௙,௝(ݐ)

whereݐ�∈ ܳ, and�݆ = 1, … ܬ,

<Parameter settings>

 MaxTreeDepth // Default 5

 MaxNodeNumber // Default 1,000

 MinParentCasesABS // Default 100

 MinParentCasesPct // Default 2

 NodeSizeRequirement // {‘absolute’, ‘percentage’}, default ‘absolute’
Outputs:

 ܳ // Set of non-terminal leaf nodes
Procedure:

1. For ∋ݐ∀ ܳ,{

If (݀=MaxTreeDepth),

or(,(MaxNodeNumber=ݐ݊ݑܿ݋
or((target is continuous)and(௙ܸ(ݐ) = 0)),

or((target is categorical)and(∃ ,݆ܰ௙,௝(ݐ) > 0 and�ܰ ௙,௝(ݐ) = ∑ ܰ௙,௞(ݐ)௃
௞ୀଵ)),

or((NodeSizeRequirement=’absolute’)and(((target is continuous)and(ܰ௙(ݐ) <

MinParentCasesABS))or((target is categorical)and(∑ ܰ௙,௞(ݐ)௃
௞ୀଵ <

MinParentCasesABS)))),
or((NodeSizeRequirement=’percentage’)and(((target is

continuous)and(ܰ௙(ݐ) < MinParentCasesPct*ܰ௙))or((target is

categorical)and(∑ ܰ௙,௞(ݐ)௃
௞ୀଵ < MinParentCasesPct*ܰ௙)))),

ܳ = ܳ − ;{ݐ}
}

2. Return ܳ;

6. Exhaustive CHAID Algorithm

Exhaustive CHAID differs from CHAID in that different merging strategy and Bonferroni

adjustments are used in tree growth.

6.1. Merging

Merging step uses an exhaustive search procedure to merge any similar pair until only a single

pair is left.

ExhaustiveCHAID_Merging()

Tree AS Algorithm

Inputs:

// Global summary statistics for predictor ܺ௠ and node ݐ
<Continuous target>

 ܰ௙,௜
ழ௠ ,௧வ

 ത௙,௜ݕ
ழ௠ ,௧வ

 ௙ܸ,௜
ழ௠ ,௧வ

 ܰ௪ ,௜
ழ௠ ,௧வ

 ത௪ݕ ,௜
ழ௠ ,௧வ

 ௪ܸ ,௜
ழ௠ ,௧வ

<Categorical target>

 ௜݊,௝
ழ௠ ,௧வ

 ௜,௝ݓ
ழ௠ ,௧வ

where�݅= 1, … ௠ܫ, and�݆ = 1, … ܬ,

<Parameter settings>

 TreeGrowingMethod // {‘p-value’, ‘effectsize’}

 EffectSizeThreshold

 BonferroniAdjustment // {true, false}, default true

 ChiSquareType // {‘pearson’, ‘likelihood’}, default ‘pearson’

 Epsilon // Default 0.001

 MaxIterations // Default 100

 MinChildCasesABS // Default 50

 MinChildCasesPct // Default 1

 NodeSizeRequirement // {‘absolute’, ‘percentage’}, default ‘absolute’

 Scores // Vector value, scores for categories of ܻ

 SplitMergedCategories // {true, false}, default false
Outputs:

 Θழ௠ ,௧வ // The set of merged categories

 ௩௔௟௨௘݌
ழ௠ ,௧வ // P-value, computed for Θழ௠ ,௧வ

 TestStatistic // Test statistic associated with݌�௩௔௟௨௘
ழ௠ ,௧வ

 FreedomDegrees // Freedom degrees associated with݌�௩௔௟௨௘
ழ௠ ,௧வ

 ௦ܧ
ழ௠ ,௧வ // Effect size

<Continuous target>

 ܰ௙,௜
ழ௠ ,௧வ

 ത௙,௜ݕ
ழ௠ ,௧வ

 ௙ܸ,௜
ழ௠ ,௧வ

 ܰ௪ ,௜
ழ௠ ,௧வ

 ത௪ݕ ,௜
ழ௠ ,௧வ

 ௪ܸ ,௜
ழ௠ ,௧வ

<Categorical target>

 ௜݊,௝
ழ௠ ,௧வ

 ௜,௝ݓ
ழ௠ ,௧வ

where ݅∈ Θழ௠ ,௧வ, ݆= 1, … ܬ,
Procedure:
1. If (target is continuous),

Θழ௠ ,௧வ = ൛݅|ܰ௪ ,௜
ழ௠ ,௧வ > 0,݅= 1, … ௠ܫ, ൟ;

If (target is categorical),

Θழ௠ ,௧வ = ൛݅|∑ ௜݊௝
ழ௠ ,௧வ௃

௝ୀଵ > 0,݅= 1, … ௠ܫ, ൟ;

// Notice that if the predictor is ordinal, Θழ௠ ,௧வ will not include the

Tree AS Algorithm

missing category initially.

2. ݈݁ ݒ݁ ݈= 0;

Θ௟௘௩௘௟
ழ௠ ,௧வ = Θழ௠ ,௧வ;

Compute p-value݌�௟௘௩௘௟ and effect sizeܧ�௟௘௩௘௟ for the set of categories Θ௟௘௩௘௟
ழ௠ ,௧வ;

3. If (หΘ௟௘௩௘௟
ழ௠ ,௧வห≤ 1),

Go to step 7;
4. If (TreeGrowingMethod=‘p-value’),{

If (predictor is nominal),{

=ݐ݌ −1;

For ∀݅∈ Θ௟௘௩௘௟
ழ௠ ,௧வ,{

For ∀݆∈ Θ௟௘௩௘௟
ழ௠ ,௧வ and�݆ > ,݅{

Compute p-value݌� and effect size for category�݅ and�݆;

If <݌) },(ݐ݌

=ݐ݌ ;݌

ܿܽ =݅_ݐ ;݅

ܿܽ =݆_ݐ ;݆
}

Else if݌�= ,ݐ݌ resolve tied maximum p-values;
}

}
}
If (predictor is ordinal),{

=ݐ݌ −1;

For ∀݅∈ Θ௟௘௩௘௟
ழ௠ ,௧வ,{

Get category�݆ in Θ௟௘௩௘௟
ழ௠ ,௧வ which is subsequent to�݅, if exists;

Compute p-value݌� and effect size for category�݅ and�݆;

If <݌) },(ݐ݌

=ݐ݌ ;݌

ܿܽ =݅_ݐ ;݅

ܿܽ =݆_ݐ ;݆
}

Else if݌�= ,ݐ݌ resolve tied maximum p-values;
}

}
}
If (TreeGrowingMethod=‘effectsize’),{

If (predictor is nominal),{

=ݐ݁ 100;

For ∀݅∈ Θ௟௘௩௘௟
ழ௠ ,௧வ,{

For ∀݆∈ Θ௟௘௩௘௟
ழ௠ ,௧வ and�݆ > ,݅{

Compute effect size�݁ݏ for category�݅ and�݆;

If (>ݏ݁ },(ݐ݁

=ݐ݁ ;ݏ݁

ܿܽ =݅_ݐ ;݅

ܿܽ =݆_ݐ ;݆
}

}
}

}
If (predictor is ordinal),{

=ݐ݁ 100;

For ∀݅∈ Θ௟௘௩௘௟
ழ௠ ,௧வ,{

Tree AS Algorithm

Get category ݆ in Θ௟௘௩௘௟
ழ௠ ,௧வ which is subsequent to ,݅ if exists;

Compute effect size ݏ݁ for category ݅ and ;݆

If (>ݏ݁ },(ݐ݁

=ݐ݁ ;ݏ݁

ܿܽ =݅_ݐ ;݅

ܿܽ =݆_ݐ ;݆
}

}
}

}

Merge�ܿ ݅_ݐܽ and�ܿ ݆_ݐܽ into a compound category�ܿ;

Compute summary statistics for the compound category�ܿ;

5. Let Α be the set of original categories in the new category�ܿ;
If (TreeGrowingMethod=‘p-value’),
and(SplitMergedCategories=true),

and(3 ≤ |A| ≤ 15),{
௠݌ ௘௥௚௘ = ;ݐ݌
If (predictor is nominal),{

=ݐ݌ 2;

For (݇= 1: ⌊|A|/2⌋),{

For 1ܣ∀) with�݇ categories belonging to Α),{

Let2ܣ� = −ܣ ;1ܣ

Compute p-value݌� and effect size for category�ܿ 1ܣ_ݐܽ and�ܿ ;2ܣ_ݐܽ

// Category ܿܽ 1ܣ_ݐ and�ܿ 2ܣ_ݐܽ corresponds to1ܣ� and2ܣ� respectively

If >݌) },(ݐ݌

=ݐ݌ ;݌

ܿܽ =݅_ݐ ܿܽ ;1ܣ_ݐ

ܿܽ =݆_ݐ ܿܽ ;2ܣ_ݐ
}

Else if݌�= ,ݐ݌ resolve tied minimum p-values;
}

}
}

If (predictor is ordinal),{ // Set Α consists of ordered categories

=ݐ݌ 2;

Let1ܣ� be the set consisting of the first category inܣ�;

Let2ܣ� = −ܣ ;1ܣ

While 2ܣ) is not empty),{

Compute p-value݌� and effect size for category�ܿ 1ܣ_ݐܽ and�ܿ ;2ܣ_ݐܽ

// Category ܿܽ 1ܣ_ݐ and�ܿ 2ܣ_ݐܽ corresponds to1ܣ� and2ܣ� respectively

If >݌) },(ݐ݌

=ݐ݌ ;݌

ܿܽ =݅_ݐ ܿܽ ;1ܣ_ݐ

ܿܽ =݆_ݐ ܿܽ ;2ܣ_ݐ
}

Else if݌�= ,ݐ݌ resolve tied minimum p-values;

Move the first category in2ܣ� into1ܣ�;
}

}
If >ݐ݌) ௠݌ ௘௥௚௘),{

Split category�ܿ into two categories�ܿ ݅_ݐܽ and�ܿ _ݐܽ ;݆

Compute summary statistics for categories ܿܽ ݅_ݐ and ܿܽ _ݐ ;݆
}

Tree AS Algorithm

}
If (TreeGrowingMethod=‘effectsize’),
and(SplitMergedCategories=true),

and(3 ≤ |A| ≤ 15),{

௠݁ ௘௥௚௘ = ;ݐ݁
If (predictor is nominal),{

=ݐ݁ −1;

For (݇= 1: ⌊|A|/2⌋),{

For 1ܣ∀) with�݇ categories belonging to Α),{

Let2ܣ� = −ܣ ;1ܣ

Compute effect size�݁ݏ for category�ܿ 1ܣ_ݐܽ and�ܿ ;2ܣ_ݐܽ

// Category ܿܽ 1ܣ_ݐ and�ܿ 2ܣ_ݐܽ corresponds to1ܣ� and2ܣ� respectively

If (<ݏ݁ },(ݐ݁

=ݐ݁ ;ݏ݁

ܿܽ =݅_ݐ ܿܽ ;1ܣ_ݐ

ܿܽ =݆_ݐ ܿܽ ;2ܣ_ݐ
}

}
}

}
If (predictor is ordinal),{

=ݐ݁ −1;

Let1ܣ� be the set consisting of the first category inܣ�;

Let2ܣ� = −ܣ ;1ܣ

While 2ܣ) is not empty),{

Compute effect size�݁ݏ for category�ܿ 1ܣ_ݐܽ and�ܿ ;2ܣ_ݐܽ

// Category ܿܽ 1ܣ_ݐ and�ܿ 2ܣ_ݐܽ corresponds to1ܣ� and2ܣ� respectively

If (<ݏ݁ },(ݐ݁

=ݐ݁ ;ݏ݁

ܿܽ =݅_ݐ ܿܽ ;1ܣ_ݐ

ܿܽ =݆_ݐ ܿܽ ;2ܣ_ݐ
}

Move the first category in2ܣ� into1ܣ�;
}

}
If (<ݐ݁ ௠݁ ௘௥௚௘),{

Split category�ܿ into two categories�ܿ ݅_ݐܽ and�ܿ _ݐܽ ;݆

Compute summary statistics for categories�ܿ ݅_ݐܽ and�ܿ _ݐܽ ;݆
}

}

6. Denote the new set of categories as Θ௟௘௩௘௟ାଵ
ழ௠ ,௧வ ;

Compute p-value݌�௟௘௩௘௟ାଵ and effect sizeܧ�௟௘௩௘௟ାଵ for the set of categories Θ௟௘௩௘௟ାଵ
ழ௠ ,௧வ ;

݈݁ ݒ݁ ݈= ݈݁ ݒ݁ ݈+ 1;
Go to step 3;

7. If (TreeGrowingMethod=‘p-value’),

݈݁ ݒ݁ ݈∗ = ݎܽ݃ min௟௘௩௘௟{݌௟௘௩௘௟};
If (TreeGrowingMethod=‘effectsize’),

݈݁ ݒ݁ ݈∗ = ݎܽ݃ max௟௘௩௘௟{ܧ௟௘௩௘௟};

௩௔௟௨௘݌
ழ௠ ,௧வ = ;∗௟௘௩௘௟݌

Θழ௠ ,௧வ = Θ௟௘௩௘௟∗
ழ௠ ,௧வ;

௦ܧ
ழ௠ ,௧வ = ;∗௟௘௩௘௟ܧ

8. Same as Step 6 in the procedure of CHAID_Merging();
9. Same as Step 7 in the procedure of CHAID_Merging();

Tree AS Algorithm

10.Same as Step 8 in the procedure of CHAID_Merging();
11.Same as Step 9 in the procedure of CHAID_Merging();

// Bonferroni adjustments are described in section 6.1.1.

The function of Exhaustive_CHAID_Merging() will be used by each Reducer in the map-

reduce environment, see Appendix A for details.

6.1.1. Bonferroni Adjustments for Exhaustive CHAID

Exhaustive CHAID merges two categories iteratively until two categories left. The Bonferroni

multiplierܤ� is the sum of number of possible ways of merging two categories at each iteration.

Suppose that there areܫ�original categories of predictor�ܺ ௠ , including missing category if exists,

in the set of merged categories Θழ௠ ,௧வ , the Bonferroni multiplierܤ� is calculated as

ܤ =

⎩
⎪
⎨

⎪
⎧
−ܫ)ܫ 1)

2
, Ordinal predictor;

−ଶܫ)ܫ 1)

2
, Nominal predictor;

−ܫ)ܫ 1)

2
, Ordinal with a missing category.

�

7. Assignment and Risk Estimation Algorithms

7.1. Assignment

Once the tree is grown successfully, we compute an assignment (also called action or decision)

for each node. To predict the target variable value for an incoming case, we first find in which

terminal node it falls, then use the assignment of that terminal node for prediction.

7.1.1. Node Assignment

For any nodeݐ�, let ௧݀ be the assignment given to nodeݐ�,

௧݀ = ൜
,(ݐ)∗݆ ܻ�is categorical

ത௪ݕ ,(ݐ) ܻ�is continuous
�

(ݐ)∗݆ = ݎܽ݃ min௜∑)ܥ |݅)݌݆(୨(ݐ݆| ,

Tree AS Algorithm

ത௪ݕ (ݐ) =
∑ ௡ݓ ௡݂ݕ௡௡∈ℏ(௧)

ܰ௪ (ݐ)

where݌�((ݐ݆| is the weighted probability of a case being in category�݆ given that it is in nodeݐ�,

defined as

)݌ (ݐ݆| =
ேೢ ,ೕ(௧)

ேೢ (௧)
,

where�ܰ ௪ ,௝(ݐ) is the weighted number of cases in nodeݐ�with category�݆,

ܰ௪ ,௝(ݐ) = ෍ ௡ݓ ௡݂Ι(ݕ௡ =)݆

௡∈ℏ(௧)

and�ܰ ௪ (ݐ) is the weighted number of cases in nodeݐ�,

ܰ௪ (ݐ) = ∑ ௡ݓ ௡݂௡∈ℏ(௧) .

If there is more than one category�݆ that achieves the minimum, choose�݆∗(ݐ) to be the smallest

such�݆ for which�ܰ ௙,௝(ݐ) = ∑ ௡݂Ι(ݕ௡ =)݆௡∈ℏ(௧) is greater than 0, or just the smallest�݆ if�ܰ ௙,௝(ݐ) is zero

for all of them.

If the target variable is categorical, for each target category in nodeݐ�, a confidence value is

calculated as

ே೑,ೕ(௧)ାଵ

ே೑(௧)ା௃
,

where�ܰ ௙(ݐ) = ∑ ܰ௙,௝(ݐ)௃
௝ୀଵ .

7.1.2. Case Assignment

For a case with predictor vector Χ, the assignment or prediction�݀ ்(Χ) for this case by the tree�ܶ is

்݀(Χ) = ൜
,((Χ)ݐ)∗݆ ܻ�is categorical

,((Χ)ݐ)തݕ ܻ�is continuous
�

whereݐ�(Χ) is the terminal node the case falls in. For categorical target, besides the prediction, the

confidence for the predicted category is also available, as computed above.

Tree AS Algorithm

In classification of new cases, missing values are handled as they are during tree growth, being

treated as an additional category (possibly merged with other non-missing categories).

For nodes where there were no missing values in the training data, a missing category will not

exist for the split of that node. In that case, cases with a missing value for the split variable are

assigned as

(ݐ)∗݆ = ݎܽ݃ max௝݌(,(ݐ݆|

where݌�((ݐ݆| is the weighted probability, as computed above.

7.2. Risk Estimation

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for

the tree as a whole.

Note that case weight is not involved in risk estimation, though it is involved in tree growing

process and assignment.

7.2.1. Risk Estimation of a Node

For classification tree, the risk estimate(ݐ)ݎ� of nodeݐ�is computed as

(ݐ)ݎ =
ଵ

ே೑(௧)
∑ ܰ௙,௝(ݐ)(ݐ)∗݆)ܥ|)݆௃
௝ୀଵ .

For regression tree, the risk estimate(ݐ)ݎ� of nodeݐ�is computed as

(ݐ)ݎ =
ଵ

ே೑(௧)
∑ ௡݂൫ݕ௡ − ത௪ݕ ൯(ݐ)

ଶ
௡∈ℏ(௧) = ௙ܸ(ݐ) + ቀݕത௙(ݐ) − ത௪ݕ ቁ(ݐ)

ଶ

.

7.2.2. Risk Estimation of a Tree

For both classification trees and regression trees, the risk estimate�ܴ (ܶ) for tree�ܶ is calculated by

aggregating risk estimates for the terminal nodes(ݐ)ݎ�:

ܴ(ܶ) =
∑ ே೑(௧)௥(௧)೟∈೅ᇲ

∑ ே೑(௧)
೟∈೅ᇲ

,

Tree AS Algorithm

where�ܶ ᇱ is the set of terminal nodes in the tree.

7.3. Model Explanation

7.3.1. Classification Table

Classification table is computed only for categorical target.

Suppose�݆ is one of the observed category, and�݆∗ is one of the predicted category, then the count

of cell < ݆∗,݆> in the classification table is computed

=�ழ௝∗,௝வܥ ∑ ܰ௙,௝(ݐ)௧∈ ೕ்∗
ᇲ ,

where�ܶ௝∗
ᇱ denotes the set of leaf nodes whose node assignment is�݆∗. Insight and Interestingness

Algorithms

8.1. Grouping Leaf Nodes

8.1.1. Continuous Target

Leaf nodes can be partitioned into groups with low, middle, or high target means, by the

following procedure.

1. To simplify the formulas, we assume that leaf nodes in the collection�ቄݐଵ,ݐଶ, … ห்ݐ, ᇲหቅare

already sorted in descending order according to target means. The target mean of leaf

nodeݐ�௤ isݕ�ത௧೜ ,௤൯ݐത௙൫ݕ�= the count is�ܰ ௧೜ = ܰ௙൫ݐ௤൯, and the corresponding standard error

is computed as

௧೜ݏ = ට
ଵ

ே೟೜(ேି|்ᇲ|)
∑ ܰ௧೔ܸ ௙(ݐ௜)

|்ᇲ|
௜ୀଵ =ݍ�, 1, … , |ܶᇱ|

where�ܰ = ∑ ܰ௧೔
ห் ᇲห

௜ୀଵ .

2. Conduct a one-sample t-test for the leaf node with the largest target mean. The

hypothesis is H0 : തଵݕ = തݕ vs. HA : തଵݕ > ,തݕ whereݕ�ത=
ଵ

ே
∑ ܰ௧೔ݕത௧೔
ห் ᇲห

௜ୀଵ . We use the one-tail test

because it will provide more power. The t statistic is

=ݐ
௬ത೟భି௬ത

௦೟భ
.

The test statistic has an asymptotic t distribution with degrees of freedom�݀ = ܰ − |ܶᇱ|.

The corresponding p-value is computed as

Tree AS Algorithm

p-value=1 − ܾ݋ݎ݌ ௗݐ) ≤ .(ݐ

If p-value ߙ�=> (significance level, default 0.05), then the high group is formed by

including the leaf node with the largest target mean.

3. Repeat the same process for the next leaf node, i.e. comparingݕ�ത௧మ withݕ�ത, ത௧యݕ withݕ�ത, etc.

until no leaf node can be added into the high group.

4. Similarly, conduct a one-sample t-test for the leaf node with the smallest target mean.

The hypothesis is H0 : ത௧ห೅ᇲหݕ
= തݕ vs. HA : ത௧ห೅ᇲหݕ

< .തݕ The t statistic is

=ݐ
௬ത೟
ห೅ᇲห

ି௬ത

௦೟ห೅ᇲห

.

The test statistic has an asymptotic t distribution with degrees of freedom�݀ = ܰ − |ܶᇱ|.

The corresponding p-value is computed as

p-value=1 − ܾ݋ݎ݌ ௗݐ) ≤ .(|ݐ|

If p-value ߙ�=> (significance level, default 0.05), then the low group is formed by

including the leaf node with the smallest target mean.

5. Repeat the same process for the next leaf node, i.e. comparingݕ�ത௧ห೅ᇲหషభ
withݕ�ത, ത௧ห೅ᇲหషమݕ

withݕ�ത, etc. until no leaf node can be added into the low group.

6. If some leaf nodes still exist after forming the high and low groups, they are grouped into

the middle group.

7. The output is a list of the leaf nodes for the high, low, and medium groups with relevant

test statistics.

8.1.2. Categorical Target

For categorical target, leaf nodes are grouped according to the mode of the target variable in each

node, which is computed as

(ݐ)∗∗݆ = ݎܽ݃ max௝ܰ ௙,௝(ݐ),ݐ�∈ ܶᇱ.

Notice that if one leaf node has multiple modes, it will belong to several groups. This results in

overlaps between groups of leaf nodes. For each mode, a confidence value is computed as the

difference of probabilities between the mode category and the category with the second largest

frequency.

Tree AS Algorithm

8.2. Unusual Leaf Nodes

8.2.1. Continuous Target

Detection of leaves with unusual low/high target means is based on the modified z-score

method. This method is implemented by the procedure ofܯ� ݀݋ ݂݅ ݅݁ ܼ݀ܵܿ ݎ݁݋ ܹ,[∙]ܣ) [∙]) (See

Appendix B for details).

By calling this procedure, we letܣ�[∙] be the array of target meansݕ�ത௙(ݐ) of leaf nodes and�ܹ [∙] be

the array of corresponding counts of cases�ܰ ௙(ݐ),ݐ�∈ ܶᇱ.

The procedure returns an outlier strength value�ܱ (ݐ) for each leaf node. This value can be

interpreted as

൜
Leaf nodeݐ��has unusually high target mean, (ݐ)ܱ > 3,

Leaf nodeݐ��has unusually low target mean, (ݐ)ܱ < −3.
�

Moreover, the outlier strength value�ܱ (ݐ) can be mapped into an interestingness score by calling

the procedure ofܯ� ݊݋ ݊݋ݐ݋ ܾ݅ݑܥ݁ ܫܿ݊ ݐ݁ ݈݋݌ݎ ݊݋ݐܽ݅ (௧ܵ,ܫ௧, (|(ݐ)ܱ| (See Appendix C for details), where

we let the set of threshold values for outlier strength�ܵ௧ be {0.0, 2.0, 3.0, +∞}, and the set of

threshold values for interestingnessܫ�௧ be {0.00, 0.33, 0.67, 1.00}.

8.2.2. Categorical Target

For categorical target, unusual leaf nodes are defined as those who have significantly different

target distributions from the population. Thus, unusual leaf nodes herein can also been called as

significant leaf nodes. Moreover, we define influential categories as those who have the most

contributions to the significance/unusualness.

Detect significant leaf nodes

1. For each leaf nodeݐ�, calculate the test statistic,

௧߯
ଶ = ෍

൫ܰ ௙,௝(ݐ) − ܰ௙(ݐ)݌௝൯
ଶ

ܰ௙(ݐ)݌௝

௃

௝ୀଵ

where݌�௝ = ܰ௙,௝(ݐ௥) ܰ௙(ݐ௥)⁄ , andݐ�௥ is the root node. The statistic�߯௧
ଶ follows a chi-squared

distribution with degrees of freedomܬ�− 1. The corresponding p-value is computed, and

if p-value≤ߙ� (significance level, default 0.05), leaf nodeݐ�will be considered as a

significant leaf node.

Tree AS Algorithm

2. For each leaf nodeݐ�, calculate the effect size,

௧ܧ = ቆ
௧߯
ଶ

ܰ௙(ݐ)(ܬ− 1)
ቇ

ଵ
ଶ

Detect influential categories

1. For each category of a significant leaf node, calculate the test statistic,

௧߯,௝
ଶ =

൫ܰ ௙,௝(ݐ) − ܰ௙(ݐ)݌௝൯
ଶ

ܰ௙(ݐ)݌௝(1 − (௝݌

The statistic�߯௧,௝
ଶ follows a chi-squared distribution with 1 degree of freedom. The

corresponding p-value is computed and adjusted by multiplying a constantܬ�, and if the

adjusted p-value is not larger thanߙ� (significance level, default 0.05), the t݆h category is

considered as an influential category. In addition, it is an influential high category

if�ܰ ௙,௝(ݐ) > ܰ௙(ݐ)݌௝, and an influential low category otherwise.

2. For each influential category, calculate the effect size,

௧,௝ܧ = ቆ
௧߯,௝
ଶ

ܰ௙(ݐ)
ቇ

ଵ
ଶ

Display strategies

If the above analyses generate too many significant leaf nodes and /or influential target

categories, we can apply the following strategy to limit them.

1. Sort all significant leaf nodes by their effect size values in descending order. Then we can

export/recommend top-k ones (default k = 3).

2. Sort high and low influential target categories in each significant leaf node by their effect

size values in descending order separately. Then we can export/recommend top-n

influential high categories and top-n influential low categories (default n = 1). If effect

size is tied, then all ties in top-n would be exported.

Notice that the effect size of each leaf node can be mapped into an interestingness score by calling

the procedure ofܯ� ݊݋ ݊݋ݐ݋ ܾ݅ݑܥ݁ ܫܿ݊ ݐ݁ ݈݋݌ݎ ݊݋ݐܽ݅ (௧ܵ,ܫ௧,ܧ௧) (See Appendix C for details), where we

let the set of threshold values for effect size�ܵ௧ be {0.0, 0.2, 0.6, 1.0, +∞}, and the set of threshold

values for interestingnessܫ�௧ be {0.00, 0.33, 0.67, 1.00, 1.00}, i.e.

(ݔ݂) = ܯ ݊݋ ݊݋ݐ݋ ܾ݅ݑܥ݁ ܫܿ݊ ݐ݁ ݈݋݌ݎ ݊݋ݐ݅ܽ (௧ܵ,ܫ௧,ݔ),

Tree AS Algorithm

where x is the effect sizeܧ�௧.

Considering significance and effect size together, we will use the following mapping function for

the final interestingness score:

ܫ݊ ݐ݁ ݎ݁ ݊݃݊ݐ݅ݏ (ݕ,ݔ)ݏݏ݁ = ൜
0, <ݕ ߙ

,(ݔ݂) ≥ݕ ߙ
�

where x isܧ�௧ and y is p-value.

Small numbers in chi-square tests

Monte Carlo method will be used to compute exact p-values when the expected counts in chi-

square test are less thanߜ� (default 5).

1. Randomly sample�ܰ ௠ (default 10,000) leaf node configurations�ܰ ௙,௝
௞ (ݐ) based on the

marginal distribution݌�௝,�݆ = 1, … ,ܬ, where ∑ ܰ௙,௝
௞ ௃(ݐ)

௝ୀଵ = ܰ௙(ݐ), and�݇ ∈ [1,ܰ௠].

2. Calculate the probability of each configuration,

௞݌ =
ܰ௙(ݐ)!

∏ ܰ௙,௝
௞ ௃!(ݐ)

௝ୀଵ

ෑ ൫݌௝൯
ே೑,ೕ
ೖ (௧)௃

௝ୀଵ

3. Calculate the chi-square value for each configuration,

௧߯
ଶ,௞ = ෍

൫ܰ ௙,௝
௞ (ݐ) − ܰ௙(ݐ)݌௝൯

ଶ

ܰ௙(ݐ)݌௝

௃

௝ୀଵ

4. Calculate the exact p-value for leaf nodeݐ�,

௧݌
௘௫௔௖௧ = ෍)ܫ௞݌ ௧߯

ଶ,௞ ≥ ௧߯
ଶ)

ே೘

௞ୀଵ

5. If ௧݌
௘௫௔௖௧≤ߙ� (significance level, default 0.05), leaf nodeݐ�is considered as a significant leaf

node.

6. Further, collect the chi-square test statistic for each configuration and for each target

category

௧߯,௝
ଶ,௞ =

൫ܰ ௙,௝
௞ (ݐ) − ܰ௙(ݐ)݌௝൯

ଶ

ܰ௙(ݐ)݌௝(1 − (௝݌

Then compute the exact p-value for each target category of a significant leaf node

௧,௝݌
௘௫௔௖௧ = ෍)ܫ௞݌ ௧߯,௝

ଶ,௞ ≥ ௧߯,௝
ଶ)

ே೘

௞ୀଵ

Tree AS Algorithm

8.3. Target Class Analysis

Target class analysis (TCA) applies only for a categorical target, and it is an approach of

discovering insights from a couple of leaf node groups which are formed by including the leaf

node with the highest probability of the target class one-by-one. The target class can be user-

specified or determined automatically. In default, the target class is the minority class, that is, the

one which has the minimal frequency.

To simplify the formulas, we assume that leaf nodes in the collection�ቄݐଵ,ݐଶ, … ห்ݐ, ᇲหቅare already

sorted in descending order according to the probability of the target class. Then the first groupܩ�଴

is assumed to be empty, while groupܩ�ଵ is formed by nodeݐ�ଵ, and groupܩ�ଶ is formed by nodeݐ�ଵ

andݐ�ଶ, and so on.

Notice that if ties occur when ranking according to the probability of the target class, do the

follows:

a) Rank the tied nodes in descending order according to node sizes.

b) If ties occur in a), rank the tied nodes in ascending order according to node IDs.

For each groupܩ�௞,�݇ = 0, 1, 2, … ,ܭ, whereܭ� = |ܶᇱ|, the assignment of nodes in the group is the

target class, while for other nodes the assignment is the class with the highest probability among

non-target ones. For details, please refer to Section 7.1.1. Then the classification table, i.e.

confusion matrix, is

1 2 … ܿ∗ … ܬ

1 ܰଵଵ
ழ௞வ ܰଵଶ

ழ௞வ … ܰଵ௖∗
ழ௞வ … ܰଵ௃

ழ௞வ

2 ܰଶଵ
ழ௞வ ܰଶଶ

ழ௞வ … ܰଶ௖∗
ழ௞வ … ܰଶ௃

ழ௞வ

… … … … … … …

ܿ∗ ܰ௖∗ଵ
ழ௞வ ܰ௖∗ଶ

ழ௞வ … ܰ௖∗௖∗
ழ௞வ … ܰ௖∗௃

ழ௞வ

… … … … … … …

ܬ ܰ௃ଵ
ழ௞வ ܰ௃ଶ

ழ௞வ … ܰ௃௖∗
ழ௞வ … ܰ௃௃

ழ௞வ

Note that�ܿ∗ denotes the target class, and�ܰ ௜௝
ழ௞வ = ∑ ܰ௙,௝(ݐ)௧∈ ೔்

ᇲ , where�ܶ௜
ᇱ is the set of leaf nodes

whose assignment is class�݅. In the matrix, the rows give the predicted class labels, while the

columns give the actual ones.

8.3.1. Model Accuracy

Model accuracy determined by groupܩ�௞ is

Tree AS Algorithm

ܥீܥܣ
ೖ

=
∑ ேೕೕ

ಬೖಭ಻
ೕసభ

ே೑
,

where�ܰ ௙ is the total count of cases.

8.3.2. Group Size

Total number of cases in groupܩ�௞ is

ܰீೖ = ∑ ܰ௖∗௝
ழ௞வ௃

௝ୀଵ .

Percentage of cases is

ೖீܩܶܲ =
∑ ே

೎∗ೕ
ಬೖಭ಻

ೕసభ

ே೑
.

8.3.3. True Positive Rate

For class�݆, true positive rate, i.e. recall rate, is

ܴܶܲீೖ
௝

=
ேೕೕ
ಬೖಭ

∑ ே೔ೕ
ಬೖಭ಻

೔సభ

, ݆= 1, … .ܬ,

8.3.4. False Positive Rate

For target class�ܿ∗, false positive rate is

ೖீܴܲܨ =
∑ ே

೎∗ೕ
ಬೖಭ

ೕಯ೎∗

∑ ∑ ே೔ೕ
ಬೖಭ

ೕಯ೎∗
಻
೔సభ

.

8.3.5. Positive Predictive Value

For target class�ܿ∗, positive predictive value, i.e. precision, is

ܸܲܲீ
ೖ

=
ே
೎∗೎∗
ಬೖಭ

∑ ே೎∗ೕ
ಬೖಭ಻

ೕసభ

.

Tree AS Algorithm

8.3.6. G-Mean

G-mean determined by groupܩ�௞ is

݉ܩ ݁ܽ ݊ீೖ = ቀ∏ ܴܶܲீೖ
௝௃

௝ୀଵ ቁ
ଵ/௃

.

Notice that classes whose recall rate is constant zero across groups will be excluded from the

calculation of the G-mean measure, and the number ofܬ�in the formula will be adjusted

accordingly.

8.3.7. F-Measure

F-measure determined by groupܩ�௞ is

݉ܨ ݁ܽ ݎ݁ݑݏ ீೖ
=

ଶ∗்௉ோಸೖ
೎∗ ∗௉௉௏ಸೖ

்௉ோಸೖ
೎∗ ା௉௉௏ಸೖ

.

8.3.8. Decision Rule Set

In this section, we describe how to get a simplified decision rule set for each groupܩ�௞ by

collapsing the original tree with respect to the target class. Moreover, we compute simplicity

measures for the rule set, and use them later to select concise rule sets.

Given the original tree�ܶ , we do the follows:

1. If all the sibling leaf nodes have the same target class assignment, collapse all of them

into the parent node, and take the target class as assignment of the parent node.

2. Else, merge all the sibling nodes which have the same target class assignment into a new

leaf node, and take the target class as assignment of the new node.

The two steps above will be repeated until the tree cannot be collapsed further. Then, the

simplified decision rule set consists of rules of all leaf nodes with target class assignment in the

collapsed tree. A flag variable will be used to indicate whether the original decision rule has been

collapsed.

For the simplified decision rule set, the first simplicity measure is

ܵீ
ೖ
ଵ = ∑ ∗்∋௧(ݐ)݀ ,

Tree AS Algorithm

where�ܶ ∗ is the set of leaf nodes with target class assignment in the collapsed tree, and�݀ (ݐ)

denotes the number of different predictors used by the rule of leaf nodeݐ�, that is, an adjusted

depth. If ܶ∗ is empty, let�ܵீೖ
ଵ = 0.

The second simplicity measure is

ܵீ
ೖ
ଶ =

∑ ∗்∋௧(ݐ)݀

∑ ∗∗்∋௧(ݐ)݀

where�ܶ ∗∗ is the set of leaf nodes with target class assignment in the original tree. If ܶ∗∗ is empty,

let�ܵீೖ
ଶ = 0.

8.3.9. Concise Rule Set

An optimal decision rule set could be defined using any of goodness measures, e.g. model

accuracy, G-mean, F-measure, etc. However, such an optimal rule set may often be too

complicated to be understood. Concerning this, we provide an alternative rule set, which is not-

bad but simple enough, i.e. concise rule set.

Suppose the goodness measure of the decision rule set for groupܩ�௞ is�ܶீೖ
, ݇= 1, 2, … .ܭ, The

goodness measure of the optimal rule set is Α, and correspondingly the first simplicity measure

is Β.

To determine the concise rule set, we use the following procedure:

1. Order all the decision rule sets in ascending order according to the second simplicity

measure�ܵீೖ
ଶ .

2. The concise rule set is the first one that satisfies

a. Goodness measure threshold:
்ಸೖ

୹
> ,ߜ defaultߜ�= 90%.

b. Simplicity threshold:
ௌಸೖ
భ

୺
< ,ߜ defaultߜ�= 90%.

Notice that if B equals zero, only condition a will be checked.

Tree AS Algorithm

8.4. Tree Interestingness

The above interestingness indices are defined for tree nodes. In this section, we describe

interestingness indices for tree models.

As illustrated in the following table, there are many sub-indices, each of which characterizes one

aspect of a tree model. These sub-indices can be combined into an overall interestingness index

(See Appendix D for details), which can be used to rank different tree models.

Overall index Sub-index Description

Overall interestingness for
a classification/regression

tree

Model size, i.e.
number of tree

nodes

Given the trees have grown fully and optimally,
smaller trees would be more interesting, since they

could provide simpler and more intuitive decision
rules.

Model size, i.e. number of tree nodes�ܰ ௧, can be
mapped into an interestingness score by calling the

procedure ofܯ� ݊݋ ݊݋ݐ݋ ܾ݅ݑܥ݁ ܫܿ݊ ݐ݁ ݈݋݌ݎ ݊݋ݐ݅ܽ (௧ܵ,ܫ௧,ܰ௧),
where we let the set of threshold values for model

size ௧ܵ be {3, 50, 100, +∞}, and the set of threshold
values for interestingness ௧ܫ be {1.00, 0.67, 0.33, 0.00}.

Unusualness of leaf

nodes

The unusualness sub-index for a tree is computed by

averaging on unusualness interestingness indices of
leaf nodes, as defined in section 8.2.

Model accuracy The accuracy of a classification tree is

ܿܿܣ =
∑ ே೑,ೕ∗(೟)(௧)
೟∈೅ᇲ

∑ ே೑(௧)
೟∈೅ᇲ

.

The accuracy of a random classification tree (using
Mode) is

ܿܿܣ ଴ =
ே೑,ണො(೟ೝ)(௧ೝ)

ே೑(௧ೝ)
,

whereݐ�௥ denotes the root node, and�ଔƸ(ݐ௥) is the mode
of the root node.

The accuracy of a regression tree is

ܿܿܣ = ܴ௦௤௨௔௥௘ = 1 −
∑ ே೑(௧೔)௏೑(௧೔)
ห೅ᇲห

೔సభ

ே೑(௧ೝ)௏೑(௧ೝ)
.

The accuracy of a random regression tree (using

Mean),ܿܿܣ� ଴, is zero.

Then, model accuracy can be mapped into an

interestingness score by calling the procedure

Tree AS Algorithm

of ܯ ݊݋ ݊݋ݐ݋ ܾ݅ݑܥ݁ ܫܿ݊ ݐ݁ ݈݋݌ݎ ݊݋ݐ݅ܽ (௧ܵ,ܫ௧,ܿܿܣ), where

we let the set of threshold values for model
accuracy�ܵ௧ be ܿܿܣ} ଴, 1}, and the set of threshold

values for interestingnessܫ�௧ be {0.00, 1.00}. If the
model accuracy is lower thanܿܿܣ� ଴, the

interestingness will be zero.

Based on the accuracy interestingnessܿܿܣ)ܫ�), the

accuracyܿܿܣ� can be interpreted as

ܫ݊ ܿܿܣ)ݐℎ݃ݏ݅) = ቐ

ܽ݁ݓ ,݇ ܿܿܣ)ܫ) ≤ 0.33

݉ ݀݋ ݎ݁ܽ ݐ݁ , 0.33 < ܿܿܣ)ܫ) ≤ 0.67

݊݋ݎݐݏ ݃, ܿܿܣ)ܫ) > 0.67

�

Note: Relative error, that is 1 − ܿܿܣ , will be
computed and exported for a regression tree.

References

[1] Biggs, D., B. de Ville, and E. Suen. 1991. A method of choosing multiway partitions for

classification and decision trees. Journal of Applied Statistics, 18, 49-62.

[2] Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and

Regression Trees. New York: Chapman & Hall/CRC.

[3] Fan Li, and Damir Spisic. Map-Reduce Algorithms for Univariate Statistics(ADD).

[4] Goodman, L. A. 1979. Simple models for the analysis of association in cross-

classifications having ordered categories. Journal of the American Statistical Association,

74, 537-552.

[5] Jane Chu, Sier Han. Linear Engine Phase I – Algorithm.

[6] Jing Xu. Comparison of binning methods.

[7] Jing Xu, Xueying Zhang. ADD - Interestingness and Insights.

[8] Kass, G. 1980. An exploratory technique for investigating large quantities of categorical

data. Applied Statistics, 29:2, 119-127.

[9] Sier Han, James Xu, Weicai Zhong. Algorithm: SmartReports Engine.

Tree AS Algorithm

Appendix A. Map-Reduce Functions

A.1. Map Function

Inputs:

 Training cases in data split ݇

 ܶ(݀) // Current tree of depth ݀

 ܳ // Set of non-terminal leaf nodes
Outputs:

<Continuous target>

 ܰ௙,௜
ழ௠ ,௧வ(௞)

 ത௙,௜ݕ
ழ௠ ,௧வ(௞)

 ௙ܸ,௜
ழ௠ ,௧வ(௞)

 ܰ௪ ,௜
ழ௠ ,௧வ(௞)

 ത௪ݕ ,௜
ழ௠ ,௧வ(௞)

 ௪ܸ ,௜
ழ௠ ,௧வ(௞)

<Categorical target>

 ௜݊,௝
ழ௠ ,௧வ(௞)

 ௜,௝ݓ
ழ௠ ,௧வ(௞)

where ݅= 1, … ௠ܫ, , ݆= 1, … ,ܬ, ݉ = 1, … ܯ, , and ∋ݐ Q
Procedure:
1. Start with

݈= 0;

ܰ௙,௜
ழ௠ ,௧வ()݈ = 0; // For continuous target

ത௙,௜ݕ
ழ௠ ,௧வ()݈ = 0;

௙ܸ,௜
ழ௠ ,௧வ()݈ = 0;

ܰ௪ ,௜
ழ௠ ,௧வ()݈ = 0;

ത௪ݕ ,௜
ழ௠ ,௧வ()݈ = 0;

௪ܸ ,௜
ழ௠ ,௧வ()݈ = 0;

௜݊,௝
ழ௠ ,௧வ()݈ = 0; // For categorical target

௜,௝ݓ
ழ௠ ,௧வ()݈ = 0;

2. Iterator points to the first case;
While (Iterator does not point to NULL),{

Get the current case�݊;

If ௡ݕ) is not missing),

and(௡݂ is not missing, zero, or negative),

and(ݓ௡ is not missing, zero, or negative),{

Assign case�݊ to a leaf nodeݐ� by following the splits in tree�ܶ (݀);
// In order to assign cases to leaf nodes efficiently, we should take a

// proper data structure for tree�ܶ (݀)

If ∋ݐ) ܳ),{

ܰ௙,௜
ழ௠ ,௧வ(݈+ 1) = ܰ௙,௜

ழ௠ ,௧வ()݈ + ௡݂Ι(ݔ௠ ,௡ =)݅; // For continuous target

ത௙,௜ݕ
ழ௠ ,௧வ(݈+ 1) = ത௙,௜ݕ

ழ௠ ,௧வ()݈ +
௙೙

ே೑,೔
ಬ೘ ,೟ಭ(௟ାଵ)

Ι(ݔ௠ ,௡ = ௡ݕ]݅(− ത௙,௜ݕ
ழ௠ ,௧வ()݈];

௙ܸ,௜
ழ௠ ,௧வ(݈+ 1) =

ே೑,೔
ಬ೘ ,೟ಭ(௟)

ே೑,೔
ಬ೘ ,೟ಭ(௟ାଵ)

ቈܸ ௙,௜
ழ௠ ,௧வ()݈ +

௙೙

ே೑,೔
ಬ೘ ,೟ಭ(௟ାଵ)

Ι൫ݔ௠ ,௡ = ൯݅ቀݕ௡ − ത௙,௜ݕ
ழ௠ ,௧வ()݈ቁ

ଶ

቉;

Tree AS Algorithm

ܰ௪ ,௜
ழ௠ ,௧வ(݈+ 1) = ܰ௪ ,௜

ழ௠ ,௧வ()݈ + ௡ݓ ௡݂Ι(ݔ௠ ,௡ =)݅,

ത௪ݕ ,௜
ழ௠ ,௧வ(݈+ 1) = ത௪ݕ ,௜

ழ௠ ,௧வ()݈ +
௪೙௙೙

ேೢ ,೔
ಬ೘ ,೟ಭ(௟ାଵ)

Ι(ݔ௠ ,௡ = ௡ݕ]݅(− ത௪ݕ ,௜
ழ௠ ,௧வ()݈];

௪ܸ ,௜
ழ௠ ,௧வ(݈+ 1) =

ேೢ ,೔
ಬ೘ ,೟ಭ(௟)

ேೢ ,೔
ಬ೘ ,೟ಭ(௟ାଵ)

൤ܸ ௪ ,௜
ழ௠ ,௧வ()݈ +

௪೙௙೙

ேೢ ,೔
ಬ೘ ,೟ಭ(௟ାଵ)

Ι൫ݔ௠ ,௡ = ൯݅ቀݕ௡ − ത௪ݕ ,௜
ழ௠ ,௧வ()݈ቁ

ଶ

൨;

௜݊,௝
ழ௠ ,௧வ(݈+ 1) = ௜݊,௝

ழ௠ ,௧வ()݈ + ௡݂Ι(ݔ௠ ,௡ = ݅∩ ௡ݕ =)݆; // For categorical target

௜,௝ݓ
ழ௠ ,௧வ(݈+ 1) = ௜,௝ݓ

ழ௠ ,௧வ()݈ + ௡ݓ ௡݂Ι(ݔ௠ ,௡ = ݅∩ ௡ݕ =)݆;

݈= ݈+ 1;
}

}
Iterator points to the next case;

}
3. Return the following statistics

ܰ௙,௜
ழ௠ ,௧வ(௞)

= ܰ௙,௜
ழ௠ ,௧வ()݈; // For continuous target

ത௙,௜ݕ
ழ௠ ,௧வ(௞)

= ത௙,௜ݕ
ழ௠ ,௧வ()݈;

௙ܸ,௜
ழ௠ ,௧வ(௞)

= ௙ܸ,௜
ழ௠ ,௧வ()݈;

ܰ௪ ,௜
ழ௠ ,௧வ(௞)

= ܰ௪ ,௜
ழ௠ ,௧வ()݈;

ത௪ݕ ,௜
ழ௠ ,௧வ(௞)

= ത௪ݕ ,௜
ழ௠ ,௧வ()݈;

௪ܸ ,௜
ழ௠ ,௧வ(௞)

= ௪ܸ ,௜
ழ௠ ,௧வ()݈;

௜݊,௝
ழ௠ ,௧வ(௞)

= ௜݊,௝
ழ௠ ,௧வ()݈; // For categorical target

௜,௝ݓ
ழ௠ ,௧வ(௞)

= ௜,௝ݓ
ழ௠ ,௧வ()݈;

A.2. Reduce Function

Inputs:
// Local summary statistics
<Continuous target>

 ܰ௙,௜
ழ௠ ,௧வ(௞)

 ത௙,௜ݕ
ழ௠ ,௧வ(௞)

 ௙ܸ,௜
ழ௠ ,௧வ(௞)

 ܰ௪ ,௜
ழ௠ ,௧வ(௞)

 ത௪ݕ ,௜
ழ௠ ,௧வ(௞)

 ௪ܸ ,௜
ழ௠ ,௧வ(௞)

<Categorical target>

 ௜݊,௝
ழ௠ ,௧வ(௞)

 ௜,௝ݓ
ழ௠ ,௧வ(௞)

where�݇ = 1, … =݅�,ܭ, 1, … ௠ܫ, ,�݆ = 1, … ,ܬ, and < ݉ ∋<ݐ, Ψ௥,Ψ௥ denotes the set of keys

that are allocated to theݎ�th Reducer

<Parameter settings>

 TreeGrowingMethod // {‘p-value’, ‘effectsize’}

 AlphaMerge // Default 0.05

 AlphaSplit // Default 0.05

 AlphaSplitMerge // Default 0.025

 EffectSizeThreshold

 BonferroniAdjustment // {true, false}, default true

 ChiSquareType // {‘pearson’, ‘likelihood’}, default ‘pearson’

Tree AS Algorithm

 Epsilon // Default 0.001

 MaxIterations // Default 100

 MinChildCasesABS // Default 50

 MinChildCasesPct // Default 1

 NodeSizeRequirement // {‘absolute’, ‘percentage’}, default ‘absolute’

 Scores // Vector value, scores for categories of�ܻ

 SplitMergedCategories // {true, false}, default false

 MergingMethod // {‘CHAID’, ‘Exhaustive CHAID’}, default ‘CHAID’
Outputs:

 Θழ௠ ,௧வ // The set of merged categories

 ௩௔௟௨௘݌
ழ௠ ,௧வ // P-value, computed for Θழ௠ ,௧வ

 TestStatistic // Test statistic associated with݌�௩௔௟௨௘
ழ௠ ,௧வ

 FreedomDegrees // Freedom degrees associated with݌�௩௔௟௨௘
ழ௠ ,௧வ

 ௦ܧ
ழ௠ ,௧வ // Effect size

 ܰ௙,௜
ழ௠ ,௧வ // For continuous target

 ത௙,௜ݕ
ழ௠ ,௧வ

 ௙ܸ,௜
ழ௠ ,௧வ

 ܰ௪ ,௜
ழ௠ ,௧வ

 ത௪ݕ ,௜
ழ௠ ,௧வ

 ௪ܸ ,௜
ழ௠ ,௧வ

 ௜݊,௝
ழ௠ ,௧வ // For categorical target

 ௜,௝ݓ
ழ௠ ,௧வ

where ݅∈ Θழ௠ ,௧வ, ݆= 1, … ,ܬ, and < ݉ ∋<ݐ, Ψ௥
∗,Ψ௥

∗ is the set of keys with the locally
smallest p-values

Procedure:

1. For (∀< ݉ ∋<ݐ, Ψ௥),{

ܰ௙,௜
ழ௠ ,௧வ = ∑ ܰ௙,௜

ழ௠ ,௧வ(௞)௄
௞ୀଵ ; // For continuous target

ത௙,௜ݕ
ழ௠ ,௧வ = ∑

ே೑,೔
ಬ೘ ,೟ಭ(ೖ)

ே೑,೔
ಬ೘ ,೟ಭ ത௙,௜ݕ

ழ௠ ,௧வ(௞)௄
௞ୀଵ ;

௙ܸ,௜
ழ௠ ,௧வ = ∑

ே೑,೔
ಬ೘ ,೟ಭ(ೖ)

ே೑,೔
ಬ೘ ,೟ಭ ௙ܸ,௜

ழ௠ ,௧வ(௞)௄
௞ୀଵ + ∑

ே೑,೔
ಬ೘ ,೟ಭ(ೖ)

ே೑,೔
ಬ೘ ,೟ಭ ൫ݕത௙,௜

ழ௠ ,௧வ(௞)
− ത௙,௜ݕ

ழ௠ ,௧வ൯൫ݕത௙,௜
ழ௠ ,௧வ(௞)

+ ത௙,௜ݕ
ழ௠ ,௧வ൯௄

௞ୀଵ ;

ܰ௪ ,௜
ழ௠ ,௧வ = ∑ ܰ௪ ,௜

ழ௠ ,௧வ(௞)௄
௞ୀଵ ;

ത௪ݕ ,௜
ழ௠ ,௧வ = ∑

ேೢ ,೔
ಬ೘ ,೟ಭ(ೖ)

ேೢ ,೔
ಬ೘ ,೟ಭ ത௪ݕ ,௜

ழ௠ ,௧வ(௞)௄
௞ୀଵ ;

௪ܸ ,௜
ழ௠ ,௧வ = ∑

ேೢ ,೔
ಬ೘ ,೟ಭ(ೖ)

ேೢ ,೔
ಬ೘ ,೟ಭ ௪ܸ ,௜

ழ௠ ,௧வ(௞)௄
௞ୀଵ + ∑

ேೢ ,೔
ಬ೘ ,೟ಭ(ೖ)

ேೢ ,೔
ಬ೘ ,೟ಭ ൫ݕത௪ ,௜

ழ௠ ,௧வ(௞)
− ത௪ݕ ,௜

ழ௠ ,௧வ൯൫ݕത௪ ,௜
ழ௠ ,௧வ(௞)

+ ത௪ݕ ,௜
ழ௠ ,௧வ൯௄

௞ୀଵ ;

௜݊,௝
ழ௠ ,௧வ = ∑ ௜݊,௝

ழ௠ ,௧வ(௞)௄
௞ୀଵ ; // For categorical target

௜,௝ݓ
ழ௠ ,௧வ = ∑ ௜,௝ݓ

ழ௠ ,௧வ(௞)௄
௞ୀଵ ;

If (MergingMethod=‘CHAID’),
Run CHAID_Merging();

Else,
Run ExhaustiveCHAID_Merging();

}

2. Run FindLocalBest(); // Get the local best set of keysΨ௥
∗

Tree AS Algorithm

A.2. Controller

The Controller is responsible for launching a series of map-reduce jobs during the tree growth.

Moreover, it grows the tree directly by performing tree-specific operations, e.g. splitting,

stopping, etc.

Inputs:
<Parameter settings>

 TreeGrowthThreshold // Default 1,000,000

 AlphaMerge // Default 0.05

 AlphaSplit // Default 0.05

 AlphaSplitMerge // Default 0.025

 EffectSizeChisqTest // Default 0.05

 EffectSizeFTest // Default 0.05

 BonferroniAdjustment // {true, false}, default true

 ChiSquareType // {‘pearson’, ‘likelihood’}, default ‘pearson’

 Costs // Misclassification costs

 Epsilon // Default 0.001

 MaxIterations // Default 100

 MaxTreeDepth // Default 5

 MaxNodeNumber // Default 1,000

 MinChildCasesABS // Default 50

 MinChildCasesPct // Default 1

 MinParentCasesABS // Default 100

 MinParentCasesPct // Default 2

 NodeSizeRequirement // {‘absolute’, ‘percentage’}, default ‘absolute’

 Scores // Vector value, scores for categories of�ܻ

 SplitMergedCategories // {true, false}, default false

 MergingMethod // {‘CHAID’, ‘Exhaustive CHAID’}, default ‘CHAID’
Outputs:

 PMML // Save the model of CHAID tree

 StatXML // Save model diagnostics
Procedure:
1. If (ܰ௙ ≤ TreeGrowthThreshold),

TreeGrowingMethod=‘p-value’;
Else,

TreeGrowingMethod=‘effectsize’;
If (Target is continuous),

EffectSizeThreshold=EffectSizeFTest;
If (Target is categorical),

EffectSizeThreshold=EffectSizeChisqTest;

2. Initially let�ܳ be an empty set;
3. Run CreateRootNode();

4. Add the root node into�ܳ ;

5. Let�ܿݐ݊ݑ݋= 1; // Current number of tree nodes

Let�݀ = 0; // Current tree depth

6. While (ܳ is not empty),{
Launch a map-reduce job, and get the following statistics

Θழ௠ ,௧வ, // The set of merged categories

Tree AS Algorithm

௩௔௟௨௘݌
ழ௠ ,௧வ, // P-value, computed for Θழ௠ ,௧வ

TestStatistic, // Test statistic associated with ௩௔௟௨௘݌
ழ௠ ,௧வ

FreedomDegrees, // Freedom degrees associated with݌�௩௔௟௨௘
ழ௠ ,௧வ

௦ܧ
ழ௠ ,௧வ // Effect size

ܰ௙,௜
ழ௠ ,௧வ, // For continuous target

ത௙,௜ݕ
ழ௠ ,௧வ,

௙ܸ,௜
ழ௠ ,௧வ,

ܰ௪ ,௜
ழ௠ ,௧வ,

ത௪ݕ ,௜
ழ௠ ,௧வ,

௪ܸ ,௜
ழ௠ ,௧வ,

௜݊,௝
ழ௠ ,௧வ, // For categorical target

௜,௝ݓ
ழ௠ ,௧வ,

where�݅ ∈ Θழ௠ ,௧வ,�݆ = 1, … ,ܬ, and < ݉ ∋<ݐ, Ψ௥
=ݎ�,∗ 1, … ,ܴ;

Run FindGlobalBest(); // Get the set Ψ∗

If (Ψ∗ is empty) and (݀ = 0),
Return an error of “Stopping rules prevent any tree growth”;
// In other words, no inputs are sufficiently related to the target

If (݀ = 0),{

// Ψ∗ just contains the key for root node

Save the following statistics for root nodeݐ�:

௩௔௟௨௘݌
ழ௠ ,௧வ, // P-value, computed for Θழ௠ ,௧வ

TestStatistic, // Test statistic associated with݌�௩௔௟௨௘
ழ௠ ,௧வ

FreedomDegrees, // Freedom degrees associated with݌�௩௔௟௨௘
ழ௠ ,௧வ

௦ܧ
ழ௠ ,௧வ // Effect size

// For continuous target

ܰ௙(ݐ) = ∑ ܰ௙,௜
ழ௠ ,௧வ

௜∈஀ಬ೘ ,೟ಭ ;

(ݐ)ത௙ݕ = ∑
ே೑,೔
ಬ೘ ,೟ಭ

ே೑(௧)
ത௙,௜ݕ
ழ௠ ,௧வ

௜∈஀ಬ೘ ,೟ಭ ;

௙ܸ(ݐ) = ∑
ே೑,೔
ಬ೘ ,೟ಭ

ே೑(௧) ௙ܸ,௜
ழ௠ ,௧வ +௜∈஀ಬ೘ ,೟ಭ ∑

ே೑,೔
ಬ೘ ,೟ಭ

ே೑(௧)
ቀݕത௙,௜

ழ௠ ,௧வ − ത௙,௜ݕቁቀ(ݐ)ത௙ݕ
ழ௠ ,௧வ + ቁ௜∈஀ಬ೘(ݐ)ത௙ݕ ,೟ಭ ;

ܰ௪ (ݐ) = ∑ ܰ௪ ,௜
ழ௠ ,௧வ

௜∈஀ಬ೘ ,೟ಭ ;

ത௪ݕ (ݐ) = ∑
ேೢ ,೔
ಬ೘ ,೟ಭ

ேೢ (௧)
ത௪ݕ ,௜
ழ௠ ,௧வ

௜∈஀ಬ೘ ,೟ಭ ;

௪ܸ (ݐ) = ∑
ேೢ ,೔
ಬ೘ ,೟ಭ

ேೢ (௧) ௪ܸ ,௜
ழ௠ ,௧வ +௜∈஀ಬ೘ ,೟ಭ ∑

ேೢ ,೔
ಬ೘ ,೟ಭ

ேೢ (௧)
ቀݕത௪ ,௜

ழ௠ ,௧வ − ത௪ݕ ത௪ݕቁቀ(ݐ) ,௜
ழ௠ ,௧வ + ത௪ݕ ቁ௜∈஀ಬ೘(ݐ) ,೟ಭ ;

// For categorical target

ܰ௪ ,௝(ݐ) = ∑ ௜,௝ݓ
ழ௠ ,௧வ

௜∈஀ಬ೘ ,೟ಭ ,�݆ = 1, … ;ܬ,

ܰ௙,௝(ݐ) = ∑ ௜݊,௝
ழ௠ ,௧வ

௜∈஀ಬ೘ ,೟ಭ ,�݆ = 1, … ;ܬ,

}

If (Ψ∗ is empty),

Let�ܳ be empty;
Else,{

Compute the number of new splits:�݊ ݓ݁ ݈ܵ݌ =ݏݐ݅ ∑ |Θழ௠ ,௧வ |ழ௠ ,௧வ∈ஏ ∗ ;

If (+ݐ݊ݑܿ݋ ݊ ݓ݁ ݈ܵ݌ <ݏݐ݅ MaxNodeNumber),{

If (݀ = 0),
Return an error of “The very first split has too many nodes”;

Let�ܳ be empty;
}
Else,{

Let =ݐ݊ݑܿ݋ +ݐ݊ݑܿ݋ ݊ ݓ݁ ;ݏݐ݈݅ܵ݌

Tree AS Algorithm

Run Splitting(); // Get tree ܶ(݀+ 1) and new set ܳ

Let ݀ = ݀+ 1;
Run Stopping();

}
}

}

7. Calculate node assignment and risk estimation for tree�ܶ (݀); // See section 7

8. Save ܶ(݀) in PMML;
9. Save model diagnostics in StatXML;

Appendix B. Modified Z-Score Method

The procedure ofܯ� ݀݋ ݂݅ ݅݁ ܼ݀ܵܿ ݎ݁݋ ܹ,[∙]ܣ) [∙]) is as follows:

1. Get the number of members in][A , suppose it is K .

2. Find the median of][kΑ , incorporating the corresponding frequencies][kW . Denote the

median as M , then  ][]1[][,...,]1[KWW KAAmedianM  , where][][kWkA is a set which

contains only][kA value with frequency][kW .

3. Compute the median absolute deviation (MAD) of][kΑ , again including the frequencies

][kW ,

),][,...,]1[(
][]1[KWW

MKAMAmedianMAD 

where
][

][
kW

MkA  is a set which contains only MkA ][value frequency][kW .

4. If 0MAD , compute outlier strength for each][kΑ

MeanAD

MkA
kO

*253314.1
][][



where












K

k

K

k

kW

MkAkW

MeanAD

1

1

][

][][
.

5. Else, compute outlier strength as

MAD

MkA
kO

*4826.1
][][

 .

Tree AS Algorithm

Appendix C. Monotone Cubic Interpolation Method

ܫ݊ ݐ݁ ݎ݁ ݊݃݊ݐ݅ݏ (ݔ)ݏݏ݁ = ܯ ݊݋ ݊݋ݐ݋ ܾ݅ݑܥ݁ ܫܿ݊ ݐ݁ ݈݋݌ݎ ݊݋ݐ݅ܽ

whereݔ� is the input statistic which must have a monotonically increasing relationship with the

interestingness score threshold values.

statistics, which have been accepted and commonly used b

statistics. The positive infinity (+

is a set of distinct threshold values for the interestingness scores that

threshold values must be between 0 and 1.

least two values in�ܵ௧ excluding positive infinity (+

Pre-processing

Let {௞ݔ} ൌ ݐ݁ݎ݋ݏ ݀ሺܵ ௧) such that

ݐ݁ݎ݋ݏ ݀ሺܫ௧) such thatݕ�ଵ < ⋯ < ݕ

Condition A: There are more than two threshold values for input statistics, and they are all

finite numbers

Preparing for cubic interpolation

The following steps should be taken for preparing a cubic interpolation f

Step 1: Compute the slopes of the secant lines between successive points.

for�݇ ൌ ͳǡڮ ǡ݊ െ ͳ.

Step 2: Initialize the tangents at every data point as the average of the secants,

for�݇ ൌ ǡʹڮ ǡ݊ െ ͳ; these may be updated in further steps.

differences:�݉ ଵ = ∆ଵ and�݉ ௡ = ∆

Monotone Cubic Interpolation Method

ܯ ݊݋ ݊݋ݐ݋ ܾ݅ݑܥ݁ ܫܿ݊ ݐ݁ ݈݋݌ݎ ݊݋ݐ݅ܽ ሺܵ ௧ǡܫ௧ǡݔሻ

is the input statistic which must have a monotonically increasing relationship with the

interestingness score threshold values.�ܵ௧ is a set of distinct threshold values for the input

statistics, which have been accepted and commonly used by expert users to interpret the

statistics. The positive infinity (+∞) is included if the input statistic is not bounded from above.

is a set of distinct threshold values for the interestingness scores that�ܵ௧ corresponds to. The

between 0 and 1. The size of ௧ܵ and ௧mustܫ be the same. There are at

excluding positive infinity (+∞).

ଵݔ ൏ ڮ ൏ ,௡ݔ where ݊ is the number of values in�ܵ௧.

.௡ݕ

Condition A: There are more than two threshold values for input statistics, and they are all

Preparing for cubic interpolation

The following steps should be taken for preparing a cubic interpolation function construction.

ompute the slopes of the secant lines between successive points.

Initialize the tangents at every data point as the average of the secants,

these may be updated in further steps. For the endpoints, use one

∆௡ିଵ.

Monotone Cubic Interpolation Method

is the input statistic which must have a monotonically increasing relationship with the

is a set of distinct threshold values for the input

ert users to interpret the

∞) is included if the input statistic is not bounded from above.ܫ�௧

corresponds to. The

must be the same. There are at

Let {ݕ} =

Condition A: There are more than two threshold values for input statistics, and they are all

unction construction.

For the endpoints, use one-sided

Tree AS Algorithm

Step 3: Let αk=mk / Δk and βk=mk + 1 / Δk for ݇= 1,⋯ ,݊− 1.

 If α or β are computed to be zero, then the input data points are not strictly monotone. In such

cases, piecewise monotone curves can still be generated by choosing mk=mk + 1=0, although global

strict monotonicity is not possible.

Step 4: Update ܕ ܓ

If ଶߙ + ଶߚ > 9, then set mk=τkαkΔk and mk + 1=τkβkΔk where ௞߬ =
ଷ

ඥఈమାఉమ
.

Cubic interpolation

After the preprocessing, evaluation of the interpolated spline is equivalent to cubic Hermite

spline, using the data xk, yk, and mk for k=1,...,n.

To evaluate x in the range [xk, xk+1] for k=1,...,n-1, calculate

h = x୩ାଵ− x୩ and t =
୶ି ୶ౡ

୦

then the interpolant is

f(x) = y୩h଴଴(t) + h ∗ m୩hଵ଴(t) + y୩ାଵh଴ଵ(t) + h ∗ m୩ାଵhଵଵ(t)

where h୧୧(t) are the basis functions for the cubic Hermite spline.

h00(t) 2t3 − 3t2 + 1

h10(t) t3 − 2t2 + t

h01(t) − 2t3 + 3t2

h11(t) t3 − t2

Condition B: There are two threshold values for input statistics

As we have clarified in the beginning that there are at least two values in ௧ܵ excluding positive

infinity (+∞), they must be both finite numbers when there are only two threshold values.

In this case the mapping function is a straight line connecting (ଵݕ,ଵݔ) and .(ଶݕ,ଶݔ)

Tree AS Algorithm

f(x) = ૚ܡ + ૛ܡ) − (૚ܡ
−ܠ ૚ܠ
૛ܠ − ૚ܠ

Condition C: Threshold values include infinity

Note that there are at least two values in ௧ܵ excluding positive infinity (+∞). Take the last three

statistic threshold values and threshold values for the interestingness scores from the sorted lists,

we have three pairs of data ,(௡ିଶݕ,௡ିଶݔ) (௡ିଵݕ,௡ିଵݔ) and .(௡ݕ,∞+)

An exponential function

f(x) = a − beିୡ୶

can be defined by the pairs, where

a = y୬,

b =
ඩ

(y୬ − y୬ିଶ)୶౤షభ
(y୬ − y୬ିଵ)୶౤షమ൘(౮౤షభష౮౤షమ) ,

c =
ଵ

୶౤షభି୶౤షమ
ln

୷౤ି୷౤షమ

୷౤ି୷౤షభ
.

If ݊= 3, which means there are only two distinct values in ௧ܵ excluding positive infinity (+∞), the

exponential function is employed for evaluating x in the range [x1, +∞).

Otherwise, the exponential function is for evaluating x in the range [xn-1, +∞). To evaluate x in the

range [x1, xn-1), use procedures under “condition A: There are more than two threshold values for

input statistics, and they are all finite numbers” with data set ,ଵݔ} ⋯ {′௡ݔ, and ,ଵݕ} ⋯ ,{′௡ݕ, where

݊′ = ݊− 1. To insure a smooth transition to the exponential function, the tangent ݉ ௡′ at data

point ′௡ݔ is given as

݉ ௡′ = �d(a − beିୡ୶)

dx
ฬ
୶ୀ୶౤′

= ܾܿ ݁ି௖௫೙′

where a, b, c are computed as above.

Tree AS Algorithm

Appendix D. Overall Interestingness Methods

The following methods can be used to combine interestingness sub-indicesܫ�ௗ (݀ = 1,2, … (ܦ, into

an overall interestingness index.

Note that undefined interestingness sub-indices should be excluded from the calculation.

D.1. Weighted Average

The overall interestingness by the method of Weighted Average is

ݒܱ݁ ݎܽ ܫ݈݈݊ ݐ݁ ݎ݁ ݊݃݊ݐ݅ݏ =ݏݏ݁
∑ ௐ ಺೏

ூ೏
ವ
೏సభ

∑ ௐ ಺೏
ವ
೏సభ

,

where�ܹ ூ೏
is the weight corresponding to the interestingness sub-indexܫ�ௗ.

In default, the weights are set as .ܦ/1 Another more comprehensive choice is to use normalized

interestingness sub-indices as weights, i.e.

ܹ ூ೏
=

ூ೏

∑ ூ೏
ವ
೏సభ

.

D.2. Maximum

The overall interestingness by the method of Maximum is

ݒܱ݁ ݎܽ ܫ݈݈݊ ݐ݁ ݎ݁ ݊݃݊ݐ݅ݏ =ݏݏ݁ ݉ ݀,ௗܫ}ݔܽ = 1,2, … .{ܦ,

Time Series Algorithm: ARIMA

1. Introduction
Autoregressive Integrated Moving Average (ARIMA) model is a typical time series model which is

first popularized by Box and Jenkins (1976). The model can be built on equally spaced univariate

time series data and then forecast future values. ARIMA also can include other time series as

predictor variables, which lead to generalized ARIMA model that we call transfer function (TF)

model. The ARIMA/TF model predicts a value of a target time series as a linear combination of its

own past values, past errors(also called shocks or innovations), and current and past values of other

time series.

This document discusses how to estimate ARIMA/TF model and forecast future values. The rest of

the sections are arranged as follows: Section 2 provides some notations that are used in the

document. Section 3 describes ARIMA/TF model. Forecast and parameter estimation are provided in

section 4 and 5, respectively. Section 6 gives the method to initialize parameter. Post-estimation

including coefficient inference, goodness-of-fit, diagnostic statistic and predictor importance are

given in Section 7. Scenario analysis is provided in Section 8. Appendix A is double seasonal

ARIMA model, and Appendix B, C and D are some fundamental computation.

2. Notations
The following notation is used throughout the document unless otherwise stated:

௧ܻ Dependent series, where =ݐ 1, ⋯ ,݊

௧ܽ
White noise series normally distributed with mean zero and variance ,ଶߪ where =ݐ
1, ⋯ ,݊

݌ Order of non-seasonal autoregressive part of the model

ݍ Order of non-seasonal moving average part of the model

݀ Order of non-seasonal differencing

ܲ Order of seasonal autoregressive part of the model

ܳ Order of seasonal moving average part of the model

ܦ Order of seasonal differencing

ݏ Seasonality or period of the model

߶௣(ܤ) AR polynomial of B of order ,݌ ߶௣(ܤ) = 1 − ߮ଵܤ − ߮ଶܤ
ଶ − ⋯ − ߮௣ܤ

௣

(ܤ)௤ߠ MA polynomial of B of order ,ݍ (ܤ)௤ߠ = 1 − ܤଵߴ − ܤଶߴ
ଶ − ⋯ − ܤ௤ߴ

௤

Φ୔(Bୱ) Seasonal AR polynomial of ௦ܤ of order ܲ, Φ୔(Bୱ) = 1 − ΦଵBୱ− ΦଶBଶୱ− ⋯ − Φ୔B୔ୱ

Θ୕(Bୱ) Seasonal MA polynomial of ௦ܤ of order ܳ, Θ୕(Bୱ) = 1 − ΘଵBୱ− ΘଶBଶୱ− ⋯ − Θ୕B୕ୱ

Δ Differencing operator, Δ = (1 − ௗ(1(ܤ − ௦)஽ܤ

Δ୧ Differencing operator for the ith predictor, Δ୧= (1 − ௗ೔(1(ܤ − ௦)஽೔ܤ

ܤ Backward shift operator with ܤ ௧ܻ = ௧ܻି ଵ and ܤ ௧ܽ = ௧ܽି ଵ

ܺ௜௧ The ith predictor series,݅= 1, ⋯ ,݇

෡ܰ
୲(h) h- step-ahead prediction of noise series N୲ from time t. Denote it as ෡ܰ୲ାଵ if h = 1

ே೟ߪ
ଶ (ℎ) Prediction variance of the noise forecasts from time t. Denote it as ே೟శభߪ

ଶ if h = 1

௧ܼ ௧ܻ or transformed of ௧ܻ (transformation is log or square root)
መܼ
௧(ℎ) h- step-ahead prediction of ௧ܼ from time t. Denote it as መܼ௧ାଵ if h = 1

௓೟ߪ
ଶ (ℎ) Prediction variance of the ௧ܼ from time t. Denote it as ௓೟శభߪ

ଶ if h = 1

3. Model
Transfer function (TF) models form a very large class of models, which include univariate ARIMA models

as a special case. A TF model describing the relationship between the dependent and predictors series has

the following form:

௧ܼ = (݂ ௧ܻ)

Δ ௧ܼ = ܿ+ ෍
߱௜(ܤ)

(ܤ)௜ߜ
Δ௜ܤ

௕೔݂
௜(ܺ௜௧) +

(ܤ)∗ߠ

(ܤ)∗߶ ௧ܽ

௞

௜ୀଵ

The univariate ARIMA model simply drops the predictors from the TF model; thus, it has the following

form:

Δ ௧ܼ = ܿ+
(ܤ)∗ߠ

(ܤ)∗߶ ௧ܽ

The main features of this model are:

 An initial transformation of the dependent and predictor series, ݂ and ௜݂. This transformation is

optional and is applicable only when the dependent and predictors series values are positive.

Allowed transformations are log and square root. These transformations are sometimes called

variance-stabilizing transformations.

 A constant term c.

 The unobserved i.i.d., zero mean, Gaussian error process a୲with variance σଶ.

 The moving average lag polynomial θ∗(B) = θ୯(B)Θ୕(Bୱ) and the auto-regressive lag

polynomial ϕ∗(B) = ϕ୮(B)Φ୔(Bୱ).

 The difference/lag operators Δ and Δ୧

 A delay term,Bୠ౟, where b୧is the order of the delay.

 Predictors are assumed given. Their numerator and denominator lag polynomials are:

߱௜(ܤ) = ൫߱ ௜଴ − ߱௜ଵܤ − ⋯ − ߱௜௨೔
௨೔൯൫1ܤ − Ω௜ଵܤ

௦ − ⋯ − Ω௜௩೔
௩೔௦൯ܤ

And

(ܤ)௜ߜ = ൫1 − ܤ௜ଵߜ − ⋯ − ܤ௜௥೔ߜ
௥೔൯൫1 − ௜ଵߜ

ᇱܤ௦ − ⋯ − ௜௟೔ߜ
ᇱ ௟೔௦൯ܤ

 The noise series

ܰ௧ = ∆ ௧ܼ− ܿ− ෍
߱௜(ܤ)

(ܤ)௜ߜ
Δ௜ܤ

௕೔݂
௜(ܺ௜௧)

௞

௜ୀଵ

is assumed to be a mean zero stationary ARMA process.

The TF model described above may be non-seasonal model or single seasonal model. However, the model

can be extended to double seasonal model, i.e. there will be two periods ଵݏ and ଶݏ in the model. In

Appendix A, we provide a double seasonal univariate ARIMA model for simple extension.

4. Forecasting

Since model parameters are estimated using iterative search method and in each iteration, noise forecasting

and their standard error according to the estimated model in the previous iteration are needed, we introduce

forecasting for a given model in this section firstly and then introduce parameter estimation in next section.

There are two forecasting algorithms: One is called Conditional Least Squares (CLS) forecasting and the

other is called Exact Least Squares (ELS) or Unconditional Least Squares forecasting (ULS). These two

algorithms differ in only one aspect: they forecast the noise process differently. The general steps in the

forecasting computations are as follows:

Step 1. Computation of noise process N୲. The noise values are computed during the historical period.

Step 2. Forecasting the noise process, N୲, up to the forecast horizon. This is one step ahead forecasting

during the historical period and multi-step ahead forecasting after that. The differences in CLS and ELS

forecasting methodologies surface in this step. The prediction variances of noise forecasts are also

computed in this step.

Step 3. Final forecasts are obtained by first adding back to the noise forecasts, the contributions of the

constant term and the transfer function inputs and then integrating and back-transforming the result. The

prediction variances of noise forecasts also may have to be processed to obtain the final prediction

variances.

In the next three sub-sections, we will give the details of computations for these three steps.

4.1. Computation of noise process

The noise can be computed as

N୲= ∆Z୲− c − ෍
ω୧(B)

δ୧(B)
Δ୧B

ୠ౟f୧(X୧୲)

୩

୧ୀଵ

This step can be subdivided into a few sub-steps:

i) Compute ௧ܼ = (݂ ௧ܻ) and ܺ௜௧′ = ௜݂(ܺ௜௧)

ii) Differencing and lagging various series to obtain ∆Z୲and U୧୲= Δ୧B
ୠ౟X୧୲

ᇱ

iii) Obtainingன౟(୆)

ஔ౟(୆)
U୧୲= V୧୲. We will call these as transfer function inputs which can be computed

as follows:

set ௜ܸ଴ =
ఠ೔(ଵ)

ఋ೔(ଵ)
∗ ܷ௜ଵ, where ߱௜(1) = ∑ ߱௜௝

∗௨೔ା௩೔௦
௝ୀ଴ and ௜(1)ߜ = ∑ ௜௝ߜ

∗௥೔ା௟೔௦
௝ୀ଴ , where ߱௜௝

∗ and ∗௜௝ߜ

represent the coefficient corresponding to power ݆of the lag polynomial ߱௜(ܤ) and ,(ܤ)௜ߜ

respectively. The product of two polynomials is described in the appendix B.

Now set the first +௜ݑ valuesݏ௜ݒ of ௜ܸ௧ to missing. The later values of ௜ܸ௧ are computed

recursively as ௜ܸ௧ = − ∑ ௜௝ߜ
∗ ∗

௥೔ା௟೔௦
௝ୀଵ ௜ܸ௧ି ௝ + ∑ ߱௜௝

∗ ∗ ܷ௜௧ି ௝
௨೔ା௩೔௦
௝ୀ଴ , with understanding that

missing ௜ܸ௧ି ௝ in the first term are taken to be ௜ܸ଴ and missing ܷ௜௧ି ௝ in the second term are

taken to be ܷ௜ଵ.

Please note that we assume that ܷ௜ଵ is non-missing, otherwise the computations begin at the

first non-missing measurement.

iv) Now finish the final step of computing

ܰ௧ = ∆ ௧ܼ− ܿ− ∑
ఠ೔(஻)

ఋ೔(஻)
Δ௜ܤ

௕೔݂
௜(ܺ௜௧)௞

௜ୀଵ

In this computation if for any t one of the summands is missing then the whole sum is set to

missing.

4.2. Noise series forecasting

This section discusses how to use CLS method and ELS method to forecast noise series and their variance

and how to compute prediction variance of the series ௧ܼ based on the prediction variance of noise. For CLS

and ELS method, there are two situations, no embedded missing and embedded missing, for them

respectively.

This section assumes that the first and last value of the ܰ௧ is non-missing. Otherwise the computation is

from the first non-missing value of ܰ௧ to the last non-missing value ܰ௧.

For the sake of simplicity, we assume that ܰ௧ follow ARMA(p,q) process and the AR polynomial is

߶௣(ܤ) = 1 − ߮ଵܤ − ߮ଶܤ
ଶ − ⋯ − ߮௣ܤ

௣, and MA polynomial is (ܤ)௤ߠ = 1 − ܤଵߴ − ܤଶߴ
ଶ − ⋯ − ܤ௤ߴ

௤ .

If noise series follow ARMA(p,q)(P,Q), it is needed to re-write as ARMA(p+sP,q+sQ) by computing the

product of non-seasonal and seasonal polynomials using the algorithm in Appendix B.

4.2.1 CLS method

Case 1: No embedded missing values

In this case the one-step-ahead forecasting is computed recursively by the following formula:

෡ܰ
௧ = −෍ ߮௝ ∗ ܰ௧ି ௝

௣

௝ୀଵ

+ ෍ ௝ߴ ∗ Ƹ௧ିߝ ௝

௤

௝ୀଵ

Ƹ௧ߝ = ܰ௧− ෡ܰ
௧

Here unavailable ܰ௧ି ௝ and Ƹ௧ିߝ ௝are taken to be zero.

The h-step-ahead forecasts are:

෡ܰ
௧(ℎ) = −෍ ߮௝ ∗ ௧ܶା௛ି௝

௣

௝ୀଵ

+ ෍ ௝ߴ ∗ ,Ƹ௧ା௛ି௝ߝ ℎ > 1

௤

௝ୀଵ

where ௧ܶା௛ି௝ = ܰ௧ା௛ି௝ if available, else ௧ܶା௛ି௝ = ෡ܰ
௧ା௛ି௝. And unavailable Ƹ௧ା௛ି௝ߝ are taken to be zero.

The prediction variance of ܰ௧ is computed as

ே೟ߪ
ଶ (ℎ) = ଶߪ ∗ ෍ ߰௝

ଶ

௛ିଵ

௝ୀ଴

, ℎ ≥ 1

where ߰௝are coefficients of the power series expansion of .(ܤ)߶/(ܤ)ߠ The ratio of two polynomials is

described in the Appendix B.

The prediction variance of the ௧ܼ series is computed as:

௓೟ߪ
ଶ (ℎ) = ଶߪ ∗ ෍ ߰௝

ଶ

௛ିଵ

௝ୀ଴

, ℎ ≥ 1

where ߰௝ are coefficients of the power series expansion of Δ)/(ܤ)ߠ ∗ .((ܤ)߶

Case 2: Embedded missing values

In this case, first a temporary series ௧ܫ is created by imputing the missing values in ܰ௧ recursively as

௧ܫ = ܰ௧ if ܰ௧ is not missing, otherwise ௧ܫ = − ∑ ௧ିܫ௝ߨ ௝
௧ି ଵ
௝ୀଵ , where ௝ߨ are coefficients of the power series

expansion of .(ܤ)ߠ/(ܤ)߶ Then one-step-ahead and multi-step-ahead forecasts of ,௧ܫ computed using the

non-missing algorithm, are taken to be the forecasts of ܰ௧.

One-step-ahead prediction variances depend on the pattern of missing values observed. Let ݇ be the

number of previous, contiguous missing values prior to a given time period t with or without a missing

value, e.g., if value at −ݐ) 1) is missing but at −ݐ) 2)it is not missing then ݇= 1. Then one- step-ahead

prediction variance of noise process is

ே೟ߪ
ଶ = ଶߪ ∗ ෍ ߰௝

ଶ

௞

௝ୀ଴

The h-step-ahead prediction variances (in the forecast period) are same as non-missing case, i.e.,

ே೟ߪ
ଶ (ℎ) = ଶߪ ∗ ෍ ߰௝

ଶ

௛ିଵ

௝ୀ଴

, ℎ > 1

where ߰௝s are coefficients of the power series expansion of .(ܤ)߶/(ܤ)ߠ

If there is no difference specified for dependent series, then the prediction variance of ௧ܼ series is

௓೟ߪ
ଶ (ℎ) = ே೟ߪ

ଶ (ℎ), ℎ ≥ 1

Otherwise, the prediction variance of ௧ܼ is:

 One-step-ahead: ௓೟ߪ
ଶ = ே೟ߪ

ଶ ,

 h-step-ahead: ௓೟ߪ
ଶ (ℎ) = ଶߪ ∗ ∑ ߰௝

ଶ௛ିଵ
௝ୀ଴ , where ߰௝ are coefficients of the power series expansion of

Δ)/(ܤ)ߠ ∗ .((ܤ)߶

4.2.2 ELS method

Case 1: No embedded missing values

In this case, the noise forecast and the prediction variance are computed by the theta recursion method

which is provided in Chapter 5 of Brockwell and Davis(1991):

Step 1. Compute the theoretical auto-covariance function (call it (ߛ of an ARMA process with ߶௣(ܤ)and

(ܤ)௤ߠ as the AR and MA polynomials and with white noise variance 1. The computation of theoretical

auto-covariance function is described in Appendix C.

Step 2. Let ଴ߴ
′ = 1, ௜ߴ

′ = − =݅,௜ߴ 1, ⋯ ݍ, and ௜ߴ
′ = 0 if ݅> .ݍ Compute

)ߢ ,݅)݆

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧

−݅)ߛ)݆, 1 ≤ ,݆݅≤ ݉ ,

−݅)ߛ)݆ − ෍ ߮௥ ∗ −ݎ)ߛ |݅− |݆)

௣

௥ୀଵ

, min(,݅)݆ ≤ ݉ < max(,݅)݆ ≤ 2݉ ��ܽ݊݀��|݅− |݆ < max +ݍ,݌) 1)

෍ ௥ߴ
′

௥ା|௜ିߴ ௝|
′ ,

௤

௥ୀ଴

min(,݅)݆ > ݉ �ܽ݊݀�|݅− |݆ ≤ ݍ

0, ℎݐ݋ ݓݎ݁ ݏ݅݁

�

where ݉ = max .(ݍ,݌)

This will use)ߛ)݆ from ݆= 0,1, ⋯ , (2݉ − 1). For storage purposes it might be convenient to compute

three vectors to store all the possible values of)ߢ ,݅)݆ in advance:

)ߙ)݈ =)ߛ)݈,݈= 0,1, ⋯ ,݉ − 1

 ξ(l) = γ()݈ − ∑ φ୰∗ γ(݈− r)୮
୰ୀଵ , ݈= 1,2, ⋯ , (2݉ − 1). Note that 0 is NOT one of the indices

and)ߦ)݈ = 0 for ݈≥ max +ݍ,݌) 1) because of the recursive relation)ߛ)݈ satisfies.

 ߱()݈ = ∑ ௥ߴ
′

௥ା|௜ିߴ ௝|
′ ,݈= 0, ⋯ ݍ,

௤
௥ୀ଴

Step 3. Recursively compute ௧ߥ and ௜௝ߠ as follows

଴ߥ = (1,1)ߢ

For ݅= 1, ⋯ ,݊

௜,௜ିߠ ௞ = ௞ߥ
ିଵቌߢ(݅+ 1,݇+ 1) − ෍ ௜,௜ିߠ௞,௞ି௝ߠ ௝ߥ௝

௞ିଵ

௝ୀ଴

ቍ ,݇= 0,1,2, ⋯ ,݅− 1

=௜ߥ +݅)ߢ 1,݅+ 1) − ෍ ௜,௜ିߠ ௝
ଶ

௜ି ଵ

௝ୀ଴

௝ߥ

Step 4. Compute one-step-ahead forecasts of ܰ௧ (and their prediction variances) as follows:

෡ܰ
ଵ = 0

෡ܰ
௞ାଵ =

⎩
⎪
⎨

⎪
⎧

෍ ௞,௝൫ܰߠ ௞ାଵି௝− ෡ܰ
௞ାଵି௝൯

௞

௝ୀଵ

, 1 ≤ ݇≤ ݉ ,

߮ଵܰ௞ + ߮ଶܰ௞ିଵ + ⋯ + ߮௣ܰ௞ାଵି௣ + ෍ ௞,௝൫ܰߠ ௞ାଵି௝ − ෡ܰ
௞ାଵି௝൯

௤

௝ୀଵ

, ݇> ݉

�

The prediction variance at time isݐ

ே೟ߪ
ଶ = ଶߪ ∗ ௧ିߥ ଵ

Step 5. Multi-step forecasting

ℎ-step-ahead forecast based on measurements up to time typically)ݐ it will be the last point in the historical

period) is

෡ܰ
௧(ℎ) =

⎩
⎪
⎨

⎪
⎧

��෍ ௧ା௛ିଵ,௝൫ܰߠ ௧ା௛ି௝ − ෡ܰ
௧ା௛ି௝൯

௧ା௛ିଵ

௝ୀ௛

, 1 ≤ ℎ ≤ ݉ − ,ݐ

෍ ߮௜ܰ෡௧(ℎ −)݅

௣

௜ୀଵ

+ ෍ ௧ା௛ିଵ,௝൫ܰߠ ௧ା௛ି௝ − ෡ܰ
௧ା௛ି௝൯

௤

௝ୀ௛

, ℎ > ݉ − ݐ

�

The prediction variance of ܰ௧ is computed as

ே೟ߪ
ଶ (ℎ) = ଶ෍ߪ ቌ෍ ௥߯ߠ௧ା௛ି௥ିଵ,௝ି ௥

௝

௥ୀ଴

ቍ

ଶ

௧ା௛ି௝ିߥ ଵ

௛ିଵ

௝ୀ଴

where the constants ௥߯ are calculated recursively as

଴߯ = 1

௥߯ = ෍ ߮௞

୫ ୧୬�(௣,௥)

௞ୀଵ

௥߯ି௞,ݎ���= 1,2,3, ⋯

This finishes the computation of noise forecasting and its prediction variance.

If there is no differencing specified for the dependent series, then prediction variance for Z୲series is the

same as that for the noise series i.e.,

σ୞౪
ଶ (h) = σ୒౪

ଶ (h), h ≥ 1

Otherwise prediction variance for Z୲ is computed as follows:

 One-step-ahead forecasting: ௓೟ߪ
ଶ = ே೟ߪ

ଶ .

 h-step-ahead forecasting: Let ௥߯ be the coefficients in the expansion of 1/ቀ∆߶௣(ܤ)ቁ. Then

௓೟ߪ
ଶ (h) = ଶ෍ߪ ቌ෍ ௥߯

௧ା௛ି௥ିଵ,௝ିߠ∗ ௥

௝

௥ୀ଴

ቍ

ଶ

௧ା௛ି௝ିߥ ଵ

௛ିଵ

௝ୀ଴

whereߠ௡,଴ = 1 and ௥߯
∗ are calculated recursively as ௥߯ in h-step variance prediction of noise except

that AR coefficients ߮௞ are substituted by coefficients of ∆߶௣(ܤ).

Case 2: Embedded missing values

Kalman filter method in Chapter 12 of Brockwell and Davis(1991) will be used in this situation.

Let ݉ = max .(ݍ,݌) The state-space representation of ܰ௧ is:

௧ାଵࢄ = +௧ࢄࡲ ࡴ ௧݁

ܰ௧ = +௧ࢄࡳ ௧݁

where ௧ࢄ is a state vector of ݉ by 1, and

ࡳ = (1, 0, ⋯ ,0)ଵ×௠

்ࡴ = (߰ଵ, ⋯ ,߰௠)

where ߰௜are coefficients in
ఏ೜(஻)

థ೛(஻)
= 1 + ߰ଵB + ߰ଶBଶ + ⋯

ࡲ = ൮

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯
߮௠ ߮௠ ିଵ ⋯ ⋯ ߮ଵ

൲

௠ ×௠

Here ߮௜= 0 if ݅> .݌)ܧ ௧݁) = 0 and ܸ)ݎܽ ௧݁) = .ଶߪ

The Kalman recursions (see Brockwell and Davis) start with:

෡ଵࢄ = (0, ⋯ ,0)ଵ×௠
்

શ૚ = ૙୫ ×୫

મଵ = ષଵ = ࡶ

෡ܰ
ଵ = 0

σ୒భ
ଶ = σଶ(ષଵ(1,1) + 1)

Where isࡶ an m × m symmetric matrix with its (i,j)th (݅≥)݆ element being)ࡶ ,݅)݆ = γ(i − j) −

∑ ψ
୩
ψ
୩ା୧ି ୨

୨ି ଵ
୩ୀ଴ , where γ(∙) is the auto-covariance function of ܰ௧.

For t = 1,2,3, ⋯

If ܰ௧ is not missing

{

D୲= ષ୲(1,1) + 1.

દ୲= ۴ષ୲(1: m, 1) + ۶ , here ષ୲(1: m, 1) is the first column of ષ୲.

મ୲ାଵ = ۴મ୲F
୘ + ۶۶୘.

શܜା૚ = ۴શ۴ܜ
୘ + દ୲દ୲

୘/D୲.

ષ୲ାଵ = મ୲ାଵ − શܜା૚.

෡௧ାଵࢄ = +෡௧ࢄࡲ દ୲ቀܰ ௧− ,෡௧(1)ቁ/D୲ࢄ ෡௧(1)ࢄ is the 1st element of .෡௧ࢄ

}

Else

{

D୲= 1.

દ୲= (0, ⋯ ,0)ଵ×୫
୘ .

મ୲ାଵ = ۴મ୲۴
୘ + ۶۶୘.

શܜା૚ = ۴શ۴ܜ
୘.

ષ୲ାଵ = મ୲ାଵ − શܜା૚.

෡௧ାଵࢄ = .෡௧ࢄࡲ

}

The one-step-ahead noise forecast and the prediction variances are given by ෡ܰ௧ାଵ = ෡௧ାଵ(1)ࢄ

and ே೟శభߪ
ଶ = σଶ(ષ୲ାଵ(1,1) + 1), respectively.

The h-step-ahead noise forecasts ෡ܰ௧(ℎ) and the prediction variance ே೟ߪ
ଶ (ℎ) can be recursively computed as

follows for h = 2,3, ⋯

෡ܰ
௧(ℎ) = ൫ࡲ௛ିଵࢄ෡௧ାଵ൯(1)

ષܜ
(୦)

= ۴ષܜ
(୦ିଵ)

۴୘ + ۶۶୘

ே೟ߪ
ଶ (ℎ) = ܜଶቀષߪ

(୦)(1,1) + 1ቁ

where ષܜ
(ଵ)

= ષ୲ାଵ.

As before, if there is no differencing specified for the dependent series then prediction variance for Z୲series

is the same as that for the noise series i.e.,

௓೟ߪ
ଶ (ℎ) = ே೟ߪ

ଶ (ℎ), ℎ ≥ 1

Otherwise, the prediction variance of ௧ܼ is:

 One-step-ahead: let ݇ be the number of previous, contiguous missing values prior to a given time

period t with or without a missing measurement, e.g., if value at −ݐ) 1) is missing but at −ݐ) 2)it

is not missing, then݇= 1. If ݇= 0 then ௓೟ߪ
ଶ = ே೟ߪ

ଶ , otherwise, ௓೟ߪ
ଶ = ଶߪ ∗ ∑ ߰௝

ଶ௞
௝ୀ଴ ,

 h-step-ahead: ௓೟ߪ
ଶ (ℎ) = ଶߪ ∗ ∑ ߰௝

ଶ௛ିଵ
௝ୀ଴ , ℎ > 1

where ߰௝ are coefficients of the power series expansion of Δ)/(ܤ)௤ߠ ∗ ߶௣(ܤ)).

4.3. Final forecasting

The final forecasting and their prediction variance are described as below:

Step 1. Compute series ܳ௧(ℎ) = ൫ܰ෡௧(ℎ) + ܿ+ ∑ ௜ܸ(௧ା௛)
௞
௜ୀଵ ൯.

Step 2. If dependent series is not differenced, then መܼ
௧(ℎ) = ܳ௧(ℎ). Otherwise the series ܳ௧(ℎ) has to be

integrated as below:

መܼ
௧(ℎ) = ܳ௧(ℎ) − ෍ ௝߬ ௧ܼା௛ି௝

ௗା஽௦

௝ୀଵ

where ௝߬ is the coefficient corresponding to power ݆of the difference operator ∆.

The prediction variance of ௧ܼ is provided in section 4.2 for different noise computation methods.

Step 3. The final predicted value and the corresponding confidence interval are computed as follows:

 If the dependent series is not transformed, then

ො௧(ℎ)ݕ = መܼ
௧(ℎ)

and the 100(1 − %(ߙ confidence interval is

ቀܼመ௧(ℎ) − ௗ௙,ఈ/ଶݐ ∗ ,௓೟(ℎ)ߪ መܼ௧(ℎ) + ௗ௙,ఈ/ଶݐ ∗ .௓೟(ℎ)ቁߪ

 If the transformed function is log, then

ො௧(ℎ)ݕ = exp�൬ܼመ௧(ℎ) +
ఙೋ೟
మ (௛)

ଶ
൰

and the 100(1 − %(ߙ confidence interval is

൬exp�ቀܼመ௧(ℎ) − ௗ௙,ఈ/ଶݐ ∗ ,௓೟(ℎ)ቁߪ exp�ቀܼመ௧(ℎ) + ௗ௙,ఈ/ଶݐ ∗ ௓೟(ℎ)ቁ൰ߪ

 If the transformed function if square root, then

yො୲(h) = ቀZ෠୲(h)ቁ
ଶ

+ σ୞౪
ଶ (h)

and the 100(1 − %(ߙ confidence interval is

൬ቀܼመ௧(ℎ) − ௗ௙,ఈ/ଶݐ ∗ ௓೟(ℎ)ቁߪ
ଶ

, ቀܼመ௧(ℎ) + ௗ௙,ఈ/ଶݐ ∗ ௓೟(ℎ)ቁߪ
ଶ

൰

In above, ௗ௙,ఈ/ଶݐ is the (1 − 100th(2/ߙ percentile of the t distribution with degree of freedom ݂݀which can

be computed by the number of valid noise residuals minus the number of parameters.

Note 1: The computation in step 2 begins at the first non-missing value of ܳ௧which is usually at =ݐ ݀+

+ݏܦ 1. Unavailable ௧ܼି ௝ in the sum is replaced with መܼ
௧ି ௝ and the sum only includes terms that correspond

to non-zero ௝߬. If any term is missing in expression the corresponding integrated forecast is set to missing.

Note 2: if the ݂݀= 0, then we use (1 − 100th(2/ߙ percentile of the standard normal distribution.

Note 3: for square root transformation, If Z෠୲(h) < 0, then predicted value yො୲(h) and corresponding

confidence interval will be missing. If Z෠୲(h) > 0 but መܼ௧(ℎ) − ௗ௙,ఈ/ଶݐ ∗ ௓೟(ℎ)ߪ < 0, then the lower

boundary of confidence interval will be missing value.

4.4. Information for scoring to be saved

Suppose that time series { ௧ܻ, ଵܺ௧, ⋯ ,ܺ௄௧}௧ୀଵ
௡ are given up to time =ݐ ,݊ which is called training dataset, a

time series model is built on the training dataset. Then this model is saved and the training dataset is gone.

In order to forecast from =ݐ ݊+ 1, we need to save model and other information to continue forecasting

beyond the training dataset. Here we listed the information to be saved according to model, forecasting

method and data for transfer function as following:

Model

o ARIMA part

 Transformation of target series. The possible value is none, or log or square root

 Constant

 AR parameters: non-seasonal, seasonal part

 MA parameter: non-seasonal, seasonal part

 Order of difference: non-seasonal, seasonal part

o Transfer function part

For each predictor, the following information should be saved.

 Transformation: The possible value is none, or log or square root

 Parameters in numerator: non-seasonal, seasonal part

 Parameters in denominator: non-seasonal, seasonal part

 Order of difference: non-seasonal, seasonal part

 Lag of delay

o Outliers

 For each outlier, the type, location and magnitude are needed. For transient change

outlier, the damp parameter is also needed.

o Error variance estimation: ොଶߪ

Forecasting method

CLS forecasting method will be just used in expert molder internally and will not be needed for future

scoring. So we just give the information about ELS method. Since the theta recursion method is more

complicated, we only use it for future scoring when model is with differencing and training data has no

embedded missing value. In other situation, we need to save information related Kalman filter method.

Therefore, if the theta recursion method is used in model building without differencing, then after model

building, we need to get the information of Kalman filter method based on model parameters from the theta

recursion method.

o Theta recursion method

 Noise: ܰ௡,ܰ௡ିଵ, ⋯ ,ܰ௡ି௠ ାଵ

 Predicted noise: ෡ܰ௡, ෡ܰ௡ିଵ, ⋯ , ෡ܰ௡ି௤ାଵ

 Thetas: ,௞,௞ି௝ߠ ݇= ݊− +ݍ 1, ⋯݊− 1, ݆= ݊− ,ݍ ⋯ ,݇− 1 and =݆,௡,௡ି௝ߠ ݊−

,ݍ ⋯ ,݊− 1

 Nu: ,௡ିଵߥ,௡ߥ ⋯ ௡ି௤ାଵߥ,

o Kalman filter method

 State vector(m elements): ෡௡ାଵࢄ

 Omega matrix (m by m symmetric): ષ୬ାଵ. Only lower triangular part needs to be saved.

 H vector which contains m psi weights: ்ࡴ = (߰ଵ, ⋯ ,߰௠)

Data for transfer function

For each predictor, say the ݅th predictorܺ௜௧, the following information is needed

o Predictor values: ܺ௜,௡ି௝,݆= 0,1, ⋯ , ௜ܾ+ ௜݀+ +௜ܦݏ +௜ݑ −௜ݒݏ 1

o Transfer function values: ௜ܸ,௡ି௝,݆= 0, 1, ⋯ +௜ݎ, ௜ݏ݈

Implementation notes:

1) Similar to the section 4.2, we assume that ܰ௧ follow ARMA(p,q) process. If noise series follow

ARMA(p,q)(P,Q), it is needed to re-write as ARMA(p+sP,q+sQ) by computing the product of

non-seasonal and seasonal polynomials using the algorithm in Appendix B.

2) When the theta recursion method is used, the below formulas will be used for noise forecast(we

need engineer to check old code for confirmation)

One-step-ahead noise forecast and the prediction variance are given by

෡ܰ
௡ାଵ = ߮ଵܰ௡ + ߮ଶܰ௡ିଵ + ⋯ + ߮௣ܰ௡ାଵି௣ + ෍ ௡,௝൫ܰߠ ௡ାଵି௝− ෡ܰ

௡ାଵି௝൯

௤

௝ୀଵ

ே೙శభߪ
ଶ = ௡ߥଶߪ

h-step-ahead noise forecast and the prediction variance are given by

෡ܰ
௡(ℎ) = ቊ

∑ ߮௜ܰ෡௡(ℎ −)݅௣
௜ୀଵ + ∑ ௡ା௛ିଵ,௝൫ܰߠ ௡ା௛ି௝− ෡ܰ

௡ା௛ି௝൯
௤
௝ୀ௛ , ℎ ≤ ݍ

∑ ߮௜ܰ෡௡(ℎ −)݅௣
௜ୀଵ , ℎ > ݍ

�

where ෡ܰ௡()݆ = ܰ௡ି௝ for ݆≤ 0.

ே೙ߪ
ଶ (ℎ) = ଶ෍ߪ ቌ෍ ௥߯ߠ௡ା௛ି௥ିଵ,௝ି ௥

௝

௥ୀ଴

ቍ

ଶ

௡ା௛ି௝ିߥ ଵ

௛ିଵ

௝ୀ଴

where the constants χ୰ are calculated recursively as

଴߯ = 1

௥߯ = ෍ ߮௞

୫ ୧୬�(௣,௥)

௞ୀଵ

௥߯ି௞,ݎ���= 1,2,3, ⋯

And the ௧ߥ and ௜௝ߠ are computed recursively as follows:

For ݅= ݊+ 1,݊+ 2, ⋯

௜,௜ିߠ ௞ =

⎩
⎨

⎧
0 ݇≤ ݅− −ݍ 1

௞ߥ
ିଵቌߢ(݅+ 1,݇+ 1) − ෍ ௜,௜ିߠ௞,௞ି௝ߠ ௝ߥ௝

௞ିଵ

௝ୀ଴

ቍ ݅− ≥ݍ ݇≤ ݅− 1
�

=௜ߥ +݅)ߢ 1,݅+ 1) − ෍ ௜,௜ିߠ ௝
ଶ

௜ି ଵ

௝ୀ௜ି ௤

௝ߥ = (0)ߛ − ෍ ௜,௞ߠ
ଶ

௤

௞ୀଵ

௜ିߥ ௞

where +݅)ߢ 1,݇+ 1) = ∑ ௥ߴ
′

௥ା|௜ିߴ ௞|
′ ,

௤ି|௜ି ௞|
௥ୀ଴ for ݅− ≥ݍ ݇≤ ݅− 1 and ௥ߴ

′ are same as that in

section 4.2.2.

3) If the values of predictorܺ௜,௡ା௝,݆= 1,2, ⋯, are needed for h-step-ahead forecast and these value

are not available, then an expert exponential smoothing model will be built to forecast these

values. However, if valuesܺ௜,௡ା௝,݆= 1,2, ⋯, are available, then two options can be used: a) use

these available data directly for forecast, b) use expert exponential smoothing model to forecast

the these values.

4) For the event variable, if values are not available for =ݐ ݊+ 1,݊+ 2, ⋯, then we just assume all

the future values are 0 without building expert smoothing model.

5. Parameter Estimation
The parameters are estimated by optimizing an objective function, which is computed using the noise

residuals (ܰ௧− ෡ܰ
௧) and their prediction variance. The computation of noise, noise prediction and

corresponding variance has already been described in the section 4. There are two objective functions of

interest: CLS estimation uses objective function based on noise residuals computed using CLS forecasting

and ML estimation uses noise residuals computed using ELS forecasting.

Let ࢼ = ,ଶߚ,ଵߚ) ⋯ (௞ߚ, be all the parameter in the model excluding the error variance ,ଶߪ and for given ઺,

ܴ௧(ࢼ) = ቀܰ ௧
(ࢼ)

− ෡ܰ
௧
(ࢼ)
ቁbe the noise residual at inݐ historical period. If a noise value is missing, the

corresponding residual is set to missing also. The prediction variance of the residual has the following

form: ே೟ߪ
ଶ = ଶߪ ∗ ,௧ߟ where ௧ߟ = ௧ିߥ ଵ for the non-missing case and Ω௧(1,1) + 1.0 in embedded missing

value case when ELS method is used. For CLS method, ௧ߟ� are simply 1 in non-missing value situation, and

will be complex function of ARMA parameters in embedded missing value situation. For simplicity, we

just set them as 1 in this case also.

Let us define weighted residual as ܴ௧∗(઺) = ܴ௧(઺)/ඥߟ௧, and weighted sum of square ܵ= ∑ܴ௧
ଶ(઺) ,௧ߟ/

where the sum is taken over all non-missing residuals.

Objective function for CLS estimation

In CLS method, ܵ is the objective function which is minimized with respect to the model parameters.

Objective function for ML method

In ML method, the objective function is the reduced log-likelihood function of the noise series which is

given by

=ܮ −݈݊ (/ܵ)݊ − (1/)݊෍ ln൫ߟ௝൯

௡

௝ୀଵ

Here ݊ is the number of non-missing residuals. The ML estimates are computed by maximizing this

objective function. Equivalently one can minimize the following objective function also: ൫∏ ௝ߟ
௡
௝ୀଵ ൯

ଵ/௡
∗ .ܵ

Parameter estimates

Let ܵ∗ be the objective function which is �ܵfor CLS method and ൫∏ ௝ߟ
௡
௝ୀଵ ൯

ଵ/௡
∗ ܵ for ML method, and

డோ೟
∗(઺)

డβ౟
be the first derivative of ܴ௧∗(઺) which is computed as

߲ܴ௧
∗(઺)

௜ߚ߲
= ቀܴ ௧

∗(઺) − ܴ௧
∗൫઺෩ ൯ܑቁ/ߜ

where =࢏෩ࢼ ൫β
ଵ

, ⋯ +௜ߚ, ,ߜ ⋯ , β
୩
൯and =ߜ −0.0001 if ௜ߚ is positive and 0.0001 otherwise.

To introduce the estimation process, the following notations are needed:

 ܯ : The maximum number of iteration, the default is 25 ∗ ,݇ where k is the number of parameters.

 λ: The constraint parameter, the initial value is 0.001.

 :ଵܨ The increased factor of constraint parameter, the default value is 100.

 :ଶܨ The reduced factor of constraint parameter, the default value is 0.1.

 λ୫ ୟ୶: The maximum of constraint parameter, the default value is 10ଽ.

 :ܬ The maximum number of steps in step halving method, the default is 6.

 ஽ߝ : Tolerance level of scaling quantities, the default value is 10ି଼.

 :௦ߝ Tolerance level of relative objective function change, the default value is 10ିହ.

 :ఉߝ Tolerance level of parameter change, the default value is 10ିସ.

Now the parameter estimation process is as follows:

Step1. Set initial values ઺(଴), which will be discussed in section 6.

Step 2. Compute objective function S଴
∗ at ઺(଴).

Step3. Let m = 0.

Step 4. Compute ݇× ݇matrix ࡭ = ൛ܣ௜௝ൟand ݇× 1 vector ࡳ = (ଵ݃, ଶ݃, ⋯ , ௞݃)், where ௜௝ܣ =

∑
డோ೟

∗൫઺(ౣ)൯

డఉ೔

డோ೟
∗൫઺(ౣ)൯

డఉೕ

௡
௧ୀଵ and ௜݃= ∑

డோ೟
∗൫઺(ౣ)൯

డఉ೔
∗ ܴ௧

∗൫઺(୫)൯௡
௧ୀଵ , and compute the scaling quantities =௜ܦ

ඥܣ௜௜,݅= 1, ⋯ ,݇ . Let ܯ ܦݔܽ = max୧{ܦ௜}, if
஽೔

ெ ௔௫஽
< ஽ߝ , thenܦ௜= 0.

Step5. Compute ݇× ݇matrix ∗࡭ = ൛ܣ௜௝
∗ ൟand ݇× 1 vector ∗ࡳ = (ଵ݃

∗, ଶ݃
∗, ⋯ , ௞݃

∗)், where ௜௝ܣ
∗ = ∗௜ܦ)/௜௝ܣ

,(௝ܦ but if =௜ܦ 0 or ௝ܦ = 0, then ∗௜௝ܣ = 0; compute ௜݃
∗ = ௜݃/ܦ௜, but if =௜ܦ 0, then ௜݃

∗ = 0.

Step 6. Let ∗௜௜ܣ = 1 + λ. Compute ࢎ∗ = .∗ࡳି∗࡭ Based on ,∗ࢎ compute ࢎ = (ℎଵ, ℎଶ, ⋯ , ℎ௞)் where

ℎ௜= ℎ௜
௜andܦ/∗ ℎ௜

∗ are the elements of .∗ࢎ

Step 7. =ߦ 0.

Step 8. ઺(୫ ାଵ) = ઺(୫) − .ࢎ�

Step 9. Check the following admissibility constraints on the parametersࢼ(୫ ାଵ):

a) The roots of AR polynomial with parameters are outside the unit circle. Please see Appendix D for

details.

b) If the roots of MA polynomial are outside the unit circle.

c) If the sum of denominator polynomial coefficients is non-zero for each predictor variable. And the

roots of denominator polynomial are outside the unit circle.

If the conditions a),b) and c) hold, then go to step 11. Otherwise, let

઺୧
(୫ ାଵ)

= ൫β
ଵ
(୫ ାଵ), ⋯ , β

୧
(୫), ⋯ , β

୩
(୫ ାଵ)൯,݅= 1, ⋯ , .݇ If there is one parameter vector, ઺

୧′
(୫ ାଵ), such that the

conditions a), b) and c) hold, then ઺(୫ ାଵ) = ઺
୧′
(୫ ାଵ) and go to step 11. If there is no parameter vector

઺୧
(୫ ାଵ)

,݅= 1, ⋯ ,݇ satisfy the conditions a), b) and c), then go to step 10.

Step 10. ࢎ = ,2/ࢎ =ߦ +ߦ 1. If ≥ߦ ,ܬ go to step 8. If <ߦ compute λ ,ܬ = λ ∗ ଵ. If λܨ > λ୫ ୟ୶, then

output ઺(୫) as finial estimation and stop, else go to step 6.

Step 11. Compute objective function S୫ ାଵ
∗ at ઺(୫ ାଵ). If S୫ ାଵ

∗ > S୫
∗ , then λ = λ ∗ ଵ. If λܨ > λ୫ ୟ୶, then

output ઺(୫) as finial estimation and stop, else go to step 6. If ୗౣ
∗ ିୗౣ శభ

∗

ୗౣ
∗ < ௦ߝ then output ઺(୫ ାଵ) as finial

estimation and stop. If ୗౣ
∗ ିୗౣ శభ

∗

ୗౣ
∗ ≥ ௦ߝ , then go to step 12.

Step 12. If max௜หβ୧
(୫ ାଵ) − β

୧
(୫)ห< ఉߝ , then output ઺(୫ ାଵ) as finial estimation and stop, else, m = m + 1. If

m ≤ ܯ , compute λ = λ ∗ ,ଶܨ then go to step 4. Otherwise output ઺(୫) as finial estimation and stop.

Let ઺෡ be the final estimation of ઺. The covariance matrix of ઺෡ is ି࡭ , where �is࡭ computed based on ઺෡,

see the step 4 in above process. Therefore, the standard error of መ௜ߚ is ௜௜whichߪ is the square root of the i
th

diagonal element of ି࡭ .

Let ௙ܵ௜௡௔௟be the weighted sum of square based on the ઺෡, then the error variance can be estimated as

ොଶߪ = ௙ܵ௜௡௔௟/(݊−)݇.

6. Initial value
This section discusses how to set initial parameters at the beginning of the parameter estimation.

Transfer function parameters

All the numerator and denominator polynomial parameters are initialized to zero except the coefficient of

the 0th power in the numerator polynomial, which is initialized to the corresponding regression coefficient

using least square method.

Denote the initial value of the 0th power parameter in the numerator polynomial as ωෝ୧଴, ⋯ , ωෝ୩଴. Then the

noise series are computed as

ܰ௧ = ∆ ௧ܼ− Ƹܿ− ∑ ෝ߱௜଴߂௜ܤ
௕೔݂

௜(ܺ௜௧)
௞
௜ୀଵ

which will be used to compute initial parameters of AR and MA.

Non-Seasonal AR parameters

The AR parameters are computed by the method in Appendix A6.2 of Box, Jenkins, and Reinsel(1994).

The method can be described as follows:

൮

ො߮ଵ
ො߮ଶ
⋮
ො߮௣

൲ = ൮

௤ߩ ௤ିଵߩ ⋯ ௤ି௣ାଵߩ
௤ାଵߩ ௤ߩ ⋯ ௤ି௣ାଶߩ

⋮ ⋮ ⋱ ⋮
௤ା௣ିଵߩ ௤ା௣ିଶߩ ⋯ ௤ߩ

൲

ିଵ

൮

௤ାଵߩ
௤ାଶߩ

⋮
௤ା௣ߩ

൲

where ,௤ି௣ାଵߩ ,௤ାଶߩ,௤ାଵߩ�⋯ ⋯ ௤ା௣ߩ, are autocorrelations of N୲.

Based on ො߮௜,݅= 1, ⋯ ,݌, the stationary condition that the roots of AR polynomial are outside the unit

circles is needed to check. If the stationary condition holds, then they are used as initial values. Otherwise,

let ො߮௜= 0.9 ∗ ො߮௜.݅= 1, ⋯ ,݌, then continue to check stationary condition based on updated parameters. If

the stationary condition is satisfied, then stop. Otherwise repeat this process until the stationary condition

holds and final ො߮௜.݅= 1, ⋯ will݌, be used as AR initial parameters.

Non-Seasonal MA parameters

Let

௧ݓ = ܰ௧− ߮ଵܰ௧ି ଵ − ⋯ − ߮௣ܰ௧ି ௣ = ௧ܽ− ଵߠ ௧ܽି ଵ − ⋯ − ௤ߠ ௧ܽି ௤

The cross covariance function is

=௟ߣ ௧ା௟ܽݓ)ܧ ௧) = ቀ൫ܽܧ ௧ା௟− ଵߠ ௧ܽା௟ି ଵ − ⋯ − ௤ߠ ௧ܽା௟ି ௤൯ܽ ௧ቁ=

⎩
⎪
⎨

⎪
⎧

,ଶߪ ݈= 0

ߪଵߠ−
ଶ, ݈= 1

⋯ ⋯
ߪ௤ߠ−

ଶ, ݈= ݍ

0, ݈> ݍ

�

Assuming that an AR(p+q) can approximate N୲, it follows that:

ܰ௧− ߮ଵ
′ ܰ௧ି ଵ − ⋯ − ߮௣

′ ܰ௧ି ௣ − ߮௣ାଵ
′ ܰ௧ି ௣ିଵ − ⋯ − ߮௣ା௤

′ ܰ௧ି ௣ି௤ = ௧ܽ

The AR parameters of this model are estimated as above and are denoted as ො߮ଵ′ , ⋯ , ො߮௣ା௤
′ .

Thus ௟canߣ be estimated by

≈መ௟ߣ ቀ൫ܰܧ ௧ା௟− ො߮ଵܰ௧ା௟ି ଵ − ⋯ − ො߮௣ܰ௧ା௟ି ௣൯൫ܰ ௧− ො߮ଵ
′ ܰ௧ି ଵ − ⋯ − ො߮௣ା௤

′ ܰ௧ି ௣ି௤൯ቁ

= ቌߩ௟− ෍ ො߮௝
௟ା௝ߩ′

௣ା௤

௝ୀଵ

− ෍ ො߮௜ߩ௟ି ௜

௣

௜ୀଵ

+ ෍ ෍ ො߮௜߮ො௝
௟ା௝ିߩ′ ௜

௣ା௤

௝ୀଵ

௣

௜ୀଵ

ቍ ଴ܿ

And the error variance ଶߪ is approximated by

ොଶߪ = ܸ −ቌݎܽ ෍ ො߮௝
′ܰ௧ି ௝

௣ା௤

௝ୀ଴

ቍ = ଴ܿ෍ ෍ ො߮௜
′ ො߮௝

௜ିߩ′ ௝

௣ା௤

௜ୀ଴

௣ା௤

௜ୀ଴

Then the MA parameters are estimated by

=෠௟ߠ −
መ௟ߣ
ොଶߪ

,݈= 1, ⋯ ݍ,

Same as the AR parameters, the stationary condition that the roots of MA polynomial are outside the unit

circles is needed to check. If the condition does not hold, update =෠௟ߠ 0.9 ∗ =݈,෠௟ߠ 1, ⋯ ݍ, repeatedly until

=݈,෠௟ߠ 1, ⋯ ݍ, that satisfy the condition are obtained.

Seasonal parameters

For seasonal AR and MA components, the autocorrelations at the seasonal lags in the above equations are

used.

7. Model summary and diagnostics

7.1. Coefficients and statistical inference
 Coefficients and standard error

After the model building, we can get the coefficients of AR, MA and predictors and corresponding

standard error, see section 5.

 t-statistics for coefficients

t statistics for መ௜ߚ is

=ݐ
መ௜ߚ
௜௜ߪ

Where ௜௜ߪ is the standard error of ,መ௜ߚ and the statistic t follows an asymptotic t distribution with

the degree of freedom (݊−)݇, here ݊ is the number of non-missing residuals and ݇ is the number

of parameter in the model. Then the p-value is computed as

=݌ 2 × ൫1 − ܾ݋ݎ݌ ௡ି௞ݐ) ≤ ൯(|ݐ|

 100(1)% confidence internals

±መߚ ×௜௜ߪ ఈݐ
ଶ

,௡ି௞

7.2. Goodness-of-fit statistics

Goodness-of-fit statistics are based on the original series Y. Let k is the number of parameters in the model

and n is the number of non-missing residuals.

 Mean squared error

ܯ ܧܵ =
∑ ൫ܻ ௧− ෠ܻ

௧൯
ଶ௡

௧ୀଵ

݊− ݇

 Root mean squared error

ܯܴ ܧܵ = ܯ√ ܧܵ

 Mean absolute percent error

ܯ ܧܲܣ =
100

݊
෍ ቤ

௧ܻ− ෠ܻ
௧

௧ܻ

ቤ

௡

௧ୀଵ

 Maximum absolute percent error

ܯ ܧܲܣݔܽ = 100maxቆቤ
௧ܻ− ෠ܻ

௧

௧ܻ

ቤቇ

 Root mean squared percent error

ܯܴ ܵܲ ܧ = ඩ
100

݊
෍ ቆ

௧ܻ− ෠ܻ
௧

௧ܻ

ቇ

ଶ௡

௧ୀଵ

 Mean absolute error

ܯ ܧܣ =
1

݊
෍ หܻ௧− ෠ܻ

௧ห

௡

௧ୀଵ

 Maximum absolute error

ܯ ܧܣݔܽ = max൫หܻ௧− ෠ܻ
௧ห൯

 Bayesian information criterion

ܥܫܤ = ݊× ݈݊ ൭
∑ ൫ܻ ௧− ෠ܻ

௧൯
ଶ௡

௧ୀଵ

݊
൱+ ݇× ݈݊ ()݊

 Akaike information criterion

ܥܫܣ = ݊× ݈݊ ൭
∑ ൫ܻ ௧− ෠ܻ

௧൯
ଶ௡

௧ୀଵ

݊
൱+ 2݇

 R-squared

ܴଶ = 1 −
∑ ൫ܻ ௧− ෠ܻ

௧൯
ଶ௡

௧ୀଵ

∑ (௧ܻ− തܻ)ଶ௡
௧ୀଵ

 Stationary R-squared

ܴௌ
ଶ = 1 −

∑ ൫ܼ ௧− መܼ
௧൯
ଶ௡

௧ୀଵ

∑ (∆ ௧ܼ− ∆ܼതതതത)ଶ௡
௧ୀଵ

Where the sum is over the terms in which both Z୲− Z෠୲ି ଵ and ∆Z୲− ∆Zതതതതare not missing.

∆Zതതതതis the simple mean model for the differenced transformed series, which is equivalent to the univariate

baseline model ARIMA(0, d, 0)(0, D, 0).

Note: Both the stationary and usual R-squared can be negative with range (−∞,��1]: Negative R-squared

value means that the model under consideration is worse than the baseline model. Zero R-squared value

means that the model under consideration is as good or bad as the baseline model. Positive R-squared value

means that the model under consideration is better than the baseline model.

7.3. Diagnostic statistics
ARIMA/TF diagnostic statistics are based on noise residual process, ܴ௧ = ܰ௧− ෡ܰ

௧.

 Residual autocorrelation function

The residual autocorrelation function can be computed as

γො୩ =
∑ (R୲− Rഥ)(R୲ା୩ − Rഥ)୬ି୩
୲ୀଵ

∑ (R୲− Rഥ)ଶ୬
୲ୀଵ

for k = 0,1 … , K

where Rഥ=
∑ ୖ౪
౤
౪సభ

୬
is the sample mean of R୲. The maximum number of lags, K, will be specified by user and

it must be a positive number. The default value of K is 24.

Bartlett (1946) assumes that the true MA order of the process is ݇− 1 and the approximate standard error

is

se(ߛෝ
௞

) ≅ ඩ
1

݊
൭1 + 2෍ ൫ߛෝ

௟
൯
ଶ

௞ିଵ

௟ୀଵ

൱

The approximate 100(1 − α)% confidence interval of ௝ߛ = 0 can be computed as

൫−݁ݏ ൫ߛො௝൯∗ ,ଵିఈ/ଶݖ ݏ݁ ൫ߛො௝൯∗ ଵିఈ/ଶ൯ݖ

where ଵିఈ/ଶݖ is the (1 − 100th(2/ߙ percentile of the standard normal distribution.

Please note that if ܴ௧ is missing value, then it will be ignored during computing തܴ, and ݊ will be the

number of non-missing residuals. And the term (ܴ௧− തܴ)(ܴ௧ା௞ − തܴ) and (ܴ௧− തܴ)ଶ will also be ignored in

ො௞ߛ if ܴ௧ is missing value.

 Residual partial autocorrelation function

The kth residual partial autocorrelation function ߶෠௞,௞ can be computed as

ϕ෡ଵ,ଵ = γොଵ

ϕ෡ଶ,ଶ =
(γොଶ − (γොଵ)ଶ)

[1 − (γොଵ)ଶ]൘

ϕ෡୩,୨= ϕ෡୩ିଵ,୨− ϕ෡୩,୩ϕ෡୩ିଵ,୩ି୨, k = 2, 3, … , j = 1, 2, … , k − 1

ϕ෡୩,୩ =
γො୩ − ∑ ϕ෡୩ିଵ,୨γො୩ି୨

୩ିଵ
୨ୀଵ

1 − ∑ ϕ෡୩ିଵ,୨γො୨
୩ିଵ
୨ୀଵ

, k = 3, 4, … , K

The maximum number of lags, ܭ , will be specified by user and it must be a positive number. The default

value of ܭ is 24.

According to Quenouville (1949), if time series ܴ௧ follows AR(݌) model, then

߶෠௞,௞~̇N൬0,
1

݊
൰

Thus

se൫߶෠௞,௞൯≅ ඨ
1

݊

The approximate 100(1 − α)% confidence interval of ߶௞,௞ = 0 can be computed as

൫−݁ݏ ൫߶෠௞,௞൯∗ ,ଵିఈ/ଶݖ ݏ݁ ൫߶෠௞,௞൯∗ ଵିఈ/ଶ൯ݖ

 Ljung-Box statistic

The Ljung-Box statistic is computed as

(ܭ)ܳ = (݊݊+ 2)෍ ො୩ߛ
ଶ/(n − k)

௄

௞ୀଵ

Where K is the number of lags to be tested and we will fix K as 18, and ො௞ߛ is the k
th lag autocorrelation of

residual. The statistic (ܭ)ܳ is approximately distributed as ߯ଶ(ܭ − ݉) , where m is the number of

parameters other than constant term and predictor related parameters. Therefore the p-value of (ܭ)ܳ can be

computed as

=݌ 1 − Pr (߯ଶ(ܭ − ݉) ≤ ((ܭ)ܳ

If p-value is less than significant level ,ߙ then residual values exhibit autocorrelation. That is, the model

does not explain all the autocorrelation and might need to be manually adjusted.

7.4. Predictor importance

Suppose for ݇ predictor series, ܺ௜௧,݅= 1,2, ⋯ ,݇ , and ෡ܰ
௧, ௜ܸ௧,݅= 1,2, ⋯ ,݇ are the noise forecast and

transfer functions based on model we built, then the predictor importance can be compute using

approximate leave-one-out method which is described as following:

Step1. Compute series ܳ௧
(଴)

= ൫ܿ + ∑ ௜ܸ௧
௞
௜ୀଵ ൯and ܳ௧

(௜)
= ൫ܰ෡௧+ ܿ+ ∑ ௝ܸ௧௝ஷ௜ ൯,݅= 1,2, ⋯ ,݇

Step 2. Compute series መܼ௧
(௜)

= ܳ௧
(௜)

,݅= 1,2, ⋯ ,݇�if the dependent series is not differenced, otherwise

መܼ
௧
(௜)

= ܳ௧
(௜)

− ෍ ௝߬ ௧ܼି ௝

ௗା஽௦

௝ୀଵ

,݅= 0,1,2, ⋯ ,݇

where ௝߬ is the coefficient corresponding to power ݆of the difference operator ∆.

Step 3. The approximate leave-one-out predicted value as follows:

 If the dependent series is not transformed, then

ො௧ݕ
(௜)

= መܼ
௧
(௜)

,݅= 0,1,2, ⋯ ,݇

 If the transformed function is log, then

ො௧ݕ
(௜)

= exp ൬ܼመ௧
(௜) +

ఙೋ೟
మ

ଶ
൰,݅= 0,1,2, ⋯ ,݇

 If the transformed function if square root, then

ො௧ݕ
(௜)

= ൫ܼመ௧
(௜)
�൯
ଶ

+ σ୞౪
ଶ ,݅= 0,1,2, ⋯ ,݇

where σ୞౪
ଶ is the variance of Z୲, which is same as that in the section 4.1,4.2 and 4.3.

Step 4. Compute leave-one-out absolute percent error series for each predictor

௧݁
(௜)

= อ
−௧ݕ ො௧ݕ

(௜)

௧ݕ
อ,݅= 0,1,2, ⋯ ,݇

And then trim series ௧݁
(௜) by removing the top n*5% largest ௧݁

(௜) .

Step 5. Compute the leave-one-out mean absolute percent error based on the trimmed series in step 4 for

each predictor

ܯ (௜)ܧܲܣ =
100

∗݊
෍ ௧݁

(௜)

௡∗

௧ୀଵ

,݅= 0,1,2, ⋯ ,݇

Where ݊∗ is the number of cases in the trimmed series of ௧݁
(௜).

Step 6. The predictor importance can be computed as

(௜)ܫܲ =
ܯ (௜)ܧܲܣ

∑ ܯ ௞(௜)ܧܲܣ
௜ୀ଴

,݅= 0,1,2, ⋯ ,݇

8. Scenario analysis

For a given transfer function model, scenario analysis can be performed by substituting values of given

predictors in a given time span, and checking how the forecast values of the target will be affected.

Specifically, user needs to specify the following input for a scenario analysis:

 Predictor names in the model for scenario analysis.

 The beginning time, ௕ݐ , and end time, ௘ݐ for predictors to be modified.

 A vector of values to be used as substitute for each predictor specified for scenario analysis.

 The last time ௦ݐ at which the target will be forecasted, whereݐ௦ ≥ .௕ݐ

Based on the above information, forecast will be performed from =ݐ ௕ݐ to =ݐ .௦ݐ

Appendix A: Double seasonal ARIMA model
A double seasonal ARIMA(p,d,q)(P1, D1, Q1)(P2, D2,Q2) model can be described as:

Δ ௧ܼ = ܿ+
(ܤ)௤ߠ Θ୕భ

(Bୱభ)Θ୕మ
(Bୱమ)

߶௣(ܤ)Φ୔భ(Bୱభ)Φ୔మ(Bୱమ) ௧ܽ

where

 ଵݏ : the first seasonality or period of the model

 :ଶݏ the second seasonality or period of the model, and ଶݏ > ଵݏ

 ߶௣(ܤ): non-seasonal AR polynomial of order ,݌ ߶௣(ܤ) = 1 − ߮ଵܤ − ߮ଶܤ
ଶ − ⋯ − ߮௣ܤ

௣

 :(ܤ)௤ߠ non-seasonal MA polynomial of order ,ݍ (ܤ)௤ߠ = 1 − ܤଵߴ − ܤଶߴ
ଶ − ⋯ − ܤ௤ߴ

௤

 Φ୔భ(Bୱభ): the first seasonal AR polynomial of ௦భܤ with order ଵܲ, Φ୔భ
(Bୱభ) = 1 − ΦଵଵBୱభ −

ΦଵଶBଶୱభ − ⋯ − Φଵ୔భB୔భୱభ

 Θ୕భ
(Bୱభ): the first seasonal MA polynomial of ௦భܤ with order ܳଵ, Θ୕భ

(Bୱభ) = 1 − ΘଵଵBୱభ −

ΘଵଶBଶୱభ − ⋯ − Θଵ୕భB୕భୱభ

 Φ୔మ(Bୱమ): the second seasonal AR polynomial of ௦మܤ with order ଶܲ, Φ୔మ
(Bୱమ) = 1 − ΦଶଵBୱమ −

ΦଶଶBଶୱమ − ⋯ − Φଶ୔మ
B୔మୱమ

 Θ୕మ
(Bୱమ): the second seasonal MA polynomial of ௦మܤ with order ܳଶ, Θ୕మ

(Bୱమ) = 1 − ΘଶଵBୱమ −

ΘଶଶBଶୱమ − ⋯ − Θଶ୕మB୕మୱమ

 Δ: differencing operator, Δ = (1 − ௗ(1(ܤ − ௦భ)஽భ(1ܤ − ௦మ)஽మܤ

Since parameter estimation and forecast of the double seasonal ARIMA(p, d, q)(P1, D1, Q1)(P2, D2,Q2) are

similar to the similar to the ARIMA(p, d, q)(P1, D1, Q1), we just give some implementation here:

Implementation notes:

 Initial values: the initial values for non-seasonal AR and MA part are computed using the

algorithm in Section 6. For each seasonal AR and MA part, the autocorrelations at the

corresponding seasonal lags are computed, and then algorithm for non-seasonal AR and MA will

be used.

 Forecasting: we need to re-write the ARIMA(p, q)(P1, Q1)(P2, Q2) model as

ARMA(p+s1P1+s2P2,q+s1Q1+s2Q2) by computing the product of non-seasonal and seasonal

polynomials using the algorithm in Appendix B.

Appendix B: Ratio and product of two

polynomials

Ratio of two polynomials

Suppose ߶௣(ܤ) = 1 − ߮ଵܤ − ߮ଶܤ
ଶ − ⋯ − ߮௣ܤ

௣, and (ܤ)௤ߠ = 1 − ܤଵߴ − ܤଶߴ
ଶ − ⋯ − ܤ௤ߴ

௤ are two

polynomials of degree p and q respectively. Of course some of the coefficients in the above polynomials

can be zero.

We want to compute the coefficients ߰௝ in the power series representation

(ܤ)௤ߠ

߶௣(ܤ)
= 1 + ߰ଵB + ߰ଶBଶ + ⋯

These coefficients can be obtained as follows. Define ଴ߴ
′ = �௜ߴ,1

′ = − =݅,௜ߴ 1, ⋯ ,ݍ, ௝ߴ
′ = 0 for ݆> ݍ and

߮௝ = 0 for ݆> .݌ Now recursively compute ߰௝by the following recursions:

߰଴ = ଴ߴ
′ = 1, ݆= 0;

߰௝ − ෍ ߮௝߰௝ି ௞

଴ழ௞ஸ௝

= ௝ߴ
′ , 0 ≤ ݆< max(ݍ,݌+ 1);

߰௝ − ෍ ߮௝߰௝ି ௞

଴ழ௞ஸ௣

= 0, ݆≥ max(ݍ,݌+ 1)

These equations can be easily solved successively for߰଴,߰ଵ,߰ଶ, ⋯. Thus

߰଴ = ଴ߴ
′ = 1

߰ଵ = ଵߴ
′ + ߰଴߮ଵ

߰ଶ = ଶߴ
′ + ߰଴߮ଶ + ߰ଵ߮ଵ

߰ଷ = ଷߴ
′ + ߰଴߮ଷ + ߰ଵ߮ଶ + ߰ଶ߮ଵ

⋯

Product of two polynomials

For two polynomials ௣݂(ܤ) = ଴݂ + ଵ݂ܤ + ଶ݂ܤ
ଶ + ⋯ + ௣݂ܤ

௣ and ௤݃(ܤ) = ଴݃+ ଵ݃ܤ+ ଶ݃ܤ
ଶ + ⋯ + ௤݃ܤ

௤ ,

the coefficients of the product

௣݂(ܤ) ௤݃(ܤ) = ଴ߦ + ܤଵߦ + ܤଵߦ
ଶ + ⋯ + ܤ௣ା௤ߦ

௣ା௤

can be computed as

௝ߦ = ෍ ௞݂ ௝݃ି ௞, ݆= 0,1, ⋯ +݌, ݍ

௝

௞ୀ଴

In the summation, ௝݂ = 0, if ݆> ݌ and ௝݃ = 0, if ݆> .ݍ

Appendix C: Theoretical ACF of an ARMA process
Suppose an ARMA (p, q) process with the AR polynomial ߶௣(ܤ) = 1 − ߮ଵܤ − ߮ଶܤ

ଶ − ⋯ − ߮௣ܤ
௣ and

MA polynomialߠ௤(ܤ) = 1 − ܤଵߴ − ܤଶߴ
ଶ − ⋯ − ܤ௤ߴ

௤, and error variance .ଶߪ Let (∙)ߛ be the required

ACF which can be computed recursively by solving:

)ߛ)݇ − ߮ଵߛ(݇− 1) − ⋯ − ߮௣ߛ(݇− (݌ = ଶ෍ߪ ௝ߴ
′

௤

௝ୀ௞

߰௝ି ௞, 0 ≤ ݇< max +ݍ,݌) 1)

)ߛ)݇ − ߮ଵߛ(݇− 1) − ⋯ − ߮௣ߛ(݇− (݌ = 0,�������������������������݇ ≥ max +ݍ,݌) 1)

where ଴ߴ
′ = 1, ௜ߴ

′ = − =݅,௜ߴ 1, ⋯ ݍ, and ௜ߴ
′ = 0 if ݅> ,ݍ and ߰௝s are coefficients in

ఏ೜(஻)

థ೛(஻)
= 1 + ߰ଵB +

߰ଶBଶ + ⋯.

Based on Tunnicliffe(1979),Kohn and Ansley(1985) give a efficient method to compute ,(0)ߛ ⋯ .(݌)ߛ, The

method can be described as below:

Step 1. Compute the auto-covariance of ௧ݑ = (ܤ)௤ߠ ௧ܽ :

)௎ܥ)݆ = ൞෍ ௜ߴ
′
௜ା௝ߴ
′

௤ି௝

௜ୀ଴

, 0 ≤ ݆≤ ݍ

0,�������������������݆ > ݍ

�;

When =ݍ 0(I,e. pure AR case),)௎ܥ)݆ = 0 for ݆> 0 and ௎(0)ܥ = 0.

If the model is a pure MA(q), then the subsequent steps will not be needed and)ߛ)݇ =)௎ܥ)݇.

If the model is pure AR(p) or ARMA(p,q), the following arrays are needed to compute auto-covariance:

 ࢼ is a lower triangular array of size ݍ by +ݍ 1, i.e. the element, ௜,௝ߚ is needed only for ݆≤ ,݅ here

݅= 1,2, ⋯ ݍ, and ݅= 0,1,2, ⋯ ݍ,

 ࢊ is an array of size ݍ by 1, the element ௞݀ = =݇,௞,௞ߚ 1,2, ⋯ ݍ,

 ࣘ is a lower triangular array of size ݌ by ,݌ i,e, the element ߶௜,௝ are needed only for ݆≤ ,݅ here

,݆݅= 1,2, ⋯ .݌,

 ࢻ is an array of size ݌ by 1, the element ௞ߙ = ߶௞,௞,݇= 1,2, ⋯ ݌,

 ࢜ is a +݌ 1 by +݌ 1 array with the indexes going from 0 to .݌ It is also almost lower triangular

and only the last row of the ݒ is needed in final auto-covariance computations.

The computations of these arrays, except for ,ݒ are backwards, i.e. the last rows/values are initialized first

and then the earlier values are computed:

Step 2. Initialize the last rows of ߶ and ߚ as:

߶௣,௝ = ߮௝, ݆= 1,2, ⋯ ݌,

௤,௝ߚ =)௎ܥ)݆, ݆= 0,1,2, ⋯ ݍ,

Step 3. Recursively compute earlier values of ߶ and :ߙ

For ݇= −݌ 1, ⋯ ,1,

௞ାଵߙ = ߶௞ାଵ,௞ାଵ

߶௞,௝ =
߶௞ାଵ,௝+ ௞ାଵߙ ∗ ߶௞ାଵ,௞ାଵି௝

1 − ௞ାଵߙ
ଶ ,݆= 1,2, ⋯ ,݇

At the end,

ଵߙ = ߶ଵ,ଵ

Step 4. Recursively compute earlier values of ߚ and ݀

For ݇= −ݍ 1, ⋯ ,1

௞݀ାଵ = ௞ାଵ,௞ାଵߚ

௞,௝ߚ = +௞ାଵ,௝ߚ ௞݀ାଵ ∗ ߶௞,௞ାଵି௝, ݆= 1,2, ⋯ ,݇

௞,଴ߚ = ௎(0)ܥ

Finally,

ଵ݀ = ଵ,ଵߚ

Step 5. Compute ݒ using ߙ and ,݀

଴,଴ݒ =
1

2
௎(0)ܥ

For ݇= 0,1, ⋯ −݌, 1

௞,௞ାଵݒ = ௞݀ାଵ

௞ାଵ,௝ݒ =
௞,௝ݒ + ௞,௞ାଵି௝ݒ௞ାଵߙ

1 − ௞ାଵߙ
ଶ ,݆= 0,1, ⋯ ,݇+ 1

Step 6. Compute the auto-covariance

Initialize

(0)ߛ = ௣,଴ݒ

)ߛ)݇ = 0,݇> 0

Then the auto-covariance will be computed recursively:

)ߛ)݇ = ෍ ߮௜

௞

௜ୀଵ

−݇)ߛ)݅ + ,௣,௞ݒ ݇= 1,2, ⋯ ݌,

)ߛ)݇ = ෍ ߮௜

௣

௜ୀଵ

−݇)ߛ)݅, ݇> �݌

Finally,

(0)ߛ = 2 ∗ ௣,଴ݒ

Implementation notes:

1. In step 3, since computation of any row/value of ࣘ depends only on one previous row/value, one

only needs temporary storage two vector of size ݌ for ࣘ .

2. Step 3 and step 4 can be loop together if we want the efficient storage because the kth row of ࢼ

depends on the kth ࣘ .

3. If >ݍ ,݌ then ௞݀ = 0 for ݇> .ݍ

4. If >݌ ,ݍ we set the ߮௞ = 0 for >݌ ݇≤ ,ݍ which in practice means applying the algorithm with p

replaced by .ݍ Therefore, the auto-covariance will be computed based on the qth row of .ݒ

Appendix D: Stationary condition check
During the parameters estimation, we need to check the roots of a polynomial are outside unit circle which

is also called stationary condition check. Here we just discuss how to check stationary condition for AR

polynomial. For polynomial of MA and denominator polynomial of each predictor, the similar algorithm

can be used.

Suppose ߶௣(ܤ) = 1 − ߮ଵܤ − ߮ଶܤ
ଶ − ⋯ − ߮௣ܤ

௣ is an AR polynomial of degree .݌ Let ߮ଵ,ଵ,߮ଶ,ଶ, ⋯ ,߮௣,௣

be the first ݌ partial auto-correlations of corresponding AR process. Then the stationary condition is

equivalent to the fact all these partial auto-correlation must be less than one in absolute value. These partial

correlations can be computed recursively using Durbin-Levinson algorithm applied in reverse. See page

242 of Brockwell and Davis(1991) for details.

Let ߮௣,௜= ߮௣,݅= 1, ⋯ .݌, Then the other partial auto-correlation ߮ଵ,ଵ,߮ଶ,ଶ, ⋯ ,߮௣ିଵ,௣ିଵcan be computed

recursively by

߮௠ ିଵ,௜=
൫߮ ௠ ,௜+ ߮௠ ,௠ ∗ ߮௠ ,௠ ି௜൯

൫1 − ߮௠ ,௠
ଶ ൯

, ݉ = −݌,݌ 1, ⋯ ,2��ܽ݊݀�݅= 1, ⋯ ,݉ − 1

References

[1] Bartlett, M.S. (1946). On the theoretical specification of sampling properties of autocorrelated time

series. Journal of Royal Statistical Society, Series B, 8, 27-27.

[2] Box, G.E.P. and Jenkins, G.M.(1976), Time series analysis, Forecasting and control, Holden-Day,

Oakland, California.

[3] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. (1994). Time series analysis: Forecasting and

control, 3rd ed. Englewood Cliffs, N.J.: Prentice Hall.

[4] Brockwell, P. J., and R. A. Davis. (1991). Time Series: Theory and Methods, 2 ed. :Springer-

Verlag.

[5] Kohn, R. and Ansley, C.F. (1985). Computing the likelihood and its derivatives for a Gaussian

ARMA model, Journal of Statistical Computation and Simulation. 22: 3-4, 229-263.

[6] Tunnicliffe-Wilson, G.(1979). Some efficient computational procedures for high order ARMA

models, Journal of Statistical Computation and Simulation.8,301-309.

1

Time Series Algorithm: Combined Forecasts

1. Introduction
In new traditional time series, we will output top N models for a time series ௧ݕ by expert modeler. Some models will
be exponential smoothing models and others will be ARIMA models. Although we can get a best model according
to specified criteria from the top N models, this best model may not be good enough to capture all patterns of the
time series. Therefore, it may not produce good forecast values. To tackle this problem, we propose to combine
forecasts from all these top N models together to generate final forecasts.

2. Combined forecasts process
Suppose that we have forecast models F୧, i = 1,⋯ ,ܰ , the combined forecast process consists 3 steps: 1)
encompassing tests, 2) weights assignment, 3) forecasts combination and prediction interval.

Step 1. Encompassing tests

In this step, we will eliminate some models that are encompassed by other models:

1-1) The models, F୧, i = 1,⋯ ,ܰ , are ranked by MAPE from the best to worst. Without loss of generality, we
assume that after ranking, the models are Fଵ, Fଶ, ⋯ , Fே .

1-2) Let Sଵ = ∅, Sଶ = { Fଵ, Fଶ, ⋯ , Fே }.
1-3) Select the best mode from Sଶ, denote it as Fୠ ୱୣ୲and let Sଵ = Sଵ ∪ { Fୠ ୱୣ୲}, Sଶ = Sଶ− { Fୠ ୱୣ୲}.
1-4) Encompassing test will be used to test whether some models in Sଶ are encompassed by the best

model Fୠ ୱୣ୲. If yes, eliminate these models fromSଶ. Encompassing test will be described in section 2.
1-5) If Sଶ = ∅, go to step 2. Otherwise, go to 1-3).

Step 2. Weights assignment

This step assigns weights to the selected models in Sଵ from step 1. Suppose that there are M in Sଵ and they are
F୧, i = 1,⋯ ,M. There are two weights assignment method:

 Equal weights (simple average): an equal weight is assigned to each model, =݅,௜ܨ 1,⋯ ܯ, , =௜ݓ ܯ/1 .
 Root mean squared error(RMSE) weights: a weight based on RMSE of each model is assigned to each

model, F୧, i = 1,⋯ ,M, w୧=
ଵ/ୖ୑ ୗ୉౟

∑ ଵ/ୖ୑ ୗ୉ౠ
౉
ౠసభ

.

Step 3. Forecasts combination and prediction interval

This step performs the weighted combination of forecasts based on model F୧, i = 1,⋯ ,M, and corresponding weight
w୧. For each t, combined forecast produces a value yොୡ,୲according to the expression

yොୡ,୲= ෍ w୧yො୧,୲

୑

୧ୀଵ

where yො୧,୲denotes the prediction from model F୧at time t.

2

Suppose the prediction intervals for yො୧,୲, i = 1,2,⋯ ,M are (L୧, U୧), respectively, then the prediction interval for yොୡ,୲ is
൫∑ w୧L୧

୑
୧ୀଵ ,∑ w୧U୧

୑
୧ୀଵ ൯.

3. Encompassing test

HLM test, which is discussed by Harvey, Leybourne and Newbold (1998), can be used to test if one forecast model
is encompassed by another forecast model.

Suppose that we have two forecast models, F୧and F୨, and the one-step-ahead forecast at time t from model F୧and F୨

are yො୧,୲and yො୨,୲, respectively. Then a loss differential sequence d୲ is defined as

d୲= ൫e௜,୲− e௝,୲൯e௜,୲, t = 1,2,⋯ , n

where e୧,୲= y୲− yො୧,୲and e୨,୲= y୲− yො୨,୲, respectively.

Based on d୲, the test statistic is computed as

T = ൬
n − 1

n
൰
ଵ/ଶ dത

ඥvar(dത)

where dത=
ଵ

୬
∑ d୲
୬
୲ୀଵ and var൫dത൯=

ଵ

୬మ
∑ ൫d୲− dത൯

ଶ୬
୲ୀଵ .

The p-value is computed as p = 2 ∗ P(t୬ିଵ > |ܶ|), where t୬ିଵ is random variable following t distribution with
degree of freedom n − 1. If the p value is less than significant level α(default is 0.05), then F୧is not encompassing
the F୨. Otherwise, F୧is encompassing F୨, and F୨should be removed from forecast model set.

Reference:

Harvey, D.I., Leybourne,S.J. and Newbold,P.(1998) Tests for forecast encompassing, Journal of business and

economic statistics, 16, 254-258

1

Time Series Algorithm: Exponential Smoothing

1 Introduction
Exponential smoothing originated in Robert G. Brown’s work [1] as an analyst for the US Navy

during World War II. After Brown’s opening, several models were developed for trends and

seasonality besides level. The taxonomy of Hyndman [2] is helpful in describing the family

members of exponential smoothing. Besides the level component, the trend and seasonality

component are take into account by denotes as (no trend N, additive trend A, damped additive

trend DA, multiplicative trend M, damped multiplicative trend DM) * (no seasonality N,

additive seasonality A, multiplicative seasonality M), so 15 possible model type combinations

are defined.

6 of 15 models are supported in SPSS TSMODEL procedure, and they can be classified by

Hyndman’s taxonomy which is shown in Table I. Brown’s exponential smoothing model is also

supported in SPSS TSMODEL procedure. It belongs to Brown’s polynomial exponential

smoothing model, and is listed in Table 1.

SPSS EXSMOOTH procedure supports 12 of 15 models, including all models with no trend N,

additive trend A, damped additive trend DA, and multiplicative trend M.

So, the Time Series Engine will support the union of models from TSMODEL and EXSMOOTH

procedure, which is means that all models with no trend N, additive trend A, damped additive

trend DA, multiplicative trend M, and plus Brown’s exponential smoothing are supported.

Table 1

Taxonomy of exponential smoothing model and supported models in SPSS

Trend Component Seasonal Component

no seasonality N additive seasonality A multiplicative
seasonality M

no trend N N,N
simple exponential
smoothing

N,A
Simple seasonal
exponential
smoothing

N,M

additive trend A A,N
Holt’s linear method

A, A
Additive Holt-
Winters’ method

A,M
Multiplicative Holt-
Winters’ method

damped additive
trend DA

DA,N
Damped trend
method

DA,A DA,M

multiplicative trend M M,N M,A M,M

2

damped
multiplicative trend
DM

polynomial
exponential

Brown’s exponential
smoothing

2 Exponential smoothing models

2.1 Notation

The following notation is used throughout this document unless otherwise stated:

௧ܻ =ݐ) 1,2,⋯ ,݊) Univariate time series under investigation, where ଵܻ ܽ݊ ݀ ௡ܻ is not
missing

݊ Total number of observations

ݏ The seasonal length for the model included seasonal component

߮௧ The seasonal phase at time forݐ the model included seasonal

component

ߙ Level smoothing weight

ߛ Trend smoothing weight

߶ Damped trend smoothing weight

ߜ Season smoothing weight

(ݐ)ܮ Level smoothing states at time ݐ

(ݐ)ܶ Trend smoothing states at time ݐ

(ݐܵ) Seasonal smoothing states at time ݐ

෠ܻ
௧()݇ Model-estimated -݇step ahead forecast at time forݐ series ܻ

෠ܻ
௧ Model-estimated one-step ahead forecast at time forݐ series ܻ

௧ߪ
ଶ()݇ Variance of the -݇step ahead forecast at time forݐ series ܻ

Implementation note:

1. For an input series ܻ for exponential smoothing, the effective span should be checked

first and denote:

 The first non-missing value as ଵܻ with =ݐ 1

 The last non-missing value as ௡ܻ with =ݐ ݊

3

No Trend, No Seasonality Model (Simple Exponential Smoothing)

(ݐ)ܮ = ൜
ߙ ௧ܻ+ (1 − −ݐ)ܮ(ߙ 1), ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܮ 1), ݈݁ ݏ݁
�

෠ܻ
௧()݇ = (ݐ)ܮ

௧ߪ
ଶ()݇ = ଶ(1ߪ + (݇− (ଶߙ(1

No Trend, Additive Seasonality Model (Simple seasonal Exponential Smoothing)

(ݐ)ܮ = ቊ
൫ܻߙ ௧− −ݐܵ) +൯(ݏ (1 − −ݐ)ܮ(ߙ 1), ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܮ 1), ݈݁ ݏ݁
�

(ݐܵ) = ቊ
൫ܻߜ ௧− +൯(ݐ)ܮ (1 − (ߜ −ݐܵ) ,(ݏ ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐܵ) (ݏ ݈݁ ݏ݁
�

෠ܻ
௧()݇ = (ݐ)ܮ + +ݐܵ) ݇− (ݏ

௧ߪ
ଶ()݇ = ଶቌ1ߪ + ෍ ߰௝

ଶ

௞ିଵ

௝ୀଵ

ቍ

where ߰௝ = ൜
ߙ ݉�݆�ݎ݂݋ ݀݋ ≠ݏ� 0

+ߙ 1)ߜ − (ߙ ݉�݆�ݎ݂݋ ݀݋ =ݏ� 0
�

No Trend, Multiplicative Seasonality Model

(ݐ)ܮ = ൜
)ߙ ௧ܻ −ݐܵ) ⁄(ݏ)+ (1 − −ݐ)ܮ(ߙ 1), ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܮ 1), ݈݁ ݏ݁
�

(ݐܵ) = ൜
)ߜ ௧ܻ ⁄(ݐ)ܮ) + (1 − (ߜ −ݐܵ) ,(ݏ ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐܵ) (ݏ ݈݁ ݏ݁
�

෠ܻ
௧()݇ = (ݐ)ܮ ∙ +ݐܵ) ݇− (ݏ

௧ߪ
ଶ()݇ = ଶቌ1ߪ + ෍ ෍ ൫߰ ௝ା௜௦ ௧ܵା௞ ௧ܵା௞ି௝⁄ ൯

ଶ
௦

௝ୀଵ

ஶ

௜ୀ଴

ቍ

where ߰௝ = ൜
ߙ ݉�݆�ݎ݂݋ ݀݋ ≠ݏ� 0

+ߙ 1)ߜ − (ߙ ݉�݆�ݎ݂݋ ݀݋ =ݏ� 0
�, and ߰௝ = 0 for ݆= ݆�ݎ݋�0 > ݇

Additive Trend, No Seasonality Model (Holt’s Exponential Smoothing)

(ݐ)ܮ = ቊ
ߙ ௧ܻ+ (1 − −ݐ)ܮ൫(ߙ 1) + −ݐ)ܶ 1)൯, ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܮ 1) + −ݐ)ܶ 1), ݈݁ ݏ݁
�

(ݐ)ܶ = ቊ
(ݐ)ܮ൫ߛ − −ݐ)ܮ 1)൯+ (1 − −ݐ)ܶ(ߛ 1), ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܶ 1), ݈݁ ݏ݁
�

෠ܻ
௧()݇ = (ݐ)ܮ + ݇ܶ (ݐ)

௧ߪ
ଶ()݇ = ଶቌ1ߪ + ෍ +ߙ) ଶ(ߛߙ݆

௞ିଵ

௝ୀଵ

ቍ

4

Additive Trend, Additive Seasonality Model (Winters’ Additive Exponential Smoothing)

(ݐ)ܮ = ቊ
൫ܻߙ ௧− −ݐܵ) +൯(ݏ (1 − −ݐ)ܮ൫(ߙ 1) + −ݐ)ܶ 1)൯, ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܮ 1) + −ݐ)ܶ 1), ݈݁ ݏ݁
�

(ݐ)ܶ = ቊ
(ݐ)ܮ൫ߛ − −ݐ)ܮ 1)൯+ (1 − −ݐ)ܶ(ߛ 1), ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܶ 1), ݈݁ ݏ݁
�

(ݐܵ) = ቊ
൫ܻߜ ௧− +൯(ݐ)ܮ (1 − (ߜ −ݐܵ) ,(ݏ ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐܵ) (ݏ ݈݁ ݏ݁
�

෠ܻ
௧()݇ = (ݐ)ܮ + ݇ܶ (ݐ) + +ݐܵ) ݇− (ݏ

௧ߪ
ଶ()݇ = ଶቌ1ߪ + ෍ ߰௝

ଶ

௞ିଵ

௝ୀଵ

ቍ

where ߰௝ = ൜
+ߙ ߛߙ݆ ݉�݆�ݎ݂݋ ݀݋ ≠ݏ� 0

+ߙ +ߛߙ݆ 1)ߜ − (ߙ ݉�݆�ݎ݂݋ ݀݋ =ݏ� 0
�

Additive Trend, Multiplicative Seasonality Model (Winters’ Multiplicative Exponential

Smoothing)

(ݐ)ܮ = ቊ
)ߙ ௧ܻ −ݐܵ) ⁄(ݏ) + (1 − −ݐ)ܮ൫(ߙ 1) + −ݐ)ܶ 1)൯, ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܮ 1) + −ݐ)ܶ 1), ݈݁ ݏ݁
�

(ݐ)ܶ = ቊ
(ݐ)ܮ൫ߛ − −ݐ)ܮ 1)൯+ (1 − −ݐ)ܶ(ߛ 1), ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܶ 1), ݈݁ ݏ݁
�

(ݐܵ) = ൜
)ߜ ௧ܻ ⁄(ݐ)ܮ) + (1 − (ߜ −ݐܵ) ,(ݏ ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐܵ) (ݏ ݈݁ ݏ݁
�

෠ܻ
௧()݇ = ൫(ݐ)ܮ + ݇ܶ ൯ܵ(ݐ) +ݐ) ݇− (ݏ

௧ߪ
ଶ()݇ = ଶቌ1ߪ + ෍ ෍ ൫߰ ௝ା௜௦ ௧ܵା௞ ௧ܵା௞ି௝⁄ ൯

ଶ
௦

௝ୀଵ

ஶ

௜ୀ଴

ቍ

where ߰௝ = ൜
+ߙ ߛߙ݆ ݉�݆�ݎ݂݋ ݀݋ ≠ݏ� 0

+ߙ +ߛߙ݆ 1)ߜ − (ߙ ݉�݆�ݎ݂݋ ݀݋ =ݏ� 0
�, and ߰௝ = 0 for ݆= ݆�ݎ݋�0 > ݇

Damped Additive Trend, No Seasonality Model (Damped-Trend Exponential Smoothing)

(ݐ)ܮ = ቊ
ߙ ௧ܻ+ (1 − −ݐ)ܮ൫(ߙ 1) + −ݐ)ܶ߶ 1)൯, ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܮ 1) + −ݐ)ܶ߶ 1), ݈݁ ݏ݁
�

(ݐ)ܶ = ቊ
(ݐ)ܮ൫ߛ − −ݐ)ܮ 1)൯+ (1 − −ݐ)ܶ߶(ߛ 1), ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܶ߶ 1), ݈݁ ݏ݁
�

෠ܻ
௧()݇ = (ݐ)ܮ + ෍ ߶௜ܶ(ݐ)

௞

௜ୀଵ

௧ߪ
ଶ()݇ = ଶቌ1ߪ + ෍ ൫ߙ+ ߶ߛߙ ൫߶௝− 1൯ (߶ − 1)⁄ ൯

ଶ
௞ିଵ

௝ୀଵ

ቍ

5

Damped Additive Trend, Additive Seasonality Model

(ݐ)ܮ = ቊ
൫ܻߙ ௧− −ݐܵ) +൯(ݏ (1 − −ݐ)ܮ൫(ߙ 1) + −ݐ)ܶ߶ 1)൯, ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܮ 1) + −ݐ)ܶ߶ 1), ݈݁ ݏ݁
�

(ݐ)ܶ = ቊ
(ݐ)ܮ൫ߛ − −ݐ)ܮ 1)൯+ (1 − −ݐ)ܶ߶(ߛ 1), ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܶ߶ 1), ݈݁ ݏ݁
�

(ݐܵ) = ቊ
൫ܻߜ ௧− +൯(ݐ)ܮ (1 − (ߜ −ݐܵ) ,(ݏ ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐܵ) (ݏ ݈݁ ݏ݁
�

෠ܻ
௧()݇ = (ݐ)ܮ + ෍ ߶௜ܶ(ݐ)

௞

௜ୀଵ

+ +ݐܵ) ݇− (ݏ

௧ߪ
ଶ()݇ = ଶቌ1ߪ + ෍ ߰௝

ଶ

௞ିଵ

௝ୀଵ

ቍ

where ߰௝ = ቊ
+ߙ ߶ߛߙ ൫߶௝− 1൯ (߶ − 1)⁄ ݉�݆�ݎ݂݋ ݀݋ ≠ݏ� 0

+ߙ 1)ߜ − (ߙ + ߶ߛߙ ൫߶௝− 1൯ (߶ − 1)⁄ ݉�݆�ݎ݂݋ ݀݋ =ݏ� 0
�

Damped Additive Trend, Multiplicative Seasonality Model

(ݐ)ܮ = ቊ
)ߙ ௧ܻ −ݐܵ) ⁄(ݏ) + (1 − −ݐ)ܮ൫(ߙ 1) + −ݐ)ܶ߶ 1)൯, ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܮ 1) + −ݐ)ܶ߶ 1), ݈݁ ݏ݁
�

(ݐ)ܶ = ቊ
(ݐ)ܮ൫ߛ − −ݐ)ܮ 1)൯+ (1 − −ݐ)ܶ߶(ߛ 1), ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܶ߶ 1), ݈݁ ݏ݁
�

(ݐܵ) = ൜
)ߜ ௧ܻ ⁄(ݐ)ܮ) + (1 − (ߜ −ݐܵ) ,(ݏ ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐܵ) (ݏ ݈݁ ݏ݁
�

෠ܻ
௧()݇ = ቌ(ݐ)ܮ + ෍ ߶௜ܶ(ݐ)

௞

௜ୀଵ

ቍ +ݐܵ) ݇− (ݏ

௧ߪ
ଶ()݇ = ଶቌ1ߪ + ෍ ෍ ൫߰ ௝ା௜௦ ∗ ௧ܵା௞ ௧ܵା௞ି௝⁄ ൯

ଶ
௦

௝ୀଵ

ஶ

௜ୀଵ

ቍ

where ߰௝ = ቊ
+ߙ ߶ߛߙ ൫߶௝− 1൯ (߶ − 1)⁄ ݉�݆�ݎ݂݋ ݀݋ ≠ݏ� 0

+ߙ 1)ߜ − (ߙ + ߶ߛߙ ൫߶௝− 1൯ (߶ − 1)⁄ ݉�݆�ݎ݂݋ ݀݋ =ݏ� 0
�, and ߰௝ = 0 for

݆= ݆�ݎ݋�0 > ݇

Multiplicative Trend, No Seasonality Model

(ݐ)ܮ = ቊ
ߙ ௧ܻ+ (1 − −ݐ)ܮ൫(ߙ 1) ∙ −ݐ)ܶ 1)൯, ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܮ 1) ∙ −ݐ)ܶ 1), ݈݁ ݏ݁
�

(ݐ)ܶ = ൜
(ݐ)ܮ)ߛ −ݐ)ܮ 1)⁄) + (1 − −ݐ)ܶ(ߛ 1), ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܶ 1), ݈݁ ݏ݁
�

෠ܻ
௧()݇ = (ݐ)ܮ ∙ ௞(ݐ)ܶ

6

Multiplicative Trend, Additive Seasonality Model

(ݐ)ܮ = ቊ
൫ܻߙ ௧− −ݐܵ) +൯(ݏ (1 − −ݐ)ܮ൫(ߙ 1) ∙ −ݐ)ܶ 1)൯, ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܮ 1) ∙ −ݐ)ܶ 1), ݈݁ ݏ݁
�

(ݐ)ܶ = ൜
(ݐ)ܮ)ߛ −ݐ)ܮ 1)⁄) + (1 − −ݐ)ܶ(ߛ 1), ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܶ 1), ݈݁ ݏ݁
�

(ݐܵ) = ቊ
൫ܻߜ ௧− +൯(ݐ)ܮ (1 − (ߜ −ݐܵ) ,(ݏ ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐܵ) (ݏ ݈݁ ݏ݁
�

෠ܻ
௧()݇ = (ݐ)ܮ ∙ ௞(ݐ)ܶ + +ݐܵ) ݇− (ݏ

Multiplicative Trend, Multiplicative Seasonality

(ݐ)ܮ = ቊ
)ߙ ௧ܻ −ݐܵ) ⁄(ݏ) + (1 − −ݐ)ܮ൫(ߙ 1) ∙ −ݐ)ܶ 1)൯, ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܮ 1) ∙ −ݐ)ܶ 1), ݈݁ ݏ݁
�

(ݐ)ܶ = ൜
(ݐ)ܮ)ߛ −ݐ)ܮ 1)⁄) + (1 − −ݐ)ܶ(ߛ 1), ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܶ 1), ݈݁ ݏ݁
�

(ݐܵ) = ൜
)ߜ ௧ܻ ⁄(ݐ)ܮ) + (1 − (ߜ −ݐܵ) ,(ݏ ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐܵ) (ݏ ݈݁ ݏ݁
�

෠ܻ
௧()݇ = ൫(ݐ)ܮ ∙ ௞൯ܵ(ݐ)ܶ +ݐ) ݇− (ݏ

Brown’s Exponential Smoothing

(ݐ)ܮ = ൜
ߙ ௧ܻ+ (1 − −ݐ)ܮ(ߙ 1), ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܮ 1) + −ݐ)ܶ 1), ݈݁ ݏ݁
�

(ݐ)ܶ = ቊ
(ݐ)ܮ൫ߙ − −ݐ)ܮ 1)൯+ (1 − −ݐ)ܶ(ߙ 1), ݂݅ �ܻ௧�݅݉�ݐ݋݊�ݏ ݃݊ݏ݅ݏ݅

−ݐ)ܶ 1), ݈݁ ݏ݁
�

෠ܻ
௧()݇ = (ݐ)ܮ + ൫(݇− 1) + ଵ൯ܶିߙ (ݐ)

௧ߪ
ଶ()݇ = ଶቌ1ߪ + ෍ +ߙ2) (݆− ଶ)ଶߙ(1

௞ିଵ

௝ୀଵ

ቍ

3 Workflow of exponential smoothing models

3.1 Series validation

Series validation is used to check whether the series are admissible for the model type.

Including check the effective span corresponding to the number of parameters ߜ,߶,ߛ,ߙ)

included in model) and ensure is at least one non-missing value per season when seasonality

component is involved. The steps of validation are as follow:

1. Set ܽ݌ݏ ݊= .݊

2. Set number of non-missing values in ܽ݌ݏ ݊ as ௩݊௔௟௜ௗ.

3. Number of parameters in specified model: .݇

4. If ௩݊௔௟௜ௗ ≤ ݇ , issue error for “too few values in�ܻ ”.

7

5. If seasonality component is involved, compute number of valid value for each season:

=݅,௜ݐ݊ݑ݋ܥܵ 1, … .ݏ,

If ݉ ݅݊ ((௜ݐ݊ݑ݋ܥܵ = 0, issue error for “not enough values for seasonality in ܻ”.

3.2 Series transformation

Transform ܻ according to transformation options (none, nature log, square root transformation):

௧ܻ = ቐ

௧ܻ, ݂݅ ݎܽݐ� ݊݋ݐ݅݌݋�ݏ݊ = ܧܱܰܰ

݈݃݋ (௧ܻ), ݂݅ ݎܽݐ� ݊݋ݐ݅݌݋�ݏ݊ = ܮܱ ܻ�݀݊ܽ�ܩ > 0

ඥ ௧ܻ, ݂݅ ݎܽݐ� ݊݋ݐ݅݌݋�ݏ݊ = ܵܳ ܴܶ�ܽ݊݀�ܻ ≥ 0

�

3.3 Construct objective function

Make an objective function for this model.

1. Let ࢼ = ,ଶߚ,ଵߚ) ⋯ (௞ߚ, be all the parameters in the model, and define the sum of squares of
the one-step ahead prediction error, SSE, as objective function:

(ࢼ)ܱ = ෍ ቀܻ ௧− ෠ܻ
௧ି ଵ
(ࢼ)
ቁ
ଶ

where ෠ܻ
௧ି ଵ
(ࢼ)

is the one-step ahead prediction value at time −ݐ 1 based on parameters .ࢼ

2. Degree of freedom: ݂݀= ௩݊௔௟௜ௗ − ݇

3.4 Parameter initialization

The initial values of smoothing parameters are chosen by a grid search to minimize SSE. The

steps of parameter initialization are as follow:

1. Grid search to minimize SSE within search range with specified step:
2. Search range and step for parameter(s):

 For model with a single parameter ߙ (Simple or Brown model), search range is [0, 1]
with number of steps = 100.

 For model includes 2 parameters, the number of search steps = 10 for each parameter.

 For model has 3 parameters, the number of search steps = 10 for each parameter.
3. For a specified parameter , check whether the model with ࢼ are admissible with Zero-One

stable constraint:

 For non-seasonal models, all parameters should be in the range of (0, 1),

 For seasonal models, all parameter should be in the range of (0, 1), and admissible
for stationary condition.

 Admissible for stationary condition:

Construct an +ݏ) 1) order polynomial with following coefficients:

݁ܿ݋ ݂݂ ௜=

⎩
⎪
⎨

⎪
⎧

1,���݂݅ �݅= 0

−(1 − −ߙ ߙ ∙ ݂݅������������������������,(ߛ �݅= 1
ߙ ∙ ݂݅���,ߛ �2 ≤ ݅≤ −ݏ 1

−൫1 − ߙ ∙ −ߛ ߜ ∙ (1 − ݂݅���������,൯(ߙ �݅= ��������������ݏ

−(1 − (ߙ ∙ −ߜ) 1),�����������������������݁ ݏ݈݁ ���������������������

�

8

If all the roots of the polynomial are outside the unit circle, the model is admissible
for stationary condition.

4. If a parameter ௜notߚ following the constrain, and if it is close to its boundary,
(ݓ݈݋ ݊ݑ݋ܤݎ݁ ݁݌݌ݑ݀, (݀݊ݑ݋ܤݎ with default range (0, 1), then shift the parameter value
according to following rules:

 if −௜ߚ| ݓ݈݋ ݊ݑ݋ܤݎ݁ |݀ < ܥ ∗ ,߳ =௜ߚ +௜ߚ ℎ݂݅ݏ ,ݐ

 if ݁݌݌ݑ| −݀݊ݑ݋ܤݎ |௜ߚ < ܥ ∗ =௜ߚ�߳, −௜ߚ ℎ݂݅ݏ .ݐ

where ℎ݂݅ݏ =ݐ 0.001, ܥ = 4 and ߳= 10ିଵ଺ at default.

5. Using back-casting to compute initial smoothing states based on given parameters .ࢼ Details
of back-casting can be found in Section 3.4.1.

6. Based on the given parameters ࢼ and computed initial smoothing states, compute sum of
square of one-step ahead prediction error, SSE:

(ࢼ)ܱ = ෍ ቀܻ ௧− ෠ܻ
௧ି ଵ
(ࢼ)
ቁ
ଶ

7. Repeat step 3 to 6 to check all the steps for all the parameters. The parameters ࢼ with
minimized SSE are selected as initial value for estimation.

Back-casting for initial smoothing states

Smoothing states ,(ݐ)ܮ ,(ݐ)ܶ and (ݐܵ) defined in Section 2 are critical in exponential smoothing
models for both model estimation and forecasting. Level, trend, and seasonality states, as well
as k-step ahead forecasting, are all based on the initial smoothing states before the series started.
Given specified parameters, initial smoothing states can be computed and used for forecasting
and model evaluation.

Initial smoothing states are made by back-casting from =ݐ ݊ to = 0.

1. Compute level and trend states of =ݐ ݊+ 1, seasonality states of =ݐ ݊+ 1, … ,݊+ .ݏ
1.1. Level state for all models:

+݊)ܮ 1) = ௡ܻ

1.2. For trend in the non-seasonal models including (A,N), (DA,N), and (M,N):
ܶ(݊+ 1) = ݁݌݋ݏ݈−

It is the negative slope of the regression line (with intercept) fitted for ௧ܻ,ݐ= 1, … ,݊
with time asݐ a regressor.

1.3. For seasonal models with no trend, including (N,A) and (N,M), seasonal phase
߮௧ = ݉ ݀݋ (ݏ,ݐ) is defined for ௧ܻ. Elements of initial seasonal states for back-casting,
ࢊ࢔ࢋࡿ = ((ܵ݊+ 1), … , (ܵ݊+ ,(ݏ), are seasonal averages minus the sample mean:

(ܵ݊+)݅ =
݉ݑݏ ௩௔௟௜ௗ()݅

௩݊௔௟௜ௗ()݅
− ݉ ݁ܽ (ܻ݊), ݅= 1, … .ݏ,

Where:

- ݉ݑݏ ௩௔௟௜ௗ()݅ = ∑ ௧ܻ ∙ (ݐ)௜ܫ
௡
௧ୀଵ is the sum of valid values of ܻwith seasonal phase

݉ ݀݋ (߮௡ + ,(ݏ݅, where ߮௡ is the seasonal phase of ௡ܻ, and

(ݐ)௜ܫ = ൜
1, ݂݅ �݉ ݀݋ (ݏ,ݐ) = ݉ ݀݋ (߮௡ + (ݏ݅,

0, ℎݐ݋ ݓݎ݁ ݏ݅݁
�is the season dummies

9

- ௩݊௔௟௜ௗ()݅ = ∑ (ݐ)௜ܫ
௡
௧ୀଵ is the count of valid values of ܻwith seasonal phase

݉ ݀݋ (߮௡ + (ݏ݅,
- ݉ ݁ܽ (ܻ݊) is the mean of ܻ excluded missing values
- ܾ= ݉ ݀݋ (,(ݏܽ, means ܽ− ܾ is an integer multiple of .ݏ

1.4. For additive seasonal models, including (A,A), (DA,A), and (M,A), fit (ݐ)ܻ = ଵܽݐ+
∑ (ݐ)௜ܫ௜ߠ
௦
௜ୀଵ to series ܻ (without intercept) where t as a regressor and (ݐ)௜ܫ are seasonal

dummies:

(ݐ)௜ܫ = ൜
1, ݂݅ �݉ ݀݋ ((ݏ݅, = ݉ ݀݋ (ݏ,ݐ)

0, ℎݐ݋ ݓݎ݁ ݏ݅݁
�,݅= 1, … ݏ,

Then ܶ(݊+ 1) = − ଵܽ, and (ܵ݊+)݅ = ௠ߠ ௢ௗ(ఝ೙ା௜,௦) − ݉ ݁ܽ ,(ࣂ݊) ݅= 1, … ,ݏ, where

ࣂ = ⋯,ଵߠ) .(௦ߠ,

1.5. For multiplicative seasonal models, including (A,M), (DA,M), and (M,M), fit a separate
line ௧ܻ = +௜ߤ forݐ௜ߠ series�ܻ (with intercept) with same seasonal phase ݉ ݀݋ (=݅,(ݏ݅,
1, … ,ݏ, using time asݐ a regressor. Denote ࣆ = ,ଵߤ) … (௦ߤ, and ࣂ = ,ଵߠ) … .(௦ߠ,

Then ܶ(݊+ 1) = −݉ ݁ܽ ,(ࣂ݊) and (ܵ݊+)݅ =
ఓ೘ ೚೏(ക೙శ೔,ೞ)ାఏ೘ ೚೏(ക೙శ೔,ೞ)

௠ ௘௔௡(ࣆ)ା௠ ௘௔௡(ࣂ)
,݅= 1, … .ݏ,

2. Using back-casting to compute smoothing states, this can be achieved by reversing the time
order and smoothing backward. Back-casting starts from =ݐ ݊ and ends at =ݐ 0 with ଴ܻ is
missing.

In each step, ௧ܻ, +ݐ)ܮ 1), +ݐ)ܶ 1), and +ݐܵ) (ݏ are used to compute ,(ݐ)ܮ ,(ݐ)ܶ and (ݐܵ)

according to the formula in Section 2.

For example, following is level state in simple model:

(ݐ)ܮ = ߙ ௧ܻ+ (1 − −ݐ)ܮ(ߙ 1)

In back-casting:

(ݐ)ܮ = ߙ ௧ܻ+ (1 − +ݐ)ܮ(ߙ 1)

More back-casting examples can be found in Appendix A: Some back-casting formula for
initial smoothing states.

3. The initial smoothing states are:
′ܮ = (0)ܮ
′ܶ = −ܶ(0)

=ᇱࡿ ൫ܵ (1 − ,(ݏ (ܵ2 − ,(ݏ … (ܵ−1), (ܵ0)൯

= ൫ܵ (1), (ܵ2), … , (ܵ−1 + ,(ݏ (ܵ0)൯

3.5 Estimate model

A modified version of Levenberg-Marquardt algorithm is used to estimate the specified model.

The first derivative of objective function is
߲ܱ (ࢼ)

௜ߚ߲
= ቀܱ (ࢼ) − ܱ൫ࢼ෩࢏൯ቁ/ߜ

where =࢏෩ࢼ ⋯,ଵߚ) +௜ߚ, ,ߜ ⋯ (௞ߚ, and =ߜ −0.0001 if ௜isߚ positive and 0.0001 otherwise.

Parameter estimation process is as follows:

10

1. Set initial parameters (૙)ࢼ = ⋯,ଵߚ) (௞ߚ, which is from Section 3.4 “Parameter initialization”

2. Compute objective function O൫઺(଴)൯.

3. Let ݉ = 0 and =ߣ 0.001.

4. Compute ݇× ݇matrix ࡭ = ൛ܣ௜௝ൟand ݇× 1 vector ࡳ = (ଵ݃, ଶ݃, ⋯ , ௞݃)், where ௜௝ܣ =

∑
డை൫ࢼ(೘)൯

డఉ೔

డை൫ࢼ(೘)൯

డఉೕ

௡
௧ୀଵ and ௜݃= ∑

డை൫ࢼ(೘)൯

డఉ೔
∗ ܱ൫ࢼ(௠)൯௡

௧ୀଵ , and compute the scaling quantities

=௜ܦ ඥܣ௜௜,݅= 1,⋯ ,݇ . Let ܯ ܦݔܽ = ݉ ,{௜ܦ}௜ݔܽ if
஽೔

ெ ௔௫஽
< 10ି଼, thenܦ௜= 0.

5. ௜௝ܣ = 0 if =௜ܦ 0 or ௝ܦ = 0, otherwise ௜௝ܣ = ∗௜ܦ)/௜௝ܣ .(௝ܦ ௜݃= 0, if =௜ܦ 0, otherwise

௜݃= ௜݃/ܦ௜.

6. Let =௜௜ܣ 1 + .ߣ Compute ࢎ = .ࡳି࡭ Then the elements of ࢎ are scaled as ℎ௜= ℎ௜/ܦ௜.

7. =ܬ 0

8. ௠)ࢼ ାଵ) = ௠)ࢼ) − .ࢎ�

9. Check the admissibility constraints on new parameter ௠)ࢼ ାଵ) according to step 3 in Section

3.4.

If it is admissible, go to step 11.

Else, let ௜ࢼ
(௠ ାଵ)

= ቀߚଵ
(௠ ାଵ)

,⋯ ௜ߚ,
(௠)

, ⋯ ௞ߚ,
(௠ ାଵ)

ቁ,݅= 1,⋯ , .݇ If there is one parameter vector,

ࢼ
௜′
(௠ ାଵ)

, is admissible, then ௠)ࢼ ାଵ) = ࢼ
௜ᇲ
(௠ ାଵ)

and go to step 11. If there is no parameter vector

௜ࢼ
(௠ ାଵ)

,݅= 1,⋯ ,݇ admissible, then go to step 10.

10. ࢎ = ,2/ࢎ =ܬ +ܬ 1. If ≥ܬ� 6, go to step 8. If <ܬ 6, compute =ߣ ∗ߣ 100. If <ߣ 10ଽ, then

output ௠)ࢼ) as finial estimation and stop, else go to step 6.

11. Compute objective function ܱ൫ࢼ(௠ ାଵ)൯,

If ܱ൫ࢼ(௠ ାଵ)൯> ܱ൫ࢼ(௠)൯, then =ߣ ∗ߣ 100, ݉ = ݉ + 1. If λ > 10ଽ, then output ௠)ࢼ) as finial

estimation and stop, else go to step 6.

if ܱ൫ࢼ(௠)൯− ܱ൫ࢼ(௠ ାଵ)൯< 10ିହ ∗ ܱ൫ࢼ(௠)൯, the estimation converged. Output ௠)ࢼ ାଵ) as final

estimation and stop. Else, go to step 12.

12. If ݉ ௜ߚ௜ቚݔܽ
(௠ ାଵ)

− ௜ߚ
(௠)

ቚ< 0.0001, then output ௠)ࢼ ାଵ) as finial estimation and stop, else,�݉ =

݉ + 1. If ݉ ≤ 50 , compute =ߣ� ∗ߣ 0.1, then go to step 4. Otherwise output ௠)ࢼ) as finial

estimation and stop.

3.6 Post estimation

Goodness-of-fit statistics are based on the original series .ܻ

Mean Squared Error (MSE)

ܯ ܧܵ =
∑ ൫ܻ ௧− ෠ܻ

௧ି ଵ൯
ଶ௡

௧ୀଵ

௩݊௔௟௜ௗ − ݇

Root Mean Squared Error (RMSE)

ܯܴ ܧܵ = ܯ√ ܧܵ

11

Mean Absolute Percent Error (MAPE)

ܧܲܣܯ =
100

௩݊௔௟௜ௗ
෍ ቤ

௧ܻ− ෠ܻ
௧ି ଵ

௧ܻ
ቤ

௡

௧ୀଵ

Maximum Absolute Percent Error (MaxAPE)

ܯ ܧܲܣݔܽ = 100݉ ቆቤݔܽ
௧ܻ− ෠ܻ

௧ି ଵ

௧ܻ
ቤቇ

Root Mean Squared Percent Error (RMSPE)

ܯܴ ܵܲ ܧ = ඩ
100

௩݊௔௟௜ௗ
෍ ቆ

௧ܻ− ෠ܻ
௧ି ଵ

௧ܻ
ቇ

ଶ௡

௧ୀଵ

Mean Absolute Error (MAE)

ܧܣܯ =
1

௩݊௔௟௜ௗ
෍ หܻ௧− ෠ܻ

௧ି ଵห

௡

௧ୀଵ

Maximum Absolute Error (MaxAE)

ܯ ܧܣݔܽ = ݉ −൫หܻ௧ݔܽ ෠ܻ
௧ି ଵห൯

Bayesian Information Criterion (BIC)

ܥܫܤ = ௩݊௔௟௜ௗ × ݈݊ ൭
∑ ൫ܻ ௧− ෠ܻ

௧ି ଵ൯
ଶ௡

௧ୀଵ

௩݊௔௟௜ௗ
൱+ ݇× ݈݊ (௩݊௔௟௜ௗ)

Akaike Information Criterion (AIC)

ܥܫܣ = ௩݊௔௟௜ௗ × ݈݊ ൭
∑ ൫ܻ ௧− ෠ܻ

௧ି ଵ൯
ଶ௡

௧ୀଵ

௩݊௔௟௜ௗ
൱+ 2݇

R-squared

ܴଶ = 1 −
∑ ൫ܻ ௧− ෠ܻ

௧ି ଵ൯
ଶ௡

௧ୀଵ

∑ (௧ܻ− തܻ)ଶ௡
௧ୀଵ

Stationary R-squared

ܴௌ
ଶ = 1 −

∑ ൫ܼ ௧− መܼ
௧൯
ଶ௡

௧ୀଵ

∑ (∆ ௧ܼ− ∆ܼതതതത)ଶ௡
௧ୀଵ

Where the sum is over the terms in which both ௧ܼ− መܼ
௧ି ଵ and ∆ ௧ܼ− ∆ܼതതതതare not missing.

∆ܼതതതതis the simple mean model for the differenced transformed series, which is equivalent

to the univariate baseline model ARIMA(0, d, 0)(0, D, 0).

12

For the exponential smoothing models currently under consideration, use the

differencing orders (corresponding to their equivalent ARIMA models if there is on)

݀ = ൜
2, Brown and Holt
1, ℎݐ݋ ݎ݁

�, ܦ = ቄ
0, =ݏ 1
1, <ݏ 1

�.

Note: Both the stationary and usual R-squared can be negative with range (−∞,��1]:

 Negative R-squared value means that the model under consideration is worse
than the baseline model

 Zero R-squared value means that the model under consideration is as good or
bad as the baseline model

 Positive R-squared value means that the model under consideration is better
than the baseline model

3.7 Forecast

The final forecasting ෠ܻ
௧
∗(ℎ) and their prediction intervals can be computed as below:

Step 1. Compute -݇step ahead forecast at time ,ݐ ෠ܻ௧()݇ , according to the formula in Section 2.

Step 2. Compute prediction variance, ௧ߪ
ଶ()݇

For the models with analytical expression ௧ߪ
ଶ()݇ in Section 2 , compute ௧ߪ

ଶ()݇ expression.

For the models without analytical expression ௧ߪ
ଶ()݇: (M, N), (M, A), (M, M) and 2 double

seasonal models, ௧ߪ
ଶ()݇ computation is described in Section 3.7.1.

Step 3. Compute final forecast and the corresponding 100(1 − %(ߙ prediction intervals as

follows:

 If the series ܻ is not transformed, then final forecast
෠ܻ
௧
∗(ℎ) = ෠ܻ

௧(ℎ)

and the 100(1 − %(ߙ prediction interval is

ቀܻ෠௧(ℎ)− ௗ௙,ఈ/ଶݐ ∗ ,௧(ℎ)ߪ ෠ܻ௧(ℎ) + ௗ௙,ఈ/ଶݐ ∗ ௧(ℎ)ቁߪ

 If the transformed function is log, then

෠ܻ
௧
∗(ℎ) = exp�ቀܻ෠௧(ℎ) +

ఙ೟
మ(௛)

ଶ
ቁ

and the 100(1 − %(ߙ prediction interval is

൬exp�ቀܻ෠௧(ℎ) − ௗ௙,ఈ/ଶݐ ∗ ,௧(ℎ)ቁߪ exp�ቀܻ෠௧(ℎ) + ௗ௙,ఈ/ଶݐ ∗ ௧(ℎ)ቁ൰ߪ

 If the transformed function if square root, then

෠ܻ
௧
∗(ℎ) = ቀܻ෠௧(ℎ)ቁ

ଶ
+ ௧ߪ

ଶ(ℎ)

and the 100(1 − %(ߙ prediction interval is

13

൬ቀܻ෠௧(ℎ)− ௗ௙,ఈ/ଶݐ ∗ ௧(ℎ)ቁߪ
ଶ

, ቀܻ෠௧(ℎ) + ௗ௙,ఈ/ଶݐ ∗ ௧(ℎ)ቁߪ
ଶ
൰

In above expressions, tୢ୤,஑/ଶ is the (1 − α/2)100th percentile of the t distribution with degree of

freedom f = n୴ୟ୪୧ୢ − k .

Implementation note:

1. During forecasting, only the observations in estimation span, Y୲(t = 1,2,⋯ , n), will be

used whatever the observations in forecast span , Y୲(t = n + 1, n + 2,⋯ , n + k),are

provided or not.

2. if df = 0, then we use (1 − α/2)100th percentile of the standard normal distribution.

3. For square root transformation, If ෠ܻ௧(ℎ) < 0, then forecast value ෠ܻ
௧
∗(ℎ) and

corresponding confidence interval will be missing. If ෠ܻ௧(ℎ) > 0 but ෠ܻ௧(ℎ) − ௗ௙,ఈ/ଶݐ ∗

௧(ℎ)ߪ < 0, then the lower boundary of confidence interval will be missing value.

Simulation procedures for prediction variances

Bootstrap simulation procedures for k step prediction variance to compute prediction variances

as following:

1. Simulate errors =݅,௜ߝ) 1, … ,)݇ for k forecast point form a normal distribution with mean 0

and variance as prediction variance ଶߪ

2. Recursive to compute forecast values from n+1 to n+k based on prediction value and

simulated error

2.1 Generate simulated forecast values at time n+i (݅= 1, … ,)݇ based on 1-step forecast

expression in Section 2 and simulated error generated in step 1.

2.2 Update level, trend, and seasonal states based on state update expressions in Section 2.

When ௧ܻ is missing, use corresponding 1-step simulated forecast value ෠ܻ
௧ି ଵ
∗ as

substitutes.

2.3 Repeat step 2.1 and 2.2 to recursive calculate forecast values ෠ܻ
௡
(ଵ)

(1), ෠ܻ௡
(ଵ)

(2), … , ෠ܻ௡
(ଵ)

()݇.

3. Repeat step 1 and 2 M times to produce M forecast paths in forecast periods (M = 5000 by

default), each path has the simulated forecast values from 1 to k.

4. Compute variance ௧ߪ
ଶ()݅ = ݒܽ ቀܻ෠௡ݎ

∗()݅ቁ�,݅= 1, …݇ for each forecast time based the M

prediction values in time ݊+ .݅

For generating simulated forecast value in step 2, two expressions are provided with different

error types:

 Additive errors: ෠ܻ௡
∗()݇ = ෠ܻ

௡()݇ + ௞ߝ

 Multiplicative errors: ෠ܻ௡
∗()݇ = ෠ܻ

௡()݇(1 + (௞ߝ

14

The error type can be selected by the model types:

 If trend and seasonal components are all non-multiplicative, apply additive error for

simulation

 otherwise, apply multiplicative error for simulation

Model Notation Error type

Multiplicative trend with no
seasonality

(M, N) Multiplicative

Multiplicative trend with
additive seasonality

(M, A) Multiplicative

Multiplicative trend with
multiplicative seasonality

(M, M) Multiplicative

Additive trend with double
additive seasonality

(A, A, A) Additive

Additive trend with double
multiplicative seasonality

(A, M, M) Multiplicative

Implementation note:

1. When the number of non-missing simulated forecast values ෠ܻ௡
∗()݅ at time n+i less than

1000, the variance of forecast step i to k, ௧ߪ
ଶ()݆ = ݒܽ ቀܻ෠௡ݎ

∗()݆ቁ�,݅≤ ݆≤ ,݇ will not be

computed, and a warning will be issued as “Some prediction intervals cannot be

computed”.

4 Double seasonal exponential smoothing models

The section extends the Holt-Winter exponential smoothing to incorporate a second seasonal

component. The additive and multiplicative versions are introduced here.

Please note we consider two seasonal patterns are both additive and multiplicative at the same

time. The trend is fixed as additive for double seasonal case.

4.1 Additive Double Seasonal Holt-Winter Exponential Smoothing

Level: (ݐ)ܮ = ൫ܻߙ ௧− −ݐܵ) (ଵݏ − ܹ −ݐ) +ଶ)൯ݏ (1 − −ݐ)ܮ൫(ߙ 1) + −ݐ)ܶ 1)൯

Trend: (ݐ)ܶ = (ݐ)ܮ൫ߛ − −ݐ)ܮ 1)൯+ (1 − −ݐ)ܶ(ߛ 1)

Seasonality 1: (ݐܵ) = ൫ܻߜ ௧− (ݐ)ܮ − ܹ −ݐ) +ଶ)൯ݏ (1 − (ߜ −ݐܵ) (ଵݏ

Seasonality 2: ܹ (ݐ) = ߱൫ܻ ௧− (ݐ)ܮ − −ݐܵ) +ଵ)൯ݏ (1 − ߱)ܹ −ݐ) (ଶݏ

෠ܻ
௧()݇ = (ݐ)ܮ + ݇ܶ (ݐ) + +ݐܵ) ݇− (ଵݏ + ܹ +ݐ) ݇− (ଶݏ

15

where ଵݏ and ଶݏ are the lengths of two seasonalities, ܹ is a new term representing the seasonal

index for the 2nd seasonal component, and ߱ is a new smoothing parameter for it. The

estimation method for initial smoothed values is described in Section 4.1.

For parameters (α, γ, δ, and ω), the grid search method for Holt-Winters’ method still can be

used here. Considering one more parameter added, search step can set as 5 for each parameter.

With the initial parameters, Levenberg-Marquardt algorithm (LMA) for old Holt-Winters’

methods can applied to get estimated parameters. Details of grid search and LMA can be found

in Section 3.4 step 2, and Section 3.5.

4.2 Multiplicative Double Seasonal Holt-Winter Exponential Smoothing

Level: (ݐ)ܮ = ൫ܻߙ ௧ ൫ܵ −ݐ) (ଵݏ ∙ ܹ −ݐ) ⁄ଶ)൯ݏ ൯+ (1 − −ݐ)ܮ൫(ߙ 1) + −ݐ)ܶ 1)൯

Trend: (ݐ)ܶ = (ݐ)ܮ൫ߛ − −ݐ)ܮ 1)൯+ (1 − −ݐ)ܶ(ߛ 1)

Seasonality 1: (ݐܵ) = ൫ܻߜ ௧ ൫(ݐ)ܮ ∙ ܹ −ݐ) ⁄ଶ)൯ݏ ൯+ (1 − (ߜ −ݐܵ) (ଵݏ

Seasonality 2: ܹ (ݐ) = ߱൫ܻ ௧ ൫(ݐ)ܮ ∙ −ݐܵ) ⁄ଵ)൯ݏ ൯+ (1 − ߱)ܹ −ݐ) (ଶݏ

෠ܻ
௧()݇ = ൫(ݐ)ܮ + ݇ܶ ∙൯(ݐ) +ݐܵ) ݇− (ଵݏ ∙ ܹ +ݐ) ݇− (ଶݏ

where α, γ, δ and ω are smoothing parameters.

4.3 Initialization for smoothed values in double seasonal exponential smoothing

To calculate initial smoothed values for the level, trend and seasonal components, Williams and

Miller’s procedure (1999)[2] (proposed for standard Holt-Winters) is adapted for Double

Seasonal Holt-Winters.

Without loss of generality, here we assume ଵݏ is the smaller length ଵݏ) < .(ଶݏ Following steps are

for multiplicative method (the differences of seasonal index for additive method are given in

parenthesis):

 Initial trend, ଴ܶ, was chosen as the average of

(a) 1 ⁄ଶݏ of the difference between the mean of the first ଶݏ and second ଶݏ observations

(b) the average of the first differences for the first ଶݏ observations

 Initial level, ,଴ܮ was chosen as the mean of first 2 × ଶݏ observations minus ଶݏ) + 0.5) times

the initial trend.

 The initial values for the short seasonal index, ௧ܵ, were set as the average of the ratios of

actual observation to ଵ-pointݏ centred moving average (set as the average of the differences

of actual observation to ଵ-pointݏ centred moving average), taken from the corresponding ௧ܵ

phase in each of the ଵݏ observations within the first ଶݏ observations. If 2 × ଵݏ > ,ଶݏ use the

first 2 × ଵݏ observations.

16

 The initial values for the long seasonal index, ܹ ௧, were set as the average of the ratios of

actual observation to ଶ-pointݏ centred moving average (set as the average of the differences

of actual observation to ଶ-pointݏ centred moving average), taken from the corresponding ܹ ௧

phase in each of the ଶݏ observations within the first 2 × ଶݏ observations, divided (subtracted)

by the corresponding initial value of the smoothed short seasonal index, .௧ܦ

5 Analysis for irregular component

An irregular component can be computed by

(ݐ)ܫ = ௧ܻ− ෠ܻ
௧

Based on the irregular component, larger variance interval detection and auto-correlation

analysis will be performed. The algorithms are same as that we did in automatic time series

exploration in “Time Series Exploration - ADD.docx”. So please refer the section 2.4 in “Time

Series Exploration - ADD.docx” directly.

For outlier detection, we use same method as that in the TCM. The method can be described as

following:

Step 1: compute the square score at time :ݐ

௦௤௥,௧ݏ =
(௧ܻ− ෠ܻ

௧)
ଶ

ܯ ܧܵ

where ܯ ܧܵ is mean squared error which is defined in the Section 3.6.

Step 2. Compute the outlier probability as

௦௤௥,௧݌ = ܾ݋ݎ݌ ൫߯ ଵ
ଶ ≤ ௦௤௥,௧൯ݏ

where ଵ߯
ଶ is a random variable with a chi-squared distribution with 1 degree of freedom.

Step 3. ௧ܻ is an outlier if ≤௦௤௥,௧݌ ,ߢ where ߢ is significant level and the default is 0.95.

Step4. If the number of outliers from step 3 is less than (݈default is 10), then output all outliers.

Otherwise, output top o݈utliers that have top l݈argest square scores.

17

Appendix A: Some back-casting formula for initial smoothing states

Below table demonstrates some back-casting formula, more can be derived from the formula in

Section 2 by reversing the time order and smoothing backwards from =ݐ ݊ to =ݐ 0 with ଴ܻ is

missing.

Table 3. Back-casting for initial smoothing states

Model type ௧ܻ is not missing ௧ܻ is missing

simple (ݐ)ܮ = ߙ ௧ܻ+ (1 − +ݐ)ܮ(ߙ 1) (ݐ)ܮ = +ݐ)ܮ 1)

Brown (ݐ)ܮ = ߙ ௧ܻ+ (1 − +ݐ)ܮ(ߙ 1)

(ݐ)ܶ = (ݐ)ܮ൫ߙ − +ݐ)ܮ 1)൯+ (1 − +ݐ)ܶ(ߙ 1)

(ݐ)ܮ = +ݐ)ܮ 1)
+ ݐ)ܶ
+ 1)

(ݐ)ܶ = +ݐ)ܶ 1)

Holt (ݐ)ܮ = ߙ ௧ܻ+ (1 − +ݐ)ܮ൫(ߙ 1) + +ݐ)ܶ 1)൯

(ݐ)ܶ = (ݐ)ܮ൫ߛ − +ݐ)ܮ 1)൯+ (1 − +ݐ)ܶ(ߛ 1)

(ݐ)ܮ = +ݐ)ܮ 1)
+ ݐ)ܶ
+ 1)

(ݐ)ܶ = +ݐ)ܶ 1)

Damp (ݐ)ܮ = ߙ ௧ܻ+ (1 − +ݐ)ܮ൫(ߙ 1) + +ݐ)ܶ߶ 1)൯

(ݐ)ܶ = (ݐ)ܮ൫ߛ − +ݐ)ܮ 1)൯+ (1 − +ݐ)ܶ߶(ߛ 1)

(ݐ)ܮ
= +ݐ)ܮ 1)
+ +ݐ)ܶ߶ 1)

(ݐ)ܶ = +ݐ)ܶ߶ 1)

Simple season (ݐ)ܮ = ൫ܻߙ ௧− +ݐܵ) +൯(ݏ (1 − +ݐ)ܮ(ߙ 1)

(ݐܵ) = ൫ܻߜ ௧− +൯(ݐ)ܮ (1 − (ߜ +ݐܵ) (ݏ

(ݐ)ܮ = +ݐ)ܮ 1)

(ݐܵ) = +ݐܵ) (ݏ

Additive winter (ݐ)ܮ = ൫ܻߙ ௧− +ݐܵ) +൯(ݏ (1 − +ݐ)ܮ൫(ߙ 1) + +ݐ)ܶ 1)൯

(ݐ)ܶ = (ݐ)ܮ൫ߛ − +ݐ)ܮ 1)൯+ (1 − +ݐ)ܶ(ߛ 1)

(ݐܵ) = ൫ܻߜ ௧− +൯(ݐ)ܮ (1 − (ߜ +ݐܵ) (ݏ

(ݐ)ܮ = +ݐ)ܮ 1)
+ ݐ)ܶ
+ 1)

(ݐ)ܶ = +ݐ)ܶ 1)

(ݐܵ) = +ݐܵ) (ݏ

Multiplicative
winter

(ݐ)ܮ =)ߙ ௧ܻ +ݐܵ) ⁄(ݏ) + (1 − +ݐ)ܮ൫(ߙ 1) + +ݐ)ܶ 1)൯

(ݐ)ܶ = (ݐ)ܮ൫ߛ − +ݐ)ܮ 1)൯+ (1 − +ݐ)ܶ(ߛ 1)

(ݐܵ) =)ߜ ௧ܻ ⁄(ݐ)ܮ) + (1 − (ߜ +ݐܵ) (ݏ

(ݐ)ܮ = +ݐ)ܮ 1)
+ ݐ)ܶ
+ 1)

(ݐ)ܶ = +ݐ)ܶ 1)

(ݐܵ) = +ݐܵ) (ݏ

1

Time Series Algorithm: Expert Modeler

1 Introduction
Expert Modeler in Time Series component is an automatic model identification tool. With time

series specified, Expert Modeler can perform on that and give a recommended time series

model or top N models. The evaluated model types can be:

1. Exponential Smoothing Expert Model (ES EM)

The Expert Modeler only considers exponential smoothing models.

2. Univariate ARIMA Expert Model (Univariate ARIMA EM)

The Expert Modeler only considers univariate ARIMA models.

3. Exhaustive ARIMA Search

The Expert Modeler do exhaustive search based on user specified ARIMA parameters.

4. Univariate Expert Model (default for univariate time series)

The Expert Modeler considers Exponential Smoothing Expert Model, Univariate ARIMA

Expert Model, and Exhaustive ARIMA Search.

5. Transfer Function Expert Model

The Expert Modeler considers multivariate ARIMA models with input series specified

6. Multivariate Expert Model (default for the case with predictor time series)

Univariate EM = Model(s) with better
selection criterion

Input: series, seasonal length

Exhaustive ARIMA Search
(Turn off by default)

Univariate ARIMA EM
(Turn on by default)

ES EM
(Turn on by default)

2

The Expert Modeler considers Transfer Function Expert Model first, if it drops all predictor

series and ends up with a univariate ARIMA model, this univariate ARIMA model will be

compared with Exponential Smoothing Expert Model and Exhaustive ARIMA Search (if it is

turned on) by model selection criterion to determine the final recommendation.

7. Double Seasonal Expert Model (default for series with two seasonalities specified)

The Expert Modeler only considers 3 double seasonal models, and ignores any input series.

By default, only one model is recommended for a target time series. It is also supported to

request the top N models from Expert Modeler, so N = 1 by default. For different evaluated

model types, final number of recommended models can be less than N.

1.1 Notation
The following notation is used throughout this document unless otherwise stated:

௧ܻ =ݐ) 1,2,⋯ ,݊) Univariate time series under investigation, where ଵܻ ܽ݊ ݀ ௡ܻ is not
missing.

ݏ The period of seasonality

݇ The number of parameters in estimated model

1.2 Model Selection Criterion
To sort and select models among several candidate models, following model selection criterions,

all in smaller-is-better form, can be compute for each model.

 Bayesian Information Criterion (BIC) on whole series (default)

ܥܫܤ = ௩݊௔௟௜ௗ × ln൭
∑ ൫ܻ ௧− ෠ܻ

௧൯
ଶ௡

௧ୀଵ

௩݊௔௟௜ௗ
൱+ ݇× ln(௩݊௔௟௜ௗ)

where ௩݊௔௟௜ௗ is the total number of non-missing values.

 Akaike Information Criteria (AIC) on whole series

ܥܫܣ = ௩݊௔௟௜ௗ × ln൭
∑ ൫ܻ ௧− ෠ܻ

௧൯
ଶ௡

௧ୀଵ

௩݊௔௟௜ௗ
൱+ 2݇

 Average Squared Error (ASE) on testing set

ܣ ܧܵ =
1

்݊௘௦௧
෍ ൫ܻ ௧− ෠ܻ

௧൯
ଶ

௡೅೐ೞ೟

௧ୀଵ

3

where ௧ܻ and ෠ܻ
௧ are observed and forecasted value in the testing set, ෠ܻ௧ is -݇step ahead

forecasting based on training set, ்݊௘௦௧ is the number of non-missing points in testing set.

Note:

1. Model selection criterion on testing set is provided for advanced user, the last ்݊௘௦௧
number of non-missing points can be used as testing set. Rules are as following:

 If <ݏ 1 and ௩݊௔௟௜ௗ ≥ ,ݏ4 then ்݊௘௦௧ = min(ݏ, ௠݊ ௔௫்௘௦௧) , ௠݊ ௔௫்௘௦௧ = 20 by default.

 Ifݏ�= 1, or <ݏ 1 but ௩݊௔௟௜ௗ < ,ݏ4 then ்݊௘௦௧ = 5 by default.

2. When model selection criterion is ASE over testing set, the model parameters would be

re-estimated based on the whole series, and all post-estimation statistics would be

calculated based the new parameter estimates.

3. If a model is a perfect fit, its ∑ ൫ܻ ௧− ෠ܻ
௧൯
ଶ௡

௧ୀଵ would be 0, then the perfect fit model is the

priority selection, export its ܥܫܤ and ܥܫܣ as sysmis and give a warning message about

the perfect fit (similar to what we did in LE and TCM). If more than one model are

perfect fit, sort them by ascending order of number of parameters in models.

2 Exponential Smoothing Expert Model
Input:

 series ܻ

 The seasonal length for the model included seasonal component: ݏ

Process:

 For non-seasonal series: fit all 5 non-seasonal models, including (N, N), (A, N), (DA, N),

(M, N) and Brown’s models.

 For seasonal series,

- If series ܻ are positive: fit 12 models (all models except Brown).

- If series ܻ are not all positive: fit 8 models (all models except Brown and

Multiplicative seasonality models, (N, M), (A, M), (DA, MN), and (M, M) models).

Output:

 The recommended exponential smoothing expert models are the top N models sorted

by model selection criterion.

4

3 Univariate ARIMA Expert Model

3.1 Constant series

 Before doing anything, first check if ௧ܻ is a constant series. If Y is constant, fit model with a

constant only. This is the final model (don’t need to go through any of the following steps).

 If, in step 3 “Check for difference”, any difference is taken, after each difference check if the

differenced series is constant. If it is constant, fitting constant model for the differenced

series as the final model.

3.2 Small sample

 If number of non-missing observations is less than 3s, set s=1 and go through the following

steps to build a non-seasonal model.

 Otherwise, go through the following steps to build a model.

3.3 Step 1: Interpolation of missing values in the series ࢚ࢅ
If there is any missing in the series, the series will be interpolated in this step. The interpolated

series will be used in all the subsequent steps.

Interpolation step first determines what interpolation method is to be used for interpolation.

There are two methods of interpolation, one, which takes into account the possible seasonal

nature and the other, which does not. If the period of seasonality s=1, no seasonal pattern and

use method (a) to impute missing values. If s>1, the seasonal pattern may be present (i.e. its

contribution could be significant). In this case determine if the seasonal pattern is significant or

not as follows:

Calculate sample ACF of the series. If the ACF have absolute t-values greater than 1.6 for all the

first six lags, take the simple difference of the series and calculate the ACF of the differenced

series. (Note: difference only once, not twice even if the first six lags of ACF of the differenced

series are bigger than 1.6. This is because that quadratic trend cannot be taken cared by method

(b) anyway.) Let m1 = max(ACF(1) to ACF(k)), where k = s-1 for s  4, k = s-2 for 4 < s  9, and k

= 8 for s  10. Let m2 = max(ACF(s), ACF(2s)). If m1 > m2, then there is no seasonal pattern and

use (a) to impute missing values. Otherwise there is a seasonal pattern and use (b) to impute

missing values.

Note: If for some reason, like insufficient number of ACF values, impute missing values using

method (a).

(a) Without seasonal pattern:

Missing values are linearly interpolated using the nearest non-missing neighbors.

5

(b) With seasonal pattern:

Missing values are linearly interpolated using the nearest non-missing data of the same

season. For example, consider a monthly time series. Assume that missing values occur in

May of year m and m+1. Use the linear interpolations between observations in May of year

m-1 and year m+2 for the missing values.

If all values for some season are missing, use method (a) to impute. If for a missing value

there is no non-missing of the same season before or after it, use the closet non-missing

value of the same season to impute it.

3.4 Step 2: Check for transformation (log or square root)
To check transformation:

 No transformation if the series ௧ܻhas some negative values.

 For positive series ௧ܻ, fit (by ordinary least square) a high order AR(p) model, on ,ܻ ݈݃݋ (ܻ)

and square root of .ܻ

 For non-negative series ௧ܻ, fit (by ordinary least square) a high order AR(p) model, on ,ܻ and

square root of .ܻ

Compare the log likelihood function of the un-transformed series for each model, and pick the

one has the biggest log likelihood. Let ୫݈ ୟ୶ denote the biggest log likelihood of the three models,

and ௒݈ the log likelihood of the model for ܻ itself. In fact we transform the data only if ୫݈ ୟ୶ ≠ ௒݈,

and both
ଵ

௡
(୫݈ ୟ୶− ௒݈) and ቚ

௟ౣ ౗౮ି௟ೊ

௟ೊ
ቚare bigger than 4%, where n is the number of cases.

Rules for choosing order p:

 for s3, consider AR(10);

 for 4s11, consider AR(14) (AR(10) if there are not enough data);

 for s12, consider a high order AR model with lags 1 to 6, s to s+3, 2s to 2s+2 (if sample size

is less than 50, drop lags2s).

Note: If it was determined that a log or square root transformation is needed then the series

should be transformed accordingly and this transformed series is used in all the subsequent

steps.

3.5 Step 3: Check for difference

In this step the differencing order of the model is decided. This step is divided in two steps,

step (a) and step (b). In step (a) a preliminary attempt at the differencing order determination is

made. The intermediate models fit in this step are AR models and can be fit by ordinary least

squares. If some differencing is found necessary then the series is differenced accordingly and

this differenced series is used in step (b). In step (b) the series could be differenced further. In

this step some intermediate ARMA models are fit using conditional least squares, i.e. CLS

6

option in our AMModelSpec. If step (b) suggests some differencing it should be done and this

differenced series is used in subsequent steps.

Some clarifications:

 The reference to “true” models in the explanation of critical values)ܥ ,݅)݆can be ignored by

the programmers.

 Symbol t(c) refers to the t-statistic corresponding to the constant in the model.

Step (a)

 Case s = 1:

- Fit model (ݐ)ܻ = ܿ+ ߶ଵܻ(ݐ− 1) + ߶ଶܻ(ݐ− 2) + (ݐܽ) by ordinary least square method.

Check ߶ଵ and ߶ଶ against the critical values listed in Table 1. If {߶ଵ > (1,1)ܥ and − ߶ଶ >

,{(1,2)ܥ then take simple difference twice, i.e. calculate (1 − .(ݐ)ଶܻ(ܤ

- Otherwise fit model (ݐ)ܻ = ܿ+ −ݐ)ܻ߶ 1) + .(ݐܽ) If)ݐ|})ܿ| < 2 and�߶ > {(2,1)ܥ or)ݐ|})ܿ| ≥

2 and (߶ − 1) ݏ݁ (߶)⁄ > ,{(3,1)ܥ then difference the series once, i.e. calculate (1 − (ܤ ௧ܻ.

- Otherwise no difference.

 Case s > 1:

- Fit model Y(t) = c + ϕଵY(t − 1) + ϕଶY(t − s)+ ϕଷY(t − s − 1) + a(t) by ordinary least

square method. The critical values C(i, j) for s = 4 and s = 12 are in Table 2 and Table 3. If

{ϕଵ > (1,1)ܥ and ϕଶ > (1,2)ܥ and − ϕଷ > ,{(1,3)ܥ take difference (1 − B)(1 − B)ୱY(t).

- Otherwise if ϕଵ ≤ ϕଶ, fit model Y(t) = c + ϕY(t − s) + a(t). If {|t(c)| < 2�ܽ݊݀�߶ > {(2,1)ܥ

or {|t(c)| ≥ 2 and (ϕ− 1) se(ϕ)⁄ > ,{(3,1)ܥ take difference(1 − B)ୱY(t).

- Otherwise if ϕଵ > ϕଶ, fit model Y(t) = c + ϕY(t − 1) + a(t). If {|t(c)| < 2�ܽ݊݀�߶ > {(4,1)ܥ

or {|t(c)| ≥ 2 and (ϕ− 1) se(ϕ)⁄ > ,{(5,1)ܥ take difference (1 − B)Y(t).

- Otherwise no difference.

Note: if t value is not available in above fitting, treat it as if t=0.

Step (b)

For data after step (a), call it .(ݐ)ܼ

If the number of non-missing Z is 10 or less, go to step 4.

 Case s=1:

- Fit an ARMA(1,1) model (1 − (ݐ)ܼ(ܤ߶ = ܿ+ (1 − (ߠ (ݐܽ) by conditional least square.

- If ߶ > 0.88 and |߶ − |ߠ > 0.12, take difference (1 − .(ݐ)ܼ(ܤ

- If ߶ < 0.88 but not too far away from 0.88, say, 0.88 − ߶ < 0.03, ACF of Z should be

checked. If the ACF have absolute t-values greater than 1.6 for all the first six lags, take

difference (1 − .(ݐ)ܼ(ܤ

 Case s>1 and the number of non-missing Z is less than 3s, do the same as in case s=1.

 Case s>1 and the number of non-missing Z is greater than or equal to 3s.

- Fit an ARMA(1,1)(1,1) model (1 − ϕଵB)(1 − ϕଶBୱ)Z(t) = c + (1 − θଵB)(1 − θଶBୱ)a(t).

7

- If both ߶ଵ and�߶ଶ > 0.88, and |߶ଵ− |ଵߠ > 0.12 &|߶ଶ− |ଶߠ > 0.12, take difference (1 −

1)(ܤ − .(ݐ)௦ܼ(ܤ

- If only ߶ଵ > 0.88, and|߶ଵ− |ଵߠ > 0.12, take difference(1 − B)Z(t). If ߶ଵ < 0.88 but not too

far away from 0.88, say, 0.88 − ߶ଵ < 0.03, ACF of Z should be checked. If the ACF have

absolute t-values greater than 1.6 for all the first six lags, take difference (1 − B)Z(t).

- If only ߶ଶ > 0.88, and |߶ଶ− |ଶߠ > 0.12, take difference (1 − B)ୱZ(t).

Repeat this step, until no difference is needed.

Note, in the case that the fitting is terminated due to instability or non-convergence or
insufficient number of data, do not difference, go to step 4.

3.5.1 Critical values used in step (a)

Definition of critical values C(i, j) in Table 1:

True model 1: (1 − B)ଶY(t) = a(t)

Critical values: C(1,1) and C(1,2) for ϕଵ and −ϕଶ in fitting model

Y(t) = c + ϕଵY(t − 1) + ϕଶY(t − 2) + a(t)

True model 2: (1 − B)Y(t) = a(t)

Critical values: C(2,1) for ϕ in fitting model

Y(t) = c + ϕY(t − 1) + a(t)

True model 3: (1 − B)Y(t) = c଴ + a(t), c଴ ≠ 0

Critical values: C(3,1) for (ϕ− 1) se(ϕ)⁄ in fitting model

Y(t) = c + ϕY(t − 1) + a(t)

Table 1: Critical values at significant level 0.05 for s=1
(1st row: C(1,1), C(1,2); 2nd row: C(2,1); 3rd row: C(3,1)).

Simple size Critical values

n=50
1.616 0.617
0.734
-1.678

n=100
1.807 0.807
0.863
-1.661

n=200
1.904 0.904
0.930
-1.653

n=300
1.937 0.937
0.954
-1.650

8

Definition of critical values C(i, j) in Table 2 and 3:

True model 1: (1 − B)(1 − B௦)Y(t) = a(t)

Critical values: C(1,1), C(1,2), and C(1,3) for ϕଵ, ϕଶ and −߶ଷ in fitting model

(ݐ)ܻ = ܿ+ ߶ଵܻ(ݐ− 1) + ߶ଶܻ(ݐ− (ݏ + ߶ଷܻ(ݐ− −ݏ 1) + (ݐܽ)

True model 2: (1 − B௦)Y(t) = a(t)

Critical values: C(2,1) for ϕ in fitting model

Y(t) = c + ϕY(t − (ݏ + a(t)

True model 3: (1 − B௦)Y(t) = c଴ + a(t), c଴ ≠ 0

Critical values: C(3,1) for (ϕ− 1) se(ϕ)⁄ in fitting model

Y(t) = c + ϕY(t − (ݏ + a(t)

True model 4: (1 − B)Y(t) = a(t)

Critical values: C(4,1) for ϕ in fitting model

Y(t) = c + ϕY(t − 1) + a(t)

True model 5: (1 − B)Y(t) = c଴ + a(t), c଴ ≠ 0

Critical values: C(5,1) for (ϕ− 1) se(ϕ)⁄ in fitting model

Y(t) = c + ϕY(t − 1) + a(t)

Table 2: Critical values at significant level 0.05 for s=4
(1st row: C(1,1), C(1,2), C(1,3); 2nd row: C(2,1); 3rd row: C(3,1) ; 4th

row: C(4,1) ; 5th row: C(5,1)).

Simple size Critical values

n=50

0.557 0.823 0.458
0.849
-1.680
0.734
-1.678

n=100

0.773 0.911 0.704
0.908
-1.661
0.921
-1.661

n=200 0.886 0.947 0.838

9

0.947
-1.653
0.930
-1.653

n=300

0.925 0.961 0.889
0.963
-1.650
0.954
-1.650

Table 3: Critical values at significant level 0.05 for s=12
(1st row: C(1,1), C(1,2), C(1,3); 2nd row: C(2,1); 3rd row: C(3,1) ; 4th

row: C(4,1) ; 5th row: C(5,1)).

Simple size Critical values

n=50

0.494 0.811 0.401
0.851
-1.688
0.734
-1.678

n=100

0.759 0.909 0.690
0.907
-1.663
0.921
-1.661

n=200

0.882 0.947 0.835
0.946
-1.653
0.930
-1.653

n=300

0.922 0.961 0.886
0.961
-1.650
0.954
-1.650

Note:

 Critical values C(i, j) depend on sample size n.

- Other than the negative critical values and C(1,3) in Table 2 and Table 3, the critical

values approximately depend on 1/n linearly. We may use this approximate

relationship to get a better critical value for an arbitrary n. Suppose that critical values

for sample size n1 and n2 are C1 and C2, and n1 and n2 are the closest two sided

10

neighbors if 50 < n < 300, or closest one sided neighbors if 36  n < 50 or if 300 < n  1000

(don’t want to extrapolate too far), then the critical value C for sample size n is

ܥ = ଵܥ +
−ଶܥ ଵܥ

(1 ଶ݊⁄ − 1 ଵ݊⁄)
(1 ݊⁄ − 1 ଵ݊⁄)

For n <36, use critical values for n=36. For n > 1000, use critical values for n=1000. For

C(1,3) in Table 2 and Table 3, C(1,3)=C(1,1)*C(1,2)

- For the negative critical values, the better critical values are C(3,1)=t(0.05, n-3) in Table 1,

C(3,1)=t(0.05, n-s-2) and C(5,1)=t(0.05,n-3) in Table 2 and Table 3. Where t(0.05, df) is the

5% percentile of t-distribution with degree of freedom df.

 Critical values also depend on period of seasonality s.

- Only critical values for s = 1, 4, 12 are simulated. For 1 < s < 8, use the critical values of s

= 4. For ≤ݏ 8, use the critical values of s = 12.

3.6 Step 4: Identify the order of ARMA(p,q)(P,Q)
The earlier steps determine if a transformation (square root, log or differencing) is needed. In

this step, tentative orders for the non-seasonal AR and MA polynomials, p and q are decided. If

seasonality is present the orders of the seasonal AR and MA polynomials are taken to be 1, i.e. P

= Q = 1.

The determination of p and q is done in the following way:

1. Use sample ACF to determine p and q. This step can be inconclusive. Use sample PACF

to determine p and q. This step can be inconclusive.

2. Use EACF to determine p and q. Choose a model among the models identified by ACF,

PACF and EACF. How to choose the model is explained later.

Seasonal part for s>1: let P=1, Q=1.

Non-seasonal part: Use ACF and PACF to see if a clear model can be identified. If not, use

EACF to find both p and q.

Rules used in identifying orders.

Determine integers M and K as follows:

 M = 8 for s = 1 or s 10.

 M = s-1 for 2  s  4.

 M = s-2 for 4 < s  9.

 Note: if 4M+2 > n, set M to be the biggest integer that is smaller than or equal to (n-2)/4,

where n is the length of the series.

 K = 3 for s = 1 or s  5.

 K = 1 for s = 2.

 K = 2 for s = 3, 4.

11

Order determination rules using ACF, PACF and EACF:

 ACF:

For the first M ACF, let k1 be the smallest number such that all ACF(k1+1) to ACF(M)

are insignificant (i.e. |t| statistic < 2). If k1  K, then p=0 and q=k1. It may not identify a

model at all.

 PACF:

For the first M PACF, let k2 be the smallest number such that all PACF(k2+1) to

PACF(M) are insignificant (i.e. |t| statistic < 2). If k2  K, then p=k2 and q=0. It may not

identify a model at all.

 EACF:

Build an M by M EACF array, do the following:

- Examine the first row, find the maximum order. This is an MA model, denoted by

ARMA(0,q0).

- Examine the second row, find the maximum order. Denote the model as ARMA(1,q1)

- Examine the third row, find the maximum order. Denote the model as ARMA(2,q2)

and so on.

- In the above “maximum order” of each row means that all EACF in that row above

that order are insignificant.

- Identify p and q as the model that has the smallest p+q. If the smallest p+q is

achieved by several model, choose the one with smaller q because AR parameters

are easier to fit.

Among the models identified by ACF, PACF and EACF, choose the one having the smallest p+q.

In the case that there is a tie, do the following. If the tie involves the model identified by EACF,

choose it. If the tie is a 2-way tie between models identified by ACF and PACF, choose the one

by PACF.

When none of ACF, PACF or EACF give a low order model, i.e. p+q4, increase |t|-value to 2.8

and check ACF, PACF and EACF as before to identify a model. If this still doesn’t give a low

order model, then take the high order model identified at this step.

3.7 Step 5: Fit the model and delete insignificant parameters
Fit the model with identified order by conditional least square. Delete the insignificant

parameters the following way.

(a) If there is at least one parameter is significant (|t|2), go to b). Otherwise, delete the most

insignificant parameter one at time until at least one parameter is significant, then go to b).

(b) Delete simultaneously all parameters with |t|<0.5 repeatedly until all the left over

parameters are with |t|0.5. Then refit the model and Delete simultaneously all parameters

12

with |t|<1 repeatedly until all the left over parameters are with |t|1, then refit the model

and delete parameters with |t|<2.

Fit the resulted model using the maximum likelihood (ML) method. If there are insignificant

parameters (|t|<2), delete them and refit by ML method. Repeat until all parameters are of

|t|2.

Note:

 The model resulted from step 4 is always with a constant term.

 If an empty model is resulted after deletions, change it into a model with only constant term.

 For s>1, if estimation of the initial model identified in step 4 is failed, reduce seasonal MA

order to Q=0 and continue. This may happen often on short series.

3.8 Step 6: Diagnostic checking and model modification
After fit the model in step 5, check to see if Ljung-Box statistics Q(K) is significant where K=2s

for s>1 and K=18 for s=1. (Note: if Kn, set K as the biggest integer that is smaller than or equal

to n/4, where n is as defined in Ljung-Box statistics at the end.) If it is not significant, stop and

we are done. Otherwise check ACF/PACF of residuals. For s=1, let M=K. For s>1, let M=s-1 for

s<15 and M=14 for s15. If all residual ACF(1) to ACF(M), ACF(s) and ACF(2s) are insignificant

(|t|2.5), stop. Otherwise stop and report: “there are significant values in residual ACF” if (a)

the model has been modified once already. Otherwise modify non-seasonal and seasonal part of

the model the following way.

(a) For non-seasonal part, if residual ACF(1) to ACF(M) have one or two isolated significant

lags (|t|>2.5), add these lags to non-seasonal MA part of the model. Otherwise, if the

residual PACF(1) to PACF(M) have one or two isolated significant lags (|t|>2.5) add these

lags to non-seasonal AR part of the model.

(b) For seasonal part, if none of ACF(s) and ACF(2s), or none of PACF(s) and PACF(2s), are

significant, seasonal part doesn’t need to be modified. Otherwise if PACF(s) is significant

and PACF(2s) is insignificant, add seasonal AR lag 1. Otherwise if ACF(s) is significant and

ACF(2s) is insignificant, add seasonal MA lag 1. Otherwise if PACF(s) is insignificant and

PACF(2s) is significant, add seasonal AR lag 2. Otherwise if ACF(s) is insignificant and

ACF(2s) is significant, add seasonal MA lag 2. Otherwise add seasonal AR lag 1 and 2.

A significant lag, say lag ,݈ is added in the model the following way.

 If ݈≤ ܯ , just simply add lag i݈n the model. If lag i݈s in the model already, add lag 2 i݈n the

model if 2 i݈s not already in and if 2 i݈s not one of the significant lags and 2݈≤ ܯ . For

example, if ACF of residuals from non-seasonal model Y(t) = (1 − θଵB)a(t) has a single

significant lag at lag 2, then the modified model is Y(t) = (1 − θଵB − θଶBଶ)a(t), if ACF of

residuals has a single significant lag at lag 1, then the modified model is also Y(t) =

(1 − θଵB − θଶBଶ)a(t).

13

 For s>1, if i݈s multiple of s, add the lag to the seasonal part. If the lag i݈s already in the

model, add 2 i݈n the model if 2 i݈s not already in and if 2 i݈s not one of the significant lags

and 2݈≤ .ܭ For example, if non-seasonal MA lag 3 and seasonal MA lag 1 are decided to be

added in model ܻ(t) = (1 − θଵB)(1 −ΘଵBୱ)a(t), then the modified model is ܻ(t) =

(1 − θଵB − θଷBଷ)(1 −ΘଵBୱ−ΘଶBଶୱ)a(t).

In all other situations, stop and report “there are significant values in residual ACF”.

If the model is modified, go back to step 5.

Ljung-Box statistics

Ljung-Box statistics Q(K) is defined as

(ܭ)ܳ = (݊݊+ 2)෍
௞ݎ
ଶ

݊− ݇

௄

௞ୀଵ

where ௞ݎ is the kth lag ACF of residual, ݊ is the number of non-missing residuals. Q(K) is

approximately distributed as Chisq(K-m), where m is the number of parameters other than the

constant term. Q(K) is significant (at 0.05 level) if Q(K)>Chisq(0.05,K-m).

4 Exhaustive ARIMA Search
Exhaustive ARIMA search performs several ARIMA models specified by user, and evaluates

the estimated modes by a specified model selection criterion.

Following are rules to specify exhaustive searching.

 For autoregressive part and moving average part, use one of following methods:

- Specify a maximum number T1 and T2, search from models satisfied +݌ ≥�ݍ ଵܶ and

ܲ+ ܳ�≤ ଶܶ.

- Specify the range of lag for parameters. This is the default method for Exhaustive

ARIMA Search, 0 ≤ ≥݌ 5, 0 ≤ ≥ݍ 5, 0 ≤ ܲ ≤ 2, and 0 ≤ ܳ ≤ 2 by default.

 For differencing

- Specify the range of d and D. 0 ≤ ݀≤ 2, and 0 ≤ ܦ ≤ 1 by default.

 For model selection criterion, it follows the subsection “Model Selection Criterion” in

“Introduction”.

The result models of Exhaustive ARIMA search are the top N models sorted by model selection

criterion.

14

5 Univariate Expert Model
In this case, the Exponential Smoothing Expert Model, Univariate ARIMA Expert Model, and

Exhaustive ARIMA Search (if it is turned on) are computed, sort their result models and select

Univarite Expert Model by model selection criterion.

6 Transfer Function Expert Model
Transfer function expert model can automatically build a well fitting model for specified target

time series. Distinguished from univariate ARIMA expert model, transfer function expert model

can specify some predictor series, each can be set as:

 A candidate predictor series which will be evaluated to decide whether can be included

in final model.

 A forced predictor series to be built into final model directly.

6.1 Inputs

 A target series or dependent series ௧ܻ

 Candidate input series or predictors

- Time series ଵܺ(ݐ) to ܺ௄(ݐ)

- Event series (ݐ)ଵܫ to ெܫ (ݐ)

 Forced input series or predictors

- Time series Xଵ
∗(t) to X୊

∗(t)

- Event series Iଵ
∗(t) to I୐

∗(t)

6.2 Small sample

 If n<=10, drop all predictors. Use Univariate Expert Model (or Univariate ARIMA Expert

Model depending on user's request).

 If 10 <n<3s or 10 <n<20, set s=1 to build a non-seasonal model. But all the predictors are

kept.

6.3 Step 1: Identify an ARIMA(p,d,q)(P,D,Q) model for Y(t)
Use the univariate procedure to identify an ARIMA model for ௧ܻ (see Section ‘Univariate

ARIMA Expert Model’). In this step, the following are accomplished.

(a) All missing values of ௧ܻ are imputed if there is any.

(b) Transformation of ௧ܻ is done if it is needed.

(c) Differencing orders d and D are found, and the corresponding difference of ௧ܻ is done.

Note: the imputed, transformed and differenced ௧ܻ is named as ௧ܼ, and will be used in (d) and
subsequent steps in Section ‘Transfer Function Expert Model’.

15

(d) An ARIMA(p,q)(P,Q) model for ௧ܼ is identified.

Note:

 In the case where s>1, if P=D=Q=0 is identified, i.e. no seasonal pattern at all, from now on,

we will treat as if s=1.

 If the error variance for the model just found is zero (this corresponds to a perfect fit

situation), stop. This is the final model.

6.4 Step 2: Cleaning input series
Time span is determined by output series ௧ܻ. If within the span there are missing values in some

input series, drop these series from the model since our estimation procedure doesn’t allow

missing values in input series. Also drop the input series if it is a constant over the time span.

Note: the number of input series may be reduced after this step.

6.5 Step 3: Transformation of input series.
If it is found that ௧ܻneeds to be transformed in step 1, apply the same transformation to all

positive input series, and these transformed series will be used in the subsequent steps.

Implementation note:

1. It is recommended adding a setting for whether to apply the target series transformation

to input series. By default, the transformation should be applied.

6.6 Step 4: Difference input series
If differencing orders d and/or D found in step 1(c) are nonzero, for each input series ܺ௜(ݐ), take

difference ܺ௜
(ݐ)′ = (1 − ௗ(1(ܤ − .(ݐ)௦)஽ܺ௜ܤ Difference input series as following steps:

(a) Calculateܨܥܥ�()݇ = ቀܼݎݎ݋ܥ ௜ܺ,(ݐ)
−ݐ)′)݇ቁfor k=0 to 12.

(b) Check the significance of CCF coefficients.

(b.1) If for some ܺ௜
,(ݐ)′ one or more of CCF(0) to CCF(12) is significant |ݐ|) > 2), ܺ௜

′ is used as

the final differencing series ܺ߂ for ܺ௜.

(b.2) If for some ܺ௜
,(ݐ)′ none of CCF(0) to CCF(12) is significant |ݐ|) > 2), find both non-

seasonal and seasonal differencing orders for series ܺ௜
(ݐ)′ by step 3 of univariate

ARIMA procedure, call them ௜݀, .௜ܦ Compare ௜݀and ௜withܦ 0 and do the following:

 If ௜݀= 0 & =௜ܦ 0, drop ܺ௜
(ݐ)′ from the model.

 If ௜݀> 0 & =௜ܦ 0, take difference ܺ௜
(ݐ)′′ = (1 − ௗ೔ܺ(ܤ ௜

.(ݐ)′

 If ௜݀= 0 & <௜ܦ 0, take difference ܺ௜
(ݐ)′′ = (1 − ௦)஽೔ܺܤ ௜

.(ݐ)′

 If ௜݀> 0 & <௜ܦ 0, take difference ܺ௜
(ݐ)′′ = (1 − ௗ೔(1(ܤ − ௦)஽೔ܺܤ ௜

.(ݐ)′

16

If ܺ௜
(ݐ)′′ is generated from above conditions, calculate again

)ܨܥܥ)݇ = ቀܼݎݎ݋ܥ ௜ܺ,(ݐ)
−ݐ)′′)݇ቁfor k=0 to 12. If none of CCF(0) to CCF(12) is

significant |ݐ|) ≥ 2), drop ܺ௜(ݐ) from the model; otherwise, ܺ௜
′′ is used as the final

differencing series ܺ߂ for ܺ௜.

(c) If ܺ௜ is not dropped, its final differencing series ܺ߂ is used instead of ܺ௜ in model in

subsequent analysis.

Note:

 Each time ܺ௜(ݐ) is differenced, check if it becomes a constant series. If it becomes constant
after differencing, drop it out from the model.

 If the input series is differenced, this differenced series will be used in the subsequent steps.

 After this step, the number of input series may be further reduced because some may be
dropped.

 For CCF computation,

)ܨܥܥ)݇ =
௞ܥ
௑௓

௑ܵ ௓ܵ

where

௞ܥ
௑௓ =

1

݊− 1
෍ (ܺ௧ି ௞ − തܺ)(௧ܼ− ܼ̅)

௡

௧ୀ௞ାଵ

௑ܵ = ඩ
1

݊− 1
෍ (ܺ௧− തܺ)ଶ
௡

௧ୀଵ

௓ܵ = ඩ
1

݊− 1
෍ (௧ܼ− ܼ̅)ଶ
௡

௧ୀଵ

തܺ=
∑ ௑೟
೙
೟సభ

௡
is the sample mean of ܺ, and ܼ̅ =

∑ ௓೟
೙
೟సభ

௡
is the sample mean of .ܼ

6.7 Step 5: Fit the model

6.7.1 Initial model

Fit the following initial model by conditional least square method,

(ݐ)ܼ = ܿ+ ෍ ቌ෍ ߱௜௝ܤ
௝

௠

௝ୀ଴

ቍ

௜

(ݐ)௜ܺ߂ + ෍ ௞(1ߚ − ௗ(1(ܤ − (ݐ)௞ܫ௦)஽ܤ

ெ

௞ୀଵ

+ (ݐ)ܰ

17

where ∑௜ sums over all the un-dropped input series, the noise series N(t) follows a model which

has the exact same lags as the ARMA(p,q)(P,Q) model found for Z(t) in step 1(d) but no

constant term. That is to fit an AMModel with ARMA part corresponding to model obtained in

Step 1(d) and transfer function specified by

෍ ቌ෍ ߱௜௝ܤ
௝

௠

௝ୀ଴

ቍ

௜

(ݐ)௜ܺ߂ + ෍ ௞(1ߚ − ௗ(1(ܤ − (ݐ)௞ܫ௦)஽ܤ

ெ

௞ୀଵ

For example, suppose that the model found in step 1(d) for Z(t) is

(1 − ߮ଵܤ − ߮ଷܤ
ଷ)ܼ(ݐ) = 1 + (1 − ܤଶߠ

ଶ)(1 − ܤଵ߆
ଵଶ) (ݐܽ)

then the model for N(t) would be the above model with constant term dropped, i.e.

(1 − ߮ଵܤ − ߮ଷܤ
ଷ)ܰ(ݐ) = (1 − ܤଶߠ

ଶ)(1 − ܤଵ߆
ଵଶ) (ݐܽ)

Choose value m:

 For non-seasonal time series, m= 8;

 For seasonal series, e.g. monthly data, m=s+3. If s+3>20, take m=20.

When the total number of parameters is bigger than 1/2 of the sample size, decrease the order

m so that the total number of parameters is less than 1/2 of sample size. If this cannot be done,

(i.e. even m=0 would result that total number of parameters is bigger than 1/2 of sample size),

then set m=0.

6.7.2 Predictor deletion

Drop the insignificant time series predictor, ,(ݐ)௜ܺ߂ one at a time. Start from the last predictor,

suppose that (ݐ)௜ܺ߂ is the first one that none of its ൛߱ ௜௝ൟ௝ୀ଴
௠

is significant, then drop (ݐ)௜ܺ߂ from

the model, rebuild the initial model, and refit the model. Repeat this until no more time series

predictor need to be dropped.

Then, drop the insignificant event predictor, ,௜ܫ one at a time. Start from the last predictor,

suppose that (ݐ)௜ܫ is the first one that its ௜isߚ insignificant, then drop (ݐ)௜ܫ from the model,

rebuild the initial model, and refit the model. Repeat this until no more event predictor need to

be dropped.

6.7.3 Parameter deletion, model modification and refit:

 ARMA part

Delete all insignificant parameters |ݐ|) < 2) in ARIMA part.

 Constant term

Delete insignificant constant term only if the differencing order found in step 1(c), d or D, is

not zero.

18

 Refit the model if it is modified.

 Delete ARMA part and constant term as before.

 TSF part of each ܺ௜(ݐ), but not any intervention/event series I(t)

(a) If only one or two ߱௜௝ terms,�߱ ௜௝బ and ߱௜௝భ, are significant |ݐ|) ≥ 2), no rational form is

needed (i.e. denominator polynomial not needed). Use ߱௜௝బܺ߂௜(ݐ− ଴݆) + ߱௜௝భܺ߂௜(ݐ− ଵ݆).

(b) If more than two ߱௜௝ terms are significant, assuming that �߱ ௜௝బ is the first significant one,

use the form

൫߱ ௜௝బ + ߱௜(௝బାଵ)ܤ + ߱௜(௝బାଶ)ܤ
ଶ൯ܤ௝బ

(1 − ܤଵߜ − ܤଶߜ
ଶ)

(ݐ)௜ܺ߂

 Refit the modified model, if there are any insignificant parameters |ݐ|) < 2) in the numerator,

delete them and also delete other insignificant non-denominator parameters. Again, delete

insignificant constant term only if the differencing order, d or D, is not zero. Repeat this step

until all numerator parameters are significant.

 Refit the model, delete all insignificant parameters. Repeat this step until all parameters are

significant.

Note: In each refitting, use previous estimates as initial values for both numerators and

denominators, yet leave the initial values of ARMA part of N(t) to the default values.

Fit the resulted model by ML method. If there are insignificant parameters, delete them and

refit by ML method. Repeat until all parameters are significant.

6.8 Step 6: Diagnostic checking and model modification
Check the residual and modify the model exactly the same way as those in step 6 of univariate

procedure (see Section ‘Univariate ARIMA Expert Model’). If model is modified, refit the model

by CLS method. If there are insignificant parameters, delete them and refit by ML method.

6.9 Special cases
If all predictors are deleted after above steps, choose the model found in step 1, i.e. Univariate

ARIMA Expert Model for Y, as the expert model.

If any of the multivariate model estimation fails, choose Univariate ARIMA Expert Model for Y

as the expert model.

7 Multivariate Expert Model
For the target series specified with predictor series, Expert Modeler considers Transfer Function

Expert Model first, if it drops all predictor series and ends up with a univariate ARIMA model,

this univariate ARIMA model will be compared with Exponential Smoothing Expert Model and

19

Exhaustive ARIMA Search (if it is turned on) by model selection criterion to determine the final

recommendation. This is the default type for target series with predictor series specified.

8 Double Seasonal Expert Model
For a given series with two seasonality lengths specified, Expert Model can find one or more

reasonable models among above ES and ARIMA models based on model selection criterion (say

BIC or AIC, “average squared error on testing set” is not supported here).

Following models will be estimated:

 Single seasonal Univariate Expert Model for each seasonality

 Double seasonal models includes:

- Two ES models: additive and multiplicative double seasonal ES models

- One double seasonal ARIMA with identified orders of parameters

Implementation note:

 A setting can be used to specify whether only estimate the double seasonal models.

Following method can be used to identify the order of parameters in ARIMA:

1. First, use existing Univariate ARIMA Expert Model algorithm to indentify ,݌) (ݍ݀, ×

(ଵܲ,ܦଵ,ܳଵ)௦భ (here ଵݏ is the smaller seasonality length).

 If orders of (ଵܲ,ܦଵ,ܳଵ)௦భ are all 0, reduce the model to a single seasonal ,݌)ܣܯܫܴܣ (ݍ݀, ×

(ଶܲ,ܦଶ,ܳଶ)௦మ, use Univariate ARIMA Expert Model process to identify the model

structure and estimate the parameters;

 Else, go to step 2.

2. Then, simplify the same algorithm to indentify (ଶܲ,ܦଶ,ܳଶ)௦మ:

 For ,ଶܦ difference the series based on ݀ and :ଵܦ

(ݐ)ܼ = (1 − ௗ(1(ܤ − (ݐ)௦భ)஽భܻܤ

Fit model (ݐ)ܼ = ܿ+ −ݐ)ܼ߶ .(ଶݏ If)ݐ|})ܿ| < 2�ܽ݊݀�߶ > {(2,1)ܥ or

)ݐ|})ܿ| ≥ 2�ܽ݊݀�(߶ − 1) ݏ݁ (߶)⁄ > ,{(3,1)ܥ take difference(1 − .(ݏ)ܼ(௦మܤ All the critical

values)ܥ ,݅ 1) can reuse the values in Univariate ARIMA Expert Model.

 For ଶܲ and ܳଶ, set as 1. Then fit the model and delete the insignificant parameters.

 If (ଶܲ,ܦଶ,ܳଶ)௦మ in the final model are all 0, then it will reduced to the single seasonal

,݌)ܣܯܫܴܣ (ݍ݀, × (ଵܲ,ܦଵ,ܳଵ)௦భ.

Time Series Algorithm: Outlier Detection

1. Introduction
The observed series may be contaminated by so called outliers. These outliers may change the mean level

(deterministic outliers) of the uncontaminated series. Outlier detection procedure is to find if there are

outliers and what their locations, types, and magnitudes are when there are outliers.

The model for the uncontaminated series may or may not be known. When the model for uncontaminated

series is known, user can specify the model and the outlier detection is done with respect to this user-

specified model. When the model for uncontaminated series is unknown, outlier detection is combined with

model identification in Expert modeler.

Seven types of deterministic outliers are considered. They are additive outliers (AO), innovational outliers

(IO), level shift (LS), temporary (or transient) change (TC), seasonal additive (SA), local trend (LT), and

AO patch (AOP). Instead of calling them outliers, LS, TC, SA, and LT are also referred to as structure

changes by some people.

The rest of the sections are arranged as follows: Section 2 gives the definition of outliers. Section 3

estimates the magnitude of outliers assuming outlier location and outlier type are known. In the section 4,

the outliers including type and magnitude are detected automatically under two situations of model is

known and unknown. The section 5 is for output.

2. Definitions of outliers

2.1. Models considered for uncontaminated series
Suppose that the dependent series ௧ܻ,ݐ= 1,2,⋯ ,݊ can be decomposed into uncontaminated series ܷ௧
which does not contain information of outlier and another series ܱ௧which contains the information of

outliers including type and magnitude, i.e.

௧ܻ = ܷ௧+ ܱ௧

And assume that the uncontaminated series ܷ୲ follows either univariate ARIMA or transfer function

models of form

ܷ௧ = +௧ߤ
ଵ

∆
ܰ௧ = +௧ߤ

ఏ∗(஻)

∆థ ∗(஻) ௧ܽ Eq. (1)

where

 ௧ߤ is the level function and ܰ௧ is the disturbance or noise series follows an zero mean

ARIMA(p,q)(P,Q) model. For univariate ARIMA, ୲ߤ߂ is constant. For transfer function model,

μ୲depends on other predictor series.

 B is backward shift operator with ܤ ௧ܻ = ௧ܻି ଵ and ܤ ௧ܽ = ௧ܽି ଵ

 Δ is differencing operator Δ = (1 − ௗ(1(ܤ − ௦)஽ܤ , where ݀ and ܦ are the order of difference in

non-seasonal and seasonal part, respectively.

 (ܤ)∗߶ = ߶௣(ܤ)ߔ௉(ܤ௦) , where ߶௣(ܤ) and (௦ܤ)௉ߔ are the auto-regressive lag polynomial with

order p and seasonal auto-regressive lag polynomial with order P, respectively, and ݏ is the

seasonal length.

 (ܤ)∗ߠ = ,(௦ܤ)ொ߆(ܤ)௤ߠ where (ܤ)௤ߠ and (௦ܤ)ொ߆ are the moving average lag polynomial with

order q and seasonal moving average lag polynomial with order Q, respectively.

 ௧ܽ is white noise series normally distributed with mean zero and variance ,ଶߪ where =ݐ 1,⋯ ,݊

To conform to the model representation used in the ARIMA ADD, model in Eq. (1) can be re-written as

Δܷ௧= Δߤ௧+ ܰ௧

where Δμ୲ is the constant plus transfer function part in document ARIMA ADD.

2.2. Definition outlier

Types of outliers are defined as following:

AO (Additive Outliers)

Assume that an AO outlier occurs at time t = T, the observed series can be represented as

௧ܻ = ܷ௧+ ܫ்ݓ (ݐ)

where ܫ் (ݐ) = ቄ
0, ≠ݐ ܶ
1 =ݐ ܶ

�is a pulse function, ݓ is the deviation from the true ܷ୲caused by the outlier.

IO (Innovational Outliers)

Assume that an IO outlier occurs at time t = T, then

௧ܻ = +௧ߤ
(ܤ)∗ߠ

(ܤ)∗߶߂
(௧ܽ+ ܫ்ݓ ((ݐ)

LS (Level Shift)

Assume that a LS outlier occurs at time =ݐ ܶ, then

௧ܻ = ܷ௧+ ்ܵݓ (ݐ)

where ்ܵ (ݐ) =
ଵ

ଵି஻
ܫ் (ݐ) = ቄ

0, >ݐ ܶ
1 ≤ݐ ܶ

�is a step function.

TC (Temporary/Transient Change)

Assume that a TC outlier occurs at time t = T, then

௧ܻ = ܷ௧+ (ݐ)்ܦݓ

where (ݐ)்ܦ =
ଵ

ଵିఋ஻
ܫ் ,(ݐ) 0 < >ߜ 1 is a damp function.

SA (Seasonal Additive)

Assume that a SA outlier occurs at time t = T, then

௧ܻ = ܷ௧+ ܵܵݓ (ݐ)்

where ܵܵ (ݐ)் =
ଵ

ଵି஻ೞ
ܫ் (ݐ) = ൜

1, =ݐ ܶ+ <݇,ݏ݇ 0
0, ℎݐ݋ ݓݎ݁ ݏ݅݁

�is a step seasonal pulse function, and ݏ is seasonal

length.

LT (Local Trend)

Assume that a LT outlier occurs at time t = T, then

௧ܻ = ܷ௧+ ்ܶݓ (ݐ)

where ்ܶ (ݐ) =
ଵ

(ଵି஻)ೞ
ܫ் (ݐ) = ቄ

+ݐ 1 − ,ܶ ≤ݐ ܶ
0, ℎݐ݋ ݓݎ݁ ݏ݅݁

�is a local trend function.

AO patch

An AO patch is a group of two or more consecutive AO outliers. An AO patch can be described by its

starting time and length. Assume that there is a patch of AO outliers of length k at time =ݐ ܶ, the observed

series can be represented as

௧ܻ = ܷ௧+ ෍ ܫ௜்ݓ ିଵା௜(ݐ)

௞

௜ୀଵ

Due to masking effect, patch of AO outliers is very difficult to detect when searching for outliers one by

one. This is why AO patch is considered as a separate type from individual AO. For type AO patch, we will

search for the whole patch together.

Summary

For an outlier of type O at time ,ܶ except AO patch, we can write

௧ܻ = +௧ߤ +௧ܫ(ܤ)௢ܮݓ
ఏ∗(஻)

௱థ∗(஻) ௧ܽ Eq. (2)

Where

(ܤ)௢ܮ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

1, ܱ = ܱܣ
ଵ

൫∆గ(஻)൯
, ܱ = ܫܱ

ଵ

(ଵି஻)
, ܱ = ܮܵ

ଵ

(ଵିఋ஻)
, ܱ = ܥܶ

ଵ

(ଵି஻ೞ)
, ܱ = ܣܵ

ଵ

(ଵି஻)మ
, ܱ = ܮܶ

� Eq. (3)

with (ܤ)ߨ =
థ ∗(஻)

ఏ∗(஻)
.

Suppose there are ܯ outliers at times ଵܶ, ⋯ , ெܶ with types ܱଵ,ܱଶ, ⋯ ,ܱெ and magnitude ,ଶݓ,ଵݓ ⋯ ெݓ, .

The model incorporates all these outliers is

௧ܻ = +௧ߤ ∑ ெ(ܤ)ைೖܮ௞ݓ
௞ୀଵ ܫ்

ೖ
(ݐ) +

ఏ∗(஻)

௱థ ∗(஻) ௧ܽ Eq. (4)

3. Estimate the effects of an outlier

If the model, and the type and location of outliers are known, but the model parameters in Eq. (1) and

magnitudes of outliers are not known, then all parameters and magnitudes in Eq. (4) will be estimated using

ML method. The initial parameters in Eq. (1) will be computed using the method in ARIMA ADD and

initial magnitudes of outliers will be set to 0.

If the model, the model parameters in Eq. (1) and the type and location of an outlier are known, then

magnitude of outliers will be estimated as following:

Non-AO patch outliers

For any type of outlier at time ,ܶ except AO patch, we can write

௧ܻ = +௧ߤ ܫ்(ܤ)ܮݓ (ݐ) +
ఏ∗(஻)

௱థ∗(஻) ௧ܽ Eq. (5)

Let ௧݁ =)∆(ܤ)ߨ ௧ܻ− (௧ߤ = ௧ܻ− ෠ܻ
௧ = ܰ௧− ෡ܰ

௧ be the residual, where ෠ܻ௧ is the prediction of ௧ܻ, assuming

that there is no outlier. Let ௧ݔ = ܫ்߂(ܤ)ܮ(ܤ)ߨ .(ݐ) So

௧݁ = +௧ݔݓ ௧ܽ

From residuals ௧݁, the parameters for outliers at time ܶ are estimated by least square regression of ௧݁ on ,௧ݔ

i.e.

(ܶ)ݓ =
∑ ௘೟௫೟
೙
೟సభ

∑ ௫೟
మ೙

೟సభ
Eq. (6)

And

ܸ ((ܶ)ݓ)ݎܽ =
ଶߪ

∑ ௧ݔ
ଶ௡

௧ୀଵ

Note: when there are missing residuals, the regression should use only non-missing pairs of e୲and x୲.

For j = 1 (AO), 2 (IO), 3 (LS), 4 (TC), 5 (SA), 6 (LT), define

(ܶ)௝ߣ =
௪ೕ(்)

ට௏௔௥൫௪ೕ(்)൯
Eq. (7)

Under the null hypothesis of no outlier, (ܶ)௝ߣ is distributed as ܰ(0,1) assuming the model and model

parameters are known.

AO patch outliers

For an AO patch of length k starting at time ,ܶ let (ܶ;ݐ)௜ݔ = ܫ்߂(ܤ)ߨ ା௜ି ଵ(ݐ) for �݅= 1 to ,݇ then

௧݁ = ∑ ௜(ܶ)௞ݓ
௜ୀଵ (ܶ;ݐ)௜ݔ + ௧ܽ Eq. (8)

Multiple linear regression can be used to fit this model. For an AO patch starting at time ,ܶ we have:

(ܶ)ݓ = ,(ܶ)ଵݓ} ⋯ {(ܶ)௞ݓ, = (்ܺ
ᇱ்ܺ)ିଵ்ܺ

ᇱࢋ Eq. (9)

Where =܍ (ଵ݁, ⋯ , ௡݁)ᇱ and ்ܺ = ൫ݔଵ(ܶ), ⋯ ௞(ܶ)൯withݔ, (ܶ)௜ݔ = ൫ݔ௜(1;ܶ), ⋯)௜ݔ, ;݊ܶ)൯
ᇱ
, and

((ܶ)௜ݓ߬) =
௪೔(்)

ටఙమቀ൫௑೅
ᇲ௑೅൯

షభ
ቁ
೔೔

Eq. (10)

߯ଶ(ܶ) =
௪ ᇲ(்)൫௑೅

ᇲ௑೅൯௪ (்)

ఙమ
Eq. (11)

Assuming the model and model parameters are known, ((ܶ)௜ݓ߬) is distributed as ܰ(0,1) under the null

hypothesis (ܶ)௜ݓ = 0, and χଶ(ܶ) is of Chi-square distribution with degree of freedom being k under the

null hypothesis (ܶ)ଵݓ = ⋯ = (ܶ)௞ݓ = 0.

4. Detection of outliers
In practice, locations and types of outliers are unknown. Quite often the model for ܷ௧ is unknown as well.

Even the model is known, the parameters in the model are unknown Here we propose a procedure that can

detect outlier automatically.

Outlier detection is offered for 1) user-specified model; 2) unknown model. In the second situation, the

expert modeler without outlier detection is used iteratively to find a proper model after adjusting outlier

effects.

4.1 Critical values
In the outlier detection, three critical values are needed:

 ଵܥ : Critical value for non-AO patch deterministic outliers. The critical value depends on series

length .݊ An approximate relationship between ଵܥ and ݊ is

)ଵܥ)݊ = ඥ0.9 + 2.2 ln()݊

which is used in TSMODEL procedure in SPSS Statistics based on some simulations. We also use

it in this document.

 ଶܥ : Critical for AO patch. The critical value depends on series length ݊ and patch length .݇ A An

approximate relationship between ଶܥ , ݊ and ݇ is

)ଶܥ ,݇)݊ = −2.4 + 1.2݇+ 2.6 ln()݇ + 2.6 ln()݊

which is used in TSMODEL procedure in SPSS Statistics based on some simulations. We also use

it in this document.

4.2 Outlier detection procedure
Following, ܯ represent the total number of outliers, ܭ represent the number of outliers found in one

iteration. ܰܽ݀ ݆represents the number of times data being adjusted for outliers.

1. Set ܯ = 0, ௧ܻ
∗ = ௧ܻ, and ܰܽ݀ ݆= 0.

2. Assuming no outliers for ௧ܻ
∗:

 For user-specified model, use ML method to fit the model on ௧ܻ
∗.

 For unknown model, use expert modeler without outlier detection to find and fit a

proper model on ௧ܻ
∗.

Suppose the model is ௧ܻ
∗ = +௧ߤ

ఏ∗(஻)

Δథ ∗(஻) ௧ܽ.

Note: a) this step is only visited once at beginning for user-specified model.

3. Compute the residuals ௧݁ = ௧ܻ
∗ − ෠ܻ

௧
∗ = ܰ௧

∗ − ෡ܰ
௧
∗ from the fitted model.

Let ,ଶݐ,ଵݐ ⋯ ௠ݐ, be the times with non-missing residuals.

Steps 4 to 13 identify outlier candidates, adjust residuals.

4. Set ܭ = 0.

5. Detect a possible non-AOP outlier.

Using residuals, ௧݁, and parameter estimates from the fitted model, calculate the following

statistics for outliers other than AO patch by Eq. (6) and (7):

Test statistics: ஽ߣ = max௝൛max௜൫หߣ௝(ݐ௜)ห൯ൟ.

Outlier type: ܱ = ݎܽ݃ max௝൛max௜൫หߣ௝(ݐ௜)ห൯ൟ.

Location of outlier: ஽ܶ = ݎܽ݃ max௧೔(|ߣை(ݐ௜)|).

Magnitude of outlier:)ைݓ ஽ܶ).

Note:

 Use =ߜ 0.8 as default in calculating ߣ for TC outliers.

 Don’t consider LS if ௜ݐ is too close to either beginning or end of the series, say, ݅≤ ܽ or

݉ − ݅≤ ܽ− 2, with ܽ= 5 as default.

 Don’t consider SA if =ݏ 1.

6. Detect a possible AO patch (see section “AO patch detection” for details).

If an AO patch is detected, let ஺݇ை௉ and ஺ܶை௉ represent the length and the starting time of the

patch, ቄݓ௝(஺ܶை௉),߬ቀݓ௝(஺ܶை௉)ቁቅ
௝ୀଵ

௞ಲೀು
the magnitudes and t-values of AOs in the patch, ஺߯ை௉

ଶ the

Chi-Square statistics related to this AO patch.

Else, set ஺߯ை௉
ଶ = 0.

7. If (஽ߣ < ଵܥ and ஺߯ை௉
ଶ <)ଶܥ ஺݇ை௉)), go to 14.

8. If ஽ߣ) ≥ ଵܥ and ஺߯ை௉
ଶ <)ଶܥ ஺݇ை௉)), go to 11.

9. If ஽ߣ) < ଵܥ and ஺߯ை௉
ଶ ≥)ଶܥ ஺݇ை௉)), go to 12.

10. If ஽ߣ) ≥ ଵܥ and ஺߯ை௉
ଶ ≥)ଶܥ ஺݇ை௉)), {

If ቀఒವ
஼భ
ቁ
ଶ

>
ఞಲೀು
మ

஼భ(௞ಲೀು)
and ஽ߣ > max௜൬߬ ቀݓ௝(஺ܶை௉)ቁ൰, go to 11.

Else, go to 12.

}

11. There is a possible non-AOP deterministic outlier at time ஽ܶ of type O. {

Set ܭ = ܭ + 1.

Adjust residuals by removing the effect of this possible outlier:

௧݁ = ௧݁−)ைݓ ஽ܶ)ܮ(ܤ)ߨை(ܤ)Δ்ܫ
ವ

(ݐ)

}

Go to 13.

12. There is a possible AO patch of length ஺݇ை௉ at time ஺ܶை௉ {

Set ܭ = ܭ + ஺݇ை௉ .

Adjust residuals by removing the effect of this possible AO patch:

௧݁ = ௧݁− ෍)௜ݓ ஺ܶை௉)(ܤ)ߨΔ்ܫ
ಲೀುା௜ି ଵ(ݐ)

௞ಲೀು

௜ୀଵ

}

13. Calculate the new estimate of ଶߪ to be the variance of trimmed ௧݁, with top (min(n*5%,10) – M –

K) biggest | ௧݁| removed.

Go to 5.

14. If ܭ = 0, {

If ܯ = 0, stop. No outlier of any type is found.

If ܯ > 0, go to 21.

}

15. If ܭ > 0, set ܯ ∗ = ܯ , ܯ = ܯ + ܭ .

Steps 16 to 17 fit the joint model, and delete insignificant outlier candidate one at a time.

16. For ܭ > 0, check if there are redundant outlier candidates among all the ܯ outlier candidates. An

outlier candidate is redundant if there is another outlier candidate being of same type and same

occurring time. This also applies to AO candidates found through either AO patch search or

individual AO search. If there are redundant outlier candidates, combine them into one and ܯ to

reflect the number of non-redundant outlier candidates. For the outliers formed by combining

redundant outliers, their estimated magnitudes (that will be used as initial values in the following

model estimation) should also be adjusted: ݓ = ଵݓ + ଶݓ if combining two redundant outliers of

magnitude ଵݓ and ,ଶݓ and =ߜ ଵߜ) + ଶ)/2ߜ (the mean) for TC outliers.

Incorporate all ܯ outlier candidates in the following intervention model for original series Y୲:

௧ܻ = +௧ߤ ෍ (ܤ)ைೖܮ௞ݓ

ெ

௞ୀଵ

ܫ்
ೖ

(ݐ) +
(ܤ)∗ߠ

(ܤ)∗߶߂ ௧ܽ

Estimate this model by ML method with initial parameters set at the previously estimated values.

Please note that w’s for outliers are part of parameters to be estimated. Also please note that δ’s

for TC outliers are parameters between 0 and 1.

17. From result of step 16, if there are insignificant outlier candidates, delete them one at a time, i.e.:

If min௞ ൜ฬ
௪ೖ

ඥ௏௔௥(௪ೖ)
ฬൠ= ቮ

௪ೕ

ට௏௔௥൫௪ೕ൯
ቮ= หݐ൫ݓ௝൯ห< ଵܥ {

Delete the outlier at time ௝ܶ, set ܯ = ܯ� − 1.

If ܯ > 0, go to 16 with the remaining outliers.

}

18. If the ܯ outliers are the same as or a subset of the previous ܯ ∗ outliers, go to 21.

19. If ܯ > 0 {

If model is unknown {

Adjust data by removing the ܯ outlier effects:

௧ܻ
∗ = ௧ܻ− ෍ (ܤ)ைೖܮ௞ݓ

ெ

௞ୀଵ

ܫ்
ೖ

(ݐ)

Set ܰܽ݀ ݆= ܰܽ݀ ݆+ 1.

}

else {

௧ܻ
∗ = ௧ܻ

}

}

20. If model is unknown and ܰܽ݀ ݆= 1, go to 2 to re-identify model. Otherwise, go to 3.

21. Now ܯ outliers in total are found. Use ML method to fit the following model that incorporates all

the outliers on the original input series ௧ܻ with initial parameter values set at the previously

estimated values:

௧ܻ = +௧ߤ ෍ (ܤ)ைೖܮ௞ݓ

ெ

௞ୀଵ

ܫ்
ೖ

(ݐ) +
(ܤ)∗ߠ

Δ߶∗(ܤ) ௧ܽ

Delete insignificant parameter (|t-value|<2) one at a time starting with the most insignificant

parameter (only delete parameter that is related to outliers for user-specified model), refit. Repeat

until all parameters are significant. Please note that a TC outlier becomes an AO outlier when

denominator parameter of a TC is insignificant and numerator parameter is significant.

Implementation note:

 Throughout the whole outlier detection procedure, ௧ܻ and predictors in ௧ߤ represent log or square

root transformed series if the transformations are requested in user-specified model or found

necessary by the expert modeler. When model is unknown, only the initial use of expert modeler

identifies the transformation. Subsequent use of expert modeler should skip the transformation

identification step.

4.3 AO patch detection
Following detection procedure produces a candidate AO patch: AOpatch. If AOpatch is not null, Chi-

square statistics χଶ related to it is also produced. I here use pseudo code to describe how a candidate AO

patch is found. First, some functions are defined.

LongestPiece(patch1, crit, patch2, nsig)

For the given patch patch1, find the longest sub-patch patch2 of consecutive significant AOs in the

patch. An AO in the patch is significant if its t–value defined in Eq. (10) equals or is bigger than crit.

LongestPiece returns a new patch patch2, and nsig the number of significant AOs in patch1.

Shorten(patch1, crit, patch2, nsig)

For the given patch patch1, shorten it by removing insignificant AOs at both ends. Shorten returns a

new patch patch2, and nsig the number of significant AOs in patch1.

StepShorten(patch1, crit0, crit1, nstep, patch2, ChiSq)

For the given patch patch1, use Shorten() to shorten it in nstep steps. Each step uses the patch found

in the previous step to fit the model in Eq. (8) if it is not already done, and use a higher critical value to

shorten it based on the newly fitted values. The critical value for step �݅is ݎܿ݅ 0ݐ + ∗݅ (1ݐݎܿ݅ −

ݐ݁ݏ݊/(0ݐݎܿ݅ .݌ StepShorten returns a new patch patch2 such that there are no insignificant AOs at

either end of the patch (this may need extra fit and shorten steps Shorten(, crit1, ,)), and the Chi-

Square statistics (Eq. (11)) related to patch2: ChiSq. If at any step, the patch length after Shorten() is 1

or less, stop and return patch2 = null.

Detection procedure

Let 0ܱܲܣܥ = 2.5, 1ܱܲܣܥ .ଵܥ�=

1. Consider maximum patch length ݇= ௠݇ ௔௫ (default ௠݇ ௔௫ = 5).

2. Use multiple least square regression to fit model in Eq. (8) to calculate ߯ଶ(ݐ) and

ቄݓ௝(ݐ),߬ቀݓ௝(ݐ)ቁቅ
௝ୀଵ

௞

for all eligible patches, where ݐ represents the starting time of the patch.

A patch starting at time isݐ eligible if any of the following conditions is satisfied.

a) All residuals in the patch, ௧݁ to ௧݁ା௞ିଵ, are non-missing.

b) Either =ݐ 1 or ௧݁ି ଵ is missing, and first two residuals ௧݁ and ௧݁ାଵ in the patch are non-

missing.

c) If =ݐ ݊− ݇+ 1 and there are at least 2 consecutive non-missing residuals in the patch.

Please note that this is the last possible patch and ௧݁ could be missing.

3. Find the first ܮ (default =ܮ 3) patches of largest ߯ଶ(ݐ௜), sorted in decreasing order: Toppatch[]݈,

�݈= 1 to .ܮ

4. Set AOpatch0 = AOpatch = null.

5. LongestPiece (Toppatch[1], CAOP0, newpatch, nsig)

6. If length(newpatch) == nsig, {

If (length(newpatch) > 1), AOpatch0 = newpatch.

}

7. Else {

7a) patch1=newpatch

7b) ݈= ݈+ 1

7c) Shorten(Toppatch[]݈, CAOP0, newpatch, nsig).

7d) If (length(newpatch) == nsig) {

If (length(newpatch) > 1), AOpatch0 = newpatch.

}

7e) Else if ݈< ,ܮ go to 7b).

7f) Else if (length(patch1) > 1), AOpatch0 = patch1.

}

8. If (length(AOpatch0) > 1), StepShorten(AOpatch0, CAOP0, CAOP1, nstep, AOpatch, ߯ଶ), where

nstep=2 as default.

Implementation note:

 Step 1 to 3 can be done together with the step 5 of “A combined Procedure” using one data pass.

 In the step 2 of AO patch detection procedure, when fitting the model in Eq. (8), the cases with

missing residuals are eliminated. Also AO at time +ݐ ݅− 1 is treated as insignificant if ௧݁ା௜ି ଵ is

missing.

Some recursive relationships can be used do multiple regression for starting time ܶ+ 1 based on

that for starting time :ܶ

Let =∆(ܤ)ߨ −∑ ܤ௜ߨ
௜∞

௜ୀ଴ with ଴ߨ = −1, then ்ܺ in Eq.(9) for starting time ܶ will be

்ܺ = ൫ܠଵ(ܶ), ⋯ ௞(ܶ)൯ܠ,

where (ܶ)௜ܠ = ൫ݔ௜(1;ܶ), ⋯)௜ݔ, ;݊ܶ)൯
′

= (0,⋯ ,0, ,଴ߨ− ⋯ , (௡ି்ି௜ାଵߨ−

The ்ܺାଵ, ்ܺାଵ′ ்ܺାଵ and (்ܺାଵ
′ ்ܺାଵ)ିଵ for the start time ܶ+ 1 can be computed as

்ܺାଵ = ൬
૙

்ܺ[1: (݊− 1),]
൰

்ܺାଵ
′ ்ܺାଵ = ்ܺ

′ ்ܺ − ்ܝ்ܝ
′

(்ܺାଵ
′ ்ܺାଵ)ିଵ = (்ܺ

′ ்ܺ)ିଵ +
(்ܺ

′ ்ܺ)ିଵࢀܝ்ܝ
′ (்ܺ

′ ்ܺ)ିଵ

1 − ்ܝ
′ (்ܺ

′ ்ܺ)ିଵ்ܝ

where ்ܺ[1: (݊− 1),] is a matrix formed by row 1 to row ݊− 1 of matrix ்ܺ, and

்ܝ = ,௡ି்ߨ−) ⋯ , .′(௡ି்ି௞ାଵߨ−

5. Output
After outlier model building, all outputs that are listed in the ARIMA ADD are needed. In addition, below

outlier information will be output:

 Outlier location

 Outlier type

 Magnitude estimate

 Standard error of magnitude

 t value

 p value

	IBM SPSS Modeler 18.0 Algorithms Guide
	Contents
	Adjusted Propensities Algorithms
	Model-Dependent Method
	General Purpose Method

	Anomaly Detection Algorithm
	Overview
	Primary Calculations
	Notation
	Algorithm Steps
	Blank Handling

	Generated Model/Scoring
	Predicted Values
	Blank Handling

	Apriori Algorithms
	Overview
	Deriving Rules
	Frequent Itemsets
	Generating Rules
	Blank Handling
	Effect of Options

	Generated Model/Scoring
	Predicted Values
	Confidence
	Blank Handling

	Automated Data Preparation Algorithms
	Notation
	Date/Time Handling
	Univariate Statistics Collection
	Basic Variable Screening
	Checkpoint 1: Exit?
	Measurement Level Recasting
	Outlier Identification and Handling
	Missing Value Handling
	Continuous Predictor Transformations
	Z-score Transformation
	Min-Max Transformation

	Target Handling
	Bivariate Statistics Collection
	Categorical Variable Handling
	Reordering Categories
	Identify Highly Associated Categorical Features
	Supervised Merge
	P-value Calculations
	Unsupervised Merge

	Continuous Predictor Handling
	Supervised Binning
	Feature Selection and Construction
	Principal Component Analysis
	Correlation and Partial Correlation

	Discretization of Continuous Predictors
	Predictive Power
	References

	Bayesian Networks Algorithms
	Bayesian Networks Algorithm Overview
	Primary Calculations
	Notation
	Handling of Continuous Predictors
	Feature Selection via Breadth-First Search
	Tree Augmented Naïve Bayes Method
	Markov Blanket Algorithms
	Blank Handling

	Model Nugget/Scoring

	Binary Classifier Comparison Metrics
	C5.0 Algorithms
	Scoring

	Carma Algorithms
	Overview
	Deriving Rules
	Frequent Itemsets
	Generating Rules
	Blank Handling
	Effect of Options

	Generated Model/Scoring
	Predicted Values
	Confidence
	Blank Handling

	C&RT Algorithms
	Overview of C&RT
	Primary Calculations
	Frequency and Case Weight Fields
	Model Parameters
	Blank Handling
	Effect of Options

	Secondary Calculations
	Risk Estimates
	Gain Summary

	Generated Model/Scoring
	Predicted Values
	Confidence
	Blank Handling

	CHAID Algorithms
	Overview of CHAID
	Primary Calculations
	Frequency and Case Weight Fields
	Binning of Scale-Level Predictors
	Model Parameters
	Blank Handling
	Effect of Options

	Secondary Calculations
	Risk Estimates
	Gain Summary

	Generated Model/Scoring
	Predicted Values
	Confidence
	Blank Handling

	Cluster Evaluation Algorithms
	Notation
	Goodness Measures
	Data Preparation
	Basic Statistics
	Silhouette Coefficient
	Sum of Squares Error (SSE)
	Sum of Squares Between (SSB)

	Predictor Importance
	References

	COXREG Algorithms
	Cox Regression Algorithms
	Estimation
	Estimation of Beta
	Estimation of the Baseline Function
	Selection Statistics for Stepwise Methods
	Score Statistic
	Wald Statistic
	LR (Likelihood Ratio) Statistic
	Conditional Statistic

	Statistics
	Initial Model Information
	Model Information
	Information for Variables in the Equation
	Information for the Variables Not in the Equation
	Survival Table

	Plots
	Survival Plot
	Hazard Plot
	LML Plot

	Blank Handling
	Scoring
	Blank Handling

	References

	Decision List Algorithms
	Algorithm Overview
	Terminology of Decision List Algorithm
	Main Calculations
	Notation
	Primary Algorithm
	Decision Rule Algorithm
	Decision Rule Split Algorithm

	Secondary Measures
	Blank Handling
	Generated Model/Scoring
	Blank Handling

	DISCRIMINANT Algorithms
	Notation
	Basic Statistics
	Mean
	Variances
	Within-Groups Sums of Squares and Cross-Product Matrix (W)
	Total Sums of Squares and Cross-Product Matrix (T)
	Within-Groups Covariance Matrix
	Individual Group Covariance Matrices
	Within-Groups Correlation Matrix (R)
	Total Covariance Matrix
	Univariate F and Λ for Variable I

	Rules of Variable Selection
	Method = Direct
	Stepwise Variable Selection
	Ineligibility for Inclusion

	Computations During Variable Selection
	Tolerance
	F-to-Remove
	F-to-Enter
	Wilks’ Lambda for Testing the Equality of Group Means
	The Approximate F Test for Lambda (the “overall F”), also known as Rao’s R (Tatsuoka, 1971)
	Rao’s V (Lawley-Hotelling Trace) (Rao, 1952; Morrison, 1976)
	The Squared Mahalanobis Distance (Morrison, 1976) between groups a and b
	The F Value for Testing the Equality of Means of Groups a and b (Smallest F ratio)
	The Sum of Unexplained Variations (Dixon, 1973)

	Classification Functions
	Canonical Discriminant Functions
	Percentage of Between-Groups Variance Accounted for
	Canonical Correlation
	Wilks’ Lambda
	The Standardized Canonical Discriminant Coefficient Matrix D
	The Correlations Between the Canonical Discriminant Functions and the Discriminating Variables
	The Unstandardized Coefficients
	Tests For Equality Of Variance

	Blank Handling
	Generated model/scoring
	Cross-Validation (Leave-one-out classification)
	Blank Handling (discriminant analysis algorithms scoring)

	References

	Ensembles Algorithms
	Bagging and Boosting Algorithms
	Notation
	Bootstrap Aggregation
	Bagging Model Measures
	Adaptive Boosting
	Stagewise Additive Modeling using Multiclass Exponential loss
	Boosting Model Measures
	References

	Very large datasets (pass, stream, merge) algorithms
	Pass
	Stream
	Merge
	Adaptive Predictor Selection
	Automatic Category Balancing
	Model Measures
	Scoring

	Ensembling model scores algorithms
	Notation
	Scoring

	Factor Analysis/PCA Algorithms
	Overview
	Primary Calculations
	Factor Extraction
	Factor Rotation
	Factor Score Coefficients
	Blank Handling

	Secondary Calculations
	Field Statistics and Other Calculations

	Generated Model/Scoring
	Factor Scores
	Blank Handling

	Feature Selection Algorithm
	Introduction
	Primary Calculations
	Screening
	Ranking Predictors
	Selecting Predictors

	Generated Model

	GENLIN Algorithms
	Generalized Linear Models
	Notation
	Model
	Estimation
	Model Testing
	Blank handling
	Scoring

	References

	Generalized linear mixed models algorithms
	Notation
	Model
	Fixed effects transformation

	Estimation
	Linear mixed pseudo model
	Iterative process
	Wald confidence intervals for covariance parameter estimates
	Statistics for estimates of fixed and random effects

	Testing
	Goodness of fit
	Tests of fixed effects
	Estimated marginal means
	Method for computing degrees of freedom

	Scoring
	Nominal multinomial distribution
	Notation
	Model
	Estimation
	Post-estimation statistics
	Testing
	Scoring

	Ordinal multinomial distribution
	Notation
	Model
	Estimation
	Post-estimation statistics
	Testing
	Scoring

	References

	GLE Algorithms

	Generalized Linear Engine (GLE) Algorithm
	1.	Introduction – Phase I
	2.	Model
	2.1. Notations
	2.2. Model formation

	3.	Estimation
	3.1. Parameter estimation

	4.	Inference and Model Summary
	4.1 Parameter inference
	4.2 Tests
	4.3 Goodness of fit

	5.	Scoring
	5.1 Predicted values
	5.2 Model diagnostics

	Appendix A - Ordinal Multinomial Distribution
	Appendix B - Nominal Multinomial Distribution
	Appendix C - Tweedie Distribution
	Appendix D - Digamma and Trigamma Function
	References – Phase I
	6.	Introduction – Phase II
	7.	Automatic two-way interaction detection
	7.1 Notations
	7.2 Basic statistics
	7.3 Two-way interaction test
	7.4 Pseudo log-likelihood value computation
	7.5 Nominal multinomial distribution
	7.6 Ordinal multinomial distribution
	7.7 Two-way-test pair search strategy

	8.	Model selection
	8.1 Variable selection or regularization
	8.2 Distribution and link function selection
	8.3 Automatic detection of distribution, link function and effects
	8.4 Handle large volume of data

	9.	Scoring
	9.1 Prediction for binomial distribution with 0/1 binary response variable
	9.2 ROC curve for binomial distribution with 0/1 binary response variable

	10.	Model diagnostics
	10.1 Influential outlier
	10.2 Diagnostic plots
	10.3 Trend analysis from diagnostics plots

	Appendix A: Grouping analysis and unusual category detection
	A.1.	All distributions except multinomial and binomial distribution with 0/1 binary response
	A.2.	Multinomial distribution and binomial distribution with 0/1 binary response

	References – Phase II
	11.	Introduction – Phase III
	12.	Parameter estimation for the large p situations
	13.	Parameter estimation with regularizations
	14.	Post-estimation statistics
	14.1. Solving 𝐋𝚺𝐋𝐓
	14.2. Calculating diagonal values of 𝚺

	References

	Imputation of Missing Values
	Imputing Fixed Values
	Imputing Random Values
	Imputing Values Derived from an Expression
	Imputing Values Derived from an Algorithm

	K-Means Algorithm
	Overview
	Primary Calculations
	Field Encoding
	Model Parameters
	Blank Handling
	Effect of Options

	Model Summary Statistics
	Generated Model/Scoring
	Predicted Cluster Membership
	Distances
	Blank Handling

	KNN Algorithms
	Notation
	Preprocessing
	Training
	Distance Metric
	Crossvalidation for Selection of k
	Feature Selection
	Combined k and Feature Selection

	Blank Handling
	Output Statistics
	Scoring
	Blank Handling

	References

	Kohonen Algorithms
	Overview
	Primary Calculations
	Field Encoding
	Model Parameters
	Blank Handling
	Effect of Options

	Generated Model/Scoring
	Cluster Membership
	Blank Handling

	Linear modeling algorithms
	Notation
	Model
	Least squares estimation
	Model selection
	Forward stepwise
	Best subsets

	Model evaluation
	Coefficients and statistical inference
	Scoring
	Diagnostics
	Predictor importance
	References

	Linear-AS Algorithms

	1.	Linear AS (Phase I)
	2.	Notations
	3.	Model
	3.1. 	Missing values

	4.	Least Squares Coefficient Estimation
	5.	Automatic Interaction Effect Detection
	5.1.	Interaction of two factors
	5.2.	Interaction of a covariate and a factor
	5.3.	Two-way-test pair search strategy

	6.	Model Selection
	6.1.	None
	6.2.	Forward stepwise
	6.3. 	Best subsets (will update the relevant default values later)

	7.	Model and Predictor Summary
	7.1.	Coefficients and statistical inference
	7.2.	ANOVA (Tests of model effects)
	7.3.	Model quality measures
	7.4.	Predictor importance (PI)
	7.5.	EMMEANS
	7.6.	Grouping and unusual category detection

	8.	Scoring
	8.1.	Predictive and residual values
	8.2.	Influence statistics
	8.3.	Influential outliers

	9.	Model diagnostics
	9.1.	 Homoskedasticity
	9.2.	Plots (in Model Viewer)

	References – Phase I
	Appendix A: Map Reduce Algorithm for Some Statistics
	A.1.	Notation
	A.2.	Computing Correlation
	A.3.	Computing statistics for interaction detection for two factors
	A.4.	Computing statistics for interaction detection for a covariate and a factor

	Appendix B: Sweep operations
	Appendix C: A method to search models
	10.	Linear AS (Phase II)
	11.	Notations
	12.	Effect Size
	12.1. Effect sizes and confidence intervals for effects
	12.2. Effect sizes and confidence intervals for coefficients

	13.	Bisection method for noncentality parameter
	References – Phase II

	Linear Regression Algorithms
	Overview
	Primary Calculations
	Notation
	Model Parameters
	Automatic Field Selection
	Blank Handling

	Secondary Calculations
	Model Summary Statistics
	Field Statistics and Other Calculations

	Generated Model/Scoring
	Predicted Values
	Blank Handling

	Logistic Regression Algorithms
	Logistic Regression Models
	Multinomial Logistic Regression
	Primary Calculations
	Secondary Calculations
	Stepwise Variable Selection
	Generated Model/Scoring

	Binomial Logistic Regression
	Notation
	Model
	Maximum Likelihood Estimates (MLE)
	Stepwise Variable Selection
	Statistics
	Generated Model/Scoring

	LSVM Algorithms

	Linear SVM Algorithm
	1.	Introduction
	2.	Models
	2.1 Classification
	2.2 Regression

	3.	Parameter estimation
	3.1 Classification
	3.2 Regression

	4.	Post-estimation statistics
	4.1 Prediction
	4.2 Performance measure
	4.3 Probability
	4.4 Standard deviation

	References

	Neural Networks Algorithms
	Multilayer Perceptron
	Notation
	Architecture
	Training

	Radial Basis Function
	Notation
	Architecture
	Training

	Missing Values
	Output Statistics
	Confidence
	References

	OPTIMAL BINNING Algorithms
	Notation
	Simple MDLP
	Class Entropy
	Class Information Entropy
	Information Gain
	MDLP Acceptance Criterion
	Algorithm: BinaryDiscretization
	Algorithm: MDLPCut
	Algorithm: SimpleMDLP

	Hybrid MDLP
	Algorithm: EqualFrequency
	Algorithm: HybridMDLP

	Model Entropy
	Merging Sparsely Populated Bins
	Blank Handling
	References

	Predictor Importance Algorithms
	Notation
	Variance Based Method
	References

	QUEST Algorithms
	Overview of QUEST
	Primary Calculations
	Frequency Weight Fields
	Model Parameters
	Blank Handling
	Effect of Options

	Secondary Calculations
	Risk Estimates
	Gain Summary

	Generated Model/Scoring
	Predicted Values
	Confidence
	Blank Handling

	Random Trees Algorithms

	1.	Introduction
	2.	Notes
	3.	Notations
	4.	General Workflow
	5.	Data Pre-processing
	5.1. Filtering Variables
	5.2. Transformations
	5.3. Summary Statistics

	6.	Building Base Trees
	6.1. Generating Bootstrap Samples
	6.2. Defining <key, value> Pairs
	6.3. Partitioning OOB Cases
	6.4. Processing Each Case
	6.5. Splitting Nodes
	6.6. In-Memory Building
	6.7. Stopping Rules
	6.8. Controller Design

	7.	Model Evaluation and Insights
	7.1. Evaluation Measures
	7.2. Interpretation and Insights

	8.	Random Trees Scoring
	8.1. Node Assignment
	8.2. Case Assignment
	8.3. Predictor Contribution

	Appendix A. Computing Statistics
	A.1. Local Statistics
	A.2. Global Statistics
	A.3. Splitting Points and Statistics

	Appendix B. Optimal Partitioning
	References

	Self-Learning Response Model Algorithms
	Primary Calculations
	Naive Bayes Algorithms
	Notation
	Naive Bayes Model

	Secondary Calculations
	Model Assessment

	Blank Handling
	Updating the Model
	Generated Model/Scoring
	Predicted Values and Confidences
	Variable Assessment

	Sequence Algorithm
	Overview of Sequence Algorithm
	Primary Calculations
	Itemsets, Transactions, and Sequences
	Sequential Patterns
	Adjacency Lattice
	Mining for Frequent Sequences
	Generating Sequential Patterns
	Blank Handling

	Secondary Calculations
	Confidence

	Generated Model/Scoring
	Predicted Values
	Confidence
	Blank Handling

	Simulation A
lgorithms
	Simulation algorithms
	Notation
	Distribution fitting
	Goodness of fit measures
	Anderson-Darling statistic with frequency weights
	References

	Simulation algorithms: run simulation
	Generating correlated data
	Sensitivity measures
	References

	SNA Diffusion
Analysis Algorithms
	1.	Introduction
	2.	Notations
	3.	Creating the Adjacency Matrix
	3.1	Counting the Number of Calls as Weight
	3.2	Counting the Total Duration as Weight

	4.	Description of the Diffusion Algorithm
	4.1	Initialization
	4.2	Normalization of the Adjacency Matrix
	4.3	Diffusion Update Equations
	4.4	Simplification of the Update Equations
	4.5	Convergence Criterion

	5.	Implementation Issues
	5.1	Algorithm State Machine
	5.2	Saved Data Structures
	5.3	Termination of the Computation
	5.4	Parallelization Scheme

	6.	References

	SNA Group Analysis Algorithms

	1.	Introduction
	2.	Input, Output, and Parameters
	2.1	Running the Algorithm from a Command Line
	2.2	Basic information flow
	2.3	Sample Parameter File

	3.	The Various Stages of the Algorithm
	3.1	Building the Kernel Graph
	3.2	Building the Core Groups
	3.3	Building the Final Groups: Linking Non Core Nodes
	3.4	Analyzing Social Influence in the Final Groups
	3.5	Computing the Final KPIs

	4.	Implementation Issues
	4.1	Algorithm State Machine
	4.2	Parallelization Model
	4.3	A Note on Time and Space Complexity
	4.4	The GA Code

	5.	References

	Spatial Temporal Prediction Algorithms

	Spatial Temporal Prediction Algorithms
	1.	Introduction
	1.1	Handling of missing data

	2	Model
	2.1	Notation
	2.1	Model structure

	3	Estimation algorithm
	3.1	Fit regression model
	3.2	Fit autoregressive model
	3.3	Fit model and check goodness of fit for spatial covariance structure
	3.3.1	Fit and test parametric model

	3.4	Re-fit autoregressive model
	3.5	Re-fit Regression model
	3.6	Statistics to display
	3.6.1	Goodness of Fit statistics
	3.6.2	Model and parameter estimates
	3.6.3 Tests of effects in Mean Structure Model (Type III)
	3.6.4 Location clustering for spatial structure visualization

	3.7	Results saved for prediction

	4	Prediction
	4.1	Point prediction
	4.2	Prediction intervals

	References

	Support Vector Machine (SVM) Algorithms
	Introduction to Support Vector Machine Algorithms
	SVM Algorithm Notation
	SVM Types
	C-Support Vector Classification (C-SVC)
	ε-Support Vector Regression (ε-SVR)

	Primary Calculations
	Solving Quadratic Problems
	Variable Scale
	Model Building Algorithm

	Model Nugget/Scoring
	Blank Handling

	Temporal Causal Modeling (TCM)
 Algorithms
	1. Introduction
	2. Model
	2.1 Graphical Granger Modeling
	2.2 Notation
	2.3 Group Orthogonal Matching Pursuit (GOMP)
	2.4 Selecting 𝑳
	2.5 AR(𝑳) Model
	2.6 Post-estimation steps
	2.6.1 Coefficients and statistical inference
	2.6.2 Tests of model effects
	2.6.3 Model quality measures

	3. Scoring
	3.1 Fit
	3.2 Forecast
	3.3 Approximated forecasting variances and intervals

	4. Scenario analysis
	4.1 SA, the scenario analysis algorithm

	5. Outlier detection
	6. Outlier root cause analysis
	6.1 ORCA, the outlier root cause analysis algorithm

	References

	Time Series Algorithms
	Notation
	Models
	Exponential Smoothing Models
	ARIMA and Transfer Function Models

	Outlier Detection in Time Series Analysis
	Notation
	Definitions of Outliers
	Estimating the Effects of an Outlier
	Detection of Outliers

	Goodness-of-Fit Statistics
	Mean Squared Error
	Mean Absolute Percent Error
	Maximum Absolute Percent Error
	Mean Absolute Error
	Maximum Absolute Error
	Normalized Bayesian Information Criterion
	R-Squared
	Stationary R-Squared

	Expert Modeling
	Univariate Series
	Multivariate Series

	Blank Handling
	Generated Model/Scoring
	Blank Handling

	References

	Time Series-AS Algorithms

	
ARIMA
	1.	Introduction
	2.	Notations
	3.	Model
	4.	Forecasting
	4.1. 	Computation of noise process
	4.2. 	Noise series forecasting
	4.2.1 	CLS method
	4.2.2 	ELS method
	4.3. 	Final forecasting
	4.4. 	Information for scoring to be saved

	5.	Parameter Estimation
	6.	Initial value
	7.	Model summary and diagnostics
	7.1.	Coefficients and statistical inference
	7.2.	Goodness-of-fit statistics
	7.3.	Diagnostic statistics
	7.4.	Predictor importance

	8.	Scenario analysis
	Appendix A: Double seasonal ARIMA model
	Appendix B: Ratio and product of two polynomials
	Appendix C: Theoretical ACF of an ARMA process
	Appendix D: Stationary condition check
	References

	Combined Forecast

	1.	Introduction
	2.	Combined forecasts process
	3.	Encompassing test

	
Expert Modeler
	1	Introduction
	1.1	Notation
	1.2	Model Selection Criterion

	2	Exponential Smoothing Expert Model
	3	Univariate ARIMA Expert Model
	3.1	Constant series
	3.2	Small sample
	3.3	Step 1: Interpolation of missing values in the series 𝒀𝒕
	3.4	Step 2: Check for transformation (log or square root)
	3.5	Step 3: Check for difference
	3.6	Step 4: Identify the order of ARMA(p,q)(P,Q)
	3.7	Step 5: Fit the model and delete insignificant parameters
	3.8	Step 6: Diagnostic checking and model modification

	4	Exhaustive ARIMA Search
	5	Univariate Expert Model
	6	Transfer Function Expert Model
	6.1	Inputs
	6.2	Small sample
	6.3	Step 1: Identify an ARIMA(p,d,q)(P,D,Q) model for Y(t)
	6.4	Step 2: Cleaning input series
	6.5	Step 3: Transformation of input series.
	6.6	Step 4: Difference input series
	6.7	Step 5: Fit the model
	6.8	Step 6: Diagnostic checking and model modification
	6.9	Special cases

	7	Multivariate Expert Model
	8	Double Seasonal Expert Model

	Exponential Smoothing

	1	Introduction
	2	Exponential smoothing models
	2.1	Notation

	3	Workflow of exponential smoothing models
	3.1	Series validation
	3.2	Series transformation
	3.3	Construct objective function
	3.4	Parameter initialization
	3.5	Estimate model
	3.6	Post estimation
	3.7	Forecast

	4	Double seasonal exponential smoothing models
	4.1	Additive Double Seasonal Holt-Winter Exponential Smoothing
	4.2	Multiplicative Double Seasonal Holt-Winter Exponential Smoothing
	4.3	Initialization for smoothed values in double seasonal exponential smoothing

	5	Analysis for irregular component
	Appendix A: Some back-casting formula for initial smoothing states

	
Outlier Detection
	1.	Introduction
	2.	Definitions of outliers
	2.1. Models considered for uncontaminated series
	2.2. Definition outlier

	3.	Estimate the effects of an outlier
	4.	Detection of outliers
	4.1 Critical values
	4.2 Outlier detection procedure
	4.3 AO patch detection

	5.	Output

	Tree-
AS Algorithms
	1.	Introduction
	2.	Notes
	3.	Notations
	4.	Binning Continuous Predictors
	5.	CHAID Algorithm
	5.1. Creating Root Node
	5.2. Collecting Summary Statistics
	5.3. Merging
	5.4. Splitting
	5.5. Stopping

	6.	Exhaustive CHAID Algorithm
	6.1. Merging

	7.	Assignment and Risk Estimation Algorithms
	7.1. Assignment
	7.2. Risk Estimation
	7.3. Model Explanation
	8.1. Grouping Leaf Nodes
	8.2. Unusual Leaf Nodes
	8.3. Target Class Analysis
	8.4. Tree Interestingness

	References
	Appendix A. Map-Reduce Functions
	A.1. Map Function
	A.2. Reduce Function
	A.2. Controller

	Appendix B. Modified Z-Score Method
	Appendix C. Monotone Cubic Interpolation Method
	Appendix D. Overall Interestingness Methods
	D.1. Weighted Average
	D.2. Maximum

	TwoStep Cluster Algorithms
	Overview
	Model Parameters
	Pre-cluster
	Cluster
	Distance Measure
	Number of Clusters (auto-clustering)

	Blank Handling
	Effect of Options
	Outlier Handling

	Generated Model/Scoring
	Predicted Values
	Blank Handling

	TwoStep-AS Algorithms

	1. Introduction
	2. Notes
	3. Notations
	4. Data Pre-processing
	5. Data and Measures
	5.1. Cluster Feature of a Cluster
	5.2. Updating Cluster Feature when Merging Two Clusters
	5.3. Tightness of a Cluster
	5.3.1. Tightness based on Log-likelihood Distance
	5.3.2. Tightness based on Euclidean Distance

	5.4. Distance Measures between Two Clusters
	5.4.1. Log-likelihood Distance
	5.4.2. Euclidean Distance

	6. CF-Tree Building
	6.1. Inserting a Single Case or a Sub-cluster into a CF-Tree
	6.2. Threshold Heuristic
	6.3. Rebuilding CF-Tree
	6.4. Delayed-Split Option
	6.5. Outlier-Handling Option
	6.6. Overview of CF-Tree Building

	7. Hierarchical Agglomerative Clustering
	7.1. Matrix Based HAC
	7.2. CF-tree Based HAC

	8. Determination of the Number of Clusters
	9. Overview of the Entire Clustering Solution
	9.1. Feature Selection
	9.1.1. Feature Filtering
	9.1.2. Adaptive Feature Selection

	9.2. Distributed Clustering
	9.3. Distributed Outlier Detection

	10. Cluster Membership Assignment
	10.1. Without Outlier-Handling
	10.2. With Outlier-Handling
	10.2.1. Legacy Method
	10.2.2. New Method

	11. Clustering Model Evaluation
	11.1. Across-Cluster Feature Importance
	11.1.1. Information Criterion Based Method
	11.1.2. Effect Size Based Method

	11.2. Within-Cluster Feature Importance
	11.2.1. Information Criterion Based Method
	11.2.2. Effect Size Based Method

	11.3. Clustering Model Goodness
	11.4. Special Clusters
	11.4.1. Regular Cluster Ranking
	11.4.2. Outlier Clusters Ranking
	11.4.3. Outlier Clusters Grouping

	Appendix A. Map-Reduce Job for Feature Selection
	Appendix B. Map-Reduce Job for Distributed Clustering
	Appendix C. Procedure for MonotoneCubicInterpolation()
	References

	A. Notices
	Bibliography
	Index

