IBM SPSS Modeler 18.0 CLEF
Developer’s Guide

<||IH

Note
FBefore you use this information and the product it supports, read the information in ["Notices” on page 329/

Product Information

This edition applies to version 18, release 0, modification 0 of IBM SPSS Modeler and to all subsequent releases and
modifications until otherwise indicated in new editions.

Contents

Preface . .
About IBM Business Analyt1cs
Technical support. .

Chapter 1. Overview
Introduction to CLEF
System Architecture .
Client-Side Components
Server-Side Components
Features of CLEF .
Specification File .
Nodes
Data Model. .o
Input and Output Files .

Application Programming Interfaces (APIs) .

File Structure .
Client-Side Components
Server-Side Components

Chapter 2. Nodes.
Overview of Nodes .
Data Reader Nodes.
Data Transformer Nodes .
Model Builder Nodes .
Document Builder Nodes.
Model Applier Nodes .
Data Writer Nodes .
Menus, Toolbars and Palettes
Menus and Submenus .
Toolbars . .
Palettes and Subpalettes .
Designing Node Icons .
Borders.
Backgrounds .
Graphics Requirements
Creating Custom Images .

Adding the Image Files to the Node Spec1f1cat1on

B
. 18
.18
.19
.22

Designing Dialog Boxes
About Node Dialog Boxes
Dialog Box Design Guidelines .
Dialog Box Components .
Designing Output Windows .

Chapter 3. CLEF Examples .

About the Examples

Activating the examples . .

Data Reader Node (Apache Log Reader)
Data Transformer Node (URL Parser).

Document Builder Node (Web Status Report) .

Model Builder Node (Interaction) .
Examining the Specification Files .
Examining the Source Code .
Removing the Examples .

UG R W W R, =k

[
— = o v O

I e N T e ==y
NN OIThREWWWLwwNdDNDN

17

. 23
.23
.23
.24
.24
. 25
.25
. 26
. 26
.27

Chapter 4. Specification File
Overview of Specification Files .
Example of a Specification File .
XML Declaration
Extension Element .
Extension Details Section .
Resources Section

Bundles

Jar Files .

Shared Libraries .

Help Information
Common Objects Section .

Property Types .

Property Sets .

Container Types .

Actions .

Catalogs
User Interface (Palettes) Sect1on

Example - Adding a Node to a System Palette.

Example - Adding a Custom Palette .

Example - Adding a Custom Sub-Palette to a

Custom Palette . .
Example - Adding a Node to a System
Sub-Palette

Example - Adding a Custom Sub Palette to a

System Palette .
Hiding or Deleting a Custom Palette or
Sub-Palette .
Object Definition Section .
Object Identifier .
Model Builder
Document Builder .
Model Provider .
Properties .
Containers.
User Interface
Execution .
Output Data Model
Constructors .
Common Features .
Value Types
Evaluated Strings
Operations
Fields and Field Metadata
Field Sets .
Roles
Logical Operators
Conditions.
Using CLEF Nodes in Scr1pts .
Maintaining Backward Compatibility .

Chapter 5. Building Models and
Documents .

Introduction to Model and Document Burldmg
Models .

. 29
. 29
. 30
.31
.31
.31
. 32
. 33
. 33
. 33
. 34
. 34
. 35
. 36
. 37
. 38
. 39
. 40
.42
.42

. 42
. 43
. 43

. 44
. 44
. 45
. 48
. 48
. 48
. 48
. 50
. 51
.51
. 55
. 56
. 57
. 57
. 60
. 60
. 65
. 66
. 67
. 67
. 68
.72
.73

. 75
.75
.75

iii

Documents
Constructors .
Building Models.
Model Builder
Model Output .
Building Interactive Models .
Automated Modeling .
Applying Models
Building Documents
Document Builder .
Document Output .
Using Constructors .
Create Model Output .
Create Document Output.
Create Interactive Model Builder
Create Model Applier .

Chapter 6. Building User Interfaces
About User Interfaces .
User Interface Section
Icons .
Controls .
Menus.
Menu Items .
Toolbar Items
Example: Adding to the Mam Wmdow
Tabs . .
Access Keys and Keyboard Shortcuts
Panel Specifications .
Text Browser Panel
Extension Object Panel
Properties Panel
Model Viewer Panel .
Property Control Specifications
UI Component Controls .
Property Panel Controls .
Controllers .
Property Control Layouts
Standard Control Layout
Custom Control Layout .
Custom Output Windows .

Chapter 7. Adding a Help System
Types of Help Systems
HTML Help .
JavaHelp . . .
Implementing a Help System . .
Defining the Help System Location and Type
Specifying a Particular Help Topic To Display

iV IBM SPSS Modeler 18.0 CLEF Developer's Guide

.75
.75
. 76
. 76
. 83
. 84
. 88
.93
. 93
. 93
. 94
.95
. 95
. 96
. 97
.97

. 99

. 99

. 100
. 102
. 103
. 104
. 105
. 106
. 106
. 107
. 108
. 110
. 110
. 112
. 113
. 115
. 116
. 116
. 120
. 122
. 142
. 143
. 143
. 153

. 155
. 155
. 155
. 155
. 155

155
156

Chapter 8. Localization and
Accessibility.
Introduction .
Localization .

Property Files

Help Files

Testing a Locahzed CLEF Node
Accessibility . L

Chapter 9. Programming .
About Programming for CLEF Nodes .
CLEF API Documentation . .
Client-Side API. .

Client-Side API Classes .

Using the Client-Side API .
Predictive Server API (PSAPT) .
Server-Side API.

Architecture .

Service Functions .

Callback Functions

Process Flow

Server-Side API Features

Error Handling .

XML Parsing APT .

Using the Server-Side API .

Server-Side Programming Guidelines

Chapter 10. Testing and Distribution
Testing CLEF Extensions
Testing a CLEF Extension
Debugging a CLEF Extension .
Distributing CLEF Extensions .
Installing CLEF Extensions .
Deinstalling CLEF Extensions .

Appendix. CLEF XML Schema .
CLEF Element Reference

Elements . .

Extended Types

Notices .
Trademarks . .
Terms and conditions for product documentatron

Index .

. 159
. 159
. 159
. 159
. 164
. 164
. 165

. 167
. 167
. 167
. 167
. 167
. 168
. 169
. 169
. 169
. 169
. 171
. 172
. 175
. 186
. 187
. 187
. 187

191

. 191
. 191
. 191
. 193
. 193
. 194

. 195
. 195
. 195
. 327

. 329
. 330

331

. 333

Preface

IBM® SPSS® Modeler is the IBM Corp. enterprise-strength data mining workbench. SPSS Modeler helps
organizations to improve customer and citizen relationships through an in-depth understanding of data.
Organizations use the insight gained from SPSS Modeler to retain profitable customers, identify
cross-selling opportunities, attract new customers, detect fraud, reduce risk, and improve government
service delivery.

SPSS Modeler's visual interface invites users to apply their specific business expertise, which leads to
more powerful predictive models and shortens time-to-solution. SPSS Modeler offers many modeling
techniques, such as prediction, classification, segmentation, and association detection algorithms. Once
models are created, IBM SPSS Modeler Solution Publisher enables their delivery enterprise-wide to
decision makers or to a database.

About IBM Business Analytics

IBM Business Analytics software delivers complete, consistent and accurate information that
decision-makers trust to improve business performance. A comprehensive portfolio of |Business
intelligence] [predictive analytics) [financial performance and strategy management, and |analytid
hpplications| provides clear, immediate and actionable insights into current performance and the ability to
predict future outcomes. Combined with rich industry solutions, proven practices and professional
services, organizations of every size can drive the highest productivity, confidently automate decisions
and deliver better results.

As part of this portfolio, IBM SPSS Predictive Analytics software helps organizations predict future events
and proactively act upon that insight to drive better business outcomes. Commercial, government and
academic customers worldwide rely on IBM SPSS technology as a competitive advantage in attracting,
retaining and growing customers, while reducing fraud and mitigating risk. By incorporating IBM SPSS
software into their daily operations, organizations become predictive enterprises — able to direct and
automate decisions to meet business goals and achieve measurable competitive advantage. For further
information or to reach a representative visit |http: / /www.ibm.com/spss|

Technical support

Technical support is available to maintenance customers. Customers may contact Technical Support for
assistance in using IBM Corp. products or for installation help for one of the supported hardware
environments. To reach Technical Support, see the IBM Corp. web site at [http:/ /www.ibm.com /supportl
Be prepared to identify yourself, your organization, and your support agreement when requesting
assistance.

http://www-01.ibm.com/software/data/businessintelligence/
http://www-01.ibm.com/software/data/businessintelligence/
http://www-01.ibm.com/software/analytics/spss/
http://www-01.ibm.com/software/data/cognos/financial-performance-management.html
http://www-01.ibm.com/software/data/cognos/products/cognos-analytic-applications/
http://www-01.ibm.com/software/data/cognos/products/cognos-analytic-applications/
http://www.ibm.com/spss
http://www.ibm.com/support

vi IBM SPSS Modeler 18.0 CLEF Developer's Guide

Chapter 1. Overview

Introduction to CLEF

Component-Level Extension Framework (CLEF) is a mechanism that allows the addition of
user-provided extensions to the standard functionality of IBM SPSS Modeler. An extension typically
includes a shared library—for example, a data-processing routine or a modeling algorithm—that is added
to IBM SPSS Modeler and made available either from a new entry on a menu or as a new node on the
nodes palette.

To do this, IBM SPSS Modeler requires details about the custom program, such as its name, the command
parameters that should be passed to it, how IBM SPSS Modeler should present options to the program
and results to the user, and so on. To provide this information, you supply a file in XML format known
as a specification file. IBM SPSS Modeler translates the information in this file into a new menu entry or
node definition.

Some of the benefits of using CLEF are that it:

* Provides an easy-to-use, extremely flexible and robust environment that allows engineers, consultants,
and end users to integrate new features into IBM SPSS Modeler.

¢ Ensures that extension modules can look and behave the same as native IBM SPSS Modeler modules.

* Allows extension nodes to execute as close to the speed and efficiency of native IBM SPSS Modeler
nodes as possible.

System Architecture

Like IBM SPSS Modeler itself, CLEF uses a two-tier client/server architecture, where the tiers can reside
either on the same machine or on two different machines.

Client-Side Components

The components of the client tier are shown here.

© Copyright IBM Corporation 1994, 2016 1

image files

g o
i g o ’ extension.jar
extension module specification file help files &
: ion. + "
client component (extension.xml) class files
localization

CLEF
client-side
Java API

i property files for i

Modeler Client

to Modeler Server

Figure 1. Client-side components

* Specification file. Lists properties, formats, data model changes, controls, and other characteristics that
are defined by the extension.

* Image files. Contain the images used to identify a node in the extension.
* Help files. Used to display help information about the extension.

* Property files. Contain text strings comprising names, labels, and messages displayed on the screen by
the extension.

* Java .jar or .class files. Contain any Java resources used by the extension.

* Java application programming interface (API). Can be used by extensions that require additional
controls, user interface components, or interactivity not provided directly by the specification file.

Server-Side Components
The components of the server tier are shown here.

2 IBM SPSS Modeler 18.0 CLEF Developer's Guide

to Modeler Client

$

Modeler Server

CLEF | 3
server-side ! 3
C-API 3 |

i server-side 3

extension module shared !ibrary |
server component | (extension.dll) |
% C++ helpers i

Figure 2. Server-side components

C-based API for shared libraries. Covers aspects such as the setting and getting of execution settings,

persistence of those settings, execution feedback, job control (for example, interrupting execution), SQL

generation, and returned objects.
Server-side shared library. A dynamic link library (DLL) that supports node execution. The C++

helpers are wrappers for some of the C-based APIs that are provided as source code and which can be

easily compiled into a C++ CLEF module.

Features of CLEF

The following sections introduce a number of key features of CLEF:

Specification file

Nodes

Data model

Input and output files

Application programming interfaces (APIs)

Specification File

The CLEF specification file is an XML file containing structured specifications describing the behavior of
the new extension. A specification file describes:

Shared resources needed by the extension (for example, localized text bundles and server-side shared
libraries).

Common definitions, such as file types or property types.
New objects that the end user can utilize, such as nodes and output models.

When IBM SPSS Modeler starts up, specification files are loaded from the location where they reside, so
that features defined in the files are immediately available.

Chapter 1. Overview

3

For more information, see [Chapter 4, “Specification File,” on page 29

Nodes

When adding an extension to IBM SPSS Modeler that implements a new node, you first need to decide
what type of node to create (for example, whether the node generates a model or simply transforms
data). See the topic [‘Overview of Nodes” on page 9| for more information.

After creating the specification file and any necessary Java classes and shared libraries, you copy the files
to specific locations from where IBM SPSS Modeler can read them. The next time you start IBM SPSS
Modeler, the new node is added to the appropriate palette and is ready for use.

Data Model

The data model represents the structure of the data flowing through the IBM SPSS Modeler stream.
Describing the data at that point in the stream, the model corresponds to the information displayed in the
Type node. It lists the names of existing fields at a particular point in the stream and describes their type.

When adding any node to IBM SPSS Modeler, consider how the data model passed into the node affects
the behavior of that node. For example, a Derive node takes an input data model, adds a new field to it,
and produces an output data model that is passed to the next node in the IBM SPSS Modeler stream. In
contrast, a Graph node takes an input data model and produces no output data model because the data
are not passed to any subsequent nodes. IBM SPSS Modeler must know what will happen to the data
model so that subsequent nodes can present the correct information about which fields are available. The
data model information in the specification file gives IBM SPSS Modeler the information necessary to
keep the data model consistent across the entire stream.

Depending on whether data flow into, out of, or through the node, the specification file must describe the
data model for input, output, or both. A CLEF node can affect the data model either by adding new
fields to whatever fields pass into the node, or by replacing the fields coming into the node with new
fields generated by the program itself. The OutputDataModel element in the specification file describes the
effects of the CLEF node on the data model. See the topic [“Output Data Model” on page 55| for more
information.

Input and Output Files

It is possible to specify one or more temporary files to be generated before a CLEF node is executed.
These are known as input files, as they are input to node execution on the server. For example, a model
builder node might have a model container from which the contents are transferred to the specified input
file on execution of the node. See the topic [“Input Files” on page 52| for more information.

Other temporary files are generated during execution of the node on the server; for example, the results
of executing a model builder or document builder node. These are known as output files, and are
transferred back to the client following node execution. See the topic [“Output Files” on page 53| for more
information.

Application Programming Interfaces (APIs)

Depending on what you want the extension to do, you may need to make use of an application
programming interface (API). For a simple data transformation, you may be able to define the necessary
processing entirely in the specification file. However, for more advanced requirements, you will need to
interface with one or more of the available APIs:

e CLEF client-side API
¢ CLEF server-side API
* Predictive Server API (PSAPI)

4 IBM SPSS Modeler 18.0 CLEF Developer's Guide

The CLEF client-side API is a Java API that can be used by extensions requiring additional controls, user
interface components, or interactivity not provided directly by the specification file.

The CLEEF server-side API is a C-based API that covers aspects such as the setting and getting of
execution settings, persistence of those settings, execution feedback, job control (for example, interrupting
execution), SQL generation, and returned objects.

The Predictive Server API is a Java API that exposes IBM SPSS Modeler functionality for use by
applications that require data mining and predictive analytic capabilities.

For more information, see [Chapter 9, “Programming,” on page 167

File Structure

A CLEF extension consists of two sets of components:
* Client-side components
* Server-side components

The client-side components comprise the extension specification file, Java classes and jar files, properties
bundles containing localizable resources, and image and help files.

The server-side components are the shared libraries and DLLs required when an extension node is
executed.

Client-Side Components

Client-side components are installed under the \ext\1ib folder in the IBM SPSS Modeler installation
directory. The client-side components are:

* Specification file

* Java classes and .jar files
* Property files

* Image files

* Help files

Extension Folder
Each extension is located in its own extension folder immediately under \ext\1ib.

The suggested naming convention for the extension folder is:
providerTag. id

where providerTag is the provider identifier from the ExtensionDetails element of the specification file,
and id is the extension identifier from the same element.

Thus for example, if the ExtensionDetails element begins as follows:
<ExtensionDetails providerTag="myco" id="sorter" ... />

the extension folder name myco.sorter would be used.
Specification File
The specification file itself must be named extension.xml, and must reside at the top level of the

extension sub-folder. Thus in the example just given, the path to the specification file would be as follows
under the IBM SPSS Modeler installation directory:

Chapter 1. Overview 5

\ext\1ib\myco.sorter\extension.xml
Java Classes and .jar Files

Extensions that use the client-side Java API include compiled Java code. This code can be left as a set of
.class files, or it can be packaged as a .jar file.

Java .class files are located relative to the top-level extension folder. For example, a class that
implements the ActionHandler interface might have the path:

com.my_example.my_extension.MyActionHandler

In this case, the .class file should be in the following location under the IBM SPSS Modeler installation
directory:

\extension_folder\com\my_example\my_extension\MyActionHandler.class

A .jar file can be located anywhere under the extension folder. You specify the actual location of a .jar
file by means of the JarFile element in the specification file. For example, if an extension uses a . jar file
with the following path:

\extension_folder\1ib\common-utilities.jar

the specification file should include the following entry in the Resources element:

<Resources>
<JarFile id="util" path="1ib\common-utilities.jar"/>

</Resources>

See the topic [“Jar Files” on page 33| for more information.

Property Files

Localized resources (for example, screen text and error messages, and their foreign-language translations)
can be stored in files with the extension .properties, which can be located anywhere under the extension
folder. See the topic [“Property Files” on page 159| for more information.

Image and Help Files

Files containing the graphic images for icon display, and those containing help systems, can be located
anywhere under the extension folder. You might find it useful to separate image and help files into their
own sub-folders.

You declare the location of an image file by means of the imagePath attribute of an Icon element in the
specification file. See the topic [“Icons” on page 102 for more information.

In a similar way, you declare the location of a help system using the path attribute of a HelpInfo element
in the specification file. See the topic [“Defining the Help System Location and Type” on page 155 for
more information.

Example

The client-side file structure based on these components might be something like this:

\ext\Tib\myco.sorter
\ext\1ib\myco.sorter\extension.xml
\ext\1ib\myco.sorter\sorter_en.properties
\ext\Tib\myco.sorter\sorter_fr.properties
\ext\Tib\myco.sorter\sorter_it.properties

6 IBM SPSS Modeler 18.0 CLEF Developer's Guide

\ext\Tib\myco.
\ext\1ib\myco.
\ext\Tib\myco.
\ext\Tib\myco.
\ext\Tib\myco.

sorter\com\my_example\my_ extension\MyActionHandler.class
sorter\help\sorter.chm

sorter\images\1g_sorter.gif

sorter\images\sm sorter.gif
sorter\lib\common-utilities.jar

Server-Side Components

Shared libraries required for execution must be located in a folder under the \ext\bin folder in the IBM
SPSS Modeler installation directory, for example:

installation _directory\ext\bin\myco.sorter\my 1ib.d11

Note that shared libraries must not be placed directly in the \ext\bin folder.

For shared libraries that IBM SPSS Modeler invokes directly during execution, you declare the location in
a SharedLibrary element in the specification file. See the topic [“Shared Libraries” on page 33| for more

information.

The main shared library may require the use of other libraries. You should also place any dependent
shared libraries in the same location as the main shared library to enable the dependent libraries to be
found by the main library.

Example

An example of a server-side file structure might be:

\ext\bin\myco.

sorter\my 1ib.d11

\ext\bin\myco.sorter\my_1ib2.d11

Chapter 1. Overview 7

8 IBM SPSS Modeler 18.0 CLEF Developer's Guide

Chapter 2. Nodes

Overview of Nodes

When creating an extension that implements a new node, you need to become familiar with the
characteristics of IBM SPSS Modeler nodes. Doing so will help you to define them correctly in the

specification file.

IBM SPSS Modeler nodes are classified into source, process, output, and modeling nodes, depending on
their function. In CLEF, nodes are classified in a slightly different way. The mapping between the two
systems is shown in the following table.

Table 1. CLEF node types.

Output (Report node)

IBM SPSS Modeler classification Palette CLEF node type

Source nodes Sources Data reader

Process nodes Record Ops Data transformer
Field Ops

Output nodes Graphs Document builder

Export

Data writer

Modeling nodes

Modeling

Model builder

When you create a new CLEF node, you define it as being one of the CLEF node types. The node type

you choose depends on the

main function of the node.

Table 2. Node types and functions.

CLEF node type

Description

Corresponding node palette

Icon shape

Data reader

Imports data into IBM SPSS
Modeler from a different
format.

Sources

Figure 3. Source node
shape (circle)

Data transformer

Takes data from IBM SPSS
Modeler, modifies the data
in some way, and returns the
modified data to the IBM
SPSS Modeler stream.

Record Ops, Field Ops

Figure 4. Ops node
shape (hexagon)

Model builder

Generates models from data
in IBM SPSS Modeler.

Modeling

Figure 5. Model builder
node shape

Table 2. Node types and functions (continued).

CLEF node type Description Corresponding node palette | Icon shape
Document builder Generates a graph or report |Graphs

from data in IBM SPSS

Modeler.

Figure 6. Graphs node
shape (triangle)

Output (Report node)

Figure 7. Output node
shape (rectangle)

Model applier (also known | Defines a container for a -
as a "model nugget") generated model that is
brought back to the IBM i
SPSS Modeler canvas.

Figure 8. Model applier
node shape (gold
diamond)

Data writer Exports data from IBM SPSS | Export
Modeler format to a format
suitable for use with another
application.

Figure 9. Export node
shape (rectangle)

You define the node type, together with other attributes, in a Node element in the specification file—for
example:

<Node name="sort process" type="dataTransformer"
palette="recordOp" ... >
-- node elements --

</Node>

The palette attribute defines the palette in the IBM SPSS Modeler main window from which users will
be able to access the node--in this case, the Record Ops palette. If you omit this attribute, the node
appears on the Field Ops palette.

A number of example nodes are supplied with IBM SPSS Modeler. See the topic [“About the Examples”|
for more information.

Data Reader Nodes

A data reader node allows data from an external source to be read into an IBM SPSS Modeler stream. The
nodes on the Sources palette of IBM SPSS Modeler are the equivalent of data reader nodes and are
identified by having a circular icon shape.

In the specification for a data reader node, you include details of:
* The data source (such as a file or database)

10 1BM SPSS Modeler 18.0 CLEF Developer's Guide

* Any preprocessing of records (such as handling of leading and trailing spaces or the character to use as
the record delimiter)

* Whether to filter out any record fields

* The data type (for example, range, set, flag) and storage type (string, integer, real) to associate with
each field

* Whether the input data model is changed

The data reader node can include logic to read the source data records. Alternatively, this can be done
further downstream by means of a Type node in IBM SPSS Modeler.

An example data reader node is supplied with IBM SPSS Modeler. See the topic [“About the Examples”]
for more information.

Data Transformer Nodes

A data transformer node takes data from an IBM SPSS Modeler stream, modifies the data in some way,
and returns the modified data to the stream. The nodes on the Record Ops and Field Ops palettes of IBM
SPSS Modeler are data transformer nodes, identified by having a hexagonal icon shape.

In the specification for a data transformer node, you include details of:
* Which records or fields are being transformed
* How the data is to be modified

An example data transformer node is supplied with IBM SPSS Modeler. See the topic
Examples” on page 23| for more information.

Model Builder Nodes

For an overview of model building in IBM SPSS Modeler, see "Introduction to Modeling" in the IBM
SPSS Modeler 18 Applications Guide.

Model builder nodes generate objects that appear on the Models or Outputs tab of the manager pane in
the IBM SPSS Modeler main window.

The nodes on the Modeling palette of IBM SPSS Modeler are examples of model builder nodes and are
identified by having a pentagonal icon shape.

When executed, a model builder node generates a model output object (also known as a "model nugget")
on the Models tab.

When a generated model is added to the canvas, it takes the form of a model applier node.

In the specification for a model builder node, you include:

* Model build details, such as the algorithm used to generate the model and which input and output
fields are to be used for scoring data with the model

* Properties used by the model

* Containers used to hold output objects

* The user interface for the node dialog box

* Properties and files used when the node is executed

* How the input data model is affected by execution of the node

* The identifier of the model output object, and any other objects, produced by executing the node

* The identifier of the model applier node (see [“Model Applier Nodes” on page 12)

Chapter 2. Nodes 11

Note: When defining a model builder node, you include the definition of the actual model output object
and model applier node elsewhere in the same specification file.

An example model builder node is supplied with IBM SPSS Modeler. See the topic [“About the Examples”]
for more information.

Document Builder Nodes

Document builder nodes generate objects that appear on the Outputs tab of the manager pane of the IBM
SPSS Modeler main window. The nodes on the Graphs palette are examples of document builder nodes
and are identified by having a triangular icon shape.

When executed, a document builder node generates a document output object on the Outputs tab of the
manager pane.

In contrast to a model output object, a document output object cannot be added back to the IBM SPSS
Modeler canvas.

In the specification for a document builder node, you include:

* Document build details, such as the node dialog box tab that is to contain the document generation
controls

* Properties used by the document

* Containers used to hold output objects

* The user interface for the node dialog box

* Properties and files used when the node is executed

* The identifier of the document output object, and any other objects, produced by executing the node

Note: When defining a document builder node, you include the definition of the actual document output
object elsewhere in the same specification file.

Model Applier Nodes

A model applier node defines a container for a generated model for use when the model is added to the
IBM SPSS Modeler canvas from the Models tab of the manager pane.

In the specification for a model applier node, you include details of:

* The container for the model (or containers, if model output can be produced in more than one
format—for example, text and HTML)

* The user interface details for the dialog box displayed when the user browses the applier node on the
Models tab or opens it on the canvas

* The output data model
* What processing to perform when the stream containing the node is executed
* Constructors to handle objects produced when the stream containing the node is executed

Data Writer Nodes

A data writer node exports data from IBM SPSS Modeler format to a format suitable for use with another
application. The nodes on the Export palette of IBM SPSS Modeler are data writer nodes, identified by
having a rectangular icon shape.

In the specification for a data writer node, you include:
* The details of the file or database to which the stream data is to be written

* Optionally, whether the entire stream is to be published so that it can be embedded in an external
application

12 IBM SPSS Modeler 18.0 CLEF Developer's Guide

Menus, Toolbars and Palettes

Users can access an extension from an IBM SPSS Modeler menu, the toolbar, or a palette. An extension
can either implement a node or perform a specified action.

An extension (node or action) that is accessible from an explicitly specified menu can also be made
accessible from the toolbar, and vice versa.

A node that is accessible from a palette is automatically accessible from a corresponding item on the
Insert menu.

Menus and Submenus

Users can access the standard IBM SPSS Modeler nodes from the Insert menu. Each of the items in the
last group on this menu (apart from Models) has a submenu that provides access to a set of related
nodes.

These items correspond directly to entries on the node palettes. Adding a node to a palette automatically
adds it to the corresponding group on the Insert menu.

If your extension defines an action that is not accessible through a node, you can make the extension
available by adding one or more of the following:

* A new item to a system menu or submenu
* A new menu to IBM SPSS Modeler

+ A new item to the toolbar (see [“Toolbars”)

A new menu or menu item can optionally display the icon associated with the extension, as, for example,
on some of the Insert menu items.

For more information, see [“Menus” on page 104] and [“Menu Items” on page 105,

Toolbars

If your extension defines an action that is not accessible through a node, you can make the extension
available by adding it to the main IBM SPSS Modeler toolbar.

In this case, it is advisable to hide the label for the action.

You can also add an item to the toolbar of a node dialog box or output window. You can choose to show
the item label or hide it.

See the topic [“Toolbar Items” on page 106|for more information.

Palettes and Subpalettes

If your extension defines a new node, you can place the node in any position on one of the standard IBM
SPSS Modeler palettes or subpalettes.

€ Favorites | @ Sources | @ Record

® ® @

Enterprise Wiew [atabase AW Reader “War File

Figure 10. New node on a standard palette

Chapter 2. Nodes 13

You can add an entry to a standard subpalette and make the node accessible from there.

Figure 11. New node on custom addition to a standard subpalette

You can define a custom palette and place the new node there.

ﬂ Favarites [A Mining | @ Sources |

®)

AN Reader

Figure 12. New node on a custom palette

A custom palette can have custom subpalettes.

€ Favorites | « & Mining | @ So.

@

AN Reader

Figure 13. New node on a custom subpalette of a custom palette

For more information, see ["Node” on page 45|and [“User Interface (Palettes) Section” on page 40|

Designing Node Icons

For each new node that you create in CLEF, you can supply a central image for the icon that identifies
the node on the screen.

Note: You do not have to supply an image--IBM SPSS Modeler provides a default, which is displayed if
you do not specify one (this can be useful when starting to develop a node).

Figure 14. Default image for CLEF icons

Standard IBM SPSS Modeler icons are made up of three layers:
* Border
* Background

* Central image

For a new node, you need to supply only the central image (known as a glyph)--IBM SPSS Modeler
handles the processing for the border and background. The glyph image needs to have a transparent

14 1BM SPSS Modeler 18.0 CLEF Developer's Guide

background so that it does not obscure the icon background layer. In this section, the representations of
the glyph have a colored background to denote transparency.

This is how a typical IBM SPSS Modeler modeling icon is made up.

Table 3. Composition of node and generated model icons

2,

3.0

Figure 18. Icon glyph

Node icon Generated model icon
Border None
Figure 15. Icon border
Background
Figure 16. Icon background Figure 17. Generated model
background
Glyph

h

Figure 19. Generated model glyph

Image displayed as

Figure 20. Displayed icon

Figure 21. Displayed generated
model icon

Borders

The function of the node is indicated by the shape of the icon border. See the topic |“Overview of Nodes”|

for more information.

If a node has caching enabled, the border shape has a miniature document symbol added to it. A white
document icon on a node indicates that its cache is empty. When the cache is full, the document icon

becomes solid green.

Table 4. Node borders and caching status

Caching status

Example

No caching

Figure 22. Node with no caching

Chapter 2. Nodes

15

Table 4. Node borders and caching status (continued)

Caching status Example

Caching enabled

Figure 23. Node with caching enabled

Cache full

Figure 24. Node with cache full

The different border symbols are supplied by the system, and IBM SPSS Modeler takes care of the
necessary processing to display the right one at the right time.

Backgrounds

For node icons other than those for generated models and model applier nodes, the background changes
color to indicate the state.

Table 5. Node backgrounds

State Color Example

Unselected Gray

Figure 25. Icon background (gray)

Selected Blue

Figure 26. Icon background (blue)

Error Red

Figure 27. Icon background (red)

Action being conducted in a database Purple .

Figure 28. Icon background (purple)

Again, the background images are supplied by the system, and IBM SPSS Modeler performs the
necessary processing to display the correct background in each situation.

16 1BM SPSS Modeler 18.0 CLEF Developer's Guide

Graphics Requirements

For each new CLEF node, create the following versions of the glyph layer image:

* Large size (49 x 49 pixels) for nodes on the stream canvas

* Small size (38 x 38 pixels) for nodes in the palette manager at the bottom of the screen

If you want to display the icon on a menu or toolbar or in the title bar of a browser or an output
window, you will also need to create:

* Miniature size (16 x 16 pixels)

If the node generates a model, you will also need to create:

* Small size (38 x 38 pixels) with the design moved to the bottom left corner, for overlaying on the
generated model icon (the gold nugget)

Note: Images larger than these sizes will be trimmed when displayed in IBM SPSS Modeler.

See the topic [“Icons” on page 102 for more information.

Creating Custom Images

The image you create for a node should convey the main function of the node. For an international
audience, take care to use images that are not specific to one country and that are not likely to be
misunderstood by users in other countries.

To create a custom image for use with CLEF:

1. Using a graphics package that supports transparency, set the drawing canvas to the appropriate size
and draw the image version.

2. Save each version (large, small, etc.) as a separate .gif file with these characteristics:
* Transparent background
* Color depth of 16 colors (4-bit) or higher

The way you make the image background transparent depends on the graphics package you are
using. For example, you may be able to set the background color to transparent directly, or you may
need to nominate a transparency color and then “paint” the image background with this color.

For image files, we recommend following the file naming conventions that IBM SPSS Modeler uses
internally, shown in the following table.

Table 6. Image file naming conventions

Image type Filename

Large lg_node.gif
Small sm_node.gif
Miniature nodel6.gif
Generated model sm_gm_node.gif

3. Test the appearance of the image by referencing the image files in the specification file (see
the Image Files to the Node Specification”) and adding the new node to IBM SPSS Modeler (see
“Testing a CLEF Extension” on page 191).

Adding the Image Files to the Node Specification

When you have created the image files, copy them to a folder on the computer from which you will be
running IBM SPSS Modeler. In the specification file, you will need to declare an image path relative to an
\ext\lib\provider.nodename folder in the IBM SPSS Modeler installation directory, so you should deploy
the files to a folder that is easy to reach from there. See the topic|“Icons” on page 102| for more
information.

Chapter 2. Nodes 17

In the specification file, you associate the large and small icon graphics files with a custom node by
means of the Icons element in the UserInterface section of the Node specification—for example:

<Icons>
<Icon type="standardNode" imagePath="images/1g_mynode.gif" />
<Icon type="smallNode" imagePath="images/sm mynode.gif" />
</Icons>

For model builder or document builder nodes, you also reference the miniature (16 x 16 pixel) version in
the UserInterface section of the Model0Output specification (for a model builder node) or the
DocumentOutput specification (for a document builder node)—for example:

<Icons>
<Icon type="standardWindow" imagePath="images/mynodel6.gif" />
</Icons>

For model applier nodes, you also reference the generated model version in the UserInterface section of
the Node specification—for example:

<Icons>
<Icon type="standardNode" imagePath="images/1g_gm mynode.gif" />
<Icon type="smallNode" imagePath="images/sm gm mynode.gif" />
</Icons>

Designing Dialog Boxes

This section describes the characteristics of the standard IBM SPSS Modeler node dialog boxes to help
you design consistent dialog boxes in CLEF.

About Node Dialog Boxes

A node dialog box provides an interface that enables the end user to modify execution settings. The
appearance of the dialog box is very important; it is where the node behavior is altered and modified.
The interface must contain all of the necessary information and be easy to use.

Node behavior is changed through the use of various dialog-box-based controls, which are user interface
elements with which a user can interact. A dialog box may include a number of controls, such as radio
buttons, check boxes, text boxes, and menus. CLEF provides a wide variety of controls that you can
design into your dialog boxes. See the topic |“Property Control Specifications” on page 116| for more
information.

The type of parameter that is modified by a control determines which control appears on the dialog box,
with some types providing alternate controls. You can group options on new tabs by means of Tab
elements in the specification file. See the topic [Tab Area” on page 21| for more information.

Note: You can test the look and feel of the user interface for an extension even if you have not specified
the processing that the extension is to perform. See the topic [“Testing CLEF Extensions” on page 191| for
more information.

Dialog Box Design Guidelines
When defining the controls for a dialog box, consider the following guidelines:

¢ Carefully consider the text to use where the control has a display label. The text should be reasonably
concise while conveying the correct information. If designing for an international market, bear in mind
that the length of translated text may differ significantly from that of the original.

* Use the correct control for a parameter. For example, a check box is not always the best choice for a
parameter that takes only two values. The IBM SPSS Modeler C5.0 node dialog box uses radio buttons
to enable users to select the output type, which has one of two values—Decision tree or Rule set.

18 IBM SPSS Modeler 18.0 CLEF Developer's Guide

This setting could be represented as a check box labeled Decision tree. When selected, the output type
is a decision tree; when deselected, the output is a rule set. Although the outcome would be the same,
using radio buttons makes it easier for the user to understand the options in this case.

Controls for filenames are generally positioned at the top of the dialog box.
Controls that form the focus of the node are positioned high in the dialog box. For example, graph

nodes display fields from the data. Selecting those fields is the main function of the dialog box, so field
parameters are placed at the top.

Check boxes or radio buttons often allow the user to select an option that needs further information.
For example, selecting Use boosting in the C5.0 dialog box requires that the analysis include a number
indicating Number of trials.

The extra information is always placed after the option selection, either at the right side or directly
beneath it.

CLEF dialog boxes use IBM SPSS Modeler's commit editing in the same way as standard IBM SPSS
Modeler dialog boxes: the values displayed in the dialog boxes are not copied to the node until the user
clicks OK, Apply, or in the case of terminal nodes, Execute. Similarly, the information displayed by the
dialog box is not updated (for example, when the input fields to the node have changed as a result of
operating upstream of the current node) until the user cancels and redisplays the dialog box or clicks the
Refresh button.

Dialog Box Components
Dialog boxes have the following components:

Title bar

Icon area

Toolbar and menu area incorporating:

— File, Generate, View, Preview, Refresh and other buttons (depending on the node)
— Maximize /Normal size button

— Help button

Status area

Panel area

Tab area

Button area

Each custom node needs a dialog box that is displayed when the user opens the node. Provided that
your specification file includes a Node element containing a UserInterface section with a Tabs element,
you will see all of the dialog box components listed above when you open the node. Depending on the
node type, the minimum contents of the tab area and button area are shown in the following table.

Table 7. Minimum tab area and button area contents for different node types

Node type Tabs Buttons
Data reader Annotations (with Refresh button in OK, Cancel, Apply, Reset
toolbar area)

Data transformer Annotations OK, Cancel, Apply, Reset

Data writer Publish, Annotations OK, Cancel, Execute, Apply,
Reset

Model builder Annotations OK, Cancel, Execute, Apply,
Reset

Document builder Annotations OK, Cancel, Execute, Apply,
Reset

Model applier Summary, Annotations OK, Cancel, Apply, Reset

Chapter 2. Nodes 19

Node dialog boxes are initially positioned so that when the user opens the node, the node icon is
superimposed on the node that it represents. The user can move the dialog box, but the new position is
not remembered the next time the node is opened. If the user has moved the dialog box and it has
subsequently been partially or fully hidden by another dialog box, double-clicking the original node on
the canvas brings the first dialog box to the front again. The dialog box is modeless (that is, the same
user input always causes the same action) and resizable.

All editable fields in the dialog box support the keyboard shortcuts shown in the following table.

Table 8. Keyboard shortcuts for editable fields in dialog boxes

Shortcut Effect

Ctrl-C Copy

Ctrl-V Paste

Ctrl-X Cut
Title Bar

The title bar of a node dialog box includes a miniature version of the IBM SPSS Modeler nugget icon,
followed by the model name. The text is taken from the setting of the model name controls. Also
supplied by default is the Close button (X) in the upper right corner.

Icon Area

The node icon is displayed in the icon area near the top left of the dialog box. This is the small size (38 x
38 pixel) version of the icon that is also used on the node palette at the bottom of the main window, not
the larger version that appears on the canvas.

Note: The miniature nugget icon at the left end of the title bar is hard-coded into all node dialog boxes.

Toolbar and Menu Area
The topmost area of the dialog box is reserved as a toolbar and menu area.

Data reader and data transformer node dialogs have a Preview button in this area, displaying a sample of
the input data.

Data reader node dialogs also have a Refresh button, which updates the information displayed by the
node (for example, when the input fields to the node have changed).

Model applier nodes have File, Generate and View menu buttons, which enable users to perform various
operations such as exporting the model or generating new nodes. Model applier nodes also have a
Preview button, which in this case displays a sample of the input data together with the additional
columns created when the node is applied.

The right side of this area contains two buttons in every node dialog box:
¢ Maximize/Normal size button
* Help button

Maximize/Normal Size Button: This button resizes the dialog box to full screen size. Subsequent use
shrinks the dialog box back to the size it was before maximization.

Help Button: This button opens context-sensitive help for the node. For a tabbed dialog box or output
window;, help for that tab is displayed. The F1 key may also be used to access the help.

20 IBM SPSS Modeler 18.0 CLEF Developer's Guide

Status Area

The rest of the area at the top of the dialog box is reserved for displaying information, warnings, or error
text. Source nodes show the full path and filename of the source data file here. Individual nodes may
have other node-specific information to display in this area. Any text specified for this area should be
limited to two lines.

Panel Area
This is the main area of the dialog box and contains all of the controls and display areas for the node.
Each tab has a different panel area. Each panel can be one of the following types:

 Text browser
* Extension object
* Properties

You can also specify subpanels, which are separate dialog boxes that open in a new window and are
called from action buttons on the panel.

See the topic [“Panel Specifications” on page 110| for more information.

Tab Area
Node dialog boxes have the following tabs:

* One or more user-supplied node-specific tabs
* A Summary tab (model output objects and model applier nodes only)
* An Annotations tab

The node-specific tabs are defined in the Tabs section of the CLEF specification file. See the topic

for more information.

Dialog boxes for model output objects and model applier nodes have a Summary tab supplied by the
system. This displays summary information about a generated model, including the fields, build settings,
and model estimation process used. Results are presented in a tree view that can be expanded or
collapsed by clicking specific items.

The Annotations tab is supplied by the system for all node dialog boxes and enables the user to specify
information about the node. This includes the node name, tooltip text, and a longer comment field.

Name. The default node name is specified in the Label attribute of the Node element in the specification
file (see ['Node” on page 45). The user can rename the node by selecting Custom, entering a name in the
Custom edit field, and clicking Apply or OK. The new name is preserved across sessions, although the
default name can be restored by selecting Auto. A custom name specified on the Annotations tab
overrides a custom name specified on any other tab of the dialog box.

Tooltip text. Text specified here is displayed as the tooltip for the node on the canvas. If no tooltip text is
specified here, no tooltip will be displayed when the user hovers the cursor over the node.

Keywords. The user can specify keywords to be used in project reports and when searching or tracking
objects stored in the IBM SPSS Collaboration and Deployment Services Repository.

Comments panel. This area allows the user to enter comment text.
Creation and save information. This is a non-editable text area that shows the creation information and

name and date/time that a file was saved (date/time format depends on locale). If a save has not taken
place, this field will say “This item has not been saved.”

Chapter 2. Nodes 21

Button Area
At the bottom of every dialog box, Apply, Reset, OK, and Cancel buttons are displayed. If the node is a
terminal node (an executable node that processes stream data), an Execute button is also present.

OK. Applies all settings and closes the dialog box. When the dialog box is first opened from the node,
this button has focus (indicated by a blue rectangle around the button), and pressing the Enter key also
performs the OK operation.

Cancel. Closes the dialog box and leaves the settings as they were before opening the dialog box or since
the last Apply operation. Pressing the Esc key when the entire dialog box has focus also performs the
Cancel operation.

Execute. Applies all settings, closes the dialog box, and executes the terminal node.

Apply. Saves the settings of the dialog box so that downstream operations can use them.

Reset. Resets the entire dialog box to the values it contained upon opening the dialog box or since the
last Apply operation.

Designing Output Windows

This section describes the characteristics of the standard IBM SPSS Modeler output windows to help you
design consistent output windows in CLEF.

Output windows enable you to display the output from:
* A model—for example, from scoring (applying a model to) a set of data
* A document—for example, a graph or report

See the topic [“About User Interfaces” on page 99| for more information.

Output windows are similar to node dialog boxes but with the following differences:
* Title bar has a node-specific miniature icon instead of the generic gold nugget icon
* Main node icon is omitted

* In the toolbar and menu area, the Maximize/Normal button is omitted (may be replaced by a Close
and Delete button in a document output window), although the window is still resizable using the
mouse

¢ Status area is omitted
* Tabs are typically:

— A Model tab (for model output windows) to display the predictor importance data, if this option is
selected on the model node.

— A single tab for the output.

— A Summary tab (for model output windows) to display summary details about the model.

— An Annotations tab (the annotation values are taken from the node that generated the output).
* Button area has OK, Cancel, Apply and Reset buttons

CLEF provides default model output and document output windows similar to the one illustrated above.
These are normally displayed when you use a Mode10utput or DocumentOutput element in the specification
file. See the topic [“Object Identifier” on page 45| for more information.

Alternatively, you can specify a Model0utput or DocumentOutput element in such a way as to completel
replace the default output window with a custom window of your own design. See the topic

PDutput Windows” on page 153| for more information.

22 IBM SPSS Modeler 18.0 CLEF Developer's Guide

Chapter 3. CLEF Examples

About the Examples

To help you become familiar with CLEF, an IBM SPSS Modeler installation includes a set of example
nodes together with their complete source code. These are basic nodes with limited functionality,
designed to help you understand how CLEF works and how to use it. You can try these nodes out now
or at any convenient time.

The examples are:

* Data reader node (named Apache Log Reader)

* Data transformer node (named URL Parser)

* Document builder node (named Web Status Report)

* Model builder node (named Interaction)

The examples need to be activated before they can be used.

Activating the examples

The examples are installed to the Demos directory in compressed format as part of an IBM SPSS Modeler
installation. You need to activate the examples by extracting the files to their correct locations as follows.

On the computer where IBM SPSS Modeler is installed:
1. Exit from IBM SPSS Modeler if it is running.
2. Locate the file clef_examples_ext_Tib.zip in the Demos folder of the IBM SPSS Modeler installation.

3. Extract the contents of clef_examples_ext_1ib.zip to the \ext\1ib folder in the IBM SPSS Modeler
installation directory.

On the computer where IBM SPSS Modeler and/or IBM SPSS Modeler Server are installed:

1. Extract the contents of clef_examples_ext_bin.zip to the \ext\bin folder in both the IBM SPSS
Modeler and IBM SPSS Modeler Server installation directories.

2. On non-Windows systems, use the makefile supplied in clef_examples_ext bin.zip to compile the
source code for the examples you are interested in. See the topic [“Examining the Source Code” on|
for more information.
OR
On Windows, use the following instructions to compile the source code for the examples you are
interested in (note that Visual Studio 2008 is required):

a. In the \ext\bin directory where you extracted clef_examples_ext_bin.zip in step 1, go to the
subdirectory that contains the example CLEF extension you want to compile (for example,
spss.apachelogreader).

b. In the src subdirectory, double-click the .s1n file to open the CLEF extension's solution in Visual
Studio (for example, double-click \ext\bin\spss.apachelogreader\src\apachelogreader.sin).

In Visual Studio, go to Build > Configuration Manager.

For the Active Solution Configuration, select Release.

For the Active Solution Platform, select x64.

Click Close.

To build the project, go to Build > Build Solution (or click F7).

The resulting 64-bit DLL will be written to the following location (relative to the src folder):

@ mo oo

© Copyright IBM Corporation 1994, 2016 23

..\bin\win64\release\spss.<extension-name>\<extension-name>.d11
(for example, ..\bin\win64\release\spss.apachelogreader\apachelogreader.dll).

Finally, in all cases, start IBM SPSS Modeler and ensure that the nodes shown in the following table are
visible on the nodes palette.

Table 9. Nodes that are visible on the nodes palette.

Palette Tab Node

Sources Apache Log Reader
Field Ops URL Parser
Modeling Interaction

Output Web Status Report

Data Reader Node (Apache Log Reader)

The data reader node example is a source node that reads data from the access log file of an Apache
HTTP Web server. The access log contains details of all requests that the Web server has processed. The
log records are in the format known as Combined Log Format—for example:

IP address - - [09/Ju1/2007:07:57:38 +0000] "GET /lsearch.php?county id=3 HTTP/1.1" 200 16348
"http://www.google.co.uk/search?q=thunderbirds+cliveden&hl=en&start=10&sa=N"

"Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; .NET CLR 1.1.4322)"

You can use the example node to convert the log records to a tabular format that is easier to read.

To use the Apache Log Reader node:

for more information.
2. Open IBM SPSS Modeler.
On the Sources tab of the nodes palette, select Apache Log Reader and add the node to the canvas.
4. Edit the node. In the Apache Log File field on the Option tab, type:
demos_folder\combined_log_format.txt

where demos_folder is the location of the Demos folder in the IBM SPSS Modeler installation directory
(do not use the $CLEO_DEMOS format).

Click OK.
Add a Type node to the stream.
Edit the Type node. Click Read Values to read the data, and then click OK.

Attach a Table node to the Type node and execute the stream. The log file contents are displayed in
tabular format.

1. If you have not yet activated the CLEF examples, do so now. See the topic [“Activating the examples”]

w

© N oo

9. Save the stream for use with the next two examples.

Data Transformer Node (URL Parser)

The data transformer node example performs further processing on the data returned by the previous
example. You select an ID field (which should contain a unique value for every row) and an input field
containing a URL. The node generates output consisting of these two fields, together with the URL data
additionally parsed into separate generated fields. For example, if a URL record contains a query string
such as:

http://www.dummydomain.co.uk/resource.php?res_id=89

the record is parsed as shown in the following table.

24 1BM SPSS Modeler 18.0 CLEF Developer's Guide

Table 10. URL record parsing example.

Generated field Contents

URLfield_server http:/fwww.dummydomain.co.uk
URLfield_path /resource.php

URLfield_field res_id

URLfield_value 89

To use the URL Parser node:

1. If the stream from the previous example was closed, open it now. The stream contains the Apache Log
Reader and Type nodes.

2. From the Field Ops tab of the nodes palette, attach a URL Parser node to the Type node.

3. Edit the URL Parser node. From the ID Field drop-down list, select ReturnedContentSize. From the
URL Field drop-down list, select ReferralURL. Click OK.

4. Attach a Table node to the URL Parser node and execute the stream. The ReturnedContentSize and
ReferralURL fields are displayed, with ReferralURL additionally parsed into four separate generated
fields: ReferralURL_server, ReferralURL_path, ReferralURL_field, and ReferralURL_value.

Document Builder Node (Web Status Report)

The document builder node example reads the data passed down from the Web server log and generates
a report in the form of an HTML file. The report consists of a table showing the percentages of log
records returning various HTTP status codes (for example, 200, 302, 404, etc.).

To use the Web Status Report node:

1. If the stream from the first example was closed, open it now. This is the stream that contains the
Apache Log Reader and Type nodes. If your stream has a URL Parser node from the second example,
that node is ignored in this example.

2. From the Output tab of the nodes palette, attach a Web Status Report node to the Type node.

3. Edit the Web Status Report node. From the Status Code Field drop-down list, select StatusCode. Click
Execute. An output window is displayed with the contents of the report.

Model Builder Node (Interaction)

The model builder node example operates independently from the other examples and enables you to
build a simple model in the standard (non-interactive) way or to interact with the model before it is
generated. The model attempts to predict customer churn for a telecommunications company.

Note: This example uses Windows-specific API calls to create and manage threads. It is therefore not
supported on non-Windows platforms.

To use the Interaction node

1. If you have not yet activated the CLEF examples, do so now. For more information, see [“Activating
[the examples” on page 23

Create a new stream in IBM SPSS Modeler.

Add a Statistics File source node that imports the file telco.sav from the Demos directory.

On the Types tab, click Read Values, and then click OK in the message box to confirm.
Set the role of the churn field (the last one in the list) to Target, and then click OK.
From the Modeling tab of the nodes palette, attach an Interaction node to the source node.

IS < A

Chapter 3. CLEF Examples 25

To test standard (non-interactive) model building

1. Run the stream to create a model nugget in the stream, and in the Models palette at the top right of
the screen.

2. Attach a Table node to the model nugget.

3. Execute the Table node. Scroll to the right of the table output window to view the churn predictions.
Field $I-churn contains the predicted values, while $IP-churn shows the confidence values (from 0.0
to 1.0) for the predictions.

To test interactive model building

1. On the Model tab of the Interaction model builder dialog box, select Start an interactive session.
2. Click Execute to display the Interaction Test dialog box.

3. In the Interaction Test dialog box, click Start Build Task to display the model build progress.

4

. When the model build operation is complete, select the row that has been added to the Build Tasks
table in the dialog box.

5. In the toolbar area at the top of the dialog box, click the button with the yellow diamond-shaped icon.
This generates the model output object (named model_1) in the Models palette at the top right of the
screen.

The interactively generated model is identical to the first model except that it has a different name.
Repeating the process from Start Build Task generates a further identical model named model_2, and so
on.

Examining the Specification Files

A good way to understand how CLEF works is to examine the specification files for the supplied
examples. You can find these files in:

install_dir\ext\1ib\extension_folder\extension.xml

where install_dir is the IBM SPSS Modeler installation directory, and extension_folder is one of the
following:

* spss.apachelogreader

* spss.interaction

* spss.urlparser

* spss.webstatusreport

You may see other extension folders listed under \ext\lib--these relate to system-supplied IBM SPSS
Modeler nodes that are produced using CLEF. Whether these nodes appear in your installation depends
on the IBM SPSS Modeler modules that you have licensed. You might find it illuminating to browse
through their specification files, too, but do not change these files in any way. If you do, these nodes
may not function correctly, in which case you will have to reinstall the relevant IBM SPSS Modeler
product. Changes to system-supplied files will not be supported by IBM Corp.

Examining the Source Code

For reference purposes, the complete source code for the example nodes is also supplied. All the example
nodes use C++ server-side libraries, but only the Interaction node uses client-side Java classes in addition.

The source code files are automatically extracted when you activate the examples, and are installed as
shown in the following table.

26 IBM SPSS Modeler 18.0 CLEF Developer's Guide

Table 11. Source code file installation

Location

Contents

.. \ext\lib\spss.interaction\src

Java source code for the .class files in the ui.jar file in the parent
folder

...\ext\bin\spss.apachelogreader\src
.. \ext\bin\spss.interaction\src

.. \ext\bin\spss.urlparser\src

... \ext\bin\spss.webstatusreport\src

C++ source and project files for the DLLs in the parent folder

Removing the Examples

If you no longer want to see the example nodes in IBM SPSS Modeler, you can remove them as follows:

1. Exit from IBM SPSS Modeler.

2. Delete the example folders from both the \ext\bin and the \ext\lib directories in your IBM SPSS
Modeler installation. Do not delete any of the standard IBM SPSS Modeler folders by mistake. If you
do, you will have to reinstall the relevant IBM SPSS Modeler product. The folders to be deleted are:

* spss.apachelogreader
* spss.urlparser

* spss.webstatusreport
* spss.interaction

The changes take effect the next time you start IBM SPSS Modeler.

Chapter 3. CLEF Examples 27

28 IBM SPSS Modeler 18.0 CLEF Developer's Guide

Chapter 4. Specification File

Overview of Specification Files

Every CLEF extension must include an XML file in which you define all the extension characteristics.
This file is known as the specification file, and is always named extension.xml. A specification file
consists of the following sections:

¢ XML declaration. Optional declaration of XML version and other information.
* Extension element. Main part of the file; contains all the subsequent sections.
* Extension Details Section. Specifies basic information about the extension.

* Resources Section. Specifies external resources that are required for the extension to function, such as
resource bundles, JAR files, and shared libraries.

* Common Objects Section. (optional) Defines items that may be used or referenced by other objects in
the extension, such as models, documents, and property types.

* User Interface (Palettes) Section. (optional) Defines a custom palette or sub-palette on which a node
is to appear.

* Object Definition Section. Identifies the object or objects defined by the extension, such as nodes,
model outputs, and document outputs.

Each section may contain static declarations (such as components in an element), or simple dynamic
processes (such as computation of a node's output data model), or both. The overall format of a CLEF
specification file is as follows:

<?xml version="1.0" encoding="UTF-8" ?>
<Extension ... >
<ExtensionDetails ... />
<Resources
Resources section
</Resources>
<CommonObjects>
Common Objects section
</CommonObjects>
<UserInterface>
User Interface (Palettes) section
</UserInterface>
Object Definition section
object definition
object definition
object definition

</Extension>
Comment Lines

At any point in the specification file, you can include a comment line of the following format:
<!- comment text ->

Mandatory or Optional?
In the element definitions in subsequent sections (normally identified by the heading Format), element

attributes and child elements are optional unless indicated as "(required)". For complete element syntax,
see [“CLEF XML Schema,” on page 195

© Copyright IBM Corporation 1994, 2016 29

Example of a Specification File

Here is a complete example of a CLEF specification file, in this case for a simple data transformer node.

<?xml version="1.0" encoding="UTF-8"?>
<Extension version="1.0" debug="true">

<ExtensionDetails id="urlparser" providerTag="spss" Tabel="URL CLEF Module" version="1.0"
provider="IBM Corp." copyright="(c) 2005-2011 IBM Corp." description="A Url Transform CLEF Extension"/>

<Resources>
<SharedLibrary id="urlparser_library" path="spss.urlparser/urlparser" />
</Resources>
<Node id="urlparser_node" type="dataTransformer" palette="fieldOp" label="URL Parser">
<Properties>

<Property name="id_fieldname" valueType="integer" label="ID field" />
<Property name="url_fieldname" valueType="string" label="URL field" />
</Properties>
<UserlInterface>
<Icons />
<Tabs>
<Tab label="Types" TabelKey="optionsTab.LABEL">
<PropertiesPanel>
<SingleFieldChooserControl property="id_fieldname" storage="integer" />
<SingleFieldChooserControl property="url_fieldname" storage="string" />
</PropertiesPanel>
</Tab>
</Tabs>
<Controls />
</UserInterface>
<Execution>
<Module TibraryId="urlparser_library" name="">
<StatusCodes>
<StatusCode code="0" status="error" message="Cannot initialise a peer" />
<StatusCode code="1" status="error" message="error reading input data" />
<StatusCode code="2" status="error" message="Internal Error" />
<StatusCode code="3" status="error" message="Input Field Does Not Exist" />
</StatusCodes>
</Module>
</Execution>
<QutputDataModel mode="replace">
<AddField name="${id_fieldname}" fieldRef="${id_fieldname}"/>
<AddField name="${url_fieldname}" fieldRef="§{url_fieldname}"/>
<AddField name="${url_fieldname} server" storage="string" />
<AddField name="${url_fieldname} path" storage="string" />
<AddField name="${url_fieldname}_field" storage="string" />
<AddField name="${url_fieldname}_value" storage="string" />
</OutputDataModel>
</Node>
</Extension>

——

The ExtensionDetails element supplies basic information about the extension that is used internally by
IBM SPSS Modeler.

The Resources element specifies the location of a server-side library that will be referenced later in the
file. The path specification indicates that the library is located in the IBM SPSS Modeler installation
directory under \ext\bin\spss.urlparser\uriparser.dil.

This particular specification file does not include a CommonObjects element.

The Node element specifies all the information about the node itself:
* Under Properties, two properties are initially declared for later use on a tab of the node dialog.

* The UserInterface element defines the appearance and layout of the node dialog tab that is specific to
this extension (other tabs are supplied by IBM SPSS Modeler).

e The Execution element defines items that are used when the node is executed. In this case, these items
are the server-side library that was declared earlier in the file, and a set of messages for display if the
execution returns a particular status code.

30 IBM SPSS Modeler 18.0 CLEF Developer's Guide

* The OutputDataModel element defines the data transformation that this node performs. It specifies that
the input data model (the set of fields input to this node) is to be replaced by the set of fields defined
here, which constitute the output data model (the set of fields passed on to all nodes downstream from
here, unless the model is subsequently modified further). In this particular example, the node passes
on the two original fields (id_fieldname and url_fieldname) unchanged, but adds four more fields
whose names are derived from url_fieldname.

This particular specification file is taken from one of the example nodes that are supplied as part of the
IBM SPSS Modeler installation. See the topic [‘Data Transformer Node (URL Parser)” on page 24| for more
information.

XML Declaration

The XML declaration is optional, and specifies the version of XML being used, together with details of
the character encoding format.

Example
<?xml version="1.0" encoding="UTF-8" 7>

Extension Element

The Extension element constitutes the main part of the file, and contains all the other sections. The format
is:

<Extension version="version_number" debug="true_ false">
Extension Details section
Resources section
Common Objects section
User Interface (Palettes) section
Object Definition section
</Extension>

where:
version is the version number of the extension.
debug is optional; if set to true, it adds a Debug tab to any dialog or frame associated with a CLEF node

or output, and provides access to the properties and containers defined for that object. Default value is
false. See the topic [“Using the Debug Tab” on page 192| for more information.

Extension Details Section

The Extension Details section provides basic information about the extension.

Format

<ExtensionDetails providerTag="extension provider tag"
id="extension unique_identifier"
label="display_name" version="extension_version_number"
provider="extension_provider" copyright="copyright notice"
description="extension_description"/>

where:

providerTag (required) is a name that uniquely identifies the provider of this extension. Note that the
value should not include the string spss, which is reserved for internal use.

Chapter 4. Specification File 31

id (required) is a name that uniquely identifies this extension, and is used in system messages about it.
By convention, the extension file is placed in a folder named \ext\lib\providerIag.id in the IBM SPSS
Modeler installation directory.

label (required) is the display label of the extension. This text is displayed in the Name field of the
Palette Manager when the node is added. See the topic [“Testing a CLEF Extension” on page 191| for more
information.

version is the version number of this extension.

provider is a string that identifies the provider of this extension. This text is displayed in the Provider
field of the Palette Manager when the node is added. Default is the string (unknown).

copyright is the copyright notice for this extension. This text is displayed in the Copyright field of the
Palette Manager when the node is added.

description is a brief description of the purpose of the extension. This text is displayed in the
Description field of the Palette Manager when the node is added.

Example

<ExtensionDetails providerTag="myco" id="sorter" name="Sort Data" version="1.2"
provider="My Company Inc." copyright="(c) 2005-2006 My Company Inc."
description="An example extension that sorts data using built-in 0S commands."/>

Resources Section

This section defines what external resources are required for this extension to function.

Format

<Resources>
<Bundle .../>

<JarFile .../>
<SharedLibrary .../>

<HelpInfo .../>
</Resources>

where:

Bundle identifies a set of client-side localized resources. See the topic [“Bundles” on page 33| for more
information.

JarFile identifies a client-side Java jar file. See the topic [‘Jar Files” on page 33| for more information.

SharedLibrary identifies a server-side library or DLL. See the topic [“Shared Libraries” on page 33| for
more information.

HelpInfo specifies the type of help information, if any, for the extension. See the topic [“Implementing a
Help System” on page 155 for more information.

Example

32 IBM SPSS Modeler 18.0 CLEF Developer's Guide

<Resources>
<SharedLibrary id="discriminantnode" path="spss.xd/Discriminant"/>
<Bundle id="translations.discrim" type="properties" path="messages"/>
<JarFile id="java" path="discriminant.jar"/>
<HelpInfo id="help" type="native"/>

</Resources>

Bundles

The Bundle element specifies a client-side resource bundle (such as a set of message texts for localization
which may be implemented either as a .properties file or a Java .class file. See the topic
for more information.

Format
<Bundle id="identifier" path="path"/>

where:

id (required) is a unique identifier for this bundle.

path (required) specifies the location of the bundle file relative to the parent folder of this specification
file. Where the bundle refers to a .properties file, the path must not include language extensions or the

.properties suffix.

Example
<Bundle id="translations.discrim" path="messages"/>

This indicates that a resource bundle exists in a file named messages.properties in the same folder as the
specification file.

Jar Files

The JarFile element specifies a client-side Java archive (.jar) file which provides Java classes and other
client-side resources for this extension.

Format
<JarFile id="identifier" path="path"/>

where:
id (required) is a unique identifier for this .jar file.
path (required) specifies the location of the .jar file relative to the parent folder of this specification file.

Example
<JarFile id="java" path="coxreg_model_terms.jar"/>

This indicates that a . jar file for this extension is located in the same folder as the specification file.

Shared Libraries

The SharedLibrary element specifies a server-side shared library or DLL. This is usually only required for
supporting node execution. Where a library implements multiple modules, a Module element in the
Execution section of the node specification identifies a specific module within the library.

Format
<SharedLibrary id="identifier" path="path"/>

Chapter 4. Specification File 33

where:
id (required) is a unique identifier for this shared library.

path (required) specifies the location of the shared library relative to the \ext\bin folder in the
server-side installation directory. Note that the path must not include the shared library file extension
(e.g. .d11).

Example

The following shared library declaration:
<SharedLibrary id="binning" path="spss.binning/Binning" />

specifies that the shared library is to be loaded from:
install_dir\ext\bin\spss.binning\Binning.d11

where install_dir is the directory to which the server-side CLEF components are installed. As this library
implements more than one module, the particular module required (supervisedBinning) is identified by
means of a Module element in the specification of the build node, referencing the library identifier as
follows:

<Execution>
<Module libraryId="binning" name="supervisedBinning" .../>

</Execution>

Help Information

The optional HelpInfo element indicates which of the possible types of help are to be provided for this
extension. See the topic ['Implementing a Help System” on page 155| for more information.

Common Objects Section

The optional Common Objects section defines objects that can be shared between elements defined
elsewhere in the specification file. Some types of object in this section (such as property enumerations)
may also be defined locally where they are required, while others (such as models and documents) can
only be defined here.

Format

<CommonObjects>
<PropertyTypes .../>
<PropertySets .../>
<ContainerTypes .../>
<Actions .../>
<Catalogs .../>

</CommonObjects>

where:

PropertyTypes allows common property definitions to be shared between objects. See the topic
[Types” on page 35| for more information.

PropertySets is typically used when model builder nodes, model output objects and model applier nodes
include the same set of properties. See the topic [“Property Sets” on page 36| for more information.

ContainerTypes defines types of containers, which are objects that can wrap complex data structures. See
the topic [“Container Types” on page 37| for more information.

34 IBM SPSS Modeler 18.0 CLEF Developer's Guide

Actions defines basic information about user interactions, for example by means of menus or toolbars.
See the topic [“Actions” on page 38| for more information.

Catalogs implement a control that allows the choice of one or more options from a list of values that is
dynamically generated by the server. See the topic [“Catalogs” on page 39| for more information.

Example

<CommonObjects>
<ContainerTypes>
<Mode1Type id="discriminant _model" format="utf8" />
<DocumentType id="html_output" />
<DocumentType id="zip outputType" format="binary"/>
</ContainerTypes>
</CommonObjects>

Property Types

The optional Property Types section allows common property definitions to be shared between objects.
This is partly for ease of maintenance--for example, the definition of a property can appear in a single
place rather than being duplicated in several places. Sharing of definitions is also used to ensure
compatibility between properties in different objects whose values are copied when a new instance of an
object is created.

Property types can be defined only in the Common Objects section.

Format
<PropertyTypes>
<PropertyType id="identifier" isKeyed="true false" isList="true false" max="max _value"
min="min_value" valueType="value_type">
<Enumeration ... />
<Structure ... />
<DefaultvValue ... />
</PropertyType>
<PropertyType ... />

</Propé;£yTypes>

The PropertyType attributes are as follows.

id (required) is a unique identifier for the property type.

isKeyed, if set to true, indicates that the property type is keyed. A keyed property associates a set of
operations with a field by means of a user-defined control (see [“Property Control” on page 132). If

isKeyed is set to true, the valueType attribute must be set to structure. For more information on
structured properties, see [“Structured Properties” on page 58

isList specifies whether the property is a list of values of the specified value type (true) or a single
value (false).

max and min denote the maximum and minimum values for a range.

valueType can be one of the following;:
* string

* encryptedString

e fieldName

* integer

Chapter 4. Specification File 35

* double
* boolean
¢ date

* enum (see [“Enumerated Properties” on page 58)

+ structure (see[“Structured Properties” on page 58)

e databaseConnection

The Enumeration and Structure child elements are mutually exclusive. The Enumeration, Structure and
DefaultValue child elements are used in specific cases--see [“Enumerated Properties” on page 58
['Structured Properties” on page 58)and [“Default Values” on page 60.

Property Sets

Property sets are typically used when model builder nodes, model output objects and model applier
nodes include the same set of properties. For example, a model builder node may define a default set of
properties that can be set in the builder but are not actually used until model application. In order to be
transferred automatically, they also have to be included in the model output.

Format
<PropertySets>
<PropertySet id="identifier">
<Property ... />
<Property ... />
</PropertySet>
</PropertySets>

where id is a unique identifier for this property set.

For a description of the Property element, see [“Properties” on page 48

Example

This example demonstrates the definition of a set of two properties: the number of predictions to
produce, and whether to include probabilities. In the Common Objects section, you would define:

<PropertySets>
<PropertySet id="common_model_properties">
<Property name="prediction count" valueType="integer" min="1" max="10"/>
<Property name="include probabilities" valueType="boolean" defaultValue="false"/>
</PropertySet>

</PropertySets>

Then, in each of the definitions for the model builder node, model output object and model applier node,
you would have an includePropertySets attribute such as the following (this illustrates the definition for
the model builder node only):

<Node id="my_builder" type="modelBuilder" ... >
<Properties includePropertySets="[common_model_properties]">

</Properties>

</Node>

36 IBM SPSS Modeler 18.0 CLEF Developer's Guide

Container Types

Containers are objects that act as placeholders for complex data structures such as models and
documents. A container is defined as being of a particular type, and the container types are defined here.
The following container types can be defined:

* model types
* document types

Container types may be transferred between client and server, cloned, and saved to a file or content
repository. A model is cloned when a model applier node is generated from a model output object.

Each type of container has a predefined set of properties, although custom properties can be added.
Container types can be defined only in the Common Objects section.

Format

The format of the Container Types section is:

<ContainerTypes>
<ModelType ... />

<DocumentType ... />
</ContainerTypes>
where:

ModelType specifies the format for a particular type of model. See the topic|"Model Types”| for more
information.

DocumentType specifies the format for a particular type of document. See the topic [“Document Types” on|
for more information.

Example

<ContainerTypes>
<ModelType id="discriminant model" format="utf8">
<DocumentType id="html_output" />
<DocumentType id="zip_outputType" format="binary"/>
</ContainerTypes>

Model Types
A model must provide information such as algorithm name, model type, and input and output data
models. A model type definition specifies the format for a particular type of model.

The model type information may be specified statically here in the specification file, or dynamically when
the model is constructed by the model builder node.

Format
<ModelType id="identifier" format="model type format" />

where:
* id (required) is a unique identifier for the model type.

+ format (required) is the format of the model type, and can be either utf8 (text) or binary. The model
format must be specified as part of the static information.

Example

Chapter 4. Specification File 37

<Mode1Type id="my model" format="utf8" />

Document Types
A document is an output object such as a graph or report. A document type definition specifies the
format for a particular type of document.

Format
<DocumentType id="identifier" format="document_type_ format" />

where:
* id (required) is a unique identifier for the document type.
» format (required) is the format of the document type, and can be either utf8 (text) or binary.

Examples

<DocumentType id="html_output" format="utf8" />
<DocumentType id="zip_outputType" format="binary"/>

Actions

Actions define basic information about user interactions, for example by means of menus or toolbars.
Each action defines how it should be represented in the user interface, such as a label, tooltip, or icon. A
collection of actions is handled by a client-side Java class which is defined for each group of actions.
Actions may also be defined within specific objects.

Format

<Actions>
<Action id="identifier" label="display label" TabelKey="label key"
description="action_description" descriptionKey="description_key" imagePath="image path"
imagePathKey="image_path_key" mnemonic="mnemonic_char" mnemonicKey="mnemonic_key"
shortcut="shortcut_string" shortcutKey="shortcut key" />

</Actions>

where:

id (required) is a unique identifier for the action.

label (required) is the display name for the action as it is to appear on the user interface.
1abelKey identifies the label for localization purposes.

description is a description of the action--for example, for a custom menu item or an icon action button
on a toolbar, this would be the text of the tooltip for that menu item or button.

descriptionKey identifies the description for localization purposes.

imagePath is the location of a graphic file, such as for an icon image. The location is given relative to the
directory in which the specification file is installed.

imagePathKey identifies the image path for localization purposes.

mnemonic is the alphabetic character used in conjunction with the Alt key to activate this control (for
example, if you give the value S, the user can activate this control by means of Alt-S).

38 IBM SPSS Modeler 18.0 CLEF Developer's Guide

mnemonicKey identifies the mnemonic for localization purposes. If neither mnemonic nor mnemonicKey is
used, no mnemonic is available for this control. See the topic |“Access Keys and Keyboard Shortcuts” on|
for more information.

shortcut is a string indicating a keyboard shortcut (for example, CTRL+SHIFT+A) that can be used to
initiate this action.

shortcutKey identifies the shortcut for localization purposes. If neither shortcut nor shortcutKey is used,
no shortcut is available for this action. See the topic [“Access Keys and Keyboard Shortcuts” on page 108|
for more information.

Example

<Actions>
<Action id="generateSelect" Tabel="Select Node..." labelKey="generate.selectNode.LABEL"
imagePath="images/generate.gif" description="Generates a select node"
descriptionKey="generate.selectNode.TOOLTIP" />
<Action id="generateDerive" Tabel="Derive Node..." labelKey="generate.deriveNode.LABEL"
imagePath="images/generate.gif" description="Generates a derive node"
descriptionKey="generate.deriveNode.TOOLTIP" />
</Actions>

Catalogs

Catalogs enable you to associate a property with a control that allows the user to choose one or more
options from a list of values that is dynamically generated by the server.

The values are displayed in the control as a popup list when the user clicks on the <Select> entry.

When the user selects a row in the list, the row value from a column specified in the Catalog element is
placed in the control.

Format
<CommonObjects>

<Catalogs>
<Catalog id="identifier" valueColumn="integer">
<Attribute label="display name" />
</Catalog>
</Catalogs>
</CommonObjects>
where:

id (required) is a unique identifier for the catalog.

valueColumn (required) is the number of the column whose value will be placed in the control when the
user selects a row. Column numbering begins at 1.

Use one Attribute element per column, in column order--see the example below.

When the user activates a control associated with a catalog, the catalog containing the list of values is
retrieved from the server by means of a call to the getCatalogInformation function. This function returns
an XML document containing the list of values. See the topic [‘Peer Functions” on page 170| for more
information.

Example

Chapter 4. Specification File 39

This example illustrates some of the code used to define catalog controls. Three catalogs are defined and
associated with three different controls on a dialog tab.

First, the catalogs are defined in the Common Objects section:

<CommonObjects>
<Catalogs>
<Catalog id="catl" valueColumn="1">
<Attribute label="coll" />
<Attribute label="col2" />
</Catalog>
<Catalog id="cat2" valueColumn="2">
<Attribute label="coll" />
<Attribute label="col12" />
<Attribute Tabel="col13" />
</Catalog>
<Catalog id="cat3" valueColumn="1">
<Attribute Tabel="coll" />
</Catalog>
</Catalogs>
</CommonObjects>

Next, the properties to be associated with the controls are defined in the Properties section of the node
definition:
<Node id="catalognode" type="dataReader" palette="import" label="Catalog">
<Properties>
<Property name="sometext" valueType="string" label="Some Text" />
<Property name="selectionl" valueType="string" label="Selection 1" />
<Property name="selection2" valueType="string" isList="true" label="Selection 2" />
<Property name="selection3" valueType="string" label="Selection 3" />
</Properties>

In the User Interface section of the node definition, the controls are defined and associated with the
catalog definitions through references to the properties:

<UserlInterface>
<Tabs>
<Tab label="Catalog Controls" labelKey="Catalog.LABEL" >
<PropertiesPanel>
<TextBoxControl property="sometext" />
<SingleltemChooserControl property="selectionl" catalog="catl" />
<MultiltemChooserControl property="selection2" catalog="cat2" />
<SingleltemChooserControl property="selection3" catalog="cat3" />
</PropertiesPanel>
</Tab>

User Interface (Palettes) Section

This is an optional section, and is included only if you want this extension to define a custom palette or
sub-palette on which a node is to appear.

Where an extension defines a custom palette or sub-palette, subsequently-loaded extensions that define
nodes to be included on the same palette or sub-palette can omit this User Interface (Palettes) section--all
they need is for the Node element to have a customPalette attribute that references the palette. Extensions
are loaded in alphabetical order of providerTug.id value, where these are the values of the providerTag and
id attributes of the ExtensionDetails element for this extension (see [“Extension Details Section” on page]
. Thus for example, the extension myco.abc is loaded before the extension myco.def.

40 1BM SPSS Modeler 18.0 CLEF Developer's Guide

Note: The User Interface (Palettes) section is different from the main User Interface section, which appears
as part of an individual object definition, and which is described in [Chapter 6, “Building User Interfaces,”|

Format

The format of the User Interface (Palettes) section is:

<UserInterface>
<Palettes>
<Palette id="name" systemPalette="palette name" customPalette="palette name"
relativePosition="position" relativeTo="palette" label="display label"
labelKey="1label key" description="description" descriptionKey="description key"
imagePath="image path" />
<Palette ... />

</Palettes>
</UserInterface>

Table 12. Palette attributes.

Attribute Description

id (required) A unique identifier for the palette or sub-palette that you are
defining.

systemPalette

Used only when adding a sub-palette to a system palette, and identifies the
system palette in which this sub-palette is to appear:

import - Sources

recordOp - Record Ops

fieldOp - Field Ops

graph - Graphs

modeling - Modeling (see below)
dbModeling - Database Modeling
output - Output

export - Export

customPalette Used only when adding a sub-palette to a custom palette, and identifies the
custom palette in which this sub-palette is to appear. This is the value of the
id attribute of the Palette element that defines the custom palette.

relativePosition
Used only when defining a custom palette, and specifies its position on the

palette strip at the bottom of the screen.
Possible values are:

first
last
before
after

If the value is before or after, the relativeTo attribute is also required (see
below).

If relativePosition is omitted, the palette is placed last on the strip.

relativeTo
If the value of relativePosition is before or after, then relativeTo is used

to specify the identifier of the palette that this custom palette precedes or
follows. Palette identifiers are listed as the values of the palette attribute of the
Node element (see ["Node” on page 45).

Chapter 4. Specification File 41

Table 12. Palette attributes (continued).

Attribute Description

label (required) The display name for the palette or sub-palette as it appears on the
user interface.

labelKey Identifies the label for localization purposes.

description The text of the tooltip displayed when the cursor hovers over the palette tab

(not used for sub-palettes). This value also acts as the long accessible
description of the control. See the topic |“ Accessibility” on page 165| for more

information.
descriptionKey Identifies the description for localization purposes.
imagePath Identifies the location of the image used on the palette tab (not used for

sub-palettes). The location is specified relative to the directory in which the
specification file is installed. If you omit this attribute, no image is used.

Example - Adding a Node to a System Palette

Assume that your organization has developed a new algorithm for mining audio and video data, and
you want to integrate the algorithm into IBM SPSS Modeler. You begin by defining a custom data reader
node that will read input from audio and video files.

Initially you decide to add your new data reader node to the Sources system palette. All you need to do
is to identify the Sources palette by means of the palette attribute of the Node element. See the topic
['Node” on page 45| for more information.

Thus to add the node after the Database node on the Sources palette, you would use:

<Node id="AVreader" type="dataReader" palette="import" relativePosition="after"
relativeTo="database" label="AV Reader">

Example - Adding a Custom Palette

Using a standard IBM SPSS Modeler palette is fine, but you want to give your new node more
prominence. You decide to define a custom palette for it, which you will place after the Favorites palette
but before Sources. First you need to add a User Interface (Palettes) section to define the custom palette
as follows:
<UserInterface>

<Palettes>

<Palette id="AV_mining" label="AV Mining" relativePosition="before"
relativeTo="import" description="Audio video mining" />

</Palettes>

</UserInterface>

The relativeTo attribute has to use the internal identifier of the Sources palette, which is import.

You then alter the Node definition as follows:
<Node id="AVreader" type="dataReader" customPalette="AV_mining" label="AV Reader">

This places the AV Mining palette between the Favorites and Sources system palettes.

Example - Adding a Custom Sub-Palette to a Custom Palette

Following on from the previous example, you now decide that you would prefer the data reader node to
go on its own AV Sources sub-palette of the AV Mining palette. To achieve this, you first need to specify
the sub-palette by adding a second Palette element to the User Interface (Palettes) section:

42 1BM SPSS Modeler 18.0 CLEF Developer's Guide

<UserInterface>
<Palettes>
<Palette id="AV_mining" label="AV Mining" description="Audio video mining" />
<Palette id="AV_mining.sources" customPalette="AV_mining" label="AV Sources" />
</Palettes>
<UserInterface>

You then alter the Node element to refer to the sub-palette identifier:
<Node id="AVreader" type="dataReader" customPalette="AV _mining.sources" Tabel="AV Reader">

Now when the user clicks on the AV Mining tab, they see two sub-palettes, one labeled All and one
labeled AV Sources. The AV Reader node appears on both of these.

If you add another new node to another new sub-palette of AV Mining, the new node appears on both
the All and the new sub-palette, but not on the AV Sources sub-palette.

Example - Adding a Node to a System Sub-Palette

To process the audio and video source data, you now define a model builder node. You decide to add it
to the standard Modeling palette, which has a number of standard sub-palettes. You choose to add it to
the Classification sub-palette, placing it just before the Neural Net node, so you specify:

<Node id="AVmodeler" type="modelBuilder" palette="modeling.classification"
relativePosition="before" relativeTo="neuralnet" label="AV Modeler">

Note that the node is also added in the same relative position on the All sub-palette of the Modeling
palette.

Example - Adding a Custom Sub-Palette to a System Palette

Looking again at the number of model builder nodes on the Classification sub-palette, you realize that
users may not notice your new node easily. One way to give your node more prominence is by adding
your own sub-palette to the Modeling palette and placing the node there.

First, then, you must define your custom sub-palette by adding a User Interface (Palettes) section to the
file:
<UserlInterface>
<Palettes>
<Palette id="modeling.av_modeling" systemPalette="modeling" Tabel="AV Modeling"
labelKey="av_modeling.LABEL" description="Contains AV mining-related modeling
nodes" descriptionKey="av_modeling.TOOLTIP"/>
</Palettes>
</UserInterface>

Note that you must explicitly specify systemPalette to identify the system palette that you are extending.

Then, in the main User Interface section for the node, you specify that it is to appear on this sub-palette:

<Node id="my.avmodeler" type="modelBuilder" customPalette="modeling.av_modeling"
label="AV Modeler">

Custom sub-palettes are always placed after the system sub-palettes.

Note: If you wanted to add more nodes to the AV Modeling sub-palette, their specification files would not
need a User Interface (Palettes) section provided that the AV Modeler extension was loaded first.

Chapter 4. Specification File 43

Hiding or Deleting a Custom Palette or Sub-Palette

If you no longer want a custom palette or sub-palette to be displayed, you can either hide it or delete by
means of the IBM SPSS Modeler Palette Manager.

Note that a hide operation persists across IBM SPSS Modeler sessions, but is reversible as it is controlled
by a check box. A delete operation is irreversible in the same session, but on restarting IBM SPSS Modeler
the item reappears unless you either remove it from the specification file, or remove the entire extension.
See the topic|“Deinstalling CLEF Extensions” on page 194 for more information.

To hide or delete a palette:

1. From the main IBM SPSS Modeler menu, choose:
Tools > Manage Palettes

2. Select a palette in the Palette Name field, then:
* to hide the palette, uncheck the corresponding Shown? check box
* to delete the palette, click the Delete selection button

3. Click OK.

To hide or delete a sub-palette:
1. From the main IBM SPSS Modeler menu, choose:
Tools > Manage Palettes

2. Select a palette in the Palette Name field.

3. Click the Sub Palettes button.

4. Select the sub-palette in the Sub Palette Name field, then:
* to hide the sub-palette, uncheck the corresponding Shown? check box
* to delete the sub-palette, click the Delete selection button

5. Click OK.

Object Definition Section

Elements are the most visible parts of an extension. The Object Definition section constitutes the
remainder of the CLEF specification file, and is used to define the various objects in the extension. The
following types of object can be defined:

* nodes

* model output objects

* document output objects
* interactive output objects

Nodes are the objects that appear in a stream. Model output objects are generated by model builder
nodes, and appear under the Models tab of the manager pane in the main window. In a similar way,
document output objects are generated by document builder nodes, and appear under the Outputs tab
of the same pane. Interactive output objects are generated by interactive model builder nodes, and
appear under the Outputs tab of the manager pane.

The Object Definition section consists of one or more of these object definitions.

The elements that can be defined for the different types of object are described in the following sections.
Some of these elements are common to all object types, while others are specific to node or model output
definitions. Object-specific elements are denoted as such in the text.

* object identifier
¢ model builder

44 1BM SPSS Modeler 18.0 CLEF Developer's Guide

* document builder
* properties

* containers

* user interface

* execution

* output data model
¢ constructors

Obiject Identifier

The object identifier indicates the type of object, and is one of the following:
<Node .../>

<ModelOutput .../>

<DocumentQutput .../>

<InteractiveModelBuilder .../>

The object identifier also provides information about how the object should be exposed through scripting.
The scriptName attribute represents a unique name for the object. Scripts are able to use this attribute to
specify a particular object (for example, a node in a stream, or an output in the Outputs tab).

Node

A node definition describes an object that can appear in a stream.

Format

<Node id="identifier" type="node type" palette="palette" customPalette="custom palette"
relativePosition="position" relativeTo="node" label="display label" TabelKey="label key"
scriptName="script_name" helpLink="topic_id" description="description"
descriptionKey="description key" delegate="Java class">
<ModelBuilder ... >

</Mode1Builder>
<DocumentBuilder ... >

</DocumentBuilder>
<ModelProvider ... />
<Properties>

</Properties>
<Containers>

</Contajners>
<UserInterface>

</UserInterface>
<Execution>

</Execution>
<OutputDataModel ...>

</OutputDataModel>

Chapter 4. Specification File 45

<Constructors>

</Constructors>
</Node>

The elements allowed within the node definition are described in the sections beginning at

Table 13. Node attributes.

Attribute

Description

id

(required) An identifier for this node, in text string format.

type

(required) The type of node:

dataReader - node that reads data (e.g. Sources palette nodes)

dataWriter - node that writes data (e.g. Export palette nodes)
dataTransformer - node that transforms data (e.g. Record/Field Ops nodes)
model1Builder - model builder node (e.g. Modeling palette nodes)
documentBuilder - node that creates a graph or report

modelApplier - node that contains a generated model

The node type determines the shape of the node icon on the palette and canvas. See the
topic [“Overview of Nodes” on page 9| for more information.

If the node type is mode1Builder, the node definition must include a Mode1Builder
element - see ["Model Builder” on page 48

If the node type is documentBuilder, the node definition must include a DocumentBuilder
element - see ["Document Builder” on page 48

palette

The identifier of one of the standard IBM SPSS Modeler palettes or sub-palettes on which
the node is to appear, namely:

import - Sources

recordOp - Record Ops

fieldOp - Field Ops

graph - Graphs

modeling - Modeling (see below)
dbModeling - Database Modeling
output - Output

export - Export

The Modeling palette has a number of standard sub-palettes:

modeling.classification - Classification
modeling.association - Association
modeling.segmentation - Segmentation
modeling.auto - Automated

If you omit the palette attribute, the node appears on the Field Ops palette.

Note: The palette attribute is used only for model builder nodes.

customPalette

The identifier of a custom palette or sub-palette on which the node is to appear. This is
the value of the id attribute of a Palette element, which is specified in the User Interface
(Palettes) section of the file. See the topic [“User Interface (Palettes) Section” on page 40|
for more information.

46 1BM SPSS Modeler 18.0 CLEF Developer's Guide

Table 13. Node attributes (continued).

Attribute

Description

relativePosition

Specifies the position of the node within the palette. Possible values are:

first
last
before
after

If the value is before or after, the relativeTo attribute is also required (see below).

If relativePosition is omitted, the node is placed last in the palette.

relativeTo

If the value of relativePosition is before or after, then relativeTo is used to specify
the node in the palette that this node precedes or follows. The value of relativeTo is the
script name of the node.

For a standard IBM SPSS Modeler node, the script name can be found in the "Properties
Reference" section of the IBM SPSS Modeler Scripting and Automation Guide, but without
the ...node suffix (for example, for the Database node you would use database, not
databasenode).

For a CLEF node, this is the value of the scriptName attribute for that node.

label

(required) The display name for the node as it is to appear on the palette, canvas and
dialogs.

labelKey

Identifies the label for localization purposes.

scriptName

Used to uniquely identify the node when referenced in a script. See the topic
|CLEF Nodes in Scripts” on page 72| for more information.

helpLink

An optional identifier of a help topic to be displayed when the user invokes the help
system, if any. The format of the identifier depends on the type of help system (see
|Chapter 7, “Adding a Help System,” on page 155) :

HTML Help - URL of the help topic
JavaHelp - topic ID

description

A text description of the node.

descriptionKey

Identifies the description for localization purposes.

delegate

If specified, defines the name of a Java class that implements the NodeDelegate interface.
An instance of the specified class will be constructed for each instance of the associated
node.

The elements that can be contained within the node definition are described in the sections beginning at

['Model Builder” on page 48|

Example

For an example of a node definition, see [“Example of a Specification File” on page 30,

Model Output

A model output definition describes a generated model--an object that will appear under the Models tab
in the manager pane following execution of a stream.

For full details on coding this part of the file, see [“Model Output” on page 83

Chapter 4. Specification File 47

Document Output
A document output definition describes an object such as a generated table or graph that will appear
under the Outputs tab of the manager pane following execution of a stream.

For full details on coding this part of the file, see ['Document OQutput” on page 94

Interactive Model Builder
For full details on coding this part of the file, see [‘Building Interactive Models” on page 84

Model Builder

This element is used in Node element definitions only.

For full details on coding this part of the file, see [Chapter 5, “Building Models and Documents,” on page]

Document Builder

This element is used in Node element definitions only.

For full details on coding this part of the file, see [Chapter 5, “Building Models and Documents,” on page

Model Provider
This element is used in Node element definitions only.

When defining a model output object and a model applier node, you can use the ModelProvider element
to specify the container that is to hold the model. You can also specify whether the model is stored in
PMML format. PMML models can be viewed either through a custom viewer, or through the standard
IBM SPSS Modeler model output viewer, which is provided by the ModelViewerPanel element. See the
topic ['Model Viewer Panel” on page 115 for more information.

Format

<ModelProvider container="container name" isPMML="true false" />
where:

container is the name of the container that holds the model.

isSPMML indicates whether the model is stored in PMML format.

Example
<ModelProvider container="model" isPMML="true" />

For an example of the use of ModelProvider in the context of a model applier node, see the example
under [“Model Viewer Panel” on page 115

Properties

A property definition consists of a set of name-and-value pairs. Individual property definitions, of which
there may be many, are contained within a single Properties section.

Note: If a property is defined within the Properties section, there is no need to define it for an individual

property control as the Properties section definitions take precedence. For this reason, we recommend
defining properties within the Properties section.

48 IBM SPSS Modeler 18.0 CLEF Developer's Guide

The one exception to this rule concerns the Tabel attribute. If the 1abel attribute is defined for a property
control, then any property definition found within that property control declaration (not just the 1abel
definition) takes precedence over its corresponding definition in the Properties section. Note that this
exception applies only to property controls, not to other types of control such as menus, menu items and
toolbar items. These must define a label explicitly, either directly (menus) or indirectly through an Action
element (menu items and toolbar items).

Format
<Properties>

<Property name="name" scriptName="script name" valueType="value type" isList="true false"

defaultValue="default value" label="display label" labelKey="label key"
description="description" descriptionKey="description_key" />

<Enumeration ..

<Structure ...

<DefaultValue ...

</Properties>

The Enumeration, Structure and DefaultValue elements are used in specific cases. See the topic

. />

/>

[Types” on page 57| for more information.

The Property element attributes are shown in the following table.

Table 14. Property attributes.

Attribute Description
name (required) A unique name for the property.
scriptName The name by which the property is referred to in a script. See the topic
[CLEF Nodes in Scripts” on page 72| for more information.
valueType
Specifies the type of value that this property can take, and is one of:
string
encryptedString
fieldName
integer
double
boolean
date
enum
structure
databaseConnection
See the topic [“Value Types” on page 57| for more information.
isList Specifies whether the property is a list of values of the specified value type (true)
or a single value (false).
defaultValue The default value for this property. This may be expressed as either a simple value
attribute or a compound element, and must be consistent with the specified valid
values.
label The display name for the property value as it is to appear on the user interface.
labelKey Identifies the label for localization purposes.
description A description of the property.
descriptionKey Identifies the description for localization purposes.

Properties may optionally declare how valid values may be determined:

Chapter 4. Specification File

49

* For numeric values, this will be the minimum and/or maximum value.

* For strings, this is typically a field selection (e.g. all fields, all numeric fields, all discrete fields etc.) but
may be a file selection.

¢ For enumerations, this will be the set of valid values.

Keyed properties must also declare how the valid keys are determined. Note that the key type of a keyed
property must either be a string or an enumeration. See the topic [“Property Types” on page 35| for more
information.

The optional default value associated with the property is evaluated when the associated object is
created. For example, node property defaults are evaluated each time a new instance of the node is
created; execution properties are evaluated each time the node is executed. Evaluation occurs in the order
in which the properties were declared.

Note that a property definition may refer to a property type declared in the Common Objects section.

Containers

A container is a placeholder for an output object whose generation is defined in the Constructors section.

Format

<Containers>
<Container name="container_name" />

</Containers>
where:
name corresponds to the value of the target attribute of a CreateModel or CreateDocument element (see

under [“Using Constructors” on page 95), and indirectly associates the container with one of the container
types declared in the Common Objects section.

Example

First, the container types are declared in the Common Objects section. There is one container type for
models, in text format, and two container types for document output objects, one in the default (text)
format for HTML output, and one in binary format for zipped output.

<CommonObjects>
<ContainerTypes>
<Mode1Type id="my model" format="utf8" />
<DocumentType id="html_output" />
<DocumentType id="zip_outputType" format="binary" />
</ContainerTypes>
</CommonObjects>

In the Execution section of the node definition, the output files are defined as container files with
container types corresponding to the identifiers specified in the Common Objects section:

<Node id="mynode" ... >
<Execution>
<OutputFiles>

<ContainerFile id="pmml1" path="${tempfile}.pmm1" containerType="my model" />
<ContainerFile id="htmloutput" path="${tempfile}.htm1" containerType="html_

50 1BM SPSS Modeler 18.0 CLEF Developer's Guide

output" />
<ContainerFile id="zipoutput" path="${tempfile}.zip" containerType="zip_
outputType" />

</OutputFiles>

Following this, the Constructors section defines the output objects to be generated when the node is
executed. Here, the CreateModel and CreateDocument elements have a sourceFile attribute corresponding
to a container file, as specified in the Output Files section earlier:

<Constructors>
<CreateModelQutput type="myoutput">
<CreateModel target="model" sourceFile="pmml" />
<CreateDocument target="advanced output" sourceFile="htmloutput" />
<CreateDocument target="zip_output" sourceFile="zipoutput" />
</CreateModelOutput>
</Constructors>
</Execution>
</Node>

Finally the Model Output section associates a container with a model output or document output object.
In the Container element, the name attribute corresponds to the target attribute in the CreateModel and
CreateDocument elements just specified:
<ModelOutput id="myoutput" label="My Model">
<Containers>
<Container name="model" />
<Container name="advanced_output" />
<Container name="zip_output" />
</Containers>

</Model0utput>

User Interface

The specification file supports a range of user interface components to allow objects to be displayed, and
controls and properties to be modified. Facilities are provided to specify the layout and resizing behavior
of the component, and whether the component should be enabled or made visible if other controls are
modified.

The User Interface section specifies the visible appearance of an object. The specification can be used to
customize a basic user interface component, such as a node properties dialog or an output window.

The User Interface section is a required part of the Node element specification.

For full details on coding this part of the file, see [Chapter 6, “Building User Interfaces,” on page 99,

Execution

This element is used in Node element definitions only.
The Execution section defines properties and files that are used when a node is executed.

Format

<Execution>
<Properties>

</Properties>

<InputFiles>
<ContainerFile ... />

Chapter 4. Specification File 51

</InputFiles>
<QutputFiles>
<ContainerFile ... />

</OutputFiles>
<Module ... >
<StatusCodes ... />
</Module>
<Constructors ... />
</Execution>

The Execution section includes the definition of a set of properties that are re-created each time the node
is executed and which are available only while the node is being executed.

The execution information can also define the set of input files to be generated prior to execution of the
node, and any output files generated during execution.

Any number of input and output files may be specified. Each input file is associated with a container
defined by the node. Each output file is typically used to construct containers for generated objects. The
format of an input or output file is determined by the declaration of the container in the Common
Objects section.

Example

For an example of an Execution section, see |“Example of a Specification File” on page 30

Properties (Runtime)
This section defines the set of runtime properties that are available only while the node is being executed.

Format

The format is similar to that of the Properties section in the main part of the element definition. See the
topic [“Properties” on page 48| for more information.

During execution of a model builder or document builder node, a server temporary file is created to
store the model output or document output object. The server accesses this file and brings the object into
the client where it is wrapped in a container. You need to specify this file here.

Example

This example illustrates how you specify the server temporary file.
<Properties>
<Property name="tempfile" valueType="string">
<DefaultValue>
<ServerTempFile basename="datatmp"/>
</DefaultValue>
</Property>
</Properties>

Input Files

This section defines the set of input files to be generated prior to execution of the node. Input files in this
context are files that are input to node execution on the server. For example, a model applier node has a
model container that is transferred to the specified input file on execution of the node.

Format

52 IBM SPSS Modeler 18.0 CLEF Developer's Guide

<InputFiles>
<ContainerFile id="identifier" path="path" container="container">

</InputFiles>

In the ContainerFile element for an input file, the attributes are as shown in the following table.

Table 15. Container file attributes - input files.

Attribute Description

id A unique identifier for the container file.

path The location on the server where you want the input file to be generated (for example, the
location of a server temporary file - see [“Properties (Runtime)” on page 52).

container The identifier of the container holding the object being sent to the server as input.

Example

<InputFiles>
<ContainerFile id="pmml" path="${tempfile}.pmm1" container="model"/>
</InputFiles>

Output Files

This section specifies the output files that are generated during execution of the node on the server.
Output files (for example, the results of execution of a model builder or document builder node) are
transferred back to the client following execution.

Format

<QutputFiles>
<ContainerFile id="identifier" path="path" containerType="container">

</OutputFiles>

In the ContainerFile element, the attributes are as shown in the following table.

Table 16. Container file attributes - output files.

Attribute Description
id A unique identifier for the container file.
path The location on the server of the object to be transferred to the client (for

example, the location of a server temporary file - see [“Properties (Runtime)” on|

containerType The identifier of the container type for the object (i.e. the ID of the model type or
document type), to enable the object to be transferred in the correct format. See
the topic [“Container Types” on page 37| for more information.

Example

<QutputFiles>
<ContainerFile id="pmml1" path="${tempfile}.pmm1" containerType="mynode model" />
<ContainerFile id="htmloutput" path="${tempfile}.htm1" containerType="html _output" />
<ContainerFile id="zipoutput" path="${tempfile}.zip" containerType="zip outputType" />

</OutputFiles>

Modules
This section specifies a server-side shared library to be used during node execution (for example, a DLL
to be loaded into memory).

Chapter 4. Specification File 53

Format

<Module librarylId="shared library identifier" name="node_name">
<StatusCodes ... />
</Module>

where:

TibrarylId is the identifier of a library declared in a Shared Library element in the Resources section. See
the topic [‘Shared Libraries” on page 33| for more information.

name is used if the library is shared by more than one node, and identifies the particular node being
executed. If the library is used only by one node, the name can be left blank.

Example
<Module Tlibraryld="mynodel" name="mynode">
<StatusCodes>
<StatusCode code="0" status="error" message="An exception occurred" />
<StatusCode code="1" status="error" message="Error reading input data" />
</StatusCodes>
</Module>

Status Codes

Most programs perform some sort of error checking and display any necessary messages to the user,
typically returning integers to indicate successful completion or other status. The server-side API can
return a status code following execution of a stream containing the node. See the topic
Document” on page 184] for more information.

The Status Codes section enables you to associate a message with a particular status code, for display to
the user.

Format

<StatusCodes>
<StatusCode code="codenum" status="status" message="message_ text"
messageKey="message key" />

</StatusCodes>

The status code attributes are shown in the following table.

Table 17. Status code attributes.

Attribute Description
code The status code (an integer value) with which the message will be associated.
status The status classification:

success - node executed successfully
warning - node executed with warnings
error - node execution unsuccessful

message The message to be displayed when this status code is returned.
messageKey Identifies the message for localization purposes.
Example

In this example, the text of the error message is included in the StatusCode element:

54 1BM SPSS Modeler 18.0 CLEF Developer's Guide

<StatusCodes>
<StatusCode code="0" status="error" message="Cannot initialise a peer" />
<StatusCode code="1" status="error" message="Error reading input data" />
<StatusCode code="2" status="error" message="Internal Error" />
<StatusCode code="3" status="error" message="Input Field Does Not Exist" />
</StatusCodes>

On execution, if the server-side API returns status code 3, the following message is displayed to the user.

« Streamt
@]

EE

Message

(L) Stream execution started

63 URL Parser Errar: Input Field Does Mot Exist

(1) Stream execution complete, Elapsed=0.09 sec, CPU=0.06 sec
[g‘_\, Execution was interruptad

Figure 29. Error message display

In the next example, the error message texts are referenced by a messageKey attribute:

<StatusCodes>
<StatusCode code="0" status="error" messageKey="initErrMsg.LABEL"/>
<StatusCode code="1" status="error" messageKey="inputErrMsg.LABEL"/>
<StatusCode code="2" status="error" messageKey="internalErrMsg.LABEL"/>
<StatusCode code="3" status="error" messageKey="invalidMetadataErrMsg.LABEL"/>

</StatusCodes>

A property file (e.g. messages.properties), in the same folder as the specification file, contains the actual
message texts as well as other display text:

initErrMsg.LABEL=Initialisation failed.

inputErrMsg.LABEL=Error when reading input data.
internalErrMsg.LABEL=Internal error.
invalidMetadataErrMsg.LABEL=Metadata (on input/output fields) not valid.

This method is useful when display text needs to be localized for overseas markets, for example, as all
the text for localization can be found in one file. See the topic [“Localization” on page 159 for more
information.

Output Data Model

This element is used in Node element definitions only.
The Output Data Model section specifies how the data model is affected by certain properties.

The output data model can be determined in one of three ways:

« Using the field set definition features in the specification file. See the topic [‘Field Sets” on page 66| for
more information.

* Using a client-side Java class that implements a data model provider interface that receives a set of
properties and the input data model, and returns a data model instance.

Chapter 4. Specification File 55

» Using a server-side shared library component that receives a set of properties and the input data model
and returns a metadata document.

The Output Data Model section defines how the properties in a node affect the fields flowing through the
node. The output data model can:

* leave the input data model unchanged

* modify the input data model

* replace the input data model with a different data model

For example, a Sort node does not affect the properties themselves but reorders them, a Derive node
modifies the data model by adding a new field, and an Aggregate node completely replaces the data
model.

In the case where the input data model is modified, the definition can add new fields, or modify or
remove existing fields. When replacing the data model only new fields can be added. The specification
file supports these basic operations (including the ability to create new fields whose type is based on an
input field) as well as the ability to iterate through the input field set or a key or list property
representing a group of fields in the input field set.

Format

The general format of the Output Data Model section is as follows, but see the sections [“Multi-Field
[Chooser Control” on page 129|and [‘Single-Field Chooser Control” on page 136| for specific formats for
those cases.

<OutputDataModel mode="mode" libraryld="container_name">
-- data model operations --
</OutputDataModel>
The output data model attributes are listed in the following table.

Table 18. Output data model attributes.

Attribute Description

mode Effect on the data model:

extend - adds a new field to the existing model

fixed - unchanged

modify - change existing fields (e.g. remove or rename)
replace - replace existing model

libraryld The name of a server-side container from which to obtain the data model.

Data model operations are those that add new fields, or modify or remove existing fields. See the topic
[‘Data Model Operations” on page 61| for more information.

Example

An QutputDataModel element is included in the example of a specification file. See the topic
h Specification File” on page 30| for more information.

Constructors

Constructors define the objects that are produced as a result of either executing a node in a stream, or
generating an object back to the stream.

For full details on coding this part of the file, see the sections beginning at [“Using Constructors” on page]

56 IBM SPSS Modeler 18.0 CLEF Developer's Guide

Common Features

Some features can be used in more than one section of the specification file, namely:
* value types

* evaluated strings

* operations

* fields and field metadata

* field sets

* roles

* logical operators

e conditions

Value Types

Value type declarations specify the type of value that a column, property or property type specification
can take.

Strings and Encrypted Strings

The valueType="string" format specifies that the value is a text string. A valueType="encryptedString"
declaration is used for a property relating to a field whose contents need to be hidden when entered by
the user, such as a password field.

Field Names

Where a value takes the form of a field name, use the valueType="fieldName" format.

Mathematical, Logical and Date Expressions

If the value is a mathematical (integer or double-precision), logical (true/false) or date expression, set
valueType to integer, double, boolean or date accordingly.

Enumerated Properties

Enumerated properties are contained within an Enumeration section that immediately follows a
valueType="enum" declaration. See the topic [“Enumerated Properties” on page 58| for more information.

Structure Declarations

A valueType="structure" declaration specifies a composite value containing other named attributes.
Attributes are similar to properties but cannot be structured or keyed. See the topic [“Structured
Properties” on page 58| for more information.

* Keyed indicator. Specifies whether the property is a single value or is a hash table where each value in
the table is of the specified value type.

* Value set. Specifies how the set of available values is determined.

* Key set. For keyed properties, this is used to specify how the set of available keys is determined. This
information is also used to supply hints to the user interface about the most appropriate type of
controller to use.

Database Connections
These are connection strings that enable users to log on to a database, for example userl@testdb. The

logon details must have already been defined for the database. See the topic [“Database Connection|
[Chooser Control” on page 128| for more information.

Chapter 4. Specification File 57

Enumerated Properties
An enumerated property is one that can take a value from a predefined list of values.

Format

The format for enumerated properties uses an Enumeration section in which the list of values is defined,
as follows:

<PropertyTypes>
<PropertyType id="identifier" valueType="enum">
<Enumeration>
<Enum value="value" Tabel="display label" labelKey="label key"
description="description" descriptionKey="description_key" />

</Enumeration>
</PropertyType>
<PropertyTypes>

where the PropertyType attributes are:
* idis a unique identifier for the property type.
* valueType indicates that the property type is enumerated.

and the Enum attributes are:

* value (required) is the property value that is to appear in the list of values.

* Tlabel (required) is the display name for the property value as it is to appear on the user interface.
* TlabelKey identifies the label for localization purposes.

* description is a description of the enumerated value.

* descriptionKey identifies the description for localization purposes.

Example
<PropertyTypes>
<PropertyType id="shared enuml" valueType="enum">
<Enumeration>
<Enum value="valuel" label="Value 5.1" labelKey="enum5.valuel.LABEL" />
<Enum value="value2" label="Value 5.2" labelKey="enum5.value2.LABEL" />
<Enum value="value3" label="Value 5.3" labelKey="enum5.value3.LABEL" />
</Enumeration>
</PropertyType>
<PropertyTypes>

Structured Properties
A structured property is one that is used in a grid-like structure such as a table control on a dialog.

Format

The format for structured properties uses a Structure section in which the structure is defined, and
consisting of a number of Attribute elements, as follows:

<PropertyTypes>
<PropertyType id="identifier" valueType="structure" isList="true false">
<Structure>
<Attribute name="column_ID" valueType="value_type" isList="true_ false"
label="column_label" labelKey="label key" defaultValue="value"
description="description" descriptionKey="description_key" />

58 IBM SPSS Modeler 18.0 CLEF Developer's Guide

</Structure>
</PropertyType>
</PropertyTypes>

where the PropertyType element attributes are:
* id is a unique identifier for the property type.
* valueType indicates that the property type is structured.

* islist indicates whether the property is a list of values of the specified value type (true) or a single
value (false).

and the Attribute element attributes are:
* name (required) is the identifier of the column.
* valueType specifies the type of value that the contents of this column can take, and is one of:
string
encryptedString
integer
double
boolean
date
enum

* islist indicates whether the attribute is a list of values of the specified value type (true) or a single
value (false). In this way, a keyed property can be associated with either a fixed set of known
attributes (for example, Boolean attributes representing the different aggregation operations to be
performed on a particular field) or a list of values (for example, associating a list of field names with
some other field names).

* label (required) is the display name for the column as it is to appear on the user interface.
* TlabelKey identifies the label for localization purposes.

» defaultValue is a value that is to appear in the column when it is displayed.

* description is a description of the column.

* descriptionKey identifies the description for localization purposes.

Example - Table Control

For an example of how structured properties are used in a table control, see [“Table Control” on page 139

Examples - Keyed Property Types

The first of these examples illustrates the use of a keyed property type where each associated value is a
structure representing which aggregation operation to apply to a field from a fixed set of operations:

<PropertyType id="aggregateOps" isKeyed="true" valueType="structure">
<Structure>
<Attribute name="MIN" valueType="boolean" label="Min" />
<Attribute name="MAX" valueType="boolean" Tabel="Max" defaultValue="true"/>
<Attribute name="SUM" valueType="boolean" Tabel="Sum" defaultValue="false"/>
<Attribute name="MEAN" valueType="boolean" label="Mean" defaultValue="false"/>
<Attribute name="SDEV" valueType="boolean" label="SDev" defaultValue="false"/>
</Structure>
</PropertyType>

Thus a property declared to use the aggregateOps property type might be:
<Property name="aggregationSettings" scriptName="aggregation settings" type="aggregateOps"/>

Chapter 4. Specification File 59

Here the property consists of multiple values, each value having a different key. For example, the key
name is the name of a field (MIN, MAX and so on).

In the next example of a keyed property type, each associated value is a structure containing a single
attribute. In this case the attribute is a list of double-precision expressions representing multipliers to be
applied to a field:

<PropertyType id="multiplierOps" isKeyed="true" valueType="structure">
<Structure>
<Attribute name="multipliers" valueType="double" isList="true"/>
</Structure>
</PropertyType>

A property declared to use the multiplierOps property type might be:
<Property name="multiplierSettings" scriptName="multiplier_settings" type="multiplierOps"/>

Default Values

The DefaultValue element is used to specify a server temporary directory, file, or both. These are created
to store a model output or document output object.

Format

<DefaultValue>
<ServerTempDir basename="name"/>
<ServerTempFile basename="name"/>
</DefaultValue>

where basename (required) is the name of the temporary directory or file.

Example

<DefaultValue>
<ServerTempFile basename="datatmp"/>
</DefaultValue>

Evaluated Strings

Some strings declared in the specification file may include references to property names. These strings are
known as evaluated strings.

The syntax for a property reference is:
"${property name}"

When an evaluated string is accessed, any property references are replaced by the value of the referenced
property. If the property does not exist, an error occurs. For example, when adding a new field, you may
have a property named my_new_field in the node definition and a control in the User Interface section
that enables the user to edit the value of this property.

Example
<AddField name="${my new field}" ... >

Operations

Certain sections of the specification file support operations such as adding fields, creating components,
and initializing properties. Sections that support operations are:

* output data model (source and process nodes)
* input and output data model (components)
* output object creation (model- and document builder nodes)

60 IBM SPSS Modeler 18.0 CLEF Developer's Guide

* model applier creation (model outputs)

Operations are divided into the following types:
* data model operations: AddField, ChangeField, RemoveField
* iteration: ForEach

Data Model Operations
The operations that you can perform on a data model are:

* add a new field to an existing data model
* modify an existing field in a data model
* remove a field from a data model

Add Field: The AddField element enables you to add a new field to an existing data model.

Format

<AddField prefix="prefix" name="name" direction="field role" directionRef="field role ref"
fieldRef="field ref" group="group id" Tabel="label" missingValuesRef="mval ref"
storage="storage_type" storageRef="storage ref" targetField="target field"
type="data_type" typeRef="type ref" role="role" tag="propensity type" value="value" depth="integer"
<Range min="min_value" max="max_value" />

</AddField>

The attributes for AddField are as follows.

Table 19. AddField attributes.
Attribute Description

prefix A prefix to be added to the field name, for example to
denote a model output field.

name (required) The name of the field to be added. This can be
either a hard-coded string (e.g. field8) or an evaluated
string (e.g. ${target}) that references a field. See the
topic [“Evaluated Strings” on page 60 for more
information.

direction The field role, e.g. whether the field is an input or a
target. One of in, out, both, partition or none.

directionRef Specifies that the field direction is to be derived from the
direction of the field identified by an evaluated string
(e.g. ${fieldl}) that references a field. See the topic
[“Evaluated Strings” on page 60| for more information.

fieldRef Specifies that all the referenced values (directionRef,
missingValuesRef, storageRef and typeRef) are to be
derived from the corresponding values of the field
identified by an evaluated string (e.g. ${fieldl}) that
references a field. See the topic|“Evaluated Strings” on|
for more information.

group Specifies that the field is a member of a field group. See
the topic [“Model Fields” on page 81 for more
information.

label A label for the field to be added.

missingValuesRef Specifies that the way missing values are handled is to

be derived from the missing values specification of the
field identified by an evaluated string (e.g. ${fieldl})
that references a field. See the topic [“Evaluated Strings”|
for more information.

Chapter 4. Specification File 61

vall

Table 19. AddField attributes (continued).

Attribute

Description

storage

The data storage type for the field value - one of
integer, real, string, date, time, timestamp, 1ist, or
unknown.

storageRef

Specifies that the storage type is to be derived from the
storage type of the field identified by an evaluated string
(e.g. ${fieldl}) that references a field. See the topic
[“Evaluated Strings” on page 60| for more information.

targetField

For a model output field, specifies the target field from
which data for this new field is derived. This can be
either a hard-coded string (e.g. field8) or an evaluated
string (e.g. ${target}) that references a field. See the
topic|“Evaluated Strings” on page 60| for more
information.

type

The data type of the field - one of auto, range, discrete,
set, orderedSet, flag, collection, geospatial, or
typeless.

typeRef

Specifies that the data type is to be derived from the data
type of the field identified by an evaluated string (e.g.
${fieldl}) that references a field. See the topic
[“Evaluated Strings” on page 60| for more information.

role

The kind of data held in a model output field - one of
unknown, predictedValue, predictedDisplayValue,
probability, residual, standardError, entityld,
entityAffinity, upperConfidencelimit,
lowerConfidenceLimit, propensity, value or
supplementary. See the topic ["Roles” on page 67| for more
information.

tag

Only used if role has the value propensity; indicates the
propensity type, and is either RAW or ADJUSTED.

value

Specifies that the values that the new field is to contain
are to be derived from the field identified by an
evaluated string (e.g. ${fieldl}) that references a field.
See the topic [“Evaluated Strings” on page 60| for more
information.

depth

Only used if storage has the value 1ist, this defines the
depth of the list which must be >= -1

valueStorage

Only used if storage has the value 1ist, this defines the
storage type of the list values - one of integer, real,
string, date, time, or timestamp.

The attributes for Range are as follows.

Table 20. Range attributes

Attribute Description

min The minimum value that the field can accept.
max The maximum value that the field can accept.
Examples

The following adds a string field named field8:

62 IBM SPSS Modeler 18.0 CLEF Developer's Guide

<AddField name="field8" storage="string" />

The next example shows how you can use a reference to a property name when adding a field. Here the
field is added with a name that matches the value of the previously-defined property propl:

<AddField name="${propl}" ... />

In the following example, if the target field is named fieldl, the model creates an output field named
$S-fieldl to hold the predicted value for fieldl:

<AddField prefix="$S" name="${target}" role="predictedValue" targetField="${target}"/>

The next example adds a model output field that holds a probability score between 0.0 and 1.0:

<AddField prefix="$SC" name="${target}" storage="real" role="probability" targetField=
"${target}">

<Range min="0.0" max="1.0"/>
</AddField>

In the final example, for every model output field, an output field is added that holds a probability score
between 0.0 and 1.0 and which derives its value from that of the variable fieldValue:

<ForEach var="fieldValue" inFieldValues="${field}">
<AddField prefix="$SP" name="${fieldValue}" storage="real" role="probability" targetField=
"${field}" value="${fieldValue}">
<Range min="0.0" max="1.0"/>
</AddField>
</ForEach>

See the topic [“Evaluated Strings” on page 60| for more information.

Change Field: The ChangeField element enables you to modify an existing field in a data model.

Format

<ChangeField name="name" fieldRef="field reference" direction="field role" storage="storage_
type" type="data_type" >

<Range min="min_value" max="max_value" />
</ChangeField>

The attributes for ChangeField are as follows.

Table 21. ChangeField attributes.

Attribute Description

name (required) The name of the field to be changed.

fieldRef A reference value for the field.

direction The field role, e.g. whether the field is an input or a target. One of in, out, both,
partition or none.

storage The data storage type for the field value - one of integer, real, string, date, time,
timestamp or unknown.

type The data type of the field - one of auto, range, discrete, set, orderedSet, flag or
typeless.

The attributes for Range are as follows.

Table 22. Range attributes

Attribute Description

min The minimum value that the field can accept.

Chapter 4. Specification File 63

Table 22. Range attributes (continued)

Attribute Description

max The maximum value that the field can accept.

Remove Field: The RemoveField element enables you to remove a field from a data model.

Format
<RemoveField fieldRef="field reference" />

where fieldRef is a reference value for the field.

Iteration with the ForEach Element

In some places, it is useful to be able to perform the same operation repeatedly to process each one of a
set of values. The specification file supports a simple ForEach iterator that binds a temporary property to
each value in the supplied set in turn. The ForEach loop can be set up to iterate in one of the following
ways:

* between two integer values with an optional step size

* over values in a list property

* over keys in a keyed property

* over fields in a field group

Format

<ForEach var="field name" from="integer exp" to="integer exp" step="integer exp"
inFields="fields" inFieldValues="field name" inProperty="property name" >

-- data model operation --
</ForEach>

where:
var (required) specifies the field containing the values to which the iteration will apply.

from and to specify integers (or expressions that evaluate to integers) that denote the lower and upper
limits of the iteration, with the optional attribute step indicating an integer step size.

inFields, inFieldValues and inProperty are alternatives to the from/to/step format:
* inFields specifies a field set over which to perform the iteration, and is one of:
inputs - the input fields for the node
outputs - the output fields from the node
modelInput - the input fields specified in the model signature
modelOutput - the output fields specified in the model signature

* inFieldValues specifies a field name (or a property that represents a field name) and iterates through
the values in the metadata for that field

* inProperty specifies the name of a property on which to perform the iteration

The data model operation that can be specified within a ForEach element is any of the AddField,
ChangeField or RemoveField elements. See the topic [“Data Model Operations” on page 61| for more
information. ForEach elements can also be nested.

Examples

The following performs an operation ten times:

64 IBM SPSS Modeler 18.0 CLEF Developer's Guide

<ForEach var="val" from="1" to="10">
</ForEach>

The following performs an operation the number of times specified by an integer property:
<ForEach var="val" from="1" to="${history count}">

</ForEach>

In the next example, processing iterates through the values in the output fields for the node:
<Forkach var="field" inFields="outputs">

</ForEach>

The following example iterates through the values in the metadata for the field identified by ${field}:
<ForEach var="fieldValue" inFieldValues="${field}">

</ForEach>

The next example iterates through the values in a list property:
<ForEach var="val" inProperty="my list property">

</ForEach>

The following iterates through the key values in a keyed property:
<ForEach var="key" inProperty="my keyed property">

</ForEach>

Fields and Field Metadata

Nodes, models, and data sources act as data model providers-—-they are able to define field metadata that
is accessible from other objects.

Data model providers have an input data model and an output data model. An output data model can be
defined in terms of the input data model, for example when extending an input model by adding a field,
or when changing an existing model.

Each of these objects has slightly different requirements.

Nodes. The input data model can be referenced but is not modifiable. The output data model can be
based on the input data model, or can replace it. The output data model is recomputed whenever the
node properties or the input data model change. The output data model of a model applier node may
also reference the output data model of the model component.

Models. By default, the input- and output data models (the model signature) are based on the input and
output field settings used when the model was created. Ideally the model build process will return a
metadata file that defines the required input fields and the generated output fields. Once defined, the
model signature cannot be modified. However, properties in a model applier node may modify the data
model output from the applier node. For example, these properties may define whether a cluster ID is
returned as a string or an integer, or how many sequence IDs to generate. In addition, the model
signature typically specifies outputs as having a field role (direction) set to "out", whereas the node is
likely to generate them with the field role "in".

Data sources. Data sources used in data reader nodes can specify an output data model. The input data
model is always empty.

Chapter 4. Specification File 65

Field Sets

A field set can be used in numerous places to select a subset of fields from a data model provider. The

data model provider can be either the enclosing object or a container of the enclosing object. The initial
state of a field filter can be either to include all available fields and then exclude specific types of fields,
or to start with an empty set of fields and include the required fields or add new fields.

The following example shows how an extension node can specify the output data model. The key fields
are specified by a list property called keys , and this is followed by an optional record count field that
can be generated, whose name is also specified by a property.

<OutputDataModel mode="replace">
<ForEach var="field" inProperty="keys">
<AddField name="${field}" fieldRef="§{field}"/>
</ForEach>
<AddField name="${record _count_name}" storage="integer"s>
<Condition property="include_record_count" op="equals" value="true"/>
</AddField>
</OutputDataModel>

Field Sets and Model Building

The following example shows how a model applier can use the information in the previously created
model component to generate its output fields:
<OutputDataModel mode="modify">

<AddField provider="model" dataModel="output">
</OutputDataModel>

Both AddField and ForEach specify a data model provider, as well as specifying which of the input or
output data models should be used. They provide a mechanism for specifying a set (or subset) of fields
from the data model provider. The default provider is this representing the enclosing element (i.e. not
the object being created), with the input field set being used by default. If no field set is specified, all
available fields are used.

Field sets can be based on storage, type, field role or names. Where they are based on names, this
requires a reference to a list property. The field set can be either full (the default) or empty; the former
allows fields to be excluded, while the latter allows fields to be included. Multiple values can be specified
for each of the individual filters, and these values act as "intersection” or "and" operators, for example:

<FieldSet include="none">
<Include direction="in" storage="string"/>
</FieldSet>

This starts with an empty field set (specified by include="none") and will then include fields that have
the field role (direction) set to "in", and string storage.

Another example is:

<FieldSet include="all">
<Exclude type="typeless"/>
</FieldSet>

This includes all available fields (specified by the include="al1" attribute, which is the default behaviour)
and then excludes any which have a typeless type. This will include fields with direction set to "in" or

"both".

Multiple filters can also be specified, and these act as "union” or "or" operators, for example:

66 IBM SPSS Modeler 18.0 CLEF Developer's Guide

<FieldSet include="all">
<Exclude type="discrete" storage="real"/>
<Exclude type="discrete" storage="integer"/>
</FieldSet>

This excludes fields which are either discrete with real storage, or discrete with integer storage.

Note that when including fields into an initially empty field set, the order of the include statements does
not usually affect the order in which fields are included. That is, the fields from the field set provider are
evaluated in their natural order against each condition to determine whether they should be included in
the field set.

Roles

A role describes the kind of data that is held in a data model output field. A role can be specified by an
AddField element and tested by a Condition element.

The possible roles are as follows.

Table 23. Model output roles

Role Meaning

unknown No role specified (should not be encountered).

predictedValue This field contains the predicted value of the target field.

probability The probability or confidence of the prediction.

residual The residual value.

standardError The standard error of the prediction.

entityld The entity ID--typically represents the cluster ID in a
cluster model.

entityAffinity The entity affinity--typically represents the distance from
the cluster centre in a model.

upperConfidenceLimit The upper confidence limit of the prediction.

TowerConfidenceLimit The lower confidence limit of the prediction.

propensity The propensity score. An additional tag attribute
specifies whether this refers to a raw or adjusted
propensity.

value Used to represent a value for models that is associated

with another output (see below).

supplementary Information generated by the model that is not covered
by other roles.

As an example of value, the Anomaly Detection model generates groups of fields where each group
consists of two fields, one representing a field name and the other specifying a measure of how
anomalous that field is. In this case, value would be the field name.

Logical Operators

A number of elements can use the logical operators And, Or and Not to specify various kinds of
processing, for example when setting compound conditions (see [“Compound Conditions” on page 71).

Format

The format of the And element is as follows. The format of the Or and Not elements is almost identical, the
only differences being the enclosing tags <Or>...</0r> and <Not>...</Not> respectively.

Chapter 4. Specification File 67

<And>
<Condition .../>
<And ... />
<Or ... />
<Not ... />
</And>

The Condition element specifies a condition to be tested. See the topic for more
information.

Note that the And, Or and Not child elements can be nested.

Conditions

The behavior of some objects may be modified using conditions, which are specified by Condition
elements (the equivalent of IF statements). For example, a node that is executed by a command can add a
condition to the execution information, such as only including a particular option if a property has a
specific value. Similarly, a property control in the user interface may be enabled or visible only if another
control has a specific value.

Conditions can be either simple or compound. A simple condition consists of the following:
* a value source (either a property or a control)
* atest

* an optional test value

A compound condition allows other conditions to be combined to form complex logical conditions.
Compound conditions involve the use of:

* And
* Or

* Not
Format

<Condition container="container_name" control="prop _name" property="name" op="operator"
value="value" />

where:

container specifies the name of a particular container whose value is to be tested by the condition.
control specifies a property control whose value is to be tested by the condition. prop_name is the value
of the property attribute of the element in which the control is defined (for example, in a properties panel

on a dialog tab).

property specifies a property whose value is to be tested by the condition. name is the value of the name
attribute of the Property element in which the property is defined.

op is the condition operator. See the topic [‘Condition Operators” on page 69| for more information.

value is the specific value to be tested for by the condition.

Examples

For examples of condition setting, see [‘Simple Conditions” on page 71| and [“Compound Conditions” on|

68 IBM SPSS Modeler 18.0 CLEF Developer's Guide

Condition Operators

A set of operators is available that addresses most conditions.

Table 24. Tests supported on any value

Operator Value Description

equals value True if the property equals the supplied value
(case-sensitive for string values).

notEquals value True if the property does not equal the supplied
value (case-sensitive for string values).

in list of values True if the property is in the supplied list of values.

Table 25. Tests supported on numeric values

Operator Value Description

lessThan number True if the property is less than the supplied number.

lessOrEquals number True if the property is less than or equal to the
supplied number.

greaterThan number True if the property is greater than the supplied
number.

greaterOrEquals number True if the property is greater than or equal to the

supplied number.

Table 26. Tests supported on string values

Operator Value Description

isEmpty - True if the property has a zero-length string.

isNotEmpty - True if the property has a non-zero length string.

startsWith string True if the property starts with the supplied string
(case-sensitive).

startsWithIgnoreCase string True if the property starts with the supplied string,
ignoring case.

endsWith string True if the property ends with the supplied string
(case-sensitive).

endsWithIgnoreCase string True if the property ends with the supplied string,
ignoring case.

equalsIgnoreCase string True if the property equals the supplied string,
ignoring case.

hasSubstring string True if the property contains the supplied string
(case-sensitive).

hasSubstringIgnoreCase string True if the property contains the supplied string,
ignoring case.

isSubstring string True if the property is a substring of the supplied
string (case-sensitive).

isSubstringIgnoreCase string True if the property is a substring of the supplied

string, ignoring case.

Table 27. Tests supported on list properties

Operator Value Description
isEmpty - True if the number of items in the list is 0.
isNotEmpty - True if the number of items in the list is not 0.

Chapter 4. Specification File 69

Table 27. Tests supported on list properties (continued)

Operator Value Description

countEquals number True if the number of items in the list equals the
supplied value.

countLessThan number True if the number of items in the list is less than the
supplied value.

countLessOrEquals number True if the number of items in the list is less than or
equal to the supplied number.

countGreaterThan number True if the number of items in the list is greater than
the supplied number.

countGreaterOrEquals number True if the number of items in the list is greater than
or equal to the supplied number.

contains value True if the supplied item is in the list.

Table 28. Tests supported on field properties

Operator Description
storageEquals True if the storage equals the supplied value.
typeEquals True if the type equals the supplied value.

directionEquals

True if the field role (direction) equals the supplied value.

isMeasureDiscrete

True if the field data type is discrete (i.e. can only be one of set,
flag or orderedSet).

isMeasureContinuous

True if the field data type is range.

isMeasureTypeless

True if the field data type is typeless.

isMeasureUnknown

True if the field data type is unknown.

isStorageString

True if the field storage type is string.

isStorageNumeric

True if the field storage type is numeric.

isStorageDatetime

True if the field storage type is datetime.

isStorageUnknown

True if the field storage type is unknown.

isModelQutput

True if the field is a model output field.

modelQutputRoleEquals

True if the role for the field is one of the valid roles shown in the
next table.

modelQutputTargetFieldEquals

True if the target field equals the specified value (string).

modelQutputHasValue True if the field is a model output field and has a value associated
with it.
modelOutputTagEquals True if the tag equals the specified value (string).

Condition operators that support keyed properties are:

70

isEmpty

isNotEmpty
countEquals
countLessThan
countLessOrEquals
countGreaterThan
countGreaterOrEquals
contains

IBM SPSS Modeler 18.0 CLEF Developer's Guide

Simple Conditions

A simple condition consists of the initial value source to be tested (either a property or controller name,
or an evaluated expression), the test to be performed, and optionally a value against which to perform
the test.

Examples

The following evaluates to true if a Boolean property called values_grouped is true:
<Condition property="values_grouped" op="equals" value="true"/>

The next example evaluates to true if a control called values_grouped that displays Boolean values has
been checked:

<Condition control="values_grouped" op="equals" value="true"/>

The following example evaluates to true if a list property called plot_fields has at least one value in it:

<Condition property="plot fields" op="countGreaterThan" value="0"/>

The next example evaluates to true if a list property called input_fields contains only values that are
instantiated:

<Condition property="input fields" op="instantiated" 1listMode="al1"/>

The final example evaluates to true if a list property called input_fields has at least one value that
represents an uninstantiated field:

<Condition property="input_ fields" op="uninstantiated" listMode="any "/>

Compound Conditions
Groups of simple conditions can be combined using logical operators.

Examples

The following evaluates to true if the Boolean values_grouped property is true and group_fields contains

at least one value:

<And>
<Condition property="values_grouped" op="equals" value="true"/>
<Condition property="group fields" op="countGreaterThan" value="0"/>
</And>

The following evaluates to true if the Boolean values_grouped property is true or if group_fields contains

at least one value:

<0r>
<Condition property="values_grouped" op="equals" value="true"/>
<Condition property="group fields" op="countGreaterThan" value="0"/>
</0r>

The following evaluates to true if group_fields contains at least one value:

<Not>
<Condition property="group fields" op="equals" value="0"/>
</Not>

Compound conditions may be nested to provide any combination of conditions.

Chapter 4. Specification File

71

Using CLEF Nodes in Scripts

You can refer to a CLEF node in a script by using the scriptName attribute of the Node element. In the
same way, you can refer to a property of the node in a script by using the scriptName attribute of the
Property element.

The scriptName attribute is optional in both cases, though we recommend using the attribute to avoid
name clashes between extensions or properties.

If you omit the script name in a node definition, a script can reference the node by means of the value of
the id attribute prefixed by the extension name. For example, given an extension named myext and which

defines a data reader node with the ID import, a script will be able to reference the node as myextimport.

If you omit the script name in a property definition, a script can reference the property through the value
of its name attribute.

For more information, see the IBM SPSS Modeler Scripting and Automation Guide.
Example - Edit and Execute a Node

The following example shows how you can use a script to automate the tasks of editing and executing
the example data reader node shown under [“Data Reader Node (Apache Log Reader)” on page 24

In the specification file for the Apache Log Reader node, the node specification begins as follows:

<Node id="apachelogreader" type="dataReader" palette="import" labelKey="apachelLogReader.LABEL">
<Properties>
<Property name="log_filename" valueType="string" labelKey="1ogfileName.LABEL" />
</Properties>

In the script, you would reference the node and the property like this:

create apachelogreader

set :apachelogreader.log_filename='installation directory\Demos\combined Tog format.txt'
create tablenode at 200 100

connect :apachelogreader to :tablenode

execute :tablenode

where installation_directory is the directory to which IBM SPSS Modeler is installed.

Running this script:

* creates the data reader node

* specifies combined_log_format.txt as the Apache log file to read
* creates a table node

* connects the data reader node to the table node

* executes the table node

Example - Keyed Properties
Keyed properties support standard scripting syntax. For example, the structure shown in the first

example of keyed property types under [“Structured Properties” on page 58, could be defined in a script
as:

set :mynode.aggregation_settings.Age = {true true false false false}

A single attribute could be modified as follows:
set :mynode.aggregation_settings.Age.MIN = true

72 IBM SPSS Modeler 18.0 CLEF Developer's Guide

Maintaining Backward Compatibility

When planning updates to an existing extension, take care to maintain compatibility with a
previously-distributed version of that extension. Some changes will have no adverse effects, some involve
a significant risk, and others are known to break compatibility and should be avoided.

Changes With No Risk

The following changes will not affect backward compatibility:

* adding new Node, Mode10utput, DocumentQOutput or InteractiveModelBuilder elements
* adding new Property definitions and their associated new controls to these elements
* adding new containers to these elements*

* adding new values to an existing enumeration property

* Note that any code using these new containers should allow for the fact that these containers will be
empty for objects created using the previous version of the extension.

Changes With Significant Risk

Changes to existing declarations carry a significant risk of breaking compatibility. These should be tested
carefully before distribution.

Changes to Avoid

The following changes are known to break compatibility and should be avoided:
* changing the value of the id or providerTag attributes in the ExtensionDetail element

* changing the value of the id attribute in a Node, Mode10utput, DocumentQOutput or
InteractiveModelBuilder element

* removing a Node, Mode10utput, DocumentOutput or InteractiveModelBuilder element from the extension
* changing the value of the valueType attribute of a Property or PropertyType element

Chapter 4. Specification File 73

74 IBM SPSS Modeler 18.0 CLEF Developer's Guide

Chapter 5. Building Models and Documents

Introduction to Model and Document Building

The standard IBM SPSS Modeler modules include nodes that enable users to generate (or "build") a wide
variety of models and graphs. CLEF gives you the ability to define additional nodes to build other
models and documents (graphs and reports) that are not provided as standard.

When defining model builder or document builder nodes, you also need to define the objects that are
produced when these nodes are executed. You do this by means of items known as "constructors."

The following sections describe this process in detail.

Models

A model is a set of rules, a formula, or an equation that can be used to predict an outcome based on a set
of input fields. The ability to predict an outcome is the central goal of predictive analytics. In IBM SPSS
Modeler you achieve this by:

* Generating a model from existing data
* Applying the generated model to data to make the predictions

The process of generating a model is also known as "building" a model, and in IBM SPSS Modeler you
do this by means of a modeling node. In CLEF, modeling nodes are referred to as model builder nodes,

a name derived from the syntax of the XML statement used to define them. See the topic|"Model Builder|

Nodes” on page 11| for more information.

The process of applying a model to data is known as "scoring the data." Doing so enables you to use the
information gained from model building to make predictions for new records. In IBM SPSS Modeler, you
do this by adding the icon of a generated model to the stream canvas. The icon takes the form of a gold
nugget, so a generated model is referred to in IBM SPSS Modeler as a "model nugget." In CLEF, a model
nugget on the Models tab of the manager pane is known as a model output object, and when added to
the canvas it is known as a model applier node. See the topic [‘Model Applier Nodes” on page 12| for
more information.

Documents

In some cases, you will want to generate an object other than a model, such as a graph or report output.
In IBM SPSS Modeler, these objects are known as documents, and they are generated by means of a
document builder node. See the topic ["“Document Builder Nodes” on page 12| for more information.

Constructors

Constructors define the objects that are produced as a result of either executing a node in a stream or
generating an object back to the stream.

Constructors can be defined for any of the following:
* Model builder node

* Document builder node

* Model applier node

* Model output object

75

In the case of a model builder or document builder node, a constructor enables these nodes to define
how the output object is generated when the node is executed. An output object definition may include
multiple properties and components, and the Constructors section defines how these are initialized or
created from the object generated by the execution.

For a model applier node, a constructor defines what kind of object the node can generate back to the
stream or the Models tab.

In the case where constructors are defined for a model output object, they can:

* Specify what model applier node to create when the model output object is dropped onto the stream
canvas

* Generate a model builder node with the settings that were used to create the model output object

See the topic [“Using Constructors” on page 95| for more information.

Building Models

When specifying a node from which a model can be generated (that is, a model builder node), you need
to define how the node communicates with the Model Builder component of IBM SPSS Modeler, which is
the process that actually creates the model. You do so in the definition of a Node element in the
specification file.

Unless otherwise specified, model building begins as soon as the end user clicks the Execute button in
the model builder node dialog box. However, it is also possible to define an interactive model, whereby
the end user can refine or modify data values after clicking Execute but before the model is actually built.
Interactive model building additionally requires the inclusion of specific elements through which the
interactivity is defined. See the topic [“Building Interactive Models” on page 84 for more information.

When defining a model builder node, the Node element must include:

* A type="modelBuilder" attribute

* A ModelBuilder child element

« A Constructors child element containing a CreateModelOutput element (see [“Using Constructors” on|

For the format of a Node element specification, see [“Node” on page 45

Note: In the element definitions in subsequent sections (normally identified by the heading Format),
element attributes and child elements are optional unless indicated as "(required)." For complete element
syntax, see [‘CLEF XML Schema,” on page 195

For model building, the extension also needs a Mode10utput element to describe the generated model (see
[‘Model Output” on page 83). The Mode10utput element needs to include a Constructors child element
that contains a CreateModelApplier definition. See the topic [‘Create Model Applier” on page 97 for more
information.

Model Builder

The ModelBuilder element defines the behavior of a model builder node. This is done by means of the
element attributes and one or more child elements.

Format

<ModelBuilder allowNoInputs="true_false" allowNoOutputs="true_false" nullifyBlanks="true_ false"
miningFunctions="[functionl function? ... 1" >
<Algorithm ... />
<ModelingFields ... />

76 IBM SPSS Modeler 18.0 CLEF Developer's Guide

<ModelGeneration ... />

<ModelFields ... />
<AutoModeling ... />
</Model1Builder>

where:

* allowNoInputs and allowNoOutputs must be used explicitly in a case where you want to build a model
that has either no input fields or no output fields, respectively.

* nullifyBlanks, if set to false, turns off the feature whereby blank values are replaced with null values
(represented by $nul11$) in the data that is passed to the Model Builder component of IBM SPSS
Modeler. The default is to replace blanks with nulls, but you might want to deactivate this feature, for
example, if your algorithm needs to treat blanks differently from nulls.

* miningFunctions (required) identifies the data mining function or functions that the model performs.

Table 29. Data mining functions.

Function

Description

classification

Predicts a discrete (that is, set, flag, or orderedSet data type) value of an
unknown target attribute from records with known target values.

approximation

Predicts a continuous (that is, range data type) value of an unknown target
attribute from records with known target values.

clustering

Identifies groups of similar records and labels them accordingly.

association

Identifies related events or attributes in data.

sequence Searches for sequential patterns in time-structured data.

reduction Reduces the complexity of data—for example, via derived fields that
summarize the contents of the original data fields.

conceptExtraction Used in text mining.

categorize Used in text mining.

timeSeries Forecasts future values from patterns in past data.

anomalyDetection Searches for unusual cases based on deviations from the norms of their cluster

groups.

attributelmportance

Identifies the attributes that have the greatest influence on a target attribute.

supervisedMultiTarget

Estimates the likelihood of a (yes or no) outcome for one of a number of
possibilities.

If the model performs more than one function, the function names are separated by spaces within the
square brackets, as in the following example:

<Model1Builder miningFunctions="[classification approximation]">

</Mode1Builder>

Child Elements

The child elements of the Mode1Builder element are shown in the following table.

Table 30. Child elements of model builder declaration.

Child element

Description See...

Algorithm

(required) Specifies the algorithm used to
generate the model.

[“Algorithm” on page 78

Chapter 5. Building Models and Documents 77

Table 30. Child elements of model builder declaration (continued).

Child element Description See...

ModelingFields Specifies the identifier to be used subsequently |[‘Modeling Fields”|
in the User Interface section to define the
location of the input and output field controls
for the model. The controls themselves are
defined in the InputFields and OQutputFields
child elements of ModelingFields.

ModelGeneration Specifies the identifier to be used subsequently |[‘Model Generation” on page 81|
in the User Interface section to define the
location of the model name controls for the
generated model.

ModelFields Specifies the set of input and output fields used |[‘Model Fields” on page 81|
for scoring data with this model.

AutoModeling Enables this model to be used by an ensemble [“Automated Modeling” on page 88|
modeling node, such as Auto Classifier, Auto
Cluster, or Auto Numeric.

Algorithm

The ATgorithm element defines details of the algorithm used to generate the model.
<Algorithm value="model output_id" label="display label" TabelKey="label key"/>

where:

* value (required) is the internal name of the algorithm. This is referenced in a number of other places
in the specification file. See the topic [“Model Builder Example” on page 82| for more information.

* label (required) is a description of the algorithm.
* TlabelKey identifies the label for localization purposes.

Modeling Fields

The standard way in which the model input and output fields are specified is by means of the Type
node. Users set the field role to in or out as desired. Optionally, for a model builder node you can give
users the choice of overriding the settings in an upstream Type node and using custom settings.

This is done by means of the ModelingFields element. This element specifies an identifier that is used
subsequently in the User Interface section of the model builder node declaration to define the location of
the controls for the input and output fields for the model. The controls themselves are defined by means
of InputFields and QutputFields child elements.

Format

<ModelingFields controlsld="control identifier" ignoreBOTH="true false" >
<InputFields ... />
<QutputFields ... />

</ModelingFields>

where:

* controlsld (required) is the identifier to be used subsequently in a SystemControls element in the
User Interface section of the model builder node declaration. Doing so identifies which tab of the node
dialog box is to contain the input and output field controls for the model.

* ignoreBOTH, if set to true (default), specifies that fields with a field role set to both are ignored by the
model.

78 IBM SPSS Modeler 18.0 CLEF Developer's Guide

The Ini utFields and OutputFields elements are described in the sections beginning at [“Input Fields” on|

Example

This example illustrates the use of a set of modeling fields controls on a Fields tab of a model builder
node dialog box. First, an identifier is specified for the set of controls:

<Model1Builder miningFunctions="[classification]">

<ModelingFields controlsId="modelingFields">
<InputFields property="inputs" onlyNumeric="true" multiple="true" label="Inputs"
TabelKey="inputFields.LABEL"/>
<QutputFields property="target" multiple="false" types="[set flag]" label="Target"
labelKey="targetField.LABEL"/>
</ModelingFields>

</Mode1Builder>

The modelingFields identifier is subsequently referenced in the User Interface section of the node dialog
box, at the point where the Fields tab is defined:

<UserInterface ... >
<Tabs defaultTab="1">
<Tab label="Fields" labelKey="Fields.LABEL" helpLink="modeling_fieldstab.htm">
<PropertiesPanel>
<SystemControls controlsld="modelingFields">
</SystemControls>
</PropertiesPanel>
</Tab>

</UserInterface>

Input Fields: The InputFields element defines the set of fields from which users will be able to select
one or more input fields (that is, predictors) for the model.

The set consists of all the fields that are visible at this node. If fields have been filtered further upstream

from this node, only the fields that have passed through the filter are visible. The list can also be further

restricted by specifying that only fields with particular storage and data types are to be available for

selection.

<InputFields storage="storage types" onlyNumeric="true false" onlySymbolic="true false"
onlyDatetime="true false" types="data types" onlyRanges="true false"
onlyDiscrete="true_false" property="property name" multiple="true_false" label="label"
TabelkKey="label_key"/>

You can restrict the list of fields to be used as input fields by specifying two attributes, one of which

must be from the following list:

* storage is a list property that specifies the storage type of fields to be allowed in the list--for example,
storage="[integer real]" means that only fields with these storage types will be listed. For the set of
possible storage types, see the table under [‘Data and Storage Types” on page 175

* onlyNumeric, if set to true, specifies that only fields with a numeric storage type are listed.

* onlySymbolic, if set to true, specifies that only fields with a symbolic (that is, string) storage type are
listed.

» onlyDatetime, if set to true, specifies that only fields with a date-and-time storage type are listed.

The second attribute specified must be from this list:

* types is a list property that specifies the data type of fields to be allowed in the list--for example,
types="[range flag]" means that only fields with these storage types will be listed. The set of possible
data types is:

range

Chapter 5. Building Models and Documents 79

flag
set
orderedSet
numeric
discrete
typeless
* onlyRanges, if set to true, specifies that only fields with a range data type are listed.

* onlyDiscrete, if set to true, specifies that only fields with a discrete (that is, flag, set, or typeless) data
type are listed.

Thus, for example, a control that specifies storage="[integer]" and types="[flag]" ensures that only
integer fields that are flags will appear in the list.

The remaining attributes are as follows:

* property is the identifier of the property to be used to store the field values.

* multiple specifies whether the field values are an enumerated list (true) or not (false).
* label is the display name of the control.

* TlabelKey identifies the label for localization purposes.

Output Fields: The OutputFields element defines the set of fields from which users will be able to select
one or more output fields (that is, targets) for the model.

The set consists of all the fields that are visible at this node. If fields have been filtered further upstream

from this node, only the fields that have passed through the filter are visible. The list can also be further

restricted by specifying that only fields with particular storage and data types are to be available for

selection.

<OutputFields storage="storage types" onlyNumeric="true false" onlySymbolic="true false"
onlyDatetime="true false" types="data types" onlyRanges="true false"
onlyDiscrete="true false" property="property name" multiple="true false" label="label"
TabelKey="label key"/>

You can restrict the list of fields to be used as output fields by specifying two attributes, one of which
must be from the following list:

+ storage is a list property that specifies the storage type of fields to be allowed in the list--for example,
storage="[integer real]" means that only fields with these storage types will be listed. For the set of
possible storage types, see the table under [“Data and Storage Types” on page 175,

* onlyNumeric, if set to true, specifies that only fields with a numeric storage type are listed.

* onlySymbolic, if set to true, specifies that only fields with a symbolic (that is, string) storage type are
listed.

* onlyDatetime, if set to true, specifies that only fields with a date-and-time storage type are listed.

The second attribute specified must be from this list:

* types is a list property that specifies the data type of fields to be allowed in the list--for example,
types="[range flag]" means that only fields with these storage types will be listed. The set of possible
data types is:

range
flag

set
orderedSet
numeric

80 IBM SPSS Modeler 18.0 CLEF Developer's Guide

discrete
typeless
+ onlyRanges, if set to true, specifies that only fields with a range data type are listed.

* onlyDiscrete, if set to true, specifies that only fields with a discrete (that is, flag, set, or typeless) data
type are listed.

Thus, for example, a control that specifies storage="[integer]" and types="[flag]" ensures that only
integer fields that are flags will appear in the list.

The remaining attributes are as follows:

* property is the identifier of the property to be used to store the field values.

* multiple specifies whether the field values are an enumerated list (true) or not (false).
* label is the display name of the control.

* labelKey identifies the label for localization purposes.

Model Generation
The ModelGeneration element specifies the identifier to be used elsewhere in the file to define which tab
of the model builder node dialog box is to contain the model name controls for the generated model.

The format is:
<ModelGeneration controlsld="control_identifier" />

The controlsId attribute specifies the identifier to be used subsequently in a SystemControls element in
the User Interface section of the model builder node specification. The tab whose specification includes
this SystemControls element is the one that will contain the model name controls.

Model Fields
The ModeTFields element is used to construct the model signature--the set of input and output fields
used for scoring data with this model.

<ModelFields inputDirections="[in]" outputDirections="[out]">
<AddField prefix="field prefix" ... />

<Forkach ... >
<AddField prefix="field prefix" ... />
</ForEach>
</ModelFields>

where inputDirections and outputDirections specify how the model signature is to be built; values can
be in, out or both.

The fields themselves are specified by one or more AddField elements. The prefix attribute specifies the
prefix to be added to a field name to denote a field generated by the model. For example, if the field
name is fieldl and the prefix value is $S, the generated field is named $S-fieldl. See the topic
Field” on page 61| for more information.

Iteration is possible by means of ForEach elements. See the topic [“Iteration with the ForEach Element” on|
for more information.

Field groups enable you to group together two or more output fields from the model for iteration
purposes. Output field names are appended with a suffix indicating the iteration, for example
$S-fieldl-1, $S-field1l-2 and so on. One use of field groups is to cause the same set of fields to appear
multiple times in the model output. See the topic [‘Field Group Example” on page 82| for more
information.

Chapter 5. Building Models and Documents 81

Automodeling

The AutoModeling element enables the model to be used by an ensemble modeling node, such as Auto
Classifier, Auto Cluster, or Auto Numeric. See the topic [“Automated Modeling” on page 88| for more
information.

Model Builder Example
The following shows the complete Model Builder section in the specification file for the Interaction node
example (see [“Model Builder Node (Interaction)” on page 25):

<Node id="interaction.builder" type="modelBuilder" palette="modeling" label="Interaction">
<Model1Builder miningFunctions="[classification]">
<Algorithm value="robd" Tabel="Robert's Algorithm" />
<ModelingFields controlsId="modellingFields">
<InputFields property="inputs" multiple="true" label="Inputs"
onlyDiscrete="true" />
<OutputFields property="target" multiple="false" label="Target"
onlyDiscrete="true" />
</ModelingFields>
<ModelFields inputDirections="[in]" outputDirections="[out]">
<ForEach var="field" inFields="outputs">
<AddField prefix="$I" name="${field}" fieldRef="${field}" role=
"predictedValue" targetField="§{field}" />
<AddField prefix="$IP" name="${field}" storage="real" role="probability"
targetField="§${field}">
<Range min="0.0" max="1.0"/>
</AddField>
</ForEach>
</ModelFields>
</Model1Builder>

</Node>

Field Group Example

This example is taken from the SLRM node, and adds a group of two new fields to the model signature
in order to contain the data generated when the model is scored. For each input record, the data are

scored for each of the new fields a user-specified number of times, determined by the value of the
max_predictions property.

The two new fields are:
* $S-target — contains the predicted value of the target field
* $SC-target — contains the probability value for this prediction

In order to group these two fields together, they are assigned the same group identifier when they are
declared in the ModelFields section. Group identifiers are assigned by means of the group attribute of the
AddField element.

Thus the declaration for the model builder node contains:

<Node ... type="modelBuilder" ... >
<ModelBuilder ... >

<ModelFields inputDirections="[in]" outputDirections="[out]">
<AddField prefix="$S" name="${target}" fieldRef="$§{target}" role=
"predictedValue" targetField="§{target}" group="[1]"/>
<AddField prefix="$SC" name="${target}" storage="real" role="probability
targetField="${target}" group="[1]">
<Range min="0.0" max="1.0"/>

82 IBM SPSS Modeler 18.0 CLEF Developer's Guide

</AddField>
</ModelFields>
</Model1Builder>
</Node>

The declaration for the model applier node contains:
<Node ... type="modelApplier" ... >

<OutputDataModel mode="extend">
<ForEach var="group" from="1" to="${max_predictions}">
<ForkEach var="field" inFields="modelQutputs" container="model">
<AddField name="§${field}" group="[${group}]" fieldRef="§{field}" />
</ForEach>
</ForEach>
</OutputDataModel>
</Node>

The target field is named campaign, and the user inputs 2 in the field corresponding to the
max_predictions property. Executing the model builder node causes the following fields to be appended
to the model:

e $S-campaign-1
* $SC-campaign-1
e $S-campaign-2
* $SC-campaign-2

Model Output

The Model0Output element describes a model output object--an object that will appear under the Models
tab in the manager pane following execution of a stream.

Format
<ModelOutput id="identifier" label="display label" labelKey="Iabel key" delegate="Java class" >
<ModelProvider ... />

<Properties>
<Property ... />

</Properties>
<Containers ... />
<UserInterface ... />
<Constructors ... />
</ModelQutput>

where:

* id (required) is a unique identifier for the generated model.

* label (required) is the display name for the generated model as it is to appear on the Models tab.
* TlabelKey identifies the label for localization purposes.

The child elements that can be contained within the Mode10utput element are shown in the following
table.

Table 31. Child elements of model output declaration.

Child element Defines See...

ModelProvider The container that is to hold the model output, ["Model Provider” on page 48
and whether the output is in PMML format.

Properties Properties to be used by the generated model. [“Properties” on page 48|

Chapter 5. Building Models and Documents 83

Table 31. Child elements of model output declaration (continued).

Child element Defines See...

Containers Containers in which generated model output [“Containers” on page 50
will be placed.

UserInterface User interface through which generated model [“User Interface” on page 51|
output can be viewed—for example, Model and
Settings tabs on a model output object.

Constructors Objects produced by the generated model. [“Using Constructors” on page 95|

delegate If specified, defines the name of a Java class that
implements the OutputDelegate interface. An
instance of the specified class will be constructed
for each instance of the associated output

Example

<ModelOutput id="interaction.model" label="Interaction Model">
<Properties>
</Properties>
<Containers>
<Container name="model" />
</Containers>
<UserlInterface>
<Tabs>
<Tab label="Model">
<TextBrowserPanel container="model" textFormat="plainText" />
</Tab>
</Tabs>
</UserInterface>
<Constructors>
<CreateModelApplier type="interaction.applier">
<SetContainer target="model" source="model" />
</CreateModelApplier>
</Constructors>
</ModelOQutput>

Building Interactive Models

Interactive modeling is a feature that enables you to create an output object with which the end user can
interact before generating a model. This interactive output object is placed on the Outputs tab of the
manager pane and contains an interim dataset. The interim dataset can be used to refine or simplify the
model before it is generated. Interactive modeling is achieved by adding some extra elements to the
specification of a regular model builder node:

e The Constructors section of the Node definition includes a CreateInteractiveModelBuilder element.
¢ The extension includes a dedicated InteractiveModelBuilder element.

User interaction with the interim dataset takes place by means of a window known as the interaction
window, which is displayed as soon as the output object is created.

84 IBM SPSS Modeler 18.0 CLEF Developer's Guide

Streams Cutputs | models

R @ r— Interaction Test #1

telco.say Mo Targets

F|E| Interaction Test #1 g@w
e (@2« <[@]

| Start Build Task ‘ r

Build Tasks

D | Status ACCUraCY
1 |k 70.2
Figure 30. Interactive output object and interaction window

Interaction is specific to the algorithm used and is implemented by the extension. The interaction window
is defined in the User Interface section of the InteractiveModelBuilder element. You can define an
interaction window by specifying either of the following:

* A frame class (see [“User Interface Section” on page 100), which defines the window completely

* A panel class, specified as an attribute of an extension object panel (see [“Extension Object Panel” on|
page 112), for each tab of the window

Once closed, the interaction window can be redisplayed by double-clicking the object name on the
Outputs tab.

The interaction window specification needs to include code to generate the model once the user has
completed interaction. In the example illustrated, this is done by means of the toolbar button with the
gold nugget icon, which is associated with an action to generate the model. The code for this is shown in
the InteractiveModelBuilder section under [“Example of Interactive Modeling” on page 87|

Create Interactive Model Builder
The CreatelnteractiveModelBuilder element describes the output object with which the user will
interact. It is effectively an interactive version of the CreateModel0Output element.

Format

This element is used in the Execution section of a model builder node definition:
<Node ... type="modelBuilder" ... >

<Execution>
<Constructors>
<CreatelnteractiveModelBuilder ... >

</CreatelnteractiveModelBuilder>

Chapter 5. Building Models and Documents 85

</Constructors>
</Execution>

</Node>
The format of the element itself is:

<CreatelnteractiveModelBuilder type="output object id">

<Condition/>

<And>

<0r>

<Not>

<CreateModel type="model_id" target="container_id" sourceFile="container_file_id" />

<CreateDocument type="model id" target="container_id" sourceFile="container file id" />
</CreatelnteractiveModelBuilder>

where type (required) is the identifier of the output object that is created by the InteractiveModelBuilder
element.

The Condition section enables you to specify one or more conditions. See the topic [“Conditions” on page
for more information.

You can also specify complex conditions involving the And, Or and Not operators. See the topic
Dperators” on page 67| for more information.

In the CreateModel and CreateDocument elements
* type is the identifier of the model or document being defined.

* target (required) is the identifier of the container for the model; this container is defined in a Model
Output section. See the topic ["Model Output” on page 83| for more information.

* sourceFile (required) is the identifier of an output file that is generated during node execution; this
file is defined in an Output Files section. See the topic [“Output Files” on page 53| for more information.

Example
<CreatelnteractiveModelBuilder type="my.interaction">

<Condition property="interactive" op="equals" value="true" />
</CreatelnteractiveModelBuilder>

This example specifies that an output object with the identifier my.interaction will be created on
execution of the model builder node for which the specification contains this element. The output object
itself is defined elsewhere in the specification file, by an InteractiveModelBuilder element referencing
this identifier—for example:

<InteractiveModelBuilder id="my.interaction" label=...>
</InteractiveModelBuilder>

Interactive Model Builder
This element defines an interactive output object, which enables an end user to refine or simplify a model
before generating it.

The InteractiveModelBuilder element follows the definition of a model builder node that contains the
corresponding CreatelnteractiveModelBuilder element. See the topic [“Create Interactive Model Builder”|
for more information.

Format

The format of the InteractiveModelBuilder element is:

86 IBM SPSS Modeler 18.0 CLEF Developer's Guide

<Node ... type="modelBuilder" ... >
- Create Interactive Model Builder section --
<}Néde>
<ir.1"cer‘act1'veMode1Bu1'1der id="identifier" label="display label" labelKey="label key">

<Properties>
<Property name=... />

</Properties>
<Containers>
<Container name="container_name" />
</Containers>
<UserInterface ... />
<Constructors ... />
</InteractiveModelBuilder>

where:

* id (required) is a unique identifier for the generated model.

* label (required) is the display name for the generated model as it is to appear on the Models tab.
* TlabelKey identifies the label for localization purposes.

For more information about the Properties, Containers, UserInterface and Constructors elements, see
‘Properties” on page 48 [’Containers” on page 50)‘User Interface Section” on page 100}, and |“Using]
Constructors” on page 95

Example of Interactive Modeling
This example illustrates how you can define a model builder node in such a way that users can choose
via a simple check box whether or not to interact before generating the model.

To see this working in practice, use the Interaction example node provided with this release. See the topic
['Model Builder Node (Interaction)” on page 25| for more information.

First, the model builder node specifies a Boolean property:
<Node id="interaction.builder" type="modelBuilder" ... >

<Properties>
<Property name="interactive" valueType="boolean" />
</Properties>

In the User Interface section of the node specification, the section that defines the Model tab includes a
reference to this property:
<Tab Tabel="Model">
<PropertiesPanel>
<CheckBoxControl property="interactive" label="Start an interactive session" />
</PropertiesPanel>
</Tab>

In the CreateInteractiveModelBuilder section for the same node, the setting of the property is tested
and, if true, an interactive output object is created:

<CreatelnteractiveModelBuilder type="my.interaction">
<Condition property="interactive" op="equals" value="true" />
</CreatelnteractiveModelBuilder>

The output object to which it refers is defined in the InteractiveModelBuilder section of the extension:

Chapter 5. Building Models and Documents ~ 87

<InteractiveModelBuilder id="my.interaction" label="Interaction Test">
<Properties>
</Properties>
<Containers>
</Containers>
<UserInterface actionHandler="ui.InteractionHandler">
<Controls>
<ToolbarItem action="generateModel" showLabel="false" />
</Controls>
<Tabs>
<Tab label="Model">
<kExtensionObjectPanel id="model.panel" panelClass=
"ui.SamplelnteractionPanel" />
</Tab>
<Tab label="Generic">
<ExtensionObjectPanel id="generic.panel" panelClass=
"ui.GenericInteractionPanel" />
</Tab>
</Tabs>
</UserInterface>
</InteractiveModelBuilder>

The action to generate the model is controlled by the toolbar button defined by the ToolbarItem element.

Note the use of the panelClass attribute of the ExtensionObjectPanel element to specify a Java class to
control the user interface for each tab of the interaction window.

Automated Modeling

IBM SPSS Modeler provides as standard a group of ensemble modeling nodes, such as the Auto
Classifier, Auto Cluster, and Auto Numeric nodes. These nodes automate the building of a number of
different models concurrently, allowing the end user to compare the results and choose the best model for
their data. CLEF provides the AutoModeling element to enable a model specified by the Model1Builder
element to be used by any of these ensemble nodes.

The format of the AutoModeling element is:
<AutoModeling enabledByDefault="true false">
<SimpleSettings ... />
<ExpertSettings ... />

<Constraint ... />
<Constraint ... />
</AutoModeling>

where enabledByDefault specifies whether the model is enabled for use by default in the ensemble
modeling node (that is, the Use? column is checked by default for that particular model). If this attribute
is omitted, the value true is assumed.

In an ensemble modeling node dialog box, the Expert tab lists the models that users can choose to build.

Clicking Specify in the Model parameters field for a particular model displays an Algorithm Settings
dialog box, where the user can choose options for that model type.

The Algorithm Settings dialog box contains Simple and Expert tabs, corresponding to the Simple and

Expert execution modes of the modeling node. The contents of the Simple and Expert tabs are controlled
by the SimpleSettings and ExpertSettings elements, which are described in the sections that follow.

88 IBM SPSS Modeler 18.0 CLEF Developer's Guide

In addition, Constraint elements enable you to specify conditions that allow the end user to edit, or in
some way constrain, parameters in the Algorithm Settings dialog box. See the topic [“Constraints” on|
for more information.

Some parameters in the Algorithm Settings dialog box can take multiple values. Where multiple values
are specified, the ensemble node will attempt to build models for all possible combinations of parameter
values. For example, with a Generalized Linear model, if the user specifies two distributions (normal and
gamma) and three link functions (identity, log, and power), the Auto Numeric node attempts to build six
Generalized Linear models, one for each possible combination of those parameters.

Simple Settings

The SimpleSettings element determines which parameters are to appear on the Simple tab of the
Algorithm Settings dialog box for this model in an ensemble modeling node. See the topic
Modeling” on page 88| for more information.

Format

<SimpleSettings>
<PropertyGroup Tabel="group name" 1abelKey="resource key" properties="[prop_namel
prop_name2 ...]"/>
<PropertyGroup ... />

</SimpleSettings>

In a PropertyGroup element (at least one is required):

label is a display label for the property group, inserted as a subheading into the dialog box ahead of the
first parameter in the group.

labelKey identifies the label for localization purposes. If neither Tabel nor 1abelKey is used, no
subheading is inserted.

properties (required) is a list of one or more properties that are to appear on the tab. The value of
prop_namel, prop_name2, etc., is the value of the name attribute of the Property element in which this
property is defined. See the topic |‘Properties” on page 48| for more information.

Example
<SimpleSettings>

<PropertyGroup properties="[method]"/>
</SimpleSettings>

This example from the Discriminant node specifies that only the Method parameter will appear on the
Simple tab of the Algorithm Settings dialog box for that model in the relevant ensemble modeling node
(in this case, the Auto Classifier node). Because no 1abel or 1abelKey attribute is specified, no subheading
for the parameter is displayed in the dialog box.

Expert Settings

The ExpertSettings element determines which parameters are to appear on the Expert tab of the
Algorithm Settings dialog box for this model in an ensemble modeling node. See the topic
Modeling” on page 88| for more information.

Format

<ExpertSettings>
<Condition ... />
<PropertyGroup label="group name" 1abelKey="resource key"

Chapter 5. Building Models and Documents 89

properties="[propertyl property? ...1"/>
<PropertyGroup ... />

</ExpertSettings>
The Condition element specifies a condition which, if true, causes the parameters identified by the

subsequent PropertyGroup element or elements to be enabled. See the topic [“Conditions” on page 68| for
more information.

In a PropertyGroup element (at least one is required):

label is a display label for the property group, inserted as a subheading into the dialog box ahead of the
first parameter in the group.

TabelKey identifies the label for localization purposes. If neither Tabel nor TabelKey is used, no
subheading is inserted.

properties (required) is a list of one or more properties that are to appear on the tab. The value of
prop_namel, prop_name2, etc., is the value of the name attribute of the Property element in which this
property is defined. See the topic |‘Properties” on page 48| for more information.

Examples

In the following example, the Expert tab of the Algorithm Settings dialog box has the Mode parameter
initially set to Simple.

~ Algorithm settings - Discriminant

FParameter Cptions

mode Simple

Figure 31. Expert settings disabled

The following specifies that the other Expert tab parameters are enabled only if the user changes the
Mode parameter setting to Expert:

<ExpertSettings>

<Condition property="mode" op="equals" value="Expert"/>

<PropertyGroup properties="[mode prior_probabilities covariance matrix]"/>
</ExpertSettings>

Changing the Mode setting to Expert enables the two parameters in the property group.

« Algorithm settings - Discriminant
Farameter Cptions

Mode Expert =

FPrior prohabilities All groups equal

LIze covariance matrix Within-groups

Figure 32. Expert settings enabled

The next example illustrates the use of labels for the property group:

90 IBM SPSS Modeler 18.0 CLEF Developer's Guide

<ExpertSettings>

<PropertyGroup labelKey="automodel.stepping_criteria_options"
properties="[stepwise_method V_to_enter criteria]"/>

</ExpertSettings>

Here, the PropertyGroup element controls the parameters highlighted in the following illustration.

« Algorithm settings - Discriminant
| Parameter Options |
Made Expert |24
Frior probahilities All groups equal

Lse covariance matrix Within-groups

Stepping Criteria option{s)
Fhethad Wilks' lambda

Criteria Use F value

F value option{s)

Entry 3.84
Femaoval 2.7
Probahility option(s)

Statistics output option(s)

Means false
Univariate ANOWVAS false
false o

I Simple _' Expert [

| Ok J| Cancel || Help |

Figure 33. Expert settings disabled

The TabelKey attribute enables CLEF to retrieve the display text for the property group subheading from
the corresponding entry in the property file for the extension:

automodel.stepping_criteria_options=Stepping Criteria option(s)

See the topic [“Property Files” on page 159 for more information.

Constraints

The Constraint element specifies the conditions that permit editing, or possible constraint in some way,
of the parameters listed in the Algorithm Settings dialog box for a model in an ensemble modeling node.
For example, certain parameters can be disabled if the end user is not currently permitted to modify
them.

Format

<Constraint property="prop name" singleSelection="true false">
<Condition property="prop_name" op="operator" value="value"/>
<And ... />
<Or ... />
<Not ... />

</Constraint>

Chapter 5. Building Models and Documents 91

where:

* property (required) identifies a parameter to be edited or constrained. prop_name is the value of the
name attribute of the Property element in which the property corresponding to this parameter is
defined. See the topic [“Properties” on page 48| for more information.

* singleSelection controls whether the end user can select more than one of the available values for a
parameter. If set to true, only one value can be selected even if more than one value is listed in the
Options field for that parameter in the Algorithm Settings dialog box. If set to false (default), the user
can choose one or more of the available values, as illustrated in the example that follows.

The Condition element specifies the actual constraint. See the topic [“Conditions” on page 68| for more
information.

The And, Or, and Not elements can be used to specify compound conditions. See the topic
Dperators” on page 67| for more information.

Example

This example is taken from the specification file for the Generalized Linear node. Even in Expert mode,
some parameters are not enabled by default.

~ Algorithm settings - Generalized Linear

o &

Farameter | Cptions
hode Expert
Distribution Marmal
Link function |dentity
Singularity tolerance 1E-007
alue order for categarical inputs Ascending
Parameter estimation option(s) —

Scale parameter method Maxirmum likelihood estimate

Figure 34. Effect of a constraint—parameter disabled

The constraint specifies the conditions under which the Value parameter is enabled:
<Constraint property="scale_value">
<And>
<Condition property="scale _method" op="equals" value="FixedValue"/>
<Condition property="distribution" op="in" value="[IGAUSS GAMMA NORMAL]"/>
</And>
</Constraint>

The Scale parameter method parameter (identified by the scale_method property) must be set to Fixed

value, and the Distribution must be Normal, Inverse Gaussian, or Gamma before the Value parameter
can be enabled.

92 IBM SPSS Modeler 18.0 CLEF Developer's Guide

«+ Algorithm settings - Generalized Linear

FParameter Cptions |

Maode Expert |54
Distributian Marmal
Litik funition Identity
Singularity tolerance 1E-007

alue order for categorical inputs Ascending
Farameter estimation option{s) —
Scale parameter method Fixed value

alue 1.0

Figure 35. Effect of a constraint—parameter enabled

Applying Models

Applying a model means using a generated model to score data, that is, to use information gained from
model building to create predictions for new records. In IBM SPSS Modeler, you achieve this by means of
a model applier node. See the topic [“Model Applier Nodes” on page 12| for more information.

Defining a model applier node in the specification file creates the framework for applying a generated
model. In IBM SPSS Modeler, you create an instance of a model applier node by dragging the icon that
represents the model output object from the Models tab of the manager pane onto the stream canvas.
Without a model applier node definition, executing the model builder node would just generate an
unrefined model, which cannot be added to the stream canvas.

When defining a model applier node, the Node element must include:
* A type="modelApplier" attribute

* A Constructors child element containing a CreateModel0Output element (see [“Using Constructors” onl|

For the format of a Node element specification, see ['Node” on page 45

Building Documents

When defining a document builder node, the Node element must include:
* A type="documentBuilder" attribute
¢ A DocumentBuilder child element

For document building, the extension also needs a DocumentOutput element to describe the generated
document. See the topic [“Model Output” on page 83| for more information.

For the format of a Node element specification, see ['Node” on page 45

Document Builder

The DocumentBuilder element defines the behavior of a document builder node. The definition must
include a DocumentGeneration child element to specify which tab on the document builder node dialog

Chapter 5. Building Models and Documents 93

box will contain the document generation controls. The controls themselves are defined in the User
Interface section (see [Chapter 6, “Building User Interfaces,” on page 99) .

Format

<DocumentBuilder>
<DocumentGeneration controlsld="control_identifier />
</DocumentBuilder>

where controlsld (required) is the identifier used by the system controls to specify where the document
generation controls should appear.

Example

<DocumentBuilder>
<DocumentGeneration controlsId="1"/>
</DocumentBuilder>

Document Output

The DocumentQOutput element describes a document output object--an object that will appear under the
Outputs tab in the manager pane following execution of a stream.

Format

<DocumentOutput id="identifier" label="display label" labelKey="label key" delegate="Java class" >
<Properties>
<Property ... />

</Properties>
<Containers>
<Container ... />

</Containers>

<UserlInterface ... />

<Constructors ... />
</DocumentQutput>

where:

* id (required) is a unique identifier for the generated document.

* Tlabel (required) is the display name for the generated document as it is to appear on the Outputs tab.
* TlabelKey identifies the label for localization purposes.

The child elements that can be contained within the DocumentOutput element are shown in the following
table.

Table 32. Child elements of document output declaration.

Child element Defines See...

Properties Properties to be used by the generated [“Properties” on page 48|
document.

Containers Containers in which generated document output |[‘Containers” on page 50|

will be placed.

UserInterface User interface through which generated [“User Interface” on page 51|
document output can be viewed.

Constructors Objects produced by the generated document. [“Using Constructors” on page 95|

94 IBM SPSS Modeler 18.0 CLEF Developer's Guide

Table 32. Child elements of document output declaration (continued).
Child element Defines See...

delegate If specified, defines the name of a Java class that
implements the OutputDelegate interface. An
instance of the specified class will be constructed
for each instance of the associated output

Example

<DocumentOutput id="webstatusreport">
<Containers>
<Container name="webstatusreportdata" />
</Containers>
<UserInterface>
<Tabs>
<Tab label="Advanced" labelKey="advancedTab.LABEL" >
<TextBrowserPanel container="webstatusreportdata" textFormat="html1" />
</Tab>
</Tabs>
</UserInterface>
</DocumentOutput>

Using Constructors

A Constructors element can appear in either of two places in the specification file:
* In the Execution section of a node definition (for model or document output objects)
* In a Model Output definition (for a model applier node)

Only one output object can be generated by a node. This limitation is imposed for consistency with
existing nodes and the scripting and client API interfaces to these types of nodes.

Format

The format of the Constructors element when used in an Execution section is:

<Constructors>
<CreateModelOutput ... />

<CreateDocumentOutput ... />
<CreatelnteractiveModelBuilder ... />
</Constructors>

In a Model Output definition the format is:

<Constructors>
<CreateModelApplier ... />
</Constructors>

Create Model Output

This section defines how a model output object is created on the Models tab or how a document output
object is created on the Outputs tab.

Format

Chapter 5. Building Models and Documents 95

<CreateModelOutput type="output object id">
<Condition/>
<And>
<0r>
<Not>
<CreateModel type="model id" target="container id" sourceFile="container file id" />

<CreateDocument type="document_id" target="container_id" sourceFile="container_file_ id" />

</CreateModelQutput>

In the CreateModelOQutput element:

* type (required) is the identifier of a model output object that is defined in a Model Output section. See
the topic[“Model Output” on page 47| for more information.

The Condition section enables you to specify one or more conditions. See the topic [“Conditions” on page]
for more information.

You can also specify complex conditions involving the And, Or, and Not operators. See the topic
Dperators” on page 67| for more information.

In the CreateModel and CreateDocument elements
* type is the identifier of the model or document being defined.

* target (required) is the identifier of the container for the model; this container is defined in a Model
Output section. See the topic ["Model Output” on page 83| for more information.

* sourceFile (required) is the identifier of an output file that is generated during node execution; this
file is defined in an Output Files section. See the topic [“Output Files” on page 53| for more information.

Example
<Constructors>
<CreateModelQutput type="naivebayes">
<CreateModel type="naivebayes model" target="model" sourceFile="pmml1"/>
<CreateDocument type="html _output" target="advanced output" sourceFile="htmloutput" />
<CreateDocument type="zip_outputType" target="zip_ output" sourceFile="zipoutput" />
</CreateModel0utput>
</Constructors>

Create Document Output

This element is used in the Execution section of a document builder node definition and identifies the
document output object that is being created.

Format
<CreateDocumentOutput type="output object id">
<Condition/>
<And>
<0r>
<Not>
<CreateModel type="model_id" target="container_id" sourceFile="container_file_id" />

<CreateDocument type="document id" target="container_id" sourceFile="container file id" />

</CreateModelOutput>

where type (required) is the identifier of a document output object that is defined in a Document Output
section. See the topic [‘Document Output” on page 48| for more information.

96 1BM SPSS Modeler 18.0 CLEF Developer's Guide

The Condition section enables you to specify one or more conditions. See the topic [‘Conditions” on page
for more information.

You can also specify complex conditions involving the And, Or, and Not operators. See the topic
Dperators” on page 67| for more information.

In the CreateModel and CreateDocument elements:
* type is the identifier of the model or document being defined.

* target (required) is the identifier of the container for the model; this container is defined in a Model
Output section. See the topic [“Model Output” on page 83| for more information.

* sourceFile (required) is the identifier of an output file that is generated during node execution; this
file is defined in an Output Files section. See the topic [“Output Files” on page 53| for more information.

Example

<Constructors>
<CreateDocumentOutput type="webstatusreport">
<CreateDocument type="webstatusreport" target="webstatusreportdata"
sourceFile="webstatusreport output file" />
</CreateDocumentOutput>
</Constructors>

Create Interactive Model Builder

This element is used in the Execution section of an interactive model builder node definition and
identifies the output object with which the user will interact. See the topic [‘Create Interactive Modell
Builder” on page 85| for more information.

Create Model Applier

This element is used within a Constructors element in the Model Output section of a model builder node
definition (see [“Model Output” on page 83). The CreateModelApplier element defines how a model
applier node is created when a model output object generated by the model builder node is dropped
onto the canvas.

Format

<CreateModelApplier type="apply node identifier">
<Condition/>
<And>
<0r>
<Not>
<CreateModel type="model id" target="container id" sourceFile="container file id" />

<CreateDocument type="document_id" target="container_id" sourceFile="container_file_ id" />
</CreateModelApplier>

In the CreateModelApplier element:

* type (required) is the identifier of the model applier node to be created; this node is actually defined
in a Node ... type="modelApplier" element later in the file.

The Condition section enables you to specify one or more conditions. See the topic [‘Conditions” on page
for more information.

You can also specify complex conditions involving the And, Or and Not operators. See the topic
Dperators” on page 67| for more information.

Chapter 5. Building Models and Documents 97

In the CreateModel and CreateDocument elements:
* type is the identifier of the model or document being defined.

* target (required) is the identifier of the container for the model; this container is defined in a Model
Output section. See the topic [“Model Output” on page 83| for more information.

* sourceFile (required) is the identifier of an output file that is generated during node execution; this
file is defined in an Output Files section. See the topic [‘Output Files” on page 53| for more information.

Example

In the following example, the CreateModelApplier element contains a forward reference to the model
applier node named myapplier. This node is defined in the subsequent Node element.
<ModeT1Output>

<Constructors>

<CreateModelApplier type="myapplier"></CreateModelApplier>

</Constructors>
</ModelOQutput>
<Node id="myapplier" type="modelApplier">

</Node>

98 IBM SPSS Modeler 18.0 CLEF Developer's Guide

Chapter 6. Building User Interfaces

About User Interfaces

When adding a new CLEF node, you need to define how the end user will interact with the node and
any model output, document output, or apply nodes that the extension specifies. The user interface for
each object is defined in a UserInterface section of the specification file for the extension. This chapter
provides a detailed description of the UserInterface section.

Note: There can be more than one UserInterface section in a single specification file, depending on what
types of objects are defined in the file.

The user interface to a CLEF object consists of one or more of the following:
* Menu entry

* Palette entry

* Icons

* One or more dialog windows

* One or more output windows

Menu entries and palette entries provide access to the object from the IBM SPSS Modeler menu system
and node palettes, respectively. Icons identify objects on the menus, on the drawing canvas, and in the
various node palettes. Dialog windows contain tabs and controls to enable users to specify various
options before a stream is executed and, optionally, to specify output to be produced when execution
completes. Output windows are used to display model output (such as the results of applying a model
to a set of data) or document output (such as a graph).

CLEF enables you to add new types of objects to the standard ones provided by IBM SPSS Modeler and
supports a consistent approach to defining the user interface for these new