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Preface

IBM® SPSS® Modeler is the IBM Corp. enterprise-strength data mining workbench. SPSS
Modeler helps organizations to improve customer and citizen relationships through an in-depth
understanding of data. Organizations use the insight gained from SPSS Modeler to retain
profitable customers, identify cross-selling opportunities, attract new customers, detect fraud,
reduce risk, and improve government service delivery.

SPSS Modeler’s visual interface invites users to apply their specific business expertise, which
leads to more powerful predictive models and shortens time-to-solution. SPSS Modeler offers
many modeling techniques, such as prediction, classification, segmentation, and association
detection algorithms. Once models are created, IBM® SPSS® Modeler Solution Publisher
enables their delivery enterprise-wide to decision makers or to a database.

About IBM Business Analytics

IBM Business Analytics software delivers complete, consistent and accurate information that
decision-makers trust to improve business performance. A comprehensive portfolio of business
intelligence, predictive analytics, financial performance and strategy management, and analytic
applications provides clear, immediate and actionable insights into current performance and the
ability to predict future outcomes. Combined with rich industry solutions, proven practices and
professional services, organizations of every size can drive the highest productivity, confidently
automate decisions and deliver better results.

As part of this portfolio, IBM SPSS Predictive Analytics software helps organizations predict
future events and proactively act upon that insight to drive better business outcomes. Commercial,
government and academic customers worldwide rely on IBM SPSS technology as a competitive
advantage in attracting, retaining and growing customers, while reducing fraud and mitigating
risk. By incorporating IBM SPSS software into their daily operations, organizations become
predictive enterprises — able to direct and automate decisions to meet business goals and achieve
measurable competitive advantage. For further information or to reach a representative visit
http://www.ibm.com/spss.

Technical support

Technical support is available to maintenance customers. Customers may contact Technical
Support for assistance in using IBM Corp. products or for installation help for one of the
supported hardware environments. To reach Technical Support, see the IBM Corp. web site
at http://www.ibm.com/support. Be prepared to identify yourself, your organization, and your
support agreement when requesting assistance.


http://www-01.ibm.com/software/data/businessintelligence/
http://www-01.ibm.com/software/data/businessintelligence/
http://www-01.ibm.com/software/analytics/spss/
http://www-142.ibm.com/software/products/us/en/category/SWQ30
http://www-142.ibm.com/software/products/us/en/category/SWQ10
http://www-142.ibm.com/software/products/us/en/category/SWQ10
http://www.ibm.com/spss
http://www.ibm.com/support




Adjusted Propensities Algorithms

Adjusted propensity scores are calculated as part of the process of building the model, and will
not be available otherwise. Once the model is built, it is then scored using data from the test or
validation partition, and a new model to deliver adjusted propensity scores is constructed by
analyzing the original model’s performance on that partition. Depending on the type of model,
one of two methods may be used to calculate the adjusted propensity scores.

Model-Dependent Method

For rule set and tree models, the following method is used:

1. Score the model on the test or validation partition.

2. Tree models. Calculate the frequency of each category at each tree node using the test/validation
partition, reflecting the distribution of the target value in the records scored to that node.
Rule set models. Calculate the support and confidence of each rule using the test/validation
partition, reflecting the model performance on the test/validation partition.
This results in a new rule set or tree model which is stored with the original model. Each time
the original model is applied to new data, the new model can subsequently be applied to the raw
propensity scores to generate the adjusted scores.

General Purpose Method

For other models, the following method is used:

1. Score the model on the test or validation partition to compute predicted values and predicted
raw propensities.

2. Remove all records which have a missing value for the predicted or observed value.

3. Calculate the observed propensities as 1 for true observed values and 0 otherwise.

4. Bin records according to predicted raw propensity using 100 equal-count tiles.

5. Compute the mean predicted raw propensity and mean observed propensity for each bin.

6. Build a neural network with mean observed propensity as the target and predicted raw propensity

as a predictor. For the neural network settings:

Use a random seed, value 0
Use the "quick” training method
Stop after 250 cycles
Do not use prevent overtaining option
Use expert mode
Quick Method Expert Options:
Use one hidden layer with 3 neurons and persistence set to 200
Learning Rates Expert Options:
Alpha 0.9



Adjusted Propensities Algorithms

Initial Eta 0.3
High Eta 0.1

Eta decay 50
Low Eta 0.01

The result is a neural network model that attempts to map raw propensity to a more accurate
estimate which takes into account the original model’s performance on the testing or validation
partition. To calculate adjusted propensities at score time, this neural network is applied to the raw
propensities obtained from scoring the original model.



Anomaly Detection Algorithm

Overview

The Anomaly Detection procedure searches for unusual cases based on deviations from the
norms of their cluster groups. The procedure is designed to quickly detect unusual cases for data-
auditing purposes in the exploratory data analysis step, prior to any inferential data analysis. This
algorithm is designed for generic anomaly detection; that is, the definition of an anomalous case
is not specific to any particular application, such as detection of unusual payment patterns in the
healthcare industry or detection of money laundering in the finance industry, in which the
definition of an anomaly can be well-defined.

Primary Calculations

Notation

The following notation is used throughout this chapter unless otherwise stated:

ID
n

Xoi k=1, ..., K
M k € {1, ..., K}

SD, k € {1, ..., K}

XK+1

Xk, k=1, ..., K

H, or the boundaries of H:
[Hminv Hmax]

np,h=1, ..., H

ph,h=1, ..., H

Mnk, k=1, ...,K+1,h=1,

SDnk, k € {1, ..., K+1}, h
=1, ...,H

{nnkj}, ke {1, ....,K}, h=
1. Hj=1 ..., Xk

m

VDI, k=1, ..., K+1

The identity variable of each case in the data file.
The number of cases in the training data Xirajn -
The set of input variables in the training data.

If Xok is a continuous variable, M represents the grand mean, oraverage of
the variable across the entire training data.

If Xok is a continuous variable, SDk represents the grand standard deviation,
or standard deviation of the variable across the entire training data.

A continuous variable created in the analysis. It represents the percentage of
variables (k =1, ..., K) that have missing values in each case.

The set of processed input variables after the missing value handling is
applied. For more information, see the topic “Modeling Stage.”

H is the pre-specified number of cluster groups to create. Alternatively, the
bounds [Hmin, Hmax] can be used to specify the minimum and maximum
numbers of cluster groups.

The number of cases in cluster h, h=1, ..., H, based on the training data.

The proportion of cases in cluster h, h=1, ..., H, based on the training
data. For each h, pp=np/n.

If Xk is a continuous variable, Mp represents the cluster mean, or average
of the variable in cluster h based on the training data. If X is a categorical
variable, it represents the cluster mode, or most popular categorical value of
the variable in cluster h based on the training data.

If X is a continuous variable, SDp represents the cluster standard deviation,
or standard deviation of the variable in cluster h based on the training data.

The frequency set {nnkj} is defined only when X is a categorical variable.
If Xk has Jk categories, then np; is the number of cases in cluster h that fall
into category j.

An adjustment weight used to balance the influence between continuous and
categorical variables. It is a positive value with a default of 6.

The variable deviation index of a case is a measure of the deviation of
variable value Xk from its cluster norm.
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GDI The group deviation index GDI of a case is the log-likelihood distance d(h,
s), which is the sum of all of the variable deviation indices {VDIy, k = 1,
oy K+1}.

anomaly index The anomaly index of a case is the ratio of the GDI to that of the average
GDiI for the cluster group to which the case belongs.

variable contribution The variable contribution measure of variable Xy for a case is the ratio of

measure the VDI to the case’s corresponding GDI.

Pctanomaly O Nanomaly A pre-specified value pctanomaly determines the percentage of cases to be

considered as anomalies. Alternatively, a pre-specified positive integer value
Nanomaly determines the number of cases to be considered as anomalies.

cutpointanomaly A pre-specified cutpoint; cases with anomaly index values greater than
cutpointanomaly are considered anomalous.
Kanomaly A pre-specified integer threshold 1<kanomaly<K+1 determines the number of

variables considered as the reasons that the case is identified as an anomaly.

Algorithm Steps
This algorithm is divided into three stages:

Modeling. Cases are placed into cluster groups based on their similarities on a set of input
variables. The clustering model used to determine the cluster group of a case and the sufficient
statistics used to calculate the norms of the cluster groups are stored.

Scoring. The model is applied to each case to identify its cluster group and some indices are
created for each case to measure the unusualness of the case with respect to its cluster group.
All cases are sorted by the values of the anomaly indices. The top portion of the case list is
identified as the set of anomalies.

Reasoning. For each anomalous case, the variables are sorted by its corresponding variable
deviation indices. The top variables, their values, and the corresponding norm values are presented
as the reasons why a case is identified as an anomaly.

Modeling Stage

This stage performs the following tasks:

1 Training Set Formation. Starting with the specified variables and cases, remove any case with
extremely large values (greater than 1.0E+150) on any continuous variable. If missing value
handling is not in effect, also remove cases with a missing value on any variable. Remove variables
with all constant nonmissing values or all missing values. The remaining cases and variables are
used to create the anomaly detection model. Statistics output to pivot table by the procedure are
based on this training set, but variables saved to the dataset are computed for all cases.

2. Missing Value Handling (Optional). For each input variable Xqk, k =1, ..., K, if Xqk is a continuous
variable, use all valid values of that variable to compute the grand mean My and grand standard
deviation SDk. Replace the missing values of the variable by its grand mean. If Xgkis a
categorical variable, combine all missing values into a “missing value” category. This category is
treated as a valid category. Denote the processed form of {Xqk} by {Xk}.
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3. Creation of Missing Value Pct Variable (Optional). A new continuous variable, Xk+1, is created that
represents the percentage of variables (both continuous and categorical) with missing values in
each case.

4. Cluster Group Identification. The processed input variables {Xk, k = 1, ..., K+1} are used to create

a clustering model. The two-step clustering algorithm is used with noise handling turned on (see
the TwoStep Cluster algorithm document for more information).

5. Sufficient Statistics Storage. The cluster model and the sufficient statistics for the variables by
cluster are stored for the Scoring stage:

m The grand mean My and standard deviation SDy of each continuous variable are stored,
ke {1, ..., K+1}.

m  Foreach clusterh =1, ..., H, store the size np. If Xk is a continuous variable, store the cluster
mean Mpk and standard deviation SDpk of the variable based on the cases in cluster h. If Xk is
a categorical variable, store the frequency npkj of each category j of the variable based on the
cases in cluster h. Also store the modal category Mnk. These sufficient statistics will be used
in calculating the log-likelihood distance d(h, s) between a cluster h and a given case s.

Scoring Stage

This stage performs the following tasks on scoring (testing or training) data:

1 New Valid Category Screening. The scoring data should contain the input variables {Xqk,k= 1, ...,
K} in the training data. Moreover, the format of the variables in the scoring data should be the
same as those in the training data file during the Modeling Stage.

Cases in the scoring data are screened out if they contain a categorical variable with a valid
category that does not appear in the training data. For example, if Region is a categorical variable
with categories IL, MA and CA in the training data, a case in the scoring data that has a valid
category FL for Region will be excluded from the analysis.

2 Missing Value Handling (Optional). For each input variable Xgk, if Xok is a continuous variable, use
all valid values of that variable to compute the grand mean My and grand standard deviation SDk.
Replace the missing values of the variable by its grand mean. If Xy is a categorical variable,
combine all missing values and put together a missing value category. This category is treated
as a valid category.

3. Creation of Missing Value Pct Variable (Optional depending on Modeling Stage). If X4+ is created in
the Modeling Stage, it is also computed for the scoring data.

4. Assign Each Case to its Closest Non-Noise Cluster. The clustering model from the Modeling Stage
is applied to the processed variables of the scoring data file to create a cluster ID for each case.
Cases belonging to the noise cluster are reassigned to their closest non-noise cluster. See the
TwoStep Cluster algorithm document for more information on the noise cluster.

5 Calculate Variable Deviation Indices. Given a case s, the closest cluster h is found. The variable
deviation index VDI of variable X is defined as the contribution di(h, s) of the variable to its
log-likelihood distance d(h, s). The corresponding norm value is Mnk, which is the cluster sample
mean of Xy if Xy is continuous, or the cluster mode of X if X is categorical.
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6. Calculate Group Deviation Index. The group deviation index GDI of a case is the log-likelihood
distance d(h, s), which is the sum of all the variable deviation indices {VDIy, k=1, ..., K+1}.

7. Calculate Anomaly Index and Variable Contribution Measures. Two additional indices are calculated
that are easier to interpret than the group deviation index and the variable deviationindex.

The anomaly index of a case is an alternative to the GDI, which is computed as the ratio of the
case’s GDI to the average GDI of the cluster to which the case belongs. Increasing values of this
index correspond to greater deviations from the average and indicate better anomaly candidates.

A variable’s variable contribution measure of a case is an alternative to the VDI, which is
computed as the ratio of the variable’s VDI to the case’s GDI. This is the proportional contribution
of the variable to the deviation of the case. The larger the value of this measure, the greater

the variable’s contribution to the deviation.

0dd Situations

Zero Divided by Zero

The situation in which the GDI of a case is zero and the average GDI of the cluster that the case
belongs to is also zero is possible if the cluster is a singleton or is made up of identical cases and
the case in question is the same as the identical cases. Whether this case is considered as an
anomaly or not depends on whether the number of identical cases that make up the cluster is large
or small. For example, suppose that there is a total of 10 cases in the training and two clusters are
resulted in which one cluster is a singleton; that is, made up of one case, and the other has nine
cases. In this situation, the case in the singleton cluster should be considered as an anomaly as it
does not belong to the larger cluster. One way to calculate the anomaly index in this situation is to
set it as the ratio of average cluster size to the size of the cluster h, which is:

n/H

T

Following the 10 cases example, the anomaly index for the case belonging to the singleton cluster
would be (10/2)/1 = 5, which should be large enough for the algorithm to catch it as an anomaly.
In this situation, the variable contribution measure is set to 1/(K+1), where (K+1) is the number of
processed variables in the analysis.

Nonzero Divided by Zero

The situation in which the GDI of a case is nonzero but the average GDI of the cluster that the case
belongs to is 0 is possible if the corresponding cluster is a singleton or is made up of identical cases
and the case in question is not the same as the identical cases. Suppose that case i belongs to cluster
h, which has a zero average GDI; that is, average(GDI), = 0, but the GDI between case i and
cluster h is nonzero; that is, GDI(i, h) # 0. One choice for the anomaly index calculation of case i
could be to set the denominator as the weighted average GDI over all other clusters if this value is
not 0; else set the calculation as the ratio of average cluster size to the size of cluster h. That is,
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H

GDIi.h) if —1 Z ns - average(GDI), # 0

ns - average(GDI), (n_nh}s_—l #h

otherwise

7 T
Ty =1,

n/H
Tojy

This situation triggers a warning that the case is assigned to a cluster that is made up of identical
cases.

Reasoning Stage

Every case now has a group deviation index and anomaly index and a set of variable deviation
indices and variable contribution measures. The purpose of this stage is to rank the likely
anomalous cases and provide the reasons to suspect them of being anomalous.

1 Identify the Most Anomalous Cases. Sort the cases in descending order on the values of the anomaly
index. The top pctanomaly % (or alternatively, the top nanomaty) gives the anomaly list, subject

to the restriction that cases with an anomaly index less than or equal to cutpointanomaly are not
considered anomalous.

2 Provide Reasons for Considering a Case Anomalous. For each anomalous case, sort the variables by
their corresponding VDI values in descending order. The top Kanomaly variable names, its value
(of the corresponding original variable Xqk), and the norm values are displayed as reasoning.

Blank Handling

Blanks and missing values are handled in model building as described in “Algorithm Steps”,
based on user settings.

Generated Model/Scoring
The Anomaly Detection generated model can be used to detect anomalous records in new data
based on patterns found in the original training data. For each record scored, an anomaly score is
generated and a flag indicating anomaly status and/or the anomaly score are appended as new fields
Predicted Values
For each record, the anomaly score is calculated as described in “Scoring Stage”, based on the

cluster model created when the model was built. If anomaly flags were requested, they are
determined as described in “Reasoning Stage.”

Blank Handling

In the generated model, blanks are handled according to the setting used in building the model.
For more information, see the topic “Scoring Stage.”






Apriori Algorithms

Overview

Apriori is an algorithm for extracting association rules from data. It constrains the search space
for rules by discovering frequent itemsets and only examining rules that are made up of frequent
itemsets (Agrawal and Srikant, 1994).

Apriori deals with items and itemsets that make up transactions. Items are flag-type conditions
that indicate the presence or absence of a particular thing in a specific transaction. An itemset is a
group of items which may or may not tend to co-occur within transactions.

IBM® SPSS® Modeler uses Christian Borgelt’s Apriori implementation. Full details on this
implementation can be obtained at

http://fuzzy.cs.uni-magdeburg.de/~borgelt/doc/apriori/apriori.html.

Deriving Rules

Apriori proceeds in two stages. First it identifies frequent itemsets in the data, and then it
generates rules from the table of frequent itemsets.

Frequent Itemsets

The first step in Apriori is to identify frequent itemsets. A frequent itemset is defined as an
itemset with support greater than or equal to the user-specified minimum support threshold Smin.
The support of an itemset is the number of records in which the itemset is found divided by
the total number of records.

The algorithm begins by scanning the data and identifying the single-item itemsets (i.e.
individual items, or itemsets of length 1) that satisfy this criterion. Any single items that do
not satisfy the criterion are not be considered further, because adding an infrequent item to an
itemset will always result in an infrequent itemset.

Apriori then generates larger itemsets recursively using the following steps:

» Generate a candidate set of itemsets of length k (containing k items) by combining existing
itemsets of length (& — 1)

For every possible pair of frequent itemsets p and g with length (¢ — 1) compare the

first (= — 2)items (in lexicographic order); if they are the same, and the last iteminq is
(lexicographically) greater than the last item in p, add the last item in g to the end of p to create a
new candidate itemset with length k.

» Prune the candidate set by checking every (¢ — 1) length subset of each candidate itemset; all
subsets must be frequent itemsets, or the candidate itemset is infrequent and is removed from
further consideration.

» Calculate the support of each itemset in the candidate set, as

support =


http://fuzzy.cs.uni-magdeburg.de/%7Eborgelt/doc/apriori/apriori.html
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where NN, is the number of records that match the itemset and N is the number of records in the
training data. (Note that this definition of itemset support is different from the definition used for
rule support.)

» Itemsets with support > Smin are added to the list of frequent itemsets.

» If any frequent itemsets of length k were found, and k is less than the user-specified maximum
rule size kmax, repeat the process to find frequent itemsets of length (k+1).

Generating Rules

When all frequent itemsets have been identified, the algorithm extracts rules from the frequent
itemsets. For each frequent itemset L with length k > 1, the following procedure is applied:

» Calculate all subsets A of length (¢ — 1) of the itemset such that all the fields in A are input fields
and all the other fields in the itemset (those that are not in A) are output fields. Call the latter
subset A. (In the first iteration this is just one field, but in later iterations it can be multiple fields.)

» For each subset A, calculate the evaluation measure (rule confidence by default) for the rule
A = A asdescribed below.

» If the evaluation measure is greater than the user-specified threshold, add the rule to the rule table,
and, if the length k’ of A is greater than 1, test all possible subsets of A with length (& — 1)

Evaluation Measures

Apriori offers several evaluation measures for determining which rules to retain. The different
measures will emphasize different aspects of the rules, as detailed in the IBM® SPSS® Modeler
User’s Guide. Values are calculated based on the prior confidence and the posterior confidence,

defined as

c
Cpr'ior' - ‘T
and

r
Cpo.v;te* rior — T
a

where ¢ is the support of the consequent, a is the support of the antecedent, r is the support of
the conjunction of the antecedent and the consequent, and N is the number of records in the
training data.

Rule Confidence. The default evaluation measure for rules is simply the posterior confidence
of the rule,

f
f— | .
C = })().‘)‘ff"]'f()l"

Confidence Difference (Absolute Confidence Difference to Prior). This measure is based on the
simple difference of the posterior and prior confidence values,
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€= ‘Cp()stﬁr'inr' - C'vp'f'ffﬂ'l

Confidence Ratio (Difference of Confidence Quotient to 1). This measure is based on the ratio of
posterior confidence to prior confidence,

1
e=1—min (Cpo,stm’m,. Clorior )

Corior  C -
‘prior "E)().‘:‘f(-"l’lf)."

Information Difference (Information Difference to Prior). This measure is based on the information
gain criterion, similar to that used in building C5.0 trees. The calculation is

r-log () + (a—r)log (£) + (¢ — 1) log (£) + (1 — a — ¢ + 1) log (:=4=2T)

e = a-c a-c
log (2)

where r is the rule support, a is the antecedent support, ¢ is the consequent support, @ = 1 — a IS
the complement of antecedent support, and ¢ = 1 — ¢ is the complement of consequent support.

Normalized Chi-square (Normalized Chi-squared Measure). This measure is based on the chi-squared
statistical test for independence of categorical data, and is calculated as

(a-c—r1)°
€= ——""=
a-a-c-c¢

Blank Handling

Blanks are ignored by the Apriori algorithm. The algorithm will handle records containing blanks
for input fields, but such a record will not be considered to match any rule containing one or
more of the fields for which it has blank values.

Effect of Options

Minimum rule support/confidence. These values place constraints on which rules may be entered
into the table. Only rules whose support and confidence values exceed the specified values can be
entered into the rule table.

Maximum number of antecedents. This determines the maximum number of antecedents that will
be examined for any rule. When the number of conditions in the antecedent part of the rule equals
the specified value, the rule will not be specialized further.

Only true values for flags. If this option is selected, rules with values of false will not be considered
for either input or output fields.

Optimize Speed/Memory. This option controls the trade-off between speed of processing and
memory usage. Selecting Speed will cause Apriori to use condition values directly in the frequent
itemset table, and to load the transactions into memory, if possible. Selecting Memory will

cause Apriori to use pointers into a value table in the frequent itemset table. Using pointers in
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the frequent itemset table reduces the amount of memory required by the algorithm for large
problems, but it also involves some additional work to reference and dereference the pointers
during model building. The Memory option also causes Apriori to process transactions from
the file rather than loading them into memory.

Generated Model/Scoring

The Apriori algorithm generates an unrefined rule node. To create a model for scoring new
data, the unrefined rule node must be refined to generate a ruleset node. Details of scoring for
generated ruleset nodes are given below.

Predicted Values

Predicted values are based on the rules in the ruleset. When a new record is scored, it is compared
to the rules in the ruleset. How the prediction is generated depends on the user’s setting for
Ruleset Evaluation in the stream options.

®m  Voting. This method attempts to combine the predictions of all of the rules that apply to the
record. For each record, all rules are examined and each rule that applies to the record is used
to generate a prediction. The sum of confidence figures for each predicted value is computed,
and the value with the greatest confidence sum is chosen as the final prediction.

m  First hit. This method simply tests the rules in order, and the first rule that applies to the record
is the one used to generate the prediction.

There is a default rule, which specifies an output value to be used as the prediction for records
that don’t trigger any other rules from the ruleset. For rulesets derived from decision trees, the
value for the default rule is the modal (most prevalent) output value in the overall training data.
For association rulesets, the default value is specified by the user when the ruleset is generated
from the unrefined rule node.

Confidence

Confidence calculations also depend on the user’s Ruleset Evaluation stream options setting.

m Voting. The confidence for the final prediction is the sum of the confidence values for rules

triggered by the current record that give the winning prediction divided by the number of rules
that fired for that record.

m  First hit. The confidence is the confidence value for the first rule in the ruleset triggered by
the current record.

If the default rule is the only rule that fires for the record, it’s confidence is set to 0.5.

Blank Handling

Blanks are ignored by the algorithm. The algorithm will handle records containing blanks for
input fields, but such a record will not be considered to match any rule containing one or more of
the fields for which it has blank values.



Automated Data Preparation
Algorithms

The goal of automated data preparation is to prepare a dataset so as to generally improve the
training speed, predictive power, and robustness of models fit to the prepared data.

These algorithms do not assume which models will be trained post-data preparation. At the end
of automated data preparation, we output the predictive power of each recommended predictor,
which is computed from a linear regression or naive Bayes model, depending upon whether the
target is continuous or categorical.

Notation

The following notation is used throughout this chapter unless otherwise stated:

X A continuous or categorical variable
Zi Value of the variable X for case i.
fi Frequency weight for case i. Non-integer positive values are rounded to the nearest

integer. If there is no frequency weight variable, then all f; = 1 . If the frequency
weight of a case is zero, negative or missing, then this case will be ignored.

wi Analysis weight for case i. If there is no analysis weight variable, then all w, = 1. If
the analysis weight of a case is zero, negative or missing, then this case will be ignored.

Number of cases in the dataset

Nx > fif (; is not missing), where I (expression) is the indicator function taking
value 1 when the expression is true, 0 otherwise.

Wx S Jowi I (i is not missing)

JN.VAY Y

> fil (x; and y; are not missing)
=1

'I'.]':X}- n

Z fewid (25 and y; are not missing)

=1

|

The mean of variable X, ﬁz fiwia d (x; IS not missing)
=1

MY n i
Z Jiwi(a; — T)'
i=1
Ty "
w— > fiwizid (xi and y; are not missing)
i=1
My n

A note on missing values

Listwise deletion is used in the following sections:
m  “Univariate Statistics Collection
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“Basic Variable Screening
“Measurement Level Recasting ”
“Missing Value Handling ”

“Qutlier Identification and Handling ”
“Continuous Predictor Transformations ”
“Target Handling

“Reordering Categories ”

“Unsupervised Merge

Pairwise deletion is used in the following sections:
m “Bivariate Statistics Collection ”

“Supervised Merge

“Supervised Binning ”

“Feature Selection and Construction ”

“Predictive Power ”

A note on frequency weight and analysis weight

The frequency weight variable is treated as a case replication weight. For example if a case has
a frequency weight of 2, then this case will count as 2 cases.

The analysis weight would adjust the variance of cases. For example if a case x; of a variable X
has an analysis weight «;, then we assume that =; ~ v (;1.‘ j’—z)

Frequency weights and analysis weights are used in automated preparation of other variables, but
are themselves left unchanged in the dataset.

Date/Time Handling

Date Handling

If there is a date variable, we extract the date elements (year, month and day) as ordinal variables.
If requested, we also calculate the number of elapsed days/months/years since the user-specified
reference date (default is the current date). Unless specified by the user, the “best” unit of duration
is chosen as follows:

1. If the minimum number of elapsed days is less than 31, then we use days as the best unit.

2. If the minimum number of elapsed days is less than 366 but larger than or equal to 31, we use
months as the best unit. The number of months between two dates is calculated based on average
number of days in a month (30.4375): months = days / 30.4375.

3. If the minimum number of elapsed days is larger than or equal to 366, we use years as the best
unit. The number of years between two dates is calculated based on average number of days in a
year (365.25): years = days / 365.25.
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Once the date elements are extracted and the duration is obtained, then the original date variable
will be excluded from the rest of the analysis.

Time Handling

If there is a time variable, we extract the time elements (second, minute and hour) as ordinal
variables. If requested, we also calculate the number of elapsed seconds/minutes/hours since
the user-specified reference time (default is the current time). Unless specified by the user, the
“best” unit of duration is chosen as follows:

1. If the minimum number of elapsed seconds is less than 60, then we use seconds as the bestunit.

2. If the minimum number of elapsed seconds is larger than or equal to 60 but less than 3600, we
use minutes as the best unit.

3. If the minimum number of elapsed seconds is larger than or equal to 3600, we use hours as the
best unit.

Once the elements of time are extracted and time duration is obtained, then original time predictor
will be excluded.

Univariate Statistics Collection

Continuous Variables

For each continuous variable, we calculate the following statistics:

Number of missing values: Ny "**"% =" | 1] (a; ismissing)

Number of valid values: Ny

Minimum value: min, z;

Maximum value: max; z;

Mean, standard deviation, skewness. (see below)

The number of distinct values 1.

The number of cases for each distinct value s;: ¢; = 7| [i] (x; = 5;)

Median: If the distinct values of X are sorted in ascending order, s, < s, < --- < sz, then the

3

median can be computed by M edian (X) = min {.s,_ P > 0.5}, where cc; = Z ci.
j=1

Note: If the number of distinct values is larger than a threshold (default is 5), we stop updating
the number of distinct values and the number of cases for each distinct value. Also we do not
calculate the median.

Categorical Numeric Variables

For each categorical numeric variable, we calculate the following statistics:
m  Number of missing values: N7 =S f.] (x,; is missing)
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Number of valid values: Ny

Minimum value: min; x; (only for ordinal variables)

Maximum value: max; z; (only for ordinal variables)

The number of categories.

The counts of each category.

Mean, Standard deviation, Skewness (only for ordinal variables). (see below)

Mode (only for nominal variables). If several values share the greatest frequency of
occurrence, then the mode with the smallest value is used.

m  Median (only for ordinal variables): If the distinct values of X are sorted in ascending order,
81 < s2 < --- < sp, then the median can be computed by M edian (X) = min {5; PNL > 0.5},

N
where c¢; = 23:1 i

Notes:

1 Ifan ordinal predictor has more categories than a specified threshold (default 10), we stop
updating the number of categories and the number of cases for each category. Also we do not
calculate mode and median.

2 If a nominal predictor has more categories than a specified threshold (default 100), we stop
collecting statistics and just store the information that the variable had more than threshold
categories.

Categorical String Variables

For each string variable, we calculate the following statistics:

m  Number of missing values: Ny =Y | i1 (x; ismissing)

®  Number of valid values: Ny

®  The number of categories.

m  Counts of each category.

®  Mode: If several values share the greatest frequency of occurrence, then the mode with the

smallest value is used.

Note: If a string predictor has more categories than a specified threshold (default 100), we stop
collecting statistics and just store the information that the predictor had more than threshold
categories.

Mean, Standard Deviation, Skewness
We calculate mean, standard deviation and skewness by updating moments.
L startwith N7 = w” =z =y = ar3l” = o.

2 Forj=1,..,n compute:
NY = NUTY £, (s not missing)
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W = w4 fid (2 is not missing)

?J = ],':.-'?‘J (,1 7:1_1(.?_1))

T =71 4

VR = gp2t-n Wl wIT

AV ‘:\: — iV _( T Ti‘j

3G agBliel) o a1 W wETY ) Y3
;‘lf‘\— = “\‘[X *BT‘J:;‘.IX | W W N 2]‘, w; ?"j

3. After the last case has been processed, compute:
Mean: 7 = 7"

2(n)
MY
Nx 1

Standard deviation: sd =

N x 1 13[ n)

Skewness: skew = LXx=2) “:’3’3’”‘ :

If Ny <2 orsd?< 107" then skewness is not calculated.

Basic Variable Screening

1. If the percent of missing values is greater than a threshold (default is 50%), then exclude the
variable from subsequent analysis.

2. For continuous variables, if the maximum value is equal to minimum value, then exclude the
variable from subsequent analysis.

3. For categorical variables, if the mode contains more cases than a specified percentage (default
is 95%), then exclude the variable from subsequent analysis.

4. If astring variable has more categories than a specified threshold (default is 100), then exclude the
variable from subsequent analysis.

Checkpoint 1: Exit?

This checkpoint determines whether the algorithm should be terminated. If, after the screening
step:

1. The target (if specified) has been removed from subsequent analysis, or

2. All predictors have been removed from subsequent analysis,

then terminate the algorithm and generate an error.

Measurement Level Recasting

For each continuous variable, if the number of distinct values is less than a threshold (default
is 5), then it is recast as an ordinal variable.
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For each numeric ordinal variable, if the number of categories is greater than a threshold (default
is 10), then it is recast as a continuous variable.

Note: The continuous-to-ordinal threshold must be less than the ordinal-to-continuous threshold.

Outlier Identification and Handling
In this section, we identify outliers in continuous variables and then set the outlying values to a

cutoff or to a missing value. The identification is based on the robust mean and robust standard
deviation which are estimated by supposing that the percentage of outliers is no more than 5%.

Identification

1 Compute the mean and standard deviation from the raw data. Split the continuous variable into

non-intersecting intervals: I; = (Z + (i — 1) X 8dy,, T + @ X sdy],i = —3, — 2,---,2,3,4. where
I 3= (—00,% —3sd,). Iy = (T+ 3sd,,, + oc] and sd,, = sd x , f;;}lff =

2 Calculate univariate statistics in each interval:
Ny =300 fil (g € L), Wi, = 300 frwd (25 € 1)

’_‘ fjwymgI{x; i) - .
ZF] Jié-lj-'j,J = ' ‘WEZLH fJ”j(‘ Fli)zl(”'jEL')

3 Leti=-3,r=4,andp=0.

T, =

4. Between two tail intervals I; and I, find one interval with the least number of cases.

5 If Ny < Ny , then N urrent = \‘; Check if p + peyrrent 15 1€8S than a threshold pyj,,.ecnorq (default
'5065) if it does then b pwrrens and I = I + 1, gO to step 4; otherwise, go to step 6.

Else pryrrent = \. . Check if p + prwrrent 18 1€SS than a threshold, pyjvesnoia. 1 itis, then
P =P+ Pewrrent and r =7 — 1, go to step 4; otherwise, go to step 6.

6. Compute the robust mean ..., and robust standard deviation sd, ... Within the range
(F+(1—1) x sd, T +r x sd]. See below for details.

7. If x; satisfies the conditions:
V/u_'a ((??-,‘, - Tr-obu.-,-‘l) < —(‘"(Lt()ff X Sd!'r)ilusl or Vv Wy (-T'i. - T‘r-nbua!) > (’UtOff X Sdrr)bu.ﬁl

where cutoff is positive number (default is 3), then z; is detected as an outlier.

Handling

Outliers will be handled using one of following methods:

m  Trimoutliers to cutoff values. If /w, (2, — Tropust) < —cutof f X sd,onus then replace x; by
Trobust — CUutof f X sdyopust /05, and i /i (2, — Tropust) > cutof f x sdronas then replace
i BY Tropust + cutof f X sdyopust //Wi-

m  Set outliers to missing values.
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Update Univariate Statistics

After outlier handling, we perform a data pass to calculate univariate statistics for each continuous
variable, including the number of missing values, minimum, maximum, mean, standard deviation,
skewness, and number of outliers.

Robust Mean and Standard Deviation

Robust mean and standard deviation within the range (z + (I — 1) x sd,T + r x sd] are calculated

as follows:
r o
T bt = Z-i_l H‘LLII‘L
L rooust T T T
Zi:[ "W 1;
and

M2
Sdmbusi = ?T#
>N —1
~T A = — 2
where ﬂIQ = L‘?;I A‘Ji and A.i"\; — —"‘Lfi + W .’g(:r'r'uh'u.sf. - -Tfi)

robust

Missing Value Handling

Continuous variables. Missing values are replaced by the mean, and the following statistics are
updated:

m  Standard deviation: sd x \V Ma-l where N = Ny | N§"en9,

m  Skewness: skew x £, where L, = (\L) “‘AQ;;Q) and L, = /g

The number of missing values: N =
The number of valid values: Nx= N

Ordinal variables. Missing values are replaced by the median, and the following statistics are
updated:

m  The number of cases in the median category: c,,,.iu, + Nuw'*"", Where c,..qi,, is the
original number of cases in the median category.

m  The number of missing values: N} =0
m  The number of valid values: Nx= N

Nominal variables. Missing values are replaced by the mode, and the following statistics are
updated:

m  The number of cases in the modal category: c,,oq. - A-f’{"""‘"‘"“” , where ¢,,,... is the original
number of cases in the modal category.

The number of missing values: N7 =
The number of valid values: Ny= N
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Continuous Predictor Transformations

We transform a continuous predictor so that it has the user-specified mean 7, ... (default
0) and standard deviation sd,, ..., (default 1) using the z-score transformation, or minimum
min,, .- (default 0) and maximum max,,.., (default 100) value using the min-max transformation.

Z-score Transformation

Suppose a continuous variable has mean = and standard deviation sd. The z-score transformation is

x; = X (x; —T) + Tuser

where z; is the transformed value of continuous variable X for case i.

Since we do not take into account the analysis weight in the rescaling formula, the rescaled values

x; follow a normal distribution N (I,m,r, s, )

w;
Update univariate statistics

After a z-score transformation, the following univariate statistics are updated:
= Number of missing values: N7/**'" = N
m  Number of valid values: Ny = Nx

®  Minimum value: min (r:) = ”iT (minx; —F) + Tyser

®  Maximum value: max (1?) = ”’—d (maxx; — F) + Tyser
B Mean: 7 = To.or
m  Standard deviation: sd (:r') = 5dyser

‘

m  Skewness: skew (r ) = skew (x)

Min-Max Transformation

Suppose a continuous variable has a minimum value min x; and a minimum value max z;. The
min-max transformation is

r 0 MAaXyger — Millyeer . )
x; = , % (a; — minx;) + min
max r; — min ; user

where z; is the transformed value of continuous variable X for case i.

Update univariate statistics

After a min-max transformation, the following univariate statistics are updated:

m  The number of missing values: \X’” = Nyiesne
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®m  The number of valid values: Ny =Ny

®  Minimum value: min (12) = mily .

m  Maximum value: max (7!) = MaXyuer

m Mean:z — H * (T — minz;) + ming e,

m Standard deviation: sd (;) = MaXueer—Mibuser o g

max r; —1min x;

B SKwness: skew (:r’> = skew (1)

Target Handling

Nominal Target

For a nominal target, we rearrange categories from lowest to highest counts. If there is a tie on
counts, then ties will be broken by ascending sort or lexical order of the data values.

Continuous Target

The transformation proposed by Box and Cox (1964) transforms a continuous variable into one
that is more normally distributed. We apply the Box-Cox transformation followed by the z score
transformation so that the rescaled target has the user-specified mean and standard deviation.

Box-Cox transformation. This transforms a non-normal variable Y to a more normally distributed
variable:

((yi=e)*~1
9 (A) =g (yi, \) = f) A7 0
In(y; —¢) A=0

where y;,7 = 1,2, ---,n are observations of variable Y, and c is a constant such that all values
y; — c are positive. Here, we choose ¢ = min (V) — 1.

The parameter A is selected to maximize the log-likelihood function:

Ny [Ny —1
L\ = B Iy

S Y (/\)))2} +(A-1) ; filn (y; — ¢)

where (sd (g (A))" = 5225 220, fiwi(gi () —F(A;))7and G (A) = 5= 27| fiwigi(A).

We perform a grid search over a user-specified finite set [a,b] with increment s. By default a=—3,
b=3, and s=0.5.

The algorithm can be described as follows:

1. Compute \; =a + (j — 1) *x s where j is an integer such that a < ; < b.
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2. For each A;, compute the following statistics:

Mean: g (X)) = w20, fiwigi(A))

Standard deviation: sd (g (\;)) = /3=y 20 fiwi(gs (A)) — g

XL N fw (g (A)—TIA))P
Skewness: skew (g (),)) = L= By =l) 2

sd(g(A; s

Sum of logarithm transformation: > | fiIn(y; —¢)

3. For each A;, compute the log-likelihood function L (A;). Find the value of j with the largest
log-likelihood function, breaking ties by selecting the smallest value of ;. Also find the
corresponding statistics 7 (A*), sd (g (A*)) @nd skew (g (A*))-

4. Transform target to reflect user’s mean 7,,...,. (default is 0) and standard deviation sd,.., (default
is 1):

! Sdyser " o _
= o i (AY) =g (A
%S o) (9i (A7) =g (A")) + Vs

where 7 (A*) = - 37, fiwigi(A7) and sd (9 (A7) = \/ =g 2000 fowilgs (A7) =g (A7)

Update univariate statistics. After Box-Cox and Z-score transformations, the following univariate
statistics are updated:

= Minimum value: e x (g (min (y;) — ¢, A7) =G (A) + Tyuer

i . Stlyser o . e * -
Maximum value: M({”(/\_)) X (g (max (y;) — ¢, A") = G (A*) + Yyser
Mean: 7, ..,

Standard deviation: sd,,..,

Skewness: skew (g (A*))

Bivariate Statistics Collection

For each target/predictor pair, the following statistics are collected according to the measurement
levels of the target and predictor.

Continuous target or no target and all continuous predictors

If there is a continuous target and some continuous predictors, then we need to calculate the
covariance and correlations between all pairs of continuous variables. If there is no continuous
target, then we only calculate the covariance and correlations between all pairs of continuous
predictors. We suppose there are there are m continuous variables, and denote the covariance
matrix as ', x.m, With element ¢,;, and the correlation matrix as R,,, x., with element ;.

We define the covariance between two continuous variables X and Y as
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1 n
Xy = mzl Jiwi(zi —7y) (yi —¥.)
i=

where 7, = 37" | @1 (a;and y; are not missing) and
— 1 T ) P
Ve = e 2ory uil (xj and y; are not missing).

The covariance can be computed by a provisional means algorithm:

Startwith N} = W =z, =3, = M) =o.

For j=1,..,n compute:
N = NUSY 4 f,1 (2 and v, are not missing)
Wil =wUrY & fiw, I (a; and y, are not missing)

a _ fiwj . -
Vaj = 00 (zj —7y)
Xy

Ty =Ty + Uy

fit

i Ty

2 (Y =)
XY

-UIL‘ = y:c | ."“SU‘

o0 gli—1 — — ('Ju:,':
M'}g;- = ;"'JA(\"-'Y "y (x; —Ty) (y; — ¥a) (fj'if‘j - 71’1;{‘;._,7) >
After the last case has been processed, we obtain:

Myy = ;‘»IF\G}Z = Z:}.,l fiwi (x; —7y) (s — U,)
Compute bivariate statistics between X and Y:

Number of valid cases: Nyy

Mxy

Covariance: cxy = x5

Correlation: ryy = —=2X*—

VEXXAVCYY
Note: If there are no valid cases when pairwise deletion is used, then we let cxy = 0and rxy = 0.
Categorical target and all continuous predictors

For a categorical target Y with values s = 1,2, -- -, ./ and a continuous predictor X with values
x,,- - x,, the bivariate statistics are:

Mean of X for each Y=i, i=1,...,J:

2= fiwiail (y; = i)
> i fiwi I (y; = 1)

T, =
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Sum of squared errors of X for each Y=i, i=1,...,J:
. 2
M2 = Z fiwia; —74)71 (y; = 1)
i=1

Sum of frequency weight for each Y=i, i=1,...,J:

n
N, — Z fil (y; =i A x; is not missing)
J=1

Number of invalid cases
J

;\’YX}' — E A"T,lj
i=1

Sum of weights (frequency weight times analysis weight) for each Y=i, i=1,...,J:

n
W, — Z fiwiI (yj =i Az is not missing)
=1

Continuous target and all categorical predictors

For a continuous target Y and a categorical predictor X with values i=1,...,J, the bivariate statistics
include:

Mean of Y conditional upon X:

I n .
Z-i,l ZJZI f]EI‘JEfJI (:'l_fj — .1)
-~ :

Y, =
Sum of squared errors of Y:

n
M3 = Z fiwi(y; —7,)°
=1

Mean of Y for each X =4, i=1,...,J:

_— Z;}:l fjwjyil (v =)
LSy e ey




Automated Data Preparation Algorithms

Sum of squared errors of Y for each X =4, i=1,...,J:
Z Frwily; = 7,071 (0 = i)
Sum of frequency weights for X = ¢, i=1,...,J:

n
N, — Z fiI (zj = i Ay, is not missing)

Sum of weights (frequency weight times analysis weight) for X =4, i=1,...,.J:

n
Wi = Z fjw;I (x; =i A y; 1S not missing)
Jj=1
Categorical target and all categorical predictors

For a categorical target Y with values j=1,...,J and a categorical predictor X with values i=1,...,1,
then bivariate statistics are:

Sum of frequency weights for each combination of ;. = 4 and y;, = j:

n
Nij =Y fil (wp =i~y =)

Sum of weights (frequency weight times analysis weight) for each combination of x;, = i and
Y. = _]

n
1?J = Zf‘!"”"kf (3.',(; =1 A Yg :j)

kel

Categorical Variable Handling

In this step, we use univariate or bivariate statistics to handle categorical predictors.

Reordering Categories

For a nominal predictor, we rearrange categories from lowest to highest counts. If there is a tie on
counts, then ties will be broken by ascending sort or lexical order of the data values. The new field
values start with 0 as the least frequent category. Note that the new field will be numeric even if
the original field is a string. For example, if a nominal field’s data values are “A”, “A”, “A”, “B”,
“C”, “C”, then automated data preparation would recode “B” into 0, “C” into 1, and “A” into 2.
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Identify Highly Associated Categorical Features

If there is a target in the data set, we select a ordinal/nominal predictor if its p-value is not larger
than an alpha-level a..;...;.,, (default is 0.05). See “P-value Calculations ” for details of
computing these p-values.

Since we use pairwise deletion to handle missing values when we collect bivariate statistics,
we may have some categories with zero cases; that is, :V;. = 0 for a category i of a categorical
predictor. When we calculate p-values, these categories will be excluded.

If there is only one category or no category after excluding categories with zero cases, we set the
p-value to be 1 and this predictor will not be selected.

Supervised Merge

We merge categories of an ordinal/nominal predictor using a supervised method that is similar to a
Chaid Tree with one level of depth.

1. Exclude all categories with zero case count.
2. If X has 0 categories, merge all excluded categories into one category, thenstop.
3. If X has 1 category, go to step 7.

4. Else, find the allowable pair of categories of X that is most similar. This is the pair whose test
statistic gives the largest p-value with respect to the target. An allowable pair of categories for an
ordinal predictor is two adjacent categories; for a nominal predictor it is any two categories. Note
that for an ordinal predictor, if categories between the ith category and jth categories are excluded
because of zero cases, then the ith category and jth categories are two adjacent categories. See
“P-value Calculations ” for details of computing these p-values.

5. For the pair having the largest p-value, check if its p-value is larger than a specified alpha-level
aeetection (default is 0.05). If it does, this pair is merged into a single compound category and
at the same time we calculate the bivariate statistics of this new category. Then a new set of
categories of X is formed. If it does not, then go to step 6.

6. Goto step 3.

7. For an ordinal predictor, find the maximum value in each new category. Sort these maximum
values in ascending order. Suppose we have r new categories, and the maximum values are:
11 < 12 < .-+ <i,, then we get the merge rule as: the first new category will contain all original
categories such that X < 4,, the second new category will contain all original categoriessuch that
i1 < X < is,..., and the last new category will contain all original categories such that X > i,_,.

For a nominal predictor, all categories excluded at step 1 will be merged into the new category
with the lowest count. If there are ties on categories with the lowest counts, then ties are broken
by selecting the category with the smallest value by ascending sort or lexical order of the original
category values which formed the new categories with the lowest counts.
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Bivariate statistics calculation of new category

When two categories are merged into a new category, we need to calculate the bivariate statistics
of this new category.

Scale target. If the categories i and i can be merged based on p-value, then the bivariate statistics
should be calculated as:

~\7.".'.i' =N; . A \.l
H_.'_I:J, =W;. + N i
W
U . =1Y; . + == (E LU )
Yii ? G i - ! !

2 T, S N —_ \2
MPo = ME A ME AW (T =T ) AW (T — T )

Categorical target. If the categories i and i can be merged based on p-value, then the bivariate
statistics should be calculated as:

Niig = Nij + Ny

L]

Update univariate and bivariate statistics

At the end of the supervised merge step, we calculate the bivariate statistics for each new category.

For univariate statistics, the counts for each new category will be sum of the counts of each

original categories which formed the new category. Then we update other statistics according to

the formulas in the “Univariate Statistics Collection” section, though note that the statistics only

need to be updated based on the new categories and the numbers of cases in these categories.
P-value Calculations

Each p-value calculation is based on the appropriate statistical test of association between the
predictor and target.

Scale target

We calculate an F statistic:

L Wim - (- 1)
Z{_—l Uzz/ (Zf;l N — I)
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where 3, = Lfii

Based on F statistics, the p-value can be derived as

e <F (1—12\ _I> >F>

where I (1 1LY N - 1) is a random variable following a F distribution with 1 — 1 and
ZE N1 degrees of freedom.

At the merge step we calculate the F statistic and p-value between two categoriesi and i of X as
. _ 2 ;i _ 2
B Wi (,Uz‘.. - yz:.v"-) + Wy (.U?"- - Um’-)
(M2 +M2) [ (N; + Ny —2)
p=Pr(F(L,N, + Ny —2)>F)

where 7, - is the mean of Y for a new category 7,7 merged by i and i":

11} B B
Wi+ W, (T — i)

yh;.zzyi-+
and (I — 1, N,. + N, —2) is a random variable following a F distribution with 1 and
Nj. + N, — 2 degrees of freedom.

Nominal target

The null hypothesis of independence of X and Y is tested. First a contingency (or count) table is
formed using classes of Y as columns and categories of the predictor X as rows. Then the expected
cell frequencies under the null hypothesis are estimated. The observed cell frequencies and the
expected cell frequencies are used to calculate the Pearson chi-squared statistic and the p-value:

J 1 2
oy oy Q)
mu

J=11i=1

where Ni; =37, fid (2 =i Ay, = j) is the observed cell frequency and +iu;; is the edimeted
expected cell frequency for cell (x;, =4,y = j) following the independence model. If 1iz;; =0,
then ‘77’” 0. How to estimate +7,; is described below.

The corresponding p-value is given by p = Pr (2 > X?), where x; follows a chi-squared
distribution with d = (J — 1) (I — 1) degrees of freedom.

When we investigate whether two categories i and ' of X can be merged, the Pearson chi-squared
statistic is revised as
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] T -~ AT A 2
=y (Nij — 1hig)” N (Nirj —1hirj)

=1 'TH,,'J»,' my

and the p-value is given by p = Pr (x3_; > X?).

Ordinal target

Suppose there are | categories of X, and J ordinal categories of Y. Then the null hypothesis of

the independence of X and Y is tested against the row effects model (with the rows being the
categories of X and columns the classes of Y) proposed by Goodman (1979). Two sets of expected
cell frequencies, 7i;; (under the hypothesis of independence) and 17;; (under the hypothesis that
the data follow a row effects model), are both estimated. The likelihood ratio statistic is

H?-;' _ ) mijln (-r?f,,‘_j/'rh,;j) mij /g >0
' 0 else

The p-value is given by p = Pr (x7_, > H?).

Estimated expected cell frequencies (independence assumption)

If analysis weights are specified, the expected cell frequency under the null hypothesis of
independence is of the form

— v g
mij = W, ;3

where «; and 3; are parameters to be estimated, and w;; = ‘iJ if N;; > 0, otherwise w,; = 1.

i

Parameter estimates _, 3;, and hence 7i;;, are obtained from the following iterative procedure.

- (0) A0 () —
1. k=00, =537 =1 my =w;

k41 N k
2. (}5 ) :_j—_v-lw:n:_ ) “!.\,
Z_, w5 Z‘_, .
3. .fj’('l"‘l-) _ ‘N-—.J
=1 Z-im;l”ik'-#lj
4. (k+1) _ 1 (k+1) o(k+1)
m =W, B;
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If max; ; |m{ " —m{"| < e (default is 0.001) or the number of iterations is larger than a
threshold (default is 100), stop and output o ", 5" ") and ;™"

a,, 35, m;;. Otherwise, k = k + 1 and go to step 2.

as the final estimates

Estimated expected cell frequencies (row effects model)

In the row effects model, scores for classes of Y are needed. By default, s; (the order of a
class of Y) is used as the class score. These orders will be standardized via the following linear
transformation such that the largest score is 100 and the lowest score is 0.

] * Lk K o e*
S5 = 100 (’qj - “’miu) /(’5max Smm)

Where s* . and s*

“min “max

are the smallest and largest order, respectively.

The expected cell frequency under the row effects model is given by

where 5 = Z_j:l I-I-f!sj,ij:L W, inwhich W, = 52,W;;, and a;, 3;, and ~; are unknown
parameters to be estimated.

Parameter estimates &, /3 i 4, and hence n; ; are obtained from the following iterative procedure.

() Al0 (0) (0) ——1
1. k=00, = -‘OJ_E ) _ v =1, m;; =W
kit 1 N )W
2' (}_( ) = 1 0k . ) (5, =7) = (')'E )ZA‘ (
—_—— s <) - ) A m.
Z‘_i Wiy A (’} ) i
3. gkl _ N
] - Z mfl(‘[.[-!-‘-lj(_\_(f-‘_‘)[\J7?}
i 1 i b
4 (1) gty ()7 2 (i =D (N —miy)
My = W5 = 1i TME T > (s—F1Pmy
PaSs iy

(k '
S, (k1) {".r,_‘ )G{-_ Gi >0
' +* otherwise

6. . , ‘ . (5;—%)
(ktl)  ——1 (k+1) p(k+1) [ (k1) !
my T =w a8 ( Y )
(O max; ; m_Ej'“’ - m.,“,” < ¢ (default is 0.001) or the number of iterations is larger than a
threshold (default is 100), stop and output a{* ", 3"+ +**" and m|" "' as the final estimates

4,,1h;;. Otherwise, k = k + 1 and go to step 2.

Qg 55,

Unsupervised Merge

If there is no target, we merge categories based on counts. Suppose that X has I categories which
are sorted in ascending order. For an ordinal predictor, we sort it according to its values, while
for nominal predictor we rearrange categories from lowest to highest count, with ties broken
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by ascending sort or lexical order of the data values. Let ¢; be the number of cases for the ith
category, and Nx be the total number of cases for X. Then we use the equal frequency method
to merge sparse categories.

1. Startwith j; = jo =1 and g=1.
2. Ifj; > 1I,g0tostep 5.

3. X5 ¢ < [b% x Ny then j, — j, 1 1; otherwise the original categories j,, j, 4+ 1,.- ., j, Will
be merged into the new category g and let j; — Go o+ L J2 = jland g=g+1 then go to step 2.

4. If j» > I, then merge categories using one of the following rules:

i) If g = 1, then categories 1,2, ---,I — 1 will be merged into category g and | will be left
unmerged.

ii) If g=2, then j,, 4, + 1,---, I will be merged into category g=2.
iii) If g>2, then 7,5, +1,---, I will be merged into category g — 1.
If jo < I, then go to step 3.

5. Output the merge rule and merged predictor.

After merging, one of the following rules holds:

m Neither the original category nor any category created during merging has fewer than
[b% x Ny| cases, where b is a user-specified parameter satisfying 1 < b < 100 (default is
10) and [x] denotes the nearest integer of x.

®  The merged predictor has only two categories.

Update univariate statistics. \When original categories 7,7, + 1,---, j» are merged into one new
category, then the number of cases in this new category will be Z{ijl c¢;. Atthe end of the
merge step, we get new categories and the number of cases in each category. Then we update
other statistics according to the formulas in the “Univariate Statistics Collection” section,
though note that the statistics only need to be updated based on the new categories and the
numbers

of cases in these categories.

Continuous Predictor Handling

Continuous predictor handling includes supervised binning when the target is categorical,
predictor selection when the target is continuous and predictor construction when the target is
continuous or there is no target in the dataset.

After handling continuous predictors, we collect univariate statistics for derived or constructed
predictors according to the formulas in the “Univariate Statistics Collection” section. Any
derived predictors that are constant, or have all missing values, are excluded from further
analysis.
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Supervised Binning

If there is a categorical target, then we will transform each continuous predictor to an ordinal
predictor using supervised binning. Suppose that we have already collected the bivariate statistics
between the categorical target and a continuous predictor. Using the notations introduced in
“Bivariate Statistics Collection ”, the homogeneous subset will be identified by the Scheffe
method as follows:

If |[7.; — 74| < ceriticar then T; and T.; will be a homogeneous subset. where
Ceritical = Max (T.;) — min (Z;) if Nxy = J: otherwisec,pisicat = R * C. Where

R=/2(J =D Fia (=T, Nay —J) and C = MS x { 24 prg

The supervised algorithm follows:
1. Sort the means z.; in ascending order, denote as 7., < T.¢o) < --- < T.(,).

2. Startwith i=1 and g=J.

3. If |;T:_(,,) —T.(i)| < Ceritical- then {E_(-)j Ce L T } can be considered a homogeneous subset. At the
q
LATSERTY)
same time we compute the mean and standard deviation of this subset: Z.(; ,) = Z*,{ %’J and
—i (k)

; .where M7, = 30 Ay and A gy = MZ, + W) (T (i) Z.)°.
then seti = ¢ + 1 'md qg=J: Orhem iseqg=g¢q—1.

4. If i< J,gotostep 3.

5. Else compute the cut point of bins. Suppose we have r < J homogeneous subsets and we
assume that the means of these subsets are 7, , 7", -+, 7", and standard deviations are

Sy 8 )50y 87, then the cut points between the ith and (|+l)th homogeneous subsets are

-"“r'r,'z. te —% —
Computed as cut; = ‘I'[i} T m ('1'(1'41) — I[”>
6. Output the binning rules. Category 1: X < cut,; Category 2: cut; < X < cuto;...; Category
Deut._ < X.
Feature Selection and Construction

If there is a continuous target, we perform predictor selection using p-values derived from the
correlation or partial correlation between the predictors and the target. The selected predictors are
grouped if they are highly correlated. In each group, we will derive a new predictor using principal
component analysis. However, if there is no target, we will do not implement predictor selection.

To identify highly correlated predictors, we compute the correlation between a scale and a group as
follows: suppose that X is a continuous predictor and continuous predictors X, X,,---, X, form
a group G. Then the correlation between X and group G is defined as:

rxc =mwmin{|rxx |, X; € G}

where rx x, IS correlation between X and X',
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Let a,..., be the correlation level at which the predictors are identified as groups. The predictor
selection and predictor construction algorithm is as follows:

1 (Target is continuous and predictor selection is in effect ) If the p-value between a continuous
predictor and target is larger than a threshold (default is 0.05), then we remove this predictor from
the correlation matrix and covariance matrix. See “Correlation and Partial Correlation ”” on p.
34 for details on computing these p-values.

2. Start with o, = 0.9 and i=1.

3 Ifay.. < 0.1, stop and output all the derived predictors, their source predictors and coefficient
of each source predictor. In addition, output the remaining predictors in the correlation matrix.

4. Find the two most correlated predictors such that their correlation in absolute value is larger than
agroup, and put them in group i. If there are no predictors to be chosen, then go to step 9.

5. Add one predictor to group i such that the predictor is most correlated with group i and the
correlation is larger than «,,,.,,. Repeat this step until the number of predictors in group i is
greater than a threshold (default is 5) or there is no predictor to be chosen.

6. Derive a new predictor from the group i using principal component analysis. For more
information, see the topic “Principal Component Analysis.”

7. (Both predictor selection and predictor construction are in effect) Compute partial correlations
between the other continuous predictors and the target, controlling for values of the new predictor.
Also compute the p-values based on partial correlation. See “Correlation and Partial Correlation ™
for details on computing these p-values. If the p-value based on partial correlation between a
continuous predictor and continuous target is larger than a threshold (default is 0.05), then remove
this predictor from the correlation and covariance matrices.

8 Remove predictors that are in the group from the correlation matrix. Then let i=i+1 and go to
step 4.

9 Qgroup = Xgroup — 01; then go to Step 3.

Notes:

m If only predictor selection is needed, then only step 1 is implemented. If only predictor
construction is needed, then we implement all steps except step 1 and step 7. If both predictor
selection and predictor construction are needed, then all steps are implemented.

m If there are ties on correlations when we identify highly correlated predictors, the ties will be
broken by selecting the predictor with the smallest index in dataset.

Principal Component Analysis

Let X, X»,---,X,, be m continuous predictors. Principal component analysis can be described
as follows:

1. Input '), «m, the covariance matrix of X, Xu, .-, X,,..

2. Calculate the eigenvectors and eigenvalues of the covariance matrix. Sort the eigenvalues (and
corresponding eigenvectors) in descending order, A\, > Ao > ... > A,
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3. Derive new predictors. Suppose the elements of the first component v, are vy, v19,- -+, t1,,, then
the new derived predictor is :_)‘—I\_‘],Xl X l‘—A_]X(

==
VA

Correlation and Partial Correlation

Correlation and P-value

Let »x+- be the correlation between continuous predictor X and continuous target Y, then the
p-value is derived form the t test:

p= Pr (lt (f\‘r}(}’ — 2)| > ?f)

where ¢ (Nxy — 2) is a random variable with a t distribution with Nxy — 2 degrees of freedom,
and t = -er\/NX‘ffZ. Ifr3, =1, then set p=0; If Nxy < 2, then set p=1.

lf-r_:\.‘.

Partial correlation and P-value

For two continuous variables, X and Y, we can calculate the partial correlation between them
controlling for the values of a new continuous variable Z:

TXY ~TXZT'YZ

TXy|z = 5 5
\/1_"’"5(2\/1_'@'2

Since the new variable Z is always a linear combination of several continuous variables, we
compute the correlation of Z and a continuous variable using a property of the covariance rather
than the original dataset. Suppose the new derived predictor Z is a linear combination of original
predictors X, Xo, -+, X,

Z=a Xy +aXo+ -+ anXy

Then for any a continuous variable X (continuous predictor or continuous target), the correlation
between X and Z is

€ZX
CzZCXX

m m 2
where czx = S aiex x, and czz = S aiexx, 4 ZZ@'J ;005X -

Tzx =

If1—r%,0r1—ri,islessthan 107 let ryy |z = 0. If ry 7 is larger than 1, then set it to
15 If rxy |7 is less than —1, then set it to —1. (This may occur with pairwise deletion). Based on
partial correlation, the p-value is derived from the t test

p= Pr (lt (;\’vxy — 3)| = ?f)

where ¢ (Nxy — 3) is a random variable with a t distribution with Nxy — 3 degrees of freedom,
=3 If rﬁmz = 1, then set p=0; if Nxy < 3, then set p=1.
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Discretization of Continuous Predictors

Discretization is used for calculating predictive power and creating histograms.

Discretization for calculating predictive power

If the transformed target is categorical, we use the equal width bins method to discretize a
continuous predictor into a number of bins equal to the number of categories of the target.
Variables considered for discretization include:

m  Scale predictors which have been recommended.
m  Original continuous variables of recommended predictors.

Discretization for creating histograms

We use the equal width bins method to discretize a continuous predictor into a maximum of 400
bins. Variables considered for discretization include:

m  Recommended continuous variables.

m  Excluded continuous variables which have not been used to derive a new variable.
m  Original continuous variables of recommended variables.
]

Original continuous variables of excluded variables which have not been used to derive a
new variable.

m Scale variables used to construct new variables. If their original variables are also continuous,
then the original variables will be discretized.

m Date/time variables.
After discretization, the number of cases and mean in each bin are collected to create histograms.

Note: If an original predictor has been recast, then this recast version will be regarded as the
“original” predictor.

Predictive Power

Collect bivariate statistics for predictive power

We collect bivariate statistics between recommended predictors and the (transformed) target. If
an original predictor of a recommended predictor exists, then we also collect bivariate statistics
between this original predictor and the target; if an original predictor has a recast version, then
we use the recast version.

If the target is categorical, but a recommended predictor or its original predictor/recast version is
continuous, then we discretize the continuous predictor using the method in “Discretization of
Continuous Predictors ” and collect bivariate statistics between the categorical target and the
categorical predictors.
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Bivariate statistics between the predictors and target are same as those described in “Bivariate
Statistics Collection.”

Computing predictive power

Predictive power is used to measure the usefulness of a predictor and is computed with respect
to the (transformed) target. If an original predictor of a recommended predictor exists, then we
also compute predictive power for this original predictor; if an original predictor has a recast
version, then we use the recast version.

Scale target. When the target is continuous, we fit a linear regression model and predictive power
is computed as follows.

S v o
VEXXVOYY

2
m  Scale predictor: 7%, = (#)
I
m  Categorical predictor: 1 — =, where S, = > MZand Sy = 30" fiwi(yi — 7.)".
i=1

Categorical target. If the (transformed) target is categorical, then we fit a naive Bayes model and
the classification accuracy will serve as predictive power. We discretize continuous predictors
as described in “Discretization of Continuous Predictors”, so we only consider the predictive
power of categorical predictors.

If N;; is the of number cases where X =¢and Y = j, N; = Zf:l Nij,and N j = Zf_l Nij
then the chi-square statistic is calculated as

and Cramer’s V is defined as

2 1/2
- X
Nxy (min (I,.J) — 1)
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Bayesian Networks Algorithm Overview

A Bayesian network provides a succinct way of describing the joint probability distribution
for a given set of random variables.

Let V be a set of categorical random variables and G = (V, E) be a directed acyclic graph with
nodes V and a set of directed edges E. A Bayesian network model consists of the graph G together
with a conditional probability table for each node given values of its parent nodes. Given the value
of its parents, each node is assumed to be independent of all the nodes that are not its descendents.
The joint probability distribution for variables V can then be computed as a product of conditional
probabilities for all nodes, given the values of each node’s parents.

Given set of variables V and a corresponding sample dataset, we are presented with the task of
fitting an appropriate Bayesian network model. The task of determining the appropriate edges in
the graph G is called structure learning, while the task of estimating the conditional probability
tables given parents for each node is called parameter learning.

Primary Calculations

IBM® SPSS® Modeler offers two different methods for building Bayesian network models:

m Tree Augmented Naive Bayes. This algorithm is used mainly for classification. It efficiently
creates a simple Bayesian network model. The model is an improvement over the naive
Bayes model as it allows for each predictor to depend on another predictor in addition to the
target variable. Its main advantages are its classification accuracy and favorable performance
compared with general Bayesian network models. Its disadvantage is also due to its simplicity;
it imposes much restriction on the dependency structure uncovered among itsnodes.

® Markov Blanket estimation. The Markov blanket for the target variable node in a Bayesian
network is the set of nodes containing target’s parents, its children, and its children’s parents.
Markov blanket identifies all the variables in the network that are needed to predict the target
variable. This can produce more complex networks, but also takes longer to produce. Using
feature selection preprocessing can significantly improve performance of thisalgorithm.

Notation

The following notation is used throughout this algorithm description:

G A directed acyclic graph representing the Bayesian Network model

D A dataset

Y Categorical target variable

X, The ith predictor

i The parent set of the ith predictor besides target Y. For TAN models, its size is <I.
N The number of cases in D
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n The number of predictors

Niji Denote the number of records in 1 for which (z;,Y") take its jth value and for which
X, takes its kth value.

Nij Denote the number of records in D for which (r;,Y") takes its jth value.

Biji Pr (X =af|(m,Y) = (mi,¥)’)

Hyi PI(Y - Y¢)

K The number of non-redundant parameters of TAN

MB The Markov blanket boundary about target v

S A subset of X

SX, X, Assubset of X \ X,, X, such that variables X, and X, are conditionally independent
with respect to Sx, x;

Xi — X An undirected arc between variables X, X; in G. X,and X; are adjacentto each
other.

Xi = X A directed arc from X, to X, in G. X is a parent of X';, and X, is a child of X.

ADJx, A variable set which represents all the adjacent variables of variable X, in G,
ignoring the edge directions.

I(") The conditional independence (CI) test function which returns the p-value of the test.

o The significance level for ClI tests between two variables. If the p-value of the test is
larger than « then they are independent, and vice-versa.

Ti The cardinality of X, r; = | X|]

Qi The cardinality of the parent set m; of X, .

Handling of Continuous Predictors

BN models in IBM® SPSS® Modeler can only accommodate discrete variables. Target variables
must be discrete (flag or set type). Numeric predictors are discretized into 5 equal-width bins
before the BN model is built. If any of the constructed bins is empty (there are no records with a
value in the bin’s range), that bin is merged to an adjacent non-empty bin.

Feature Selection via Breadth-First Search

Feature selection preprocessing works as follows:

» It begins by searching for the direct neighbors of a given target Y, based on statistical tests of

independence. For more information, see the topic “Markov Blanket Conditional Independence

Test.” These variables are known as the parents or children of Y, denoted by

PC(Y).

Foreach X € PC (Y'), we look for PC (X)), or the parents and children of X.

Foreach 7 € PC' (X), we add it to M By if it is not independent of Y.

The explicit algorithm is given below.
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RecognizeMB
(
D : Dataset, eps : threshold
)
{

// Recognize Y's parents/children
CanADJ_Y = X \{Y};

PC = RecognizePC(Y,CanADJ_Y,D,eps);
MB = PC;

// Collect spouse candidates, and remove false
// positives from PC
for (each X_iin PCK
CanADJ_X_i=X\X_i;
CanSP_X_i = RecognizePC(X_i,CanADJ_X_i,D,eps);
if (Y notin CanSP_X_i) // Filter out false positive
MB =MB\ X_j;
}
// Discover true positives among candidates
for (each X_iin MB)
for (each Z_iin CanSP_X_i and Z_i notin MB)
if (IY,Z_i{S_Y,Z_i + X_i}) < eps) then
MB=MB +Z_j;
return MB;
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RecognizePC (
T :target to scan,
ADJ_T :Candidate adjacency setto search,
D :Dataset,
eps :threshold,
maxSetSize : )
{
NonPC = {empty set};
cutSetSize = 0;
repeat
for (each X_iin ADJ_TK
for (each subset S of {ADJ_T \ X_i} with |S| = cutSetSize){
if (10X_i,T|S) > epsH
NonPC = NonPC + X_j;
S TX.i=§;
break;
}
}
}
if ((NonPC| > 0K
ADJ_T =ADJ_T\ NonPC;
cutSetSize +=1;
NonPC = {empty set},
}else
break;
until ((ADJ_T| < cutSetSize) or (cutSetSize > maxSetSize)
return ADJ_T;
}

Tree Augmented Naive Bayes Method

The Bayesian network classifier is a simple classification method, which classifies a case

d; = (mi,;;.e:_i, . ,:r-j,) by determining the probability of it belonging to the ith target category Y.
These probabilities are calculated as

Pr (Y;;|X1 —dd Xy =al, ... Xn = :t:%,)
 Pr(Y2) Pr(X,=2{,X,=1},...X.=z]|Y:)

= Pr(Xlzﬂ:i-:XQ:"EL'“?X”:‘T{*)

T
x Pr(v;) [T Pr (X = I, i)
k=1

where 7, is the parent set of X besides V", and it may be empty. Pr (X}, |7, Y") is the conditional
probability table (CPT) associated with each node X;. If there are n independent predictors,
then the probability is proportional to
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n
Pr(Y;) H Pr (Xk = 17| Yi)
k=1

When this dependence assumption (conditional independence between the predictors given the
class) is made, the classifier is called naive Bayes (NB). Naive Bayes has been shown to be
competitive with more complex, state-of-the-art classifiers. In recent years, a lot of work has
focused on improving the naive Bayes classifier. One important method is to relax independence
assumption. We use a tree augmented naive Bayesian (TAN) classifier (Friedman, Geiger, and
Goldszmidt, 1997), and it is defined by the following conditions:

m  Each predictor has the target as a parent.
m Predictors may have one other predictor as a parent.

An example of this structure is shown below.

Figure 5-1
Structure of an simple tree augmented naive Bayes model.

TAN (Y)
TAN Classifier Learning Procedure

Let X = (X, X»,..., X,,) represent a categorical predictor vector. The algorithm for the TAN
classifier first learns a tree structure over X using mutual information conditioned on Y. Then it
adds a link (or arc) from the target node to each predictor node.

The TAN learning procedure is:
1. Take the training data D, X and Y as input.

2. Learn a tree-like network structure over X by using the Structure Learning algorithm outlined
below.

3. AddY asaparent of every X; where 1 < i < n.

4. Learning the parameters of TAN network.
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TAN Structure Learning

We use a maximum weighted spanning tree (MWST) method to construct a tree Bayesian network
from data (Chow and Liu, 1968). This method associates a weight to each edge corresponding to
the mutual information between the two variables. When the weight matrix is created, the MWST
algorithm (Prim, 1957) gives an undirected tree that can be oriented with the choice of a root.

The mutual information of two nodes X;, X; is defined as
Pr (.T,j ’!)
(X5, X5) Pr(z;,zi)log | ———29"—
' Z z. <Pr (;?.‘I') Pr (;T-j)
Ty “

We replace the mutual information between two predictors with the conditional mutual
information between two predictors given the target (Friedman et al., 1997). It is defined as

s Pr(zi,=i|yi)
I _X' 4X }/ — Pr Ti T 1 g y L ld
(X, XG 1Y) Z (i, 25, yi) log (pr(gr.,-|m)Pr(gu‘jm)

The network over can be constructed using the following steps:
1. Compute I (X;,X;|Y),i=1,....n.5=1,...,n.15 j between each pair of variables.

2. Use Prim’s algorithm (Prim et al., 1957) to construct a maximum weighted spanning tree with
the weight of an edge connecting X, to X; by I ( 7).

This algorithm works as follows: it begins with a tree with no edges and marks a variable at a
random as input. Then it finds an unmarked variable whose weight with one of the marked
variables is maximal, then marks this variable and adds the edge to the tree. This process is
repeated until all variables are marked.

iy

3. Transform the resulting undirected tree to directed one by choosing X', as a root node and setting
the direction of all edges to be outward from it.

TAN Parameter Learning

Let r; be the cardinality of X;. Let ¢; denote the cardinality of the parent set (;, ¥") of X, that
is, the number of different values to which the parent of .X; can be instantiated. So it can be
calculated as ¢; = r, x |Y'|. Note =; = () implies ¢; = |Y'|. We use IV;; to denote the number of
records in D for which (r;, V') takes its jth value. We use N, ;. to denote the number of records in
D for which (7, v) take its jth value and for which X; takes its kth value.

Maximum Likelihood Estimation

The closed form solution for the parameters 6y, (1 <4 < |¥]) and
0. (1 <i<n,1<j<g,1<Ek<r;)that maximize the log likelihood score is
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where Ny, denotes the number of cases with ¥" = Y7 in the training data.

Note that if Ni; = 0, then 6= 0.

T

K=Y (ri 1)-q+[Y] 1

=1

TAN Posterior Estimation

Assume that Dirichlet prior distributions are specified for the set of parameters 6y, (1< 7 < |Y]) as
well as for each of the sets 6, (1 <k <r;),1<i<nm,and 1< j < g (Heckerman, 1999). Let
Ny and N, . denote corresponding Dirichlet distribution parameters such that N Z Ny and

N = Z \”L Upon observing the dataset D, we obtain Dirichlet posterior distributions with the
foIIowmg sets of parameters:

P )

Yi ™ N4+N©
9“11 — Nij+ND,
ijk N;j+N?

The posterior estimation is always used for model updating.
Adjustment for small cell counts

To overcome problems caused by zero or very small cell counts, parameters can be estimated
as posterior parameters 0” (1<i< \Y\) and 9{} (1< k <r),1<i<n1<j<g using

uninformative Dirichlet priors N}, = - and \,”, =
IR Ti Qi

Markov Blanket Algorithms

The Markov blanket algorithm learns the BN structure by identifying the conditional independence
relationships among the variables. Using statistical tests (such as chi-squared test or G test),

this algorithm finds the conditional independence relationships among the nodes and uses these
relationships as constraints to construct a BN structure. This algorithm is referred to as a
dependency-analysis-based or constraint-based algorithm.

Markov Blanket Conditional Independence Test

The conditional independence (CI) test tests whether two variables are conditionally independent
With respect to a conditional variable set. There are two familiar methods to compute the CI test:
v? (Pearson chi-square) test and G2 (log likelihood ratio) test.
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Suppose X, Y are two variables for testing and S is a conditional variable setsuch that X, v §S.
Let O (x;,v;) be the observed count of cases that have X =z, and Y = y;, and E (x;,4,) IS

the expect number of cases that have X = z; and ¥ = y; under the hypothesis that X, ¥ are
independent.

Chi-square Test

We assume the null hypothesis is that X, Y are independent. The v test statistic for this
hypothesis is

oo = (O (i) — B (14, ))?
2 (X,Y)—Z é(-h,,}j) ’

i

Suppose that N is the total number of cases in D, N (u;) is the number of cases in D where

X takes its ith category, and V (y;) and NV (s;.) are the corresponding numbers for Y and S. So
N (x;,4;) is the number of cases in D where X takes its ith category and Y takes its jth category.
N (i, 51), N (yj.51) and N (x;, vj, s.) are defined similarly. We have:

2 0x vy = 5~ N @ags) = N (@) N () /N) = (VN (mioys) — N (@) N (1)°
X@“”_é; N (@) N () /N _g; N(@)N () N

Because Y (X,Y) ~ x} where v = (\X\ — 1) (JY| — 1) is the degrees of freedom for the
\” distribution, we get the p-value for \? (X, Y) as follows:

P(U>\*(X.Y))

As we know, the larger p-value, the less likely we are to reject the null hypothesis. For a given
significance level o, if the p-value is greater than o we cannot reject the hypothesis that X, Y are
independent.

We can easily generalize this independence test into a conditional independence test:

2(X.Y|S Z} (X,Y]S = sp)

’YMIMV() N (i) N (g 50)°
*”ZA 7i )\'(Uj "k)\'(k)

The degree of freedom for y? ~ \?is:
= (X[ -1 (Y[-1)-[S]

Likelihood Ratio Test

We assume the null hypothesis is that X, ¥ are independent. The G* test statistic for this
hypothesis is
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P2(X)Y) = QZ O (x4,y5) In (%)

!j "r‘n Uj)

or equivalently,
N (-TEJU-') N )
G*(X.Y) =23 N (i, 1(—
Z: AN (20) N (y;)

The conditional version of the G independence test is

O (x;,yi|S = s1)
G?(X.Y|S)=2 O?,j|5—‘?,lt)hl< L
( ; vl (H;JJ"S:S!{)
N (i, y5. 58) D Uv
=2 (24,44 lll(f \
5o (S 2

The G? test is asymptotlcally distributed as a y? distribution, where degrees of freedom are the
same as in the y* test. So the p-value for the 2 test is

P(U>G*(X,Y))

In the following parts of this document, we use I (-) to uniformly represent the p-value of
whichever test is applied. If I (X,Y) > «, we say variable X and Y are independent, and if
I(X,Y]S) > «a, we say variable X and Y are conditionally independent given variable set S.

Markov Blanket Structure Learning

This algorithm aims at learning a Bayesian networks structure from a dataset. It starts with a
complete graph G. Let X;, X; € X, and compute I (X,, X;) for each variable pair in G. If
I(X;,X;) > a, remove thearc between X, X,. Then for each arc X, — X; performan exhaustive
search in AD.Jx, \ {X} to find the smallest conditional variable set S such that I (X;, X;|5) > a.
If such S exist, delete arc X, — X ;. After this, orientation rules are applied to orient the arcs in G.

Markov Blanket Arc Orientation Rules

Arcs in the derived structure are oriented based on the following rules:

1. All patterns of the of the form X; — X; — X, or X; » X, — X, areupdatedto .X;, —» X; « X if
Xj ¢ Sxix,

2. Patterns of the form X; — X; — X, are updated so that X; — X

3. Patterns of the form X; — X; are updated to X, — X

4, Patterns of the form
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X, - X; - X
Nl

Xi
are updated so that X = X

After the last step, if there are still undirected arcs in the graph, return to step 2 and repeat until
all arcs are oriented.

Deriving the Markov Blanket Structure

The Markov Blanket is a local structure of a Bayesian Network. Given a Bayesian Network G
and a target variable Y, to derive the Markov Blanket of Y, we should select all the directed
parents of Y in G denoted as 7y, all the directed children of Y in G denoted as X, and all the
directed parents of X, in G denoted as = . 7y UY U X, Un and their arcs inherited from G
define the Markov Blanket A By-.

Markov Blanket Parameter Learning

Maximum Likelihood Estimation

The closed form solution for the parameters &ijx (1 <i <n,1 <j <g, 1<k <r;) that maximize
the log likelihood score is

—\'[ 1k

Note that if 7; = 0, then f;;;, = 2.
The number of parameters K is

K=Y =1) a

i=1

Posterior Estimation

Assume that Dirichlet prior distributions are specified for each of the sets
O (L <k <r;),1<i<n,1<j<gq (Heckermanetal., 1999). Let ;\-“f‘ﬁ_ denote corresponding

Dirichlet distributed parameters such that N7; = > N7, . Upon observing the dataset D, we

obtain Dirichlet posterior distributions with the fol’iowing sets of parameters:

Niji + Njp

0 = ———
' N; J + N !Uf

The posterior estimate is always used for model updating.
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Adjustment for Small Cell Counts

To overcome problems caused by zero or very small cell counts, parameters can be estimated as
posterior parameters 6, (1 < k < r;),1 <i < n,1 < j < g; using uninformative Dirichlet priors
specified by N 2

ik T g

Blank Handling

By default, records with missing values for any of the input or output fields are excluded from
model building. If the Use only complete records option is deselected, then for each pairwise
comparison between fields, all records containing valid values for the two fields in question
are used.

Model Nugget/Scoring

The Bayesian Network Model Nugget produces predicted values and probabilities for scored
records.

Tree Augmented Naive Bayes Models

Using the estimated model from training data, for a new case x = (1, ..., z, ), the probability of
it belonging to the ith target category Y; is calculated as I’r (Y = Y;|X = x). The target category
with the highest posterior probability is the predicted category for this case, ¥ (x), is predicted by

Y (x) = argmax; {Pr(Y = V| X = x)}
=argmax; {Pr(X =x|Y =Y;)Pr(Y =Y))}

n
= argmax; {Pr V =Y) [[Pr(X; =aifn; =7, Y = }’})}

=1

Markov Blanket Models

The scoring function uses the estimated model to compute the probabilities of Y belongs to
each category for a new case X p. Suppose y is the parent set of Y, and = |,» denotes the
configuration of =y given case Xp, X¢y = (Xy,...,X,,) denotes the direct children set of

Y
m; denotes the parent set (excluding Y) of the ith variable in X;. The score for each category

of Y is computed by:
J— Pr(}r:yZ!XI):IP)
Zyz Pr(Y =y, Xp=1p)

Pr (}' = y[|/\/11 = I'P)
where the joint probability that ¥ = 3; and Xp = x5 is:

m
Pr(Y =y Xp=xp)=c Pr (Y =y|ny = ':Tylp) HPT‘ (X-L' = x;|n; = | P Y = y;)

i=1
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where

m

c=Pr (ﬂ'y = TI_y‘P) H Pr (TT,; = 71'3-|p)
i—=1

Note that c is never actually computed during scoring because its value cancels from the numerator
and denominator of the scoring equation given above.



Binary Classifier Comparison Metrics

The Binary Classifier node generates multiple models for a flag output field. For details on how
each model type is built, see the appropriate algorithm documentation for the model type.

The node also reports several comparison metrics for each model, to help you select the optimal
model for your application. The following metrics are available:

Maximum Profit

This gives the maximum amount of profit, based on the model and the profit and cost settings. It
is calculated as

J
Profitpax = Z (h(zi) -7 —¢)
i=1

where h(x;) is defined as

h(’l") _ 1 if xr; |S a hit
T Y 0 otherwise

r is the user-specified revenue amount per hit, and c is the user-specified cost per record. The sum
is calculated for the j records with the highest ¢, such that (Pi+1 - (r —¢)) = (1 =5;41) - ¢) <0

Maximum Profit Occurs in %
This gives the percentage of the training records that provide positive profit based on the

predictions of the model,

Profity, — - - 100%
n

where n is the overall number of records included in building the model.
Lift

This indicates the response rate for the top q% of records (sorted by predicted probability), as a
ratio relative to the overall response rate,

ko
Lift:M
> izt hlxi)/n

where k is g% of n, the number of training records used to build the model. The default value of q
is 30, but this value can be modified in the binary classifier node options.

Overall Accuracy

This is the percentage of records for which the outcome is correctly predicted,
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-n. 0 otherwise

where ; is the predicted outcome value for record i and x; is the observed value.

Area Under the Curve (AUC)

This represents the area under the Receiver Operating Characteristic (ROC) curve for the model.
The ROC curve plots the true positive rate (where the model predicts the target response and the
response is observed) against the false positive rate (where the model predicts the target response
but a nonresponse is observed). For a good model, the curve will rise sharply near the left axis and
cut across near the top, so that nearly all the area in the unit square falls below the curve. For an
uninformative model, the curve will approximate a diagonal line from the lower left to the upper
right corner of the graph. Thus, the closer the AUC is to 1.0, the better the model.

Figure 6-1

ROC curves for a good model (left) and an uninformative model (right)
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The AUC is computed by identifying segments as unique combinations of predictor values that
determine subsets of records which all have the same predicted probability of the target value.
The s segments defined by a given model’s predictors are sorted in descending order of predicted
probability, and the AUC is calculated as

t; +t;i1

5
AUC =) Ifi~ fial —5—
1=1

where f; is the cumulative number of false positives for segment i, that is, false positives for
segment i and all preceding segments j < 4, ¢; is the cumulative number of true positives, and
Jo =1 =0.
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The code for training C5.0 models is licensed from RuleQuest Research Ltd Pty, and the algorithms
are proprietary. For more information, see the RuleQuest website athttp://www.rulequest.com/.

Note: Modeler 13 upgraded the C5.0 version from 2.04 to 2.06. See the RuleQuest website
for more information.

Scoring
A record is scored with the class and confidence of the rule that fires for that record.

If a rule set is directly generated from the C5.0 node, then the confidence for the rule is calculated
as

(number correct in leaf + 1)
(total number of records in leaf + 2)

The scoring process retrieves the confidence values from the PMML file. In case there are no
saved confidence values, they will be calculated as:

(number correct in leaf + 1)
(total number of records in leaf + number of categories in the target)

Scores with rule set voting

When voting occurs between rules within a rule set the final scores assigned to a record are
calculated in the following way. For each record, all rules are examined and each rule that applies
to the record is used to generate a prediction and an associated confidence. The sum of confidence
figures for each output value is computed, and the value with the greatest confidence sum is
chosen as the final prediction. The confidence for the final prediction is the confidence sum for
that value divided by the number of rules that fired for that record.

Scores with boosted C5.0 classifiers (decision trees and rule sets)

When scoring with a boosted C5.0 rule set the n rule sets that make up the boosted rule set (one
rule set for each boosting trial) vote using their individual scores (as obtained above) to arrive
at the final score assigned to the case by the boosted rule set.

The voting for boosted C5 classifiers is as follows. For each record, each composite classifier
(rule set or decision tree) assigns a prediction and a confidence. The sum of confidence figures for
each output value is computed, and the value with the greatest confidence sum is chosen as the
final prediction. The confidence for the final prediction by the boosted classifier is the confidence
sum for that value divided by confidence sum for all values.


http://www.rulequest.com/
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Overview

The continuous association rule mining algorithm (Carma) is an alternative to Apriori that
reduces /O costs, time, and space requirements (Hidber, 1999). It uses only two data passes and
delivers results for much lower support levels than Apriori. In addition, it allows changes in
the support level during execution.

Carma deals with items and itemsets that make up transactions. Items are flag-type conditions
that indicate the presence or absence of a particular thing in a specific transaction. An itemset is a
group of items which may or may not tend to co-occur within transactions.

Deriving Rules

Carma proceeds in two stages. First it identifies frequent itemsets in the data, and then it generates
rules from the lattice of frequent itemsets.

Frequent Itemsets

Carma uses a two-phase method of identifying frequent itemsets.

Phase I: Estimation

In the estimation phase, Carma uses a single data pass to identify frequent itemset candidates.
A lattice is used to store information on itemsets. Each node in the lattice stores the items
comprising the itemset, and three values for the associated itemset:

m count: number of transactions containing the itemset since the itemset was added to the lattice
m firstTrans: the record index of the transaction for which the itemset was added to the lattice

m  maxMissed: upper bound on the number of occurrences of the itemset before it was added to
the lattice

The lattice also encodes information on relationships between itemsets, which are determined
by the items in the itemset. An itemset Y is an ancestor of itemset X if X contains every item in
Y. More specifically, Y is a parent of X if X contains every item in Y plus one additional item.
Conversely, Y is a descendant of X if Y contains every item in X, and Y is a child of X if Y contains
every item in X plus one additional item.

For example, if X = {milk, cheese, bread}, then Y = {milk, cheese} is a parent of X, and Z =
{milk, cheese, bread, sugar} is a child of X.

Initially the lattice contains no itemsets. As each transaction is read, the lattice is updated in
three steps:

» Increment statistics. For each itemset in the lattice that exists in the current transaction, increment
the count value.
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> Insert new itemsets. For each itemset v in the transaction that is not already in the lattice, check all
subsets of the itemset in the lattice. If all possible subsets of the itemset are in the lattice with
maxSupport > &;, then add the itemset to the lattice and set its values:
m countissetto 1
m firstTrans is set to the record index of the current transaction

m  maxMissed is defined as

mazMissed(v) = min { ([ (i — Davg([o],_,)] + |v| = 1), (mazMissed(w) + count(w) — 1)}
wCv

where w is a subset of itemset v, [ ]: 1 is the ceiling of G up to transaction i for varying
support (or simply @ for constant support), and |v| is the number of items in itemset v.

» Prune the lattice. Every k transactions (where k is the pruning value, set to 500 by default), the
lattice is examined and small itemsets are removed. A small itemset is defined as an itemset for
which maxSupport < @ i, where maxSupport = (maxMissed + count)/i.

Phase II: Validation

After the frequent itemset candidates have been identified, a second data pass is made to compute
exact frequencies for the candidates, and the final list of frequent itemsets is determined based
on these frequencies.

The first step in Phase 1l is to remove infrequent itemsets from the lattice. The lattice is pruned
using the same method described under Phase I, with G, as the user-specified support level for
the model.

After initial pruning, the training data are processed again and each itemset v in the lattice is
checked and updated for each transaction record with index i:

» If firstTrans(v) < i, v is marked as exact and is no longer considered for any updates. (When all
nodes in the lattice are marked as exact, phase Il terminates.)

» If v appears in the current transaction, v is updated as follows:
m Increment count(v)
®  Decrement maxMissed(v)

m IffirstTrans(v) = i, set maxMissed(v) = 0, and adjust maxMissed for every superset w of v in
the lattice for which maxSupport(w) > maxSupport(v). For such supersets, set maxMissed(w)
= count(v) - count(w).

m If maxSupport(v) < @y, remove v from the lattice.

Generating Rules

Carma uses a common rule-generating algorithm for extracting rules from the lattice of itemsets
that tends to eliminate redundant rules (Aggarwal and Yu, 1998). Rules are generated from the
lattice of itemsets (see “Frequent Itemsets”™) as follows:

» For each itemset in the lattice, get the set of maximal ancestor itemsets. An itemset Y is a maximal

ancestor of itemset X if % < %, where c is the specified confidence threshold for rules.
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» Prune the list of maximal ancestors by removing maximal ancestors of all of X’s child itemsets.

» For each itemset in the pruned maximal ancestor list, generate a rule ¥ = X — Y, where X-Y is
the itemset X with the items in itemset Y removed.

For example, if X the itemset {milk, cheese, bread} and Y is the itemset {milk, bread}, then the
resulting rule would be milk, bread = cheese

Blank Handling

Blanks are ignored by the Carma algorithm. The algorithm will handle records containing blanks
for input fields, but such a record will not be considered to match any rule containing one or
more of the fields for which it has blank values.

Effect of Options

Minimum rule support/confidence. These values place constraints on which rules may be entered
into the table. Only rules whose support and confidence values exceed the specified values can be

entered into the rule table.
Maximum rule size. Sets the limit on the number of items that will be considered as an itemset.

Exclude rules with multiple consequents. This option restricts rules in the final rule list to those
with a single item as consequent.

Set pruning value. Sets the number of transactions to process between pruning passes. For more
information, see the topic “Frequent ltemsets.”

Vary support. Allows support to vary in order to enhance training during the early transactions in
the training data. For more information, see “Varying support” below.

Allow rules without antecedents. Allows rules that are consequent only, which are simple
statements of co-occuring items, along with traditional if-then rules.

Varying support

If the vary support option is selected, the target support value changes as transactions are
processed to provide more efficient training. The support value starts large and decreases in four
steps as transactions are processed. The first support value s1 applies to the first 9 transactions,
the second value so applies to the next 90 transactions, the third value s3 applies to transactions
100-4999, and the fourth value s4 applies to all remaining transactions. If we call the final
support value s, and the estimated number of transactions t, then the following constraints are
used to determine the support values:

» If s>020rt<19,sets; =50 =33 = 54.

w

» If 19 < ¢ < 190, set s; = Hsq, 53 = 54 = s9, SUCh that % = s.

s1 = sy, such that (Luas00e (t-9s)

(R

» If 190 < ¢t < 7000, set s, = Hso, 59 =

s

=K1}
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> If ¢ > 7000, Set 51 = Hsy, 52 = 28, 53 = Hsg, SUCh that e 140005 ([ 1990)0) _

In all cases, if solving the equation yields s1 > 0.5, s is set to 0.5, and the other values adjusted

accordingly to preserve the relation M = s, Where s(i) is the target support (one of the
values s1, Sp, $3, Or S4) for the ith transaction.

Generated Model/Scoring

The Carma algorithm generates an unrefined rule node. To create a model for scoring new data,

the unrefined rule node must be refined to generate a ruleset node. Details of scoring for generated
ruleset nodes are given below.

Predicted Values

Predicted values are based on the rules in the ruleset. When a new record is scored, it is compared
to the rules in the ruleset. How the prediction is generated depends on the user’s setting for
Ruleset Evaluation in the stream options.

®m  Voting. This method attempts to combine the predictions of all of the rules that apply to the
record. For each record, all rules are examined and each rule that applies to the record is used
to generate a prediction. The sum of confidence figures for each predicted value is computed,
and the value with the greatest confidence sum is chosen as the final prediction.

m  First hit. This method simply tests the rules in order, and the first rule that applies to the record
is the one used to generate the prediction.

There is a default rule, which specifies an output value to be used as the prediction for records
that don’t trigger any other rules from the ruleset. For rulesets derived from decision trees, the
value for the default rule is the modal (most prevalent) output value in the overall training data.
For association rulesets, the default value is specified by the user when the ruleset is generated
from the unrefined rule node.

Confidence

Confidence calculations also depend on the user’s Ruleset Evaluation stream options setting.

m Voting. The confidence for the final prediction is the sum of the confidence values for rules
triggered by the current record that give the winning prediction divided by the number of rules
that fired for that record.

m  First hit. The confidence is the confidence value for the first rule in the ruleset triggered by
the current record.

If the default rule is the only rule that fires for the record, it’s confidence is set to 0.5.
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Blank Handling

Blanks are ignored by the algorithm. The algorithm will handle records containing blanks for
input fields, but such a record will not be considered to match any rule containing one or more of
the fields for which it has blank values.

There is an exception to this: when a numeric field is examined based on a split point,
user-defined missing values are included in the comparison. For example, if you define -999 as a
missing value for a field, Carma will still compare it to the split point for that field, and may return
a match if the rule is of the form (X < 50). You may need to preprocess specially coded numeric
missing values (replacing them with $null$, for example) before scoring data with Carma.
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Overview of C&RT

C&RT stands for Classification and Regression Trees, originally described in the book by the
same name (Breiman, Friedman, Olshen, and Stone, 1984). C&RT partitions the data into two
subsets so that the records within each subset are more homogeneous than in the previous subset.
It is a recursive process—each of those two subsets is then split again, and the process repeats
until the homogeneity criterion is reached or until some other stopping criterion is satisfied (as do
all of the tree-growing methods). The same predictor field may be used several times at different
levels in the tree. It uses surrogate splitting to make the best use of data with missing values.

C&RT is quite flexible. It allows unequal misclassification costs to be considered in the tree
growing process. It also allows you to specify the prior probability distribution in a classification
problem. You can apply automatic cost-complexity pruning to a C&RT tree to obtain a more
generalizable tree.

Primary Calculations

The calculations directly involved in building the model are described below.

Frequency and Case Weight Fields

Frequency and case weight fields are useful for reducing the size of your dataset. Each has a
distinct function, though. If a case weight field is mistakenly specified to be a frequency field, or
vice versa, the resulting analysis will be incorrect.

For the calculations described below, if no frequency or case weight fields are specified, assume
that frequency and case weights for all records are equal to 1.0.

Frequency Fields

A frequency field represents the total number of observations represented by each record. It is
useful for analyzing aggregate data, in which a record represents more than one individual. The
sum of the values for a frequency field should always be equal to the total number of observations
in the sample. Note that output and statistics are the same whether you use a frequency field or
case-by-case data. The table below shows a hypothetical example, with the predictor fields sex
and employment and the target field response. The frequency field tells us, for example, that 10
employed men responded yes to the target question, and 19 unemployed women responded no.

Table 9-1
Dataset with frequency field
Sex Employment Response Frequency
M Y Y 10
M Y N 17
M N Y 12
M N N 21
F Y Y 11
F Y N 15
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Sex Employment Response Frequency
F N Y 15
F N N 19

The use of a frequency field in this case allows us to process a table of 8 records instead of
case-by-case data, which would require 120 records.

Case weights

The use of a case weight field gives unequal treatment to the records in a dataset. When a case
weight field is used, the contribution of a record in the analysis is weighted in proportion to
the population units that the record represents in the sample. For example, suppose that in

a direct marketing promotion, 10,000 households respond and 1,000,000 households do not
respond. To reduce the size of the data file, you might include all of the responders but only a
1% sample (10,000) of the nonresponders. You can do this if you define a case weight equal to
1 for responders and 100 for nonresponders.

Model Parameters

C&RT works by choosing a split at each node such that each child node created by the split is
more pure than its parent node. Here purity refers to similarity of values of the target field. In a
completely pure node, all of the records have the same value for the target field. C&RT measures
the impurity of a split at a node by defining an impurity measure. For more information, see the
topic “Impurity Measures.”

The following steps are used to build a C&RT tree (starting with the root node containing all
records):

Find each predictor's best split. For each predictor field, find the best possible split for that field,
as follows:

®m  Range (numeric) fields. Sort the field values for records in the node from smallest to largest.
Choose each point in turn as a split point, and compute the impurity statistic for the resulting
child nodes of the split. Select the best split point for the field as the one that yields the largest
decrease in impurity relative to the impurity of the node being split.

®m  Symbolic (categorical) fields. Examine each possible combination of values as two subsets.
For each combination, calculate the impurity of the child nodes for the split based on that
combination. Select the best split point for the field as the one that yields the largest decrease
in impurity relative to the impurity of the node being split.

Find the best split for the node. Identify the field whose best split gives the greatest decrease in
impurity for the node, and select that field’s best split as the best overall split for the node.

Check stopping rules, and recurse. If no stopping rules are triggered by the split or by the parent
node, apply the split to create two child nodes. (For more information, see the topic “Stopping
Rules.”) Apply the algorithm again to each child node.
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Blank Handling
Records with missing values for the target field are ignored in building the tree model.

Surrogate splitting is used to handle blanks for predictor fields. If the best predictor field to be
used for a split has a blank or missing value at a particular node, another field that yields a split
similar to the predictor field in the context of that node is used as a surrogate for the predictor
field, and its value is used to assign the record to one of the child nodes.

Note: If Surrogate splitting is used (where a particular rule does not fit into a node) the Confidence
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

For example, suppose that X* is the predictor field that defines the best split s* at node t. The
surrogate-splitting process finds another split s, the surrogate, based on another predictor field X
such that this split is most similar to s* at node t (for records with valid values for both predictors).
If a new record is to be predicted and it has a missing value on X* at node t, the surrogate split s is
applied instead. (Unless, of course, this record also has a missing value on X. In such a situation,
the next best surrogate is used, and so on, up to the limit of number of surrogates specified.)

In the interest of speed and memory conservation, only a limited number of surrogates is
identified for each split in the tree. If a record has missing values for the split field and all
surrogate fields, it is assigned to the child node with the higher weighted probability, calculated as

Nyi(t)
Ny(t)

where Ng j(t) is the sum of frequency weights for records in category j for node t, and Ng(t) is the
sum of frequency weights for all records in node t.

If the model was built using equal or user-specified priors, the priors are incorporated into the

calculation:
m(j) \f (1)
pr(0) " N(D)

where 7(j) is the prior probability for category j, and p¢(t) is the weighted probability of a record
being assigned to the node,

pytr) = 3 T

Ny

where N j(t) is the sum of the frequency weights (or the number of records if no frequency
weights are defined) in node t belonging to category j, and Ng j is the sum of frequency weights
for records belonging to category in the entire training sample.
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Predictive measure of association

Let fix-nx (resp. hx-nx (t)) be the set of learning cases (resp. learning cases in node t) that has
non-missing values of both X*and X. Let p (s* ~ sx|t) be the probability of sending a case in
Iix-nx (t) to the same child by both s* and s, and 5 be the split with maximized probability

p(s* = dx|t) = max,, (p(s* = sx|t)).

The predictive measure of association A (s* ~ & |t) between s*and iy atnodetis

min (pr, pr) — (1 —p(s* = §x|t))
min (pr, pr)

A (:1‘* i~ §X|f:] =

where p;, (resp. pr) is the relative probability that the best split s* at node t sends a case with
non-missing value of X™ to the left (resp. right) child node. And where

ifY'is categorical

Z w (]) _NY“_‘:J' (S* ~ S5X, ?L)
Nug(X* N X)

p(s" =~ sx|t) = ;
% ifY’is continuous
with
Ne(X*nX)= Y wf,, Ne(XNX 0= Y w,f,
n€hxnx nchix-nx(l)

Ny (8" msx, 1) = Z w, [, I(n:s = sx)

nehx-nx(t)

‘-\"v“,lj (X" M X) = Z “‘:u.-/.rcl ((('j.”_ = “)l ;\'T“:AJ' (X* M X) == Z u“r:fﬂ.[ (UN = }')

nehiy-nx nehx=nx(t)
\—UJ‘ (3* N Sx, '[] = Z U‘_”fuf (y‘n. = )) I (T!- 18T A S.\')
nEhy=qx (1)

and I (n : s* ~ sx) being the indicator function taking value 1 when both splits s*and s send
the case n to the same child, O otherwise.

Effect of Options

Impurity Measures

Gini

There are three different impurity measures used to find splits for C&RT models, depending on the
type of the target field. For symbolic target fields, you can choose Gini or twoing. For continuous
targets, the least-squared deviation (LSD) method is automatically selected.

The Gini index g(t) at a node t in a C&RT tree, is defined as
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g(t) =>_pliftp(ilt)
j#i

where i and j are categories of the target field, and

(bt
()N
plit) = N;

where z(j) is the prior probability value for category j, Nj(t) is the number of records in category
j of node t, and Nj is the number of records of category j in the root node. Note that when the
Gini index is used to find the improvement for a split during tree growth, only those records in
node t and the root node with valid values for the split-predictor are used to compute N;(t) and
Nj, respectively.

The equation for the Gini index can also be written as

gty =1=>_p*(jlt)
j

Thus, when the records in a node are evenly distributed across the categories, the Gini index takes
its maximum value of 1 - 1/, where k is the number of categories for the target field. When all
records in the node belong to the same category, the Gini index equals 0.

The Gini criterion function &(s, t) for split s at node t is defined as

® (s,1) = g(t) — pry(tr) — pro(tr)

where pris the proportion of records in t sent to the left child node, and pR is the proportion sent
to the right child node. The proportions pi_ and pR are defined as

_pltr)
p(t)

and
g = p(tr)
~p(t)

The split s is chosen to maximize the value of &(s, t).
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Twoing

The twoing index is based on splitting the target categories into two superclasses, and then
finding the best split on the predictor field based on those two superclasses. The superclasses
C1and C; are defined as

Cr={j:plltr) = pliltr)}
and

Cy=0C-0C

where C is the set of categories of the target field, and p(j|tr) and p(j|t.) are p(j|t), as defined as

in the Gini formulas, for the right and left child nodes, respectively. For more information, see
the topic “Gini.”
The twoing criterion function for split s at node t is defined as

2

O (s,1) =pror | >_IpGltL) = piltr)]

J

where t|_and tg are the nodes created by the split s. The split s is chosen as the split that
maximizes this criterion.

Least Squared Deviation

For continuous target fields, the least squared deviation (LSD) impurity measure is used. The
LSD measure R(t) is simply the weighted within-node variance for node t, and it is equal to the
resubstitution estimate of risk for the node. It is defined as

1

RO = 50

> wifilyi — u(t)°

el

where Nyy(t) is the weighted number of records in node t, wj is the value of the weighting field for
record i (if any), fj is the value of the frequency field (if any), yj is the value of the target field, and
y(t) is the (weighted) mean for node t. The LSD criterion function for split s at node t is defined as

® (s,t) = R(t) — pLR(t,) — prR(tr)

The split s is chosen to maximize the value of &(s,t).
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Stopping Rules

Stopping rules control how the algorithm decides when to stop splitting nodes in the tree. Tree
growth proceeds until every leaf node in the tree triggers at least one stopping rule. Any of the
following conditions will prevent a node from being split:

m  The node is pure (all records have the same value for the target field)
m  All records in the node have the same value for all predictor fields used by the model

m  The tree depth for the current node (the number of recursive node splits defining the current
node) is the maximum tree depth (default or user-specified).

m  The number of records in the node is less than the minumum parent node size (default or
user-specified)

®  The number of records in any of the child nodes resulting from the node’s best split is less
than the minimum child node size (default or user-specified)

m  The best split for the node yields a decrease in impurity that is less than the minimum change
in impurity (default or user-specified).

Profits

Profits are numeric values associated with categories of a (symbolic) target field that can be used
to estimate the gain or loss associated with a segment. They define the relative value of each value
of the target field. Values are used in computing gains but not in tree growing.

Profit for each node in the tree is calculated as

Z. fi(t) P

where j is the target field category, fj(t) is the sum of frequency field values for all records in node
t with category j for the target field, and Pj is the user-defined profit value for category j.

Priors

Prior probabilities are numeric values that influence the misclassification rates for categories of
the target field. They specify the proportion of records expected to belong to each category of the
target field prior to the analysis. The values are involved both in tree growing and risk estimation.

There are three ways to derive prior probabilities.

Empirical Priors
By default, priors are calculated based on the training data. The prior probability assigned to each
target category is the weighted proportion of records in the training data belonging to that category,

Nu j
N

m(j) =
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In tree-growing and class assignment, the Ns take both case weights and frequency weights
into account (if defined); in risk estimation, only frequency weights are included in calculating
empirical priors.

Equal Priors

Selecting equal priors sets the prior probability for each of the J categories to the same value,
1
m) =7

User-Specified Priors

When user-specified priors are given, the specified values are used in the calculations involving
priors. The values specified for the priors must conform to the probability constraint: the sum of
priors for all categories must equal 1.0. If user-specified priors do not conform to this constraint,
adjusted priors are derived which preserve the proportions of the original priors but conform

to the constraint, using the formula

7(j)
>y ()

where 7 ’(j) is the adjusted prior for category j, and z(j) is the original user-specified prior for
category j.

7 (j) =

Costs
Gini. If costs are specified, the Gini index is computed as
g(t) =Y Clili)p(iHplilt)
JF
where C(i|j) specifies the cost of misclassifying a category j record as category i.

Twoing. Costs, if specified, are not taken into account in splitting nodes using the twoing criterion.
However, costs will be incorporated into node assignment and risk estimation, as described in
Predicted Values and Risk Estimates, below.

LSD. Costs do not apply to regression trees.

Pruning

Pruning refers to the process of examining a fully grown tree and removing bottom-level splits
that do not contribute significantly to the accuracy of the tree. In pruning the tree, the software
tries to create the smallest tree whose misclassification risk is not too much greater than that of the
largest tree possible. It removes a tree branch if the cost associated with having a more complex
tree exceeds the gain associated with having another level of nodes (branch).
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It uses an index that measures both the misclassification risk and the complexity of the tree,

since we want to minimize both of these things. This cost-complexity measure is defined as
follows:

Ry (T)=R(T)+a

R(T) is the misclassification risk of tree T, and f“ is the number of terminal nodes for tree T. The
term o represents the complexity cost per terminal node for the tree. (Note that the value of « is
calculated by the algorithm during pruning.)

Any tree you might generate has a maximum size (Tmax), in which each terminal node contains
only one record. With no complexity cost (« = 0), the maximum tree has the lowest risk, since
every record is perfectly predicted. Thus, the larger the value of a, the fewer the number of
terminal nodes in T(a), where T(c) is the tree with the lowest complexity cost for the given o. As
o increases from 0O, it produces a finite sequence of subtrees (T1, T2, T3), each with progressively
fewer terminal nodes. Cost-complexity pruning works by removing the weakest split.

The following equations represent the cost complexity for {t}, which is any single node, and
for Ty, the subbranch of {t}.

Ry ({t}) = R(t) +a
Ra(T)) = R(T}) + a ‘Tf‘

If R,(T:)is less than R, ({¢}), then the branch T has a smaller cost complexity than the single
node {t}.

The tree-growing process ensures that 2., ({t}) > R, (T;) for (a = 0). As a increases from 0,
both 1z, ({t}) and Iz, (T;) grow linearly, with the latter growing at a faster rate. Eventually, you
will reach a threshold o, such that R, ({t}) < R.(7;) forall a > a’. This means that when o
grows larger than o, the cost complexity of the tree can be reduced if we cut the subbranch T
under {t}. Determining the threshold is a simple computation. You can solve this first inequality,
R, ({t}) > R,(T,), to find the largest value of a for which the inequality holds, which is also
represented by g(t). You end up with

R(t) — R(T;
0 < glt) = ()~ (73)
7 -1
You can define the weakest link (t) in tree T as the node that has the smallest value of g(t):

g(?) = min ¢(t)

teT

Therefore, as a increases, ¢ is the first node for which 2, ({t}) = R.(T;). Atthat point, {¢}
becomes preferable to I7, and the subbranch is pruned.
With that background established, the pruning algorithm follows these steps:

» Setap = 0 and start with the tree T1 = T(0), the fully grown tree.
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» Increase o until a branch is pruned. Prune the branch from the tree, and calculate the risk estimate
of the pruned tree.

» Repeat the previous step until only the root node is left, yielding a series of trees, Ty, Ty, ... Tk.

» If the standard error rule option is selected, choose the smallest tree Topt for which

R(Top) < mkin R(Ty)+m x SE(R(T))

» If the standard error rule option is not selected, then the tree with the smallest risk estimate R(T)
is selected.

Secondary Calculations

Secondary calculations are not directly related to building the model, but give you information
about the model and its performance.

Risk Estimates

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for
the tree as a whole.

Risk Estimates for Symbolic Target Field

For classification trees (with a symbolic target field), the risk estimate r(t) of a node t is computed
as

() = 5 YN O
J

where C(j*(t)|j) is the misclassification cost of classifying a record with target value j as j*(t),
Nf,j(t) is the sum of the frequency weights for records in node t in category j (or the number of
records if no frequency weights are defined), and Ns is the sum of frequency weights for all
records in the training data.

If the model uses user-specified priors, the risk estimate is calculated as

5= T ey

Jj 1
Note that case weights are not considered in calculating risk estimates.

Risk Estimates for numeric target field

For regression trees (with a numeric target field), the risk estimate r(t) of a node t is computed as
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r(t) = % > filyi —5(1)*

ict

where fj is the frequency weight for record i (a record assigned to node t), yj is the value of the
target field for record i, and 7(¢) is the weighted mean of the target field for all records in node t.

Tree Risk Estimate

For both classification trees and regression trees, the risk estimate R(T) for the tree (T) is
calculated by taking the sum of the risk estimates for the terminal nodes r(t):

teT”

where T’ is the set of terminal nodes in the tree.

Gain Summary

The gain summary provides descriptive statistics for the terminal nodes of a tree.
If your target field is continuous (scale), the gain summary shows the weighted mean of the
target value for each terminal node,

g(f) - Z 'u,-‘z'f,,‘,j.r:.i

icl

If your target field is symbolic (categorical), the gain summary shows the weighted percentage of
records in a selected target category,

Y oier firi(h)

g(tj)===—7F—

Ziet Ji

where xj(j) = 1 if record x; is in target category j, and 0 otherwise. If profits are defined for the
tree, the gain is the average profit value for each terminal node,

g(t) =Y fiP(x:)

i€t

where P(x;) is the profit value assigned to the target value observed in record x;.

Generated Model/Scoring

Calculations done by the C&RT generated model are described below
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Predicted Values

New records are scored by following the tree splits to a terminal node of the tree. Each terminal
node has a particular predicted value associated with it, determined as follows:

Classification Trees

For trees with a symbolic target field, each terminal node’s predicted category is the category with
the lowest weighted cost for the node. This weighted cost is calculated as

miin Z C'(il5)pUlt)
J

where C(i|j) is the user-specified misclassification cost for classifying a record as category i when
it is actually category j, and p(j|t) is the conditional weighted probability of a record being in
category j given that it is in node t, defined as

Nuj(t)

p(_j,f-) ),P(j:f) = W(f) N

p(ilt) —Z_,'P(J.- ;

w,j

where 7(j) is the prior probability for category j, Nw,j(t) is the weighted number of records in node
t with category j (or the number of records if no frequency or case weights are defined),

—Nu'.j (f) = Z .wéf""'j(i)

et

and Ny j is the weighted number records in category j (any node),

_-Nrir.‘.j = Z “if.'/(f)
i€T
Regression Trees

For trees with a numeric target field, each terminal node’s predicted category is the weighted mean
of the target values for records in the node. This weighted mean is calculated as

_ 1
y(t) = = D wifii

Nu(t) i€t

where Ny(t) is defined as

Nalt) = Y wi,

icl
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Confidence

For classification trees, confidence values for records passed through the generated model are
calculated as follows. For regression trees, no confidence value is assigned.

Classification Trees

Confidence for a scored record is the proportion of weighted records in the training data in the
scored record’s assigned terminal node that belong to the predicted category, modified by the
Laplace correction:

Ny j(t)+1
;Vf(f) -+ k
Note: If Surrogate Splitting is used (where a particular rule does not fit into a node) the Confidence

score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

Blank Handling

In classification of new records, blanks are handled as they are during tree growth, using
surrogates where possible, and splitting based on weighted probabilities where necessary. For
more information, see the topic “Blank Handling.”
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Overview of CHAID

CHAID stands for Chi-squared Automatic Interaction Detector. It is a highly efficient statistical
technique for segmentation, or tree growing, developed by (Kass, 1980). Using the significance of
a statistical test as a criterion, CHAID evaluates all of the values of a potential predictor field. It
merges values that are judged to be statistically homogeneous (similar) with respect to the target
variable and maintains all other values that are heterogeneous (dissimilar).

It then selects the best predictor to form the first branch in the decision tree, such that each
child node is made of a group of homogeneous values of the selected field. This process continues
recursively until the tree is fully grown. The statistical test used depends upon the measurement
level of the target field. If the target field is continuous, an F test is used. If the target field is
categorical, a chi-squared test is used.

CHAID is not a binary tree method; that is, it can produce more than two categories at any
particular level in the tree. Therefore, it tends to create a wider tree than do the binary growing
methods. It works for all types of variables, and it accepts both case weights and frequency
variables. It handles missing values by treating them all as a single valid category.

Exhaustive CHAID

Exhaustive CHAID is a modification of CHAID developed to address some of the weaknesses
of the CHAID method (Biggs, de Ville, and Suen, 1991). In particular, sometimes CHAID may
not find the optimal split for a variable, since it stops merging categories as soon as it finds

that all remaining categories are statistically different. Exhaustive CHAID remedies this by
continuing to merge categories of the predictor variable until only two supercategories are left.
It then examines the series of merges for the predictor and finds the set of categories that gives
the strongest association with the target variable, and computes an adjusted p-value for that
association. Thus, Exhaustive CHAID can find the best split for each predictor, and then choose
which predictor to split on by comparing the adjusted p-values.

Exhaustive CHAID is identical to CHAID in the statistical tests it uses and in the way it treats
missing values. Because its method of combining categories of variables is more thorough than
that of CHAID, it takes longer to compute. However, if you have the time to spare, Exhaustive
CHAID is generally safer to use than CHAID. It often finds more useful splits, though depending
on your data, you may find no difference between Exhaustive CHAID and CHAID results.

Primary Calculations

The calculations directly involved in building the model are described below.

Frequency and Case Weight Fields

Frequency and case weight fields are useful for reducing the size of your dataset. Each has a
distinct function, though. If a case weight field is mistakenly specified to be a frequency field, or
vice versa, the resulting analysis will be incorrect.
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For the calculations described below, if no frequency or case weight fields are specified, assume
that frequency and case weights for all records are equal to 1.0.

Frequency Fields

A frequency field represents the total number of observations represented by each record. It is
useful for analyzing aggregate data, in which a record represents more than one individual. The
sum of the values for a frequency field should always be equal to the total number of observations
in the sample. Note that output and statistics are the same whether you use a frequency field or
case-by-case data. The table below shows a hypothetical example, with the predictor fields sex
and employment and the target field response. The frequency field tells us, for example, that 10
employed men responded yes to the target question, and 19 unemployed women responded no.

Table 10-1
Dataset with frequency field
Sex Employment Response Frequency
M Y Y 10
M Y N 17
M N Y 12
M N N 21
F Y Y 11
F Y N 15
F N Y 15
F N N 19

The use of a frequency field in this case allows us to process a table of 8 records instead of
case-by-case data, which would require 120 records.

Case weights

The use of a case weight field gives unequal treatment to the records in a dataset. When a case
weight field is used, the contribution of a record in the analysis is weighted in proportion to
the population units that the record represents in the sample. For example, suppose that in

a direct marketing promotion, 10,000 households respond and 1,000,000 households do not
respond. To reduce the size of the data file, you might include all of the responders but only a
1% sample (10,000) of the nonresponders. You can do this if you define a case weight equal to
1 for responders and 100 for nonresponders.

Binning of Scale-Level Predictors

Scale level (continuous) predictor fields are automatically discretized or binned into a set of
ordinal categories. This process is performed once for each scale-level predictor in the model,
prior to applying the CHAID (or Exhaustive CHAID) algorithm. The binned categories are
determined as follows:

1. The data values y;j are sorted.
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2. For each unique value, starting with the smallest, calculate the relative (weighted) frequency of
values less than or equal to the current value y;:

(.:f-,' = Z wr

Y <Y

where w is the weight for record k (or 1.0 if no weights are defined).

3. Determine the bin to which the value belongs by comparing the relative frequency with the ideal
bin percentile cutpoints of 0.10, 0.20, 0.30, etc.

g

10
W1

binindexr =

where W is the total weighted frequency for all records in the training data, 3. w;,, and

w;+1
g = ozt wotl w1
- (.'f,j_l f %, w; < 1

m If the bin index for this value is different from the bin index for the previous data value, add a
new bin to the bin list and set its cutpoint to the current data value.

m If the bin index is the same as the bin index for the previous value, update the cut point for
that bin to the current data value.

Normally, CHAID will try to create k = 10 bins by default. However, when the number of records
having a single value is large (or a set of records with the same value has a large combined
weighted frequency), the binning may result in fewer bins. This will happen if the weighted
frequency for records with the same value is greater than the expected weighted frequency in a bin
(1/kth of the total weighted frequency). This will also happen if there are fewer than k distinct
values for the binned field for records in the training data.

Model Parameters

CHAID works with all types of continuous or categorical fields. However, continuous predictor
fields are automatically categorized for the purpose of the analysis.For more information, see the
topic “Binning of Scale-Level Predictors.”

Note that you can set some of the options mentioned below using the Expert Options for
CHAID. These include the choice of the Pearson chi-squared or likelihood-ratio test, the level of
Omerge, the level of %split, score values, and details of stopping rules.
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The CHAID algorithm proceeds as follows:

Merging Categories for Predictors (CHAID)

To determine each split, all predictor fields are merged to combine categories that are not
statistically different with respect to the target field. Each final category of a predictor field X
will represent a child node if X is used to split the node. The following steps are applied to each
predictor field X:

1. If X has one or two categories, no more categories are merged, so proceed to node splitting below.

2. Find the eligible pair of categories of X that is least significantly different (most similar) as
determined by the p-value of the appropriate statistical test of association with the target field. For
more information, see the topic “Statistical Tests Used.”

For ordinal fields, only adjacent categories are eligible for merging; for nominal fields, all pairs
are eligible.

3. For the pair having the largest p-value, if the p-value is greater than @merge, then merge the
pair of categories into a single category. Otherwise, skip to step 6.

4. If the user has selected the Allow splitting of merged categories option, and the newly formed
compound category contains three or more original categories, then find the best binary split
within the compound category (that for which the p-value of the statistical test is smallest). If that

p-value is less than or equal to Ysplit-merge , perform the split to create two categories from
the compound category.

5. Continue merging categories from step 1 for this predictor field.

6. Any category with fewer than the user-specified minimum segment size records is merged
with the most similar other category (that which gives the largest p-value when compared with
the small category).

Merging Categories for Predictors (Exhaustive CHAID)

Exhaustive CHAID works much the same as CHAID, except that the category merging is more
thoroughly tested to find the ideal set of categories for each predictor field. As with regular
CHAID, each final category of a predictor field X will represent a child node if X is used to split
the node. The following steps are applied to each predictor field X:

1. For each predictor variable X, find the pair of categories of X that is least significantly different
(that is, has the largest p-value) with respect to the target variable Y. The method used to
calculate the p-value depends on the measurement level of Y. For more information, see the
topic “Statistical Tests Used.”

2. Merge into a compound category the pair that gives the largest p-value.

3. Calculate the p-value based on the new set of categories of X. This represents one set of categories
for X. Remember the p-value and its corresponding set of categories.
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4. Repeat steps 1, 2, and 3 until only two categories remain. Then, compare the sets of categories
of X generated during each step of the merge sequence, and find the one for which the p-value
in step 3 is the smallest. That set is the set of merged categories for X to be used in determining
the split at the current node.

Splitting Nodes

When categories have been merged for all predictor fields, each field is evaluated for its
association with the target field, based on the adjusted p-value of the statistical test of association,
as described below.

The predictor with the strongest association, indicated by the smallest adjusted p-value, is
compared to the split threshold, %split. If the p-value is less than or equal to ®split, that field is
selected as the split field for the current node. Each of the merged categories of the split field
defines a child node of the split.

After the split is applied to the current node, the child nodes are examined to see if they warrant
splitting by applying the merge/split process to each in turn. Processing proceeds recursively until
one or more stopping rules are triggered for every unsplit node, and no further splits can be made.

Statistical Tests Used

Calculations of the unadjusted p-values depend on the type of the target field. During the merge
step, categories are compared pairwise, that is, one (possibly compound) category is compared
against another (possibly compound) category. For such comparisons, only records belonging to
one of the comparison categories in the current node are considered. During the split step, all
categories are considered in calculating the p-value, thus all records in the current node are used.

Scale Target Field (F Test).

For models with a scale-level target field, the p-value is calculated based on a standard
ANOVA F-test comparing the target field means across categories of the predictor field under
consideration. The F statistic is calculated as

I
SN wndal @ =) (5, )2/ - 1)

i=1 neD

F= 7
Z Z 'fi’rzf-rz,f (-Tn = ?') (',Un — 55)2/(1\‘} — 1')
i=1 neD

and the p-value is

p=Pr(F(I-1,N;—1)>F)

where
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and F(I — 1, Ng— 1) is a random variable following an F-distribution with (7 — 1) and (Ns— 1)
degrees of freedom.

Nominal Target Field (Chi-Squared Test)

If the target field Y is a set (categorical) field, the null hypothesis of independence of X and Y is
tested. To do the test, a contingency (count) table is formed using classes of Y as columns and
categories of the predictor X as rows. The expected cell frequencies under the null hypothesis of
independence are estimated. The observed cell frequencies and the expected cell frequencies are
used to calculate the chi-squared statistic, and the p-value is based on the calculated statistic.

Pearson Chi-squared test

The Pearson chi-square statistic is calculated as

2 N\ (nij — 1mij)>
X = ZZ Ly v J

where n;; = > fu.l(x, =i Ay, = j) is the observed cell frequency and 7;; is the expected
cell frequency for cell (xn =1, yn = j) from the independence model as described below. The
corresponding p value is calculated as p = Pr (2 > X?), where x? follows a chi-square
distribution with d = (J — 1)(I — 1) degrees of freedom.

Expected Frequencies for Chi-Square Test

Likelihood-ratio Chi-squared test

The likelihood-ratio chi-square is calculated based on the expected and observed frequencies, as
described above. The likelihood ratio chi-square is calculated as

J T

G? =2 Z Z nijln (ng/mi;)
j=1i=1
and the p-value is calculated as p = Pr (x5 > G7)

Expected frequencies for chi-squared tests

For models with no case weights, expected frequencies are calculated as




CHAID Algorithms

where
J I J I

n; = E Nij, Nj = E Nij, n, = E E nij
j=1 =1 g=1i=1

If case weights are specified, the expected cell frequency under the null hypothesis of
independence takes the form

T
mij = W ;3

where o; and pj are parameters to be estimated, and

_ Wiy . .
Wij = =, wij = E wp ful(x =1 ANy, = 7).
i

ncD

The parameter estimates ¢, 8 ', and hence 1, ;, are calculated based on the following iterative
procedure:

o —1
=1, my; =Wy

L. Initially, k = 0, a(UJ S(UJ

2. (k+1) _ _ (k) ng

o' p— = =

i Z; ildlﬁ\ i ijgjf)
3. O»(k 1 _
Z _;_] (k+1]

4. (k+1) _ ~—1 (k+1) o(k+1)

m; = a ,33- .
Soqf max; ; mr‘f n_ (“ < €. stop and output Q(k+1). ,x"a’}kﬂ). and mﬁj‘” as the final estimates of

é&;. B;. and 7, ;. Orhemlse. increment & and repeat from step 2.

Ordinal Target Field (Row Effects Model)

If the target field Y is ordinal, the null hypothesis of independence of X and Y is tested against
the row effects model, with the rows being the categories of X and the columns the categories
of Y(Goodman, 1979). Two sets of expected cell frequencies, +i2;; (under the hypothesis of
independence and +12;; (under the hypothesis that the data follow the row effects model), are both
estimated. The likelihood ratio statistic is computed as

I 7
=2 Z Z ﬁ?’ij In (’!’?’J.w/ﬁlw)
i=1 j=1
and the p-value is calculated as

p=DPr (\/%71 > Hz)
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Expected Cell Frequencies for the Row Effects Model

For the row effects model, scores for categories of Y are needed. By default, the order of each
category is used as the category score. Users can specify their own set of scores. The expected
cell frequency under the row effects model is

where s; is the score for category j of Y, and

J
z‘jZl 'U_JJSJ
J

5§ =

in which w ; =}, wi;. 0. v; and y; are unknown parameters to be estimated.

Parameter estimates a;, i 5,.,-, and hence m; ,; are calculated using the following iterative
procedure:

L. _ (0) _ pl0) _ . (0) _ (0) _ -1
k — 01 a.!' — Li‘:‘ = '}‘1 = 11 m. .- = .

iy ij
2. _(k | ]-J _ .4 _ (k) Thi,
o = = = =t
i Zj__l’*'”( )(* =) @ Ej mk;”
3. olkd 1} n.j
= Z w1 U.)[ A))( =)
4 b i) gkt (,Y;k)){"” g o g 2yl my)
17 ] i3 ~a {1 ? i Zj(sj ) m;‘?.
Yoo T LW herwis
Vi otherwise
6. (5;-73)
m v(:;»+1 o F” _£L+1 3! k+1)( 1(:L+1)) g
7o max; ; m§f+‘] - mgf}‘ < e, stop and set a_ﬁ"“”. ,Bj[-Hl). '}fkﬂ and m (k1) as the final
estimates of &;. 3 > ”3 and 7n; j- Otherwise, increment k and repeat from step 2.
Bonferroni Adjustment

The adjusted p-value is calculated as the p-value times a Bonferroni multiplier. The Bonferroni
multiplier controls the overall p-value across multiple statistical tests.

Suppose that a predictor field originally has | categories, and it is reduced to r categories after
the merging step. The Bonferroni multiplier B is the number of possible ways that | categories
can be merged into r categories. Forr=1,B=1. For2 <r<|,
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(fi B % ) Ordinal predictor
B= Y5 (—1)1’% Nominal predictor

(7{ - 2) g ( 7{ - %) Ordinal with a missing value

Blank Handling

If the target field for a record is blank, or all the predictor fields are blank, the record is ignored in
model building. If case weights are specified and the case weight for a record is blank, zero, or
negative, the record is ignored, and likewise for frequency weights.

For other records, blanks in predictor fields are treated as an additional category for the field.

Ordinal Predictors

The algorithm first generates the best set of categories using all non-blank information. Then the
algorithm identifies the category that is most similar to the blank category. Finally, two p-values
are calculated: one for the set of categories formed by merging the blank category with its most
similar category, and the other for the set of categories formed by adding the blank category as a
separate category. The set of categories with the smallest p-value is used.

Nominal Predictors

The missing category is treated the same as other categories in the analysis.

Effect of Options

Stopping Rules

Stopping rules control how the algorithm decides when to stop splitting nodes in the tree. Tree
growth proceeds until every leaf node in the tree triggers at least one stopping rule. Any of the
following conditions will prevent a node from being split:

m  The node is pure (all records have the same value for the target field)
m  All records in the node have the same value for all predictor fields used by the model

m  The tree depth for the current node (the number of recursive node splits defining the current
node) is the maximum tree depth (default or user-specified).

m  The number of records in the node is less than the minumum parent node size (default or
user-specified)

m  The number of records in any of the child nodes resulting from the node’s best split is less
than the minimum child node size (default or user-specified)

m  The best split for the node yields a p-value that is greater than the (sp)jt (default  or
user-specified).
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Profits

Profits are numeric values associated with categories of a (symbolic) target field that can be used
to estimate the gain or loss associated with a segment. They define the relative value of each value
of the target field. Values are used in computing gains but not in tree growing.

Profit for each node in the tree is calculated as

>_fi0F;

where j is the target field category, fj(t) is the sum of frequency field values for all records in node
t with category j for the target field, and Pj is the user-defined profit value for category j.

Score Values

Scores are available in CHAID and Exhaustive CHAID. They define the order and distance
between categories of an ordinal categorical target field. In other words, the scores define the
field’s scale. Values of scores are involved in tree growing.

If user-specified scores are provided, they are used in calculation of expected cell frequencies,
as described above.

Costs

Costs, if specified, are not taken into account in growing a CHAID tree. However, costs will be
incorporated into node assignment and risk estimation, as described in Predicted Values and
Risk Estimates, below.

Secondary Calculations
Secondary calculations are not directly related to building the model, but give you information
about the model and its performance.

Risk Estimates

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for
the tree as a whole.

Risk Estimates for Symbolic Target Field

For classification trees (with a symbolic target field), the risk estimate r(t) of a node t is computed
as
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where C(j*(t)|j) is the misclassification cost of classifying a record with target value j as j*(t),
Nf,j(t) is the sum of the frequency weights for records in node t in category j (or the number of
records if no frequency weights are defined), and Ns is the sum of frequency weights for all
records in the training data.

Note that case weights are not considered in calculating risk estimates.

Risk Estimates for numeric target field

For regression trees (with a numeric target field), the risk estimate r(t) of a node t is computed as
1 2
rt) = —-—= iy — Yyt
) = 3, 2 il — 90
ict

where fj is the frequency weight for record i (a record assigned to node t), yj is the value of the
target field for record i, and %(¢) is the weighted mean of the target field for all records in node t.

Tree Risk Estimate

For both classification trees and regression trees, the risk estimate R(T) for the tree (T) is
calculated by taking the sum of the risk estimates for the terminal nodes r(t):

e

where T is the set of terminal nodes in the tree.

Gain Summary

The gain summary provides descriptive statistics for the terminal nodes of a tree.
If your target field is continuous (scale), the gain summary shows the weighted mean of the
target value for each terminal node,

g(?‘) = Z M,-‘iff.’]??'
1€t

If your target field is symbolic (categorical), the gain summary shows the weighted percentage of
records in a selected target category,

i1y D

where xj(j) = 1 if record x; is in target category j, and 0 otherwise. If profits are defined for the
tree, the gain is the average profit value for each terminal node,

g(t) =>_ fiP(x;)

icl
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where P(x;) is the profit value assigned to the target value observed in record x;.

Generated Model/Scoring

Calculations done by the CHAID generated model are described below

Predicted Values

New records are scored by following the tree splits to a terminal node of the tree. Each terminal
node has a particular predicted value associated with it, determined as follows:

Classification Trees

For trees with a symbolic target field, each terminal node’s predicted category is the category with
the lowest weighted cost for the node. This weighted cost is calculated as

111i111;0(?|J)P(J| )

where C(i[j) is the user-specified misclassification cost for classifying a record as category i when
it is actually category j, and p(j|t) is the conditional weighted probability of a record being in
category j given that it is in node t, defined as

p(1, 1) P Nu‘..j (7()

it = =2 p(jt)=m
L ST R

where z(j) is the prior probability for category j, Ny j(t) is the weighted number of records in node
t with category j (or the number of records if no frequency or case weights are defined),

Nuj(t) = Y wifii(i)
ict
and Ny j is the weighted number records in category j (any node),
‘\?uj = Z “‘if"j(f)
icT
Regression Trees

For trees with a numeric target field, each terminal node’s predicted category is the weighted mean
of the target values for records in the node. This weighted mean is calculated as

_ 1
y(t) = T(f) ZE; w; fiy

where Ny(t) is defined as
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1ct

Confidence

For classification trees, confidence values for records passed through the generated model are
calculated as follows. For regression trees, no confidence value is assigned.

Classification Trees

Confidence for a scored record is the proportion of weighted records in the training data in the
scored record’s assigned terminal node that belong to the predicted category, modified by the
Laplace correction:

Npi(O) +1
.Nf (f) + k

Note: If Surrogate Splitting is used (where a particular rule does not fit into a node) the Confidence
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

Blank Handling

In classification of new records, blanks are handled as they are during tree growth, being treated as
an additional category (possibly merged with other non-blank categories). For more information,
see the topic “Blank Handling.”

For nodes where there were no blanks in the training data, a blank category will not exist for
the split of that node. In that case, records with a blank value for the split field are assigned a
null value.






Cluster Evaluation Algorithms

This document describes measures used for evaluating clustering models.

m The Silhouette coefficient combines the concepts of cluster cohesion (favoring models which
contain tightly cohesive clusters) and cluster separation (favoring models which contain
highly separated clusters). It can be used to evaluate individual objects, clusters, and models.

m  The sum of squares error (SSE) is a measure of prototype-based cohesion, while sum of
squares between (SSB) is a measure of prototype-based separation.

®m  Predictor importance indicates how well the variable can differentiate different clusters. For
both range (numeric) and discrete variables, the higher the importance measure, the less
likely the variation for a variable between clusters is due to chance and more likely due to
some underlying difference.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Tk Continuous variable k in case i (standardized).

Tiks The sth category of variable k in case i (one-of-c coding).

N Total number of valid cases.

N; The number of cases in cluster j.

Y Variable with J cluster labels.

Mk The centroid of cluster j for variable k.

Dy The distance between case i and the centroid of cluster j.

D; The distance between the overall mean « and the centroid of cluster j.

Goodness Measures

The average Silhouette coefficient is simply the average over all cases of the following calculation
for each individual case:

(B—A)/max (A, B)

where A is the average distance from the case to every other case assigned to the same cluster and
B is the minimal average distance from the case to cases of a different cluster across all clusters.

Unfortunately, this coefficient is computationally expensive. In order to ease this burden, we use
the following definitions of A and B:

m A isthe distance from the case to the centroid of the cluster which the case belongsto;
m B is the minimal distance from the case to the centroid of every other cluster.



Cluster Evaluation Algorithms

Distances may be calculated using Euclidean distances. The Silhouette coefficient and its average
range between —1, indicating a very poor model, and 1, indicating an excellent model. As found
by Kaufman and Rousseeuw (1990), an average silhouette greater than 0.5 indicates reasonable
partitioning of data; less than 0.2 means that the data do not exhibit cluster structure.

Data Preparation

Before calculating Silhouette coefficient, we need to transform cases as follows:

1 Recode categorical variables using one-of-c coding. If a variable has c categories, then it is stored
as c vectors, with the first category denoted (1,0,...,0), the next category (0,1,0,...,0), ..., and the
final category (0,0,...,0,1). The order of the categories is based on the ascending sort or lexical
order of the data values.

2 Rescale continuous variables. Continuous variables are normalized to the interval [—1, 1] using the
transformation [2*(x—min)/(max—min)]—1. This normalization tries to equalize the contributions
of continuous and categorical features to the distance computations.

Basic Statistics

The following statistics are collected in order to compute the goodness measures: the centroid
;i of variable k for cluster j, the distance between a case and the centroid, and the overall mean u.

For 4.;;. with an ordinal or continuous variable k, we average all standardized values of variable
k within cluster j. For nominal variables, s ;. is a vector {¢ ..} of probabilities of occurrence
for each state s of variable k for cluster j. Note that in counting , we do not consider cases with
missing values in variable k. If the value of variable k is missing for all cases within cluster j,
1% 1s marked as missing.

The distance D7, between case i and the centroid of cluster j can be calculated in terms of the
weighted sum of the distance components 47, across all variables; that is

‘ 2

D+ =
N Wik

where w; ;. denotes a weight. At this point, we do not consider differential weights, thus
wji, equals 1 if the variable k in case i is valid, 0 if not. If all w;;. equal 0, set D, = 0.

The distance component @7, is calculated as follows for ordinal and continuous variables

(ffzjk = (-?-‘ik‘ — ,i..',J'k.)z

For binary or nominal variables, it is

S
. 1 e
df)jk = S_AZ (-T-.ik:s - sDJA-,s,-)Q

s=1
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where variable k uses one-of-c coding, and S;. is the number of its states.
The calculation of D; is the same as that of D;;, but the overall mean u is used in place of 1. and
11,5, 1S used in place of z;.
Silhouette Coefficient
The Silhouette coefficient of case i is

min {D;j,5 € C_;} — Dje,
max (min {D;;,j € C_;}, Die,)

where C'_; denotes cluster labels which do not include case i as a member, while ¢; is the cluster
label which includes case i. If max (min{D;;,j € C'_;}, D;.,) equals 0, the Silhouette of case i is
not used in the average operations.

Based on these individual data, the total average Silhouette coefficient is:

SO — o min {D;;,j € C_;} — Dy,
o \ — max (min {Dj;,5 € C_;}, Djc,)

Sum of Squares Error (SSE)

SSE is a prototype-based cohesion measure where the squared Euclidean distance is used. In order
to compare between models, we will use the averaged form, defined as:

Average SSE = Z > Dy

jEC’ icy

Sum of Squares Between (SSB)

SSB is a prototype-based separation measure where the squared Euclidean distance is used. In
order to compare between models, we will use the averaged form, defined as:

1 N 2
Average SSB = NZ' N;D;
jec
Predictor Importance
The importance of field i is defined as

—lt)g][) (5”]3)
max;cq (—log (sig;))

VI =
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where 2 denotes the set of predictor and evaluation fields, sig; is the significance or
p-value computed from applying a certain test, as described below. If sig; equals zero, set
sig; = MinDouble, where MinDouble is the minimal double value.

Across Clusters

The p-value for categorical fields is based on Pearson’s chi-square. It is calculated by

p-value = Prob(x% > X?),

where

where Ni; = NN, /N (X).
If N (X) = 0, the importance is set to be undefined or unknown;

m If N; =0, subtract one from | for each such category to obtain I';
m If N; =0, subtract one from J for each such cluster to obtain .J ;
m IfJ <1 orI'<1 ,theimportance is set to be undefined or unknown.

The degrees of freedom are (1’ —1) (l —1).
The p-value for continuous fields is based on an F test. It is calculated by
p-value = Prob{F (J —1,N — J) > F},

where

-

N (@ -7/ - 1)

-
I
=

(N} = sy /(N =)

M-

I
—

J
If N=0, the importance is set to be undefined or unknown;
If N; =0, subtract one from J for each such cluster to obtain J
IfJ <1 otV <.J, the importance is set to be undefined or unknown;

If the denominator in the formula for the F statistic is zero, the importance is set to be
undefined or unknown;

m |f the numerator in the formula for the F statistic is zero, set p-value = 1;

The degrees of freedom are (J' - 1,N — J’).
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Within Clusters

The null hypothesis for categorical fields is that the proportion of cases in the categories in
cluster j is the same as the overall proportion.

The chi-square statistic for cluster j is computed as follows

AT AT . 2
,Xz _ Z (*\U — ;\'jp;{)

NJ Dy

i=1
If N; =0, the importance is set to be undefined or unknown;
If p; = 0, subtract one from I for each such category to obtain 7';
If /' < 1, the importance is set to be undefined or unknown.
The degrees of freedomare d = I' — 1.

The null hypothesis for continuous fields is that the mean in cluster j is the same as the overall
mean.

The Student’s t statistic for cluster j is computed as follows

with d = N; — 1 degrees of freedom.

If N; <1 ors; =0, the importance is set to be undefined or unknown;

If the numerator is zero, set p-value = 1;
Here, the p-value based on Student’s t distribution is calculated as

p-value = 1 — Prob{|7 (d)| < |¢[}-
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Cox RegressionAlgorithms

Cox (1972) first suggested the models in which factors related to lifetime have a multiplicative
effect on the hazard function. These models are called proportional hazards models. Under the
proportional hazards assumption, the hazard function h of t given X is of the form

h(t|x) = ho(t)e*

where x is a known vector of regressor variables associated with the individual, 3 is a vector of
unknown parameters, and /(¢) is the baseline hazard function for an individual with x = 0.
Hence, for any two covariates sets x, and x», the log hazard functions 7(¢|x,) and &(¢|x2) should
be parallel across time.

When a factor does not affect the hazard function multiplicatively, stratification may be useful in
model building. Suppose that individuals can be assigned to one of m different strata, defined
by the levels of one or more factors. The hazard function for an individual in the jth stratum is
defined as

h,j(t|x_) = hnj‘(t)("x’ﬁ

There are two unknown components in the model: the regression parameter 3 and the baseline
hazard function £, (¢). The estimation for the parameters is described below.

Estimation

We begin by considering a nonnegative random variable T representing the lifetimes of individuals
in some population. Let f(¢|x) denote the probability density function (pdf) of T givena regressor
x and let S(#|x) be the survivor function (the probability of an individual surviving until time

t). Hence

S(i]x) :‘/t Slu|x)du

The hazard h(t|x) is then defined by

h(t|x) = fg‘(’,‘lﬁi
Another useful expression for S(t}x) in terms of h(t]x) is
S(t|x) = exp </t.’z.(ux)du>
0
Thus,

t
InS(tx) = 7/ h(u|x)du
0

For some purposes, it is also useful to define the cumulative hazard function
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1) = [ haldn =~
0
Under the proportional hazard assumption, the survivor function can be written as
S(tlx) = [So(n]™* 57)
where S, (¢) is the baseline survivor function defined by

So(t) = exp (—Ho(t))

and

t
Hy(t) = / ho(u)du

0
Some relationships between S(¢|x), H(¢|x) and Hy (), Sy(¢) and kg (t) which will be used later are
lnS(tx) = —H(i|x) = —exp (xfﬁ) Hy(t)

In(—InS(tx)) =x 3+ In Hy(t)

To estimate the survivor function S(¢|x), we can see from the equation for the survivor function
that there are two components, & and S, (), which need to be estimated. The approach we use
here is to estimate 3 from the partial likelihood function and then to maximize the full likelihood
for Sy ().

Estimation of Beta

Assume that

m  There are m levels for the stratification variable.

m Individuals in the same stratum have proportional hazard functions.

m  The relative effect of the regressor variables is the same in each stratum.

Leti;; < --- < t;;, bethe observed uncensored failure time of the; individuals in the jth
stratum and x4, ...,z be the corresponding covariates. Then the partial likelihood function
is defined by

- dj;
j—li=1 »
E wpe™ !
IER;;

where d;; is the sum of case weights of individuals whose lifetime is equal to ¢;; and S; is
the weighted sum of the regression vector x for those ;; individuals, w; is the case weight of
individual I, and z;; is the set of individuals alive and uncensored just prior to ¢;; in the jth
stratum. Thus the log-likelihood arising from the partial likelihood function is
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m ’J m -lu'u.

I=InL(3) ZZSﬁﬂfZZd-f In Z tyguf'xlfi

j=11i=1 j=11=1 leRji

and the first derivatives of | are

!

E wyLpee™

m & ien
ey
ZZ i |’ r=1,...,p
—1i=1 E wpe™

IcR;;
St) is the rth component of S ;; = (S“',.. ji’)) The maximum partial likelihood estimate
(MPLE) of 3 is obtained by setting -2 equal to zero for » = 1,..., p, where p is the number of
independent variables in the model. The equations % =0 (: =1,...,p) can usually be
solved by using the Newton-Raphson method. '

Note that from its equation that the partial likelihood function Z.(3) is invariant under
translation. All the covariates are centered by their corresponding overall mean. The overall mean
of a covariate is defined as the sum of the product of weight and covariate for all the censored and
uncensored cases in each stratum. For notational simplicity, x; used in the Estimation Section
denotes centered covariates.

Three convergence criteria for the Newton-Raphson method are available:

m  Absolute value of the largest difference in parameter estimates between iterations (4) divided
by the value of the parameter estimate for the previous iteration; that is,

BCON =

§
parameter estimate for previous iteration

m  Absolute difference of the log-likelihood function between iterations divided by the
log-likelihood function for previous iteration.

m Maximum number of iterations.

The asymptotic covariance matrix for the MPLE 3 = (3, ... 3, isestimated by I-! where |
is the information matrix containing minus the second partlal derlvatives of InL . The(r,s)-th
element of 1 is defined by

I. = 7,75”j - lnL
r ? ! 'ﬂ 7 'j?
, g Wy rype E wyxye E wyxy e
m
Z ! J lER;; lER;; lER;;
= d; _

e ! - 2
J=1i=1 E wye™ 1 »
L ox
ICR;; Z we

lER;;

We can also write | in a matrix form as

E;

3 (5 (0 Vit l)

j=11i=1
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where x(t;;) isan;; x p matrix which represents the p covariate variables in the model evaluated
at time ¢;;, n;; is the number of distinct individuals in 2;;, and 'V (¢;;) is a nj; x n;; matrix with
the Ith diagonal element «;(¢,;) defined by

'l‘;g(f.ﬁ) = pg(f,ﬁ)u',{ — (T_I,J,Ij);(f,j,))Q

exp (x’;gﬁ’)

E wy, exp (x h_,;i’)
hC Hj;

and the (I, k) element v;.(¢;;) defined by

p((‘j?) =

o (i) = wipr (L) X wpr(ti)

Estimation of the Baseline Function

After the MPLE 3 of 3 is found, the baseline survivor function S, (¢) is estimated separately for
each stratum. Assume that, for a stratum, #, < -.. < ¢, are observed lifetimes in the sample.
There are n; at risk and d; deaths at ¢;, and in the interval [¢;_,.,) there are A; censored times.
Since S (t) is a survivor function, it is non-increasing and left continuous, and thus S (1) must be
constant except for jumps at the observed lifetimes #,,....7;.

Further, it follows that

S()(il) =1
and

3()(174’) - g()(f,.,, l)

Writing Sy(4;+) = p;(: = 1,..., k), the observed likelihood function is of the form
k oY X x’ £ wi exp x’ £ w exp x’ £ wr
=1] { [T (it ) g (i) } I (")
i=1 \leD; leC; 1cCL

where D; is the set of individuals dying at ¢, and ; is the set of individuals with censored timesin
[ti—1, ;). (Note that if the last observation is uncensored, .., is empty and p,, = 0)

Ifweleta;, =p,/p;—i(i=1,...,k), Ly can be written as

k ro w - x’ p
L ()

i=11<D; IeR:—D,

Differentiating In £, with respectto a4, ..., a; and setting the equations equal to zero, we get

wy exp (Xrilfj) ,
Z— Ztvgexp(x;ﬁ) i=1,...,k

18 -
leni 1—ay b (x"18) I€R;

We then plug the MPLE § of /3 into this equation and solve these k equations separately.
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There are two things worth noting:
m Ifany |D,| =1, &; can be solved explicitly.
exp (17

wy exp (xJ ii)

Z wyi exp x{;,{?
3 o)
m |f |D;] = 1, the equation for the cumulative hazard function must be solved iteratively for

&;. A good initial value for a; is

a; = [1—

- —d;

a; = exp L
Z wyexp (x93
el ( )

where d; = Z w, 1s the weight sum for set ;. (See Lawless, 1982, p. 361.)
leD;

Once the &;, s = 1,...,k are found, S;(¢) is estimated by

So(t) = H &

it <)

Since the above estimate of S, (¢) requires some iterative calculations when ties exist, Breslow
(1974) suggests using the equation for a; when |D;| > 1 as an estimate; however, we will use
this as an initial estimate.

The asymptotic variance for —In S (¢) can be found in Chapter 4 of Kalbfleisch and Prentice
(1980). At a specified time t, it is consistently estimated by

—2
1‘ar(— lnSU(i)) = z 1D (Z wy exp (X’15§)> ~alla
t; <t

IeR;

where a is a px1 vector with the jth element defined by

Z_ Wy exp (x;;f)
IER;
> 1D p
t; <t -
(Z wy exp (x ,:;5))

leR;

and | is the information matrix. The asymptotic variance of S(¢|x) is estimated by

o2x B (S(I|x))2var (— In S'U(ﬂ))

Selection Statistics for Stepwise Methods

The same methods for variable selection are offered as in binary logistic regression. For more
information, see the topic “Stepwise Variable Selection.” Here we will only define the three
removal statistics—Wald, LR, and Conditional—and the Score entry statistic.
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Score Statistic

The score statistic is calculated for every variable not in the model to decide which variable should
be added to the model. First we compute the information matrix | for all eligible variables based
on the parameter estimates for the variables in the model and zero parameter estimates for the
variables not in the model. Then we partition the resulting I into four submatrices as follows:

AJ.J. AJ.2
AQl A_)_?

where Ay, and As- are square matrices for variables in the model and variables not in the model,
respectively, and A - is the cross-product matrix for variables in and out. The score statistic
for variable x; is defined by

I

D a:iBZQ.i'D:r:,_

where D, is the first derivative of the log-likelihood with respect to all the parameters associated
. . _ 1 .

with x; and B ; 1s equal to (Agg_;‘ - AguAu] Aw..!-) ,and Agp; and Ajq ; are the submatrices

in Asqs and Ais associated with variable x;.

Wald Statistic

The Wald statistic is calculated for the variables in the model to select variables for removal.
The Wald statistic for variable x; is defined by

ﬁjBll.J-ﬁj

where j; is the parameter estimateassociated with x, and B, ; is the submatrix of A" associated

LR (Likelihood Ratio) Statistic

The LR statistic is defined as twice the log of the ratio of the likelihood functions of two models
evaluated at their own MPLES. Assume that r variables are in the current model and let us call the
current model the full model. Based on the MPLES of parameters for the full model, I(full) is
defined in “Estimation of Beta.” For each of r variables deleted from the full model, MPLES

are found and the reduced log-likelihood function, I(reduced), is calculated. Then LR statistic is
defined as

—2(I(reduced) — I(full))

Conditional Statistic

The conditional statistic is also computed for every variable in the model. The formula for
conditional statistic is the same as LR statistic except that the parameter estimates for each
reduced model are conditional estimates, not MPLES. The conditional estimates are defined as
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follows. Let 3 = (31, e ,;?,.) be the MPLES for the r variables (blocks) and C be the asymptotic
covariance for the parameters left in the model given 3; is

o 5 1 i -1 5
SU) = S(.,_) — C(l.?) (Cg_j) ,“3,_
where 3; is the MPLE for the parameter(s) associated with x; and J;, is & without 3;, C\ is

the covariance between the parameter estimates left in the model 5, and 3;, and CL is the
covariance of 3;. Then the conditional statistic for variable x; is defined by

where l(ﬁ(,)) is the log-likelihood function evaluated at 3(-,‘;.

Note that all these four statistics have a chi-square distribution with degrees of freedom equal to
the number of parameters the corresponding model has.

Statistics

The following output statistics are available.

Initial Model Information

The initial model for the first method is for a model that does not include covariates. The
log-likelihood function | is equal to

m kK
ji=1l1i=1

where 7}, is the sum of weights of individuals in set R;..

Model Information

When a stepwise method is requested, at each step, the —2 log-likelihood function and three
chi-square statistics (model chi-square, improvement chi-square, and overall chi-square) and their
corresponding degrees of freedom and significance are printed.

-2 Log-Likelihood
m Ry
722 Z s ,,’% —dj;In Z wy exp (x,yi)
§=11i=1 IER;;

where 3 is the MPLE of 3 for the current model.
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Improvement Chi-Square
(=2 log-likelihood function for previous model) — ( -2 log-likelihood function for current model).

The previous model is the model from the last step. The degrees of freedom are equal to the
absolute value of the difference between the number of parameters estimated in these two models.

Model Chi-Square
(-2 log-likelihood function for initial model) — ( -2 log-likelihood function for current model).
The initial model is the final model from the previous method. The degrees of freedom are equal
to the absolute value of the difference between the number of parameters estimated in these

two model.

Note: The values of the model chi-square and improvement chi-square can be less than or equal to
zero. If the degrees of freedom are equal to zero, the chi-square is not printed.

Overall Chi-Square

The overall chi-square statistic tests the hypothesis that all regression coefficients for the variables
in the model are identically zero. This statistic is defined as

u' ()T~ u(0)

where u(0) represents the vector of first derivatives of the partial log-likelihood function evaluated
at 3 = 0. The elements of u and | are defined in “Estimation of Beta.”

Information for Variables in the Equation

For each of the single variables in the equation, MPLE, SE for MPLE, Wald statistic, and its
corresponding df, significance, and partial R are given. For a single variable, R is defined by

_ Wald_, KA
ft= [2 Tog-Tikelifiood for the intial model] x sign of MPLE

if Wald > 2. Otherwise R is set to zero. For a multiple category variable, only the Wald statistic,
df, significance, and partial R are printed, where R is defined by

no Wald_o.df v
—2 log-likelihood for the intial model

if Wald = 2df. Otherwise R is set to zero.
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Information for the Variables Not in the Equation

For each of the variables not in the equation, the Score statistic is calculated and its corresponding
degrees of freedom, significance, and partial R are printed. The partial R for variables not in the
equation is defined similarly to the R for the variables in the equation by changing the Wald
statistic to the Score statistic.

There is one overall statistic called the residual chi-square. This statistic tests if all regression
coefficients for the variables not in the equation are zero. It is defined by

u (B)ngu(ﬁ?)

where u(ﬁ) is the vector of first derivatives of the partial log-likelihood function with

respect to all the parameters not in the equation evaluated at MPLE 3 and B., is equal to
(As — Ay AT Au)f1 and A is defined in “Score Statistic.”

Survival Table

Plots

For each stratum, the estimates of the baseline cumulative survival (S,) and hazard (Hy) function
and their standard errors are computed. 7,(¢) is estimated by

Hy(t) = —In Sy(1)

and the asymptotic variance of 77,(t) is defined in “Estimation of the Baseline Function.” Finally,
the cumulative hazard function H(¢|x) and survival function S(¢|x) are estimated by

H(t]x) = exp (x’ 5) Ho (1)
and, for a given X,

i (')

S(t]x) = [sn,(f.
The asymptotic variances are
var (H((|x)) = exp (2){13)1-‘{;&?‘ (HU(!))

and

var (A (f‘x)) = exp (2)(’3) (S'(f|x))211ar (ff”(t))

For a specified pattern, the covariate values x.. are determined and x,. is computed. There are three
plots available for Cox regression.
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Survival Plot

For stratum j, (t(, Su(f,.,‘_\x(,)), i=1,...,k; are plotted where

S(tilx.) = (Su(f--;))cxp (x'4)

Hazard Plot

For stratum j, (t,-, I}(it,-_\x(_.)), i=1,...,k; are plotted where
ﬁ(f? |Xt) = ¢xp (X’(.‘"‘%) [;Tfl(f?)

LML Plot

The log-minus-log plot is used to see whether the stratification variable should be included as
a covariate. Forstratumj, (¢;,x .3+ In I?U(t,-)g, i=1,...,k; are plotted. If the plot shows
parallelism among strata, then the stratum variable should be a covariate.

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

Scoring
Survival and cumulative hazard estimates are given in “Survival Table.” Conditional upon
survival until time tg, the probability of survival until time t is

. G (L
S(t+tolty) = 2L 70)

S (to)

Blank Handling

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.

Additionally, records with “total” survival time (past + future) greater than the record with the
longest observed uncensored survival time are also assigned a predicted value of $null$.
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Decision List Algorithms

The objective of decision lists is to find a group of individuals with a distinct behavior pattern; for
example, a high probability of buying a product. A decision list model consists of a set of decision
rules. A decision rule is an if-then rule, which has two parts: antecedent and consequent. The
antecedent is a Boolean expression of predictors, and the consequent is the predicted value of the
target field when the antecedent is true. The simplest construct of a decision rule is a segment
based on one predictor; for example, Gender = ‘Male’ or 10 < Age < 20.

A record is covered by a rule if the rule antecedent is true. If a case is covered by one of the
rules in a decision list, then it is considered to be covered by the list.

In a decision list, order of rules is significant; if a case is covered by a rule, it will be ignored
by subsequent rules.

Algorithm Overview

The decision list algorithm can be summarized as follows:
» Candidate rules are found from the original dataset.
» The best rules are appended to the decision list.
» Records covered by the decision list are removed from the dataset.

» New rules are found based on the reduced dataset.

The process repeats until one or more of the stopping criteria are met.

Terminology of Decision List Algorithm
The following terms are used in describing the decision list algorithm:

Model. A decision list model.

Cycle. In every rule discovery cycle, a set of candidate rules will be found. They will then be
added to the model under construction. The resulting models will be inputs to the next cycle.

Attribute. Another name for a variable or field in the dataset.

Source attribute. Another name for predictor field.

Extending the model. Adding decision rules to a decision list or adding segments to a decision rule.
Group. A subset of records in the dataset.

Segment. Another name for group.
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Main Calculations

Notation

The following notations are used in describing the decision list algorithm:

X Data matrix. Columns are fields (attributes), and rows are records (cases).
L A collection of list models.
L; The ith list model of L.
Lnuit A list model that contains no rules.
P, The estimated response probability of list L;.
N Total population size
Ko The value of the mth field (column) for the nth record (row) of X.
Xr, The subset of records in X that are covered by list model L;.
Y The target field in X.
Yo The value of the target field for the nth record.
A Collection of all attributes (fields) of X.
A The jth attribute of X.
R A collection of rules to extend a preceding rule list.
Ry, The kth rule in rule collection R.
T A set of candidate list models.
ResultSet A collection of decision list models.
Primary Algorithm

The primary algorithm for creating a decision list model is as follows:

1. Initialize the model.

» Letd = Search depth, and w = Search width.

» IfL= Y add L, to L.

> T=0.

2. Loop over all elements Z; of L.

» Select the records Xz, not covered by rules of L;:
XII- =X - X,

» Call the decision rule algorithm to create an alternative rule set R on Xz,. For more information,
see the topic “Decision Rule Algorithm.”
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Construct a set of new candidate models by appending each rule in Rto Z;.
Save extended list(s) to T.

Select list models from T.

Calculate the estimated response probability 7., of each list model in T as

B, = N(Y, =1,X, € X
' ;NT(,X'R E "YL'R)

Select the w lists in T with the highest P., as L*.
Add L* to ResultSet.

Ifd=1or L= = &, return ResultSet and terminate; otherwise, reduce d by one and repeat from
step 2.

Decision Rule Algorithm

Each rule is extended in decision rule cycles. With decision rules, groups are searched for
significantly increased occurrence of the target value. Decision rules will search for groups
with a higher or lower probability as required.

Notation

The following notations are used in describing the decision list algorithm:

X Data matrix. Columns are fields (attributes), and rows are records (cases).

R A collection of rules to extend a preceding rule list.

It The ith rule in rule collection R.

Ban A special rule that covers all the cases in X.

Pr, The estimated response probability of R;.

N Total population size.

Xonon The value of the mth field (column) for the nth record (row) of X.

Xn, The subset of records in X that are covered by rule R;j.

Y The target field in X.

Ya The value of the target field for the nth record.

A Collection of all attributes (fields) of X.

Aj The jth attribute of X. If Allow attribute re-use is false, A excludes
attributes existing in the preceding rule.

SplitRule(X, 4;) The rule split algorithm for deriving rules about A4, and records in X.

For more information, see the topic “Decision Rule Split Algorithm.”

T A set of candidate list models.

ResultSet A collection of decision list models.
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Algorithm Steps

The decision rule algorithm proceeds as follows:

=

Initialize the rule set.

Let d = Search depth, and w = Search width.
IfR=(J, add R, to R.

T=0.

N vy v v

Loop over all rules 2; in R.
Select records X, covered by rule R;.

Create an empty set S of new segments.

v vV

Loop over attributes 4; in A.
m  Generate new segments based on attribute A;:

SplitRule(Xp , A;)
®  Add new segments to S.
» Construct a set of new candidate rules by extending I; with each segment in S.
» Save extended rulesto T. If S= &J, add R, to ResultSet.
3. Select rules from T.
» Calculate the estimated response probability P, for each extended rule in T as

p _ A‘T(YH = ]-aXn € Xl?f)
R, N(X, € Xg,)

» Select the w rules with the highest P, as R*.
Add R* to ResultSet.

» If d =1, return ResultSet and terminate. Otherwise, set R = r*, T =, reduce d by one, and
repeat from step 2.

Decision Rule Split Algorithm

The decision rule split algorithm is used to generate high response segments from a single attribute
(field). The records and the attribute from which to generate segments should be given. This
algorithm is applicable to all ordinal attributes, and the ordinal attribute should have values that
are unambiguously ordered. The segments generated by the algorithm can be used to expand an
n-dimensional rule to an (n + 1)-dimensional rule. This decision rule split algorithm is sometimes
referred to as the sea-level method.
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Notation

The following notations are used in describing the decision rule split algorithm:

X Data matrix. Columns are fields (attributes), and rows are records (cases).
C A sorted list of attribute values (categories) to split. Values are sorted
in ascending order.
i The ith category in the list of categories C.
X e The value of the split field (attribute) for the nth record (row) of X.
Y The target field in X.
Y, The value of the target field for the nth record.
N Total population size.
M Number of categories in C.
P, Observed response probability of category .
Se.n A segment of categories, Sr.,r = {Ci|Ci € C,1 < L <i< R< M}
( - + The confidence interval (CI) for the response probability of Sr..x.
Ps, woPsp s
max, (C,C5) The category with the higher response probability from {C;, C; %
max, (Cy, ;) The category with the larger number of records from {C., C;}.
Algorithm Steps

The decision rule split algorithm proceeds as follows:
1 Compute P; of each category ..

N-(Yn =1,X5. € Cl)

P =
' "Nr(‘)(?l:(‘ = Cz)

, Po =Py =0

IfN(X, . €C;)=0 ,C; will be skipped.

2 Find local maxima of I; to create a segment set.
PeakSet = {C5]C, e C,0<i=1< M}
where | is a positive integer satisfying the conditions
P > P(!—l)

Pr="Pry),0<i<L—-1
Pr, > Py

The segment set is the ordered segments based on P,



Decision List Algorithms

v & v v v ®

>

SegmentSet = {}S’L:H’|(_?e‘ € PeakSet,L = R =1, Pg, > PS,H}

Select a segment in SegmentSet.

If SegmentSet is empty, return ResultSet and terminate.

Select the segment S}, with the highest response probability Ps, ..

If i —L+1=MorPs, , < Ps ,,,remove the segment from SegmentSet and chooseanother.
Validate the segment.

If the following conditions are satisfied:
m The size of the segment exceeds the minimum segment size criterion

Size(St,r) > Maz(gsmin, d, Maz(g - Size(parent))
where

parent € ResultSet, Lpgrent > L, Rparent < I

m  Response probability for the segment is significantly higher than that for the overall sample,
as indicated by non-overlapping confidence intervals

—+

YJS;_._ R > pP(Jp

For more information, see the topic “Confidence Intervals.”
m  Extending the segment would lower the response probability

Pg

DL=1 R

< Pg, ,and Ps, ., < Ps, ,

then add the segment Sy, » to ResultSet, and remove any segments S, . from ResultSet that have
Sp..n as parent and for which sf'zf-;(s'}‘_h) < g-Size(St.Rr).

Extend the segment.

Add ('ud_jur"('.‘n,ﬂ to SLAR; Where

Mawy(Cr—1,Cper) Py # Pray
ijj”(_.c.nt _ ﬂ-fa;l'n((jfl_] 7 CVR—|—1) |f PL—l_ — PR—]. al’ld .\v ((}L-]) 74 ‘\v((‘ﬁ’—l)
Crot otherwise

Adjust R or L accordingly, i.e. if Cogjacens = Cr_y, Set L = L — 1; if Cugjucent = Cr o1, Set
R=R+1.

Return 57,z to SegmentSet, and repeat from step 3.

Confidence Intervals

The confidence limits (p—,p ") for p are calculated as
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x o
p_ — $+{H—E+1)F2(n r41).221 a2 ]t‘x ?é 0
0 ifz =0
($+1)F2(r+1jr2(n—arj;1—o:,-’2 LI )

p+ — 71'_I+(3:+1)F2[4r+1:|,2[n.—::::|:]—n__"’z 11: L 7£ n

1 ifx=n

where n is the coverage of the rule or list, x is the response frequency of the rule or list, « is the
desired confidence level, and 7, .. is the inverse cumulative distribution function for F with a
and b degrees of freedom, for percentile 100¢.

Secondary Measures
For each segment, the following measures are reported:

Coverage. The number of records in the segment, N(.S).

Frequency. The number of records in the segment for which the response is true,
:\:’()/” = ]-’X“ S S)
N(Y,=1,X,€5)

Probability. The proportion of records in the segment for which the responseis true, ——5"=>,

or Freguency
Coverage

Blank Handling

In decision list models, blank values for input fields can be treated as a separate category that can
be used to define segments, or can be excluded from the model, depending on the expert model
option. The default is to use blanks as a category for defining segments. Records with blank
values for the target field are excluded from model building.

Generated Model/Scoring

The decision list generated model consists of a set of segments. When scoring new data, each
record is evaluated for membership in each segment, in order. The first segment in model order
that describes the record based on the predictor fields claims the record and determines the
predicted value and the probability. Records where the predicted value is not the response value
will have a value of $null. Probabilities are calculated as described above.

Blank Handling

In scoring data with a decision list generated model, blanks are considered valid values for
defining segments. If the model was built with the expert option Allow missing values in conditions
disabled, a record with a missing value for one of the input fields will not match any segment
that depends on that field for its definition.
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No analysis is done for any subfile group for which the number of non-empty groups is less
than two or the number of cases or sum of weights fails to exceed the number of non-empty
groups. An analysis may be stopped if no variables are selected during variable selection or
the eigenanalysis fails.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Table 14-1

Notation

Notation Description

g Number of groups

p Number of variables

q Number of variables selected
Xijr Value of variable i for case k in group j
Fir Case weights for case k in group j
m; Number of cases in group j

ng Sum of case weights in group j

n Total sum of weights

Basic Statistics

The procedure calculates the following basic statistics.

Mean
Xij = (Z .fjg:x\’,-jg.),fnj (variable 7 in group j)
k=1
g My . )
f.é. = Z Z f‘j.l\“x—'i_']k ,fl'f!. (Val’lable .‘,)
J=1k=1
Variances

2 _ (k—l ‘ ) (variable in group ;)

. —2 . '
‘f.‘,;‘.X?ﬂ‘, — nX{) (varlable i)

ie (n—1)
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Within-Groups Sums of Squares and Cross-Product Matrix (W)

g P”J g PH-J ”?J
wy = Z Z fjf.‘fv(uh‘){ljkfz (Z fng,j;,_.) (Z fj;,_,X,ﬂ,) /n; i l=1,....p
k=1

i=1k=1 =1 \k=1

Total Sums of Squares and Cross-Product Matrix (T)

j=1k=1 j=1k=1 i=1k=1

g M, g m, g m;
=Y [inXijnXije— (Z > f‘f.’m'Xl.jll\f) (Z > f_;‘A-Xz_,A) /n

Within-Groups Covariance Matrix

cC= " n>g

(n—q)

Individual Group Covariance Matrices

T”‘_J
(Z FinXijneXije — X ,;j){;__,-n_J)
(4} k=1

CJ =

(n;—1)

Within-Groups Correlation Matrix (R)

o \/% if wiwy > 0
"= 1 SYSMIS otherwise

Total Covariance Matrix

Univariate F and Afor Variable |

o [t wii)(n—g)
Fi = wiilg—1)

with g—1 and n—g degrees of freedom
A=

i
tig

with 1, g—1 and n—g degrees of freedom

Rules of Variable Selection

Both direct and stepwise variable entry are possible. Multiple inclusion levels may also be
specified.
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Method = Direct

For direct variable selection, variables are considered for inclusion in the order in which they are
passed from the upstream node. A variable is included in the analysis if, when it is included,

no variable in the analysis will have a tolerance less than the specified tolerance limit (default
=0.001).

Stepwise Variable Selection

At each step, the following rules control variable selection:

Eligible variables with higher inclusion levels are entered before eligible variables with lower
inclusion levels.

The order of entry of eligible variables with the same even inclusion level is determined by
their order in the upstream node.

The order of entry of eligible variables with the same odd level of inclusion is determined
by their value on the entry criterion. The variable with the “best” value for the criterion
statistic is entered first.

When level-one processing is reached, prior to inclusion of any eligible variables, all
already-entered variables which have level one inclusion numbers are examined for removal.
A variable is considered eligible for removal if its F-to-remove is less than the F value for
variable removal, or, if probability criteria are used, the significance of its F-to-remove
exceeds the specified probability level. If more than one variable is eligible for removal, that
variable is removed that leaves the “best” value for the criterion statistic for the remaining
variables. Variable removal continues until no more variables are eligible for removal.
Sequential entry of variables then proceeds as described previously, except that after each step,
variables with inclusion numbers of one are also considered for exclusion as described before.

A variable with a zero inclusion level is never entered, although some statistics for it are
printed.

Ineligibility for Inclusion

A variable with an odd inclusion number is considered ineligible for inclusion if:

The tolerance of any variable in the analysis (including its own) drops below the specified
tolerance limit if it is entered, or

Its F-to-enter is less than the F-value for a variable to enter value, or

If probability criteria are used, the significance level associated with its F-to-enter exceeds the
probability to enter.

A variable with an even inclusion number is ineligible for inclusion if the first condition above
is met.
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Computations During Variable Selection

During variable selection, the matrix W is replaced at each step by a new matrix W* using the
symmetric sweep operator described by Dempster (1969). If the first q variables have been
included in the analysis, W may be partitioned as:

Wi Wi
Wi W

where W11 is gxg. At this stage, the matrix W+ is defined by

* *
— Wll Wl'.?:

W+ — _Wfll Wfllle —
Wi Wi

Wzlwﬂl Way — Wy W' W,

In addition, when stepwise variable selection is used, T is replaced by the matrix 7', defined
similarly.

The following statistics are computed.

Tolerance
0 |f Wiy = 0
TOL; = < w}/w,, if variable i is not in the analysis and w;; # 0
—1/(wjw;;) ifvariable ¢is in the analysis and w,, # 0.

If a variable’s tolerance is less than or equal to the specified tolerance limit, or its inclusion in the
analysis would reduce the tolerance of another variable in the equation to or below the limit, the
following statistics are not computed for it or any set including it.

F-to-Remove

o= Lwi—tl)(n—g—g+1)
t tilg—1)

with degrees of freedom g—1 and n—g—g+1.

F-to-Enter

I = (t;,—w/,)(n—q—g)
t wi (g—1)

with degrees of freedom g—1 and n—g—g.

Wilks’ Lambda for Testing the Equality of Group Means
A= [Wy|/|Tu]

with degrees of freedom g, g—1 and n—g.
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The Approximate F Test for Lambda (the “overall F”), also known as Rao’s R (Tatsuoka,

1971)

_ (1-A®)(r/s+1—qh/2)
F_ Asgh

where

otherwise

r=n—1-(¢g+g)/2
h=g-—1

2+h275 ) 2
s — { qq2}12—4 ifqg” +h 7& 5
1

with degrees of freedom gh and r/s+1—gh/2. The approximation is exact if gor his 1 or 2.

Rao’s V (Lawley-Hotelling Trace) (Rao, 1952; Morrison, 1976)

q
—(n—g) E E w — w;)

=1 [=1

When n—g is large, V, under the null hypothesis, is approximately distributed as y* with q(g—1)
degrees of freedom. When an additional variable is entered, the change in V, if positive, has

approximately a x 2 distribution with g—1 degrees of freedom.

The Squared Mahalanobis Distance (Morrison, 1976) between groups a and b

q
(,,{; = ” - (] E § wi(Xia — 1[) (—)(ﬂct - 4){1‘0)

i=1 [=1

The F Value for Testing the Equality of Means of Groups a and b (Smallest F ratio)

_ (n=g—g+1)n.ns 2
Elb T gln—g)(n.+ny) ab

The Sum of Unexplained Variations (Dixon, 1973)

g—1

=YY Wi o)

a=1lb=at+l

Classification Functions

Once a set of g variables has been selected, the classification functions (also known as Fisher’s

linear discriminant functions) can be computed using

q

bij = (n *.‘?)Z“"Z}Xu i=1,2,...,q4.5 =

=1

for the coefficients, and
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q
a; =logp; — %Zb’jy"f i=12...,q
i—1

for the constant, where p; is the prior probability of group j.

Canonical Discriminant Functions

The canonical discriminant function coefficients are determined by solving the general eigenvalue
problem

(T — W)V = AWV

where V is the unscaled matrix of discriminant function coefficients and X is a diagonal matrix of
eigenvalues. The eigensystem is solved as follows:

The Cholesky decomposition

W =LU

is formed, where L is a lower triangular matrix, and U = L.
The symmetric matrix L='"BU ! is formed and the system
(LT - W)U~! = AI)(UV) =0

is solved using tridiagonalization and the QL method. The result is m eigenvalues, where

m = min (q, g — 1) and corresponding orthonormal eigenvectors, UV. The eigenvectors of the
original system are obtained as

V=U"UV)

For each of the eigenvalues, which are ordered in descending magnitude, the following statistics
are calculated.

Percentage of Between-Groups Variance Accounted for

100A
m

Z Ak
k=1

Canonical Correlation

V(T4 )
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Wilks' Lambda

Testing the significance of all the discriminating functions after the first k:

A= ] /a+x) k=01,...,m-1
R+1

i=k4

The significance level is based on
YP=—(m—(qg+g)/2—1)InA;

which is distributed as a x* with (q—k)(g—k—1) degrees of freedom.

The Standardized Canonical Discriminant Coefficient Matrix D

The standard canonical discriminant coefficient matrix D is computed as

D=S,V

where

S=diag( /w1, W2z, - -, \/Wpy)

S11= partition containing the first g rows and columns of S

V is a matrix of eigenvectors such that v'w,, v=I
The Correlations Between the Canonical Discriminant Functions and the Discriminating
Variables

The correlations between the canonical discriminant functions and the discriminating variables
are given by

R-=S,'W,,V
If some variables were not selected for inclusion in the analysis (g<p), the eigenvectors are
implicitly extended with zeroes to include the nonselected variables in the correlation matrix.

Variables for which W;; = 0 are excluded from S and W for this calculation; p then
represents the number of variables with non-zero within-groups variance.

The Unstandardized Coefficients
The unstandardized coefficients are calculated from the standardized ones using

B=,/(n-9)S;'D
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The associated constants are:

q
ap = — E b{k){f.
i=1

The group centroids are the canonical discriminant functions evaluated at the group means:
p— q J—
ff-‘j = aj. Z bék)(ij
=1
Tests For Equality Of Variance
Box’s M is used to test for equality of the group covariance matrices.

M=(n- ;1)'09‘0" - i (n; — L)log ‘CM

j=1

where
C' = pooled within-groups covariance matrix excluding groups with singular covariance matrices
C) = covariance matrix for group j.

Determinants of C" and C'/) are obtained from the Cholesky decomposition. If any diagonal
element of the decomposition is less than 10-11, the matrix is considered singular and excluded
from the analysis.

r

C! ’”"| = QZI()gf[.{- —plog(n; — 1)

i=1

log
where I;; is the ith diagonal entry of L such that (n; — 1)C") = L'L. Similarly,

»
log 'C" = Eth)g l;; — plog (n’ — g)
i1

where
("n.’ — g)C' =L'L
n'= sum of weights of cases in all groups with nonsingular covariance matrices

The significance level is obtained from the F distribution with t1 and to degrees of freedom
using (Cooley and Lohnes, 1971):

o {M/b if ey > e

to M if o -2
11 (b—) If(,._) <(1

where
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€] = _ _‘_E[J: tap—1
j—1n;—1 mn—g Glg—Dptl)
g
ey _ 1 _ 1 . (1:(1()(721})‘!)
R R D U i A

tr=(g—1)plp+1)/2
lo = (il f 2)/‘(‘9 —(’;ﬂ

; .
T if e > f’%

b — r.l" 1/t2 ) )
2 if ex < €7

1—ep—=2/is

If e — e, is zero, or much smaller than ey, to cannot be computed or cannot be computed
accurately. If

€9 = €9 O.DOUL(Cg — nf)

the program uses Bartlett’s \ statistic rather than the F statistic:
Y2=M(1—¢)

with t; degrees of freedom.

For testing the group covariance matrix of the canonical discriminant functions, the procedure is
similar. The covariance matrices C" and C'/) are replaced by D, and D', where

D, =B CU'B
is the group covariance matrix of the discriminant functions.

The pooled covariance matrix in this case is an identity, so that
D' = (n— gLy — Z (n; —1)D;
j

where the summation is only over groups with singular D ;.

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

Generated model/scoring

The basic procedure for classifying a case is as follows:

m If X is the 1xq vector of discriminating variables for the case, the 1xm vector of canonical
discriminant function values is
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f=XB+a

®m A chi-square distance from each centroid is computed
XG=(f-)D ' (f - 1)) )
where D; is the covariance matrix of canonical discriminant functions for group j and f; is
the group centroid vector. If the case is a member of group j, x7 has a x* distribution with
m degrees of freedom. P(X|G), labeled as P(D>d|G=g) in the output, is the significance
level of sucha x7 .

m  The classification, or posterior probability, is

—1/2

PD;| " e
P(G[X) = gl ———
D BfD e

j=1

where p; is the prior probability for group j. A case is classified into the group for which
P (G;|X) is highest.

The actual calculation of P (G;|X) is

g; = log P; — %(log D;| Xj))
) exp (g7, —max; g;) if g; —max; g; > —46
P(G,X) =4 D exp (g, - m;ﬂx.%)
j=1 .
0 otherwise

If individual group covariances are not used in classification, the pooled within-groups covariance
matrix of the discriminant functions (an identity matrix) is substituted for D; in the above
calculation, resulting in considerable simplification.

If any D; is singular, a pseudo-inverse of the form
D]flll 0
0 0

replaces p~1 and D] replaces D, D11 is a submatrix of D; whose rows and columns
correspond]to functions not dependent on preceding functions. That is, function 1 will be excluded
only if the rank of D; = 0, function 2 will be excluded only if it is dependent on function 1, and
so on. This choice of the pseudo-inverse is not optimal for the numerical stability of D}ﬂ, but
maximizes the discrimination power of the remaining functions.

Cross-Validation (Leave-one-out classification)

The following notation is used in this section:

Table 14-2
Notation
Notation Description

XJ‘!'\' (/Ylj,r;,...,X,“,r\-)T

~
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Notation Description

M, Sample mean of jth group

~

mj

i 1 § .

JIJ —_ E IJ.F\:"KJIC
k=1 ~

M Sample mean of jth group excluding point x,,

m;
L 1
My = =7 S FaXi

~

=1
l#£k
b)) Polled sample covariance matrix
%, Sample covariance matrix of jth group
ik Polled sample covariance matrix without point X,

A—1 T
Zjk nuTH X -n Xp-M; | uT!
; I ik T gk M =i
_ n—g—ljk 1 ~ . ~ ~
= — Yo+ .
(nd,—fj;,)('l“.—u)fnj Xjp—M; Ej_l X =M

T T
d2 (a, b) (a - b) E;k' (a — b)

Cross-validation applies only to linear discriminant analysis (not quadratic). During
cross-validation, all cases in the dataset are looped over. Each case, say X ;., is extracted once and

treated as test data. The remaining cases are treated as a new dataset.

Here we compute ;, <XJ,A:,MJ,,.> and (ng.,M,) (i=1,..,g.4# 7). Ifthere isani(i # j) that

satisfies (log () — dg | X, M; ) /2 > log (Pj) — dg | X1, My | /2), then the extracted point
X ;. is misclassified. The estimate of prediction error rate is the ratio of the sum of misclassified

case weights and the sum of all case weights.
To reduce computation time, the linear discriminant method is used instead of the canonical
discriminant method. The theoretical solution is exactly the same for both methods.

Blank Handling (discriminant analysis algorithms scoring)

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.

References
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Ensembles Algorithms

Ensembles are used to enhance model accuracy (boosting), enhance model stability (bagging),
build models for very large datasets (pass, stream, merge), and generally combine scores from
different models.

m  For more information, see the topic “Very large datasets (pass, stream, merge) algorithms.”
m  For more information, see the topic “Bagging and Boosting Algorithms.”
m  For more information, see the topic “Ensembling model scores algorithms.”

Bagging and Boosting Algorithms
Bootstrap aggregating (Bagging) and boosting are algorithms used to improve model stability and

accuracy. Bagging works well for unstable base models and can reduce variance in predictions.
Boosting can be used with any type of model and can reduce variance and bias in predictions.

Notation

The following notation is used for bagging and boosting unless otherwise stated:

K The number of distinct records in the training set.

X Predictor values for the kth record.

Y Target value for the kth record.

fu Frequency weight for the kth record.

Wy Analysis weight for the kth record.

N The total number of records; N = &I | f...

M The number of base models to build; for bagging, this is the number of
bootstrap samples.

T (") The model built on the mth bootstrap sample.

-1

& Simulated frequency weight for the kth record of the mth bootstrap sample.

wy Updated analysis weight for the kth record of the mth bootstrap sample.
o =T (Xy) Predicted target value of the kth record by the mth model.
P (X) For a categorical target, the probability that the kth record belongs to

category l;, i=1, ..., C, in model m.
IT () For any condition =, I'7 () is 1 if = holds and 0 otherwise.
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Bootstrap Aggregation

Bootstrap aggregation (bagging) produces replicates of the training dataset by sampling with
replacement from the original dataset. This creates bootstrap samples of equal size to the original
dataset. The algorithm is performed iteratively over k=1,..,K and m=1,...,M to generate frequency
weights:

rv. bmom(V fk) k=1
ff:fzk: . fk

rv.binom | N Ef_ll fois — 5 1o otherwise
AII - E’1{:]_ fﬁ

Then a model is built on each replicate. Together these models form an ensemble model. The
ensemble model scores new records using one of the following methods; the available methods
depend upon the measurement level of the target.

Scoring a Continuous Target

m  Mean

Sort g;* and relabel them ;) < ... < g

e { 3 (y(i) - ;F(%H)) if M7 is even}

Scoring a Categorical Target

m Voting
Igﬁ' =aryg ma.x;(“ Z ij }(
i ‘\f;
Py, = ‘le‘ Z P (X%)

mC My,
where Q = {arg .rr:a.x;, | My, |}
m  Highest probability
i = argmax;, (max,, (P (X1)))
Pg. = maxy, (Pf;g (XL.))
m  Highest mean probability

M
i = argmax;, % E P (Xy)

m=1

. — m
pw: - U E Pau
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Bagging Model Measures

Accuracy

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated
with each ensemble method), and base models.

For categorical targets, the classification accuracy is
1 &
S D SRl (g == i)

k=1

For continuous targets, it is

K A2
R2—1— Zk}:lfk(?}k - 'Uk)
K —\2
SE ey —7)
where j = -1 frun
Note that R2 can never be greater than one, but can be less than zero.

For the naive model, 3. is the modal category for categorical targets and the mean for continuous
targets.

Diversity

Diversity is a range measure between 0 and 1 in the larger-is-more-diverse form. It shows how
much predictions vary across base models.

For categorical targets, diversity is
i

ﬁ D SL (i) [M = L (yg)]

k=1

where L (yi.) = 3250 IT (yx = i7",
For continuous targets, diversity is

ka 7 Z Z (e — o) (U — yn)

m 1 n=1n#m
\ — 2
Sy fi(ve — Ux)

D_"*
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Adaptive Boosting

Adaptive boosting (AdaBoost) is an algorithm used to boost models with continuous targets
(Freund and Schapire 1996, Drucker 1997).
1. Initialize values.
—2:__  if analysis weights specified

Set wy, = E{{ l_w,'f,- )
1/N otherwise

Setm=1, w} = wy, and f;" =/ . Note that analysis weights are initialized even if the
method used to build base models does not support analysis weights.

2. Build base model m, 77 (), using the training set and score the training set.
K
1= Y Lpwy' fi
k=1
K
Z Ly fr
k=1

Set the model weight for base model m, w™ = log

where Lj, = 0l —vs)

maxXpg ((I]}.H(:l:‘;:‘ — 1y )) '

3. Set weights for the next base model.

m+1
g+l @,

wy, = o i
k X;:l{lgrr 1f‘r'
K 1—Ly.
Z Lywy fr
wherea]" ' = wit| =L . Note that analysis weights are always updated. If

K
1— E L,z‘: 'U.‘gl }(,z'

the method used to build base models does not support analysis weights, the frequency weights
are updated for the next base model as follows:

rv.binom (N, u.'}c”’l Jr) k=1

m-41
Wy, fr
! “k—1_ m+1 g
1= X wy i

m-++1
k rv.binom | N — X !

) otherwise

If m<M, set m=m+1 and go to step 2. Otherwise, the ensemble model is complete.

K

Note: base models where Z Lyw fi = 0.5 or maxy, (abs(7" — y,.)) are removed from the
k=1

ensemble.

Scoring

AdaBoost uses the weighted median method to score the ensemble model.

Sort 4} and relabel them (1) < ... < %), retaining the association of the model weights,w',
and relabeling them wy), ..., w s,
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The ensemble predicted value is then 4. = 9., where i is the value such that

i—1 1 M A
E w m { 5 E w m S E w'??'ﬂ,
m=1 m=1 m=1

Stagewise Additive Modeling using Multiclass Exponential loss

Stagewise Additive Modeling using a Multiclass Exponential loss function (SAMME) is an
algorithm that extends the original AdaBoost algorithm to categorical targets.

1. [Initialize values.

K
i wifi

ot —=—— if analysis weights specified
el wy —
g 1/N otherwise

Set m=1, wi* = wy, and f* =f. . Note that analysis weights are initialized even if the
method used to build base models does not support analysis weights.

2. Build base model m, 7™ (-), using the training set and score the training set.

Set the model weight for base model m, w™ = log 1=¢22 4 Jog (¢ — 1)
K

where err™ = "wi® fi.IT (y, 7 95" )
k=1

3. Set weights for the next base model.

m+1
_u|m,+1 _ a,.

k = vk _m<tlgs
L'!-—J.“i f-,:

m—1

where a;"™ = i exp (w11 (y, 7 1)) - Note that analysis weights are always updated. If the
method used to build base models does not support analysis weights, the frequency weights are
updated for the next base model as follows:

rv.binom (N, -w?“fk) - E=1
m+1 m+1
= . . . w J
k rv.binom | N — xF 1 L kk—l p—
1-X_ w, " [

otherwise

If m<M, set m=m+1 and go to step 2. Otherwise, the ensemble model is complete.

Note: base models where err,, = 0 or w™ <= 0 are removed from the ensemble.

Scoring
SAMME uses the weighted majority vote method to score the ensemble model.

The predicted value of the kth record for the mth base model is ;" = arg max,, P/" (X}).

M
The ensemble predicted value is then 4, = arg max;, Z WM (gt ==1;). Ties are resolved

m=1

at random.
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The ensemble predicted probability is p;, = >
'm.(;;\f;‘,k
i€ My,

P (X).

gt Ve
%%

Boosting Model Measures

Accuracy

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated
with each ensemble method), and base models.

For categorical targets, the classification accuracy is
1 &
N S IIT (e == i)

k=1

For continuous targets, it is

. .12
- S (o — )

R =1- =
Yo filur = 7)

where j = LXE | f
Note that R2 can never be greater than one, but can be less than zero.

For the naive model, g, is the modal category for categorical targets and the mean for continuous
targets.
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Very large datasets (pass, stream, merge) algorithms

We implement the PSM features PASS, STREAM, and MERGE through ensemble modeling.
PASS builds models on very large data sets with only one data pass; STREAM updates the
existing model with new cases without the need to store or recall the old training data; MERGE
builds models in a distributed environment and merges the built models into one model.
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In an ensemble model, the training set will be divided into subsets called blocks, and a model will
be built on each block. Because the blocks may be dispatched to different threads (here one process
contains one thread) and even different machines, models in different processes can be built at the
same time. As new data blocks arrive, the algorithm simply repeats this procedure. Therefore it
can easily handle the data stream and perform incremental learning for ensemble modeling.

The PASS operation includes following steps:

Split the data into training blocks, a testing set and a holdout set. Note that the frequency weight,
if specified, is ignored when splitting the training set into blocks (to prevent blocks from being
entirely represented by a single case) but is accounted for when creating the testing and holdout
sets.

Build base models on training blocks and build a reference model on the testing set. A single
model is built on the testing set and each training block.

Evaluate each base model by computing the accuracy based on the testing set. Select a subset
of base models as ensemble elements according to accuracy.

Evaluate the ensemble model and the reference model by computing the accuracy based on
the holdout set. If the ensemble model’s performance is not better than the reference model’s
performance on the holdout set, we use the reference model to score the new cases.

Computing Model Accuracy

The accuracy of a base model is assessed on the testing set. For each vector of predictors z; and
the corresponding label «; observed in the testing set T, let ¢ (;) be the label predicted by the
given model. Then the testing error is estimated as:

7|

Categorical FE = |T|1 Z (fi - I (c; #¢e(x)))

larget. Z f i=1
i

i=1

Continuous | —— oy —
target. T Z (fi- i =9
Where I (¢; # ¢ (x;)) is 1if ¢; # ¢ (x;) and O otherwise.

The accuracy for the given model is computed by A=1—E. The accuracy for the whole ensemble
model and the reference model is assessed on the holdout set.
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Stream

When new cases arrive and the user wants to update the existing ensemble model with these
cases, the algorithm will:

1 Start a PASS operation to build an ensemble model on the new data, then

2. MERGE the newly created ensemble model and the existing ensemble model.

The MERGE operation has the following steps:

1. Merge the holdout sets into a single holdout set and, if necessary, reduce this set to a reasonable
size.

2. Merge the testing sets into a single testing set and, if necessary, reduce this set to a reasonable size.
3. Build a merged reference model on the merged testing set.

4. Evaluate every base model by computing the accuracy based on the merged testing set. Select a
subset of base models as elements of the merged ensemble model according to accuracy.

5. Evaluate the merged ensemble model and the merged reference model by computing the accuracy
based on the merged holdout set.

Adaptive Predictor Selection

There are two methods, depending upon whether the method used to build base models has an
internal predictor selection algorithm.

Method has predictor selection algorithm

The first base model is built with all predictors available to the method’s predictor selection
algorithm. Base model j (j > 1) makes the ith predictor available with probability

ni+C 3
= max | ————,
bi n; +C

where n’'; is the number of times the ith predictor was selected by the method’spredictor selection
algorithm in the previous j—1 base models, =, is the number of times the ith predictor was made
available to the method’s predictor selection algorithm in the previous j—1 base models, C is a
constant to smooth the value of p;, and 3 is a lower limit on p,.

Method does not have predictor selection algorithm

Each base model makes the ith predictor available with probability
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pi = (1-— pi)z if p; < 0.05
‘ B otherwise

where p, is the p-value of a test for the ith predictor, as defined below.
m  For a categorical target and categorical predictor, p is a chi-square test of

I ‘ N;;In (\ N-;-) Ni; >0
G? =23, 2= Gi; where GF; = {0 I 3/ Nes el;;:

freedom (I — 1) (J — 1). N;; 1s the number of cases with Y= and Y=/, N;. = ijl Nij.
N = Zle N;j. and _-‘A?;j = N;.N;/N.

[ ] Foracqtfegorical targetand continuous predictor, p is an F test of
F = éifl ?\(T_’:)[ii—: with degrees of freedom .7 — 1, N — .J. N; is the

number of cases with Y=j, T; and s7 are the sample mean and sample variance of X given
Y:j, and ? = Zj:]_ ;\'— T /A\*

and with degrees of

SRy
m  For a continuous target and categorical predictor, p is an F test of
L NT - -1 . .
D D ) WAk RS degrees of freedom 7 — 1, N —I. N, is the
Z_ﬂ . (Ni=1)s(y),/(N-TI) _
number of cases with X=i, ¥, and .s(y)f are the sample mean and sample variance of Y given
X=i,and y = X! | N;5,/N.

m  For a continuous target and continuous predictor, p is a two-sided t test of ¢t = YA where
L‘;“r l(:r:,_—T)(yifﬂ)g’(ﬁ"fl
Visla)Zs(y)?
of X and s(y)” is the sample variance of Y.

r= " and with degrees of freedom IV — 2. s(x)” is thesample variance

Automatic Category Balancing

When a target category occurs relatively infrequently, many models do a poor job of predicting
members of that rarely occurring category, even if the overall prediction rate of the model is fairly
good. Automatic category balancing should improves the model’s accuracy when predicting
infrequently occurring values.

As records arrive, they are added to a training block until it is full. Then the proportion of records
in each category is computed: '; = % wherew; is the weighted number of records taking
category i and w is the total weighted number of records.

> If there is any category such that C'; < «/ (10 - |C|), where || is the number of target categories
and o= 0.3, then randomly remove each record from the training block with probability

Min {(1 = Min(C') /C3), (l - W>}

This operation will tend to remove records from frequently-occurring categories. Add new records
to the training block until it is full again, and repeat this step until the condition is not satisfied.

> If there is any categorysuch that '; < o/ |C], then recompute the frequency weight for record kas
[ = Jr max (10, a max (C') /Cyy,) ), Where 4 (k) is the category of the kth record. This operation
gives greater weight to infrequently occurring categories.
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Model Measures

The following notation applies.

N
M

I
Yk
Un

~TT

Yk

Accuracy

Total number of records
Total number of base models
The frequency weight of record k

The observed target value of record k
The predicted target value of record k by the ensemble model

The predicted target value of record k by base model m

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated
with each ensemble method), and base models.

For categorical targets, the classification accuracy is

| &
N > fel 1 (g == i)
Tok=1

where

. 1,if (ye = 7
I (ye = 0k) = { 0, ot%é?wisgk)

For continuous targets, it is

R?=1

g \ N2
S D)

K —2
S felon =)

where = L8 fuun

Note that R2 can never be greater than one, but can be less than zero.

For the naive model, g, is the modal category for categorical targets and the mean for continuous

targets.

Diversity

Diversity is a range measure between 0 and 1 in the larger-is-more-diverse form. It shows how
much predictions vary across base models.

For categorical targets, diversity is
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i«
ﬁ > fel (yr) [M = L (y)]
T k=1

where L (y,) = =M

oo I (ye = gi) and IT (y, = yy') is defined as above.

Diversity is not available for continuous targets.

There are several strategies for scoring using the ensemble models.

Continuous Target

-

-~ ) 1 M
Mean.j; sy = e mel Yim
N : S M
Median.y; psa = Mediany” (i)

where 4; psas is the final predicted value of case i, and ; ,,, is the mth base model’s predicted
value of case .

Categorical Target

Voting. Assume that d,, ;, represents the label output of the mth base model for a given vector of
predictor values. d,, , = 1 if the label assigned by the mth base model is the kth target category
and 0 otherwise. There are total of M base models and K target categories. The majority vote
method selects the jth category if it is assigned by the plurality of base models. It satisfies the
following equation:

M M
E A = maxj?‘: n E Ay 1
m=1 m=1

Let £, be the testing error estimated for the mth base model. Weights for the weighted majority
vote are then computed according to the following expression:

M
1—E 1—F
0 = max (log E—m’ 0) /Z max <10g - 3 0)
m i—1

i

Probability voting. Assume that p,, . is the posterior probability estimated for the kth target
category by the mth base model for a given vector of predictor values. The following rules
combine the probabilities computed by the base models. The jth category is selected such that it
satisfies the corresponding equation.

. . M
m  Highest probability. max%l;l (Pin,j) = maxi< y(max (pm.k))

. - M » M
®  Highest mean probability. =7 >, _; Pm,; = maxi_, (% Y ome1 pm,k)
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Ties are resolved at random.

Softmax smoothing. The softmax function can be used for smoothing the probabilities:

_ Eap(p)

K
> Eap(pi)
=1

=~

p

where p, is the rule-based confidence for category i and p;" is the smoothed value.

Ensembling model scores algorithms

Notation

Scoring

Ensembling scores from individual models can give more accurate predictions. By combining
scores from multiple models, limitations in individual models may be avoided, resulting in a
higher overall accuracy. Models combined in this manner typically perform at least as well as the
best of the individual models and often better.

Note that while the options for general ensembling of scores are similar to those for boosting,
bagging, and very large datasets, the specific options for combining scoring are slightly different.

The following notation applies.

N Total number of records

M Total number of base models

i The observed target value of record i

i The predicted target value of record i by the ensemble model
" The predicted target value of record i by base model m

There are several strategies for scoring using the ensemble models.

Continuous Target
N 1 M.
Mea“-'ﬁh. M = v Z.”L —1 Yim

where 4; s is the final predicted value of case i, and 4 .,, is the mth base model’s predicted
value of case i.

/ 5
"l _ 1 [ M - - 2
Standard error. SE; ; = ﬁ\/ -1 >y (i — Uiaa)
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Categorical Target

Voting. Assume that d,, ;. represents the label output of the mth base model for a given vector of
predictor values. d,,, . = 1 if the label assigned by the mth base model is the kth target category
and 0 otherwise. There are total of M base models and K target categories. The majority vote
method selects the jth category if it is assigned by the plurality of base models. It satisfies the
following equation:

M M
§ g = 11121}(?__ h % Ay i
m=1 m=1

Confidence-weighted (probability) voting. Assume that p,, ; is the posterior probability estimated
for the kth target category by the mth base model for a given vector of predictor values. The
following rules combine the probabilities computed by the base models. The jth category is
selected such that it satisfies the corresponding equation.

M M
Ao nax® d
pm._} S N 111(‘-)&5;:1[):;%,2' Uk
m=1 m=1

Highest confidence (probability) wins.

maxm:l (Pm.j) = 1[1;1.x£‘;1(maxm 1 (pmﬁ))

Raw propensity-weighted voting. This is equivalent to confidence-weighted voting for a flag target,
where the weights for true are the propensities and the weights for false are 1—propensity.

Adjusted propensity-weighted veting. This is similar to raw propensity-weighted voting for a
flag target, where the weights for true are the adjusted propensities and the weights for false
are 1—adjusted propensity.

Average raw propensity. The raw propensities scores are averaged across the base models. If the
average is > 0.5, then the record is scored as true.

Average adjusted propensity. The adjusted propensities scores are averaged across the base models.
If the average is > 0.5, then the record is scored as true.
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Overview

The Factor/PCA node performs principal components analysis and six types of factor analysis.
Primary Calculations

Factor Extraction

Principal Components Analysis

The matrix of factor loadings based on factor m is
1
Am = Qp T

where

Qm = (Lu'l. W2, w‘.,”)

L'y = (J{'f(]';g (|"l|a |";'2|, ey ‘7";11|)

The communality of variable i is given by

m

22

hi =) |l
j=1

Analyzing a Correlation Matrix

Y1 = 9 > ... > 7, are the eigenvalues and w; are the corresponding eigenvectors of R, where
R is the correlation matrix.

Analyzing a Covariance Matrix

vo = ... > ~y,, are the eigenvalues and w; are the corresponding eigenvectors of X, where
(745),, %, 1S the covariance matrix.

[

Y1 217
2:

The rescaled loadings matrix is A,,.x = [ding(E)r%Am

The rescaled communality of variable i is hir = oy, ' #;
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Principal Axis Factoring

Analyzing a Correlation Matrix

An iterative solution for communalities and factor loadings is sought. At iteration i, the
communalities from the preceding iteration are placed on the diagonal of R, and the resulting R. is
denoted by R.;. The eigenanalysis is performed on R, and the new communality of variable j

is estimated by

m

hiwy =D [ [«

Jj=1
The factor loadings are obtained by
Am@i) = Qi Uiy

Iterations continue until the maximum number (default 25) is reached or until the maximum
change in the communality estimates is less than the convergence criterion (default 0.001).

Analyzing a Covariance Matrix

This analysis is the same as analyzing a correlation matrix, except ¥ is used instead of the
correlation matrix R. Convergence is dependent on the maximum change of rescaled communality
estimates.

At iteration i, the rescaled loadings matrix is A, (iyn = [dm_q[zr)]’%A,,,,{,). The rescaled
communality of variable i is ;) r = o, h )

Maximum Likelihood

The maximum likelihood solutions of A and +? are obtained by minimizing

F=tr[(AN +0?) 'R| - log

(AJ\’ — 'f;”“z) _lR‘ —p

with respect to A and «/, where p is the number of variables, A is the factor loading matrix, and
¢ is the diagonal matrix of unique variances.

The minimization of F is performed by way of a two-step algorithm. First, the conditional
minimum of F for a given y is found. This gives the function f (), which is minimized
numerically using the Newton-Raphson procedure. Let x!*) be the column vector containing the
logarithm of the diagonal elements of y at the sth iteration. Then

x5t (s) _ gls)
where d*) is the solution to the system of linear equations
H®d®) = w®

and where
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H(:.] — azf('z'f!)

drid
and h(* is the column vector containing %/, The starting point x(*) is

log [ (1— ) /r#"]  for ML and GLS

[(1 - ﬂ) /rﬂ : for ULS

where m is the number of factors and r“ is the ith diagonal element of R~!.
The values of f () 41 and d, d, can be expressed in terms of the elgenvalues

'odaa?

7 <7 < ... <, and corresponding elgenvectors W1, Way.eywy OF Matrix vR™ Ly, That is,

p

fwy=">" (logm+v ' —1)

k=m-+1
PR P
of ~1y, 2
Or Z (L= )win
day

k=m-+1
62f m"h +mz —2
o ”) ™ Z WikWjk ZTM?MJN?"‘ 5U
e k=m-+1 n=1 Tk
where

w={b 417

The approximate second-order derivatives

Rf i o
duiday Ak

k=m+1

2

are used in the initial step and when the matrix of the exact second- order derivatives is not positive
definite or when all elements of the vector d are greater than 0.1. If ¢4 (’ L < 0.05 (Heywood
variables), the diagonal element is replaced by 1 and the rest of the eIements of that column and
row are set to 0. If the value of f(¢/) is not decreased by step ¢lthe step is halved and halved
again until the value of f(«’) decreases or 25 halvings fail to produce a decrease. (In this case, the
computations are terminated.) Stepping continues until the largest absolute value of the elements
of d is less than the criterion value (default 0.001) or until the maximum number of iterations
(default 25) is reached. Using the converged value of ¢ (denoted by «), the eigenanalysis is
performed on the matrix ¢"R~"+.. The factor loadings are computed as

=

\m =1 Qm( m Im)

where
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[y, = diag ('}“1-. T2y e “E'm)
Q?TE- = (‘;‘-"1: Wa, .y u“‘?il)

Unweighted and Generalized Least Squares
The same basic algorithm is used in ULS and GLS as in maximum likelihood, except that

f(() = { Zﬁz:m—l %‘ ] for ULS

P (vi—=1)
bemal 9 for GLS

for the ULS method, the eigenanalysis is performed on the matrix R — ¢?, where
M =72 = ... > 7, are the eigenvalues. In terms of the derivatives, for ULS,

k=m-+1
p m p
af_’-f - - o Vi _L".‘r"-nf o 5 Vi 2
D =1 €Lyl Z WikWik Z -"»k——n,-w“':wjk -+ (S-.ij Z £y — ? Wit
I ) k=m+1 n=1 "' mn k=m+1
and
) 2
’ro., Z”
Tl Wik Wik
du; ()1, v gk
k=m+1
For GLS,
e p
af (72 — i)
D 'k Tk %k
di;
k=m+1
- m
o / / i J
+4 FeYeg fa - ~ iV it e
D ( 5] ()i ThWikWik m— WinWin + 71 exp 9
/ k=m-+1 n—1 Tk mn
and
) 2
Dy N ik gk
‘ k=m-+1

Also, the factor loadings of the ULS method are obtained by
Am - Q"mrr5

The chi-square statistic for m factors for the ML and GLS methods is given by
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) 2p+95  2m .

with ((p —m)® —p— m),f‘Q degrees of freedom.

Alpha Factoring
Alpha factoring involves an iterative procedure, where at each iteration i:

The eigenvalues (~(;)) and eigenvectors (w ;) of
1
2
(i—1)
are computed.

Hy |\ (R—DHE, | +T

|
)
The new communalities are

m
Pk Z |"-*'j('r') |“’gj(f) Piegi-1)
=1

The initial values of the communalities, Hy, are

rit

po_d 1= L |R|>10"fandall0 < ki, < 1
O maxy |rg otherwise

where »** is the ith diagonal entry of R—*.

If || = 10 and all r* are equal to one, the procedure is terminated. If for some i, max; |r;;| > 1,
the procedure is terminated.

Iteration stops if any of the following are true:
max |hk(.ﬂ;) — hk(,;_l)| <€

1= MAX

;) = 0 forany k

The communalities are the values when iteration stops, unless the last termination criterion is true,
in which case the procedure terminates. The factor pattern matrix is

(f m(f)
where f is the final iteration.

P = Hip Q)T
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Image Factoring

Analyzing a Correlation Matrix

Eigenvalues and eigenvectors of S~1RS~! are found.

1 1
52 = r]mg (FT7 ) W)

where »-!1 is the ith diagonal element of R~!

The factor pattern matrix is

Fm = SQm (*\ m Im)f\m

(S

where A,,, and ©2,,, correspond to the m eigenvalues greater than 1 (and the associated
eigenvectors). If m = 0, the procedure is terminated.

The communalities are
mo(.. 2 2
(15 — 1) w;

1]
h-i = § —”J
it

j=1

The image covariance matrix is
R+ S’R™'S* — 287

The anti-image covariance matrix is

S’R-1s?

Analyzing a Covariance Matrix

When analyzing a covariance matrix, the covariance matrix 3 is used instead of the correlation
matrix R. The calculation is similar to the correlation matrix case.

The rescaled factor pattern matrix is

|-

F,.r = [diag(3)]2F,,

and the rescaled communality of variable i is hir = o;;" h; .
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Factor Rotation

Orthogonal Rotations
Rotations are done cyclically on pairs of factors until the maximum number of iterations is
reached or the convergence criterion is met. The algorithm is the same for all orthogonal rotations,
differing only in computations of the tangent values of the rotation angles.

The factor pattern matrix is normalized by the square root of communalities:

* Y
‘:‘\TH — Hzi\”b
where
A = (A, .-, A,,,) Is the factor pattern matrix

H = diag (h1,..., ;)
The tranformation matrix T is initialized to I.,..

At each iteration i:
®m The convergence criterion is

2

SV =D ”-AZ/\I%— Z)‘ﬁm) /n”
1

i=1 = k=1
where the initial value of A}, is the original factor pattern matrix. For subsequent iterations,
the initial value is the final value of A” . |, when all factor pairs have been rotated.

For all pairs of factors A;,A;) where & > 7, the following are computed:
®m The angle of rotation is

1 X
P = "tan ! =
4 Y

where
D — % Varimax
X=4qD- % Equamax
D Quartimax
2 2 .
c - (4 ;B Varimax
Y = A%_pg?
C — m(gin) Equamax
C Quartimax



Factor Analysis/PCA Algorithms

A= 22:1 Up(;) B = EEZI Up(s)
C = Z;ZI [u;(t_) — '“;(i)} D= Zgzl 2Up () Up(i)

If |sin ()| < 10~'% no rotation is done on the pair of factors.
m  The new rotated factors are

Fior ) = (X0

where )\’ ;, are the last values for factor j calculated in this iteration.

cos (P) —sin(P)
sin (P) cos(P)

m  The accrued rotation transformation matrix is

(B, k) = (¢, tx)

cos (P) - —sin (P) ‘
sin(P)  cos(P)

where 7; and 7, are the last calculated values of the jth and kth columns of T.
m [teration is terminated when

Si"’ri) — 517(;._1)| S J_U_:)
or the maximum number of iterations is reached.

Final rotated factor pattern matrix

where A* is the value of the last iteration.

m(f)

Reflect factors with negative sums. If

n
> Ny <0
i=1

then

Aj ==y

—J

Rearrange the rotated factors such that
n n
32 32
2 Nz =) A
J=1 J=1

The communalities are
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m ~
— Z 22
i—1

Direct Oblimin Rotation

The direct oblimin method (Jennrich and Sampson, 1966) is used for oblique rotation. The user
can choose the parameter §. The default value is § = 0.

The factor pattern matrix is normalized by the square root of the communalities

O, =H : A

m

where

m
hj =Y Xy
k=1

If no Kaiser is specified, this normalization is not done.
Initializations

The factor correlation matrix C is initialized to I,,,. The following are also computed:

k=1,...,n

)1 if Kaiser
| hg 1fno Kaiser

u; = E )\*QI .
Uy = E Xm

)
Ty = UV — ( uf
n

m

D = Zu?
=1
m

G = Z i
=1
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At each iteration, all possible factor pairs are rotated. For a pair of factors A, “and A7 A, (p# q)
the following are computed:

Dpg =D —up —uy
Gpg =G —xp — 4
Spa,i = Si — )\T:f ’\:r}z
Ypq = Z A:p)\:q
2y = Z A2
J
T = Z SpasiNiy — (g) tpDpq
Z = Z Spa,iNipNig (é)yrﬂq-’om
— n
P = Z AN, — ( )“p"o’pq

)
R=z,,— | — | uyu
Pq ( n) plq

3 P

P = 5(";}:3 - %)
1

Q = E{ p — 4cpP + R+ 2T/
1

R = §(Cpq(T +R)—P—Z)[xp

A root a of the equation b + P'b* + Q'b + R = 0 is computed, as well as

A=1+2¢ya+ a’
a
fo = —
2 7

The rotated pair of factors is



fl —a

(ipiq) = (2 0 1

These replace the previous factor values.

New values are computed for

A

Uy = | Aluy

S A2,
Az,
S T
Ug = S Ay
i=1
n
~ Y2
Ug = E .Aiq
i=1

. 0\ -2
Ty =Vg — ; H,q

Sk = Spas + Nop + M

-f) = qu + ﬁ'p + ?Nl'q

G = Gpg +1p + 1y

Factor Analysis/PCA Algorithms

All values designated with a tilde (~) replace the original values and are used in subsequent

calculations.

The new factor correlations with factor p are

Gip = 17 Lei + taciy (i # p)

Cpi — Cip

Cpp =1

After all factor pairs have been rotated, iteration is terminated if:

MAX iterations have been done, or

Fli — Fl_p| < (FO)(EPS)

where
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n ~
~ . N\ ~o
=) & —|(-|D?
2.5,
i=1
Otherwise, the factor pairs are rotated again.
The final rotated factor pattern matrix is
- 1e,
)\-m =H: ’)‘m
where A, is the value in the final iteration.
The factor structure matrix is
S =A,,Ch,

where C,,, is the factor correlation matrix in the final iteration.

Promax Rotation

The promax rotation is a computationally fast rotation (Hendrickson and White, 1964). The speed
is achieved by first rotating to an orthogonal varimax solution and then relaxing the orthogonality
of the factors to better fit the simple structure.

Varimax rotation is used to get an orthogonal rotated matrix A = {A;;}.

The matrix P = (p,;) ., is calculated, where

pX
k+1 _ ) %
,\,jj <ZJ:1 )\;J)
m oo \2 Nij
(Zjﬂ:l Af;) !

Here, k is the power of promax rotation ( > 1).

Pij =

The matrix L is calculated.
/ =1,
L= (A\ R;’\}:{) A RP
The matrix L is normalized by column to a transformation matrix

Q=LD
where D = (diag(L'L))

L
2

is the diagonal matrix that normalizes the columns of L.

At this stage, the rotated factors are

n 1,
f promazx _femp — Q j vartmaxr
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Because var( fpromar_temp) = (Q’Q)*l, and the diagonal elements do not equal 1, we must
modify the rotated factor to

f})‘l"(}'ﬁh(}.:l' - Cf promax _temp

1
2

where C = {cﬂiag ((Q’QYl)}

The rotated factor pattern is

Apromaz = MvarimarQC ™

The correlation matrix of the factors is
Ry =C(QQ) 'C

The factor structure matrix is

AS = ;"\prmuaIRff

Factor Score Coefficients

IBM® SPSS® Modeler uses the regression method of computing factor score coefficients
(Harman, 1976).

;\.,,ll“?.,.,,1 PCA without rotation
W = ¢ Ap(AMmAp) ' PCA with rotation
R™1S,, otherwise

where S.,, is the factor structure matrix. For orthogonal rotations S,,, = A,,,.

For principal components analysis without rotation, if any |;| < 10=%, factor score coefficients
are not computed. For principal components with rotation, if the determinant of A’,,,A,,, is less
than 10—, the coefficients are not computed. Otherwise, if R is singular, factor score coefficients
are not computed.

Blank Handling

By default, a case that has a missing value for any input or output field is deleted from the
computation of the correlation matrix on which all consequent computations are based. If the Only
use complete records option is deselected, each correlation in thecorrelation matrix R is computed
based on records with complete data for the two fields associated with the correlation, regardless
of missing values on other fields. For some datasets, this approach can lead to a nonpositive
definite R matrix, so that the model cannot be estimated.
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Secondary Calculations

Field Statistics and Other Calculations

The statistics shown in the advanced output for the regression equation node are calculated in the
same manner as in the FACTOR procedure in IBM® SPSS® Statistics. For more details, see the
SPSS Statistics Factor algorithm document, available at http://www.ibm.com/support.

Generated Model/Scoring

Factor Scores
Factor scores are assigned to scored records by applying the factor score coefficients to the input
field value for the record,

n

fﬁ’k = Z Wi f,

i=1

where [, is the factor score for the kth factor, «,; is the factor score coefficient for the ith input
field (from the W matrix) and the kth factor, and f; is the value of the ith input field forthe record
being scored. For more information, see the topic “Factor Score Coefficients.”

Blank Handling

Records with missing values for any input field in the final model cannot be scored and are
assigned factor/component score values of $null$.


http://www.ibm.com/support

Feature Selection Algorithm

Introduction

Data mining problems often involve hundreds, or even thousands, of variables. As a result,
the majority of time and effort spent in the model-building process involves examining which
variables to include in the model. Fitting a neural network or a decision tree to a set of variables
this large may require more time than is practical.

Feature selection allows the variable set to be reduced in size, creating a more manageable set
of attributes for modeling. Adding feature selection to the analytical process has several benefits:

m  Simplifies and narrows the scope of the features that is essential in building a predictive model.

®  Minimizes the computational time and memory requirements for building a predictive model
because focus can be directed to the subset of predictors that is most essential.

m Leads to more accurate and/or more parsimonious models.

m  Reduces the time for generating scores because the predictive model is based upon only a
subset of predictors.

Primary Calculations

Feature selection consists of three steps:

®m Screening. Removes unimportant and problematic predictors and cases.

m Ranking. Sorts remaining predictors and assigns ranks.

m  Selecting. Identifies the important subset of features to use in subsequent models.

The algorithm described here is limited to the supervised learning situation in which a set of
predictor variables is used to predict a target variable. Any variables in the analysis can be either
categorical or continuous. Common target variables include whether or not a customer churns,
whether or not a person will buy, and whether or not a disease is present.

The terms features, variables, and attributes are often used interchangeably. Within this
document, we use variables and predictors when discussing input to the feature selection
algorithm, with features referring to the predictors that actually get selected by the algorithm for
use in a subsequent modeling process.

Screening

This step removes variables and cases that do not provide useful information for prediction and
issues warnings about variables that may not be useful.

The following variables are removed:

m  Variables that have all missing values.
m  Variables that have all constant values.
m  Variables that represent case ID.
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The following cases are removed:
m  Cases that have missing target values.
m  Cases that have missing values in all its predictors.

The following variables are removed based on user settings:

m  Variables that have more than m1% missing values.

m Categorical variables that have a single category counting for more than m»% cases.
m  Continuous variables that have standard deviation < m3%.
|

Continuous variables that have a coefficient of variation |CV| < my%. CV = standard
deviation / mean.

m Categorical variables that have a number of categories greater than ms% of the cases.

Values mq, my, mg, my, and ms are user-controlled parameters.

Ranking Predictors

This step considers one predictor at a time to see how well each predictor alone predicts the target
variable. The predictors are ranked according to a user-specified criterion. Available criteria
depend on the measurement levels of the target and predictor.

The importance value of each variable is calculated as (1 — p), where p is the p value of the
appropriate statistical test of association between the candidate predictor and the target variable,
as described below.

Categorical Target

This section describes ranking of predictors for a categorical target under the following scenarios:
m  All predictors categorical

m  All predictors continuous

m  Some predictors categorical, some continuous

All Categorical Predictors

The following notation applies:

Table 17-1

Notation

Notation Description

X The predictor under consideration with | categories.
Y Target variable with J categories.

N Total number of cases.

Nij The number of cases with X =iand Y = j.



M w0 Do

Feature Selection Algorithm

Notation Description
J
N The number of cases with X =i. N;. = Z Nij
J=1
} I
N The number of cases with Y = j. N, = > N,

=1

The above notations are based on nonmissing pairs of (X, Y). Hence J, N, and N-j may be
different for different predictors.

P Value Based on Pearson’s Chi-square

Pearson’s chi-square is a test of independence between X and Y that involves the difference
between the observed and expected frequencies. The expected cell frequencies under the null
hypothesis of independence are estimated by V;; = N, N ;/IN. Under the null hypothesis,
Pearson’s chi-square converges asymptotically to a chi-square distribution 2 with degrees
of freedomd = (I-1)(J-1).

The p value based on Pearson’s chi-square X2 is calculated by p value = Prob(y? > X2),where
I J . 2
XZ = Z Z (i\rl_j — i\vu) ,"‘J-‘"‘\’?‘Fj'
i=1 j=1
Predictors are ranked by the following rules.
Sort the predictors by p value in the ascending order
If ties occur, sort by chi-square in descending order.
If ties still occur, sort by degree of freedom d in ascending order.

If ties still occur, sort by the data file order.
P Value Based on Likelihood Ratio Chi-square

The likelihood ratio chi-square is a test of independence between X and Y that involves the ratio
between the observed and expected frequencies. The expected cell frequencies under the null
hypothesis of independence are estimated by N,; = N, . ;/N. Under the null hypothesis, the
likelihood ratio chi-square converges asymptotically to a chi-square distribution v~ with degrees
of freedomd = (I-1)(J-1).

The p value based on likelihood ratio chi-square G2 is calculated by p value = Prob( y 2> G2), where

r J -
2 . o Nij Nii /N Ny = 0,
2 =233 63, with 62 = { Vi ln (N Nig) - Ny >
0

ij?
1= else.

Predictors are ranked according to the same rules as those for the p value based on Pearson’s
chi-square.

Cramer’s V
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Cramer’s V is a measure of association, between 0 and 1, based upon Pearson’s chi-square. It is
defined as

2 1/2
; — X '
V= (."\"(rnin{fﬂf}f”) '

Predictors are ranked by the following rules:
1. Sort predictors by Cramer’s V in descending order.
2. Ifties occur, sort by chi-square in descending order.

3. Ifties still occur, sort by data file order.
Lambda

Lambda is a measure of association that reflects the proportional reduction in error when values of
the independent variable are used to predict values of the dependent variable. A value of 1 means
that the independent variable perfectly predicts the dependent variable. A value of 0 means that
the independent variable is no help in predicting the dependent variable. It is computed as

E ‘max (N;;) — max (N.;)
~ j
X)= 1

A(Y

N—max;(N ;)

Predictors are ranked by the following rules:
1. Sort predictors by lambda in descending order.
2. Ifties occur, sort by I in ascending order.

3. Ifties still occur, sort by data file order.

All Continuous Predictors

If all predictors are continuous, p values based on the F statistic are used. The idea is to perform a
one-way ANOVA F test for each continuous predictor; this tests if all the different classes of Y
have the same mean as X.

The following notation applies:

Table 17-2

Notation

Notation Description

N, The number of cases with Y = j.

T, The sample mean of predictor X for target class Y = j.

537 The sample variance of predictor X for target class Y = j.
Ny

$2= ) (wy—a,) /(N - 1)
i=1
T

J
The grand mean of predictor X. T =Y N;z;/N
=1



Feature Selection Algorithm

The above notations are based on nonmissing pairs of (X, Y).
P Value Based on the F Statistic

The p value based on the F statistic is calculated by p value = Prob{F(J—1, N-J)> F}, where

J
Z N; (.‘1_’_, - 5)2,‘[.]—1;
o =l

(N, —1) .s?‘;'[;\ff.!)

[
Il

M-

—

i=

and F(J—1, N-J) is a random variable that follows an F distribution with degrees of freedom J-1
and N-J. If the denominator for a predictor is zero, set the p value = 0 for the predictor.

Predictors are ranked by the following rules:
1. Sort predictors by p value in ascending order.
2. Ifties occur, sort by F in descending order.
3. Ifties still occur, sort by N in descending order.

4. If ties still occur, sort by the data file order.

Mixed Type Predictors

If some predictors are continuous and some are categorical, the criterion for continuous predictors
is still the p value based on the F statistic, while the available criteria for categorical predictors are
restricted to the p value based on Pearson’s chi-square or the p value based on the likelihood ratio
chi-square. These p values are comparable and therefore can be used to rank the predictors.

Predictors are ranked by the following rules:
1. Sort predictors by p value in ascending order.

2. If ties occur, follow the rules for breaking ties among all categorical and all continuous predictors
separately, then sort these two groups (categorical predictor group and continuous predictor group)
by the data file order of their first predictors.

Continuous Target

This section describes ranking of predictors for a continuous target under the following scenarios:
m  All predictors categorical

m  All predictors continuous

m  Some predictors categorical, some continuous
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All Categorical Predictors

> w dpoE

If all predictors are categorical and the target is continuous, p values based on the F statistic are
used. The idea is to perform a one-way ANOVA F test for the continuous target using each
categorical predictor as a factor; this tests if all different classes of X have the same mean as Y.

The following notation applies:

Table 17-3
Notation
Notation Description
X The categorical predictor under consideration with | categories.
Y The contmuous target variable. yij represents the value of the continuous
target for the jth case with X = i.
Ni The number of cases with X = i.
v, The sample mean of target Y in predictor category X = i.
s(y)? The sample variance of target Y for predictor category X = i.
1 ‘N--g
sWiz =Y (v —7.)°/ (N — 1)
=1
Y The grand mean of target Y. ¥ = Ef_,;‘\-}g_;“f.-“v’

The above notations are based on nonmissing pairs of (X, Y).

The p value based on the F statistic is p value = Prob{F(I-1, N-1I) > F}, where

1
S N@ —5) -
iz

F=-=t

Z (N, — 1) s(y)? /vy

=1

in which F(I-1, N-1) is a random variable that follows a F distribution with degrees of freedom
I-1 and N—I. When the denominator of the above formula is zero for a given categorical predictor
X, set the p value = 0 for that predictor.

Predictors are ranked by the following rules:
Sort predictors by p value in ascending order.
If ties occur, sort by F in descending order.

If ties still occur, sort by N in descending order.

If ties still occur, sort by the data file order.

All Continuous Predictors

If all predictors are continuous and the target is continuous, the p value is based on the asymptotic
t distribution of a transformation t on the Pearson correlation coefficient r.
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The following notation applies:

Table 17-4

Notation

Notation Description

X The continuous predictor under consideration.
Y The continuous target variable.

T=3 2 /N The sample mean of predictor variable X.

g = uN /N The sample mean of target Y.

s()? The sample variance of predictor variable X.
s(y)* The sample variance of target variable Y.

The above notations are based on nonmissing pairs of (X, Y).

The Pearson correlation coefficient r is

SN (=7 )i =5) /(N =1)
Vsl s (y)? '

T =

The transformation t on r is given by

3

t= 7"'\.‘/1\“_%.

Under the null hypothesis that the population Pearson correlation coefficient p = 0, the p value
is calculated as

b value — 0 if 12=1,
Pratie =1 2 prob{T > |¢|}  else.

T is a random variable that follows a t distribution with N—2 degrees of freedom. The p value
based on the Pearson correlation coefficient is a test of a linear relationship between X and Y. If
there is some nonlinear relationship between X and Y, the test may fail to catch it.

Predictors are ranked by the following rules:
1. Sort predictors by p value in ascending order.
2. Ifties occur in, sort by r2 in descending order.
3. Ifties still occur, sort by N in descending order.

4. If ties still occur, sort by the data file order.

Mixed Type Predictors

If some predictors are continuous and some are categorical in the dataset, the criterion for
continuous predictors is still based on the p value from a transformation and that for categorical
predictors from the F statistic.
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Predictors are ranked by the following rules:
1. Sort predictors by p value in ascending order.
2. If ties occur, follow the rules for breaking ties among all categorical and all continuous predictors

separately, then sort these two groups (categorical predictor group and continuous predictor group)
by the data file order of their first predictors.

Selecting Predictors

If the length of the predictor list has not been prespecified, the following formula provides an
automatic approach to determine the length of the list.

Let Lo be the total number of predictors under study. The length of the list L may be determined by

L= [min (max (30, 2\/17;) ,LU)],

where [X] is the closest integer of x. The following table illustrates the length L of the list for
different values of the total number of predictors Lg.

Lo L L/Lo(%0)
10 10 100.00%
15 15 100.00%
20 20 100.00%
25 25 100.00%
30 30 100.00%
40 30 75.00%
50 30 60.00%
60 30 50.00%
100 30 30.00%
500 45 9.00%
1000 63 6.30%
1500 77 5.13%
2000 89 4.45%
5000 141 2.82%
10,000 200 2.00%
20,000 283 1.42%
50,000 447 0.89%
Generated Model

The feature selection generated model is different from most other generated models in that it does
not add predictors or other derived fields to the data stream. Instead, it acts as a filter, removing

unwanted fields from the data stream based on generated model settings.
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The set of fields filtered from the stream is controlled by one of the following criteria:

Field importance categories (Important, Marginal, or Unimportant). Fields assigned to any
of the selected categories are preserved; others are filtered.

Top k fields. The k fields with the highest importance values are preserved; others are filtered.

Importance value. Fields with importance value greater than the specified value are preserved;
others are filtered.

Manual selection. The user can select specific fields to be preserved or filtered.
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Generalized linear models (GZLM) are commonly used analytical tools for different types of data.
Generalized linear models cover not only widely used statistical models, such as linear regression
for normally distributed responses, logistic models for binary data, and log linear model for count
data, but also many useful statistical models via its very general model formulation.

Generalized Linear Models

Notation

Model

Generalized linear models were first introduced by Nelder and Wedderburn (1972) and later
expanded by McCullagh and Nelder (1989). The following discussion is based on their works.

The following notation is used throughout this section unless otherwise stated:

Table 18-1

Notation

Notation Description

n Number of complete cases in the dataset. It is an integer and n> 1.

p Number of parameters (including the intercept, if exists) in the model. It is an integer
andp> 1.

Px Number of non-redundant columns in the design matrix. It is an integer and py > 1.

n x 1 dependent variable vector. The rows are the cases.

r n x 1 vector of events for the binomial distribution; it usually represents the number of
“successes.” All elements are non-negative integers.

m n x 1 vector of trials for the binomial distribution. All elements are positive integers
and mj>rj, i=1,...,n.

n n x 1 vector of expectations of the dependent variable.

n n x 1 vector of linear predictors.

X n x p design matrix. The rows represent the cases and the columns represent the
parameters. The ith row is z; = (zi1, ...,;r,-p)T,i=l.....n with z:1 = 1 if the model has an
intercept.

(0] n x 1 vector of scale offsets. This variable can’t be the dependent variable (y) or one of
the predictor variables (X).

3 p x 1 vector of unknown parameters. The first element in /3 is the intercept, if there is one.

® n x 1 vector of scale weights. If an element is less than or equal to 0 or missing, the
corresponding case is not used.

f n x 1 vector of frequency counts. Non-integer elements are treated by rounding the value
to the nearest integer. For values less than 0.5 or missing, the corresponding cases are
not used.

N n

Effective sample size. N = Z fi. If frequency count variable f is not used, N =n.

=1

A GZLM of y with predictor variables X has the form
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n=gEWY)=X3+0, y~F

where 1 is the linear predictor; O is an offset variable with a constant coefficient of 1 for each
observation; g(.) is the monotonic differentiable link function which states how the mean of
Y, E (y) = p, is related to the linear predictor n ; F is the response probability distribution.
Choosing different combinations of a proper probability distribution and a link function can
result in different models.

In addition, GZLM also assumes y;j are independent for i=1,....,n. Then for each observation,
the model becomes

T -
ni=g (i) =z; 3+o0;, yi~F
Notes
m X can be any combination of scale variables (covariates), categorical variables (factors),

and interactions. The parameterization of X is the same as in the GLM procedure. Due to
use of the over-parameterized model where there is a separate parameter for every factor
effect level occurring in the data, the columns of the design matrix X are often dependent.
Collinearity between scale variables in the data can also occur. To establish the dependencies
in the design matrix, columns of XT¥X, where ¥ = diag(f1wi, - - - f.w,),, are examined by
using the sweep operator. When a column is found to be dependent on previous columns,
the corresponding parameter is treated as redundant. The solution for redundant parameters
is fixed at zero.

When y is a binary dependent variable which can be character or numeric, such as
“male”/"female” or 1/2, its values will be transformed to 0 and 1 with 1 typically representing
a success or some other positive result. In this document, we assume to be modeling the
probability of success. In this document, we assume that y has been transformed to 0/1
values and we always model the probability of success; that is, Prob(y = 1). Which original
value should be transformed to 0 or 1 depends on what the reference category is. If the
reference category is the last value, then the first category represents a success and we are
modeling the probability of it. For example, if the reference category is the last value, “male”
in “male”/’female” and 2 in 1/2 are the last values (since “male” comes later in the dictionary
than “female™) and would be transformed to 0, and “female” and 1 would be transformed to 1
as we model the probability of them, respectively. However, one way to change to model the
probability of “male” and 2 instead is to specify the reference category as the first value. Note
if original binary format is 0/1 and the reference category is the last value, then 0 would be
transformed to 1 and 1 to 0.

When r, representing the number of successes (or number of 1s) and m, representing
the number of trials, are used for the binomial distribution, the response is the binomial
proportion y = r/m.

Probability Distribution

GZLMs are usually formulated within the framework of the exponential family of distributions.
The probability density function of the response Y for the exponential family can be presented as
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Jy) = exp {Ug;/—i(g) +c ('.U,(.D/w)}

where 0 is the canonical (natural) parameter, ¢ is the scale parameter related to the variance of y
and o is a known prior weight which varies from case to case. Different forms of b(6) and c(y,
o/w) will give specific distributions. In fact, the exponential family provides a notation that allows
us to model both continuous and discrete (count, binary, and proportional) outcomes. Several are
available including continuous ones: normal, inverse Gaussian, gamma; discrete ones: negative
binomial, Poisson, binomial.

The mean and variance of y can be expressed as follows

‘

E(y)=>5b () =p

Var (y) =1 (0) 2 =V (p) @

oy, W

where s’ (#) and b” (#) denote the first and second derivatives of b with respect to 6, respectively;
V (1) is the variance function which is a function of ;.

In GZLM, the distribution of y is parameterized in terms of the mean (u) and a scale parameter
(¢) instead of the canonical parameter (0). The following table lists the distribution of'y,
corresponding range of y, variance function (V(u)), the variance of y (Var(y)), and the first
derivative of the variance function V" (1)), which will be used later.

Table 18-2

Distribution, range and variance of the response, variance function, and its first derivative
Distribution Range of y V() Var(y) V’(n)
Normal (—00,00) 1 0] 0
Inverse Gaussian (0,0) u3 e 32
Gamma (0,00) e P2 2u
Negative binomial | 0(1)e0 p+kp? pkp? 1+2kp
Poisson 0(1)o u n 1
Binomial(m) 0(1)m/m pu(l—p) pu(1—p)/m 1-2p
Notes

m 0(1)z means the range is from 0 to z with increments of 1; that is, 0, 1, 2, ..., z

m  For the binomial distribution, the binomial trial variable m is considered as a part of the
weight variable o.

m Ifa weight variable o is presented, ¢ is replaced by ¢/o.

m  For the negative binomial distribution, the ancillary parameter (k) can be user-specified.
When k = 0, the negative binomial distribution reduces to the Poisson distribution. When
k = 1, the negative binomial is the geometric distribution.
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Scale parameter handling. The expressions for V(u) and Var(y) for continuous distributions include
the scale parameter ¢ which can be used to scale the relationship of the variance and mean (Var(y)
and p). Since it is usually unknown, there are three ways to fit the scale parameter:

1. It can be estimated with 3 jointly by maximum likelihood method.
2. It can be set to a fixed positive value.

3. It can be specified by the deviance or Pearson chi-square. For more information, see the
topic “Goodness-of-Fit Statistics.”

On the other hand, discrete distributions do not have this extra parameter (it is theoretically equal
to one). Because of it, the variance of y might not be equal to the nominal variance in practice
(especially for Poisson and binomial because the negative binomial has an ancillary parameter k).
A simple way to adjust this situation is to allow the variance of y for discrete distributions to have
the scale parameter as well, but unlike continuous distributions, it can’t be estimated by the ML
method. So for discrete distributions, there are two ways to obtain the value of ¢:

1. It can be specified by the deviance or Pearson chi-square.

2. It can be set to a fixed positive value.

To ensure the data fit the range of response for the specified distribution, we follow the rules:

m  For the gamma or inverse Gaussian distributions, values of y must be real and greater than
zero. If a value of y is less than or equal to 0 or missing, the corresponding case is not used.

m  For the negative binomial and Poisson distributions, values of y must be integer and
non-negative. If a value of y is non-integer, less than 0 or missing, the corresponding case is
not used.

m  For the binomial distribution and if the response is in the form of a single variable, y must
have only two distinct values. If y has more than two distinct values, the algorithm terminates
in an error.

m  For the binomial distribution and the response is in the form of ratio of two variables denoted
events/trials, values of r (the number of events) must be nonnegative integers, values of m
(the number of trials) must be positive integers and m; > r;, V i. If a value of r is not integer,
less than 0, or missing, the corresponding case is not used. If a value of m is not integer, less
than or equal to 0, less than the corresponding value of r, or missing, the corresponding
case is not used.

The ML method will be used to estimate 3 and possibly ¢. The kernels of the log-likelihood
function (¢k) and the full log-likelihood function (¢), which will be used as the objective function
for parameter estimation, are listed for each distribution in the following table. Using ¢ or £, won’t
affect the parameter estimation, but the selection will affect the calculation of information criteria.
For more information, see the topic “Goodness-of-Fit Statistics .
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Table 18-3

The log-likelihood function for probability distribution
Distribution fxand ¢

Normal n

el (D))

L={ + Z *%{lu (2m)}
=1

Inverse Gaussian

n

fi fwilyi — ,u )? oy}
0 = Wil — By (28
’ Z 2 by e

=1

=04+ —%{m(zw)}
=1

Gamma n W w ws
S i)
~ ¢ O D )
(=0 + Y fi{~ln(y)}
i=1
Negative " ,
binomial b = fog{'y; In (ki) = (i + L/R)In (L kpg) + 1o (T(ys + 1/k)) — In(C(L/K))}
i=1 ¥
=l DL = (T + 1)}
=1
Poisson
ZL {yiln (112) — s}
C=06+ Y [ —n(y))}
1=1 (b
Binomial(m)

[;\_ZL {ylln (p0) + (L — i) In (1 — pu5)}

Wi m; m; )
€=fk+2f:j{1ﬂ(.r_ )}wwhere (r ) = %
i=1 ‘ i

When an individual y = 0 for the negative binomial or Poissondistributions and y = 0 or 1 for the
binomial distribution, a separate value of the log-likelihood is given. Let ¢ j be the log-likelihood
value for individual case i when yj = 0 for the negative binomial and Poisson and 0/1 for the
binomial. The full log-likelihood for i is equal to the kernel of the log-likelihood for i; that is,

=ty j-

Table 18-4
Log-likelihood

Distribution

Ok

Negative binomial

{k_::—fé&jh‘;l,‘ck’_"’ ify; =0

il




GENLIN Algorithms

Distribution O

Poisson b= —fi%p; if v =0

Binomial(m) o i In (L —py) if ;i =0
k= fis In () ify, =1

B I(2) is the gamma function and In(I'(z)) is the log-gamma function (the logarithm of the
gamma function), evaluated at z.

m  For the negative binomial distribution, the scale parameter is still included in ¢k for flexibility,
although it is usually set to 1.

m  For the binomial distribution (r/m), the scale weight variable becomes w;

is, the binomial trials variable m is regarded as a part of the weight. However, the scale
weight in the extra term of £ is still ..

Link Function

The following tables list the form, inverse form, range of /, and first and second derivatives

for each link function.

= w;m; in {; that

Table 18-5
Link function name, form, inverse of link function, and range of the predicted Mean
Link function First derivative g' (1) = g—:f = A |Second derivative g (1) = Wi';l
Log m —A?
Logit et A*(2u—1)
Probit where ot
qs(fb‘ )’ )
1 222
#(z) = =€
5 - 2
Complementary log-log m —A*(1+41n(1—p))
a#0 ap® ! AL
Powi L
o“el(a){ o0 % A%
Log-complement ﬁ —A?
Negative log-log ATy A*(1+1In ()
Negative binomial M}m? —A2(1 + 2kpu)
ot a—1 a-+1
Odds p0we1(u){ a#0 T mot? A( + 3 #)
=0 : A%(2
B(1—p) (2p —1)

Note: In the power link function, if || < 2.2e-16, a is treated as 0.

Table 18-6

The first and second derivatives of link function

Link function Firstderivative g’ () = 3—;' = A | Second derivative g" (1) = d—z'}
. m

Identity 1 0
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Link function

Firstderivative ¢'(n) = 5% = A |Second derivative ¢" () = 22

=)

= au?
1 2
Log m —A
Logit mll i A%(2p—1)
Probit 1 AZD—17,1
m where ATO 1y
#(z) = ,,l)__cf*z ’
Complementary log-log 1 —A?(1+1In(l —p))
(p—1)In(1—p)
a—1 1
Power(a)] ¢ #0 {c:,u AT
a=0 m —A
Log-complement ]—_"“ _AZ
Negative log-log i (m) A1+ In(p))
Negative binomial ﬁ “A(1+ 2kp)
T a—1 a1
Oddspower(a){afg { njlflprl‘l A(T“r ?ﬂ)
4= Pl A2 — 1)

When the canonical parameter is equal to the linear predictor, § = n, then the link function is
called the canonical link function. Although the canonical links lead to desirable statistical
properties of the model, particularly in small samples, there is in general no a priori reason why
the systematic effects in a model should be additive on the scale given by that link. The canonical
link functions for probability distributions are given in the following table.

Table 18-7

Canonical and default link functions for probability distributions

Distribution Canonical link function
Normal Identity
Inverse Gaussian Power(—2)
Gamma Power(—1)
Negative binomial Negative binomial
Poisson Log
Binomial Logit
Estimation

Having selected a particular model, it is required to estimate the parameters and to assess the

precision of the estimates.

Parameter estimation

The parameters are estimated by maximizing the log-likelihood function (or the kernel of the
log-likelihood function) from the observed data. Let s be the first derivative (gradient) vector of
the log-likelihood with respect to each parameter, then we wish to solve
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= {O—(J} =0
/3 pxl

In general, there is no closed form solution except for a normal distribution with identity link
function, so estimates are obtained numerically via an iterative process. A Newton-Raphson
and/or Fisher scoring algorithm is used and it is based on a linear Taylor series approximation
of the first derivative of the log-likelihood.

First Derivatives

If the scale parameter ¢ is not estimated by the ML method, s is a px1 vector with the form:

fzwz(yt f@w’ﬂ yz i) )
Z oV (1) g (i) Z () "

sz

where ji;, V (p,) and g’ (11;) are defined in Table 18-5 “Link function name, form, inverse of link
function, and range of the predicted mean,” Table 18-2 “Distribution, range and variance of the
response, variance function, and its first derivative,” and Table 18-6 “The first and second
derivatives of link function,” respectively.

If the scale parameter ¢ is estimated by the ML method, it is handled by searching for ¢) since
o 1s required to be greater than zero.

Let T =) S0 ¢ = exp(1) , then s is a (p+1)x1 vector with the following form

of fzwz yz )
UL o
- | % DN iR
or I (p+1)x1 @
or

where 9¢/33 is the same as the above with ¢ is replaced with exp(t), ¢/ has a different form
depending on the distribution as follows:

Table 18-8

The 1st derivative functions w.r.t. the scale parameter for probability distributions

Distribution

a¢

Normal

ar
=~ fi fwilyi — )
g?{ exp (1) 71}

=1

Inverse Gaussian

 fi fwilg— p)®
g?{oxp (T)yip? 71}

Gamma

Z f,», wils A ST D
 exp(r exp (7) i iz “\exp(r)

Note: +(z) is a digamma function, which is the derivative of logarithm of a gamma function,

dln (I'(z)) r (=)

evaluated at z; that is, ¥(z) = — =

z r'(z) -
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As mentioned above, for normal distribution with identity link function which is a classical linear
regression model, there is a closed form solution for both 5 and T, so no iterative process is
needed. The solution for 3, after applying the SWEEP operation in GLM procedure, is

8= (i J’}:w?XiTXi> 7 (i fiwoix) (y; - Oi)) = <XT\PX>7 (XT\P(y B 0)>'
i—1 i—1

where ¥ = diag( f w1, ... f,w,) and (Z)~ is the generalized inverse of a matrix Z. If the scale
parameter ¢ is also estimated by the ML method, the estimate of T is

- N 1 - . - 2
7 =In (()) -In <_T Zl fiw; (-y,; — x;-r.ﬁ — oz-) ) .

Second Derivatives

Let H be the second derivative (Hessian) matrix. If the scale parameter is not estimated by the ML
method, H is a pxp matrix with the following form

il T
H=|——=| =-X'WX
28957] ..,

where W is an nxn diagonal matrix. There are two definitions for W depending on which
algorithm is used: W, for Fisher scoring and W, for Newton-Raphson. The ith diagonal element
for We is

Jiwi 1
¢ V() (g ()

and the ith diagonal element for W, is

‘uje 1 f—

1

"

V() g (i) +V () g (ui)
(V (i)’ (9" (1))

where V' (;;) and ¢" (1) are defined in Table 18-2 “Distribution, range and variance of the
response, variance function, and its first derivative” and Table 18-6 “The first and second
derivatives of link function,” respectively. Note the expected value of W is W, and

when the canonical link is used for the specified distribution, then Wq = We.

fiwi
Woi = We i + 1; (yi — i) - :

If the scale parameter is estimated by the ML method, H becomes a (p+1)x(p+1) matrix with the
form

8¢ ‘Qgtf
H . a‘/_‘))(w,)‘a I (’)_d(f)'f
- 9 a0

0r05] (p+1) % (p+1)
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where 92¢ /3307 is a px1 vector and §* E,’é}rc‘)ﬁT is a 1xp vector and the transpose of 9*¢/9307.
For all three continuous distributions:

o2 Z fiwi(yi — wi) . ot
YN - _ ' R . ‘
apor exp (1) V (1) ¢ (14) 0P
The forms of 52¢ /97 are listed in the following table.
Table 18-9
The second derivative functions w.r.t. the scale parameter for probability distributions
Distribution 8%
or2
Normal n fiwi i
; *W(y: — )

> ey w)?
2exp (1) yipd

1

Gamma n g " o , "
Z f!‘-‘-e {]Il ( Wilfi ) . (2 B U_‘a) B 'l-i‘( Wy ) B Wy " ( 'y ) }
— exp (1) exp (7) pi " " \exp (1) exp(r) " \exp(r)

Note: ¢ (z) is a trigamma function, which is the derivative of (=), evaluated at z.

Inverse Gaussian | _™
=

Iterations

An iterative process to find the solution for 3 (which might include ¢) is based on Newton-Raphson
(for all iterations), Fisher scoring (for all iterations) or a hybrid method. The hybrid method
consists of applying Fisher scoring steps for a specified number of iterations before switching

to Newton-Raphson steps. Newton-Raphson performs well if the initial values are close to the
solution, but the hybrid method can be used to improve the algorithm’s robustness from bad initial
values. Apart from improved robustness, Fisher scoring is faster due to the simpler form of

the Hessian matrix.

The following notation applies to the iterative process:
Table 18-10
Notation
Notation Description
| Starting iteration for checking complete separation and quasi-complete separation. It
must be O or a positive integer. This criterion is not used if the value is 0.
J The maximum number of steps in step-halving method. It must be a positiveinteger.

The first number of iterations using Fisher scoring, then switching to Newton-Raphson.
It must be 0 or a positive integer. A value of 0 means using Newton-Raphson for all
iterations and a value greater or equal to M means using Fisher scoring for all iterations.

M The maximum number of iterations. It must be a non-negative integer. If the value is
0, then initial parameter values become final estimates.

€¢, €P,€EH Tolerance levels for three types of convergence criteria.

Abs A 0/1 binary variable; Abs = 1 if absolute change is used for convergence criteria

and Abs = 0 if relative change is used.
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And the iterative process is outlined as follows:

Input values for I, J, K, M, ¢, ep,ci and Abs for each type of three convergence criteria.

For 3 0) compute initial values (see below%, then calculate log-likelihood ¢(0), gradient vector
s(9 and Hessian matrix H'™) based on 3 0),

Let &=1.
Compute estimates of ith iteration:

;6’(1') = ;3(1'*1)- g(H ("—1)> s ("—1), where (H)™ is a generalized inverse of H. Then compute the
log-likelihood based on ,3(1‘ ).

Use step-halving method if gis) - g(i—1): reduce & by half and repeat step (4). The set of values
of £is {0.51:j=0, ..., —1}. If Jis reached but the log-likelihood is not improved, issue a
warning message, then stop.

Compute gradient vector s and Hessian matrix H'") based on 3(1) Note that We is used to
calculate g if i <K; W, is used to calculate g if i > K.

Check if complete or quasi-complete separation of the data is established (see below) if
distribution is binomial and the current iteration i > I. If either complete or quasi-complete
separation is detected, issue a warning message, then stop.

Check if all three convergence criteria (see below) are met. If they are not but M is reached,
issue a warning message, then stop.

If all three convergence criteria are met, check if complete or quasi-complete separation of

the data is established if distribution is binomial and i < I (because checking for complete or
quasi-complete separation has not started yet). If complete or quasi-complete separation is
detected, issue a warning message, then stop, otherwise, stop (the process converges for binomial
successfully). If all three convergence criteria are met for the distributions other than binomial,
stop (the process converges for other distributions successfully). The final vector of estimates is
denoted by /3 (and 7). Otherwise, go back to step (3).

Initial Values

Initial values are calculated as follows:

Set the initial fitted values fi; = (y;m; +0.5)/(m; + 1) for a binomial distribution (yj can be
a proportion or 0/1 value) and fi; = y: for a non-binomial distribution. From these derive
=g (fi;) ,g’ (;}__,.)andv (jii) - If 77; becomes undefined, set 7; = 1.

Calculate the weight matrix 1j; with the diagonal element w.; = f";"" - ——4——=, where o 18

. o . " b V() (g ()
set to 1 or a fixed positive value. If the denominator of «@.; becomes 0,

Assign the adjusted dependent variable z with the ith observation
zi= (i — o)+ (yi — ,r],-)g, (f;) for a binomial distribution and z; = (i}, — o,) for a non-binomial
distribution.
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4. Calculate the initial parameter values
~ -1 ~
B = (xT1ix) XMz

and
T.
@(0):<Z _ XBW)) W, (Z B XB(D))

if the scale parameter is estimated by the ML method.

Scale Parameter Handling

1. For normal, inverse Gaussian, and gamma response, if the scale parameter is estimated by the ML
method, then it will be estimated jointly with the regression parameters; that is, the last element
of the gradient vector s is with respect to 7.

2. If the scale parameter is set to be a fixed positive value, then it will be held fixed at that value for
in each iteration of the above process.

3. If the scale parameter is specified by the deviance or Pearson chi-square divided by degrees of
freedom, then it will be fixed at 1 to obtain the regression estimates through the whole iterative
process. Based on the regression estimates, calculate the deviance and Pearson chi-square values
and obtain the scale parameter estimate.

Checking for Separation

For each iteration after the user-specified number of iterations; that is, if i > I, calculate (note
here v refers to cases in the dataset)

Pmin = Hlvlnpt‘

Pmax = Illé'{x P,

Priy = nlvin (min (fty, 1 — 110,)),

where

 J py ify, =success (= 1
Pe=91—=p, ify, = failure (= 0)

(p, is the probability of the observed response for case v) and i, = ¢! (X:!-B : ov)

If min (Pmin, Pmax) = Pmin > 0.99 We consider there to be complete separation. Otherwise, if
Puax > 0.99 OF p* . < 0.001 and if there are very small diagonal elements (absolute value

< V107" & 3.16 x 10~1) in the non-redundant parameter locations in the lower triangular matrix
in Cholesky decomposition of —H, where H is the Hessian matrix, then there is a quasi-complete

separation.
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Convergence Criteria

The following convergence criteria are considered:

‘g(:),g(m)
o — < ¢ if relative change

Log-likelihood convergence: #i-1) |+10-°

| . . o

:E(") G e¢ 1f absolute change

ﬁu B . .
max; —y - | < ¢p ifrelative change

Parameter convergence: | 55 |+”J

max; (‘B( 9 ’)‘(‘ 2 D < ¢ep 1f absolute change

(S(i))T(Hm) ()

+10-6

) o < ep if relative change
Hessian convergence: ‘ﬂ v

(s(")) ! (H(i)) : (s(i)) < eg if absolute change

where ¢, ep and ¢y are the given tolerance levels for each type.

If the Hessian convergence criterion is not user-specified, it is checked based on absolute change
with €4 = 1E-4 after the log-likelihood or parameter convergence criterion has been satisfied. If
Hessian convergence is not met, a warning is displayed.

Parameter Estimate Covariance Matrix, Correlation Matrix and Standard Errors

The parameter estimate covariance matrix, correlation matrix and standard errors can be
obtained easily with parameter estimates. Whether or not the scale parameter is estimated by
ML, parameter estimate covariance and correlation matrices are listed for 5 only because the
covariance between 3 and + should be zero.

Model-Based Parameter Estimate Covariance

The model-based parameter estimate covariance matrix is given by
Im=-H =—-(—-XWX)~

where H~ is the generalized inverse of the Hessian matrix evaluated at the parameter estimates.
The corresponding rows and columns for redundant parameter estimates should be set to zero.

Robust Parameter Estimate Covariance

The validity of the parameter estimate covariance matrix based on the Hessian depends on the
correct specification of the variance function of the response in addition to the correct specification
of the mean regression function of the response. The robust parameter estimate covariance
provides a consistent estimate even when the specification of the variance function of the response
is incorrect. The robust estimator is also called Huber’s estimator because Huber (1967) was
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the first to describe this variance estimate; White’s estimator or HCCM (heteroskedasticity
consistent covariance matrix) estimator because White (1980) independently showed that this
variance estimate is consistent under a linear regression model including heteroskedasticity; or
the sandwich estimator because it includes three terms. The robust (or Huber/White/sandwich)
estimator is defined as follows

n . T 2
B ot [ 04; wilyi — i) T
Xr =2m Zl laﬁ,] {—5;’3] 2m = Zm Z fz( Vi) g (ﬂz)) Ti-r; |Zm

1=

Parameter Estimate Correlation

The correlation matrix is calculated from the covariance matrix as usual. Let o;; be an element of
¥m or Xr, then the corresponding element of the correlation matrix is L@ The corresponding
rows and columns for redundant parameter estimates should be set to system missing values.

Parameter Estimate Standard Error

Let 3, denote a non-redundant parameter estimate. Its standard error is the square root of the
ith diagonal element of ¥m or Zr:

a3, = \/0ii
The standard error for redundant parameter estimates is set to a system missing value. If the

scale parameter is estimated by the ML method, we obtain + and its standard error estimate

o= [— ( 0 where ;;’Tf can be found in Table 18-9 “The second derivative functions w.r.t. the

scale parameter for probability distributions.” Then the estimate of the scale parameter
is exp (7) and the standard error estimate is (exp (7)-5,)

Wald Confidence Intervals

Wald confidence intervals are based on the asymptotic normal distribution of the parameter
estimates. The 100(1 — a)% Wald confidence interval for ,-5’1- is given by

(3_; - Zlfr'r..«'E&;:fJ ) ‘;)j | Zl—(r_,»;Q(};'grf)’
where :, is the 100pth percentile of the standard normal distribution.

If exponentiated parameter estimates are requested for logistic regression or log-linear models,
then using the delta method, the estimate of exp (3;) is exp ( ) the standard error estimate of

exp (;3,) is (exp (3 J-) -U;;J) and the corresponding 100(1 — a)% Wald confidence interval for
exp (4;) is

((Xp (3 21— 0/203 )  EXP (B} + 21—0:/26-4/53'))

Wald confidence intervals for redundant parameter estimates are set to system missing values.
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Similarly, the 100(1 — a)% Wald confidence interval for ¢ is
(E'KP (T - zl—r\.«'l2€r«')  OXP (% + 21—...,:"25.—))

Chi-Square Statistics

The hypothesis Hy, : 3; = 0 is tested for each non-redundant parameter using the chi-square
statistic:

which has an asymptotic chi-square distribution with 1 degree of freedom.

Chi-square statistics and their corresponding p-values are set to system missing values for
redundant parameter estimates.

The chi-square statistic is not calculated for the scale parameter, even if it is estimated by ML
method.

P Values

Given a test statistic T and a corresponding cumulative distribution function G as specified
above, the p-value is defined as p = 1 — G (1'). For example, the p-value for the chi-square
test of Ho, : 3, =0is p; =1 — prob(y] < Lf(-_).

Model Testing

After estimating parameters and calculating relevant statistics, several tests for the given model
are performed.

Lagrange Multiplier Test

If the scale parameter for normal, inverse Gaussian and gamma distributions is set to a fixed value
or specified by the deviance or Pearson chi-square divided by the degrees of freedom (when the
scale parameter is specified by the deviance or Pearson chi-square divided by the degrees of
freedom, it can be considered as a fixed value), or an ancillary parameter k for the negative
binomial is set to a fixed value other than 0, the Lagrange Multiplier (LM) test assesses the
validity of the value. For a fixed ¢ or k, the test statistic is defined as

sl
(%]

Trv = —

o
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_apis N O L7 A R Y 4 9% - R
where s = azf:aT and A = ((.”3) ( m) ( m) ( [.th) evaluf';ltet.j at .the .
parameter estimates and fixed ¢ or k value. 77,3, has an asymptotic chi-square distribution with 1
degree of freedom, and the p-values are calculated accordingly.

For testing ¢, see Table 18-8 “The 1st derivative functions w.r.t. the scale parameter for
probability distributions” and see Table 18-9 “The second derivative functions w.r.t. the scale
parameter for probability distributions™ for the elements of s and A, respectively.

If k is set to 0, then the above statistic can’t be applied. According to Cameron and Trivedi (1998),
the LM test statistic should now be based on the following auxiliary OLS regression (without
constant)
(wi—ft:)*—y

[ ST
7 = aji; + €

where ji;— ¢g~! .rﬁ{',é) and «; is an error term. Let the response of the above OLS regression

[( Y — ﬁ;)z — ui| /s be =i and the explanatory variable /i be w;. The estimate of the above
regression parameter o and the standard error of the estimate of o are

n
Z Jiw;z;
_ i=1
n
Z fiw?
i=1

-

& and s, =

where s? = ﬁz fie?and ¢; = 2; — aw;. Then the LM test statistic is a z statistic
1=1

83
Ta

[

Y

and it has an asymptotic standard normal distribution under the null hypothesis of equidispersion
in a Poisson model H, : k = 0). Three p-values are provided. The alternative hypothesis

can be one-sided overdispersion (H, : k > 0), underdispersion , : k < 0) or two-sided
non-directional H,, : k7 () with the variance function of V(i) =y + kp®. The calculation

of p-values depends on the alternative. For H, : k > 0,p-value=1— ®(z), where ®(-) is the
cumulative probability of a standard normal distribution; for 77, : & < 0,p-value= ®(xz); and for
H, : k# 0p-value = 2(1 — O(|z])).

Goodness-of-Fit Statistics
Several statistics are calculated to assess goodness of fit of a given generalized linear model.
Deviance

The theoretical definition of deviance is:

D =20(((y;y) — £(j1;Y)),
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where ¢ (j:;y) is the log-likelihood function expressed as the function of the predicted mean values
jt (calculated based on the parameter estimates) given the response variable, and ¢ (y; y) is the
log-likelihood function computed by replacing /: with y. The formula used for the deviance is
S0, fid;, where the form of ¢: for the distributions are given in the following table:

Table 18-11
Deviance for individual case
Distribution di
Normal wilys — wi)?
Inverse Gaussian Wi (0 2
vin? (ya 1)
Gamma 2% {—ln (_) + y,——u,—}
t i By
Negative Binomial 2,%{%_ In (%) (g +1/k)1n (ﬁ‘f{/i) }
Poisson le{yt_ In (f) (i — ul)}
Binomial(m * i 1—yy
(m) le{yiln(;)+(1—y1]ln(1iii)}
Note

®  Wheny is a binary dependent variable with 0/1 values (binomial distribution), the deviance
and Pearson chi-square are calculated based on the subpopulations; see below.

m  Wheny = 0 for negative binomial and Poisson distributions and y = 0 (for r =0) or 1 (for r
=m) for binomial distribution with r/m format, separate values are given for the deviance.
Let 4, be the deviance value for individual case i when y;j = 0 for negative binomial and
Poisson and 0/1 for binomial.

Table 18-12

Deviance for individual case

Distribution d;

Negative Binomial 2w LR iy, =

Poisson 2w ify; =0

Binomial(m) —2w; In(l — ;) ify,=00rr; =0
—2w; In(p;) ify, =10rr, =m,

Pearson Chi-Square
n
2 o
=D S
i=1

where ~; = % for the binomial distribution and ~, = % for other distributions.

Scaled Deviance and Scaled Pearson Chi-Square

The scaled deviance is D* = D/¢ and the scaled Pearson chi-square is x** = v?/¢ .
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Since the scaled deviance and Pearson chi-square statistics have a limiting chi-square distribution
with N — py degrees of freedom, the deviance or Pearson chi-square divided by its degrees

of freedom can be used as an estimate of the scale parameter for both continuous and discrete
distributions.

2

i_ D h— _x°
Qj_ N—p, or (J  N—p,

If the scale parameter is measured by the deviance or Pearson chi-square, first we assume ¢ =1,
then estimate the regression parameters, calculate the deviance and Pearson chi-square values

and obtain the scale parameter estimate from the above formula. Then the scaled version of both
statistics is obtained by dividing the deviance and Pearson chi-square by ¢. In the meantime, some
statistics need to be revised. The gradient vector and the Hessian matrix are divided by ¢ and

the covariance matrix is multiplied by ¢. Accordingly the estimated standard errors are also
adjusted, the Wald confidence intervals and significance tests will be affected even the parameter
estimates are not affected by .

Note that the log-likelihood is not revised; that is, the log-likelihood is based on ¢ = 1 because the
scale parameter should be kept the same in the log-likelihood for fair comparison in information
criteria and model fitting omnibus test.

Overdispersion

For the Poisson and binomial distributions, if the estimated scale parameter is not near the
assumed value of one, then the data may be overdispersed if the value is greater than one or
underdispersed if the value is less than one. Overdispersion is more common in practice. The
problem with overdispersion is that it may cause standard errors of the estimated parameters to be
underestimated. A variable may appear to be a significant predictor, when in fact it is not.

Deviance and Pearson Chi-Square for Binomial Distribution with 0/1 Binary Response Variable

When r and m (event/trial) variables are used for the binomial distribution, each case represents m
Bernoulli trials. When y is a binary dependent variable with 0/1 values, each case represents a
single trial. The trial can be repeated for several times with the same setting (i.e. the same values
for all predictor variables). For example, suppose the first 10 y values are 2 1s and 8 0s and x
values are the same (if recorded in events/trials format, these 10 cases is recorded as 1 case

with r = 2 and m = 10), then these 10 cases should be considered from the same subpopulation.
Cases with common values in the variable list that includes all predictor variables are regarded as
coming from the same subpopulation. When the binomial distribution with binary response is
used, we should calculate the deviance and Pearson chi-square based on the subpopulations. If we
calculate them based on the cases, the results might not be useful.

If subpopulations are specified for the binomial distribution with 0/1 binary response variable, the
data should be reconstructed from the single trial format to the events/trials format. Assume the
following notation for formatted data:
Table 18-13

Notation

Notation Description

Ng Number of subpopulations.
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Notation Description

M1 Sum of the product of the frequencies and the scale weights associated with y = 1 in the
jth subpopulation. So rjg is that with y = 0 in the jth subpopulation.

mj Total weighted observations; »1; = rj; + 0.

Yj1 The proportion of 1s in the jth subpopulation; v;; = rj1/ m;.

1 The fitted probability in the jth subpopulation ji; would be the same for each case inthe

jth subpopulation because values for all predictor variables are the same for each case.)

The deviance and Pearson chi-square are defined as follows:
iy . Y1 . 1—yn - m;(:UJL - .U-J')2
D*ZZmJ yiuln | == ) +(1—y;)In| —— and y? Z%,
et i L ’ 1-— st }.Ij(l 7,{11')

then the corresponding estimate of the scale parameter will be

and o = X

o= MNg—Pr Ma—Dx

The full log likelihood, based on subpopulations, is defined as follows:

m
E_fk_‘_zw{ ( J)} _fk—i_zm{hl?"u,l'rjo'}

where ¢;. is the kernel log likelihood; it should be the same as the kernel log-likelihood computed
based on cases before, there is no need to compute again.

Information Criteria

Information criteria are used when comparing different models for the same data. The formulas
for various criteria are as follows.

Akaike information criteria (AIC). —27 + 2d

Finite sample corrected (AICC). —2¢ %

Bayesian information criteria (BIC). 2/ | dIn (V)
Consistent AIC (CAIC). 2/ 1 ¢(In (V) + 1).

where ¢ is the log-likelihood evaluated at the parameter estimates. Notice that d = py if only 3 is
included; d = py + 1 if the scale parameter is included for normal, inverse Gaussian, or gamma.

Notes

m ¢ (the full log-likelihood) can be replaced with ¢ (the kernel of the log-likelihood) depending
on the user’s choice.
®m  When r and m (event/trial) variables are used for the binomial distribution, then the N used

here would be the sum of the trials frequencies; N = Z fim;. In this way, the same value

. . =1 . .
results whether the data are in raw, binary form or in summarized, binomial form.
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Test of Model Fit

The model fitting omnibus test is based on -2 log-likelihood values for the model under
consideration and the initial model. For the model under consideration, the value of the -2
log-likelihood is

wy (3)

Let the initial model be the intercept-only model if intercept is in the considered model or the
empty model otherwise. For the intercept-only model, the value of the -2 log-likelihood is

—2/ (;’S’U>

For the empty model, the value of the -2 log-likelihood is
—2£(0)

Then the omnibus (or global) test statistic is

S = 2(£ (3) - f(ﬁu)) for the intercept-only model or

S 2(!(;’3’) - F:(U)) for the empty model.

S has an asymptotic chi-square distribution with r degrees of freedom, equal to the difference in
the number of valid parameters between the model under consideration and the initial model.

r = p, — 1 for the intercept-only model, r = p, for the empty model. The p-values then can

be calculated accordingly.

Note if the scale parameter is estimated by the ML method in the model under consideration, then
it will also be estimated by the ML method in the initial model.

Default Tests of Model Effects
For each regression effect specified in the model, type I and I11 analyses can be conducted.
Type | Analysis

Type | analysis consists of fitting a sequence of models, starting with a model with only an
intercept term (if there is one), and adding one additional effect, which can be covariates, factors
and interactions, of the model on each step. So it depends on the order of effects specified in the
model. On the other hand, type 111 analysis won’t depend on the order of effects.

Wald Statistics. For each effect specified in the model, type | test matrix L is constructed
and Hp: Lj3=0is tested. Construction of matrix L; is based on the generating matrix
H, = (xTax) XTaX, where Q is the scale weight matrix with ith diagonal element w; and

such that L5 is estimable. It involves parameters only for the given effect and the effects
containing the given effect. If such a matrix cannot be constructed, the effect is not testable.
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Since Wald statistics can be applied to type I and 111 analysis and custom tests, we express Wald
statistics in a more general form. The Wald statistic for testing L; 5 = K, where Lj is a rxp full
row rank hypothesis matrix and K is a rx1 resulting vector, is defined by

g = (L.,-,;? - K)T<L52LET) (L.,-,;? - K)

where /3 is the maximum likelihood estimate and X is the parameter estimates covariance matrix. S
has an asymptotic chi-square distribution with .~ degrees of freedom, where r = rank (LZLT).

If o < 7, then LZLT) isa generalized inverse such that Wald tests are effective for a restricted
set of hypotheses L, — K containing a particular subset C of independent rows from Hg.

For type I and 111 analysis, calculate the Wald statistic for each effect i according to the
corresponding hypothesis matrix Lj and K=0.

Type 111 Analysis

Wald statistics. See the discussion of Wald statistics for Type | analysis above. L; is the type Il
test matrix for the ith effect.

Blank handling
All records with missing values for any input or output field are excluded from the estimation of
the model.

Scoring

Scoring is defined as assigning one or more values to a case in a data set.

Predicted Values

Due to the non-linear link functions, the predicted values will be computed for the linear predictor
and the mean of the response separately. Also, since estimated standard errors of predicted values
of linear predictor are calculated, the confidence intervals for the mean are obtained easily.

Predicted values are still computed as long all the predictor variables have non-missing values
in the given model.

Predicted Values of the Linear Predictors
'f}, :LL';F\;’ L0,

Estimated Standard Errors of Predicted VValues of the Linear Predictors

(3’.,] = \/I‘;I—ZI,

Predicted Values of the Means
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ji; =g~ 1 (:v;ri + o,—,)

where g1 is the inverse of the link function. For binomial response with 0/1 binary response
variable, this the predicted probability of category 1.

Confidence Intervals for the Means
Approximate 100(1—a)% confidence intervals for the mean can be computed as follows
gil (m;r\;) t0; :l:zl—u:_,."i‘c}w,l)

If either endpoint in the argument is outside the valid range for he inverse link function, the
corresponding confidence interval endpoint is set to a system missing value.

Blank handling

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.

References

Aitkin, M., D. Anderson, B. Francis, and J. Hinde. 1989. Statistical Modelling in GLIM. Oxford:
Oxford Science Publications.

Albert, A., and J. A. Anderson. 1984. On the Existence of Maximum Likelihood Estimates in
Logistic Regression Models. Biometrika, 71, 1-10.

Cameron, A. C., and P. K. Trivedi. 1998. Regression Analysis of Count Data. Cambridge:
Cambridge University Press.

Diggle, P. J., P. Heagerty, K. Y. Liang, and S. L. Zeger. 2002. The analysis of Longitudinal
Data, 2 ed. Oxford: Oxford University Press.

Dobson, A. J. 2002. An Introduction to Generalized Linear Models, 2 ed. Boca Raton, FL:
Chapman & Hall/CRC.

Dunn, P. K., and G. K. Smyth. 2005. Series Evaluation of Tweedie Exponential Dispersion Model
Densities. Statistics and Computing, 15, 267-280.

Dunn, P. K., and G. K. Smyth. 2001. Tweedie Family Densities: Methods of Evaluation. In:
Proceedings of the 16th International Workshop on Statistical Modelling, Odense, Denmark: .

Gill, J. 2000. Generalized Linear Models: A Unified Approach. Thousand Oaks, CA: Sage
Publications.

Hardin, J. W., and J. M. Hilbe. 2001. Generalized Estimating Equations. Boca Raton, FL.:
Chapman & Hall/CRC.



GENLIN Algorithms

Hardin, J. W., and J. M. Hilbe. 2003. Generalized Linear Models and Extension. Station, TX:
Stata Press.

Horton, N. J., and S. R. Lipsitz. 1999. Review of Software to Fit Generalized Estimating Equation
Regression Models. The American Statistician, 53, 160-169.

Huber, P. J. 1967. The Behavior of Maximum Likelihood Estimates under Nonstandard
Conditions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, Berkeley, CA: University of California Press, 221-233.

Lane, P. W., and J. A. Nelder. 1982. Analysis of Covariance and Standardization as Instances of
Prediction. Biometrics, 38, 613-621.

Lawless, J. E. 1984. Negative Binomial and Mixed Poisson Regression. The Canadian Journal
of Statistics, 15, 209-225.

Liang, K. Y., and S. L. Zeger. 1986. Longitudinal Data Analysis Using Generalized Linear
Models. Biometrika, 73, 13-22.

Lipsitz, S. H., K. Kim, and L. Zhao. 1994. Analysis of Repeated Categorical Data Using
Generalized Estimating Equations. Statistics in Medicine, 13, 1149-1163.

McCullagh, P. 1983. Quasi-Likelihood Functions. Annals of Statistics, 11, 59-67.

McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

Miller, M. E., C. S. Davis, and J. R. Landis. 1993. The Analysis of Longitudinal Polytomous Data:
Generalized Estimating Equations and Connections with Weighted Least Squares. Biometrics,
49, 1033-1044.

Nelder, J. A., and R. W. M. Wedderburn. 1972. Generalized Linear Models. Journal of the
Royal Statistical Society Series A, 135, 370-384.

Pan, W. 2001. Akaike’s Information Criterion in Generalized Estimating Equations. Biometrics,
57, 120-125.

Pregibon, D. 1981. Logistic Regression Diagnostics. Annals of Statistics, 9, 705-724.

Smyth, G. K., and B. Jorgensen. 2002. Fitting Tweedie’s Compound Poisson Model to Insurance
Claims Data: Dispersion Modelling. ASTIN Bulletin, 32, 143-157.

White, H. 1980. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test
for Heteroskedasticity. Econometrica, 48, 817-836.

Williams, D. A. 1987. Generalized Linear Models Diagnostics Using the Deviance and Single
Case Deletions. Applied Statistics, 36, 181-191.

Zeger, S. L., and K. Y. Liang. 1986. Longitudinal Data Analysis for Discrete and Continuous
Outcomes. Biometrics, 42, 121-130.






Generalized linear mixed models
algorithms

Generalized linear mixed models extend the linear model so that:

m The target is linearly related to the factors and covariates via a specified link function.
®m The target can have a non-normal distribution.

m  The observations can be correlated.

Generalized linear mixed models cover a wide variety of models, from simple linear regression to
complex multilevel models for non-normal longitudinal data.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Number of complete cases in the dataset. It is an integer and n > 1.

p Number of parameters (including the constant, if it exists) in the model. It is an integer
andp> 1.

Px Number of non-redundant columns in the design matrix of fixed effects. It is an integer
and px> 1.

K Number of random effects.
nx 1 target vector. The rows are records.

r nx 1 events vector for the binomial distribution representing the number of “successes”
within a number of trials. All elements are non-negative integers.

m nx 1 trials vector for the binomial distribution. All elements are positive integers and mj
=1, i=1,...,n.

n nx 1 expected target value vector.

n nx 1 linear predictor vector.

X nx p design matrix. The rows represent the records and the columns represent the
parameters. The ith row is xT = (x; 1, - - Tip), Where the superscript T means transpose
of a matrix or vector, ¢ = 1, ...,n with z;; = 1 if the model has an intercept.

Z nx r design matrix of random effects.

@) nx 1 offset vector. This can’t be the target or one of the predictors. Also this can’t be
a categorical field.

B px 1 parameter vector. The first element is the intercept, if there is one.

Y rx 1 random effect vector.

[0)

nx 1 scale weight vector. If an element is less than or equal to 0 or missing, the
corresponding record is not used.

f nx 1 frequency weight vector. Non-integer elements are treated by rounding the value
to the nearest integer. For values less than 0.5 or missing, the corresponding records
are not used.

N n
Effective sample size, N = Z fi. If frequency weights are not used, N = n.
=1
O covariance parameters of the kth random effect
Ve

: T nl
covariance parameters of the random effects, 05 = [61 ey OK]
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Model

Or covariance parameters of the residuals

0= [eZ,eE]T - [eT,...,eL,eL]T

Covariance matrix of y, conditional on the random effects

The form of a generalized linear mixed model for the target y with the random effects y is
n=g(E(y|h)) = X3+ Zy+ Oyli~ F

where 1) is the linear predictor; g(.) is the monotonic differentiable link function; y isa (rx 1)
vector of random effects which are assumed to be normally distributed with mean 0 and variance
matrix G, X is a (nx p) design matrix for the fixed effects; Z is a (nx r) design matrix for the
random effects; O is an offset with a constant coefficient of 1 for each observation; F is the
conditional target probability distribution. Note that if there are no random effects, the model
reduces to a generalized linear model (GZLM).

The probability distributions without random effects offered (except multinomial) are listed in
Table 19-1. The link functions offered are listed in Table 19-3. Different combinations of
probability distribution and link function can result in different models.

See “Nominal multinomial distribution” for more information on the nominal multinomial
distribution.

See “Ordinal multinomial distribution” for more information on the ordinal multinomial
distribution.

Note that the available distributions depend on the measurement level of the target:

®m A continuous target can have any distribution except multinomial. The binomial distribution
is allowed because the target could be an “events” field. The default distribution for a
continuous target is the normal distribution.

m A nominal target can have the multinomial or binomial distribution. The default is
multinomial.

®  An ordinal target can have the multinomial or binomial distribution. The default is
multinomial.

Table 19-1
Distribution, range and variance of the response, variance function, and its first derivative

Distribution Range of y () Var(y) ()

Normal (—o0.0) 1 o] 0

Inverse Gaussian (0,00) 1w op3 3u?

i

Gamma

©0)

ne

o>

21

Negative binomial

0(1)eo

k2

-+

1+2kn

Poisson

0(1)0

1

I

1

Binomial(z)

O(Lymn/m

n(l—p)

w(1—p)/m

1—2u
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Notes
m 0(1)z means the range is from 0 to z with increments of 1; that is, 0, 1, 2, ..., z

m  For the binomial distribution, the binomial trial variable m is considered as a part of the
weight variable o.

m Ifascale weight variable o is presented, ¢ is replaced by ¢ /.

m  For the negative binomial distribution, the ancillary parameter (k) is estimated by the
maximum likelihood (ML) method. When k = 0, the negative binomial distribution reduces to
the Poisson distribution. When k = 1, the negative binomial is the geometric distribution.

The full log-likelihood function (¢), which will be used as the objective function for parameter
estimation, is listed for each distribution in the following table.

Table 19-2

The log-likelihood function for probability distribution
Distribution 14

Normal

L =1 + Z*%{ln(?r)}
i=1

Inverse Gaussian "
b=l + > f%{m (2m)}
=1

Gamma n
C=0i+ ) fi{—In(u)}
=1
Negative T Wi )
binomial f=fk+Zf«g{—hl(l'(y?+1))}
=1
Poisson " wi
=00+ Y fiH{—In(u))}
=1 ¢
Binomial(m)

n
Wy Ty m n
0= |Zf«—.‘{1n( )},where( )=’"7_1
i=1 @ i KT; :

The following tables list the form, inverse form, range of /i, and first and second derivatives
for each link function.

Table 19-3
Link function name, form, inverse of link function, and range of the predicted mean
Link function n=g(p) Inverse p=g~1(n) Range of /i
Identity n n LER
Log In(p) exp(n) =0
Logit T nefn1

g () S 0
Probit ®—(1), where D(n) peln 1]

D(E) = \,.i,—n /H e 2

Complementary In(—(In(1—pw)) ‘ 1—exp(—exp(n)) fe o, 1]
log-log
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Link function n=g(p) Inverse p=g~1(n) Range of

a#0 s nte p € Rif al/aisodd integer
Power(a){ a=0 { Iu () { exp (1) { i1 > 0otherwise
Log-complement | In(1—p) 1—exp(n) a<1
Negative log-log | —In(—In(w)) exp(—exp(—n)) fefo, 1]

Note: In the power link function, if || < 2.2e-16, a is treated as 0.

Table 19-4

The first and second derivatives of link function

Link function

Firstderivative g' (1) = 5% = A | Second derivative g” (11) = 24
Identity 1 0
Log - —A?
Logit _1 A2(2p—1
g e (2pe—1)
Probit 1 where A )
2@ ) /
B(z) = e /?
Complementary log-log I S A1 +In(1 —p)
G DI ( ")
a#o Ct,LtuiI An—l
P #
ower(a){ =0 { % { _A2
Log-complement = —A?
Negative log-log ﬁ}w AZ(1+1In ()

When the canonical parameter is equal to the linear predictor, § = 5, then the link function is
called the canonical link function. Although the canonical links lead to desirable statistical
properties of the model, particularly in small samples, there is in general no a priori reason why
the systematic effects in a model should be additive on the scale given by that link. The canonical
link functions for probability distributions are given in the following table.

Table 19-5

Canonical and default link functions for probability distributions

Distribution Canonical link function
Normal Identity

Inverse Gaussian Power(—2)

Gamma Power(—1)

Negative binomial Negative binomial
Poisson Log

Binomial Logit

The variance of y, conditional on the random effects, is

var (yly) = AY/?RA!/?
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The matrix A is a diagonal matrix and contains the variance function of the model, which
is the function of the mean p, divided by the corresponding scale weight variable; that is,
A =diag(V(p;)/wi).i = 1,...,n. The variance functions, V(u), are different for different
distributions. The matrix R is the variance matrix for repeated measures.

Generalized linear mixed models allow correlation and/or heterogeneity from random effects
(G-side) and/or heterogeneity from residual effects (R-side), resulting in 4 types of models:

1. Ifa GLMM has no G-side or R-side effects, then it reduces to a GZLM; G=0and R = ¢l, where |
is the identity matrix and ¢ is the scale parameter. For continuous distributions (normal, inverse
Gauss and gamma), ¢ is an unknown parameter and is estimated jointly with the regression
parameters by the maximum likelihood (ML) method. For discrete distributions (negative
binomial, Poisson, binomial and multinomial), ¢ is estimated by Pearson chi-square as follows:

L=, =)
I . i — Hi
0= — Wi,
1 ‘\_ B ; j.' ? 1 ('”l)

where N* = N — p, for the restricted maximum pseudo-likelihood (REPL) method.

2. If amodel only has G-side random effects, then the G matrix is user-specified and R= o¢l. ¢ is
estimated jointly with the covariance parameters in G for continuous distributions and @ = 1.

3. If amodel only has R-side residual effects, then G = 0 and the R matrix is user-specified. All
covariance parameters in R are estimated using the REPL method, defined in the section
“Estimation.”

4. If a model has both G-side and R-side effects, all covariance parameters in G and R are jointly
estimated using the REPL method.

For the negative binomial distribution, there is the ancillary parameter k, which is first estimated
by the ML method, ignoring random and residual effects, then fixed to that estimate while other
regression and covariance parameters are estimated.

Fixed effects transformation
To improve numerical stability, the X matrix is transformed according to the following rules.

The ith row of X is X; = (=, ...,.;:,p)T, i=1,....,n with z;; = 1 if the model has an intercept.
Suppose X} is the transformation of x; then the jth entry of x ¥ is defined as
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where cj and sj are centering and scaling values for =;;, respectively, for j=1,...,p and choices
of ¢j and sj, are listed as follows:

m  For a non-constant continuous predictor or a derived predictor which includes a continuous
predictor, if the model has an intercept, ¢; = 0 and ¢; = 7;,5 # 1, where 7; is the sample

mean of the jth predictor, T; = %Z fizi;jandsy =1land s; = \/ﬁg # 1, where Vq is

i—=1
the sample standard deviation of the jth predictor and s = ﬁz fileij —7;)

Note the intercept column isn’t transformed. If the model has no“ihltercept, ¢; =0and

/ -
= . /g2 172
81 =8 T

m  For a constant predictor z;; = a # 0,4, ¢; = 0 and s; = q, that is, scale it to 1.

m  For a dummy predictor that is derived from a factor or a factor interaction, ; = 0ands; = 1,
that is, leave it unchanged.

Estimation

We estimate GLMMs using linearization-based methods, also called the pseudo likelihood
approach (PL; Wolfinger and O’Connell (1994)), penalized quasi-likelihood (PQL; Breslow

and Clayton (1993)), marginal quasi-likelihood (MQL; Goldstein (1991)). They are based on

the similar principle that the GLMMs are approximated by an LMM so that well-established
estimation methods for LMMs can be applied. More specifically, the mean target function; that is,
the inverse link function is approximated by a linear Taylor series expansion around the current
estimates of the fixed-effect regression coefficients and different solutions of random effects (0

is used for MQL and the empirical Bayes estimates are used for PQL). Applying this linear
approximation of the mean target leads to a linear mixed model for a transformation of the original
target. The parameters of this LMM can be estimated by Newton-Raphson or Fisher scoring
technique and the estimates then are used to update the linear approximation. The algorithm
iterates between two steps until convergence. In general, the method is a doubly iterative process.
The outer iterations are to update the transformed target for an LMM and the inner iterations are to
estimate parameters of the LMM.

It is well known that parameter estimation for an LMM can be based on maximum likelihood
(ML) or restricted (or residual) maximum likelihood (REML). Similarly, parameter estimation
for a GLMM in the inner iterations can based on maximum pseudo-likelihood (PL) or restricted
maximum pseudo-likelihood (REPL).

Linear mixed pseudo model

Following Wolfinger and O’Connell (1993), a first-order Taylor series of p in (1) about 5 and
7 vyields

W L+ (gil), <X; +Zy+ O) [X (.3 — ;> +Z(y - ;)]
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where (g_l)l (X;‘? +Z5 + O) is a diagonal matrix with elements consisting of evaluations of
the 1st derivative of ¢—'. Since (g*i)/(Xﬁ - ZA O) = (_(;’(,}))71, this equation can be
rearranged as

g (i) — 1) + X04Z5 =~ X3+Zy

If we define a pseudo target variable as

=g (W)Y — i) + XB+Z7 = g (W) (y— i) + g(ji) — O,

then the conditional expectation and variance of v, based on E (yy )and var (y |[y) = A"*RA"/?,
are

E(vly) =g (i) (n — i) + X5+Z7
"oy palf2 1/2 7. .
.UGT’(V|'Y) et g (,“)A/j RAﬂ/ g (J”)

where A;/* = diag [(V(ﬁ,-)/'w?)”ﬂ d=1,...,n
Furthermore, we also assume V|~ is normally distributed. Then we consider the model of v
V=X54+Zy +¢

as a weighted linear mixed model with fixed effects B, random effects y ~ N (0, G), error terms
€~ N(O, g'(;])A}L-‘"QRAll./zg'(ﬁ)), because var(e) = var(v|y), and diagonal weight matrix

W = A {q’ (ji) 2. Note that the new target v (with O if an offset variable exists) is a Taylor
series approximation of the linked target ¢( y) . The estimation method of unknown
parameters of  and 6, which contains all unknowns in G and R, for traditional linear mixed
models can be applied to this linear mixed pseudo model.

The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which
are expressed as the functions of covariance parameters in 0, corresponding to the linear mixed
model for v are the following:

V(0)'r(0) — gm (27)

(0:v) = _% I [V (8] — %r(@)T

T N —p,

(a(B:v) = _% |V (8)] — %r(@) V(6)Lr(6) — %m

XTV(O)_lX‘ .
where
V(6) =ZG(8)Z + W 1/2R(0) W /21 (6) =v X(XTV(G) 1X) xTve)y v=v XN

denotes the effective sample size, and py denotes the rank of the design matrix of X or the number
of non-redundant parameters in X. Note that the regression parameters in B are profiled from the
above equations because the estimation of  can be obtained analytically. The covariance
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parameters in 0 are estimated by Newton-Raphson or Fisher scoring algorithm. Following the
tradition in linear mixed models, the objection functions of minimization for estimating 6 would
be —2¢(0;v)or —2¢(6; v). Upon obtaining 6, estimates for B and y are computed as

G = (xTv (H) _1x> xTv (H) Ty
§=GZV(0) o

where 3 is the best linear unbiased estimator (BLUE) of § and + is the estimated best linear
unbiased predictor (BLUP) of y in the linear mixed pseudo model. With these statistics, v and
IV are recomputed based on ;z and the objective function is minimized again to obtain updated
0. lteration between —2/(0;v ) and the above equation yields the PL estimation procedure and
between —2/(0; v) and the above equation the REPL procedure.

There are two choices for % (the current estimates of y):
1. 4 for PQL; and
2. 0for MQL.
On the other hand, 3 is always used as the current estimate of the fixed effects. Based on the two

objective functions (PL or REPL) and two choices of random effect estimates (PQL or MQL), 4
estimation methods can be implemented for GLMMs:

1. PL-PQL: pseudo-likelihood with 4=7;
2. PL-MQL.: pseudo-likelihood with =0 ;
3. REPL-PQL.: residual pseudo-likelihood with 4=7;
4. REPL-MQL.: residual pseudo-likelihood with 4=0.
We use method 3, REPL-PQL.
Iterative process

The doubly iterative process for the estimation of 0 is as follows:

1. Obtain an initial estimate of y, u("’. Specifically, 0 = (g1, + 0.5)/(m, + 1) for a binomial
distribution (yj can be a proportion or 0/1 value) and 4! = ¥; for a non-binomial distribution. Also
set the outer iteration index j = 0.

2. Based on i, compute

V= (i) O+ g (p)y — ) and W = Azt [y ()]

Fit a weighted linear mixed model with pseudo target v, fixed effects design matrix X, random
effects design matrix Z, and diagonal weight matrix 11". The fitting procedure, which is called
the inner iteration, yields the estimates of 0, and is denoted as 0 /). The procedure uses the
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specified settings for parameter, log-likelihood, and Hessian convergence criteria for determining
convergence of the linear mixed model. If j = 0, go to step 4; otherwise go to the next step.

3. Check if the following criterion with tolerance level ¢ is satisfied:

9l _gli—1) \
e ,]‘><§.

‘gij 1}‘+ 955

max; (2 X

If it is met or maximum number of outer iterations is reached, stop. Otherwise, go to the next step.

4. Compute 3 by setting § — 01/} then set 3 — 3. Depending on the choice of random effect
estimates, set 9=7.

5. Compute the new estimate.e of u by
;].:g—l(x,é - Z5 O),

setj=j+ 1andgotostep 2.

Wald confidence intervals for covariance parameter estimates

Here we assume that the estimated parameters of G and R are obtained through the above doubly
iterative process. Then their asymptotic covariance matrix can be approximated by 2H ~!, where
H is the Hessian matrix of the objective function (—2£(8;v) or —2¢x(6; v)) evaluated at §. The
standard error for the ith covariance parameter estimate in the d vector, say f;, is the square root of
the ith diagonal element of 2H!.

Thus, a simple Wald’s type confidence interval or test statistic for any covariance parameter

can be obtained by using the asymptotic normality. However, these can be unreliable in small
samples, especially for variance and correlation parameters that have a range of [0, ~) and

[—1, 1] respectively. Therefore, following the same method used in linear mixed models, these
parameters are transformed to parameters thathave range (—~o, =c). Using the delta method, these
transformed estimates still have asymptotic normal distributions.

For variance type parameters in G and R, such as 2 in the autoregressive, autoregressive moving
average, compound symmetry, diagonal, Toeplitz, and variance components, and &;; in the
unstructured type, the 100(1 — a)% Wald confidence interval is given, assuming the variance
parameter estimate is 52 and its standard error is se(é*) from the corresponding diagonal element
of 2H~1, by

exp (ln (&2) +21_a/2- 6 2. se(ér?))

For correlation type parameters in G and R, such as p in the autoregressive, autoregressive moving
average, and Toeplitz types and  in the autoregressive moving average type, which usually come
with the constraint of || < 1, the 100(1 — a)% Wald confidence interval is given, assuming the
correlation parameter estimate is 5 and its standard error is (5) from the corresponding diagonal
element of 2H—1, by

tanh (tanh_l(f)) + 21 a2 (1 {32)_1 : se(ﬁ))
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exp (r)—exp (—x)

Where tanhx = exp (z)+exp (—=x)
hyperbolic tangent, respectively.

and tanh 'z = 11n [‘* T} are hyperbolic tangent and inverse

1—x

For general type parameters, other than variance and correlation types, in G and R, such as «; in
the compound symmetry type and ¢, ;,: +# j, (off-diagonal elements) in the unstructured type, no
transformation is done. Then the 100(1 — a)% Wald confidence interval is simply, assuming the
parameter estimate is o4 and its standard error is se(&,) from the corresponding diagonal element
of 2H!,

((}l — Zl—a/2 Se(a—l))v‘%l + “l-aj2 " Se((}l»
The 100(1 — a)% Wald confidence interval for & is

(CXP (T - zl—r'r,"E&T) , €XP (7: T Zl—n.,"Z&T))
where 7 = In(¢).

Note that the z-statistics for the hypothesis Hy; : 9; =0, where ¢, is a covariance parameter in
0 vector, are calculated; however, the Wald tests should be considered as an approximation and
used with caution because the test statistics might not have a standardized normal distribution.

Statistics for estimates of fixed and random effects

The approximate covariance matrix of ([3’ - B.’y—y) 1s
xITR*1X xIr*17 ] . {
)T

A

T T : Cu Cx
7ZIR—1x 7 R*_12+G(9

Co1 Cao

where R* = var(vly)= g’(ﬂ.)A}L”RA;/ %¢'(j1) is evaluated at the converged estimates and
= (xTr1x)

AT =~ A
Oy = —-GZ 'V~ X(C1y

. R -1 . R .
Coy = (ZTH‘12+G_1) - (X Tv-1za

Statistics for estimates of fixed effects on original scale

If the X matrix is transformed, the restricted log pseudo-likelihood (REPL) would be different
based on transformed and original scale, so the REPL on the transformed scale should be
transformed back on the final iteration so that any post-estimation statistics based on REPL can
be calculated correctly. Suppose the final objective function value based on the transformed and
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original scales are —2¢7,(0;Vv) and —27,,(0; v), respectively, then —2¢,,(6; v) can be obtained
from —2¢7,(0; v) asfollows:

—20p(0;V) = —2((0;v) — 21n |A|

Because REPL has the following extra term involved the X matrix

T

X<Tv(0)"'X*| = —L1u |(XA) V(e)*XA‘
— 1l (‘AT‘ x ‘XV(O)_lX‘ < A

= —%(111 XV(e)_lX‘ +In|A| +1n |A D

=1l XV(G)_lX‘ A

1
-3 In

then —11n XV(G)*X‘ =—1ln X*TV(G)’IX* +In|A| and ¢ (0;V) = (5,(0;V) + In |A|. Please
note that PL values are the same whether the X matrix is transformed or not.

In addition, the final estimates of g, C11, C21 and Cy» are based on the transformed scale, denoted
as 3*,C1,,C3, and C3,, respectively. They are transformed back to the original scale, denoted as
3.C,,,Cyy and C'yy, respectively, as follows:

A= A5,

éll = 44érlg£1T,
- 2. T
CQl = CQlA 3
C’QQ = (%52

Note that A could reduce toS ~!; hereafter, the superscript * denotes a quantity onthe transformed
scale.

Estimated covariance matrix of the fixed effects parameters

Two estimated covariance matrices of the fixed effects parameters can be calculated: model-based
and robust.

The model-based estimated covariance matrix of the fixed effects parameters is given by
Im=Cn

The robust estimated covariance matrix of the fixed effects parameters for a GLMM is defined as
the classical sandwich estimator. It is similar to that for a generalized linear model or a generalized
estimating equation (GEE). If the model is a generalized linear mixed model and it is processed by
subjects, then the robust estimator is defined as follows
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S
_ T -1, Ty -1
>r=xm E Xj Tfj T VJ X; | Zm
=1

where #; = v; — X; 3.

Standard errors for estimates in fixed effects and predictions in random effects

Let 3; denote a non-redundant parameter estimate in fixed effects. Its standard error is the square
root of the ith diagonal element of ¥m or Zr,

G5, = \/0i
The standard error for redundant parameter estimates is set to a system missing value.

Let +; denote a prediction in random effects. Its standard error is the square root of the ith
diagonal element of ('y2:

Test statistics for estimates in fixed effects and predictions in random effects

The hypothesis Hy; : 3; = 0 is tested for each non-redundant parameter in fixed effects using the
t statistic:

%
t; = —

which has an asymptotic t distribution with v degrees of freedom. See “Method for computing
degrees of freedom” for details on computing the degrees of freedom.

Wald confidence intervals for estimates in fixed effects and predictions in random effects

The 100(1 — o)% Wald confidence interval for 3; is given by

(JII - ti.r,(.x/’ZUﬁ, ) jl + f'(;!(_yf~f20—g"3,)

wheret, 2 isthe (1 — «/2) 100th percentile of the ., distribution.

For some models (see the list below), the exponentiated parameter estimates, their standard
errors, and confidence intervals are computed. Using the delta method, the estimate of exp (3;) is

exp (,d,—_) , the standard error estimate is (exp (9’,) g, ) and the corresponding 100(1 — a)% Wald
confidence interval for exp (3;) is

(exp (;3’,; — tt,._(_}‘;zﬁgi_) ,exp (;13)-5 4 t‘_f‘mﬂzﬁlﬁf) )
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The list of models is as follows:
1. Logistic regression (binomial distribution + logit link).
Nominal logistic regression (nominal multinomial distribution + generalized logit link).
Ordinal logistic regression (ordinal multinomial distribution + cumulative logit link).

Log-linear model (Poisson distribution + log link).

o M~ w Db

Negative binomial regression (negative binomial distribution + log link).

Testing
After estimating parameters and calculating relevant statistics, several tests for the given model

are performed.

Goodness of fit

Information criteria

Information criteria are used when comparing different models for the same data. The formulas
for various criteria are as follows.

Finite sample corrected (AICC) —9f 4 2N

(N —d—1]

Bayesian information criteria (BIC) =204+ dIn (N)

where ¢ is the restricted log-pseudo-likelihood evaluated at the parameter estimates. For REPL,
N is the effective sample size minus the number of non-redundant parameters in fixed effects

(Z fi — p..) and d is the number of covariance parameters.
=1

Note that the restricted log-pseudo-likelihood values are of the linearized model, not on the
original scale. Thus the information criteria should not be compared across models with different
distribution and link function and they should be interpreted with caution.

Tests of fixed effects

For each effect specified in the model, a type 11 test matrix L is constructed and Hg: Lj =0 is
tested. Construction of L and the generating estimable function (GEF) is based on the generating
matrix H, = xTyx 7XT‘PX, where ¥ = diag( f,w,, ... f,w,), such that LB is estimable; that
is, L; = L,H.. It involves parameters only for the given effect and the effects containing the given
effect. For type Il analysis, L does not depend on the order of effects specified in the model. If
such a matrix cannot be constructed, the effect is not testable.

Then the L matrix is then used to construct the test statistic
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~

ATLT (1vLT) 1L
an L (LZL ) L3

e

where r. = rank LZLT . The statistic has an approximate F distribution. The numerator
degrees of freedom is r,. and the denominator degrees of freedom isv. See “Method for computing
degrees of freedom” for details on computing the denominator degrees of freedom.

In addition, we test a null hypothesis that all regression parameters (except intercept if there is
one) equal zero. The test statistic would be the same as the above F statistic except the L matrix is
from GEF. If there is no intercept, the L matrix is the whole GEF. If there is an intercept, the L
matrix is GEF without the first row which corresponds to the intercept. This test is similar to the
“corrected model” in linear models.

Estimated marginal means

There are two types of estimated marginal means calculated here. One corresponds to the
specified factors for the linear predictor of the model and the other corresponds to those for the
original scale of the target.

Estimated marginal means are based on the estimated cell means. For a given fixed set of factors,
or their interactions, we estimate marginal means as the mean value averaged over all cells
generated by the rest of the factors in the model. Covariates may be fixed at any specified value.
If not specified, the value for each covariate is set to its overall mean estimate.

Estimated marginal means are not available for the multinomial distribution.

Estimated marginal means for the linear predictor

Calculating estimated marginal means for the linear predictor

Estimated marginal means for the linear predictor are based on the link function transformation,
and constructed such that LB is estimable.

Suppose there are r combined levels of the specified categorical effect. This rx1 vector can be
expressed in the form @ = L3. The variance matrix of u is then computed by

V(a)=LsLT

The standard error for the jth element of u is the square root of the jth diagonal element of V().
Let the jth element of tand its standard error be i; and &.,,, respectively, then the corresponding
100(1 ~ a)% confidence interval for 4, j = 1,...,r. is given by

”.;' i tl]-;'1‘-}/'2o"_”-’
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where ¢, ., - is the (1 — a/2)100th percentile of the t distribution with 7 degrees of freedom.
See “Method for computing degrees of freedom” for details on computing the degrees of
freedom.

Comparing estimated marginal means for the linear predictor

We can compare estimated marginal means for the linear predictor based on a selected contrast
type, for which a set of contrasts for the factor is created. Let this set of contrasts define matrix
C used for testing the hypothesis Hy, : Cu = 0. An F statistic is used for testing given set of
contrasts for the factor as follows:

(Cz},)T(CV(ﬁ)CTy(Ca)

F= =

which has an asymptotic F distribution with »; degrees of freedom, where r; = rank CV(ﬁ)CT).
See “Method for computing degrees of freedom” for details on computing the denominator
degrees of freedom. The p-values can be calculated accordingly. Note that adjusted p-values
based on multiple comparisons adjustments won’t be computed for the overall test.

Each row ciT of matrix C is also tested separately. The estimate for the ith row is given by gTﬁ and
its standard error by \/c,Tv (11)c;. The corresponding 100(1 — a)% confidence interval is given by

T

Ci i+ !‘E,fjﬁlfz(T{_-””

The test statistic for A, : C;ru =01Is

t; = 2
{T(‘”»

It has an asymptotic t distribution. See “Method for computing degrees of freedom” for details
on computing the degrees of freedom. The p-values can be calculated accordingly. In addition,
adjusted p-values for multiple comparisons can also computed.

Estimated marginal means in the original scale

Estimated marginal means for the target are based on the original scale. As a conditional predictor
defined by Lane and Nelder (1982), estimated marginal means for the target are derived from
those for the linear predictor.

Calculating estimated marginal means for the target

The estimated marginal means for the target are defined as

M=g" <L3) =g l(n)
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The variance of estimated marginal means for the target is

R =l . -1 "y
Vv (NI) — d'fO.-g<&)gO—W) 1317 diag (ag—(”J))

it dv;

where diag(dg="(ii;)/Ou,) is a rxr matrix and dg= (i) /i, is the derivative of the inverse of
the link with respect to the jth value in v and 9g='(i;) /0, = 1/¢ (;“.]J) where ' (ﬂ“jj) is
from Table 19-4.

The 100(1 — o)% confidence interval for Af;,i = 1,...,+.is given by
g—l (?Al",, j: ft-”.,(,}/f’?"f}'u.,> .

Note: M is estimated marginal means for the proportion, not for the number of events when
events and trials variables are used for the binomial distribution.

Comparing estimated marginal means for the target

This is similar to comparing estimated marginal means for the linear predictor; just replaca with
M and V(@) with 1/ M). For more information, see the topic “Estimated marginal means for the
linear predictor.”

Multiple comparisons

The hypothesis Hy : Cu = 0 can be tested using the multiple row hypotheses testing technique.
Let c! be the ith row vector of matrix C. The ith row hypothesis is 1, : ¢/ u = 0. Testing H, is the
same as testing multiple non-redundant row hypotheses { HJ{}F? , Simultaneously, where R is the
number of non-redundant row hypotheses, and 71, represents the ith non-redundant hypothesis. A
hypothesis Hy; is redundant if there existsanother hypothesis r7,;, j # i suchthat ¢, = ac;, a # 0.

Adjusted p-values. For each individual hypothesis m,,, test statistics can be calculated. Let
p,; denote the p-value for testing Hy; and p; denote the adjusted p-value. The conclusion from
multiple testing is, at level « (the family-wise type I error),

reject Hy, : c/u=0 if p! < o
reject Hy : Cu =0 if min; (p7) < .

Several different methods to adjust p-values are provided here. Please note that if the adjusted
p-value is bigger than 1, it is set to 1 in all the methods.

Adjusted confidence intervals. Note that if confidence intervals are also calculated for the above
hypothesis, then adjusting confidence intervals is required to correspond to adjusted p-values.
The only item needed to be adjusted in the confidence intervals is the critical value from the
standard normal distribution. Assume that the original critical value is =, _,,,, and the adjusted
critical value is =~.
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LSD (Least Significant Difference)
The adjusted p-values are the same as the original p-values:
p; =D
The adjusted critical value is:

*
£ = f'w,m:/’Z

Sequential Bonferroni

The adjusted p-values are:

Rp) =1
PG ™ max ((Rfi - 1);0(,;),})?,._“) 1> 2

The adjusted critical values will correspond to the ordered adjusted p-values as follows:

yco, = ifi=1
4 — by, = 1tp=(:)i(1*? — 4 + 1.)p(i) fori > 2
tyowr = if Py Pl fori > 2

2 p(‘i_l)/?(i))

Sequential Sidak

The adjusted p-values are:

) :{ 1—(1—pa)" i=1

Py g '
(i) max (1 -(1- Pu)) ’I)("-—l-’) b2

The adjusted critical values will correspond to the ordered adjusted p-values as follows:

tvmlM ifi =1,
S = 4 Ly pacapsnmenifply = (R i+ 1)pg) fori > 2,
t o 1mtmat/s if plyy =pf;_y, fori > 2

In (l—p?d_ll)

where z = In (1—pgiy)

Method for computing degrees of freedom

Residual method

The value of degrees of freedom is given by N — rank(X), where N is the effective sample size
and X is the design matrix of fixed effects.
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Satterthwaite's approximation

First perform the spectral decomposition LCL” = T'7DT where I is an orthogonal matrix of
eigenvectors and D is a diagonal matrix of eigenvalues. If ,, is the mth row of 'L, d,, is the
mth eigenvalues and

2d,,
T

. Em2(f)” 8m

m o=

l,,clt

where g,,, = “=-==|, . and X; is the asymptotic covariance matrix of § obtained from the

Hessian matrix of the objective function; that is, £, = oH~L. If

q

V'N! I3
E=Y" m[(ym > 2)

m=1 B
then the denominator degree of freedom is given by

2K
F—q

Note that the degrees of freedom can only be computed when E>q.

Scoring

For GLMMs, predicted values and relevant statistics can be computed based on solutions of
random effects. PQL-type predictions use < as the solution for the random effects to compute
predicted values and relevant statistics.

POL-type predicted values and relevant statistics

Predicted value of the linear predictor
XI5+ 2% + o

Standard error of the linear predictor

5‘,7:\/)(;[2)(7' + Z;-réggzi + 22;[621)(3',
Predicted value of the mean
gt (xiT{S’ + 304 0,5)

For the binomial distribution with 0/1 binary target variable, the predicted category ¢(x;) is

c(x;) = 1 (or success) if j; = 0.5
©) 7 0 (or failure) otherwise

Approximate 100(1—a)% confidence intervals for the mean
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9_1 (X;r.ﬁ | ZLT’?J o :t!"(.‘,(.m:/‘zf}'r,')

Raw residual on the link function transformation

o5
T”‘i _.El _TF’[

Raw residual on the original scale of the target

R ~
e =Y — M

Pearson-type residual on the link function transformation

R
r ;
P 1,1

n.i W’

where vir (v;]y) is the ith diagonal element of var (v |y) and var(vly) = g'(4)A} > RAL®g' (i) where
jfiis an nx 1 vector of PQL-type predicted values of the mean.

Pearson-type residual on the original scale of the target

rJ?
P i

i T
vvar(yily)
where war(y;]y) is the ith diagonal element of var(y) = A}/*RA}’* and ji,,, = /.

Classification Table

Suppose that ¢ (; _}) is the sum of the frequencies for the observations whose actual target

category is j (as row) and predicted target category isj (as column), j.;" =1,---../ (note thatJ =
2 for binomial), then

¢ (;1) - i fil (L,,,. —e(n) = ;)
i=1

where T (-) is indicator function.

, ~th
Suppose that » ( 7, 5 ) is the (j,j ) element of the classification table, which is the row
percentage, then
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Z c (j*f')
i'=1

The percentage of total correct predictions of the model (or “overall percent correct”) is

J=

x 100%

J
c¢(j, )
1
Protal = 7 7
e (0)
==

Nominal multinomial distribution

The nominal multinomial distribution requires some extra notation and explanation.

Notation

The following notation is used throughout this section unless otherwise stated:

S Number of super subjects.
T Number of cases in the sth super subject.
Yt Nominal categorical target for the tth case in the sth super subject. Its category values
are denoted as 1, 2, and so on.
J The total number of categories for target.
Ysi Dummy vector of y.:, y. = (-yﬁ,,_-|,~~~,,uq_;_1)T, where y, ; = 1 if yo = j,
otherwise y., ;, = 0. The superscript T means the transpose of a matrix or vector.
Us T
ys = (y;rla .. 7yTT$) 8§ = ls' : '15‘
Y T
Y= (y;r, e -.Tf.-s[)
Mat. g Probability of category j for the tth case in the sth super subject; that is,
Tst,y — r (Ua‘f = .1')
Trat Tst :(st‘h"'yﬂﬂ,‘]—l)
Ts T
7 —(Tl'Tl TrT1) ,s=1 S
™
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Linear predictor value for category j of the tth case in the sth super subject.

Nt = (st 1,7y 1fat T 1)

T
e = (7?]—1 ..... nI,) ,§=1,--+,8

: : T T\
(n (3—-1)) x 1 vector of linear predictor. n = (”1 o ,-r;_g)
px 1 vector of predictor variables for the tth case in the sth super subject. The first
element is 1 if there is an intercept.

Xo=Is 1®x1,-+, Iy 1@ xer,)" s =1,---,8

(n (3-1)) x (3-1)p design matrix of fixed effects, X = (X7,---, x5)"

rx 1 vector of coefficients for the random effect corresponding to the tth case in the
sth super subject.

Zs=(lj-1® 251, -, 171 & ZRT_E)T’S =1,---,8
S
Design matrix of random effects, z = @ Z,, where @ is the direct sum of matrices.
s=1
nx 1 vector of offsets, O = (011, -+, 019y, +, 057 17, where o.; is the offsetvalue of

the tth case in the sth super subject. This can’t be the target (y) or one of the predictors
(X). The offset must be continuous.

0" =0 @ 14-1, where 1 ¢is a length g vector of 1.

px 1 vector of unknown parameters for categoryj, 3 = (B;1,---,8;,) " j=1,---, J.
The first element in 3; is the intercept for the category j, if there is one.

3=(81,--, 80"

r x 1 vector of random effects for category j in the sthsuper subject, j — 1 ... ./ —1.

T
Random effects for the sth super subject, v = (’y}?l, r ,’{IJ_I)
T
Y= (7”%‘7"';".’{)
Scale weight of the tth case in the sth super subject. It does not have to be integers. If
it is less than or equal to 0 or missing, the corresponding case is not used.
nx 1 vector of scale weight variable, ® = (w1, -+, wiry, -+ wsi, -+, wsry )T.

Frequency weight of the tth case in the sth super subject. If it is a non-integer value, it
is treated by rounding the value to the nearest integer. If it is less than 0.5 or missing,
the corresponding cases are not used.

nx 1 vector of frequency count variable, f = (fi1, -, fiz,, -+, fs1,, + fsrs )T

Effective sample size, N = Z f:. If frequency count variable f is not used, N = n.

=1

The form of a generalized linear mixed model for nominal target with the random effects is
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where 7 is the linear predictor; X is the design matrix for fixed effects; Z is the design matrix for
random effects; y is a vector of random effects which are assumed to be normally distributed with
mean 0 and variance matrix G; g (.) is the logit link function such that

Tst,g
Nst.y — 9 (ﬁﬁ:’.j) = lOg ( J)

Tt J

And its inverse function is

¢ exp (1.¢.4) ] = 1, Tty J — 1’

J—1 ’
1+ > exp (Nstk)
k=1

Tg =9 erg) =4 =

T 1 ,
1+ Z exp (Mst k)
k=1

j=J

\

The variance of y, conditional on the random effects is

1/2 1/2
Var (y ) = Ay RA}/
S T
where 4, = @ o (dmg (mst) — :rrstrrg) Jwse and R = ¢I which means that R-side effects
s=1t=1

are not supported for the multinomial distribution. ¢ is set to 1.

Estimation

Linear mixed pseudo model
Similarly to “Linear mixed pseudo model,” we can obtain a weighted linear mixed model
v=X0+Zv+¢

wherev=D"Y(y — %) + g(7#) — O* and errorterms e ~ N(0,D""A’“RA’"D ™~ Jwi
h D! g(7) — O* and errort LAY RAYPD ) with

S Ty S Ts da= 1 (7. S T,
D= ¢ @ Dy= o o J—(??') = @, @ (diag (Tst) — Tt T Tz)
s=1t=1 s=1t=1 dng s=1¢+=1
and
S T T
A= @ @ (d;ia.g (Tst) — fT.-,-t'ﬁ’b-t) Jwst.
s=1t=1

And block diagonal weight matrix is
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~ S Ty
W = DA;LlD: T D wgDy.
' s=1¢t=1

The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which
are expressed as the functions of covariance parameters in 6, corresponding to the linear mixed
model for v are the following:

N

V(0)tr(0) — 5 In(27)

((0;v) = _% |V (8)] — %r(@)T

1 1 1 N —ps
((0v) = =5 |V (6)] = 5r(6)TV(0)'r() = 2 In[XTV()"'X| - =5 1 2m)

where V (0) = ZG (6) Z7 + W~1/2R (8) W~1/2,7(6) = v — X 3,N denotes the effective sample
size, and p, denotes the total number of non-redundant parameters for 3.

The parameter ¢ can be estimated by linear mixed model using the objection function —2¢(8;v )or
—2(x(0;v), 3 and ~ are computed as

. T /1o ! T/t
3= (x v(a) x) X v(e) !

R N —1
j=czTv(6) 7

Iterative process

The doubly iterative process for the estimation of ¢ is the same as that for other distributions, if we
replace ji and X3 + Z5 + O with 7 and X 3 + Z5 + O* respectively, and set initial estimation
of 7 as

2

For more information, see the topic “Iterative process.

Post-estimation statistics

Wald confidence intervals

The Wald confidence intervals for covariance parameter estimates are described in “Wald
confidence intervals for covariance parameter estimates.”

Statistics for estimates of fixed and random effects

Similarly to “Statistics for estimates of fixed and random effects,” the approximate
covariance matrix of (3 - 8,5 - n) is
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. AfT *71_/\& X’T *712
C et R i R o 1L = Cll Cgl
ZTR='X  ZTR*17 G(H) Coi Cho
R k‘f Tﬁ
Where R* = var (v]y) = 1“7—1‘4’1;‘,-'21%‘4:‘2[)71 with ﬁ=8 :;1 t:el (diaq () — ﬁ.‘if’fr:lf-), and

9
I

” ()(Tl.:’_lX)i

Co = *GZT'L}leéM

. - 1 . R
Cyo = (ZTH_lZ + G_l> — CQlJ‘&'T\"”_lZG

Statistics for estimates of fixed and random effects on original scale

If the fixed effects are transformed when constructing matrix X, then the final estimates of 3,
(11, Ca1, and Cao above are based on transformed scale, denoted as /3%, (f*fl, (?’;1 and ¢ o
respectively. They would be transformed back on the original scale, denoted as 3, ¢',,, Cy,,
and (.., respectively, as follows:

A =Tg*

Cpy = I'éfﬂ:T

Cyy =317
Coy = C3y
J-1
where T = @ A,
j=1

Estimated covariance matrix of the fixed effects parameters

Model-based estimated covariance
Em - 011

Robust estimated covariance of the fixed effects parameters

S
Z T(r—1s ATYr—1
ET' — E.;n_ 4}&5 1"5 '?"S?“S i"'b. X’Ef Ern
s=1
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where i, = v, — X, 3, and v, is a part of v corresponding to the sth super subject.

Standard error for estimates in fixed effects and predictions in random effects

Let 3. denote a non-redundant fixed effects parameter estimate. Its standard error is the square
root of the ((/ — 1) p + ¢) th diagonal element of =

98;. = '\/O.(_(jfl’)p Fe)((j—1)ptc)
The standard error for redundant parameter estimates is set to system missing value.

Similarly, let 4; denote the ith random effects prediction. Its standard error is the square root
of the ith diagonal element of (%, :

(3":;; - \/ C'BE.H

Test statistics for estimates in fixed effects and predictions in random effects

Test statistics for estimates in fixed effects and predictions in random effects are as those described
in “Statistics for estimates of fixed and random effects.”

Wald confidence intervals for estimates in fixed effects and random effects predictions

Wald confidence intervals are as those described in “Statistics for estimates of fixed and random
effects.”

Information criteria

These are as described in “Goodness of fit.”

Tests of fixed effects

For each effect specified in the model, a type 111 test matrix L is constructed from

the generating matrix A, = (2’ Qz) =7 Qux, where z = (z{,,---, 2, - 2l )T and
Q = diag (w1, wiry, -, ws1, -+, wsr. ). 1hen the test statistic is

AT (LS T) T s
F =

Fe

where 7. = rank(L*2L*") and L* = I;_; © L. The statistic has an approximate F distribution.
The numerator degrees of freedom is r. and the denominator degree of freedom is «. For more
information, see the topic “Method for computing degrees of freedom.”
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Scoring

POL-type predicted values and relevant statistics

(J — 1) x 1 predicted vector of the linear predictor

. ] T _ T. _
Nst = (I.]—'l Py 'T::‘i) G4 (I.I—'l & Z:s[) Vs + 1jo1 @ o
Estimated covariance matrix of the linear predictor

- Tw . - T A P
Vi, = Lo @ag) (Lo @ wg) HIyo1 @Zg)" Coy(L—1 @ Zy)
T
. T As § T( A )
(L1 @24) C5 (L1 @ agt) + (Lg—1 @ 2g) (051) (I 1 Z)
where ('3, is a diagonal block corresponding to the sth super subject, the approximate covariance
matrix of 5, — ~,; 35, isapart of Cy; corresponding to the sth super subject.

The estimated standard error of the jth element in 7)., 7. j, IS the square root of the jth diagonal
element of %;_,,

Tieri = V0,

Predicted value of the probability for category j

( exp (foe,5) q — —
J—1 :J_lﬁ"'ﬂ'] 1’

1+ ) exp (fst )
~ k=1

st =9 (fistj) = )

Predicted category

c(Xg) = argmax wy j,
J

If there is a tie in determining the predicted category, the tie will be broken by choosing the
S T,

category with the highest V; = Z Z futyse ;. 1F there is still a tie, the one with the lonest

- s=1t=1
category number is chosen.

Approximate 100(1—a)% confidence intervals for the predicted probabilities

The covariance matrix of 7, can be computed as

Cov (7y) = Vg~ (hs) 25, V™" (ar)
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where
[ (‘jfrst.l ... C‘}ﬁ-st..f—l afrst__.f ]
1 aﬁat,l aﬁst,l. 8ﬁ3t,l
Vg (Mst) = : : :
aﬁst,l e aﬂ—sn,.f 1 aﬁst,.f
B 5ﬁ5t‘.}—l aﬁsf',‘f—l 87}5h.}—1 i
with
(')f:rsfdr _ TAT‘,gJ,A(l —A?'Ai'(.,.g‘j)..‘j =k
(:)r:i_,’,t;‘: st st ke J 7& k

then the confidence interval is
Tst,j T t'u,cx/2(77r“,j,j =1,---,J

where 42 is the jth diagonal element of C'ov (7,;) and the estimated variance of

Tat,j

Fatgnd = Lo,

Ordinal multinomial distribution

The ordinal multinomial distribution requires some extra notation and explanation.

Notation

The following notation is used throughout this section unless otherwise stated:

S Number of super subjects.

T, Number of cases in the sth super subject.

Yst Ordinal categorical target for the tth case in the sth super subject. Its category values
are denoted as consecutive integers from 1 to J.

J The total number of categories for target.

Yst INdiCator VECOr OF g/, yur = (yarn, -2 e s 1), Where g, = 1if g, = j,

otherwise y.; ; = 0. The superscript T means the transpose of a matrix or vector.

Us T
ys = (y;rla?yT_T‘) 8 = l:"'-:‘-q‘

Y T
v = (LJ: o tf;[)

Ast Cumulative target probability for category j for the tth case in the sth super subject;
Asty = Py < 7).

A T T
A= (MT, ---,KE) where A , = (x;rl,---,k:rr___) and 1), = Nty s Aars—1),
s= 1\,...11‘;‘ and¢t=1,...,1..

Mst.j Probability of category j for the tth case in the sth super subject; that is,

Tst,j = P(U>f :J) and Mst,j = A‘,‘(‘J - An‘tjfl-
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Model

Mst.j

Nst

Ns

lm

Wst:(ﬁﬁ‘l,"';ﬂwt..]—l)
T
W,—-(Tr,l ,WI) ,8=1 .S
T T
T = (:'Tlt"':ﬂ-.‘?)

Linear predictor value for category j of the tth case in the sth super subject.

Mot = (Dt 1y Hst,d—1)

T
"]**(TFI’?I) 7S:1""!S

T
(n (3—1)) x 1 vector of linear predictor. n = (r;I, e ,7;_;[)

px 1 vector of predictors for the tth case in the sth super subject.

rx 1 vector of coefficients for the random effect corresponding to the tth case in the
sth super subject.

nx 1 vector of offsets, O = (oy1,---,011y,---,0s1.)", Where og; is the offsetvalue of
the tth case in the sth super subject. This can’t be the target (y) or one of the predictors
(X). The offset must be continuous.

0" =0 ®1s-1, where 1q¢ is a length q vector of 1’s.

J—1 x 1 vector of threshold parameters, y = (w1, %2,..., 0 — 1)T and
P <y < <Py
px 1 vector of unknown parameters.

T
(J—1+p) x 1 vector of all parameters B= (\VT ,BT )

Scale weight of the tth case in the sth super subject. It does not have to be integers. If
it is less than or equal to 0 or missing, the corresponding case is not used.

nx 1 vector of scale weight variable, ® = (w1, -, @iz, -+ wsi, -+, wsig )T.

Frequency weight of the ith case in the sth super subject. If it is a non-integer value, it
is treated by rounding the value to the nearest integer. If it is less than 0.5 or missing,
the corresponding cases are not used.
nx 1 vector of frequency count variable, f = (fi1,---, fizy, -+, fs1,,°+, fore )T
Effective sample size, N = Z Jfu. If frequency count variable f is not used, N = n.
=1
aill B alzB a1 B
direct (or Kronecker ) product of A and B, which isequal t0 | a21B  a22B  a.2:B
(Z’.“le ﬁ,;ﬂB ff“j“jB

mx 1 vector of 1s; 1,, = (1....,1)T

The form of a generalized linear mixed model for an ordinal target with random effects is

n=gM=XB+Zy+ 0"
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where 7 is the expanded linear predictor vector; A is the expanded cumulative target probability
vector; g (.) is a cumulative link function; X is the expanded design matrix for fixed effects
arranged as follows

X1
X=| :
Xs
Xsl
Xs = 1
X,

Ty (J—1)x (J—1+p)

X :( B T)
st L1 L1 ®—xy (J-1)x(J—14p)

L0l
01l

I 0 —wey -+ —ZTstp

o --- 1 —Tst1 e —Tstp

T T
B=<\|/T, BT) = ((\yl, R 1 _1),BT) :Z is the expanded design matrix for random effects
arranged as follows

Z1 0 0
0 0 Zg

Zsl
: ;
ZsT. ) 1, (J—=1)xr
Zu= (1510 74) ,
st Il st (J—1)xr
v is a vector of random effects which are assumed to be normally distributed with mean 0 and

variance matrix G.

The variance of y, conditional on the random effects is

- 3 1/2 1/2
Var (yly) = A,u/ RA‘H/
S T
where 4, = @ @ (diag (mer) — mml) Jws and R = ¢l which means that R-side effects
s=1t=1

are not supported for the multinomial distribution. @ is set to 1.
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Estimation

Linear mixed pseudo model

Similarly to “Linear mixed pseudo model,” we can obtain a weighted linear mixed model
v=X0+Zv+¢€

wherev=D"'(y — 7) | g(:\) — O* and errorterms & ~ N <0, D'AY2RAY( Ul)T> with

S Ty S Ts qg1(5. S Ts qh.
Do & & Du— o o Y9 Us_ 2 & s
s=1t= s=1t=1 s s=1¢t=1%st
[ aj\st.l ]
B ~0 0 0
Cr)Ast‘l E))\st.z
o 8:’.}3\&‘1 8ﬁst.2 U U
DSt - : .. . : :
00 g 0
aj\st,u’fQ 85\5LJ—1
L 0 0 T - aﬁaf,J -2 67.’-&&,.] -1
and
S,
Ap = g (d.'.ia.g (7Tst) — ﬁst-frl) Jwst.
s=1t=1

And block diagonal weight matrix is
1 =pT4;'D

The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which
are expressed as the functions of covariance parameters in 6, corresponding to the linear mixed
model for v are the following:

L T

((0;v) = _% Iu [V (0)] — 5r(6) Y

V(0) 1r(0) — 3 In (27)

N —p,
2

T

(Rr(0;V) = _% In |V (8)] — %r(@) V(0)tr(e) — %m

XTV(O)_lX‘ .
where V (8) = ZG (0) Z7 + W~/2R(0) W~/2,7(0) = v — XB,N denotes the effective sample
size, and p,. denotes the total number of non-redundant parameters for B.

The parameter ¢ can be estimated by linear mixed model using the objection function —2¢(6; v) or
—2(r(6;V), B and ~ are computed as
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. Tl -1 T /a1
B— (x V(H) X) X v(e) v

§=G2Tv(9) o

Iterative process

The doubly iterative process for the estimation of ¢ is the same as that for other distributions, if we
replace z and XB + Z5 + O with 7 and XB + Z5 + O respectively, and set initial estimation
of 7 as

1/7
L) %

For more information, see the topic “Iterative process.”

Post-estimation statistics

Wald confidence intervals

The Wald confidence intervals for covariance parameter estimates are described in “Wald
confidence intervals for covariance parameter estimates.”

Statistics for estimates of fixed and random effects

(' is the approximate covariance matrix of (B -B.~v— ,\) and R~ in C' should be

| o T
R* = wvar (v|y) =D 'AY?RAY? (D7)

Statistics for estimates of fixed and random effects on original scale

If the fixed effects are transformed when constructing matrix X, then the final estimates of B,
denoted as B*. They would be transformed back on the original scale, denoted as B, as follows:

Py

. y* *
(1)) )

B

where

A= lj_1 174 ® (CTS_1>
0 g-1
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Testing

Estimated covariance matrix of the fixed effects parameters

The estimated covariance matrix of the fixed effects parameters is described in “Statistics for
estimates of fixed and random effects.”

Standard error for estimates in fixed effects and predictions in random effects

Let ¢, =1,...,.J — 1, be threshold parameter estimates and 3,,i = 1,...,p. denote
non-redundant regression parameter estimates. Their standard errors are the square root of the
diagonal elements of Xm or Xr: a4, =,/o;; andds, = /G, (/-1-: . respectively, where
;i is the ith diagonal element of m or Xr.

Standard errors for predictions in random effects are as those described in *“Statistics for estimates
of fixed and random effects.”

Test statistics for estimates in fixed effects and predictions in random effects

The hypotheses Iy; : ¢; = 0,5 =1,...,.J — 1, are tested for threshold parameters using the
t statistic:

W

_ 1
ty, = =L
- Ty,

Test statistics for estimates in fixed effects and predictions in random effects are otherwise as
those described in “Statistics for estimates of fixed and random effects.”

Wald confidence intervals for estimates in fixed effects and random effects predictions

The 100(1 — a)% Wald confidence interval for threshold parameter is given by
(’i:i:l"j - tv,r.n: / 2(}?&'_, ) "l:';'yj -t -u,(r/‘Q{}g',' ; )

Wald confidence intervals are otherwise as those described in “Statistics for estimates of fixed and
random effects.”

The degrees of freedom can be computed by the residual method or Satterthwaite method. For the

residual method, v = N — (J — 1 -+ p, ). For the Satterthwaite method, it should be similar to that
described in “Method for computing degrees of freedom.”

Information criteria

These are as described in “Goodness of fit,” with the following modifications.
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For REPL, the value of N is chosen to be effective sample size minus number of non-redundant
parameters in fixed effects, Z fi = (J =1+ p,), where p, is the number of non-redundant

g =1 . .
parameters in fixed effects, and d is the number of covariance parameters.

For PL, the value of N is effective sample size, Z Ji,»and d is the number of number of

L i=1 .
non-redundant parameters in fixed effects, J — 1 + p,., plus the number of covariance parameters.

Tests of fixed effects

For each effect specified m the model excluding threshold parameters, a type I or IIT test
matrix L; 1s constructed and Hy: LiB = 0 is tested. Construction of matrix L; 1s based on
matrix H,, = (XFQXL) XIQXL. where X; = (1, — X) and such that L;B 1s estimable.
Note that LiB is estimable if and only if Ly = LyH,. where Ly = (lp, L(B)). Construction
of L) considers a partition of the more general test matrix L; = (L;(v), Li(p)) first, where

L:(w) = (l1,...,1y_1) consists of columns corresponding to the threshold parameters and
L;(p) is the part of L; corresponding to regression parameters, then replace L;(y) with their
J-1
sum ly = Z |; to get Lo.
=1

Note that the threshold-parameter effect is not tested for both type I and 111 analyses and
construction of L;j is the same as in GENLIN. For more information, see the topic “Default Tests

of Model Effects.” Similarly, if the fixed effects are transformed when constructing
matrix X, then H, should be constructed based on transformed values.

Scoring

POL-type predicted values and relevant statistics

(J — 1) x 1 predicted vector of the linear predictor
ﬁa‘! = AX:_;'{B + Zs[:,a + 1.]—'1 £ Ogy
Estimated covariance matrix of the linear predictor

N N T
S = XuSXY 42046528 + 2,65 XT 4 Xy, (¢5) 2]

st

where ('3, is a diagonal block corresponding to the sth super subject, the approximate covariance
matrix of 4, — ~,; C5, isapart of C.,, corresponding to the sth super subject.

The estimated standard error of the jth element in 7)., 7. ;, IS the square root of the jth diagonal
element of

Har?

Thors = VT
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Predicted value of the cumulative probability for category j

:i".sl..j:‘g_l(ﬁxt.j)yj - 17' . -aJ_ 1
with 4; ; = 1.

Predicted category

¢(Xg) = argmax wy j,
j

Where 7y ;j = et j — Yot j—1-

If there is a tie in determining the predicted category, the tie will be broken by choosing the
S T.

category with the highest N; = Z Z fetyer ;- 1T there is still a tie, the one with the lonest

R s=1t=1
category number is chosen.

Approximate 100(1—a)% confidence intervals for the cumulative predicted probabilities

0 (st Etoap0i,,),J=1,...,J — 1,

If either endpoint in the argument is outside the valid range for the inverse link function, the
corresponding confidence interval endpoint is set to a system missing value.

The degrees of freedom can be computed by the residual method or Satterthwaite method.
For the residual method, v = N — (J — 1 + p,). For Satterthwaite’s approximation,

the L matrix is constructed by (X, ;,Z,, ), where X, and Z , .are the jth rows of

X,, and Z_,, respectively, correspondmg to the jth category For example the L matrix is
(1, 0,...,0, — xI z! for the 1st category. The computation should then be

st st
similar to that described in “Method for computing degrees of freedom.”
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Imputation of Missing Values

The following methods are available for imputing missing values:

Fixed. Substitutes a fixed value (either the field mean, midpoint of the range, or a constant that
you specify).

Random. Substitutes a random value based on a normal or uniform distribution.

Expression. Allows you to specify a custom expression. For example, you could replace values
with a global variable created by the Set Globals node.

Algorithm. Substitutes a value predicted by a model based on the C&RT algorithm. For each field
imputed using this method, there will be a separate C&RT model, along with a Filler node that
replaces blanks and nulls with the value predicted by the model. A Filter node is then used to
remove the prediction fields generated by the model.

Details of each imputation method are provided below.

Imputing Fixed Values
For fixed value imputation, three options are available:

Mean. Substitutes the mean of the valid training data values for the field being imputed,

Noatid ., .
2itq" i

Tlyvalid

where z, is the value of field x for record i, excluding missing values, and n..,;;4 is the number of
records with valid values for field x.

Midrange. Substitutes the value halfway between the minimum and maximum valid values for the
field being imputed,

Tmax — Tmin _ Tmax T Tmin

2 N 2

Tin +

where z,,;, and .. are the minimum and maximum observed valid values for field x,
respectively.

Constant. Substitutes the user-specified constant value.

For imputing fixed missing values in set or flag fields, only the Constant option is available.

Note: Using fixed imputed values for scale fields will artificially reduce the variance for that field,
which can interfere with model building using the field. If you impute using fixed values and

find that the field no longer has the expected effect in a model, consider imputing with a different
method that has a smaller impact on the field’s variance.
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Imputing Random Values

For random value imputation, the options depend on the type of the field being imputed.

Range Fields
For range fields, you can select from a uniform distribution or a normal distribution.

Uniform distribution. Values are generated randomly on the inverval |2, 7max), Where each value
in the interval is equally likely to be generated.

Normal distribution. VValues are generated from a normal distribution with mean z,,;;; and variance
s2 1. Where ,..;;,4 and s2 ., are derived from the valid observed values of x in the training data,

Z?Mw T

Tyatia = =12
Lyalid =

Nyalid

Neatie : — 2
o2 . Z-;’_f ' (;?-i - Izrala‘d)

valid Nyalid — 1

Set Fields

For set fields, random imputed values are selected from the list of observed values. By default, the
probabilities of all values are equal,

for the j possible values of k. The Equalize button will return any modified values to the default
equal probabilities.

If you select Based on Audit, probabilities are assigned proportional to the relative frequencies of
the values in the training data

un

p<k) - Nyalid

where n;, is the number of records for which z; = k.
If you select Normalize, values are adjusted to sum to 1.0, maintaining the same relative
proportions,

p(k)
Pn or'm..u.ﬁznd(k) - m
This is useful if you want to enter your own weights for generated random values, but they aren’t
expressed as probabilities. For example, if you know you want twice as many No values as Yes

values, you can enter 2 for No and 1 for Yes and click Normalize. Normalization will adjust the
values to 0.667 and 0.333, preserving the relative weights but expressing them as probabilities.
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Imputing Values Derived from an Expression

For expression-based imputation, imputed values are based on a user-specified CLEM expression.
The expression is evaluated just as it would be for a filler node. Note that some expressions
may return $null or other missing values, with the result that missing values may exist even
after imputation with this method.

Imputing Values Derived from an Algorithm

For the Algorithm method, a C&RT model is built for each field to be imputed, using all other
input fields as predictors. For each record that is imputed, the model for the field to be imputed
is applied to the record to produce a prediction, which is used as the imputed value. For more
information, see the topic “Overview of C&RT.”






K-Means Algorithm

Overview

The k-means method is a clustering method, used to group records based on similarity of values
for a set of input fields. The basic idea is to try to discover k clusters, such that the records within
each cluster are similar to each other and distinct from records in other clusters. K-means is an
iterative algorithm; an initial set of clusters is defined, and the clusters are repeatedly updated until
no more improvement is possible (or the number of iterations exceeds a specified limit).

Primary Calculations

In building the k-means model, input fields are encoded to account for differences in measurement
scale and type, and the clusters are defined and updated to generate the final model. These
calculations are described below.

Field Encoding

Input fields are recoded before the values are input to the algorithm as described below.

Scaling of Range Fields

In most datasets, there’s a great deal of variability in the scale of range fields. For example,
consider age and number of cars per household. Depending on the population of interest, age
may take values up to 80 or even higher. Values for number of cars per household, however, are
unlikely to exceed three or four in the vast majority of cases.

If you use both of these fields in their natural scale as inputs for a model, the age field is
likely to be given much more weight in the model than number of cars per household, simply
because the values (and therefore the differences between records) for the former are so much
larger than for the latter.

To compensate for this effect of scale, range fields are transformed so that they all have the
same scale. In IBM® SPSS® Modeler, range fields are rescaled to have values between 0 and 1.
The transformation used is
o Li — Tmin
T =

Tmax — Tin

where x’j is the rescaled value of input field x for record i, x; is the original value of x for record i,
Xmin 1S the minimum value of x for all records, and Xmax is the maximum value of x for all records.

Numeric Coding of Symbolic Fields

For modeling algorithms that base their calculations on numerical differences between records,
symbolic fields pose a special challenge. How do you calculate a numeric difference for two
categories?
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A common approach to the problem, and the approach used in IBM® SPSS® Modeler, is to
recode a symbolic field as a group of numeric fields with one numeric field for each category or
value of the original field. For each record, the value of the derived field corresponding to the
category of the record is set to 1.0, and all the other derived field values are set to 0.0. Such
derived fields are sometimes called indicator fields, and this recoding is called indicator coding.

For example, consider the following data, where x is a symbolic field with possible values A,

B, and C:

Record # X X1’ X9’ X3’
1 B 0 1 0
2 A 1 0 0
3 C 0 0 1

In this data, the original set field x is recoded into three derived fields x1’, x2’, and x3’. X1’ is an
indicator for category A, X2’ is an indicator for category B, and x3’ is an indicator for category C.

Applying the Set Encoding Value

After recoding set fields as described above, the algorithm can calculate a numerical difference
for the set field by taking the differences on the k derived fields (where k is the number of
categories in the original set). However, there is an additional problem. For algorithms that
use the Euclidean distance to measure differences between records, the difference between two
records with different values i and j for the set is

7
Z () — Tp2)°

k=1

where J is the number of categories, and xkp, is value of the derived indicator for category k for
record n. But the values will be different on two of the derived indicators, x; and X;. Thus, the
sum will be -’f('l —0)*+(0—1)" =2~ 1.414 , which is larger than 1.0. That means
that based on this coding, set fields will have more weight in the model than range fields that
are rescaled to 0-1 range.

To account for this bias, k-means applies a scaling factor to the derived set fields, such that a
difference of values on a set field produces a Euclidean distance of 1.0. The default scaling
factor is ;"‘3 ~ (0.707. You can see that this value gives the desired result by inserting the value

into the distance formula:

The user can specify a different scaling factor by changing the Encoding value for sets parameter in
the K-Means node expert options.
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Encoding of Flag Fields

Flag fields are a special case of symbolic fields. However, because they have only two values in
the set, they can be handled in a slightly more efficient way than other set fields. Flag fields are
represented by a single numeric field, taking the value of 1.0 for the “true” value and 0.0 for the
“false” value. Blanks for flag fields are assigned the value 0.5.

Model Parameters

M w0 poE

The primary calculation in k-means is an iterative process of calculating cluster centers and
assigning records to clusters. The primary steps in the procedure are:

Select initial cluster centers
Assign each record to the nearest cluster
Update the cluster centers based on the records assigned to each cluster

Repeat steps 2 and 3 until either:
m Instep 3, there is no change in the cluster centers from the previous iteration, or
®  The number of iterations exceeds the maximum iterations parameter

Clusters are defined by their centers. A cluster center is a vector of values for the (encoded) input
fields. The vector values are based on the mean values for records assigned to the cluster.

Note: The structure of the model can differ depending on the input order of the records. To
minimize the input order effect, randomly order the records before building the model.

Selecting Initial Cluster Centers

The user specifes k, the number of clusters in the model. Initial cluster centers are chosen using a
maximin algorithm:

Initialize the first cluster center as the values of the input fields for the first data record.

For each data record, compute the minimum (Euclidean) distance between the record and each
defined cluster center.

Select the record with the largest minimum distance from the defined cluster centers. Add a new
cluster center with values of the input fields for the selected record.

Repeat steps 2 and 3 until k cluster centers have been added to the model.

Once initial cluster centers have been chosen, the algorithm begins the iterative assign/update
process.

Assigning Records to Clusters

In each iteration of the algorithm, each record is assigned to the cluster whose center is closest.
Closeness is measured by the usual squared Euclidean distance
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Q

i C 12 " Y
dij = |1X; =GP =) (g — ¢yy)
qg=1

where X;j is the vector of encoded input fields for record i, C;j is the cluster center vector for cluster
J, Q is the number of encoded input fields, xq; is the value of the gth encoded input field for the ith
record, and cgj is the value of the gth encoded input field for the jth record.

For each record, the distance between the record and each cluster center is calculated, and the
cluster center whose distance from the record is smallest is assigned as the record’s new cluster.
When all records have been assigned, the cluster centers are updated.

Updating Cluster Centers

After records have been (re)assigned to their closest clusters, the cluster centers are updated. The
cluster center is calculated as the mean vector of the records assigned to the cluster:

Cj =X

where the components of the mean vector X' ; are calculated in the usual manner,

Z:l_il Ly (f)

Ty =
1 n;

where nj is the number of records in cluster j, Xgi(j) is the gth encoded field value for record i
which is assigned to cluster j.

Blank Handling
In k-means, blanks are handled by substituting “neutral” values for the missing ones. For range

and flag fields with missing values (blanks and nulls), the missing value is replaced with 0.5. For
set fields, the derived indicator field values are all set to 0.0.

Effect of Options

There are several options that affect the way the model calculations are carried out.

Maximum Iterations

The maximum iterations parameter controls how long the algorithm will continue searching
for a stable cluster solution. The algorithm will repeat the classify/update cycle no more than
the number of times specified. If and when this limit is reached, the algorithm terminates and
produces the current set of clusters as the final model.
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Error Tolerance

The error tolerance parameter provides another means of controlling how long the algorithm will
continue searching for a stable cluster solution. The maximum change in cluster means for an
iteration t is calculated as

mas | C5(6) = C(t — 1) |

where Cij(t) is the cluster center vector for the jth cluster at iteration t and Cj(t - 1) is the cluster
center vector at the previous iteration. If the maximum change is less than the specified tolerance
for the current iteration, the algorithm terminates and produces the current set of clusters as

the final model.

Encoding Value for Sets

The encoding value for sets parameter controls the relative weighting of set fields in the k-means
algorithm. The default value of +/0.5 ~ 0.707 provides an equal weighting between range fields
and set fields. To emphasize set fields more heavily, you can set the encoding value closer to 1.0;
to emphasize range fields more, set the encoding value closer to 0.0. For more information, see
the topic “Numeric Coding of Symbolic Fields.”

Model Summary Statistics

Cluster proximities are calculated as the Euclidean distance between cluster centers,

Q
dij = 1Cs = Cjll = | D (cqi = ¢45)°

q=1
Generated Model/Scoring

Generated k-means models provide predicted cluster memberships and distance from cluster
center for each record.

Predicted Cluster Membership

When assigning a new record with a predicted cluster membership, the Euclidean distance
between the record and each cluster center is calculated (in the same manner as for assigning
records during the model building phase), and the cluster center closest to the record is assigned as
the predicted cluster for the record.

Distances

The value of the distance field for each record, if requested, is calculated as the Euclidean
distance between the record and its assigned cluster center,
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. 2
dij = ||Xi = Cj|| = Z (qi — ¢q5)

Blank Handling

In k-means, scoring records with a generated model handles blanks in the same way they are
handled during model building. For more information, see the topic “Blank Handling.”
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Nearest Neighbor Analysis is a method for classifying cases based on their similarity to other
cases. In machine learning, it was developed as a way to recognize patterns of data without
requiring an exact match to any stored patterns, or cases. Similar cases are near each other and
dissimilar cases are distant from each other. Thus, the distance between two cases is a measure
of their dissimilarity.

Cases that are near each other are said to be “neighbors.” When a new case (holdout) is presented,
its distance from each of the cases in the model is computed. The classifications of the most
similar cases — the nearest neighbors — are tallied and the new case is placed into the category that
contains the greatest number of nearest neighbors.

You can specify the number of nearest neighbors to examine; this value is called k. The pictures
show how a new case would be classified using two different values of k. When k = 5, the new
case is placed in category 1 because a majority of the nearest neighbors belong to category 1.
However, when k = 9, the new case is placed in category 0 because a majority of the nearest
neighbors belong to category 0.

Nearest neighbor analysis can also be used to compute values for a continuous target. In this
situation, the average or median target value of the nearest neighbors is used to obtain the
predicted value for the new case.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Y Optional 1xN vector of responses with element y,,, where n=1,...,N
indexes the cases.

X0 POxN matrix of features with element =}, where p=1,...,P0 indexes the
features and n=1,...,N indexes the cases.

X PxN matrix of encoded features with element =, where p=1,...,P
indexes the features and n=1,...,N indexes the cases.

P Dimensionality of the feature space; the number of continuous features
plus the number of categories across all categorical features.

N Total number of cases.

Nj,j=1,2,---,J The number of cases with Y = j, where Y is a response variable with
J categories

N, The number of cases which belong to class j and are correctly classified
asj.

_,-\‘:; The total number of cases which are classified as j.

Preprocessing

Features are coded to account for differences in measurement scale.
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Continuous
Continuous features are optionally coded using adjusted normalization:

2 (:z:?m — min (IB)) )

T hax (12) — 1min (”IB)

where «,,, is the normalized value of input feature p for case n, ;132 is the original value of the
feature for case n, min (20)) is the minimum value of the feature for all training cases, and
max (7)) is the maximum value for all training cases.

Categorical

Categorical features are always temporarily recoded using one-of-c coding. If a feature has
C categories, then it is is stored as ¢ vectors, with the first category denoted (1,0,...,0), the next
category (0,1,0,...,0), ..., and the final category (0,0,...,0,1).

Training

Training a nearest neighbor model involves computing the distances between cases based upon
their values in the feature set. The nearest neighbors to a given case have the smallest distances
from that case. The distance metric, choice of number of nearest neighbors, and choice of the
feature set have the following options.

Distance Metric

We use one of the following metrics to measure the similarity of query cases and their nearest
neighbors.

Euclidean Distance. The distance between two cases is the square root of the sum, over all
dimensions, of the weighted squared differences between the values for the cases.

P

. 2
Euclidean;, = Z Wip) (.T(m.,- — :1‘(,‘“);,)
p=1

City Block Distance. The distance between two cases is the sum, over all dimensions, of the
weighted absolute differences between the values for the cases.

P

ClityBlock;, = Z wip) |;T(p)v‘. —T(p)h
p=1



KNN Algorithms

The feature weight w(p) is equal to 1 when feature importance is not used to weight distances;
otherwise, it is equal to the normalized feature importance:

P
Wip) = FI(.P}/Z Flp)
p=1

See “Output Statistics ” for the computation of feature importance #'/,,.

Crossvalidation for Selection of k

Cross validation is used for automatic selection of the number of nearest neighbors, between a
minimum k,,;,, and maximum k,,,.... Suppose that the training set has a cross validation variable
with the integer values 1,2,..., V. Then the cross validation algorithm is as follows:

» For each k € [kumin, kmax], COMpute the average error rate or sum-of square error of k:
CVy = 2}1 L ¢./V, where ¢, is the error rate or sum-of square error when we apply the Nearest
Neighbor model to make predictions on the cases with X = v; that is, when we use the other
cases as the training dataset.

» Select the optimal k as: & = arg{min C'V : kmin < k < Kuas .

Note: If multiple values of k are tied on the lowest average error, we select the smallest k among
those that are tied.

Feature Selection

Feature selection is based on the wrapper approach of Cunningham and Delany (2007) and uses
forward selection which starts from J,...4 features which are entered into the model. Further
features are chosen sequentially; the chosen feature at each step is the one that causes the largest
decrease in the error rate or sum-of squares error.

Let S represent the set of J features that are currently chosen to be included, 55 represents the
set of remaining features and ¢ ; represents the error rate or sum-of-squares error associated
with the model based on S .

The algorithm is as follows:
» Start with .J = Jr,,..q features.

» For each feature in S , fit the k nearest neighbor model with this feature plus the existing features
in Sy and calculate the error rate or sum-of square error for each model. The feature in S whose
model has the smallest error rate or sum-of square error is the one to be added to create ;. ;.

» Check the selected stopping criterion. If satisfied, stop and report the chosen feature subset.
Otherwise, J=J+1 and go back to the previous step.

Note: the set of encoded features associated with a categorical predictor are considered and added
together as a set for the purpose of feature selection.
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Stopping Criteria
One of two stopping criteria can be applied to the feature selection algorithm.

Fixed number of features. The algorithm adds a fixed number of features, .74, in addition to those
forced into the model. The final feature subset will have .J,; + Jporecq TEAtUres. J,.q. may be
user-specified or computed automatically; if computed automatically the value is

Judd = max {min (2(], PD) — Jroreed, O}

When this is the stopping criterion, the feature selection algorithm stops when .J,.;; features
have been added to the model; that is, when J,.. = ./ + 1 , stop and report S; ., as the chosn
feature subset.

Note: if J,4a = 0, no features are added and S; with J = Jg,,.a iS reported as the chosen
feature subset.

Change in error rate or sum of squares error. The algorithm stops when the change in the absolute
error ratio indicates that the model cannot be further improved by adding more features.
Specifically, ife; ., =00re; > ¢;., and

leg—eri] <A
€ -

min

where A, is the specified minimum change, stop and report S; . ; as the chosen feature subset.
Ife; <e;,,and

‘('J - F‘J+1|

. > 2Amin
ey

stop and report S, as the chosen feature subset.
Note: if ¢y = 0 for J = Jryreeq, NO features are added and S; with J = Jpy,ccq IS reported as
the chosen feature subset.

Combined k and Feature Selection

The following method is used for combined neighbors and features selection.
1. Foreachk, use the forward selection method for feature selection.

2. Select the k, and accompanying feature set, with the lowest error rate or the lowest sum-of-squares
error.

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.
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Output Statistics

The following statistics are available.

Percent correct for class j

~

N,
7 100%

Overall percent for class j

,w*

—L % 100Y
\_ X %

Intersection of Overall percent and percent correct

Z Nj/N | x 100%

Error rate of classification
J
1= Nj/N | x 100%

Sum-of-Square Error for continuous response

N
Z Un — Uu

n=1

where y,, is the estimated value of ,,.

Feature Importance

Suppose there are X1y, X(o) -+ X(,,,y (1 < m < P") in the model from the forward selection
process with the error rate or sum-of-squares error e. The importance of feature X, in the
model is computed by the following method.

> Delete the feature X,; from the model, make predictions and evaluate the error rate or
sum-of-squares error ¢, based on features Xy, Xa) -+ X1y, Xy X

» Compute the error ratio e, + L.

The feature importance of X, is FI,, = ¢, + ~
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Scoring

After we find the k nearest neighbors of a case, we can classify it or predict its response value.

Categorical response

Classify each case by majority vote of its k nearest neighbors among the training cases.

» If multiple categories are tied on the highest predicted probability, then the tie should be broken by
choosing the category with largest number of cases in training set.

» If multiple categories are tied on the largest number of cases in the training set, then choose the
category with the smallest data value among the tied categories. In this case, categories are
assumed to be in the ascending sort or lexical order of the data values.

We can also compute the predicted probability of each category. Suppose &; is the number of
cases of the jth category among the k nearest neighbors. Instead of simply estimating the predicted
probability for the jth category by i—‘ we apply a Laplace correction as follows:

kj+1
b+ J

where J is the number of categories in the training data set.

The effect of the Laplace correction is to shrink the probability estimates towards to 1/J when the
number of nearest neighbors is small. In addition, if a query case has k nearest neighbors with the
same response value, the probability estimates are less than 1 and larger than 0, instead of 1 or 0.

Continuous response
Predict each case using the mean or median function.

Mean function. ,, = 3" .0cur(n) Um /K, Where Nearest (n) is the index set of those cases
that are the nearest neighbors of case n and v,,, is the value of the continuous response variable
for case m.

Median function. Suppose that v,,,m € Nearest (n) are the values of the continuous response
variable, and we arrange y,,,,m € Nearest (n) from the lowest value to the highest value and
denote them as y ;) < y(n,) < -+ < Yum,), then the median is

. 2
yl? - y(%ﬂ—y(j )
2

Y(en) k is odd

LIS even

Blank Handling

Records with missing values for any input field cannot be scored and are assigned a predicted
value and probability value(s) of $null$.
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Overview

Kohonen models (Kohonen, 2001) are a special kind of neural network model that performs
unsupervised learning. It takes the input vectors and performs a type of spatially organized
clustering, or feature mapping, to group similar records together and collapse the input space
to a two-dimensional space that approximates the multidimensional proximity relationships
between the clusters.

The Kohonen network model consists of two layers of neurons or units: an input layer and
an output layer. The input layer is fully connected to the output layer, and each connection has
an associated weight. Another way to think of the network structure is to think of each output
layer unit having an associated center, represented as a vector of inputs to which it most strongly
responds (where each element of the center vector is a weight from the output unit to the
corresponding input unit).

Primary Calculations

Field Encoding

Scaling of Range Fields

In most datasets, there’s a great deal of variability in the scale of range fields. For example,
consider age and number of cars per household. Depending on the population of interest, age
may take values up to 80 or even higher. Values for number of cars per household, however, are
unlikely to exceed three or four in the vast majority of cases.

If you use both of these fields in their natural scale as inputs for a model, the age field is
likely to be given much more weight in the model than number of cars per household, simply
because the values (and therefore the differences between records) for the former are so much
larger than for the latter.

To compensate for this effect of scale, range fields are transformed so that they all have the
same scale. In IBM® SPSS® Modeler, range fields are rescaled to have values between 0 and 1.
The transformation used is

' i — Tmin

€Try = o
Tmax Tmin

where x’j is the rescaled value of input field x for record i, x; is the original value of x for record i,
Xmin is the minimum value of x for all records, and Xmax is the maximum value of x for all records.

Numeric Coding of Symbolic Fields

For modeling algorithms that base their calculations on numerical differences between records,
symbolic fields pose a special challenge. How do you calculate a numeric difference for two
categories?
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A common approach to the problem, and the approach used in IBM® SPSS® Modeler, is to
recode a symbolic field as a group of numeric fields with one numeric field for each category or
value of the original field. For each record, the value of the derived field corresponding to the
category of the record is set to 1.0, and all the other derived field values are set to 0.0. Such
derived fields are sometimes called indicator fields, and this recoding is called indicator coding.

For example, consider the following data, where x is a symbolic field with possible values A,

B, and C:

Record # X X1’ X9’ X3’
1 B 0 1 0
2 A 1 0 0
3 C 0 0 1

In this data, the original set field x is recoded into three derived fields x1’, x2’, and x3’. X1’ is an
indicator for category A, X2’ is an indicator for category B, and x3’ is an indicator for category C.

Encoding of Flag Fields

Flag fields are a special case of symbolic fields. However, because they have only two values in
the set, they can be handled in a slightly more efficient way than other set fields. Flag fields are
represented by a single numeric field, taking the value of 1.0 for the “true” value and 0.0 for the
“false” value. Blanks for flag fields are assigned the value 0.5.

Model Parameters

In a Kohonen model, the parameters are represented as weights between input units and output
units, or alternately, as a cluster center associated with each output unit. Input records are
presented to the network, and the cluster centers are updated in a manner similar to that used in
building a k-means model, with an important difference: the clusters are arranged spatially in a
two-dimensional grid, and each record affects not only the unit (cluster) to which it is assigned
but also units within a neighborhood about the winning unit. For more information, see the
topic “Neighborhoods.”

Training of the Kohonen network proceeds as follows:
» The network is initialized with small random weights.

» Input records are presented to the network in random order. As each record is presented, the
output unit with the closest center to the input vector is identified as the winning unit. For more
information, see the topic “Distances.”

» The weights of the winning unit are adjusted to move the cluster center closer to the input vector.
For more information, see the topic “Weight Updates.”

» If the neighborhood size is greater than zero, then other output units that are within the
neighborhood of the winning unit are also updated so their centers are closer to the input vector.

» At the end of each cycle, the learning rate parameter n (eta) is updated.
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» This process repeats until one of the stopping criteria is met. Training proceeds in two phases,
a gross structure phase and a fine tuning phase. Typically the first phase has a relatively large
neighborhood size and large eta to learn the overall structure of the data, and the second phase
uses a smaller neighborhood and smaller eta to fine tune the cluster centers.

Distances

Distances in a Kohonen network are calculated as Euclidean distance between the encoded input
vector and the cluster center for the output unit,

dr,jj = \/Z (-T-ik — U,!jk)Q
k

where z;;. is the value of the kth input field for the ith record, and w;; is the weight for the kth
input field on the jth output unit.

The activation of an output unit is simply the Euclidean distance between the output unit’s
weight vector (its center) and the input vector. Note that for Kohonen networks, the output unit
with the lowest activation is the winning unit. This is in contrast to other types of neural networks,
where higher activation represents stronger response.

Neighborhoods

The neighborhood function is based on the Chebychev distance, which considers only the
maximum distance on any single dimension:

de (x,y) = max |, — y]
1

where z; is the location of unit x on dimension i of the output grid, and y, is the location of
another unit y on the same dimension.

An output unit o; is considered to be in the neighborhood of another output unit o; if
d. (0;, ;) < n, where n is the neighborhood size.

Neighborhood size remains constant during each phase, but different phases usually use
different neighborhood sizes. By default, n = 2 for Phase 1 and »n = 1 for Phase 2.

Weight Updates

For the winning output node, and its neighbors if the neighborhood is > 0, the weights are
adjusted by adding a portion of the difference between the input vector and the current weight
vector. The magnitude of the change is determined by the learning rate parameter » (eta). The
weight change is calculated as

AW =n-(W =1)

where W is the weight vector for the output unit being updated, 1 is the input vector, and 7 is the
learning rate parameter. In individual unit terms,
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Aw; =n-(wj —ij)
where w; is the weight corresponding to input unit j for the output unit being updated, and ¢; is

the jth input unit.

Eta Decay

At the end of each cycle, the value of 5 is updated. The value of 5 generally decreases across
training cycles. The user can control the rate of decrease by selecting either linear or exponential
decay.

Linear decay. This is the default decay rate. When this option is selected, the value of » decaysin a
linear fashion, decreasing by a fixed amount each cycle, according to the formula

0t +1) =n(t) - (_-n(n) - m"“‘)

where 7 (0) is the initial eta value for the current phase, and 7, is the low eta for the current
training phase, calculated as the lesser of the initial eta values for the current phase and the
following phase, and c is the number of cycles set for the current phase.

Exponential decay. \When this option is selected, the value of 5 decays in an exponential fashion,
decreasing by a fixed proportion each cycle, according to the formula

o MNiow
s (35)

Cc

7t +1) = n(t) - exp

The value of ., has a minimum value of 0.0001 to prevent arithmetic errors in taking the
logarithm.

Blank Handling

In Kohonen networks, blanks are handled by substituting “neutral” values for the missing ones.
For range and flag fields with missing values (blanks and nulls), the missing value is replaced
with 0.5. For range fields, numeric values outside the range limits found in the field’s type
information are coerced to the type-defined range. For set fields, the derived indicator field
values are all set to 0.0.

Effect of Options

Stop on. By default, training executes the specified number of cycles for each phase. If the Time
option is selected, training stops when the elapsed time reaches the specified limit (or sooner if the
specified number of cycles for both phases is completed before the time limit is reached).
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Random seed. Sets the seed for the random number generator used to initialize the weights of the
new network as well as the order of presentation for training records. Select a fixed seed value to
create a reproducible network.

Generated Model/Scoring

Cluster Membership

Cluster membership for a new record is derived by presenting the input vector for the record
to the network and identifying the output neuron with the closest weight vector, as described
in Distances above. The predicted value is returned as the x and y coordinates of the winning
neuron in the output grid.

Blank Handling

Blank handling for scoring is the same as during model building. For more information, see the
topic “Blank Handling.”
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Linear models predict a continuous target based on linear relationships between the target and

one or more predictors.

For algorithms on enhancing model accuracy, enhancing model stability, or working with very
large datasets, see “Ensembles Algorithms.”

Notation

The following notation is used throughout this chapter unless otherwise stated:

o

|
:

=

Number of distinct records in the dataset. It is an integer and n > 1.

Number of parameters (including parameters for dummy variables but
excluding the intercept) in the model. It is an integer and p > 0.

Number of non-redundant parameters (excluding the intercept) currently in
the model. Itisanintegerand 0 < p* < p.

Number of non-redundant parameters currently in themodel. p" = p* 4+ 1
Number of effects excluding the intercept. It is an integer and 0 E }'J'“'ﬁ Y4

n x 1 target vector with elements ;.

n x 1 frequency weight vector.
n x 1 regression weight vector.

Effective sample size. Itisan integer and N = Z fi. If there is no
frequency weight vector, N=n. =

n X (p+ 1) design matrix with element z,,. The rows represent the records
and the columns represent the parameters.

n x 1 vector of unobserved errors.

(p + 1) x 1 vector of unknown parameters; 8 = (3o, 31, - - 4,). Fo isthe
intercept.

(p + 1) x 1 vector of parameter estimates.

(p -+ 1) x 1 vector of standardized parameter estimates. It is the result of a
sweep operation on matrix R. by is the standardized estimate of the intercept
and is equal to 0.

n x 1 vector of predicted target values.

Weighted sample mean for X,, 5 =1,2,---p

Weighted sample mean for y.

Weighted sample covariance between X; and X, i,5 =1,2,---p.
Weighted sample covariance between X, andy.

Weighted sample variance fory.

(p+ 1) x (p+ 1) weighted sample correlation matrix for X (excluding the
intercept, if it exists) and y.

The resulting matrix after a sweep operation whose elements are 7.
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Model

Linear regression has the form
y=Xp+e

where ¢ follows a normal distribution with mean 0 and variance «2D ~!, where
D~! = diag(1/g,....,1/gy). The elements of ¢ are independent with respect to each other.

Notes:

m X can be any combination of continuous and categorical effects.

m  Constant columns in the design matrix are not used in model building.
®m If n=1 or the target is constant, no model is built.

Missing values

Records with missing values are deleted listwise.

Least squares estimation

The coefficients are estimated by the least squares (LS) method. First, we transform the model
by pre-multiplying D'/ as follows:

Dl,”?y _ Dlj’QXB + Dl/"QS

so that the new unobserved error D'/?¢ follows a normal distribution N, (0, #1), where I is an
identity matrix and D'/* = diag(\/g7,...,/g,)- Then the least squares estimates of 3 can be
obtained from the following formula

. T _

[ = argmin (D1/2y — Dl/zX,S) F(lezy — Dl/QXB)
B

where F = diag(fi,..., f,). Notethat

T
(D'2y —D'2X8) F(D'%y - D'/?X)
T p 2 o
= (y — Xp) Dl/TZFDW(y —Xp)
=(y —Xp) Wy —Xp)
where W = diag(ws,....w,) = diag(g, f1, ..., g f» ), S0 the closed form solution of 7 is

G = (XTWX> xTwy
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4 is computed by applying sweep operations instead of the equation above. In addition, sweep
operations are applied to the transformed scale of X and y to achieve numerical stability.
Specifically, we construct the weighted sample correlation matrix R then apply sweep operations
to it. The R matrix is constructed as follows.

First, compute weighted sample means, variances and covariances among Xj. X,
,7j=1,...,p. andy:

Weighted sample means of Xjand y are X, = ﬁ S wprg and g = ﬁ S Wk
ko1

ko1
Weighted sample covariance for Xj and Xjis Si;; =+ > wy (zri— X 20, — X;);
Weighted sample covariance for Xjand y is S;, = \1__1 ST w (@hi— }_{_) (yr — )

2

Weighted sample variance fory is .S, — A S (e — )

Second, compute weighted sample correlations r,; = —=<—, i, j =1,...p and y.

\/Sfe‘eSJ.f
Then the matrix R is
r1or2 st Tl 1y
o1 Ta2 o T2y gy
2y R R
: 11 12
R = . . T, N = T
: : : R12 R22
Tpl Tap “° Tpp Tpy
Tyl Ty2 o0 Typ Ty

If the sweep operations are repeatedly applied to each row of R, where R, contains the
predictors in the model at the current step, the result is

o Rl_ll Rl_llRlZ
R Tp-1 Tp-1
_R12R11 Rao — R12R11 Ri»

The last column R;'R; contains the standardized coefficient estimates; that is, b = R R...
Then the coefficient estimates, except the intercept estimate if there is an intercept in the model,

are.
’%’ j = bj
Model selection

The following model selection methods are supported:

m  None, in which no selection method is used and effects are force entered into the model. For
this method, the singularity tolerance is set to 1e—12 during the sweep operation.
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m  Forward stepwise, which starts with no effects in the model and adds and removes effects one
step at a time until no more can be added or removed according to the stepwise criteria.

m  Best subsets, which checks “all possible” models, or at least a larger subset of the possible
models than forward stepwise, to choose the best according to the best subsets criterion.

Forward stepwise

The basic idea of the forward stepwise method is to add effects one at a time as long as these
additions are worthy. After an effect has been added, all effects in the current model are checked
to see if any of them should be removed. Then the process continues until a stopping criterion

is met. The traditional criterion for effect entry and removal is based on their F-statistics and
corresponding p-values, which are compared with some specified entry and removal significance
levels; however, these statistics may not actually follow an F distribution so the results might be
questionable. Hence the following additional criteria for effect entry and removal are offered:

m  Maximum adjusted RZ;
®  Minimum corrected Akaike information criterion (AICC); and
m  Minimum average squared error (ASE) over the overfit prevention data

Candidate statistics

Some additional notations are needed describe the addition or removal of a continuous effect X; or
categorical effect {X;, }i_] , where ( is the number of categories.

a The number of non-redundant parameters of the eligible effect X or
(X},

e The number of non-redundant parameters in the current model (including
the intercept).

p The number of non-redundant parameters in the resulting model (including

p° + ¢-for entering an effect

the intercept). Note that p™ = . .
2 P {p“ — {"for removing an effect

SSeyp The weighted residual sum of squares for the current model.

SSep ¢ The weighted residual sum of squares for the resulting model after entering
the effect.

SSep—g The weighted residual sum of squares for the resulting model after removing
the effect.

Tyy The last diagonal element in the current R matrix.

Fyy The last diagonal element in the resulting R matrix.

F statistics. The F statistics for entering or removing an effect from the current model are:

(Ss% - SS“pvf) /e _ (ryy — Tyy) (N = ")
SSepri/ (N —p) Fyy X L
(SS%% - SS%)/F‘* _ (Pyy = ryy) (N = p°)

Fremove, = -

SSep/(N —p°) Tyy X £*

Fe-n.ie-rJ =
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and their corresponding p-values are:

Penter; = P(Ff*jN—p” > Fenterj) =1- P(Ff*,N—p" < Fenterj)

Premove; — JP(FTE"",N—pc > Fremm;ej) =1- P(Ff“,N—-p“ < Fremm;ej)

Adjusted R-squared. The adjusted R2 value for entering or removing an effect from the current
model is:

adj.R> =1—

(N - 1)'F1;z/
N —pr

Corrected Akaike Information Criterion (AICC). The AICC value for entering or removing an effect
from the current model is:

AICC = Nn ((

N —1)8,, x yy N 20" N
N N—-—pr—1

Average Squared Error (ASE). The ASE value for entering or removing an effect from the current
model is:

T

‘ 1 A
ASE = > wily =)

T

where §j, =, are the predicted values of y; and T is the number of distinct testing cases in
the overfit prevention set.

The Selection Process

There are slight variations in the selection process, depending upon the model selection criterion:

The F statistic criterion is to select an effect for entry (removal) with the minimum (maximum)
p-value and continue doing it until the p-values of all candidates for entry (removal) are equal
to or greater than (less than) a specified significance level.

The other three criteria are to compare the statistic (adjusted R2, AICC or ASE) of the
resulting model after entering (removing) an effect with that of the current model. Selection
stops at a local optimal value (a maximum for the adjusted R2 criterion and a minimum

for the AICC and ASE).

The following additional definitions are needed for the selection process:

FLAG A p° x 1 index vector which records the status of each effect. FLAG; =

1 means the effect i is in the current model, FLAG; = 0 means it is not.
[{i|FLAG; = 1}| denotes the number of effects with FLAG; = 1.

MAXSTEP The maximum number of iteration steps. The default value is 3 x p°.
MAXEFFECT The maximum number of effects (excluding intercept if exists). The default

value is p“.
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Pin The significance level for effect entry when the F-statistic criterion is used.
The default is 0.05.

Pout The significance level for effect removal when the F statistic criterion is
used. The default is 0.1.

AF The F statistic change. It is Fipier; OF Frepnaue, fOr entering or removing
an effect Xj (here X could represent continuous or categorical for simpler
notation).

DAF The corresponding p-value for AF.

MSCecurrent The adjusted R2, AICC, or ASE value for the current model.

1. Set {FLAG;}"", = 0and iter = 0. The initial model is § = 7. If the adjusted R2, AICC, or ASE
criterion is used, compute the statistic for the initial model and denote it as MSCgyrrent-

2. I {ilIFLAG; = 0} # O iter < MAXSTEP and [{i[F'LAG; = 1}| < MAXEFFECT go to the
next step; otherwise stop and output the current model .

3. Based on the current model, for every effect j eligible for entry (see Condition below),
If FC (the F statistic criterion) is used, compute Frpcr, and Penter;;
If MSC (the adjusted R2, AICC, or ASE criterion) is used, compute MSC;.

4. If FC is used, choose the effect Xj-,5" = argmin; {penier, } @0 if perier,. < Pin, enter X;- to the
current model.

If MSC is used, choose the effect X -, ;* = argmin; {MSC;} and if MSCj- < MSCeurrent,
enter X ;- to the current model. (For the adjusted R2 criterion, replace min with max and reverse
the inequality)

If the inequality is not satisfied, stop and output the current model.

5. If the model with the new effect is the same as any previously obtained model, stop and output the
current model; otherwise update the current model by doing the sweep operation on corresponding
row(s) and column(s) associated with X« in the current R matrix. Set FLAGj» = 1 and iter
= iter + 1.

If FCis used, let AF = Foper;. @nd par = penter, . ;
If MSC is used, let A7SC..,,,,cpy = MSC-.
6. For every effect k in the current model; that is, FL.AG,, = 1,7k,
If FC is used, compute Frcpnove, and Premoves;
If MSC is used, compute MSCk.

7. IfFCis used, choose the effect X,.-, k" = argmaxy {premove, } aNA If presnope, . > Poyt, remove
X~ from the current model.

If MSC is used, choose the effect X;.-, k" = arg min, {MSC,.} and if MSC;- < MSCrurrent
remove X;- from the current model. (For the adjusted R2 criterion, replace min with max and
reverse the inequality)

If the inequality is met, go to the next step; otherwise go back to step 2.
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8. If the model with the effect removed is the same as any previously obtained model, stop and
output the current model; otherwise update the current model by doing the sweep operation
on corresponding row(s) and column(s) associated with X ;- in the current R matrix. Set
FLAG;- = 0and iter = iter + 1.

IfFCis Used, let AF = Frr-mm‘r-k-- and PAF = Premove,,- ,

If AC is used, let AICCcyrrent = AICCy+. Then go back to step 6.

Condition. In order for effect j to be eligible for entry into the model, the following conditions
must be met:

For continuous a effect X, r;; > ¢; (t is the singularity tolerance with a value of 1e—4)
For categorical effect {X;,}._,. maz {51, Tjajas - -+ » Tisje} = £

where t is the singularity tolerance, and r;; and »; ; ,s = 1,..., (. are diagonal elements in the
current R matrix (before entering).

For each continuous effect Xk that is currently in the model, #.;.¢ < 1.

For each categorical effect {X._ }‘ . with ¢ levels that is currently in the model,

mar {?;k];,‘l,?r,!,:z;\:z, e ,'Fk;,,l\:‘, }t f 1.

where 7., and 7. ,s = 1,..., £, are diagonal elements in the resulting R matrix; that is, the
results after doing the sweep operation on corresponding row(s) and column(s) associated with Xy
or { X, }*l in the current R matrix. The above condition is imposed so that entry of the effect
does not reduce the tolerance of other effects already in the model to unacceptable levels.

Best subsets

Stepwise methods search fewer combinations of sub-models and rarely select the best one, so
another option is to check all possible models and select the “best” based upon some criterion.
The available criteria are the maximum adjusted R2, minimum AICC, and minimum ASE over
the overfit prevention set.

Since there are p* free effects, we do an exhaustive search over 27" models, which include
intercept-only model (§ = ~). Because the number of calculations increases exponentially with

p°, it is important to have an efficient algorithm for carrying out the necessary computations.
However, if p© is too large, it may not be practical to check all of the possible models.

We divide the problem into 2 tiers in terms of the number of effects:
m  when p° < 20, we search all possible subsets

m  when p© > 20, we apply a hybrid method which combines the forward stepwise method and
the all possible subsets method.
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Searching All Possible Subsets

An efficient method that minimizes the number of sweep operations on the R matrix (Schatzoff
1968), is applied to traverse all the models and outlined as follows:

Each sweep step(s) on an effect results in a model. So 2¢° models can be obtained
through a sequence of exactly 2° sweeps on effects. Assuming that the all possible
models on p© — 1 effects can be obtained in a sequence S,-_, of exactly 27" —1 sweeps
on the first 27" —1 pivotal effects, and sweeping on the last effect will produce a new
model which adds the last effect to the model produced by the sequence S, _ , then
repeating the sequence S,- _ ; will produce another 2¢"~1 distinct models (including
the last effect). It is a recursive algorithm for constructing the sequence; that is,

SP‘ = (Sp'-fla k~ Sp‘ 71> = (Sp('727 k - ]-a S{J‘ —2) k~ Sp‘ —_2 k - ]-a S{J‘ _2) R and SO on.

The sequence of models produced is demonstrated in the following table:

k Sk Sequence of models produced

0 0 Only intercept

1 1 1)

2 121 1),(12),(2)

3 1213121 (1),(12),(2),(23),(123),(13),(3)

4 121312141213121 (1),(12),(2),(23),(123),(13),(3),(34),(134),(1234),(234),(24),(124),(14),(4)
i Spe_1, %, Spe_1 All 2°° models including the intercept model.

The second column indicates the indexes of effects which are pivoted on. Each parenthesis in the
third column represents a regression model. The numbers in the parentheses indicate the effects
which are included in that model.

Hybrid Method

If p>20, we apply a hybrid method by combining the forward stepwise method with the all
possible subsets method as follows:

Select the effects using the forward stepwise method with the same criterion chosen for best
subsets. Say that ps is the number of effects chosen by the forward stepwise method.

Apply one of the following approaches, depending on the value of ps, as follows:

m If pS <20, do an exhaustive search of all possible subsets on these selected effects, as
described above.

B If 20 < pS<40, select ps— 20 effects based on the p-values of type 111 sum of squares tests from
all ps effects (see ANOVA in “Model evaluation”) and enter them into the model, then do an
exhaustive search of the remaining 20 effects via the method described above.

m If 40 < pS, do nothing and assume the best model is the one with these ps effects (with a
warning message that the selected model is based on the forward stepwise method).
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Model evaluation

The following output statistics are available.

ANOVA

Weighted total sum of squares

n
SS, = Z w; (Y — y)Z = (N —-1)S,, withdf. =dfi = N —1

i=1
where d.f. means degrees of freedom. It is called “SS (sum of squares) for Corrected Total.”

Weighted residual sum of squares

n

SN2 . .
SSe = Z wily; —4i)° = Tyy (N —1) Syy
i=1

with d.f. =dfe=N-pC. Itis also called “SS for Error.”

Weighted regression sum of squares

n
~ ~ 52 ~ nT ~ ~t a
S5, = E wi(yi —y) = (1 —7yy) (N —1)S,, =955, — 5SS,
i=1

with d.f. =df, = p* Itis called “SS for Corrected Model” if there is an intercept.

Regression mean square error
SS,/df,

Residual mean square error
S8, /df.

F statistic for corrected model

o SSr/dfr o SST ’ dfe

F— —
SS./df.  SS.-dfy

which follows an F distribution with degrees of freedom dfy and dfe, and the corresponding
p-value can be calculated accordingly.

Type lll sum of squares for each effect
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To compute type 111 SS for the effect j, 7 = 1,...,p%, the type Il test matrix L;
needs to be constructed first. Construction of L is based on the generating matrix

Ho = (XTDX) XTDX, where D = diag (g1, - ,g), such that Lif is estimable. It involves
parameters only for the given effect and the effects containing the given effect. For type IlI
analysis, Lj doesn’t depend on the order of effects specified in the model. If such a matrix cannot

be constructed, the effect is not testable. For each effect j, the type 111 SS is calculated as follows
AT T ™ 5
s, =A"Lf (L,6L]) L3

where G = (X' WX) .
F statistic for each effect

The SS for the effect j is also used to compute the F statistic for the hypothesis test Ho: L
=0 as follows:

88, /df.

where ; is the full row rank of L;. It follows an F distribution with degrees of freedom r, and
d f., then the p-values can be calculated accordingly.

Model summary
Adjusted R square
o Q . 2 * -
adj.R? = 1—M — Hg_ﬂ —1_ dfy X Ty,
S8y /df dfe dfe
where
SS S5,
RR=""T=1-""0 =17,
SS, S8, "o

Model information criteria

Corrected Akaike information criterion (AICC)

S.S. 2p°N
AT + AT
N N—p-—1

AICC =NIn (

Coefficients and statistical inference

After the model selection process, we can get the coefficients and related statistics from the swept
correlation matrix. The following statistics are computed based on the R matrix.
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Unstandardized coefficient estimates

;3;,’ =b i

forj=1,---,p
Standard errors of regression coefficients

The standard error of /3 ;1S

Ty yySyy
Sijdfe

Intercept estimation

The intercept is estimated by all other parameters in the model as

N
O'[u = O'BO
where
A2 J— (‘Hr Ti? e 7 A2 p_]_
05 = NIt T 2 XG0 +22j:1 fejr1 XX jco (3k 5)
= 2 X 62 p Y. X Fri X SS.
- N Cf« 2 .. X X i
Nodf, T 2 + Z k=it Xk X e N g

&;ﬂ — W 1 E —j&;.; +2 Zp ! Sh_ it X1, X jcov (3;, , 3-) and cov (,{:}k, ,t%) 1s the

kth row and jth column element mn the parameter estimates covariance matrix.

t statistics for regression coefficients

dfe

FyyTji

for j =1,---,p*, with degrees of freedom d f. and the p-value can be calculated accordingly.

100(1—-0)% confidence intervals

fikas * layzar
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Note: For redundant parameters, the coefficient estimates are set to zero and standard errors, t
statistics, and confidence intervals are set to missing values.

Scoring

Predicted values

p
Uk = Z rifih=1,....1.

i=0
Diagnostics
The following values are computed to produce various diagnostic charts and tables.

Residuals

€k =Yk — Uk

Studentized residuals

This is the ratio of the residual to its standard error.

SRES}C — %ﬁ)
gx

where s is the square root of the mean square error; that is, s = /55, /df., and /. is the leverage
value for the kth case (see below).

Cook’s distance

2 he g
COOK, = r}fk—u")

21— hg)pr
where the “leverage”

h;f = gA.Xk.GX-Il;
is the kth diagonal element of the hat matrix
H = WX (XTwx) XTwh/2 — wh2xGx w2

1

A record with Cook’s distance larger than —— is considered influential (Fox, 1997).
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Predictor importance

We use the leave-one-out method to compute the predictor importance, based on the residual sum
of squares (SSe) by removing one predictor at a time from the final full model.

If the final full model contains p predictors, X, X, - -, X,,, then the predictor importance can be
calculated as follows:

1. i=1
2. Ifi>p,gotostep>.

3. Do a sweep operation on the corresponding row(s) and column(s) associated with X; in the
R matrix of the full final model.

4. Get the last diagonal element in the current &3 and denote it f’f‘,ﬁ. Then the predictor importance of

X, sy, = (FL”T} _ .,:W) (N —-1)55,, Let i=i+1,and go to step 2.
5. Compute the normalized predictor importance of X; :
AT oy V77— VI
NormV'I; 722,:1‘__1?
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Overview

This procedure performs ordinary least squares multiple linear regression with four methods for
entry and removal of variables (Neter, Wasserman, and Kutner, 1990).

Primary Calculations

Notation

The following notation is used throughout this chapter unless otherwise stated:

Yi Output field for record i with variance f;—

Ci Case weight for record i; in IBM® SPSS® Modeler, ¢; =1

9 Regression weight for record i; ¢; = 1 if regression weight is not specified
| Number of distinct records

u; ci g

w The sum of weights across records, Z‘i L Wi

p Number of input fields

¢ Sum of case weights, > | ¢;

L The value of the kth input field for record i

X e

~1
Sample mean for the kth input field, L{f

Y Sample mean for the output field, #
Sk Sample covariance for input fields X, and X
Syy Sample variance for output field Y
Sy Sample covariance for X, and Y
P Number of coefficients in the model. p* = p if the intercept is not included; otherwise
pr=p+1
R Sample correlation matrix for X; X, and ¥
Model Parameters

The summary statistics X; and covariance S;; are computed using provisional means algorithms
to update the values as each record is read:

- - . < Ef‘k

Xy = Xigh—y) + (i — Ai(k—l))ﬁ

and
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C;_j
-1

where, if the intercept is included,

Sjj =

2
v ¥ ~ v w.
C’r‘.j(k-} = C’r‘.j(k:—l) | (-Ta'k - X -z(k_n) (--?-’_;'k - A;,i(k:—l)) ('?Uk - H'l)

or if the intercept is not included,

Cije) = Cijh—1) + WpTin ji

where T, is the cumulative weight up to record k, and X ;. is the estimate of X'; up to record k.
For a regression model of the form

Yi=080+ 51Xy + BoXoi + .o+ BpXpi + ¢

sweep operations are used to compute the least squares estimates 1, of & and the associated
regression statistics (Dempster, 1969). The sweeping starts with the correlation matrix R,

iy o Tip Tiy
R — r21 ... Top T2y

Tyl o Typ Ty
where
rhj = bk:_'j

vV SkkSij
and
r r Sky
Tyk = Thky —

SkkSyy

Let R be the new matrix produced by sweeping on the kth row and column of R. The elements of
R are
. 1
Tk = ——

Tkk
- Tik .
ik = — 1 7é k

ik

Tky .
Ty = —] 7é k

Tk
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- TijThl = TikThky . .
Tij = " AF k] FEk
kk
If the above sweep operations are repeatedly applied to each row of R4, in
Ry Rp

R =

<R21 R
where R.;; contains the input fields in the equation at the current step, the result is

-1 -1
R = ( Ry . Ry Rl?-l >
RaiR; Ra _ RoR| | Ry

The last row of

Ry Ry

contains the standardized coefficients (also called beta), and

~1
Ros — Ro1RT Ry

can be used to obtain the partial correlations for the variables not in the equation, controlling for
the variables already in the equation. Note that this routine is its own inverse; that is, exactly the
same operations are performed to remove an input field as to enter it.

The unstandardized coefficient estimates b, ..., are calculated as

ryky/ Syy
Sir

by = LY

Vi

and the intercept by, if included in the model, is calculated as

bo=7y— Y bXp

M@

o
\
—_

Automatic Field Selection

Let r;; be the element in the current swept matrix associated with X; and X;. Variables are
entered or removed one at a time. X}, is eligible for entry if it is an input field not currently in
the model such that

Tee =t

and

TikTkj

J J

<?“U' — —>t <1
Tkk

where t is the tolerance, with a default value of 0.0001.
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The second condition above is imposed so that entry of the variable does not reduce the
tolerance of variables already in the model to unacceptable levels.
The F-to-enter value for X, is computed as

(C—p" =1V,

' —to—enter, = -
Tyy — Vi

with 1 and ¢ — p* — 1 degrees of freedom, where p* is the number of coefficients currently in
the model and

TykTky

Vi =
Tk

The F-to-remove value for X, is computed as

(C —p*) Vil

F —to—remove, =
Tyy

with 1 and ' — p* degrees of freedom.

Methods for Variable Entry and Removal

Four methods for entry and removal of variables are available. The selection process is repeated
until no more independent variables qualify for entry or removal. The algorithms for these four
methods are described below.

Enter

The selected input fields are all entered in the model, with no field selection applied.

Stepwise

If there are independent variables currently entered in the model, choose X such that
F — to — removey, IS minimum. X, is removed if F — to — remove;, < Fo (default = 2.71) or, if
probability criteria are used, P (F — to — removey) > P, (default = 0.1). If the inequality does
not hold, no variable is removed from the model.

If there are no independent variables currently entered in the model or if no entered
variable is to be removed, choose X, such that ' — {0 — enter,, is maximum. X is entered if
F —to — entery, > I, (default = 3.84) or, P (F — to — entery) < P, (default = 0.05). If the
inequality does not hold, no variable is entered.

At each step, all eligible variables are considered for removal and entry.

Forward

This procedure is the entry phase of the stepwise procedure.
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Backward

This procedure starts with all input fields in the model and applies the removal phase of the
stepwise procedure.

Blank Handling

By default, a case that has a missing value for any input or output field is deleted from the
computation of the correlation matrix on which all consequent computations are based. If the Only
use complete records option is deselected, each correlation in thecorrelation matrix R is computed
based on records with complete data for the two fields associated with the correlation, regardless
of missing values on other fields. For some datasets, this approach can lead to a non-positive
definite R matrix, so that the model cannot be estimated.

Secondary Calculations

Model Summary Statistics

The multiple correlation coefficient R is calculated as

R=\/1-ry

R-square, the proportion of variance in the output field accounted for by the input fields, is
calculated as

9
R*=1-=ry,

The adjusted R-square, which takes the complexity of the model relative to the size of the training
data into account, is calculated as

_ (1 — R?')p

Field Statistics and Other Calculations

The statistics shown in the advanced output for the regression equation node are calculated in the
same manner as in the REGRESSION procedure in IBM® SPSS® Statistics. For more details, see
the SPSS Statistics Regression algorithm document, available at http://www.ibm.com/support.

Generated Model/Scoring

Predicted Values

The predicted value for a new record is calculated as


http://www.ibm.com/support
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p
g=1bo+ Y biX,
i=1

Blank Handling

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.
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Logistic Regression Models

Logistic regression is a well-established statistical method for predicting binomial or multinomial
outcomes. IBM® SPSS® Modeler now offers two distinct algorithms for logistic regression
modeling:

Multinomial Legistic. This is the original logistic regression algorithm used in SPSS Modeler,
introduced in version 6.0. It can produce models when the target field is a set field with more
than two possible values. See below for more information. It can also produce models for flag or
binary outcomes, though it doesn’t give the same level of statistical detail for such models as the
newer binomial logistic algorithm.

Binomial Logistic. This algorithm, introduced in SPSS Modeler 11, is limited to models where the
target field is a flag, or binary field. This algorithm provides some enhanced statistical output,
relative to the output of the multinomial algorithm, and is less susceptible to problems when the
number of cells (unique combinations of predictor values) is large relative to the number of
records. For more information, see the topic “Binomial Logistic Regression.”

For models with a flag output field, selection of a logistic algorithm is controlled in the modeling
node by the Procedure option.

Multinomial Logistic Regression

The purpose of the Multinomial Logistic Regression procedure is to model the dependence of a
nominal (symbolic) output field on a set of symbolic and/or numeric predictor (input) fields.

Primary Calculations

Field Encoding

In logistic regression, each symbolic (set) field is recoded as a group of numeric fields, with one
numeric field for each category or value of the original field, except the last category, which is
defined as a reference category. For each record, the value of the derived field corresponding to
the category of the record is set to 1.0, and all of the other derived field values are set to 0.0. For
records which have the value of the reference category, all derived fields are set to 0.0. Such
derived fields are sometimes called dummy fields, and this recoding is called dummy coding.
For example, consider the following data, where x is a symbolic field with possible values A,

B, and C:

Record # X X1’ Xy’
1 B 0 1
2 A 1 0
3 C 0 0
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In this data, the original set field x is recoded into two derived fields x;” and x2”. X1 is an
indicator for category A, and x»” is an indicator for category B. The last category, category C, is
the reference category; records belonging to this category have both x1” and x2” set to 0.0.

Notation

The following notation is used throughout this chapter unless otherwise stated:

¥ The output field, which takes integer values from 1 to J.

J The number of categories of the output field.

m The number of subpopulations.

x4 m x p* matrix with vector-element @', the observed values at the ith
subpopulation, determined by the input fields specified in the command.

X m X p matrix with vector-element = 2 the observed values of the location
model’s input fields at the ith subpopulation.

i The sum of frequency weights of the observations that belong to the cell
corresponding to ¥ = j at subpopulation i.

N The sum of all »,,’s.

Tig The cell probability corresponding to ¥ = j at subpopulation i.

log (i /mik) The logit of response category j relative to response category k.

B; = (By1s ey Bip) p x 1 vector of unknown parameters in the jth logit (that is, logit of response
category j to response category J).

p Number of parameters in each logit. p > 1.

T Number of non-redundant parameters in logit j after maximum likelihood

estimation. p > pi” > 0.
nr The total number of non-redundant parameters after maximum likelihood

estimation. p"" =""1pl
B=(4,..8,,) (k — 1)p x 1 vector of unknown parameters in the model.
~ ~ " !
B= (8{, ...,,3,’,_1) The maximum likelihood estimate of B.
i The maximum likelihood estimate of r,,.

Data Aggregation

Observations are aggregated by the definition of subpopulations. Subpopulations are defined by
the cross-classifications of the set of input fields.
Let »; be the marginal count of subpopulation i,

k
n; = E ‘7’.’..',".’,'
Jj=1
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If there is no observation for the cell of ¥ = j at subpopulation i, it is assumed that »,; = 0,
provided that n; # 0. A non-negative scalar § € [0, 1) may be added to any zero cell (that is, cell
with n;; = 0) if its marginal count », is nonzero. The value of § is zero by default.

Generalized Logit Model
In a generalized logit model, the probability ;; of response category j at subpopulation i is

exp (x'i5)
J—1

1+ Z exp (x’.;;’a’k)

k=1

Tij =

where the last category J is assumed to be the reference category.
In terms of logits, the model can be expressed as

Tiq
log (H_—J> = ngdj
g J

forj=1, ..., J-1L

When J = 2, this model is equivalent to the binary logistic regression model. Thus, the above
model can be thought of as an extension of the binary logistic regression model from binary
response to polytomous nominal response.

Log-Likelihood

The log-likelihood of the model is given by

m J

I(B) —ZZNU log (m;;)

=1 j=1

m J ,
=) il < exp (¥'s5) )
=1

i=1j 1+ z,{:ll exp (x';5;)

A constant that is independent of parameters has been excluded here. The value of the constant

isc=>"log(n!/(nal.nis")).

Model Parameters

Derivatives of the Log-Likelihood

Foranyj=1,...,J-1,s=1, ..., p, the first derivative of | with respectto 3, is

0! m
Z HU'—??,/I,J)
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Foranyj,j’=1,...,J-1ands, t=1, ..., p, the second derivative of | with respect to 3;, and 3; is

m
LN (535 = i)
r aa - LT — Ty
08:,006
HisU gt i—1

where 6;;; =1 ifj = 4, 0 otherwise.

Maximum Likelihood Estimate

To obtain the maximum likelihood estimate of B, a Newton-Raphson iterative estimation method
is used. Notice that this method is the same as Fisher-Scoring iterative estimation method in
this model, since the expectation of the second derivative of | with respect to B is the same
as the observed one.

Let 91/0B be the (.7 — 1)p x 1 vector of the first derivative of | with respect to B. Moreover,
let [0°1/0BOB] be the (J — 1)p x (J — 1)p matrix of the second derivative of | with respect to B.
Notice that —[9*//oBaB] = 37" | X A;X;" where A isa (J — 1) x (J — 1) matrix as

i—=

!/
A = -n.i(D'z'ag (ng'”) — 71‘57'”7??'” )

inwhich ' ~" = (71, ... 7:,_1) and Dia.g(;.—f"”) is a 3;. diagonal matrix of =\ ="', Let B*) be
the parameter estimate at iteration v, the parameter estimate 3~ * 1) at iteration » - 1 is updated as

m I
(v+1) _ p) * (V} #! N
B =B 4| YoxialX ) o

i=1

and ¢ > 0 is a stepping scalar such that /(B ~1)) — {(B™)) > 0, X" isa (J — 1)p x (J — 1) matrix
of independent vectors,

x; 0 ... 0

X: — U X1
SU—
0 0 xi

and A" is A, and 91/9B™) is 9i/9B , both evaluated at B = B(").
Stepping

Use step-halving method if /(B! 1)) — I(B"")) < 0. Let V be the maximum number of steps in
step-halving, the set of values of ¢ is {1/2" : v =0,...,V — 1}.

Starting Values of the Parameters

/
If intercepts are included in the model, set 5" = (;35‘.,”, 0, ...,0) where
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R

~

i

(0 Tig i
A =tog (2] =1og | L—
J >\ 7 =

forj=1, ..., J-1L

If intercepts are not included in the model, set

59 = (0, ..., 0/
forj=1, ..., J-1L

Convergence Criteria

Given two convergence criteria ¢, > 0 and ¢, > 0, the iteration is considered to be converged
if one of the following criteria are satisfied:

LB ) = 1(BM)] < e

r+1l) —
max; BE ) BY| < ¢,

3. The maximum above element in a1/B* 1 is less than min (¢, ¢,)-

Checking for Separation

The algorithm checks for separation in the data starting with iteration »<"*<r (20 by default). To
check for separation:

1 For each subpopulation i, find j* : 7;;- = max; (7;;).
2. If n;;- = n;, then there is a perfect prediction for subpopulation i.

3. If all subpopulations have perfect prediction, then there is complete separation. If some patterns
have perfect prediction and the Hessian of B is singular, then there is quasi-completeseparation.

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.
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Secondary Calculations

Model Summary Statistics

Log-Likelihood

Initial model with intercepts. If intercepts are included in the model, the predicted probability for
the initial model (that is, the model with intercepts only) is

m

E nij

and the value of -2 log-likelihood of the initial model is

m J

—21(7) = —2 Z Z nijlog (7;5)-

Initial model with no intercepts. If intercepts are not included in the model, the predicted
probability for the initial model is

1

and the value of -2 log-likelihood of the initial model is

—2[(7) = —2N log (%)

Final model. The value of -2 log-likelihood of the final model is

m J

—2l(1) = -2 Z Z nijlog (7i;).

Model Chi-Square

The model chi-square is given by
—~21(%) — {~2()}
If the final model includes intercepts, then the initial model is an intercept-only model. Under

the null hypothesis that H, : 3"ereerts — 0, the model chi-square is asymptotically chi-squared
distributed with p"" — (.J — 1) degrees of freedoms.
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If the model does not include intercepts, then the initial model is an empty model. Under the
null hypothesis that H, : &= 0, the Model Chi-square is asymptotically chi-squared distributed
with p™" degrees of freedoms.

Pseudo R-Square Measures

Cox and Snell. Cox and Snell’s 1#? is calculated as

o (4)

Nagelkerke. Nagelkerke’s R? is calculated as

. RZ
R} = —Cf —.
1— L(#)%

McFadden. McFadden’s 2” is calculated as

. I(7)
Ry =1—(-—=)
v=1- (i)

Goodness-of-Fit Measures

Pearson. The Pearson goodness-of-fit measure is

Under the null hypothesis, the Pearson goodness-of-fit statistic is asymptotically chi-squared
distributed with (. — 1) — p"" degrees of freedom.

Deviance. The deviance goodness-of-fit measure is

mJ "
D— sz-n,ﬂog (7?2')

i=1 j=1 /

Under the null hypothesis, the deviance goodness-of-fit statistic is asymptotically chi-squared
distributed with m(.J — 1) — p"" degrees of freedom.

Field Statistics and Other Calculations

The statistics shown in the advanced output for the logistic equation node are calculated in the
same manner as in the NOMREG procedure in IBM® SPSS® Statistics. For more details, see the
SPSS Statistics Nomreg algorithm document, available at http://www.ibm.com/support.
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Stepwise Variable Selection

Several methods are available for selecting independent variables. With the forced entry method,
any variable in the variable list is entered into the model. The forward stepwise, backward
stepwise, and backward entry methods use either the Wald statistic or the likelihood ratio statistic
for variable removal. The forward stepwise, forward entry, and backward stepwise use the score
statistic or the likelihood ratio statistic to select variables for entry into the model.

Forward Stepwise (FSTEP)

1. Estimate the parameter and likelihood function for the initial model and let it be our current model.

2. Based on the MLEs of the current model, calculate the score statistic or likelihood ratio statistic
for every variable eligible for inclusion and find its significance.

3. Choose the variable with the smallest significance (p-value). If that significance is less than the
probability for a variable to enter, then go to step 4; otherwise, stop FSTEP.

4. Update the current model by adding a new variable. If this results in a model which has already
been evaluated, stop FSTEP.

5. Calculate the significance for each variable in the current model using LR or Wald’s test.

6. Choose the variable with the largest significance. If its significance is less than the probability for
variable removal, then go back to step 2. If the current model with the variable deleted is the same
as a previous model, stop FSTEP; otherwise go to the next step.

7. Modify the current model by removing the variable with the largest significance from the previous
model. Estimate the parameters for the modified model and go back to step 5.

Forward Only (FORWARD)

1. Estimate the parameter and likelihood function for the initial model and let it be our current model.

2. Based on the MLEs of the current model, calculate the score or LR statistic for every variable
eligible for inclusion and find its significance.

3. Choose the variable with the smallest significance. If that significance is less than the probability
for a variable to enter, then go to step 4; otherwise, stop FORWARD.

4. Update the current model by adding a new variable. If there are no more eligible variable left, stop

FORWARD; otherwise, go to step 2.

Backward Stepwise (BSTEP)

1 Estimate the parameters for the full model that includes the final model from previous method and

all eligible variables. Only variables listed on the BSTEP variable list are eligible for entry and
removal. Let current model be the full model.

Based on the MLEs of the current model, calculate the LR or Wald’s statistic for every variable
in the BSTEP list and find its significance.



Logistic Regression Algorithms

3. Choose the variable with the largest significance. If that significance is less than the probability
for a variable removal, then go to step 5. If the current model without the variable with the largest
significance is the same as the previous model, stop BSTEP; otherwise go to the next step.

4. Modify the current model by removing the variable with the largest significance from the model.
Estimate the parameters for the modified model and go back to step 2.

5 Check to see any eligible variable is not in the model. If there is none, stop BSTEP; otherwise,
go to the next step.

6. Based on the MLEs of the current model, calculate LR statistic or score statistic for every variable
not in the model and find its significance.

7. Choose the variable with the smallest significance. If that significance is less than the probability
for the variable entry, then go to the next step; otherwise, stop BSTEP.

8 Add the variable with the smallest significance to the current model. If the model is not the
same as any previous models, estimate the parameters for the new model and go back to step
2; otherwise, stop BSTEP.

Backward Only (BACKWARD)

1 Estimate the parameters for the full model that includes all eligible variables. Let the current
model be the full model.

2. Based on the MLEs of the current model, calculate the LR or Wald’s statistic for all variables
eligible for removal and find its significance.

3. Choose the variable with the largest significance. If that significance is less than the probability
for a variable removal, then stop BACKWARD; otherwise, go to the next step.

4. Modify the current model by removing the variable with the largest significance from the model.
Estimate the parameters for the modified model. If all the variables in the BACKWARD list are
removed then stop BACKWARD; otherwise, go back to step 2.

Stepwise Statistics

The statistics used in the stepwise variable selection methods are defined as follows.

Score Function and Information Matrix

The score function for a model with parameter B is:

U (B) = A

The (j,s)th element of the score function can be written as

U (B, =G5

T
=3 @is (nij — nimi;)
i=1
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Similarly, elements of the information matrix are given by

G921 B)
(B =52

DA, 008
m

— E NGT T Ty (()M., f'rr.,-f-r)
i=1

where d,,; = 1if j = j', 0 otherwise.

(Note that 7, in the formula are functions of B)

Block Notations

By partitioning the parameter B into two parts, B1 and By, the score function, information matrix,
and inverse information matrix can be written as partitioned matrices:

v~ (D08

((‘.}F(Bl.B_-) >

_ OB,

- (B, B:)
dBs

where [ (By, Bs) =1 (B)

I(B) = I(BL,BQ)
_ (1 (Bi,B2) 12 (B, B2)
I (BL,BQ) Iyo (BlaBZ)
3%1(By,B:)  871(B1.Bs2)
_ OB,0B, OB,08>
- ( 9%1(B1,B2)  971(B1.B2) )

OB20B, OB20 B

where

Jio = I Lo da
Jor = JL,
Jao = [Iyy — Iny Iy 11a)

Ju =I5 4+ I e I I

Typically, B1 and By are parameters corresponding to two different sets of effects. The dimensions
of the 1st and 2nd partition in U, I and J are equal to the numbers of parameters in By and
B, respectively.

Score Test

Suppose a base model with parameter vector By... with the corresponding maximum likelihood
estimate By.... Weare interested in testing the significance of an extra effect E if it is added to the
base model. For convenience, we will call the model with effect E the augmented model. Let
B be the vector of extra parameters associated with the effect E, then the hypothesis can be
written as
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H{)ZBEZO V.S.HlZBb‘;&O

Using the block notations, the score function, information matrix and inverse information of the
augmented model can be written as

Lrban‘(’ (Bhnsr—:a Bb) >

U (Bim.s(—:aBE) = < U}:j (ma%’ Bb‘)

Ihn sebase (Bi'm se9 Bh) Ibn se, B (Bbﬂ se9 Bb)
Ih‘,iumr: (ann‘(ia Bh) IH:H (BIJ['JH(:‘? Bb)

I(B:‘J(mrz‘,Bh) - <

JIJ!].:-:‘F-.._]JUHF: (Bbo.s'm Bb) Jhn.rsé:.h' (Bbasm Bh) )

J(Bpase, Bp) =
( baser Bk ) ( Jh"hﬂ.n‘(-: (Bbmsm Bb) J}L'.H (Bbrln‘(i’ Bh)

Then the score statistic for testing our hypothesis will be
. T . .
s = DTE (Bbc.z.rsm 0) J-‘T:E (B{m s€9 0) DTE (Blzrzesr:y 0)

where Ug (Bbm_o) and Jy (B;,,m, 0) are the 2nd partition of score function and inverse
information matrix evaluated at B,,,.. = Bj... and B =0 .

Under the null hypothesis, the score statistic s has a chi-square distribution with degrees of
freedom equal to the rank of J 2 (By, Bs). If the rank of J; 1 (B, B,) is zero, then the score
statistic will be set to 0 and the p-value will be 1. Otherwise, if the rank of .j, . (B, B>) is

rp g > 0, then the p-value of the test isequal to 1 — F' (s;r), where F (-, r.) is the cumulative
distribution function of a chi-square distribution with - degrees of freedom.

Computational Formula for Score Statistic

When we compute the score statistic s, it is not necessary to re-compute (Bbm,o) and

I ( Bpase,0) from scratch. The score function and information matrix of the base model can be
reused in the calculation. Using the block notations introduced earlier, we have

L'Tbu..-."(‘ (Bbaaf:: D) U (Bbam:>

U (Bbumfy 0) = ~ -

D'E (Bf)n.c:'z:-. 0) LTE (Bbm:z'-, 0)
and

! (B!m_m;> IEJH.H(;‘.H (Bﬁ(rnt'n l})

Ih:‘h”-“'ﬁ (Bba s€) 0) Ih'.h' (Bbaa‘t’: 0)

I (Bbruf:an) =

In stepwise logistic regression, it is necessary to compute one score test for each effect that are not
in the base model. Since the 1st partition of 7 (Bbw 0) and (Bbm , 0) depend only on the

base model, we only need to compute /. (Bgmc, 0), Tonee 12 (B;m_w, 0) and Ip (Bbu,ﬁ.,}, 0) for
each new effect.
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If 3;, is the s-th parameter of the j-th logit in By, .. and 8y is the t-th parameter of k-th logit in

By, then the elements of U/ (B;,a,,e,(]), Thase i (B;,,h.m U) and Te (Bb,m.__\, U) can be expressed
as follows:

|:(/TE (-‘éb(wca n)]kt = Zl T (”i’ﬂ' - 'fl'tfrik)

m

{jf{:.’i (Uhuuﬁ:ao)]}‘_r o =Y it (G — fig)
" i=1

m

|:Iba.-.~'<_:.E (Bhamea U)] . = = E 77--/::1’--:9,-:[’:“!7:_4.,{ ({S_,i}.' - fréi\:)
js.k n
i=1

where 7, ;- are computed under the base model.

Wald's Test

In backward stepwise selection, we are interested in removing an effect F from an already fitted
model. For a given base model with parameter vector By, .., We want to use Wald’s statistic to
test if effect F should be removed from the base model. If the parameter vector for the effect F is
By, then the hypothesis can be formulated as

HU:BFZO VS.HlIBF?éO

In order to write down the expression of the Wald’s statistic, we will partition our parameter vector
(and its estimate) into two parts as follows:

1 - B he se ',
Bbu.»:p = < B])J”BM-' \f ) and Bb(“}.() = ( [-é' 3 >
F P

The first partition contains parameters that we intended to keep in the model and the 2nd partition
contains the parameters of the effect F, which may be removed from the model. The information
matrix and inverse information will be partitioned accordingly,

Ifm.m)\ F.base'\ F (Hfm sel s Bbmﬁr\ [") [?)Crh'!i WL (Hl’m‘xﬁ"- Fy BF) >
I(Bpuse) = ; ) ‘ ’ ) )
( ’ () ( II".F?(I..&E““-‘ ra (Hhu..\rt'\_‘ Fs HF) II"J" (Hhu..ua‘x_lf-‘-. HF)
and
‘j’)ﬂ.h(“'\ F.base' F ( Hhu.m"\_ I Hf}r;m*"\ [") ‘Lm.m""«_ F.F (Hfm.ur"'- I BF) >
T (Bhane) = \Fbase - ‘ - |
( base ) ( Jn" Jbaseh F (Hhum"\.l": BF) J["J" (Hhum"-.. FOn HF)

Using the above notations, the Wald’s statistic for effect F can be expressed as

w = BF I:JF_F (Hhrmr Wy BF)} 7BF

Under the null hypothesis, w has a chi-square distribution with degrees of freedom equal to the
rank of Jy i (Byuserp, Br ). If the rank of Jp o (By..e r, Br) i zero, then Wald’s statistic will be
set toOand the p-value will be 1. Otherwise, if the rank of .7,y ( By, 1, Br) IS g : 7 > 0, then
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the p-value of the test is equal to 1 — 7 (w; r ), where 7 (w; r) is the cumulative distribution
function of a chi-square distribution with r degrees of freedom.

Generated Model/Scoring

Predicted Values

The predicted value for a record i is the output field category j with the largest logit value r, ;,

[ Ty o
rij=log| — | =x i3
iy J

forj=1, ..., J-1. The logit for reference category J,r,;, is 1.0.

Predicted Probability
The probability for the predicted category j* for scored record i is derived from the logit for
category j*,
) exp (rij) exp (x'i5)
frij = _

J—1 - J—1
1+ Z exp (rij’) 1+ Z exp (X’i,i'3’,i;)
k=1 k=1

If the Append all probabilities option is selected, the probability is calculated for all J categories
in a similar manner.

Blank Handling
Records with missing values for any input field cannot be scored and are assigned a predicted
value and probability value(s) of $null$.
Binomial Logistic Regression
For binomial models (models with a flag field as the target), IBM® SPSS® Modeler uses an
algorithm optimized for such models, as described here.
Notation

The following notation is used throughout this chapter unless otherwise stated:

The number of observed cases
The number of parameters

y n x 1 vector with element y;, the observed value of the ith case of the
dichotomous dependent variable
X n x p matrix with element =, ;, the observed value of the ith case of the

jth parameter
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5 p x 1 vector with element /3;, the coefficient for the jth parameter
w n x 1 vector with element w;, the weight for the ith case

| Likelihood function

L Log-likelihood function

|

Information matrix

Model

The linear logistic model assumes a dichotomous dependent variable Y with probability n, where
for the ith case,

. _expin:)
T Trexp (1)

or

In (l’j_) =n = X;H

i

Hence, the likelihood function | for n observations , . with probabilities . ~ and
case weights ., . ,can be written as

n
W

au ; i (l—yy)
l:H ;r!.!h(lin__{,)“z( yi)

=1
It follows that the logarithm of | is

n

L=I(l)= Z (wiy; In (7;) +w, (1 —y;) In (1 — m;))

i=1

and the derivative of L with respect to 3; is

n
o OL . o
LI-XJ BRCET E U-'a.(,f;'z - Jl:,).,(u
i=1

Maximum Likelihood Estimates (MLE )

The maximum likelihood estimates for 3 satisfy the following equations

n

> wily; — #i)ai; = 0, for the jth parameter

i=1

where z;p =1fori=1,...,n.
Note the following:

1. A Newton-Raphson type algorithm is used to obtain the MLEs. Convergence can be based on
m  Absolute difference for the parameter estimates between the iterations
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m Percent difference in the log-likelihood function between successive iterations
m  Maximum number of iterations specified

2. During the iterations, if 7, (1 — ;) is smaller than 108 for all cases, the log-likelihood function

is very close to zero. In this situation, iteration stops and the message “All predicted values
are either 1 or 0” is issued.

After the maximum likelihood estimates /3 are obtained, the asymptotic covariance matrix is
estimated by 71, the inverse of the information matrix I, where

i ai,

I= 7[5( 0°L )] ~ X WVX,
V = Diag{i (1 —71), ..., 70 (1 —7n)},

W = Diag{wy, ..., w,},

~ __exp (i)
= Trexp (i)
and

‘o

'ﬁ, — Xi 3

Stepwise Variable Selection

Several methods are available for selecting independent variables. With the forced entry method,
any variable in the variable list is entered into the model. There are two stepwise methods:
forward and backward. The stepwise methods can use either the Wald statistic, the likelihood
ratio, or a conditional algorithm for variable removal. For both stepwise methods, the score
statistic is used to select variables for entry into the model.

Forward Stepwise (FSTEP)

1

If FSTEP is the first method requested, estimate the parameter and likelihood function for the
initial model. Otherwise, the final model from the previous method is the initial model for FSTEP.
Obtain the necessary information: MLEs of the parameters for the current model, predicted
probability, likelihood function for the current model, and so on.

Based on the MLEs of the current model, calculate the score statistic for every variable eligible for
inclusion and find its significance.

Choose the variable with the smallest significance. If that significance is less than the probability
for a variable to enter, then go to step 4; otherwise, stop FSTEP.

Update the current model by adding a new variable. If this results in a model which has already
been evaluated, stop FSTEP.

Calculate LR or Wald statistic or conditional statistic for each variable in the current model.
Then calculate its corresponding significance.
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6.

Choose the variable with the largest significance. If that significance is less than the probability
for variable removal, then go back to step 2; otherwise, if the current model with the variable
deleted is the same as a previous model, stop FSTEP; otherwise, go to the next step.

Modify the current model by removing the variable with the largest significance from the previous
model. Estimate the parameters for the modified model and go back to step 5.

Backward Stepwise (BSTEP)

1 Estimate the parameters for the full model which includes the final model from previous method
and all eligible variables. Only variables listed on the BSTEP variable list are eligible for entry
and removal. Let the current model be the full model.

2. Based on the MLEs of the current model, calculate the LR or Wald statistic or conditional statistic
for every variable in the model and find its significance.

3. Choose the variable with the largest significance. If that significance is less than the probability for
a variable removal, then go to step 5; otherwise, if the current model without the variable with the
largest significance is the same as the previous model, stop BSTEP; otherwise, go to the next step.

4. Modify the current model by removing the variable with the largest significance from the model.
Estimate the parameters for the modified model and go back to step 2.

5. Check to see any eligible variable is not in the model. If there is none, stop BSTEP; otherwise,
go to the next step.

6. Based on the MLEs of the current model, calculate the score statistic for every variable not in
the model and find its significance.

7. Choose the variable with the smallest significance. If that significance is less than the probability
for variable entry, then go to the next step; otherwise, stop BSTEP.

8 Add the variable with the smallest significance to the current model. If the model is not the
same as any previous models, estimate the parameters for the new model and go back to step
2; otherwise, stop BSTEP.

Stepwise Statistics
The statistics used in the stepwise variable selection methods are defined as follows.
Score Statistic

The score statistic is calculated for each variable not in the model to determine whether the
variable should enter the model. Assume that there are r, variables, namely, a;, ..., «., inthe
model and r- variables, ~1, ..., .., not in the model. The score statistic for ~, is defined as

2

S; = (Lf”) B
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if v; is not a categorical variable. If ~; is a categorical variable with m categories, it is converted to
a (m — 1)-dimension dummy vector. Denote these new m — 1 variables as 7;, ..., % ,,—». The
score statistic for ~; is then

’

Si = (L) By L2

Y

where (Lz)'= (L:;(, O _2) and the (m — 1) x (m — 1) matrix Bas; is

Vit m

Boyi = (As; — A‘!LiA]illAlZ.i)il

in which « is the design matrix for variables a;, ..., «,, and ~; is the design matrix for dummy

variables #;, ..., 4 ...—2>. Note that a contains a column of ones unless the constant term

is excluded from n. Based on the MLEs for the parameters in the model, V is estimated by
V = Diag{7(1 — ), ..., 7, (1 — 7,)}. The asymptotic distribution of the score statistic is a
chi-square with degrees of freedom equal to the number of variables involved.

Note the following:

1 If the model is through the origin and there are no variables in the model, B2 ; is defined by
A3 and V isequal to 1T,

2 If Bao; is not positive definite, the score statistic and residual chi-square statistic are set to be zero.

Wald Statistic

The Wald statistic is calculated for the variables in the model to determine whether a variable
should be removed. If the ith variable is not categorical, the Wald statistic is defined by

2]

K]

Wald, = -

If it is a categorical variable, the Wald statistic is computed as follows:

Let ,3,- be the vector of maximum likelihood Qstimates associatedwith the m — 1 dummy variables,
and C the asymptotic covariance matrix for 3;. The Wald statistic is

Wald; = 3,C~1 5

The asymptotic distribution of the Wald statistic is chi-square with degrees of freedom equal to
the number of parameters estimated.
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Likelihood Ratio (LR) Statistic

The LR statistic is defined as two times the log of the ratio of the likelihood functions of two
models evaluated at their MLEs. The LR statistic is used to determine if a variable should

be removed from the model. Assume thatthere are r; variables in the current model which is
referred to as a full model. Based on the MLEs of the full model, I(full) is calculated. For each of
the variables removed from the full model one at a time, MLEs are computed and the likelihood
function I(reduced) is calculated. The LR statistic is then defined as

LR=-2In (%) = —2(L(reduced) — L( full))

LR is asymptotically chi-square distributed with degrees of freedom equal to the difference
between the numbers of parameters estimated in the two models.

Conditional Statistic

The conditional statistic is also computed for every variable in the model. The formula for the
conditional statistic is the same as the LR statistic except that the parameter estimates for each
reduced model are conditional estimates, not MLEs. The conditional estimates are defined as

follows. Let 3 = (,.’?l, .. .,;S’N) be the MLE for the, variables in the model and C be the

asymptotic covariance matrix for 3. If variable z; is removed from the model, the conditional
estimate for the parameters left in the model given g is

. o\ —1
) 5 (1) i 5
By =By — ep (Cgf) Bi

where 3; is the MLE for the parameter(s) associated with 5, and ;3{,) is 3 with 3; removed, cfl‘_j is
the covariance between 3(;) and /;, and ¢y is the covariance of $3;. Then the conditional statistic

is computed by

2 (L (Bm) — L(full))

where L (;’5‘( ,--)) is the log-likelihood function evaluated at 3.

Statistics

The following output statistics are available.

Initial Model Information

If 3y is not included in the model, the predicted probability is estimated to be 0.5 for all cases and
the log-likelihood function L(0) is

L(0) = Win (0.5) = —0.6931472W

with W7 = Z w;. If 3y is included in the model, the predicted probability is estimated as

i=1
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n

) " wiy
s =1
np — 7‘/‘/

and g is estimated by

:{7)[) =1In (ljt;_”)

with asymptotic standard error estimated by

_ 1

o, = ——m—
o v Wi (l—7q)

The log-likelihood function is

L0)y =W [fru In (:‘T{m) Fln(l— fr”).]

Model Information

The following statistics are computed if a stepwise method is specified.

-2 Log-Likelihood
=23 (wyy In (7:) + wi(1 = y;) In (1 = #,))
i1

Model Chi-Square
2(log-likelihood function for current model — log-likelihood function for initial model)

The initial model contains a constant if it is in the model; otherwise, the model has no terms.

The degrees of freedom for the model chi-square statistic is equal to the difference between the
numbers of parameters estimated in each of the two models. If the degrees of freedom is zero, the
model chi-square is not computed.

Block Chi-Square

2(log-likelihood function for current model — log-likelihood function for the final model from
the previous method)

The degrees of freedom for the block chi-square statistic is equal to the difference between the
numbers of parameters estimated in each of the two models.

Improvement Chi-Square

2(log-likelihood function for current model — log-likelihood function for the model from the
last step)

The degrees of freedom for the improvement chi-square statistic is equal to the difference between
the numbers of parameters estimated in each of the two models.
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Goodness of Fit
zn: wily; — 7".3)2
mi(l =)

i=1 ¢

Cox and Snell’s R-Square (Cox and Snell, 1989; Nagelkerke, 1991)

o 1(0) W
s =1 (())

where [( 3) is the likelihood of the current model and 1(0) is the likelihood of the

initial model; that is, /(0] = W log (0.5) if the constant is not included in the model,

10} = Wls,log {7,/(1 — 7,)} + log (1 — 7,)] if the constant is included in the model, where
o = Slw,y fW.

R,

S

Nagelkerke’s R-Square (Nagelkerke, 1981)
R%, = R{.g/max (RZ)

where max (RZ) = 1 — {1(0)}*"",

Hosmer-Lemeshow Goodness-of-Fit Statistic

The test statistic is obtained by applying a chi-square test on a 2 x g contingency table. The
contingency table is constructed by cross-classifying the dichotomous dependent variable with
a grouping variable (with g groups) in which groups are formed by partitioning the predicted
probabilities using the percentiles of the predicted event probability. In the calculation,
approximately 10 groups are used (g=10). The corresponding groups are often referred to as the
“deciles of risk” (Hosmer and Lemeshow, 2000).

If the values of independent variables for observation i and i’ are the same, observations i and
i” are said to be in the same block. When one or more blocks occur within the same decile, the
blocks are assigned to this same group. Moreover, observations in the same block are not divided
when they are placed into groups. This strategy may result in fewer than 10 groups (that is,

g < 10) and consequently, fewer degrees of freedom.

Suppose that there are Q blocks, and the gth block has mg number of observations, ¢ =1,..., .
Moreover, suppose that the kth group (k = 1,. .., g) is composed of the q1th, ..., gkth blocks of
observations. Then the total number of observations in the kth group is s, = Zi*m;. The total
observed frequency of events (that is, Y=1) in the kth group, call it O1, is the total number of
observations in the kth group with Y=1. Let E1k be the total expected frequency of the event in the
kth group; then Eqk is given by E;. = s.&, where &, is the average predicted event probability
for the kth group.

— Yk, = fa
&= mejrrﬂf.s;,.

The Hosmer-Lemeshow goodness-of-fit statistic is computed as
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g
9 (O — Eup)’
VL= Z B (1—&)
The p value is given by Pr(x* > v%, ) where y* is the chi-square statistic distributed with
degrees of freedom (g—2).

Information for the Variables Not in the Equation

For each of the variables not in the equation, the score statistic is calculated along with the
associated degrees of freedom, significance and partial R. Let .X; be a variable not currently in
the model and 5; the score statistic. The partial R is defined by

[ 5, —2xdf ;
Partial_ R = { V —2L{inilial) if > 2 X
0 df otherwise

where df is the degrees of freedom associated with S;, and L{iniétial) is the log-likelihood
function for the initial model.
The residual Chi-Square printed for the variables not in the equation is defined as

’

Res = (Lé) B Ly

where Ig = (L Iim)

Information for the Variables in the Equation

For each of the variables in the equation, the MLE of the Beta coefficients is calculated along with
the standard errors, Wald statistics, degrees of freedom, significances, and partial R. If X; is not a
categorical variable currently in the equation, the partial R is computed as

Partial R — 519" (ﬁr) \,‘f —2L(initial) it (LZ(-L_ > 2
0 otherwise

If X; is a categorical variable with m categories, the partial R is then
Partial R = |~ ~2LGmitian 1T Waldi > 2(m — 1)
0 otherwise
Casewise Statistics

The following statistics are computed for each case.

Individual Deviance

The deviance of the ith case, &, is defined as

o= 2(y; In (7;) + (1 — ;) In (1 — 7)) ify; >m
e fx/z(u? In(m) + (L —y)In(l —7,)) otherwise
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Leverage
The leverage of the ith case, %, is the ith diagonal element of the matrix
V%X(X’CVX) XV
where
V = Diag{a (1 — 1), ..., 70 (1 —7,)}
Studentized Residual

Gr = G
2 A'4 1—}!,.('

Logit Residual

g [
€ = 71—

where e; = y; — 7i;

Standardized Residual

e
P e . S—
z? —

A/ Fi(1—75)

Cook’s Distance

D' _ :?Fe,
i =

1—h;

DFBETA

Let A3; be the change of the coefficient estimates from the deletion of case i. It is computed as

(X'C\"fx) X e
l*flg

AS; =
Predicted Group

If 7; > 0.5, the predicted group is the group in which

y=1. Note the following:

For the unselected cases with nonmissing values for the independent variables in the analysis,
the leverage (E,) is computed as
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.t A -1
h = V.X ,-(X cvx) X,

For the unselected cases, the Cook’s distance and DFBETA are calculated based on f:a,i .

Generated Model/Scoring

For each record passed through a generated binomial logistic regression model, a predicted value
and confidence score are calculated as follows:

Predicted Value

The probability of the value y = 1 for record i is calculated as

exp (71;)
1+ exp (1)

1>

iy =

where

oA

n=X; 3

If # > 0.5, the predicted value is 1; otherwise, the predicted value is 0.

Confidence

For records with a predicted value of y = 1, the confidence value is wFor records with a predicted
value of y = 0, the confidence value is (1 — 7)

Blank Handling (generated model)

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.






Neural Networks Algorithms

Neural networks predict a continuous or categorical target based on one or more predictors by
finding unknown and possibly complex patterns in the data.

For algorithms on enhancing model accuracy, enhancing model stability, or working with very
large datasets, see “Ensembles Algorithms.”
Multilayer Perceptron

The multilayer perceptron (MLP) is a feed-forward, supervised learning network with up to two
hidden layers. The MLP network is a function of one or more predictors that minimizes the
prediction error of one or more targets. Predictors and targets can be a mix of categorical and
continuous fields.

Notation

The following notation is used for multilayer perceptrons unless otherwise stated:

xm) — (a:(lm)) :r:})) Input vector, pattern m, m=1,...M.

ym _ (y;m, 95?“) Target vector, pattern m.

| Number of layers, discounting the input layer.

J Number of units in layer i. Jo = P, Jj = R, discounting the bias unit.

re Set of categorical outputs.

r Set of continuous outputs.

Iy Set of subvectors of Y™ containing 1-of-c coded hth categorical field.
aiy Unit j of layer i, pattern m, j = 0,...,.f;;4 =0, ..., I.

Wik Weight leading from layer i—1, unit j to layer i, unit k. No weights connect

ai™ 1., and the bias «%y; that is, there is no ;. for any j.

m Jio1

c
tk 1 -
Z Wi el =1,

i=0

¥i () Activation function for layer i.
w . - .
Weight vector containing all weights (wlzg‘l, W1.0,2y 0y 'w;:JI_lfJI)
Architecture

The general architecture for MLP networks is:
Input layer: Jy=P units, ag.1, - -, ag.z,: With ag.; = x;.

. . . - e Jic1 Trar
ith hidden layer: J; units, a;.1, - -+, a;.y,: With aip = i (cie) and ¢ = 3750 wizj k@i—1;; where
a; 1.0 = 1.
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b

Output layer: J7=R units, .1, -, @15, With ap.p = v (cr.r) and cpp = E wy.j k@i—1:; Where
5=0

a; 1.0 =1L

Note that the pattern index and the bias term of each layer are not counted in the total number
of units for that layer.

Activation Functions

Hyperholic Tangent

€ _ o€

Y(¢) =tanh (¢) = pr—
This function is used for hidden layers.
Identity

() =¢

This function is used for the output layer when there are continuous targets.

Softmax
exp ()
¥ ((fk) = -
Z exp (¢;)
Jely,
This function is used for the output layer when all targets are categorical.

Error Functions

Sum-of-Squares

M
w) = Z En (w)

m=1

where

n
1 m 2
m ‘-" — 52 <UT ) _(Tr‘)
r=1

This function is used when there are continuous targets.
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Cross-Entropy

M
Er(w) = Z En (w)

m=1
where
m
‘m ay.
Em (w) = _Z y'('m) log ( (T')
rele Yro

This function is used when all targets are categorical.

Expert Architecture Selection
Expert architecture selection determines the “best” number of hidden units in a single hidden layer.

A random sample is taken from the entire data set and split into training (70%) and testing samples
(30%). The size of random sample is N = 1000. If entire dataset has less than N records, use all of
them. If training and testing data sets are supplied separately, the random samples for training and
testing should be taken from the respective datasets.

Given Kmin and Kmax , the algorithm is as follows.
1. Start with an initial network of k hidden units. The default is k=min(g(R,P),20,h(R,P)), where

_f |45+VPTR] R<5P>8
9(R,P) = { 054+ 05(P+R)|  otherwise

where | | denotes the largest integer less than or equal to x. h (R, P) = ,J‘f%’ﬂ] is the maximum
number of hidden units that will not result in more weights than there are records in the entire
training set.

If K < Kmin, set k = Kipin. Else if kK > Kmax, set k = Kmax. Train this network once via the alternated
simulated annealing and training procedure (steps 1 to 5).

2. Ifk>Kmin, set DOWN=TRUE. Else if training error ratio > 0.01, DOWN=FALSE. Else stop and
report the initial network.

3. If DOWN=TRUE, remove the weakest hidden unit (see below); k=k—1. Else add a hidden unit;
k=k+1.

4. Using the previously fit weights as initial weights for the old weights and random weights for the
new weights, train the old and new weights for the network once through the alternated simulated
annealing and training procedure (steps 3 to 5) until the stopping conditions are met.

5. If the error on test data has dropped:

If DOWN=FALSE, If k< Kmax and the training error has dropped but the error ratio is still above
0.01, return to step 3. Else if k> Kmin, return to step 3. Else, stop and report the network with the
minimum test error.
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Else if DOWN=TRUE, If |k—kg|>1, stop and report the network with the minimum test error. Else
if training error ratio for k=Kkg is bigger than 0.01, set DOWN=FALSE, k=kg return to step 3. Else
stop and report the initial network.

Else stop and report the network with the minimum test error.
If more than one network attains the minimum test error, choose the one with fewest hidden units.

If the resulting network from this procedure has training error ratio (training error divided by error
from the model using average of an output field to predict that field) bigger than 0.1, repeat the
architecture selection with different initial weights until either the error ratio is <=0.1 or the
procedure is repeated 5 times, then pick the one with smallest test error.

Using this network with its weights as initial values, retrain the network on the entire training set.

The weakest hidden unit

For each hidden unit j, calculate the error on the test data when j is removed from the network.
The weakest hidden unit is the one having the smallest total test error upon its removal.

Training
The problem of estimating the weights consists of the following parts:

» Initializing the weights. Take a random sample and apply the alternated simulated annealing
and training procedure on the random sample to derive the initial weights. Training in step 3 is
performed using all default training parameters.

» Computing the derivative of the error function with respect to the weights. This is solved via
the error backpropagation algorithm.

» Updating the estimated weights. This is solved by the gradient descent or scaled conjugate
gradient method.

Alternated Simulated Annealing and Training

The following procedure uses simulated annealing and training alternately up to K1 times.

Simulated annealing is used to break out of the local minimum that training finds by perturbing
the local minimum K times. If break out is successful, simulated annealing sets a better initial

weight for the next training. We hope to find the global minimum by repeating this procedure K3
times. This procedure is rather expensive for large data sets, so it is only used on a random sample
to search for initial weights and in architecture selection. Let K1=K»>=4, K3=3.

1. Randomly generate K2 weight vectors between [ag—a, ag+a], where ag=0 and a=0.5. Calculate

the training error for each weight vector. Pick the weights that give the minimum training error
as the initial weights.

2. Set ky=0.

3. Train the network with the specified initial weights. Call the trained weights w.
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4. If the training error ratio <= 0.05, stop the k1 loop and use w as the result of the loop. Else set
k1 = kq+1.

5. If kg <Ky, perturb the old weight to form K new weights ' — w 1 w,, by adding K3 different
random noise y, between [a(ki), a(ki)] where , (k1) = (0.5 Py Let g . be the weights that
give the minimum training error among all the perturbed weights. If £ W) < Br (w) set the
initial weights to be w,;,,, return to step 3. Else stop and report w as the final result.

Else stop the k1 loop and use w as the result of the loop.

If the resulting weights have training error ratio bigger than 0.1, repeat this algorithm until either
the training error ratio is <=0.1 or the procedure is repeated K3 times, then pick the one with

smallest test error among the result of the k1 loops.

Error Backpropagation
Error-backpropagation is used to compute the first partial derivatives of the error function with
respect to the weights.

L[ (P  tanh

First note that " () — {
P 1 identity

The backpropagation algorithm follows:

For each i,j,k, set diEiJ =0.

For each m in group T; For each p=1,...,J, let

v dFE,,
Op = dey,

{ T if cross-entropy error is used

v (¢7) (a’;;, —~ y};”’)) otherwise

For each i=l,...,1 (start from the output layer); For each j=1,...,Jj; For each k=0,...,Ji-1

OE,

aly,  _ gmom S
» Let Dy O-i:jaifl‘.i.'.’ where (}_,:j = oo

b Set PEr _ 9Er | OE,

g g g,
,.r;
> Ifk>0andi>1, set o, =y (<"y,) Y 6w,
=1
I-1
This gives us a vector of Z (J; + 1) Jiy 1 elements that form the gradient of £ (wy,) .
=0

Gradient Descent

Given the learning rate parameter n, (set to 0.4) and momentum rate « (set to 0.9), the gradient
descent method is as follows.

1. Let k=0. Initialize the weight vector to wy, learning rate to ;. Let Aw, =0 .
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2. Read all data and find g, () and its gradient g, = VE; (uy,)- If |g,| < 107, stop and report
the current network.

I oelo] < alAw] o = l).f)m;%- This step is to make sure that the steepest gradient descent
direction dominates weight change in next step. Without this step, the weight change in next step
could be along the opposite direction of the steepest descent and hence no matter how small 7, is,
the error will not decrease.

4. Letwv = wy, — g, + alAwy

5 W E; (v) < Ep (wy), thensetw, | = v, Awp o1 = wy. ) — wy, and oy, = ny, Else g, = .5n and
return to step 3.

6. If astopping rule is met, exit and report the network as stated in the stopping criteria. Else let
k=k+1 and return to step 2.

Model Update

Given the learning rate parameters 7, (set to 0.4) and 7;.... (set to 0.001), momentum rate « (set
to 0.9), and learning rate decay factor § = (1/pK)*In(no/miow), the gradient descent method for
online and mini-batch training is as follows.

1. Letk=0. Initialize the weight vector to wy, learning rate to n,. Let Awy =0 .

2. Read records in T;, (7;. is randomly chosen) and find Er, (w;) andits gradient g, = VE7, (w;.).

If melae] < ol Awg)r a = 0.9 ‘ gﬁi‘ . This step is to make sure that the steepest gradient descent
direction dominates weight change in next step. Without this step, the weight change in next step
could be along the opposite direction of the steepest descent and hence no matter how small 1, is,

the error will not decrease.

4. Letv = wi —megr + adw.

5. If E'J‘k (’.’.‘) < EJ'.L- (i‘j’g.), then set Wpi1 =0 and A’U_‘k L] = Wy — Wi E|Se
W1 = Wy, Aw,n,; 1= A'w;\:.

6. M1 = E_d.'r”\" If Me+1 < THows then set He+1 = Mow-

7. If astopping rule is met, exit and report the network as stated in the stopping criteria. Else let
k=k+1 and return to step 2.

Scaled Conjugate Gradient

To begin, initialize the weight vector to w, and let N be the total number of weights.

1. k=0. Set scalars Ay = 5.0E — 7,0 = 5.0E —5,Ag = 0. Setry = py = —-VE (wy), and
success=true.

2. If success=true, find the second-order information: o, — o Sk = YEr(wetorpe) -V Er(we)
- . ke k
dr = p! sy, Where the superscript t denotes the transpose.
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3' Set (5;‘. = (S;\. T (/\.‘\: — H) h)“Z.
4. If 5, < 0, make the Hessian positive definite: ¥~ — 2(/\A- - ﬁ) Sr = — 0k + Arlpi| Ae = Mg

5. Calculate the step size: i = pjry, o = §&,

6. Calculate the comparison parameter: A, = 23, =2 (Wf-')*"-;:""f-'—””’*)].

7. 1fA; =0 | error can be reduced. Setwi .1 = Wy + aupi, Y1 = —VEr (W), If
v 1| < 107 return wy.,, as the final weight vector and exit. SetA_k = 0, success=true. If k mod
N=0, restart the algorithm: p;. ., = r; 1, else set 3, = wﬁ% Prit =Teo1 4 Supy. If
Ay > .75, reduce the scale parameter: A, = 1A else (if Ax < 0): Set A = Ak, success=false.

8. If A, < .25, increase the scale parameter: ), — X, | ‘(‘;)7“3')
k

9. If success=false, return to step 2. Otherwise if a stopping rule is met, exit and report the network
as stated in the stopping criteria. Else set k=k+1, At 1= Ax, Ay .1 = Ax and return to step 2.

Note: Each iteration requires at least two data passes.

Stopping Rules

Training proceeds through at least one complete pass of the data. Then the search should be
stopped according to following criteria. These stopping criteria should be checked in the listed
order. When creating a new model, check after completing an iteration. During a model update,
check criteria 1, 3, 4, 5 and 6 is after completing a data pass, and only check criterion 2 after an
iteration. In the descriptions below, a “step” means an iteration when building a new model and
a data pass when performing a model update. Let E1 denote the current minimum error and

K1 denote the iteration where it occurs for the training set, E» and K> are that for the overfit
prevention set, and K3=min(K1,K2).

1. At the end of each step compute the total error for the overfit prevention set. From step Ko, if the
testing error does not decrease below E2 over the next n=1 steps, stop. Report the weights at step
Ko. If there is no overfit prevention set, this criterion is not used for building a new model; for a
model update when there is no overfit prevention set, compute the total error for training data at
the end of each step. From step Kj, if the training error does not decrease below Ej over the next
n=1 steps, stop. Report the weights at step K.

2. The search has lasted beyond some maximum allotted time. For building a new model, simply
report the weights at step K3. For a model update, even though training stops before the

completion of current step, treat this as a complete step. Calculate current errors for training and
testing datasets and update E1, K1, E2, K2 correspondingly. Report the weights at step K3.

3. The search has lasted more than some maximum number of data passes. Report the weights
at step Ks.

4, Stop if the relative change in training error is small: __ £ (w)=Fy(wa)| o for 5 — 1-10 and

LB (ws)+Er(we_1)+0)
€1 = 10~ where w1, @1 are the weight vectors of two consecutive steps. Report weights
at step Ks.
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~ ., for

5. The current training error ratio is small compared with the initial error: ‘ Fr(wk)
Er+48
d=10""and 2 = 107%, where E' is the total error from the model}\ljsing the average of an

output field to predict that field; £+ is calculated by using a7, = 7 Z "™ in the error function,
=1

where 1, is the weight vector of one step. Report weights at step Kg?-

6. The current accuracy meets a specified threshold. Accuracy is computed based on the overfit
prevention set if there is one, otherwise the training set.

Note: In criteria 4 and 5, the total error for whole training data is needed. For model updates,
these criteria will not be checked if there is an overfit prevention set.

Model Updates

When new records become available, the synaptic weights can be updated. The new records are
split into groups of the size R = min(M,2N,1000), where M is the number of training records and N
is the number of weights in the network. A single data pass is made through the new groups to
update the weights. If the last of the new groups has more than one-quarter of the records of a
normal group, then it is processed normally; otherwise, it remains in the internal buffer so that
these records can be used during the next update. Thus, after the last update there may be some
unused records remaining in the buffer that will be lost.

Radial Basis Function
A radial basis function (RBF) network is a feed-forward, supervised learning network with only
one hidden layer, called the radial basis function layer. The RBF network is a function of one or

more predictors that minimizes the prediction error of one or more targets. Predictors and targets
can be a mix of categorical and continuous fields.

Notation

The following notation is used throughout this chapter unless otherwise stated:

ylm) (-‘*1‘(1"”, .”7'],;:::) Input vector, pattern m, m=1,...M.
yim) — (_U(-m: y(m;) Target vector, pattern m.
— \ 1 yrey R
| Number of layers, discounting the input layer. For an RBF network, 1=2.
Ji Number of units in layer i. Jg =P, Jj = R, discounting the bias unit. J1
is the number of RBF units.
o (Xa-w:r)) jth RBF unit for input X j=1, ... 1.
I center of @;, it is P-dimensional.
Ty width of ¢;, it is P-dimensional.

h the RBF overlapping factor.
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ai Unit j of layer i, patternm, j = 0,..., /;;¢ = 0,..., I.
Wy weight connecting rth output unit and jth hidden unit of RBF layer.
Architecture

There are three layers in the RBF network:
Input layer: Jo=F units, ag.1,- -, @o..5,: With ag;; = ;.

RBF layer: J1 units, , aj.q,---,a1.5,; With a;,; = ¢, (X) and

P P
; ' 1 ]. 2
¢ (X) =exp (Z F = fjp) )/Z exp < Z o2 (2p — Hjp) )
p=1 Jp p=1 JI
gy
Output layer: J2=R units, a;.1, -+, a7.1.; With ay., = w,q 4 Z wyd; (X))
j=1

Error Function

Sum-of-squares error is used:

M
= Z E, (w)

m=1

where

it 2
T?.‘, m
Em E (Ur - ”‘f:?’)

r=1

l\DIi—‘

The sum-of-squares error function with identity activation function for output layer can be

used for both continuous and categorical targets. For continuous targets, 7!, approximates the
conditional expectation of the target value F (y.|.X (")). For categorical targets, a}", approximates
the posterior probability of class k: P (y, = 1|X (™).

Note: though Xa7!, =1 (the sum is over all classes of the same categorical target field), a7,
may not lie in the range [0, 1].

Training
The network is trained in two stages:

1 Determine the basis functions by clustering methods. The center and width for each basis function is
computed.

2. Determine the weights given the basis functions. For the given basis functions, compute the
ordinary least-squares regression estimates of the weights.



Neural Networks Algorithms

The simplicity of these computations allows the RBF network to be trained very quickly.

Determining Basis Functions

The two-step clustering algorithm is used to find the RBF centers and widths. For each cluster, the
mean and standard deviation for each continuous field and proportion of each category for each
categorical field are derived. Using the results from clustering, the center of the jth RBF is set as:

- [z, ifpthfieldis continuous
Hip 7, if pthfield is a dummy field of a categorical field

where 7, is the jth cluster mean of the pth input field if it is continuous, and = ;, is the proportion
of the category of a categorical field that the pth input field corresponds to. The width of the
jth RBF is set as

e Sip if pth field is continuous
%ip =1 pip (1—p;,) if pthfield is a dummy field of a categorical field

where s;, is the jth cluster standard deviation of the pth field and h>0 is the RBF overlapping
factor that controls the amount of overlap among the RBFs. Since some «;, may be zeros, we use
spherical shaped Gaussian bumps; that is, a common width

in for all predictors. In the case that o is zero for some j, set it to be min {7; : o; # 0,}';7;. If all
o ; are zero, set all of them to be Vh.

P

When there are a large number of predictors, Z (z, — /.:J,-;.,)2 could be easily very large and hence

p=1
P

exp —Z QLQ(J’I, — ;;..,-}_,)2 is practically zero for every record and every RBF unit if o, is
=1 U} -

relativefy small. This is especially bad for ORBF because there would be only a constant term in

the model when this happens. Toavoid this, o; is increased by setting the default overlapping

factor h proportional to the number of inputs: h=1+ 0.1 P.

Automatic Selection of Number of Basis Functions

The algorithm tries a reasonable range of numbers of hidden units and picks the “best”. By
default, the reasonable range [K1, K2] is determined by first using the two-step clustering method
to automatically find the number of clusters, K. Then set K1 = min(K, R) for ORBF and K;

=max{2, min(K, R)} for NRBF and Ky=max(10, 2K, R).
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If a test data set is specified, then the “best” model is the one with the smaller error in the test
data. If there is no test data, the BIC (Bayesian information criterion) is used to select the “best”
model. The BIC is defined as

BIC =MRIn(MSF) + kln (M)

M R 2
where MSE = 15 Z Z (y{.”” - a’;f.r) is the mean squared error and k= (P+1+R)J1 for
=1
NRBF and (P+1+R)J;+R for ORBF is the number of parameters in the model.

m=1r

Model Updates

When new records become available, you can update the weights connecting the RBF layer and
output layer. Again, given the basis functions, updating the weights is a least-squares regression
problem. Thus, it is very fast.

For best results, the new records should have approximately the same distribution as the
original records.

Missing Values

The following options for handling missing values are available:
®  Records with missing values are excluded listwise.

®  Missing values are imputed. Continuous fields impute the average of the minimum and
maximum observed values; categorical fields impute the most frequently occurring category.

Output Statistics

The following output statistics are available. Note that, for continuous fields, output statistics are
reported in terms of the rescaled values of the fields.

Accuracy

For continuous targets, it is

K . \2
R2—1_ Lk\flfk(yk - UA-)
K —\2
SK (o —0)
where y = X1, fiun
Note that R2 can never be greater than one, but can be less than zero.

For the naive model, 3. is the modal category for categorical targets and the mean for continuous
targets.
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For each categorical target, this is the percentage of records for which the predicted value matches
the observed value.

Predictor Importance

For more information, see the topic “Predictor Importance Algorithms.”

Confidence

Confidence values for neural network predictions are calculated based on the type of output field
being predicted. Note that no confidence values are generated for numeric output fields.

Difference

The difference method calculates the confidence of a prediction by comparing the best match with
the second-best match as follows, depending on output field type and encoding used.

m Flag fields. Confidence is calculated as ¢ = 2 |0.5 — o, where 0 is the output activation
for the output unit.

m  Setfields. With the standard encoding, confidence is calculated as ¢ = o; — 02, Where o; is
the output unit in the fields group of units with the highest activation, and o is the unit
with the second-highest activation.

With binary set encoding, the sum of the errors comparing the output activation and the
encoded set value is calculated for the closest and second-closest matches, and the confidence
is calculated as ¢ = e; — ¢, Where e, is the error for the second-best match and e, is the
error for the best match.

Simplemax

Simplemax returns the highest predicted probability as the confidence.
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OPTIMAL BINNING Algorithms

The Optimal Binning procedure performs MDLP (minimal description length principle)
discretization of scale variables. This method divides a scale variable into a small number of
intervals, or bins, where each bin is mapped to a separate category of the discretized variable.
MDLP is a univariate, supervised discretization method. Without loss of generality, the
algorithm described in this document only considers one continuous attribute in relation to a
categorical guide variable — the discretization is “optimal” with respect to the categorical guide.
Therefore, the input data matrix S contains two columns, the scale variable A and categorical

guide C.

Optimal binning is applied in the Binning node when the binning method is set to Optimal.

Notation

The following notation is used throughout this chapter unless otherwise stated:

S

s(i)

TA

Ent(S)

E(A T,S)
Gain(A, T, S)
n

W

Simple MDLP

The input data matrix, containing a column of the scale variable A and a
column of the categorical guide C. Each row is a separate observation, or
instance.

A scale variable, also called a continuous attribute.
The value of A for the ith instance in S.

The number of instances in S.

A set of all distinct values in S.

A subset of S.

The categorical guide, or class attribute; it is assumed to have k
categories, or classes.

A cut point that defines the boundary between two bins.
A set of cut points.

The class entropy of S.

The class entropy of partition induced by T on A.

The information gain of the cut point T on A.

A parameter denoting the number of cut points for the equal frequency
method.

A weight attribute denoting the frequency of each instance. If the weight
values are not integer, they are rounded to the nearest whole numbers before
use. For example, 0.5 is rounded to 1, and 2.4 is rounded to 2. Instances
with missing weights or weights less than 0.5 are not used.

This section describes the supervised binning method (MDLP) discussed in Fayyad and Irani

(1993).

Class Entropy

Let there be k classes C1, ..., Ck and let P(Cj, S) be the proportion of instances in S that have
class Cj. The class entropy Ent(S) is defined as
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k
Ent(S) ==Y P(C;,S)log, (P (C;, 5))
i=1

Class Information Entropy

For an instance set S, a continuous attribute A, and a cut point T, let S; < S be the subset of
instances in S with the values of A < T, and Sp = S—S3. The class information entropy of the
partition induced by T, E(A, T; S), is defined as

S
Ent (5)) 4 | S:||Ent (S52)

~
.

S1l
5]

E(A.T:S) =

Information Gain

Given a set of instances S, a continuous attribute A, and a cut point T on A, the information
gain of a cut point T is

Gain (A, T;S) = Ent(S)—E(A,T;S)

MDLP Acceptance Criterion

The partition induced by a cut point T for a set S of N instances is accepted if and only if

log, (N —1) } A(AT;S)
N N

Gain (A, T,5) >

and it is rejected otherwise.

Here A (A, T3 5) = log, (3% —2) — [k - Ent (S) — kyEnt (S1) — ko Ent (S2)] in which kj is the
number of classes in the subset S;j of S.

Note: While the MDLP acceptance criterion uses the association between A and C to determine
cut points, it also tries to keep the creation of bins to a small number. Thus there are situations in
which a high association between A and C will result in no cut points. For example, consider the
following data:

D Class

2 3
1 1 0
2 0 6

Then the potential cut pointis T = 1. In this case:

Gain (A, T;5) = 0.5916728
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= 0.6530774

logy (N — 1) n A(AT;S)
:\T A-\?

Since 0.5916728 < 0.6530774, T is not accepted as a cut point, even though there is a clear
relationship between A and C.

Algorithm: BinaryDiscretization

1

Calculate E(A, dj; S) for each distinct value dj € D for which dj and dj+1 do not belong to the same
class. A distinct value belongs to a class if all instances of this value have the same class.

Select a cut point T for which E(A, T; S) is minimum among all the candidate cut points, thatis,

T =argming, E (A, d; S)

Algorithm: MDLPCut

1.
2.
3.

> wo e

BinaryDiscretization(A, T; D, S).
Calculate Gain(A, T; S).

If Gain (A,T55) > lug?(j\,\!” | A["I’\;’ ) then

a) Ty =TaUT.
b) Split D into D1 and D2, and S into S and Sp.
¢) MDLPCut(A, Ta; D1, S1).

d) MDLPCut(A, Ta; Do, So). where S < S be the subset of instances in S with A-values < T, and
Sy = S-S3. D1 and D> are the sets of all distinct values in S3 and Sp, respectively.

Also presented is the iterative version of MDLPCut(A, Ta; D, S). The iterative implementation
requires a stack to store the D and S remaining to be cut.

First push D and S into stack. Then, while ( stack#@ ) do
Obtain D and S by popping stack.
BinaryDiscretization(A, T; D, S).

Calculate Gain(A, T; S).

If ~ - ¢4 .oy log.(N—1) | A(AT:S) then
Gain (A, T;8) > N | N

Ty =T4UT.
ii) Split D into D1 and Dy, and S into S1 and S».
iii) Push D1 and Sq into stack.

iv) Push D2 and Sy into stack.
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Note: In practice, all operations within the algorithm are based on a global matrix M. Its element,
mij, denotes the total number of instances that have value dj € D and belong to the jth class in S.

In addition, D is sorted in ascending order. Therefore, we do not need to push D and S into stack,
but only two integer numbers, which denote the bounds of D, into stack.

Algorithm: SimpleMDLP
1. Sort the set S with N instances by the value A in ascending order.
2. Find a set of all distinct values, D, in S.
3. Ta=20.
4. MDLPCuUt(A, Ta; D, S)
5. Sort the set Ta in ascending order, and output Ta.
Hybrid MDLP

When the set D of distinct values in S is large, the computational cost to calculate E(A, dj; S)
for each dj € D is large. In order to reduce the computational cost, the unsupervised equal
frequency binning method is used to reduce the size of D and obtain a subset Desf € D. Then the
MDLPCut(A, Ta; Ds, S) algorithm is applied to obtain the final cut point set Ta,.

Algorithm: EqualFrequency

o

A wonpoE

It divides a continuous attribute A into n bins where each bin contains N/n instances. n is a
user-specified parameter, where 1 <n < N.

Sort the set S with N instances by the value A in ascending order.

Def = ¢

j=1.

Use the aempirical percentile method to generate the dpi which denote the (=X x 100)th
percentiles.

D(_f = Dr;f J (1{1,),,; ; i=i+1

If i<n, then go to step 4.

Delete the duplicate values in the set Def.

Note: If, for example, there are many occurrences of a single value of A, the equal frequency
criterion may not be met. In this case, no cut points are produced.

Algorithm: HybridMDLP
1. D=9;
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N

. EqualFrequency(A, n, D; S).

w

Tao=0.

>

MDLPCut(A, Ta; D, S).

o

Output Ta.

Model Entropy

The model entropy is a measure of the predictive accuracy of an attribute A binned on the class
variable C. Given a set of instances S, suppose that A is discretized into | bins given C, where
the ith bin has the value Aj. Letting Sj CS be the subset of instances in S with the value Aj, the
model entropy is defined as:

J
Em =Y _ P(4) |- P(CjlA)log,P (C;jlA;)
i=1 =1

where P (4;) = ‘|§’s‘i|‘ and P (C}|A;) = PE,C(VQA;) =P (C;,5:).

Merging Sparsely Populated Bins

Occasionally, the procedure may produce bins with very few cases. The following strategy deletes
these pseudo cut points:

» Foragiven variable, suppose that the algorithm found ngjngs cut points, and thus nfjng+21 bins. For
bins i = 2, ..., nfinal (the second lowest-valued bin through the second highest-valued bin), compute
stzeof(b;)
min(sizeof(b;_1),sizeof(b;11))

where sizeof(bin) is the number of cases in the bin.

» When this value is less than a user-specified merging threshold, 4; is considered sparsely
populated and is merged with b;_, or b;.1, whichever has the lower class information entropy. For
more information, see the topic “Class Information Entropy.”

The procedure makes a single pass through the bins.

Blank Handling

In optimal binning, blanks are handled in pairwise fashion. That is, for every pair of fields
{binning field, target field}, all records with valid values for both fields are used to bin that
specific binning field, regardless of any blanks that may exist in other fields to be binned.
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Predictor Importance Algorithms

Predictor importance can be determined by computing the reduction in variance of the target
attributable to each predictor, via a sensitivity analysis. This method of computing predictor
importance is used in the following models:

m  Neural Networks
C5.0

C&RT

QUEST

CHAID
Regression
Logistic
Discriminant
GenLin

SVM

Bayesian Networks

Notation

The following notation is used throughout this chapter unless otherwise stated:

Y Target

X; Predictor, where j=1,....k

k The number of predictors

Y = f( X1, Xo,. ., AD) Model for Y based on predictors X, through X
Variance Based Method

Predictors are ranked according to the sensitivity measure defined as follows.

g — Vi B L”(E(Y /\’5))
L V(Y) - 1(}/)

where V(Y) is the unconditional output variance. In the numerator, the expectation operator E
calls for an integral over X_;; that is, over all factors but X;, then the variance operator V implies
a further integral over X

Predictor importance is then computed as the normalized sensitivity.
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Saltelli et al (2004) show that S; is the proper measure of sensitivity to rank the predictors in order
of importance for any combination of interaction and non-orthogonality among predictors.

The importance measure S; is the first-order sensitivity measure, which is accurate if the set of
the input factors (X1 , X2,..., Xk) is orthogonal/independent (a property of the factors), and
the model is additive; that is, the model does not include interactions (a property of the model)
between the input factors. For any combination of interaction and non-orthogonality among
factors, Saltelli (2004) pointed out that Sj is still the proper measure of sensitivity to rank the
input factors in order of importance, but there is a risk of inaccuracy due to the presence of
interactions or/and non-orthogonality. For better estimation of S;, the size of the dataset should
be a few hundred at least. Otherwise, S; may be biased heavily. In this case, the importance
measure can be improved by bootstrapping.

Computation

In the orthogonal case, it is straightforward to estimate the conditional variances V; by computing
the multidimensional integrals in the space of the input factors, via Monte Carlo methods as
follows.

Let us start with two input sample matrices M; and M, each of dimension Nx k:

lgl) ’l':(zl) ?]El)
2 2 2
M, = ;’I‘& ) .’I-‘g ) :1',2,_ )
-TEN) " gi\"') Zl"g;\!)
and
Zlfglf) ;[Télf) :{'itlf)
2/ 2/ 2
M, = .‘}’:(l ) ,‘}r:_(z ) 'T'Ec )
;r.‘&"\ ) ;r.'g"'\”) ;zrg\{ )

where N is the sample size of the Monte Carlo estimate which can vary from a few hundred to one
thousand. Each row is an input sample. From M, and M-, we can build a third matrix N ;.

B B

2 2 2) 2

N‘.',' — .’L’(l ) .’L'g ) .. ;TJ,(’- ’ e ;1‘,2, :
e S - N ... A

,T(‘\ ) T(z\ ) e 15 ) - 12 )

We may think of M, as the “sample” matrix, M. as the “resample” matrix, and IN; as the matrix
where all factors except X, are resampled. The following equations describe how to obtain the
variances (Saltelli 2002). The ‘hat” denotes the numeric estimates.
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where
1 2
2 (Y Ar) () ()
(}):\;\:Zf(% s gy, T, )]
r=1
"(E(}w/\;)) — LJ o JE‘,TQ(}/)
where
1 al () () (r) (’) !) (’) (] (!) {,)
7 7 (r) T ¥ " y . ;
(/;_A\’ 1Zlf(ll y g Ty ??k )f(il y Uy ,,1071), i ’I(IAI)"""‘!'F» )
r=
and
L= (0 0 O\ ) )
2 Ve T T T T ¥ r
-(})__Zf<Tl RDREE ’l,l’. )f(ll y Ly 7xk )
e

When the target is continuous, we simply follow the accumulation steps of variance and
expectations. For a categorical target, the accumulation steps are for each category of Y. For each
input factor, S; is a vector with an element for each category of Y. The average of elements of .S is
used as the estimation of importance of the ith input factor on Y.

Convergence. In order to improve scalability, we use a subset of the records and predictors when
checking for convergence. Specifically, the convergence is judged by the following criteria:

t (A Q.
LIRS [Si () = S| _

A
rel .
Dj:t—D+1 Si

where I = {i|S; ({) > 1/num}, D=100 and denotes the width of interest, 5; =5 Z S; (),

) A A j=t—D-+1
and ¢ = 0.005 defines the desired average relative error.

This specification focuses on “good” predictors; those whose importance values are larger than
average.

Record order. This method of computing predictor importance is desirable because it scales well to
large datasets, but the results are dependent upon the order of records in the dataset. To avoid the
effect of the record order, instead of using the original data directly, we take a sample from the
data and sort the sampled records before using them to calculate predictor importance. The
sampling method is based on a random seed determined by the value of each record, thus the
sampling results are always the same for the same dataset. The random seeds are then used to sort
the sampled records.
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Overview of QUEST

QUEST stands for Quick, Unbiased, Efficient Statistical Tree. It is a relatively new binary
tree-growing algorithm (Loh and Shih, 1997). It deals with split field selection and split-point
selection separately. The univariate split in QUEST performs approximately unbiased field
selection. That is, if all predictor fields are equally informative with respect to the target field,
QUEST selects any of the predictor fields with equal probability.

QUEST affords many of the advantages of C&RT, but, like C&RT, your trees can become
unwieldy. You can apply automatic cost-complexity pruning (see “Pruning”) to a QUEST tree to
cut down its size. QUEST uses surrogate splitting to handle missing values. For more
information, see the topic “Blank Handling.”

Primary Calculations

The calculations directly involved in building the model are described below.

Frequency Weight Fields

A frequency field represents the total number of observations represented by each record. It is
useful for analyzing aggregate data, in which a record represents more than one individual. The
sum of the values for a frequency field should always be equal to the total number of observations
in the sample. Note that output and statistics are the same whether you use a frequency field or
case-by-case data. The table below shows a hypothetical example, with the predictor fields sex
and employment and the target field response. The frequency field tells us, for example, that 10
employed men responded yes to the target question, and 19 unemployed women responded no.

Table 30-1
Dataset with frequency field
Sex Employment Response Frequency

M Y Y 10
M Y N 17
M N Y 12
M N N 21
F Y Y 11
F Y N 15
F N Y 15
F N N 19

The use of a frequency field in this case allows us to process a table of 8 records instead of
case-by-case data, which would require 120 records.
QUEST does not support the use of case weights.
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Model Parameters

QUEST deals with field selection and split-point selection separately. Note that you can specify
the alpha level to be used in the Expert Options for QUEST—the default value is (hominal = 0.05.

Field Selection

1. For each predictor field X, if X is a symbolic (categorical), or nominal, field, compute the p value
of a Pearson chi-square test of independence between X and the dependent field. If X is scale-level
(continuous), or ordinal field, use the F test to compute the p value.

2. Compare the smallest p value to a prespecified, Bonferroni-adjusted alpha level «g.

m |f the smallest p value is less than «g, then select the corresponding predictor field to
split the node. Go on to step 3.

m |f the smallest p value is not less than ccg, then for each X that is scale-level (continuous),

use Levene’s test for unequal variances to compute a p value. (In other words, test whether
X has unequal variances at different levels of the target field.)

m  Compare the smallest p value from Levene’s test to a new Bonferroni-adjusted alpha level | .

m If the p value is less than o, select the corresponding predictor field with the smallest p
value from Levene’s test to split the node.

m If the p value is greater than o, the node is not split.

Split Point Selection—Scale-Level Predictor

1 IfY has only two categories, skip to the next step. Otherwise, group the categories of Y into
two superclasses as follows:

m  Compute the mean of X for each category of Y.

m If all means are the same, the category with the largest weighted frequency is selected as one
superclass and all other categories are combined to form the other superclass. (If all means
are the same and there are multiple categories tied for largest weighted frequency, select
the category with the smallest index as one superclass and combine the other categories
to form the other.)

m |f the means are not all the same, apply a two-mean clustering algorithm to those means to
obtain two superclasses of Y, with the initial cluster centers set at the two most extreme class
means. (This is a special case of k-means clustering, where k = 2. For more information, see
the topic “Overview.”)

2. Apply quadratic discriminant analysis (QDA) to determine the split point. Notice that QDA
usually produces two cut-off points—choose the one that is closer to the sample mean of the
first superclass.

Split Point Selection—Symbolic (Categorical) Predictor

QUEST first transforms the symbolic field into a continuous field £ by assigning discriminant
coordinates to categories of the predictor. The derived field £ is then split as if it were any other
continuous predictor as described above.
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Chi-Square Test

The Pearson chi-square statistic is calculated as

J I

J=11i=1

2

where n;; = > f.lI(x, =1 /Ay, = j) is the observed cell frequency and +i;; is the expected
cell frequency for cell (xn =i, yn = j) from the independence model as described below. The

corresponding p value is calculated as p = Pr (3 > X?), where y? follows a chi-square
distribution with d = (J — 1)(I — 1) degrees of freedom.

Expected Frequencies for Chi-Square Test

For models with no case weights, expected frequencies are calculated as

R nin g
Mi; =
ﬂ‘.
where
J I J I

n; = E Nij, Nj = E Mg, N.. = E E Nij.

j=1 i=1 j=1i=1

F Test

Suppose for node t there are J; classes of target field Y. The F statistic for continuous predictor X
is calculated as

S N (F0 ) - 7(0) /0 - 1)

Fy = .

Zz?f ff( i— T (Y- )(f)> /(_\f(f) — Jg)
where
—(j) . Zi ,f.'r.""’n.ir('fht = ]) _ B Zgg f.,,_.‘I‘T,
7U) (1) = gt e L T(t) = —Njc(t)

The corresponding p value is given by
px =Pr (F(J, = 1,Ng(t) = Jy) > Fx)

where F(J;— 1, N¢(t) — J;) follows an F distribution with degrees of freedom J; — 1 and Ng(t) — J;.
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Levene's Test

For continuous predictor X, calculate z,, = |z,, — z“~)(t)|, where is the mean of X for records in
node t with target value yn. Levene’s F statistic for predictor X is the ANOVA F statistic for zy,.

Bonferroni Adjustment

The adjusted alpha level «g is calculated as the nominal value divided by the number of possible
comparisons.

For QUEST, the Bonferroni adjusted alpha level «g for the initial predictor selection is

Cnominal

(8 —=
B m
where m is the number of predictor fields in the model.

For the Levene test, the Bonferroni adjusted alpha level o¢_is

Xpominal

ajy =
m -+ me

where m¢ is the number of continuous predictor fields.

Discriminant Coordinates

For categorical predictor X with values {b1,...,b;}, QUEST assigns a score value from a continuous
variable & to each category of X. The scores assigned are chosen to maximize the ratio of between-
class to within-class sum of squares of  for the target field classes:

For each record, transform X into a vector of dummy fields g = (g1, ..., g1 )', where
o 1 x =20

gi 0 otherwise

Calculate the overall and class j mean of v:

Zn. Jngn =(j) _ Zn fn.gnir(yn = ])
— N 0BT T N
_'\f. _‘\lf'.j

g =
where f,, is the frequency weight for record n, gp is the dummy vector for record n, Ns is the

total sum of frequency weights for the training data, and Ng; is the sum of frequency weights
for records with category j.

Calculate the following I x I matrices:

B = i Ny (EU ) — E) (g(-ﬂ — g)l
=1
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’

T = Z fu(gn - g) (gn - g)

Perform singular value decomposition on Tto obtain T = QDQ’, where Q is an I x I orthogonal
matrix, D = diag(d|,...,d;) such that d; > ... > d; > 0. Let D=2 = diag (d},...,d;) Where

di = d;% if dj > 0, 0 otherwise. Perform singular value decomposition on D-3Q BQD* to
obtain its eigenvector a which is associated with its largest eigenvalue.

The largest discriminant coordinate of g is the projection
{=aD:Qg

Quadratic Discriminant Analysis (QDA)

To determine the cutpoint for a continuous predictor, first group the categories of the target field Y
to form two superclasses, A and B, as described above.

If min (s%, s3) = 0, order the two superclasses by their variance in increasing order and denote
the variances by s; < s3, and the corresponding means byz,, ... Let & be a very small positive
number, say £ = 10712, Set the cutpoint d based on 7, and e&:

d — .’1_‘1(146) ifT) <o
T 1 7T1(1 —¢€) otherwise

Blank Handling
Records with missing values for the target field are ignored in building the tree model.

Surrogate splitting is used to handle blanks for predictor fields. If the best predictor field to be
used for a split has a blank or missing value at a particular node, another field that yields a split
similar to the predictor field in the context of that node is used as a surrogate for the predictor
field, and its value is used to assign the record to one of the child nodes.

Note: If Surrogate splitting is used (where a particular rule does not fit into a node) the Confidence
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

For example, suppose that X* is the predictor field that defines the best split s* at node t. The
surrogate-splitting process finds another split s, the surrogate, based on another predictor field X
such that this split is most similar to s* at node t (for records with valid values for both predictors).
If a new record is to be predicted and it has a missing value on X* at node t, the surrogate split s is
applied instead. (Unless, of course, this record also has a missing value on X. In such a situation,
the next best surrogate is used, and so on, up to the limit of number of surrogates specified.)

In the interest of speed and memory conservation, only a limited number of surrogates is
identified for each split in the tree. If a record has missing values for the split field and all
surrogate fields, it is assigned to the child node with the higher weighted probability, calculated as



QUEST Algorithms

Nyt

Ny(t)

where Nt;j(t) is the sum of frequency weights for records in category j for node t, and N¢(t) is the
sum of frequency weights for all records in node t.

If the model was built using equal or user-specified priors, the priors are incorporated into the
calculation:

m(j) ., Nyit)
pp(t)  Ng(t)

where z(j) is the prior probability for category j, and p¢(t) is the weighted probability of a record
being assigned to the node,

.\-Y 7
j fi

where N j(t) is the sum of the frequency weights (or the number of records if no frequency
weights are defined) in node t belonging to category j, and Ng j is the sum of frequency weights
for records belonging to category in the entire training sample.

Predictive measure of association

Let fix-nx (resp. x-nx (¢)) be the set of learning cases (resp. learning cases in node t) that has
non-missing values of both X* and X. Let p (s* ~ sx|t) be the probability of sending a case in
hix-nx (t) to the same child by both s* and s, and 5 be the split with maximized probability
p(s* ~ Sx|t) = max,, (p(s* ~ sx|t)).

The predictive measure of association A (s* ~ 3 |t) between s* and 3 at node t is

win (pr,pr) — (L —p(s* = 5x|t))
min (pg, pr)

A" ~Gxl|t) =

where py, (resp. Pr is the relative probability that the best split s* at node t sends a case with
non-missing value of X™ to the left (resp. right) child node. And where

Z T (j) Nu,j (5" = sx,t)

ifY'is categorical

N *
p(s*" = sxt) = j Ny, (X* N X)
No(s'msx ) {fVis continuous
N, (X*NX) 1Y 18 continuous
with

No(X*NX)= > wfo.N(X'0NX,00= Y w.f,

nChx=nx nehx+nx(t)
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Ny (8" & sy, 1) = Z w, fol(n:s" ~sxy)

nChx-nx(t)

"\E-‘-'-j (Xﬁ. lw X) = Z u"nfn_‘[ (UN = Jl)l *'Nruf.j (X* |w X) = Z u"nfn_‘[ (.“}‘H. = 1‘)

nEhx=nx nefix-nx(t)

Nuj (" msx, )= Z Wy fod (4 = I (n:s* & sx)

n&hfix=nx(1)

and I (n : s* ~ sx ) being the indicator function taking value 1 when both splits s* and s x send
the case n to the same child, O otherwise.

Effect of Options

Stopping Rules

Stopping rules control how the algorithm decides when to stop splitting nodes in the tree. Tree
growth proceeds until every leaf node in the tree triggers at least one stopping rule. Any of the
following conditions will prevent a node from being split:

m  The node is pure (all records have the same value for the target field)
m  All records in the node have the same value for all predictor fields used by the model

m  The tree depth for the current node (the number of recursive node splits defining the current
node) is the maximum tree depth (default or user-specified).

m  The number of records in the node is less than the minumum parent node size (default or
user-specified)

®  The number of records in any of the child nodes resulting from the node’s best split is less
than the minimum child node size (default or user-specified)

Profits

Profits are numeric values associated with categories of a (symbolic) target field that can be used
to estimate the gain or loss associated with a segment. They define the relative value of each value
of the target field. Values are used in computing gains but not in tree growing.

Profit for each node in the tree is calculated as

> fiBp;
i

where j is the target field category, fj(t) is the sum of frequency field values for all records in node
t with category j for the target field, and Pj is the user-defined profit value for category j.
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Priors

Prior probabilities are numeric values that influence the misclassification rates for categories of
the target field. They specify the proportion of records expected to belong to each category of the
target field prior to the analysis. The values are involved both in tree growing and risk estimation.

There are three ways to derive prior probabilities.

Empirical Priors

By default, priors are calculated based on the training data. The prior probability assigned to each
target category is the weighted proportion of records in the training data belonging to that category,

. Aru‘.j

In tree-growing and class assignment, the Ns take both case weights and frequency weights
into account (if defined); in risk estimation, only frequency weights are included in calculating
empirical priors.

Equal Priors

Selecting equal priors sets the prior probability for each of the J categories to the same value,
. 1
m(j) =7

User-Specified Priors

When user-specified priors are given, the specified values are used in the calculations involving
priors. The values specified for the priors must conform to the probability constraint: the sum of
priors for all categories must equal 1.0. If user-specified priors do not conform to this constraint,
adjusted priors are derived which preserve the proportions of the original priors but conform

to the constraint, using the formula

m(7)
> ()

where 7 ’(j) is the adjusted prior for category j, and z(j) is the original user-specified prior for
category j.

T (j) =

Costs

If misclassification costs are specified, they are incorporated into split calculations by using
altered priors. The altered prior is defined as

m(t) = S C(Hr()
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where C'(7) =3, C(il4).

Misclassification costs also affect risk estimates and predicted values, as described in the following
sections.

Pruning

Pruning refers to the process of examining a fully grown tree and removing bottom-level splits
that do not contribute significantly to the accuracy of the tree. In pruning the tree, the software
tries to create the smallest tree whose misclassification risk is not too much greater than that of the
largest tree possible. It removes a tree branch if the cost associated with having a more complex
tree exceeds the gain associated with having another level of nodes (branch).

It uses an index that measures both the misclassification risk and the complexity of the tree,
since we want to minimize both of these things. This cost-complexity measure is defined as
follows:

R, (T)=R(T)+a

R(T) is the misclassification risk of tree T, and f‘ is the number of terminal nodes for tree T. The
term o represents the complexity cost per terminal node for the tree. (Note that the value of « is
calculated by the algorithm during pruning.)

Any tree you might generate has a maximum size (Tmax), in which each terminal node contains
only one record. With no complexity cost (« = 0), the maximum tree has the lowest risk, since
every record is perfectly predicted. Thus, the larger the value of o, the fewer the number of
terminal nodes in T(a), where T(«) is the tree with the lowest complexity cost for the given a. As
o increases from 0O, it produces a finite sequence of subtrees (T1, T2, T3), each with progressively
fewer terminal nodes. Cost-complexity pruning works by removing the weakest split.

The following equations represent the cost complexity for {t}, which is any single node, and
for Ty, the subbranch of {t}.

R, ({f}) =R (?‘) +
Ra(T)) = R(T)) + a ‘Tf‘

If R.(T;) is less than R, ({f}), then the branch Tt has a smaller cost complexity than the single
node {t}.

The tree-growing process ensures that 72, ({t}) > R.(T;) for (a = 0). As a increases from 0,
both R.({t}) and R.,(T;) grow linearly, with the latter growing at a faster rate. Eventually, you
will reach a threshold «, such that R, ({t}) < R, (T;) forall @ > o’. This means that when «
grows larger than o, the cost complexity of the tree can be reduced if we cut the subbranch T;
under {t}. Determining the threshold is a simple computation. You can solve this first inequality,
R.({t}) = R.(Ty), to find the largest value of a for which the inequality holds, which is also
represented by g(t). You end up with
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R(t) — R(T})

a<g(t) = —
7 -1

You can define the weakest link (t) in tree T as the node that has the smallest value of g(t):

g(f) = lfléi%l g(t)

Therefore, as a increases, t is the first node for which R, ({{}) = R.(T;). Atthat point, {t}
becomes preferable to 17, and the subbranch is pruned.
With that background established, the pruning algorithm follows these steps:

» Setap = 0 and start with the tree T1 = T(0), the fully grown tree.

» Increase « until a branch is pruned. Prune the branch from the tree, and calculate the risk estimate
of the pruned tree.

» Repeat the previous step until only the root node is left, yielding a series of trees, Tq, Ty, ... Tk

» If the standard error rule option is selected, choose the smallest tree Top; for which

R(Top) < mkin R(Ty) +m x SE(R(T))

» If the standard error rule option is not selected, then the tree with the smallest risk estimate R(T)
is selected.

Secondary Calculations

Secondary calculations are not directly related to building the model but give you information
about the model and its performance.

Risk Estimates

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for
the tree as a whole.

Risk Estimates for Symbolic Target Field

For classification trees (with a symbolic target field), the risk estimate r(t) of a node t is computed
as

() = 5 X N CE D)
J
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where C(j*(t)|j) is the misclassification cost of classifying a record with target value j as j*(t),
Nrj(t) is the sum of the frequency weights for records in node t in category j (or the number of
records if no frequency weights are defined), and Ns is the sum of frequency weights for all
records in the training data.

If the model uses user-specified priors, the risk estimate is calculated as

pRRALELITB

Jj fi

Gain Summary

The gain summary provides descriptive statistics for the terminal nodes of a tree.
If your target field is continuous (scale), the gain summary shows the weighted mean of the
target value for each terminal node,

g(f) = Z -wj.,,:;:.i

icl

If your target field is symbolic (categorical), the gain summary shows the weighted percentage of
records in a selected target category,

> ice Jiil(J)
Z-ief ff

where xj(j) = 1 if record x; is in target category j, and 0 otherwise. If profits are defined for the
tree, the gain is the average profit value for each terminal node,

g(t) =>_ fiP(x;)

iet

g(t,j)=

where P(x;) is the profit value assigned to the target value observed in record x;.

Generated Model/Scoring

Calculations done by the QUEST generated model are described below.

Predicted Values

New records are scored by following the tree splits to a terminal node of the tree. Each terminal
node has a particular predicted value associated with it, determined as follows:

For trees with a symbolic target field, each terminal node’s predicted category is the category with
the lowest weighted cost for the node. This weighted cost is calculated as
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min C(i| ) p(lt)
i Z (il7)pGilt

J

where C(i|j) is the user-specified misclassification cost for classifying a record as category i when
it is actually category j, and p(j|t) is the conditional weighted probability of a record being in
category j given that it is in node t, defined as

Nw,' (1)

—Nu‘.j

pli,t)

pljlt) = m,p(.ﬁf) =7(j)

where 7z(j) is the prior probability for category j, Nw,(t) is the weighted number of records in node
t with category j (or the number of records if no frequency or case weights are defined),

Nuj(t) = wifij(i)

i€l
and Ny j is the weighted number records in category j (any node),

Nyj = Z wi fij(7)

€T

Confidence

Confidence for a scored record is the proportion of weighted records in the training data in the
scored record’s assigned terminal node that belong to the predicted category, modified by the
Laplace correction:

_\YJJ (T) 1
.Nf(f) + &

Note: If Surrogate Splitting is used (where a particular rule does not fit into a node) the Confidence
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

Blank Handling

In classification of new records, blanks are handled as they are during tree growth, using
surrogates where possible, and splitting based on weighted probabilities where necessary. For
more information, see the topic “Blank Handling.”



Self-Learning Response Model
Algorithms

Self-Learning Response Models (SLRMs) use Naive Bayes classifiers to build models that can
be easily updated to incorporate new data, without having to regenerate the entire model. The
methods used for building, updating and scoring with SLRMs are described here.

Primary Calculations
The model-building algorithm used in SLRMs is Naive Bayes. A Bayesian Network consisting of
a Naive Bayes model for each target field is generated.

Naive Bayes Algorithms
The Naive Bayes model is an old method for classification and predictor selection that is enjoying
a renaissance because of its simplicity and stability.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Table 31-1

Notation
Notation Description

Jo Total number of predictors.

X Categorical predictor vector X” = ( Xg, ..., X3), where J is the number of

predictors considered.
M;j Number of categories for predictor X;j.
Y Categorical target variable.
K Number of categories of Y.
N Total number of cases or patterns in the training data.
Nk The number of cases with Y=k in the training data.
Nk The number of cases with Y=k and Xj=m in the training data.
Tk The probability for Y= k.
pimk The probability of Xj=m given Y= k.
Naive Bayes Model

The Naive Bayes model is based on the conditional independence model of each predictor given
the target class. The Bayesian principle is to assign a case to the class that has the largest posterior
probability. By Bayes’ theorem, the posterior probability of Y given X is:

P(}j _ k‘X _ X) — - P(X—=x|Y=k)P(Y k)
Y PX=x|y=i)P(Y =i
=1
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Let X1, ..., Xjbe the J predictors considered in the model. The Naive Bayes model assumes that
X1, ..., Xy are conditionally independent given the target; that is:

P(X:x|Y:k—) =TI, P(X, :.TJ\Y:A‘.)

These probabilities are estimated from training data by the following equations:

s

=P(Y =k) = 22

N KA

p{nk =r (Xj = mD’ =k)= Nyttt

% ,1"\71;\- EM;f

Where Ny is calculated based on all non-missing Y, Nink is based on all non-missing pairs
of Xjand Y,and the factors % and f are introduced to overcome problems caused by zero or
very small cell counts. These estimates correspond to Bayesian estimation of the multinomial
probabilities with Dirichlet priors. Empirical studies suggest A = f = +(Kohavi, Becker, and
Sommerfield, 1997).

A single data pass is needed to collect all the involved counts.

For the special situation in which J = 0; that is, there is no predictor at all,
P (Y = k|X =x) =P (Y = k). When there are empty categories in the target variable or
categorical predictors, these empty categories should be removed from the calculations.

Secondary Calculations

In addition to the model parameters, a model assessment is calculated.

Model Assessment

For a trained model, we need to assess how reliable it is. Given this problem, we face two
conditions which will result with different solutions:

A sample of test data (not used in training or updating the model) is available. In this case we
can directly feed these data into the model, and observe the outcome.

No extra testing data are available. This is more common since users normally apply all
available data to train the model. In this case, we have to simulate data first based on the
calibrated model parameters, such as ;. and p’, ,, then assess the trained model by scoring
these pseudo random data.

Testing with Simulated Data

In our simulation, 7,ound X Msample_per _rouna data are generated. For each round, we can
determine the corresponding accuracy; across all rounds, average accuracy and variance can be
calculated, and they are explained as reliability statistics.
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» For each round, we generate 1.,..,.. random cases as follows:
m yisassigned a random value based on the prior probabilities .
m Each X; is randomly assigned based on conditional probabilities 7 (X;|Y" = y)

» The accuracy of each round is calculated by comparlng the model’s predicted value for each case
to the case’s generated outcome Y, Piceyraey = meeersst

MNsample

» The mean, variance, minimum and maximum of the accuracy estimates are calculated across
rounds.

Blank Handling

If the target is missing, or all Jo predictors for a case are missing, the case is ignored. If every
value for a predictor is missing, or all non-missing values for a predictor are the same, that
predictor is ignored.

Updating the Model

The model can be updated by updating the cell counts V;, N;, ;. to account for the new records
and recalculating the probabilities = and p;,, as described in “Naive Bayes Model.” Updating
the model only requires a data pass of new records.

Generated Model/Scoring

Scoring with a generated SLRM model is described below.

Predicted Values and Confidences

By default, the first M offers with highest predicted value will be returned. However, sometimes
low-probability offers are of interest for marketing strategy. Model settings allow you to bias the
results toward particular offers, or include random components to the offers.

Some notation for scoring offers:

N Number of offers modeled already

P={P, ", PN} Scores for each offer

P, ={Pn. P, ..., '} Randomly generated scores for offers

o Randomization factor, ranging from 0.0 (offer based
only on model prediction) to 1.0 (offer is completely
random)

W= {Wy, Wa, .., Wa} Number of cases used for training each offer

Wemp Empirical value of the amount of training cases that
will result in a reliable model. When “Take account
of model reliability” is selected in the Settings tab,
this is set to 500; otherwise 0.
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S ={51,8:,....,9x} User’s preferences for offers, or the ratings of the
offers. Can be any non-negative value, where
larger values means stronger recommendations for
the corresponding offers. The default setting is
S={11,..,1}

F={F, Iy, ., N} Mandatory inclusion/exclusion filters. F; € {0. 1},
where 0 indicates an excluded offer.

The final score for each offer is calculated as

HY.! W y('m' ) - Sz
F=aP,;+(1l—a - P+ L 0. -— . F;
f {”‘ it (1-a) <H- t Wemp Wi+ Wemp ))] max(S)

The outcomes £ are ordered in specified order, ascending or descending, and the first M offers in
the list are recommended. The calculated score is reported as the confidence for the score.

Variable Assessment

Among all the features modeled, some are definitely more important to the accuracy of the model
than others. Two different approaches to measuring importance are proposed here: Predictor
Importance and Information Measure.

Predictor Importance

The variance of predictive error can be used as the measure of importance. With this method,
we leave out one predictor variable at a time, and observe the performance of remaining model.
A variable is regarded as more important than another if it adds more variance compared to
that of the complete model (with all variables).

When test data are available, they can be used for predictor importance calculations in a direct way.
When test data are not available, they are simulated based on the model parameters = and p’, ;.

In our simulation, n,ound X Nsample_per_rouna data are generated. For each round, we determine
the corresponding accuracy for each submodel, excluding -X; for each of the j predictors; across
all rounds, average accuracy and variance can be calculated.

» For each round, we generate 7,.,.;. random cases as follows:
m yisassigned a random value based on the prior probabilities .
m Each X; is randomly assigned based on conditional probabilities I’ (X;|Y = y)

Within a round, each of the X; predictors is excluded from the model, and the accuracy is
calculated based on the generated test data for each submodel in turn.

» The accuracies for each round are calculated by comparing the submodel’s predicted value for
each case to the case’s generated outcome Y, Luccuracy without oj = - 5=""wet=2s for each
of the j submodels.
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» The mean and variance of the accuracy estimates are calculated across rounds for each submodel.
For each variable, the importance is measured as the difference between the accuracy of the full
model and the mean accuracy for the submodels that excluded the variable.

Information Measure

The importance of an explanatory variable X for a response variable Y is the extent to which the
use of X reduces uncertainty in predicting outcomes of Y. The uncertainty about predicting an
outcome Y is measured by the entropy of its distribution (Shannon 1948):

Hy ==Y P(Y =i)logP(Y =i

Based on a value x of the explanatory variable, the probability distribution of the outcomes Y is
the conditional distribution f,.. The information value of using the value x for the prediction
is assessed by comparing the concentrations of the marginal distribution f,, and the conditional
distribution 1, ... The difference between the conditional and marginal distribution entropy is:
AH (?J> = HY - H}/

|

where Hy, denotes the entropy of the conditional distribution f,,,. The value x; is informative
about Y if the conditional distribution f,,.. is more concentrated than f,.

The importance of a random variable X for predicting Y is measured by the expected uncertainty
reduction, referred to as the mutual information between two variables:

doifa () AH (25)
y — Hy|x
Hy + Hy — Hy x

M (Y, X)

I

The expected fraction of uncertainty reduction due to X is a mutual information index given by

Io—1_ Hy x  Myx
S Hy  Hy

This index ranges from zero to one: I, = 0if and only if the two variables are independent,
and I, . = 100% if and only if the two variables are functionally related in some form,
linearly or nonlinearly.






Sequence Algorithm

Overview of Sequence Algorithm

The sequence node in IBM® SPSS® Modeler detects patterns in sequential data, such as
purchases over time. The sequence node algorithm uses the following two-stage process for
sequential pattern mining (Agrawal and Srikant, 1995):

» Mine for the frequent sequences. This part of the process extracts the information needed for quick

responses to the pattern queries, yielding an adjacency lattice of the frequent sequences. This
structure provides an optimal configuration for the second stage.

> Generate sequential patterns online. This stage uses a pre-computed adjacency lattice. You can

extract the patterns according to specified criteria, such as support and confidence bounds, or

place restrictions on the antecedent sequence.

Primary Calculations

Itemsets, Transactions, and Sequences

A group of items associated at a single point in time constitutes an itemset, which will be

identified here using braces “{ }”. Consider the hypothetical data below representing sales at a
gourmet store.

Table 32-1

Example data - product purchases

Customer Time 1 Time 2 Time 3 Time 4
1 cheese & crackers wine beer -

2 wine beer cheese -

3 bread wine cheese & beer -

4 crackers wine beer cheese
5 beer cheese & crackers bread -

6 crackers bread - -

Customer 1 yields three itemsets: {cheese & crackers}, {wine}, and {beer}. The ampersand
denotes items appearing in a single itemset. In this case, items separated by an ampersand appear
in the same purchase. Notice that some itemsets may contain a single item only.

The complete group of itemsets for a single object, in this case a customer, constitutes a
transaction. Time refers to a purchase occasion for a particular customer and does not represent a
specific time across all customers. For example, the first purchase occasion for customer 1 may
have been on January 23 while the first occasion for customer 4 was February 12. Although the
dates are not identical, each itemset was the first for that customer. The analysis focuses on time
relative to a specific customer instead of on absolute time.

Ordering the itemsets by time yields sequences. The symbol “>" denotes an ordering of
itemsets, with the itemset on the right occurring after the itemset on the left. For example,
customer 6 yields a sequence of [{crackers} > {bread}].
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Two common characteristics used to describe sequences are size and length. The number of
items contained in a sequence corresponds to the sequence size. The number of itemsets in the
sequence equals its length. For example, the three timepoints for customer 5 correspond to a
sequence having a length of three and a size of four.

A sequence is a subsequence of another sequence if the first can be derived by deleting
itemsets from the second. Consider the sequence:

[{wine} > {beer} > {cheese}]

Deleting the itemset cheese results in the sequence of length two [{wine} > {beer}]. This two
itemset sequence is a subsequence of the original sequence. Similar deletions reveal that the
three itemset sequence can be decomposed into three singleton subsequences ({wine}, {beer},
{cheese}) and three subsequences involving two itemsets ([{wine} > {beer}], [{beer} >
{cheese}], [{wine} > {cheese}]). A sequence that is not a subsequence of another sequence is
referred to as a maximal sequence.

Support

The support for a sequence equals the proportion of transactions that contain the sequence. The
table below shows support values for sequences that appear in at least one transaction for a set of
gourmet store sales data (note that this is a different data set from the one shown previously).

For example, the support for sequence [{wine} > {beer}] is 0.67 because it occurs in four of the
six transactions. Similarly, support for a sequential rule equals the proportion of transactions that
contain both the antecedent and the consequent of the rule, in that order. The support for the
sequential rule:

If [{cheese} >
{wine}] then [{beer}]

is 0.17 because only one of the six transactions contains these three itemsets in this order.
Sequences that do not appear in any transaction have support values of 0 and are excluded
from the mining analysis.

Table 32-2

Nonzero support values

Sequence Support Sequence Support
{cheese} 0.83 {crackers} > {cheese} 0.17
{crackers} 0.67 {beer} > {cheese & crackers} 0.17
{wine} 0.67 {cheese & crackers} > {wine} 0.17
{beer} 0.83 {cheese & crackers} > {beer} 0.17
{bread} 0.50 {bread} > {cheese & beer} 0.17
{cheese & 0.33 {wine} > {cheese & beer} 0.17
crackers}

{cheese & beer} 0.17 {cheese & crackers} > {bread} 0.17
{cheese} > {wine} |0.17 {cheese} > {wine} > {beer} 0.17
{cheese} > {beer} |0.17 {crackers} > {wine} > {beer} 0.33
{wine} > {beer} 0.67 {wine} > {beer} > {cheese} 0.33
{crackers} > 0.33 {bread} > {wine} > {beer} 0.17
{wine}
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Sequence Support Sequence Support
{crackers} > {beer} [0.33 {bread} > {wine} > {cheese} 0.17
{wine} > {cheese} |[0.50 {beer} > {cheese} > {bread} 0.17
{beer} > {cheese} |0.50 {beer} > {crackers} > {bread} 0.17
{bread} > {wine} |0.17 {crackers} > {wine} > {cheese} 0.17
{bread} > {beer} 0.17 {crackers} > {beer} > {cheese} 0.17
{bread} > {cheese} |0.17 {cheese & crackers} > {wine} > {beer} |0.17
{beer} > {bread} 0.17 {bread} > {wine} > {cheese & beer} 0.17
{beer} > {crackers} |0.17 {beer} > {cheese & crackers} > {bread} |0.17
{cheese} > {bread} |0.17 {crackers} > {wine} > {beer} > {cheese} |0.17
{crackers} > 0.33

{bread}

Typically, the analysis focuses on sequences having support values greater than a minimum
threshold, the support level. This value, defined by the user, determines the minimum level for
which sequences will be kept. Sequences with support values exceeding the threshold, referred to
as frequent sequences, form the basis of the adjacency lattice. For example, for a threshold of
0.40, sequence [{wine} > {beer}] is a frequent sequence because its support level is 0.67. By
relaxing the threshold, more sequences are classified as frequent.

Time Constraints

Defining the time at which events occur has a dramatic impact on sequences. For instance, each
purchase occasion in the gourmet data yields a new timed itemset. However, suppose a customer
bought wine and realized while walking to his car that beer was needed too. He immediately
returns to the store and buys the forgotten item. Should these two purchases be considered
separately?

One method for controlling for itemsets that occur very close in time is through a timestamp
tolerance parameter. This tolerance defines the length of time covering a single itemset.
Specifying a tolerance larger than the difference between two consecutive times results in a single
itemset at one time, such as {wine & beer} in the scenario described above.

Another time issue commonly arising in the analysis of sequences is gap. This statistic
measures the difference in time between two items and can be used to make time-based predictions
of future behavior. Gap statistics can be based on the gap between the last and penultimate sets in
sequences, or on the gaps between the last and first sets in sequences.

Sequential Patterns

Sequential patterns, or sequential association rules,identify items that frequently follow other
items in transaction-based data. A sequential pattern is simply an ordered list of itemsets. All
itemsets leading to the final itemset form the antecedent sequence, and the last itemset is the
consequent sequence. These statements have the following form:

If [antecedent] then [consequent]
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For example, a sequential pattern for wine, beer, and cheese is: “if a customer buys wine, then
buys beer, he will buy cheese in the future”. Wine and beer form the antecedent, and cheese is
the consequent.

Notationally, the symbol “=>" separates the antecedent from the consequent in a sequential
rule. The sequence to the left of this symbol corresponds to the antecedent; the sequence on the
right is the consequent. For instance, the rule above is denoted:

[{wine} > {beer } => {cheese}]

The only notational difference between a sequence and a sequential rule is the identification
of a subsequence as a consequent.

Adjacency Lattice

The number of itemsets and sequences for a collection of transactions grows very quickly as the
number of items appearing in transactions gets larger. In practice, analyses typically involve many
transactions and these transactions include a variety of itemsets. Larger datasets require complex
methods to process the sequential patterns, particularly if rapid feedback is needed.

An adjacency lattice provides a structure for organizing sequences, permitting rapid generation
of sequential patterns. Two sequences are adjacent if adding a single item to one yields the
other, resulting in a hierarchical structure denoting which sequences are subsequences of other
sequences. The lattice also includes sequence frequencies, as well as other information.

The adjacency lattice of all observed sequences is usually too large to be practical. It may be
more useful to prune the lattice to frequent sequences in an effort to simplify the structure. All
sequences contained in the resulting structure reach a specified support level. The adjacency
lattice for the sample transactions using a support level of 0.40 is shown below.

Figure 32-1
Adjacency lattice for a threshold of 0.40 (support values in parentheses)

{wine} > {beer} {wine} > {cheese} {beer} > {cheese}
(0.67) (0.50) (0.50)
{crackers} {wine} {beer} {cheese} {bread}
(0.67) (0.67) (0.83) (0.83) (0.50)
A
{NULL}

(1.00)
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Mining for Frequent Sequences

IBM® SPSS® Modeler uses a hon-sequential association rule mining approach that performs
very well with respect to minimizing 1/O costs, time, and space requirements. The continuous
association rule mining algorithm (Carma), uses only two data passes and allows changes in the
support level during execution (Hidber, 1999). The final guaranteed support level depends on the
provided series of support values.

For the first stage of the mining process, the component uses a variation of Carma to apply the
approach to the sequential case. The general order of operations is:

» Read the transaction data.
» Identify frequent sequences, discarding infrequent sequences.

» Build an adjacency lattice of frequent sequences.

Carma is based upon transactions and requires only two passes through the data. In the first data
pass, referred to as Phase I, the algorithm generates the frequent sequence candidates. The second
data pass, Phase 11, computes the exact frequency counts for the candidate sequences from Phase 1.

Phase |

Phase | corresponds to an estimation phase. In this phase, Carma generates candidate sequences
successively for every transaction. Candidate sequences satisfy a version of the “apriori” principle
where a sequence becomes a candidate only if all of its subsequences are candidates from the
previous transactions. Therefore, the size of candidate sequences can grow with each transaction.
To prevent the number of candidates from growing too large, Carma periodically prunes candidate
sequences that have not reached a threshold frequency. Pruning may occur after processing any
number of transactions. While pruning usually lowers the memory requirements, it increases the
computational costs. At the end of the Phase I, the algorithm generates all sequences whose
frequency exceeds the computed support level (which depends on the support series). Carma can
use many support levels, up to one support level per transaction.

The table below represents support values during transaction processing with no pruning for
the gourmet data. As the algorithm processes a transaction, support values adjust to account for
items appearing in that transaction, as well as for the total number of processed transactions. For
example, after the first transaction, the lattice contains cheese, crackers, wine, and beer, each
having a support exceeding the threshold level. After processing the second transaction, the
support for crackers drops from 1.0 to 0.50 because that item appears in only one of the two
transactions. The support for the other items remains unchanged because both transactions contain
the items. Furthermore, the sequences [{wine}> {beer}] and [{beer}> {cheese}] enter the lattice
because their constituent subsequences already appear in the lattice.

Table 32-3
Carma transaction processing

Transaction
Sequence 1 2 3 4 5 6
{cheese} 1 1 1 1 1 0.83
{crackers} 1 0.50 0.33 0.50 0.60 0.67
{wine} 1 1 1 1 0.80 0.67
{beer} 1 1 1 1 1 0.83
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Transaction

Sequence 1 2 3 4 5 6

{wine} > {beer} 1 1 1 0.80 0.67
{beer} > {cheese} 0.50 0.33 0.50 0.60 0.50
{bread} 0.33 0.25 0.40 0.50
{wine} > {cheese} 0.67 0.75 0.60 0.50
{cheese & beer} 0.33 0.25 0.20 0.17
{crackers} > {wine} 0.50 0.40 0.33
{crackers} > {beer} 0.50 0.40 0.33
{crackers} > {cheese} 0.25 0.20 0.17
{wine} > {beer} > {cheese} 0.50 0.40 0.33
{cheese & crackers} 0.40 0.33
{beer} > {crackers} 0.20 0.17
{beer} > {bread} 0.20 0.17
{cheese} > {bread} 0.20 0.17
{crackers} > {bread} 0.20 0.33

After completing the first data pass, the lattice contains five sequences containing one item, twelve
sequences involving two items, and one sequence composed of three items.

Phase Il

Phase Il is a validation phase requiring a second data pass, during which the algorithm
determines accurate frequencies for candidate sequences. In this phase, Carma does not generate
any candidate sequences and prunes infrequent sequences only once, making Phase Il faster
than Phase I. Moreover, depending on the entry points of candidate sequences during Phase I,
a complete data pass my not even be necessary. In an online application, Carma skips Phase Il
altogether.

Suppose the threshold level is 0.30 for the lattice. Several sequences fail to reach this level and
subsequently get pruned during Phase Il. The resulting lattice appears below.



Figure 32-2

Adjacency lattice for a threshold of 0.30 (support values in parentheses)

{wine} > {beer} > {cheese}

©:33)

(
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{crackers} > {wine}
(0.33)

{wine} > {beer}
(0.67)

{crackers} > {beer}
(0.33)

{wine} > {cheese}
(0.50)

{cheese & crackers}
(0.33)

{beer} > {cheese}
(0.50)

{crackers} > {bread}
(0.33)

{wine}
(0.67)

{beer}
(0.83)

{crackers}

©867

{cheese}
0.:83)

VS

{bread}
(0.50)

{NULL}
(1.00)

Notice that the lattice does not contain [{crackers} > {wine} > {beer}] although the support for
this sequence exceeds the threshold. Although [{crackers}> {wine}> {beer}] occurs in one-third
of the transactions, Carma cannot add this sequence to the lattice until all of its subsequences

are included. The final two subsequences occur in the fourth transaction, after which the full three-
itemset sequence is not observed. In general, however, the database of transactions will be much
larger than the small example shown here, and exclusions of this type will be extremely rare.

Generating Sequential Patterns

The second stage in the sequential pattern mining process queries the adjacency lattice of the
frequent sequences produced in the first stage for the actual patterns. Aggarwal and Yu (1998a)
IBM® SPSS® Modeler uses a set of efficient algorithms for generating association rules online
from the adjacency lattice (Aggarwal and Yu, 1998). Applying these algorithms to the sequential
case takes advantage of the monotonic properties for rule support and confidence preserved by
the adjacency lattice data structures. The lattice efficiently saves all the information necessary
for generating the sequential patterns and is orders of magnitude smaller than all the patterns
it could possibly generate.

The queries contain the constraints that the resulting set of sequential patterns needs to satisfy.
These constraints fall into two categories:

m constraints on statistical indices
m constraints on the items contained in the antecedent of the patterns
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Statistical index constraints involve support, confidence, or cause. These queries require returned
patterns to have values for these statistics within a specified range. Usually, lower confidence
bound is the primary criterion. The lower bound for the pattern support level is given by the
support level for the sequences in the corresponding adjacency lattice. Often, however, the support
specified for pattern generation exceeds the value specified for lattice creation.

For the lattice shown above, specifying a support range between 0.30 and 1.00, a confidence
range from 0.30 to 1.0, and a cause range from 0 to 1.0 results in the following seven rules:

IT [{crackers}] then [{beer}].

If [{crackers}] then [{wine}].

If [{crackers}] then [{bread}].

If [{wine} > {beer}] then [{cheese}].
If [{wine}] then [{beer}].

If [{wine}] then [{cheese}].

IT [{beer}] then [{cheese}].

Limiting the set to only maximal sequences omits the final three rules because they are
subsequences of the fourth.

The second type of query requires the specification of the sequential rule antecedent. This type
of query returns a new singleton itemset after the final itemset in the antecedent. For example,
consider an online shopper who has placed items in a shopping cart. A future item query looks at
only the past purchases to derive a recommended item for the next time the shopper visits the site.

Blank Handling

Blanks are ignored by the sequence rules algorithm. The algorithm will handle records containing
blanks for input fields, but such a record will not be considered to match any rule containing one
or more of the fields for which it has blank values.

Secondary Calculations

Confidence

Confidence is a measure of sequential rule accuracy and equals the proportion obtained by dividing
the number of transactions that contain both the antecedent and consequent of the rule by the

number of transactions containing the antecedent. In other words, confidence is the support for the
rule divided by the support for the antecedent. For example, the confidence for the sequential rule:

If [{wine}] then
[{cheese}]

is 3/4, or 0.75. Three-quarters of the transactions that include wine also include cheese at a later
time. In contrast, the sequential rule:

If [{cheese}] then
[{wine}]
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includes the same itemsets but has a confidence of 0.20. Only one-fifth of the transactions that
include cheese contain wine at a later time. In other words, wine is more likely to lead to cheese
than cheese is to lead to wine.

displays the confidence for every sequential rule observed in the gourmet data. Rules with
empty antecedents correspond to having no previous transaction history.

Table 32-4
Nonzero confidence values

Sequence Confidence | Sequence Confidence
{cheese} 1.00 {crackers} => {cheese} 0.25
{crackers} 1.00 {beer} => {cheese & crackers} 0.20
{wine} 1.00 {cheese & crackers} => {wine} 0.50
{beer} 1.00 {cheese & crackers} => {beer} 0.50
{bread} 1.00 {bread} => {cheese & beer} 0.33
{cheese & crackers} |1.00 {wine} => {cheese & beer} 0.25
{cheese & beer} 1.00 {cheese & crackers} => {bread} 0.50
{cheese} => {wine} |0.20 {cheese} > {wine} => {beer} 1.00
{cheese} => {beer} |0.20 {crackers} > {wine} => {beer} 1.00
{wine} => {beer} 1.00 {wine} > {beer} => {cheese} 0.50
{crackers} => {wine} | 0.50 {bread} > {wine} => {beer} 1.00
{crackers} => {beer} |0.50 {bread} > {wine} => {cheese} 1.00
{wine} => {cheese} |0.75 {beer} > {cheese} => {bread} 0.33
{beer} => {cheese} |0.60 {beer} > {crackers} => {bread} 1.00
{bread} => {wine} |0.33 {crackers} > {wine} => {cheese} 0.50
{bread} => {beer} 0.33 {crackers} > {beer} => {cheese} 0.50
{bread} => {cheese} |0.33 {cheese & crackers} > {wine} => {beer} |1.00
{beer} => {bread} 0.20 {bread} > {wine} => {cheese & beer} 1.00
{beer} => {crackers} |0.20 {beer} > {cheese & crackers} => {bread} |1.00
{cheese} => {bread} |0.20 {crackers} > {wine} > {beer} => {cheese}| 0.50
{crackers} => 0.50

{bread}

Generated Model/Scoring

Predicted Values

When you pass data records into a Sequence Rules model, the model handles the records in a
time-dependent manner (or order-dependent, if no timestamp field was used to build the model).
Records should be sorted by the ID field and timestamp field (if present).

For each record, the rules in the model are compared to the set of transactions processed
for the current ID so far, including the current record and any previous records with the same
ID and earlier timestamp. The k rules with the highest confidence values that apply to this set
of transactions are used to generate the k predictions for the record, where k is the number of
predictions specified when the model was built. (If multiple rules predict the same outcome for
the transaction set, only the rule with the highest confidence is used.)
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Note that the predictions for each record do not necessarily depend on that record’s transactions.
If the current record’s transactions do not trigger a specific rule, rules will be selected based on
the previous transactions for the current ID. In other words, if the current record doesn’t add any
useful predictive information to the sequence, the prediction from the last useful transaction for
this ID is carried forward to the current record.

For example, suppose you have a Sequence Rule model with the single rule

Jam -> Bread (0.66)

and you pass it the following records:

ID Purchase Prediction
001 jam bread
001 milk bread

Notice that the first record generates a prediction of bread, as you would expect. The second record
also contains a prediction of bread, because there’s no rule for jam followed by milk; therefore the
milk transaction doesn’t add any useful information, and the rule Jam -> Bread still applies.

Confidence

The confidence associated with a prediction is the confidence of the rule that produced the
prediction. For more information, see the topic “Confidence.”

Blank Handling

Blanks are ignored by the sequence rules algorithm. The algorithm will handle records containing
blanks for input fields, but such a record will not be considered to match any rule containing one
or more of the fields for which it has blank values.

Note that the sequence algorithm generates rules that have a max length of the users in the dataset. For
example, if you have transactions such as the following, the algorithm won't find a sequence of event codes
A -> B -> C, because there are only two users in the dataset.

U
1
1
1
1
1
1
2
2
2

Event Code

OWXPrOoOw>0Owm>
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Simulation in IBM® SPSS® Modeler refers to simulating input data to predictive models using
the Monte Carlo method and evaluating the model based on the simulated data. You do this

by using the Simulation Generation (also known as SimGen) source node. The distribution of
predicted target values can then be used to evaluate the likelihood of various outcomes.

Simulation algorithms

Creating a simulation includes specifying distributions for all inputs to a predictive model that are
to be simulated. When historical data are present, the distribution that most closely fits the data
for each input can be determined using the algorithms described in this section.

Notation

The following notation is used throughout this section unless otherwise stated:

Table 33-1

Notation
Notation Description

Ti Value of the input variable in the ith case of the historical data
wi Frequency weight associated with the ith case of the historical data
w Total effective sample size accounting for frequency weights
Tobs Sample mean
82 Sample variance
Sobs Sample standard deviation

Distribution fitting

The historical data for a given input is denoted by:

-
=Ty, T2,

N U

The total effective sample size is:

n
W=> w

=1

The observed sample mean, sample variance and sample standard deviation are:

1 n
Tobs = % Z Wiy
i1
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1 - — 2
sgbs T W1 Z w;(z; — Tops)

i=1
— /<2
Sobs = Sobs

Parameter estimation for most distributions is based on the maximum likelihood (ML) method,
and closed-form solutions for the parameters exist for many of the distributions. There is no
closed-form ML solution for the distribution parameters for the following distributions: negative
binomial, beta, gamma and Weibull. For these distributions, the Newton-Raphson method is used.
This approach requires the following information: the log-likelihood function, the gradient vector,
the Hessian matrix, and the initial values for the iterative Newton-Raphson process.

Discrete distributions

Distribution fitting is supported for the following discrete distributions: binomial, categorical,
Poisson and negative binomial.

Binomial distribution: parameter estimation

The probability mass function for a random variable x with a binomial distribution is:
- Y ‘\- T N—x AT
Bin (z; N.P) = P (1—P)" " forx=0,1,.... N

where 0 < P? < 1 is the probability of success. The binomial distribution is used to describe

the total number of successes in a sequence of N independent Bernoulli trials. The parameter
estimates for the binomial distribution using the method of moments (see Johnson & Kotz (2005)
for details) are:

- _ Sobs = 2
p=d T E5 Tobs > So
:\t?a :\'1 ?Ob‘s < ‘-?2

“obs

where NaN implies that the binomial distribution would not be an appropriate distribution to fit
the data under this criterion, and where

\* _ Tobs

4 ~

P

If V is not an integer, then the parameter estimates are:

Vo[
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where [x] denotes the integer part of .

Categorical distribution: parameter estimation

The categorical distribution can be considered a special case of the multinomial distribution in
which N = 1. Suppose «;, i =1, 2, ..., n, has the categorical distribution and its categorical values
are denoted as 1, 2, ..., J. Then an indicator variable of x; for category j can be denoted as

P 1 If €Ty =j
Sl 7] 0 otherwise

and the corresponding probability is £%;. Then the probability mass function for a random variable
x; With the categorical distribution can be described based on z; ; and P; as follows:

J J
Categorical (z; 1, ..., Py) = H Pj'-r" ' with Z P=1
=1 =1

The parameter estimates for P;,j =1,...,.J, are:
n
Z'EI‘,}‘I‘;J
: i=1 )
PJ == jT"] == 1,...’JT

Poisson distribution: parameter estimation

The probability mass function for a random variable = with a Poisson distribution is:

P —A AT

Pois(x; \) = forxz=0,1,...

e

where X > 0 is the rate parameter of the Poisson distribution. The parameter of the Poisson
distribution can be estimated as:

A= Lobs

Negative binomial distribution: parameter estimation

The distribution fitting component for simulation supports the parameterization of the negative
binomial distribution that describes the distribution of the number of failures before the
rt success. For this parameterization, the probability mass function for a random variable z is:

NB(z:1.0) = ( o 1)*’3”"(1—9)”’, fore =0,1,...
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where r > 0, 0 < 6 < 1 are the two distribution parameters. There is no closed-form solution
for the parameters r and 6, so the Newton-Raphson method with step-halving will be used. The
method requires the following information:

(1) The log likelihood function

n n

n
L = Z W; In F(rg —+ ?") — Z '!L'ljlng_‘l:! — H."mr(-ﬂ + I:Ir'rm(ﬁ) —+1n (1 — H) Z W;T;
=1 i=1 i=1

(2) The gradient (1st derivative) vector with respect to r and 6

9L Wr 1
s= |90 | = 0 (1-) ZL Wiy
o > wit (g + 1) = Wab(r) + Win(6)

where v () = % is a digamma function, which is the derivative of the logarithm of the gamma

function, evaluated at o.

(3) The Hessian (2nd derivative) matrix with respect to r and & (since the Hessian matrix is
symmetric, only the lower triangular portion is displayed)

9° L We 1 L
H = [ (6}82 l _ \_ g2 ( Zi:l W; Ty

Ot » 1-6)*
% % % St wit (g + 1) — Wa'(r)

where ¢ («) is the trigamma function, or the derivative of the digamma function.

(4) The initial values of  and r can be obtained from the closed-form estimates using the method

of moments:
7. e 2 —
,r(l)) = 32,;L+bq_d if Sobs = Tabs
1 otherwise
(U} _ PO
9 T ”'+T b
Note

An alternative parameterization of the negative binomial distribution describes the distribution of
the number of trials before the »t success. Although it is not supported in distribution fitting, it is
supported in simulation when explicitly specified by the user. The probability mass function for
this parameterization, for a random variable z is:

NB(x;r.0) = <; _ % >9r(1 —0)"", fora = r

where r > 0, 0 < § < 1 are the two distribution parameters.
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Continuous distributions

Distribution fitting is supported for the following continuous distributions: triangular, uniform,
normal, lognormal, exponential, beta, gamma and Weibull.

Triangular distribution: parameter estimation

The probability density function for a random variable x with a triangular distribution is:

Gy € lam)
) _
Triag(z;a,m,b) = § Gel’ e
—x
Gaymy T € (Ml
O, xr ¢ [a: b]

such that a < m =< b. Parameter estimates of the triangular distribution are:

a =min {xy,w0,..., 0}
b=max {1, 19,....: tn}
m = mode {xy,w9,... Iy}

Since the calculation of the mode for continuous data may be ambiguous, we transform the
parameter estimates and use the method of moments as follows (see Kotz and Rene van Dorp
(2004) for details):

;—a
Zi = =% N
b—a
m—a
0= ——
b—a

1 n
z = W Z Wiz
i=1
From the method of moments we obtain
=371
from which it follows that

-ﬁz=a+(6—&) x (37 — 1)
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Note: For very skewed data or if the actual mode equals a or b, the estimated mode, ., may be
less than & or greater than b. In this case, the adjusted mode, defined as below, is used:

- Ja ifm<a
Adj. m = {b if m >0b

Uniform distribution: parameter estimation

The probability density function for a random variable x with a uniform distribution is:

Lz ¢€ab]

U(r;a.b) = {8—(1’ ¢ o)

where a is the minimum and & is the maximum among the values of ; . Hence, the parameter
estimates of the uniform distribution are:

a =min {ay,r9,.... a0}

b= max {xy,r2,....0.}

Normal distribution: parameter estimation

The probability density function for a random variable z with a normal distribution is:

]_ 1 =t 2
Nor(x, jr.o) = ; e () —o <z < o0
V2ro

Here, 1 is the measure of centrality and o is the measure of dispersion of the normal distribution.
The parameter estimates of the normal distribution are:

= Tobs

X 1 < o (W —1) 82,
g = W Z lbf,g_(.f,, — .I.(,b&.) = \/T

i=1

Lognormal distribution: parameter estimation

The lognormal distribution is a probability distribution where the natural logarithm of a random
variable follows a normal distribution. In other words, if = has a lognormal(x, ) distribution,
then In(z) has a normal(In( ;:),o) distribution. The probability density function for a random
variable x with a lognormal distribution is:

1

717(1;1.1‘—111“)2
- € * - O<r<x
Vanox

LN(z,p.0)=
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Define l2,4s = &3 winay

Parameter estimates for the lognormal distribution are:

3

| —

% Z wi(n 2y — In fi)?

i=1

—

Exponential distribution: parameter estimation

The probability density function for a random variable z with an exponential distribution is:

Expla;N) =X e ™™ forz >0and A > 0

The estimate of the parameter for the exponential distribution is:

o 1
A=
Lobs
Beta distribution: parameter estimation

The probability density function for a random variable z with a beta distribution is:

. 1 _ g—1 ,
Beta(r;a,3) = N1 =) 0,80
(ri.0) = g,y (L7
where,
[(a)T(7)
Bla,f) = ————
(@.8) =Tt 3

There is no closed-form solution for the parameters o and £, so the Newton-Raphson method with
step-halving will be used. The method requires the following information:

(1) The log likelihood function
L=WIn(a+ 8)) — WInT(a)) — WIn([(3))

n n

FHla—1) Z wylnz; + (5 —1) Z w; In (1 — ;)

i=1 i=1

(2) The gradient (1st derivative) vector with respect to « and
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¢ — 3—; _ YI-'I-"'i,-flf(r}- + 4)— Uz(n) + ;:il w; In () ]
3—-} Wirla + 5) = We(8) + >, qwin (1l — )
where () = % is a digamma function, which is the derivative of the logarithm of the gamma

function, evaluated at a.

(3) The Hessian (2nd derivative) matrix with respect to o and g (since the Hessian matrix is
symmetric, only the lower triangular portion is displayed)

. [ (c)h‘r l B {I-T-’(-L-';'((.t +3) = ()

ik % We'(a + 3) W' (o + 8) —¢'(8))

where ¢’ (&) is the trigamma function, or the derivative of the digamma function.

(4) The initial values of & and f can be obtained from the closed-form estimates using the method

of moments:
\ Tobs (1 — Tops
(}'(“) = Tob.&? (Tﬂb‘- ( QT_ObL) - 1)
Sobs
(0 —_ Tobs (1 — T b.s)
2obs

Gamma distribution: parameter estimation

The probability density function for a random variable = with a gamma distribution is:

B »
Gamma(r; o, 3) = m;z-’-‘-—le—ﬂﬁ for >0 and a,3 > 0
@]

If  is a positive integer, then the gamma function is given by: I' () = (o — 1)!

There is no closed-form solution for the parameters « and £, so the Newton-Raphson method with
step-halving will be used. The method requires the following information:

(1) The log likelihood function

n n
L=Walng—WlnI'(a) + (a — 1) Z-wi Inz;, — 5 Zuymi
i=1 i=1

(2) The gradient (1st derivative) vector with respect to « and f

[T [ws - W) + X, wilna
% % — D iy Wit

98
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where (o) = F(

function, evaluated at o.

(3) The Hessian (2nd derivative) matrix with respect to o and g (since the Hessian matrix is
symmetric, only the lower triangular portion is displayed)

2 o
‘5( II'J W' (a)
=397 | = w _Wa

where ¢/ («v) is the trigamma function, or the derivative of the digamma function.

(4) The initial values of & and f can be obtained from the closed-form estimates using the method

of moments:
— 2
o (0) _ (iobs >
Sobs
:/_))(l_)) o TG‘b‘s
™~ - L;Q
“obs

Weibull distribution: parameter estimation

Distribution fitting for the Weibull distribution is restricted to the two-parameter Weibull
distribution, whose probability density function is given by:

/a7 -
Weib(x; 5,v) = —(%) e‘(?) , for x>0and 3,7 >0

There is no closed-form solution for the parameters f and y, so the Newton-Raphson method with
step-halving will be used. The method requires the following information:

(1) The log likelihood function
n n T vy
L=W(hy—~yns8)+(y—1) Z wi In () — Z w; (I>
‘ - 5
i—1 i—1 :
(2) The gradient (1st derivative) vector with respect to g and y

vV — Wins Zil'wi 111 (3*5) —ZT 1 Wi (%) In (%)

v

(3) The Hessian (2nd derivative) matrix with respect to  and y (since the Hessian matrix is
symmetric, only the lower triangular portion is displayed)
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a3dy by

where

Ly .. n ri\7

EERlE \” —(7+1) Zl u.u(7)

9°L 1] & 2\ n N\ (o
d80 3 \U - Zl wy (—> — 7y Zl w; (_7) In (T)

2
- L W 2\ .
fﬁz - T2 Z%(-;) {111 (—;)}
i=1
(4) The initial values of g and y are given by:
ﬂ;,(l'JJ -1

Goodness of fit measures

Goodness of fit measures are used to determine the distribution that most closely fits the
data. For discrete distributions, the Chi-Square test is used. For continuous distributions, the
Anderson-Darling test or the Kolmogorov-Smirnov test is used.

Discrete distributions

The Chi-Square goodness of fit test is used for discrete distributions (Dirk P. Kroese, 2011). The
Chi-Square test statistic has the following form:

- z"’: (0, — E;)?
i=1 Ei
where,
Table 33-2
Notation
Notation Description
k The number of classes, as defined in the table below for eachdiscrete distribution

Q; The total observed frequency for class i
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Notation Description

PDF(i) Probability density function of the fitted distribution. For the Poisson and negative
binomial distributions, the density function for the last class is computed as
PDF(k) =1 — """ PDF (i)

E; Expected frequency for class i: F; = W*PDF(i)

w The total effective sample size

For large W, the above statistic follows the Chi-Square distribution:
n L2

T~ Xk—1-r

where r = number of parameters estimated from the data. The following table provides the values
of k and r for the various distributions. The value Max in the table is the observed maximum value.

Distribution Notation k (classes) r (parameters)
Binomial Bun (z; N, P) N+1 2

Categorical Categorical (z;p1, .., pr) J J-1

Poisson Pois(z; ) Max + 1 1

Negative binomial NB(x;r,0) Max + 1 2

This Chi-Square test is valid only if all values of F; > 5.

The p-value for the Chi-Square test is then calculated as:
p=1-—F (T, )('}“:,_1_?.)

where (T, x7_,_,) = CDF of the Chi-Square distribution.

Note: The p-value cannot be calculated for the Categorical distribution since the number of
degrees of freedom is zero.

Continuous distributions

For continuous distributions, the Anderson-Darling test or the Kolmogorov-Smirnov test is used
to determine goodness of fit. The calculation consists of the following steps:

1. Transform the data to a Uniform(0,1) distribution
2. Sort the transformed data to generate the Order Statistics
3. Calculate the Anderson-Darling or Kolmogorov-Smirnov test statistic

4. Compute the approximate p-value associated with the test statistic
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The first two steps are common to both the Anderson-Darling and Kolmogorov-Smirnov tests.
The original data are transformed to a Uniform(0,1) distribution using the transformation:

where the transformation function 77 () is given in the table below for each of the supported

distributions.

Distribution Transformation F(x)

Triag(z;a,m,b) (biu) ((:f,:ﬂ;: z € [a,m)
((?:5), r=m

(57:1:)2
1- (b—la) (b—m) ? S (m'b}
z ¢ [a,b]

U (z;a,b) =

Nor(z, pn, o) O(=£)

LN(z,p, o) @(lnz=ing )

Ezp(z; A) 1—e @

Beta(z; o, 8)

/OB(é’B) A I L’

Gammal(z; a, §) T
A" ya—1_—pFt
0
Weib(z; 8, 7) 1—e (8)°

The transformed data points ¥; are sorted in ascending order to generate the Order Statistics:

Yy CY@) S - S Ym—1) < Y(n)

Define w; to be the corresponding frequency weight for y;,. The cumulative frequency up to and
including y;, is defined as:

{

W = Z w;

k=1

and where we define W = 0.
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Anderson-Darling test

The Anderson-Darling test statistic is given by:

n n
— W HL* Z wi (2{_,1_?_1 +w] ) 111 ”1+ Z wy 211 i T w, ) In (1 — y(,;))
n - n

i=1
n
Z w; 111 1 ;))

For more information, see the section “Anderson-Darling statistic with frequency weights.”

The approximate p-value for the Anderson-Darling statistic can be computed for the following
distributions: uniform, normal, lognormal, exponential, Weibull and gamma. The p-value is not
available for the triangular and beta distributions.

Uniform distribution: p-value

The p-value for the Anderson-Darling statistic is computed based on the following result, provided
by Marsaglia (2004):

b= { 1 — 7127 123371 /= g (o) for z € (0,2)
I—e

_6‘.| 0776w (2. 30600 =(0.43424=(0.082433=(0.008056=0.0003146=z)z)z)z)z ¢
4 for 2z e [2,x)

where

g (2) = (2.00012 + (0.247105 — (0.0649821 — (0.0347962 — (0.0116720 — 0.00168691z)2)z)2)z)

Normal and lognormal distributions: p-value

The p-value for the Anderson-Darling statistic is computed based on the following result, provided
by D*Agostino and Stephens (1986):

1 —exp (—13.436 + 101.142* — 223.732*?), 2* < 0.2
1~ exp (—8.318 + 42.796z* — 59.9382*2), 0.2 < z* < 0.34

p =9 exp (0.9177 — 4.2792* — 1.382*%), 0.34 < z* < 0.6
exp (1.2937 — 5.7092* + 0.01862*2), 0.6 < 2* < 153.467
0 2* > 153.467
where

2=z (LO+0.75/W; +2.25/W;?)
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Exponential distribution: p-value

The p-value for the Anderson-Darling statistic is computed based on the following result, provided
by D*Agostino and Stephens (1986):

1 —exp (—12.2204 4 67.459z* — 110.32*%), 2* < 0.260
1 — exp (—6.1327 + 20.2182* — 18.663z*%), 0.260 < z* < 0.510
p= exp (0.9209 — 3.353z* + 0.32*?), 0.510 < 2* < 0.950
exp (0.731 — 3.009z* + 0.15z*%), 0.950 < z* < 10.03

0 z* > 10.03

where

z¥=2(L0+0.6/V))

Weibull distribution: p-value

The p-value for the Anderson-Darling statistic is computed based on Table 33-3 below, provided by
D’Agostino and Stephens (1986). First, the adjusted Anderson-Darling statistic is computed from:

== (1402/ ;)

If the value of =* is between two probability levels (in the table), then linear interpolation is used
to estimate the p-value. For example, if z* = 0.543 which is between z; = 0.474 and z3= 0.637
then the corresponding probabilities of =7 and =3 are p, = 0.25 and p, = 0.1 respectively. Then

the p-value of =* is computed as

P2 — D1, 4 N 0.1 —0.25 o N . L
= 27—z = ——(0.543 — 0.474) 4+ 0.25 = 0.1865
(&7 =2+ 010 = Ggr =gy 048 04T 025 ’

}) * *
ZZ - 41

If the value of z* is less than the smallest critical value in the table, then thep-value is > 0.25; and
if =* is greater than the largest critical value in the table, then the p-value is < 0.01.

Table 33-3

Upper tail probability and corresponding critical values for the Anderson-Darling test, for the Weibull
distribution

p-value 0.25 0.10 0.05 0.025 0.01
z(1402/yW;) |0.474 0.637 0.757 0.877 1.038

Gamma distribution: p-value

Table 33-4, which is provided by D*Agostino and Stephens (1986), is used to compute the p-value
of the Anderson-Darling test for the gamma distribution. First, the appropriate row in the table

is determined from the range of the parameter a. Then linear interpolation is used to compute
the p-value, as done for the Weibull distribution. For more information, see the section
“Weibull distribution: p-value.”
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If the test statistic is less than the smallest critical value in the row, then the p-value is > 0.25; and
if the test statistic is greater than the largest critical value in the row, then the p-value is < 0.005.
Table 33-4

Upper tail probability and corresponding critical values for the Anderson-Darling test, for the gamma
distribution with estimated parameter a

p-value 0.25 0.10 0.05 0.025 0.01 0.005
ae (0,1] 0.486 0.657 0.786 0917 1.092 1.227
ae (1,8 0.473 0.637 0.759 0.883 1.048 1.173
o€ (8,00) 0.470 0.631 0.752 0.873 1.035 1.159

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test statistic, I2,, , is given by:

, wi
Yy — Wi

wr -1

D" = max; Yy — v
4 (@) l’Vﬁ

D™ = max;

D, = max (D+, D_)

Computation of the p-value is based on the modified Kolmogorov-Smirnov statistic, which is
distribution specific.

Uniform distribution: p-value
The procedure proposed by Kroese (2011) is used to compute the p-value of the

Kolmogorov-Smirnov statistic for the uniform distribution. First, the modified
Kolmogorov-Smirnov statistic is computed as

D= Wr D,

The corresponding p-value is computed as follows:

1. Set k=100

2. Define o, — 30 (—1)ic 200

3. Calculate o). and oy .

4, |If lag — g | > 1077 set k=k+1 and repeat step 2; otherwise, go to step 5.
5. p-value =1—qy

Normal and lognormal distributions: p-value

The modified Kolmogorov-Smirnov statistic is
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0.85
VI

D=D, /W =001+

The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 33-5 below,
provided by D’ Agostino and Stephens (1986). If the value of D is between two probability
levels, then linear interpolation is used to estimate the p-value. For more information, see the
topic “Weibull distribution: p-value.”

If D is less than the smallest critical value in the table, then the p-value is > 0.15; and if D is
greater than the largest critical value in the table, then the p-value is < 0.01.

Table 33-5

Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the
Normal and Lognormal distributions

p-value 0.15 0.10 0.05 0.025 0.01

D 0.775 0.819 0.895 0.995 1.035

Exponential distribution: p-value

The modified Kolmogorov-Smirnov statistic is

D= (D, —02/W7) ( /TVE 40.26 + 0.5/ /L-V;;)

The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 33-6 below,
provided by D’ Agostino and Stephens (1986). If the value of D is between two probability
levels, then linear interpolation is used to estimate the p-value. For more information, see the
topic “Weibull distribution: p-value.”

If D is less than the smallest critical value in the table, then the p-value is > 0.15; and if D is
greater than the largest critical value in the table, then the p-value is < 0.01.

Table 33-6

Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the
Exponential distribution

p-value 0.15 0.10 0.05 0.025 0.01

D 0.926 0.995 1.094 1.184 1.298

Weibull distribution: p-value

The modified Kolmogorov-Smirnov statistic is

D =\/W:D,

The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 33-7 below,
provided by D’Agostino and Stephens (1986). If the value of D is between two probability
levels, then linear interpolation is used to estimate the p-value. For more information, see the
topic “Weibull distribution: p-value.”
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If D is less than the smallest critical value in the table, then the p-value is > 0.10; and if D is
greater than the largest critical value in the table, then the p-value is < 0.01.

Table 33-7

Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the
Weibull distribution

p-value 0.10 0.05 0.025 0.01

D 1.372 1.477 1.557 1.671

Gamma distribution: p-value

The modified Kolmogorov-Smirnov statistic is

D =D, (VI +03/y)

The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 33-8 below,
provided by D’ Agostino and Stephens (1986). If the value of D is between two probability
levels, then linear interpolation is used to estimate the p-value. For more information, see the
topic “Weibull distribution: p-value.”

If D is less than the smallest critical value in the table, then the p-value is > 0.25; and if D is
greater than the largest critical value in the table, then the p-value is < 0.005.

Table 33-8

Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the
Gamma distribution

p-value |0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005
D 0.74 0.780 0.800 0.858 0.928 0.990 1.069 1.13

Determining the recommended distribution

The distribution fitting module is invoked by the user, who may specify an explicit set of
distributions to test or rely on the default set, which is determined from the measurement level

of the input to be fit. For continuous inputs, the user specifies either the Anderson-Darling test
(the default) or the Kolmogorov-Smirnov test for the goodness of fit measure (for ordinal and
nominal inputs, the Chi-Square test is always used). The distribution fitting module then returns
the values of the specified test statistic along with the calculated p-values (if available) for each of
the tested distributions, which are then presented to the user in ascending order of the test statistic.
The recommended distribution is the one with the minimum value of the test statistic.

The above approach yields the distribution that most closely fits the data. However, if the p-value
of the recommended distribution is less than 0.05, then the recommended distribution may not
provide a close fit to the data.
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Anderson-Darling statistic with frequency weights

To obtain the expression for the Anderson-Darling statistic with frequency weights, we first give
the expression where the frequency weight of each value is 1:

=-n— 257 (2 = DI (i) (1= yms1-))]
=-n— % St (20— 1)l (-y(_,) +In (1 - y(nﬂﬂ))
=—n— 52 (2= D[ (ye)] =5 X @0+ 1—) = 1)[ln (1 - y)]
= =23 2= Dl (ye)] -5 2T (=20 [l (L= y) ] = X7 2 (- )]
=A+B+C+D
If there is a frequency weight variable, then the corresponding four terms of the above expression
are given by:
A=-W]

B=—w= 30, flﬁmfﬂi)lm(wﬂ
— _I/I}; Z" L] (211 — l) In (U( }) — % 2?_1 w?(w; +1)In (y(,;))
= —% S w (211 ot w)In (g (,})
C=—p= i (T =2(wyy +5)) [ (1 -
= S (=20 (1 ) + b S v+ D (1)
= HL L (ZH:‘ |+ w; )111( — um)

D=-2%", wy In (1 — ;U(z‘))

where w; and W;" are defined in the section on goodness of fit measures for continuous
distributions. For more information, see the topic “Continuous distributions.”
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Simulation algorithms: run simulation

Running a simulation involves generating data for each of the simulated inputs, evaluating the
predictive model based on the simulated data (along with values for any fixed inputs), and
calculating metrics based on the model results.

Generating correlated data

Simulated values of input variables are generated so as to account for any correlations between
pairs of variables. This is accomplished using the NORTA (Normal-To-Anything) method
described by Biller and Ghosh (2006). The central idea is to transform standard multivariate
normal variables to variables with the desired marginal distributions and Pearson correlation
matrix.

Suppose that the desired variables are X;, 5 =1,---, k, with the desired Pearson correlation
matrix Xy, where the elements of Z x are given by p;;. Then the NORTA algorithm is as follows:

1. For each pair X; and X, where ¢ < j, use a stochastic root finding algorithm (described in the
following section) and the correlation p,; to search for an approximate correlation p;; of standard
bivariate normal variables.

2. Construct the symmetric matrix X, whose elements are given by p;; , where pj; = 1 andp;; = pj,.

3. Generate the standard multivariate normal variables 7, - - -, Z;. with Pearson correlation matrix X..

4. Transform the variables Z,,---, 7, to X,,---, X} using
Xi=FYo(z),i=1,-- .k

where F; is the desired marginal cumulative distribution, and @ () is the cumulative standard
normal distribution function. Then the correlation matrix of X, ---, X;. will be close to the
desired Pearson correlation matrix X ..

Stochastic root finding algorithm

Given a correlation p;;, a stochastic root finding algorithm is used to find an approximate
correlation p;; such that if standard bivariate normal variables z; and Z; have the Pearson
correlation 2 then after transforming z; and Z; to X, and X; (using the transformation described
in Step 4 of the previous section) the Pearson correlation between x; and X is close to p,,. The
stochastic root finding algorithm is as follows:

1. Let LowCorr = —1 and HighCorr =1

2. Simulate N samples of standard normal variables 7\’ and Z|"’, z{"" and Z{""’, such that the

- (L r - -
Pearson correlation between Z; " and z}“ is LowCorr and the Pearson correlation between

z{" and z{") is HighCorr. The sample size N is set to 1000.

- ~( L (L - H . , L (
3. Transform the variables 7., Z*’, /"' and Z" to the variables X"/, X"/, X" ad

y H) using the transformation described in Step 4 of the previous section.
J
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4. Compute the Pearson correlation between x (&) and XjL-) and denote it as p,". Similarly, compute

. T
the Pearson correlation between X"’ and x (#) and denote it as p!’.
K

5. If the desired correlation ,, < pk or p;; > ol then stop and set pl; = LowCorr if p;; < pl or set
Py = HighCorr if p;; > pjjf., Otﬁerwise go to Step 6.

6. Simulate N samples of standard bivariate normal variables Z f‘” " and Zj."” " with a Pearson
correlation of y7;icorr = L(LowCorr + HighCorr)- ASin Steps 3and 4, transform (A1) and
z* to () and () and compute the Pearson correlation between X" and (3, which

! J

will be denoted . !
i

7. If |pU — p%ﬁf < eor |[HighCorr — LowCorr| < e where ¢ is the tolerance level (set to 0.01), then

stop and set pf; = MidCorr. Otherwise go to Step 8.

8. If Pij ~ PT\J], set LowCorr = MidCorr, else set Hzgh Corr = MidCorr and return to Step 6.

Inverse CDF for binomial, Poisson and negative binomial distributions

Use of the NORTA method for generating correlated data requires the inverse cumulative
distribution function for each desired marginal distribution. This section describes the method for
computing the inverse CDF for the binomial, Poisson and negative binomial distributions. Two
parameterizations of the negative binomial distribution are supported. The first parameterization

describes the distribution of the number of trials before the I success, whereas the second
parameterization describes the distribution of the number of failures before the N success.

The choice of method for determining the CDF depends on the mean p of the distribution. If

w = Threshold, where Threshold is set to 20, the following approximate normal method will be
used to compute the inverse CDF for the binomial distribution, the Poisson distribution and the
second parameterization of the negative binomial distribution.

X=[FY22)] =[c(@(2(2) +u] =02+ 4
For the first parameterization of the negative binomial distribution, the formula is as follows:
X=[oZ+pu+r

The parameters ;» and o are given by:

®  Binomial distribution. ;. = NP and o = /NP (1 — I?), where N is the number of trials and P
is the probability of success.

m  Poisson distribution. p = A and 6 = v/, where A is the rate parameter.

J—
®m Negative binomial distribution (both parameterizations). | = r%ﬁ and o = *TLH;” where r is
the specified number of successes and 4 is the probability of success.

The notation [=] used above denotes the integer part of =

If ;o < T'hreshold then the bisection method will be used.
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Suppose that x and z are the values of X and Z respectively, where X is a random variable with a
binomial, Poisson or negative binomial distribution, and Z is a random variable with the standard

f(z)



normal distribution. The objective function to be used in the bisection search method is
as follows:

m  Binomial distribution. f(x) =1—Pr(B(z+1,N —2) < P) — ®(z2)
m  Poissondistribution. f(r) =1—Pr(G(x+1,1) < A) — ®(2)
m Negative binomial distribution (second parameterization). f(z) = Pr(B(r,z + 1) < 8) — ®(z)

where B(a, 3) and G(«, 3) are random variables with the beta distribution and gamma
distribution, respectively, with parameters o and 7.

The bisection method is as follows:

1 If f(i) = Othen stop and set = = [; + 0.5]. Otherwise go to step 2 to determine two values
x; and x» such that f(x;) x f(xs) < 0.

2 If f(p) >0 thenlety, =o0and zy = . If f(u) < 0thenlety, =27-t x pand zy =27 x p,
where 7 is the minimum integer such that f(u,) x f(a2) < 0.

3. Letm = L(zq + x2). If | f(m)| < € or |21 — @2 < 1 where ¢ is a tolerance level, which is set to
107°, then stop and set & = [m + 0.5]. Otherwise go to Step 4.

4. If f(m) > 0, let zo = m, else let £y = m and return to Step 3.

Note: The inverse CDF for the first parameterization of the negative binomial distribution is
determined by taking the inverse CDF for the second parameterization and adding the distribution
parameter r, where r is the specified number of successes.

Sensitivity measures

Sensitivity measures provide information on the relationship between the values of a target and
the values of the simulated inputs that give rise to the target. The following sensitivity measures
are supported (and rendered as Tornado charts in the output of the simulation):

m Correlation. Measures the Pearson correlation between a target and a simulated input.

m One-at-a-time measure. Measures the effect on the target of modulating a simulated input by
plus or minus a specified number of standard deviations of the input.

m  Contribution to variance. Measures the contribution to the variance of the target from a
simulated input.

Notation

The following notation is used throughout this section unless otherwise stated:

Table 33-9
Notation

Notation Description
n Number of records of simulated data
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X An n x p matrix of values of the inputs to the predictive model. The
rows x; = (&1,...,&p); 4 = 1,...,n contain the values of the inputs
for each simulated record, excluding the target value. The columns
a7 = (w1j,....w0,), 5= 1,...,prepresent the set of inputs.
Y An n x 1 vector of values of the target variable, consisting of y;,i =1,...,n
F(X) A known model which can generate y from X
8t The value of a sensitivity measure for the input x;
Correlation measure

The correlation measure is the Pearson correlation coefficient between the values of a target
and one of its simulated predictors. The correlation measure is not supported for targets with a
nominal measurement level or for simulated inputs with a categorical distribution.

One-at-a-time measure

Lo

w

&

o

The one-at-a-time measure is the change in the target due to modulating a simulated input by plus
or minus a specified number of standard deviations of the distribution associated with the input.
The one-at-a-time measure is not supported for targets with an ordinal or nominal measurement
level, or for simulated inputs with any of the following distributions: categorical, Bernoulli,
binomial, Poisson, or negative binomial.

The procedure is to modulate the values of a simulated input by the specified number of standard
deviations and recompute the target with the modulated values, without changing the values of
the other inputs. The mean change in the target is then taken to be the value of the one-at-a-time
sensitivity measure for that input.

For each simulated input z; for which the one-at-a-time measure is supported:
Define the temporary data matrix X = X

Add the specified number of standard deviations of the input’s distribution to each value of
Tjin X',
Calculate y' = F (X")

- ,
Calculate so; = 1y | (y - yi>

Repeat Step 2, but now subtracting the specified number of standard deviations from each value of
x;. Continue with Steps 3 and 4 to obtain the value of sa; in this case.

Contribution to variance measure

The contribution to variance measure uses the method of Sobol (2001) to calculate the total
contribution to the variance of a target due to a simulated input. The total contribution to variance,
as defined by Sobol, automatically includes interaction effects between the input of interest

and the other inputs in the predictive model.
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The contribution to variance measure is not supported for targets with an ordinal or nominal
measurement level, or for simulated inputs with any of the following distributions: categorical,
Bernoulli, binomial, Poisson, or negative binomial.

Let X’ be an additional set of simulated data, in the same form as X and with the same number
of simulated records.

Define the following:

n

fo= %Zw

=1

n

D= %Z yi — (fo)?

i=1

For each simulated input z; for which the contribution to variance measure is supported, calculate

1w i : .
Dr.-z\.r_, = ; Z Yi [f (A :'r_'_, + Ax\m_;)]i - (.f[])z

i=1

where:
m o\ x;denotes the set of all inputs excluding =

m X ’ + X\, Is aderived data matrix where the column associated with z; is taken from
X' and the remaining columns (for all inputs excluding =) are taken from X

The total contribution to variance from z; is then given by
_ D — D,}:\;r_,
SC{',J; — T

Note: When interaction terms are present, the sum of the sa; over all simulated inputs for which
the contribution of variance is supported, may be greater than 1.
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Support Vector Machine (SVYM)
Algorithms

Introduction to Support Vector Machine Algorithms

The Support Vector Machine (SVM) is a supervised learning method that generates input-output
mapping functions from a set of labeled training data. The mapping function can be either a
classification function or a regression function. For classification, nonlinear kernel functions are
often used to transformed input data to a high-dimensional feature space in which the input data
become more separable compared to the original input space. Maximum-margin hyperplanes are
then created. The produced model depends on only a subset of the training data near the class
boundaries.

Similarly, the model produced by Support Vector Regression ignores any training data that is
sufficiently close to the model prediction. (Support Vectors can appear only on the error tube
boundary or outside the tube.)

SVM Algorithm Notation

Ti The ith training sample

Yi The class label for the ith training sample

{ The number of training samples

K (xi - xj) The kernel function value for the pair of samples 7, /

Q(zi-z;) = yiy; K (xi - x3) The kernel matrix element at row 7 and column ;

Q Coefficients for training samples (zero for
non-support vectors)

o Coefficients for training samples for support vector
regression models

f(x) Decision function

m The number of classes of the training samples

C The upper bound of all variables

e The vector with all elements equal to 1

sgn (x : . 1 ifz>0

gn (2) The sign function: -
—1 otherwise

SVM Types

This section describes the types of SVM available, based on the descriptions in the LIBSVM
technical report(Chang and Lin, 2003). K (x; - x;) is the kernel function selected by the user. For
more information, see the topic “SMO Algorithm.”



Support Vector Machine (SVM) Algorithms

C-Support Vector Classification (C-SVC)

Given training vectors =; € R',i=1, ..., |, intwo classes, and a vector y € R' such that
y; € {—1,1}, C-SVC solves the following dual problem:

1 + ;
min [ (o) = 5(1] Qo —ela

suchthat 0 < a; < C,i=1,....,landy"a =0, where

a = (ap,a9,..., u;)T

and ¢ isan I x I matrix, @ (=, - x;) = piy; K (2 - ;)

The decision function is

l

sgn Z yio, K (x,x) +b
i=1

where b is a constant term.

e-Support Vector Regression (c-SVR)

In regression models, we estimate the functional dependence of the dependent (target) variable

y € R on an n-dimensional input vector X. Thus, unlike classification problems, we deal with
real-valued functions and model an " — R' mapping. Given a set of data { (. 1), ..., (21, 21)},
such that z; € R™ isan input and z; € R' is a target output, the dual form of e-Support Vector
Regression is

[ l
1
min f (a,a”) = 5((.} — (f*)TQ (v —a™) + EZ (a; +ai)+ Z;Z (a; —aj)
suchthat0 < a; and a7 < C'fori=1,...,1, and
l
Z (a; —a])=0
=1

where a = (o, ag, ..., (_U)T, a* = (o}, a3, ...,(}f)T, and @@ isan ! x I matrix, ¢;; = K (x; -.’rj)

The approximate function is
i: (—a; +af) K (wj,2) +b
i—1

where b is a constant term.
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Primary Calculations

The primary calculations for building SVM models are described below.

Solving Quadratic Problems
In order to find the decision function or the approximate function, the quadratic problem must be
solved. After the solution is obtained, we can get different coefficients «;:
m if 0 < a, < C, the corresponding training sample is a free support vector.
m if o; = C, the corresponding training sample is a boundary support vector.
m if a; = 0, the corresponding training sample is a non-support vector, which doesn’t affect the
classification or regression result.

Free support vectors and boundary support vectors are called support vectors.

This document adapts the decomposition method to solve the quadratic problem using second
order information (Fan, Chen, and Lin, 2005). In order to solve all the SVM’s in a unified
framework, we’ll introduce a general form for C-SVC and &-SVR.

For e-SVR, we can rewrite the dual form as
| w i o (Q -0\(a T 4T\ (a
min f(a,0") = 2 (a (a") ) ‘0 0 at ) T\ e LT ot

such that y” z =0and0 < a;,af <Cfori=1,.. 1, wherey isa 2] x 1 vector with
y, =1fori=1,..., landy, = -1fori=1+1, .., 2L

Given this, the general form is

1
min f (o) = 50;Jr Qo +pla

suchthat0 < o, < Cfori=1,..,1 and y"a= constant
o in W(a) pT yTa = constant
C-svC ((.ll,az,...,t‘u)T *CT Y= ('Ula"'ayl)l
vl a=0

y =0

4 4 - _ T
e-SVR (a1, g, .oy, af o, o)’ (ggr | ;T>T y=(Li,... Ly —=Ligq, 0, =12)
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The Constant in the Decision Function

After the quadratic programming problem is solved, we get the support vector coefficients in the
decision function. We need to compute the constant term in the decision function as well. We
introduce two accessory variables r1 and ro:

» Foryj=1:
If0<a; <C,
Yoca,<Cy=1 V[ ()
r =
E[]<m<C,y,-:l1
Otherwise,
maxe, —cy,=1 V.f (i) +ming, —o =1 Vf (a;)
r = 5
» Foryj=-1:
If0 < a; <,
Yo<a,<Cyi=—1Vf ()
ry =
ZU<(I§<C,Z/1‘:711
Otherwise,
. Maxa,—Cy——1 V. (@) + ming, —py=—1 V[ (a;)
ry =

2

After rq and rp are obtained, calculate b = ==

Variable Scale

For continuous input variables, linearly scale each attribute to [-1, 1] or [0, 1]:

V — Vi
7 ¥Vmin ; )
= ————— (newmaxr — newmin) + newmin

Vinax — Viin

}new

For categorical input fields, if there are m categories, then use (0, 1, 2, ..., m) to represent the
categories and scale the values as for continuous input variables.

Model Building Algorithm

In this section, we provide a fast algorithm to train the SVM. A modified sequential minimal
optimization (SMO) algorithm is provided for C-SVC binary and &-SVR models. A fast SVM
training algorithm based on divide-and-conquer is used for all SVMs.
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SMO Algorithm

Due to the density of the kernel matrix, traditional optimization methods cannot be directly applied
to solve for the vector a. Unlike most optimization methods which update the whole vector « in
each step of an iterative process, the decomposition method modifies a subset of « per iteration.
This subset, denoted as the working set B, leads to a small sub-problem to be minimized in each
iteration. Sequential minimal optimization (SMO) is an extreme example of this approach which
restricts B to have only two elements. In each iteration no optimization algorithm is needed to
solve a simple two-variable problem. The key step of SML is the working set selection method,
which determines the speed of convergence for the algorithm.

Kernel functions

The algorithm supports four kernel functions:

Linear function K (xi-x;) = X! - %

Polynomial function K (xi %) = (v x; + "'")d
T - (]

RBF function K (xi - %;) = exp (7 Hxiz('ijHA)
=exp (=% — x;[*) v = 522

Hyperbolic tangent function K (x; - x;) = tanh (’yx? xj +7)
tanh (z) = %ﬁ_x;

Base Working Set Selection Algorithm

The base selection algorithm derives the selection set B = {i, j} based on 1, C, the target vector
y, and the selected kernel function K(x;, X;).

Let
a;j = Ki + Kjj — 2K, bij = —yiV f ((1'1”‘). | yJ,-Vf(a-k) .
? J

and

. — Ufs if ars > 0
s =3 1 otherwise

where 1 is a small positive number.

Select

¢ € arg maxy {—ytVf(a"f)f“ € Ly (a:k) }’
j c argmiu; {—%hﬁ c Ilu-w ((}'}"), —Utvf((}'k)t < _.!’/fvf(ﬂik)i}

where
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Lp (o) = {tley < Coyp =10r oy > 0,y = —1}
Liow (@) = {tlay < Ciyp = —10ray >0,y =1}
Return B = {i, j}, where V[ (a) = Qa + p.

Shrink Algorithm

In order to speed up the convergence of the algorithm near the end of the iterative process, the
decomposition method identifies a possible set A containing all final free support vectors. Hence,
instead of solving the whole problem, the decomposition method works on a smaller problem:

[
min —ao 262‘4_4(}/4 —(pa — QANGN)T(,}-A
aqg 2
. .0 < (r}'.’l)[ < C,t= 17' g
yZ;ozA = const — y?;ra'i\r
where N = {1,2,---1} \ A is the set of shrunken variables.
Afer every min(l, 1000) iterations, we try to shrink some variables. During the iterative process

m (a®) > M (a*). Until m (a®) — M (a*) < e is satisfied, we can shrink variables in the
following set:

{t| - uVf () >m(a*),a =Ciyy=loray =0,y = 1} U
{t| — vV flo) <M(a*),0p =0,y =lora,=C,yy = 1}

Thus the set A of activated variables is dynamically reduced every min(l, 1000) iterations.

» To account for the tendency of the shrinking method to be too aggressive, we reconstruct the
gradient when the tolerance reaches

m (Oz‘k) <M (a-k) + 10e

After reconstructing the gradient, we restore some of the previously shrunk variables based on
the relationship

{tl =4V f () <m(aF),ar=Cryp=Toray =0,yp = =1} U
{t| = 9V f (0r) > M (%) 0 = 0,y = Loray = Cyyy = —1}

Gradient Reconstruction

To decrease the cost of reconstruction of the gradient ¥ f («), during the iterations we always keep
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:C_Z: Qiji=1,---1
a;=C
Then for the gradient Vf (), i ¢ A. we have

ZQUQ]*pa C + Z Qua;r*pz

D<oy <C
and for the gradient V f («;), i € A we have
v/ (af*l) v/ (a ) + Qulay + QisAa,
where t and s are the working set indices.

Unbalanced Data Strategy

For some classification problems, the algorithm uses different parameters in the SVM formulation.
The differences only affect the procedure for updating *. Different conditions are handled

as follows:
For :
Conditions Update parameters
Yi 7 Yj a; —ay; > C—Cyand o > C; al’t" =4
i =0 — (ap — ay)
o —a; <0 —Cjand a; > " =05
a;-mu- — (“rj + ((,I, _ QJ)
a; —a; >0and a; <0 af™t =
aztrn‘ — (”! _ (}'])
a:trm - 0
a;—a; <0 and & < 0 (k}"w = (o —a))
Yi = Uj (1‘2“'“' =}
o + oy > and ¢ > [@f u;cru' — ((l, QJ) -y
_' 0 a;lrn' =0
i toa; <Cgnd & < Al = (ay + )
™ =(a; +a;) —
a;, +oay; > C a; > O o
7 J and “Y 3 a;tru. :ij
< 0 (lzlfﬂ‘ - 0
ity S0 gpg @ < a7 = (o + )
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SMO Decomposition
The following steps are used in the SMO decomposition:
1. Find o' as the initial feasible solution, and set k = 1.

2. If o* is a stationary solution, stop.

A feasible solution is stationary if m (o) — A (&) < e, where

m(a) = max {=uiV [f(ai)}

M (o) = min {—y; V[ ()}
1€ L
Lip (@) = {tloy < Coyp =101 oy > 0,9 = —1}
Tiow (o) = {tloy < Cyp = —10r oy > 0,y = 1}
Find a two-element working set B = {4, j} using the working set selection algorithm. (For more

information, see the topic “Base Working Set Selection Algorithm.”)

3. If the shrink algorithm is being used to speed up convergence, apply the algorithm here. (For more
information, see the topic “Shrink Algorithm.”)

4. Derive o**! as follows:

» If C; # C}, orif solving a classification problem, use the unbalanced data strategy. (For more
information, see the topic “Unbalanced Data Strategy.”)

» If a;; > 0, solve the subproblem

1 Qi Qij || ai : NI oy
min 5[(.15 &j] {Q;{ ij} {ﬂ;] + (—pB + (,)Bj-\:cx-i\:) O; -+ cont

aB

Subject to the constraints

0 < aj,a; <C,

‘ ) o Tk
Yioi T yja; = —yNQy
and let

new _ . old y;bi;
i = Q; + aij
new _ old _ yibi
j = Qj a,

» Otherwise, solve the subproblem
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- Qi Oy Tl
ming,, %[m G’j] [ngi ng;} {2;] + (—pﬁ + (Qfgi-\;-(}:f“\,) {2; } +
T—a, . 2 N 2
= ((Gi —al)" + <0'j - o(ﬁf) )

subject to the same constraints described above, where 7 is a small positive number and
N ={1,2,---1}\ B, and let

anew — old + Yibi,

i ) 71;
new — ~old _ Yibij
G.J O;J =

Finally, set o%;"* to be the optimal point of the subproblem.

Set ok = ok, setk = k 4 1, and go to step 2.

Fast SVM Training

For binary SVM models, the dense kernel matrix cannot be stored in memory when the number of
training samples | is large. Rather than using the standard decomposition algorithm which depends
on a cache strategy to compute the kernel matrix, a divide-and-conquer approach is used, dividing
the original problem into a set of small subproblems that can be solved by the SMO algorithm
(Dong, Suen, and Krzyzak, 2005). For each subproblem, the kernel matrix can be stored in a
kernel cache defined as part of contiguous memory. The size of the kernel matrix should be large
enough to hold all the support vectors in the whole training set and small enough to satisfy the
memory constraint. Since the kernel matrix for the subproblem is completely cached, each element
of the kernel matrix needs to be evaluated only once and must be calculated using a fastmethod.

There are two steps in the fast SVM training algorithm:
» Parallel optimization

» Fast sequential optimization

These steps are described in more detail below.

Parallel Optimization

Since the kernel matrix Q is symmetric and semi-positive definite, its block diagonal matrices are
semi-positive definite, and can be written as

Q1
Q2

Qd-i ag —
Qs
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k
where I; x [; matrices Q;,i=1,---,k, Z I; = 1 are block diagonal. Then we obtain k

optimization subproblems as described in “Base Working Set Selection Algorithm.” All the
subproblems are optimized using the SMO decomposition algorithm in parallel. After this parallel
optimization, most non-support vectors will be removed from the training set. Then a new
training set can be obtained by collecting support vectors from the sub-problems. Although the
size of the new training set is much smaller than that of the original one, the memory may not be
large enough to store the kernel matrix, especially when dealing with a large dataset. Therefore a
fast sequential optimization technique is used.

Fast Sequential Optimization

The technique for fast sequential optimization works by iteratively optimizing subsets of the
problem. Initially, the training set is shuffled, all a;,7 = 1,---,1 are set to zero, and a subset
Sub C S is selected from the training set S. The size of the subset d is set (d < ).

Optimization proceeds as follows:

» Apply the SMO algorithm to optimize a subproblem in Sub with kernel caching, and update «; and
the kernel matrix. For more information, see the topic “SMO Algorithm.”

» Select a new subset using the queue subset method. The size of the subset is chosen to be large
enough to contain all support vectors in the training set but small enough to satisfy the memory
constraint. For more information, see the topic “Queue Method for Subset Selection.”

» Return to step 1 unless any of the following stopping conditions is true:

B |ASV| <20 and (Number of learned samples) > |
B SV = (d-1)
m  (Number of learned samples) > T - [

where |ASV| is the change in number of support vectors between two successive subsets, |
is the size of the new training set, and T (> 1.0) is a user-defined maximum number of loops
through the data allowed.

Queue Method for Subset Selection

The queue method selects subsets of the training set that can be trained by fast sequential
optimization. For more information, see the topic “Fast Sequential Optimization.”

The method is initialized by setting the subset to contain the first d records in the training data and
the queue Qs to contain all the remaining records, and computing the kernel matrix for the subset.

Once initialized, subset selection proceeds as follows: each non-support vector in the subset

is added to the end of the queue, and replaced in the subset with the record at the front of the
queue (which is consequently removed from the queue). When all non-support vectors have been
replaced, the subset is returned for optimization. On the next iteration, the same process is applied,
starting with the subset and the queue in the same state they were in at the end of the lastiteration.
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Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

Model Nugget/Scoring

The SVM Model Nugget generates predictions and predicted probabilities for output classes.
Predictions are based on the category with the highest predicted probability for each record.

To choose a predicted value, posterior probabilities are approximated using a sigmoid
function(Platt, 2000). The approximation used is

1

Ply=1lr)~ Pap(x) = 1+exp(Af(x)+ B)

The optimal parameters A and B are the estimated by solving the following

regularized maximum likelihood problem with a set of labeled examples

(x1,41), (X2, 2) 5+, (x, ) ,x € R",y € {+1, -1}, and Ny is the number of positive examples
and N_ is the number of negative examples:

{
min F' Z ti log p@ (1 — t@-)log(l —'Pi))
z=(4,B) Py
N++1 lf :+1
pi = Pap (i) and t; = ¢ V42 ”y" =11
N 12 it Y; = —1

o -
Z fz (tz
VF(z)=|"

i
> (ti-

| =1

H(z) = V2F () — | Zim [P (Lop) - Xy fimi (1)
) S Jpi (L =pi)  Siypi(1-pi)

Blank Handling

Records with missing values for any input field cannot be scored and are assigned a predicted
value and probability value(s) of $null$.






Time Series Algorithms

The Time Series node builds univariate exponential smoothing, ARIMA (Autoregressive
Integrated Moving Average), and transfer function (TF) models for time series, and produces
forecasts. The procedure includes an Expert Modeler that identifies and estimates an appropriate
model for each dependent variable series. Alternatively, you can specify a custom model.

This algorithm is designed with help from professor Ruey Tsay at The University of Chicago.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Yi(t=1,2,...,n) Univariate time series under investigation.
n Total number of observations.
Y, (k) Model-estimated k-step ahead forecast at time t for series Y.
S The seasonal length.
Models

The Time Series node estimates exponential smoothing models and ARIMA/TF models.

Exponential Smoothing Models

The following notation is specific to exponential smoothing models:

a Level smoothing weight

Y Trend smoothing weight

0] Damped trend smoothing weight
) Season smoothing weight

Simple Exponential Smoothing

Simple exponential smoothing has a single level parameter and can be described by the following
equations:

L(t) = aY (t)+ (1 —a)L(t—1), if Y (i) is not missing
(t) = Lt —1), else

Yi (k) = L(t)

It is functionally equivalent to an ARIMA(0,1,1) process.
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Brown'’s Exponential Smoothing

Brown’s exponential smoothing has level and trend parameters and can be described by the
following equations:

Lit) = aY (1) +(L—a)L(t—1), if Y ({) is nol missing
() = Lt —1)+T(t—1), else

‘ CJalL(t) - Lt —-1)+ {1l —a)T(t—1), if Y (t)is not missing
() = { T(t—1), else

Yi(k)=L{t)+ ((k=1)+a=")1 (1)

It is functionally equivalent to an ARIMA(0,2,2) with restriction among MA parameters.

Holt's Exponential Smoothing

Holt’s exponential smoothing has level and trend parameters and can be described by the
following equations:

L) = aV () + (1 —a)(L(t=1)+T{—1)), if Y(t)is not missing
(1) = Lt—1)+T(—1), else

v VL) =L =1+ (=T —1), if Y (i) is not missing
T(i) - T[f _ 1)7 else

Vi (k) = L(t) + kT (1)

It is functionally equivalent to an ARIMA(0,2,2).

Damped-Trend Exponential Smoothing

Damped-Trend exponential smoothing has level and damped trend parameters and can be
described by the following equations:

Lit) = aY (1) + (1 —a)(L{t—1)+¢T(i —1)), if Y (i) is not missing
R Lt —1)+ T (L —1), else

— VL) — Lt = 1)+ (1L —y)pT(t —1), if Y (t)is not missing
(t) = eT(t—1), else

k
Vi) =L(t)+> o' (1)

It is functionally equivalent to an ARIMA(1,1,2).
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Simple Seasonal Exponential Smoothing

Simple seasonal exponential smoothing has level and season parameters and can be described
by the following equations:

L0 — alY (1) =St —s))+ (1—a)L(t—1), if Y (i)is nol missing
) = Lt — 1), else

S(1) — Y (1) —L{t) + (1 =48)S(t —s), if Y (1) is not missing
S(t) = S(1 — s) else
Vi(k)=L(t)+S(t+k—s)

It is functionally equivalent to an ARIMA(0,1,(1,s,5+1))(0,1,0) with restrictions among MA
parameters.

Winters’ Additive Exponential Smoothing

Winters’ additive exponential smoothing has level, trend, and season parameters and can be
described by the following equations:

10t — alY (1) =St —s)+ (1 —a)L{E-1)+T(t—1)), if Y (i) is not missing
(t) = Lt —1)4+T(t—1), else

T(0) — VL) =Lt —=1)+ (1 —)T(t—=1), if Y (t) is not missing
() = T(t—1), else

S() — Y ()= L)+ (1 —=08)S(t—s), if Y (i) is not missing
S(t) = St —s) else

Vi(k)=L(t)+kT () +S5(+k—s)

It is functionally equivalent to an ARIMA(0,1,s+1)(0,1,0) with restrictions among MA parameters.

Winters’ Multiplicative Exponential Smoothing

Winters’ multiplicative exponential smoothing has level, trend and season parameters and can be

described by the following equations:

I — aY (£)/S(t—s))+(1—a)(L{t—1)+T(t—1)), if Y () is not missing
(1) = Lt -1 +T(#—-1), clse

T — L) =Lt —1)+ (1 =T —1), if Y(I) is not missing
(t) = T(t—1), else

S(1) — (Y (t) /L(E)) + (L —0)S(t —s), if Y (t) is not missing
) = S(t—s) else

Yy (k) = (L(t) + kT (8)S(t + k—s)

There is no equivalent ARIMA model.
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Estimation and Forecasting of Exponential Smoothing

N 2
The sum of squares of the one-step ahead prediction error, (Y; —Y_, (1)) , IS minimized
to optimize the smoothing weights.

Initialization of Exponential Smoothing

Let L denote the level, T the trend and, S, a vector of length s, denote the seasonal states. The
initial smoothing states are made by back-casting from t=n to t=0. Initialization for back-casting is
described here.

For all the models L = y,,.

For all non-seasonal models with trend, T is the negative of the slope of the line (with intercept)
fitted to the data with time as a regressor.

For the simple seasonal model, the elements of S are seasonal averages minus the sample mean;
for example, for monthly data the element corresponding to January will be average of all January
values in the sample minus the sample mean.

For the additive Winters’ model, fit y = at - Z;S.,_J.,- (t) to the data where t is time and

=1
I; (t) are seasonal dummies. Note that the model does not have an intercept. Then 7' = —a, and
S5 =8 — mean (7).

For the multiplicative Winters” model, fit a separate line (with intercept) for each season with time
as a regressor. Suppose 1 is the vector of intercepts and 3 is the vector of slopes (these vectors
will be of length s). Then T' = —mean (&) and S = (u + 3) / (mean (u) + mean (3)).

The initial smoothing states are:
L' = L(0)

T' = —T(0)

I

S = (S(1—8),8(2—5),...8(=1), 8(0)= (S(1), 5(2),...,8(=1 + 5), S(0))

ARIMA and Transfer Function Models

The following notation is specific to ARIMA/TF models:

at(t=1,2,..,n) White noise series normally distributed with mean zero and variance o*
Order of the non-seasonal autoregressive part of the model

Order of the non-seasonal moving average part of the model

Order of the non-seasonal differencing

Order of the seasonal autoregressive part of the model

Order of the seasonal moving-average part of the model

Order of the seasonal differencing

OO e oo
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S Seasonality or period of the model
&y (B) AR polynomial of B of orderp, ¢, (B) =1 —¢1 B — 92 B” — ... — o, B”
By () MA polynomial of B of order q, 8, (8) =1 — 9, B — 2 8% — ... — 9J,B"
$p (B7) Seasonal AR polynomial of BS of order P,
Tp(B)=1—0,B° — 0B — .. — ¢pB"
Bq (BY) Seasonal MA polynomial of BS of order Q,
(;)Q (B"\') =1—&4,B° — (:)215”'2 — .= (‘_)QB“‘J
A Differencing operator A = (1 — B)*(1 — B*)”
B Backward shift operator with BY; = Y;_; and Ba; = a;_1
Aol Prediction variance of Z;
No? Prediction variance of the noise forecasts

Transfer function (TF) models form a very large class of models, which include univariate ARIMA
models as a special case. Suppose Y; is the dependent series and, optionally, X;, X, ..., Xy, are
to be used as predictor series in this model. A TF model describing the relationship between the
dependent and predictor series has the following form:

MA
AR

k -
:\ i X .
AZy =+ Yy St DB fi(Xa) o

ag
- Den;
1=1

The univariate ARIMA model simply drops the predictors from the TF model; thus, it has the
following form:

A _ MA
.AZ1 =M ﬁﬂ,ﬂ

The main features of this model are:

®m Aninitial transformation of the dependent and predictor series, f and f;. This transformation

is optional and is applicable only when the dependent series values are positive. Allowed
transformations are log and square root. These transformations are sometimes called
variance-stabilizing transformations.

A constant term .
The unobserved i.i.d., zero mean, Gaussian error process a, with variance «>

The moving average lag polynomial MA=8, (B)0, (5*) and the auto-regressive lag
polynomial AR=¢,, (B)®p (B*).

m  The difference/lag operators A and A,
m  Adelay term, B, where b; is the order of the delay

m Predictors are assumed given. Their numerator and denominator lag polynomials are
of the form: Num;=(wijp — wnB — -+ — wiuB¥)(1 — Q B* — --- — Q;, B*)B® and
D&’.’Li:(l — (SﬂB — = ().LTB’)(l — A.ﬂBs — )

m  The “noise” series
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k -
.'\‘71 = AZ{ — M= Z DL:‘:I Al‘Bbr‘X”
i=1 o

is assumed to be a mean zero, stationary ARMA process.

Interventions and Events

Interventions and events are handled like any other predictor; typically they are coded as 0/1
variables, but note that a given intervention variable’s exact effect upon the model is determined
by the transfer function in front of it.

Estimation and Forecasting of ARIMA/TF

There are two forecasting algorithms available: Conditional Least Squares (CLS) and Exact Least
Squares (ELS) or Unconditional Least Squares forecasting (ULS). These two algorithms differ in
only one aspect: they forecast the noise process differently. The general steps in the forecasting
computations are as follows:

1. Computation of noise process N, through the historical period.

2. Forecasting the noise process V; up to the forecast horizon. This is one step ahead forecasting
during the historical period and multi-step ahead forecasting after that. The differences in CLS
and ELS forecasting methodologies surface in this step. The prediction variances of noise
forecasts are also computed in this step.

3. Final forecasts are obtained by first adding back to the noise forecasts the contributions of the
constant term and the transfer function inputs and then integrating and back-transforming the
result. The prediction variances of noise forecasts also may have to be processed to obtain the
final prediction variances.

Let N, (k) and o7 (k) be the k-step forecast and forecast variance, respectively.

Conditional Least Squares (CLS) Method

hY (k) = E (Nyoy| Ny, Ni—q,--+) assuming N, = 0 for t<0.

k—1
a? (k) = 022 ‘(;’.-'?
=0
where v; are coefficients of the power series expansion of M A/ (A x AR).
L . 2
Minimize S = 2(;\-’, — N, (1)) .

Missing values are imputed with forecast values of V.

Maximum Likelihood (ML) Method (Brockwell and Davis, 1991)

Ni (k) = E (Nysk

LY N
i?\'t:*'\'t—la T *\1)
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: — Ny (1)}” ; that is,

t=1

Maximize likelihood of

M s
=

L=—In(S/n)—(1/n) > In(n;)

j=1

. 2 ) .
where S = E(s\-’, - N, (1)) /n, and o7 = o1 is the one-step ahead forecast variance.

When missing values are present, a Kalman filter is used to calculate N; (k).

Error Variance
&2 =8/(n—k)

in both methods. Here n is the number of non-zero residuals and k is the number of parameters
(excluding error variance).

Initialization of ARIMA/TF

A slightly modified Levenberg-Marquardt algorithm is used to optimize the objective function.
The modification takes into account the “admissibility” constraints on the parameters. The
admissibility constraint requires that the roots of AR and MA polynomials be outside the unit circle
and the sum of denominator polynomial parameters be non-zero for each predictor variable. The
minimization algorithm requires a starting value to begin its iterative search. All the numerator and
denominator polynomial parameters are initialized to zero except the coefficient of the Oth power
in the numerator polynomial, which is initialized to the corresponding regression coefficient.

The ARMA parameters are initialized as follows:
Assume that the series ¥; follows an ARMA(p,q)(P,Q) model with mean 0; thatis:
Y, *@l)/}fL *"'*Ppr—p =a; — a1 — — 0, gt —

In the following ¢, and p; represent the Ith lag autocovariance and autocorrelation of
Y; respectively, and ¢ and p; represent their estimates.

Non-Seasonal AR Parameters

For AR parameter initial values, the estimated method is the same as that in appendix A6.2 of

(Box, Jenkins, and Reinsel, 1994). Denote the estimates as |, - - -,Wﬂ

Non-Seasonal MA Parameters

Let

wy =Y —p1Yp 1 — — stYt—p =a;—01a4_1 — -+ — gqat—q

The cross covariance



Time Series Algorithms

o2 =0
76]_0’2 =1
A[ = E(?_Ut+lﬂ.t) = E(((Lt,[ 79]_U¢+i,l 7"'78‘_—},{134’,!,,;,)@1;) = s
—l‘?qar_‘; l=q
0 l>q
Assuming that an AR(p+q) can approximate Y, it follows that:
Y, — ‘fjll}rf’-*l - ‘fj/p}/f—]) - ‘rj/p+1Y;5*P*1 - ‘t'j/p—q ?*P*q =

The AR parameters of this model are estimated as above and are denoted as ¢, - - -, ﬁ .

Thus X; can be estimated by

!
A~ (H’H-I 1Yo — Y- P) (Y ‘“_1 T T pta ?71)7(1))
p+q p plq
=|p— E PPt — E Pip1—i E E PiPiPtrj—i | Co
=1 j=1

And the error variance o2 is approximated by

p+q ptaptqg ptqgptq

2 ’ ! ! "/

o, = Var E ¥ ,3r -l = E E ¥ i =y ZCUE 5 ¥ i¥ jPi—j
j=0 1=0 j=0 =0 j—=0

with ¢, = —1

Then the initial MA parameters are approximated by ¢, = —); /a2 and estimated by

rPta ptq
p1— E Cipitj — E Pipr—i + E E DigjPrj—i
T Y R J=1 i=1j—1
8‘, - _/\‘,f‘fa(l- - ;J—H{ ‘U+q
! i’
Z.Z‘rjg.':f;lj.ut—_j
=0 j=0

So 6, can be calculated by ¢ V;’“f‘“ and {/;}1"" 7. In this procedure, only {/;}"" " are used and all
other parameters are set to 0.

Seasonal parameters

For seasonal AR and MA components, the autocorrelations at the seasonal lags in the above
equations are used.

Calculation of the Transfer Function

The transfer function needs to be calculated for each predictor series. For the predictor series X,
let the transfer function be:

Num;

Vie =
Den;

ABY fi(X)
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It can be calculated as follows:
1. calculate U;; = A, BY f;(X31)

2. Recursively calculate

D; N,
= - Z Cden; (j) % Vi_j + Z Cnumg (j) * Ui—;

=1 =0

where C'den; (7) and Cnum; () are the coefficients of B/ in the polynomials Den; and
Num; respectively. Likewise, the summation limits D; and N; are the maximum degree of B/ in
the polynomials Den; and Nwm; respectively.

All missing V;,_; in the firstterm of V;, are taken to be V; _.. and missing U;,_; in the second term
are takento be U; _ ., where U; _ is the first non-missingmeasurement of tJ;,. V; _ . is given by

Num,; (l)

Vi =
‘ Den; (1)

L?.*’.’)C,
where Nwum; (1) and Den; (1) are the Nwm; and Den; polynomials evaluated at B = 1.

Diagnostic Statistics

ARIMA/TF diagnostic statistics are based on residuals of thenoise process, R () = N (t) — N (t).
Ljung-Box Statistic

K
Q(K)=n(n+2) Z 2/(n—k)
k=1

where r;, is the kth lag ACF of residual.

Q(K) is approximately distributed as x* (K — m), where m is the number of parameters other than
the constant term and predictor related-parameters.

Outlier Detection in Time Series Analysis

The observed series may be contaminated by so-called outliers. These outliers may change the
mean level of the uncontaminated series. The purpose of outlier detection is to find if there are
outliers and what are their locations, types, and magnitudes.

The Time Series node considers seven types of outliers. They are additive outliers (AO),
innovational outliers (10), level shift (LS), temporary (or transient) change (TC), seasonal additive
(SA), local trend (LT), and AO patch (AOP).
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Notation

The following notation is specific to outlier detection:

uU(t) or U, The uncontaminated series, outlier free. It is assumed to be a univariate ARIMA or
transfer function model.

Definitions of Outliers

Types of outliers are defined separately here. In practice any combination of these types can
occur in the series under study.

AO0 (Additive Outliers)
Assuming that an AO outlier occurs at time t=T, the observed series can be represented as
Y(#)=U{)+wlyp(t)

where Iy (1) = { (1) : f 1{ is a pulse function and w is the deviation from the true U(T) caused
by the outlier.

10 (Innovational Outliers)
Assuming that an 10 outlier occurs at time t=T, then
Y1) = pt) + 220 (alt) + wly (1))

LS (Level Shift)
Assuming that a LS outlier occurs at time t=T, then
Y (t)=U(t) +wSy(t)

0 t<T . .
where St (1) = (2517 (1) = { | t>T is a step function.
TC (Temporary/Transient Change)

Assuming that a TC outlier occurs at time t=T, then
Y{t)=U({t)+wDy(t)

where Dy (t) = —~— 1, (1),0 < § < 1 is a damping function.

SA (Seasonal Additive)

Assuming that a SA outlier occurs at time t=T, then
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Y () =U(t)+wSSy (t)

1 t=T+ ks, k>0

where S5y (1) = —L_T, (1) = {0 -

is a step seasonal pulse function.

LT (Local Trend)
Assuming that a LT outlier occurs at time t=T, then
Y(#)=U(t)+wTyr(t)
t+1-T t=1T

where Ty (1) = LI (t) = { 0 o%w. is a local trend function.

AOP (A0 patch)
An AO patch is a group of two or more consecutive AO outliers. An AO patch can be described

by its starting time and length. Assuming that there is a patch of AO outliers of length k at time
t=T, the observed series can be represented as

k
Y()=U(t)+ Z wily—y (1)
i—1

Due to a masking effect, a patch of AO outliers is very difficult to detect when searching for
outliers one by one. This is why the AO patch is considered as a separate type from individual
AO. For type AO patch, the procedure searches for the whole patch together.

Summary
For an outlier of type O at time t=T (except AO patch):

Y (1) = p(t) + who (B) Ir (1) + 5 pa(t)

where
1 0 = A0
1/(Ax(B)) O=1I0
) 1/01-B) 0=1LS
Lo(B)=9 1,0 s8) o0-71C
1/(1-B*) 0O=8A
1/(1-B)* O=1LT
with 7 (B) = ¢ (B)/6 (B). A general model for incorporating outliers can thus be written as
follows:
M
0 (B
Y (f) = (f) i kgl U"'RL();; (B) I-_['k (f) | A;’((;)a(ﬂ

where M is the number of outliers.
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Estimating the Effects of an Outlier

Suppose that the model and the model parameters are known. Also suppose that the type and
location of an outlier are known. Estimation of the magnitude of the outlier and test statistics
are as follows.

The results in this section are only used in the intermediate steps of outlier detection procedure.
The final estimates of outliers are from the model incorporating all the outliers in which all
parameters are jointly estimated.

Non-AO0 Patch Deterministic Outliers

For a deterministic outlier of any type at time T (except AO patch), let e (#) be the residual and
x(t) =m(B)L(B) Al (1), so:

e(t)=wz(t) +alt)

From residuals e(t), the parameters for outliers at time T are estimated by simple linear regression
of e(t) on x(t).

Forj=1(AO), 2 (10), 3(LS), 4 (TC), 5 (SA), 6 (LT), define test statistics:

M(T) = w; (1)
J( ) \/'Var(-n{,('f’])

Under the null hypothesis of no outlier, A;(T) is distributed as N(0,1) assuming the model and
model parameters are known.

AO Patch Outliers

For an AO patch of length k starting at time T, let =; ((;T) = = (B) Aly,,—, (t) for i =1tok, then

k

e(t)=> wi(T)a; (5T) +al(t)

i=1
Multiple linear regression is used to fit this model. Test statistics are defined as:

’
2y — WX X w(T)
(1) = o2

Assuming the model and model parameters are known, x* (I') has a Chi-square distribution with k
degrees of freedom under the null hypothesis w, (T) = .-+ = w;, (T') = 0.

Detection of Outliers

The following flow chart demonstrates how automatic outlier detection works. Let M be the total
number of outliers and Nadj be the number of times the series is adjusted for outliers. At the
beginning of the procedure, M = 0 and Nadj = 0.
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Figure 35-1

Input: seriesto forecast, predictors, seasonal length, model (if it is known)

.
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Checlz residual for an outlier
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¥
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M outliers, fit the model Yes
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¥

— T _ ¥ Incorperating all W outliers,
Delete insignifcant outliers Stop. fit and delste insignificant
one at a time until all are Mo cutliers. parameters one at a time until
significant. Update M. all are significant. Update hd

} —

Final model

¥

| |Adjust original data for all 1M
outliers. MNadj=2Tadj+1

Goodness-of-Fit Statistics

Goodness-of-fit statistics are based on the original series Y (t). Let k= number of parameters in the
model, n = number of non-missing residuals.
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Mean Squared Error

z(yu) —y (z))2

MSE = —

Mean Absolute Percent Error

MAPE = %z' (v -vm)y (i)'

Maximum Absolute Percent Error

MarAPE = 100 max (' (Y (1) -V (t)),fy (1.)')

Mean Absolute Error

MAE = 1¥.

Y (1) — Y(i)'

Maximum Absolute Error

Y (-1 )

MarAFE = max (

Normalized Bayesian Information Criterion

Normalized BIC = ln (MSE) | k2

R-Squared

Stationary R-Squared

A similar statistic was used by Harvey (Harvey, 1989).

3 (Z(z.)fz(z)f

where
The sum is over the terms in which both Z (¢) — Z (t) and AZ (t) — AZ are not missing.

AZ is the simple mean model for the differenced transformed series, which is equivalent to the
univariate baseline model ARIMA(0,d,0)(0,D,0).
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For the exponential smoothing models currently under consideration, use the differencing orders
(corresponding to their equivalent ARIMA models if there is one).

=12 Brown, Holt _ [0 s=1
|1 other 1 s>1

Note: Both the stationary and usual R-squared can be negative with range (—o,1]. A negative
R-squared value means that the model under consideration is worse than the baseline model. Zero
R-squared means that the model under consideration is as good or bad as the baseline model.
Positive R-squared means that the model under consideration is better than the baseline model.

Expert Modeling

Univariate Series

Users can let the Expert Modeler select a model for them from:
m  All models (default).

m  Exponential smoothing models only.

®  ARIMA models only.

Exponential Smoothing Expert Model
Figure 35-2

Heties
Zeasonal length

h J

Non-seasonal: fit all 4 non-seasonal E2 models

Seasonal and positive: fit 6 ES models (no Brow)

Seasonal and not-all-positive: fit 5 ES models (no Brown, no
ol tipli cative Winterd)

h 3

ES EM = amallest BIC model
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ARIMA Expert Model

Figure 35-3

Series
Seagona length

!

Im pate missing

!

Transformation (none, log or sge)?

!

Differenice order

!

Fattern detection (ACF, PACE,
E ACF) for intial model

l Delete insi gnificant

Fit the model by CL3 o wparath etersin 3 stages:

/ l L |t=0.5, 2. [t)<1, 3. [t<2

I:Lccuc:;fymodel (orly Fit the model by LIL . w{Dlelete inaigrificant parameters
'\Diagnostic checking

Lijung Box, ACFFACF

|

ARIMA ELI

Note: If 10<n<3s, set s=1 to build a non-seasonal model.

All Models Expert Model

In this case, the Exponential Smoothing and ARIMA expert models are computed, and the model
with the smaller normalized BIC is chosen.

Note: For short series, n<max(20,3s), use Exponential Smoothing Expert Model.

Multivariate Series

In the multivariate situation, users can let the Expert Modeler select a model for them from:

m  All models (default). Note that if the multivariate expert ARIMA model drops all the
predictors and ends up with a univariate expert ARIMA model, this univariate expert ARIMA
model will be compared with expert exponential smoothing models as before and the Expert
Modeler will decide which is the best overall model.

®  ARIMA models only.
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Transfer Function Expert Model
Figure 35-4
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|
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¥
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|
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LjungBox, ACF/PACF

:

Modify ARLIA patt as inunivariate

!

Tlultivariate ERI

Note: For short series, n<max(20,3s), fit a univariate expert model.
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Blank Handling

Generally, any missing values in the series data will be imputed in the Time Intervals node used
to prepare the data for time series modeling. If blanks remain in the series data submitted to
the modeling node, ARIMA models will attempt to impute values, as described in “Estimation
and Forecasting of ARIMA/TF.”

Missing values for predictors will result in the field containing the missing values to be
excluded from the time series model.

Generated Model/Scoring

Predictions or forecasts for Time Series models are intricately related to the modeling process
itself. Forecasting computations are described with the algorithm for the corresponding model
type. For information on forecasting in exponential smoothing models, see “Exponential
Smoothing Models.” For information on forecasting in ARIMA models, see “Estimation and
Forecasting of ARIMA/TF.”

Blank Handling

Blank handling for the generated model is very similar to that for the modeling node.
If any predictor has missing values within the forecast period, the procedure issues a warning
and forecasts as far as it can.
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Overview

The TwoStep cluster method is a scalable cluster analysis algorithm designed to handle very large
data sets. It can handle both continuous and categorical variables or attributes. It requires only one
data pass. It has two steps 1) pre-cluster the cases (or records) into many small sub-clusters; 2)
cluster the sub-clusters resulting from pre-cluster step into the desired number of clusters. It can
also automatically select the number of clusters.

Model Parameters

As the name implies, the TwoStep clustering algorithm involves two steps: Pre-clustering and
Clustering.

Pre-cluster

The pre-cluster step uses a sequential clustering approach. It scans the data records one by one
and decides if the current record should be merged with the previously formed clusters or starts a
new cluster based on the distance criterion (described below).

The procedure is implemented by constructing a modified cluster feature (CF) tree. The CF
tree consists of levels of nodes, and each node contains a number of entries. A leaf entry (an entry
in the leaf node) represents a final sub-cluster. The non-leaf nodes and their entries are used to
guide a new record quickly into a correct leaf node. Each entry is characterized by its CF that
consists of the entry’s number of records, mean and variance of each range field, and counts for
each category of each symbolic field. For each successive record, starting from the root node, it is
recursively guided by the closest entry in the node to find the closest child node, and descends
along the CF tree. Upon reaching a leaf node, it finds the closest leaf entry in the leaf node. If
the record is within a threshold distance of the closest leaf entry, it is absorbed into the leaf entry
and the CF of that leaf entry is updated. Otherwise it starts its own leaf entry in the leaf node. If
there is no space in the leaf node to create a new leaf entry, the leaf node is split into two. The
entries in the original leaf node are divided into two groups using the farthest pair as seeds, and
redistributing the remaining entries based on the closeness criterion.

If the CF tree grows beyond allowed maximum size, the CF tree is rebuilt based on the existing
CF tree by increasing the threshold distance criterion. The rebuilt CF tree is smaller and hence
has space for new input records. This process continues until a complete data pass is finished.
For details of CF tree construction, see the BIRCH algorithm (Zhang, Ramakrishnon, and Livny,
1996).

All records falling in the same entry can be collectively represented by the entry’s CF. When a
new record is added to an entry, the new CF can be computed from this new record and the old CF
without knowing the individual records in the entry. These properties of CF make it possible to
maintain only the entry CFs, rather than the sets of individual records. Hence the CF-tree is much
smaller than the original data and can be stored in memory more efficiently.

Note that the structure of the constructed CF tree may depend on the input order of the cases or
records. To minimize the order effect, randomly order the records before building the model.
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Cluster

The cluster step takes sub-clusters (non-outlier sub-clusters if outlier handling is used) resulting
from the pre-cluster step as input and then groups them into the desired number of clusters. Since
the number of sub-clusters is much less than the number of original records, traditional clustering
methods can be used effectively. TwoStep uses an agglomerative hierarchical clustering method,
because it works well with the auto-cluster method (see the section on auto-clustering below).
Hierarchical clustering refers to a process by which clusters are recursively merged, until
at the end of the process only one cluster remains containing all records. The process starts by
defining a starting cluster for each of the sub-clusters produced in the pre-cluster step. (For more
information, see the topic “Pre-cluster.”) All clusters are then compared, and the pair of clusters
with the smallest distance between them is selected and merged into a single cluster. After
merging, the new set of clusters is compared, the closest pair is merged, and the process repeats
until all clusters have been merged. (If you are familiar with the way a decision tree is built, this
is a similar process, except in reverse.) Because the clusters are merged recursively in this way, it
is easy to compare solutions with different numbers of clusters. To get a five-cluster solution,
simply stop merging when there are five clusters left; to get a four-cluster solution, take the five-
cluster solution and perform one more merge operation, and so on.

Distance Measure

The TwoStep clustering method uses a log-likelihood distance measure, to accommodate both
symbolic and range fields. It is a probability-based distance. The distance between two clusters
is related to the decrease in log-likelihood as they are combined into one cluster. In calculating
log-likelihood, normal distributions for range fields and multinomial distributions for symbolic
fields are assumed. It is also assumes that the fields are independent of each other, and so are
the records. The distance between clusters i and j is defined as

d(i,j) =& + & — &g

where

and

i Nowt . Nug
Eg=—Y S0y 2tk
T T4, “67N,

In these expressions,
KA is the number of range type input fields,

KB is the number of symbolic type input fields,



TwoStep Cluster Algorithms

Lk is the number of categories for the kth symbolic field,
Ny is the number of records in cluster v,

Nyki is the number of records in cluster v which belongs to the Ith category of the kth symbolic
field,

&7 is the estimated variance of the kth continuous variable for all records,
72, is the estimated variance of the kth continuous variable for records in the vth cluster, and
<1, j>is an index representing the cluster formed by combining clusters i and j.

If 77 is ignored in the expression for &, the distance between clusters i and j would be exactly the
decrease in log-likelihood when the two clusters are combined. The 57 term is added to solve the
problem caused by &2, = 0, which would result in the natural logarithm being undefined. (This
would occur, for example, when a cluster has only one case.)

Number of Clusters (auto-clustering)

TwoStep can use the hierarchical clustering method in the second step to assess multiple cluster
solutions and automatically determine the optimal number of clusters for the input data. A
characteristic of hierarchical clustering is that it produces a sequence of partitions in one run: 1, 2,
3, ... clusters. In contrast, a k-means algorithm would need to run multiple times (one for each
specified number of clusters) in order to generate the sequence. To determine the number of
clusters automatically, TwoStep uses a two-stage procedure that works well with the hierarchical
clustering method. In the first stage, the BIC for each number of clusters within a specified range is
calculated and used to find the initial estimate for the number of clusters. The BIC is computed as

J
BIC(J)= -2 Z & +mylog(N)

Jj=1
where
K.D
my=J 2K+ " (Lg — 1)
k=1

and other terms defined as in “Distance Measure”. The ratio of change in BIC at each
successive merging relative to the first merging determines the initial estimate. Let dBIC'(.J) be
the difference in BIC between the model with J clusters and that with (J + 1) clusters,
dBIC(J) = BIC(J) — BIC(J + 1). Then the change ratio for model J is

() = dBIC(J)
BT aBIC()
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If dBIC(1) < 0, then the number of clusters is set to 1 (and the second stage is omitted).
Otherwise, the initial estimate for number of clustersk is the smallest number for which
Rq(J) < 0.04

In the second stage, the initial estimate is refined by finding the largest relative increase in distance
between the two closest clusters in each hierarchical clustering stage. This is done as follows:

» Starting with the model Cy indicated by the BIC criterion, take the ratio of minimum inter-cluster
distance for that model and the next larger model Cy+1, that is, the previous model in the
hierarchical clustering procedure,

dmin ((Yk)

Ro(k) = —win\tk)
.2( ) dmiu(crk—l)

where Cy is the cluster model containing k clusters and dpmin(C) is the minimum inter-cluster
distance for cluster model C.

» Now from model Cy_1, compute the same ratio with the following model Cy, as above. Repeat for
each subsequent model until you have the ratio Ro(2).

» Compare the two largest R ratios; if the largest is more than 1.15 times the second largest, then
select the model with the largest Ro ratio as the optimal number of clusters; otherwise, from those
two models with the largest Rz values, select the one with the larger number of clusters as the
optimal model.

Blank Handling

The TwoStep cluster node does not support blanks. Records containing blanks, nulls, or missing
values of any kind are excluded from model building.

Effect of Options

Outlier Handling

An optional outlier-handling step is implemented in the algorithm in the process of building the
CF tree. Outliers are considered as data records that do not fit well into any cluster. We consider
data records in a leaf entry as outliers if the number of records in the entry is less than a certain
fraction (25% by default) of the size of the largest leaf entry in the CF tree. Before rebuilding the
CF tree, the procedure checks for potential outliers and sets them aside. After rebuilding the CF
tree, the procedure checks to see if these outliers can fit in without increasing the tree size. At the
end of CF tree building, small entries that cannot fit in are outliers.
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Generated Model/Scoring

Predicted Values

When scoring a record with a TwoStep Cluster generated model, the record is assigned to the
cluster to which it is closest. The distance between the record and each cluster is calculated, and
the cluster with the smallest distance is selected as the closest, and that cluster is assigned as the
predicted value for the record. Distance is calculated in a similar manner to that used during
model building, considering the record to be scored as a “cluster” with only one record. For more
information, see the section “Distance Measure.”

If outlier handling was enabled during model building, the distance between the record and the
closest cluster is compared to a threshold C = log(V), where

V=]]8:]]Lm
k m

where Ry is the range of the kth numeric field and Ly, is number of categories for the mth symbolic
field.

If the distance from the nearest cluster is smaller than C, assign that cluster as the predicted
value for the record. If the distance is greater than C, assign the record as an outlier.

Blank Handling

As with model building, records containing blanks are not handled by the model, and are assigned
a predicted value of $null$.
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1. Introduction

Clustering technique is widely used by retail and consumer product companies who need to learn more
about their customers in order to apply 1-to-1 marketing strategies. By means of clustering technique,
customers are partitioned into groups by their buying habits, gender, age, income level, etc., and retail and
consumer product companies can tailor their marketing and product development strategy to each
customer group.

Traditional clustering algorithms can broadly be classified into partitional clustering and hierarchical
clustering. Partitional clustering algorithms divide data cases into clusters by optimizing certain criterion
function. A well-known representative of this class is the k-means clustering. Hierarchical clustering
algorithms proceed by stages producing a sequence of partitions in which each partition is nested into the
next partition in the sequence. Hierarchical clustering can be agglomerative and divisive. Agglomerative
clustering starts with a singleton cluster (for example, a cluster that contains one data case only) and
proceeds by successively merging the clusters at each stage. On the contrary, divisive clustering starts with
one single cluster that contains all data cases and proceeds by successively separating the cluster into
smaller clusters. Notice that no initial values are needed for hierarchical clustering.

However, traditional clustering algorithms do not adequately address the problem of large datasets. This is
where the two-step clustering method can be helpful (see ref. [1][2]). This method first performs a pre-
clustering step by scanning the entire dataset and storing the dense regions of data cases in terms of
summary statistics called cluster features. The cluster features are stored in memory in a data structure
called the CF-tree. Then an agglomerative hierarchical clustering algorithm is applied to cluster the set of
cluster features. Since the set of cluster features is much smaller than the original dataset, the hierarchical
clustering can perform well in terms of speed. Notice that the CF-tree is incremental in the sense that it does
not require the whole dataset in advance and only scans the dataset once.

One essential element in the clustering algorithms above is the distance measure that reflects the relative
similarity or dissimilarity of the clusters. Chiu et al proposed a new distance measure that enables clustering
on data sets in which the features are of mixed types. The features can be continuous, nominal, categorical,
or count. This distance measure is derived from a probabilistic model in the way that the distance is
equivalent to the decrease in log-likelihood value as a result of merging two clusters. In the following, the
new distance measure will be used in both the CF-tree growth and the clustering process, unless otherwise
stated.

In this chapter, we extend the two-step clustering method into the distributed setting, specifically under the
map-reduce framework. In addition to generating a clustering solution, we also provide mechanisms for
selecting the most relevant features for clustering given data, as well as detecting rare outlier points.
Moreover, we provide an enhanced set of evaluation and diagnostic features enabling insight, interactivity,
and an improved overall user experience as required by the Analytic Catalyst application.

The chapter is organized as follows. We first declare some general notes about algorithms, development,
etc. Then we define the notations used in the document. Operations for data pre-processing are introduced
in section 4. In section 5, we briefly describe the data and the measures such as distance, tightness, and so
on. In section 6, 7, and 8, we present the key algorithms used in model building, including CF-tree growth,
Hierarchical Agglomerative Clustering (HAC), and determination of the
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number of clusters, respectively. Section 9 describes the entire solution of distributed clustering on Hadoop.
Section 10 describes how to score new cases (to assign cluster memberships). Finally, Section 11 includes
various measures used for model evaluation and model diagnostics. Insights and interestingness are also
derived.

2. Notes

e To create CF-trees efficiently, we assume that operations within a main memory environment (for
example, RAM) is efficient, and the size of the main memory can be allocated or controlled by user.

¢ We assume that the data is randomly partitioned. If this assumption is not allowed, sequential
partition can still be applied. But note that the clustering result can be impacted, particularly if the
data is ordered in some special way.

e CEis implemented in the Analytic Framework.

3. Notations

The following notations are used throughout this chapter unless otherwise stated:

R Number of data partitions/splits.
N; Number of cases in cluster C;.

Number of cases in cluster ; which have non-missing values in
Njk

the kth feature.

Number of features used for clustering.

The ith data case. x; is a K-dimensional vector.

Value of the kth continuous feature of the ith data case x;. There

are K* number of continuous features.

Value of the kth categorical feature of the ith data case x;. There are K?
number of categorical features.

Number of categories of the kth categorical feature in the entire data.
Number of cases in cluster ; whose kth categorical feature takes

the Ith category.

Sum of values of the kth continuous feature in cluster C;.

i = (Xig, ) Xix)

o, k=1,.., KA

xh, k=1,.. KB

Lk,k = 1,...,KB
Ivjkllk = 11 "';KB;l = 1, ""Lk

sjk!k = 1,...,KA
Szk,k = 1,...,KA

]

Sum of squared values of the kth continuous feature in cluster C;.

d(,s)

Distance between clusters C; and C;.

C<j,s>

Cluster formed by combining clusters C; and C;.

4. Data Pre-processing

Data pre-processing includes the following transformations:

e Trailing blanks are trimmed

e Date/time features are transformed into continuous ones

e Normalize continuous features

e Category values of a categorical feature are mapped into integer. As such, the expression “xj, ="
indicates that the kth categorical feature of the ith case takes the Ith category.

e System/user missing and invalid values are all considered as missing.



e Cases with missing values in all features are discarded.

5. Data and Measures

Let x; be the ith data case. Denote J; as the index set of cluster Cj, I; = {iix; € C]} Let K = K4 + K® be the
total number of features in which K4 of them are continuous and K? are categorical. Without loss of
generality, write x; as

A
X = (Xi1, s Xig) = (Xfs oos X0 XE1 oo X B) (1)

where xf; is the value of the kth continuous feature, k = 1, ..., K4, and x5, is the value of the kth categorical
feature, k = 1, ..., K5. Express x5, as a vector (x5, ..., x5, Lk) of L;, values in which each entry is either zero or
one:

oF = {1, if x[, takes the Ith category
#7710, otherwise

(2)

5.1. Cluster Feature of a Cluster

The cluster feature (sufficient statistics set) CF; of a cluster C; is a collection of statistics that summarizes the
characteristics of a cluster. A possible set CF; is given as

CF; = {N;, N5, 57, NF) ©)

where N; is the number of data cases in cluster Cj, IV)] = (N]-k, wor Njgea, Ny, ) Nj'KB) is a K-dimensional vector;
the kth entry is the number of data cases in cluster ; which have non-missing values in the kth feature. s; =
(sj1 s s «4) is a K4-dimensional vector; the kth entry is the sum of the non-missing values of the kth
continuous feature in cluster Cj, i.e.

Sjk = Diel; xfy (4)

fork =1,...,K*. Similarly, s? = (s]-zl, ...,sszA

of squared non-missing values of the kth continuous feature in cluster C;, i.e.

) is a K“4-dimensional vector such that the kth entry is the sum

sjzk = Zielj(xfllc)z (5)
fork =1, .., K4

Similarly, N# = (N]-‘i, e NJ.L;(B) is a YK (L, — 1)-dimensional vector where the kth sub-vector N is (Ly — 1)

dimensional, given by
N = (Njkeas s Njger-1)) (6)

for k =1, ...,K5. The lth entry Nj;; represents the total number of cases in cluster C; whose kth categorical
feature takes the Ith category, [ = 1,...,L, — 1, i.e.
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Njki = ier,; Xig- )
5.2. Updating Cluster Feature when Merging Two Clusters
When two clusters C; and C; are said to merge, it simply means that the two corresponding sets of data

points are merged together to form a union. In this case, the CF_;,- for the merged cluster C; . can be
calculated by simply adding the corresponding elements in CF; and CF;, that is,

CFe e ={N; + NS,N} +N,, sj+ S5, 57 + 52, NP + NE}. (8)

5.3. Tightness of a Cluster

The interpretation of tightness of a cluster is that the smaller of the value of tightness, the less variation of
the data cases within the cluster. In CE, there are two tightness measures, and they will be used depending
on the specified distance measure, log-likelihood distance or Euclidean distance.

5.3.1. Tightness based on Log-likelihood Distance

The tightness 7j; of a cluster ; can be defined as average negative log-likelihood function of the cluster
evaluated at the maximum likelihood estimates of the model parameters. See Ref. 1 for statistical reasoning
for definition.

The tightness 7; of a cluster C; is given by
~2
A 1 A Ok B ~
iy = 2588 n (1+2) + 2I5, B 9)
where G, is the maximum likelihood variance estimate of the kth continuous feature in cluster C;.

J

?_N. 71 :1.)2
6_\%( — Sik—Njk(BjK) (10)

] Njx
in which £, is the sample mean,

A = L. (11)

Njg
Ej;, is the entropy of the kth categorical feature in cluster C;,

Ejk = - ZlLfl C?jkzlnfljkz 12)
in which gy, is the portion of data cases in cluster C; whose kth categorical feature takes the I/th category,

~ N;j
qjk1 = /e, (13)

N’jk

Finally, A, is appositive scalar which is added to handle the degenerating conditions and balance the
contributions between a continuous feature and a categorical one. The default value of A, is 0.01.



To handle missing values, the definition of tightness assumes that the distribution of missing values is the
same as for the observed non-missing points in the cluster.

Moreover, the following assumption is always applied:
xIn(x) = 0,ifx = 0. (14)
5.3.2. Tightness based on Euclidean Distance

The tightness j; of a cluster C; can be defined as the average Euclidean distance from member cases to the
center/centroid of the cluster.

The tightness 7; of a cluster C; is given by

- Shic=N jk @ji)®
n],=\/ gzlu, (15)

Njk

Notice that if any feature in cluster C; has all missing values, the feature will not be used in the
computation.

5.4. Distance Measures between Two Clusters

Suppose clusters C; and C; are merged to form a new cluster C_; ;. that consists of the union of all data cases
in C; and C,. Two distance measures are available.

5.4.1. Log-likelihood Distance

The distance between C; and C; can be captured by observing the corresponding decrease in log-likelihood
as the result of combining C; and C; to form Cj ;.

The distance measure between two clusters C; and C; is defined as

. ALkB . .. s s s
d(,s) = Zk=1" di(,8) = & + &5 — Ejs> (16)
where
s 1 @A ~2 KB N1 B
§j = =5 Zk=1Njk In(65 + A) — XKy N'jEjy 17)
and
4G 5) {{—Njk In(65, 4+ Ax) — Ny In(83, + A) + Nejssie In(62 654 + A )}/2,  if feature k is continuous

,8) = . . .
. —N'jkEj = N'siEgie + N'j ssiEcjssio if feature k is categorical

(18)
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Note that since & j,s> can be calculated by using the statistics in CFj s, the distance can be calculated by
first updating the CF_; ;. of the merged cluster C_j ..

To handle missing values, the definition of distance assumes that the contribution of missing values equals
zero.

5.4.2. Euclidean Distance
The Euclidean distance can only be applied if all features are continuous.

The distance between two cases is clearly defined. The distance between two clusters is here defined by the
Euclidean distance between the two cluster centers. A cluster center is defined as the vector of cluster
means of each feature.

Suppose the centers/centroids of clusters C; and Cs are ({4, ..., djx) and (fgq, ..., fisg) respectively, then

4G, = VTG, = Sl — ) (19

where
dr(j,s) = |ﬁjk - ﬁskl‘ (20)

Again, any feature in cluster C; with all missing values will not be used in the computation.

6. CF-Tree Building

CF-tree is a very compact summary of dataset in the way that each entry (leaf entry) in the leaf node is a
sub-cluster which absorbs the data cases that are close together, as measured by the tightness index 7 and
controlled by a specific threshold value T. CF-tree is built dynamically as new data case is inserted, it is
used to guide to a new insertion into the correct sub-cluster for clustering purposes.

CF-tree is a height-balanced tree with four parameters:

1. The branching factor B for the non-leaf nodes. It is the maximum number of entries that a non-leaf
node can hold. A non-leaf entry is of the form [CF;, child;],i = 1, ..., B, in which child; is a pointer to
its ith child node and CF; is the cluster feature of the sub-cluster represented by this child.

2. The branching factor L for the leaf nodes. It is the maximum number of entries that a leaf node can
hold. A leaf entry is similar to a non-leaf entry except that is does not have a pointer. It is of the
form [CF;],i =1, ..., L.

3. The threshold parameter T that controls the tightness7 of any leaf entries. That is, all leaf entries in
a leaf node must satisfy a threshold requirement that the tightness has to be less than T, ie. 7 < T.

4. Maximum tree height H.

In addition, each leaf node has two pointers: “prev” and “next” which are used to chain all leaf nodes
together for efficient scanning.



Figure 1 illustrates a CF-tree of branching factors B = 2,L = 3,and H = 1.

CR+CFAHCE CFACF;

.

(802} CF; CF M CF CFs

Figure 1. Example of a CF-tree.

6.1. Inserting a Single Case or a Sub-cluster into a CF-Tree
The procedure for inserting a data case or a sub-cluster (abbrev. “Ent”) into a CF-tree is as follows.

Step 1. Identify the appropriate leaf node.
Starting from the root node, recursively descend the CF-tree by choosing the closest child node
according to the distance measure d.

Step 2. Modify the leaf node.
Upon reaching a leaf node, find the closest leaf entry [CF;], say, and see if Ent can be absorbed
into [CF;] without violating the threshold requirement 7 < T. If so, update the CF information
in [CF;] to reflect the absorbing action. If not, add a new entry for Ent to the leaf. If there is space on
the leaf for this new entry to fit in, then we are done. Otherwise, split the leaf node by choosing the
farthest pair of entries as seeds, and redistribute the remaining entries based on the closest criteria.

Step 3. Modify the path to the leaf node.
After inserting Ent into a leaf node, update the CF information for each non-leaf entry on the path
to the leaf node. If there is no leaf split, then only the corresponding CF information is needed to
update to reflect the absorbing of Ent. If a leaf split happens, then it is necessary to insert a new
non-leaf entry into the parent node in order to describe the newly created leaf. If the parent has
space for this entry, at all higher levels, only the CF information is needed to update to reflect the
absorbing of Ent. In general, however, the parent node has to split as well, and so on up to the root
node. If the root node is split, the tree height increases by one.

Notice that the growth of CF-tree is sensitive to case order. If the same data case is inserted twice but at
different time, the two copies might be entered into two distinct leaf entries. It is possible that two sub-
clusters that should be in one cluster are split across nodes. Similarly, it is also possible that two sub-clusters
that should not be in one cluster are kept together in the same node.

6.2. Threshold Heuristic

In building the CF-tree, the algorithm starts with an initial threshold value (default is 0). Then it scans the
data cases and inserts into the tree. If the main memory runs out before data scanning is finished, the
threshold value is increased to rebuild a new smaller CF-tree, by re-inserting the leaf entries of the old tree
into the new one. After the old leaf entries have been re-inserted, data scanning is resumed from the case at
which it was interrupted. The following strategy is used to update the threshold values.
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Suppose that at step i, the CF-tree of the threshold T; is too big for the main memory after N; data cases in
the data have been scanned, and an estimate of the next (larger) threshold T;,, is needed to rebuild a new
smaller CF-tree.

Specifically, we find the first two closest entries whose tightness is greater than the current threshold, and
take it as the next threshold value. However, searching the closest entries can be tedious. So we follow
BIRCH's heuristic to traverse along a path from the root to the most crowded leaf that has the most entries
and find the pair of leaf entries that satisfies the condition.

6.3. Rebuilding CF-Tree

When the CF-tree size exceeds the size of the main memory, or the CF-tree height is larger than H, the CF-
tree is rebuilt to a smaller one by increasing the tightness threshold.

Assume that within each node of CF-tree t;, the entries are labeled contiguously from 0 to n;, — 1, where n,,
is the number of entries in that node. Then a path from an entry in the root (level 1) to a leaf node (level h)

can be uniquely represented by (iy, iy, ..., ip—1), where i;,j = 1, ..., h — 1, is the label of the jth level entry on

that path. So naturally, path (ifl), igl), ) i,(ll_)l) is before (or <) path (iiz), igz)’ . i,(lz_)1 if ifl) = iiz),..., ij(Pl =

-(2)
Ay

dealing with tree structure, and we will just use “path” and “leaf node” interchangeably from now on.

and i].(l) <= i].(z) for 0 < j < h — 1. It is obvious that each leaf node corresponds to a path, since we are

With the natural path order defined above, it scans and frees the old tree, path by path, and at the same
time creates the new tree path by path. The procedure is as follows.

Step 1. Let the new tree start with NULL and OldCurrentPath be initially the leftmost path in the old tree.
Step 2. Create the corresponding NewCurrentPath in the new tree.
Copy the nodes along OldCurrentPath in the old tree into the new tree as the (current) rightmost
path; call this NewCurrentPath

Step 3. Insert leaf entries in OldCurrentPath to the new tree.
With the new threshold, each leaf entry in OldCurrentPath is tested against the new tree to see if it
can either by absorbed by an existing leaf entry, or fit in as a new leaf entry without splitting, in the
NewClosestPath that is found top-down with the closest criteria in the new tree. If yes and
NewClosestPath is before NewCurrentPath, then it is inserted to NewClosestPath, and deleted
from the leaf node in NewCurrentPath.

Step 4. Free space in OldCurrentPath and NewCurrentPath.
Once all leaf entries in OldCurrentPath are processed, the nodes along OldCurrentPath can be
deleted from the old tree. It is also likely that some nodes along NewCurrentPath are empty
because leaf entries that originally corresponded to this path have been “pushed forward.” In this
case, the empty nodes can be deleted from the new tree.

Step 5. Process the next path in the old tree.
OldCurrentPath is set to the next path in the old tree if there still exists one, and go to step 2.

6.4. Delayed-Split Option

If the CF-tree that resulted by inserting a data case is too big for the main memory, it may be possible that
some other data cases in the data can still fit in the current CF-tree without causing a split on any node in
the CF-tree (thus the size of the current tree remains the same and can still be in the main memory).



Similarly, if the CF-tree resulted by inserting a data case exceeds the maximum height, it may be possible
that some other data cases in the data can still fit in the current CF-tree without increasing the tree height.

Once any of the two conditions happens, such cases are written out to disk (with §; amount of disk space
put aside for this purpose) and data scanning continues until the disk space runs out as well. The
advantage of this approach is that more data cases can fit into the tree before a new tree is rebuilt. Figure 2
illustrates the control flow of delayed-split option.

Write current data case to disk space ] P
S1, and update size of S1 “

Is disk space S1
currently empty?

Continue receiving
data case

\ 4

If current data case is to insert to
current CF-tree t1, will main

memory be empty, or tree height
larger than H?

Yes

Insert current
data case to t1

Figure 2. Control flow of delayed-split option.

6.5. Outlier-Handling Option

Outlier is defined as leaf entry (sub-cluster) of low density, which contains less than N,;;,, (default 10) cases.

Similar to the delayed-split option, some disk space S, is allocated for handling outliers. When the current
CF-tree is too big for the main memory, some leaf entries are treated as potential outliers (based on the
definition of outlier) and are written out to disk. The others are used to rebuild the CF-tree. Figure 3 shows
the control flow of the outlier-handling option.

Implementation notes:

o The size of any outlier leaf entry should also be less than 20% of the maximal size of leaf entries.
e The CF-tree t1 should be updated once any leaf entry is written to disk space S,.



e Outliers identified here are local candidates, and they will be analyzed further in later steps, where
the final outliers will be determined.

Is disk space S2
currently empty?

Check each leaf entry in
current CF-tree t1 for outlier

Current leaf

to disk space S2, and entry is outlier?

update size of S2

[ Write current leaf entry

Keep current leaf
entry to rebuild t1

Any more
leaf entries?

Figure 3. Control flow of outlier-handling option.

6.6. Overview of CF-Tree Building

Figure 4 provides an overview of building a CF-tree for the whole algorithm. Initially a threshold value is
set, data is scanned, and the CF-tree is built dynamically. When the main memory runs out, or the tree
height is larger than the maximum height before the whole data is scanned, the algorithm performs the
delayed-split option, outlier-handling option, and the tree rebuilding step to rebuild a new smaller CF-tree
that can fit into the main memory. The process continues until all cases in the data are processed. When all
data is scanned, cases in disk space S; are absorbed and entries in disk space S, are scanned again to verify
if they are indeed outliers.

Implementation notes:

e When all data is scanned, all cases in disk space S; will be inserted into the tree. This may result in
rebuilding the tree if necessary.

The following table shows the parameters involved in CF-tree building and their default values.

Parameter Default value

Assigned main memory (M) 80*1024 bytes (TBD)

Assigned disk space for outlier-handling (S,) | 20% of M




Assigned disk space for delayed-split (S;) 10% of M
Adjustment constant to the tightness and 0.01

distance measures, A, k=1, ...,K A

Distance measure (Log- Log-likelihood
likelihood /Euclidean)

Initial threshold value (T) 0

Branching factor (B) 8

Branching factor (L) 8

Maximum tree height (H) 3
Delayed-split option (on/ off) On
Outlier-handling option (on/ off) On

Outlier definition (Ny,,) Leaf entry which contains less than N,,;, cases, default 10

[ Start CF-tree t1 of initial T ]

o | Continue receiving

»

Insert data
case to t1

If current data case is
to insert to current CF-
tree t1, will main
memory be empty, or
tree height larger than
H?

A 4

data case

Has data scanning
finished?

Re-absorb cases in S1 and
entries in S2 into t1

Delayed-split option ]

'

[ Outlier-handling option ]

'

[ Increase threshold T ]

L and S2.

Re-absorb cases in S1 and entries l
in S2 into t1. Update sizes of S1

Rebuild t1 with new T ]

Figure 4.

7. Hierarchical Agglom

Control flow of CF-tree building.

erative Clustering

Hierarchical Agglomerative Clustering (HAC) proceeds by steps producing a sequence of partitions in
which each partition is nested into the next partition in the sequence. See ref. [3] for details.

HAC can be implemented using two methods, as described below.




7.1. Matrix Based HAC

Suppose that matrix based HAC starts with J, clusters. At each subsequent step, a pair of clusters is chosen.
The two clusters C; and C; in the pair are closest together in terms of the distance measure d(j, s). A new
cluster C.;, is formed to replace one of the clusters in the pair, Cj, say. This new cluster contains all data
cases in C; and C;. The other cluster C; is discarded. Hence the number of clusters is reduced by one at each
step. The process stops when the desired number of clusters J; is reached. Since the distance measure
between any two clusters that are not involved in the merge does not change, the algorithm is designed to
update the distance measures between the new cluster and the other clusters efficiently.

The procedure of matrix based HAC is as follows.

Stepl. Forj=1,..,Jo—1,{
Compute d(j,s) fors =j +1,...,Jo;
Find §; = ,_min d(j,s)ands; = argsz}mn i da(j,s);
}

Find 6, = min §;andj, =arg min &, the closest pairis < j,,s;, >;
j=1,.,Jo—1 j=1,..Jo-1

Step2. ForJ=Jo—1,..,]1
Merge the closest pair < j, s;, >, and replace (j, by Cqj,s; >
Forj=1,..,j.—1,{
If s; = s;,, recompute all distances d(j, s), s = j + 1, ..., ], and update §; and s;;
Ifs; # s, {
Compute d = d(j,j.);
If d < §;, update §; = d and s; = j,;
If d = §;, no change;
Ifd > §;jands; = j,,
Recompute all distances d(j,s), s = j + 1, ...,J, and update §; and s;;
If d > §; and s; # j,, no change;
}
}

For j = j,, recompute all distances d(j, s), s = j + 1, ...,J, and update §; and s;;

Forj=j,+1,..,5, —1,{
If s; = s;,, recompute all distances d(j, s), s = j + 1, ...,J, and update §; and s;;
If s; # s;,, no change;

}

Forj =s; +1,..,], no change;

Erase CS].*;

Find 8, = jmin 6j and j, = arg jmin_ d;, the closest pair is < j,, s;, >;

}

Implementation notes:

e In order to reduce the memory requirement, it is not necessary to create an actual distance matrix
when determining the closest clusters.
o If the Euclidean distance is used, the ward measure will be used to find the closest clusters. We just

replace the distance measure d(j, s) by % d?(j,s). This also applies below for CF-tree based
] S

HAC.



7.2. CF-tree Based HAC

Suppose that CF-tree based HAC starts with K, CF-trees Tk, k = 1, ..., K, which contain ], leaf
entries C;, i = 1, ..., J. Let [(C;) be the index of the CF-tree which contains the leaf entry C;. For convenience,
suppose Cs > C; if 1(C5) > 1(C;).

At each subsequent step, a pair of leaf entries is chosen. The two leaf entries C; and C; in the pair are closest
together in terms of the distance measure d(j, s). A new leaf entry C_; ;- is formed to replace one of the leaf
entries in the pair, C;, say. This new leaf entry contains all data cases in C; and Cs. The other leaf entry C; is
discarded. Hence the number of leaf entries is reduced by one at each step. Meanwhile, the involved CF-
trees will be updated accordingly. The process stops when the desired number of leaf entries J; is reached.
The output is the set of updated CF-trees, whose leaf entries indicate the produced clusters.

The procedure of CF-tree based HAC is as follows.
Stepl. Forj=1,..,J,—1,{

Find the closest leaf entry C .« in each CF-tree T&: for k = I(C;), ..., K,, following the involved
tree structure;

Find §; = min d(j,s*) and s; = ar min d(j, s*);
7 sk>jke=1(C}) Ko UE) / gsk>j,k=l(cj),...,K0 UE)
}
Find 6, = min §;andj, =arg min §;, the closest pairis <j,,s;, >;
j=Lomfo—1 j=Lfo—1

Step2. For] =]y —1,..,]J1,{

l .
Merge the closest pair < j,, s;, >, update CF-tree TC;C’ ) by the new leaf entry C; s, -, and

1(Cs. )
remove the leaf entry CS].* from CF-tree T, Rk ;

Forj=1,..,j.—1,{

Ifs;=s;,{
j = Sjur
Find the closest leaf entry C .« in each CF-tree TX for k = l(C]-), v, Ko;
Find 6; = ' d(j,s*) ands; = i d(j,s*);
a0 sk>j,krzr%l(rclj) ..... Ko U.s7)an 5 argsk>j,k=l(rclj) ..... Ko U.s%)
}

Ifs; # s, {
Compute d = d(j, j.);
If d < §;, update §; = d and s; = j,;
If d = §;, no change;
Ifd > §;ands; = j,, {
Find the closest leaf entry C « in each CF-tree T for k = l(C]-), v, Ko;

Find 6; = ' d(j,s*) ands; = i d(j,s*);
A0y = ol i, G0 s ands; =arg ,min 405D
}
If d > §; and s; # j,, no change;
}
}
Forj = j., {
Find the closest leaf entry C .« in each CF-tree TK. for k = l(C]-), o, Ko;
Find 6; = i d(j,s*) ands; = i d(j,s*);
A0y = ol g AU s andsy =arg ,min 405D
}

Forj=j,+1,..,5, -1,



Ifs;=s;,{
j = Sj
Find the closest leaf entry C .« in each CF-tree T&: for k = 1(C;), ..., Ko;
Find §; = min d(j,s*) ands; = arg min d(j,s®);
}

If s; # s;,, no change;

}
Forj =s; +1,..,], no change;
Find 6, = jmin 6; and j, = arg jmin_ d;, the closest pair is < j,, s;, >;
}
Step 3. Export updated non-empty CF-trees;

Clearly, CF-tree based HAC is very similar to matrix based HAC. The only difference is that CF-tree based
HAC takes advantage of CF-tree structures to efficiently find the closest pair, rather than checking all
possible pairs as in matrix based HAC.

8. Determination of the Number of Clusters

Assume that the hierarchical clustering method has been used to produce 1, 2 ... clusters already. We
consider the following two criterion indices in order to find the appropriate number of final clusters.

Bayesian Information Criterion (BIC):

BIC()) = =2 ¥}, & + myIn(N), (23)
where N is the total number of cases in all the J clusters,

m, =] {ZKA + YKE (L, - 1)}. (24)
Akaike Information Criterion (AIC):

AlC() = —2%)_, & +2m,. (25)

Let I(J) be the criterion index (BIC or AIC) of ] clusters, d(J) be the distance measure between the two
clusters merged in merging J + 1 clusters to J clusters, and J be the total number of sub-clusters from
which to determine the appropriate number of final clusters.

Users can supply the range for the number of clusters [/, Jmax] in which they believe the “true” number
of clusters should lie. Notice that if J» < J;,4x, T€5€t Jinax = Jc-

The following four methods are proposed:
Method 1. Finding the number of clusters by information convergence.
Let AI(J) = I(J) — I(J + 1), where I(J) can be either BIC(J) or AIC(J) depending on user’s choice.

If AI(1) <0, J; = Jimin- Else, letR,(J) = AI(J)/AI(1);



Let J; be the smallest J in [J,in, Jmax — 1] which satisfies R, (J) < 0.1, If none J satisfies the condition,
letJ; = Jmax-

Method 2. Finding the number of cluster by the largest distance jump.

Toreportj; =1+ argleU max 1](d(])/d(] + 1)) as the number of clusters.

min—LJmax—

Method 3. Finding the number of clusters by combining distance jump and information
convergence aggressively

The process goes as follows:

a) LetR,(J) =d()/d(J + 1).
b) LetJ; be the largest J in [/ nin, J; — 1] which satisfies R, (J) > 0.3. If none J satisfies the condition,

letjl =]min -1
c) Calculate R,(J) for] in [J;, J; — 1]. Suppose that the max and the second max of R, (J) occurred
atm, and m,.

d) If % > 1.3, report 1 + m; as the cluster number.
2 2

e) Otherwise, report 1 + MIN(my, m,).

Method 4. Finding the number of clusters by combining distance jump and information
convergence conservatively

This method performs the same steps from a) to d) in method 3. But in step e), method 4 reports 1 +
MAX(mq, m,).

By default, method 3 is used with BIC as the information criterion.

9. Overview of the Entire Clustering Solution

Figure 5 illustrates the overview of the entire clustering solution.

[ Filter features based on ]

summary statistics

v

Select features adaptively
based on clustering models

'

With selected features,
perform distributed clustering
with optional outlier detection

Figure 5. Control flow of the entire clustering solutin.




9.1. Feature Selection

9.1.1. Feature Filtering

Based on the summary statistics produced by DE, CE will perform an initial analysis and determine the
features that are not useful for making the clustering solution. Specifically, the following features will be
excluded.

# Rule Status Comment

1 | Frequency/analysis weight features Required

2 | Identity features Required

3 | Constant features Required

4 | The percentage of missing values in any feature is Required
larger than § (default 70%)

5 | The distribution of the categories of a categorical Discarded | The statistic of RMSSE is
feature is extremely imbalanced, that is RMSSE > § the effect size for one
(default 0.7) sample chi-square test.

6 | One category makes up the overwhelming majority of | Required
total population above a given percentage threshold &

(default 95%)

7 | The number of categories of a categorical feature is Required
larger than & (default 24)

8 | There are categories of a categorical feature with Discarded

extremely high or low frequency, that is, the outlier
strength is larger than § (default 3)

9 | The absolute coefficient of variation of a continuous Required
feature is smaller than § (default 0.05)

The remaining features will be saved for adaptive feature selection in the next step.

9.1.2. Adaptive Feature Selection

Adaptive feature selection selects the most important features for the final clustering solution. Specifically,
it performs the following steps.

Step 1. Divide the distributed data into data splits.
Step 2. Build a local CF-tree on each data split.
Step 3. Distribute local CF-trees into multiple computing units. A unique key is assigned to each CF-tree.
Step 4. On each computing unit, start with all available features:
Perform matrix based HAC with all features on the leaf entries to get an approximate
clustering solution, SO. Suppose there are J* final clusters.
Compute importance for the set of all features.
Let $* = 50 and I..; be the information criteria of SO.
Remove features with non-positive importance as many as possible, and update S* and ...
Repeat to do the follows:
i. Select the most unimportant feature from remaining features which are not checked.
ii. Perform matrix based HAC with remaining features (not including the selected one)
on the leaf entries to get a new approximate clustering solution, S1, with the fixed
number of J* clusters.

o 0o



Step 5.

iii. If the information criteria of S1 plus the information of all discarded features
determined by S1 is lower than I,..;, then remove the selected feature, and let S* = S1.
iv. Continue to check the next feature.
f.  Select the set of features corresponding to S™.
Pour together all the sets of features produced by different computing units. Discard any feature if
its occurring frequency is less than R * § (default f = 50%). The remaining features will be used to
build the final clustering solution.

The process described above can be implemented in parallel using one map-reduce job under the Hadoop
framework, as illustrated in Figure 6. See appendix A for details the map-reduce implementation.

Mapper 1 Reducer 1 Controller
1. Passdataand build a For each key, 1. Pour together all the
local CF-tree with all 1. Pour together all leaf entries in sets of features
available features, the involved CF-tree. produced by different
turning off the option of 2. Start with all available reducers.
outlier detection. features: 2. Select those features
2. Assign a proper key to a. Build an approximate which appear
the built CF-tree. clustering solution with the frequently. The selected
3. Passthe CF-treeto a selected features. > features will be used in
certain reducer according b. Remove the most the next map-reduce
to the assigned key. unimportant features. job to build the final
c. Repeat step a) and b) until clustering solution.
all relevant features for
clustering have been

selected.
3. Pass the set of selected
features to the controller.

Mapper R Reducer G

Data split K |—D| Do the same as Mapper 1 P} Do the same as Reducer 1 r

Figure 6. One map-reduce job for feature selection.

Implementation notes:

In default, the information based feature importance is used for the log-likelihood distance
measure, and the effect size based feature importance is for the Euclidean distance.
If no features are selected, just report all features.

9.2. Distributed Clustering

The Clustering Engine (CE) can identify clusters from distributed data with high performance and
accuracy. Specifically, it performs the following steps:

Step 1.
Step 2.
Step 3.

Step 4.

Divide the distributed data into data splits.

Build a local CF-tree on each data split.

Distribute local CF-trees into multiple computing units. Note that multiple CF-trees may be
distributed to the same computing unit.

On each computing unit, with all CF-entries in the involved CF-trees, perform a series of CF-tree
based HACs, and get a specified number of sub-clusters.



Step 5. Pour together all the sub-clusters produced by different computing unit, and perform matrix based
HAC to get the final clusters.
The number of final clusters is determined automatically or using a fixed one depending on the
settings.

The process described above can be implemented in parallel using one map-reduce job under the Hadoop
framework, as illustrated in Figure 7. See appendix B for details of the map-reduce implementation.

Mapper 1 Reducer 1 Controller
1. Pass data and build a For each key, 1. Pour together all sub-clusters and CF-outliers from
local CF-tree with the set 1. Pour together all CF-trees and reducers.
of specified features. CF-outliers with the same key 2. Perform matrix based HAC on sub-clusters to get final

Suppose the option of under consideration. regular clusters.
outlier detection is turned 2. Check if the allocated CF- 3. Check if CF-outliers fit with any regular clusters, and
determine true outliers.

2.
Data split 1

on.

Assign a proper key to
the built CF-tree and also
CF-outliers.

outliers fit with any leaf entries
in the CF-trees.

Perform a series of CF-tree
based HACs on the (merged)

\ 4

Compute model evaluation measures, insights,
interestingness, etc.
Export PMML and StatXML.

3. Pass the CF-tree and CF- leaf entries to get a specified
outliers to a certain number of sub-clusters.
reducer according to the 4. Pass sub-clusters and

- assigned key. remaining CF-outliers to the
= controller.
]
]
]
]
Mapper R Reducer G

Data split K |—>| Do the same as Mapper 1

Figure 7. One map-reduce job for distributed clustering with outlier delection.

H Do the same as Reducer 1 r

Implementation notes:

*  The number of computing units is
Q = [mln(R * S/Dl ) DZ/Cmin)]/ (28)
where D; (default 50,000) is the number of data points which are suitable to perform CF-tree based
HAC, D, (default 5,000) is the number of data points which are suitable to perform matrix based
HACG, Cpp;p is the minimal number of sub-clusters produced by each computing unit, and S is the
maximal number of leaf entries, i.e. B¥ L, in a single CF-tree.

*  The number of sub-clusters produced by each computing unit is
J1 = |min(R = S,D,)/Q].

(29)

9.3. Distributed Outlier Detection

Outlier detection in the Clustering Engine will be based and will build upon the outlier handling method
described previously in section 6. It is also extended to the distributed setting with the following steps:



Step 1. On each data split, perform the following:

1) Generate local candidate outliers according to the method described in section 6.

2) Distribute the local candidate outliers together with the associated CF-tree to a certain
computing unit.

Step 2. Each computing unit is allocated with a set of candidate outliers and also a set of CF-trees
containing regular leaf entries. For each member in the set of candidate outliers, it will be merged
with the closest regular leaf entry only if the merging does not break the maximal tightness
threshold among the involved CF-trees. Note that we will pass the CF-trees in order to enhance the
performance of finding the closest regular leaf entry.

Step 3. Pour together all the remaining candidate outliers and sub-clusters produced by computing
machines. Do the following:

1) Perform matrix based HAC on sub-clusters, and get the final regular clusters.

2) Keep only candidate outliers whose distance from the closest regular cluster to the center of
the outlier candidate is greater than the corresponding cluster distance threshold D, (j)

3) Merge the rest of candidate outliers with the corresponding closest regular clusters and update
the distance threshold for each regular cluster.

4) For each remaining outlier cluster, compute its outlier strength.

5) Sort remaining outlier clusters according to outlier strength in descending order, and get the
minimum outlier strength for the top P (default 5%) percent of outliers, and use it as an outlier
threshold in scoring.

6) Export a specified number of the most extreme outlier clusters (default 20), along with the
following measures for each cluster: cluster size, outlier strength, probabilities of belonging to
each regular cluster.

Outlier strength of a cluster Cs is computed as

) aGgs) ..
O(S) _Zj=1 Dt(j) p(]ls)/ (30)
where D, (j) is the distance threshold of cluster C;, which is the maximum distance from cluster C; to each
center of its starting sub-clusters in matrix based HAC, cf(j ,$) is the distance from cluster C; to the center of
cluster C, and p(j|s) is the probability of cluster (s belonging to cluster (;, that is

. exp(=d(j.5)
S) =777 —. 31
pUls) %, exp(-d(is) G

Notice that the distance between the cluster center and a cluster C; is computed by considering the center of
cluster C; as a singleton cluster Cy. The cluster center herein is defined as the mean for a continuous
feature, while being the mode for a categorical feature.

10. Cluster Membership Assignment

10.1. Without Outlier-Handling

Assign a case to the closest cluster according to the distance measure. Meanwhile, produce the probabilities
of the case belonging to each regular cluster.



10.2. With Outlier-Handling

10.2.1. Legacy Method
Log-likelihood distance

Assume outliers follow a uniform distribution. Calculate both the log-likelihood resulting from assigning a
case to a noise cluster and that resulting from assigning it to the closest non-noise cluster. The case is then
assigned to the cluster which leads to the larger log-likelihood. This is equivalent to assigning a case to its
closest non-noise cluster if the distance between them is smaller than a critical value € = In([]x Ry [1mm L),
where []; Ry, is the product of ranges of continuous fields, and [],, L, is the product of category numbers of
categorical fields. Otherwise, designate it as an outlier.

Euclidean distance

Assign a case to its closest non-noise cluster if the Euclidean distance between them is smaller than a

.. _ 1 J Kao A2 . . . .
critical value C = 2 EZ Y DI 63 Otherwise, designate it as an outlier.

10.2.2. New Method

When scoring a new case, we compute the outlier strength of the case. If the computed outlier strength is
greater than the outlier threshold, then the case is an outlier and otherwise belongs to the closest cluster.
Meanwhile, the probabilities of the case belonging to each regular cluster are produced.

Alternatively, users can specify a customized outlier threshold (3, for example) rather than using the one
found from the data.

11. Clustering Model Evaluation

Clustering model evaluation enables users to understand the identified cluster structure, and also to learn
useful insights and interestingness derived from the clustering solution.

Note that clustering model evaluation can be done using cluster features and also the hierarchical
dendrogram when forming the clustering solution.

11.1. Across-Cluster Feature Importance

Across-cluster feature importance indicates how influential a feature is in building the clustering solution.
This measure is very useful for users to understand the clusters in their data. Moreover, it helps for feature
selection, as described in section 12.2.

Across-cluster feature importance can be defined using two methods.
11.1.1. Information Criterion Based Method

If BIC is used as the information criterion, the importance of feature k is



0
BIC)—BICy,

Importancek = diffmax ’ (32‘)
K
where
BICO = Ny In(6% + Ay) + 2In(N), if feature k is continuous
72N E, + (Ly — D In(N), if feature k is categorical’

BIC Z§=1 Njy ln(ﬁﬁc + Ak) + 2/ In(N), iffeature k is continuous
72 Z§:1 N'jkEjk +J(L, — D In(N), iffeature kis categorical'
difff** = max(BIC{ — BICy),

and N, N'j, is the total valid count of feature k in the data, 67 is the grand variance, and E, is the grand
entropy.

Notice that the information measure for the overall population has been decomposed as
BIC® = YKA+KP gIco.

While if AIC is used, across-cluster importance is

0_
Importance;, = %, (33)
K
where
AICO — Ny In(67% + Ay) + 4, if feature k is continuous
T 2N' B, + 2(L, — 1), if feature k is categorical’

Z§=1 Ny ln(c?jzk + Ak) + 4/, iffeature k is continuous

AIC, = ~ ,
* {2 2§=1 N’ Ej + 2] (L — 1), if feature k is categorical

diffrax = mI?X(AIC,g — AIC)).

Notice that, if the importance computed as above is negative, set it as zero. This also applies in the
following.

Notice that the importance of a feature will be zero if the information difference corresponding to the
feature is negative. This applies for all the calculations of information-based importance.

11.1.2. Effect Size Based Method

This method is similar to that used for defining association interestingness for bivariate variables. See ref. 6
for details.



Categorical Feature

For a categorical feature k, compute Pearson chi-square test statistic

1 = Tl 3, T (34
where

B = et &
and

Nj. = ZlLﬁl Nj, (36)
Ny, = Z§:1 Njk1, (37)
Ny. = ZlLil Z§=1 N (38)

The p-value is computed as
Pvalue = PrOb{Xz > Xz%}/ (39)

in which X? is a random variable that follows a chi-square distribution with freedom degree of (J — 1)(L; —
1). Note that categories with Nj,. = 0 or N, = 0 will be excluded when computing the statistic and degrees
of freedom.

The effect size, Cramer’s 'V, is

1/2
_(_x
Es = (N-k-(q—l)) ’ (40)
where
q= min(j! Lk) (41)

The importance of feature k is produced by the following mapping function

0: Pvaiue 2 Sig'

MonotoneCubicinterpolation(S;, I, Es), Pyaiue < Sig- (42)

Importance;, = {

where sig. is significance level (default 0.05), S; is a set of threshold values to assess effect size (default S, =
{0.0,0.2,0.6,1.0}), I; is a set of corresponding thresholds of importance (default

I = {0.00,0.33,0.67,1.00}), and MonotoneCubicInterpolation(-) is a monotone cubic interpolation
mapping function between S, and /;.



Continuous Feature

For a continuous feature k, compute F test statistic

__ SSR/(J-1)
T SSE/(N.g-)) (43)
where
N N2
SSR = Z§=1 Njk(#jk - Ilk) ’ (44)

SSE = ¥)_, Ny67,

(45)
N = )i Nik, (46)
R Z§:1Nﬂcﬁik

fy = 2 47)
The F statistic is undefined if the denominator equals zero. Accordingly, the p-value is calculated as

undefined, if both the numerator and denominator of F are zero;
Doaiue = 0, else if the denominator of F is zero; (48)
Prob{F(J — 1,N, —]) > F}, else.

in which F(J — 1, N, — J) is a random variable that follows a F-distribution with degrees of freedom J — 1
and N-k —]

The effect size, Eta square, is

I A2
Xj—1 NjkTjk

Fo=1- 2k 49)
where

2 Z;=15]2k—N-kﬁ}2<

G6f =+——. (50)

N.k

The importance of feature k is produced using the same mapping function as (42), and default S; =
{0.0,0.04,0.36,1.0}.

11.2. Within-Cluster Feature Importance

Within-cluster feature importance indicates how influential a feature is in forming a cluster. Similar to
across-cluster feature importance, within-cluster feature importance can also be defined using two
methods.



11.2.1. Information Criterion Based Method

If BIC is used as the information criterion, the importance of feature k within cluster ¢; (j = 1, ...,]) is

0
BIC)—BICy ;

Importance ; = QT (51)
where
BIC,, = {N]k ln(&ﬁ(f Ak) + Njik ln(c?]-zck + Ak) + 2 * 2In(N), i.f feature k i.s continu?usl 52)
’ 2N'jkEj + 2N'jeyEjc) + 2 % (L — 1) In(N), if feature k is categorical
diff*™ = mI?X(BIC,((’ — BICy ). (53)
Notice that jc represents the complement set of j in J.
If AIC is used as the information criterion, the importance of feature k within cluster C; (j = 1, ...,J) is
Importance; ; = %ﬁ;’% (54)
where
ALy, = {N]k ln(ﬁﬁcA+ Ak) + Nchk ln(ﬁjzck + Ak) + 42, iffeature k is continuous (55)
' 2N'jiEj + 2N'je Eje + 2% 2(L — 1), if feature k is categorical
diff*™ = mI?X(AIC,g — AIC ). (56)

11.2.2. Effect Size Based Method

Within-cluster importance is defined by comparing the distribution of the feature within a cluster with the
overall distribution.

Categorical Feature

For cluster G (j = 1,...,J) and a categorical feature k, compute Pearson chi-square test statistic

2 wolk WNjki—Ejk)?
X=X g (57)
where
Njig-N-g1
Ejja = —]N-k- . (58)

The p-value is computed as

Pvalue = PI‘Ob{XZ > XIZ;}/ (59)



in which X? is a random variable that follows a chi-square distribution with freedom degree of L, — 1. Note
that importance for feature k within cluster C; will be undefined if Nj;. equals zero.

The effect size is

1
_ X% )2
Es = (Njk-(Lk—l)) ’ (60)

The importance of feature k within cluster C; is produced using the same mapping function as (42), and
default S, = {0.0,0.2,0.6,1.0}.

Continuous Feature

For cluster C; (j = 1, ...,J) and a continuous feature k, compute t test statistic

_ Bjk—Hk
t Sl I (61)
where

Nik ~
Sq = /N,,%l“ﬁc (62)

The p-value is calculated as

undefined, if both the numerator and denominator of t are zero;
p = 0, else if the denominator of t is zero; (63)
value
1 — Prob{|T(Nj, — 1| < Itl}, else.

in which T (Nj, — 1) is a random variable that follows a t-distribution with degrees of freedom Nj;, — 1.

The effect size is

The importance of feature k within cluster C; is produced using the same mapping function as (42), and
default S, = {0.0,0.2,0.6,1.0}.

11.3. Clustering Model Goodness

Clustering model goodness indicates the quality of a clustering solution. This measure will be computed
for the final clustering solution, and it will also be computed for approximate clustering solutions during
the process of adaptive feature selection.

Suppose there are ] regular clusters, denoted as Cj,..., C;. Let [(i) be the regular cluster label assigned to
sub-cluster i.



Then for each sub-cluster i, the Silhouette coefficient is computed approximately as

Q-9
L max(®,0)

where

® is the weighted average distance from the center of sub-cluster i to the center of every other sub-cluster
assigned to the same regular cluster, that is,

@ = Ys=iand I(s)=1(i) Nsd(1.5) (66)
Ys#iand I(s)=1(i) Ns

Q1 is the minimal average distance from the center of sub-cluster i to the center of sub-clusters in a different
regular cluster among all different regular clusters, that is,

X Zl(s):(,‘j Nsd(i,s)
Q) =miny————
Zl(s):(.‘j Ng

j=1,..,Jand C; # l(i)}. (67)

Clustering model goodness is defined as the weighted average Silhouette coefficient over all starting sub-
clusters in the final stage of regular HAC, that is,

ZjNjS;

Goodness = .
ZjNj

(68)

The average Silhouette coefficient ranges between -1 (indicating a very poor model) and +1 (indicating an
excellent model). As found by Kaufman and Rousseeuw (1990), average Silhouette greater than 0.5
indicates reasonable partitioning of data; lower than 0.2 means that data does not exhibit cluster structure.
In this regard, we can use the following function to map Goodness into an interestingness score:

Interestingness(Goodness) = MonotoneCubiclnterpolation(S,, I, Goodness), (69)
where S; = {-1.0,0.2,0.5,1.0}, and I, = {0.0, 0.0, 0.5, 1.0}.
Implementation notes:

e DPlease refer to section 9.3 for the definition of cluster center and also for the calculation of distance.
*  When there is only a single sub-cluster in the regular cluster, let @ be the tightness of the sub-
cluster.

11.4. Special Clusters

With the clustering solution, we can find special clusters, which could be regular clusters with high quality,
extreme outlier clusters, and so on.



11.4.1. Regular Cluster Ranking

To select the most useful or interesting regular clusters, we can rank them according to any of the measures
described below.

Cluster tightness

Cluster tightness is given by equation (9) or (15).

Cluster tightness is not scale-free, and it is a measure of cluster cohesion.
Cluster importance

Cluster importance indicates the quality of the regular cluster in the clustering solution. A higher
importance value means a better quality of the regular cluster.

If BIC is used as the information criterion, the importance for regular cluster C; is

BIC® -BIC;

Importance; = W’

(70)
where
A B
BIC] = Zlk(sz BICkJ',
A B
BIC® = YKZHBICY,
diff/*** = max(BIC® — BIC)).
j
If AIC is used as the information criterion, the importance for regular cluster C; is

AIC® —AIC;

Importance; = W,

where
AIG; = YKZHKP AIC, ;,
AIC® = FKAHKZ A1cO,

diff/"** = max(AIC® — AIC)).
J

Cluster importance is scale-free, and in some sense it is a normalized measure of cluster cohesion.
Cluster goodness

The goodness measure for regular cluster C; is defined as the weighted average Silhouette coefficient over
all starting sub-clusters in regular cluster C;, that is,



Yit)=c; NiSi
Goodness; = ——~—.
Ziw=c;Ni

We can also map Goodness; into an interestingness score using equation (69).
Cluster goodness is also scale-free, and it is a measure of balancing cluster cohesion and cluster separation.

11.4.2. Outlier Clusters Ranking

For each outlier cluster, we have the following measures: cluster size, outlier strength. Each of the
measures can be used to rank outlier clusters, so as to find the most interesting ones.

11.4.3. Outlier Clusters Grouping

Outlier clusters can be grouped by the nearest regular cluster, using probability values.



Appendix A. Map-Reduce Job for Feature Selection

Mapper

Each mapper will handle one data split and use it to build a local CF-tree. The local CF-tree is assigned
with a unique key. Notice that if the option of outlier handling is turned on, outliers will not be passed to
reducers in case of feature selection.

Let TC(;) (key,) be the CF-tree with the key of key, on data splitr (r =1, ..., R).

The map function is as follows.

Inputs:
— Data splitr // r=1,..,R
- key, // r=1,..,R
<Parameter settings>
— MainMemory // Default 80*1024 bytes
— OutlierHandling // {on, off}, default on
— OutlierHandlingDiskSpace // Default 20% of MainMemory
— OutlierQualification // Default 10 cases
— DelayedSplit // {on, off}, default on
— DelayedSplitDiskSpace // Default 10% of MainMemory
— Adjustment // Default 0.01
— DistanceMeasure // {Log-likelihood, Euclidean}, default
// Log-likelihood
— InitialThreshold // Default O
— NonLeafNodeBranchingFactor // Default 8
— LeafNodeBranchingFactor // Default 8
— MaxTreeHeight // Default 3
Outputs:
- Tc(;)(ke%)
Procedure:

1. Build a CF-tree on data splitr based on specified features and settings;
2. Assignkey, to the CF-tree;

3. Export TP (key,);

Reducer

Each reducer can handle several keys. For each key, it first pours together all CF-trees which have the same
key. Then it builds approximate clustering solutions iteratively in order to find the most influential
features. The selected features will be passed to the controller.

Let F*(key,) be the set of features produced for the key of key,, r = 1, ..., R.

The reduce function for each key is as follows.




Inputs:

- Tc(;) (keYr)

<Parameter settings>
— Adjustment // Default 0.01

— DistanceMeasure // {Log-likelihood, Euclidean}, default Log-
// likelihood

— AutoClustering // {on, off}, default on

— MaximumClusterNumber // Default 15

— MinimumClusterNumber // Default 2

— FixedClusterNumber // Default 5

— ClusteringCriterion // {BIC, AIC}, default BIC

— AutoClusteringMethod // {information criterion, distance jump,
// maximum, minimum}, default minimum

Outputs:

- F (key‘r)

Procedure:

1.
2.

5.

Let F(key,) be the set of all available features;

With all leaf entries in CF—tree]ﬁ?(qu) and using features F(key,), perform
matrix based HAC to get an approximate cluster solution SO. Suppose the

number of approximate final clusters isJ*, which is determined automatically
or using a fixed one depending on the settings;

Compute importance for each feature inF(key,);

// Importance values should not be truncated

Compute 1(S0), the information criterion of SO;

Let F*(key,) = F(key,) and I..;=1(S0);

Find F,(key,), the set of features inF(key,) with non-positive importance;
Let F(key,) = F(key,) — Fy(key,);

With all leaf entries in CF—tree?ﬁ?(ke%J and using features F(key,), perform

matrix based HAC to get a new solution S1 with fixed]*;
Compute 1(S1), the information criterion of S1;

Compute the information of all discarded features 1(F(key,)— F(key,)),

determined by S1, as Yicr(key,)-Fkey,) BICk » OF Lierkey,)-F(key,) AlCk » depending on the
setting, where

Z§=1 Njj ln(c?ﬁ( + Ak) + 2/ In(N), iffeature k is continuous )
Bl = yZ 2§=1 N’jkﬁjk +J(L, — D In(N), iffeature k is categorical ~
Z§=1 Ny ln(c?jzk +Ay)+4J, iffeature k is continuous )
AlG, = {2 Z§=1 N’jkﬁjk +2J(L, — 1), iffeature k is categorical ~

// Though the discarded features are not used to build S1, their
// statistics are still available in CFs of final clusters in S1.

While (1(S1)+1(F(key,) — F(key.))> Le){
Find the most important featurek inFE,(key,);
Let F(key,) = F(key,) + {k}, and F,(key,) = F,(key,) — {k};
with all leaf entries in CF—tree?ﬁ?(kqn) and using features F(key,),

perform matrix based HAC to get a new solution S1 with Ffixed]J*;
Compute 1(S1), the information criterion of S1;

Compute 1(F(key,) — F(key,)), the information of all discarded features;
}

Let F*(key,) = F(key,) and I = 1(S1)+1(F(key,) — F(key,));

6. While (F(key,) is not empty){

Find the most unimportant featurek inF(key,);

Let F(key,) = F(key,) — {k};

IT (F(key,) — F,(key,) —{k} is empty), break;

With all leaf entries in CF—treeYﬁ?(kqw) and using features




F(key,) — F,(key,) — {k}, perform matrix based HAC to get a new solution S1
with fixed]J*;
Compute 1(S1), the information criterion of S1;
Compute 1(F,(key,) +{k}), the information of all discarded features;
It (I (Sl)+ I (Fa (key‘r) + {k})<:1ref){
Let F*(key,) = F*(key,) — {k};
Let F,(key,) = Fy(key,) + {k};
Let Lrer = I(Sl) + I(Fa(keYT) + {k});
Let F(key,) = F(key,) — {k};
}
}
7. ExportF*(key,);

Controller
The controller pours together all sets of features produced by reducers, and selects those features which
appear frequently. The selected features will be used in the next map-reduce job to build the final

clustering solution.

The controller runs the following procedure.

Inputs:

<Parameter settings>

— MinFrequency // Default 50%
Outputs:

- F // Set of selected features
Procedure:

1. LetpB= MinFrequency, and F* be empty;
2. Launch a map-reduce job, and getF*(key,), forr=1,..,R from the reducers;
3. Compute F = UE_; F*(key,);
4. For each feature inF,

IT the occurring frequency is larger thanR B, add the feature intoF”;
5. ExportF~;




Appendix B. Map-Reduce Job for Distributed Clustering

Mapper

Each mapper will handle one data split and use it to build a local CF-tree.

Local outlier candidates and the local CF-tree will be distributed to a certain reducer. This is achieved by
assigning them a key, which is randomly selected from the key set {keyl, s keyQ}. The number of keys Q is

computed by equation (28).

For convenience, in the following we call leaf entries as pre-clusters. Let TC(;) (key;) and S g}t (key;) be the
CF-tree and the set of outliers, respectively, with the key of key; (i = 1, ..., Q), on data splitr (r = 1, ..., R).

The map function is as follows.

Inputs:
— Data splitr // r=1,..,R
- key; // i=1,..,0
<Parameter settings>
— MainMemory // Default 80*1024 bytes
— OutlierHandling // {on, off}, default on
— OutlierHandlingDiskSpace // Default 20% of MainMemory
— OutlierQualification // Default 10 cases
— DelayedSplit // {on, off}, default on
— DelayedSplitDiskSpace // Default 10% of MainMemory
— Adjustment // Default 0.01
— DistanceMeasure // {Log-likelihood, Euclidean}, default
// Log-likelihood
— InitialThreshold // Default O
— NonLeafNodeBranchingFactor // Default 8
— LeafNodeBranchingFactor // Default 8
— MaxTreeHeight // Default 3
Outputs:
- TO(key)) // Tightness threshold
- TP (keyy)
—  Sqalkey)
Procedure:

1. Build a CF-tree on data splitr based on specified features and settings;
2. If (DelayedSplit="0on7),

Absorb cases in disk spaceS; with tree rebuilding if necessary;
2. If (OutlierHandling="0on%),{

Absorb entries in disk spaceS, without tree rebuilding;
Check the final CF-tree for outliers;

Mark the identified outliers and remaining entries in disk spaceS, as
local outlier candidates;

}

3. Assignkey; to the CF-tree and the set of outlier candidates;
4. ExportT®(key,), Ty (key;), and Sg (key,)s




Reducer

Each reducer can handle several keys. For each key, it first pours together all CF-trees which have the same
key. Then with all leaf entries in the involved CF-trees, it performs a series of CF-tree based HACs to get a
specified number of sub-clusters. Finally, the sub-clusters are passed to the controller. The number of sub-
clusters produced for each key is computed by equation (29).

Let Q(key;) be the set of data split indices r whose key is key;, Ss,p (key;) and S, (key;) be the set of sub-
clusters and the set of outliers, respectively, produced for the key of key;, i = 1, ..., Q.

The reduce function for each key is as follows.

Inputs:
T (key), r € Q(key;)
~ TP (key)., r € Q(key)
— S%.(key), v € Qkey,)

<Parameter settings>

— OutlierHandling // {on, off}, default on
— Adjustment // Default 0.01
— DistanceMeasure // {Log-likelihood, Euclidean}, default Log-
// likelihood
— NumSubClusters // Number of sub-clusters produced for each key
— MinSubClusters // Minimum sub-clusters produced for each key

// default 500
— MaximumDataPoitsCFHAC // Maximum data points for HAC, default 50,000

Outputs:
Ssub (keYi)
Sout (keyi)

Procedure:
1. Letj,= NumSubClusters, C,,;,= MinSubClusters, and D,= MaximumDataPoitsCFHAC;
2. Compute T(key;) = max{T® (key,),r € Q(key;)};
3. Compute Sp(key,) = {57 (key)lr € Qlkey)}:
4. IFf OutlierHandling is “on”,{
CompUte Sout (keyi) = Ureﬂ(keyi) Sé;)t(keyi);
For each member in S, (key;),{
Find the closest leaf entry in the set of CF-trees S :(key;);
IT the closest leaf entry can absorb the outlier member without
violating the threshold requirement T(key;), then merge them, and
updateS,,;(key;) and the involved CF-tree;

}
}

5. Letc¢; be the total number of leaf entries inSgz(key;);
Whilec¢; > D,,{

Divide the set of CF-trees S.:(key;) randomly intoc, groups,
where c, = [¢;/D4];
For each group which has a larger number of leaf entries than c¢;, perform
CF-tree based HAC to getc; leaf entries, wherec; = [max(D;/c;,Crin)l;
Update S.r(key;) with new CF-trees produced in the above step;
Compute the total number of remaining leaf entriesc;;

}
6. With the set of CF-trees Scz(key;), perform CF-tree based HAC to get a set ofj,

sub-clusters, i1.e. Sy, (key;);
7. Export Ssub (keyi) and Sout (k€J’i) ;




Controller

The controller pours together all sub-clusters produced by reducers, and performs matrix based HAC to
get the final clusters. It identifies outlier clusters as well if the option of outlier handling is turned on.
Moreover, it computes model evaluation measures, and derives insights and interestingness from the
clustering results.

The controller runs the following procedure.

Inputs:
<Parameter settings>
— MainMemory // Default 80*1024 bytes
— OutlierHandling // {on, off}, default on
— OutlierHandlingDiskSpace // Default 20% of MainMemory
— OutlierQualification // Default 10 cases
— ExtremeOutlierClusters // Default 20
— DelayedSplit // {on, off}, default on
— DelayedSplitDiskSpace // Default 10% of MainMemory
— Adjustment // Default 0.01
— DistanceMeasure // {Log-likelihood, Euclidean}, default
// Log-likelihood
— InitialThreshold // Default O
— NonLeafNodeBranchingFactor // Default 8
— LeafNodeBranchingFactor // Default 8
— MaximumTreeHeight // Default 3
— AutoClustering // {on, off}, default on
— MaximumClusterNumber // Default 15
— MinimumClusterNumber // Default 2
— FixedClusterNumber // Default 5
— ClusteringCriterion // {BIC, AIC}, default BIC
— AutoClusteringMethod // {information criterion, distance jump,
// maximum, minimum}, default minimum
— MinSubClusters // Minimum sub-clusters produced for each key,
// default 500
— MaxDataPoitsCFHAC // Maximum data points for CF-tree based HAC,
// default 50,000
— MaxDataPoitsMatrixHAC // Maximum data points for matrix based HAC,
// default 5,000
Outputs:
-  PMML
— StatXML
Procedure:

1. Let(,,;, = MinSubClusters, D, = MaximumDataPoitsCFHAC, and D, =
MaximumDataPoitsMatrixHAC;

2. Compute the number of keys
NumKeys = Q = [min(R *S/Dy,Dy/Cmin)]1;

// Each mapper is assigned a key which is selected randomly from the Q keys

3. Compute the number of sub-clusters produced for each key
NumSubClusters = |min(R «S,D,)/Q];

4. Launch a map-reduce job, and getS,,,(key;) andS,, (key;), fori=1,..,Q;

5. CompUte Ssub = UiQ:1Ssub(ke.Vi);

6. Perform matrix based HAC onS,,; to get the set of final regular clusterss;,,
where the number of final clusters is determined automatically or using a
fixed one depending on the settings;

7. ITf OutlierHandling is “on”, perform the steps from 2) to 7) in Step 3 in




section 9.3;
8. Compute model evaluation measures, insights, and interestingness;
9. Export the clustering model in PMML, and other statistics in StatXML;

Implementation notes:

*  The general procedure of the controller consists of both the controller procedure in appendix A
and that in appendix B.




Appendix C. Procedure for MonotoneCubicInterpolation()

f(x) = MonotoneCubicInterpolation(S, I, x),

where

X is the input statistic that characterizes fields or field pairs in particular aspects (for example,
distribution), association strength, etc. Its value range must be bounded below, and it must have a
monotonically increasing relationship with the interestingness score threshold values. If the two conditions
are not met, a conversion (e.g. x = —x'orx = |x|, etc) should be carried out.

S, is a set of distinct threshold values for the input statistics, which have been accepted and commonly
used by expert users to interpret the statistics. The positive infinity (+») is included if the input statistic is

not bounded from above.

I; is a set of distinct threshold values for the interestingness scores that S; corresponds to. The threshold
values must be between 0 and 1.

The size of S; and I, must be the same. There are at least two values in S; excluding positive infinity (+o).
Pre-processing

Let {x;} = sorted(S;) such that x; < -+ < x,, , where n is the number of values in S,.

Let {y} = sorted(l,) such that y; < -+ < y,,.

Condition A: There are more than two threshold values for input statistics, and they are all finite
numbers

Preparing for cubic interpolation
The following steps should be taken for preparing a cubic interpolation function construction.

Step 1, compute the slopes of the secant lines between successive points.

Ykt1 — Yk
Ny ="
Trp41 — T

fork=1,---,n—1.

Step 2, Initialize the tangents at every data point as the average of the secants,

_ Apr £ Ay
2

g,

for k = 2,---,n — 1; these may be updated in further steps. For the endpoints, use one-sided
differences: my = A; and m,, = A,_;.



Step 3, letax =mx / Axand Pr=myr+1/ A fork=1,---,n— 1.

If a or  are computed to be zero, then the input data points are not strictly monotone. In such cases,
piecewise monotone curves can still be generated by choosing m = my +1 = 0, although global strict
monotonicity is not possible.

Step 4, update my

2 2 = = —_ 3
If a® + B* > 9, then set m; = uaAr and my +1 = UPrdk where 15 = T

Note:
1. Only one pass of the algorithm is required.

2. Fork =1,-,n—1,if Ay =0 (if two successive yx = yx+1 are equal), then set my = my+1 = 0, as the spline
connecting these points must be flat to preserve monotonicity. Ignore step 3 and 4 for those k.

Cubic interpolation

After the preprocessing, evaluation of the interpolated spline is equivalent to cubic Hermite spline, using
the data xt, yx, and mi for k=1,...,n.

To evaluate x in the range [x, xx+1] for k =1,...,n-1, calculate

X—Xk
h

h =xp4; — % and t=
then the interpolant is

f(x) = yxhoo(t) + h * myh;o(t) + yxi1hos () + h* myy,hy; (0

where hii(t) are the basis functions for the cubic Hermite spline.

hoo(t) 26 -3 +1
Io(t) B-22+¢
hoi(f) — 26+ 32
I (f) p-p

Condition B: There are two threshold values for input statistics

As we have clarified in the beginning that there are at least two values in S; excluding positive infinity
(+o0), they must be both finite numbers when there are only two threshold values.

In this case the mapping function is a straight line connecting (x;,y;) and (x,,y,).

X —Xq

f) =y1+ (y2 —y1) ——



Condition C: Threshold values include infinity

Note that there are at least two values in S; excluding positive infinity (+o0). Take the last three statistic
threshold values and threshold values for the interestingness scores from the sorted lists, we have three
Pairs of data (xn—Z' yn—Z)/ (xn—ll yn—l) and (+Oor yn)-

An exponential function

f(x) = a—be

can be defined by the pairs, where

a= yn

b = (Xn-1—Xn-2) (yn — yn_z)xn—i
(Yn - Yn—l)xn_z

1 Yn = ¥Yn-2
c= In
Xn-1 —Xp-2  ¥Yn ~¥Yn-1

If n = 3, which means there are only two distinct values in S, excluding positive infinity (+), the
exponential function is employed for evaluating x in the range [x1, +).

Otherwise, the exponential function is for evaluating x in the range [xn1, ). To evaluate x in the range [x1,
Xn-1), use procedures under “condition A: There are more than two threshold values for input statistics, and
they are all finite numbers” with data set {x;, "+, x,'} and {y;, ", y:} where n’ = n — 1. To insure a smooth
transition to the exponential function, the tangent m,,: at data point x,,. is given as

_d(a—be™™)

my = = bce™n'

dx X=Xy

again

a= Yn

b= Gn-17%n-2) [(y, — yp_p)*n-1
(Yn - Yn—l)xn_z

1 Yn = ¥n-2
c= In
Xn-1 —Xp-2  ¥Yn ~¥Yn-1
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Generalized Linear Engine (GLE) Algorithm

1.

Introduction — Phase |

Generalized linear models (GZLMs) have been commonly used analytical tools for different types of data for
quite some time because they cover not only widely used statistical models, such as linear regression for
normally distributed targets, logistic models for binary data, and log linear model for count data, but also many
useful statistical models via its very general model formulation. Since those models are under the independence
assumption, we have a new “Generalized Linear Engine” (GLE) to build them for large and distributed data and
run within Analytic Engine (AE).

GLE Phase | is mainly to replace GENLIN functionality in a Big Data situation in addition to adding the
nominal multinomial model. Section 2 describes the model. Section 3 describes parameter estimation. Inference
and model summary is given in Section 4. Scoring is presented in the last section.

Model

There are two subsections under the model section: (1) notations and (2) model formation. Then for the model
formation subsection, four sub-subsections are furthered derived: (1) probability distribution; (2) link function;
(3) combination of probability distribution and link function; (4) data transformation.

2.1. Notations

n Number of distinct records in the dataset. It is an integer and n > 1.

p Number of parameters (including the constant, if exists) in the model. It is an integer and p >
1.

Px Number of non-redundant columns in the design matrix. It is an integer and 1< p, < p.

y n x 1 vector of target variable consists of Y;,i=1,...,Nn.

r n x 1 vector of event variable for binomial distribution. It is usually the number of successes or
the number of 1’s. All elements are non-negative integers.

m n x 1 vector of trial variable for binomial distribution. All elements are positive integers and m;
>n, i=1...,n.




n x 1 vector of expectation of target variable.

n x 1 vector of linear predictor.

n x p design matrix. The rows represent the records and the columns represent the parameters.

The i row is X Z(Xm ...,xip), where superscript T means transpose of a matrix or vector,

i =1,...,n with X; =1if model has an intercept.

n x 1 vector of offset variable. This variable can’t be the dependent variable (y) or one of the
predictor variables (X). Also this variable can’t be a categorical variable (factor).

p x 1 vector of unknown parameters. The first element in Bis the intercept, if there is one.

n x 1 vector of scale weight variable. The elements don’t have to be integers. If an element is
less than or equal to 0 or missing, the corresponding record is not used.

n x 1 vector of frequency count variable. Non-integer elements are treated by rounding the
value to the nearest integer. For values less than 0.5 or missing, the corresponding records are
not used.

n
Effective sample size. N = Z f,. If frequency count variable f is not used, N = n.
i=1

2.2.

Model formation

A GZLM of the target y with predictor variables X and offset variable O has the form

where 77 is the linear predictor; O is an offset variable with a constant coefficient of 1 for each observation; g(.)

is the monotonic differentiable link function which states how the mean of y, E(Y) = 4, is related to the linear
predictor 77 ; F is the target probability distribution. Choosing different combinations of a proper probability

distribution and a link function can result in different models. Some combinations are well known models and
have been provided in different SPSS procedures. The following table lists these combinations and

n=9(E(y)=Xg+0, y~F,

corresponding SPSS procedures.

Table 1: Distribution, Link Function and Corresponding SPSS Procedure

Distribution | Link function | Model SPSS procedure

Identity Linear regression model GLM, REGRESSION

Logit Logistic regression model LOGISTIC REGRESSION




Poisson Log Log- linear model GENLOG
Nominal Generalized Generalized logistic regression model i NUMREG
multinomial | logit

Ordinal Cumulative Ordinal proportional-odds model PLUM
multinomial | logit

In addition, GZLM also assumes y; are independent for record i =1,...,n, then the model becomes

i =g(/ui):XiTﬂ+oi’ y, ~ F.

Notes:

To improve numerical stability, the X matrix will be transformed, see Section 2.2.4 for details. Note that the
computation of transformation can be implemented in map/reduce environment.

The X matrix can be any combination of continuous variables (covariates), categorical variables (factors)
and interactions. The parameterization of design matrix X is the same as in GLM procedure. See Lam
(1995a) for further details on the model parameterization.

Due to use of over-parameterized model where there is a separate parameter for every factor effect level
occurring in the data, the columns of the design matrix X are often dependent. Collinearities among
continuous variables in the data can also occur. To establish the dependencies in the design matrix, columns

of X'¥X, where ¥ = diag( f,@,,... f,, ), are examined by using the sweep operator. When a column is

found to be dependent on previous columns, the corresponding parameter is treated as redundant. The
solution for redundant parameters is fixed at zero. Details of the sweep operator employed can be found in
Lam (1995b).

When the target variable is in a binary format which can be character or numeric, such as the form of
male/female, 1/2, a/b, its values will be transformed to 0 and 1 with 1 as typically representing a success or
some other positive result. In this document, we assume that y has been transformed to 0/1 values and we
always model the probability of success, i.e., Prob(y = 1). Which original value should be transformed to 0
or 1 depends on what the reference category is. If the reference category is the last value, then the first
category represents a success and we are modeling the probability of it. For example, if the reference
category is the last value, “male”, “2” and “b” in “male/female”, “1/2” and “a/b” binary forms are the last
values and would be transformed to 0, and “female”, “1” and “a” would be transformed to 1 as we model
the probability of them, respectively. However, one way to change to model the probability of “male”, “2”
and “b” instead is to specify the reference category to be the first value. Note if original binary format is 0/1
and the reference category is the last value, then 0 would be transformed to 1 and 1 to 0.

For the binomial distribution and the target is a number of events (r) occurring in a set of trials (m), in this
document, we assume that y is the binomial proportion, i.e., y = r/m.

GLE would also include ordinal and nominal multinomial distributions. However, since the model form is not
the same as that of the above traditional generalized linear models, we include them in Appendix A and
Appendix B, respectively.



2.2.1. Probability distribution

GLE will include 9 distributions which include 3 continuous ones: normal, inverse Gaussian, gamma; 5 discrete
ones: binomial, Poisson, negative binomial, ordinal multinomial, nominal multinomial; and 1 mixed
distribution: Tweedie.

Table 2 lists distribution of y, corresponding range of y, the variance function (V(z)), the variance of y (Var(y))
and the 1% derivative of the variance function (V ‘() ), which will be used later. Again ordinal multinomial and
nominal multinomial would be handled in Appendices A and B, respectively.

Table 2: Distribution, Range and Variance of the Target, Variance Function and Its 1% Derivative

Distribution Range of y V() Var(y) V'(u)
Normal (=0, ) 1 ¢ 0
Inverse Gaussian (0, ) o i’ 317
Gamma (0, ) e du® 2u
Negative binomial 0(1)ec p+kp? u+kut 1+2ku
Poisson 0(1) H H 1
Binomial(m) omm ul-p) HA-p) 1-2u
m m

Tweedie [0, ) s du qu™
Notes:

0(1)z means the range is from 0 to z with increment of 1 (i.e. 0, 1, 2, ..., 2).
For the binomial distribution, the binomial trial variable m is considered as a part of the weight variable .
If a weight variable @is included, ¢ is replaced by ¢/ .

For the negative binomial distribution, there is an ancillary parameter (k) and there are two ways to handle
it:

1. It can be estimated with # jointly by the maximum likelihood (ML) method.
2. It can be set to a fixed positive value.

In general, only when k is known, the target y with a negative binomial distribution is a generalized linear
model. Furthermore, the default for k should be the fixed value provided by the user because, according to
McCullagh and Nelder (1989), the interpretation of using negative binomial distribution and canonical link
function might be problematical as it makes the linear predictor a function of a parameter of the variance
function.

Typical values of k range between 0.01 and 2, but we will also allow k = 0, which reduces the negative
binomial distribution to the Poisson distribution. When k = 0, we simply apply the Poisson distribution to do
the estimation. When k = 1, the negative binomial is the geometric distribution.



e The Tweedie’s class of distributions includes discrete, continuous and mixed densities as long as q <0 or g
> 1, where g is the exponent in the variance function, . Special cases include the normal (q = 0), Poisson

(g = 1), gamma (q = 2) and inverse Gaussian (q = 3). Except those special cases, the Tweedie distributions
with other values of g cannot be written in closed form, and hence evaluation of the density is difficult.
Here, we only consider the Tweedie distributions for 1 < q < 2 which can be represented as Poisson
mixtures of gamma distributions and are mixed distributions with mass at zero and with support on the non-
negative real values. These distributions have been called “compound Poisson”, “compound gamma” and
“Poisson-gamma” distributions, but we will still call “Tweedie”. Here, the q value is set a fixed value.
Thus, the user hasto giveaq € (1, 2).

e From the expressions for V() and Var(y), continuous distributions (normal, inverse Gaussian and gamma)
and Tweedie distributions for 1 < q < 2 include the scale parameter ¢ which can be used to scale the
relationship of the variance and mean (Var(y) and ). Since it is usually unknown, there are three ways to
fit the scale parameter ¢:

1. It can be estimated with g jointly by ML method.
2. It can be set to a fixed positive value.

3. It can be specified by the deviance or Pearson chi-square (see Section 4.3.3).

On the other hand, discrete distributions (binomial, Poisson, negative binomial) do not have this extra
parameter (it is theoretically equal to one). Because of it, the variance of y might not be equal to the
nominal variance in practice (especially for Poisson and binomial because negative binomial has an
ancillary parameter k). A simple way to adjust this situation is to allow the variance of y of discrete
distributions to have the scale parameter ¢ as well. That’s why ¢/ @ is included in the log likelihood
function of each discrete distribution below, but, unlike ¢ for continuous distributions, it can’t be estimated
by ML method. So for discrete distributions, there are two ways to obtain the value of ¢:

1. It can be set to a fixed positive value.

2. It can be specified by the deviance or Pearson chi-square.

To ensure the data fit the range of target y (or r and m for the binomial distribution) for the specified
distribution, the following rules are enforced:

(a) For the gamma or inverse Gaussian distributions, values of y must be real and greater than zero. If a
value of y is less than or equal to 0 or missing, the corresponding record is not used.

(b) For the negative binomial and Poisson distributions, values of y must be integer and non-negative. If a
value of y is non-integer, less than 0 or missing, the corresponding record is not used.

(c) For the binomial distribution and if the target is in the form of a single variable, y must have only two
distinct values. If y has more than two distinct values, then we stop the program and issue an error
message, such as “The target variable has more than 2 levels. A binary target must have 2 levels.”

(d) For the binomial distribution and if the target is a number of events (r) occurring in a set of trials (m),
values of r must be non-negative integers, values of m must be positive integers and m; >r;, V i. If a
value of r is not integer, less than 0, or missing, the corresponding record is not used. If a value of m is
not integer, less than or equal to O, less than the corresponding value of r, or missing, the
corresponding record is not used.

(e) For the Tweedie distributions, values of y must be zero or positive real. If a value of y is less than 0 or
missing, the corresponding record is not used.



The ML method will be used to estimate B and possibly ¢ for continuous distributions and Tweedie distribution
or k for negative binomial. The kernels of the log likelihood function ( /, ) and the full log likelihood function (
£, which will be used as the objective function for parameter estimation, are listed for each distribution in the
following table. Using ¢ or /, won’t affect the parameter estimation, but the selection will affect the
calculation of information criteria in Section 4.3.4.

Table 3: The Log Likelihood Function for Probability Distribution

Distribution ¢, and ¢

e

Normal

g ()

=10+ Z—%{ln(zﬁ)}

fi{%m(z;—:J—z—:—m[f(%ﬂ}

Inverse Gaussian

Gamma

~
I
~
~
+
H'M:
—h
——
5
—_~
<
N—
==

[N

Negative binomial = n¢

E:Zk+;fi%{ In(7 (y, +1))}
Poisson e i1 fij{y' In(u4) =)

(=10, + .n1 f %{—In(yI I)}

I :Zn: f a;* {V. |n(/,1i)+(l— y,)In(l—ﬂl)}
Binomial(m) =

n . m N m

(=1 +.Z:1: f'_{ln[ri j} where [ . J_ T

Tweedie i 'Zl: ' {In(VI)Jr_i[(yliTQ) _(?—Q)J}

(=1, +Zf{ In(y;)} (note that the 3" term won’t include yi = 0)




Notes:
o  The computation of ¢, or ¢ can be implemented in map/reduce environment.

e When individual y = 0 for negative binomial, Poisson and Tweedie distributions and y = 0 or 1 for binomial
distribution, separate value of the log likelihood is given. Let ¢, ; be the log likelihood value for individual

record i when y; = 0 for negative binomial, Poisson and Tweedie and 0/1 for binomial.

Distribution Ly
- In(1+ kg,

Negative binomial | —f; ﬂw ify, =0
o k

Poisson -f %ui ify, =0

£ (1-y) ify, =0
Binomial(m) ¢

i%ln(,ui) ify, =1

o urv .
Tweedie —f; e e y, =0

¢ (2-q)

Note that the full log likelihood for i is equal to the kernel of the log likelihood for i, i.e., ¢, =¢,;, for

negative binomial, Poisson and Tweedie. ~ However, for binomial with 0/1 binary target variable, they
should be different (the full log likelihood has additional term. The full log likelihood, like deviance and
Pearson chi-square, should be computed based on subpopulations. Please see Section 4.3.3.2 for details).

o F(Z) is a gamma function and In(F(z)) is a log-gamma function (the logarithm of the gamma function),
evaluated at z. In general, In(F(z)) is calculated by using Sterling's formula, rather than first calculating

the gamma function and then taking the natural logarithm because numerical calculation of F(z) with
large values of z may cause an overflow.

e  For binomial distribution (r/m), the scale weight variable becomes @’ = wm, in /,, i.e., the binomial trials

variable m is regarded as a part of weight. However, the scale weight in the extra term of ¢ isstill @;.

e Viin Tweedie distribution is an infinite series and the computational details are described in Appendix C.

2.2.2. Link function

Table 4 lists the link functions, inverse forms of them and ranges of x for all distributions and Table 5 lists the
1%t and 2" derivatives for each link function in Table 4 which they will be used in Section 2.

Table 4: Link Function Name, Form, Inverse Form and Range of the Predicted Mean



Inverse

Link function name n=9(u) u=9"(n) Range of 4
Identity H n aeR
Log In(x) exp(n) a>0
Logit In| £ _exp(n) ae(0,1)
1-u 1+exp(r7)
@' (u), where
Probit 1ot e ®(n) ae(0,1)
O(E)=—+| e""dz
©)=7z 1.
Complementary log-log | In(=In(1-x)) 1-exp(-exp(7)) i€(0,1)
a 1/ ~ . . .
Power(c?) a+0 7, n {I eR ifa or.]/a_ isan .odd integer
a=0 In( ) exp(7) >0 otherwise (including « = 0)
Log-complement In(1- ) 1-exp(n) a<l
Negative log-log ~In(=In(u)) exp(~exp(-n)) ae(0,1)
ex .
Negative binomial In| & 1 “& u>0
U+ ( —exp(n))
k
(4/(@-p)) -1 (L+an)™
- 1/a
Odds power(a") {a #0 a 1+(1+an) fae(0,1)
=0 |n[Lj exp(n)
1-p 1+exp(n)

* qcan be a real number. If |of < 2.2e-16, «is treated as 0.

T The negative binomial link function becomes unavailable for negative binomial distribution with k = 0.

Table 5: The First and Second Derivatives of Link Function

- - 2
Link function name First derivative g'(u)= 2—77 =A Second derivative g'( )=a—z
u N
Identity 1 0
1
Log — _A2
U




1
Logit A*(2u-1)
] m(1=p)
Probit : , where ¢( )ZLE#/2 A (p)
g(o ) J2r
1
Complementary log-log (,u—1)|n(l—/1) ~A* (l+|n(l—y))
a-1 1
{a;tO H A&
Power(a) 1 Y7,
a= — s
7 -A
-1
Log-complement — —A?
1-p
-1
i - A% (1+In
Negative log-log in(4) (1+1In(w))
o 1 2
—A° (1+ 2k
Negative binomial P (1+2ku)
a-1
0 ﬂ—l A(a—1+a+lj
Odds power(c) {aio (1) u  l-u
a= 1
— A*(2u-1
p(1— 1) (21-1)

2.2.3. Combination of probability distribution and link function

Choosing different combinations of a proper probability distribution and a link function can result in different
models. Table 6 gives a guideline for all distributions except ordinal and nominal multinomial distributions.
Cumulative link functions in Table A.1 of Appendix A are only available for ordinal multinomial distribution
and generalized logit link function specified in Appendix B is for nominal multinomial distribution. If improper
combinations were specified, an error message will be issued.

Note that the available distributions depend on the measurement level of the target and there are 4 different
levels in the applications:

a. Ifatargetis continuous, all distributions except nominal and ordinal multinomial would be allowed. Note
that binomial is allowed because target could be an “events” variable and user has to also specify “trials”
variable). The default is normal distribution.

b. If a target is nominal, then nominal multinomial and binomial distributions are allowed. The default is
nominal multinomial.

c. If atarget is ordinal, then ordinal, nominal and binomial distributions are allowed. The default is ordinal
multinomial.



d. Ifatargetis flag, only binomial distribution is allowed.

Table 6: Proper Combinations of Probability Distribution and Link Function

Link Distribution Normal g];/lfsrgfan Gamma tl:liz%?:i\z/j Poisson Binomial | Tweedie
Identity X X X X X X X
Log X X X X X X X
Logit X

Probit X
Complementary log-log X

Power(a) X X X X X X X
Log-complement X

Negative log-log X

Negative binomial X

Odds power(a) X

2.2.4. Data transformation

To improve numerical stability, the X matrix will be transformed by default (the GLE component has the option
to turn it off) according to the following rules:

According to the definition of X, the i" row is x; = (xil,---,xip)T,i =1,---,n, with x;; = 1 if the model has an
intercept. Suppose x; is the transformation of x; then the j™" entry of x; is defined as

where c¢; and s; are centering and scaling values for x;;, respectively, for j = 1,---,p and choices of ¢; and s;,
are listed as follows:
e For a non-constant continuous predictor or a derived predictor which includes continuous predictor,

o if the model has an intercept, c; = 0 and ¢; = ¥;,j # 1, where ; is the sample mean of the j"

predictor, x; = %Z{;lﬁx” and s; =1 and s; = ’s,%j,j # 1, where /s,%j is the sample standard

deviation of the j predictor and s,%}. = ﬁ ?zlfi(xij - fj)z. Note that the intercept column is not
transformed.

o if the model has no intercept, ¢; = 0 and s; = ’s,%]. + f}?.

e  For a constant predictor, say x;; = a # 0, ¢; = 0 and s; = q, i.e., only scaled it to be 1 but not centered.
e  For a dummy predictor that is derived from a factor or a factor interaction, leave it unchanged, i.e., ¢; = 0
and si=1
]



In terms of matrix format, if the model (including nominal multinomial distribution) has no intercept,

X* = XS™1, where = diag(sl, ---,sp) :

If the model (including nominal multinomial distribution) has an intercept,

—cl's

-1
5—11 ] = XA, where ¢; = (cz,-~-,cp)T and §; = diag(sz,-~-,sp).
1

1
X*=X[
0

Then X is replaced by X* during estimation.

For ordinal multinomial model, we have

1 cIstt

Xi=[ —X]1=[ X[ ]

] = [1, -X]A=XA,

where 1, is a length q vector of 1.

Implementation notes:

Some predictors may be derived from the original predictors, say interaction term x,; = x,;Xx3;. For
derived predictors (or composite effects), transformation is done only when all original predictors are
covariates, i.e., no transformation is needed when there is a factor in derived predictors. And their means
and standard deviations are calculated using the derived predictors.
If the setting of a model includes intercept, normal distribution and identity link function, then the target is
centered by its mean (but not scale it due to complication scale may result) for numerical stability, i.e., y; =
y; — ¥, Vi, along with the X transformation. We will use y* instead of y and treat —y as an offset value
during estimation. Note this is done internally without the users knowing.
The whole transformation process will affect the estimates of g. After estimation, we need to transform the
estimates of g and their covariance matrix back from transformed scale to original scale. And all post-
estimation statistics and scoring would also be displayed on original scale, no matter if they are calculated
on original or transformed scale. The transform back formulae would be described below and we will
simply use X* = XA and notice that A reduces to S~ if the model has no intercept.
The log likelihood value, ¢, is the same on original or transformed scale.
If the scale parameter, ¢, for continuous distributions and Tweedie distribution is estimated with regression
parameters, then its estimate will be the same based on original or transformed scale.
If the ancillary parameter, k, in negative binomial distribution is estimated with regression parameters, then
its estimate will be the same based on original or transformed scale.
When iteration history tables are displayed, the parameter estimates in each iteration need to transform back.
In addition, it will also display the final gradient vector and Hessian matrix. Suppose the gradient vectors
based on original and transformed scale are s and s*, respectively; and the Hessian matrices based on
original and transformed scale are H and H*, respectively. Then

s=(AN"1s*and H = (A7) 1H"A™!
In the following sections, we will still use X and y no matter whether they are transformed or not, unless we
need to distinguish them.

Estimation

Having selected a particular model, it is required to estimate the parameters (8, #) or (8, k) and to assess the
precision of the estimates. Here we only include parameter estimation first and will add other subsections later.



3.1. Parameter estimation

The parameters (B, ¢, k) is estimated by maximizing the log likelihood function ¢ (or the kernel of the log
likelihood function ¢, ) from the observed data. Let S be the first derivative (gradient) vector of the log

likelihood with respect to B (and possible ¢ or k, see below), then we wish to solve

ol
S= {— =0
aﬂ px1
In general, there is no closed form solution except a normal distribution with identity link function, so estimates
are obtained numerically via an iterative process. A Newton-Raphson and/or Fisher scoring algorithm is used
and it is based on a linear Taylor series approximation of the first derivative of the log likelihood, so the first

and second derivatives are needed and will be discussed in the first two subsections. Then the iterative process
is discussed in the third subsection.

3.1.1. First derivatives

If the scale parameter ¢ for normal, inverse Gaussian, gamma and Tweedie is not estimated by ML method, S
isa px1 vector with the form:

SOV ()9 (w) T SV () ()

sziw.x _lzn: fo (Y, _ﬂi)_x

where g, V() and g'(z) are defined in Table 4, Table 2 and Table 5, respectively.

Notes:
e The computation of S can be implemented in map/reduce environment. |.e., assume there are J mappers, in
o . 1 fo, (yi _:ui) . :
the j*" mapper with n, records, s; =— > ——————2=-X;, then combine the results from all mappers in the

¢ V()9 ()

J
reducer, s=s,.
=1

o 4 =g (X B+0,) is an estimate of the mean of the i observation, obtained from an estimate of the
parameter vector S.

e For binomial distribution (r/m), @, is replaced with @ .

o Ifthe scale parameter is specified by the deviance or Pearson chi-square, then assume ¢ =1 to estimate S.

If the scale parameter ¢ for normal, inverse Gaussian gamma and Tweedie is estimated by ML method, it is
handled by searching for In(¢) since ¢ is required to be greater than zero. Similarly, if the ancillary parameter k
for negative binomial is estimated by ML method, it is still handled by searching for In(k) (just replace ¢ with k)
since k is also required to be greater than zero.



Let z=In(¢) so ¢ =exp(7) (or z=In(k) and k = exp(z) for negative binomial) , then S isa (p+1)x1 vector
with the following form

ol 1 < fia)i(yi_:ui).x
5= op _ eXp(T) iz V()9 (1)

ol ol

0T l(psya loks

where 0¢/0p is the same as the above with ¢ is replaced with exp(z) (for negative binomial, ¢ is not replaced),
0¢/dt has a different form depending on the distribution as follows:

Table 7: The First Derivative Functions w.r.t. z for Probability Distributions

o o/
Distribution —
or
ot o (Y- a)
Normal z—' #—1
i1 2 exp(z)

i=1 eXp(T) y| /ul

nf
Inverse Gaussian Z?'{—) —1}

n fo @i SR TN N L
Gamma g_exp(r){ln(exp(ﬂﬂi}{l ,Ui} W(GXD(T)]}

For all appropriate link functions other than negative binomial link function,
o0 _ I foy [exp(@)(yi—4) B 1 1.
or i:mexp(r){ (rexp(oyu) T EPOK) "”[yi+exp<r)j+"’[exp<r)j}'
for the negative binomial link function,

o & fo ) 1 1
o0 & e {'”(“exp(””‘) ”’[yi : exp(f)]*‘”[eXp(,))} |

Negative binomial

Z f, %, where
it 0T

2—q
oL,
. — fory, =
Tweedie Gfi ) exp(r)(2—q)
or |V 1-q 2-q
or WYl n O H; fory, >0
Vi exp(r)(1-q) exp(z)(2-q)




Notes:

. y/(z) is a digamma function, which is the derivative of logarithm of a gamma function, evaluated at z, i.e.
NS oIn(r(2)) 1'(2)

( ) p = Q) The method to compute digamma and trigamma functions is described in
Appendix D.
. %:(a—l)i jV;. To avoid the possibility of floating point overflow for ivij and i iy, we will
= — =
aVi J J ]
evaluate ot directly. See Appendix C for details.

As mentioned above, for normal distribution with identity link function which is a classical linear regression
model, there is a closed form solution for both g and 7, so no iterative process is needed. The solution for 5,
after applying the SWEEP operation, is

ﬁ:(lzn; fiwixfxij[iznl: faox (Y, —oi)j:(XTY’X)(XTY’(y—O)),

where ¥ =diag( f,a,... f,@,) and (Z) is the generalized inverse of a matrix Z. If the scale parameter ¢ is
also estimated by ML method, the estimate of 7z (= In(¢)) is

#=1n(f)- m[%z fa —xfﬁ—oi)zj.

3.1.2. Second derivatives

Let H be the second derivative (Hessian) matrix. If the scale parameter ¢ for normal, inverse Gaussian, gamma
and Tweedie is not estimated by ML method, H isa px p matrix with the form:

2
H=| 2 | - xTwx
PP L.

where W is an nxn diagonal matrix. There are two definitions for W depending on which algorithm is used:
We for Fisher scoring and W, for Newton Raphson. The i*" diagonal element for We is

_fio 1
¢ V()9 (1)

and the i diagonal element for Wo is

e,

W, =W, +

" " %(yi_ ')’V('ui)g”(:ui)+V’(,Ui)g'(,ui)

| (V () (9'(14))°



where V'(z) and g"(x) are defined in Table 2 and Table 5, respectively. Then W, —dlag( 11 en) and
—dlag( T On) Note the expected value of Wo is We and when the canonical link is used for the

specified distribution, then Wo = We. Be aware that for binomial distribution (r/m), @ is replaced with a)i .

Notes:

e The computation of H can be implemented in map/reduce environment. l.e., assume there are J mappers
with X; and W, as the design matrix and an n; xn; diagonal matrix in the j™ mapper, respectively, so

Xl
xX=| : |, W=diag (Wl, W, )and H, =—X]W; X, then combine the results from all mappers in the
XJ
2 J
reducer, H:{ 0 KT} =>H,.
aﬂaﬂ pxp j=1

If the scale parameter ¢ for normal, inverse Gaussian, gamma and Tweedie is estimated by ML method, H
becomesa (p+1)x(p+1) matrix with the form

0%l 0%l

o opop’ opor
e 8%
orop’  or’

(p+1)x(p+1)

where &2¢/opor is a px1 vector and 82¢/6zap" is a 1x p vector and the transpose of 92¢/opa< . The form
of &%¢/opor for all three continuous distributions is given below:

a/far exp(r)vw.)g (w) ' o

g tmbew) o

Note that in theory 8(/6ﬁ =0, so azz/a/}az =0 when evaluated at the estimates of f, ﬁ‘ In practice they
might not be exact 0, but they should be very close to 0.

The forms of 6%¢/apo« for negative binomial are as follows depending on the link functions:

For all appropriate link functions other than negative binomial link function,

0% _ - T exp(@)(yi - )
opor T p(L+exp()m) 9'(u)

for the negative binomial link function,

2

faw._
opor _Z %

i=1

The forms of 6%¢/a<* are listed in Table 8.



Table 8: The Second Derivative Functions w.r.t. z for Probability Distributions

2
Distribution ﬂ
or’
Normal y — fio, (y _ )2
= 2 eXp(T) i lui
Inverse Gaussian n fiey (y L )2
v usst T ooy 2 Wi T H
& 2exp(r)y i1
= exp(r) exp(r) u; m exp(z) | exp(z)’ | exp()

For all appropriate link functions other than negative binomial link function,

— Y eXp(2) g4 + o +2exp(r) 4 1
(L+exp(z) s, )’ exp(z)

) o | o
" exp(r) exp(r) exp(27)

for the negative binomial link function,

In(1+exp(z)u )+

e
" exp(r) exp(r)

or? ;7 1
exp(r)

Negative binomial

In(1+exp(z)y; )+

0 fia)I )
v (e sl st )
exp(r) Bt exp(r) exp(r) )| exp(27) I exp(r) v exp(r)
n 2
Z fi%, where
i=1 T
2-q
. L
_ i Lo R fory, =0
Tweedie 2 exp(r) (2 — q) %
(’52’2' = 62\//2 oy 1 o 127
ot | YiHi _ 1l for yi >0
V. V. exp(z)(1-q) exp(r)(2-q)
Notes:

o y/’(z) is a trigamma function, which is the derivative of I/I(Z) , evaluated at z. See Appendix D for details.

o For normal and inverse Gaussian, $*¢/87% = —N/2 when evaluated at Band 7.



oY, 3
o7’

(a

o,

0 2
—1)2 z jZViJ.. Again, we will evaluate V—aT directly. See Appendix C for details.

j=1 i

e For normal distribution with identity link function, Hessian matrix is

X"yx

¢

and augmented Hessian matrix including the parameter 7 = In ¢ is

-X"¥xX)/$ 0
H = OT —ﬁ .
2

In addition, the gradient is 0.

3.1.3. The iterative process

Note that we will implement the step-halving with Newton Raphson or Fisher scoring method first, but will
implement other methods, described in Du and Zheng (2009) and more, in the future.

An iterative process to find the solutions for g (which might include ¢, k for negative binomial or w for
multinomial) is based on (1) Newton Raphson (for all iterations), (2) Fisher scoring (for all iterations) or (3) a
hybrid method. The hybrid method consists of applying Fisher scoring steps for a specified number of iterations
before switching to Newton Raphson steps. It is done easily by applying different formula for the Hessian
matrix at each iteration. Newton Raphson performs well if the initial values are close to the solution, but the
hybrid method can be used to improve the algorithm’s robustness to bad initial values. Apart from improved
robustness, the Fisher scoring is faster due to the simpler form of the Hessian matrix.

Some definitions are needed for an iterative process:

Starting iteration for checking complete separation and quasi-complete separation. It
must be 0 or a positive integer. This criterion is not used if the value is 0.

The maximum number of steps in step-halving method. It must be a positive integer.

The first number of iterations using Fisher scoring, then switching to Newton
Raphson. It must be 0 or a positive integer. A value of 0 means using Newton
Raphson for all iterations and a value greater or equal to M means using Fisher
scoring for all iterations.

The maximum number of iterations. It must be a non-negative integer. If the value is
0, then initial parameter values become final estimates.

Epr Epy Ey

Tolerance levels for three types of convergence criteria (see Section 3.1.3.2 below).

Abs

A 0/1 binary variable; Abs = 1 if absolute change is used for convergence criteria and
Abs = 0 if relative change is used (see Section 3.1.3.2 below).




And the iterative process is outlined as follows:

)
O]

@)
(4)

®)

(6)

U]

(®)

©)

Input values for I, J, K, M, ¢,, ,, &, and Abs for each type of three convergence criteria.

Input initial values g or if no initial values are given, compute initial values g (see Section 3.1.3.1
below), then calculate log likelihood /', gradient vector s and Hessian matrix H® based on g .

Let &= 1.

Compute estimates of i iteration:

ﬂ(i) :ﬂ(ifl) _ g(H(ifl) )7 ) ,

where (H)  is a generalized inverse of H. Then compute log likelihood ¢ basedon g©.

Use step-halving method if ¢® < /%™ reduce &by half and repeat step (4). l.e., the set of values of & is {
(J/Z)j :J=0, ..., -1} If Jis reached but the log likelihood is not improved, issue a warning message,
then stop.

Compute gradient vector s" and Hessian matrix H® based on g® . Note that Wk is used to calculate H®
if i <K; Wo is used to calculate H® if i > K,

Check if complete or quasi-complete separation of the data is established (see the note below on how to
check them) if distribution is binomial or multinomial and the current iteration i > I. If either complete or
quasi-complete separation is detected, issue a warning message, then stop.

Check if all three convergence criteria (see Section 3.1.3.2 below) are met. If they are not but M is reached,
issue a warning message, then stop.

If all three convergence criteria are met, check if complete or quasi-complete separation of the data is
established if distribution is binomial or multinomial and i < | (because checking for complete or quasi-
complete separation has not started yet). If complete or quasi-complete separation is detected, issue a
warning message, then stop, otherwise, stop (the process converges for binomial or multinomial
successfully). If all three convergence criteria are met for the distributions other than binomial and
multinomial, stop (the process converges for other distributions successfully). The final vector of estimates

is denoted by g (and 7 and y for multinomial). Otherwise, go back to step (3). See Figure 1: The
Flowchart of the Iterative Process of Parameter Estimation below.

Notes:

1.

How the scale parameter ¢ is handled in the above iterative process:

If ¢ (7 ), for normal, inverse Gaussian, gamma and Tweedie distributions, is estimated by the ML
method, then ¢ will be estimated jointly with regression parameters S. l.e., the last element of the
gradient vector s is with respectto

If ¢ is set to be a fixed positive value, then ¢ will be held fixed at that value for in each iteration of the
above process.



If ¢ is specified for all distributions by the deviance or Pearson chi-square divided by degrees of
freedom (see Section 4.3.3), then ¢ will be fixed at 1 to obtain the estimates of g (and y for

multinomial) in the whole iterative process. Based on /} (and y for multinomial), calculate the

deviance and Pearson chi-square values and obtain ¢? , then revise some statistics, such as the gradient
vector, the Hessian matrix, the covariance matrix, etc. see Section 4.1 for details.

Complete separation or quasi-complete separation of the data is checked for binomial, nominal multinomial
and ordinal multinomial distributions here just like what we did in CSLOGISTIC and CSORDINAL
procedures. The method is briefly described as follows, see Fang (2004) case-wise data for details):

For each iteration after a user-specified number of iterations, i.e., if i > I, and for binomial models, calculate
(note here v refers to records in the dataset)

pmin = min pv
pmax = max pvl
p;in = min(min(luv'l_luv))’

M, if y, =success (=1)
where p, = . .

1-p, if y, =failfure (=0)
u, =97 (x] B+0,); for multinomial model, the definitions of p_, , p,.. andp,, are modified as follows:

('p, is the probability of the observed target for record v ) and

pmin = mvln ﬂv,yv

pmax = mflx ﬂ-v,yv’

P = mvin(mjin 7T, | )

Note that z, , has been defined before for multinomial models. Then the rules of checking complete

separation or quasi-complete separation for binomial or multinomial models would be the same. If
Poin = Prax =1 (actually min(p.., Pra ) = Prin > 0.99 is checked) there is a complete separation. Else if

(1) P >0.99 or p’. <0.001 and if (2) there are very small diagonal elements (absolute value
<107 #3.16x10™) in the non-redundant parameter locations in matrix A, where A is the lower

triangular matrix in Cholesky decomposition of —H, where H is the Hessian matrix, such that -H=AA",
then there is a quasi-complete separation.

The developers will evaluate whether the implementation of complete separation or quasi-complete
separation checking makes sense in map/reduce environment.

Whenever a warning message is issued, the procedure continues and results based on the last iteration are
given, though the validity of the model fit is questionable.

If the hybrid method converges with Fisher scoring step, the process will continue with Newton Raphson
steps till it converges again.



3.1.3.1. Initial values

The users can specify their own initial values. The order is the intercept (if there is one), regression parameters
(and the scale parameter ¢ if it will be estimated by the ML method for normal, inverse Gaussian and gamma
and the ancillary parameter k if it is estimated by the ML method for negative binomial) for all distributions
except multinomial. For ordinal multinomial, the order is threshold parameters and regression parameters. For
nominal multinomial, the order is regression parameters for each category (except the reference category). See
Appendices A and B for details. If the users didn’t specify them, we have to compute initial values internally.
For all distributions except multinomial, the initial values g and/or the scale parameter ¢ (if it is estimated

by ML method) are calculated as follows:

(1) Set the initial fitted values & = (y;m, +0.5)/(m; +1) for a binomial distribution (y; can be a proportion or
0/1 value) and ji; = y; for a non-binomial distribution. From them deriving 77,=g( ), 9'(4&) and V (). If
7. becomes undefined, 7 =1.

. NG . _ f.o, 1 .
(2) Calculate the weight matrix W, with the diagonal element W,; = % > Where gissetto 1

¢ V(a)(9'(@))

or a fixed positive value. If the denominator of W, becomes 0, W, = 0.

(3) Assign the adjusted target variable Z with the i™" observation z, = (77, —0,) + (Y, — & )9'(4) for a binomial
distribution and z; = (77, —0o;) for a non-binomial distribution.

(4) Calculate the initial parameter values

BO = (XTV\78X)‘1XTV\~ISZ, and/or

1 —
P© = N(z — XB(O))TWe(z —Xp©®)
Lo oM yTii7 oM yTii7 (0)
=N(z Wez - 2(®) X' W z+ (B©) X" W.Xp)
For the ancillary parameter k of negative binomial, initial k = 1, so z= 0 for now.

Notes:

e The computation of the initial values can be implemented in map/reduce environment. l.e., assume there are
J mappers, the first 3 steps would result z; and We_]- as an n; x1 adjusted target vector and an n; xn,

. . . “th . . T A7 T IA7 TIA7
diagonal matrix in the j"" mapper, respectively, along with X;. And X; W, ;X;, z; W, ;X;, z] We,]-z]-jan be
computed in the j mapper. Then combine the results from all mappers in the reducer as X' W X =

Y XWX, X' Wez=3_ X]W,;ziand 2’ W,z = ¥_, 2] W, ;z;. Finally, compute B based on

X"W X and X"W ,z, and then ¢ based on z" Wz, (ﬂ(o))TXTWez, and (B(O))TXTWEXB(O).

3.1.3.2. Convergence criteria

We consider 3 types of convergence criteria here: log-likelihood convergence, parameter convergence, and
Hessian convergence. For each type, we consider both absolute and relative change. Let ¢,, &, and &, be



given tolerance levels for each type, then the criteria can be written as follows:

Notes:

(1) Log-likelihood convergence: |€“’”|+10’6

|£(i) _g(i—1>|
<g, if relative change

|€(i> _£<i—1)| <¢g, ifabsolute change

@) (i-1)
5 -5 o
max| T . | < If relative change
Parameter convergence: ! ‘ﬂ +10°
max(‘ﬂ -B;" ) g, ifabsolute change

- . .
) _ 010 g, Iifrelative change
Hessian convergence: 71+ .

(Sm )T (H(” )’ (s“’) <g, ifabsolute change

e Depending on a user’s choice, either relative or absolute change is considered.

e |f the user doesn’t specify Hessian convergence criterion, we would check if it is met based on absolute
change with &€, = 1.0e-4 after specified log-likelihood convergence criterion and/or parameter convergence

criterion has been satisfied. If Hessian convergence criterion was not met, a warning message, such as “All
default or specified convergence criteria are satisfied, but Hessian convergence criterion is not. The

convergence is uncertain.” would be displayed.

3.1.3.3. Null model and intercept-only model

For the null model and intercept-only model, we provide an approximation method by considering the tradeoff

between the performance and the computational cost.

(a) Null models
If the scale parameter ¢ or the ancillary parameter k is estimated by ML method,

Let o = g~ ' (o))
e  For normal distribution,

1v
¢ = NZ fiw; (v = fig)?

e For inverse Gaussian distribution,

Z 10; (¥ — flg)?
= .VIMO

e For gamma and tweedie, there is no closed form solution for ¢, and it needs a iterative process. Herein,

it is  approximated by its initial  value calculated



For the ancillary parameter k, it is set to 1.0.

(b) Intercept-only models

For all distributions except multinomial

Let 3, be parameters of the intercept-only model (excluding ¢ and k).

There is no closed form solution for g, in addition to ¢ or k. §, and ¢ (or k) are approximated by their
initial values calculated in Section 3.1.3.1.

For ordinal multinomial

Let B, = (7, OT)T be parameters of the threshold-only model.

If there is no offset variable,
j
O _ o (Z=M) oy
l)b] - g( N >P] - 11 l] 11

and if there is an offset variable, there is no close form solution, and it needs a iterative process. Herein,
they are approximated by their initial values given in Appendix A.

For nominal multinomial

T
Let B, = (BT, -, [}50_)3 ) be parameters for the intercept-only model.
If there is no offset variable,

N
0 _ J © _ 0=
ﬂjl - ln<ﬁ]>’ﬁjk - 01} - 1"“!]_ 1;

and if there is an offset variable, there is no close form solution, and it needs a iterative process. Herein,
they are approximated by their initial values given in Appendix B.

Note that when there is no closed form solution for the model under consideration and the approximate model is
used, then a warning message, such as “The parameter estimates may not be accurate for the approximate model
being used”, would be displayed.
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Figure 1: The Flowchart of the Iterative Process of Parameter Estimation in GLE



3.1.4. Parameter estimation on original scale

If the X matrix is transformed, then the final estimates of g above are based on transformed scale, denoted it as
B*. They would be transformed back on original scale, denoted it as 3, as follows:

B =Ap

Note that 4 could reduce to S~ and hereafter in the document, superscript * is added to a quantity to denote the
quantity on transformed scale.

For ordinal multinomial model, we have
B= [’f] = T[‘f] =TB*
B B

I, I]—1®(CIS1_1)]

where T =
0 st

For nominal multinomial model, we have

B=TB
where T = ea};llAj, and A; = A if the model has an intercept and A; = $~* if the model has no intercept.
Notes:

* If Ais an mxn matrix and B is a pxq matrix, then the Kronecker product A ® B is the mpxnq block
matrix,

allB A alnB
A®B — * H

amB - am,B

e If Aisan mxn matrix and B is a pxq matrix, then the direct sum A@B is defined as

aix ot Qip o - 0

_[A 071_ AQnm1 " Amn o - 0
A®B = 0 B - 0o - 0 b11 blq
0 « 0 by - by

In general, the direct sum of n matrices is
A, 0 - 0
. 0 A 0
oA = diag(Ay, -, 40 = [ 12
o 0 - A,



4. Inference and Model Summary

4.1 Parameter inference

4.1.1 Parameter estimate covariance matrix, correlation matrix and
standard error

The parameter estimate covariance matrix, correlation matrix and standard errors can be obtained easily with
parameter estimates. Whether or not the scale parameter ¢(t) is estimated by ML method, parameter estimate
covariance and correlation matrices are listed for B only because the covariance between B and  should be
zeros. For the ancillary parameter k (t) of negative binomial is estimated by ML method, parameter estimate
covariance and correlation matrices are still listed for B only for simplicity purpose even though the covariance
between B and © is generally not zero. For ordinal multinomial model, parameter estimate covariance and
correlation matrices are listed for B = (37, B1T.

4.1.1.1 Parameter estimate covariance
Two parameter estimate covariance matrices can be calculated: model-based and robust.
(a) Model-based parameter estimate covariance

The parameter estimate covariance matrix is given by

where H™ is the generalized inverse of Hessian matrix H evaluated at 8 (and B for ordinal multinomial) (and ¢
if the scale parameter is estimated for normal, inverse Guassian, gamma and Tweedie distributions by ML
method or specified for all distributions by the deviance or Pearson chi-square divided by degrees of freedom).

Notes:

e For normal distribution with identity link function (linear regression model), £,, = (XT®X)~ where
¥ =diag(fo,...f,0,).

e For hybrid method, W, is used to calculate Z,, even B converges within iterations of Fisher scoring steps.
Naturally, W, and W, are used for Newton Raphson and Fisher scoring method, respectively.
e The corresponding rows and columns for redundant parameter estimates should be set to zero.
(b) Robust parameter estimate covariance

The validity of the parameter estimate covariance matrix based on the Hessian depends on the correct
specification of the variance function of the response in addition to the correct specification of the mean
regression function of the response. The robust parameter estimate covariance provides a consistent estimate
even when the specification of the variance function of the response is incorrect. The robust estimator is also
called Huber’s estimator because Huber (1967) was the first one described this variance estimate; White’s
estimator or HCCM (heteroskedasticity consistent covariance matrix) estimator because White (1980)
independently showed that this variance estimate is consistent under a linear regression model including
heteroskedasticity; or sandwich estimator because the formula has a gradient factor “sandwiched” between two
Hessian matrices. The robust (or Huber/White/sandwich) estimator is defined as follows



(Z[ 115 ) (Zf (e (;)L)) 'xi"‘iT)x’"

Notes:

e The robust parameter estimate covariance matrix is justified by asymptotic arguments, but the small sample
performance might not be good. For linear regression model, some modifications can be installed to
improve small sample performance, but it is not clear if these modifications are applicable to other

generalized linear models as well.
For ordinal multinomial model,

[

where |s the first derivative for the i record and can be found in Appendix A.

For nominal multinomial model,

=5 (Y Gl Gl )

Where 24 T Lis the first derivative for the i record and can be found in Appendix B.

4.1.1.2 Parameter estimate correlation

The correlation matrix is calculated from the covariance matrix as usual. Let g;; be an element of X,, or Z,, then
the corresponding element of the correlation matrix is \/_\/U_ The corresponding rows and columns for
7]

redundant parameter estimates should be set to system missing values.
4.1.1.3 Parameter estimate standard error

Let 3; denote a non-redundant parameter estimate for all distributions except multinomial. Its standard error is
the square root of the i-th diagonal element of £,,, or Z,.:

G, = /9
The standard error for redundant parameter estimates is set to a system missing value.

If the scale parameter is estimated by ML method, the standard estimate of £ is

= T
ot?
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where % can be found on Table 8. However, people are usually more interested in the original than the

transformed t, so we will only list the estimation result for ¢p. The estimate of ¢ is exp(7), the standard error
estimated of ¢ is (exp(%) - 6,).

For ordinal multinomial model:
Let zﬁj,j =1,--,J—1, be threshold parameter estimates and f;i = 1,--,p, denote the non-redundant

regression parameter estimates. Their standard errors are the square root of the i-th diagonal element of X,,, or
X,

6%. = ,/oj; and 6ﬁj = JOy-1+i),g-1+i)» Trespectively.
For nominal multinomial model,

Let ﬁjk denote a non-redundant parameter estimate. It standard error is the square root of the ((j —Dp+ k)”‘
diagonal element of X, or X,

6ﬁjk = Ja((j—l)P+k,(i—1)P+k)

Notes

e For normal distribution with identity link function (linear regression model), the standard error of ¢ is

. 2|2
G=¢ N

4.1.1.4 Parameter estimate covariance matrix, correlation matrix and
standard error on original scale

@)

(b)

If the X matrix is transformed, then the model-based parameter estimate covariance matrices above are also
based on transformed scale. They should be transformed back to original scale.

Model-based parameter estimate covariance

Denote the model-based parameter estimate covariance matrices based on original and transformed scale are X,
and X7, respectively.

z, =AZ; AT
For ordinal and multinomial models,
2, =TX,T"
Robust parameter estimate covariance

Denote the robust parameter estimate covariance matrices based on original and transformed scale are X,. and
X7, respectively.



., =ALA".
For ordinal and multinomial models,
2, =TT
(c) Parameter estimate correlation
They are calculated based on X,,, or X rather than X, or X7.
(d) Parameter estimate standard error

For regression parameters, they are calculated based on X,, or X,.. For the scale parameter and ancillary
parameter, parameter estimate standard errors are the same no matter which scale is used.

4.1.2 Wald confidence intervals
Wald confidence interval is provided for each non-redundant parameter. Wald confidence intervals are based on
the asymptotically normal distribution of the parameter estimators. The parameter estimators includes B (and ¥

for multinomial), ¢ () if ¢ is estimated by ML.

The 100(1 — a)% Wald confidence interval for g; is given by
(Bj - Zl—a/zﬁﬁjuéj + Z1—a/255,-)
where z,, is the (100p)™ percentile of the standard normal distribution.

If exponentiated parameter estimates of g are required, then the estimate of exp(f;) is exp(ﬁj), the standard
error estimate of exp(ﬁj) is (exp(ﬁj) -6/3].) and the corresponding 100(1 — a)% Wald confidence interval for
exp(B)) is

(exp (ﬁ] - Z1—a/25ﬁj) ,» €Xp (ﬁ] + Z1—a/25ﬁj))
Wald confidence intervals for redundant parameter estimates are set to system missing values.
Similarly, the 100(1 — a)% Wald confidence interval for 7 is defined as

(- Zy_q/200, T + Zl—a/zﬁr)

where 7 is the maximum likelihood estimate of 7, &, is the standard error estimate of ¢ and the corresponding
100(1 — a)% Wald confidence interval for ¢ (or k) is defined as

(exp(f - Zl_a/zﬁr), exp(f + Zl—a/26T)>'

For ordinal multinomial distribution, in addition to g, the 100(1 — a)% Wald confidence interval for 1); is
given by

(1/3]' - Z1—a/26¢j,1ﬁj + Z1—a/251/;]-)-



The estimate of exp(y;) is exp({;), the standard error estimate of exp(9);) is (exp(zﬁj) -8%.) and the
corresponding 100(1 — a)% Wald confidence interval for eXp(lp]-)

(exp (1/71 - Z1—a/25¢,-) , €Xp (1/71 + Z1—a/26¢j))-

For nominal multinomial distribution, the 100(1 — a)% Wald confidence interval for §;; is given by
(ﬁjk - Z1—a/255jk'ﬁjk + Zl—a/zﬁﬁjk)

The estimate of exp(B;x) is exp(B;x ), the standard error estimate of exp(Bjx) is (exp(ﬁjk) -6,;].k) and the
corresponding 100(1 — @)% Wald confidence interval for exp(ﬁjk) is

(exp (3jk - Z1—a/zf?ﬁjk) , €Xp (/?jk + Zl—a/zﬁﬁjk))
Note that Wald confidence intervals are based on estimates on the original scale.

4.1.3 Chi-square statistics

The hypothesis Hy;: 8; = 0 is tested for each non-redundant parameter using the chi-square statistic

PN 2
(B

which has an asymptotic chi-square distribution with 1 degree of freedom, y2.

Note that the chi-square statistic will not be calculated for the scale parameters ¢ (7), even it is estimated by ML
method.

For ordinal multinomial distribution, the hypothesis Hy;:¢; = 0,j = 1,--+,J — 1, and Hy;: §; = 0,i = 1,--+,p,
are tested for threshold parameters and regression parameters using the chi-square statistic

o\ A%
_ (2 _ (B ;
Cy; = (a_> and ¢z, = (a—ﬂll) , respectively.

¥j

Similarly, Cy; and cg, has an asymptotic chi-square distribution with 1 degree.

For nominal multinomial distribution, the test statistics for the hypothesis Hy jx: fjx = 0,j = 1,---,] — 1,k =

1’...’p, is
s 2
S (/J’jk)
Bix —\ 7z
s OBk

which has an asymptotic chi-square distribution with 1 degree of freedom.

Chi-square statistics and their corresponding p-value are set to system missing values for redundant parameter
estimates.



Note that Chi-square statistics are based on estimates on the original scale.

4.1.4 P-values

The general form for calculating p-values for the tests above and below, given a test statistic T and a
corresponding cumulative distribution function G as specified above, is defined asp = 1 — G(T). For example,
the p-value for y2 test Hy: f = 0isp = 1 — prob(x? < ¢).

4.2 Tests

After estimating parameters and calculating relevant statistics, several tests for the given model are performed:
(1) Lagrange multiplier (LM) test for fixed ¢ value or k value for negative binomial distribution; (2) model
fitting test; (3) model effect tests; (4) custom tests; and (5) estimating marginal means (EMMEANS).

4.2.1 Lagrange multiplier test

If the scale parameter ¢ for normal, inverse Gaussian, gamma and Tweedie distributions is set to a fixed value
or specified by the deviance or Pearson chi-square divided by the degrees of freedom ( the latter case, ¢ can be
considered as a fixed value), or an ancillary parameter k is set to a fixed value for negative binomial, then the
LM test is offered to assess the validity of the value. For a fixed ¢ value which can be any positive value or a
fixed k value other than 0, the test statistic is defined as

T, —SZ
LM =7

where s = 8¢/dt (Table 7) and A = — (Z—Z) — (— af;;T) (— %)_ (— :B—Z) (Table 8) evaluated at B and

fixed ¢ or k value (t = In(¢), or In(k)). Then T, is an asymptotic chi-square with 1 degree of freedom. The
p-value can be calculated accordingly.

If the ancillary parameter k for negative binomial is set to a fixed value, the LM test is provided to assess the
validity of the value.

For k is set to 0, the LM test statistic is based on following auxiliary OLS regression (Cameron and Trivedi,
1998).

i — 8)* — yi
yl :u'Al yl — C{ﬁi + Sl'
Hi
where f; = g7*(xTB + 0;) and & is an error term. Let the response of the above OLS regression
[(y; — 1;)? — y;/;] be z; and the explanatory variable j; be w;. The estimate of the above regression parameter
« and the standard error of the estimate of « are

1 ~
v 2 filzi—aw;)?

ne o2
i fiwi

n
_ X fiwizi

a= and &, =
I fiwf *

Then the LM test statistic is z statistic

N
I
QQ) | VD



and it has an asymptotically standard normal distribution under the null hypothesis of equidispersion in a
Poisson model (Hy:k = 0). The alternative hypothesis can be one-sided overdispersion (H,:k > 0) ,
underdispersion (H,: k < 0) or two-sided non-directional (H,: k # 0) with the variance function of V(u) =
u + ku?. The calculation of p-value depends on the alternative. For H,: k > 0, p-value = 1 — ®(z), where ®(*)
is the cumulative probability of a standard normal distribution; for H,: k < 0, p-value = ®(z); and for H,: k +#
0, p-value= 2(1 — ®(|z|)). We will show all three p-values.

Implementation note:

The z statistic can be calculated in one data pass under map/reduce environment as follows:

(N —1)83
Z= |7/
5,83 — S5

— \'n 2 — \'n _— \'n n2
where Sy = YL, fizi | S; = Xi=1 fizipy and S3 = YL, fifdi

In each mapper, compute f;, z; and also accumulate S;, S, and S;, then in the reducer, combine all parts of S;, S,
and S5 from all mappers to compute the z statistic.

4.2.2 Model fitting test

The model fitting omnibus test is based on —2 log-likelihood values for the model under consideration and the
initial model. For the model under consideration, the value of -2 log-likelihood is

~20(B).
Let initial model be the intercept-only model if intercept is in the considered model or the null model otherwise.

e For the intercept-only model, let the value of -2 log-likelihood is

—2¢(B,).

e  For the null model, let the value of —2 log-likelihood is
—2£(0).

(&) The omnibus (or global) test statistic for all distribution except multinomial distribution is
S§=2 (f([?) — 1?([?0)) for the intercept only model or

S=2 (f(ﬁ) - #(0)) for the null model

S has an asymptotic chi-square distribution with r degrees of freedom, equal to the difference in the number of
valid parameters between the model under consideration and the initial model. » = p, — 1 for the intercept-only
model; r = p, for the null model. The p-values then can be calculated accordingly.

(b) For ordinal multinomial model,
e The value of -2 log-likelihood for the model under consideration is
-2¢(B).

e The value of -2 log-likelihood for the thresholds-only model is
_Zf(ﬁo).



(©

where B, = (7, OT)T is the parameters estimated for thresholds-only model.

Then the omnibus test statistic is

s =2(e(B) - £(B,)),
and it is asymptotically chi-square distributed with p, degrees of freedom.

For nominal multinomial model,

e The value of -2 log-likelihood for the model under consideration is
~20(B).

e The value of -2 log-likelihood for the intercept-only model is

—2¢(By).

s — - T . . .
where B, = (B&O)T, [}ﬁ)f is the parameters estimated for intercept-only model the value of -2

log-likelihood for the null model is
—2£(0),

where £(0) = In G) »r fioi ¢, and c is computed based on subpopulations (see Section 4.3.3.2 for

=1 ¢
details.)
Then the omnibus test statistics is

S=2 (f(ﬁ) — E(BO)) for the intercept only model or
s =2(¢(B)—£(0)) for the null model

and it is asymptotically chi-square distributed with r degrees of freedom. r = Zf;i(p,{ - 1) for the
]_

intercept-only model, where p,]; is the number of non-redundant parameters in g;; r = iji p,]; for the null

model.

When calculating the value of -2 log-likelihood of initial model we need to setup the rules to handle the scale
parameter ¢ or the ancillary parameter k in the initial model and they depend on how it is handled in the model
under consideration.

€]
O]
®)

If the scale parameter ¢ or the ancillary parameter k is estimated by the ML method in the model under
consideration, then it will also be estimated by the ML method in the initial model.

If the scale parameter ¢ or the ancillary parameter k is held fixed in the model under consideration, then the
same value is fixed in the initial model.

If the scale parameter ¢ is specified by the deviance or Pearson chi-square divided by degrees of freedom in
the model under consideration, then that value will be held fixed in the initial model. Note that the log
likelihood for the model under consideration, would be adjusted, i.e., based on ¢ = ¢, so the log
likelihoods for both models (the model under consideration and initial model) are calculated based on the
same scale parameter value.



The details of the calculation of initial model are given in Section 3.1.3.3. Please note that for a part of null and
intercept-only models, there are no closed form solutions, thus approximate models will be used. Thus, when the
initial model is different from the model under consideration and the approximate initial model is used, then a
warning message, such as “The omnibus test may not be accurate for the approximate initial model being used”,
would be displayed.

4.2.3 Tests for model effects

For each regression effect specified in the model, two analyses can be conducted: type | analysis and type Il
analysis. The can request to do one of them, both of them or none.

4.2.3.1 Type | analysis

Type | analysis consists of fitting a sequence of models, starting with the null model as the baseline model (for
all distributions except ordinal multinomial), adding one additional effect, which can be an intercept term (if
there is one), covariates, factors and interactions, of the model on each step. For ordinal multinomial model, the
baseline model will be thresholds-only model. So it depends on the order of effects specified in the model. On
the other hand, type 111 analysis will not depend on the order of effects. The reason for using the null model as
the baseline model is to obtain the chi-square statistic for the first parameter g, which might be for an intercept
or the first predictor variable.

(a) All distributions except multinomial distributions
For each effect specified in the model, type | test matrix L; is constructed and H,: L;8 = 0 is tested. The Wald
statistic is defined by

s = (LB) (LZLT) L.

L; is a rxp full row rank hypothesis matrix and is constructed based on the generating matrix H, =
(XTX)~XT0X, where 2 is the scale weight matrix with the i'" diagonal element being w; and such that L; g is
estimable. B is the maximum likelihood estimate and X is the estimated covariance matrix (Z could be X,, or
Z,). The asymptotic distribution of Sis y7., where r; = rank(L,ZL]), If ro <r, (L;ZL])" is a generalized
inverse such that Wald tests are effective for restricted set of hypothesis L¢ B containing a particular subset C of
independent rows from H,. See Fang and Spisic (2004) for details. Then the p-values can be calculated
accordingly.

Note that for type | analysis, L; depends on the order of effects specified in the model, but for type 111 analysis, it
does not. If such a matrix cannot be constructed, the effect is not testable. See Chiu (1995a, b) and Zhong
(2006a) for computational details on construction of type I and 111 test matrices.

(b) Ordinal multinomial distributions
For ordinal multinomial model, first consider partition more general test matrix L = (L(3),L(B)), where

L) = (ll,---,l,_l) consists of columns corresponding to threshold parameters and L(B) be the part of L
corresponding to regression parameters. Consider matrix L, = (lO,L(ﬁ)) where the column vectors
corresponding to threshold parameters are replaced by their sum I, = Z;;i l;. Then LB is estimable if and only
if Ly = LoH,,, where H,, = (XT02X,)"XT0X, is a (1 + p)x(1 + p) matrix constructed using X; = (1,—X) .
The Wald statistic for testing LB = 0, where L isa rx(J — 1 + p) full row rank hypothesis matrix is defined by

S =(LB) (LEL")"LB



where B = (ITJT,BT)T is the maximum likelihood estimate and X is the estimated covariance (£ could be X,, or
Z,). The asymptotic distribution of S is y7., where r; = rank(LEL").

For each effect specified in the model excluding threshold parameters, type | test matrix L; is constructed and
Hy: L;B = Ois tested. Construction of matrix L;is based on matrix H,, = (XT02X,)~XT0X, and such that L;B is
estimable. Thus, the way to construct L; (type | and IlI) for ordinal multinomial is the same as that for other
distributions. Note that the threshold-parameter effect is not tested for both type I and 111 analyses.

(c) Nominal multinomial distributions

For each effect specified in the model, L; is constructed based on the generating matrix H,, = (XT2X)~ X" 02X,
where £ is the scale weight matrix with the it diagonal element being w; and such that L; is estimable.

s =(LB) (WELT) LB

where L} = I;_; ® L; and r; = rank(L;ZL;") ; X could be X,, or X,.. The asymptotic distribution of S is x7..

4.2.3.2 Type lll analysis

The computation of Wald statistics for type Il analysis is similar to that for type | analysis. The only difference
is that type Il L matrix is constructed.

4.2.4 Custom tests

Contrasts defined as linear combination of regression parameters can be tested. For a user specified L and K, the
hypothesis H,: LB = K is tested only when each row of the L matrix is checked for estimablility (i.e. check if
LH, = Lwhere H, = (XT2X)"XT02X, and 2 is the scale weight matrix with the ith diagonal element is w;).
Then test statistics, exponential estimation and multiple test p-value adjustment are the three subsections to be
discussed. For checking on estimability for ordinal and nominal multinomial model, please see Section 4.2.3.1
for details.

4.2.4.1 Test statistics

The test statistics used is Wald statistics (see Section 4.2.3). Then the p-values are calculated accordingly.

4.2.4.2 Exponential estimation

If Lis a 1xp row vector, we can calculate the estimate of L, its approximate standard error and its Wald
confidence interval. In the meantime, for logistic regression or log-linear models, we can also calculate exp(LB),
its standard error, and its confidence interval. Note for other models, exp(LB) might not make sense. The
following table is shown the formulae:



Table 11: Estimate, Standard Error and Wald Conference Interval for LB and exp(Lf)

Lp exp(LB)
Estimate LB exp(LB)
Std. Error Orp = VLELT (exp(LB) - G1p)

Wald (ionfidence (Lﬁ = Z1-a/201p LB+ Zl_a/zﬁw) (exp(Lﬁ - zl_a/zc?w), exp(Lﬁ + Zl_a/zﬁw))
Interva

4.2.4.3 Multiple test p-value adjustment

The above hypothesis Hy: LB = K can be tested using the multiple row hypotheses testing technique. Let I7 be
the i row vector of matrix L and k; be the i" element of vector K. The i row hypothesis is Hy;: I' B = k; .
Testing H, is the same as testing multiple non-redundant row hypotheses {Hg;}%, simultaneously, where R is
the number of non-redundant row hypotheses, and H; represents the it non-redundant hypothesis. A hypothesis
Hy,; is redundant if there exists another hypothesis Hyj,j # i suchthat I; = cl;, k; = ck;, ¢ # 0.

For each individual hypothesis H;, test statistics can be calculated. Let p; denotes the p-value for testing Hy;,
and p; denotes the adjusted p-value. The conclusion from the multiple testing is, at level a (the family-wise type
I error),

reject Hy;: ' B = k;, if p} < a;
reject Hy: LB = K, if min(p;) < a.
L

There are different methods to adjust p-values. Five methods are provided here. Please note that if the adjusted
p-value is bigger than 1, it is set to 1 in all the methods.

(a) LSD (Least Significant Difference)
The adjusted p-values are the same as the original p-values: p; = p;.

(b) Bonferroni
The adjusted p-values are p; = Rp;.

(c) Sidak
The adjusted p-values are p; = 1 — (1 — p;)R.

(d) Sequential Bonferroni
In sequential test, the p-values are first ordered from the smallest to the biggest, and then adjusted depending on
the order. Let the ordered p-values for the non-redundant row hypotheses be p(;y < pp) < -+ < p(g) With

corresponding non-redundant hypotheses being be Hy(1y < Hoz) <+ < Hyg)-

The adjusted p-value of p is pg;y = max((R — i+ Dpgy i 1)) 1> 2
) 11— —_—

Note: if a row hypothesis is made redundant by H;,, the p-value and adjusted p-value of this row are the same
as that of H ;. This applies to both sequential Bonferroni and Sidak tests.



(e) Sequential Sidak
1-(1-pw)" ifi=1

R-i+1

The adjusted p-value of p(; is piyy = .
©=Eo max (1 - (1 - p(i)) ,p(*i_l)) ifi > 2

See Fang and Spisic (2004) for comparison of adjustment methods.

Note that if confidence intervals are also calculated for the above hypothesis, then adjusting confidence intervals
is required to correspond to adjusted p-values. The only item needed to be adjusted in the confidence intervals is
the critical value from the standard normal distribution. Assume that the original critical value is z;_,,, and the

adjusted critical value is z*.

(a) LSD (Least Significant Difference)
The adjusted critical value is z* = z, _a.
2

(b) Bonferroni
The adjusted critical value is z* =z, _«a.
2R
(c) Sidak
The adjusted critical valueis z* =z ,_,_,1/r.
1_7
2

(d) Sequential Bonferroni
The adjusted z* values will correspond to the ordered adjusted p-values p(qy, D2y, **, P(r) as follows:



z,_a ifi=1
2R

Z4y =

min(zl_2 3 ,zfi_1)> ifi =2
(R-i+1)

(a) Sequential Sidak

Z 1 (/R ifi =1
-

Zap =4 . o
min{ z ;__g1/®-i+1), Z(i-1) ifi >2
1_—
2

4.2.5 EMMEANS

There are two types of estimated marginal means (EMMEANS) calculated here. One corresponds to the specified
factors for the linear predictor of the model and the other corresponds to those for the response of the model.

EMMEANS are based on the estimated cell means. For a given fixed set of factors, or their interactions, we
estimate marginal means as the mean value averaged over all cells generated by the rest of the factors in the
model. Covariates may be fixed at any specified value. If not specified, the value for each covariate is set to its
overall mean estimate.

For ordinal and nominal multinomial model, EMMEANS are not available.
4.2.5.1 EMMEANS for the linear predictor

(a) Calculating EMMEANS for the linear predictor

EMMEANS for the linear predictor are based on the link function transformation. They are computed for the
linear predictor. Since the given model with respect to the linear predictor is a linear model (i.e. the model isn =
Xp + offset), so the way to construct L is the same as that for the GLM procedure. Each EMMEAN for the linear
predictor is constructed in the form LB such that L is estimable.

Briefly, for a given set of factors in the model, a vector of EMMEANS for the linear predictor is created for all
combined levels of the factors. Assume there are r levels. This 7x 1 vector can be expressed in the form ¥ = LB
where each row of L matrix is generated as described above. Variance matrix of ¥ is then computed by the
following formula

V(®) = LEL.

Note that X could be X, or X,.. The standard error for the j™" element of ¥ is the square root of the j diagonal
element of V(D). Let the j element of ¥ and its standard error be ; and 61,]., respectively, then the corresponding

100(1 - )% Wald confidence interval for v;,j = 1,---, 7 is given by

(ﬁ] - Zl_a/zavj, ﬁ] + Zl_a/zé-\v].).
(b) Comparing EMMEANS for the linear predictor
We can compare EMMEANS for the linear predictor based on a selected contrast type which a set of contrasts

for the factor is created. Let this set of contrasts define matrix € used for testing the following hypothesis H,: Cv =
0 (an overall test). A Wald statistic is used for testing given set of contrasts for the factor as follows:



S = (V)" (cVv(®)CT)(CD).

Asymptotic distribution of the Wald statistic is chi-square with r,degrees of freedom, wherer, =
rank(CV (9)CT). The p-value can be calculated accordingly. Note that the adjusted p-value based on multiple test
p-value adjustments (see Section 4.2.4.3) won’t be given.

Each row ¢! of matrix C is also tested separately (individual tests). Estimate for the i row is given by ¢/ % and
its standard error by 1/cTV(®)c;. The corresponding 100(1 - )% Wald confidence interval for ¢! v is given by

( iV —21_qp /ciTV(f])ci, CiV+21_q /ciTV(ﬁ)ci).

The Wald statistic for Hy: c’v =0 is

¢ v\
T\ TVv(@)e)

And it has an asymptotic chi-square distribution with 1 degree of freedom. The p-values can be calculated
accordingly. In addition, the adjusted p-values can also computed, see Section 4.2.4.3 for details.

Note:
o The usual contrast types used in C are included

Deviation
Simple
Helmert
Difference
Polynomial
Repeated

See Appendix of SPSS Advanced Statistics 7.5 (1997) for definitions of these contrasts. Note the definition of
deviation is revised: each level of the factor is compared to the grand mean.

o In addition, we would like to offer pair-wise contrast (the differences between EMMEANS for each pair of
levels for the effect), € can be constructed similarly as that in GLM procedure.

4.2.5.2 EMMEANS for the response
EMMEANS for the response are based on the original scale of the dependent variable except for the binomial
response with events/trials format (see note below). They can be defined as the estimator of the expected response
for a subject conditional on his/her belonging to a specified effect and having the averages of covariates.

(a) Calculating EMMEANS for the response

The way to construct EMMEANS for the response is based on EMMEANS for the linear predictor. Let M, be
EMMEANS for the response and it is defined as

M. =g (LB) = g'(®).

The variance of EMMEANS for the response is



R 9 =1(35. 0 -1(5.
v(M,) = diag (gTEv’)> LEL diag (ga—év’)>

Where diag(ag~*(9;)/09;) a rxr matrix and dg~(%;)/a9; is the derivative of the inverse of the link with
respect to the j value in @ and ag~*(9;)/89; = 1/g'(M,;) where g'(M,;) is from Table 5. The standard error

for the j™ element of M and the corresponding confidence interval are calculated similar to those of , see Section
4.2.5.1-(a) for details.

Note:

M, is EMMEANS for the proportion, not for the number of events when r and m (events/trials) variables are
used for the binomial distribution. See P. 62 for discussion about binomial response with events/trials format.

(b) Comparing EMMEANS for the response

It is similar to comparing EMMEANS for the linear predictor, just replace ¥ with M, and V(®) with V(IT/IC). See
Section 4.2.5.1-(b) for details.

4.2.5 Tests on original scale

(a) Lagrange multiplier test (Section 4.2.1)
(b) Model fitting test (Section 4.2.2)

All statistics calculated are the same on either original or transformed scale. Since parameters have been estimated
based on transformed scale and a lot of values are available, those statistics should be calculated based on
transformed scale.

(c) Tests for model effects (Section 4.2.3)
(d) EMMEANS and custom tests (Section 4.2.4)

For each effect specified in the model, type I or 111 test matrix L is constructed from the generating matrix, H,, =
(XTQX)"XTQX. We may have trouble to calculate H,, directly. Use the transformed variables, we will first
calculate H;, = (X*TQX*)"X*TQX*. Since H,, = AH},A™*, we can obtain H,, from H;,, then construct type I or
111 test matrix L; for the it effect based on original scale from H .

For ordinal multinomial, use H, = (XTQx,)"XTQx,, H, = (X;Tex;)"Xx;TQXx; and H, = TH,T ! to
construct type | or 111 test matrix L.

For nominal multinomial, use H, = (X"QX)"XTQX, H;, = (X*Tax*)"x*TQX* and H, = TH,T ! to

construct type 1 or 111 test matrix L.

4.3 Goodness of fit

To assess goodness of fit of a given generalized linear model, we calculate three statistics: deviance, Pearson chi-
square, and information criteria.

Note that all statistics are the same on either or transformed scale. Since parameters have been estimated based
on the transformed scale and a lot of values are available, those statistics should be calculated based on the
transformed scale.



4.3.1 Deviance

The theoretical definition of deviance is as follows:

D =2¢(£(y;y) — (@ y))
where 2(fi; y) is the log likelihood function expressed as the function of the predicted mean values of
(calculated based on the parameter estimates) given the response variable y and £(y;y) is the log likelihood
function by replacing @i with y. The formula used for the deviance is Y[-, f;d; where the form of d; for the

distributions is given in the following table:

Table 9: The Form of d; for Probability Distributions

Distribution d;
2
Normal , (yi .y’ )
. o, 2
Inverse Gaussian > (yi —H )
Yil;

Gamma 20,

Negative binomial 20

Binomial(m) 20,

Tweedie 20,

ol
{ _
{
=

()(;q)}

e When y is a binary dependent variable with 0/1 values (binomial distribution), and categorical variable
(multinomial distribution), the deviance and Pearson chi-square are calculated based on the subpopulations,
see Section 4.3.3.2 below.

e  Wheny =0 for negative binomial and Poisson distributions and y = 0 (for r = 0) or 1 (for r = m) for binomial
distribution with r/m format, separate values are given the deviance. Let d; be the deviance value for
individual case i when y;i = 0 for negative binomial and Poisson and 0/1 for binomial.

Note:

Distribution d,




o In(1+kg) .
Negative binomial ZwiT if y, =0

Poisson 2w, ify, =0

20" In(1—4) if y,=0or r,=0
Binomial(m) { ( )

207 In(gy)  ify;=1orr=m,

4.3.2 Pearson chi-square

Pearson chi-square statistic is defined as follows

n
X = z fivi
i=1

D e Vi—p)? o
where y; = 2L97)" gor hinomial distribution and y; = 240" for other distributions.
140D 140D)

4.3.3 Scaled deviance and Pearson chi-square

The scaled deviance is D* = D /¢ and the scaled Pearson chi-square is y2* = y2/¢ if ¢ is known from estimating
as a parameter or setting as a fixed value.

Since the scaled deviance and Pearson chi-square statistics, have a limiting chi-square distribution with degrees
of freedom equal to the number of observations (effective sample size) minus the number of non-redundant
regression parameters estimated, i.e. d.f. = N — py, the deviance or Pearson chi-square divided by its degrees of
freedom can be used as an estimate of the scale parameter ¢ for both continuous and discrete distributions.

D A X
N_px

é\:

If the ancillary parameter k of negative binomial is estimated by the ML method, the scale parameter ¢ is
measured by the deviance or Pearson chi-square divided by its degrees of freedom, then the degrees of freedom
is N — p, — 1 notusual N — p,. because k is the extra parameter estimated by ML method.

Note that the values of the deviance and Pearson chi-square divided by the degrees of freedom (they might be
called D/df and Pearson/df, respectively) will be computed no matter how the scale parameter is treated.

If the scale parameter is measured by the deviance or Pearson chi-square, first we assume ¢ = 1, estimate J8,
calculate the deviance and Pearson chi-square values and obtain ¢ from the above formula. Then the scaled
version of both statistics is obtained by dividing the deviance and Pearson chi-square by ¢. In the meantime, some
statistics need to be revised. The gradient vector and the Hessian matrix are divided by ¢ and the covariance
matrix is multiplied by ¢. Accordingly, the estimated standard errors are also adjusted, the Wald confidence
intervals and significance tests will be affected even the parameter estimates are not affected by ¢.

Note that two log likelihood values would be displayed: original one (based on ¢ = 1) and adjusted one (based
on ¢ = ¢ which is plugged into the log likelihood function of the corresponding distribution).



4.3.3.1 Overdispersion

For the Poisson, binomial distributions and multinomial distribution, if the estimated scale parameter ¢ is not
near the assumed value of one, then the data may be overdispersed if the value is greater than one or
underdispersed if the value is less than one. Overdispersion is more common in practice. The problem with
overdispersion is that it may cause standard errors of the estimated parameters to be underestimated. A variable
may appear to be a significant predictor, when in fact it is not.

4.3.3.2 Deviance and Pearson chi-square for binomial distribution with 0/1 binary
response variable and multinomial distribution

When r and m (event/trial) variables are used for the binomial distribution, each case represents m Bernoulli trials.
Wheny is a binary dependent variable with 0/1 values, each case represents a single trial. The trial can be repeated
for several times with the same setting (i.e. the same values for all predictors). For example, suppose the first 10
y values are 2 1s and 8 Os and x values are the same (if recorded in events/trials format, these 10 cases is recorded
as 1 case with r = 2 and m = 10), then these 10 cases should be considered from the same subpopulation. Cases
with common values in the variable list that includes all predictors are regarded as coming from the same
subpopulation. When the binomial distribution with binary response is used, we should calculate the deviance
and Pearson chi-square based on the subpopulations. If we calculate them based on the cases, the results might
not be useful.

If subpopulations are specified for the binomial distribution with 0/1 binary response variable, the data should be
reconstructed from the single trial format to the events/trials format. Assume the following notations for
reconstructed data:

ns | Number of subpopulations.

rii | Sum of the product of the frequencies and the scale weights associated with y = 1 in the jt"
subpopulation. So rjo is that with y = 0 in the j subpopulation.

m; | Total weighted observations and m; = rj; + rjo.

yir | The proportion of 1s in the j™ subpopulation and yj1 = rjs/ m;.

u; The fitted probability in the j subpopulation (4; would be the same for each case in the jt
subpopulation because values for all predictors are the same for each case.)

The deviance and Pearson chi-square are defined as follows:

s Yj1) {1 - y]’l}
D=2 mi{yqIn{=—]+(1—1vy;;)In
§ P {3’11 (Mj ( 3’11) 1—y,

and
2
o=y st
=1 (1 - w)

The degrees of freedom equal to the number of subpopulations minus the number of non-redundant regression
parameters estimated, i.e. d.f. = n, — p, then the values of the deviance and Pearson chi-square divided by the



degrees of freedom can be computed accordingly, and the corresponding estimate of the scale parameter ¢ will
be

2
and ¢ = X

Ng — Px Ng — Px

$=

For ordinal and nominal multinomial models, similarly, the data will be reconstructed based on subpopulations.
Assume the following notations for reconstructed multinomial data:

ns | Number of subpopulations.

r.. | Sum of the product of the frequencies and the scale weights associated with the j™ category
in the i subpopulation.

m; J
' | Total weighted observations for the i subpopulation and m, = z h

The fitted probability for the j™ category in the i subpopulation.

N>

The deviance and Pearson chi-square are defined as follows:

ng J 1. T m;m;
D=ZZ z rijln< J > and Xzzz Z (” ”)
i=14—dj=1 m;; j j=1 m;fty

The degrees of freedom equal to ng(J — 1) — d where d =] — 1 + p, for the ordinal multinomial distribution;
= Z;;i p. for the nominal multinomial distribution, then the values of the deviance and Pearson chi-square

divided by the degrees of freedom can be computed accordingly, and the corresponding estimate of the scale
parameter ¢ will be

XZ

and ¢=—ns(]—1)—d

~ D
¢_ns(]—1)—d

Notes

e For the situation of a large volume of data (“Big Data”), the number of subpopulations may be very large
when all predictors are used to define subpopulations. Thus, in the Map-Reduce environment, it may cause
a network traffic jam. The three alternating methods will be considered below based on their priorities from
high to low.
(1) Arecord is defined as a subpopulation;
(2) All factors in predictors are used to define subpopulations; if there are no factors in predictors, a record
forms a subpopulation;
(3) All predictors first are binned into k bins; the subpopulations are defined on all predictors binned. k is
set to 5 by default.
e  The value of the constant ¢ for binomial models is calculated as follow

ns

m.l
C=Zln< I )
Tjo! Tj1!

j=1

The value of the constant ¢ for ordinal and nominal multinomial models is calculated as follow,



ns
e=Yim(m )
Tll! te TL]!

i=1

4.3.4 Information Criteria

Information criteria are used when comparing different models for the same data, the following criteria are given
in smaller is better form. If we let £ be the log likelihood evaluated at 8, the formula for various criteria are given
as below. Note that for all distributions except multinomial, d = p,, if only g isincluded; d = p, + 1if B and ¢
for normal, inverse Gaussian, gamma and Tweedie distributions or #and k for negative binomial distribution are
included; d =J — 1+ p, for ordinal multinomial distribution; d = Z;;i p,’; for the nominal multinomial
distribution.

(1) Akaike information criteria (AIC)
—2¢ + 2d
(2) Finite sample corrected AIC (AICC)
2dN
—2€+—(N_d_ D
(3) Bayesian information criteria (BIC)

—2¢+ dIn(N)
(4) Consistent AIC (CAIC)
—2¢+d(In(N) + 1)
Notes:

e ¢ (the full log likelihood) can be replaced with £, (the kernel of the log likelihood) depending on the user’s
choice.

o If the scale parameter is specified by the deviance or Pearson chi-square, the log likelihood, ¢ or ¢, would
be original one, i.e., based on ¢ = 1, for fair comparison among different models.

e When r and m (event/trial) variables are used for the binomial distribution, then N used here would be the
sum of the trials frequencies, i.e. N = Y}I*; f; m;. In this way, the same value results whether the data are in
raw, binary form (using single-trial syntax) or in summarized, binomial form (events/trials syntax).

5. Scoring

Scoring is defined as assigning one or more values to a case in a data set. Two types are considered here:
predicted values and model diagnostics.

Note that if the target is not transformed, then all predicted and diagnostics values calculated are the same on
either original or transformed scale. However, if the target is transformed, then predicted values of the linear
predictors and the means (they are the same here) and their confidence intervals would be a different on original
or transformed scale. If calculated on transformed scale, those values should be added ¥. To avoid confusion, all
values should be calculated on original scale.



5.1 Predicted values
Due to the non-linear link functions, the predicted values will be computed for the linear predictor and the mean
of the response separately. Also, since estimated standard errors of predicted values of linear predictor are
calculated, the confidence intervals for the mean are obtained easily.
Notice that the predicted values can be computed for the case not used in the model-building phrase. That is the
response variable can be missing and the predicted values are still computed as long all the predictor variables
have non-missing values in the given model. An additional requirement is that given predictor variable values

could be properly parameterized by using only the existing model parameters. See Woods (2004), “Guidelines
for Scoring under Various Data and Model Conditions,” for details.

5.1.1 Predicted values of the linear predictors
A predicted value of the linear predictor n; corresponding to x; is given by
= x[ B+ o

For ordinal multinomial model, a predicted value of the linear predictor for category j n; ; corresponding to x; is
given by

=P, —x/B+o,j=1..,] -1

For nominal multinomial model, a predicted value of the linear predictor for category j n; ; corresponding to x;
is given by

A =xBj+0,j=1,..,]—1
5.1.2 Estimated standard errors of predicted values of linear predictor

The estimated standard error of #; is given by

A = T
Gy, = | % 2x;

where X could be X, or X...

For ordinal multinomial model, the estimated standard error of #; ; is given by

~ 1 ,
Gy, = \](1, —x])Z; (_xi),] =1,..,] -1,

where X; is a reduced parameter estimates covariance (1 + p)x (1 + p) matrix from X. Suppose X for ordinal
multinomial models has the following form:

[ 01,(-1) 017 7 0u,(-1+p) 1

| : X : : : |

5= [Ew.w Ewﬁ _| log-va - 0g-1y-1 og-1 T Ou-1j-1epd |

Zp Zmz “ 0/1 %.0-1) l [ %1 9,0~ 1+p) “
0g-1+4p)1 " 9(Qy-14pj-1) O0(-1+p)) " O(U-1+p.J- 1+p)



then Z; will have the following form as it takes the corresponding elements in the j-th row and column of X and
e
BB

[ 9, (01,0, Fj,g-14m)]
O-]’ i
2—:] :] l E
: BB
0(-1+p).j

For nominal multinomial model, the estimated standard error of #; ; is given by

Am,,- = G/xiTijzJ =1,..,]—-1,

0,

where X; is part of covariance matrix Z corresponding to the covariance matrix of B i

5.1.3 Predicted values of the means
A predicted value, or fitted value, of the mean y; corresponding to x; is given by
;=g (x{B +0;)

where g1 is the inverse of the link function. For binomial distribution with 0/1 binary response variable, g; is
the predicted probability of category 1.

For ordinal multinomial model, a predicted value, or fitted value, of the cumulative response probability for
category j, y;; corresponding to x; is given by

~

yi,j = g_l(d)\] - XTB + Oi),j = 1, ,] — 1 with ]7,:’] = 1.

For nominal multinomial model, the predicted value of the probability for category j corresponding x; is given
by

exp (ﬁi,j) Fe ] =1
g Ty e | T
mi=4 (Ui,j) = - 1 ’

1+ exp(ig)

5.1.4 Confidence intervals for the means
Approximate 100(1-a)% confidence intervals for the mean y; can be computed as follows
g_l(xfﬁ + 0; t Zl—a/zan)

For ordinal multinomial model, approximate 100(1-«)% confidence intervals for the cumulative response
probability 7; ; can be computed as follows

g_l (lﬁ] - x’l.TB + 0; i Zl—a/zaﬂi']‘)'j = 11“‘!] -1

If either endpoint in the argument is outside the valid range for the inverse link function, the corresponding
confidence interval endpoint is set to a system missing value.



For nominal multinomial model, approximate 100(1-a)% confidence intervals for the probability, 7;; can be
computed as follows

77'-l',j i Zl—a/zani_j'] = 1' o ']'

where 6ni,- can be computed by

i
0Ny 0fiy—

_[or oy |
Cov(®;) .

. |97t oft;
T, j -

0fiy’ 0fiy-

Oftij _ {ﬁi,j(l —fty;) J=k

Mg (—fijflik jEK
fia

Cov(®;) = Cov = (1.1 ®x])2(1)-,®x;)
ﬁi,]—l

and I;_; isa (J — 1)x(J — 1) identity matrix and X could be X, or X,..

5.1.5 Predicted category for binomial and multinomial distributions

For binomial distribution with 0/1 binary response variable, the predicted category c(x;) is

1 (or success) ify; = 0.5
0 (or failure)  otherwise’

c(x;) = {

For ordinal and nominal multinomial model, the predicted category c(x;) is the one with the highest predicted
probability, i.e.,

c(x;) = argmaxt; ;
J
If there is a tie in determining c(x;), then tie will be broken by choosing the category with

1) Higher N; = ¥, fiyi ).
2) Ifittiesin 1), choose the one with lower category number.

5.1.6 Classification table for binomial and multinomial distributions

Suppose that c(j, j") is the sum of the frequency for the observations whose actual target category is j (as row)
and predicted target category is j’ (as column), j,j" = 1,---,] (note that J = 2 for binomial), then
n
G = Y il = jcGe) = )
where I (%) is indicator ftljznlction.

Suppose that p; #is the (j, i) element of the classification table, which is row percentage, then

' =1, k)



The percentage of total correct predictions of the model is

, =< Y1 ¢Gif)
total Z§=12§rzlc(j'jl)

)xlOO%.

5.2 Model diagnostics

In addition to predicted values, we can calculate some values which would be good for model diagnostics for all
distributions except multinomial. They include leverage values, residuals and cook’s distance values.

5.2.1 Leverage values
The leverage value h; is defined as the i-th diagonal element of the hat matrix
H=w/"X(X"W,X)"X"W./*
where the i-th diagonal element for W, is

.
g V() ()
5.2.2 Residuals
We will offer 5 different residuals:
(a) Raw residual
The raw residual is defined as
i =y— i

where y; is the i-th response and f; is the corresponding predicted mean. Note for binomial response with a
binary format, y values are 0 for the reference category and 1 for the category we are modeling.

(b) Pearson residual

The Pearson residual is the square root of the i-th contribution to the Pearson chi-square, with the sign of the
raw residual.

w;

i = sign(y; — ﬁi)\/ﬂ =0 — A V)
L

(c) Deviance residual

The deviance residual is defined as the square root of the contribution of the i-th observation to the deviance,
with the sign of the raw residual.

P = sign(y; — lfli)\/z'-



where d; is the contribution of the i-th case to the deviance, see Table 9, and sign(y; — f;) is L if y; — fi; is
positive and —1 if y; — f; is negative.

(d) Standardized (and studentized) Pearson residual

The standardized (and studentized) Pearson residual is that the Pearson residual is multiplied by the factor

(p(1 —h))™V?

S _ vy L — ..P ;
i (yl ,Lll) ¢V(ﬁl)(1 — hl) i \/E

(e) Standardized (and studentized) deviance residual

The standardized (and studentized) deviance residual is that the deviance residual is multiplied by the factor

(p(1 —h))™V?

1 1
rSP = sign(y; — m)ﬁj% - riD\]%'

(f) Likelihood residual

The likelihood residuals are defined by

r = sign(y; — ﬁz)th (T2 + (1 — h)(rP)2.

5.2.3 Cook’s distance

Cook’s distance measures the change to the solution that results from omitting each observation. The formula is

1 h

C=—.— L (ySPy2
' DPx 1_hi(n )

Note on calculating scoring for binomial response with events/trials format

When r/m format for the binomial distribution is used, the response we used is the binomial proportion y = r/m,
but to many people, the response for binomial distribution should be the number of events (r). Thus for r/m
binomial distribution, the predicted value of the mean we are going to list is the expected number of trials, not the
expected proportion. Then some of the above formulae in Section 5 should be modified. We will list the modified
ones below and those unmodified ones are still the same as before.

Some notations for events/trials format we used before calculating scoring:

T # of events

m; # of trials

Vi proportion (y; = r;/m;)




Ui expected proportion obtained from parameter estimation

o Apredicted value of the mean: fi; = g~ (x7 B + o;)xm;.
o  Approximate 100(1-o)% confidence interval for the mean: g=*(x] B + o; * z;_4/28,) xm;.

e The raw residual: 7} = y;m; — f;.

e The Pearson residual: v = (y;m; — ﬁi)\/%, where U; = 4;(1 — (4;/m;)) (base on # of events)

(based on proportion)

i i(1—u
= O = 1) J5c5 where V() = %

e The deviance residual: r? = sign(y;m; — ﬁi)\/E, where d; is from Table 9 (based on # of events)
P = sign(y; — p)\Jd; (based on proportion)
Note:

o Unlike other distributions which y; and f; are interchangeable, we need to distinguish y; and ji; for binomial
distribution with events/trials format:

u;: the expected proportion used before calculating scoring;
1;: the expected number of events for calculating scoring (the predicted value of the mean).

However, the Pearson residual and deviance residual are the same no matter they are based on # of events or
proportion.



Appendix A - Ordinal Multinomial Distribution

For multinomial distribution, the GENLIN procedure supports only the ordinal multinomial model (o