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Preface

IBM® SPSS® Modeler is the IBM Corp. enterprise-strength data mining workbench. SPSS
Modeler helps organizations to improve customer and citizen relationships through an in-depth
understanding of data. Organizations use the insight gained from SPSS Modeler to retain
profitable customers, identify cross-selling opportunities, attract new customers, detect fraud,
reduce risk, and improve government service delivery.

SPSS Modeler’s visual interface invites users to apply their specific business expertise, which
leads to more powerful predictive models and shortens time-to-solution. SPSS Modeler offers
many modeling techniques, such as prediction, classification, segmentation, and association
detection algorithms. Once models are created, IBM® SPSS® Modeler Solution Publisher
enables their delivery enterprise-wide to decision makers or to a database.

About IBM Business Analytics

IBM Business Analytics software delivers complete, consistent and accurate information that
decision-makers trust to improve business performance. A comprehensive portfolio of business
intelligence, predictive analytics, financial performance and strategy management, and analytic
applications provides clear, immediate and actionable insights into current performance and the
ability to predict future outcomes. Combined with rich industry solutions, proven practices and
professional services, organizations of every size can drive the highest productivity, confidently
automate decisions and deliver better results.

As part of this portfolio, IBM SPSS Predictive Analytics software helps organizations predict
future events and proactively act upon that insight to drive better business outcomes. Commercial,
government and academic customers worldwide rely on IBM SPSS technology as a competitive
advantage in attracting, retaining and growing customers, while reducing fraud and mitigating
risk. By incorporating IBM SPSS software into their daily operations, organizations become
predictive enterprises — able to direct and automate decisions to meet business goals and achieve
measurable competitive advantage. For further information or to reach a representative visit
http://www.ibm.com/spss.

Technical support

Technical support is available to maintenance customers. Customers may contact Technical
Support for assistance in using IBM Corp. products or for installation help for one of the
supported hardware environments. To reach Technical Support, see the IBM Corp. web site
at http://www.ibm.com/support. Be prepared to identify yourself, your organization, and your
support agreement when requesting assistance.
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Adjusted Propensities Algorithms

Adjusted propensity scores are calculated as part of the process of building the model, and will
not be available otherwise. Once the model is built, it is then scored using data from the test or
validation partition, and a new model to deliver adjusted propensity scores is constructed by
analyzing the original model’s performance on that partition. Depending on the type of model,
one of two methods may be used to calculate the adjusted propensity scores.

Model-Dependent Method

For rule set and tree models, the following method is used:
1. Score the model on the test or validation partition.

2. Tree models. Calculate the frequency of each category at each tree node using the test/validation
partition, reflecting the distribution of the target value in the records scored to that node.

Rule set models. Calculate the support and confidence of each rule using the test/validation
partition, reflecting the model performance on the test/validation partition.

This results in a new rule set or tree model which is stored with the original model. Each time
the original model is applied to new data, the new model can subsequently be applied to the raw
propensity scores to generate the adjusted scores.

General Purpose Method

For other models, the following method is used:

1. Score the model on the test or validation partition to compute predicted values and predicted
raw propensities.

2. Remove all records which have a missing value for the predicted or observed value.

3. Calculate the observed propensities as 1 for true observed values and 0 otherwise.

4. Bin records according to predicted raw propensity using 100 equal-count tiles.

5. Compute the mean predicted raw propensity and mean observed propensity for each bin.

6. Build a neural network with mean observed propensity as the target and predicted raw propensity
as a predictor. For the neural network settings:

Use a random seed, value 0
Use the "quick” training method
Stop after 250 cycles
Do not use prevent overtaining option
Use expert mode
Quick Method Expert Options:
Use one hidden layer with 3 neurons and persistence set to 200
Learning Rates Expert Options:
Alpha 0.9

© Copyright IBM Corporation 1994, 2016. 1
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Adjusted Propensities Algorithms

Initial Eta 0.3
High Eta 0.1

Eta decay 50
Low Eta 0.01

The result is a neural network model that attempts to map raw propensity to a more accurate
estimate which takes into account the original model’s performance on the testing or validation
partition. To calculate adjusted propensities at score time, this neural network is applied to the raw
propensities obtained from scoring the original model.



Anomaly Detection Algorithm

Overview

The Anomaly Detection procedure searches for unusual cases based on deviations from the
norms of their cluster groups. The procedure is designed to quickly detect unusual cases for
data-auditing purposes in the exploratory data analysis step, prior to any inferential data analysis.
This algorithm is designed for generic anomaly detection; that is, the definition of an anomalous
case is not specific to any particular application, such as detection of unusual payment patterns
in the healthcare industry or detection of money laundering in the finance industry, in which the
definition of an anomaly can be well-defined.

Primary Calculations

Notation

The following notation is used throughout this chapter unless otherwise stated:

ID The identity variable of each case in the data file.

n The number of cases in the training data Xqip, -

Xok k=1,...,K The set of input variables in the training data.

My, ke {1, ...,K} If X, is a continuous variable, My represents the grand mean, or average of
the variable across the entire training data.

SD, k € {1, ...,K} If X,k is a continuous variable, SDy represents the grand standard deviation,
or standard deviation of the variable across the entire training data.

XK+1 A continuous variable created in the analysis. It represents the percentage of
variables (k =1, ..., K) that have missing values in each case.

Xwk=1,..,K The set of processed input variables after the missing value handling is

applied. For more information, see the topic “Modeling Stage ” on p. 4.

H, or the boundaries of H:  H is the pre-specified number of cluster groups to create. Alternatively, the
[Himin, Hmax] bounds [Hyin, Hmpax] can be used to specify the minimum and maximum
numbers of cluster groups.

np,h=1,..,H The number of cases in cluster h, h =1, ..., H, based on the training data.

pnh=1,...0H The proportion of cases in cluster h, h =1, ..., H, based on the training
data. For each h, pp = ny/n.

Mp, k=1, ..., K+1,h=1, If Xy is a continuous variable, My represents the cluster mean, or average

..., H of the variable in cluster h based on the training data. If X is a categorical

variable, it represents the cluster mode, or most popular categorical value of
the variable in cluster h based on the training data.

SDpk, k € {1, ..., K+1}, h  If Xy is a continuous variable, SDy, represents the cluster standard deviation,

=1,...,H or standard deviation of the variable in cluster h based on the training data.
{nhkj}, k € {1, ..., K}, h = The frequency set {np;} is defined only when Xy is a categorical variable.
L..,Hj=1,..., ) If Xy has Jy categories, then ny; is the number of cases in cluster h that fall

into category j.

m An adjustment weight used to balance the influence between continuous and
categorical variables. It is a positive value with a default of 6.

VDI, k=1, ..., K+l The variable deviation index of a case is a measure of the deviation of
variable value X} from its cluster norm.

© Copyright IBM Corporation 1994, 2016. 3
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GDI The group deviation index GDI of a case is the log-likelihood distance d(h,
s), which is the sum of all of the variable deviation indices {VDIy, k =1,
ooy K+1}

anomaly index The anomaly index of a case is the ratio of the GDI to that of the average
GDI for the cluster group to which the case belongs.

variable contribution The variable contribution measure of variable Xy for a case is the ratio of

measure the VDI, to the case’s corresponding GDI.

PCtanomaly OF Danomaly A pre-specified value PCtanomaly determines the percentage of cases to be

considered as anomalies. Alternatively, a pre-specified positive integer value
Nanomaly determines the number of cases to be considered as anomalies.

cutpointanomaly A pre-specified cutpoint; cases with anomaly index values greater than
cutpointanomaly are considered anomalous.

Kanomaly A pre-specified integer threshold 1<kanomaly<K+1 determines the number of
variables considered as the reasons that the case is identified as an anomaly.

Algorithm Steps
This algorithm is divided into three stages:

Modeling. Cases are placed into cluster groups based on their similarities on a set of input
variables. The clustering model used to determine the cluster group of a case and the sufficient
statistics used to calculate the norms of the cluster groups are stored.

Scoring. The model is applied to each case to identify its cluster group and some indices are
created for each case to measure the unusualness of the case with respect to its cluster group.
All cases are sorted by the values of the anomaly indices. The top portion of the case list is

identified as the set of anomalies.

Reasoning. For each anomalous case, the variables are sorted by its corresponding variable
deviation indices. The top variables, their values, and the corresponding norm values are presented
as the reasons why a case is identified as an anomaly.

Modeling Stage

This stage performs the following tasks:

1. Training Set Formation. Starting with the specified variables and cases, remove any case with
extremely large values (greater than 1.0E+150) on any continuous variable. If missing value
handling is not in effect, also remove cases with a missing value on any variable. Remove variables
with all constant nonmissing values or all missing values. The remaining cases and variables are
used to create the anomaly detection model. Statistics output to pivot table by the procedure are
based on this training set, but variables saved to the dataset are computed for all cases.

2. Missing Value Handling (Optional). For each input variable Xy, k=1, ..., K, if X is a continuous
variable, use all valid values of that variable to compute the grand mean My, and grand standard
deviation SDy. Replace the missing values of the variable by its grand mean. If Xy is a
categorical variable, combine all missing values into a “missing value” category. This category is
treated as a valid category. Denote the processed form of {X,i} by {Xi}.
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3. Creation of Missing Value Pct Variable (Optional). A new continuous variable, X1, is created that
represents the percentage of variables (both continuous and categorical) with missing values in
each case.

4. Cluster Group ldentification. The processed input variables {Xy, k=1, ..., K+1} are used to create
a clustering model. The two-step clustering algorithm is used with noise handling turned on (see
the TwoStep Cluster algorithm document for more information).

5. Sufficient Statistics Storage. The cluster model and the sufficient statistics for the variables by
cluster are stored for the Scoring stage:

B The grand mean My and standard deviation SDy of each continuous variable are stored,
ke {l1,.., K+1}.

m  For each cluster h=1, ..., H, store the size ny,. If Xy is a continuous variable, store the cluster
mean My and standard deviation SDy of the variable based on the cases in cluster h. If Xy is
a categorical variable, store the frequency npy; of each category j of the variable based on the
cases in cluster h. Also store the modal category Myy. These sufficient statistics will be used
in calculating the log-likelihood distance d(h, s) between a cluster h and a given case s.

Scoring Stage

This stage performs the following tasks on scoring (testing or training) data:

1. New Valid Category Screening. The scoring data should contain the input variables {Xo, k=1, ...,
K} in the training data. Moreover, the format of the variables in the scoring data should be the
same as those in the training data file during the Modeling Stage.

Cases in the scoring data are screened out if they contain a categorical variable with a valid
category that does not appear in the training data. For example, if Region is a categorical variable
with categories IL, MA and CA in the training data, a case in the scoring data that has a valid
category FL for Region will be excluded from the analysis.

2. Missing Value Handling (Optional). For each input variable Xy, if X, is a continuous variable, use
all valid values of that variable to compute the grand mean My and grand standard deviation SDy.
Replace the missing values of the variable by its grand mean. If Xy is a categorical variable,
combine all missing values and put together a missing value category. This category is treated
as a valid category.

3. Creation of Missing Value Pct Variable (Optional depending on Modeling Stage). If Xy | is created in
the Modeling Stage, it is also computed for the scoring data.

4. Assign Each Case to its Closest Non-Noise Cluster. The clustering model from the Modeling Stage
is applied to the processed variables of the scoring data file to create a cluster ID for each case.
Cases belonging to the noise cluster are reassigned to their closest non-noise cluster. See the
TwoStep Cluster algorithm document for more information on the noise cluster.

5. Calculate Variable Deviation Indices. Given a case s, the closest cluster h is found. The variable
deviation index VDI of variable Xy is defined as the contribution dy(h, s) of the variable to its
log-likelihood distance d(h, s). The corresponding norm value is My, which is the cluster sample
mean of Xy if Xy is continuous, or the cluster mode of X if X is categorical.
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6. Calculate Group Deviation Index. The group deviation index GDI of a case is the log-likelihood

distance d(h, s), which is the sum of all the variable deviation indices {VDIy, k=1, ..., K+1}.

Calculate Anomaly Index and Variable Contribution Measures. Two additional indices are calculated
that are easier to interpret than the group deviation index and the variable deviation index.

The anomaly index of a case is an alternative to the GDI, which is computed as the ratio of the
case’s GDI to the average GDI of the cluster to which the case belongs. Increasing values of this
index correspond to greater deviations from the average and indicate better anomaly candidates.

A variable’s variable contribution measure of a case is an alternative to the VDI, which is
computed as the ratio of the variable’s VDI to the case’s GDI. This is the proportional contribution
of the variable to the deviation of the case. The larger the value of this measure, the greater

the variable’s contribution to the deviation.

0dd Situations

Zero Divided by Zero

The situation in which the GDI of a case is zero and the average GDI of the cluster that the case
belongs to is also zero is possible if the cluster is a singleton or is made up of identical cases and
the case in question is the same as the identical cases. Whether this case is considered as an
anomaly or not depends on whether the number of identical cases that make up the cluster is large
or small. For example, suppose that there is a total of 10 cases in the training and two clusters are
resulted in which one cluster is a singleton; that is, made up of one case, and the other has nine
cases. In this situation, the case in the singleton cluster should be considered as an anomaly as it
does not belong to the larger cluster. One way to calculate the anomaly index in this situation is to
set it as the ratio of average cluster size to the size of the cluster /, which is:

n/H
np

Following the 10 cases example, the anomaly index for the case belonging to the singleton cluster
would be (10/2)/1 = 5, which should be large enough for the algorithm to catch it as an anomaly.
In this situation, the variable contribution measure is set to 1/(K+1), where (K+1) is the number of
processed variables in the analysis.

Nonzero Divided by Zero

The situation in which the GDI of a case is nonzero but the average GDI of the cluster that the case
belongs to is 0 is possible if the corresponding cluster is a singleton or is made up of identical cases
and the case in question is not the same as the identical cases. Suppose that case i belongs to cluster
h, which has a zero average GDI; that is, average(GDI);, = 0, but the GDI between case i and
cluster £ is nonzero; that is, GDI(i, h) # 0. One choice for the anomaly index calculation of case i
could be to set the denominator as the weighted average GDI over all other clusters if this value is
not 0; else set the calculation as the ratio of average cluster size to the size of cluster 4. That is,



7

Anomaly Detection Algorithm

H
GDI(ih) if L ns - average(GDI) # 0
7 - if oy Z ns - average( ) #
(n_l—nh)zszl,ihns average(GDI), ’ Lt
n/H otherwise

np

This situation triggers a warning that the case is assigned to a cluster that is made up of identical
cases.

Reasoning Stage

Every case now has a group deviation index and anomaly index and a set of variable deviation
indices and variable contribution measures. The purpose of this stage is to rank the likely
anomalous cases and provide the reasons to suspect them of being anomalous.

1. Identify the Most Anomalous Cases. Sort the cases in descending order on the values of the anomaly
index. The top pctanomaly %o (or alternatively, the top napomaly) gives the anomaly list, subject
to the restriction that cases with an anomaly index less than or equal to cutpointanomaly are not
considered anomalous.

2. Provide Reasons for Considering a Case Anomalous. For each anomalous case, sort the variables by
their corresponding VDI values in descending order. The top kapomaly Variable names, its value
(of the corresponding original variable Xy), and the norm values are displayed as reasoning.

Blank Handling

Blanks and missing values are handled in model building as described in “Algorithm Steps  on p.
4, based on user settings.

Generated Model/Scoring
The Anomaly Detection generated model can be used to detect anomalous records in new data

based on patterns found in the original training data. For each record scored, an anomaly score is
generated and a flag indicating anomaly status and/or the anomaly score are appended as new fields

Predicted Values
For each record, the anomaly score is calculated as described in “Scoring Stage ” on p. 5, based on

the cluster model created when the model was built. If anomaly flags were requested, they are
determined as described in “Reasoning Stage ” on p. 7.

Blank Handling

In the generated model, blanks are handled according to the setting used in building the model.
For more information, see the topic “Scoring Stage ” on p. 5.






Apriori Algorithms

Overview

Apriori is an algorithm for extracting association rules from data. It constrains the search space
for rules by discovering frequent itemsets and only examining rules that are made up of frequent
itemsets (Agrawal and Srikant, 1994).

Apriori deals with items and itemsets that make up transactions. Items are flag-type conditions
that indicate the presence or absence of a particular thing in a specific transaction. An itemset is a
group of items which may or may not tend to co-occur within transactions.

IBM® SPSS® Modeler uses Christian Borgelt’s Apriori implementation. Full details on this
implementation can be obtained at

http://fuzzy.cs.uni-magdeburg.de/~borgelt/doc/apriori/apriori. html.

Deriving Rules

Apriori proceeds in two stages. First it identifies frequent itemsets in the data, and then it
generates rules from the table of frequent itemsets.

Frequent Itemsets

The first step in Apriori is to identify frequent itemsets. A frequent itemset is defined as an
itemset with support greater than or equal to the user-specified minimum support threshold syi,-
The support of an itemset is the number of records in which the itemset is found divided by

the total number of records.

The algorithm begins by scanning the data and identifying the single-item itemsets (i.e.
individual items, or itemsets of length 1) that satisfy this criterion. Any single items that do
not satisfy the criterion are not be considered further, because adding an infrequent item to an
itemset will always result in an infrequent itemset.

Apriori then generates larger itemsets recursively using the following steps:

» Generate a candidate set of itemsets of length & (containing k items) by combining existing
itemsets of length (k — 1):

For every possible pair of frequent itemsets p and q with length (k& — 1), compare the

first (k — 2) items (in lexicographic order); if they are the same, and the last item in q is
(lexicographically) greater than the last item in p, add the last item in q to the end of p to create a
new candidate itemset with length £.

» Prune the candidate set by checking every (k — 1) length subset of each candidate itemset; all
subsets must be frequent itemsets, or the candidate itemset is infrequent and is removed from
further consideration.

» Calculate the support of each itemset in the candidate set, as

support = il

N
© Copyright IBM Corporation 1994, 2016. 9
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where N; is the number of records that match the itemset and N is the number of records in the
training data. (Note that this definition of itemset support is different from the definition used for
rule support. )

» Itemsets with support > si, are added to the list of frequent itemsets.

» If any frequent itemsets of length k£ were found, and £ is less than the user-specified maximum rule
size kmax, repeat the process to find frequent itemsets of length (k + 1).

Generating Rules

When all frequent itemsets have been identified, the algorithm extracts rules from the frequent
itemsets. For each frequent itemset L with length £ > 1, the following procedure is applied:

» Calculate all subsets A of length (k — 1) of the itemset such that all the fields in A are input fields
and all the other fields in the itemset (those that are not in A) are output fields. Call the latter
subset A. (In the first iteration this is just one field, but in later iterations it can be multiple fields.)

» For each subset A, calculate the evaluation measure (rule confidence by default) for the rule
A = A as described below.

» If the evaluation measure is greater than the user-specified threshold, add the rule to the rule table,
and, if the length &~ of A is greater than 1, test all possible subsets of A with length (k' — 1)

Evaluation Measures

Apriori offers several evaluation measures for determining which rules to retain. The different
measures will emphasize different aspects of the rules, as detailed in the /IBM® SPSS® Modeler
Users Guide. Values are calculated based on the prior confidence and the posterior confidence,
defined as

C
Cprim’ - 7
N
and
T
Cposterior = -
a

where c is the support of the consequent, a is the support of the antecedent, r is the support of
the conjunction of the antecedent and the consequent, and N is the number of records in the
training data.

Rule Confidence. The default evaluation measure for rules is simply the posterior confidence
of the rule,

€= Cposterior

Confidence Difference (Absolute Confidence Difference to Prior). This measure is based on the
simple difference of the posterior and prior confidence values,
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€= ‘Cposterior - Cp?’i(w‘

Confidence Ratio (Difference of Confidence Quotient to 1). This measure is based on the ratio of
posterior confidence to prior confidence,

. C osterior C rior
e=1—min ( L L

b
Cprior Opostem’or

Information Difference (Information Difference to Prior). This measure is based on the information
gain criterion, similar to that used in building C5.0 trees. The calculation is

_r.log(1“)+(a—r)log(%)+(c—r)log(ﬂ)+(1_a_c+7a)1og(1fa_;_c+r)

e = ac a-c a-C
log (2)

where r is the rule support, a is the antecedent support, ¢ is the consequent support, @ = 1 — a is
the complement of antecedent support, and ¢ = 1 — ¢ is the complement of consequent support.

Normalized Chi-square (Normalized Chi-squared Measure). This measure is based on the chi-squared
statistical test for independence of categorical data, and is calculated as

2
G
a-a-c-c

Blank Handling

Blanks are ignored by the Apriori algorithm. The algorithm will handle records containing blanks
for input fields, but such a record will not be considered to match any rule containing one or
more of the fields for which it has blank values.

Effect of Options

Minimum rule support/confidence. These values place constraints on which rules may be entered
into the table. Only rules whose support and confidence values exceed the specified values can be
entered into the rule table.

Maximum number of antecedents. This determines the maximum number of antecedents that will
be examined for any rule. When the number of conditions in the antecedent part of the rule equals
the specified value, the rule will not be specialized further.

Only true values for flags. If this option is selected, rules with values of false will not be considered
for either input or output fields.

Optimize Speed/Memory. This option controls the trade-off between speed of processing and
memory usage. Selecting Speed will cause Apriori to use condition values directly in the frequent
itemset table, and to load the transactions into memory, if possible. Selecting Memory will

cause Apriori to use pointers into a value table in the frequent itemset table. Using pointers in
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the frequent itemset table reduces the amount of memory required by the algorithm for large
problems, but it also involves some additional work to reference and dereference the pointers
during model building. The Memory option also causes Apriori to process transactions from
the file rather than loading them into memory.

Generated Model/Scoring

The Apriori algorithm generates an unrefined rule node. To create a model for scoring new
data, the unrefined rule node must be refined to generate a ruleset node. Details of scoring for
generated ruleset nodes are given below.

Predicted Values

Predicted values are based on the rules in the ruleset. When a new record is scored, it is compared
to the rules in the ruleset. How the prediction is generated depends on the user’s setting for
Ruleset Evaluation in the stream options.

m Voting. This method attempts to combine the predictions of all of the rules that apply to the
record. For each record, all rules are examined and each rule that applies to the record is used
to generate a prediction. The sum of confidence figures for each predicted value is computed,
and the value with the greatest confidence sum is chosen as the final prediction.

m  First hit. This method simply tests the rules in order, and the first rule that applies to the record
is the one used to generate the prediction.

There is a default rule, which specifies an output value to be used as the prediction for records
that don’t trigger any other rules from the ruleset. For rulesets derived from decision trees, the
value for the default rule is the modal (most prevalent) output value in the overall training data.
For association rulesets, the default value is specified by the user when the ruleset is generated
from the unrefined rule node.

Confidence

Confidence calculations also depend on the user’s Ruleset Evaluation stream options setting.

m  Voting. The confidence for the final prediction is the sum of the confidence values for rules
triggered by the current record that give the winning prediction divided by the number of rules
that fired for that record.

m  First hit. The confidence is the confidence value for the first rule in the ruleset triggered by
the current record.

If the default rule is the only rule that fires for the record, it’s confidence is set to 0.5.

Blank Handling

Blanks are ignored by the algorithm. The algorithm will handle records containing blanks for
input fields, but such a record will not be considered to match any rule containing one or more of
the fields for which it has blank values.



Automated Data Preparation
Algorithms

The goal of automated data preparation is to prepare a dataset so as to generally improve the
training speed, predictive power, and robustness of models fit to the prepared data.

These algorithms do not assume which models will be trained post-data preparation. At the end
of automated data preparation, we output the predictive power of each recommended predictor,
which is computed from a linear regression or naive Bayes model, depending upon whether the
target is continuous or categorical.

Notation

The following notation is used throughout this chapter unless otherwise stated:

X A continuous or categorical variable
Ti Value of the variable X for case i.
fi Frequency weight for case i. Non-integer positive values are rounded to the nearest

integer. If there is no frequency weight variable, then all f; = 1. If the frequency
weight of a case is zero, negative or missing, then this case will be ignored.

wi Analysis weight for case i. If there is no analysis weight variable, then all w, = 1. If
the analysis weight of a case is zero, negative or missing, then this case will be ignored.

n Number of cases in the dataset

Nx > fo (i is not missing), where I (expression) is the indicator function taking
value 1 when the expression is true, 0 otherwise.

Wx Yo, fiwid (@; is not missing)

Nxy

n
Z fil (2; and y; are not missing)
i=1
Wxy " ‘
Z fiw; I (z; and y; are not missing)

i=1

E n
The mean of variable X, WL’(Z fiwz, I (z; is not missing)
=1
M "
> fawi(x —3)"
i=1
Ty L .
Wy Z fiwszi I (2; and y; are not missing)
=1
Mxyy

> fowi (i — Ty) (i — 9,)

i=1

A note on missing values

Listwise deletion is used in the following sections:

m  “Univariate Statistics Collection ” on p. 15

© Copyright IBM Corporation 1994, 2016. 13
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“Basic Variable Screening ” on p. 17
“Measurement Level Recasting ” on p. 17
“Missing Value Handling ” on p. 19

“Outlier Identification and Handling ” on p. 18
“Continuous Predictor Transformations ” on p. 20
“Target Handling ” on p. 21

“Reordering Categories ” on p. 25

“Unsupervised Merge ” on p. 30

Pairwise deletion is used in the following sections:
B “Bivariate Statistics Collection ” on p. 22
“Supervised Merge ” on p. 26

“Supervised Binning ” on p. 32

“Feature Selection and Construction ” on p. 32

“Predictive Power ” on p. 35

A note on frequency weight and analysis weight

The frequency weight variable is treated as a case replication weight. For example if a case has
a frequency weight of 2, then this case will count as 2 cases.

The analysis weight would adjust the variance of cases. For example if a case z; of a variable X
has an analysis weight w;, then we assume that z; ~ N (,u, 2—2)

Frequency weights and analysis weights are used in automated preparation of other variables, but
are themselves left unchanged in the dataset.

Date/Time Handling

Date Handling

If there is a date variable, we extract the date elements (year, month and day) as ordinal variables.
If requested, we also calculate the number of elapsed days/months/years since the user-specified
reference date (default is the current date). Unless specified by the user, the “best” unit of duration
is chosen as follows:

1. If the minimum number of elapsed days is less than 31, then we use days as the best unit.

2. If the minimum number of elapsed days is less than 366 but larger than or equal to 31, we use
months as the best unit. The number of months between two dates is calculated based on average
number of days in a month (30.4375): months = days / 30.4375.

3. If the minimum number of elapsed days is larger than or equal to 366, we use years as the best
unit. The number of years between two dates is calculated based on average number of days in a
year (365.25): years = days / 365.25.
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Once the date elements are extracted and the duration is obtained, then the original date variable
will be excluded from the rest of the analysis.

Time Handling

If there is a time variable, we extract the time elements (second, minute and hour) as ordinal
variables. If requested, we also calculate the number of elapsed seconds/minutes/hours since
the user-specified reference time (default is the current time). Unless specified by the user, the
“best” unit of duration is chosen as follows:

1. If the minimum number of elapsed seconds is less than 60, then we use seconds as the best unit.

2. If the minimum number of elapsed seconds is larger than or equal to 60 but less than 3600, we
use minutes as the best unit.

3. If the minimum number of elapsed seconds is larger than or equal to 3600, we use hours as the
best unit.

Once the elements of time are extracted and time duration is obtained, then original time predictor
will be excluded.

Univariate Statistics Collection

Continuous Variables

For each continuous variable, we calculate the following statistics:
Number of missing values: N3***™ =S [, T (x; is missing)
Number of valid values: Ny

Minimum value: min; z;

Maximum value: max; z;

Mean, standard deviation, skewness. (see below)

The number of distinct values /.

The number of cases for each distinct value s;: ¢; = 37, fil (2; = 5;)

Median: If the distinct values of X are sorted in ascending order, 81 < 82 < - -+ < s, then the

median can be computed by Median (X) = min {Si : % > 0.5}, where cc; = Z Ci.
j=1

Note: If the number of distinct values is larger than a threshold (default is 5), we stop updating
the number of distinct values and the number of cases for each distinct value. Also we do not
calculate the median.

Categorical Numeric Variables

For each categorical numeric variable, we calculate the following statistics:

) . missing __ n .z : il
B Number of missing values: Ny = >, fil (z; is missing)
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Number of valid values: Nx

Minimum value: min; z; (only for ordinal variables)
Maximum value: max; z; (only for ordinal variables)
The number of categories.

The counts of each category.

Mean, Standard deviation, Skewness (only for ordinal variables). (see below)

Mode (only for nominal variables). If several values share the greatest frequency of
occurrence, then the mode with the smallest value is used.
®  Median (only for ordinal variables): If the distinct values of X are sorted in ascending order,

81 < 83 < -+ < 81, then the median can be computed by Median (X) = min {si : ifx > 0.5},

2
where cc; =375, ¢
Notes:

1. If an ordinal predictor has more categories than a specified threshold (default 10), we stop
updating the number of categories and the number of cases for each category. Also we do not
calculate mode and median.

2. If a nominal predictor has more categories than a specified threshold (default 100), we stop
collecting statistics and just store the information that the variable had more than threshold
categories.

Categorical String Variables

For each string variable, we calculate the following statistics:

®  Number of missing values: N3***" = """ | ;T (; is missing)

B Number of valid values: Nx

®  The number of categories.

m  Counts of each category.

m  Mode: If several values share the greatest frequency of occurrence, then the mode with the

smallest value is used.

Note: If a string predictor has more categories than a specified threshold (default 100), we stop
collecting statistics and just store the information that the predictor had more than threshold
categories.

Mean, Standard Deviation, Skewness

We calculate mean, standard deviation and skewness by updating moments.

1. Start with N = W =z©@ = Mm% = y¥® = 0.

2. For j=1,..,n compute:

N)(Cj) =] )(g’l) + f;I (x; is not missing)
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W)((j) = W)((jfl) + f;w;I (z; is not missing)

_ fiwj —=(j-1)
v; = = X — X
J W)((J) ( 7 )

W) = zU-1) ¢ v;

(Dypd-1)
Wx Wy w2
fiwg 7

MED — 26D

; : N (D i-1) ;
MY = M3 3 M0 4 R (W) — 25w,

3. After the last case has been processed, compute:

Mean: = =z

.. M2
Standard deviation: sd = {/ 52—
Nx —
Nx 1 e
Skewness: skew — (¥x—2) Wx 1) X

sd>

If Ny < 2or sd> < 10729, then skewness is not calculated.

Basic Variable Screening

1.

If the percent of missing values is greater than a threshold (default is 50%), then exclude the
variable from subsequent analysis.

For continuous variables, if the maximum value is equal to minimum value, then exclude the
variable from subsequent analysis.

For categorical variables, if the mode contains more cases than a specified percentage (default
is 95%), then exclude the variable from subsequent analysis.

If a string variable has more categories than a specified threshold (default is 100), then exclude the
variable from subsequent analysis.

Checkpoint 1: Exit?

This checkpoint determines whether the algorithm should be terminated. If, after the screening
step:

The target (if specified) has been removed from subsequent analysis, or

All predictors have been removed from subsequent analysis,

then terminate the algorithm and generate an error.

Measurement Level Recasting

For each continuous variable, if the number of distinct values is less than a threshold (default
is 5), then it is recast as an ordinal variable.
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For each numeric ordinal variable, if the number of categories is greater than a threshold (default
is 10), then it is recast as a continuous variable.

Note: The continuous-to-ordinal threshold must be less than the ordinal-to-continuous threshold.

Outlier Identification and Handling

In this section, we identify outliers in continuous variables and then set the outlying values to a
cutoff or to a missing value. The identification is based on the robust mean and robust standard
deviation which are estimated by supposing that the percentage of outliers is no more than 5%.

Identification

1. Compute the mean and standard deviation from the raw data. Split the continuous variable into

non-intersecting intervals: I; = (T + (i — 1) X 8dy, T+ 1 X sdy], i = —3, — 2,---,2,3,4, where
I 3= (—00,% —3sdy], Is = (T + 3sdy, + 0] and sdy, = sd x [ FA=T.

2. Calculate univariate statistics in each interval:
Ni, =30 Fil (x5 € L), Wy, = 30, fiwil (x5 € I;)

N Fwyag I €L : v T
i=1 79 v:/,j AN ME =300 fjwi(zg — 7)1 (@ € 1)

3. Letl=-3,r=4,andp=0.

T, =

4. Between two tail intervals I; and I,., find one interval with the least number of cases.

If JVIZ S NI7~) then Peurrent = A;_I)é . Check lfp + Peurrent is less than a threshold Pthreshold (default
is 0.05). If it does, then p = p + peurrent and I =1+ 1, go to step 4; otherwise, go to step 6.

Else pourrent = x’; . Check if p + peyrrens 18 less than a threshold, pipresnota. I it is, then

P =P+ Peyrrens and r = r — 1, go to step 4; otherwise, go to step 6.

6. Compute the robust mean Z.,..p.s+ and robust standard deviation sd,,p,s: Within the range
(4 ({—1)x sd,Z+r x sd]. See below for details.

7. 1If z; satisfies the conditions:
VWi (lz - f‘robust) < *CUtOff X Sdrobust or /w; (11 - frobust) > CUtOff X Sdrobust

where cutoff'is positive number (default is 3), then z; is detected as an outlier.

Handling

Outliers will be handled using one of following methods:

B Trim outliers to cutoff values. If \/w; (2; — Trobust) < —cutof f X sdyopust then replace x; by
Trobust — CUfOff X Sdrobust/\/ Wi, and if VWi (xz - f7'ol7ust) > CUtOff X Sdrobust then replace
Z; by f7‘obust + CUtOff X Sd'l‘obust/\/ w;.

m  Set outliers to missing values.



19

Automated Data Preparation Algorithms

Update Univariate Statistics

After outlier handling, we perform a data pass to calculate univariate statistics for each continuous
variable, including the number of missing values, minimum, maximum, mean, standard deviation,
skewness, and number of outliers.

Robust Mean and Standard Deviation

Robust mean and standard deviation within the range (Z + (I — 1) X sd,T + r x sd] are calculated
as follows:

T Y7 =
Trobust = Zi:l w’I,-i'fL-
roous ZZ’:Z ‘VIL

and
sd bust = ‘]w'z?obust
TOOUST '
YN -1
where M7, ., =37 Ay, and Ay, = M} + Wi, (Trobust — 7).

Missing Value Handling

Continuous variables. Missing values are replaced by the mean, and the following statistics are
updated:

m Standard deviation: sd x %fll, where N = Nx 4+ N9,

< ol s L1 _ N Nx—2 B Nx 1
m  Skewness: skew X 7+, where L = (—N72> <—NX ) and Ly = 4/ 5
®m  The number of missing values: Ny***"™ =0

B The number of valid values: Nx = N

Ordinal variables. Missing values are replaced by the median, and the following statistics are
updated:

m  The number of cases in the median category: epmedian + Ny o 7, Where cpmedian is the
original number of cases in the median category.

m  The number of missing values: Ny """ = (

B The number of valid values: Ny = N

Nominal variables. Missing values are replaced by the mode, and the following statistics are
updated:

B The number of cases in the modal category: ¢,,oqe + N;?”Sing , where ¢,,04¢ 1S the original
number of cases in the modal category.

®  The number of missing values: Ny***"™ =0

B The number of valid values: Ny = N
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Continuous Predictor Transformations

We transform a continuous predictor so that it has the user-specified mean z, ., (default
0) and standard deviation sd,, .., (default 1) using the z-score transformation, or minimum
min, .., (default 0) and maximum max, ., (default 100) value using the min-max transformation.

Z-score Transformation

Suppose a continuous variable has mean = and standard deviation sd. The z-score transformation is

: 5dyser —_ _
X, = od X (»Uz - -77) + Tyser

. . . .
where z; is the transformed value of continuous variable X for case i.

Since we do not take into account the analysis weight in the rescaling formula, the rescaled values
i .. . sd?
x; follow a normal distribution N (fum«, Hser

wq
Update univariate statistics

After a z-score transformation, the following univariate statistics are updated:
®  Number of missing values: Ng/*"" = N**™
B Number of valid values: Ny = Nx
. . - ’ - —_ —_—
B Minimum value: min (J,Z) = Sd;‘% X (mina@; — T) + Tuser

sd.

. ! — —
B  Maximum value: max (:r,) = 2futer x (Max x; — T) + Tuser

1
B Mean: T = Tyeer

m  Standard deviation: sd (:L') = 5dyser

m  Skewness: skew (11) = skew ()

Min-Max Transformation

Suppose a continuous variable has a minimum value min z; and a minimum value max ;. The
min-max transformation is

' mMaXyger — Milyger . .
r; = _ X (x; — min x;) + min
maxx; —mine; user

[ . . .
where z; is the transformed value of continuous variable X for case i.

Update univariate statistics

After a min-max transformation, the following univariate statistics are updated:

B The number of missing values: Ng/**""9 = N>
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B The number of valid values: Ny = Nx
. . - ’ -
B Minimum value: min (1‘,) = ming,ser
. !
B Maximum value: max {z; ) = max,ser

/ — i g— . .
B Mean: 7 = Buser Mluser » (F — min ;) 4+ minggser

max 2; —min x;

max z; —min z;

. . ’ _ .
m  Standard deviation: sd (:r ) = MXuser “MMMuser 3w g

B Skwness: skew (atl> = skew (x)

Target Handling

Nominal Target

For a nominal target, we rearrange categories from lowest to highest counts. If there is a tie on
counts, then ties will be broken by ascending sort or lexical order of the data values.

Continuous Target

The transformation proposed by Box and Cox (1964) transforms a continuous variable into one
that is more normally distributed. We apply the Box-Cox transformation followed by the z score
transformation so that the rescaled target has the user-specified mean and standard deviation.

Box-Cox transformation. This transforms a non-normal variable Y to a more normally distributed
variable:

((yi*C)Afl)
N =g\ =4 ——x—— AFO
gi (A) = g (v, A) ln(y;\—c) -

where y;,i = 1,2,-- -, n are observations of variable Y, and c is a constant such that all values
y; — c are positive. Here, we choose ¢ = min (Y} — 1.

The parameter A is selected to maximize the log-likelihood function:

Ny . [Ny —1

L) = | P s )R]+ O DY Al )
=1

where (sd (9 (\))* = w33 oIy fiwilgi () =9 (V)" and g () = - X0, fawigi(V).

We perform a grid search over a user-specified finite set [a,b] with increment s. By default a=-3,
b=3, and s=0.5.

The algorithm can be described as follows:

1. Compute \; = a+ (j — 1) * s where j is an integer such that a < \; < b.
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2. For each );, compute the following statistics:

Mean: g(X;) = w Simy fiwigi(Aj)

Standard deviation: sd (g (\;)) = \/ﬁ S fiwi(g (\) — g (A)°

Ny 1 L a 3
ey o ) . fiwi(gi (M) —g(X5))
Skewness: skew (g (A\;)) = (Ny —2) (Ny -1) szcl:(;};j))s d d

Sum of logarithm transformation: >~ ; f;In (y; — ¢)

3. For each A;, compute the log-likelihood function L (A;). Find the value of j with the largest
log-likelihood function, breaking ties by selecting the smallest value of A;. Also find the
corresponding statistics g (A*), sd (g (A\*)) and skew (g (\*)).

4. Transform target to reflect user’s mean y,,.., (default is 0) and standard deviation sd,.. (default
is 1):

’ Sdyser

Y = W X (gi ()‘*) —g()‘*)) + Yuser

where 5 (A) = g S, faigs() and sd (g (A%) = /ey S0y fowls () — 3 (A0))%.

Update univariate statistics. After Box-Cox and Z-score transformations, the following univariate
statistics are updated:

B Minimum value: % X (g (min (y;) — ¢, \) — G(OA)) + Uyser

Maximum value: Sj(dg”(sg)) x (g (max (y;) — ¢, A*) = G (A*)) + Uyser
Mean: 7,,...,
Standard deviation: sd,, e,

Skewness: skew (g (A*))

Bivariate Statistics Collection

For each target/predictor pair, the following statistics are collected according to the measurement
levels of the target and predictor.

Continuous target or no target and all continuous predictors

If there is a continuous target and some continuous predictors, then we need to calculate the
covariance and correlations between all pairs of continuous variables. If there is no continuous
target, then we only calculate the covariance and correlations between all pairs of continuous
predictors. We suppose there are there are m continuous variables, and denote the covariance
matrix as Cp, xm, With element ¢;;, and the correlation matrix as R, xn, with element r;;.

‘We define the covariance between two continuous variables X and Y as
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1 n _ 3
Xy = m; fiwi (2 —Ty) (Yi — V)

n

where T, = W;xy > iy i1 (z; and y; are not missing) and
Vo = W 2iz1 ¥il (27 and y; are not missing).

The covariance can be computed by a provisional means algorithm:
Start with N, = W) =z, =5, = M) = 0.
For j=1,..,n compute:
N)@ = Ng;” + f;I (x; and y; are not missing)
W)((J))/ = W)((j;l) + fjw;I (x; and y; are not missing)
fiw; —

Vi = =G X, —CL'?

v T W) (z; y)
fy = fy + ’ij

fiw;
Vyyq = ——F= (y
Y7 [€}) J
Wiy

~,)

Vo = Ts + v

MY = MG + (25— 7)) (y; — 7.) (fjwj - M)
i

After the last case has been processed, we obtain:

Myy = My = 3" fiw; (2 — 7,) (4 — 7,)

Compute bivariate statistics between X and Y-

Number of valid cases: Nxy

1 . _ J\lxy
Covariance: cxy — g
Correlation: rxy il Y

Note: If there are no valid cases when pairwise deletion is used, then we let cxy = 0 and rxy = 0.

Categorical target and all continuous predictors

For a categorical target Y with values i = 1,2, -- -, J and a continuous predictor X with values
a1, - x,, the bivariate statistics are:

Mean of X for each Y=i, i=1,....J:

> i fiwsaiI (y; = 1)
>y fjwgI (y; = 4)
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Sum of squared errors of X for each Y=i, i=1,...,J:

mn
M3 =" fjwile; —7.0)"1 (y; = i)
j=1

Sum of frequency weight for each Y=i, i=1,....J:

T
Ny = Z fiI (yj = ¢ A x; is not missing)
j=1
Number of invalid cases
J
Nxy = Z N,;
=1

Sum of weights (frequency weight times analysis weight) for each Y=i, i=1,... J:

n
W, = Z fjwil (y; =i A z; is not missing)
j=1

Continuous target and all categorical predictors

For a continuous target Y and a categorical predictor X with values i=1,...,J, the bivariate statistics
include:

Mean of Y conditional upon X:

I .

o Zi:l Z;'L:1 f]u']yjl <1,‘J — Z)
1 ' -

D izt 2= Fjwil (xj =)

=

Sum of squared errors of Y:

mn

— \2

My, =" fjwilyj —s)
1=1

Mean of Y for each X =1, i=1,....J:

Yoo fwyil (= 9)

Yi. = .
! Z?:l fiw;I (x5 =1)
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Sum of squared errors of Y for each X = ¢, i=1,....J:
T
ME =" fiwily; —9:)"1 (x5 = )
j=1
Sum of frequency weights for X =i, i=1,....J:
7
N;. = Z fjl (z; =i A y; is not missing)
j=1

Sum of weights (frequency weight times analysis weight) for X = i, i=1,....J:

n
W;. = Z fjw;I (z; =i A yj is not missing)
j=1

Categorical target and all categorical predictors

For a categorical target ¥ with values j=1,....J and a categorical predictor X with values i=1,...,/,
then bivariate statistics are:

Sum of frequency weights for each combination of z; = i and y;, = j:
n
Nij = > ful (z; =i Ayp = j)
k=1

Sum of weights (frequency weight times analysis weight) for each combination of 23, = i and
Y =J:
n
Wij = > frwrd (g =i Ay = j)
kel

Categorical Variable Handling

In this step, we use univariate or bivariate statistics to handle categorical predictors.

Reordering Categories

For a nominal predictor, we rearrange categories from lowest to highest counts. If there is a tie on
counts, then ties will be broken by ascending sort or lexical order of the data values. The new field
values start with 0 as the least frequent category. Note that the new field will be numeric even if
the original field is a string. For example, if a nominal field’s data values are “A”, “A”, “A”, “B”,
“C”, “C”, then automated data preparation would recode “B” into 0, “C” into 1, and “A” into 2.
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Identify Highly Associated Categorical Features

If there is a target in the data set, we select a ordinal/nominal predictor if its p-value is not larger
than an alpha-level @ erection (default is 0.05). See “P-value Calculations ” on p. 27 for details of
computing these p-values.

Since we use pairwise deletion to handle missing values when we collect bivariate statistics,
we may have some categories with zero cases; that is, V;. = 0 for a category i of a categorical
predictor. When we calculate p-values, these categories will be excluded.

If there is only one category or no category after excluding categories with zero cases, we set the
p-value to be 1 and this predictor will not be selected.

Supervised Merge

We merge categories of an ordinal/nominal predictor using a supervised method that is similar to a
Chaid Tree with one level of depth.

Exclude all categories with zero case count.
If X has 0 categories, merge all excluded categories into one category, then stop.
If X has 1 category, go to step 7.

Else, find the allowable pair of categories of X that is most similar. This is the pair whose test
statistic gives the largest p-value with respect to the target. An allowable pair of categories for an
ordinal predictor is two adjacent categories; for a nominal predictor it is any two categories. Note
that for an ordinal predictor, if categories between the ith category and jth categories are excluded
because of zero cases, then the ith category and jth categories are two adjacent categories. See
“P-value Calculations ” on p. 27 for details of computing these p-values.

For the pair having the largest p-value, check if its p-value is larger than a specified alpha-level
selection (default is 0.05). If it does, this pair is merged into a single compound category and
at the same time we calculate the bivariate statistics of this new category. Then a new set of
categories of X is formed. If it does not, then go to step 6.

Go to step 3.

For an ordinal predictor, find the maximum value in each new category. Sort these maximum
values in ascending order. Suppose we have r new categories, and the maximum values are:

i1 < iz < -+ <1, then we get the merge rule as: the first new category will contain all original
categories such that X < i;, the second new category will contain all original categories such that
i1 < X < a,..., and the last new category will contain all original categories such that X > i, _5.

For a nominal predictor, all categories excluded at step 1 will be merged into the new category
with the lowest count. If there are ties on categories with the lowest counts, then ties are broken
by selecting the category with the smallest value by ascending sort or lexical order of the original
category values which formed the new categories with the lowest counts.
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Bivariate statistics calculation of new category

When two categories are merged into a new category, we need to calculate the bivariate statistics
of this new category.

Scale target. If the categories i and i* can be merged based on p-value, then the bivariate statistics
should be calculated as:

Niir .= Ni .+ Ny
VVZ';L" .= ”YZ .+ Wi' .

Yii' . =Y.+ Wi @y . — ;)
_ _ 2 _ _ 2
M2y = MPAME AW (T~ Ti) W (i~ Ur )

Categorical target. If the categories i and i’ can be merged based on p-value, then the bivariate
statistics should be calculated as:

VVi,'i'j — WU + m’z'_’

Update univariate and bivariate statistics

At the end of the supervised merge step, we calculate the bivariate statistics for each new category.
For univariate statistics, the counts for each new category will be sum of the counts of each
original categories which formed the new category. Then we update other statistics according to
the formulas in “Univariate Statistics Collection ” on p. 15, though note that the statistics only
need to be updated based on the new categories and the numbers of cases in these categories.

P-value Calculations

Each p-value calculation is based on the appropriate statistical test of association between the
predictor and target.

Scale target
We calculate an F statistic:
S Wi@ -7 (- 1)
Zgzl ME/ <Zf:1 Ni. — I)
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25:1 Wiy,
Ele Wi

Based on F statistics, the p-value can be derived as

where 3, =

I
p=Pr{F({I-1) N.—I|>F
=1

where F (I -1, Zle N, =1 ) is a random variable following a F distribution with I — 1 and
Zfil N;. — I degrees of freedom.
At the merge step we calculate the F statistic and p-value between two categories i and i’ of X as
W (. — ?m)Q + Wi (Y. — @m)g
(M2 +A32) /(N + Ny —2)
p=Pr(F(1,N;. +Ny. —2)>F)

where g, . is the mean of Y for a new category ¢, i merged by i and i :

_ Wy

Vii. = Vi + o Yy — Ui,
yl,’L yl Wl + V[/ril. (yl y’L )

and F (I —1,N; + N, —2) is a random variable following a F distribution with 1 and
N;. + N,». — 2 degrees of freedom.

Nominal target

The null hypothesis of independence of X and Y is tested. First a contingency (or count) table is
formed using classes of Y as columns and categories of the predictor X as rows. Then the expected
cell frequencies under the null hypothesis are estimated. The observed cell frequencies and the
expected cell frequencies are used to calculate the Pearson chi-squared statistic and the p-value:

J 1
=y Bl

j=11i=1

2

where Ni; = >, . p fad (zx = i Ayg = j) is the observed cell frequency and 772;; is the estimated

expected cell frequency for cell (z = i,y = j) following the independence model. If 7;; = 0,
S 2

then W = 0. How to estimate 72;; is described below.

The corresponding p-value is given by p = Pr (x2 > X?), where x5 follows a chi-squared
distribution with d = (J — 1) (I — 1) degrees of freedom.

When we investigate whether two categories i and i of X can be merged, the Pearson chi-squared
statistic is revised as
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N N 2
2=y (Nij — 1hij)” N (Nij = ij)

=\ Ty

and the p-value is given by p = Pr (x3 ; > X?).

Ordinal target

Suppose there are [ categories of X, and J ordinal categories of Y. Then the null hypothesis of
the independence of X and Y is tested against the row effects model (with the rows being the
categories of X and columns the classes of Y) proposed by Goodman (1979). Two sets of expected
cell frequencies, 71;; (under the hypothesis of independence) and i ; (under the hypothesis that
the data follow a row effects model), are both estimated. The likelihood ratio statistic is

I J
EONW

i=1 j=1

where

HZQJ _ mi; In (mu/m”) mij/mij >0
0 else

The p-value is given by p = Pr (x3_, > H?).

Estimated expected cell frequencies (independence assumption)

If analysis weights are specified, the expected cell frequency under the null hypothesis of
independence is of the form

—1

mi; = wij O.’iﬁj

where a; and 3; are parameters to be estimated, and w;; = % if N;; > 0, otherwise w;; = 1.
ij

Parameter estimates é;, 3]-, and hence 77;;, are obtained from the following iterative procedure.

k=0, ago) = ﬁ;o) =1, mgg) = E;jl

QD Ny, —a® N
i - —1gm Y e
' Zj w5 By ' Zj Mg
B(k+1) _ N
D Y G
(k4+1) _ ——1 (k41) p(k+1)
m;; =W o ﬂj
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If max; m‘l(;frl) (A)

threshold (default is 100), stop and output aEHl), ,B;Hl) and mi y ™) as the final estimates
&;, Bj, ;. Otherwise, k = k 4 1 and go to step 2.

< ¢ (default is 0.001) or the number of iterations is larger than a

Estimated expected cell frequencies (row effects model)

In the row effects model, scores for classes of ¥ are needed. By default, s} (the order of a
class of ¥) is used as the class score. These orders will be standardized via the following linear
transformation such that the largest score is 100 and the lowest score is 0.

* S * *
85 = 100 (Sj o Smin) / (Smax o Smin)
Where s, and s}, .. are the smallest and largest order, respectively.

The expected cell frequency under the row effects model is given by
ms; = W, azﬁ]%

where 5 = Z}I:1 Wij/Z;':l W ;, in which W.; = X;W;;, and «;, 3;, and +; are unknown
parameters to be estimated.

Parameter estimates &i, B J» fyi and hence rﬁ.ij are obtained from the following iterative procedure.

1. ]{JIO, Oé(o /3(0 =7, )_1 m(o) _wwl

2. (k+1) _ N; (k)
T ey
3. /3(’“’1) _ N
‘ - 3w ta (L+1)< (k))(* =)
4. (s5—73) Z (5'73)(Ni-7m*f.)
v =1 {k+1) p(k+1) [ (k) ; i—mi
my; = W, B i ,G =14+ =4 —5
ij ij (’Y ) Zj (ijs)z'mij
S N {%HG G; >0
* {®) otherwise
6. (Sj*g)
ng;sﬂ) W; (k+1)ﬂ(k+1) (/yi(kJrl))

(k+1)
ij

If max; ; ’m
threshold (default is 100) stop and output a (k+1) B3, (k1) v(kH) and m(lngl as the final estimates

’ < ¢ (default is 0.001) or the number of iterations is larger than a
a;, B], 'yl, mm. Otherwise, ¥ = k£ + 1 and go to step 2.

Unsupervised Merge

If there is no target, we merge categories based on counts. Suppose that X has 7 categories which
are sorted in ascending order. For an ordinal predictor, we sort it according to its values, while
for nominal predictor we rearrange categories from lowest to highest count, with ties broken
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by ascending sort or lexical order of the data values. Let ¢; be the number of cases for the ith
category, and Nx be the total number of cases for X. Then we use the equal frequency method
to merge sparse categories.

1. Start with 3, = j» = 1 and g=1.
2. Ifj1 > 1, gotostep 5.

3.00fF Zfijl ¢; < [b% x Nx], then j; = ja + 1; otherwise the original categories ji,j1 + 1,- -, j» will
be merged into the new category g and let j; = jo + 1, j» = ji: and ¢ = g + 1, then go to step 2.

4. If j, > I, then merge categories using one of the following rules:

i) If g = 1, then categories 1,2, ---,I — 1 will be merged into category g and / will be left
unmerged.

i) If g=2, then j;, 51 + 1,-- -, I will be merged into category g=2.
iii) If g>2, then jq, 51 + 1, -, 1 will be merged into category g — 1.
If j2 < I, then go to step 3.

5. Output the merge rule and merged predictor.

After merging, one of the following rules holds:

m Neither the original category nor any category created during merging has fewer than
[b% x Nx]| cases, where b is a user-specified parameter satisfying 1 < b < 100 (default is
10) and [x] denotes the nearest integer of x.

B The merged predictor has only two categories.

Update univariate statistics. When original categories ji,j1 + 1, - -, j2 are merged into one new
category, then the number of cases in this new category will be fi i, ¢j- At the end of the
merge step, we get new categories and the number of cases in each category. Then we update
other statistics according to the formulas in “Univariate Statistics Collection ” on p. 15, though
note that the statistics only need to be updated based on the new categories and the numbers
of cases in these categories.

Continuous Predictor Handling

Continuous predictor handling includes supervised binning when the target is categorical,
predictor selection when the target is continuous and predictor construction when the target is
continuous or there is no target in the dataset.

After handling continuous predictors, we collect univariate statistics for derived or constructed
predictors according to the formulas in “Univariate Statistics Collection ” on p. 15. Any derived
predictors that are constant, or have all missing values, are excluded from further analysis.
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Supervised Binning

If there is a categorical target, then we will transform each continuous predictor to an ordinal
predictor using supervised binning. Suppose that we have already collected the bivariate statistics
between the categorical target and a continuous predictor. Using the notations introduced in
“Bivariate Statistics Collection ” on p. 22, the homogeneous subset will be identified by the
Scheffe method as follows:

If |Z.; — T.;] < Coriticar then T.; and Z.; will be a homogeneous subset, where
Ceritical = Max (T.;) — min (Z.;) if Nxy = J; otherwiseceriticas = B * C, where

(S ) J 2
R= \/2 (J — 1) Flfa (J — LNXY - J) and C = M S x _Zi:lJl_/‘Vi s MS = 721':1 M

Nxy —J °
The supervised algorithm follows:
Sort the means z.; in ascending order, denote as T.(1) < Z.2) < -+ < Ty

Start with i=1 and ¢=J.

If |E.(q) — E.(l-)l < Ceritical, then {E,(i), - ,E,(q)} can be considered a homogeneous subset. At the
same time we compute the mean and standard deviation of this subset: Z.; 4) = % and
ik
M2i.q ; — _ 2
SdA(i‘q) = W, where ]M(Qi,q) = z:i AA(]C) and AA(k) = ]\IQ(,C) + I’V.(k) ($-(i,q) - :BA(k)) ,

then seti = ¢+ 1 and g = J; Otherwise ¢ = ¢ — 1.
Ifi < J, go to step 3.

Else compute the cut point of bins. Suppose we have r < J homogeneous subsets and we
assume that the means of these subsets are If(l), If*(z), - ,ff*(,,,), and standard deviations are

sdq), 5d75y, -+, sdl,, then the cut points between the ith and (i+1)th homogeneous subsets are
sd;..+e
computed as cut; = T}, + ———— (E*, -7 )
@ (Sd(* )+Sdfz‘+1)+25) () @

Output the binning rules. Category 1: X < cut;; Category 2: cut; < X < cuty;...; Category
Deut, 1 < X.

Feature Selection and Construction

If there is a continuous target, we perform predictor selection using p-values derived from the
correlation or partial correlation between the predictors and the target. The selected predictors are
grouped if they are highly correlated. In each group, we will derive a new predictor using principal
component analysis. However, if there is no target, we will do not implement predictor selection.

To identify highly correlated predictors, we compute the correlation between a scale and a group as
follows: suppose that X is a continuous predictor and continuous predictors X7, X2, - -, X,;, form
a group G. Then the correlation between X and group G is defined as:

rxg =min{|rxyx,|,X; € G}

where rx x, is correlation between X and X;.
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Let agy0up be the correlation level at which the predictors are identified as groups. The predictor
selection and predictor construction algorithm is as follows:

1. (Target is continuous and predictor selection is in effect ) If the p-value between a continuous
predictor and target is larger than a threshold (default is 0.05), then we remove this predictor from
the correlation matrix and covariance matrix. See “Correlation and Partial Correlation ” on p.

34 for details on computing these p-values.

2. Start with agoup = 0.9 and i=1.

3. Ifagroup < 0.1, stop and output all the derived predictors, their source predictors and coefficient
of each source predictor. In addition, output the remaining predictors in the correlation matrix.

4. Find the two most correlated predictors such that their correlation in absolute value is larger than
Qgroup, and put them in group i. If there are no predictors to be chosen, then go to step 9.

5. Add one predictor to group i such that the predictor is most correlated with group 7 and the
correlation is larger than o g..up. Repeat this step until the number of predictors in group i is
greater than a threshold (default is 5) or there is no predictor to be chosen.

6. Derive a new predictor from the group i using principal component analysis. For more
information, see the topic “Principal Component Analysis ” on p. 33.

7. (Both predictor selection and predictor construction are in effect) Compute partial correlations
between the other continuous predictors and the target, controlling for values of the new predictor.
Also compute the p-values based on partial correlation. See “Correlation and Partial Correlation ”
on p. 34 for details on computing these p-values. If the p-value based on partial correlation
between a continuous predictor and continuous target is larger than a threshold (default is 0.05),
then remove this predictor from the correlation and covariance matrices.

8. Remove predictors that are in the group from the correlation matrix. Then let i=i+1 and go to
step 4.

9. agreup = Qgroup — 0.1, then go to step 3.

Notes:

m If only predictor selection is needed, then only step 1 is implemented. If only predictor
construction is needed, then we implement all steps except step 1 and step 7. If both predictor
selection and predictor construction are needed, then all steps are implemented.

m [f there are ties on correlations when we identify highly correlated predictors, the ties will be
broken by selecting the predictor with the smallest index in dataset.

Principal Component Analysis

Let X3, X5, -+, X,, be m continuous predictors. Principal component analysis can be described
as follows:
1. Input C,, «m, the covariance matrix of Xy, X, -+, X,,.

2. Calculate the eigenvectors and eigenvalues of the covariance matrix. Sort the eigenvalues (and
corresponding eigenvectors) in descending order, Ay > Ay > -+ > A,
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3. Derive new predictors. Suppose the elements of the first component vy are v11, v12, -« -, U1m, then

the new derived predictor is \U/%XH + ”1/\1’1 Xo+ -+ “1;\"1 X

Correlation and Partial Correlation

Correlation and P-value

Let rxy be the correlation between continuous predictor X and continuous target Y, then the
p-value is derived form the ¢ test:

p=Pr(t(Nxy —2)| >1)

where ¢ (Nxy — 2) is a random variable with a ¢ distribution with Nxy- — 2 degrees of freedom,
andt = rxvy, /%. Ifrg(y = 1, then set p=0; If Nxy < 2, then set p=1.
XY

Partial correlation and P-value

For two continuous variables, X and Y, we can calculate the partial correlation between them
controlling for the values of a new continuous variable Z:

Xy —Trxz'vz
Txv|z = 5 5
\/l—rXZ\/l—rYZ

Since the new variable Z is always a linear combination of several continuous variables, we
compute the correlation of Z and a continuous variable using a property of the covariance rather
than the original dataset. Suppose the new derived predictor Z is a linear combination of original
predictors X, Xa, -+, X!

Z=aX1+aXo+ 4+ anXy

Then for any a continuous variable X (continuous predictor or continuous target), the correlation
between X and Z is
czx

VCZZCX X
2

m m
where CzxX — Zi:l aiCx,;X, and Czz = Zi:l a;Cx, x; +2 Zi#j a,'ajqu.xj.

Tzx =

If1—r%, or1—r{, isless than 107'%, let xy |z = 0. If rxy |7 is larger than 1, then set it to
I; If rxy|z is less than —1, then set it to —1. (This may occur with pairwise deletion). Based on
partial correlation, the p-value is derived from the # test

p="Pr(t(Nxy —3)[ > 1)

where ¢ (Nxy — 3) is a random variable with a ¢ distribution with Nxy — 3 degrees of freedom,
andt = rxy |z, /55— If 7%y z = 1, then set p=0; if Nxy < 3, then set p=1.
XY|Z
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Discretization of Continuous Predictors

Discretization is used for calculating predictive power and creating histograms.

Discretization for calculating predictive power

If the transformed target is categorical, we use the equal width bins method to discretize a
continuous predictor into a number of bins equal to the number of categories of the target.
Variables considered for discretization include:

B Scale predictors which have been recommended.

®  Original continuous variables of recommended predictors.

Discretization for creating histograms

We use the equal width bins method to discretize a continuous predictor into a maximum of 400
bins. Variables considered for discretization include:

B  Recommended continuous variables.

m  Excluded continuous variables which have not been used to derive a new variable.
®  Original continuous variables of recommended variables.
(]

Original continuous variables of excluded variables which have not been used to derive a
new variable.

m  Scale variables used to construct new variables. If their original variables are also continuous,
then the original variables will be discretized.

m Date/time variables.
After discretization, the number of cases and mean in each bin are collected to create histograms.

Note: If an original predictor has been recast, then this recast version will be regarded as the
“original” predictor.

Predictive Power

Collect bivariate statistics for predictive power

We collect bivariate statistics between recommended predictors and the (transformed) target. If
an original predictor of a recommended predictor exists, then we also collect bivariate statistics
between this original predictor and the target; if an original predictor has a recast version, then

we use the recast version.

If the target is categorical, but a recommended predictor or its original predictor/recast version is
continuous, then we discretize the continuous predictor using the method in “Discretization of
Continuous Predictors ” on p. 35 and collect bivariate statistics between the categorical target and
the categorical predictors.
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Bivariate statistics between the predictors and target are same as those described in “Bivariate
Statistics Collection ” on p. 22.

Computing predictive power

Predictive power is used to measure the usefulness of a predictor and is computed with respect
to the (transformed) target. If an original predictor of a recommended predictor exists, then we
also compute predictive power for this original predictor; if an original predictor has a recast
version, then we use the recast version.

Scale target. When the target is continuous, we fit a linear regression model and predictive power
is computed as follows.

2
m  Scale predictor: 7%, = (ﬁ)

1
m Categorical predictor: 1 — g; , where S, = Z MEand Sy =1 fiwi(y; — 7.)°.
i=1

Categorical target. If the (transformed) target is categorical, then we fit a naive Bayes model and
the classification accuracy will serve as predictive power. We discretize continuous predictors
as described in “Discretization of Continuous Predictors ” on p. 35, so we only consider the
predictive power of categorical predictors.

If N;; is the of number cases where X =iand Y = j, N; = Z;Ll Nij,and N ; = Zle Nij,
then the chi-square statistic is calculated as

LRI D

N 2
L <Nij*Nz‘j>
Y
i=1 j=1 ij

N;. N.sy
Nxvy

where N;; =

and Cramer’s V is defined as

"= (NXY (milﬁﬂ J) - 1)) )
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Bayesian Networks Algorithm Overview

A Bayesian network provides a succinct way of describing the joint probability distribution
for a given set of random variables.

Let V be a set of categorical random variables and G = (V, E) be a directed acyclic graph with
nodes V and a set of directed edges E. A Bayesian network model consists of the graph G together
with a conditional probability table for each node given values of its parent nodes. Given the value
of its parents, each node is assumed to be independent of all the nodes that are not its descendents.
The joint probability distribution for variables V can then be computed as a product of conditional
probabilities for all nodes, given the values of each node’s parents.

Given set of variables V and a corresponding sample dataset, we are presented with the task of
fitting an appropriate Bayesian network model. The task of determining the appropriate edges in
the graph G is called structure learning, while the task of estimating the conditional probability
tables given parents for each node is called parameter learning.

Primary Calculations

IBM® SPSS® Modeler offers two different methods for building Bayesian network models:

m  Tree Augmented Naive Bayes. This algorithm is used mainly for classification. It efficiently
creates a simple Bayesian network model. The model is an improvement over the naive
Bayes model as it allows for each predictor to depend on another predictor in addition to the
target variable. Its main advantages are its classification accuracy and favorable performance
compared with general Bayesian network models. Its disadvantage is also due to its simplicity;
it imposes much restriction on the dependency structure uncovered among its nodes.

m  Markov Blanket estimation. The Markov blanket for the target variable node in a Bayesian
network is the set of nodes containing target’s parents, its children, and its children’s parents.
Markov blanket identifies all the variables in the network that are needed to predict the target
variable. This can produce more complex networks, but also takes longer to produce. Using
feature selection preprocessing can significantly improve performance of this algorithm.

Notation

The following notation is used throughout this algorithm description:

G A directed acyclic graph representing the Bayesian Network model

D A dataset

Y Categorical target variable

Xi The ith predictor

yr The parent set of the ith predictor besides target Y. For TAN models, its size is <I.
N The number of cases in D

© Copyright IBM Corporation 1994, 2016. 37
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n The number of predictors

Nijk Denote the number of records in D for which (#;, V') take its jth value and for which
X takes its kth value.

Nij Denote the number of records in I for which (r;, Y") takes its jth value.

Oiji Pr (Xi = J:ﬂ (m;, Y) = (m,Y)j>

Ov, Pr(Y =Y))

K The number of non-redundant parameters of TAN

MB The Markov blanket boundary about target Y

S A subset of X

Sx;x; A subset of X \ X;, X;, such that variables X; and X are conditionally independent

with respect to Sx, x;

Xi—X; An undirected arc between variables X;, X; in G. X;and X; are adjacent to each
other.

X > X; A directed arc from X; to X; in G. X is a parent of X, and X is a child of X;.

ADJx, A variable set which represents all the adjacent variables of variable X; in G,
ignoring the edge directions.

I{) The conditional independence (CI) test function which returns the p-value of the test.

o The significance level for CI tests between two variables. If the p-value of the test is
larger than « then they are independent, and vice-versa.

T The cardinality of X;, r; = | Xj|

i The cardinality of the parent set w; of X .

Handling of Continuous Predictors

BN models in IBM® SPSS® Modeler can only accommodate discrete variables. Target variables
must be discrete (flag or set type). Numeric predictors are discretized into 5 equal-width bins
before the BN model is built. If any of the constructed bins is empty (there are no records with a
value in the bin’s range), that bin is merged to an adjacent non-empty bin.

Feature Selection via Breadth-First Search

Feature selection preprocessing works as follows:

» It begins by searching for the direct neighbors of a given target Y, based on statistical tests of
independence. For more information, see the topic “Markov Blanket Conditional Independence
Test” on p. 43. These variables are known as the parents or children of ¥, denoted by PC (V).

» Foreach X € PC (YY), we look for PC (X), or the parents and children of .X.

» Foreach Z € PC (X), we add it to M By if it is not independent of Y.

The explicit algorithm is given below.
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RecognizeMB
(
D : Dataset, eps : threshold
)
{
// Recognize Y's parents/children
CanADJ_Y = X \{Y};
PC = RecognizePC(Y,CanADJ_Y,D,eps);
MB = PC;

// Collect spouse candidates, and remove false
// positives from PC
for (each X_iin PCH
CanADJ_X_i=X\X_i;
CanSP_X_i = RecognizePC(X_i,CanADJ_X_i,D,eps);
if (Y notin CanSP_X_i) // Filter out false positive
MB =MB\ X_i;
}
// Discover true positives among candidates
for (each X_i in MB)
for (each Z_iin CanSP_X_i and Z_i notin MB)
if ((Y,Z_i{S_Y,Z_i + X_i}) < eps) then
MB=MB +Z_j;
return MB;
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RecognizePC (
T :target to scan,
ADJ_T :Candidate adjacency setto search,
D : Dataset,
eps : threshold,
maxSetSize : )
{
NonPC = {empty set},
cutSetSize = 0;
repeat
for (each X_iin ADJ_TK
for (each subset S of {ADJ_T \ X_i} with |S| = cutSetSize}{
if (1IX_i,T|S) > eps)
NonPC = NonPC + X_j;
S_TX_i=§;
break;
}
}
}
if ((NonPC| > OX
ADJ_T =ADJ_T\ NonPC;
cutSetSize +=1;
NonPC = {empty set};
} else
break;
until (JADJ_T| < cutSetSize) or (cutSetSize > maxSetSize)
return ADJ_T;
}

Tree Augmented Naive Bayes Method

The Bayesian network classifier is a simple classification method, which classifies a case

d; = (:cjl, 2,1l ) by determining the probability of it belonging to the ith target category Y;.
These probabilities are calculated as

Pr <Y;|X1 —al Xo =), Xn = xil)
_ Pr(V) Pr(X,=a] Xo=z},... X, =z |V})
- Pr(Xlzm'{,ng.r?z',...,Xn:fo)

n
x Pr(Y;) H Pr (Xk = mi,|7ri,Y};)
k=1

where 7y, is the parent set of X}, besides Y, and it maybe empty. Pr (X} |7k, Y') is the conditional
probability table (CPT) associated with each node X}.. If there are n independent predictors,
then the probability is proportional to
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T
Pr(v;) [ Pr (Xk - mim)
k=1

When this dependence assumption (conditional independence between the predictors given the
class) is made, the classifier is called naive Bayes (NB). Naive Bayes has been shown to be
competitive with more complex, state-of-the-art classifiers. In recent years, a lot of work has
focused on improving the naive Bayes classifier. One important method is to relax independence
assumption. We use a tree augmented naive Bayesian (TAN) classifier (Friedman, Geiger, and
Goldszmidt, 1997), and it is defined by the following conditions:

m  Each predictor has the target as a parent.

m Predictors may have one other predictor as a parent.

An example of this structure is shown below.

Figure 5-1
Structure of an simple tree augmented naive Bayes model.

TAN (y)
TAN Classifier Learning Procedure

Let X = (X3, X3,...,X,) represent a categorical predictor vector. The algorithm for the TAN
classifier first learns a tree structure over X using mutual information conditioned on Y. Then it
adds a link (or arc) from the target node to each predictor node.

The TAN learning procedure is:
1. Take the training data D, X and Y as input.

2. Learn a tree-like network structure over X by using the Structure Learning algorithm outlined
below.

3. AddY asa parent of every X; where 1 < i <n.

4. Learning the parameters of TAN network.



42

Bayesian Networks Algorithms

TAN Structure Learning

We use a maximum weighted spanning tree (MWST) method to construct a tree Bayesian network
from data (Chow and Liu, 1968). This method associates a weight to each edge corresponding to
the mutual information between the two variables. When the weight matrix is created, the MWST
algorithm (Prim, 1957) gives an undirected tree that can be oriented with the choice of a root.

The mutual information of two nodes X;, X; is defined as

Pr(z;, z;) )

I X X P 1
0 X5) = D Prinia; Og(Pr(anr(x])

L &5

We replace the mutual information between two predictors with the conditional mutual
information between two predictors given the target (Friedman et al., 1997). It is defined as

Y)= > Prie,zj,u)log (Pr(Pr(‘ri’xj\yk) )

T Tj,Yn $z|yk) Pr (I]|yk)

1(Xi, X;

The network over can be constructed using the following steps:
Compute I (X;, X,;|Y),i=1,...,n,j=1,...,n,i # j between each pair of variables.

Use Prim’s algorithm (Prim et al., 1957) to construct a maximum weighted spanning tree with
the weight of an edge connecting X; to X; by I (X;, X;|Y).

This algorithm works as follows: it begins with a tree with no edges and marks a variable at a
random as input. Then it finds an unmarked variable whose weight with one of the marked
variables is maximal, then marks this variable and adds the edge to the tree. This process is
repeated until all variables are marked.

Transform the resulting undirected tree to directed one by choosing X; as a root node and setting
the direction of all edges to be outward from it.

TAN Parameter Learning

Let r; be the cardinality of X;. Let g; denote the cardinality of the parent set (7;,Y") of X;, that
is, the number of different values to which the parent of X; can be instantiated. So it can be
calculated as ¢; = r,, x |Y|. Note 7; = ( implies ¢; = |Y'|. We use NV;; to denote the number of
records in D for which (m;, Y") takes its jth value. We use N, to denote the number of records in
D for which (;,Y") take its jth value and for which X takes its kth value.

Maximum Likelihood Estimation

The closed form solution for the parameters 8y, (1 <4 < |Y|) and
Oiix (1 <i<n,1<j<g;,1 <k <r;)that maximize the log likelihood score is

A N-
by, =
é _ N
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where Ny, denotes the number of cases with Y = Y} in the training data.
Note that if N;; = 0, then 6, = 0.

The number of parameters K is

n
K=) (n—-1)-q+|Y|-1
i=1

TAN Posterior Estimation

Assume that Dirichlet prior distributions are specified for the set of parameters 8y, (1 < i < |Y|) as
well as for each of the sets 0, (1 <k <r;),1 <i<n,and1 < j < g; (Heckerman, 1999). Let
N%» and N?j . denote corresponding Dirichlet distribution parameters such that N° = Z N% and

NZ% = Z Ninj - Upon observing the dataset D, we obtain Dirichlet posterior distributions with the

k
following sets of parameters:

éP . Nyi"f‘N;O/i
Y, — N+No
éP _ Nijk+N£jk
ijk = N +N?

The posterior estimation is always used for model updating.

Adjustment for small cell counts

To overcome problems caused by zero or very small cell counts, parameters can be estimated
as posterior parameters 61, (1 <i <|Y]) and Hf;k (1<k<r),1<i<n,1<j<g using

. . .. . TO _ l TO _
uninformative Dirichlet priors Ny = vd and N7, =

Markov Blanket Algorithms

The Markov blanket algorithm learns the BN structure by identifying the conditional independence
relationships among the variables. Using statistical tests (such as chi-squared test or G test),

this algorithm finds the conditional independence relationships among the nodes and uses these
relationships as constraints to construct a BN structure. This algorithm is referred to as a
dependency-analysis-based or constraint-based algorithm.

Markov Blanket Conditional Independence Test

The conditional independence (CI) test tests whether two variables are conditionally independent
with respect to a conditional variable set. There are two familiar methods to compute the CI test:
x? (Pearson chi-square) test and G? (log likelihood ratio) test.
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Suppose X, Y are two variables for testing and S is a conditional variable set such that X, Y ¢ S.
Let O (2, y;) be the observed count of cases that have X = #; and Y = y;, and F (25, ;) is

the expect number of cases that have X = «; and Y = y; under the hypothesis that X, Y are
independent.

Chi-square Test

We assume the null hypothesis is that X, Y are independent. The x? test statistic for this
hypothesis is

2
X2 (X,Y) :Z (O (.r“ij,) E('rlay]))
Suppose that N is the total number of cases in D, N (z;) is the number of cases in D where
X, takes its ith category, and N (y;) and N (sy) are the corresponding numbers for ¥ and S. So
N (z;,y;) is the number of cases in D where X; takes its ith category and Y; takes its jth category.
N (i, 1), N (y;,sr) and N (2, y;, si) are defined similarly. We have:

(XY = Z (N (zi,y5) — N () N (y;) /N)? _ Z (N - N (zi,55) — N (2:) N ()’

N () N (y;) /N N (zi) N (y;) - N

i,j 1,J

Because x? (X,Y) ~ x? where v = (| X| — 1) (]Y| — 1) is the degrees of freedom for the
x? distribution, we get the p-value for x? (X, Y") as follows:

P (U > ¥*(X,Y))

As we know, the larger p-value, the less likely we are to reject the null hypothesis. For a given
significance level «, if the p-value is greater than o we can not reject the hypothesis that X, Y are
independent.

We can easily generalize this independence test into a conditional independence test:

(X Y[S) = > X (XY[S = 51)
k

-y (N (21,95, 58) N (s5) = N (i, s1) N (y1,5%))°
N (@i, sx) N (yj, 56) N (k)

i,J.k
The degree of freedom for x? ~ x2 is:

v=(X-1D(Y-1)-15|

Likelihood Ratio Test

We assume the null hypothesis is that X, Y are independent. The G? test statistic for this
hypothesis is
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O (zi,y;)
G?(X,Y)=2Y O(ziy;)n (—7]
or equivalently,

&y = ooy n (Y iU N
(XY)fé;N(3W1<N@wN@ﬁ)

The conditional version of the G? independence test is

6* (X, Y[S) = 230 (s S = s)ln (e 22200 )

Iy E (x4,9]S = sp)
N(fiayj75k)N('9k)>
=2Y N(zivyi, sk ln(
Z (73, yj» 1) N (24, s6) N (yj, sk)

i,k

The G? test is asymptotically distributed as a x? distribution, where degrees of freedom are the
same as in the x? test. So the p-value for the G? test is

PU>G*(X,Y))

In the following parts of this document, we use I () to uniformly represent the p-value of
whichever test is applied. If 7 (X,Y) > a, we say variable X and Y are independent, and if
I(X,Y]S) > «, we say variable X and Y are conditionally independent given variable set S.

Markov Blanket Structure Learning

This algorithm aims at learning a Bayesian networks structure from a dataset. It starts with a
complete graph G. Let X;, X; € X, and compute I (X;, X;) for each variable pair in G. If
I(X;,X,) > a,remove the arc between X;, X;. Then for each arc X; — X; perform an exhaustive
searchin ADJy, \ {X;} to find the smallest conditional variable set S such that I (X;, X;|5) > a.
If such § exist, delete arc X; — X;. After this, orientation rules are applied to orient the arcs in G.

Markov Blanket Arc Orientation Rules

Arcs in the derived structure are oriented based on the following rules:

1. All patterns of the of the form X; — X; — X, or X; — X; — X, are updated to X; — X, < X, if
Xj ¢ SXin

2. Patterns of the form X; — X; — X, are updated so that X; — X,
3. Patterns of the form X; — X; are updated to X; — X;

4. Patterns of the form
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N\ v

X

X; — X, — X
|

are updated so that X; — X,

After the last step, if there are still undirected arcs in the graph, return to step 2 and repeat until
all arcs are oriented.

Deriving the Markov Blanket Structure

The Markov Blanket is a local structure of a Bayesian Network. Given a Bayesian Network G
and a target variable Y, to derive the Markov Blanket of ¥, we should select all the directed
parents of ¥ in G denoted as wy, all the directed children of Y in G denoted as X, and all the
directed parents of Xy, in G denoted as . my UY U Xy, U and their arcs inherited from G
define the Markov Blanket A By-.

Markov Blanket Parameter Learning

Maximum Likelihood Estimation

The closed form solution for the parametersf;jx (1 < i < n,1 < j < g;, 1 <k <r;) that maximize
the log likelihood score is

5 Nijk

ik =
N;;
Note that if w; = @, then éijk = %

The number of parameters K is
n

K=> (ri—1)-g
i=1

Posterior Estimation

Assume that Dirichlet prior distributions are specified for each of the sets
O (1 <k <r;),1 <i<n,1<j<g; (Heckerman etal., 1999). Let Nl.ojk denote corresponding
Dirichlet distributed parameters such that Nioj = ZJ ioj x- Upon observing the dataset D, we

k
obtain Dirichlet posterior distributions with the following sets of parameters:

0
P _ Nijk + Nijy,
VRN + N

The posterior estimate is always used for model updating.
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Adjustment for Small Cell Counts

To overcome problems caused by zero or very small cell counts, parameters can be estimated as
posterior parameters ;1 (1 <k <r;),1 <i <n,1 < j < g, using uninformative Dirichlet priors
specified by N7, = -2

riqi’

Blank Handling

By default, records with missing values for any of the input or output fields are excluded from
model building. If the Use only complete records option is deselected, then for each pairwise
comparison between fields, all records containing valid values for the two fields in question
are used.

Model Nugget/Scoring

The Bayesian Network Model Nugget produces predicted values and probabilities for scored
records.

Tree Augmented Naive Bayes Models

Using the estimated model from training data, for a new case x = (1, ..., z,), the probability of
it belonging to the ith target category Y; is calculated as Pr (Y = Y;|X = x). The target category
with the highest posterior probability is the predicted category for this case, Y (x), is predicted by

Y (x) = argmax; {Pr (Y = ¥;|X = x)}
=argmax; {Pr(X =x|Y =Y;) Pr(Y =Y;)}

n
argmax; {Pr Y =Y;) HPr (Xi = zi|lm =m, Y = YZ)}
=1

Markov Blanket Models

The scoring function uses the estimated model to compute the probabilities of Y belongs to
each category for a new case Xp. Suppose 7y is the parent set of ¥, and wy|p denotes the
configuration of 7y given case Xp, Xop = (X1,. .., X;n) denotes the direct children set of 7,
m; denotes the parent set (excluding Y) of the ith variable in Xy,. The score for each category
of Y is computed by:

_ PriY =y, Xp=2p)
Zyl Pr (Y =y, Xp = ‘ij)

Pr (Y = yl‘Xp = .I?P)

where the joint probability that Y = y; and Xp = zp is:

m
Pr(Y =y, Xp=2xp)=c - Pr(Y =ylry = 7Ty|P) HPr (X; = zi|mi = mip, Y = Y1)
=1
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where

m

c¢c="Pr (7ry = Wy‘P) H Pr (m = 7ri|p)
i=1

Note that ¢ is never actually computed during scoring because its value cancels from the numerator
and denominator of the scoring equation given above.



Binary Classifier Comparison Metrics

The Binary Classifier node generates multiple models for a flag output field. For details on how
each model type is built, see the appropriate algorithm documentation for the model type.

The node also reports several comparison metrics for each model, to help you select the optimal
model for your application. The following metrics are available:

Maximum Profit

This gives the maximum amount of profit, based on the model and the profit and cost settings. It
is calculated as

J
Profityax = Z (h(x;) -r—c¢)
i=1

where h(z;) is defined as

N _ )1 ifz;isahit
h(w) = {0 othérwise

r is the user-specified revenue amount per hit, and c is the user-specified cost per record. The sum
is calculated for the j records with the highest p;, such that (p;41 - (r —¢)) — (1 = ;1) -¢) <0

Maximum Profit Occurs in %

This gives the percentage of the training records that provide positive profit based on the
predictions of the model,

Profity, = 2 - 100%
n

where 7 is the overall number of records included in building the model.
Lift

This indicates the response rate for the top g% of records (sorted by predicted probability), as a
ratio relative to the overall response rate,

k.
Lift = i1 Pi/k
S0y k()

where k is ¢% of n, the number of training records used to build the model. The default value of ¢
is 30, but this value can be modified in the binary classifier node options.

Overall Accuracy

This is the percentage of records for which the outcome is correctly predicted,
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n 0 otherwise

a = M . 100%’.,”(2') - { 1 if(i"i = l"z)

where #; is the predicted outcome value for record i and x; is the observed value.

Area Under the Curve (AUC)

This represents the area under the Receiver Operating Characteristic (ROC) curve for the model.
The ROC curve plots the true positive rate (where the model predicts the target response and the
response is observed) against the false positive rate (where the model predicts the target response
but a nonresponse is observed). For a good model, the curve will rise sharply near the left axis and
cut across near the top, so that nearly all the area in the unit square falls below the curve. For an
uninformative model, the curve will approximate a diagonal line from the lower left to the upper
right corner of the graph. Thus, the closer the AUC is to 1.0, the better the model.

Figure 6-1
ROC curves for a good model (left) and an uninformative model (right)

084 0.8+

o
o
L
o
@
I

o
=
1

True Positive Rate
o
=
1

True Positive Rate

024 024

0o T T T T T
0o 02 04 06 08 1.0 00 02 04 06 08 10

False Positive Rate False Positive Rate

The AUC is computed by identifying segments as unique combinations of predictor values that
determine subsets of records which all have the same predicted probability of the target value.
The s segments defined by a given model’s predictors are sorted in descending order of predicted
probability, and the AUC is calculated as

® ti 4 ti_
AUC =) Ifi = fimal- Tl
1=1

where f; is the cumulative number of false positives for segment i, that is, false positives for
segment i and all preceding segments j < i, ; is the cumulative number of true positives, and



C5.0 Algorithms

The code for training C5.0 models is licensed from RuleQuest Research Ltd Pty, and the algorithms
are proprietary. For more information, see the RuleQuest website at http://www.rulequest.com/.

Note: Modeler 13 upgraded the C5.0 version from 2.04 to 2.06. See the RuleQuest website
for more information.

Scoring
A record is scored with the class and confidence of the rule that fires for that record.

If a rule set is directly generated from the C5.0 node, then the confidence for the rule is calculated
as

(number correct in leaf + 1)

(total number of records in leaf + 2)

If a rule set is generated from a decision tree generated from the C5.0 node, then the confidence
is calculated as

(number correct in leaf + 1)

(total number of records in leaf + number of categories in the target)

Scores with rule set voting

When voting occurs between rules within a rule set the final scores assigned to a record are
calculated in the following way. For each record, all rules are examined and each rule that applies
to the record is used to generate a prediction and an associated confidence. The sum of confidence
figures for each output value is computed, and the value with the greatest confidence sum is
chosen as the final prediction. The confidence for the final prediction is the confidence sum for
that value divided by the number of rules that fired for that record.

Scores with boosted C5.0 classifiers (decision trees and rule sets)

When scoring with a boosted C5.0 rule set the # rule sets that make up the boosted rule set (one
rule set for each boosting trial) vote using their individual scores (as obtained above) to arrive
at the final score assigned to the case by the boosted rule set.

The voting for boosted C5 classifiers is as follows. For each record, each composite classifier
(rule set or decision tree) assigns a prediction and a confidence. The sum of confidence figures for
each output value is computed, and the value with the greatest confidence sum is chosen as the
final prediction. The confidence for the final prediction by the boosted classifier is the confidence
sum for that value divided by confidence sum for all values.
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Overview

The continuous association rule mining algorithm (Carma) is an alternative to Apriori that
reduces I/O costs, time, and space requirements (Hidber, 1999). It uses only two data passes and
delivers results for much lower support levels than Apriori. In addition, it allows changes in
the support level during execution.

Carma deals with items and itemsets that make up transactions. Items are flag-type conditions
that indicate the presence or absence of a particular thing in a specific transaction. An itemset is a
group of items which may or may not tend to co-occur within transactions.

Deriving Rules

Carma proceeds in two stages. First it identifies frequent itemsets in the data, and then it generates
rules from the lattice of frequent itemsets.

Frequent Itemsets

Carma uses a two-phase method of identifying frequent itemsets.

Phase I: Estimation

In the estimation phase, Carma uses a single data pass to identify frequent itemset candidates.
A lattice is used to store information on itemsets. Each node in the lattice stores the items
comprising the itemset, and three values for the associated itemset:

B count: number of transactions containing the itemset since the itemset was added to the lattice
m  firstTrans: the record index of the transaction for which the itemset was added to the lattice

B maxMissed: upper bound on the number of occurrences of the itemset before it was added to
the lattice

The lattice also encodes information on relationships between itemsets, which are determined
by the items in the itemset. An itemset Y is an ancestor of itemset X if X contains every item in
Y. More specifically, Y is a parent of X if X contains every item in Y plus one additional item.
Conversely, Y is a descendant of X if Y contains every item in X, and Y is a child of X if ¥ contains
every item in X plus one additional item.

For example, if X = {milk, cheese, bread}, then Y = {milk, cheese} is a parent of X, and Z =
{milk, cheese, bread, sugar} is a child of X.

Initially the lattice contains no itemsets. As each transaction is read, the lattice is updated in
three steps:

» Increment statistics. For each itemset in the lattice that exists in the current transaction, increment
the count value.
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» Insert new itemsets. For each itemset v in the transaction that is not already in the lattice, check all
subsets of the itemset in the lattice. If all possible subsets of the itemset are in the lattice with
mazSupport > o;, then add the itemset to the lattice and set its values:

B countis setto 1
B firstTrans is set to the record index of the current transaction

B maxMissed is defined as
maxMissed(v) = mcin {(LG — Vavg([al;,_1)] + |v| = 1), (mazMissed(w) + count(w) — 1)}

where w is a subset of itemset v, [o|;_ is the ceiling of ¢ up to transaction i for varying
support (or simply o for constant support), and |v| is the number of items in itemset v.

» Prune the lattice. Every £ transactions (where £ is the pruning value, set to 500 by default), the
lattice is examined and small itemsets are removed. A small itemset is defined as an itemset for
which maxSupport < i, where maxSupport = (maxMissed + count)/i.

Phase II: Validation

After the frequent itemset candidates have been identified, a second data pass is made to compute
exact frequencies for the candidates, and the final list of frequent itemsets is determined based
on these frequencies.

The first step in Phase II is to remove infrequent itemsets from the lattice. The lattice is pruned
using the same method described under Phase I, with o, as the user-specified support level for
the model.

After initial pruning, the training data are processed again and each itemset v in the lattice is
checked and updated for each transaction record with index i:

» If firstTrans(v) < i, v is marked as exact and is no longer considered for any updates. (When all
nodes in the lattice are marked as exact, phase II terminates.)

» If v appears in the current transaction, v is updated as follows:
® Increment count(v)
B Decrement maxMissed(v)

B If firstTrans(v) = i, set maxMissed(v) = 0, and adjust maxMissed for every superset w of v in
the lattice for which maxSupport(w) > maxSupport(v). For such supersets, set maxMissed(w)
= count(v) - count(w).

B If maxSupport(v) < oy, remove v from the lattice.

Generating Rules

Carma uses a common rule-generating algorithm for extracting rules from the lattice of itemsets
that tends to eliminate redundant rules (Aggarwal and Yu, 1998). Rules are generated from the
lattice of itemsets (see “Frequent Itemsets” on p. 53) as follows:

» For each itemset in the lattice, get the set of maximal ancestor itemsets. An itemset Y is a maximal

ancestor of itemset X if j;”m’i"“y) < 1 where c is the specified confidence threshold for rules.
pport(X) c
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» Prune the list of maximal ancestors by removing maximal ancestors of all of X’s child itemsets.

» For each itemset in the pruned maximal ancestor list, generate a rule Y = X — Y, where X—Y is
the itemset X with the items in itemset ¥ removed.

For example, if X the itemset {milk, cheese, bread} and Y is the itemset {milk, bread}, then the
resulting rule would be milk, bread = cheese

Blank Handling

Blanks are ignored by the Carma algorithm. The algorithm will handle records containing blanks
for input fields, but such a record will not be considered to match any rule containing one or
more of the fields for which it has blank values.

Effect of Options

Minimum rule support/confidence. These values place constraints on which rules may be entered
into the table. Only rules whose support and confidence values exceed the specified values can be
entered into the rule table.

Maximum rule size. Sets the limit on the number of items that will be considered as an itemset.

Exclude rules with multiple consequents. This option restricts rules in the final rule list to those
with a single item as consequent.

Set pruning value. Sets the number of transactions to process between pruning passes. For more
information, see the topic “Frequent Itemsets” on p. 53.

Vary support. Allows support to vary in order to enhance training during the early transactions in
the training data. For more information, see “Varying support” below.

Allow rules without antecedents. Allows rules that are consequent only, which are simple
statements of co-occuring items, along with traditional if-then rules.

Varying support

If the vary support option is selected, the target support value changes as transactions are
processed to provide more efficient training. The support value starts large and decreases in four
steps as transactions are processed. The first support value s applies to the first 9 transactions,
the second value s applies to the next 90 transactions, the third value s3 applies to transactions
100-4999, and the fourth value s4 applies to all remaining transactions. If we call the final
support value s, and the estimated number of transactions ¢, then the following constraints are
used to determine the support values:

» Ifs>02o0rt <19, set sy = sy = 83 = 4.
» If19 <t < 190, set s1 = 589, 83 = 84 = $2, such that w =s.

> 1190 < ¢ < 7000, set 51 = sy, 52 = 283, 54 = &3, such that (22172052 (-99)5s) _
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» If¢ > 7000, set s, = 5s2, 50 = 253, 83 = Hsy4, such that (951+9052+490253+(t74999)s4) =s

In all cases, if solving the equation yields s; > 0.5, 51 is set to 0.5, and the other values adjusted
accordingly to preserve the relation M = s, where s(i) is the target support (one of the
values s1, 57, 53, or s4) for the ith transaction.

Generated Model/Scoring

The Carma algorithm generates an unrefined rule node. To create a model for scoring new data,
the unrefined rule node must be refined to generate a ruleset node. Details of scoring for generated
ruleset nodes are given below.

Predicted Values

Predicted values are based on the rules in the ruleset. When a new record is scored, it is compared
to the rules in the ruleset. How the prediction is generated depends on the user’s setting for
Ruleset Evaluation in the stream options.

m  Voting. This method attempts to combine the predictions of all of the rules that apply to the
record. For each record, all rules are examined and each rule that applies to the record is used
to generate a prediction. The sum of confidence figures for each predicted value is computed,
and the value with the greatest confidence sum is chosen as the final prediction.

m  First hit. This method simply tests the rules in order, and the first rule that applies to the record
is the one used to generate the prediction.

There is a default rule, which specifies an output value to be used as the prediction for records
that don’t trigger any other rules from the ruleset. For rulesets derived from decision trees, the
value for the default rule is the modal (most prevalent) output value in the overall training data.
For association rulesets, the default value is specified by the user when the ruleset is generated
from the unrefined rule node.

Confidence

Confidence calculations also depend on the user’s Ruleset Evaluation stream options setting.

m Voting. The confidence for the final prediction is the sum of the confidence values for rules

triggered by the current record that give the winning prediction divided by the number of rules
that fired for that record.

m  First hit. The confidence is the confidence value for the first rule in the ruleset triggered by
the current record.

If the default rule is the only rule that fires for the record, it’s confidence is set to 0.5.
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Blank Handling

Blanks are ignored by the algorithm. The algorithm will handle records containing blanks for
input fields, but such a record will not be considered to match any rule containing one or more of
the fields for which it has blank values.

There is an exception to this: when a numeric field is examined based on a split point,
user-defined missing values are included in the comparison. For example, if you define -999 as a
missing value for a field, Carma will still compare it to the split point for that field, and may return
a match if the rule is of the form (X < 50). You may need to preprocess specially coded numeric
missing values (replacing them with $null$, for example) before scoring data with Carma.






C&RT Algorithms

Overview of C&RT

C&RT stands for Classification and Regression Trees, originally described in the book by the
same name (Breiman, Friedman, Olshen, and Stone, 1984). C&RT partitions the data into two
subsets so that the records within each subset are more homogeneous than in the previous subset.
It is a recursive process—each of those two subsets is then split again, and the process repeats
until the homogeneity criterion is reached or until some other stopping criterion is satisfied (as do
all of the tree-growing methods). The same predictor field may be used several times at different
levels in the tree. It uses surrogate splitting to make the best use of data with missing values.

C&RT is quite flexible. It allows unequal misclassification costs to be considered in the tree
growing process. It also allows you to specify the prior probability distribution in a classification
problem. You can apply automatic cost-complexity pruning to a C&RT tree to obtain a more
generalizable tree.

Primary Calculations

The calculations directly involved in building the model are described below.

Frequency and Case Weight Fields

Frequency and case weight fields are useful for reducing the size of your dataset. Each has a
distinct function, though. If a case weight field is mistakenly specified to be a frequency field, or
vice versa, the resulting analysis will be incorrect.

For the calculations described below, if no frequency or case weight fields are specified, assume
that frequency and case weights for all records are equal to 1.0.

Frequency Fields

A frequency field represents the total number of observations represented by each record. It is
useful for analyzing aggregate data, in which a record represents more than one individual. The
sum of the values for a frequency field should always be equal to the total number of observations
in the sample. Note that output and statistics are the same whether you use a frequency field or
case-by-case data. The table below shows a hypothetical example, with the predictor fields sex
and employment and the target field response. The frequency field tells us, for example, that 10
employed men responded yes to the target question, and 19 unemployed women responded no.

Table 9-1
Dataset with frequency field

Sex Employment Response Frequency
M Y Y 10
M Y N 17
M N Y 12
M N N 21
F Y Y 11
F Y N 15
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Sex Employment Response Frequency
F N Y 15
F N N 19

The use of a frequency field in this case allows us to process a table of 8 records instead of
case-by-case data, which would require 120 records.

Case weights

The use of a case weight field gives unequal treatment to the records in a dataset. When a case
weight field is used, the contribution of a record in the analysis is weighted in proportion to
the population units that the record represents in the sample. For example, suppose that in

a direct marketing promotion, 10,000 households respond and 1,000,000 households do not
respond. To reduce the size of the data file, you might include all of the responders but only a
1% sample (10,000) of the nonresponders. You can do this if you define a case weight equal to
1 for responders and 100 for nonresponders.

Model Parameters

C&RT works by choosing a split at each node such that each child node created by the split is
more pure than its parent node. Here purity refers to similarity of values of the target field. In a
completely pure node, all of the records have the same value for the target field. C&RT measures
the impurity of a split at a node by defining an impurity measure. For more information, see the
topic “Impurity Measures” on p. 62.

The following steps are used to build a C&RT tree (starting with the root node containing all
records):

Find each predictor's best split. For each predictor field, find the best possible split for that field,
as follows:

®  Range (numeric) fields. Sort the field values for records in the node from smallest to largest.
Choose each point in turn as a split point, and compute the impurity statistic for the resulting
child nodes of the split. Select the best split point for the field as the one that yields the largest
decrease in impurity relative to the impurity of the node being split.

m  Symbolic (categorical) fields. Examine each possible combination of values as two subsets.
For each combination, calculate the impurity of the child nodes for the split based on that
combination. Select the best split point for the field as the one that yields the largest decrease
in impurity relative to the impurity of the node being split.

Find the best split for the node. Identify the field whose best split gives the greatest decrease in
impurity for the node, and select that field’s best split as the best overall split for the node.

Check stopping rules, and recurse. If no stopping rules are triggered by the split or by the parent
node, apply the split to create two child nodes. (For more information, see the topic “Stopping
Rules” on p. 65.) Apply the algorithm again to each child node.
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Blank Handling

Records with missing values for the target field are ignored in building the tree model.

Surrogate splitting is used to handle blanks for predictor fields. If the best predictor field to be
used for a split has a blank or missing value at a particular node, another field that yields a split
similar to the predictor field in the context of that node is used as a surrogate for the predictor
field, and its value is used to assign the record to one of the child nodes.

Note: If Surrogate splitting is used (where a particular rule does not fit into a node) the Confidence
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

For example, suppose that X* is the predictor field that defines the best split s* at node 7. The
surrogate-splitting process finds another split s, the surrogate, based on another predictor field X
such that this split is most similar to s* at node ¢ (for records with valid values for both predictors).
If a new record is to be predicted and it has a missing value on X* at node ¢, the surrogate split s is
applied instead. (Unless, of course, this record also has a missing value on X. In such a situation,
the next best surrogate is used, and so on, up to the limit of number of surrogates specified.)

In the interest of speed and memory conservation, only a limited number of surrogates is
identified for each split in the tree. If a record has missing values for the split field and all
surrogate fields, it is assigned to the child node with the higher weighted probability, calculated as

Ny,;(t)
Ny(t)

where Ngj(7) is the sum of frequency weights for records in category j for node 7, and N(?) is the
sum of frequency weights for all records in node ¢.

If the model was built using equal or user-specified priors, the priors are incorporated into the
calculation:

m(j)  Ngi(®)
pr(t)  Ny(t)

where 7(j) is the prior probability for category j, and pg(¢) is the weighted probability of a record
being assigned to the node,

pf(t) _ Z W(j)]if\;fij (t)
g »J

where Ngj(7) is the sum of the frequency weights (or the number of records if no frequency
weights are defined) in node 7 belonging to category j, and N¢;j is the sum of frequency weights
for records belonging to category in the entire training sample.
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Predictive measure of association

Let fix+nx (resp. fix-nx (t)) be the set of learning cases (resp. learning cases in node #) that has
non-missing values of both X* and X. Let p (s* ~ sx|t) be the probability of sending a case in
Bx+~x (t) to the same child by both s* and sx, and §x be the split with maximized probability

p(s* =~ 3x|t) = max,, (p(s* =~ sx|t)).
The predictive measure of association A (s* ~ §x |t) between s™ and §x at node ¢ is

. 1 gl
)\(S*Q§X|t): mm(PLaPR)' ( ]J(S SX| ))
min (pL;PR)

where py, (resp. pg) is the relative probability that the best split s* at node ¢ sends a case with
non-missing value of X to the left (resp. right) child node. And where

ifY'is categorical

Z 7 (j) Nuj (5" = sx,t)

. B
p(s* = sxlt) =1 Ny, j(X*NX)
N, (s*~sx ) . .
N (XX 1fY'is continuous
with
Ny (X*nNX)= Y wfuNo(X*NX,t)= > w,f,
n€hxxnx n€hx+nx(t)
Nw (S* ~ Sth) = Z w'n,f'n,] (n’ NS SX)
n€hx«nx ()
J\Tw»j (X*mX): Z lwnnt(yn:j)"NTw7j (X*QX): Z wnnt(yn:J)
ne€hx*nx n€hx«nx(t)
N, (s* msx,t) = Z W fod (Yn =4)I(n: 8" ~ sx)
nchxxnx(t)

and T (n : s* ~ sx) being the indicator function taking value 1 when both splits s and sx send
the case 7 to the same child, 0 otherwise.

Effect of Options

Impurity Measures

There are three different impurity measures used to find splits for C&RT models, depending on the
type of the target field. For symbolic target fields, you can choose Gini or twoing. For continuous
targets, the least-squared deviation (LSD) method is automatically selected.

The Gini index g(¢) at a node ¢ in a C&RT tree, is defined as
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g(t) = p(jlt)p(ilt)
i

where i and j are categories of the target field, and

Pt
p(j‘t) - p(t)
o TN (@)
p(j,t) = T
p(t) = Zp(w)

where 7(j) is the prior probability value for category j, Nj(?) is the number of records in category
J of node 7, and Nj is the number of records of category j in the root node. Note that when the
Gini index is used to find the improvement for a split during tree growth, only those records in
node 7 and the root node with valid values for the split-predictor are used to compute N;(?) and
Nj, respectively.

The equation for the Gini index can also be written as

g(t) =1-> p’(jlt)
j

Thus, when the records in a node are evenly distributed across the categories, the Gini index takes
its maximum value of 1 - 1/,, where k is the number of categories for the target field. When all
records in the node belong to the same category, the Gini index equals 0.

The Gini criterion function &(s, ¢) for split s at node ¢ is defined as

®(s,t) = g(t) — pry(tr) — rry(tR)

where py is the proportion of records in # sent to the left child node, and pR is the proportion sent
to the right child node. The proportions py, and pR are defined as

_pltr)
PL= ()
and

p(tR)
PE =)

The split s is chosen to maximize the value of @(s, f).
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Twoing

The twoing index is based on splitting the target categories into two superclasses, and then
finding the best split on the predictor field based on those two superclasses. The superclasses
C1 and C, are defined as

Cy = {j:p(jltL) = p(iltr)}

and

Co=0C—-Ch

where C is the set of categories of the target field, and p(j|tr) and p(j|¢1) are p(j|¢), as defined as
in the Gini formulas, for the right and left child nodes, respectively. For more information, see
the topic “Gini” on p. 62.

The twoing criterion function for split s at node 7 is defined as

2

@ (s,t) =pror | Y pGlts) — p(iltr)|
J

where 71, and tg are the nodes created by the split s. The split s is chosen as the split that
maximizes this criterion.

Least Squared Deviation

For continuous target fields, the least squared deviation (LSD) impurity measure is used. The
LSD measure R(¢) is simply the weighted within-node variance for node ¢, and it is equal to the
resubstitution estimate of risk for the node. It is defined as

R = > wifilyi — (t))*

where Ny (?) is the weighted number of records in node ¢, wj is the value of the weighting field for
record i (if any), f; is the value of the frequency field (if any), y; is the value of the target field, and
(?) is the (weighted) mean for node ¢. The LSD criterion function for split s at node ¢ is defined as

® (s,t) = R(t) — pLR(tL) — prR(tR)

The split s is chosen to maximize the value of @(s,f).
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Stopping Rules

Stopping rules control how the algorithm decides when to stop splitting nodes in the tree. Tree
growth proceeds until every leaf node in the tree triggers at least one stopping rule. Any of the
following conditions will prevent a node from being split:

®  The node is pure (all records have the same value for the target field)
®  All records in the node have the same value for all predictor fields used by the model

m  The tree depth for the current node (the number of recursive node splits defining the current
node) is the maximum tree depth (default or user-specified).

B The number of records in the node is less than the minumum parent node size (default or
user-specified)

B The number of records in any of the child nodes resulting from the node’s best split is less
than the minimum child node size (default or user-specified)

m  The best split for the node yields a decrease in impurity that is less than the minimum change
in impurity (default or user-specified).

Profits

Profits are numeric values associated with categories of a (symbolic) target field that can be used
to estimate the gain or loss associated with a segment. They define the relative value of each value
of the target field. Values are used in computing gains but not in tree growing.

Profit for each node in the tree is calculated as

Z fi®)P;

where j is the target field category, fj(¢) is the sum of frequency field values for all records in node
t with category j for the target field, and P; is the user-defined profit value for category ;.

Priors

Prior probabilities are numeric values that influence the misclassification rates for categories of
the target field. They specify the proportion of records expected to belong to each category of the
target field prior to the analysis. The values are involved both in tree growing and risk estimation.

There are three ways to derive prior probabilities.

Empirical Priors

By default, priors are calculated based on the training data. The prior probability assigned to each
target category is the weighted proportion of records in the training data belonging to that category,

Ny, j

W(j):N—w
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In tree-growing and class assignment, the Ns take both case weights and frequency weights
into account (if defined); in risk estimation, only frequency weights are included in calculating
empirical priors.

Equal Priors

Selecting equal priors sets the prior probability for each of the J categories to the same value,

User-Specified Priors

When user-specified priors are given, the specified values are used in the calculations involving
priors. The values specified for the priors must conform to the probability constraint: the sum of
priors for all categories must equal 1.0. If user-specified priors do not conform to this constraint,
adjusted priors are derived which preserve the proportions of the original priors but conform

to the constraint, using the formula

where 7(j) is the adjusted prior for category j, and n(j) is the original user-specified prior for
category ;.

Costs

Gini. If costs are specified, the Gini index is computed as
g(t) =Y C(ili)p(ilt)p(ilt)
J#
where C(i]j) specifies the cost of misclassifying a category j record as category i.

Twoing. Costs, if specified, are not taken into account in splitting nodes using the twoing criterion.
However, costs will be incorporated into node assignment and risk estimation, as described in
Predicted Values and Risk Estimates, below.

LSD. Costs do not apply to regression trees.

Pruning

Pruning refers to the process of examining a fully grown tree and removing bottom-level splits
that do not contribute significantly to the accuracy of the tree. In pruning the tree, the software
tries to create the smallest tree whose misclassification risk is not too much greater than that of the
largest tree possible. It removes a tree branch if the cost associated with having a more complex
tree exceeds the gain associated with having another level of nodes (branch).
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It uses an index that measures both the misclassification risk and the complexity of the tree,
since we want to minimize both of these things. This cost-complexity measure is defined as
follows:

Ra (T):R(T)m)ﬂ

R(T) is the misclassification risk of tree 7, and ’T‘ is the number of terminal nodes for tree 7. The
term a represents the complexity cost per terminal node for the tree. (Note that the value of a is
calculated by the algorithm during pruning.)

Any tree you might generate has a maximum size (7pax), in which each terminal node contains
only one record. With no complexity cost (a = 0), the maximum tree has the lowest risk, since
every record is perfectly predicted. Thus, the larger the value of a, the fewer the number of
terminal nodes in T(a), where T(a) is the tree with the lowest complexity cost for the given a. As
o increases from 0, it produces a finite sequence of subtrees (77, T2, 73), each with progressively
fewer terminal nodes. Cost-complexity pruning works by removing the weakest split.

The following equations represent the cost complexity for {¢}, which is any single node, and
for T3, the subbranch of {¢}.

Ro({t}) =R(t) +a

R, (Tt) =R (Tt) + «

T;)

If R, (T:) is less than R, ({t}), then the branch T has a smaller cost complexity than the single
node {¢}.

The tree-growing process ensures that R, ({t}) > R, (T;) for (a =0). As a increases from 0,
both R, ({t}) and R,(T:) grow linearly, with the latter growing at a faster rate. Eventually, you
will reach a threshold a’, such that R, ({t}) < R, (T}) for all @ > «’. This means that when a
grows larger than a’, the cost complexity of the tree can be reduced if we cut the subbranch T}
under {t}. Determining the threshold is a simple computation. You can solve this first inequality,
R,({t}) > R.(T}), to find the largest value of a for which the inequality holds, which is also
represented by g(f). You end up with

R(t) - R(Th)

T, —1

a<g(t)=

You can define the weakest link (¢) in tree T as the node that has the smallest value of g(¢):

g(f) = min g(?)

Therefore, as « increases, ¢ is the first node for which R, ({t}} = R, (T;). At that point, {¢}
becomes preferable to T3, and the subbranch is pruned.
With that background established, the pruning algorithm follows these steps:

» Set o) =0 and start with the tree 71 = 7(0), the fully grown tree.
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>

Increase o until a branch is pruned. Prune the branch from the tree, and calculate the risk estimate
of the pruned tree.

Repeat the previous step until only the root node is left, yielding a series of trees, T4, 7>, ... Tk.

If the standard error rule option is selected, choose the smallest tree Tqp¢ for which

R(Topt) < mkin R(Ty) +m x SE(R(T))

If the standard error rule option is not selected, then the tree with the smallest risk estimate R(7)
is selected.

Secondary Calculations

Secondary calculations are not directly related to building the model, but give you information
about the model and its performance.

Risk Estimates

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for
the tree as a whole.

Risk Estimates for Symbolic Target Field

For classification trees (with a symbolic target field), the risk estimate #(¢) of a node ¢ is computed
as

where C(7*(¢)|j) is the misclassification cost of classifying a record with target value j as j*(?),
Ngj(?) is the sum of the frequency weights for records in node 7 in category j (or the number of
records if no frequency weights are defined), and Nf is the sum of frequency weights for all
records in the training data.

If the model uses user-specified priors, the risk estimate is calculated as

ﬂU)Nf’j(t)C SO
%:—Nf,j (*(t)15)

Note that case weights are not considered in calculating risk estimates.

Risk Estimates for numeric target field

For regression trees (with a numeric target field), the risk estimate 7(¢) of a node ¢ is computed as
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r () = ﬁzﬂy )

where f; is the frequency weight for record i (a record assigned to node ¢), y; is the value of the
target field for record i, and g (?) is the weighted mean of the target field for all records in node ¢.

Tree Risk Estimate

For both classification trees and regression trees, the risk estimate R(7) for the tree (7) is
calculated by taking the sum of the risk estimates for the terminal nodes r(z):

tel”

where 7T 1s the set of terminal nodes in the tree.

Gain Summary

The gain summary provides descriptive statistics for the terminal nodes of a tree.
If your target field is continuous (scale), the gain summary shows the weighted mean of the
target value for each terminal node,

g(t) = > wifiz;

1€t

If your target field is symbolic (categorical), the gain summary shows the weighted percentage of
records in a selected target category,

Y ier Jizi(d)

g(t.j) = S
SR

where x;(j) = 1 if record x; is in target category j, and 0 otherwise. If profits are defined for the
tree, the gain is the average profit value for each terminal node,

g(t) =Y fiP()

i€t
where P(x;) is the profit value assigned to the target value observed in record x;.

Generated Model/Scoring

Calculations done by the C&RT generated model are described below
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Predicted Values

New records are scored by following the tree splits to a terminal node of the tree. Each terminal
node has a particular predicted value associated with it, determined as follows:

Classification Trees

For trees with a symbolic target field, each terminal node’s predicted category is the category with
the lowest weighted cost for the node. This weighted cost is calculated as

miin Z C(ilj)p(j[t)
J

where C(i]y) is the user-specified misclassification cost for classifying a record as category i when
it is actually category j, and p(j|¢) is the conditional weighted probability of a record being in
category j given that it is in node ¢, defined as

Nw,j (t)
Nu,j

map Jt) =7(j)

p(jlt) =

where 7(j) is the prior probability for category j, Ny j(?) is the weighted number of records in node
¢ with category j (or the number of records if no frequency or case weights are defined),

Nuj(t) = wifij(i)
i€t
and Ny is the weighted number records in category j (any node),

Nuj =Y wifij(i)

ieT

Regression Trees

For trees with a numeric target field, each terminal node’s predicted category is the weighted mean
of the target values for records in the node. This weighted mean is calculated as

_ 1

where Ny,(?) is defined as

Ny(t) =) wif;

1ct
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Confidence

For classification trees, confidence values for records passed through the generated model are
calculated as follows. For regression trees, no confidence value is assigned.

Classification Trees

Confidence for a scored record is the proportion of weighted records in the training data in the
scored record’s assigned terminal node that belong to the predicted category, modified by the
Laplace correction:

Nyi(t)+1
Nf(f) + k

Note: If Surrogate Splitting is used (where a particular rule does not fit into a node) the Confidence
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

Blank Handling

In classification of new records, blanks are handled as they are during tree growth, using
surrogates where possible, and splitting based on weighted probabilities where necessary. For
more information, see the topic “Blank Handling” on p. 61.
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Overview of CHAID

CHAID stands for Chi-squared Automatic Interaction Detector. It is a highly efficient statistical
technique for segmentation, or tree growing, developed by (Kass, 1980). Using the significance of
a statistical test as a criterion, CHAID evaluates all of the values of a potential predictor field. It
merges values that are judged to be statistically homogeneous (similar) with respect to the target
variable and maintains all other values that are heterogeneous (dissimilar).

It then selects the best predictor to form the first branch in the decision tree, such that each
child node is made of a group of homogeneous values of the selected field. This process continues
recursively until the tree is fully grown. The statistical test used depends upon the measurement
level of the target field. If the target field is continuous, an F test is used. If the target field is
categorical, a chi-squared test is used.

CHAID is not a binary tree method; that is, it can produce more than two categories at any
particular level in the tree. Therefore, it tends to create a wider tree than do the binary growing
methods. It works for all types of variables, and it accepts both case weights and frequency
variables. It handles missing values by treating them all as a single valid category.

Exhaustive CHAID

Exhaustive CHAID is a modification of CHAID developed to address some of the weaknesses
of the CHAID method (Biggs, de Ville, and Suen, 1991). In particular, sometimes CHAID may
not find the optimal split for a variable, since it stops merging categories as soon as it finds
that all remaining categories are statistically different. Exhaustive CHAID remedies this by
continuing to merge categories of the predictor variable until only two supercategories are left.
It then examines the series of merges for the predictor and finds the set of categories that gives
the strongest association with the target variable, and computes an adjusted p-value for that
association. Thus, Exhaustive CHAID can find the best split for each predictor, and then choose
which predictor to split on by comparing the adjusted p-values.

Exhaustive CHAID is identical to CHAID in the statistical tests it uses and in the way it treats
missing values. Because its method of combining categories of variables is more thorough than
that of CHAID, it takes longer to compute. However, if you have the time to spare, Exhaustive
CHAID is generally safer to use than CHAID. It often finds more useful splits, though depending
on your data, you may find no difference between Exhaustive CHAID and CHAID results.

Primary Calculations

The calculations directly involved in building the model are described below.

Frequency and Case Weight Fields

Frequency and case weight fields are useful for reducing the size of your dataset. Each has a
distinct function, though. If a case weight field is mistakenly specified to be a frequency field, or
vice versa, the resulting analysis will be incorrect.

© Copyright IBM Corporation 1994, 2016. 73
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For the calculations described below, if no frequency or case weight fields are specified, assume
that frequency and case weights for all records are equal to 1.0.

Frequency Fields

A frequency field represents the total number of observations represented by each record. It is
useful for analyzing aggregate data, in which a record represents more than one individual. The
sum of the values for a frequency field should always be equal to the total number of observations
in the sample. Note that output and statistics are the same whether you use a frequency field or
case-by-case data. The table below shows a hypothetical example, with the predictor fields sex
and employment and the target field response. The frequency field tells us, for example, that 10
employed men responded yes to the target question, and 19 unemployed women responded no.

Table 10-1
Dataset with frequency field

Sex Employment Response Frequency
M Y Y 10
M Y N 17
M N Y 12
M N N 21
F Y Y 11
F Y N 15
F N Y 15
F N N 19

The use of a frequency field in this case allows us to process a table of 8 records instead of
case-by-case data, which would require 120 records.

Case weights

The use of a case weight field gives unequal treatment to the records in a dataset. When a case
weight field is used, the contribution of a record in the analysis is weighted in proportion to
the population units that the record represents in the sample. For example, suppose that in

a direct marketing promotion, 10,000 households respond and 1,000,000 households do not
respond. To reduce the size of the data file, you might include all of the responders but only a
1% sample (10,000) of the nonresponders. You can do this if you define a case weight equal to
1 for responders and 100 for nonresponders.

Binning of Scale-Level Predictors

1.

Scale level (continuous) predictor fields are automatically discretized or binned into a set of
ordinal categories. This process is performed once for each scale-level predictor in the model,
prior to applying the CHAID (or Exhaustive CHAID) algorithm. The binned categories are
determined as follows:

The data values y; are sorted.
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2. For each unique value, starting with the smallest, calculate the relative (weighted) frequency of
values less than or equal to the current value yj:

him 3w

Yru<Vi

where wy is the weight for record & (or 1.0 if no weights are defined).

3. Determine the bin to which the value belongs by comparing the relative frequency with the ideal
bin percentile cutpoints of 0.10, 0.20, 0.30, etc.

g
W+1

binindex = x 10

where W is the total weighted frequency for all records in the training data, ), w;, and

g= cfin+25E, wi>1
cfii+%, w <l

m  [f the bin index for this value is different from the bin index for the previous data value, add a
new bin to the bin list and set its cutpoint to the current data value.

m [f the bin index is the same as the bin index for the previous value, update the cut point for
that bin to the current data value.

Normally, CHAID will try to create £ = 10 bins by default. However, when the number of records
having a single value is large (or a set of records with the same value has a large combined
weighted frequency), the binning may result in fewer bins. This will happen if the weighted
frequency for records with the same value is greater than the expected weighted frequency in a bin
(1/kth of the total weighted frequency). This will also happen if there are fewer than & distinct
values for the binned field for records in the training data.

Model Parameters

CHAID works with all types of continuous or categorical fields. However, continuous predictor
fields are automatically categorized for the purpose of the analysis.For more information, see the
topic “Binning of Scale-Level Predictors” on p. 74.

Note that you can set some of the options mentioned below using the Expert Options for
CHAID. These include the choice of the Pearson chi-squared or likelihood-ratio test, the level of
Omerge» the level of agpjjt, score values, and details of stopping rules.
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The CHAID algorithm proceeds as follows:

Merging Categories for Predictors (CHAID)

To determine each split, all predictor fields are merged to combine categories that are not
statistically different with respect to the target field. Each final category of a predictor field X
will represent a child node if X is used to split the node. The following steps are applied to each
predictor field X:

If X has one or two categories, no more categories are merged, so proceed to node splitting below.

Find the eligible pair of categories of X that is least significantly different (most similar) as
determined by the p-value of the appropriate statistical test of association with the target field. For
more information, see the topic “Statistical Tests Used” on p. 77.

For ordinal fields, only adjacent categories are eligible for merging; for nominal fields, all pairs
are eligible.

For the pair having the largest p-value, if the p-value is greater than oyyerge, then merge the pair
of categories into a single category. Otherwise, skip to step 6.

If the user has selected the Allow splitting of merged categories option, and the newly formed
compound category contains three or more original categories, then find the best binary split
within the compound category (that for which the p-value of the statistical test is smallest). If that
p-value is less than or equal to op|it-merge, Perform the split to create two categories from the
compound category.

Continue merging categories from step 1 for this predictor field.

Any category with fewer than the user-specified minimum segment size records is merged
with the most similar other category (that which gives the largest p-value when compared with
the small category).

Merging Categories for Predictors (Exhaustive CHAID)

Exhaustive CHAID works much the same as CHAID, except that the category merging is more
thoroughly tested to find the ideal set of categories for each predictor field. As with regular
CHALID, each final category of a predictor field X will represent a child node if X is used to split
the node. The following steps are applied to each predictor field X:

For each predictor variable X, find the pair of categories of X that is least significantly different
(that is, has the largest p-value) with respect to the target variable Y. The method used to
calculate the p-value depends on the measurement level of Y. For more information, see the
topic “Statistical Tests Used” on p. 77.

Merge into a compound category the pair that gives the largest p-value.

Calculate the p-value based on the new set of categories of X. This represents one set of categories
for X. Remember the p-value and its corresponding set of categories.
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4. Repeat steps 1, 2, and 3 until only two categories remain. Then, compare the sets of categories
of X generated during each step of the merge sequence, and find the one for which the p-value
in step 3 is the smallest. That set is the set of merged categories for X to be used in determining
the split at the current node.

Splitting Nodes

When categories have been merged for all predictor fields, each field is evaluated for its
association with the target field, based on the adjusted p-value of the statistical test of association,
as described below.

The predictor with the strongest association, indicated by the smallest adjusted p-value, is
compared to the split threshold, ogpji¢. If the p-value is less than or equal to ogpjjt, that field is
selected as the split field for the current node. Each of the merged categories of the split field
defines a child node of the split.

After the split is applied to the current node, the child nodes are examined to see if they warrant
splitting by applying the merge/split process to each in turn. Processing proceeds recursively until
one or more stopping rules are triggered for every unsplit node, and no further splits can be made.

Statistical Tests Used

Calculations of the unadjusted p-values depend on the type of the target field. During the merge
step, categories are compared pairwise, that is, one (possibly compound) category is compared
against another (possibly compound) category. For such comparisons, only records belonging to
one of the comparison categories in the current node are considered. During the split step, all
categories are considered in calculating the p-value, thus all records in the current node are used.

Scale Target Field (F Test).

For models with a scale-level target field, the p-value is calculated based on a standard
ANOVA F-test comparing the target field means across categories of the predictor field under
consideration. The F statistic is calculated as

I
Z Z wnnt («Un — Z) (yz - g)Q/(I - 1>
F= i=1 neD
I
Z Z wy fnl (In = 2) (yn - gZ)Q/(Nf B I)
i=1 neD

and the p-value is

p=Pr(F(I-1,N;~1I)>F)

where
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= ZnGD Wy frynd (In Z) g= ZTLGD Wy fnYn N, = Z f
C ep wnfal (e =) Snepwnfn 7 "

neD

and F(I — 1, Ny — ) is a random variable following an F-distribution with (/ — 1) and (Nf— 1)
degrees of freedom.

Nominal Target Field (Chi-Squared Test)

If the target field Y is a set (categorical) field, the null hypothesis of independence of X and Y is
tested. To do the test, a contingency (count) table is formed using classes of Y as columns and
categories of the predictor X as rows. The expected cell frequencies under the null hypothesis of
independence are estimated. The observed cell frequencies and the expected cell frequencies are
used to calculate the chi-squared statistic, and the p-value is based on the calculated statistic.

Pearson Chi-squared test
The Pearson chi-square statistic is calculated as
J T 2
2 _ Z Z ’l@] 7”]@]
j=1i=1
where n;; = > fol(x, =i Ay, = j) is the observed cell frequency and ri2;; is the expected
cell frequency for cell (x, = i, y, =) from the independence model as described below. The

corresponding p value is calculated as p = Pr (x5 > X?), where x3 follows a chi-square
distribution with d = (J — 1)(/ — 1) degrees of freedom.

Expected Frequencies for Chi-Square Test

Likelihood-ratio Chi-squared test

The likelihood-ratio chi-square is calculated based on the expected and observed frequencies, as
described above. The likelihood ratio chi-square is calculated as

J 1
2=2 Z Z nij In (nij /mi;)
=1 i=1
and the p-value is calculated as p = Pr (x3 > G?)

Expected frequencies for chi-squared tests

For models with no case weights, expected frequencies are calculated as
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where

J I
ni = E Nij, Nj = E Nij, M. = E E ngj.
j=1 i=1 j

J=1:=1

If case weights are specified, the expected cell frequency under the null hypothesis of
independence takes the form

——1
mi; = lwij Oziﬁ]’

where o; and fj are parameters to be estimated, and
_ Wi ) .
Wij = ——, Wi = § wnfnj(x:@/\yn:])-
Mij ,
neD

The parameter estimates &;, 3]‘, and hence 1725, are calculated based on the following iterative
procedure:

L nitially, k=0, 0" = 87 =1, m{? =w".

% 17 tj
2 (k+1) n; (k) _ n,
C Al = i = q; b,
i =10k} i (%)
E,z W B Zj i

3. B("“Fl) _ n.g

j - ——1 (k+1)

J ZL Wi ai

k—+1 P k+1 k+1
4. m§j+):wij1a’g+)ﬂ;+)'

(k+1)
ij
&i, 35, and 1;;. Otherwise, increment k and repeat from step 2.

k+1)

k)
J 7

- mg (k1) /8§k+1

If max; ; |m < ¢, stop and output a; ) and mz(- as the final estimates of

Ordinal Target Field (Row Effects Model)

If the target field Y is ordinal, the null hypothesis of independence of X and Y is tested against
the row effects model, with the rows being the categories of X and the columns the categories
of ¥Y(Goodman, 1979). Two sets of expected cell frequencies, 7;; (under the hypothesis of
independence and ﬁz.ij (under the hypothesis that the data follow the row effects model), are both
estimated. The likelihood ratio statistic is computed as

I J
i=1 j=1

and the p-value is calculated as

p=Pr (X%—l > H2)
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Expected Cell Frequencies for the Row Effects Model

For the row effects model, scores for categories of Y are needed. By default, the order of each
category is used as the category score. Users can specify their own set of scores. The expected
cell frequency under the row effects model is

-3)

1 (s;
mij = W5 i
where sj is the score for category j of ¥, and

J
Zj:l W.jS;j

s =
J
Zj:l w.j

in which w ; = >, wij, o;, v and v are unknown parameters to be estimated.

Parameter estimates &;, B > %,i, and hence ﬁtij are calculated using the following iterative
procedure:

k= 0,a§0) = 59('0) = %-(0) = 1,m(q) —w !

RS . k) ny

g Z m_—_lﬂ(_k) (7_(k))(5j*5) =% ZJ_ mif)
; Wig 75 i

5(k+1) _ .
’ Z oo lat (,y(k))(.sjfg)
3 , AN (85-3) Z‘(S'*E)(n,‘.,mf)
=W (k+1) (k+1) (k) 7 o P 2 i
M = Wy & B; ('Yz' ) , Gi=1+4 Zj(sj‘g)gm;‘j

’Y'(k+1) _ {’yi(k)Gi G; >0
’ ~F - otherwise

(5-5)
) = ol g ()

(k+1)

iy m§§>‘ < ¢, stop and set alk Ty, ﬂ](-k+1), (k1 (k1)

i Y; ), and m;; as the final

If max; ; ’m i ;

estimates of &;, Bj, %/i, and 'rfnl-j. Otherwise, increment & and repeat from step 2.

Bonferroni Adjustment

The adjusted p-value is calculated as the p-value times a Bonferroni multiplier. The Bonferroni
multiplier controls the overall p-value across multiple statistical tests.

Suppose that a predictor field originally has I categories, and it is reduced to » categories after
the merging step. The Bonferroni multiplier B is the number of possible ways that I categories
can be merged into r categories. Forr=1, B=1. For2 <r </,
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(7{ B % ) Ordinal predictor
B={ Y| (—1)”% Nominal predictor
I-2 I—: . . .
\ (r _ 2) +r ( r—1 > Ordinal with a missing value

Blank Handling

If the target field for a record is blank, or all the predictor fields are blank, the record is ignored in
model building. If case weights are specified and the case weight for a record is blank, zero, or
negative, the record is ignored, and likewise for frequency weights.

For other records, blanks in predictor fields are treated as an additional category for the field.

Ordinal Predictors

The algorithm first generates the best set of categories using all non-blank information. Then the
algorithm identifies the category that is most similar to the blank category. Finally, two p-values
are calculated: one for the set of categories formed by merging the blank category with its most

similar category, and the other for the set of categories formed by adding the blank category as a
separate category. The set of categories with the smallest p-value is used.

Nominal Predictors

The missing category is treated the same as other categories in the analysis.

Effect of Options

Stopping Rules

Stopping rules control how the algorithm decides when to stop splitting nodes in the tree. Tree
growth proceeds until every leaf node in the tree triggers at least one stopping rule. Any of the
following conditions will prevent a node from being split:

®  The node is pure (all records have the same value for the target field)
m  All records in the node have the same value for all predictor fields used by the model

m  The tree depth for the current node (the number of recursive node splits defining the current
node) is the maximum tree depth (default or user-specified).

B The number of records in the node is less than the minumum parent node size (default or
user-specified)

B The number of records in any of the child nodes resulting from the node’s best split is less
than the minimum child node size (default or user-specified)

®  The best split for the node yields a p-value that is greater than the ogpjt (default or
user-specified).



82

CHAID Algorithms

Profits

Profits are numeric values associated with categories of a (symbolic) target field that can be used
to estimate the gain or loss associated with a segment. They define the relative value of each value
of the target field. Values are used in computing gains but not in tree growing.

Profit for each node in the tree is calculated as

> P,
i

where j is the target field category, fi(#) is the sum of frequency field values for all records in node
¢ with category j for the target field, and P; is the user-defined profit value for category ;.

Score Values

Scores are available in CHAID and Exhaustive CHAID. They define the order and distance
between categories of an ordinal categorical target field. In other words, the scores define the
field’s scale. Values of scores are involved in tree growing.

If user-specified scores are provided, they are used in calculation of expected cell frequencies,
as described above.

Costs
Costs, if specified, are not taken into account in growing a CHAID tree. However, costs will be

incorporated into node assignment and risk estimation, as described in Predicted Values and
Risk Estimates, below.

Secondary Calculations

Secondary calculations are not directly related to building the model, but give you information
about the model and its performance.

Risk Estimates

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for
the tree as a whole.

Risk Estimates for Symbolic Target Field

For classification trees (with a symbolic target field), the risk estimate #(¢) of a node ¢ is computed
as
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where C(7*(¢)|j) is the misclassification cost of classifying a record with target value j as j*(?),
Ngj(?) is the sum of the frequency weights for records in node 7 in category j (or the number of
records if no frequency weights are defined), and Ny is the sum of frequency weights for all
records in the training data.

Note that case weights are not considered in calculating risk estimates.

Risk Estimates for numeric target field

For regression trees (with a numeric target field), the risk estimate 7(¢) of a node ¢ is computed as
1 2
r(t) = = 2 fili —7(1))
Ny(t) ;

where f; is the frequency weight for record 7 (a record assigned to node ¢), y; is the value of the
target field for record i, and 7(¢) is the weighted mean of the target field for all records in node 7.

Tree Risk Estimate

For both classification trees and regression trees, the risk estimate R(7) for the tree (7) is
calculated by taking the sum of the risk estimates for the terminal nodes r(z):

tel”

where 7" is the set of terminal nodes in the tree.

Gain Summary

The gain summary provides descriptive statistics for the terminal nodes of a tree.
If your target field is continuous (scale), the gain summary shows the weighted mean of the
target value for each terminal node,

g(t) = > wifi;
ict

If your target field is symbolic (categorical), the gain summary shows the weighted percentage of
records in a selected target category,

dier Jizi(G)
Ziet fi

where x;(j) = 1 if record x; is in target category j, and 0 otherwise. If profits are defined for the
tree, the gain is the average profit value for each terminal node,

g(t) =) fiP(:)

1ct

g(t,j)=
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where P(x;) is the profit value assigned to the target value observed in record x;.

Generated Model/Scoring

Calculations done by the CHAID generated model are described below

Predicted Values

New records are scored by following the tree splits to a terminal node of the tree. Each terminal
node has a particular predicted value associated with it, determined as follows:

Classification Trees

For trees with a symbolic target field, each terminal node’s predicted category is the category with
the lowest weighted cost for the node. This weighted cost is calculated as

miin Z C'(il7)p(4[t)

where C(i]y) is the user-specified misclassification cost for classifying a record as category i when
it is actually category j, and p(j|f) is the conditional weighted probability of a record being in
category j given that it is in node ¢, defined as

waj (ZL)

; N

ij(jvt)’p /

where 7(j) is the prior probability for category j, Ny j(7) is the weighted number of records in node
t with category j (or the number of records if no frequency or case weights are defined),

Ny j(t) = Z w; f37(7)

ict

p(ilt) = = 7(j)

and Ny is the weighted number records in category j (any node),

Ny,j = Zwifz'j(i)

€T
Regression Trees

For trees with a numeric target field, each terminal node’s predicted category is the weighted mean
of the target values for records in the node. This weighted mean is calculated as

y(t) = N:(t) > wifiyi

1=

where Ny(?) is defined as
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Nu(t) =Y wifi

i€t

Confidence

For classification trees, confidence values for records passed through the generated model are
calculated as follows. For regression trees, no confidence value is assigned.

Classification Trees

Confidence for a scored record is the proportion of weighted records in the training data in the
scored record’s assigned terminal node that belong to the predicted category, modified by the
Laplace correction:

Ny () +1
Nf(t) + k

Note: If Surrogate Splitting is used (where a particular rule does not fit into a node) the Confidence
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

Blank Handling

In classification of new records, blanks are handled as they are during tree growth, being treated as
an additional category (possibly merged with other non-blank categories). For more information,
see the topic “Blank Handling” on p. 81.

For nodes where there were no blanks in the training data, a blank category will not exist for
the split of that node. In that case, records with a blank value for the split field are assigned a
null value.






Cluster Evaluation Algorithms

This document describes measures used for evaluating clustering models.

m The Silhouette coefficient combines the concepts of cluster cohesion (favoring models which
contain tightly cohesive clusters) and cluster separation (favoring models which contain
highly separated clusters). It can be used to evaluate individual objects, clusters, and models.

B The sum of squares error (SSE) is a measure of prototype-based cohesion, while sum of
squares between (SSB) is a measure of prototype-based separation.

B Predictor importance indicates how well the variable can differentiate different clusters. For
both range (numeric) and discrete variables, the higher the importance measure, the less
likely the variation for a variable between clusters is due to chance and more likely due to
some underlying difference.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Tik Continuous variable k in case i (standardized).

Tiks The sth category of variable & in case 7 (one-of-c coding).

N Total number of valid cases.

N; The number of cases in cluster j.

Y Variable with J cluster labels.

Hik The centroid of cluster j for variable £.

D, The distance between case i and the centroid of cluster ;.

D The distance between the overall mean » and the centroid of cluster j.

Goodness Measures

The average Silhouette coefficient is simply the average over all cases of the following calculation
for each individual case:

(B— A)/max (A, B)

where 4 is the average distance from the case to every other case assigned to the same cluster and
B is the minimal average distance from the case to cases of a different cluster across all clusters.

Unfortunately, this coefficient is computationally expensive. In order to ease this burden, we use
the following definitions of 4 and B:

B A is the distance from the case to the centroid of the cluster which the case belongs to;

B B is the minimal distance from the case to the centroid of every other cluster.

© Copyright IBM Corporation 1994, 2016. 87
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Distances may be calculated using Euclidean distances. The Silhouette coefficient and its average
range between —1, indicating a very poor model, and 1, indicating an excellent model. As found
by Kaufman and Rousseeuw (1990), an average silhouette greater than 0.5 indicates reasonable
partitioning of data; less than 0.2 means that the data do not exhibit cluster structure.

Data Preparation

Before calculating Silhouette coefficient, we need to transform cases as follows:

Recode categorical variables using one-of-c coding. If a variable has ¢ categories, then it is stored
as ¢ vectors, with the first category denoted (1,0,...,0), the next category (0,1,0,...,0), ..., and the
final category (0,0,...,0,1). The order of the categories is based on the ascending sort or lexical
order of the data values.

Rescale continuous variables. Continuous variables are normalized to the interval [—1, 1] using the
transformation [2*(x—min)/(max—min)]—1. This normalization tries to equalize the contributions
of continuous and categorical features to the distance computations.

Basic Statistics

The following statistics are collected in order to compute the goodness measures: the centroid
;1 of variable k for cluster j, the distance between a case and the centroid, and the overall mean u.

For 15, with an ordinal or continuous variable &, we average all standardized values of variable
k within cluster j. For nominal variables, p; is a vector {4, } of probabilities of occurrence
for each state s of variable £ for cluster j. Note that in counting , we do not consider cases with
missing values in variable k. If the value of variable % is missing for all cases within cluster j,
i% 1s marked as missing.

The distance D, between case i and the centroid of cluster j can be calculated in terms of the

ij
weighted sum of the distance components d?;, across all variables; that is

ik
Y pw;ipde
2 _ ZkTiikGk
" Ypw;jik

where w;;, denotes a weight. At this point, we do not consider differential weights, thus
w; ;1 equals 1 if the variable & in case i is valid, 0 if not. If all w;;;, equal 0, set ij =0.

The distance component 47, is calculated as follows for ordinal and continuous variables
) 2
digr, = (i — pn)

For binary or nominal variables, it is

S
1
dzgjk = S—kZ (ms - @jks)Q
s=1
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where variable k uses one-of-c coding, and Sj, is the number of its states.

The calculation of D; is the same as that of D;;, but the overall mean u is used in place of r;;, and

5% 1s used in place of x;.
Silhouette Coefficient

The Silhouette coefficient of case i is

min {Dzj;j & C—z} — Dici
max (min {D;;,j € C_;}, Dic,)

where C_; denotes cluster labels which do not include case i as a member, while ¢; is the cluster
label which includes case i. If max (min{D;;,j € C_;},D;,.,) equals 0, the Silhouette of case i is

not used in the average operations.
Based on these individual data, the total average Silhouette coefficient is:

SO — iz min {.Dijyj € .C—i} — D,
N £~ max (min {Dy;,j € C_;}, Dj,)

=

Sum of Squares Error (SSE)

SSE is a prototype-based cohesion measure where the squared Euclidean distance is used. In order
to compare between models, we will use the averaged form, defined as:

1 2
Average SSE = WZ Z Dy;
jeC icj

Sum of Squares Between (SSB)

SSB is a prototype-based separation measure where the squared Euclidean distance is used. In
order to compare between models, we will use the averaged form, defined as:

1
Average SSB = NZ NjDJz
jel

Predictor Importance

The importance of field i is defined as

—logyg (sigi)
maxeq (—logy (sig)))

VI =



90

Cluster Evaluation Algorithms

where 2 denotes the set of predictor and evaluation fields, sig; is the significance or
p-value computed from applying a certain test, as described below. If sig; equals zero, set
sig; = MinDouble, where MinDouble is the minimal double value.

Across Clusters
The p-value for categorical fields is based on Pearson’s chi-square. It is calculated by
p-value = Prob(y? > X?),

where

I
Xr=3 >, <Nij - Nz‘j)z/Ni'
=1

J
j=1
where Nij = NLNJ/N (X)

m If N (X) =0, the importance is set to be undefined or unknown;
m If N, =0, subtract one from / for each such category to obtain I ;
B If N ; = 0, subtract one from J for each such cluster to obtain J "
|

IfJ <1lorlI <1,the importance is set to be undefined or unknown.
The degrees of freedom are (I' — 1) (J' — 1).
The p-value for continuous fields is based on an F test. It is calculated by
p-value = Prob{F (J — Ll,N — J) > F'},

where

J

SNNi@E -B) T - 1)
j—1

J

> (Nj—1)s;/(N=)

j=1

F=

If N=0, the importance is set to be undefined or unknown;
If N; = 0, subtract one from J for each such cluster to obtain J "

IfJ <lorN<J ', the importance is set to be undefined or unknown;

If the denominator in the formula for the F statistic is zero, the importance is set to be
undefined or unknown;

m  [f the numerator in the formula for the F statistic is zero, set p-value = 1;

The degrees of freedom are (J' -1,N - J').
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Within Clusters

The null hypothesis for categorical fields is that the proportion of cases in the categories in
cluster j is the same as the overall proportion.

The chi-square statistic for cluster j is computed as follows

I 2
X2 — Z (Nij — iji)

i1 Njpi

If N; = 0, the importance is set to be undefined or unknown;

If p; = 0, subtract one from / for each such category to obtain I';
IfI' <1, the importance is set to be undefined or unknown.

The degrees of freedom are d = I' — 1.

The null hypothesis for continuous fields is that the mean in cluster j is the same as the overall
mean.

The Student’s ¢ statistic for cluster j is computed as follows

,_ (@ -7)

5/VN;

with d = N; — 1 degrees of freedom.

If N; <1 or s; =0, the importance is set to be undefined or unknown;
If the numerator is zero, set p-value = 1;

Here, the p-value based on Student’s ¢ distribution is calculated as

p-value =1 — Prob{|T (d)| < |¢|}.
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Cox Regression Algorithms

Cox (1972) first suggested the models in which factors related to lifetime have a multiplicative
effect on the hazard function. These models are called proportional hazards models. Under the
proportional hazards assumption, the hazard function % of 7 given X is of the form

h(t|x) = ho(t)ex ?

where x is a known vector of regressor variables associated with the individual, 3 is a vector of
unknown parameters, and kg (¢) is the baseline hazard function for an individual with x = 0.
Hence, for any two covariates sets x; and x», the log hazard functions %(¢/x;) and h(t|x2) should
be parallel across time.

When a factor does not affect the hazard function multiplicatively, stratification may be useful in
model building. Suppose that individuals can be assigned to one of m different strata, defined
by the levels of one or more factors. The hazard function for an individual in the jth stratum is
defined as

7

hy(L1x) = ho;(t)e* ©

There are two unknown components in the model: the regression parameter 3 and the baseline
hazard function hg,;(¢). The estimation for the parameters is described below.

Estimation

We begin by considering a nonnegative random variable 7 representing the lifetimes of individuals
in some population. Let f(¢|x) denote the probability density function (pdf) of 7 given a regressor
x and let S(¢|x) be the survivor function (the probability of an individual surviving until time

¢). Hence

S(tlx) = / S (u|x)du
t
The hazard h(t|x) is then defined by
— fGx)
h{thx) = st

Another useful expression for S(¢|x) in terms of h(t|x) is

S(tlx) = exp (— /O th(ulx)du)

Thus,

In S(t]x) = —/0 (ulx)du

For some purposes, it is also useful to define the cumulative hazard function

© Copyright IBM Corporation 1994, 2016. 93
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H(t|x) = /Oth(u,|x)d,u = —InS(¢|x)
Under the proportional hazard assumption, the survivor function can be written as
S(tx) = [So(0] > %)
where S5, () is the baseline survivor function defined by
So(t) = exp (—Ho(t))
and
t
mm:lmwm
Some relationships between S(t|x), H(t|x) and Hy(t), Sy(t) and h(t) which will be used later are
In S(t/x) = —H(t|x) = — exp (x’,@)HO(t)

In (—1lnS(t|x)) = x B + In Hy(t)

To estimate the survivor function S(¢|x), we can see from the equation for the survivor function
that there are two components, 3 and Sy (¢), which need to be estimated. The approach we use
here is to estimate 5 from the partial likelihood function and then to maximize the full likelihood
for So (t) .

Estimation of Beta

Assume that
m  There are m levels for the stratification variable.
® Individuals in the same stratum have proportional hazard functions.

m  The relative effect of the regressor variables is the same in each stratum.

Lett;; < .-+ < tj, be the observed uncensored failure time of the n; individuals in the jth
stratum and x;1, .. ., x;, be the corresponding covariates. Then the partial likelihood function is
defined by

k_ i/
4 S jif

= [T
Z wlex’“’q

j=14i=1
ICR;;

where d;; is the sum of case weights of individuals whose lifetime is equal to ¢;; and S;; is
the weighted sum of the regression vector x for those d;; individuals, w; is the case weight of
individual /, and R;; is the set of individuals alive and uncensored just prior to ¢;; in the jth
stratum. Thus the log-likelihood arising from the partial likelihood function is
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m  kj ke

=) =33 855 3 S dyln | 37w

j=1i=1 j=1i=1 lER;;

and the first derivatives of / are

7
E wyz e P

ZGRJL
=5 = ZZ S or=1.p
j=11i=1 UJ[@

lERJ’L

Sii (") is the rth component of §; i = (Sj(tl), s S e )) The maximum partial likelihood estimate
(MPLE) of /3 is obtained by settmg equal to zero for r=1,...,p, where p is the number of
independent variables in the model. The equations a ﬂ =0 (r =1,...,p) can usually be
solved by using the Newton-Raphson method.

Note that from its equation that the partial likelihood function L(#) is invariant under
translation. All the covariates are centered by their corresponding overall mean. The overall mean
of a covariate is defined as the sum of the product of weight and covariate for all the censored and
uncensored cases in each stratum. For notational simplicity, x; used in the Estimation Section
denotes centered covariates.

Three convergence criteria for the Newton-Raphson method are available:

B Absolute value of the largest difference in parameter estimates between iterations () divided
by the value of the parameter estimate for the previous iteration; that is,

BCON = - d - -
parameter estimate for previous iteration

B Absolute difference of the log-likelihood function between iterations divided by the
log-likelihood function for previous iteration.

B  Maximum number of iterations.

The asymptotic covariance matrix for the MPLE 8= (31, - Bp is estimated by IT~! where I
is the information matrix containing minus the second partial derivatives of In L. The (7, s)-th
element of I is defined by

I. = Eaﬁ a7, lnL
1 1
§ > wia e > wwpe P Y wae* P
I
B ? IERy; 1€R; IR,

7 ﬁ 2
=1 i=1 E wye* ! »
X
IER;; E wre™ !

lI€ER;;

We can also write I in a matrix form as

kj

M§

dj; ( ) I (t:) (2 (t5:))

1i=1

J
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where x(¢;;) is a n;; x p matrix which represents the p covariate variables in the model evaluated
at time ¢;;, nj; is the number of distinct individuals in R;;, and V (¢,;) is a nj; X n;; matrix with
the /th diagonal element v;(t;;) defined by

2
vu(tsi) = putgi)wn — (wipi(ti))

o (' 18)

B Z Wp exXp (x’hﬁ>

heR;;

pilts)

and the (/, k) element vy (t;;) defined by

vi(tji) = wipi(tji) ¥ wrpk(t;s)

Estimation of the Baseline Function

After the MPLE $ of 3 is found, the baseline survivor function S, (t) is estimated separately for
each stratum. Assume that, for a stratum, #; < --- < #;, are observed lifetimes in the sample.
There are n; at risk and d; deaths at ¢;, and in the interval [¢;_1,¢;) there are A; censored times.
Since Sy(¢) is a survivor function, it is non-increasing and left continuous, and thus Sy (#) must be
constant except for jumps at the observed lifetimes ¢4, ..., %.

Further, it follows that

So(t1) =1

and

So(ti+) = So(tis1)

Writing go(ti—&-) =pi(i = 1,...,k), the observed likelihood function is of the form

s ()= ) () g ()

i=1 e, 1€Ck+1

where D; is the set of individuals dying at ¢; and C; is the set of individuals with censored times in
[ti—1,1;). (Note that if the last observation is uncensored, Cj41 is empty and p, = 0)

If we let o; = p;/p;—1(i = 1,...,k), Ly can be written as

k ’ w ’
Ll:HH (1_G§XP(XJ,6)>I H a;ﬂzBXP(Xzﬁ)

i=1leD; leR;—D;

Differentiating ln L; with respect to «, . . ., oy and setting the equations equal to zero, we get
W] exp (x'lﬁ) ,

Z —exp(x'lﬁ) = Zwlexp (X lﬁ) Z:l,...,k

len; 1 —a; IER;

We then plug the MPLE 3 of 3 into this equation and solve these k equations separately.
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There are two things worth noting:
m Ifany |D;| = 1, &; can be solved explicitly.
oxp (~x'15)

)
. w; exXp (x B
Q; = 1 S

X

Z wy exp ( 13)
lER;
m If |D;| > 1, the equation for the cumulative hazard function must be solved iteratively for
&;. A good initial value for &; is

~ —di

&; = €XpP ”
Z wy exp (x lﬂ)
lER;

where d; = Z wy 1s the weight sum for set D;. (See Lawless, 1982, p. 361.)
leD;

Once the &;, i = 1,. ..,k are found, Sy(¢) is estimated by
S’(] (t) = H &;
i:(t; <)

Since the above estimate of .5,(¢) requires some iterative calculations when ties exist, Breslow
(1974) suggests using the equation for «; when |D;| > 1 as an estimate; however, we will use
this as an initial estimate.

The asymptotic variance for — In S, (t) can be found in Chapter 4 of Kalbfleisch and Prentice
(1980). At a specified time ¢, it is consistently estimated by

var(— In S()(t)) = Z | D;] (Z w; exp (X’ZB)> - +allg

t;<t leR;

where a is a px1 vector with the jth element defined by

Z wWixyj exp (XlzB)
> IDi|- = 2
foct (Z Wy exp (x'lB)>

leR;

and I is the information matrix. The asymptotic variance of 5(¢|x) is estimated by

eX'B (S(tlx)) 2Uanr (— In S, (t)>

Selection Statistics for Stepwise Methods

The same methods for variable selection are offered as in binary logistic regression. For more
information, see the topic “Stepwise Variable Selection ” on p. 281. Here we will only define the
three removal statistics—Wald, LR, and Conditional—and the Score entry statistic.
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Score Statistic

The score statistic is calculated for every variable not in the model to decide which variable should
be added to the model. First we compute the information matrix I for all eligible variables based
on the parameter estimates for the variables in the model and zero parameter estimates for the
variables not in the model. Then we partition the resulting I into four submatrices as follows:

|:A11 A12:|
A21 A22

where A;; and A, are square matrices for variables in the model and variables not in the model,
respectively, and A5 is the cross-product matrix for variables in and out. The score statistic
for variable x; is defined by

D', Bus,Dy,
where D, is the first derivative of the log-likelihood with respect to all the parameters associated

. . —1 .
with x; and Bay; is equal to (Azs; — AglﬁiAﬁlAm,,;) ,and Ay ; and A;,; are the submatrices
in A,; and A, associated with variable x;.

Wald Statistic

The Wald statistic is calculated for the variables in the model to select variables for removal.
The Wald statistic for variable x; is defined by

B;Bll,jﬁj

where 5’3- is the parameter estimate associated with x; and By ; is the submatrix of Afll associated
with X .

LR (Likelihood Ratio) Statistic

The LR statistic is defined as twice the log of the ratio of the likelihood functions of two models
evaluated at their own MPLES. Assume that » variables are in the current model and let us call the
current model the full model. Based on the MPLES of parameters for the full model, /(fu/l) is
defined in “Estimation of Beta . For each of r variables deleted from the full model, MPLES

are found and the reduced log-likelihood function, /(reduced), is calculated. Then LR statistic is
defined as

=2(l(reduced) — I(full))

Conditional Statistic

The conditional statistic is also computed for every variable in the model. The formula for
conditional statistic is the same as LR statistic except that the parameter estimates for each
reduced model are conditional estimates, not MPLES. The conditional estimates are defined as
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follows. Let 3 = (Bl, e 3,) be the MPLES for the r variables (blocks) and C be the asymptotic

covariance for the parameters left in the model given j; is

3 5 i D) '

By = By — €% (Cg )) Bi

where 3; is the MPLE for the parameter(s) associated with x; and B(i) is A without 3, ng is

the covariance between the parameter estimates left in the model 3(2-) and j3;, and cg’; is the
covariance of §;. Then the conditional statistic for variable x; is defined by

—2(U(bey) — 1(full))
where l(/S’(,»)> is the log-likelihood function evaluated at B(,»).

Note that all these four statistics have a chi-square distribution with degrees of freedom equal to
the number of parameters the corresponding model has.

Statistics

The following output statistics are available.

Initial Model Information

The initial model for the first method is for a model that does not include covariates. The
log-likelihood function / is equal to

m  kj
10) = =) djiln(nf;)

j=1i=1

where nj; is the sum of weights of individuals in set R;;.

Model Information
When a stepwise method is requested, at each step, the —2 log-likelihood function and three

chi-square statistics (model chi-square, improvement chi-square, and overall chi-square) and their
corresponding degrees of freedom and significance are printed.

-2 Log-Likelihood

m  kj
—22 Z Sljij — dji In Z w; exXp (XIIIB)

j=1i=1 l€R;;

where 3 is the MPLE of 3 for the current model.
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Improvement Chi-Square
(-2 log-likelihood function for previous model) — ( -2 log-likelihood function for current model).

The previous model is the model from the last step. The degrees of freedom are equal to the
absolute value of the difference between the number of parameters estimated in these two models.

Model Chi-Square
(-2 log-likelihood function for initial model) — ( -2 log-likelihood function for current model).
The initial model is the final model from the previous method. The degrees of freedom are equal
to the absolute value of the difference between the number of parameters estimated in these

two model.

Note: The values of the model chi-square and improvement chi-square can be less than or equal to
zero. If the degrees of freedom are equal to zero, the chi-square is not printed.

Overall Chi-Square

The overall chi-square statistic tests the hypothesis that all regression coefficients for the variables
in the model are identically zero. This statistic is defined as

u' (0)I1u(0)

where u(0) represents the vector of first derivatives of the partial log-likelihood function evaluated
at 8 = 0. The elements of u and I are defined in “Estimation of Beta .

Information for Variables in the Equation

For each of the single variables in the equation, MPLE, SE for MPLE, Wald statistic, and its
corresponding df, significance, and partial R are given. For a single variable, R is defined by

1/2
— Wald-—2 .
k= [_2 Tog-Tikelihood for the intial model] x sign of MPLE

if Wald > 2. Otherwise R is set to zero. For a multiple category variable, only the Wald statistic,
df, significance, and partial R are printed, where R is defined by

172
R= _ Wald-2.df /
-2 log-likelihood for the intial model

if Wald > 2df. Otherwise R is set to zero.
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Information for the Variables Not in the Equation

For each of the variables not in the equation, the Score statistic is calculated and its corresponding
degrees of freedom, significance, and partial R are printed. The partial R for variables not in the
equation is defined similarly to the R for the variables in the equation by changing the Wald
statistic to the Score statistic.

There is one overall statistic called the residual chi-square. This statistic tests if all regression
coefficients for the variables not in the equation are zero. It is defined by

i ()pan(s)

where u(ﬁ) is the vector of first derivatives of the partial log-likelihood function with

respect to all the paramleters not in the equation evaluated at MPLE /3 and B, is equal to
(A2 — Ay Aj'Apb) 7 and A is defined in “Score Statistic ™.

Survival Table

Plots

For each stratum, the estimates of the baseline cumulative survival (S,) and hazard (H,) function
and their standard errors are computed. Hy(t) is estimated by

Hy(t) = —1In 5y(2)

and the asymptotic variance of Hy(t) is defined in “Estimation of the Baseline Function . Finally,
the cumulative hazard function H (¢|x) and survival function S(¢|x) are estimated by

ﬁ(t|x) = exp (xﬁ) ﬁg(t)

and, for a given x,

St = [sofe] ™ )

The asymptotic variances are

var (ﬁ(tlx)) = exp (QX,B) var (ffo (t))

and

W(S(t\x)) = exp (2x' B) (5(t|x))2var (ﬁo(t))

For a specified pattern, the covariate values x, are determined and x,. is computed. There are three
plots available for Cox regression.
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Survival Plot

For stratum j, (ti, S’o(ti\xc)>, i=1,...,k; are plotted where

oA

S(ti|x.) = (So(ti))exp (%)

Hazard Plot
For stratum j, (ti, fI(ti\xc)>, i=1,...,k; are plotted where
H(ti|x.) = exp (x/cé)ﬁo (t:)

LML Plot

The log-minus-log plot is used to see whether the stratification variable should be included as
a covariate. For stratum j, (ti, X 3+ 1n ﬁg(ti)), i=1,...,k; are plotted. If the plot shows
parallelism among strata, then the stratum variable should be a covariate.

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

Scoring
Survival and cumulative hazard estimates are given in “Survival Table ” on p. 101.

Conditional upon survival until time #(, the probability of survival until time # is

A S (t + o)
S(t+tolty) = ———2
(t + tolto) 3 (i)
Blank Handling

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.

Additionally, records with “total” survival time (past + future) greater than the record with the
longest observed uncensored survival time are also assigned a predicted value of $null$.
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Decision List Algorithms

The objective of decision lists is to find a group of individuals with a distinct behavior pattern; for
example, a high probability of buying a product. A decision list model consists of a set of decision
rules. A decision rule is an if-then rule, which has two parts: antecedent and consequent. The
antecedent is a Boolean expression of predictors, and the consequent is the predicted value of the
target field when the antecedent is true. The simplest construct of a decision rule is a segment
based on one predictor; for example, Gender = ‘Male’ or 10 < Age < 20.

A record is covered by a rule if the rule antecedent is true. If a case is covered by one of the
rules in a decision list, then it is considered to be covered by the list.

In a decision list, order of rules is significant; if a case is covered by a rule, it will be ignored
by subsequent rules.

Algorithm Overview

The decision list algorithm can be summarized as follows:
» Candidate rules are found from the original dataset.
» The best rules are appended to the decision list.
» Records covered by the decision list are removed from the dataset.

» New rules are found based on the reduced dataset.

The process repeats until one or more of the stopping criteria are met.

Terminology of Decision List Algorithm
The following terms are used in describing the decision list algorithm:

Model. A decision list model.

Cycle. In every rule discovery cycle, a set of candidate rules will be found. They will then be
added to the model under construction. The resulting models will be inputs to the next cycle.

Attribute. Another name for a variable or field in the dataset.

Source attribute. Another name for predictor field.

Extending the model. Adding decision rules to a decision list or adding segments to a decision rule.
Group. A subset of records in the dataset.

Segment. Another name for group.

© Copyright IBM Corporation 1994, 2016. 105
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Main Calculations

Notation

The following notations are used in describing the decision list algorithm:

X Data matrix. Columns are fields (attributes), and rows are records (cases).
L A collection of list models.
L; The ith list model of L.
Lpun A list model that contains no rules.
Pr, The estimated response probability of list Z;.
N Total population size
Xmmn The value of the mth field (column) for the nth record (row) of X.
X, The subset of records in X that are covered by list model L;.
Y The target field in X.
Y, The value of the target field for the nth record.
A Collection of all attributes (fields) of X.
A;j The jth attribute of X.
R A collection of rules to extend a preceding rule list.
Ry, The kth rule in rule collection R.
T A set of candidate list models.
ResultSet A collection of decision list models.
Primary Algorithm

The primary algorithm for creating a decision list model is as follows:

1. Initialize the model.

» Let d = Search depth, and w = Search width.
» If L=, add L, to L.

> T=0.

2. Loop over all elements L; of L.

» Select the records X not covered by rules of L;:

X7 =X - X,

i

» Call the decision rule algorithm to create an alternative rule set R on X . For more information,
see the topic “Decision Rule Algorithm” on p. 107.
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Construct a set of new candidate models by appending each rule in R to L;.
Save extended list(s) to 7.
Select list models from 7.

Calculate the estimated response probability Py, of each list model in T as

. N(Y,=1,X, € Xz
N(X, € X1.)

L, —

Select the w lists in 7 with the highest P, as L*.
Add L* to ResultSet.

Ifd=1 or L* = &, return ResultSet and terminate; otherwise, reduce d by one and repeat from

step 2.

Decision Rule Algorithm

Each rule is extended in decision rule cycles. With decision rules, groups are searched for
significantly increased occurrence of the target value. Decision rules will search for groups
with a higher or lower probability as required.

Notation

The following notations are used in describing the decision list algorithm:

X Data matrix. Columns are fields (attributes), and rows are records (cases).

R A collection of rules to extend a preceding rule list.

R; The ith rule in rule collection R.

Ran A special rule that covers all the cases in X.

Pr, The estimated response probability of R;.

N Total population size.

X The value of the mth field (column) for the nth record (row) of X.

Xkg, The subset of records in X that are covered by rule R;.

Y The target field in X.

Y, The value of the target field for the nth record.

A Collection of all attributes (fields) of X.

Aj The jth attribute of X. If Allow attribute re-use is false, 4 excludes
attributes existing in the preceding rule.

SplitRule(X;, 4;) The rule split algorithm for deriving rules about 4; and records in X.
For more information, see the topic “Decision RuI]e Split Algorithm”
on p. 108.

T A set of candidate list models.

ResultSet A collection of decision list models.
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Algorithm Steps

N v v v o~

vV Vv V

The decision rule algorithm proceeds as follows:
Initialize the rule set.

Let d = Search depth, and w = Search width.
IfR =0, add R,y to R.

T=0.

Loop over all rules R; in R.

Select records X, covered by rule R;.

Create an empty set S of new segments.

Loop over attributes A; in 4.

®m  Generate new segments based on attribute A4;:

SplitRule(Xp,, A;)

®  Add new segments to S.

Construct a set of new candidate rules by extending R; with each segment in S.
Save extended rules to 7. If S = &, add R; to ResultSet.

Select rules from 7.

Calculate the estimated response probability Pg, for each extended rule in T as

p N(Yvn = laXn S XRi)

BT TTN(X, € Xn)

Select the w rules with the highest P, as R*.

Add R* to ResultSet.

If d = 1, return ResultSet and terminate. Otherwise, set R = R*, T'= &, reduce d by one, and
repeat from step 2.

Decision Rule Split Algorithm

The decision rule split algorithm is used to generate high response segments from a single attribute
(field). The records and the attribute from which to generate segments should be given. This
algorithm is applicable to all ordinal attributes, and the ordinal attribute should have values that
are unambiguously ordered. The segments generated by the algorithm can be used to expand an
n-dimensional rule to an (n + 1)-dimensional rule. This decision rule split algorithm is sometimes
referred to as the sea-level method.
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Notation

The following notations are used in describing the decision rule split algorithm:

X Data matrix. Columns are fields (attributes), and rows are records (cases).

C A sorted list of attribute values (categories) to split. Values are sorted
in ascending order.

C; The ith category in the list of categories C.

Xnc The value of the split field (attribute) for the nth record (row) of X.

Y The target field in X.

Yo The value of the target field for the nth record.

N Total population size.

M Number of categories in C.

P; Observed response probability of category C;.

SL.r A segment of categories, St r = {C;|C; € C, 1< L<i<R< M}

- + The confidence interval (CI) for the response probability of Sz r.
pSL,R’pSL,R ’

max, (C;, Cy) The category with the higher response probability from {C;, C;}.
max,, (C;, Cj) The category with the larger number of records from {C;, C;}.
Algorithm Steps

The decision rule split algorithm proceeds as follows:
1. Compute P; of each category C;.

P = ]\‘va/n — 17Xn,c < Cz)
‘ N(Xp,. € Ci)

Py =Py1) =0

If N(X,, . € C;) =0, C; will be skipped.

2. Find local maxima of P; to create a segment set.
PeakSet = {C;|C; € C,0<i=1<M}
where [ is a positive integer satisfying the conditions
Pr> Py
P :P(M),OglgL—I
Pr > P( L+1)

The segment set is the ordered segments based on Fg,
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SegmentSel = {SL,Rlci € PeakSet, L = R =i, Pg, > Pgi“}

w

Select a segment in SegmentSet.

If SegmentSet is empty, return ResultSet and terminate.

Select the segment Sz, r with the highest response probability Ps, .

IfR—-L+1=MorPs, , <Ps, ,,, remove the segment from SegmentSet and choose another.

Validate the segment.

vV & v v v

If the following conditions are satisfied:

m  The size of the segment exceeds the minimum segment size criterion
Size(Sp ) > Maz(gsyin, d, Max(g - Size(parent))
where

parent € ResultSet, Lpgrent > L, Rparent < R

m  Response probability for the segment is significantly higher than that for the overall sample,
as indicated by non-overlapping confidence intervals

— +
pSL,R > pPOp
For more information, see the topic “Confidence Intervals” on p. 110.
m  Extending the segment would lower the response probability
PSL—l,R < PSL,R and PSL,R+1 < PSL,R
then add the segment Sy,  to ResultSet, and remove any segments S; 5, from ResultSet that have
S1,r as parent and for which Size (S/LA’R) < g-Size(SL.r).
5. Extend the segment.
» Add Cugjacent to Si g, where

Maxy(Cp1,Cry1) £ Pry# Prig
Cadjacent =  Maz,(Cr,—1,Cry1) if P = Pryyand N (Cpq) # N(Cgy1)
Crs1 otherwise

» Adjust R or L accordingly, i.e. if Cpgjacent = Cr—1, st L = L — 1; if Cypgjacent = Cry1, set
R=R+1.

» Return Sy, r to SegmentSet, and repeat from step 3.

Confidence Intervals

The confidence limits (p~, p™) for p are calculated as
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m .
p = { THM—x+1)} Foin_wi1) 201 a2 ifz 7£ 0
0

ifx=20
(24 1) Foeqn) 2(n_ayi—aye :
er = TL_:C+(I+1)F2(;:+1)¢2(7L7:L‘);17a/2 lf.fl'f 7£ n
1 ifzr=n

where 7 is the coverage of the rule or list, x is the response frequency of the rule or list, a is the
desired confidence level, and F, ;.. is the inverse cumulative distribution function for F with a
and b degrees of freedom, for percentile 100c.

Secondary Measures

For each segment, the following measures are reported:

Coverage. The number of records in the segment, N (S).

Frequency. The number of records in the segment for which the response is true,
N, =1,X, € 5).

Probability. The proportion of records in the segment for which the response is true, W,

Frequency

or .
Coverage

Blank Handling

In decision list models, blank values for input fields can be treated as a separate category that can
be used to define segments, or can be excluded from the model, depending on the expert model
option. The default is to use blanks as a category for defining segments. Records with blank
values for the target field are excluded from model building.

Generated Model/Scoring

The decision list generated model consists of a set of segments. When scoring new data, each
record is evaluated for membership in each segment, in order. The first segment in model order
that describes the record based on the predictor fields claims the record and determines the
predicted value and the probability. Records where the predicted value is not the response value
will have a value of $null. Probabilities are calculated as described above.

Blank Handling

In scoring data with a decision list generated model, blanks are considered valid values for
defining segments. If the model was built with the expert option Allow missing values in conditions
disabled, a record with a missing value for one of the input fields will not match any segment
that depends on that field for its definition.
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No analysis is done for any subfile group for which the number of non-empty groups is less
than two or the number of cases or sum of weights fails to exceed the number of non-empty
groups. An analysis may be stopped if no variables are selected during variable selection or
the eigenanalysis fails.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Table 14-1

Notation

Notation Description

g Number of groups

p Number of variables

q Number of variables selected
Xijk Value of variable i for case k in group j
fir Case weights for case k in group j
mj Number of cases in group j

nj Sum of case weights in group j

n Total sum of weights

Basic Statistics

The procedure calculates the following basic statistics.

Mean
X = (Z fijijk) /n; (variable i in group 5)
k=1
g m; . )
X, = Z finXign | /n (variable i)
j=1k=1
Variances
mj ‘ .,
(Z fijiij - ”in1>
§E = = =) (variable i in group j)
g My —
<Z SinXi — nXi) (variable )
=1 k=1
Sie =~ n—1

© Copyright IBM Corporation 1994, 2016. 113
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Within-Groups Sums of Squares and Cross-Product Matrix (W)

g

mj g ’nl]’ Tnj
wy = Fie X Xije— FirXijx fieXoge | /mg 4 1=1,....p
/
k-1

j=1k=1 j=1 \k=1

Total Sums of Squares and Cross-Product Matrix (T)

g mj g mj g mj
tia = Z Z FinXijnXijn— (Z Z fijijk:> (Z Z fjk:lek:> /n

j=1k=1 j=1k=1 j=1k=1
Within-Groups Covariance Matrix
C=VY_ nsy

(n—9)

Individual Group Covariance Matrices

(Z FinXijnXijn — Yijylj‘nJ)
()

i) _ \k=1
¢ = (n;—1)

Within-Groups Correlation Matrix (R)

ry = \/:i—iilw” lfw“LUll > 0
SYSMIS otherwise

Total Covariance Matrix

Univariate F and Afor Variable |

o (tii—wi)(n—g)
Iy = wi;(g—1)
with g—1 and n—g degrees of freedom
Ay =41

with 1, g—1 and n—g degrees of freedom

Rules of Variable Selection

Both direct and stepwise variable entry are possible. Multiple inclusion levels may also be
specified.
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Method = Direct

For direct variable selection, variables are considered for inclusion in the order in which they are
passed from the upstream node. A variable is included in the analysis if, when it is included,

no variable in the analysis will have a tolerance less than the specified tolerance limit (default
=0.001).

Stepwise Variable Selection

At each step, the following rules control variable selection:

Eligible variables with higher inclusion levels are entered before eligible variables with lower
inclusion levels.

The order of entry of eligible variables with the same even inclusion level is determined by
their order in the upstream node.

The order of entry of eligible variables with the same odd level of inclusion is determined
by their value on the entry criterion. The variable with the “best” value for the criterion
statistic is entered first.

When level-one processing is reached, prior to inclusion of any eligible variables, all
already-entered variables which have level one inclusion numbers are examined for removal.
A variable is considered eligible for removal if its F-to-remove is less than the F' value for
variable removal, or, if probability criteria are used, the significance of its F-to-remove
exceeds the specified probability level. If more than one variable is eligible for removal, that
variable is removed that leaves the “best” value for the criterion statistic for the remaining
variables. Variable removal continues until no more variables are eligible for removal.
Sequential entry of variables then proceeds as described previously, except that after each step,
variables with inclusion numbers of one are also considered for exclusion as described before.

A variable with a zero inclusion level is never entered, although some statistics for it are
printed.

Ineligibility for Inclusion

A variable with an odd inclusion number is considered ineligible for inclusion if:

The tolerance of any variable in the analysis (including its own) drops below the specified
tolerance limit if it is entered, or

Its F-to-enter is less than the F-value for a variable to enter value, or

If probability criteria are used, the significance level associated with its F-to-enter exceeds the
probability to enter.

A variable with an even inclusion number is ineligible for inclusion if the first condition above
is met.
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Computations During Variable Selection

During variable selection, the matrix W is replaced at each step by a new matrix W* using the
symmetric sweep operator described by Dempster (1969). If the first g variables have been
included in the analysis, W may be partitioned as:

{Wn W12}
Wy Wy

where W1 is gxq. At this stage, the matrix W* is defined by

WH — [Wul Wf11W12 } — [Wﬁ sz]

Wy W' Wa — Wy W W, Wi Wi

In addition, when stepwise variable selection is used, 7 is replaced by the matrix 7*, defined
similarly.

The following statistics are computed.

Tolerance

TOL; = ¢ w}/wy if variable i is not in the analysis and w;; # 0
—1/(w}w;;) if variable i is in the analysis and w;; # 0.

If a variable’s tolerance is less than or equal to the specified tolerance limit, or its inclusion in the
analysis would reduce the tolerance of another variable in the equation to or below the limit, the
following statistics are not computed for it or any set including it.

F-to-Remove

o (wi -t (n—g—g+1)
Fi = AV

with degrees of freedom g—1 and n—g—g+1.

F-to-Enter

L wi (g—1

with degrees of freedom g—1 and n—g—g.

Wilks’ Lambda for Testing the Equality of Group Means
A= [Wy|/|T1|

with degrees of freedom ¢, g—1 and n—g.
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The Approximate F Test for Lambda (the “overall F”), also known as Rao’s R (Tatsuoka,
1971)

F— (1—A®)(r/s+1—qh/2)

Asqgh
where
5= qq’;z};:f ifg* +h*#5
1 otherwise
r=n—1-(q+g)/2
h=g—1

with degrees of freedom g/ and r/s+1—gh/2. The approximation is exact if g or 4 is 1 or 2.
Rao’s V (Lawley-Hotelling Trace) (Rao, 1952; Morrison, 1976)

V=-(n- g)z wal(tiz — wi)

=1 [=1

When n—g is large, V, under the null hypothesis, is approximately distributed as x? with g(g—1)
degrees of freedom. When an additional variable is entered, the change in V, if positive, has
approximately a x? distribution with g—1 degrees of freedom.

The Squared Mahalanobis Distance (Morrison, 1976) between groups a and b

D2, =—(n-9> Y wi(Xia — Xit) (Xia — Xu)

i=11=1

The F Value for Testing the Equality of Means of Groups a and b (Smallest F ratio)

_ (n—g—g+Dnany 2
Fab = o)t tms) Dab

The Sum of Unexplained Variations (Dixon, 1973)

g—1 g

R= Y 4/(4+Dp)

a=1b=a+1

Classification Functions

Once a set of ¢ variables has been selected, the classification functions (also known as Fisher’s
linear discriminant functions) can be computed using

q
bij:(n—g)walylj 1=1,2...,¢,7=12,...,9
=1

for the coefficients, and
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q
aj:logpj—%Zbin,-j j:1,2,...,q
i=1

for the constant, where p; is the prior probability of group ;.

Canonical Discriminant Functions

The canonical discriminant function coefficients are determined by solving the general eigenvalue
problem

(T — W)V = AWV

where V is the unscaled matrix of discriminant function coefficients and A is a diagonal matrix of
eigenvalues. The eigensystem is solved as follows:

The Cholesky decomposition

W =LU

is formed, where L is a lower triangular matrix, and U = L.
The symmetric matrix L~'BU ! is formed and the system
(L YT -W)U - AI)(UV) =0

is solved using tridiagonalization and the QL method. The result is m eigenvalues, where
m = min (g, g — 1) and corresponding orthonormal eigenvectors, UV. The eigenvectors of the
original system are obtained as

V = U L(UV)

For each of the eigenvalues, which are ordered in descending magnitude, the following statistics
are calculated.

Percentage of Between-Groups Variance Accounted for

100X

3

> M
E=1

Canonical Correlation

A/ (14 Ak)
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Wilks’ Lambda

Testing the significance of all the discriminating functions after the first £:

A= ] va+x) k=0,1,....m—1
i=k+1

The significance level is based on
X?=—(n—(g+9)/2-1)nAy

which is distributed as a x? with (¢—k)(g—k—1) degrees of freedom.

The Standardized Canonical Discriminant Coefficient Matrix D

The standard canonical discriminant coefficient matrix D is computed as

D=8,V

where

S=diag(\/w11, /W22, - -, /Wpp)

S11= partition containing the first ¢ rows and columns of S

V is a matrix of eigenvectors such that VW, V=]
The Correlations Between the Canonical Discriminant Functions and the Discriminating
Variables

The correlations between the canonical discriminant functions and the discriminating variables
are given by

R=S8;,'W;,V
If some variables were not selected for inclusion in the analysis (¢g<p), the eigenvectors are
implicitly extended with zeroes to include the nonselected variables in the correlation matrix.

Variables for which 1W;; = 0 are excluded from S and W for this calculation; p then represents
the number of variables with non-zero within-groups variance.

The Unstandardized Coefficients

The unstandardized coefficients are calculated from the standardized ones using

B=/(n— 9)81_11])
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The associated constants are:

q
ap = *Z bikXie
i=1

The group centroids are the canonical discriminant functions evaluated at the group means:

q
Frj = ax + Z birn X i

i=1

Tests For Equality Of Variance

Box’s M is used to test for equality of the group covariance matrices.

g
M= (n—- g)log‘C" - Z (n; — 1)log‘C(j)’
j=1
where
C' = pooled within-groups covariance matrix excluding groups with singular covariance matrices

C) = covariance matrix for group j.

Determinants of C" and C) are obtained from the Cholesky decomposition. If any diagonal
element of the decomposition is less than 10-11, the matrix is considered singular and excluded
from the analysis.

P
log |CY)| = 23" logli; — plog (n; — 1)

i=1

where 1;; is the ith diagonal entry of L such that (n; — 1)C%) = L'L. Similarly,
p 1
log ‘C ’ = QZlogl“ —plog (n —g)
i=1
where
(n’ - g)c’ —L'L
n'= sum of weights of cases in all groups with nonsingular covariance matrices

The significance level is obtained from the F distribution with #; and #, degrees of freedom
using (Cooley and Lohnes, 1971):

F:{]W/b ifey > ef

bo M : 2
=) ifey < ef

where



121

DISCRIMINANT Algorithms

2p2+3p—1
6(g-1)(p+1)

g
3 P 1 (p—1)(p+2)
(nj -1 (n—g)) °7Y

t=(g—-1plp+1)/2

o
S,
I
e Q/—\
H'Mla
—
3
=
[ |-
—
|
pu
—
o

€2

fg = (tl —|—2)/|62 —eﬂ

ty : 2

b — { ety ifes > €7
- ta ; 2
T e -2/t 1f€2 <eq

If €2 — e, is zero, or much smaller than e, #, cannot be computed or cannot be computed
accurately. If

ey = €9 + 0.0001(82 — e%)

the program uses Bartlett’s x? statistic rather than the F statistic:
X2 =M(1—-e)

with 1 degrees of freedom.

For testing the group covariance matrix of the canonical discriminant functions, the procedure is
similar. The covariance matrices C" and C) are replaced by D, and D', where

D; =B'CYB
is the group covariance matrix of the discriminant functions.

The pooled covariance matrix in this case is an identity, so that

D = (n—g)L,, — z (n; —1)D;

where the summation is only over groups with singular D).

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

Generated model/scoring

The basic procedure for classifying a case is as follows:

m If X is the 1xq vector of discriminating variables for the case, the 1xm vector of canonical
discriminant function values is
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f=XB+a

B A chi-square distance from each centroid is computed
xj = (f—£;)D; (f — £;)
where D; is the covariance matrix of canonical discriminant functions for group j and f; is
the group centroid vector. If the case is a member of group j, X? has a x? distribution with
m degrees of freedom. P(X|G), labeled as P(D>d|G=g) in the output, is the significance
level of such a x7 .

m  The classification, or posterior probability, is

2
PyID,| "M% 5

g

—1/2 4?2
> PyDy e
=1

P(Gy[X) =

where p; is the prior probability for group j. A case is classified into the group for which
P (G;|X) is highest.

The actual calculation of P (G ;|X) is

g; =log Pj — %(log D;| + X?)

exp (g; —max; g;)

9
1= | S (o opes)
=1
0 otherwise

if g; — max; g; > —46

If individual group covariances are not used in classification, the pooled within-groups covariance
matrix of the discriminant functions (an identity matrix) is substituted for D; in the above
calculation, resulting in considerable simplification.

If any D is singular, a pseudo-inverse of the form
DY 0
0 0

replaces Dj‘1 and |D;1,| replaces |D;|. Dj;; is a submatrix of D; whose rows and columns
correspond to functions not dependent on preceding functions. That is, function 1 will be excluded
only if the rank of D; = 0, function 2 will be excluded only if it is dependent on function 1, and
so on. This choice of the pseudo-inverse is not optimal for the numerical stability of Djjll, but
maximizes the discrimination power of the remaining functions.

Cross-Validation (Leave-one-out classification)

The following notation is used in this section:

Table 14-2
Notation

Notation Description
Xj (X1jk,...,quk)T

~
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~

My,

d? (a, b)
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Description
Sample mean of jth group

mj
M; = %Z finXn
k=1 ~

~

Sample mean of jth group excluding point X ;i

TTLj

My = 5 D S X
=1
14k

Polled sample covariance matrix
Sample covariance matrix of jth group

Polled sample covariance matrix without point X

T
—1 -1
n;x; (Xjkaj) (Xjk,fMj) x;
— nfgffjk, 2_1 + ~ ~ ~ ~

n—g T
(nj—fjk)(nj—g)—nj (Xjk:—]\/[j> gj‘l (Xjk—]\/fj)

T T
(o5

Cross-validation applies only to linear discriminant analysis (not quadratic). During
cross-validation, all cases in the dataset are looped over. Each case, say X, is extracted once and

treated as test data. The remaining cases are treated as a new dataset.

Here we compute d2 (Xjk, ]ij> and d3 <Xjk, ]L[,;) (i=1,...,9.i £ j). If there is an i(i # j) that

satisfies (log (P;) — d3 { Xj. J\L) /2 >log (P;) — d2 <Xjk, M ) /2), then the extracted point

~

X, 1s misclassified. The estimate of prediction error rate is the ratio of the sum of misclassified

case weights and the sum of all case weights.
To reduce computation time, the linear discriminant method is used instead of the canonical
discriminant method. The theoretical solution is exactly the same for both methods.

Blank Handling (discriminant analysis algorithms scoring)

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.
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Ensembles Algorithms

Ensembles are used to enhance model accuracy (boosting), enhance model stability (bagging),
build models for very large datasets (pass, stream, merge), and generally combine scores from
different models.

®  For more information, see the topic “Very large datasets (pass, stream, merge) algorithms”
on p. 130.

For more information, see the topic “Bagging and Boosting Algorithms” on p. 125.

For more information, see the topic “Ensembling model scores algorithms” on p. 136.

Bagging and Boosting Algorithms

Bootstrap aggregating (Bagging) and boosting are algorithms used to improve model stability and
accuracy. Bagging works well for unstable base models and can reduce variance in predictions.
Boosting can be used with any type of model and can reduce variance and bias in predictions.

Notation

The following notation is used for bagging and boosting unless otherwise stated:

K The number of distinct records in the training set.

X5 Predictor values for the kth record.

Yk Target value for the kth record.

fr Frequency weight for the kth record.

Wk Analysis weight for the kth record.

N The total number of records; N = ©i_, i

M The number of base models to build; for bagging, this is the number of
bootstrap samples.

" () The model built on the mth bootstrap sample.

b Simulated frequency weight for the kth record of the mth bootstrap sample.

wy Updated analysis weight for the kth record of the mth bootstrap sample.

g =T (Xk) Predicted target value of the kth record by the mth model.

P (X4) For a categorical target, the probability that the kth record belongs to
category l;, i=1, ..., C, in model m.

II(x) For any condition , I () is 1 if # holds and 0 otherwise.

© Copyright IBM Corporation 1994, 2016. 125
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Bootstrap Aggregation

Bootstrap aggregation (bagging) produces replicates of the training dataset by sampling with
replacement from the original dataset. This creates bootstrap samples of equal size to the original
dataset. The algorithm is performed iteratively over k=1,..,K and m=1,...,M to generate frequency
weights:

rv.binom <N, %) k=1
Sok = fr

. [ 1 .
rv.binom | N — Z mis Tlf otherwise
2

Then a model is built on each replicate. Together these models form an ensemble model. The
ensemble model scores new records using one of the following methods; the available methods
depend upon the measurement level of the target.

Scoring a Continuous Target

B Mean
M
~ 1 ~
Ye = 37 z Yk
m=1
® Median

Sort g7 and relabel them g1y < ... < §an

Yk = 1 (s . .
5 ( Y(ar) -I-y(% )> if M is even

Scoring a Categorical Target

m  Voting
Ik = argmaxy,cn |M | Z P (Xk)
mEMz
Py = m Z e (Xk)

mEM@k

where Q) = {argmax;, |M;,

m  Highest probability
Uk = argmax, (maxm (le (Xk)))
Py = maep, (P2 (X))

m  Highest mean probability

M
Jr = argmaxy, 37 . P (Xx)

m=1

ﬁ@k:jwzpyn Xk

m=1
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Bagging Model Measures

Accuracy

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated
with each ensemble method), and base models.

For categorical targets, the classification accuracy is
1 K
v AT (yr == )
k=1

For continuous targets, it is

B2 SE L fele — i)’
E{n{:lfk(yk - g)Z

where 7 = %EkK:l frye
Note that R? can never be greater than one, but can be less than zero.

For the naive model, 3 is the modal category for categorical targets and the mean for continuous
targets.

Diversity

Diversity is a range measure between 0 and 1 in the larger-is-more-diverse form. It shows how
much predictions vary across base models.
For categorical targets, diversity is
1 K
—_— L (; M — L (y;
N ;fk (vr) [ (yx)]

where L (yx) = Y2 11 (g5 = 977).

For continuous targets, diversity is

ka Z Z vk — U1 ) Uk — k)

m 1 n=1,n#m

D=1~ —3
K Feluk — Tg)
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Adaptive Boosting

Adaptive boosting (AdaBoost) is an algorithm used to boost models with continuous targets
(Freund and Schapire 1996, Drucker 1997).

1. Initialize values.

—=——  if analysis weights specified
Setwy, =4 Ti1wifi _
1/N otherwise

Set m=1, wi* = wy, and f;* = fi. Note that analysis weights are initialized even if the method
used to build base models does not support analysis weights.

2. Build base model m, T™ (-), using the training set and score the training set.

K
1— Z Lsz’fk
k=1

Set the model weight for base model m, w™ = log i

g Lywy fr
=1

abs(§y' —yk)

where Ly, = —= (abs(o7 )"

3. Set weights for the next base model .

w',’f“ =K om a;?;:L_l
Yitia T fi
x 1-Lg
> Lewi fr
where a]" ™t = wir | *=L . Note that analysis weights are always updated. If

k=l
1- ZLkwlek

k=1
the method used to build base models does not support analysis weights, the frequency weights
are updated for the next base model as follows:

rv.binom (N, w',:,”ka) k=1
m+1 m—+1
— ] B w S .
k rv.binom | N — S gmtt o - otherwise
= 1 — k- wm+ f
i=1 "k U

If m<M, set m=m+1 and go to step 2. Otherwise, the ensemble model is complete.

K

Note: base models where Z Lywi® frr > 0.5 or maxy (abs(§}” — yx)) are removed from the
k=1

ensemble.

Scoring

AdaBoost uses the weighted median method to score the ensemble model.

Sort g;* and relabel them g1y < ... < §(ay), retaining the association of the model weights, w™,
and relabeling them w(yy, ..., w(an
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The ensemble predlcted Value is then g = §;y, where i is the value such that

Zu < = Zw <Zw

m=1 m 1 m=1

Stagewise Additive Modeling using Multiclass Exponential loss

Stagewise Additive Modeling using a Multiclass Exponential loss function (SAMME) is an
algorithm that extends the original AdaBoost algorithm to categorical targets.

1. Initialize values.

—=——  if analysis weights specified
Set wy, = Zg(:lwif'i )
1/N otherwise

Set m=1, w* = wy, and f* = fi. Note that analysis weights are initialized even if the method
used to build base models does not support analysis weights.

2. Build base model m, T™ (-), using the training set and score the training set.

Set the model weight for base model m, w™ = log :=%"m  log (C' — 1)

err™

where err™ Z wp fe I T (yr 2 0100).

3. Set weights for the next base model.

w/rsn+1 K a;:;ll—l—l
Yilia T fi
where a}" ™' = wi exp (W™ I (yx # §7*)) . Note that analysis weights are always updated. If the

method used to build base models does not support analysis weights, the frequency weights are
updated for the next base model as follows:

ruv.binom (N, w;""'lfk) k=1
m—+1 — wm+1f
k rv.binom | N — Ek L pmAl k otherwise
=1JEk ! k—1_ m+1
- Ei:1 W fz

If m<M, set m=m+1 and go to step 2. Otherwise, the ensemble model is complete.

Note: base models where err,, = 0 or w™ <= 0 are removed from the ensemble.

Scoring
SAMME uses the weighted majority vote method to score the ensemble model.

The predicted value of the kth record for the mth base model is §;* = arg max;, P (Xy).

The ensemble predicted value is then g, = arg max;, Z w™II (7" ==1;). Ties are resolved

m=1
at random.
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m

The ensemble predicted probability is p;, = Z “ Pl (X4).

i
mEMy, E, w

i€ My,

Boosting Model Measures

Accuracy

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated
with each ensemble method), and base models.

For categorical targets, the classification accuracy is
R
v > Fell (ye == )
k=1

For continuous targets, it is

R2_1_ SR felye — i)
oK ey — 7)°

where Y= %EkK:lfkyk
Note that R2 can never be greater than one, but can be less than zero.

For the naive model, . is the modal category for categorical targets and the mean for continuous
targets.
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