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Preface 
IBM® SPSS® Modeler is the IBM Corp. enterprise-strength data mining workbench. SPSS 
Modeler helps organizations to improve customer and citizen relationships through an in-depth 
understanding of data. Organizations use the insight gained from SPSS Modeler to retain 
profitable customers, identify cross-selling opportunities, attract new customers, detect fraud, 
reduce risk, and improve government service delivery. 

SPSS Modeler’s visual interface invites users to apply their specific business expertise, which 
leads to more powerful predictive models and shortens time-to-solution. SPSS Modeler offers 
many modeling techniques, such as prediction, classification, segmentation, and association 
detection algorithms. Once models are created, IBM® SPSS® Modeler Solution Publisher 
enables their delivery enterprise-wide to decision makers or to a database. 

 

About IBM Business Analytics 

IBM Business Analytics software delivers complete, consistent and accurate information that 
decision-makers trust to improve business performance. A comprehensive portfolio of business 
intelligence, predictive analytics, financial performance and strategy management, and analytic 
applications provides clear, immediate and actionable insights into current performance and the 
ability to predict future outcomes. Combined with rich industry solutions, proven practices and 
professional services, organizations of every size can drive the highest productivity, confidently 
automate decisions and deliver better results. 

 
As part of this portfolio, IBM SPSS Predictive Analytics software helps organizations predict 
future events and proactively act upon that insight to drive better business outcomes. Commercial, 
government and academic customers worldwide rely on IBM SPSS technology as a competitive 
advantage in attracting, retaining and growing customers, while reducing fraud and mitigating 
risk. By incorporating IBM SPSS software into their daily operations, organizations become 
predictive enterprises – able to direct and automate decisions to meet business goals and achieve 
measurable competitive advantage. For further information or to reach a representative visit 
http://www.ibm.com/spss. 

 

Technical support 

Technical support is available to maintenance customers. Customers may contact Technical 
Support for assistance in using IBM Corp. products or for installation help for one of the 
supported hardware environments.  To reach Technical Support, see the IBM Corp.  web site 
at http://www.ibm.com/support. Be prepared to identify yourself, your organization, and your 
support agreement when requesting assistance. 
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Adjusted Propensities Algorithms 
Adjusted propensity scores are calculated as part of the process of building the model, and will 
not be available otherwise. Once the model is built, it is then scored using data from the test or 
validation partition, and a new model to deliver adjusted propensity scores is constructed by 
analyzing the original model’s performance on that partition. Depending on the type of model, 
one of two methods may be used to calculate the adjusted propensity scores. 

 
Model-Dependent  Method 

For rule set and tree models, the following method is used: 

1. Score the model on the test or validation partition. 

2. Tree models. Calculate the frequency of each category at each tree node using the test/validation 
partition, reflecting the distribution of the target value in the records scored to that node. 

Rule set models. Calculate the support and confidence of each rule using the test/validation 
partition, reflecting the model performance on the test/validation partition. 

 
This results in a new rule set or tree model which is stored with the original model. Each time 
the original model is applied to new data, the new model can subsequently be applied to the raw 
propensity scores to generate the adjusted scores. 

 
General Purpose Method 

For other models, the following method is used: 

1. Score the model on the test or validation partition to compute predicted values and predicted 
raw propensities. 

2. Remove all records which have a missing value for the predicted or observed value. 

3. Calculate the observed propensities as 1 for true observed values and 0 otherwise. 

4. Bin records according to predicted raw propensity using 100 equal-count tiles. 

5. Compute the mean predicted raw propensity and mean observed propensity for each bin. 

6. Build a neural network with mean observed propensity as the target and predicted raw propensity 
as a predictor.  For the neural network settings: 

Use a random seed, value 0 
Use the "quick" training method 
Stop after 250 cycles 
Do not use prevent overtaining option 
Use expert mode 
Quick Method Expert Options: 

Use one hidden layer with 3 neurons and persistence set to 200 
Learning Rates Expert Options: 

Alpha 0.9 
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Initial Eta 0.3 
High Eta 0.1 
Eta decay 50 
Low Eta 0.01 

 
The result is a neural network model that attempts to map raw propensity to a more accurate 
estimate which takes into account the original model’s performance on the testing or validation 
partition. To calculate adjusted propensities at score time, this neural network is applied to the raw 
propensities obtained from scoring the original model. 



 

Anomaly Detection Algorithm 

Overview 

The Anomaly Detection procedure searches for unusual cases based on deviations from the 
norms of their cluster groups. The procedure is designed to quickly detect unusual cases for data-
auditing purposes in the exploratory data analysis step, prior to any inferential data analysis. This 
algorithm is designed for generic anomaly detection; that is, the definition of an anomalous case 
is not specific to any particular application, such as detection of unusual payment patterns  in the 
healthcare industry or detection of money laundering in the finance industry, in which the 
definition of an anomaly can be well-defined. 

 

Primary  Calculations 
 
Notation 

 
The following notation is used throughout this chapter unless otherwise stated: 

ID The identity variable of each case in the data file. 
n The number of cases in the training data Xtrain . 
Xok, k = 1, …, K The set of input variables in the training data. 
Mk, k ∈ {1, …, K} If Xok is a continuous variable, Mk represents the grand mean, or average of 

the variable across the entire training data. 
SDk, k ∈ {1, …, K} If Xok is a continuous variable, SDk represents the grand standard deviation, 

or standard deviation of the variable across the entire training data. 
XK+1 A continuous variable created in the analysis. It represents the percentage of 

variables (k = 1, …, K) that have missing values in each case. 
Xk, k = 1, …, K The set of processed input variables after the missing value handling is 

applied. For more information, see the topic “Modeling Stage.” 
H, or the boundaries of H: 
[Hmin, Hmax] 

H is the pre-specified number of cluster groups to create. Alternatively, the 
bounds [Hmin, Hmax] can be used to specify the minimum and maximum 
numbers of cluster groups. 

nh, h = 1, …, H The number of cases in cluster h, h = 1, …, H, based on the training data. 
ph, h = 1, …, H The proportion of cases in cluster h, h = 1, …, H, based on the  training 

data.  For each h, ph = nh/n. 
Mhk, k = 1, …, K+1, h = 1, 
…, H 

 
 

SDhk, k ∈ {1, …, K+1}, h 
= 1, …, H  
{nhkj}, k ∈ {1, …, K}, h = 
1, …, H, j = 1, …, Jk 

If Xk is a continuous variable, Mhk represents the cluster mean, or average 
of the variable in cluster h based on the training data. If Xk is a categorical 
variable, it represents the cluster mode, or most popular categorical value of 
the variable in cluster h based on the training data. 
If Xk is a continuous variable, SDhk represents the cluster standard deviation, 
or standard deviation of the variable in cluster h based on the training data. 
The frequency set {nhkj} is defined only when Xk is a categorical variable. 
If Xk has Jk categories, then nhkj is the number of cases in cluster h that fall 
into category j. 

m An adjustment weight used to balance the influence between continuous and 
categorical variables. It is a positive value with a default of 6. 

VDIk, k = 1, …, K+1 The variable deviation index of a case is a measure of the  deviation of 
variable value Xk from its cluster norm. 
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GDI The group deviation index GDI of a case is the log-likelihood distance d(h, 

s), which is the sum of all of the variable deviation indices {VDIk, k = 1, 
…, K+1}. 

anomaly index The anomaly index of a case is the ratio of the GDI to that of the average 
GDI for the cluster group to which the case belongs. 

variable contribution 
measure 

The variable contribution measure of variable Xk for a case is the ratio of 
the VDIk to the case’s corresponding GDI. 

pctanomaly or nanomaly A pre-specified value pctanomaly determines the percentage of cases to be 
considered as anomalies. Alternatively, a pre-specified positive integer value 
nanomaly determines the number of cases to be considered as anomalies. 

cutpointanomaly A pre-specified cutpoint; cases with anomaly index values greater than 
cutpointanomaly are considered anomalous. 

kanomaly A pre-specified integer threshold 1≤kanomaly≤K+1 determines the number of 
variables considered as the reasons that the case is identified as an anomaly. 

 
 
Algorithm Steps 

This algorithm is divided into three stages: 
 

Modeling. Cases are placed into cluster groups based on their similarities on a set of input 
variables. The clustering model used to determine the cluster group of a case and the sufficient 
statistics used to calculate the norms of the cluster groups are stored. 

Scoring. The model is applied to each case to identify its cluster group and some indices are 
created for each case to measure the unusualness of the case with respect to its cluster group. 
All cases are sorted by the values of the anomaly indices. The top portion of the case list is 
identified as the set of anomalies. 

Reasoning. For each anomalous case, the variables are sorted by its corresponding variable 
deviation indices. The top variables, their values, and the corresponding norm values are presented 
as the reasons why a case is identified as an anomaly. 

 

Modeling Stage 
 

This stage performs the following tasks: 
 

1. Training Set Formation. Starting with the specified variables and cases, remove any case with 
extremely large values (greater than 1.0E+150) on any continuous variable. If missing value 
handling is not in effect, also remove cases with a missing value on any variable. Remove variables 
with all constant nonmissing values or all missing values. The remaining cases and variables are 
used to create the anomaly detection model. Statistics output to pivot table by the procedure are 
based on this training set, but variables saved to the dataset are computed for all cases. 

 
2. Missing Value Handling (Optional). For each input variable Xok, k = 1, …, K, if Xok is a continuous 

variable, use all valid values of that variable to compute the grand mean Mk and grand standard 
deviation SDk.  Replace the missing values of the variable by its grand mean.  If Xok is  a 
categorical variable, combine all missing values into a “missing value” category. This category is 
treated as a valid category. Denote the processed form of {Xok} by {Xk}. 
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3. Creation of Missing Value Pct Variable (Optional). A new continuous variable, XK+1, is created that 
represents the percentage of variables (both continuous and categorical) with missing values in 
each case. 

4. Cluster Group Identification.  The processed input variables {Xk, k = 1, …, K+1} are used to create  
a clustering model. The two-step clustering algorithm is used with noise handling turned on (see 
the TwoStep Cluster algorithm document for more information). 

5. Sufficient Statistics Storage. The cluster model and the sufficient statistics for the variables by 
cluster are stored for the Scoring stage: 
 The grand mean Mk and standard deviation SDk of each continuous variable are stored, 

k ∈ {1, …, K+1}. 
 For each cluster h = 1, …, H, store the size nh. If Xk is a continuous variable, store the cluster 

mean Mhk and standard deviation SDhk of the variable based on the cases in cluster h. If Xk is 
a categorical variable, store the frequency nhkj of each category j of the variable based on the 
cases in cluster h. Also store the modal category Mhk. These sufficient statistics will be used 
in calculating the log-likelihood distance d(h, s) between a cluster h and a given case s. 

 
Scoring Stage 

This stage performs the following tasks on scoring (testing or training) data: 

1. New Valid Category Screening. The scoring data should contain the input variables {Xok,k= 1, …, 
K} in the training data. Moreover, the format of the variables in the scoring data should be the 
same as those in the training data file during the Modeling Stage. 

Cases in the scoring data are screened out if they contain a categorical variable with a valid 
category that does not appear in the training data. For example, if Region is a categorical variable 
with categories IL, MA and CA in the training data, a case in the scoring data that has a valid 
category FL for Region will be excluded from the analysis. 

2. Missing Value Handling (Optional). For each input variable Xok, if Xok is a continuous variable, use 
all valid values of that variable to compute the grand mean Mk and grand standard deviation SDk. 
Replace the missing values of the variable by its grand mean. If Xok is a categorical variable, 
combine all missing values and put together a missing value category. This category is treated 
as a valid category. 

3. Creation of Missing Value Pct Variable (Optional depending on Modeling Stage). If XK+1 is created in  
the Modeling Stage, it is also computed for the scoring data. 

4. Assign Each Case to its Closest Non-Noise Cluster.  The clustering model from the Modeling Stage  
is applied to the processed variables of the scoring data file to create a cluster ID for each case. 
Cases belonging to the noise cluster are reassigned to their closest non-noise cluster. See the 
TwoStep Cluster algorithm document for more information on the noise cluster. 

5. Calculate Variable Deviation Indices. Given a case s, the closest cluster h is found. The variable 
deviation index VDIk of variable Xk is defined as the contribution dk(h, s) of the variable to its 
log-likelihood distance d(h, s). The corresponding norm value is Mhk, which is the cluster sample 
mean of Xk if Xk is continuous, or the cluster mode of Xk if Xk is categorical. 
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6. Calculate Group Deviation Index. The group deviation index GDI of a case is the log-likelihood 

distance d(h, s), which is the sum of all the variable deviation indices {VDIk, k = 1, …, K+1}. 

7. Calculate Anomaly Index and Variable Contribution Measures. Two additional indices are calculated 
that are easier to interpret than the group deviation index and the variable deviation index. 

 
The anomaly index of a case is an alternative to the GDI, which is computed as the ratio of the 
case’s GDI to the average GDI of the cluster to which the case belongs. Increasing values of this 
index correspond to greater deviations from the average and indicate better anomaly candidates. 

 
A variable’s variable contribution measure of a case is an alternative to the VDI, which is 
computed as the ratio of the variable’s VDI to the case’s GDI. This is the proportional contribution 
of the variable to the deviation of the case.  The larger the value of this measure, the greater 
the variable’s contribution to the deviation. 

 

Odd Situations 

 
Zero Divided by Zero 

 
The situation in which the GDI of a case is zero and the average GDI of the cluster that the case 
belongs to is also zero is possible if the cluster is a singleton or is made up of identical cases and 
the case in question is the same as the identical cases. Whether this case is considered as an 
anomaly or not depends on whether the number of identical cases that make up the cluster is large 
or small. For example, suppose that there is a total of 10 cases in the training and two clusters are 
resulted in which one cluster is a singleton; that is, made up of one case, and the other has nine 
cases. In this situation, the case in the singleton cluster should be considered as an anomaly as it 
does not belong to the larger cluster. One way to calculate the anomaly index in this situation is to 
set it as the ratio of average cluster size to the size of the cluster h, which is: 

 
 

 

Following the 10 cases example, the anomaly index for the case belonging to the singleton cluster 
would be (10/2)/1 = 5, which should be large enough for the algorithm to catch it as an anomaly. 
In this situation, the variable contribution measure is set to 1/(K+1), where (K+1) is the number of 
processed variables in the analysis. 

 

Nonzero Divided by Zero 

 
The situation in which the GDI of a case is nonzero but the average GDI of the cluster that the case 
belongs to is 0 is possible if the corresponding cluster is a singleton or is made up of identical cases 
and the case in question is not the same as the identical cases. Suppose that case i belongs to cluster 
h, which has a zero average GDI; that is, average(GDI)h = 0, but the GDI between case i and 
cluster h is nonzero; that is, GDI(i, h) ≠ 0. One choice for the anomaly index calculation of case i 
could be to set the denominator as the weighted average GDI over all other clusters if this value is 
not 0; else set the calculation as the ratio of average cluster size to the size of cluster h. That is, 
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This situation triggers a warning that the case is assigned to a cluster that is made up of identical 
cases. 

 

Reasoning Stage 
 

Every case now has a group deviation index and anomaly index and a set of variable deviation 
indices and variable contribution measures. The purpose of this stage is to rank the likely 
anomalous cases and provide the reasons to suspect them of being anomalous. 

 
1. Identify the Most Anomalous Cases. Sort the cases in descending order on the values of the anomaly 

index. The top pctanomaly % (or alternatively, the top nanomaly) gives the anomaly list, subject 
to the restriction that cases with an anomaly index less than or equal to cutpointanomaly are not 
considered anomalous. 

 
2. Provide Reasons for Considering a Case Anomalous. For each anomalous case, sort the variables by 

their corresponding VDIk values in descending order. The top kanomaly variable names, its value 
(of the corresponding original variable Xok), and the norm values are displayed as reasoning. 

 
Blank Handling 

Blanks and missing values are handled in model building as described in “Algorithm Steps”, 
based on user settings. 

 
Generated Model/Scoring 

The Anomaly Detection generated model can be used to detect anomalous records in new data 
based on patterns found in the original training data. For each record scored, an anomaly score is 
generated and a flag indicating anomaly status and/or the anomaly score are appended as new fields 

 

Predicted Values 

For each record, the anomaly score is calculated as described in “Scoring Stage”, based on the 
cluster model created when the model was built. If anomaly flags were requested, they are 
determined as described in “Reasoning Stage.” 

 

Blank Handling 

In the generated model, blanks are handled according to the setting used in building the model. 
For more information, see the topic “Scoring Stage.” 



 

 



 

Apriori Algorithms 

Overview 

Apriori is an algorithm for extracting association rules from data. It constrains the search space 
for rules by discovering frequent itemsets and only examining rules that are made up of frequent 
itemsets (Agrawal and Srikant, 1994). 

Apriori deals with items and itemsets that make up transactions. Items are flag-type conditions 
that indicate the presence or absence of a particular thing in a specific transaction. An itemset is a 
group of items which may or may not tend to co-occur within transactions. 

IBM® SPSS® Modeler uses Christian Borgelt’s Apriori implementation. Full details on this 
implementation can be obtained at 

http://fuzzy.cs.uni-magdeburg.de/~borgelt/doc/apriori/apriori.html. 
 
Deriving Rules 

Apriori proceeds in two stages. First it identifies frequent itemsets in the data, and then it 
generates rules from the table of frequent itemsets. 

 

Frequent Itemsets 

The first step in Apriori is to identify frequent itemsets. A frequent itemset is defined as an 
itemset with support greater than or equal to the user-specified minimum support threshold smin. 
The support of an itemset is the number of records in which the itemset is found divided  by 
the total number of records. 

The algorithm begins by scanning the data and identifying the single-item itemsets (i.e. 
individual items, or itemsets of length 1) that satisfy this criterion. Any single items that do 
not satisfy the criterion are not be considered further, because adding an infrequent item to an 
itemset will always result in an infrequent itemset. 

Apriori then generates larger itemsets recursively using the following steps: 
 

E   Generate a candidate set of itemsets of length k (containing k items) by combining existing 
itemsets of length      : 

For every possible pair of frequent itemsets p and q with length           1)  compare  the  
first             items (in lexicographic order); if they are the same, and the last item in q   is 
(lexicographically) greater than the last item in p, add the last item in q to the end of p to create a 
new candidate itemset with length k. 

 
E   Prune the candidate set by checking every       length subset of each candidate itemset; all 

subsets must be frequent itemsets, or the candidate itemset is infrequent and is removed from 
further consideration. 

 
E   Calculate the support of each itemset in the candidate set, as 

 

  

http://fuzzy.cs.uni-magdeburg.de/%7Eborgelt/doc/apriori/apriori.html
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where  is the number of records that match the itemset and N is the number of records in the 
training data. (Note that this definition of itemset support is different from the definition used for 
rule support.) 

E   Itemsets with support ≥ smin are added to the list of frequent itemsets. 

E   If any frequent itemsets of length k were found, and k is less than the user-specified maximum 
rule size kmax, repeat the process to find frequent itemsets of length (k+1). 

 
Generating Rules 

When all frequent itemsets have been identified, the algorithm extracts rules from the frequent 
itemsets. For each frequent itemset L with length k > 1, the following procedure is applied: 

E   Calculate all subsets A of length       of the itemset such that all the fields in A are input fields 
and all the other fields in the itemset (those that are not in A) are output fields. Call the latter 
subset . (In the first iteration this is just one field, but in later iterations it can be multiple fields.) 

E   For each subset A, calculate the evaluation measure (rule confidence by default) for the rule 
   as described below. 

E   If the evaluation measure is greater than the user-specified threshold, add the rule to the rule table, 
and, if the length k’ of A is greater than 1, test all possible subsets of A with length        

 
Evaluation Measures 

Apriori offers several evaluation measures for determining which rules to retain. The different 
measures will emphasize different aspects of the rules, as detailed in the IBM® SPSS® Modeler 
User’s Guide. Values are calculated based on the prior confidence and the posterior confidence, 
defined as 

 

 
and 

 
 
 

where c is the support of the consequent, a is the support of the antecedent, r is the support of 
the conjunction of the antecedent and the consequent, and N is the number of records in the 
training data. 

 
Rule Confidence. The default evaluation measure for rules is simply the posterior confidence 
of the rule, 

 

 
Confidence Difference (Absolute Confidence Difference to Prior). This measure is based on the 
simple difference of the posterior and prior confidence values, 
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Confidence Ratio (Difference of Confidence Quotient to 1). This measure is based on the ratio of 
posterior confidence to prior confidence, 

 

 

Information Difference (Information Difference to Prior). This measure is based on the information 
gain criterion, similar to that used in building C5.0 trees. The calculation is 

 

where r is the rule support, a is the antecedent support, c is the consequent support, is 
the complement of antecedent support, and is the complement of consequent support. 

 
Normalized Chi-square (Normalized Chi-squared Measure). This measure is based on the chi-squared 
statistical test for independence of categorical data, and is calculated as 
 

 
  

 

Blank Handling 

Blanks are ignored by the Apriori algorithm. The algorithm will handle records containing blanks 
for input fields, but such a record will not be considered to match any rule containing one or  
more of the fields for which it has blank values. 

 
Effect of Options 

Minimum rule support/confidence.  These values place constraints on which rules may be entered 
into the table. Only rules whose support and confidence values exceed the specified values can be 
entered into the rule table. 

 
Maximum number of antecedents.  This determines the maximum number of antecedents that will  
be examined for any rule. When the number of conditions in the antecedent part of the rule equals 
the specified value, the rule will not be specialized further. 

 
Only true values for flags. If this option is selected, rules with values of false will not be considered 
for either input or output fields. 

 
Optimize Speed/Memory. This option controls the trade-off between speed of processing and 
memory usage. Selecting Speed will cause Apriori to use condition values directly in the frequent 
itemset table, and to load the transactions into memory, if possible.  Selecting Memory  will 
cause Apriori to use pointers into a value table in the frequent itemset table.  Using pointers in 
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the frequent itemset table reduces the amount of memory required by the algorithm for large 
problems, but it also involves some additional work to reference and dereference the pointers 
during model building. The Memory option also causes Apriori to process transactions from 
the file rather than loading them into memory. 

 
Generated Model/Scoring 

The Apriori algorithm generates an unrefined rule node. To create a model for scoring new 
data, the unrefined rule node must be refined to generate a ruleset node. Details of scoring for 
generated ruleset nodes are given below. 

 
Predicted Values 

Predicted values are based on the rules in the ruleset. When a new record is scored, it is compared 
to the rules in the ruleset. How the prediction is generated depends on the user’s setting for 
Ruleset Evaluation in the stream options. 
 Voting. This method attempts to combine the predictions of all of the rules that apply to the 

record. For each record, all rules are examined and each rule that applies to the record is used 
to generate a prediction. The sum of confidence figures for each predicted value is computed, 
and the value with the greatest confidence sum is chosen as the final prediction. 

 First hit. This method simply tests the rules in order, and the first rule that applies to the record 
is the one used to generate the prediction. 

 
There is a default rule, which specifies an output value to be used as the prediction for records 
that don’t trigger any other rules from the ruleset. For rulesets derived from decision trees, the 
value for the default rule is the modal (most prevalent) output value in the overall training data. 
For association rulesets, the default value is specified by the user when the ruleset is generated 
from the unrefined rule node. 

 
Confidence 

Confidence calculations also depend on the user’s Ruleset Evaluation stream options setting. 
 Voting. The confidence for the final prediction is the sum of the confidence values for rules 

triggered by the current record that give the winning prediction divided by the number of rules 
that fired for that record. 

 First hit. The confidence is the confidence value for the first rule in the ruleset triggered by 
the current record. 

 
If the default rule is the only rule that fires for the record, it’s confidence is set to 0.5. 

 
Blank Handling 

Blanks are ignored by the algorithm. The algorithm will handle records containing blanks for 
input fields, but such a record will not be considered to match any rule containing one or more of 
the fields for which it has blank values. 



 

Automated Data Preparation 
Algorithms 

The goal of automated data preparation is to prepare a dataset so as to generally improve the 
training speed, predictive power, and robustness of models fit to the prepared data. 

 
These algorithms do not assume which models will be trained post-data preparation. At the end 
of automated data preparation, we output the predictive power of each recommended predictor, 
which is computed from a linear regression or naïve Bayes model, depending upon whether the 
target is continuous or categorical. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

X A continuous or categorical variable 
Value of the variable X for case i. 

                            Frequency weight for case i. Non-integer positive values are rounded to the nearest 
integer.  If there is no frequency weight variable, then all         . If the frequency 
weight of a case is zero, negative or missing, then this case will be ignored. 
Analysis weight for case i. If there is no analysis weight variable, then all . If 
the analysis weight of a case is zero, negative or missing, then this case will be ignored. 

n Number of cases in the dataset 
is not missing , where expression  is the indicator function taking 

value 1 when the expression is true, 0 otherwise. 
is not missing 

and are not missing 

 
and are not missing 

 
The mean of variable X, is not missing 

 

 

and are not missing 
 

 
 

A note on missing values 
 

Listwise deletion is used in the following sections: 
 “Univariate Statistics Collection ”  
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 “Basic Variable Screening ”  
 “Measurement Level Recasting ”  
 “Missing Value Handling ”  
 “Outlier Identification and Handling ”  
 “Continuous Predictor Transformations ”  
 “Target Handling ”  
 “Reordering Categories ”  
 “Unsupervised Merge ”  

 
Pairwise deletion is used in the following sections: 
 “Bivariate Statistics Collection ”  
 “Supervised Merge ”  
 “Supervised Binning ”  
 “Feature Selection and Construction ”  
 “Predictive Power ”  

 
A note on frequency weight and analysis weight 

 
The frequency weight variable is treated as a case replication weight. For example if a case has 
a frequency weight of 2, then this case will count as 2 cases. 

 
The analysis weight would adjust the variance of cases. For example if a case of a variable X 
has an analysis weight , then we assume that . 

 
Frequency weights and analysis weights are used in automated preparation of other variables, but 
are themselves left unchanged in the dataset. 

 
Date/Time Handling 

Date Handling 
 

If there is a date variable, we extract the date elements (year, month and day) as ordinal variables. 
If requested, we also calculate the number of elapsed days/months/years since the user-specified 
reference date (default is the current date). Unless specified by the user, the “best” unit of duration 
is chosen as follows: 

1. If the minimum number of elapsed days is less than 31, then we use days as the best unit. 

2. If the minimum number of elapsed days is less than 366 but larger than or equal to 31, we use 
months as the best unit. The number of months between two dates is calculated based on average 
number of days in a month (30.4375): months = days / 30.4375. 

3. If the minimum number of elapsed days is larger than or equal to 366, we use years as the best 
unit. The number of years between two dates is calculated based on average number of days in a 
year (365.25):  years = days / 365.25. 
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Once the date elements are extracted and the duration is obtained, then the original date variable 
will be excluded from the rest of the analysis. 

 
Time Handling 

 
If there is a time variable, we extract the time elements (second, minute and hour) as ordinal 
variables. If requested, we also calculate the number of elapsed seconds/minutes/hours since 
the user-specified reference time (default is the current time). Unless specified by the user, the 
“best” unit of duration is chosen as follows: 

1. If the minimum number of elapsed seconds is less than 60, then we use seconds as the best unit. 

2. If the minimum number of elapsed seconds is larger than or equal to 60 but less than 3600, we 
use minutes as the best unit. 

3. If the minimum number of elapsed seconds is larger than or equal to 3600, we use hours as the 
best unit. 

 
Once the elements of time are extracted and time duration is obtained, then original time predictor 
will be excluded. 

 
Univariate Statistics Collection 

Continuous Variables 
 

For each continuous variable, we calculate the following statistics: 
 Number of missing values:                                         is missing 
 Number of valid values:    
 Minimum value: 
 Maximum value: 
 Mean, standard deviation, skewness.  (see below) 
 The number of distinct values I. 
 The number of cases for each distinct value : 
 Median: If the distinct values of X are sorted in ascending order, , then the 

median can be computed by              , where  . 

Note: If the number of distinct values is larger than a threshold (default is 5), we stop updating 
the number of distinct values and the number of cases for each distinct value. Also we do not 
calculate the median. 

 
Categorical Numeric Variables 

 
For each categorical numeric variable, we calculate the following statistics: 
 Number of missing values: is missing 



 
 
 

 

Automated Data Preparation Algorithms 

 
 Number of valid values:    
 Minimum value: (only for ordinal variables) 
 Maximum value: (only for ordinal variables) 
 The number of categories. 
 The counts of each category. 
 Mean, Standard deviation, Skewness (only for ordinal variables). (see below) 
 Mode (only for nominal variables). If several values share the greatest frequency of 

occurrence, then the mode with the smallest value is used. 
 Median (only for ordinal variables): If the distinct values of X are sorted in ascending order, 

, then the median can be computed by              , 
where . 

 
Notes: 

1. If an ordinal predictor has more categories than a specified threshold (default 10), we stop 
updating the number of categories and the number of cases for each category. Also we do not 
calculate mode and median. 

2. If a nominal predictor has more categories than a specified threshold (default 100), we stop 
collecting statistics and just store the information that the variable had more than threshold 
categories. 

 
Categorical String Variables 

 
For each string variable, we calculate the following statistics: 
 Number of missing values:                                         is missing 
 Number of valid values:    
 The number of categories. 
 Counts of each category. 
 Mode: If several values share the greatest frequency of occurrence, then the mode with the 

smallest value is used. 
 

Note: If a string predictor has more categories than a specified threshold (default 100), we stop 
collecting statistics and just store the information that the predictor had more than threshold 
categories. 

 
Mean, Standard Deviation, Skewness 

 
We calculate mean, standard deviation and skewness by updating moments. 

 
1. Start with . 

 

2. For j=1,..,n compute: 
is not missing 
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                           is not missing 

 

   
 

 

 
   

 

 

        

3. After the last case has been processed, compute: 
Mean: 

Standard deviation: 
 

Skewness: 
 

If          or       , then skewness is not calculated. 
 
Basic Variable Screening 

1. If the percent of missing values is greater than a threshold (default is 50%), then exclude the 
variable from subsequent analysis. 

2. For continuous variables, if the maximum value is equal to minimum value, then exclude the 
variable from subsequent analysis. 

3. For categorical variables, if the mode contains more cases than a specified percentage (default 
is 95%), then exclude the variable from subsequent analysis. 

4. If a string variable has more categories than a specified threshold (default is 100), then exclude the 
variable from subsequent analysis. 

 
Checkpoint 1: Exit? 

This checkpoint determines whether the algorithm should be terminated. If, after the screening 
step: 

1. The target (if specified) has been removed from subsequent analysis, or 
 

2. All predictors have been removed from subsequent analysis, 

then terminate the algorithm and generate an error. 

Measurement Level Recasting 

For each continuous variable, if the number of distinct values is less than a threshold (default 
is 5), then it is recast as an ordinal variable. 



 
 

. Check if 
an 
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For each numeric ordinal variable, if the number of categories is greater than a threshold (default 
is 10), then it is recast as a continuous variable. 

 
Note: The continuous-to-ordinal threshold must be less than the ordinal-to-continuous threshold. 

 
Outlier Identification and Handling 

In this section, we identify outliers in continuous variables and then set the outlying values to a 
cutoff or to a missing value. The identification is based on the robust mean and robust standard 
deviation which are estimated by supposing that the percentage of outliers is no more than 5%. 

 
Identification 
 

1.  
 
 
 

2. Calculate univariate statistics in each interval: 

, 
 

,   

3. Let , , and . 

4. Between two tail intervals  and , find one interval with the least number of cases. 

5. If , then 
is 0.05). If it does, then 

 
is less than a threshold (default 

d , go to step 4; otherwise, go to step 6. 

Else . Check if  is less than a threshold, .  If it is, then 
and , go to step 4; otherwise, go to step 6. 

6. Compute the robust mean and robust standard deviation   within the range 
.  See below for details. 

7. If satisfies the conditions: 

       or       

where cutoff is positive number (default is 3), then is detected as an outlier. 
 

Handling 
 

Outliers will be handled using one of following methods: 
 Trim outliers to cutoff values. If  then replace by 

, and if  then replace 
by . 

 Set outliers to missing values. 
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Update Univariate Statistics 
 

After outlier handling, we perform a data pass to calculate univariate statistics for each continuous 
variable, including the number of missing values, minimum, maximum, mean, standard deviation, 
skewness, and number of outliers. 

 
Robust Mean and Standard Deviation 

 
Robust mean and standard deviation within the range                                              are calculated 
as follows: 

 

 

and 
 

 

where                    and    
 
Missing Value Handling 

Continuous variables. Missing values are replaced by the mean, and the following statistics are 
updated: 

 Standard deviation: , where                     . 
 

 Skewness: , where and 

 The number of missing values:   
 The number of valid values:    

 
Ordinal variables. Missing values are replaced by the median, and the following statistics are 
updated: 
 The number of cases in the median category: , where is the 

original number of cases in the median category. 
 The number of missing values:   
 The number of valid values:    

 
Nominal variables. Missing values are replaced by the mode, and the following statistics are 
updated: 
 The number of cases in the modal category: , where is the original 

number of cases in the modal category. 
 The number of missing values:   
 The number of valid values:    
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Continuous Predictor Transformations 
We transform a continuous predictor so that it has the  user-specified mean (default 
0) and standard deviation   (default 1) using the z-score transformation, or minimum 

 (default 0) and maximum (default 100) value using the min-max transformation. 

 
Z- score Transformation 

Suppose a continuous variable has mean and standard deviation sd. The z-score transformation is 
 
 
 
 

where is the transformed value of continuous variable X for case i. 
 

Since we do not take into account the analysis weight in the rescaling formula, the rescaled values 
follow a normal distribution . 

 
Update univariate statistics 

 
After a z-score transformation, the following univariate statistics are updated: 
 Number of missing values:            
 Number of valid values:           

 Minimum value:  

 Maximum value:  

 Mean:  
 Standard deviation:  

 
 Skewness: 

 

Min-Max Transformation 

Suppose a continuous variable has a minimum value and a minimum value . The 
min-max transformation is 

 
 
 
 

where is the transformed value of continuous variable X for case i. 
 

Update univariate statistics 
 

After a min-max transformation, the following univariate statistics are updated: 
 The number of missing values: 
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 The number of valid values:          

 Minimum value:  

 Maximum value:  

 Mean:  

 Standard deviation: 
 

 Skwness: 
 

Target Handling 

Nominal Target 
 

For a nominal target, we rearrange categories from lowest to highest counts. If there is a tie on 
counts, then ties will be broken by ascending sort or lexical order of the data values. 

 
Continuous Target 

 
The transformation proposed by Box and Cox (1964) transforms a continuous variable into one 
that is more normally distributed. We apply the Box-Cox transformation followed by the z score 
transformation so that the rescaled target has the user-specified mean and standard deviation. 

 
Box-Cox transformation. This transforms a non-normal variable Y to a more normally distributed 
variable: 

 

 

where  are observations of variable Y, and c is a constant such that all values 
are positive.  Here, we choose . 

 
The parameter λ is selected to maximize the log-likelihood function: 

 

 
 

where and . 
 

We perform a grid search over a user-specified finite set [a,b] with increment s. By default a=−3, 
b=3, and s=0.5. 

 
The algorithm can be described as follows: 

1. Compute where j is an integer such that . 
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2. For each , compute the following statistics: 

Mean: 

Standard deviation: 
 

Skewness: 
 

Sum of logarithm transformation: 
 

3. For each , compute the log-likelihood function .  Find the value of j with the largest 
log-likelihood function, breaking ties by selecting the smallest value of . Also find the 
corresponding statistics , and  . 

 
4. Transform target to reflect user’s mean  (default is 0) and standard deviation  (default 

is 1): 
 
 
 
 
 

where and . 
 

Update univariate statistics. After Box-Cox and Z-score transformations, the following univariate 
statistics are updated: 
 Minimum value: 

 Maximum value: 
 Mean:  
 Standard deviation:   
 Skewness: 

 
Bivariate Statistics Collection 

For each target/predictor pair, the following statistics are collected according to the measurement 
levels of the target and predictor. 

 
Continuous target or no target and all continuous predictors 

 
If there is a continuous target and some continuous predictors, then we need to calculate the 
covariance and correlations between all pairs of continuous variables. If there is no continuous 
target, then we only calculate the covariance and correlations between all pairs of continuous 
predictors. We suppose there are there are m continuous variables, and denote the covariance 
matrix as , with element , and the correlation matrix as , with element . 

 
We define the covariance between two continuous variables X and Y as 

   



 

Automated Data Preparation Algorithms 

 
 

 
 
 
 

 
 

 
   

 
 

where and are not missing   and 
                                    and are not missing . 

 
The covariance can be computed by a provisional means algorithm: 

1. Start with                                                   . 

2. For j=1,..,n compute: 

                          and are not missing      

and are not missing 

 

 

 

 

After the last case has been processed, we obtain: 
 

3. Compute bivariate statistics between X and Y: 

Number of valid cases:    

Covariance: 

Correlation:  

Note: If there are no valid cases when pairwise deletion is used, then we let and . 
 

Categorical target and all continuous predictors 
 

For a categorical target Y with values and a continuous predictor X with values 
, the bivariate statistics are: 

Mean of X for each Y=i, i=1,...,J: 
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Sum of squared errors of X for each Y=i, i=1,...,J: 

 
 

 

 

 

 
 

 

 
 

Sum of frequency weight for each Y=i, i=1,...,J: 
 

                                               is not missing 
 
 

Number of invalid cases 
 
 

 
 

 
 

Sum of weights (frequency weight times analysis weight) for each Y=i, i=1,...,J: 
 

                                                    is not missing 
 
 
 

Continuous target and all categorical predictors 
 

For a continuous target Y and a categorical predictor X with values i=1,...,J, the bivariate statistics 
include: 

 
Mean of Y conditional upon X: 

 

 
Sum of squared errors of Y: 

 
 

 

 

  
 

Mean of Y for each , i=1,...,J: 
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Sum of squared errors of Y for each , i=1,...,J: 
 
 

 

 

 
 

 

 
 

Sum of frequency weights for , i=1,...,J: 
 

                                               is not missing 
 
 

Sum of weights (frequency weight times analysis weight) for , i=1,...,J: 
 

                                                    is not missing 
 
 
 

Categorical target and all categorical predictors 
 

For a categorical target Y with values j=1,...,J and a categorical predictor X with values i=1,...,I, 
then bivariate statistics are: 

 
Sum of frequency weights for each combination of and : 

 
 

 

 

 

   
 

 

 
 

Sum of weights (frequency weight times analysis weight) for each combination of and 
: 

 
 

 

 

 

   
 

 

 
 

Categorical Variable Handling 

In this step, we use univariate or bivariate statistics to handle categorical predictors. 
 

Reordering Categories 

For a nominal predictor, we rearrange categories from lowest to highest counts. If there is a tie on 
counts, then ties will be broken by ascending sort or lexical order of the data values. The new field 
values start with 0 as the least frequent category. Note that the new field will be numeric even if 
the original field is a string. For example, if a nominal field’s data values are “A”, “A”, “A”, “B”, 
“C”, “C”, then automated data preparation would recode “B” into 0, “C” into 1, and “A” into 2. 
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Identify Highly Associated Categorical Features 

If there is a target in the data set, we select a ordinal/nominal predictor if its p-value is not larger 
than an alpha-level (default is 0.05). See “P-value Calculations ” for details of 
computing these p-values. 

 
Since we use pairwise deletion to handle missing values when we collect bivariate statistics, 
we may have some categories with zero cases; that is,          for a category i of a categorical 
predictor. When we calculate p-values, these categories will be excluded. 

 
If there is only one category or no category after excluding categories with zero cases, we set the 
p-value to be 1 and this predictor will not be selected. 

 

Supervised Merge 

We merge categories of an ordinal/nominal predictor using a supervised method that is similar to a 
Chaid Tree with one level of depth. 

 
1. Exclude all categories with zero case count. 

 
2. If X has 0 categories, merge all excluded categories into one category, then stop. 

 
3. If X has 1 category, go to step 7. 

 
4. Else, find the allowable pair of categories of X that is most similar. This is the pair whose test 

statistic gives the largest p-value with respect to the target. An allowable pair of categories for an 
ordinal predictor is two adjacent categories; for a nominal predictor it is any two categories. Note 
that for an ordinal predictor, if categories between the ith category and jth categories are excluded 
because of zero cases, then the ith category and jth categories are two adjacent categories. See 
“P-value Calculations ” for details of computing these p-values. 

 
5. For the pair having the largest p-value, check if its p-value is larger than a specified alpha-level 

(default is 0.05).  If it does, this pair is merged into a single compound category and 
at the same time we calculate the bivariate statistics of this new category. Then a new set of 
categories of X is formed.  If it does not, then go to step 6. 

 
6. Go to step 3. 

 
7. For an ordinal predictor, find the maximum value in each new category. Sort these maximum 

values in ascending order.  Suppose we have r new categories, and the maximum values are: 
                      , then we get the merge rule as: the first new category will contain all original 

categories such that , the second new category will contain all original categories such that 
              ,…, and the last new category will contain all original categories such that . 

For a nominal predictor, all categories excluded at step 1 will be merged into the new category 
with the lowest count. If there are ties on categories with the lowest counts, then ties are broken 
by selecting the category with the smallest value by ascending sort or lexical order of the original 
category values which formed the new categories with the lowest counts. 
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Bivariate statistics calculation of new category 
 

When two categories are merged into a new category, we need to calculate the bivariate statistics 
of this new category. 

 
Scale target. If the categories i and   can be merged based on p-value, then the bivariate statistics 
should be calculated as: 

 

 

 
 

 

 
Categorical target.  If the categories i and can be merged based on p-value, then the bivariate 
statistics should be calculated as: 

 

 

 

Update univariate and bivariate statistics 
 

At the end of the supervised merge step, we calculate the bivariate statistics for each new category. 
For univariate statistics, the counts for each new category will be sum of the counts of each 
original categories which formed the new category. Then we update other statistics according to 
the formulas in the “Univariate Statistics Collection” section, though note that the statistics only 
need to be updated based on the new categories and the numbers of cases in these categories. 

 
P-value Calculations 

Each p-value calculation is based on the appropriate statistical test of association between the 
predictor and target. 

 
Scale target 

 
We calculate an F statistic: 
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where                         . 
 

Based on F statistics, the p-value can be derived as 
 

 
is a random variable following a F distribution with and 

degrees of freedom. 

At the merge step we calculate the F statistic and p-value between two categories i and of X as 
 

 

 
where is the mean of Y for a new category merged by i and   : 

 

 

and is a random variable following a F distribution with  1 and 
                   degrees of freedom. 

 
Nominal target 

 
The null hypothesis of independence of X and Y is tested. First a contingency (or count) table is 
formed using classes of Y as columns and categories of the predictor X as rows. Then the expected 
cell frequencies under the null hypothesis are estimated. The observed cell frequencies and the 
expected cell frequencies are used to calculate the Pearson chi-squared statistic and the p-value: 

 

 
 

where                                                 is the observed cell frequency and  is  the estimated  
expected cell frequency for cell following the independence model. If        , 
then .  How to estimate   is described below. 

 
The corresponding p-value is given by  , where  follows a chi-squared 
distribution with            degrees of freedom. 

 
When we investigate whether two categories i and of X can be merged, the Pearson chi-squared 
statistic is revised as 

where 
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and the p-value is given by        . 

 
Ordinal target 

 
Suppose there are I categories of X, and J ordinal categories of Y. Then the null hypothesis of 
the independence of X and Y is tested against the row effects model (with the rows being  the 
categories of X and columns the classes of Y) proposed by Goodman (1979). Two sets of expected 
cell frequencies,   (under the hypothesis of independence) and   (under the hypothesis that 
the data follow a row effects model), are both estimated. The likelihood ratio statistic is 

 
 

  

 
 

where 
 

 
The p-value is given by        . 

 
Estimated expected cell frequencies (independence assumption) 

 
If analysis weights are specified, the expected cell frequency under the null hypothesis of 
independence is of the form 

 

 
where and are parameters to be estimated, and  if , otherwise . 

Parameter estimates , , and hence , are obtained from the following iterative procedure. 

1.   

2.   
 

3.   

4. 
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5.   If (default is 0.001) or the number of iterations is larger  than a 

threshold (default is 100), stop and output and   as the final estimates 
. Otherwise, and go to step 2. 

 
Estimated expected cell frequencies (row effects model) 

 
In the row effects model, scores for classes of Y are needed.  By default,   (the order of a  
class of Y) is used as the class score. These orders will be standardized via the following linear 
transformation such that the largest score is 100 and the lowest score is 0. 

 

 
Where  and  are the smallest and largest order, respectively. 

The expected cell frequency under the row effects model is given by 
 

 
where , in which             , and , , and are unknown 
parameters to be estimated. 

 
Parameter estimates and hence  are obtained from the following iterative procedure. 

1. , , 

2.    
 

3.   

4. 
,
 

 

5. 
otherwise 

6. 
 

7.   If (default is 0.001) or the number of iterations is larger than a 

threshold (default is 100), stop and output and   as the final estimates 
. Otherwise, and go to step 2. 

 
Unsupervised Merge 

If there is no target, we merge categories based on counts. Suppose that X has I categories which 
are sorted in ascending order. For an ordinal predictor, we sort it according to its values, while 
for nominal predictor we rearrange categories from lowest to highest count, with ties broken 
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by ascending sort or lexical order of the data values. Let be the number of cases for the ith 
category, and   be the total number of cases for X. Then we use the equal frequency method 
to merge sparse categories. 

 
1. Start with                  and g=1. 

 
2. If         , go to step 5. 

 
3. If                        , then ; otherwise the original categories  will 

be merged into the new category g and let                 ,           and , then go to step 2. 
 

4. If        , then merge categories using one of the following rules: 
 

i) If , then categories will be merged into category g and I will be left 
unmerged. 

 
ii) If g=2, then will be merged into category g=2. 

 
iii) If g>2, then will be merged into category . 

 
If        , then go to step 3. 

 
5. Output the merge rule and merged predictor. 

 
After merging, one of the following rules holds: 
 Neither the original category nor any category created during merging has fewer than  

      cases, where b is a user-specified parameter satisfying (default is 
10) and [x] denotes the nearest integer of x. 

 The merged predictor has only two categories. 
 

Update univariate statistics.  When original categories are merged into one new 
category, then the number of cases in this new category will be  .  At the end of the 
merge step, we get new categories and the number of cases in each category. Then we update 
other statistics according to the formulas in the “Univariate Statistics Collection” section, 
though note that the statistics only need to be updated based on the new categories and the 
numbers 
of cases in these categories. 

 

Continuous Predictor Handling 

Continuous predictor handling includes supervised binning when the target is categorical, 
predictor selection when the target is continuous and predictor construction when the target is 
continuous or there is no target in the dataset. 

 
After handling continuous predictors, we collect univariate statistics for derived or constructed 
predictors according to the formulas in the “Univariate Statistics Collection” section. Any 
derived predictors that are constant, or have all missing values, are excluded from further 
analysis. 
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Supervised Binning 

If there is a categorical target, then we will transform each continuous predictor to an ordinal 
predictor using supervised binning. Suppose that we have already collected the bivariate statistics 
between the categorical target and a continuous predictor. Using the notations introduced in 
“Bivariate Statistics Collection ”, the homogeneous subset will be identified by the Scheffe 
method as follows: 

 

 
 
The supervised algorithm follows: 

1. Sort the means in ascending order, denote as . 

2. Start with i=1 and q=J. 

3.  
 
 
 
 
 

4. If , go to step 3. 

5. Else compute the cut point of bins.  Suppose we have homogeneous subsets and we 
assume that the means of these subsets are  , and standard deviations are 

, then the cut points between the ith and (i+1)th homogeneous subsets are 

computed as              . 

6. Output the binning rules. Category 1: ; Category 2: ;…; Category 
: . 

 
Feature Selection and Construction 

If there is a continuous target, we perform predictor selection using p-values derived from the 
correlation or partial correlation between the predictors and the target. The selected predictors are 
grouped if they are highly correlated. In each group, we will derive a new predictor using principal 
component analysis. However, if there is no target, we will do not implement predictor selection. 

 
To identify highly correlated predictors, we compute the correlation between a scale and a group as 
follows: suppose that X is a continuous predictor and continuous predictors form 
a group G. Then the correlation between X and group G is defined as: 

 

 
where is correlation between X and . 
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Let be the correlation level at which the predictors are identified as groups. The predictor 
selection and predictor construction algorithm is as follows: 

1. (Target is continuous and predictor selection is in effect ) If the p-value between a continuous 
predictor and target is larger than a threshold (default is 0.05), then we remove this predictor from 
the correlation matrix and covariance matrix.  See “Correlation and Partial Correlation ” on p. 
34 for details on computing these p-values. 

2. Start with and i=1. 

3. If , stop and output all the derived predictors, their source predictors and coefficient 
of each source predictor. In addition, output the remaining predictors in the correlation matrix. 

4. Find the two most correlated predictors such that their correlation in absolute value is larger than 
, and put them in group i. If there are no predictors to be chosen, then go to step 9. 

5. Add one predictor to group i such that the predictor is most correlated with group i and the 
correlation is larger than .  Repeat this step until the number of predictors in group i is 
greater than a threshold (default is 5) or there is no predictor to be chosen. 

6. Derive a new predictor from the group i using principal component analysis. For more 
information, see the topic “Principal Component Analysis.” 

7. (Both predictor selection and predictor construction are in effect) Compute partial correlations 
between the other continuous predictors and the target, controlling for values of the new predictor. 
Also compute the p-values based on partial correlation. See “Correlation and Partial Correlation ” 
for details on computing these p-values. If the p-value based on partial correlation between a 
continuous predictor and continuous target is larger than a threshold (default is 0.05), then remove 
this predictor from the correlation and covariance matrices. 

8. Remove predictors that are in the group from the correlation matrix. Then let i=i+1 and go to 
step 4. 

9. , then go to step 3. 
 

Notes: 
 If only predictor selection is needed, then only step 1 is implemented. If only predictor 

construction is needed, then we implement all steps except step 1 and step 7. If both predictor 
selection and predictor construction are needed, then all steps are implemented. 

 If there are ties on correlations when we identify highly correlated predictors, the ties will be 
broken by selecting the predictor with the smallest index in dataset. 

 
Principal Component Analysis 

Let be m continuous predictors. Principal component analysis can be described 
as follows: 

1. Input , the covariance matrix of . 

2. Calculate the eigenvectors and eigenvalues of the covariance matrix. Sort the eigenvalues (and 
corresponding eigenvectors) in descending order,                           . 
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3. Derive new predictors. Suppose the elements of the first component are , then 

the new derived predictor is                . 
 
Correlation and Partial Correlation 

 
Correlation and P-value 

 
Let be the correlation between continuous predictor X and continuous target Y, then the 
p-value is derived form the t test: 

 

 
where   is a random variable with a t distribution with         degrees of freedom, 
and   . If        , then set p=0; If , then set p=1. 

 
Partial correlation and P-value 

For two continuous variables, X and Y, we can calculate the partial correlation between them 
controlling for the values of a new continuous variable Z: 

 

 

Since the new variable Z is always a linear combination of several continuous variables, we 
compute the correlation of Z and a continuous variable using a property of the covariance rather 
than the original dataset. Suppose the new derived predictor Z is a linear combination of original 
predictors : 

 

 
Then for any a continuous variable X (continuous predictor or continuous target), the correlation 
between X and Z is 

 

 
where , and . 

 
If or is less than , let . If is larger than 1, then set it to 
1; If  is less than −1, then set it to −1. (This may occur with pairwise deletion).  Based on 
partial correlation, the p-value is derived from the t test 

 

 
where is a random variable with a t distribution with         degrees of freedom, 
and  . If , then set p=0; if        , then set p=1. 



 
 

 
Discretization of Continuous Predictors 
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Discretization is used for calculating predictive power and creating histograms. 
 

Discretization for calculating predictive power 
 

If the transformed target is categorical, we use the equal width bins method to discretize a 
continuous predictor into a number of bins equal to the number of categories of the target. 
Variables considered for discretization include: 
 Scale predictors which have been recommended. 
 Original continuous variables of recommended predictors. 

 
Discretization for creating histograms 

 
We use the equal width bins method to discretize a continuous predictor into a maximum of 400 
bins.  Variables considered for discretization include: 
 Recommended continuous variables. 
 Excluded continuous variables which have not been used to derive a new variable. 
 Original continuous variables of recommended variables. 
 Original continuous variables of excluded variables which have not been used to derive a 

new variable. 
 Scale variables used to construct new variables. If their original variables are also continuous, 

then the original variables will be discretized. 
 Date/time variables. 

 
After discretization, the number of cases and mean in each bin are collected to create histograms. 

 
Note: If an original predictor has been recast, then this recast version will be regarded as the 
“original” predictor. 

 
Predictive Power 

Collect bivariate statistics for predictive power 
 

We collect bivariate statistics between recommended predictors and the (transformed) target. If 
an original predictor of a recommended predictor exists, then we also collect bivariate statistics 
between this original predictor and the target; if an original predictor has a recast version, then 
we use the recast version. 

 
If the target is categorical, but a recommended predictor or its original predictor/recast version is 
continuous, then we discretize the continuous predictor using the method in “Discretization of 
Continuous Predictors ” and collect bivariate statistics between the categorical target and the 
categorical predictors. 
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Bivariate statistics between the predictors and target are same as those described in “Bivariate 
Statistics Collection.” 

 
Computing predictive power 

 
Predictive power is used to measure the usefulness of a predictor and is computed with respect 
to the (transformed) target. If an original predictor of a recommended predictor exists, then we 
also compute predictive power for this original predictor; if an original predictor has a recast 
version, then we use the recast version. 

 
Scale target. When the target is continuous, we fit a linear regression model and predictive power 
is computed as follows. 

 Scale predictor:  

 Categorical predictor: , where and . 

 
Categorical target. If the (transformed) target is categorical, then we fit a naïve Bayes model and 
the classification accuracy will serve as predictive power.  We discretize continuous predictors 
as described in “Discretization of Continuous Predictors”, so we only consider the predictive 
power of categorical predictors. 

 
If   is the of number cases where and , , and                     
then the chi-square statistic is calculated as 

 
 

 
 
 

where 
 

and Cramer’s V is defined as 
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Bayesian Networks Algorithm Overview 
A Bayesian network provides a succinct way of describing the joint probability distribution 
for a given set of random variables. 

 
Let V be a set of categorical random variables and G = (V, E) be a directed acyclic graph with 
nodes V and a set of directed edges E. A Bayesian network model consists of the graph G together 
with a conditional probability table for each node given values of its parent nodes. Given the value 
of its parents, each node is assumed to be independent of all the nodes that are not its descendents. 
The joint probability distribution for variables V can then be computed as a product of conditional 
probabilities for all nodes, given the values of each node’s parents. 

 
Given set of variables V and a corresponding sample dataset, we are presented with the task of 
fitting an appropriate Bayesian network model. The task of determining the appropriate edges in 
the graph G is called structure learning, while the task of estimating the conditional probability 
tables given parents for each node is called parameter learning. 

 
Primary Calculations 

IBM® SPSS® Modeler offers two different methods for building Bayesian network models: 
 Tree Augmented Naïve Bayes. This algorithm is used mainly for classification. It efficiently 

creates a simple Bayesian network model.  The model is an improvement over the naïve 
Bayes model as it allows for each predictor to depend on another predictor in addition to the 
target variable. Its main advantages are its classification accuracy and favorable performance 
compared with general Bayesian network models. Its disadvantage is also due to its simplicity; 
it imposes much restriction on the dependency structure uncovered among its nodes. 

 Markov Blanket estimation. The Markov blanket for the target variable node in a Bayesian 
network is the set of nodes containing target’s parents, its children, and its children’s parents. 
Markov blanket identifies all the variables in the network that are needed to predict the target 
variable. This can produce more complex networks, but also takes longer to produce. Using 
feature selection preprocessing can significantly improve performance of this algorithm. 

 

Notation  
 
The following notation is used throughout this algorithm description: 

 
 

 
 

A directed acyclic graph representing the Bayesian Network model 
 

 
 

A dataset 
 

 
 

Categorical target variable 
 

 
 

The ith predictor 
 

 

 
The parent set of the ith predictor besides target    . For TAN models, its size is ≤1. 

 

 
 

The number of cases in 
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The number of predictors 

 

 
 

Denote the number of records in for which  take its jth value and for which 
takes its kth value. 

 

 Denote the number of records in for which  takes its jth value. 
 

 
 

 

 
 

    

   
 

 
 

   
 

 

 
The number of non-redundant parameters of TAN 

 

 

 
The Markov blanket boundary about target 

 

 

 
A subset of 

 

 

 
A subset of , such that variables and  are conditionally independent 
with respect to   

 

 

  
 

An undirected arc between variables   in G. and    are adjacent to each 
other. 

 

   A directed arc from to  in G. is a parent of , and   is a child of . 
 

 
 

A variable set which represents all the adjacent variables  of variable in G, 
ignoring the edge directions. 

 

  The conditional independence (CI) test function which returns the p-value of the test. 
 

 

 
The significance level for CI tests between two variables. If the p-value of the test is 
larger than then they are independent, and vice-versa. 

 

 

 
The cardinality of ,  

  

 The cardinality of the parent set of . 

 
Handling of Continuous Predictors 

 

BN models in IBM® SPSS® Modeler can only accommodate discrete variables. Target variables 
must be discrete (flag or set type). Numeric predictors are discretized into 5 equal-width bins 
before the BN model is built. If any of the constructed bins is empty (there are no records with a 
value in the bin’s range), that bin is merged to an adjacent non-empty bin. 

 
Feature Selection via Breadth-First Search 

Feature selection preprocessing works as follows: 

E It begins by searching for the direct neighbors of a given target Y, based on statistical tests of 
independence. For more information, see the topic “Markov Blanket Conditional Independence 
Test.” These variables are known as the parents or children of Y, denoted by . 

E  For each , we look for , or the parents and children of X. 

E  For each , we add it to if it is not independent of Y. 

The explicit algorithm is given below. 
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RecognizeMB 
( 

D : Dataset, eps : threshold 
) 
{ 

// Recognize Y's parents/children 
CanADJ_Y = X \ {Y}; 
PC = RecognizePC(Y,CanADJ_Y,D,eps); 
MB = PC; 

 
// Collect spouse candidates, and remove false 
// positives from PC 
for (each X_i in PC){ 

CanADJ_X_i = X \ X_i; 
CanSP_X_i = RecognizePC(X_i,CanADJ_X_i,D,eps); 
if (Y notin CanSP_X_i)    // Filter out false positive 

MB = MB \ X_i; 
} 
// Discover true positives among candidates 
for (each X_i in MB) 

for (each Z_i in CanSP_X_i and Z_i notin MB) 
if (I(Y,Z_i|{S_Y,Z_i + X_i}) ≤ eps) then 

MB = MB + Z_i; 
return MB; 

} 
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RecognizePC ( 
T : target to scan, 
ADJ_T  : Candidate adjacency set to search, 
D : Dataset, 
eps : threshold, 
maxSetSize : ) 

{ 
NonPC = {empty set}; 
cutSetSize = 0; 
repeat 

for (each X_i in ADJ_T){ 
for (each subset S of {ADJ_T \ X_i} with |S| = cutSetSize){ 

if (I(X_i,T|S) > eps){ 
NonPC = NonPC + X_i; 
S_T,X_i = S; 
break; 

} 
} 

} 
if (|NonPC| > 0){ 

ADJ_T = ADJ_T \ NonPC; 
cutSetSize +=1; 
NonPC = {empty set}; 

} else 
break; 

until (|ADJ_T| ≤ cutSetSize) or (cutSetSize > maxSetSize) 
return ADJ_T; 

} 
 
 

Tree Augmented Naïve Bayes Method 
 

The Bayesian network classifier is a simple classification method, which classifies a  case 
                                   by determining the probability of it belonging to the ith target category . 

These probabilities are calculated as 
 

 
 
 

where is the parent set of  besides , and it may be empty. is the conditional 
probability table (CPT) associated with each node .  If there are n independent predictors, 
then the probability is proportional to 
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When this dependence assumption (conditional independence between the predictors given the 
class) is made, the classifier is called naïve Bayes (NB). Naïve Bayes has been shown to be 
competitive with more complex, state-of-the-art classifiers. In recent years, a lot of work has 
focused on improving the naïve Bayes classifier. One important method is to relax independence 
assumption. We use a tree augmented naïve Bayesian (TAN) classifier (Friedman, Geiger, and 
Goldszmidt, 1997), and it is defined by the following conditions: 
 Each predictor has the target as a parent. 
 Predictors may have one other predictor as a parent. 

 
An example of this structure is shown below. 

Figure 5-1 
Structure of an simple tree augmented naïve Bayes model. 

 
TAN Classifier Learning Procedure 

 
Let represent a categorical predictor vector. The algorithm for the TAN 
classifier first learns a tree structure over using mutual information conditioned on . Then it 
adds a link (or arc) from the target node to each predictor node. 

 
The TAN learning procedure is: 

 
1. Take the training data D, and as input. 

 
2. Learn a tree-like network structure over by using the Structure Learning algorithm outlined 

below. 
 

3. Add as a parent of every   where . 
 

4. Learning the parameters of TAN network. 

TAN Y 

X1 X2 ... Xn 
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TAN Structure Learning 

We use a maximum weighted spanning tree (MWST) method to construct a tree Bayesian network 
from data (Chow and Liu, 1968). This method associates a weight to each edge corresponding to 
the mutual information between the two variables. When the weight matrix is created, the MWST 
algorithm (Prim, 1957) gives an undirected tree that can be oriented with the choice of a root. 

 
The mutual information of two nodes is defined as 

 
  Pr 

We replace the mutual information between two predictors with the conditional mutual 
information between two predictors given the target (Friedman et al., 1997). It is defined as 

 
Pr  

 

 

The network over can be constructed using the following steps: 

1. Compute between each pair of variables. 

2. Use Prim’s algorithm (Prim et al., 1957) to construct a maximum weighted spanning tree with 
the weight of an edge connecting to   by . 

This algorithm works as follows: it begins with a tree with no edges and marks a variable at a 
random as input. Then it finds an unmarked variable whose weight with one of the marked 
variables is maximal, then marks this variable and adds the edge to the tree. This process is 
repeated until all variables are marked. 

3. Transform the resulting undirected tree to directed one by choosing   as a root node and setting 
the direction of all edges to be outward from it. 

 
TAN Parameter Learning 

Let be the cardinality of . Let denote the cardinality of the parent set of , that 
is, the number of different values to which the parent of   can be instantiated. So it can be 
calculated as  . Note  implies  . We use   to denote the number of 
records in D for which  takes its jth value. We use  to denote the number of records in 
D for which take its jth value and for which takes its kth value. 

 
Maximum Likelihood Estimation 

The closed form solution for the parameters                                                 and 
that maximize the log likelihood score is 

Pr 
Pr Pr 

Pr 
Pr Pr 
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. 

 

 
 

where   denotes the number of cases with  in the training data. 

Note that if        , then      . 

The number of parameters K is 
 

 
 
 

TAN Posterior Estimation 
 

Assume that Dirichlet prior distributions are specified for the set of parameters                           as 
well as for each of the sets               , , and (Heckerman, 1999). Let 

  and  denote corresponding Dirichlet distribution parameters such that                    a n d  

                    . Upon observing the dataset D, we obtain Dirichlet posterior distributions with the 

following sets of parameters: 
 
 
 
 
 

The posterior estimation is always used for model updating. 
 

Adjustment for small cell counts 
 

To overcome problems caused by zero or very small cell counts, parameters can be estimated 
as posterior parameters                                       and using 
uninformative Dirichlet priors and 

 
Markov Blanket Algorithms 

The Markov blanket algorithm learns the BN structure by identifying the conditional independence 
relationships among the variables.  Using statistical tests (such as chi-squared test or G test), 
this algorithm finds the conditional independence relationships among the nodes and uses these 
relationships as constraints to construct a BN structure. This algorithm is referred to as a 
dependency-analysis-based or constraint-based algorithm. 

 
Markov Blanket Conditional Independence Test 

 
The conditional independence (CI) test tests whether two variables are conditionally independent 
with respect to a conditional variable set. There are two familiar methods to compute the CI test: 

 (Pearson chi-square) test and  (log likelihood ratio) test. 
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Suppose are two variables for testing and S is a conditional variable set such that . 
Let be the observed count of cases that have  and , and is 
the expect number of cases that have and under the hypothesis that          are 
independent. 

 
Chi-square Test 

We assume the null hypothesis is that are independent.  The   test statistic for this 
hypothesis is 

 

 
Suppose that N is the total number of cases in D, is the number of cases in D where 

  takes its ith category, and and are the corresponding numbers for Y and S. So 
is the number of cases in D where takes its ith category and  takes its jth category. 
, and are defined similarly. We have: 
 
 
 

 
 

Because                 where    is the degrees of freedom for the 
 distribution, we get the p-value for as follows: 

 

 
As we know, the larger p-value, the less likely we are to reject the null hypothesis. For a given 
significance level   , if the p-value is greater than we cannot reject the hypothesis that are 
independent. 

 
We can easily generalize this independence test into a conditional independence test: 

 

 

 

  
 

The degree of freedom for         is: 
 

 
 

Likelihood Ratio Test 
 

We assume the null hypothesis is that are independent.  The   test statistic for this 
hypothesis is 
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or equivalently, 
 

 

The conditional version of the   independence test is 
 

 

 

 
  

 
 

The  test is asymptotically distributed as a distribution, where degrees of freedom are the 
same as in the   test.  So the p-value for the test is 

 

 
In the following parts of this document, we use to uniformly represent the p-value of 
whichever test is applied. If , we say variable X and Y are independent, and if 

, we say variable X and Y are conditionally independent given variable set S. 
 

Markov Blanket Structure Learning 

This algorithm aims at learning a Bayesian networks structure from a dataset. It starts with a 
complete graph G. Let , and compute for each variable pair in G. If 

, remove the arc between . Then for each arc            perform an exhaustive 
search in to find the smallest conditional variable set S such that . 
If such S exist, delete arc           . After this, orientation rules are applied to orient the arcs in G. 

 
Markov Blanket Arc Orientation Rules 

Arcs in the derived structure are oriented based on the following rules: 

1. All patterns of the of the form or            are updated to        if 

2. Patterns of the form            are updated so that         

3. Patterns of the form are updated to  

4. Patterns of the form 
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are updated so that   
 

After the last step, if there are still undirected arcs in the graph, return to step 2 and repeat until 
all arcs are oriented. 

 
Deriving the Markov Blanket Structure 

The Markov Blanket is a local structure of a Bayesian Network. Given a Bayesian Network G 
and a target variable Y, to derive the Markov Blanket of Y, we should select all the directed 
parents of Y in G denoted as , all the directed children of Y in G denoted as  and all the 
directed parents of  in G denoted as . and their arcs inherited from G 
define the Markov Blanket . 

 
Markov Blanket Parameter Learning 

 
Maximum Likelihood Estimation 

 
The closed form solution for the parameters                                                        that maximize 
the log likelihood score is 

 

 
Note that if , then       . 

The number of parameters K is 
 

 
 

 
 

 
 

 
 

Posterior Estimation 
 

Assume that Dirichlet prior distributions are specified for each of the sets 
                                        (Heckerman et al., 1999). Let  denote corresponding 

Dirichlet distributed parameters such that                  . Upon observing the dataset D, we 

obtain Dirichlet posterior distributions with the following sets of parameters: 
 

The posterior estimate is always used for model updating. 
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Adjustment for Small Cell Counts 
 

To overcome problems caused by zero or very small cell counts, parameters can be estimated as 
posterior parameters                                                        using uninformative Dirichlet priors 
specified by           . 

 
Blank Handling 

By default, records with missing values for any of the input or output fields are excluded from 
model building. If the Use only complete records option is deselected, then for each pairwise 
comparison between fields, all records containing valid values for the two fields in question  
are used. 

 
Model Nugget/Scoring 

The Bayesian Network Model Nugget produces predicted values and probabilities for scored 
records. 

 
Tree Augmented Naïve Bayes Models 

 
Using the estimated model from training data, for a new case  , the probability of 
it belonging to the ith target category  is calculated as . The target category 
with the highest posterior probability is the predicted category for this case,          , is predicted by 

 
 
 
 
 
 
 

Markov Blanket Models 
 

The scoring function uses the estimated model to compute the probabilities of Y belongs to 
each category for a new case . Suppose is the parent set of Y, and denotes the 
configuration of given case ,                              denotes the direct children set of 
Y, 

denotes the parent set (excluding Y) of the ith variable in . The score for each category 
of Y is computed by: 

 

 
where the joint probability that and            is: 

 
,  

, 
, 
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where 
 

 

Note that c is never actually computed during scoring because its value cancels from the numerator 
and denominator of the scoring equation given above. 



 

Binary Classifier Comparison  Metrics 
The Binary Classifier node generates multiple models for a flag output field. For details on how 
each model type is built, see the appropriate algorithm documentation for the model type. 

The node also reports several comparison metrics for each model, to help you select the optimal 
model for your application. The following metrics are available: 

 
Maximum Profit 

 
This gives the maximum amount of profit, based on the model and the profit and cost settings. It 
is calculated as 

 
where is defined as 

 
if is a hit 
otherwise 

 
r is the user-specified revenue amount per hit, and c is the user-specified cost per record. The sum 

is calculated for the j records with the highest , such that                      
 

Maximum Profit Occurs in % 
 

This gives the percentage of the training records that provide positive profit based on the 
predictions of the model, 
 

 
 

 

                                          where n is the overall number of records included in building the model. 
 

Lift 
 

This indicates the response rate for the top q% of records (sorted by predicted probability), as a 
ratio relative to the overall response rate, 

 

Lift 
 

where k is q% of n, the number of training records used to build the model. The default value of q 
is 30, but this value can be modified in the binary classifier node options. 

 
Overall Accuracy 

 
This is the percentage of records for which the outcome is correctly predicted, 
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where  is the predicted outcome value for record i and is the observed value. 
 

Area Under the Curve (AUC) 
 

This represents the area under the Receiver Operating Characteristic (ROC) curve for the model. 
The ROC curve plots the true positive rate (where the model predicts the target response and the 
response is observed) against the false positive rate (where the model predicts the target response 
but a nonresponse is observed). For a good model, the curve will rise sharply near the left axis and 
cut across near the top, so that nearly all the area in the unit square falls below the curve. For an 
uninformative model, the curve will approximate a diagonal line from the lower left to the upper 
right corner of the graph. Thus, the closer the AUC is to 1.0, the better the model. 

Figure 6-1 
ROC curves for a good model (left) and an uninformative model (right) 

 

The AUC is computed by identifying segments as unique combinations of predictor values that 
determine subsets of records which all have the same predicted probability of the target value. 
The s segments defined by a given model’s predictors are sorted in descending order of predicted 
probability, and the AUC is calculated as 

 

 
 

where   is the cumulative number of false positives for segment i, that is, false positives for 
segment i and all preceding segments , is the cumulative number of true positives, and 

                . 



 

C5.0 Algorithms 
The code for training C5.0 models is licensed from RuleQuest Research Ltd Pty, and the algorithms 
are proprietary. For more information, see the RuleQuest website at http://www.rulequest.com/. 

 
Note: Modeler 13 upgraded the C5.0 version from 2.04 to 2.06. See the RuleQuest website 
for more information. 

 
Scoring 

A record is scored with the class and confidence of the rule that fires for that record. 
 

If a rule set is directly generated from the C5.0 node, then the confidence for the rule is calculated 
as 

 

 

The scoring process retrieves the confidence values from the PMML file. In case there are no 
saved confidence values, they will be calculated as: 

 

 
 

Scores with rule set voting 
 

When voting occurs between rules within a rule set the final scores assigned to a record are 
calculated in the following way. For each record, all rules are examined and each rule that applies 
to the record is used to generate a prediction and an associated confidence. The sum of confidence 
figures for each output value is computed, and the value with the greatest confidence sum is 
chosen as the final prediction. The confidence for the final prediction is the confidence sum for 
that value divided by the number of rules that fired for that record. 

 
Scores with boosted C5.0 classifiers (decision trees and rule sets) 

 
When scoring with a boosted C5.0 rule set the n rule sets that make up the boosted rule set (one 
rule set for each boosting trial) vote using their individual scores (as obtained above) to arrive 
at the final score assigned to the case by the boosted rule set. 

 
The voting for boosted C5 classifiers is as follows.  For each record, each composite classifier 
(rule set or decision tree) assigns a prediction and a confidence. The sum of confidence figures for 
each output value is computed, and the value with the greatest confidence sum is chosen as the 
final prediction. The confidence for the final prediction by the boosted classifier is the confidence 
sum for that value divided by confidence sum for all values. 

  

number correct in leaf 
total number of records in leaf 

number correct in leaf 
total number of records in leaf number of categories in the target 

http://www.rulequest.com/
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Overview 

The continuous association rule mining algorithm (Carma) is an alternative to Apriori that 
reduces I/O costs, time, and space requirements (Hidber, 1999). It uses only two data passes and 
delivers results for much lower support levels than Apriori.  In addition, it allows changes in   
the support level during execution. 

Carma deals with items and itemsets that make up transactions. Items are flag-type conditions 
that indicate the presence or absence of a particular thing in a specific transaction. An itemset is a 
group of items which may or may not tend to co-occur within transactions. 

 

Deriving Rules 

Carma proceeds in two stages. First it identifies frequent itemsets in the data, and then it generates 
rules from the lattice of frequent itemsets. 

 
 

Frequent Itemsets 
 

Carma uses a two-phase method of identifying frequent itemsets. 
 

Phase I: Estimation 

 
In the estimation phase, Carma uses a single data pass to identify frequent itemset candidates. 
A lattice is used to store information on itemsets. Each node in the lattice stores the items 
comprising the itemset, and three values for the associated itemset: 
 count: number of transactions containing the itemset since the itemset was added to the lattice 
 firstTrans: the record index of the transaction for which the itemset was added to the lattice 
 maxMissed: upper bound on the number of occurrences of the itemset before it was added to 

the lattice 
 

The lattice also encodes information on relationships between itemsets, which are determined 
by the items in the itemset. An itemset Y is an ancestor of itemset X if X contains every item in 
Y. More specifically, Y is a parent of X if X contains every item in Y plus one additional item. 
Conversely, Y is a descendant of X if Y contains every item in X, and Y is a child of X if Y contains 
every item in X plus one additional item. 

For example, if X = {milk, cheese, bread}, then Y = {milk, cheese} is a parent of X, and Z = 
{milk, cheese, bread, sugar} is a child of X. 

Initially the lattice contains no itemsets. As each transaction is read, the lattice is updated in 
three steps: 

 
E Increment statistics. For each itemset in the lattice that exists in the current transaction, increment 

the count value. 
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E Insert new itemsets. For each itemset v in the transaction that is not already in the lattice, check all 

subsets of the itemset in the lattice.  If all possible subsets of the itemset are in the lattice with 
         , then add the itemset to the lattice and set its values: 

 count is set to 1 
 firstTrans is set to the record index of the current transaction 
 maxMissed is defined as 

 

where w is a subset of itemset v,             is the ceiling of      up to transaction i for varying 
support (or simply     for constant support), and |v| is the number of items in itemset v. 

E Prune the lattice. Every k transactions (where k is the pruning value, set to 500 by default), the 
lattice is examined and small itemsets are removed. A small itemset is defined as an itemset for 
which maxSupport <     i, where maxSupport = (maxMissed + count)/i. 

 
Phase II: Validation 

 
After the frequent itemset candidates have been identified, a second data pass is made to compute 
exact frequencies for the candidates, and the final list of frequent itemsets is determined based  
on these frequencies. 

The first step in Phase II is to remove infrequent itemsets from the lattice. The lattice is pruned 
using the same method described under Phase I, with     n  as the user-specified support level for 
the model. 

After initial pruning, the training data are processed again and each itemset v in the lattice is 
checked and updated for each transaction record with index i: 

E If firstTrans(v) < i, v is marked as exact and is no longer considered for any updates. (When all 
nodes in the lattice are marked as exact, phase II terminates.) 

E   If v appears in the current transaction, v is updated as follows: 
 Increment count(v) 
 Decrement maxMissed(v) 
 If firstTrans(v) = i, set maxMissed(v) = 0, and adjust maxMissed for every superset w of v in 

the lattice for which maxSupport(w) > maxSupport(v). For such supersets, set maxMissed(w) 
= count(v) - count(w). 

 If maxSupport(v) <     n, remove v from the lattice. 

 
Generating Rules 

Carma uses a common rule-generating algorithm for extracting rules from the lattice of itemsets 
that tends to eliminate redundant rules (Aggarwal and Yu, 1998). Rules are generated from the 
lattice of itemsets (see “Frequent Itemsets”) as follows: 

E For each itemset in the lattice, get the set of maximal ancestor itemsets. An itemset Y is a maximal 
ancestor of itemset X if , where c is the specified confidence threshold for rules. 
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E  Prune the list of maximal ancestors by removing maximal ancestors of all of X’s child itemsets. 

E   For each itemset in the pruned maximal ancestor list, generate a rule , where X−Y is 
the itemset X with the items in itemset Y removed. 

For example, if X the itemset {milk, cheese, bread} and Y is the itemset {milk, bread}, then the 
resulting rule would be milk, bread cheese 

 
Blank Handling 

Blanks are ignored by the Carma algorithm. The algorithm will handle records containing blanks 
for input fields, but such a record will not be considered to match any rule containing one or 
more of the fields for which it has blank values. 

 
Effect of Options 

Minimum rule support/confidence. These values place constraints on which rules may be entered 
into the table. Only rules whose support and confidence values exceed the specified values can be 
entered into the rule table. 

 
Maximum rule size.  Sets the limit on the number of items that will be considered as an itemset. 

 
Exclude rules with multiple consequents. This option restricts rules in the final rule list to those 
with a single item as consequent. 

 
Set pruning value. Sets the number of transactions to process between pruning passes. For more 
information, see the topic “Frequent Itemsets.” 

 
Vary support. Allows support to vary in order to enhance training during the early transactions in 
the training data.  For more information, see “Varying support” below. 

 
Allow rules without antecedents. Allows rules that are consequent only, which are simple 
statements of co-occuring items, along with traditional if-then rules. 

 
Varying support 

If the vary support option is selected, the target support value changes as transactions are 
processed to provide more efficient training. The support value starts large and decreases in four 
steps as transactions are processed. The first support value s1 applies to the first 9 transactions, 
the second value s2 applies to the next 90 transactions, the third value s3 applies to transactions 
100-4999, and the fourth value s4 applies to all remaining transactions. If we call the final 
support value s, and the estimated number of transactions t, then the following constraints are 
used to determine the support values: 

E  If or , set . 

E  If , set , such that . 

E  If , set , such that . 
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E  If , set , such that . 

 
In all cases, if solving the equation yields s1 > 0.5, s1 is set to 0.5, and the other values adjusted 
accordingly to preserve the relation , where s(i) is the target support (one of the 
values s1, s2, s3, or s4) for the ith transaction. 

 
Generated  Model/Scoring 

The Carma algorithm generates an unrefined rule node. To create a model for scoring new data, 
the unrefined rule node must be refined to generate a ruleset node. Details of scoring for generated 
ruleset nodes are given below. 

 
 
Predicted Values 

 
Predicted values are based on the rules in the ruleset. When a new record is scored, it is compared 
to the rules in the ruleset. How the prediction is generated depends on the user’s setting for 
Ruleset Evaluation in the stream options. 
 Voting. This method attempts to combine the predictions of all of the rules that apply to the 

record. For each record, all rules are examined and each rule that applies to the record is used 
to generate a prediction. The sum of confidence figures for each predicted value is computed, 
and the value with the greatest confidence sum is chosen as the final prediction. 

 First hit. This method simply tests the rules in order, and the first rule that applies to the record 
is the one used to generate the prediction. 

 
There is a default rule, which specifies an output value to be used as the prediction for records 
that don’t trigger any other rules from the ruleset. For rulesets derived from decision trees, the 
value for the default rule is the modal (most prevalent) output value in the overall training data. 
For association rulesets, the default value is specified by the user when the ruleset is generated 
from the unrefined rule node. 

 
 
Confidence 

 
Confidence calculations also depend on the user’s Ruleset Evaluation stream options setting. 
 Voting. The confidence for the final prediction is the sum of the confidence values for rules 

triggered by the current record that give the winning prediction divided by the number of rules 
that fired for that record. 

 First hit. The confidence is the confidence value for the first rule in the ruleset triggered by 
the current record. 

 
If the default rule is the only rule that fires for the record, it’s confidence is set to 0.5. 



 
 

 

Blank Handling 
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Blanks are ignored by the algorithm. The algorithm will handle records containing blanks for 
input fields, but such a record will not be considered to match any rule containing one or more of 
the fields for which it has blank values. 

There is an exception to this:  when a numeric field is examined based on a split  point, 
user-defined missing values are included in the comparison. For example, if you define -999 as a 
missing value for a field, Carma will still compare it to the split point for that field, and may return 
a match if the rule is of the form (X < 50). You may need to preprocess specially coded numeric 
missing values (replacing them with $null$, for example) before scoring data with Carma. 
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Overview of C&RT 

C&RT stands for Classification and Regression Trees, originally described in the book by the 
same name (Breiman, Friedman, Olshen, and Stone, 1984). C&RT partitions the data into two 
subsets so that the records within each subset are more homogeneous than in the previous subset. 
It is a recursive process—each of those two subsets is then split again, and the process repeats 
until the homogeneity criterion is reached or until some other stopping criterion is satisfied (as do 
all of the tree-growing methods). The same predictor field may be used several times at different 
levels in the tree. It uses surrogate splitting to make the best use of data with missing values. 

C&RT is quite flexible. It allows unequal misclassification costs to be considered in the tree 
growing process. It also allows you to specify the prior probability distribution in a classification 
problem. You can apply automatic cost-complexity pruning to a C&RT tree to obtain a more 
generalizable tree. 

 
Primary  Calculations 

The calculations directly involved in building the model are described below. 

 
Frequency and Case Weight Fields 

Frequency and case weight fields are useful for reducing the size of your dataset. Each has a 
distinct function, though. If a case weight field is mistakenly specified to be a frequency field, or 
vice versa, the resulting analysis will be incorrect. 

For the calculations described below, if no frequency or case weight fields are specified, assume 
that frequency and case weights for all records are equal to 1.0. 

 
Frequency Fields 

 
A frequency field represents the total number of observations represented by each record. It is 
useful for analyzing aggregate data, in which a record represents more than one individual. The 
sum of the values for a frequency field should always be equal to the total number of observations 
in the sample. Note that output and statistics are the same whether you use a frequency field or 
case-by-case data. The table below shows a hypothetical example, with the predictor fields sex 
and employment and the target field response. The frequency field tells us, for example, that 10 
employed men responded yes to the target question, and 19 unemployed women responded no. 
Table 9-1 
Dataset with frequency field 

Sex Employment Response Frequency 
M Y Y 10 
M Y N 17 
M N Y 12 
M N N 21 
F Y Y 11 
F Y N 15 

 
 59 
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Sex 

 

 
Employment 

 

 
Response 

 

 
Frequency 

F N Y 15 
F N N 19 

 
The use of a frequency field in this case allows us to process a table of 8 records instead of 
case-by-case data, which would require 120 records. 

 
Case weights 

 
The use of a case weight field gives unequal treatment to the records in a dataset. When a case 
weight field is used, the contribution of a record in the analysis is weighted in proportion to  
the population units that the record represents in the sample.  For example, suppose that  in 
a direct marketing promotion, 10,000 households respond and 1,000,000 households do not 
respond. To reduce the size of the data file, you might include all of the responders but only a 
1% sample (10,000) of the nonresponders. You can do this if you define a case weight equal to 
1 for responders and 100 for nonresponders. 

 

Model Parameters 

C&RT works by choosing a split at each node such that each child node created by the split is 
more pure than its parent node. Here purity refers to similarity of values of the target field. In a 
completely pure node, all of the records have the same value for the target field. C&RT measures 
the impurity of a split at a node by defining an impurity measure. For more information, see the 
topic “Impurity Measures.” 

 
The following steps are used to build a C&RT tree (starting with the root node containing all 
records): 

 
Find each predictor’s best split. For each predictor field, find the best possible split for that field, 
as follows: 
 Range (numeric) fields. Sort the field values for records in the node from smallest to largest. 

Choose each point in turn as a split point, and compute the impurity statistic for the resulting 
child nodes of the split. Select the best split point for the field as the one that yields the largest 
decrease in impurity relative to the impurity of the node being split. 

 Symbolic (categorical) fields.  Examine each possible combination of values as two subsets.  
For each combination, calculate the impurity of the child nodes for the split based on that 
combination. Select the best split point for the field as the one that yields the largest decrease 
in impurity relative to the impurity of the node being split. 

 
Find the best split for the node. Identify the field whose best split gives the greatest decrease in 
impurity for the node, and select that field’s best split as the best overall split for the node. 

 
Check stopping rules, and recurse. If no stopping rules are triggered by the split or by the parent 
node, apply the split to create two child nodes. (For more information, see the topic “Stopping 
Rules.”)  Apply the algorithm again to each child node. 
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Blank Handling 

Records with missing values for the target field are ignored in building the tree model. 
 

Surrogate splitting is used to handle blanks for predictor fields. If the best predictor field to be 
used for a split has a blank or missing value at a particular node, another field that yields a split 
similar to the predictor field in the context of that node is used as a surrogate for the predictor 
field, and its value is used to assign the record to one of the child nodes. 

 
Note: If Surrogate splitting is used (where a particular rule does not fit into a node) the Confidence 
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being 
present within a single node. 

For example, suppose that X* is the predictor field that defines the best split s* at node t. The 
surrogate-splitting process finds another split s, the surrogate, based on another predictor field X 
such that this split is most similar to s* at node t (for records with valid values for both predictors). 
If a new record is to be predicted and it has a missing value on X* at node t, the surrogate split s is 
applied instead. (Unless, of course, this record also has a missing value on X. In such a situation, 
the next best surrogate is used, and so on, up to the limit of number of surrogates specified.) 

In the interest of speed and memory conservation, only a limited number of surrogates is 
identified for each split in the tree. If a record has missing values for the split field and all 
surrogate fields, it is assigned to the child node with the higher weighted probability, calculated as 

 

 
where Nf,j(t) is the sum of frequency weights for records in category j for node t, and Nf(t) is the 
sum of frequency weights for all records in node t. 

 
If the model was built using equal or user-specified priors, the priors are incorporated into the 
calculation: 

 

 
where π(j) is the prior probability for category j, and pf(t) is the weighted probability of a record 
being assigned to the node, 

 

 
where Nf,j(t) is the sum of the frequency weights (or the number of records if no frequency 
weights are defined) in node t belonging to category j, and Nf,j is the sum of frequency weights 
for records belonging to category in the entire training sample. 
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Predictive measure of association 

Let (resp. ) be the set of learning cases (resp. learning cases in node t) that has 
non-missing values of both X* and X. Let be the probability of sending a case in 

  to the same child by both and , and be the split with maximized probability 
. 

 
The predictive measure of association between s* and at node t is 

 

where (resp. ) is the relative probability that the best split s* at node t sends a case with 
non-missing value of X* to the left (resp. right) child node. And  where 

 
if   is categorical  

if   is continuous 

with 
 

                                                                    ,    
 
 

, 
 
 

and being the indicator function taking value 1 when both splits s* and send 
the case n to the same child, 0 otherwise. 

 
Effect of Options 

 
Impurity Measures 

There are three different impurity measures used to find splits for C&RT models, depending on the 
type of the target field. For symbolic target fields, you can choose Gini or twoing. For continuous 
targets, the least-squared deviation (LSD) method is automatically selected. 

 

Gini  
 
The Gini index g(t) at a node t in a C&RT tree, is defined  as 
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where i and j are categories of the target field, and 
 

 

 

 

where π(j) is the prior probability value for category j, Nj(t) is the number of records in category 
j of node t, and Nj is the number of records of category j in the root node. Note that when the 
Gini index is used to find the improvement for a split during tree growth, only those records in 
node t and the root node with valid values for the split-predictor are used to compute Nj(t) and 
Nj, respectively. 

The equation for the Gini index can also be written as 
 

 

Thus, when the records in a node are evenly distributed across the categories, the Gini index takes 
its maximum value of 1 - 1/k, where k is the number of categories for the target field. When all 
records in the node belong to the same category, the Gini index equals 0. 

The Gini criterion function Φ(s, t) for split s at node t is defined as 
 

 
where pL is the proportion of records in t sent to the left child node, and pR is the proportion sent 
to the right child node.  The proportions pL and pR are defined as 

 

 

and 
 

 

The split s is chosen to maximize the value of Φ(s, t). 
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Twoing 

 
The twoing index is based on splitting the target categories into two superclasses, and then 
finding the best split on the predictor field based on those two superclasses. The superclasses 
C1 and C2 are defined as 

 

 
and 

 

 
 

where C is the set of categories of the target field, and p(j|tR) and p(j|tL) are p(j|t), as defined as 
in the Gini formulas, for the right and left child nodes, respectively. For more information, see 
the topic “Gini.” 

The twoing criterion function for split s at node t is defined as 
 

 
where tL and tR are the nodes created by the split s. The split s is chosen as the split that 
maximizes this criterion. 

 

Least Squared Deviation 
 

For continuous target fields, the least squared deviation (LSD) impurity measure is used. The 
LSD measure R(t) is simply the weighted within-node variance for node t, and it is equal to the 
resubstitution estimate of risk for the node.  It is defined as 

 

 
 
 

where NW(t) is the weighted number of records in node t, wi is the value of the weighting field for 
record i (if any), fi is the value of the frequency field (if any), yi is the value of the target field, and 
y(t) is the (weighted) mean for node t. The LSD criterion function for split s at node t is defined as 

 

 
 

The split s is chosen to maximize the value of Φ(s,t). 
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Stopping Rules 
 

Stopping rules control how the algorithm decides when to stop splitting nodes in the tree. Tree 
growth proceeds until every leaf node in the tree triggers at least one stopping rule. Any of the 
following conditions will prevent a node from being split: 
 The node is pure (all records have the same value for the target field) 
 All records in the node have the same value for all predictor fields used by the model 
 The tree depth for the current node (the number of recursive node splits defining the current 

node) is the maximum tree depth (default or user-specified). 
 The number of records in the node is less than the minumum parent node size (default or 

user-specified) 
 The number of records in any of the child nodes resulting from the node’s best split is less 

than the minimum child node size (default or user-specified) 
 The best split for the node yields a decrease in impurity that is less than the minimum change 

in impurity (default or user-specified). 

 
Profits 

 
Profits are numeric values associated with categories of a (symbolic) target field that can be used 
to estimate the gain or loss associated with a segment. They define the relative value of each value 
of the target field. Values are used in computing gains but not in tree growing. 

Profit for each node in the tree is calculated as 
 

 

where j is the target field category, fj(t) is the sum of frequency field values for all records in node 
t with category j for the target field, and Pj is the user-defined profit value for category j. 

 
Priors 

 
Prior probabilities are numeric values that influence the misclassification rates for categories of 
the target field. They specify the proportion of records expected to belong to each category of the 
target field prior to the analysis. The values are involved both in tree growing and risk estimation. 

 
There are three ways to derive prior probabilities. 

 
Empirical Priors 

 
By default, priors are calculated based on the training data. The prior probability assigned to each 
target category is the weighted proportion of records in the training data belonging to that category, 
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In tree-growing and class assignment, the Ns take both case weights and frequency weights  
into account (if defined); in risk estimation, only frequency weights are included in calculating 
empirical priors. 

 
Equal Priors 

 
Selecting equal priors sets the prior probability for each of the J categories to the same value, 

 

 
User-Specified Priors 

 
When user-specified priors are given, the specified values are used in the calculations involving 
priors. The values specified for the priors must conform to the probability constraint: the sum of 
priors for all categories must equal 1.0. If user-specified priors do not conform to this constraint, 
adjusted priors are derived which preserve the proportions of the original priors but conform 
to the constraint, using the formula 

 

 
where π’(j) is the adjusted prior for category j, and π(j) is the original user-specified prior for 
category j. 

 
Costs 

Gini.  If costs are specified, the Gini index is computed as 
 

 

where C(i|j) specifies the cost of misclassifying a category j record as category i. 
 

Twoing. Costs, if specified, are not taken into account in splitting nodes using the twoing criterion. 
However, costs will be incorporated into node assignment and risk estimation, as described in 
Predicted Values and Risk Estimates, below. 

 
LSD. Costs do not apply to regression  trees. 

 
Pruning 

Pruning refers to the process of examining a fully grown tree and removing bottom-level splits 
that do not contribute significantly to the accuracy of the tree. In pruning the tree, the software 
tries to create the smallest tree whose misclassification risk is not too much greater than that of the 
largest tree possible. It removes a tree branch if the cost associated with having a more complex 
tree exceeds the gain associated with having another level of nodes (branch). 
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It uses an index that measures both the misclassification risk and the complexity of the tree, 
since we want to minimize both of these things. This cost-complexity measure is defined as 
follows: 

 

 
R(T) is the misclassification risk of tree T, and is the number of terminal nodes for tree T. The 
term α represents the complexity cost per terminal node for the tree. (Note that the value of α is 
calculated by the algorithm during pruning.) 

Any tree you might generate has a maximum size (Tmax), in which each terminal node contains 
only one record. With no complexity cost (α = 0), the maximum tree has the lowest risk,  since 
every record is perfectly predicted. Thus, the larger the value of α, the fewer the number of 
terminal nodes in T(α), where T(α) is the tree with the lowest complexity cost for the given α. As 
α increases from 0, it produces a finite sequence of subtrees (T1, T2, T3), each with progressively 
fewer terminal nodes. Cost-complexity pruning works by removing the weakest split. 

The following equations represent the cost complexity for {t}, which is any single node, and 
for Tt, the subbranch of {t}. 

 

 

If is less than , then the branch Tt has a smaller cost complexity than the single 
node {t}. 

The tree-growing process ensures that  for (α = 0). As α increases from 0, 
both and grow linearly, with the latter growing at a faster rate. Eventually, you 
will reach a threshold α’, such that for all α > α’.  This means that when α 
grows larger than α’, the cost complexity of the tree can be reduced if we cut the subbranch Tt 
under {t}. Determining the threshold is a simple computation. You can solve this first inequality, 

, to find the largest value of α for which the inequality holds, which is also 
represented by g(t).  You end up with 

 

 

You can define the weakest link (t) in tree T as the node that has the smallest value of g(t): 
 

 

Therefore, as α increases,    is the first node for which .  At that point, { } 
becomes preferable to , and the subbranch is pruned. 

With that background established, the pruning algorithm follows these steps: 

E   Set α1 = 0 and start with the tree T1 = T(0), the fully grown tree. 
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E Increase α until a branch is pruned. Prune the branch from the tree, and calculate the risk estimate 

of the pruned tree. 

E   Repeat the previous step until only the root node is left, yielding a series of trees, T1, T2, ... Tk. 

E   If the standard error rule option is selected, choose the smallest tree Topt for which 
 

E  If the standard error rule option is not selected, then the tree with the smallest risk estimate R(T) 
is selected. 

 
Secondary Calculations 

Secondary calculations are not directly related to building the model, but give you information 
about the model and its performance. 

 
Risk Estimates 

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for 
the tree as a whole. 

 
Risk Estimates for Symbolic Target Field 

 
For classification trees (with a symbolic target field), the risk estimate r(t) of a node t is computed 
as 

 

 
 

where C(j*(t)|j) is the misclassification cost of classifying a record with target value j as j*(t), 
Nf,j(t) is the sum of the frequency weights for records in node t in category j (or the number of 
records if no frequency weights are defined), and Nf is the sum of frequency weights for all 
records in the training data. 

 
If the model uses user-specified priors, the risk estimate is calculated as 

 

 

Note that case weights are not considered in calculating risk estimates. 
 

Risk Estimates for numeric target field 
 

For regression trees (with a numeric target field), the risk estimate r(t) of a node t is computed as 
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where fi is the frequency weight for record i (a record assigned to node t), yi is the value of the 
target field for record i, and  is the weighted mean of the target field for all records in node t. 

 
Tree Risk Estimate 

 
For both classification trees and regression trees, the risk estimate R(T) for the tree (T) is 
calculated by taking the sum of the risk estimates for the terminal nodes r(t): 

 

 
where T’ is the set of terminal nodes in the tree. 

 

Gain Summary 

The gain summary provides descriptive statistics for the terminal nodes of a tree. 
If your target field is continuous (scale), the gain summary shows the weighted mean of the 

target value for each terminal node, 
 

 
If your target field is symbolic (categorical), the gain summary shows the weighted percentage of 
records in a selected target category, 

 

 

where xi(j) = 1 if record xi is in target category j, and 0 otherwise. If profits are defined for the 
tree, the gain is the average profit value for each terminal node, 

 

 
where P(xi) is the profit value assigned to the target value observed in record xi. 

 
Generated Model/Scoring 

Calculations done by the C&RT generated model are described below 
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Predicted Values 

New records are scored by following the tree splits to a terminal node of the tree. Each terminal 
node has a particular predicted value associated with it, determined as follows: 

 
Classification Trees 

 
For trees with a symbolic target field, each terminal node’s predicted category is the category with 
the lowest weighted cost for the node. This weighted cost is calculated as 

 

 
where C(i|j) is the user-specified misclassification cost for classifying a record as category i when 
it is actually category j, and p(j|t) is the conditional weighted probability of a record being in 
category j given that it is in node t, defined as 

 

 

where π(j) is the prior probability for category j, Nw,j(t) is the weighted number of records in node 
t with category j (or the number of records if no frequency or case weights are defined), 

 

 
and Nw,j is the weighted number records in category j (any node), 

 

 
Regression Trees 

 
For trees with a numeric target field, each terminal node’s predicted category is the weighted mean 
of the target values for records in the node. This weighted mean is calculated as 

 

 
 

where Nw(t) is defined as 
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Confidence 

For classification trees, confidence values for records passed through the generated model are 
calculated as follows. For regression trees, no confidence value is assigned. 

 
Classification Trees 

 
Confidence for a scored record is the proportion of weighted records in the training data in the 
scored record’s assigned terminal node that belong to the predicted category, modified by the 
Laplace correction: 

 

 
Note: If Surrogate Splitting is used (where a particular rule does not fit into a node) the Confidence 
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being 
present within a single node. 

 

Blank Handling 

In classification of new records, blanks are handled as they are during tree growth, using 
surrogates where possible, and splitting based on weighted probabilities where necessary. For 
more information, see the topic “Blank Handling.” 
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Overview of CHAID 

CHAID stands for Chi-squared Automatic Interaction Detector. It is a highly efficient statistical 
technique for segmentation, or tree growing, developed by (Kass, 1980). Using the significance of 
a statistical test as a criterion, CHAID evaluates all of the values of a potential predictor field. It 
merges values that are judged to be statistically homogeneous (similar) with respect to the target 
variable and maintains all other values that are heterogeneous (dissimilar). 

It then selects the best predictor to form the first branch in the decision tree, such that each 
child node is made of a group of homogeneous values of the selected field. This process continues 
recursively until the tree is fully grown. The statistical test used depends upon the measurement 
level of the target field. If the target field is continuous, an F test is used. If the target field is 
categorical, a chi-squared test is used. 

CHAID is not a binary tree method; that is, it can produce more than two categories at any 
particular level in the tree. Therefore, it tends to create a wider tree than do the binary growing 
methods. It works for all types of variables, and it accepts both case weights and frequency 
variables. It handles missing values by treating them all as a single valid category. 

 
Exhaustive CHAID 

 
Exhaustive CHAID is a modification of CHAID developed to address some of the weaknesses 
of the CHAID method (Biggs, de Ville, and Suen, 1991). In particular, sometimes CHAID may 
not find the optimal split for a variable, since it stops merging categories as soon as it finds   
that all remaining categories are statistically different. Exhaustive CHAID remedies this by 
continuing to merge categories of the predictor variable until only two supercategories are left. 
It then examines the series of merges for the predictor and finds the set of categories that gives 
the strongest association with the target variable, and computes an adjusted p-value for that 
association. Thus, Exhaustive CHAID can find the best split for each predictor, and then choose 
which predictor to split on by comparing the adjusted p-values. 

Exhaustive CHAID is identical to CHAID in the statistical tests it uses and in the way it treats 
missing values. Because its method of combining categories of variables is more thorough than 
that of CHAID, it takes longer to compute. However, if you have the time to spare, Exhaustive 
CHAID is generally safer to use than CHAID. It often finds more useful splits, though depending 
on your data, you may find no difference between Exhaustive CHAID and CHAID results. 

 
Primary  Calculations 

The calculations directly involved in building the model are described below. 
 

Frequency and Case Weight Fields 

Frequency and case weight fields are useful for reducing the size of your dataset. Each has a 
distinct function, though. If a case weight field is mistakenly specified to be a frequency field, or 
vice versa, the resulting analysis will be incorrect. 
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For the calculations described below, if no frequency or case weight fields are specified, assume 

that frequency and case weights for all records are equal to 1.0. 
 

Frequency Fields 
 

A frequency field represents the total number of observations represented by each record. It is 
useful for analyzing aggregate data, in which a record represents more than one individual. The 
sum of the values for a frequency field should always be equal to the total number of observations 
in the sample. Note that output and statistics are the same whether you use a frequency field or 
case-by-case data. The table below shows a hypothetical example, with the predictor fields sex 
and employment and the target field response. The frequency field tells us, for example, that 10 
employed men responded yes to the target question, and 19 unemployed women responded no. 
Table 10-1 
Dataset with frequency field 

 

Sex Employment Response Frequency 
M Y Y 10 
M Y N 17 
M N Y 12 
M N N 21 
F Y Y 11 
F Y N 15 
F N Y 15 
F N N 19 

 
The use of a frequency field in this case allows us to process a table of 8 records instead of 
case-by-case data, which would require 120 records. 

 
Case weights 

 
The use of a case weight field gives unequal treatment to the records in a dataset. When a case 
weight field is used, the contribution of a record in the analysis is weighted in proportion to  
the population units that the record represents in the sample.  For example, suppose that  in 
a direct marketing promotion, 10,000 households respond and 1,000,000 households do not 
respond. To reduce the size of the data file, you might include all of the responders but only a 
1% sample (10,000) of the nonresponders. You can do this if you define a case weight equal to 
1 for responders and 100 for nonresponders. 

 

Binning of Scale-Level Predictors 

Scale level (continuous) predictor fields are automatically discretized or binned into a set of 
ordinal categories. This process is performed once for each scale-level predictor in the model, 
prior to applying the CHAID (or Exhaustive CHAID) algorithm. The binned categories are 
determined as follows: 

 
1. The data values yi are sorted. 
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2. For each unique value, starting with the smallest, calculate the relative (weighted) frequency of 

values less than or equal to the current value yi: 
 
 

 
 

where wk is the weight for record k (or 1.0 if no weights are defined). 
 

3. Determine the bin to which the value belongs by comparing the relative frequency with the ideal 
bin percentile cutpoints of 0.10, 0.20, 0.30, etc. 

 
 

 
 

where W is the total weighted frequency for all records in the training data, , and 
 
 

 
 If the bin index for this value is different from the bin index for the previous data value, add a 

new bin to the bin list and set its cutpoint to the current data value. 
 If the bin index is the same as the bin index for the previous value, update the cut point for 

that bin to the current data value. 
 

Normally, CHAID will try to create k = 10 bins by default. However, when the number of records 
having a single value is large (or a set of records with the same value has a large combined 
weighted frequency), the binning may result in fewer bins. This will happen if the weighted 
frequency for records with the same value is greater than the expected weighted frequency in a bin 
(1/kth of the total weighted frequency). This will also happen if there are fewer than k distinct 
values for the binned field for records in the training data. 

 
 
Model Parameters 

 
CHAID works with all types of continuous or categorical fields. However, continuous predictor 
fields are automatically categorized for the purpose of the analysis.For more information, see the 
topic “Binning of Scale-Level Predictors.” 

Note that you can set some of the options mentioned below using the Expert Options for 
CHAID. These include the choice of the Pearson chi-squared or likelihood-ratio test, the level of  
              , the level of            , score values, and details of stopping rules. 
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The CHAID algorithm proceeds as follows: 
 

Merging Categories for Predictors (CHAID) 
 

To determine each split, all predictor fields are merged to combine categories that are not 
statistically different with respect to the target field. Each final category of a predictor field X 
will represent a child node if X is used to split the node. The following steps are applied to each 
predictor field X: 

1. If X has one or two categories, no more categories are merged, so proceed to node splitting below. 
 

2. Find the eligible pair of categories of X that is least significantly different (most similar) as 
determined by the p-value of the appropriate statistical test of association with the target field. For 
more information, see the topic “Statistical Tests Used.” 

For ordinal fields, only adjacent categories are eligible for merging; for nominal fields, all pairs 
are eligible. 

3. For the pair having the largest p-value, if the p-value is greater than              , then merge the 
pair of categories into a single category. Otherwise, skip to step 6. 

 
4. If the user has selected the Allow splitting of merged categories option, and the newly formed 

compound category contains three or more original categories, then find the best binary split 
within the compound category (that for which the p-value of the statistical test is smallest). If that 
p-value is less than or equal to                       , perform the split to create two categories from 
the compound category. 

 
5. Continue merging categories from step 1 for this predictor field. 

 
6. Any category with fewer than the user-specified minimum segment size records is merged  

with the most similar other category (that which gives the largest p-value when compared with 
the small category). 

 
Merging Categories for Predictors (Exhaustive CHAID) 

 
Exhaustive CHAID works much the same as CHAID, except that the category merging is more 
thoroughly tested to find the ideal set of categories for each predictor field. As with regular 
CHAID, each final category of a predictor field X will represent a child node if X is used to split 
the node.  The following steps are applied to each predictor field X: 

1. For each predictor variable X, find the pair of categories of X that is least significantly different 
(that is, has the largest p-value) with respect to the target variable Y. The method used to 
calculate the p-value depends on the measurement level of Y. For more information, see the 
topic “Statistical Tests Used.” 

2. Merge into a compound category the pair that gives the largest p-value. 
 

3. Calculate the p-value based on the new set of categories of X. This represents one set of categories 
for X. Remember the p-value and its corresponding set of categories. 
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4. Repeat steps 1, 2, and 3 until only two categories remain. Then, compare the sets of categories 

of X generated during each step of the merge sequence, and find the one for which the p-value 
in step 3 is the smallest. That set is the set of merged categories for X to be used in determining 
the split at the current node. 

 
Splitting Nodes 

 
When categories have been merged for all predictor fields, each field is evaluated for its 
association with the target field, based on the adjusted p-value of the statistical test of association, 
as described below. 

The predictor with the strongest association, indicated by the smallest adjusted p-value, is 
compared to the split threshold,           . If the p-value is less than or equal to           , that field is 
selected as the split field for the current node.  Each of the merged categories of the split field 
defines a child node of the split. 

After the split is applied to the current node, the child nodes are examined to see if they warrant 
splitting by applying the merge/split process to each in turn. Processing proceeds recursively until 
one or more stopping rules are triggered for every unsplit node, and no further splits can be made. 

 
Statistical Tests Used 

 
Calculations of the unadjusted p-values depend on the type of the target field. During the merge 
step, categories are compared pairwise, that is, one (possibly compound) category is compared 
against another (possibly compound) category. For such comparisons, only records belonging to 
one of the comparison categories in the current node are considered. During the split step, all 
categories are considered in calculating the p-value, thus all records in the current node are used. 

 
Scale Target Field (F Test). 

 
For models with a scale-level target field, the p-value is calculated based on a standard 
ANOVA F-test comparing the target field means across categories of the predictor field under 
consideration.  The F statistic is calculated as 

 
 

  

 
 
 

and the p-value is 
 

 
where 
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and F(I − 1, Nf − I) is a random variable following an F-distribution with (I − 1) and (Nf − I) 
degrees of freedom. 

 
Nominal Target Field (Chi-Squared Test) 

If the target field Y is a set (categorical) field, the null hypothesis of independence of X and Y is 
tested. To do the test, a contingency (count) table is formed using classes of Y as columns and 
categories of the predictor X as rows. The expected cell frequencies under the null hypothesis of 
independence are estimated. The observed cell frequencies and the expected cell frequencies are 
used to calculate the chi-squared statistic, and the p-value is based on the calculated statistic. 

 
Pearson Chi-squared test 

 
The Pearson chi-square statistic is calculated as 

 

 
 

where is the observed cell frequency and   is the expected 
cell frequency for cell (xn = i, yn = j) from the independence model as described below. The 
corresponding p value is calculated as   , where  follows a chi-square 
distribution with d = (J − 1)(I − 1) degrees of freedom. 

Expected Frequencies for Chi-Square Test 

Likelihood-ratio Chi-squared test 
 

The likelihood-ratio chi-square is calculated based on the expected and observed frequencies, as 
described above.  The likelihood ratio chi-square is calculated as 

 
 

 
 

 

 

 
 

and the p-value is calculated as        
 

Expected frequencies for chi-squared tests 
 

For models with no case weights, expected frequencies are calculated as 
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where 
 

 

If case weights are specified, the expected cell frequency under the null hypothesis of 
independence takes the form 

 

 
where                  are parameters to be estimated, and 

 
 
 

The parameter estimates , , and hence , are calculated based on the following iterative 
procedure: 
 
 
 
 
 
 

 

 

 

 
Ordinal Target Field (Row Effects Model) 

 
If the target field Y is ordinal, the null hypothesis of independence of X and Y is tested against 
the row effects model, with the rows being the categories of X and the columns the categories 
of Y(Goodman, 1979).  Two sets of expected cell frequencies,   (under the hypothesis  of 
independence and  (under the hypothesis that the data follow the row effects model), are both 
estimated.  The likelihood ratio statistic is computed as 

 

  

 

 

 
 

and the p-value is calculated as 
 



 

CHAID Algorithms 

 
 

 
 

Expected Cell Frequencies for the Row Effects Model 
 

For the row effects model, scores for categories of Y are needed. By default, the order of each 
category is used as the category score. Users can specify their own set of scores. The expected 
cell frequency under the row effects model is 

 

 
where sj is the score for category j of Y, and 

 

 
 
 
 

Parameter estimates , , , and hence   are calculated using the  following iterative 
procedure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Bonferroni Adjustment 
 

The adjusted p-value is calculated as the p-value times a Bonferroni multiplier. The Bonferroni 
multiplier controls the overall p-value across multiple statistical tests. 

Suppose that a predictor field originally has I categories, and it is reduced to r categories after 
the merging step. The Bonferroni multiplier B is the number of possible ways that I categories 
can be merged into r categories.  For r = I, B = 1.  For 2 ≤ r < I, 
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Ordinal predictor 

Nominal predictor 

Ordinal with a missing value 
 
 

Blank Handling 

If the target field for a record is blank, or all the predictor fields are blank, the record is ignored in 
model building. If case weights are specified and the case weight for a record is blank, zero, or 
negative, the record is ignored, and likewise for frequency weights. 

For other records, blanks in predictor fields are treated as an additional category for the field. 
 

Ordinal Predictors 
 

The algorithm first generates the best set of categories using all non-blank information. Then the 
algorithm identifies the category that is most similar to the blank category. Finally, two p-values 
are calculated: one for the set of categories formed by merging the blank category with its most 
similar category, and the other for the set of categories formed by adding the blank category as a 
separate category. The set of categories with the smallest p-value is used. 

 
Nominal Predictors 

 
The missing category is treated the same as other categories in the analysis. 

 
Effect of Options 

 
Stopping Rules 

Stopping rules control how the algorithm decides when to stop splitting nodes in the tree. Tree 
growth proceeds until every leaf node in the tree triggers at least one stopping rule. Any of the 
following conditions will prevent a node from being split: 
 The node is pure (all records have the same value for the target field) 
 All records in the node have the same value for all predictor fields used by the model 
 The tree depth for the current node (the number of recursive node splits defining the current 

node) is the maximum tree depth (default or user-specified). 
 The number of records in the node is less than the minumum parent node size (default or 

user-specified) 
 The number of records in any of the child nodes resulting from the node’s best split is less 

than the minimum child node size (default or user-specified) 
 The best split for the node yields a p-value that is greater than the ·split (default    or 

user-specified). 
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Profits 

 
Profits are numeric values associated with categories of a (symbolic) target field that can be used 
to estimate the gain or loss associated with a segment. They define the relative value of each value 
of the target field. Values are used in computing gains but not in tree growing. 

Profit for each node in the tree is calculated as 
 

 

where j is the target field category, fj(t) is the sum of frequency field values for all records in node 
t with category j for the target field, and Pj is the user-defined profit value for category j. 

 
Score Values 

 
Scores are available in CHAID and Exhaustive CHAID. They define the order and distance 
between categories of an ordinal categorical target field. In other words, the scores define the 
field’s scale.  Values of scores are involved in tree growing. 

If user-specified scores are provided, they are used in calculation of expected cell frequencies, 
as described above. 

 
Costs 

 
Costs, if specified, are not taken into account in growing a CHAID tree. However, costs will be 
incorporated into node assignment and risk estimation, as described in Predicted Values and 
Risk Estimates, below. 

 
Secondary Calculations 

Secondary calculations are not directly related to building the model, but give you information 
about the model and its performance. 

 
Risk Estimates 

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for 
the tree as a whole. 

 
Risk Estimates for Symbolic Target Field 

 
For classification trees (with a symbolic target field), the risk estimate r(t) of a node t is computed 
as 
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where C(j*(t)|j) is the misclassification cost of classifying a record with target value j as j*(t), 
Nf,j(t) is the sum of the frequency weights for records in node t in category j (or the number of 
records if no frequency weights are defined), and Nf is the sum of frequency weights for all 
records in the training data. 

 
Note that case weights are not considered in calculating risk estimates. 

 
Risk Estimates for numeric target field 

 
For regression trees (with a numeric target field), the risk estimate r(t) of a node t is computed as 

 

 
 

where fi is the frequency weight for record i (a record assigned to node t), yi is the value of the 
target field for record i, and  is the weighted mean of the target field for all records in node t. 

 
Tree Risk Estimate 

 
For both classification trees and regression trees, the risk estimate R(T) for the tree (T) is 
calculated by taking the sum of the risk estimates for the terminal nodes r(t): 

 

 
where T’ is the set of terminal nodes in the tree. 

 
Gain Summary 

The gain summary provides descriptive statistics for the terminal nodes of a tree. 
If your target field is continuous (scale), the gain summary shows the weighted mean of the 

target value for each terminal node, 
 

 

If your target field is symbolic (categorical), the gain summary shows the weighted percentage of 
records in a selected target category, 

 

 

where xi(j) = 1 if record xi is in target category j, and 0 otherwise. If profits are defined for the 
tree, the gain is the average profit value for each terminal node, 
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where P(xi) is the profit value assigned to the target value observed in record xi. 

 
Generated Model/Scoring 

Calculations done by the CHAID generated model are described below 
 
Predicted Values 

New records are scored by following the tree splits to a terminal node of the tree. Each terminal 
node has a particular predicted value associated with it, determined as follows: 

 
Classification Trees 

 
For trees with a symbolic target field, each terminal node’s predicted category is the category with 
the lowest weighted cost for the node. This weighted cost is calculated as 

 

 

where C(i|j) is the user-specified misclassification cost for classifying a record as category i when 
it is actually category j, and p(j|t) is the conditional weighted probability of a record being in 
category j given that it is in node t, defined as 

 

 

where π(j) is the prior probability for category j, Nw,j(t) is the weighted number of records in node 
t with category j (or the number of records if no frequency or case weights are defined), 

 

 

and Nw,j is the weighted number records in category j (any node), 
 

 
Regression Trees 

 
For trees with a numeric target field, each terminal node’s predicted category is the weighted mean 
of the target values for records in the node. This weighted mean is calculated as 

 

 
 

where Nw(t) is defined as 
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Confidence 

For classification trees, confidence values for records passed through the generated model are 
calculated as follows. For regression trees, no confidence value is assigned. 

 
Classification Trees 

 
Confidence for a scored record is the proportion of weighted records in the training data in the 
scored record’s assigned terminal node that belong to the predicted category, modified by the 
Laplace correction: 

 

 
Note: If Surrogate Splitting is used (where a particular rule does not fit into a node) the Confidence 
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being 
present within a single node. 

 

Blank Handling 

In classification of new records, blanks are handled as they are during tree growth, being treated as 
an additional category (possibly merged with other non-blank categories). For more information, 
see the topic “Blank Handling.” 

For nodes where there were no blanks in the training data, a blank category will not exist for 
the split of that node. In that case, records with a blank value for the split field are assigned a 
null value. 



 

 



 

Cluster Evaluation Algorithms 
This document describes measures used for evaluating clustering models. 
 The Silhouette coefficient combines the concepts of cluster cohesion (favoring models which 

contain tightly cohesive clusters) and cluster separation (favoring models which contain 
highly separated clusters). It can be used to evaluate individual objects, clusters, and models. 

 The sum of squares error (SSE) is a measure of prototype-based cohesion, while sum of 
squares between (SSB) is a measure of prototype-based separation. 

 Predictor importance indicates how well the variable can differentiate different clusters. For 
both range (numeric) and discrete variables, the higher the importance measure, the less  
likely the variation for a variable between clusters is due to chance and more likely due to 
some underlying difference. 

 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 

Continuous variable k in case i (standardized). 

The sth category of variable k in case i (one-of-c coding). 

N Total number of valid cases. 
                                         The number of cases in cluster j. 

Y Variable with J cluster labels. 
The centroid of cluster j for variable k. 

                                        The distance between case i and the centroid of cluster j. 

                                         The distance between the overall mean and the centroid of cluster j. 
 
 

Goodness  Measures 

The average Silhouette coefficient is simply the average over all cases of the following calculation 
for each individual case: 

 
 

 
 

where A is the average distance from the case to every other case assigned to the same cluster and 
B is the minimal average distance from the case to cases of a different cluster across all clusters. 

 
Unfortunately, this coefficient is computationally expensive. In order to ease this burden, we use 
the following definitions of A and B: 
 A is the distance from the case to the centroid of the cluster which the case belongs to; 
 B is the minimal distance from the case to the centroid of every other cluster. 
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Distances may be calculated using Euclidean distances. The Silhouette coefficient and its average 
range between −1, indicating a very poor model, and 1, indicating an excellent model. As found 
by Kaufman and Rousseeuw (1990), an average silhouette greater than 0.5 indicates reasonable 
partitioning of data; less than 0.2 means that the data do not exhibit cluster structure. 

 
Data Preparation 

Before calculating Silhouette coefficient, we need to transform cases as follows: 

1. Recode categorical variables using one-of-c coding. If a variable has c categories, then it is stored  
as c vectors, with the first category denoted (1,0,...,0), the next category (0,1,0,...,0), ..., and the 
final category (0,0,...,0,1). The order of the categories is based on the ascending sort or lexical 
order of the data values. 

2. Rescale continuous variables. Continuous variables are normalized to the interval [−1, 1] using the 
transformation [2*(x−min)/(max−min)]−1. This normalization tries to equalize the contributions 
of continuous and categorical features to the distance computations. 

 
Basic Statistics 

The following statistics are collected in order to compute the goodness measures: the centroid 
of variable k for cluster j, the distance between a case and the centroid, and the overall mean u. 

 
For with an ordinal or continuous variable k, we average all standardized values of variable 
k within cluster j. For nominal variables, is a vector of probabilities of occurrence 
for each state s of variable k for cluster j. Note that in counting , we do not consider cases with 
missing values in variable k.  If the value of variable k is missing for all cases within cluster j, 

is marked as missing. 
 

The distance   between case i and the centroid of cluster j can be calculated in terms of the 
weighted sum of the distance components  across all variables; that is 

 

where denotes a weight.  At this point, we do not consider differential  weights, thus 
equals 1 if the variable k in case i is valid, 0 if not. If all equal 0, set        . 

The distance component  is calculated as follows for ordinal and continuous variables 
 

 
For binary or nominal variables, it is 
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where variable k uses one-of-c coding, and  is the number of its states. 

 
The calculation of  is the same as that of , but the overall mean u is used in place of and 

is used in place of . 
 

Silhouette Coefficient 

The Silhouette coefficient of case i is 
 

 
where  denotes cluster labels which do not include case i as a member, while is the cluster 
label which includes case i. If equals 0, the Silhouette of case i is 
not used in the average operations. 

 
Based on these individual data, the total average Silhouette coefficient is: 

 

 
 

Sum of Squares Error (SSE) 

SSE is a prototype-based cohesion measure where the squared Euclidean distance is used. In order 
to compare between models, we will use the averaged form, defined as: 

 
Average SSE 

 
 

Sum of Squares Between (SSB) 

SSB is a prototype-based separation measure where the squared Euclidean distance is used. In 
order to compare between models, we will use the averaged form, defined as: 

 
Average SSB 

 
 

Predictor Importance 

The importance of field i is defined as 
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where denotes the set of predictor and evaluation fields,   is the significance   or 
p-value computed from applying a certain test, as described below.  If   equals  zero, set 

                         , where MinDouble is the minimal double value. 
 

Across Clusters 
 

The p-value for categorical fields is based on Pearson’s chi-square. It is calculated by 
 

 

where
  

  

 

where                        . 
 If , the importance is set to be undefined or unknown; 
 If         , subtract one from I for each such category to obtain  ; 
 If        , subtract one from J for each such cluster to obtain  ; 
 If          or         , the importance is set to be undefined or unknown. 

 
The degrees of freedom are                . 

The p-value for continuous fields is based on an F test. It is calculated by 
 

p-value = Prob{         }, 
 

where 
 
 

 
 

 
 

 
 

  
 

 

 

 If N=0, the importance is set to be undefined or unknown; 
 If        , subtract one from J for each such cluster to obtain  ; 
 If          or  , the importance is set to be undefined or unknown; 
 If the denominator in the formula for the F statistic is zero, the importance is set to be 

undefined or unknown; 
 If the numerator in the formula for the F statistic is zero, set p-value = 1; 

The degrees of freedom are . 
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Within Clusters 
 

The null hypothesis for categorical fields is that the proportion of cases in the categories in 
cluster j is the same as the overall proportion. 

 
The chi-square statistic for cluster j is computed as follows 

 

 
 

If        , the importance is set to be undefined or unknown; 
 

If , subtract one from I for each such category to obtain  ; 

If         , the importance is set to be undefined or unknown. 

The degrees of freedom are        . 
 

The null hypothesis for continuous fields is that the mean in cluster j is the same as the overall 
mean. 

 
The Student’s t statistic for cluster j is computed as follows 

 

 

with         degrees of freedom. 
 

If          or , the importance is set to be undefined or unknown; 

If the numerator is zero, set p-value = 1; 

Here, the p-value based on Student’s t distribution is calculated as 
 

p-value = 1 − Prob{ }. 
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COXREG Algorithms 

Cox Regression Algorithms 

Cox (1972) first suggested the models in which factors related to lifetime have a multiplicative 
effect on the hazard function. These models are called proportional hazards models. Under the 
proportional hazards assumption, the hazard function h of t given X is of the form 

 

 

where x is a known vector of regressor variables associated with the individual,  is a vector of 
unknown parameters, and is the baseline hazard function for an individual with . 
Hence, for any two covariates sets and , the log hazard functions and should 
be parallel across time. 

 
When a factor does not affect the hazard function multiplicatively, stratification may be useful in 
model building.  Suppose that individuals can be assigned to one of m different strata, defined  
by the levels of one or more factors. The hazard function for an individual in the jth stratum is 
defined as 

 

 

There are two unknown components in the model: the regression parameter  and the baseline 
hazard function . The estimation for the parameters is described below. 

 
Estimation 

We begin by considering a nonnegative random variable T representing the lifetimes of individuals 
in some population. Let denote the probability density function (pdf) of T given a regressor 
x and let be the survivor function (the probability of an individual surviving until time 
t). Hence 

 

The hazard is then defined by 
 

Another useful expression for in terms of is 
 

Thus, 
 

For some purposes, it is also useful to define the cumulative hazard function 
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Under the proportional hazard assumption, the survivor function can be written as 
 

 

where is the baseline survivor function defined by 
 

 

and 
 

 

Some relationships between , and , and which will be used later are 
 

 

 

To estimate the survivor function , we can see from the equation for the survivor function 
that there are two components,  and  , which need to be estimated. The approach we use 
here is to estimate  from the partial likelihood function and then to maximize the full likelihood 
for . 

 
Estimation of Beta 

Assume that 
 There are m levels for the stratification variable. 
 Individuals in the same stratum have proportional hazard functions. 
 The relative effect of the regressor variables is the same in each stratum. 

 
Let                   be the observed uncensored failure time of the individuals in the jth 
stratum and                         be the corresponding covariates. Then the partial likelihood function 
is defined by 

 
 
 
 
 
 

where   is the sum of case weights of individuals whose lifetime is equal to   and   is 
the weighted sum of the regression vector x for those  individuals, is the case weight of 
individual l, and   is the set of individuals alive and uncensored just prior to   in the jth 
stratum. Thus the log-likelihood arising from the partial likelihood function is 
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and the first derivatives of l are 
 

 
  is the rth component of  . The maximum partial likelihood estimate 

(MPLE) of  is obtained by setting equal to zero for , where p is the number of 
independent variables in the model. The equations   can usually be 
solved by using the Newton-Raphson method. 

Note that from its equation that the partial likelihood function   is invariant under 
translation. All the covariates are centered by their corresponding overall mean. The overall mean 
of a covariate is defined as the sum of the product of weight and covariate for all the censored and 
uncensored cases in each stratum. For notational simplicity, used in the Estimation Section 
denotes centered covariates. 

 
Three convergence criteria for the Newton-Raphson method are available: 
 Absolute value of the largest difference in parameter estimates between iterations  divided 

by the value of the parameter estimate for the previous iteration; that is, 

BCON parameter estimate for previous iteration 
 Absolute difference of the log-likelihood function between iterations divided by the 

log-likelihood function for previous iteration. 
 Maximum number of iterations. 

 
The asymptotic covariance matrix for the MPLE                           is estimated by   where I 
is the information matrix containing minus the second partial derivatives of          . The (r, s)-th 
element of I is defined by 

 
 
 
 
 
 
 
 
 

We can also write I in a matrix form  as 
 



 

COXREG Algorithms 

 
 

 
 

where is a matrix which represents the p covariate variables in the model evaluated 
at time ,  is the number of distinct individuals in , and is a matrix with 
the lth diagonal element  defined by 

 

 

and the (l, k) element defined by 
 

 

Estimation of the Baseline Function 
After the MPLE  of  is found, the baseline survivor function is estimated separately for 
each stratum.  Assume that, for a stratum, are observed lifetimes in the sample. 
There are  at risk and  deaths at    , and in the interval  there are  censored times. 
Since is a survivor function, it is non-increasing and left continuous, and thus must be 
constant except for jumps at the observed lifetimes . 

Further, it follows that 
 

 

and 
 

 

Writing , the observed likelihood function is of the form 
 

where  is the set of individuals dying at and  is the set of individuals with censored times in 
. (Note that if the last observation is uncensored,   is empty and ) 

If we let ,   can be written as 

 
 

   

Differentiating with respect to and setting the equations equal to zero, we get 
 

We then plug the MPLE  of  into this equation and solve these k equations separately. 
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There are two things worth noting: 
 If any ,   can be solved explicitly. 

 If , the equation for the cumulative hazard function must be solved iteratively for 
.  A good initial value for   is 

where                   is the weight sum for set .  (See Lawless, 1982, p. 361.) 

Once the , are found, is estimated by 

 
 

Since the above estimate of requires some iterative calculations when ties exist, Breslow 
(1974) suggests using the equation for when as an estimate; however, we will use 
this as an initial estimate. 

The asymptotic variance for can be found in Chapter 4 of Kalbfleisch and Prentice 
(1980).  At a specified time t, it is consistently estimated by 

 

 

where a is a p×1 vector with the jth element defined by 
 

 

and I is the information matrix. The asymptotic variance of is estimated by 
 

 

Selection Statistics for Stepwise Methods 

The same methods for variable selection are offered as in binary logistic regression. For more 
information, see the topic “Stepwise Variable Selection.” Here we will only define the three 
removal statistics—Wald, LR, and Conditional—and the Score entry statistic. 
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Score Statistic 

The score statistic is calculated for every variable not in the model to decide which variable should 
be added to the model. First we compute the information matrix I for all eligible variables based 
on the parameter estimates for the variables in the model and zero parameter estimates for the 
variables not in the model. Then we partition the resulting I into four submatrices as follows: 

 

 

where   and  are square matrices for variables in the model and variables not in the model, 
respectively, and   is the cross-product matrix for variables in and out.  The score statistic 
for variable is defined by 

 

 

        
 

Wald Statistic 

The Wald statistic is calculated for the variables in the model to select variables for  removal. 
The Wald statistic for variable is defined by 

 

 
where  is the parameter estimate associated with and  is the submatrix of  associated 
with . 

 

LR (Likelihood Ratio) Statistic 

The LR statistic is defined as twice the log of the ratio of the likelihood functions of two models 
evaluated at their own MPLES. Assume that r variables are in the current model and let us call the 
current model the full model. Based on the MPLES of parameters for the full model, l(full) is 
defined in “Estimation of Beta.”  For each of r variables deleted from the full model, MPLES 
are found and the reduced log-likelihood function, l(reduced), is calculated. Then LR statistic is 
defined as 

 
–2(l(reduced) – l(full)) 

 

Conditional Statistic 

The conditional statistic is also computed for every variable in the model. The formula for 
conditional statistic is the same as LR statistic except that the parameter estimates for each 
reduced model are conditional estimates, not MPLES. The conditional estimates are defined as 
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follows. Let                             be the MPLES for the r variables (blocks) and C be the asymptotic 
covariance for the parameters left in the model given  is 

 

 
where   is the MPLE for the parameter(s) associated with and  is without ,   is 
the covariance between the parameter estimates left in the model and  , and  is the 
covariance of . Then the conditional statistic for variable is defined by 

 

b 
 

where is the log-likelihood function evaluated at  . 
 

Note that all these four statistics have a chi-square distribution with degrees of freedom equal to 
the number of parameters the corresponding model has. 

 
Statistics 

The following output statistics are available. 
 

Initial Model Information 

The initial model for the first method is for a model that does not include covariates. The 
log-likelihood function l is equal to 

 

 

where   is the sum of weights of individuals in set . 

 
Model Information 

When a stepwise method is requested, at each step, the −2 log-likelihood function and  three 
chi-square statistics (model chi-square, improvement chi-square, and overall chi-square) and their 
corresponding degrees of freedom and significance are printed. 

 
–2 Log-Likelihood 

 

where  is the MPLE of  for the current model. 
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Improvement Chi-Square 

 
(–2 log-likelihood function for previous model) – ( –2 log-likelihood function for current model). 

 
The previous model is the model from the last step. The degrees of freedom are equal to the 
absolute value of the difference between the number of parameters estimated in these two models. 

 

Model Chi-Square 
 

(–2 log-likelihood function for initial model) – ( –2 log-likelihood function for current model). 
 

The initial model is the final model from the previous method. The degrees of freedom are equal 
to the absolute value of the difference between the number of parameters estimated in  these 
two model. 

 
Note: The values of the model chi-square and improvement chi-square can be less than or equal to 
zero. If the degrees of freedom are equal to zero, the chi-square is not printed. 

 

Overall Chi-Square 
 

The overall chi-square statistic tests the hypothesis that all regression coefficients for the variables 
in the model are identically zero.  This statistic is defined as 

 

 

where  represents the vector of first derivatives of the partial log-likelihood function evaluated 
at        . The elements of u and I are defined in “Estimation of Beta.” 

 
 

Information for Variables in the Equation 
 

For each of the single variables in the equation, MPLE, SE for MPLE, Wald statistic, and its 
corresponding df, significance, and partial R are given. For a single variable, R is defined by 

 

sign of MPLE 
 

if Wald . Otherwise R is set to zero. For a multiple category variable, only the Wald  statistic, 
df, significance, and partial R are printed, where R is defined by 

 
   Wald df  

2 log-likelihood for the intial model 
 

if Wald df.  Otherwise R is set to zero. 

Wald 
2 log-likelihood for the intial model 
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Information for the Variables Not in the Equation 

For each of the variables not in the equation, the Score statistic is calculated and its corresponding 
degrees of freedom, significance, and partial R are printed. The partial R for variables not in the 
equation is defined similarly to the R for the variables in the equation by changing the Wald 
statistic to the Score statistic. 

There is one overall statistic called the residual chi-square. This statistic tests if all regression 
coefficients for the variables not in the equation are zero. It is defined by 

 

 

where is the vector of first derivatives of the partial log-likelihood function  with 
respect to all the parameters not in the equation evaluated at MPLE  and   is equal to 

                                and A is defined in “Score Statistic.” 

 
Survival Table 

For each stratum, the estimates of the baseline cumulative survival and hazard  function 
and their standard errors are computed. is estimated by 

 

 

and the asymptotic variance of is defined in “Estimation of the Baseline Function.” Finally, 
the cumulative hazard function  and survival function are estimated by 

 

 

and, for a given x, 
 

 

The asymptotic variances are 
 

 

 
 
 
Plots 

and 
 

 

For a specified pattern, the covariate values are determined and is computed. There are three 
plots available for Cox regression. 
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Survival Plot 

For stratum j, , are plotted where 
 

 

Hazard Plot 

For stratum j, , are plotted where 
 

 

LML Plot  
 
The log-minus-log plot is used to see whether the stratification variable should be included as 
a covariate.  For stratum j, , are plotted.  If the plot shows 
parallelism among strata, then the stratum variable should be a covariate. 

 

Blank Handling 

All records with missing values for any input or output field are excluded from the estimation of 
the model. 

 
Scoring 

Survival and cumulative hazard estimates are given in “Survival Table.” Conditional upon 

survival until time t0, the probability of survival until time t is 

    
 
 
Blank Handling 

Records with missing values for any input field in the final model cannot be scored, and are 
assigned a predicted value of $null$. 

Additionally, records with “total” survival time (past + future) greater than the record with the 
longest observed uncensored survival time are also assigned a predicted value of $null$. 
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Decision List Algorithms 
The objective of decision lists is to find a group of individuals with a distinct behavior pattern; for 
example, a high probability of buying a product. A decision list model consists of a set of decision 
rules. A decision rule is an if-then rule, which has two parts: antecedent and consequent. The 
antecedent is a Boolean expression of predictors, and the consequent is the predicted value of the 
target field when the antecedent is true. The simplest construct of a decision rule is a segment 
based on one predictor; for example, Gender = ‘Male’ or Age         . 

A record is covered by a rule if the rule antecedent is true. If a case is covered by one of the 
rules in a decision list, then it is considered to be covered by the list. 

In a decision list, order of rules is significant; if a case is covered by a rule, it will be ignored 
by subsequent rules. 

 
 

Algorithm Overview 

The decision list algorithm can be summarized as follows: 
 

E   Candidate rules are found from the original dataset. 
 

E   The best rules are appended to the decision list. 
 

E   Records covered by the decision list are removed from the dataset. 
 

E   New rules are found based on the reduced dataset. 
 

The process repeats until one or more of the stopping criteria are met. 
 
 

Terminology of Decision List Algorithm 

The following terms are used in describing the decision list algorithm: 
 

Model.  A decision list model. 

Cycle. In every rule discovery cycle, a set of candidate rules will be found. They will then be 
added to the model under construction. The resulting models will be inputs to the next cycle. 

Attribute.  Another name for a variable or field in the dataset. 

Source attribute.  Another name for predictor  field. 

Extending the model.  Adding decision rules to a decision list or adding segments to a decision rule. 

Group.  A subset of records in the dataset. 

Segment.  Another name for group. 
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Main Calculations 
 
Notation 

The following notations are used in describing the decision list algorithm: 
 

 

 
 

Data matrix. Columns are fields (attributes), and rows are records (cases). 
 

 
 

A collection of list models. 
 

 
 

The ith list model of L. 
 

 
 

A list model that contains no rules. 
 

 The estimated response probability of list Li. 

N Total population size 
 

 The value of the mth field (column) for the nth record (row) of X. 
 

 The subset of records in X that are covered by list model Li. 

Y The target field in X. 
 

 
 

The value of the target field for the nth record. 

A Collection of all attributes (fields) of X. 
 

 The jth attribute of X. 

R A collection of rules to extend a preceding rule list. 
 

 
 

The kth rule in rule collection R. 

T A set of candidate list models. 
ResultSet A collection of decision list models. 

 

Primary Algorithm 

The primary algorithm for creating a decision list model is as follows: 

1. Initialize the model. 

E   Let d = Search depth, and w = Search width. 

E   If L =    , add to L. 

E   T =    . 

2. Loop over all elements   of L. 

E   Select the records   not covered by rules of : 
 

E   Call the decision rule algorithm to create an alternative rule set R on  . For more information, 
see the topic “Decision Rule Algorithm.” 
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E   Construct a set of new candidate models by appending each rule in R to . 

E   Save extended list(s) to T. 

3. Select list models from T. 

E   Calculate the estimated response probability   of each list model in T as 
 

E   Select the w lists in T with the highest   as . 

4. Add to ResultSet. 

5. If d = 1 or =     , return ResultSet and terminate; otherwise, reduce d by one and repeat from 
step 2. 

 
Decision Rule Algorithm 

Each rule is extended in decision rule cycles. With decision rules, groups are searched for 
significantly increased occurrence of the target value. Decision rules will search for groups 
with a higher or lower probability as required. 

 
Notation 

The following notations are used in describing the decision list algorithm: 
 

 

 
 

Data matrix. Columns are fields (attributes), and rows are records (cases). 

R A collection of rules to extend a preceding rule list. 
 

 
 

The ith rule in rule collection R. 
 

 
 

A special rule that covers all the cases in X. 
 

 The estimated response probability of Ri. 

N Total population size. 
 

 The value of the mth field (column) for the nth record (row) of X. 
 

 The subset of records in X that are covered by rule Ri. 

Y The target field in X. 
 

 
 

The value of the target field for the nth record. 

A Collection of all attributes (fields) of X. 
 

 
 

The jth attribute of X. If Allow attribute re-use is false, A excludes 
attributes existing in the preceding rule. 

SplitRule(X, ) The rule split algorithm for deriving rules about  and records in X. 
For more information, see the topic “Decision Rule Split Algorithm.” 

T A set of candidate list models. 
ResultSet A collection of decision list models. 
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Algorithm Steps 
 

The decision rule algorithm proceeds as follows: 

1. Initialize the rule set. 

E   Let d = Search depth, and w = Search width. 

E   If R =    , add to R. 

E   T =    . 

2. Loop over all rules   in R. 

E   Select records   covered by rule . 

E   Create an empty set S of new segments. 

E   Loop over attributes   in A. 
 Generate new segments based on attribute : 

 
SplitRule 

 Add new segments to S. 

E   Construct a set of new candidate rules by extending with each segment in S. 

E   Save extended rules to T. If S =    , add to ResultSet. 

3. Select rules from T. 

E   Calculate the estimated response probability   for each extended rule in T as 
 

 
E   Select the w rules with the highest   as . 

Add to ResultSet. 

E   If d = 1, return ResultSet and terminate.  Otherwise, set R = , T =    , reduce d by one, a   n   d 
repeat from step 2. 

 

Decision Rule Split Algorithm 

The decision rule split algorithm is used to generate high response segments from a single attribute 
(field). The records and the attribute from which to generate segments should be given. This 
algorithm is applicable to all ordinal attributes, and the ordinal attribute should have values that 
are unambiguously ordered. The segments generated by the algorithm can be used to expand an 
n-dimensional rule to an (n + 1)-dimensional rule. This decision rule split algorithm is sometimes 
referred to as the sea-level method. 
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Notation 

The following notations are used in describing the decision rule split algorithm: 
 

 

 
 

Data matrix. Columns are fields (attributes), and rows are records (cases). 

C A sorted list of attribute values (categories) to split. Values are sorted 
in ascending order. 

 

 
 

The ith category in the list of categories C. 
 

 The value of the split field (attribute) for the nth record (row) of X. 

Y The target field in X. 
 

 
 

The value of the target field for the nth record. 

N Total population size. 
M Number of categories in C. 

 

 
 

Observed response probability of category . 
 

 A segment of categories,   
  

  
The confidence interval (CI) for the response probability of . 

 

   The category with the higher response probability from . 
 

   The category with the larger number of records from . 

 

Algorithm Steps 

The decision rule split algorithm proceeds as follows: 

1. Compute   of each category . 
 

If                  ,   will be skipped. 

2. Find local maxima of   to create a segment set. 
 

 
where I is a positive integer satisfying the conditions 

 

 

 

 
The segment set is the ordered segments based on 
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3. Select a segment in SegmentSet. 

E   If SegmentSet is empty, return ResultSet and terminate. 

E   Select the segment  with the highest response probability  . 

E  If or        , remove the segment from SegmentSet and choose another. 

4. Validate the segment. 

E   If the following conditions are satisfied: 
 The size of the segment exceeds the minimum segment size criterion 

 
 

 
 

where 
 

 Response probability for the segment is significantly higher than that for the overall sample, 
as indicated by non-overlapping confidence intervals 

 

For more information, see the topic “Confidence Intervals.” 
 Extending the segment would lower the response probability 

 

and 
 

then add the segment  to ResultSet, and remove any segments  from ResultSet that have 
 as parent and for which . 

5. Extend the segment. 

E  Add to , where 

if  
                                                   if and  

otherwise 

E   Adjust R or L accordingly, i.e.  if             , set   ; if       , set 
. 

E   Return  to SegmentSet, and repeat from step 3. 
 

Confidence Intervals 

The confidence limits for  are calculated as 
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or . 

 

 
 

         
 

where n is the coverage of the rule or list, x is the response frequency of the rule or list, α is the 
desired confidence level, and  is the inverse cumulative distribution function for F with a 
and b degrees of freedom, for percentile        . 

 
Secondary  Measures 

For each segment, the following measures are reported: 
 

Coverage.  The number of records in the segment,  . 

Frequency.   The number of records in the segment for which the response is true, 
                   . 

Probability. The proportion of records in the segment for which the response is true, , 
Frequency 
Coverage 

 
Blank Handling 

In decision list models, blank values for input fields can be treated as a separate category that can 
be used to define segments, or can be excluded from the model, depending on the expert model 
option. The default is to use blanks as a category for defining segments. Records with blank 
values for the target field are excluded from model building. 

 
Generated Model/Scoring 

The decision list generated model consists of a set of segments. When scoring new data, each 
record is evaluated for membership in each segment, in order. The first segment in model order 
that describes the record based on the predictor fields claims the record and determines the 
predicted value and the probability. Records where the predicted value is not the response value 
will have a value of $null. Probabilities are calculated as described above. 

 
Blank Handling 

In scoring data with a decision list generated model, blanks are considered valid values for 
defining segments. If the model was built with the expert option Allow missing values in conditions 
disabled, a record with a missing value for one of the input fields will not match any segment  
that depends on that field for its definition. 
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No analysis is done for any subfile group for which the number of non-empty groups is less 
than two or the number of cases or sum of weights fails to exceed the number of non-empty 
groups. An analysis may be stopped if no variables are selected during variable selection or 
the eigenanalysis fails. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
Table 14-1 
Notation 

Notation Description 
g Number of groups 
p Number of variables 
q Number of variables selected 

                                      Value of variable i for case k in group j 

                                         Case weights for case k in group j 

Number of cases in group j 

Sum of case weights in group j 

n Total sum of weights 
 

Basic Statistics 

The procedure calculates the following basic statistics. 
 

Mean 
 

 

 
 

 

Variances 

 
variable   in group   

 
 
variable 

 
 

                                                           variable in group  

variable 
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Within-Groups Sums of Squares and Cross-Product Matrix (W) 
 

 
Total Sums of Squares and Cross-Product Matrix (T) 

 

 

Within-Groups Covariance Matrix 
 

 
Individual Group Covariance Matrices 

 

 

Within-Groups Correlation Matrix (R) 

if 
SYSMIS otherwise 

 
Total Covariance Matrix 

 

 
Univariate F and Λfor Variable I 

 

with g−1 and n−g degrees of freedom 
 

with 1, g−1 and n−g degrees of freedom 
 
Rules of Variable Selection 

Both direct and stepwise variable entry are possible. Multiple inclusion levels may also be 
specified. 



 
 

 

Method = Direct 
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For direct variable selection, variables are considered for inclusion in the order in which they are 
passed from the upstream node.  A variable is included in the analysis if, when it is included, 
no variable in the analysis will have a tolerance less than the specified tolerance limit (default 
= 0.001). 

 

Stepwise Variable Selection 

At each step, the following rules control variable selection: 
 Eligible variables with higher inclusion levels are entered before eligible variables with lower 

inclusion levels. 
 The order of entry of eligible variables with the same even inclusion level is determined by 

their order in the upstream node. 
 The order of entry of eligible variables with the same odd level of inclusion is determined 

by their value on the entry criterion. The variable with the “best” value for the criterion 
statistic is entered first. 

 When level-one processing is reached, prior to inclusion of any eligible variables, all 
already-entered variables which have level one inclusion numbers are examined for removal. 
A variable is considered eligible for removal if its F-to-remove is less than the F value for 
variable removal, or, if probability criteria are used, the significance of its F-to-remove 
exceeds the specified probability level. If more than one variable is eligible for removal, that 
variable is removed that leaves the “best” value for the criterion statistic for the remaining 
variables.  Variable removal continues until no more variables are eligible for removal. 
Sequential entry of variables then proceeds as described previously, except that after each step, 
variables with inclusion numbers of one are also considered for exclusion as described before. 

 A variable with a zero inclusion level is never entered, although some statistics for it are 
printed. 

 

Ineligibility for Inclusion 

A variable with an odd inclusion number is considered ineligible for inclusion if: 
 The tolerance of any variable in the analysis (including its own) drops below the specified 

tolerance limit if it is entered, or 
 Its F-to-enter is less than the F-value for a variable to enter value, or 
 If probability criteria are used, the significance level associated with its F-to-enter exceeds the 

probability to enter. 
 

A variable with an even inclusion number is ineligible for inclusion if the first condition above 
is met. 
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Computations During Variable Selection 

During variable selection, the matrix W is replaced at each step by a new matrix using the 
symmetric sweep operator described by Dempster (1969). If the first q variables have been 
included in the analysis, W may be partitioned as: 

 

 

where W11 is q×q.  At this stage, the matrix is defined by 
 

In addition, when stepwise variable selection is used, T is replaced by the matrix , defined 
similarly. 

 
The following statistics are computed. 

 
Tolerance 

 
TOL 

 
 

if 
if variable   is not in the analysis and 
if variable   is in the analysis and 

 

If a variable’s tolerance is less than or equal to the specified tolerance limit, or its inclusion in the 
analysis would reduce the tolerance of another variable in the equation to or below the limit, the 
following statistics are not computed for it or any set including it. 

 

F-to-Remove 
 

with degrees of freedom g−1 and n−q−g+1. 
 

F- to-Enter 
 

with degrees of freedom g−1 and n−q−g. 
 

Wilks’ Lambda for Testing the Equality of Group Means 
 

with degrees of freedom q, g−1 and n−g. 
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The Approximate F Test for Lambda (the “overall F”), also known as Rao’s R (Tatsuoka, 
1971) 

 
 

 

           
 

with degrees of freedom qh and r/s+1−qh/2. The approximation is exact if q or h is 1 or 2. 
 
Rao’s V (Lawley-Hotelling Trace) (Rao, 1952; Morrison, 1976) 

 

 

When n−g is large, V, under the null hypothesis, is approximately distributed as  with q(g−1) 
degrees of freedom. When an additional variable is entered, the change in V, if positive, has 
approximately a  distribution with g−1 degrees of freedom. 

 
The Squared Mahalanobis Distance (Morrison, 1976) between groups a and b 

 

The F Value for Testing the Equality of Means of Groups a and b (Smallest F ratio) 
 
 

                                    

The Sum of Unexplained Variations (Dixon, 1973) 
 

 

Classification Functions 
Once a set of q variables has been selected, the classification functions (also known as Fisher’s 
linear discriminant functions) can be computed using 

 

for the coefficients, and 
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for the constant, where is the prior probability of group j. 
 

Canonical Discriminant Functions 

The canonical discriminant function coefficients are determined by solving the general eigenvalue 
problem 

 

 
where V is the unscaled matrix of discriminant function coefficients and λ is a diagonal matrix of 
eigenvalues.  The eigensystem is solved as follows: 

 
The Cholesky decomposition 

 

 
is formed, where L is a lower triangular matrix, and  . 

The symmetric matrix is formed and the system 

 

is solved using tridiagonalization and the QL method.  The result is m eigenvalues,  where 
  and corresponding orthonormal eigenvectors, UV. The eigenvectors of the 

original system are obtained as 
 

 
For each of the eigenvalues, which are ordered in descending magnitude, the following statistics 
are calculated. 

 

Percentage of Between-Groups Variance Accounted for 
 

 

Canonical Correlation 
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Wilks’ Lambda 

Testing the significance of all the discriminating functions after the first k: 
 

 

The significance level is based on 
 

 
which is distributed as a  with (q−k)(g−k−1) degrees of freedom. 

 

The Standardized Canonical Discriminant Coefficient Matrix D 

The standard canonical discriminant coefficient matrix D is computed as 
 

 
where 

 
S=diag 

 

S11= partition containing the first q rows and columns of S 

V is a matrix of eigenvectors such that =I 

The Correlations Between the Canonical Discriminant Functions and the Discriminating 
Variables 

The correlations between the canonical discriminant functions and the discriminating variables 
are given by 

 

 

If some variables were not selected for inclusion in the analysis (q<p), the eigenvectors are 
implicitly extended with zeroes to include the nonselected variables in the correlation matrix. 
Variables for which         are excluded from S and W for this calculation; p then 
represents the number of variables with non-zero within-groups variance. 

 

The Unstandardized Coefficients 

The unstandardized coefficients are calculated from the standardized ones using 
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The associated constants are: 
 

 

The group centroids are the canonical discriminant functions evaluated at the group means: 
 

 

Tests For Equality Of Variance 

Box’s M is used to test for equality of the group covariance matrices. 

 
log log 

 
where 

 

  = pooled within-groups covariance matrix excluding groups with singular covariance matrices 
 

  = covariance matrix for group j. 
 

Determinants of   and   are obtained from the Cholesky decomposition. If any diagonal 
element of the decomposition is less than 10-11, the matrix is considered singular and excluded 
from the analysis. 

 

 

where is the ith diagonal entry of L such that                      . Similarly, 
 

where 
 

= sum of weights of cases in all groups with nonsingular covariance matrices 
 

The significance level is obtained from the F distribution with t1 and t2 degrees of freedom 
using (Cooley and Lohnes, 1971): 

if 
if 

 

where 
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if  
if  

If           is zero, or much smaller than e2, t2 cannot be computed or cannot be computed 
accurately. If 

 

the program uses Bartlett’s  statistic rather than the F statistic: 
 

 
with t1 degrees of freedom. 

For testing the group covariance matrix of the canonical discriminant functions, the procedure is 
similar. The covariance matrices   and   are replaced by   and  ,  where 

 

is the group covariance matrix of the discriminant functions. 

The pooled covariance matrix in this case is an identity, so that 

 
 

 

 
 

 
 

where the summation is only over groups with singular . 
 
Blank Handling 

All records with missing values for any input or output field are excluded from the estimation of 
the model. 

 
Generated model/scoring 

The basic procedure for classifying a case is as follows: 
 If X is the 1×q vector of discriminating variables for the case, the 1×m vector of canonical 

discriminant function values is 
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where 

 

 
 
 

 A chi-square distance from each centroid is computed 

 

  
where   is the covariance matrix of canonical discriminant functions for group j and   is 
the group centroid vector.  If the case is a member of group j,  has a  distribution with 
m degrees of freedom. P(X|G), labeled as P(D>d|G=g) in the output, is the significance 
level of such a   . 

 The classification, or posterior probability, is 

is the prior probability for group j. A case is classified into the group for which 
is highest. 

 
The actual calculation of is 

 

if 
 

otherwise 

If individual group covariances are not used in classification, the pooled within-groups covariance 
matrix of the discriminant functions (an identity matrix) is substituted for   in the above 
calculation, resulting in considerable simplification. 

 
If any   is singular, a pseudo-inverse of the form 

 

replaces and replaces .    is a submatrix of   whose rows and columns 
correspond to functions not dependent on preceding functions. That is, function 1 will be excluded 
only if the rank of        , function 2 will be excluded only if it is dependent on function 1, and 
so on. This choice of the pseudo-inverse is not optimal for the numerical stability of  , but 
maximizes the discrimination power of the remaining functions. 

 

Cross-Validation (Leave-one-out classification) 

The following notation is used in this section: 
Table 14-2 
Notation 

Notation Description 
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Notation Description 
Sample mean of jth group 

 

Sample mean of jth group excluding point 
 
 

 

   

Polled sample covariance matrix 

                                          Sample covariance matrix of jth group 

                                        Polled sample covariance matrix without point 
 

 

 
Cross-validation applies only to linear discriminant analysis (not quadratic).   During 
cross-validation, all cases in the dataset are looped over. Each case, say , is extracted once and 
treated as test data. The remaining cases are treated as a new dataset. 

 
Here we compute                     and                                              . If there is an i
      
satisfies (                                                 ), then the extracted point 

is misclassified. The estimate of prediction error rate is the ratio of the sum of misclassified 
case weights and the sum of all case weights. 

To reduce computation time, the linear discriminant method is used instead of the canonical 
discriminant method. The theoretical solution is exactly the same for both methods. 

 

Blank Handling (discriminant analysis algorithms scoring) 

Records with missing values for any input field in the final model cannot be scored, and are 
assigned a predicted value of $null$. 
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Ensembles Algorithms 
Ensembles are used to enhance model accuracy (boosting), enhance model stability (bagging), 
build models for very large datasets (pass, stream, merge), and generally combine scores from 
different models. 
 For more information, see the topic “Very large datasets (pass, stream, merge) algorithms.” 
 For more information, see the topic “Bagging and Boosting Algorithms.” 
 For more information, see the topic “Ensembling model scores algorithms.” 

 
Bagging and Boosting Algorithms 

Bootstrap aggregating (Bagging) and boosting are algorithms used to improve model stability and 
accuracy. Bagging works well for unstable base models and can reduce variance in predictions. 
Boosting can be used with any type of model and can reduce variance and bias in predictions. 

 

Notation 

The following notation is used for bagging and boosting unless otherwise stated: 

K The number of distinct records in the training set. 
Predictor values for the kth record. 

Target value for the kth record. 

                                          Frequency weight for the kth record. 

Analysis weight for the kth record. 

N The total number of records; . 
M The number of base models to build; for bagging, this is the number of 

bootstrap samples. 
The model built on the mth bootstrap sample. 

                                         Simulated frequency weight for the kth record of the mth bootstrap sample. 

                                          Updated analysis weight for the kth record of the mth bootstrap sample. 

                                         Predicted target value of the kth record by the mth model. 
 

For a categorical target, the probability that the kth record belongs to 
category    , i=1, ..., C, in model m. 
For any condition   , is 1 if holds and 0 otherwise. 
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Bootstrap Aggregation 

Bootstrap aggregation (bagging) produces replicates of the training dataset by sampling with 
replacement from the original dataset. This creates bootstrap samples of equal size to the original 
dataset. The algorithm is performed iteratively over k=1,..,K and m=1,...,M to generate frequency 
weights: 
 
 
 
 

 
 

 

 
Then a model is built on each replicate. Together these models form an ensemble model. The 
ensemble model scores new records using one of the following methods; the available methods 
depend upon the measurement level of the target. 

 
Scoring a Continuous Target 

 Mean 

 
 

 
 Median 

Sort and relabel them 
 

  

 
 

if is odd 

if is even 
 

Scoring a Categorical Target 

 Voting 
 

 

where 
 Highest probability 

 

 

    
 Highest mean probability 
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Bagging Model Measures 
 

Accuracy 
 

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated 
with each ensemble method), and base models. 

 
For categorical targets, the classification accuracy is 

 

 
 

For continuous targets, it is 
 

 
where 

 
Note that R2 can never be greater than one, but can be less than zero. 

 
For the naïve model,  is the modal category for categorical targets and the mean for continuous 
targets. 

 
Diversity 

 
Diversity is a range measure between 0 and 1 in the larger-is-more-diverse form. It shows how 
much predictions vary across base models. 

 
For categorical targets, diversity is 

 

 
 

where . 
 

For continuous targets, diversity is 
 

D 



 

Ensembles Algorithms 

 
 

 
 

Adaptive Boosting 

Adaptive boosting (AdaBoost) is an algorithm used to boost models with continuous targets 
(Freund and Schapire 1996, Drucker 1997). 

1. Initialize values. 
 

Set 
if analysis weights specified 

otherwise 

Set m=1,          , and      .  Note that analysis weights are initialized even if the 
method used to build base models does not support analysis weights. 

2. Build base model m, , using the training set and score the training set. 
 
 

Set the model weight for base model m,  
 
 
 

where                             . 
 

3. Set weights for the next base model. 
 

 

 

where                                                                    . Note that analysis weights are always updated.  If 
 

the method used to build base models does not support analysis weights, the frequency weights 
are updated for the next base model as follows: 

 
 
                                           
 
 
 
 
 

 
 

If m<M, set m=m+1 and go to step 2. Otherwise, the ensemble model is complete. 
 

Note:  base models where or              are removed from the 

ensemble. 

Scoring 
 

AdaBoost uses the weighted median method to score the ensemble model. 
 

Sort  and relabel them                , retaining the association of the model weights, , 
and relabeling them 
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The ensemble predicted value  is then  , where i is the value such that 

 

 
 

 
 

 
Stagewise Additive Modeling using Multiclass Exponential loss 

Stagewise Additive Modeling using a Multiclass Exponential loss function (SAMME) is an 
algorithm that extends the original AdaBoost algorithm to categorical targets. 

1. Initialize values. 
 

Set 
if analysis weights specified 

otherwise 

Set m=1,          , and      .  Note that analysis weights are initialized even if the 
method used to build base models does not support analysis weights. 

2. Build base model m, , using the training set and score the training set. 

Set the model weight for base model m,  

where  . 
 

3. Set weights for the next base model. 
 

where                                         . Note that analysis weights are always updated. If    the 
method used to build base models does not support analysis weights, the frequency weights are 
updated for the next base model as follows: 

 

                         
 
 
 

 

If m<M, set m=m+1 and go to step 2. Otherwise, the ensemble model is complete. 
 

Note: base models where or are removed from the ensemble. 
 

Scoring 
 

SAMME uses the weighted majority vote method to score the ensemble model. 
 

The predicted value of the kth record for the mth base model is                                   . 
 

The ensemble predicted value is then                                                    . Ties are resolved 

at random.
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The ensemble predicted probability is                                                    . 
 
 

Boosting Model Measures 
 

Accuracy 
 

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated 
with each ensemble method), and base models. 

 
For categorical targets, the classification accuracy is 

 

 

For continuous targets, it is 
 

 

where 
 

Note that R2 can never be greater than one, but can be less than zero. 
 

For the naïve model,  is the modal category for categorical targets and the mean for continuous 
targets. 
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Very large datasets (pass, stream, merge) algorithms 

We implement the PSM features PASS, STREAM, and MERGE through ensemble modeling. 
PASS builds models on very large data sets with only one data pass; STREAM updates the 
existing model with new cases without the need to store or recall the old training data; MERGE 
builds models in a distributed environment and merges the built models into one model. 
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In an ensemble model, the training set will be divided into subsets called blocks, and a model will 
be built on each block. Because the blocks may be dispatched to different threads (here one process 
contains one thread) and even different machines, models in different processes can be built at the 
same time. As new data blocks arrive, the algorithm simply repeats this procedure. Therefore it 
can easily handle the data stream and perform incremental learning for ensemble modeling. 

 

Pass 
 

The PASS operation includes following steps: 
 

1. Split the data into training blocks, a testing set and a holdout set. Note that the frequency weight, 
if specified, is ignored when splitting the training set into blocks (to prevent blocks from being 
entirely represented by a single case) but is accounted for when creating the testing and holdout 
sets. 

 
2. Build base models on training blocks and build a reference model on the testing set. A single 

model is built on the testing set and each training block. 
 

3. Evaluate each base model by computing the accuracy based on the testing set. Select a subset 
of base models as ensemble elements according to accuracy. 

 
4. Evaluate the ensemble model and the reference model by computing the accuracy based on 

the holdout set. If the ensemble model’s performance is not better than the reference model’s 
performance on the holdout set, we use the reference model to score the new cases. 

 

Computing Model Accuracy 

 
The accuracy of a base model is assessed on the testing set. For each vector of predictors and 
the corresponding label observed in the testing set T, let be the label predicted by the 
given model.  Then the testing error is estimated as: 

 
 

Categorical  
target.  

 
 
 
 

Continuous  
target. 

 
 
 

Where              is 1 if            and 0 otherwise. 
 

The accuracy for the given model is computed by A=1−E. The accuracy for the whole ensemble 
model and the reference model is assessed on the holdout set. 
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Stream 

When new cases arrive and the user wants to update the existing ensemble model with these 
cases, the algorithm will: 

1. Start a PASS operation to build an ensemble model on the new data, then 

2. MERGE the newly created ensemble model and the existing ensemble model. 
 

Merge 

The MERGE operation has the following steps: 

1. Merge the holdout sets into a single holdout set and, if necessary, reduce this set to a reasonable 
size. 

2. Merge the testing sets into a single testing set and, if necessary, reduce this set to a reasonable size. 

3. Build a merged reference model on the merged testing set. 

4. Evaluate every base model by computing the accuracy based on the merged testing set. Select a 
subset of base models as elements of the merged ensemble model according to accuracy. 

5. Evaluate the merged ensemble model and the merged reference model by computing the accuracy 
based on the merged holdout set. 

 
Adaptive Predictor Selection 

There are two methods, depending upon whether the method used to build base models has an 
internal predictor selection algorithm. 

 
Method has predictor selection algorithm 

 
The first base model is built with all predictors available to the method’s predictor selection 
algorithm. Base model j (j > 1) makes the ith predictor available with probability 

 

 
where is the number of times the ith predictor was selected by the method’s predictor selection 
algorithm in the previous j−1 base models, is the number of times the ith predictor was made 
available to the method’s predictor selection algorithm in the previous j−1 base models, C is a 
constant to smooth the value of , and  is a lower limit on . 

 
Method does not have predictor selection algorithm 

 
Each base model makes the ith predictor available with probability 
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if 
otherwise 

 

where is the p-value of a test for the ith predictor, as defined below. 
 For a categorical target and  categorical predictor, is a chi-square test of 

 

 
 For a categorical target and   continuous predictor, is  an F test  of 

with degrees of freedom .    is the 

number of cases with Y=j, and  are the sample mean and sample variance of X given 
Y=j, and 

 For a continuous target and   categorical predictor, is  an F test  of 
with degrees of freedom .    is the 

number of cases with X=i, and  are the sample mean and sample variance of Y given 
X=i, and . 

 For a continuous target and continuous predictor, is a two-sided t test of where 

and with degrees of freedom .   is the sample variance 

of X and is the sample variance of Y. 

 
Automatic Category Balancing 

When a target category occurs relatively infrequently, many models do a poor job of predicting 
members of that rarely occurring category, even if the overall prediction rate of the model is fairly 
good. Automatic category balancing should improves the model’s accuracy when predicting 
infrequently occurring values. 

 
As records arrive, they are added to a training block until it is full. Then the proportion of records 
in each category is computed:            ,    where is the weighted number of records taking 
category i and w is the total weighted number of records. 

E   If there is any category such that                       , where is the number of target categories 
and   = 0.3, then randomly remove each record from the training block with probability 

 

This operation will tend to remove records from frequently-occurring categories. Add new records 
to the training block until it is full again, and repeat this step until the condition is not satisfied. 

E   If there is any category such that       , then recompute the frequency weight for record k as 
                                                        , where is the category of the kth record. This operation 

gives greater weight to infrequently occurring categories. 
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Model Measures 

The following notation applies. 

N Total number of records 
M Total number of base models 

                                          The frequency weight of record k 

The observed target value of record k 

                                          The predicted target value of record k by the ensemble model 

                                             The predicted target value of record k by base model m 

 

Accuracy 
 

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated 
with each ensemble method), and base models. 

 
For categorical targets, the classification accuracy is 

 

 
 
 

where  
 

if  
otherwise 

 
For continuous targets, it is 

 

 

where 
 

Note that R2 can never be greater than one, but can be less than zero. 
 

For the naïve model,  is the modal category for categorical targets and the mean for continuous 
targets. 

 
Diversity 

 
Diversity is a range measure between 0 and 1 in the larger-is-more-diverse form. It shows how 
much predictions vary across base models. 

 
For categorical targets, diversity is 
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where  and  is defined as above. 

Diversity is not available for continuous targets. 

Scoring 
 
 

There are several strategies for scoring using the ensemble models. 
 

Continuous Target 
 

Mean.  
 

Median.      

where   is the final predicted value of case i, and  is the mth base model’s predicted 
value of case i. 

 
Categorical Target 

 
Voting. Assume that represents the label output of the mth base model for a given vector of 
predictor values.  if the label assigned by the mth base model is the kth target category 
and 0 otherwise. There are total of M base models and K target categories. The majority vote 
method selects the jth category if it is assigned by the plurality of base models. It satisfies the 
following equation: 

 
 
 
 

Let  be the testing error estimated for the mth base model. Weights for the weighted majority 
vote are then computed according to the following expression: 

 

 
Probability voting.  Assume that is the posterior probability estimated for the kth target 
category by the mth base model for a given vector of predictor values. The following rules 
combine the probabilities computed by the base models. The jth category is selected such that it 
satisfies the corresponding equation. 
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Ties are resolved at random. 

 
Softmax smoothing.  The softmax function can be used for smoothing the probabilities: 

 

 

 
 

where is the rule-based confidence for category i and  is the smoothed value. 
 
Ensembling model scores algorithms 

Ensembling scores from individual models can give more accurate predictions. By combining 
scores from multiple models, limitations in individual models may be avoided, resulting in a 
higher overall accuracy. Models combined in this manner typically perform at least as well as the 
best of the individual models and often better. 

 
Note that while the options for general ensembling of scores are similar to those for boosting, 
bagging, and very large datasets, the specific options for combining scoring are slightly different. 

 

Notation 

The following notation applies. 

N Total number of records 
M Total number of base models 

The observed target value of record i 

                                           The predicted target value of record i by the ensemble model 

                                            The predicted target value of record i by base model m 

 
 
Scoring 

There are several strategies for scoring using the ensemble models. 
 

Continuous Target 
 

Mean.  
 

where   is the final predicted value of case i, and   is the mth base model’s predicted 
value of case i. 

 
Standard error. 
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m  1 m  1 

 

 
 

Categorical Target 
 

Voting. Assume that represents the label output of the mth base model for a given vector of 
predictor values.  if the label assigned by the mth base model is the kth target category 
and 0 otherwise. There are total of M base models and K target categories. The majority vote 
method selects the jth category if it is assigned by the plurality of base models. It satisfies the 
following equation: 

 
 
 
 
 

Confidence-weighted  (probability)  voting. Assume that is the posterior probability estimated 
for the kth target category by the mth base model for a given vector of predictor values. The 
following rules combine the probabilities computed by the base models. The jth category is 
selected such that it satisfies the corresponding equation. 

 
 
 
 
 

Highest confidence (probability) wins. 

M (maxM 
 

Raw propensity-weighted voting. This is equivalent to confidence-weighted voting for a flag target, 
where the weights for true are the propensities and the weights for false are 1−propensity. 

 
Adjusted propensity-weighted voting. This is similar to raw propensity-weighted voting for a 
flag target, where the weights for true are the adjusted propensities and the weights for false 
are 1−adjusted propensity. 

 
Average raw propensity. The raw propensities scores are averaged across the base models. If the 
average is > 0.5, then the record is scored as true. 

 
Average adjusted propensity. The adjusted propensities scores are averaged across the base models. 
If the average is > 0.5, then the record is scored as true. 



 

 



 

Factor Analysis/PCA Algorithms 

Overview 

The Factor/PCA node performs principal components analysis and six types of factor analysis. 
 

Primary  Calculations 
 
Factor Extraction 

 
Principal Components Analysis 

 
The matrix of factor loadings based on factor m is 

 

 
where 

 

 
 

 

The communality of variable i is given by 
 
 

 
 

  
 
 

Analyzing a Correlation Matrix 
 

are the eigenvalues and are the corresponding eigenvectors of , where 
is the correlation matrix. 

 
Analyzing a Covariance Matrix 

 

are the eigenvalues and are the corresponding eigenvectors of , where 
is the covariance matrix. 

 

The rescaled loadings matrix is                             

The rescaled communality of variable i is               
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Principal Axis Factoring 
 

Analyzing a Correlation Matrix 
 

An iterative solution for communalities and factor loadings is sought. At iteration i, the 
communalities from the preceding iteration are placed on the diagonal of , and the resulting is 
denoted by . The eigenanalysis is performed on , and the new communality of variable  j 
is estimated by 

 
 

 

 

  

The factor loadings are obtained by 
 

Iterations continue until the maximum number (default 25) is reached or until the maximum 
change in the communality estimates is less than the convergence criterion (default 0.001). 

 
Analyzing a Covariance Matrix 

 
This analysis is the same as analyzing a correlation matrix, except is used instead of the 
correlation matrix . Convergence is dependent on the maximum change of rescaled communality 
estimates. 

At iteration i, the rescaled loadings matrix is                              . The rescaled 
communality of variable i is                     

 
Maximum Likelihood 

The maximum likelihood solutions of and  are obtained by minimizing 
 

with respect to and , where p is the number of variables, is the factor loading matrix, and 
  is the diagonal matrix of unique variances. 
The minimization of F is performed by way of a two-step algorithm. First, the conditional 

minimum of F for a given y is found.  This gives the function , which is minimized 
numerically using the Newton-Raphson procedure. Let   be the column vector containing the 
logarithm of the diagonal elements of y at the sth iteration. Then 

 

 
where   is the solution to the system of linear equations 

 

 
and where 
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and   is the column vector containing . The starting point   is 
 

    

 

where m is the number of factors and  is the ith diagonal element of  . 
The values of ,  , and can be expressed in terms of the  eigenvalues 

and corresponding eigenvectors , ,..., of matrix . That is, 
 

 

 

 

 
 

 

 
 

 

 
 

 
  

 
 

where 
 
 
 
 

The approximate second-order derivatives 
 

 

are used in the initial step and when the matrix of the exact second-order derivatives is not positive 
definite or when all elements of the vector are greater than 0.1. If (Heywood 
variables), the diagonal element is replaced by 1 and the rest of the elements of that column and 
row are set to 0.  If the value of   is not decreased by step  , the step is halved and halved  
again until the value of  decreases or 25 halvings fail to produce a decrease. (In this case, the 
computations are terminated.) Stepping continues until the largest absolute value of the elements 
of is less than the criterion value (default 0.001) or until the maximum number of iterations 
(default 25) is reached.  Using the converged value of  (denoted by ), the eigenanalysis is 
performed on the matrix . The factor loadings are computed as 

 

where 
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Unweighted and Generalized Least Squares 

The same basic algorithm is used in ULS and GLS as in maximum likelihood, except that 
 

for ULS 
                 for GLS 

for the ULS method, the eigenanalysis is performed on   the matrix , where 
are the eigenvalues. In terms of the derivatives, for ULS, 

 

 

 

  
   

  
 

 

 

 
and 

 

 

For GLS, 
 

 

 

 
 

 
 

  
 

and 
 

Also, the factor loadings of the ULS method are obtained by 
 

 
The chi-square statistic for m factors for the ML and GLS methods is given by 
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with degrees of freedom. 
 

Alpha Factoring 
 

Alpha factoring involves an iterative procedure, where at each iteration i: 
 

The eigenvalues ( ) and eigenvectors ( ) of 
 

are computed. 
 

The new communalities are 
 

 

The initial values of the communalities, , are 
 

  and all      
otherwise 

 

where   is the ith diagonal entry of   . 

If  and all  are equal to one, the procedure is terminated. If for some i, , 
the procedure is terminated. 

 
Iteration stops if any of the following are true: 

 

 

 

          for any  
 

The communalities are the values when iteration stops, unless the last termination criterion is true, 
in which case the procedure terminates. The factor pattern matrix is 

 

where f is the final iteration. 
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Image Factoring 

 
Analyzing a Correlation Matrix 

 
Eigenvalues and eigenvectors of are found. 

 

 

where   is the ith diagonal element of   
 

The factor pattern matrix is 
 

 
where   and   correspond to the m eigenvalues greater than 1 (and the associated 
eigenvectors). If , the procedure is terminated. 

 
The communalities are 

 

 
 
 

The image covariance matrix is 
 

 
 

The anti-image covariance matrix is 
 

 
 

Analyzing a Covariance Matrix 
 

When analyzing a covariance matrix, the covariance matrix is used instead of the correlation 
matrix . The calculation is similar to the correlation matrix case. 

 
The rescaled factor pattern matrix is 

 

 
and the rescaled communality of variable i is              . 
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Factor Rotation 
 

Orthogonal Rotations 
 

Rotations are done cyclically on pairs of factors until the maximum number of iterations is 
reached or the convergence criterion is met. The algorithm is the same for all orthogonal rotations, 
differing only in computations of the tangent values of the rotation angles. 

 
The factor pattern matrix is normalized by the square root of communalities: 

 

 
where 

 

                          is the factor pattern matrix 
 

 

The tranformation matrix is initialized to . 
 

At each iteration i: 
 The convergence criterion is 

 

 
where the initial value of   is the original factor pattern matrix. For subsequent iterations, 
the initial value is the final value of   when all factor pairs have been rotated. 

For all pairs of factors , ) where , the following are computed: 
 The angle of rotation is 

 

 

where 
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If , no rotation is done on the pair of factors. 
 The new rotated factors are 

 

 

where   are the last values for factor j calculated in this iteration. 
 The accrued rotation transformation matrix is 

 

 

where   and are the last calculated values of the jth and kth columns of . 
 Iteration is terminated when 

 

or the maximum number of iterations is reached. 
 

Final rotated factor pattern matrix 
 

where   is the value of the last iteration. 

Reflect factors with negative sums.  If 

 
 

 

 

 
 

then 
 

 

Rearrange the rotated factors such that 
 
 

 
 

  
 

 

The communalities are 
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Direct Oblimin Rotation 

The direct oblimin method (Jennrich and Sampson, 1966) is used for oblique rotation. The user 
can choose the parameter   .  The default value is . 

 
The factor pattern matrix is normalized by the square root of the communalities 

 

where 
 
 

 

 

 
If no Kaiser is specified, this normalization is not done. 

Initializations 

The factor correlation matrix is initialized to . The following are also computed: 
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At each iteration, all possible factor pairs are rotated.  For a pair of factors  and  ( ), 
the following are computed: 
  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
A root a of the equation                                  is computed, as well as 

 

 

 

 
 

 
 

The rotated pair of factors is 
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These replace the previous factor values. 

New values are computed for 

 

 
 

 

 

 
 

 
 

 

 

 
 

 

 
 

 
 

 

 

 

All values designated with a tilde (~) replace the original values and are used in subsequent 
calculations. 

 
The new factor correlations with factor p are 

 

 

 

 
After all factor pairs have been rotated, iteration is terminated if: 

MAX iterations have been done, or 
 

where 
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Otherwise, the factor pairs are rotated again. 

The final rotated factor pattern matrix is 

 
  

where   is the value in the final iteration. 
 

The factor structure matrix is 
 

where  is the factor correlation matrix in the final iteration. 
 

Promax Rotation 

The promax rotation is a computationally fast rotation (Hendrickson and White, 1964). The speed 
is achieved by first rotating to an orthogonal varimax solution and then relaxing the orthogonality 
of the factors to better fit the simple structure. 

 
Varimax rotation is used to get an orthogonal rotated matrix               . 

The matrix is calculated, where 

 

 

 
Here, is the power of promax rotation        .   

The matrix is calculated. 

   
 

The matrix is normalized by column to a transformation matrix 
 

where   is the diagonal matrix that normalizes the columns of   . 

At this stage, the rotated factors are 
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Because               , and the diagonal elements do not equal 1, we must 
modify the rotated factor to 

 

 
where 

 

The rotated factor pattern is 
 

 

The correlation matrix of the factors is 
 

 

The factor structure matrix is 
 

 
 
Factor Score Coefficients 

IBM® SPSS® Modeler uses the regression method of computing factor score coefficients 
(Harman, 1976). 

 
 

where  is the factor structure matrix. For orthogonal rotations . 
For principal components analysis without rotation, if any  , factor score coefficients 

are not computed. For principal components with rotation, if the determinant of  is less 
than , the coefficients are not computed. Otherwise, if is singular, factor score coefficients 
are not computed. 

 

Blank Handling 

By default, a case that has a missing value for any input or output field is deleted from the 
computation of the correlation matrix on which all consequent computations are based. If the Only 
use complete records option is deselected, each correlation in the correlation matrix is computed 
based on records with complete data for the two fields associated with the correlation, regardless 
of missing values on other fields. For some datasets, this approach can lead to a nonpositive 
definite matrix, so that the model cannot be estimated. 
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Secondary Calculations 
 
Field Statistics and Other Calculations 

The statistics shown in the advanced output for the regression equation node are calculated in the 
same manner as in the FACTOR procedure in IBM® SPSS® Statistics. For more details, see the 
SPSS Statistics Factor algorithm document, available at http://www.ibm.com/support. 

 
Generated Model/Scoring 

 
Factor Scores 

Factor scores are assigned to scored records by applying the factor score coefficients to the input 
field value for the record, 

 
 

 

 

 
 

where  is the factor score for the kth factor, is the factor score coefficient for the ith input 
field (from the matrix) and the kth factor, and  is the value of the ith input field for the record 
being scored. For more information, see the topic “Factor Score Coefficients.” 

 

Blank Handling 

Records with missing values for any input field in the final model cannot be scored and are 
assigned factor/component score values of $null$. 

http://www.ibm.com/support


 

Feature Selection Algorithm 

Introduction 

Data mining problems often involve hundreds, or even thousands, of variables.  As a result, 
the majority of time and effort spent in the model-building process involves examining which 
variables to include in the model. Fitting a neural network or a decision tree to a set of variables 
this large may require more time than is practical. 

Feature selection allows the variable set to be reduced in size, creating a more manageable set 
of attributes for modeling. Adding feature selection to the analytical process has several benefits: 
 Simplifies and narrows the scope of the features that is essential in building a predictive model. 
 Minimizes the computational time and memory requirements for building a predictive model 

because focus can be directed to the subset of predictors that is most essential. 
 Leads to more accurate and/or more parsimonious models. 
 Reduces the time for generating scores because the predictive model is based upon only a 

subset of predictors. 
 

Primary Calculations 

Feature selection consists of three steps: 
 Screening.  Removes unimportant and problematic predictors and cases. 
 Ranking.  Sorts remaining predictors and assigns ranks. 
 Selecting. Identifies the important subset of features to use in subsequent models. 

 
The algorithm described here is limited to the supervised learning situation in which a set of 
predictor variables is used to predict a target variable. Any variables in the analysis can be either 
categorical or continuous. Common target variables include whether or not a customer churns, 
whether or not a person will buy, and whether or not a disease is present. 

The terms features, variables, and attributes are often used interchangeably. Within this 
document, we use variables and predictors when discussing input to the feature selection 
algorithm, with features referring to the predictors that actually get selected by the algorithm for 
use in a subsequent modeling process. 

 

Screening 
 

This step removes variables and cases that do not provide useful information for prediction and 
issues warnings about variables that may not be useful. 

 
The following variables are removed: 
 Variables that have all missing values. 
 Variables that have all constant values. 
 Variables that represent case ID. 
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The following cases are removed: 
 Cases that have missing target values. 
 Cases that have missing values in all its predictors. 

 
The following variables are removed based on user settings: 
 Variables that have more than m1% missing values. 
 Categorical variables that have a single category counting for more than m2% cases. 
 Continuous variables that have standard deviation < m3%. 
 Continuous variables that have a coefficient of variation |CV| < m4%. CV = standard 

deviation / mean. 
 Categorical variables that have a number of categories greater than m5% of the cases. 

 
Values m1, m2, m3, m4, and m5 are user-controlled parameters. 

 
Ranking Predictors 

 
This step considers one predictor at a time to see how well each predictor alone predicts the target 
variable. The predictors are ranked according to a user-specified criterion. Available criteria 
depend on the measurement levels of the target and predictor. 

The importance value of each variable is calculated as       , where p is the p value of  the 
appropriate statistical test of association between the candidate predictor and the target variable, 
as described below. 

 

Categorical Target 
 

This section describes ranking of predictors for a categorical target under the following scenarios: 
 All predictors categorical 
 All predictors continuous 
 Some predictors categorical, some continuous 

 

All Categorical Predictors 
 

The following notation applies: 
Table 17-1 
Notation 

Notation Description 
X The predictor under consideration with I categories. 
Y Target variable with J categories. 
N Total number of cases. 

                                        The number of cases with X = i and Y = j. 
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Notation Description 
 

The number of cases with X = i. 
 
 

                                        The number of cases with Y = j. 
 
 

The above notations are based on nonmissing pairs of (X, Y). Hence J, N, and  may be 
different for different predictors. 

 
P Value Based on Pearson’s Chi-square 

 
Pearson’s chi-square is a test of independence between X and Y that involves the difference 
between the observed and expected frequencies. The expected cell frequencies under the null 
hypothesis of independence are estimated by                    . Under the null hypothesis, 
Pearson’s chi-square converges asymptotically to a chi-square distribution  with  degrees 
of freedom d = (I−1)(J−1). 

The p value based on Pearson’s chi-square X2 is calculated by p value = Prob(  > X2), where 
 

                        . 

Predictors are ranked by the following rules. 

1. Sort the predictors by p value in the ascending order 

2. If ties occur, sort by chi-square in descending order. 

3. If ties still occur, sort by degree of freedom d in ascending order. 

4. If ties still occur, sort by the data file order. 
 

P Value Based on Likelihood Ratio Chi-square 
 

The likelihood ratio chi-square is a test of independence between X and Y that involves the ratio 
between the observed and expected frequencies. The expected cell frequencies under the null 
hypothesis of independence are estimated by                     . Under the null hypothesis, the 
likelihood ratio chi-square converges asymptotically to a chi-square distribution  with degrees 
of freedom d = (I−1)(J−1). 

The p value based on likelihood ratio chi-square G2 is calculated by p value = Prob( > G2), where 
 

                           , with 
 

   
else. 

 

Predictors are ranked according to the same rules as those for the p value based on Pearson’s 
chi-square. 

 
Cramer’s V 
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Cramer’s V is a measure of association, between 0 and 1, based upon Pearson’s chi-square. It is 
defined as 

 

. 
 

Predictors are ranked by the following rules: 

1. Sort predictors by Cramer’s V in descending order. 

2. If ties occur, sort by chi-square in descending order. 

3. If ties still occur, sort by data file order. 
 

Lambda 
 

Lambda is a measure of association that reflects the proportional reduction in error when values of 
the independent variable are used to predict values of the dependent variable. A value of 1 means 
that the independent variable perfectly predicts the dependent variable. A value of 0 means that 
the independent variable is no help in predicting the dependent variable. It is computed as 

 
 

. 
 

Predictors are ranked by the following rules: 

1. Sort predictors by lambda in descending order. 

2. If ties occur, sort by I in ascending order. 

3. If ties still occur, sort by data file order. 
 

All Continuous Predictors 

If all predictors are continuous, p values based on the F statistic are used. The idea is to perform a 
one-way ANOVA F test for each continuous predictor; this tests if all the different classes of Y 
have the same mean as X. 

 
The following notation applies: 
Table 17-2 
Notation 
Notation Description 

                                         The number of cases with Y = j. 

                                          The sample mean of predictor X for target class Y = j. 

                                          The sample variance of predictor X for target class Y = j. 

 

 
 

 

 
 

 

 
The grand mean of predictor X. 
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The above notations are based on nonmissing pairs of (X, Y). 

P Value Based on the F Statistic 

The p value based on the F statistic is calculated by p value = Prob{F(J−1, N−J)> F}, where 
 
 

, 
 
 
 

and F(J−1, N−J) is a random variable that follows an F distribution with degrees of freedom J−1 
and N−J. If the denominator for a predictor is zero, set the p value = 0 for the predictor. 

 
Predictors are ranked by the following rules: 

 
1. Sort predictors by p value in ascending order. 

 
2. If ties occur, sort by F in descending order. 

 
3. If ties still occur, sort by N in descending order. 

 
4. If ties still occur, sort by the data file order. 

 

Mixed Type Predictors 
 

If some predictors are continuous and some are categorical, the criterion for continuous predictors 
is still the p value based on the F statistic, while the available criteria for categorical predictors are 
restricted to the p value based on Pearson’s chi-square or the p value based on the likelihood ratio 
chi-square. These p values are comparable and therefore can be used to rank the predictors. 

 
Predictors are ranked by the following rules: 

 
1. Sort predictors by p value in ascending order. 

 
2. If ties occur, follow the rules for breaking ties among all categorical and all continuous predictors 

separately, then sort these two groups (categorical predictor group and continuous predictor group) 
by the data file order of their first predictors. 

 

Continuous Target 
 

This section describes ranking of predictors for a continuous target under the following scenarios: 
 All predictors categorical 
 All predictors continuous 
 Some predictors categorical, some continuous 
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All Categorical Predictors 

If all predictors are categorical and the target is continuous, p values based on the F statistic are 
used. The idea is to perform a one-way ANOVA F test for the continuous target using each 
categorical predictor as a factor; this tests if all different classes of X have the same mean as Y. 

 
The following notation applies: 
Table 17-3 
Notation 
Notation Description 
X The categorical predictor under consideration with I categories. 
Y The continuous target variable. yij represents the value of the continuous 

target for the jth case with X = i. 
The number of cases with X = i. 

                                           The sample mean of target Y in predictor category X = i. 

                                      The sample variance of target Y for predictor category X =    i. 

 
                                           The grand mean of target Y.  

 
 

The above notations are based on nonmissing pairs of (X, Y). 
 

The p value based on the F statistic is p value = Prob{F(I−1, N−I) > F}, where 
 

, 
 
 
 

in which F(I−1, N−I) is a random variable that follows a F distribution with degrees of freedom 
I−1 and N−I. When the denominator of the above formula is zero for a given categorical predictor 
X, set the p value = 0 for that predictor. 

 
Predictors are ranked by the following rules: 

1. Sort predictors by p value in ascending order. 

2. If ties occur, sort by F in descending order. 

3. If ties still occur, sort by N in descending order. 

4. If ties still occur, sort by the data file order. 
 

All Continuous Predictors 

If all predictors are continuous and the target is continuous, the p value is based on the asymptotic 
t distribution of a transformation t on the Pearson correlation coefficient r. 
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The following notation applies: 
Table 17-4 
Notation 

Notation Description 
X The continuous predictor under consideration. 
Y The continuous target variable. 

                       The sample mean of predictor variable X. 

                        The sample mean of target Y. 

                                     The sample variance of predictor variable X. 

                                           The sample variance of target variable Y. 

 
The above notations are based on nonmissing pairs of (X, Y). 

The Pearson correlation coefficient r is 

. 
 

The transformation t on r is given by 
 

. 
 

Under the null hypothesis that the population Pearson correlation coefficient 𝜌𝜌 = 0, the p value 
is calculated as 

if   
Prob                else. 

T is a random variable that follows a t distribution with N−2 degrees of freedom. The p value 
based on the Pearson correlation coefficient is a test of a linear relationship between X and Y. If 
there is some nonlinear relationship between X and Y, the test may fail to catch it. 

 
Predictors are ranked by the following rules: 

1. Sort predictors by p value in ascending order. 

2. If ties occur in, sort by r2 in descending order. 

3. If ties still occur, sort by N in descending order. 

4. If ties still occur, sort by the data file order. 
 

Mixed Type Predictors 
 

If some predictors are continuous and some are categorical in the dataset, the criterion for 
continuous predictors is still based on the p value from a transformation and that for categorical 
predictors from the F statistic. 
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Predictors are ranked by the following rules: 

 
1. Sort predictors by p value in ascending order. 

 
2. If ties occur, follow the rules for breaking ties among all categorical and all continuous predictors 

separately, then sort these two groups (categorical predictor group and continuous predictor group) 
by the data file order of their first predictors. 

 
 

Selecting Predictors 
 

If the length of the predictor list has not been prespecified, the following formula provides an 
automatic approach to determine the length of the list. 

 
Let L0 be the total number of predictors under study. The length of the list L may be determined by 

 

, 
 

where [x] is the closest integer of x. The following table illustrates the length L of the list for 
different values of the total number of predictors L0. 

 

L0 L L/L0(%) 
10 10 100.00% 
15 15 100.00% 
20 20 100.00% 
25 25 100.00% 
30 30 100.00% 
40 30 75.00% 
50 30 60.00% 
60 30 50.00% 
100 30 30.00% 
500 45 9.00% 
1000 63 6.30% 
1500 77 5.13% 
2000 89 4.45% 
5000 141 2.82% 
10,000 200 2.00% 
20,000 283 1.42% 
50,000 447 0.89% 

 

Generated Model 

The feature selection generated model is different from most other generated models in that it does 
not add predictors or other derived fields to the data stream. Instead, it acts as a filter, removing 
unwanted fields from the data stream based on generated model settings. 
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The set of fields filtered from the stream is controlled by one of the following criteria: 
 Field importance categories (Important, Marginal, or Unimportant). Fields assigned to any 

of the selected categories are preserved; others are filtered. 
 Top k fields. The k fields with the highest importance values are preserved; others are filtered. 
 Importance value. Fields with importance value greater than the specified value are preserved; 

others are filtered. 
 Manual selection. The user can select specific fields to be preserved or filtered. 
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Generalized linear models (GZLM) are commonly used analytical tools for different types of data. 
Generalized linear models cover not only widely used statistical models, such as linear regression 
for normally distributed responses, logistic models for binary data, and log linear model for count 
data, but also many useful statistical models via its very general model formulation. 

 
Generalized Linear Models 

Generalized linear models were first introduced by Nelder and Wedderburn (1972) and later 
expanded by McCullagh and Nelder (1989). The following discussion is based on their works. 

 

Notation 

The following notation is used throughout this section unless otherwise stated: 
Table 18-1 
Notation 

Notation Description 
n Number of complete cases in the dataset. It is an integer and n ≥ 1. 
p Number of parameters (including the intercept, if exists) in the model.  It is an integer 

and p ≥ 1. 
px Number of non-redundant columns in the design matrix. It is an integer and px ≥ 1. 
y n × 1 dependent variable vector. The rows are the cases. 
r n × 1 vector of events for the binomial distribution; it usually represents the number of 

“successes.” All elements are non-negative integers. 
m n × 1 vector of trials for the binomial distribution.  All elements are positive integers 

and mi ≥ ri, i=1,...,n. 
μ n × 1 vector of expectations of the dependent variable. 
η n × 1 vector of linear predictors. 
X n × p design matrix.  The rows represent the cases and the columns  represent the 

parameters. The ith row is T i=1,...,n with if the model has an 
intercept. 

O n × 1 vector of scale offsets. This variable can’t be the dependent variable (y) or one of 
the predictor variables (X). 

                       p × 1 vector of unknown parameters. The first element in  is the intercept, if there is one. 

ω n × 1 vector of scale weights.  If an element is less than or equal to 0 or missing, the 
corresponding case is not used. 

f n × 1 vector of frequency counts. Non-integer elements are treated by rounding the value 
to the nearest integer. For values less than 0.5 or missing, the corresponding cases are 
not used. 

N 
Effective sample size. If frequency count variable f is not used, N = n. 

 
 
Model 

A GZLM of y with predictor variables X has the form 
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E  
 

where η is the linear predictor; O is an offset variable with a constant coefficient of 1 for each 
observation; g(.)  is the monotonic differentiable link function which states how the mean of  
y, , is related to the linear predictor η ; F is the response probability  distribution. 
Choosing different combinations of a proper probability distribution and a link function can 
result in different models. 

 
In addition, GZLM also assumes yi are independent for i=1,….,n. Then for each observation, 
the model becomes 

T 
 

Notes 
 X can be any combination of scale variables (covariates), categorical variables (factors), 

and interactions. The parameterization of X is the same as in the GLM procedure. Due to 
use of the over-parameterized model where there is a separate parameter for every factor 
effect level occurring in the data, the columns of the design matrix X are often dependent. 
Collinearity between scale variables in the data can also occur. To establish the dependencies 
in the design matrix, columns of XTΨX, where diag , are examined by 
using the sweep operator.  When a column is found to be dependent on previous columns, 
the corresponding parameter is treated as redundant. The solution for redundant parameters 
is fixed at zero. 

 When y is a binary dependent variable which can be character or numeric, such as 
“male”/”female” or 1/2, its values will be transformed to 0 and 1 with 1 typically representing 
a success or some other positive result. In this document, we assume to be modeling the 
probability of success.  In this document, we assume that y has been transformed to 0/1  
values and we always model the probability of success; that is, Prob(y = 1). Which original 
value should be transformed to 0 or 1 depends on what the reference category is. If the 
reference category is the last value, then the first category represents a success and we are 
modeling the probability of it. For example, if the reference category is the last value, “male” 
in “male”/”female” and 2 in 1/2 are the last values (since “male” comes later in the dictionary 
than “female”) and would be transformed to 0, and “female” and 1 would be transformed to 1 
as we model the probability of them, respectively. However, one way to change to model the 
probability of “male” and 2 instead is to specify the reference category as the first value. Note 
if original binary format is 0/1 and the reference category is the last value, then 0 would be 
transformed to 1 and 1 to 0. 

 When r, representing the number of successes (or number of 1s) and m, representing  
the number of trials, are used for the binomial distribution, the response is the binomial 
proportion y = r/m. 

 
Probability Distribution 

 
GZLMs are usually formulated within the framework of the exponential family of distributions. 
The probability density function of the response Y for the exponential family can be presented as 
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where θ is the canonical (natural) parameter,  is the scale parameter related to the variance of y 
and ω is a known prior weight which varies from case to case. Different forms of b(θ) and c(y,    
/ω) will give specific distributions. In fact, the exponential family provides a notation that allows 

us to model both continuous and discrete (count, binary, and proportional) outcomes. Several are 
available including continuous ones: normal, inverse Gaussian, gamma; discrete ones: negative 
binomial, Poisson, binomial. 

 
The mean and variance of y can be expressed as follows 

 

 
 
 
 
 

where    and    denote the first and second derivatives of b with respect to θ, respectively; 
is the variance function which is a function of   . 

 
In GZLM, the distribution of y is parameterized in terms of the mean (μ) and a scale parameter 
( ) instead of the canonical parameter (θ). The following table lists the distribution of y, 
corresponding range of y, variance function (V(μ)), the variance of y (Var(y)), and the first 
derivative of the variance function   ), which will be used later. 
Table 18-2 
Distribution, range and variance of the response, variance function, and its first derivative 

 

Distribution Range of y V(μ) Var(y) V’(μ) 
Normal (−∞,∞) 1 

 

 0 

Inverse Gaussian (0,∞) μ3  μ3 3μ2 
Gamma (0,∞) μ2 μ2 2μ 
Negative binomial 0(1)∞ μ+kμ2 μ+kμ2 1+2kμ 
Poisson 0(1)∞ μ μ 1 
Binomial(m) 0(1)m/m μ(1−μ) μ(1−μ)/m 1−2μ 

 
Notes 
 0(1)z means the range is from 0 to z with increments of 1; that is, 0, 1, 2, …, z. 
 For the binomial distribution, the binomial trial variable m is considered as a part of the 

weight variable ω. 
 If a weight variable ω is presented,  is replaced by /ω. 
 For the negative binomial distribution, the ancillary parameter (k) can be user-specified. 

When k = 0, the negative binomial distribution reduces to the Poisson distribution. When 
k = 1, the negative binomial is the geometric distribution. 
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Scale parameter handling. The expressions for V(μ) and Var(y) for continuous distributions include 
the scale parameter  which can be used to scale the relationship of the variance and mean (Var(y) 
and μ). Since it is usually unknown, there are three ways to fit the scale parameter: 

1. It can be estimated with  jointly by maximum likelihood method. 
 

2. It can be set to a fixed positive value. 
 

3. It can be specified by the deviance or Pearson chi-square. For more information, see the 
topic “Goodness-of-Fit Statistics.” 

 
On the other hand, discrete distributions do not have this extra parameter (it is theoretically equal 
to one). Because of it, the variance of y might not be equal to the nominal variance in practice 
(especially for Poisson and binomial because the negative binomial has an ancillary parameter k). 
A simple way to adjust this situation is to allow the variance of y for discrete distributions to have 
the scale parameter as well, but unlike continuous distributions, it can’t be estimated by the ML 
method. So for discrete distributions, there are two ways to obtain the value of : 

1. It can be specified by the deviance or Pearson chi-square. 
 

2. It can be set to a fixed positive value. 
 

To ensure the data fit the range of response for the specified distribution, we follow the rules: 
 For the gamma or inverse Gaussian distributions, values of y must be real and greater than 

zero. If a value of y is less than or equal to 0 or missing, the corresponding case is not used. 
 For the negative binomial and Poisson distributions, values of y must be integer  and 

non-negative. If a value of y is non-integer, less than 0 or missing, the corresponding case is 
not used. 

 For the binomial distribution and if the response is in the form of a single variable, y must 
have only two distinct values. If y has more than two distinct values, the algorithm terminates 
in an error. 

 For the binomial distribution and the response is in the form of ratio of two variables denoted 
events/trials, values of r (the number of events) must be nonnegative integers, values of m 
(the number of trials) must be positive integers and mi ≥ ri, ∀ i. If a value of r is not integer, 
less than 0, or missing, the corresponding case is not used. If a value of m is not integer, less 
than or equal to 0, less than the corresponding value of r, or missing, the corresponding 
case is not used. 

 
The ML method will be used to estimate  and possibly . The kernels of the log-likelihood 
function (ℓk) and the full log-likelihood function (ℓ), which will be used as the objective function 
for parameter estimation, are listed for each distribution in the following table. Using ℓ or ℓk won’t 
affect the parameter estimation, but the selection will affect the calculation of information criteria. 
For more information, see the topic “Goodness-of-Fit Statistics ”. 
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Table 18-3 
The log-likelihood function for probability distribution 

 

Distribution ℓk and ℓ 
Normal  

 
 
 

   
 

 
 

Inverse Gaussian    
 

   

 
 

   
 

 
 

Gamma  

  
 
 

 
 

   
 

  
 

Negative 
binomial 

 
 

 
 

 
 

 
 

 

 
           

 

  
 

 
 

 

   
      

 

Poisson 
 

 

 
 

  
 

 

 
 

 
 

 

   
    

 

Binomial(m) 
 

  
 
 

 

where 

 
When an individual y = 0 for the negative binomial or Poissondistributions and y = 0 or 1 for the 
binomial distribution, a separate value of the log-likelihood is given. Let ℓk,i be the log-likelihood 
value for individual case i when yi = 0 for the negative binomial and Poisson and 0/1 for  the 
binomial. The full log-likelihood for i is equal to the kernel of the log-likelihood for i; that  is, 
ℓi=ℓk,i. 
Table 18-4 
Log-likelihood 

 

Distribution ℓk,i 
Negative binomial      if 
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Distribution ℓk,i 
Poisson   if 

Binomial(m)        if 
  if 

 

 Γ(z) is the gamma function and ln(Γ(z)) is the log-gamma function (the logarithm of the 
gamma function), evaluated at z. 

 For the negative binomial distribution, the scale parameter is still included in ℓk for flexibility, 
although it is usually set to 1. 

 For the binomial distribution (r/m), the scale weight variable becomes                in ℓk; that 
is, the binomial trials variable m is regarded as a part of the weight. However, the scale 
weight in the extra term of ℓ is still . 

 
Link Function 

The following tables list the form, inverse form, range of , and first and second derivatives 
for each link function.  
Table 18-5 
Link function name, form, inverse of link function, and range of the predicted Mean 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: In the power link function, if |α| < 2.2e-16, α is treated as 0. 
Table 18-6 
The first and second derivatives of link function 
Link function First derivative  Second derivative  
Identity 1 0 
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Link function First derivative  Second derivative  
Log 

 

 
 

 
 

Logit 
 

 

 

 

   

Probit Φ ,  where 
 

 
  

 Φ 

Complementary log-log  
 

    
 

  

Power(α) 
  

 
 

Log-complement 
 

 
 

 
 

Negative log-log 
 

 
 

     

Negative binomial 
 

 

 

 

    

Odds power(α)  
 
  

   

 

 

When the canonical parameter is equal to the linear predictor, , then the link function is 
called the canonical link function. Although the canonical links lead to desirable statistical 
properties of the model, particularly in small samples, there is in general no a priori reason why 
the systematic effects in a model should be additive on the scale given by that link. The canonical 
link functions for probability distributions are given in the following table. 
Table 18-7 
Canonical and default link functions for probability distributions 

 

Distribution Canonical link function 
Normal Identity 
Inverse Gaussian Power(−2) 
Gamma Power(−1) 
Negative binomial Negative binomial 
Poisson Log 
Binomial Logit 

 
 

Estimation 

Having selected a particular model, it is required to estimate the parameters and to assess the 
precision of the estimates. 

 

Parameter estimation 
 

The parameters are estimated by maximizing the log-likelihood function (or the kernel of the 
log-likelihood function) from the observed data. Let s be the first derivative (gradient) vector of 
the log-likelihood with respect to each parameter, then we wish to solve 
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0 

 
In general, there is no closed form solution except for a normal distribution with identity link 
function, so estimates are obtained numerically via an iterative process. A Newton-Raphson 
and/or Fisher scoring algorithm is used and it is based on a linear Taylor series approximation 
of the first derivative of the log-likelihood. 

 
First Derivatives 

 
If the scale parameter  is not estimated by the ML method, s is a p×1 vector with the form: 

 
 
 

 

where and are defined in Table 18-5 “Link function name, form, inverse of link 
function, and range of the predicted mean,” Table 18-2 “Distribution, range and variance of the 
response, variance function, and its first derivative,” and Table 18-6 “The first and second 
derivatives of link function,” respectively. 

 
If the scale parameter  is estimated by the ML method, it is handled by searching for ) since    

 is required to be greater than zero. 
 

Let τ = ) so  = exp(τ) , then s is a (p+1)×1 vector with the following form 
 
 
 
 
 
 

where  is the same as the above with  is replaced with exp(τ),  has a different form 
depending on the distribution as follows: 
Table 18-8 
The 1st derivative functions w.r.t. the scale parameter for probability distributions 
Distribution 

 

 

Normal 
 

 

 
 

Inverse Gaussian    

Gamma  

 

 
 

 
 

 
 

 
 

 
Note: is a digamma function, which is the derivative of logarithm of a gamma function, 
evaluated at z; that is,    . 
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As mentioned above, for normal distribution with identity link function which is a classical linear 
regression model, there is a closed form solution for both  and τ, so no iterative process is 
needed. The solution for , after applying the SWEEP operation in GLM procedure, is 

 
  

                          xTx xT   XTΨX XTΨ , 
 
 

where Ψ diag and  Z is the generalized inverse of a matrix Z. If the scale 
parameter  is also estimated by the ML method, the estimate of τ is 

 

                           xT     
  
 

Second Derivatives 
 

Let H be the second derivative (Hessian) matrix. If the scale parameter is not estimated by the ML 
method, H is a p×p matrix with the following form 

 
T 

 
 

where W is an n×n diagonal matrix. There are two definitions for W depending on which 
algorithm is used: We for Fisher scoring and Wo for Newton-Raphson. The ith diagonal element 
for We is 

 
 
 
 

 
and the ith diagonal element for Wo is 

 
where        and are defined in Table 18-2 “Distribution, range and variance of the 
response, variance function, and its first derivative” and Table 18-6 “The first and second 
derivatives of link function,” respectively. Note the expected value of Wo is We and 
when the canonical link is used for the specified distribution, then Wo = We. 

If the scale parameter is estimated by the ML method, H becomes a (p+1)×(p+1) matrix with the 
form 

 

T 

T 

   
T 
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where is a p×1 vector and T is a 1×p vector and the transpose of . 
For all three continuous distributions: 

 
 
The forms of   are listed in the following table. 
Table 18-9 
The second derivative functions w.r.t. the scale parameter for probability distributions 

 

Distribution 
 

 

Normal  

 
 

 
 

Inverse Gaussian  

 
 

 
 

Gamma  
 

 
Note: is a trigamma function, which is the derivative of , evaluated at z. 

Iterations 

An iterative process to find the solution for  (which might include ) is based on Newton-Raphson 
(for all iterations), Fisher scoring (for all iterations) or a hybrid method. The hybrid method 
consists of applying Fisher scoring steps for a specified number of iterations before switching 
to Newton-Raphson steps. Newton-Raphson performs well if the initial values are close to the 
solution, but the hybrid method can be used to improve the algorithm’s robustness from bad initial 
values.  Apart from improved robustness, Fisher scoring is faster due to the simpler form of 
the Hessian matrix. 

 
The following notation applies to the iterative process: 
Table 18-10 
Notation 

Notation Description 
I Starting iteration for checking complete separation and quasi-complete separation. It 

must be 0 or a positive integer. This criterion is not used if the value is 0. 
J The maximum number of steps in step-halving method. It must be a positive integer. 
K The first number of iterations using Fisher scoring, then switching to Newton-Raphson. 

It must be 0 or a positive integer. A value of 0 means using Newton-Raphson for all 
iterations and a value greater or equal to M means using Fisher scoring for all iterations. 

M The maximum number of iterations. It must be a non-negative integer. If the value is 
0, then initial parameter values become final estimates. 

p, Tolerance levels for three types of convergence criteria. 

Abs A 0/1 binary variable; Abs = 1 if absolute change is used for convergence criteria 
and Abs = 0 if relative change is used. 
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And the iterative process is outlined as follows: 

1. Input values for I, J, K, M, p, and Abs for each type of three convergence criteria. 

2. For    ( ) compute initial values (see below), then calculate log-likelihood ℓ(0), gradient vector 
and Hessian matrix based on    ( ). 

3. Let ξ=1. 

4. Compute estimates of ith iteration: 

( ) ( )  ( ( , where is a generalized inverse of H. Then compute the 

log-likelihood based on    ( ). 

5. Use step-halving method if : reduce ξ by half and repeat step (4). The set of values 
of ξ is {0.5 j : j = 0, …, J – 1}. If J is reached but the log-likelihood is not improved, issue a 
warning message, then stop. 

6. Compute gradient vector and Hessian matrix  based on   ( ). Note that We is  used to 
calculate if i ≤ K; Wo is used to calculate if i > K. 

7. Check if complete or quasi-complete separation of the data is established (see below) if 
distribution is binomial and the current iteration i ≥ I. If either complete or quasi-complete 
separation is detected, issue a warning message, then stop. 

8. Check if all three convergence criteria (see below) are met. If they are not but M is reached, 
issue a warning message, then stop. 

9. If all three convergence criteria are met, check if complete or quasi-complete separation of 
the data is established if distribution is binomial and i < I (because checking for complete or 
quasi-complete separation has not started yet).  If complete or quasi-complete separation is 
detected, issue a warning message, then stop, otherwise, stop (the process converges for binomial 
successfully). If all three convergence criteria are met for the distributions other than binomial, 
stop (the process converges for other distributions successfully). The final vector of estimates is 
denoted by  (and   ).  Otherwise, go back to step (3). 

 
Initial Values 

 
Initial values are calculated as follows: 

 
1. Set the initial fitted values   i  for a binomial distribution (yi can be 

a proportion or 0/1 value) and   i for a non-binomial distribution.  From these derive  
= , and If  becomes undefined, set        . 

2. Calculate the weight matrix with the diagonal element                                     , where is 
set to 1 or a fixed positive value. If the denominator of  becomes 0, 

3. Assign the adjusted dependent variable z with the ith observation 
for a binomial distribution and for a non-binomial 

distribution. 
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4. Calculate the initial parameter values 

 

β XT X XT z 
 

and 
 

 

 

T 
=  z Xβ z Xβ 

 

if the scale parameter is estimated by the ML method. 

Scale Parameter Handling 

1. For normal, inverse Gaussian, and gamma response, if the scale parameter is estimated by the ML 
method, then it will be estimated jointly with the regression parameters; that is, the last element 
of the gradient vector s is with respect to τ. 

2. If the scale parameter is set to be a fixed positive value, then it will be held fixed at that value for 
in each iteration of the above process. 

3. If the scale parameter is specified by the deviance or Pearson chi-square divided by degrees of 
freedom, then it will be fixed at 1 to obtain the regression estimates through the whole iterative 
process. Based on the regression estimates, calculate the deviance and Pearson chi-square values 
and obtain the scale parameter estimate. 

 
Checking for Separation 

 
For each iteration after the user-specified number of iterations; that is, if i > I, calculate (note 
here v refers to cases in the dataset) 

 

 

 

 

where 
 
 

 
 

if  success   
if  failure 

 

( is the probability of the observed response for case v) and xTβ 
 

If   we consider there to be complete separation. Otherwise, if 
or and if there are very small diagonal elements (absolute  value 

) in the non-redundant parameter locations in the lower triangular matrix 
in Cholesky decomposition of –H, where H is the Hessian matrix, then there is a quasi-complete 
separation. 
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Convergence Criteria 
 

 
 

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
where p and are the given tolerance levels for each type. 

If the Hessian convergence criterion is not user-specified, it is checked based on absolute change 
with   H = 1E-4 after the log-likelihood or parameter convergence criterion has been satisfied. If 
Hessian convergence is not met, a warning is displayed. 

 
Parameter Estimate Covariance Matrix, Correlation Matrix and Standard Errors 

The parameter estimate covariance matrix, correlation matrix and standard errors can be 
obtained easily with parameter estimates. Whether or not the scale parameter is estimated by 
ML, parameter estimate covariance and correlation matrices are listed for  only because the 
covariance between  and should be zero. 

 
Model-Based Parameter Estimate Covariance 

 
The model-based parameter estimate covariance matrix is given by 

 
Σm Η 

 

where is the generalized inverse of the Hessian matrix evaluated at the parameter estimates. 
The corresponding rows and columns for redundant parameter estimates should be set to zero. 

 
Robust Parameter Estimate Covariance 

 
The validity of the parameter estimate covariance matrix based on the Hessian depends on the 
correct specification of the variance function of the response in addition to the correct specification 
of the mean regression function of the response. The robust parameter estimate covariance 
provides a consistent estimate even when the specification of the variance function of the response 
is incorrect.  The robust estimator is also called Huber’s estimator because Huber (1967) was 
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the first to describe this variance estimate; White’s estimator or HCCM (heteroskedasticity 
consistent covariance matrix) estimator because White (1980) independently showed that this 
variance estimate is consistent under a linear regression model including heteroskedasticity; or 
the sandwich estimator because it includes three terms. The robust (or Huber/White/sandwich) 
estimator is defined as follows 

 
 
Parameter Estimate Correlation 

 
The correlation matrix is calculated from the covariance matrix as usual. Let        be an element of 
Σm or Σr, then the corresponding element of the correlation matrix is . The corresponding 
rows and columns for redundant parameter estimates should be set to system missing values. 

 
Parameter Estimate Standard Error 

 
Let   denote a non-redundant parameter estimate.  Its standard error is the square root of the 
ith diagonal element of Σm or Σr: 

 

 
The standard error for redundant parameter estimates is set to a system missing value. If the 
scale parameter is estimated by the ML method, we obtain and its standard error estimate 

, where  can be found in Table 18-9 “The second derivative functions w.r.t. the 

scale parameter for probability distributions.” Then the estimate of the scale parameter                                  
is              and the standard error estimate is 

 

Wald Confidence Intervals 

Wald confidence intervals are based on the asymptotic normal distribution of the parameter 
estimates. The 100(1 – α)% Wald confidence interval for    j is given  by 

                                                     , 

where is the 100pth percentile of the standard normal distribution. 
 

If exponentiated parameter estimates are requested for logistic regression or log-linear models, 
then using the delta method, the estimate of is , the standard error estimate of 

is                         and the corresponding 100(1 – α)% Wald confidence interval for 
is 

 
 
 

Wald confidence intervals for redundant parameter estimates are set to system missing values. 
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Similarly, the 100(1 – α)% Wald confidence interval for  is 
 

 
Chi-Square Statistics 

 
The hypothesis                is tested for each non-redundant parameter using the chi-square 
statistic: 

 

 
which has an asymptotic chi-square distribution with 1 degree of freedom. 

 
Chi-square statistics and their corresponding p-values are set to system missing values for 
redundant parameter estimates. 

 
The chi-square statistic is not calculated for the scale parameter, even if it is estimated by ML 
method. 

 

P Values 
 

Given a test statistic T and a corresponding cumulative distribution function G as specified 
above, the p-value is defined as  .  For example, the p-value for the chi-square 
test of               is . 

 

Model Testing 

After estimating parameters and calculating relevant statistics, several tests for the given model 
are performed. 

 

Lagrange Multiplier Test 
 

If the scale parameter for normal, inverse Gaussian and gamma distributions is set to a fixed value 
or specified by the deviance or Pearson chi-square divided by the degrees of freedom (when the 
scale parameter is specified by the deviance or Pearson chi-square divided by the degrees of 
freedom, it can be considered as a fixed value), or an ancillary parameter k for the negative 
binomial is set to a fixed value other than 0, the Lagrange Multiplier (LM) test assesses the 
validity of the value. For a fixed  or k, the test statistic is defined  as 
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where and  T  T evaluated at the 
parameter estimates and fixed or k value.  has an asymptotic chi-square distribution with 1 
degree of freedom, and the p-values are calculated accordingly. 

 
For testing , see Table 18-8 “The 1st derivative functions w.r.t. the scale parameter for 
probability distributions” and see Table 18-9 “The second derivative functions w.r.t. the scale 
parameter for probability distributions” for the elements of s and A, respectively. 

 
If k is set to 0, then the above statistic can’t be applied. According to Cameron and Trivedi (1998), 
the LM test statistic should now be based on the following auxiliary OLS regression (without 
constant) 

 

 
where and is an error term.  Let the response of the above OLS regression 

                              be and the explanatory variable be .  The estimate of the above 
regression parameter α and the standard error of the estimate of α are 

 
 
 

and  
 
 
 

where                       and . Then the LM test statistic is a z statistic 
 
 

 
 

 
 

and it has an asymptotic standard normal distribution under the null hypothesis of equidispersion 
in a Poisson model               ).  Three p-values are provided.  The alternative hypothesis 
can be one-sided overdispersion ( ), underdispersion               ) or two-sided 
non-directional            ) with the variance function of                 .  The calculation 
of p-values depends on the alternative. For            -value Φ where Φ is the 
cumulative probability of a standard normal distribution; for            -value Φ  and for 

        -value Φ 
 

Goodness-of-Fit Statistics 
 

Several statistics are calculated to assess goodness of fit of a given generalized linear model. 

Deviance 

The theoretical definition of deviance is: 
 

y y y 
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where y  is the log-likelihood function expressed as the function of the predicted mean values 

 (calculated based on the parameter estimates) given the response variable, and y  y  is the 
log-likelihood function computed by replacing  with y. The formula used for the deviance is 

, where the form of for the distributions are given in the following table: 
Table 18-11 
Deviance for individual case 
  

  

  

  

  

  

  

 
Note 
 When y is a binary dependent variable with 0/1 values (binomial distribution), the deviance 

and Pearson chi-square are calculated based on the subpopulations; see below. 
 When y = 0 for negative binomial and Poisson distributions and y = 0 (for r = 0) or 1 (for r 

= m) for binomial distribution with r/m format, separate values are given for the deviance. 
Let be the deviance value for individual case i when yi = 0 for negative binomial and 
Poisson and 0/1 for binomial. 

Table 18-12 
Deviance for individual case 
Distribution 

 

 
 

Negative Binomial     if 

Poisson  if 

Binomial(m) 
 

  
 

 

       if 
if 

 

 

or 
or 

 
Pearson Chi-Square 

 
 

 

 

 
 

where for the binomial distribution and for other distributions. 

Scaled Deviance and Scaled Pearson Chi-Square 

The scaled deviance is and the scaled Pearson chi-square is               . 
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Since the scaled deviance and Pearson chi-square statistics have a limiting chi-square distribution 
with N – px degrees of freedom, the deviance or Pearson chi-square divided by its  degrees 
of freedom can be used as an estimate of the scale parameter for both continuous and discrete 
distributions. 

 
                or                

 
If the scale parameter is measured by the deviance or Pearson chi-square, first we assume        , 
then estimate the regression parameters, calculate the deviance and Pearson chi-square values  
and obtain the scale parameter estimate from the above formula. Then the scaled version of both 
statistics is obtained by dividing the deviance and Pearson chi-square by . In the meantime, some 
statistics need to be revised.  The gradient vector and the Hessian matrix are divided by  and 
the covariance matrix is multiplied by . Accordingly the estimated standard errors are also 
adjusted, the Wald confidence intervals and significance tests will be affected even the parameter 
estimates are not affected by . 

Note that the log-likelihood is not revised; that is, the log-likelihood is based on         because the 
scale parameter should be kept the same in the log-likelihood for fair comparison in information 
criteria and model fitting omnibus test. 

 
Overdispersion 

 
For the Poisson and binomial distributions, if the estimated scale parameter is not near the 
assumed value of one, then the data may be overdispersed if the value is greater than one or 
underdispersed if the value is less than one. Overdispersion is more common in practice. The 
problem with overdispersion is that it may cause standard errors of the estimated parameters to be 
underestimated. A variable may appear to be a significant predictor, when in fact it is not. 

 
Deviance and Pearson Chi-Square for Binomial Distribution with 0/1 Binary Response Variable 

 
When r and m (event/trial) variables are used for the binomial distribution, each case represents m 
Bernoulli trials. When y is a binary dependent variable with 0/1 values, each case represents a 
single trial. The trial can be repeated for several times with the same setting (i.e. the same values 
for all predictor variables). For example, suppose the first 10 y values are 2 1s and 8 0s and x 
values are the same (if recorded in events/trials format, these 10 cases is recorded as 1  case 
with r = 2 and m = 10), then these 10 cases should be considered from the same subpopulation. 
Cases with common values in the variable list that includes all predictor variables are regarded as 
coming from the same subpopulation. When the binomial distribution with binary response is 
used, we should calculate the deviance and Pearson chi-square based on the subpopulations. If we 
calculate them based on the cases, the results might not be useful. 

 
If subpopulations are specified for the binomial distribution with 0/1 binary response variable, the 
data should be reconstructed from the single trial format to the events/trials format. Assume the 
following notation for formatted data: 
Table 18-13 
Notation 
Notation Description 
ns Number of subpopulations. 
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Notation Description 
rj1 Sum of the product of the frequencies and the scale weights associated with y = 1 in the 

jth subpopulation. So rj0 is that with y = 0 in the jth subpopulation. 
mj Total weighted observations;                       .  
yj1 The proportion of 1s in the jth subpopulation;                      . 

The fitted probability in the jth subpopulation   would be the same for each case in the 
jth subpopulation because values for all predictor variables are the same for each case.) 

 
The deviance and Pearson chi-square are defined as follows: 

 
and                                   , 

 
then the corresponding estimate of the scale parameter will be 

 

   and             . 

The full log likelihood, based on subpopulations, is defined as follows: 
 

 
where  is the kernel log likelihood; it should be the same as the kernel log-likelihood computed 
based on cases before, there is no need to compute again. 

 
Information Criteria 

 
Information criteria are used when comparing different models for the same data. The formulas 
for various criteria are as follows. 

 
Akaike information criteria (AIC). 

Finite sample corrected (AICC). 

Bayesian information criteria (BIC). 

Consistent  AIC  (CAIC). 

where ℓ is the log-likelihood evaluated at the parameter estimates. Notice that d = px if only is 
included; d = px + 1 if the scale parameter is included for normal, inverse Gaussian, or gamma. 

Notes 
 ℓ (the full log-likelihood) can be replaced with ℓk (the kernel of the log-likelihood) depending 

on the user’s choice. 
 When r and m (event/trial) variables are used for the binomial distribution, then the N used 

here would be the sum of the trials frequencies;  . In this way, the same value 

results whether the data are in raw, binary form or in summarized, binomial form. 
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Test of Model Fit 

The model fitting omnibus test is based on –2 log-likelihood values for the model under 
consideration and the initial model. For the model under consideration, the value of the –2 
log-likelihood is 

 

 

Let the initial model be the intercept-only model if intercept is in the considered model or the 
empty model otherwise. For the intercept-only model, the value of the –2 log-likelihood is 

 

 

For the empty model, the value of the –2 log-likelihood is 
 

 
Then the omnibus (or global) test statistic is 

 

for the intercept-only model or 
 

for the empty model. 
 

S has an asymptotic chi-square distribution with r degrees of freedom, equal to the difference in 
the number of valid parameters between the model under consideration and the initial model. 
r = for the intercept-only model, r = for the empty model.  The p-values then can 
be calculated accordingly. 

 
Note if the scale parameter is estimated by the ML method in the model under consideration, then 
it will also be estimated by the ML method in the initial model. 

 
Default Tests of Model Effects 

For each regression effect specified in the model, type I and III analyses can be conducted. 

Type I Analysis 

Type I analysis consists of fitting a sequence of models, starting with a model with only an 
intercept term (if there is one), and adding one additional effect, which can be covariates, factors 
and interactions, of the model on each step. So it depends on the order of effects specified in the 
model. On the other hand, type III analysis won’t depend on the order of effects. 

Wald Statistics. For each effect specified in the model, type I test matrix Li is constructed 
and H0:  Li   = 0 is tested.  Construction of matrix Li is based on the generating   matrix 

T T where Ω is the scale weight matrix with ith diagonal element and 
such that Li    is estimable. It involves parameters only for the given effect and the effects 
containing the given effect. If such a matrix cannot be constructed, the effect is not testable. 
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Since Wald statistics can be applied to type I and III analysis and custom tests, we express Wald 
statistics in a more general form. The Wald statistic for testing , where Li is a r×p full 
row rank hypothesis matrix and K is a r×1 resulting vector, is defined by 

   T T    
 
 

where  is the maximum likelihood estimate and Σ is the parameter estimates covariance matrix. S 
has an asymptotic chi-square distribution with degrees of freedom, where LΣLT  . 

If , then   LΣLT is a generalized inverse such that Wald tests are effective for a restricted 
set of hypotheses  containing a particular subset C of independent rows from H0. 

For type I and III analysis, calculate the Wald statistic for each effect i according to the 
corresponding hypothesis matrix Li and K=0. 

Type III Analysis 
 

Wald statistics. See the discussion of Wald statistics for Type I analysis above.   L  is the type III 
test matrix for the ith effect. 

 
Blank handling 

All records with missing values for any input or output field are excluded from the estimation of 
the model. 

 

Scoring  
 
Scoring is defined as assigning one or more values to a case in a data set. 

 

Predicted Values 

Due to the non-linear link functions, the predicted values will be computed for the linear predictor 
and the mean of the response separately. Also, since estimated standard errors of predicted values 
of linear predictor are calculated, the confidence intervals for the mean are obtained easily. 

 
Predicted values are still computed as long all the predictor variables have non-missing values 
in the given model. 

 
Predicted Values of the Linear Predictors 

T o 

Estimated Standard Errors of Predicted Values of the Linear Predictors 
 

Predicted Values of the Means 

TΣ 
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where g−1 is the inverse of the link function. For binomial response with 0/1 binary response 
variable, this the predicted probability of category 1. 

 
Confidence Intervals for the Means 

 
Approximate 100(1−α)% confidence intervals for the mean can be computed as follows 

T o 

If either endpoint in the argument is outside the valid range for he inverse link function, the 
corresponding confidence interval endpoint is set to a system missing value. 

 
Blank handling 

 
Records with missing values for any input field in the final model cannot be scored, and are 
assigned a predicted value of $null$. 

 
References 

Aitkin, M., D. Anderson, B. Francis, and J. Hinde. 1989. Statistical Modelling in GLIM. Oxford: 
Oxford Science Publications. 

 
Albert, A., and J. A. Anderson. 1984. On the Existence of Maximum Likelihood Estimates in 
Logistic Regression Models.  Biometrika, 71, 1–10. 

 
Cameron, A. C., and P. K. Trivedi. 1998. Regression Analysis of Count Data. Cambridge: 
Cambridge University Press. 

 
Diggle, P. J., P. Heagerty, K. Y. Liang, and S. L. Zeger. 2002. The analysis of Longitudinal 
Data, 2 ed.  Oxford: Oxford University Press. 

 
Dobson, A. J. 2002. An Introduction to Generalized Linear Models, 2 ed. Boca Raton, FL: 
Chapman & Hall/CRC. 

 
Dunn, P. K., and G. K. Smyth. 2005. Series Evaluation of Tweedie Exponential Dispersion Model 
Densities.  Statistics and Computing, 15, 267–280. 

 
Dunn, P. K., and G. K. Smyth.  2001.  Tweedie Family Densities: Methods of Evaluation.  In: 
Proceedings of the 16th International Workshop on Statistical Modelling, Odense, Denmark: . 

 
Gill, J. 2000. Generalized Linear Models: A Unified Approach. Thousand Oaks, CA: Sage 
Publications. 

 
Hardin, J. W., and J. M. Hilbe. 2001. Generalized Estimating Equations. Boca Raton, FL: 
Chapman & Hall/CRC. 

T 



 
 
 

 

GENLIN Algorithms 

 
Hardin, J. W., and J. M. Hilbe. 2003. Generalized Linear Models and Extension. Station, TX: 
Stata Press. 

 
Horton, N. J., and S. R. Lipsitz. 1999. Review of Software to Fit Generalized Estimating Equation 
Regression Models. The American Statistician, 53, 160–169. 

 
Huber, P. J. 1967. The Behavior of Maximum Likelihood Estimates under Nonstandard 
Conditions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and 
Probability, Berkeley, CA: University of California Press, 221–233. 

 
Lane, P. W., and J. A. Nelder. 1982. Analysis of Covariance and Standardization as Instances of 
Prediction.  Biometrics, 38, 613–621. 

 
Lawless, J. E. 1984. Negative Binomial and Mixed Poisson Regression. The Canadian Journal 
of Statistics, 15, 209–225. 

 
Liang, K. Y., and S. L. Zeger. 1986. Longitudinal Data Analysis Using Generalized Linear 
Models.  Biometrika, 73, 13–22. 

 
Lipsitz, S. H., K. Kim, and L. Zhao. 1994. Analysis of Repeated Categorical Data Using 
Generalized Estimating Equations. Statistics in Medicine, 13, 1149–1163. 

 
McCullagh, P. 1983. Quasi-Likelihood Functions. Annals of Statistics, 11, 59–67. 

 
McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models, 2nd ed. London: Chapman & 
Hall. 

 
Miller, M. E., C. S. Davis, and J. R. Landis. 1993. The Analysis of Longitudinal Polytomous Data: 
Generalized Estimating Equations and Connections with Weighted Least Squares.  Biometrics,  
49, 1033–1044. 

 
Nelder, J. A., and R. W. M. Wedderburn. 1972. Generalized Linear Models. Journal of the 
Royal Statistical Society Series A, 135, 370–384. 

 
Pan, W. 2001. Akaike’s Information Criterion in Generalized Estimating Equations. Biometrics, 
57, 120–125. 

 
Pregibon, D. 1981. Logistic Regression Diagnostics. Annals of Statistics, 9, 705–724. 

 
Smyth, G. K., and B. Jorgensen. 2002. Fitting Tweedie’s Compound Poisson Model to Insurance 
Claims Data: Dispersion Modelling. ASTIN Bulletin, 32,  143–157. 

 
White, H. 1980. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test 
for Heteroskedasticity. Econometrica, 48, 817–836. 

 
Williams, D. A. 1987. Generalized Linear Models Diagnostics Using the Deviance and Single 
Case Deletions.  Applied Statistics, 36, 181–191. 

 
Zeger, S. L., and K. Y. Liang. 1986. Longitudinal Data Analysis for Discrete and Continuous 
Outcomes.  Biometrics, 42, 121–130. 



 

 



 

θ T 

Generalized linear mixed models 
algorithms 

Generalized linear mixed models extend the linear model so that: 
 The target is linearly related to the factors and covariates via a specified link function. 
 The target can have a non-normal distribution. 
 The observations can be correlated. 

 
Generalized linear mixed models cover a wide variety of models, from simple linear regression to 
complex multilevel models for non-normal longitudinal data. 

 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 

n Number of complete cases in the dataset. It is an integer and n ≥ 1. 
p Number of parameters (including the constant, if it exists) in the model. It is an integer 

and p ≥ 1. 
px Number of non-redundant columns in the design matrix of fixed effects. It is an integer 

and px ≥ 1. 
K Number of random effects. 
y n× 1 target vector.  The rows are records. 
r n× 1 events vector for the binomial distribution representing the number of “successes” 

within a number of trials. All elements are non-negative integers. 
m n× 1 trials vector for the binomial distribution. All elements are positive integers and mi 

≥ ri, i=1,...,n. 
μ n× 1 expected target value vector. 
η n× 1 linear predictor vector. 
X n× p design matrix.  The rows represent the records and the columns represent the 

parameters. The ith row is xT   where the superscript T means transpose 
of a matrix or vector, with if the model has an intercept. 

Z n× r design matrix of random effects. 
O n× 1 offset vector. This can’t be the target or one of the predictors. Also this can’t be 

a categorical field. 
β p× 1 parameter vector. The first element is the intercept, if there is one. 
γ r× 1 random effect vector. 
ω n× 1 scale weight vector.  If an element is less than or equal to 0 or  missing, the 

corresponding record is not used. 
f n× 1 frequency weight vector. Non-integer elements are treated by rounding the value 

to the nearest integer. For values less than 0.5 or missing, the corresponding records 
are not used. 

N 
Effective sample size,   If frequency weights are not used, N = n. 

 
θ covariance parameters of the kth random effect 

 
covariance parameters of the random effects, θ θT θT 
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θ T T 

 

 
 

θ covariance parameters of the residuals 
 

θ θT θT θT θT  θT 

VY Covariance matrix of y, conditional on the random effects 
 

Model 
 
 
 
The form of a generalized linear mixed model for the target y with the random effects γ is 

 
η E  y           O,y                  

 
where η is the linear predictor; g(.) is the monotonic differentiable link function; γ is a (r× 1) 
vector of random effects which are assumed to be normally distributed with mean 0 and variance 
matrix G, X is a (n× p) design matrix for the fixed effects; Z is a (n× r) design matrix for the 
random effects; O is an offset with a constant coefficient of 1 for each observation; F is the 
conditional target probability distribution. Note that if there are no random effects, the model 
reduces to a generalized linear model (GZLM). 

 
The probability distributions without random effects offered (except multinomial) are listed in 
Table 19-1. The link functions offered are listed in Table 19-3. Different combinations of 
probability distribution and link function can result in different models. 

 
See “Nominal multinomial distribution” for more information on the nominal multinomial 
distribution. 

 
See “Ordinal multinomial distribution” for more information on the ordinal multinomial 
distribution. 

 
Note that the available distributions depend on the measurement level of the target: 
 A continuous target can have any distribution except multinomial. The binomial distribution 

is allowed because the target could be an “events” field. The default distribution for a 
continuous target is the normal distribution. 

 A nominal target can have the multinomial or binomial distribution. The default is 
multinomial. 

 An ordinal target can have the multinomial or binomial distribution. The default is 
multinomial. 

Table 19-1 
Distribution, range and variance of the response, variance function, and its first derivative 
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Notes 

 0(1)z means the range is from 0 to z with increments of 1; that is, 0, 1, 2, …, z. 
 For the binomial distribution, the binomial trial variable m is considered as a part of the 

weight variable ω. 
 If a scale weight variable ω is presented,  is replaced by  /ω. 
 For the negative binomial distribution, the ancillary parameter (k) is estimated by the 

maximum likelihood (ML) method. When k = 0, the negative binomial distribution reduces to 
the Poisson distribution. When k = 1, the negative binomial is the geometric distribution. 

 
The full log-likelihood function (ℓ), which will be used as the objective function for parameter 
estimation, is listed for each distribution in the following table. 

Table 19-2 
The log-likelihood function for probability distribution 

 

Distribution ℓ 
Normal  

   
 

 
 

Inverse Gaussian  

   
 

 
 

Gamma  
 

   
 

  
 

Negative 
binomial 

 
 

   
      

 
Poisson  

 

   
    

 
Binomial(m)  

 

     
  where  

 
The following tables list the form, inverse form, range of , and first and second derivatives 
for each link function. 

Table 19-3 
Link function name, form, inverse of link function, and range of the predicted mean 

 

Link function η=g(μ) Inverse μ=g−1(η) Range of   
Identity μ η  

   

Log ln(μ) exp(η) 
 

   

Logit 
 

  

 

 
 

 

    
 

Probit Φ   ,  where 

Φ  

Φ(η) 
 

    
 
 

Complementary 
log-log 

ln(−(ln(1−μ)) 1−exp(−exp(η)) 
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Link function η=g(μ) Inverse μ=g−1(η) Range of   

Power(α)  
 

 
 

if  is odd integer  
    otherwise 

Log-complement ln(1−μ) 1−exp(η) 
 

   

Negative log-log −ln(−ln(μ)) exp(−exp(−η)) 
 

    

 

Note: In the power link function, if |α| < 2.2e-16, α is treated as 0. 

Table 19-4 
The first and second derivatives of link function 

 

Link function First derivative  Second derivative  
Identity 1 0 
Log 

 

 
 

 
 

Logit 
 

 

 

 

   

Probit Φ ,  where 
 

 
  

Φ     

Complementary log-log    
 

    
 

  

Power(α) 
  

 
 

Log-complement 
 

 
 

 
 

Negative log-log 
 

 
 

     

 

When the canonical parameter is equal to the linear predictor, , then the link function is 
called the canonical link function. Although the canonical links lead to desirable statistical 
properties of the model, particularly in small samples, there is in general no a priori reason why 
the systematic effects in a model should be additive on the scale given by that link. The canonical 
link functions for probability distributions are given in the following table. 

Table 19-5 
Canonical and default link functions for probability distributions 

 

Distribution Canonical link function 
Normal Identity 
Inverse Gaussian Power(−2) 
Gamma Power(−1) 
Negative binomial Negative binomial 
Poisson Log 
Binomial Logit 

 
The variance of y, conditional on the random effects, is 

 
y γ A RA 
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The matrix A is a diagonal matrix and contains the variance function of the model, which 
is the function of the mean μ, divided by the corresponding scale weight variable; that is, 
Α     diag .  The variance functions, V(μ), are different for different 
distributions. The matrix R is the variance matrix for repeated measures. 

 
Generalized linear mixed models allow correlation and/or heterogeneity from random effects 
(G-side) and/or heterogeneity from residual effects (R-side), resulting in 4 types of models: 

 
1. If a GLMM has no G-side or R-side effects, then it reduces to a GZLM; G=0 and R I  where I 

is the identity matrix and  is the scale parameter. For continuous distributions (normal, inverse 
Gauss and gamma),  is an unknown parameter and is estimated jointly with the regression 
parameters by the maximum likelihood (ML) method. For discrete distributions (negative 
binomial, Poisson, binomial and multinomial),  is estimated by Pearson chi-square as follows: 

 

 
 

where for the restricted maximum pseudo-likelihood (REPL) method. 
 

2. If a model only has G-side random effects, then the G matrix is user-specified and R     I.   is 
estimated jointly with the covariance parameters in G for continuous distributions and ∅ = 1. 

 
3. If a model only has R-side residual effects, then G = 0 and the R matrix is user-specified. All 

covariance parameters in R are estimated using the REPL method, defined in the section 
“Estimation.”   

 
4. If a model has both G-side and R-side effects, all covariance parameters in G and R are jointly 

estimated using the REPL method. 
 

For the negative binomial distribution, there is the ancillary parameter k, which is first estimated 
by the ML method, ignoring random and residual effects, then fixed to that estimate while other 
regression and covariance parameters are estimated. 

 
 
Fixed effects transformation 

 
To improve numerical stability, the X matrix is transformed according to the following rules. 

 
The ith row of X is x T, i=1,...,n with if the model has an intercept. 
Suppose x   is the transformation of x  then the jth entry of x   is defined as 

 
 

x 
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where     and    are centering and scaling values for , respectively, for j=1,...,p and choices 
of     and    , are listed as follows: 
 For a non-constant continuous predictor or a derived predictor which includes a continuous 

predictor, if the model has an intercept, and       where   is the sample 

mean of the jth predictor, and and where  is 

the sample standard deviation of the jth predictor and                                       

Note the intercept column isn’t transformed. If the model has no intercept, and 

 For a constant predictor         , and , that is, scale it to 1. 
 For a dummy predictor that is derived from a factor or a factor interaction, and ; 

that is, leave it unchanged. 
 

Estimation 

We estimate GLMMs using linearization-based methods, also called the pseudo likelihood 
approach (PL; Wolfinger and O’Connell (1994)), penalized quasi-likelihood (PQL; Breslow 
and Clayton (1993)), marginal quasi-likelihood (MQL; Goldstein (1991)). They are based on 
the similar principle that the GLMMs are approximated by an LMM so that well-established 
estimation methods for LMMs can be applied. More specifically, the mean target function; that is, 
the inverse link function is approximated by a linear Taylor series expansion around the current 
estimates of the fixed-effect regression coefficients and different solutions of random effects (0 
is used for MQL and the empirical Bayes estimates are used for PQL). Applying this linear 
approximation of the mean target leads to a linear mixed model for a transformation of the original 
target. The parameters of this LMM can be estimated by Newton-Raphson or Fisher scoring 
technique and the estimates then are used to update the linear approximation. The algorithm 
iterates between two steps until convergence. In general, the method is a doubly iterative process. 
The outer iterations are to update the transformed target for an LMM and the inner iterations are to 
estimate parameters of the LMM. 

 
It is well known that parameter estimation for an LMM can be based on maximum likelihood 
(ML) or restricted (or residual) maximum likelihood (REML). Similarly, parameter estimation 
for a GLMM in the inner iterations can based on maximum pseudo-likelihood (PL) or restricted 
maximum pseudo-likelihood (REPL). 

 
 

Linear mixed pseudo model 
 

Following Wolfinger and O’Connell (1993), a first-order Taylor series of μ in (1) about  and 
  yields 

 

μ                   X      Z      O X Z γ 
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where Z O   is a diagonal matrix with elements consisting of evaluations of 

the 1st derivative of . Since Z O , this equation can be 
rearranged as 

 
μ      Z       Zγ 

 
If we define a pseudo target variable as 

 
v y      Z                y                   O 

 
then the conditional expectation and variance of v, based on E  y γ  and y  γ A RA , 
are 

 
E v γ μ      Z  

v γ  A  RA 

where A diag 
 

Furthermore, we also assume v  is normally distributed. Then we consider the model of v 
 

v Zγ ε 
 

as a weighted linear mixed model with fixed effects β, random effects γ 0  G , error terms 
ε 0 A RA , because ε v  γ    and diagonal weight matrix 

     A .  Note that the new target v (with O if an offset variable exists) is a Taylor 
series approximation of the linked target  y  . The estimation method of unknown 
parameters of β and θ, which contains all unknowns in G and R, for traditional linear mixed 
models can be applied to this linear mixed pseudo model. 

 
The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which 
are expressed as the functions of covariance parameters in θ, corresponding to the linear mixed 
model for v are the following: 

θ v V  θ r  θ TV θ r θ 

θ v V  θ r  θ TV θ r θ XTV θ X 
 

where 
 
 
 
denotes the effective sample size, and px denotes the rank of the design matrix of X or the number 
of non-redundant parameters in X. Note that the regression parameters in β are profiled from the 
above equations because the estimation of β can be obtained analytically.  The covariance 
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parameters in θ are estimated by Newton-Raphson or Fisher scoring algorithm. Following the 
tradition in linear mixed models, the objection functions of minimization for estimating θ would 
be θ v  or θ  v   Upon obtaining   , estimates for β and γ are computed as 

 

          XTV X XTV v 

ZTV 

where  is the best linear unbiased estimator (BLUE) of β and  is the estimated best linear 
unbiased predictor (BLUP) of γ in the linear mixed pseudo model.  With these statistics, v and 

are recomputed based on and the objective function is minimized again to obtain updated 
.  Iteration between θ v   and the above equation yields the PL estimation procedure and 

between θ  ν  and the above equation the REPL procedure. 
 

There are two choices for  (the current estimates of γ): 

1.    for PQL; and 

2.   0 for MQL. 
 

On the other hand,  is always used as the current estimate of the fixed effects. Based on the two 
objective functions (PL or REPL) and two choices of random effect estimates (PQL or MQL), 4 
estimation methods can be implemented for GLMMs: 

1. PL-PQL: pseudo-likelihood with = ; 

2. PL-MQL: pseudo-likelihood with =   ; 

3. REPL-PQL: residual pseudo-likelihood with = ; 

4. REPL-MQL: residual pseudo-likelihood with =   . 
 

We use method 3, REPL-PQL. 
 
Iterative process 

The doubly iterative process for the estimation of θ is as follows: 
 

1. Obtain an initial estimate of μ, μ . Specifically,                           for a binomial 
distribution (yi can be a proportion or 0/1 value) and  for a non-binomial distribution. Also 
set the outer iteration index j = 0. 

2. Based on , compute 
 

v O y and     A 

Fit a weighted linear mixed model with pseudo target v, fixed effects design matrix X, random 
effects design matrix Z, and diagonal weight matrix . The fitting procedure, which is called 
the inner iteration, yields the estimates of θ, and is denoted as  θ    .  The procedure uses the 
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specified settings for parameter, log-likelihood, and Hessian convergence criteria for determining 
convergence of the linear mixed model. If j = 0, go to step 4; otherwise go to the next step. 

3. Check if the following criterion with tolerance level is satisfied: 
 
 
 
 

If it is met or maximum number of outer iterations is reached, stop. Otherwise, go to the next step. 

4. Compute  by setting θ then set      .  Depending on the choice of random effect 
estimates, set = . 

5. Compute the new estimate.e of μ by 

                         Z O 

set j = j + 1 and go to step  2. 
 
Wald confidence intervals for covariance parameter estimates 

Here we assume that the estimated parameters of G and R are obtained through the above doubly 
iterative process. Then their asymptotic covariance matrix can be approximated by  Η , where 
H is the Hessian matrix of the objective function    or θ  v ) evaluated at   . The 
standard error for the ith covariance parameter estimate in the   vector, say , is the square root of 
the ith diagonal element of   Η . 

 
Thus, a simple Wald’s type confidence interval or test statistic for any covariance parameter 
can be obtained by using the asymptotic normality. However, these can be unreliable in small 
samples, especially for variance and correlation parameters that have a range of and 

respectively. Therefore, following the same method used in linear mixed models, these 
parameters are transformed to parameters that have range . Using the delta method, these 
transformed estimates still have asymptotic normal distributions. 

 
For variance type parameters in G and R, such as  in the autoregressive, autoregressive moving 
average, compound symmetry, diagonal, Toeplitz, and variance components, and   in the 
unstructured type, the 100(1 – α)% Wald confidence interval is given, assuming the variance 
parameter estimate is and its standard error is se   from the corresponding diagonal element 
of   Η , by 
 
 
  
For correlation type parameters in G and R, such as in the autoregressive, autoregressive moving 
average, and Toeplitz types and in the autoregressive moving average type, which usually come 
with the constraint of , the 100(1 – α)% Wald confidence interval is given, assuming the 
correlation parameter estimate is  and its standard error is  from the corresponding diagonal 
element of   Η , by 
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where and   are hyperbolic tangent and inverse 
hyperbolic tangent, respectively. 

 
For general type parameters, other than variance and correlation types, in G and R, such as in 
the compound symmetry type and (off-diagonal elements) in the unstructured type, no 
transformation is done. Then the 100(1 – α)% Wald confidence interval is simply, assuming the 
parameter estimate is  and its standard error is se from the corresponding diagonal element 
of   Η , 

 

se se 
 

The 100(1 – α)% Wald confidence interval for  is 
 

 
where ln . 

 
Note that the z-statistics for the hypothesis             where  is a covariance parameter in   
θ vector, are calculated; however, the Wald tests should be considered as an approximation and 
used with caution because the test statistics might not have a standardized normal distribution. 

 
Statistics for estimates of fixed and random effects 

 
 

 
 
 
 

 
where R v γ A RA is evaluated at the converged estimates and 

T 1 
 

              ΖT  
 

          ΖT 1Z+ 1   T 1Z 
 
 

Statistics for estimates of fixed effects on original scale 
 

If the X matrix is transformed, the restricted log pseudo-likelihood (REPL) would be different 
based on transformed and original scale, so the REPL on the transformed scale should be 
transformed back on the final iteration so that any post-estimation statistics based on REPL can 
be calculated correctly. Suppose the final objective function value based on the transformed and 
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original scales are θ v  and θ  v , respectively, then θ  v  can be obtained 
from θ  v   as follows: 

 

θ v θ v A 
 

Because REPL has the following extra term involved the X matrix 

X TV θ  X  XA TV θ XA 

AT XV θ  X A 

XV θ X A AT 

XV θ X A 
 

then XV θ X X TV θ X A  and θ v θ v A . Please 
note that PL values are the same whether the X matrix is transformed or not. 

In addition, the final estimates of β, C11, C21 and C22 are based on the transformed scale, denoted 
as and respectively. They are transformed back to the original scale, denoted as 

and respectively, as follows: 
 

       Α 

T 

AT 
 

 

Note that A could reduce toS ; hereafter, the superscript * denotes a quantity on the transformed 
scale. 

 
Estimated covariance matrix of the fixed effects parameters 

 
Two estimated covariance matrices of the fixed effects parameters can be calculated: model-based 
and robust. 

 
The model-based estimated covariance matrix of the fixed effects parameters is given by 

 
Σm  

 

The robust estimated covariance matrix of the fixed effects parameters for a GLMM is defined as 
the classical sandwich estimator. It is similar to that for a generalized linear model or a generalized 
estimating equation (GEE). If the model is a generalized linear mixed model and it is processed by 
subjects, then the robust estimator is defined as follows 
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Σr=Σm 1 T 1 Σm 

 
 

where v X 
 

Standard errors for estimates in fixed effects and predictions in random effects 

Let  denote a non-redundant parameter estimate in fixed effects. Its standard error is the square 
root of the ith diagonal element of Σm or  Σr, 

 

The standard error for redundant parameter estimates is set to a system missing value. 
 

Let   denote a prediction in random effects. Its standard error is the square root of the ith 
diagonal element of : 

 

 
Test statistics for estimates in fixed effects and predictions in random effects 

 
The hypothesis             is tested for each non-redundant parameter in fixed effects using the 
t statistic: 

 

 

which has an asymptotic t distribution with degrees of freedom. See “Method for computing 
degrees of freedom” for details on computing the degrees of freedom. 

 
Wald confidence intervals for estimates in fixed effects and predictions in random effects 

 
The 100(1 – α)% Wald confidence interval for  is given by 

 

where   is the           100th percentile of the distribution. 

For some models (see the list below), the exponentiated parameter estimates, their standard 
errors, and confidence intervals are computed. Using the delta method, the estimate of is 

 , the standard error estimate is          and the corresponding 100(1 – α)% Wald  
confidence interval for is 

 

T 
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The list of models is as follows: 

1. Logistic regression (binomial distribution + logit link). 

2. Nominal logistic regression (nominal multinomial distribution + generalized logit link). 

3. Ordinal logistic regression (ordinal multinomial distribution + cumulative logit link). 

4. Log-linear model (Poisson distribution + log link). 

5. Negative binomial regression (negative binomial distribution + log link). 
 
Testing 

 

After estimating parameters and calculating relevant statistics, several tests for the given model 
are performed. 

 
Goodness of fit 

 
Information criteria 

 
Information criteria are used when comparing different models for the same data. The formulas 
for various criteria are as follows. 

Finite sample corrected (AICC) 

Bayesian information criteria (BIC) 

 

where ℓ is the restricted log-pseudo-likelihood evaluated at the parameter estimates. For REPL, 
N is the effective sample size minus the number of non-redundant parameters in fixed effects 

( ) and d is the number of covariance parameters. 

 
Note that the restricted log-pseudo-likelihood values are of the linearized model, not on the 
original scale. Thus the information criteria should not be compared across models with different 
distribution and link function and they should be interpreted with caution. 

 
Tests of fixed effects 

For each effect specified in the model, a type III test matrix L is constructed and H0: Liβ = 0 is 
tested. Construction of L and the generating estimable function (GEF) is based on the generating 
matrix H XTΨX XTΨX  where Ψ diag such that Liβ is estimable; that 
is, L L H  . It involves parameters only for the given effect and the effects containing the given 
effect. For type III analysis, L does not depend on the order of effects specified in the model. If 
such a matrix cannot be constructed, the effect is not testable. 

 
Then the L matrix is then used to construct the test statistic 
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where ∑   T  .  The statistic has an approximate F distribution. The numerator 
degrees of freedom is and the denominator degrees of freedom is   . See “Method for computing 
degrees of freedom” for details on computing the denominator degrees of freedom. 

 
In addition, we test a null hypothesis that all regression parameters (except intercept if there is 
one) equal zero. The test statistic would be the same as the above F statistic except the L matrix is 
from GEF. If there is no intercept, the L matrix is the whole GEF. If there is an intercept, the L 
matrix is GEF without the first row which corresponds to the intercept. This test is similar to the 
“corrected model” in linear models. 

 
Estimated marginal means 

There are two types of estimated marginal means calculated here. One corresponds to the 
specified factors for the linear predictor of the model and the other corresponds to those for the 
original scale of the target. 

 
Estimated marginal means are based on the estimated cell means. For a given fixed set of factors, 
or their interactions, we estimate marginal means as the mean value averaged over all cells 
generated by the rest of the factors in the model. Covariates may be fixed at any specified value. 
If not specified, the value for each covariate is set to its overall mean estimate. 

 
Estimated marginal means are not available for the multinomial distribution. 

 
Estimated marginal means for the linear predictor 

 
Calculating estimated marginal means for the linear predictor 

 
Estimated marginal means for the linear predictor are based on the link function transformation, 
and constructed such that LB is estimable. 

 
Suppose there are r combined levels of the specified categorical effect. This r×1 vector can be 
expressed in the form . The variance matrix of is then computed by 

V =LΣLT 
 

The standard error for the jth element of     is the square root of the jth diagonal element of V . 
Let the jth element of    and its standard error be  and  , respectively, then the corresponding 
100(1 – α)% confidence interval for is given by 

 

T  T ∑ T 1 
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where is the                  percentile of the t distribution with   degrees of freedom.  
See “Method for computing degrees of freedom” for details on computing the degrees of 
freedom. 

 
Comparing estimated marginal means for the linear predictor 

 
We can compare estimated marginal means for the linear predictor based on a selected contrast 
type, for which a set of contrasts for the factor is created. Let this set of contrasts define matrix 
C used for testing the hypothesis     C 0.  An F statistic is used for testing given set of 
contrasts for the factor as follows: 

 
 

 

 
which has an asymptotic F distribution with degrees of freedom, where rank  CV CT  . 
See “Method for computing degrees of freedom” for details on computing the denominator 
degrees of freedom. The p-values can be calculated accordingly. Note that adjusted p-values 
based on multiple comparisons adjustments won’t be computed for the overall test. 

Each row cT of matrix C is also tested separately. The estimate for the ith row is given by cT and 
its standard error by    cTV c . The corresponding 100(1 – α)% confidence interval is given by 

cT 
 

The test statistic for cT is 

cT 
 

 
It has an asymptotic t distribution. See “Method for computing degrees of freedom” for details 
on computing the degrees of freedom. The p-values can be calculated accordingly. In addition, 
adjusted p-values for multiple comparisons can also computed. 

 
Estimated marginal means in the original scale 

 
Estimated marginal means for the target are based on the original scale. As a conditional predictor 
defined by Lane and Nelder (1982), estimated marginal means for the target are derived from 
those for the linear predictor. 

 
Calculating estimated marginal means for the target 

 
The estimated marginal means for the target are defined as 

 
                 L 

C T CV CT C 
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The variance of estimated marginal means for the target is 
 

 

where is a r×r matrix and is the derivative of the inverse of 
the link with respect to the jth value in and  where is 
from Table 19-4. 

 
The 100(1 – α)% confidence interval for is given by 

 

 
Note:   is estimated marginal means for the proportion, not for the number of events when 
events and trials variables are used for the binomial distribution. 

 
Comparing estimated marginal means for the target 

 
This is similar to comparing estimated marginal means for the linear predictor; just replace with 

 and  with . For more information, see the topic “Estimated marginal means for the 
linear predictor.” 

 
Multiple comparisons 

 
The hypothesis                  can be tested using the multiple row hypotheses testing technique. 
Let  be the ith row vector of matrix C. The ith row hypothesis is          . Testing is the 
same as testing multiple non-redundant row hypotheses simultaneously, where R is the 
number of non-redundant row hypotheses, and  represents the ith non-redundant hypothesis. A 
hypothesis  is redundant if there exists another hypothesis      such that     . 

 
Adjusted p-values.  For each individual hypothesis , test statistics can be calculated. Let 

denote the p-value for testing   and   denote the adjusted p-value. The conclusion from 
multiple testing is, at level (the family-wise type I error), 

reject               if         ; 

reject                if              . 
 

Several different methods to adjust p-values are provided here. Please note that if the adjusted 
p-value is bigger than 1, it is set to 1 in all the methods. 

 
Adjusted confidence intervals. Note that if confidence intervals are also calculated for the above 
hypothesis, then adjusting confidence intervals is required to correspond to adjusted p-values. 
The only item needed to be adjusted in the confidence intervals is the critical value from the 
standard normal distribution. Assume that the original critical value is and the adjusted 
critical value is . 
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LSD (Least Significant Difference) 

The adjusted p-values are the same as the original p-values: 
 

The adjusted critical value is: 
 

 
Sequential Bonferroni 

The adjusted p-values are: 
 

 
The adjusted critical values will correspond to the ordered adjusted p-values as follows: 
 
 
 

 
 

       
 
Sequential Sidak 

The adjusted p-values are: 
 

 
The adjusted critical values will correspond to the ordered adjusted p-values as follows: 

 

    
   

 

 

 =  

 
 
Method for computing degrees of freedom 

 
Residual method 

 
The value of degrees of freedom is given by X , where N is the effective sample size 
and X is the design matrix of fixed effects. 
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Satterthwaite’s   approximation 
 

First perform the spectral decomposition        where Γ is an orthogonal matrix of 
eigenvectors and D is a diagonal matrix of eigenvalues.  If  is the mth row of       ,  is the 
mth eigenvalues and 

 

 
where and   is the asymptotic covariance matrix of obtained from the 
Hessian matrix of the objective function; that is,       H  . If 

 

then the denominator degree of freedom is given by 
 

Note that the degrees of freedom can only be computed when E>q. 
 
Scoring 

For GLMMs, predicted values and relevant statistics can be computed based on solutions of 
random effects. PQL-type predictions use  as the solution for the random effects to compute 
predicted values and relevant statistics. 

 
PQL-type predicted values and relevant statistics 

 
Predicted value of the linear predictor 

xT      zT 
 

Standard error of the linear predictor 
 

 
 

Predicted value of the mean 

xT      zT 
 

For the binomial distribution with 0/1 binary target variable, the predicted category x  is 
 

(or success) if    
(or failure) otherwise 

 

Approximate 100(1−α)% confidence intervals for the mean 

x 
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xT      zT 
 
 

Raw residual on the link function transformation 
 

 

Raw residual on the original scale of the target 
 

 

Pearson-type residual on the link function transformation 
 

 
where γ  is the ith diagonal element of v  γ  and v γ A A where 

 is an n× 1 vector of PQL-type predicted values of the mean. 
 

Pearson-type residual on the original scale of the target 
 

 
where γ   is the ith diagonal element of y A A and       . 

 
Classification Table 

 
Suppose that is the sum of the frequencies for the observations whose actual target 
category is j (as row) and predicted target category is   (as column), (note that J = 
2 for binomial), then 

 

 
 

 

 
 

 
 

 

 
 

where is indicator function. 
 

Suppose that is the 
th 

element of the classification table, which is  the row 
percentage, then 

γ 

γ 
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T T 

 

 
 
 

 

The percentage of total correct predictions of the model (or “overall percent correct”) is 
 

 

Nominal multinomial distribution 

The nominal multinomial distribution requires some extra notation and explanation. 
 

Notation 

The following notation is used throughout this section unless otherwise stated: 

S Number of super subjects. 
Number of cases in the sth super subject. 

Nominal categorical target for the tth case in the sth super subject. Its category values 
are denoted as 1, 2, and so on. 

J The total number of categories for target. 

Dummy vector of  , T, where if , 
otherwise . The superscript T means the transpose of a matrix or vector. 

y yT yT  T 

T 

Probability of category j for the tth case in the sth super subject; that is, 
. 

T 
 

T 
  

T 

T T 

T T 
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T T 

T 
1 

 

 
 

Linear predictor value for category j of the tth case in the sth super subject. 

T 
 

T 
  

  

(n (J−1)) × 1 vector of linear predictor. T T
 

p× 1 vector of predictor variables for the tth case in the sth super subject. The first 
element is 1 if there is an intercept.  

X (n (J−1)) × (J−1)p design matrix of fixed effects, 
r× 1 vector of coefficients for the random effect corresponding to the tth case in the 
sth super subject.  

Z 
Design matrix of random effects, , where     is the direct sum of matrices. 

O n× 1 vector of offsets, , where       is the offset value of 
the tth case in the sth super subject. This can’t be the target (y) or one of the predictors 
(X). The offset must be continuous. 

1  -  , where 1   is a length q vector of 1. 
 

                           p× 1 vector of unknown parameters for category j,                                , . 
The first element in   is the intercept for the category j, if there is one. 

r × 1 vector of random effects for category j in the sth super subject, . 
 

 

Random effects for the sth super subject,    

 
   

Scale weight of the tth case in the sth super subject. It does not have to be integers. If 
it is less than or equal to 0 or missing, the corresponding case is not used. 

ω n× 1 vector of scale weight variable, ω T. 
                          Frequency weight of the tth case in the sth super subject. If it is a non-integer value, it 

is treated by rounding the value to the nearest integer. If it is less than 0.5 or missing, 
the corresponding cases are not used. 

f n× 1 vector of frequency count variable, T 
N 

Effective sample size, . If frequency count variable f is not used, N = n. 
 
 

Model 
 

The form of a generalized linear mixed model for nominal target with the random effects is 
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d 
d 

 

 
 

where is the linear predictor; X is the design matrix for fixed effects; Z is the design matrix for 
random effects; γ is a vector of random effects which are assumed to be normally distributed with 
mean 0 and variance matrix G; is the logit link function such that 

 

 

And its inverse function is 
 
 
 
 

 

 
 
 
 
 
The variance of y, conditional on the random effects is 
 
 
 
 

 
 
 

are not supported for the multinomial distribution.   is set to 1. 
 
Estimation 

 
Linear mixed pseudo model 

 
Similarly to “Linear mixed pseudo model,” we can obtain a weighted linear mixed model 

 

 
where v D y O   and error terms   with 

 

D D 
             

 

and 
 

 
And block diagonal weight matrix is 

T 

T 
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D D= D 
   

 
The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which 
are expressed as the functions of covariance parameters in θ, corresponding to the linear mixed 
model for v are the following: 

θ v V  θ r  θ TV θ r θ 

θ v V  θ r  θ TV θ r θ XTV θ X 
 
 
 
 
 

The parameter can be estimated by linear mixed model using the objection function θ v  or 
θ  v ,  and are computed as 

 

T T 
 

T 
 
 

Iterative process 
 

The doubly iterative process for the estimation of   is the same as that for other distributions, if we 
replace  and with and O   respectively, and set initial estimation 
of as 

 

For more information, see the topic “Iterative process.” 
 
Post-estimation statistics 

Wald confidence intervals 

The Wald confidence intervals for covariance parameter estimates are described in “Wald 
confidence intervals for covariance parameter estimates.” 

 
Statistics for estimates of fixed and random effects 

Similarly to “Statistics for estimates of fixed and random effects,” the approximate 
covariance matrix of is 



 

Generalized linear mixed models algorithms 

 

T 

 

 
 
 

 
 

Where with = , and 
      

 

 
 

 
 

 

 
Statistics for estimates of fixed and random effects on original scale 

 
If the fixed effects are transformed when constructing matrix X, then the final estimates of , 

 ,  , and   above are based on transformed scale, denoted as  ,  , and  , 
respectively.  They would be transformed back on the original scale, denoted as   ,        ,  , 
and , respectively, as follows: 

 

 
T 

 
T 

 
 

 

where A . 
 

  

 
Estimated covariance matrix of the fixed effects parameters 

 
Model-based estimated covariance 

 

 
Robust estimated covariance of the fixed effects parameters 

 



 

Generalized linear mixed models algorithms 

 
 

 
 

where                    , and is a part of corresponding to the sth super subject. 
 

Standard error for estimates in fixed effects and predictions in random effects 
 

Let  denote a non-redundant fixed effects parameter estimate. Its standard error is the square 
root of the                  diagonal element of 

 

 
The standard error for redundant parameter estimates is set to system missing value. 

 
Similarly, let   denote the ith random effects prediction. Its standard error is the square root 
of the ith diagonal element of  : 

 

 
Test statistics for estimates in fixed effects and predictions in random  effects 

 
Test statistics for estimates in fixed effects and predictions in random effects are as those described 
in “Statistics for estimates of fixed and random effects.” 

 
Wald confidence intervals for estimates in fixed effects and random effects predictions 

 
Wald confidence intervals are as those described in “Statistics for estimates of fixed and random 
effects.” 

 

Testing 
 

Information criteria 
 

These are as described in “Goodness of fit.” 
 

Tests of fixed effects 
 

For each effect specified in the model, a type III test matrix L is constructed from    
the generating matrix                         , where and 

. Then the test statistic is 
 
 

 
 

where and       L. The statistic has an approximate F distribution. 
The numerator degrees of freedom is  and the denominator degree of freedom is   . For more 
information, see the topic “Method for computing degrees of freedom.” 
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Scoring 
 

PQL-type predicted values and relevant statistics 
 

        predicted vector of the linear predictor 

T                 z T 
 

Estimated covariance matrix of the linear predictor 
 

                                                                           z z  
z z 

 
where  is a diagonal block corresponding to the sth super subject, the approximate covariance 
matrix of          ;   is a part of   corresponding to the sth super subject. 

The estimated standard error of the jth element in , , is the square root of the jth diagonal 
element of  , 

 

 
Predicted value of the probability for category j 

 
 
 
 
 
 
 
 
 
 

 

 
Predicted category 

 
x 

 
If there is a tie in determining the predicted category, the tie will be broken by choosing the 

category with the highest                     If there is still a tie, the one with the lowest  

category number is chosen. 

Approximate 100(1−α)% confidence intervals for the predicted probabilities 

The covariance matrix of   can be computed as 



 
 

T T 

λT 
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         where  
 
 
 
 
 
 
 
 

with 
 

 
then the confidence interval is 

 
 
 

where is the jth diagonal  element of and the estimated variance of 
. 

 
Ordinal multinomial distribution 

The ordinal multinomial distribution requires some extra notation and explanation. 
 

Notation 

The following notation is used throughout this section unless otherwise stated: 

S Number of super subjects. 
Number of cases in the sth super subject. 

Ordinal categorical target for the tth case in the sth super subject. Its category values 
are denoted as consecutive integers from 1 to J. 

J The total number of categories for target. 

Indicator vector of  , T, where if , 
otherwise . The superscript T means the transpose of a matrix or vector. 

y yT yT  T 

T 

                       Cumulative target probability for category j for the tth case in the sth super subject; 

λ                               
  where λ λT λT T 

and λT , 
and 

Probability of category j for the tth case in the sth super subject; that is, 
and . 



 
 

T T 

T 
1 
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T 
 

T 
  

T 
 

Linear predictor value for category j of the tth case in the sth super subject. 

T 
 

T 
  

  

(n (J−1)) × 1 vector of linear predictor. T T
 

p× 1 vector of predictors for the tth case in the sth super subject. 

r× 1 vector of coefficients for the random effect corresponding to the tth case in the 
sth super subject. 

O n× 1 vector of offsets, , where       is the offset value of 
the tth case in the sth super subject. This can’t be the target (y) or one of the predictors 
(X). The offset must be continuous. 

1  -   , where 1   is a length q vector of 1’s. 

ψ J−1 × 1 vector of threshold  parameters, ψ T and 

                            p× 1 vector of unknown parameters. 

(J−1+p) × 1 vector of all parameters Β=  ψT  βT  T 
Scale weight of the tth case in the sth super subject. It does not have to be integers. If 
it is less than or equal to 0 or missing, the corresponding case is not used. 

ω n× 1 vector of scale weight variable, ω T. 
                          Frequency weight of the ith case in the sth super subject. If it is a non-integer value, it 

is treated by rounding the value to the nearest integer. If it is less than 0.5 or missing, 
the corresponding cases are not used. 

f n× 1 vector of frequency count variable, T 
N 

Effective sample size, . If frequency count variable f is not used, N = n. 

A B B B B 
direct (or Kronecker ) product of A and B, which is equal to 

 
m× 1 vector of 1s; T 

B B B 
B B B 

 
 

Model 
 

The form of a generalized linear mixed model for an ordinal target with random effects is 

 
λ γ  

T T 

T T 
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T 

 

 
 

where is the expanded linear predictor vector; λ is the expanded cumulative target probability 
vector;  is a cumulative link function; X is the expanded design matrix for fixed effects 
arranged as follows 

 

 

 

 

 

 

 

 

 

 

 

 

 

Β=  ψT  βT  T 
ψ ψ     βT  T  

Z is the expanded design matrix for random effects 
arranged as follows 

 
 
 

γ is a vector of random effects which are assumed to be normally distributed with mean 0 and 
variance matrix G. 

 
The variance of y, conditional on the random effects is 

 

 

where and R I which means that R-side effects 
      

are not supported for the multinomial distribution.   is set to 1. 
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Estimation 

 
Linear mixed pseudo model 

 
Similarly to “Linear mixed pseudo model,” we can obtain a weighted linear mixed model 

 

 

where v D y O   and error terms ε D  D T with 
 

    
 
 
 
 
 
 
 
 
 
 
 
 
                    and 
 

 
And block diagonal weight matrix is 

DT D 

The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which 
are expressed as the functions of covariance parameters in   , corresponding to the linear mixed 
model for are the following: 

θ v V  θ r  θ TV θ r θ 

θ v V  θ r  θ TV θ r θ XTV θ X 
 

where V  θ  G  θ R  θ θ N denotes the effective sample 
size, and denotes the total number of non-redundant parameters for . 

 
The parameter  can be estimated by linear mixed model using the objection function θ  v  or 

θ v , and are computed as 

T 
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. 

β 
β 

ψ 

 

 
 
 

T T 
 

T 
 
 

Iterative process 
 

The doubly iterative process for the estimation of   is the same as that for other distributions, if we 
replace  and with and               O   respectively, and set initial estimation 
of as 

 

 
For more information, see the topic “Iterative process.” 

 

Post-estimation statistics 
 

Wald confidence intervals 
 

The Wald confidence intervals for covariance parameter estimates are described in “Wald 
confidence intervals for covariance parameter estimates.” 

 
Statistics for estimates of fixed and random effects 

is the approximate covariance matrix of                             and in should be 

D D T 
 

Statistics for estimates of fixed and random effects on original scale 
 

If the fixed effects are transformed when constructing matrix X, then the final estimates of B, 
denoted as . They would be transformed back on the original scale, denoted as , as follows: 

 

B β A ψ AB 
 
 

where 
 

A I 1  TS 
S 
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Estimated covariance matrix of the fixed effects parameters 

 
The estimated covariance matrix of the fixed effects parameters is described in “Statistics for 
estimates of fixed and random effects.” 

 
Standard error for estimates in fixed effects and predictions in random effects 

 
Let be threshold parameter estimates and denote 
non-redundant regression parameter estimates. Their standard errors are the square root of the 
diagonal elements of Σm or Σr:          and                                 , respectively, where 

is the ith diagonal element of Σm or Σr. 
 

Standard errors for predictions in random effects are as those described in “Statistics for estimates 
of fixed and random effects.” 

 
Test statistics for estimates in fixed effects and predictions in random effects 

 
The hypotheses                                                             are tested for threshold parameters using the 
t statistic: 

 

 

Test statistics for estimates in fixed effects and predictions in random effects are otherwise as 
those described in “Statistics for estimates of fixed and random effects.” 

 
Wald confidence intervals for estimates in fixed effects and random effects predictions 

 
The 100(1 – α)% Wald confidence interval for threshold parameter is given by 

 

 
Wald confidence intervals are otherwise as those described in “Statistics for estimates of fixed and 
random effects.” 

 
The degrees of freedom can be computed by the residual method or Satterthwaite method. For the 
residual method, . For the Satterthwaite method, it should be similar to that 
described in “Method for computing degrees of freedom.” 

 

Testing 
 

Information criteria 
 

These are as described in “Goodness of fit,” with the following modifications. 
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T Z T 

 

 
 

For REPL, the value of N is chosen to be effective sample size minus number of non-redundant 

parameters in fixed effects, , where is the number of non-redundant 

parameters in fixed effects, and d is the number of covariance parameters. 

 
For PL, the value of N is effective  sample size, , and d is the number of number  of 

non-redundant parameters in fixed effects, , plus the number of covariance parameters. 
 

Tests of fixed effects 

For each effect specified in the model excluding threshold parameters, a type I or III test 
matrix Li is constructed and H0:  LiB = 0 is tested.  Construction of matrix Li is based  on 
matrix,                                       where X 1 X   and such that LiB is estimable. 
Note that LiB is estimable if and only if L0     L0H  , where L0      l   L β    .  Construction  
of L0 considers a partition of the more general test matrix L        L   ψ   L   β    first, where  
L   ψ        l          l         consists of columns corresponding to the threshold parameters and 
L β  is the part of Li corresponding to regression parameters, then replace L  ψ  with their 

sum l l   to get L0. 

Note that the threshold-parameter effect is not tested for both type I and III analyses and 
construction of Li is the same as in GENLIN. For more information, see the topic “Default Tests 
of Model Effects.” Similarly, if the fixed effects are transformed when constructing 
matrix X, then H   should be constructed based on transformed values. 

 

Scoring 
 

PQL-type predicted values and relevant statistics 
 

predicted vector of the linear predictor 
 

 

Estimated covariance matrix of the linear predictor 

T Z 
T 

 
where  is a diagonal block corresponding to the sth super subject, the approximate covariance 
matrix of          ;   is a part of   corresponding to the sth super subject. 

 
The estimated standard error of the jth element in , , is the square root of the jth diagonal 
element of , 

 

T 
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Predicted value of the cumulative probability for category j 

 
 = 

 
with 

 

Predicted category 
 

x 
 

where 
 

If there is a tie in determining the predicted category, the tie will be broken by choosing the 

category with the highest                    If there is still a tie, the one with the lowest  

category number is chosen. 

Approximate 100(1−α)% confidence intervals for the cumulative predicted probabilities 
 

 
If either endpoint in the argument is outside the valid range for the inverse link function, the 
corresponding confidence interval endpoint is set to a system missing value. 

 
The degrees of freedom can be computed by the residual method or Satterthwaite method. 
For the residual method, .  For Satterthwaite’s approximation, 
the L matrix is constructed by    X       Z         where X      and Z      are the jth rows of 
X and Z   , respectively, corresponding to the jth category.  For example, the L matrix is 

xT      zT for the 1st category.  The computation should then be 
similar to that described in “Method for computing degrees of freedom.” 
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Imputation of Missing  Values 
The following methods are available for imputing missing values: 

 
Fixed. Substitutes a fixed value (either the field mean, midpoint of the range, or a constant that 
you specify). 

Random.  Substitutes a random value based on a normal or uniform distribution. 

Expression. Allows you to specify a custom expression. For example, you could replace values 
with a global variable created by the Set Globals node. 

Algorithm. Substitutes a value predicted by a model based on the C&RT algorithm. For each field 
imputed using this method, there will be a separate C&RT model, along with a Filler node that 
replaces blanks and nulls with the value predicted by the model. A Filter node is then used to 
remove the prediction fields generated by the model. 

 
Details of each imputation method are provided below. 

 
Imputing Fixed Values 

For fixed value imputation, three options are available: 
 

Mean.  Substitutes the mean of the valid training data values for the field being imputed, 
 

 

 
 

where is the value of field x for record i, excluding missing values, and is the number of 
records with valid values for field x. 

 
Midrange. Substitutes the value halfway between the minimum and maximum valid values for the 
field being imputed, 

 

 
where and are the minimum and maximum observed valid values for  field x, 
respectively. 

 
Constant.  Substitutes the user-specified constant value. 

 
For imputing fixed missing values in set or flag fields, only the Constant option is available. 

 
Note: Using fixed imputed values for scale fields will artificially reduce the variance for that field, 
which can interfere with model building using the field.  If you impute using fixed values and  
find that the field no longer has the expected effect in a model, consider imputing with a different 
method that has a smaller impact on the field’s variance. 
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Imputing Random Values 
For random value imputation, the options depend on the type of the field being imputed. 

 
Range Fields 

 
For range fields, you can select from a uniform distribution or a normal distribution. 

 
Uniform distribution.  Values are generated randomly on the inverval , where each value 
in the interval is equally likely to be generated. 

 
Normal distribution. Values are generated from a normal distribution with mean and variance 

, where and  are derived from the valid observed values of x in the training data, 
 

 
 

 
Set Fields 

 
For set fields, random imputed values are selected from the list of observed values. By default, the 
probabilities of all values are equal, 

 

 
for the j possible values of k. The Equalize button will return any modified values to the default 
equal probabilities. 

 
If you select Based on Audit, probabilities are assigned proportional to the relative frequencies of 
the values in the training data 

 

 
where is the number of records for which . 

 
If you select Normalize, values are adjusted to sum to 1.0, maintaining the same relative 
proportions, 

 

 

This is useful if you want to enter your own weights for generated random values, but they aren’t 
expressed as probabilities. For example, if you know you want twice as many No values as Yes 
values, you can enter 2 for No and 1 for Yes and click Normalize. Normalization will adjust the 
values to 0.667 and 0.333, preserving the relative weights but expressing them as probabilities. 



 

 
 
Imputing Values Derived from an Expression 

 

Imputation of Missing Values 

 

For expression-based imputation, imputed values are based on a user-specified CLEM expression. 
The expression is evaluated just as it would be for a filler node. Note that some expressions 
may return $null or other missing values, with the result that missing values may exist even 
after imputation with this method. 

 
Imputing Values Derived from an Algorithm 

For the Algorithm method, a C&RT model is built for each field to be imputed, using all other 
input fields as predictors. For each record that is imputed, the model for the field to be imputed 
is applied to the record to produce a prediction, which is used as the imputed value. For more 
information, see the topic “Overview of C&RT.” 



 

 



 

K-Means Algorithm 

Overview 

The k-means method is a clustering method, used to group records based on similarity of values 
for a set of input fields. The basic idea is to try to discover k clusters, such that the records within 
each cluster are similar to each other and distinct from records in other clusters. K-means is an 
iterative algorithm; an initial set of clusters is defined, and the clusters are repeatedly updated until 
no more improvement is possible (or the number of iterations exceeds a specified limit). 

 
Primary Calculations 

In building the k-means model, input fields are encoded to account for differences in measurement 
scale and type, and the clusters are defined and updated to generate the final model. These 
calculations are described below. 

 

Field Encoding 

Input fields are recoded before the values are input to the algorithm as described below. 
 

Scaling of Range Fields 
 

In most datasets, there’s a great deal of variability in the scale of range fields. For example, 
consider age and number of cars per household. Depending on the population of interest, age 
may take values up to 80 or even higher. Values for number of cars per household, however, are 
unlikely to exceed three or four in the vast majority of cases. 

If you use both of these fields in their natural scale as inputs for a model, the age field is 
likely to be given much more weight in the model than number of cars per household, simply 
because the values (and therefore the differences between records) for the former are so much 
larger than for the latter. 

To compensate for this effect of scale, range fields are transformed so that they all have the 
same scale. In IBM® SPSS® Modeler, range fields are rescaled to have values between 0 and 1. 
The transformation used is 

 

 
where x’i is the rescaled value of input field x for record i, xi is the original value of x for record i, 
xmin is the minimum value of x for all records, and xmax is the maximum value of x for all records. 

 
Numeric Coding of Symbolic Fields 

 
For modeling algorithms that base their calculations on numerical differences between records, 
symbolic fields pose a special challenge. How do you calculate a numeric difference for two 
categories? 
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A common approach to the problem, and the approach used in IBM® SPSS® Modeler, is to 
recode a symbolic field as a group of numeric fields with one numeric field for each category or 
value of the original field. For each record, the value of the derived field corresponding to the 
category of the record is set to 1.0, and all the other derived field values are set to 0.0. Such 
derived fields are sometimes called indicator fields, and this recoding is called indicator coding. 

For example, consider the following data, where x is a symbolic field with possible values A, 
B, and C: 

 
Record # X X1’ X2’ X3’ 
1 B 0 1 0 
2 A 1 0 0 
3 C 0 0 1 

 

In this data, the original set field x is recoded into three derived fields x1’, x2’, and x3’. x1’ is an 
indicator for category A, x2’ is an indicator for category B, and x3’ is an indicator for category C. 

 
Applying the Set Encoding Value 

 
After recoding set fields as described above, the algorithm can calculate a numerical difference 
for the set field by taking the differences on the k derived fields (where k is the number of 
categories in the original set).  However, there is an additional problem.  For algorithms that 
use the Euclidean distance to measure differences between records, the difference between two 
records with different values i and j for the set is 

 

 
where J is the number of categories, and xkn is value of the derived indicator for category k for 
record n.  But the values will be different on two of the derived indicators, xi and xj.  Thus, the 
sum will be                              , which is larger than 1.0.  That means 
that based on this coding, set fields will have more weight in the model than range fields that 
are rescaled to 0-1 range. 

To account for this bias, k-means applies a scaling factor to the derived set fields, such that a 
difference of values on a set field produces a Euclidean distance of 1.0. The default scaling 
factor is . You can see that this value gives the desired result by inserting the value 
into the distance formula: 

 

 
The user can specify a different scaling factor by changing the Encoding value for sets parameter in 
the K-Means node expert options. 
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Encoding of Flag Fields 

Flag fields are a special case of symbolic fields. However, because they have only two values in 
the set, they can be handled in a slightly more efficient way than other set fields. Flag fields are 
represented by a single numeric field, taking the value of 1.0 for the “true” value and 0.0 for the 
“false” value.  Blanks for flag fields are assigned the value 0.5. 

 
Model Parameters 

The primary calculation in k-means is an iterative process of calculating cluster centers and 
assigning records to clusters. The primary steps in the procedure are: 

1. Select initial cluster centers 

2. Assign each record to the nearest cluster 

3. Update the cluster centers based on the records assigned to each cluster 

4. Repeat steps 2 and 3 until either: 
 In step 3, there is no change in the cluster centers from the previous iteration, or 
 The number of iterations exceeds the maximum iterations parameter 

 
Clusters are defined by their centers. A cluster center is a vector of values for the (encoded) input 
fields. The vector values are based on the mean values for records assigned to the cluster. 

 
Note: The structure of the model can differ depending on the input order of the records. To 
minimize the input order effect, randomly order the records before building the model. 

 
Selecting Initial Cluster Centers 

The user specifes k, the number of clusters in the model. Initial cluster centers are chosen using a 
maximin algorithm: 

1. Initialize the first cluster center as the values of the input fields for the first data record. 

2. For each data record, compute the minimum (Euclidean) distance between the record and each 
defined cluster center. 

3. Select the record with the largest minimum distance from the defined cluster centers. Add a new 
cluster center with values of the input fields for the selected record. 

4. Repeat steps 2 and 3 until k cluster centers have been added to the model. 
 

Once initial cluster centers have been chosen, the algorithm begins the iterative assign/update 
process. 

 
Assigning Records to Clusters 

In each iteration of the algorithm, each record is assigned to the cluster whose center is closest. 
Closeness is measured by the usual squared Euclidean distance 
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where Xi is the vector of encoded input fields for record i, Cj is the cluster center vector for cluster 
j, Q is the number of encoded input fields, xqi is the value of the qth encoded input field for the ith 
record, and cqj is the value of the qth encoded input field for the jth record. 

For each record, the distance between the record and each cluster center is calculated, and the 
cluster center whose distance from the record is smallest is assigned as the record’s new cluster. 
When all records have been assigned, the cluster centers are updated. 

 
Updating Cluster Centers 

 
After records have been (re)assigned to their closest clusters, the cluster centers are updated. The 
cluster center is calculated as the mean vector of the records assigned to the cluster: 

 

 
where the components of the mean vector   are calculated in the usual manner, 

 
 
 
 

where nj is the number of records in cluster j, xqi(j) is the qth encoded field value for record i 
which is assigned to cluster j. 

 

Blank Handling 

In k-means, blanks are handled by substituting “neutral” values for the missing ones. For range 
and flag fields with missing values (blanks and nulls), the missing value is replaced with 0.5. For 
set fields, the derived indicator field values are all set to 0.0. 

 

Effect of Options 

There are several options that affect the way the model calculations are carried out. 
 

Maximum Iterations 
 

The maximum iterations parameter controls how long the algorithm will continue searching 
for a stable cluster solution. The algorithm will repeat the classify/update cycle no more than 
the number of times specified. If and when this limit is reached, the algorithm terminates and 
produces the current set of clusters as the final model. 
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Error Tolerance 

 
The error tolerance parameter provides another means of controlling how long the algorithm will 
continue searching for a stable cluster solution. The maximum change in cluster means for an 
iteration t is calculated as 

 

 

where Cj(t) is the cluster center vector for the jth cluster at iteration t and Cj(t - 1) is the cluster 
center vector at the previous iteration. If the maximum change is less than the specified tolerance 
for the current iteration, the algorithm terminates and produces the current set of clusters  as 
the final model. 

 
Encoding Value for Sets 

 
The encoding value for sets parameter controls the relative weighting of set fields in the k-means 
algorithm. The default value of provides an equal weighting between range fields 
and set fields. To emphasize set fields more heavily, you can set the encoding value closer to 1.0; 
to emphasize range fields more, set the encoding value closer to 0.0. For more information, see 
the topic “Numeric Coding of Symbolic Fields.” 

 
Model Summary Statistics 

Cluster proximities are calculated as the Euclidean distance between cluster centers, 
 

 

Generated Model/Scoring 
Generated k-means models provide predicted cluster memberships and distance from cluster 
center for each record. 

 
Predicted Cluster Membership 

When assigning a new record with a predicted cluster membership, the Euclidean distance 
between the record and each cluster center is calculated (in the same manner as for assigning 
records during the model building phase), and the cluster center closest to the record is assigned as 
the predicted cluster for the record. 

 
Distances 

The value of the distance field for each record, if requested, is calculated as the Euclidean 
distance between the record and its assigned cluster center, 
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Blank Handling 

In k-means, scoring records with a generated model handles blanks in the same way they are 
handled during model building. For more information, see the topic “Blank Handling.” 



 

KNN Algorithms 
Nearest Neighbor Analysis is a method for classifying cases based on their similarity to other 
cases. In machine learning, it was developed as a way to recognize patterns of data without 
requiring an exact match to any stored patterns, or cases. Similar cases are near each other and 
dissimilar cases are distant from each other. Thus, the distance between two cases is a measure 
of their dissimilarity. 

 
Cases that are near each other are said to be “neighbors.” When a new case (holdout) is presented, 
its distance from each of the cases in the model is computed. The classifications of the most 
similar cases – the nearest neighbors – are tallied and the new case is placed into the category that 
contains the greatest number of nearest neighbors. 

 
You can specify the number of nearest neighbors to examine; this value is called k. The pictures 
show how a new case would be classified using two different values of k. When k = 5, the new 
case is placed in category 1 because a majority of the nearest neighbors belong to category  1. 
However, when k = 9, the new case is placed in category 0 because a majority of the nearest 
neighbors belong to category 0. 

 
Nearest neighbor analysis can also be used to compute values for a continuous target. In this 
situation, the average or median target value of the nearest neighbors is used to obtain the 
predicted value for the new case. 

 
 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

Y Optional 1×N vector of responses with element , where n=1,...,N 
indexes the cases. 

X0 P0×N matrix of features with element , where p=1,...,P0 indexes the 
features and n=1,...,N indexes the cases. 

X P×N matrix of encoded features with element , where p=1,...,P 
indexes the features and n=1,...,N indexes the cases. 

P Dimensionality of the feature space; the number of continuous features 
plus the number of categories across all categorical features. 

N Total number of cases. 
The number of cases with Y = j, where Y is a response variable  with 
J categories 

                                    The number of cases which belong to class j and are correctly classified 
as j. 

                                   The total number of cases which are classified as j. 

 
 
Preprocessing 

Features are coded to account for differences in measurement scale. 
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Continuous 

 
Continuous features are optionally coded using adjusted normalization: 

 

 

where is the normalized value of input feature p for case n,  is the original value of the 
feature for case n, is the minimum value of the feature for all training cases,  and 

is the maximum value for all training cases. 
 

Categorical 
 

Categorical features are always temporarily recoded using one-of-c coding.  If a feature has 
c categories, then it is is stored as c vectors, with the first category denoted (1,0,...,0), the next 
category (0,1,0,...,0), ..., and the final category (0,0,...,0,1). 

 
Training 

Training a nearest neighbor model involves computing the distances between cases based upon 
their values in the feature set. The nearest neighbors to a given case have the smallest distances 
from that case. The distance metric, choice of number of nearest neighbors, and choice of the 
feature set have the following options. 

 

Distance Metric 

We use one of the following metrics to measure the similarity of query cases and their nearest 
neighbors. 

 
Euclidean Distance. The distance between two cases is the square root of the sum, over all 
dimensions, of the weighted squared differences between the values for the cases. 

 

 
City Block Distance. The distance between two cases is the sum, over all dimensions, of the 
weighted absolute differences between the values for the cases. 
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The feature weight is equal to 1 when feature importance is not used to weight distances; 
otherwise, it is equal to the normalized feature importance: 

 
 

 

 

 
 

See “Output Statistics ” for the computation of feature importance  . 
 
Crossvalidation for Selection of k 

Cross validation is used for automatic selection of the number of nearest neighbors, between a 
minimum  and maximum . Suppose that the training set has a cross validation variable 
with the integer values 1,2,..., V. Then the cross validation algorithm is as follows: 

E  For each , compute the average error rate or sum-of square error of k: 
                          , where is the error rate or sum-of square error when we apply the Nearest 

Neighbor model to make predictions on the cases with ; that is, when we use the other 
cases as the training dataset. 

E   Select the optimal k as:              . 
 

Note: If multiple values of k are tied on the lowest average error, we select the smallest k among 
those that are tied. 

 
Feature Selection 

Feature selection is based on the wrapper approach of Cunningham and Delany (2007) and uses 
forward selection which starts from  features which are entered into the model. Further 
features are chosen sequentially; the chosen feature at each step is the one that causes the largest 
decrease in the error rate or sum-of squares error. 

 
Let  represent the set of J features that are currently chosen to be included,  represents the 
set of remaining features and represents the error rate or sum-of-squares error associated 
with the model based on  . 

 
The algorithm is as follows: 

E  Start with features. 

E   For each feature in  , fit the k nearest neighbor model with this feature plus the existing features 
in  and calculate the error rate or sum-of square error for each model. The feature in whose 
model has the smallest error rate or sum-of square error is the one to be added to create  . 

E   Check the selected stopping criterion.  If satisfied, stop and report the chosen feature subset. 
Otherwise, J=J+1 and go back to the previous step. 

 
Note: the set of encoded features associated with a categorical predictor are considered and added 
together as a set for the purpose of feature selection. 
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Stopping Criteria 

One of two stopping criteria can be applied to the feature selection algorithm. 
 

Fixed number of features.  The algorithm adds a fixed number of features,  , in addition to those 
forced into the model. The final feature subset will have features.  may be 
user-specified or computed automatically; if computed automatically the value is 

 

 
When this is the stopping criterion, the feature selection algorithm stops when  features 
have been added to the model; that is, when               , stop and report   as the chosen 
feature subset. 

 
Note:  if       , no features are added and  with   is reported as the chosen 
feature subset. 

 
Change in error rate or sum of squares error. The algorithm stops when the change in the absolute 
error ratio indicates that the model cannot be further improved by adding more  features. 
Specifically, if or and 

 

 
 

where  is the specified minimum change, stop and report   as the chosen feature subset. 
 

If and 
 

 
 

stop and report  as the chosen feature subset. 
 

Note: if for , no features are added and  with  is reported as 
the chosen feature subset. 

 
Combined k and Feature Selection 

The following method is used for combined neighbors and features selection. 

1. For each k, use the forward selection method for feature selection. 

2. Select the k, and accompanying feature set, with the lowest error rate or the lowest sum-of-squares 
error. 

 
Blank Handling 

All records with missing values for any input or output field are excluded from the estimation of 
the model. 
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Output Statistics 
The following statistics are available. 

 
Percent correct for class j 

 

 

Overall percent for class j 
 

 

Intersection of Overall percent and percent correct 
 

 
Error rate of classification 

 

 
Sum-of-Square Error for continuous response 

 
 

 
 

 

 
 

where   is the estimated value of . 
 

Feature Importance 
 

Suppose there are                 in the model from the forward selection 
process with the error rate or sum-of-squares error e.  The importance of feature   in the 
model is computed by the following method. 

E   Delete the feature   from the model, make predictions and evaluate the error rate or 
sum-of-squares error based on features . 

E   Compute the error ratio  . 

The feature importance of is 
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Scoring 

After we find the k nearest neighbors of a case, we can classify it or predict its response value. 
 

Categorical response 
 

Classify each case by majority vote of its k nearest neighbors among the training cases. 

E If multiple categories are tied on the highest predicted probability, then the tie should be broken by 
choosing the category with largest number of cases in training set. 

E If multiple categories are tied on the largest number of cases in the training set, then choose the 
category with the smallest data value among the tied categories. In this case, categories are 
assumed to be in the ascending sort or lexical order of the data values. 

 
We can also compute the predicted probability of each category.  Suppose   is the number of 
cases of the jth category among the k nearest neighbors. Instead of simply estimating the predicted 
probability for the jth category by , we apply a Laplace correction as follows: 

 

 
where J is the number of categories in the training data set. 

 
The effect of the Laplace correction is to shrink the probability estimates towards to 1/J when the 
number of nearest neighbors is small. In addition, if a query case has k nearest neighbors with the 
same response value, the probability estimates are less than 1 and larger than 0, instead of 1 or 0. 

 
Continuous response 

 
Predict each case using the mean or median function. 

 
Mean function.                                        , where is the index set of those cases                       
that are the nearest neighbors of case n and is the value of the continuous response variable 
for case m. 

 
Median function.  Suppose that   are the values of the continuous response 
variable, and we arrange  from the lowest value to the highest value and 
denote them as , then the median is 

is odd 

is even 

 
Blank Handling 

Records with missing values for any input field cannot be scored and are assigned a predicted 
value and probability value(s) of $null$. 
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Kohonen Algorithms 

Overview 

Kohonen models (Kohonen, 2001) are a special kind of neural network model that performs 
unsupervised learning. It takes the input vectors and performs a type of spatially organized 
clustering, or feature mapping, to group similar records together and collapse the input space 
to a two-dimensional space that approximates the multidimensional proximity relationships 
between the clusters. 

The Kohonen network model consists of two layers of neurons or units:  an input layer and  
an output layer.  The input layer is fully connected to the output layer, and each connection has 
an associated weight. Another way to think of the network structure is to think of each output 
layer unit having an associated center, represented as a vector of inputs to which it most strongly 
responds (where each element of the center vector is a weight from the output unit to the 
corresponding input unit). 

 
Primary Calculations 

 
Field Encoding 

 
Scaling of Range Fields 

 
In most datasets, there’s a great deal of variability in the scale of range fields. For example, 
consider age and number of cars per household. Depending on the population of interest, age 
may take values up to 80 or even higher. Values for number of cars per household, however, are 
unlikely to exceed three or four in the vast majority of cases. 

If you use both of these fields in their natural scale as inputs for a model, the age field is 
likely to be given much more weight in the model than number of cars per household, simply 
because the values (and therefore the differences between records) for the former are so much 
larger than for the latter. 

To compensate for this effect of scale, range fields are transformed so that they all have the 
same scale. In IBM® SPSS® Modeler, range fields are rescaled to have values between 0 and 1. 
The transformation used is 

 

 
where x’i is the rescaled value of input field x for record i, xi is the original value of x for record i, 
xmin is the minimum value of x for all records, and xmax is the maximum value of x for all records. 

 
Numeric Coding of Symbolic Fields 

 
For modeling algorithms that base their calculations on numerical differences between records, 
symbolic fields pose a special challenge. How do you calculate a numeric difference for two 
categories? 



 

Kohonen Algorithms 

 
 

 
 

A common approach to the problem, and the approach used in IBM® SPSS® Modeler, is to 
recode a symbolic field as a group of numeric fields with one numeric field for each category or 
value of the original field. For each record, the value of the derived field corresponding to the 
category of the record is set to 1.0, and all the other derived field values are set to 0.0. Such 
derived fields are sometimes called indicator fields, and this recoding is called indicator coding. 

For example, consider the following data, where x is a symbolic field with possible values A, 
B, and C: 

 
Record # X X1’ X2’ X3’ 
1 B 0 1 0 
2 A 1 0 0 
3 C 0 0 1 

 
In this data, the original set field x is recoded into three derived fields x1’, x2’, and x3’. x1’ is an 
indicator for category A, x2’ is an indicator for category B, and x3’ is an indicator for category C. 

 
Encoding of Flag Fields 

 
Flag fields are a special case of symbolic fields. However, because they have only two values in 
the set, they can be handled in a slightly more efficient way than other set fields. Flag fields are 
represented by a single numeric field, taking the value of 1.0 for the “true” value and 0.0 for the 
“false” value.  Blanks for flag fields are assigned the value 0.5. 

 
Model Parameters 

In a Kohonen model, the parameters are represented as weights between input units and output 
units, or alternately, as a cluster center associated with each output unit. Input records are 
presented to the network, and the cluster centers are updated in a manner similar to that used in 
building a k-means model, with an important difference: the clusters are arranged spatially in a 
two-dimensional grid, and each record affects not only the unit (cluster) to which it is assigned 
but also units within a neighborhood about the winning unit. For more information, see the 
topic “Neighborhoods.” 

 
Training of the Kohonen network proceeds as follows: 

E   The network is initialized with small random weights. 

E    Input records are presented to the network in random order. As each record is presented, the 
output unit with the closest center to the input vector is identified as the winning unit. For more 
information, see the topic “Distances.” 

E   The weights of the winning unit are adjusted to move the cluster center closer to the input vector. 
For more information, see the topic “Weight Updates.”  

E    If the neighborhood size is greater than zero, then other output units that are within the 
neighborhood of the winning unit are also updated so their centers are closer to the input vector. 

E   At the end of each cycle, the learning rate parameter (eta) is updated. 
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E   This process repeats until one of the stopping criteria is met. Training proceeds in two phases, 

a gross structure phase and a fine tuning phase. Typically the first phase has a relatively large 
neighborhood size and large eta to learn the overall structure of the data, and the second phase 
uses a smaller neighborhood and smaller eta to fine tune the cluster centers. 

 
Distances 

 
Distances in a Kohonen network are calculated as Euclidean distance between the encoded input 
vector and the cluster center for the output unit, 

 

 

where is the value of the kth input field for the ith record, and is the weight for the kth 
input field on the jth output unit. 

The activation of an output unit is simply the Euclidean distance between the output unit’s 
weight vector (its center) and the input vector. Note that for Kohonen networks, the output unit 
with the lowest activation is the winning unit. This is in contrast to other types of neural networks, 
where higher activation represents stronger response. 

 
Neighborhoods 

 
The neighborhood function is based on the Chebychev distance, which considers only the 
maximum distance on any single dimension: 

 

where is the location of unit x on dimension i of the output  grid, and is the location of 
another unit y on the same dimension. 

An output unit is considered to be in the neighborhood of another  output unit if 
, where n is the neighborhood size. 

Neighborhood size remains constant during each phase, but different phases usually use 
different neighborhood sizes. By default, for Phase 1 and for Phase 2. 

 
Weight Updates 

 
For the winning output node, and its neighbors if the neighborhood is > 0, the weights are 
adjusted by adding a portion of the difference between the input vector and the current weight 
vector. The magnitude of the change is determined by the learning rate parameter (eta). The 
weight change is calculated as 

 

 
where W is the weight vector for the output unit being updated, I is the input vector, and is the 
learning rate parameter. In individual unit terms, 
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where is the weight corresponding to input unit j for the output unit being updated, and   is 
the jth input unit. 

 

Eta Decay 
 

At the end of each cycle, the value of is updated.  The value of generally decreases across 
training cycles. The user can control the rate of decrease by selecting either linear or exponential 
decay. 

 
Linear decay.  This is the default decay rate. When this option is selected, the value of decays in a 
linear fashion, decreasing by a fixed amount each cycle, according to the formula 

 

 

where is the initial eta value for the current phase, and is the low eta for the current 
training phase, calculated as the lesser of the initial eta values for the current phase and the 
following phase, and c is the number of cycles set for the current phase. 

 
Exponential decay.  When this option is selected, the value of decays in an exponential fashion, 
decreasing by a fixed proportion each cycle, according to the formula 

 

 

The value of has a minimum value of 0.0001 to prevent arithmetic errors in taking the 
logarithm. 

 

Blank Handling 

In Kohonen networks, blanks are handled by substituting “neutral” values for the missing ones. 
For range and flag fields with missing values (blanks and nulls), the missing value is replaced 
with 0.5. For range fields, numeric values outside the range limits found in the field’s type 
information are coerced to the type-defined range. For set fields, the derived indicator field 
values are all set to 0.0. 

 

Effect of Options 

Stop on. By default, training executes the specified number of cycles for each phase. If the Time 
option is selected, training stops when the elapsed time reaches the specified limit (or sooner if the 
specified number of cycles for both phases is completed before the time limit is reached). 
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Random seed. Sets the seed for the random number generator used to initialize the weights of the 
new network as well as the order of presentation for training records. Select a fixed seed value to 
create a reproducible network. 

 
Generated  Model/Scoring 

 
Cluster Membership 

Cluster membership for a new record is derived by presenting the input vector for the record 
to the network and identifying the output neuron with the closest weight vector, as described 
in Distances above. The predicted value is returned as the x and y coordinates of the winning 
neuron in the output grid. 

 

Blank Handling 

Blank handling for scoring is the same as during model building. For more information, see the 
topic “Blank Handling.”  



 

 



 

Linear modeling algorithms 
Linear models predict a continuous target based on linear relationships between the target and 
one or more predictors. 

 
For algorithms on enhancing model accuracy, enhancing model stability, or working with very 
large datasets, see “Ensembles Algorithms.” 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

n Number of distinct records in the dataset. It is an integer and . 
p Number of parameters (including parameters for dummy variables but 

excluding the intercept) in the model. It is an integer and    . 
                                          Number of non-redundant parameters (excluding the intercept) currently in 

the model.  It is an integer and . 
                                          Number of non-redundant parameters currently in the model.   

                                          Number of effects excluding the intercept. It is an integer and 

y target vector with elements . 
f frequency weight vector. 
g regression weight vector. 
N 

Effective sample size.  It is an integer and .  If there is no 

frequency weight vector, N=n. 
X  design matrix with element . The rows represent the records 

and the columns represent the parameters. 
vector of unobserved errors. 

                                                              vector of unknown parameters; .   is the 
intercept. 

vector of parameter estimates. 
 

b  vector of standardized parameter estimates. It is the result of a 
sweep operation on matrix R.  is the standardized estimate of the intercept 
and is equal to 0. 

                                                     vector of predicted target values. 

                                           Weighted sample mean for , 

Weighted sample mean for y. 

                                         Weighted sample covariance between and  , . 

                                           Weighted sample covariance between and y. 

                                        Weighted sample variance for y. 

R  weighted sample correlation matrix for X (excluding the 
intercept, if it exists) and y. 

                                          The resulting matrix after a sweep operation whose elements are  . 
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Model 

Linear regression has the form 
 

y Xβ ε 
 

where  ε  follows a normal distribution with mean  0 and variance D , where 
D . The elements of ε are independent with respect to each other. 

 
Notes: 
 X can be any combination of continuous and categorical effects. 
 Constant columns in the design matrix are not used in model building. 
 If n=1 or the target is constant, no model is built. 

 
Missing values 

 
Records with missing values are deleted listwise. 

 
Least squares estimation 

The coefficients are estimated by the least squares (LS) method. First, we transform the model 
by pre-multiplying D as follows: 

 
D y D Xβ D ε 

 
so that the new unobserved error D ε follows a normal distribution 0 , where I is an 
identity matrix and D  .  Then the least squares estimates of β can be 
obtained from the following formula 

 
 
 

where F diag .  Note that 
 
 
 
 
 
 
 
 
 

where diag diag , so the closed form solution of  is 

T T 



 
 

R 
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 is computed by applying sweep operations instead of the equation above. In addition, sweep 

operations are applied to the transformed scale of X and y to achieve numerical  stability. 
Specifically, we construct the weighted sample correlation matrix R then apply sweep operations 
to it.  The R matrix is constructed as follows. 

 
First, compute weighted sample means, variances and covariances among            , 

and y : 
 

Weighted sample means of Xi and y are                                                   and ; 
 

Weighted sample covariance for Xi and Xj is                                                           ; 

Weighted sample covariance for Xi and y is                                                                       ; 

Weighted sample variance for y is                                     . 

Second, compute weighted sample correlations , and . 

Then the matrix R is 

    

 

 
   

R    
R

T 
 

       
 

       
 

If the sweep operations are repeatedly applied to each row of  , where   contains the 
predictors in the model at the current step, the result is 

 

   
 
 

The last column R R contains the standardized coefficient estimates; that is, . 
Then the coefficient estimates, except the intercept estimate if there is an intercept in the model, 
are: 

 

 

Model selection 

The following model selection methods are supported: 
 None, in which no selection method is used and effects are force entered into the model. For 

this method, the singularity tolerance is set to 1e−12 during the sweep operation. 

R 

 
T 

 
   T 
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 Forward stepwise, which starts with no effects in the model and adds and removes effects one 

step at a time until no more can be added or removed according to the stepwise criteria. 
 Best subsets, which checks “all possible” models, or at least a larger subset of the possible 

models than forward stepwise, to choose the best according to the best subsets criterion. 
 

Forward stepwise 

The basic idea of the forward stepwise method is to add effects one at a time as long as these 
additions are worthy. After an effect has been added, all effects in the current model are checked 
to see if any of them should be removed.  Then the process continues until a stopping criterion  
is met.  The traditional criterion for effect entry and removal is based on their F-statistics and 
corresponding p-values, which are compared with some specified entry and removal significance 
levels; however, these statistics may not actually follow an F distribution so the results might be 
questionable. Hence the following additional criteria for effect entry and removal are offered: 
 Maximum adjusted R2; 
 Minimum corrected Akaike information criterion (AICC); and 
 Minimum average squared error (ASE) over the overfit prevention data 

 
Candidate statistics 

 
Some additional notations are needed describe the addition or removal of a continuous effect Xj or 
categorical effect  , where ℓ is the number of categories. 

The number of non-redundant parameters of the eligible effect Xj or 
. 

                                          The number of non-redundant parameters in the current model (including 
the intercept). 

                                          The number of non-redundant parameters in the resulting model (including 
the intercept). Note that for entering an effect 

for removing an effect 
                                     The weighted residual sum of squares for the current model. 

                                  The weighted residual sum of squares for the resulting model after entering 
the effect. 

                                  The weighted residual sum of squares for the resulting model after removing 
the effect. 
The last diagonal element in the current R matrix. 

                                           The last diagonal element in the resulting  matrix. 

 
F statistics.  The F statistics for entering or removing an effect from the current model are: 
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and their corresponding p-values are: 
 
 
 
 
 
 
 

Adjusted R-squared. The adjusted R2 value for entering or removing an effect from the current 
model is: 

 
adj.  

 
Corrected Akaike Information Criterion (AICC). The AICC value for entering or removing an effect 
from the current model is: 

 

 
Average Squared Error (ASE). The ASE value for entering or removing an effect from the current 
model is: 

 

 
 

where  are the predicted values of yt and T is the number of distinct testing cases in 
the overfit prevention set. 

 
The Selection Process 

 
There are slight variations in the selection process, depending upon the model selection criterion: 
 The F statistic criterion is to select an effect for entry (removal) with the minimum (maximum) 

p-value and continue doing it until the p-values of all candidates for entry (removal) are equal 
to or greater than (less than) a specified significance level. 

 The other three criteria are to compare the statistic (adjusted R2, AICC or ASE) of the 
resulting model after entering (removing) an effect with that of the current model. Selection 
stops at a local optimal value (a maximum for the adjusted R2 criterion and a  minimum 
for the AICC and ASE). 

 
The following additional definitions are needed for the selection process: 

 
FLAG A index vector which records the status of each effect.  FLAGi = 

1 means the effect i is in the current model, FLAGi = 0 means it is not. 
denotes the number of effects with FLAGi = 1. 

MAXSTEP The maximum number of iteration steps. The default value is . 
MAXEFFECT The maximum number of effects (excluding intercept if exists). The default 

value is . 
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Pin The significance level for effect entry when the F-statistic criterion is used. 

The default is 0.05. 
Pout The significance level for effect removal when the F statistic criterion is 

used.  The default is 0.1. 
The F statistic change. It is   or   for entering or removing 
an effect Xj (here Xj could represent continuous or categorical for simpler 
notation). 
The corresponding p-value for . 

MSCcurrent The adjusted R2, AICC, or ASE value for the current model. 
 

1. Set and iter = 0. The initial model is . If the adjusted R2, AICC, or ASE 
criterion is used, compute the statistic for the initial model and denote it as MSCcurrent. 

2. If      , iter ≤ MAXSTEP and , go to the 
next step; otherwise stop and output the current model . 

3. Based on the current model, for every effect j eligible for entry (see Condition below), 

If FC (the F statistic criterion) is used, compute   and ; 

If MSC (the adjusted R2, AICC, or ASE criterion) is used, compute MSCj. 
4. If FC is used, choose the effect and if < Pin, enter to the 

current model. 

If MSC is used, choose the effect and if   < , 
enter to the current model. (For the adjusted R2 criterion, replace min with max and reverse 
the inequality) 

If the inequality is not satisfied, stop and output the current model. 

5. If the model with the new effect is the same as any previously obtained model, stop and output the 
current model; otherwise update the current model by doing the sweep operation on corresponding 
row(s) and column(s) associated with  Xj*  in the current R matrix.   Set  FLAGj*        and iter 
= iter + 1. 

If FC is used, let   and ; 

If MSC is used, let   . 

6. For every effect k in the current model; that is,             ,   

If FC is used, compute   and ; 

If MSC is used, compute MSCk. 
7. If FC is used, choose the effect and if > Pout, remove 

  from the current model. 

If MSC is used, choose the effect and if   <  , 
remove       from the current model. (For the adjusted R2 criterion, replace min with max and 
reverse the inequality) 

 
If the inequality is met, go to the next step; otherwise go back to step 2. 
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8. If the model with the effect removed is the same as any previously obtained model, stop and 

output the current model; otherwise update the current model by doing the sweep operation 
on corresponding row(s) and column(s) associated with   in the current R matrix. Set 

         and iter = iter + 1. 

If FC is used, let   and ; 
 

If AC is used, let AICCcurrent = AICCk* .  Then go back to step 6. 
 

Condition. In order for effect j to be eligible for entry into the model, the following conditions 
must be met: 

 
For continuous a effect Xj ,  ; (t is the singularity tolerance with a value of 1e−4) 

For categorical effect ,           

where t is the singularity tolerance, and and are diagonal elements in the 
current R matrix (before entering). 

 
For each continuous effect Xk that is currently in the model, . 

 

with levels that is currently in the model, 
 
 

where   and are diagonal elements in the resulting R matrix; that is, the 
results after doing the sweep operation on corresponding row(s) and column(s) associated with Xk 
or in the current R matrix. The above condition is imposed so that entry of the effect 
does not reduce the tolerance of other effects already in the model to unacceptable levels. 

 

Best subsets 

Stepwise methods search fewer combinations of sub-models and rarely select the best one, so 
another option is to check all possible models and select the “best” based upon some criterion. 
The available criteria are the maximum adjusted R2, minimum AICC, and minimum ASE over 
the overfit prevention set. 

 
Since there are   free effects, we do an exhaustive search over   models, which include 
intercept-only model ( ). Because the number of calculations increases exponentially with 

, it is important to have an efficient algorithm for carrying out the necessary computations. 
However, if  is too large, it may not be practical to check all of the possible models. 

 
We divide the problem into 2 tiers in terms of the number of effects: 
 when          , we search all possible subsets 
 when  > 20, we apply a hybrid method which combines the forward stepwise method and 

the all possible subsets method. 

For each categorical effect 
. 
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Searching All Possible Subsets 

 
An efficient method that minimizes the number of sweep operations on the R matrix (Schatzoff 
1968), is applied to traverse all the models and outlined as follows: 

 
Each sweep step(s) on an effect results in a model.  So   models can be obtained 
through a sequence of exactly   sweeps on effects. Assuming that the all possible 
models on effects can be obtained in a sequence        of exactly sweeps 
on the first pivotal effects, and sweeping on the last effect will produce   a new 
model which adds the last effect to the model produced by the sequence      , then 
repeating the sequence       will produce another distinct models (including 
the last effect).  It is a recursive algorithm for constructing the sequence; that is, 

                                                                                                                                  and so on. 

The sequence of models produced is demonstrated in the following table: 

 
 
 
 
 
 
 
 

 
 

The second column indicates the indexes of effects which are pivoted on. Each parenthesis in the 
third column represents a regression model. The numbers in the parentheses indicate the effects 
which are included in that model. 

 
Hybrid Method 

 
If >20, we apply a hybrid method by combining the forward stepwise method with the all 
possible subsets method as follows: 

 
Select the effects using the forward stepwise method with the same criterion chosen for best 
subsets. Say that ps is the number of effects chosen by the forward stepwise method. 

 
Apply one of the following approaches, depending on the value of ps, as follows: 
 If ps ≤ 20, do an exhaustive search of all possible subsets on these selected effects, as 

described above. 
 If 20 < ps ≤ 40, select ps – 20 effects based on the p-values of type III sum of squares tests from 

all ps effects (see ANOVA in “Model evaluation”) and enter them into the model, then do an 
exhaustive search of the remaining 20 effects via the method described above. 

 If 40 < ps, do nothing and assume the best model is the one with these ps effects (with a 
warning message that the selected model is based on the forward stepwise method). 

k 
0 

Sk 
0 

Sequence of models produced 
Only intercept 

1 1 (1) 
2 121 (1),(12),(2) 
3 1213121 (1),(12),(2),(23),(123),(13),(3) 
4 121312141213121 (1),(12),(2),(23),(123),(13),(3),(34),(134),(1234),(234),(24),(124),(14),(4) 
... ... ... 
     , ,    All models including the intercept model. 
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Model evaluation 

The following output statistics are available. 
 

ANOVA 
 

Weighted total sum of squares 
 

                                                                      with d.f.  
 
 

where d.f. means degrees of freedom. It is called “SS (sum of squares) for Corrected Total.” 
 

Weighted residual sum of squares 
 
 

 
 

 

 
 

   

  
 

 

with d.f.  = dfe = N – pc.  It is also called “SS for Error.” 

Weighted regression sum of squares 
 
 

 
 

 
 

 
 

   

   

 
 

 

 
 

with d.f. =         . It is called “SS for Corrected Model” if there is an intercept. 
 

Regression mean square error 
 

 

Residual mean square error 
 

 

F statistic for corrected model 
 
 
 
 
 

 
which follows an F distribution with degrees of freedom dfr and dfe, and the  corresponding 
p-value can be calculated accordingly. 

 
Type III sum of squares for each effect 
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To  compute type III SS for the  effect j, the type III test matrix Li 
needs to be constructed first.  Construction of Li is based on the generating matrix 
H XTDX XTDX  where D , such that Liβ is estimable. It involves 
parameters only for the given effect and the effects containing the given effect. For type III 
analysis, Li doesn’t depend on the order of effects specified in the model. If such a matrix cannot 
be constructed, the effect is not testable. For each effect j, the type III SS is calculated as follows 

 
T  T T 

 

where . 
 

F statistic for each effect 
 

The SS for the effect j is also used to compute the F statistic for the hypothesis test H0:  Liβ 
= 0 as follows: 

 

 

where is the full row rank of . It follows an F distribution with degrees  of freedom and 
, then the p-values can be calculated accordingly. 

 
Model summary 

 
Adjusted R square 

 
adj.                               

 
where 

 

 
Model information criteria 

 
Corrected Akaike information criterion (AICC) 

 

 
Coefficients and statistical inference 

After the model selection process, we can get the coefficients and related statistics from the swept 
correlation matrix. The following statistics are computed based on the R matrix. 
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Unstandardized coefficient estimates 
 

 

for . 
 

Standard errors of regression coefficients 
 

The standard error of   is 
 

 
Intercept estimation 

 
The intercept is estimated by all other parameters in the model as 

 

 

The standard error of   is estimated by 
 
 
 

where 
 
 
 
 
 
 

        
 
 

 
t statistics for regression coefficients 

 
 

for , with degrees of freedom  and the p-value can be calculated accordingly. 
 

100(1−α)% confidence intervals 
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Note: For redundant parameters, the coefficient estimates are set to zero and standard errors, t 
statistics, and confidence intervals are set to missing values. 

 
Scoring 

Predicted values 
 

 

Diagnostics 

The following values are computed to produce various diagnostic charts and tables. 
 

Residuals 
 

 
Studentized residuals 

 
This is the ratio of the residual to its standard error. 

 

 
where s is the square root of the mean square error; that is, , and  is the leverage 
value for the kth case (see below). 

 
Cook’s distance 

 

 

where the “leverage” 

G  T 
 

is the kth diagonal element of the hat matrix 
 

H W X  XTWX XTW W X XTW 
 
 

A record with Cook’s distance larger than   is considered influential (Fox, 1997). 



 
 

 
Predictor importance 

Linear modeling algorithms 

 

We use the leave-one-out method to compute the predictor importance, based on the residual sum 
of squares (SSe) by removing one predictor at a time from the final full model. 

 
If the final full model contains p predictors, , then the predictor importance can be 
calculated as follows: 

1.   i=1 
 

2. If i > p, go to step 5. 
 

3. Do a sweep operation on the corresponding row(s) and column(s) associated with   in the 
 matrix of the full final model. 

4. Get the last diagonal element in the current and denote it  . Then the predictor importance of 
is                                    .  Let i = i + 1, and go to step 2. 

5. Compute the normalized predictor importance of  : 
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Overview 

This procedure performs ordinary least squares multiple linear regression with four methods for 
entry and removal of variables (Neter, Wasserman, and Kutner, 1990). 

 
Primary  Calculations 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
 

Output field for record i with variance 

Case weight for record i; in IBM® SPSS® Modeler, 

Regression weight for record i; if regression weight is not specified 
l Number of distinct records 

 
The sum of weights across records, 

Number of input fields 

Sum of case weights, 

The value of the kth input field for record i 

Sample mean for the kth input field, 

Sample mean for the output field, 

                         Sample covariance for input fields and  

                          Sample variance for output field Y 

                         Sample covariance for and 

Number of coefficients in the model.          if the intercept is not included; otherwise 

Sample correlation matrix for  and 

 
Model Parameters 

The summary statistics  and covariance   are computed using provisional means algorithms 
to update the values as each record is read: 

 

and 
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where, if the intercept is included, 
 

or if the intercept is not included, 
 

where is the cumulative weight up to record k, and   is the estimate of  up to record  k. 

For a regression model of the form 
 

sweep operations are used to compute the least squares estimates of  and the associated 
regression statistics (Dempster, 1969). The sweeping starts with the correlation matrix , 

 
 
 
 
 
 

where 
 

and 
 

 

Let  be the new matrix produced by sweeping on the kth row and column of . The elements of 
 are 

 

 

 

 

and 
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If the above sweep operations are repeatedly applied to each row of   in 
 

where   contains the input fields in the equation at the current step, the result is 
 

The last row of 
 

contains the standardized coefficients (also called beta), and 
 

can be used to obtain the partial correlations for the variables not in the equation, controlling for 
the variables already in the equation. Note that this routine is its own inverse; that is, exactly the 
same operations are performed to remove an input field as to enter it. 

The unstandardized coefficient estimates are calculated as 
 

and the intercept , if included in the model, is calculated as 
 

 

Automatic Field Selection 

Let be the element in the current swept matrix associated with and . Variables are 
entered or removed one at a time.   is eligible for entry if it is an input field not currently in 
the model such that 

 

and 
 

where t is the tolerance, with a default value of 0.0001. 
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The second condition above is imposed so that entry of the variable does not reduce the 
tolerance of variables already in the model to unacceptable levels. 

The F-to-enter value for   is computed as 
 

 

with 1 and degrees of freedom, where   is the number of coefficients currently in 
the model and 

 

 
 

The F-to-remove value for   is computed as 
 

 
 

with 1 and degrees of freedom. 
 

Methods for Variable Entry and Removal 
 

Four methods for entry and removal of variables are available. The selection process is repeated 
until no more independent variables qualify for entry or removal. The algorithms for these four 
methods are described below. 

 
Enter 

 
The selected input fields are all entered in the model, with no field selection applied. 

 
Stepwise 

 
If there are independent variables currently entered in the model, choose   such that 

is minimum.  is removed if   (default = 2.71) or, if 
probability criteria are used,  (default = 0.1). If the inequality does 
not hold, no variable is removed from the model. 

If there are no independent variables currently entered in the model or if no entered  
variable is to be removed, choose  such that is maximum.   is entered if 

  (default = 3.84) or,  (default = 0.05). If the 
inequality does not hold, no variable is entered. 

At each step, all eligible variables are considered for removal and entry. 

 
Forward 

 
This procedure is the entry phase of the stepwise procedure. 
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Backward 
 

This procedure starts with all input fields in the model and applies the removal phase of the 
stepwise procedure. 

 
Blank Handling 

By default, a case that has a missing value for any input or output field is deleted from the 
computation of the correlation matrix on which all consequent computations are based. If the Only 
use complete records option is deselected, each correlation in the correlation matrix is computed 
based on records with complete data for the two fields associated with the correlation, regardless 
of missing values on other fields. For some datasets, this approach can lead to a non-positive 
definite matrix, so that the model cannot be estimated. 

 
Secondary Calculations 

Model Summary Statistics 

The multiple correlation coefficient R is calculated as 
 

 
R-square, the proportion of variance in the output field accounted for by the input fields, is 
calculated as 

 

 
The adjusted R-square, which takes the complexity of the model relative to the size of the training 
data into account, is calculated as 

 

 
Field Statistics and Other Calculations 

The statistics shown in the advanced output for the regression equation node are calculated in the 
same manner as in the REGRESSION procedure in IBM® SPSS® Statistics. For more details, see 
the SPSS Statistics Regression algorithm document, available at http://www.ibm.com/support. 

 
Generated  Model/Scoring 

Predicted Values 

The predicted value for a new record is calculated as 

http://www.ibm.com/support
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Blank Handling 
 

Records with missing values for any input field in the final model cannot be scored, and are 
assigned a predicted value of $null$. 
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Logistic Regression Models 

Logistic regression is a well-established statistical method for predicting binomial or multinomial 
outcomes. IBM® SPSS® Modeler now offers two distinct algorithms for logistic regression 
modeling: 

 
Multinomial Logistic. This is the original logistic regression algorithm used in SPSS Modeler, 
introduced in version 6.0. It can produce models when the target field is a set field with more 
than two possible values. See below for more information. It can also produce models for flag or 
binary outcomes, though it doesn’t give the same level of statistical detail for such models as the 
newer binomial logistic algorithm. 

Binomial Logistic. This algorithm, introduced in SPSS Modeler 11, is limited to models where the 
target field is a flag, or binary field. This algorithm provides some enhanced statistical output, 
relative to the output of the multinomial algorithm, and is less susceptible to problems when the 
number of cells (unique combinations of predictor values) is large relative to the number of 
records. For more information, see the topic “Binomial Logistic Regression.” 

 
For models with a flag output field, selection of a logistic algorithm is controlled in the modeling 
node by the Procedure option. 

 
Multinomial Logistic Regression 

The purpose of the Multinomial Logistic Regression procedure is to model the dependence of a 
nominal (symbolic) output field on a set of symbolic and/or numeric predictor (input) fields. 

 

Primary Calculations 
 

Field Encoding 
 

In logistic regression, each symbolic (set) field is recoded as a group of numeric fields, with one 
numeric field for each category or value of the original field, except the last category, which is 
defined as a reference category. For each record, the value of the derived field corresponding to 
the category of the record is set to 1.0, and all of the other derived field values are set to 0.0. For 
records which have the value of the reference category, all derived fields are set to 0.0. Such 
derived fields are sometimes called dummy fields, and this recoding is called dummy coding. 

For example, consider the following data, where x is a symbolic field with possible values A, 
B, and C: 

 
Record # X X1’ X2’ 
1 B 0 1 
2 A 1 0 
3 C 0 0 
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In this data, the original set field x is recoded into two derived fields x1’ and x2’. x1’ is an 
indicator for category A, and x2’ is an indicator for category B. The last category, category C, is 
the reference category; records belonging to this category have both x1’ and x2’ set to 0.0. 

 

Notation 

 
The following notation is used throughout this chapter unless otherwise stated: 

 
The output field, which takes integer values from 1 to J. 

The number of categories of the output field. 

The number of subpopulations. 

                                                    matrix with vector-element   , the observed values at the ith 
subpopulation, determined by the input fields specified in the command. 

matrix with vector-element , the observed values of the location 
model’s input fields at the ith subpopulation. 
The sum of frequency weights of the observations that belong to the cell 
corresponding to at subpopulation i. 
The sum of all ’s. 

The cell probability corresponding to at subpopulation i. 

The logit of response category j relative to response category k. 

vector of unknown parameters in the jth logit (that is, logit of response 
category j to response category J). 
Number of parameters in each logit. . 

Number of non-redundant parameters in logit j after maximum likelihood 
estimation.    . 
The total number of non-redundant parameters after maximum likelihood 
estimation.                                   . 

vector of unknown parameters in the model. 
 

                                         The maximum likelihood estimate of . 

                                         The maximum likelihood estimate of  . 

 
 

Data Aggregation 

 
Observations are aggregated by the definition of subpopulations. Subpopulations are defined by 
the cross-classifications of the set of input fields. 

Let be the marginal count of subpopulation i, 
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If there is no observation for the cell of at subpopulation i, it is assumed that , 
provided that    . A non-negative scalar  may be added to any zero cell (that is, cell 
with ) if its marginal count is nonzero. The value of is zero by default. 

 
Generalized Logit Model 

In a generalized logit model, the probability of response category j at subpopulation i is 
 

where the last category J is assumed to be the reference category. 
In terms of logits, the model can be expressed as 

 

for j = 1, …, J-1. 
When J = 2, this model is equivalent to the binary logistic regression model. Thus, the above 

model can be thought of as an extension of the binary logistic regression model from binary 
response to polytomous nominal response. 

 
Log-Likelihood 

The log-likelihood of the model is given by 
 
 

  
 
 

 

  
 

A constant that is independent of parameters has been excluded here. The value of the constant 
is . 

 
Model Parameters 

 
Derivatives of the Log-Likelihood 

For any j = 1, …, J-1, s = 1, …, p, the first derivative of l with respect to is 
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For any j, j’= 1, …, J-1 and s, t = 1, …, p, the second derivative of l with respect to  and  is 

 
 
 
 

where          if , 0 otherwise. 
 

Maximum Likelihood Estimate 
 

To obtain the maximum likelihood estimate of , a Newton-Raphson iterative estimation method 
is used.  Notice that this method is the same as Fisher-Scoring iterative estimation method in 
this model, since the expectation of the second derivative of l with  respect to is the same 
as the observed one. 

Let be the vector of the first derivative of l with respect to . Moreover, 
let  be the  matrix of the second derivative of l with respect to . 
Notice that where  is a                matrix as 

 

 
in which                                and is a  diagonal matrix of  . Let be 
the parameter estimate at iteration   , the parameter estimate   at iteration is updated as 

 
 
 
 
 

and is a stepping scalar such that , is a                matrix 
of independent vectors, 

 
 
and   is and   is  , both evaluated at . 

 
Stepping 

 
Use step-halving method if  . Let V be the maximum number of steps in 
step-halving, the set of values of is  . 

 
Starting Values of the Parameters 

 
If intercepts are included in the model, set where 
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for j = 1, …, J-1. 
 

If intercepts are not included in the model, set 
 

 

for j = 1, …, J-1. 
 

Convergence Criteria 
 

Given two convergence criteria and , the iteration is considered to be converged 
if one of the following criteria are satisfied: 

 
1.  ̶ . 

 
2.  ̶  . 

3.   The maximum above element in is less than . 

 
Checking for Separation 

 
The algorithm checks for separation in the data starting with iteration  (20 by default). To 
check for separation: 

 
1. For each subpopulation i , find                                    . 

2. If , then there is a perfect prediction for subpopulation i. 
 

3. If all subpopulations have perfect prediction, then there is complete separation. If some patterns 
have perfect prediction and the Hessian of  is singular, then there is quasi-complete separation. 

 

Blank Handling 
 

All records with missing values for any input or output field are excluded from the estimation of 
the model. 



 
 
 

 

Logistic Regression Algorithms 
 
Secondary Calculations 

 
Model Summary Statistics 

 
Log-Likelihood 

 
Initial model with intercepts. If intercepts are included in the model, the predicted probability for 
the initial model (that is, the model with intercepts only) is 

 
 

 

 
 

 

and the value of –2 log-likelihood of the initial model is 
 
 

 

 

 
 

 
 

Initial model with no intercepts. If intercepts are not included in the model, the predicted 
probability for the initial model is 

 

 
 

and the value of –2 log-likelihood of the initial model is 
 

 

Final model.  The value of –2 log-likelihood of the final model is 
 
 

 

 

 
 

 
 

Model Chi-Square 
 

The model chi-square is given by 
 

 

If the final model includes intercepts, then the initial model is an intercept-only model. Under 
the null hypothesis that   , the model chi-square is asymptotically chi-squared 
distributed with                    degrees of freedoms. 
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If the model does not include intercepts, then the initial model is an empty model. Under the 
null hypothesis that          , the Model Chi-square is asymptotically chi-squared distributed 
with   degrees of freedoms. 

 
Pseudo R-Square Measures 

 
Cox and Snell.  Cox and Snell’s   is calculated  as 

 

 

Nagelkerke.   Nagelkerke’s   is calculated as 
 

 
McFadden.   McFadden’s   is calculated as 

 

 
Goodness-of-Fit Measures 

 
Pearson.  The Pearson goodness-of-fit measure is 

 

 
 

Under the null hypothesis, the Pearson goodness-of-fit statistic is asymptotically chi-squared 
distributed with             degrees of freedom. 

 
Deviance.  The deviance goodness-of-fit measure is 

 

 
 

Under the null hypothesis, the deviance goodness-of-fit statistic is asymptotically chi-squared 
distributed with             degrees of freedom. 

 
Field Statistics and Other Calculations 

The statistics shown in the advanced output for the logistic equation node are calculated in the 
same manner as in the NOMREG procedure in IBM® SPSS® Statistics. For more details, see the 
SPSS Statistics Nomreg algorithm document, available at http://www.ibm.com/support. 

http://www.ibm.com/support
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Stepwise Variable Selection 

Several methods are available for selecting independent variables. With the forced entry method, 
any variable in the variable list is entered into the model. The forward stepwise, backward 
stepwise, and backward entry methods use either the Wald statistic or the likelihood ratio statistic 
for variable removal. The forward stepwise, forward entry, and backward stepwise use the score 
statistic or the likelihood ratio statistic to select variables for entry into the model. 

 
Forward Stepwise (FSTEP) 

1. Estimate the parameter and likelihood function for the initial model and let it be our current model. 

2. Based on the MLEs of the current model, calculate the score statistic or likelihood ratio statistic 
for every variable eligible for inclusion and find its significance. 

3. Choose the variable with the smallest significance (p-value). If that significance is less than the 
probability for a variable to enter, then go to step 4; otherwise, stop FSTEP. 

4. Update the current model by adding a new variable. If this results in a model which has already 
been evaluated, stop FSTEP. 

5. Calculate the significance for each variable in the current model using LR or Wald’s test. 

6. Choose the variable with the largest significance. If its significance is less than the probability for 
variable removal, then go back to step 2. If the current model with the variable deleted is the same 
as a previous model, stop FSTEP; otherwise go to the next step. 

7. Modify the current model by removing the variable with the largest significance from the previous 
model. Estimate the parameters for the modified model and go back to step 5. 

 
Forward Only (FORWARD) 

1. Estimate the parameter and likelihood function for the initial model and let it be our current model. 

2. Based on the MLEs of the current model, calculate the score or LR statistic for every variable 
eligible for inclusion and find its significance. 

3. Choose the variable with the smallest significance. If that significance is less than the probability 
for a variable to enter, then go to step 4; otherwise, stop FORWARD. 

4. Update the current model by adding a new variable. If there are no more eligible variable left, stop 
FORWARD; otherwise, go to step 2. 

 
Backward Stepwise (BSTEP) 

1. Estimate the parameters for the full model that includes the final model from previous method and 
all eligible variables. Only variables listed on the BSTEP variable list are eligible for entry and 
removal.  Let current model be the full model. 

2. Based on the MLEs of the current model, calculate the LR or Wald’s statistic for every variable 
in the BSTEP list and find its significance. 
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3. Choose the variable with the largest significance. If that significance is less than the probability 

for a variable removal, then go to step 5. If the current model without the variable with the largest 
significance is the same as the previous model, stop BSTEP; otherwise go to the next step. 

4. Modify the current model by removing the variable with the largest significance from the model. 
Estimate the parameters for the modified model and go back to step 2. 

5. Check to see any eligible variable is not in the model. If there is none, stop BSTEP; otherwise, 
go to the next step. 

6. Based on the MLEs of the current model, calculate LR statistic or score statistic for every variable 
not in the model and find its significance. 

7. Choose the variable with the smallest significance. If that significance is less than the probability 
for the variable entry, then go to the next step; otherwise, stop BSTEP. 

8. Add the variable with the smallest significance to the current model. If the model is not the 
same as any previous models, estimate the parameters for the new model and go back to step 
2; otherwise, stop BSTEP. 

 
Backward Only (BACKWARD) 

1. Estimate the parameters for the full model that includes all eligible variables. Let the current 
model be the full model. 

2. Based on the MLEs of the current model, calculate the LR or Wald’s statistic for all variables 
eligible for removal and find its significance. 

3. Choose the variable with the largest significance. If that significance is less than the probability 
for a variable removal, then stop BACKWARD; otherwise, go to the next step. 

4. Modify the current model by removing the variable with the largest significance from the model. 
Estimate the parameters for the modified model. If all the variables in the BACKWARD list are 
removed then stop BACKWARD; otherwise, go back to step 2. 

 
Stepwise Statistics 

The statistics used in the stepwise variable selection methods are defined as follows. 
 

Score Function and Information Matrix 

The score function for a model with parameter B is: 
 

The (j,s)th element of the score function can be written as 
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Similarly, elements of the information matrix are given by 

 
 
 
 
 

where        if , 0 otherwise. 

(Note that in the formula are functions of B) 
 

Block Notations 

By partitioning the parameter B into two parts, B1 and B2, the score function, information matrix, 
and inverse information matrix can be written as partitioned matrices: 

 
 
 
 
 
 

where 
 
 
 
 
 
 
 
 
 
 

where 
 

 
 
 

Typically, B1 and B2 are parameters corresponding to two different sets of effects. The dimensions 
of the 1st and 2nd partition in U, I and J are equal to the numbers of parameters in B1   and 
B2 respectively. 

 
Score Test 

Suppose a base model with parameter vector  with the corresponding maximum likelihood 
estimate . We are interested in testing the significance of an extra effect E if it is added to the 
base model.  For convenience, we will call the model with effect E the augmented model. Let 

  be the vector of extra parameters associated with the effect E, then the hypothesis can be 
written as 
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                v.s.        

 

Using the block notations, the score function, information matrix and inverse information of the 
augmented model can be written as 

 

 

 

 

Then the score statistic for testing our hypothesis will be 
 

 
where and               are the 2nd partition of score function and inverse 
information matrix evaluated at and        . 

 
Under the null hypothesis, the score statistic has a chi-square distribution with degrees of 
freedom equal to the rank of              . If the rank of              is zero, then the score 
statistic will be set to 0 and the p-value will be 1.  Otherwise, if the rank of is 

, then the p-value of the test is equal to  , where is the cumulative 
distribution function of a chi-square distribution with degrees of freedom. 

 
Computational Formula for Score Statistic 

When we compute the score statistic s, it is not necessary  to re-compute and 

from scratch. The score function and information matrix of the base model can be 
reused in the calculation. Using the block notations introduced earlier, we have 

 

and 
 

In stepwise logistic regression, it is necessary to compute one score test for each effect that are not 
in the base model.  Since the 1st partition of and depend only on the 

base model, we only need to compute , and                  for 
each new effect. 



 
 

and 
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If is the s-th parameter of the j-th logit in is the t-th parameter of k-th logit in 
, then the elements of ,                   and                    can be expressed 

as follows: 
 

 

 

where ,   are computed under the base model. 
 

Wald’s Test 
 

In backward stepwise selection, we are interested in removing an effect F from an already fitted 
model. For a given base model with parameter vector , we want to use Wald’s statistic to 
test if effect F should be removed from the base model. If the parameter vector for the effect F is 

, then the hypothesis can be formulated as 
 

                vs.        
 

In order to write down the expression of the Wald’s statistic, we will partition our parameter vector 
(and its estimate) into two parts as follows: 

 
                            and  

 

The first partition contains parameters that we intended to keep in the model and the 2nd partition 
contains the parameters of the effect F, which may be removed from the model. The information 
matrix and inverse information will be partitioned accordingly, 

 

and 
 

Using the above notations, the Wald’s statistic for effect F can be expressed as 
 

 

Under the null hypothesis, w has a chi-square distribution with degrees of freedom equal to the 
rank of                      . If the rank of                        is zero, then Wald’s statistic will  be 
set to0and the p-value will be 1. Otherwise, if the  rank of  is , then 



 
 
 

 

Logistic Regression Algorithms 

 
the p-value of the test is equal to  , where is the cumulative distribution 
function of a chi-square distribution with degrees of freedom. 

 
Generated Model/Scoring 

 
Predicted Values 

The predicted value for a record i is the output field category j with the largest logit value , 
 

for j = 1, ..., J-1.  The logit for reference category J, , is 1.0. 
 

Predicted Probability 

The probability for the predicted category   for scored record i is derived from the logit for 
category , 

 

 

  
 

   
  

If the Append all probabilities option is selected, the probability is calculated for all J categories 
in a similar manner. 

 
Blank Handling 

Records with missing values for any input field cannot be scored and are assigned a predicted 
value and probability value(s) of $null$. 

 
Binomial Logistic Regression 

For binomial models (models with a flag field as the target), IBM® SPSS® Modeler uses an 
algorithm optimized for such models, as described here. 

 

Notation  
 
The following notation is used throughout this chapter unless otherwise stated: 

n The number of observed cases 
p The number of parameters 
y  vector with element , the observed value of the ith case of the 

dichotomous dependent variable 
X matrix with element , the observed value of the ith case of the 

jth parameter 
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                                                     vector with element  , the coefficient for the jth parameter 

w vector with element , the weight for the ith case 
l Likelihood function 
L Log-likelihood function 
I Information matrix 

 

Model 
 

The linear logistic model assumes a dichotomous dependent variable Y with probability π, where 
for the ith case, 

 

or 
 

Hence, the likelihood function l for n observations , with probabilities and 
case weights , can be written as 

 

 

It follows that the logarithm of l is 
 

 

and the derivative of L with respect to   is 
 

 
Maximum Likelihood Estimates (MLE ) 

The maximum likelihood estimates for  satisfy the following equations 
 

, for the jth parameter 

where for . 

Note the following: 

1. A Newton-Raphson type algorithm is used to obtain the MLEs. Convergence can be based on 
 Absolute difference for the parameter estimates between the iterations 
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 Percent difference in the log-likelihood function between successive iterations 
 Maximum number of iterations specified 

2.   During the iterations, if is smaller than 10−8 for all cases, the log-likelihood function 
is very close to zero.  In this situation, iteration stops and the message “All predicted values   
are either 1 or 0” is issued. 

 
After the maximum likelihood estimates  are obtained, the asymptotic covariance matrix is 
estimated by  , the inverse of the information matrix I, where 

 

 

 

 

and 
 

 
Stepwise Variable Selection 

Several methods are available for selecting independent variables. With the forced entry method, 
any variable in the variable list is entered into the model. There are two stepwise methods: 
forward and backward. The stepwise methods can use either the Wald statistic, the likelihood 
ratio, or a conditional algorithm for variable removal. For both stepwise methods, the score 
statistic is used to select variables for entry into the model. 

 
Forward Stepwise (FSTEP) 

1. If FSTEP is the first method requested, estimate the parameter and likelihood function for the 
initial model. Otherwise, the final model from the previous method is the initial model for FSTEP. 
Obtain the necessary information: MLEs of the parameters for the current model, predicted 
probability, likelihood function for the current model, and so on. 

2. Based on the MLEs of the current model, calculate the score statistic for every variable eligible for 
inclusion and find its significance. 

3. Choose the variable with the smallest significance. If that significance is less than the probability 
for a variable to enter, then go to step 4; otherwise, stop FSTEP. 

4. Update the current model by adding a new variable. If this results in a model which has already 
been evaluated, stop FSTEP. 

5. Calculate LR or Wald statistic or conditional statistic for each variable in the current model. 
Then calculate its corresponding significance. 
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6. Choose the variable with the largest significance. If that significance is less than the probability 

for variable removal, then go back to step 2; otherwise, if the current model with the variable 
deleted is the same as a previous model, stop FSTEP; otherwise, go to the next step. 

 
7. Modify the current model by removing the variable with the largest significance from the previous 

model. Estimate the parameters for the modified model and go back to step 5. 
 

Backward Stepwise (BSTEP) 

1. Estimate the parameters for the full model which includes the final model from previous method 
and all eligible variables. Only variables listed on the BSTEP variable list are eligible for entry 
and removal.  Let the current model be the full model. 

 
2. Based on the MLEs of the current model, calculate the LR or Wald statistic or conditional statistic 

for every variable in the model and find its significance. 
 

3. Choose the variable with the largest significance. If that significance is less than the probability for 
a variable removal, then go to step 5; otherwise, if the current model without the variable with the 
largest significance is the same as the previous model, stop BSTEP; otherwise, go to the next step. 

 
4. Modify the current model by removing the variable with the largest significance from the model. 

Estimate the parameters for the modified model and go back to step 2. 
 

5. Check to see any eligible variable is not in the model. If there is none, stop BSTEP; otherwise, 
go to the next step. 

 
6. Based on the MLEs of the current model, calculate the score statistic for every variable not in 

the model and find its significance. 
 

7. Choose the variable with the smallest significance. If that significance is less than the probability 
for variable entry, then go to the next step; otherwise, stop BSTEP. 

 
8. Add the variable with the smallest significance to the current model. If the model is not the 

same as any previous models, estimate the parameters for the new model and go back to step 
2; otherwise, stop BSTEP. 

 

Stepwise Statistics 
 

The statistics used in the stepwise variable selection methods are defined as follows. 
 

Score Statistic 
 

The score statistic is calculated for each variable not in the model to determine whether the 
variable should enter the model. Assume that there are variables, namely,  in the 
model and variables, , not in the model. The score statistic for is defined as 

 



 

Logistic Regression Algorithms 

 
 

 
 

if is not a categorical variable. If is a categorical variable with m categories, it is converted to 
a  -dimension dummy vector. Denote these new variables as . The 
score statistic for is then 

 

 
where and the                 matrix  is 

 

 
with 

 
 
 
 
 
 

in which is the design matrix for variables and is the design matrix for dummy 
variables  . Note that contains a column of ones unless the constant term 
is excluded from   .  Based on the MLEs for the parameters in the model, V is estimated  by 

                                                                 . The asymptotic distribution of the score statistic is a 
chi-square with degrees of freedom equal to the number of variables involved. 

 
Note the following: 

 
1. If the model is through the origin and there are no variables in the model,   is defined by 

  and  is equal to  . 

2. If  is not positive definite, the score statistic and residual chi-square statistic are set to be zero. 

 
Wald Statistic 

 
The Wald statistic is calculated for the variables in the model to determine whether a variable 
should be removed. If the ith variable is not categorical, the Wald statistic is defined by 

 

If it is a categorical variable, the Wald statistic is computed as follows: 
 

Let  be the vector of maximum likelihood estimates associated with the dummy variables, 
and the asymptotic covariance matrix for .  The Wald statistic is 

 

 
The asymptotic distribution of the Wald statistic is chi-square with degrees of freedom equal to 
the number of parameters estimated. 



 
 

 
. 
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Likelihood Ratio (LR) Statistic 

The LR statistic is defined as two times the log of the ratio of the likelihood functions of two 
models evaluated at their MLEs.  The LR statistic is used to determine if a variable should   
be removed from the model.  Assume that there are variables in the current model which is 
referred to as a full model. Based on the MLEs of the full model, l(full) is calculated. For each of 
the variables removed from the full model one at a time, MLEs are computed and the likelihood 
function l(reduced) is calculated. The LR statistic is then defined as 

 

LR is asymptotically chi-square distributed with degrees of freedom equal to the difference 
between the numbers of parameters estimated in the two models. 

 
Conditional Statistic 

The conditional statistic is also computed for every variable in the model. The formula for the 
conditional statistic is the same as the LR statistic except that the parameter estimates for each 
reduced model are conditional estimates, not MLEs.  The conditional estimates are defined as 
follows.  Let                               be the MLE for the variables in the model and C be the 
asymptotic covariance matrix for . If variable is removed from the model, the conditional 
estimate for the parameters left in the model given  is 

 

where  is the MLE for the parameter(s) associated with and is  with  removed, is 
the covariance between   and , and   is the covariance of 
is computed by 

Then the conditional statistic 

 

  
 

where is the log-likelihood function evaluated at  . 
 
Statistics 

The following output statistics are available. 
 

Initial Model Information 

If  is not included in the model, the predicted probability is estimated to be 0.5 for all cases and 
the log-likelihood function   is 

 

 
with . If  is included in the model, the predicted probability is estimated as 
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and   is estimated by 
 

with asymptotic standard error estimated by 
 

The log-likelihood function is 
 

 
Model Information 

The following statistics are computed if a stepwise method is specified. 
 

–2 Log-Likelihood 
 

 

Model Chi-Square 
 

2(log-likelihood function for current model − log-likelihood function for initial model) 
 

The initial model contains a constant if it is in the model; otherwise, the model has no terms.   
The degrees of freedom for the model chi-square statistic is equal to the difference between the 
numbers of parameters estimated in each of the two models. If the degrees of freedom is zero, the 
model chi-square is not computed. 

 
Block Chi-Square 

 
2(log-likelihood function for current model − log-likelihood function for the final model from 
the previous method) 

 
The degrees of freedom for the block chi-square statistic is equal to the difference between the 
numbers of parameters estimated in each of the two models. 

 
Improvement Chi-Square 

 
2(log-likelihood function for current model − log-likelihood function for the model from the 
last step) 

 
The degrees of freedom for the improvement chi-square statistic is equal to the difference between 
the numbers of parameters estimated in each of the two models. 
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Goodness of Fit 

 

 

Cox and Snell’s R-Square (Cox and Snell, 1989; Nagelkerke, 1991) 
 

 

where is the likelihood of the current model and l(0) is the likelihood of the 
initial model; that is, if the constant is not included in the model; 

if the constant is included in the model, where 
                         . 

 
Nagelkerke’s R-Square (Nagelkerke, 1981) 

 

 
where . 

 

Hosmer-Lemeshow Goodness-of-Fit Statistic 
 

The test statistic is obtained by applying a chi-square test on a contingency table. The 
contingency table is constructed by cross-classifying the dichotomous dependent variable with  
a grouping variable (with g groups) in which groups are formed by partitioning the predicted 
probabilities using the percentiles of the predicted event probability. In the calculation, 
approximately 10 groups are used (g=10). The corresponding groups are often referred to as the 
“deciles of risk” (Hosmer and Lemeshow, 2000). 

If the values of independent variables for observation i and i’ are the same, observations i and 
i’ are said to be in the same block. When one or more blocks occur within the same decile, the 
blocks are assigned to this same group. Moreover, observations in the same block are not divided 
when they are placed into groups.  This strategy may result in fewer than 10 groups (that is, 

) and consequently, fewer degrees of freedom. 
Suppose that there are Q blocks, and the qth block has mq number of observations, . 

Moreover, suppose that the kth group ( ) is composed of the q1th, …, qkth blocks of 
observations. Then the total number of observations in the kth group is . The total 
observed frequency of events (that is, Y=1) in the kth group, call it O1k, is the total number of 
observations in the kth group with Y=1. Let E1k be the total expected frequency of the event in the 
kth group; then E1k is given by , where is the average predicted event probability 
for the kth group. 

 

 
The Hosmer-Lemeshow goodness-of-fit statistic is computed as 
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The p value is given by Pr             where   is the chi-square statistic distributed with 
degrees of freedom (g−2). 

 
Information for the Variables Not in the Equation 

For each of the variables not in the equation, the score statistic is calculated along with the 
associated degrees of freedom, significance and partial R. Let  be a variable not currently in 
the model and  the score statistic.  The partial R is defined by 

 
if             

 otherwise 

where df is the degrees of freedom associated with , and   is the log-likelihood 
function for the initial model. 

The residual Chi-Square printed for the variables not in the equation is defined as 
 

 
where   g 

 

Information for the Variables in the Equation 

For each of the variables in the equation, the MLE of the Beta coefficients is calculated along with 
the standard errors, Wald statistics, degrees of freedom, significances, and partial R. If  is not a 
categorical variable currently in the equation, the partial R is computed as 

 
if  
otherwise 

If  is a categorical variable with m categories, the partial R is then 
 

if                 
otherwise 

 
Casewise Statistics 

The following statistics are computed for each case. 
 

Individual Deviance 

The deviance of the ith case, , is defined as 
 

 
 

  

 
 
 
 

if  
otherwise 

g g 
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Leverage 

The leverage of the ith case, , is the ith diagonal element of the matrix 
 

where 
 

 
Studentized Residual 

 
 
 

 
Logit Residual 

 
 
 
 

Standardized Residual 
 
 
 

Cook’s Distance 
 

 
DFBETA 

Let  be the change of the coefficient estimates from the deletion of case i. It is computed as 
 

 
Predicted Group 

If           , the predicted group is the group in which  

y=1. Note the following: 

For the unselected cases with nonmissing values for the independent variables in the analysis, 
the leverage    is computed as 

 

where 
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For the unselected cases, the Cook’s distance and DFBETA are calculated based on     . 
 

Generated Model/Scoring 

For each record passed through a generated binomial logistic regression model, a predicted value 
and confidence score are calculated as follows: 

 
Predicted Value 

 
The probability of the value y = 1 for record i is calculated as 

 

 
where 

 

 
If , the predicted value is 1; otherwise, the predicted value is 0. 

 

Confidence 
 

For records with a predicted value of y = 1, the confidence value is . For records with a predicted 
value of y = 0, the confidence value is           . 

 
Blank Handling (generated model) 

 
Records with missing values for any input field in the final model cannot be scored, and are 
assigned a predicted value of $null$. 



 

 



 

Neural Networks Algorithms 
Neural networks predict a continuous or categorical target based on one or more predictors by 
finding unknown and possibly complex patterns in the data. 

 
For algorithms on enhancing model accuracy, enhancing model stability, or working with very 
large datasets, see “Ensembles Algorithms.” 

 
Multilayer  Perceptron 

The multilayer perceptron (MLP) is a feed-forward, supervised learning network with up to two 
hidden layers. The MLP network is a function of one or more predictors that minimizes the 
prediction error of one or more targets. Predictors and targets can be a mix of categorical and 
continuous fields. 

 

Notation  
 
The following notation is used for multilayer perceptrons unless otherwise stated: 

Input vector, pattern m, m=1,...M. 

Target vector, pattern m. 

I Number of layers, discounting the input layer. 
Number of units in layer i. J0 = P, Ji = R, discounting the bias unit. 

Set of categorical outputs. 

Set of continuous outputs. 
 

Set of subvectors of   containing 1-of-c coded hth categorical field. 

                                        Unit j of layer i, pattern m, . 

Weight leading from layer i−1, unit j to layer i, unit k. No weights connect 
  and the bias ; that is, there is no for any j. 

 

 
, i=1,...,I. 

 

Activation function for layer i. 

w Weight vector containing all weights   

 
Architecture 

The general architecture for MLP networks is: 
 

 
 



 

Neural Networks Algorithms 

 
 

 
 

 

 
 

 
Note that the pattern index and the bias term of each layer are not counted in the total number 
of units for that layer. 

 
Activation Functions 

 
Hyperbolic Tangent 

 
       tanh   

 
This function is used for hidden layers. 

 
Identity 

 

 

This function is used for the output layer when there are continuous targets. 
 

Softmax 
 

 

This function is used for the output layer when all targets are categorical. 
 

Error Functions 
 

Sum-of-Squares 
 
 

  

 
  

 
where 

 

 
This function is used when there are continuous targets. 
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Cross-Entropy 
 
 

  

 
  

where 
 

 

This function is used when all targets are categorical. 
 

Expert Architecture Selection 

Expert architecture selection determines the “best” number of hidden units in a single hidden layer. 
 

A random sample is taken from the entire data set and split into training (70%) and testing samples 
(30%). The size of random sample is N = 1000. If entire dataset has less than N records, use all of 
them. If training and testing data sets are supplied separately, the random samples for training and 
testing should be taken from the respective datasets. 

 
Given Kmin and Kmax , the algorithm is as follows. 

1. Start with an initial network of k hidden units. The default is k=min(g(R,P),20,h(R,P)), where 
 

otherwise 
 

where   denotes the largest integer less than or equal to x. is the maximum 
number of hidden units that will not result in more weights than there are records in the entire 
training set. 

If k < Kmin, set k = Kmin. Else if k > Kmax, set k = Kmax. Train this network once via the alternated 
simulated annealing and training procedure (steps 1 to 5). 

2. If k > Kmin, set DOWN=TRUE. Else if training error ratio > 0.01, DOWN=FALSE. Else stop and 
report the initial network. 

3. If DOWN=TRUE, remove the weakest hidden unit (see below); k=k−1. Else add a hidden unit; 
k=k+1. 

4. Using the previously fit weights as initial weights for the old weights and random weights for the 
new weights, train the old and new weights for the network once through the alternated simulated 
annealing and training procedure (steps 3 to 5) until the stopping conditions are met. 

5. If the error on test data has dropped: 

If DOWN=FALSE, If k< Kmax and the training error has dropped but the error ratio is still above 
0.01, return to step 3. Else if k> Kmin, return to step 3. Else, stop and report the network with the 
minimum test error. 
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Else if DOWN=TRUE, If |k−k0|>1, stop and report the network with the minimum test error. Else 
if training error ratio for k=k0 is bigger than 0.01, set DOWN=FALSE, k=k0 return to step 3. Else 
stop and report the initial network. 

Else stop and report the network with the minimum test error. 
 

If more than one network attains the minimum test error, choose the one with fewest hidden units. 
 

If the resulting network from this procedure has training error ratio (training error divided by error 
from the model using average of an output field to predict that field) bigger than 0.1, repeat the 
architecture selection with different initial weights until either the error ratio is <=0.1 or the 
procedure is repeated 5 times, then pick the one with smallest test error. 

 
Using this network with its weights as initial values, retrain the network on the entire training set. 

 
The weakest hidden unit 

 
For each hidden unit j, calculate the error on the test data when j is removed from the network. 
The weakest hidden unit is the one having the smallest total test error upon its removal. 

 

Training  
 
The problem of estimating the weights consists of the following parts: 

E    Initializing the weights.  Take a random sample and apply the alternated simulated annealing 
and training procedure on the random sample to derive the initial weights. Training in step 3 is 
performed using all default training parameters. 

E   Computing the derivative of the error function with respect to the weights. This is solved via 
the error backpropagation algorithm. 

E   Updating the estimated weights. This is solved by the gradient descent or scaled conjugate 
gradient method. 

 
Alternated Simulated Annealing and Training 

The following procedure uses simulated annealing and training alternately up to K1 times. 
Simulated annealing is used to break out of the local minimum that training finds by perturbing 
the local minimum K2 times. If break out is successful, simulated annealing sets a better initial 
weight for the next training. We hope to find the global minimum by repeating this procedure K3 
times. This procedure is rather expensive for large data sets, so it is only used on a random sample 
to search for initial weights and in architecture selection. Let K1=K2=4, K3=3. 

1. Randomly generate K2 weight vectors between [a0−a, a0+a], where a0=0 and a=0.5. Calculate 
the training error for each weight vector. Pick the weights that give the minimum training error 
as the initial weights. 

2. Set k1=0. 

3. Train the network with the specified initial weights. Call the trained weights w. 
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4. If the training error ratio <= 0.05, stop the k1 loop and use w as the result of the loop. Else  set 

k1 = k1+1. 

5. If k1 < K1, perturb the old weight to form K2 new weights  by adding K2 different 
random noise between [a(k1), a(k1)] where . Let  be the weights that 
give the minimum training error among all the perturbed weights. If                             , set the 
initial weights to be , return to step 3. Else stop and report w as the final result. 

Else stop the k1 loop and use w as the result of the loop. 

If the resulting weights have training error ratio bigger than 0.1, repeat this algorithm until either 
the training error ratio is <=0.1 or the procedure is repeated K3 times, then pick the one with 
smallest test error among the result of the k1 loops. 

 
Error Backpropagation 

Error-backpropagation is used to compute the first partial derivatives of the error function with 
respect to the weights. 

First note that tanh 
identity 

The backpropagation algorithm follows: 

For each i,j,k, set                   . 

For each m in group T; For each p=1,...,JI, let 

if cross-entropy error is used 
                                                  otherwise 

For each i=I,...,1 (start from the output layer); For each j=1,...,Ji; For each k=0,...,Ji−1 

E  Let , where  

E  Set 
 

E   If k > 0 and i > 1, set    
 
 

This gives us a vector of elements that form the gradient of          . 
 
 

Gradient Descent 

Given the learning rate parameter (set to 0.4) and momentum rate (set to 0.9), the gradient 
descent method is as follows. 

1. Let k=0. Initialize the weight vector to , learning rate to . Let        . 



 
 

,  then set 
. 
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2. Read all data and find and its gradient . If , stop and report 

the current network. 

3. If , . This step is to make sure that the steepest gradient descent  
 

direction dominates weight change in next step. Without this step, the weight change in next step 
could be along the opposite direction of the steepest descent and hence no matter how small is, 
the error will not decrease. 

4. Let 

5. If , then set ,                      , and , Else  and 
return to step 3. 

6. If a stopping rule is met, exit and report the network as stated in the stopping criteria. Else let 
k=k+1 and return to step 2. 

 
Model Update 

 
Given the learning rate parameters (set to 0.4) and (set to 0.001), momentum rate (set 
to 0.9), and learning rate decay factor β = (1/pK)*ln(η0/ηlow), the gradient descent method for 
online and mini-batch training is as follows. 

1. Let k=0. Initialize the weight vector to , learning rate to . Let        . 

2. Read records in ( is randomly chosen) and find           and its gradient          . 

3. If , . This step is to make sure that the steepest gradient descent  
 

direction dominates weight change in next step. Without this step, the weight change in next step 
could be along the opposite direction of the steepest descent and hence no matter how small is, 
the error will not decrease. 

4. Let . 

5. If and , Else 

6. . If , then set . 

7.   If a stopping rule is met, exit and report the network as stated in the stopping criteria. Else let 
k=k+1 and return to step 2. 

 
Scaled Conjugate Gradient 

To begin, initialize the weight vector to , and let N be the total number of weights. 

1. k=0. Set scalars E E . Set , and 
success=true. 

2. If success=true, find the second-order information: , , 
             , where the superscript t denotes the transpose. 
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3. Set                     . 

4. If , make the Hessian positive definite:  , , . 

5. Calculate the step size: , . 

6. Calculate the comparison parameter: . 

7. If        , error can be reduced.  Set , , If 
, return as the final weight vector and exit. Set , success=true. If k mod 

N=0, restart the algorithm: , else set                           , . If 
, reduce the scale parameter: . else (if ): Set , success=false. 

8. If , increase the scale parameter: . 

9. If success=false, return to step 2. Otherwise if a stopping rule is met, exit and report the network 
as stated in the stopping criteria. Else set k=k+1 , ,        and return to step 2. 

 
Note: Each iteration requires at least two data passes. 

 
Stopping Rules 

Training proceeds through at least one complete pass of the data. Then the search should be 
stopped according to following criteria. These stopping criteria should be checked in the listed 
order. When creating a new model, check after completing an iteration. During a model update, 
check criteria 1, 3, 4, 5 and 6 is after completing a data pass, and only check criterion 2 after an 
iteration. In the descriptions below, a “step” means an iteration when building a new model and 
a data pass when performing a model update.  Let E1 denote the current minimum error and 
K1 denote the iteration where it occurs for the training set, E2 and K2 are that for the  overfit 
prevention set, and K3=min(K1,K2). 

1. At the end of each step compute the total error for the overfit prevention set. From step K2, if the 
testing error does not decrease below E2 over the next n=1 steps, stop. Report the weights at step 
K2. If there is no overfit prevention set, this criterion is not used for building a new model; for a 
model update when there is no overfit prevention set, compute the total error for training data at 
the end of each step. From step K1, if the training error does not decrease below E1 over the next 
n=1 steps, stop.  Report the weights at step K1. 

2. The search has lasted beyond some maximum allotted time. For building a new model, simply 
report the weights at step K3. For a model update, even though training stops before the 
completion of current step, treat this as a complete step. Calculate current errors for training and 
testing datasets and update E1, K1, E2, K2 correspondingly. Report the weights at step K3. 

3. The search has lasted more than some maximum number of data passes. Report the weights 
at step K3. 

4. Stop if the relative change in training error is small: for and  
 

, where are the weight vectors of two consecutive steps. Report weights 
at step K3. 



 
 
 

 

Neural Networks Algorithms 

 
5. The current training error ratio is small compared with the  initial error: for  

 

  and , where  is the total error from the model using the average of an 

output field to predict that field;  is calculated by using                          in the error function, 

where is the weight vector of one step. Report weights at step K3. 

6. The current accuracy meets a specified threshold. Accuracy is computed based on the overfit 
prevention set if there is one, otherwise the training set. 

 
Note: In criteria 4 and 5, the total error for whole training data is needed. For model updates, 
these criteria will not be checked if there is an overfit prevention set. 

 
Model Updates 

 
When new records become available, the synaptic weights can be updated. The new records are 
split into groups of the size R = min(M,2N,1000), where M is the number of training records and N 
is the number of weights in the network. A single data pass is made through the new groups to 
update the weights. If the last of the new groups has more than one-quarter of the records of a 
normal group, then it is processed normally; otherwise, it remains in the internal buffer so that 
these records can be used during the next update. Thus, after the last update there may be some 
unused records remaining in the buffer that will be lost. 

 
Radial Basis Function 

A radial basis function (RBF) network is a feed-forward, supervised learning network with only 
one hidden layer, called the radial basis function layer. The RBF network is a function of one or 
more predictors that minimizes the prediction error of one or more targets. Predictors and targets 
can be a mix of categorical and continuous fields. 

 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 

Input vector, pattern m, m=1,...M. 

Target vector, pattern m. 

I Number of layers, discounting the input layer. For an RBF network, I=2. 
Number of units in layer i.  J0 = P, Ji = R, discounting the bias unit.  J1 
is the number of RBF units. 
jth RBF unit for input  , j=1, …,J1. 

center of  , it is P-dimensional. 

width of  , it is P-dimensional. 

h the RBF overlapping factor. 



 
 

and 

. 
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                                        Unit j of layer i, pattern m, . 

weight connecting rth output unit and jth hidden unit of RBF layer. 
 
 

Architecture 

There are three layers in the RBF network: 

Input  layer:  

RBF  layer:   J1 units, , ;  with 

                                                                                                                      . 
 
 

Output layer: J2=R units, ; with  . 
 

Error Function 

Sum-of-squares error is used: 
 
 

  

 
  

 
where 

 

 

The sum-of-squares error function with identity activation function for output layer can be  
used for both continuous and categorical targets. For continuous targets,  approximates the 
conditional expectation of the target value . For categorical targets,  approximates 
the posterior probability of class k: 

 
Note: though         (the sum is over all classes of the same categorical target field),    
may not lie in the range [0, 1]. 

 

Training  
 
The network is trained in two stages: 

1. Determine the basis functions by clustering methods. The center and width for each basis function is 
computed. 

2. Determine the weights given the basis functions. For the given basis functions, compute the 
ordinary least-squares regression estimates of the weights. 
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The simplicity of these computations allows the RBF network to be trained very quickly. 

 

Determining Basis Functions 
 

The two-step clustering algorithm is used to find the RBF centers and widths. For each cluster, the 
mean and standard deviation for each continuous field and proportion of each category for each 
categorical field are derived. Using the results from clustering, the center of the jth RBF is set as: 

 
if pth field is continuous 
if pth field is a dummy field of a categorical field 

 
where  is the jth cluster mean of the pth input field if it is continuous, and is the proportion 
of the category of a categorical field that the pth input field corresponds to.  The width of the 
jth RBF is set as 

 

if pth field is continuous 
if pth field is a dummy field of a categorical field 

 
where     is the jth cluster standard deviation of the pth field and h>0 is the RBF overlapping 
factor that controls the amount of overlap among the RBFs. Since some       may be zeros, we use 
spherical shaped Gaussian bumps; that is, a common width 

 

 
in for all predictors. In the case that  is zero for some j, set it to be . If all 

are zero, set all of them to be . 
 

When there are a large number of predictors, could be easily very large and hence 
 

is practically zero for every record and every RBF unit if is 

relatively small. This is especially bad for ORBF because there would be only a constant term in 
the model when this happens.  To avoid this, is increased by setting the default overlapping 
factor h proportional to the number of inputs: h=1 + 0.1  P. 

 
Automatic Selection of Number of Basis Functions 

 
The algorithm tries a reasonable range of numbers of hidden units and picks the “best”. By 
default, the reasonable range [K1, K2] is determined by first using the two-step clustering method 
to automatically find the number of clusters, K. Then set K1 = min(K, R) for ORBF and  K1 
=max{2, min(K, R)} for NRBF and K2=max(10, 2K, R). 
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If a test data set is specified, then the “best” model is the one with the smaller error in the test 
data. If there is no test data, the BIC (Bayesian information criterion) is used to select the “best” 
model.  The BIC is defined as 

 

 
 

where                 is the mean squared error and k= (P+1+R)J1 for  
 

NRBF and (P+1+R)J1+R for ORBF is the number of parameters in the model. 

 
Model Updates 

 
When new records become available, you can update the weights connecting the RBF layer and 
output layer. Again, given the basis functions, updating the weights is a least-squares regression 
problem.  Thus, it is very fast. 

For best results, the new records should have approximately the same distribution as the 
original records. 

 
Missing Values 

The following options for handling missing values are available: 
 Records with missing values are excluded listwise. 
 Missing values are imputed. Continuous fields impute the average of the minimum and 

maximum observed values; categorical fields impute the most frequently occurring category. 
 

Output Statistics 

The following output statistics are available. Note that, for continuous fields, output statistics are 
reported in terms of the rescaled values of the fields. 

 
Accuracy 

 
For continuous targets, it is 

 

 

where 
 

Note that R2 can never be greater than one, but can be less than zero. 
 

For the naïve model,  is the modal category for categorical targets and the mean for continuous 
targets. 
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For each categorical target, this is the percentage of records for which the predicted value matches 
the observed value. 

 
Predictor Importance 

 
For more information, see the topic “Predictor Importance Algorithms.” 

 
Confidence 

Confidence values for neural network predictions are calculated based on the type of output field 
being predicted. Note that no confidence values are generated for numeric output fields. 

 
Difference 

 
The difference method calculates the confidence of a prediction by comparing the best match with 
the second-best match as follows, depending on output field type and encoding used. 
 Flag fields.  Confidence is calculated as , where o is the output activation 

for the output unit. 
 Set fields.  With the standard encoding, confidence is calculated as , where is 

the output unit in the fields group of units with the highest  activation, and is the unit 
with the second-highest activation. 
With binary set encoding, the sum of the errors comparing the output activation and the 
encoded set value is calculated for the closest and second-closest matches, and the confidence 
is calculated as , where is the error for the second-best match and is the 
error for the best match. 

 
Simplemax 

 
Simplemax returns the highest predicted probability as the confidence. 
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OPTIMAL  BINNING Algorithms 
The Optimal Binning procedure performs MDLP (minimal description length principle) 
discretization of scale variables. This method divides a scale variable into a small number of 
intervals, or bins, where each bin is mapped to a separate category of the discretized variable. 

MDLP is a univariate, supervised discretization method. Without loss of generality, the 
algorithm described in this document only considers one continuous attribute in relation to a 
categorical guide variable — the discretization is “optimal” with respect to the categorical guide. 
Therefore, the input data matrix S contains two columns, the scale variable A and categorical 
guide C. 

Optimal binning is applied in the Binning node when the binning method is set to Optimal. 
 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 
 

S The input data matrix, containing a column of the scale variable A and a 
column of the categorical guide C. Each row is a separate observation, or 
instance. 

A A scale variable, also called a continuous attribute. 
S(i) The value of A for the ith instance in S. 
N The number of instances in S. 
D A set of all distinct values in S. 
Si A subset of S. 
C The categorical guide, or class attribute; it is assumed to have k 

categories, or classes. 
T A cut point that defines the boundary between two bins. 
TA A set of cut points. 
Ent(S) The class entropy of S. 
E(A, T, S) The class entropy of partition induced by T on A. 
Gain(A, T, S) The information gain of the cut point T on A. 
n A parameter denoting the number of cut points for the equal frequency 

method. 
W A weight attribute denoting the frequency of each instance. If the weight 

values are not integer, they are rounded to the nearest whole numbers before 
use. For example, 0.5 is rounded to 1, and 2.4 is rounded to 2.  Instances 
with missing weights or weights less than 0.5 are not used. 

 
 

Simple MDLP 

This section describes the supervised binning method (MDLP) discussed in Fayyad and Irani 
(1993). 

 

Class Entropy 

Let there be k classes C1, ..., Ck and let P(Ci, S) be the proportion of instances in S that have 
class Ci.  The class entropy Ent(S) is defined as 
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Class Information Entropy 

For an instance set S, a continuous attribute A, and a cut point T, let S1     S be the subset of 
instances in S with the values of A ≤ T, and S2 = S−S1. The class information entropy of the 
partition induced by T, E(A, T; S), is defined as 

 

 
Information Gain 

Given a set of instances S, a continuous attribute A, and a cut point T on A, the information 
gain of a cut point T is 

 

 

MDLP Acceptance Criterion 

The partition induced by a cut point T for a set S of N instances is accepted if and only if 
 

 
and it is rejected otherwise. 

 
Here                                                                                             in which ki is the 
number of classes in the subset Si of S. 

Note: While the MDLP acceptance criterion uses the association between A and C to determine 
cut points, it also tries to keep the creation of bins to a small number. Thus there are situations in 
which a high association between A and C will result in no cut points. For example, consider the 
following data: 

 
D Class 

2 3 
1 1 0 
2 0 6 

 
Then the potential cut point is T = 1.  In this case: 

 



 

OPTIMAL BINNING Algorithms 

 
 

 
 
 

 

Since 0.5916728 < 0.6530774, T is not accepted as a cut point, even though there is a clear 
relationship between A and C. 

 
Algorithm: BinaryDiscretization 

1. Calculate E(A, di; S) for each distinct value di ∈ D for which di and di+1 do not belong to the same 
class. A distinct value belongs to a class if all instances of this value have the same class. 

2. Select a cut point T for which E(A, T; S) is minimum among all the candidate cut points, that is, 
 

 

Algorithm: MDLPCut 

1. BinaryDiscretization(A, T; D, S). 

2. Calculate Gain(A, T; S). 

3. If then 

a)                    . 

b) Split D into D1 and D2, and S into S1 and S2. 

c) MDLPCut(A, TA; D1, S1). 

d) MDLPCut(A, TA; D2, S2). where S1     S be the subset of instances in S with A-values ≤ T, and 
S2 = S−S1. D1 and D2 are the sets of all distinct values in S1 and S2, respectively. 

Also presented is the iterative version of MDLPCut(A, TA; D, S). The iterative implementation 
requires a stack to store the D and S remaining to be cut. 

 
First push D and S into stack.  Then, while ( stack≠∅ ) do 

1. Obtain D and S by popping stack. 

2. BinaryDiscretization(A, T; D, S). 

3. Calculate Gain(A, T; S). 

4. If then 

i)               . 

ii) Split D into D1 and D2, and S into S1 and S2. 

iii) Push D1 and S1 into stack. 

iv) Push D2 and S2 into stack. 
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Note: In practice, all operations within the algorithm are based on a global matrix M. Its element, 
mij, denotes the total number of instances that have value di ∈ D and belong to the jth class in S. 
In addition, D is sorted in ascending order. Therefore, we do not need to push D and S into stack, 
but only two integer numbers, which denote the bounds of D, into stack. 

 

Algorithm: SimpleMDLP 

1. Sort the set S with N instances by the value A in ascending order. 

2. Find a set of all distinct values, D, in S. 

3.    TA  = ∅. 

4. MDLPCut(A, TA; D, S) 

5. Sort the set TA in ascending order, and output TA. 
 
Hybrid MDLP 

When the set D of distinct values in S is large, the computational cost to calculate E(A, di; S)  
for each di ∈ D is large. In order to reduce the computational cost, the unsupervised equal 
frequency binning method is used to reduce the size of D and obtain a subset Def ∈ D. Then the 
MDLPCut(A, TA; Ds, S) algorithm is applied to obtain the final cut point set TA. 

 
Algorithm: EqualFrequency 

It divides a continuous attribute A into n bins where each bin contains N/n instances. n is a 
user-specified parameter, where 1 < n < N. 

1. Sort the set S with N instances by the value A in ascending order. 

2. Def = ∅. 

. 3.   j=1. 

4.   Use the aempirical percentile method to generate the dp,i  which denote the  th 
percentiles. 

5.                           ;  i=i+1 

6. If i≤n, then go to step 4. 

7. Delete the duplicate values in the set Def. 

Note: If, for example, there are many occurrences of a single value of A, the equal frequency 
criterion may not be met.  In this case, no cut points are produced. 

 
Algorithm: HybridMDLP 

1.   D = ∅ ; 
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2. EqualFrequency(A, n, D; S). 

3.    TA  = ∅ . 

4. MDLPCut(A, TA; D, S). 

5. Output TA. 

 
Model Entropy 

The model entropy is a measure of the predictive accuracy of an attribute A binned on the class 
variable C. Given a set of instances S, suppose that A is discretized into I bins given C, where 
the ith bin has the value Ai. Letting Si     S  be the subset of instances in S with the value Ai, the 
model entropy is defined as: 

 
 
Merging Sparsely Populated Bins 

Occasionally, the procedure may produce bins with very few cases. The following strategy deletes 
these pseudo cut points: 

 
E    For a given variable, suppose that the algorithm found nfinal cut points, and thus nfinal+1 bins. For 

bins i = 2, ..., nfinal (the second lowest-valued bin through the second highest-valued bin), compute 

 

where sizeof(bin) is the number of cases in the bin. 
 

E   When this value is less than a user-specified merging threshold,  is considered sparsely 
populated and is merged with   or  , whichever has the lower class information entropy. For 
more information, see the topic “Class Information Entropy.” 

 
The procedure makes a single pass through the bins. 

 

Blank Handling 

In optimal binning, blanks are handled in pairwise fashion.  That is, for every pair of  fields 
{binning field, target field}, all records with valid values for both fields are used to bin that 
specific binning field, regardless of any blanks that may exist in other fields to be binned. 
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Predictor Importance Algorithms 
Predictor importance can be determined by computing the reduction in variance of the target 
attributable to each predictor, via a sensitivity analysis. This method of computing predictor 
importance is used in the following models: 
 Neural Networks 
    C5.0 
 C&RT 
 QUEST 
 CHAID 
 Regression 
 Logistic 
 Discriminant 
 GenLin 
 SVM 
 Bayesian Networks 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 

Y Target 
                                         Predictor, where j=1,...,k 

k The number of predictors 
Model for Y based on predictors through 

 
 

Variance Based Method 

Predictors are ranked according to the sensitivity measure defined as follows. 
 

 
where V(Y) is the unconditional output variance. In the numerator, the expectation operator E 
calls for an integral over ; that is, over all factors but , then the variance operator V implies 
a further integral over . 

 
Predictor importance is then computed as the normalized sensitivity. 
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Saltelli et al (2004) show that  is the proper measure of sensitivity to rank the predictors in order 
of importance for any combination of interaction and non-orthogonality among predictors. 

 
The importance measure Si is the first-order sensitivity measure, which is accurate if the set of 
the input factors (X1 , X2 ,…, Xk) is orthogonal/independent (a property of the factors),  and 
the model is additive; that is, the model does not include interactions (a property of the model) 
between the input factors. For any combination of interaction and non-orthogonality among 
factors, Saltelli (2004) pointed out that Si is still the proper measure of sensitivity to rank the 
input factors in order of importance, but there is a risk of inaccuracy due to the presence  of 
interactions or/and non-orthogonality. For better estimation of Si, the size of the dataset should 
be a few hundred at least. Otherwise, Si may be biased heavily. In this case, the importance 
measure can be improved by bootstrapping. 

 
Computation 

 
In the orthogonal case, it is straightforward to estimate the conditional variances  by computing 
the multidimensional integrals in the space of the input factors, via Monte Carlo methods as 
follows. 

 
Let us start with two input sample matrices   and , each of dimension N× k: 

 
 
 

 
and 

 
 
 

 
where N is the sample size of the Monte Carlo estimate which can vary from a few hundred to one 
thousand. Each row is an input sample. From and , we can build a third matrix . 

 
 
 

  

     

 
 

We may think of as the “sample” matrix, as the “resample” matrix, and   as the matrix 
where all factors except   are resampled. The following equations describe how to obtain the 
variances (Saltelli 2002). The ‘hat’ denotes the numeric estimates. 
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where 
 

 

 
where 

 

 

 
 

   
 

    
 

   
 

 
and 

 

 

 
 

   
 

   
 

 

When the target is continuous, we simply follow the accumulation steps of variance and 
expectations. For a categorical target, the accumulation steps are for each category of Y. For each 
input factor,  is a vector with an element for each category of Y. The average of elements of  is 
used as the estimation of importance of the ith input factor on Y. 

 
Convergence. In order to improve scalability, we use a subset of the records and predictors when 
checking for convergence. Specifically, the convergence is judged by the following criteria: 

 
 
 
 
 
 

where        , D=100 and denotes the width of interest,                              , 

and defines the desired average relative error. 

This specification focuses on “good” predictors; those whose importance values are larger than 
average. 

 
Record order. This method of computing predictor importance is desirable because it scales well to 
large datasets, but the results are dependent upon the order of records in the dataset. To avoid the 
effect of the record order, instead of using the original data directly, we take a sample from the 
data and sort the sampled records before using them to calculate predictor importance. The 
sampling method is based on a random seed determined by the value of each record, thus the 
sampling results are always the same for the same dataset. The random seeds are then used to sort 
the sampled records. 
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QUEST Algorithms 

Overview of QUEST 
 

QUEST stands for Quick, Unbiased, Efficient Statistical Tree. It is a relatively new binary 
tree-growing algorithm (Loh and Shih, 1997). It deals with split field selection and split-point 
selection separately. The univariate split in QUEST performs approximately unbiased field 
selection. That is, if all predictor fields are equally informative with respect to the target field, 
QUEST selects any of the predictor fields with equal probability. 

QUEST affords many of the advantages of C&RT, but, like C&RT, your trees can become 
unwieldy. You can apply automatic cost-complexity pruning (see “Pruning”) to a QUEST tree to 
cut down its size. QUEST uses surrogate splitting to handle missing values. For more 
information, see the topic “Blank Handling.” 

 
 

Primary Calculations 
 

The calculations directly involved in building the model are described below. 
 
 
Frequency Weight Fields 

 
A frequency field represents the total number of observations represented by each record. It is 
useful for analyzing aggregate data, in which a record represents more than one individual. The 
sum of the values for a frequency field should always be equal to the total number of observations 
in the sample. Note that output and statistics are the same whether you use a frequency field or 
case-by-case data. The table below shows a hypothetical example, with the predictor fields sex 
and employment and the target field response. The frequency field tells us, for example, that 10 
employed men responded yes to the target question, and 19 unemployed women responded no. 

Table 30-1 
Dataset with frequency field 

 

Sex Employment Response Frequency 
M Y Y 10 
M Y N 17 
M N Y 12 
M N N 21 
F Y Y 11 
F Y N 15 
F N Y 15 
F N N 19 

 
 

The use of a frequency field in this case allows us to process a table of 8 records instead of 
case-by-case data, which would require 120 records. 

QUEST does not support the use of case weights. 
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Model Parameters 

QUEST deals with field selection and split-point selection separately. Note that you can specify 
the alpha level to be used in the Expert Options for QUEST—the default value is ·nominal = 0.05. 

 
Field Selection 

1. For each predictor field X, if X is a symbolic (categorical), or nominal, field, compute the p value 
of a Pearson chi-square test of independence between X and the dependent field. If X is scale-level 
(continuous), or ordinal field, use the F test to compute the p value. 

2. Compare the smallest p value to a prespecified, Bonferroni-adjusted alpha level ∝B. 
 If the smallest p value is less than ∝B, then select the corresponding predictor field to  

split the node.  Go on to step 3. 
 If the smallest p value is not less than ∝B, then for each X that is scale-level (continuous), 

use Levene’s test for unequal variances to compute a p value.  (In other words, test whether 
X has unequal variances at different levels of the target field.) 

 Compare the smallest p value from Levene’s test to a new Bonferroni-adjusted alpha level ∝L. 
 If the p value is less than ∝L, select the corresponding predictor field with the smallest p 

value from Levene’s test to split the node. 
 If the p value is greater than ∝L, the node is not split. 

 
Split Point Selection—Scale-Level Predictor 

1. If Y has only two categories, skip to the next step. Otherwise, group the categories of Y into 
two superclasses as follows: 
 Compute the mean of X for each category of Y. 
 If all means are the same, the category with the largest weighted frequency is selected as one 

superclass and all other categories are combined to form the other superclass. (If all means 
are the same and there are multiple categories tied for largest weighted frequency, select 
the category with the smallest index as one superclass and combine the other categories 
to form the other.) 

 If the means are not all the same, apply a two-mean clustering algorithm to those means to 
obtain two superclasses of Y, with the initial cluster centers set at the two most extreme class 
means. (This is a special case of k-means clustering, where k = 2. For more information, see 
the topic “Overview.”) 

2. Apply quadratic discriminant analysis (QDA) to determine the split point. Notice that QDA 
usually produces two cut-off points—choose the one that is closer to the sample mean of the 
first superclass. 

 
Split Point Selection—Symbolic (Categorical) Predictor 

 
QUEST first transforms the symbolic field into a continuous field     by assigning discriminant 
coordinates to categories of the predictor. The derived field     is then split as if it were any other 
continuous predictor as described above. 
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Chi-Square Test 
 

The Pearson chi-square statistic is calculated as 
 

 

where is the observed cell frequency and   is the expected 
cell frequency for cell (xn = i, yn = j) from the independence model as described below. The 
corresponding p value is calculated as   , where  follows a chi-square 
distribution with d = (J − 1)(I − 1) degrees of freedom. 

 
Expected Frequencies for Chi-Square Test 

 
For models with no case weights, expected frequencies are calculated as 

 
 
 
 

where 
 
 

 
 

 
 

 

 

 
 

 
 

F Test 
 

Suppose for node t there are Jt classes of target field Y. The F statistic for continuous predictor X 
is calculated as 

 

 
where 

 

 

The corresponding p value is given by 
 

 
where F(Jt − 1, Nf(t) − Jt) follows an F distribution with degrees of freedom Jt − 1 and Nf(t) − Jt. 
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Levene’s Test 

For continuous predictor X, calculate                    , where  is the mean of X for records in 
node t with target value yn. Levene’s F statistic for predictor X is the ANOVA F statistic for zn. 

 
Bonferroni Adjustment 

The adjusted alpha level ∝B is calculated as the nominal value divided by the number of possible 
comparisons. 

 
For QUEST, the Bonferroni adjusted alpha level ∝B for the initial predictor selection is 

 

 

where m is the number of predictor fields in the model. 
 

For the Levene test, the Bonferroni adjusted alpha level ∝L is 
 
 
 

where mc is the number of continuous predictor fields. 
 

Discriminant Coordinates 

For categorical predictor X with values {b1,...,bI}, QUEST assigns a score value from a continuous 
variable     to each category of X. The scores assigned are chosen to maximize the ratio of between-
class to within-class sum of squares of     for the target field classes: 

 
For each record, transform X into a vector of dummy fields , where 

 

otherwise 
 

Calculate the overall and class j mean of v: 
 

 

where fn is the frequency weight for record n, gn is the dummy vector for record n, Nf is the 
total sum of frequency weights for the training data, and Nf,j is the sum of frequency weights 
for records with category j. 

 
Calculate the following matrices: 
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Perform singular value decomposition on T to obtain  , where Q is an  orthogonal 
matrix, D = diag(dl,...,dI) such that . Let  where 

              if di > 0, 0 otherwise. Perform singular value decomposition on to 
obtain its eigenvector a which is associated with its largest eigenvalue. 

 
The largest discriminant coordinate of g is the projection 

 

 

Quadratic Discriminant Analysis (QDA) 

To determine the cutpoint for a continuous predictor, first group the categories of the target field Y 
to form two superclasses, A and B, as described above. 

 
If , order the two superclasses by their variance in increasing order and denote 
the variances by        , and the corresponding means by  . Let 𝜀𝜀 be a very small positive 
number, say 𝜀𝜀 = 10−12. Set the cutpoint d based on      and 𝜀𝜀: 

 
if 
otherwise 

 
Blank Handling 

Records with missing values for the target field are ignored in building the tree model. 
 

Surrogate splitting is used to handle blanks for predictor fields. If the best predictor field to be 
used for a split has a blank or missing value at a particular node, another field that yields a split 
similar to the predictor field in the context of that node is used as a surrogate for the predictor 
field, and its value is used to assign the record to one of the child nodes. 

 
Note: If Surrogate splitting is used (where a particular rule does not fit into a node) the Confidence 
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being 
present within a single node. 

For example, suppose that X* is the predictor field that defines the best split s* at node t. The 
surrogate-splitting process finds another split s, the surrogate, based on another predictor field X 
such that this split is most similar to s* at node t (for records with valid values for both predictors). 
If a new record is to be predicted and it has a missing value on X* at node t, the surrogate split s is 
applied instead. (Unless, of course, this record also has a missing value on X. In such a situation, 
the next best surrogate is used, and so on, up to the limit of number of surrogates specified.) 

In the interest of speed and memory conservation, only a limited number of surrogates is 
identified for each split in the tree. If a record has missing values for the split field and all 
surrogate fields, it is assigned to the child node with the higher weighted probability, calculated as 
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where Nf,j(t) is the sum of frequency weights for records in category j for node t, and Nf(t) is the 
sum of frequency weights for all records in node t. 

 
If the model was built using equal or user-specified priors, the priors are incorporated into the 
calculation: 

 

 

where π(j) is the prior probability for category j, and pf(t) is the weighted probability of a record 
being assigned to the node, 

 

 

where Nf,j(t) is the sum of the frequency weights (or the number of records if no frequency 
weights are defined) in node t belonging to category j, and Nf,j is the sum of frequency weights 
for records belonging to category in the entire training sample. 

 
Predictive measure of association 

 
Let (resp. ) be the set of learning cases (resp. learning cases in node t) that has 
non-missing values of both X* and X. Let be the probability of sending a case in 

  to the same child by both and , and be the split with maximized probability 
. 

 
The predictive measure of association between s* and at node t is 

 

where  (resp. ) is the relative probability that the best split s* at node t sends a case with 
non-missing value of X* to the left (resp. right) child node. And where 
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, 

 
 

 

and being the indicator function taking value 1 when both splits s* and      send 
the case n to the same child, 0 otherwise. 

 
 
Effect of Options 

 
Stopping Rules 

 
Stopping rules control how the algorithm decides when to stop splitting nodes in the tree. Tree 
growth proceeds until every leaf node in the tree triggers at least one stopping rule. Any of the 
following conditions will prevent a node from being split: 
 The node is pure (all records have the same value for the target field) 
 All records in the node have the same value for all predictor fields used by the model 
 The tree depth for the current node (the number of recursive node splits defining the current 

node) is the maximum tree depth (default or user-specified). 
 The number of records in the node is less than the minumum parent node size (default or 

user-specified) 
 The number of records in any of the child nodes resulting from the node’s best split is less 

than the minimum child node size (default or user-specified) 
 
 

Profits 
 

Profits are numeric values associated with categories of a (symbolic) target field that can be used 
to estimate the gain or loss associated with a segment. They define the relative value of each value 
of the target field. Values are used in computing gains but not in tree growing. 

Profit for each node in the tree is calculated as 
 
 

 
 

where j is the target field category, fj(t) is the sum of frequency field values for all records in node 
t with category j for the target field, and Pj is the user-defined profit value for category j. 
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Priors 

Prior probabilities are numeric values that influence the misclassification rates for categories of 
the target field. They specify the proportion of records expected to belong to each category of the 
target field prior to the analysis. The values are involved both in tree growing and risk estimation. 

 
There are three ways to derive prior probabilities. 

 
Empirical Priors 

 
By default, priors are calculated based on the training data. The prior probability assigned to each 
target category is the weighted proportion of records in the training data belonging to that category, 

 

 

In tree-growing and class assignment, the Ns take both case weights and frequency weights  
into account (if defined); in risk estimation, only frequency weights are included in calculating 
empirical priors. 

 
Equal Priors 

 
Selecting equal priors sets the prior probability for each of the J categories to the same value, 

 

 
User-Specified Priors 

 
When user-specified priors are given, the specified values are used in the calculations involving 
priors. The values specified for the priors must conform to the probability constraint: the sum of 
priors for all categories must equal 1.0. If user-specified priors do not conform to this constraint, 
adjusted priors are derived which preserve the proportions of the original priors but conform 
to the constraint, using the formula 

 

 
where π’(j) is the adjusted prior for category j, and π(j) is the original user-specified prior for 
category j. 

 
Costs 

If misclassification costs are specified, they are incorporated into split calculations by using 
altered priors.  The altered prior is defined as 
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where                  . 
 

Misclassification costs also affect risk estimates and predicted values, as described in the following 
sections. 

 

Pruning 
 

Pruning refers to the process of examining a fully grown tree and removing bottom-level splits 
that do not contribute significantly to the accuracy of the tree. In pruning the tree, the software 
tries to create the smallest tree whose misclassification risk is not too much greater than that of the 
largest tree possible. It removes a tree branch if the cost associated with having a more complex 
tree exceeds the gain associated with having another level of nodes (branch). 

It uses an index that measures both the misclassification risk and the complexity of the tree, 
since we want to minimize both of these things. This cost-complexity measure is defined as 
follows: 

 

 

R(T) is the misclassification risk of tree T, and is the number of terminal nodes for tree T. The 
term α represents the complexity cost per terminal node for the tree. (Note that the value of α is 
calculated by the algorithm during pruning.) 

Any tree you might generate has a maximum size (Tmax), in which each terminal node contains 
only one record. With no complexity cost (α = 0), the maximum tree has the lowest risk,  since 
every record is perfectly predicted. Thus, the larger the value of α, the fewer the number of 
terminal nodes in T(α), where T(α) is the tree with the lowest complexity cost for the given α. As 
α increases from 0, it produces a finite sequence of subtrees (T1, T2, T3), each with progressively 
fewer terminal nodes. Cost-complexity pruning works by removing the weakest split. 

The following equations represent the cost complexity for {t}, which is any single node, and 
for Tt, the subbranch of {t}. 

 

 

 
If is less than , then the branch Tt has a smaller cost complexity than the single 
node {t}. 

The tree-growing process ensures that  for (α = 0). As α increases from 0, 
both and grow linearly, with the latter growing at a faster rate. Eventually, you 
will reach a threshold α’, such that for all α > α’.  This means that when α 
grows larger than α’, the cost complexity of the tree can be reduced if we cut the subbranch Tt 
under {t}. Determining the threshold is a simple computation. You can solve this first inequality, 

, to find the largest value of α for which the inequality holds, which is also 
represented by g(t).  You end up with 
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You can define the weakest link (t) in tree T as the node that has the smallest value of g(t): 
 

 
Therefore, as α increases,    is the first node for which .  At that point, { } 
becomes preferable to , and the subbranch is pruned. 

With that background established, the pruning algorithm follows these steps: 
 

E   Set α1 = 0 and start with the tree T1 = T(0), the fully grown tree. 

E   Increase α until a branch is pruned. Prune the branch from the tree, and calculate the risk estimate 
of the pruned tree. 

 
E   Repeat the previous step until only the root node is left, yielding a series of trees, T1, T2, ... Tk. 

E   If the standard error rule option is selected, choose the smallest tree Topt for which 
 

 
E  If the standard error rule option is not selected, then the tree with the smallest risk estimate R(T) 

is selected. 
 
Secondary Calculations 

Secondary calculations are not directly related to building the model but give you information 
about the model and its performance. 

 

Risk Estimates 

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for 
the tree as a whole. 

 
Risk Estimates for Symbolic Target Field 

 
For classification trees (with a symbolic target field), the risk estimate r(t) of a node t is computed 
as 
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where C(j*(t)|j) is the misclassification cost of classifying a record with target value j as j*(t), 
Nf,j(t) is the sum of the frequency weights for records in node t in category j (or the number of 
records if no frequency weights are defined), and Nf is the sum of frequency weights for all 
records in the training data. 

 
If the model uses user-specified priors, the risk estimate is calculated as 

 

 
Gain Summary 

The gain summary provides descriptive statistics for the terminal nodes of a tree. 
If your target field is continuous (scale), the gain summary shows the weighted mean of the 

target value for each terminal node, 
 

 

If your target field is symbolic (categorical), the gain summary shows the weighted percentage of 
records in a selected target category, 

 

 

where xi(j) = 1 if record xi is in target category j, and 0 otherwise. If profits are defined for the 
tree, the gain is the average profit value for each terminal node, 

 

 

where P(xi) is the profit value assigned to the target value observed in record xi. 
 
Generated  Model/Scoring 

Calculations done by the QUEST generated model are described below. 
 

Predicted Values 

New records are scored by following the tree splits to a terminal node of the tree. Each terminal 
node has a particular predicted value associated with it, determined as follows: 

 
For trees with a symbolic target field, each terminal node’s predicted category is the category with 
the lowest weighted cost for the node. This weighted cost is calculated as 
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where C(i|j) is the user-specified misclassification cost for classifying a record as category i when 
it is actually category j, and p(j|t) is the conditional weighted probability of a record being in 
category j given that it is in node t, defined as 

 

 

where π(j) is the prior probability for category j, Nw,j(t) is the weighted number of records in node 
t with category j (or the number of records if no frequency or case weights are defined), 

 

 
and Nw,j is the weighted number records in category j (any node), 

 

 

Confidence 

Confidence for a scored record is the proportion of weighted records in the training data in the 
scored record’s assigned terminal node that belong to the predicted category, modified by the 
Laplace correction: 

 

 
Note: If Surrogate Splitting is used (where a particular rule does not fit into a node) the Confidence 
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being 
present within a single node. 

 

Blank Handling 

In classification of new records, blanks are handled as they are during tree growth, using 
surrogates where possible, and splitting based on weighted probabilities where necessary. For 
more information, see the topic “Blank Handling.” 



 

Self-Learning Response Model 
Algorithms 

Self-Learning Response Models (SLRMs) use Naive Bayes classifiers to build models that can 
be easily updated to incorporate new data, without having to regenerate the entire model. The 
methods used for building, updating and scoring with SLRMs are described here. 

 
Primary  Calculations 

The model-building algorithm used in SLRMs is Naive Bayes. A Bayesian Network consisting of 
a Naive Bayes model for each target field is generated. 

 
Naive Bayes Algorithms 

The Naive Bayes model is an old method for classification and predictor selection that is enjoying 
a renaissance because of its simplicity and stability. 

 
Notation 

The following notation is used throughout this chapter unless otherwise stated: 
Table 31-1 
Notation 

Notation Description 
J0 Total number of predictors. 
X Categorical predictor vector X’ = ( X1, ..., XJ ), where J is the number of 

predictors considered. 
Mj Number of categories for predictor Xj. 
Y Categorical target variable. 
K Number of categories of Y. 
N Total number of cases or patterns in the training data. 
Nk The number of cases with Y= k in the training data. 
Njmk The number of cases with Y= k and Xj=m in the training data. 
πk The probability for Y= k. 
𝑝𝑝jmk The probability of Xj=m given Y= k. 

  
 

Naive Bayes Model 

The Naive Bayes model is based on the conditional independence model of each predictor given 
the target class. The Bayesian principle is to assign a case to the class that has the largest posterior 
probability. By Bayes’ theorem, the posterior probability of Y given X is: 
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mk 

 

 
 

Let X1, ..., XJ be the J predictors considered in the model. The Naive Bayes model assumes that 
X1, ..., XJ are conditionally independent given the target; that is: 

 

These probabilities are estimated from training data by the following equations: 
 

 

 

Where Nk is calculated based on all non-missing Y,  Nj is based on all non-missing pairs 
of XJ and Y, and the factors    and f are introduced to overcome problems caused by zero or 
very small cell counts. These estimates correspond to Bayesian estimation of the multinomial 
probabilities with Dirichlet priors.  Empirical studies suggest (Kohavi, Becker, and 
Sommerfield, 1997). 

 
A single data pass is needed to collect all the involved counts. 

 
For the special situation in which J = 0; that is, there is no predictor at all, 

                    . When there are empty categories in the target variable or 
categorical predictors, these empty categories should be removed from the calculations. 

 
Secondary Calculations 

In addition to the model parameters, a model assessment is calculated. 
 

Model Assessment 

For a trained model, we need to assess how reliable it is. Given this problem, we face two 
conditions which will result with different solutions: 
 A sample of test data (not used in training or updating the model) is available. In this case we 

can directly feed these data into the model, and observe the outcome. 
 No extra testing data are available. This is more common since users normally apply all 

available data to train the model. In this case, we have to simulate data first based on the 
calibrated model parameters, such as and , then assess the trained model by scoring 
these pseudo random data. 

 
Testing with Simulated Data 

 
In our simulation, data are generated.  For each round, we can 
determine the corresponding accuracy; across all rounds, average accuracy and variance can be 
calculated, and they are explained as reliability statistics. 
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E   For each round, we generate random cases as follows: 
 y is assigned a random value based on the prior probabilities     . 
 Each  is randomly assigned based on conditional probabilities  

E The accuracy of each round is calculated by comparing the model’s predicted value for each case 
to the case’s generated outcome y,   

E The mean, variance, minimum and maximum of the accuracy estimates are calculated across 
rounds. 

 
Blank Handling 

If the target is missing, or all  predictors for a case are missing, the case is ignored. If every 
value for a predictor is missing, or all non-missing values for a predictor are the same, that 
predictor is ignored. 

 
Updating the Model 

The model can be updated by updating the cell counts      ,  to account for the new records 
and recalculating the probabilities      and  as described in “Naive Bayes Model.” Updating 
the model only requires a data pass of new records. 

 
Generated Model/Scoring 

Scoring with a generated SLRM model is described below. 

 
Predicted Values and Confidences 

By default, the first M offers with highest predicted value will be returned. However, sometimes 
low-probability offers are of interest for marketing strategy. Model settings allow you to bias the 
results toward particular offers, or include random components to the offers. 

 
Some notation for scoring offers: 

 
 

 
 

Number of offers modeled already 
 

    Scores for each offer 
 

 
    Randomly generated scores for offers 

 

 

 
 

Randomization factor, ranging from 0.0 (offer based 
only on model prediction) to 1.0 (offer is completely 
random) 

 

    Number of cases used for training each offer 
 

 
 
 
 

Empirical value of the amount of training cases that 
will result in a reliable model. When “Take account 
of model reliability” is selected in the Settings tab, 
this is set to 500; otherwise 0. 
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User’s preferences for offers, or the ratings of the 
offers. Can be any non-negative value, where 
larger values means stronger recommendations for 
the corresponding offers.  The default setting is 

 

    
 

Mandatory inclusion/exclusion filters.  , 
where 0 indicates an excluded offer. 

 

The final score for each offer is calculated as 
 

 

The outcomes  are ordered in specified order, ascending or descending, and the first M offers in 
the list are recommended. The calculated score is reported as the confidence for the score. 

 

Variable Assessment 

Among all the features modeled, some are definitely more important to the accuracy of the model 
than others. Two different approaches to measuring importance are proposed here: Predictor 
Importance and Information Measure. 

 
Predictor Importance 

 
The variance of predictive error can be used as the measure of importance. With this method, 
we leave out one predictor variable at a time, and observe the performance of remaining model. 
A variable is regarded as more important than another if it adds more variance compared to  
that of the complete model (with all variables). 

 
When test data are available, they can be used for predictor importance calculations in a direct way. 
When test data are not available, they are simulated based on the model parameters and . 

 
In our simulation, data are generated. For each round, we determine 
the corresponding accuracy for each submodel, excluding   for each of the j predictors; across 
all rounds, average accuracy and variance can be calculated. 

 
E   For each round, we generate random cases as follows: 
 y is assigned a random value based on the prior probabilities . 
 Each  is randomly assigned based on conditional probabilities  

 
Within a round, each of the   predictors is excluded from the model, and the accuracy is 
calculated based on the generated test data for each submodel in turn. 

 
E The accuracies for each round are calculated by comparing the submodel’s predicted value for 

each case to the case’s generated outcome y, , for each 
of the j submodels. 
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E   The mean and variance of the accuracy estimates are calculated across rounds for each submodel. 

For each variable, the importance is measured as the difference between the accuracy of the full 
model and the mean accuracy for the submodels that excluded the variable. 

 
Information Measure 

 
The importance of an explanatory variable X for a response variable Y is the extent to which the 
use of X reduces uncertainty in predicting outcomes of Y. The uncertainty about predicting an 
outcome Y is measured by the entropy of its distribution (Shannon 1948): 

 

 
Based on a value x of the explanatory variable, the probability distribution of the outcomes Y is 
the conditional distribution .  The information value of using the value x for the prediction 
is assessed by comparing the concentrations of the marginal distribution  and the conditional 
distribution . The difference between the conditional and marginal distribution entropy is: 

 

 
where denotes the entropy of the conditional distribution . The value is informative 
about Y if the conditional distribution is more concentrated than . 

 
The importance of a random variable X for predicting Y is measured by the expected uncertainty 
reduction, referred to as the mutual information between two variables: 

 

 
The expected fraction of uncertainty reduction due to X is a mutual information index given by 
 

 
 
 
 
 

This index ranges from zero to one:                 if and only if the two variables are independent, 
and                if and only if the two variables are functionally related in some form,  
linearly or nonlinearly. 



 

 



 

Sequence Algorithm 

Overview of Sequence Algorithm 

The sequence node in IBM® SPSS® Modeler detects patterns in sequential data, such as 
purchases over time. The sequence node algorithm uses the following two-stage process for 
sequential pattern mining (Agrawal and Srikant, 1995): 

 
E   Mine for the frequent sequences. This part of the process extracts the information needed for quick 

responses to the pattern queries, yielding an adjacency lattice of the frequent sequences. This 
structure provides an optimal configuration for the second stage. 

 
E   Generate sequential patterns online. This stage uses a pre-computed adjacency lattice. You can 

extract the patterns according to specified criteria, such as support and confidence bounds, or 
place restrictions on the antecedent sequence. 

 
Primary  Calculations 

 
Itemsets, Transactions, and Sequences 

A group of items associated at a single point in time constitutes an itemset, which will be 
identified here using braces “{ }”. Consider the hypothetical data below representing sales at a 
gourmet store. 
Table 32-1 
Example data - product purchases 

 

Customer Time 1 Time 2 Time 3 Time 4 
1 cheese & crackers wine beer - 
2 wine beer cheese - 
3 bread wine cheese & beer - 
4 crackers wine beer cheese 
5 beer cheese & crackers bread - 
6 crackers bread - - 

 
Customer 1 yields three itemsets: {cheese & crackers}, {wine}, and {beer}. The ampersand 
denotes items appearing in a single itemset. In this case, items separated by an ampersand appear 
in the same purchase. Notice that some itemsets may contain a single item only. 

The complete group of itemsets for a single object, in this case a customer, constitutes a 
transaction. Time refers to a purchase occasion for a particular customer and does not represent a 
specific time across all customers. For example, the first purchase occasion for customer 1 may 
have been on January 23 while the first occasion for customer 4 was February 12. Although the 
dates are not identical, each itemset was the first for that customer. The analysis focuses on time 
relative to a specific customer instead of on absolute time. 

Ordering the itemsets by time yields sequences. The symbol “>” denotes an ordering of 
itemsets, with the itemset on the right occurring after the itemset on the left. For example, 
customer 6 yields a sequence of [{crackers} > {bread}]. 
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Two common characteristics used to describe sequences are size and length. The number of 

items contained in a sequence corresponds to the sequence size. The number of itemsets in the 
sequence equals its length. For example, the three timepoints for customer 5 correspond to a 
sequence having a length of three and a size of four. 

A sequence is a subsequence of another sequence if the first can be derived by deleting 
itemsets from the second.  Consider the sequence: 

[{wine} > {beer} > {cheese}] 

Deleting the itemset cheese results in the sequence of length two [{wine} > {beer}]. This two 
itemset sequence is a subsequence of the original sequence. Similar deletions reveal that the 
three itemset sequence can be decomposed into three singleton subsequences ({wine}, {beer}, 
{cheese}) and three subsequences involving two itemsets ([{wine} > {beer}], [{beer}  >  
{cheese}], [{wine} > {cheese}]). A sequence that is not a subsequence of another sequence is 
referred to as a maximal sequence. 

 
Support 

The support for a sequence equals the proportion of transactions that contain the sequence. The 
table below shows support values for sequences that appear in at least one transaction for a set of 
gourmet store sales data (note that this is a different data set from the one shown previously). 

 
For example, the support for sequence [{wine} > {beer}] is 0.67 because it occurs in four of the 
six transactions. Similarly, support for a sequential rule equals the proportion of transactions that 
contain both the antecedent and the consequent of the rule, in that order. The support for the 
sequential rule: 

If [{cheese} > 
{wine}] then [{beer}] 

is 0.17 because only one of the six transactions contains these three itemsets in this order. 
Sequences that do not appear in any transaction have support values of 0 and are excluded 

from the mining analysis. 
Table 32-2 
Nonzero support values 
Sequence Support Sequence Support 
{cheese} 0.83 {crackers} > {cheese} 0.17 
{crackers} 0.67 {beer} > {cheese & crackers} 0.17 
{wine} 0.67 {cheese & crackers} > {wine} 0.17 
{beer} 0.83 {cheese & crackers} > {beer} 0.17 
{bread} 0.50 {bread} > {cheese & beer} 0.17 
{cheese & 
crackers} 

0.33 {wine} > {cheese & beer} 0.17 

{cheese & beer} 0.17 {cheese & crackers} > {bread} 0.17 
{cheese} > {wine} 0.17 {cheese} > {wine} > {beer} 0.17 
{cheese} > {beer} 0.17 {crackers} > {wine} > {beer} 0.33 
{wine} > {beer} 0.67 {wine} > {beer} > {cheese} 0.33 
{crackers} > 
{wine} 

0.33 {bread} > {wine} > {beer} 0.17 
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Sequence Support Sequence Support 
{crackers} > {beer} 0.33 {bread} > {wine} > {cheese} 0.17 
{wine} > {cheese} 0.50 {beer} > {cheese} > {bread} 0.17 
{beer} > {cheese} 0.50 {beer} > {crackers} > {bread} 0.17 
{bread} > {wine} 0.17 {crackers} > {wine} > {cheese} 0.17 
{bread} > {beer} 0.17 {crackers} > {beer} > {cheese} 0.17 
{bread} > {cheese} 0.17 {cheese & crackers} > {wine} > {beer} 0.17 
{beer} > {bread} 0.17 {bread} > {wine} > {cheese & beer} 0.17 
{beer} > {crackers} 0.17 {beer} > {cheese & crackers} > {bread} 0.17 
{cheese} > {bread} 0.17 {crackers} > {wine} > {beer} > {cheese} 0.17 
{crackers} > 
{bread} 

0.33   

 
Typically, the analysis focuses on sequences having support values greater than a minimum 
threshold, the support level. This value, defined by the user, determines the minimum level for 
which sequences will be kept. Sequences with support values exceeding the threshold, referred to 
as frequent sequences, form the basis of the adjacency lattice. For example, for a threshold of 
0.40, sequence [{wine} > {beer}] is a frequent sequence because its support level is 0.67. By 
relaxing the threshold, more sequences are classified as frequent. 

 
 

Time Constraints 
 

Defining the time at which events occur has a dramatic impact on sequences. For instance, each 
purchase occasion in the gourmet data yields a new timed itemset. However, suppose a customer 
bought wine and realized while walking to his car that beer was needed too. He immediately 
returns to the store and buys the forgotten item. Should these two purchases be considered 
separately? 

One method for controlling for itemsets that occur very close in time is through a timestamp 
tolerance parameter.  This tolerance defines the length of time covering a single itemset. 
Specifying a tolerance larger than the difference between two consecutive times results in a single 
itemset at one time, such as {wine & beer} in the scenario described above. 

Another time issue commonly arising in the analysis of sequences is gap. This statistic 
measures the difference in time between two items and can be used to make time-based predictions 
of future behavior. Gap statistics can be based on the gap between the last and penultimate sets in 
sequences, or on the gaps between the last and first sets in sequences. 

 
 
Sequential Patterns 

 
Sequential patterns, or sequential association rules,identify items that frequently follow other 
items in transaction-based data. A sequential pattern is simply an ordered list of itemsets. All 
itemsets leading to the final itemset form the antecedent sequence, and the last itemset is the 
consequent sequence. These statements have the following form: 

 
If [antecedent] then [consequent] 
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For example, a sequential pattern for wine, beer, and cheese is: “if a customer buys wine, then 
buys beer, he will buy cheese in the future”. Wine and beer form the antecedent, and cheese is 
the consequent. 

Notationally, the symbol “=>” separates the antecedent from the consequent in a sequential 
rule. The sequence to the left of this symbol corresponds to the antecedent; the sequence on the 
right is the consequent.  For instance, the rule above is denoted: 

[{wine} > {beer } => {cheese}] 

The only notational difference between a sequence and a sequential rule is the identification 
of a subsequence as a consequent. 

 

Adjacency Lattice 

The number of itemsets and sequences for a collection of transactions grows very quickly as the 
number of items appearing in transactions gets larger. In practice, analyses typically involve many 
transactions and these transactions include a variety of itemsets. Larger datasets require complex 
methods to process the sequential patterns, particularly if rapid feedback is needed. 

An adjacency lattice provides a structure for organizing sequences, permitting rapid generation 
of sequential patterns.  Two sequences are adjacent if adding a single item to one yields the 
other, resulting in a hierarchical structure denoting which sequences are subsequences of other 
sequences. The lattice also includes sequence frequencies, as well as other information. 

The adjacency lattice of all observed sequences is usually too large to be practical. It may be 
more useful to prune the lattice to frequent sequences in an effort to simplify the structure. All 
sequences contained in the resulting structure reach a specified support level. The adjacency 
lattice for the sample transactions using a support level of 0.40 is shown below. 

Figure 32-1 
Adjacency lattice for a threshold of 0.40 (support values in parentheses) 
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Mining for Frequent Sequences 

IBM® SPSS® Modeler uses a non-sequential association rule mining approach that performs 
very well with respect to minimizing I/O costs, time, and space requirements. The continuous 
association rule mining algorithm (Carma), uses only two data passes and allows changes in the 
support level during execution (Hidber, 1999). The final guaranteed support level depends on the 
provided series of support values. 

For the first stage of the mining process, the component uses a variation of Carma to apply the 
approach to the sequential case. The general order of operations is: 

E   Read the transaction data. 

E   Identify frequent sequences, discarding infrequent sequences. 

E   Build an adjacency lattice of frequent sequences. 
 

Carma is based upon transactions and requires only two passes through the data. In the first data 
pass, referred to as Phase I, the algorithm generates the frequent sequence candidates. The second 
data pass, Phase II, computes the exact frequency counts for the candidate sequences from Phase I. 

 
Phase I 

Phase I corresponds to an estimation phase. In this phase, Carma generates candidate sequences 
successively for every transaction. Candidate sequences satisfy a version of the “apriori” principle 
where a sequence becomes a candidate only if all of its subsequences are candidates from the 
previous transactions. Therefore, the size of candidate sequences can grow with each transaction. 
To prevent the number of candidates from growing too large, Carma periodically prunes candidate 
sequences that have not reached a threshold frequency. Pruning may occur after processing any 
number of transactions. While pruning usually lowers the memory requirements, it increases the 
computational costs. At the end of the Phase I, the algorithm generates all sequences whose 
frequency exceeds the computed support level (which depends on the support series). Carma can 
use many support levels, up to one support level per transaction. 

The table below represents support values during transaction processing with no pruning for 
the gourmet data. As the algorithm processes a transaction, support values adjust to account for 
items appearing in that transaction, as well as for the total number of processed transactions. For 
example, after the first transaction, the lattice contains cheese, crackers, wine, and beer, each 
having a support exceeding the threshold level. After processing the second transaction, the 
support for crackers drops from 1.0 to 0.50 because that item appears in only one of the two 
transactions. The support for the other items remains unchanged because both transactions contain 
the items. Furthermore, the sequences [{wine}> {beer}] and [{beer}> {cheese}] enter the lattice 
because their constituent subsequences already appear in the lattice. 
Table 32-3 
Carma transaction processing 

 Transaction 
Sequence 1 2 3 4 5 6 
{cheese} 1 1 1 1 1 0.83 
{crackers} 1 0.50 0.33 0.50 0.60 0.67 
{wine} 1 1 1 1 0.80 0.67 
{beer} 1 1 1 1 1 0.83 
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 Transaction 
Sequence 1 2 3 4 5 6 
{wine} > {beer}  1 1 1 0.80 0.67 
{beer} > {cheese}  0.50 0.33 0.50 0.60 0.50 
{bread}   0.33 0.25 0.40 0.50 
{wine} > {cheese}   0.67 0.75 0.60 0.50 
{cheese & beer}   0.33 0.25 0.20 0.17 
{crackers} > {wine}    0.50 0.40 0.33 
{crackers} > {beer}    0.50 0.40 0.33 
{crackers} > {cheese}    0.25 0.20 0.17 
{wine} > {beer} > {cheese}    0.50 0.40 0.33 
{cheese & crackers}     0.40 0.33 
{beer} > {crackers}     0.20 0.17 
{beer} > {bread}     0.20 0.17 
{cheese} > {bread}     0.20 0.17 
{crackers} > {bread}     0.20 0.33 

 

After completing the first data pass, the lattice contains five sequences containing one item, twelve 
sequences involving two items, and one sequence composed of three items. 

 
Phase II 

Phase II is a validation phase requiring a second data pass, during which the algorithm 
determines accurate frequencies for candidate sequences. In this phase, Carma does not generate 
any candidate sequences and prunes infrequent sequences only once, making Phase II faster  
than Phase I. Moreover, depending on the entry points of candidate sequences during Phase I, 
a complete data pass my not even be necessary. In an online application, Carma skips Phase II 
altogether. 

Suppose the threshold level is 0.30 for the lattice. Several sequences fail to reach this level and 
subsequently get pruned during Phase II. The resulting lattice appears below. 



 
 

{wine} 
(0.67) 

{beer} 
(0.83) 

{crackers} 
(0.67) 

{cheese} 
(0.83) 

{bread} 
(0.50) 

{wine} > {beer} > {cheese} 
(0.33) 
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Figure 32-2 
Adjacency lattice for a threshold of 0.30 (support values in parentheses) 

 
 
 
 
 
 
 

{crackers} > {wine} {wine} > {beer} {crackers} > {beer} {wine} > {cheese} {cheese & crackers} {beer} > {cheese} {crackers} > {bread} 
(0.33) (0.67) (0.33) (0.50) (0.33) (0.50) (0.33) 

 
 
 
 
 
 

 

Notice that the lattice does not contain [{crackers} > {wine} > {beer}] although the support for 
this sequence exceeds the threshold. Although [{crackers}> {wine}> {beer}] occurs in one-third 
of the transactions, Carma cannot add this sequence to the lattice until all of its subsequences 
are included. The final two subsequences occur in the fourth transaction, after which the full three-
itemset sequence is not observed. In general, however, the database of transactions will be much 
larger than the small example shown here, and exclusions of this type will be extremely rare. 

 

Generating Sequential Patterns 

The second stage in the sequential pattern mining process queries the adjacency lattice of the 
frequent sequences produced in the first stage for the actual patterns. Aggarwal and Yu (1998a) 
IBM® SPSS® Modeler uses a set of efficient algorithms for generating association rules online 
from the adjacency lattice (Aggarwal and Yu, 1998). Applying these algorithms to the sequential 
case takes advantage of the monotonic properties for rule support and confidence preserved by 
the adjacency lattice data structures.  The lattice efficiently saves all the information necessary 
for generating the sequential patterns and is orders of magnitude smaller than all the patterns 
it could possibly generate. 

The queries contain the constraints that the resulting set of sequential patterns needs to satisfy. 
These constraints fall into two categories: 
 constraints on statistical indices 
 constraints on the items contained in the antecedent of the patterns 

{NULL} 
(1.00) 
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Statistical index constraints involve support, confidence, or cause. These queries require returned 
patterns to have values for these statistics within a specified range. Usually, lower confidence 
bound is the primary criterion. The lower bound for the pattern support level is given by the 
support level for the sequences in the corresponding adjacency lattice. Often, however, the support 
specified for pattern generation exceeds the value specified for lattice creation. 

For the lattice shown above, specifying a support range between 0.30 and 1.00, a confidence 
range from 0.30 to 1.0, and a cause range from 0 to 1.0 results in the following seven rules: 
 If [{crackers}] then [{beer}]. 
 If [{crackers}] then [{wine}]. 
 If [{crackers}] then [{bread}]. 
 If [{wine} > {beer}] then [{cheese}]. 
 If [{wine}] then [{beer}]. 
 If [{wine}] then [{cheese}]. 
 If [{beer}] then [{cheese}]. 

Limiting the set to only maximal sequences omits the final three rules because they are 
subsequences of the fourth. 

The second type of query requires the specification of the sequential rule antecedent. This type 
of query returns a new singleton itemset after the final itemset in the antecedent. For example, 
consider an online shopper who has placed items in a shopping cart. A future item query looks at 
only the past purchases to derive a recommended item for the next time the shopper visits the site. 

 
Blank Handling 

Blanks are ignored by the sequence rules algorithm. The algorithm will handle records containing 
blanks for input fields, but such a record will not be considered to match any rule containing one 
or more of the fields for which it has blank values. 

 
Secondary Calculations 

 
Confidence 

Confidence is a measure of sequential rule accuracy and equals the proportion obtained by dividing 
the number of transactions that contain both the antecedent and consequent of the rule by the 
number of transactions containing the antecedent. In other words, confidence is the support for the 
rule divided by the support for the antecedent. For example, the confidence for the sequential rule: 

If [{wine}] then 
[{cheese}] 

 
is 3/4, or 0.75. Three-quarters of the transactions that include wine also include cheese at a later 
time.  In contrast, the sequential rule: 

If [{cheese}] then 
[{wine}] 
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includes the same itemsets but has a confidence of 0.20. Only one-fifth of the transactions that 
include cheese contain wine at a later time. In other words, wine is more likely to lead to cheese 
than cheese is to lead to wine. 

displays the confidence for every sequential rule observed in the gourmet data. Rules with 
empty antecedents correspond to having no previous transaction history. 
Table 32-4 
Nonzero confidence values 

 

Sequence Confidence Sequence Confidence 
{cheese} 1.00 {crackers} => {cheese} 0.25 
{crackers} 1.00 {beer} => {cheese & crackers} 0.20 
{wine} 1.00 {cheese & crackers} => {wine} 0.50 
{beer} 1.00 {cheese & crackers} => {beer} 0.50 
{bread} 1.00 {bread} => {cheese & beer} 0.33 
{cheese & crackers} 1.00 {wine} => {cheese & beer} 0.25 
{cheese & beer} 1.00 {cheese & crackers} => {bread} 0.50 
{cheese} => {wine} 0.20 {cheese} > {wine} => {beer} 1.00 
{cheese} => {beer} 0.20 {crackers} > {wine} => {beer} 1.00 
{wine} => {beer} 1.00 {wine} > {beer} => {cheese} 0.50 
{crackers} => {wine} 0.50 {bread} > {wine} => {beer} 1.00 
{crackers} => {beer} 0.50 {bread} > {wine} => {cheese} 1.00 
{wine} => {cheese} 0.75 {beer} > {cheese} => {bread} 0.33 
{beer} => {cheese} 0.60 {beer} > {crackers} => {bread} 1.00 
{bread} => {wine} 0.33 {crackers} > {wine} => {cheese} 0.50 
{bread} => {beer} 0.33 {crackers} > {beer} => {cheese} 0.50 
{bread} => {cheese} 0.33 {cheese & crackers} > {wine} => {beer} 1.00 
{beer} => {bread} 0.20 {bread} > {wine} => {cheese & beer} 1.00 
{beer} => {crackers} 0.20 {beer} > {cheese & crackers} => {bread} 1.00 
{cheese} => {bread} 0.20 {crackers} > {wine} > {beer} => {cheese} 0.50 
{crackers} => 
{bread} 

0.50   

 

Generated  Model/Scoring 
 
Predicted Values 

 
When you pass data records into a Sequence Rules model, the model handles the records in a 
time-dependent manner (or order-dependent, if no timestamp field was used to build the model). 
Records should be sorted by the ID field and timestamp field (if present). 

For each record, the rules in the model are compared to the set of transactions processed  
for the current ID so far, including the current record and any previous records with the same 
ID and earlier timestamp. The k rules with the highest confidence values that apply to this set 
of transactions are used to generate the k predictions for the record, where k is the number  of 
predictions specified when the model was built. (If multiple rules predict the same outcome for 
the transaction set, only the rule with the highest confidence is used.) 
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Note that the predictions for each record do not necessarily depend on that record’s transactions. 

If the current record’s transactions do not trigger a specific rule, rules will be selected based on 
the previous transactions for the current ID. In other words, if the current record doesn’t add any 
useful predictive information to the sequence, the prediction from the last useful transaction for 
this ID is carried forward to the current record. 

For example, suppose you have a Sequence Rule model with the single rule 
 

Jam -> Bread (0.66) 
 

and you pass it the following records: 
 

ID Purchase Prediction 
001 jam bread 
001 milk bread 

 
Notice that the first record generates a prediction of bread, as you would expect. The second record 
also contains a prediction of bread, because there’s no rule for jam followed by milk; therefore the 
milk transaction doesn’t add any useful information, and the rule Jam -> Bread still applies. 

 
Confidence 

The confidence associated with a prediction is the confidence of the rule that produced the 
prediction. For more information, see the topic “Confidence.” 

 

Blank Handling 

Blanks are ignored by the sequence rules algorithm. The algorithm will handle records containing 
blanks for input fields, but such a record will not be considered to match any rule containing one 
or more of the fields for which it has blank values. 

 
 

Note that the sequence algorithm generates rules that have a max length of the users in the dataset. For 
example, if you have transactions such as the following, the algorithm won't find a sequence of event codes 
A -> B -> C, because there are only two users in the dataset. 

 
User Event Code 
1 A 
1 B 
1 C 
1 A 
1 B 
1 C 
2 A 
2 B 
2 C 



 

Simulation algorithms 
Simulation in IBM® SPSS® Modeler refers to simulating input data to predictive models using 
the Monte Carlo method and evaluating the model based on the simulated data.  You do this 
by using the Simulation Generation (also known as SimGen) source node. The distribution of 
predicted target values can then be used to evaluate the likelihood of various outcomes. 

 
Simulation  algorithms 

Creating a simulation includes specifying distributions for all inputs to a predictive model that are 
to be simulated. When historical data are present, the distribution that most closely fits the data 
for each input can be determined using the algorithms described in this section. 

 
Notation 

The following notation is used throughout this section unless otherwise stated: 
Table 33-1 
Notation 

Notation Description 
Value of the input variable in the ith case of the historical data 

Frequency weight associated with the ith case of the historical data 

Total effective sample size accounting for frequency weights 

Sample mean 

                                       Sample variance 

Sample standard deviation 
 
 

Distribution fitting 

The historical data for a given input is denoted by: 
 

          

     

 
The total effective sample size is: 

 
 

 
 

 
 

The observed sample mean, sample variance and sample standard deviation are: 
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Parameter estimation for most distributions is based on the maximum likelihood (ML) method, 
and closed-form solutions for the parameters exist for many of the distributions. There is no 
closed-form ML solution for the distribution parameters for the following distributions: negative 
binomial, beta, gamma and Weibull. For these distributions, the Newton-Raphson method is used. 
This approach requires the following information: the log-likelihood function, the gradient vector, 
the Hessian matrix, and the initial values for the iterative Newton-Raphson process. 

 
Discrete distributions 

Distribution fitting is supported for the following discrete distributions: binomial, categorical, 
Poisson and negative binomial. 

 
Binomial distribution: parameter estimation 

The probability mass function for a random variable x with a binomial distribution is: 
 

 
where is the probability of success.  The binomial distribution is used to describe 
the total number of successes in a sequence of N independent Bernoulli trials.  The parameter 
estimates for the binomial distribution using the method of moments (see Johnson & Kotz (2005) 
for details) are: 

 

 
where NaN implies that the binomial distribution would not be an appropriate distribution to fit 
the data under this criterion, and where 

 

 
If  is not an integer, then the parameter estimates are: 
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where    denotes the integer part of   . 
 

Categorical distribution: parameter estimation 
 

The categorical distribution can be considered a special case of the multinomial distribution in 
which N = 1. Suppose , i = 1, 2, …, n, has the categorical distribution and its categorical values 
are denoted as 1, 2, …, J. Then an indicator variable of for category can be denoted as 

 
if 
otherwise 

 
and the corresponding probability is . Then the probability mass function for a random variable 

with the categorical distribution can be described based on and  as follows: 
 

with 
 
 

The parameter estimates for are: 
 
 

 

 
 

 
 

     
 

Poisson distribution:  parameter estimation 
 

The probability mass function for a random variable with a Poisson distribution is: 
 

 

where is the rate parameter of the Poisson distribution.  The parameter of the Poisson 
distribution can be estimated as: 

 

 
 

Negative binomial distribution: parameter estimation 
 

The distribution fitting component for simulation supports the parameterization of the negative 
binomial distribution that describes the distribution of the number of failures before  the 
th success. For this parameterization, the probability mass function for a random variable is: 

 
for 
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Γ 

 

 
 

where                    are the two distribution parameters.  There is no closed-form solution 
for the parameters r and θ, so the Newton-Raphson method with step-halving will be used. The 
method requires the following information: 

 
(1) The log likelihood function 

 

ln ln ln 
 
 

(2) The gradient (1st derivative) vector with respect to r and θ 
 

ln 
 

where Γ' is a digamma function, which is the derivative of the logarithm of the gamma 
function, evaluated at α. 

 
(3) The Hessian (2nd derivative) matrix with respect to r and θ (since the Hessian matrix is 
symmetric, only the lower triangular portion is displayed) 

 

 
where is the trigamma function, or the derivative of the digamma function. 

 
(4) The initial values of θ and r can be obtained from the closed-form estimates using the method 
of moments: 

 
 

 
 

 

Note 

 
if  
otherwise 

 

An alternative parameterization of the negative binomial distribution describes the distribution of 
the number of trials before the   th success. Although it is not supported in distribution fitting, it is 
supported in simulation when explicitly specified by the user. The probability mass function for 
this parameterization, for a random variable is: 

 
   for  

 
 

where                    are the two distribution parameters. 
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Continuous distributions 
 

Distribution fitting is supported for the following continuous distributions: triangular, uniform, 
normal, lognormal, exponential, beta, gamma and Weibull. 

 
Triangular distribution: parameter estimation 

 
The probability density function for a random variable with a triangular distribution is: 
 

 
  
such that . Parameter estimates of the triangular distribution are: 

 

 

 
 

 
Since the calculation of the mode for continuous data may be ambiguous, we transform the 
parameter estimates and use the method of moments as follows (see Kotz and Rene van Dorp 
(2004) for details): 

 

 

 
 

 
 

From the method of moments we obtain 
 

 
from which it follows that 
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Note: For very skewed data or if the actual mode equals a or b, the estimated mode, , may be 
less than a or greater than b. In this case, the adjusted mode, defined as below, is used: 

 
if 
if 

 
Uniform distribution:  parameter estimation 

The probability density function for a random variable with a uniform distribution is: 
 

 
where is the minimum and    is the maximum among the values of . Hence, the parameter 
estimates of the uniform distribution are: 

 

 

 
Normal distribution:  parameter estimation 

The probability density function for a random variable with a normal distribution is: 
 

 

Here, is the measure of centrality and is the measure of dispersion of the normal distribution. 
The parameter estimates of the normal distribution are: 

 

 

 
Lognormal distribution:  parameter estimation 

The lognormal distribution is a probability distribution where the natural logarithm of a random 
variable follows a normal distribution.  In other words, if has a lognormal distribution, 
then ln(  ) has a normal(ln(   ),  ) distribution. The probability density function for a random 
variable with a lognormal distribution is: 
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Define  
 

Parameter estimates for the lognormal distribution are: 
 

 

 

Exponential distribution:  parameter estimation 
 

The probability density function for a random variable with an exponential distribution is: 
 

for     and 
 

The estimate of the parameter for the exponential distribution is: 
 
 
 
 

Beta distribution:  parameter estimation 
 

The probability density function for a random variable with a beta distribution is: 
 

 
where, 

 

 

There is no closed-form solution for the parameters α and β, so the Newton-Raphson method with 
step-halving will be used. The method requires the following information: 

 
(1) The log likelihood function 

 

ln Γ ln Γ ln Γ 
 
 

 

  
 

 
 

  
 

 

 

 
 

(2) The gradient (1st derivative) vector with respect to α and β 

Γ Γ 
Γ 

B  α β 
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Γ 

 

 
 
 

 

where Γ' is a digamma function, which is the derivative of the logarithm of the gamma 
function, evaluated at α. 

 
(3) The Hessian (2nd derivative) matrix with respect to α and β (since the Hessian matrix is 
symmetric, only the lower triangular portion is displayed) 

 

 

where is the trigamma function, or the derivative of the digamma function. 
 

(4) The initial values of α and β can be obtained from the closed-form estimates using the method 
of moments: 

 

 

 
   

 

 
 

 
Gamma distribution:  parameter estimation 

The probability density function for a random variable with a gamma distribution is: 
 

for      and 
 

If is a positive integer, then the gamma function is given by: Γ 
 

There is no closed-form solution for the parameters α and β, so the Newton-Raphson method with 
step-halving will be used. The method requires the following information: 

 
(1) The log likelihood function 

 

lnΓ 
 
 

(2) The gradient (1st derivative) vector with respect to α and β 
 

Γ 



 
 

Γ 
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where Γ' is a digamma function, which is the derivative of the logarithm of the gamma 
function, evaluated at α. 

 
(3) The Hessian (2nd derivative) matrix with respect to α and β (since the Hessian matrix is 
symmetric, only the lower triangular portion is displayed) 

 

 

where is the trigamma function, or the derivative of the digamma function. 
 

(4) The initial values of α and β can be obtained from the closed-form estimates using the method 
of moments: 

 

 

 

Weibull distribution: parameter estimation 
 

Distribution fitting for the Weibull distribution is restricted to the two-parameter Weibull 
distribution, whose probability density function is given by: 

 
for      and 

 
 

There is no closed-form solution for the parameters β and γ, so the Newton-Raphson method with 
step-halving will be used. The method requires the following information: 

 
(1) The log likelihood function 

 

 
 

(2) The gradient (1st derivative) vector with respect to β and γ 
 

ln                            
 

(3) The Hessian (2nd derivative) matrix with respect to β and γ (since the Hessian matrix is 
symmetric, only the lower triangular portion is displayed) 
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where 
 
 
 
 
 

 
 

 
 
 

(4) The initial values of β and γ are given by: 
 

 

 
 
Goodness of fit measures 

Goodness of fit measures are used to determine the distribution that most closely fits the 
data. For discrete distributions, the Chi-Square test is used. For continuous distributions, the 
Anderson-Darling test or the Kolmogorov-Smirnov test is used. 

 
Discrete distributions 

 
The Chi-Square goodness of fit test is used for discrete distributions (Dirk P. Kroese, 2011). The 
Chi-Square test statistic has the following form: 

 

 
 

where, 
Table 33-2 
Notation 

Notation Description 
k The number of classes, as defined in the table below for each discrete distribution 

                                 The total observed frequency for class i 
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Notation Description 
PDF(i) Probability density function of the fitted distribution. For the Poisson and negative 

binomial distributions, the density function for the last class is computed as      
PDF                                                                PDF  

Expected frequency for class i: = W*PDF(i) 

The total effective sample size 
 
 

For large W, the above statistic follows the Chi-Square distribution: 
 

 
where r = number of parameters estimated from the data. The following table provides the values 
of k and r for the various distributions. The value Max in the table is the observed maximum value. 

 
Distribution Notation k (classes) r (parameters) 
Binomial N+1 2 

Categorical 
 

  J J-1 

Poisson 
 

  Max + 1  1 

Negative binomial 
 

   Max + 1  2 

 
This Chi-Square test is valid only if all values of        . 

The p-value for the Chi-Square test is then calculated as: 

 
 

 

   
 

where CDF of the Chi-Square distribution. 
 

Note: The p-value cannot be calculated for the Categorical distribution since the number of 
degrees of freedom is zero. 

 
Continuous distributions 

 
For continuous distributions, the Anderson-Darling test or the Kolmogorov-Smirnov test is used 
to determine goodness of fit. The calculation consists of the following steps: 

1. Transform the data to a Uniform(0,1) distribution 
 

2. Sort the transformed data to generate the Order Statistics 
 

3. Calculate the Anderson-Darling or Kolmogorov-Smirnov test statistic 
 

4. Compute the approximate p-value associated with the test statistic 
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The first two steps are common to both the Anderson-Darling and Kolmogorov-Smirnov tests. 
The original data are transformed to a Uniform(0,1) distribution using the transformation: 

 
 

 
 

where the transformation function is given in the table below for each of the supported 
distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The transformed data points      are sorted in ascending order to generate the Order Statistics: 
 
 

 
 

Define  to be the corresponding frequency weight for . The cumulative frequency up to and 
including is defined as: 

 
 

 

 

 
 
 

and where we define . 
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Anderson-Darling test 
 

The Anderson-Darling test statistic is given by: 
 

 
 
 

 

 
 

 

 
 

For more information, see the section “Anderson-Darling statistic with frequency weights.” 
 

The approximate p-value for the Anderson-Darling statistic can be computed for the following 
distributions: uniform, normal, lognormal, exponential, Weibull and gamma. The p-value is not 
available for the triangular and beta distributions. 

 
Uniform distribution: p-value 

 
The p-value for the Anderson-Darling statistic is computed based on the following result, provided 
by Marsaglia (2004): 

 
   

 
where 

 

 

Normal and lognormal distributions: p-value 
 

The p-value for the Anderson-Darling statistic is computed based on the following result, provided 
by D’Agostino and Stephens (1986):  
 



 

Simulation algorithms 

 
 

 
 

Exponential distribution: p-value 

The p-value for the Anderson-Darling statistic is computed based on the following result, provided 
by D’Agostino and Stephens (1986):  

 

 

 

 

 
 
 

Weibull distribution: p-value 

The p-value for the Anderson-Darling statistic is computed based on Table 33-3 below, provided by 
D’Agostino and Stephens (1986). First, the adjusted Anderson-Darling statistic is computed from: 

 

 
If the value of is between two probability levels (in the table), then linear interpolation is used 
to estimate the p-value. For example, if which is between                and               
,then the corresponding probabilities of   and   are p and p respectively. Then 
the p-value of is computed as 

 

 
If the value of is less than the smallest critical value in the table, then the p-value is 0.25; and 
if is greater than the largest critical value in the table, then the p-value is 0.01. 
Table 33-3 
Upper tail probability and corresponding critical values for the Anderson-Darling test, for the Weibull 
distribution 

 

p-value 0.25 0.10 0.05 0.025 0.01 
 

    0.474 0.637 0.757 0.877 1.038 

 
Gamma distribution: p-value 

Table 33-4, which is provided by D’Agostino and Stephens (1986), is used to compute the p-value 
of the Anderson-Darling test for the gamma distribution. First, the appropriate row in the table 
is determined from the range of the parameter α. Then linear interpolation is used to compute 
the p-value, as done for the Weibull distribution. For more information, see the section 
“Weibull distribution:  p-value.” 
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If the test statistic is less than the smallest critical value in the row, then the p-value is 0.25; and 
if the test statistic is greater than the largest critical value in the row, then the p-value is  0.005. 
Table 33-4  
Upper tail probability and corresponding critical values for the Anderson-Darling test, for the gamma 
distribution with estimated parameter α 
 
 
 
 
 
 
 
 

Kolmogorov-Smirnov test 
 

The Kolmogorov-Smirnov test statistic,  , is given by: 
 

 
 
 Computation of the p-value is based on the modified Kolmogorov-Smirnov statistic, which is 
distribution specific. 

 
Uniform distribution: p-value 

 
The procedure proposed by Kroese (2011) is used to compute the p-value of the 
Kolmogorov-Smirnov statistic for the uniform distribution. First, the modified 
Kolmogorov-Smirnov statistic is computed as 

 

 
The corresponding p-value is computed as follows: 

1. Set k=100 

2. Define  

3. Calculate and 

4. If set k=k+1 and repeat step 2; otherwise, go to step 5. 

5. p-value 
 

Normal and lognormal distributions: p-value 
 

The modified Kolmogorov-Smirnov statistic is 



 

Simulation algorithms 

 
 

 
 
 

 

The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 33-5 below, 
provided by D’Agostino and Stephens (1986). If the value of D is between two probability 
levels, then linear interpolation is used to estimate the p-value. For more information, see the 
topic “Weibull distribution:  p-value.”  

 
If D is less than the smallest critical value in the table, then the p-value is 0.15; and if D is 
greater than the largest critical value in the table, then the p-value is 0.01. 
Table 33-5 
Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the 
Normal and Lognormal distributions 
p-value 0.15 0.10 0.05 0.025 0.01 
D 0.775 0.819 0.895 0.995 1.035 

 
Exponential distribution: p-value 

The modified Kolmogorov-Smirnov statistic is 
 

 
The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 33-6 below, 
provided by D’Agostino and Stephens (1986). If the value of D is between two probability 
levels, then linear interpolation is used to estimate the p-value. For more information, see the 
topic “Weibull distribution:  p-value.” 

 
If D is less than the smallest critical value in the table, then the p-value is 0.15; and if D is 
greater than the largest critical value in the table, then the p-value is 0.01. 
Table 33-6 
Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the 
Exponential distribution 
p-value 0.15 0.10 0.05 0.025 0.01 
D 0.926 0.995 1.094 1.184 1.298 

 
Weibull distribution: p-value 

The modified Kolmogorov-Smirnov statistic is 
 

 
The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 33-7 below, 
provided by D’Agostino and Stephens (1986). If the value of D is between two probability 
levels, then linear interpolation is used to estimate the p-value. For more information, see the 
topic “Weibull distribution:  p-value.” 
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If D is less than the smallest critical value in the table, then the p-value is 0.10; and if D is 
greater than the largest critical value in the table, then the p-value is 0.01. 

Table 33-7 
Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the 
Weibull distribution 

 

p-value 0.10 0.05 0.025 0.01 
D 1.372 1.477 1.557 1.671 

 
 

Gamma distribution: p-value 
 

The modified Kolmogorov-Smirnov statistic is 
 

 
 

The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 33-8 below, 
provided by D’Agostino and Stephens (1986). If the value of D is between two probability 
levels, then linear interpolation is used to estimate the p-value. For more information, see the 
topic “Weibull distribution:  p-value.” 

 
If D is less than the smallest critical value in the table, then the p-value is 0.25; and if D is 
greater than the largest critical value in the table, then the p-value is 0.005. 

Table 33-8 
Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the 
Gamma distribution 

 

p-value 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 
D 0.74 0.780 0.800 0.858 0.928 0.990 1.069 1.13 

 
 

Determining the recommended distribution 
 

The distribution fitting module is invoked by the user, who may specify an explicit set of 
distributions to test or rely on the default set, which is determined from the measurement level 
of the input to be fit. For continuous inputs, the user specifies either the Anderson-Darling test 
(the default) or the Kolmogorov-Smirnov test for the goodness of fit measure (for ordinal and 
nominal inputs, the Chi-Square test is always used). The distribution fitting module then returns 
the values of the specified test statistic along with the calculated p-values (if available) for each of 
the tested distributions, which are then presented to the user in ascending order of the test statistic. 
The recommended distribution is the one with the minimum value of the test statistic. 

 
The above approach yields the distribution that most closely fits the data. However, if the p-value 
of the recommended distribution is less than 0.05, then the recommended distribution may not 
provide a close fit to the data. 
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Anderson-Darling statistic with frequency weights 

To obtain the expression for the Anderson-Darling statistic with frequency weights, we first give 
the expression where the frequency weight of each value is 1: 

 

 
If there is a frequency weight variable, then the corresponding four terms of the above expression 
are given by: 

 

 
 
 
 
 
 

 

 
where   and   are defined in the section on goodness of fit measures for continuous 
distributions. For more information, see the topic “Continuous distributions.” 
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Simulation algorithms: run simulation 

Simulation algorithms 

Running a simulation involves generating data for each of the simulated inputs, evaluating the 
predictive model based on the simulated data (along with values for any fixed inputs), and 
calculating metrics based on the model results. 

 
Generating correlated data 

Simulated values of input variables are generated so as to account for any correlations between 
pairs of variables. This is accomplished using the NORTA (Normal-To-Anything) method 
described by Biller and Ghosh (2006). The central idea is to transform standard multivariate 
normal variables to variables with the desired marginal distributions and Pearson correlation 
matrix. 

 
Suppose that the desired variables are ,  , with the desired Pearson correlation 
matrix Σ   , where the elements of Σ are given by . Then the NORTA algorithm is as follows: 

1. For each pair and , where , use a stochastic root finding algorithm (described in the 
following section) and the correlation  to search for an approximate correlation  of standard 
bivariate normal variables. 

2. Construct the symmetric matrix Σ   whose elements are given by  , where         and        . 

3. Generate the standard multivariate normal variables with Pearson correlation matrix Σ . 

4. Transform the variables to using 
 

 
where   is the desired marginal cumulative distribution, and is the cumulative standard 
normal distribution function.  Then the correlation matrix of  will be close to the 
desired Pearson correlation matrix Σ  . 

 
Stochastic root finding algorithm 

Given a correlation , a stochastic root finding algorithm is used to find  an approximate 
correlation  such that if standard bivariate normal variables and   have the Pearson 
correlation , then after transforming and  to and  (using the transformation described 
in Step 4 of the previous section) the Pearson correlation between  and  is close to . The 
stochastic root finding algorithm is as follows: 

1. Let and  

2. Simulate N samples of standard normal variables   and  ,   and  , such that the 
Pearson correlation between   and   is LowCorr and the Pearson correlation between 

  and   is HighCorr.  The sample size N is set to 1000. 

3. Transform the variables  ,  ,   and   to the variables  ,  ,   and 
using the transformation described in Step 4 of the previous section. 



 
 

. 
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4. Compute the Pearson correlation between and   and denote it as . Similarly, compute 

the Pearson correlation between   and  and denote it as . 

5. If the desired correlation or then stop and set if or set 
 if Otherwise go to Step 6. 

6. Simulate N samples of standard bivariate normal variables   and   with a Pearson 
correlation of    . As in Steps 3 and 4, transform  and 

  to and  and compute the Pearson correlation between   and , which 
will be denoted . 

7. If                          or  where ε is the tolerance level (set to 0.01), then 
stop and set .  Otherwise go to Step 8. 

8. If , set , else set and return to Step 6. 
 

Inverse CDF for binomial, Poisson and negative binomial distributions 

Use of the NORTA method for generating correlated data requires the inverse cumulative 
distribution function for each desired marginal distribution. This section describes the method for 
computing the inverse CDF for the binomial, Poisson and negative binomial distributions. Two 
parameterizations of the negative binomial distribution are supported. The first parameterization 
describes the distribution of the number of trials before the    th success, whereas the second 
parameterization describes the distribution of the number of failures before the   th success. 

 
The choice of method for determining the CDF depends on the mean of the distribution. If 

, where Threshold is set to 20, the following approximate normal method will be 
used to compute the inverse CDF for the binomial distribution, the Poisson distribution and the 
second parameterization of the negative binomial distribution. 

 

 
For the first parameterization of the negative binomial distribution, the formula is as follows: 

 

 
The parameters and σ are given by: 
 Binomial distribution. and σ , where N is the number of trials and P 

is the probability of success. 
 Poisson distribution. μ λ and σ , where λ is the rate parameter. 

 Negative  binomial  distribution  (both parameterizations).  μ and σ , where is 
the specified number of successes and is the probability of success. 

 
The notation  used above denotes the integer part of  .  

If then the bisection method will be used. 
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Suppose that x and z are the values of X and Z respectively, where X is a random variable with a 
binomial, Poisson or negative binomial distribution, and Z is a random variable with the standard 



 

 

. 

normal distribution.  The objective function to be used in the bisection search method is 
as follows: 
 Binomial distribution.                                                                                                      Φ  
 Poisson distribution.       Φ z 

 Negative binomial distribution (second parameterization).   
 

where and are random variables with the beta distribution and gamma 
distribution, respectively, with parameters and . 

 
The bisection method is as follows: 

1. If        then stop and set .  Otherwise go to step 2 to determine two values 
and such that 

2. If        then let and . If then let  μ and , 
where is the minimum integer such that  . 

 
 
 
 
 
 

Note: The inverse CDF for the first parameterization of the negative binomial distribution is 
determined by taking the inverse CDF for the second parameterization and adding the distribution 
parameter  , where is the specified number of successes. 

 
Sensitivity measures 

Sensitivity measures provide information on the relationship between the values of a target and 
the values of the simulated inputs that give rise to the target. The following sensitivity measures 
are supported (and rendered as Tornado charts in the output of the simulation): 
 Correlation. Measures the Pearson correlation between a target and a simulated input. 
 One-at-a-time measure. Measures the effect on the target of modulating a simulated input by 

plus or minus a specified number of standard deviations of the input. 
 Contribution to variance. Measures the contribution to the variance of the target from a 

simulated input. 
 

Notation 

The following notation is used throughout this section unless otherwise stated: 
Table 33-9 
Notation 
Notation Description 

Number of records of simulated data 
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Correlation measure 

 
An matrix of values of the inputs to the predictive  model. The 
rows  ;  contain the values of the inputs 
for each simulated record, excluding the target value. The columns  

                            ;  represent the set of inputs. 
An vector of values of the target variable, consisting of 

A known model which can generate from 

The value of a sensitivity measure for the input 

 

The correlation measure is the Pearson correlation coefficient between the values of a target 
and one of its simulated predictors. The correlation measure is not supported for targets with a 
nominal measurement level or for simulated inputs with a categorical distribution. 

 
One-at-a-time measure 

The one-at-a-time measure is the change in the target due to modulating a simulated input by plus 
or minus a specified number of standard deviations of the distribution associated with the input. 
The one-at-a-time measure is not supported for targets with an ordinal or nominal measurement 
level, or for simulated inputs with any of the following distributions: categorical, Bernoulli, 
binomial, Poisson, or negative binomial. 

 
The procedure is to modulate the values of a simulated input by the specified number of standard 
deviations and recompute the target with the modulated values, without changing the values of 
the other inputs. The mean change in the target is then taken to be the value of the one-at-a-time 
sensitivity measure for that input. 

 
For each simulated input for which the one-at-a-time measure is supported: 

1. Define the temporary data matrix 

2. Add the specified number of standard deviations of the input’s distribution to each value of 
in  . 

3. Calculate F 

4. Calculate 

5. Repeat Step 2, but now subtracting the specified number of standard deviations from each value of 
. Continue with Steps 3 and 4 to obtain the value of in this case. 

 
Contribution to variance measure 

The contribution to variance measure uses the method of Sobol (2001) to calculate the total 
contribution to the variance of a target due to a simulated input. The total contribution to variance, 
as defined by Sobol, automatically includes interaction effects between the input of interest 
and the other inputs in the predictive model. 
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The contribution to variance measure is not supported for targets with an ordinal or nominal 
measurement level, or for simulated inputs with any of the following distributions: categorical, 
Bernoulli, binomial, Poisson, or negative binomial. 

 
Let be an additional set of simulated data, in the same form as and with the same number 
of simulated records. 

 
Define the following: 

 
 
 
 
 
 
 
 
 
 

For each simulated input for which the contribution to variance measure is supported, calculate 
 
 
 
 
 

where: 
     denotes the set of all inputs excluding 
                 is a derived data matrix where the column associated with is taken from 

and the remaining columns (for all inputs excluding ) are taken from 
 

The total contribution to variance from is then given by 
 

 

Note: When interaction terms are present, the sum of the over all simulated inputs for which 
the contribution of variance is supported, may be greater than 1. 
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Support Vector Machine (SVM) 
Algorithms 

Introduction to Support Vector Machine Algorithms 

The Support Vector Machine (SVM) is a supervised learning method that generates input-output 
mapping functions from a set of labeled training data. The mapping function can be either a 
classification function or a regression function. For classification, nonlinear kernel functions are 
often used to transformed input data to a high-dimensional feature space in which the input data 
become more separable compared to the original input space. Maximum-margin hyperplanes are 
then created. The produced model depends on only a subset of the training data near the class 
boundaries. 

 
Similarly, the model produced by Support Vector Regression ignores any training data that is 
sufficiently close to the model prediction. (Support Vectors can appear only on the error tube 
boundary or outside the tube.) 

 

SVM Algorithm Notation 
 

 
 
 
 
 
 
 
 
 
 
 
SVM Types 

This section describes the types of SVM available, based on the descriptions in the LIBSVM 
technical report(Chang and Lin, 2003). is the kernel function selected by the user. For 
more information, see the topic “SMO Algorithm.” 
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C-S upport Vector Classification (C-SVC) 

Given training vectors , i = 1, ..., l, in two classes,  and a vector   such that 
, C-SVC solves the following dual problem: 

 

 
such that and        , where 

 

 
and  is an matrix, 

 

The decision function is 
 

 

where b is a constant term. 
 

ε-Support Vector Regression (ε-SVR) 

In regression models, we estimate the functional dependence of the dependent (target) variable 
on an n-dimensional input vector x.  Thus, unlike classification problems, we deal with 

real-valued functions and model an   mapping. Given a set of data , 
such that is an input and   is a target output, the dual form of ε-Support Vector 
Regression is 

 

 
such that and for , and 

 
 

 
 

 
 

 

 
 

where , , and  is an matrix,  

The approximate function is 
 

 
      

 
 

where b is a constant term. 



 
 

 
Primary Calculations 

Support Vector Machine (SVM) Algorithms 

 

The primary calculations for building SVM models are described below. 
 
 
Solving Quadratic Problems 

 
In order to find the decision function or the approximate function, the quadratic problem must be 
solved. After the solution is obtained, we can get different coefficients : 
 if , the corresponding training sample is a free support vector. 
 if , the corresponding training sample is a boundary support vector. 
 if , the corresponding training sample is a non-support vector, which doesn’t affect the 

classification or regression result. 
 

Free support vectors and boundary support vectors are called support vectors. 
 

This document adapts the decomposition method to solve the quadratic problem using second 
order information (Fan, Chen, and Lin, 2005). In order to solve all the SVM’s in a unified 
framework, we’ll introduce a general form for C-SVC and ε-SVR. 

 
For ε-SVR, we can rewrite the dual form as 

 
 

 
 
 

such that                  and  for i = 1, ...  , l, where y is a vector with 
for i = 1, ..., l and for i = l + 1, ...  , 2l. 

 
Given this, the general form is 

 

 
 

such that for i = 1, ...  , l, and   
 

 α in W(α) 
 

 
 

 
  

C-SVC 
 

   
 

 

 
 

    
 

ε-SVR 
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The Constant in the Decision Function 
 

After the quadratic programming problem is solved, we get the support vector coefficients in the 
decision function. We need to compute the constant term in the decision function as well. We 
introduce two accessory variables r1 and r2: 

E   For yi = 1: 

If , 
 

 

Otherwise, 
 

E   For yi = −1: 

If , 
 

 

Otherwise, 
 

 
After r1 and r2 are obtained, calculate 

 

Variable Scale 

For continuous input variables, linearly scale each attribute to [-1, 1] or [0, 1]: 
 

 
For categorical input fields, if there are m categories, then use (0, 1, 2, ..., m) to represent the 
categories and scale the values as for continuous input variables. 

 
Model Building Algorithm 

In this section, we provide a fast algorithm to train the SVM. A modified sequential minimal 
optimization (SMO) algorithm is provided for C-SVC binary and ε-SVR models. A fast SVM 
training algorithm based on divide-and-conquer is used for all SVMs. 
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SMO Algorithm 

Due to the density of the kernel matrix, traditional optimization methods cannot be directly applied 
to solve for the vector   . Unlike most optimization methods which update the whole vector in 
each step of an iterative process, the decomposition method modifies a subset of per iteration. 
This subset, denoted as the working set B, leads to a small sub-problem to be minimized in each 
iteration. Sequential minimal optimization (SMO) is an extreme example of this approach which 
restricts B to have only two elements. In each iteration no optimization algorithm is needed to 
solve a simple two-variable problem. The key step of SML is the working set selection method, 
which determines the speed of convergence for the algorithm. 

 
Kernel functions 

The algorithm supports four kernel functions: 

 
 

Base Working Set Selection Algorithm 

The base selection algorithm derives the selection set B = {i, j} based on τ, C, the target vector 
y, and the selected kernel function K(xi, xj). 

Let 

 

and 
 
 

 
 

if 
otherwise 

 

where τ is a small positive number. 
 

Select 
 

 
where 



 

Support Vector Machine (SVM) Algorithms 

 
 

 
 

                                                           or 
 

                                                     or 
 

Return B = {i, j}, where . 
 

Shrink Algorithm 

In order to speed up the convergence of the algorithm near the end of the iterative process, the 
decomposition method identifies a possible set A containing all final free support vectors. Hence, 
instead of solving the whole problem, the decomposition method works on a smaller problem: 

 

 
s. t.  

 

 
where is the set of shrunken variables. 

 
Afer every min(l, 1000) iterations, we try to shrink some variables. During the iterative process 

. Until is satisfied, we can shrink variables in the 
following set: 
 

 
  

Thus the set A of activated variables is dynamically reduced every min(l, 1000) iterations. 

E   To account for the tendency of the shrinking method to be too aggressive, we reconstruct the 
gradient when the tolerance reaches 

 

 
After reconstructing the gradient, we restore some of the previously shrunk variables based on 
the relationship 
 

 
 

Gradient Reconstruction 

To decrease the cost of reconstruction of the gradient , during the iterations we always keep 
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Then for the gradient  
 
 

  

 

 
 

   
  

 
 

and for the gradient                       A we have 
 

 
 

where t and s are the working set indices. 
 

Unbalanced Data Strategy 
 

For some classification problems, the algorithm uses different parameters in the SVM formulation. 
The differences only affect the procedure for updating . Different conditions are handled 
as follows: 

 
For : 

 
Conditions Update parameters 

 

   

 
 
 
 
 
 
 
 

 and  
 

 
  

 

 
 

 
 

  

 and  
 

 

  
 

   
 

  

and 
 

 

  

 
 

 

  

     
     and 

 

 
  

 

 
 

 

  
 

 
  

 
 
 
 
 
 
 
 
 

  
    and  

 

 
  

 

   
 

  

    
      and 

 

 

  

 
    

          
           and  

 

 
   

 

  

 

  

 
   and 
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SMO Decomposition 
 

The following steps are used in the SMO decomposition: 
 

1. Find as the initial feasible solution, and set k = 1. 

2. If is a stationary solution, stop. 
 

A feasible solution is stationary if , where 
 

 

 

                                                           or 
 

                                                             or 
 

Find a two-element working set using the working set selection algorithm. (For more 
information, see the topic “Base Working Set Selection Algorithm.”) 

3. If the shrink algorithm is being used to speed up convergence, apply the algorithm here. (For more 
information, see the topic “Shrink Algorithm.”) 

4. Derive as follows: 

E  If  , or if solving a classification problem, use the unbalanced data strategy. (For more 
information, see the topic “Unbalanced Data Strategy.”) 

 
E  If , solve the subproblem 

                                                                                            cont 

Subject to the constraints 
 

 
and let 

 

 
E   Otherwise, solve the subproblem 
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subject to the same constraints described above, where τ is a small positive number and 

, and let 
 

 
Finally, set   to be the optimal point of the subproblem. 

Set       , set , and go to step 2. 

Fast SVM Training 
 

For binary SVM models, the dense kernel matrix cannot be stored in memory when the number of 
training samples l is large. Rather than using the standard decomposition algorithm which depends 
on a cache strategy to compute the kernel matrix, a divide-and-conquer approach is used, dividing 
the original problem into a set of small subproblems that can be solved by the SMO algorithm 
(Dong, Suen, and Krzyzak, 2005). For each subproblem, the kernel matrix can be stored in a 
kernel cache defined as part of contiguous memory. The size of the kernel matrix should be large 
enough to hold all the support vectors in the whole training set and small enough to satisfy the 
memory constraint. Since the kernel matrix for the subproblem is completely cached, each element 
of the kernel matrix needs to be evaluated only once and must be calculated using a fast method. 

 
There are two steps in the fast SVM training algorithm: 

 
E    Parallel optimization 

E    Fast sequential optimization 
 

These steps are described in more detail below. 
 

Parallel Optimization 
 

Since the kernel matrix Q is symmetric and semi-positive definite, its block diagonal matrices are 
semi-positive definite, and can be written as 

 
 

. . . 
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where matrices are block diagonal.  Then we obtain k 

optimization subproblems as described in “Base Working Set Selection Algorithm.” All the 
subproblems are optimized using the SMO decomposition algorithm in parallel. After this parallel 
optimization, most non-support vectors will be removed from the training set. Then a new 
training set can be obtained by collecting support vectors from the sub-problems. Although the 
size of the new training set is much smaller than that of the original one, the memory may not be 
large enough to store the kernel matrix, especially when dealing with a large dataset. Therefore a 
fast sequential optimization technique is used. 

 
Fast Sequential Optimization 

The technique for fast sequential optimization works by iteratively optimizing subsets of the 
problem.  Initially, the training set is shuffled, all are set to zero, and a subset 
Sub         is selected from the training set S. The size of the subset d is set (       ). 

 
Optimization proceeds as follows: 

E  Apply the SMO algorithm to optimize a subproblem in Sub with kernel caching, and update  and 
the kernel matrix. For more information, see the topic “SMO Algorithm.” 

E   Select a new subset using the queue subset method. The size of the subset is chosen to be large 
enough to contain all support vectors in the training set but small enough to satisfy the memory 
constraint. For more information, see the topic “Queue Method for Subset Selection.”  

E   Return to step 1 unless any of the following stopping conditions is true: 
                       and (Number of learned samples) > l 
             

 Number of learned samples 
 

where is the change in number of support vectors between two successive subsets, l 
is the size of the new training set, and T (> 1.0) is a user-defined maximum number of loops 
through the data allowed. 

 
Queue Method for Subset Selection 

The queue method selects subsets of the training set that can be trained by fast sequential 
optimization. For more information, see the topic “Fast Sequential Optimization.” 

 
The method is initialized by setting the subset to contain the first d records in the training data and 
the queue QS to contain all the remaining records, and computing the kernel matrix for the subset. 

Once initialized, subset selection proceeds as follows: each non-support vector in the subset 
is added to the end of the queue, and replaced in the subset with the record at the front of  the 
queue (which is consequently removed from the queue). When all non-support vectors have been 
replaced, the subset is returned for optimization. On the next iteration, the same process is applied, 
starting with the subset and the queue in the same state they were in at the end of the last iteration. 
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Blank Handling 
 

All records with missing values for any input or output field are excluded from the estimation of 
the model. 

 
Model Nugget/Scoring 

The SVM Model Nugget generates predictions and predicted probabilities for output classes. 
Predictions are based on the category with the highest predicted probability for each record. 

 
To choose a predicted value, posterior probabilities are approximated using a sigmoid 
function(Platt, 2000).  The approximation used is 

 
. 

 
 

The optimal parameters A and B are the estimated by solving the following 
regularized maximum likelihood problem with a set of labeled examples 

, and N+ is the number of positive examples 
and N− is the number of negative examples: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Blank Handling 
 

Records with missing values for any input field cannot be scored and are assigned a predicted 
value and probability value(s) of $null$. 



 

 



 

Time  Series Algorithms 
The Time Series node builds univariate exponential smoothing, ARIMA (Autoregressive 
Integrated Moving Average), and transfer function (TF) models for time series, and produces 
forecasts. The procedure includes an Expert Modeler that identifies and estimates an appropriate 
model for each dependent variable series. Alternatively, you can specify a custom model. 

 
This algorithm is designed with help from professor Ruey Tsay at The University of Chicago. 

 

Notation 

The following notation is used throughout this chapter unless otherwise stated: 

Yt (t=1, 2, ..., n) Univariate time series under investigation. 
n Total number of observations. 

Model-estimated k-step ahead forecast at time t for series Y. 
 

S The seasonal length. 
 
 
Models 

The Time Series node estimates exponential smoothing models and ARIMA/TF models. 
 

Exponential Smoothing Models 

The following notation is specific to exponential smoothing models: 

Level smoothing weight 

Trend smoothing weight 

Damped trend smoothing weight 

Season smoothing weight 

 
 

Simple Exponential Smoothing 
 

Simple exponential smoothing has a single level parameter and can be described by the following 
equations: 

 

 

 
It is functionally equivalent to an ARIMA(0,1,1) process. 
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Brown’s Exponential Smoothing 

 
Brown’s exponential smoothing has level and trend parameters and can be described by the 
following equations: 

 

 

 

 
It is functionally equivalent to an ARIMA(0,2,2) with restriction among MA parameters. 

 

Holt’s Exponential Smoothing 
 

Holt’s exponential smoothing has level and trend parameters and can be described by the 
following equations: 

 

 

 

 
It is functionally equivalent to an ARIMA(0,2,2). 

 

Damped-Trend Exponential Smoothing 
 

Damped-Trend exponential smoothing has level and damped trend parameters and can be 
described by the following equations: 

 

 

 

 
It is functionally equivalent to an ARIMA(1,1,2). 
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Simple Seasonal Exponential Smoothing 

Simple seasonal exponential smoothing has level and season parameters and can be described 
by the following equations: 

 

 

 

It is functionally equivalent to an ARIMA(0,1,(1,s,s+1))(0,1,0) with restrictions among MA 
parameters. 

 
Winters’ Additive Exponential Smoothing 

Winters’ additive exponential smoothing has level, trend, and season parameters and can be 
described by the following equations: 

 

 

 

 

It is functionally equivalent to an ARIMA(0,1,s+1)(0,1,0) with restrictions among MA parameters. 
 

Winters’ Multiplicative Exponential Smoothing 

Winters’ multiplicative exponential smoothing has level, trend and season parameters and can be 
described by the following equations: 

 

 

 

 

There is no equivalent ARIMA model. 
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Estimation and Forecasting of Exponential Smoothing 
 

The sum of squares of the one-step ahead prediction error, , is minimized 
to optimize the smoothing weights. 

 
Initialization of Exponential Smoothing 

Let L denote the level, T the trend and, S, a vector of length s, denote the seasonal states. The 
initial smoothing states are made by back-casting from t=n to t=0. Initialization for back-casting is 
described here. 

 
For all the models . 

 
For all non-seasonal models with trend, T is the negative of the slope of the line (with intercept) 
fitted to the data with time as a regressor. 

 
For the simple seasonal model, the elements of S are seasonal averages minus the sample mean; 
for example, for monthly data the element corresponding to January will be average of all January 
values in the sample minus the sample mean. 

 
For the additive Winters’ model, fit   to the data where t is time  and 

       are seasonal dummies. Note that the model does not have an intercept. Then , and 
. 

 
For the multiplicative Winters’ model, fit a separate line (with intercept) for each season with time 
as a regressor. Suppose is the vector of intercepts and  is the vector of slopes (these vectors 
will be of length s). Then  and . 

 
The initial smoothing states are: 

 

 

 

 
ARIMA and Transfer Function Models 

The following notation is specific to ARIMA/TF models: 

at (t = 1, 2, ... , n) White noise series normally distributed with mean zero and variance 
p Order of the non-seasonal autoregressive part of the model 
q Order of the non-seasonal moving average part of the model 
d Order of the non-seasonal differencing 
P Order of the seasonal autoregressive part of the model 
Q Order of the seasonal moving-average part of the model 
D Order of the seasonal differencing 
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s Seasonality or period of the model 
AR polynomial of B of order p, 

MA polynomial of B of order q, 

Seasonal AR polynomial of BS of order P, 
 

      
Seasonal MA polynomial of BS of order Q, 

  
    

   
Differencing operator  

B Backward shift operator with and    
                                       Prediction variance of 

                                       Prediction variance of the noise forecasts 
 
 

Transfer function (TF) models form a very large class of models, which include univariate ARIMA 
models as a special case. Suppose  is the dependent series and, optionally, are 
to be used as predictor series in this model. A TF model describing the relationship between the 
dependent and predictor series has the following form: 

 

 

 
The univariate ARIMA model simply drops the predictors from the TF model; thus, it has the 
following form: 

 

 
The main features of this model are: 
 An initial transformation of the dependent and predictor series, f and fi. This transformation 

is optional and is applicable only when the dependent series values are positive. Allowed 
transformations are log and square root.  These transformations are sometimes  called 
variance-stabilizing transformations. 

 A constant term   . 
 The unobserved i.i.d., zero mean, Gaussian error process with variance . 
 The moving average lag polynomial MA= and the auto-regressive lag 

polynomial AR= . 
 The difference/lag operators and . 
 A delay term,  , where   is the order of the delay 
 Predictors are assumed given. Their numerator and denominator lag polynomials are 

of the form:   
 
 The “noise” series 
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is assumed to be a mean zero, stationary ARMA process. 
 

Interventions and Events 
 

Interventions and events are handled like any other predictor; typically they are coded as 0/1 
variables, but note that a given intervention variable’s exact effect upon the model is determined 
by the transfer function in front of it. 

 
Estimation and Forecasting of ARIMA/TF 

There are two forecasting algorithms available: Conditional Least Squares (CLS) and Exact Least 
Squares (ELS) or Unconditional Least Squares forecasting (ULS). These two algorithms differ in 
only one aspect: they forecast the noise process differently. The general steps in the forecasting 
computations are as follows: 

1. Computation of noise process  through the historical period. 

2. Forecasting the noise process  up to the forecast horizon. This is one step ahead forecasting 
during the historical period and multi-step ahead forecasting after that. The differences in CLS 
and ELS forecasting methodologies surface in this step. The prediction variances of noise 
forecasts are also computed in this step. 

3. Final forecasts are obtained by first adding back to the noise forecasts the contributions of the 
constant term and the transfer function inputs and then integrating and back-transforming the 
result. The prediction variances of noise forecasts also may have to be processed to obtain the 
final prediction variances. 

 
Let   and   be the k-step forecast and forecast variance, respectively. 

 
Conditional Least Squares (CLS) Method 

                                 assuming         for t<0. 
 

where   are coefficients of the power series expansion of  

Minimize . 

Missing values are imputed with forecast values of . 
 

Maximum Likelihood (ML) Method (Brockwell and Davis, 1991) 
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Maximize likelihood of ; that is, 

 

 

where , and        is the one-step ahead forecast variance. 

When missing values are present, a Kalman filter is used to calculate  . 

Error Variance 
 

in both methods. Here n is the number of non-zero residuals and k is the number of parameters 
(excluding error variance). 

 
Initialization of ARIMA/TF 

A slightly modified Levenberg-Marquardt algorithm is used to optimize the objective function. 
The modification takes into account the “admissibility” constraints on the parameters. The 
admissibility constraint requires that the roots of AR and MA polynomials be outside the unit circle 
and the sum of denominator polynomial parameters be non-zero for each predictor variable. The 
minimization algorithm requires a starting value to begin its iterative search. All the numerator and 
denominator polynomial parameters are initialized to zero except the coefficient of the 0th power 
in the numerator polynomial, which is initialized to the corresponding regression coefficient. 

 
The ARMA parameters are initialized as follows: 

 
Assume that the series  follows an ARMA(p,q)(P,Q) model with mean 0; that is: 

 

In the following and represent the lth lag autocovariance and  autocorrelation of 
 respectively, and   and   represent their estimates. 

 
Non-Seasonal AR Parameters 

 
For AR parameter initial values, the estimated method is the same as that in appendix A6.2 of 
(Box, Jenkins, and Reinsel, 1994). Denote the estimates as . 

 
Non-Seasonal MA Parameters 

 
Let 
 

 
 

The cross covariance 
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Assuming that an AR(p+q) can approximate , it follows that: 
 

 

The AR parameters of this model are estimated as above and are denoted as . 

Thus   can be estimated by 

  
 

    
 

   
 

 

   

And the error variance   is approximated by 
 

with           . 
 

Then the initial MA parameters are approximated by                    and estimated by 
 

 

So  can be calculated by , and . In this procedure, only are used and all 
other parameters are set to 0. 

 
Seasonal parameters 

 
For seasonal AR and MA components, the autocorrelations at the seasonal lags in the above 
equations are used. 

 
Calculation of the Transfer Function 

 
The transfer function needs to be calculated for each predictor series. For the predictor series , 
let the transfer function be: 
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It can be calculated as follows: 
 

1. Calculate 
 

2. Recursively calculate 
 

 

where    and    are the coefficients of   in the polynomials     and 
  respectively. Likewise, the summation limits  and  are the maximum degree of   in 

the polynomials   and   respectively. 
 

All missing in the first term of  are taken to be  and missing  in the second term 
are taken to be  , where     is the first non-missing measurement of .  is given by 

 

where   and   are the  and  polynomials evaluated at . 
 

Diagnostic Statistics 
 

ARIMA/TF diagnostic statistics are based on residuals of the noise process, . 
 

Ljung-Box Statistic 
 

 

where is the kth lag ACF of residual. 
 

Q(K) is approximately distributed as                 , where m is the number of parameters other than 
the constant term and predictor related-parameters. 

 

Outlier Detection in Time Series Analysis 

The observed series may be contaminated by so-called outliers. These outliers may change the 
mean level of the uncontaminated series. The purpose of outlier detection is to find if there are 
outliers and what are their locations, types, and magnitudes. 

 
The Time Series node considers seven types of outliers. They are additive outliers (AO), 
innovational outliers (IO), level shift (LS), temporary (or transient) change (TC), seasonal additive 
(SA), local trend (LT), and AO patch (AOP). 
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Notation  
 
The following notation is specific to outlier detection: 
 
U(t) or The uncontaminated series, outlier free. It is assumed to be a univariate ARIMA or 

transfer function model. 
 

Definitions of Outliers 

Types of outliers are defined separately here. In practice any combination of these types can 
occur in the series under study. 

 
AO (Additive Outliers) 

Assuming that an AO outlier occurs at time t=T, the observed series can be represented as 
 

 

where                           is a pulse function and w is the deviation from the true U(T) caused 
by the outlier. 

 
IO (Innovational Outliers) 

Assuming that an IO outlier occurs at time t=T, then 
 

 
LS (Level Shift) 

Assuming that a LS outlier occurs at time t=T, then 
 

 
where                                      is a step function. 

 

TC (Temporary/Transient Change) 

Assuming that a TC outlier occurs at time t=T, then 
 

where , is a damping function. 
 

SA (Seasonal Additive) 

Assuming that a SA outlier occurs at time t=T, then 
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where                                                              is a step seasonal pulse function. 
 

 
LT (Local Trend) 

 
Assuming that a LT outlier occurs at time t=T, then 

 

 

where is a local trend function. 
 

 
AOP (AO patch) 

 
An AO patch is a group of two or more consecutive AO outliers. An AO patch can be described 
by its starting time and length. Assuming that there is a patch of AO outliers of length k at time 
t=T, the observed series can be represented as 

 

 

Due to a masking effect, a patch of AO outliers is very difficult to detect when searching for 
outliers one by one. This is why the AO patch is considered as a separate type from individual 
AO. For type AO patch, the procedure searches for the whole patch together. 

 
Summary 

 
For an outlier of type O at time t=T (except AO patch): 

 

where 

 
 

with .  A general model for incorporating outliers can thus be written as 
follows: 

 

 

where M is the number of outliers. 



 
 

Var    
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Estimating the Effects of an Outlier 

Suppose that the model and the model parameters are known. Also suppose that the type and 
location of an outlier are known. Estimation of the magnitude of the outlier and test statistics 
are as follows. 

The results in this section are only used in the intermediate steps of outlier detection procedure. 
The final estimates of outliers are from the model incorporating all the outliers in which all 
parameters are jointly estimated. 

 
Non-AO Patch Deterministic Outliers 

 
For a deterministic outlier of any type at time T (except AO patch), let be the residual and 

, so: 
 

 
From residuals e(t), the parameters for outliers at time T are estimated by simple linear regression 
of e(t) on x(t). 

 
For j = 1 (AO), 2 (IO), 3 (LS), 4 (TC), 5 (SA), 6 (LT), define test statistics: 

(T) 

Under the null hypothesis of no outlier, (T) is distributed as N(0,1) assuming the model and 
model parameters are known. 

 

AO Patch Outliers 
 

For an AO patch of length k starting at time T, let  for i = 1 to k, then 
 

Multiple linear regression is used to fit this model. Test statistics are defined as: 
 

 
Assuming the model and model parameters are known,   has a Chi-square distribution with k 
degrees of freedom under the null hypothesis                               . 

 
Detection of Outliers 

The following flow chart demonstrates how automatic outlier detection works. Let M be the total 
number of outliers and Nadj be the number of times the series is adjusted for outliers. At the 
beginning of the procedure, M = 0 and Nadj = 0. 



 

Time Series Algorithms 

 
 

 
 

Figure 35-1 

 
 

Goodness-of-Fit  Statistics 

Goodness-of-fit statistics are based on the original series Y(t). Let k= number of parameters in the 
model, n = number of non-missing residuals. 
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Mean Squared Error 

 

 

Mean Absolute Percent Error 
 

Maximum Absolute Percent Error 
 

Mean Absolute Error 
 

Maximum Absolute Error 
 

Normalized Bayesian Information Criterion 

Normalized 
 

R-Squared 
 

 

Stationary R-Squared 

A similar statistic was used by Harvey (Harvey, 1989). 
 

 

where 
 

The sum is over the terms in which both and are not missing. 
 

 is the simple mean model for the differenced transformed series, which is equivalent to the 
univariate baseline model ARIMA(0,d,0)(0,D,0). 
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For the exponential smoothing models currently under consideration, use the differencing orders 
(corresponding to their equivalent ARIMA models if there is one). 

 
 
 
 
 

Note: Both the stationary and usual R-squared can be negative with range . A negative 
R-squared value means that the model under consideration is worse than the baseline model. Zero 
R-squared means that the model under consideration is as good or bad as the baseline model. 
Positive R-squared means that the model under consideration is better than the baseline model. 

 
Expert Modeling 

 
Univariate Series 

Users can let the Expert Modeler select a model for them from: 
 All models (default). 
 Exponential smoothing models only. 
 ARIMA models only. 

 

Exponential Smoothing Expert Model 

Figure 35-2 
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ARIMA Expert Model 

Figure 35-3 

 
 

Note: If 10<n<3s, set s=1 to build a non-seasonal model. 
 
 

All Models Expert Model 

 
In this case, the Exponential Smoothing and ARIMA expert models are computed, and the model 
with the smaller normalized BIC is chosen. 

Note: For short series, n<max(20,3s), use Exponential Smoothing Expert Model. 
 
 
Multivariate Series 

 
In the multivariate situation, users can let the Expert Modeler select a model for them from: 
 All models (default). Note that if the multivariate expert ARIMA model drops all the 

predictors and ends up with a univariate expert ARIMA model, this univariate expert ARIMA 
model will be compared with expert exponential smoothing models as before and the Expert 
Modeler will decide which is the best overall model. 

 ARIMA models only. 
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Transfer Function Expert Model 

Figure 35-4 

 
Note: For short series, n<max(20,3s), fit a univariate expert model. 
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Blank Handling 

Generally, any missing values in the series data will be imputed in the Time Intervals node used 
to prepare the data for time series modeling.  If blanks remain in the series data submitted to  
the modeling node, ARIMA models will attempt to impute values, as described in “Estimation 
and Forecasting of ARIMA/TF.” 

Missing values for predictors will result in the field containing the missing values to be 
excluded from the time series model. 

 
Generated Model/Scoring 

Predictions or forecasts for Time Series models are intricately related to the modeling process 
itself. Forecasting computations are described with the algorithm for the corresponding model 
type. For information on forecasting in exponential smoothing models, see “Exponential 
Smoothing Models.” For information on forecasting in ARIMA models, see “Estimation and 
Forecasting of ARIMA/TF.” 

 

Blank Handling 

Blank handling for the generated model is very similar to that for the modeling node. 
If any predictor has missing values within the forecast period, the procedure issues a warning 

and forecasts as far as it can. 
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TwoStep  Cluster Algorithms 

Overview 

The TwoStep cluster method is a scalable cluster analysis algorithm designed to handle very large 
data sets. It can handle both continuous and categorical variables or attributes. It requires only one 
data pass. It has two steps 1) pre-cluster the cases (or records) into many small sub-clusters; 2) 
cluster the sub-clusters resulting from pre-cluster step into the desired number of clusters. It can 
also automatically select the number of clusters. 

 

Model Parameters 

As the name implies, the TwoStep clustering algorithm involves two steps: Pre-clustering and 
Clustering. 

 

Pre-cluster 

The pre-cluster step uses a sequential clustering approach. It scans the data records one by one 
and decides if the current record should be merged with the previously formed clusters or starts a 
new cluster based on the distance criterion (described below). 

The procedure is implemented by constructing a modified cluster feature (CF) tree. The CF 
tree consists of levels of nodes, and each node contains a number of entries. A leaf entry (an entry 
in the leaf node) represents a final sub-cluster. The non-leaf nodes and their entries are used to 
guide a new record quickly into a correct leaf node. Each entry is characterized by its CF that 
consists of the entry’s number of records, mean and variance of each range field, and counts for 
each category of each symbolic field. For each successive record, starting from the root node, it is 
recursively guided by the closest entry in the node to find the closest child node, and descends 
along the CF tree.  Upon reaching a leaf node, it finds the closest leaf entry in the leaf node.  If 
the record is within a threshold distance of the closest leaf entry, it is absorbed into the leaf entry 
and the CF of that leaf entry is updated. Otherwise it starts its own leaf entry in the leaf node. If 
there is no space in the leaf node to create a new leaf entry, the leaf node is split into two. The 
entries in the original leaf node are divided into two groups using the farthest pair as seeds, and 
redistributing the remaining entries based on the closeness criterion. 

If the CF tree grows beyond allowed maximum size, the CF tree is rebuilt based on the existing 
CF tree by increasing the threshold distance criterion.  The rebuilt CF tree is smaller and hence 
has space for new input records. This process continues until a complete data pass is finished. 
For details of CF tree construction, see the BIRCH algorithm (Zhang, Ramakrishnon, and Livny, 
1996). 

All records falling in the same entry can be collectively represented by the entry’s CF. When a 
new record is added to an entry, the new CF can be computed from this new record and the old CF 
without knowing the individual records in the entry. These properties of CF make it possible to 
maintain only the entry CFs, rather than the sets of individual records. Hence the CF-tree is much 
smaller than the original data and can be stored in memory more efficiently. 

Note that the structure of the constructed CF tree may depend on the input order of the cases or 
records. To minimize the order effect, randomly order the records before building the model. 
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Cluster 
 

The cluster step takes sub-clusters (non-outlier sub-clusters if outlier handling is used) resulting 
from the pre-cluster step as input and then groups them into the desired number of clusters. Since 
the number of sub-clusters is much less than the number of original records, traditional clustering 
methods can be used effectively. TwoStep uses an agglomerative hierarchical clustering method, 
because it works well with the auto-cluster method (see the section on auto-clustering below). 

Hierarchical clustering refers to a process by which clusters are recursively merged, until 
at the end of the process only one cluster remains containing all records. The process starts  by 
defining a starting cluster for each of the sub-clusters produced in the pre-cluster step. (For more 
information, see the topic “Pre-cluster.”) All clusters are then compared, and the pair  of clusters 
with the smallest distance between them is selected and merged into a single cluster. After 
merging, the new set of clusters is compared, the closest pair is merged, and the process repeats 
until all clusters have been merged. (If you are familiar with the way a decision tree is built, this 
is a similar process, except in reverse.) Because the clusters are merged recursively in this way, it 
is easy to compare solutions with different numbers of clusters. To get a five-cluster solution, 
simply stop merging when there are five clusters left; to get a four-cluster solution, take the five-
cluster solution and perform one more merge operation, and so on. 

 
Distance Measure 

The TwoStep clustering method uses a log-likelihood distance measure, to accommodate both 
symbolic and range fields. It is a probability-based distance. The distance between two clusters 
is related to the decrease in log-likelihood as they are combined into one cluster. In calculating 
log-likelihood, normal distributions for range fields and multinomial distributions for symbolic 
fields are assumed. It is also assumes that the fields are independent of each other, and so are 
the records.  The distance between clusters i and j is defined as 

 

 
where 

 

 
and 

 

 

In these expressions, 
 

KA is the number of range type input fields, 

KB is the number of symbolic type input fields, 
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Lk is the number of categories for the kth symbolic field, 

Nv is the number of records in cluster v, 

Nvkl is the number of records in cluster v which belongs to the lth category of the kth symbolic 
field, 

 

  is the estimated variance of the kth continuous variable for all records, 
 

is the estimated variance of the kth continuous variable for records in the vth cluster, and 
 

< i, j > is an index representing the cluster formed by combining clusters i and j. 
 

If  is ignored in the expression for ξv, the distance between clusters i and j would be exactly the 
decrease in log-likelihood when the two clusters are combined. The  term is added to solve the 
problem caused by , which would result in the natural logarithm being undefined. (This 
would occur, for example, when a cluster has only one case.) 

 

Number of Clusters (auto-clustering) 

TwoStep can use the hierarchical clustering method in the second step to assess multiple cluster 
solutions and automatically determine the optimal number of clusters for the input data. A 
characteristic of hierarchical clustering is that it produces a sequence of partitions in one run: 1, 2, 
3, … clusters. In contrast, a k-means algorithm would need to run multiple times (one for each 
specified number of clusters) in order to generate the sequence. To determine the number of 
clusters automatically, TwoStep uses a two-stage procedure that works well with the hierarchical 
clustering method. In the first stage, the BIC for each number of clusters within a specified range is 
calculated and used to find the initial estimate for the number of clusters. The BIC is computed as 

 
 

 

 

 

  
 

 
where 

 
 
and other terms defined as in “Distance Measure”. The ratio of change in BIC at each  
successive merging relative to the first merging determines the initial estimate. Let  be 
the difference in BIC between the model with J clusters and that with (J + 1) clusters, 

. Then the change ratio for model J is 
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If        , then the number of clusters is set to 1 (and the second stage is omitted). 
Otherwise, the initial estimate for number of clustersk is the smallest number for   which 

 
In the second stage, the initial estimate is refined by finding the largest relative increase in distance 
between the two closest clusters in each hierarchical clustering stage. This is done as follows: 

 
E    Starting with the model Ck indicated by the BIC criterion, take the ratio of minimum inter-cluster 

distance for that model and the next larger model Ck+1, that is, the previous model in the 
hierarchical clustering procedure, 

 
 

 
where Ck is the cluster model containing k clusters and dmin(C) is the minimum inter-cluster 
distance for cluster model C. 

 
E    Now from model Ck-1, compute the same ratio with the following model Ck, as above. Repeat for 

each subsequent model until you have the ratio R2(2). 
 

E   Compare the two largest R2 ratios; if the largest is more than 1.15 times the second largest, then 
select the model with the largest R2 ratio as the optimal number of clusters; otherwise, from those 
two models with the largest R2 values, select the one with the larger number of clusters as the 
optimal model. 

 
 

Blank Handling 

The TwoStep cluster node does not support blanks. Records containing blanks, nulls, or missing 
values of any kind are excluded from model building. 

 
 

Effect of Options 
 
Outlier Handling 

 
An optional outlier-handling step is implemented in the algorithm in the process of building the 
CF tree. Outliers are considered as data records that do not fit well into any cluster. We consider 
data records in a leaf entry as outliers if the number of records in the entry is less than a certain 
fraction (25% by default) of the size of the largest leaf entry in the CF tree. Before rebuilding the 
CF tree, the procedure checks for potential outliers and sets them aside. After rebuilding the CF 
tree, the procedure checks to see if these outliers can fit in without increasing the tree size. At the 
end of CF tree building, small entries that cannot fit in are outliers. 
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Generated Model/Scoring 
 
Predicted Values 

 

When scoring a record with a TwoStep Cluster generated model, the record is assigned to the 
cluster to which it is closest. The distance between the record and each cluster is calculated, and 
the cluster with the smallest distance is selected as the closest, and that cluster is assigned as the 
predicted value for the record. Distance is calculated in a similar manner to that used during 
model building, considering the record to be scored as a “cluster” with only one record. For more 
information, see the section “Distance Measure.”  

If outlier handling was enabled during model building, the distance between the record and the 
closest cluster is compared to a threshold C = log(V), where 

 
 
 
 

where Rk is the range of the kth numeric field and Lm is number of categories for the mth symbolic 
field. 

If the distance from the nearest cluster is smaller than C, assign that cluster as the predicted 
value for the record. If the distance is greater than C, assign the record as an outlier. 

 

Blank Handling 

As with model building, records containing blanks are not handled by the model, and are assigned 
a predicted value of $null$. 
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1. Introduction 
Clustering technique is widely used by retail and consumer product companies who need to learn more 
about their customers in order to apply 1-to-1 marketing strategies. By means of clustering technique, 
customers are partitioned into groups by their buying habits, gender, age, income level, etc., and retail and 
consumer product companies can tailor their marketing and product development strategy to each 
customer group.  

Traditional clustering algorithms can broadly be classified into partitional clustering and hierarchical 
clustering. Partitional clustering algorithms divide data cases into clusters by optimizing certain criterion 
function. A well-known representative of this class is the k-means clustering. Hierarchical clustering 
algorithms proceed by stages producing a sequence of partitions in which each partition is nested into the 
next partition in the sequence. Hierarchical clustering can be agglomerative and divisive. Agglomerative 
clustering starts with a singleton cluster (for example, a cluster that contains one data case only) and 
proceeds by successively merging the clusters at each stage. On the contrary, divisive clustering starts with 
one single cluster that contains all data cases and proceeds by successively separating the cluster into 
smaller clusters. Notice that no initial values are needed for hierarchical clustering.  

However, traditional clustering algorithms do not adequately address the problem of large datasets. This is 
where the two-step clustering method can be helpful (see ref. [1][2]). This method first performs a pre-
clustering step by scanning the entire dataset and storing the dense regions of data cases in terms of 
summary statistics called cluster features. The cluster features are stored in memory in a data structure 
called the CF-tree. Then an agglomerative hierarchical clustering algorithm is applied to cluster the set of 
cluster features. Since the set of cluster features is much smaller than the original dataset, the hierarchical 
clustering can perform well in terms of speed. Notice that the CF-tree is incremental in the sense that it does 
not require the whole dataset in advance and only scans the dataset once.  

One essential element in the clustering algorithms above is the distance measure that reflects the relative 
similarity or dissimilarity of the clusters. Chiu et al proposed a new distance measure that enables clustering 
on data sets in which the features are of mixed types. The features can be continuous, nominal, categorical, 
or count. This distance measure is derived from a probabilistic model in the way that the distance is 
equivalent to the decrease in log-likelihood value as a result of merging two clusters. In the following, the 
new distance measure will be used in both the CF-tree growth and the clustering process, unless otherwise 
stated.  

In this chapter, we extend the two-step clustering method into the distributed setting, specifically under the 
map-reduce framework. In addition to generating a clustering solution, we also provide mechanisms for 
selecting the most relevant features for clustering given data, as well as detecting rare outlier points. 
Moreover, we provide an enhanced set of evaluation and diagnostic features enabling insight, interactivity, 
and an improved overall user experience as required by the Analytic Catalyst application.  

The chapter is organized as follows. We first declare some general notes about algorithms, development, 
etc. Then we define the notations used in the document. Operations for data pre-processing are introduced 
in section 4. In section 5, we briefly describe the data and the measures such as distance, tightness, and so 
on. In section 6, 7, and 8, we present the key algorithms used in model building, including CF-tree growth, 
Hierarchical Agglomerative Clustering (HAC), and determination of the  
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number of clusters, respectively. Section 9 describes the entire solution of distributed clustering on Hadoop. 
Section 10 describes how to score new cases (to assign cluster memberships). Finally, Section 11 includes 
various measures used for model evaluation and model diagnostics. Insights and interestingness are also 
derived. 

2. Notes 
• To create CF-trees efficiently, we assume that operations within a main memory environment (for 

example, RAM) is efficient, and the size of the main memory can be allocated or controlled by user.   
• We assume that the data is randomly partitioned. If this assumption is not allowed, sequential 

partition can still be applied. But note that the clustering result can be impacted, particularly if the 
data is ordered in some special way.  

• CE is implemented in the Analytic Framework. 

3. Notations 
The following notations are used throughout this chapter unless otherwise stated: 

𝑅𝑅 Number of data partitions/splits. 
𝑁𝑁𝑗𝑗 Number of cases in cluster 𝐶𝐶𝑗𝑗. 

𝑁𝑁𝑗𝑗𝑗𝑗 Number of cases in cluster 𝐶𝐶𝑗𝑗 which have non-missing values in 
the 𝑘𝑘th feature. 

𝐾𝐾 Number of features used for clustering.  
𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖) The 𝑖𝑖th data case. 𝑥𝑥𝑖𝑖 is a K-dimensional vector.  

𝑥𝑥𝑖𝑖𝑗𝑗𝐴𝐴 , 𝑘𝑘 = 1, … ,𝐾𝐾𝐴𝐴 
Value of the 𝑘𝑘th continuous feature of the 𝑖𝑖th data case 𝑥𝑥𝑖𝑖. There 
are 𝐾𝐾𝐴𝐴 number of continuous features.  

𝑥𝑥𝑖𝑖𝑗𝑗𝐵𝐵 , 𝑘𝑘 = 1, … ,𝐾𝐾𝐵𝐵 
Value of the 𝑘𝑘th categorical feature of the 𝑖𝑖th data case 𝑥𝑥𝑖𝑖 . There are 𝐾𝐾𝐵𝐵 
number of categorical features.  

𝐿𝐿𝑗𝑗 , 𝑘𝑘 = 1, … ,𝐾𝐾𝐵𝐵 Number of categories of the 𝑘𝑘th categorical feature in the entire data. 

𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗 , 𝑘𝑘 = 1, … ,𝐾𝐾𝐵𝐵, 𝑙𝑙 = 1, … , 𝐿𝐿𝑗𝑗 Number of cases in cluster 𝐶𝐶𝑗𝑗 whose 𝑘𝑘th categorical feature takes 
the 𝑙𝑙th category.  

𝑠𝑠𝑗𝑗𝑗𝑗 , 𝑘𝑘 = 1, … ,𝐾𝐾𝐴𝐴 Sum of values of the 𝑘𝑘th continuous feature in cluster 𝐶𝐶𝑗𝑗. 
𝑠𝑠𝑗𝑗𝑗𝑗2 , 𝑘𝑘 = 1, … ,𝐾𝐾𝐴𝐴 Sum of squared values of the 𝑘𝑘th continuous feature in cluster 𝐶𝐶𝑗𝑗. 
𝑑𝑑(𝑗𝑗, 𝑠𝑠) Distance between clusters 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠.  
𝐶𝐶<𝑗𝑗,𝑠𝑠> Cluster formed by combining clusters 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠.  

4. Data Pre-processing 
Data pre-processing includes the following transformations: 

• Trailing blanks are trimmed 
• Date/time features are transformed into continuous ones 
• Normalize continuous features 
• Category values of a categorical feature are mapped into integer. As such, the expression “𝑥𝑥𝑖𝑖𝑗𝑗𝐵𝐵 = 𝑙𝑙” 

indicates that the 𝑘𝑘th categorical feature of the 𝑖𝑖th case takes the 𝑙𝑙th category. 
• System/user missing and invalid values are all considered as missing. 

 
 
 
 
 
 



 

 

• Cases with missing values in all features are discarded.  

5. Data and Measures 
Let 𝑥𝑥𝑖𝑖  be the 𝑖𝑖th data case. Denote 𝐼𝐼𝑗𝑗 as the index set of cluster 𝐶𝐶𝑗𝑗, 𝐼𝐼𝑗𝑗 = �𝑖𝑖: 𝑥𝑥𝑖𝑖 ∈ 𝐶𝐶𝑗𝑗�. Let 𝐾𝐾 = 𝐾𝐾𝐴𝐴 + 𝐾𝐾𝐵𝐵 be the 
total number of features in which 𝐾𝐾𝐴𝐴 of them are continuous and 𝐾𝐾𝐵𝐵 are categorical. Without loss of 
generality, write 𝑥𝑥𝑖𝑖  as 

𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖) = (𝑥𝑥𝑖𝑖1𝐴𝐴 , … , 𝑥𝑥𝑖𝑖𝑖𝑖𝐴𝐴
𝐴𝐴 , 𝑥𝑥𝑖𝑖1𝐵𝐵 , … , 𝑥𝑥𝑖𝑖𝑖𝑖𝐵𝐵

𝐵𝐵 )                                                                                                          (1) 

where 𝑥𝑥𝑖𝑖𝑗𝑗𝐴𝐴  is the value of the 𝑘𝑘th continuous feature, 𝑘𝑘 = 1, … ,𝐾𝐾𝐴𝐴, and 𝑥𝑥𝑖𝑖𝑗𝑗𝐵𝐵  is the value of the 𝑘𝑘th categorical 
feature, 𝑘𝑘 = 1, … ,𝐾𝐾𝐵𝐵. Express 𝑥𝑥𝑖𝑖𝑗𝑗𝐵𝐵  as a vector (𝑥𝑥𝑖𝑖𝑗𝑗1𝐵𝐵 , … , 𝑥𝑥𝑖𝑖𝑗𝑗𝐿𝐿𝑘𝑘

𝐵𝐵 ) of 𝐿𝐿𝑗𝑗 values in which each entry is either zero or 
one: 

𝑥𝑥𝑖𝑖𝑗𝑗𝑗𝑗𝐵𝐵 = �1, if 𝑥𝑥𝑖𝑖𝑗𝑗𝐵𝐵  takes the 𝑙𝑙th category
0, otherwise

.                                                                                                                     (2) 

5.1. Cluster Feature of a Cluster 

The cluster feature (sufficient statistics set) 𝐶𝐶𝐶𝐶𝑗𝑗 of a cluster 𝐶𝐶𝑗𝑗 is a collection of statistics that summarizes the 
characteristics of a cluster. A possible set 𝐶𝐶𝐶𝐶𝑗𝑗 is given as 

𝐶𝐶𝐶𝐶𝑗𝑗 = �𝑁𝑁𝑗𝑗 ,𝑁𝑁��⃗𝑗𝑗 , 𝑠𝑠𝑗𝑗 , 𝑠𝑠𝑗𝑗2,𝑁𝑁𝑗𝑗𝐵𝐵�                                                                                                                   (3) 

where 𝑁𝑁𝑗𝑗 is the number of data cases in cluster 𝐶𝐶𝑗𝑗, 𝑁𝑁��⃗𝑗𝑗 = �𝑁𝑁𝑗𝑗𝑗𝑗 , … ,𝑁𝑁𝑗𝑗𝑖𝑖𝐴𝐴 ,𝑁𝑁𝑗𝑗1′ , … ,𝑁𝑁𝑗𝑗𝑖𝑖𝐵𝐵
′ � is a 𝐾𝐾-dimensional vector; 

the 𝑘𝑘th entry is the number of data cases in cluster 𝐶𝐶𝑗𝑗 which have non-missing values in the 𝑘𝑘th feature. 𝑠𝑠𝑗𝑗 =
�𝑠𝑠𝑗𝑗1, … , 𝑠𝑠𝑗𝑗𝑖𝑖𝐴𝐴� is a 𝐾𝐾𝐴𝐴-dimensional vector; the 𝑘𝑘th entry is the sum of the non-missing values of the 𝑘𝑘th 
continuous feature in cluster 𝐶𝐶𝑗𝑗, i.e. 

𝑠𝑠𝑗𝑗𝑗𝑗 = ∑ 𝑥𝑥𝑖𝑖𝑗𝑗𝐴𝐴𝑖𝑖∈𝐼𝐼𝑗𝑗                       (4) 

for 𝑘𝑘 = 1, … ,𝐾𝐾𝐴𝐴. Similarly, 𝑠𝑠𝑗𝑗2 = �𝑠𝑠𝑗𝑗12 , … , 𝑠𝑠𝑗𝑗𝑖𝑖𝐴𝐴
2 � is a 𝐾𝐾𝐴𝐴-dimensional vector such that the 𝑘𝑘th entry is the sum 

of squared non-missing values of the 𝑘𝑘th continuous feature in cluster 𝐶𝐶𝑗𝑗, i.e. 

𝑠𝑠𝑗𝑗𝑗𝑗2 = ∑ (𝑥𝑥𝑖𝑖𝑗𝑗𝐴𝐴 )2𝑖𝑖∈𝐼𝐼𝑗𝑗                                   (5) 

for 𝑘𝑘 = 1, … ,𝐾𝐾𝐴𝐴. 

Similarly, 𝑁𝑁𝑗𝑗𝐵𝐵 = �𝑁𝑁𝑗𝑗1𝐵𝐵 , … ,𝑁𝑁𝑗𝑗𝑖𝑖𝐵𝐵
𝐵𝐵 � is a ∑ (𝐿𝐿𝑗𝑗 − 1)𝑖𝑖𝐵𝐵

𝑗𝑗=1 -dimensional vector where the 𝑘𝑘th sub-vector 𝑁𝑁𝑗𝑗𝑗𝑗𝐵𝐵  is (𝐿𝐿𝑗𝑗 − 1) 
dimensional, given by 

𝑁𝑁𝑗𝑗𝑗𝑗𝐵𝐵 = (𝑁𝑁𝑗𝑗𝑗𝑗1, … ,𝑁𝑁𝑗𝑗𝑗𝑗(𝐿𝐿𝑘𝑘−1))                                 (6) 

for 𝑘𝑘 = 1, … ,𝐾𝐾𝐵𝐵. The 𝑙𝑙th entry 𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗  represents the total number of cases in cluster 𝐶𝐶𝑗𝑗 whose 𝑘𝑘th categorical 
feature takes the 𝑙𝑙th category, 𝑙𝑙 = 1, … , 𝐿𝐿𝑗𝑗 − 1, i.e. 
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𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗 = ∑ 𝑥𝑥𝑖𝑖𝑗𝑗𝑗𝑗𝐵𝐵𝑖𝑖∈𝐼𝐼𝑗𝑗 .                     (7) 

5.2. Updating Cluster Feature when Merging Two Clusters 

When two clusters 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠 are said to merge, it simply means that the two corresponding sets of data 
points are merged together to form a union. In this case, the 𝐶𝐶𝐶𝐶<𝑗𝑗,𝑠𝑠> for the merged cluster 𝐶𝐶<𝑗𝑗,𝑠𝑠> can be 
calculated by simply adding the corresponding elements in 𝐶𝐶𝐶𝐶𝑗𝑗 and 𝐶𝐶𝐶𝐶𝑠𝑠, that is, 

𝐶𝐶𝐶𝐶<𝑗𝑗,𝑠𝑠> = �𝑁𝑁𝑗𝑗 + 𝑁𝑁𝑠𝑠,𝑁𝑁��⃗𝑗𝑗 + 𝑁𝑁��⃗ 𝑠𝑠, 𝑠𝑠𝑗𝑗 + 𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑗𝑗2 + 𝑠𝑠𝑠𝑠2,𝑁𝑁𝑗𝑗𝐵𝐵 + 𝑁𝑁𝑠𝑠𝐵𝐵�.               (8) 

5.3. Tightness of a Cluster 

The interpretation of tightness of a cluster is that the smaller of the value of tightness, the less variation of 
the data cases within the cluster. In CE, there are two tightness measures, and they will be used depending 
on the specified distance measure, log-likelihood distance or Euclidean distance.  

5.3.1. Tightness based on Log-likelihood Distance 

The tightness 𝜂𝜂�𝑗𝑗 of a cluster 𝐶𝐶𝑗𝑗 can be defined as average negative log-likelihood function of the cluster 
evaluated at the maximum likelihood estimates of the model parameters. See Ref. 1 for statistical reasoning 
for definition.  

The tightness 𝜂𝜂�𝑗𝑗 of a cluster 𝐶𝐶𝑗𝑗 is given by 

�̂�𝜂𝑗𝑗 = 1
2
∑ ln �1 +

𝜎𝜎�𝑗𝑗𝑘𝑘
2

Δ𝑘𝑘
�𝑖𝑖𝐴𝐴

𝑗𝑗=1 + ∑ 𝐸𝐸�𝑗𝑗𝑗𝑗𝑖𝑖𝐵𝐵
𝑗𝑗=1                           (9) 

where 𝜎𝜎�𝑗𝑗𝑗𝑗2  is the maximum likelihood variance estimate of the 𝑘𝑘th continuous feature in cluster 𝐶𝐶𝑗𝑗. 

𝜎𝜎�𝑗𝑗𝑗𝑗2 =
𝑠𝑠𝑗𝑗𝑘𝑘
2 −𝑁𝑁𝑗𝑗𝑘𝑘(𝜇𝜇�𝑗𝑗𝑘𝑘)2

𝑁𝑁𝑗𝑗𝑘𝑘
                 (10) 

in which �̂�𝜇𝑗𝑗𝑗𝑗 is the sample mean, 

�̂�𝜇𝑗𝑗𝑗𝑗 =
𝑠𝑠𝑗𝑗𝑘𝑘
𝑁𝑁𝑗𝑗𝑘𝑘

.                  (11) 

𝐸𝐸�𝑗𝑗𝑗𝑗 is the entropy of the 𝑘𝑘th categorical feature in cluster 𝐶𝐶𝑗𝑗, 

𝐸𝐸�𝑗𝑗𝑗𝑗 = −∑ 𝑞𝑞�𝑗𝑗𝑗𝑗𝑗𝑗ln𝑞𝑞�𝑗𝑗𝑗𝑗𝑗𝑗
𝐿𝐿𝑘𝑘
𝑗𝑗=1                  (12) 

in which 𝑞𝑞�𝑗𝑗𝑗𝑗𝑗𝑗 is the portion of data cases in cluster 𝐶𝐶𝑗𝑗 whose 𝑘𝑘th categorical feature takes the 𝑙𝑙th category, 

𝑞𝑞�𝑗𝑗𝑗𝑗𝑗𝑗 =
𝑁𝑁𝑗𝑗𝑘𝑘𝑗𝑗
𝑁𝑁′𝑗𝑗𝑘𝑘

.                  (13) 

Finally,Δ𝑗𝑗 is appositive scalar which is added to handle the degenerating conditions and balance the 
contributions between a continuous feature and a categorical one. The default value of Δ𝑗𝑗 is 0.01. 

 

 



 

 

To handle missing values, the definition of tightness assumes that the distribution of missing values is the 
same as for the observed non-missing points in the cluster. 

Moreover, the following assumption is always applied: 

𝑥𝑥ln(𝑥𝑥) = 0, if 𝑥𝑥 = 0.                         (14) 

5.3.2. Tightness based on Euclidean Distance 

The tightness 𝜂𝜂�𝑗𝑗 of a cluster 𝐶𝐶𝑗𝑗 can be defined as the average Euclidean distance from member cases to the 
center/centroid of the cluster.  

The tightness 𝜂𝜂�𝑗𝑗 of a cluster 𝐶𝐶𝑗𝑗 is given by 

𝜂𝜂�𝑗𝑗 = �∑
𝑠𝑠𝑗𝑗𝑘𝑘
2 −𝑁𝑁𝑗𝑗𝑘𝑘(𝜇𝜇�𝑗𝑗𝑘𝑘)2

𝑁𝑁𝑗𝑗𝑘𝑘
𝑖𝑖
𝑗𝑗=1 .                  (15) 

Notice that if any feature in cluster 𝐶𝐶𝑗𝑗 has all missing values, the feature will not be used in the 
computation.  

5.4. Distance Measures between Two Clusters 

Suppose clusters 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠 are merged to form a new cluster 𝐶𝐶<𝑗𝑗,𝑠𝑠> that consists of the union of all data cases 
in 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠. Two distance measures are available.  

5.4.1. Log-likelihood Distance 

The distance between 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠 can be captured by observing the corresponding decrease in log-likelihood 
as the result of combining 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠 to form 𝐶𝐶<𝑗𝑗,𝑠𝑠>. 

The distance measure between two clusters 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠 is defined as 

𝑑𝑑(𝑗𝑗, 𝑠𝑠) = ∑ 𝑑𝑑𝑗𝑗(𝑗𝑗, 𝑠𝑠)𝑖𝑖𝐴𝐴+𝑖𝑖𝐵𝐵
𝑗𝑗=1 = 𝜉𝜉𝑗𝑗 + 𝜉𝜉𝑠𝑠 − 𝜉𝜉<𝑗𝑗,𝑠𝑠>                  (16) 

where 

𝜉𝜉𝑗𝑗 = −1
2
∑ 𝑁𝑁𝑗𝑗𝑗𝑗 ln�𝜎𝜎�𝑗𝑗𝑗𝑗2 + Δ𝑗𝑗�𝑖𝑖𝐴𝐴
𝑗𝑗=1 − ∑ 𝑁𝑁′𝑗𝑗𝑗𝑗𝐸𝐸�𝑗𝑗𝑗𝑗𝑖𝑖𝐵𝐵

𝑗𝑗=1                      (17) 

and 

𝑑𝑑𝑗𝑗(𝑗𝑗, 𝑠𝑠) = �
�−𝑁𝑁𝑗𝑗𝑗𝑗 ln�𝜎𝜎�𝑗𝑗𝑗𝑗2 + Δ𝑗𝑗� − 𝑁𝑁𝑠𝑠𝑗𝑗 ln(𝜎𝜎�𝑠𝑠𝑗𝑗2 + Δ𝑗𝑗) + 𝑁𝑁<𝑗𝑗,𝑠𝑠>𝑗𝑗 ln�𝜎𝜎�<𝑗𝑗,𝑠𝑠>𝑗𝑗

2 + Δ𝑗𝑗��/2, if feature 𝑘𝑘 is continuous
−𝑁𝑁′𝑗𝑗𝑗𝑗𝐸𝐸�𝑗𝑗𝑗𝑗 − 𝑁𝑁′𝑠𝑠𝑗𝑗𝐸𝐸�𝑠𝑠𝑗𝑗 + 𝑁𝑁′<𝑗𝑗,𝑠𝑠>𝑗𝑗𝐸𝐸�<𝑗𝑗,𝑠𝑠>𝑗𝑗, if feature 𝑘𝑘 is categorical

  

       (18) 
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Note that since 𝜉𝜉<𝑗𝑗,𝑠𝑠> can be calculated by using the statistics in 𝐶𝐶𝐶𝐶<𝑗𝑗,𝑠𝑠>, the distance can be calculated by 
first updating the 𝐶𝐶𝐶𝐶<𝑗𝑗,𝑠𝑠> of the merged cluster 𝐶𝐶<𝑗𝑗,𝑠𝑠>. 

To handle missing values, the definition of distance assumes that the contribution of missing values equals 
zero.  

5.4.2. Euclidean Distance 

The Euclidean distance can only be applied if all features are continuous.  

The distance between two cases is clearly defined. The distance between two clusters is here defined by the 
Euclidean distance between the two cluster centers. A cluster center is defined as the vector of cluster 
means of each feature.  

Suppose the centers/centroids of clusters 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠 are (�̂�𝜇𝑗𝑗1, … , �̂�𝜇𝑗𝑗𝑖𝑖) and (�̂�𝜇𝑠𝑠1, … , �̂�𝜇𝑠𝑠𝑖𝑖)  respectively, then 

𝑑𝑑(𝑗𝑗, 𝑠𝑠) = �∑ 𝑑𝑑𝑗𝑗2(𝑗𝑗, 𝑠𝑠)𝑖𝑖
𝑗𝑗=1 = �∑ ��̂�𝜇𝑗𝑗𝑗𝑗 − �̂�𝜇𝑠𝑠𝑗𝑗�

2𝑖𝑖
𝑗𝑗=1                             (19) 

where 

𝑑𝑑𝑗𝑗(𝑗𝑗, 𝑠𝑠) = ��̂�𝜇𝑗𝑗𝑗𝑗 − �̂�𝜇𝑠𝑠𝑗𝑗�.                 (20) 

Again, any feature in cluster 𝐶𝐶𝑗𝑗 with all missing values will not be used in the computation.  

6. CF-Tree Building 
CF-tree is a very compact summary of dataset in the way that each entry (leaf entry) in the leaf node is a 
sub-cluster which absorbs the data cases that are close together, as measured by the tightness index 𝜂𝜂�  and 
controlled by a specific threshold value 𝑇𝑇. CF-tree is built dynamically as new data case is inserted, it is 
used to guide to a new insertion into the correct sub-cluster for clustering purposes. 

CF-tree is a height-balanced tree with four parameters: 

1. The branching factor 𝐵𝐵 for the non-leaf nodes. It is the maximum number of entries that a non-leaf 
node can hold. A non-leaf entry is of the form [𝐶𝐶𝐶𝐶𝑖𝑖, 𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑𝑖𝑖], 𝑖𝑖 = 1, … ,𝐵𝐵, in which 𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑𝑖𝑖  is a pointer to 
its 𝑖𝑖th child node and 𝐶𝐶𝐶𝐶𝑖𝑖 is the cluster feature of the sub-cluster represented by this child. 

2. The branching factor 𝐿𝐿 for the leaf nodes. It is the maximum number of entries that a leaf node can 
hold. A leaf entry is similar to a non-leaf entry except that is does not have a pointer. It is of the 
form [𝐶𝐶𝐶𝐶𝑖𝑖], 𝑖𝑖 = 1, … , 𝐿𝐿. 

3. The threshold parameter 𝑇𝑇 that controls the tightness 𝜂𝜂�  of any leaf entries. That is, all leaf entries in 
a leaf node must satisfy a threshold requirement that the tightness has to be less than 𝑇𝑇, i.e.  𝜂𝜂� ≤ 𝑇𝑇. 

4. Maximum tree height 𝐻𝐻. 

In addition, each leaf node has two pointers: “𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝” and “𝑛𝑛𝑝𝑝𝑥𝑥𝑛𝑛” which are used to chain all leaf nodes 
together for efficient scanning.   

 

 

 



 

 

Figure 1 illustrates a CF-tree of branching factors 𝐵𝐵 = 2, 𝐿𝐿 = 3, and 𝐻𝐻 = 1. 

 

Figure 1. Example of a CF-tree. 

6.1. Inserting a Single Case or a Sub-cluster into a CF-Tree 

The procedure for inserting a data case or a sub-cluster (abbrev. “𝐸𝐸𝑛𝑛𝑛𝑛”) into a CF-tree is as follows. 

Step 1. Identify the appropriate leaf node.  
Starting from the root node, recursively descend the CF-tree by choosing the closest child node 
according to the distance measure 𝑑𝑑. 

Step 2. Modify the leaf node. 
Upon reaching a leaf node, find the closest leaf entry [𝐶𝐶𝐶𝐶𝑖𝑖], say, and see if 𝐸𝐸𝑛𝑛𝑛𝑛 can be absorbed 
into [𝐶𝐶𝐶𝐶𝑖𝑖] without violating the threshold requirement  𝜂𝜂� ≤ 𝑇𝑇. If so, update the CF information 
in [𝐶𝐶𝐶𝐶𝑖𝑖] to reflect the absorbing action. If not, add a new entry for 𝐸𝐸𝑛𝑛𝑛𝑛 to the leaf. If there is space on 
the leaf for this new entry to fit in, then we are done. Otherwise, split the leaf node by choosing the 
farthest pair of entries as seeds, and redistribute the remaining entries based on the closest criteria.  

Step 3. Modify the path to the leaf node. 
After inserting 𝐸𝐸𝑛𝑛𝑛𝑛 into a leaf node, update the CF information for each non-leaf entry on the path 
to the leaf node. If there is no leaf split, then only the corresponding CF information is needed to 
update to reflect the absorbing of 𝐸𝐸𝑛𝑛𝑛𝑛. If a leaf split happens, then it is necessary to insert a new 
non-leaf entry into the parent node in order to describe the newly created leaf. If the parent has 
space for this entry, at all higher levels, only the CF information is needed to update to reflect the 
absorbing of 𝐸𝐸𝑛𝑛𝑛𝑛. In general, however, the parent node has to split as well, and so on up to the root 
node. If the root node is split, the tree height increases by one. 

Notice that the growth of CF-tree is sensitive to case order. If the same data case is inserted twice but at 
different time, the two copies might be entered into two distinct leaf entries. It is possible that two sub-
clusters that should be in one cluster are split across nodes. Similarly, it is also possible that two sub-clusters 
that should not be in one cluster are kept together in the same node.  

6.2. Threshold Heuristic 

In building the CF-tree, the algorithm starts with an initial threshold value (default is 0). Then it scans the 
data cases and inserts into the tree. If the main memory runs out before data scanning is finished, the 
threshold value is increased to rebuild a new smaller CF-tree, by re-inserting the leaf entries of the old tree 
into the new one. After the old leaf entries have been re-inserted, data scanning is resumed from the case at 
which it was interrupted. The following strategy is used to update the threshold values. 
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Suppose that at step 𝑖𝑖, the CF-tree of the threshold 𝑇𝑇𝑖𝑖 is too big for the main memory after 𝑁𝑁𝑖𝑖 data cases in 
the data have been scanned, and an estimate of the next (larger) threshold 𝑇𝑇𝑖𝑖+1 is needed to rebuild a new 
smaller CF-tree.  

Specifically, we find the first two closest entries whose tightness is greater than the current threshold, and 
take it as the next threshold value. However, searching the closest entries can be tedious. So we follow 
BIRCH’s heuristic to traverse along a path from the root to the most crowded leaf that has the most entries 
and find the pair of leaf entries that satisfies the condition. 

6.3. Rebuilding CF-Tree 

When the CF-tree size exceeds the size of the main memory, or the CF-tree height is larger than 𝐻𝐻, the CF-
tree is rebuilt to a smaller one by increasing the tightness threshold. 

Assume that within each node of CF-tree 𝑛𝑛𝑖𝑖, the entries are labeled contiguously from 0 to 𝑛𝑛𝑗𝑗 − 1, where 𝑛𝑛𝑗𝑗 
is the number of entries in that node. Then a path from an entry in the root (level 1) to a leaf node (level ℎ) 
can be uniquely represented by (𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖ℎ−1), where 𝑖𝑖𝑗𝑗 , 𝑗𝑗 = 1, … , ℎ − 1, is the label of the 𝑗𝑗th level entry on 
that path. So naturally, path �𝑖𝑖1

(1), 𝑖𝑖2
(1), … , 𝑖𝑖ℎ−1

(1) � is before (or <) path �𝑖𝑖1
(2), 𝑖𝑖2

(2), … , 𝑖𝑖ℎ−1
(2) � if 𝑖𝑖1

(1) = 𝑖𝑖1
(2),…, 𝑖𝑖𝑗𝑗−1

(1) =
𝑖𝑖𝑗𝑗−1

(2) , and 𝑖𝑖𝑗𝑗
(1) <= 𝑖𝑖𝑗𝑗

(2) for 0 ≤ 𝑗𝑗 ≤ ℎ − 1. It is obvious that each leaf node corresponds to a path, since we are 
dealing with tree structure, and we will just use “path” and “leaf node” interchangeably from now on. 

With the natural path order defined above, it scans and frees the old tree, path by path, and at the same 
time creates the new tree path by path. The procedure is as follows. 

Step 1. Let the new tree start with NULL and OldCurrentPath be initially the leftmost path in the old tree. 
Step 2. Create the corresponding NewCurrentPath in the new tree. 

Copy the nodes along OldCurrentPath in the old tree into the new tree as the (current) rightmost 
path; call this NewCurrentPath 

Step 3. Insert leaf entries in OldCurrentPath to the new tree. 
With the new threshold, each leaf entry in OldCurrentPath is tested against the new tree to see if it 
can either by absorbed by an existing leaf entry, or fit in as a new leaf entry without splitting, in the 
NewClosestPath that is found top-down with the closest criteria in the new tree. If yes and 
NewClosestPath is before NewCurrentPath, then it is inserted to NewClosestPath, and deleted 
from the leaf node in NewCurrentPath. 

Step 4. Free space in OldCurrentPath and NewCurrentPath. 
Once all leaf entries in OldCurrentPath are processed, the nodes along OldCurrentPath can be 
deleted from the old tree. It is also likely that some nodes along NewCurrentPath are empty 
because leaf entries that originally corresponded to this path have been “pushed forward.” In this 
case, the empty nodes can be deleted from the new tree.  

Step 5. Process the next path in the old tree. 
OldCurrentPath is set to the next path in the old tree if there still exists one, and go to step 2.  

6.4. Delayed-Split Option 

If the CF-tree that resulted by inserting a data case is too big for the main memory, it may be possible that 
some other data cases in the data can still fit in the current CF-tree without causing a split on any node in 
the CF-tree (thus the size of the current tree remains the same and can still be in the main memory). 



 
 

 

Similarly, if the CF-tree resulted by inserting a data case exceeds the maximum height, it may be possible 
that some other data cases in the data can still fit in the current CF-tree without increasing the tree height. 

Once any of the two conditions happens, such cases are written out to disk (with 𝑆𝑆1 amount of disk space 
put aside for this purpose) and data scanning continues until the disk space runs out as well. The 
advantage of this approach is that more data cases can fit into the tree before a new tree is rebuilt. Figure 2 
illustrates the control flow of delayed-split option.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Control flow of delayed-split option. 

6.5. Outlier-Handling Option 

Outlier is defined as leaf entry (sub-cluster) of low density, which contains less than 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 (default 10) cases.  

Similar to the delayed-split option, some disk space 𝑆𝑆2 is allocated for handling outliers. When the current 
CF-tree is too big for the main memory, some leaf entries are treated as potential outliers (based on the 
definition of outlier) and are written out to disk. The others are used to rebuild the CF-tree. Figure 3 shows 
the control flow of the outlier-handling option. 

Implementation notes: 

• The size of any outlier leaf entry should also be less than 20% of the maximal size of leaf entries.   
• The CF-tree t1 should be updated once any leaf entry is written to disk space 𝑆𝑆2. 
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• Outliers identified here are local candidates, and they will be analyzed further in later steps, where 
the final outliers will be determined.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Control flow of outlier-handling option. 

6.6. Overview of CF-Tree Building 

Figure 4 provides an overview of building a CF-tree for the whole algorithm. Initially a threshold value is 
set, data is scanned, and the CF-tree is built dynamically. When the main memory runs out, or the tree 
height is larger than the maximum height before the whole data is scanned, the algorithm performs the 
delayed-split option, outlier-handling option, and the tree rebuilding step to rebuild a new smaller CF-tree 
that can fit into the main memory. The process continues until all cases in the data are processed. When all 
data is scanned, cases in disk space 𝑆𝑆1 are absorbed and entries in disk space 𝑆𝑆2 are scanned again to verify 
if they are indeed outliers.    

Implementation notes: 

• When all data is scanned, all cases in disk space 𝑆𝑆1 will be inserted into the tree. This may result in 
rebuilding the tree if necessary. 

 
The following table shows the parameters involved in CF-tree building and their default values. 

Parameter Default value 
Assigned main memory (𝑀𝑀) 80*1024 bytes (TBD) 
Assigned disk space for outlier-handling (𝑆𝑆2) 20% of 𝑀𝑀  
  

Yes 

No 

No 

Yes 

No 

Yes 

Start 

Is disk space S2 
currently empty? 

Done 

Check each leaf entry in 
current CF-tree t1 for outlier 

Current leaf 
entry is outlier? 

Write current leaf entry 
to disk space S2, and 
update size of S2 

Keep current leaf 
entry to rebuild t1 

Any more 
leaf entries? 



 
 

 
 
Assigned disk space for delayed-split (𝑆𝑆1) 10% of 𝑀𝑀  
Adjustment constant to the tightness and 
distance measures, ∆𝑘𝑘 , 𝑘𝑘 = 1, … ,𝐾𝐾𝐴𝐴 

0.01 

Distance measure (Log-
likelihood/Euclidean) 

Log-likelihood 

Initial threshold value (𝑇𝑇) 0 
Branching factor (𝐵𝐵) 8 
Branching factor (𝐿𝐿) 8 
Maximum tree height (𝐻𝐻) 3 
Delayed-split option (on/off) On 
Outlier-handling option (on/off) On 
Outlier definition (𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚) Leaf entry which contains less than 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚  cases, default 10 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Control flow of CF-tree building. 

7. Hierarchical Agglomerative Clustering 
Hierarchical Agglomerative Clustering (HAC) proceeds by steps producing a sequence of partitions in 
which each partition is nested into the next partition in the sequence. See ref. [3] for details.  

HAC can be implemented using two methods, as described below. 

 

 

 

 

No Yes 

No 

Yes 

Start CF-tree t1 of initial T 

Has data scanning 
finished? Done 

Continue receiving 
data case 

If current data case is 
to insert to current CF-
tree t1, will main 
memory be empty, or 
tree height larger than 
H? 

Re-absorb cases in S1 and 
entries in S2 into t1 

Delayed-split option 

Outlier-handling option 

Increase threshold T 

Rebuild t1 with new T 

Re-absorb cases in S1 and entries 
in S2 into t1. Update sizes of S1 
and S2. 

Insert data 
case to t1 



 
 

 

7.1. Matrix Based HAC 

Suppose that matrix based HAC starts with 𝐽𝐽0 clusters. At each subsequent step, a pair of clusters is chosen. 
The two clusters 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠 in the pair are closest together in terms of the distance measure 𝑑𝑑(𝑗𝑗, 𝑠𝑠). A new 
cluster 𝐶𝐶<𝑗𝑗,𝑠𝑠> is formed to replace one of the clusters in the pair, 𝐶𝐶𝑗𝑗, say. This new cluster contains all data 
cases in 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠. The other cluster 𝐶𝐶𝑠𝑠 is discarded. Hence the number of clusters is reduced by one at each 
step. The process stops when the desired number of clusters 𝐽𝐽1 is reached. Since the distance measure 
between any two clusters that are not involved in the merge does not change, the algorithm is designed to 
update the distance measures between the new cluster and the other clusters efficiently.  

The procedure of matrix based HAC is as follows. 

Step 1. For 𝑗𝑗 = 1, … , 𝐽𝐽0 − 1, { 
         Compute 𝑑𝑑(𝑗𝑗, 𝑠𝑠) for 𝑠𝑠 = 𝑗𝑗 + 1, … , 𝐽𝐽0; 
         Find 𝛿𝛿𝑗𝑗 = min

𝑠𝑠=𝑗𝑗+1,…,𝐽𝐽0
𝑑𝑑(𝑗𝑗, 𝑠𝑠) and 𝑠𝑠𝑗𝑗 = arg min

𝑠𝑠=𝑗𝑗+1,…,𝐽𝐽0
𝑑𝑑(𝑗𝑗, 𝑠𝑠); 

} 
Find 𝛿𝛿∗ = min

𝑗𝑗=1,…,𝐽𝐽0−1
𝛿𝛿𝑗𝑗 and 𝑗𝑗∗ = arg min

𝑗𝑗=1,…,𝐽𝐽0−1
𝛿𝛿𝑗𝑗, the closest pair is < 𝑗𝑗∗, 𝑠𝑠𝑗𝑗∗ >; 

Step 2. For 𝐽𝐽 = 𝐽𝐽0 − 1, … , 𝐽𝐽1, { 
         Merge the closest pair < 𝑗𝑗∗, 𝑠𝑠𝑗𝑗∗ >, and replace 𝐶𝐶𝑗𝑗∗ by 𝐶𝐶<𝑗𝑗∗,𝑠𝑠𝑗𝑗∗>

; 
         For 𝑗𝑗 = 1, … , 𝑗𝑗∗ − 1, { 
 If 𝑠𝑠𝑗𝑗 = 𝑠𝑠𝑗𝑗∗ , recompute all distances 𝑑𝑑(𝑗𝑗, 𝑠𝑠), 𝑠𝑠 = 𝑗𝑗 + 1, … , 𝐽𝐽, and update 𝛿𝛿𝑗𝑗 and 𝑠𝑠𝑗𝑗 ; 

If 𝑠𝑠𝑗𝑗 ≠ 𝑠𝑠𝑗𝑗∗ , { 
 Compute 𝑑𝑑 = 𝑑𝑑(𝑗𝑗, 𝑗𝑗∗); 
 If 𝑑𝑑 < 𝛿𝛿𝑗𝑗, update 𝛿𝛿𝑗𝑗 = 𝑑𝑑 and 𝑠𝑠𝑗𝑗 = 𝑗𝑗∗; 
 If 𝑑𝑑 = 𝛿𝛿𝑗𝑗, no change; 

If 𝑑𝑑 > 𝛿𝛿𝑗𝑗 and 𝑠𝑠𝑗𝑗 = 𝑗𝑗∗,  
Recompute all distances 𝑑𝑑(𝑗𝑗, 𝑠𝑠), 𝑠𝑠 = 𝑗𝑗 + 1, … , 𝐽𝐽, and update 𝛿𝛿𝑗𝑗 and 𝑠𝑠𝑗𝑗 ; 

If 𝑑𝑑 > 𝛿𝛿𝑗𝑗 and 𝑠𝑠𝑗𝑗 ≠ 𝑗𝑗∗, no change; 
} 

         } 
         For 𝑗𝑗 = 𝑗𝑗∗, recompute all distances 𝑑𝑑(𝑗𝑗, 𝑠𝑠), 𝑠𝑠 = 𝑗𝑗 + 1, … , 𝐽𝐽, and update 𝛿𝛿𝑗𝑗 and 𝑠𝑠𝑗𝑗 ; 
         For 𝑗𝑗 = 𝑗𝑗∗ + 1, … , 𝑠𝑠𝑗𝑗∗ − 1, { 
 If 𝑠𝑠𝑗𝑗 = 𝑠𝑠𝑗𝑗∗ , recompute all distances 𝑑𝑑(𝑗𝑗, 𝑠𝑠), 𝑠𝑠 = 𝑗𝑗 + 1, … , 𝐽𝐽, and update 𝛿𝛿𝑗𝑗 and 𝑠𝑠𝑗𝑗 ; 

If 𝑠𝑠𝑗𝑗 ≠ 𝑠𝑠𝑗𝑗∗ , no change; 
         } 
        For 𝑗𝑗 = 𝑠𝑠𝑗𝑗∗ + 1, … , 𝐽𝐽, no change; 
        Erase 𝐶𝐶𝑠𝑠𝑗𝑗∗ ; 
        Find 𝛿𝛿∗ = min

𝑗𝑗=1,…,𝐽𝐽
𝛿𝛿𝑗𝑗 and 𝑗𝑗∗ = arg min

𝑗𝑗=1,…,𝐽𝐽
𝛿𝛿𝑗𝑗, the closest pair is < 𝑗𝑗∗, 𝑠𝑠𝑗𝑗∗ >; 

} 
Implementation notes: 

• In order to reduce the memory requirement, it is not necessary to create an actual distance matrix 
when determining the closest clusters.  

• If the Euclidean distance is used, the ward measure will be used to find the closest clusters. We just 
replace the distance measure 𝑑𝑑(𝑗𝑗, 𝑠𝑠) by 

𝑁𝑁𝑗𝑗𝑁𝑁𝑠𝑠
𝑁𝑁𝑗𝑗+𝑁𝑁𝑠𝑠

𝑑𝑑2(𝑗𝑗, 𝑠𝑠). This also applies below for CF-tree based 

HAC. 
 
 
 
 
 
 



 
 

 
 
7.2. CF-tree Based HAC 

Suppose that CF-tree based HAC starts with 𝐾𝐾0 CF-trees 𝑇𝑇𝐶𝐶𝐶𝐶𝑘𝑘 , 𝑘𝑘 = 1, … ,𝐾𝐾0 which contain 𝐽𝐽0 leaf 
entries 𝐶𝐶𝑚𝑚, 𝑖𝑖 = 1, … , 𝐽𝐽0. Let 𝑙𝑙(𝐶𝐶𝑚𝑚) be the index of the CF-tree which contains the leaf entry 𝐶𝐶𝑚𝑚. For convenience, 
suppose 𝐶𝐶𝑠𝑠 > 𝐶𝐶𝑗𝑗 if 𝑙𝑙(𝐶𝐶𝑠𝑠) > 𝑙𝑙�𝐶𝐶𝑗𝑗�. 

At each subsequent step, a pair of leaf entries is chosen. The two leaf entries 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠 in the pair are closest 
together in terms of the distance measure 𝑑𝑑(𝑗𝑗, 𝑠𝑠). A new leaf entry 𝐶𝐶<𝑗𝑗,𝑠𝑠> is formed to replace one of the leaf 
entries in the pair, 𝐶𝐶𝑗𝑗, say. This new leaf entry contains all data cases in 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠. The other leaf entry 𝐶𝐶𝑠𝑠 is 
discarded. Hence the number of leaf entries is reduced by one at each step. Meanwhile, the involved CF-
trees will be updated accordingly. The process stops when the desired number of leaf entries 𝐽𝐽1 is reached. 
The output is the set of updated CF-trees, whose leaf entries indicate the produced clusters.   

The procedure of CF-tree based HAC is as follows. 

Step 1. For 𝑗𝑗 = 1, … , 𝐽𝐽0 − 1, { 
         Find the closest leaf entry 𝐶𝐶𝑠𝑠𝑘𝑘 in each CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶𝑘𝑘  for 𝑘𝑘 = 𝑙𝑙�𝐶𝐶𝑗𝑗�, … ,𝐾𝐾0, following the involved 

tree structure; 
         Find 𝛿𝛿𝑗𝑗 = min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘) and 𝑠𝑠𝑗𝑗 = arg min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘); 

} 
Find 𝛿𝛿∗ = min

𝑗𝑗=1,…,𝐽𝐽0−1
𝛿𝛿𝑗𝑗 and 𝑗𝑗∗ = arg min

𝑗𝑗=1,…,𝐽𝐽0−1
𝛿𝛿𝑗𝑗, the closest pair is < 𝑗𝑗∗, 𝑠𝑠𝑗𝑗∗ >; 

Step 2. For 𝐽𝐽 = 𝐽𝐽0 − 1, … , 𝐽𝐽1, { 
         Merge the closest pair < 𝑗𝑗∗, 𝑠𝑠𝑗𝑗∗ >, update CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶

𝑙𝑙(𝐶𝐶𝑗𝑗∗)
 by the new leaf entry 𝐶𝐶<𝑗𝑗∗,𝑠𝑠𝑗𝑗∗>

, and 

remove the leaf entry 𝐶𝐶𝑠𝑠𝑗𝑗∗  from CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶
𝑙𝑙(𝐶𝐶𝑠𝑠𝑗𝑗∗

)
; 

         For 𝑗𝑗 = 1, … , 𝑗𝑗∗ − 1, { 
 If 𝑠𝑠𝑗𝑗 = 𝑠𝑠𝑗𝑗∗ , { 
                            Find the closest leaf entry 𝐶𝐶𝑠𝑠𝑘𝑘 in each CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶𝑘𝑘  for 𝑘𝑘 = 𝑙𝑙�𝐶𝐶𝑗𝑗�, … ,𝐾𝐾0; 
                            Find 𝛿𝛿𝑗𝑗 = min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘) and 𝑠𝑠𝑗𝑗 = arg min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘); 

               } 
If 𝑠𝑠𝑗𝑗 ≠ 𝑠𝑠𝑗𝑗∗ , { 
 Compute 𝑑𝑑 = 𝑑𝑑(𝑗𝑗, 𝑗𝑗∗); 
 If 𝑑𝑑 < 𝛿𝛿𝑗𝑗, update 𝛿𝛿𝑗𝑗 = 𝑑𝑑 and 𝑠𝑠𝑗𝑗 = 𝑗𝑗∗; 
 If 𝑑𝑑 = 𝛿𝛿𝑗𝑗, no change; 

If 𝑑𝑑 > 𝛿𝛿𝑗𝑗 and 𝑠𝑠𝑗𝑗 = 𝑗𝑗∗, {  
                                          Find the closest leaf entry 𝐶𝐶𝑠𝑠𝑘𝑘 in each CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶𝑘𝑘  for 𝑘𝑘 = 𝑙𝑙�𝐶𝐶𝑗𝑗�, … ,𝐾𝐾0; 
                                          Find 𝛿𝛿𝑗𝑗 = min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘) and 𝑠𝑠𝑗𝑗 = arg min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘); 

                             } 
If 𝑑𝑑 > 𝛿𝛿𝑗𝑗 and 𝑠𝑠𝑗𝑗 ≠ 𝑗𝑗∗, no change; 

} 
         } 
        For 𝑗𝑗 = 𝑗𝑗∗, {  
              Find the closest leaf entry 𝐶𝐶𝑠𝑠𝑘𝑘 in each CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶𝑘𝑘  for 𝑘𝑘 = 𝑙𝑙�𝐶𝐶𝑗𝑗�, … ,𝐾𝐾0; 
              Find 𝛿𝛿𝑗𝑗 = min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘) and 𝑠𝑠𝑗𝑗 = arg min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘); 

         } 
         For 𝑗𝑗 = 𝑗𝑗∗ + 1, … , 𝑠𝑠𝑗𝑗∗ − 1, { 
 
 
 
 
 
 



 
 

 
 
              If 𝑠𝑠𝑗𝑗 = 𝑠𝑠𝑗𝑗∗, {  
                            Find the closest leaf entry 𝐶𝐶𝑠𝑠𝑘𝑘 in each CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶𝑘𝑘  for 𝑘𝑘 = 𝑙𝑙�𝐶𝐶𝑗𝑗�, … ,𝐾𝐾0; 
                            Find 𝛿𝛿𝑗𝑗 = min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘) and 𝑠𝑠𝑗𝑗 = arg min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘); 

               } 
If 𝑠𝑠𝑗𝑗 ≠ 𝑠𝑠𝑗𝑗∗ , no change; 

         } 
        For 𝑗𝑗 = 𝑠𝑠𝑗𝑗∗ + 1, … , 𝐽𝐽, no change; 
        Find 𝛿𝛿∗ = min

𝑗𝑗=1,…,𝐽𝐽
𝛿𝛿𝑗𝑗 and 𝑗𝑗∗ = arg min

𝑗𝑗=1,…,𝐽𝐽
𝛿𝛿𝑗𝑗, the closest pair is < 𝑗𝑗∗, 𝑠𝑠𝑗𝑗∗ >; 

} 
Step 3. Export updated non-empty CF-trees; 
 
Clearly, CF-tree based HAC is very similar to matrix based HAC. The only difference is that CF-tree based 
HAC takes advantage of CF-tree structures to efficiently find the closest pair, rather than checking all 
possible pairs as in matrix based HAC.  

8. Determination of the Number of Clusters 
Assume that the hierarchical clustering method has been used to produce 1, 2 … clusters already. We 
consider the following two criterion indices in order to find the appropriate number of final clusters. 

Bayesian Information Criterion (BIC): 

BIC(𝐽𝐽) = −2∑ 𝜉𝜉𝑗𝑗
𝐽𝐽
𝑗𝑗=1 + 𝑚𝑚𝐽𝐽ln (𝑁𝑁),                                                                                                                           (23) 

where 𝑁𝑁 is the total number of cases in all the 𝐽𝐽 clusters,  

𝑚𝑚𝐽𝐽 = 𝐽𝐽 �2𝐾𝐾𝐴𝐴 + ∑ (𝐿𝐿𝑘𝑘 − 1)𝐾𝐾𝐵𝐵
𝑘𝑘=1 �.                                                                     (24) 

Akaike Information Criterion (AIC): 

AIC(𝐽𝐽) = −2∑ 𝜉𝜉𝑗𝑗
𝐽𝐽
𝑗𝑗=1 + 2𝑚𝑚𝐽𝐽.                                           (25) 

Let I(𝐽𝐽) be the criterion index (BIC or AIC) of 𝐽𝐽 clusters, d(𝐽𝐽) be the distance measure between the two 
clusters merged in merging 𝐽𝐽 + 1 clusters to 𝐽𝐽 clusters, and 𝐽𝐽𝐶𝐶  be the total number of sub-clusters from 
which to determine the appropriate number of final clusters. 

Users can supply the range for the number of clusters [𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚] in which they believe the “true” number 
of clusters should lie. Notice that if 𝐽𝐽𝐶𝐶 < 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 , reset 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐽𝐽𝐶𝐶 . 

The following four methods are proposed: 

Method 1. Finding the number of clusters by information convergence. 

Let ∆I(𝐽𝐽) = I(𝐽𝐽) − I(𝐽𝐽 + 1), where I(𝐽𝐽) can be either BIC(𝐽𝐽) or AIC(𝐽𝐽) depending on user’s choice. 

If ∆I(1) ≤ 0, 𝐽𝐽𝐼𝐼 = 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚. Else, let𝑅𝑅1(𝐽𝐽) = ∆I(𝐽𝐽)/∆I(1); 

 

 



 
 

 

Let 𝐽𝐽𝐼𝐼 be the smallest 𝐽𝐽 in [𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚, 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 − 1] which satisfies 𝑅𝑅1(𝐽𝐽) < 0.1, If none 𝐽𝐽 satisfies the condition, 
let 𝐽𝐽𝐼𝐼 = 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚. 

Method 2. Finding the number of cluster by the largest distance jump.  

To report 𝐽𝐽𝑑𝑑 = 1 + arg max
𝐽𝐽∈[𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚−1,𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚−1]

(d(𝐽𝐽) d(𝐽𝐽 + 1)⁄ ) as the number of clusters. 

Method 3. Finding the number of clusters by combining distance jump and information 
convergence aggressively 

The process goes as follows: 

a) Let 𝑅𝑅2(𝐽𝐽) = d(𝐽𝐽) d(𝐽𝐽 + 1)⁄ .  
b) Let 𝐽𝐽1 be the largest 𝐽𝐽 in [𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚, 𝐽𝐽𝐼𝐼 − 1] which satisfies 𝑅𝑅1(𝐽𝐽) > 0.3. If none 𝐽𝐽 satisfies the condition, 

let 𝐽𝐽1 = 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 − 1. 
c) Calculate 𝑅𝑅2(𝐽𝐽) for 𝐽𝐽 in [𝐽𝐽1, 𝐽𝐽𝐼𝐼 − 1]. Suppose that the max and the second max of 𝑅𝑅2(𝐽𝐽) occurred 

at 𝑚𝑚1 and 𝑚𝑚2. 
d) If 𝑅𝑅2(𝑚𝑚1)

𝑅𝑅2(𝑚𝑚2)
> 1.3, report 1 + 𝑚𝑚1 as the cluster number. 

e) Otherwise, report 1 + MIN(𝑚𝑚1,𝑚𝑚2). 

Method 4. Finding the number of clusters by combining distance jump and information 
convergence conservatively 

This method performs the same steps from a) to d) in method 3. But in step e), method 4 reports 1 +
MAX(𝑚𝑚1,𝑚𝑚2). 

By default, method 3 is used with BIC as the information criterion. 

9. Overview of the Entire Clustering Solution 
Figure 5 illustrates the overview of the entire clustering solution.    

 

 

 

 

 

 

 

Figure 5. Control flow of the entire clustering solutin. 
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9.1. Feature Selection  

9.1.1. Feature Filtering 

Based on the summary statistics produced by DE, CE will perform an initial analysis and determine the 
features that are not useful for making the clustering solution. Specifically, the following features will be 
excluded. 

# Rule Status Comment 
1 Frequency/analysis weight features Required  
2 Identity features Required  
3 Constant features Required  
4 The percentage of missing values in any feature is 

larger than 𝛿𝛿 (default 70%) 
Required  

5 The distribution of the categories of a categorical 
feature is extremely imbalanced, that is 𝑅𝑅𝑀𝑀𝑆𝑆𝑆𝑆𝑅𝑅 > 𝛿𝛿 
(default 0.7) 

Discarded The statistic of 𝑅𝑅𝑀𝑀𝑆𝑆𝑆𝑆𝑅𝑅 is 
the effect size for one 
sample chi-square test. 

6 One category makes up the overwhelming majority of 
total population above a given percentage threshold 𝛿𝛿 
(default 95%) 

Required  

7 The number of categories of a categorical feature is 
larger than 𝛿𝛿 (default 24) 

Required  

8 There are categories of a categorical feature with 
extremely high or low frequency, that is, the outlier 
strength is larger than 𝛿𝛿 (default 3) 

Discarded  

9 The absolute coefficient of variation of a continuous 
feature is smaller than 𝛿𝛿 (default 0.05) 

Required  

The remaining features will be saved for adaptive feature selection in the next step.  

9.1.2. Adaptive Feature Selection 

Adaptive feature selection selects the most important features for the final clustering solution. Specifically, 
it performs the following steps. 

Step 1. Divide the distributed data into data splits. 
Step 2. Build a local CF-tree on each data split.  
Step 3. Distribute local CF-trees into multiple computing units. A unique key is assigned to each CF-tree.  
Step 4. On each computing unit, start with all available features: 

a. Perform matrix based HAC with all features on the leaf entries to get an approximate 
clustering solution, S0. Suppose there are 𝐽𝐽∗ final clusters. 

b. Compute importance for the set of all features. 
c. Let 𝑆𝑆∗ = 𝑆𝑆0 and 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟  be the information criteria of S0. 
d. Remove features with non-positive importance as many as possible, and update 𝑆𝑆∗ and 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 . 
e. Repeat to do the follows:  

i. Select the most unimportant feature from remaining features which are not checked.  
ii. Perform matrix based HAC with remaining features (not including the selected one) 

on the leaf entries to get a new approximate clustering solution, S1, with the fixed 
number of 𝐽𝐽∗ clusters. 
 
 
 
 



 
 

 
 

iii. If the information criteria of S1 plus the information of all discarded features 
determined by S1 is lower than 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 , then remove the selected feature, and let 𝑆𝑆∗ = 𝑆𝑆1. 

iv. Continue to check the next feature. 
f. Select the set of features corresponding to 𝑆𝑆∗. 

Step 5. Pour together all the sets of features produced by different computing units. Discard any feature if 
its occurring frequency is less than 𝑅𝑅 ∗ 𝛽𝛽 (default 𝛽𝛽 = 50%). The remaining features will be used to 
build the final clustering solution.   

 

The process described above can be implemented in parallel using one map-reduce job under the Hadoop 
framework, as illustrated in Figure 6. See appendix A for details the map-reduce implementation. 

 

 

 

 

 

 

 

 

 

Figure 6. One map-reduce job for feature selection. 

Implementation notes: 

 In default, the information based feature importance is used for the log-likelihood distance 
measure, and the effect size based feature importance is for the Euclidean distance.  

 If no features are selected, just report all features.  
 

9.2. Distributed Clustering 

The Clustering Engine (CE) can identify clusters from distributed data with high performance and 
accuracy. Specifically, it performs the following steps: 

Step 1. Divide the distributed data into data splits. 
Step 2. Build a local CF-tree on each data split.   
Step 3. Distribute local CF-trees into multiple computing units. Note that multiple CF-trees may be 

distributed to the same computing unit.  
Step 4. On each computing unit, with all CF-entries in the involved CF-trees, perform a series of CF-tree 

based HACs, and get a specified number of sub-clusters. 
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Data split K 

Reducer G 

Do the same as Reducer 1 
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b. Remove the most 
unimportant features. 

c. Repeat step a) and b) until 
all relevant features for 
clustering have been 
selected. 

3. Pass the set of selected 
features to the controller. 

1. Pour together all the 
sets of features 
produced by different 
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Step 5. Pour together all the sub-clusters produced by different computing unit, and perform matrix based 
HAC to get the final clusters.  
The number of final clusters is determined automatically or using a fixed one depending on the 
settings. 

 

The process described above can be implemented in parallel using one map-reduce job under the Hadoop 
framework, as illustrated in Figure 7. See appendix B for details of the map-reduce implementation.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. One map-reduce job for distributed clustering with outlier delection. 

Implementation notes: 

 The number of computing units is 
𝑄𝑄 = ⌈𝑚𝑚𝑖𝑖𝑚𝑚(𝑅𝑅 ∗ 𝑆𝑆 𝐷𝐷1⁄ ,𝐷𝐷2 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚⁄ )⌉,                  (28) 
where 𝐷𝐷1 (default 50,000) is the number of data points which are suitable to perform CF-tree based 
HAC, 𝐷𝐷2 (default 5,000) is the number of data points which are suitable to perform matrix based 
HAC, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚  is the minimal number of sub-clusters produced by each computing unit, and 𝑆𝑆 is the 
maximal number of leaf entries, i.e. 𝐵𝐵𝐻𝐻 ∗ 𝐿𝐿, in a single CF-tree. 

 The number of sub-clusters produced by each computing unit is 
𝐽𝐽1 = ⌊𝑚𝑚𝑖𝑖𝑚𝑚(𝑅𝑅 ∗ 𝑆𝑆,𝐷𝐷2) 𝑄𝑄⁄ ⌋.   
                 (29) 

9.3. Distributed Outlier Detection 

Outlier detection in the Clustering Engine will be based and will build upon the outlier handling method 
described previously in section 6. It is also extended to the distributed setting with the following steps: 
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Step 1. On each data split, perform the following: 
1) Generate local candidate outliers according to the method described in section 6. 
2) Distribute the local candidate outliers together with the associated CF-tree to a certain 

computing unit.  
Step 2. Each computing unit is allocated with a set of candidate outliers and also a set of CF-trees 

containing regular leaf entries. For each member in the set of candidate outliers, it will be merged 
with the closest regular leaf entry only if the merging does not break the maximal tightness 
threshold among the involved CF-trees. Note that we will pass the CF-trees in order to enhance the 
performance of finding the closest regular leaf entry.    

Step 3. Pour together all the remaining candidate outliers and sub-clusters produced by computing 
machines. Do the following: 
1) Perform matrix based HAC on sub-clusters, and get the final regular clusters. 
2) Keep only candidate outliers whose distance from the closest regular cluster to the center of 

the outlier candidate is greater than the corresponding cluster distance threshold 𝐷𝐷𝑡𝑡(𝑗𝑗) 
3) Merge the rest of candidate outliers with the corresponding closest regular clusters and update 

the distance threshold for each regular cluster. 
4) For each remaining outlier cluster, compute its outlier strength.   
5) Sort remaining outlier clusters according to outlier strength in descending order, and get the 

minimum outlier strength for the top P (default 5%) percent of outliers, and use it as an outlier 
threshold in scoring.  

6) Export a specified number of the most extreme outlier clusters (default 20), along with the 
following measures for each cluster: cluster size, outlier strength, probabilities of belonging to 
each regular cluster.   

 
Outlier strength of a cluster 𝐶𝐶𝑠𝑠 is computed as 

𝑂𝑂(𝑠𝑠) = ∑ 𝑑𝑑�(𝑗𝑗,𝑠𝑠)
𝐷𝐷𝑡𝑡(𝑗𝑗)

𝑝𝑝(𝑗𝑗|𝑠𝑠)𝐽𝐽
𝑗𝑗=1 ,                  (30) 

where 𝐷𝐷𝑡𝑡(𝑗𝑗) is the distance threshold of cluster 𝐶𝐶𝑗𝑗, which is the maximum distance from cluster 𝐶𝐶𝑗𝑗 to each 
center of its starting sub-clusters in matrix based HAC, �̃�𝑑(𝑗𝑗, 𝑠𝑠) is the distance from cluster 𝐶𝐶𝑗𝑗 to the center of 
cluster 𝐶𝐶𝑠𝑠, and 𝑝𝑝(𝑗𝑗|𝑠𝑠) is the probability of cluster 𝐶𝐶𝑠𝑠 belonging to cluster 𝐶𝐶𝑗𝑗, that is  

𝑝𝑝(𝑗𝑗|𝑠𝑠) = exp (−𝑑𝑑�(𝑗𝑗,𝑠𝑠))
∑ exp (−𝑑𝑑�(𝑗𝑗,𝑠𝑠))𝐽𝐽
𝑗𝑗=1

.                                            (31) 

Notice that the distance between the cluster center and a cluster 𝐶𝐶𝑗𝑗 is computed by considering the center of 
cluster 𝐶𝐶𝑠𝑠 as a singleton cluster 𝐶𝐶𝑠𝑠′. The cluster center herein is defined as the mean for a continuous 
feature, while being the mode for a categorical feature. 

10. Cluster Membership Assignment 

10.1. Without Outlier-Handling 

Assign a case to the closest cluster according to the distance measure. Meanwhile, produce the probabilities 
of the case belonging to each regular cluster. 

 

 

 

 



 
 

 

10.2. With Outlier-Handling 

10.2.1. Legacy Method 

Log-likelihood distance 

Assume outliers follow a uniform distribution. Calculate both the log-likelihood resulting from assigning a 
case to a noise cluster and that resulting from assigning it to the closest non-noise cluster. The case is then 
assigned to the cluster which leads to the larger log-likelihood. This is equivalent to assigning a case to its 
closest non-noise cluster if the distance between them is smaller than a critical value 𝐶𝐶 = ln(∏ 𝑅𝑅𝑘𝑘𝑘𝑘 ∏ 𝐿𝐿𝑚𝑚𝑚𝑚 ), 
where ∏ 𝑅𝑅𝑘𝑘𝑘𝑘  is the product of ranges of continuous fields, and ∏ 𝐿𝐿𝑚𝑚𝑚𝑚  is the product of category numbers of 
categorical fields. Otherwise, designate it as an outlier.  

Euclidean distance 

Assign a case to its closest non-noise cluster if the Euclidean distance between them is smaller than a 

critical value 𝐶𝐶 = 2� 1
𝐽𝐽𝐾𝐾𝐴𝐴

∑ ∑ 𝜎𝜎�𝑗𝑗𝑘𝑘2
𝐾𝐾𝐴𝐴
𝑘𝑘=1

𝐽𝐽
𝑗𝑗=1 . Otherwise, designate it as an outlier. 

10.2.2. New Method 

When scoring a new case, we compute the outlier strength of the case. If the computed outlier strength is 
greater than the outlier threshold, then the case is an outlier and otherwise belongs to the closest cluster. 
Meanwhile, the probabilities of the case belonging to each regular cluster are produced. 

Alternatively, users can specify a customized outlier threshold (3, for example) rather than using the one 
found from the data.   

11. Clustering Model Evaluation 
Clustering model evaluation enables users to understand the identified cluster structure, and also to learn 
useful insights and interestingness derived from the clustering solution.    

Note that clustering model evaluation can be done using cluster features and also the hierarchical 
dendrogram when forming the clustering solution.     

11.1. Across-Cluster Feature Importance 

Across-cluster feature importance indicates how influential a feature is in building the clustering solution. 
This measure is very useful for users to understand the clusters in their data. Moreover, it helps for feature 
selection, as described in section 12.2.  

Across-cluster feature importance can be defined using two methods.    

11.1.1. Information Criterion Based Method 

If BIC is used as the information criterion, the importance of feature 𝑘𝑘 is 

 

 



 
 

 

Importance𝑘𝑘 = BIC𝑘𝑘
0−BIC𝑘𝑘

diff𝐾𝐾
𝑚𝑚𝑚𝑚𝑚𝑚 ,                                                                                  (32) 

where 

BIC𝑘𝑘0 = �
𝑁𝑁𝑘𝑘 ln(𝜎𝜎�𝑘𝑘2 + Δ𝑘𝑘) + 2 ln(𝑁𝑁) , if feature 𝑘𝑘 is continuous
2𝑁𝑁′𝑘𝑘𝑅𝑅�𝑘𝑘 + (𝐿𝐿𝑘𝑘 − 1) ln(𝑁𝑁) , if feature 𝑘𝑘 is categorical

, 

BIC𝑘𝑘 = �
∑ 𝑁𝑁𝑗𝑗𝑘𝑘 ln�𝜎𝜎�𝑗𝑗𝑘𝑘2 + Δ𝑘𝑘�
𝐽𝐽
𝑗𝑗=1 + 2𝐽𝐽 ln(𝑁𝑁) , if feature 𝑘𝑘 is continuous

2∑ 𝑁𝑁′𝑗𝑗𝑘𝑘𝑅𝑅�𝑗𝑗𝑘𝑘
𝐽𝐽
𝑗𝑗=1 + 𝐽𝐽(𝐿𝐿𝑘𝑘 − 1) ln(𝑁𝑁) , if feature 𝑘𝑘 is categorical

, 

diff𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑘𝑘

(BIC𝑘𝑘0 − BIC𝑘𝑘), 

and 𝑁𝑁𝑘𝑘, 𝑁𝑁′𝑘𝑘 is the total valid count of feature 𝑘𝑘 in the data, 𝜎𝜎�𝑘𝑘2 is the grand variance, and 𝑅𝑅�𝑘𝑘 is the grand 
entropy.  

Notice that the information measure for the overall population has been decomposed as  

BIC0 = ∑ BIC𝑘𝑘0𝐾𝐾𝐴𝐴+𝐾𝐾𝐵𝐵
𝑘𝑘=1 . 

While if AIC is used, across-cluster importance is 

Importance𝑘𝑘 = AIC𝑘𝑘
0−AIC𝑘𝑘

diff𝐾𝐾
𝑚𝑚𝑚𝑚𝑚𝑚 ,                                                                                  (33) 

where 

AIC𝑘𝑘0 = �
𝑁𝑁𝑘𝑘 ln(𝜎𝜎�𝑘𝑘2 + Δ𝑘𝑘) + 4, if feature 𝑘𝑘 is continuous
2𝑁𝑁′𝑘𝑘𝑅𝑅�𝑘𝑘 + 2(𝐿𝐿𝑘𝑘 − 1), if feature 𝑘𝑘 is categorical

, 

AIC𝑘𝑘 = �
∑ 𝑁𝑁𝑗𝑗𝑘𝑘 ln�𝜎𝜎�𝑗𝑗𝑘𝑘2 + Δ𝑘𝑘�
𝐽𝐽
𝑗𝑗=1 + 4𝐽𝐽, if feature 𝑘𝑘 is continuous

2∑ 𝑁𝑁′𝑗𝑗𝑘𝑘𝑅𝑅�𝑗𝑗𝑘𝑘
𝐽𝐽
𝑗𝑗=1 + 2𝐽𝐽(𝐿𝐿𝑘𝑘 − 1), if feature 𝑘𝑘 is categorical

, 

diff𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑘𝑘

(AIC𝑘𝑘0 − AIC𝑘𝑘). 

Notice that, if the importance computed as above is negative, set it as zero. This also applies in the 
following. 

Notice that the importance of a feature will be zero if the information difference corresponding to the 
feature is negative. This applies for all the calculations of information-based importance.  

11.1.2. Effect Size Based Method 

This method is similar to that used for defining association interestingness for bivariate variables. See ref. 6 
for details. 

 

 

 



 
 

 

 
 
Categorical Feature 

For a categorical feature 𝑘𝑘, compute Pearson chi-square test statistic  

𝜒𝜒𝑝𝑝2 = ∑ ∑ (𝑁𝑁𝑗𝑗𝑘𝑘𝑗𝑗−𝐸𝐸𝑗𝑗𝑘𝑘𝑗𝑗)2

𝐸𝐸𝑗𝑗𝑘𝑘𝑗𝑗

𝐽𝐽
𝑗𝑗=1

𝐿𝐿𝑘𝑘
𝑙𝑙=1 ,                                                                     (34) 

where 

𝑅𝑅𝑗𝑗𝑘𝑘𝑙𝑙 =
𝑁𝑁𝑗𝑗𝑘𝑘∙𝑁𝑁∙𝑘𝑘𝑗𝑗
𝑁𝑁∙𝑘𝑘∙

,                                                                           (35) 

and 

𝑁𝑁𝑗𝑗𝑘𝑘∙ = ∑ 𝑁𝑁𝑗𝑗𝑘𝑘𝑙𝑙
𝐿𝐿𝑘𝑘
𝑙𝑙=1 ,                                                            (36) 

𝑁𝑁∙𝑘𝑘𝑙𝑙 = ∑ 𝑁𝑁𝑗𝑗𝑘𝑘𝑙𝑙
𝐽𝐽
𝑗𝑗=1 ,                      (37) 

𝑁𝑁∙𝑘𝑘∙ = ∑ ∑ 𝑁𝑁𝑗𝑗𝑘𝑘𝑙𝑙
𝐽𝐽
𝑗𝑗=1

𝐿𝐿𝑘𝑘
𝑙𝑙=1 .                   (38) 

The p-value is computed as 

𝑝𝑝𝑣𝑣𝑚𝑚𝑙𝑙𝑣𝑣𝑟𝑟 = Prob�Χ2 > 𝜒𝜒𝑝𝑝2�,                                                               (39) 

in which Χ2 is a random variable that follows a chi-square distribution with freedom degree of (𝐽𝐽 − 1)(𝐿𝐿𝑘𝑘 −
1). Note that categories with 𝑁𝑁𝑗𝑗𝑘𝑘∙ = 0 or 𝑁𝑁∙𝑘𝑘𝑙𝑙 = 0 will be excluded when computing the statistic and degrees 
of freedom. 

The effect size, Cramer’s V, is  

𝑅𝑅𝑠𝑠 = � 𝜒𝜒𝑝𝑝2

𝑁𝑁∙𝑘𝑘∙(𝑞𝑞−1)
�
1/2

,                     (40) 

where 

𝑞𝑞 = min (𝐽𝐽, 𝐿𝐿𝑘𝑘).                                  (41) 

The importance of feature 𝑘𝑘 is produced by the following mapping function 

Importance𝑘𝑘 = �
0, 𝑝𝑝𝑣𝑣𝑚𝑚𝑙𝑙𝑣𝑣𝑟𝑟 ≥ 𝑠𝑠𝑖𝑖𝑠𝑠.

𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝐼𝐼𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑙𝑙𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝑚𝑚(𝑆𝑆𝑡𝑡 , 𝐼𝐼𝑡𝑡 ,𝑅𝑅𝑠𝑠), 𝑝𝑝𝑣𝑣𝑚𝑚𝑙𝑙𝑣𝑣𝑟𝑟 < 𝑠𝑠𝑖𝑖𝑠𝑠.             (42) 

where 𝑠𝑠𝑖𝑖𝑠𝑠. is significance level (default 0.05), 𝑆𝑆𝑡𝑡 is a set of threshold values to assess effect size (default 𝑆𝑆𝑡𝑡 =
{0.0, 0.2, 0.6, 1.0}), 𝐼𝐼𝑡𝑡  is a set of corresponding thresholds of importance (default  
𝐼𝐼𝑡𝑡 = {0.00, 0.33, 0.67, 1.00}), and 𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝐼𝐼𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑙𝑙𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝑚𝑚(∙) is a monotone cubic interpolation 
mapping function between 𝑆𝑆𝑡𝑡  and 𝐼𝐼𝑡𝑡 .    

 

 



 
 

 

Continuous Feature 

For a continuous feature 𝑘𝑘, compute F test statistic 

𝐹𝐹 = 𝑆𝑆𝑆𝑆𝑅𝑅 (𝐽𝐽−1)⁄
𝑆𝑆𝑆𝑆𝐸𝐸 (𝑁𝑁∙𝑘𝑘−𝐽𝐽)⁄

,                                                     (43) 

where                

𝑆𝑆𝑆𝑆𝑅𝑅 = ∑ 𝑁𝑁𝑗𝑗𝑘𝑘��̂�𝜇𝑗𝑗𝑘𝑘 − �̂�𝜇𝑘𝑘�
2𝐽𝐽

𝑗𝑗=1 ,                   (44) 

𝑆𝑆𝑆𝑆𝑅𝑅 = ∑ 𝑁𝑁𝑗𝑗𝑘𝑘𝜎𝜎�𝑗𝑗𝑘𝑘2
𝐽𝐽
𝑗𝑗=1 ,            

                     (45) 

𝑁𝑁∙𝑘𝑘 = ∑ 𝑁𝑁𝑗𝑗𝑘𝑘
𝐽𝐽
𝑗𝑗=1 ,                    (46) 

�̂�𝜇𝑘𝑘 =
∑ 𝑁𝑁𝑗𝑗𝑘𝑘𝜇𝜇�𝑗𝑗𝑘𝑘
𝐽𝐽
𝑗𝑗=1

𝑁𝑁∙𝑘𝑘
.                    (47) 

The F statistic is undefined if the denominator equals zero. Accordingly, the p-value is calculated as   

𝑝𝑝𝑣𝑣𝑚𝑚𝑙𝑙𝑣𝑣𝑟𝑟 = �
undefined, if both the numerator and denominator of 𝐹𝐹 are zero; 

0, else if the denominator of 𝐹𝐹 is zero;
Prob{𝐹𝐹(𝐽𝐽 − 1,𝑁𝑁∙𝑘𝑘 − 𝐽𝐽) > 𝐹𝐹}, else.

            (48) 

in which 𝐹𝐹(𝐽𝐽 − 1,𝑁𝑁∙𝑘𝑘 − 𝐽𝐽) is a random variable that follows a F-distribution with degrees of freedom 𝐽𝐽 − 1 
and 𝑁𝑁∙𝑘𝑘 − 𝐽𝐽.  

The effect size, Eta square, is 

𝑅𝑅𝑠𝑠 = 1 −
∑ 𝑁𝑁𝑗𝑗𝑘𝑘𝜎𝜎�𝑗𝑗𝑘𝑘

2𝐽𝐽
𝑗𝑗=1

𝑁𝑁∙𝑘𝑘𝜎𝜎�𝑘𝑘
2 ,                                (49) 

where 

𝜎𝜎�𝑘𝑘2 =
∑ 𝑠𝑠𝑗𝑗𝑘𝑘

2𝐽𝐽
𝑗𝑗=1 −𝑁𝑁∙𝑘𝑘𝜇𝜇�𝑘𝑘

2

𝑁𝑁∙𝑘𝑘
.                   (50) 

The importance of feature 𝑘𝑘 is produced using the same mapping function as (42), and default 𝑆𝑆𝑡𝑡 =
{0.0, 0.04, 0.36, 1.0}. 

11.2. Within-Cluster Feature Importance 

Within-cluster feature importance indicates how influential a feature is in forming a cluster. Similar to 
across-cluster feature importance, within-cluster feature importance can also be defined using two 
methods.    

 

 

 



 
 

 

11.2.1. Information Criterion Based Method 

If BIC is used as the information criterion, the importance of feature 𝑘𝑘 within cluster 𝐶𝐶𝑗𝑗 (𝑗𝑗 = 1, … , 𝐽𝐽) is 

Importance𝑘𝑘,𝑗𝑗 =
BIC𝑘𝑘

0−BIC𝑘𝑘,𝑗𝑗

diff𝐾𝐾,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 ,                                                                                                             (51) 

where 

BIC𝑘𝑘,𝑗𝑗 = �
𝑁𝑁𝑗𝑗𝑘𝑘 ln�𝜎𝜎�𝑗𝑗𝑘𝑘2 + Δ𝑘𝑘� + 𝑁𝑁𝑗𝑗𝑐𝑐𝑘𝑘 ln�𝜎𝜎�𝑗𝑗𝑐𝑐𝑘𝑘

2 + Δ𝑘𝑘� + 2 ∗ 2ln (𝑁𝑁), if feature 𝑘𝑘 is continuous
2𝑁𝑁′𝑗𝑗𝑘𝑘𝑅𝑅�𝑗𝑗𝑘𝑘 + 2𝑁𝑁′𝑗𝑗𝑐𝑐𝑘𝑘𝑅𝑅�𝑗𝑗𝑐𝑐𝑘𝑘 + 2 ∗ (𝐿𝐿𝑘𝑘 − 1) ln(𝑁𝑁) , if feature 𝑘𝑘 is categorical

,         (52) 

diff𝐾𝐾,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 = max

𝑘𝑘
(BIC𝑘𝑘0 − BIC𝑘𝑘,𝑗𝑗).                                                                                                                              (53) 

Notice that jc represents the complement set of j in J. 

If AIC is used as the information criterion, the importance of feature 𝑘𝑘 within cluster 𝐶𝐶𝑗𝑗 (𝑗𝑗 = 1, … , 𝐽𝐽) is 

Importance𝑘𝑘,𝑗𝑗 =
AIC𝑘𝑘

0−AIC𝑘𝑘,𝑗𝑗

diff𝐾𝐾,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 ,                                                                                                   (54) 

where 

AIC𝑘𝑘,𝑗𝑗 = �
𝑁𝑁𝑗𝑗𝑘𝑘 ln�𝜎𝜎�𝑗𝑗𝑘𝑘2 + Δ𝑘𝑘� + 𝑁𝑁𝑗𝑗𝑐𝑐𝑘𝑘 ln�𝜎𝜎�𝑗𝑗𝑐𝑐𝑘𝑘

2 + Δ𝑘𝑘� + 4 ∗ 2, if feature 𝑘𝑘 is continuous
2𝑁𝑁′𝑗𝑗𝑘𝑘𝑅𝑅�𝑗𝑗𝑘𝑘 + 2𝑁𝑁′𝑗𝑗𝑐𝑐𝑘𝑘𝑅𝑅�𝑗𝑗𝑐𝑐𝑘𝑘 + 2 ∗ 2(𝐿𝐿𝑘𝑘 − 1), if feature 𝑘𝑘 is categorical

          (55) 

diff𝐾𝐾,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 = max

𝑘𝑘
(AIC𝑘𝑘0 − AIC𝑘𝑘,𝑗𝑗).                                 (56) 

11.2.2. Effect Size Based Method 

Within-cluster importance is defined by comparing the distribution of the feature within a cluster with the 
overall distribution.   

Categorical Feature 

For cluster 𝐶𝐶𝑗𝑗 (𝑗𝑗 = 1, … , 𝐽𝐽) and a categorical feature 𝑘𝑘, compute Pearson chi-square test statistic  

𝜒𝜒𝑝𝑝2 = ∑ (𝑁𝑁𝑗𝑗𝑘𝑘𝑗𝑗−𝐸𝐸𝑗𝑗𝑘𝑘𝑗𝑗)2

𝐸𝐸𝑗𝑗𝑘𝑘𝑗𝑗

𝐿𝐿𝑘𝑘
𝑙𝑙=1 ,                                                                     (57) 

where 

𝑅𝑅𝑗𝑗𝑘𝑘𝑙𝑙 =
𝑁𝑁𝑗𝑗𝑘𝑘∙𝑁𝑁∙𝑘𝑘𝑗𝑗
𝑁𝑁∙𝑘𝑘∙

.                    (58)                                           

The p-value is computed as 

𝑝𝑝𝑣𝑣𝑚𝑚𝑙𝑙𝑣𝑣𝑟𝑟 = Prob�Χ2 > 𝜒𝜒𝑝𝑝2�,                                                               (59) 

 

 



 
 

 

in which Χ2 is a random variable that follows a chi-square distribution with freedom degree of 𝐿𝐿𝑘𝑘 − 1. Note 
that importance for feature 𝑘𝑘 within cluster 𝐶𝐶𝑗𝑗 will be undefined if 𝑁𝑁𝑗𝑗𝑘𝑘∙ equals zero.  

The effect size is  

𝑅𝑅𝑠𝑠 = � 𝜒𝜒𝑝𝑝2

𝑁𝑁𝑗𝑗𝑘𝑘∙(𝐿𝐿𝑘𝑘−1)
�
1
2
.                                                                                                                           (60) 

The importance of feature 𝑘𝑘 within cluster 𝐶𝐶𝑗𝑗 is produced using the same mapping function as (42), and 
default 𝑆𝑆𝑡𝑡 = {0.0, 0.2, 0.6, 1.0}. 

Continuous Feature 

For cluster 𝐶𝐶𝑗𝑗 (𝑗𝑗 = 1, … , 𝐽𝐽) and a continuous feature 𝑘𝑘, compute t test statistic 

𝑀𝑀 =
𝜇𝜇�𝑗𝑗𝑘𝑘−𝜇𝜇�𝑘𝑘
𝑠𝑠𝑑𝑑 �𝑁𝑁𝑗𝑗𝑘𝑘⁄

,                                                                   (61) 

where 

𝑠𝑠𝑑𝑑 = �
𝑁𝑁𝑗𝑗𝑘𝑘

𝑁𝑁𝑗𝑗𝑘𝑘−1
𝜎𝜎�𝑗𝑗𝑘𝑘2 .                     (62) 

The p-value is calculated as   

𝑝𝑝𝑣𝑣𝑚𝑚𝑙𝑙𝑣𝑣𝑟𝑟 = �
undefined, if both the numerator and denominator of 𝑀𝑀 are zero; 

0, else if the denominator of 𝑀𝑀 is zero;
1 − Prob��𝑇𝑇(𝑁𝑁𝑗𝑗𝑘𝑘 − 1)� ≤ |𝑀𝑀|�, else.

            (63) 

in which 𝑇𝑇(𝑁𝑁𝑗𝑗𝑘𝑘 − 1) is a random variable that follows a t-distribution with degrees of freedom 𝑁𝑁𝑗𝑗𝑘𝑘 − 1. 

The effect size is 

𝑅𝑅𝑠𝑠 =
�𝜇𝜇�𝑗𝑗𝑘𝑘−𝜇𝜇�𝑘𝑘�

𝑠𝑠𝑑𝑑
.                                                      

(64) 

The importance of feature 𝑘𝑘 within cluster 𝐶𝐶𝑗𝑗 is produced using the same mapping function as (42), and 
default 𝑆𝑆𝑡𝑡 = {0.0, 0.2, 0.6, 1.0}. 

11.3. Clustering Model Goodness  

Clustering model goodness indicates the quality of a clustering solution. This measure will be computed 
for the final clustering solution, and it will also be computed for approximate clustering solutions during 
the process of adaptive feature selection.   

Suppose there are 𝐽𝐽 regular clusters, denoted as 𝐶𝐶1,..., 𝐶𝐶𝐽𝐽. Let 𝑙𝑙(𝑖𝑖) be the regular cluster label assigned to 
sub-cluster 𝑖𝑖.  

 

 



 
 

 

Then for each sub-cluster 𝑖𝑖, the Silhouette coefficient is computed approximately as 

𝑆𝑆𝑚𝑚 = Ω−Φ
max (Φ,Ω)

,                    (65) 

where 

Φ is the weighted average distance from the center of sub-cluster 𝑖𝑖 to the center of every other sub-cluster 
assigned to the same regular cluster, that is, 

Φ =
∑ 𝑁𝑁𝑠𝑠𝑑𝑑(𝑚𝑚,𝑠𝑠)𝑠𝑠≠𝑚𝑚 and 𝑗𝑗(𝑠𝑠)=𝑗𝑗(𝑚𝑚)

∑ 𝑁𝑁𝑠𝑠𝑠𝑠≠𝑚𝑚 and 𝑗𝑗(𝑠𝑠)=𝑗𝑗(𝑚𝑚)
,                                       (66) 

Ω is the minimal average distance from the center of sub-cluster 𝑖𝑖 to the center of sub-clusters in a different 
regular cluster among all different regular clusters, that is, 

Ω = min �
∑ 𝑁𝑁𝑠𝑠𝑑𝑑(𝑚𝑚,𝑠𝑠)𝑗𝑗(𝑠𝑠)=𝐶𝐶𝑗𝑗

∑ 𝑁𝑁𝑠𝑠𝑗𝑗(𝑠𝑠)=𝐶𝐶𝑗𝑗
�𝑗𝑗 = 1, … , 𝐽𝐽 and 𝐶𝐶𝑗𝑗 ≠ 𝑙𝑙(𝑖𝑖)�.                              (67) 

Clustering model goodness is defined as the weighted average Silhouette coefficient over all starting sub-
clusters in the final stage of regular HAC, that is, 

𝐺𝐺𝑀𝑀𝑀𝑀𝑑𝑑𝑚𝑚𝑀𝑀𝑠𝑠𝑠𝑠 =
∑ 𝑁𝑁𝑗𝑗𝑆𝑆𝑗𝑗𝑗𝑗
∑ 𝑁𝑁𝑗𝑗𝑗𝑗

.                 (68) 

The average Silhouette coefficient ranges between -1 (indicating a very poor model) and +1 (indicating an 
excellent model). As found by Kaufman and Rousseeuw (1990), average Silhouette greater than 0.5 
indicates reasonable partitioning of data; lower than 0.2 means that data does not exhibit cluster structure. 
In this regard, we can use the following function to map 𝐺𝐺𝑀𝑀𝑀𝑀𝑑𝑑𝑚𝑚𝑀𝑀𝑠𝑠𝑠𝑠 into an interestingness score: 

𝐼𝐼𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑀𝑀𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑀𝑀𝑠𝑠𝑠𝑠(𝐺𝐺𝑀𝑀𝑀𝑀𝑑𝑑𝑚𝑚𝑀𝑀𝑠𝑠𝑠𝑠) = 𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝐼𝐼𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑙𝑙𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝑚𝑚(𝑆𝑆𝑡𝑡 , 𝐼𝐼𝑡𝑡 ,𝐺𝐺𝑀𝑀𝑀𝑀𝑑𝑑𝑚𝑚𝑀𝑀𝑠𝑠𝑠𝑠),                (69) 

where 𝑆𝑆𝑡𝑡 = {−1.0, 0.2, 0.5, 1.0}, and 𝐼𝐼𝑡𝑡 = {0.0, 0.0, 0.5, 1.0}. 

Implementation notes: 

 Please refer to section 9.3 for the definition of cluster center and also for the calculation of distance.  
 When there is only a single sub-cluster in the regular cluster, let Φ be the tightness of the sub-

cluster. 
 

11.4. Special Clusters  

With the clustering solution, we can find special clusters, which could be regular clusters with high quality, 
extreme outlier clusters, and so on.    

 

 

 

 

 



 
 

 

11.4.1. Regular Cluster Ranking 

To select the most useful or interesting regular clusters, we can rank them according to any of the measures 
described below.   

Cluster tightness 

Cluster tightness is given by equation (9) or (15). 

Cluster tightness is not scale-free, and it is a measure of cluster cohesion. 

Cluster importance 

Cluster importance indicates the quality of the regular cluster in the clustering solution. A higher 
importance value means a better quality of the regular cluster.  

If BIC is used as the information criterion, the importance for regular cluster 𝐶𝐶𝑗𝑗 is 

Importance𝑗𝑗 =
BIC0 −BIC𝑗𝑗
diff𝐽𝐽

𝑚𝑚𝑚𝑚𝑚𝑚 ,                                                                        (70) 

where 

BIC𝑗𝑗 = ∑ BIC𝑘𝑘,𝑗𝑗
𝐾𝐾𝐴𝐴+𝐾𝐾𝐵𝐵
𝑘𝑘=1 , 

BIC0 = ∑ BIC𝑘𝑘0𝐾𝐾𝐴𝐴+𝐾𝐾𝐵𝐵
𝑘𝑘=1 , 

diff𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑗𝑗

(BIC0 − BIC𝑗𝑗). 

If AIC is used as the information criterion, the importance for regular cluster 𝐶𝐶𝑗𝑗 is 

Importance𝑗𝑗 =
AIC0 −AIC𝑗𝑗
diff𝐽𝐽

𝑚𝑚𝑚𝑚𝑚𝑚 ,                                                                                                 (71) 

where 

AIC𝑗𝑗 = ∑ AIC𝑘𝑘,𝑗𝑗
𝐾𝐾𝐴𝐴+𝐾𝐾𝐵𝐵
𝑘𝑘=1 , 

AIC0 = ∑ AIC𝑘𝑘0𝐾𝐾𝐴𝐴+𝐾𝐾𝐵𝐵
𝑘𝑘=1 , 

diff𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑗𝑗

(AIC0 − AIC𝑗𝑗). 

Cluster importance is scale-free, and in some sense it is a normalized measure of cluster cohesion.   

Cluster goodness 

The goodness measure for regular cluster 𝐶𝐶𝑗𝑗 is defined as the weighted average Silhouette coefficient over 
all starting sub-clusters in regular cluster 𝐶𝐶𝑗𝑗, that is, 

 

 



 
 

 

𝐺𝐺𝑀𝑀𝑀𝑀𝑑𝑑𝑚𝑚𝑀𝑀𝑠𝑠𝑠𝑠𝑗𝑗 =
∑ 𝑁𝑁𝑚𝑚𝑆𝑆𝑚𝑚𝑗𝑗(𝑚𝑚)=𝐶𝐶𝑗𝑗
∑ 𝑁𝑁𝑚𝑚𝑗𝑗(𝑚𝑚)=𝐶𝐶𝑗𝑗

.                 (72) 

We can also map 𝐺𝐺𝑀𝑀𝑀𝑀𝑑𝑑𝑚𝑚𝑀𝑀𝑠𝑠𝑠𝑠𝑗𝑗  into an interestingness score using equation (69). 

Cluster goodness is also scale-free, and it is a measure of balancing cluster cohesion and cluster separation. 

11.4.2. Outlier Clusters Ranking 

For each outlier cluster, we have the following measures: cluster size, outlier strength. Each of the 
measures can be used to rank outlier clusters, so as to find the most interesting ones. 

11.4.3. Outlier Clusters Grouping 

Outlier clusters can be grouped by the nearest regular cluster, using probability values.   



 
 

 

Appendix A. Map-Reduce Job for Feature Selection 
Mapper 

Each mapper will handle one data split and use it to build a local CF-tree. The local CF-tree is assigned 
with a unique key. Notice that if the option of outlier handling is turned on, outliers will not be passed to 
reducers in case of feature selection.   

Let 𝑇𝑇𝐶𝐶𝐶𝐶
(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) be the CF-tree with the key of 𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟 on data split 𝑀𝑀 ( 𝑀𝑀 = 1, … ,𝑅𝑅).  

The map function is as follows. 

Inputs: 
− Data split 𝑀𝑀                       // 𝑀𝑀 = 1, … ,𝑅𝑅  
− 𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟                               // 𝑀𝑀 = 1, … ,𝑅𝑅  
 

   <Parameter settings> 
− MainMemory                        // Default 80*1024 bytes  
− OutlierHandling                   // {on, off}, default on 
− OutlierHandlingDiskSpace          // Default 20% of MainMemory 
− OutlierQualification              // Default 10 cases 
− DelayedSplit                      // {on, off}, default on 
− DelayedSplitDiskSpace             // Default 10% of MainMemory 
− Adjustment                        // Default 0.01 
− DistanceMeasure                   // {Log-likelihood, Euclidean}, default  

                                  // Log-likelihood 
− InitialThreshold                  // Default 0 
− NonLeafNodeBranchingFactor        // Default 8 
− LeafNodeBranchingFactor           // Default 8 
− MaxTreeHeight                     // Default 3 

Outputs: 
− 𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) 
Procedure: 
1. Build a CF-tree on data split 𝑀𝑀 based on specified features and settings; 
2. Assign 𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟 to the CF-tree; 
3. Export 𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟); 

Reducer 

Each reducer can handle several keys. For each key, it first pours together all CF-trees which have the same 
key. Then it builds approximate clustering solutions iteratively in order to find the most influential 
features. The selected features will be passed to the controller.  

Let 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) be the set of features produced for the key of 𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟 , 𝑀𝑀 = 1, … ,𝑅𝑅.  

The reduce function for each key is as follows. 

 

 

 



 
 

 

Inputs: 

− 𝑇𝑇𝐶𝐶𝐶𝐶
(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) 

 
   <Parameter settings> 

− Adjustment                // Default 0.01 
− DistanceMeasure           // {Log-likelihood, Euclidean}, default Log- 

                          // likelihood 
− AutoClustering            // {on, off}, default on 
− MaximumClusterNumber      // Default 15 
− MinimumClusterNumber      // Default 2 
− FixedClusterNumber        // Default 5 
− ClusteringCriterion       // {BIC, AIC}, default BIC 
− AutoClusteringMethod      // {information criterion, distance jump,  

                          // maximum, minimum}, default minimum 
Outputs: 

− 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) 
Procedure: 
1. Let 𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) be the set of all available features; 
2. With all leaf entries in CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) and using features 𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟), perform 
matrix based HAC to get an approximate cluster solution S0. Suppose the 
number of approximate final clusters is 𝐽𝐽∗, which is determined automatically 
or using a fixed one depending on the settings; 
Compute importance for each feature in 𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟); 
// Importance values should not be truncated 
Compute I(S0), the information criterion of S0; 

3. Let 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) and 𝐼𝐼ref =I(S0); 
Find 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟), the set of features in 𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) with non-positive importance; 
Let 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟); 

4. With all leaf entries in CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶
(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) and using features 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟), perform 

matrix based HAC to get a new solution S1 with fixed 𝐽𝐽∗; 
Compute I(S1), the information criterion of S1; 
Compute the information of all discarded features I(𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟)), 
determined by S1, as ∑ BIC𝑘𝑘𝑘𝑘∈𝐶𝐶(𝑘𝑘𝑟𝑟𝑘𝑘𝑟𝑟)−𝐶𝐶�(𝑘𝑘𝑟𝑟𝑘𝑘𝑟𝑟) , or ∑ AIC𝑘𝑘𝑘𝑘∈𝐶𝐶(𝑘𝑘𝑟𝑟𝑘𝑘𝑟𝑟)−𝐶𝐶�(𝑘𝑘𝑟𝑟𝑘𝑘𝑟𝑟) , depending on the 
setting, where 

    BIC𝑘𝑘 = �
∑ 𝑁𝑁𝑗𝑗𝑘𝑘 ln�𝜎𝜎�𝑗𝑗𝑘𝑘2 + Δ𝑘𝑘�
𝐽𝐽
𝑗𝑗=1 + 2𝐽𝐽 ln(𝑁𝑁) , if feature 𝑘𝑘 is continuous

2∑ 𝑁𝑁′𝑗𝑗𝑘𝑘𝑅𝑅�𝑗𝑗𝑘𝑘
𝐽𝐽
𝑗𝑗=1 + 𝐽𝐽(𝐿𝐿𝑘𝑘 − 1) ln(𝑁𝑁) , if feature 𝑘𝑘 is categorical

; 

    AIC𝑘𝑘 = �
∑ 𝑁𝑁𝑗𝑗𝑘𝑘 ln�𝜎𝜎�𝑗𝑗𝑘𝑘2 + Δ𝑘𝑘�
𝐽𝐽
𝑗𝑗=1 + 4𝐽𝐽, if feature 𝑘𝑘 is continuous

2∑ 𝑁𝑁′𝑗𝑗𝑘𝑘𝑅𝑅�𝑗𝑗𝑘𝑘
𝐽𝐽
𝑗𝑗=1 + 2𝐽𝐽(𝐿𝐿𝑘𝑘 − 1), if feature 𝑘𝑘 is categorical

; 

// Though the discarded features are not used to build S1, their          
// statistics are still available in CFs of final clusters in S1.  

5. While (I(S1)+I(𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟))> 𝐼𝐼ref){ 
Find the most important feature 𝑘𝑘 in 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟); 
Let 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) + {𝑘𝑘}, and 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − {𝑘𝑘}; 
With all leaf entries in CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) and using features 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟), 
perform matrix based HAC to get a new solution S1 with fixed 𝐽𝐽∗; 
Compute I(S1), the information criterion of S1; 
Compute I(𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟)), the information of all discarded features; 

   } 
Let 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) and 𝐼𝐼ref = I(S1)+I(𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟)); 

6. While (𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) is not empty){ 
Find the most unimportant feature 𝑘𝑘 in 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟); 
Let 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − {𝑘𝑘}; 
If (𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − {𝑘𝑘} is empty), break; 
With all leaf entries in CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) and using features       



 
 

𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − {𝑘𝑘}, perform matrix based HAC to get a new solution S1  
with fixed 𝐽𝐽∗; 
Compute I(S1), the information criterion of S1; 
Compute I(𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) + {𝑘𝑘}), the information of all discarded features; 
If (I(S1)+ I(𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) + {𝑘𝑘})<=𝐼𝐼ref){ 

Let 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − {𝑘𝑘}; 
Let 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) + {𝑘𝑘}; 
Let 𝐼𝐼ref = I(S1) +  I(𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) + {𝑘𝑘}); 
Let 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − {𝑘𝑘}; 

} 
   } 
7. Export 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟); 

Controller 

The controller pours together all sets of features produced by reducers, and selects those features which 
appear frequently. The selected features will be used in the next map-reduce job to build the final 
clustering solution. 

The controller runs the following procedure. 

Inputs: 
   <Parameter settings> 

− MinFrequency                // Default 50%  
Outputs: 

− 𝐹𝐹∗                           // Set of selected features 
Procedure: 
1. Let 𝛽𝛽= MinFrequency, and 𝐹𝐹∗ be empty; 
2. Launch a map-reduce job, and get 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟), for 𝑀𝑀 = 1, … ,𝑅𝑅 from the reducers;  
3. Compute 𝐹𝐹 = ⋃ 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟)𝑅𝑅

𝑟𝑟=1 ;  
4. For each feature in 𝐹𝐹, 
      If the occurring frequency is larger than 𝑅𝑅 ∗ 𝛽𝛽, add the feature into 𝐹𝐹∗; 
5. Export 𝐹𝐹∗; 

 

 

  



 
 

 

Appendix B. Map-Reduce Job for Distributed Clustering 
Mapper 

Each mapper will handle one data split and use it to build a local CF-tree.  

Local outlier candidates and the local CF-tree will be distributed to a certain reducer. This is achieved by 
assigning them a key, which is randomly selected from the key set �𝑘𝑘𝑀𝑀𝑘𝑘1, … , 𝑘𝑘𝑀𝑀𝑘𝑘𝑄𝑄�. The number of keys 𝑄𝑄 is 
computed by equation (28). 

For convenience, in the following we call leaf entries as pre-clusters. Let 𝑇𝑇𝐶𝐶𝐶𝐶
(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) and 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡

(𝑟𝑟) (𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) be the 
CF-tree and the set of outliers, respectively, with the key of 𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚  (𝑖𝑖 = 1, … ,𝑄𝑄), on data split 𝑀𝑀 ( 𝑀𝑀 = 1, … ,𝑅𝑅).  

The map function is as follows. 

Inputs: 
− Data split 𝑀𝑀                       // 𝑀𝑀 = 1, … ,𝑅𝑅  
− 𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚                               // 𝑖𝑖 = 1, … ,𝑄𝑄  
 

   <Parameter settings> 
− MainMemory                        // Default 80*1024 bytes  
− OutlierHandling                   // {on, off}, default on 
− OutlierHandlingDiskSpace          // Default 20% of MainMemory 
− OutlierQualification              // Default 10 cases 
− DelayedSplit                      // {on, off}, default on 
− DelayedSplitDiskSpace             // Default 10% of MainMemory 
− Adjustment                        // Default 0.01 
− DistanceMeasure                   // {Log-likelihood, Euclidean}, default  

                                  // Log-likelihood 
− InitialThreshold                  // Default 0 
− NonLeafNodeBranchingFactor        // Default 8 
− LeafNodeBranchingFactor           // Default 8 
− MaxTreeHeight                     // Default 3 

Outputs: 
− 𝑇𝑇(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)                           // Tightness threshold 
− 𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) 
− 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡

(𝑟𝑟) (𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) 
Procedure: 
1. Build a CF-tree on data split 𝑀𝑀 based on specified features and settings; 
2. If (DelayedSplit=’on’),  

Absorb cases in disk space 𝑆𝑆1 with tree rebuilding if necessary; 
2. If (OutlierHandling=’on’),{ 
       Absorb entries in disk space 𝑆𝑆2 without tree rebuilding; 

Check the final CF-tree for outliers; 
       Mark the identified outliers and remaining entries in disk space 𝑆𝑆2 as 

local outlier candidates; 
   } 
3. Assign 𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚 to the CF-tree and the set of outlier candidates; 
4. Export 𝑇𝑇(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), 𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), and 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡
(𝑟𝑟) (𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚); 

 



 
 

 

Reducer 

Each reducer can handle several keys. For each key, it first pours together all CF-trees which have the same 
key. Then with all leaf entries in the involved CF-trees, it performs a series of CF-tree based HACs to get a 
specified number of sub-clusters. Finally, the sub-clusters are passed to the controller. The number of sub-
clusters produced for each key is computed by equation (29). 

Let Ω(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) be the set of data split indices 𝑀𝑀 whose key is 𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚 , 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) and 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) be the set of sub-
clusters and the set of outliers, respectively, produced for the key of 𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚 , 𝑖𝑖 = 1, … ,𝑄𝑄.  

The reduce function for each key is as follows. 

Inputs: 
− 𝑇𝑇(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), 𝑀𝑀 ∈ Ω(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) 
− 𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), 𝑀𝑀 ∈ Ω(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)           
− 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡

(𝑟𝑟) (𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), 𝑀𝑀 ∈ Ω(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)       
 
   <Parameter settings> 

− OutlierHandling          // {on, off}, default on 
− Adjustment               // Default 0.01 
− DistanceMeasure          // {Log-likelihood, Euclidean}, default Log- 

                         // likelihood 
− NumSubClusters           // Number of sub-clusters produced for each key  
− MinSubClusters           // Minimum sub-clusters produced for each key  

                         // default 500  
− MaximumDataPoitsCFHAC    // Maximum data points for HAC, default 50,000 

Outputs: 
− 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) 
− 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) 

Procedure: 
1. Let 𝐽𝐽1= NumSubClusters, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚= MinSubClusters, and 𝐷𝐷1= MaximumDataPoitsCFHAC; 
2. Compute 𝑇𝑇(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) = 𝑚𝑚𝑀𝑀𝑚𝑚�𝑇𝑇(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), 𝑀𝑀 ∈ Ω(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)�; 
3. Compute 𝑆𝑆𝐶𝐶𝐶𝐶(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) = �𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)|𝑀𝑀 ∈ Ω(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)�; 
4. If OutlierHandling is ‘on’,{ 

       Compute 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) = ⋃ 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡
(𝑟𝑟) (𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)𝑟𝑟∈Ω(𝑘𝑘𝑟𝑟𝑘𝑘𝑚𝑚) ; 

       For each member in 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚),{          
           Find the closest leaf entry in the set of CF-trees 𝑆𝑆𝐶𝐶𝐶𝐶(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚); 
           If the closest leaf entry can absorb the outlier member without  
           violating the threshold requirement 𝑇𝑇(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), then merge them, and  
           update𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) and the involved CF-tree; 
       } 
   } 
5. Let 𝑀𝑀1 be the total number of leaf entries in 𝑆𝑆𝐶𝐶𝐶𝐶(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚); 
   While 𝑀𝑀1 > 𝐷𝐷1,{ 
       Divide the set of CF-trees 𝑆𝑆𝐶𝐶𝐶𝐶(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) randomly into 𝑀𝑀2 groups,  
       where 𝑀𝑀2 = ⌈𝑀𝑀1 𝐷𝐷1⁄ ⌉; 
       For each group which has a larger number of leaf entries than 𝑀𝑀3, perform 

CF-tree based HAC to get 𝑀𝑀3 leaf entries, where 𝑀𝑀3 = ⌊𝑚𝑚𝑀𝑀𝑚𝑚(𝐷𝐷1 𝑀𝑀2⁄ ,𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚)⌋; 
       Update 𝑆𝑆𝐶𝐶𝐶𝐶(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) with new CF-trees produced in the above step; 
       Compute the total number of remaining leaf entries 𝑀𝑀1;  
   } 
6. With the set of CF-trees 𝑆𝑆𝐶𝐶𝐶𝐶(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), perform CF-tree based HAC to get a set of 𝐽𝐽1 

sub-clusters, i.e. 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚); 
7. Export 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) and 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚); 



 
 

 

Controller 

The controller pours together all sub-clusters produced by reducers, and performs matrix based HAC to 
get the final clusters. It identifies outlier clusters as well if the option of outlier handling is turned on. 
Moreover, it computes model evaluation measures, and derives insights and interestingness from the 
clustering results.  

The controller runs the following procedure. 

Inputs: 
   <Parameter settings> 

− MainMemory                  // Default 80*1024 bytes  
− OutlierHandling             // {on, off}, default on 
− OutlierHandlingDiskSpace    // Default 20% of MainMemory 
− OutlierQualification        // Default 10 cases 
− ExtremeOutlierClusters      // Default 20 
− DelayedSplit                // {on, off}, default on 
− DelayedSplitDiskSpace       // Default 10% of MainMemory 
− Adjustment                  // Default 0.01 
− DistanceMeasure             // {Log-likelihood, Euclidean}, default  

                            // Log-likelihood 
− InitialThreshold            // Default 0 
− NonLeafNodeBranchingFactor  // Default 8 
− LeafNodeBranchingFactor     // Default 8 
− MaximumTreeHeight           // Default 3  
− AutoClustering              // {on, off}, default on 
− MaximumClusterNumber        // Default 15 
− MinimumClusterNumber        // Default 2 
− FixedClusterNumber          // Default 5 
− ClusteringCriterion         // {BIC, AIC}, default BIC 
− AutoClusteringMethod        // {information criterion, distance jump,  

                            // maximum, minimum}, default minimum 
− MinSubClusters              // Minimum sub-clusters produced for each key,  

                            // default 500  
− MaxDataPoitsCFHAC           // Maximum data points for CF-tree based HAC,  

                            // default 50,000 
− MaxDataPoitsMatrixHAC       // Maximum data points for matrix based HAC,  

                            // default 5,000 
Outputs: 

− PMML 
− StatXML 

Procedure: 
1. Let 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = MinSubClusters, 𝐷𝐷1 = MaximumDataPoitsCFHAC, and 𝐷𝐷2 = 

MaximumDataPoitsMatrixHAC; 
2. Compute the number of keys 
   NumKeys = 𝑄𝑄 = ⌈𝑚𝑚𝑖𝑖𝑚𝑚(𝑅𝑅 ∗ 𝑆𝑆 𝐷𝐷1⁄ ,𝐷𝐷2 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚⁄ )⌉;  
   // Each mapper is assigned a key which is selected randomly from the 𝑄𝑄 keys  
3. Compute the number of sub-clusters produced for each key  
   NumSubClusters =  ⌊𝑚𝑚𝑖𝑖𝑚𝑚(𝑅𝑅 ∗ 𝑆𝑆,𝐷𝐷2) 𝑄𝑄⁄ ⌋; 
4. Launch a map-reduce job, and get 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) and 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), for 𝑖𝑖 = 1, … ,𝑄𝑄; 
5. Compute 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠 = ⋃ 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)

𝑄𝑄
𝑚𝑚=1 ; 

6. Perform matrix based HAC on 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠 to get the set of final regular clusters 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠∗ , 
where the number of final clusters is determined automatically or using a 
fixed one depending on the settings; 

7. If OutlierHandling is ‘on’, perform the steps from 2) to 7) in Step 3 in        



 
 

    section 9.3; 
8. Compute model evaluation measures, insights, and interestingness; 
9. Export the clustering model in PMML, and other statistics in StatXML; 

Implementation notes: 

 The general procedure of the controller consists of both the controller procedure in appendix A 
and that in appendix B. 

  



 
 

 

Appendix C. Procedure for MonotoneCubicInterpolation( ) 
𝑓𝑓(𝑚𝑚) = 𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝐼𝐼𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑙𝑙𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝑚𝑚(𝑆𝑆𝑡𝑡 , 𝐼𝐼𝑡𝑡 , 𝑚𝑚), 

where 

x is the input statistic that characterizes fields or field pairs in particular aspects (for example, 
distribution), association strength, etc. Its value range must be bounded below, and it must have a 
monotonically increasing relationship with the interestingness score threshold values. If the two conditions 
are not met, a conversion (e.g. 𝑚𝑚 = −𝑚𝑚′ 𝑀𝑀𝑀𝑀 𝑚𝑚 = |𝑚𝑚|, etc) should be carried out.  

𝑆𝑆𝑡𝑡 is a set of distinct threshold values for the input statistics, which have been accepted and commonly 
used by expert users to interpret the statistics. The positive infinity (+∞) is included if the input statistic is 
not bounded from above.  

𝐼𝐼𝑡𝑡 is a set of distinct threshold values for the interestingness scores that 𝑆𝑆𝑡𝑡 corresponds to. The threshold 
values must be between 0 and 1. 

The size of 𝑆𝑆𝑡𝑡 and 𝐼𝐼𝑡𝑡 must be the same. There are at least two values in 𝑆𝑆𝑡𝑡  excluding positive infinity (+∞). 

Pre-processing 

Let {𝑚𝑚𝑘𝑘} = 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑(𝑆𝑆𝑡𝑡) such that 𝑚𝑚1 < ⋯ < 𝑚𝑚𝑚𝑚 , where 𝑚𝑚 is the number of values in 𝑆𝑆𝑡𝑡 . 

Let {𝑘𝑘} = 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑(𝐼𝐼𝑡𝑡) such that 𝑘𝑘1 < ⋯ < 𝑘𝑘𝑚𝑚. 

Condition A: There are more than two threshold values for input statistics, and they are all finite 
numbers 

Preparing for cubic interpolation 

The following steps should be taken for preparing a cubic interpolation function construction. 

Step 1, compute the slopes of the secant lines between successive points. 

 

for 𝑘𝑘 = 1,⋯ ,𝑚𝑚 − 1. 

Step 2, Initialize the tangents at every data point as the average of the secants,  

 

for 𝑘𝑘 = 2,⋯ ,𝑚𝑚 − 1; these may be updated in further steps. For the endpoints, use one-sided 
differences: 𝑚𝑚1 = ∆1 and 𝑚𝑚𝑚𝑚 = ∆𝑚𝑚−1.  

 

 



 
 

 

Step 3, let αk = mk / Δk and βk = mk + 1 / Δk  for 𝑘𝑘 = 1,⋯ ,𝑚𝑚 − 1. 

If α or β are computed to be zero, then the input data points are not strictly monotone. In such cases, 
piecewise monotone curves can still be generated by choosing mk = mk + 1 = 0, although global strict 
monotonicity is not possible. 

Step 4, update 𝐦𝐦𝐤𝐤 

If 𝛼𝛼2 + 𝛽𝛽2 > 9, then set mk = τkαkΔk and mk + 1 = τkβkΔk where  𝜏𝜏𝑘𝑘 = 3
�𝛼𝛼2+𝛽𝛽2

. 

Note:  

1. Only one pass of the algorithm is required. 

2. For 𝑘𝑘 = 1,⋯ ,𝑚𝑚 − 1, if Δk = 0 (if two successive yk = yk + 1 are equal), then set mk = mk + 1 = 0, as the spline 
connecting these points must be flat to preserve monotonicity. Ignore step 3 and 4 for those k. 

Cubic interpolation 

After the preprocessing, evaluation of the interpolated spline is equivalent to cubic Hermite spline, using 
the data xk, yk, and mk for k = 1,...,n. 

To evaluate x in the range [xk, xk+1] for k = 1,...,n-1, calculate 

h = xk+1 − xk  and  t = x−xk
h

 

then the interpolant is 

f(x) = ykh00(t) + h ∗ mkh10(t) + yk+1h01(t) + h ∗ mk+1h11(t) 

where hii(t) are the basis functions for the cubic Hermite spline. 

h00(t) 2t3 − 3t2 + 1 

h10(t) t3 − 2t2 + t 

h01(t) − 2t3 + 3t2 

h11(t) t3 − t2 

Condition B: There are two threshold values for input statistics 

As we have clarified in the beginning that there are at least two values in 𝑆𝑆𝑡𝑡 excluding positive infinity 
(+∞), they must be both finite numbers when there are only two threshold values. 

In this case the mapping function is a straight line connecting (𝑚𝑚1,𝑘𝑘1) and (𝑚𝑚2,𝑘𝑘2). 

f(x) = 𝐲𝐲𝟏𝟏 + (𝐲𝐲𝟐𝟐 − 𝐲𝐲𝟏𝟏)
𝐱𝐱 − 𝐱𝐱𝟏𝟏
𝐱𝐱𝟐𝟐 − 𝐱𝐱𝟏𝟏

 

 

 



 
 

 

Condition C: Threshold values include infinity 

Note that there are at least two values in 𝑆𝑆𝑡𝑡 excluding positive infinity (+∞). Take the last three statistic 
threshold values and threshold values for the interestingness scores from the sorted lists, we have three 
pairs of data (𝑚𝑚𝑚𝑚−2,𝑘𝑘𝑚𝑚−2), (𝑚𝑚𝑚𝑚−1,𝑘𝑘𝑚𝑚−1) and  (+∞, 𝑘𝑘𝑚𝑚). 

An exponential function  

f(x) = a − be−cx 

can be defined by the pairs, where 

a = yn 

b = �(yn − yn−2)xn−1
(yn − yn−1)xn−2�

(xn−1−xn−2)
 

c = 
1

xn−1 − xn−2
ln

yn − yn−2
yn − yn−1

 

If 𝑚𝑚 = 3, which means there are only two distinct values in 𝑆𝑆𝑡𝑡 excluding positive infinity (+∞), the 
exponential function is employed for evaluating x in the range [x1, +∞). 

Otherwise, the exponential function is for evaluating x in the range [xn-1, +∞). To evaluate x in the range [x1, 
xn-1), use procedures under “condition A: There are more than two threshold values for input statistics, and 
they are all finite numbers” with data set {𝑚𝑚1,⋯ , 𝑚𝑚𝑚𝑚′} and {𝑘𝑘1,⋯ ,𝑘𝑘𝑚𝑚′} where 𝑚𝑚′ = 𝑚𝑚 − 1. To insure a smooth 
transition to the exponential function, the tangent 𝑚𝑚𝑚𝑚′ at data point 𝑚𝑚𝑚𝑚′ is given as 

𝑚𝑚𝑚𝑚′ =
d(a − be−cx)

dx
�
x=xn′

= 𝑀𝑀𝑀𝑀𝑀𝑀−𝑐𝑐𝑚𝑚𝑚𝑚′  

again 

a = yn 

b = �(yn − yn−2)xn−1
(yn − yn−1)xn−2�

(xn−1−xn−2)
 

c = 
1

xn−1 − xn−2
ln

yn − yn−2
yn − yn−1
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Generalized Linear Engine (GLE) Algorithm 
 

1.   Introduction – Phase I 
Generalized linear models (GZLMs) have been commonly used analytical tools for different types of data for 
quite some time because they cover not only widely used statistical models, such as linear regression for 
normally distributed targets, logistic models for binary data, and log linear model for count data, but also many 
useful statistical models via its very general model formulation. Since those models are under the independence 
assumption, we have a new “Generalized Linear Engine” (GLE) to build them for large and distributed data and 
run within Analytic Engine (AE). 

GLE Phase I is mainly to replace GENLIN functionality in a Big Data situation in addition to adding the 
nominal multinomial model. Section 2 describes the model. Section 3 describes parameter estimation. Inference 
and model summary is given in Section 4. Scoring is presented in the last section. 

2.   Model 
There are two subsections under the model section: (1) notations and (2) model formation. Then for the model 
formation subsection, four sub-subsections are furthered derived: (1) probability distribution; (2) link function; 
(3) combination of probability distribution and link function; (4) data transformation. 

2.1.  Notations  

n Number of distinct records in the dataset. It is an integer and n ≥  1. 

p Number of parameters (including the constant, if exists) in the model. It is an integer and p ≥  
1. 

px Number of non-redundant columns in the design matrix. It is an integer and  1 .xp p≤ ≤  

y n × 1 vector of target variable consists of , 1, , .iy i n=   

r n × 1 vector of event variable for binomial distribution. It is usually the number of successes or 
the number of 1’s. All elements are non-negative integers.  

m n × 1 vector of trial variable for binomial distribution. All elements are positive integers and mi 
≥ ri, 1, ,i n=  .  

  



 

 

µ n × 1 vector of expectation of target variable.  

η n × 1 vector of linear predictor. 

X n × p design matrix. The rows represent the records and the columns represent the parameters. 
The ith row is ( )T

1, , ,i i ipx x=x   where superscript T means transpose of a matrix or vector, 

1, ,i n=   with 1 1ix = if model has an intercept.  

O n × 1 vector of offset variable. This variable can’t be the dependent variable (y) or one of the 
predictor variables (X). Also this variable can’t be a categorical variable (factor).  

β p × 1 vector of unknown parameters. The first element in β is the intercept, if there is one. 

ω  n × 1 vector of scale weight variable. The elements don’t have to be integers. If an element is 
less than or equal to 0 or missing, the corresponding record is not used. 

f n × 1 vector of frequency count variable. Non-integer elements are treated by rounding the 
value to the nearest integer. For values less than 0.5 or missing, the corresponding records are 
not used.     

N Effective sample size. 
1

.
n

i
i

N f
=

= ∑  If frequency count variable f is not used, N = n. 

2.2. Model formation 
A GZLM of the target y with predictor variables X and offset variable O has the form 

(E( )) , ,g F== y Xβ +O y ~η              

where η  is the linear predictor; O is an offset variable with a constant coefficient of 1 for each observation; g(.) 

is the monotonic differentiable link function which states how the mean of y, Ε( )  =y µ , is related to the linear 
predictorη ; F is the target probability distribution. Choosing different combinations of a proper probability 
distribution and a link function can result in different models. Some combinations are well known models and 
have been provided in different SPSS procedures. The following table lists these combinations and 
corresponding SPSS procedures. 

Table 1: Distribution, Link Function and Corresponding SPSS Procedure 

Distribution Link function  Model SPSS procedure 

Normal Identity Linear regression model GLM, REGRESSION 

Binomial Logit Logistic regression model LOGISTIC REGRESSION  

  



 

 

Poisson Log Log- linear model GENLOG 

Nominal 
multinomial 

Generalized 
logit 

Generalized logistic regression model NUMREG 

Ordinal 
multinomial 

Cumulative 
logit 

Ordinal proportional-odds model PLUM 

 

In addition, GZLM also assumes yi are independent for record 1, , ,i n=  then the model becomes      

T( ) , ~ .i i i ig o y Fη µ= = +ix β  

Notes: 

 To improve numerical stability, the X matrix will be transformed, see Section 2.2.4 for details. Note that the 
computation of transformation can be implemented in map/reduce environment.   

 The X matrix can be any combination of continuous variables (covariates), categorical variables (factors) 
and interactions. The parameterization of design matrix X is the same as in GLM procedure. See Lam 
(1995a) for further details on the model parameterization. 

Due to use of over-parameterized model where there is a separate parameter for every factor effect level 
occurring in the data, the columns of the design matrix X are often dependent. Collinearities among 
continuous variables in the data can also occur. To establish the dependencies in the design matrix, columns 
of T ,X XΨ  where ( )1 1diag , ,n nf fω ω=Ψ  are examined by using the sweep operator. When a column is 
found to be dependent on previous columns, the corresponding parameter is treated as redundant. The 
solution for redundant parameters is fixed at zero. Details of the sweep operator employed can be found in 
Lam (1995b). 

 When the target variable is in a binary format which can be character or numeric, such as the form of 
male/female, 1/2, a/b, its values will be transformed to 0 and 1 with 1 as typically representing a success or 
some other positive result. In this document, we assume that y has been transformed to 0/1 values and we 
always model the probability of success, i.e., Prob(y = 1). Which original value should be transformed to 0 
or 1 depends on what the reference category is. If the reference category is the last value, then the first 
category represents a success and we are modeling the probability of it. For example, if the reference 
category is the last value, “male”, “2” and “b” in “male/female”, “1/2” and “a/b” binary forms are the last 
values and would be transformed to 0, and “female”, “1” and “a” would be transformed to 1 as we model 
the probability of them, respectively. However, one way to change to model the probability of “male”, “2” 
and “b” instead is to specify the reference category to be the first value. Note if original binary format is 0/1 
and the reference category is the last value, then 0 would be transformed to 1 and 1 to 0. 

 For the binomial distribution and the target is a number of events (r) occurring in a set of trials (m), in this 
document, we assume that y is the binomial proportion, i.e., y = r/m. 

GLE would also include ordinal and nominal multinomial distributions. However, since the model form is not 
the same as that of the above traditional generalized linear models, we include them in Appendix A and 
Appendix B, respectively. 

 

 



 

 

2.2.1.   Probability distribution 

GLE will include 9 distributions which include 3 continuous ones: normal, inverse Gaussian, gamma; 5 discrete 
ones: binomial, Poisson, negative binomial, ordinal multinomial, nominal multinomial; and 1 mixed 
distribution: Tweedie.  

Table 2 lists distribution of y, corresponding range of y, the variance function (V(µ)), the variance of y (Var(y)) 
and the 1st derivative of the variance function ( ( )V µ′ ), which will be used later. Again ordinal multinomial and 
nominal multinomial would be handled in Appendices A and B, respectively. 

Table 2: Distribution, Range and Variance of the Target, Variance Function and Its 1st Derivative 

Distribution Range of y V(µ) Var(y) ( )V µ′  

Normal (−∝, ∝) 1 φ  0 

Inverse Gaussian (0, ∝) 3µ  3φµ  23µ  

Gamma (0, ∝) 2µ  2φµ  2µ  

Negative binomial 0(1)∝ 2kµ µ+  2kµ µ+  1 2kµ+  

Poisson 0(1) ∝ µ  µ  1 

Binomial(m) 
0(1)m

m
 (1 )µ µ−  

(1 )
m

µ µ−
 1 2µ−  

Tweedie [0, ∝) qµ  qφµ  1qqµ −  

 

Notes: 

 0(1)z means the range is from 0 to z with increment of 1 (i.e. 0, 1, 2, …, z). 

 For the binomial distribution, the binomial trial variable m is considered as a part of the weight variable ω. 

 If a weight variable ω is included, φ is replaced by φ/ω. 

 For the negative binomial distribution, there is an ancillary parameter (k) and there are two ways to handle 
it: 

1. It can be estimated with β  jointly by the maximum likelihood (ML) method. 

2. It can be set to a fixed positive value. 

In general, only when k is known, the target y with a negative binomial distribution is a generalized linear 
model. Furthermore, the default for k should be the fixed value provided by the user because, according to 
McCullagh and Nelder (1989), the interpretation of using negative binomial distribution and canonical link 
function might be problematical as it makes the linear predictor a function of a parameter of the variance 
function.    

Typical values of k range between 0.01 and 2, but we will also allow k = 0, which reduces the negative 
binomial distribution to the Poisson distribution. When k = 0, we simply apply the Poisson distribution to do 
the estimation. When k = 1, the negative binomial is the geometric distribution. 



 

 

• The Tweedie’s class of distributions includes discrete, continuous and mixed densities as long as q ≤ 0 or q 
≥ 1, where q is the exponent in the variance function, qµ . Special cases include the normal (q = 0), Poisson 
(q = 1), gamma (q = 2) and inverse Gaussian (q = 3). Except those special cases, the Tweedie distributions 
with other values of q cannot be written in closed form, and hence evaluation of the density is difficult. 
Here, we only consider the Tweedie distributions for 1 < q < 2 which can be represented as Poisson 
mixtures of gamma distributions and are mixed distributions with mass at zero and with support on the non-
negative real values. These distributions have been called “compound Poisson”, “compound gamma” and 
“Poisson-gamma” distributions, but we will still call “Tweedie”. Here, the q value is set a fixed value. 
Thus, the user has to give a q ∈ (1, 2). 

• From the expressions for V(µ) and Var(y), continuous distributions (normal, inverse Gaussian and gamma) 
and Tweedie distributions for 1 < q < 2 include the scale parameter φ which can be used to scale the 
relationship of the variance and mean (Var(y) and µ). Since it is usually unknown, there are three ways to 
fit the scale parameter φ: 

1. It can be estimated with β  jointly by ML method. 

2. It can be set to a fixed positive value. 

3. It can be specified by the deviance or Pearson chi-square (see Section 4.3.3). 

On the other hand, discrete distributions (binomial, Poisson, negative binomial) do not have this extra 
parameter (it is theoretically equal to one). Because of it, the variance of y might not be equal to the 
nominal variance in practice (especially for Poisson and binomial because negative binomial has an 
ancillary parameter k). A simple way to adjust this situation is to allow the variance of y of discrete 
distributions to have the scale parameter φ as well. That’s why φ/ω is included in the log likelihood 
function of each discrete distribution below, but, unlike φ for continuous distributions, it can’t be estimated 
by ML method. So for discrete distributions, there are two ways to obtain the value of φ: 

1. It can be set to a fixed positive value. 

2. It can be specified by the deviance or Pearson chi-square. 

 

To ensure the data fit the range of target y (or r and m for the binomial distribution) for the specified 
distribution, the following rules are enforced: 

(a) For the gamma or inverse Gaussian distributions, values of y must be real and greater than zero. If a 
value of y is less than or equal to 0 or missing, the corresponding record is not used. 

(b) For the negative binomial and Poisson distributions, values of y must be integer and non-negative. If a 
value of y is non-integer, less than 0 or missing, the corresponding record is not used. 

(c) For the binomial distribution and if the target is in the form of a single variable, y must have only two 
distinct values. If y has more than two distinct values, then we stop the program and issue an error 
message, such as “The target variable has more than 2 levels. A binary target must have 2 levels.” 

(d) For the binomial distribution and if the target is a number of events (r) occurring in a set of trials (m), 
values of r must be non-negative integers, values of m must be positive integers and mi ≥ ri, ∀ i. If a 
value of r is not integer, less than 0, or missing, the corresponding record is not used. If a value of m is 
not integer, less than or equal to 0, less than the corresponding value of r, or missing, the 
corresponding record is not used. 

(e) For the Tweedie distributions, values of y must be zero or positive real. If a value of y is less than 0 or 
missing, the corresponding record is not used. 

 

 

 



 

 

The ML method will be used to estimate β and possibly φ for continuous distributions and Tweedie distribution 
or k for negative binomial. The kernels of the log likelihood function ( k ) and the full log likelihood function (
 ), which will be used as the objective function for parameter estimation, are listed for each distribution in the 
following table. Using   or k  won’t affect the parameter estimation, but the selection will affect the 
calculation of information criteria in Section 4.3.4.  

Table 3: The Log Likelihood Function for Probability Distribution 

Distribution  k  and   

Normal 

( )2

1
ln

2

n
i i ii

k
i i

yf ω µ φ
φ ω=

 −   = − +  
   

∑
 

 { }
1

ln(2 )
2

n
i

k
i

f
π

=

= + −∑   

Inverse Gaussian 

( )2 3

2
1

ln
2

n
i i ii i

k
i ii i

yf y
y

ω µ φ
ωφ µ=

 −   = − +  
   

∑
 

 { }
1

ln(2 )
2

n
i

k
i

f
π

=

= + −∑   

Gamma 
1

ln ln
n

i i i i i i
k i

i i i

y yf ω ω ω ω
Γ

φ φµ φµ φ=

      = − −     
      

∑  

 ( ){ }
1

ln
n

k i i
i

f y
=

= + −∑   

Negative binomial 
( ) ( ) ( ) ( )( ) ( )( ){ }

1
ln 1 ln 1 ln 1 ln 1

n
i

k i i i i i i
i

f y k y k k y k kω
µ µ Γ Γ

φ=

= − + + + + −∑  

 ( )( ){ }
1

ln 1
n

i
k i i

i
f yω

Γ
φ=

= + − +∑   

Poisson 
( ){ }

1
ln

n
i

k i i i i
i

f yω
µ µ

φ=

= −∑  

 ( ){ }
1

ln !
n

i
k i i

i
f yω
φ=

= + −∑   

Binomial(m) 

( ) ( ) ( ){ }
1

ln 1 ln 1
n

i
k i i i i i

i
f y yω

µ µ
φ

∗

=

= + − −∑  

 
1

ln ,
n

ii
k i

i i

m
f

r
ω
φ=

   = +   
   

∑   where 
( )

!
! !

i i

i i i i

m m
r r m r
 

=  − 
 

Tweedie 
( ) ( ) ( )

1 2

1
ln

1 2

q qn
i i i i

k i i
i

yf V
q q

ω µ µ
φ

− −

=

   = + −   − −   
∑  

( ){ }
1

ln
n

k i i
i

f y
=

= + −∑   (note that the ∑ term won’t include yi = 0) 

 

 

 



 

 

Notes: 

 The computation of  k  or   can be implemented in map/reduce environment.   

 When individual y = 0 for negative binomial, Poisson and Tweedie distributions and y = 0 or 1 for binomial 
distribution, separate value of the log likelihood is given. Let ,k i

 be the log likelihood value for individual 
record i when yi = 0 for negative binomial, Poisson and Tweedie and 0/1 for binomial.  

Distribution  ,k i   

Negative binomial 
( )ln 1

   if 0ii
i i

k
f y

k
µω

φ
+

− =  

Poisson     if 0i
i i if yω

µ
φ

− =  

Binomial(m) 
( )

( )

ln 1   if 0

ln        if 1

i
i i i

i
i i i

f y

f y

ω
µ

φ
ω

µ
φ

 − =

 =


 

Tweedie ( )
2

   if 0
2

q
i i

i if y
q

ω µ
φ

−

− =
−

 

Note that the full log likelihood for i is equal to the kernel of the log likelihood for i, i.e., ,i k i= 
, for 

negative binomial, Poisson and Tweedie. However, for binomial with 0/1 binary target variable, they 
should be different (the full log likelihood has additional term. The full log likelihood, like deviance and 
Pearson chi-square, should be computed based on subpopulations. Please see Section 4.3.3.2 for details). 

 ( )zΓ  is a gamma function and ( )( )ln zΓ is a log-gamma function (the logarithm of the gamma function), 

evaluated at z. In general, ( )( )ln zΓ  is calculated by using Sterling's formula, rather than first calculating 

the gamma function and then taking the natural logarithm because numerical calculation of ( )zΓ  with 
large values of z may cause an overflow. 

 For binomial distribution (r/m), the scale weight variable becomes i i imω ω∗ =  in k , i.e., the binomial trials 

variable m is regarded as a part of weight. However, the scale weight in the extra term of   is still iω .  

 Vi in Tweedie distribution is an infinite series and the computational details are described in Appendix C.  

 

2.2.2.   Link function 

Table 4 lists the link functions, inverse forms of them and ranges of µ for all distributions and Table 5 lists the 
1st and 2nd derivatives for each link function in Table 4 which they will be used in Section 2.  

Table 4: Link Function Name, Form, Inverse Form and Range of the Predicted Mean 



 

 

Link function name ( )gη µ=  
Inverse 

( )1gµ η−=  Range of µ̂  

Identity µ  η  µ̂ ∈ℜ  

Log ( )ln µ  ( )exp η  ˆ 0µ >  

Logit ln
1
µ
µ

 
 − 

 
exp( )

1 exp( )
η
η+

 ( )ˆ 0, 1µ ∈  

Probit 
( )1 µ−Φ , where 

( ) 2 21
2

ze dz
ξ

ξ
π

−

−∞
Φ = ∫  

( )ηΦ  ( )ˆ 0, 1µ ∈  

Complementary log-log ( )( )ln ln 1 µ− −  ( )( )1 exp exp η− −

 
( )ˆ 0, 1µ ∈  

Power(α*)
0
0

α
α
≠

 =
 

( )ln

αµ
µ





 
( )

1/

exp

αη
η





 
ˆ   if  or 1  is an odd integer
ˆ 0   otherwise (including 0) 
µ α α
µ α
∈ℜ

 > =
 

Log-complement ( )ln 1 µ−  ( )1 exp η−   ˆ 1µ <  

Negative log-log ( )( )ln ln µ− −  ( )( )exp exp η− −

 
( )ˆ 0, 1µ ∈  

Negative binomial† ln
1
k

µ

µ

 
 
 
 + 
 

 
( )
( )( )

exp
1 expk

η
η−

 ˆ 0µ >  

Odds power(α*)
0
0

α
α
≠

 =
 

( )( )1 1

ln
1

α
µ µ

α
µ
µ

 − −




 
  − 

 

( )
( )

1/

1/

1

1 1
exp( )

1 exp( )

α

α

αη

αη
η
η

 +

 + +


 +

 ( )ˆ 0, 1µ ∈  

 *  α can be a real number. If |α| < 2.2e-16, α is treated as 0. 
†  The negative binomial link function becomes unavailable for negative binomial distribution with k = 0. 

 

 Table 5: The First and Second Derivatives of Link Function 

Link function name First derivative ( )g ηµ
µ
∂′ = = ∆
∂

 Second derivative ( )
2

2g ηµ
µ
∂′′ =
∂

 

Identity  1  0 

Log  1
µ

  2−∆  



 

 

Logit  
( )

1
1µ µ−

  ( )2 2 1µ∆ −  

Probit ( )( )1

1
φ µ−Φ

, where ( ) 2 21
2

zz eφ
π

−=   ( )2 1 µ−∆ Φ  

Complementary log-log  
( ) ( )

1
1 ln 1µ µ− −

  ( )( )2 1 ln 1 µ−∆ + −  

Power(α)
0
0

α
α
≠

 =
  

1

1

ααµ

µ

−





  
2

1α
µ
−∆


−∆

 

Log-complement  1
1 µ
−
−

  2−∆  

Negative log-log  
( )
1

lnµ µ
−   ( )( )2 1 ln µ∆ +  

Negative binomial  2

1
kµ µ+

  ( )2 1 2kµ−∆ +  

Odds power(α)
0
0

α
α
≠

 =
  ( )

( )

1

1

1
1

1

α

αµ

µ

µ µ

+

−


−


 −

  

( )2

1 1
1

2 1

α α
µ µ

µ

  − +
∆ +  − 
∆ −

 

 

2.2.3.   Combination of probability distribution and link function 

Choosing different combinations of a proper probability distribution and a link function can result in different 
models. Table 6 gives a guideline for all distributions except ordinal and nominal multinomial distributions. 
Cumulative link functions in Table A.1 of Appendix A are only available for ordinal multinomial distribution 
and generalized logit link function specified in Appendix B is for nominal multinomial distribution. If improper 
combinations were specified, an error message will be issued.  

Note that the available distributions depend on the measurement level of the target and there are 4 different 
levels in the applications: 

a. If a target is continuous, all distributions except nominal and ordinal multinomial would be allowed. Note 
that binomial is allowed because target could be an “events” variable and user has to also specify “trials” 
variable). The default is normal distribution. 

b. If a target is nominal, then nominal multinomial and binomial distributions are allowed. The default is 
nominal multinomial. 

c. If a target is ordinal, then ordinal, nominal and binomial distributions are allowed. The default is ordinal 
multinomial. 
 
 
 
 



 

 

d. If a target is flag, only binomial distribution is allowed. 

Table 6: Proper Combinations of Probability Distribution and Link Function  

        Distribution 
Link 

Normal Inverse 
Gaussian Gamma Negative 

binomial Poisson Binomial Tweedie 

Identity x x x x x x x 

Log x x x x x x x 

Logit      x  

Probit      x  

Complementary log-log      x  

Power(α) x x x x x x x 

Log-complement      x  

Negative log-log      x  

Negative binomial    x    

Odds power(α)      x  

 

2.2.4.   Data transformation 

To improve numerical stability, the 𝑿𝑿 matrix will be transformed by default (the GLE component has the option 
to turn it off) according to the following rules: 

According to the definition of 𝑿𝑿, the ith row is 𝒙𝒙𝑚𝑚 = �𝑚𝑚𝑚𝑚1,⋯ , 𝑚𝑚𝑚𝑚𝑝𝑝�
𝑇𝑇 , 𝑖𝑖 = 1,⋯ ,𝑚𝑚, with 𝑚𝑚𝑚𝑚1 = 1 if the model has an 

intercept. Suppose 𝒙𝒙𝑚𝑚∗ is the transformation of 𝒙𝒙𝑚𝑚 then the jth entry of 𝒙𝒙𝑚𝑚∗ is defined as   

𝑚𝑚𝑚𝑚𝑗𝑗∗ =
𝑚𝑚𝑚𝑚𝑗𝑗 − 𝑀𝑀𝑗𝑗
𝑠𝑠𝑗𝑗

 

where 𝑀𝑀𝑗𝑗 and 𝑠𝑠𝑗𝑗 are centering and scaling values for 𝑚𝑚𝑚𝑚𝑗𝑗 , respectively, for 𝑗𝑗 = 1,⋯ , 𝑝𝑝 and choices of 𝑀𝑀𝑗𝑗 and 𝑠𝑠𝑗𝑗, 
are listed as follows: 
• For a non-constant continuous predictor or a derived predictor which includes continuous predictor,  

o if the model has an intercept, 𝑀𝑀1 = 0 and 𝑀𝑀𝑗𝑗 = �̅�𝑚𝑗𝑗 , 𝑗𝑗 ≠ 1, where �̅�𝑚𝑗𝑗  is the sample mean of the jth 

predictor, �̅�𝑚𝑗𝑗 = 1
𝑁𝑁
∑ 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗𝑚𝑚
𝑚𝑚=1  and 𝑠𝑠𝑗𝑗 = 1  and 𝑠𝑠𝑗𝑗 = �𝑠𝑠𝑚𝑚𝑗𝑗

2 , 𝑗𝑗 ≠ 1 , where�𝑠𝑠𝑚𝑚𝑗𝑗
2  is the sample standard 

deviation of the jth predictor and 𝑠𝑠𝑚𝑚𝑗𝑗
2 = 1

𝑁𝑁−1
∑ 𝑓𝑓𝑚𝑚�𝑚𝑚𝑚𝑚𝑗𝑗 − �̅�𝑚𝑗𝑗�

2𝑚𝑚
𝑚𝑚=1 . Note that the intercept column is not 

transformed. 

o if the model has no intercept, 𝑀𝑀𝑗𝑗 = 0 and 𝑠𝑠𝑗𝑗 = �𝑠𝑠𝑚𝑚𝑗𝑗
2 + �̅�𝑚𝑗𝑗2. 

• For a constant predictor, say 𝑚𝑚𝑚𝑚𝑗𝑗 = 𝑀𝑀 ≠ 0,  𝑀𝑀𝑗𝑗 = 0 and 𝑠𝑠𝑗𝑗 = 𝑀𝑀, i.e., only scaled it to be 1 but not centered. 
• For a dummy predictor that is derived from a factor or a factor interaction, leave it unchanged, i.e., 𝑀𝑀𝑗𝑗 = 0 

and 𝑠𝑠𝑗𝑗 = 1 . 
 
 
 
 



 

 

In terms of matrix format, if the model (including nominal multinomial distribution) has no intercept, 

𝑿𝑿∗ = 𝑿𝑿𝑺𝑺−1, where = diag�𝑠𝑠1,⋯ , 𝑠𝑠𝑝𝑝� . 

If the model (including nominal multinomial distribution) has an intercept, 

𝑿𝑿∗ = 𝑿𝑿 �1 −𝒄𝒄1𝑇𝑇𝑺𝑺1−1

𝟎𝟎 𝑺𝑺1−1
� = 𝑿𝑿𝑿𝑿, where 𝒄𝒄1 = �𝑀𝑀2,⋯ , 𝑀𝑀𝑝𝑝�

𝑇𝑇
 and 𝑺𝑺1 = diag�𝑠𝑠2,⋯ , 𝑠𝑠𝑝𝑝�. 

Then 𝑿𝑿 is replaced by 𝑿𝑿∗ during estimation. 

For ordinal multinomial model, we have 

𝑿𝑿1∗ = [𝟏𝟏𝑚𝑚 , −𝑿𝑿∗] = [𝟏𝟏𝑚𝑚, −𝑿𝑿] �1 𝒄𝒄1𝑇𝑇𝑺𝑺1−1

𝟎𝟎 𝑺𝑺1−1
� = [𝟏𝟏𝑚𝑚, −𝑿𝑿]𝑿𝑿 = 𝑿𝑿1𝑿𝑿, 

where  𝟏𝟏𝑞𝑞 is a length 𝑞𝑞 vector of 1. 

Implementation notes: 
• Some predictors may be derived from the original predictors, say interaction term 𝑚𝑚4𝑚𝑚 = 𝑚𝑚2𝑚𝑚×𝑚𝑚3𝑚𝑚 . For 

derived predictors (or composite effects), transformation is done only when all original predictors are 
covariates, i.e., no transformation is needed when there is a factor in derived predictors. And their means 
and standard deviations are calculated using the derived predictors.  

• If the setting of a model includes intercept, normal distribution and identity link function, then the target is 
centered by its mean (but not scale it due to complication scale may result) for numerical stability, i.e., 𝑘𝑘𝑚𝑚∗ =
𝑘𝑘𝑚𝑚 − 𝑘𝑘�,∀𝑖𝑖, along with the 𝑿𝑿 transformation. We will use 𝒚𝒚∗ instead of 𝒚𝒚 and treat −𝑘𝑘� as an offset value 
during estimation. Note this is done internally without the users knowing.  

• The whole transformation process will affect the estimates of β. After estimation, we need to transform the 
estimates of β and their covariance matrix back from transformed scale to original scale. And all post-
estimation statistics and scoring would also be displayed on original scale, no matter if they are calculated 
on original or transformed scale. The transform back formulae would be described below and we will 
simply use 𝑿𝑿∗ = 𝑿𝑿𝑿𝑿 and notice that 𝑿𝑿 reduces to 𝑺𝑺−1 if the model has no intercept. 

• The log likelihood value,  ℓ, is the same on original or transformed scale. 
• If the scale parameter, φ, for continuous distributions and Tweedie distribution is estimated with regression 

parameters, then its estimate will be the same based on original or transformed scale. 
• If the ancillary parameter, k, in negative binomial distribution is estimated with regression parameters, then 

its estimate will be the same based on original or transformed scale. 
• When iteration history tables are displayed, the parameter estimates in each iteration need to transform back. 

In addition, it will also display the final gradient vector and Hessian matrix. Suppose the gradient vectors 
based on original and transformed scale are 𝒔𝒔 and 𝒔𝒔∗ , respectively; and the Hessian matrices based on 
original and transformed scale are 𝑯𝑯 and 𝑯𝑯∗, respectively. Then 

𝒔𝒔 = (𝑿𝑿T)−𝟏𝟏𝒔𝒔∗ and 𝑯𝑯 = (𝑿𝑿T)−𝟏𝟏𝑯𝑯∗𝑿𝑿−1 
• In the following sections, we will still use 𝑿𝑿 and 𝒚𝒚 no matter whether they are transformed or not, unless we 

need to distinguish them. 

3.  Estimation 
Having selected a particular model, it is required to estimate the parameters (β, φ) or (β, k) and to assess the 
precision of the estimates. Here we only include parameter estimation first and will add other subsections later. 
 
 



 

 

3.1.  Parameter estimation 
The parameters (β, φ, k) is estimated by maximizing the log likelihood function   (or the kernel of the log 
likelihood function k ) from the observed data. Let s  be the first derivative (gradient) vector of the log 
likelihood with respect to β (and possible φ or k, see below), then we wish to solve 

1

.
p×

 ∂
= = ∂ β

s 0  

In general, there is no closed form solution except a normal distribution with identity link function, so estimates 
are obtained numerically via an iterative process. A Newton-Raphson and/or Fisher scoring algorithm is used 
and it is based on a linear Taylor series approximation of the first derivative of the log likelihood, so the first 
and second derivatives are needed and will be discussed in the first two subsections. Then the iterative process 
is discussed in the third subsection. 

3.1.1.  First derivatives 

If the scale parameter φ for normal, inverse Gaussian, gamma and Tweedie is not estimated by ML method, s  
is a 1p×  vector with the form: 

( ) ( )
1 1

1
( ) ( ) ( ) ( )

n n
i i i i i i i i

i i
i ii i i i

f y f y
V g V g
ω µ ω µ

φ µ µ φ µ µ= =

− −
= ⋅ = ⋅

′ ′∑ ∑x xs , 

where ,  ( ) and ( ) i i iV gµ µ µ′ are defined in Table 4, Table 2 and Table 5, respectively.  

Notes: 

 The computation of s  can be implemented in map/reduce environment.  I.e., assume there are J mappers, in 

the jth mapper with jn  records, 
( )

1

1 ,
( ) ( )

jn
i i i i

j i
i i i

f y
V g
ω µ

φ µ µ=

−
= ⋅

′∑s x  then combine the results from all mappers in the 

reducer, 
1

.
J

j
j=

= ∑s s  

 1 T( )i i ig oµ −= +x β  is an estimate of the mean of the ith observation, obtained from an estimate of the 
parameter vector β. 

 For binomial distribution (r/m), iω  is replaced with iω
∗ . 

 If the scale parameter is specified by the deviance or Pearson chi-square, then assume φ =1 to estimate β. 

If the scale parameter φ for normal, inverse Gaussian gamma and Tweedie is estimated by ML method, it is 
handled by searching for ln(φ) since φ is required to be greater than zero. Similarly, if the ancillary parameter k 
for negative binomial is estimated by ML method, it is still handled by searching for ln(k) (just replace φ with k) 
since k is also required to be greater than zero. 

 

 

 

 

 



 

 

Let τ = ln(φ) so φ = exp(τ) (or τ = ln(k) and k = exp(τ) for negative binomial) , then s  is a ( 1) 1p + ×  vector 
with the following form 

( )
( )

1

( 1) 1

1
exp ( ) ( ) ,

n
i i i i

i
i i i

p

f y
V g
ω µ

τ µ µ

τ τ

=

+ ×

 − ∂  ⋅   ′∂   = =
 ∂  ∂
  ∂  ∂ 

∑
s







x
β

 

where ∂ ∂β  is the same as the above with φ is replaced with exp(τ) (for negative binomial, φ is not replaced), 
τ∂ ∂  has a different form depending on the distribution as follows:  

Table 7: The First Derivative Functions w.r.t. τ for Probability Distributions 

Distribution  
τ
∂
∂


 

Normal 
( )2

1
1

2 exp( )

n
i i ii

i

yf ω µ
τ=

 − − 
  

∑  

Inverse Gaussian 
( )2

2
1

1
2 exp( )

n
i i ii

i i i

yf
y

ω µ
τ µ=

 − − 
  

∑  

Gamma 
1

ln 1
exp( ) exp( ) exp( )

n
i i i i i i

i i i

f y yω ω ωψ
τ τ µ µ τ=

       − + − −      
      

∑  

Negative binomial 

For all appropriate link functions other than negative binomial link function, 

( )
( ) ( )

1

exp( ) 1 1ln 1 exp( ) ;
exp( ) 1 exp( ) exp( ) exp( )

n
i ii i

i i
i i

yf y
τ µω

τ µ ψ ψ
τ φ τ τ µ τ τ=

 −    ∂  = + + − + +    ∂ +     
∑  

for the negative binomial link function,  

( )
1

1 1ln 1 exp( )
exp( ) exp( ) exp( )

n
i i

i i
i

f yω
τ µ ψ ψ

τ φ τ τ τ=

    ∂  = + − + +    ∂      
∑ . 

Tweedie 

1
,

n
i

i
i

f
τ=

∂
∂∑ 

  where 

( )

( ) ( )

2

1 2

for 0
exp( ) 2

  for 0
exp( ) 1 exp( ) 2

q
i i

i

i

i q q
i i i i i

i
i

y
q

V
y y

V q q

ω µ
τ

τ ω µ ω µτ
τ τ

−

− −


= −∂

= ∂∂  ∂ − + > − −



 



 

 

Notes: 

 ( )zψ  is a digamma function, which is the derivative of logarithm of a gamma function, evaluated at z,  i.e. 

( ) ( )ln ( ) ( ) .
( )

z zz
z z
Γ Γψ

Γ
∂ ′

= =
∂

 The method to compute digamma and trigamma functions is described in 

Appendix D. 

 ( )
1

1 .i
ij

j

V jVα
τ

∞

=

∂
= −

∂ ∑  To avoid the possibility of floating point overflow for 
1

ij
j

V
∞

=
∑  

1
and ,  ij

j
jV

∞

=
∑ we will 

evaluate 
i

i

V

V
τ

∂
∂  directly. See Appendix C for details. 

As mentioned above, for normal distribution with identity link function which is a classical linear regression 
model, there is a closed form solution for both β and τ, so no iterative process is needed. The solution for β, 
after applying the SWEEP operation, is  

( ) ( ) ( )( )T T T T

1 1
,ˆ

n n

i i i i i i i i i
i i

f f y oω ω
−

−

= =

   
= − = −   
   
∑ ∑x x x X X X y oβ Ψ Ψ  

where ( )1 1diag , n nf fω ω=Ψ   and ( )−Z  is the generalized inverse of a matrix Z. If the scale parameter φ is 
also estimated by ML method, the estimate of τ (= ln(φ)) is 

τ̂ = ( )ˆln φ = ( )2
T

1

1 ˆln .
n

i i i i i
i

f y o
N

ω
=

 − − 
 
∑ x β   

3.1.2.  Second derivatives 

Let H  be the second derivative (Hessian) matrix. If the scale parameter φ for normal, inverse Gaussian, gamma 
and Tweedie is not estimated by ML method, H  is a p p×  matrix with the form: 

2
T

TH
p p×

 ∂
= = − ∂ ∂ 

X W X
β β


 

where W is an n n×  diagonal matrix. There are two definitions for W depending on which algorithm is used: 
We for Fisher scoring and Wo for Newton Raphson. The ith diagonal element for We is   

( ), 2
1 ,

( ) ( )
i i

e i
i i

fw
V g

ω
φ µ µ

= ⋅
′

 

and the ith diagonal element for Wo is 

( )
( ) ( ), , 2 3

( ) ( ) ( ) ( ) ,
( ) ( )

i i i i i i
o i e i i i

i i

f V g V gw w y
V g

ω µ µ µ µµ
φ µ µ

′′ ′ ′+
= + − ⋅

′
 

 

 



 

 

where ( ) and ( ) i iV gµ µ′ ′′ are defined in Table 2 and Table 5, respectively. Then ( ),1 ,diag ,e e nw w=eW   and 

( ),1 ,diag , , .o o nw w=oW   Note the expected value of Wo is We and when the canonical link is used for the 

specified distribution, then Wo = We. Be aware that for binomial distribution (r/m), iω  is replaced with iω
∗ . 

Notes: 

 The computation of H  can be implemented in map/reduce environment.  I.e., assume there are J mappers 
with jX  and jW as the design matrix and an j jn n×  diagonal matrix in the jth mapper, respectively, so 

1

J

 
 
 
  

,

X
X=

X
 ( )1diag , , JW= W W and T

j j j j= −H X W X  then combine the results from all mappers in the 

reducer, 
2

T
1

J

j
jp p =×

 ∂
= = ∂ ∂ 

∑H H .

β β
 

If the scale parameter φ for normal, inverse Gaussian, gamma and Tweedie is estimated by ML method, H  
becomes a ( 1) ( 1)p p+ × +  matrix with the form 

2 2

T

2 2

T 2
( 1) ( 1)

H

p p

τ

τ τ
+ × +

 ∂ ∂
 ∂ ∂ ∂ ∂ =
 ∂ ∂
 
∂ ∂ ∂  

β β β

β

 

 

 

where 2 τ∂ ∂ ∂β
 is a 1p×  vector and 2 Tτ∂ ∂ ∂β

 is a 1 p×  vector and the transpose of 2 τ∂ ∂ ∂β
. The form 

of 2 τ∂ ∂ ∂β
 for all three continuous distributions is given below:  

( )2

1
.

exp( ) ( ) ( )

n
i i i i

i
i i i

f y
V g

ω µ
τ τ µ µ=

−∂ ∂
= − ⋅ = −

′∂ ∂ ∂∑ x
β β
 

 

Note that in theory ˆ 0∂ ∂ =β , so 2 ˆ 0τ∂ ∂ ∂ =β  when evaluated at the estimates of ˆ,  .β β  In practice they 
might not be exact 0, but they should be very close to 0.  

The forms of 2 τ∂ ∂ ∂β
 for negative binomial are as follows depending on the link functions: 

For all appropriate link functions other than negative binomial link function, 

( )
( )

2

2
1

exp( )
;

1 exp( ) ( )

n
i i i i

i
i i i

f y
g

ω τ µ
τ φ τ µ µ=

−∂
= − ⋅

∂ ∂ ′+
∑ x

β


 

for the negative binomial link function,  

2

1
.

n
i i i

i
i

fω µ
τ φ=

∂
= ⋅

∂ ∂ ∑ x
β


 

The forms of 2 2τ∂ ∂ are listed in Table 8. 

 

 



 

 

Table 8: The Second Derivative Functions w.r.t. τ for Probability Distributions 

Distribution  
2

2τ
∂
∂


 

Normal ( )2

1 2exp( )

n
i i

i i
i

f yω µ
τ=

− −∑  

Inverse Gaussian ( )2
2

1 2exp( )

n
i i

i i
i i i

f y
y

ω µ
τ µ=

− −∑  

Gamma 
1

ln 2
exp( ) exp( ) exp( ) exp( ) exp( )

n
i i i i i i i i

i i i

f y yω ω ω ω ωψ ψ
τ τ µ µ τ τ τ=

         ′+ − − −        
        

∑  

Negative binomial 

For all appropriate link functions other than negative binomial link function, 

( )
( )

2

22

2
1

exp( ) 2exp( ) 1 ln 1 exp( )
exp( )1 exp( )

;
1 1 1 1 1 1

exp( ) exp( ) exp( ) exp(2 ) exp( ) exp( )

i i i i
i

n
ii i

i

i i
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f

y y

τ µ µ τ µ
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ττ µω
φτ

ψ ψ ψ ψ
τ τ τ τ τ τ
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 − + +
− + + 

+∂  =  
∂            ′ ′+ − + + −                      

∑  

for the negative binomial link function,  

( )
2

2
1

1 ln 1 exp( )
exp( )

.
1 1 1 1 1 1

exp( ) exp( ) exp( ) exp(2 ) exp( ) exp( )

i
n

i i

i
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y y
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τω

φτ
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 − + + 
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∑  

Tweedie 

2

2
1

,
n

i
i

i
f

τ=

∂
∂∑ 

  where 

( )

( ) ( )

2

2
22

2 1 22

for 0
exp( ) 2

  for 0
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q
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i
i i q q
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V V q q

ω µ
τ
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Notes: 

 ( )zψ ′  is a trigamma function, which is the derivative of ( )zψ , evaluated at z. See Appendix D for details. 

 For normal and inverse Gaussian, 2 2ˆ 2Nτ∂ ∂ = −
 when evaluated at β̂  and τ̂ . 

 

 

 

 



 

 

 ( )
2

2 2
2

1
1 .i

ij
j

V j Vα
τ

∞

=

∂
= −

∂ ∑  Again, we will evaluate 

2

2
i

i

V

V
τ

∂
∂  directly. See Appendix C for details. 

 For normal distribution with identity link function, Hessian matrix is 

𝐇𝐇 = −
𝑿𝑿𝑇𝑇𝜳𝜳𝑿𝑿
𝜙𝜙�

, 

and augmented Hessian matrix including the parameter 𝜏𝜏 = ln𝜙𝜙 is  

𝐇𝐇 = �
−(𝑿𝑿𝑇𝑇𝜳𝜳𝑿𝑿)/𝜙𝜙� 𝟎𝟎

𝟎𝟎𝑇𝑇 −𝑁𝑁
2
�. 

In addition, the gradient is 0. 

 

3.1.3.  The iterative process 

Note that we will implement the step-halving with Newton Raphson or Fisher scoring method first, but will 
implement other methods, described in Du and Zheng (2009) and more, in the future.  

An iterative process to find the solutions for β (which might include φ, k for negative binomial or ψ for 
multinomial) is based on (1) Newton Raphson (for all iterations), (2) Fisher scoring (for all iterations) or (3) a 
hybrid method. The hybrid method consists of applying Fisher scoring steps for a specified number of iterations 
before switching to Newton Raphson steps. It is done easily by applying different formula for the Hessian 
matrix at each iteration. Newton Raphson performs well if the initial values are close to the solution, but the 
hybrid method can be used to improve the algorithm’s robustness to bad initial values. Apart from improved 
robustness, the Fisher scoring is faster due to the simpler form of the Hessian matrix. 

Some definitions are needed for an iterative process: 

I Starting iteration for checking complete separation and quasi-complete separation. It 
must be 0 or a positive integer. This criterion is not used if the value is 0. 

J The maximum number of steps in step-halving method. It must be a positive integer.  

K 

The first number of iterations using Fisher scoring, then switching to Newton 
Raphson. It must be 0 or a positive integer. A value of 0 means using Newton 
Raphson for all iterations and a value greater or equal to M means using Fisher 
scoring for all iterations. 

M The maximum number of iterations. It must be a non-negative integer. If the value is 
0, then initial parameter values become final estimates. 

p H,  , ε ε ε


 
Tolerance levels for three types of convergence criteria (see Section 3.1.3.2 below). 

Abs A 0/1 binary variable; Abs = 1 if absolute change is used for convergence criteria and 
Abs = 0 if relative change is used (see Section 3.1.3.2 below). 

 

 

 

 



 

 

And the iterative process is outlined as follows: 

(1) Input values for I, J, K, M, p H,  , ε ε ε


 and Abs for each type of three convergence criteria.  

(2) Input initial values 0β ( )  or if no initial values are given, compute initial values 0β ( )  (see Section 3.1.3.1 

below), then calculate log likelihood (0)
 , gradient vector (0)s and Hessian matrix (0)H  based on 0β ( ) . 

(3) Let ξ = 1. 

(4) Compute estimates of ith iteration: 

( )1 1) 1)i i i iξ
−− − −−β β( ) ( ) ( (= H s ,   

 where ( )−H  is a generalized inverse of .H  Then compute log likelihood ( )i
   based on iβ ( ) . 

(5) Use step-halving method if ( ) ( 1)i i−<  : reduce ξ by half and repeat step (4). I.e., the set of values of ξ  is {

( )1 2 :j  j = 0, …, J – 1}. If J is reached but the log likelihood is not improved, issue a warning message, 
then stop. 

(6) Compute gradient vector ( )is  and Hessian matrix ( )iH  based on iβ ( ) . Note that We is used to calculate ( )iH  
if i ≤ K; Wo is used to calculate ( )iH  if i > K. 

(7) Check if complete or quasi-complete separation of the data is established (see the note below on how to 
check them) if distribution is binomial or multinomial and the current iteration i ≥ I. If either complete or 
quasi-complete separation is detected, issue a warning message, then stop. 

(8) Check if all three convergence criteria (see Section 3.1.3.2 below) are met. If they are not but M is reached, 
issue a warning message, then stop.  

(9) If all three convergence criteria are met, check if complete or quasi-complete separation of the data is 
established if distribution is binomial or multinomial and i < I (because checking for complete or quasi-
complete separation has not started yet). If complete or quasi-complete separation is detected, issue a 
warning message, then stop, otherwise, stop (the process converges for binomial or multinomial 
successfully). If all three convergence criteria are met for the distributions other than binomial and 
multinomial, stop (the process converges for other distributions successfully). The final vector of estimates 
is denoted by β̂  (and τ̂  and ψ̂  for multinomial). Otherwise, go back to step (3). See Figure 1: The 
Flowchart of the Iterative Process of Parameter Estimation below. 

Notes: 

 How the scale parameter φ is handled in the above iterative process: 

1. If φ (τ ), for normal, inverse Gaussian, gamma and Tweedie distributions, is estimated by the ML 
method, then φ will be estimated jointly with regression parameters β. I.e., the last element of the 
gradient vector s is with respect to   τ   

2. If φ is set to be a fixed positive value, then φ will be held fixed at that value for in each iteration of the 
above process.  
 
 
 
 
 
 
 



 

 

3. If φ is specified for all distributions by the deviance or Pearson chi-square divided by degrees of 
freedom (see Section 4.3.3), then φ will be fixed at 1 to obtain the estimates of β (and ψ for 
multinomial) in the whole iterative process. Based on β̂  (and ψ̂  for multinomial), calculate the 

deviance and Pearson chi-square values and obtain φ̂ , then revise some statistics, such as the gradient 
vector, the Hessian matrix, the covariance matrix, etc. see Section 4.1 for details.  

 Complete separation or quasi-complete separation of the data is checked for binomial, nominal multinomial 
and ordinal multinomial distributions here just like what we did in CSLOGISTIC and CSORDINAL 
procedures. The method is briefly described as follows, see Fang (2004) case-wise data for details): 

For each iteration after a user-specified number of iterations, i.e., if i > I, and for binomial models, calculate 
(note here v refers to records in the dataset) 

 min min vv
p p=  

max max ,vv
p p=   

( )( )*
min min min ,1 ,v vv

p µ µ= −  

where 
if  success ( 1)

1 if  failfure ( 0)
v v

v
v v

y
p

y
µ

µ
= =

=  − = =
 (  vp is the probability of the observed target for record v ) and

1 T( );v v vg oµ −= +x β  for multinomial model, the definitions of *
min max min,   and p p p  are modified as follows: 

min ,min
vv yv

p π=  

max ,max ,
vv yv

p π=  

( )*
min ,min min .v jv j

p π=  

Note that , vv yπ  has been defined before for multinomial models. Then the rules of checking complete 
separation or quasi-complete separation for binomial or multinomial models would be the same. If 

min max 1 p p= = (actually ( )min max minmin , 0.99 p p p= > is checked) there is a complete separation. Else if 
(1) max 0.99 p > or *

min 0.001 p < and if (2) there are very small diagonal elements (absolute value
7 410 3.16 10− −< ≈ × ) in the non-redundant parameter locations in matrix A, where A is the lower 

triangular matrix in Cholesky decomposition of –H, where H is the Hessian matrix, such that Τ−Η = ΑΑ , 
then there is a quasi-complete separation.  

The developers will evaluate whether the implementation of complete separation or quasi-complete 
separation checking makes sense in map/reduce environment.  

 Whenever a warning message is issued, the procedure continues and results based on the last iteration are 
given, though the validity of the model fit is questionable. 

 If the hybrid method converges with Fisher scoring step, the process will continue with Newton Raphson 
steps till it converges again. 

 

 

 



 

 

3.1.3.1.  Initial values 

The users can specify their own initial values. The order is the intercept (if there is one), regression parameters 
(and the scale parameter φ if it will be estimated by the ML method for normal, inverse Gaussian and gamma 
and the ancillary parameter k if it is estimated by the ML method for negative binomial) for all distributions 
except multinomial. For ordinal multinomial, the order is threshold parameters and regression parameters. For 
nominal multinomial, the order is regression parameters for each category (except the reference category). See 
Appendices A and B for details. If the users didn’t specify them, we have to compute initial values internally. 
For all distributions except multinomial, the initial values 0β ( )  and/or the scale parameter 0φ ( )  (if it is estimated 
by ML method) are calculated as follows: 

(1) Set the initial fitted values ( 0.5) ( 1)i i iy m mµ = + +i  for a binomial distribution (yi can be a proportion or 
0/1 value) and iyµ =i  for a non-binomial distribution. From them deriving = ( ), ( ) and ( ).i i i ig g Vη µ µ µ′     If
  iη becomes undefined,  1.iη =  

(2) Calculate the weight matrix e
W with the diagonal element 

( )2

1 ,
( ) ( )

i i
ei

i i

fw
V g

ω
φ µ µ

= ⋅
′



 

 where φ is set to 1 

or a fixed positive value. If the denominator of eiw becomes 0, eiw = 0.  

(3) Assign the adjusted target variable z  with the ith observation ( ) ( ) ( )i i i i i iz o y gη µ µ′= − + −    for a binomial 
distribution and ( )i i iz oη= −  for a non-binomial distribution. 

(4) Calculate the initial parameter values 

(0) T 1 T( ) ,e e
−

 = X W X X W zβ  and/or 

𝜙𝜙(0) =
1
𝑁𝑁
�𝒛𝒛 − 𝑿𝑿𝜷𝜷(0)�𝑇𝑇𝑾𝑾�𝑟𝑟�𝒛𝒛 − 𝑿𝑿𝜷𝜷(0)�

=
1
𝑁𝑁
�𝒛𝒛𝑇𝑇𝑾𝑾�𝑟𝑟𝒛𝒛 − 2�𝜷𝜷(0)�𝑇𝑇𝑿𝑿𝑇𝑇𝑾𝑾�𝑟𝑟𝒛𝒛 + �𝜷𝜷(0)�𝑇𝑇𝑿𝑿𝑇𝑇𝑾𝑾�𝑟𝑟𝑿𝑿𝜷𝜷(0)�

 

For the ancillary parameter k of negative binomial, initial k = 1, so τ = 0 for now. 

Notes: 

• The computation of the initial values can be implemented in map/reduce environment. I.e., assume there are 
J mappers, the first 3 steps would result 𝒛𝒛𝑗𝑗  and 𝑾𝑾�𝑟𝑟,𝑗𝑗  as an 1jn ×  adjusted target vector  and an j jn n×  
diagonal matrix in the jth mapper, respectively, along with 𝑿𝑿𝑗𝑗. And 𝑿𝑿𝑗𝑗𝑇𝑇𝑾𝑾�𝑟𝑟,𝑗𝑗𝑿𝑿𝑗𝑗, 𝒛𝒛𝑗𝑗𝑇𝑇𝑾𝑾�𝑟𝑟,𝑗𝑗𝑿𝑿𝑗𝑗 , 𝒛𝒛𝑗𝑗𝑇𝑇𝑾𝑾�𝑟𝑟,𝑗𝑗𝒛𝒛𝑗𝑗 can be 
computed in the jth mapper. Then combine the results from all mappers in the reducer as 𝑿𝑿𝑇𝑇𝑾𝑾�𝑟𝑟𝑿𝑿 =
∑ 𝑿𝑿𝑗𝑗𝑇𝑇𝑾𝑾�𝑟𝑟,𝑗𝑗𝑿𝑿𝑗𝑗
𝐽𝐽
𝑗𝑗=1 , 𝑿𝑿𝑇𝑇𝑾𝑾�𝑟𝑟𝒛𝒛 = ∑ 𝑿𝑿𝑗𝑗𝑇𝑇𝑾𝑾�𝑟𝑟,𝑗𝑗𝒛𝒛𝑗𝑗

𝐽𝐽
𝑗𝑗=1 and 𝒛𝒛𝑇𝑇𝑾𝑾�𝑟𝑟𝒛𝒛 = ∑ 𝒛𝒛𝑗𝑗𝑇𝑇𝑾𝑾�𝑟𝑟,𝑗𝑗𝒛𝒛𝑗𝑗

𝐽𝐽
𝑗𝑗=1 .  Finally, compute 𝜷𝜷(0)  based on 

𝑿𝑿𝑇𝑇𝑾𝑾�𝑟𝑟𝑿𝑿 and 𝑿𝑿𝑇𝑇𝑾𝑾�𝑟𝑟𝒛𝒛, and then 𝜙𝜙(0) based on 𝒛𝒛𝑇𝑇𝑾𝑾�𝑟𝑟𝒛𝒛, �𝜷𝜷(0)�𝑇𝑇𝑿𝑿𝑇𝑇𝑾𝑾�𝑟𝑟𝒛𝒛, and �𝜷𝜷(0)�𝑇𝑇𝑿𝑿𝑇𝑇𝑾𝑾�𝑟𝑟𝑿𝑿𝜷𝜷(0). 

3.1.3.2.  Convergence criteria 

We consider 3 types of convergence criteria here: log-likelihood convergence, parameter convergence, and 
Hessian convergence. For each type, we consider both absolute and relative change. Let p H,   and ε ε ε



 be  
 
 
 
 
 
 
 
 
 
 



 

 

 
given tolerance levels for each type, then the criteria can be written as follows: 

(1) Log-likelihood convergence: 

( ) ( 1)

( 1) 6

( ) ( 1)

     if relative change
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     if absolute change
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− −

−

 −
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(2) Parameter convergence:     

( )

( ) ( 1)

( 1)

( ) ( 1)

p6

p

max

max

     if relative change
10 .

     if absolute change

i i

i

i i
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β β
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−

−
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(3) Hessian convergence:       

( ) ( ) ( )

( ) ( ) ( )

T( ) ( ) ( )

H( ) 6

T( ) ( ) ( )
H

     if relative change
10 .

    if absolute change

i i i

i

i i i

ε

ε

−

−

−


 < +


<



s H s

s H s

 

Notes: 

• Depending on a user’s choice, either relative or absolute change is considered. 

• If the user doesn’t specify Hessian convergence criterion, we would check if it is met based on absolute 
change with Hε  = 1.0e-4 after specified log-likelihood convergence criterion and/or parameter convergence 
criterion has been satisfied. If Hessian convergence criterion was not met, a warning message, such as “All 
default or specified convergence criteria are satisfied, but Hessian convergence criterion is not. The 
convergence is uncertain.” would be displayed.  

 

3.1.3.3.  Null model and intercept-only model 

For the null model and intercept-only model, we provide an approximation method by considering the tradeoff 
between the performance and the computational cost. 

(a) Null models 
If the scale parameter 𝜙𝜙 or the ancillary parameter 𝑘𝑘 is estimated by ML method, 

Let �̂�𝜇0 = 𝑠𝑠−1(𝑀𝑀𝑚𝑚) 

• For normal distribution, 

𝜙𝜙� =
1
𝑁𝑁
�𝑓𝑓𝑚𝑚𝜔𝜔𝑚𝑚(𝑘𝑘𝑚𝑚 − �̂�𝜇0)2
𝑚𝑚

𝑚𝑚=1

 

• For inverse Gaussian distribution, 

𝜙𝜙� =
1
𝑁𝑁
�

𝑓𝑓𝑚𝑚𝜔𝜔𝑚𝑚(𝑘𝑘𝑚𝑚 − �̂�𝜇0)2

𝑘𝑘𝑚𝑚�̂�𝜇02

𝑚𝑚

𝑚𝑚=1

 

• For gamma and tweedie, there is no closed form solution for 𝜙𝜙�, and it needs a iterative process. Herein, 
it is approximated by its initial value calculated in Section 3.1.3.1. 
 
 
 
 
 



 

 

• For the ancillary parameter 𝑘𝑘, it is set to 1.0. 
(b) Intercept-only models 

• For all distributions except multinomial 
Let 𝛽𝛽0 be parameters of the intercept-only model (excluding 𝜙𝜙 and 𝑘𝑘).  
There is no closed form solution for �̂�𝛽0 in addition to 𝜙𝜙� or 𝑘𝑘. �̂�𝛽0 and 𝜙𝜙� (or 𝑘𝑘) are approximated by their 
initial values calculated in Section 3.1.3.1. 

• For ordinal multinomial 
Let 𝑩𝑩0 = �𝝍𝝍(0)𝑇𝑇 ,𝟎𝟎T�T be parameters of the threshold-only model. 
If there is no offset variable, 

𝜓𝜓𝑗𝑗
(0) = 𝑠𝑠 �

∑ 𝑁𝑁𝑙𝑙
𝑗𝑗
𝑙𝑙=1
𝑁𝑁

� , 𝑗𝑗 = 1,⋯ , 𝐽𝐽 − 1, 

and if there is an offset variable, there is no close form solution, and it needs a iterative process. Herein, 
they are approximated by their initial values given in Appendix A. 

• For nominal multinomial 

Let 𝜷𝜷0 = �𝜷𝜷1
(0)T,⋯ ,𝜷𝜷𝐽𝐽−1

(0)T�
T

 be parameters for the intercept-only model. 
If there is no offset variable, 

𝛽𝛽𝑗𝑗1
(0) = ln�

𝑁𝑁𝑗𝑗
𝑁𝑁𝐽𝐽
� ,𝛽𝛽𝑗𝑗𝑘𝑘

(0) = 0, 𝑗𝑗 = 1,⋯ , 𝐽𝐽 − 1, 

and if there is an offset variable, there is no close form solution, and it needs a iterative process. Herein, 
they are approximated by their initial values given in Appendix B. 

 
Note that when there is no closed form solution for the model under consideration and the approximate model is 
used, then a warning message, such as “The parameter estimates may not be accurate for the approximate model 
being used”, would be displayed. 
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Figure 1: The Flowchart of the Iterative Process of Parameter Estimation in GLE 
 
 
 



 

 

3.1.4. Parameter estimation on original scale 

If the X matrix is transformed, then the final estimates of β above are based on transformed scale, denoted it as 
𝜷𝜷�∗. They would be transformed back on original scale, denoted it as 𝜷𝜷�, as follows:  

𝜷𝜷� = 𝑿𝑿𝜷𝜷�∗ 

Note that 𝑿𝑿 could reduce to 𝑺𝑺−1 and hereafter in the document, superscript ∗ is added to a quantity to denote the 
quantity on transformed scale. 

For ordinal multinomial model, we have 

𝑩𝑩� = �𝝍𝝍
�
𝜷𝜷�
� = 𝑻𝑻 �𝝍𝝍

�∗

𝜷𝜷�∗
� = 𝑻𝑻𝑩𝑩�∗ 

where 𝑻𝑻 = �
𝑰𝑰𝐽𝐽−1 𝑰𝑰𝐽𝐽−1⨂(𝒄𝒄1𝑇𝑇𝑺𝑺1−1)
𝟎𝟎 𝑺𝑺1−1

�. 

For nominal multinomial model, we have 

𝜷𝜷� = 𝑻𝑻𝜷𝜷�∗ 

where 𝑻𝑻 = ⨁𝑗𝑗=1
𝐽𝐽−1𝑿𝑿𝑗𝑗, and 𝑿𝑿𝑗𝑗 = 𝑿𝑿 if the model has an intercept and 𝑿𝑿𝑗𝑗 = 𝑺𝑺−1 if the model has no intercept.  

Notes: 

 If 𝑿𝑿 is an 𝑚𝑚×𝑚𝑚  matrix and 𝑩𝑩 is a 𝑝𝑝×𝑞𝑞  matrix, then the Kronecker product 𝑿𝑿⊗𝑩𝑩 is the 𝑚𝑚𝑝𝑝×𝑚𝑚𝑞𝑞  block 
matrix, 

𝑿𝑿⨂𝑩𝑩 = �
𝑀𝑀11𝑩𝑩 ⋯ 𝑀𝑀1𝑚𝑚𝑩𝑩
⋮ ⋱ ⋮

𝑀𝑀𝑚𝑚1𝑩𝑩 ⋯ 𝑀𝑀𝑚𝑚𝑚𝑚𝑩𝑩
�. 

 If 𝑿𝑿 is an 𝑚𝑚×𝑚𝑚 matrix and 𝑩𝑩 is a 𝑝𝑝×𝑞𝑞 matrix, then the direct sum 𝑿𝑿⨁𝑩𝑩 is defined as 

𝑿𝑿⨁𝑩𝑩 = �𝑿𝑿 𝟎𝟎
𝟎𝟎 𝑩𝑩� =

⎣
⎢
⎢
⎢
⎢
⎡
𝑀𝑀11 ⋯ 𝑀𝑀1𝑚𝑚
⋮ ⋱ ⋮

𝑀𝑀𝑚𝑚1 ⋯ 𝑀𝑀𝑚𝑚𝑚𝑚

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

𝑀𝑀11 ⋯ 𝑀𝑀1𝑞𝑞
⋮ ⋱ ⋮
𝑀𝑀𝑝𝑝1 ⋯ 𝑀𝑀𝑝𝑝𝑞𝑞⎦

⎥
⎥
⎥
⎥
⎤

 

In general, the direct sum of 𝑚𝑚 matrices is 

⨁𝑚𝑚=1
𝑚𝑚 𝑿𝑿𝑚𝑚 = diag(𝑿𝑿1,⋯ ,𝑿𝑿𝑚𝑚) = �

𝑿𝑿1 𝟎𝟎 ⋯ 𝟎𝟎
𝟎𝟎 𝑿𝑿2 ⋯ 𝟎𝟎
⋮
𝟎𝟎

⋮
𝟎𝟎

⋱
⋯

⋮
𝑿𝑿𝑚𝑚

�. 



 

 

4.  Inference and Model Summary 
4.1 Parameter inference 

4.1.1 Parameter estimate covariance matrix, correlation matrix and 
standard error 

The parameter estimate covariance matrix, correlation matrix and standard errors can be obtained easily with 
parameter estimates. Whether or not the scale parameter 𝜙𝜙(𝜏𝜏) is estimated by ML method, parameter estimate 
covariance and correlation matrices are listed for 𝜷𝜷� only because the covariance between 𝜷𝜷�  and �̂�𝜏 should be 
zeros. For the ancillary parameter 𝑘𝑘 (𝜏𝜏) of negative binomial is estimated by ML method, parameter estimate 
covariance and correlation matrices are still listed for 𝜷𝜷� only for simplicity purpose even though the covariance 
between 𝜷𝜷�   and �̂�𝜏  is generally not zero. For ordinal multinomial model, parameter estimate covariance and 
correlation matrices are listed for 𝑩𝑩� = (𝝍𝝍�T,𝜷𝜷�T)T. 

4.1.1.1 Parameter estimate covariance 

Two parameter estimate covariance matrices can be calculated: model-based and robust. 

(a) Model-based parameter estimate covariance 

The parameter estimate covariance matrix is given by 

𝚺𝚺𝑚𝑚 = −𝐇𝐇− 

where 𝐇𝐇− is the generalized inverse of Hessian matrix H evaluated at 𝜷𝜷� (and 𝑩𝑩�  for ordinal multinomial) (and 𝜙𝜙 �  
if the scale parameter is estimated for normal, inverse Guassian, gamma and Tweedie distributions by ML 
method or specified for all distributions by the deviance or Pearson chi-square divided by degrees of freedom). 

Notes: 

• For normal distribution with identity link function (linear regression model), 𝚺𝚺𝑚𝑚 = (𝑿𝑿𝑇𝑇𝜳𝜳𝑿𝑿)−  where 
( )1 1diag , n nf fω ω=Ψ  . 

• For hybrid method, 𝑾𝑾𝑜𝑜 is used to calculate 𝚺𝚺𝑚𝑚 even 𝜷𝜷� converges within iterations of Fisher scoring steps. 
Naturally, 𝑾𝑾𝑜𝑜 and 𝑾𝑾𝑟𝑟 are used for Newton Raphson and Fisher scoring method, respectively. 

• The corresponding rows and columns for redundant parameter estimates should be set to zero. 
(b) Robust parameter estimate covariance 

The validity of the parameter estimate covariance matrix based on the Hessian depends on the correct 
specification of the variance function of the response in addition to the correct specification of the mean 
regression function of the response. The robust parameter estimate covariance provides a consistent estimate 
even when the specification of the variance function of the response is incorrect. The robust estimator is also 
called Huber’s estimator because Huber (1967) was the first one described this variance estimate; White’s 
estimator or HCCM (heteroskedasticity consistent covariance matrix) estimator because White (1980) 
independently showed that this variance estimate is consistent under a linear regression model including 
heteroskedasticity; or sandwich estimator because the formula has a gradient factor “sandwiched” between two 
Hessian matrices. The robust (or Huber/White/sandwich) estimator is defined as follows 

 

 

 



 

 

𝚺𝚺𝑟𝑟 = 𝚺𝚺𝑚𝑚 ���
∂ℓ𝑚𝑚
∂𝜷𝜷

� �
∂ℓ𝑚𝑚
∂𝜷𝜷

�
T𝑚𝑚

𝑚𝑚=1

�𝚺𝚺𝑚𝑚 = 𝚺𝚺𝑚𝑚 ��𝑓𝑓𝑚𝑚 ∙ �
𝜔𝜔𝑚𝑚(𝑘𝑘𝑚𝑚 − 𝜇𝜇𝑚𝑚)
𝜙𝜙𝜙𝜙(𝜇𝜇𝑚𝑚)𝑠𝑠′(𝜇𝜇𝑚𝑚)

�
2

∙ 𝒙𝒙𝑚𝑚 ∙ 𝒙𝒙𝑚𝑚T
𝑚𝑚

𝑚𝑚=1

� 𝚺𝚺𝑚𝑚 

Notes: 

• The robust parameter estimate covariance matrix is justified by asymptotic arguments, but the small sample 
performance might not be good. For linear regression model, some modifications can be installed to 
improve small sample performance, but it is not clear if these modifications are applicable to other 
generalized linear models as well. 

For ordinal multinomial model, 

𝚺𝚺𝑟𝑟 = 𝚺𝚺𝑚𝑚 ���
∂ℓ𝑚𝑚
∂𝑩𝑩

� �
∂ℓ𝑚𝑚
∂𝑩𝑩

�
T𝑚𝑚

𝑚𝑚=1

�𝚺𝚺𝑚𝑚 

where ∂ℓ𝑚𝑚
∂𝑩𝑩

 is the first derivative for the ith record and can be found in Appendix A. 

For nominal multinomial model, 

𝚺𝚺𝑟𝑟 = 𝚺𝚺𝑚𝑚 ���
∂ℓ𝑚𝑚
∂𝜷𝜷

� �
∂ℓ𝑚𝑚
∂𝜷𝜷

�
T𝑚𝑚

𝑚𝑚=1

�𝚺𝚺𝑚𝑚 

Where ∂ℓ𝑚𝑚
∂𝜷𝜷

 is the first derivative for the ith record and can be found in Appendix B. 

4.1.1.2 Parameter estimate correlation 

The correlation matrix is calculated from the covariance matrix as usual. Let 𝜎𝜎𝑚𝑚𝑗𝑗 be an element of 𝚺𝚺𝑚𝑚 or 𝚺𝚺𝑟𝑟, then 
the corresponding element of the correlation matrix is  

𝜎𝜎𝑚𝑚𝑗𝑗
�𝜎𝜎𝑚𝑚𝑚𝑚�𝜎𝜎𝑗𝑗𝑗𝑗

 . The corresponding rows and columns for 

redundant parameter estimates should be set to system missing values. 

4.1.1.3 Parameter estimate standard error 

Let �̂�𝛽𝑚𝑚 denote a non-redundant parameter estimate for all distributions except multinomial. Its standard error is 
the square root of the i-th diagonal element of 𝚺𝚺𝑚𝑚 or 𝚺𝚺𝑟𝑟: 

𝜎𝜎�𝛽𝛽𝑚𝑚 = �𝜎𝜎𝑚𝑚𝑚𝑚 

The standard error for redundant parameter estimates is set to a system missing value.  

If the scale parameter is estimated by ML method, the standard estimate of �̂�𝜏 is 

𝜎𝜎�𝜏𝜏 = �−
1
𝜕𝜕2ℓ
𝜕𝜕𝜏𝜏2

 

 

 

 



 

 

where  𝜕𝜕
2ℓ

𝜕𝜕𝜏𝜏2
 can be found on Table 8. However, people are usually more interested in the original than the 

transformed 𝜏𝜏, so we will only list the estimation result for 𝜙𝜙. The estimate of 𝜙𝜙 is exp (�̂�𝜏), the standard error 
estimated of 𝜙𝜙� is (exp (�̂�𝜏) ∙ 𝜎𝜎�𝜏𝜏). 

For ordinal multinomial model: 

Let 𝜓𝜓�𝑗𝑗, 𝑗𝑗 = 1,⋯ , 𝐽𝐽 − 1 , be threshold parameter estimates and �̂�𝛽𝑚𝑚 , 𝑖𝑖 = 1,⋯ , 𝑝𝑝 , denote the non-redundant 
regression parameter estimates. Their standard errors are the square root of the i-th diagonal element of 𝚺𝚺𝑚𝑚 or 
𝚺𝚺𝑟𝑟:  

𝜎𝜎�𝜓𝜓𝑗𝑗 = �𝜎𝜎𝑗𝑗𝑗𝑗  and  𝜎𝜎�𝛽𝛽𝑗𝑗 = �𝜎𝜎(𝐽𝐽−1+𝑚𝑚),(𝐽𝐽−1+𝑚𝑚),  respectively. 

For nominal multinomial model, 

Let �̂�𝛽𝑗𝑗𝑘𝑘 denote a non-redundant parameter estimate. It standard error is the square root of the �(𝑗𝑗 − 1)𝑝𝑝 + 𝑘𝑘�th 
diagonal element of 𝚺𝚺𝑚𝑚 or 𝚺𝚺𝑟𝑟,  

𝜎𝜎�𝛽𝛽𝑗𝑗𝑘𝑘 = �𝜎𝜎�(𝑗𝑗−1)𝑝𝑝+𝑘𝑘,(𝑗𝑗−1)𝑝𝑝+𝑘𝑘� 

Notes 

• For normal distribution with identity link function (linear regression model), the standard error of 𝜙𝜙� is 

𝜎𝜎�𝜙𝜙� = 𝜙𝜙��
2
𝑁𝑁

 . 

4.1.1.4 Parameter estimate covariance matrix, correlation matrix and 
standard error on original scale 

If the X matrix is transformed, then the model-based parameter estimate covariance matrices above are also 
based on transformed scale. They should be transformed back to original scale. 

(a)  Model-based parameter estimate covariance 

Denote the model-based parameter estimate covariance matrices based on original and transformed scale are 𝜮𝜮𝑚𝑚 
and 𝜮𝜮𝑚𝑚∗ , respectively.  

𝜮𝜮𝑚𝑚 = 𝑿𝑿𝜮𝜮𝑚𝑚∗ 𝑿𝑿T 

For ordinal and multinomial models, 

𝜮𝜮𝑚𝑚 = 𝑻𝑻𝜮𝜮𝑚𝑚∗ 𝑻𝑻T 

(b)  Robust parameter estimate covariance 

Denote the robust parameter estimate covariance matrices based on original and transformed scale are 𝜮𝜮𝑟𝑟 and 
𝜮𝜮𝑟𝑟∗ , respectively.  

 

 

 

 

 



 

 

𝜮𝜮𝑟𝑟 = 𝑿𝑿𝜮𝜮𝑟𝑟∗𝑿𝑿T. 

For ordinal and multinomial models, 

𝜮𝜮𝑟𝑟 = 𝑻𝑻𝜮𝜮𝑟𝑟∗𝑻𝑻T. 

(c)  Parameter estimate correlation 

They are calculated based on 𝜮𝜮𝑚𝑚 or 𝜮𝜮𝑟𝑟 rather than 𝜮𝜮𝑚𝑚∗  or 𝜮𝜮𝑟𝑟∗ . 

(d) Parameter estimate standard error 

For regression parameters, they are calculated based on 𝜮𝜮𝑚𝑚  or 𝜮𝜮𝑟𝑟 . For the scale parameter and ancillary 
parameter, parameter estimate standard errors are the same no matter which scale is used. 

4.1.2 Wald confidence intervals 

Wald confidence interval is provided for each non-redundant parameter. Wald confidence intervals are based on 
the asymptotically normal distribution of the parameter estimators. The parameter estimators includes 𝜷𝜷� (and 𝝍𝝍�  
for multinomial), 𝜙𝜙� (�̂�𝜏) if 𝜙𝜙 is estimated by ML. 

The 100(1 − 𝛼𝛼)% Wald confidence interval for 𝛽𝛽𝑗𝑗 is given by 

��̂�𝛽𝑗𝑗 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝛽𝛽𝑗𝑗 , �̂�𝛽𝑗𝑗 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝛽𝛽𝑗𝑗� 

where 𝑧𝑧𝑝𝑝 is the (100p)th percentile of the standard normal distribution. 

If exponentiated parameter estimates of 𝜷𝜷 are required, then the estimate of exp (𝛽𝛽𝑗𝑗) is exp (�̂�𝛽𝑗𝑗), the standard 
error estimate of exp (�̂�𝛽𝑗𝑗) is �exp (�̂�𝛽𝑗𝑗) ∙ σ�𝛽𝛽𝑗𝑗� and the corresponding 100(1 − 𝛼𝛼)% Wald confidence interval for 
exp (𝛽𝛽𝑗𝑗) is 

�exp ��̂�𝛽𝑗𝑗 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝛽𝛽𝑗𝑗� , exp ��̂�𝛽𝑗𝑗 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝛽𝛽𝑗𝑗�� 

Wald confidence intervals for redundant parameter estimates are set to system missing values. 

Similarly, the 100(1 − 𝛼𝛼)% Wald confidence interval for 𝜏𝜏 is defined as 

��̂�𝜏 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜏𝜏, �̂�𝜏 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜏𝜏� 

where �̂�𝜏 is the maximum likelihood estimate of 𝜏𝜏, 𝜎𝜎�𝜏𝜏 is the standard error estimate of �̂�𝜏 and the corresponding 
100(1 − 𝛼𝛼)% Wald confidence interval for 𝜙𝜙 (or k) is defined as 

�exp��̂�𝜏 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜏𝜏�, exp��̂�𝜏 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜏𝜏��. 

For ordinal multinomial distribution, in addition to 𝜷𝜷, the 100(1 − 𝛼𝛼)% Wald confidence interval for 𝜓𝜓𝑗𝑗  is 
given by 

�𝜓𝜓�𝑗𝑗 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜓𝜓𝑗𝑗 ,𝜓𝜓�𝑗𝑗 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜓𝜓𝑗𝑗�. 

 

 



 

 

The estimate of  exp�𝜓𝜓𝑗𝑗�  is exp�𝜓𝜓�𝑗𝑗� , the standard error estimate of exp�𝜓𝜓�𝑗𝑗�  is �exp�𝜓𝜓�𝑗𝑗� ∙ σ�𝜓𝜓𝑗𝑗�  and the 
corresponding 100(1 − 𝛼𝛼)% Wald confidence interval for exp�𝜓𝜓𝑗𝑗� 

�exp �𝜓𝜓�𝑗𝑗 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜓𝜓𝑗𝑗� , exp �𝜓𝜓�𝑗𝑗 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜓𝜓𝑗𝑗��. 

For nominal multinomial distribution, the 100(1 − 𝛼𝛼)% Wald confidence interval for 𝛽𝛽𝑗𝑗𝑘𝑘 is given by 

��̂�𝛽𝑗𝑗𝑘𝑘 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝛽𝛽𝑗𝑗𝑘𝑘 , �̂�𝛽𝑗𝑗𝑘𝑘 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝛽𝛽𝑗𝑗𝑘𝑘� 

The estimate of exp�𝛽𝛽𝑗𝑗𝑘𝑘� is exp��̂�𝛽𝑗𝑗𝑘𝑘�, the standard error estimate of exp��̂�𝛽𝑗𝑗𝑘𝑘� is �exp��̂�𝛽𝑗𝑗𝑘𝑘�  ∙ 𝜎𝜎�𝛽𝛽𝑗𝑗𝑘𝑘�  and the 
corresponding 100(1 − 𝛼𝛼)% Wald confidence interval for exp�𝛽𝛽𝑗𝑗𝑘𝑘� is 

�exp ��̂�𝛽𝑗𝑗𝑘𝑘 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝛽𝛽𝑗𝑗𝑘𝑘� , exp ��̂�𝛽𝑗𝑗𝑘𝑘 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝛽𝛽𝑗𝑗𝑘𝑘�� 

Note that Wald confidence intervals are based on estimates on the original scale. 

4.1.3 Chi-square statistics 

The hypothesis 𝐻𝐻0𝑚𝑚:𝛽𝛽𝑚𝑚 = 0 is tested for each non-redundant parameter using the chi-square statistic 

𝑀𝑀𝑚𝑚 = �
�̂�𝛽𝑚𝑚
𝜎𝜎�𝛽𝛽𝑚𝑚
�
2

 

which has an asymptotic chi-square distribution with 1 degree of freedom, 𝜒𝜒12. 

Note that the chi-square statistic will not be calculated for the scale parameters 𝜙𝜙 (𝜏𝜏), even it is estimated by ML 
method. 

For ordinal multinomial distribution, the hypothesis 𝐻𝐻0𝑗𝑗:𝜓𝜓𝑗𝑗 = 0, 𝑗𝑗 = 1,⋯ , 𝐽𝐽 − 1, and 𝐻𝐻0𝑚𝑚:𝛽𝛽𝑗𝑗 = 0, 𝑖𝑖 = 1,⋯ , 𝑝𝑝, 
are tested for threshold parameters and regression parameters using the chi-square statistic 

𝑀𝑀𝜓𝜓𝑗𝑗 = �
𝜓𝜓�𝑗𝑗
𝜎𝜎�𝜓𝜓𝑗𝑗

�
2

  and 𝑀𝑀𝛽𝛽𝑚𝑚 = � 𝛽𝛽�𝑚𝑚
𝜎𝜎�𝛽𝛽𝑚𝑚
�
2
, respectively. 

Similarly,  𝑀𝑀𝜓𝜓𝑗𝑗  and 𝑀𝑀𝛽𝛽𝑚𝑚  has an asymptotic chi-square distribution with 1 degree. 

For nominal multinomial distribution, the test statistics for the hypothesis 𝐻𝐻0,𝑗𝑗𝑘𝑘:𝛽𝛽𝑗𝑗𝑘𝑘 = 0, 𝑗𝑗 = 1,⋯ , 𝐽𝐽 − 1, 𝑘𝑘 =
1,⋯ , 𝑝𝑝, is 

𝑀𝑀𝛽𝛽𝑗𝑗𝑘𝑘 = �
�̂�𝛽𝑗𝑗𝑘𝑘
𝜎𝜎�𝛽𝛽𝑗𝑗𝑘𝑘

�
2

 

which has an asymptotic chi-square distribution with 1 degree of freedom.  

Chi-square statistics and their corresponding p-value are set to system missing values for redundant parameter 
estimates. 

 

 

 



 

 

Note that Chi-square statistics are based on estimates on the original scale. 

4.1.4 P-values 

The general form for calculating p-values for the tests above and below, given a test statistic T and a 
corresponding cumulative distribution function 𝐺𝐺 as specified above, is defined as 𝑝𝑝 = 1 − 𝐺𝐺(𝑇𝑇). For example, 
the p-value for 𝜒𝜒12 test 𝐻𝐻0: 𝛽𝛽 = 0 is 𝑝𝑝 = 1 − 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝜒𝜒12 ≤ 𝑀𝑀). 

4.2 Tests 
After estimating parameters and calculating relevant statistics, several tests for the given model are performed: 
(1) Lagrange multiplier (LM) test for fixed φ value or k value for negative binomial distribution; (2) model 
fitting test; (3) model effect tests; (4) custom tests; and (5) estimating marginal means (EMMEANS). 

4.2.1 Lagrange multiplier test 

If the scale parameter 𝜙𝜙 for normal, inverse Gaussian, gamma and Tweedie distributions is set to a fixed value 
or specified by the deviance or Pearson chi-square divided by the degrees of freedom ( the latter case, 𝜙𝜙 can be 
considered as a fixed value), or an ancillary parameter 𝑘𝑘 is set to a fixed value for negative binomial, then the 
LM test is offered to assess the validity of the value. For a fixed 𝜙𝜙 value which can be any positive value or a 
fixed 𝑘𝑘 value other than 0, the test statistic is defined as 

𝑇𝑇𝐿𝐿𝐿𝐿 =
𝑠𝑠2

𝐴𝐴
 

where 𝑠𝑠 = 𝜕𝜕ℓ 𝜕𝜕𝜏𝜏⁄  (Table 7) and 𝐴𝐴 = −�𝜕𝜕
2ℓ

𝜕𝜕𝜏𝜏2
� − �− 𝜕𝜕2ℓ

𝜕𝜕𝜏𝜏𝜕𝜕𝜷𝜷𝑇𝑇
� �− 𝜕𝜕2ℓ

𝜕𝜕𝜷𝜷𝜕𝜕𝜷𝜷𝑇𝑇
�
−
�− 𝜕𝜕2ℓ

𝜕𝜕𝜷𝜷𝜕𝜕𝜏𝜏
�  (Table 8) evaluated at 𝜷𝜷�  and 

fixed 𝜙𝜙 or 𝑘𝑘 value (𝜏𝜏 = ln(𝜙𝜙) , or ln (𝑘𝑘)). Then 𝑇𝑇𝐿𝐿𝐿𝐿 is an asymptotic chi-square with 1 degree of freedom. The 
p-value can be calculated accordingly. 

If the ancillary parameter 𝑘𝑘 for negative binomial is set to a fixed value, the LM test is provided to assess the 
validity of the value. 

For 𝑘𝑘 is set to 0, the LM test statistic is based on following auxiliary OLS regression (Cameron and Trivedi, 
1998). 

(𝑘𝑘𝑚𝑚 − �̂�𝜇𝑚𝑚)2 − 𝑘𝑘𝑚𝑚
�̂�𝜇𝑚𝑚

= 𝛼𝛼�̂�𝜇𝑚𝑚 + 𝜀𝜀𝑚𝑚 

where �̂�𝜇𝑚𝑚 = 𝑠𝑠−1(𝒙𝒙𝑚𝑚𝑇𝑇𝜷𝜷 + 𝑀𝑀𝑚𝑚)  and 𝜀𝜀𝑚𝑚  is an error term. Let the response of the above OLS regression 
[(𝑘𝑘𝑚𝑚 − �̂�𝜇𝑚𝑚)2 − 𝑘𝑘𝑚𝑚 �̂�𝜇𝑚𝑚⁄ ] be 𝑧𝑧𝑚𝑚 and the explanatory variable �̂�𝜇𝑚𝑚 be 𝑤𝑤𝑚𝑚 . The estimate of the above regression parameter 
𝛼𝛼 and the standard error of the estimate of 𝛼𝛼 are 

𝛼𝛼� = ∑ 𝑟𝑟𝑚𝑚𝑤𝑤𝑚𝑚𝑧𝑧𝑚𝑚
𝑚𝑚
𝑚𝑚
∑ 𝑟𝑟𝑚𝑚𝑤𝑤𝑚𝑚

2𝑚𝑚
𝑚𝑚

   and   𝜎𝜎�𝛼𝛼 = �
1

𝑁𝑁−1∑ 𝑟𝑟𝑚𝑚(𝑧𝑧𝑚𝑚−𝛼𝛼�𝑤𝑤𝑚𝑚)2
𝑚𝑚
𝑚𝑚
∑ 𝑟𝑟𝑚𝑚𝑤𝑤𝑚𝑚

2𝑚𝑚
𝑚𝑚

 

Then the LM test statistic is z statistic 

𝑧𝑧 =
𝛼𝛼�
𝜎𝜎�𝛼𝛼

 

 

 



 

 

and it has an asymptotically standard normal distribution under the null hypothesis of equidispersion in a 
Poisson model (𝐻𝐻0: 𝑘𝑘 = 0) . The alternative hypothesis can be one-sided overdispersion (𝐻𝐻𝑚𝑚: 𝑘𝑘 > 0) , 
underdispersion (𝐻𝐻𝑚𝑚: 𝑘𝑘 < 0)  or two-sided non-directional (𝐻𝐻𝑚𝑚: 𝑘𝑘 ≠ 0)  with the variance function of 𝜙𝜙(𝜇𝜇) =
𝜇𝜇 + 𝑘𝑘𝜇𝜇2. The calculation of p-value depends on the alternative. For 𝐻𝐻𝑚𝑚: 𝑘𝑘 > 0, p-value = 1 −Φ(𝑧𝑧), where Φ(∙) 
is the cumulative probability of a standard normal distribution; for 𝐻𝐻𝑚𝑚: 𝑘𝑘 < 0, p-value = Φ(𝑧𝑧); and for 𝐻𝐻𝑚𝑚 :𝑘𝑘 ≠
0, p-value= 2�1 −Φ(|𝑧𝑧|)�. We will show all three p-values. 

Implementation note:  

The z statistic can be calculated in one data pass under map/reduce environment as follows:  

𝑧𝑧 = �
(𝑁𝑁 − 1)𝑆𝑆22

𝑆𝑆1𝑆𝑆3 − 𝑆𝑆22
 

where 𝑆𝑆1 = ∑ 𝑓𝑓𝑚𝑚𝑧𝑧𝑚𝑚2𝑚𝑚
𝑚𝑚=1 , 𝑆𝑆2 = ∑ 𝑓𝑓𝑚𝑚𝑧𝑧𝑚𝑚𝜇𝜇𝑚𝑚𝑚𝑚

𝑚𝑚=1  and 𝑆𝑆3 = ∑ 𝑓𝑓𝑚𝑚�̂�𝜇𝑚𝑚2𝑚𝑚
𝑚𝑚=1 . 

In each mapper, compute �̂�𝜇𝑚𝑚 , 𝑧𝑧𝑚𝑚 and also accumulate 𝑆𝑆1, 𝑆𝑆2 and 𝑆𝑆3, then in the reducer, combine all parts of 𝑆𝑆1, 𝑆𝑆2 
and 𝑆𝑆3 from all mappers to compute the z statistic. 

4.2.2 Model fitting test 

The model fitting omnibus test is based on –2 log-likelihood values for the model under consideration and the 
initial model. For the model under consideration, the value of  –2 log-likelihood is 

−2ℓ�𝜷𝜷��. 

Let initial model be the intercept-only model if intercept is in the considered model or the null model otherwise.  

• For the intercept-only model, let the value of –2 log-likelihood is 
−2ℓ�𝜷𝜷�0�. 

• For the null model, let the value of –2 log-likelihood is 
−2ℓ(𝟎𝟎). 

(a) The omnibus (or global) test statistic for all distribution except multinomial distribution is 
𝑆𝑆 = 2 �ℓ�𝜷𝜷�� − ℓ�𝜷𝜷�0�� for the intercept only model or

𝑆𝑆 = 2 �ℓ�𝜷𝜷�� − ℓ(𝟎𝟎)� for the null model
 

𝑆𝑆 has an asymptotic chi-square distribution with r degrees of freedom, equal to the difference in the number of 
valid parameters between the model under consideration and the initial model. 𝑀𝑀 = 𝑝𝑝𝑚𝑚 − 1 for the intercept-only 
model; 𝑀𝑀 = 𝑝𝑝𝑚𝑚 for the null model. The p-values then can be calculated accordingly. 

(b) For ordinal multinomial model,  
• The value of –2 log-likelihood for the model under consideration is 

−2ℓ�𝑩𝑩��. 

• The value of –2 log-likelihood for the thresholds-only model is 
−2ℓ�𝑩𝑩�0�. 

 

 

 



 

 

where 𝑩𝑩�0 = �𝝍𝝍� (0)𝑇𝑇 ,𝟎𝟎T�T is the parameters estimated for thresholds-only model.  

Then the omnibus test statistic is 

𝑆𝑆 = 2 �ℓ�𝑩𝑩�� − ℓ�𝑩𝑩�0��, 

and it is asymptotically chi-square distributed with 𝑝𝑝𝑚𝑚 degrees of freedom. 

(c) For nominal multinomial model,  

• The value of –2 log-likelihood for the model under consideration is 

−2ℓ�𝜷𝜷��. 

• The value of –2 log-likelihood for the intercept-only model is 
−2ℓ�𝜷𝜷�0�. 

where 𝜷𝜷�0 = �𝜷𝜷�1
(0)T,⋯ ,𝜷𝜷�𝐽𝐽−1

(0)T�
T
  is the parameters estimated for intercept-only model the value of –2 

log-likelihood for the null model is 

−2ℓ(𝟎𝟎), 

where ℓ(𝟎𝟎) = ln �1
𝐽𝐽
� ∑ 𝑟𝑟𝑚𝑚𝜔𝜔𝑚𝑚

𝜙𝜙
𝑚𝑚
𝑚𝑚=1 + 𝑀𝑀, and c is computed based on subpopulations (see Section 4.3.3.2 for 

details.) 
Then the omnibus test statistics is 

𝑆𝑆 = 2 �ℓ�𝜷𝜷�� − ℓ�𝜷𝜷�0�� for the intercept only model or

𝑆𝑆 = 2 �ℓ�𝜷𝜷�� − ℓ(𝟎𝟎)� for the null model
 

and it is asymptotically chi-square distributed with 𝑀𝑀  degrees of freedom. 𝑀𝑀 = ∑ �𝑝𝑝𝑚𝑚
𝑗𝑗 − 1�𝐽𝐽−1

𝑗𝑗=1  for the 
intercept-only model, where 𝑝𝑝𝑚𝑚

𝑗𝑗 is the number of non-redundant parameters in 𝜷𝜷𝑗𝑗; 𝑀𝑀 = ∑ 𝑝𝑝𝑚𝑚
𝑗𝑗𝐽𝐽−1

𝑗𝑗=1  for the null 
model. 

When calculating the value of –2 log-likelihood of initial model we need to setup the rules to handle the scale 
parameter φ or the ancillary parameter k in the initial model and they depend on how it is handled in the model 
under consideration.   

(1) If the scale parameter 𝜙𝜙 or the ancillary parameter k is estimated by the ML method in the model under 
consideration, then it will also be estimated by the ML method in the initial model. 

(2) If the scale parameter φ or the ancillary parameter k is held fixed in the model under consideration, then the 
same value is fixed in the initial model. 

(3) If the scale parameter φ is specified by the deviance or Pearson chi-square divided by degrees of freedom in 
the model under consideration, then that value will be held fixed in the initial model. Note that the log 
likelihood for the model under consideration, would be adjusted, i.e., based on 𝜙𝜙 = 𝜙𝜙� , so the log 
likelihoods for both models (the model under consideration and initial model) are calculated based on the 
same scale parameter value. 

 

 

 

 



 

 

The details of the calculation of initial model are given in Section 3.1.3.3. Please note that for a part of null and 
intercept-only models, there are no closed form solutions, thus approximate models will be used. Thus, when the 
initial model is different from the model under consideration and the approximate initial model is used, then a 
warning message, such as “The omnibus test may not be accurate for the approximate initial model being used”, 
would be displayed. 

4.2.3 Tests for model effects 

For each regression effect specified in the model, two analyses can be conducted: type I analysis and type III 
analysis. The can request to do one of them, both of them or none. 

4.2.3.1 Type I analysis 

Type I analysis consists of fitting a sequence of models, starting with the null model as the baseline model (for 
all distributions except ordinal multinomial), adding one additional effect, which can be an intercept term (if 
there is one),  covariates, factors and interactions, of the model on each step. For ordinal multinomial model, the 
baseline model will be thresholds-only model. So it depends on the order of effects specified in the model. On 
the other hand, type III analysis will not depend on the order of effects. The reason for using the null model as 
the baseline model is to obtain the chi-square statistic for the first parameter 𝜷𝜷1 which might be for an intercept 
or the first predictor variable. 

(a) All distributions except multinomial distributions 
For each effect specified in the model, type I test matrix 𝑳𝑳𝑚𝑚 is constructed and 𝐻𝐻0: 𝑳𝑳𝑚𝑚𝜷𝜷 = 𝟎𝟎 is tested. The Wald 
statistic is defined by 

𝑆𝑆 = �𝑳𝑳𝑚𝑚𝜷𝜷��
𝑻𝑻(𝑳𝑳𝑚𝑚𝜮𝜮𝑳𝑳𝑚𝑚𝑇𝑇)−𝑳𝑳𝑚𝑚𝜷𝜷�. 

𝑳𝑳𝑚𝑚  is a 𝑀𝑀×𝑝𝑝  full row rank hypothesis matrix and is constructed based on the generating matrix 𝑯𝑯𝜔𝜔 =
(𝑿𝑿𝑇𝑇𝜴𝜴𝑿𝑿)−𝑿𝑿𝑇𝑇𝜴𝜴𝑿𝑿, where 𝜴𝜴 is the scale weight matrix with the ith diagonal element being 𝜔𝜔𝑚𝑚 and such that 𝑳𝑳𝑚𝑚𝜷𝜷 is 
estimable.  𝜷𝜷� is the maximum likelihood estimate and 𝜮𝜮 is the estimated covariance matrix (𝜮𝜮 could be 𝜮𝜮𝑚𝑚 or 
𝜮𝜮𝑟𝑟). The asymptotic distribution of  𝑆𝑆 is 𝜒𝜒𝑟𝑟𝐶𝐶

2 , where 𝑀𝑀𝐶𝐶 = rank(𝑳𝑳𝑚𝑚𝜮𝜮𝑳𝑳𝑚𝑚𝑇𝑇), If 𝑀𝑀𝐶𝐶 < 𝑀𝑀,  (𝑳𝑳𝑚𝑚𝜮𝜮𝑳𝑳𝑚𝑚𝑇𝑇)− is a generalized 
inverse such that Wald tests are effective for restricted set of hypothesis  𝑳𝑳𝑚𝑚𝐶𝐶𝜷𝜷 containing a particular subset 𝐶𝐶 of 
independent rows from 𝐻𝐻0 . See Fang and Spisic (2004) for details. Then the p-values can be calculated 
accordingly. 

Note that for type I analysis, 𝑳𝑳𝑚𝑚 depends on the order of effects specified in the model, but for type III analysis, it 
does not. If such a matrix cannot be constructed, the effect is not testable. See Chiu (1995a, b) and Zhong 
(2006a) for computational details on construction of type I and III test matrices. 

(b) Ordinal multinomial distributions 
For ordinal multinomial model, first consider partition more general test matrix 𝑳𝑳 = �𝑳𝑳(𝝍𝝍),𝑳𝑳(𝜷𝜷)� , where 
𝑳𝑳(𝝍𝝍) = �𝒍𝒍1,⋯ , 𝒍𝒍𝐽𝐽−1�  consists of columns corresponding to threshold parameters and 𝑳𝑳(𝜷𝜷)  be the part of 𝑳𝑳 
corresponding to regression parameters. Consider matrix 𝑳𝑳0 = �𝒍𝒍0,𝑳𝑳(𝜷𝜷)�  where the column vectors 
corresponding to threshold parameters are replaced by their sum 𝒍𝒍0 = ∑ 𝒍𝒍𝑗𝑗

𝐽𝐽−1
𝑗𝑗=1 . Then 𝑳𝑳𝑩𝑩 is estimable if and only 

if 𝑳𝑳0 = 𝑳𝑳0𝑯𝑯𝜔𝜔 , where 𝑯𝑯𝜔𝜔 = (𝑿𝑿1𝑇𝑇𝜴𝜴𝑿𝑿1)−𝑿𝑿1𝑇𝑇𝜴𝜴𝑿𝑿1  is a (1 + 𝑝𝑝)×(1 + 𝑝𝑝) matrix constructed using 𝑿𝑿1 = (𝟏𝟏,−𝑿𝑿) . 
The Wald statistic for testing 𝑳𝑳𝑩𝑩 = 𝟎𝟎, where 𝑳𝑳 is a 𝑀𝑀×(𝐽𝐽 − 1 + 𝑝𝑝) full row rank hypothesis matrix is defined by 

𝑆𝑆 = �𝑳𝑳𝑩𝑩��𝑇𝑇(𝑳𝑳𝜮𝜮𝑳𝑳𝑻𝑻)−𝑳𝑳𝑩𝑩�  

 

 

 



 

 

where 𝑩𝑩� = �𝝍𝝍�𝑇𝑇 ,𝜷𝜷�𝑇𝑇�𝑇𝑇 is the maximum likelihood estimate and 𝜮𝜮 is the estimated covariance (𝜮𝜮 could be 𝜮𝜮𝑚𝑚 or 
𝜮𝜮𝑟𝑟). The asymptotic distribution of S is 𝜒𝜒𝑟𝑟𝐶𝐶

2 , where 𝑀𝑀𝐶𝐶 = rank(𝑳𝑳𝚺𝚺𝑳𝑳𝑇𝑇). 

For each effect specified in the model excluding threshold parameters, type I test matrix 𝑳𝑳𝑚𝑚 is constructed and 
H0: 𝑳𝑳𝑚𝑚𝑩𝑩 = 0is tested. Construction of matrix 𝑳𝑳𝑚𝑚is based on matrix 𝑯𝑯𝜔𝜔 = (𝑿𝑿1𝑇𝑇𝜴𝜴𝑿𝑿1)−𝑿𝑿1𝑇𝑇𝜴𝜴𝑿𝑿1 and such that 𝑳𝑳𝑚𝑚𝑩𝑩 is 
estimable. Thus, the way to construct 𝑳𝑳𝑚𝑚 (type I and III) for ordinal multinomial is the same as that for other 
distributions. Note that the threshold-parameter effect is not tested for both type I and III analyses.  

(c) Nominal multinomial distributions 
For each effect specified in the model, 𝑳𝑳𝑚𝑚 is constructed based on the generating matrix 𝑯𝑯𝜔𝜔 = (𝑿𝑿𝑇𝑇𝜴𝜴𝑿𝑿)−𝑿𝑿𝑇𝑇𝜴𝜴𝑿𝑿, 
where 𝜴𝜴 is the scale weight matrix with the ith diagonal element being 𝜔𝜔𝑚𝑚 and such that 𝑳𝑳𝑚𝑚𝜷𝜷 is estimable. 

𝑆𝑆 = �𝑳𝑳𝑚𝑚′𝜷𝜷��
𝑻𝑻(𝑳𝑳𝑚𝑚′𝜮𝜮𝑳𝑳𝑚𝑚′𝑇𝑇)−𝑳𝑳𝑚𝑚′𝜷𝜷� 

where 𝑳𝑳𝑚𝑚′ = 𝑰𝑰𝐽𝐽−1 ⊗ 𝑳𝑳𝑚𝑚 and 𝑀𝑀𝐶𝐶 = rank(𝑳𝑳𝑚𝑚′𝜮𝜮𝑳𝑳𝑚𝑚′𝑇𝑇) ;  𝜮𝜮 could be 𝜮𝜮𝑚𝑚 or 𝜮𝜮𝑟𝑟. The asymptotic distribution of 𝑆𝑆 is 𝜒𝜒𝑟𝑟𝐶𝐶
2 . 

4.2.3.2 Type III analysis 

The computation of Wald statistics for type III analysis is similar to that for type I analysis. The only difference 
is that type III L matrix is constructed. 

4.2.4 Custom tests 

Contrasts defined as linear combination of regression parameters can be tested. For a user specified 𝑳𝑳 and 𝑲𝑲, the 
hypothesis 𝐻𝐻0: 𝑳𝑳𝜷𝜷 = 𝑲𝑲 is tested only when each row of the 𝑳𝑳 matrix is checked for estimablility (i.e. check if 
𝑳𝑳𝑯𝑯𝜔𝜔 = 𝑳𝑳 where 𝑯𝑯𝜔𝜔 = (𝑿𝑿𝑇𝑇𝜴𝜴𝑿𝑿)−𝑿𝑿𝑇𝑇𝜴𝜴𝑿𝑿, and 𝜴𝜴 is the scale weight matrix with the ith diagonal element is 𝜔𝜔𝑚𝑚). 
Then test statistics, exponential estimation and multiple test p-value adjustment are the three subsections to be 
discussed. For checking on estimability for ordinal and nominal multinomial model, please see Section 4.2.3.1 
for details. 

4.2.4.1 Test statistics 

The test statistics used is Wald statistics (see Section 4.2.3). Then the p-values are calculated accordingly. 

4.2.4.2 Exponential estimation 

If 𝑳𝑳 is a 1×𝑝𝑝 row vector, we can calculate the estimate of 𝑳𝑳𝜷𝜷, its approximate standard error and its Wald 
confidence interval. In the meantime, for logistic regression or log-linear models, we can also calculate exp(𝑳𝑳𝜷𝜷), 
its standard error, and its confidence interval. Note for other models, exp(𝑳𝑳𝜷𝜷) might not make sense. The 
following table is shown the formulae: 

 

 

 

 

 

 

 

 



 

 

Table 11: Estimate, Standard Error and Wald Conference Interval for  𝑳𝑳𝜷𝜷 and exp(𝑳𝑳𝜷𝜷) 

 𝑳𝑳𝜷𝜷 exp(𝑳𝑳𝜷𝜷) 

Estimate 𝑳𝑳𝜷𝜷� exp�𝑳𝑳𝜷𝜷�� 

Std. Error 𝜎𝜎�𝑳𝑳𝜷𝜷 = �𝑳𝑳𝜮𝜮𝑳𝑳𝑻𝑻 �exp�𝑳𝑳𝜷𝜷�� ∙ 𝜎𝜎�𝑳𝑳𝜷𝜷� 

Wald confidence 
interval 

�𝑳𝑳𝜷𝜷� − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝑳𝑳𝜷𝜷, 𝑳𝑳𝜷𝜷� + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝑳𝑳𝜷𝜷� �exp�𝑳𝑳𝜷𝜷� − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝑳𝑳𝜷𝜷� , exp�𝑳𝑳𝜷𝜷� + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝑳𝑳𝜷𝜷�� 

4.2.4.3 Multiple test p-value adjustment 

The above hypothesis 𝐻𝐻0:𝑳𝑳𝜷𝜷 = 𝑲𝑲 can be tested using the multiple row hypotheses testing technique. Let 𝒍𝒍𝑚𝑚𝑇𝑇 be 
the ith row vector of matrix 𝑳𝑳 and 𝑘𝑘𝑚𝑚 be the ith element of vector 𝑲𝑲. The ith row hypothesis is 𝐻𝐻0𝑚𝑚 : 𝒍𝒍𝑚𝑚𝑇𝑇𝜷𝜷 = 𝑘𝑘𝑚𝑚 . 
Testing 𝐻𝐻0 is the same as testing multiple non-redundant row hypotheses {𝐻𝐻0𝑚𝑚∗ }𝑚𝑚=1𝑅𝑅  simultaneously, where 𝑅𝑅 is 
the number of non-redundant row hypotheses, and 𝐻𝐻0𝑚𝑚∗  represents the ith non-redundant hypothesis. A hypothesis 
𝐻𝐻0𝑚𝑚 is redundant if there exists another hypothesis 𝐻𝐻0𝑗𝑗 , 𝑗𝑗 ≠ 𝑖𝑖 such that 𝒍𝒍𝑚𝑚 = 𝑀𝑀𝒍𝒍𝑗𝑗 , 𝑘𝑘𝑚𝑚 = c𝑘𝑘𝑗𝑗 , 𝑀𝑀 ≠ 0. 

For each individual hypothesis 𝐻𝐻0𝑚𝑚, test statistics can be calculated. Let 𝑝𝑝𝑚𝑚  denotes the p-value for testing 𝐻𝐻0𝑚𝑚, 
and 𝑝𝑝𝑚𝑚∗ denotes the adjusted p-value. The conclusion from the multiple testing is, at level 𝛼𝛼 (the family-wise type 
I error), 

reject 𝐻𝐻0𝑚𝑚 : 𝒍𝒍𝑚𝑚𝑇𝑇𝜷𝜷 = 𝑘𝑘𝑚𝑚, if 𝑝𝑝𝑚𝑚∗ < 𝛼𝛼;  

reject 𝐻𝐻0: 𝑳𝑳𝜷𝜷 = 𝑲𝑲, if min
𝑚𝑚

(𝑝𝑝𝑚𝑚∗) < 𝛼𝛼. 

There are different methods to adjust p-values. Five methods are provided here. Please note that if the adjusted 
p-value is bigger than 1, it is set to 1 in all the methods.  

(a) LSD (Least Significant Difference) 
The adjusted p-values are the same as the original p-values: 𝑝𝑝𝑚𝑚∗ = 𝑝𝑝𝑚𝑚 . 

(b) Bonferroni 
The adjusted p-values are 𝑝𝑝𝑚𝑚∗ = 𝑅𝑅𝑝𝑝𝑚𝑚 . 

(c) Sidak 
The adjusted p-values are 𝑝𝑝𝑚𝑚∗ = 1 − (1 − 𝑝𝑝𝑚𝑚)𝑅𝑅. 

(d) Sequential Bonferroni 
In sequential test, the p-values are first ordered from the smallest to the biggest, and then adjusted depending on 
the order. Let the ordered p-values for the non-redundant row hypotheses be 𝑝𝑝(1) ≤ 𝑝𝑝(2) ≤  ⋯  ≤ 𝑝𝑝(𝑅𝑅)  with 
corresponding non-redundant hypotheses being be 𝐻𝐻0(1) ≤ 𝐻𝐻0(2) ≤  ⋯  ≤ 𝐻𝐻0(𝑅𝑅).  

The adjusted p-value of  𝑝𝑝(𝑚𝑚) is 𝑝𝑝(𝑚𝑚)
∗ = �

𝑅𝑅𝑝𝑝(1) if 𝑖𝑖 = 1

max �(𝑅𝑅 − 𝑖𝑖 + 1)𝑝𝑝(𝑚𝑚), 𝑝𝑝(𝑚𝑚−1)
∗ � if 𝑖𝑖 ≥ 2

.  

 

 

 

Note: if a row hypothesis is made redundant by 𝐻𝐻0(𝑚𝑚)
∗ , the p-value and adjusted p-value of this row are the same 

as that of 𝐻𝐻0(𝑚𝑚)
∗ . This applies to both sequential Bonferroni and Sidak tests. 



 

 

(e) Sequential Sidak 

The adjusted p-value of 𝑝𝑝(𝑚𝑚) is 𝑝𝑝(𝑚𝑚)
∗ = �

1 − �1 − 𝑝𝑝(1)�
𝑅𝑅 if 𝑖𝑖 = 1

max �1 − �1 − 𝑝𝑝(𝑚𝑚)�
𝑅𝑅−𝑚𝑚+1, 𝑝𝑝(𝑚𝑚−1)

∗ � if 𝑖𝑖 ≥ 2
.  

See Fang and Spisic (2004) for comparison of adjustment methods. 

Note that if confidence intervals are also calculated for the above hypothesis, then adjusting confidence intervals 
is required to correspond to adjusted p-values. The only item needed to be adjusted in the confidence intervals is 
the critical value from the standard normal distribution. Assume that the original critical value is 𝑧𝑧1−𝛼𝛼/2 and the 
adjusted critical value is 𝑧𝑧∗. 

(a) LSD (Least Significant Difference) 
The adjusted critical value is 𝑧𝑧∗ = 𝑧𝑧1−𝛼𝛼2

.  

(b) Bonferroni 
The adjusted critical value is 𝑧𝑧∗ = 𝑧𝑧1− 𝛼𝛼

2𝑅𝑅
. 

(c) Sidak 
The adjusted critical value is 𝑧𝑧∗ = 𝑧𝑧

1−1−(1−𝛼𝛼)1/𝑅𝑅
2

. 

(d) Sequential Bonferroni 
The adjusted 𝑧𝑧∗ values will correspond to the ordered adjusted p-values 𝑝𝑝(1), 𝑝𝑝(2),⋯ , 𝑝𝑝(𝑅𝑅) as follows: 

 



𝑧𝑧(𝑖𝑖)
∗ = �

𝑧𝑧1− 𝛼𝛼
2𝑅𝑅

if 𝑖𝑖 = 1

min �𝑧𝑧1− 𝛼𝛼
2(𝑅𝑅−𝑖𝑖+1)

, 𝑧𝑧(𝑖𝑖−1)
∗ � if 𝑖𝑖 ≥ 2

. 

(a) Sequential Sidak 

𝑧𝑧(𝑖𝑖)
∗ =

⎩
⎨

⎧
𝑧𝑧
1−1−(1−𝛼𝛼)1/𝑅𝑅

2
if 𝑖𝑖 = 1

min �𝑧𝑧
1−1−(1−𝛼𝛼)1/(𝑅𝑅−𝑖𝑖+1)

2
, 𝑧𝑧(𝑖𝑖−1)

∗ � if 𝑖𝑖 ≥ 2
. 

4.2.5 EMMEANS 

There are two types of estimated marginal means (EMMEANS) calculated here. One corresponds to the specified 
factors for the linear predictor of the model and the other corresponds to those for the response of the model.  

EMMEANS are based on the estimated cell means. For a given fixed set of factors, or their interactions, we 
estimate marginal means as the mean value averaged over all cells generated by the rest of the factors in the 
model. Covariates may be fixed at any specified value. If not specified, the value for each covariate is set to its 
overall mean estimate. 

For ordinal and nominal multinomial model, EMMEANS are not available. 

4.2.5.1 EMMEANS for the linear predictor 

(a) Calculating EMMEANS for the linear predictor   

EMMEANS for the linear predictor are based on the link function transformation. They are computed for the 
linear predictor. Since the given model with respect to the linear predictor is a linear model (i.e. the model is 𝜼𝜼 =
𝑿𝑿𝑿𝑿 + offset), so the way to construct 𝑳𝑳 is the same as that for the GLM procedure. Each EMMEAN for the linear 
predictor is constructed in the form 𝑳𝑳𝑿𝑿�  such that 𝑳𝑳𝑿𝑿 is estimable.  

Briefly, for a given set of factors in the model, a vector of EMMEANS for the linear predictor is created for all 
combined levels of the factors. Assume there are 𝑟𝑟 levels. This 𝑟𝑟×1 vector can be expressed in the form 𝒗𝒗� = 𝑳𝑳𝑿𝑿� 
where each row of 𝑳𝑳 matrix is generated as described above. Variance matrix of 𝒗𝒗� is then computed by the 
following formula 

𝑽𝑽(𝒗𝒗�) = 𝑳𝑳𝚺𝚺𝑳𝑳𝑇𝑇 . 

Note that 𝜮𝜮 could be 𝜮𝜮𝑚𝑚 or 𝜮𝜮𝑟𝑟. The standard error for the jth element of 𝒗𝒗� is the square root of the jth diagonal 
element of 𝑽𝑽(𝒗𝒗�). Let the jth element of 𝒗𝒗� and its standard error be 𝑣𝑣�𝑗𝑗 and 𝜎𝜎�𝑣𝑣𝑗𝑗, respectively, then the corresponding 
100(1 –  α)% Wald confidence interval for 𝑣𝑣𝑗𝑗 , 𝑗𝑗 = 1,⋯ , 𝑟𝑟 is given by  

�𝑣𝑣�𝑗𝑗 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝑣𝑣𝑗𝑗 , 𝑣𝑣�𝑗𝑗 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝑣𝑣𝑗𝑗�. 

(b)  Comparing EMMEANS for the linear predictor 

We can compare EMMEANS for the linear predictor based on a selected contrast type which a set of contrasts 
for the factor is created. Let this set of contrasts define matrix 𝑪𝑪 used for testing the following hypothesis 𝐻𝐻0:𝑪𝑪𝒗𝒗 =
𝟎𝟎 (an overall test). A Wald statistic is used for testing given set of contrasts for the factor as follows:  



S = (𝑪𝑪𝒗𝒗�)𝑇𝑇(𝑪𝑪𝑽𝑽(𝒗𝒗�)𝑪𝑪𝑇𝑇)−(𝑪𝑪𝒗𝒗�). 

Asymptotic distribution of the Wald statistic is chi-square with 𝑟𝑟𝐼𝐼degrees of freedom, where 𝑟𝑟𝐼𝐼 =
rank(𝑪𝑪𝑽𝑽(𝒗𝒗�)𝑪𝑪𝑇𝑇). The p-value can be calculated accordingly. Note that the adjusted p-value based on multiple test 
p-value adjustments (see Section 4.2.4.3) won’t be given. 

Each row 𝒄𝒄𝑖𝑖𝑇𝑇 of matrix 𝑪𝑪 is also tested separately (individual tests). Estimate for the ith row is given by 𝒄𝒄𝑖𝑖𝑇𝑇𝒗𝒗� and 
its standard error by �𝒄𝒄𝑖𝑖𝑇𝑇𝑽𝑽(𝒗𝒗�)𝒄𝒄𝑖𝑖. The corresponding 100(1 –  α)% Wald confidence interval for 𝒄𝒄𝑖𝑖𝑇𝑇𝒗𝒗 is given by  

� 𝒄𝒄𝑖𝑖𝑇𝑇𝒗𝒗� − 𝑧𝑧1−𝛼𝛼/2�𝒄𝒄𝑖𝑖𝑇𝑇𝑽𝑽(𝒗𝒗�)𝒄𝒄𝑖𝑖 , 𝒄𝒄𝑖𝑖𝑇𝑇𝒗𝒗� + 𝑧𝑧1−𝛼𝛼/2�𝒄𝒄𝑖𝑖𝑇𝑇𝑽𝑽(𝒗𝒗�)𝒄𝒄𝑖𝑖�. 

The Wald statistic for 𝐻𝐻0: 𝒄𝒄𝑖𝑖𝑇𝑇𝒗𝒗 = 0 is  

𝑆𝑆𝑖𝑖 = �
𝒄𝒄𝑖𝑖𝑇𝑇𝒗𝒗�

𝒄𝒄𝑖𝑖𝑇𝑇𝑽𝑽(𝒗𝒗�)𝒄𝒄𝑖𝑖
�
2

. 

And it has an asymptotic chi-square distribution with 1 degree of freedom. The p-values can be calculated 
accordingly. In addition, the adjusted p-values can also computed, see Section 4.2.4.3 for details.  

Note: 

 The usual contrast types used in 𝑪𝑪 are included  

 Deviation 
 Simple 
 Helmert 
 Difference 
 Polynomial 
 Repeated 

See Appendix of SPSS Advanced Statistics 7.5 (1997) for definitions of these contrasts. Note the definition of 
deviation is revised: each level of the factor is compared to the grand mean. 

 In addition, we would like to offer pair-wise contrast (the differences between EMMEANS for each pair of 
levels for the effect), 𝑪𝑪 can be constructed similarly as that in GLM procedure. 

4.2.5.2 EMMEANS for the response 

EMMEANS for the response are based on the original scale of the dependent variable except for the binomial 
response with events/trials format (see note below). They can be defined as the estimator of the expected response 
for a subject conditional on his/her belonging to a specified effect and having the averages of covariates. 

(a) Calculating EMMEANS for the response 

The way to construct EMMEANS for the response is based on EMMEANS for the linear predictor. Let 𝑴𝑴� 𝑐𝑐 be 
EMMEANS for the response and it is defined as 

𝑴𝑴� 𝑐𝑐 = 𝑔𝑔−1�𝑳𝑳𝑿𝑿�� = 𝑔𝑔−1(𝒗𝒗�). 

The variance of EMMEANS for the response is  



𝑽𝑽�𝑴𝑴� 𝑐𝑐� = diag�
∂𝑔𝑔−1�𝑣𝑣�𝑗𝑗�
∂𝑣𝑣�𝑗𝑗

� 𝑳𝑳𝜮𝜮𝑳𝑳𝑇𝑇diag�
∂𝑔𝑔−1�𝑣𝑣�𝑗𝑗�

∂𝑣𝑣�𝑗𝑗
� 

Where diag�∂𝑔𝑔−1�𝑣𝑣�𝑗𝑗� ∂𝑣𝑣�𝑗𝑗� � a 𝑟𝑟×𝑟𝑟 matrix and ∂𝑔𝑔−1�𝑣𝑣�𝑗𝑗� ∂𝑣𝑣�𝑗𝑗�  is the derivative of the inverse of the link with 
respect to the jth value in 𝒗𝒗� and ∂𝑔𝑔−1�𝑣𝑣�𝑗𝑗� ∂𝑣𝑣�𝑗𝑗� = 1 𝑔𝑔′�𝑀𝑀�𝑐𝑐𝑗𝑗�⁄  where 𝑔𝑔′�𝑀𝑀�𝑐𝑐𝑗𝑗� is from Table 5. The standard error 
for the jth element of 𝑴𝑴� 𝑐𝑐 and the corresponding confidence interval are calculated similar to those of 𝒗𝒗�, see Section 
4.2.5.1-(a) for details. 

Note: 

𝑴𝑴� 𝑐𝑐 is EMMEANS for the proportion, not for the number of events when 𝑟𝑟 and 𝑚𝑚 (events/trials) variables are 
used for the binomial distribution. See P. 62 for discussion about binomial response with events/trials format. 

(b) Comparing EMMEANS for the response 

It is similar to comparing EMMEANS for the linear predictor, just replace 𝒗𝒗� with 𝑴𝑴� 𝑐𝑐 and 𝑽𝑽(𝒗𝒗�) with 𝑽𝑽�𝑴𝑴� 𝑐𝑐�. See 
Section 4.2.5.1-(b) for details. 

4.2.5 Tests on original scale 

(a) Lagrange multiplier test (Section 4.2.1) 
(b) Model fitting test (Section 4.2.2) 

All statistics calculated are the same on either original or transformed scale. Since parameters have been estimated 
based on transformed scale and a lot of values are available, those statistics should be calculated based on 
transformed scale. 

(c) Tests for model effects (Section 4.2.3) 
(d) EMMEANS and custom tests (Section 4.2.4) 

For each effect specified in the model, type I or III test matrix 𝑳𝑳 is constructed from the generating matrix, 𝑯𝑯𝜔𝜔 =
(𝑿𝑿𝑇𝑇𝛀𝛀𝑿𝑿)−𝑿𝑿𝑇𝑇𝛀𝛀𝑿𝑿. We may have trouble to calculate 𝑯𝑯𝜔𝜔 directly. Use the transformed variables, we will first 
calculate 𝑯𝑯𝜔𝜔

∗ = (𝑿𝑿∗𝑇𝑇𝛀𝛀𝑿𝑿∗)−𝑿𝑿∗𝑇𝑇𝛀𝛀𝑿𝑿∗. Since 𝑯𝑯𝜔𝜔 = 𝑨𝑨𝑯𝑯𝜔𝜔
∗ 𝑨𝑨−1, we can obtain 𝑯𝑯𝜔𝜔 from 𝑯𝑯𝜔𝜔

∗ , then construct type I or 
III test matrix 𝑳𝑳𝑖𝑖  for the ith effect based on original scale from 𝑯𝑯𝜔𝜔.  

For ordinal multinomial, use 𝑯𝑯𝜔𝜔 = (𝑿𝑿1𝑻𝑻𝛀𝛀𝑿𝑿1)−𝑿𝑿1𝑻𝑻𝛀𝛀𝑿𝑿1, 𝑯𝑯𝝎𝝎
∗ = (𝑿𝑿1∗𝑻𝑻𝛀𝛀𝑿𝑿1∗)−𝑿𝑿1∗𝑻𝑻𝛀𝛀𝑿𝑿1∗  and 𝑯𝑯𝜔𝜔 = 𝑻𝑻𝑯𝑯𝜔𝜔

∗ 𝑻𝑻−1 to 
construct type I or III test matrix 𝑳𝑳.  

For nominal multinomial, use 𝑯𝑯𝜔𝜔 = (𝑿𝑿𝑇𝑇𝛀𝛀𝑿𝑿)−𝑿𝑿𝑇𝑇𝛀𝛀𝑿𝑿, 𝑯𝑯𝜔𝜔
∗ = (𝑿𝑿∗𝑇𝑇𝛀𝛀𝑿𝑿∗)−𝑿𝑿∗𝑇𝑇𝛀𝛀𝑿𝑿∗ and 𝑯𝑯𝜔𝜔 = 𝑻𝑻𝑯𝑯𝜔𝜔

∗ 𝑻𝑻−1 to 
construct type I or III test matrix 𝑳𝑳. 

4.3 Goodness of fit 
To assess goodness of fit of a given generalized linear model, we calculate three statistics: deviance, Pearson chi-
square, and information criteria.   

Note that all statistics are the same on either or transformed scale. Since parameters have been estimated based 
on the transformed scale and a lot of values are available, those statistics should be calculated based on the 
transformed scale. 



4.3.1 Deviance 

The theoretical definition of deviance is as follows:  

𝐷𝐷 = 2𝜙𝜙�ℓ(𝒚𝒚;𝒚𝒚) − ℓ(𝝁𝝁�;𝒚𝒚)� 

where ℓ(𝝁𝝁�;𝒚𝒚) is the log likelihood function expressed as the function of the predicted mean values of  𝝁𝝁� 
(calculated based on the parameter estimates) given the response variable 𝒚𝒚 and ℓ(𝒚𝒚;𝒚𝒚) is the log likelihood 
function by replacing 𝝁𝝁� with 𝒚𝒚. The formula used for the deviance is ∑ 𝑓𝑓𝑖𝑖𝑑𝑑𝑖𝑖𝑛𝑛

𝑖𝑖=1  where the form of 𝑑𝑑𝑖𝑖 for the 
distributions is given in the following table: 

Table 9: The Form of 𝑑𝑑𝑖𝑖 for Probability Distributions 

Distribution  𝑑𝑑𝑖𝑖 

Normal ( )2
i i iyω µ−  

Inverse Gaussian ( )2
2

i
i i

i i

y
y
ω µ
µ

−  

Gamma 2 ln i i i
i

i i

y y µω
µ µ

   − − +  
   

 

Negative binomial ( ) 12 ln 1 ln
1

i i
i i i

i i

y y ky y k
k

ω
µ µ

    + − +    +     
 

Poisson ( )2 ln i
i i i i

i

yy yω µ
µ

   − −  
   

 

Binomial(m) ( ) 12 ln 1 ln
1

i i
i i i

i i

y yy yω
µ µ

∗     − + −    −     
 

Tweedie 
( ) ( )

( )( )

2 1 22 1
2

1 2

q q q
i i i i

i

y q y q
q q
µ µ

ω
− − − − − + − 

 − −  
 

Note: 

• When y is a binary dependent variable with 0/1 values (binomial distribution), and categorical variable 
(multinomial distribution), the deviance and Pearson chi-square are calculated based on the subpopulations, 
see Section 4.3.3.2 below. 

• When y = 0 for negative binomial and Poisson distributions and y = 0 (for r = 0) or 1 (for r = m) for binomial 
distribution with r/m format, separate values are given the deviance. Let 𝑑𝑑𝑖𝑖 be the deviance value for 
individual case i when yi = 0 for negative binomial and Poisson and 0/1 for binomial. 

Distribution  id   



Negative binomial 
( )ln 1

2    if  0i
i i

k
y

k
µ

ω
+

=  

Poisson 2     if  0i i iyω µ =  

Binomial(m) 
( )
( )

2 ln 1   if  0  or  0

2 ln        if  1  or  
i i i i

i i i i i

y r

y r m

ω µ

ω µ

∗

∗

− − = =

− = =

 

 

4.3.2 Pearson chi-square 

Pearson chi-square statistic is defined as follows 

𝜒𝜒2 = � 𝑓𝑓𝑖𝑖𝛾𝛾𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 

where 𝛾𝛾𝑖𝑖 = 𝜔𝜔𝑖𝑖
∗(𝑦𝑦𝑖𝑖−𝜇𝜇𝑖𝑖)2

𝑉𝑉(𝜇𝜇𝑖𝑖)
 for binomial distribution and 𝛾𝛾𝑖𝑖 = 𝜔𝜔𝑖𝑖(𝑦𝑦𝑖𝑖−𝜇𝜇𝑖𝑖)2

𝑉𝑉(𝜇𝜇𝑖𝑖)
 for other distributions. 

4.3.3 Scaled deviance and Pearson chi-square 

The scaled deviance is 𝐷𝐷∗ = 𝐷𝐷 𝜙𝜙⁄  and the scaled Pearson chi-square is 𝜒𝜒2∗ = 𝜒𝜒2 𝜙𝜙⁄  if 𝜙𝜙 is known from estimating 
as a parameter or setting as a fixed value.  

Since the scaled deviance and Pearson chi-square statistics, have a limiting chi-square distribution with degrees 
of freedom equal to the number of observations (effective sample size) minus the number of non-redundant 
regression parameters estimated, i.e. d.f. = N – px, the deviance or Pearson chi-square divided by its degrees of 
freedom can be used as an estimate of the scale parameter 𝜙𝜙 for both continuous and discrete distributions. 

𝜙𝜙� =
𝐷𝐷

𝑁𝑁 − 𝑝𝑝𝑥𝑥
  or  𝜙𝜙� =

𝜒𝜒2

𝑁𝑁 − 𝑝𝑝𝑥𝑥
 

If the ancillary parameter k of negative binomial is estimated by the ML method, the scale parameter 𝜙𝜙 is 
measured by the deviance or Pearson chi-square divided by its degrees of freedom, then the degrees of freedom 
is 𝑁𝑁 − 𝑝𝑝𝑥𝑥 − 1 not usual 𝑁𝑁 − 𝑝𝑝𝑥𝑥 because k is the extra parameter estimated by ML method. 

Note that the values of the deviance and Pearson chi-square divided by the degrees of freedom (they might be 
called D/df and Pearson/df, respectively) will be computed no matter how the scale parameter is treated.  

If the scale parameter is measured by the deviance or Pearson chi-square, first we assume 𝜙𝜙 = 1, estimate 𝑿𝑿�, 
calculate the deviance and Pearson chi-square values and obtain 𝜙𝜙� from the above formula. Then the scaled 
version of both statistics is obtained by dividing the deviance and Pearson chi-square by 𝜙𝜙�. In the meantime, some 
statistics need to be revised. The gradient vector and the Hessian matrix are divided by 𝜙𝜙� and the covariance 
matrix is multiplied by 𝜙𝜙�. Accordingly, the estimated standard errors are also adjusted, the Wald confidence 
intervals and significance tests will be affected even the parameter estimates are not affected by 𝜙𝜙�. 

Note that two log likelihood values would be displayed: original one (based on 𝜙𝜙 = 1) and adjusted one (based 
on 𝜙𝜙 = 𝜙𝜙� which is plugged into the log likelihood function of the corresponding distribution).  



4.3.3.1 Overdispersion 

For the Poisson, binomial distributions and multinomial distribution, if the estimated scale parameter 𝜙𝜙� is not 
near the assumed value of one, then the data may be overdispersed if the value is greater than one or 
underdispersed if the value is less than one. Overdispersion is more common in practice. The problem with 
overdispersion is that it may cause standard errors of the estimated parameters to be underestimated. A variable 
may appear to be a significant predictor, when in fact it is not.  

4.3.3.2 Deviance and Pearson chi-square for binomial distribution with 0/1 binary 
response variable and multinomial distribution 

When r and m (event/trial) variables are used for the binomial distribution, each case represents m Bernoulli trials. 
When y is a binary dependent variable with 0/1 values, each case represents a single trial. The trial can be repeated 
for several times with the same setting (i.e. the same values for all predictors). For example, suppose the first 10 
y values are 2 1s and 8 0s and x values are the same (if recorded in events/trials format, these 10 cases is recorded 
as 1 case with r = 2 and m = 10), then these 10 cases should be considered from the same subpopulation. Cases 
with common values in the variable list that includes all predictors are regarded as coming from the same 
subpopulation. When the binomial distribution with binary response is used, we should calculate the deviance 
and Pearson chi-square based on the subpopulations. If we calculate them based on the cases, the results might 
not be useful.  

If subpopulations are specified for the binomial distribution with 0/1 binary response variable, the data should be 
reconstructed from the single trial format to the events/trials format. Assume the following notations for 
reconstructed data: 

ns Number of subpopulations. 

rj1 Sum of the product of the frequencies and the scale weights associated with y = 1 in the jth 
subpopulation. So rj0 is that with y = 0 in the jth subpopulation. 

mj Total weighted observations and  mj = rj1 + rj0. 

yj1 The proportion of 1s in the jth subpopulation and  yj1 = rj1/ mj. 

 The fitted probability in the jth subpopulation ( ˆ jµ  would be the same for each case in the jth 
subpopulation because values for all predictors are the same for each case.) 

The deviance and Pearson chi-square are defined as follows: 

𝐷𝐷 = 2� 𝑚𝑚𝑗𝑗 �𝑦𝑦𝑗𝑗1ln�
𝑦𝑦𝑗𝑗1
𝜇𝜇𝑗𝑗
� + �1 − 𝑦𝑦𝑗𝑗1�ln �

1 − 𝑦𝑦𝑗𝑗1
1 − 𝜇𝜇𝑗𝑗

��
𝑛𝑛𝑠𝑠

𝑗𝑗=1
 

and 

χ2 = �
𝑚𝑚𝑗𝑗�𝑦𝑦𝑗𝑗1 − 𝜇𝜇𝑗𝑗�

2

𝜇𝜇𝑗𝑗�1 − 𝜇𝜇𝑗𝑗�

𝑛𝑛𝑠𝑠

𝑗𝑗=1
 

The degrees of freedom equal to the number of subpopulations minus the number of non-redundant regression 
parameters estimated, i.e. d. f. = 𝑛𝑛𝑠𝑠 − 𝑝𝑝𝑥𝑥 then the values of the deviance and Pearson chi-square divided by the 

jµ



degrees of freedom can be computed accordingly, and the corresponding estimate of the scale parameter 𝜙𝜙 will 
be 

𝜙𝜙� =
𝐷𝐷

𝑛𝑛𝑠𝑠 − 𝑝𝑝𝑥𝑥
  and  𝜙𝜙� =

𝜒𝜒2

𝑛𝑛𝑠𝑠 − 𝑝𝑝𝑥𝑥
 

For ordinal and nominal multinomial models, similarly, the data will be reconstructed based on subpopulations. 
Assume the following notations for reconstructed multinomial data: 

ns Number of subpopulations. 

,i jr  Sum of the product of the frequencies and the scale weights associated with the jth category 
in the ith subpopulation. 

mi 
Total weighted observations for the ith subpopulation and  ,

1

J

i i j
j

m r
=

= ∑  

,ˆi jπ  The fitted probability for the jth category in the ith subpopulation. 

The deviance and Pearson chi-square are defined as follows: 

𝐷𝐷 = 2� � 𝑟𝑟𝑖𝑖𝑗𝑗ln�
𝑟𝑟𝑖𝑖𝑗𝑗

𝑚𝑚𝑖𝑖𝜋𝜋�𝑖𝑖,𝑗𝑗
�

𝐽𝐽

𝑗𝑗=1

𝑛𝑛𝑠𝑠

𝑖𝑖=1
   and   𝜒𝜒2 = � �

�𝑟𝑟𝑖𝑖𝑗𝑗 − 𝑚𝑚𝑖𝑖𝜋𝜋�𝑖𝑖,𝑗𝑗�
2

𝑚𝑚𝑖𝑖𝜋𝜋�𝑖𝑖,𝑗𝑗

𝐽𝐽

𝑗𝑗=1

𝑛𝑛𝑠𝑠

𝑖𝑖=1
  

The degrees of freedom equal to 𝑛𝑛𝑠𝑠(𝐽𝐽 − 1) − 𝑑𝑑 where  𝑑𝑑 = 𝐽𝐽 − 1 + 𝑝𝑝𝑥𝑥 for the ordinal multinomial distribution; 
𝑑𝑑 = ∑ 𝑝𝑝𝑥𝑥

𝑗𝑗𝐽𝐽−1
𝑗𝑗=1  for the nominal multinomial distribution, then the values of the deviance and Pearson chi-square 

divided by the degrees of freedom can be computed accordingly, and the corresponding estimate of the scale 
parameter 𝜙𝜙 will be 

𝜙𝜙� =
𝐷𝐷

𝑛𝑛𝑠𝑠(𝐽𝐽 − 1) − 𝑑𝑑 
  and  𝜙𝜙� =

𝜒𝜒2

𝑛𝑛𝑠𝑠(𝐽𝐽 − 1) − 𝑑𝑑 
 

Notes 

• For the situation of a large volume of data (“Big Data”), the number of subpopulations may be very large 
when all predictors are used to define subpopulations. Thus, in the Map-Reduce environment, it may cause 
a network traffic jam. The three alternating methods will be considered below based on their priorities from 
high to low.  
(1) A record is defined as a subpopulation; 
(2) All factors in predictors are used to define subpopulations; if there are no factors in predictors, a record 

forms a subpopulation; 
(3) All predictors first are binned into 𝑘𝑘 bins; the subpopulations are defined on all predictors binned. 𝑘𝑘 is 

set to 5 by default. 
• The value of the constant 𝑐𝑐 for binomial models is calculated as follow 

𝑐𝑐 = � ln �
𝑚𝑚𝑗𝑗!

𝑟𝑟𝑗𝑗0! 𝑟𝑟𝑗𝑗1!
�

𝑛𝑛𝑆𝑆

𝑗𝑗=1

. 

The value of the constant 𝑐𝑐 for ordinal and nominal multinomial models is calculated as follow, 



𝑐𝑐 = � ln �
𝑚𝑚𝑖𝑖!

𝑟𝑟𝑖𝑖1!  ⋯  𝑟𝑟𝑖𝑖𝐽𝐽!
�

𝑛𝑛𝑆𝑆

𝑖𝑖=1

. 

4.3.4 Information Criteria 

Information criteria are used when comparing different models for the same data, the following criteria are given 
in smaller is better form. If we let ℓ be the log likelihood evaluated at 𝑿𝑿�, the formula for various criteria are given 
as below. Note that for all distributions except multinomial, 𝑑𝑑 = 𝑝𝑝𝑥𝑥 if only 𝑿𝑿 is included; 𝑑𝑑 = 𝑝𝑝𝑥𝑥 + 1 if 𝑿𝑿 and 𝜙𝜙 
for normal, inverse Gaussian, gamma and Tweedie distributions or β and k for negative binomial distribution are 
included; 𝑑𝑑 = 𝐽𝐽 − 1 + 𝑝𝑝𝑥𝑥 for ordinal multinomial distribution; 𝑑𝑑 = ∑ 𝑝𝑝𝑥𝑥

𝑗𝑗𝐽𝐽−1
𝑗𝑗=1  for the nominal multinomial 

distribution. 

(1) Akaike information criteria (AIC) 
−2ℓ + 2𝑑𝑑 

(2) Finite sample corrected AIC (AICC) 

−2ℓ +
2𝑑𝑑𝑁𝑁

(𝑁𝑁 − 𝑑𝑑 − 1) 

(3) Bayesian information criteria (BIC) 

−2ℓ + 𝑑𝑑 ln(𝑁𝑁) 

(4) Consistent AIC (CAIC) 

−2ℓ + 𝑑𝑑(ln(𝑁𝑁) + 1) 

Notes: 

• ℓ (the full log likelihood) can be replaced with ℓ𝑘𝑘 (the kernel of the log likelihood) depending on the user’s 
choice. 

• If the scale parameter is specified by the deviance or Pearson chi-square, the log likelihood, ℓ or ℓ𝑘𝑘 would 
be original one, i.e., based on 𝜙𝜙 = 1, for fair comparison among different models. 

• When r and m (event/trial) variables are used for the binomial distribution, then N used here would be the 
sum of the trials frequencies, i.e. 𝑁𝑁 = ∑ 𝑓𝑓𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑚𝑚𝑖𝑖. In this way, the same value results whether the data are in 
raw, binary form (using single-trial syntax) or in summarized, binomial form (events/trials syntax). 

5. Scoring 
Scoring is defined as assigning one or more values to a case in a data set. Two types are considered here: 
predicted values and model diagnostics. 

Note that if the target is not transformed, then all predicted and diagnostics values calculated are the same on 
either original or transformed scale. However, if the target is transformed, then predicted values of the linear 
predictors and the means (they are the same here) and their confidence intervals would be a different on original 
or transformed scale. If calculated on transformed scale, those values should be added 𝑦𝑦�. To avoid confusion, all 
values should be calculated on original scale. 



5.1 Predicted values 

Due to the non-linear link functions, the predicted values will be computed for the linear predictor and the mean 
of the response separately. Also, since estimated standard errors of predicted values of linear predictor are 
calculated, the confidence intervals for the mean are obtained easily.  

Notice that the predicted values can be computed for the case not used in the model-building phrase. That is the 
response variable can be missing and the predicted values are still computed as long all the predictor variables 
have non-missing values in the given model. An additional requirement is that given predictor variable values 
could be properly parameterized by using only the existing model parameters. See Woods (2004), “Guidelines 
for Scoring under Various Data and Model Conditions,” for details. 

5.1.1 Predicted values of the linear predictors 

A predicted value of the linear predictor 𝜂𝜂𝑖𝑖 corresponding to 𝒙𝒙𝑖𝑖 is given by 

�̂�𝜂𝑖𝑖 = 𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝑜𝑜𝑖𝑖 . 

For ordinal multinomial model, a predicted value of the linear predictor for category j 𝜂𝜂𝑖𝑖,𝑗𝑗 corresponding to 𝒙𝒙𝑖𝑖 is 
given by 

�̂�𝜂𝑖𝑖,𝑗𝑗 = 𝜓𝜓�𝑗𝑗 − 𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝑜𝑜𝑖𝑖 , 𝑗𝑗 = 1, … , 𝐽𝐽 − 1. 

For nominal multinomial model, a predicted value of the linear predictor for category j 𝜂𝜂𝑖𝑖,𝑗𝑗 corresponding to 𝒙𝒙𝑖𝑖 
is given by 

�̂�𝜂𝑖𝑖,𝑗𝑗 = 𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿�𝑗𝑗 + 𝑜𝑜𝑖𝑖 , 𝑗𝑗 = 1, … , 𝐽𝐽 − 1. 

5.1.2 Estimated standard errors of predicted values of linear predictor 

The estimated standard error of �̂�𝜂𝑖𝑖 is given by 

𝜎𝜎�𝜂𝜂𝑖𝑖 = �𝒙𝒙𝑖𝑖𝑇𝑇𝛴𝛴𝒙𝒙𝑖𝑖 

where 𝜮𝜮 could be 𝜮𝜮𝑚𝑚 or 𝜮𝜮𝑟𝑟. 

For ordinal multinomial model, the estimated standard error of �̂�𝜂𝑖𝑖,𝑗𝑗 is given by 

𝜎𝜎�𝜂𝜂𝑖𝑖,𝑗𝑗 = �(1,−𝒙𝒙𝑖𝑖𝑇𝑇)𝜮𝜮𝑗𝑗 �
1
−𝒙𝒙𝑖𝑖

� , 𝑗𝑗 = 1, … , 𝐽𝐽 − 1, 

where 𝜮𝜮𝑗𝑗 is a reduced parameter estimates covariance (1 + p)× (1 + p) matrix from 𝜮𝜮. Suppose 𝜮𝜮 for ordinal 
multinomial models has the following form: 

𝜮𝜮 = �
𝜮𝜮𝜓𝜓,𝜓𝜓 𝜮𝜮𝜓𝜓,𝑿𝑿
𝜮𝜮𝑿𝑿,𝜓𝜓 𝜮𝜮𝑿𝑿,𝑿𝑿

� =

⎣
⎢
⎢
⎢
⎢
⎡ �

𝜎𝜎1,1 ⋯ 𝜎𝜎1,(𝐽𝐽−1)
⋮ ⋱ ⋮

𝜎𝜎(𝐽𝐽−1),1 ⋯ 𝜎𝜎(𝐽𝐽−1,𝐽𝐽− 1)

� �
𝜎𝜎1,𝐽𝐽 ⋯ 𝜎𝜎1,(𝐽𝐽−1+𝑝𝑝)
⋮ ⋱ ⋮

𝜎𝜎(𝐽𝐽−1),𝐽𝐽 ⋯ 𝜎𝜎(𝐽𝐽−1,𝐽𝐽− 1+𝑝𝑝)

�

�
𝜎𝜎𝐽𝐽,1 ⋯ 𝜎𝜎𝐽𝐽,(𝐽𝐽−1)
⋮ ⋱ ⋮

𝜎𝜎(𝐽𝐽−1+𝑝𝑝),1 ⋯ 𝜎𝜎(𝐽𝐽−1+𝑝𝑝,𝐽𝐽− 1)

� �
𝜎𝜎𝐽𝐽,𝐽𝐽 ⋯ 𝜎𝜎𝐽𝐽,(𝐽𝐽−1+𝑝𝑝)
⋮ ⋱ ⋮

𝜎𝜎(𝐽𝐽−1+𝑝𝑝),𝐽𝐽 ⋯ 𝜎𝜎(𝐽𝐽−1+𝑝𝑝,𝐽𝐽− 1+𝑝𝑝)

�
⎦
⎥
⎥
⎥
⎥
⎤

 



then 𝜮𝜮𝑗𝑗 will have the following form as it takes the corresponding elements in the j-th row and column of 𝜮𝜮 and 
𝜮𝜮𝑿𝑿,𝑿𝑿: 

𝜮𝜮𝑗𝑗 =

⎣
⎢
⎢
⎡ 𝜎𝜎𝑗𝑗,𝑗𝑗 �𝜎𝜎𝑗𝑗,𝐽𝐽,⋯ ,𝜎𝜎𝑗𝑗,(𝐽𝐽−1+𝑝𝑝)�

�
𝜎𝜎𝐽𝐽,𝑗𝑗
⋮

𝜎𝜎(𝐽𝐽−1+𝑝𝑝),𝑗𝑗

� 𝜮𝜮𝑿𝑿,𝑿𝑿
⎦
⎥
⎥
⎤
 

For nominal multinomial model, the estimated standard error of �̂�𝜂𝑖𝑖,𝑗𝑗 is given by 

𝜎𝜎�𝜂𝜂𝑖𝑖,𝑗𝑗 = �𝒙𝒙𝑖𝑖𝑇𝑇𝜮𝜮𝑗𝑗𝒙𝒙𝑖𝑖 , 𝑗𝑗 = 1, … , 𝐽𝐽 − 1, 

where 𝜮𝜮𝑗𝑗 is part of covariance matrix 𝜮𝜮 corresponding to the covariance matrix of 𝑿𝑿�𝑗𝑗. 

5.1.3 Predicted values of the means 

A predicted value, or fitted value, of the mean 𝜇𝜇𝑖𝑖 corresponding to 𝒙𝒙𝑖𝑖 is given by 

�̂�𝜇𝑖𝑖 = 𝑔𝑔−1�𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝑜𝑜𝑖𝑖� 

where 𝑔𝑔−1 is the inverse of the link function. For binomial distribution with 0/1 binary response variable, �̂�𝜇𝑖𝑖 is 
the predicted probability of category 1. 

For ordinal multinomial model, a predicted value, or fitted value, of the cumulative response probability for 
category j, 𝛾𝛾𝑖𝑖,𝑗𝑗 corresponding to 𝒙𝒙𝑖𝑖 is given by  

𝛾𝛾�𝑖𝑖,𝑗𝑗 = 𝑔𝑔−1�𝜓𝜓�𝑗𝑗 − 𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝑜𝑜𝑖𝑖�, 𝑗𝑗 = 1, … , 𝐽𝐽 − 1 with 𝛾𝛾�𝑖𝑖,𝐽𝐽 = 1. 

For nominal multinomial model, the predicted value of the probability for category j corresponding 𝒙𝒙𝑖𝑖 is given 
by 

𝜋𝜋�𝑖𝑖,𝑗𝑗 = 𝑔𝑔−1��̂�𝜂𝑖𝑖,𝑗𝑗� =

⎩
⎪
⎨

⎪
⎧ exp ��̂�𝜂𝑖𝑖,𝑗𝑗�

1 + ∑ exp (�̂�𝜂𝑖𝑖,𝑘𝑘)𝐽𝐽−1
𝑘𝑘=1

, 𝑗𝑗 = 1,⋯ , 𝐽𝐽 − 1,

1
1 + ∑ exp (�̂�𝜂𝑖𝑖,𝑘𝑘)𝐽𝐽−1

𝑘𝑘=1
, 𝑗𝑗 = 𝐽𝐽.

 

5.1.4 Confidence intervals for the means 

Approximate 100(1−α)% confidence intervals for the mean 𝜇𝜇𝑖𝑖 can be computed as follows  

𝑔𝑔−1�𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝑜𝑜𝑖𝑖 ± 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜂𝜂� 

For ordinal multinomial model, approximate 100(1−α)% confidence intervals for the cumulative response 
probability 𝛾𝛾�𝑖𝑖,𝑗𝑗 can be computed as follows 

𝑔𝑔−1 �𝜓𝜓�𝑗𝑗 − 𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝑜𝑜𝑖𝑖 ± 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜂𝜂𝑖𝑖,𝑗𝑗� , 𝑗𝑗 = 1,⋯ , 𝐽𝐽 − 1. 

If either endpoint in the argument is outside the valid range for the inverse link function, the corresponding 
confidence interval endpoint is set to a system missing value.  



For nominal multinomial model, approximate 100(1−α)% confidence intervals for the probability,  𝜋𝜋�𝑖𝑖,𝑗𝑗 can be 
computed as follows 

𝜋𝜋�𝑖𝑖,𝑗𝑗 ± 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜋𝜋𝑖𝑖,𝑗𝑗 , 𝑗𝑗 = 1,⋯ , 𝐽𝐽. 

where 𝜎𝜎�𝜋𝜋𝑖𝑖,𝑗𝑗 can be computed by 

𝜎𝜎�𝜋𝜋𝑖𝑖,𝑗𝑗 = �
𝜕𝜕𝜋𝜋�𝑖𝑖,𝑗𝑗
𝜕𝜕�̂�𝜂𝑖𝑖,1

,⋯ ,
𝜕𝜕𝜋𝜋�𝑖𝑖,𝑗𝑗
𝜕𝜕�̂�𝜂𝑖𝑖,𝐽𝐽−1

�Cov(𝜼𝜼�𝑖𝑖) �
𝜕𝜕𝜋𝜋�𝑖𝑖,𝑗𝑗
𝜕𝜕�̂�𝜂𝑖𝑖,1

,⋯ ,
𝜕𝜕𝜋𝜋�𝑖𝑖,𝑗𝑗
𝜕𝜕�̂�𝜂𝑖𝑖,𝐽𝐽−1

�
T

, 

𝜕𝜕𝜋𝜋�𝑖𝑖,𝑗𝑗
𝜕𝜕�̂�𝜂𝑖𝑖,𝑘𝑘

= �
𝜋𝜋�𝑖𝑖,𝑗𝑗�1 − 𝜋𝜋�𝑖𝑖,𝑗𝑗� 𝑗𝑗 = 𝑘𝑘
−𝜋𝜋�𝑖𝑖,𝑗𝑗𝜋𝜋�𝑖𝑖,𝑘𝑘 𝑗𝑗 ≠ 𝑘𝑘

, 

Cov(𝜼𝜼�𝑖𝑖) = Cov��
�̂�𝜂𝑖𝑖,1
⋮

�̂�𝜂𝑖𝑖,𝐽𝐽−1
�� = �𝑰𝑰𝐽𝐽−1⨂𝒙𝒙𝑖𝑖𝑇𝑇�𝜮𝜮�𝑰𝑰𝐽𝐽−1⨂𝒙𝒙𝑖𝑖� 

and 𝑰𝑰𝐽𝐽−1 is a (𝐽𝐽 − 1)×(𝐽𝐽 − 1) identity matrix and 𝜮𝜮 could be 𝜮𝜮𝑚𝑚 or 𝜮𝜮𝑟𝑟. 

5.1.5 Predicted category for binomial and multinomial distributions 

For binomial distribution with 0/1 binary response variable, the predicted category 𝑐𝑐(𝒙𝒙𝑖𝑖) is  

𝑐𝑐(𝒙𝒙𝑖𝑖) = �1 (or success) if 𝜇𝜇𝑖𝑖 ≥ 0.5
0 (or failure) otherwise. 

For ordinal and nominal multinomial model, the predicted category 𝑐𝑐(𝒙𝒙𝑖𝑖) is the one with the highest predicted 
probability, i.e., 

𝑐𝑐(𝒙𝒙𝑖𝑖) = arg max
𝑗𝑗

𝜋𝜋�𝑖𝑖,𝑗𝑗 

If there is a tie in determining 𝑐𝑐(𝒙𝒙𝑖𝑖), then tie will be broken by choosing the category with 

1) Higher 𝑁𝑁𝑗𝑗 = ∑ 𝑓𝑓𝑖𝑖𝑦𝑦𝑖𝑖,𝑗𝑗𝑛𝑛
𝑖𝑖=1 . 

2) If it ties in 1), choose the one with lower category number. 

5.1.6 Classification table for binomial and multinomial distributions 

Suppose that 𝑐𝑐(𝑗𝑗, 𝑗𝑗′) is the sum of the frequency for the observations whose actual target category is 𝑗𝑗 (as row) 
and predicted target category is 𝑗𝑗′ (as column), 𝑗𝑗, 𝑗𝑗′ = 1,⋯ , 𝐽𝐽 (note that 𝐽𝐽 = 2 for binomial), then 

𝑐𝑐(𝑗𝑗, 𝑗𝑗′) = �𝑓𝑓𝑖𝑖𝐼𝐼(𝑦𝑦𝑖𝑖 = 𝑗𝑗, 𝑐𝑐(𝒙𝒙𝑖𝑖) = 𝑗𝑗′)
𝑛𝑛

𝑖𝑖=1

 

where 𝐼𝐼(∙) is indicator function. 

Suppose that 𝑝𝑝𝑗𝑗,𝑗𝑗′is the (𝑗𝑗, 𝑗𝑗′)th element of the classification table, which is row percentage, then 

𝑝𝑝𝑗𝑗,𝑗𝑗′ = �
𝑐𝑐(𝑗𝑗, 𝑗𝑗′)

∑ 𝑐𝑐(𝑗𝑗, 𝑘𝑘)𝐽𝐽
𝑘𝑘=1

�×100% 



The percentage of total correct predictions of the model is 

𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �
∑ 𝑐𝑐(𝑗𝑗, 𝑗𝑗)𝐽𝐽
𝑗𝑗=1

∑ ∑ 𝑐𝑐(𝑗𝑗, 𝑗𝑗′)𝐽𝐽
𝑗𝑗′=1

𝐽𝐽
𝑗𝑗=1

�×100%. 

5.2 Model diagnostics 

In addition to predicted values, we can calculate some values which would be good for model diagnostics for all 
distributions except multinomial. They include leverage values, residuals and cook’s distance values. 

5.2.1 Leverage values 

The leverage value ℎ𝑖𝑖  is defined as the i-th diagonal element of the hat matrix 

𝑯𝑯 = 𝑾𝑾𝑒𝑒
1/2𝑿𝑿(𝑿𝑿𝑇𝑇𝑾𝑾𝑒𝑒𝑿𝑿)−𝑿𝑿𝑇𝑇𝑾𝑾𝑒𝑒

1/2 

where the i-th diagonal element for 𝑾𝑾𝑒𝑒 is 

𝑤𝑤𝑒𝑒,𝑖𝑖 =
𝜔𝜔𝑖𝑖

𝜙𝜙
∙

1
𝑉𝑉(𝜇𝜇𝑖𝑖)(𝑔𝑔′(𝜇𝜇𝑖𝑖))2. 

5.2.2 Residuals 

We will offer 5 different residuals: 

(a) Raw residual 

The raw residual is defined as 

𝑟𝑟𝑖𝑖𝑅𝑅 = 𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖 

where 𝑦𝑦𝑖𝑖 is the i-th response and �̂�𝜇𝑖𝑖 is the corresponding predicted mean. Note for binomial response with a 
binary format, 𝑦𝑦 values are 0 for the reference category and 1 for the category we are modeling.  

(b) Pearson residual 

The Pearson residual is the square root of the i-th contribution to the Pearson chi-square, with the sign of the 
raw residual. 

𝑟𝑟𝑖𝑖𝑃𝑃 = sign(𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖)�𝛾𝛾𝑖𝑖 = (𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖)�
𝜔𝜔𝑖𝑖

𝑉𝑉(�̂�𝜇𝑖𝑖)
. 

(c) Deviance residual 

The deviance residual is defined as the square root of the contribution of the i-th observation to the deviance, 
with the sign of the raw residual. 

𝑟𝑟𝑖𝑖𝐷𝐷 = sign(𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖)�𝑑𝑑𝑖𝑖 . 



where 𝑑𝑑𝑖𝑖 is the contribution of the i-th case to the deviance, see Table 9, and sign(𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖) is 1 if 𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖 is 
positive and −1 if 𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖 is negative. 

(d) Standardized (and studentized) Pearson residual 

The standardized (and studentized) Pearson residual is that the Pearson residual is multiplied by the factor  
(𝜙𝜙(1 − ℎ𝑖𝑖))−1/2 

𝑟𝑟𝑖𝑖𝑆𝑆𝑃𝑃 = (𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖)�
𝜔𝜔𝑖𝑖

𝜙𝜙𝑉𝑉(�̂�𝜇𝑖𝑖)(1 − ℎ𝑖𝑖)
= 𝑟𝑟𝑖𝑖𝑃𝑃�

1
𝜙𝜙(1 − ℎ𝑖𝑖)

. 

(e) Standardized (and studentized) deviance residual 

The standardized (and studentized) deviance residual is that the deviance residual is multiplied by the factor  
(𝜙𝜙(1 − ℎ𝑖𝑖))−1/2 

𝑟𝑟𝑖𝑖𝑆𝑆𝐷𝐷 = sign(𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖)�𝑑𝑑𝑖𝑖�
1

𝜙𝜙(1 − ℎ𝑖𝑖)
= 𝑟𝑟𝑖𝑖𝐷𝐷�

1
𝜙𝜙(1 − ℎ𝑖𝑖)

. 

 

(f) Likelihood residual 

The likelihood residuals are defined by 

𝑟𝑟𝑖𝑖𝐿𝐿 = sign(𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖)�ℎ𝑖𝑖(𝑟𝑟𝑖𝑖𝑆𝑆𝑃𝑃)2 + (1 − ℎ𝑖𝑖)(𝑟𝑟𝑖𝑖𝑆𝑆𝐷𝐷)2. 

5.2.3 Cook’s distance 

Cook’s distance measures the change to the solution that results from omitting each observation. The formula is 

𝐶𝐶𝑖𝑖 =
1
𝑝𝑝𝑥𝑥
∙

ℎ𝑖𝑖
1 − ℎ𝑖𝑖

(𝑟𝑟𝑖𝑖𝑆𝑆𝑃𝑃)2. 

 
Note on calculating scoring for binomial response with events/trials format 

When 𝑟𝑟/𝑚𝑚 format for the binomial distribution is used, the response we used is the binomial proportion 𝑦𝑦 = 𝑟𝑟/𝑚𝑚, 
but to many people, the response for binomial distribution should be the number of events (r). Thus for 𝑟𝑟/𝑚𝑚 
binomial distribution, the predicted value of the mean we are going to list is the expected number of trials, not the 
expected proportion. Then some of the above formulae in Section 5 should be modified. We will list the modified 
ones below and those unmodified ones are still the same as before. 

Some notations for events/trials format we used before calculating scoring: 

𝑟𝑟𝑖𝑖 # of events 

𝑚𝑚𝑖𝑖 # of trials 

𝑦𝑦𝑖𝑖  proportion (𝑦𝑦𝑖𝑖 = 𝑟𝑟𝑖𝑖/𝑚𝑚𝑖𝑖) 



𝜇𝜇𝑖𝑖 expected proportion obtained from parameter estimation 

 A predicted value of the mean:  �̂�𝜇𝑖𝑖 = 𝑔𝑔−1�𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝑜𝑜𝑖𝑖�×𝑚𝑚𝑖𝑖. 

 Approximate 100(1−α)% confidence interval for the mean: 𝑔𝑔−1�𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝑜𝑜𝑖𝑖 ± 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜂𝜂�×𝑚𝑚𝑖𝑖. 

 The raw residual: 𝑟𝑟𝑖𝑖𝑅𝑅 = 𝑦𝑦𝑖𝑖𝑚𝑚𝑖𝑖 − �̂�𝜇𝑖𝑖. 

 The Pearson residual: 𝑟𝑟𝑖𝑖𝑃𝑃 = (𝑦𝑦𝑖𝑖𝑚𝑚𝑖𝑖 − �̂�𝜇𝑖𝑖)�
𝜔𝜔𝑖𝑖
𝑈𝑈𝑖𝑖

, where 𝑈𝑈𝑖𝑖 = �̂�𝜇𝑖𝑖�1 − (�̂�𝜇𝑖𝑖/𝑚𝑚𝑖𝑖)� (base on # of events) 

𝑟𝑟𝑖𝑖𝑃𝑃 = (𝑦𝑦𝑖𝑖 − 𝜇𝜇𝑖𝑖)�
𝜔𝜔𝑖𝑖
𝑉𝑉(𝜇𝜇)

, where 𝑉𝑉(𝜇𝜇𝑖𝑖) = 𝜇𝜇𝑖𝑖(1−𝜇𝜇𝑖𝑖)
𝑚𝑚𝑖𝑖

   (based on proportion) 

 The deviance residual: 𝑟𝑟𝑖𝑖𝐷𝐷 = sign(𝑦𝑦𝑖𝑖𝑚𝑚𝑖𝑖 − �̂�𝜇𝑖𝑖)�𝑑𝑑𝑖𝑖, where 𝑑𝑑𝑖𝑖 is from Table 9 (based on # of events) 

𝑟𝑟𝑖𝑖𝐷𝐷 = sign(𝑦𝑦𝑖𝑖 − 𝜇𝜇𝑖𝑖)�𝑑𝑑𝑖𝑖                         (based on proportion)        

Note:  

 Unlike other distributions which 𝜇𝜇𝑖𝑖 and �̂�𝜇𝑖𝑖 are interchangeable, we need to distinguish 𝜇𝜇𝑖𝑖 and �̂�𝜇𝑖𝑖 for binomial 
distribution with events/trials format: 

 𝜇𝜇𝑖𝑖: the expected proportion used before calculating scoring; 

 �̂�𝜇𝑖𝑖: the expected number of events for calculating scoring (the predicted value of the mean). 

However, the Pearson residual and deviance residual are the same no matter they are based on # of events or 
proportion. 

 
  



Appendix A - Ordinal Multinomial Distribution 
For multinomial distribution, the GENLIN procedure supports only the ordinal multinomial model (or threshold 
model). The model form is not the same as the above traditional generalized linear model and would be consistent 
with other SPSS procedures, such as PLUM and CSORDINAL. The target variable y is assumed to be ordinal, its 
values have an intrinsic linear ordering and correspond to consecutive integers from 1 to J. The design matrix X 
includes model predictors, but not an intercept. We need some new notations to define the model form: 

J The number of values for the ordinal target variable, 2.J ≥   

iy  
Ordinal target variable for the record i. Its category values are denoted consecutive integers 
from 1 to J. 

jiy ,  
Indicator variable of record i for category j , i.e. ,

1 if  
.

0 otherwise
i

i j

y j
y

=
= 


 

X  

Design matrix ( )T
1, ,X x xn=  , where ( )T

1, , ,i i ipx x=x  is for record i , the superscript T 
means transpose of a matrix or vector. Note that X includes model predictors, but not an 
intercept. 

ψ J – 1 × 1 vector of threshold parameters , ( )T
1 2 1, , , Jψ ψ ψ −=ψ  and 1 2 1.Jψ ψ ψ −< < <  

β 
p × 1 vector of regression parameters associated with model predictors, 

( )T

1 2, , , .pβ β β=β   

B (J – 1 + p) × 1 vector of all parameters, ( )TT T, .ψΒ = β  

,i jγ  Conditional cumulative target probability for category j given observed independent variable 
vector ix , i.e., , ( | ).i j iP y jγ = ≤ ix  

,i jπ  Conditional target probability for category j given observed independent variable vector ix , 
i.e., , ( | )i j iP y jπ = = ix  and , , , 1   for  1, , .i j i j i j j Jπ γ γ −= − = 

 

,i jη  Linear predictor value of record i for category j. It is related to ,i jγ  through a cumulative link 
function.  

The form for ordinal target y  is  

T
, ,( ) , ~ .i j i j j i i ig o y Fη γ ψ= = − + x β  

Note: 

• To check the dependencies here in the design matrix, columns of ( ) ( )T1, 1, ,− −X XΨ  where

( )1 1diag , ,n nf fω ω=Ψ   are examined by using the sweep operator. 

 



Log likelihood function 

Given a record ix , iy follows a multinomial distribution. The kernel log likelihood function is  

( ), ,
1 1

ln ,
n J

i i
k i j i j

i j

f yω π
φ= =

=∑ ∑  where ,

1 if  
,

0 otherwise
i

i j

y j
y

=
= 


 

and the full log likelihood function ,k c= +   where c is computed based on subpopulations (see Section 4.3.3.2 
for details.) 

Table A.1: Cumulative Link Function Name, Form, Inverse Form and Range of the Predicted Cumulative Probability 

Link function name ( )gη γ=  Inverse ( )1gγ η−=  Range of γ̂  

Cumulative logit ln
1
γ
γ

 
 − 

 exp( )
1 exp( )

η
η+

 ( )ˆ 0, 1γ ∈  

Cumulative probit 
( )1 γ−Φ , where 

( ) 2 21
2

ze dz
ξ

ξ
π

−

−∞
Φ = ∫  

( )ηΦ  ( )ˆ 0, 1γ ∈  

Cumulative complementary log-log ( )( )ln ln 1 γ− −  ( )( )1 exp exp η− −  ( )ˆ 0, 1γ ∈  

Cumulative negative log-log ( )( )ln ln γ− −  ( )( )exp exp η− −  ( )ˆ 0, 1γ ∈  

Cumulative Cauchit ( )( )tan 0.5π γ
∗

−  ( )0.5 arctan η π ∗+  ( )ˆ 0, 1γ ∈  

*  π in the formula is denoted pi, not the target probability. 

 

Table A.2: The Inverse First and Second Derivatives of Cumulative Link Function 

Link function name 
Inverse first derivative 
γ
η
∂

= ∆
∂

 Inverse second derivative 
2

2

γ
η
∂
∂

 

Cumulative logit  ( )1γ γ−   ( )1 2γ∆ −  

Cumulative probit 
( )( )1φ γ−Φ , where

( ) 2 21
2

zz eφ
π

−=  
( )1 γ−−∆×Φ  

Cumulative complementary log-log  ( ) ( )1 ln 1γ γ− −  ( )( )1 ln 1 γ∆ + −  



Cumulative negative log-log  ( )lnγ γ−  ( )( )1 ln γ−∆ +  

Cumulative Cauchit ( )( )2cos 0.5π γ π
∗

−  ( )sin 2πγ ∗∆×  

*  π in the formula is denoted pi, not the target probability. 

First derivatives 

( 1 ) 1

.s  0
J p− + ×

∂ 
 ∂∂   = = =  ∂∂   
 ∂ 

ψ
Β

β







 

T

1 1 1

, , , , , ,s
J pψ ψ β β−

 ∂ ∂ ∂ ∂
=  

∂ ∂ ∂ ∂  

   

   i.e., 

, , , 1

1 , , , 1

, 1, , 1
n

i j i j i ji i

ij i j i j i j

y yf j J
γω

ψ φ η π π
+

= +

 ∂∂
= − = −  ∂ ∂  
∑

  and 

, , 1 ,

1 1 , , 1 ,

, 1, , ,
n J

i j i j i ji i
it

i jt i j i j i j

yf x t p
γ γω

β φ η η π
−

= = −

 ∂ ∂∂
= − − =  ∂ ∂ ∂ 
∑∑

  

where , , , 1   for  1, ,i j i j i j j Jπ γ γ −= − = 
 and ( )1 T

,

0 0

1, , 1,

1
i j j i i

j

g o j J

j J

γ ψ−

=


= − + = −
 =

 x β  which is from Table A.1 

and 
,

,

i j

i j

γ
η
∂

∂
 is defined in Table A.2 for 1, , 1j J= −  and by the definition 

,0 ,

,0 ,

0i i J

i i J

γ γ
η η
∂ ∂

= =
∂ ∂

. Note if 

, ,0 or 1 i j i jγ γ∂ = ∂ = then 
,

,

0i j

i j

γ
η
∂

=
∂

 for all cumulative link functions. 

Second derivatives 

2 2

T T2

T 2 2
1 1

T T

.
( ) ( )

H
J p J p− + × − +

 ∂ ∂
 ∂ ∂ ∂ ∂ ∂  = =   ∂ ∂ ∂ ∂ 
 
∂ ∂ ∂ ∂  

ψ ψ ψ β
Β Β

β ψ β β

 



 

 

The elements of H have two forms: (1) the expected first derivatives of the estimating equation s which is applied 
to Fisher scoring and (2) the first derivatives of the estimating equation s which is applied to Newton Raphson. 



(1) Expected second derivatives have the following expressions: 

2
, 1 ,

11 , 1 , ,

1 , 2, , 1,
n

i j i ji i

ij j i j i j i j

f j J
γ γω

ψ ψ φ η η π
−

=− −

∂ ∂∂
= = −

∂ ∂ ∂ ∂∑


 

2
2

,
2

1 , , , 1

1 1 , 1, , 1,
n

i ji i

ij i j i j i j

f j J
γω

ψ φ η π π= +

   ∂∂
= − + = −      ∂ ∂   
∑

  

2

0, for - 1,
l j

l j
ψ ψ
∂

= >
∂ ∂



 

2
, , 1 , 1 , ,

1 , , 1 , , 1 , , 1 ,

1 1 ,

1, , 1, 1, , ,

n
i j i j i j i j i ji i

it
ij t i j i j i j i j i j i j i j

f x

j J t p

γ γ γ γ γω
ψ β φ η η π η η π η

− +

= − + +

    ∂ ∂ ∂ ∂ ∂∂
= − − −       ∂ ∂ ∂ ∂ ∂ ∂ ∂     

= − =

∑

 

 

2
2

, , 1

1 1 , , 1 ,

1 , , 1, , .
n J

i j i ji i
it iu

i jt u i j i j i j

f x x t u p
γ γω

β β φ η η π
−

= = −

 ∂ ∂∂
= − − =  ∂ ∂ ∂ ∂ 
∑∑

  

 

(2) Second derivatives have the following expressions: 

2
, 1 , ,

2
11 , 1 , ,

, 2, , 1,
n

i j i j i ji i

ij j i j i j i j

yf j J
γ γω

ψ ψ φ η η π
−

=− −

∂ ∂∂
= = −

∂ ∂ ∂ ∂∑


 

 

222
, , , 1 , , , 1

2 2 2 2
1 , , , 1 , , , 1

, 1, , 1,
n

i j i j i j i j i j i ji i

ij i j i j i j i j i j i j

y y y yf j J
γ γω

ψ φ η π π η π π
+ +

= + +

      ∂ ∂∂  = − − + = −          ∂ ∂ ∂       
∑


 

2

0, for - 1,
l j

l j
ψ ψ
∂

= >
∂ ∂



 

2
, , , , 1 ,

,2 2
1 , , , , 1 ,

2
, , , 1 , , 1

, 12 2
1 , , , 1 , , 1

,

n
i j i j i j i j i ji i

i j it
ij t i j i j i j i j i j

n
i j i j i j i j i ji i

i j it
i i j i j i j i j i j

yf x

yf x

j

γ γ γ γω π
ψ β φ η η η η π

γ γ γ γω π
φ η η η η π

−

= −

+ +
+

= + +

  ∂ ∂ ∂ ∂∂
= − − − +   ∂ ∂ ∂ ∂ ∂ ∂   

  ∂ ∂ ∂ ∂
− −   ∂ ∂ ∂ ∂   

=

∑

∑



1, , 1, 1, , ,J t p− = 

 



22 2
, , 1 , , 1 ,

,2 2 2
1 1 , , 1 , , 1 ,

,

, 1, , ,

n J
i j i j i j i j i ji i

i j it iu
i jt u i j i j i j i j i j

yf x x

t u p

γ γ γ γω π
β β φ η η η η π

− −

= = − −

    ∂ ∂ ∂ ∂∂  = − − −      ∂ ∂ ∂ ∂ ∂ ∂     
=

∑∑



 

where 
2

,
2
,

i j

i j

γ
η

∂

∂
 is defined in Table 5.2 for 1, , 1j J= −  and by the definition 

2 2
,0 ,

2 2
,0 ,

0i i J

i i J

γ γ
η η

∂ ∂
= =

∂ ∂
. 

 

Initial values 

Let ,
1

n

j i i j
i

N f y
=

= ∑  be the number of responses in category j, for   1, , ,j J=   and 
1

n

i
i

N f
=

= ∑  be the effective 

sample size. Initial values for threshold parameters without and with offset variable, ,io  are then computed 
according to the following formulae: 

(0) 1

j

l
l

j

N
g

N
ψ =

 
 
 =
 
 
 

∑
 and (0) 1

j

l
l

j j

N
g o

N
ψ =

 
 
 = −
 
 
 

∑
 for  1, , 1,  j J= − respectively; 

where , ,
1 1 1 1

.
j jn n

j i i l i i i l
i l i l

o f y o f y
= = = =

=∑∑ ∑∑  Initial values for all regression parameters are set to zero, i.e. 

(0) 0,  for  1, , .t t pβ = = 
 

Notes: 

• Similarly, the computation of  , , ,k s H   as well as , ,j jN N o  in initial values can be implemented in 
map-reduce environment. 

Appendix B - Nominal Multinomial Distribution     
Like ordinal multinomial distribution, the form of nominal multinomial model is not same as the other traditional 
generalized linear model. So we need to introduce some new notations.  

iy  Nominal categorical target variable for the record i . Its category values are denoted as 1, 2, etc. 

J  The total number of categories for target variable. 

jiy ,  Indicator variable for category j , i.e. 1, =jiy  if jyi = , otherwise 0, =jiy . 

X  Design matrix T
1( , , )n=X x x

. The ith row is ( )T
1, , ,i i ipx x=x   where superscript T means 

transpose of a matrix or vector, 1, ,i n=   with 1 1ix = if model has an intercept.  



ji,π  The target probability for category j given observed independent variable vector ix , i.e. 

)Pr(, jyiji ==π . 

ji ,η  Linear predictor value of record i for category j . 

jβ  p × 1 vector of unknown parameters for the category j , 1,,1 −= Jj 
. The first element in 

jβ  is the intercept for the category j  , if there is one. 

β  T T T
1 1( , , )J −=β β β  

The form of a generalized linear model for nominal target y  is  

T
, ,( ) , ~i j i j i j i ig o y Fη π= = +x β  

where ji ,η  is linear predictor value of record i for category j ; io is the offset variable value of the record i
and )(⋅g is logit link function such that :  

1,,1,log)(
,

,
, −=










= Jjg

Ji

ji
ji 

π
π

π  

Or  

( )
( )

( )

T

1
T

1 1
, ,

1
T

1

exp
, 1, , 1,

1 exp
( )

1 ,
1 exp

i j i
J

i k i
k

i j i j

J

i k i
k

o
j J

o
g

j J
o

π η

−

− =

−

=

 +
 = −
 + += = 
 =
+ +



∑

∑

x β

x β

x β



 

where 
T

1( , , )j j jpβ β=β   is the regression parameter vector for target category j . There are )1( −Jp

regression parameters in total T T T
1 1( , , )J −=β β β . 

Log likelihood function 

Given a record ix , iy follows a multinomial distribution. The log likelihood function for probability 
distribution is  

, ,
1 1

( ) ln( ) ,
n J

i i
i j i j

i j

f y cω π
φ= =

= +∑ ∑β  

where c is computed based on subpopulations (see Section 4.3.3.2 for details.) 



First derivatives 

The first derivative for jβ  is 

, ,
1

( )( ) ( )
n

i i
j i j i j i

ij

fs yω π
φ=

∂
= = −

∂ ∑ββ x
β


, 1,,1 −= Jj 
 

So the first derivative for β  is 

T T T
1 1

1
( ( ) , , ( ) ) ( )

n
i i

J i i i
i

fs s ω
φ−

=

= = − ⊗∑s β β x y π  

where 
T

Jiii yy ),,( 1,1, −= y  and
T

Jiii ],,[ 1,1, −= ππ π . ⊗  is the Kronecker product such that BA⊗  

produce a matrix with A ’s element ija  being replaced by a matrix Baij . 

Second derivatives 

The second derivative (Hessian) matrix, H , is a )1()1( −×− JpJp matrix with the form: 

2 2

T T
1 1 1 -12

T
( 1) ( 1) 2 2

T T
-1 1 -1 -1

J

p J p J

J J J

− × −

 ∂ ∂
 ∂ ∂ ∂ ∂  ∂  = = ∂ ∂    ∂ ∂ 
 ∂ ∂ ∂ ∂ 

β β β β

β β

β β β β

 





  

 



H  

where the (k, j)th block element of H , for 1,,1, −= Jjk 
 is  

T
, ,2

1
T

T
, ,

1
(1

n
i i

i k i j i i
i

n
k j i i

i j i j i i
i

f k j

f k j

ω π π
φ
ω π π
φ

=

=


≠∂ = ∂ ∂ − − =



∑

∑

x x

β β
)x x



 

Initial values 

For all non-intercept regression parameters, set their initial values to be zero. For intercepts, if there are any, set 
for 1,,1 −= Jj 

, 









=

J

j
j N

N
log)0(

1β   if there is no offset variable, and  

j
J

j
j o

N
N

−







= log)0(

1β    if there is an offset variable, 



where ∑
=

=
n

i
jiij yfN

1
, , and 

∑

∑

=

== n

i
jii

n

i
ijii

j

yf

oyf
o

1
,

1
,

. 

Notes: 

• Similarly, the computation of  , , ,k s H   as well as ,j jN o  in initial values can be implemented in map-
reduce environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix C - Tweedie Distribution 
 Vi in Tweedie distribution is an infinite series as follows: 

  
1

i ij
j

V V
∞

=

= ∑  and 
( ) ( )

( ) ( ) ( )

1

1

1

2 !

jj j
i i

ij jj

y q
V

q j j

αα α

α

ω

φ Γ α

− −

−

−
=

− −
,  

where 
2 ,
1

q
q

α −
=

−
 and note α is negative for 1 < q < 2. To evaluate the infinite summation for iV , the value 

of j is determined for which ijV  reaches a maximum (we evaluate ( )max ln ijj
V  here) and sum the necessary 

terms of the series in that region. The method proposed by Dunn and Smyth (2005) is adopted here and 
summarized as follows: 

(1) Approximate the gamma functions in ( )ln ijV  by using Stirling’s approximation as 

( ) ( ) ( ) ( )1 1ln ! ln 1 ln ln 2 ,
2 2

j j j j jΓ π = + ≈ + − + 
 

 

( ) ( ) ( ) ( ) ( )1 1ln ln 1 ln ln 2 ,
2 2

j j j j jΓ α Γ α α α α π − ≈ − ≈ − + − − − + 
 

 

and ( )ln ijV  becomes  

( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

ln ln ln ! ln

1ln 1 1 ln ln ln ln ln 2 ,
2

ij i

i

V j z j j

j z j j

Γ α

α α α α π

= − − −
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(2) Treat j as continuous and ( )ln ijV  is differentiated with respect to j 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

ln 1ln ln 1 ln

ln ln 1 ln ,

ij
i

i

V
z j

j j
z j

α α α

α α α

∂
≈ + − − − −

∂

≈ + − − −

 

since the term 1/j is ignored for j large. 

(3) Set the above derivative to zero to obtain the value of j at which ( )ln ijV  reaches a maximum  

( )
2

max .
2

q
i iyj

q
ω
φ

−

=
−

 

If yi is large, iω  large, φ small or q near 2, jmax would be large. The approximate maximum value of 

( )ln ijV  is 



( ) ( ) ( ) ( ) ( )
max, max max

1ln 1 ln ln ln 2 .
2i jV j jα α π= − − − − −  

(4) Find the lower and upper bounds of j to approximate iV  with .
U

L

j

i ij
j j

V V
=

= ∑  We simply search max1 Lj j≤ <  

and maxUj j>  such that ( ) ( )max, ,ln ln 37
Li j i jV V< − and ( ) ( )max, ,ln ln 37,

Ui j i jV V< −  respectively. 

(5) Compute ( )ln iV in the following way to avoid the possibility of floating point overflow:  

( ) ( ) ( ) ( )( )max max, ,ln ln ln exp ln ln .
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i i j ij i j
j j

V V V V
=

= + −∑

 

• The value of j at which the series 2

1 1
 and ij ij

j j
jV j V

∞ ∞

= =
∑ ∑  reach their maximums can be still approximated by 
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 Then 

( ) ( ) ( ) ( )
maxmax , max

1ln 1 ln ln 2  
2i jj V j α α π= − − − − and 

( ) ( ) ( ) ( ) ( )
max

2
max , max max

1ln 1 ln ln ln 2 .
2i jj V j jα α π= − + − − −  

Note that there are n jmax values corresponding to n complete records. Thus, jL and jU should be different for 

each record. In addition, jL and jU should be different for  
1

,  ij
j

V
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=
∑

1
 ij

j
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=
∑ and 2

1
 ij

j
j V
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=
∑ as well. However, 

Dunn and Smyth (2005) have found it useful to choose common jL and jU for all records and all summations. 

Basic idea is that searching jL and jU based on 
1

 ij
j

jV
∞

=
∑ for each record then the minimum of jL and maximum 

of jU from all records would be the common jL and jU, respectively. 

 

1.  Search jL and jU: 

( ){For 1,i n=   
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( )max maxln 1V j α+ += ∗ − ;  ( )max maxln 1V j α− −= ∗ −  
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( )maxmax 1,  j j+= ;  maxln lnest V V +=  
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 1j j= +   (or 2j j= +  as Dunn did which might speed the result) 
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possibility of floating point overflow: 
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Appendix D - Digamma and Trigamma Function 
This part  is based on Zhong (2006b).  

This document descries the computational algorithm of the digamma and Trigamma function based on the 
formulas in Abramowitz and Stegun (1972). 

z A complex number 

x A real number 

)(zΓ  The gamma function 

)(zψ  Digamma function 

)(zψ ′  Trigamma function 

Bn The Bernoulli number 

The gamma function, )(zΓ , is defined by the following integral, 

 0)(,)(
0

1 >= ∫
∞ −− zrealdtetz tz    Γ  

( ))(ln zΓ  is a log-gamma function evaluated at z.  

)(zψ  is digamma function, which is the derivative of logarithm of a gamma function evaluated at z, 
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∂
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 )(zψ ′  is a Trigamma function, which is the derivative of )(zψ , evaluated at z. 
 

Digamma Function 

The two main mathematical properties of the digamma function, 

(1) Recurrence formulas 

z
zz 1)()1( +=+ ψψ  

 (2) Asymptotic formulas 
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The Bernoulli number Bn can be defined by the contour integral,  

∫ +−
= 112

!
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e
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i
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where the contour encloses the origin, has radius less than 2π, and is traversed in a counterclockwise direction 
(Arfken, 1985). The first few Bernoulli number Bn are 
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Therefore, we have following formula to calculate the digamma function, 

∑ = −+
−+=

m

i ix
mxx

1 1
1)()( ψψ   

where m is a positive integer. 

According two formulas above, we have the following computational algorithm of digamma function for real 
number x. 

Algorithm 1: Digamma(x) 

If ( 510)( −≤xabs ) then  

x
.-p 16512015328606057721566490 −=  . 

Return (p). 
End if. 
m = 10. 
x = x + m. 
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For i = 1 to m do 
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End for. 
Return (p). 

The algorithm 1 has a computed precision of 1210|| −<ε , but in practice, appears to 15 significant digits for all 
positive real argument. 

 

Trigamma Function 

The nth derivative of )(zψ  is called the polygamma function, denoted )()( znψ , 
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Trigamma function, )(zψ ′ , has two main mathematical properties, 

(1) Recurrence formulas 
2)()1( −−′=+′ zzz ψψ  

(2) Asymptotic formulas 

( )∞<∞→

+−+−++=

++′ ∑∞

= +

zz
zzzzzz

z
B

zz
z

k k
k

arg
30

1
42

1
30

1
6
1

2
11

2
11~)(

97532

1 12
2

2

in                                                   

          

ψ

 

Similarly, we have following formula to calculate the digamma function, 
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where m is a positive integer. 

According to two formula above, we have the following computational algorithm of trigamma function  for real 
number x. 

Algorithm 2: Trigamma(x) 

If ( 410)( −<=xabs ) then 

xx
p

×
=

1
. 

Return (p). 
End for. 
m = 10. 
x = x + m. 
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For i = 1 to m do 

2)(
1

ix
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−
+= . 

End for 
Return (p). 

The algorithm 2 has a computed precision of 1310|| −<ε , but in practice, appears to 15 significant digits for all 
positive real argument. 
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6. Introduction – Phase II 
Generalized Linear Engine Phase II (GLE Phase II) adds five main functions based on GLE Phase I (Chu and 
Zhong, 2012).  

• Automatic two-way interaction detection. 
• Model selection, including distribution, link function and effects. 
• Influential outliers for all distributions except multinomial distribution. 
• Diagnostic plots for all distributions except multinomial distribution.  
• Grouping analysis for all distributions, and influential target category analysis for multinomial distributions 

and unusual categories detection for other distributions. 

Section 7 describes automatic interaction detection. Section 8 describes model selection. Scoring and model 
diagnostics are presented in Section 9 and 10. In addition, Appendix A gives grouping analysis and unusual 
category detection. 

7. Automatic two-way interaction detection 
This section gives a method to detect two-way factor interaction 𝑋𝑋1 ∗ 𝑋𝑋2 given specific probability distribution 
and link function, where 𝑋𝑋1 and 𝑋𝑋2 are two factors. In order to achieve this goal, log-likelihood ratio test between 
reduced model and full model is used. Here the reduced model means a GZLM in which only predictors 𝑋𝑋1 and 
𝑋𝑋2 are involved, and full model means the model contains 𝑋𝑋1 , 𝑋𝑋2 and  𝑋𝑋1 ∗ 𝑋𝑋2. 

Since the computation will be complex for multinomial distribution, the log-likelihood ratio test for the 
distributions except the multinomial distribution is provided from Sections 7.1 to Section 7.4. Then Section 7.5 
and 7.6 introduce nominal and ordinal multinomial distribution, respectively. 

However, even with this original limitation, it might not be possible to check all candidate pairs of two factors 
for the model selection methods in Section 8. The reason is, if there are large number of main effects in X, the 
whole process might require too much memory (so user might receive “run out of memory” message and no 
output at all) or too much computational cost (so user might wait for a long time to receive output).  Hence, we 
provide a two-way-test pair search strategy to restrict number of the pairs in those which are more likely to be 
selected to the final model in the model selection method.  See Section 7.7 for details. 

 

7.1 Notations 
The notations below are just used for distributions except multinomial distribution: 

𝑅𝑅 The total number of categories for factor 𝑋𝑋1. 

𝑆𝑆 The total number of categories for factor X2. 



𝑛𝑛𝑖𝑖𝑗𝑗 The number of records in the combination 𝑋𝑋1 = 𝑖𝑖  and 𝑋𝑋2 = 𝑗𝑗. 

𝑦𝑦𝑖𝑖𝑗𝑗𝑘𝑘 The target value for the kth  record in the combination 𝑋𝑋1 = 𝑖𝑖  and  𝑋𝑋2 = 𝑗𝑗. If the distribution 
if binomial(m), then 𝑦𝑦𝑖𝑖𝑗𝑗𝑘𝑘 =

𝑟𝑟𝑖𝑖𝑗𝑗𝑖𝑖
𝑚𝑚𝑖𝑖𝑗𝑗𝑖𝑖

,where 𝑟𝑟𝑖𝑖𝑗𝑗𝑘𝑘  and 𝑚𝑚𝑖𝑖𝑗𝑗𝑘𝑘 are the events value and trials value, 

respectively. 

𝑓𝑓𝑖𝑖𝑗𝑗𝑘𝑘 The frequency weight for the kth record in the combination 𝑋𝑋1 = 𝑖𝑖  and  𝑋𝑋2 = 𝑗𝑗. 

𝑁𝑁𝑖𝑖𝑗𝑗  The total number of cases in the combination 𝑋𝑋1 = 𝑖𝑖  and  𝑋𝑋2 = 𝑗𝑗. 

𝑦𝑦�𝑖𝑖𝑗𝑗 The target mean in the combination 𝑋𝑋1 = 𝑖𝑖  and  𝑋𝑋2 = 𝑗𝑗. 

𝛼𝛼𝑖𝑖 The parameter of 𝑋𝑋1 = 𝑖𝑖.   

𝛽𝛽𝑗𝑗 The parameter of 𝑋𝑋2 = 𝑗𝑗.   

𝜇𝜇𝑖𝑖𝑗𝑗 The expectation of target in the combination of 𝑋𝑋1 = 𝑖𝑖  and  𝑋𝑋2 = 𝑗𝑗. 

 

7.2 Basic statistics  

The below basic statistics are needed to collect: 

• The total number of records: 𝑁𝑁𝑖𝑖𝑗𝑗 = ∑ 𝑓𝑓𝑖𝑖𝑗𝑗𝑘𝑘
𝑛𝑛𝑖𝑖𝑗𝑗
𝑘𝑘=1  

• Target mean: 𝑦𝑦�𝑖𝑖𝑗𝑗 =
∑ 𝑓𝑓𝑖𝑖𝑗𝑗𝑖𝑖𝑦𝑦𝑖𝑖𝑗𝑗𝑖𝑖
𝑛𝑛𝑖𝑖𝑗𝑗
𝑖𝑖=1

𝑁𝑁𝑖𝑖𝑗𝑗
 

• The sum of square term of target:  𝑐𝑐𝑖𝑖𝑗𝑗 = ∑ 𝑓𝑓𝑖𝑖𝑗𝑗𝑘𝑘�𝑦𝑦𝑖𝑖𝑗𝑗𝑘𝑘 − 𝑦𝑦�𝑖𝑖𝑗𝑗�
2𝑛𝑛𝑖𝑖𝑗𝑗

𝑘𝑘=1   

7.3 Two-way interaction test  
The interaction test based on pseudo log-likelihood ratio test can be described as following steps: 

1. Compute pseudo log-likelihood function, ℓfull , for full model.  Please see Section 7.4 for details. 
2. Compute pseudo log-likelihood function, ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟  for the model. Please see section 7.4 for detail. 
3. Estimate the scale parameter based on full model: 

𝜙𝜙� =
1
𝑑𝑑𝑓𝑓

��
𝑐𝑐𝑖𝑖𝑗𝑗

𝑉𝑉(𝑦𝑦�𝑖𝑖𝑗𝑗)

𝑆𝑆

𝑗𝑗=1

𝑅𝑅

𝑖𝑖=1

 

                      where 𝑑𝑑𝑓𝑓 = ∑ ∑ 𝑁𝑁𝑖𝑖𝑗𝑗 − 𝑅𝑅 ∗ 𝑆𝑆 + 𝑐𝑐𝑆𝑆
𝑗𝑗=1

𝑅𝑅
𝑖𝑖=1 , here 𝑐𝑐 is the number of invalid categorical combinations. 

4. Compute the log-likelihood ratio statistics 

𝜒𝜒2 =
2(ℓ𝑓𝑓𝑟𝑟𝑡𝑡𝑡𝑡 − ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟)

𝜙𝜙�
 

Compute the p value 

                                                                       𝑝𝑝 = 1 − 𝑃𝑃𝑟𝑟 (𝜒𝜒𝑟𝑟𝑓𝑓2 ≤ 𝜒𝜒2) 



where 𝜒𝜒𝑟𝑟𝑓𝑓2 is the random variable following chi-square distribution with degree freedom 𝑑𝑑𝑓𝑓 = (𝑅𝑅 − 1) ∗
(𝑆𝑆 − 1) − 𝑐𝑐, where 𝑐𝑐 is the number of invalid categorical combinations. 

5. If 𝑝𝑝 ≤ 𝛼𝛼, where 𝛼𝛼 is a significant level(the default is 0.05) then the interaction is significant. 

7.4 Pseudo log-likelihood value computation 
The pseudo log-likelihood functions for interaction detection are listed in the Table 7.1. Please note that compared 
with the kernels of log-likelihood function, some terms are omitted because these terms are the same for the full 
model and reduced model. 

        Table 7.1. Distribution and pseudo log-likelihood function  

Target distribution Pseudo log-likelihood  

Normal ℓ = −
1
2
��𝑁𝑁𝑖𝑖𝑗𝑗�𝑦𝑦�𝑖𝑖𝑗𝑗 − 𝜇𝜇𝑖𝑖𝑗𝑗�

2
S

j=1

R

i=1

 

Inverse Gaussian ℓ = −
1
2
��𝑁𝑁𝑖𝑖𝑗𝑗 �

𝑦𝑦�𝑖𝑖𝑗𝑗 − 2𝜇𝜇𝑖𝑖𝑗𝑗
𝜇𝜇𝑖𝑖𝑗𝑗2

�
𝑆𝑆

𝑗𝑗=1

𝑅𝑅

𝑖𝑖=1

 

Gamma ℓ = −��𝑁𝑁𝑖𝑖𝑗𝑗 �ln𝜇𝜇𝑖𝑖𝑗𝑗 +
𝑦𝑦�𝑖𝑖𝑗𝑗
𝜇𝜇𝑖𝑖𝑗𝑗
�

𝑆𝑆

𝑗𝑗=1

𝑅𝑅

𝑖𝑖=1

 

Negative binomial 

ℓ = ∑ ∑ 𝑁𝑁𝑖𝑖𝑗𝑗 �𝑦𝑦�𝑖𝑖𝑗𝑗 ln�𝑘𝑘 ∗ 𝜇𝜇𝑖𝑖𝑗𝑗� − �𝑦𝑦�𝑖𝑖𝑗𝑗 + 1
𝑘𝑘
� ln�1 + 𝑘𝑘 ∗ 𝜇𝜇𝑖𝑖𝑗𝑗��S

j=1
R
i=1 , 

where 𝑘𝑘 is a parameter which will be specified by user. If user do not  

specify it,  we automatically set it as 1. 

Poisson ℓ = ��𝑁𝑁𝑖𝑖𝑗𝑗�𝑦𝑦�𝑖𝑖𝑗𝑗 ln�𝜇𝜇𝑖𝑖𝑗𝑗� − 𝜇𝜇𝑖𝑖𝑗𝑗�
𝑆𝑆

𝑗𝑗=1

𝑅𝑅

𝑖𝑖=1

 

Binomial ℓ = ��𝑁𝑁𝑖𝑖𝑗𝑗�𝑦𝑦�𝑖𝑖𝑗𝑗 ln�𝜇𝜇𝑖𝑖𝑗𝑗� + �1 − 𝑦𝑦�𝑖𝑖𝑗𝑗� ln�1 − 𝜇𝜇𝑖𝑖𝑗𝑗��
𝑆𝑆

𝑗𝑗=1

𝑅𝑅

𝑖𝑖=1

 

Tweedie 

ℓ = ∑ ∑ Nij �
y�ij∗µij

1−q

1−q
+

µij
2−q

2−q
�S

j=1
R
i=1 , 

where 𝑞𝑞 is a parameter which will be specified by user. If user do not  

specify it,  we automatically set it as 1.5. 

 
 

For the full model, ℓfull can be got by above formula directly by replacing 𝜇𝜇𝑖𝑖𝑗𝑗 with 𝑦𝑦�𝑖𝑖𝑗𝑗.  



For reduced model, the pseudo log-likelihood value will be computed by following iterative process: 

1. Input values for 𝑇𝑇1 (maximum number of iterations in the outer iterative process, tentatively set to 100), 
𝜀𝜀1(tolerance level of stopping criterion in the outer iterative process, tentatively set to 10-6), 𝑇𝑇2 
(maximum number of iterations in the inner iterative process, tentatively set to 5), 𝜀𝜀2(tolerance level of 
stopping criterion in the inner iterative process, tentatively set to 10-6) 

2. Set initial values of 𝛼𝛼𝑖𝑖
(0) = 1.0𝐸𝐸 − 6 and𝛽𝛽𝑗𝑗

(0) = 1.0𝐸𝐸 − 6. Then compute expectation value, 𝜇𝜇𝑖𝑖𝑗𝑗
(0) =

𝑔𝑔−1�𝛼𝛼𝑖𝑖
(0) + 𝛽𝛽𝑗𝑗

(0)� , and initial pseudo log-likelihood value ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟
(0)   by plugging 𝜇𝜇𝑖𝑖𝑗𝑗

(0) into formulae in 
Table 1 .  

3. Set the iteration number 𝑡𝑡1 = 1.  
4. Compute the weight, 𝑤𝑤𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)  , and gradient, 𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) in each combination of 𝑋𝑋1 = 𝑖𝑖, 𝑖𝑖 = 1,⋯ ,𝑅𝑅, and 

𝑋𝑋2 = 𝑗𝑗, 𝑗𝑗 = 1,⋯ ,𝑆𝑆: 

 𝑤𝑤𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) =

𝑁𝑁𝑖𝑖𝑗𝑗

𝑉𝑉 �𝜇𝜇𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)� �𝑔𝑔′ �𝜇𝜇𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)��
2

              +𝑁𝑁𝑖𝑖𝑗𝑗�𝑦𝑦�𝑖𝑖𝑗𝑗 − 𝜇𝜇𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)�×

𝑉𝑉�𝜇𝜇𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)�𝑔𝑔′′�𝜇𝜇𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)� + 𝑉𝑉′�𝜇𝜇𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)�𝑔𝑔′�𝜇𝜇𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)�

�𝑉𝑉 �𝜇𝜇𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)��

2
�𝑔𝑔′ �𝜇𝜇𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)��
3

 

 
and 

𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) =

1

 𝑤𝑤𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) ×

𝑁𝑁𝑖𝑖𝑗𝑗�𝑦𝑦�𝑖𝑖𝑗𝑗 − 𝜇𝜇𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)�

𝑉𝑉 �𝜇𝜇𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)�𝑔𝑔′ �𝜇𝜇𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)�
 

5. Compute the parameters increment αi∗  and βj∗  based on wij
(𝑡𝑡1−1)  and 𝑠𝑠𝑖𝑖𝑗𝑗

(𝑡𝑡1−1) with the following iterative 
process: 
a) Create a  𝑅𝑅×𝑆𝑆 contingency table with the 𝑤𝑤𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)  and  𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)for each combination of 𝑋𝑋1 = 𝑖𝑖, 𝑖𝑖 =

1,⋯ ,𝑅𝑅 and 𝑋𝑋2 = 𝑗𝑗, 𝑗𝑗 = 1,⋯ , 𝑆𝑆: 

 

                                       
X2 

       X1 
1 2 

  S 

        1 𝑤𝑤11
(𝑡𝑡1−1)  , 𝑠𝑠11

(𝑡𝑡1−1) 𝑤𝑤12
(𝑡𝑡1−1)  , 𝑠𝑠12

(𝑡𝑡1−1) 
  𝑤𝑤1𝑆𝑆

(𝑡𝑡1−1)  , 𝑠𝑠1𝑆𝑆
(𝑡𝑡1−1) 

        2 𝑤𝑤21
(𝑡𝑡1−1)  , 𝑠𝑠21

(𝑡𝑡1−1) 𝑤𝑤22
(𝑡𝑡1−1)  , 𝑠𝑠22

(𝑡𝑡1−1) 
  𝑤𝑤2𝑆𝑆

(𝑡𝑡1−1)  , 𝑠𝑠2𝑆𝑆
(𝑡𝑡1−1) 

                
  

        R 𝑤𝑤𝑅𝑅1
(𝑡𝑡1−1)  , 𝑠𝑠𝑅𝑅1

(𝑡𝑡1−1) 𝑤𝑤𝑅𝑅2
(𝑡𝑡1−1)  , 𝑠𝑠𝑅𝑅2

(𝑡𝑡1−1) 
  𝑤𝑤𝑅𝑅𝑆𝑆

(𝑡𝑡1−1)  , 𝑠𝑠𝑅𝑅𝑆𝑆
(𝑡𝑡1−1) 

 

b) Initial 𝛼𝛼𝑖𝑖∗ = 0, 𝑖𝑖 = 1,⋯ ,𝑅𝑅   and 𝛽𝛽𝑗𝑗∗ = 0, 𝑗𝑗 = 1,⋯ , 𝑆𝑆, and the iteration number 𝑡𝑡2 = 1. 
c) Compute marginal mean of gradient for each row 𝑖𝑖, 𝑖𝑖 = 1,⋯ ,𝑅𝑅    

𝑠𝑠𝑖𝑖∙
(𝑡𝑡1−1) =

∑ 𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)×𝑆𝑆

𝑗𝑗=1 𝑤𝑤𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)

∑ 𝑤𝑤𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)𝑆𝑆

𝑗𝑗=1

 

Update the 𝛼𝛼𝑖𝑖∗  for each 𝑖𝑖, 𝑖𝑖 = 1,⋯ ,𝑅𝑅:    

𝛼𝛼𝑖𝑖∗ = 𝛼𝛼𝑖𝑖∗ + 𝑠𝑠𝑖𝑖∙
(𝑡𝑡1−1) 



Update the 𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)  for 𝑖𝑖 = 1,⋯ ,𝑅𝑅   and 𝑗𝑗 = 1,⋯ , 𝑆𝑆 in the table 

                                             𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) = 𝑠𝑠𝑖𝑖𝑗𝑗

(𝑡𝑡1−1) − 𝑠𝑠𝑖𝑖∙
(𝑡𝑡1−1)     

d) Based on the updated table, compute the marginal mean of gradient for each column 𝑗𝑗, 𝑗𝑗 =

1,⋯ , 𝑆𝑆: 

                        𝑠𝑠∙𝑗𝑗
(𝑡𝑡1−1) =

∑ 𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)×𝑅𝑅

𝑖𝑖=1 𝑤𝑤𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)

∑ 𝑤𝑤𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)𝑅𝑅

𝑖𝑖=1
 

Update the 𝛽𝛽𝑗𝑗∗  for each 𝑗𝑗, 𝑗𝑗 = 1,⋯ , 𝑆𝑆: 

 𝛽𝛽𝑗𝑗∗ = 𝛽𝛽𝑗𝑗∗ + 𝑠𝑠∙𝑗𝑗
(𝑡𝑡1−1)   

Update the 𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)  for 𝑖𝑖 = 1,⋯ ,𝑅𝑅   and 𝑗𝑗 = 1,⋯ , 𝑆𝑆 in the table 

               𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) = 𝑠𝑠𝑖𝑖𝑗𝑗

(𝑡𝑡1−1) − 𝑠𝑠∙𝑗𝑗
(𝑡𝑡1−1)     

e) If max ��𝑠𝑠𝑖𝑖∙
(𝑡𝑡1−1) � , �𝑠𝑠∙𝑗𝑗

(𝑡𝑡1−1)�� ≤ ε2 or 𝑡𝑡2 > 𝑇𝑇2, then stop and output the parameter 𝛼𝛼𝑖𝑖∗   and 𝛽𝛽𝑗𝑗∗. 

Otherwise let 𝑡𝑡2 = 𝑡𝑡2 + 1, and go to step c). 

6. Update parameter estimates for iteration 
 𝛼𝛼𝑖𝑖

(𝑡𝑡1) = 𝛼𝛼𝑖𝑖
(𝑡𝑡1−1) + 𝛼𝛼𝑖𝑖∗   

 𝛽𝛽𝑖𝑖
(𝑡𝑡1) = 𝛽𝛽𝑖𝑖

(𝑡𝑡1−1) + 𝛽𝛽𝑗𝑗∗ 
then update expectation value 

 𝜇𝜇𝑖𝑖𝑗𝑗
(𝑡𝑡1) = 𝑔𝑔−�𝛼𝛼𝑖𝑖

(𝑡𝑡1) + 𝛽𝛽𝑗𝑗
(𝑡𝑡1)�  

And pseudo log-likelihood value  ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟
(𝑡𝑡1)  based on 𝜇𝜇𝑖𝑖𝑗𝑗

(𝑡𝑡1) using the formula listed in Table 1. 
7. If ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟

(𝑡𝑡1) < ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟
(𝑡𝑡1−1) , then stop and output ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟

(𝑡𝑡1−1) . 
8. If |ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟

(𝑡𝑡1) − ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟
(𝑡𝑡1−1)   | < 𝜀𝜀1   or 𝑡𝑡1 > 𝑇𝑇1, then stop and output ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟

(𝑡𝑡1) , otherwise, 𝑡𝑡1 = 𝑡𝑡1 + 1, go 
back to step 4. 

7.5 Nominal multinomial distribution 

This sub-section discusses the interaction detection for nominal multinomial distribution using log-likelihood 
ratio test. 

   The following notations are used for nominal multinomial distribution 

𝐽𝐽 The total number of categories for target variable. 

𝑅𝑅 The total number of categories for factor  X1. 

𝑆𝑆 The total number of categories for factor X2. 

𝑛𝑛𝑖𝑖𝑗𝑗 The number of records in the combination 𝑋𝑋1 = 𝑖𝑖  and 𝑋𝑋2 = 𝑗𝑗. 

𝑓𝑓𝑖𝑖𝑗𝑗𝑚𝑚 The frequency weight for the mth  record in the combination 𝑋𝑋1 = 𝑖𝑖  and  𝑋𝑋2 = 𝑗𝑗. 

𝑦𝑦𝑖𝑖𝑗𝑗𝑚𝑚 The target value for the mth  record in the combination 𝑋𝑋1 = 𝑖𝑖  and  𝑋𝑋2 = 𝑗𝑗. 

𝝅𝝅�𝑖𝑖𝑗𝑗  𝝅𝝅�𝑖𝑖𝑗𝑗 = �𝜋𝜋�𝑖𝑖𝑗𝑗,1,⋯ ,𝜋𝜋�𝑖𝑖𝑗𝑗,𝐽𝐽−1�
𝑇𝑇
, where π�ij,k is the estimated probability of the kth target category 

when 𝑋𝑋1 = 𝑖𝑖  and  𝑋𝑋2 = 𝑗𝑗 and the superscript 𝑇𝑇 means transpose of a matrix or vector. Please 
note that 𝜋𝜋�𝑖𝑖𝑗𝑗,𝐽𝐽 = 1 − ∑ 𝜋𝜋�𝑖𝑖𝑗𝑗,k

J−1
k=1  and is not included in the vector 𝝅𝝅�𝑖𝑖𝑗𝑗. 



𝜶𝜶𝑖𝑖  𝜶𝜶𝑖𝑖 = �𝛼𝛼𝑖𝑖1,⋯ ,𝛼𝛼𝑖𝑖𝐽𝐽−1�
𝑇𝑇
, where 𝛼𝛼𝑖𝑖𝑘𝑘is the parameter of 𝑋𝑋1 = 𝑖𝑖  for the kth target category. 

𝑿𝑿𝑗𝑗  𝑿𝑿𝑗𝑗 = �𝛽𝛽𝑗𝑗1,⋯ ,𝛽𝛽𝑗𝑗𝐽𝐽−1�
𝑇𝑇

, where 𝛽𝛽𝑗𝑗𝑘𝑘 is the parameter of 𝑋𝑋2 = 𝑗𝑗  for the kth target category. 

 
The interaction detection for nominal multinomial distribution is similar to that in the previous sections. 
Therefore, just some implementation notes are given as following: 
Implementation notes:  

(1) The following basic statistics  are needed to collect: 
• The total number of records for the kth target category in the combination  𝑋𝑋1 = 𝑖𝑖  and 𝑋𝑋2 = 𝑗𝑗:   

 𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘 = � 𝑓𝑓𝑖𝑖𝑗𝑗𝑚𝑚 ∗ 𝐼𝐼(𝑦𝑦𝑖𝑖𝑗𝑗𝑚𝑚 = 𝑘𝑘)
𝑛𝑛𝑖𝑖𝑗𝑗

𝑚𝑚=1
 

where (yijm = k) = �
1, yijm = k
0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

 . 

• The observed probability of the kth target category in the combination  𝑋𝑋1 = 𝑖𝑖  and 𝑋𝑋2 = 𝑗𝑗:   

𝑦𝑦�𝑖𝑖𝑗𝑗,𝑘𝑘 =
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘

𝑁𝑁𝑖𝑖𝑗𝑗
 

• The total number of records in the combination  X1 = i  and X2 = j: 

𝑁𝑁𝑖𝑖𝑗𝑗 = � 𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘

𝐽𝐽

𝑘𝑘=1
 

 
(2) The scale parameter is estimated as 1. 
(3) The degree of freedom of the log-likelihood ratio test is (R ∗ S − c) ∗ (J − 1), where c is the number of 

invalid categorical combinations. 
(4) The parameters, 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑗𝑗 , are extended to vector,  𝜶𝜶𝑖𝑖 and 𝑿𝑿𝑗𝑗. 
(5) Since only the logit link function will used for nominal multinomial distribution, the  log-likelihood value 

will be computed as 

ℓ = ���𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘 ∗ ln�𝜋𝜋𝑖𝑖𝑗𝑗 ,𝑘𝑘�
𝐽𝐽

𝑘𝑘=1

𝑆𝑆

𝑗𝑗=1

𝑅𝑅

𝑖𝑖=1

 

For the full model, the 𝜋𝜋𝑖𝑖𝑗𝑗 ,𝑘𝑘 will be estimated as  𝜋𝜋�𝑖𝑖𝑗𝑗,𝑘𝑘 = 𝑦𝑦�𝑖𝑖𝑗𝑗,𝑘𝑘  for 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1, and 𝜋𝜋�𝑖𝑖𝑗𝑗,𝑘𝑘 = 1 −
∑ 𝑦𝑦�𝑖𝑖𝑗𝑗,𝑘𝑘
𝐽𝐽−1
𝑘𝑘=1 . And for the reduced model, the 𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘 will be estimated by the parameter estimates and link 

function, i.e. suppose we have the parameter estimates 𝜶𝜶�𝑖𝑖 = �𝛼𝛼�𝑖𝑖1,⋯ ,𝛼𝛼�𝑖𝑖𝐽𝐽−1�
𝑇𝑇
and  𝑿𝑿�𝑗𝑗 = ��̂�𝛽𝑗𝑗1,⋯ , �̂�𝛽𝑗𝑗𝐽𝐽−1�

𝑇𝑇
, 

then  
 

𝜋𝜋�𝑖𝑖𝑗𝑗,𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧ exp�𝛼𝛼�𝑖𝑖𝑘𝑘 + �̂�𝛽𝑗𝑗𝑘𝑘�

1 + ∑ exp�𝛼𝛼�𝑖𝑖𝑘𝑘 + �̂�𝛽𝑗𝑗𝑘𝑘�
𝐽𝐽−1
𝑘𝑘=1

, 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1

1
1 + ∑ exp�𝛼𝛼�𝑖𝑖𝑘𝑘 + �̂�𝛽𝑗𝑗𝑘𝑘�

𝐽𝐽−1
𝑘𝑘=1

𝑘𝑘 = 𝐽𝐽
 

 
(6) The weight, 𝑤𝑤𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)  , and mean of score, 𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) in Section 2.4 will be  matrix 𝒘𝒘𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)  and vector 𝒔𝒔𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) 

which can be computed as: 
𝒘𝒘𝑖𝑖𝑗𝑗

(𝑡𝑡1−1) = 𝑁𝑁𝑖𝑖𝑗𝑗 ∗ �𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔�𝝅𝝅𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)� − 𝝅𝝅𝑖𝑖𝑗𝑗

(𝑡𝑡1−1) ∗ �𝝅𝝅𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)�

𝑇𝑇
� 

and  

𝒔𝒔𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) = �𝒘𝒘𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)�
−1
∗ 𝑁𝑁𝑖𝑖𝑗𝑗 ∗ �𝒚𝒚�𝑖𝑖𝑗𝑗 − 𝝅𝝅𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)� 

where 𝑦𝑦�𝑖𝑖𝑗𝑗 = �𝑦𝑦�𝑖𝑖𝑗𝑗,1,⋯ ,𝑦𝑦�𝑖𝑖𝑗𝑗,𝐽𝐽−1�
T
. 

(7) The marginal mean for each row and column in Section 2.4 can be computed as 



𝒔𝒔𝑖𝑖∙
(𝑡𝑡1−1) = ��𝒘𝒘𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)
𝑆𝑆

𝑗𝑗=1

�

−1

∗ ��𝒘𝒘𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) ∗

𝑆𝑆

𝑗𝑗=1

𝒔𝒔𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)� 

and  

𝒔𝒔∙𝑗𝑗
(𝑡𝑡1−1) = ��𝒘𝒘𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)
𝑅𝑅

𝑖𝑖=1

�

−1

∗ ��𝒘𝒘𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) ∗

𝑅𝑅

𝑖𝑖=1

𝒔𝒔𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)� 

respectively. 

 

7.6 Ordinal multinomial distribution 

This sub-section discusses the interaction detection for ordinal multinomial distribution using log-likelihood 
ratio test. 
The following notations are used if the distribution is ordinal multinomial. 

𝐽𝐽 The total number of categories for target variable. 

𝑅𝑅 The total number of categories for predictor  𝑋𝑋1. 

𝑆𝑆 The total number of categories for predictor X2. 

𝑛𝑛𝑖𝑖𝑗𝑗 The number of records in the combination 𝑋𝑋1 = 𝑖𝑖  and 𝑋𝑋2 = 𝑗𝑗. 

𝑦𝑦𝑖𝑖𝑗𝑗𝑚𝑚 The target value for the mth  record in the combination 𝑋𝑋1 = 𝑖𝑖  and  𝑋𝑋2 = 𝑗𝑗. 

𝑓𝑓𝑖𝑖𝑗𝑗𝑚𝑚 The frequency weight for the mth record in the combination 𝑋𝑋1 = 𝑖𝑖  and  𝑋𝑋2 = 𝑗𝑗. 

𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘 Conditional cumulative target probability for the kth category in the combination X1 = i  and 
X2 = j. 

𝜋𝜋𝑖𝑖𝑗𝑗 ,k Conditional target probability for for the kth category in the combination 𝑋𝑋1 = 𝑖𝑖  and 𝑋𝑋2 = 𝑗𝑗, 
𝜋𝜋𝑖𝑖𝑗𝑗,k = 𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘 − 𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1. 

𝜳𝜳 (𝐽𝐽 − 1)×1 vector of threshold parameter, 𝜳𝜳 = �𝜓𝜓1,⋯ ,𝜓𝜓𝐽𝐽−1�
𝑇𝑇

 and 𝜓𝜓1 < 𝜓𝜓2 < ⋯ < 𝜓𝜓𝐽𝐽−1. 

𝛼𝛼𝑖𝑖 The parameter of 𝑋𝑋1 = 𝑖𝑖 .  

𝜶𝜶 (𝑅𝑅 − 1)×1 parameter vector , 𝜶𝜶 = (𝛼𝛼1,⋯ ,𝛼𝛼𝑅𝑅−1)𝑇𝑇. 

𝛽𝛽𝑗𝑗 The parameter of 𝑋𝑋2 = 𝑗𝑗  . 

𝑿𝑿 (𝑆𝑆 − 1)×1 parameter vector , 𝑿𝑿 = (𝛽𝛽1,⋯ ,𝛽𝛽𝑆𝑆−1)𝑇𝑇. 

𝜆𝜆𝑖𝑖𝑗𝑗 The parameter of the combination of 𝑋𝑋1 = 𝑖𝑖  and 𝑋𝑋2 = 𝑗𝑗 . 

𝝀𝝀 𝑅𝑅×𝑆𝑆 parameter vector, 𝝀𝝀 = (𝜆𝜆11,⋯ , 𝜆𝜆1𝑆𝑆,⋯𝜆𝜆𝑅𝑅1,⋯ , 𝜆𝜆𝑅𝑅𝑆𝑆)𝑇𝑇. 

𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘 Linear predictor value for the kth target category in the combination 𝑋𝑋1 = 𝑖𝑖  and 𝑋𝑋2 = 𝑗𝑗. 

 

Basic statistics 



The following basic statistics are needed to collect: 

• The total number of records for the kth target category in the combination  𝑋𝑋1 = 𝑖𝑖  and 𝑋𝑋2 = 𝑗𝑗:   

 𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘 = � 𝑓𝑓𝑖𝑖𝑗𝑗𝑚𝑚 ∗ 𝐼𝐼(𝑦𝑦𝑖𝑖𝑗𝑗𝑚𝑚 = 𝑘𝑘)
𝑛𝑛𝑖𝑖𝑗𝑗

𝑚𝑚=1
 

where (𝑦𝑦𝑖𝑖𝑗𝑗𝑚𝑚 = 𝑘𝑘) = �
1, 𝑦𝑦𝑖𝑖𝑗𝑗𝑚𝑚 = 𝑘𝑘
0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

 . 

• The observed probability of the kth target category in the combination  𝑋𝑋1 = 𝑖𝑖  and 𝑋𝑋2 = 𝑗𝑗:   

𝑦𝑦�𝑖𝑖𝑗𝑗,𝑘𝑘 =
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘

𝑁𝑁𝑖𝑖𝑗𝑗
 

• The total number of records in the combination  𝑋𝑋1 = 𝑖𝑖  and 𝑋𝑋2 = 𝑗𝑗: 

𝑁𝑁𝑖𝑖𝑗𝑗 = � 𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘

𝐽𝐽

𝑘𝑘=1
 

Interaction detection 
The interaction detection is also based on the log-likelihood ration test. Please note that 

• The reduced model is 

𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘 = 𝑔𝑔�𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘� = 𝜓𝜓𝑘𝑘 − 𝛼𝛼𝑖𝑖 − 𝛽𝛽𝑗𝑗 

where 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1,  𝑖𝑖 = 1,⋯ ,𝑅𝑅 and 𝑗𝑗 = 1,⋯ , 𝑆𝑆. And the full model is  

𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘 = 𝑔𝑔�𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘� = 𝜓𝜓𝑘𝑘 − 𝜆𝜆𝑖𝑖𝑗𝑗 

where 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1,  𝑖𝑖 = 1,⋯ ,𝑅𝑅 and 𝑗𝑗 = 1,⋯ , 𝑆𝑆. 

• The scale parameter is 1. 
• The degree of freedom of log-likelihood ratio test is 𝑑𝑑𝑓𝑓 = (𝑅𝑅 − 1) ∗ (𝑆𝑆 − 1) − 𝑐𝑐, where 𝑐𝑐 is the 

number of invalid categorical combinations. 

Log-likelihood value 
The log-likelihood value is  

ℓ = ���𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘 ∗ ln�𝜋𝜋𝑖𝑖𝑗𝑗 ,𝑘𝑘�
𝐽𝐽

𝑘𝑘=1

𝑆𝑆

𝑗𝑗=1

𝑅𝑅

𝑖𝑖=1

 

For both full model and reduced model, the log-likelihood value will be computed by following iterative process: 

1. Input values for 𝑇𝑇1 (maximum number of iterations, tentatively set to 100), 𝜀𝜀1(tolerance level of stopping 
criterion, tentatively set to 10-6) . 

2. Set initial values:  
                𝛼𝛼𝑖𝑖

(0) = 0, 𝑖𝑖 = 1,⋯ ,𝑅𝑅; 
         𝛽𝛽𝑗𝑗

(0) = 0, 𝑗𝑗 = 1,⋯ , 𝑆𝑆; 
and  

  𝜓𝜓𝑘𝑘
(0) = 𝑔𝑔 �

∑ ∑ 𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖
𝑆𝑆
𝑗𝑗=1

𝑅𝑅
𝑖𝑖=1
∑ ∑ 𝑁𝑁𝑖𝑖𝑗𝑗

𝑆𝑆
𝑗𝑗=1

𝑅𝑅
𝑖𝑖=1

� , 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1  

3. Compute 𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘
(0) = 𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

(0) − 𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1
(0)  for 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1 and  

𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘
(0) = �

0 𝑘𝑘 = 0
𝑔𝑔−1�𝜓𝜓𝑘𝑘

(0) − 𝛼𝛼𝑖𝑖
(0) − 𝛽𝛽𝑗𝑗

(0)� 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1
1 𝑘𝑘 = 𝐽𝐽

 

Then compute log-likelihood value ℓ(0) based on 𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘
(0)  and 𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘 using the formula of log-likelihood value 

for ordinal distribution.  
4. Set the iteration number 𝑡𝑡1 = 1.  
5. Compute estimates of 𝑡𝑡1th iteration  



𝚩𝚩(𝑡𝑡1) = 𝚩𝚩(𝑡𝑡1−1) − �𝑯𝑯(𝑡𝑡1−1)�−𝒔𝒔(𝑡𝑡1−1) 

                   where 𝚩𝚩 = (𝜳𝜳𝑻𝑻,𝜶𝜶𝑻𝑻,𝑿𝑿𝑻𝑻)𝑻𝑻 if model is reduced model and 𝚩𝚩 = (𝜳𝜳𝑻𝑻,𝝀𝝀𝑻𝑻)𝑻𝑻 if model is full model. The 
hessian matrix 𝑯𝑯 and gradient vector 𝐬𝐬 will be computed later, and   (𝑯𝑯)− is the generalized inverse of 
𝑯𝑯. 

6. Similar to the step 3, compute 𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘
(𝑡𝑡1) and log-likelihood value ℓ(𝑡𝑡1). 

7. If ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟
(𝑡𝑡1) < ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟

(𝑡𝑡1−1) , then stop and output ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟
(𝑡𝑡1−1) . 

8. If |ℓ(𝑡𝑡1) − ℓ(𝑡𝑡1−1)  | < 𝜀𝜀1   or 𝑡𝑡1 > 𝑇𝑇1, then stop and output ℓ( 𝑡𝑡1), otherwise, 𝑡𝑡1 = 𝑡𝑡1 + 1, go back to step 
5. 

 

Gradient vector and hessian matrix for reduced model 
The gradient vector s can be computed as following: 

𝒔𝒔 = � 𝜕𝜕ℓ
𝜕𝜕𝜓𝜓1

,⋯ , 𝜕𝜕ℓ
𝜕𝜕𝜓𝜓𝐽𝐽−1

, 𝜕𝜕ℓ
𝜕𝜕𝛼𝛼1

,⋯ , 𝜕𝜕ℓ
𝜕𝜕𝛼𝛼𝑅𝑅−1

, 𝜕𝜕ℓ
𝜕𝜕𝛽𝛽1

,⋯ , 𝜕𝜕ℓ
𝜕𝜕𝛽𝛽𝐽𝐽−1

�
𝑇𝑇
, 

where 

𝜕𝜕ℓ
𝜕𝜕𝜓𝜓𝑖𝑖

= ∑ ∑ 𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
�
𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
−

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖+1

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖+1
�𝑆𝑆

𝑗𝑗=1
𝑅𝑅
𝑖𝑖=1 , 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1, 

𝜕𝜕ℓ

𝜕𝜕𝛼𝛼𝑖𝑖
= −∑ ∑ �

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘
𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘

−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1
� 𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘
𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘

,   𝑖𝑖 = 1,⋯ ,𝑅𝑅 − 1𝐽𝐽
𝑘𝑘=1

𝑆𝑆
𝑗𝑗=1 , 

𝜕𝜕ℓ

𝜕𝜕𝛽𝛽𝑗𝑗
= −∑ ∑ �

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘
𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘

−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1
� 𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘
𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘

,   𝑗𝑗 = 1,⋯ , 𝑆𝑆 − 1𝐽𝐽
𝑘𝑘=1

𝑅𝑅
𝑖𝑖=1 , 

And the hessian matrix is 

𝐻𝐻 =

⎝

⎜⎜
⎛

𝜕𝜕2ℓ

𝜕𝜕𝚿𝚿𝜕𝜕𝚿𝚿𝑇𝑇
𝜕𝜕2ℓ

𝜕𝜕𝚿𝚿𝜕𝜕𝛂𝛂𝑇𝑇
𝜕𝜕2ℓ

𝜕𝜕𝚿𝚿𝜕𝜕𝛃𝛃𝑇𝑇

𝜕𝜕2ℓ

𝜕𝜕𝛂𝛂𝜕𝜕𝚿𝚿𝑇𝑇
𝜕𝜕2ℓ

𝜕𝜕𝛂𝛂𝜕𝜕𝛂𝛂𝑇𝑇
𝜕𝜕2ℓ

𝜕𝜕𝛂𝛂𝜕𝜕𝛃𝛃𝑇𝑇

𝜕𝜕2ℓ

𝜕𝜕𝛃𝛃𝜕𝜕𝚿𝚿𝑇𝑇
𝜕𝜕2ℓ

𝜕𝜕𝛃𝛃𝜕𝜕𝛂𝛂𝑇𝑇
𝜕𝜕2ℓ

𝜕𝜕𝛃𝛃𝜕𝜕𝛃𝛃𝑇𝑇⎠

⎟⎟
⎞

, 

where 

𝜕𝜕2ℓ

𝜕𝜕𝜓𝜓𝑘𝑘−1𝜕𝜕𝜓𝜓𝑘𝑘
= ∑ ∑

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘
𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘

𝑆𝑆
𝑗𝑗=1

𝑅𝑅
𝑖𝑖=1

𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘
𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘

2 , 𝑘𝑘 = 2,⋯ , 𝐽𝐽 − 1, 

𝜕𝜕2ℓ
𝜕𝜕𝜓𝜓𝑖𝑖

2 = ∑ ∑ �
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
2 �

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
−

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖+1

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖+1
� − �

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
�
2
�
𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
2 +

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖+1

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖+1
2 �� , 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1𝑆𝑆

𝑗𝑗=1
𝑅𝑅
𝑖𝑖=1 , 

𝜕𝜕2ℓ
𝜕𝜕𝜓𝜓𝑖𝑖𝜕𝜕𝜓𝜓𝑚𝑚

= 0,   for |𝑘𝑘 − 𝑚𝑚| > 1, 

𝜕𝜕2ℓ
𝜕𝜕𝛼𝛼𝑖𝑖

2 = ∑ ∑ ��
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
2 −

𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖−1
2 � 𝜋𝜋𝑖𝑖𝑗𝑗,k − �

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
−

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖−1
�
2
� �

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
2 �𝐽𝐽

𝑘𝑘=1
𝑆𝑆
𝑗𝑗=1 , 𝑖𝑖 = 1,⋯ ,𝑅𝑅 − 1, 



𝜕𝜕2ℓ
𝜕𝜕𝛼𝛼𝑖𝑖𝜕𝜕𝛼𝛼𝑗𝑗

= 0, for 𝑖𝑖 ≠ 𝑗𝑗, 

𝜕𝜕2ℓ
𝜕𝜕𝛽𝛽𝑗𝑗

2 = ∑ ∑ ��
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
2 −

𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖−1
2 � 𝜋𝜋𝑖𝑖𝑗𝑗,k − �

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
−

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖−1
�
2
� �

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
2 �𝐽𝐽

𝑘𝑘=1
𝑅𝑅
𝑖𝑖=1 , 𝑗𝑗 = 1,⋯ , 𝑆𝑆 − 1, 

𝜕𝜕2ℓ
𝜕𝜕𝛽𝛽𝑖𝑖𝜕𝜕𝛽𝛽𝑗𝑗

= 0, for 𝑖𝑖 ≠ 𝑗𝑗, 

𝜕𝜕2ℓ
𝜕𝜕𝜓𝜓𝑘𝑘𝜕𝜕𝛼𝛼𝑖𝑖

= −��
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
2 𝜋𝜋𝑖𝑖𝑗𝑗,k −

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
�
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1
��
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘

𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘
2

𝑆𝑆

𝑗𝑗=1

            +��
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
2 𝜋𝜋𝑖𝑖𝑗𝑗,k+1 −

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
�
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘+1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘+1
−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
��
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘+1

𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘+1
2 ,

𝑆𝑆

𝑗𝑗=1

 

𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1,   𝑖𝑖 = 1,⋯ ,𝑅𝑅 − 1, 

𝜕𝜕2ℓ
𝜕𝜕𝜓𝜓𝑘𝑘𝜕𝜕𝛽𝛽𝑗𝑗

= −��
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
2 𝜋𝜋𝑖𝑖𝑗𝑗,k −

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
�
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1
��
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘

𝜋𝜋𝑖𝑖𝑗𝑗 ,𝑘𝑘
2

𝑅𝑅

𝑖𝑖=1

             +��
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
2 𝜋𝜋𝑖𝑖𝑗𝑗,k+1 −

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
�
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘+1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘+1
−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
��
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘+1

𝜋𝜋𝑖𝑖𝑗𝑗 ,𝑘𝑘+1
2 ,

𝑅𝑅

𝑖𝑖=1

 

𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1,   𝑗𝑗 = 1,⋯ , 𝑆𝑆 − 1, 

𝜕𝜕2ℓ
𝜕𝜕𝛼𝛼𝑖𝑖𝜕𝜕𝛽𝛽𝑗𝑗

= ���
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
2 −

𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1
2 �𝜋𝜋𝑖𝑖𝑗𝑗,k − �

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1
�
2

�
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘

𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘
2 ,

𝐽𝐽

𝑘𝑘=1
 

𝑖𝑖 = 1,⋯ ,𝑅𝑅 − 1, 𝑗𝑗 = 1,⋯ , 𝑆𝑆 − 1

 Gradient vector and hessian matrix for full model  
The gradient vector s can be computed as following: 

𝒔𝒔 = � 𝜕𝜕ℓ
𝜕𝜕𝜓𝜓1

,⋯ , 𝜕𝜕ℓ
𝜕𝜕𝜓𝜓𝐽𝐽−1

, 𝜕𝜕ℓ
𝜕𝜕𝜆𝜆11

,⋯ , 𝜕𝜕ℓ
𝜕𝜕𝜆𝜆1𝑆𝑆

,⋯ , 𝜕𝜕ℓ
𝜕𝜕𝜆𝜆21

,⋯ , 𝜕𝜕ℓ
𝜕𝜕𝜆𝜆𝑅𝑅𝑆𝑆

�
𝑇𝑇
, 

where 
𝜕𝜕ℓ
𝜕𝜕𝜓𝜓𝑖𝑖

= ∑ ∑ 𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
�
𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
−

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖+1

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖+1
�𝑆𝑆

𝑗𝑗=1
𝑅𝑅
𝑖𝑖=1 , 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1, 

𝜕𝜕ℓ
𝜕𝜕𝜆𝜆𝑖𝑖𝑗𝑗

= −∑ �
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
−

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖−1
�
𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
,   𝑖𝑖 = 1,⋯ ,𝑅𝑅, 𝑗𝑗 = 1,⋯ , 𝑆𝑆𝐽𝐽

𝑘𝑘=1 , 

And the hessian matrix is 

𝐻𝐻 = �
𝜕𝜕2ℓ

𝜕𝜕𝚿𝚿𝜕𝜕𝚿𝚿𝑇𝑇
𝜕𝜕2ℓ

𝜕𝜕𝚿𝚿𝜕𝜕𝝀𝝀𝑇𝑇

𝜕𝜕2ℓ

𝜕𝜕𝝀𝝀𝜕𝜕𝚿𝚿𝑇𝑇
𝜕𝜕2ℓ

𝜕𝜕𝝀𝝀𝜕𝜕𝝀𝝀𝑇𝑇

�, 



where 

𝜕𝜕2ℓ

𝜕𝜕𝜓𝜓𝑘𝑘−1𝜕𝜕𝜓𝜓𝑘𝑘
= ∑ ∑

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘
𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘

𝑆𝑆
𝑗𝑗=1

𝑅𝑅
𝑖𝑖=1

𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘
𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘

2 , 𝑘𝑘 = 2,⋯ , 𝐽𝐽 − 1, 

𝜕𝜕2ℓ
𝜕𝜕𝜓𝜓𝑖𝑖

2 = ∑ ∑ �
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
2 �

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
−

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖+1

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖+1
� − �

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
�
2
�
𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
2 +

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖+1

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖+1
2 �� , 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1𝑆𝑆

𝑗𝑗=1
𝑅𝑅
𝑖𝑖=1 , 

𝜕𝜕2ℓ
𝜕𝜕𝜓𝜓𝑖𝑖𝜕𝜕𝜓𝜓𝑚𝑚

= 0,   for |𝑘𝑘 − 𝑚𝑚| > 1, 

𝜕𝜕2ℓ
𝜕𝜕𝜆𝜆𝑖𝑖𝑗𝑗

2 = ∑ ��
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
2 −

𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖−1
2 � 𝜋𝜋𝑖𝑖𝑗𝑗 ,k − �

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
−

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖−1
�
2
�
𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
2 ,𝐽𝐽

𝑘𝑘=1 𝑖𝑖 = 1,⋯ ,𝑅𝑅, 𝑗𝑗 = 1,⋯ , 𝑆𝑆, 

𝜕𝜕2ℓ
𝜕𝜕𝜆𝜆𝑖𝑖𝑗𝑗𝜕𝜕𝜆𝜆𝑢𝑢𝑢𝑢

= 0, for 𝑖𝑖 ≠ 𝑢𝑢 or 𝑗𝑗 ≠ 𝑣𝑣, 

𝜕𝜕2ℓ
𝜕𝜕𝜓𝜓𝑘𝑘𝜕𝜕𝜆𝜆𝑖𝑖𝑗𝑗

= − �
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
2 𝜋𝜋𝑖𝑖𝑗𝑗,k −

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
�
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1
��
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘

𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘
2

             + �
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
2 𝜋𝜋𝑖𝑖𝑗𝑗,k+1 −

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
�
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘+1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘+1
−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
��
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘+1

𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘+1
2 ,

 

𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1, 𝑖𝑖 = 1,⋯ ,𝑅𝑅, 𝑗𝑗 = 1,⋯ , 𝑆𝑆, 

7.7 Two-way-test pair search strategy 

Suppose there are 𝑚𝑚fac factors and 𝑚𝑚cov covariates, thus there are 𝑚𝑚(= 𝑚𝑚fac + 𝑚𝑚cov) main effects.  Suppose the 
number of parameters for them is 𝑝𝑝𝑚𝑚 (including the intercept).  

Input values (integers) for 𝑚𝑚1 (threshold value to conduct interaction effect detection; the default is 100), 𝑚𝑚2 
(threshold value to select main effects (factors) for interaction effect detection; the default is 20) and 𝑝𝑝max 
(maximum number of parameters the system can handle; the default is 5000), where 𝑚𝑚1 ≥ 𝑚𝑚2.  

When (pmax ≤ p𝑚𝑚 + 𝑚𝑚cov), the strategy will not be conducted. That is to say, no any interactions of two factors 
and squared term of covariates are output. 

When (𝑚𝑚fac < 2) and (pmax > pm +  𝑚𝑚cov), only squared term of covariates are output. 

When(𝑚𝑚fac > 𝑚𝑚2) and  (pmax > pm +  𝑚𝑚cov) then the strategy will be conducted with the following steps: 

1. Build a generalized linear model using all main effects 𝑿𝑿1,𝑿𝑿2,⋯ ,𝑿𝑿𝑚𝑚. 

2. Select the significant main effects (𝑝𝑝 < 0.05) based on Type 3 analysis (using Wald statistics in Section 
3.1.1). Assume there are 𝑚𝑚′ significant effects and 𝑚𝑚fac

′  significant effects of factors. 

3. If (𝑚𝑚fac
′ < 2) or (𝑚𝑚′ > 𝑚𝑚1), then stop and no interaction detection is conducted. Otherwise, sort the main 

effects using p-value in ascending order.  

4. Select the top 𝑚𝑚fac
′′ (= min(𝑚𝑚fac

′ ,𝑚𝑚2))  main effects to construct two-way interaction effects (of two 
factors) among these 𝑚𝑚fac

′′  main effects. 

5. Test all candidate interaction effects using the methods given Sections 7.3 and 7.6. 



6. Calculate the total number of parameters for all significant interaction effects, denoted by 𝑝𝑝𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟 , if 𝑝𝑝𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟 <
0.5×(𝑝𝑝max − 𝑝𝑝𝑚𝑚 −𝑚𝑚cov), then stop and output all significant interaction effects and all squared term of 
covariates; otherwise go to step 7. 

7. Calculate effect size for each significant two-way interaction effect 

𝐸𝐸𝑓𝑓𝑓𝑓𝑒𝑒𝑐𝑐𝑡𝑡𝑆𝑆𝑖𝑖𝑧𝑧𝑒𝑒 = ℓ𝑓𝑓𝑟𝑟𝑡𝑡𝑡𝑡 − ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟 − 𝑑𝑑𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑡𝑡𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛 

where 𝑑𝑑𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑡𝑡𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛 denotes the difference of degrees of freedom of full and reduced models. 

8. Sort all significant two-way interaction effects using their effect sizes in descending order and select and 
output top-𝑘𝑘 interaction effects and all squared term of covariates, where 𝑘𝑘 is the maximum number 
satisfying the number of parameters for top-𝑘𝑘 interaction effects is less than or equal to 0.5×(𝑝𝑝max − 𝑝𝑝𝑚𝑚 −
𝑚𝑚cov). 

When (𝑚𝑚fac ≤ 𝑚𝑚2) and (𝑝𝑝max > 𝑝𝑝m +  𝑚𝑚cov), the strategy will be similar to the one given above, except that 
the step of constructing two-way interaction effects: here, two-way interaction effects are directly constructed 
among all 𝑚𝑚fac  main effects rather than based on 𝑚𝑚fac

′′  significant main effects. That is to say, it doesn’t need 
building a model of all main effects. 

Note that the parameters settings for the model of all main effects may be different from the user’s setting for 
speeding up the process of the two-way interaction detection: 

• For the ancillary parameter (𝑘𝑘) in negative binomial distribution, it is set to 1.0 when 𝑘𝑘 is estimated by 
MLE. 

• For the scale parameter 𝜙𝜙, it is fixed to 1.0 for the following two cases: (1) the 𝜙𝜙  is estimated by MLE; 
(2) the 𝜙𝜙 is estimated by Pearson chi-square or Deviance divided by degree of freedom. 

8. Model selection 
Model selection for generalized linear models involves 2 aspects:  

(1) Distribution and/or link function specification: if both or one of them is unspecified, then we need to select 
them which would be based on measurement level and storage type of the target. 

(2) Variable selection or regularization: the option of variable selection can be on or off. If it is on, then the 
available methods are forward stepwise, lasso (L1 regularization), elastic net (L1+L2 regularization) and 
ridge regression (L2 regularization). 
Notes:  
(a) We assume that the inputs list is given.  
(b) Two-way interaction detection is a sub-option under variable selection. Only when the variable selection 

flag is on and the variable selection or regarulization method is selected as Forward-
Stepwise/L1/L1+L2/L2, user can specify the two-way interaction flag (default is off). Interaction 
detection is disabled if the user specifies any higher-order effects (beyond main effects). 

Hence there will be 4 scenarios from the combinations of the above 2 aspects and we will describe how each 
scenario would be processed: 

(1) Distribution and link function are specified and variable selection flag is off: 
The main task is parameter estimation and the estimation methods would be different depending on the inputs 
list size:  
(1.1) If the inputs list falls into the small to median p situation, then use the Newton-Raphson in GLE 

phase 1 to estimate parameters (by whole data).  
Note that the list with null or intercept-only will fall into this scenario.  



(1.2) If the inputs list falls into the large p situation, then use the L-BFGS in ADMM to estimate parameters 
(by whole data). 

(2) Distribution and link function are specified and variable selection flag is on. 
The main tasks are variable selection and parameter estimation: 
(2.1) If the inputs list falls into the small to median p situation and the variable selection method is 

forward stepwise, then apply Section 8.1 to select variables (by sample data) and use the Newton-
Raphson to estimate parameters (by whole data).  

(2.2) If the inputs list falls into the large p situation and the variable selection method is forward stepwise, 
switch to the lasso method in ADMM to select variable and estimate parameters (by whole data). A 
warning will be issued to let user know that variable selection method is changed. 

(2.3) If the variable selection or regularization is L1, L2, or L1+L2, no matter whether the inputs list falls 
into the small to medium or large p situation, use ADMM with Newton Raphson or L-BFGS to 
select variable and estimate parameters (by whole data). 

Note that for the list with null or intercept-only in (2.1) and (2.3), we use the Newton-Raphson to build a 
null or intercept only model directly (by whole data) and issue a warning message such as "Variable 
selection method is ignored because of no predictor. A null model or intercept-only model is built." 

(3) Distribution and/or link function are unspecified and variable selection is off. 
The main task is distribution/link function selection: 

(3.1) If the inputs list falls into the small to medium p situation, then apply Section 8.2 to select 
distribution and/or link function (by sample data) and use the Newton-Raphson to estimate 
parameters (by whole data) for the selected distribution/link function.  
Note that the list with null or intercept-only will fall into this scenario.  

(3.2) If the inputs list falls into the large p situation, then apply Section 8.2 to select distribution and/or 
link function (by sample data) and use the L-BFGS in ADMM ADD to  estimate parameters (by 
whole data) for the selected distribution/link function. 

(4) Distribution and/or link function are unspecified and variable selection is on. 
The main tasks are distribution/link function selection, variable selection and parameter estimation:  
(4.1) If the inputs list falls into the small to medium p situation and the variable selection method is 

forward stepwise, then apply Section 8.3.1 to select distribution/link function and variables (by 
sample data) and use the Newton-Raphson to estimate parameters (by whole data) for the selected 
distribution/link function.  

(4.2) If the inputs list falls into the large p situation and the variable selection method is forward stepwise, 
then apply Section 8.3.2, i.e., switch to the lasso method in ADMM to select distribution/link 
function (by sample data), and use the lasso method in ADMM and selected lambda to select 
variables and estimate parameters (by whole data) for the selected distribution/link function. A 
warning will be issued to let user know that variable selection method is changed. 

(4.3) If the variable selection/regularization is L1, L2, or L1+L2, no matter whether the inputs list falls 
into the small to medium or large p situation, apply Section 8.3.2 (based on ADMM) to select 
distribution/link function (by sample data), and use with Newton Raphson or L-BFGS with selected 
lambda to select variables and estimate parameters (by whole data) for the selected distribution/link 
function. 

Note that for the list with null or intercept-only in (4.1) or (4.3), we apply Section 8.2 to select 
distribution/link function based on the null or intercept only model (by sample data), and use the Newton-
Raphson to estimate parameters (by whole data) for the selected distribution/link function. Issue a warning 
message such as "Variable selection method is ignored because of no predictor. A null model or intercept-
only model is built to select distribution and link function." 



Implementation notes: 

Regarding the initial value when using ADMM for variable selection and model building: 

• When the inputs list falls into the small to medium situation, compute the initial value according to 
section 3.1.3.1 in GLE phase 1. 

• When the inputs list falls into the large p situation and the distribution is not binomial, ordinal or 
nominal, set 1.0e-6 as the initial value for all the regression parameters. 

• When ordinal multinomial distribution, no matter whether the inputs list falls into the small to medium or 
large p situation, compute the initial value according to Appendix A (Ordinal Multinomial Distribution) 
in GLE phase 1; When nominal multinomial distribution, no matter whether the inputs list falls into the 
small to medium or large p situation, compute the initial value according to Appendix B (Nominal 
Multinomial Distribution) in GLE phase 1. 

8.1 Variable selection or regularization 
For the small to median p situations (𝑝𝑝 < 𝑝𝑝max), four variable selection or regularization methods are supported: 
(1) forward stepwise; (2) the lasso (𝐿𝐿1 regularization); (3) elastic net (the (𝐿𝐿1 + 𝐿𝐿2) regularization); (4) ridge 
regression (𝐿𝐿2 regularization). For the large p situations 𝑝𝑝 ≥ 𝑝𝑝max), the lasso, elastic net and ridge regression 
would be supported, but not forward stepwise. We will utilize ADMM to do the lasso, elastic net and ridge 
regression and details are provided in GLE phase 3, so only forward stepwise is described in details here. 

The basic idea of the forward stepwise method is to start off by choosing the best effect in addition to the intercept 
if exists and then tries to enter additional effect one at a time. After an effect has been added, all effects in the 
current model are checked to see if any of them should be removed. The process continues until a stopping 
criterion is met. 

The five candidate statistics will be supported for the effect entry or removal: (1) Likelihood ratio (LR) statistic; 
(2) Score statistic (SCORE); (3) Wald statistic (WALD); (4) Finite sample corrected Akaike information criteria 
(AICC); and (5) Average square error (ASE) over the testing data. More specifically, six combinations (Table 
8.2) of candidate statistics are available for the effect entry and removal. The default statistics for the effect entry 
and removal are SCORE and WALD, respectively. 

Table 8.2. Six combinations of statistics for effect entry and removal 

No Statistics 

Effect entry Effect removal 

1 SCORE WALD 

2 SCORE LR 

3 LR WALD 

4 LR LR 

5 AICC AICC 

6 ASE ASE 



It is noted that LR statistic, AICC and ASE might consume considerable computation time since a model is fitted 
for each effect. Score and Wald statistic use less computation time but may be less accurate in the significance 
test of the effect of interest.  

The details of statistics calculations and the selection process are described below. 

Implementation note: 

• We only implement #1 so far and will implement other options later if time permits. 

8.1.1 Candidate statistics 

𝑋𝑋𝑗𝑗 A continuous effect. 

�𝑋𝑋𝑗𝑗𝑠𝑠�𝑠𝑠=1
𝑚𝑚

 A categorical effect. 

𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 The parameters for the current model 

𝑩𝑩𝑗𝑗 The parameters for the effect  j which is continuous or categorical 

𝑚𝑚∗ The difference in the number of non-redundant parameters estimated of two successive 
models 

ℓ𝑐𝑐𝑟𝑟𝑟𝑟  The log likelihood for the current model. 

ℓ𝑐𝑐𝑟𝑟𝑟𝑟+𝑗𝑗 The log likelihood for the resulting model after entering the effect j. 

ℓ𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 The log likelihood for the resulting model after removing the effect j. 

 (1)  LR statistic 

The LR statistic is defined as two times the log of the ratio of the likelihood functions of two models evaluated at 
their MLEs. The LR statistics for an effect j �𝑋𝑋𝑗𝑗  or �𝑋𝑋𝑗𝑗𝑠𝑠�𝑠𝑠=1

𝑚𝑚 � entering and removing from the current model are 
calculated as follows: 

𝑆𝑆𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗 = 2�ℓ𝑐𝑐𝑟𝑟𝑟𝑟+𝑗𝑗 − ℓ𝑐𝑐𝑟𝑟𝑟𝑟� 
𝑆𝑆𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑗𝑗 = 2�ℓ𝑐𝑐𝑟𝑟𝑟𝑟 − ℓ𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗� 

The asymptotic distribution of the LR statistic, under the hypothesis that the additional or removal parameters in 
the model are equal to 0, is a chi-square with 𝑚𝑚∗ degrees of freedom, where 𝑚𝑚∗ equal to the difference in the 
number of non-redundant parameters estimated in two successive models, i.e., 𝜒𝜒𝑚𝑚∗

2 . 

Then the p-values corresponding to the above LR statistic are 

𝑝𝑝𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗 = 1 − 𝑃𝑃 �𝜒𝜒𝑚𝑚∗
2 ≤ 𝑆𝑆𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗� 

𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑗𝑗 = 1 − 𝑃𝑃 �𝜒𝜒𝑚𝑚∗
2 ≤ 𝑆𝑆𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑗𝑗� 

(2)  AICC 

The AICC values for the resulting model when an effect j enters to or is removed from the current model are 
calculated as follows: 



𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟+𝑗𝑗 = −2ℓ𝑐𝑐𝑟𝑟𝑟𝑟+𝑗𝑗 +
2𝑑𝑑𝑐𝑐𝑟𝑟𝑟𝑟+𝑗𝑗 ∙ 𝑁𝑁

𝑁𝑁 − 𝑑𝑑𝑐𝑐𝑟𝑟𝑟𝑟+𝑗𝑗 − 1
 

𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 = −2ℓ𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 +
2𝑑𝑑𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ∙ 𝑁𝑁

𝑁𝑁 − 𝑑𝑑𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 − 1
 

where 𝑑𝑑 (𝑑𝑑𝑐𝑐𝑟𝑟𝑟𝑟+𝑗𝑗  or 𝑑𝑑𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗) denote the degrees of freedom of the resulting model. For all distributions except 
ordinal and nominal multinomial, 𝑑𝑑 =  𝑝𝑝𝑥𝑥 if only β is included; 𝑑𝑑 =  𝑝𝑝𝑥𝑥 + 1 if β and φ for normal, inverse 
Gaussian, gamma and Tweedie distributions or β and k for negative binomial distribution are included. For ordinal 
and nominal multinomial, d is just the number of non-redundant parameters.  

(3)  Score statistic 

The score statistic is calculated for each effect not in the model to determine whether the effect should enter the 
model. 

Suppose the current model’s maximum likelihood estimate is 𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟. Using the block notations, the score function 
(𝒔𝒔, the gradient vector) and information matrix (𝑰𝑰 = −𝑯𝑯, the negative Hessian matrix) of the resulting model (the 
current model with additional effect j) are calculated as 

𝒔𝒔�𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗� = �
𝒔𝒔𝑐𝑐𝑟𝑟𝑟𝑟(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗)
𝒔𝒔𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗) � 

𝑰𝑰�𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗� = �
𝑰𝑰𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑟𝑟𝑟𝑟(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗) 𝑰𝑰𝑐𝑐𝑟𝑟𝑟𝑟,𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗)
𝑰𝑰𝑗𝑗,𝑐𝑐𝑟𝑟𝑟𝑟(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗) 𝑰𝑰𝑗𝑗,𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗) � 

The inverse information matrix is 

𝑱𝑱�𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗� = �
𝑱𝑱𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑟𝑟𝑟𝑟(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗) 𝑱𝑱𝑐𝑐𝑟𝑟𝑟𝑟,𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗)
𝑱𝑱𝑗𝑗,𝑐𝑐𝑟𝑟𝑟𝑟(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗) 𝑱𝑱𝑗𝑗,𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗) � 

Then the score statistic for the null hypothesis 𝐻𝐻0:𝑩𝑩𝑗𝑗 = 𝟎𝟎 is 

𝑆𝑆𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗 = 𝒔𝒔𝑗𝑗�𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟 ,𝟎𝟎�𝑇𝑇𝑱𝑱𝑗𝑗,𝑗𝑗�𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟 ,𝟎𝟎�𝒔𝒔𝑗𝑗(𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟 ,𝟎𝟎) 

Under the null hypothesis, the score statistic has a chi-square distribution with 𝑟𝑟𝑠𝑠 degrees of freedom, where  𝑟𝑟𝑠𝑠 
equals to the rank of  𝑱𝑱𝑗𝑗,𝑗𝑗(𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟 ,𝟎𝟎).  If  𝑟𝑟𝑠𝑠 is zero, then the score statistic will be set to 0 and the p-value will be 1. 
Otherwise, the p-value is calculated as 

𝑝𝑝𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗 = 1 − 𝑃𝑃 �𝜒𝜒𝑟𝑟𝑠𝑠
2 ≤ 𝑆𝑆𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗�. 

 (4)  Wald statistic 

The Wald statistic is calculated for each effect in the model to determine whether the effect can be removed from 
the model.  

The current model’s parameter vector and its estimate can be partitioned into two parts as follows: 

𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 = �
𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗
𝑩𝑩𝑗𝑗

�  and 𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟 = �
𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗

𝑩𝑩�𝑗𝑗
� 

Similarly, the information matrix and its inverse can be partitioned as follow, 



𝑰𝑰(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟) = �
𝑰𝑰𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗,𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ,𝑩𝑩𝑗𝑗) 𝑰𝑰𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗,𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗,𝑩𝑩𝑗𝑗)
𝑰𝑰𝑗𝑗,𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ,𝑩𝑩𝑗𝑗) 𝑰𝑰𝑗𝑗,𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗,𝑩𝑩𝑗𝑗) � 

𝑱𝑱(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟) = �
𝑱𝑱𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗,𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ,𝑩𝑩𝑗𝑗) 𝑱𝑱𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗,𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ,𝑩𝑩𝑗𝑗)
𝑱𝑱𝑗𝑗,𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ,𝑩𝑩𝑗𝑗) 𝑱𝑱𝑗𝑗,𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ,𝑩𝑩𝑗𝑗) � 

Then the Wald statistic for the null hypothesis 𝐻𝐻0:𝑩𝑩𝑗𝑗 = 𝟎𝟎 is 

𝑆𝑆𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑗𝑗 = �𝑩𝑩�𝑗𝑗�
𝑇𝑇�𝐽𝐽𝑗𝑗,𝑗𝑗(𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ,𝑩𝑩�𝑗𝑗)�−𝑩𝑩�𝑗𝑗 

Under the null hypothesis,  𝑆𝑆 has a chi-square distribution with 𝑟𝑟𝑠𝑠 degrees of freedom, where  𝑟𝑟𝑠𝑠 equals to the rank 
of 𝑱𝑱𝑗𝑗,𝑗𝑗(𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ,𝑩𝑩�𝑗𝑗).  If  𝑟𝑟𝑠𝑠 is zero, then the score statistic will be set to 0 and the p-value will be 1. Otherwise, the 
p-value is calculated as 

𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑗𝑗 = 1 − 𝑃𝑃 �𝜒𝜒𝑟𝑟𝑠𝑠
2 ≤ 𝑆𝑆𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑗𝑗�. 

(5)  ASE 

For distributions except ordinal and nominal distributions, the ASE value over the testing data for the resulting 
model when an effect enters to or is removed from the current model is 

𝐴𝐴𝑆𝑆𝐸𝐸 =
1

∑ 𝑓𝑓𝑖𝑖
𝑛𝑛𝑇𝑇
𝑖𝑖=1

�𝑓𝑓𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛𝑇𝑇

𝑖𝑖=1

 

where 𝑦𝑦�𝑖𝑖 = 𝑔𝑔−1�𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝒐𝒐𝑖𝑖� is the predicted value of 𝑦𝑦𝑖𝑖 , and 𝑛𝑛𝑇𝑇 is the number of distinct cases in the testing data. 

For ordinal and nominal distributions, the ASE value is calculated as 

𝐴𝐴𝑆𝑆𝐸𝐸 =
1

∑ 𝑓𝑓𝑖𝑖
𝑛𝑛𝑇𝑇
𝑖𝑖=1

�𝑓𝑓𝑖𝑖𝐼𝐼�𝑦𝑦𝑖𝑖 ≠ 𝑐𝑐(𝒙𝒙𝑖𝑖)�
𝑛𝑛𝑇𝑇

𝑖𝑖=1

 

𝑐𝑐(𝒙𝒙𝑖𝑖) = arg max
𝑗𝑗

𝜋𝜋�𝑖𝑖𝑗𝑗  

Where 𝐼𝐼(∙) is indicator function, 𝑛𝑛𝑇𝑇 is the number of distinct cases in the testing data, 𝑐𝑐(𝒙𝒙𝑖𝑖) denotes the predicted 
category for 𝒙𝒙𝑖𝑖, and 𝜋𝜋�𝑖𝑖𝑗𝑗 denotes the probability for category 𝑗𝑗 corresponding to 𝒙𝒙𝑖𝑖. The detailed calculation of 𝜋𝜋�𝑖𝑖𝑗𝑗  
is given in Section 5.1 of “Algorithm: Generalized Linear Engine Phase I”. 

Implementation notes: 

• If ASE criterion is chosen, the data would be divided into two parts: training data and testing data. For 
the current phase, the partition would be set to 30% for testing data, and users have no control over this 
part. However, users can select the seed so the results can be reproduced. 

• The ASE value for ordinal and nominal multinomial distribution represents the classification error 
actually. 

8.1.2 The selection process 

When distribution, link function and effects are all specified but the user requests the selection of effects, 
candidate effects are effects specified; when both distribution and link function are specified, but the effects have 



not been specified, the candidate effects includes all main effects, and some interaction effects obtained in Section 
7. 

The criteria could be grouped into two categories:  (1) LR, SCORE and WALD; (2) AICC and ASE. The former 
is to select an effect for entry (removal) with minimum (maximum) p-value and continue doing it until the p-
values of all candidates for entry (removal) are equal to or greater than (less than) a specified significance level. 
The latter is to compare the goodness of fit statistics (AICC or ASE) of the resulting model after entering 
(removing) an effect with that of the current model and selection would be stopped at a local optimal value.   

Some definitions are needed for the selection process.  

FLAG A 𝑝𝑝𝑒𝑒×1 index vector which records the status of each effect. 𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑖𝑖 = 1 means the 
effect i is in the current model; 𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑖𝑖 = 0 means it is not. Note that |{𝑖𝑖|𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑖𝑖 = 1}| 
denotes the number of effects with 𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑖𝑖 = 1. 

MAXSTEP The maximum number of iteration steps. The tentative default value is 3×𝑝𝑝𝑒𝑒 . 

MAXEFFECT The maximum number of effects (excluding intercept if exists). The default value is 𝑝𝑝𝑒𝑒. 

𝑝𝑝𝑖𝑖𝑛𝑛 The significance level for effect entry when LR or SCORE is used. The default is 0.05. 

𝑝𝑝𝑡𝑡𝑟𝑟𝑡𝑡  The significant level for effect removed when LR or WALD is used. The default is 0.1. 

𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟 The AICC value for the current model. 

𝐴𝐴𝑆𝑆𝐸𝐸𝑐𝑐𝑟𝑟𝑟𝑟  The ASE value for the current model. 

 
(1) Set {𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑖𝑖}𝑖𝑖=1

𝑝𝑝𝑒𝑒 = 0 and 𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟 = 0. The initial model is 𝜼𝜼 = 𝒐𝒐.  
If LR is used, compute the log-likelihood value; 
If AICC (ASE) is used, compute AICC (ASE) for the initial model and denote it as 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟 (𝐴𝐴𝑆𝑆𝐸𝐸𝑐𝑐𝑟𝑟𝑟𝑟). 

(2) If {𝑖𝑖|𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑖𝑖 = 1} ≠ ∅, 𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟 < 𝑀𝑀𝐴𝐴𝑋𝑋𝑆𝑆𝑇𝑇𝐸𝐸𝑃𝑃 and |{𝑖𝑖|𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑖𝑖 = 1}| < 𝑀𝑀𝐴𝐴𝑋𝑋𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐶𝐶𝑇𝑇, go to next step (3); 
otherwise stop and output the model. 

(3) Based on the current model, for every effect j with 𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑖𝑖 = 0 
If LR or SCORE is used, compute 𝑆𝑆𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗  and 𝑝𝑝𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗 . 
If AICC (ASE) is used, compute 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑗𝑗 (𝐴𝐴𝑆𝑆𝐸𝐸𝑗𝑗). 

(4) If LR or SCORE is used, choose the effect 𝑋𝑋𝑗𝑗∗, 𝑗𝑗∗ = arg  min
𝑗𝑗
�𝑝𝑝𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗�, and enter 𝑋𝑋𝑗𝑗∗ to the current model if 

𝑝𝑝𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗∗ < 𝑝𝑝𝑖𝑖𝑛𝑛. 
If AICC (ASE) is used, choose the effect 𝑋𝑋𝑗𝑗∗, 𝑗𝑗∗ = arg  min

𝑗𝑗
�𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑗𝑗� (arg  min

𝑗𝑗
�𝐴𝐴𝑆𝑆𝐸𝐸𝑗𝑗�), and enter 𝑋𝑋𝑗𝑗∗ to the 

current model if 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑗𝑗∗ < 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟 (𝐴𝐴𝑆𝑆𝐸𝐸𝑗𝑗∗ < 𝐴𝐴𝑆𝑆𝐸𝐸𝑐𝑐𝑟𝑟𝑟𝑟). 
Then go to (5); otherwise stop and output the current model. 

(5) If the model with new effect is the same as any previous ones, stop and output the current model; otherwise 
update the current model: set 𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑗𝑗∗ = 1 and 𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟 = 𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟 + 1. 
If AICC (ASE) is used, let 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟 = 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑗𝑗∗ (𝐴𝐴𝑆𝑆𝐸𝐸𝑐𝑐𝑟𝑟𝑟𝑟 = 𝐴𝐴𝑆𝑆𝐸𝐸𝑗𝑗∗). 



(6) For every effect k in the current model (i.e., 𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑘𝑘 = 1,∀𝑘𝑘 ), 
If LR or WALD is used, compute 𝑆𝑆𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑖𝑖 and 𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑖𝑖 . 
If AICC (ASE) is used, compute 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑘𝑘 (𝐴𝐴𝑆𝑆𝐸𝐸𝑘𝑘). 

(7) If LR or WALD is used, choose the effect 𝑋𝑋𝑘𝑘∗, 𝑘𝑘∗ = arg  max
𝑘𝑘
�𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑖𝑖�, and remove 𝑋𝑋𝑘𝑘∗ from the current 

model if 𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑖𝑖∗ > 𝑝𝑝𝑡𝑡𝑟𝑟𝑡𝑡 . 
If AICC (ASE) is used, choose the effect 𝑋𝑋𝑘𝑘∗, 𝑘𝑘∗ = arg  min 

𝑘𝑘
{𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑘𝑘} (arg  min 

𝑘𝑘
{𝐴𝐴𝑆𝑆𝐸𝐸𝑘𝑘}), and remove 𝑋𝑋𝑘𝑘∗ 

from the current model if 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑘𝑘∗ < 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟 (𝐴𝐴𝑆𝑆𝐸𝐸𝑘𝑘∗ < 𝐴𝐴𝑆𝑆𝐸𝐸𝑐𝑐𝑟𝑟𝑟𝑟).  
Then go to (8); otherwise go back to (2). 

(8) If the model with the effect removed is the same as any previous one, stop and output the current model; 
otherwise update the current model: set 𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑘𝑘∗ = 0 and 𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟 = 𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟 + 1. 
If AICC (ASE) is used, let 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟 = 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑘𝑘∗ (𝐴𝐴𝑆𝑆𝐸𝐸𝑐𝑐𝑟𝑟𝑟𝑟 = 𝐴𝐴𝑆𝑆𝐸𝐸𝑘𝑘∗). 

Notes: 

• The estimate method for 𝜙𝜙 or 𝑘𝑘 should be kept consistent for the model sequence generated by entering or 
removing the effect. More specifically, when 𝜙𝜙 is estimated by ML method, or the deviance or Pearson chi-
square divided by degrees of freedom, estimated 𝜙𝜙� would be different for a pair of models. That is to say, 
score and Wald statistics will use 𝜙𝜙� of the current model rather than of the final model (full model), because 
𝜙𝜙 for the full model would be not obtained. For the same reason, 2�ℓ1,𝜙𝜙�1 − ℓ2,𝜙𝜙�2� will be used in the LR 
statistics. Similar for 𝑘𝑘. 

• Let 𝑰𝑰 = �𝑰𝑰11 𝑰𝑰12
𝑰𝑰21 𝑰𝑰22

� denote the information matrix, then its inverse 𝑱𝑱 = �𝑱𝑱11 𝑱𝑱12
𝑱𝑱21 𝑱𝑱22

� = 𝑰𝑰− can be calculated 

as follows, 
𝑱𝑱11 = 𝑰𝑰11−1 + 𝑰𝑰11−1𝑰𝑰12𝑱𝑱22𝑰𝑰21𝑰𝑰11−1

𝑱𝑱12 = −𝑰𝑰11−1𝑰𝑰12𝑱𝑱22
𝑱𝑱21 = 𝑱𝑱12𝑇𝑇

𝑱𝑱22 = [𝑰𝑰22 − 𝑰𝑰21𝑰𝑰11−1𝑰𝑰12]−

 

• For LR, AICC and ASE, a model is fitted for each effect adding or being removed; For SCORE and WALD, 
only one model is fitted for the effect which is finally determined to add to or remove from the current model. 

• The cold start for the initial model 𝜼𝜼 = 𝟎𝟎 and power link family: 𝝁𝝁 = 𝟎𝟎 when power link (including identity) 
is used. Thus, the score vector 𝒔𝒔 is missing because 𝑉𝑉(𝜇𝜇𝑖𝑖) and 𝑔𝑔′(𝜇𝜇𝑖𝑖) are zero. Consequently, the score 
statistic could not be conducted. To overcome this issue, we first build a intercept-only model, then use score 
statistics to select the best effect for entering the model for the time based on the intercept-only model. 

• For effect entry in step (4), when LR or SCORE is used, if there is a tie in determining the effect 
𝑗𝑗∗( min

𝑗𝑗
{𝑝𝑝𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗}), then select the effect with the smallest degrees of freedom. If effects still have the same 

degrees of freedom, then select the one with ordering earlier in the effect list. 
For effect entry in step (4), when AICC or ASE is used, if there is a tie in determining optimal value, then 
select the one with the smallest degrees of freedom. If effects still have the same degrees of freedom, then 
select the one with ordering earlier in the effect list. 

• Similarly, for effect removal in step (7), when LR or WALD is used, if there is a tie in determining optimal 
value (max

𝑘𝑘
{𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑖𝑖}), then select the effect with the largest degrees of freedom. If effects still have the 

same degrees of freedom, then select the one with ordering later in the effect list. 
For effect removal in step (7), when AICC or ASE is used, if there is a tie in determining optimal value, then 
select the one with the largest degrees of freedom. If effects still have the same degrees of freedom, then 
select the one with ordering later in the effect list. 

• Regarding rules for entering for removing effects when interaction effects are presented, please refer to Chu 
and Han (2011). 



8.2 Distribution and link function selection 
The distribution and link function selection is to select an appropriate distribution and/or link for the given data 
when distribution and/or link function are not specified by user. Table 8.3 gives candidate combinations of 
distribution and link function. Since there are too many link functions potentially, it will be too time consuming 
to check every combination of distribution and link function. Thus we will only consider the combinations listed 
on Table 8.3 and Table 8.4 according to the target’s measurement level and the storage type. 

Please note that if the distribution (link function) is specified, then the distribution (link function) will not be 
detected any more. 

Table 8.3:  List of combinations of distribution and link function 

Candidate distribution Candidate link functions 

Normal Identity, log, power(0.5) 

Inverse Gaussian Identity, log, power(-2) 

Gamma Identity, log, power(-1) 

Tweedie(𝑞𝑞) Identity, log, power(1 − 𝑞𝑞) 

Negative binomial(𝑘𝑘) Identity, log, Negative binomial 

Poisson Identity, log, power(0.5) 

Binomial Logit, Probit, complementary log-log 

Nominal multinomial Generalized logit 

Ordinal multinomial Cumulative logit, cumulative probit, cumulative 
complimentary log-log 

Table 8.4 List of candidate distributions based on measurement level and storage type of the target 

Measurement level of the target Storage type of the target Candidate distribution 

Continuous Positive real Normal 

Inverse Gaussian 

Gamma 

Tweedie(𝑞𝑞) 

Positive real with zeros Normal 

Tweedie(𝑞𝑞) 

Real or integer with 
negative values 

Normal 

Positive integer with 
zeros 

Negative binomial(𝑘𝑘) 

Poisson 

Normal 

Positive integer Negative binomial(𝑘𝑘) 

Poisson 



Normal 

Inverse Gaussian 

Gamma 

Nominal 
 

#categories = 2  Binomial 

#categories > 2  Nominal multinomial 

Ordinal #categories = 2  Binomial 

#categories > 2  Ordinal multinomial 

 

Flag  Binomial 

Notes: 

• For the case that the distribution is given, the candidate link functions are determined using Table 8.3 after 
checking the given distribution is compatible with the measurement level and storage type of the target in 
Table 8.4. 

• For the case that the link function is given, the following rules are used to determine the candidate 
distributions 

(1) If the link function is one of cumulative logit, cumulative probit, cumulative complimentary log-log, 
cumulative negative log-log and cumulative cauchit, then the candidate distribution is ordinal 
multinomial after checking the measurement level is ordinal. Otherwise, an error message should be 
issued. 

(2) If the link function is generalized logit, the candidate distribution is nominal multinomial after 
checking the measurement level is nominal. Otherwise, an error message should be issued. 

(3) If the link function is one of identity, log, and power, the candidate distributions are determined by 
Table 8.4. 

(4) If the link function is negative binomial, the candidate distribution is negative binomial. 

(5) If other link functions are used, the candidate distribution is binomial.  

8.2.1 Candidate statistics 

8.2.1.1 ASE 

The definition is the same to that in Section 8.1.2. 

8.2.2 The selection process 

A model is run for each combination of distribution and link function, given a set of effects, depending the 
measurement level and the storage type of the target given in Table 8.3 and Table 8.4 on the training data, then 
the best model with minimum value of ASE on the testing data is selected. Thus, the corresponding distribution 
and link function are selected and output. 



Implementation note: 

• For the small to median p situation(𝑝𝑝 < 𝑝𝑝max), there are two ways the model is built: (1) using the 
Newton-Raphson with MapReduce, see GLE phase 1 for details; (2) using ADMM with the Newton-
Raphson method, see GLE phase 3 for details. 

• For the large p situation (𝑝𝑝 ≥ 𝑝𝑝max), the model is built using ADMM with L-BFGS method, see GLE 
phase 3 for details. 

8.3 Automatic detection of distribution, link function and 
effects 

When the effects in addition to at least one of distribution and link function have not been specified, we will apply 
different methods, depending on the variable selection methods, to detect distribution, link function and effects 
automatically.  

8.3.1  The variable selection method is forward stepwise: 

The two-stage model selection method is applied and its basic idea is to apply distribution and link function 
selection and variable selection alternately. It starts off by getting an initial estimate of the distribution 𝐹𝐹� and the 
link function 𝑔𝑔� based on a given effect set 𝑿𝑿; then estimate the optimal effects 𝑿𝑿�  based on estimated 𝐹𝐹� and 𝑔𝑔�. 
These two steps are performed alternatively until the convergence criterion is satisfied. In addition, an 
enhancement stage of adding two-way interaction effects is provided when the size of the optimal variable set is 
less than a predefined threshold. 

ℂ = {𝐶𝐶𝑖𝑖} The set of potential combination of distribution and link function based on the type of the 
target, where 𝐶𝐶𝑖𝑖 = (𝐹𝐹𝑖𝑖,𝑔𝑔𝑖𝑖), and 𝐹𝐹𝑖𝑖 and 𝑔𝑔𝑖𝑖 denotes the distribution and the link function, 
respectively. 

𝑿𝑿𝑡𝑡 The effects for the 𝑙𝑙-th iteration, including both main and interaction effects 

𝑒𝑒𝑡𝑡 The ASE value for the 𝑙𝑙-th iteration. 

𝜀𝜀𝑚𝑚 The tolerance level for the convergence criteria. Its default value is set to 10−4. 

𝑙𝑙max The maximum number of iterations. Its default value is set to 2. 

Λ1,Λ2 The significant and non-significant predictors for the optimal combination of distribution 
and link function, respectively. 

𝐸𝐸1,𝐸𝐸2 The candidate set of effects for variable selection. 

𝑚𝑚3 Threshold value to provide an enhancement stage; the default is 100. 

𝑚𝑚4 Threshold value to select main effects for constructing interaction effects; the default is 20. 

The detailed process is given below, 

(1) Determine candidate combinations ℂ = {𝐶𝐶𝑖𝑖}, 𝑖𝑖 = 1,⋯ ,𝑛𝑛𝑓𝑓𝑓𝑓 of distributions and link functions based on the 
target’s measure level and storage type based on Table 8.3 and 8.4. 

(2) Let 𝑿𝑿0 be the initial effect set, which only includes all main effects (predictors). Let �𝑿𝑿�best, �̂�𝐶best, �̂�𝑒best� 
denote the optimal model. 

(3) Select 3 best combinations, denoted by ℂ′, from candidate combination ℂ. 

(a) Build one model for each combination in ℂ based on 𝑿𝑿0 using the training data. 
(b) Calculate ASE value for each model built using the testing data. 
(c) Select top 3 models with minimum ASE. 



(d) Denote the optimal combination by �̂�𝐶1 and ASE value by �̂�𝑒1/2. Let 𝑿𝑿�best = 𝑿𝑿0, �̂�𝐶best = �̂�𝐶1, and �̂�𝑒best =
 �̂�𝑒1/2.  

(4) Perform Type 3 analysis (using Wald statistics in Section 8.1.1) for the current optimal model. Based on p 
values of effects, divide effects (predictors) into two groups: one (Λ1) is for significant predictors 
(𝑝𝑝 < 0.05), and the other (Λ2) is for the non-significant predictors. 

(5) Obtain the optimal effects 𝑿𝑿�1 based on �̂�𝐶1, from the candidate effects set of 𝐸𝐸1(= Λ1) and 𝐸𝐸2(= Λ2), where 
𝐸𝐸1 is considered as the initial model, and forward stepwise is used to select among 𝐸𝐸2.  

(6) Calculate the ASE value, �̂�𝑒1, of the model �𝑿𝑿�1, �̂�𝐶1� on the testing data. 

(7) If ��̂�𝑒1 < �̂�𝑒best�, then �𝑿𝑿�best = 𝑿𝑿�1, �̂�𝐶best = �̂�𝐶1, �̂�𝑒best =  �̂�𝑒1�. 

(8) Let 𝑙𝑙 = 1. If 𝑙𝑙 > (𝑙𝑙max − 1), then stop and output the optimal model �𝑿𝑿�best, �̂�𝐶best, �̂�𝑒best�. 

(9) Build one model for each combination in ℂ′ based on 𝑿𝑿�𝑡𝑡 using the training data, calculate ASE for each 
model using the testing data. 

(10) Obtain the optimal combination (denoted by �̂�𝐶𝑡𝑡+1) with minimum ASE value (denoted by �̂�𝑒𝑡𝑡+1/2). 

(11) If �̂�𝑒𝑡𝑡+1/2 < �̂�𝑒best, then 𝑿𝑿�best = 𝑿𝑿�𝑡𝑡 , �̂�𝐶best = �̂�𝐶𝑡𝑡+1, and �̂�𝑒best =  �̂�𝑒𝑡𝑡+1/2. 

(12) Obtain the optimal effects 𝑿𝑿�𝑡𝑡+1 based on �̂�𝐶𝑡𝑡+1, from the candidate effects set of 𝐸𝐸1 = 𝑿𝑿�𝑡𝑡 and 𝐸𝐸2 = 𝑿𝑿0 −
𝐸𝐸1, where 𝐸𝐸1 is considered as the initial model, and forward stepwise is used to select among 𝐸𝐸2. 

(13) Calculate the ASE value, �̂�𝑒𝑡𝑡+1, of the model �𝑿𝑿�𝑡𝑡+1, �̂�𝐶𝑡𝑡+1 � on the testing data. 

(14) If ��̂�𝑒𝑡𝑡+1 < �̂�𝑒best�, then �𝑿𝑿�best = 𝑿𝑿�𝑡𝑡+1, �̂�𝐶best = �̂�𝐶𝑡𝑡+1, �̂�𝑒best =  �̂�𝑒𝑡𝑡+1�. 

(15) If ��𝑿𝑿�𝑡𝑡+1, �̂�𝐶𝑡𝑡+1� = �𝑿𝑿�𝑡𝑡 , �̂�𝐶𝑡𝑡�� or [𝑙𝑙 ≥ (𝑙𝑙max − 1)] or � |�̂�𝑒𝑙𝑙+1−�̂�𝑒𝑙𝑙|
�̂�𝑒𝑙𝑙+10−6

< 𝜀𝜀𝑚𝑚�, then stop and output the optimal model 

�𝑿𝑿�best, �̂�𝐶best, �̂�𝑒best�; otherwise, 𝑙𝑙 = 𝑙𝑙 + 1 and go to step (9). 

If �𝑿𝑿�best� < 𝑚𝑚3, an enhancement stage of adding two-way interaction effects will be provided as follows: 

(1) Perform Type 3 analysis (using Wald statistics in Section 8.1.1) for the current optimal model. 
(2) Sorting the main effects using p-value in ascending order and select top 𝑚𝑚′ = min��𝑿𝑿�best�,𝑚𝑚4� main 

effects. 
(3) Construct of two-way interaction effects (of any two different main effects, and squared term of covariates) 

among the 𝑚𝑚′ main effects. 
(4) Test all candidate interaction effects (using Score statistics in Section 8.1.1) based on the current optimal 

model. 
(5) Select the significant interaction effects (𝑝𝑝 < 0.05), and sort them using their p-values in descending order 

and select and output top-𝑘𝑘 interaction effects (Denoted by 𝑿𝑿�inter), where 𝑘𝑘 is the maximum number 
satisfying the number of parameters for top-𝑘𝑘 interaction effects is less than or equal to 0.5×(𝑝𝑝max − 𝑝𝑝𝑚𝑚𝑠𝑠), 
where 𝑝𝑝𝑚𝑚𝑠𝑠 denotes the number of parameters for 𝑿𝑿�best (including the intercept). 

(6) Obtain the optimal effects 𝑿𝑿�𝑡𝑡+2 based on �̂�𝐶best, 𝐸𝐸1 = 𝑿𝑿�best and 𝐸𝐸2 = 𝑿𝑿�inter using the method of variable 
selection given in Section 8.1, where 𝐸𝐸1 is considered as the initial model, and stepwise is used to select 
among 𝐸𝐸2. 

(7) Calculate the ASE value, �̂�𝑒𝑡𝑡+2, of the model �𝑿𝑿�𝑡𝑡+2, �̂�𝐶best � on the testing data. 
(8) If ��̂�𝑒𝑡𝑡+2 < �̂�𝑒best�, then �𝑿𝑿�best = 𝑿𝑿�𝑡𝑡+2, �̂�𝐶best = �̂�𝐶best, �̂�𝑒best =  �̂�𝑒𝑡𝑡+2�. 
(9) Stop and output the optimal model �𝑿𝑿�best, �̂�𝐶best, �̂�𝑒best�. 

Note that parameter settings of model selection are given below: 

• For the scale parameter 𝜙𝜙, it is estimated by MLE for normal, inverse Gaussian, gamma and Tweedie 
distribution; it is fixed at 1.0 for binomial, Poisson, negative binomial, and multinomial. 

• If both distribution and link function are not specified, then, 



(1) For the ancillary parameter (𝑘𝑘) in negative binomial distribution, it is estimated by MLE; 
(2) For the parameter 𝑞𝑞 in the tweedie distribution, it is set to 1.5, namely, 𝑞𝑞 = 1.5; 
(3) The parameter in power function is given from Table 8.3. 

• If only the distribution is given,  

(1) For 𝑘𝑘, it equals to the parameter specified by user. 
(2) For 𝑞𝑞, it equals to the parameter specified by user. 

• If only the link function is given 

(1) For the parameter in power function, it equals to the parameter specified by user. 
(2) For 𝑘𝑘, it is estimated by MLE. 
(3) For 𝑞𝑞, it is set to 1.5. 

• For the variable selection, the statistics for effect entry and removal are SCORE and WALD, respectively. 

 

8.3.2  The variable selection method or regularization is the lasso, elastic net or 
ridge regression: 

(1) Choose the candidate combinations of distributions and link functions based on the measurement level and 
storage type of target.  

(2) Detect the interaction terms if interaction detection flag is on based on a combination chosen with the 
following rules, and then form the set of candidate effects. 
When distribution and link function both are unknown, the rules are as follows: 

(a) If normal is a possible distribution candidate, then normal + identify will be chosen. 

(b) If binomial is a possible distribution candidate, then binomial + logit will be chosen. 

(c) If measurement level is nominal, distribution is nominal multinomial, then nominal multinomial + 
generalized logit will be chosen.  

(d) If measurement level is ordinal, distribution is ordinal multinomial (even nominal multinomial is a 
candidate), then ordinal multinomial + cumulative logit will be chosen. 

When distribution is known, link function is unknown, the rules are listed in the follow table: 

Distribution Link function 

Normal Identity 

Inverse Gaussian Power(–2) 

Gamma Power(–1) 

Tweedie (q)  Power(1 – q) 

Negative binomial (k)  Log 

Poisson Log 

Binomial Logit 

Nominal multinomial Generalized logit 



Ordinal multinomial Cumulative logit 

When link function is known, distribution is unknown, the rules are as below. 

(a) If link function is identify, log or power, then normal will be chosen. 
(b) If link function is negative binomial, then negative binomial will be chosen. 
(c) If link function is generalized logit, then nominal multinomial will be chosen. 
(d) If link function is one of 5 cumulative link functions (logit, probit, complimentary log-log, negative 

log-log, cauchit), then ordinal multinomial will be chosen. 
(e) If link function is logit, probit, complementary log-log, log-complement, negative log-log or odds 

power, then binomial will be chosen. 

(3) Select lambda from the grid search method described in GLE phase 3 with the chosen combination and the 
set of candidate effects. 

(4) Run ADMM (the lasso, ridge or elastic net) to select effects for each combination based on the selected 
lambda and the training data, then compute ASE in the testing set.  

(5) Choose the combination with the selected effects with the minimum ASE.  

(6) If the chosen combination of distribution and link function is not the same as the one in step (2), then 
another round of lambda selection based on the chosen combination is conducted to update the effect 
selection.   

Implementation notes: 

• When running ADMMs in step (3) for each combination, we should use the results from step (2) as the 
initial values. 

• The more complete process should be to select the lambda for each combination, instead of finding a 
lambda based on a particular combination and applying the same lambda for other combinations, in Step 
(2). Since it might be too time consuming, we propose the above process. However, the grid search 
method with the warm-start strategy might not take much longer than the one with a fixed lambda. Thus 
we should implement both processes and do some testing to compare the performance.  

• If using user-specified lambda, step 3 and step 6 will be ignored. 

 

8.4 Handle large volume of data 
The model selection will be time-consuming when there is a large volume of data, because the model building 
might involve many data passes. To speed up the process of model selection, the sampling techniques are 
employed, which sample a small dataset from the whole data. In addition, from a practical viewpoint, it is not 
necessary to use all data for selecting an approximately best model. 

Two sampling techniques are needed: (1) simple random sampling; (2) stratified random sampling. The former 
is used for all distributions except binomial distribution with 0/1 format and multinomial distribution (ordinal and 
nominal); the latter is used when the distribution is binomial distribution with 0/1 format and multinomial 
distribution. 

8.4.1 Simple Random Sampling 

A subset of records is chosen from the larger set. Each record is chosen randomly such that each record has the 
same probability of being chosen at any stage during the sampling process, and each subset of 𝑘𝑘 records has the 
same probability of being chosen for the sample as any other subset of 𝑘𝑘 records. 



The sampling will be triggered when 𝑁𝑁 > 𝑁𝑁𝑇𝑇  (=20,000 by default). The default sample size is 𝑁𝑁𝑆𝑆 = 10,000. 
Please note that both exact and approximate simple random sampling can be used.  

The details of simple random sampling methods see Dagli (2012).  

8.4.2 Stratified Random Sampling 

Stratified random sampling is a probability sampling technique wherein the entire population is divided into 
different subgroups or strata, then randomly selects the final samples proportionally from the different strata. 

Some definitions are needed for the stratified random sampling.  

𝑁𝑁∙𝑗𝑗 The number of records for the 𝑗𝑗-th target category, 𝑗𝑗 = 1,⋯ , 𝐽𝐽, in the whole data 

𝑁𝑁 The total number of records in the whole data, 𝑁𝑁 = ∑ 𝑁𝑁∙𝑗𝑗
𝐽𝐽
𝑗𝑗=1  

𝑁𝑁𝑆𝑆,𝑗𝑗 The sample size for the 𝑗𝑗-th target category, 𝑗𝑗 = 1,⋯ , 𝐽𝐽 

𝑁𝑁𝑆𝑆 The total sample size, 𝑁𝑁𝑆𝑆 = ∑ 𝑁𝑁𝑆𝑆,𝑗𝑗
𝐽𝐽
𝑗𝑗=1 . 

𝑝𝑝𝑆𝑆,𝑗𝑗 The sampling rate for the 𝑗𝑗-th target category, 𝑗𝑗 = 1,⋯ , 𝐽𝐽 

The sample size for the 𝑗𝑗-th target category is determined by the following equation 

𝑁𝑁𝑆𝑆,𝑗𝑗 = �𝑝𝑝𝑆𝑆,𝑗𝑗𝑁𝑁∙𝑗𝑗� 

The sampling will be triggered when 𝑁𝑁 > 𝑁𝑁𝑇𝑇  (=20,000 by default). The default sample size is 𝑁𝑁𝑆𝑆 = 20,000, 
and default values for sampling rates are 𝑝𝑝𝑆𝑆,1 = ⋯𝑝𝑝𝑆𝑆,𝐽𝐽 = 𝑁𝑁𝑆𝑆

𝑁𝑁
. 

Note that (1) the sampling rate 𝑝𝑝𝑆𝑆,𝑗𝑗 should ensure 𝑁𝑁𝑆𝑆,𝑗𝑗 ≥ 1; (2) the sampling rate 𝑝𝑝𝑆𝑆,𝑗𝑗 may be different for 
handling the imbalanced data. 

The details of stratified random sampling methods can be seen in Dagli (2013). From the viewpoint of generalized 
linear engine, our requirements for stratified random sampling method are: given the parameters 𝑁𝑁𝑆𝑆,𝑗𝑗  (≥ 1), 𝑗𝑗 =
1,⋯ , 𝐽𝐽, it returns a subset of data which contains 𝑁𝑁𝑆𝑆,𝑗𝑗

′ (≥ 1) records drew randomly for the 𝑗𝑗-th target category. 
Note that generally, 𝑁𝑁𝑆𝑆,𝑗𝑗

′ = 𝑁𝑁𝑆𝑆,𝑗𝑗 for small 𝑁𝑁𝑆𝑆,𝑗𝑗, and 𝑁𝑁𝑆𝑆,𝑗𝑗
′ ≈ 𝑁𝑁𝑆𝑆,𝑗𝑗 for large 𝑁𝑁𝑆𝑆,𝑗𝑗, because it is easier to ensure the 

sample method will not return empty set of records for large 𝑁𝑁𝑆𝑆,𝑗𝑗. 

It is noted that if 𝑁𝑁𝑆𝑆,𝑗𝑗
′ = 𝑁𝑁𝑆𝑆,𝑗𝑗 , then the sampling method is exact, otherwise, it is approximate.   



9. Scoring 
9.1 Prediction for binomial distribution with 0/1 binary response 
variable 

9.1.1 Predicted category 

Given the critical probability 𝑝𝑝𝑡𝑡  (𝑝𝑝𝑡𝑡 = 0.5 by default), the predicted category 𝑐𝑐(𝒙𝒙𝑖𝑖) is  

𝑐𝑐(𝒙𝒙𝑖𝑖) = �1 (or success) if 𝜇𝜇𝑖𝑖 ≥  𝑝𝑝𝑡𝑡
0 (or failure) otherwise. 

If there is a tie in determining 𝑐𝑐(𝒙𝒙𝑖𝑖), then tie will be broken by choosing the category with 

3) Higher 𝑁𝑁𝑗𝑗 = ∑ 𝑓𝑓𝑖𝑖𝑦𝑦𝑖𝑖,𝑗𝑗𝑛𝑛
𝑖𝑖=1 . 

4) If it ties in 1), choose the one with lower category index number. 

It should be noted that the classification table should be updated accordingly as well. 

9.1.2 Critical probability selection 
We select the optimal critical probability based on the following two measures:  (1) G-mean and (2) F-measure, 
which are defined on sensitivity, specificity, and precision measures. Using the notation in Table 9.1, we give their 
definitions. 

Table 9.1 Classification table 

 
Predicted class 

success (positive) failure (negative) 

Actual  
class 

success 

(positive) 
𝑇𝑇𝑃𝑃 = �𝑓𝑓𝑖𝑖𝐼𝐼(𝑦𝑦𝑖𝑖 = 1, 𝑐𝑐(𝒙𝒙𝑖𝑖) = 1)

𝑛𝑛

𝑖𝑖=1

 𝐹𝐹𝑁𝑁 = �𝑓𝑓𝑖𝑖𝐼𝐼(𝑦𝑦𝑖𝑖 = 1, 𝑐𝑐(𝒙𝒙𝑖𝑖) = 0)
𝑛𝑛

𝑖𝑖=1

 

failure 

(negative) 
𝐹𝐹𝑃𝑃 = �𝑓𝑓𝑖𝑖𝐼𝐼(𝑦𝑦𝑖𝑖 = 0, 𝑐𝑐(𝒙𝒙𝑖𝑖) = 1)

𝑛𝑛

𝑖𝑖=1

 𝑇𝑇𝑁𝑁 = �𝑓𝑓𝑖𝑖𝐼𝐼(𝑦𝑦𝑖𝑖 = 0, 𝑐𝑐(𝒙𝒙𝑖𝑖) = 0)
𝑛𝑛

𝑖𝑖=1

 

where 𝐼𝐼(∙) is indicator function. 

Sensitivity and specificity denotes are two measures of the classification performance. Sensitivity (also called 
the recall) measures the proportion of actual positives which are correctly identified, which is defined as 

𝜌𝜌1 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁
 

Specificity measures the proportion of negatives which are correctly identified, which is defined as 

𝜌𝜌2 =
𝑇𝑇𝑁𝑁

𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑁𝑁
 

Precision (also called positive predictive value) measures the ratio of true positives to combined true and false 
positives, which is defined as 

𝜌𝜌3 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 



The G-mean and F-measure are defined as 

𝐹𝐹– mean =  �𝜌𝜌1×𝜌𝜌2

𝐹𝐹– measure =  
𝜌𝜌1×𝜌𝜌3
𝜌𝜌1 + 𝜌𝜌3

 

The process to select a critical probability that maximize the G-mean or F-measure is given below 

1) Using equal width method to define 𝑛𝑛𝑐𝑐 + 1 (𝑛𝑛𝑐𝑐 = 400 by default) critical probabilities, 𝑝𝑝𝑡𝑡,0,⋯ , 𝑝𝑝𝑡𝑡,𝑛𝑛𝑐𝑐, 
between the range of [0,1], where 𝑝𝑝𝑡𝑡,𝑖𝑖 = 𝑖𝑖/𝑛𝑛𝑐𝑐. 

2) For each critical probability 𝑝𝑝𝑡𝑡,𝑖𝑖, calculate the corresponding 𝑇𝑇𝑃𝑃,𝐹𝐹𝑁𝑁,𝐹𝐹𝑃𝑃 and 𝑇𝑇𝑁𝑁, and then calculate 
sensitivity and specificity measures if G-mean is used for each critical probability, thus, we obtain 
sensitivity and specificity vectors, respectively 

𝝆𝝆1 = �𝜌𝜌1,0,⋯ ,𝜌𝜌1,𝑛𝑛𝑐𝑐�
𝝆𝝆2 = �𝜌𝜌2,0,⋯ ,𝜌𝜌2,𝑛𝑛𝑐𝑐�

 

If F-measure is used, sensitivity and precision measures are computed for each critical probability, thus, we 
obtain sensitivity and precision vectors, respectively 

𝝆𝝆1 = �𝜌𝜌1,0,⋯ ,𝜌𝜌1,𝑛𝑛𝑐𝑐�
𝝆𝝆3 = �𝜌𝜌3,0,⋯ ,𝜌𝜌3,𝑛𝑛𝑐𝑐�

 

3) Compute the G-mean or F-measure vectors for each critical probability, and find the critical probability 
with maximum G-mean or F-measure 

𝑝𝑝𝑡𝑡∗ = arg max
𝑝𝑝𝑡𝑡,𝑖𝑖

��𝜌𝜌1,𝑖𝑖×𝜌𝜌2,𝑖𝑖� 

or 

𝑝𝑝𝑡𝑡∗ = arg max
𝑝𝑝𝑡𝑡,𝑖𝑖

�
𝜌𝜌1,𝑖𝑖×𝜌𝜌3,𝑖𝑖

𝜌𝜌1,𝑖𝑖 + 𝜌𝜌3,𝑖𝑖
� 

Implementation notes 

• Only one data pass is need for calculating 𝝆𝝆1,𝝆𝝆2 or 𝝆𝝆1,𝝆𝝆3 if we store a tetrad (TP, FN, FP, TN) for each 
critical probability. 

 

9.2 ROC curve for binomial distribution with 0/1 binary response 
variable 

A ROC curve is a graphical plot which illustrates the performance of a binary classifier as its critical probability 
is varied. It is created by plotting true positive rate (sensitivity, 𝜌𝜌1) by false positive rate (1-specificty, 𝜑𝜑 = 1 −
𝜌𝜌2) at various critical probability settings. 

The process to obtain the information for ROC curve is given below 

1) Using equal width method to define 𝑛𝑛𝑐𝑐 + 1 (𝑛𝑛𝑐𝑐 = 400 by default) critical probabilities, 𝑝𝑝𝑡𝑡,0,⋯ , 𝑝𝑝𝑡𝑡,𝑛𝑛𝑐𝑐, 
between the range of [0,1], where 𝑝𝑝𝑡𝑡,𝑖𝑖 = 𝑖𝑖/𝑛𝑛𝑐𝑐. 

2) For each critical probability 𝑝𝑝𝑡𝑡,𝑖𝑖, calculate the corresponding 𝑇𝑇𝑃𝑃,𝐹𝐹𝑁𝑁,𝐹𝐹𝑃𝑃 and 𝑇𝑇𝑁𝑁, then compute true 
positive rate and false positive rate for each critical probability, thus, we obtain a vector of triads, namely 

��
𝜌𝜌1,0
𝜑𝜑0
𝑝𝑝𝑡𝑡,0

� ,⋯ ,�
𝜌𝜌1,𝑛𝑛𝑐𝑐
𝜑𝜑𝑛𝑛𝑐𝑐
𝑝𝑝𝑡𝑡,𝑛𝑛𝑐𝑐

�� 

where 𝜑𝜑𝑖𝑖 = 1 − 𝜌𝜌2,𝑖𝑖. 
3) Remove the redundancy by deleting �𝜌𝜌1,𝑖𝑖 ,𝜑𝜑𝑖𝑖 , 𝑝𝑝𝑡𝑡,𝑖𝑖�

𝑇𝑇
 if 𝜌𝜌1,𝑖𝑖 = 𝜌𝜌1,𝑖𝑖−1 and 𝜑𝜑𝑖𝑖 = 𝜑𝜑𝑖𝑖−1, 𝑖𝑖 = 1,⋯ ,𝑛𝑛𝑐𝑐 − 1. 

http://en.wikipedia.org/wiki/Graph_of_a_function
http://en.wikipedia.org/wiki/Binary_classifier


4) Save �𝜌𝜌1,𝑖𝑖,𝜑𝜑𝑖𝑖 , 𝑝𝑝𝑡𝑡,𝑖𝑖�
𝑇𝑇
,where �𝜌𝜌1,𝑖𝑖 ,𝜑𝜑𝑖𝑖� is used to plot ROC curve and 𝑝𝑝𝑡𝑡,𝑖𝑖 is the corresponding critical 

probability that might be shown in the plot, i.e., using a tooltip. 

Implementation notes 

• Only one data pass is need for calculating 𝝆𝝆1,𝝋𝝋 if we store a tetrad (TP, FN, FP, TN) for each critical 
probability. 

 

10. Model diagnostics 
10.1 Influential outlier 

We will identity a record to be an influential outlier based on the following two statistics for all distribution except 
multinomial: 

(1) Cook’s distance is larger than 4 (𝑁𝑁 − 𝑑𝑑)⁄ , where 𝑑𝑑 = 𝑝𝑝𝑥𝑥 if only 𝑿𝑿 is included; 𝑑𝑑 = 𝑝𝑝𝑥𝑥 + 1 if 𝑿𝑿 and 𝜙𝜙 for 
normal, inverse Gaussian, gamma and Tweedie distributions or 𝑿𝑿 and k for negative binomial distribution 
are included. 

(2) The absolute of standardized deviance residual is larger than 2 (or 2.5).  

The definitions of Cook’s distance and standardized deviance residual are given in Section 5.2 of  Generalized 
Linear Engine Phase I (Chu and Zhong, 2012) 

10.2 Diagnostic plots 

A scatter plot is provided for all distributions except ordinal and nominal multinomial distributions, which is used 
to check whether the fitted regression model adequately represents the data. 

10.2.1 Scatter plot of standardized deviance residual by predicted linear predictor 
The expected pattern of this plot is that a distribution of standardized deviance residuals for varying the linear 
predictors with mean 0 and constant range. 

Let �̂�𝑟𝑘𝑘𝑆𝑆𝐷𝐷and �̂�𝜂𝑘𝑘 be the standardized deviance residual and the predicted linear predictor of the 𝑘𝑘-th record, 
respectively, where 𝑘𝑘 = 1,⋯ ,𝑛𝑛. Note that because 𝑖𝑖 has been used below, here we use 𝑘𝑘 as a subscript. Then 
the information needed for a binned scatter plot of standardized deviance residual by the predicted linear 
predictor is created as follows: 

1) Using equal width method to compute 𝑛𝑛𝑐𝑐 (=19 by default) cut points 𝑐𝑐1
(1),⋯ , 𝑐𝑐𝑛𝑛𝑐𝑐

(1) between the range [𝐿𝐿,𝑈𝑈] for 
the x-axis, where 𝐿𝐿 = 𝑔𝑔�min𝑘𝑘(𝑦𝑦𝑘𝑘)� and 𝑈𝑈 = 𝑔𝑔�max𝑘𝑘(𝑦𝑦𝑘𝑘)�, i.e., 𝑐𝑐𝑖𝑖

(1) = 𝐿𝐿 + 𝑖𝑖×(𝑈𝑈 − 𝐿𝐿)/(𝑛𝑛𝑐𝑐 + 1). Then we 
have (𝑛𝑛𝑐𝑐 + 1) intervals by letting 𝑐𝑐0

(1) = −∞ and 𝑐𝑐𝑛𝑛𝑐𝑐+1
(1) = ∞, 

�𝑐𝑐0
(1), 𝑐𝑐1

(1)�, �𝑐𝑐1
(1), 𝑐𝑐2

(1)�,⋯ , �𝑐𝑐𝑛𝑛𝑐𝑐
(1), 𝑐𝑐𝑛𝑛𝑐𝑐+1

(1) �. 

 



2) Similarly, compute 𝑛𝑛𝑐𝑐 cut points 𝑐𝑐1
(2),⋯ , 𝑐𝑐𝑛𝑛𝑐𝑐

(2) between the range [−8,8] for the y-axis: 𝑐𝑐𝑖𝑖
(2) = −8 +

𝑖𝑖×16/(𝑛𝑛𝑐𝑐 + 1). Then we have another (𝑛𝑛𝑐𝑐 + 1) intervals by letting 𝑐𝑐0
(2) = −∞ and 𝑐𝑐𝑛𝑛𝑐𝑐+1

(2) = ∞, 

  �𝑐𝑐0
(2), 𝑐𝑐1

(2)�, �𝑐𝑐1
(2), 𝑐𝑐2

(2)�,⋯ , �𝑐𝑐𝑛𝑛𝑐𝑐
(2), 𝑐𝑐𝑛𝑛𝑐𝑐+1

(2) �. 

3) For each two-dimension interval �𝑐𝑐𝑖𝑖
(1), 𝑐𝑐𝑖𝑖+1

(1) �×�𝑐𝑐𝑗𝑗
(2), 𝑐𝑐𝑗𝑗+1

(2) �, 𝑖𝑖, 𝑗𝑗 = 0,⋯ ,𝑛𝑛𝑐𝑐, obtain the number of 
records that fall into this interval incorporating the frequency weight:  

𝑛𝑛𝑖𝑖𝑗𝑗 = �𝑓𝑓𝑘𝑘𝐼𝐼𝑖𝑖𝑗𝑗(�̂�𝜂𝑘𝑘, �̂�𝑟𝑘𝑘𝑆𝑆𝑆𝑆)
𝑛𝑛

𝑘𝑘=1
 

and the corresponding mean ��̅̂�𝜂𝑖𝑖𝑗𝑗 , �̅̂�𝑟𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆� incorporating the frequency weight: 

�̅̂�𝜂𝑖𝑖𝑗𝑗 =
1
𝑛𝑛𝑖𝑖𝑗𝑗

�𝑓𝑓𝑘𝑘𝐼𝐼𝑖𝑖𝑗𝑗(�̂�𝜂𝑘𝑘, �̂�𝑟𝑘𝑘𝑆𝑆𝑆𝑆)
𝑛𝑛

𝑘𝑘=1

�̂�𝜂𝑘𝑘

�̅̂�𝑟𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆 =
1
𝑛𝑛𝑖𝑖𝑗𝑗

�𝑓𝑓𝑘𝑘𝐼𝐼𝑖𝑖𝑗𝑗(�̂�𝜂𝑘𝑘, �̂�𝑟𝑘𝑘𝑆𝑆𝑆𝑆)
𝑛𝑛

𝑘𝑘=1

�̂�𝑟𝑘𝑘𝑆𝑆𝑆𝑆
 

 where 

𝐼𝐼𝑖𝑖𝑗𝑗(�̂�𝜂𝑘𝑘, �̂�𝑟𝑘𝑘𝑆𝑆𝑆𝑆) = �1, if �̂�𝜂𝑘𝑘 ∈ �𝑐𝑐𝑖𝑖
(1), 𝑐𝑐𝑖𝑖+1

(1) � and �̂�𝑟𝑘𝑘𝑆𝑆𝑆𝑆 ∈ �𝑐𝑐𝑗𝑗
(2), 𝑐𝑐𝑗𝑗+1

(2) �
0, otherwise

 

4) Save the mean, ��̅̂�𝜂𝑖𝑖𝑗𝑗 , �̅̂�𝑟𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆� and the corresponding number of records, 𝑛𝑛𝑖𝑖𝑗𝑗  (𝑖𝑖, 𝑗𝑗 = 0,⋯ ,𝑛𝑛𝑐𝑐) for the 
scatter plot of standardized deviance residual by predicted linear predictor. Note that if 𝑛𝑛𝑖𝑖𝑗𝑗 = 0, there 
is no need to save it and the corresponding ��̅̂�𝜂𝑖𝑖𝑗𝑗 , �̅̂�𝑟𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆�. 

Implementation notes 

• If 𝑛𝑛 ≤ 𝑛𝑛plot(= 3(𝑛𝑛𝑐𝑐 + 1) = 60 by deafult), then the data will not be binned. The data point 
(�̂�𝜂𝑘𝑘, �̂�𝑟𝑘𝑘𝑆𝑆𝑆𝑆) and the corresponding number of records, 𝑛𝑛𝑖𝑖𝑗𝑗, will be used for scatter plot directly. 

• In addition, we consider a special case: All effects contain only factors and the number of 
combinations of all factors (𝑛𝑛𝑐𝑐𝑐𝑐) in the model is less than 𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚(=100 by default), namely, 𝑛𝑛𝑐𝑐𝑐𝑐 <
𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 . Let 𝑚𝑚 = 𝑛𝑛𝑐𝑐𝑐𝑐. 
(a) Compute the linear predictors �̂�𝜂𝑘𝑘, 𝑘𝑘 = 1,⋯ ,𝑚𝑚. 
(b) Sorting �̂�𝜂𝑘𝑘 by an ascending order. 
(c) Divide �̂�𝜂𝑘𝑘 into 𝑚𝑚 intervals as follows 

�−∞,
�̂�𝜂1 + �̂�𝜂2

2
� , �

�̂�𝜂1 + �̂�𝜂2
2

,
�̂�𝜂2 + �̂�𝜂3

2
� ,⋯ , �

�̂�𝜂𝑚𝑚−1 + �̂�𝜂𝑚𝑚
2

, +∞� 

(d) The intervals for �̂�𝑟𝑘𝑘𝑆𝑆𝑆𝑆 are the same to those given above, in addition, we use the same 
method to compute ��̅̂�𝜂𝑖𝑖𝑗𝑗 , �̅̂�𝑟𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆�. Note that �̅̂�𝜂𝑖𝑖𝑗𝑗 = �̂�𝜂𝑖𝑖 for any 𝑗𝑗. 

• 𝑛𝑛𝑖𝑖𝑗𝑗, �̅̂�𝜂𝑖𝑖𝑗𝑗 and �̅̂�𝑟𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆 can be computed in parallel in the map-reduce environment. 
• For binomial distribution with 𝑟𝑟/𝑚𝑚 format, the standardized deviance residuals can be the one 

based on proportion or the one based on the number of events, because they are the same. 
 

10.3 Trend analysis from diagnostics plots 

The plot in Section 10.2.1 provides the informal checks on whether a fitted regression model adequately 
represents the data. It still needs the experienced analyst to make such a decision. Here we provide a trend 
analysis to give a formal check which can automatically determine whether a fitted model is adequate. 

By analyzing the trend of the plot, the expected pattern can be a horizontal line through 0. 

 

 



The process of trend analysis contains three steps: (1) calculate the data points representing the trend; (2) 
remove outliers in the trend data; (3) fit a simple linear model on given trend data points; (4) test whether 
the simple linear model adequately represents the trend data. 

Calculate the trend data 

We consider the following three cases: 

Denote �𝑥𝑥𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 ,𝑦𝑦𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 ,𝑛𝑛𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖�, 𝑖𝑖 = 0,⋯ ,𝑚𝑚 by the trend data. 

• when 𝑛𝑛 > 𝑛𝑛plot, we denote �𝑥𝑥𝑖𝑖𝑗𝑗 ,𝑦𝑦𝑖𝑖𝑗𝑗 ,𝑛𝑛𝑖𝑖𝑗𝑗�, 𝑖𝑖, 𝑗𝑗 ∈ {0,⋯ ,𝑛𝑛𝑐𝑐} by the binned data obtained from Section 
5.2.1, where 𝑥𝑥𝑖𝑖𝑗𝑗 = �̅̂�𝜂𝑖𝑖𝑗𝑗, and 𝑦𝑦𝑖𝑖𝑗𝑗 = �̅̂�𝑟𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆. Then, we have 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑥𝑥𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = median(𝑥𝑥𝑖𝑖0,⋯ , 𝑥𝑥𝑖𝑖0�������

𝑛𝑛𝑖𝑖0

,⋯ , 𝑥𝑥𝑖𝑖𝑛𝑛𝑐𝑐 ,⋯ , 𝑥𝑥𝑖𝑖𝑛𝑛𝑐𝑐���������
𝑛𝑛𝑖𝑖𝑛𝑛𝑐𝑐

)

𝑦𝑦𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = median(𝑦𝑦𝑖𝑖0,⋯ ,𝑦𝑦𝑖𝑖0�������
𝑛𝑛𝑖𝑖0

,⋯ ,𝑦𝑦𝑖𝑖𝑛𝑛𝑐𝑐 ,⋯ , 𝑦𝑦𝑖𝑖𝑛𝑛𝑐𝑐���������
𝑛𝑛𝑖𝑖𝑛𝑛𝑐𝑐

)

𝑛𝑛𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = � 𝑛𝑛𝑖𝑖𝑗𝑗
𝑛𝑛𝑐𝑐

𝑗𝑗=0

 

and 𝑚𝑚 = 𝑛𝑛𝑐𝑐. 
• when 𝑛𝑛 ≤ 𝑛𝑛plot, we denote  (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝑛𝑛𝑖𝑖), 𝑖𝑖 = 0,⋯ ,𝑛𝑛 − 1 by the non-aggregated data obtained from 

Section 5.2.1, we have 

�
𝑥𝑥𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = 𝑥𝑥𝑖𝑖
𝑦𝑦𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = 𝑦𝑦𝑖𝑖
𝑛𝑛𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = 𝑛𝑛𝑖𝑖

 

and 𝑚𝑚 = 𝑛𝑛. 
• For the special case: all effects contain only factors and the number of combinations of all factors 

(𝑛𝑛𝑐𝑐𝑐𝑐) in the model is less than 𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 , namely, 𝑛𝑛𝑐𝑐𝑐𝑐 < 𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 . We denote �𝑥𝑥𝑖𝑖𝑗𝑗 ,𝑦𝑦𝑖𝑖𝑗𝑗 ,𝑛𝑛𝑖𝑖𝑗𝑗�, 𝑖𝑖 = 1,⋯ ,𝑚𝑚, 𝑗𝑗 =
0,⋯ ,𝑛𝑛𝑐𝑐 by the aggregated data obtained from Section 5.2.1, where 𝑥𝑥𝑖𝑖𝑗𝑗 = �̅̂�𝜂𝑖𝑖𝑗𝑗, and 𝑦𝑦𝑖𝑖𝑗𝑗 = �̅̂�𝑟𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆. 

⎩
⎪
⎨

⎪
⎧
𝑥𝑥𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = 𝑥𝑥𝑖𝑖1
𝑦𝑦𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = median(𝑦𝑦𝑖𝑖0,⋯ ,𝑦𝑦𝑖𝑖0�������

𝑛𝑛𝑖𝑖0

,⋯ ,𝑦𝑦𝑖𝑖𝑛𝑛𝑐𝑐 ,⋯ , 𝑦𝑦𝑖𝑖𝑛𝑛𝑐𝑐���������
𝑛𝑛𝑖𝑖𝑛𝑛𝑐𝑐

)

𝑛𝑛𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = � 𝑛𝑛𝑖𝑖𝑗𝑗
𝑛𝑛𝑐𝑐

𝑗𝑗=0

 

Notes: 

• For binomial distribution with 0/1 binary response, weighted mean function is used to replace 
median function for calculating 𝑦𝑦𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 and (or) 𝑥𝑥𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖. 

Remove the outliers 

Without loss of generality, we assume that the trend data records are (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝑛𝑛𝑖𝑖), 𝑖𝑖 = 0,⋯ ,𝑚𝑚. Here, we 
use modified z score to remove the outliers. 

(1) Calculate the median (MED) and the median absolute deviation (MAD) for 𝑦𝑦𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 , 𝑖𝑖 = 0,⋯ ,𝑚𝑚 
𝑀𝑀𝑀𝑀𝑀𝑀 = median(𝑦𝑦0 ,⋯ , 𝑦𝑦0�������

𝑛𝑛0

¸⋯ ,𝑦𝑦𝑚𝑚,⋯ , 𝑦𝑦𝑚𝑚�������
𝑛𝑛𝑚𝑚

) 

𝑀𝑀𝑀𝑀𝑀𝑀 = median(|𝑦𝑦0 − 𝑀𝑀𝑀𝑀𝑀𝑀|,⋯ , |𝑦𝑦0 − 𝑀𝑀𝑀𝑀𝑀𝑀|,⋯ , |𝑦𝑦𝑚𝑚 −𝑀𝑀𝑀𝑀𝑀𝑀|,⋯ , |𝑦𝑦𝑚𝑚 −𝑀𝑀𝑀𝑀𝑀𝑀|) 

(2) Compute the modified z-score for 𝑦𝑦𝑖𝑖 , 𝑖𝑖 ∈ {𝑚𝑚𝑖𝑖𝑛𝑛𝐼𝐼𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥, 𝑚𝑚𝑚𝑚𝑥𝑥𝐼𝐼𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥}, where 𝑚𝑚𝑖𝑖𝑛𝑛𝐼𝐼𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥 and 
𝑚𝑚𝑚𝑚𝑥𝑥𝐼𝐼𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥 are the index of minimum and maximum value of {𝑦𝑦0,⋯ , 𝑦𝑦𝑚𝑚}, respectively. 

𝑧𝑧𝑖𝑖 = �

𝑦𝑦𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀
1.4826×𝑀𝑀𝑀𝑀𝑀𝑀

if 𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 0
𝑦𝑦𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀

1.2533×𝑀𝑀𝑚𝑚𝑚𝑚𝑛𝑛𝑀𝑀𝑀𝑀
if 𝑀𝑀𝑀𝑀𝑀𝑀 = 0

 

where 𝑀𝑀𝑚𝑚𝑚𝑚𝑛𝑛𝑀𝑀𝑀𝑀 = 1
∑ 𝑛𝑛𝑖𝑖.
𝑚𝑚
𝑖𝑖=0

∑ 𝑛𝑛𝑖𝑖|𝑦𝑦𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀|.𝑚𝑚
𝑖𝑖=1  

(3) (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝑛𝑛𝑖𝑖) is removed from the trend data if |𝑧𝑧𝑖𝑖| > 3 for 𝑖𝑖 ∈ {𝑚𝑚𝑖𝑖𝑛𝑛𝐼𝐼𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥, 𝑚𝑚𝑚𝑚𝑥𝑥𝐼𝐼𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥}. 
 



Fit a simple linear model 

For the trend data (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝑛𝑛𝑖𝑖), 𝑖𝑖 = 0,⋯ ,𝑚𝑚, we fit a simple linear model (𝑦𝑦 = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥) incorporating the 
frequency weight. 

Let  

�̅�𝑥 =
1

∑ 𝑛𝑛𝑖𝑖𝑚𝑚
𝑖𝑖=0

�𝑛𝑛𝑖𝑖𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=0

𝑦𝑦� =
1

∑ 𝑛𝑛𝑖𝑖𝑚𝑚
𝑖𝑖=0

�𝑛𝑛𝑖𝑖𝑦𝑦𝑖𝑖

𝑚𝑚

𝑖𝑖=0

𝑆𝑆𝑚𝑚𝑚𝑚 = �𝑛𝑛𝑖𝑖(𝑥𝑥𝑖𝑖 − �̅�𝑥)2
𝑚𝑚

𝑖𝑖=0

𝑆𝑆𝑚𝑚𝑥𝑥 = �𝑛𝑛𝑖𝑖(𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)
𝑚𝑚

𝑖𝑖=0

𝑆𝑆𝑥𝑥𝑥𝑥 = �𝑛𝑛𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
𝑚𝑚

𝑖𝑖=0

 

Then the estimates 𝑏𝑏�0 and 𝑏𝑏�1 are given below 

𝑏𝑏�1 =
𝑆𝑆𝑚𝑚𝑥𝑥
𝑆𝑆𝑚𝑚𝑚𝑚

𝑏𝑏�0 = 𝑦𝑦� − 𝑏𝑏�1�̅�𝑥
 

The variance 𝜎𝜎�2 can be computed as 

 𝜎𝜎�2 =
∑ 𝑛𝑛𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑚𝑚
𝑖𝑖=0

∑ 𝑛𝑛𝑖𝑖𝑚𝑚
𝑖𝑖=0 − 2

 

where 𝑦𝑦�𝑖𝑖 = 𝑏𝑏�0 + 𝑏𝑏�1𝑥𝑥𝑖𝑖. 

Tests for the trend 

The statistic for the hypothesis 𝐻𝐻0: 𝑏𝑏1 = 0 is 

𝑡𝑡 =
𝑏𝑏�1�𝑆𝑆𝑚𝑚𝑚𝑚
𝜎𝜎�

 

which has an asymptotic t-distribution with df (= ∑ 𝑛𝑛𝑖𝑖𝑚𝑚
𝑖𝑖=0 − 2) degrees of freedom. Then calculate the 

corresponding p value. If p value is less than 0.05, then the hypothesis is rejected. 

The partial correlation of 𝑥𝑥 and 𝑦𝑦 adjusted for 𝑧𝑧 is calculated as follows 

𝑟𝑟𝐴𝐴𝐴𝐴|𝐶𝐶 =
𝑟𝑟𝐴𝐴𝐴𝐴 − 𝑟𝑟𝐴𝐴𝐶𝐶𝑟𝑟𝐴𝐴𝐶𝐶

�(1 − 𝑟𝑟𝐴𝐴𝐶𝐶2 )(1 − 𝑟𝑟𝐴𝐴𝐶𝐶2 )
 

where 𝑟𝑟𝐴𝐴𝐴𝐴 denotes the correlation between 𝑀𝑀 and 𝐵𝐵, 𝑟𝑟𝐴𝐴𝐴𝐴 = 𝑆𝑆𝐴𝐴𝐴𝐴
�𝑆𝑆𝐴𝐴𝐴𝐴�𝑆𝑆𝐴𝐴𝐴𝐴

.  It should be noted that if  𝑟𝑟𝐴𝐴𝐶𝐶 = 0 

or 𝑟𝑟𝐴𝐴𝐶𝐶 = 0, then 𝑟𝑟𝐴𝐴𝐴𝐴|𝐶𝐶 is set to 0. 

 

 

 



For the plot, we provide the following insights 

• If p value is less than 0.05, the current model does not represent the data 
• If p value is greater than or equal to 0.05, we calculate the partial correlation 𝑟𝑟𝑥𝑥𝑚𝑚2|𝑚𝑚 

• If �𝑟𝑟𝑥𝑥𝑚𝑚2|𝑚𝑚� < 0.775, the current model may represent the data 
• If �𝑟𝑟𝑥𝑥𝑚𝑚2|𝑚𝑚� ≥ 0.775, the current model does not represent the data 

  



Appendix A: Grouping analysis and unusual category 
detection 

For a significant factor or factor interaction, we can infer that some categories or category combinations 
should have a statistically significant impact on the target. Here, we provide analyses to indentify which 
factor’s (factor interaction’s) categories have large impacts on the target. For the sake of brevity, the 
description is for a significant factor, but it also works for a significant factor interaction. 

For all distributions except multinomial distribution and binomial distribution with 0/1 binary response, 
we propose two analyses which follow the analyses in the reference Shyr et al. (2011). 

(1) Grouping analysis: Partitions all factor’s categories into a high group and a low group (with a 
possible medium group) by conducting tests on whether the EMMEAN in each category is different 
from that in the category with the largest or smallest EMMEAN. 

(2) Unusual category detection analysis: detects possible unusual categories in the high and low groups. 
For multinomial distribution (including ordinal and multinomial) and binomial distribution with 0/1 
binary response, we propose two analyses which are based on tests described in the reference Agresti 
(2002). 

(1) Grouping analysis: partitions all categories into a significant group and an insignificant group by 
conducting tests on whether the target’s categorical distribution in each category is different from 
that the overall distribution (population distribution). 

(2) Influential target category analysis: identifies influential target categories for each significant 
category. 
 

A.1. All distributions except multinomial and binomial 
distribution with 0/1 binary response 

Let the 𝑚𝑚 categories of a significant factor 𝑀𝑀 be 𝑀𝑀1,⋯ ,𝑀𝑀𝑚𝑚, and their corresponding EMMEANS are 
𝑀𝑀1,⋯ ,𝑀𝑀𝑚𝑚, respectively. Let the number of records in 𝑀𝑀1,⋯ ,𝑀𝑀𝑚𝑚 be 𝑛𝑛1,⋯ ,𝑛𝑛𝑚𝑚, respectively. 

A.1.1 Grouping analysis 

The following process is used to find the high and low groups and the possible medium group among all 
categories of a significant factor with more than 3 categories based on the EMMEANS for the target 
rather than the linear predictor.  

1) For a significant factor 𝑀𝑀 with 𝑚𝑚 categories, compute the EMMEANS, 𝑴𝑴 = {𝑀𝑀1,⋯ ,𝑀𝑀𝑚𝑚}, and the 
corresponding variance matrix 𝑽𝑽. See Chu and Zhong (2005, 2012), and Zheng (2009) for details of 
calculations of 𝑴𝑴 and 𝑽𝑽. 

2) Sort the EMMEAN 𝑀𝑀𝑖𝑖  (𝑖𝑖 = 1,⋯ ,𝑚𝑚) by a descending order. Without loss of generality, assume that 
they are 𝑀𝑀1,𝑀𝑀2,⋯ ,𝑀𝑀𝑚𝑚, namely, 𝑀𝑀1 has the largest EMMEAN and 𝑀𝑀𝑚𝑚 has the smallest one. 

3) The category with the largest EMMEAN is firstly formed as the high group. Then test whether there 
is a significant difference between the second largest EMMEAN and the largest one. The test statistic 
is Wald chi-square statistics, 

𝑠𝑠 =
(𝑀𝑀1 −𝑀𝑀2)2

𝜎𝜎2
 

with 1 degree of freedom, where 𝜎𝜎2 = 𝑽𝑽11 + 𝑽𝑽22 − 2𝑽𝑽12. The corresponding p-value is calculated 
accordingly.  
If the null hypothesis 𝑀𝑀1 −𝑀𝑀2 = 0 is not rejected, i.e., the p-value is greater than 𝛼𝛼  (significance 
level specified by the user, default is 0.05), then the category with 𝑀𝑀2 will be added to the high 
group. 
It is noted that (a) if  𝑀𝑀1 −𝑀𝑀2 = 0, then it does not need to compute 𝜎𝜎2

 
and assign the p-value = 1.0, 

i.e., the category with the second largest target mean will be added to the high group.  (b) If  𝑀𝑀1 −
𝑀𝑀2 ≠ 0  and  𝜎𝜎2 = 0, then the p-value = 0.0 and stops.  

http://miamoss1/RD/products/components/Documents/Algorithm%20%20EMMEANS%20and%20Custom%20Tests.doc


4) Repeat the same process for the next EMMEAN in line, i.e., compare  𝑀𝑀3 with 𝑀𝑀1, until there is no 
category can be added to the high group. 

5) Similarly, form the low group from the smallest EMMEAN for those categories not assigned to the 
high group. 

6) If there still exist some categories after forming the high and low groups, they are grouped into the 
medium group. 

The method used above is an extension of that in Chu and Han (2011) to the case of generalized linear 
models. It should be noted that a Chi-square test is used rather than t-test. 

Implementation notes 

• When 𝑀𝑀𝑖𝑖 = 𝑀𝑀𝑗𝑗 and 𝑛𝑛𝑖𝑖 ≠ 𝑛𝑛𝑗𝑗, if 𝑛𝑛𝑖𝑖 > 𝑛𝑛𝑗𝑗, then 𝑀𝑀𝑖𝑖 will be first to be compared to 𝑀𝑀1 or 𝑀𝑀𝑚𝑚; if  𝑛𝑛𝑖𝑖 <
𝑛𝑛𝑗𝑗, then 𝑀𝑀𝑗𝑗 will be first to be compared to 𝑀𝑀1 or 𝑀𝑀𝑚𝑚.  

A.1.2 Unusual category detection analysis 
The process to detect unusual categories for a significant factor is described as follows: 

1) Calculate the median of 𝑚𝑚 EMMEANS incorporating the number of records in each category. 
Denote MED by the median, 

𝑀𝑀𝑀𝑀𝑀𝑀 = median(𝑀𝑀1,⋯ ,𝑀𝑀1�������
𝑛𝑛1

¸⋯ ,𝑀𝑀𝑚𝑚,⋯ ,𝑀𝑀𝑚𝑚�������
𝑛𝑛𝑚𝑚

) 

2) Calculate the median absolute deviation (MAD) of 𝑚𝑚 target means, again incorporating with the 
number of records in each cell 

𝑀𝑀𝑀𝑀𝑀𝑀 = median(|𝑀𝑀1 −𝑀𝑀𝑀𝑀𝑀𝑀|,⋯ , |𝑀𝑀1 −𝑀𝑀𝑀𝑀𝑀𝑀|,⋯ , |𝑀𝑀𝑚𝑚 −𝑀𝑀𝑀𝑀𝑀𝑀|,⋯ , |𝑀𝑀𝑚𝑚 −𝑀𝑀𝑀𝑀𝑀𝑀|) 

3) Compute the modified z-score for the category 𝑀𝑀𝑖𝑖 , 𝑖𝑖 = 1,⋯ ,𝑚𝑚 

𝑧𝑧𝑖𝑖 = �

𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀
1.4826×𝑀𝑀𝑀𝑀𝑀𝑀

if 𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 0
𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀

1.2533×𝑀𝑀𝑚𝑚𝑚𝑚𝑛𝑛𝑀𝑀𝑀𝑀
if 𝑀𝑀𝑀𝑀𝑀𝑀 = 0

 

where 𝑀𝑀𝑚𝑚𝑚𝑚𝑛𝑛𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ 𝑛𝑛𝑖𝑖|𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀|.𝑛𝑛
𝑖𝑖=1  

4) Detect unusual categories 

If  𝑧𝑧𝑖𝑖 > 3, the category 𝑀𝑀𝑖𝑖 has an unusually high EMMEAN in the high group. 
If  𝑧𝑧𝑖𝑖 < −3, the category 𝑀𝑀𝑖𝑖 has an unusually low EMMEAN in the low group.    
 
 
 
 
 
 
 
 
 
 
 

 



A.2. Multinomial distribution and binomial distribution with 0/1 
binary response 

Notations 

𝑀𝑀1,⋯ ,𝑀𝑀𝑚𝑚 The 𝑚𝑚 categories of a significant factor 𝑀𝑀. 

𝑛𝑛𝑖𝑖 The number of records in 𝑀𝑀𝑖𝑖. 

�̂�𝑝𝑖𝑖𝑗𝑗 The EMMEAN value for 𝑗𝑗-th target category of the category 𝑀𝑀𝑖𝑖, where 
∑ �̂�𝑝𝑖𝑖𝑗𝑗
𝐽𝐽
𝑗𝑗=1 = 1. 

𝑝𝑝∙𝑗𝑗 The overall probability of the 𝑗𝑗-th target category, 𝑗𝑗 = 1,⋯ , 𝐽𝐽 from the whole 
dataset. 

 

A.2.1 Grouping analysis 
Under the assumption that the overall target distribution is known and fixed, it will partition all categories 
into two groups: a significant group and an insignificant group by the following steps: 

1) Compute the EMMEANS values for the category 𝑀𝑀𝑖𝑖, ��̂�𝑝𝑖𝑖1,⋯ , �̂�𝑝𝑖𝑖𝐽𝐽�, 𝑖𝑖 = 1,⋯ ,𝑚𝑚: 

�
�̂�𝑝𝑖𝑖𝑗𝑗 = 𝑔𝑔−1�𝑳𝑳𝑖𝑖𝜷𝜷𝑗𝑗�       for 𝑗𝑗 = 1,⋯ , 𝐽𝐽 − 1

�̂�𝑝𝑖𝑖𝐽𝐽 = 1 −� �̂�𝑝𝑖𝑖𝑗𝑗
𝐽𝐽−1

𝑗𝑗=1
 for 𝑗𝑗 = 𝐽𝐽

 

where 𝑳𝑳𝑖𝑖 is L matrix for the category 𝑀𝑀𝑖𝑖. 
2) Compute the Pearson’s one sample chi-square statistics and the corresponding p-value for each 

category 𝑀𝑀𝑖𝑖, 𝑖𝑖 = 1,⋯ ,𝑚𝑚 

𝜒𝜒𝑖𝑖2 = 𝑛𝑛𝑖𝑖�
��̂�𝑝𝑖𝑖𝑗𝑗 − 𝑝𝑝∙𝑗𝑗�

2

𝑝𝑝∙𝑗𝑗

𝐽𝐽

𝑗𝑗=1
 

𝑝𝑝𝑖𝑖 = 1 − Pr�𝜒𝜒(𝐽𝐽−1)
2 ≤ 𝜒𝜒𝑖𝑖2� 

where 𝜒𝜒(𝐽𝐽−1)
2  is a random variable which following a chi-square distribution with df = (𝐽𝐽 − 1) 

degrees of freedom. 
3) Compute the effect size for each category 

𝑤𝑤𝑖𝑖 = �
𝜒𝜒𝑖𝑖2

𝑛𝑛𝑖𝑖(𝐽𝐽 − 1)
 

4) Sort the category 𝑀𝑀1,⋯ ,𝑀𝑀𝑚𝑚 using 𝑤𝑤1 ,⋯ ,𝑤𝑤𝑚𝑚 by a descending order. Without loss of the generality, 
assume that the order is 𝑀𝑀1,⋯ ,𝑀𝑀𝑚𝑚.  
If 𝑝𝑝𝑖𝑖 < 𝛼𝛼, where 𝛼𝛼 is a significant level (the default is 0.05), then the category 𝑀𝑀𝑖𝑖 has a significantly 
different distribution from the overall distribution and will be added into the significant group.  
If 𝑝𝑝𝑖𝑖 ≥ 𝛼𝛼, then the category 𝑀𝑀𝑖𝑖 and 𝑀𝑀𝑖𝑖+1,⋯ ,𝑀𝑀𝑚𝑚 will be assigned to the insignificant group  

5) The results are a list of the categories in the significant group with relevant test statistics, e.g. 
𝜒𝜒𝑖𝑖2, df, 𝑝𝑝𝑖𝑖, and 𝑤𝑤𝑖𝑖 . 

 
Implementation notes 

• When 𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑗𝑗  and 𝑛𝑛𝑖𝑖 ≠ 𝑛𝑛𝑗𝑗, if  𝑛𝑛𝑖𝑖 > 𝑛𝑛𝑗𝑗, then the cell 𝑀𝑀𝑗𝑗 will be first to be compared to the root 
node; if  𝑛𝑛𝑖𝑖 < 𝑛𝑛𝑗𝑗, then the cell with 𝑀𝑀𝑖𝑖 will be first to be compared to the root node.  
 
 

 



A.2.2 Influential target category analysis 
It identifies target categories, which have significantly large frequency differences from that of the root 
node, based on another chi-square test in the significant group (suppose it is Λ) by the following steps: 

1) Compute the chi-squared statistics, and the corresponding p-value for the category 𝑖𝑖 ∈ Λ and for the 
𝑗𝑗-th target category 

𝜒𝜒𝑖𝑖𝑗𝑗2 =
𝑛𝑛𝑖𝑖��̂�𝑝𝑖𝑖𝑗𝑗 − 𝑝𝑝∙𝑗𝑗�

2

𝑝𝑝∙𝑗𝑗×(1 − 𝑝𝑝∙𝑗𝑗)
 

𝑝𝑝 = 1 − Pr�𝜒𝜒12 ≤ 𝜒𝜒𝑖𝑖𝑗𝑗2 � 
where 𝜒𝜒12 is a random variable which following a chi-square distribution with df = 1 degree of 
freedom. 
If 𝑝𝑝 < 𝛼𝛼, where 𝛼𝛼 is a significant level (the default is 0.05 𝐽𝐽⁄  based on the Bonferroni adjustment 
method), then the 𝑗𝑗-th target category is an influential target category for the category 𝑖𝑖 ∈ Λ. 

2) The results are a list of influential target categories for each significant category with relevant test 
statistics. 

Influential target category detection analysis is only performed on the non-binary target. If the target is 
binary, the chi-square statistic 𝜒𝜒𝑖𝑖,𝑗𝑗2  (𝑗𝑗 = 1,2) is equal to 𝜒𝜒𝑖𝑖2, namely, 𝜒𝜒𝑖𝑖 ,12 = 𝜒𝜒𝑖𝑖 ,22 = 𝜒𝜒𝑖𝑖2. It could be expected 
that both two categories are influential for each significant cell 𝑖𝑖. 
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11. Introduction – Phase III 
Generalized Linear Engine Phase III (GLE Phase III) adds two main features on top of GLE Phase I (Chu 
and Zhong, 2012) and Phase II (Zhong and Han, 2013): 

• Estimation of generalized linear models for the large p situations (the number of parameters (𝑝𝑝) is 
greater than or equal to a threshold (𝑝𝑝𝑐𝑐, the default = 5000), i.e., 𝑝𝑝 ≥ 𝑝𝑝𝑐𝑐.  

Besides the optimization issue for parameter estimation, the other difficult issue is the post-
estimation statistics.  

• Estimation of regularized generalized linear models: 𝐿𝐿1 (the lasso), 𝐿𝐿2 (ridge regression) and 
mixtures of two penalties (the elastic net). This feature is applicable for both the large p situations 
and the small and medium p situations.  

Both features will be solved by using the new optimization engine ADMM (Zhong, 2014) which is 
distributed optimization framework and can solve the problems with large numbers of parameters and 
records. 

Besides the optimization issue of parameter estimation, the other difficult issue introduced by the large p 
situations is the post-estimation statistics. The reason is that a large number of parameters, even after the 
variable selection, would cause difficulty to calculate the parameter estimate covariance matrix (minus 
inverse of Hessian matrix) and thus many statistics, such as Wald test, etc., based on it. Here, we will 
firstly transform the original problem of calculating the statistics into a linear system, and then use 
ADMM to solve it. 

The organization of this document is Section 12 describes parameter estimation for the large p situation. 
Section 13 describes parameter estimation with regularizations. Finally, how to compute post-estimation 
statistics without the parameter estimate covariance matrix when p is large is given in Section 14. 

Notations 

𝑁𝑁 The number of data blocks (parts) 

𝑝𝑝 The number of parameters. Note that it doesn’t include the scale parameter for continuous 
distributions or the auxiliary parameter for the negative binomial distribution. 

𝜷𝜷𝑖𝑖  𝜷𝜷𝑖𝑖 ∈ 𝐑𝐑𝑝𝑝 denotes parameters for the  𝑖𝑖-th data block 

𝒛𝒛 The common global parameters, where 𝒛𝒛 ∈ 𝐑𝐑𝑝𝑝 

𝒖𝒖𝑖𝑖 𝒖𝒖𝑖𝑖 ∈ 𝐑𝐑𝑝𝑝 denotes the Lagrange multipliers of the 𝑖𝑖-th term in the objective 

𝑓𝑓𝑖𝑖(∙) The 𝑖𝑖-th term in the objective for the  𝑖𝑖-th data block 

𝑔𝑔(∙) The regularization (penalty function) 

𝜌𝜌 The augmented Lagrange parameter 

𝒚𝒚 The  target variable 

  



𝑿𝑿 𝑿𝑿 = [𝑿𝑿1,⋯ ,𝑿𝑿𝑝𝑝] denotes the design matrix, where 𝑿𝑿𝑗𝑗 denotes the 𝑗𝑗-th column 

‖𝒛𝒛‖1 The 𝐿𝐿1 norm of the vector 𝒛𝒛, which is defined as ‖𝒛𝒛‖1 = |𝑧𝑧1| + ⋯+ |𝑧𝑧𝑝𝑝| 

‖𝒛𝒛‖2 The 𝐿𝐿2 norm of the vector 𝒛𝒛, which is defined as ‖𝒛𝒛‖2 = �𝑧𝑧12 + ⋯+ 𝑧𝑧𝑝𝑝2�
1/2

 

𝑝𝑝𝑐𝑐 
The threshold denoting whether there is a large number of parameters (large p). If 𝑝𝑝 ≥ 𝑝𝑝𝑐𝑐, it 
is called large p situation, otherwise, it is called small to medium p situation. 

𝒔𝒔 The gradient vector (function) 

𝐇𝐇 The Hessian matrix (function) 

12. Parameter estimation for the large p situations 
For the generalized linear models, the parameter estimation is based on the maximum likelihood method 
as  max

𝜷𝜷
ℓ(𝜷𝜷). Since ADMM usually solves the optimization problem in the form of minimization, the 

maximum likelihood method can be written as  

min
𝜷𝜷

−ℓ(𝜷𝜷) 

The ℓ(𝜷𝜷) is separable with respect to the partition of the records, ℓ(𝜷𝜷) = ∑ ℓ𝑖𝑖(𝜷𝜷)𝑁𝑁
𝑖𝑖=1 . If we optimize 

ℓ𝑖𝑖(𝜷𝜷) for each data block 𝑖𝑖, then we obtain the following form for ADMM 

min𝜷𝜷𝑖𝑖,𝒛𝒛 −∑ ℓ𝑖𝑖(𝜷𝜷𝑖𝑖)𝑁𝑁
𝑖𝑖=1

𝑠𝑠. 𝑡𝑡. 𝜷𝜷𝑖𝑖 − 𝒛𝒛 = 𝟎𝟎, 𝑖𝑖 = 1,⋯ ,𝑁𝑁.
                                                                  (12.1) 

For the large p situations (𝑝𝑝 ≥ 𝑝𝑝𝑐𝑐), the L-BFGS method in ADMM will be used to solve Equation (12.1). 
In order to call ADMM, GLE needs to prepare three pieces of information: the fitting function, the 
gradient function, and initial values. 

The fitting function 𝑓𝑓𝑖𝑖(𝜷𝜷𝑖𝑖) is 

𝑓𝑓𝑖𝑖(𝜷𝜷𝑖𝑖) = −ℓ𝑖𝑖(𝜷𝜷𝑖𝑖)                                                                                             (12.2) 

The gradient of 𝑓𝑓𝑖𝑖(𝜷𝜷𝑖𝑖) is 

𝐬𝐬𝑖𝑖 = −∇ℓ𝑖𝑖(𝜷𝜷𝑖𝑖)                                                                                                 (12.3) 

The initial values can be computed as 

𝜷𝜷0 = 𝟎𝟎                                                                                                              (12.4) 

Implementation notes: 

• The forms of ℓ𝑖𝑖 and  𝐬𝐬𝑖𝑖 for different distributions can be found in GLE Phase I.  

• If the scale parameter for continuous distributions or the auxiliary parameter for the negative 
binomial distribution is estimated with regression parameters, then 𝐬𝐬𝑖𝑖 should include it and the initial 
value is also set to 0. 

 



13. Parameter estimation with regularizations 
For the regularized generalized linear models, a penalty function will be added into Equation (12.1) then 
we obtain the following form for ADMM 

min𝜷𝜷𝑖𝑖,𝒛𝒛 −∑ ℓ𝑖𝑖(𝜷𝜷𝑖𝑖)𝑁𝑁
𝑖𝑖=1 + 𝑔𝑔(𝒛𝒛)

𝑠𝑠. 𝑡𝑡. 𝜷𝜷𝑖𝑖 − 𝒛𝒛 = 𝟎𝟎, 𝑖𝑖 = 1,⋯ ,𝑁𝑁.
                                                                  (13.1) 

GLE will support the following penalty functions: 

(1) The 𝐿𝐿1 regularization (the lasso):  𝑔𝑔(𝒛𝒛) = 𝜆𝜆‖𝒛𝒛‖1. 

(2) The 𝐿𝐿2 regularization (ridge regression): 𝑔𝑔(𝒛𝒛) = 𝜆𝜆‖𝒛𝒛‖22. 

(3) The (𝐿𝐿1 + 𝐿𝐿2) regularization (elastic net): 𝑔𝑔(𝒛𝒛) = 𝜆𝜆1‖𝒛𝒛‖1 + 𝜆𝜆2‖𝒛𝒛‖22. 

Note that 𝜆𝜆, 𝜆𝜆1 and 𝜆𝜆2 are penalty parameters to regulate the strength of penalty. For lasso or ridge 
regression, 𝜆𝜆 = 0 implies unconstrained solution and 𝜆𝜆 = ∞ implies totally constrained solution (𝒛𝒛 = 𝟎𝟎). 
For elastic net,  𝜆𝜆1 = 𝜆𝜆2 = 0 implies unconstrained solution and one of  𝜆𝜆1 or  𝜆𝜆2 = ∞ implies totally 
constrained solution (𝒛𝒛 = 𝟎𝟎). Both 𝐿𝐿1 and 𝐿𝐿2 regulations prevent overfitting by shrinking (imposing a 
penalty) on the parameters. The 𝐿𝐿1 regulation can shrink some parameters to zero, performing variable 
selection, while the 𝐿𝐿2 regulation shrinks all the parameters by the same proportions but eliminates none. 
In terms of model fits, the 𝐿𝐿2 regulation usually performs better than the 𝐿𝐿1 regulation in practice. Even 
the (𝐿𝐿1 + 𝐿𝐿2) regularization might perform better than the 𝐿𝐿1 regularization.  

There are two ways to choose these parameters:  

(1) They are set to fixed values in the range of [0, ∞].  

(2) They are chosen by a grid search method as follows: 

a) Partition the data into two parts: training and testing sets. By default, the ratio of training to 
testing is 0.7: 0.3. 

b) Specify the maximum value, 𝜆𝜆max :  

(i) For the lasso, use the method in Park and Hastie (2007):  if the target does not follow 
nominal multinomial distribution or ordinal distribution,  

𝜆𝜆max = max
𝑗𝑗∈{1,⋯,𝑝𝑝}

�𝑿𝑿𝑗𝑗T𝑾𝑾(𝐲𝐲 − 𝑦𝑦�𝟏𝟏)g′(𝑦𝑦�)�                                    (13.2) 

where 𝑾𝑾 is 𝑛𝑛×𝑛𝑛 diagonal matrix with the 𝑖𝑖th diagonal element  

𝑤𝑤𝑖𝑖𝑖𝑖 =
𝑓𝑓𝑖𝑖𝜔𝜔𝑖𝑖

𝑉𝑉(𝑦𝑦�)(g′(𝑦𝑦�))2 

where 𝑉𝑉(∙) is variance function and g(∙) is the link function.  

If target follows nominal multinomial distribution 

𝜆𝜆max = max
𝑗𝑗∈{1,⋯,𝑝𝑝}

� max
𝑘𝑘∈{1,⋯,𝐽𝐽−1}

�𝑿𝑿𝑗𝑗T𝑾𝑾�𝐲𝐲(𝐤𝐤) − 𝑦𝑦�(k)𝟏𝟏���                             (13.3) 

 

 

 



where 𝐽𝐽 is the number of categories of target, 𝑾𝑾 is 𝑛𝑛×𝑛𝑛 diagonal matrix with the 𝑖𝑖th 
diagonal element  𝑓𝑓𝑖𝑖𝜔𝜔𝑖𝑖,   𝐲𝐲(k) = (𝑦𝑦1𝑘𝑘 ,𝑦𝑦2𝑘𝑘 ,⋯ ,𝑦𝑦𝑛𝑛𝑘𝑘)Tand 𝑦𝑦�(k) = ∑ 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛
𝑖𝑖=1
∑ 𝑐𝑐𝑖𝑖
𝑛𝑛
𝑖𝑖=1

, Here, 𝑦𝑦𝑖𝑖𝑘𝑘 = 1 if 

the target value of  the 𝑖𝑖th record takes the 𝑘𝑘th category, otherwise 𝑦𝑦𝑖𝑖𝑘𝑘 = 0. 

If target follows ordinal distribution 

λmax = max
j∈{1,⋯,p}

�𝑿𝑿𝒋𝒋𝑻𝑻𝑾𝑾𝑾𝑾�                                              (13.4) 

where 𝑾𝑾 is 𝑛𝑛×𝑛𝑛 diagonal matrix with the 𝑖𝑖th diagonal element  𝑓𝑓𝑖𝑖𝜔𝜔𝑖𝑖, 𝑾𝑾 is a 𝑛𝑛×1 vector with 
the  𝑖𝑖th  element  

𝑚𝑚𝑖𝑖 = ��
𝜕𝜕𝛾𝛾𝑖𝑖,𝑘𝑘
𝜕𝜕𝜂𝜂𝑖𝑖,𝑘𝑘

−
𝜕𝜕𝛾𝛾𝑖𝑖,𝑘𝑘−1
𝜕𝜕𝜂𝜂𝑖𝑖,𝑘𝑘−1

�
𝐽𝐽

𝑘𝑘=1

𝑦𝑦𝑖𝑖,𝑘𝑘
𝜋𝜋𝑖𝑖,𝑘𝑘

 

where 𝐽𝐽 is the number of categories of target;  𝑦𝑦𝑖𝑖,𝑘𝑘 = 1 if the target value of  the ith record 
takes the 𝑘𝑘th category, otherwise 𝑦𝑦𝑖𝑖,𝑘𝑘 = 0;  𝜋𝜋𝑖𝑖,𝑘𝑘 = 𝑛𝑛𝑖𝑖,𝑓𝑓

𝑛𝑛𝑓𝑓
 for 𝑘𝑘 = 1,⋯ , 𝐽𝐽 with 𝑛𝑛𝑘𝑘,𝑐𝑐  being the 

number of records for the kth category of target incorporating the frequency weight and 𝑛𝑛𝑐𝑐 
being the total number of records incorporating frequency weight. The 𝜕𝜕𝛾𝛾𝑖𝑖,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖,𝑖𝑖
 is defined in the 

GLE phase I. Since the maximum value of 𝜕𝜕𝛾𝛾𝑖𝑖,𝑖𝑖
𝜕𝜕𝜂𝜂𝑖𝑖,𝑖𝑖

− 𝜕𝜕𝛾𝛾𝑖𝑖,𝑖𝑖−1
𝜕𝜕𝜂𝜂𝑖𝑖,𝑖𝑖−1

 is less than 0.5, we will use  0.5 ∗

∑ 𝑥𝑥𝑖𝑖,𝑖𝑖
𝜋𝜋𝑖𝑖,𝑖𝑖

𝐽𝐽
𝑘𝑘=1  as approximate 𝑚𝑚𝑖𝑖, i.e. 𝑚𝑚𝑖𝑖 ≈ 0.5 ∗ ∑ 𝑥𝑥𝑖𝑖,𝑖𝑖

𝜋𝜋𝑖𝑖,𝑖𝑖

𝐽𝐽
𝑘𝑘=1 . 

(ii) For ridge regression, there is no limitation of the maximum value. User could specify it. By 
default we use follow value. 

𝜆𝜆max = 𝑚𝑚20 

(iii) For elastic net, which includes lasso and ridge regression, we will set two regularization 
parameters for L1 and L2 respectively when invoking ADMM.  But they can be specified 
with the relationship as follows. 

𝜆𝜆1 = 𝛼𝛼𝜆𝜆,   𝜆𝜆2 = (1 − 𝛼𝛼)𝜆𝜆 

              Where  0 < 𝜶𝜶 < 1 ,   𝜆𝜆1 is for L1 regularization and  𝜆𝜆2 is for L2 regularization. The value 
of  𝜆𝜆2  can be got easily with given value of 𝜆𝜆1. Therefore, only the maximum value for 
𝜆𝜆1needs to be determined. We will specify the maximum value of 𝜆𝜆1 using the same method 
as that we specify the maximum value of λ for lasso in (i). 

c) Set the minimal value 𝜆𝜆min = 𝑚𝑚−10. 

d) Select the number of search points, 𝑛𝑛𝜆𝜆 (the default is 100), and determine those points:   

𝜆𝜆max , 𝜆𝜆min 𝑚𝑚(nλ−2)Δ, 𝜆𝜆min 𝑚𝑚(nλ−3)Δ, … , 𝜆𝜆min 𝑚𝑚Δ, 𝜆𝜆min  

where Δ = log 𝜆𝜆max –log 𝜆𝜆min 
𝑛𝑛𝜆𝜆−1

. 

Note: For elastic net, the search points of  𝜆𝜆1 are set as above. Then for each search point, the 
corresponding value of 𝜆𝜆2 will be determined with a fixed value of  α by following formula: 

𝜆𝜆2 =
(1 − 𝛼𝛼)

𝛼𝛼
𝜆𝜆1 

We will do a grid search with different combinations of λ1 and λ2, which are generated by the 
combinations of search points of λ1 and search points of α.  

Regarding to the sequence of the search points of α, we will use {0.1, 0.2, ... 0.9} by default. 
User could specify this sequence, with each element in the sequence in the range of (0.0, 1.0). 
Note that the values 0.0 and 1.0 are not allowed.   



e) We will build a model for each 𝜆𝜆 (for lasso), or build a model for each 𝜆𝜆 (for ridge regression), 
or build a model for each combination of 𝜆𝜆1 and 𝜆𝜆2 (for elastic net) on the training set, and 
calculate the ASE value on the testing set. 

f) Output the model with 𝜆𝜆 or the combination of 𝜆𝜆1 and 𝜆𝜆2 and the corresponding the minimal 
ASE value. 

Implementation notes: 

• The warm-start strategy will be used to speed up the grid search process. It means that we will 
build the models from 𝜆𝜆max  to𝜆𝜆min   sequentially and the next model will use the solution 
obtained from the current model as the initial values. 

• 𝑗𝑗 ∈ {2,⋯ , 𝑝𝑝} in Equation (13.2) and (13.3) if there is an intercept. For ordinal distribution, the 
index j is always from 1 to p because the design matrix 𝑿𝑿 = [𝑿𝑿1 ,⋯ ,𝑿𝑿𝑝𝑝] does not contain 
intercept in the GLE phase I.  

• The definition of ASE is given in GLE Phase II. 

For the large p situations, the same three pieces of information shown above need to be prepared. For the 
small and medium p situations, one extra piece of information is needed: the Hessian matrix of 𝑓𝑓𝑖𝑖(𝜷𝜷𝑖𝑖): 

𝐇𝐇𝑖𝑖 = −∇2ℓ𝑖𝑖(𝜷𝜷𝑖𝑖)                                                                                                 (13.5) 

Implementation notes: 

• If the scale parameter for continuous distributions or the auxiliary parameter for the negative 
binomial distribution is estimated with regression parameters, then (a) partial penalty in hybrid 
penalty functions (Section 3.2.2 in ADMM ADD) should be used because no penalty is applied on 
the scale parameter or auxiliary parameter.   

• If some predictors are categorical, i.e., factors, then (b) group penalty in hybrid penalty functions 
should be used. 

• If the above conditions exist at the same time, then (c) partial group penalty in hybrid penalty 
functions  should be used. 

• We will not include two-way interaction effects in the regularized generalized linear models. 
• The threshold value for judging any regression parameter 𝛽𝛽 = 0 is 1.0e-12, i.e., if 𝛽𝛽 < 1.0e − 12, 

then the corresponding predictor is not entered into the model.  
• If a sample is used for model selection in the regularized generalized linear models, then it is possible 

that 𝑁𝑁 = 1 (there is only one data block). In this case, the mean of local solutions would be just from 
one local solution, 𝜷𝜷�𝑘𝑘+1 = 𝜷𝜷1𝑘𝑘+1 and  𝒖𝒖�𝑘𝑘 = 𝒖𝒖1𝑘𝑘, then they would be used to update the global 
parameter 𝒛𝒛𝑘𝑘+𝟏𝟏. 

14. Post-estimation statistics 
Many post-estimation statistics will be based on the parameter estimate covariance matrix, 𝚺𝚺 = −𝐇𝐇−1. 
For instance, confidence interval and chi-square statistics for parameters, Lagrange multiplier test, model 
effect test, custom test, EMMEANS, standard errors of predicted values, and leverage values. However, it 
is impossible to directly calculate the inverse of Hessian matrix 𝐇𝐇 in the large p situations because its 
computational cost scales as 𝑂𝑂(𝑝𝑝3).  

After analysis, we found that the post-estimation statistics have two ways to use the parameter estimate 
covariance matrix 

 

 

 



(1) Involving 𝐋𝐋𝚺𝚺𝐋𝐋T. 
(2) Involving the diagonal values of 𝚺𝚺. 
We would solve these two problems by transferring them into linear system problems. 

14.1. Solving 𝐋𝐋𝚺𝚺𝐋𝐋𝐓𝐓 

Let 𝐕𝐕 = 𝚺𝚺𝐋𝐋T ∈ 𝐑𝐑𝑝𝑝×𝑟𝑟 , then we have 𝐋𝐋𝚺𝚺𝐋𝐋T = 𝐋𝐋𝐕𝐕. Usually, 𝑟𝑟 is quite small comparing with 𝑝𝑝, so it is easier 
to calculate 𝐋𝐋𝐕𝐕 with 𝐕𝐕 than to calculate 𝐋𝐋𝚺𝚺𝐋𝐋T with 𝚺𝚺. The key problem is to compute 𝐕𝐕. 

To compute  𝐕𝐕, we do the transformation as follows: 

𝐕𝐕 = 𝚺𝚺𝐋𝐋T ⟹ 𝚺𝚺−𝐕𝐕 = 𝐋𝐋T ⟹ (−𝐇𝐇)𝐕𝐕 = 𝐋𝐋T                                                                (14.1) 

which is a linear system problem. We could use the ADMM to solve it. 

Note that when 𝑟𝑟 > 1, 𝐋𝐋 is a matrix, thus, 𝐕𝐕 is a matrix as well. We will use vec operator (Lam, 1995) to 
convert 𝐋𝐋 to a vector form, vec(𝐋𝐋). Thus, Equation (4.1) becomes 

[𝟏𝟏𝑟𝑟 ⊗ (−𝐇𝐇)]vec(𝐕𝐕) = vec(𝐋𝐋T)                                                                              (14.2) 

14.1.1 ADMM for a linear system problem 

Considering a general linear system 𝐀𝐀𝐀𝐀 = 𝐛𝐛, the three pieces of information used to call ADMM are 

(1) the fitting function: 𝑓𝑓(𝐀𝐀) = 1
2

(𝐀𝐀T𝐀𝐀T𝐀𝐀𝐀𝐀 − 𝟐𝟐𝐛𝐛T𝐀𝐀𝐀𝐀 + 𝐛𝐛T𝐛𝐛); 
(2) the gradient of 𝑓𝑓(𝐀𝐀): 𝐬𝐬 = 𝐀𝐀T𝐀𝐀𝐀𝐀 − 𝐀𝐀T𝐛𝐛; 
(3) the initial value: 𝐀𝐀0 = 𝟎𝟎. 

 
14.2. Calculating diagonal values of 𝚺𝚺 

Similar to the previous section, we convert the problem of estimating the diagonal values of 𝚺𝚺 to a linear 
system problem.  

To obtain the 𝑖𝑖th diagonal value, we could first generate a vector, 𝐰𝐰𝑖𝑖 = [𝑤𝑤1,⋯ ,𝑤𝑤𝑖𝑖 ,⋯ ,𝑤𝑤𝑝𝑝]𝑇𝑇, where 𝑤𝑤𝑖𝑖 =
1, and 𝑤𝑤𝑗𝑗 = 0 for 𝑗𝑗 ≠ 𝑖𝑖. Then we have 𝐀𝐀𝑖𝑖 = 𝚺𝚺𝐰𝐰𝑖𝑖  and the 𝑖𝑖th element in 𝐀𝐀𝑖𝑖 is the 𝑖𝑖th diagonal value of  𝚺𝚺. 

Further, we can see that to obtain 𝐀𝐀𝑖𝑖 is equivalent to solve the following linear system problem 

(−𝐇𝐇)𝐀𝐀𝑖𝑖 = 𝐰𝐰𝑖𝑖                                                                                          (14.3) 

which we could use ADMM method to get the solution of 𝐀𝐀𝑖𝑖. 

Implementation notes: 

• Even there is a method to calculate 𝐋𝐋𝚺𝚺𝐋𝐋T and diagonal values of 𝚺𝚺, we still need to compute the 
Hessian matrix 𝐇𝐇 after the parameter estimation process. For the large p situations, all elements in 𝐇𝐇 
might not be saved in memory, not to mention the computation of 𝐋𝐋𝚺𝚺𝐋𝐋T for all effects and diagonal 
values of 𝚺𝚺 is extremely time consuming, so we will try to keep the final # of parameters is less than  
𝑝𝑝𝑐𝑐. For example, conduct feature selection (in the SDP (Smart Data Preprocessing) or DE 
(Descriptive Engine)) before running GLE and/or select the lasso penalty to perform variable 
selection within GLE.  
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Linear-AS Modeling Algorithms 
 

1.  Linear AS (Phase I) 
A linear regression model usually analyzes the relationship between one target variable (also called responses) 
and a list of feature variables (also called predictors). Linear-AS, also known as the “Linear Engine”, builds 
linear regression models for large and distributed data and runs within Analytic Engine (AE). 

2.  Notations 
The following notation is used throughout the document unless otherwise stated: 

n Number of distinct records in the dataset. It is an integer and 1≥n . 

p Number of parameters (including parameters for dummy variables but excluding intercept) 
in the model. It is an integer and 0≥p .  

p∗  Number of non-redundant parameters (excluding intercept if exists) currently in the model. 
It is an integer and 0 .p p∗≤ ≤  

cp  Number of non-redundant parameters currently in the model, so   
*

*

1  if there is an intercept
       if there is no intercept 

c p
p

p

 += 


. 

pe Number of effects excluding intercept. it is an integer and 0 ep p≤ ≤  

y  1×n  vector of single target variable consists of iy . 

f  1×n vector of frequency count variable. If an element is not an integer, it is computed by 
rounding the value to the nearest integer. If it is less than 0.5 or if it is missing, the 
corresponding case is not used. 

g  1×n vector of regression weight. If there is no regression weight specified, 1=g . If 
regression weight ig for case i is zero, negative or missing. The corresponding case is not 
used. 



N Effective sample size.  it is a integer number, ∑
=

=
n

i
ifN

1

.If frequency count variable f is not 

use, N=n. 

X )1( +× pn  design matrix. The rows represent the cases and the columns represent the 
parameters. The ith row is 0( ,..., )xi i ipx x= , ni ,...,2,1= , with 10 =ix , The jth column is 

T
1( ,..., ) ,X j j njx x= , pj ,...,1,0= , with T

0 (1,...,1) .X = . If there is no intercept, 

1{ }X X p
j j==   is a pn× matrix.  

  



ε  1×n  vector of unobserved errors . 

β  1)1( ×+p  vector of unknown parameters. ),,( 10 pββββ = . 0β  is the intercept, if 

exist. If there is no intercept, T
p ),( 1 βββ =  is a 1×p  vector. 

β̂  1)1( ×+p  vector of estimated β . )ˆ,ˆ,ˆ(ˆ
10 pββββ = . If there is an intercept, 0β̂ is its 

estimate, else T
p )ˆ,ˆ(ˆ

1 βββ =  is a 1×p  vector. 

b 1)1( ×+p vector of standardized estimate of β  .It is the result from sweep operation on 
matrix R. ),,( 10 pbbbb = . If there is an intercept, 0b is its standardized estimate, else 

T
pbbb ),( 1 =  is a 1×p  vector. 

ŷ  Predicted value of y , consists of iŷ  

jX  Weighted sample mean for jX , pj ,2,1=  

y  Weighted  sample mean for the dependent variable y. 

ijS  Weighted sample covariance between iX and jX . pji ,2,1, =  

iyS  Weighted sample covariance between iX  and y. 

yyS  Weighted  sample variance for y. 

R  )1()1( +×+ pp weighted sample correlation matrix for X (exclude intercept, if exist) 
and y. It is also used to represent the current sweeping matrix before each sweep operation 
step.   

R~  The result matrix after sweep operation whose elements are ijr~ .  

3.  Model 
Linear regression of single target variable y and design matrix X has the form 

= +y Xβ ε                                                                                                         (1) 

where ε  follows a normal distribution with mean 0 and variance 2 1σ −D , i.e., ( )2 1~ ,nN σ −Dε 0  with 

( )1
1diag 1 , ,1 ng g− =D  . Note that the kth case will be ignored if 0kg ≤ . Then the target variable y also 

follows a normal distribution with mean Xβ  and variance 2 1σ −D , ( )2 1~ ,nN σ −y X Dβ .  

Notes: 

1. The elements of ε  are independent with each other, so are those of y. 

 

 

 

 

2. X can be any combination of continuous and categorical effects and interaction effects (up to two-way). 
The parameterization of design matrix X is the same as that in GLM procedure. See Lam (1995a) for 



further details on the model parameterization. Please note that we might expand interaction effects to 
include more than two-way and nested effects used in old SPSS procedures.  

3.1.  Missing values 
List-wise deletion is used.  

If missing value handling feature has been conducted in “Bivariate Data Preparation” component, then only the 
target variable still has missing values and those records would be excluded. 

4.  Least Squares Coefficient Estimation 
The coefficients would be estimated by least squares (LS) method with the following closed form solution 

( )T Tˆ ,X WX X Wy
−

=β
      

(2) 

where ( ) ( )1 1 1diag , , diag , .W n n nw w g f , g f= =   

The actual computation of β̂  is done by applying sweep operations instead of applying equation (2). In 
addition, sweep operations would be applied to transformed scale of X and y to achieve numerical stability. 
Specifically, we construct the weighted sample correlation matrix R then apply sweep operations to it. The 
construction the R matrix is described as follows.  

First, compute weighted sample means, variances and covariances among Xi, Xj, , 1, , ,i j p=   and y : 

Weights sample means of Xi and y are 
1

1

1 n

i k kin
k

k
k

X w x
w =

=

=
∑

∑      (3) 

   and 
1

1

1 n

k kn
k

k
k

y w y
w =

=

=
∑

∑ ;    (4) 

Weighted sample covariance for Xi and Xj is =ijS ))((
1

1

1
jkjiki

n

k
k XxXxw

N
−−

− ∑=
;  (5) 

Weighted sample covariance for Xi and y is ))((
1

1

1

yyXxw
N

S kiki

n

k
kiy −−

−
= ∑

=

;   (6) 

Weighted sample variance for y is ∑
=

−
−

=
n

k
kkyy yyw

N
S

1

2)(
1

1
.      (7) 

 
 
 
 
 
 

If there is no intercept, 
1

1
1

n

ij k ki kj
k

S w x x
N =

=
− ∑ ,      (8) 



kki

n

k
kiy yxw

N
S ∑

=−
=

11
1

,      (9) 

∑
=−

=
n

k
kkyy yw

N
S

1

2

1
1

 .     (10) 

Second, compute weighted sample correlations 
jjii

ij
ij SS

S
r = , ypji &,...,1, = .   (11) 

Implementation notes: All statistics are computed in map/reduce environment, see Section A.2 in Appendix 
A of this section for details. 

Then the matrix R is  

11 12 1 1

21 22 2 2
11 12
T
12 22

1 2

1 2

p y

p y

p p pp py

y y yp yy

r r r r
r r r r

R
r r r r
r r r r

 
 
     =      
 
  

R R
R = R





   





.    (12) 

If the sweep operations are repeatedly applied to each row of 11R  (see Appendix B in this section), where 11R
contains predictors in the model at the current step, the result is  

1 1
11 11 12

T 1 T 1
12 11 22 12 11 12R

− −

− −

 
=  − − 

R R R
R

R R R R R
 .     (13) 

The last column 1
11 12
−R R  contains the standardized coefficient estimates, i.e., 12

1
11 RRb −= . Then the coefficient 

estimates β̂ , except the intercept estimate if there is an intercept in the model could be obtained as follows: 

 ˆ ,yy
j j

jj

S
b

S
β =   j = 1,..., p.       (14) 

5.  Automatic Interaction Effect Detection 
We’d like to catch two-way interaction among main effects in X in the model selection phase, but including all 
possible pairs would make model selection difficult and inefficient. Thus we will limit to the following steps.  
 
 
 
 

1. For all covariates (continuous variables), a squared term of each covariate will be created and included in 
the design matrix X, but not the cross product terms, i.e. suppose there are two continuous variables, say

1 2 and X X , then 2 2
1 2 and X X  will be created, but not 1 2X X× .  

2. For each pair of two factors (categorical variables), say 1 2 and X X , the ANOVA method will be used to test 
whether the interaction effect 1 2X X×  should be included. See Section 5.1 for details. 



3. For each pair of one covariate and one factor, the ANOVA method is used as well. See Section 5.2 for 
details. 
 

However, even with this original limitation, it might not be possible to check all candidate pairs in Steps 2 and 3 
or include all eligible pairs from all 3 steps for the model selection methods in Section 6. The reason is, if there 
are large number of main effects in X, the whole process might require too much memory (so user might receive 
“run out of memory” message and no output at all) or too much computational cost (so user might wait for a 
long time to receive output).  Hence, we provide a two-way-test pair search strategy to restrict number of the 
pairs in those which are more likely to be selected to the final model in the model selection method.  See Section 
5.3 for details. 

5.1. Interaction of two factors 

Suppose the pair of two factors is X1 with known R levels (1, , R ) and X2 with known S levels       (1, , ).S  
Instead of fitting a model for each pair, we will compute some statistics to implement the ANOVA method by 
the following steps: 

1. Create a  R S×  contingency table based on 1 2 and X X  with the following statistics for each combination 
of 1 ,  1, , ,X i i R= =  and 2 ,  1, , :X j j S= =   

ijn  :    the number of distinct records; 

ijkf :    the frequency weight for the kth distinct record, 1, , ;ijk n=   

ijky :    the target value for the kth distinct record, 1, , ;ijk n=   

ijN :  effect sample size (including frequency weights), i.e., 1
;

ijn

ij ijk
i

N f
=

= ∑  

ijy  :  the target mean; 
1

1 ;
ijn

ij ijk ijk
iij

y f y
N =

= ×∑  

,yy ijC : the sum of squared terms of target, i.e. ( )2

,
1

.
ijn

yy ij ijk ijk ij
k

C f y y
=

= −∑  

                                       
X2 

       X1 
1 2 

  S 

        1 11 11 ,11, , yyN y C  12 12 ,12, , yyN y C  
  1 1 ,1, ,S S yy SN y C  

        2 21 21 ,21, , yyN y C  22 22 ,22, , yyN y C  
  2 2 ,2, ,S S yy SN y C  

                
  

        R 1 1 , 1, ,R R yy RN y C  2 2 , 2, ,R R yy RN y C  
  ,, ,RS RS yy RSN y C  

 
 
 
 
 

2. Compute residual sum of squares for the full model which contains two main effects 1 2 and X X and the 
interaction effect 1 2X X× : 

( )2

,
1 1 1

ijnR S

e ijk ijk ijfull
i j k

SS f y y
= = =

= −∑∑∑
     

(15) 



3. Denote e,interactionSS  to be the difference of residual sum of squares between the full model and the main 
effects only model and we will approximate it by the following iterative process: 

(a) Input values for M (maximum number of iterations and the default is 10) and ε  (tolerance level of 
stopping criterion and the default is 1.0e-6).  

(b) Compute the initial value ( )2(0) (0)
,

1 1

R S

e interaction ij ij
i j

SS y N
= =

= ×∑∑ , where  (0)
ijy  is the means from the above 

table.  

(c) Set the iteration number m = 1.  

(d) Update ( ) , 1, , , 1, , ,m
ijy i R j S= =   as follows:   

( 1)

1* ( 1)

1

;

S
m

ij ij
jm

ij ij S

ij
j

y N
y y

N

−

=−

=

×
= −

∑

∑
      (16) 

*

( ) * 1

1

.

R

ij ij
m i

ij ij R

ij
i

y N
y y

N

=

=

×
= −

∑

∑
      (17) 

(e) Compute ( )2( ) ( )
,

1 1
.

R S
m m

e interaction ij ij
i j

SS y N
= =

= ×∑∑
     

(18) 

(f) If ( ) ( 1)
, ,
m m

e interaction e interactionSS SS ε−− <  or ,m M≥ then stop and output ( )
,
m

e interactionSS . Otherwise, set m = m + 1 
and go back to step (d). 

4. Compute the F statistic 

,

,

,e interaction interaction

e full full

SS df
F

SS df
=

      
(19)

 

where interactiondf  and  fulldf  are the degrees of freedom corresponding to ,e interactionSS  and , ,e fullSS  

respectively. And ( )( )1 1interactiondf R S= − − −  , where   is the number of category combinations where 
there are no valid record and 1 .full interactiondf N R S df N RS= − − − + = − +   Then the F statistic follows an 
asymptotic F distribution with degrees of freedom interactiondf  and  fulldf .  

 

 

 

5.  Compute the p-value  

( ),1 Pr .
interaction fulldf dfp F F= − ≤       (20) 

If 0.05,p ≤  then the interaction effect 1 2X X×  would be included in the design matrix X. 



Please see Han (2010) for details. 

5.2. Interaction of a covariate and a factor 

Suppose a covariate is X1 and a factor is X2 with known S levels (1, , ).S  similar to the method used in Section 
5.1, the F statistic is computed by the following steps: 

1. Create a  1 S×  table based on 2 ,  1, , ,X j j S= =   with the following statistics: 

jn  :    the number of distinct records; 

jkf :    the frequency weight for the kth distinct record, 1, , ;jk n=   
jky :    the target value for the kth distinct record, 1, , ;jk n= 

  

jN :  effective sample size (including frequency weights), i.e., 1
;

jn

j jk
i

N f
=

= ∑  

1, ,  j jX y  :  the means of X1 and y;  i.e.,  1, 1,
1 1

1 1  and  ;
j jn n

j jk jk j jk jk
i ij j

X f X y f y
N N= =

= × = ×∑ ∑  

1 1 , ,, x x j yy jC C : the sum of squared terms of X1 and Y, i.e., ( )1 1

2

, 1, 1,
1

,
jn

x x j jk jk j
k

C f X X
=

= −∑

( )2

,
1

;
jn

yy j jk jk j
k

C f y y
=

= −∑
 

1 ,x y jC  :  the sum of cross product terms of X1 and Y, i.e., ( )( )1 , 1, 1,
1

.
jn

x y j jk jk j jk j
k

C f X X y y
=

= − −∑  

 

2. Compute residual sum of squares for the full model which contains two main effects 1 2 and X X and the 
interaction effect 1 2X X× : 

( )1

1 1

2

,
,,

1 1 ,

.
S S

x y j
e yy jfull

j j x x j

C
SS C

C= =

= −∑ ∑
     

(21)

 
3. Compute residual sum of squares for the main effects model which contains two main effects only:  

1

1 1

2

,
1

,,
1

,
1

.

S

x y jS
j

e yy jmain S
j

x x j
j

C
SS C

C

=

=

=

 
 
 = −
∑

∑
∑

     

(22) 

4. Compute the F statistic 

( ) ( )
( )

, ,

,

1
,

2
e main e full

e full

SS SS S
F

SS N S
− −

=
−      

(23) 

 
 
 
 

and it follows an asymptotic F distribution with degrees of freedom 1S −  and  2N S− . 

5. Compute the p-value  

( )1, 21 Pr .S N Sp F F− −= − ≤       (24) 

If 0.05,p ≤  then the interaction effect 1 2X X×  would be included in the design matrix X. 



Please see Zheng (2010) for details. 

Implementation notes:   

• All statistics are computed in map/reduce environment, see Section A.4 in Appendix A of this chapter 
for details. 

• If there is no valid record in any category then adjust S value accordingly.  

• Regression weights will not be used even it is specified. 

• If  ,0, =fulleSS  then F statistics is assigned as sysmis and the p value for F statistic is as follows: 

( )
( )

,main ,

,main ,

0 if 0 
-value = 

sysmis if = 0, 

e e full

e e full

SS SS
p

SS SS

 − ≠


−
 

If -value sysmis,p =  then the interaction effect 1 2X X×  would NOT be included in the design matrix 
X. 

Please note that we will treat 0, =fulleSS  or ( ),main , 0e e fullSS SS− =  when two criteria are met:  
**

, pSSSS tfulle ××≤ ε
  

and 80.1, −≤ eSS fulle  or ( ) * *
,main ,e e full tSS SS SS pε− ≤ × × and 

( ),main , 1.0 8,e e fullSS SS e− ≤ −  
respectively, where ε ∗  is machine epsilon (about 2.2e-16), p∗ is the 

number of non-redundant estimated parameters for the full model and 1p RS∗ = − −  here, tSS  is 

total sum of squares for  the target and it can be computed by 2

1

( )
n

t i i
i

SS f y y
=

= −∑  and please see 

Section A.2 in Appendix A  on how to compute it in map/reduce environment.  

• Regarding Eq. (5), if 𝐶𝐶𝑚𝑚1𝑚𝑚1,𝑗𝑗 = 0, then the item �𝐶𝐶𝑚𝑚1𝑥𝑥,𝑗𝑗�
2 𝐶𝐶𝑚𝑚1𝑚𝑚1,𝑗𝑗�  is set to 0. 

• Regarding Eq. (6), if ∑ 𝐶𝐶𝑚𝑚1𝑚𝑚1,𝑗𝑗
𝑆𝑆
𝑗𝑗=1 = 0, then 𝑆𝑆𝑆𝑆𝑒𝑒,𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛  is set to missing. That is to say, the interaction of 

𝑋𝑋1 and 𝑋𝑋2 is not significant.  

 

5.3. Two-way-test pair search strategy 

Suppose there are m main effects (factors and covariates), the number of parameters for them is 𝑝𝑝𝑚𝑚 (excluding 
the intercept) and the number parameters for covariates is  𝑝𝑝𝑐𝑐𝑚𝑚 .  

Input values (integers) for 𝑚𝑚1 (threshold value to conduct interaction effect detection; the default is 100), 𝑚𝑚2 
(threshold value to select main effects for interaction effect detection; the default is 50) and 𝑝𝑝max (maximum 
number of parameters the system can handle; the default is 5000), where 𝑚𝑚1 ≥ 𝑚𝑚2.  
 
 
 
 
 
 

When (𝑝𝑝max > 𝑝𝑝𝑚𝑚 + 𝑝𝑝 𝑐𝑐𝑚𝑚) and 𝑚𝑚 > 𝑚𝑚2, then the strategy will be conducted with the following steps: 

1. Build a linear model using all main effects 𝑿𝑿1,𝑿𝑿2,⋯ ,𝑿𝑿𝑚𝑚 using the sweep operation method described in 
Section 4. 

2. Select the significant main effects (𝑝𝑝 < 0.05) based on tests of model effects based on Wald test. Assume 
there are 𝑚𝑚′ significant effects. 

3. If (𝑚𝑚′ < 2) or (𝑚𝑚′ > 𝑚𝑚1), then stop and no interaction detection is conducted. Otherwise, sort the main 
effects using p-value in ascending order.  



4. Select the top 𝑚𝑚′′(= min(𝑚𝑚′,𝑚𝑚2))  main effects to construct two-way interaction effects (of two factors, 
and one covariate and one factor) among these 𝑚𝑚′′ main effects. 

5. Test all candidate interaction effects using the methods given Sections 5.1 and 5.2. 

6. Calculate the total number of parameters for all significant interaction effects, denoted by 𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑟𝑟 , if 𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑟𝑟 <
(𝑝𝑝max − 𝑝𝑝𝑚𝑚 − 𝑝𝑝 𝑐𝑐𝑚𝑚), then output all significant interaction effects and stop; otherwise go to step 7. 

7. Calculate effect size for each significant two-way interaction effect 

𝜂𝜂2 = 𝑆𝑆𝑆𝑆𝑒𝑒,𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛
𝑆𝑆𝑆𝑆𝑖𝑖

       (25) 

where 𝑆𝑆𝑆𝑆𝑒𝑒,𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑟𝑟𝑚𝑚𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 denotes to be difference of weighted residual sum of squares between the full model 
and the main effects only model, please see Sections 5.1 and 5.2 for formulae and 𝑆𝑆𝑆𝑆𝑖𝑖 denotes the weighted 
sum of squares for the target, please see Section 5.1 for formula. 

8. Sort all significant two-way interaction effects using their effect sizes in descending order and select and 
output top-𝑘𝑘 interaction effects, where 𝑘𝑘 is the maximum number satisfying the number of parameters for 
top-𝑘𝑘 interaction effects is less than or equal to (𝑝𝑝max − 𝑝𝑝𝑚𝑚 − 𝑝𝑝 𝑐𝑐𝑚𝑚). 

When (𝑝𝑝max > 𝑝𝑝𝑚𝑚 + 𝑝𝑝 𝑐𝑐𝑚𝑚) and 𝑚𝑚 ≤ 𝑚𝑚2, the strategy will be similar to the one given above, except that the 
step of constructing two-way interaction effects: here, two-way interaction effects are directly constructed 
among all 𝑚𝑚 main effects rather than based on 𝑚𝑚′′ significant main effects. 

After the strategy is conducted, the total number of parameters of candidate effects for model selection methods 
is smaller than a threshold value and the candidate effects will include (1) all main effects; (2) square terms of 
all covariates; (3) some (or all) significant interaction effects. 

6.  Model Selection 
For the small to median p situations (𝑝𝑝max ≥ 𝑝𝑝) which means the R matrix can be fit into memory or, we will 
support three model selection methods: (1) none; (2) forward stepwise; and (3) best subsets. 

For the large p situations (𝑝𝑝max < 𝑝𝑝), we will utilize ADMM to conduct model selection which is similar to 
LASSO and details would be provided later. 

6.1. None  

No selection method is used.   

 
6.2. Forward stepwise 

The basic idea of the forward stepwise method is to start off by choosing the best effect in addition to the 
intercept if exists and then tries to enter additional effect one at a time as long as these additions are worthy. 
After an effect has been added, all effects in the current model are checked to see if any of them should be 
removed. Then the process continues until a stop criterion is met.  

 

The traditional criterion for effect entry and removal is based on the F-statistics, which their corresponding p-
values are used to compare with some specified entry and removal significance levels, but they do not follow an 
F distribution so the results might be questionable. Hence three additional criteria for effect entry and removal 
are offered: (1) maximum adj. R2; (2) minimum corrected Akaike information criterion (AICC); and (3) 
minimum average square error (ASE) over the overfit prevention data.  

How to calculate these statistics and the selection process are described in details below. 



6.2.1. Candidate statistics 

Some clearer notations are needed to calculate the following 4 statistics for a continuous effect Xj or categorical 
effect 1{ }

sj sX =
  entering to and removing from the current model as follows in each step.  

*
  The number of non-redundant parameters of the eligible effect Xj or 1{ }

sj sX =
 . 

cp  The number of non-redundant parameters in the current model (including an intercept 
if exists).  

rp  The number of non-redundant parameters in the resulting model (including the 

intercept if exists).  Note that 
*

*

  for entering an effect
  for removing an effect

c
r

c

p
p

p

 += 
−





 

pSSe  The weighted residual sum of squares for the current model. 

pSSe +  The weighted residual sum of squares for the resulting model after entering the effect. 

pSSe −  The weighted residual sum of squares for the resulting model after removing the 
effect. 

yyr  The last diagonal element in the current R matrix. 

yyr  The last diagonal element in the resulting R  matrix. 

 

(1) F-statistics: 

The F-statistics are different for an effect Xj or 1{ }
sj sX =
  entering to and removing from the current model as 

follows: 

*

*

( ) / ( )( )
/( )j

r
p p yy yy

enter r
p yy

SSe SSe r r N p
F

SSe N p r
+

+

− − −
= =

− ×










 and   (26) 

( )
( )

( )( )*

*

/

/j

c
yy yyp p

remove c
yyp

r r N pSSe SSe
F

rSSe N p
− − −−

= =
×−









, respectively.  (27) 

Then the p-values corresponding to the above F-statistics are 

 

 

 

( ) ( )* *, ,1r rj j jenter enter enterN p N pp P F F P F F
− −

= ≥ = − ≤
 

 and   (28) 

( ) ( )* *, ,1c cj j jremove remove removeN p N pp P F F P F F
− −

= ≥ = − ≤
 

, respectively. (29) 

 

(2) adj. R2: 



The adj. R2 value for the resulting model when an effect entering to or removing from the current model is 
as follows: 

( )
2

1
1   if there is an intercept

adj. 
1        if there is no intercept

yy
r

yy
r

N r

N p
R

N r

N p

 −
−

−= 
× − −





    (30) 

(3) AICC: 

The AICC value for the resulting model when an effect entering to or removing from the current model is as 
follows: 

( 1) 2ln
1

r
yy yy

r

N S r p NAICC N
N N p

− × 
= + 

− − 



     (31) 

(4) ASE: 

The ASE value over the overfit prevention data for the resulting model when an effect entering to or removing 
from the current model is as follows: 

( )2
1

1

1 ˆ
T

t t tT
t

t
t

ASE w y y
f =

=

= −∑
∑

      (32) 

where ˆˆt ty = x β  is  the predicted values of yt and  T is the number of distinct testing cases in the testing 
(overfit prevention) data.  

 

6.2.2. The selection process 

The nature of F-statistics criterion is different from the other three criteria. The F-statistics criterion is to select 
an effect for entry (removal) with the minimum (maximum) p-value and continue doing it until the p-values of 
all candidates for entry (removal) are equal to or greater than (less than) a specified significance level. The other 
three criteria are to compare the statistic (adj. R2, AICC or ASE) of the resulting model after entering (removing) 
an effect with that of the current model and selection would be stopped at a local optimal value (a maximum for 
the adj. R2 criterion but a minimum for the AICC criterion and ASE criterion). Hence the following selection 
process is described in terms of the F-statistics criterion (denoted as FC) and AICC criterion (denoted as AC), 
then it should be easy to change from AICC criterion to the other two criteria). 

 

 

 

Some definitions are needed for the selection process: 

FLAG A 1ep ×  index vector which records the status of each effect. FLAGi = 1 means 
the effect i is in the current model, FLAGi = 0 means it is not. Note that 
{ | 1}ii FLAG =  denotes the number of effects with FLAGi = 1. 

MAXSTEP The maximum number of iteration steps. The tentative default value is 3 ep× . 



MAXEFFECT The maximum number of effects (excluding intercept if exists). The default value 
is ep .  

Pin The significance level for effect entry when F-statistics criterion is used. The 
default is 0.05. 

Pout The significance level for effect removal when F-statistics criterion is used. The 
default is 0.1. 

F∆  The F-statistic change. It is  
jenterF  or 

jremoveF  for entering or removing an effect 

Xj  (here Xj could represent continuous or categorical for simpler notation). 

Fp∆  The corresponding p-value for F∆ . 

AICCcurrent The AICC value for the current model. 

  

(1) Set 1{ } 0
ep

i iFLAG = =  and iter = 0. If there is an intercept, the initial model is yy =ˆ , otherwise it is 0ˆ =y .  If 
AC (AICC criterion, similarly for other two criteria) is used, compute AICC for the initial model and 
denote it as AICCcurrent.  

(2) If { | 0}ii FLAG φ= ≠ , iter < MAXSTEP and { | 1}ii FLAG MAXEFFECT= < , go to next step (3); otherwise 
stop and output the model .  

(3) Based on the current model, for every effect j eligible for entry (see Condition below) ,  

if FC (F-statistics criterion) is used, compute 
jenterF  and 

jenterp ;  

if AC is used, compute AICCj.  

(4) If FC is used, choose the effect { }* , arg min
jenterj j

X j p∗ =  and if 
*j

enterp < Pin, enter ∗jX  to the current 

model. 

IF AC is used, choose the effect { }*
*, arg min jj j

X j AICC=  and if *jAICC < currentAICC , enter ∗jX  to the 

current model.  

(Note that for adj. R2 criterion, { }* 2arg max adj. j
j

j R=  and *
2 2adj.  adj. currentjR R> .) 

Then go to (5); otherwise stop and output the current model. 

 

(5) If the model with new effect is the same as any previous ones, stop and output the current model; otherwise 
update the current model by doing sweep operation on corresponding row(s) and column(s) associated with 

∗jX  in the current R matrix.  Set 1=∗jFLAG and iter = iter + 1.  

If FC is used, let
*j

enterF F∆ =  and
*j

F enterp p∆ = ;  

if AC is used, let *jcurrent AICCAICC = . 

(6) For every effect k in the current model (i.e., 1,  kFLAG k= ∀ ),  

if FC is used, compute 
kremoveF  and 

kremovep ; 



if AC is used, compute AICCk.  

(7) If FC is used, choose the effect { }*
*,  arg max

kremovek k
X k p=  and if 

*k
removep > Pout, remove ∗kX  from the 

current model. 

If AC is used, choose the effect { }*
*,  arg min kk k

X k AICC=  and if *kAICC  < currentAICC , remove ∗kX  from 

the current model. 

(Note that for adj. R2 criterion, { }* 2arg max adj. k
k

k R=  and *
2 2adj.  > adj. currentkR R .) 

Then go to (8); otherwise go back to (2).  

(8) If the model with the effect removed is the same as any previous one, stop and output the current model; 
otherwise update the current model by doing sweep operation on corresponding row(s) and column(s) 
associated with ∗kX  in the current R matrix. Set 0kFLAG ∗ = and iter = iter + 1.  

If FC is used, let
*k

removeF F∆ =  and
*k

F removep p∆ = ;  

if AC is used, let *current kAICC AICC= . Then go back to (6).  

 
Condition 

Eligible for entry conditions for the effect j: (i.e., 0,  jFLAG j= ∀ ) 

a) For continuous effect Xj , jjr t≥  (singularity tolerance t with a default of 1e-4); 

For categorical effect 1{ }
sj sX =
 , 

1 1 2 2
max{ , , , }j j j j j jr r r t≥

 


. 

Note that here jjr  and ,  1, , ,
s sj jr s =  

 are diagonal elements in the current R matrix (before entering).  

b) For each continuous effect Xk that is currently in the model, 1kkr t ≤ .  

For each categorical effect '
1{ }

sk sX =
 with ' levels that is currently in the model, 

1 1 2 2 ' '
max{ , , , } 1k k k k k kr r r t ≤

 

  


.  

Note that here kkr and ,  1, , ',
s sk kr s =

 
 are diagonal elements in the resulting R matrix, i.e., the results 

after doing sweep operation on corresponding row(s) and column(s) associated with Xk or '
1{ }

sk sX =
  in 

the current R matrix. 

 

 

 

The above condition is imposed so that entry of the effect does not reduce the tolerance of other effects 
already in the model to unacceptable levels. 

Rules for entering or removing effects when interaction effects are present:  

1. NONE 

No requirement need be satisfied for any effects in the model. 

 

2. SINGLE (default) 

Hierarchy requirement is satisfied for all effects in the model. It stipulates that, for any effect to be in a 
model, all lower-order effects that are part of the former effect must also be in the model. For example, 
given A, X, and A*X, then for A*X to be in a model, the effects A and X must also be in the model. 



 
3. SFACTOR 

Hierarchy requirement is satisfied for all factor-only effects in the model. 

 
4. CONTAINMENT 

Containment requirement is satisfied for all effects in the model. It stipulates that, for any effect to be in 
the model, all effects contained in the former effect must also be in the model.  

The meaning of containment is that, for any two effects F and F’, F is contained in F’, if: 

• Both effects F and F’ involve the same covariate effect, if any. (Note that effects A*X and A*X*X are 
not considered to involve the same covariate effect because the first involves covariate effect X and 
the second involves covariate effect X**2.)† 

• F’ consists of more factors than F. 

• All factors in F also appear in F’.  

The following table illustrates how the hierarchy and containment requirements mean for effect entering and 
removing. The cells contain the order in which effects must occur in the model. 

Effects SINGLE SFACTOR CONTAINMENT 

A,B,A*B 1. A, B 

2. A*B 

1. A, B 

2. A*B 

1. A, B 

2. A*B 

X, X**2, X**3 1. X 

2. X**2 

3. X**3 

Effects can occur in the model 
in any order. 

Effects can occur in the 
model in any order. 

A, X, X(A) 1. A, X 

2. X(A) 

Effects can occur in the model 
in any order. 

1. X 

2. X(A) 

Effect A can occur in the 
model in any order. 

A, X, X**2(A) 1. A, X 

2. X**2(A) 

Effects can occur in the model 
in any order. 

Effects can occur in the 
model in any order. 

†  A  B are factors and X is covariate effect. 

‡ The intercept effect is contained in all the pure factor effect. However it is not contained in any effect 
involving a covariate. No effect is contained in the intercept effect. 

 

 

 

£ This is an important definition, since all type II, type III and Type IV estimable functions rely on this 
definition. 

§ In the implementing, it is useful to store “hierarchy” and “contained” information for each effect in order to 
define the order of sweeping and calculation of the Type III sums of square. 

 

6.3.  Best subsets (will update the relevant default values later) 
Stepwise method based on adding or removing effect one at a time with respect to some criterion is a method to 
do model selection. However, these methods search fewer combinations of sub-models and rarely select the best 
one, so to select the best one according to some criterion is to check all possible models. The available criteria 
are (1) maximum adj. R2; (2) minimum AICC; and (3) minimum ASE over the overfit prevention data.    



Since there are ep  free effects no matter whether there is an intercept in the model or not, we do exhaustive 

search over 
ep2 models, which include intercept-only model ( ˆ =y y ) if there is an intercept, or the null model (

ˆ =y 0 ) otherwise. Because the number of calculations increases exponentially with ep , it is important to have 

an efficient algorithm for carrying out the necessary computations. However, if ep  is too large, it may not be 
practical to check all of the possible models.  

We divide the problem into 2 tiers in terms of the number of effects: (1) when 20ep ≤ , we do all-possible-

subset search; (2) when ep > 20, we apply a hybrid method which combines forward stepwise method and all 
possible subset method. 

 

6.3.1. All possible subset method for the first tier problem 

If ep ≤ 20, we do exhaustive search of all the possible sub-models.  

An efficient method, which was proposed by Schatzoff (1968) and would have the minimum number of sweep 
operations on the R matrix, is applied to traverse all the models and outlined as follows: 

Each sweep step(s) on one effect results a model. So 
ep2 models can be obtained through a sequence of exactly

ep2 sweeps on effects. Assume that the all possible models on 1−ep  effects can be obtained in a sequence

1−epS of exactly 12 −ep sweeps on the first 1−ep pivotal effects. And sweeping on the last effect will produce a 

new model which adds the last effect to the model produced by the sequence 1−epS . Then repetition of the 

sequence 1−epS will produce another 12 −ep distinct models (including the last effect).  It is a recursive algorithm 

for constructing the sequence epS , i.e., 1 1 2 2 2 2, , , 1, , , , 1, ,e e e e e e ep p p p p p pS S k S S k S k S k S− − − − − −
   = = − − =   
   



etc.  

The sequence of model produced is demonstrated in the following table: 

k Sk
* Sequence of models produced 

0 0 Only intercept 

  



1 1 (1)** 

2 121 (1),(12),(2) 

3 1213121 (1),(12),(2),(23),(123),(13),(3) 

4 121312141213121 (1),(12),(2),(23),(123),(13),(3),(34),(134),(1234),(234),(24),(124),(14),(4) 

… … … 

pe Sp
e
-1, pe, Sp

e
-1 All

ep2 models including the intercept model.  

 *   The indexes of effects which are pivoted on.  

** Each parenthesis in the third column represents a regression model. The numbers in the parentheses 
indicate the effects which are included in that model. 

 

6.3.2. Hybrid method for the second tier problem  

If ep > 20, we apply a hybrid method by combining the forward stepwise method with possibly all possible 
subset method as follows: 

(1) Select the effects by the stepwise method (note that the same criterion used to select the best model is also 
used in the forward stepwise and see Section 6.2.2 for details). Assume ps is the number of these effects. 

(2) Apply different approaches, depending on the value of ps, as follows: 

(a) If ps ≤ 20, do exhaustive search of all possible subsets on these selected effects via the method in 
Section 6.3.1.  

(b) If 20 < ps ≤ 40, select ps – 20 effects based on the p-values of type III sum of squares tests from all ps 
effects (see Section 7.2) and enter them to the model as a constant part, then do exhaustive search of all 
remaining 20 effects via the method in Section 6.3.1, i.e., do exhaustive search on remaining 20 effects 
with ps – 20 effects always in the model. 

(c) If 40 < ps, do nothing and assume the best model is the one with these ps effects (with a warning 
message that the selected model is based on the forward stepwise method). 

7. Model and Predictor Summary  

7.1. Coefficients and statistical inference 
After the model selection process, we can get the coefficients and related statistics in or not in from the swept 
correlation matrix. The following statistics are computed for each effect in the model or not in. 

All the effects with FLAGj =1 are currently in the model, as well as intercept (if exists). We calculate these 
below base on the R~  matrix. 

• Unstandardized coefficient estimates  
 
 
 
 
 
 



ˆ yy yy
j j jy

jj jj

S S
b r

S S
β = =   1, , ,j p∗=      (33) 

The redundant coefficient estimates are set to zero. 

• Standard errors of regression coefficients   

The standard error of jβ̂ is  

( )ˆ
ˆˆ var( )

1j

jj yy yy jj e
j

jj e jj e

r r S r SS
S df S N dfβσ β

×
= = =

× −

  

   (34) 

• Intercept estimation  

If the model includes an intercept, the intercept is estimated by all other parameters in the model as 

0
1

ˆ ˆ
p

j j
j

y Xβ β
=

= −∑        (35) 

 The standard error of 0β̂ is estimated by 

0 0

2
ˆ ˆˆ ˆ   β βσ σ= with 

( )

( )

0

1
2 2 2
ˆ ˆ*

1 1 1

1
2 2

ˆ
1 1 1

( 1) ˆ ˆˆ ˆ 2 cov ,
( 1)

ˆ 2 .
1

j

j

p p p
yy yy
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• t-statistics for regression coefficients  

t - statistic for jβ̂ is  

ˆ

ˆ

ˆ
j

j e
jy

yy jj

dft r
r rβ

β
σ

= = 
 

 ,  j = 0,1,…, p,     (37) 

and it follows an asymptotic t distribution with the degree of freedom edf . Then the p-value is 
computed as  

 ( )( )2 1
edfp prob t t= × − ≤ .      (38) 

• 100( α−1 )% confidence internals  

ˆ 2,
ˆ ˆ .

ejj dftαβ
β σ± ×       (39) 

 
 
 
 
 



7.2. ANOVA (Tests of model effects)  
• Weighted total sum of squares (SSt)  

2

1

2

1

( ) ( 1)  with d.f. =  = 1 if there is an intercept

( 1)            with d.f. =  =       if there is no intercept 

n

i i yy t
i

t n

i i yy t
i

w y y N S df N

SS

w y N S df N

=

=


− = − −


= 
 = −


∑

∑
,   (40) 

where d.f. means degrees of freedom. It is called “SS (sum of squares) for Corrected Total” if there is 
an intercept or “SS for Total” if there is no intercept. 

 
• Weighted residual sum of squares (SSe)  

2

1

ˆ( ) ( 1)
n

e i i i yy yy
i

SS w y y r N S
=

= − = −∑    with d.f. = dfe = N – pc.   (41) 

It is also called “SS for Error”. 

• Weighted regression sum of squares (SSr)   

2
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2

1

ˆ( ) (1 )( 1)   if there is an intercept

ˆ (1 )( 1)            if there is no intercept
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=
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 = − − = −


∑

∑





,   (42) 

with d.f. = rdf p∗= . It is called “SS for Corrected Model” if there is an intercept, or “SS for Model” if 
there is no intercept. 

 
• Regression mean square error  

/r rSS df .        (43) 

• Residual mean square error  

/e eSS df .        (44) 

• F statistic for corrected model  

/
/

r er r

e e e r

SS dfSS dfF
SS df SS df

⋅
= =

⋅
,      (45) 

which follows an F distribution with degrees of freedom dfr and dfe , and the corresponding p-value 
can be calculated accordingly. 

 
• Type III sum of squares for each effect  

To compute type III SS for the effect j, 1, , ,ej p= 
 type III test matrix Li needs to be constructed first. 

Construction of matrix Li is based on the generating matrix  

 



( )T T ,ω

−
=H X DX X DX  where 1diag( , , )ng g=D  , such that Liβ  is estimable. It involves 

parameters only for the given effect and the effects containing the given effect. For type III analysis, Li 
doesn’t depend on the order of effects specified in the model (but it does for type I analysis). If such a 
matrix cannot be constructed, the effect is not testable. See Chiu (1995a, b) for computational details on 
construction of type III test matrices.  

For each effect j, type III SS is calculated as follows 

T T T 1ˆ ˆ( )j j j j j
−=S β L L GL L β      (46) 

where ( )T −=G X WX . 

Implementation notes: 

• The X matrix in G only includes the effects selected into the final model, so does R . Obtain G 
from 11R  (the upper left-hand p p× block matrix of R ) as follows: 

T
01 01

11 11 11

11 11 11

1 1 1
  if there is an intercept

                                         if there is no intercept

nW          =      



A A
G A R A

A R A





0
0 0 0   (47) 

where 
1

n

k
k

wnW
=

= ∑ , ( ) ( )( )11 11diag 1 1 , ,1 1 ,ppN S N S= − −A   and 

T
01 11 1 11, , pX X = − = −  A X A A . Note that  and ,  1, , ,i iiX S i p= 

 are weighted sample mean 

and variance for iX , respectively; and p denotes the number of parameters (excluding intercept) in 
the final model. 

After some algebra, G can be expressed as follows if there is an intercept 

T T
11 11 11 11 11 11

11 11 11 11 11 11

1 nW + −
=  

−  

X A R A X X A R AG
A R A X A R A

 

 

.   (48) 

• Obtain  jS  by sweeping the following matrix 

T

T 0

j j j

j

 −
 
 
 

L GL L β

L β

ˆ

ˆ( )
,       (49) 

then the last diagonal element of the resulting matrix corresponds to jS . 

• F statistic for each effect 

The above SS for the effect j is also used to compute the F statistic for hypothesis test H0: Ljβ = 0 as 
follows: 

j j
j

e e

r
F

SS df
=

S
       (50) 

 



where jr  is the full row rank of iL . It follows an F distribution with degrees of freedom ir  and edf , 

then the p-values can be calculated accordingly. 

Note that the parameter estimate covariance matrix is used in the above F statistic implicitly as it is 
e eSS df ×G .  

7.3. Model quality measures 

The squared multiple correlation coefficient (R square) or coefficient of determination is to measure of how 
much of the variation in the data is explained by the model. It denoted by R2, is expressed as 

2 1 1 .er
yy

t t

SSSSR r
SS SS

= = − = −   

 
• Adjusted R square  

2
2 2 (1 )adj. 1 1 t yye e

t t e e

df rSS df R pR R
SS df df df

∗ ×−
= − = − = −



.   (51) 

• Corrected Akaike information criterion (AICC)   

2ln .
1

c
e

c

SS p NAICC N
N N p

 = +  − − 
      (52) 

7.4. Predictor importance (PI) 

The predictor importance computation for all modelling engines would be based on “variance-based sensitivity 
analysis” which is a model free method and has been used many models in Modeler, such as Regression (older 
version of ALM), Tree, Logistic regression, genlin, etc. (see Zhong (2008) and Xu (2011) for details).  

7.5. EMMEANS  
The EMMEANS for significant effects would be computed and compared based on some contrasts. Please see 
Zheng (2009) for details. 

However, the contrast types and adjustment methods would be determined later. 

7.6. Grouping and unusual category detection  
For a significant factor or factor interaction from the ANOVA table, some categories or category combinations 
must have statistically significant impact on the target and we can partition them into high and low groups. The 
following process is used to find the high and low groups and the possible middle group among all categories 
of a significant factor with at least 3 categories. Note that grouping and unusual category detection analyses 
would not be conducted for any insignificant factors or factor interactions, i.e., their p-values are larger than the 
significance level (including sysmis); and the description is for a significant factor, but it should be applied to a 
factor interaction similarly. 

 

 



1) For a significant factor with m categories, mCC ,,1  , compute the EMMENS, 1, , mEM EM  and their 

corresponding standard errors, 
1

ˆ ˆ, , .
mEM EMσ σ

 

2) Sort the EMMEANS by a descending order. Without loss of generality, assume they are 1, , mEM EM  

so 1EM  has the largest EMMEAN and mEM  has the smallest EMMEAN. 

3) At first, the category with largest EMMEAN is formed the high group. Then test if there is a difference 
between the second largest EMMEAS and the largest EMMEAN. The test statistic is similar to the 
pairwise contrast statistics described in Zheng (2009),  

( )1 2

1 2
1 ˆ EM EM

EM EMt
σ −

−
=        (53) 

where ( )1 2
ˆ EM EMσ −  is the corresponding standard error for  1 2 .EM EM−  It has an asymptotic t  

distribution with dfe  (= N – pc ) degrees of freedom. The corresponding p-value could be computed as 
follows: 

            
|)|(1 1ttprobp

edf ≤−=       (54)
 

If the null hypothesis is not rejected, i.e., the p-value > α  (significance level specified by user, default is 
0.05), then the category with the second largest EMMEAN will be added to the high group.  

Implementation notes: 

• If 021 =−EMEM , then  there is no need to compute ( )1 2
ˆ EM EMσ −  

and assign 1=p , i.e., the 
category with the second largest EMMEAN will be added to the high group.  

• If 021 ≠−EMEM  and 0ˆ )( 21
=−EMEMσ , then 0=p  and stops. Please note that 0ˆ )( 21

=−EMEMσ  

should only happen when there is a perfect fit, i.e., e tSS SS pε ∗ ∗< × ×  and 1.0 8,eSS e< −  where 

,  and tSS pε ∗ ∗
 are defined in Section 7.2.  

4) Repeat the same process for the next EMMEANS in line, i.e., compare  3EM  with 1EM , compare  

4EM  with 1EM , etc. until there is no category can be added into the high group. 
5) Similarly, form the low group from the smallest EMMEAN for those categories not assigned to the high 

group. 

6) If there still exist some categories after forming the high and low groups, they are grouped into the middle 
group. 

Furthermore, there might exist few categories or category combinations with extremely high or low 
EMMEANS in the high or low group. We call such categories or category combinations “unusual categories”.  
The process to detect those “unusual categories” for a significant factor is described as follows: 

First, suppose there are m categories, mCC ,,1  , for a significant and corresponding EMMEANS are 

mEMEM ,1  respectively. The number of records in mCC ,,1   are mnn ,,1  , respectively. Then the 

unusual category detection process is described as follows: 

 

http://miamoss1/RD/products/components/Documents/Algorithm%20%20EMMEANS%20and%20Custom%20Tests.doc


(1) Find the median of m EMMEANS, incorporating the number of records in each category (suppose The 

number of records in mCC ,,1   are mnn ,,1  , respectively). Denote the median as M , then 

( )
mnmn EMEMmedianM ,,1 ,,

1
= , where

iniEM , is a set which contains only iEM  value with in  of 

them. 

(2) Compute the median absolute deviation (MAD) of m EMMEANS, again incorporating with the number of 
records in each category  

),||,,|(|
11 mnmn MEMMEMmedianMAD −−= 

   (55) 

where 
ini MEM || − is a set which contains only || MEM i −  value with  but the in  of them. 

(3) Compute the modified z-score for each Ci  

if 0 
1.4826

if 0,
1.253314

i

i
i

EM M MAD
MADz

EM M MAD
MeanAD

− ≠ ×=  − =
 ×     

(56) 

where 
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1 | |.
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i

i
i

MeanAD n EM M
n =

=

= −∑
∑

  

(4) Detect unusual category as follows: 

If  𝑧𝑧𝑖𝑖 >    3, a category iC  has an unusually high EMMEAN in the high group. 

If  𝑧𝑧𝑖𝑖 < −3, a category iC   has an unusually low EMMEAN in the low group. 

Repeat the processes for grouping and unusual category detection analyses for all significant factors and factor 
interactions. 

8. Scoring  

8.1. Predictive and residual values 
After the model has been fit, predicted and residual values are usually calculated and output. 

Notice that the predicted values can be computed for the case not used in the model-building phase. That is the 
response variable can be missing and the predicted values are still computed as long all the predictor variables 
have non-missing values in the given model. An additional requirement is that given predictor variable values 
could be properly parameterized by using only the existing model parameters. See Woods (2004), “Guidelines 
for Scoring under Various Data and Model Conditions,” for details. 

 

 

 

 



• Predicted values  

0

ˆˆ ,  1, , .
p

k ki i
i

y x k nβ
=

= =∑         (57) 

• Residuals  

kkk yye ˆ−=        (58) 

• Studentized residuals  

This is the ratio of the residual to its standard error. 

(1 )k
k

k
k h

g

eSRES
s −

= ,      (59) 

where s is the square root of the mean square error, i.e., e es SS df= and kh  is the leverage value for 
the case k (see section 8.2 below). 

• Deleted residuals   

The deleted residual for case k is defined as the residual for the kth case that results from dropping the 
kth case from the parameter estimates. 

(1 )k k kDRESID e h= − .        (60) 

• Studentized deleted residuals  

( ) ( )1
k

k
k kk

eSDRESID
s h g

=
−

,     (61) 

 where ( ) ( ) ( ) ( )
2

2 2 21 with 
1 1

k k
ek k k

e k

g es s s df s
df h

 ⋅
= = ⋅ −  − − 

. 

8.2. Influence statistics 
These statistics can be calculated for each case to measure the influence of each case on the estimates.  

• Leverage values  

The leverage value kh is defined as the kth diagonal element of the hat matrix H with 

( )1 2 T T 1 2 1 2 T 1 2−
= =H W X X WX X W W XGX W    (62) 

so T
k k k kh g= x Gx , 1, 2, ,k n=  . 

Implementation note: 

We can compute kh  in two ways and it is up to software engineer to decide which one is easier and 
faster: 

 



(a) Plug ( )T −
=G X WX , which how to compute is described in Section 6.1, into T

k k k kh g= x Gx .  

(b) Compute kh  directly as follows: 
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       (63) 

Computing hk  is just related to the effects in the model, that is, we exclude the indices i and j 
corresponding to the effects out of the model in the sum from 1 to p. but since we have constructed 
the G matrix in computing type III SS, we could turn back to formula in (a) to get hk.  

• Cook’s distance  

( )

2

22 1
k k k

k c
k

e h gCOOK
s h p

=
−

.      (64) 

8.3. Influential outliers 
We will identity a record to be an influential outlier based on the following two statistics: 

(1) Cook’s distance is larger than 
4

cN p−
 (Fox, 1997). 

(2) The absolute of studentized delete residual is larger than 2 (or 2.5).  

The definition of Cook’s distance is in Section 8.2 and and the definition of studentized delete residual is in 
Section 8.1. 

9. Model diagnostics  
For all assumptions in linear regression, we will only test homoskedasticity formally. If the test is rejected, the 
robust (or heteroskedasticity consistent or sandwich estimator) for covariance matrix of coefficient estimates 
would be computed then relevant statistics/tests would be updated accordingly. There are several assumptions 
entered the inferences for the estimators of the model. If all these assumptions are held, we can be confident 
about the estimated coefficients and their statistics are unbiased, efficient and consistent. The model diagnostics 
is to check whether these assumptions are held, how serious the consequence if one or more assumptions were 
found being violated indeed and what should be done in this situation. Currently, we focus on testing the 
assumptions of normality and homoscedasticity.  

9.1.  Homoskedasticity  

The homoskedasticity assumption is about variance of the error ( 2σ ) is constant across records. When the 
assumption is violated, the OLS coefficient estimates are still consistent, but not efficient. So for valid inference,  

 

according to Huber (1967) or White (1980), a heteroskedastic consistent (HC) or robust estimator of covariance 
matrix of the estimated coefficient should be used. To investigate the homoskedasticity assumption properly and 
automatically, there are 3 steps:  



(1) A test to determine if the homoskedasticity assumption is violated: a modified Breusch Pagan (BP) test 
would be used.  
However, keep in mind that Long and Ervin (2000) recommend that “a test for heteroskedasticity should 
not be used to determine whether [an HC estimator] should be used.” So the test is only used in automatic 
modeling process.  

(2) If the test is rejected, compute a robust estimator to replace the model-based estimator: 4 variations would 
be provided.  

(3) All statistics related to inference, such as t-statistics, p-values, confidence intervals in coefficient estimates, 
etc., should be computed based on robust estimators.  

Three subsections describe each step in details. 

9.1.1 The modified Breusch Pagan test 
The original test is proposed by Breusch and Pagan (1979) based on Normality assumption on the error, then 
Koenker (1981) and Koenker and Bassett (1982) release Normality assumption so it is called the modified BP 
test and the test statistic is defined as follows: 

( ) 1 2

MBP 2
,

u Z Z Z Z u

u u

Nu
S N

Nu

−′ ′ ′ −
= ×

′ −
     (65) 

where N is total sample size, ∑
=

=
n

i
ifN

1
, u be a n × 1 vector of squared weighted residuals, i.e., 

( )T2 2 2
1 1 2 2, , ,u n ng e g e g e=  ,  

1

1 ,
n

i i
i

u f u
N =

= ∑  and Z is a set of regressors which are related to u. Note that typical  

Z would include all predictors in the design matrix X and their squares and cross products terms, but here we 
will assume Z = X, then MBPS will follow an asymptotic chi-square distribution with cp degrees of freedom and 
the p-value can be computed accordingly. 

 Implementation note:  

• In addition to Z = X, we also assume ( ) 1 ( )Z Z G X WXT− −′ = =  to simplify the computational process 
such that  
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   (66) 

where 0( ,..., )xi i ipx x=  is the ith row of  X. Three summation terms should be straightforward to compute 
in map/reduce environment. 

9.1.2 Robust estimator of coefficient estimate covariance  
When the p-value < a significance level (default = 0.05), reject the null hypothesis of homoskedasticity and 
compute a robust estimator as follows: 

1 2 1 2ˆ ˆ' ,GX W W XG=Ψ Ω       (67) 

 

where Ω̂  is a diagonal matrix of  variance estimates of weighted residuals, 1
ˆ ( , , ),ndiag ω ω= …Ω  and there 

are 4 estimators differ in their choice of the iω : 

HC0: 2
i i i iu g eω = =        (68) 



HC1: i ic

N u
N p

ω =
−

       (69) 

HC2: 
1

1i i
i

u
h

ω =
−

       (70) 

HC3: 
( )2

1
1

i i
i

u
h

ω =
−

      (71) 

Notes: 
• The estimator HC0 is introduced by White (1980), is justified by asymptotic arguments. 
• The estimator HC1 – HC3 are suggested by MacKinnon and White (1985) to improve the performance 

in small samples and Long and Ervin (2000) conclude that HC3 provide the best performance in 
sample samples based on Monte Carlo simulation. 

• Under homoskedasticity assumption, 2
i e eSS df sω = =  (variance estimate of weighted residuals is 

constant), nI2ˆ s=Ω and 2 Gˆ s .=Ψ  

9.1.3 Affected statistics 
Many statistics computed previously would be affected by replacing the original or model-based covariance 
matrix 2 Gˆ s=Ψ  with the robust estimator 1 2 1 2ˆ ˆ'G GX W W X=Ψ Ω  (assume the (i, j) element in Ψ̂  is ,i jψ ) and 
they are listed according to areas: 

•  Statistics related to coefficient estimates (in Section 7.1):   

ˆ 1, 1ˆ ,
j

j jβσ ψ + += 0, ,j p=   (note that Ψ̂  includes intercept term if there is one); then t-statistics, p-

values and confidence intervals should be updated as well. 

• Statistics related to tests of individual effects (in Section 7.2): 
When the robust estimator is used, the F-statistics listed in ANOVA table cannot be computed based on 
sum of squares anymore, included (corrected) model. For each effect j, the F-statistic should be 
computed as  

( ) 1T T Tˆ ˆˆβ L L L L βj j j j
j

j

F
r

−

=
Ψ

     (72)
 

and the F-statistics for corrected model (with intercept) and model (without intercept) can be computed 
similarly except the L matrix is from GEF (general estimable function). If there is no intercept, the L 
matrix is the whole GEF. If there is an intercept, the L matrix is GEF without the first row which 
corresponds to the intercept. (Please see the GLMM document for details).  

• Statistics related to EMMEANS (in Section 7.5): 
When standard errors and comparison statistics are computed related to EMMEANS, the covariance 
matrix of coefficient estimates should be replaced by 1 2 1 2ˆ ˆ'G GX W W X=Ψ Ω  (note that the notation 

used is )β̂(V  in Zheng (2009)). 

9.2. Plots (in Model Viewer) 
In this section, we will show what information should be saved for the StatXML file to create a scatter plot of 
observed by predicted target values, a scatter plot of predicted target values by residuals, histogram and PP plot 
of residuals in model viewer from binned data of the whole training set. 

9.2.1. Scatter plot of predicted by observed target values 

Let ky and kŷ be the target observed and predicted value of the kth record, respectively, nk ,,1= . Then the 
information needed for a binned scatter plot of predicted by observed target values is created as follows: 



Step 1. Using equal width method to compute 19 cut points 191 ,, cutcut   between the range ],[ ba , where 

}min{ kya = and }max{ kyb = , i.e., 20/)( abiacuti −×+= .  Then we have 20 intervals 

],(],(,],,(],( 192019110 +∞=−∞= cutcutcutcutcutcut  . 

Step 2. For each two-dimension interval 19,,0,],,(],( 11 =× ++ jicutcutcutcut jjii , using map/reduce 

algorithm in Appendix A,  we can get the number of cases that fall into this interval incorporating the 
frequency weight:  

∑
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k
jkjikikfij cutycutandcutycutIfn

1
11, )ˆ(  

and the corresponding mean of )ˆ,( yy  incorporating the frequency weight (note that regression weight 
is not included): 









= ∑∑

==

n

k
kkkijk

n

k
kkkijk

fij

yyyIfyyyIf
n

jiMean
11,

ˆ)ˆ,(,)ˆ,(1),(   

where (.)I is an indictor function defined as follows: 



 ≤<≤<

= ++

otherwise
cutycutandcutycutif

yyI jkjiki
kkij ,0

;ˆ,1
)ˆ,( 11

 

Step 3. Save the mean, ),,( jiMean and the corresponding number of cases, ,, fijn  ,19,,0, =ji for the 

StatXML file. Note that if 0, =fijn , there is no need to save it and corresponding ),( jiMean  which 

is (0, 0) as well. 

           

9.2.2. Scatter plot of residuals by predicted target values 

The construction of the scatter plot of predicted target values by residuals is very similar to that in Section 9.2.1, 
nonetheless it is described in details as follows: 

Let kŷ and ke be the predicted value and the residual of the kth case, respectively, nk ,,1= . Then the 
information needed for a binned scatter plot of predicted values by residuals is created as follows: 

 

Step 1. Using equal width method to compute 19 cut points )1(
19

)1(
1 ,, cutcut   between the range  ],[ ba  for 

the x-axis, where }min{ kya = and },max{ kyb = , i.e., 20/)()1( abiacuti −×+= .  Then we 
have 20 intervals : 

],(],(,],,(],( )1(
20

)1(
20

)1(
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)1(
1

)1(
1

)1(
0 +∞=−∞= cutcutcutcutcutcut  . 

Step 2. Similarly, compute 19 cut points )2(
19

)2(
1 ,, cutcut   between the range ]8,8[ ss−  for the  y-axis:  

,20/168)1( siscuti ×+−= where s is the square root of the mean square error, i.e. 

ee dfSSs /= . Then we have another 20 intervals :  

  ],(],(,],,(],( )2(
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)2(
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1
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)2(
0 +∞=−∞= cutcutcutcutcutcut  . 



Step 3. For each two-dimension interval 19,,0,],,(],( )2(
1

)2()1(
1

)1(
=× ++ jicutcutcutcut jjii , using 

map/reduce algorithm in Appendix A, we can get the number of cases that fall into this interval 
incorporating the frequency weight:  
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=
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k
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and the corresponding mean of ),ˆ( ey  incorporating the frequency weight (note that regression 
weight is not included): 
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  where     
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Step 4. Save the mean, ),,( jiMean and the corresponding number of cases, ,, fijn  ,19,,0, =ji  for 

scatter plot of predicted values by residuals. Note that if 0, =fijn , there is no need to save it and 

corresponding ),( jiMean  which is (0, 0) as well. 

9.2.3. Histogram and PP plot 

The information needed for binned histogram and PP plot of residuals is created as follows: 

Step 1. Find out 400 cut points, 4001 ,, cutcut  , between ]8,8[ ss− , such that 

,)400/16(8 siscuti ××+×−=  where s is the square root of the mean square error, i.e., 

.e es SS df=  

Step 2. For each bin ],( 1 ii cutcut − , using map/reduce algorithm in Appendix A, we can get the number of 

cases of ke  that fall into this bin incorporating the frequency weight: 
 
 
 
 

400,,1,)(
1

1, =≤<=∑
=

− icutecutIfn
n

k
ikikfi  

and the corresponding mean incorporating the frequency weight(note that regression weight is not 
included): 

400,,1,)(1
1

1
,

=≤<= ∑
=

− iecutecutIf
n

Mean
n

k
kikik

fi
i  

where (.)I is an indictor function and scut 80 −= . 

For those ke that are outside the range ]8,8( ss− , we also need to record each distinct value of ke and 
the number of cases that equal to this distinct value, incorporating the frequency weight. 



Step 3. After step 2, suppose we have 1m  distinct values, )()1( 1mee << , that are less than or equal to 

s8− , and 2m  distinct values , )()1( 2 nmn ee <<+− 
 , that are greater than s8 . And the numbers of 

cases that ke  equal to these distinct values are fmff ccc ,,2,1 1
,,, 

 and *
,

*
,1 ,,

2 fnfmn cc +− . 

Then we can get mean vector 

],,,,,,,,[ )()1(4001)()1( 21 nmnm eeMeanMeaneeMean  +−= , 

and quantile vector of residuals 

],,,,,,,,[ )()1(4001)()1( 21 nmnm eecutcuteeQuan  +−= . 

Frequency in bins 

],,,,,,,,,[ *
,

*
,1,400,1,,2,1 21 fnfmnfffmff ccnncccFreInBin  +−= , 

and cumulative percentage of residuals: 

],,,[1
,400,2,1 21 fmmff cccccc

N
CumPer ++=  . 

where i

k

i
fk FreInBincc ∑

=

=
1

, , and iFreInBin  is the ith element of FreInBin . 

Step 4. For histogram, save the Mean  vector, FreInBin vectors, mean and standard deviation of residuals. 
Here the mean and standard deviation of residual is 0 and s , respectively. Again if the ith element of 
FreInBin  is 0, there is no need to save it and the corresponding element of Mean . 

Step 5. For a PP plot, compute the cumulative probabilities vector of standard normal distribution from Quan
as follows: 

],,,[Pr
2140021 mmpppobCum ++= 

 

where )( ii Quanp Φ= , and iQuan is the ith element of vector Quan . 
 

Then save the vectors CumPer  and obCum Pr  for the StatXML file as a PP plot is a plot of 
CumPer by obCum Pr . Again if the ith element of FreInBin  is 0, there is no need to save the 
corresponding element of CumPer  and obCum Pr . 

Implementation note:   

• If 400≤n , then the data will not be binned. The histogram and PP plot of residual are created as 
follows: 

1. The residual ke , the corresponding number of case kf , mean and standard deviation of residuals 
are used for histogram of residual directly. 

2. For PP plot, the residual ke are needed to sort first. Suppose after sort, the residuals are

)()2()1( neee ≤≤≤ 
, and the corresponding number of case are **

2
*

1 ,,, nfff 
, then the 

vector of cumulative percentage of residuals is 



         ],,,[1
,,2,1 fnff cccccc

N
CumPer =

 

where ∑
=

=
k

i
ifk fcc

1

*
, .  

And the cumulative probabilities vector of standard normal distribution is 

     ],,,[Pr 21 npppobCum =
 

where )( )(ii ep Φ= . 
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Appendix A: Map Reduce Algorithm for Some Statistics 

A.1. Notation 

The following notation is used throughout the appendix unless otherwise stated: 

n Number of distinct records in the whole dataset. It is an integer and 1≥n . 

if  Frequency count for record i.  

ig  Regression weight for record i.  

iw  Combined weight for record i, .i i iw f g= ×  

N Effective sample size.  it is a integer number, ∑
=

=
n

i
ifN

1

.If frequency count variable f is not 

use, N=n. 

W Total combined weight, 
1

.
n

i
i

W w
=

= ∑  

X  Weighted mean of a continuous variable X with iy  is the value for record i. 

Y  Weighted mean of a continuous variable Y with iy  is the value for record i. 

xyC  
( )( )

1

1

if centered or a model with the intercept;

if non-centered or a model without the intercept. 

n

i i i
i

xy n

i i i
i

w x X y Y
C

w x y

=

=

 − −= 



∑

∑
 

xyS  Weighted covariance between X and Y, so ;
1

xy
xy

C
S

N
=

−
 and  xxS and yyS  would be 

weighted variance of X and Y, respectively. 

xyr  
Weighted correlation between X and Y, so .xy

xy
xx y

S
r

S S
=  

 

A.2. Computing Correlation 

For constructing the correlation matrix R which is a ( ) ( )1 1p p+ × +  matrix, where p is the number of 

parameters, there are ( )1 2p p −  pairs of correlation to compute. Without loss generality, suppose a pair of 
variables is X and Y. Then also suppose there are M mappers and more than one reducer, then the correlation can 
be computed in map/reduce environment as follows: 

(1) Provisional means algorithm in each mapper: 

Denote jN  is the cumulative frequency weight up to record j, 
1

.
j

j i
i

N f
=

= ∑
 

    jW  is the cumulative combined weight up to record j, 
1

.
j

j i
i

W w
=

= ∑  

 

   jX   is the estimate of X up to record j; jY is the estimate of Y up to record j. 



    ,xy jC  is the estimate of xyC  up to record j. 

Start with 0 0 0 0 ,0 0xyN W X Y C= = = = = , then compute the following statistics recursively for all records in 
the mapper:   

1 ,j j jN N f−= +  

1j j jW W w−= + , 

( )1 1
j

j j j j
j

w
X X x X

W− −= + − , 

( )1 1
j

j j j j
j

w
Y Y y Y

W− −= + − ,  

( )( )
2

, 1

1

1 1
,

,

if centered or a model with intercept;

if non-centered or a model without intercept.

j j
j

xy j j j j
jxy j

xy j j j j

w
C w x X y Y

WC

C w x y

− −−

−

  
+ − − −   =   

 +

 

(2) Combine statistics from K mappers to one reducer or from more than one reducers (without loss generality, 
assume it is also K) to the “finalizer”: 
Denote ( ) ( ) ( ) ( ) ( ), , , ,  and k k k k k

xyN W X Y C  are the resulting statistics from the kth mapper or reducer. 

Compute  

 ( )

1
,

K
k

k
N N

=

= ∑  

( )

1
,

K
k

k
W W

=

= ∑  

( ) ( )

1

1 ,
K

k k

k
X W X

W =

= ∑  

( ) ( )

1

1 ,
K

k k

k
Y W Y

W =

= ∑  

( ) ( ) ( ) ( )

( )

1 1

1

if centered or a model with intercept;

if non-centered or a model without intercept.

K K
k k k k

xy
k k

xy K
k

xy
k

C W X Y WXY
C

C

= =

=


+ −= 




∑ ∑

∑
 

If it is in the “finalizer” for constructing the R matrix, then also calculate the weighted variances, covariance 

and correlation ,
1

xx
xx

CS
N

=
−

,
1

yy
yy

C
S

N
=

−  ,
1

xy
xy

C
S

N
=

−
 and .xy

xy
xx y

S
r

S S
=  

 

 

 

A.3. Computing statistics for interaction detection for two factors 
Without loss generality, suppose a pair of factors is X1 with known R levels and X2 with known S levels and 
continuous target is Y. Then the statistics needed in the R S× matrix are the number of records ( ijN ), the target 

mean ( ijY ), and the sum of squared terms of target ( ,yy ijC ) for all combinations of 1 ,  1, , ,X i i R= =  and 



2 ,  1, , .X j j S= =    Please note that regression weights will not be used here even it is specified and ,yy ijC  

would be computed based on “centered or a model with intercept” condition. The computation of the matrix 
with ijN , ijY   and ,yy ijC  in each cell is similar to that in Section A.2 with frequency weight and Y value putting in 

the right cell. The results from the finalizer are the table: 

                                       
X2 

       X1 
1 2 

  S 

        1 11 11 ,11, , yyN Y C  12 12 ,12, , yyN Y C  
  1 1 ,1, ,S S yy SN Y C  

        2 21 21 ,21, , yyN Y C  22 22 ,22, , yyN Y C  
  2 2 ,2, ,S S yy SN Y C  

                
  

        R 1 1 , 1, ,R R yy RN Y C  2 2 , 2, ,R R yy RN Y C  
  ,, ,RS RS yy RSN Y C  

  

A.4. Computing statistics for interaction detection for a covariate and a 
factor 

Without loss generality, suppose a covariate is X1, a factor is X2 with known S levels and continuous target is Y. 
The statistics needed in the 1 S× matrix are the number of records ( jN ), the means for X1 and Y ( 1,  and j jX Y ), 

the sum of squared terms for X1 and Y (
1 1 , , and x x j yy jC C ), and the sum of cross product terms for X1 and Y (

1 ,x y jC ) 

for 2 ,  1, , .X j j S= =    Please note that regression weights will not be used here even it is specified and 

1 1 1, , ,,  and x x j yy j x y jC C C  would be computed based on “centered or a model with intercept” condition. The 

computation of the matrix with 
1 1 11 , , ,, , , ,  and j j j x x j yy j x y jN X Y C C C  in each cell is similar to that in Section 1.2 

with frequency weight and X1 and Y values putting in the right cell. The results from the finalizer are the table: 

X2 = 1 
  X2 = S 

1 1 11 1,1 1 ,1 ,1 ,1, , , , ,x x yy x yN X Y C C C  
  1 1 11, , , ,, , , ,  and S S S x x S yy S x y SN X Y C C C  

 

 

 

 

 

Appendix B: Sweep operations  
Sweep operations on matrix R (Dempster, 1969) are used to compute the standardized least squares estimation b

and the associated regression statistics. The sweeping starts with the correlation matrix R . Let R~ be the new 
matrix produced by sweeping on the kth row and column of R . The elements of R~ are 

kjki
r

rr
rr

kk

kjik
ijij ≠≠−= ,,~ ; 



ki
r
rr
kk

ik
ik ≠−= ,~ ; 

kj
r
r

r
kk

kj
kj ≠= ,~ ; 

and 
kk

kk r
r 1~ = . 

For a partition matrix, 







=

DC
BA

R , where A is a ss×  matrix. Sweep operation is performed on the s pivot 

elements in A. resulting matrix 










−−
= −−

−−

BCADCA
BAAR 11

11~
. 

If the above sweep operations are repeatedly applied to each row of 11R , where 11R contains independent 
variables in the model at the current step, the result is  












−−
= −−

−−

12
1

112122
1
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12
1

11
1

11~
RRRRRR

RRRR . 

Sweep operation computes the determinant of a matrix. 

∏
=

=
p

i
iirRDET

1
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Appendix C: A method to search ( 1)e sp p
C +  models  

1.    Notations & Definitions:  

a) Each model can be denoted by an array of numbers 1 2{ , , , }ept t t ,  

0 if the corresponding effect is not in the model              
the # of levels of the effect (for continuous variable 1)it l l


=  =

, ( 1, , )ei p=  .  

b) The search space of models 1 2S S S= ∪ . 1S represents the set of models have been detected, and 2S
represents not yet. 

c) The length ijd of two distinct models, that is two distinct vectors 1{ , }ei ipt t and 1{ , }ej jpt t  is computed 

as follows
1

ep

ij ik jk
k

d t t
=

= −∑ . 

 
 
 
 

Notes: 

1. Since the number of effect is fixed at the number sp from forward stepwise, the number of non-zero 

elements in vector { }it  is sp . 

2. The length ijd means the steps of sweep operation between two distinct models. The minimum is 2. One 
continuous variable is swept out and another continuous variable is swept in, but the others holds on. 

 



2.    Algorithm:  

This is an algorithm used for searching all the models with fixed effect size, when ep >30 and sp >60. Here 
variable RESTART in the algorithm is an integer. For numerical stability and avoiding many round errors of 
sweeping operation, we refresh the current swept matrix from initial matrix R, after doing sweeping 
operations up to an extent. 

Step 1. 0
1 01 02 0{ , , , },epS t t t t= =   0

2 \S S t= , 0t can be select by the last sp effects are in the model. Set 
0t  as the current model and calculate the corresponding criterion value of the current model. step = 

0. 

Step 2. If 2S φ= , stop, sort the criterion value of all the models searched  and output the best one, else go 
to Step 3. 

Step 3. Computing all the length value between current model and the models in 2S . Select 
* , 2min{arg min{ }}, 1, | |current jjt d j S= =  .  

Step 4. If step <RESTRAT, do sweep operation based on the current model to the model *jt , step=step+1. 

Else calculate the model *jt  from the initial sweep matrix R, step=0. 

Step 5. *1 1 jS S t= ∪  and *2 2 \ jS S t= , Set *jt  as the current model; calculate the criterion value of the 

current model. go to Step 2. 

Notes:  

1. For set S we collect all the models whose number of positive elements in vector 1{ } ep
i iFLAG = is fixed at 

sp , from 0 to 2 1
ep − . We do not need to store S1, but only S2. 

2. In Step 3, if there are models with , 1 , 2current j current jd d= , we select *
1 2min{ , }j j j= . 

3. As we know that the minimum length is 2, so if get the length value is 2 for the first time, we can stop 
and choose the model as *jt . 

4. After searching all the models, we sort all the criteria value and give out the best one. For adjusted R 
square criterion, we output the model with max value. For other criterion, we output the one with min 
value. 

3.    Example:  
 
 
 
 

Here we give out an example with 5 effects, 3 are continuous, and the other 2 are categorical variables with 2 
levels and 3 levels.  

The length of {1,0,0,2,3} and {1,0,1,0,3}  is d = 1+2=3. 

All the models we search is S = {(0,0,1,2,3);(0,1,0,2,3);(0,1,1,0,3);(0,1,1,2,0); (1,0,0,2,3);(1,0,1,0,3); (1,0,1,2,0); 
(1,1,0,0,3); (1,1,0,2,0); (1,1,1,0,0)}. The table below shows the detailed steps of all possible subset searching 
with fixed effect size. 

step 
Current 

model 
S1 S2 

Distance 

vector 



0 (0,0,1,2,3) (0,0,1,2,3) (0,1,0,2,3);(0,1,1,0,3);(0,1,1,2,0); 
(1,0,0,2,3);(1,0,1,0,3); (1,0,1,2,0); 
(1,1,0,0,3); (1,1,0,2,0); (1,1,1,0,0) 

{2,…} 

1 (0,1,0,2,3) (0,0,1,2,3);(0,1,0,2,3) (0,1,1,0,3); (0,1,1,2,0); (1,0,0,2,3); 
(1,0,1,0,3); (1,0,1,2,0); (1,1,0,0,3); 
(1,1,0,2,0); (1,1,1,0,0) 

{3,4,2,…} 

2 (1,0,0,2,3) (0,0,1,2,3); (0,1,0,2,3); 
(1,0,0,2,3) 

(0,1,1,0,3); (0,1,1,2,0); (1,0,1,0,3); 
(1,0,1,2,0); (1,1,0,0,3); (1,1,0,2,0); 
(1,1,1,0,0) 

{5,6,3,4,5,4,7} 

3 (1,0,1,0,3); (0,0,1,2,3); (0,1,0,2,3); 
(1,0,0,2,3); (1,0,1,0,3); 

(0,1,1,0,3); (0,1,1,2,0); (1,0,1,2,0); 
(1,1,0,0,3); (1,1,0,2,0); (1,1,1,0,0) 

{2,…} 

4 (0,1,1,0,3); (0,0,1,2,3); (0,1,0,2,3); 
(1,0,0,2,3); (1,0,1,0,3); 
(0,1,1,0,3); 

(0,1,1,2,0); (1,0,1,2,0); (1,1,0,0,3); 
(1,1,0,2,0); (1,1,1,0,0) 

{5,7,2,…} 

5 (1,1,0,0,3) (0,0,1,2,3); (0,1,0,2,3); 
(1,0,0,2,3); (1,0,1,0,3); 
(0,1,1,0,3); (1,1,0,0,3) 

(0,1,1,2,0); (1,0,1,2,0); (1,1,0,2,0); 
(1,1,1,0,0) 

{7,7,5,4} 

6 (1,1,1,0,0) (0,0,1,2,3); (0,1,0,2,3); 
(1,0,0,2,3); (1,0,1,0,3); 
(0,1,1,0,3); (1,1,0,0,3); 
(1,1,1,0,0) 

(0,1,1,2,0); (1,0,1,2,0); (1,1,0,2,0); {3,3,3} 

7 (0,1,1,2,0) (0,0,1,2,3); (0,1,0,2,3); 
(1,0,0,2,3); (1,0,1,0,3); 
(0,1,1,0,3); (1,1,0,0,3); 
(1,1,1,0,0); (0,1,1,2,0) 

(1,0,1,2,0); (1,1,0,2,0); {2,…} 

8 (1,0,1,2,0) (0,0,1,2,3); (0,1,0,2,3); 
(1,0,0,2,3); (1,0,1,0,3); 
(0,1,1,0,3); (1,1,0,0,3); 
(1,1,1,0,0); (0,1,1,2,0); 
(1,0,1,2,0); 

(1,1,0,2,0);  

9 (1,1,0,2,0) S none  

 

10. Linear AS (Phase II) 
For Linear AS (Linear Engine) phase II, only effect size measures and the corresponding confidence intervals 
(CIs) would be included. The document describes how to compute them in details. The effect size measures and 
confidence intervals are complementary to significance tests because, unlike significance tests, they would not 
be affected by the sample size.  

 

The document is organized as follows: Section 11 gives notations. Then Section 12 gives definitions of effect 
sizes for model effects and coefficients and computational details of their confidence intervals. To construct a 
confidence interval, the bisection method is used to find the solution of probability equation for the noncentrality 
parameter and it is described in Section 13. 

11. Notations 
The following notation is used throughout the document unless otherwise stated: 

tSS  Weighted total sum of squares 



eSS  Weighted residual sum of squares 

rSS
 

Weighted regression sum of squares 

jS  Type III sum of square for the jth effect, epj ,,1= , where ep is the 
number of effects excluding intercept 

tdf  Degrees of freedom of tSS   

edf  Degrees of freedom of eSS  

rdf  
Degrees of freedom of rSS  

jr  Degrees of freedom of jS  

F
 

F statistic for corrected model , 
ee

rr

dfSS
dfSS

F =  

jF  F statistics for the jth effect, 
ee

jj
j dfSS

rS
F =  

jβ̂  The estimation of the jth  parameter jβ  

jβσ̂  The standard error of  jβ̂  

jt
 

t statistic for the jth  parameter, 
j

j
jt

βσ
β
ˆ

ˆ
=  

  



),,( 21 λdfdfF
 

A random variable follows the non-central F distribution with degrees of 
freedom  1df  and 2df , and a noncentrality parameter .λ  If ,0=λ then it is 
a random variable following the central F distribution with degree of freedom  

1df  and 2df . 

α  

Significance level. Please note that we only assign a confidence interval level 
related to model effects and coefficient estimates in FDD (F0401 but not 
F0405 in Linear Engine FDD), so the significance level here should be related 
to it. For example, the default confidence interval = 95, then .05.0=α   

 

12. Effect Size  
For model effects, the effect size measures include partial eta squared and eta squared. Their definitions and the 
confidence intervals are described in Section 12.1. Then for coefficient estimates, the effect size measure is the 
partial eta squared. The definition and computation of confidence interval would be given in Section 12.2.   

12.1.  Effect sizes and confidence intervals for effects  
The partial eta squared for (corrected) model and the jth effect are defined as  

er

r
rp SSSS

SS
+

=2
,η

  
 and    ,2

,
ej

j
ep SSS

S
j +
=η  respectively. 

 

Note if there is an intercept, then SSr  is “SS for Corrected Model” and if there is no intercept, then SSr  is “SS 
for Model”. So we use (corrected) model to represent both situations. 

To construct confidence intervals for those effects sizes, we need to connect the effect size with the 
noncentrality parameter of test distribution which is F distribution for tests of model effects. Based on the 
definition in GLM procedure, the noncentrality parameters for (corrected) model and the  defined as jth effect are 
defined as  

e

re
r SS

SSdf ×
=λ

  
 and    ,

e

je
e SS

Sdf
j

×
=λ   respectively. 

 
Thus the relationships between F statistics and noncententrality parameters for (corrected) model and the jth 
effect are 

r

r

ee

rr

dfdfSS
dfSSF λ

==    and    
j

e

ee

jj
j rdfSS

rS
F j

λ
==  respectively. 

Then the partial eta squared for (corrected) model and the jth effect can be written based on the noncentrality 
parameter as 

er

r
rp df+
=
λ

λ
η 2

,    and    ,2
,

ee

e
ep df

j

j

j +
=
λ

λ
η  respectively. 

 

 

 

 



If we want the confidence intervals for effect sizes to be equivalent to the F tests of model effects, which 
employs a one-sided and upper tailed probability with significance level of α , we should employ a confidence 
coefficient of  ( )α21− .  Thus ( )%21100 α−  confidence interval of partial eta squared for both  (corrected) 
model and the jth effect is 

,, 







++ eu

u

el

l

dfdf λ
λ

λ
λ

 

where lλ  and uλ  are the lower and upper noncentrality parameters corresponding to the F statistics, 

respectively.  lλ  for (corrected) model and the jth effect could be obtained by solving the following equations  

0)1()),,(Pr( =−−≤ αλ FdfdfF ler  and  ,0)1()),,(Pr( =−−≤ αλ jlej FdfrF   

respectively. uλ  for both (corrected) model and the jth effect could be obtained solving the following equations  

0)),,(Pr( =−≤ αλ FdfdfF uer    and     ,0)),,(Pr( =−≤ αλ juej FdfrF   

respectively. Please see Section 4 for details on how to obtain lλ  and .uλ  

The eta squared for (corrected) model and the jth effect are defined as  
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An exact confidence interval for eta squared is not available, but if we write the formula for 2η  as 
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then a conservative confidence interval can be constructed as for 2
,rpη by treating rt SSSS − as eSS and 

rt dfdf −  as edf . Thus ( )%21100 α−  confidence of eta squared for (corrected) model is defined as
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where lλ  and uλ  can be computed by solving the below equation: 
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Similarly, ( )%21100 α−  confidence of eta squared for the jth effect is defined as 
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where lλ  and uλ  can be computed by solving the below equation: 
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12.2.  Effect sizes and confidence intervals for coefficients  

The partial eta squared for the jth coefficient is defined as  
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Then the noncentrality parameter, ,
jβλ  and the test statistic related to it are defined as  
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If 0>edf and  0ˆ ≠jβ ,  then ( )%21100 α−  confidence interval of partial eta squared for jβ̂ is 
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where lλ  and uλ  can be computed by solving the below equations: 

( ) 0)1(),,1(Pr 2 =−−≤ αλ jle tdfF  
and  

( ) ,0),,1(Pr 2 =−≤ αλ jue tdfF  respectively. 
If partial eta squared is 1 or system missing, then confidence interval will not be computed. 

13. Bisection method for noncentality parameter 
We would use the bisection method to solve the following equation for noncentrality parameter (λ ) of 
noncentral F distribution 

         ,0)),,(Pr( 21 =−≤ probFvaluedfdfF λ  

where ,1df ,2df Fvalue  and prob are known value.  

Denote ,)),,(Pr()( 21 probFvaluedfdfFf −≤= λλ  then the bisection method is described as follows: 

Step 1. If ,0)0( ≤f  then stop and output .0=λ  

 



Step 2.  Let 1dfFvaluex ×= . If ,0)( =xf  then stop and output x=λ ; otherwise, go to step 3 to find out 

two values, 1x and 2x ,such that 0)()( 21 <× xfxf . 

Step 3. If ,0)( >xf  then xx J ×= −1
1 2  and xx J ×= 22 , where J  is the minimum positive integer such that 

0)()( 21 ≤× xfxf .  

If 0)( <xf , then xx J ×=
2
1

1  and xx J ×=
−12 2

1 , where J  is the minimum positive integer such that 

.0)()( 21 ≤× xfxf  

Step 4. If 0)( 1 =xf  or 0)( 2 =xf , then stop and output 1x=λ  if 0)( 1 =xf or 2x=λ  if 0)( 2 =xf ;  

otherwise, let 
2

21 xx
x

+
=  and go to step 5. 

Step 5. If ε≤)(xf and ε≤− 12 xx , where ε  is a tolerance level and the default is tentatively set to 
,10 6−  then stop and output x=λ . Otherwise, go to step 6. 

Step 6.  If 0)( >xf , let xx =1 , else let xx =2 . Let 
2

21 xx
x

+
=  , and go back to step 5. 
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Linear SVM Algorithm 
 

1. Introduction 
The support vector machine (SVM) is a supervised learning method that generates input-output mapping functions 
from a set of labeled training data. The mapping function can be either a classification function or a regression 
function. For classification, non-linear kernel functions are often used to transform input data to a high-
dimensional feature space in which the input data become more separable compared to the original input space. 
Maximum-margin hyperplanes are then created. The produced model depends on only a subset of the training data 
near the class boundaries. Similarly, the model produced by support vector regression ignores any training data 
that is sufficiently close to the model prediction (support vectors can appear only on the error tube boundary or 
outside the tube). SVMs are also said to belong to “kernel methods”. 

SVMs improve on classic classification models in the following ways: (1) Avoids underfitting. When the sample 
size is small, the model may be too simple. Simple models don’t generalize well—that is, they aren’t very valid on 
test data. (2) Avoids overfitting. When the sample size is large, the model may be too complex. Complex models 
also do not generalize well. (3) Work well when the number of predictors is small. (4) Work well when the number 
of predictors is large. Outperforms and is more valid than C5.0, C&RT, and Neural Net. 

The disadvantage of the traditional SVMs is their high time complexity w.r.t the number of records, that is, the 
time complexity is 𝑂𝑂(𝑛𝑛2), although it can be solved by a fast algorithm, sequential minimal optimization (SMO). 
In addition, the SMO algorithm is hard to be parallelized. To overcome it, linear SVM (LSVM) is often used. 

LSVM, its feature space being the same as the input space of the problem, is the newest extremely fast machine 
learning algorithm. LSVM can be linearly scalable, which means that it builds a SVM model in a CPU time which 
scales linearly with the number of the records. Thus, LSVM is very suited to the large scale problems in terms of 
the volume of records and the number of variables (parameters). In addition, LSVM can easily handle the sparse 
data where the average number of non-zero elements in one record is small. 

LSVM is different from the existing SVM in IBM SPSS Modeler in the following aspects: (1) the former is linear 
while the latter can be linear or nonlinear; (2) they use different optimization methods, wherethe former focuses on 
the primal optimization while the latter goes directly the dual formation; (3) the former can handle large number of 
records, while it is hard for the latter.  

This document describes LSVM. The functions of LSVM will contain two main data mining tasks: (1) 
classification, including binary and multi-class classification; (2) regression. In addition, we provide a few post-
estimation statistics: for the task of classification, we will provide an approximation probability for each 
prediction, and for regression, we will provide the standard deviation of the predictive value. 

All optimization included in the LSVM will be solved by ADMM algorithm (Zhong, 2014), which will be 
implemented in a distributed computing environment, specifically, the map-reduce environment.  

Section 2 describes the classification and regression models of LSVM. Section 3 presents the parameter 
estimation. Section 4 gives the post-estimation statistics. 

 

 

 



2. Models 
𝑛𝑛 The total number of records 

𝑝𝑝 The number of parameters 

𝐱𝐱𝑖𝑖  The 𝑖𝑖-th record, 𝐱𝐱𝑖𝑖 ∈ ℝ𝑝𝑝 

𝜔𝜔𝑖𝑖 The case weight for the 𝑖𝑖-th record 

𝑦𝑦𝑖𝑖 
The target, 𝑦𝑦𝑖𝑖 ∈ {+1,−1} for the binary classification, 𝑦𝑦𝑖𝑖 ∈ {1, 2,⋯ ,𝑚𝑚} for the multi-class 
classification, and 𝑦𝑦𝑖𝑖 ∈ ℝ for the regression. 

𝐰𝐰 The parameter vector for classification and regression; 𝐰𝐰 ∈ ℝ𝑝𝑝for the binary classification 
and regression; 𝐰𝐰 = [𝐰𝐰1,𝑇𝑇 ,⋯ ,𝐰𝐰𝑚𝑚,𝑇𝑇]𝑇𝑇 ∈ ℝ𝑝𝑝𝑚𝑚 for the multi-class classification. 

𝐰𝐰1,⋯ ,𝐰𝐰𝑚𝑚 The parameter vectors for the multi-class classification, and 𝐰𝐰𝑗𝑗 ∈ ℝ𝑝𝑝, 𝑗𝑗 ∈ [1,𝑚𝑚] 

‖𝐱𝐱‖1 The 𝐿𝐿1 norm of the vector 𝒙𝒙, which is defined as ‖𝒙𝒙‖1 = |𝑥𝑥1| + ⋯+ |𝑥𝑥𝑝𝑝| 

‖𝐱𝐱‖2 The 𝐿𝐿2 norm of the vector 𝒙𝒙, which is defined as ‖𝒙𝒙‖2 = �𝑥𝑥12 + ⋯+ 𝑥𝑥𝑝𝑝2�
1/2

 

𝑁𝑁 The number of data blocks (parts) 

𝐵𝐵𝑖𝑖 {𝐵𝐵1 ,⋯ ,𝐵𝐵𝑁𝑁} be a partition of all data indices {1,⋯ ,𝑛𝑛}. 

𝑝𝑝𝑐𝑐 
The threshold denoting whether there is a large number of parameters (large p). If 𝑝𝑝 > 𝑝𝑝𝑐𝑐, it 
is called large p situation, otherwise, it is called small to medium p situation. 

𝒔𝒔 The gradient vector (function) 

𝐇𝐇 The Hessian matrix (function) 

𝜆𝜆 The parameter denoting the penalty 

𝜖𝜖 The parameter denoting the sensitivity of the loss for regression 

Two main tasks, classification and regression, are included. Their mathematical representations are given in 
Section 2.1 and 2.2. 

2.1 Classification 

The classification is used to classify cases into a group of defined categories of a target (response) variable of 
interest using a set of predictors. If the target has two categories, it is called the binary classification problem; if 
the target has more than two categories, it is called the multi-class classification problem. 

2.1.1 Binary classification 

For the binary classification, let {𝐱𝐱𝑖𝑖,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑛𝑛   denote a dataset, where 𝑦𝑦𝑖𝑖 ∈ {+1,−1}, then LSVM has a general form 

min𝐰𝐰  1
𝑞𝑞
‖𝐰𝐰‖𝑞𝑞

𝑞𝑞 + 𝐶𝐶 ∑ 𝜔𝜔𝑖𝑖[max(0, 1 − 𝑦𝑦𝑖𝑖𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖)]2𝑛𝑛
𝑖𝑖=1                                             (2.1) 

where 𝑞𝑞 ∈ {1,2} and 𝐶𝐶 denotes a penalty parameter.  

 

 

 



When 𝑞𝑞 = 1, it is called L1-regularized L2-loss LSVM, while when 𝑞𝑞 = 2, it is called L2-regularized L2-loss 
LSVM. You could find more details related to Eq. (2.1) in Fan et al. (2008). 

Eq. (1) can often be represented as another form 

min𝐰𝐰  ∑ 𝜔𝜔𝑖𝑖[max(0, 1 − 𝑦𝑦𝑖𝑖𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖)]2𝑛𝑛
𝑖𝑖=1 + 𝜆𝜆‖𝐰𝐰‖𝑞𝑞

𝑞𝑞                                               (2.2) 

Where 𝜆𝜆 has a relationship with 𝐶𝐶, 𝜆𝜆 = 1
𝑞𝑞×𝐶𝐶

. 

The decision function is 

𝑚𝑚(𝐱𝐱) = sgn(𝐰𝐰T𝐱𝐱)                                                                                          (2.3) 

where sgn denotes the sign function, denoting the sign of a real number. 

Notes: 

• If the binary target is not a form of {+1,−1}, it should be mapped into {+1,−1}. 
2.1.2 Multi-class classification 

For the multi-class classification, LSVM has a general form of 

min{𝐰𝐰1,⋯,𝐰𝐰𝑚𝑚}  ∑ 𝜔𝜔𝑖𝑖 ∑ [max(0, 2 − (𝐰𝐰𝑥𝑥𝑖𝑖 − 𝐰𝐰𝑗𝑗)𝑇𝑇𝐱𝐱𝑖𝑖)]2𝑗𝑗≠𝑥𝑥𝑖𝑖
𝑛𝑛
𝑖𝑖=1 + 𝜆𝜆 ∑ �𝐰𝐰𝑗𝑗�

𝑞𝑞
𝑞𝑞𝑚𝑚

𝑗𝑗=1                 (2.4) 

The decision function is 

𝑚𝑚(𝐱𝐱) = arg max
𝑗𝑗

(𝐰𝐰𝑗𝑗)𝑇𝑇𝐱𝐱                                                                               (2.5) 

Notes: 

• If the target is not a form of {1, 2,⋯ ,𝑚𝑚}, it should be mapped into {1, 2,⋯ ,𝑚𝑚}. 
• For 𝑚𝑚 = 2, let 𝐰𝐰+1 = −𝐰𝐰−1 = 𝐰𝐰 and 𝜆𝜆′ = 𝜆𝜆

2
 , the optimization problem becomes 

4� 𝜔𝜔𝑖𝑖[max(0, 1 −𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖)]2
𝑛𝑛

𝑖𝑖=1
+ 2𝜆𝜆‖𝐰𝐰‖𝑞𝑞

𝑞𝑞

∝� 𝜔𝜔𝑖𝑖[max(0, 1 − 𝑦𝑦𝑖𝑖𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖)]2
𝑛𝑛

𝑖𝑖=1
+ 𝜆𝜆′‖𝐰𝐰‖𝑞𝑞

𝑞𝑞
 

This means that the binary classification problem is a special case of the multi-class classification 
problem. 

• Eq. (2.4) originally comes from Eq. (2) of Weston and Watkins (1999). The main difference is that we 
use L2-loss while they use L1-loss. 

2.2 Regression 

Support vector regression solves the following primal problems 

min𝐰𝐰  ∑ 𝜔𝜔𝑖𝑖[max(0, |𝑦𝑦𝑖𝑖 − 𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖| − 𝜖𝜖)]2𝑛𝑛
𝑖𝑖=1 + 𝜆𝜆‖𝐰𝐰‖𝑞𝑞

𝑞𝑞                                            (2.6) 

 

 

 

 



where 𝜖𝜖 is a parameter to specify the sensitiveness of the loss. By default, 𝜖𝜖 = 0.1. 

The prediction function is 

𝑚𝑚(𝐱𝐱) = 𝐰𝐰T𝐱𝐱                                                                                                      (2.7) 

3. Parameter estimation 
The problems (Eqs.2.2, 2.4 and 2.6) can be written as a general form 

min
𝐰𝐰

𝑓𝑓(𝐰𝐰) + 𝑔𝑔(𝐰𝐰)                                                                                      (3.1) 

where 𝑓𝑓(𝐰𝐰) denotes the fitting function corresponding to the first term of Eqs.(2.2), (2.4) and (2.6), while 𝑔𝑔(𝐰𝐰) 
denotes the penalty function corresponding to the second term �𝜆𝜆‖𝐰𝐰‖𝑞𝑞

𝑞𝑞�. 

We use ADMM algorithm (Zhong, 2014) to solve the optimization problems. ADMM denotes Alternating 
Direction Method of Multipliers algorithms, which is to solve large scale problems in terms of the volume of 
records and the number of variables. In addition, it is implemented in distributed computing environment, more 
specifically, the map-reduce environment. 

If 𝑓𝑓(𝐰𝐰) can be separable w.r.t records, the form of ADMM for solving Eq. 3.1 can be written as, 

min𝒙𝒙𝑖𝑖,𝒛𝒛 ∑ 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖)𝑁𝑁
𝑖𝑖=1 + 𝑔𝑔(𝒛𝒛)

𝑠𝑠. 𝑡𝑡. 𝐰𝐰𝑖𝑖 − 𝒛𝒛 = 𝟎𝟎, 𝑖𝑖 = 1,⋯ ,𝑁𝑁.
                                                                 (3.2) 

 The steps of ADMM can be described as follows: 

𝐰𝐰𝑖𝑖
𝑘𝑘+1 = arg min

𝐰𝐰𝑖𝑖
�𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) + (𝜌𝜌/2)�𝐰𝐰𝑖𝑖 − 𝐳𝐳𝑘𝑘 + 𝐮𝐮𝑖𝑖𝑘𝑘�2

2�

𝐳𝐳𝑘𝑘+1 = arg min
𝐳𝐳

(𝑔𝑔(𝐳𝐳) + (𝑁𝑁𝜌𝜌/2)‖𝐳𝐳 − 𝐰𝐰�𝑘𝑘+1 − 𝐮𝐮�𝑘𝑘‖22)

𝐮𝐮𝑖𝑖𝑘𝑘+1 = 𝐮𝐮𝑖𝑖𝑘𝑘 + 𝐰𝐰𝑖𝑖
𝑘𝑘+1 − 𝐳𝐳𝑘𝑘+1

                                    (3.3) 

where 𝐰𝐰�𝑘𝑘+1 = 1
𝑁𝑁
∑ 𝐰𝐰𝑖𝑖

𝑘𝑘+1𝑁𝑁
𝑖𝑖=1  is the average of 𝐰𝐰1

𝑘𝑘+1,⋯ ,𝐰𝐰𝑁𝑁
𝑘𝑘+1; Similarly, 𝐮𝐮�𝑘𝑘 = 1

𝑁𝑁
∑ 𝐮𝐮𝑖𝑖𝑘𝑘𝑁𝑁
𝑖𝑖=1 . 

In order to call ADMM algorithm, LSVM should prepare four pieces of information: optimization function, 
gradient function and Hessian function of 𝑓𝑓(𝐰𝐰), and initial values. Please note that for the large p situation 
(where the number of parameters 𝑝𝑝 is greater than a threshold value of 𝑝𝑝𝑐𝑐), it does not need  to provide the 
information of Hessian function. 

3.1 Classification 

Although the binary classification is a special case of the multi-class classification problem, we still estimate 
parameters for it rather than estimate them by solving the multi-class classification problem. The reasons are: (1) 
the number of parameters of the multi-class classification problem is twice of that of the binary classification 
problem, thus, it may lead to a slow convergence of the optimization method, especially for large p situation; (2) 
the initial values for the multi-class classification problem is not as good as those for the binary classification, 
because the multi-class classification is more complicated than the binary one and it is hard to obtain good initial 
values. 

 

 

 



3.1.1 Binary classification 

For the binary classification, 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) is defined as 

𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) = ∑ 𝜔𝜔ℓ[max(0, 1 − 𝑦𝑦ℓ𝐰𝐰𝑖𝑖
𝑇𝑇𝐱𝐱ℓ)]2ℓ∈𝐴𝐴𝑖𝑖                                                                    (3.4) 

The gradient for 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) is 

 𝐬𝐬𝑖𝑖 = ∑ 2𝜔𝜔ℓ(−𝑦𝑦ℓ + 𝐰𝐰𝑖𝑖
𝑇𝑇𝐱𝐱ℓ)𝐱𝐱ℓℓ∈𝐴𝐴𝑖𝑖

sv                                                                                  (3.5) 

The Hessian matrix for 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) is 

  𝐇𝐇𝑖𝑖 = ∑ 2𝜔𝜔ℓ𝐱𝐱ℓ𝐱𝐱ℓ𝑇𝑇ℓ∈𝐴𝐴𝑖𝑖
sv                                                                                                    (3.6) 

where 𝐵𝐵𝑖𝑖sv = {ℓ ∈ 𝐵𝐵𝑖𝑖|1 − 𝑦𝑦ℓ𝐰𝐰𝑖𝑖
𝑇𝑇𝐱𝐱ℓ > 0} denotes the index set of support vectors. 

For the small to medium p situations, the initial values can be the least square solution using all data 

   𝐰𝐰0 = (𝐗𝐗𝑇𝑇𝛀𝛀𝐗𝐗 + 𝜆𝜆𝐈𝐈)−𝐗𝐗𝑇𝑇𝐲𝐲                                                                                             (3.7) 

where 𝐗𝐗 = [⋯ , 𝐱𝐱𝑖𝑖,⋯ ]𝑇𝑇 denotes the data matrix, and 𝛀𝛀 = diag(𝜔𝜔1,⋯ ,𝜔𝜔𝑛𝑛) denotes the weight matrix. 

For the large p situation (where 𝑝𝑝 ≥ 𝑝𝑝𝑐𝑐), the initial values are computed as follows 

   𝐰𝐰0 = 𝜂𝜂(𝐱𝐱�+1 − 𝐱𝐱�−1)
‖𝐱𝐱�+1 − 𝐱𝐱�−1‖22
�                                                                          (3.8) 

where 𝜂𝜂 > 2, and we tentatively choose 𝜂𝜂 = 2.5; 𝐱𝐱�+1 and 𝐱𝐱�−1 denote the weighted mean predictor vectors for 
class +1 and class −1, respectively. 

Notes: 

• To call ADMM, the settings of parameters are: 𝑞𝑞 = 2 (𝐿𝐿2-penalty),  𝜆𝜆 = 0.1; 𝜌𝜌 = 1; use function value 
convergence and parameter convergence; use default settings for other parameters of ADMM. 

• If want to select variables, we will set 𝑞𝑞 = 1 (𝐿𝐿1-penalty). In addition, if there are factor variables, we 
would use group penalty (or regularization) rather 𝐿𝐿1-penalty. This means that all parameters related to a 
factor variable will bind together, and they will be selected or removed together. 

• The threshold 𝑝𝑝𝑐𝑐 = 5000 by default. 

 

3.1.2 Multi-class classification 

For the multi-class classification, 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) is defined as 

 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) = ∑ 𝜔𝜔ℓ ∑ �max �0, 2 − �𝐰𝐰𝑖𝑖
𝑥𝑥ℓ − 𝐰𝐰𝑖𝑖

𝑗𝑗�
𝑇𝑇
𝐱𝐱ℓ��

2

𝑗𝑗≠𝑥𝑥𝑙𝑙ℓ∈𝐴𝐴𝑖𝑖                                          (3.9) 

The gradient for 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) is 

 𝐬𝐬𝑖𝑖 = 𝜕𝜕𝑐𝑐𝑖𝑖(𝐰𝐰𝑖𝑖)
𝜕𝜕𝐰𝐰𝑖𝑖

= �
⋮

𝜕𝜕𝑐𝑐𝑖𝑖(𝐰𝐰𝑖𝑖)
𝜕𝜕𝐰𝐰𝑖𝑖

𝑖𝑖

⋮
� , 𝑚𝑚 ∈ [1,𝑚𝑚]                                                                       (3.10) 

 

 

 



where 

𝜕𝜕𝑐𝑐𝑖𝑖(𝐰𝐰𝑖𝑖)
𝜕𝜕𝐰𝐰𝑖𝑖

𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧∑ −2𝜔𝜔ℓ �2 − �𝐰𝐰𝑖𝑖

𝑥𝑥ℓ − 𝐰𝐰𝑖𝑖
𝑗𝑗�
𝑇𝑇
𝐱𝐱ℓ� 𝐱𝐱ℓℓ,𝑗𝑗

(ℓ,𝑗𝑗)∈𝐴𝐴𝑖𝑖
sv

𝑚𝑚 = 𝑦𝑦ℓ

∑ 2𝜔𝜔ℓ �2 − �𝐰𝐰𝑖𝑖
𝑥𝑥ℓ − 𝐰𝐰𝑖𝑖

𝑗𝑗�
𝑇𝑇
𝐱𝐱ℓ� 𝐱𝐱ℓℓ

(ℓ,𝑗𝑗)∈𝐴𝐴𝑖𝑖
sv

𝑚𝑚 = 𝑗𝑗
                           (3.11) 

and 𝐵𝐵𝑖𝑖sv = �(ℓ, 𝑗𝑗)|2 − �𝐰𝐰𝑖𝑖
𝑥𝑥ℓ − 𝐰𝐰𝑖𝑖

𝑗𝑗�
𝑇𝑇
𝐱𝐱ℓ > 0, 𝑙𝑙 ∈ 𝐵𝐵𝑖𝑖 , 𝑗𝑗 ∈ [1,𝑚𝑚], 𝑦𝑦ℓ ≠ 𝑗𝑗�, and thoseℓ’s belonging to 𝐵𝐵𝑖𝑖sv which 

denotes the index set of support vectors.  

The Hessian matrix for 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) is 

  𝐇𝐇𝑖𝑖 = �
⋯ ⋮ ⋯
⋯ 𝜕𝜕𝑐𝑐𝑖𝑖(𝐰𝐰𝑖𝑖)

𝜕𝜕𝐰𝐰𝑖𝑖
𝑖𝑖𝜕𝜕𝐰𝐰𝑖𝑖

𝑏𝑏,𝑇𝑇 ⋯

⋯ ⋮ ⋯
�                                                                                     (3.12) 

where 

𝜕𝜕𝑐𝑐𝑖𝑖(𝐰𝐰𝑖𝑖)

𝜕𝜕𝐰𝐰𝑖𝑖
𝑖𝑖𝜕𝜕𝐰𝐰𝑖𝑖

𝑏𝑏,𝑇𝑇 =

⎩
⎪⎪
⎨

⎪⎪
⎧∑ 2𝜔𝜔ℓ𝐱𝐱ℓ𝐱𝐱ℓ𝑇𝑇ℓ,𝑗𝑗

(ℓ,𝑗𝑗)∈𝐴𝐴𝑖𝑖
sv

𝑚𝑚 = 𝑏𝑏 = 𝑦𝑦ℓ

∑ −2𝜔𝜔ℓ𝐱𝐱ℓ𝐱𝐱ℓ𝑇𝑇ℓ
(ℓ,𝑗𝑗)∈𝐴𝐴𝑖𝑖

sv
𝑚𝑚 = 𝑦𝑦ℓ, 𝑏𝑏 = 𝑗𝑗 or 𝑚𝑚 = 𝑗𝑗, 𝑏𝑏 = 𝑦𝑦ℓ

∑ 2𝜔𝜔ℓ𝐱𝐱ℓ𝐱𝐱ℓ𝑇𝑇ℓ
(ℓ,𝑗𝑗)∈𝐴𝐴𝑖𝑖

sv

𝟎𝟎

𝑚𝑚 = 𝑏𝑏 = 𝑗𝑗
otherwise

                              (3.13) 

Note that for a record with target value 𝑦𝑦𝑙𝑙 , we need to update the 𝑦𝑦ℓ 's portion of the gradient and the (𝑦𝑦ℓ, 𝑦𝑦ℓ) 
block of the Hessian for all indices 𝑗𝑗, where (ℓ, 𝑗𝑗) belongs to 𝐵𝐵𝑖𝑖sv; and for each such a pair we will also update 
the 𝑗𝑗's portion of the gradient and (𝑗𝑗, 𝑗𝑗), (𝑗𝑗, 𝑦𝑦ℓ), and (𝑦𝑦ℓ, 𝑗𝑗) blocks of the Hessian.  

The initial values can be calculated, no matter it’s large p situation or not, as 

𝐰𝐰0 = �
⋮

𝐰𝐰𝑚𝑚,0

⋮
� , where  𝐰𝐰𝑚𝑚,0 = 𝜂𝜂𝐱𝐱�𝑖𝑖

‖𝐱𝐱�𝑖𝑖‖2
2                                                                                        (3.14) 

3.2 Regression 

For the regression, 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) is defined as 

 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) = ∑ 𝜔𝜔𝑙𝑙[max(0, |𝑦𝑦ℓ − 𝐰𝐰𝑖𝑖
𝑇𝑇𝐱𝐱ℓ| − 𝜖𝜖)]2ℓ∈𝐴𝐴𝑖𝑖                                                           (3.15) 

The gradient for 𝐰𝐰𝑖𝑖 is 

𝐬𝐬𝑖𝑖 = ∑ 2𝜔𝜔ℓ(−𝑦𝑦ℓ + 𝐰𝐰𝑖𝑖
𝑇𝑇𝐱𝐱ℓ + 𝜖𝜖)𝐱𝐱ℓℓ∈𝐴𝐴𝑖𝑖

sv1 + ∑ 2𝜔𝜔ℓ(−𝑦𝑦ℓ + 𝐰𝐰𝑖𝑖
𝑇𝑇𝐱𝐱ℓ − 𝜖𝜖)𝐱𝐱ℓℓ∈𝐴𝐴𝑖𝑖

sv2                   (3.16) 

The Hessian matrix for 𝐰𝐰𝑖𝑖 is 

  𝐇𝐇𝑖𝑖 = ∑ 2𝜔𝜔ℓ𝐱𝐱ℓ𝐱𝐱ℓ𝑇𝑇ℓ∈𝐴𝐴𝑖𝑖
sv1⋃𝐴𝐴𝑖𝑖

sv2                                                                                       (3.17) 

where 𝐵𝐵𝑖𝑖sv1 = {ℓ ∈ 𝐵𝐵𝑖𝑖|𝑦𝑦ℓ − 𝐰𝐰𝑖𝑖
𝑇𝑇𝐱𝐱ℓ − 𝜖𝜖 > 0} and  𝐵𝐵𝑖𝑖sv2 = {ℓ ∈ 𝐵𝐵𝑖𝑖| − 𝑦𝑦ℓ + 𝐰𝐰𝑖𝑖

𝑇𝑇𝐱𝐱ℓ − 𝜖𝜖 > 0} denote the sets of 
support vectors. 

 

 

 



For the small to medium p situations, the initial values can be the least square solution using all data 

   𝐰𝐰0 = (𝐗𝐗𝑇𝑇𝛀𝛀𝐗𝐗 + 𝜆𝜆𝐈𝐈)−𝐗𝐗𝑇𝑇𝛀𝛀𝐲𝐲                                                                                         (3.18) 

For the large p situation, the initial values are computed as follows: generate a random vector 𝐰𝐰� with Gaussian 
distribution 𝑁𝑁(𝟎𝟎𝑝𝑝×1, 𝐈𝐈𝑝𝑝×𝑝𝑝), then the initial values are 

   𝐰𝐰0 = �𝐰𝐰�
𝑇𝑇𝐗𝐗𝑇𝑇𝛀𝛀𝐲𝐲

𝜆𝜆‖𝐰𝐰�‖22 + ‖𝐗𝐗𝐰𝐰�‖𝛀𝛀2
� �𝐰𝐰�                                                             (3.19) 

where ‖𝐗𝐗𝐰𝐰�‖𝛀𝛀2 = 𝐰𝐰�𝑇𝑇𝐗𝐗𝑇𝑇𝛀𝛀𝐗𝐗𝐰𝐰�. 

Notes: 

• The settings of parameters are the same to those given in Section 3.1. 

 

4. Post-estimation statistics 
For the task of classification, we provide the probability output; while for the task of regression, we provide the 
standard deviation. 

4.1 Prediction 
For the task of binary classification, the predicted category for a given 𝐱𝐱ℓ (not limit to the training records) is 

𝑦𝑦�ℓ = sgn(𝐰𝐰�𝑇𝑇𝐱𝐱ℓ)                                                                            (4.1) 

where sgn(𝑚𝑚) = �
+1 𝑚𝑚 > 0
0 𝑚𝑚 = 0
−1 𝑚𝑚 < 0

. 

Note that if  𝐰𝐰�𝑇𝑇𝐱𝐱ℓ = 0, then it is assigned to the majority class. If two classes have the same number of records, 
it is assigned the positive class. 

For the multi-class classification, the predicted category for given 𝐱𝐱ℓ is given by 

𝑦𝑦�ℓ = arg max
𝑗𝑗

(𝐰𝐰�𝑗𝑗)𝑇𝑇𝐱𝐱ℓ                                                                          (4.2) 

Please note that if there are ties, it is assigned to the class with the maximal number of records. If there are still 
ties, it is assigned to the class with the smallest superscript. 

For the task of regression, the predicted value for given 𝐱𝐱ℓ is 

 𝑦𝑦�ℓ = 𝐰𝐰�𝑇𝑇𝐱𝐱ℓ                                                                                    (4.3) 

4.2 Performance measure 
For the classification task, we will provide the percentage of total correct predictions of the model as well as the 
classification table, while for the regression task, we will provide the average square error of the model. 

 

 

 

 

 



The process of calculating the percentage of total correct predictions of the model and the classification table is 

(1) Suppose that 𝑐𝑐(𝑗𝑗, 𝑗𝑗′) is the sum of the frequency for the observations whose actual target category is 𝑗𝑗 (as 
row) and predicted target category is 𝑗𝑗′ (as column), 𝑗𝑗, 𝑗𝑗′ = 1,⋯ ,𝑚𝑚 (note that 𝑚𝑚 = 2 for binary 
classification), then 

𝑐𝑐(𝑗𝑗, 𝑗𝑗′) = �𝜔𝜔ℓ𝐼𝐼(𝑦𝑦ℓ = 𝑗𝑗, 𝑐𝑐(𝒙𝒙ℓ) = 𝑗𝑗′)
𝑛𝑛

ℓ=1

 

where 𝐼𝐼(∙) is indicator function and 𝑐𝑐(𝒙𝒙ℓ) denotes the predicted category. 

(2) Suppose that 𝑝𝑝𝑗𝑗,𝑗𝑗′is the (𝑗𝑗, 𝑗𝑗′)th element of the classification table, which is row percentage, then 

𝑝𝑝𝑗𝑗,𝑗𝑗′ = �
𝑐𝑐(𝑗𝑗, 𝑗𝑗′)

∑ 𝑐𝑐(𝑗𝑗, 𝑘𝑘)𝑚𝑚
𝑘𝑘=1

�×100% 

(3) The percentage of total correct predictions of the model is 

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑙𝑙 = �
∑ 𝑐𝑐(𝑗𝑗,𝑗𝑗)𝑚𝑚
𝑗𝑗=1

∑ ∑ 𝑐𝑐(𝑗𝑗,𝑗𝑗′)𝑚𝑚
𝑗𝑗′=1

𝑚𝑚
𝑗𝑗=1

�×100%                                                                (4.4)  

 

The average square error (ASE) for the regression can be calculated as 

𝑀𝑀𝑆𝑆𝑀𝑀 = 1
∑ 𝜔𝜔ℓ𝑛𝑛
ℓ=1

∑ 𝜔𝜔ℓ(𝑦𝑦ℓ − 𝑦𝑦�ℓ)2𝑛𝑛
ℓ=1                                                                       (4.5) 

4.3 Probability 
For the binary classification problem, we provide a probability model to approximate the posterior class 
probability. For a given 𝐱𝐱ℓ and 𝑦𝑦�ℓ, we have 

�̂�𝑝ℓ = 1
�1 + 𝑚𝑚−𝑥𝑥�ℓ𝐰𝐰�𝑇𝑇𝐱𝐱ℓ��                                                                                          (4.6) 

Notes 

• We usually give the probability of being positive class, that is,  

�̂�𝑝ℓ = 1
�1 + 𝑚𝑚−𝐰𝐰�𝑇𝑇𝐱𝐱ℓ��  

• The probability model is not very accurate, thus it may not make sense to compute gain, lift, etc. based 
on the sorting probabilities.  

• We do not use Platt (2000) method used by SVM node in SPSS Modeler (Tian and Zhong, 2007). The 
reason is that Platt method involves two additional parameters, which needs an iterative optimization 
method (Newton-Raphson). This means that multiple data passes are needed to obtain the estimation of 
parameters. 

For the multi-class classification, the probability for 𝑦𝑦, 𝑦𝑦 = 1, … ,𝑚𝑚, can be calculated as 

 Pr(𝑦𝑦|𝐱𝐱ℓ) = 1
�1 + ∑ 𝑚𝑚�𝐰𝐰𝑗𝑗−𝐰𝐰𝑦𝑦�

𝑇𝑇
𝐱𝐱ℓ𝑚𝑚

𝑗𝑗=1,𝑗𝑗≠𝑥𝑥 ��                                                 (4.7) 

Note that we will provide a probability for each class. That is to say, we have 𝑚𝑚 probabilities for each record. 

 

 

4.4 Standard deviation 

Lin and Wen (2004) pointed out that residuals �̂�𝑟ℓ = 𝑦𝑦ℓ − 𝐰𝐰�𝑇𝑇𝐱𝐱ℓ can be fit for a Laplace distribution with zero 
mean, which is given as follow 



Prob(𝑟𝑟) = 1
2𝜎𝜎
𝑚𝑚−

|𝑖𝑖|
𝜎𝜎                                                                                             (4.8) 

Here 𝜎𝜎 > 0 is a scale parameter. 

Assume that �̂�𝑟𝑖𝑖 are independent, the scale parameter can be estimated by ML method, that is, the 𝜎𝜎� is 

𝜎𝜎� = 1
∑ 𝜔𝜔ℓ𝑛𝑛
ℓ=1

∑ 𝜔𝜔ℓ|�̂�𝑟ℓ|𝑛𝑛
𝑙𝑙=1                                                                                       (4.9) 

But the ML method will be affected by some “very extreme” �̂�𝑟ℓ and causes inaccurate estimation of 𝜎𝜎. One 
improved method is to estimate the scale parameter by discarding �̂�𝑟ℓ which exceed ±5𝜎𝜎�.  The other method is to 
use median of |�̂�𝑟ℓ| as an estimation of 𝜎𝜎, especially when there is a large number of examples. The first method 
is accurate but needs two data passes, while the second method needs only one data pass but it is approximate. 
We let the software engineers to decide which method is used. 

Thus, for any record 𝐱𝐱ℓ, the confidence interval for the prediction of 𝑦𝑦ℓ with 100(1−α)% confidence is given by 

[𝑦𝑦�ℓ ± 𝜂𝜂1−𝛼𝛼/2]                                                                                               (4.10) 

where 𝜂𝜂𝑝𝑝 is the (100p)th percentile of the Laplace distribution with zero mean and standard deviation 𝜎𝜎�.  
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Random Trees Modeling Algorithms 
 

1. Introduction 
Random Trees is a powerful new approach for strong (accurate) predictive models. It is comparable and 
sometimes better than other state-of-the-art methods in classification or regression problems.  

Random Trees is an ensemble model consisting of multiple CART-like trees. Each tree grows on a bootstrap 
sample which is obtained by sampling the original data cases with replacement. Moreover, during tree 
growth, for each node the best split variable is selected from a specified smaller number of variables which 
are drawn randomly from the full set of variables. And each tree grows to the largest extent possible. There 
is no pruning. In scoring, random trees combines individual tree scores by majority voting (for 
classification) or average (for regression).  

Because each tree model can be built independently, random trees are very suitable to be applied in 
distributed setting. However, a big challenge is to handle massive data, since building even a single tree is 
expensive in this case. There are several implementations which have addressed this issue. One 
implementation in Apache Mahout just partitions the data and builds trees on smaller data blocks. Clearly 
this method could result in weak and biased trees because data blocks could have biased distributions from 
the training data. Another implementation on Apache Spark follows Google’s PLANET implementation 
which can build single tree models efficiently on massive data. Spark has the ability to cache data in 
memory for interactive data analysis. This implementation has benefited from this ability greatly. For 
example, it can remember the last node that a case belongs to. This speeds up the process considerably since 
it does not need to pass large trees to executors any more. 

Our implementation is based on Apache Hadoop framework. We also adopt Google’s PLANET 
implementation to build single trees. But unfortunately, Hadoop does not have the ability of caching data 
for interactive data analysis. We will have to resort to other solutions to achieve desired performance. 
Meanwhile, the challenging issues about large data, imbalance data, etc., will also be considered in our 
implementation.   

In this chapter, we describe the algorithms used to build a random trees model under the map-reduce 
framework. In addition to generating the predictive solution, we also provide an enhanced set of evaluation 
and diagnostic features enabling insight, interactivity, and an improved overall user experience as required 
by the Analytic Catalyst and other applications.  

The document is organized as follows. We first declare some general notes about algorithms, development, 
etc. Then we define the notations used in the document. In section 4, we present the general workflow of the 
random trees engine. Operations for data pre-processing are introduced in section 5, along with some 
summary statistics that are required for model building. Section 6 describes the key components in model 
building. In section 7, we present various measures used for model evaluation and model diagnostics, and 
they will be computed along with the process of model building. Insights and interestingness are also 
derived. Finally section 8 shows how to score new cases. 

 

 



2. Notes 
The Random Trees engine is implemented in a parallel distributed algorithm within Analytic Engine 
(AE), based on the map-reduce framework. 

 

3. Notations 
The following notations are used throughout the document unless otherwise stated: 

𝑌𝑌 Dependent variable or target. If 𝑌𝑌 is categorical with 𝐽𝐽 categories, its 
set of categories is given by 𝐶𝐶 = {1, … , 𝐽𝐽}. 

𝑋𝑋𝑚𝑚, 𝑚𝑚 = 1, … ,𝑀𝑀 Set of all predictor variables. If 𝑋𝑋𝑚𝑚 is categorical with 𝐼𝐼𝑚𝑚 categories, its 
categories are given by 𝑀𝑀 = {1, … , 𝐼𝐼𝑚𝑚}. 

ℋ = �𝑥𝑥𝑚𝑚,𝑘𝑘, 𝑦𝑦𝑘𝑘�𝑘𝑘=1
𝐾𝐾  Complete set of training cases 

ℋ𝑞𝑞 , 𝑞𝑞 = 1, … ,𝑄𝑄 Bootstrap sample 𝑞𝑞, 𝑞𝑞 = 1, … ,𝑄𝑄 
ℋ(𝑡𝑡) Cases that belong to node 𝑡𝑡 
𝑤𝑤𝑘𝑘 Analysis weight associated with case 𝑘𝑘 

𝑓𝑓𝑘𝑘 Frequency weight associated with case 𝑘𝑘. Non-integral positive value 
is rounded to its nearest integer. 

Ι(𝑚𝑚 = 𝑏𝑏) Indicator function taking value 1 when 𝑚𝑚 = 𝑏𝑏 and 0 otherwise. 
𝜋𝜋(𝑗𝑗), 𝑗𝑗 = 1, … , 𝐽𝐽 Priority probability of 𝑌𝑌 = 𝑗𝑗, 𝑗𝑗 = 1, … , 𝐽𝐽 
𝑝𝑝(𝑗𝑗, 𝑡𝑡), 𝑗𝑗 = 1, … , 𝐽𝐽 Probability of a case in class 𝑗𝑗 and node 𝑡𝑡 
𝑝𝑝(𝑡𝑡) Probability of a case in node 𝑡𝑡 
𝑝𝑝(𝑗𝑗|𝑡𝑡), 𝑗𝑗 = 1, … , 𝐽𝐽 Probability of a case in class 𝑗𝑗 given that it falls into node 𝑡𝑡 
𝐶𝐶(𝑖𝑖|𝑗𝑗) Cost of miss-classifying a class 𝑗𝑗 case as a class 𝑖𝑖 case 

4. General Workflow 
The Random Trees engine builds random trees through several stages in sequence. In each stage, one or 
more map-reduce jobs will be launched. The general workflow is typically as follows. 

 



 

Figure 1. General workflow 

5. Data Pre-processing 
The Random Trees engine supports distributed data in column-based format. It requires at least one 
predictor that can be flag, ordinal categorical, nominal categorical, or continuous, and a single target that 
can be categorical or continuous. Flag or ordinal target is considered as categorical. 

5.1. Filtering Variables 

Based on the summary statistics produced by DE, the Random Trees engine will perform an initial analysis 
and determine the variables which are not useful for modelling. 

Specifically, the following variables will be excluded. 

# Rule Status Comment 
1 Identity variables Required  
2 Constant variables Required  
3 The percentage of missing values in any variable 

is larger than 𝛿𝛿 (default 0.7) 
Required  

4 One category makes up the overwhelming 
majority of total population above a given 
percentage threshold 𝛿𝛿 (default 95%) 

Required  

5 The number of categories of a categorical 
variable is larger than 𝛿𝛿 (default 49) 

Required  

6 The absolute coefficient of variation of a 
continuous variable is smaller than 𝛿𝛿 (default 
0.05) 

Required  

  



7 Date/time variables  Required  

5.2. Transformations 

The Random Trees engine supports frequency/analysis weights. Real frequency weights are rounded to the 
nearest integer. 

System/user missing and invalid values are all considered as missing. If the target of a case is missing, this 
case will be ignored in the analysis. If all predictor variables of a case are missing, this case will also be 
ignored. If the analysis or frequency weight is missing, zero, or negative, the case is ignored. Otherwise, 
missing values will be imputed with mean for a continuous predictor or mode for a categorical predictor. 

For each continuous predictor, a list of points 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝐼𝐼𝑚𝑚 (in ascending order) is determined by the tiling 
method, i.e. equal-frequency binning, which has been implemented by the Descriptive engine. Notice that 
the transformation rule of equal-frequency binning will not be actually applied on the variables. Instead, it 
just provides the set of bin boundaries that will be checked as candidate splitting points. In default, we set 
the number of bins as 10, which means we will have 9 splitting points to check for each continuous variable. 

Another transformation is to encode categorical predictors, that is, to map category values into integer. This 
transformation is particularly useful for string predictors.  

5.3. Summary Statistics 

The following summary statistics are required and computed by DE: 

 Total number of cases 
 Distribution of target categories (required if the option of imbalance classification is turned on) 
 Interestingness indexes of the associations between predictors and target (required if the option of 

weighted sampling of predictors is turned on) 

6. Building Base Trees  
A specified number of base trees will be built in parallel. Firstly, we initialize each tree with a root node. 
Then a series of map-reduce jobs will be used to grow the trees, and each of the jobs will be responsible for 
expanding a particular set of tree nodes.  

For a certain map-reduce job, we suppose that the involved trees are 𝑇𝑇𝑞𝑞, 𝑞𝑞 ∈ ℚ, where ℚ is the set of labels of 
involved trees, and the set of tree nodes to expand 𝑀𝑀 = {𝑡𝑡𝑞𝑞,𝑟𝑟|𝑞𝑞 ∈ ℚ, 𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞 , }, where 𝑅𝑅𝑞𝑞 is the set of node IDs 
in 𝑇𝑇𝑞𝑞  which are to expand. For example, in the first map-reduce job, base trees 𝑇𝑇𝑞𝑞 are only with root nodes 
and the set of tree nodes 𝑀𝑀 contains root nodes as well.  

Notice that when creating the root nodes 𝑡𝑡𝑞𝑞,0 we will have an initial estimation of the number of training 
cases, as follows. 

�𝑡𝑡𝑞𝑞,0� = �
𝑁𝑁𝑗𝑗𝑚𝑚 ∗ 𝐽𝐽, in case of imbalance classification
𝑁𝑁 ∗ 𝛼𝛼, otherwise

, 

 

 

 



where 𝑗𝑗𝑚𝑚 is the minority class, 𝛼𝛼 is the ratio for under-bagging, and 

𝑁𝑁 = ∑ 𝑓𝑓𝑘𝑘𝐾𝐾
𝑘𝑘=1 , 

𝑁𝑁𝑗𝑗𝑚𝑚 = ∑ 𝑓𝑓𝑘𝑘I(𝑦𝑦𝑘𝑘 = 𝑗𝑗𝑚𝑚)𝐾𝐾
𝑘𝑘=1 . 

6.1. Generating Bootstrap Samples 

Base trees are built on 𝑄𝑄 bootstrap samples. To generate bootstrap samples, cases will be sampled with 
replacement. But notice that frequencies will be produced on the fly for each case at the time when it is 
processed. 

In a regular bootstrap sample, the sampling rate for each case 𝑘𝑘 is 𝑓𝑓𝑘𝑘/𝑁𝑁. Then the times replicated for case 𝑘𝑘 
will be 𝑟𝑟𝑟𝑟. 𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏𝑚𝑚(𝑁𝑁 ∗ 𝛼𝛼, 𝑓𝑓𝑘𝑘/𝑁𝑁). 

If the option of imbalance classification is turned on, random trees will be built on balanced bootstrap 
samples. We achieve this by adjusting the sampling rates specific for each target category. Suppose that 
the 𝐽𝐽 target categories are with counts of 𝑁𝑁1,𝑁𝑁2, … ,𝑁𝑁𝐽𝐽, respectively. Let 𝑗𝑗𝑚𝑚 = 𝑚𝑚𝑟𝑟𝑔𝑔min {𝑁𝑁𝑗𝑗}. Then for each 
case 𝑘𝑘 with target category 𝑗𝑗, the sampling rate is 𝑓𝑓𝑘𝑘/𝑁𝑁𝑗𝑗, and the times replicated for case 𝑘𝑘 will 
be 𝑟𝑟𝑟𝑟. 𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏𝑚𝑚(𝑁𝑁𝑗𝑗𝑚𝑚 , 𝑓𝑓𝑘𝑘/𝑁𝑁𝑗𝑗). This is equivalent to drawing a bootstrap sample from the minority category and 
drawing randomly the same number of cases, with replacement, from the other categories. 

Denote the generated bootstrap frequencies as 𝑓𝑓𝑘𝑘
𝑞𝑞, 𝑘𝑘 = 1,2, … ,𝐾𝐾, 𝑞𝑞 = 1,2, … ,𝑄𝑄. 

Notice that drawn bootstrap samples should be identical across different map-reduce jobs. This can be 
achieved by using the same random seeds across different jobs. But notice that the seeds should be different 
across mappers within a single job in order to get different bootstrap frequencies in each data split.  

6.2. Defining <key, value> Pairs 

Pairs of <key, value> indicate the minimal unit of tasks. They are defined and generated by Mappers, and 
passed to Reducers. 

One definition of keys is by tree id, node id, and predictor id. Such keys are defined when the condition of 
in-memory building is not satisfied.  

Given the set 𝑀𝑀 = {𝑡𝑡𝑞𝑞,𝑟𝑟|𝑞𝑞 ∈ ℚ, 𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞}, for each 𝑡𝑡𝑞𝑞,𝑟𝑟, we randomly select 𝑀𝑀𝑖𝑖 (default value is ⌊𝑠𝑠𝑞𝑞𝑟𝑟𝑡𝑡(𝑀𝑀)⌋ for 
classification and ⌊𝑀𝑀/3⌋ for regression) predictors from the total set of predictors. If the option of weighted 
sampling is turned off, each predictor will be selected with equal probability. Otherwise, the selection 
probabilities will be 𝐼𝐼𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑖𝑖

𝑚𝑚

∑ 𝐼𝐼𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑖𝑖
𝑚𝑚 , where 𝐼𝐼𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑚𝑚𝑚𝑚  is the interestingness index corresponding to predictor 𝑚𝑚, as 

computed in section 5.3. 

Notice that different random seeds should be used in order to make the selection of predictors different 
across nodes, but on the other hand the selection should be the same for each node across all mappers. For 
this purpose, we define random seed as a Hash function of tree id and node id. 

Denote the set of selected predictors for 𝑡𝑡𝑞𝑞,𝑟𝑟 as 𝑋𝑋𝑞𝑞,𝑟𝑟. Then the keys are defined as triplets of< 𝑞𝑞, 𝑟𝑟,𝑚𝑚 >, 𝑞𝑞 ∈
ℚ, 𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞, and 𝑚𝑚 ∈ 𝑋𝑋𝑞𝑞,𝑟𝑟. 

 

 



The value corresponding to a triplet key < 𝑞𝑞, 𝑟𝑟,𝑚𝑚 > is a set of statistics used to determine the best splitting 
point. These statistics are summarized in appendix A. 

The other form of keys is to define them as pairs of < 𝑞𝑞, 𝑟𝑟 >, 𝑞𝑞 ∈ ℚ, and 𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞′ , where 𝑅𝑅𝑞𝑞′  denotes the set of 
nodes in tree 𝑞𝑞 which satisfy the condition of in-memory building. The value corresponding to such keys is 
just the cases of interest including all predictors, target, analysis weight 𝑤𝑤𝑘𝑘 , and frequency weight 𝑓𝑓𝑘𝑘

𝑞𝑞.  

Notice that if the option of correcting importance bias is turned on, the value will include two sets of 
statistics, one computed on training cases while the other computed on validation cases. These statistics can 
be computed by setting ℵ(𝑞𝑞, 𝑟𝑟) = ℓ𝑠𝑠(𝑞𝑞, 𝑟𝑟) and ℵ(𝑞𝑞, 𝑟𝑟) = ℊ𝑠𝑠(𝑞𝑞, 𝑟𝑟) in the calculation of local statistics, 
where ℓ𝑠𝑠(𝑞𝑞, 𝑟𝑟) and ℊ𝑠𝑠(𝑞𝑞, 𝑟𝑟) denote the training and validation cases in data split 𝑠𝑠 which fall in node 𝑡𝑡𝑞𝑞,𝑟𝑟, 
respectively. 

Notice that the number of distinct cases in ℓ𝑠𝑠(𝑞𝑞, 𝑟𝑟) and ℊ𝑠𝑠(𝑞𝑞, 𝑟𝑟) will also be computed.  

6.3. Partitioning OOB Cases 

Bootstrap sample is generated by sampling each case with replacement. That means some cases will be 
selected in the sample while the others are not included. We call the cases that are not included out-of-bag 
(OOB) cases. Clearly, OOB cases are defined for a particular bootstrap sample. Given multiple bootstrap 
samples, a case can be a training case for some trees, and it can be an OOB case for other trees.OOB cases 
will be partitioned into validation data and testing data if the option of correcting importance bias is turned 
on. To partition OOB cases, instead of generate separate partitions for each tree, we partition the data once 
into validataion and testing. In this way, each case can be scored by a complete set of trees that take it as an 
OOB case.   

The size of the validation data could be very large if users take a small ratio 𝛼𝛼 for under-bagging. This is 
likely to incur performance issue for tree growth, particularly for in-memory building as described later. In 
this regard, we propose the following procedure to limit its size: 

1. Let 𝐾𝐾� = 𝐾𝐾 ∗ 𝛼𝛼 ∗ 63% be the expected number of distinct cases used by a single bootstrap sample. 
2. Suppose the initial sampling rate for validation data is 𝛽𝛽 (default 50%). Then we let the actual 

sampling rate be 𝛽𝛽� = 𝑀𝑀𝐼𝐼𝑁𝑁(𝛽𝛽,𝐾𝐾�/𝐾𝐾). 
3. For each case in the data, determine whether it is a validation case or a testing case according to the 

actual sampling rate. 
The option of correcting importance bias is disabled for imbalance classification.  

6.4. Processing Each Case 

Each mapper handles a particular local data split, and cases in the data split are processed sequentially.  

Each case can be used by any base tree with three roles, i.e. training, validation, or testing. If the case has a 
non-zero bootstrap frequency, it will be considered as a training case for the involved tree. Otherwise, it will 
be used as either validation or testing, depending on how the OOB sample is partitioned for the base tree. 

For each training or validation case, we will pass the tree and find the node that the case falls into. Then we 
will update the training or validation values collected on the data split for related keys. 

Specifically, the procedure is as follows. 

 

 



ProcessingCase( ) 
Inputs: 

− 𝑇𝑇𝑞𝑞, 𝑞𝑞 ∈ ℚ                           // Current base trees 
− 𝑡𝑡𝑞𝑞,𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞 ,𝑞𝑞 ∈ ℚ                     // Set of nodes to expand  
− 𝑋𝑋𝑞𝑞,𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞 , 𝑞𝑞 ∈ ℚ                    // Set of predictors selected for 𝑡𝑡𝑞𝑞,𝑟𝑟 
− < 𝑘𝑘𝑚𝑚𝑦𝑦, 𝑟𝑟𝑚𝑚𝑙𝑙𝑣𝑣𝑚𝑚 >𝑘𝑘−1                    // Current <key, value> pairs 
− Case 𝑘𝑘                            // A valid case 
− Sampling rate(s)                 

// Generating bootstrap frequencies, and partitioning OOB samples 
Outputs: 

− < 𝑘𝑘𝑚𝑚𝑦𝑦, 𝑟𝑟𝑚𝑚𝑙𝑙𝑣𝑣𝑚𝑚 >𝑘𝑘                     // New <key, value> pairs  
Procedure: 
For each tree 𝑇𝑇𝑞𝑞, 𝑞𝑞 ∈ ℚ, repeat the follows: 
1. Generate bootstrap frequencies 𝑓𝑓𝑘𝑘

𝑞𝑞, as described in section 6.1; 
2. If (𝑓𝑓𝑘𝑘

𝑞𝑞 > 0),{ 
      Pass tree 𝑇𝑇𝑞𝑞, and get node 𝑡𝑡𝑞𝑞,𝑟𝑟 that case 𝑘𝑘 falls in; 
      If (𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞), update < 𝑘𝑘𝑚𝑚𝑦𝑦, 𝑟𝑟𝑚𝑚𝑙𝑙𝑣𝑣𝑚𝑚 >𝑘𝑘−1 with case 𝑘𝑘; 
   } 
3. Else if the option of importance correction is turned on,{ 
      Determine whether case 𝑘𝑘 is a validation case using sampling rate 𝛽𝛽�; 
      If yes,{ 

Pass tree 𝑇𝑇𝑞𝑞, and get node 𝑡𝑡𝑞𝑞,𝑟𝑟 that case 𝑘𝑘 falls in; 
         If (𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞), update < 𝑘𝑘𝑚𝑚𝑦𝑦, 𝑟𝑟𝑚𝑚𝑙𝑙𝑣𝑣𝑚𝑚 >𝑘𝑘−1 with case 𝑘𝑘; 
      } 
   } 

6.5. Splitting Nodes 

We first introduce the splitting criterion and also the impurity measure which will be used to split nodes. 

For a categorical target, the Gini impurity measure is 

𝑖𝑖�𝑡𝑡𝑞𝑞,𝑟𝑟� = ∑ 𝐶𝐶(𝑖𝑖|𝑗𝑗)𝑝𝑝�𝑖𝑖|𝑡𝑡𝑞𝑞,𝑟𝑟�𝑝𝑝(𝑗𝑗|𝑡𝑡𝑞𝑞,𝑟𝑟)𝑖𝑖,𝑗𝑗 , 

where we let 

𝑝𝑝�𝑗𝑗, 𝑡𝑡𝑞𝑞,𝑟𝑟� =
𝜋𝜋(𝑗𝑗)𝑁𝑁𝑤𝑤,𝑗𝑗(𝑖𝑖𝑞𝑞,𝑖𝑖)

𝑁𝑁𝑤𝑤,𝑗𝑗
, 

𝑝𝑝�𝑡𝑡𝑞𝑞,𝑟𝑟� = ∑ 𝑝𝑝�𝑗𝑗, 𝑡𝑡𝑞𝑞,𝑟𝑟�𝑗𝑗 , 

𝑝𝑝�𝑗𝑗|𝑡𝑡𝑞𝑞,𝑟𝑟� = 𝑝𝑝(𝑗𝑗,𝑖𝑖𝑞𝑞,𝑖𝑖)
𝑝𝑝(𝑖𝑖𝑞𝑞,𝑖𝑖)

. 

And the splitting criterion is the decrease of the Gini impurity measure defined as 

∆𝑖𝑖�𝑝𝑝, 𝑡𝑡𝑞𝑞,𝑟𝑟� = 𝑖𝑖�𝑡𝑡𝑞𝑞,𝑟𝑟� − 𝑃𝑃𝐿𝐿𝑖𝑖(𝑡𝑡𝐿𝐿) − 𝑃𝑃𝑅𝑅𝑖𝑖(𝑡𝑡𝑅𝑅), 

where 𝑃𝑃𝐿𝐿  and 𝑃𝑃𝑅𝑅  are probabilities of sending a case to the left child node 𝑇𝑇𝐿𝐿 and to the right child node 𝑇𝑇𝑅𝑅  
respectively. They are estimated as 𝑃𝑃𝐿𝐿 = 𝑝𝑝(𝑖𝑖𝐿𝐿)

𝑝𝑝�𝑖𝑖𝑞𝑞,𝑖𝑖�
, 𝑃𝑃𝑅𝑅 = 𝑝𝑝(𝑖𝑖𝑅𝑅)

𝑝𝑝�𝑖𝑖𝑞𝑞,𝑖𝑖�
. 

 



Notice that when user-specified costs are involved, the altered priors can optionally be used to replace the 
priors. The altered prior is defined as 𝜋𝜋′(𝑗𝑗) = 𝐶𝐶(𝑗𝑗)𝜋𝜋(𝑗𝑗)

∑ 𝐶𝐶(𝑗𝑗)𝜋𝜋(𝑗𝑗)𝑗𝑗
, where 𝐶𝐶(𝑗𝑗) = ∑ 𝐶𝐶(𝑖𝑖|𝑗𝑗)𝑖𝑖 . 

For a continuous target, the splitting criterion ∆𝑖𝑖�𝑝𝑝, 𝑡𝑡𝑞𝑞,𝑟𝑟� = 𝑖𝑖�𝑡𝑡𝑞𝑞,𝑟𝑟� − 𝑃𝑃𝐿𝐿𝑖𝑖(𝑡𝑡𝐿𝐿) − 𝑃𝑃𝑅𝑅𝑖𝑖(𝑡𝑡𝑅𝑅) is used with the Least 

Squares Deviation (LSD) impurity measures 𝑖𝑖�𝑡𝑡𝑞𝑞,𝑟𝑟� = 𝑉𝑉�𝑡𝑡𝑞𝑞,𝑟𝑟�, where we let 𝑃𝑃𝐿𝐿 = 𝑁𝑁𝑤𝑤(𝑖𝑖𝐿𝐿)
𝑁𝑁𝑤𝑤(𝑖𝑖𝑞𝑞,𝑖𝑖)

, 𝑃𝑃𝑅𝑅 = 𝑁𝑁𝑤𝑤(𝑖𝑖𝑅𝑅)
𝑁𝑁𝑤𝑤(𝑖𝑖𝑞𝑞,𝑖𝑖)

. 

For node 𝑡𝑡𝑞𝑞,𝑟𝑟 and predictor 𝑋𝑋𝑚𝑚, we denote the set of splitting points as Ω𝑚𝑚. Then we find the best splitting 
point of 𝑋𝑋𝑚𝑚 by 𝑝𝑝𝑋𝑋𝑚𝑚 = 𝑚𝑚𝑟𝑟𝑔𝑔 max

𝑝𝑝∈Ω𝑚𝑚
�∆𝑖𝑖(𝑝𝑝, 𝑡𝑡𝑞𝑞,𝑟𝑟)�, and we let ∆𝑖𝑖𝑋𝑋𝑚𝑚 = ∆𝑖𝑖(𝑝𝑝𝑋𝑋𝑚𝑚 , 𝑡𝑡𝑞𝑞,𝑟𝑟), 𝑚𝑚 ∈ 𝑋𝑋𝑞𝑞,𝑟𝑟 . 

Selecting the best splitting point from Ω𝑚𝑚 for a continuous or ordinal predictor is efficient because there are 
only a few points to check. But for a categorical predictor with many categories, the searching is nontrivial. 
Instead of making an exhaustive search, we find the splitting point using the optimal partitioning algorithm 
proposed by Chou (1991), as described in appendix B.  

Notice that when computing 𝑝𝑝𝑋𝑋𝑚𝑚 and ∆𝑖𝑖𝑋𝑋𝑚𝑚, we set ℵ(𝑞𝑞, 𝑟𝑟) = ℓ𝑠𝑠(𝑞𝑞, 𝑟𝑟), that is to compute them on training 
cases. The node will be split by the point 𝑝𝑝𝑋𝑋𝑚𝑚

∗ which corresponds to max
𝑚𝑚∈𝑋𝑋𝑞𝑞,𝑖𝑖

�∆𝑖𝑖𝑋𝑋𝑚𝑚�. 

If the option of correcting importance bias is turned on, we will also compute the splitting criterion on 
validation cases for the splitting point 𝑝𝑝𝑋𝑋𝑚𝑚. We denote this splitting criterion as ∆𝑖𝑖𝑋𝑋𝑚𝑚

′ . Then the node will be 
split by the point 𝑝𝑝𝑋𝑋𝑚𝑚

∗ which corresponds to max
𝑚𝑚∈𝑋𝑋𝑞𝑞,𝑖𝑖

�∆𝑖𝑖𝑋𝑋𝑚𝑚
′ �. Here, the splitting criterion is recomputed for the 

OOB cases based on the splitting point obtained from the training data at each node. Furthermore, we will 
use only the OOB cases later to compute the importance measure. The principle here is similar to a 
conditional inference framework. The predictor selection criterion and splitting criterion are separated. 
Please refer to Deng (2011) for details. 

6.6. In-Memory Building 

As tree induction progresses, the size of the input dataset for many nodes becomes small enough to fit in 
memory. At any such point, rather than continuing tree induction using map-reduce jobs, we load the 
training cases into memory and complete sub-tree construction. We call this process in-memory building.  

Suppose that the number of distinct training cases that fall in node 𝑡𝑡𝑞𝑞,𝑟𝑟 is |ℓ(𝑞𝑞, 𝑟𝑟)|. Then whenever the 
condition |ℓ(𝑞𝑞, 𝑟𝑟)| < 𝐾𝐾𝑖𝑖𝑛𝑛 is satisified, in-memory building will be triggered, where 𝐾𝐾𝑖𝑖𝑛𝑛  is a specified 
threshold with default 5,000. Mappers simply output all the cases that belong to the node 𝑡𝑡𝑞𝑞,𝑟𝑟 as values in 
the <key,values> pairs according to the description in 6.2. Reducer that collects all the cases for the given 
node will perform all subsequent node splitting through the following steps.  

InMemoryBuilding( ) 
Inputs: 

− ℓ(𝑞𝑞, 𝑟𝑟)                       // Training cases that fall in node 𝑡𝑡𝑞𝑞,𝑟𝑟 
− ℊ(𝑞𝑞, 𝑟𝑟)                       // Required to correct importance bias 
− 𝑇𝑇𝑞𝑞                          // Current base tree 𝑇𝑇𝑞𝑞 

Outputs: 
− 𝑇𝑇𝑞𝑞                          // Updated base tree 𝑇𝑇𝑞𝑞 

  



Procedure: 
A tree is grown starting from node 𝑡𝑡𝑞𝑞,𝑟𝑟 by repeatedly using the following steps on 
each node: 
1. Randomly select 𝑀𝑀𝑖𝑖 predictors from the total set of predictors; 
// Using simple or weighted sampling depending on the setting. 
2. Find the best split for each selected predictor using data ℓ(𝑞𝑞, 𝑟𝑟); 
// For each continuous predictor, rather than checking a limited number of   
// points, we sort and check all its values from the smallest to the largest.  
3. If the option of correcting importance bias is turned on, recompute the 
splitting criterion for each predictor’s best split using data ℊ(𝑞𝑞, 𝑟𝑟); 
4. Among the best splits found in step 2, choose the one that maximizes the 
splitting criterion; 
5. Split the node using its best split found in step 4 if the stopping rules 1-4 
in section 6.7 are not satisfied; 

6.7. Stopping Rules 

Stopping rules control if the tree growing process should be stopped or not. The following stopping rules 
are used: 

1. If a node becomes pure; that is, all cases in a node have identical values of the target variable, the node 
will not be split. 

2. If all cases in a node have identical values for each selected predictor, the node will not be split. 
3. If the current tree depth reaches the user-specified maximum tree depth limit value, the node will not 

be split. 
4. If the split of a node results in a child node whose node size is less than the user-specified minimum 

child node size value, the node will not be split. 
5. If the number of nodes in the current tree exceeds the maximum number (default 10,000), the involved 

tree will stop growing. 
6. If the accuracy of the random trees is not improved any more, the modeling process will stop. The 

accuracy measure is R-square for regression, classification accuracy for regular classification, and 
Gmean for imbalance classification.  

The following procedure is used to implement stopping rule 6: 

1. Let 𝛿𝛿 = 1% and trials=10; 
2. Let the ensemble contain the first tree 𝑇𝑇1 that has grown completely, and denote its accuracy as 𝑀𝑀𝑐𝑐𝑐𝑐; 
3. Let Count=0 and BestAcc=𝑀𝑀𝑐𝑐𝑐𝑐; 
4. Continue to check if there are new trees that have grown completely. If yes, suppose the new trees 

are 𝑇𝑇𝑞𝑞1 ,𝑇𝑇𝑞𝑞1+1, … ,𝑇𝑇𝑞𝑞2 ; 
5. For i=𝑞𝑞1: 𝑞𝑞2, { 

Add the 𝑖𝑖th tree to the ensemble, and compute the new accuracy 𝑀𝑀𝑐𝑐𝑐𝑐′; 
Count++; 
If 𝑀𝑀𝑐𝑐𝑐𝑐′>BestAcc, { BestAcc=𝑀𝑀𝑐𝑐𝑐𝑐′; BestPos=Count;} 
If Count==trials, { 
       If (BestAcc-𝑀𝑀𝑐𝑐𝑐𝑐)/𝑀𝑀𝑐𝑐𝑐𝑐> 𝛿𝛿, { 
               𝑀𝑀𝑐𝑐𝑐𝑐=BestAcc; 
               Count=Count-BestPos; 
       } 
       Else, return the ensemble with the best accuracy; 
} 

} 
6. Go to step 4; 

 
 
 
 



In random trees, we allow base trees with much larger depth, e.g. 10. The minimum node size is one for 
classification, and five for regression. Alternatively, users can also set the minimum node size by percentage 
values, say one percent with respect to the root node.  

6.8. Controller Design 

The controller maintains a set of tree nodes that need to be expanded. In particular, we use a stack to 
manage these nodes in order to support stepwise random trees building. The controller schedules a series of 
map-reduce jobs off of the stack until the stack is empty. Each job is responsible for expanding a specified 
number of nodes. When a job is finished, the stack is updated with the new nodes that can now be 
expanded. Notice that when some nodes are expanded by in-memory building, no updates are made to the 
stack because tree induction at such nodes is complete. 

Specifically, the controller does as follows: 

1. Initialize the stack to be empty. 
2. Push the root nodes belonging to tree 𝑇𝑇𝑄𝑄 ,𝑇𝑇𝑄𝑄−1, … ,𝑇𝑇1 into the stack respectively. 
3. Let 𝑁𝑁𝑀𝑀 nodes off the stack. If there are multiple data splits, run a mixture pattern of map-reduce job to 

expand the nodes; Otherwise, run a task parallel pattern of map-reduce job. See sections 6.8.1, 6.8.2, 
and 6.8.3 for details. 

4. Meanwhile, checking if there are new evaluation measures available. If yes, check stopping rule 6. If the 
rule is satisfied, go to step 10. Otherwise, update the best ensemble model and report particular 
evaluation measures. 

5. For some new nodes, if the involved trees satisfy stopping rule 5, such new nodes will not enter the 
stack, and the involved trees are considered to be fully grown. 

6. For remaining new nodes, we sort them by tree labels, 𝑞𝑞 = 1,2, … ,𝑄𝑄. And push the nodes belonging to 
tree 𝑇𝑇𝑄𝑄 ,𝑇𝑇𝑄𝑄−1, … ,𝑇𝑇1 into the stack respectively. 

7. Check if there are a specified number of new trees (default 5) that have been fully grown. If yes, we will 
add the new trees one by one into the current ensemble model, and compute evaluation measures for 
the new ensemble models by launching a map-reduce job that runs separately and in parallel with the 
next job for tree growth.   

8. Repeat step 3 until the stack is empty.  
9. If the process is interrupted, return the ensemble model that consists of all fully grown trees. 
10. Perform post-modelling analysis, including model evaluation if there are new trees generated but not 

evaluated, and model interpretation.   
Model evaluation measures and interpretations will be described below in section 7.  

6.8.1. Mixture Pattern of Map-Reduce Job 

Mixture pattern of map-reduce job, as illustrated in Figure 2, is a mixture of data parallel and task parallel 
jobs. 



 

Figure 2. An example of mixture pattern of map-reduce job 

In this example, mapper 1 and mapper 2 share the same data split, but they are fed with different settings. 
In our case, we let them generate and handle different bootstrap samples or trees. 

Given the trees 𝑇𝑇𝑞𝑞 , 𝑞𝑞 ∈ ℚ, that are involved in a certain job for tree growth, and the set of tree nodes to 
expand 𝑀𝑀 = {𝑡𝑡𝑞𝑞,𝑟𝑟|𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞 , 𝑞𝑞 ∈ ℚ}, we apply the following procedure to allocate the trees to mappers that are 
working on the same data split: 

1. Sort trees 𝑇𝑇𝑞𝑞 according to tree labels in ascending order. Suppose the sorted trees are 𝑇𝑇(1), 𝑇𝑇(2),…, 𝑇𝑇(|ℚ|), 
and the sets of nodes to expand are 𝑅𝑅(1), 𝑅𝑅(2),…, 𝑅𝑅(|ℚ|); 

2. Let 𝑀𝑀𝐼𝐼𝑁𝑁𝑚𝑚 = 20 and 𝑀𝑀𝐼𝐼𝑁𝑁𝑛𝑛 = 10; 
// 𝑀𝑀𝐼𝐼𝑁𝑁𝑚𝑚 is the minimum number of mappers, default 20 
// 𝑀𝑀𝐼𝐼𝑁𝑁𝑛𝑛 is the minimum number of nodes handled by a mapper, default 10 

3. Get the number of data spits 𝑆𝑆; 
4. If 𝑆𝑆 < 𝑀𝑀𝐼𝐼𝑁𝑁𝑚𝑚, { 

      Compute 𝑛𝑛𝑣𝑣𝑚𝑚 = min ��𝑀𝑀𝐼𝐼𝑁𝑁𝑚𝑚
𝑆𝑆
� , � |𝑀𝑀|

𝑀𝑀𝐼𝐼𝑁𝑁𝑛𝑛
� , � |𝑀𝑀|

�𝑅𝑅(1)�
��; 

      Compute 𝑁𝑁𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛 = |𝑀𝑀|
𝑛𝑛𝑛𝑛𝑚𝑚

;             
Initialize 𝑗𝑗 = 1 and 𝑛𝑛𝑒𝑒 = 0; 

      For 𝑖𝑖 in 1: |ℚ|, { 
                 Assign the 𝑖𝑖th tree to the 𝑗𝑗th mapper; 
                 Compute 𝑛𝑛𝑒𝑒 = 𝑛𝑛𝑒𝑒 + �𝑅𝑅(𝑖𝑖)�; 
                 If (𝑛𝑛𝑒𝑒 ≥  𝑁𝑁𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛) and 𝑖𝑖 ≠ |ℚ|, { 
                       Let 𝑗𝑗 = 𝑗𝑗 + 1; 
                       𝑛𝑛𝑒𝑒 = 0; 
                 } 
       } 
       Let 𝑗𝑗  be the number of mappers for each data split; 
} 
Else, assign all trees to every mapper;  
// A data parallel pattern of map-reduce job will be used for tree growth 

6.8.2. Task Parallel Pattern of Map-Reduce Job 

If there is only one data split, task parallel pattern of map-reduce jobs will be used to build trees. In each job, 
we have multiple mappers and each mapper builds a tree on a replicate of the data split. 

The mapper first generates a particular bootstrap sample, and then it builds a tree on the sample in a way 
that is similar to the option of in-memory building. OOB cases will be partitioned as usual if necessary.  

 



The number of mappers in each job is determined by the running environment, and the maximum number 
of mappers equals to the total number of base trees. 

6.8.3. Selecting Nodes to Expand 

In a task parallel pattern of job, the number of nodes off the stack equals to the number of mappers 𝑀𝑀𝐼𝐼𝑁𝑁𝑚𝑚. 

For a mixture pattern of job, we select the nodes as follows: 

1. Suppose the first node in the current stack belongs to tree 𝑇𝑇𝑞𝑞 . We let all the following nodes in the stack 
that belong to tree 𝑇𝑇𝑞𝑞 off the stack. Denote the number of such nodes as 𝑁𝑁𝑀𝑀. 

2. Repeat the follows if 𝑁𝑁𝑀𝑀 < 𝑀𝑀𝑀𝑀𝑋𝑋𝑛𝑛,  
// 𝑀𝑀𝑀𝑀𝑋𝑋𝑛𝑛 is the maximum number of nodes to expand by a single job, default 100 (needs to tune), 
a) Let the first node in the current stack belongs to tree 𝑇𝑇𝑖𝑖. We let all the following nodes in the stack 

that belong to tree 𝑇𝑇𝑖𝑖 off the stack.  
b) Update 𝑁𝑁𝑀𝑀. 

The maximum number of nodes to expand by a single job is a setting which could be deployed with respect 
to concrete clusters. Basically we can set much higher maximum numbers for clusters with high computing 
capability. 

Note that the procedure described above ensures that each tree grows in a width-first way. This point is 
important to the stopping rule of limiting the total number of nodes in a tree.  

7. Model Evaluation and Insights 
Suppose the ensemble model under evaluation consists of base trees 𝑇𝑇𝑞𝑞, 𝑞𝑞 = 1,2, … ,𝑄𝑄. Then we let each case 
in the testing partition of the OOB samples traverse the corresponding tree(s), and take the final prediction 
of a case as the combination of individual predictions by average or voting.  

For convenience, we summarize the notations used for computing evaluation measures as follows. 

𝑇𝑇𝑞𝑞, 𝑞𝑞 = 1,2, … ,𝑄𝑄 𝑄𝑄 trees form an ensemble model to evaluate.  
ℒ𝑞𝑞 The testing partition corresponding to the 𝑞𝑞th tree. 
𝑦𝑦�𝑘𝑘
𝑞𝑞 The prediction of the 𝑞𝑞th tree on case 𝑘𝑘, 𝑘𝑘 ∈ ℒ𝑞𝑞. 
𝑦𝑦�𝑘𝑘 The prediction of the ensemble model on case 𝑘𝑘, 𝑘𝑘 = 1,2, … ,𝐾𝐾. 
𝒯𝒯𝑘𝑘 The set of trees that take case 𝑘𝑘 as a testing case. 

7.1. Evaluation Measures 

7.1.1. Classification Model Evaluation 

For a classification model, we compute 

𝑀𝑀𝑐𝑐𝑐𝑐 = 1
𝑁𝑁
∑ 𝑓𝑓𝑘𝑘Ι(𝑦𝑦�𝑘𝑘 = 𝑦𝑦𝑘𝑘)𝐾𝐾
𝑘𝑘=1 , 

where 𝑦𝑦�𝑘𝑘 = 𝑚𝑚𝑟𝑟𝑔𝑔max
𝑗𝑗

∑ Ι(𝑦𝑦�𝑘𝑘
𝑞𝑞 = 𝑗𝑗)𝑞𝑞∈𝒯𝒯𝑖𝑖 , breaking ties arbitrarily. 

 



Moreover, we compute the classification table. Suppose 𝑗𝑗 is one of the observed category, and 𝑗𝑗∗ is one of the 
predicted category, then the count of cell < 𝑗𝑗∗, 𝑗𝑗 > in the classification table is computed 

𝐶𝐶<𝑗𝑗∗,𝑗𝑗> = ∑ 𝑓𝑓𝑘𝑘Ι(𝑦𝑦�𝑘𝑘 = 𝑗𝑗∗ 𝑚𝑚𝑛𝑛𝑚𝑚 𝑦𝑦𝑘𝑘 = 𝑗𝑗)𝐾𝐾
𝑘𝑘=1 , 𝑗𝑗∗ = 1,2, … , 𝐽𝐽, 𝑗𝑗 = 1,2, … , 𝐽𝐽. 

Note that if the option of imbalance classification is turned on, the evaluation measures above will not be 
computed. 

7.1.2. Regression Model Evaluation 

For a regression model, we compute 

𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 = �1
𝑁𝑁
∑ 𝑓𝑓𝑘𝑘(𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘)2𝐾𝐾
𝑘𝑘=1 , 

where 𝑦𝑦�𝑘𝑘 = 1
|𝒯𝒯𝑖𝑖|

∑ 𝑦𝑦�𝑘𝑘
𝑞𝑞

𝑞𝑞∈𝒯𝒯𝑖𝑖 . If 𝒯𝒯𝑘𝑘 is empty, case 𝑘𝑘 will be ignored.  

Moreover, we compute 

 𝑅𝑅𝑠𝑠𝑞𝑞𝑣𝑣𝑚𝑚𝑟𝑟𝑚𝑚 = 1 − ∑ 𝑐𝑐𝑖𝑖(𝑥𝑥𝑖𝑖−𝑥𝑥�𝑖𝑖)2𝐾𝐾
𝑖𝑖=1
∑ 𝑐𝑐𝑖𝑖(𝑥𝑥𝑖𝑖−𝑥𝑥�)2𝐾𝐾
𝑖𝑖=1

, 

where 𝑦𝑦� = 1
𝑁𝑁
∑ 𝑓𝑓𝑘𝑘𝑦𝑦𝑘𝑘𝐾𝐾
𝑘𝑘=1 . 

7.1.3. Imbalance Classification Model Evaluation 

If the option of imbalance classification is turned on, we will compute some measures that are specific to 
imbalance classification.  

For target class 𝑗𝑗, we compute true positive rate, i.e. recall rate,  

𝑇𝑇𝑃𝑃𝑅𝑅𝑗𝑗 =
𝐶𝐶<𝑗𝑗,𝑗𝑗> 

∑ 𝐶𝐶<𝑖𝑖,𝑗𝑗> 
𝐽𝐽
𝑖𝑖

, 𝑗𝑗 = 1, … , 𝐽𝐽. 

Then we compute G-mean  

𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 = �∏ 𝑇𝑇𝑃𝑃𝑅𝑅𝑗𝑗
𝐽𝐽
𝑗𝑗=1 �

1/𝐽𝐽
. 

Notice that any class whose recall rate is constant zero across groups will be excluded from the calculation 
of the G-mean measure, and the number of 𝐽𝐽 in the formula will be adjusted accordingly.  

7.2. Interpretation and Insights 

7.2.1. Gini Importance 

Every time a split of a node is made on predictor 𝑋𝑋𝑚𝑚 the Gini impurity criterion for the two descendent 
nodes is less than the parent node. Adding up the Gini decreases for each individual predictor over all trees 
in the trees gives a fast predictor importance measure that is often very consistent with the permutation 
importance measure. 

 



Denote 𝐼𝐼𝑚𝑚𝑝𝑝�𝑋𝑋𝑚𝑚,𝑇𝑇𝑞𝑞� as the importance of predictor 𝑋𝑋𝑚𝑚 at tree 𝑇𝑇𝑞𝑞, then 

𝐼𝐼𝑚𝑚𝑝𝑝�𝑋𝑋𝑚𝑚,𝑇𝑇𝑞𝑞� = ∑ ∆𝑖𝑖(𝑝𝑝𝑋𝑋𝑚𝑚
∗ , 𝑡𝑡) 𝑖𝑖∈𝑇𝑇𝑞𝑞 , 

where 𝑝𝑝𝑋𝑋𝑚𝑚
∗  denotes the splitting point used by node 𝑡𝑡. Note that if predictor 𝑋𝑋𝑚𝑚 is not the splitting variable, 

the corresponding Gini decrease from node 𝑡𝑡 will be zero.  

The Gini importance of predictor 𝑋𝑋𝑚𝑚 is 

𝐼𝐼𝑚𝑚𝑝𝑝(𝑋𝑋𝑚𝑚) = ∑ 𝐼𝐼𝑚𝑚𝑝𝑝�𝑋𝑋𝑚𝑚,𝑇𝑇𝑞𝑞�
𝑄𝑄
𝑞𝑞=1 . 

Alternatively, the importance values can be normalized relative to the predictor having the largest measure 
of importance. That is, 

𝐼𝐼𝑚𝑚𝑝𝑝� (𝑋𝑋𝑚𝑚) = 𝐼𝐼𝑚𝑚𝑝𝑝(𝑋𝑋𝑚𝑚)
max
𝑚𝑚

�𝐼𝐼𝑚𝑚𝑝𝑝(𝑋𝑋𝑚𝑚)�
. 

Notice that if the option of correcting importance bias is turned on, the Gini decreases ∆𝑖𝑖(𝑝𝑝𝑋𝑋𝑚𝑚
∗ , 𝑡𝑡) will be 

computed using the validation OOB cases, as described in section 6.5.   

7.2.2. Interesting Decision Rules 

Random trees is formed by multiple decision trees, and each of them consists of tree nodes that represent 
decision rules. Since the rules will work together as a committee in scoring, it is not easy to interpret the 
results by individual rules. But on the other hand, the number of nodes or rules could be very large in 
random trees. This also provides the potency to dig out some interesting rules for the purpose of model 
interpretation.  

For convenience, the following notations are defined. 

𝐼𝐼𝑖𝑖 Set of candidate nodes from which to detect interesting decision rules 
𝛿𝛿 Threshold of minimal support of candidate nodes, default 1000 
𝑛𝑛𝐼𝐼 Number of interesting decision rules to report, default 5 

𝛿𝛿𝐼𝐼 
Interestingness threshold of filtering interesting decision rules to 
report, default 0.9 

𝑀𝑀(𝑡𝑡) Event that the prediction of random trees is correct on the data group 
determined by node 𝑡𝑡 

�̅�𝑀(𝑡𝑡) 
Event that the prediction of random trees is wrong on the data group 
determined by node 𝑡𝑡 

𝐵𝐵(𝑡𝑡) Event that the prediction of node 𝑡𝑡 is correct on the data group 
determined by node 𝑡𝑡 

𝑃𝑃(∙) Probability of an event 

Interesting decision rules are defined as those which have high prediction accuracy and also high agreement 
with the predictions of random trees. Clearly, such rules can be used to interpret random trees predictions. 
Specifically, the following procedure is used for the detection. 

1. Identify the set of candidate interesting nodes 𝐼𝐼𝑖𝑖 . 
a) Compute and save the count of testing cases for each leaf node in the job of model evaluation. 

 
 
 
 



b) Collapse any pair of nodes into their parent node if they have the same parent and both of their 
counts of testing cases are less than 𝛿𝛿. 

c) Let 𝐼𝐼𝑖𝑖  be the set of remaining leaf nodes whose counts of test cases are not less than 𝛿𝛿. 
2. For each node 𝑡𝑡 in 𝐼𝐼𝑖𝑖, obtain its node assignment and let𝑃𝑃(𝐵𝐵(𝑡𝑡)) be the prediction accuracy of node 𝑡𝑡 on 

the data group determined by node 𝑡𝑡. 
3. Launch a map-reduce job and for each node 𝑡𝑡 in 𝐼𝐼𝑖𝑖,  

a) Let 𝑃𝑃(𝑀𝑀(𝑡𝑡)) be the prediction accuracy of random trees (not collapsed) on the data group 
determined by node 𝑡𝑡. Clearly, 𝑃𝑃��̅�𝑀(𝑡𝑡)� = 1 − 𝑃𝑃(𝑀𝑀(𝑡𝑡)). 

b) Let 𝑃𝑃(𝑀𝑀(𝑡𝑡)𝐵𝐵(𝑡𝑡)) be the ratio of cases that are predicted correctly by both random trees and node 𝑡𝑡 to 
the total cases in the data group determined by node 𝑡𝑡. 

c) Let 𝑃𝑃(�̅�𝑀(𝑡𝑡)𝐵𝐵�(𝑡𝑡)) be the ratio of cases that are predicted wrong by both random trees and node 𝑡𝑡 to 
the total cases in the data group determined by node 𝑡𝑡. 

d) Compute the interestingness index 𝐼𝐼𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑚𝑚(𝑡𝑡) = 𝑃𝑃(𝑀𝑀(𝑡𝑡)) ∗ 𝑃𝑃(𝐵𝐵(𝑡𝑡)) ∗ (𝑃𝑃(𝑀𝑀(𝑡𝑡)𝐵𝐵(𝑡𝑡)) + 𝑃𝑃(�̅�𝑀(𝑡𝑡)𝐵𝐵�(𝑡𝑡))). 
4. Report the top 𝑛𝑛𝐼𝐼 nodes with the highest interestingness index 𝐼𝐼𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑚𝑚(𝑡𝑡); Optionally, users can select to 

report all nodes whose interestingness index is larger than 𝛿𝛿𝐼𝐼. 

8. Random Trees Scoring 
8.1. Node Assignment 

Suppose a random trees model consists of trees 𝑇𝑇𝑞𝑞 , 𝑞𝑞 = 1,2, … ,𝑄𝑄. An assignment (also called action or 
decision) is computed for each node in the trees. To predict the target value for an incoming case, we first 
find in which terminal nodes it falls, and then we combine the assignments of these terminal nodes for the 
final prediction.  

For any node 𝑡𝑡, let 𝑚𝑚𝑖𝑖 be the assignment given to node 𝑡𝑡, 

𝑚𝑚𝑖𝑖 = �𝑗𝑗
∗(𝑡𝑡), 𝑌𝑌 is categorical
𝑦𝑦�(𝑡𝑡), 𝑌𝑌 is continuous 

𝑗𝑗∗(𝑡𝑡) = 𝑚𝑚𝑟𝑟𝑔𝑔min𝑖𝑖 ∑ 𝐶𝐶(𝑖𝑖|𝑗𝑗)𝑝𝑝(𝑗𝑗|𝑡𝑡)j , 

𝑦𝑦�(𝑡𝑡) =
∑ 𝑤𝑤𝑖𝑖𝑐𝑐𝑖𝑖

𝑞𝑞𝑥𝑥𝑖𝑖𝑖𝑖∈ℋ(𝑖𝑖)

𝑁𝑁𝑤𝑤(𝑖𝑖)
. 

If there is more than one category 𝑗𝑗 that achieves the minimum, choose 𝑗𝑗∗(𝑡𝑡) to be the smallest such 𝑗𝑗 for 
which 𝑁𝑁𝑐𝑐,𝑗𝑗(𝑡𝑡) = ∑ 𝑓𝑓𝑘𝑘

𝑞𝑞Ι(𝑦𝑦𝑘𝑘 = 𝑗𝑗)𝑘𝑘∈ℋ(𝑖𝑖)  is greater than 0, or just the smallest 𝑗𝑗 if 𝑁𝑁𝑐𝑐,𝑗𝑗(𝑡𝑡) is zero for all of them. 

8.2. Case Assignment 

Given a case 𝑘𝑘, we first compute the score from tree 𝑇𝑇𝑞𝑞 as 𝑦𝑦�𝑘𝑘
𝑞𝑞, that is, the assignment of the terminal node in 

which the case fall. Then we combine the individual scores as 

𝑦𝑦�𝑘𝑘 = �
𝑚𝑚𝑟𝑟𝑔𝑔max

𝑗𝑗
∑ Ι(𝑦𝑦�𝑘𝑘

𝑞𝑞 = 𝑗𝑗)𝑄𝑄
𝑞𝑞=1 , 𝑌𝑌 is categorical

1
𝑄𝑄
∑ 𝑦𝑦�𝑘𝑘

𝑞𝑞𝑄𝑄
𝑞𝑞=1 , 𝑌𝑌 is continuous

. 

If the target variable is categorical, for each target category 𝑗𝑗, a confidence value will be calculated as 

�̂�𝑝𝑘𝑘(𝑗𝑗) =
∑ Ι(𝑥𝑥�𝑖𝑖

𝑞𝑞=𝑗𝑗)𝑄𝑄
𝑞𝑞=1

𝑄𝑄
. 

 



Note that trees with null predictions will not be counted in case assignment.  

8.3. Predictor Contribution 

Predictor contribution is an evaluation of the influence of each predictor on the model prediction for an 
individual case. Please see Kuz’min (2011) and Palczewska (2013) for more details. 

8.3.1. Regression Predictor Contribution  

Each tree node, except the root node, has an associated rule according to which cases fall into this node. The 
difference between mean values in the current and parent nodes represents a local increment of contribution 
of the corresponding predictor, which is included in the rule of this node. 

We let 𝐿𝐿𝑆𝑆𝑚𝑚,𝑖𝑖 = 𝑦𝑦�(𝑡𝑡) − 𝑦𝑦��𝑡𝑡𝑝𝑝𝑚𝑚𝑟𝑟𝑒𝑒𝑛𝑛𝑖𝑖�, where 𝑡𝑡𝑝𝑝𝑚𝑚𝑟𝑟𝑒𝑒𝑛𝑛𝑖𝑖 denotes the parent node of node 𝑡𝑡. Then the contribution of 
predictor 𝑋𝑋𝑚𝑚 on the prediction of case 𝑘𝑘 is 

𝑆𝑆𝑘𝑘,𝑚𝑚 =

1
𝑄𝑄∑ 𝐿𝐿𝑆𝑆𝑚𝑚,𝑖𝑖𝑖𝑖∈Θ𝑚𝑚

𝑦𝑦�𝑘𝑘 − 𝑦𝑦�𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑟𝑟𝑐𝑐𝑒𝑒𝑝𝑝𝑖𝑖
 

where Θ𝑚𝑚 is the set of nodes in all trees of the trees, which contain case 𝑘𝑘 and have predictor 𝑋𝑋𝑚𝑚 in their 
rule, and  

𝑦𝑦�𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑟𝑟𝑐𝑐𝑒𝑒𝑝𝑝𝑖𝑖 = 1
𝑄𝑄
∑ 𝑦𝑦�(𝑡𝑡𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖

𝑞𝑞 )𝑄𝑄
𝑞𝑞=1 , 

where 𝑡𝑡𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖
𝑞𝑞  is the root node of tree 𝑇𝑇𝑞𝑞. 

In default, we report the top 3 predictors which have the largest contributions.  

8.3.2. Classification Predictor Contribution  

To present the predictor contribution procedure for a classification model, we need a probabilistic 
interpretation of the trees prediction process.  

Let 𝑚𝑚𝑗𝑗 be a 𝐽𝐽-dimensional vector with 1 at position 𝑗𝑗, and 0 otherwise. If tree 𝑇𝑇𝑞𝑞  predicts that case 𝑘𝑘 belongs to 
class 𝑗𝑗, then we write 𝑌𝑌�𝑘𝑘

𝑞𝑞 = 𝑚𝑚𝑗𝑗. The prediction of the random trees for case 𝑘𝑘 is 

𝑌𝑌�𝑘𝑘 = 1
𝑄𝑄
∑ 𝑌𝑌�𝑘𝑘

𝑞𝑞𝑄𝑄
𝑞𝑞=1 . 

We let 𝑌𝑌�(𝑡𝑡) be a 𝐽𝐽-dimensional vector whose 𝑗𝑗th coordinate, 𝑗𝑗 = 1,2, … , 𝐽𝐽, is defined as 𝑝𝑝(𝑗𝑗|𝑡𝑡). Then, we define 
local contribution as 𝐿𝐿𝑆𝑆𝑚𝑚,𝑖𝑖 = 𝑌𝑌�(𝑡𝑡) − 𝑌𝑌��𝑡𝑡𝑝𝑝𝑚𝑚𝑟𝑟𝑒𝑒𝑛𝑛𝑖𝑖�. The overall contribution of predictor 𝑋𝑋𝑚𝑚 on the prediction of 
case 𝑘𝑘 is 

𝑆𝑆𝑘𝑘,𝑚𝑚 =
1
𝑄𝑄∑ 𝐿𝐿𝑆𝑆𝑚𝑚,𝑖𝑖𝑖𝑖∈Θ𝑚𝑚

𝑌𝑌�𝑖𝑖−𝑌𝑌�𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑖𝑖𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖
, 

 

 



where 𝑌𝑌�𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑟𝑟𝑐𝑐𝑒𝑒𝑝𝑝𝑖𝑖 = 1
𝑄𝑄
∑ 𝑌𝑌�(𝑡𝑡𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖

𝑞𝑞 )𝑄𝑄
𝑞𝑞=1 , and the contributions are computed coordinate-wise. 

Suppose the predicted target label 𝑦𝑦�𝑘𝑘 = 𝑗𝑗. Then in default, we report the top 3 predictors which have the 
largest contributions at position 𝑗𝑗 in 𝑆𝑆𝑘𝑘,𝑚𝑚. 

 

  



Appendix A. Computing Statistics 
A.1. Local Statistics 

Specifically, for a categorical predictor and a categorical target, the local statistics collected by a mapper on 
data split 𝑠𝑠 will be 

𝑊𝑊𝑖𝑖,𝑗𝑗
𝑠𝑠 = ∑ 𝑤𝑤𝑘𝑘𝑘𝑘∈ℵ(𝑞𝑞,𝑟𝑟) 𝑓𝑓𝑘𝑘

𝑞𝑞I(𝑥𝑥𝑚𝑚,𝑘𝑘 = 𝑖𝑖 and 𝑦𝑦𝑘𝑘 = 𝑗𝑗), 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 𝑗𝑗 = 1, … , 𝐽𝐽, 

where ℵ(𝑞𝑞, 𝑟𝑟) denotes the cases of interest in the data split that fall in node 𝑡𝑡𝑞𝑞,𝑟𝑟. These cases may be 
training ℓ𝑠𝑠(𝑞𝑞, 𝑟𝑟) or validation ℊ𝑠𝑠(𝑞𝑞, 𝑟𝑟) cases in particular scenarios.  

For a categorical predictor and a continuous target, the statistics are 

𝑊𝑊𝑖𝑖
𝑠𝑠 = ∑ 𝑤𝑤𝑘𝑘𝑘𝑘∈ℵ(𝑞𝑞,𝑟𝑟) 𝑓𝑓𝑘𝑘

𝑞𝑞I(𝑥𝑥𝑚𝑚,𝑘𝑘 = 𝑖𝑖), 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 

𝑌𝑌�𝑖𝑖𝑠𝑠 =
∑ 𝑤𝑤𝑖𝑖𝑖𝑖∈ℵ(𝑞𝑞,𝑖𝑖) 𝑐𝑐𝑖𝑖

𝑞𝑞𝑥𝑥𝑖𝑖I(𝑚𝑚𝑚𝑚,𝑖𝑖=𝑖𝑖)

𝑊𝑊𝑖𝑖
𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 

𝑉𝑉𝑖𝑖𝑠𝑠 =
∑ 𝑤𝑤𝑖𝑖𝑖𝑖∈ℵ(𝑞𝑞,𝑖𝑖) 𝑐𝑐𝑖𝑖

𝑞𝑞�𝑥𝑥𝑖𝑖−𝑌𝑌�𝑖𝑖
𝑠𝑠�
2
I(𝑚𝑚𝑚𝑚,𝑖𝑖=𝑖𝑖)

𝑊𝑊𝑖𝑖
𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚. 

For a continuous predictor 𝑋𝑋𝑚𝑚, suppose the splitting points are 𝑝𝑝1 , 𝑝𝑝2, … , 𝑝𝑝𝐼𝐼𝑚𝑚 (in ascending order). Then if the 
target is categorical, the statistics will be 

𝑊𝑊𝑝𝑝𝑖𝑖,𝑗𝑗
𝑠𝑠 = ∑ 𝑤𝑤𝑘𝑘𝑘𝑘∈ℵ(𝑞𝑞,𝑟𝑟) 𝑓𝑓𝑘𝑘

𝑞𝑞I(𝑥𝑥𝑚𝑚,𝑘𝑘 ≤ 𝑝𝑝𝑖𝑖  and 𝑦𝑦𝑘𝑘 = 𝑗𝑗), 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 𝑗𝑗 = 1, … , 𝐽𝐽,  

𝑊𝑊∙𝑗𝑗
𝑠𝑠 = ∑ 𝑤𝑤𝑘𝑘𝑘𝑘∈ℵ(𝑞𝑞,𝑟𝑟) 𝑓𝑓𝑘𝑘

𝑞𝑞I(𝑦𝑦𝑘𝑘 = 𝑗𝑗), 𝑗𝑗 = 1, … , 𝐽𝐽. 

For a continuous predictor and a continuous target, the statistics are 

𝑊𝑊𝑝𝑝𝑖𝑖
𝑠𝑠 = ∑ 𝑤𝑤𝑘𝑘𝑘𝑘∈ℵ(𝑞𝑞,𝑟𝑟) 𝑓𝑓𝑘𝑘

𝑞𝑞I(𝑥𝑥𝑚𝑚,𝑘𝑘 ≤ 𝑝𝑝𝑖𝑖), 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 

𝑌𝑌�𝑝𝑝𝑖𝑖
𝑠𝑠 =

∑ 𝑤𝑤𝑖𝑖𝑖𝑖∈ℵ(𝑞𝑞,𝑖𝑖) 𝑐𝑐𝑖𝑖
𝑞𝑞𝑥𝑥𝑖𝑖I(𝑚𝑚𝑚𝑚,𝑖𝑖≤𝑝𝑝𝑖𝑖)

𝑊𝑊𝑖𝑖𝑖𝑖
𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 

𝑉𝑉𝑝𝑝𝑖𝑖
𝑠𝑠 =

∑ 𝑤𝑤𝑖𝑖𝑖𝑖∈ℵ(𝑞𝑞,𝑖𝑖) 𝑐𝑐𝑖𝑖
𝑞𝑞�𝑥𝑥𝑖𝑖−𝑌𝑌�𝑖𝑖𝑖𝑖

𝑠𝑠 �
2
I(𝑚𝑚𝑚𝑚,𝑖𝑖≤𝑝𝑝𝑖𝑖)

𝑊𝑊𝑖𝑖𝑖𝑖
𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 

𝑊𝑊𝑠𝑠 = ∑ 𝑤𝑤𝑘𝑘𝑘𝑘∈ℵ(𝑞𝑞,𝑟𝑟) 𝑓𝑓𝑘𝑘
𝑞𝑞, 

𝑌𝑌�𝑠𝑠 =
∑ 𝑤𝑤𝑖𝑖𝑖𝑖∈ℵ(𝑞𝑞,𝑖𝑖) 𝑐𝑐𝑖𝑖

𝑞𝑞𝑥𝑥𝑖𝑖
𝑊𝑊𝑠𝑠 , 

𝑉𝑉𝑠𝑠 =
∑ 𝑤𝑤𝑖𝑖𝑖𝑖∈ℵ(𝑞𝑞,𝑖𝑖) 𝑐𝑐𝑖𝑖

𝑞𝑞(𝑥𝑥𝑖𝑖−𝑌𝑌�𝑠𝑠)2

𝑊𝑊𝑠𝑠 . 

  



A.2. Global Statistics 

Local statistics computed on data splits are merged into global statistics as follows. 

For a categorical predictor and a categorical target, 

𝑊𝑊𝑖𝑖,𝑗𝑗 = ∑ 𝑊𝑊𝑖𝑖,𝑗𝑗
𝑠𝑠

𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 𝑗𝑗 = 1, … , 𝐽𝐽. 

For a categorical predictor and a continuous target, 

𝑊𝑊𝑖𝑖 = ∑ 𝑊𝑊𝑖𝑖
𝑠𝑠

𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 

𝑌𝑌�𝑖𝑖 = ∑ 𝑊𝑊𝑖𝑖
𝑠𝑠

𝑊𝑊𝑖𝑖
𝑌𝑌�𝑖𝑖𝑠𝑠𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 

𝑉𝑉𝑖𝑖 = ∑ 𝑊𝑊𝑖𝑖
𝑠𝑠

𝑊𝑊𝑖𝑖
𝑉𝑉𝑖𝑖𝑠𝑠𝑠𝑠 + ∑ 𝑊𝑊𝑖𝑖

𝑠𝑠

𝑊𝑊𝑖𝑖
(𝑌𝑌�𝑖𝑖𝑠𝑠 − 𝑌𝑌�𝑖𝑖)(𝑌𝑌�𝑖𝑖𝑠𝑠 + 𝑌𝑌�𝑖𝑖)𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚. 

For a continuous predictor and a categorical target, 

𝑊𝑊𝑝𝑝𝑖𝑖,𝑗𝑗 = ∑ 𝑊𝑊𝑝𝑝𝑖𝑖,𝑗𝑗
𝑠𝑠

𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 𝑗𝑗 = 1, … , 𝐽𝐽,  

𝑊𝑊∙𝑗𝑗 = ∑ 𝑊𝑊∙𝑗𝑗
𝑠𝑠

𝑠𝑠 , 𝑗𝑗 = 1, … , 𝐽𝐽. 

For a continuous predictor and a continuous target, 

𝑊𝑊𝑝𝑝𝑖𝑖 = ∑ 𝑊𝑊𝑝𝑝𝑖𝑖
𝑠𝑠

𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 

𝑌𝑌�𝑝𝑝𝑖𝑖 = ∑
𝑊𝑊𝑖𝑖𝑖𝑖
𝑠𝑠

𝑊𝑊𝑖𝑖𝑖𝑖
𝑌𝑌�𝑝𝑝𝑖𝑖
𝑠𝑠

𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 

𝑉𝑉𝑝𝑝𝑖𝑖 = ∑
𝑊𝑊𝑖𝑖𝑖𝑖
𝑠𝑠

𝑊𝑊𝑖𝑖𝑖𝑖
𝑉𝑉𝑝𝑝𝑖𝑖
𝑠𝑠

𝑠𝑠 + ∑
𝑊𝑊𝑖𝑖𝑖𝑖
𝑠𝑠

𝑊𝑊𝑖𝑖𝑖𝑖
�𝑌𝑌�𝑝𝑝𝑖𝑖

𝑠𝑠 − 𝑌𝑌�𝑝𝑝𝑖𝑖��𝑌𝑌�𝑝𝑝𝑖𝑖
𝑠𝑠 + 𝑌𝑌�𝑝𝑝𝑖𝑖�𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 

𝑊𝑊 = ∑ 𝑊𝑊𝑠𝑠
𝑠𝑠 , 

𝑌𝑌� = ∑ 𝑊𝑊𝑠𝑠

𝑊𝑊
𝑌𝑌�𝑠𝑠𝑠𝑠 , 

𝑉𝑉 = ∑ 𝑊𝑊𝑠𝑠

𝑊𝑊
𝑉𝑉𝑠𝑠

𝑠𝑠 + ∑ 𝑊𝑊𝑠𝑠

𝑊𝑊
(𝑌𝑌�𝑠𝑠 − 𝑌𝑌�)(𝑌𝑌�𝑠𝑠 + 𝑌𝑌�)𝑠𝑠 . 

The statistics above will be computed with ℵ(𝑞𝑞, 𝑟𝑟) = ℓ𝑠𝑠(𝑞𝑞, 𝑟𝑟), and ℵ(𝑞𝑞, 𝑟𝑟) = ℊ𝑠𝑠(𝑞𝑞, 𝑟𝑟) if necessary. 

Moreover, if the condition of in-memory building is satisfied, we will get 

ℓ(𝑞𝑞, 𝑟𝑟) = ⋃ ℓ𝑠𝑠(𝑞𝑞, 𝑟𝑟)𝑠𝑠 , 

ℊ(𝑞𝑞, 𝑟𝑟) = ⋃ ℊ𝑠𝑠(𝑞𝑞, 𝑟𝑟)𝑠𝑠 . 

  



A.3. Splitting Points and Statistics 

For a continuous predictor 𝑋𝑋𝑚𝑚, the set of splitting points Ω𝑚𝑚 consists of 𝑝𝑝1, 𝑝𝑝2 , … , 𝑝𝑝𝐼𝐼𝑚𝑚 (in ascending order), 
which are determined by the tiling method, i.e. equal-frequency binning.  

For node 𝑡𝑡𝑞𝑞,𝑟𝑟 and each splitting point 𝑝𝑝𝑖𝑖 , if the target is categorical, we have 

𝑁𝑁𝑤𝑤,𝑗𝑗 = ∑ 𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘
𝑞𝑞I(𝑦𝑦𝑘𝑘 = 𝑗𝑗)𝑘𝑘∈ℋ𝑞𝑞 ,                       

𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝑞𝑞,𝑟𝑟) = 𝑊𝑊∙𝑗𝑗, 

𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝐿𝐿) = 𝑊𝑊𝑝𝑝𝑖𝑖,𝑗𝑗, 

𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝑅𝑅) = 𝑊𝑊∙𝑗𝑗 −𝑊𝑊𝑝𝑝𝑖𝑖,𝑗𝑗, 

where 𝑡𝑡𝐿𝐿 and 𝑡𝑡𝑅𝑅 denote the left child and the right child split by point 𝑝𝑝𝑖𝑖 , respectively. 

While if the target is continuous, we have 

𝑁𝑁𝑤𝑤(𝑡𝑡𝑞𝑞,𝑟𝑟) = 𝑊𝑊, 

𝑁𝑁𝑤𝑤(𝑡𝑡𝐿𝐿) = 𝑊𝑊𝑝𝑝𝑖𝑖 , 

𝑁𝑁𝑤𝑤(𝑡𝑡𝑅𝑅) = 𝑊𝑊 −𝑊𝑊𝑝𝑝𝑖𝑖, 

𝑌𝑌�(𝑡𝑡𝐿𝐿) = 𝑌𝑌�𝑝𝑝𝑖𝑖, 

𝑌𝑌�(𝑡𝑡𝑅𝑅) =
𝑊𝑊𝑌𝑌�−𝑊𝑊𝑖𝑖𝑖𝑖𝑌𝑌

�𝑖𝑖𝑖𝑖
𝑊𝑊−𝑊𝑊𝑖𝑖𝑖𝑖

, 

𝑉𝑉�𝑡𝑡𝑞𝑞,𝑟𝑟� = 𝑉𝑉, 

𝑉𝑉(𝑡𝑡𝐿𝐿) = 𝑉𝑉𝑝𝑝𝑖𝑖, 

𝑉𝑉(𝑡𝑡𝑅𝑅) = 𝑊𝑊𝑊𝑊−𝑁𝑁𝑤𝑤(𝑖𝑖𝐿𝐿)𝑊𝑊(𝑖𝑖𝐿𝐿)−𝑁𝑁𝑤𝑤(𝑖𝑖𝐿𝐿)(𝑌𝑌�(𝑖𝑖𝐿𝐿)−𝑌𝑌�)(𝑌𝑌�(𝑖𝑖𝐿𝐿)+𝑌𝑌�)−𝑁𝑁𝑤𝑤(𝑖𝑖𝑅𝑅)(𝑌𝑌�(𝑖𝑖𝑅𝑅)−𝑌𝑌�)(𝑌𝑌�(𝑖𝑖𝑅𝑅)+𝑌𝑌�)
𝑁𝑁𝑤𝑤(𝑖𝑖𝑅𝑅)

. 

For an ordinal categorical predictor 𝑋𝑋𝑚𝑚 with 𝐼𝐼𝑚𝑚 categories, splitting points just fall between two consecutive 
categories. While for a nominal categorical predictor 𝑋𝑋𝑚𝑚 with 𝐼𝐼𝑚𝑚 categories, the set of splitting points Ω𝑚𝑚 is 
the power set of the 𝐼𝐼𝑚𝑚 categories. Suppose that one of the splitting points 𝑝𝑝 corresponds to a set of predictor 
categories 𝐶𝐶𝑝𝑝. Then if the target is categorical, we have 

𝑁𝑁𝑤𝑤,𝑗𝑗 = ∑ 𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘
𝑞𝑞I(𝑦𝑦𝑘𝑘 = 𝑗𝑗)𝑘𝑘∈ℋ𝑞𝑞 ,                       

𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝑞𝑞,𝑟𝑟) = ∑ 𝑊𝑊𝑖𝑖,𝑗𝑗𝑖𝑖 , 

𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝐿𝐿) = ∑ 𝑊𝑊𝑖𝑖,𝑗𝑗𝑖𝑖∈𝐶𝐶𝑖𝑖 , 

 



𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝑅𝑅) = 𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝑞𝑞,𝑟𝑟) − 𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝐿𝐿). 

While if the target is continuous, we have 

𝑁𝑁𝑤𝑤(𝑡𝑡𝑞𝑞,𝑟𝑟) = ∑ 𝑊𝑊𝑖𝑖𝑖𝑖 , 

𝑁𝑁𝑤𝑤(𝑡𝑡𝐿𝐿) = ∑ 𝑊𝑊𝑖𝑖𝑖𝑖∈𝐶𝐶𝑖𝑖 , 

𝑁𝑁𝑤𝑤(𝑡𝑡𝑅𝑅) = 𝑁𝑁𝑤𝑤(𝑡𝑡𝑞𝑞,𝑟𝑟) −𝑁𝑁𝑤𝑤(𝑡𝑡𝐿𝐿), 

𝑌𝑌� = ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖)

𝑌𝑌�𝑖𝑖𝑖𝑖 , 

𝑌𝑌�(𝑡𝑡𝐿𝐿) = ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖𝐿𝐿)

𝑌𝑌�𝑖𝑖𝑖𝑖∈𝐶𝐶𝑖𝑖 , 

𝑌𝑌�(𝑡𝑡𝑅𝑅) = ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖𝑅𝑅)

𝑌𝑌�𝑖𝑖𝑖𝑖∉𝐶𝐶𝑖𝑖 , 

𝑉𝑉�𝑡𝑡𝑞𝑞,𝑟𝑟� = ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖𝑞𝑞,𝑖𝑖)

𝑉𝑉𝑖𝑖𝑖𝑖 + ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖𝑞𝑞,𝑖𝑖)

(𝑌𝑌�𝑖𝑖 − 𝑌𝑌�)(𝑌𝑌�𝑖𝑖 + 𝑌𝑌�)𝑖𝑖 , 

𝑉𝑉(𝑡𝑡𝐿𝐿) = ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖𝐿𝐿)

𝑉𝑉𝑖𝑖𝑖𝑖∈𝐶𝐶𝑖𝑖 + ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖𝐿𝐿)

�𝑌𝑌�𝑖𝑖 − 𝑌𝑌�(𝑡𝑡𝐿𝐿)��𝑌𝑌�𝑖𝑖 + 𝑌𝑌�(𝑡𝑡𝐿𝐿)�𝑖𝑖 , 

𝑉𝑉(𝑡𝑡𝑅𝑅) = ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖𝑅𝑅)

𝑉𝑉𝑖𝑖𝑖𝑖∉𝐶𝐶𝑖𝑖 + ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖𝑅𝑅)

�𝑌𝑌�𝑖𝑖 − 𝑌𝑌�(𝑡𝑡𝑅𝑅)��𝑌𝑌�𝑖𝑖 + 𝑌𝑌�(𝑡𝑡𝑅𝑅)�𝑖𝑖 . 

Appendix B. Optimal Partitioning 
Chou (1991) proposed a K-means like clustering algorithm that uses a generalization of Kullback’s 
information divergence as its distance measure. It has been demonstrated to be very efficient to find the best 
splitting point for a predictor with a large number of categories.   

Let 𝑋𝑋 be a nominal predictor with a category set 𝑀𝑀 = {𝑐𝑐1, … , 𝑐𝑐𝑁𝑁}. The partitioning problem is to find a binary 
partition 𝑀𝑀0, 𝑀𝑀1 of 𝑀𝑀 that minimizes the average impurity, 

𝐼𝐼(𝑀𝑀0,𝑀𝑀1|𝑡𝑡) = 𝑝𝑝(𝑡𝑡0|𝑡𝑡)𝑖𝑖(𝑡𝑡0) + 𝑝𝑝(𝑡𝑡1|𝑡𝑡)𝑖𝑖(𝑡𝑡1), 

where 𝑡𝑡0 and 𝑡𝑡1 are child nodes determined by the partition, 𝑝𝑝(𝑡𝑡0|𝑡𝑡) = 𝑝𝑝(𝑡𝑡0) 𝑝𝑝(𝑡𝑡)⁄ , and 𝑝𝑝(𝑡𝑡1|𝑡𝑡) = 𝑝𝑝(𝑡𝑡1) 𝑝𝑝(𝑡𝑡)⁄ .  

Firstly, we introduce the notion of divergence. This is the key to formulating the partitioning algorithm as 
an iterative descent.  

For a continuous target, the centroid of node 𝑡𝑡 is 

𝑣𝑣(𝑡𝑡) = 𝑀𝑀[𝑌𝑌|𝑡𝑡] ≈ 𝑌𝑌�(𝑡𝑡). 

Let 𝑦𝑦� be an approximation of the centroid. Then the divergence of 𝑦𝑦� from 𝑣𝑣(𝑡𝑡) is given by  

 

 



𝑚𝑚(𝑡𝑡, 𝑦𝑦�) = (𝑣𝑣(𝑡𝑡) − 𝑦𝑦�)2. 

For a categorical target with 𝐽𝐽 categories, the centroid of node 𝑡𝑡 is a J-dimensional class probability vector 
of 𝑝𝑝(𝑗𝑗|𝑡𝑡). Let Ψ be a real nonnegative definite 𝐽𝐽×𝐽𝐽 matrix, where it has the element 𝜑𝜑𝑖𝑖𝑗𝑗 = 1 − 𝐶𝐶(𝑖𝑖|𝑗𝑗). Then the 
divergence of 𝑦𝑦� from 𝑣𝑣(𝑡𝑡) is given by  

𝑚𝑚(𝑡𝑡, 𝑦𝑦�) = (𝑣𝑣(𝑡𝑡) − 𝑦𝑦�)′Ψ(𝑣𝑣(𝑡𝑡) − 𝑦𝑦�). 

Let 𝛼𝛼:𝑀𝑀 → {0,1} be the function that assigns each category in 𝑀𝑀 to one of the two bins 𝑀𝑀0, or 𝑀𝑀1, and let 𝛽𝛽(∙) 
be the function on {0,1} that assigns a centroid to each bin. That is, for each 𝑐𝑐 ∈ 𝑀𝑀, let 

𝛼𝛼(𝑐𝑐) = �0 if 𝑐𝑐 ∈ 𝑀𝑀0
1 if 𝑐𝑐 ∈ 𝑀𝑀1

, 

and for 𝑘𝑘 = 0,1, let 

𝛽𝛽(𝑘𝑘) = 𝑣𝑣(𝑡𝑡𝑘𝑘). 

The partitioning algorithm is as follows. 

1. Let 𝑀𝑀0, 𝑀𝑀1 be an initial random partition of 𝑀𝑀, and compute 𝛽𝛽(𝑘𝑘) for 𝑘𝑘 = 0,1. 
2. Update 𝛼𝛼 to 𝛼𝛼′ for fixed 𝛽𝛽, by reassigning each 𝑐𝑐 to its nearest neighbor in the divergence sense. That is, 

let 𝛼𝛼′(𝑐𝑐) = arg𝑚𝑚𝑖𝑖𝑛𝑛𝑘𝑘𝑚𝑚�𝑐𝑐,𝛽𝛽(𝑘𝑘)�, breaking ties arbitrary if 𝑝𝑝(𝑐𝑐|𝑡𝑡) = 0 or if the divergences are equal.  
3. Update 𝛽𝛽 to 𝛽𝛽′ for fixed 𝛼𝛼′, by recomputing the centroid of each bin.  
4. Iterative steps 2 and 3 until the average impurity 𝐼𝐼(𝑀𝑀0,𝑀𝑀1|𝑡𝑡) is not reduced, or it reaches the maximal 

number of iterations (default 20). 
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SNA - Diffusion Analysis Algorithms 
 

1. Introduction 
A diffusion process starts with the construction of a call graph and a seed. The call graph is a 
directed graph in which each node corresponds to a subscriber in the network and the weight on 
each directed edge reflects the strength of connection between the caller (head of edge) and 
callee (tail of edge). The weight associated with each edge is based on call data, such as the total 
number of calls or the total duration of calls over a period of time. The seed is a list of 
subscribers that are known to have churned during a predefined period of time, typically a subset 
of the time period that was used to construct the graph (e.g., the same period, the last two weeks, 
etc.).  
 
Each such churner is assigned with an initial positive energy and all other subscribers are 
assigned with zero energy. Finally, a diffusion-like process is initiated in the graph, where at 
each iteration nodes transfer a fraction of their energy to their outgoing neighbors in the graph. 
The exact value depends linearly on the weight associated with the edge and on a spreading 
coefficient ( )1,0∈d , which determines the fraction of energy that can be given away. After the 
stopping condition is met, each subscriber is associated with a certain amount of energy, where 
higher values are considered higher probability candidates for churning. A diffusion process like 
the one described here mimics a word of mouth scenario where the information spreads among 
people. 
 
The Diffusion Analysis (DA) component implements a certain type of diffusion process. For 
each node, the DA component computes the amount of energy at the end of the process 
described above, as well as additional features related to this graph. These features or key 
performance indicators (KPIs) can be used to build a churn prediction model for the 
telecommunications industry. It should be noted that diffusion processes such as the one 
described in this document can be used for additional targets such as customer retention or viral 
marketing. 
 
In this document we overview the different stages of the diffusion algorithm.  
 

2. Notations  
The following notation will be used in each part of the algorithm unless stated otherwise: 
 

adjW  Adjacency weights matrix, which can be the social graph 
representation as a connectivity matrix. The matrix has mm×
elements 

jiw ,  The (i,j) entry of adjW  representing the weight (i.e., connection 
strength) from node i  to node j  

adjT  adjW  normalized according to lines: 

( ) ( ) ∑=
k

ikadjadj wjiWjiT /,, . For each line, ( )jiTadj ,  represents 

the proportional strength of the edge ( )ji, , compared to all other 
outgoing edges ( )ki,  

  



( )nCT  Total energy vector at the end of iteration n . This is a row vector 
whose dimensions are m×1  

( )nck
T  k th element of ( )nCT , representing the total energy of the k th 

node at the end of iteration n  
( )nCF  Fresh energy vector at the end of iteration n . This is a row vector, 

whose dimensions are m×1  
( )nck

F  k th element of ( )nCF  - fresh energy of the k th node at the end 
of iteration n  

( )nCG  Given away energy vector at the end of iteration n . This is a row 
vector, whose dimensions are m×1  

( )nck
G  k th element of ( )nCG  - given away energy of the k th node at the 

end of iteration n  
d  Spreading coefficient. Fraction of fresh energy that is given away 

in every iteration 
m  Number of nodes in the graph 

iN  The i th node 
ε  A small constant value. Used for indicating convergence of the 

process.   

ITERθ  Maximal allowed number of iterations 

 

3. Creating the Adjacency Matrix 
The adjacency matrix adjW  , which corresponds to the calls matrix, is a matrix whose entries 
represent the strength of connection between two nodes. The matrix will be sparse by definition 
since each caller only calls a small fraction of the available callees. Technically, the adjacency 
matrix is created by the loader component. The weights of the matrix are computed according to 
the settings given to the loader component. While these exact settings are described in the 
relevant document, we now provide two examples of such computation. 

3.1 Counting the Number of Calls as Weight 
The simplest option to weight the strength of the connection between caller i  and callee j is by 
counting the number of calls from i  to j . In this case, )(#, jicallsw ji →= .  
Note: The matrix does not have to be symmetric and the weights defined here are integers.  

3.2 Counting the Total Duration as Weight 
Another option to weight the strength of the connection between caller i  and callee j is the 
summation over the total duration of calls from i  to j . In this case, 

∑
→

→=
)(

, )(_
jicalls

ji jicalldurationw .  As in the previous case, the matrix does not have to be 

symmetric and the weights defined here are also integer (duration of calls is measured in 
seconds). 
 
 
 
 
 
 



4. Description of the Diffusion Algorithm 

4.1 Initialization 
We initialize the total energy, free energy, and given away energy vectors as follows: 
• ( ) enCT = where ie  equals 1 if i  is in the list of churners and 0 otherwise: 

( )




=
else

churneraisiif
ci

T 0
1

0  

• ( ) enCF = where ie  equals 1 if i  is in the list of churners and 0 otherwise: 

( )




=
else

churneraisiif
ci

F 0
1

0  

• ( ) 0=nCG , all zeros vector 
 

4.2 Normalization of the Adjacency Matrix 
The adjacency matrix is normalized as follows: 

( ) ( ) ∑=
k

ikadjadj wjiWjiT /,,  

Where adjW  is the original adjacency matrix.  

4.3 Diffusion Update Equations 
The diffusion process is updated according to the following equations: 

1. ( ) ( ) adjFF TnCdnC ⋅⋅=+1 . This equation corresponds to the fresh energy received by 
the node from all its incoming neighbors. The neighbors give away a fraction governed 
by the spreading coefficient; this fraction is relative to the normalized connection 
strength. 
A slightly different view of this equation follows. Each node that has outgoing edges, 
distributes a d fraction of its fresh energy to its outgoing neighbors. Each neighbor gets 
an amount that is proportional to its relative weight. Therefore, each node obtains the 
sum over the energies obtained from the incoming neighbors.  

2. ( ) ( ) )( iiFG cdiagnCnC ⋅=  where 
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which can be rewritten as ( ) ( ) ∆⋅⋅= nCdnC FG where )0)deg(( >=∆ iNoutdiag - a 
diagonal matrix whose diagonal elements are 1 if the corresponding node has at least 1 
outgoing edge, and 0 otherwise. 
This equation corresponds to the given away energy of each node. This energy is only 
positive if there is at least 1 outgoing edge. Each node only gives away a d  fraction of 
its fresh energy. 

3. ( ) ( ) ( ) ( )111 +−++=+ nCnCnCnC GFTT . This equation represents the update of the 
total energy. It is the sum of the total energy from the last iteration plus the free received 
energy, minus the given away energy. 

 
 



4.4 Simplification of the Update Equations 
The third update equation can be rewritten as follows: 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )∆−⋅⋅+=

∆⋅⋅−⋅⋅+=
+−++=+

adjFT

FadjFT

GFTT

TnCdnC
nCdTnCdnC

nCnCnCnC 111
 

Where as before, )0)deg(( >=∆ iNoutdiag . 
This leaves us with only two update equations: one for the total energy and one for the fresh 
energy: 

( ) ( )
( ) ( ) ( ) ( )∆−⋅⋅+=+

⋅⋅=+

adjFTT

adjFF

TnCdnCnC
TnCdnC

1

1
 

4.5 Convergence Criterion 
The following criterion is used for stopping the diffusion process (indication of convergence): 

( ) ( ) ε<−+∀ nCnCi i
T

i
T 1,  

The process stops at the smallest n for which this criterion holds. 
 

5. Implementation Issues 

5.1 Algorithm State Machine 
The following state machine describes the algorithm presented above. 

 
 
Circles represent states and edges represent the transitions between states. The process begins 
with the normalizing state (bold circle on the left hand side). During normalization in and out 
degrees are also calculated. The process continues with the computation of the weighted in and 
out degrees. The next step of updating the diffusion equations is recurrent and repeats until the 
termination condition is met.  

5.2 Saved Data Structures 
As seen in the previous section, the update equations can be rewritten in a manner that allows 
for the updating and storing of ( ) ( )nCnC TF ,  only. The algorithm implementation follows this 
description.  
The following vectors are also stored: in and out degree, weighted in and out degree. 
 
 



5.3 Termination of the Computation 
The natural termination condition of the algorithm is when the convergence criterion is met, as 
explained in the previous section. However, the diffusion process can be very slow, either due to 
an incorrect choice of ε  or as a result of the problem structure and initial conditions. To allow 
forced termination, the code implements a hard stop: if the number of update equations has 
reached a predefined value, the computation stops. Therefore, the stopping condition is as 
follows: 

( ) ( ) ε<−+∀ nCnCi i
T

i
T 1,  

Or 
Number of iterations > ITERθ  
The user can control ITERθ  (see DA Input Settings.doc). 

5.4 Parallelization Scheme 
The parallelization schema of the Group Analysis (GA) algorithm is based on the PML 
architecture [2]. For this section, it is assumed that the reader is familiar with the basic PML 
event flow model.  

In general, each worker is responsible for 
n
1 lines of the adjacency matrix (namely, 

n
1  of the 

callers).  The various stages of the DA algorithm are parallelized as follows: 

• Normalization of the adjacency matrix – each worker performs parallelization of 
n
1

 lines  

• Update equations – each worker updates the values of 
n
1

 callers (that correspond to the 
n
1

 

lines provided to the worker). After the computation, the master collects all the sub vectors 
and assigns them to the full vectors. The new (updates) ones are then transferred to the 
workers for the next iteration. 

• Convergence check – performed by the master after each iteration. 
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668–677 
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SNA - Group Analysis Algorithms 
 
1. Introduction 
This document describes the group analysis (GA) algorithm of TABI. A more 
comprehensive description of the scientific ideas behind the algorithm can be found in 
[1]. The algorithm gets as input records of interaction between pairs of individuals. For 
the sake of this document we will assume that these are Call Details Records (CDRs). 
The algorithm then outputs the following objects:  

(1) a graph of individuals in which each edge denotes an alleged strong relation 
between a pair of individuals. This graph is the core of the social network that the 
algorithm outputs;  
(2) a partition of the social network into disjoined reference groups. 
(3) A set of basic key performance indices (KPIs) per each group. 
(4) A set of basic key performance indices per each individual.  

 
By this the algorithm extracts social relationships, social structures, and social features 
of groups and individuals. The algorithm is composed of several phases. We will 
describe the logic behind them as well as the various parameters that governs each 
one of these steps. Most of the phases of the algorithm are computed in parallel over 
the Parallel Machine Learning toolbox (PML) [2]. We also briefly describe the 
parallelization schema as well. 
 

2. Input, Output, and Parameters 
In general, the input for TABI is the output of the loader [3] which can be comprised 
from a single or multiple files. The output is composed of two comma separated files 
including the basic KPIs of the groups and individuals in the network. Another file 
containing the kernel relations can be output if the appropriate parameter in the kernel 
section is turned on (see Section 3.1).  
 

2.1 Running the Algorithm from a Command Line 
Running the algorithm from the command line can be done via one the following 
commands: 
 
Single core, single partition  
“Pmlexec” <param-file> <loader-outfile> <model.xml>  
 
 
Multiple cores  
mpiexec -n <ncpus> <pmlexec> <param-file> <loader-outfile> <model.xml>  
 
 
Multiple partitions 
 Suppose the loader output file name is foo.out 

–  It will generate output files called foo.out.0 etc. and well as foo.out.0.info 
etc. 

 Copy foo.out.0.info to foo.out.info 
 Run the GA using foo.out  

–  The multiple training file option in the parameter file should be on 
 
 
 



2.2 Basic information flow 
The information flow of TABI is depicted in the figure below. The CDRs are collected 
and presented either in a directory or in a single file of CDRs. They are processed by 
the TABI loader into either a single binary file in which the most recent calls are kept for 
each caller, or into a collection of such files, such that at each file about 1/n fraction of 
the callers are represented where n denotes the number of loader partitions. The 
loader’s output then serves as an input for the GA algorithm that produces the group 
and individual KPIs. These can then be used by various applications.  

 
 

2.3 Sample Parameter File 
The file below is an example of a complete parameter file for the GA algorithm. The file 
adheres to an XML format, contains a general section, and an inner section is referring 
to the kernel parameters. 

 
 
 
 
 

<PMLInput> 
  <AlgorithmName>CGA</AlgorithmName>  
  <MinClusterSize>1</MinClusterSize>  
  <MaxClusterSize>100</MaxClusterSize>  
  <OutputFileName>my_out.xml</OutputFileName>  
  <NumIterationsConnectingNodes>1</NumIterationsConnectingNodes>  
  <VerbosityLevel> 20 </VerbosityLevel> 

          <OutputFormat> CSV </OutputFormat>  
          <MultipleTrainFiles> True </MultipleTrainFiles> 

 <KernelParams> 
   <MultipleTrainFiles> True </MultipleTrainFiles> 

  <SparsityLevel>0.80</SparsityLevel>  
  <KernelType>Friends</KernelType> 
  <NormalizingFactor>50000000</NormalizingFactor>  

  </KernelParams> 
  </PMLInput> 



3. The Various Stages of the Algorithm 
 

3.1 Building the Kernel Graph 
The goal of this stage is to build a graph of individuals in which an edge denotes an 
alleged strong relationship between pairs of individuals. In a nutshell, the algorithm 
defines two individuals as related if (1) They have interacted; and (2) They interacted 
with similar people. The actual kernel building is done using the following process: 
 

1. Quantifying the relationships between every pair of individuals who have 
interacted.  

2. Constructing the kernel graph from only the strong relations. 
 
In order to quantify the relations, we define the following metric. We assign to each 
caller i, a vector of its recent called numbers. The length of this vector is governed by a 
TABI loader [4] parameter called CyclicTableSize. For each pair i and j that interacted 
at least once, we define a probability space that is based on four events: both called the 
same person k, both did not call k, i called k and j did not, and vice versa.  The mutual 
information is then measured on that space. A more elaborate description of this metric 
is available [1]. In various experiments it was found superior to more direct approaches.  
The actual computation of the TABI metric is depicted in the figure below. The code can 
be found in the method: IDMPBKernelFunctionFriends::ComputeKernel(.)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Given the SparsityLevel parameter s, let p = 1-s. Next, the goal is to construct a graph 
containing as edges only the highest p-fraction of the edges in terms of the 
quantification above. Due to the distributed nature of the algorithm, each processor 
(worker) holds its own part of the computed relations and we do not want it to 
communicate this large amount of data further. Therefore, the graph construction is a 
twofold process. First, each worker samples its own edges, computes a threshold value 
t such that only p fraction of the edge weights are above this threshold (p-percentile).  
These values are then averaged by the master node to compute a common threshold 
t*. Next, each worker broadcasts back to the master all the edges in the graph which 
are above t*. It should be noted that the resulted kernel graph in undirected.  
 
 
 
 
 
 
 



Kernel Parameters 
The parameters below belong to the kernel section of the parameter file.  
 
Nu
m 

Parameter name Description Data 
type 

Defau
lt 
value 

Data 
range 

Restriction 

1 MultipleTrainFiles True  if multiple 
partitions were used by 
the loader 

int 0 0,1  

2 KernelVerbosity Controls the amount of 
kernel printouts  

int 1 1 - 100 Should be a small 
number 
(EndConditionValue 
<< 1) 

3 KernelType Type of the kernel 
metric 

string Friend
s 

 Must be Friends 

4 OutputFileName If on, The algorithm will 
output the kernel graph 
to that file, otherwise, 
the graph will not be 
output 

string - -  

5 NumberOfComputeIt
erations 

If greater than 1, the 
kernel computation will 
be done in several 
iterations   

int  1 >0 Must be 1 

6 NormalizingFactor Used in the 
computation of the 
metric. Recommended 
to be at the same 
ballpark as the size of 
the population 

doubl
e 

50,00
0,000 

> 0  

 
 
Due to historical or future reasons, the other parameters are fixed. These include: 
IsSparseKernel, isSparseData, IndicesData, EmptyMarker, and FilterSimilarities.            
 

3.2 Building the Core Groups 
Once the kernel graph is computed, the next step is to partition it into groups. These 
are called the core groups or initial clusters. The algorithm partitions the kernel graph 
using a BFS like process (with some high degree preference heuristic) for finding 
connected components.  A parameter called MaxClusterSize that governs the 
maximum size of a cluster. The process stops adding to a group once its size limit has 
been reached.  The underlying assumption is that groups that are too small or too large 
are not informative for various applications [1]. 
 
 
Relevant Parameters 
 
Nu
m 

Parameter name Description Data 
type 

Defau
lt 
value 

Data 
range 

Restriction 

1 MinClusterSize Miminal cluster size int 1 >0  
2 MaxClusterSize Maximal cluster size int 100 > 

MinClu
sterSiz
e 

 

 
 
 
 
 
 



Linking a non-core member 
For each caller i not already in the core 

 Let S1, S2, … Sl be the core groups to whom i called 

 If (l > 0) 

  Let k1, … ,kl denote the number of times I called each group 

  Let j = argmax kj 

  Add caller i to Sj as a non-core group member 

 

3.3 Building the Final Groups: Linking Non Core Nodes 
In order to increase the coverage of the social network we are building, the next step 
that TABI takes is to add individuals who are not linked to any core group via the 
following heuristic: For each such individual we go again over the call graph (not the 
kernel). If a caller i called members of core clusters cluster c we will add it as a non-
core user to the cluster it called the most. This process will be done iteratively if the 
parameter NumIterationsConnectingNodes is greater than 1. In this case, at each 
phase j the heuristic above will be applied to the groups of iteration j-1.  The whole 
process is done in parallel so each worker responsible only to its own fraction of the 
callers. Note that not all the callers end up in the social network. A caller who did not 
communicate with any core group will be left out. There is an essential tradeoff between 
the strength of the relations controlled by the sparsity threshold, the number of 
connecting nodes iteration, and the coverage. As a rule of thumb, at least for churn 
prediction, shooting for coverage of 50% – 75% is often desirable.  The heuristics for 
linking non core nodes is depicted below. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Relevant Parameters 
 
Nu
m 

Parameter name Description Data 
type 

Defau
lt 
value 

Data 
range 

Restriction 

1 NumIterationsConne
ctingNodes 

The number of 
iterations in which non-
cluster nodes will be 
connected using the 
above hueristic 

int 1 >0  

2 MaxClusterSize Maximal cluster size int 100 > 
MinClu
sterSiz
e 

 

 
 

3.4 Analyzing Social Influence in the Final Groups 
The next stage is to perform a basic analysis on each group in order to extract basic 
KPIs of groups and individuals. The analysis is done in parallel and on the call graph. 
The main analysis done at this stage is importance analysis on the call graph projected 
into each group. This is essentially done via a random walk, once in the direction of the 
calls to analyze authority leadership and once in the opposite direction to analyze 
information spreading roles. A more elaborate description can be found in [1].   
 
 
 
 



3.5 Computing the Final KPIs 
In the final stage of the algorithm, we go over all the clusters and individuals in the 
social network and compute the final KPIs for them. Note that TABI outputs only basic 
social KPIs. These can be enhanced using various techniques. More specifically, 
individual demographics, usage, and other data can be aggregated (e.g., averaged) at 
the group level.  
 
This stage is done serially on the master processor. The KPIs are then written into two 
files, one for the clusters and one for the individual nodes. Note that only those who 
appear in the final groups will have KPIs.   
 
Relevant Parameters 
 
Nu
m 

Parameter name Description Data 
type 

Defau
lt 
value 

Data 
range 

Restriction 

1 OutputFileName The name prefix of the 
output file. The right 
suffix will be appended 
for it 

string    

2 OutputFormat Maximal cluster size string  XML/C
SV/ 
Normal 
/ 
Compa
ct 

Fixed to CSV 

 
 

4. Implementation Issues 
 

4.1 Algorithm State Machine 
The following state machine describes the algorithm presented above. 

 
 



Circles represent states and edges represent the transitions between states. Dashed 
edges represent transitions which are possible under some parameter combinations, 
but are not common. The actual logic of the algorithm is complicated and should be 
learned from the code. In the current implementation of TABI, the algorithm always 
starts from the building kernel state. 
  

4.2 Parallelization Model 
The parallelization schema of the GA algorithm is based on the PML architecture [2]. 
For this section, it is assumed that the reader is familiar with the basic PML event flow 
model.  
 
The various stages of the GA algorithm are parallelized as follows: 
 
Kernel computation 

 Each worker is responsible to 1/n of the callers.  

 Threshold computation: Each worker independently computes all the relations 
of the form S(i,j) such that both i and j belong to its partition  

 Kernel metric; Each worker computes all the relations of the form S(i,j) such 
that I belongs to the worker’s partition and I called j. Note that in order to 
accomplish that the worker must get all the calls matrix 

 
 
Building the core groups  
Done by the master. Not parallelized 
 
Linking non core members 
Each worker is responsible to about 1/n of the callers 
 
 
Group analysis 
At the beginning of this stage all workers have the same data and no data is 
communicated via the PML. The parallelization is obtained via partitioning of the group 
ids. Each worker i analyzes all the groups k such that (k modulo n) == i so about 1/n 
fraction of the groups. 
 
General note 
The method getWorkerDataRequirements() of the IDMPBCGAData object defines to 
the PML whether the worker needs to see all the data, just its own partition (1/n of the 
callers), or no data. A similar method exists in the kernel object. 
 

4.3 A Note on Time and Space Complexity  
The most time and space consuming phase in the algorithm is the kernel building. Let d 
denote the cyclic table size parameter of the loader. Roughly speaking, each caller in 
the loader output graph contributes up to d computations of the kernel metric. Each 
such computation involves going over to lists of length up to d. Thus, the overall space 
complexity is about O(nd). TABI makes a heavy use of STL containers which typically 
have a logarithmic complexity. Thus, the overall time is about O(nd2 log(nd)). The actual 
time is heavily governed by the amount of page swapping of the underlying machine.  
Thus, it is strongly recommended that each core will be able to hold its own partition in 
the memory. As a rule of thumb, the recommended architectural guidelines are as 
follows:      
 
 
 
  



 At least one core per each 1M callers 
 At least 2GBytes of RAM per each core  

These guidelines refer to d = 100. 
 

4.4 The GA Code 
The main class that implements the GA algorithm is called IDMPBCGAData. 
The computation of the kernel is delegated to a class called IDMPBKernelData with 
some specific kernel functions that reside in a file called idmpb_kernel_functions.hpp. 
The code of these classes can be found in a subdirectory named 
src/lib/simple_algorithm. 
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Spatial Temporal Prediction Algorithms  
 

1. Introduction 
Spatio-temporal statistical analysis has many applications. For example, energy management for 
buildings or facilities, performance analysis and forecasting for service branches, or public 
transport planning. In these applications, measurements such as energy usage are often taken over 
space and time. The key questions here are what factors will affect future observations, what can 
we do to effect a desired change, or to better manage the system. In order to address these 
questions, we need to develop statistical techniques which can forecast future values at different 
locations, and can explicitly model adjustable factors to perform what-if analyses.  

However, these analytical needs are not the focus of traditional spatio-temporal statistical research. 
In traditional statistical research, spatio-temporal analysis is treated just as an extension of spatial 
analysis and focuses more on looking for patterns in past data rather than forecasting future values. 
The traditional spatio-temporal research targets different application areas such as environmental 
research. There are, however, different types of spatio-temporal problems in which time is the key 
component. We therefore need to treat spatio-temporal analysis as a unique type of problem itself, 
not an extension to spatial analysis. Moreover, we need to explicitly model these factors to allow 
for what-if analysis. Although these kinds of problems could be addressed by traditional methods, 
the emphasis is quite different.  

This algorithm assumes a fixed set of spatial locations (either point location or center of an area) 
and equally spaced time stamps common across locations. It can issue predicted or interpolated 
values at locations with no response measurements (but with available covariates). We call our 
model spatio-temporal prediction (STP).   

The goal of the STP algorithm is to address the needs for solving the spatio-temporal problems. 
STP can generate predictions at any location within a 3D space for any future time. It also 
explicitly models the external factors so we can perform what-if analysis.   

1.1 Handling of missing data 
The algorithm is designed to accommodate missing values in the response variable, as well as in 
the predictors. We consider an observation at a given time point and location ‘complete’ if all 
predictors and the response are observed at that time and location. To allow for model fitting in 
spite of missing data, all of the following conditions must be met:  

1. At each location, observations need to be complete for at least one sequence of at least 𝐿𝐿 +
2 consecutive time points. 

2. At each location 𝑠𝑠𝑖𝑖, for any pair of locations 𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗, 𝑠𝑠𝑗𝑗 ≠ 𝑠𝑠𝑖𝑖, observations must be complete at 
both locations simultaneously for at least two sequences of 𝐿𝐿 + 2 consecutive time points.  

3. Overall, at least 𝐿𝐿 sequences of at least 𝐿𝐿 + 2 consecutive time points must be present in the 
data (to allow for estimation of 𝛼𝛼).  

4. The total number of complete samples must be at least equal to 𝑀𝑀 + 𝐿𝐿 + 2, where 𝑀𝑀 is the 
number of predictors, including the intercept, and 𝐿𝐿 the user-specified lag.  

 

 



5. After removing locations according to the rules above, no more than 5% of the remaining 
records should be incomplete. As an example, if after removing locations, 𝑛𝑛 locations and 
𝑚𝑚 time stamps remain, no more than 𝑛𝑛×𝑚𝑚×.05 records should be incomplete.  

The above conditions should be verified in the following order:  

Step 1. Remove locations that do not meet condition 1.  

Step 2. Remove locations that violate condition 2 in the following order:  

(a) Let ℐ be the set of points that violate condition 2.  

(b) Eliminate from the data set the observation(s) that violate condition 2 for the greatest 
number of pairs. In case of a tie, remove all observations that are tied.  

(c) Update ℐ by removing any observations that now no longer violate Condition 2. That 
is, remove observation that only violated the condition 2 in a pair with the 
observations that were removed in Step 2b.  

(d) Iterate steps 2b and 2c until ℐ is empty.  

Step 3. If after Steps 1 and 2, conditions 3-5 are violated, the model cannot be fit.  

2 Model 
2.1 Notation 
The following notation is used for the model inputs:  

Name  Symbol Type Dimensions 
Number of time stamps  𝑚𝑚 > 𝐿𝐿 integer 1 
Number of measurement locations  𝑛𝑛 ≥ 3 integer 1 
Number of prediction grid points  𝑁𝑁 integer 1 
Number of predictors (including intercept)  𝑀𝑀 integer 1 
Index of time stamps  𝑡𝑡 ∈ {1, … ,𝑚𝑚} integer 1 
Spatial coordinates  𝑠𝑠 ∈ {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}; 𝑠𝑠𝑗𝑗 = (𝑣𝑣𝑗𝑗 , 𝑟𝑟𝑗𝑗 ,𝑤𝑤𝑗𝑗)′ vector 3×1 
Targets observed at location 𝑠𝑠 and time 𝑡𝑡  𝑌𝑌𝑖𝑖(𝑠𝑠) scalar 1 
Targets observed at location 𝑠𝑠  𝑌𝑌(𝑠𝑠) vector 𝑚𝑚×1 
Targets observed at time 𝑡𝑡 𝑌𝑌𝑖𝑖 vector 𝑛𝑛×1 
Predictors observed at location 𝑠𝑠 and time 𝑡𝑡 𝑋𝑋𝑖𝑖(𝑠𝑠) = (𝑋𝑋𝑖𝑖,1(𝑠𝑠), … ,𝑋𝑋𝑖𝑖,𝑆𝑆(𝑠𝑠))′ vector 𝑀𝑀×1 
Predictors observed at location 𝑠𝑠 𝑋𝑋(𝑠𝑠) = (𝑋𝑋1(𝑠𝑠), … ,𝑋𝑋𝑚𝑚(𝑠𝑠))′ matrix 𝑚𝑚×𝑀𝑀 
Predictors observed at time 𝑡𝑡 𝑋𝑋𝑖𝑖 = (𝑋𝑋𝑖𝑖(𝑠𝑠1), … ,𝑋𝑋𝑖𝑖(𝑠𝑠𝑛𝑛))′ matrix 𝑛𝑛×𝑀𝑀 
Maximum autoregressive time lag  𝐿𝐿 > 0 integer 1 
Length of prediction steps 𝐻𝐻 > 0 integer 1 

 
Notes   

i. For a predictor that does not vary over space, 𝑋𝑋𝑖𝑖,𝑑𝑑(𝑠𝑠1) = 𝑋𝑋𝑖𝑖,𝑑𝑑(𝑠𝑠2) = ⋯ = 𝑋𝑋𝑖𝑖,𝑑𝑑(𝑠𝑠𝑛𝑛);   
ii. For a predictor that does not evolve over time, 𝑋𝑋1,𝑑𝑑(𝑠𝑠) = 𝑋𝑋2,𝑑𝑑(𝑠𝑠) = ⋯ = 𝑋𝑋𝑚𝑚,𝑑𝑑(𝑠𝑠).  

The following notation is used for model definition and computation:  

Name  Symbol Type Dimension 
Coefficient vector for linear model  𝜷𝜷 = (𝛽𝛽1, … ,𝛽𝛽𝑆𝑆) vector 𝑀𝑀 
Coefficient vector for AR model  𝜶𝜶 = (𝛼𝛼1, … ,𝛼𝛼𝐿𝐿) vector 𝐿𝐿 
Vector of 1’s  1 = (1, … ,1)′ vector variable 
Kronecker product  ⊗ operator NA 

 



 

2.1 Model structure 

 𝑌𝑌𝑖𝑖(𝑠𝑠) = �𝛽𝛽𝑑𝑑

𝑆𝑆

𝑑𝑑=1

𝑋𝑋𝑖𝑖,𝑑𝑑(𝑠𝑠) + 𝑍𝑍𝑖𝑖(𝑠𝑠) (1) 

where 𝑍𝑍𝑖𝑖(𝑠𝑠) is mean-zero space-time correlated random process. Users can specify whether an 
“intercept” term needs to be included in the model. The inference algorithm works with general 
“continuous” variables, and with or without intercept.   

• Autoregressive model, AR(𝐿𝐿) for time autocorrelation (Brockwell and Davis, 2002):  

 𝑍𝑍𝑖𝑖(𝑠𝑠) = �𝛼𝛼𝑙𝑙

𝐿𝐿

𝑙𝑙=1

𝑍𝑍𝑖𝑖−𝑙𝑙(𝑠𝑠) + 𝜖𝜖𝑖𝑖(𝑠𝑠) (2) 

Note that users need to specify the maximum AR lag 𝐿𝐿.  

Let 𝜖𝜖𝑖𝑖 = (𝜖𝜖𝑖𝑖(𝑠𝑠1), … , 𝜖𝜖𝑖𝑖(𝑠𝑠𝑛𝑛))′ be the AR residual vector at time 𝑡𝑡. Since the time autocorrelation 
effect has already been removed, 𝜖𝜖𝐿𝐿+1, … , 𝜖𝜖𝑚𝑚 are independent.  

• Parametric or nonparametric covariance model for spatial dependence:  
 𝑉𝑉(𝜖𝜖𝑖𝑖) = Σ𝑆𝑆, 𝑡𝑡 = 𝐿𝐿 + 1, … ,𝑚𝑚 (3) 
where Σ𝑆𝑆 = {𝑅𝑅(𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗)}𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛 is a 𝑛𝑛×𝑛𝑛 covariance matrix of spatial covariance functions 
𝑅𝑅(𝑠𝑠, 𝑠𝑠′) = 𝐶𝐶𝑏𝑏𝑟𝑟(𝑌𝑌𝑖𝑖(𝑠𝑠),𝑌𝑌𝑖𝑖(𝑠𝑠′)) at observed locations. Two alternative ways of modeling the spatial 
covariance function 𝑅𝑅(𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗) are implemented - a variogram-based parametric model (Cressie, 
1993) and a Empirical Orthogonal Functions (EOF)-based nonparametric model (Cohen and 
Johnes, 1969; Creutin and Obled, 1982).  

Note that users can specify which covariance model to be used.  
• If a “parametric model” is chosen, the algorithm will automatically test for the goodness-of-

fit. If the test suggests a parametric model is not adequate, the algorithm switch to EOF 
model fitting and issue prediction based on EOF model.  

• If a EOF model is chosen, the switching test part will be skipped, and both model fitting and 
prediction will follow EOF-based algorithm.  

Under this model decomposition, the covariance structure for the spatio-temporal process 𝑌𝑌 =
(𝑌𝑌𝐿𝐿+1′ , … ,𝑌𝑌𝑚𝑚′ )′ is of separable form  

 𝑉𝑉(𝑌𝑌) = 𝑉𝑉(𝑍𝑍) = Σ = Σ𝑇𝑇 ⊗ Σ𝑆𝑆 (4) 
where Σ𝑇𝑇 = {𝛾𝛾𝑇𝑇(𝑡𝑡 − 𝑡𝑡′)}𝑖𝑖=𝐿𝐿+1,…,𝑚𝑚;𝑖𝑖′=𝐿𝐿+1,…,𝑚𝑚 is the (𝑚𝑚− 𝐿𝐿)×(𝑚𝑚 − 𝐿𝐿) AR(L) covariance matrix 
with the autocovariance function.  

3 Estimation algorithm 
This section provides details on the multi-step procedure to fit the STP model (see Figure 1) when 
the user specifies a “parametric model”. If an “empirical model” is specified, the switching test part 
will be skipped, and both model fitting and prediction follows EOF-based algorithm.  

 

 

 

 

 

 



 

 

 
Figure 1. Flowchart of algorithm steps for model fitting when a “parametric model” is specified. 

Step 1: Fit regression model by ordinary least squares (OLS) regression using only observations 
that have no missing values (see Section 3.1).  

We first ignore the spatio-temporal dependence in the data and simply estimate the fixed 
regression part by OLS and obtain the regression residuals 𝑍𝑍𝑖𝑖(𝑠𝑠).  

Step 2: Fit autoregressive model using only data without missing values (see Section 3.2).  

Ignoring spatial dependence in OLS residuals 𝑍𝑍𝑖𝑖(𝑠𝑠), we estimate autoregressive 
coefficients by fitting the regression model (2) and obtain the AR residuals 𝜖𝜖𝑖𝑖(𝑠𝑠).  

Step 3: Fit spatial covariance model and test for goodness of fit on data without missing values 
(see Section 3.3).  

We fit a parametric spatial covariance model. We perform two Goodness of Fit tests to 
decide whether to continue with the parametric covariance model or the empirical 
covariance matrix.  

 

 

 



Step 4: Refit autoregressive model using augmented data (see Section 3.4).  

We refit autoregressive model accounting for spatial dependence by generalized least 
squares (GLS) and obtain improved AR coefficients 𝛼𝛼.  

Step 5: Refit Regression model using augmented data (see Section 3.5).  

We obtain improved regression coefficients 𝛽𝛽 by GLS to account for spatio-temporal 
correlation in the data.  

Step 6: Save the results for use in output and prediction.  

3.1 Fit regression model 
We first ignore the spatio-temporal dependence in the data and simply estimate the fixed regression 
part by OLS. Assume that out of 𝑛𝑛𝑚𝑚 location-time combinations, 𝑞𝑞 samples have missing values in 
either 𝑋𝑋 or 𝑌𝑌. Let 𝑌𝑌 = (𝑌𝑌1′, … ,𝑌𝑌𝑚𝑚′ )′, a (𝑛𝑛𝑚𝑚 − 𝑞𝑞)×1-vector and 𝑋𝑋 = (𝑋𝑋1′ , … ,𝑋𝑋𝑚𝑚′ )′, a (𝑚𝑚𝑛𝑛 − 𝑞𝑞)×𝑀𝑀 
matrix, such that 𝑋𝑋 and 𝑌𝑌 contain only complete observations, i.e., observations without any 
missing values. The OLS estimates of the regression coefficients are: 

 𝜷𝜷� = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑌𝑌 (5) 

The residuals are: 

 �̂�𝑍 = 𝑌𝑌 − 𝑋𝑋𝜷𝜷� . (6) 

3.2 Fit autoregressive model 
We estimate autoregressive coefficients by OLS assuming no spatial correlation and AR(L) as 
model for time-series autocorrelation, 

 �̂�𝑍𝑖𝑖 = 𝛼𝛼1�̂�𝑍𝑖𝑖−1 + ⋯+ 𝛼𝛼𝐿𝐿�̂�𝑍𝑖𝑖−𝐿𝐿 + 𝝐𝝐𝑖𝑖, (7) 

where �̂�𝑍𝑖𝑖 is a 𝑛𝑛𝑖𝑖×1 vector. Note that due to the existence of missing values, the number of 
locations 𝑛𝑛𝑖𝑖 varies among different time points. Moreover, for each time points t, only locations 
with no missing values at 𝐿𝐿 + 1 consecutive time points, i.e., (𝑡𝑡, 𝑡𝑡 − 1, … , 𝑡𝑡 − 𝐿𝐿) can be used for 
model fitting, therefore, ∑ 𝑛𝑛𝑖𝑖𝑚𝑚

𝑖𝑖=𝐿𝐿+1 ≤ [𝑛𝑛(𝑚𝑚− 𝐿𝐿) − 𝑞𝑞]. 

Step 1: Construct 𝑛𝑛𝑖𝑖×𝐿𝐿 time lag matrix 

 �̂�𝑍𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙 = ��̂�𝑍𝑖𝑖−1, �̂�𝑍𝑖𝑖−2, … , �̂�𝑍𝑖𝑖−𝐿𝐿�, 𝑡𝑡 = 𝐿𝐿 + 1, … ,𝑚𝑚 (8) 

Step 2: Let �̂�𝑍𝑙𝑙𝑚𝑚𝑙𝑙 = ��̂�𝑍𝐿𝐿+1−𝑙𝑙𝑚𝑚𝑙𝑙′ , … , �̂�𝑍𝑚𝑚−𝑙𝑙𝑚𝑚𝑙𝑙
′ �

′
 and �̂�𝑍∗ = ��̂�𝑍𝐿𝐿+1′ , … , �̂�𝑍𝑚𝑚′ �

′
. Solve the linear system 

 ��̂�𝑍𝑙𝑙𝑚𝑚𝑙𝑙′ �̂�𝑍𝑙𝑙𝑚𝑚𝑙𝑙�𝜶𝜶 = �̂�𝑍𝑙𝑙𝑚𝑚𝑙𝑙′ �̂�𝑍∗ (9) 

which is equivalent to solving  

 � � �̂�𝑍𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙′ �̂�𝑍𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙

𝑚𝑚

𝑖𝑖=𝐿𝐿+1

�𝜶𝜶 = � �̂�𝑍𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙′ �̂�𝑍𝑖𝑖

𝑚𝑚

𝑖𝑖=𝐿𝐿+1

 (10) 

 

using the sweep operation to find estimate 𝛼𝛼�. 
Step 3: Compute the de-autocorrelated AR(L) residuals 

 

𝜖𝜖�𝑡𝑡 = 𝑍𝑍�𝑡𝑡 − 𝛼𝛼�1𝑍𝑍�𝑡𝑡−1 −⋯− 𝛼𝛼�𝐿𝐿𝑍𝑍�𝑡𝑡−𝐿𝐿, 𝑡𝑡 = 𝐿𝐿+ 1, … ,𝑚𝑚 (11) 
 
 
 
 
 



 
 

3.3 Fit model and check goodness of fit for spatial covariance 
structure 
We explicitly model the spatial covariance structure among locations, rather than using variogram 
estimation.  

Under the assumption of the model (stationarity, AR-relationship removed), the mean of the 
residuals is 0 at all locations. We therefore estimate the unadjusted empirical covariances 𝑠𝑠𝑖𝑖𝑗𝑗 and 
correlations 𝑟𝑟𝑖𝑖𝑗𝑗 assuming mean 0, i.e.,  

 𝑺𝑺 = �𝑠𝑠𝑖𝑖𝑗𝑗�𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛
, 𝑠𝑠𝑖𝑖𝑗𝑗 =

1
𝑡𝑡𝑖𝑖𝑗𝑗
�𝜖𝜖�̂�𝑖(𝑠𝑠𝑖𝑖)𝜖𝜖�̂�𝑖�𝑠𝑠𝑗𝑗�
𝑖𝑖

 (12) 

where 𝑡𝑡𝑖𝑖𝑗𝑗 is the number of complete residual pairs between locations 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗, and 𝑡𝑡 indexes these 
pairs, i.e., the time points for which both 𝜖𝜖�̂�𝑖(𝑠𝑠𝑖𝑖) and 𝜖𝜖�̂�𝑖(𝑗𝑗) are non-missing.  

  𝑟𝑟𝑖𝑖𝑗𝑗 =
𝑠𝑠𝑖𝑖𝑗𝑗

�𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑗𝑗𝑗𝑗
 (13) 

To determine whether to model the spatial covariance structure parametrically or to use the 
nonparametric EOF model, we perform the following two tests sequentially:  

1. Fit parametric model to covariances using the parameter vector 𝝍𝝍 = (𝜎𝜎2,𝜃𝜃, 𝜏𝜏2) (Cressie 
1993) 

  𝐶𝐶𝑏𝑏𝑟𝑟�𝜖𝜖𝑖𝑖(𝑠𝑠𝑖𝑖), 𝜖𝜖𝑖𝑖�𝑠𝑠𝑗𝑗�;𝜓𝜓�� = �𝜎𝜎�
2𝑚𝑚𝑥𝑥𝑝𝑝�−�ℎ𝑖𝑖𝑗𝑗 𝜃𝜃�⁄ �

𝑝𝑝
�, 𝑖𝑖𝑓𝑓 ℎ𝑖𝑖𝑗𝑗 > 0;

𝜎𝜎�2 + �̂�𝜏2, 𝑏𝑏𝑡𝑡ℎ𝑚𝑚𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑚𝑚.
 (14) 

where ℎ𝑖𝑖𝑗𝑗 = �𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑗𝑗�2 is the Euclidean distance between locations 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗. Users need to 
specify the values for the order parameter 𝑝𝑝.  

𝑝𝑝 ∈ [1, 2] is a user-defined parameter that determines the class of covariance models to be 
fit. 𝑝𝑝 = 1 corresponds to an exponential covariance model, 𝑝𝑝 = 2 results in a Gaussian 
covariance model and 𝑝𝑝 ∈ (1, 2) belongs to the powered exponential family.  

Next, determine if there is a significant decay over space by testing 𝐻𝐻0:−1 𝜃𝜃𝑝𝑝⁄ ≥ 0. If we 
fail to reject 𝐻𝐻0, we conclude that the decay over space is not significant, and EOF 
estimation will be used. If EOF estimation is used, there is not need to calculate 𝜃𝜃, 𝜎𝜎 or 𝜏𝜏, as 
we have concluded that they are invalid descriptions of the covariance matrix. In fact, there 
may not be valid solutions for these parameters, therefore they should not be estimated.  

2. If the previous test rejects 𝐻𝐻0, test for homogeneity of variances among locations: if 
homogeneity of variances is rejected, EOF estimation will be used. Otherwise, the 
parametric covariance model will be used.  

3.3.1 Fit and test parametric model 

a) Enforce a minimum correlation of +.01: if 𝑟𝑟𝑖𝑖𝑗𝑗 < .01, set 𝑠𝑠𝑖𝑖𝑗𝑗 = .01�𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑗𝑗𝑗𝑗 and 𝑟𝑟𝑖𝑖𝑗𝑗 = .01.  

b) Let 𝒔𝒔 be the vectorized lower triangular of the covariance matrix (excluding the diagonal, i.e., 
excluding variances), 𝒓𝒓 be the vectorized lower triangular of the correlation matrix (excl. 
diagonal), and 𝒉𝒉 the corresponding vector of pairwise distances between the 𝑛𝑛 locations. 𝒔𝒔, 𝒓𝒓 
and 𝒉𝒉 are each vectors of length 𝑛𝑛(𝑛𝑛 − 1) 2⁄ .  

 

 



 

 

Define 𝜑𝜑 = − 1 𝜃𝜃𝑝𝑝⁄ . Fit the linear model ln 𝒔𝒔 = ln 𝜎𝜎2 + 𝜑𝜑𝒉𝒉𝑝𝑝 using a GLS fit:  

  𝑨𝑨 = [1,𝒉𝒉𝑝𝑝] (15) 

  𝑽𝑽−1 =
1
2
𝑻𝑻(𝑩𝑩−1 − 𝑐𝑐𝑏𝑏𝑏𝑏′)𝑻𝑻 (16) 

where𝒃𝒃 = 2𝒓𝒓2 (1 − 𝒓𝒓2)⁄ , 𝒓𝒓2 is obtained by squaring each element of vector 𝒓𝒓, 𝑩𝑩−1 = diag(𝒃𝒃), 
and scalar 𝑐𝑐 = 1 (1 + 𝟏𝟏′𝑩𝑩−1𝟏𝟏)⁄ . Also, let 𝑻𝑻 = diag��𝑡𝑡𝑘𝑘�,𝑘𝑘 = 1, … ,𝑛𝑛(𝑛𝑛 − 1) 2⁄ , where 𝑡𝑡𝑘𝑘 is the 
number of pairs of de-autocorrelated residuals in the calculation of the corresponding element 
𝑟𝑟𝑘𝑘 in 𝒓𝒓, i.e., the number of observations pairs that went into calculating 𝑟𝑟𝑘𝑘, which may be 
different for each entry of the covariance matrix, depending on missing values. Note that 𝑡𝑡𝑘𝑘 
corresponds to the vectorized lower triangular of �𝑡𝑡𝑖𝑖𝑗𝑗�𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛

, where 𝑡𝑡𝑖𝑖𝑗𝑗 are as defined in (12).  

Let 𝜼𝜼 = (ln 𝜎𝜎2,𝜑𝜑), the GLS estimator can be calculated as  

𝜼𝜼� = �𝑨𝑨′𝑽𝑽−𝟏𝟏𝑨𝑨�
−1
𝑨𝑨′𝑽𝑽−1ln 𝒔𝒔 

The standard error for 𝜼𝜼� will be 𝑠𝑠𝑚𝑚(𝜼𝜼�) = �diag[(𝑨𝑨′𝑽𝑽−𝟏𝟏𝑨𝑨)−1].  

Calculate the test statistic 𝑧𝑧1 = 𝜑𝜑�
𝑠𝑠𝑚𝑚(𝜑𝜑�). If 𝑧𝑧1 ≥ 𝑧𝑧.05, where 𝑧𝑧.05 is the .05 quantile of the standard 

normal distribution (or critical value for selected level of significance 𝛾𝛾1), then all following 
calculations will be performed using the empirical spatial covariance matrix, i.e., Σ𝑺𝑺 = 𝑺𝑺, and 
the nonparametric EOF model will be used for prediction. Equivalently, a p-value 𝑝𝑝1 can be 
calculated by evaluating the standard Normal cumulative distribution function (CDF) at 𝑧𝑧1 (i.e., 
𝑝𝑝1 = 𝑃𝑃(𝑍𝑍 < 𝑧𝑧1)). If 𝑝𝑝1 ≥ level of significance 𝛾𝛾1, then all following calculations will be 
performed using the empirical covariance matrix.  

c) If the previous test does reject 𝐻𝐻0 (i.e., we have not yet decided to continue with the empirical 
covariance matrix), continue to perform the following test: Let 𝑟𝑟 = (𝑠𝑠11, 𝑠𝑠22, … , 𝑠𝑠𝑛𝑛𝑛𝑛)′ be the 
(𝑛𝑛×1)-vector of location-specific variances. Calculate the weighted mean variance �̅�𝑟 

 �̅�𝑟 = 1′𝑾𝑾−1𝑟𝑟 (1′𝑾𝑾−11)⁄ = 1′𝑾𝑾−1𝑟𝑟 �𝑤𝑤𝑖𝑖𝑗𝑗
∗

𝑖𝑖,𝑗𝑗

�  (17) 

where 𝑾𝑾 = �𝑤𝑤𝑖𝑖𝑗𝑗� = �𝑠𝑠𝑖𝑖𝑗𝑗2 𝑡𝑡𝑖𝑖𝑗𝑗� �
𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛

 is an 𝑛𝑛×𝑛𝑛 matrix, where 𝑡𝑡𝑖𝑖𝑗𝑗 is defined as in (12), and 

𝑾𝑾−1 = �𝑤𝑤𝑖𝑖𝑗𝑗∗ �𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛
.  

Calculate the test statistic 𝑧𝑧2 = (𝒗𝒗 − 𝑟𝑟�)′𝑾𝑾−1(𝒗𝒗 − 𝑟𝑟�). If 𝑧𝑧2 ≥ 𝜒𝜒𝑛𝑛−1,.95
2  (or critical value for 

[1 − selected level of significance 𝛾𝛾2]), all following calculations will be performed using the 
empirical spatial covariance matrix, i.e., Σ𝑺𝑺 = 𝑺𝑺, and the nonparametric EOF model will be 
used for prediction. Equivalently, one may compute a p-value 𝑝𝑝2 by evaluating 1 minus the 
𝜒𝜒𝑛𝑛−12 − CDF:𝑝𝑝2 = 𝑃𝑃(𝜒𝜒𝑛𝑛−12 > 𝑧𝑧2). If 𝑝𝑝2 < level of significance 𝛾𝛾2, then all following calculations 
will be performed using the empirical spatial covariance matrix.  

d) If the two tests in b) and c) do not indicate a switch to the EOF model, all following 
calculations will be performed using the parametric covariance model, i.e., the spatial 
covariance matrix 𝛴𝛴𝑆𝑆 is constructed according to (14). Recall that 𝜂𝜂 = (𝑙𝑙𝑛𝑛 𝜎𝜎2,−1 𝜃𝜃𝑝𝑝⁄ ). The 
missing parameter 𝜏𝜏2 is derived as 𝜏𝜏2� = 𝑚𝑚𝑚𝑚𝑥𝑥 �0, 1

𝑛𝑛
∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖=1,…,𝑛𝑛 − 𝑚𝑚𝑥𝑥𝑝𝑝�𝑙𝑙𝑛𝑛 𝜎𝜎2���.  

 

 

 



 

 

3.4 Re-fit autoregressive model 
We refit the autoregressive model accounting for spatial dependence using GLS with augmented 
data:  

Step 1: Compute the Cholesky factorization 𝚺𝚺𝑆𝑆 = 𝑯𝑯𝑆𝑆𝑯𝑯𝑆𝑆
′  and the inverse matrix 𝑯𝑯𝑺𝑺

′ .  

Step 2: Substitute 0 for missing values such that 𝒁𝒁�𝑡𝑡−𝑙𝑙𝑚𝑚𝑔𝑔,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚 is an 𝑛𝑛×𝐿𝐿 matrix and 𝒁𝒁�𝑡𝑡,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚 
is a vector of length 𝑛𝑛.  

Step 3: Augment predictor matrix as follows. Let 𝒁𝒁�𝑙𝑙𝑚𝑚𝑔𝑔,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚 =
�𝒁𝒁�𝐿𝐿+1−𝑙𝑙𝑚𝑚𝑔𝑔,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚

′
, … ,𝒁𝒁�𝑚𝑚−𝑙𝑙𝑚𝑚𝑔𝑔,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚

′
� ′ be a 𝑛𝑛(𝑚𝑚− 𝐿𝐿)×𝐿𝐿 matrix and 𝒁𝒁�𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚 =

�𝒁𝒁�𝐿𝐿+1,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚
′

, … ,𝒁𝒁�𝑚𝑚,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚
′

� ′ is a vector of length 𝑛𝑛(𝑚𝑚− 𝐿𝐿), then  

𝒁𝒁�𝑙𝑙𝑚𝑚𝑔𝑔,𝑚𝑚𝑣𝑣𝑔𝑔 = �𝒁𝒁�𝑙𝑙𝑚𝑚𝑔𝑔,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚, … , 𝐈𝐈𝑍𝑍𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠� 

where 𝐈𝐈𝑍𝑍𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠 is a 𝑛𝑛(𝑚𝑚− 𝐿𝐿)×𝑞𝑞𝑍𝑍 indicator matrix given 𝑞𝑞𝑍𝑍 the total number of rows with 
missing values in either 𝒁𝒁�∗ or 𝒁𝒁�𝑙𝑙𝑚𝑚𝑙𝑙. If there is a missing value in the ith row of either 𝒁𝒁�∗ or 
𝒁𝒁�𝑙𝑙𝑚𝑚𝑙𝑙, and if this is the jth out of all 𝑞𝑞𝑍𝑍 rows that have missing values, then the jth column of 
𝐈𝐈𝑍𝑍𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠 is all 0 except for the ith element, which is set to 1.  

Step 4: Remove the spatial correlation: 𝒁𝒁�𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙,𝑚𝑚𝑛𝑛𝑙𝑙 = 𝑯𝑯𝑆𝑆
−1𝒁𝒁�𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙,𝑚𝑚𝑛𝑛𝑙𝑙 and 𝒁𝒁�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 =

𝑯𝑯𝑆𝑆
−1𝒁𝒁�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒, where 𝒁𝒁�𝑡𝑡−𝑙𝑙𝑚𝑚𝑔𝑔,𝑚𝑚𝑣𝑣𝑔𝑔 are the submatrices of 𝒁𝒁�𝑙𝑙𝑚𝑚𝑔𝑔,𝑚𝑚𝑣𝑣𝑔𝑔 that correspond to the rows 

of the matrices 𝒁𝒁�𝑡𝑡−𝑙𝑙𝑚𝑚𝑔𝑔,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚.  

Step 5: Use the same computational steps as for the linear system in equation (10) to solve 
the linear system  

 � � 𝒁𝒁�𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙,𝑚𝑚𝑛𝑛𝑙𝑙
′ 𝒁𝒁�𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙,𝑚𝑚𝑛𝑛𝑙𝑙

𝑚𝑚

𝑖𝑖=𝐿𝐿+1

�𝜶𝜶𝑚𝑚𝑛𝑛𝑙𝑙 = � 𝒁𝒁�𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙,𝑚𝑚𝑛𝑛𝑙𝑙
′ 𝒁𝒁�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒

𝑚𝑚

𝑖𝑖=𝐿𝐿+1

 (18) 

where 𝜶𝜶𝑚𝑚𝑛𝑛𝑙𝑙 is a vector of length 𝐿𝐿 + 𝑞𝑞𝑍𝑍, and there are 𝐿𝐿∗ + 𝑞𝑞𝑍𝑍∗  non-redundant parameters in 
above linear system. The AR coefficient estimate 𝜶𝜶� is the subvector consisting of the first 𝐿𝐿 
elements of 𝜶𝜶�𝑚𝑚𝑛𝑛𝑙𝑙, there are 𝐿𝐿∗ non-redundant parameters in first 𝑀𝑀 elements of 𝜶𝜶�𝑚𝑚𝑛𝑛𝑙𝑙, and 
𝑞𝑞𝑍𝑍∗  non-redundant parameters in last 𝑞𝑞𝑍𝑍 elements of 𝜶𝜶�𝑚𝑚𝑛𝑛𝑙𝑙.  

3.5 Re-fit Regression model 
Refit regression model by GLS using augmented data to account for spatio-temporal correlation in 
the data.  

Step 1: Substitute the following for missing values such that 𝑿𝑿𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 is a 𝑛𝑛𝑚𝑚×𝑀𝑀 matrix and 
𝒀𝒀𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 is a vector of length 𝑛𝑛𝑚𝑚: at location 𝑠𝑠𝑖𝑖, use the mean of 𝒀𝒀(𝑠𝑠𝑖𝑖) and the mean of each 
predictor in 𝑿𝑿(𝑠𝑠𝑖𝑖).  

Step 2: Augment predictor matrix as follows. 

 

 

 

 



 

 

𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙 = �𝑿𝑿𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 , 𝑰𝑰𝑋𝑋𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠� 

where 𝐈𝐈𝑋𝑋𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠 is a 𝑛𝑛𝑚𝑚×𝑞𝑞 indicator matrix given 𝑞𝑞 the total number of rows with missing 
values in either 𝑿𝑿 or 𝒀𝒀. If there is a missing value in ith row of either 𝑿𝑿 or 𝒀𝒀, and if this is 
the jth out of all 𝑞𝑞 rows that have missing value, then the jth column of 𝐈𝐈𝑋𝑋𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠 is all 0 except 
for the ith element, which is 1.  

Step 3: Remove the spatial correlation: 𝑿𝑿�𝑖𝑖,𝑚𝑚𝑛𝑛𝑙𝑙 = 𝑯𝑯𝑆𝑆
−1𝑿𝑿𝑖𝑖,𝑚𝑚𝑛𝑛𝑙𝑙 and 𝒀𝒀�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 = 𝑯𝑯𝑆𝑆

−1𝒀𝒀𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒.  

Step 4: Remove the autocorrelation:  

 𝑿𝑿�𝑡𝑡,𝑚𝑚𝑣𝑣𝑔𝑔 = 𝑿𝑿�𝑡𝑡,𝑚𝑚𝑣𝑣𝑔𝑔 − 𝛼𝛼�1𝑿𝑿�𝑡𝑡−1,𝑚𝑚𝑣𝑣𝑔𝑔 −⋯− 𝛼𝛼�𝐿𝐿𝑿𝑿�𝑡𝑡−𝐿𝐿,𝑚𝑚𝑣𝑣𝑔𝑔, 𝑡𝑡 = 𝐿𝐿+ 1, … ,𝑚𝑚 (19) 

 𝒀𝒀�𝑡𝑡,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚 = 𝒀𝒀�𝑡𝑡,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚 − 𝛼𝛼�1𝒀𝒀�𝑡𝑡−1,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚 −⋯− 𝛼𝛼�𝐿𝐿𝒀𝒀�𝑡𝑡−𝐿𝐿,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚, 𝑡𝑡 = 𝐿𝐿+ 1, … ,𝑚𝑚 (20) 

Step 5: Solve the linear system  

 �𝑿𝑿�𝑚𝑚𝑛𝑛𝑙𝑙
′ 𝑿𝑿�𝑚𝑚𝑛𝑛𝑙𝑙�𝜷𝜷𝑚𝑚𝑛𝑛𝑙𝑙 = 𝑿𝑿�𝑚𝑚𝑛𝑛𝑙𝑙

′ 𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 (21) 

where 𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚 = �𝒀𝒀�𝐿𝐿+1,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚
′ , … ,𝒀𝒀�𝑚𝑚,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚

′ �′, an 𝑛𝑛(𝑚𝑚 − 𝐿𝐿)×1-vector and 𝑿𝑿�𝑚𝑚𝑣𝑣𝑔𝑔 =
�𝑿𝑿�𝐿𝐿+1,𝑚𝑚𝑣𝑣𝑔𝑔

′ , … ,𝑿𝑿�𝑚𝑚,𝑚𝑚𝑣𝑣𝑔𝑔
′ �′, a 𝑛𝑛(𝑚𝑚− 𝐿𝐿)×(𝑀𝑀 + 𝑞𝑞) matrix, 𝜷𝜷𝑚𝑚𝑛𝑛𝑙𝑙 is a vector of length 𝑀𝑀 + 𝑞𝑞, and 

there are 𝑀𝑀∗ + 𝑞𝑞∗ non-redundant parameters in above linear system. The regression 
coefficients estimate 𝜷𝜷� is the subvector consisting of first 𝑀𝑀 elements of 𝜷𝜷�𝑚𝑚𝑛𝑛𝑙𝑙, there are 𝑀𝑀∗ 
non-redundant parameters in first 𝑀𝑀 elements of 𝜷𝜷�𝑚𝑚𝑛𝑛𝑙𝑙, and 𝑞𝑞∗ non-redundant parameters in 
last 𝑞𝑞 elements of 𝜷𝜷�𝑚𝑚𝑛𝑛𝑙𝑙.  

3.6 Statistics to display 

3.6.1 Goodness of Fit statistics 

We present statistics referring to the three main elements of the model: the mean structure, the 
spatial covariance structure, and the temporal structure.  

1. Goodness of fit mean structure model 𝑿𝑿𝜷𝜷:   

Let 𝒬𝒬 be the set of observations (𝑌𝑌𝑖𝑖(𝑠𝑠),𝑿𝑿𝑖𝑖(𝑠𝑠)) that have missing values in either 𝑌𝑌𝑖𝑖(𝑠𝑠) or 
𝑿𝑿𝑖𝑖(𝑠𝑠). Note that 𝑞𝑞 has been defined as the number of observations in 𝒬𝒬.  

Calculate the mean squared error (MSE) and an 𝑅𝑅2 statistic based only on complete 
observations:  

 
MSE = � �𝑌𝑌𝑖𝑖(𝑠𝑠) − 𝑌𝑌�𝑖𝑖(𝑠𝑠)�

2 (𝑛𝑛𝑚𝑚 − 𝑞𝑞 − 𝑀𝑀∗)�
𝑠𝑠∈{𝑠𝑠1,…,𝑠𝑠𝑛𝑛};
𝑖𝑖=1,…,𝑚𝑚;
𝑌𝑌𝑖𝑖(𝑺𝑺)∉𝒬𝒬

 
(22) 

   

 

 

 

 

 



 

 

𝑅𝑅2 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

1 − � �𝑌𝑌𝑖𝑖(𝑠𝑠) − 𝑌𝑌�𝑖𝑖(𝑠𝑠)�2

𝑠𝑠∈{𝑠𝑠1,…,𝑠𝑠𝑛𝑛};
𝑖𝑖=1,…,𝑚𝑚;
𝑌𝑌𝑖𝑖(𝑺𝑺)∉𝒬𝒬

� 𝑌𝑌𝑖𝑖(𝑠𝑠)2
𝑠𝑠∈{𝑠𝑠1,…,𝑠𝑠𝑛𝑛};
𝑖𝑖=1,…,𝑚𝑚;
𝑌𝑌𝑖𝑖(𝑺𝑺)∉𝒬𝒬

� , if there is no intercept

1 − � �𝑌𝑌𝑖𝑖(𝑠𝑠) − 𝑌𝑌�𝑖𝑖(𝑠𝑠)�2

𝑠𝑠∈{𝑠𝑠1,…,𝑠𝑠𝑛𝑛};
𝑖𝑖=1,…,𝑚𝑚;
𝑌𝑌𝑖𝑖(𝑺𝑺)∉𝒬𝒬

� (𝑌𝑌𝑖𝑖(𝑠𝑠) − 𝑌𝑌�𝑖𝑖(𝑠𝑠))2
𝑠𝑠∈{𝑠𝑠1,…,𝑠𝑠𝑛𝑛};
𝑖𝑖=1,…,𝑚𝑚;
𝑌𝑌𝑖𝑖(𝑺𝑺)∉𝒬𝒬

� , if there is an intercept

 (23) 

 

where 𝑌𝑌�𝑖𝑖(𝑠𝑠) = 𝑿𝑿𝑖𝑖′ (𝑠𝑠)𝜷𝜷, 𝑀𝑀∗ is the number of non-redundant parameters of re-fitted regression 
in first 𝑀𝑀 elements of 𝜷𝜷�𝑚𝑚𝑛𝑛𝑙𝑙, and 𝑌𝑌�𝑖𝑖(𝑠𝑠) is the mean of 𝑌𝑌 only on complete observations. Note 
that for this calculation the original (untransformed) observations 𝒀𝒀 and covariates 𝑿𝑿 are 
used. Alternatively, we can calculate the adjusted 𝑅𝑅2  

 𝑅𝑅𝑚𝑚𝑑𝑑𝑗𝑗2 = 1 −
𝑛𝑛𝑚𝑚 − 𝑞𝑞

𝑛𝑛𝑚𝑚 − 𝑞𝑞 − 𝑀𝑀∗ (1 − 𝑅𝑅2) (24) 

2. Goodness of fit for AR model:  
Present t-tests for AR parameters based on variance estimates in item 3 in Section 3.6.2.  

3. Goodness of fit of spatial covariance model:  
Present the test statistics listed in item 5 in Section 3.6.2.  

3.6.2 Model and parameter estimates 

The following information should be displayed as a summary of the model:  

1. Model coefficients 𝜷𝜷�, 𝜶𝜶� obtained in Sections 3.4 and 3.5  

2. Standard errors of elements of 𝜷𝜷 based on 𝑉𝑉�𝜷𝜷��, the covariance matrix of 𝜷𝜷�, which is the 
upper 𝑀𝑀×𝑀𝑀 submatrix of 𝑉𝑉�𝜷𝜷�𝑚𝑚𝑛𝑛𝑙𝑙�:  

 𝑉𝑉�𝜷𝜷�𝑚𝑚𝑛𝑛𝑙𝑙� =
𝑆𝑆𝑆𝑆𝑒𝑒
𝑚𝑚𝑓𝑓𝑒𝑒

×�𝑿𝑿�𝑚𝑚𝑛𝑛𝑙𝑙
′ 𝑿𝑿�𝑚𝑚𝑛𝑛𝑙𝑙�

−1
=
𝑆𝑆𝑆𝑆𝑒𝑒
𝑚𝑚𝑓𝑓𝑒𝑒

×� � 𝑿𝑿�𝑖𝑖,𝑚𝑚𝑛𝑛𝑙𝑙
′ 𝑿𝑿�𝑖𝑖,𝑚𝑚𝑛𝑛𝑙𝑙

𝑚𝑚

𝑖𝑖=𝐿𝐿+1

�
−1

 (25) 

 
where  

• 𝑆𝑆𝑆𝑆𝑒𝑒 = ∑ �𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 − �𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒�
∗
�
2𝑁𝑁

𝑖𝑖=1 = �̃�𝑟𝑌𝑌�𝑌𝑌�(𝑛𝑛(𝑚𝑚− 𝐿𝐿) − 1)𝑉𝑉�𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒�, 
- �𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒�

∗
 is the predicted value based on estimated 𝜷𝜷�, 

- �̃�𝑟𝑌𝑌�𝑌𝑌�  is corresponding element of 𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 in the correlation matrix of re-fitted 
regression after sweep operation, 

- 𝑛𝑛(𝑚𝑚− 𝐿𝐿) is number of transformed records used in equation (21) for re-fit 
regression , 

- and 𝑉𝑉�𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒� is variance of 𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒. 
• 𝑚𝑚𝑓𝑓𝑒𝑒 = 𝑛𝑛(𝑚𝑚 − 𝐿𝐿) − 𝑝𝑝, and 𝑝𝑝 = 𝑀𝑀∗ + 𝑞𝑞∗ is the number of non-redundant parameters in 

re-fitted regression. 
 
 
 



 
 

Based on these standard errors, t-test statistics and/or p-values may be computed and 
displayed according to standard definitions and output scheme of linear models (please refer 
to linear model documentation):  

(a) For each element 𝛽𝛽𝑗𝑗 of 𝜷𝜷� and the corresponding j-th diagonal element of 𝑉𝑉�𝜷𝜷��, 𝑗𝑗 =

1, … ,𝑀𝑀, compute the t-statistic 𝑡𝑡𝑗𝑗 = 𝛽𝛽𝑗𝑗 �𝑉𝑉�𝜷𝜷��𝑗𝑗𝑗𝑗�   

(b) The p-value corresponding to 𝑡𝑡𝑗𝑗 is 2× the value of the cumulative distribution function of 
a t-distribution with 𝑛𝑛𝑚𝑚 − 𝑞𝑞 − 𝑀𝑀∗ degrees of freedom, i.e., 𝑝𝑝𝑗𝑗 = 2 ∙ �1 − 𝑃𝑃�𝑡𝑡𝑛𝑛𝑚𝑚−𝑞𝑞−𝑆𝑆∗ ≤

�𝑡𝑡𝑗𝑗���.  

Note that depending on the implementation of the GLS estimation in Section 3.5, 
�𝑿𝑿�𝑚𝑚𝑛𝑛𝑙𝑙

′ 𝑿𝑿�𝑚𝑚𝑛𝑛𝑙𝑙�
−1

 may have already been computed, in which case this expression does not need 
to be recalculated.  

3. Standard errors of 𝜶𝜶 based on 𝑉𝑉(𝜶𝜶�), the covariance matrix of 𝜶𝜶�, which is the upper 𝐿𝐿×𝐿𝐿 
submatrix of 𝑉𝑉�𝜶𝜶�𝑚𝑚𝑛𝑛𝑙𝑙�:  

 𝑉𝑉�𝜶𝜶�𝑚𝑚𝑛𝑛𝑙𝑙� =
𝑆𝑆𝑆𝑆𝑒𝑒∗

𝑚𝑚𝑓𝑓𝑒𝑒∗
×� � 𝒁𝒁�𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙,𝑚𝑚𝑛𝑛𝑙𝑙

′ 𝒁𝒁�𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙,𝑚𝑚𝑛𝑛𝑙𝑙

𝑚𝑚

𝑖𝑖=𝐿𝐿+1

�
−1

 (26) 

where 

• 𝑆𝑆𝑆𝑆𝑒𝑒∗ = ∑ �𝑍𝑍�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 − �𝑍𝑍�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒�
∗
�
2𝑁𝑁

𝑖𝑖=1 = �̃�𝑟𝑍𝑍�𝑍𝑍�(𝑛𝑛(𝑚𝑚− 𝐿𝐿) − 1)𝑉𝑉�𝑍𝑍�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒�,  
- �𝑍𝑍�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒�

∗
 is the predicted value based on estimated 𝛼𝛼� and 𝑍𝑍�𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙,𝑚𝑚𝑛𝑛𝑙𝑙 

- �̃�𝑟Z�Z�is corresponding element of 𝑍𝑍�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 in the correlation matrix of re-fitted 
autoregressive model after sweep operation, 

- 𝑛𝑛(𝑚𝑚− 𝐿𝐿) is number of transformed records used in equation (18) for re-fit 
autoregressive, 

- and 𝑉𝑉�Z�t,impute� is variance of 𝑍𝑍�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒. 
• 𝑚𝑚𝑓𝑓𝑒𝑒∗ = 𝑛𝑛(𝑚𝑚− 𝐿𝐿) − 𝑝𝑝𝐴𝐴𝑅𝑅, and 𝑝𝑝𝐴𝐴𝑅𝑅 = 𝐿𝐿∗ + 𝑞𝑞𝑍𝑍∗  is the number of non-redundant 

parameters in re-fitted autoregressive model. 
Based on these standard errors, t-test statistics and/or p-values may be computed and 
displayed according to standard definitions and output scheme of linear models.  

(a) For each element 𝛼𝛼𝑗𝑗 of 𝜶𝜶� and the corresponding 𝑗𝑗-th diagonal element of 𝑉𝑉(𝜶𝜶�), 𝑗𝑗 =
1, … , 𝐿𝐿, compute the t-statistic 𝑡𝑡𝑗𝑗 = 𝛼𝛼𝑗𝑗 �𝑉𝑉(𝜶𝜶�)𝑗𝑗𝑗𝑗⁄   

(b) The p-value corresponding to 𝑡𝑡𝑗𝑗 is 2×the value of the cumulative distribution function of 
a t-distribution with ∑ 𝑛𝑛𝑖𝑖 − 𝐿𝐿∗𝑚𝑚

𝑖𝑖=1  degrees of freedom, i.e., 𝑝𝑝𝑗𝑗 = 2 ∙ �1 − 𝑃𝑃�𝑡𝑡∑ 𝑛𝑛𝑖𝑖−𝐿𝐿∗𝑚𝑚
𝑖𝑖=1

≤

�𝑡𝑡𝑗𝑗���.  

4. Indicator of which method has been automatically chosen to model spatial covariances, either 
empirical covariance (EOF) or parametric variogram model.  

5. Test statistics from goodness of fit tests for parametric model:  

 

 

 



 

 

- Test statistic 𝑧𝑧1, p-value 𝑝𝑝1, level of significance 𝛾𝛾1 used for automated test for fit of slope 
parameter  

- Test statistic 𝑧𝑧2, p-value 𝑝𝑝2, level of significance 𝛾𝛾2 used for testing homogeneity of 
variances  

6. Parametric covariance parameters 𝝍𝝍�  if parametric model has been chosen 

3.6.3 Tests of effects in Mean Structure Model (Type III) 

For each effect specified in the model, type III test matrix L is constructed and 𝐻𝐻0: 𝐿𝐿𝑖𝑖𝛽𝛽 = 0 is 
tested. Construction of type III matrix L as well as generating estimable function (GEF) is based on 
the generating matrix 𝐻𝐻, which is the upper 𝑀𝑀×𝑀𝑀 submatrix of �𝑋𝑋�𝑚𝑚𝑛𝑛𝑙𝑙′ 𝑋𝑋�𝑚𝑚𝑛𝑛𝑙𝑙�

−1
𝑋𝑋�𝑚𝑚𝑛𝑛𝑙𝑙′ 𝑋𝑋�𝑚𝑚𝑛𝑛𝑙𝑙 , such that 

𝐿𝐿𝑖𝑖𝛽𝛽 is estimable. It involves parameters only for the given effect. For type III analysis, L does not 
depend on the order of effects specified in the model. If such a matrix cannot be constructed, the 
effect is not testable.  

Then the L matrix is then used to construct the test statistic 

𝐹𝐹 =
�̂�𝛽′𝐿𝐿′(𝐿𝐿𝛴𝛴𝐿𝐿′)−1𝐿𝐿�̂�𝛽

𝑟𝑟𝑐𝑐
 

where 

• �̂�𝛽 is the subvector of the first D elements of �̂�𝛽𝑚𝑚𝑛𝑛𝑙𝑙 obtained in Step 5 of Section 3.5, 
• 𝑟𝑟𝑐𝑐 = 𝑟𝑟𝑚𝑚𝑛𝑛𝑘𝑘(𝐿𝐿𝛴𝛴𝐿𝐿′),  
• 𝛴𝛴 is the covariance matrix of �̂�𝛽, which is the upper 𝑀𝑀×𝑀𝑀 submatrix of 𝑉𝑉��̂�𝛽𝑚𝑚𝑛𝑛𝑙𝑙� defined in 

equation (25).  
The statistic has an approximate F distribution. The numerator degrees of freedom 𝑚𝑚𝑓𝑓1 is 𝑟𝑟𝑐𝑐 and the 
denominator degrees of freedom 𝑚𝑚𝑓𝑓2 is 𝑛𝑛𝑚𝑚 − 𝑞𝑞 − 𝑀𝑀∗, where 𝑀𝑀∗ is the number of non-redundant 
parameters in the first 𝑀𝑀 parameters of refitted regression model obtained in Section 3.5. Then the 
p-values can be calculated accordingly. 

An additional test also should be computed, which is similar to “corrected model” if there is an 
intercept or “model” if there is no intercept in ANOVA table in linear regression. Essentially, the 
null hypothesis is regression parameters (except intercept if there is on) are zeros. The test statistic 
would be the same as the above F statistic except the L matrix is from GEF. If there is no intercept, 
the L matrix is the whole GEF. If there is an intercept, the L matrix is GEF without the first row 
which corresponds to the intercept. 

Statistics saved for Test of effects in Mean Structure Model (including corrected model or model): 

• F statistics 
• 𝑚𝑚𝑓𝑓1 
• 𝑚𝑚𝑓𝑓2 
• p-value 

3.6.4 Location clustering for spatial structure visualization 

Large spatial covariance matrix or correlation matrix are not suitable to demonstrate the relation 
among the locations. Grouping method, also called community detection or position analysis 
(Wasserman, 1994), can be used to identify some representative location clusters. To simplify the  

 

 



 

 

implementation, hierarchical clustering (Johnson, 1967) is used to detect clusters among locations 
based on STP model spatial statistics.  

Please note location clustering is only supported when empirical nonparametric covariance model 
is used. 

Given a set of n locations {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛} in STP to be clustered, and their corresponding spatial 
correlation matrix 𝑅𝑅, a n*n matrix, as the similarity matrix 

𝑅𝑅 = �𝑟𝑟𝑖𝑖𝑗𝑗�𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛
 

Given similarity threshold 𝛼𝛼 with default value 0.2, and 𝑁𝑁𝐶𝐶 with default value 10, the process of 
location clustering is described in following steps, which is based on the basic process of 
hierarchical clustering.  

Step 1. Initialize the clusters and similarities: 

• Assign each location 𝑠𝑠𝑖𝑖 to a cluster 𝐶𝐶𝑖𝑖 (𝑖𝑖 = 1, … ,𝑛𝑛). So that for n locations, the total number 
of clusters 𝑛𝑛𝐶𝐶 = 𝑛𝑛 at the beginning, and each cluster has just one location, 

• Define the set of clusters: 𝐶𝐶, 
• Define similarity matrix 

𝑅𝑅𝐶𝐶 = �𝑟𝑟𝑖𝑖𝑗𝑗𝐶𝐶�𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛
 

where the similarity 𝑟𝑟𝑖𝑖𝑗𝑗𝐶𝐶 between the clusters 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗 is the similarity 𝑟𝑟𝑖𝑖𝑗𝑗 between location 
𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗. 

Step 2. Find 2 clusters 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗 in 𝐶𝐶 with largest similarity 𝑚𝑚𝑚𝑚𝑥𝑥�𝑟𝑟𝑖𝑖𝑗𝑗𝐶𝐶�, 
If 𝑚𝑚𝑚𝑚𝑥𝑥�𝑟𝑟𝑖𝑖𝑗𝑗𝐶𝐶� > 𝛼𝛼: 

• Merge 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗 into a new cluster 𝐶𝐶〈𝑖𝑖,𝑗𝑗〉 to include all locations in 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗, 
• Compute similarities between the new cluster 𝐶𝐶〈𝑖𝑖,𝑗𝑗〉 and other clusters 𝐶𝐶𝑘𝑘 ,𝑘𝑘 ≠ 𝑖𝑖 𝑚𝑚𝑛𝑛𝑚𝑚 𝑗𝑗 

𝑟𝑟〈𝑖𝑖,𝑗𝑗〉,𝑘𝑘
𝐶𝐶 = 𝑚𝑚𝑖𝑖𝑛𝑛�𝑟𝑟𝑖𝑖𝑘𝑘𝐶𝐶 , 𝑟𝑟𝑗𝑗𝑘𝑘𝐶𝐶 � 

• Update 𝐶𝐶 by adding 𝐶𝐶〈𝑖𝑖,𝑗𝑗〉, discarding 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑖𝑖. So 𝑛𝑛𝐶𝐶 = 𝑛𝑛𝐶𝐶 − 1. 
• Update similarity matrix 𝑅𝑅𝐶𝐶 by adding 𝑟𝑟〈𝑖𝑖,𝑗𝑗〉,𝑘𝑘

𝐶𝐶 , discarding 𝑟𝑟𝑖𝑖𝑘𝑘𝐶𝐶  and 𝑟𝑟𝑗𝑗𝑘𝑘𝐶𝐶 , go to step 3. 

If 𝑚𝑚𝑚𝑚𝑥𝑥�𝑟𝑟𝑖𝑖𝑗𝑗𝐶𝐶� ≤ 𝛼𝛼, go to step 4. 
 

Step 3. Repeat step 2. 

Step 4. For all the detected clusters with more than 1 location, compute following statistics: 

• Cluster size: 𝑛𝑛𝐶𝐶𝑖𝑖 is the number of locations in 𝐶𝐶𝑖𝑖, 
• Closeness:  

𝑚𝑚𝑖𝑖 =
1

𝑛𝑛𝐶𝐶𝑖𝑖�𝑛𝑛𝐶𝐶𝑖𝑖 − 1� 2⁄
�𝑟𝑟𝑘𝑘𝑙𝑙 ,∀ 𝑠𝑠𝑘𝑘, 𝑠𝑠𝑙𝑙 ∈ 𝐶𝐶𝑖𝑖,𝑚𝑚𝑛𝑛𝑚𝑚 𝑘𝑘 ≠ 𝑙𝑙. 

Step 5. Define clusters for interactive visualization: 

• 𝐶𝐶𝑐𝑐𝑙𝑙𝑖𝑖𝑠𝑠𝑒𝑒𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠: The first 𝑁𝑁𝐶𝐶 clusters sorted by descending closeness 𝑚𝑚𝑖𝑖, 
• 𝐶𝐶𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒: The first 𝑁𝑁𝐶𝐶 clusters sorted by descending cluster size 𝑛𝑛𝐶𝐶𝑖𝑖. 

Step 6. Output the union for location cluster visualization: 

 

 



 

 

𝐶𝐶∗ = 𝐶𝐶𝑐𝑐𝑙𝑙𝑖𝑖𝑠𝑠𝑒𝑒𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 ∪ 𝐶𝐶𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒 

Statistics saved for spatial structure visualization including: 

1. Number of excluded locations during handling of missing data 
2. Spatial correlation matrix 𝑹𝑹 = �𝑟𝑟𝑖𝑖𝑗𝑗�𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛

 

3. Statistics of each output location cluster in 𝐶𝐶∗: 
• Closeness 𝑚𝑚𝑖𝑖 
• Cluster size 𝑛𝑛𝐶𝐶𝑖𝑖 
• Coordinates of locations in this cluster 

3.7 Results saved for prediction 
1. Model coefficients 𝜷𝜷�, 𝜶𝜶� and the covariance estimate 𝑉𝑉�𝜷𝜷�� as defined in (25).  

2. Transformed regression residuals and predictors of 𝐿𝐿 most recent observations for prediction:  

 
 𝒁𝒁�𝑚𝑚−𝑙𝑙+1 = 𝑯𝑯′𝑆𝑆−1𝑯𝑯𝑆𝑆

−1�𝒀𝒀𝑚𝑚−𝑙𝑙+1,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 − 𝑿𝑿𝑚𝑚−𝑙𝑙+1,𝑚𝑚𝑛𝑛𝑙𝑙𝜷𝜷�𝑚𝑚𝑛𝑛𝑙𝑙�, 𝑙𝑙 = 1, … , 𝐿𝐿 (27) 
 
 𝑿𝑿�𝑚𝑚−𝑙𝑙+1,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 = 𝑯𝑯′𝑆𝑆−1𝑯𝑯𝑆𝑆

−1𝑿𝑿𝑚𝑚−𝑙𝑙+1,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒, 𝑙𝑙 = 1, … , 𝐿𝐿 (28) 
 

3. Indicator of which method has been chosen to model spatial covariances, either empirical 
covariance (EOF) or parametric variogram model.  

4. Parametric covariance parameters 𝜓𝜓� if parametric model has been chosen.  

5. Coordinates of locations 𝑠𝑠.  

6. Number of unique time points used for model build, 𝑚𝑚.  

7. Number of records with missing values in the data set used in model building, 𝑞𝑞.  

8. Spatial covariance matrix 𝛴𝛴𝑆𝑆.  

9. 𝐻𝐻𝑆𝑆−1, inverse of Cholesky factor of spatial covariance matrix.  

4 Prediction 
We perform the following procedure to issue predictions for future time 𝑚𝑚 + 1, … ,𝑚𝑚 + 𝐻𝐻 at 
prediction locations 𝑮𝑮 = (𝒈𝒈1, … ,𝒈𝒈𝑁𝑁) using the results saved in the output file (see Figure 2). The 
input data set format should include location 𝑮𝑮, predictors 𝑿𝑿 for 𝑡𝑡 = 𝑚𝑚 + 1, … ,𝑚𝑚 + 𝐻𝐻.   

 

 

 

 

 

 

 

 

 



 

 

 
Figure 2. Flowchart of algorithm steps for model prediction 

4.1 Point prediction 

Step 1: Construct the 𝑁𝑁×𝑛𝑛 spatial covariance matrix to capture the spatial dependence between 
prediction grids 𝒈𝒈 ∈ 𝑮𝑮 and original sample locations 𝒔𝒔.  

• If variogram-based spatial covariance matrix 

 𝑉𝑉𝑆𝑆(𝒈𝒈) = 𝑉𝑉�𝜖𝜖𝑖𝑖(𝒈𝒈)� = 𝜎𝜎2 + 𝜏𝜏2 (29) 

and  

 𝑪𝑪𝑆𝑆(𝑮𝑮) = �𝐶𝐶𝑏𝑏𝑟𝑟�𝜖𝜖𝑖𝑖(𝒈𝒈𝑖𝑖), 𝜖𝜖𝑖𝑖�𝒔𝒔𝑗𝑗�;𝜓𝜓���
𝑖𝑖=1,…,𝑁𝑁;𝑗𝑗=1,…,𝑛𝑛

 (30) 

according to (14) for all locations 𝒈𝒈 (whether locations were included in the model build 
or not).  

• If EOF-based spatial covariance function is used:  
 

 

 

 



 

 

For locations gi that are included in the original sample locations 𝑠𝑠, 
𝐶𝐶𝑏𝑏𝑟𝑟𝑀𝑀𝐸𝐸𝐸𝐸�𝜖𝜖𝑖𝑖(𝑔𝑔𝑖𝑖), 𝜖𝜖𝑖𝑖(𝑠𝑠)� is equal to the row corresponding to location 𝑔𝑔𝑖𝑖 in the empirical 
covariance matrix 𝛴𝛴𝑆𝑆 and 𝑉𝑉𝑆𝑆(𝑔𝑔𝑖𝑖) is equal to the empirical variance at that location, i.e., 
the diagonal element of 𝛴𝛴𝑆𝑆 corresponding to that location.  

For locations 𝑔𝑔𝑖𝑖 that were not included in the model build, calculate the spatial 
covariance in the following way:  

(a) Perform eigendecomposition on the empirical covariance matrix 

𝑺𝑺 = 𝚽𝚽𝚽𝚽𝚽𝚽′ 

where 𝚽𝚽 = (𝜙𝜙1, … ,𝜙𝜙𝑛𝑛) with 𝛷𝛷𝑘𝑘 = �𝜙𝜙𝑘𝑘(𝑠𝑠1), … ,𝜙𝜙𝑘𝑘(𝑠𝑠𝑛𝑛)�′ is the 𝑛𝑛×𝑛𝑛 matrix of 
eigenvectors and 𝚽𝚽 = diag(𝜆𝜆1, … , 𝜆𝜆𝑛𝑛) is the 𝑛𝑛×𝑛𝑛 matrix of eigenvalues. 

(b) Apply inverse distance weighting (IDW) (Shepard 1968) to interpolate eigenvectors 
to locations with no observations.  

𝜙𝜙𝑘𝑘(𝒈𝒈) = �
𝑤𝑤𝑖𝑖(𝒈𝒈)𝜙𝜙𝑘𝑘(𝒔𝒔𝑖𝑖)
∑ 𝑤𝑤𝑗𝑗(𝒈𝒈)𝑛𝑛
𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

, 𝑘𝑘 = 1, … , 𝑛𝑛 

where  

𝑤𝑤𝑖𝑖(𝒈𝒈) =
1

dist(𝒈𝒈, 𝒔𝒔𝑖𝑖)𝜌𝜌
 

is an Inverse Distance Weighting (IDW) function with 𝜌𝜌 ≤ 𝑚𝑚 for d-dimensional 
space and dist(𝒈𝒈, 𝒔𝒔𝑖𝑖) may be any distance function. As a default value, use Euclidean 
distance with 𝜌𝜌 = 2 and dist(𝒈𝒈, 𝒔𝒔𝑖𝑖)2 = (𝒈𝒈 − 𝒔𝒔𝑖𝑖)′(𝒈𝒈− 𝒔𝒔𝑖𝑖).  

(c) The EOF-based spatial variance-covariance functions are  

 𝑉𝑉𝑆𝑆(𝒈𝒈) = 𝑉𝑉�𝜖𝜖𝑖𝑖(𝒈𝒈)� = �𝜆𝜆𝑛𝑛𝜙𝜙𝑘𝑘2(𝒈𝒈)
𝑛𝑛

𝑘𝑘=1

 (31) 

and 

 𝐶𝐶𝑏𝑏𝑟𝑟 �𝜖𝜖𝑡𝑡�𝒈𝒈𝑖𝑖�, 𝜖𝜖𝑡𝑡�𝒔𝒔𝑗𝑗�� = �𝜆𝜆𝑛𝑛𝜙𝜙𝑘𝑘�𝒈𝒈𝑖𝑖�𝜙𝜙𝑘𝑘�𝒔𝒔𝑗𝑗�
𝑛𝑛

𝑘𝑘=1
 (32) 

and the corresponding 𝑁𝑁×𝑛𝑛 spatial covariance matrix 

 𝑪𝑪𝑆𝑆(𝑮𝑮) = �𝐶𝐶𝑏𝑏𝑟𝑟𝑀𝑀𝑂𝑂𝐹𝐹 �𝜖𝜖𝑖𝑖(𝒈𝒈𝑖𝑖), 𝜖𝜖𝑖𝑖�𝒔𝒔𝑗𝑗���
𝑖𝑖=1,…,𝑁𝑁;𝑗𝑗=1,…,𝑛𝑛

 (33) 

Note that under the EOF model, we allow for space-varying variances.  

Step 2: Spatial interpolation to prediction locations g for the most recent L time units, 
𝑍𝑍𝑚𝑚−𝐿𝐿+1, … ,𝑍𝑍𝑚𝑚  

 𝒁𝒁�𝑚𝑚−𝑙𝑙+1(𝑮𝑮) = 𝑪𝑪𝑆𝑆(𝑮𝑮)𝚺𝚺𝑺𝑺−1𝒁𝒁𝑚𝑚−𝑙𝑙+1 = 𝑪𝑪𝑆𝑆(𝑮𝑮)𝒁𝒁�𝑚𝑚−𝑙𝑙+1, 𝑙𝑙 = 1, … , 𝐿𝐿 (34) 

where 𝒁𝒁�𝑚𝑚−𝑙𝑙+1(𝑮𝑮) is a vector of length 𝑁𝑁.  

 

 

 



 

 

Step 3: Iteratively forecast for future time m + 1, … , m + H at prediction locations 𝑮𝑮.  

 𝒁𝒁�𝑚𝑚+1(𝑮𝑮) = 𝛼𝛼�1𝒁𝒁�𝑚𝑚(𝑮𝑮) + ⋯+ 𝛼𝛼�𝐿𝐿𝒁𝒁�𝑚𝑚−𝐿𝐿+1(𝑮𝑮) (35) 
 

 𝒁𝒁�𝑚𝑚+2(𝑮𝑮) = 𝛼𝛼�1𝒁𝒁�𝑚𝑚+1(𝑮𝑮) + ⋯+ 𝛼𝛼�𝐿𝐿𝒁𝒁�𝑚𝑚−𝐿𝐿+2(𝑮𝑮) (36) 
 

 𝒁𝒁�𝑚𝑚+𝐻𝐻(𝑮𝑮) = 𝛼𝛼�1𝒁𝒁�𝑚𝑚+𝐻𝐻−1(𝑮𝑮) + ⋯+ 𝛼𝛼�𝐿𝐿𝒁𝒁�𝑚𝑚+𝐻𝐻−𝐿𝐿(𝑮𝑮) (37) 

 
where 𝒁𝒁�𝑚𝑚+𝐻𝐻(𝑮𝑮),ℎ = 1, … ,𝐻𝐻 are vectors of length 𝑁𝑁.  

Step 4: Incorporate predicted systematic effect 

 𝒀𝒀�𝑚𝑚+𝐻𝐻(𝑮𝑮) = 𝒁𝒁�𝑚𝑚+𝐻𝐻(𝑮𝑮) + 𝑋𝑋𝑚𝑚+ℎ(𝑮𝑮)𝜷𝜷� , ℎ = 1, … ,𝐻𝐻 (38) 

where 𝒀𝒀�𝑚𝑚+𝐻𝐻(𝑮𝑮), ℎ = 1, … ,𝐻𝐻 are vectors of length 𝑁𝑁.  

4.2 Prediction intervals 
Under the assumption of Gaussian Process and known variance components, the prediction error 
𝑌𝑌�𝑚𝑚+𝐻𝐻(𝒈𝒈𝑖𝑖) − 𝑌𝑌𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖) comes from two sources:  

• The prediction error that would be incurred even if regression coefficients 𝜷𝜷 were known.  

• The error in estimating regression coefficients 𝜷𝜷  

The variance of prediction error is thus  

      𝑉𝑉�𝑌𝑌�𝑚𝑚+𝐻𝐻(𝒈𝒈𝑖𝑖) − 𝑌𝑌𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖)�  

       = �𝑿𝑿′𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖) − 𝑪𝑪′𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖)𝚺𝚺−𝟏𝟏𝑿𝑿𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒�𝑽𝑽�𝜷𝜷���𝑿𝑿′𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖) − 𝑪𝑪′𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖)𝚺𝚺−𝟏𝟏𝑿𝑿𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒�′ (39) 

         +𝑽𝑽𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖) − 𝑪𝑪′𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖)𝚺𝚺−𝟏𝟏𝑪𝑪𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖) (40) 

Expression (39) arises from the variance expression for universal kriging, while (40) is the 
variance of a predicted random effect with known variance of the random effects 
(McCulloch et al. 2008, p.171).  

• 𝐶𝐶𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) = 𝐶𝐶𝑇𝑇(𝑚𝑚 + ℎ) ⊗𝐶𝐶𝑆𝑆(𝑔𝑔𝑖𝑖) is the covariance vector of length nm between the 
prediction 𝑌𝑌𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) and measurements 𝑌𝑌1(𝑠𝑠), … ,𝑌𝑌𝑚𝑚(𝑠𝑠). Note that 𝐶𝐶𝑇𝑇(𝑚𝑚 + ℎ) =
{𝛾𝛾𝑇𝑇(𝑚𝑚 + ℎ − 𝑡𝑡)}𝑖𝑖=1,…,𝑚𝑚 is the AR(L) covariance vector of length m and 𝐶𝐶𝑆𝑆(𝑔𝑔𝑖𝑖) =
�𝐶𝐶𝑏𝑏𝑟𝑟 �𝑌𝑌𝑖𝑖(𝑔𝑔𝑖𝑖),𝑌𝑌𝑖𝑖�𝑠𝑠𝑗𝑗���

𝑗𝑗=1,…,𝑛𝑛
 is the spatial covariance vector of length 𝑛𝑛.  

• The nm×nm covariance matrix 𝛴𝛴 is defined as to 𝛴𝛴 = 𝛴𝛴𝑇𝑇 ⊗ 𝛴𝛴𝑆𝑆 and 𝛴𝛴𝑇𝑇 = {𝛾𝛾𝑇𝑇|𝑡𝑡 −
𝑡𝑡′|}𝑖𝑖,𝑖𝑖′=1,…,𝑚𝑚. Note that ΣS is a quantity stored after the model build step.  

• 𝑉𝑉𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) = 𝑉𝑉�𝑌𝑌𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖)� = 𝛾𝛾𝑇𝑇(0)𝑉𝑉𝑆𝑆(𝑔𝑔𝑖𝑖) is the variance of 𝑌𝑌𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖).  

 

• Note that expressions (39) and (40) are not computed explicitly, but instead are implemented 
as described in the following.  

 

 

 



 

 
Computational process:  

Step 1: Compute the error in estimating regression coefficients 𝛽𝛽 in (39).  

For 𝑙𝑙 = 1, … , 𝐿𝐿, interpolate 𝑿𝑿 to prediction locations 𝒈𝒈 for the most recent 𝐿𝐿 time units 
 𝑷𝑷𝑚𝑚+1−𝑙𝑙(𝒈𝒈𝑖𝑖) = 𝑿𝑿′𝑚𝑚+1−𝑙𝑙,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒𝚺𝚺𝑺𝑺−1𝑪𝑪𝑆𝑆(𝒈𝒈𝑖𝑖) = 𝑿𝑿�′𝑚𝑚+1−𝑙𝑙,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒𝑪𝑪𝑆𝑆(𝒈𝒈𝑖𝑖) (41) 

where 𝑷𝑷𝑚𝑚+1−𝑙𝑙(𝒈𝒈𝑖𝑖) is a vector of dimension 𝑀𝑀×1. Define 

 𝑿𝑿�𝑚𝑚+ℎ−𝑙𝑙(𝒈𝒈𝑖𝑖) = �𝑷𝑷𝑚𝑚+ℎ−𝑙𝑙(𝒈𝒈𝑖𝑖), 𝑖𝑖𝑓𝑓 ℎ − 𝑙𝑙 ≤ 0;
𝑿𝑿𝑚𝑚+ℎ−𝑙𝑙(𝒈𝒈𝑖𝑖), otherwise.  (42) 

For 𝑡𝑡 = 𝑚𝑚 − 𝐿𝐿 + 1, … ,𝑚𝑚 (ℎ ≤ 𝑙𝑙), we only have 𝑋𝑋 at sample locations 𝑠𝑠, so 𝑋𝑋�𝑖𝑖(𝑔𝑔𝑖𝑖) =
𝑃𝑃𝑖𝑖(𝑔𝑔𝑖𝑖), the interpolated values from 𝑋𝑋𝑖𝑖(𝑠𝑠); for 𝑡𝑡 > 𝑚𝑚 (or ℎ > 𝑙𝑙), we already input 𝑋𝑋 at 
prediction locations 𝑔𝑔, so there is no need to interpolate and 𝑋𝑋�𝑖𝑖(𝑔𝑔𝑖𝑖) = 𝑋𝑋𝑖𝑖(𝑔𝑔𝑖𝑖).  
 
Then, for ℎ = 1, … ,𝐻𝐻, recursively compute the 𝑀𝑀×1 vectors 𝑊𝑊𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖)   

 𝑊𝑊𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) = 𝑋𝑋𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) + �𝛼𝛼�𝑙𝑙

𝐿𝐿

𝑙𝑙=1

(𝑊𝑊�𝑚𝑚+ℎ−𝑙𝑙(𝑔𝑔𝑖𝑖) − 𝑋𝑋�𝑚𝑚+ℎ−𝑙𝑙(𝑔𝑔𝑖𝑖)) (43) 

where  

 𝑊𝑊�𝑚𝑚+ℎ−𝑙𝑙(𝑔𝑔𝑖𝑖) = �
0, if ℎ − 𝑙𝑙 ≤ 0; (7)
𝑊𝑊𝑚𝑚+ℎ−𝑙𝑙(𝑔𝑔𝑖𝑖), otherwise.  (44) 

The prediction error in estimating 𝛽𝛽, that is, expression (39) is thus 
 𝑊𝑊′

𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖)𝑉𝑉(�̂�𝛽)𝑊𝑊𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) (45) 
where 𝑉𝑉(�̂�𝛽) is computed in (25). 

Step 2: Compute the prediction error that would be incurred if regression coefficients 𝛽𝛽 were 
known, i.e., equation (40).  

• Compute 𝐶𝐶𝑇𝑇(𝑚𝑚 + ℎ) by AR(L) autocovariance function 𝛾𝛾𝑇𝑇(𝑘𝑘) (McLeod 1975).  

First, compute 𝛾𝛾𝑇𝑇(0), … , 𝛾𝛾𝑇𝑇(𝐿𝐿) by solving a linear system 𝑀𝑀𝑋𝑋 = 𝑏𝑏, 

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1 −𝛼𝛼�1 −𝛼𝛼�2 … −𝛼𝛼�𝐿𝐿−1 −𝛼𝛼�𝐿𝐿
−𝛼𝛼�1 1 − 𝛼𝛼�2 −𝛼𝛼�3 … −𝛼𝛼�𝐿𝐿 0
−𝛼𝛼�2 −(𝛼𝛼�1 + 𝛼𝛼�3) 1 − 𝛼𝛼�4 … 0 0
−𝛼𝛼�3 −(𝛼𝛼�2 + 𝛼𝛼�4) −(𝛼𝛼�1 + 𝛼𝛼�5) … 0 0
⋮ ⋮ ⋮ ⋱ ⋮

−𝛼𝛼�𝐿𝐿−2 −(𝛼𝛼�𝐿𝐿−3 + 𝛼𝛼�𝐿𝐿−1) −(𝛼𝛼�𝐿𝐿−4 + 𝛼𝛼�𝐿𝐿) … 0 0
−𝛼𝛼�𝐿𝐿−1 −(𝛼𝛼�𝐿𝐿−2 + 𝛼𝛼�𝐿𝐿) −𝛼𝛼�𝐿𝐿−3 … 1 0
−𝛼𝛼�𝐿𝐿 −𝛼𝛼�𝐿𝐿−1 −𝛼𝛼�𝐿𝐿−2 … −𝛼𝛼�1 1 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝛾𝛾𝑇𝑇(0)
𝛾𝛾𝑇𝑇(1)
𝛾𝛾𝑇𝑇(2)
𝛾𝛾𝑇𝑇(3)
⋮

𝛾𝛾𝑇𝑇(𝐿𝐿 − 2)
𝛾𝛾𝑇𝑇(𝐿𝐿 − 1)
𝛾𝛾𝑇𝑇(𝐿𝐿) ⎠

⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎛

1
0
0
0
⋮
0
0
0⎠

⎟
⎟
⎟
⎟
⎞

 

(46) 

 

 

 

 



 

 

Note that the first element of the vector on the right hand side (the variance of the 
measurement error) is fixed to be one, to account for the normalization through the spatial 
variance-covariance structure.  

For 𝑘𝑘 = 𝐿𝐿 + 1, … ,𝑚𝑚 + 𝐻𝐻 − 1, recursively compute  

 𝛾𝛾𝑇𝑇(𝑘𝑘) = 𝛼𝛼�1𝛾𝛾𝑇𝑇(𝑘𝑘 − 1) + ⋯+ 𝛼𝛼�𝐿𝐿𝛾𝛾𝑇𝑇(𝑘𝑘 − 𝐿𝐿) (47) 

Remark: To construct the (𝐿𝐿 + 1)×(𝐿𝐿 + 1) matrix 𝑀𝑀,  

 𝑀𝑀𝑖𝑖𝑗𝑗 = �
−[𝛼𝛼𝑖𝑖−1], 𝑗𝑗 = 1; 𝑖𝑖 = 1, … , 𝐿𝐿 + 1
−[𝛼𝛼𝑖𝑖−𝑗𝑗] − [𝛼𝛼𝑖𝑖+𝑗𝑗−2], 𝑗𝑗 = 2, … , 𝐿𝐿 + 1; 𝑖𝑖 = 1, … , 𝐿𝐿 + 1. (48) 

where  

 [𝛼𝛼𝑘𝑘] = �
−1, 𝑘𝑘 = 0;
0, 𝑘𝑘 < 0 or 𝑘𝑘 > 𝐿𝐿;
𝛼𝛼�𝑘𝑘, 0 < 𝑘𝑘 ≤ 𝐿𝐿.

 (49) 

• Compute the approximated factorization of Σ𝑇𝑇−1 such that 𝑅𝑅′𝑅𝑅 ≈ Σ𝑇𝑇−1, where 𝑅𝑅 is a (𝑚𝑚−
𝐿𝐿)×𝑚𝑚 matrix (follows from Cholesky or Gram-Schmidt orthogonalization, see for example 
Fuller 1975):  

 𝑅𝑅 =

⎝

⎜
⎛

−𝛼𝛼�𝐿𝐿 … −𝛼𝛼�1 1 0 0 … ⋮
⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋮
… 0 −𝛼𝛼�𝐿𝐿 … −𝛼𝛼�1 1 0 0
… … 0 −𝛼𝛼�𝐿𝐿 … −𝛼𝛼�1 1 0
… … … 0 −𝛼𝛼�𝐿𝐿 … −𝛼𝛼�1 1⎠

⎟
⎞

 (50) 

 

• Compute the value of expression (40):  

𝛾𝛾𝑇𝑇(0)𝑉𝑉𝑆𝑆(𝑔𝑔𝑖𝑖) − (𝐶𝐶′𝑇𝑇(𝑚𝑚 + ℎ) ⊗𝐶𝐶′𝑆𝑆(𝑔𝑔𝑖𝑖))(𝑅𝑅′𝑅𝑅 ⊗ 𝐻𝐻𝑆𝑆−1
′𝐻𝐻𝑆𝑆−1)(𝐶𝐶𝑇𝑇(𝑚𝑚 + ℎ) ⊗𝐶𝐶𝑆𝑆(𝑔𝑔𝑖𝑖)) 

  (51) 

where 𝐶𝐶′𝑆𝑆(𝑔𝑔𝑖𝑖) is a the row of 𝐶𝐶𝑆𝑆(𝐺𝐺) corresponding to location 𝑔𝑔𝑖𝑖.  

Step 3: The (1 − α%) prediction interval is  

 𝑌𝑌�𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) ± 𝑡𝑡𝑛𝑛𝑚𝑚−𝑞𝑞−𝑆𝑆∗,𝛼𝛼/2�𝑉𝑉[𝑌𝑌�𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) − 𝑌𝑌𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖)] (55) 

where 𝑉𝑉[𝑌𝑌�𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) − 𝑌𝑌𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖)] is the sum of equations (39) and (40) as computed in 
expressions (45) and (51), respectively. 𝑡𝑡𝑛𝑛𝑚𝑚−𝑞𝑞−𝑆𝑆,𝛼𝛼/2 is defined as 𝑃𝑃(𝑋𝑋 ≤ 𝑡𝑡𝑛𝑛𝑚𝑚−𝑞𝑞−𝑆𝑆∗,𝛼𝛼/2) =
1 − 𝛼𝛼/2 where 𝑋𝑋 follows t-distribution with degree freedom 𝑛𝑛𝑚𝑚 − 𝑞𝑞 − 𝑀𝑀∗. The default 
value for 𝛼𝛼 is 0.05.   

As final output from the prediction step, point prediction, variances of point predictions and 
prediction interval (lower and upper bounds) are issued for each specified (location, time).  

We remark that to perform what-if-analysis, a set of 𝑿𝑿 variables under the new settings need to be 
provided. Then we re-run the prediction algorithm described in Section 4 to obtain prediction 
results under adjusted settings.  
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Temporal Causal Modeling Algorithms 
 

1. Introduction 
Forecasting and prediction are important tasks in real world applications that involve decision making. In such 
applications, it is important to go beyond discovering statistical correlations and unravel the key variables that 
influence the behaviors of other variables using an algebraic approach. Many real world data, such as stock price data, 
are temporal in nature; that is, the values of a set of variables depend on the values of another set of variables at several 
time points in the past. Temporal causal modeling, or TCM, refers to a suite of methods that attempt to discover key 
temporal relationships in time series data. This chapter describes a particular method to discover temporal relationships 
using a combination of Granger causality and regression algorithms for variable selection. Although this treatment 
strives to be self-contained, a minimal set of papers describing the design principles behind the  method can be found 
in [Lozano et  al., 2011, Lozano et  al., 2009, Arnold et  al., 2007]1. 

The rest of the chapter is organized as follows. Section 2 lays the groundwork for the TCM algorithm (notation and 
brief history) and explains the greedy orthogonal matching pursuit (GOMP) [Lozano et  al., 2011] algorithm that is 
used. Section 3 describes the techniques used to fit and forecast time series and compute approximated forecasting 
intervals. Section 4 describes scenario analysis, which refers to a capability of the TCM product to “play-out” the 
repercussions of artificially setting the value of a time series. Section 5 describes the detection of outliers, and 
Section 6 discusses how potential causes for outliers can be established using root cause analysis. 

Note: To build a temporal causal model, you need enough data points. Modeler uses the constraint  
m>(L + KL + 1) 
where m is the number of data points, L is the number of lags, and K is the number of predictors. Make sure your data 
set is big enough so that the number of data points (m) satisfies the condition. 

2. Model 
Introduced by Clive Granger [Granger, 1980], Granger causality in time series is based on the intuition that a cause 
should necessarily precede its effect, and that if time series 𝑚𝑚 causally affects time series 𝑏𝑏, then the past values of 𝑚𝑚 
should be useful in predicting the future values of 𝑚𝑚. More specifically, time series 𝑚𝑚 is said to “Granger cause” time 
series 𝑏𝑏 if the accuracy of regressing for 𝑏𝑏 in terms of past values of both 𝑚𝑚 and 𝑏𝑏 is statistically significantly better 
than regressing just with past values of 𝑏𝑏. If the time series have 𝑇𝑇 time points and are denoted by {𝑚𝑚𝑖𝑖}𝑖𝑖=1𝑇𝑇 and {𝑏𝑏𝑖𝑖}𝑖𝑖=1𝑇𝑇 , 
then the following regressions are performed:   

 𝑏𝑏𝑖𝑖 ≈ �𝛼𝛼𝑗𝑗

𝐿𝐿

𝑗𝑗=1

𝑚𝑚𝑖𝑖−𝑗𝑗 + �𝛽𝛽𝑗𝑗

𝐿𝐿

𝑗𝑗=1

𝑏𝑏𝑖𝑖−𝑗𝑗 (1) 

 

 𝑏𝑏𝑖𝑖 ≈ �𝛽𝛽𝑗𝑗

𝐿𝐿

𝑗𝑗=1

𝑏𝑏𝑖𝑖−𝑗𝑗 (2) 

Here 𝐿𝐿 is the number of lags; that is, the value of 𝑏𝑏 at time 𝑡𝑡 can only be determined by values of other time series at 
times {𝑡𝑡 − 1, 𝑡𝑡 − 2,⋯ , 𝑡𝑡 − 𝐿𝐿}. If Equation (1) is statistically more significant (using some test for significance) than 
Equation (2), then 𝑚𝑚 is deemed to Granger cause 𝑏𝑏. 

                                                      
1 The methods described in this chapter are particularly useful for under-determined systems, where the number of time series 

(𝑛𝑛) far exceeds the number of samples (𝑚𝑚); that is 𝑛𝑛 ≫ 𝑚𝑚. Although these methods function for both over-determined (𝑚𝑚 ≫
𝑛𝑛) and fully-determined (𝑛𝑛 == 𝑚𝑚) systems, there are other approaches to pursue for such systems.  



2.1 Graphical Granger Modeling 

The classical definition of Granger causality is defined for a pair of time series. In the real world, we are interested in 
finding not one, but all the significant time series that influence the target time series. In order to accomplish this, we 
use group greedy (ℓ0) regression algorithms with variable selection (see Section 2.3). An important feature of our 
TCM algorithm is that it groups influencer/predictor variables; that is, we are interested in predicting whether time 
series 𝑚𝑚 as a whole – {𝑚𝑚𝑖𝑖−1, 𝑚𝑚𝑖𝑖−2,⋯ , 𝑚𝑚𝑖𝑖−𝐿𝐿} – has influence over time series 𝑏𝑏. Such grouping is a more natural 
interpretation of causality and also helps sparsify the solution set. For example, without such grouping we may select 
the time-lagged series 𝑚𝑚𝑖𝑖−2 to model 𝑏𝑏𝑖𝑖 but not select any other value of 𝑚𝑚, which increases the number of choices for 
variable selection 𝐿𝐿-fold, where 𝐿𝐿 is the number of lags that is allowed. 

2.2 Notation 

The following notation is used throughout this chapter unless otherwise stated: 

Table 1: Notation 

Notation Type Description 
𝒩𝒩 — Set of natural numbers 
ℛ — Set of real numbers 
\ — Regression solve operator 

| . | 𝒩𝒩 Size operator 
‖ . ‖2 ℛ ℓ2 norm of a vector, i.e., ‖ 𝒛𝒛‖2 = �∑ 𝑧𝑧𝑖𝑖2𝑖𝑖  
𝑚𝑚 𝒩𝒩 Number of time points 
𝑛𝑛 𝒩𝒩 Number of time series 
𝐿𝐿 𝒩𝒩 Number of lags for each target, 𝐿𝐿 < 𝑚𝑚 
𝑿𝑿 ℛ𝑚𝑚×𝑛𝑛 Design matrix of input series 
𝒚𝒚 ℛ𝑚𝑚×1 Target series vector 

𝐺𝐺 𝐺𝐺:ℛ𝑚𝑚×𝑛𝑛×𝐽𝐽×𝐿𝐿 → ℛ(𝑚𝑚−𝐿𝐿)×|𝐽𝐽|𝐿𝐿 Computes lag matrix 
𝐽𝐽 = {𝑗𝑗1, 𝑗𝑗2,⋯ }, 1 ≤ 𝑗𝑗𝑘𝑘 ≤ 𝑛𝑛 for the set of column indices in J 

𝑀𝑀 𝑀𝑀:ℛ𝑚𝑚×𝑘𝑘 → ℛ𝑘𝑘×1 Computes means for 𝑘𝑘 series 
𝑆𝑆 𝑆𝑆:ℛ𝑚𝑚×𝑘𝑘 → ℛ𝑘𝑘×1 Computes standard deviations for 𝑘𝑘 series 
𝜖𝜖 ℛ Tolerance value for stopping criterion 

𝐾𝐾∗ 𝒩𝒩 
Max number of predictors selected or 
maximum number of iterations 

𝐾𝐾 𝒩𝒩 
Actual number of predictors selected for a 
target series 𝒚𝒚 

𝜷𝜷�∗ ℛ𝑘𝑘×1, 0 ≤ 𝑘𝑘 ≤ 𝐾𝐾𝐿𝐿 
Estimated coefficients for predictors on the 
transformed scale 

In this section, we introduce the algorithm that is used to construct the temporal causal model. The list of symbols used 
in the rest of this chapter is summarized in Table 1. Most of the symbols are self-explanatory; however, the function 𝐺𝐺, 
which stands for grouping, requires some additional explanation. 𝐺𝐺 is a function that takes a matrix (ℛ𝑚𝑚×𝑛𝑛), a set of 
column indices 𝐽𝐽, and a lag value 𝐿𝐿 and constructs a lag matrix that has (𝑚𝑚 − 𝐿𝐿) rows and (|𝐽𝐽|𝐿𝐿) columns. Basically, 
for every column index 𝑗𝑗 ∈ 𝐽𝐽, 𝐺𝐺 constructs a (𝑚𝑚 − 𝐿𝐿)×𝐿𝐿 lag matrix by carefully unrolling the jth column of the input 
matrix. An example of 𝐺𝐺′s action is shown below:  

 



𝐺𝐺

⎝

⎜⎜
⎛
𝑿𝑿 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑚𝑚1 𝑏𝑏1 𝑐𝑐1 𝑚𝑚1

𝑚𝑚2 𝑏𝑏2 𝑐𝑐2 𝑚𝑚2
𝑚𝑚3 𝑏𝑏3 𝑐𝑐3 𝑚𝑚3
𝑚𝑚4 𝑏𝑏4 𝑐𝑐4 𝑚𝑚4
𝑚𝑚5 𝑏𝑏5 𝑐𝑐5 𝑚𝑚5 ⎦

⎥
⎥
⎥
⎥
⎤

, 𝐽𝐽 = {1}, 𝐿𝐿 = 2

⎠

⎟⎟
⎞
→ �

𝑚𝑚2 𝑚𝑚1
𝑚𝑚3 𝑚𝑚2
𝑚𝑚4 𝑚𝑚3

� 

In this example, the input matrix 𝑿𝑿 ∈ ℛ5×4 has 4 time series (𝑛𝑛 = 4) and five time points per time series (𝑚𝑚 = 5). The 
lag matrix associated with the time series in column 1, when 𝐿𝐿 (lag) is 2, is produced by invoking 𝐺𝐺(𝑿𝑿, {1}, 2). Note 
that the lag matrix consists of the lag-1 vector of 𝑿𝑿 as the first column, the lag-2 vector as the second column, up to the 
lag- 𝐿𝐿 vector as the 𝐿𝐿th column. Similarly, the functions (𝑀𝑀, 𝑆𝑆) accept any input matrix and compute the mean and the 
standard deviation, respectively, of the matrix’s columns. For purposes of numerical stability, and to increase 
interpretability during modeling, columns of the lagged matrix are both centered by the column means and scaled by 
the column standard deviations 2. On the other hand, the target 𝒚𝒚 is only centered. An example of mean centering and 
scaling for the lagged matrices is shown below:  

��
𝑚𝑚1 𝑏𝑏1
𝑚𝑚2 𝑏𝑏2
𝑚𝑚3 𝑏𝑏3

�� →

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑚𝑚1 − 𝑚𝑚𝜇𝜇
𝑚𝑚𝜎𝜎

𝑏𝑏1 − 𝑏𝑏𝜇𝜇
𝑏𝑏𝜎𝜎

𝑚𝑚2 − 𝑚𝑚𝜇𝜇
𝑚𝑚𝜎𝜎

𝑏𝑏2 − 𝑏𝑏𝜇𝜇
𝑏𝑏𝜎𝜎

𝑚𝑚3 − 𝑚𝑚𝜇𝜇
𝑚𝑚𝜎𝜎

𝑏𝑏3 − 𝑏𝑏𝜇𝜇
𝑏𝑏𝜎𝜎 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

Here, ( 𝑚𝑚𝜇𝜇 , 𝑚𝑚𝜎𝜎) and (𝑏𝑏𝜇𝜇 , 𝑏𝑏𝜎𝜎) are the means and standard deviations of the first and the second columns, (𝑚𝑚, 𝑏𝑏) 
respectively. 

2.3 Group Orthogonal Matching Pursuit (GOMP) 
Algorithm 1: GOMP 
 
Input: 𝑿𝑿,𝒚𝒚,𝐺𝐺,𝑀𝑀, 𝑆𝑆,𝐿𝐿, 𝜖𝜖,𝐾𝐾∗, 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 , 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙~ . 
Output: 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙, 𝜷𝜷�∗. 
1 𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙0 = 𝐺𝐺(𝑋𝑋, 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 ,𝐿𝐿); 

2 for 𝑖𝑖 ∈ [1, (𝑚𝑚− 𝐿𝐿)] do 𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙0 (𝑖𝑖, ∶) = 𝑿𝑿𝑖𝑖𝑎𝑎𝑎𝑎0 (𝑖𝑖,∶)−𝑀𝑀(𝑿𝑿𝑖𝑖𝑎𝑎𝑎𝑎0 )𝑇𝑇

𝑆𝑆(𝑿𝑿𝑖𝑖𝑎𝑎𝑎𝑎0 )𝑇𝑇
; 

3 𝜷𝜷�∗0 = 𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙0 ∖ �𝒚𝒚 −𝑀𝑀(𝒚𝒚)�; 
4 𝒓𝒓0 = 𝒚𝒚 −𝑀𝑀(𝒚𝒚)−  𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙0 𝜷𝜷�∗0; 
5 if any redundant series are found, delete them in 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 ; 
6 if (�𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 � ≥ 𝐾𝐾∗), then 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 = 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 (1:𝐾𝐾∗), update 𝜷𝜷�∗0 , return 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 , 𝜷𝜷�∗0 and stop; 
7 otherwise update 𝜷𝜷�∗0 and 𝒓𝒓0; 
8 for 𝑘𝑘 ∈ 1, 2, 3 … �𝐾𝐾∗ − �𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 �� do 
9    𝑗𝑗𝑘𝑘 = 𝑚𝑚𝑟𝑟𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛(𝑿𝑿,𝒓𝒓𝑘𝑘−1,𝐺𝐺,𝑀𝑀, 𝑆𝑆,𝐿𝐿, 𝜖𝜖, 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 , 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙~  ); 
10    if 𝑗𝑗𝑘𝑘 = −1, return 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙

(𝑘𝑘−1) and 𝜷𝜷�∗(𝑘𝑘−1) and stop; 
11    𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙𝑘𝑘 = 𝐺𝐺�𝑿𝑿, 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙𝑘𝑘−1 ∪ 𝑗𝑗𝑘𝑘 ,𝐿𝐿�; 
12    for 𝑖𝑖 ∈ [1, (𝑚𝑚− 𝐿𝐿)] do 

13       𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙𝑘𝑘 (𝑖𝑖, ∶) = 𝑿𝑿𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖 (𝑖𝑖,∶)−𝑀𝑀(𝑿𝑿𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖 )𝑇𝑇

𝑆𝑆(𝑿𝑿𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖 )𝑇𝑇
; 

 

                                                      
2 Although each column of the lagged matrix has a different mean and standard deviation, due to the structure of these columns, 

it is possible to compute the mean and the standard deviation of the time series itself and use those to center and scale the 
lagged columns.  



14    𝜷𝜷�∗𝑘𝑘 = 𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙𝑘𝑘 ∖ �𝒚𝒚 −𝑀𝑀(𝒚𝒚)�; 
15    𝒓𝒓𝑘𝑘 = 𝒚𝒚 −𝑀𝑀(𝒚𝒚)−  𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙𝑘𝑘 𝜷𝜷�∗𝑘𝑘; 
16    𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙𝑘𝑘 = 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙𝑘𝑘−1 ∪ 𝑗𝑗𝑘𝑘; 
17   if �𝒓𝒓𝑘𝑘�2 ≤ 𝜖𝜖, break; 

18 return 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙𝑘𝑘 , 𝜷𝜷�∗𝑘𝑘. 
 

We begin by describing Algorithm 1: GOMP, which will be used to establish causality of time-series data. This 
algorithm receives the variables 𝑿𝑿,𝒚𝒚,𝐺𝐺,𝑀𝑀, 𝑆𝑆, 𝐿𝐿, 𝜖𝜖,𝐾𝐾∗ (described in Table 1) as input. Briefly, 𝒚𝒚 ∈ ℛ(𝑚𝑚−𝐿𝐿)×1 is a target 
vector for which we want to establish the Granger causality (note that we have excluded the first 𝐿𝐿 values of 𝒚𝒚). In 
contrast, 𝑿𝑿 ∈ ℛ𝑚𝑚×𝑛𝑛 is the input unlagged time series data. 𝐿𝐿 is the number of lags for each predictor in each target 
series, 𝐾𝐾∗ is the maximum number of predictors to be selected per-target, and 𝜖𝜖 determines whether a new predictor 
needs to be added. In addition, 𝐺𝐺,𝑀𝑀 and 𝑆𝑆 are grouping, centering, and scaling functions which have been described in 
Section 2.2. 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0  is the set of pre-selected predictor indices for 𝒚𝒚, and always contains the lagged 𝒚𝒚.  𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙~  is the set of 
forbidden predictors, if any, for 𝒚𝒚. If there are no forbidden predictors, then 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙~ = ∅. Given these, the goal is to 
greedily find predictors that solve the system 𝑿𝑿𝜷𝜷 = 𝒚𝒚 subject to sparsity constraints. 

The greedy algorithm approximates an ℓ0–sparse solution by itertively choosing the best predictor for addition at each 
iteration. We use superscripts to denote the iteration number in Algorithm 1. For example, 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0  represents the initial 
values of 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙  at the 0th iteration (before the actual iteration starts). The first part of the algorithm (lines 1 – 4) constructs 
and solves a linear system consisting of the predictors in 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0  to obtain 𝜷𝜷∗0, the coefficient vector for predictors on the 
transformed scale. At the end of this first part, we have 𝒓𝒓0, the initial residual. Then check whether there are redundant 
predictor series in 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 . If yes, then delete them. If the number of predictor series in the (updated)  𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0  is equal to or 
larger than the maximum number of iterations (i.e., |𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 | ≥ 𝐾𝐾∗) then keep the first 𝐾𝐾∗ predictor series in 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 , update 
𝜷𝜷∗0, return 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0  and 𝜷𝜷∗0, and stop the process (line 6); otherwise (i.e., |𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 | < 𝐾𝐾∗ ),  update 𝜷𝜷∗0 and 𝒓𝒓0 (line 7) if any 
redundant predictor series were deleted. Then start the iterative process to add one predictor series at a time (line 8). 
The first step in predictor selection (line 9) consists of an argmin function that systematically goes over each eligible 
predictor and evaluates its goodness (see Algorithm 2). This step is the performance critical portion of the algorithm 
and can be searched in parallel. At the end of the step, 𝑗𝑗𝑘𝑘, the index corresponding to the best predictor is available. 
However, if no suitable predictor is found in the argmin function (i.e., 𝑗𝑗𝑘𝑘 = −1), then return 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙𝑘𝑘−1and 𝜷𝜷∗(𝑘𝑘−1) and stop 
(line 10). The next part (lines 11 – 14) re-estimates the model coefficients by adding 𝑗𝑗𝑘𝑘 to the model. Line 15 updates 
the residual, 𝒓𝒓𝑘𝑘, for this model and line 16 adds 𝑗𝑗𝑘𝑘 to the model. Finally, if the ℓ2 norm of the current residuals is equal 
to or smaller than the tolerance value (i.e., (‖𝒓𝒓𝑘𝑘‖2 ≤ 𝜖𝜖)), then the iterative process is terminated.  

Note that if the tolerance 𝜖𝜖 is achieved by adding 𝑗𝑗𝑘𝑘, then no new iterations are required and the iterative process is 
terminated. Thus the actual number of predictors selected, 𝐾𝐾, can be less than the maximum number of iterations, (i.e., 
𝐾𝐾 ≤ 𝐾𝐾∗). However, if the tolerance 𝜖𝜖 is set very small, then it is highly unlikely that such a situation will happen. 

Algorithm 2: argmin 
 
Input: 𝑿𝑿,𝒓𝒓,𝐺𝐺,𝑀𝑀, 𝑆𝑆,𝐿𝐿, 𝜖𝜖2,  𝐾𝐾∗, 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 ,  𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙~ . 
Output: 𝑗𝑗𝑠𝑠𝑒𝑒𝑙𝑙: Selected group index. 
1 𝑐𝑐𝑏𝑏𝑠𝑠𝑡𝑡 = ‖𝒓𝒓‖22, 𝑗𝑗𝑠𝑠𝑒𝑒𝑙𝑙 = −1; 
2 for 𝑗𝑗 ∈ 1, 2, 3 …𝑛𝑛 do 
3    if 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙 ∥  𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙~  continue; 
4    𝑿𝑿𝐺𝐺𝑗𝑗 = 𝐺𝐺(𝑿𝑿, 𝑗𝑗, 𝐿𝐿); 

5    for 𝑖𝑖 ∈ [1, (𝑚𝑚− 𝐿𝐿)] do 𝑿𝑿𝐺𝐺𝑗𝑗(𝑖𝑖, ∶) =
𝑿𝑿𝐺𝐺𝑗𝑗(𝑖𝑖,∶)−𝑀𝑀(𝑿𝑿𝐺𝐺𝑗𝑗)𝑇𝑇

𝑆𝑆(𝑿𝑿𝐺𝐺𝑗𝑗)𝑇𝑇
; 

 
 



6    𝜷𝜷�𝑗𝑗 = 𝑿𝑿𝐺𝐺𝑗𝑗 ∖ 𝒓𝒓; 

7    𝒓𝒓𝑗𝑗 = 𝒓𝒓 − �𝑿𝑿𝐺𝐺𝑗𝑗𝜷𝜷�𝑗𝑗�𝐺𝐺𝑗𝑗
; 

8    if �𝒓𝒓𝑗𝑗�2
2 < (𝑐𝑐𝑏𝑏𝑠𝑠𝑡𝑡 − 𝜖𝜖2), then (𝑐𝑐𝑏𝑏𝑠𝑠𝑡𝑡, 𝑗𝑗𝑠𝑠𝑒𝑒𝑙𝑙) = ��𝒓𝒓𝑗𝑗�2

2, 𝑗𝑗�; 
9 return  𝑗𝑗𝑠𝑠𝑒𝑒𝑙𝑙. 
 

The implementation of the argmin function (line 8, Algorithm 1) is shown in Algorithm 2. The algorithm first assigns 
the initial cost to be the square of the ℓ2 norm of the current residuals, and the selected group index to be −1 (line 1). 
Then it loops over each series group, first checking if the time series being considered for addition (𝑗𝑗) has already been 
added to the solution 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙  or if it is a forbidden predictor (line 3). If the current group (𝑗𝑗) is not yet selected, the lagged 
transformed matrix corresponding to this time series (𝑿𝑿𝐺𝐺𝑗𝑗) is constructed using the 𝐺𝐺,𝑀𝑀 and 𝑆𝑆 functions (lines 4 and 

5). After grouping and transforming 𝑋𝑋𝐺𝐺𝑗𝑗 , the residual �𝒓𝒓𝑗𝑗� corresponding to the candidate time series j is computed by 
first regressing 𝒓𝒓 on 𝑿𝑿𝐺𝐺𝑗𝑗 (line 6), and then computing the residual (line 7). Finally, the current time series is selected as 

the leading candidate if the square of the ℓ2 norm of its residual �𝒓𝒓𝑗𝑗� is lower than the previous estimate minus a 
threshold value, 𝜖𝜖2. Including such a threshold value prevents selecting an (almost) identical series.  

The loop in Algorithm 2 (line 2) can be thought of as iterating over all candidate series. For each candidate series, the 
following computations are carried out: (1) a filter is applied in line 3 to ensure that it is a valid candidate; (2) lines 4 
and 5 map the current candidate to the transformed matrix (𝑿𝑿𝐺𝐺𝑗𝑗) that represents the lag matrix to be used; (3) lines 6 
and 7 evaluate the goodness of the current candidate by first solving a dense linear system and then computing the 
residual; (4) line 8 applies a predicate to check if the current candidate series is better than previously evaluated 
candidates. Notice that the predicate (line 8) is associative and commutative; therefore, Algorithm 2 can be parallelized 
by dividing the iteration space ([1,n]) into chunks and executing each chunk in parallel. To get the globally best group, 
it is sufficient to reduce the groups that were selected by each parallel instance in a tree-like fashion by applying the 
predicate in line 8.  

2.4 Selecting 𝑳𝑳 

Both Algorithms 1 and 2 accept 𝐿𝐿 as an input parameter which can be specified by user. If 𝐿𝐿 is not explicitly specified 
then the following heuristic approach can be used to determine 𝐿𝐿 based on 𝑚𝑚 (# of time points) and 𝑠𝑠 (periodicity or 
seasonal length):  

(1) If 𝑠𝑠 > 1 and 𝑚𝑚 ≥ 4𝑠𝑠, then 𝐿𝐿 = min(𝑠𝑠, 20). 

(2) If 𝑠𝑠 = 1 or 𝑚𝑚 < 4𝑠𝑠, then 𝐿𝐿 = 5.  

2.5 AR(𝑳𝑳) Model 

Out of the 𝑛𝑛 series in the data, some series may be used as predictors only, so no TCM models are built for them. 
However, if they are selected as predictors for some target series, then simple models need to be built for them in order 
to do forecasting. For example, suppose that time series 1 is a selected predictor for time series 2, but there is no model 
built for time series 1. While a model for time series 1 is not needed in order to forecast time series 2 at time (𝑡𝑡 + 1) 
(where 𝑡𝑡 is the latest time in the data), forecasts for time (t + 2) require values of time series 1 for time (𝑡𝑡 + 1), which 
then requires a model for time series 1.  

Hence, for each predictor-only series, a simple auto-regressive (AR) model is built using the same lag, 𝐿𝐿, as used for  
the target series. This model, called an AR(𝐿𝐿) model, can be constructed using Algorithm 1 by specifying 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0  to be the 
target itself and setting the maximum number of predictors to be 1. 



2.6 Post-estimation steps 

Algorithm 1 selects the best predictors (time series) to model a target series 𝒚𝒚. Without loss of generality, we assume 
that the model for 𝒚𝒚 is 𝒚𝒚 = 𝒚𝒚� + 𝑿𝑿𝐺𝐺∗ 𝜷𝜷�∗ + 𝒓𝒓 = 𝒚𝒚� + 𝒓𝒓, where 𝑿𝑿𝐺𝐺∗  is the selected predictor series matrix with the lagged 
terms on the transformed scale, 𝜷𝜷�∗ is the estimated standardized coefficient vector, and 𝒓𝒓 = 𝒚𝒚 − 𝒚𝒚�  is the residual 
vector.  

However, this is not the end of modeling. Several post processing steps are needed in order to complete the modeling 
process for 𝒚𝒚. The steps include three parts: (1) coefficients and statistics inference; (2) tests of model effects; (3) 
model quality measures.  

2.6.1 Coefficients and statistical inference 

The results of Algorithm 1 include 𝜷𝜷�∗ and (𝑿𝑿∗T𝑿𝑿∗)− (by solving the linear system from Cholesky decomposition), 
where superscript T means the transpose of a matrix or vector, and (𝒛𝒛)− is a generalized inverse of the 𝒛𝒛 matrix. Based 
on these quantities, the first step is to compute coefficient estimates, their standard errors, and statistical inference on 
the original scale.  

Table 2: Additional notation 

Notation Description 

𝐾𝐾 Actual number of predictors selected (including target itself) for 𝒚𝒚, i.e., 𝐾𝐾 = |𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙|.  

𝑝𝑝 Number of coefficient estimates in 𝜷𝜷�∗, i.e., 𝑝𝑝 = 𝐾𝐾×𝐿𝐿 

𝒑𝒑𝑐𝑐 Number of non-redundant coefficient estimates in 𝜷𝜷�∗, 𝒑𝒑𝒄𝒄 ≤ 𝑝𝑝 

𝑿𝑿𝐺𝐺∗  

Selected predictor series matrix with lagged terms on the transformed scale. This is an 
(𝑚𝑚 − 𝐿𝐿)×𝑝𝑝 matrix as 𝑿𝑿𝐺𝐺∗ = �𝑿𝑿𝐺𝐺1

∗ , … ,𝑿𝑿𝐺𝐺𝐾𝐾
∗ � with 𝑿𝑿𝐺𝐺𝑗𝑗

∗ = 𝐺𝐺(𝑿𝑿∗, 𝑗𝑗, 𝐿𝐿) = �𝑿𝑿𝐺𝐺𝑗𝑗1
∗ , … ,𝑿𝑿𝐺𝐺𝑗𝑗𝐿𝐿

∗ � (an 
(𝑚𝑚 − 𝐿𝐿)×𝐿𝐿 matrix). 

𝑿𝑿𝐺𝐺  
Selected predictor series matrix on the original scale. This is an (𝑚𝑚 − 𝐿𝐿)×(𝑝𝑝 + 1) matrix 
as 𝑿𝑿𝐺𝐺 = �𝟏𝟏,𝑿𝑿𝐺𝐺1 , … ,𝑿𝑿𝐺𝐺𝐾𝐾� = �𝟏𝟏,𝑿𝑿𝐺𝐺11 , … ,𝑿𝑿𝐺𝐺1𝐿𝐿 ,⋯ ,𝑿𝑿𝐺𝐺𝐾𝐾1 , … ,𝑿𝑿𝐺𝐺𝐾𝐾𝐿𝐿�,  where 𝟏𝟏 is a column 
vector of 1’s corresponding to an intercept. 

𝜷𝜷� 
Unstandardized coefficient estimates vector (corresponding to 𝑿𝑿𝐺𝐺), which is a (𝑝𝑝 + 1)×1 
vector. The first element, �̂�𝛽0, is the intercept estimate. 

𝜎𝜎�2 Estimated variance of the model based on residuals. 

𝜮𝜮∗ 
Covariance matrix of standardized coefficient estimates on the transformed scale, i.e., 
𝜮𝜮∗ = 𝜎𝜎�2(𝑿𝑿𝐺𝐺∗T𝑿𝑿𝐺𝐺∗ )−. The 𝑗𝑗th diagonal element is σ�𝛽𝛽�𝑗𝑗∗

2  and its square root, σ�𝛽𝛽�𝑗𝑗∗, is the 

standard error of the 𝑗𝑗th standardized coefficent estimate. 

𝜮𝜮 
Covariance matrix of unstandardized coefficient estimates on the original scale. The 𝑗𝑗th 
diagonal element is σ�𝛽𝛽�𝑗𝑗

2  and its square root, σ�𝛽𝛽�𝑗𝑗, is the standard error of the 𝑗𝑗th 
unstandardized coefficent estimate. 

𝐌𝐌 Centering vector of 𝑿𝑿, i.e., 𝐌𝐌 = �M1, … , M𝑝𝑝�
T
, where M𝑗𝑗 = 𝑀𝑀�𝑿𝑿𝑗𝑗� is the mean of 𝑿𝑿𝑗𝑗. 

𝐒𝐒 
Scaling matrix of 𝑿𝑿, i.e., 𝐒𝐒 = diag�S1, … , S𝑝𝑝�, where S𝑗𝑗 = 𝑆𝑆�𝑿𝑿𝑗𝑗� is the standard deviation 
of 𝑿𝑿𝑗𝑗. 

𝑨𝑨 Transformation matrix of 𝑿𝑿 to 𝑿𝑿∗, i.e., 𝑨𝑨 = �−𝐌𝐌
T𝐒𝐒−1
𝐒𝐒−1

�, which is a (𝑝𝑝 + 1)×𝑝𝑝 vector. 

Note that 𝑿𝑿𝐺𝐺∗ = 𝑿𝑿𝐺𝐺𝑨𝑨. 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDQQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FWithout_loss_of_generality&ei=Xm5qU6W-O8SZyAT-sIHoCA&usg=AFQjCNHMzQT8qYnVk6kEv6pO03hPrLZliQ&sig2=eNA7O9dKOI53vqHQqWUE8w
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDQQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FWithout_loss_of_generality&ei=Xm5qU6W-O8SZyAT-sIHoCA&usg=AFQjCNHMzQT8qYnVk6kEv6pO03hPrLZliQ&sig2=eNA7O9dKOI53vqHQqWUE8w


The relationship between 𝜷𝜷� and 𝜷𝜷�∗ is  𝜷𝜷� = 𝑨𝑨𝜷𝜷�∗ + [𝑦𝑦�, 0, … ,0]T and the relationship between 𝜮𝜮 and 𝜮𝜮∗ is 𝜮𝜮 = 𝑨𝑨𝜮𝜮∗𝑨𝑨T. 
The relevant statistics are computed as follows: 

• Unstandardized coefficient estimates  

�̂�𝛽𝑗𝑗 = S𝑗𝑗−1�̂�𝛽𝑗𝑗∗,     𝑗𝑗 = 1, … , 𝑝𝑝       (3) 

�̂�𝛽0 = 𝒚𝒚� − 𝐌𝐌T𝐒𝐒−1𝜷𝜷�∗       (4)   

• Standard errors of unstandardized coefficient estimates   

σ�𝛽𝛽�𝑗𝑗 =
σ�𝛽𝛽�𝑗𝑗

∗

S𝑗𝑗
,     𝑗𝑗 = 1, … , 𝑝𝑝      (5) 

σ�𝛽𝛽�0 = 𝑠𝑠𝑞𝑞𝑟𝑟𝑡𝑡

⎝

⎛�M1
S1

, … ,M𝑖𝑖

S𝑖𝑖
� 𝜮𝜮∗

⎣
⎢
⎢
⎡
M1
S1
⋮
M𝑖𝑖

S𝑖𝑖 ⎦
⎥
⎥
⎤

⎠

⎞     (6) 

where 𝜮𝜮∗ = 𝜎𝜎�2(𝑿𝑿𝐺𝐺∗T𝑿𝑿𝐺𝐺∗ )− and 𝜎𝜎�2 = 𝑆𝑆𝑆𝑆𝑒𝑒 𝑚𝑚𝑓𝑓𝑒𝑒⁄  with 𝑆𝑆𝑆𝑆𝑒𝑒 = ‖𝒚𝒚 − 𝒚𝒚�‖22 = ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑖𝑖=(𝑚𝑚−𝐿𝐿)
𝑖𝑖=1   and  𝑚𝑚𝑓𝑓𝑒𝑒 = 𝑚𝑚 −

𝐿𝐿 − 𝑝𝑝𝑐𝑐 − 1. 

• t-statistics for coefficient estimates 

𝑡𝑡𝑗𝑗 = 𝛽𝛽�𝑗𝑗
σ�𝛽𝛽�𝑗𝑗

,     𝑗𝑗 = 0, 1, … 𝑝𝑝,      (7) 

which follows an asymptotic t distribution with 𝑚𝑚𝑓𝑓𝑒𝑒degrees of freedom. Then the p-value is computed as  

𝑝𝑝𝑖𝑖𝑗𝑗 = 2× �1 − 𝑝𝑝𝑟𝑟𝑏𝑏𝑏𝑏�𝑡𝑡𝑑𝑑𝑐𝑐𝑒𝑒 ≤ �𝑡𝑡𝑗𝑗���     (8) 

• 𝟏𝟏𝟎𝟎𝟎𝟎(𝟏𝟏 − 𝜶𝜶)% confidence internals 

�̂�𝛽𝑗𝑗 ± σ�𝛽𝛽�𝑗𝑗×𝑡𝑡α 2⁄ ,𝑑𝑑𝑐𝑐𝑒𝑒        (9) 

where 𝛼𝛼 is the significance level and 𝑡𝑡α 2⁄ ,𝑑𝑑𝑐𝑐𝑒𝑒  is the  100(1 − 𝛼𝛼 2⁄ )th percentile of the 𝑡𝑡 distribution with 
𝑚𝑚𝑓𝑓𝑒𝑒  degrees of  freedom. 

2.6.2 Tests of model effects 

For each selected predictor series for 𝒚𝒚, there are 𝐿𝐿 lagged columns associated with it. The columns can be grouped 
together, considered as an effect, and tested with a null hypothesis of zero for all coefficients. This is similar to the test 
of a categorical effect with all dummy variables in a (generalized) linear model setting. Only type III tests are 
conducted here. For each selected predictor series 𝑿𝑿𝐺𝐺,𝑖𝑖, the type III test matrix 𝑳𝑳𝑖𝑖 is constructed and 𝐻𝐻0 ∶ 𝑳𝑳𝑖𝑖𝜷𝜷 = 𝟎𝟎 is 
tested based on an F-statistic. 

 

 

 



• F-statistics for effects 

𝐹𝐹𝑖𝑖 =  𝜷𝜷�T𝑳𝑳𝑖𝑖
T�𝑳𝑳𝑖𝑖𝜮𝜮𝑳𝑳𝑖𝑖

T�
−1
𝑳𝑳𝑖𝑖𝜷𝜷�

𝑟𝑟𝑖𝑖
       (10) 

where 𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑚𝑚𝑛𝑛𝑘𝑘�𝑳𝑳𝑖𝑖𝜮𝜮𝑳𝑳𝑖𝑖T�. The statistic follows an approximate F distribution with the numerator degrees of 
freedom 𝑟𝑟𝑖𝑖 and the denominator degrees of freedom 𝑚𝑚𝑓𝑓𝑒𝑒. Then the p-value is computed as follows: 

𝑝𝑝𝐸𝐸𝑖𝑖 = 1 − 𝑝𝑝𝑟𝑟𝑏𝑏𝑏𝑏�𝐹𝐹𝑟𝑟𝑖𝑖,𝑑𝑑𝑐𝑐𝑒𝑒 ≤ |𝐹𝐹𝑖𝑖|�     (11) 

2.6.3 Model quality measures 

In addition to statistical inferences, the goodness of the model can be evaluated. The following model quality measures 
are provided:  

• Root Mean Squared Error (RMSE) 

𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 = √𝑀𝑀𝑆𝑆𝑀𝑀 = �𝑆𝑆𝑆𝑆𝑒𝑒
𝑑𝑑𝑐𝑐𝑒𝑒

        (12) 

Note that 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 = 𝜎𝜎�.  

• Root Mean Squared Percentage Error (RMSPE) 

𝑅𝑅𝑀𝑀𝑆𝑆𝑃𝑃𝑀𝑀 = √𝑀𝑀𝑆𝑆𝑃𝑃𝑀𝑀 = �∑ �𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖𝑦𝑦𝑖𝑖
�
2

𝑚𝑚
𝑖𝑖=𝐿𝐿+1

(𝑚𝑚−𝐿𝐿)     (13) 

• R squared  

𝑹𝑹𝟐𝟐 = 𝟏𝟏 − ∑ (𝒚𝒚𝒕𝒕−𝒚𝒚�𝒕𝒕)𝟐𝟐
𝒕𝒕=(𝒎𝒎−𝑳𝑳)
𝒕𝒕=𝟏𝟏
∑ (𝒚𝒚𝒕𝒕−𝒚𝒚�)𝟐𝟐𝒕𝒕=(𝒎𝒎−𝑳𝑳)
𝒕𝒕=𝟏𝟏

= 𝟏𝟏 − 𝑺𝑺𝑺𝑺𝒆𝒆
𝑺𝑺𝑺𝑺𝒕𝒕

    

 (14) 

• Bayesian Information Criterion (BIC) 

𝑩𝑩𝑰𝑰𝑪𝑪 = (𝒎𝒎− 𝑳𝑳)𝒍𝒍𝒍𝒍 � 𝑺𝑺𝑺𝑺𝒆𝒆
(𝒎𝒎−𝑳𝑳)

� + �(𝒑𝒑𝒄𝒄 + 𝟏𝟏)𝒍𝒍𝒍𝒍(𝒎𝒎− 𝑳𝑳)�  (15) 

• Akaike Information Criterion (AIC) 

𝑨𝑨𝑰𝑰𝑪𝑪 = (𝒎𝒎− 𝑳𝑳)𝒍𝒍𝒍𝒍 � 𝑺𝑺𝑺𝑺𝒆𝒆
(𝒎𝒎−𝑳𝑳)

� + 𝟐𝟐(𝒑𝒑𝒄𝒄 + 𝟏𝟏)  (15’) 

 



 

3. Scoring 
Once the models  (𝜷𝜷� , 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠)  for all the required targets (𝒚𝒚) are built and post-estimation statistics are computed, 
the next task is to use these models to do scoring. There are two types of scoring: (1) fit: in-sample prediction 
for the past and current values of the target series; (2) forecast: out-of-sample prediction for future values of 
the target series.  

3.1 Fit 

Without loss of generality, we assume 𝑿𝑿 and 𝑿𝑿𝐺𝐺  are the selected predictor series matrices without lagged terms and 
with lagged terms, respectively; and 𝜷𝜷�  is the coefficient estimates vector for the target 𝒚𝒚, so 𝑿𝑿 = [𝑿𝑿1, … ,𝑿𝑿𝐾𝐾], 

𝑿𝑿𝐺𝐺 = �𝟏𝟏,𝑿𝑿𝐺𝐺11 , … ,𝑿𝑿𝐺𝐺1𝐿𝐿 ,⋯ ,𝑿𝑿𝐺𝐺𝐾𝐾1 , … ,𝑿𝑿𝐺𝐺𝐾𝐾𝐿𝐿� and  𝜷𝜷� = ��̂�𝛽0, �̂�𝛽11, … , �̂�𝛽1𝐿𝐿 ,⋯ , �̂�𝛽𝐾𝐾1, … , �̂�𝛽𝐾𝐾𝐿𝐿�
T
. Given that all series have 

𝑚𝑚 time points, in-sample prediction of 𝒚𝒚 is one-step ahead prediction and can be written as 

  𝑦𝑦�𝑡𝑡 = 𝑿𝑿𝐺𝐺,𝑡𝑡𝜷𝜷� = �̂�𝛽0 + ∑ ∑ �̂�𝛽𝑗𝑗,ℓ
𝐿𝐿
ℓ=1𝑗𝑗∈𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑋𝑋𝐺𝐺𝑗𝑗ℓ,𝑡𝑡     (16) 

 = �̂�𝛽0 + ∑ ∑ �̂�𝛽𝑗𝑗,ℓ
𝐿𝐿
ℓ=1𝑗𝑗∈𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑋𝑋𝑗𝑗,𝑡𝑡−ℓ;    𝑡𝑡 = 𝐿𝐿 + 1, … ,𝑚𝑚.     (17) 

The corresponding 100(1 − 𝛼𝛼)% confidence interval of 𝒚𝒚 is  

�𝑦𝑦�𝑡𝑡 − 𝑡𝑡α 2⁄ ,𝑑𝑑𝑑𝑑𝑠𝑠×σ�, 𝑦𝑦�𝑡𝑡 − 𝑡𝑡α 2⁄ ,𝑑𝑑𝑑𝑑𝑠𝑠× σ�� ;   𝑡𝑡 = 𝐿𝐿 + 1, … ,𝑚𝑚.   (18) 

3.2 Forecast 

Given that data is available up to time interval 𝑚𝑚, the one-step ahead forecast for 𝒚𝒚 is   

𝑦𝑦�𝑚𝑚(1) = �̂�𝛽0 + ∑ ∑ �̂�𝛽𝑗𝑗,ℓ
𝐿𝐿
ℓ=1𝑗𝑗∈𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑋𝑋𝑗𝑗,𝑚𝑚+1−ℓ        (19) 

The ℎ-step ahead forecast for 𝒚𝒚 is  

𝑦𝑦�𝑚𝑚(ℎ) = �̂�𝛽0 + ∑ ∑ �̂�𝛽𝑗𝑗,ℓ
𝐿𝐿
ℓ=1𝑗𝑗∈𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑋𝑋�𝑗𝑗,𝑚𝑚+ℎ−ℓ        (20) 

where  

𝑋𝑋�𝑗𝑗,𝑚𝑚+ℎ−ℓ = �
𝑋𝑋𝑗𝑗,𝑚𝑚+ℎ−ℓ,              ℎ ≤ ℓ
𝑋𝑋�𝑗𝑗,𝑚𝑚(ℎ − ℓ), ℎ > ℓ 

Thus, forecasting the value of 𝑦𝑦𝑚𝑚+2 requires us to first forecast the values of all the predictors up to 
time (𝑚𝑚 + 1). Forecasting the values of all the predictors up to time (𝑚𝑚 + 1) requires us to use Equation (19) 
on all the predictors   𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠. Similarly, to predict the value of 𝑦𝑦𝑚𝑚+3, we need to forecast the values of 
predictors 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 at time (𝑚𝑚 + 2) by using Equation (20). This task poses a bigger problem; to forecast the 
values of 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 at time (𝑚𝑚 + 2), we first need to forecast the values of the predictors of 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 at 
time (𝑚𝑚 + 1). That is, as we increasingly look into the future, we need to forecast more and more values to 
determine the value of 𝑦𝑦𝑚𝑚+ℎ.         



 

3.3 Approximated forecasting variances and intervals 

In this subsection, we outline how forecasting variances and intervals can be computed for TCM models. We 
start by using the following representation for the linear model built by TCM for target 𝑦𝑦𝑚𝑚+ℎ: 

𝑦𝑦𝑚𝑚+ℎ = �̂�𝛽0 + ∑ ∑ �̂�𝛽𝑗𝑗,ℓ
𝐿𝐿
ℓ=1𝑗𝑗∈𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑋𝑋𝑗𝑗,𝑚𝑚+ℎ−ℓ + 𝜀𝜀𝑚𝑚+ℎ        (21) 

where 𝜀𝜀𝑚𝑚+ℎ ~ 𝑁𝑁(0,𝜎𝜎2) and 𝜎𝜎2 is estimated as 𝜎𝜎�2 (computed in Section 2.6.1). Please note that we don’t 
include parameter estimation error when defining forecasting error in TCM.  

The forecasting error at 𝑚𝑚 + 1  is defined as the difference between 𝑦𝑦𝑚𝑚+1 and 𝑦𝑦�𝑚𝑚(1), which can be written as 

𝑠𝑠𝑦𝑦,𝑚𝑚(1) = 𝑦𝑦𝑚𝑚+1 − 𝑦𝑦�𝑚𝑚(1) = 𝜀𝜀𝑚𝑚+1      (22) 

The forecasting variance for one-step ahead forecasts is computed as 𝜎𝜎�2. For multi-step ahead forecasts, the 
forecasting error at 𝑚𝑚 + ℎ is  

𝑠𝑠𝑦𝑦,𝑚𝑚(ℎ) = 𝑦𝑦𝑚𝑚+ℎ − 𝑦𝑦�𝑚𝑚(ℎ) = ∑ ∑ �̂�𝛽𝑗𝑗,ℓ
𝐿𝐿
ℓ=1𝑗𝑗∈𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚(ℎ − ℓ) + 𝜀𝜀𝑚𝑚+ℎ  (23) 

where 𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚(ℎ − ℓ) = 𝑋𝑋𝑗𝑗,𝑚𝑚+ℎ−ℓ − 𝑋𝑋�𝑗𝑗,𝑚𝑚(ℎ − ℓ) and 𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚(ℎ − ℓ) = 0  if ℎ ≤ ℓ. 

In general, 𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚(1),⋯ , 𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚(ℎ − ℓ) are not independent of each other. The larger the ℎ is, the more 
complex the dependence is. In addition, 𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚(ℎ − ℓ) and 𝑠𝑠𝑋𝑋𝑖𝑖,𝑚𝑚(ℎ − ℓ) might not be independent for 𝑗𝑗, 𝑖𝑖 ∈
𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 . In order to fully consider the dependence, we need to write all time series in vector autoregressive (VAR) 
format. Since we assume the number of series 𝑛𝑛 is usually large, the parameter matrix, which is an 𝑛𝑛×𝑛𝑛 
matrix, might be too large to handle in computation of the forecasting variances. Therefore, we make the 
assumption that all forecasting error terms in Equation (23), 𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚(ℎ − ℓ), 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 , ℓ = 1, … ,𝐿𝐿, are 
independent, so it is easier to compute the forecasting variances. 

Based on the above independence assumption, the approximated variance of the forecasting error, 𝑠𝑠𝑦𝑦,𝑚𝑚(ℎ), is 

𝜎𝜎�𝑠𝑠𝑦𝑦,𝑚𝑚,ℎ
2 = ∑ ∑ �̂�𝛽𝑗𝑗,ℓ

2 𝜎𝜎�𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚,ℎ−ℓ
2𝐿𝐿

ℓ=1𝑗𝑗∈𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜎𝜎�2     (24) 

where 𝜎𝜎�𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚,ℎ−ℓ
2   is the variance of the forecasting error in the series 𝑋𝑋𝑗𝑗 at 𝑚𝑚 + ℎ − ℓ.  

Then the corresponding 100(1 − 𝛼𝛼)%  approximated forecasting interval of 𝑦𝑦𝑚𝑚+ℎ can be expressed as 

�𝑦𝑦�𝑚𝑚(ℎ) − 𝑡𝑡α 2⁄ ,𝑑𝑑𝑑𝑑𝑠𝑠×𝜎𝜎�𝑠𝑠𝑦𝑦,𝑚𝑚,ℎ ,𝑦𝑦�𝑚𝑚(ℎ) + 𝑡𝑡α 2⁄ ,𝑑𝑑𝑑𝑑𝑠𝑠×𝜎𝜎�𝑠𝑠𝑦𝑦,𝑚𝑚,ℎ�   (25) 

4. Scenario analysis 
Scenario analysis refers to a capability of TCM to “play-out” the repercussions of artificially setting the value 
of a time series. A scenario is the set of forecasts that are generated by substituting the values of a root time 
series by a vector of substitute values, as illustrated in Figure 1. 

 

 



 

Figure 1: Causal graph of a root time series and the specification of the vector of substitute values  

 
During scenario analysis, we specify the targets that we want to analyze as a response to changes in the values 
of the root series (“a” in Figure 1), along with the time window. In Figure 1, we are interested in the behavior 
of time series “c”, “d”, “g”, “h”, and “j” only. The rest of the time series are ignored. The figure also depicts 
the vector 𝐚𝐚𝑾𝑾 of values for “a” that should be used instead of the observed or predicted values of “a”. The 
values (𝒕𝒕𝒃𝒃, 𝒕𝒕𝒆𝒆,𝑻𝑻,𝑻𝑻𝒔𝒔) specify the beginning and end of the replacement values for the root series, the current 
time, and the farthest time for analysis, respectively.   

The partial Granger causal graph of time series “a” is shown in Figure 1. That is, “a” is the parent of itself, 
“b”, “c”, and “d”. Similarly, it is the grand-parent of “e”, “f”, “g”, “h”, “i”, and “j”. Further descendents are 
possible, but only two generations suffice for the sake of explanation. Figure 1 also displays the specification 
of the vector 𝐚𝐚𝑊𝑊, of length 𝑊𝑊, that contains the replacement values of the root series. In the example shown 
in the figure, 𝐚𝐚𝑊𝑊 starts at time 𝑡𝑡𝑏𝑏 < 𝑇𝑇, where 𝑇𝑇 is the current time, and ends at 𝑡𝑡𝑠𝑠 > 𝑇𝑇, which is in the future. 
We are also given 𝑇𝑇𝑠𝑠, the last time point (𝑡𝑡𝑠𝑠 ≤ 𝑇𝑇𝑠𝑠) for which we want to perform scenario analysis on the 
target variables. Finally, we are given a set of time series for which the scenario predictions are carried out.  
In the figure, these are “c”, “d”, “g”, “h”, and “j”, which are marked with a thick red border. Since “b” is 
required to model “g”, “b” is marked with a thick blue border to signify that it is an induced target. Given this 
information, the goal of scenario analysis is to forecast the values of the target time series (“c”, “d”, “g”, “h”, 
and “j”) up to time 𝑇𝑇𝑠𝑠, based on the values of the root time series 𝐚𝐚𝑊𝑊.    

Notice that we have to predict values of targets up to time 𝑇𝑇𝑠𝑠, where 𝑇𝑇𝑠𝑠 can be > (𝑇𝑇 + 1) or ≤ (𝑇𝑇 + 1). When 
𝑇𝑇𝑠𝑠 = (𝑇𝑇 + 2), we need to compute the values of the predictors of the target time series at time (𝑇𝑇 + 1). 
Similarly, when 𝑇𝑇𝑠𝑠 = (𝑇𝑇 + 3), we need to compute the values of the predictors’ predictors at time (𝑇𝑇 + 1) 
and the values of the predictors at time (𝑇𝑇 + 2) before predicting the values of the target time series at time 
(𝑇𝑇 + 3).  

Figure 2: Scenarios with and without predicting future values 



 

 

The left-hand panel in Figure 2 depicts a scenario where the values of ancestors of targets of interest also 
have to be predicted. In this particular case, 𝑻𝑻𝒔𝒔 = (𝑻𝑻 + 𝟑𝟑) and therefore it is necessary to predict the values of 
the predictors of the targets at (𝑻𝑻 + 𝟏𝟏) and (𝑻𝑻 + 𝟐𝟐), and values of the predictors’ predictors at time (𝑻𝑻 + 𝟏𝟏). 
The right-hand panel depicts a scenario where the entire period of prediction is earlier than the current time 𝑻𝑻 
(i.e.,   𝑻𝑻𝒔𝒔 < 𝑻𝑻). In this case, all the values of the predictors and their ancestors are readily available.     

Determining 𝐚𝐚𝑾𝑾 

In the discussion above, we have neglected the issue of 𝐚𝐚𝑊𝑊, the substitute values for time series “a”, which is 
the root time series. For purposes of scenario analysis, it is sufficient to consider that 𝐚𝐚𝑊𝑊 is readily available. 
In a typical use case for scenario analysis, 𝐚𝐚𝑊𝑊 will come from the values specified by the user’s direct input, 
although its values could also come as input from a calling meta-process (as is the case with the use of 
scenario analysis as a sub-procedure in root cause analysis, as shown in Section 6).  

Caveat on scenario analysis 

It is possible to carry out scenario analysis for a time period that is entirely in the future; that is 𝑡𝑡𝑏𝑏 > 𝑇𝑇. 
However, forecasting errors in the remaining predictors may make such scenario analysis inherently low-
precision. That is, if 𝜃𝜃 = 𝑡𝑡𝑏𝑏 − 𝑇𝑇 and 𝑡𝑡𝑏𝑏 > 𝑇𝑇, then the precision of scenario analysis decreases with an 
increase in 𝜃𝜃.  

4.1 SA, the scenario analysis algorithm 

Input: 

The inputs to SA are: (1) 𝒓𝒓: the root time series; (2) 𝒓𝒓𝑊𝑊: the vector of replacement values for time series 𝒓𝒓; (3) 
(𝑡𝑡𝑏𝑏 , 𝑡𝑡𝑠𝑠 ,𝑇𝑇,𝑇𝑇𝑠𝑠): the beginning and end time for the modified values of 𝒓𝒓, the current time, and the last time 
point for which target values need to be predicted, respectively; (4) 𝐷𝐷: a set of descendant target time series of 
interest along with their relation to 𝒓𝒓 (which may be input as the Granger causal graph, 𝐺𝐺). Notice that the 
length of 𝒓𝒓𝑊𝑊 is 𝑡𝑡𝑠𝑠 − 𝑡𝑡𝑏𝑏 + 1 and 𝑡𝑡𝑠𝑠 ≤  𝑇𝑇𝑠𝑠. Furthermore, it is erroneous to have a target 𝒅𝒅 ∈ 𝐷𝐷, where 𝒓𝒓 is not 
an ancestor of 𝒅𝒅.  

Output: 

For each 𝒅𝒅 in 𝐷𝐷, we output a vector 𝒅𝒅𝑠𝑠𝑠𝑠  containing values that pertain to the scenario analysis of these time 
series and the corresponding confidence intervals (when 𝑇𝑇𝑠𝑠 ≤ 𝑇𝑇) or apprxomiated forecasting intervals (when 
𝑇𝑇𝑠𝑠 > 𝑇𝑇). Please note that the time period for the children series in 𝐷𝐷 is [𝑡𝑡𝑏𝑏 + 1,𝑇𝑇𝑠𝑠], for the grand-children 
series is [𝑡𝑡𝑏𝑏 + 2,𝑇𝑇𝑠𝑠], etc. 



 

Preparation: 

To prepare for SA, we first calculate the closure on the set of targets 𝐷𝐷∗ that need to be predicted, which is 
determined by the relationship between 𝒓𝒓 and each of the targets in 𝐷𝐷. Essentially, 𝐷𝐷∗ is computed by 
iteratively looking at the path from each 𝒅𝒅 ∈ 𝐷𝐷 and adding all those intermediate nodes that are ancestors of 
𝒅𝒅 and are also descendents of 𝒓𝒓. In the example shown in Figure 1, the time series “b” is itself not of primary 
interest, but since it is a parent of “g”, which is of interest, “b” is also added as a target of interest to the set 
{“c”, “d”, “g”, “h”, “j”}.  

Next, we compute 𝑀𝑀, the set of models that need to be included in order to perform scenario analysis on 𝐷𝐷∗. 
Obviously, 𝑀𝑀 contains the models for each of the series in 𝐷𝐷∗, i.e., 𝐷𝐷∗ ⊂ 𝑀𝑀; however, depending on the time 
span of the scenario analysis, additional models of some time series might have to be brought in (see 
Figure 2). Basically, depending on how far ahead 𝑇𝑇𝑠𝑠 is from 𝑇𝑇, we may need to compute the values of the 
ancestors (other than 𝒓𝒓) of the targets of interest at time points (𝑇𝑇 + 1), … , (𝑇𝑇𝑠𝑠 − 1). That is, the set {𝑀𝑀 −𝐷𝐷∗} 
(which may be ∅) contains all series that are needed for scenario analysis and are not descendants of  𝒓𝒓. 

At the end of the preparation phase we have 𝐷𝐷∗ and 𝑀𝑀, which allows us to predict all the time series of 
interest.  

Computation: 

The computation in scenario analysis is exactly that of scoring the values of a set of time series (see Section 
3). For each target in 𝐷𝐷∗, we have a range of time points for which we need to fit/forecast values. For example, 
for immediate children of the root (“c”, “d”, and the induced child “b” in Figure 1), this range is [𝑡𝑡𝑏𝑏 + 1,𝑇𝑇𝑠𝑠]. 
Similarly, for grand-children (“g”, “h”, and “j” in Figure 1), this range is [𝑡𝑡𝑏𝑏 + 2,𝑇𝑇𝑠𝑠]. Using the models in 𝑀𝑀 
and substituted values 𝒓𝒓𝑊𝑊 for 𝒓𝒓, this task can be carried out.  

5. Outlier detection 
One of the advantages of building TCM models is the ability to detect model-based outliers. Outliers can be 
defined in several ways. For now, we shall define an outlier in a time series to be a value that strays too far 
from its expected (fitted) value based on the TCM models. The detection process is based on the normal 
distribution assumption for series 𝒚𝒚. Consider the value of a time series 𝒚𝒚 at time 𝑡𝑡. Let 𝑦𝑦𝑡𝑡  and 𝑦𝑦�𝑡𝑡 be the 
observed and expected values of 𝒚𝒚 at time 𝑡𝑡, respectively; and 𝜎𝜎�2 be the variance of 𝒚𝒚 from the TCM model 
(based on residuals). Given these inputs, we call 𝑦𝑦𝑡𝑡  an outlier if the likelihood of 𝑦𝑦𝑡𝑡  when modeled as a 
normal random variable with mean 𝑦𝑦�𝑡𝑡 and variance 𝜎𝜎�2 is below a particular threshold.  

Input: 

The inputs to OD (outlier detection) are: (1) 𝑦𝑦𝑡𝑡 ,∀ 𝑡𝑡; (2) 𝑦𝑦�𝑡𝑡 ,∀ 𝑡𝑡; (3) 𝜎𝜎�2; (4) the outlier threshold value 𝜅𝜅 ∈
(0,1] (the default is 0.95).  

Computation: 

a) Under the assumption that the observed value 𝑦𝑦𝑡𝑡 is a normal random variable with mean 𝑦𝑦�𝑡𝑡  and 
variance 𝜎𝜎�2, compute the square score at time 𝑡𝑡 as  

𝑠𝑠𝑠𝑠𝑞𝑞𝑞𝑞,𝑡𝑡 = (𝑦𝑦𝑡𝑡−𝑦𝑦�𝑡𝑡)2

𝜎𝜎�2
        (26) 

 



 

b) Compute the outlier probability as 

𝑝𝑝𝑠𝑠𝑞𝑞𝑞𝑞,𝑡𝑡 =  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝜒𝜒12 ≤ 𝑠𝑠𝑠𝑠𝑞𝑞𝑞𝑞,𝑡𝑡�      (27) 

where 𝜒𝜒12 is a random variable with a chi-squared distribution with 1 degree of freedom. 

c) Flag 𝑦𝑦𝑡𝑡  as an outlier if 𝑝𝑝𝑠𝑠𝑞𝑞𝑞𝑞,𝑡𝑡 ≥ 𝜅𝜅.   

Output: 

 
 
 
 
The output to OD for series 𝒚𝒚 is a set of time points with their corresponding outlier probabilities. 

6. Outlier root cause analysis  
In Section 5, we saw how to detect outliers. The next logical step is to find the likely causes for a time series 
whose value has been flagged as an outlier. Outlier root cause analysis refers to the capability to explore the 
Granger causal graph in order to analyse the key/root values that resulted in the outlier under question. To 
formalize this notion, consider a time series 𝒚𝒚, whose observed value at time 𝑡𝑡 (that is, 𝑦𝑦𝑡𝑡) has been flagged as 
an outlier due to its abnormal deviation from its expected value 𝑦𝑦�𝑡𝑡. The goal of outlier root cause analysis 
(ORCA) is to output the set of time series 𝒜𝒜 that can be considered as root causes of the anomalous value of 
𝑦𝑦𝑡𝑡 . The idea is that setting the values of time series in the predictor set 𝑿𝑿 to their normal/expected values, 
instead of their observed values, will bring the outlying 𝑦𝑦𝑡𝑡  back to normal. The normal value of 𝑦𝑦𝑡𝑡  is 
unknown so we specify it with the expected value of 𝒚𝒚 at time 𝑡𝑡 as predicted by 𝒚𝒚’s univariate model, which 
is an AR(L) model, and denoted as 𝑦𝑦�𝑡𝑡. 

The result of ORCA has the following objective function with a constraint as follows: 

 arg max𝑥𝑥∈𝒜𝒜𝑦𝑦 |𝑦𝑦�𝑡𝑡 − 𝑦𝑦�𝑡𝑡| − |𝑦𝑦�𝑡𝑡|𝑥𝑥=𝑥𝑥� − 𝑦𝑦�𝑡𝑡|  (28) 

 s. t. |𝑦𝑦�𝑡𝑡 − 𝑦𝑦�𝑡𝑡| ≥ |𝑦𝑦�𝑡𝑡|𝑥𝑥=𝑥𝑥� − 𝑦𝑦�𝑡𝑡|  

where 𝒜𝒜𝑦𝑦 corresponds to the set of ancestors of 𝒚𝒚 according to the Granger causal graph 𝐺𝐺. The quantity 
𝑦𝑦�𝑡𝑡|𝑥𝑥=𝑥𝑥� should be interpreted as the likely predicted value of 𝑦𝑦 at time 𝑡𝑡 had the value of its ancestor 𝑥𝑥 been set 
to its expected value of 𝑥𝑥�. We see that Equation (28) is made up of two parts: (1) the portion |𝑦𝑦�𝑡𝑡 − 𝑦𝑦�𝑡𝑡|, which 
is the degree of “outlier-ness” of 𝑦𝑦 at 𝑡𝑡 as predicted by the “Granger model”, where the outlier-ness is judged 
based on what is expected from the history of 𝒚𝒚; (2) the portion |𝑦𝑦�𝑡𝑡|𝑥𝑥=𝑥𝑥� − 𝑦𝑦�𝑡𝑡|, which is the degree of “outlier-
ness” of 𝑦𝑦 at 𝑡𝑡 as predicted by the “Granger model”, if 𝑥𝑥 was corrected. In other words, Equation (28) 
amounts to replacing the observed value 𝑦𝑦𝑡𝑡  by its “expected” value, given by a simpler, univariate model. 
Therefore Equation (28) expresses the reduction in the degree of outlier-ness in 𝑦𝑦𝑡𝑡  brought about by 
correcting 𝑥𝑥.  



 

6.1 ORCA, the outlier root cause analysis algorithm 

Input: 

The inputs to ORCA are: (1) 𝒚𝒚, the anomalous time series; (2) 𝑡𝑡, the time at which the anomaly was detected; 
(3) 𝑦𝑦𝑡𝑡 , the anomalous value; (4) 𝑦𝑦�𝑡𝑡, the expected value of 𝑦𝑦𝑡𝑡; (5) 𝑘𝑘, the oldest generation of ancestors to 
search based on the Granger causal graph, 𝐺𝐺. 

Output: 

ORCA outputs the set of root causes 𝒜𝒜 of the anomaly in 𝑦𝑦𝑡𝑡 , where each 𝒙𝒙 ∈ 𝒜𝒜 maximizes the objective 
function in Equation (28) by the same amount.  

Preparation: 

To prepare for ORCA, we first compute 𝒜𝒜𝑦𝑦, the set of ancestors that need to be examined as the potential root 
causes of the anomaly in 𝑦𝑦𝑡𝑡 .  

 

Figure 3:  Outlier root cause analysis for a time series 

 

In the example shown in Figure 3, assuming that 𝒚𝒚 =“a” and 𝑘𝑘 = 2, then 𝒜𝒜𝑦𝑦 = { “b”, “c”, “d”, “e”, “f”, “g”, 
“h”, “i”, “j”}. 𝒜𝒜𝑦𝑦 can be computed by performing a reverse breadth-first search from 𝒚𝒚 to 𝑘𝑘 levels. 

Second, each potential root cause 𝒙𝒙 ∈ 𝒜𝒜𝑦𝑦  is prepped for scenario analysis by computing the vector of 
substitute values of 𝒙𝒙 to be used during scenario analysis. Note that the length of this substitute vector is 𝐿𝐿, 
the lag. For example, consider 𝒃𝒃𝐿𝐿 , the substitute for time series “b” in Figure 3. As “b” is a parent of “a”, we 
need to compute the fits of “b” from (𝑡𝑡 − 𝐿𝐿) to (𝑡𝑡 − 1). On the other hand, as “g” is a grand-parent of “a”, 𝒈𝒈𝐿𝐿 
contains the fits for “g” from the time (𝑡𝑡 − 𝐿𝐿 − 1) to (𝑡𝑡 − 2) (see Section 3.1 for computation of fits). Please 
note that this approach assumes that any anomalies are purely in “b” (the parent series) or “g” (the 
grandparent series).  In particular, it is assumed that anomalies in “b” are not caused by values in the 
grandparent series, including anomalous values in the grandparent series.     

 



 

Third, for each potential root cause 𝒙𝒙 ∈ 𝒜𝒜𝑦𝑦 , scenario analysis is carried out (see Section 4) using the 
substitute values computed in the previous step. For the example in Figure 3, scenario analysis is called for 
series “b” with the parameters (𝒓𝒓 = 𝒃𝒃, 𝒓𝒓𝑊𝑊 = 𝒃𝒃𝐿𝐿 , 𝑡𝑡𝑏𝑏 = (𝑡𝑡 − 𝐿𝐿), 𝑡𝑡𝑠𝑠 = (𝑡𝑡 − 1),𝑇𝑇 = 𝑡𝑡,𝐷𝐷 = {𝒂𝒂},𝑇𝑇𝑠𝑠 = 𝑡𝑡). And the 
result of scenario analysis  is 𝑦𝑦�𝑡𝑡|𝑥𝑥=𝑥𝑥�.  

Computation: 

The process of ORCA is as follows: 

 

 

• Initiaize 𝒜𝒜, the set of potential root causes for 𝑦𝑦𝑡𝑡 , to ∅. 
Initialize 𝑝𝑝𝑝𝑝𝑗𝑗𝑚𝑚𝑠𝑠𝑥𝑥 , the maximum objective function value, to 0. 

• Suppose there are 𝐽𝐽 series in 𝒜𝒜𝑦𝑦, 𝒙𝒙1, … ,𝒙𝒙𝐽𝐽. 
For each 𝒙𝒙𝑗𝑗, 𝑗𝑗 ∈ 1, … , 𝐽𝐽, compute 𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 = |𝑦𝑦�𝑡𝑡 − 𝑦𝑦�𝑡𝑡| − |𝑦𝑦�𝑡𝑡|𝑥𝑥𝑗𝑗=𝑥𝑥�𝑗𝑗 − 𝑦𝑦�𝑡𝑡|.  
If 𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 ≥ 𝑝𝑝𝑝𝑝𝑗𝑗𝑚𝑚𝑠𝑠𝑥𝑥 , set 𝑝𝑝𝑝𝑝𝑗𝑗𝑚𝑚𝑠𝑠𝑥𝑥 = 𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 and store 𝒙𝒙𝑗𝑗 in 𝒜𝒜. 
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Tree-AS (CHAID) Modeling Algorithms 
 
1. Introduction 
CHAID stands for Chi-squared Automatic Interaction Detector. It is a highly efficient statistical 
technique for segmentation, or tree growing, developed by (Kass, 1980). Using the significance of a 
statistical test and effect size as criteria, CHAID evaluates all of the values of a potential predictor. 
It merges values that are judged to be statistically homogeneous (similar) with respect to the target 
variable and maintains all other values that are heterogeneous (dissimilar). It then selects the best 
predictor to form the first branch in the decision tree, such that each child node is made of a group 
of homogeneous values of the selected predictor. This process continues recursively until the tree is 
fully grown.  

Exhaustive CHAID is a modification of CHAID developed to address some of the weaknesses of 
the CHAID method (Biggs, de Ville, and Suen, 1991). In particular, sometimes CHAID may not find 
the optimal split for a variable, since it stops merging categories as soon as it finds that all 
remaining categories are statistically different. Exhaustive CHAID remedies this by continuing to 
merge categories of the predictor variable until only two super categories are left. It then examines 
the series of merges for the predictor and finds the set of categories that gives the strongest 
association with the target variable, and computes an adjusted p-value for that association. Thus, 
Exhaustive CHAID can find the best split for each predictor, and then choose which predictor to 
split on by comparing the adjusted p-values. 

Although CHAID or Exhaustive CHAID is efficient for data mining, there could be performance 
issues. For example, the collection of summary statistics required for the tree growth will be 
expensive when the raw data is distributed and massive. Moreover, the decision of splitting rules 
will also be heavy when the number of predictors becomes very large since conducting category 
merge for each predictor is not trivial. In these regard, parallel calculation is necessary in order to 
improve the performance. 

The document is concerned with CHAID and Exhaustive CHAID related algorithms. These 
algorithms will be implemented in parallel within Analytic Engine (AE), based on the map-reduce 
framework.  

Notice that the document provides technical details for engineers to develop the Tree engine. For a 
more readable document, please refer to the algorithm document in Statistics or Modeler.  

2. Notes 
1. To prepare training data, invalid, system missing, and user missing values in predictors 

will be considered as a single missing category.  
2. The Tree engine relies on the Descriptive engine through SmartModeler doing the 

following transformations: 
a. Zero inflation handling 

Zero inflated cases are imputed with missing values.  
b. Binning continuous variables 

The tiling method is used with 𝛿𝛿 (default 5) as the number of bins. 
c. Supervised category merging 

If the number of categories in a categorical variable is larger than 𝛿𝛿 (default 12),  
supervised category merging will be used.  
 
 
 



 

d. Feature selection 
If the number of predictors is larger than 𝛿𝛿 (default 500), feature selection will be 
applied. 

e. Trim trailing blanks 
f. Date/time handling 

Date/time variables are transformed into continuous ones with Jan 1st, 1970 as 
default reference data and 00:00:00 as default reference time. 
 

3. Notations 
The following notations are used throughout the document unless otherwise stated: 

𝑌𝑌 Dependent, or target, variable. If 𝑌𝑌 is categorical with 𝐽𝐽 categories, 
its category takes values in 𝐶𝐶 = {1, … , 𝐽𝐽} 

𝑋𝑋𝑚𝑚, 𝑚𝑚 = 1, … ,𝑀𝑀 Set of all predictor variables. If 𝑋𝑋𝑚𝑚 is categorical with 𝐼𝐼𝑚𝑚 categories, 
its category takes values in 𝐷𝐷 = {1, … , 𝐼𝐼𝑚𝑚} 

ℏ = �𝑥𝑥𝑚𝑚,𝑛𝑛, 𝑦𝑦𝑛𝑛�𝑛𝑛=1
𝑁𝑁  Whole training cases 

ℏ(𝑡𝑡) Training cases that fall in node 𝑡𝑡 
𝑤𝑤𝑛𝑛 Case weight associated with case 𝑛𝑛 

𝑓𝑓𝑛𝑛 Frequency weight associated with case 𝑛𝑛. Non-integral positive 
value is rounded to its nearest integer 

𝐶𝐶(𝑖𝑖|𝑗𝑗) Cost of miss-classifying a category 𝑗𝑗 case as a category 𝑖𝑖 case, 𝐶𝐶(𝑗𝑗|𝑗𝑗) 
Ι(𝑎𝑎 = 𝑝𝑝) Indicator function taking value 1 when 𝑎𝑎 = 𝑝𝑝, 0 otherwise 

4. Binning Continuous Predictors 
CHAID and Exhaustive CHAID algorithms only accept nominal or ordinal categorical predictors. 
When predictors are continuous, they are transformed into ordinal predictors before tree growth.  

For a given set of break points 𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝐼𝐼−1 (in ascending order), a given 𝑥𝑥 is mapped into category 
𝐶𝐶(𝑥𝑥) as follows: 

𝐶𝐶(𝑥𝑥) = �
1 𝑥𝑥 ≤ 𝑎𝑎1

𝑖𝑖 + 1 𝑎𝑎𝑖𝑖 < 𝑥𝑥 ≤ 𝑎𝑎𝑖𝑖+1, 𝑖𝑖 = 1, … , 𝐼𝐼 − 2
𝐼𝐼 𝑎𝑎𝐼𝐼−1 < 𝑥𝑥

 

For binning continuous predictors, we use the tiling method which has been implemented by the 
Descriptive engine. We use 5 as the default number of bins. For algorithm details, please refer to 
Ref. 3. 

The choice of the tiling method is based on some experimental results. Please refer to the document 
of ‘Comparison of binning methods’ in Ref. 6. 

5. CHAID Algorithm 
CHAID tree grows level-by-level from the root node. The general procedure is as follows: 

1. Create the root node, and mark it as the initial non-terminal leaf node. 
 
 
 
 



 

2. Repeat the following steps until no non-terminal leaf nodes exist in the current tree: 
a) Pass the training data, and collect summary statistics for each predictor and non-

terminal leaf node. 
b) Merging – For each predictor and non-terminal leaf node, merge predictor 

categories. 
c) Splitting – For each non-terminal leaf node, select the best predictor to be used to 

best split the node. If the best predictor is valid for splitting, split the node using 
this predictor. Else, mark it as a terminal leaf node. 

d) Stopping – For each node that was split in step c), check the child nodes to see 
which nodes should be marked as terminal leaf nodes.  

In the following, we will describe how each step in tree growth can be accomplished.  

5.1. Creating Root Node 

To grow a tree, the root node should be created in the first step.  

CreateRootNode() 
Inputs: 

− 𝑁𝑁𝑑𝑑                     // Count of valid training cases 
− 𝐼𝐼𝑚𝑚, 𝑚𝑚 = 1, … ,𝑀𝑀           // Number of categories of predictor 𝑋𝑋𝑚𝑚 
<Continuous target> 
− 𝑉𝑉𝑑𝑑(𝑌𝑌)                   // Variance of target variable 
<Categorical target> 
− 𝐽𝐽                       // Number of target categories 

 
   <Parameter settings> 

− MinParentCasesABS      // Default 100 
− NodeSizeRequirement    // {‘absolute’, ‘percentage’}, default ‘absolute’ 

Outputs: 
− 𝑇𝑇(0)                     // Initial tree 
− 𝑡𝑡                       // Root node 

Procedure: 
1. If (𝑁𝑁𝑑𝑑 = 0), 
   or(NodeSizeRequirement=’absolute’ and 𝑁𝑁𝑑𝑑 < MinParentCasesABS), 
   or((target is continuous)and(𝑉𝑉𝑑𝑑(𝑌𝑌) = 0)), 
   or((target is categorical)and(𝐽𝐽 = 1)), 
   or(𝐼𝐼𝑚𝑚 = 1,𝑚𝑚 = 1, … ,𝑀𝑀), 
      Return a null tree; 
2. Else,{ 
      Create root node 𝑡𝑡; 
      Create tree 𝑇𝑇(0) which has only the root node; 
   }  

5.2. Collecting Summary Statistics 

Summary statistics are collected for each predictor and non-terminal leaf node.  

According to the type of target variable, we compute different sets of summary statistics. If the 
target variable is categorical, summary statistics for a non-terminal leaf node 𝑡𝑡, predictor 𝑋𝑋𝑚𝑚 
(with 𝐼𝐼𝑚𝑚 categories), and categorical target 𝑌𝑌 (with 𝐽𝐽 categories), consist of the following statistics: 

 

 



 

Cell frequency: 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡> = ∑ 𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖 ∩ 𝑦𝑦𝑛𝑛 = 𝑗𝑗)𝑛𝑛∈ℏ(𝑡𝑡) ,  

Cell weighted frequency: 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡> = ∑ 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖 ∩ 𝑦𝑦𝑛𝑛 = 𝑗𝑗)𝑛𝑛∈ℏ(𝑡𝑡) , 

where 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 𝑗𝑗 = 1, … , 𝐽𝐽. 

If the target variable is continuous, summary statistics for a non-terminal leaf node 𝑡𝑡, predictor 𝑋𝑋𝑚𝑚 
(with 𝐼𝐼𝑚𝑚 categories), and continuous target 𝑌𝑌 consist of the following statistics:  

Count: 𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = ∑ 𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖)𝑛𝑛∈ℏ(𝑡𝑡) , 

Mean: 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> =

∑ 𝑑𝑑𝑛𝑛𝑦𝑦𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛=𝑖𝑖)𝑛𝑛∈ℏ(𝑡𝑡)

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡> , 

Variance: 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = 1

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡> ∑ 𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖)(𝑦𝑦𝑛𝑛 − 𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>)2𝑛𝑛∈ℏ(𝑡𝑡) , 

Weighted count: 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = ∑ 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖)𝑛𝑛∈ℏ(𝑡𝑡) , 

Weighted mean: 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> =

∑ 𝑤𝑤𝑛𝑛𝑑𝑑𝑛𝑛𝑦𝑦𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛=𝑖𝑖)𝑛𝑛∈ℏ(𝑡𝑡)

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> , 

Weighted variance: 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = 1

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> ∑ 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖)(𝑦𝑦𝑛𝑛 − 𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>)2𝑛𝑛∈ℏ(𝑡𝑡) , 

where 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚. 

5.3. Merging 

Based on summary statistics, non-significant categories are merged for each predictor and non-
terminal leaf node.  

CHAID_Merging() 
Inputs: 
   // Global summary statistics for predictor 𝑋𝑋𝑚𝑚 and node 𝑡𝑡 
   <Continuous target> 

− 𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

<Categorical target> 
− 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡> 

− 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡> 

   where 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚 and 𝑗𝑗 = 1, … , 𝐽𝐽 
 
   <Parameter settings> 

− TreeGrowingMethod       // {‘p-value’, ‘effectsize’} 
− AlphaMerge              // Default 0.05 
− AlphaSplitMerge         // Default 0.025 
− EffectSizeThreshold      
− BonferroniAdjustment    // {true, false}, default true 



 

− ChiSquareType           // {‘pearson’, ‘likelihood’}, default ‘pearson’ 
− Epsilon                 // Default 0.001 
− MaxIterations           // Default 100 
− MinChildCasesABS        // Default 50 
− MinChildCasesPct        // Default 1 
− NodeSizeRequirement     // {‘absolute’, ‘percentage’}, default ‘absolute’ 
− Scores                  // Vector value, scores for categories of 𝑌𝑌 
− SplitMergedCategories   // {true, false}, default false 

Outputs: 
− Θ<𝑚𝑚,𝑡𝑡>                   // Set of merged categories 
− 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>                   // P-value, computed for Θ<𝑚𝑚,𝑡𝑡> 
− TestStatistic           // Test statistic associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> 
− FreedomDegrees          // Freedom degrees associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>  
− 𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡>                   // Effect size 
<Continuous target> 
− 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>                   

− 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>  

− 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

<Categorical target> 
− 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>                  

− 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>  

where 𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>, 𝑗𝑗 = 1, … , 𝐽𝐽   
Procedure: 
1. If (target is continuous), 
      Θ<𝑚𝑚,𝑡𝑡> = �𝑖𝑖|𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡> > 0, 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚�; 
   If (target is categorical), 
      Θ<𝑚𝑚,𝑡𝑡> = �𝑖𝑖|∑ 𝑛𝑛𝑖𝑖𝑗𝑗

<𝑚𝑚,𝑡𝑡>𝐽𝐽
𝑗𝑗=1 > 0, 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚�; 

// Notice that if the predictor is ordinal, Θ<𝑚𝑚,𝑡𝑡> will not include the 
missing category initially. 

2. If (|Θ<𝑚𝑚,𝑡𝑡>| ≤ 1), 
      Go to step 6; 
3. If (TreeGrowingMethod=‘p-value’),{ 
      If (predictor is nominal),{ 
         𝑝𝑝𝑡𝑡 = −1; 
         For ∀𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>,{ 
            For ∀𝑗𝑗 ∈ Θ<𝑚𝑚,𝑡𝑡> and 𝑗𝑗 > 𝑖𝑖,{ 
               Compute p-value 𝑝𝑝 and effect size for category 𝑖𝑖 and 𝑗𝑗; 
               If (𝑝𝑝 > 𝑝𝑝𝑡𝑡),{ 
                  𝑝𝑝𝑡𝑡 = 𝑝𝑝; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗; 
               } 
               Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied maximum p-values;  
            } 
         }  
      } 
      If (predictor is ordinal),{ 
         𝑝𝑝𝑡𝑡 = −1; 
         For ∀𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>,{ 
            Get category 𝑗𝑗 in Θ<𝑚𝑚,𝑡𝑡> which is subsequent to 𝑖𝑖, if exists; 
            Compute p-value 𝑝𝑝 and effect size for category 𝑖𝑖 and 𝑗𝑗; 
            If (𝑝𝑝 > 𝑝𝑝𝑡𝑡),{ 



 

               𝑝𝑝𝑡𝑡 = 𝑝𝑝; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗; 
            } 
            Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied maximum p-values;  
         } 
      } 
      If (𝑝𝑝𝑡𝑡 > AlphaMerge),{ 
         Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐. 
         Compute summary statistics for the compound category 𝑐𝑐; 
         Update Θ<𝑚𝑚,𝑡𝑡>; 
      } 
      Else, 
         Go to step 6; 
   } 
   If (TreeGrowingMethod=‘effectsize’),{ 
      If (predictor is nominal),{ 
         𝑠𝑠𝑡𝑡 = 100; 
         For ∀𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>,{ 
            For ∀𝑗𝑗 ∈ Θ<𝑚𝑚,𝑡𝑡> and 𝑗𝑗 > 𝑖𝑖,{ 
               Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑖𝑖 and 𝑗𝑗; 
               If (𝑠𝑠𝑠𝑠 < 𝑠𝑠𝑡𝑡),{ 
                  𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗; 
               } 
            } 
         }  
      } 
      If (predictor is ordinal),{ 
         𝑠𝑠𝑡𝑡 = 100; 
         For ∀𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>,{ 
            Get category 𝑗𝑗 in Θ<𝑚𝑚,𝑡𝑡> which is subsequent to 𝑖𝑖, if exists; 
            Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑖𝑖 and 𝑗𝑗; 
            If (𝑠𝑠𝑠𝑠 < 𝑠𝑠𝑡𝑡),{ 
               𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗; 
            } 
         }  
      } 
      If (𝑠𝑠𝑡𝑡 < EffectSizeThreshold),{ 
         Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐. 
         Compute summary statistics for the compound category 𝑐𝑐; 
         Update Θ<𝑚𝑚,𝑡𝑡>; 
      } 
      Else, 
         Go to step 6; 
   } 
4. Let Α be the set of original categories in the new category 𝑐𝑐; 
   If (TreeGrowingMethod=‘p-value’), 
   and(SplitMergedCategories=true), 
   and(3 ≤ |A| ≤ 15),{ 
      If (predictor is nominal),{ 
         𝑝𝑝𝑡𝑡 = 2;   // Any value larger than 1 should be ok 
         For (𝑘𝑘 = 1: ⌊|A|/2⌋),{ 
            For (∀𝐴𝐴1 with 𝑘𝑘 categories belonging to Α),{ 
               Let 𝐴𝐴2 = 𝐴𝐴 − 𝐴𝐴1; 



 

               Compute p-value 𝑝𝑝 and effect size for category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2; 
               // Category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2 corresponds to 𝐴𝐴1 and 𝐴𝐴2 respectively 
               If (𝑝𝑝 < 𝑝𝑝𝑡𝑡),{ 
                  𝑝𝑝𝑡𝑡 = 𝑝𝑝; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2; 
               } 
               Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied minimum p-values;  
            } 
         } 
      } 
      If (predictor is ordinal),{   // Set Α consists of ordered categories 
         𝑝𝑝𝑡𝑡 = 2; 
         Let 𝐴𝐴1 be the set consisting of the first category in 𝐴𝐴; 
         Let 𝐴𝐴2 = 𝐴𝐴 − 𝐴𝐴1; 
         While (𝐴𝐴2 is not empty),{ 
            Compute p-value 𝑝𝑝 and effect size for category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2; 
            // Category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2 corresponds to 𝐴𝐴1 and 𝐴𝐴2 respectively 
            If (𝑝𝑝 < 𝑝𝑝𝑡𝑡),{ 
               𝑝𝑝𝑡𝑡 = 𝑝𝑝; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2; 
            } 
            Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied minimum p-values;  
            Move the first category in 𝐴𝐴2 into 𝐴𝐴1; 
         } 
      } 
      If (𝑝𝑝𝑡𝑡 ≤ AlphaSplitMerge),{ 
         Split category 𝑐𝑐 into two categories 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗; 
         Compute summary statistics for categories 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗; 
         Update Θ<𝑚𝑚,𝑡𝑡>; 
      }    
   } 
   If (TreeGrowingMethod=‘effectsize’), 
   and(SplitMergedCategories=true), 
   and(3 ≤ |A| ≤ 15),{ 
      If (predictor is nominal),{ 
         𝑠𝑠𝑡𝑡 = −1;    
         For (𝑘𝑘 = 1: ⌊|A|/2⌋),{ 
            For (∀𝐴𝐴1 with 𝑘𝑘 categories belonging to Α),{ 
               Let 𝐴𝐴2 = 𝐴𝐴 − 𝐴𝐴1; 
               Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2; 
               // Category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2 corresponds to 𝐴𝐴1 and 𝐴𝐴2 respectively 
               If (𝑠𝑠𝑠𝑠 > 𝑠𝑠𝑡𝑡),{ 
                  𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2; 
               } 
            } 
         } 
      } 
      If (predictor is ordinal),{ 
         𝑠𝑠𝑡𝑡 = −1; 
         Let 𝐴𝐴1 be the set consisting of the first category in 𝐴𝐴; 
         Let 𝐴𝐴2 = 𝐴𝐴 − 𝐴𝐴1; 
         While (𝐴𝐴2 is not empty),{ 
            Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2; 



 

            // Category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2 corresponds to 𝐴𝐴1 and 𝐴𝐴2 respectively 
            If (𝑠𝑠𝑠𝑠 > 𝑠𝑠𝑡𝑡),{ 
               𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2; 
            } 
            Move the first category in 𝐴𝐴2 into 𝐴𝐴1; 
         } 
      } 
      If (𝑠𝑠𝑡𝑡 ≥ EffectSizeThreshold),{ 
         Split category 𝑐𝑐 into two categories 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗; 
         Compute summary statistics for categories 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗; 
         Update Θ<𝑚𝑚,𝑡𝑡>; 
      }    
   } 
5. Go to step 2; 
6. If (TreeGrowingMethod=‘p-value’), 
   and(predictor is ordinal), 
   and(𝑁𝑁𝑑𝑑,𝑐𝑐𝑠𝑠𝑡𝑡_𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑚𝑚

<𝑚𝑚,𝑡𝑡> > 0),{    
   // We use subscript ‘cat_missing’ to denote summary statistics for the      

// missing category. Notice that this is only for ordinal predictors and we 
// do not distinguish the missing category with other categories for nominal       
// predictor. 

      Θ1
<𝑚𝑚,𝑡𝑡> =  Θ<𝑚𝑚,𝑡𝑡> ∪{cat_missing}; 

      Compute p-value 𝑝𝑝1 and effect size 𝑠𝑠1 for the set of merged categories Θ1
<𝑚𝑚,𝑡𝑡>; 

      𝑝𝑝𝑡𝑡 = −1; 
      𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 =cat_missing; 
      For ∀𝑗𝑗 ∈ Θ<𝑚𝑚,𝑡𝑡>,{ 
         Compute p-value 𝑝𝑝 and effect size for category 𝑗𝑗 and cat_missing; 
         If (𝑝𝑝 > 𝑝𝑝𝑡𝑡),{ 
            𝑝𝑝𝑡𝑡 = 𝑝𝑝; 
            𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗; 
         } 
         Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied maximum p-values;  
      } 
      Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐; 
      Compute summary statistics for the compound category 𝑐𝑐; 
      Let Θ2

<𝑚𝑚,𝑡𝑡> be the new set of categories; 
      Compute p-value 𝑝𝑝2 and effect size 𝑠𝑠2 for Θ2

<𝑚𝑚,𝑡𝑡>; 
      If (𝑝𝑝1 ≠ 𝑝𝑝2),{ 
         𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> = (𝑝𝑝1 < 𝑝𝑝2)? 𝑝𝑝1: 𝑝𝑝2; 
         Θ<𝑚𝑚,𝑡𝑡> = (𝑝𝑝1 < 𝑝𝑝2)?Θ1

<𝑚𝑚,𝑡𝑡>:Θ2
<𝑚𝑚,𝑡𝑡>; 

         𝐸𝐸𝑠𝑠
<𝑚𝑚,𝑡𝑡> = (𝑝𝑝1 < 𝑝𝑝2)? 𝑠𝑠1: 𝑠𝑠2; 

      } 
      Else, resolve tied minimum p-values; 
   } 
   If (TreeGrowingMethod=‘effectsize’), 
   and(predictor is ordinal), 
   and(𝑁𝑁𝑑𝑑,𝑐𝑐𝑠𝑠𝑡𝑡_𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑚𝑚

<𝑚𝑚,𝑡𝑡> > 0),{ 
      𝑠𝑠𝑡𝑡 = 100; 
      𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 =cat_missing; 
      For ∀𝑗𝑗 ∈ Θ<𝑚𝑚,𝑡𝑡>,{ 
         Compute p-value and effect size 𝑠𝑠𝑠𝑠 for category 𝑗𝑗 and cat_missing; 
         If (𝑠𝑠𝑠𝑠 < 𝑠𝑠𝑡𝑡),{ 
            𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠; 
            𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗; 
         } 



 

      } 
      Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐; 
      Compute summary statistics for the compound category 𝑐𝑐; 
      Let Θ2

<𝑚𝑚,𝑡𝑡> be the new set of categories; 
      Compute p-value 𝑝𝑝2 and effect size 𝑠𝑠2 for Θ2

<𝑚𝑚,𝑡𝑡>; 
      𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> = (𝑠𝑠1 > 𝑠𝑠2)? 𝑝𝑝1:𝑝𝑝2; 
      Θ<𝑚𝑚,𝑡𝑡> = (𝑠𝑠1 > 𝑠𝑠2)?Θ1

<𝑚𝑚,𝑡𝑡>:Θ2
<𝑚𝑚,𝑡𝑡>; 

      𝐸𝐸𝑠𝑠
<𝑚𝑚,𝑡𝑡> = (𝑠𝑠1 > 𝑠𝑠2)? 𝑠𝑠1: 𝑠𝑠2; 

   } 
7. If (TreeGrowingMethod=‘p-value’),{ 
      While ∃𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>,((NodeSizeRequirement=’absolute’)and(((target is 

continuous)and(𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> < MinChildCasesABS))or((target is 

categorical)and(∑ 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑗𝑗 < MinChildCasesABS)))), 
      or((NodeSizeRequirement=’percentage’)and(((target is 

continuous)and(𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> < MinChildCasesPct*𝑁𝑁𝑑𝑑))or((target is 

categorical)and(∑ 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑗𝑗 < MinChildCasesPct*𝑁𝑁𝑑𝑑)))),{ 
         If (predictor is nominal),{ 
            𝑝𝑝𝑡𝑡 = −1; 
            𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖; 
            For ∀𝑗𝑗 ∈ Θ<𝑚𝑚,𝑡𝑡> and 𝑗𝑗 ≠ 𝑖𝑖,{ 
               Compute p-value 𝑝𝑝 and effect size for category 𝑖𝑖 and 𝑗𝑗; 
               If (𝑝𝑝 > 𝑝𝑝𝑡𝑡),{ 
                  𝑝𝑝𝑡𝑡 = 𝑝𝑝; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗; 
               } 
               Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied maximum p-values;  
            } 
            Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐; 
            Compute summary statistics for the compound category 𝑐𝑐; 
            Update Θ<𝑚𝑚,𝑡𝑡>; 
         } 
         If (predictor is ordinal),{ 
            𝑝𝑝𝑡𝑡 = −1; 
            𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖; 
            Get category 𝑗𝑗 in Θ<𝑚𝑚,𝑡𝑡> which is antecedent to 𝑖𝑖, if exists; 
            Compute p-value 𝑝𝑝 and effect size for category 𝑖𝑖 and 𝑗𝑗; 
            If (𝑝𝑝 > 𝑝𝑝𝑡𝑡),{ 
               𝑝𝑝𝑡𝑡 = 𝑝𝑝; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗; 
            } 
            Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied maximum p-values;  
            Get category 𝑗𝑗 in Θ<𝑚𝑚,𝑡𝑡> which is subsequent to 𝑖𝑖, if exists; 
            Compute p-value 𝑝𝑝 and effect size for category 𝑖𝑖 and 𝑗𝑗; 
            If (𝑝𝑝 > 𝑝𝑝𝑡𝑡),{ 
               𝑝𝑝𝑡𝑡 = 𝑝𝑝; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗; 
            } 
            Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied maximum p-values;  
            Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐; 
            Compute summary statistics for the compound category 𝑐𝑐; 
            Update Θ<𝑚𝑚,𝑡𝑡>; 
         } 
      } 
   } 
   If (TreeGrowingMethod=‘effectsize’),{ 
      While ∃𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>,((NodeSizeRequirement=’absolute’)and(((target is 



 

continuous)and(𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> < MinChildCasesABS))or((target is 

categorical)and(∑ 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑗𝑗 < MinChildCasesABS)))), 
      or((NodeSizeRequirement=’percentage’)and(((target is 

continuous)and(𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> < MinChildCasesPct*𝑁𝑁𝑑𝑑))or((target is 

categorical)and(∑ 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑗𝑗 < MinChildCasesPct*𝑁𝑁𝑑𝑑)))),{ 
         If (predictor is nominal),{ 
            𝑠𝑠𝑡𝑡 = 100; 
            𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖; 
            For ∀𝑗𝑗 ∈ Θ<𝑚𝑚,𝑡𝑡> and 𝑗𝑗 ≠ 𝑖𝑖,{ 
               Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑖𝑖 and 𝑗𝑗; 
               If (𝑠𝑠𝑠𝑠 < 𝑠𝑠𝑡𝑡),{ 
                  𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗; 
               } 
            } 
            Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐; 
            Compute summary statistics for the compound category 𝑐𝑐; 
            Update Θ<𝑚𝑚,𝑡𝑡>; 
         } 
         If (predictor is ordinal),{ 
            𝑠𝑠𝑡𝑡 = 100; 
            𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖; 
            Get category 𝑗𝑗 in Θ<𝑚𝑚,𝑡𝑡> which is antecedent to 𝑖𝑖, if exists; 
            Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑖𝑖 and 𝑗𝑗; 
            If (𝑠𝑠𝑠𝑠 < 𝑠𝑠𝑡𝑡),{ 
               𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗; 
            } 
            Get category 𝑗𝑗 in Θ<𝑚𝑚,𝑡𝑡> which is subsequent to 𝑖𝑖, if exists; 
            Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑖𝑖 and 𝑗𝑗; 
            If (𝑠𝑠𝑠𝑠 < 𝑠𝑠𝑡𝑡),{ 
               𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗; 
            } 
            Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐; 
            Compute summary statistics for the compound category 𝑐𝑐; 
            Update Θ<𝑚𝑚,𝑡𝑡>; 
         } 
      } 
   } 
8. Compute 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> and effect size 𝐸𝐸𝑠𝑠
<𝑚𝑚,𝑡𝑡> for the set of merged categories Θ<𝑚𝑚,𝑡𝑡>; 

   // If (|Θ<𝑚𝑚,𝑡𝑡>| = 1),{ 
   //    𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> = 1; 
   //    𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡> = 0; 
   // } 
9. If (BonferroniAdjustment=true),{ 
      Compute adjusted p-value by applying Bonferroni adjustments; 
      Let 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> be the adjusted p-value; 
   } 
   // Bonferroni adjustments are described in section 5.3.2. 

The function of CHAID_Merging() will be used by each Reducer in the map-reduce environment, 
see Appendix A for details.  



 

Summary statistics for a compound category can be derived from those for original categories in 
the compound category. Denote the compound category as c, and the set of original categories in 
the compound category as Ω, the new summary statistics are calculated as, 

𝑁𝑁𝑑𝑑,𝑐𝑐
<𝑚𝑚,𝑡𝑡> = ∑ 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Ω , 

𝑦𝑦�𝑑𝑑,𝑐𝑐
<𝑚𝑚,𝑡𝑡> = ∑

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑓𝑓,𝑐𝑐
<𝑚𝑚,𝑡𝑡> 𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Ω , 

𝑉𝑉𝑑𝑑,𝑐𝑐
<𝑚𝑚,𝑡𝑡> = ∑

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑓𝑓,𝑐𝑐
<𝑚𝑚,𝑡𝑡> 𝑉𝑉𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡> +𝑖𝑖∈Ω ∑
𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑓𝑓,𝑐𝑐
<𝑚𝑚,𝑡𝑡> �𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡> − 𝑦𝑦�𝑑𝑑,𝑐𝑐
<𝑚𝑚,𝑡𝑡>��𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡> + 𝑦𝑦�𝑑𝑑,𝑐𝑐
<𝑚𝑚,𝑡𝑡>�𝑖𝑖∈Ω , 

𝑁𝑁𝑤𝑤,𝑐𝑐
<𝑚𝑚,𝑡𝑡> = ∑ 𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Ω , 

𝑦𝑦�𝑤𝑤,𝑐𝑐
<𝑚𝑚,𝑡𝑡> = ∑

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑤𝑤,𝑐𝑐
<𝑚𝑚,𝑡𝑡> 𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Ω , 

𝑉𝑉𝑤𝑤,𝑐𝑐
<𝑚𝑚,𝑡𝑡> = ∑

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑤𝑤,𝑐𝑐
<𝑚𝑚,𝑡𝑡> 𝑉𝑉𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡> +𝑖𝑖∈Ω ∑
𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑤𝑤,𝑐𝑐
<𝑚𝑚,𝑡𝑡> �𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡> − 𝑦𝑦�𝑤𝑤,𝑐𝑐
<𝑚𝑚,𝑡𝑡>��𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡> + 𝑦𝑦�𝑤𝑤,𝑐𝑐
<𝑚𝑚,𝑡𝑡>�𝑖𝑖∈Ω , 

𝑛𝑛𝑐𝑐,𝑗𝑗
<𝑚𝑚,𝑡𝑡> = ∑ 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Ω , 

𝑤𝑤𝑐𝑐,𝑗𝑗
<𝑚𝑚,𝑡𝑡> = ∑ 𝑤𝑤𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Ω . 

5.3.1. p-Value and Effect Size Calculations 

Calculations of (unadjusted) p-values and effect sizes in the merging step depend on the type of 
target variable.  

The merging step sometimes needs the p-value and effect size for a pair of original/compound 
categories, and sometimes needs the p-value and effect size for all the original/compound 
categories. For convenience, we denote the set of nonempty original/compound categories, for 
which the p-value and effect size are computed, as Γ<𝑚𝑚,𝑡𝑡>.  

Continuous Target Variable 

If the target variable 𝑌𝑌 is continuous, perform an ANOVA F test that tests if the means of 𝑌𝑌 for 
different categories in Γ<𝑚𝑚,𝑡𝑡> are the same. This ANOVA F test calculates the F-statistic as 

𝐹𝐹 =
∑ 𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>�𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>−𝑦𝑦�

𝑤𝑤,Γ<𝑚𝑚,𝑡𝑡>
<𝑚𝑚,𝑡𝑡> �

2

𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡> (𝐼𝐼−1)�

∑ 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>𝑉𝑉𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡> (𝑁𝑁𝑓𝑓

′−𝐼𝐼)�
, 

where 𝑁𝑁𝑑𝑑′ = ∑ 𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡> , 𝐼𝐼 = |Γ<𝑚𝑚,𝑡𝑡>|.  

Accordingly, the p-value is calculated as 

p-value=�
undefined, If both numerator and denominator of F are zero;

0, Else if denominator of F is zero;
Prob�𝐹𝐹�𝐼𝐼 − 1,𝑁𝑁𝑑𝑑′ − 𝐼𝐼� > 𝐹𝐹�, Otherwise.

   

 



 

And 𝐹𝐹�𝐼𝐼 − 1,𝑁𝑁𝑑𝑑′ − 𝐼𝐼� is a random variable that follows a F-distribution with degrees of freedom 𝐼𝐼 −
1 and 𝑁𝑁𝑑𝑑′ − 𝐼𝐼.  

The effect size 𝐸𝐸𝑠𝑠 is evaluated by the measure of 𝐸𝐸𝑡𝑡𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑝𝑝𝑠𝑠, i.e. 

𝐸𝐸𝑠𝑠 = 1 −
∑ 𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡>

∑ 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>𝑉𝑉

𝑤𝑤,Γ<𝑚𝑚,𝑡𝑡>
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡>
. 

Nominal Target Variable 

If the target variable 𝑌𝑌 is nominal categorical, the null hypothesis of independence of predictor 𝑋𝑋𝑚𝑚 
and 𝑌𝑌 is tested. According to the parameter of ChiSquareType, the p-value is computed based on 
either Pearson chi-squared statistic or likelihood ratio statistic.  

The Pearson’s chi-square statistic and likelihood ratio statistic are, respectively, 

𝑋𝑋2 = � �
�𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡> − 𝑚𝑚�𝑖𝑖,𝑗𝑗�
2

𝑚𝑚�𝑖𝑖,𝑗𝑗𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡>

 

𝐺𝐺2 = 2 � � 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>𝑠𝑠𝑛𝑛�𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡> 𝑚𝑚�𝑖𝑖,𝑗𝑗� �
𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡>

 

where Δ<𝑚𝑚,𝑡𝑡> denotes the set of nonempty target categories, and 𝑚𝑚�𝑖𝑖,𝑗𝑗 is the estimated expected 
frequency following the independence model. The corresponding p-value is given by Prob{𝜒𝜒𝑑𝑑2 >
𝑋𝑋2} for Pearson’s chi-square test or Prob{𝜒𝜒𝑑𝑑2 > 𝐺𝐺2} for likelihood ratio test, where 𝜒𝜒𝑑𝑑2 follows a chi-
squared distribution with degrees of freedom 𝑑𝑑 = (𝐽𝐽 − 1)(𝐼𝐼 − 1), herein 𝐽𝐽 = |Δ<𝑚𝑚,𝑡𝑡>| and 𝐼𝐼 =
|Γ<𝑚𝑚,𝑡𝑡>|.If case weight is not specified, the expected frequency is estimated by 

𝑚𝑚�𝑖𝑖,𝑗𝑗 =
𝑛𝑛𝑖𝑖∙𝑛𝑛∙𝑗𝑗
𝑛𝑛∙∙

 

where 𝑛𝑛𝑖𝑖∙ = ∑ 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡> , 𝑛𝑛∙𝑗𝑗 = ∑ 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡> , and 𝑛𝑛∙∙ = ∑ ∑ 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡> .  

Else if case weight is specified, the expected frequency under the null hypothesis of independence 
is of the form 

𝑚𝑚𝑖𝑖,𝑗𝑗 = 𝑤𝑤�𝑖𝑖,𝑗𝑗−1𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗 

where 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑗𝑗  are parameters to be estimated, and  

𝑤𝑤�𝑖𝑖,𝑗𝑗 =
𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡> . 

Parameters estimates 𝛼𝛼�𝑖𝑖, �̂�𝛽𝑗𝑗 , and hence 𝑚𝑚�𝑖𝑖,𝑗𝑗, are resulted from the following iterative procedure. 

1. Initialize 𝑘𝑘 = 0, 𝛼𝛼𝑖𝑖
(0) = 𝛽𝛽𝑗𝑗

(0) = 1, 𝑚𝑚𝑖𝑖,𝑗𝑗
(0) = 𝑤𝑤�𝑖𝑖,𝑗𝑗−1. 

2. Compute 𝛼𝛼𝑖𝑖
(𝑘𝑘+1) = 𝛼𝛼𝑖𝑖

(𝑘𝑘) 𝑛𝑛𝑖𝑖∙
∑ 𝑚𝑚𝑖𝑖,𝑗𝑗

(𝑘𝑘)
𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>

. 

3. Compute 𝛽𝛽𝑗𝑗
(𝑘𝑘+1) =

𝑛𝑛∙𝑗𝑗
∑ 𝑤𝑤�𝑖𝑖,𝑗𝑗

−1𝛼𝛼𝑖𝑖
(𝑘𝑘+1)

𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡>
. 

 
 



 

4. Compute 𝑚𝑚𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) = 𝑤𝑤�𝑖𝑖,𝑗𝑗−1𝛼𝛼𝑖𝑖

(𝑘𝑘+1)𝛽𝛽𝑗𝑗
(𝑘𝑘+1). 

5. If 𝑘𝑘 + 1=MaxIterations or max𝑖𝑖,𝑗𝑗�𝑚𝑚𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) −𝑚𝑚𝑖𝑖,𝑗𝑗

(𝑘𝑘)� < Epsilon, stop and 
output 𝛼𝛼𝑖𝑖

(𝑘𝑘+1), 𝛽𝛽𝑗𝑗
(𝑘𝑘+1), and 𝑚𝑚𝑖𝑖,𝑗𝑗

(𝑘𝑘+1) as the final estimates. Otherwise, 𝑘𝑘 = 𝑘𝑘 + 1, go to step 2. 
Given the chi-square test statistic 𝜒𝜒𝑑𝑑2, the effect size 𝐸𝐸𝑠𝑠 is computed as 

𝐸𝐸𝑠𝑠 = � 𝜒𝜒𝑑𝑑
2

𝑛𝑛∙∙𝑑𝑑𝑓𝑓
�
1/2

, 

where 𝑑𝑑𝑑𝑑 = min(𝐼𝐼, 𝐽𝐽) − 1, 𝜒𝜒𝑑𝑑2 = 𝑋𝑋2, 𝐺𝐺2, or 𝐻𝐻2 in below. 

Ordinal Target Variable 

If the target variable 𝑌𝑌 is categorical ordinal, the null hypothesis of independence of predictor 𝑋𝑋𝑚𝑚 
and 𝑌𝑌 is tested against the row effects model, with rows being the categories of 𝑋𝑋𝑚𝑚 and columns the 
categories of 𝑌𝑌, proposed by Goodman (1979). Two sets of expected frequencies 𝑚𝑚�𝑖𝑖,𝑗𝑗 (under the 
hypothesis of independence) and 𝑚𝑚��𝑖𝑖,𝑗𝑗 (under the hypothesis that the data follow a row effects 
model), are both estimated. The likelihood ratio statistic is 

𝐻𝐻2 = 2∑ ∑ 𝑚𝑚��𝑖𝑖,𝑗𝑗𝑠𝑠𝑛𝑛�𝑚𝑚��𝑖𝑖,𝑗𝑗 𝑚𝑚�𝑖𝑖,𝑗𝑗� �𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡> . 

The corresponding p-value is given by Prob{𝜒𝜒𝑑𝑑2 > 𝐻𝐻2} for likelihood ratio test, where 𝜒𝜒𝑑𝑑2 follows a 
chi-squared distribution with degrees of freedom 𝑑𝑑 = 𝐼𝐼 − 1, herein 𝐼𝐼 = |Γ<𝑚𝑚,𝑡𝑡>|. 

In the row effects model, Scores for categories of 𝑌𝑌 are needed. By default, the order of a category 
of 𝑌𝑌 is used as the category score. Users can specify their own set of scores. Scores are set at the 
beginning of the tree and kept unchanged afterward. Let 𝑠𝑠𝑗𝑗  be the score for category 𝑗𝑗 of 𝑌𝑌, 𝑗𝑗 ∈
Δ<𝑚𝑚,𝑡𝑡>. The expected cell frequency under the row effects model is given by 

𝑚𝑚𝑖𝑖,𝑗𝑗 = 𝑤𝑤�𝑖𝑖,𝑗𝑗−1𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗𝛾𝛾𝑖𝑖
(𝑠𝑠𝑗𝑗−�̅�𝑠)

 

where 

�̅�𝑠 =
∑ 𝑤𝑤∙𝑗𝑗𝑠𝑠𝑗𝑗𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>

∑ 𝑤𝑤∙𝑗𝑗𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>
 

in which 𝑤𝑤∙𝑗𝑗 = ∑ 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡> , 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑗𝑗, and 𝛾𝛾𝑖𝑖 are unknown parameters to be estimated. Parameters 
estimates 𝛼𝛼��𝑖𝑖, �̂̂�𝛽𝑗𝑗, 𝛾𝛾��𝑖𝑖 and hence 𝑚𝑚��𝑖𝑖,𝑗𝑗, are resulted from the following iterative procedure. 

1. Initialize 𝑘𝑘 = 0, 𝛼𝛼𝑖𝑖
(0) = 𝛽𝛽𝑗𝑗

(0) = 𝛾𝛾𝑖𝑖
(0) = 1, 𝑚𝑚𝑖𝑖,𝑗𝑗

(0) = 𝑤𝑤�𝑖𝑖,𝑗𝑗−1. 
2. Compute 𝛼𝛼𝑖𝑖

(𝑘𝑘+1) = 𝛼𝛼𝑖𝑖
(𝑘𝑘) 𝑛𝑛𝑖𝑖∙

∑ 𝑚𝑚𝑖𝑖,𝑗𝑗
(𝑘𝑘)

𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>
. 

3. Compute 𝛽𝛽𝑗𝑗
(𝑘𝑘+1) =

𝑛𝑛∙𝑗𝑗

∑ 𝑤𝑤�𝑖𝑖,𝑗𝑗
−1𝛼𝛼𝑖𝑖

(𝑘𝑘+1)�𝛾𝛾𝑖𝑖
(𝑘𝑘)�

(𝑠𝑠𝑗𝑗−𝑠𝑠�)
𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡>

. 

4. Compute 𝑚𝑚𝑖𝑖,𝑗𝑗
∗ = 𝑤𝑤�𝑖𝑖,𝑗𝑗−1𝛼𝛼𝑖𝑖

(𝑘𝑘+1)𝛽𝛽𝑗𝑗
(𝑘𝑘+1)�𝛾𝛾𝑖𝑖

(𝑘𝑘)�
(𝑠𝑠𝑗𝑗−�̅�𝑠)

, 𝐺𝐺𝑖𝑖 = 1 +
∑ �𝑠𝑠𝑗𝑗−�̅�𝑠�(𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>−𝑚𝑚𝑖𝑖,𝑗𝑗
∗ )𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>

∑ (𝑠𝑠𝑗𝑗−�̅�𝑠)2𝑚𝑚𝑖𝑖,𝑗𝑗
∗

𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>
. 

5. Compute 𝛾𝛾𝑖𝑖
(𝑘𝑘+1) = �

𝛾𝛾𝑖𝑖
(𝑘𝑘)𝐺𝐺𝑖𝑖 , If 𝐺𝐺𝑖𝑖 > 0;

𝛾𝛾𝑖𝑖
(𝑘𝑘), Otherwise.

 

6. Compute 𝑚𝑚𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) = 𝑤𝑤�𝑖𝑖,𝑗𝑗−1𝛼𝛼𝑖𝑖

(𝑘𝑘+1)𝛽𝛽𝑗𝑗
(𝑘𝑘+1)�𝛾𝛾𝑖𝑖

(𝑘𝑘+1)�
(𝑠𝑠𝑗𝑗−�̅�𝑠)

. 
 



 

7. If 𝑘𝑘 + 1=MaxIterations or max𝑖𝑖,𝑗𝑗�𝑚𝑚𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) −𝑚𝑚𝑖𝑖,𝑗𝑗

(𝑘𝑘)� < Epsilon, stop and 
output 𝛼𝛼𝑖𝑖

(𝑘𝑘+1), 𝛽𝛽𝑗𝑗
(𝑘𝑘+1), 𝛾𝛾𝑖𝑖

(𝑘𝑘+1), and 𝑚𝑚𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) as the final estimates. Otherwise, 𝑘𝑘 = 𝑘𝑘 + 1, go to 

step 2. 
 

5.3.2. Bonferroni Adjustments for CHAID 

The adjusted p-value is calculated as the p-value times a Bonferroni multiplier. The Bonferroni 
multiplier adjusts for multiple tests. 

Suppose that there are 𝐼𝐼 original categories of predictor 𝑋𝑋𝑚𝑚, including missing category if exists, in 
the set of merged categories Θ<𝑚𝑚,𝑡𝑡>, and it is reduced to 𝑠𝑠, 𝑠𝑠 = |Θ<𝑚𝑚,𝑡𝑡>|, categories after the merging 
step. The Bonferroni multiplier 𝐵𝐵 is the number of possible ways that 𝐼𝐼 categories can be merged 
into 𝑠𝑠 categories.  

For 𝑠𝑠 = 𝐼𝐼, 𝐵𝐵 = 1. For 2 ≤ 𝑠𝑠 < 𝐼𝐼, use the following equation 

𝐵𝐵 =

⎩
⎪⎪
⎨

⎪⎪
⎧ �𝐼𝐼 − 1

𝑠𝑠 − 1� , Ordinal predictor;

�(−1)𝑣𝑣
(𝑠𝑠 − 𝑣𝑣)𝐼𝐼

𝑣𝑣! (𝑠𝑠 − 𝑣𝑣)!

𝑠𝑠−1

𝑣𝑣=0

, Nominal predictor;

�𝐼𝐼 − 2
𝑠𝑠 − 2� + 𝑠𝑠 �𝐼𝐼 − 2

𝑠𝑠 − 1� , Ordinal with a missing category.

 

5.4. Splitting 

When categories have been merged for all predictors, each predictor is evaluated for its association 
with the target variable, based on the p-value or effect size of the statistical test of association. The 
predictor with the strongest association, indicated by the smallest p-value or the largest effect size, 
is compared to the split threshold, AlphaSplit or EffectSizeThreshold. If the p-value is 
less than or equal to AlphaSplit, or the effect size is larger than or equal to 
EffectSizeThreshold, that predictor is selected as the split variable for the current node. Each 
of the merged categories of the split variable defines a child node of the split.  

In map-reduce environment, the selection of the smallest p-value or the largest effect size can be 
performed efficiently in parallel. Firstly, each Reducer finds the locally smallest p-value or the 
locally largest effect size and passes it to the Controller. Then, the Controller sorts the local ones 
and gets the globally smallest p-value or the globally largest effect size. The following procedure is 
used during the process. 

FindLocalBest() 
Inputs: 

− 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠
<𝑚𝑚,𝑡𝑡>   

− 𝐸𝐸𝑠𝑠
<𝑚𝑚,𝑡𝑡>               

   where < 𝑚𝑚, 𝑡𝑡 >∈ Ψ𝑞𝑞, Ψ𝑞𝑞 denotes the set of keys that are allocated to the 𝑝𝑝th 
Reducer 

 
   <Parameter settings> 

− TreeGrowingMethod       // {‘p-value’, ‘effectsize’} 
− AlphaSplit              // Default 0.05 
− EffectSizeThreshold      

  



 

Outputs: 
− Ψ𝑞𝑞∗       
// Set of keys with locally smallest p-values or largest effect sizes 

Procedure: 
1. Initially let Ψ𝑞𝑞∗ be empty; 
2. If (TreeGrowingMethod=‘p-value’),{ 
      For ∀𝜓𝜓𝑞𝑞(𝑡𝑡) ⊆ Ψ𝑞𝑞,{  // Set 𝜓𝜓𝑞𝑞(𝑡𝑡) contains all keys in Ψ𝑞𝑞 corresponding to node 𝑡𝑡 
         < 𝑚𝑚, 𝑡𝑡 >∗= 𝑎𝑎𝑝𝑝𝑎𝑎min<𝑚𝑚,𝑡𝑡>�𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>, < 𝑚𝑚, 𝑡𝑡 >∈ 𝜓𝜓𝑞𝑞(𝑡𝑡)�; // Resolve tied minimum p-values 
         If (𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>∗ ≤ AlphaSplit), 
            Ψ𝑞𝑞

∗ = Ψ𝑞𝑞∗ ∪ {< 𝑚𝑚, 𝑡𝑡 >∗}; 
      } 
   } 
   If (TreeGrowingMethod=‘effectsize’),{ 
      For ∀𝜓𝜓𝑞𝑞(𝑡𝑡) ⊆ Ψ𝑞𝑞,{   
         < 𝑚𝑚, 𝑡𝑡 >∗= 𝑎𝑎𝑝𝑝𝑎𝑎max<𝑚𝑚,𝑡𝑡>�𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡>, < 𝑚𝑚, 𝑡𝑡 >∈ 𝜓𝜓𝑞𝑞(𝑡𝑡)�; 
         If (𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡>∗ > EffectSizeThreshold), 
            Ψ𝑞𝑞

∗ = Ψ𝑞𝑞∗ ∪ {< 𝑚𝑚, 𝑡𝑡 >∗}; 
      } 
   } 
3. Return Ψ𝑞𝑞∗; 

FindGlobalBest() 
Inputs: 

− 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠
<𝑚𝑚,𝑡𝑡>   

− 𝐸𝐸𝑠𝑠
<𝑚𝑚,𝑡𝑡>               

   where < 𝑚𝑚, 𝑡𝑡 >∈ Ψ𝑞𝑞∗, 𝑝𝑝 = 1, … ,𝑅𝑅 
 
   <Parameter settings> 

− TreeGrowingMethod        // {‘p-value’, ‘effectsize’} 
Outputs: 

− Ψ∗       
// Set of keys with globally smallest p-values or largest effect sizes 

Procedure: 
1. Let Ψ = ⋃ Ψ𝑞𝑞∗𝑅𝑅

𝑞𝑞=1 , and Ψ∗ be empty; 
2. If(TreeGrowingMethod=‘p-value’)and(Ψ is not empty),{ 
      For ∀𝜓𝜓(𝑡𝑡) ⊆ Ψ,{    // Set 𝜓𝜓(𝑡𝑡) contains all keys in Ψ corresponding to node 𝑡𝑡 
         < 𝑚𝑚, 𝑡𝑡 >∗= 𝑎𝑎𝑝𝑝𝑎𝑎min<𝑚𝑚,𝑡𝑡>�𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>, < 𝑚𝑚, 𝑡𝑡 >∈ 𝜓𝜓(𝑡𝑡)�; 
         // Resolve tied minimum p-values 
         Ψ∗ = Ψ∗ ∪ {< 𝑚𝑚, 𝑡𝑡 >∗}; 
      } 
   } 
   If(TreeGrowingMethod=‘effectsize’)and(Ψ is not empty),{ 
      For ∀𝜓𝜓(𝑡𝑡) ⊆ Ψ,{   
         < 𝑚𝑚, 𝑡𝑡 >∗= 𝑎𝑎𝑝𝑝𝑎𝑎max<𝑚𝑚,𝑡𝑡>�𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡>, < 𝑚𝑚, 𝑡𝑡 >∈ 𝜓𝜓(𝑡𝑡)�; 
         Ψ∗ = Ψ∗ ∪ {< 𝑚𝑚, 𝑡𝑡 >∗}; 
      } 
   } 
3. Return Ψ∗; 

If the set Ψ∗ is not empty, then the Controller will perform the splitting step. That is to split the 
node using the predictor suggested by each key in Ψ∗. 

 

 



 

Splitting() 
Inputs: 

− 𝑇𝑇(𝑑𝑑)                    // Current tree of depth 𝑑𝑑 
− Θ<𝑚𝑚,𝑡𝑡>    
− 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>                   // P-value, computed for Θ<𝑚𝑚,𝑡𝑡> 
− TestStatistic           // Test statistic associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> 
− FreedomDegrees          // Freedom degrees associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>  
− 𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡>                   // Effect size  
<Continuous target>     
− 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>         

− 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

<Categorical target> 
− 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>         

− 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡> 

   where < 𝑚𝑚, 𝑡𝑡 >∈ Ψ∗, Ψ∗ denotes the set of keys for splitting 
Outputs: 

− 𝑇𝑇(𝑑𝑑 + 1)       // New tree of depth 𝑑𝑑 + 1 
− 𝑄𝑄            // Set of candidate non-terminal leaf nodes 

Procedure: 
1. Let 𝑄𝑄 be empty; 
2. For ∀< 𝑚𝑚, 𝑡𝑡 >∈ Ψ∗,{ 

Save the following statistics for node 𝑡𝑡: 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠
<𝑚𝑚,𝑡𝑡>, TestStatistic,    

FreedomDegrees, and 𝐸𝐸𝑠𝑠
<𝑚𝑚,𝑡𝑡>; 

      Split node 𝑡𝑡 using predictor 𝑋𝑋𝑚𝑚 according the set of categories Θ<𝑚𝑚,𝑡𝑡>; 
      Let 𝐸𝐸 be the set of child nodes 𝑡𝑡𝑖𝑖, 𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>; 
      Q = Q ∪ 𝐸𝐸; 
      For ∀𝑡𝑡𝑖𝑖 ∈ 𝐸𝐸,{ 
         // Compute and save the following statistics for child node 𝑡𝑡𝑖𝑖 
         // For continuous target 
         𝑁𝑁𝑑𝑑(𝑡𝑡𝑖𝑖) = 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>; 

         𝑦𝑦�𝑑𝑑(𝑡𝑡𝑖𝑖) = 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>; 

         𝑉𝑉𝑑𝑑(𝑡𝑡𝑖𝑖) = 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>; 

         𝑁𝑁𝑤𝑤(𝑡𝑡𝑖𝑖) = 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>; 

         𝑦𝑦�𝑤𝑤(𝑡𝑡𝑖𝑖) = 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>; 

         𝑉𝑉𝑤𝑤(𝑡𝑡𝑖𝑖) = 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>; 

         // For categorical target 
         𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡𝑖𝑖) = 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>, 𝑗𝑗 = 1, … , 𝐽𝐽; 
         𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝑖𝑖) = 𝑤𝑤𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>, 𝑗𝑗 = 1, … , 𝐽𝐽; 
      } 
   }   
3. Denote the new tree as 𝑇𝑇(𝑑𝑑 + 1); 
4. Return 𝑇𝑇(𝑑𝑑 + 1) and 𝑄𝑄; 

 

  



 

5.5. Stopping 

After the split is applied to a node, the child nodes are examined to see if they warrant splitting 
further.  

Stopping() 
Inputs:                      

− 𝑑𝑑                       // Current tree depth 
− 𝑐𝑐𝑝𝑝𝐸𝐸𝑛𝑛𝑡𝑡                    // Current number of tree nodes 
− 𝑄𝑄                       // Set of candidate non-terminal leaf nodes 
<Continuous target> 
− 𝑁𝑁𝑑𝑑(𝑡𝑡)   
− 𝑉𝑉𝑑𝑑(𝑡𝑡) 
<Categorical target> 
− 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡)                       

   where 𝑡𝑡 ∈ 𝑄𝑄, and 𝑗𝑗 = 1, … , 𝐽𝐽 
    
   <Parameter settings> 

− MaxTreeDepth            // Default 5 
− MaxNodeNumber           // Default 1,000 
− MinParentCasesABS       // Default 100 
− MinParentCasesPct       // Default 2 
− NodeSizeRequirement     // {‘absolute’, ‘percentage’}, default ‘absolute’ 

Outputs: 
− 𝑄𝑄      // Set of non-terminal leaf nodes 

Procedure: 
1. For ∀𝑡𝑡 ∈ 𝑄𝑄,{ 
      If (𝑑𝑑=MaxTreeDepth), 
      or(𝑐𝑐𝑝𝑝𝐸𝐸𝑛𝑛𝑡𝑡=MaxNodeNumber), 

   or((target is continuous)and(𝑉𝑉𝑑𝑑(𝑡𝑡) = 0)), 
   or((target is categorical)and(∃𝑗𝑗,𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡) > 0 and 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡) = ∑ 𝑁𝑁𝑑𝑑,𝑘𝑘(𝑡𝑡)𝐽𝐽

𝑘𝑘=1 )), 
   or((NodeSizeRequirement=’absolute’)and(((target is continuous)and(𝑁𝑁𝑑𝑑(𝑡𝑡) <   
      MinParentCasesABS))or((target is categorical)and(∑ 𝑁𝑁𝑑𝑑,𝑘𝑘(𝑡𝑡)𝐽𝐽

𝑘𝑘=1 <  
      MinParentCasesABS)))), 

      or((NodeSizeRequirement=’percentage’)and(((target is   
         continuous)and(𝑁𝑁𝑑𝑑(𝑡𝑡) < MinParentCasesPct*𝑁𝑁𝑑𝑑))or((target is  
         categorical)and(∑ 𝑁𝑁𝑑𝑑,𝑘𝑘(𝑡𝑡)𝐽𝐽

𝑘𝑘=1 < MinParentCasesPct*𝑁𝑁𝑑𝑑)))), 
         𝑄𝑄 = 𝑄𝑄 − {𝑡𝑡}; 
   } 
2. Return 𝑄𝑄; 

6. Exhaustive CHAID Algorithm 
Exhaustive CHAID differs from CHAID in that different merging strategy and Bonferroni 
adjustments are used in tree growth.  

6.1. Merging 

Merging step uses an exhaustive search procedure to merge any similar pair until only a single pair 
is left. 

 



 

ExhaustiveCHAID_Merging() 
Inputs: 
   // Global summary statistics for predictor 𝑋𝑋𝑚𝑚 and node 𝑡𝑡 
   <Continuous target> 

− 𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>  

− 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

<Categorical target> 
− 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡> 

− 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡> 

   where 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚 and 𝑗𝑗 = 1, … , 𝐽𝐽 
 
   <Parameter settings> 

− TreeGrowingMethod       // {‘p-value’, ‘effectsize’} 
− EffectSizeThreshold 
− BonferroniAdjustment    // {true, false}, default true 
− ChiSquareType           // {‘pearson’, ‘likelihood’}, default ‘pearson’ 
− Epsilon                 // Default 0.001 
− MaxIterations           // Default 100 
− MinChildCasesABS        // Default 50 
− MinChildCasesPct        // Default 1 
− NodeSizeRequirement     // {‘absolute’, ‘percentage’}, default ‘absolute’ 
− Scores                  // Vector value, scores for categories of 𝑌𝑌  
− SplitMergedCategories   // {true, false}, default false 

Outputs: 
− Θ<𝑚𝑚,𝑡𝑡>                   // The set of merged categories 
− 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>                   // P-value, computed for Θ<𝑚𝑚,𝑡𝑡> 
− TestStatistic           // Test statistic associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>  
− FreedomDegrees          // Freedom degrees associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>  
− 𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡>                   // Effect size 
<Continuous target> 
− 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>                   

− 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>  

− 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

<Categorical target> 
− 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>                   

− 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>  

where 𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>, 𝑗𝑗 = 1, … , 𝐽𝐽    
Procedure: 
1. If (target is continuous), 
      Θ<𝑚𝑚,𝑡𝑡> = �𝑖𝑖|𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡> > 0, 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚�; 
   If (target is categorical), 
      Θ<𝑚𝑚,𝑡𝑡> = �𝑖𝑖|∑ 𝑛𝑛𝑖𝑖𝑗𝑗

<𝑚𝑚,𝑡𝑡>𝐽𝐽
𝑗𝑗=1 > 0, 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚�; 

// Notice that if the predictor is ordinal, Θ<𝑚𝑚,𝑡𝑡> will not include the 
missing category initially. 

2. 𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠 = 0; 
   Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡> = Θ<𝑚𝑚,𝑡𝑡>; 



 

   Compute p-value 𝑝𝑝𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠 and effect size 𝐸𝐸𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠 for the set of categories Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠
<𝑚𝑚,𝑡𝑡>; 

3. If (�Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠
<𝑚𝑚,𝑡𝑡>� ≤ 1), 

      Go to step 7; 
4. If (TreeGrowingMethod=‘p-value’),{ 
      If (predictor is nominal),{ 
         𝑝𝑝𝑡𝑡 = −1; 
         For ∀𝑖𝑖 ∈ Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡>,{ 
            For ∀𝑗𝑗 ∈ Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡> and 𝑗𝑗 > 𝑖𝑖,{ 
               Compute p-value 𝑝𝑝 and effect size for category 𝑖𝑖 and 𝑗𝑗; 
               If (𝑝𝑝 > 𝑝𝑝𝑡𝑡),{ 
                  𝑝𝑝𝑡𝑡 = 𝑝𝑝; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗; 
               } 
               Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied maximum p-values;  
            } 
         }  
      } 
      If (predictor is ordinal),{ 
         𝑝𝑝𝑡𝑡 = −1; 
         For ∀𝑖𝑖 ∈ Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡>,{ 
            Get category 𝑗𝑗 in Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡> which is subsequent to 𝑖𝑖, if exists; 
            Compute p-value 𝑝𝑝 and effect size for category 𝑖𝑖 and 𝑗𝑗; 
            If (𝑝𝑝 > 𝑝𝑝𝑡𝑡),{ 
               𝑝𝑝𝑡𝑡 = 𝑝𝑝; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗; 
            } 
            Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied maximum p-values;  
         } 
      } 
   } 
   If (TreeGrowingMethod=‘effectsize’),{ 
      If (predictor is nominal),{ 
         𝑠𝑠𝑡𝑡 = 100; 
         For ∀𝑖𝑖 ∈ Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡>,{ 
            For ∀𝑗𝑗 ∈ Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡> and 𝑗𝑗 > 𝑖𝑖,{ 
               Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑖𝑖 and 𝑗𝑗; 
               If (𝑠𝑠𝑠𝑠 < 𝑠𝑠𝑡𝑡),{ 
                  𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗; 
               } 
            } 
         }  
      } 
      If (predictor is ordinal),{ 
         𝑠𝑠𝑡𝑡 = 100; 
         For ∀𝑖𝑖 ∈ Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡>,{ 
            Get category 𝑗𝑗 in Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡> which is subsequent to 𝑖𝑖, if exists; 
            Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑖𝑖 and 𝑗𝑗; 
            If (𝑠𝑠𝑠𝑠 < 𝑠𝑠𝑡𝑡),{ 
               𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗; 
            } 
         }  



 

      } 
   } 
   Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐; 
   Compute summary statistics for the compound category 𝑐𝑐; 
5. Let Α be the set of original categories in the new category 𝑐𝑐; 
   If (TreeGrowingMethod=‘p-value’),    
   and(SplitMergedCategories=true), 
   and(3 ≤ |A| ≤ 15),{ 
      𝑝𝑝𝑚𝑚𝑠𝑠𝑞𝑞𝑚𝑚𝑠𝑠 = 𝑝𝑝𝑡𝑡; 
      If (predictor is nominal),{ 
         𝑝𝑝𝑡𝑡 = 2; 
         For (𝑘𝑘 = 1: ⌊|A|/2⌋),{ 
            For (∀𝐴𝐴1 with 𝑘𝑘 categories belonging to Α),{ 
               Let 𝐴𝐴2 = 𝐴𝐴 − 𝐴𝐴1; 
               Compute p-value 𝑝𝑝 and effect size for category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2; 
               // Category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2 corresponds to 𝐴𝐴1 and 𝐴𝐴2 respectively 
               If (𝑝𝑝 < 𝑝𝑝𝑡𝑡),{ 
                  𝑝𝑝𝑡𝑡 = 𝑝𝑝; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2; 
               } 
               Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied minimum p-values;  
            } 
         } 
      } 
      If (predictor is ordinal),{   // Set Α consists of ordered categories 
         𝑝𝑝𝑡𝑡 = 2; 
         Let 𝐴𝐴1 be the set consisting of the first category in 𝐴𝐴; 
         Let 𝐴𝐴2 = 𝐴𝐴 − 𝐴𝐴1; 
         While (𝐴𝐴2 is not empty),{ 
            Compute p-value 𝑝𝑝 and effect size for category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2; 
            // Category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2 corresponds to 𝐴𝐴1 and 𝐴𝐴2 respectively 
            If (𝑝𝑝 < 𝑝𝑝𝑡𝑡),{ 
               𝑝𝑝𝑡𝑡 = 𝑝𝑝; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2; 
            } 
            Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied minimum p-values;  
            Move the first category in 𝐴𝐴2 into 𝐴𝐴1; 
         } 
      } 
      If (𝑝𝑝𝑡𝑡 < 𝑝𝑝𝑚𝑚𝑠𝑠𝑞𝑞𝑚𝑚𝑠𝑠),{ 
         Split category 𝑐𝑐 into two categories 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗; 
         Compute summary statistics for categories 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗; 
      } 
   }    
   If (TreeGrowingMethod=‘effectsize’),    
   and(SplitMergedCategories=true), 
   and(3 ≤ |A| ≤ 15),{ 
      𝑠𝑠𝑚𝑚𝑠𝑠𝑞𝑞𝑚𝑚𝑠𝑠 = 𝑠𝑠𝑡𝑡; 
      If (predictor is nominal),{ 
         𝑠𝑠𝑡𝑡 = −1;    
         For (𝑘𝑘 = 1: ⌊|A|/2⌋),{ 
            For (∀𝐴𝐴1 with 𝑘𝑘 categories belonging to Α),{ 
               Let 𝐴𝐴2 = 𝐴𝐴 − 𝐴𝐴1; 
               Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2; 
               // Category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2 corresponds to 𝐴𝐴1 and 𝐴𝐴2 respectively 



 

               If (𝑠𝑠𝑠𝑠 > 𝑠𝑠𝑡𝑡),{ 
                  𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1; 
                  𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2; 
               } 
            } 
         } 
      } 
      If (predictor is ordinal),{ 
         𝑠𝑠𝑡𝑡 = −1; 
         Let 𝐴𝐴1 be the set consisting of the first category in 𝐴𝐴; 
         Let 𝐴𝐴2 = 𝐴𝐴 − 𝐴𝐴1; 
         While (𝐴𝐴2 is not empty),{ 
            Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2; 
            // Category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2 corresponds to 𝐴𝐴1 and 𝐴𝐴2 respectively 
            If (𝑠𝑠𝑠𝑠 > 𝑠𝑠𝑡𝑡),{ 
               𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1; 
               𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2; 
            } 
            Move the first category in 𝐴𝐴2 into 𝐴𝐴1; 
         } 
      } 
      If (𝑠𝑠𝑡𝑡 > 𝑠𝑠𝑚𝑚𝑠𝑠𝑞𝑞𝑚𝑚𝑠𝑠),{ 
         Split category 𝑐𝑐 into two categories 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗; 
         Compute summary statistics for categories 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗; 
      } 
   }    
6. Denote the new set of categories as Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠+1

<𝑚𝑚,𝑡𝑡> ; 
   Compute p-value 𝑝𝑝𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠+1 and effect size 𝐸𝐸𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠+1 for the set of categories Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠+1

<𝑚𝑚,𝑡𝑡> ; 
   𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠 + 1; 
   Go to step 3; 
7. If (TreeGrowingMethod=‘p-value’),    
      𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠∗ = 𝑎𝑎𝑝𝑝𝑎𝑎min𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠{𝑝𝑝𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠}; 
   If (TreeGrowingMethod=‘effectsize’),    
      𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠∗ = 𝑎𝑎𝑝𝑝𝑎𝑎max𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠{𝐸𝐸𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠}; 
   𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> = 𝑝𝑝𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠∗; 
   Θ<𝑚𝑚,𝑡𝑡> = Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠∗

<𝑚𝑚,𝑡𝑡>; 
   𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡> = 𝐸𝐸𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠∗; 
8. Same as Step 6 in the procedure of CHAID_Merging(); 
9. Same as Step 7 in the procedure of CHAID_Merging(); 
10.Same as Step 8 in the procedure of CHAID_Merging(); 
11.Same as Step 9 in the procedure of CHAID_Merging(); 
   // Bonferroni adjustments are described in section 6.1.1. 

The function of Exhaustive_CHAID_Merging() will be used by each Reducer in the map-
reduce environment, see Appendix A for details.  

6.1.1. Bonferroni Adjustments for Exhaustive CHAID 

Exhaustive CHAID merges two categories iteratively until two categories left. The Bonferroni 
multiplier 𝐵𝐵 is the sum of number of possible ways of merging two categories at each iteration.  

 



 

Suppose that there are 𝐼𝐼 original categories of predictor 𝑋𝑋𝑚𝑚, including missing category if exists, in 
the set of merged categories Θ<𝑚𝑚,𝑡𝑡>, the Bonferroni multiplier 𝐵𝐵 is calculated as 

𝐵𝐵 =

⎩
⎪
⎨

⎪
⎧
𝐼𝐼(𝐼𝐼 − 1)

2
, Ordinal predictor;

𝐼𝐼(𝐼𝐼2 − 1)
2

, Nominal predictor;

𝐼𝐼(𝐼𝐼 − 1)
2

, Ordinal with a missing category.

 

7. Assignment and Risk Estimation Algorithms 

7.1. Assignment 

Once the tree is grown successfully, we compute an assignment (also called action or decision) for 
each node. To predict the target variable value for an incoming case, we first find in which terminal 
node it falls, then use the assignment of that terminal node for prediction. 

7.1.1. Node Assignment 

For any node 𝑡𝑡, let 𝑑𝑑𝑡𝑡 be the assignment given to node 𝑡𝑡, 

𝑑𝑑𝑡𝑡 = � 𝑗𝑗
∗(𝑡𝑡), 𝑌𝑌 is categorical
𝑦𝑦�𝑤𝑤(𝑡𝑡), 𝑌𝑌 is continuous 

𝑗𝑗∗(𝑡𝑡) = 𝑎𝑎𝑝𝑝𝑎𝑎min𝑖𝑖 ∑ 𝐶𝐶(𝑖𝑖|𝑗𝑗)𝑝𝑝(𝑗𝑗|𝑡𝑡)j , 

𝑦𝑦�𝑤𝑤(𝑡𝑡) =
∑ 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛𝑦𝑦𝑛𝑛𝑛𝑛∈ℏ(𝑡𝑡)

𝑁𝑁𝑤𝑤(𝑡𝑡)
 

where 𝑝𝑝(𝑗𝑗|𝑡𝑡) is the weighted probability of a case being in category 𝑗𝑗 given that it is in node 𝑡𝑡, 
defined as 

𝑝𝑝(𝑗𝑗|𝑡𝑡) =
𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡)

𝑁𝑁𝑤𝑤(𝑡𝑡)
, 

where 𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡) is the weighted number of cases in node 𝑡𝑡 with category 𝑗𝑗,  

𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡) = � 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛Ι(𝑦𝑦𝑛𝑛 = 𝑗𝑗)
𝑛𝑛∈ℏ(𝑡𝑡)

 

and 𝑁𝑁𝑤𝑤(𝑡𝑡) is the weighted number of cases in node 𝑡𝑡, 

𝑁𝑁𝑤𝑤(𝑡𝑡) = ∑ 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛∈ℏ(𝑡𝑡) . 

If there is more than one category 𝑗𝑗 that achieves the minimum, choose 𝑗𝑗∗(𝑡𝑡) to be the smallest 
such 𝑗𝑗 for which 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡) = ∑ 𝑓𝑓𝑛𝑛Ι(𝑦𝑦𝑛𝑛 = 𝑗𝑗)𝑛𝑛∈ℏ(𝑡𝑡)  is greater than 0, or just the smallest 𝑗𝑗 if 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡) is zero 
for all of them. 
 
 
 



 

If the target variable is categorical, for each target category in node 𝑡𝑡, a confidence value is 
calculated as 

𝑁𝑁𝑓𝑓,𝑗𝑗(𝑡𝑡)+1

𝑁𝑁𝑓𝑓(𝑡𝑡)+𝐽𝐽
, 

where 𝑁𝑁𝑑𝑑(𝑡𝑡) = ∑ 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡)𝐽𝐽
𝑗𝑗=1 . 

7.1.2. Case Assignment 

For a case with predictor vector Χ, the assignment or prediction 𝑑𝑑𝑇𝑇(Χ) for this case by the tree 𝑇𝑇 is  

𝑑𝑑𝑇𝑇(Χ) = �𝑗𝑗
∗(𝑡𝑡(Χ)), 𝑌𝑌 is categorical
𝑦𝑦�(𝑡𝑡(Χ)), 𝑌𝑌 is continuous 

where 𝑡𝑡(Χ) is the terminal node the case falls in. For categorical target, besides the prediction, the 
confidence for the predicted category is also available, as computed above.  

In classification of new cases, missing values are handled as they are during tree growth, being 
treated as an additional category (possibly merged with other non-missing categories). 

For nodes where there were no missing values in the training data, a missing category will not exist 
for the split of that node. In that case, cases with a missing value for the split variable are assigned 
as 

𝑗𝑗∗(𝑡𝑡) = 𝑎𝑎𝑝𝑝𝑎𝑎max𝑗𝑗𝑝𝑝(𝑗𝑗|𝑡𝑡), 

where 𝑝𝑝(𝑗𝑗|𝑡𝑡) is the weighted probability, as computed above.  

7.2. Risk Estimation 

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for the 
tree as a whole. 

Note that case weight is not involved in risk estimation, though it is involved in tree growing 
process and assignment. 

7.2.1. Risk Estimation of a Node 

For classification tree, the risk estimate 𝑝𝑝(𝑡𝑡) of node 𝑡𝑡 is computed as 

𝑝𝑝(𝑡𝑡) = 1
𝑁𝑁𝑓𝑓(𝑡𝑡)

∑ 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡)𝐶𝐶(𝑗𝑗∗(𝑡𝑡)|𝑗𝑗)𝐽𝐽
𝑗𝑗=1 . 

For regression tree, the risk estimate 𝑝𝑝(𝑡𝑡) of node 𝑡𝑡 is computed as 

𝑝𝑝(𝑡𝑡) = 1
𝑁𝑁𝑓𝑓(𝑡𝑡)

∑ 𝑓𝑓𝑛𝑛�𝑦𝑦𝑛𝑛 − 𝑦𝑦�𝑤𝑤(𝑡𝑡)�2𝑛𝑛∈ℏ(𝑡𝑡) = 𝑉𝑉𝑑𝑑(𝑡𝑡) + �𝑦𝑦�𝑑𝑑(𝑡𝑡) − 𝑦𝑦�𝑤𝑤(𝑡𝑡)�
2

. 

 
 



 

7.2.2. Risk Estimation of a Tree 

For both classification trees and regression trees, the risk estimate 𝑅𝑅(𝑇𝑇) for tree 𝑇𝑇 is calculated by 
aggregating risk estimates for the terminal nodes 𝑝𝑝(𝑡𝑡): 

𝑅𝑅(𝑇𝑇) =
∑ 𝑁𝑁𝑓𝑓(𝑡𝑡)𝑞𝑞(𝑡𝑡)𝑡𝑡∈𝑇𝑇′

∑ 𝑁𝑁𝑓𝑓(𝑡𝑡)𝑡𝑡∈𝑇𝑇′
, 

where 𝑇𝑇′ is the set of terminal nodes in the tree. 

7.3. Model Explanation 

7.3.1. Classification Table 

Classification table is computed only for categorical target.  

Suppose 𝑗𝑗 is one of the observed category, and 𝑗𝑗∗ is one of the predicted category, then the count of 
cell < 𝑗𝑗∗, 𝑗𝑗 > in the classification table is computed 

𝐶𝐶<𝑗𝑗∗,𝑗𝑗> = ∑ 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡)𝑡𝑡∈𝑇𝑇𝑗𝑗∗
′ , 

where 𝑇𝑇𝑗𝑗∗
′  denotes the set of leaf nodes whose node assignment is 𝑗𝑗∗. Insight and Interestingness 

Algorithms 

8.1. Grouping Leaf Nodes 

8.1.1. Continuous Target 

Leaf nodes can be partitioned into groups with low, middle, or high target means, by the following 
procedure. 

1. To simplify the formulas, we assume that leaf nodes in the collection �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡�𝑇𝑇′�� are 
already sorted in descending order according to target means. The target mean of leaf 
node 𝑡𝑡𝑞𝑞 is 𝑦𝑦�𝑡𝑡𝑞𝑞 =  𝑦𝑦�𝑑𝑑�𝑡𝑡𝑞𝑞�, the count is 𝑁𝑁𝑡𝑡𝑞𝑞 = 𝑁𝑁𝑑𝑑�𝑡𝑡𝑞𝑞� , and the corresponding standard error is 
computed as 

𝑠𝑠𝑡𝑡𝑞𝑞 = �
1

𝑁𝑁𝑡𝑡𝑞𝑞(𝑁𝑁−|𝑇𝑇′|)
∑ 𝑁𝑁𝑡𝑡𝑖𝑖𝑉𝑉𝑑𝑑(𝑡𝑡𝑖𝑖)

|𝑇𝑇′|
𝑖𝑖=1 , 𝐸𝐸 = 1, … , |𝑇𝑇′| 

where 𝑁𝑁 = ∑ 𝑁𝑁𝑡𝑡𝑖𝑖
�𝑇𝑇′�
𝑖𝑖=1 .  

2. Conduct a one-sample t-test for the leaf node with the largest target mean. The hypothesis 
is H0 : 𝑦𝑦�1 = 𝑦𝑦�  vs.  HA : 𝑦𝑦�1 > 𝑦𝑦�, where 𝑦𝑦� = 1

𝑁𝑁
∑ 𝑁𝑁𝑡𝑡𝑖𝑖𝑦𝑦�𝑡𝑡𝑖𝑖
�𝑇𝑇′�
𝑖𝑖=1 . We use the one-tail test because it 

will provide more power. The t statistic is 
𝑡𝑡 = 𝑦𝑦�𝑡𝑡1−𝑦𝑦�

𝑠𝑠𝑡𝑡1
. 

The test statistic has an asymptotic t distribution with degrees of freedom 𝑑𝑑 = 𝑁𝑁 − |𝑇𝑇′|. The 
corresponding p-value is computed as 
p-value=1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡𝑑𝑑 ≤ 𝑡𝑡).  
If p-value <= 𝛼𝛼 (significance level, default 0.05), then the high group is formed by including 
the leaf node with the largest target mean.  
 
 
 



 

3. Repeat the same process for the next leaf node, i.e. comparing 𝑦𝑦�𝑡𝑡2 with 𝑦𝑦�, 𝑦𝑦�𝑡𝑡3 with 𝑦𝑦�, etc. 
until no leaf node can be added into the high group. 

4. Similarly, conduct a one-sample t-test for the leaf node with the smallest target mean. The 
hypothesis is H0 : 𝑦𝑦�𝑡𝑡�𝑇𝑇′� = 𝑦𝑦�  vs.  HA : 𝑦𝑦�𝑡𝑡�𝑇𝑇′� < 𝑦𝑦�. The t statistic is 

𝑡𝑡 =
𝑦𝑦�𝑡𝑡�𝑇𝑇′�

−𝑦𝑦�

𝑠𝑠𝑡𝑡�𝑇𝑇′�
. 

The test statistic has an asymptotic t distribution with degrees of freedom 𝑑𝑑 = 𝑁𝑁 − |𝑇𝑇′|. The 
corresponding p-value is computed as 
p-value=1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡𝑑𝑑 ≤ |𝑡𝑡|).  
If p-value <= 𝛼𝛼 (significance level, default 0.05), then the low group is formed by including 
the leaf node with the smallest target mean.  

5. Repeat the same process for the next leaf node, i.e. comparing 𝑦𝑦�𝑡𝑡�𝑇𝑇′�−1 with 𝑦𝑦�, 𝑦𝑦�𝑡𝑡�𝑇𝑇′�−2  with 𝑦𝑦�, 

etc. until no leaf node can be added into the low group. 
6. If some leaf nodes still exist after forming the high and low groups, they are grouped into 

the middle group. 
7. The output is a list of the leaf nodes for the high, low, and medium groups with relevant 

test statistics.  
8.1.2. Categorical Target 

For categorical target, leaf nodes are grouped according to the mode of the target variable in each 
node, which is computed as 

𝑗𝑗∗∗(𝑡𝑡) = 𝑎𝑎𝑝𝑝𝑎𝑎max𝑗𝑗𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡), 𝑡𝑡 ∈ 𝑇𝑇′. 

Notice that if one leaf node has multiple modes, it will belong to several groups. This results in 
overlaps between groups of leaf nodes. For each mode, a confidence value is computed as the 
difference of probabilities between the mode category and the category with the second largest 
frequency.  

8.2. Unusual Leaf Nodes 

8.2.1. Continuous Target 

Detection of leaves with unusual low/high target means is based on the modified z-score method. 
This method is implemented by the procedure of 𝑀𝑀𝑝𝑝𝑑𝑑𝑖𝑖𝑓𝑓𝑖𝑖𝑠𝑠𝑑𝑑𝑖𝑖𝐸𝐸𝑐𝑐𝑝𝑝𝑝𝑝𝑠𝑠(𝐴𝐴[∙],𝑊𝑊[∙]) (See Appendix B for 
details). 

By calling this procedure, we let 𝐴𝐴[∙] be the array of target means 𝑦𝑦�𝑑𝑑(𝑡𝑡) of leaf nodes and 𝑊𝑊[∙] be the 
array of corresponding counts of cases 𝑁𝑁𝑑𝑑(𝑡𝑡), 𝑡𝑡 ∈ 𝑇𝑇′. 

The procedure returns an outlier strength value 𝑂𝑂(𝑡𝑡) for each leaf node. This value can be 
interpreted as 

�Leaf node 𝑡𝑡 has  unusually high target mean, 𝑂𝑂(𝑡𝑡) > 3,
Leaf node 𝑡𝑡 has  unusually low target mean, 𝑂𝑂(𝑡𝑡) < −3. 

Moreover, the outlier strength value 𝑂𝑂(𝑡𝑡) can be mapped into an interestingness score by calling 
the procedure of 𝑀𝑀𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝐶𝐶𝐸𝐸𝑝𝑝𝑖𝑖𝑐𝑐𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛(𝐸𝐸𝑡𝑡 , 𝐼𝐼𝑡𝑡 , |𝑂𝑂(𝑡𝑡)|) (See Appendix C for details), where we 
let the set of threshold values for outlier strength 𝐸𝐸𝑡𝑡  be {0.0, 2.0, 3.0, +∞}, and the set of threshold 
values for interestingness 𝐼𝐼𝑡𝑡  be {0.00, 0.33, 0.67, 1.00}. 



 

8.2.2. Categorical Target 

For categorical target, unusual leaf nodes are defined as those who have significantly different 
target distributions from the population. Thus, unusual leaf nodes herein can also been called as 
significant leaf nodes. Moreover, we define influential categories as those who have the most 
contributions to the significance/unusualness.  

Detect significant leaf nodes 

1. For each leaf node 𝑡𝑡, calculate the test statistic, 

𝜒𝜒𝑡𝑡2 = �
�𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡) − 𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗�

2

𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗

𝐽𝐽

𝑗𝑗=1
 

where 𝑝𝑝𝑗𝑗 = 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡𝑞𝑞) 𝑁𝑁𝑑𝑑(𝑡𝑡𝑞𝑞)⁄ , and 𝑡𝑡𝑞𝑞 is the root node. The statistic 𝜒𝜒𝑡𝑡2 follows a chi-squared 
distribution with degrees of freedom 𝐽𝐽 − 1. The corresponding p-value is computed, and if 
p-value≤ 𝛼𝛼 (significance level, default 0.05), leaf node 𝑡𝑡 will be considered as a significant 
leaf node. 
 

2. For each leaf node 𝑡𝑡, calculate the effect size, 

𝐸𝐸𝑡𝑡 = �
𝜒𝜒𝑡𝑡2

𝑁𝑁𝑑𝑑(𝑡𝑡)(𝐽𝐽 − 1)
�

1
2
 

Detect influential categories 

1. For each category of a significant leaf node, calculate the test statistic, 

𝜒𝜒𝑡𝑡,𝑗𝑗
2 =

�𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡) − 𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗�
2

𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗(1 − 𝑝𝑝𝑗𝑗)
 

The statistic 𝜒𝜒𝑡𝑡,𝑗𝑗
2  follows a chi-squared distribution with 1 degree of freedom. The 

corresponding p-value is computed and adjusted by multiplying a constant 𝐽𝐽 , and if the 
adjusted p-value is not larger than 𝛼𝛼 (significance level, default 0.05), the 𝑗𝑗th category is 
considered as an influential category. In addition, it is an influential high category 
if 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡) > 𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗, and an influential low category otherwise. 

2. For each influential category, calculate the effect size, 

𝐸𝐸𝑡𝑡,𝑗𝑗 = �
𝜒𝜒𝑡𝑡,𝑗𝑗
2

𝑁𝑁𝑑𝑑(𝑡𝑡)
�

1
2
 

Display strategies 

If the above analyses generate too many significant leaf nodes and /or influential target categories, 
we can apply the following strategy to limit them. 

1. Sort all significant leaf nodes by their effect size values in descending order. Then we can 
export/recommend top-k ones (default k = 3).  

2. Sort high and low influential target categories in each significant leaf node by their effect 
size values in descending order separately. Then we can export/recommend top-n 
influential high categories and top-n influential low categories (default n = 1). If effect size 
is tied, then all ties in top-n would be exported. 

Notice that the effect size of each leaf node can be mapped into an interestingness score by calling 
the procedure of 𝑀𝑀𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝐶𝐶𝐸𝐸𝑝𝑝𝑖𝑖𝑐𝑐𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛(𝐸𝐸𝑡𝑡 , 𝐼𝐼𝑡𝑡 ,𝐸𝐸𝑡𝑡) (See Appendix C for details), where we let 
the set of threshold values for effect size 𝐸𝐸𝑡𝑡 be {0.0, 0.2, 0.6, 1.0, +∞}, and the set of threshold values 
for interestingness 𝐼𝐼𝑡𝑡 be {0.00, 0.33, 0.67, 1.00, 1.00}, i.e. 

𝑓𝑓(𝑥𝑥) = 𝑀𝑀𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝐶𝐶𝐸𝐸𝑝𝑝𝑖𝑖𝑐𝑐𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛(𝐸𝐸𝑡𝑡 , 𝐼𝐼𝑡𝑡 , 𝑥𝑥), 

 



 

where x  is the effect size 𝐸𝐸𝑡𝑡 . 

Considering significance and effect size together, we will use the following mapping function for 
the final interestingness score: 

𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑛𝑛𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥,𝑦𝑦) = �
0, 𝑦𝑦 > 𝛼𝛼

𝑓𝑓(𝑥𝑥), 𝑦𝑦 ≤ 𝛼𝛼              

where x  is 𝐸𝐸𝑡𝑡  and y  is p-value.              

Small numbers in chi-square tests 

Monte Carlo method will be used to compute exact p-values when the expected counts in chi-
square test are less than 𝛿𝛿 (default 5).  

1. Randomly sample 𝑁𝑁𝑚𝑚 (default 10,000) leaf node configurations 𝑁𝑁𝑑𝑑,𝑗𝑗
𝑘𝑘 (𝑡𝑡) based on the 

marginal distribution 𝑝𝑝𝑗𝑗, 𝑗𝑗 = 1, … , 𝐽𝐽, where ∑ 𝑁𝑁𝑑𝑑,𝑗𝑗
𝑘𝑘 (𝑡𝑡)𝐽𝐽

𝑗𝑗=1 = 𝑁𝑁𝑑𝑑(𝑡𝑡), and 𝑘𝑘 ∈ [1,𝑁𝑁𝑚𝑚]. 
2. Calculate the probability of each configuration, 

𝑝𝑝𝑘𝑘 =
𝑁𝑁𝑑𝑑(𝑡𝑡)!

∏ 𝑁𝑁𝑑𝑑,𝑗𝑗
𝑘𝑘 (𝑡𝑡)!𝐽𝐽

𝑗𝑗=1
� �𝑝𝑝𝑗𝑗�

𝑁𝑁𝑓𝑓,𝑗𝑗
𝑘𝑘 (𝑡𝑡)𝐽𝐽

𝑗𝑗=1
 

3. Calculate the chi-square value for each configuration, 

𝜒𝜒𝑡𝑡
2,𝑘𝑘 = �

�𝑁𝑁𝑑𝑑,𝑗𝑗
𝑘𝑘 (𝑡𝑡) − 𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗�

2

𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗

𝐽𝐽

𝑗𝑗=1
 

4. Calculate the exact p-value for leaf node 𝑡𝑡, 

𝑝𝑝𝑡𝑡𝑠𝑠𝑥𝑥𝑠𝑠𝑐𝑐𝑡𝑡 = � 𝑝𝑝𝑘𝑘𝐼𝐼(𝜒𝜒𝑡𝑡
2,𝑘𝑘 ≥ 𝜒𝜒𝑡𝑡2)

𝑁𝑁𝑚𝑚

𝑘𝑘=1
 

5. If 𝑝𝑝𝑡𝑡𝑠𝑠𝑥𝑥𝑠𝑠𝑐𝑐𝑡𝑡≤ 𝛼𝛼 (significance level, default 0.05), leaf node 𝑡𝑡 is considered as a significant leaf 
node. 

6. Further, collect the chi-square test statistic for each configuration and for each target 
category 

𝜒𝜒𝑡𝑡,𝑗𝑗
2,𝑘𝑘 =

�𝑁𝑁𝑑𝑑,𝑗𝑗
𝑘𝑘 (𝑡𝑡) − 𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗�

2

𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗(1 − 𝑝𝑝𝑗𝑗)
 

Then compute the exact p-value for each target category of a significant leaf node 

𝑝𝑝𝑡𝑡,𝑗𝑗
𝑠𝑠𝑥𝑥𝑠𝑠𝑐𝑐𝑡𝑡 = � 𝑝𝑝𝑘𝑘𝐼𝐼(𝜒𝜒𝑡𝑡,𝑗𝑗

2,𝑘𝑘 ≥ 𝜒𝜒𝑡𝑡,𝑗𝑗
2 )

𝑁𝑁𝑚𝑚

𝑘𝑘=1
 

 
8.3. Target Class Analysis 

Target class analysis (TCA) applies only for a categorical target, and it is an approach of 
discovering insights from a couple of leaf node groups which are formed by including the leaf node 
with the highest probability of the target class one-by-one. The target class can be user-specified or 
determined automatically. In default, the target class is the minority class, that is, the one which has 
the minimal frequency.   

To simplify the formulas, we assume that leaf nodes in the collection �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡�𝑇𝑇′�� are already 
sorted in descending order according to the probability of the target class. Then the first group 𝐺𝐺0 is 
assumed to be empty, while group 𝐺𝐺1 is formed by node 𝑡𝑡1, and group 𝐺𝐺2 is formed by node 𝑡𝑡1 
and 𝑡𝑡2, and so on.  

Notice that if ties occur when ranking according to the probability of the target class, do the 
follows: 

 



 

a) Rank the tied nodes in descending order according to node sizes. 

b) If ties occur in a), rank the tied nodes in ascending order according to node IDs. 

For each group 𝐺𝐺𝑘𝑘, 𝑘𝑘 = 0, 1, 2, … ,𝐾𝐾, where 𝐾𝐾 = |𝑇𝑇′|, the assignment of nodes in the group is the 
target class, while for other nodes the assignment is the class with the highest probability among 
non-target ones. For details, please refer to Section 7.1.1. Then the classification table, i.e. confusion 
matrix, is 

 1 2 … 𝑐𝑐∗ … 𝐽𝐽 
1 𝑁𝑁11<𝑘𝑘> 𝑁𝑁12<𝑘𝑘> … 𝑁𝑁1𝑐𝑐∗

<𝑘𝑘> … 𝑁𝑁1𝐽𝐽<𝑘𝑘> 
2 𝑁𝑁21<𝑘𝑘> 𝑁𝑁22<𝑘𝑘> … 𝑁𝑁2𝑐𝑐∗

<𝑘𝑘> … 𝑁𝑁2𝐽𝐽<𝑘𝑘> 
… … … … … … … 
𝑐𝑐∗ 𝑁𝑁𝑐𝑐∗1

<𝑘𝑘> 𝑁𝑁𝑐𝑐∗2
<𝑘𝑘> … 𝑁𝑁𝑐𝑐∗𝑐𝑐∗

<𝑘𝑘> … 𝑁𝑁𝑐𝑐∗𝐽𝐽
<𝑘𝑘> 

… … … … … … … 
𝐽𝐽 𝑁𝑁𝐽𝐽1<𝑘𝑘> 𝑁𝑁𝐽𝐽2<𝑘𝑘> … 𝑁𝑁𝐽𝐽𝑐𝑐∗

<𝑘𝑘> … 𝑁𝑁𝐽𝐽𝐽𝐽<𝑘𝑘> 

Note that 𝑐𝑐∗ denotes the target class, and 𝑁𝑁𝑖𝑖𝑗𝑗<𝑘𝑘> = ∑ 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡)𝑡𝑡∈𝑇𝑇𝑖𝑖
′ , where 𝑇𝑇𝑖𝑖′ is the set of leaf nodes 

whose assignment is class 𝑖𝑖. In the matrix, the rows give the predicted class labels, while the 
columns give the actual ones.  

8.3.1. Model Accuracy 

Model accuracy determined by group 𝐺𝐺𝑘𝑘 is  

𝐴𝐴𝐶𝐶𝐶𝐶𝐺𝐺𝑘𝑘 =
∑ 𝑁𝑁𝑗𝑗𝑗𝑗

<𝑘𝑘>𝐽𝐽
𝑗𝑗=1

𝑁𝑁𝑓𝑓
, 

where 𝑁𝑁𝑑𝑑 is the total count of cases.  

8.3.2. Group Size 

Total number of cases in group 𝐺𝐺𝑘𝑘 is 

𝑁𝑁𝐺𝐺𝑘𝑘 = ∑ 𝑁𝑁𝑐𝑐∗𝑗𝑗
<𝑘𝑘>𝐽𝐽

𝑗𝑗=1 . 

Percentage of cases is 

𝑃𝑃𝑇𝑇𝐺𝐺𝐺𝐺𝑘𝑘 =
∑ 𝑁𝑁𝑐𝑐∗𝑗𝑗

<𝑘𝑘>𝐽𝐽
𝑗𝑗=1

𝑁𝑁𝑓𝑓
. 

8.3.3. True Positive Rate 

For class 𝑗𝑗, true positive rate, i.e. recall rate, is 

𝑇𝑇𝑃𝑃𝑅𝑅𝐺𝐺𝑘𝑘
𝑗𝑗 =

𝑁𝑁𝑗𝑗𝑗𝑗
<𝑘𝑘>

∑ 𝑁𝑁𝑖𝑖𝑗𝑗
<𝑘𝑘>𝐽𝐽

𝑖𝑖=1
, 𝑗𝑗 = 1, … , 𝐽𝐽. 

 

 



 

8.3.4. False Positive Rate 

For target class 𝑐𝑐∗, false positive rate is 

𝐹𝐹𝑃𝑃𝑅𝑅𝐺𝐺𝑘𝑘 =
∑ 𝑁𝑁𝑐𝑐∗𝑗𝑗

<𝑘𝑘>
𝑗𝑗≠𝑐𝑐∗

∑ ∑ 𝑁𝑁𝑖𝑖𝑗𝑗
<𝑘𝑘>

𝑗𝑗≠𝑐𝑐∗
𝐽𝐽
𝑖𝑖=1

. 

8.3.5. Positive Predictive Value 

For target class 𝑐𝑐∗, positive predictive value, i.e. precision, is 

𝑃𝑃𝑃𝑃𝑉𝑉𝐺𝐺𝑘𝑘 =
𝑁𝑁𝑐𝑐∗𝑐𝑐∗
<𝑘𝑘>

∑ 𝑁𝑁𝑐𝑐∗𝑗𝑗
<𝑘𝑘>𝐽𝐽

𝑗𝑗=1
. 

8.3.6. G-Mean 

G-mean determined by group 𝐺𝐺𝑘𝑘 is 

𝐺𝐺𝑚𝑚𝑠𝑠𝑎𝑎𝑛𝑛𝐺𝐺𝑘𝑘 = �∏ 𝑇𝑇𝑃𝑃𝑅𝑅𝐺𝐺𝑘𝑘
𝑗𝑗𝐽𝐽

𝑗𝑗=1 �
1/𝐽𝐽

. 

Notice that classes whose recall rate is constant zero across groups will be excluded from the 
calculation of the G-mean measure, and the number of 𝐽𝐽 in the formula will be adjusted 
accordingly.  

8.3.7. F-Measure 

F-measure determined by group 𝐺𝐺𝑘𝑘 is 

𝐹𝐹𝑚𝑚𝑠𝑠𝑎𝑎𝑠𝑠𝐸𝐸𝑝𝑝𝑠𝑠𝐺𝐺𝑘𝑘 =
2∗𝑇𝑇𝑇𝑇𝑅𝑅𝐺𝐺𝑘𝑘

𝑐𝑐∗ ∗𝑇𝑇𝑇𝑇𝑉𝑉𝐺𝐺𝑘𝑘
𝑇𝑇𝑇𝑇𝑅𝑅𝐺𝐺𝑘𝑘

𝑐𝑐∗ +𝑇𝑇𝑇𝑇𝑉𝑉𝐺𝐺𝑘𝑘
. 

8.3.8. Decision Rule Set 

In this section, we describe how to get a simplified decision rule set for each group 𝐺𝐺𝑘𝑘 by collapsing 
the original tree with respect to the target class. Moreover, we compute simplicity measures for the 
rule set, and use them later to select concise rule sets.   

Given the original tree 𝑇𝑇, we do the follows: 

1. If all the sibling leaf nodes have the same target class assignment, collapse all of them into 
the parent node, and take the target class as assignment of the parent node.  

2. Else, merge all the sibling nodes which have the same target class assignment into a new 
leaf node, and take the target class as assignment of the new node.  

The two steps above will be repeated until the tree cannot be collapsed further. Then, the simplified 
decision rule set consists of rules of all leaf nodes with target class assignment in the collapsed tree. 
A flag variable will be used to indicate whether the original decision rule has been collapsed.  

For the simplified decision rule set, the first simplicity measure is 

 

 



 

𝐸𝐸𝐺𝐺𝑘𝑘
1 = ∑ 𝑑𝑑(𝑡𝑡)𝑡𝑡∈𝑇𝑇∗ , 

where 𝑇𝑇∗ is the set of leaf nodes with target class assignment in the collapsed tree, and 𝑑𝑑(𝑡𝑡) denotes 
the number of different predictors used by the rule of leaf node 𝑡𝑡, that is, an adjusted depth. If 𝑇𝑇∗ is 
empty, let 𝐸𝐸𝐺𝐺𝑘𝑘

1 = 0. 

The second simplicity measure is 

𝐸𝐸𝐺𝐺𝑘𝑘
2 =

∑ 𝑑𝑑(𝑡𝑡)𝑡𝑡∈𝑇𝑇∗

∑ 𝑑𝑑(𝑡𝑡)𝑡𝑡∈𝑇𝑇∗∗
 

where 𝑇𝑇∗∗ is the set of leaf nodes with target class assignment in the original tree. If 𝑇𝑇∗∗ is empty, 
let 𝐸𝐸𝐺𝐺𝑘𝑘

2 = 0. 

8.3.9. Concise Rule Set 

An optimal decision rule set could be defined using any of goodness measures, e.g. model 
accuracy, G-mean, F-measure, etc. However, such an optimal rule set may often be too complicated 
to be understood. Concerning this, we provide an alternative rule set, which is not-bad but simple 
enough, i.e. concise rule set.   

Suppose the goodness measure of the decision rule set for group 𝐺𝐺𝑘𝑘 is 𝑇𝑇𝐺𝐺𝑘𝑘, 𝑘𝑘 = 1, 2, … ,𝐾𝐾. The 
goodness measure of the optimal rule set is Α, and correspondingly the first simplicity measure is Β. 

To determine the concise rule set, we use the following procedure: 

1. Order all the decision rule sets in ascending order according to the second simplicity 
measure 𝐸𝐸𝐺𝐺𝑘𝑘

2 . 
2. The concise rule set is the first one that satisfies 

a. Goodness measure threshold: 
𝑇𝑇𝐺𝐺𝑘𝑘
Α

> 𝛿𝛿, default 𝛿𝛿 = 90%. 

b. Simplicity threshold: 
𝑆𝑆𝐺𝐺𝑘𝑘
1

Β
< 𝛿𝛿, default 𝛿𝛿 = 90%.  

Notice that if B equals zero, only condition a will be checked.   

8.4. Tree Interestingness 

The above interestingness indices are defined for tree nodes. In this section, we describe 
interestingness indices for tree models.  

As illustrated in the following table, there are many sub-indices, each of which characterizes one 
aspect of a tree model. These sub-indices can be combined into an overall interestingness index (See 
Appendix D for details), which can be used to rank different tree models. 

Overall index Sub-index Description  
Overall interestingness for 
a classification/regression 
tree 

Model size, i.e. 
number of tree 
nodes 

Given the trees have grown fully and optimally, 
smaller trees would be more interesting, since they 
could provide simpler and more intuitive decision 
rules.  

Model size, i.e. number of tree nodes 𝑁𝑁𝑡𝑡, can be 
mapped into an interestingness score by calling the 
procedure of 𝑀𝑀𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝐶𝐶𝐸𝐸𝑝𝑝𝑖𝑖𝑐𝑐𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛(𝐸𝐸𝑡𝑡 , 𝐼𝐼𝑡𝑡 ,𝑁𝑁𝑡𝑡), 
where we let the set of threshold values for model 



 

size 𝐸𝐸𝑡𝑡 be {3, 50, 100, +∞}, and the set of threshold 
values for interestingness 𝐼𝐼𝑡𝑡  be {1.00, 0.67, 0.33, 0.00}. 

Unusualness of leaf 
nodes 

The unusualness sub-index for a tree is computed by 
averaging on unusualness interestingness indices of 
leaf nodes, as defined in section 8.2.   

Model accuracy The accuracy of a classification tree is  

𝐴𝐴𝑐𝑐𝑐𝑐 =
∑ 𝑁𝑁𝑓𝑓,𝑗𝑗∗(𝑡𝑡)(𝑡𝑡)𝑡𝑡∈𝑇𝑇′

∑ 𝑁𝑁𝑓𝑓(𝑡𝑡)𝑡𝑡∈𝑇𝑇′
. 

The accuracy of a random classification tree (using 
Mode) is  

𝐴𝐴𝑐𝑐𝑐𝑐0 =
𝑁𝑁𝑓𝑓,𝚥𝚥�(𝑡𝑡𝑟𝑟)(𝑡𝑡𝑟𝑟)

𝑁𝑁𝑓𝑓(𝑡𝑡𝑟𝑟)
, 

where 𝑡𝑡𝑞𝑞 denotes the root node, and 𝚥𝚥̂(𝑡𝑡𝑞𝑞) is the mode 
of the root node. 

The accuracy of a regression tree is  

𝐴𝐴𝑐𝑐𝑐𝑐 = 𝑅𝑅𝑠𝑠𝑞𝑞𝑣𝑣𝑠𝑠𝑞𝑞𝑠𝑠 = 1 −
∑ 𝑁𝑁𝑓𝑓(𝑡𝑡𝑖𝑖)𝑉𝑉𝑓𝑓(𝑡𝑡𝑖𝑖)
�𝑇𝑇′�
𝑖𝑖=1
𝑁𝑁𝑓𝑓(𝑡𝑡𝑟𝑟)𝑉𝑉𝑓𝑓(𝑡𝑡𝑟𝑟)

. 

The accuracy of a random regression tree (using 
Mean), 𝐴𝐴𝑐𝑐𝑐𝑐0, is zero. 

Then, model accuracy can be mapped into an 
interestingness score by calling the procedure 
of 𝑀𝑀𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝐶𝐶𝐸𝐸𝑝𝑝𝑖𝑖𝑐𝑐𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛(𝐸𝐸𝑡𝑡 , 𝐼𝐼𝑡𝑡 ,𝐴𝐴𝑐𝑐𝑐𝑐), where 
we let the set of threshold values for model 
accuracy 𝐸𝐸𝑡𝑡  be {𝐴𝐴𝑐𝑐𝑐𝑐0, 1}, and the set of threshold 
values for interestingness 𝐼𝐼𝑡𝑡  be {0.00, 1.00}. If the 
model accuracy is lower than 𝐴𝐴𝑐𝑐𝑐𝑐0, the 
interestingness will be zero.  

Based on the accuracy interestingness 𝐼𝐼(𝐴𝐴𝑐𝑐𝑐𝑐), the 
accuracy 𝐴𝐴𝑐𝑐𝑐𝑐 can be interpreted as 

𝐼𝐼𝑛𝑛𝑠𝑠𝑖𝑖𝑎𝑎ℎ𝑡𝑡(𝐴𝐴𝑐𝑐𝑐𝑐) = �
𝑤𝑤𝑠𝑠𝑎𝑎𝑘𝑘, 𝐼𝐼(𝐴𝐴𝑐𝑐𝑐𝑐) ≤ 0.33

𝑚𝑚𝑝𝑝𝑑𝑑𝑠𝑠𝑝𝑝𝑎𝑎𝑡𝑡𝑠𝑠, 0.33 < 𝐼𝐼(𝐴𝐴𝑐𝑐𝑐𝑐) ≤ 0.67
𝑠𝑠𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑎𝑎, 𝐼𝐼(𝐴𝐴𝑐𝑐𝑐𝑐) > 0.67

 

Note: Relative error, that is 1 − 𝐴𝐴𝑐𝑐𝑐𝑐, will be 
computed and exported for a regression tree. 
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Appendix A. Map-Reduce Functions 

A.1. Map Function 

Inputs: 
− Training cases in data split 𝑘𝑘 

− 𝑇𝑇(𝑑𝑑)     // Current tree of depth 𝑑𝑑  

− 𝑄𝑄       // Set of non-terminal leaf nodes 

Outputs: 
   <Continuous target> 

− 𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)               

− 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) 

− 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) 

− 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) 

− 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)  

− 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) 

   <Categorical target> 

− 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) 

− 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) 

   where 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 𝑗𝑗 = 1, … , 𝐽𝐽, 𝑚𝑚 = 1, … ,𝑀𝑀, and 𝑡𝑡 ∈ Q 
Procedure: 
1. Start with 
      𝑠𝑠 = 0; 
      𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) = 0;     // For continuous target 
      𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) = 0; 
      𝑉𝑉𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) = 0; 
      𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) = 0; 
      𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) = 0; 
      𝑉𝑉𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) = 0; 
      𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) = 0;     // For categorical target 
      𝑤𝑤𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) = 0; 
2. Iterator points to the first case; 
   While (Iterator does not point to NULL),{ 
      Get the current case 𝑛𝑛; 
      If (𝑦𝑦𝑛𝑛 is not missing), 
      and(𝑓𝑓𝑛𝑛 is not missing, zero, or negative), 
      and(𝑤𝑤𝑛𝑛 is not missing, zero, or negative),{ 
         Assign case 𝑛𝑛 to a leaf node 𝑡𝑡 by following the splits in tree 𝑇𝑇(𝑑𝑑); 
         // In order to assign cases to leaf nodes efficiently, we should take a  
         // proper data structure for tree 𝑇𝑇(𝑑𝑑) 
         If (𝑡𝑡 ∈ 𝑄𝑄),{ 
            𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠 + 1) = 𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠) + 𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖);    // For continuous target 

            𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠 + 1) = 𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) + 𝑑𝑑𝑛𝑛
𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠+1)

Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖)[𝑦𝑦𝑛𝑛 − 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠)]; 

            𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠 + 1) =

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠)

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠+1)

�𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠) + 𝑑𝑑𝑛𝑛

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠+1)

Ι�𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖� �𝑦𝑦𝑛𝑛 − 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠)�

2
�; 

            𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠 + 1) = 𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) + 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖), 
            𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠 + 1) = 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠) + 𝑤𝑤𝑛𝑛𝑑𝑑𝑛𝑛

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠+1)

Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖)[𝑦𝑦𝑛𝑛 − 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠)]; 



 

            𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠 + 1) =

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠)

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠+1)

�𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠) + 𝑤𝑤𝑛𝑛𝑑𝑑𝑛𝑛

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠+1)

Ι�𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖� �𝑦𝑦𝑛𝑛 − 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠)�

2
�; 

            𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>(𝑠𝑠 + 1) = 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) + 𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖 ∩ 𝑦𝑦𝑛𝑛 = 𝑗𝑗);   // For categorical target 
            𝑤𝑤𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>(𝑠𝑠 + 1) = 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>(𝑠𝑠) + 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖 ∩ 𝑦𝑦𝑛𝑛 = 𝑗𝑗); 

            𝑠𝑠 = 𝑠𝑠 + 1; 
         } 
      } 
      Iterator points to the next case; 
   } 
3. Return the following statistics 

𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) = 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠);      // For continuous target 
𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) = 𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠); 
𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) = 𝑉𝑉𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠); 
𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) = 𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠); 
𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) = 𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠); 
𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) = 𝑉𝑉𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠); 
𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) = 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>(𝑠𝑠);      // For categorical target 
𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) = 𝑤𝑤𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>(𝑠𝑠); 

A.2. Reduce Function 

Inputs: 
   // Local summary statistics 
   <Continuous target> 

− 𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) 

− 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) 

− 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) 

− 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) 

− 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) 

− 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) 

<Categorical target> 

− 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) 

− 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) 

   where 𝑘𝑘 = 1, … ,𝐾𝐾, 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 𝑗𝑗 = 1, … , 𝐽𝐽, and < 𝑚𝑚, 𝑡𝑡 >∈ Ψ𝑞𝑞, Ψ𝑞𝑞 denotes the set of keys 
that are allocated to the 𝑝𝑝th Reducer 

 
   <Parameter settings> 

− TreeGrowingMethod       // {‘p-value’, ‘effectsize’} 
− AlphaMerge              // Default 0.05 
− AlphaSplit              // Default 0.05 
− AlphaSplitMerge         // Default 0.025 
− EffectSizeThreshold  
− BonferroniAdjustment    // {true, false}, default true 
− ChiSquareType           // {‘pearson’, ‘likelihood’}, default ‘pearson’ 
− Epsilon                 // Default 0.001 
− MaxIterations           // Default 100 
− MinChildCasesABS        // Default 50 
− MinChildCasesPct        // Default 1 
− NodeSizeRequirement     // {‘absolute’, ‘percentage’}, default ‘absolute’ 
− Scores                  // Vector value, scores for categories of 𝑌𝑌 
− SplitMergedCategories   // {true, false}, default false 



 

− MergingMethod           // {‘CHAID’, ‘Exhaustive CHAID’}, default ‘CHAID’ 
Outputs: 

− Θ<𝑚𝑚,𝑡𝑡>                   // The set of merged categories 
− 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>                   // P-value, computed for Θ<𝑚𝑚,𝑡𝑡> 
− TestStatistic           // Test statistic associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>  
− FreedomDegrees          // Freedom degrees associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>  
− 𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡>                   // Effect size 
− 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>                   // For continuous target 

− 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 

− 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>                   // For categorical target 

− 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>  

where 𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>, 𝑗𝑗 = 1, … , 𝐽𝐽, and < 𝑚𝑚, 𝑡𝑡 >∈ Ψ𝑞𝑞∗, Ψ𝑞𝑞∗ is the set of keys with the locally 
smallest p-values 

Procedure: 
1. For (∀< 𝑚𝑚, 𝑡𝑡 >∈ Ψ𝑞𝑞),{ 

   𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = ∑ 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 ;     // For continuous target 

   𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = ∑

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 ; 

   𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = ∑

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 𝑉𝑉𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 + ∑

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡> �𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘) − 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>��𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘) + 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>�𝐾𝐾

𝑘𝑘=1 ; 

 

   𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = ∑ 𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 ; 

   𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = ∑

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 ; 

   𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = ∑

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 𝑉𝑉𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 + ∑

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> �𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘) − 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>��𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘) + 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>�𝐾𝐾

𝑘𝑘=1 ; 

      𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡> = ∑ 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 ;      // For categorical target 

   𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡> = ∑ 𝑤𝑤𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 ; 

      If (MergingMethod=‘CHAID’),  
         Run CHAID_Merging(); 

   Else,  
      Run ExhaustiveCHAID_Merging(); 
} 

2. Run FindLocalBest();       // Get the local best set of keys Ψ𝑞𝑞∗ 

A.2. Controller 

The Controller is responsible for launching a series of map-reduce jobs during the tree growth. 
Moreover, it grows the tree directly by performing tree-specific operations, e.g. splitting, stopping, 
etc.  

Inputs: 
   <Parameter settings> 

− TreeGrowthThreshold     // Default 1,000,000 
− AlphaMerge              // Default 0.05 
− AlphaSplit              // Default 0.05 
− AlphaSplitMerge         // Default 0.025 
− EffectSizeChisqTest     // Default 0.05 
− EffectSizeFTest         // Default 0.05 



 

− BonferroniAdjustment    // {true, false}, default true 
− ChiSquareType           // {‘pearson’, ‘likelihood’}, default ‘pearson’ 
− Costs                   // Misclassification costs 
− Epsilon                 // Default 0.001 
− MaxIterations           // Default 100 
− MaxTreeDepth            // Default 5 
− MaxNodeNumber           // Default 1,000 
− MinChildCasesABS        // Default 50 
− MinChildCasesPct        // Default 1 
− MinParentCasesABS       // Default 100 
− MinParentCasesPct       // Default 2 
− NodeSizeRequirement     // {‘absolute’, ‘percentage’}, default ‘absolute’ 
− Scores                  // Vector value, scores for categories of 𝑌𝑌 
− SplitMergedCategories   // {true, false}, default false 
− MergingMethod           // {‘CHAID’, ‘Exhaustive CHAID’}, default ‘CHAID’ 

Outputs: 
− PMML         // Save the model of CHAID tree 
− StatXML      // Save model diagnostics 

Procedure: 
1. If (𝑁𝑁𝑑𝑑 ≤ TreeGrowthThreshold), 
      TreeGrowingMethod=‘p-value’; 
   Else,  
      TreeGrowingMethod=‘effectsize’; 
   If (Target is continuous), 
      EffectSizeThreshold=EffectSizeFTest; 
   If (Target is categorical), 
      EffectSizeThreshold=EffectSizeChisqTest; 
2. Initially let 𝑄𝑄 be an empty set; 
3. Run CreateRootNode(); 
4. Add the root node into 𝑄𝑄; 
5. Let 𝑐𝑐𝑝𝑝𝐸𝐸𝑛𝑛𝑡𝑡 = 1;    // Current number of tree nodes 
   Let 𝑑𝑑 = 0;       // Current tree depth 
6. While (𝑄𝑄 is not empty),{ 
      Launch a map-reduce job, and get the following statistics 

   Θ<𝑚𝑚,𝑡𝑡>,                     // The set of merged categories 
   𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>,                     // P-value, computed for Θ<𝑚𝑚,𝑡𝑡> 
   TestStatistic,             // Test statistic associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>  
   FreedomDegrees,            // Freedom degrees associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>  
   𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡>                      // Effect size 
      𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>,                     // For continuous target 

      𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>, 

      𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>, 

      𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>, 

      𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>, 

      𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>, 

         𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>,                     // For categorical target 

         𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>, 

      where 𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>, 𝑗𝑗 = 1, … , 𝐽𝐽, and < 𝑚𝑚, 𝑡𝑡 >∈ Ψ𝑞𝑞∗, 𝑝𝑝 = 1, … ,𝑅𝑅; 
      Run FindGlobalBest();         // Get the set Ψ∗ 
      If (Ψ∗ is empty) and (𝑑𝑑 = 0), 
         Return an error of “Stopping rules prevent any tree growth”; 
         // In other words, no inputs are sufficiently related to the target 
      If (𝑑𝑑 = 0),{    
         // Ψ∗ just contains the key for root node 
         Save the following statistics for root node 𝑡𝑡: 



 

      𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠
<𝑚𝑚,𝑡𝑡>,                     // P-value, computed for Θ<𝑚𝑚,𝑡𝑡> 

      TestStatistic,             // Test statistic associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠
<𝑚𝑚,𝑡𝑡>  

      FreedomDegrees,            // Freedom degrees associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠
<𝑚𝑚,𝑡𝑡>  

      𝐸𝐸𝑠𝑠
<𝑚𝑚,𝑡𝑡>                      // Effect size 

         // For continuous target 
         𝑁𝑁𝑑𝑑(𝑡𝑡) = ∑ 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> ; 

         𝑦𝑦�𝑑𝑑(𝑡𝑡) = ∑
𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑓𝑓(𝑡𝑡)
𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> ; 

         𝑉𝑉𝑑𝑑(𝑡𝑡) = ∑
𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑓𝑓(𝑡𝑡)
𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> +𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> ∑

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑓𝑓(𝑡𝑡)
�𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡> − 𝑦𝑦�𝑑𝑑(𝑡𝑡)� �𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> + 𝑦𝑦�𝑑𝑑(𝑡𝑡)�𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> ; 

         𝑁𝑁𝑤𝑤(𝑡𝑡) = ∑ 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> ; 

         𝑦𝑦�𝑤𝑤(𝑡𝑡) = ∑
𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑤𝑤(𝑡𝑡)
𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> ; 

         𝑉𝑉𝑤𝑤(𝑡𝑡) = ∑
𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑤𝑤(𝑡𝑡)
𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> +𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> ∑

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑤𝑤(𝑡𝑡)
�𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡> − 𝑦𝑦�𝑤𝑤(𝑡𝑡)� �𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> + 𝑦𝑦�𝑤𝑤(𝑡𝑡)�𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> ; 

         // For categorical target 
         𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡) = ∑ 𝑤𝑤𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> , 𝑗𝑗 = 1, … , 𝐽𝐽; 

         𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡) = ∑ 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> , 𝑗𝑗 = 1, … , 𝐽𝐽; 
      } 
      If (Ψ∗ is empty), 
         Let 𝑄𝑄 be empty; 
      Else,{ 
         Compute the number of new splits: 𝑛𝑛𝑠𝑠𝑤𝑤𝐸𝐸𝑝𝑝𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠 = ∑ |Θ<𝑚𝑚,𝑡𝑡>|<𝑚𝑚,𝑡𝑡>∈Ψ∗ ;  
         If (𝑐𝑐𝑝𝑝𝐸𝐸𝑛𝑛𝑡𝑡 + 𝑛𝑛𝑠𝑠𝑤𝑤𝐸𝐸𝑝𝑝𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠 > MaxNodeNumber),{ 
            If (𝑑𝑑 = 0),  
               Return an error of “The very first split has too many nodes”; 
            Let 𝑄𝑄 be empty; 
         } 
         Else,{ 
            Let 𝑐𝑐𝑝𝑝𝐸𝐸𝑛𝑛𝑡𝑡 = 𝑐𝑐𝑝𝑝𝐸𝐸𝑛𝑛𝑡𝑡 + 𝑛𝑛𝑠𝑠𝑤𝑤𝐸𝐸𝑝𝑝𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠; 
            Run Splitting();   // Get tree 𝑇𝑇(𝑑𝑑 + 1) and new set 𝑄𝑄 
            Let 𝑑𝑑 = 𝑑𝑑 + 1; 
            Run Stopping(); 
         } 
      } 
   } 
7. Calculate node assignment and risk estimation for tree 𝑇𝑇(𝑑𝑑); // See section 7 
8. Save 𝑇𝑇(𝑑𝑑) in PMML; 
9. Save model diagnostics in StatXML; 

Appendix B. Modified Z-Score Method 
The procedure of 𝑀𝑀𝑝𝑝𝑑𝑑𝑖𝑖𝑓𝑓𝑖𝑖𝑠𝑠𝑑𝑑𝑖𝑖𝐸𝐸𝑐𝑐𝑝𝑝𝑝𝑝𝑠𝑠(𝐴𝐴[∙],𝑊𝑊[∙])  is as follows: 

1. Get the number of members in ][⋅A , suppose it is K . 
2. Find the median of ][kΑ , incorporating the corresponding frequencies ][kW . Denote the 

median as M , then ( )][]1[ ][,...,]1[ KWW KAAmedianM = , where ][][ kWkA  is a set which 

contains only ][kA  value with frequency ][kW . 

3. Compute the median absolute deviation (MAD) of ][kΑ , again including the frequencies 
 
 



 

 
][kW , 

),][,...,]1[(
][]1[ KWW

MKAMAmedianMAD −−=
 

where
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MkA − is a set which contains only MkA −][  value frequency ][kW .
 

4. If 0=MAD , compute outlier strength for each ][kΑ  
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][][ −

=
 

where

∑

∑

=

=

−
= K

k

K

k

kW

MkAkW
MeanAD

1

1

][

][][
. 

5. Else, compute outlier strength as 

MAD
MkAkO

*4826.1
][][ −

= . 

 

Appendix C. Monotone Cubic Interpolation Method 
𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑛𝑛𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = 𝑀𝑀𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝐶𝐶𝐸𝐸𝑝𝑝𝑖𝑖𝑐𝑐𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛(𝐸𝐸𝑡𝑡 , 𝐼𝐼𝑡𝑡 , 𝑥𝑥) 

where 𝑥𝑥 is the input statistic which must have a monotonically increasing relationship with the 
interestingness score threshold values. 𝐸𝐸𝑡𝑡  is a set of distinct threshold values for the input statistics, 
which have been accepted and commonly used by expert users to interpret the statistics. The 
positive infinity (+∞) is included if the input statistic is not bounded from above. 𝐼𝐼𝑡𝑡 is a set of 
distinct threshold values for the interestingness scores that 𝐸𝐸𝑡𝑡 corresponds to. The threshold values 
must be between 0 and 1. The size of 𝐸𝐸𝑡𝑡 and 𝐼𝐼𝑡𝑡 must be the same. There are at least two values in 𝐸𝐸𝑡𝑡  excluding positive infinity (+∞). 

Pre-processing 

Let {𝑥𝑥𝑘𝑘} = 𝑠𝑠𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝑑𝑑(𝐸𝐸𝑡𝑡) such that 𝑥𝑥1 < ⋯ < 𝑥𝑥𝑛𝑛, where 𝑛𝑛 is the number of values in 𝐸𝐸𝑡𝑡 . Let {𝑦𝑦} =
𝑠𝑠𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝑑𝑑(𝐼𝐼𝑡𝑡) such that 𝑦𝑦1 < ⋯ < 𝑦𝑦𝑛𝑛. 

Condition A: There are more than two threshold values for input statistics, and they are all finite 
numbers 

Preparing for cubic interpolation 

The following steps should be taken for preparing a cubic interpolation function construction. 

Step 1: Compute the slopes of the secant lines between successive points. 

 

for 𝑘𝑘 = 1,⋯ ,𝑛𝑛 − 1. 
 
 



 

Step 2: Initialize the tangents at every data point as the average of the secants,  

 

for 𝑘𝑘 = 2,⋯ ,𝑛𝑛 − 1; these may be updated in further steps. For the endpoints, use one-sided 
differences: 𝑚𝑚1 = ∆1 and 𝑚𝑚𝑛𝑛 = ∆𝑛𝑛−1.  

Step 3: Let αk=mk / Δk and βk=mk + 1 / Δk  for 𝑘𝑘 = 1,⋯ ,𝑛𝑛 − 1. 

 If α or β are computed to be zero, then the input data points are not strictly monotone. In such 
cases, piecewise monotone curves can still be generated by choosing mk=mk + 1=0, although global 
strict monotonicity is not possible. 

Step 4: Update 𝐦𝐦𝐤𝐤 

If 𝛼𝛼2 + 𝛽𝛽2 > 9, then set mk=τkαkΔk and mk + 1=τkβkΔk where  𝜏𝜏𝑘𝑘 = 3
�𝛼𝛼2+𝛽𝛽2

. 

Cubic interpolation 

After the preprocessing, evaluation of the interpolated spline is equivalent to cubic Hermite spline, 
using the data xk, yk, and mk for k=1,...,n. 

To evaluate x in the range [xk, xk+1] for k=1,...,n-1, calculate 

h = xk+1 − xk  and t = x−xk
h

 

then the interpolant is 

f(x) = ykh00(t) + h ∗ mkh10(t) + yk+1h01(t) + h ∗ mk+1h11(t) 

where hii(t) are the basis functions for the cubic Hermite spline. 

h00(t) 2t3 − 3t2 + 1 

h10(t) t3 − 2t2 + t 

h01(t) − 2t3 + 3t2 

h11(t) t3 − t2 

Condition B: There are two threshold values for input statistics 

As we have clarified in the beginning that there are at least two values in 𝐸𝐸𝑡𝑡 excluding positive 
infinity (+∞), they must be both finite numbers when there are only two threshold values. 

In this case the mapping function is a straight line connecting (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2). 

f(x) = 𝐲𝐲𝟏𝟏 + (𝐲𝐲𝟐𝟐 − 𝐲𝐲𝟏𝟏)
𝐱𝐱 − 𝐱𝐱𝟏𝟏
𝐱𝐱𝟐𝟐 − 𝐱𝐱𝟏𝟏

 

 

 



 

Condition C: Threshold values include infinity 

Note that there are at least two values in 𝐸𝐸𝑡𝑡 excluding positive infinity (+∞). Take the last three 
statistic threshold values and threshold values for the interestingness scores from the sorted lists, 
we have three pairs of data (𝑥𝑥𝑛𝑛−2,𝑦𝑦𝑛𝑛−2), (𝑥𝑥𝑛𝑛−1,𝑦𝑦𝑛𝑛−1) and  (+∞, 𝑦𝑦𝑛𝑛). 

An exponential function  

f(x) = a − be−cx 

can be defined by the pairs, where 

a = yn, 

b = �(yn − yn−2)xn−1
(yn − yn−1)xn−2�

(xn−1−xn−2)
, 

c = 1
xn−1−xn−2

ln yn−yn−2
yn−yn−1

. 

If 𝑛𝑛 = 3, which means there are only two distinct values in 𝐸𝐸𝑡𝑡 excluding positive infinity (+∞), the 
exponential function is employed for evaluating x in the range [x1, +∞). 

Otherwise, the exponential function is for evaluating x in the range [xn-1, +∞). To evaluate x in the 
range [x1, xn-1), use procedures under “condition A: There are more than two threshold values for 
input statistics, and they are all finite numbers” with data set {𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛′} and {𝑦𝑦1,⋯ ,𝑦𝑦𝑛𝑛′}, where 
𝑛𝑛′ = 𝑛𝑛 − 1. To insure a smooth transition to the exponential function, the tangent 𝑚𝑚𝑛𝑛′ at data point 
𝑥𝑥𝑛𝑛′ is given as 

𝑚𝑚𝑛𝑛′ =
d(a − be−cx)

dx
�
x=xn′

= 𝑝𝑝𝑐𝑐𝑠𝑠−𝑐𝑐𝑥𝑥𝑛𝑛′  

where a, b, c are computed as above. 

Appendix D. Overall Interestingness Methods 
The following methods can be used to combine interestingness sub-indices 𝐼𝐼𝑑𝑑  (𝑑𝑑 = 1,2, … ,𝐷𝐷) into an 
overall interestingness index.  

Note that undefined interestingness sub-indices should be excluded from the calculation.   

D.1. Weighted Average 

The overall interestingness by the method of Weighted Average is 

𝑂𝑂𝑣𝑣𝑠𝑠𝑝𝑝𝑎𝑎𝑠𝑠𝑠𝑠𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑛𝑛𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 =
∑ 𝑊𝑊𝐼𝐼𝑑𝑑𝐼𝐼𝑑𝑑
𝐷𝐷
𝑑𝑑=1
∑ 𝑊𝑊𝐼𝐼𝑑𝑑
𝐷𝐷
𝑑𝑑=1

, 

where 𝑊𝑊𝐼𝐼𝑑𝑑 is the weight corresponding to the interestingness sub-index 𝐼𝐼𝑑𝑑 . 

 



 

In default, the weights are set as 1/𝐷𝐷. Another more comprehensive choice is to use normalized 
interestingness sub-indices as weights, i.e.  

𝑊𝑊𝐼𝐼𝑑𝑑 = 𝐼𝐼𝑑𝑑
∑ 𝐼𝐼𝑑𝑑𝐷𝐷
𝑑𝑑=1

. 

D.2. Maximum 

The overall interestingness by the method of Maximum is 

𝑂𝑂𝑣𝑣𝑠𝑠𝑝𝑝𝑎𝑎𝑠𝑠𝑠𝑠𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑛𝑛𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑎𝑎𝑥𝑥{𝐼𝐼𝑑𝑑 ,𝑑𝑑 = 1,2, … ,𝐷𝐷}. 

  



 

Time Series Algorithm: ARIMA 

1.  Introduction 
Autoregressive Integrated Moving Average (ARIMA) model is a typical time series model which is 
first popularized by Box and Jenkins (1976). The model can be built on equally spaced univariate time 
series data and then forecast future values. ARIMA also can include other time series as predictor 
variables, which lead to generalized ARIMA model that we call transfer function (TF) model. The 
ARIMA/TF model predicts a value of a target time series as a linear combination of its own past 
values, past errors(also called shocks or innovations), and current and past values of other time series. 

This document discusses how to estimate ARIMA/TF model and forecast future values. The rest of the 
sections are arranged as follows: Section 2 provides some notations that are used in the document. 
Section 3 describes ARIMA/TF model. Forecast and parameter estimation are provided in section 4 
and 5, respectively. Section 6 gives the method to initialize parameter. Post-estimation including 
coefficient inference, goodness-of-fit, diagnostic statistic and predictor importance are given in Section 
7. Scenario analysis is provided in Section 8. Appendix A is double seasonal ARIMA model, and 
Appendix B,  C  and D are some fundamental computation. 

2.  Notations 
The following notation is used throughout the document unless otherwise stated: 

𝑌𝑌𝑡𝑡 Dependent series, where 𝑡𝑡 = 1,⋯ ,𝑛𝑛 

𝑎𝑎𝑡𝑡 
White noise series normally distributed with mean zero and variance 𝜎𝜎2, where 𝑡𝑡 =
1,⋯ ,𝑛𝑛 

𝑝𝑝 Order of non-seasonal autoregressive part of the model 

𝐸𝐸 Order of non-seasonal moving average  part of the model 

𝑑𝑑 Order of non-seasonal differencing 

𝑃𝑃 Order of seasonal autoregressive part of the model 

𝑄𝑄 Order of seasonal moving average  part of the model 

𝐷𝐷 Order of seasonal differencing 

𝑠𝑠 Seasonality or period of the model 

𝜙𝜙𝑝𝑝(𝐵𝐵) AR polynomial of B of order 𝑝𝑝, 𝜙𝜙𝑝𝑝(𝐵𝐵) = 1 − 𝜑𝜑1𝐵𝐵 − 𝜑𝜑2𝐵𝐵2 −⋯− 𝜑𝜑𝑝𝑝𝐵𝐵𝑝𝑝 

𝜃𝜃𝑞𝑞(𝐵𝐵) MA polynomial of B of order 𝐸𝐸, 𝜃𝜃𝑞𝑞(𝐵𝐵) = 1 − 𝜗𝜗1𝐵𝐵 − 𝜗𝜗2𝐵𝐵2 − ⋯− 𝜗𝜗𝑞𝑞𝐵𝐵𝑞𝑞  

ΦP(Bs) Seasonal AR polynomial of 𝐵𝐵𝑠𝑠 of order 𝑃𝑃,  ΦP(Bs) = 1 −Φ1Bs − Φ2B2s − ⋯− ΦPBPs 

ΘQ(Bs) Seasonal MA polynomial of 𝐵𝐵𝑠𝑠 of order 𝑄𝑄,  ΘQ(Bs) = 1 − Θ1Bs − Θ2B2s − ⋯− ΘQBQs 

Δ Differencing operator, Δ = (1 − 𝐵𝐵)𝑑𝑑(1 − 𝐵𝐵𝑠𝑠)𝐷𝐷 

Δi Differencing operator for the ith predictor, Δi = (1 − 𝐵𝐵)𝑑𝑑𝑖𝑖(1 − 𝐵𝐵𝑠𝑠)𝐷𝐷𝑖𝑖 

𝐵𝐵 Backward shift operator with 𝐵𝐵𝑌𝑌𝑡𝑡 = 𝑌𝑌𝑡𝑡−1 and 𝐵𝐵𝑎𝑎𝑡𝑡 = 𝑎𝑎𝑡𝑡−1 

𝑋𝑋𝑖𝑖𝑡𝑡 The ith predictor series,𝑖𝑖 = 1,⋯ , 𝑘𝑘 

  



 

𝑁𝑁�t(h) h- step-ahead prediction of noise series Nt from time t. Denote it as 𝑁𝑁�t+1  if h = 1 
𝜎𝜎𝑁𝑁𝑡𝑡
2 (ℎ) Prediction variance of the noise forecasts from time t. Denote it as 𝜎𝜎𝑁𝑁𝑡𝑡+1

2   if h = 1 

𝑖𝑖𝑡𝑡 𝑌𝑌𝑡𝑡 or transformed of 𝑌𝑌𝑡𝑡 ( transformation is log or square root) 
�̂�𝑖𝑡𝑡(ℎ) h- step-ahead prediction of 𝑖𝑖𝑡𝑡 from time t. Denote it as �̂�𝑖𝑡𝑡+1  if h = 1 
𝜎𝜎𝑍𝑍𝑡𝑡
2 (ℎ) Prediction variance of the 𝑖𝑖𝑡𝑡 from time t. Denote it as 𝜎𝜎𝑍𝑍𝑡𝑡+1

2   if h = 1 

3. Model 
Transfer function (TF) models form a very large class of models, which include univariate ARIMA models as 
a special case. A TF model describing the relationship between the dependent and predictors series has the 
following form: 

𝑖𝑖𝑡𝑡 = 𝑓𝑓(𝑌𝑌𝑡𝑡) 

Δ𝑖𝑖𝑡𝑡 = 𝑐𝑐 + �
𝜔𝜔𝑖𝑖(𝐵𝐵)
𝛿𝛿𝑖𝑖(𝐵𝐵) Δ𝑖𝑖𝐵𝐵

𝑏𝑏𝑖𝑖𝑓𝑓𝑖𝑖(𝑋𝑋𝑖𝑖𝑡𝑡) +
𝜃𝜃∗(𝐵𝐵)
𝜙𝜙∗(𝐵𝐵)

𝑎𝑎𝑡𝑡

𝑘𝑘

𝑖𝑖=1

 

The univariate ARIMA model simply drops the predictors from the TF model; thus, it has the following form: 

Δ𝑖𝑖𝑡𝑡 = 𝑐𝑐 +
𝜃𝜃∗(𝐵𝐵)
𝜙𝜙∗(𝐵𝐵)

𝑎𝑎𝑡𝑡 

The main features of this model are: 

• An initial transformation of the dependent and predictor series, 𝑓𝑓 and 𝑓𝑓𝑖𝑖. This transformation is 
optional and is applicable only when the dependent and predictors series values are positive. 
Allowed transformations are log and square root. These transformations are sometimes called 
variance-stabilizing transformations. 

• A constant term c. 
• The unobserved i.i.d., zero mean, Gaussian error process at with variance σ2. 
• The moving average lag polynomial θ∗(B) = θq(B)ΘQ(Bs) and the auto-regressive lag polynomial 

ϕ∗(B) = ϕp(B)ΦP(Bs). 
• The difference/lag operators Δ and Δi 
• A delay term,Bbi, where bi is the order of the delay. 
• Predictors are assumed given. Their numerator and denominator lag polynomials are: 

𝜔𝜔𝑖𝑖(𝐵𝐵) = �𝜔𝜔𝑖𝑖0 − 𝜔𝜔𝑖𝑖1𝐵𝐵 −⋯−𝜔𝜔𝑖𝑖𝑣𝑣𝑖𝑖𝐵𝐵
𝑣𝑣𝑖𝑖��1 − Ω𝑖𝑖1𝐵𝐵𝑠𝑠 − ⋯− Ω𝑖𝑖𝑣𝑣𝑖𝑖𝐵𝐵

𝑣𝑣𝑖𝑖𝑠𝑠� 
And 

𝛿𝛿𝑖𝑖(𝐵𝐵) = �1 − 𝛿𝛿𝑖𝑖1𝐵𝐵 − ⋯− 𝛿𝛿𝑖𝑖𝑞𝑞𝑖𝑖𝐵𝐵
𝑞𝑞𝑖𝑖��1 − 𝛿𝛿𝑖𝑖1′ 𝐵𝐵𝑠𝑠 − ⋯− 𝛿𝛿𝑖𝑖𝑠𝑠𝑖𝑖

′ 𝐵𝐵𝑠𝑠𝑖𝑖𝑠𝑠� 
• The noise series 

𝑁𝑁𝑡𝑡 = ∆𝑖𝑖𝑡𝑡 − 𝑐𝑐 −�
𝜔𝜔𝑖𝑖(𝐵𝐵)
𝛿𝛿𝑖𝑖(𝐵𝐵) Δ𝑖𝑖𝐵𝐵

𝑏𝑏𝑖𝑖𝑓𝑓𝑖𝑖(𝑋𝑋𝑖𝑖𝑡𝑡)
𝑘𝑘

𝑖𝑖=1

 

is assumed to be a mean zero stationary ARMA process.   
The TF model described above may be non-seasonal model or single seasonal model. However, the model 
can be extended to double seasonal model, i.e. there will be two periods 𝑠𝑠1 and 𝑠𝑠2 in the model. In Appendix 
A,  we provide a double seasonal univariate ARIMA model for simple extension. 

4. Forecasting 
Since model parameters are estimated using iterative search method and in each iteration, noise forecasting 
and their standard error according to the estimated model in the previous iteration are needed, we introduce 
forecasting for a given model in this section firstly and then introduce parameter estimation in next section. 
 



 

There are two forecasting algorithms: One is called Conditional Least Squares (CLS) forecasting and the 
other is called Exact Least Squares (ELS) or Unconditional Least Squares forecasting (ULS).    These two 
algorithms differ in only one aspect: they forecast the noise process differently.  The general steps in the 
forecasting computations are as follows: 

Step 1. Computation of noise process Nt.  The noise values are computed during the historical period. 

Step 2. Forecasting the noise process, Nt, up to the forecast horizon.  This is one step ahead forecasting 
during the historical period and multi-step ahead forecasting after that.  The differences in CLS and ELS 
forecasting methodologies surface in this step.  The prediction variances of noise forecasts are also computed 
in this step. 

Step 3. Final forecasts are obtained by first adding back to the noise forecasts, the contributions of the 
constant term and the transfer function inputs and then integrating and back-transforming the result.  The 
prediction variances of noise forecasts also may have to be processed to obtain the final prediction variances. 

In the next three sub-sections, we will give the details of computations for these three steps. 

 

4.1.  Computation of noise process 
The noise can be computed as 

Nt = ∆Zt − c −�
ωi(B)
δi(B) ΔiB

bifi(Xit)
k

i=1

 

This step can be subdivided into a few sub-steps: 

i) Compute 𝑖𝑖𝑡𝑡 = 𝑓𝑓(𝑌𝑌𝑡𝑡) and 𝑋𝑋𝑖𝑖𝑡𝑡′ = 𝑓𝑓𝑖𝑖(𝑋𝑋𝑖𝑖𝑡𝑡) 
ii) Differencing and lagging various series to obtain ∆Zt and Uit = ΔiBbiXit′   
iii) Obtainingωi(B)

δi(B)
Uit = Vit. We will call these as transfer function inputs which can be computed 

as follows:  
set 𝑉𝑉𝑖𝑖0 = 𝜔𝜔𝑖𝑖(1)

𝛿𝛿𝑖𝑖(1)
∗ 𝑈𝑈𝑖𝑖1, where 𝜔𝜔𝑖𝑖(1) = ∑ 𝜔𝜔𝑖𝑖𝑗𝑗

∗𝑣𝑣𝑖𝑖+𝑣𝑣𝑖𝑖𝑠𝑠
𝑗𝑗=0  and 𝛿𝛿𝑖𝑖(1) = ∑ 𝛿𝛿𝑖𝑖𝑗𝑗∗

𝑞𝑞𝑖𝑖+𝑠𝑠𝑖𝑖𝑠𝑠
𝑗𝑗=0  , where  𝜔𝜔𝑖𝑖𝑗𝑗

∗  and 𝛿𝛿𝑖𝑖𝑗𝑗∗  
represent the coefficient corresponding to power 𝑗𝑗 of the lag polynomial 𝜔𝜔𝑖𝑖(𝐵𝐵) and 𝛿𝛿𝑖𝑖(𝐵𝐵), 
respectively. The product of two polynomials is described in the appendix B. 
Now set the first 𝐸𝐸𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑠𝑠 values of 𝑉𝑉𝑖𝑖𝑡𝑡 to missing. The later values of 𝑉𝑉𝑖𝑖𝑡𝑡 are computed 
recursively as 𝑉𝑉𝑖𝑖𝑡𝑡 = −∑ 𝛿𝛿𝑖𝑖𝑗𝑗∗ ∗

𝑞𝑞𝑖𝑖+𝑠𝑠𝑖𝑖𝑠𝑠
𝑗𝑗=1 𝑉𝑉𝑖𝑖𝑡𝑡−𝑗𝑗 + ∑ 𝜔𝜔𝑖𝑖𝑗𝑗

∗ ∗ 𝑈𝑈𝑖𝑖𝑡𝑡−𝑗𝑗
𝑣𝑣𝑖𝑖+𝑣𝑣𝑖𝑖𝑠𝑠
𝑗𝑗=0 , with understanding that missing 

𝑉𝑉𝑖𝑖𝑡𝑡−𝑗𝑗 in the first term are taken to be 𝑉𝑉𝑖𝑖0 and missing 𝑈𝑈𝑖𝑖𝑡𝑡−𝑗𝑗 in the second term are taken to be 
𝑈𝑈𝑖𝑖1.  
Please note that we assume that 𝑈𝑈𝑖𝑖1 is non-missing, otherwise the computations begin at the first 
non-missing measurement. 

iv) Now finish the final step of computing  
          𝑁𝑁𝑡𝑡 = ∆𝑖𝑖𝑡𝑡 − 𝑐𝑐 − ∑ 𝜔𝜔𝑖𝑖(𝐵𝐵)

𝛿𝛿𝑖𝑖(𝐵𝐵)
Δ𝑖𝑖𝐵𝐵𝑏𝑏𝑖𝑖𝑓𝑓𝑖𝑖(𝑋𝑋𝑖𝑖𝑡𝑡)𝑘𝑘

𝑖𝑖=1  
 In this computation if for any t one of the summands is missing then the whole sum is set to 
missing. 

 

4.2.  Noise series forecasting 
This section discusses how to use CLS method and ELS method to forecast noise series and their variance 
and how to compute prediction variance of the series 𝑖𝑖𝑡𝑡 based on the prediction variance of noise. For CLS 
and ELS method, there are two situations, no embedded missing and embedded missing, for them 
respectively. 
 
 
 
 



 

This section assumes that the first and last value of the 𝑁𝑁𝑡𝑡 is non-missing.  Otherwise the computation is from 
the first non-missing value of 𝑁𝑁𝑡𝑡  to the last non-missing value 𝑁𝑁𝑡𝑡.  

For the sake of simplicity, we assume that 𝑁𝑁𝑡𝑡 follow ARMA(p,q) process and the AR polynomial is 𝜙𝜙𝑝𝑝(𝐵𝐵) =
1 − 𝜑𝜑1𝐵𝐵 − 𝜑𝜑2𝐵𝐵2 − ⋯− 𝜑𝜑𝑝𝑝𝐵𝐵𝑝𝑝, and MA polynomial is 𝜃𝜃𝑞𝑞(𝐵𝐵) = 1 − 𝜗𝜗1𝐵𝐵 − 𝜗𝜗2𝐵𝐵2 − ⋯− 𝜗𝜗𝑞𝑞𝐵𝐵𝑞𝑞  . If noise 
series follow ARMA(p,q)(P,Q), it is needed to re-write as ARMA(p+sP,q+sQ) by computing the product of 
non-seasonal and seasonal polynomials using the algorithm in Appendix B. 

 

4.2.1  CLS method 
Case 1: No embedded missing values 

In this case the one-step-ahead forecasting is computed recursively by the following formula: 

𝑁𝑁�𝑡𝑡 = −�𝜑𝜑𝑗𝑗 ∗ 𝑁𝑁𝑡𝑡−𝑗𝑗

𝑝𝑝

𝑗𝑗=1

+ �𝜗𝜗𝑗𝑗 ∗ 𝜀𝜀�̂�𝑡−𝑗𝑗

𝑞𝑞

𝑗𝑗=1

 

𝜀𝜀�̂�𝑡 = 𝑁𝑁𝑡𝑡 − 𝑁𝑁�𝑡𝑡 

Here unavailable 𝑁𝑁𝑡𝑡−𝑗𝑗  and 𝜀𝜀�̂�𝑡−𝑗𝑗are taken to be zero. 

The h-step-ahead forecasts are: 

𝑁𝑁�𝑡𝑡(ℎ) = −�𝜑𝜑𝑗𝑗 ∗ 𝑇𝑇𝑡𝑡+ℎ−𝑗𝑗

𝑝𝑝

𝑗𝑗=1

+ �𝜗𝜗𝑗𝑗 ∗ 𝜀𝜀�̂�𝑡+ℎ−𝑗𝑗 ,   ℎ > 1
𝑞𝑞

𝑗𝑗=1

 

where 𝑇𝑇𝑡𝑡+ℎ−𝑗𝑗 = 𝑁𝑁𝑡𝑡+ℎ−𝑗𝑗 if available, else 𝑇𝑇𝑡𝑡+ℎ−𝑗𝑗 = 𝑁𝑁�𝑡𝑡+ℎ−𝑗𝑗. And unavailable 𝜀𝜀�̂�𝑡+ℎ−𝑗𝑗 are taken to be zero. 

The prediction variance of 𝑁𝑁𝑡𝑡 is computed as 

𝜎𝜎𝑁𝑁𝑡𝑡
2 (ℎ) = 𝜎𝜎2 ∗�𝜓𝜓𝑗𝑗2

ℎ−1

𝑗𝑗=0

, ℎ ≥ 1 

where 𝜓𝜓𝑗𝑗are coefficients of the power series expansion of 𝜃𝜃(𝐵𝐵)/𝜙𝜙(𝐵𝐵). The ratio of two polynomials is 
described in the Appendix B. 

The prediction variance of the 𝑖𝑖𝑡𝑡 series is computed as:   

𝜎𝜎𝑍𝑍𝑡𝑡
2 (ℎ) = 𝜎𝜎2 ∗�𝜓𝜓𝑗𝑗2

ℎ−1

𝑗𝑗=0

, ℎ ≥ 1 

where 𝜓𝜓𝑗𝑗 are coefficients of the power series expansion of 𝜃𝜃(𝐵𝐵)/(Δ ∗ 𝜙𝜙(𝐵𝐵)). 

 

Case 2: Embedded missing values 

In this case, first a temporary series 𝐼𝐼𝑡𝑡 is created by imputing the missing values in 𝑁𝑁𝑡𝑡 recursively as 𝐼𝐼𝑡𝑡 = 𝑁𝑁𝑡𝑡 
if 𝑁𝑁𝑡𝑡 is not missing, otherwise 𝐼𝐼𝑡𝑡 = −∑ 𝜋𝜋𝑗𝑗𝐼𝐼𝑡𝑡−𝑗𝑗𝑡𝑡−1

𝑗𝑗=1 , where 𝜋𝜋𝑗𝑗 are coefficients of the power series expansion of 
𝜙𝜙(𝐵𝐵)/𝜃𝜃(𝐵𝐵). Then one-step-ahead and multi-step-ahead forecasts of 𝐼𝐼𝑡𝑡, computed using the non-missing 
algorithm, are taken to be the forecasts of 𝑁𝑁𝑡𝑡.   

One-step-ahead prediction variances depend on the pattern of missing values observed. Let  𝑘𝑘 be the number 
of previous, contiguous missing values prior to a given time period t with or without a missing value, e.g., if 
value at (𝑡𝑡 − 1) is missing but at (𝑡𝑡 − 2)it is not missing then 𝑘𝑘 = 1.  Then one- step-ahead prediction 
variance of noise process is  
 
 
 
 



 

𝜎𝜎𝑁𝑁𝑡𝑡
2 = 𝜎𝜎2 ∗�𝜓𝜓𝑗𝑗2

𝑘𝑘

𝑗𝑗=0

 

The h-step-ahead prediction variances (in the forecast period) are same as non-missing case, i.e., 

𝜎𝜎𝑁𝑁𝑡𝑡
2 (ℎ) = 𝜎𝜎2 ∗�𝜓𝜓𝑗𝑗2

ℎ−1

𝑗𝑗=0

, ℎ > 1 

where 𝜓𝜓𝑗𝑗s are coefficients of the power series expansion of 𝜃𝜃(𝐵𝐵)/𝜙𝜙(𝐵𝐵). 

If there is no difference specified for dependent series, then the prediction variance of 𝑖𝑖𝑡𝑡 series is  

𝜎𝜎𝑍𝑍𝑡𝑡
2 (ℎ) = 𝜎𝜎𝑁𝑁𝑡𝑡

2 (ℎ), ℎ ≥ 1 

Otherwise, the prediction variance of 𝑖𝑖𝑡𝑡 is: 

• One-step-ahead: 𝜎𝜎𝑍𝑍𝑡𝑡
2 = 𝜎𝜎𝑁𝑁𝑡𝑡

2 , 
• h-step-ahead: 𝜎𝜎𝑍𝑍𝑡𝑡

2 (ℎ) = 𝜎𝜎2 ∗ ∑ 𝜓𝜓𝑗𝑗2ℎ−1
𝑗𝑗=0 ,   where 𝜓𝜓𝑗𝑗 are coefficients of the power series expansion of 

𝜃𝜃(𝐵𝐵)/(Δ ∗ 𝜙𝜙(𝐵𝐵)). 
 

4.2.2  ELS method 
 

Case 1: No embedded missing values 

In this case, the noise forecast and the prediction variance are computed by the theta recursion method which 
is provided in Chapter 5 of Brockwell and Davis(1991): 

Step 1.  Compute the theoretical auto-covariance function (call it 𝛾𝛾) of an ARMA process with 𝜙𝜙𝑝𝑝(𝐵𝐵)and  
𝜃𝜃𝑞𝑞(𝐵𝐵) as the AR and MA polynomials and with white noise variance 1.  The computation of theoretical auto-
covariance function is described in Appendix C. 

Step 2.   Let 𝜗𝜗0′ = 1, 𝜗𝜗𝑖𝑖′ = −𝜗𝜗𝑖𝑖 , 𝑖𝑖 = 1,⋯ , 𝐸𝐸 and 𝜗𝜗𝑖𝑖′ = 0 if 𝑖𝑖 > 𝐸𝐸. Compute 

𝜅𝜅(𝑖𝑖, 𝑗𝑗)  

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝛾𝛾(𝑖𝑖 − 𝑗𝑗), 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑚𝑚,

𝛾𝛾(𝑖𝑖 − 𝑗𝑗) −�𝜑𝜑𝑞𝑞 ∗ 𝛾𝛾(𝑝𝑝 − |𝑖𝑖 − 𝑗𝑗|)
𝑝𝑝

𝑞𝑞=1

, min(𝑖𝑖, 𝑗𝑗) ≤ 𝑚𝑚 < max(𝑖𝑖, 𝑗𝑗) ≤ 2𝑚𝑚  𝑎𝑎𝑛𝑛𝑑𝑑  |𝑖𝑖 − 𝑗𝑗| < max (𝑝𝑝, 𝐸𝐸 + 1)

�𝜗𝜗𝑞𝑞′ 𝜗𝜗𝑞𝑞+|𝑖𝑖−𝑗𝑗|
′ ,

𝑞𝑞

𝑞𝑞=0

min(𝑖𝑖, 𝑗𝑗) > 𝑚𝑚 𝑎𝑎𝑛𝑛𝑑𝑑 |𝑖𝑖 − 𝑗𝑗| ≤ 𝐸𝐸

0, 𝑝𝑝𝑡𝑡ℎ𝑠𝑠𝑝𝑝𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠

 

where 𝑚𝑚 = max (𝑝𝑝, 𝐸𝐸). 

This will use 𝛾𝛾(𝑗𝑗) from 𝑗𝑗 = 0,1,⋯ , (2𝑚𝑚 − 1). For storage purposes it might be convenient to compute three 
vectors to store all the possible values of 𝜅𝜅(𝑖𝑖, 𝑗𝑗) in advance: 

• 𝛼𝛼(𝑠𝑠) = 𝛾𝛾(𝑠𝑠), 𝑠𝑠 = 0,1,⋯ ,𝑚𝑚 − 1 
• ξ(l) = γ(𝑠𝑠) − ∑ φr ∗ γ(𝑠𝑠 − r)p

r=1 , 𝑠𝑠 = 1,2,⋯ , (2𝑚𝑚 − 1). Note that 0 is NOT one of the indices and 
𝜉𝜉(𝑠𝑠) = 0 for 𝑠𝑠 ≥ max (𝑝𝑝, 𝐸𝐸 + 1) because of the recursive relation 𝛾𝛾(𝑠𝑠) satisfies. 

• 𝜔𝜔(𝑠𝑠) = ∑ 𝜗𝜗𝑞𝑞′𝜗𝜗𝑞𝑞+|𝑖𝑖−𝑗𝑗|
′ , 𝑠𝑠 = 0,⋯ , 𝐸𝐸𝑞𝑞

𝑞𝑞=0  
Step 3.  Recursively compute 𝜈𝜈𝑡𝑡 and 𝜃𝜃𝑖𝑖𝑗𝑗 as follows 
 
 
 
 
 
 
 



 

𝜈𝜈0 = 𝜅𝜅(1,1) 

For 𝑖𝑖 = 1,⋯ ,𝑛𝑛 

𝜃𝜃𝑖𝑖,𝑖𝑖−𝑘𝑘 = 𝜈𝜈𝑘𝑘−1 �𝜅𝜅(𝑖𝑖 + 1, 𝑘𝑘 + 1) −�𝜃𝜃𝑘𝑘,𝑘𝑘−𝑗𝑗𝜃𝜃𝑖𝑖,𝑖𝑖−𝑗𝑗𝜈𝜈𝑗𝑗

𝑘𝑘−1

𝑗𝑗=0

� , 𝑘𝑘 = 0,1,2,⋯ , 𝑖𝑖 − 1 

𝜈𝜈𝑖𝑖 = 𝜅𝜅(𝑖𝑖 + 1, 𝑖𝑖 + 1) −�𝜃𝜃𝑖𝑖,𝑖𝑖−𝑗𝑗2
𝑖𝑖−1

𝑗𝑗=0

𝜈𝜈𝑗𝑗  

Step 4. Compute one-step-ahead forecasts of 𝑁𝑁𝑡𝑡 (and their prediction variances) as follows: 

𝑁𝑁�1 = 0 

𝑁𝑁�𝑘𝑘+1 =

⎩
⎪
⎨

⎪
⎧ �𝜃𝜃𝑘𝑘,𝑗𝑗�𝑁𝑁𝑘𝑘+1−𝑗𝑗 − 𝑁𝑁�𝑘𝑘+1−𝑗𝑗�

𝑘𝑘

𝑗𝑗=1

,                                                                           1 ≤ 𝑘𝑘 ≤ 𝑚𝑚,

𝜑𝜑1𝑁𝑁𝑘𝑘 + 𝜑𝜑2𝑁𝑁𝑘𝑘−1 + ⋯+ 𝜑𝜑𝑝𝑝𝑁𝑁𝑘𝑘+1−𝑝𝑝 + �𝜃𝜃𝑘𝑘,𝑗𝑗�𝑁𝑁𝑘𝑘+1−𝑗𝑗 − 𝑁𝑁�𝑘𝑘+1−𝑗𝑗�
𝑞𝑞

𝑗𝑗=1

, 𝑘𝑘 > 𝑚𝑚

 

The prediction variance at time 𝑡𝑡 is 

𝜎𝜎𝑁𝑁𝑡𝑡
2 = 𝜎𝜎2 ∗ 𝜈𝜈𝑡𝑡−1 

Step 5. Multi-step forecasting 

ℎ-step-ahead forecast based on measurements up to time 𝑡𝑡(typically it will be the last point in the historical 
period) is  

𝑁𝑁�𝑡𝑡(ℎ) =

⎩
⎪
⎨

⎪
⎧   � 𝜃𝜃𝑡𝑡+ℎ−1,𝑗𝑗�𝑁𝑁𝑡𝑡+ℎ−𝑗𝑗 − 𝑁𝑁�𝑡𝑡+ℎ−𝑗𝑗�

𝑡𝑡+ℎ−1

𝑗𝑗=ℎ

,                                 1 ≤ ℎ ≤ 𝑚𝑚 − 𝑡𝑡,

�𝜑𝜑𝑖𝑖𝑁𝑁�𝑡𝑡(ℎ − 𝑖𝑖)
𝑝𝑝

𝑖𝑖=1

+ �𝜃𝜃𝑡𝑡+ℎ−1,𝑗𝑗�𝑁𝑁𝑡𝑡+ℎ−𝑗𝑗 − 𝑁𝑁�𝑡𝑡+ℎ−𝑗𝑗�
𝑞𝑞

𝑗𝑗=ℎ

, ℎ > 𝑚𝑚 − 𝑡𝑡

 

 The prediction variance of 𝑁𝑁𝑡𝑡 is computed as 

𝜎𝜎𝑁𝑁𝑡𝑡
2 (ℎ) = 𝜎𝜎2���𝜒𝜒𝑞𝑞𝜃𝜃𝑡𝑡+ℎ−𝑞𝑞−1,𝑗𝑗−𝑞𝑞

𝑗𝑗

𝑞𝑞=0

�

2

𝜈𝜈𝑡𝑡+ℎ−𝑗𝑗−1

ℎ−1

𝑗𝑗=0

 

where the constants 𝜒𝜒𝑞𝑞  are calculated recursively as 

𝜒𝜒0 = 1 

𝜒𝜒𝑞𝑞 = � 𝜑𝜑𝑘𝑘

min (𝑝𝑝,𝑞𝑞)

𝑘𝑘=1

𝜒𝜒𝑞𝑞−𝑘𝑘,   𝑝𝑝 = 1,2,3,⋯ 

 

This finishes the computation of noise forecasting and its prediction variance.  

If there is no differencing specified for the dependent series, then prediction variance for Zt series is the same 
as that for the noise series i.e., 

σZt
2 (h) = σNt

2 (h), h ≥ 1 

Otherwise prediction variance for Zt is computed as follows: 

• One-step-ahead forecasting: 𝜎𝜎𝑍𝑍𝑡𝑡
2 = 𝜎𝜎𝑁𝑁𝑡𝑡

2 . 



 

• h-step-ahead forecasting: Let 𝜒𝜒𝑞𝑞  be the coefficients in the expansion of 1/ �∆𝜙𝜙𝑝𝑝(𝐵𝐵)�. Then  

𝜎𝜎𝑍𝑍𝑡𝑡
2 (h) = 𝜎𝜎2���𝜒𝜒𝑞𝑞∗𝜃𝜃𝑡𝑡+ℎ−𝑞𝑞−1,𝑗𝑗−𝑞𝑞

𝑗𝑗

𝑞𝑞=0

�

2

𝜈𝜈𝑡𝑡+ℎ−𝑗𝑗−1

ℎ−1

𝑗𝑗=0

 

where𝜃𝜃𝑛𝑛,0 = 1 and 𝜒𝜒𝑞𝑞∗ are calculated recursively as 𝜒𝜒𝑞𝑞  in h-step variance prediction of noise except 
that AR coefficients 𝜑𝜑𝑘𝑘 are substituted by coefficients of ∆𝜙𝜙𝑝𝑝(𝐵𝐵). 

Case 2: Embedded missing values 

Kalman filter method in Chapter 12 of Brockwell and Davis(1991) will be used in this situation. 

Let 𝑚𝑚 = max (𝑝𝑝, 𝐸𝐸). The state-space representation of 𝑁𝑁𝑡𝑡 is: 

𝑿𝑿𝑡𝑡+1 = 𝑭𝑭𝑿𝑿𝑡𝑡 + 𝑯𝑯𝑠𝑠𝑡𝑡 

𝑁𝑁𝑡𝑡 = 𝑮𝑮𝑿𝑿𝑡𝑡 + 𝑠𝑠𝑡𝑡 

where 𝑿𝑿𝑡𝑡 is a state vector of 𝑚𝑚 by 1, and 

𝑮𝑮 = (1, 0,⋯ ,0)1×𝑚𝑚 

𝑯𝑯𝑇𝑇 = (𝜓𝜓1,⋯ ,𝜓𝜓𝑚𝑚) 

where 𝜓𝜓𝑖𝑖  are coefficients in 𝜃𝜃𝑞𝑞
(𝐵𝐵)

𝜙𝜙𝑝𝑝(𝐵𝐵)
= 1 + 𝜓𝜓1B + 𝜓𝜓2B2 + ⋯ 

𝑭𝑭 = �

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯
𝜑𝜑𝑚𝑚 𝜑𝜑𝑚𝑚−1 ⋯ ⋯ 𝜑𝜑1

�

𝑚𝑚×𝑚𝑚

 

Here 𝜑𝜑𝑖𝑖 = 0 if 𝑖𝑖 > 𝑝𝑝. 𝐸𝐸(𝑠𝑠𝑡𝑡) = 0 and 𝑉𝑉𝑎𝑎𝑝𝑝(𝑠𝑠𝑡𝑡) = 𝜎𝜎2. 

The Kalman recursions (see Brockwell and Davis) start with: 

𝑿𝑿�1 = (0,⋯ ,0)1×𝑚𝑚
𝑇𝑇  

𝚿𝚿𝟏𝟏 = 𝟎𝟎m×m 

𝚷𝚷1 = 𝛀𝛀1 = 𝑱𝑱 

𝑁𝑁�1 = 0 

σN1
2 = σ2(𝛀𝛀1(1,1) + 1) 

Where 𝑱𝑱 is an m×m symmetric matrix with its (i,j)th (𝑖𝑖 ≥ 𝑗𝑗) element being 𝑱𝑱(𝑖𝑖, 𝑗𝑗) = γ(i − j) − ∑ ψkψk+i−j
j−1
k=0 , 

where γ(∙) is the auto-covariance function of 𝑁𝑁𝑡𝑡. 

For t = 1,2,3,⋯ 

If 𝑁𝑁𝑡𝑡 is not missing 

{ 

Dt = 𝛀𝛀t(1,1) + 1. 

𝚯𝚯t = 𝐅𝐅𝛀𝛀t(1: m, 1) + 𝐇𝐇, here 𝛀𝛀t(1: m, 1) is the first column of 𝛀𝛀t. 

𝚷𝚷t+1 = 𝐅𝐅𝚷𝚷tFT + 𝐇𝐇𝐇𝐇T. 

𝚿𝚿𝐭𝐭+𝟏𝟏 = 𝐅𝐅𝚿𝚿𝐭𝐭𝐅𝐅T + 𝚯𝚯t𝚯𝚯t
T/Dt. 

𝛀𝛀t+1 = 𝚷𝚷t+1 − 𝚿𝚿𝐭𝐭+𝟏𝟏. 

𝑿𝑿�𝑡𝑡+1 = 𝑭𝑭𝑿𝑿�𝑡𝑡 + 𝚯𝚯t �𝑁𝑁𝑡𝑡 − 𝑿𝑿�𝑡𝑡(1)� /Dt, 𝑿𝑿�𝑡𝑡(1) is the 1st  element of 𝑿𝑿�𝑡𝑡. 

} 

Else 
 
 
 



 

{ 

Dt = 1. 

𝚯𝚯t = (0,⋯ ,0)1×m
T . 

𝚷𝚷t+1 = 𝐅𝐅𝚷𝚷t𝐅𝐅T + 𝐇𝐇𝐇𝐇T. 

𝚿𝚿𝐭𝐭+𝟏𝟏 = 𝐅𝐅𝚿𝚿𝐭𝐭𝐅𝐅T. 

𝛀𝛀t+1 = 𝚷𝚷t+1 − 𝚿𝚿𝐭𝐭+𝟏𝟏. 

𝑿𝑿�𝑡𝑡+1 = 𝑭𝑭𝑿𝑿�𝑡𝑡. 

} 

The one-step-ahead noise forecast and the prediction variances are given by 𝑁𝑁�𝑡𝑡+1 = 𝑿𝑿�𝑡𝑡+1(1) 

and 𝜎𝜎𝑁𝑁𝑡𝑡+1
2 = σ2(𝛀𝛀t+1(1,1) + 1), respectively. 

The h-step-ahead noise forecasts 𝑁𝑁�𝑡𝑡(ℎ) and the prediction variance 𝜎𝜎𝑁𝑁𝑡𝑡
2 (ℎ) can be recursively computed as 

follows for h = 2,3,⋯ 

𝑁𝑁�𝑡𝑡(ℎ) = �𝑭𝑭ℎ−1𝑿𝑿�𝑡𝑡+1�(1) 

𝛀𝛀𝐭𝐭
(h) = 𝐅𝐅𝛀𝛀𝐭𝐭

(h−1)𝐅𝐅T + 𝐇𝐇𝐇𝐇T 

𝜎𝜎𝑁𝑁𝑡𝑡
2 (ℎ) = 𝜎𝜎2�𝛀𝛀𝐭𝐭

(h)(1,1) + 1� 

where 𝛀𝛀𝐭𝐭
(1) = 𝛀𝛀t+1. 

As before, if there is no differencing specified for the dependent series then prediction variance for Zt series is 
the same as that for the noise series i.e.,  

𝜎𝜎𝑍𝑍𝑡𝑡
2 (ℎ) = 𝜎𝜎𝑁𝑁𝑡𝑡

2 (ℎ), ℎ ≥ 1 

Otherwise, the prediction variance of 𝑖𝑖𝑡𝑡 is: 

• One-step-ahead: let 𝑘𝑘 be the number of previous, contiguous missing values prior to a given time 
period t with or without a missing measurement, e.g., if value at (𝑡𝑡 − 1) is missing but at (𝑡𝑡 − 2)it is 
not missing, then𝑘𝑘 = 1. If 𝑘𝑘 = 0 then 𝜎𝜎𝑍𝑍𝑡𝑡

2 = 𝜎𝜎𝑁𝑁𝑡𝑡
2 , otherwise, 𝜎𝜎𝑍𝑍𝑡𝑡

2 = 𝜎𝜎2 ∗ ∑ 𝜓𝜓𝑗𝑗2𝑘𝑘
𝑗𝑗=0 , 

• h-step-ahead: 𝜎𝜎𝑍𝑍𝑡𝑡
2 (ℎ) = 𝜎𝜎2 ∗ ∑ 𝜓𝜓𝑗𝑗2ℎ−1

𝑗𝑗=0 , ℎ > 1    
where 𝜓𝜓𝑗𝑗 are coefficients of the power series expansion of 𝜃𝜃𝑞𝑞(𝐵𝐵)/(Δ ∗ 𝜙𝜙𝑝𝑝(𝐵𝐵)). 

 

4.3.  Final forecasting 
The final forecasting and their prediction variance are described as below: 

Step 1. Compute series 𝑄𝑄𝑡𝑡(ℎ) = �𝑁𝑁�𝑡𝑡(ℎ) + 𝑐𝑐 + ∑ 𝑉𝑉𝑖𝑖(𝑡𝑡+ℎ)
𝑘𝑘
𝑖𝑖=1 �. 

Step 2. If dependent series is not differenced, then �̂�𝑖𝑡𝑡(ℎ) = 𝑄𝑄𝑡𝑡(ℎ). Otherwise the series 𝑄𝑄𝑡𝑡(ℎ) has to be 
integrated as below: 

�̂�𝑖𝑡𝑡(ℎ) = 𝑄𝑄𝑡𝑡(ℎ) − � 𝜏𝜏𝑗𝑗𝑖𝑖𝑡𝑡+ℎ−𝑗𝑗

𝑑𝑑+𝐷𝐷𝑠𝑠

𝑗𝑗=1

 

where 𝜏𝜏𝑗𝑗 is the coefficient corresponding to power 𝑗𝑗 of the difference operator ∆. 

The prediction variance of 𝑖𝑖𝑡𝑡 is provided in section 4.2 for different noise computation methods. 

Step 3. The final predicted value and the corresponding confidence interval are computed as follows: 

• If the dependent series is not transformed, then 
 
 
 
 



 

                                                     𝑦𝑦�𝑡𝑡(ℎ) = �̂�𝑖𝑡𝑡(ℎ)  
and the 100(1 − 𝛼𝛼)% confidence interval is 

             ��̂�𝑖𝑡𝑡(ℎ) − 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑍𝑍𝑡𝑡(ℎ), �̂�𝑖𝑡𝑡(ℎ) + 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑍𝑍𝑡𝑡(ℎ)�. 
• If the transformed function is log, then 

                              𝑦𝑦�𝑡𝑡(ℎ) = exp ��̂�𝑖𝑡𝑡(ℎ) +
𝜎𝜎𝑍𝑍𝑡𝑡
2 (ℎ)

2
�  

and the 100(1 − 𝛼𝛼)% confidence interval is 

          �exp ��̂�𝑖𝑡𝑡(ℎ) − 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑍𝑍𝑡𝑡(ℎ)� , exp ��̂�𝑖𝑡𝑡(ℎ) + 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑍𝑍𝑡𝑡(ℎ)�� 

• If the transformed function if square root, then 

                                             y�t(h) = �Z�t(h)�
2

+ σZt
2 (h) 

and the 100(1 − 𝛼𝛼)% confidence interval is 

              ���̂�𝑖𝑡𝑡(ℎ) − 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑍𝑍𝑡𝑡(ℎ)�
2

, ��̂�𝑖𝑡𝑡(ℎ) + 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑍𝑍𝑡𝑡(ℎ)�
2
� 

In above, 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 is the (1 − 𝛼𝛼/2)100th percentile of the t distribution with degree of freedom 𝑑𝑑𝑓𝑓 which can 
be computed by the number of valid noise residuals minus the number of parameters. 

Note 1: The computation in step 2 begins at the first non-missing value of 𝑄𝑄𝑡𝑡 which is usually at 𝑡𝑡 = 𝑑𝑑 +
𝐷𝐷𝑠𝑠 + 1. Unavailable 𝑖𝑖𝑡𝑡−𝑗𝑗 in the sum is replaced with �̂�𝑖𝑡𝑡−𝑗𝑗 and the sum only includes terms that correspond to 
non-zero 𝜏𝜏𝑗𝑗. If any term is missing in expression the corresponding integrated forecast is set to missing. 

Note 2: if the 𝑑𝑑𝑓𝑓 = 0, then we use (1 − 𝛼𝛼/2)100th percentile of the standard normal distribution. 

Note 3: for square root transformation, If Z�t(h) < 0, then  predicted value y�t(h) and corresponding 
confidence interval will be missing. If Z�t(h) > 0 but �̂�𝑖𝑡𝑡(ℎ) − 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑍𝑍𝑡𝑡(ℎ) < 0, then the lower boundary 
of confidence interval will be missing value. 

 

4.4.  Information for scoring to be saved 
Suppose that time series {𝑌𝑌𝑡𝑡 , 𝑋𝑋1𝑡𝑡 ,⋯ ,𝑋𝑋𝐾𝐾𝑡𝑡}𝑡𝑡=1𝑛𝑛  are given up to time 𝑡𝑡 = 𝑛𝑛, which is called training dataset, a 
time series model is built on the training dataset. Then this model is saved and the training dataset is gone.  In 
order to forecast from 𝑡𝑡 = 𝑛𝑛 + 1, we need to save model and other information to continue forecasting 
beyond the training dataset. Here we listed the information to be saved according to model, forecasting 
method and data for transfer function as following: 

Model 

o ARIMA part 
 Transformation of target series. The possible value is none, or log or square root 
 Constant 
 AR parameters: non-seasonal, seasonal part 
 MA parameter:  non-seasonal, seasonal part 
 Order of difference: non-seasonal, seasonal part 

o Transfer function part  
                For each predictor, the following information should be saved. 

 Transformation: The possible value is none, or log or square root 
 Parameters in numerator: non-seasonal, seasonal part 
 Parameters in denominator: non-seasonal,  seasonal part 
 Order of difference: non-seasonal, seasonal part 
 Lag of delay 

o Outliers 
 For each outlier, the type, location and magnitude are needed. For transient change outlier, 

the damp parameter is also needed. 
o Error variance estimation: 𝜎𝜎�2 

 
 



 

Forecasting method 

CLS forecasting method will be just used in expert molder internally and will not be needed for future 
scoring. So we just give the information about ELS method. Since the theta recursion method is more 
complicated, we only use it for future scoring when model is with differencing and training data has no 
embedded missing value.  In other situation, we need to save information related Kalman filter method. 
Therefore, if the theta recursion method is used in model building without differencing, then after model 
building, we need to get the information of Kalman filter method based on model parameters from the theta 
recursion method. 

o Theta recursion method 
 Noise: 𝑁𝑁𝑛𝑛,𝑁𝑁𝑛𝑛−1,⋯ ,𝑁𝑁𝑛𝑛−𝑚𝑚+1 
 Predicted noise: 𝑁𝑁�𝑛𝑛,𝑁𝑁�𝑛𝑛−1,⋯ ,𝑁𝑁�𝑛𝑛−𝑞𝑞+1 
 Thetas: 𝜃𝜃𝑘𝑘,𝑘𝑘−𝑗𝑗 , 𝑘𝑘 = 𝑛𝑛 − 𝐸𝐸 + 1,⋯𝑛𝑛 − 1, 𝑗𝑗 = 𝑛𝑛 − 𝐸𝐸,⋯ , 𝑘𝑘 − 1  and 𝜃𝜃𝑛𝑛,𝑛𝑛−𝑗𝑗 , 𝑗𝑗 = 𝑛𝑛 −

𝐸𝐸,⋯ ,𝑛𝑛 − 1 
 Nu: 𝜈𝜈𝑛𝑛 , 𝜈𝜈𝑛𝑛−1,⋯ , 𝜈𝜈𝑛𝑛−𝑞𝑞+1 

o Kalman filter method 
 State vector(m elements): 𝑿𝑿�𝑛𝑛+1 
 Omega matrix (m by m symmetric): 𝛀𝛀n+1. Only lower triangular part needs to be saved. 
 H vector which contains m psi weights: 𝑯𝑯𝑇𝑇 = (𝜓𝜓1,⋯ ,𝜓𝜓𝑚𝑚) 

Data for transfer function  

For each predictor, say the 𝑖𝑖th predictor𝑋𝑋𝑖𝑖𝑡𝑡, the following information is needed 

o Predictor values: 𝑋𝑋𝑖𝑖,𝑛𝑛−𝑗𝑗 , 𝑗𝑗 = 0,1,⋯ , 𝑝𝑝𝑖𝑖 + 𝑑𝑑𝑖𝑖 + 𝑠𝑠𝐷𝐷𝑖𝑖 + 𝐸𝐸𝑖𝑖 + 𝑠𝑠𝑣𝑣𝑖𝑖 − 1 
o Transfer function values: 𝑉𝑉𝑖𝑖,𝑛𝑛−𝑗𝑗 , 𝑗𝑗 = 0, 1,⋯ , 𝑝𝑝𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖 

Implementation notes: 

1) Similar to the section 4.2, we assume  that 𝑁𝑁𝑡𝑡 follow ARMA(p,q) process. If noise series follow 
ARMA(p,q)(P,Q), it is needed to re-write as ARMA(p+sP,q+sQ) by computing the product of non-
seasonal and seasonal polynomials using the algorithm in Appendix B. 

2) When the theta recursion method is used, the below formulas will be used for noise forecast(we need 
engineer to check old code for confirmation) 
One-step-ahead noise forecast and the prediction variance are given by 

𝑁𝑁�𝑛𝑛+1 = 𝜑𝜑1𝑁𝑁𝑛𝑛 + 𝜑𝜑2𝑁𝑁𝑛𝑛−1 + ⋯+ 𝜑𝜑𝑝𝑝𝑁𝑁𝑛𝑛+1−𝑝𝑝 + �𝜃𝜃𝑛𝑛,𝑗𝑗�𝑁𝑁𝑛𝑛+1−𝑗𝑗 − 𝑁𝑁�𝑛𝑛+1−𝑗𝑗�
𝑞𝑞

𝑗𝑗=1

 

𝜎𝜎𝑁𝑁𝑛𝑛+1
2 = 𝜎𝜎2𝜈𝜈𝑛𝑛 

h-step-ahead noise forecast and the prediction variance are given by 

            𝑁𝑁�𝑛𝑛(ℎ) = �
∑ 𝜑𝜑𝑖𝑖𝑁𝑁�𝑛𝑛(ℎ − 𝑖𝑖)𝑝𝑝
𝑖𝑖=1 + ∑ 𝜃𝜃𝑛𝑛+ℎ−1,𝑗𝑗�𝑁𝑁𝑛𝑛+ℎ−𝑗𝑗 − 𝑁𝑁�𝑛𝑛+ℎ−𝑗𝑗�

𝑞𝑞
𝑗𝑗=ℎ ,   ℎ ≤ 𝐸𝐸

∑ 𝜑𝜑𝑖𝑖𝑁𝑁�𝑛𝑛(ℎ − 𝑖𝑖)𝑝𝑝
𝑖𝑖=1 ,                                                       ℎ > 𝐸𝐸

 

where 𝑁𝑁�𝑛𝑛(𝑗𝑗) = 𝑁𝑁𝑛𝑛−𝑗𝑗 for 𝑗𝑗 ≤ 0. 

𝜎𝜎𝑁𝑁𝑛𝑛
2 (ℎ) = 𝜎𝜎2���𝜒𝜒𝑞𝑞𝜃𝜃𝑛𝑛+ℎ−𝑞𝑞−1,𝑗𝑗−𝑞𝑞

𝑗𝑗

𝑞𝑞=0

�

2

𝜈𝜈𝑛𝑛+ℎ−𝑗𝑗−1

ℎ−1

𝑗𝑗=0

 

             where the constants χr are calculated recursively as 

𝜒𝜒0 = 1 

𝜒𝜒𝑞𝑞 = � 𝜑𝜑𝑘𝑘

min (𝑝𝑝,𝑞𝑞)

𝑘𝑘=1

𝜒𝜒𝑞𝑞−𝑘𝑘,   𝑝𝑝 = 1,2,3,⋯ 

 
 



 

 
And the 𝜈𝜈𝑡𝑡 and 𝜃𝜃𝑖𝑖𝑗𝑗 are computed recursively as follows: 

For 𝑖𝑖 = 𝑛𝑛 + 1,𝑛𝑛 + 2,⋯ 

𝜃𝜃𝑖𝑖,𝑖𝑖−𝑘𝑘 =

⎩
⎨

⎧
0 𝑘𝑘 ≤ 𝑖𝑖 − 𝐸𝐸 − 1

𝜈𝜈𝑘𝑘−1 �𝜅𝜅(𝑖𝑖 + 1, 𝑘𝑘 + 1) −�𝜃𝜃𝑘𝑘,𝑘𝑘−𝑗𝑗𝜃𝜃𝑖𝑖,𝑖𝑖−𝑗𝑗𝜈𝜈𝑗𝑗

𝑘𝑘−1

𝑗𝑗=0

� 𝑖𝑖 − 𝐸𝐸 ≤ 𝑘𝑘 ≤ 𝑖𝑖 − 1 

𝜈𝜈𝑖𝑖 = 𝜅𝜅(𝑖𝑖 + 1, 𝑖𝑖 + 1) − � 𝜃𝜃𝑖𝑖,𝑖𝑖−𝑗𝑗2
𝑖𝑖−1

𝑗𝑗=𝑖𝑖−𝑞𝑞

𝜈𝜈𝑗𝑗 = 𝛾𝛾(0) −�𝜃𝜃𝑖𝑖,𝑘𝑘2
𝑞𝑞

𝑘𝑘=1

𝜈𝜈𝑖𝑖−𝑘𝑘 

where 𝜅𝜅(𝑖𝑖 + 1, 𝑘𝑘 + 1) = ∑ 𝜗𝜗𝑞𝑞′𝜗𝜗𝑞𝑞+|𝑖𝑖−𝑘𝑘|
′ ,𝑞𝑞−|𝑖𝑖−𝑘𝑘|

𝑞𝑞=0  for 𝑖𝑖 − 𝐸𝐸 ≤ 𝑘𝑘 ≤ 𝑖𝑖 − 1 and 𝜗𝜗𝑞𝑞′   are same as that in section 
4.2.2.  

3) If the values of predictor𝑋𝑋𝑖𝑖,𝑛𝑛+𝑗𝑗, 𝑗𝑗 = 1,2,⋯, are needed for h-step-ahead forecast and these value are 
not available, then an expert exponential smoothing model will be built to forecast these values. 
However, if values𝑋𝑋𝑖𝑖,𝑛𝑛+𝑗𝑗, 𝑗𝑗 = 1,2,⋯, are available, then two options can be used: a) use these 
available data directly for forecast, b) use expert exponential smoothing model to forecast the these 
values. 

4) For the event variable, if values are not available for 𝑡𝑡 = 𝑛𝑛 + 1,𝑛𝑛 + 2,⋯, then we just assume all the 
future values are 0 without building expert smoothing model. 

5.  Parameter Estimation 
The parameters are estimated by optimizing an objective function, which is computed using the noise 
residuals (𝑁𝑁𝑡𝑡 − 𝑁𝑁�𝑡𝑡 ) and their prediction variance.  The computation of noise, noise prediction and 
corresponding variance has already been described in the section 4.  There are two objective functions of 
interest: CLS estimation uses objective function based on noise residuals computed using CLS forecasting 
and ML estimation uses noise residuals computed using ELS forecasting. 

Let 𝜷𝜷 = (𝛽𝛽1,𝛽𝛽2,⋯ ,𝛽𝛽𝑘𝑘) be all the parameter in the model excluding the error variance 𝜎𝜎2, and for given 𝛃𝛃,  
𝑅𝑅𝑡𝑡(𝜷𝜷) = �𝑁𝑁𝑡𝑡

(𝜷𝜷) − 𝑁𝑁�𝑡𝑡
(𝜷𝜷)� be the noise residual at 𝑡𝑡 in historical period.  If a noise value is missing, the 

corresponding residual is set to missing also. The prediction variance of the residual has the following form: 
𝜎𝜎𝑁𝑁𝑡𝑡
2 = 𝜎𝜎2 ∗ 𝜂𝜂𝑡𝑡, where  𝜂𝜂𝑡𝑡 = 𝜈𝜈𝑡𝑡−1  for the non-missing case and  Ω𝑡𝑡(1,1) + 1.0 in embedded missing value 

case when ELS method is used. For CLS method,  𝜂𝜂𝑡𝑡 are simply 1 in non-missing value situation, and will be 
complex function of ARMA parameters in embedded missing value situation. For simplicity, we just set them 
as 1 in this case also. 

Let us define weighted residual as 𝑅𝑅𝑡𝑡∗(𝛃𝛃) = 𝑅𝑅𝑡𝑡(𝛃𝛃)/�𝜂𝜂𝑡𝑡, and weighted sum of square 𝐸𝐸 = ∑𝑅𝑅𝑡𝑡2(𝛃𝛃) /𝜂𝜂𝑡𝑡, where 
the sum is taken over all non-missing residuals.    

 

Objective function for CLS estimation 

In CLS method, 𝐸𝐸 is the objective function which is minimized with respect to the model parameters. 

Objective function for ML method 

In ML method,  the objective function is the reduced log-likelihood function of the noise series which is 
given by 

𝐿𝐿 = −𝑠𝑠𝑛𝑛(𝐸𝐸/𝑛𝑛) − (1/𝑛𝑛)� ln�𝜂𝜂𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

 

 
 
 



 

Here 𝑛𝑛 is the number of non-missing residuals.  The ML estimates are computed by maximizing this 
objective function.  Equivalently one can minimize the following objective function also: �∏ 𝜂𝜂𝑗𝑗𝑛𝑛

𝑗𝑗=1 �1/𝑛𝑛 ∗ 𝐸𝐸. 

Parameter estimates 

Let 𝐸𝐸∗ be the objective function which is 𝐸𝐸 for CLS method and �∏ 𝜂𝜂𝑗𝑗𝑛𝑛
𝑗𝑗=1 �1/𝑛𝑛 ∗ 𝐸𝐸 for ML method, and  𝜕𝜕𝑅𝑅𝑡𝑡

∗(𝛃𝛃)
𝜕𝜕βi

 

be the first derivative of 𝑅𝑅𝑡𝑡∗(𝛃𝛃) which is computed as 

𝜕𝜕𝑅𝑅𝑡𝑡∗(𝛃𝛃)
𝜕𝜕𝛽𝛽𝑖𝑖

= �𝑅𝑅𝑡𝑡∗(𝛃𝛃) − 𝑅𝑅𝑡𝑡∗�𝛃𝛃�𝐢𝐢�� /𝛿𝛿 

where 𝜷𝜷�𝒊𝒊 = �β1,⋯ ,𝛽𝛽𝑖𝑖 + 𝛿𝛿,⋯ , βk� and 𝛿𝛿 = −0.0001 if 𝛽𝛽𝑖𝑖 is positive and 0.0001 otherwise. 

To introduce the estimation process, the following notations are needed: 

• 𝑀𝑀: The maximum number of iteration, the default is 25 ∗ 𝑘𝑘, where k is the number of parameters. 
• λ: The constraint parameter, the initial value is 0.001. 
• 𝐹𝐹1: The increased factor of constraint parameter, the default value is 100. 
• 𝐹𝐹2: The reduced factor of constraint parameter, the default value is 0.1. 
• λmax: The maximum of constraint parameter, the default value is 109. 
• 𝐽𝐽: The maximum number of steps in step halving method, the default is 6. 
• 𝜀𝜀𝐷𝐷:  Tolerance level of scaling quantities, the default value is 10−8. 
• 𝜀𝜀𝑠𝑠:  Tolerance level of relative objective function change, the default value is 10−5. 
• 𝜀𝜀𝛽𝛽: Tolerance level of parameter change, the default value is 10−4. 

 

Now the parameter estimation process is as follows: 

Step1. Set initial values 𝛃𝛃(0), which  will be discussed in section 6. 

Step 2. Compute objective function S0∗  at 𝛃𝛃(0). 

Step3. Let  m = 0. 

Step 4. Compute  𝑘𝑘×𝑘𝑘 matrix 𝑨𝑨 = �𝐴𝐴𝑖𝑖𝑗𝑗� and 𝑘𝑘×1 vector 𝑮𝑮 = (𝑎𝑎1,𝑎𝑎2,⋯ ,𝑎𝑎𝑘𝑘)𝑇𝑇, where 𝐴𝐴𝑖𝑖𝑗𝑗 =

∑ 𝜕𝜕𝑅𝑅𝑡𝑡
∗�𝛃𝛃(m)�
𝜕𝜕𝛽𝛽𝑖𝑖

𝜕𝜕𝑅𝑅𝑡𝑡
∗�𝛃𝛃(m)�
𝜕𝜕𝛽𝛽𝑗𝑗

𝑛𝑛
𝑡𝑡=1   and 𝑎𝑎𝑖𝑖 = ∑ 𝜕𝜕𝑅𝑅𝑡𝑡

∗�𝛃𝛃(m)�
𝜕𝜕𝛽𝛽𝑖𝑖

∗ 𝑅𝑅𝑡𝑡∗�𝛃𝛃(m)�𝑛𝑛
𝑡𝑡=1 , and compute the scaling quantities 𝐷𝐷𝑖𝑖 =

�𝐴𝐴𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1,⋯ , 𝑘𝑘 . Let 𝑀𝑀𝑎𝑎𝑥𝑥𝐷𝐷 = max
i

{𝐷𝐷𝑖𝑖}, if 𝐷𝐷𝑖𝑖
𝑀𝑀𝑠𝑠𝑥𝑥𝐷𝐷

< 𝜀𝜀𝐷𝐷, then𝐷𝐷𝑖𝑖 = 0. 

Step5.  Compute 𝑘𝑘×𝑘𝑘 matrix 𝑨𝑨∗ = �𝐴𝐴𝑖𝑖𝑗𝑗∗ � and 𝑘𝑘×1 vector 𝑮𝑮∗ = (𝑎𝑎1∗,𝑎𝑎2∗,⋯ ,𝑎𝑎𝑘𝑘∗)𝑇𝑇, where  𝐴𝐴𝑖𝑖𝑗𝑗∗ = 𝐴𝐴𝑖𝑖𝑗𝑗/(𝐷𝐷𝑖𝑖 ∗ 𝐷𝐷𝑗𝑗), 
but if 𝐷𝐷𝑖𝑖 = 0 or 𝐷𝐷𝑗𝑗 = 0, then 𝐴𝐴𝑖𝑖𝑗𝑗∗ = 0; compute 𝑎𝑎𝑖𝑖∗ = 𝑎𝑎𝑖𝑖/𝐷𝐷𝑖𝑖, but if 𝐷𝐷𝑖𝑖 = 0, then 𝑎𝑎𝑖𝑖∗ = 0. 

Step 6. Let 𝐴𝐴𝑖𝑖𝑖𝑖∗ = 1 + λ. Compute 𝒉𝒉∗ = 𝑨𝑨∗−𝑮𝑮∗. Based on 𝒉𝒉∗, compute 𝒉𝒉 = (ℎ1, ℎ2,⋯ , ℎ𝑘𝑘)𝑇𝑇  where  ℎ𝑖𝑖 =
ℎ𝑖𝑖∗/𝐷𝐷𝑖𝑖  and ℎ𝑖𝑖∗ are the elements of 𝒉𝒉∗. 

Step 7. 𝜉𝜉 = 0. 

Step 8. 𝛃𝛃(m+1) = 𝛃𝛃(m) −  𝒉𝒉.  

Step 9. Check the following admissibility constraints on the parameters𝜷𝜷(m+1): 

a) The roots of AR polynomial with parameters are outside the unit circle. Please see Appendix D for 
details. 

b) If the roots of MA polynomial are outside the unit circle.  
c) If the sum of denominator polynomial coefficients is non-zero for each predictor variable. And the 

roots of denominator polynomial are outside the unit circle. 
If the conditions a),b) and c) hold, then go to step 11. Otherwise, let 𝛃𝛃i

(m+1) =
�β1

(m+1),⋯ , βi
(m),⋯ , βk

(m+1)�, 𝑖𝑖 = 1,⋯ , 𝑘𝑘. If there is one parameter vector, 𝛃𝛃i′
(m+1), such that the conditions a), 

b) and c) hold, then 𝛃𝛃(m+1) = 𝛃𝛃i′
(m+1) and go to step 11. If there is no parameter vector 𝛃𝛃i

(m+1), 𝑖𝑖 = 1,⋯ , 𝑘𝑘 
satisfy the conditions a), b) and c), then go to step 10. 
 
 



 

Step 10.  𝒉𝒉 = 𝒉𝒉/2, 𝜉𝜉 = 𝜉𝜉 + 1. If 𝜉𝜉 ≤ 𝐽𝐽, go to step 8. If  𝜉𝜉 > 𝐽𝐽, compute λ = λ ∗ 𝐹𝐹1. If λ > λmax, then output 
𝛃𝛃(m) as finial estimation and stop, else go to step 6.  

Step 11. Compute objective function Sm+1
∗   at 𝛃𝛃(m+1). If Sm+1∗   > Sm∗ , then λ = λ ∗ 𝐹𝐹1. If λ > λmax, then 

output 𝛃𝛃(m) as finial estimation and stop, else go to step 6. If Sm
∗ −Sm+1

∗

Sm∗
< 𝜀𝜀𝑠𝑠  then output 𝛃𝛃(m+1) as finial 

estimation and stop. If Sm
∗ −Sm+1

∗

Sm∗
≥ 𝜀𝜀𝑠𝑠 , then go to step 12. 

Step 12. If max
𝑖𝑖
�βi

(m+1) − βi
(m)� < 𝜀𝜀𝛽𝛽, then output 𝛃𝛃(m+1) as finial estimation and stop, else, m = m + 1. If 

m ≤ 𝑀𝑀, compute  λ = λ ∗ 𝐹𝐹2, then go to step 4. Otherwise output 𝛃𝛃(m) as finial estimation and stop. 

 

Let  𝛃𝛃� be the final estimation of 𝛃𝛃. The covariance matrix of 𝛃𝛃�  is 𝑨𝑨−  , where 𝑨𝑨 is computed based on 𝛃𝛃�, see 
the step 4 in above process. Therefore, the standard error of �̂�𝛽𝑖𝑖 is 𝜎𝜎𝑖𝑖𝑖𝑖 which is the square root of the ith 
diagonal element of 𝑨𝑨−. 

Let 𝐸𝐸𝑑𝑑𝑖𝑖𝑛𝑛𝑠𝑠𝑠𝑠  be the weighted sum of square based on the 𝛃𝛃�, then the error variance can be estimated as 𝜎𝜎�2 =
𝐸𝐸𝑑𝑑𝑖𝑖𝑛𝑛𝑠𝑠𝑠𝑠/(𝑛𝑛 − 𝑘𝑘). 

6.  Initial value 
This section discusses how to set initial parameters at the beginning of the parameter estimation. 

Transfer function parameters 

All the numerator and denominator polynomial parameters are initialized to zero except the coefficient of the 
0th power in the numerator polynomial, which is initialized to the corresponding regression coefficient using 
least square method.  

Denote the initial value of the 0th power parameter in the numerator polynomial as ω�i0,⋯ ,ω�k0. Then the 
noise series are computed as 

                                                            𝑁𝑁𝑡𝑡 = ∆𝑖𝑖𝑡𝑡 − �̂�𝑐 − ∑ 𝜔𝜔�𝑖𝑖0𝛥𝛥𝑖𝑖𝐵𝐵𝑏𝑏𝑖𝑖𝑓𝑓𝑖𝑖(𝑋𝑋𝑖𝑖𝑡𝑡)𝑘𝑘
𝑖𝑖=1   

which will be used to compute initial parameters of AR and MA. 

Non-Seasonal AR parameters 

The AR parameters are computed by the method in Appendix A6.2 of  Box, Jenkins, and Reinsel(1994). The 
method can be described as follows: 

�

𝜑𝜑�1
𝜑𝜑�2
⋮
𝜑𝜑�𝑝𝑝

� = �

𝜌𝜌𝑞𝑞 𝜌𝜌𝑞𝑞−1 ⋯ 𝜌𝜌𝑞𝑞−𝑝𝑝+1
𝜌𝜌𝑞𝑞+1 𝜌𝜌𝑞𝑞 ⋯ 𝜌𝜌𝑞𝑞−𝑝𝑝+2
⋮ ⋮ ⋱ ⋮

𝜌𝜌𝑞𝑞+𝑝𝑝−1 𝜌𝜌𝑞𝑞+𝑝𝑝−2 ⋯ 𝜌𝜌𝑞𝑞

�

−1

�

𝜌𝜌𝑞𝑞+1
𝜌𝜌𝑞𝑞+2
⋮

𝜌𝜌𝑞𝑞+𝑝𝑝

� 

where 𝜌𝜌𝑞𝑞−𝑝𝑝+1,⋯  𝜌𝜌𝑞𝑞+1,𝜌𝜌𝑞𝑞+2,⋯ ,𝜌𝜌𝑞𝑞+𝑝𝑝 are autocorrelations of  Nt. 

Based on 𝜑𝜑�𝑖𝑖 , 𝑖𝑖 = 1,⋯ , 𝑝𝑝, the stationary condition that the roots of AR polynomial are outside the unit circles 
is needed to check. If the stationary condition holds, then they are used as initial values. Otherwise, let  𝜑𝜑�𝑖𝑖 =
0.9 ∗ 𝜑𝜑�𝑖𝑖 . 𝑖𝑖 = 1,⋯ , 𝑝𝑝, then continue to check stationary condition based on updated parameters. If the 
stationary condition is satisfied, then stop. Otherwise repeat this process until the stationary condition holds 
and final  𝜑𝜑�𝑖𝑖 . 𝑖𝑖 = 1,⋯ , 𝑝𝑝 will be used as AR initial parameters. 

Non-Seasonal MA parameters 

Let  

𝑤𝑤𝑡𝑡 = 𝑁𝑁𝑡𝑡 − 𝜑𝜑1𝑁𝑁𝑡𝑡−1 − ⋯− 𝜑𝜑𝑝𝑝𝑁𝑁𝑡𝑡−𝑝𝑝 = 𝑎𝑎𝑡𝑡 − 𝜃𝜃1𝑎𝑎𝑡𝑡−1 − ⋯− 𝜃𝜃𝑞𝑞𝑎𝑎𝑡𝑡−𝑞𝑞 

The cross covariance function is 



 

𝜆𝜆𝑠𝑠 = 𝐸𝐸(𝑤𝑤𝑡𝑡+𝑠𝑠𝑎𝑎𝑡𝑡) = 𝐸𝐸 ��𝑎𝑎𝑡𝑡+𝑠𝑠 − 𝜃𝜃1𝑎𝑎𝑡𝑡+𝑠𝑠−1 − ⋯− 𝜃𝜃𝑞𝑞𝑎𝑎𝑡𝑡+𝑠𝑠−𝑞𝑞�𝑎𝑎𝑡𝑡� =

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎2, 𝑠𝑠 = 0
−𝜃𝜃1𝜎𝜎2, 𝑠𝑠 = 1

⋯            ⋯
−𝜃𝜃𝑞𝑞𝜎𝜎2, 𝑠𝑠 = 𝐸𝐸

0, 𝑠𝑠 > 𝐸𝐸

 

Assuming that an AR(p+q) can approximate Nt, it follows that: 

𝑁𝑁𝑡𝑡 − 𝜑𝜑1′ 𝑁𝑁𝑡𝑡−1 −⋯− 𝜑𝜑𝑝𝑝′ 𝑁𝑁𝑡𝑡−𝑝𝑝 − 𝜑𝜑𝑝𝑝+1′ 𝑁𝑁𝑡𝑡−𝑝𝑝−1 − ⋯− 𝜑𝜑𝑝𝑝+𝑞𝑞′ 𝑁𝑁𝑡𝑡−𝑝𝑝−𝑞𝑞 = 𝑎𝑎𝑡𝑡 

The AR parameters of this model are estimated as above and are denoted as 𝜑𝜑�1′ ,⋯ ,𝜑𝜑�𝑝𝑝+𝑞𝑞′ . 

Thus 𝜆𝜆𝑠𝑠 can be estimated by 

�̂�𝜆𝑠𝑠 ≈ 𝐸𝐸 ��𝑁𝑁𝑡𝑡+𝑠𝑠 − 𝜑𝜑�1𝑁𝑁𝑡𝑡+𝑠𝑠−1 − ⋯− 𝜑𝜑�𝑝𝑝𝑁𝑁𝑡𝑡+𝑠𝑠−𝑝𝑝��𝑁𝑁𝑡𝑡 − 𝜑𝜑�1′ 𝑁𝑁𝑡𝑡−1 −⋯− 𝜑𝜑�𝑝𝑝+𝑞𝑞′ 𝑁𝑁𝑡𝑡−𝑝𝑝−𝑞𝑞��

= �𝜌𝜌𝑠𝑠 −�𝜑𝜑�𝑗𝑗′ 𝜌𝜌𝑠𝑠+𝑗𝑗

𝑝𝑝+𝑞𝑞

𝑗𝑗=1

−�𝜑𝜑�𝑖𝑖𝜌𝜌𝑠𝑠−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ ��𝜑𝜑�𝑖𝑖𝜑𝜑�𝑗𝑗′ 𝜌𝜌𝑠𝑠+𝑗𝑗−𝑖𝑖

𝑝𝑝+𝑞𝑞

𝑗𝑗=1

𝑝𝑝

𝑖𝑖=1

� 𝑐𝑐0
 

And the error variance 𝜎𝜎2 is approximated by 

𝜎𝜎�2 = 𝑉𝑉𝑎𝑎𝑝𝑝 �−�𝜑𝜑�𝑗𝑗′𝑁𝑁𝑡𝑡−𝑗𝑗

𝑝𝑝+𝑞𝑞

𝑗𝑗=0

� = 𝑐𝑐0��𝜑𝜑�𝑖𝑖′𝜑𝜑�𝑗𝑗′ 𝜌𝜌𝑖𝑖−𝑗𝑗

𝑝𝑝+𝑞𝑞

𝑖𝑖=0

𝑝𝑝+𝑞𝑞

𝑖𝑖=0

 

Then the MA parameters are estimated by 

𝜃𝜃�𝑠𝑠 = −
�̂�𝜆𝑠𝑠
𝜎𝜎�2

, 𝑠𝑠 = 1,⋯ , 𝐸𝐸 

Same as the AR parameters, the stationary condition that the roots of MA polynomial are outside the unit 
circles is needed to check. If the condition does not hold, update 𝜃𝜃�𝑠𝑠 = 0.9 ∗ 𝜃𝜃�𝑠𝑠 , 𝑠𝑠 = 1,⋯ , 𝐸𝐸 repeatedly until 
𝜃𝜃�𝑠𝑠 , 𝑠𝑠 = 1,⋯ , 𝐸𝐸 that satisfy the condition are obtained. 

Seasonal parameters 

For seasonal AR and MA components, the autocorrelations at the seasonal lags in the above equations are 
used. 

7.  Model summary and diagnostics 
 

7.1. Coefficients and statistical inference 
• Coefficients and standard error  

After the model building, we can get the coefficients of AR, MA and predictors and corresponding 
standard error, see section 5. 

• t-statistics for coefficients  
t statistics for �̂�𝛽𝑖𝑖 is 

𝑡𝑡 =
�̂�𝛽𝑖𝑖  
𝜎𝜎𝑖𝑖𝑖𝑖

 

Where 𝜎𝜎𝑖𝑖𝑖𝑖 is the standard error of �̂�𝛽𝑖𝑖, and the statistic t follows an asymptotic t distribution with the 
degree of freedom (𝑛𝑛 − 𝑘𝑘), here 𝑛𝑛 is the number of non-missing residuals and 𝑘𝑘 is the number of 
parameter in the model.  Then the p-value is computed as  

𝑝𝑝 = 2×�1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡𝑛𝑛−𝑘𝑘 ≤ |𝑡𝑡|)� 
 
 



 

• 100( α−1 )% confidence internals  

�̂�𝛽 ± 𝜎𝜎𝑖𝑖𝑖𝑖×𝑡𝑡𝛼𝛼
2 ,𝑛𝑛−𝑘𝑘 

7.2. Goodness-of-fit statistics 
 
Goodness-of-fit statistics are based on the original series Y. Let k is the number of parameters in the model 
and n is the number of non-missing residuals. 
• Mean squared error 

𝑀𝑀𝐸𝐸𝐸𝐸 =
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1

𝑛𝑛 − 𝑘𝑘
 

• Root mean squared error 
𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸 = √𝑀𝑀𝐸𝐸𝐸𝐸 

• Mean absolute percent error 

𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸 =
100
𝑛𝑛

��
𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡
𝑌𝑌𝑡𝑡

�
𝑛𝑛

𝑡𝑡=1

 

• Maximum absolute percent error 

𝑀𝑀𝑎𝑎𝑥𝑥𝐴𝐴𝑃𝑃𝐸𝐸 = 100max ��
𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡
𝑌𝑌𝑡𝑡

�� 

• Root mean squared percent error 

𝑅𝑅𝑀𝑀𝐸𝐸𝑃𝑃𝐸𝐸 = �
100
𝑛𝑛

��
𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡
𝑌𝑌𝑡𝑡

�
2𝑛𝑛

𝑡𝑡=1

 

• Mean absolute error 

𝑀𝑀𝐴𝐴𝐸𝐸 =
1
𝑛𝑛
��𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�
𝑛𝑛

𝑡𝑡=1

 

• Maximum absolute error 
𝑀𝑀𝑎𝑎𝑥𝑥𝐴𝐴𝐸𝐸 = max��𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�� 

• Bayesian information criterion 

𝐵𝐵𝐼𝐼𝐶𝐶 = 𝑛𝑛×𝑠𝑠𝑛𝑛 �
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1

𝑛𝑛
� + 𝑘𝑘×𝑠𝑠𝑛𝑛(𝑛𝑛) 

• Akaike information criterion 

𝐴𝐴𝐼𝐼𝐶𝐶 = 𝑛𝑛×𝑠𝑠𝑛𝑛 �
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1

𝑛𝑛
� + 2𝑘𝑘 

• R-squared 

𝑅𝑅2 = 1 −
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1

∑ (𝑌𝑌𝑡𝑡 − 𝑌𝑌�)2𝑛𝑛
𝑡𝑡=1

 

• Stationary R-squared 

𝑅𝑅𝑆𝑆2 = 1 −
∑ �𝑖𝑖𝑡𝑡 − �̂�𝑖𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1

∑ (∆𝑖𝑖𝑡𝑡 − ∆𝑖𝑖����)2𝑛𝑛
𝑡𝑡=1

 

Where the sum is over the terms in which both Zt − Z�t−1 and ∆Zt − ∆Z���� are not missing. 

∆Z���� is the simple mean model for the differenced transformed series, which is equivalent to the univariate 
baseline model ARIMA(0, d, 0)(0, D, 0). 
 
 



 

Note: Both the stationary and usual R-squared can be negative with range (−∞, 1]: Negative R-squared value 
means that the model under consideration is worse than the baseline model. Zero R-squared value means that 
the model under consideration is as good or bad as the baseline model. Positive R-squared value means that 
the model under consideration is better than the baseline model. 

 

7.3. Diagnostic statistics 
ARIMA/TF diagnostic statistics are based on noise residual process, 𝑅𝑅𝑡𝑡 = 𝑁𝑁𝑡𝑡 − 𝑁𝑁�𝑡𝑡. 

• Residual autocorrelation function 
The residual autocorrelation function can be computed as 

γ�k =
∑ (Rt − R�)(Rt+k − R�)n−k
t=1

∑ (Rt − R�)2n
t=1

   for k = 0,1 … , K 

where R� = ∑ Rtn
t=1
n

 is the sample mean of Rt. The maximum number of lags, K, will be specified by user and it 
must be a positive number. The default value of K is 24. 

Bartlett (1946) assumes that the true MA order of the process is 𝑘𝑘 − 1 and the approximate standard error is  

 se(𝛾𝛾�𝑘𝑘) ≅ �
1
𝑛𝑛
�1 + 2��𝛾𝛾�𝑠𝑠�

2
𝑘𝑘−1

𝑠𝑠=1

� 

The approximate 100(1 − α)% confidence interval of 𝛾𝛾𝑗𝑗 = 0  can be computed as 
�−𝑠𝑠𝑠𝑠�𝛾𝛾�𝑗𝑗� ∗ 𝑧𝑧1−𝛼𝛼/2, 𝑠𝑠𝑠𝑠�𝛾𝛾�𝑗𝑗� ∗ 𝑧𝑧1−𝛼𝛼/2� 

where 𝑧𝑧1−𝛼𝛼/2 is the (1 − 𝛼𝛼/2)100th percentile of the standard normal distribution. 

Please note that if 𝑅𝑅𝑡𝑡 is missing value, then it will be ignored during computing 𝑅𝑅�, and 𝑛𝑛 will be the number 
of non-missing residuals. And the term (𝑅𝑅𝑡𝑡 − 𝑅𝑅�)(𝑅𝑅𝑡𝑡+𝑘𝑘 − 𝑅𝑅�) and (𝑅𝑅𝑡𝑡 − 𝑅𝑅�)2 will also be ignored in 𝛾𝛾�𝑘𝑘  if 𝑅𝑅𝑡𝑡 is 
missing value. 

•  Residual partial autocorrelation function 

The kth residual partial autocorrelation function 𝜙𝜙�𝑘𝑘,𝑘𝑘 can be computed as 

ϕ�1,1 = γ�1 

ϕ�2,2 = (γ�2 − (γ�1)2)
[1 − (γ�1)2]�  

ϕ�k,j = ϕ�k−1,j − ϕ�k,kϕ�k−1,k−j,   k = 2, 3, … , j = 1, 2, … , k − 1 

    ϕ�k,k =
γ�k − ∑ ϕ�k−1,jγ�k−jk−1

j=1

1 − ∑ ϕ�k−1,jγ�jk−1
j=1

,   k = 3, 4, … , K 

The maximum number of lags, 𝐾𝐾, will be specified by user and it must be a positive number. The default 
value of 𝐾𝐾 is 24. 

According to Quenouville (1949), if time series 𝑅𝑅𝑡𝑡 follows AR(𝑝𝑝) model, then 

𝜙𝜙�𝑘𝑘,𝑘𝑘~̇N �0,
1
𝑛𝑛
� 

 
 



 

 
Thus 

se�𝜙𝜙�𝑘𝑘,𝑘𝑘� ≅ �1
𝑛𝑛

  

The approximate 100(1 − α)% confidence interval of 𝜙𝜙𝑘𝑘,𝑘𝑘 = 0  can be computed as 
�−𝑠𝑠𝑠𝑠�𝜙𝜙�𝑘𝑘,𝑘𝑘� ∗ 𝑧𝑧1−𝛼𝛼/2, 𝑠𝑠𝑠𝑠�𝜙𝜙�𝑘𝑘,𝑘𝑘� ∗ 𝑧𝑧1−𝛼𝛼/2� 

•  Ljung-Box statistic 

 The Ljung-Box statistic is computed as 

𝑄𝑄(𝐾𝐾) = 𝑛𝑛(𝑛𝑛 + 2)�𝛾𝛾�k2/(n − k)
𝐾𝐾

𝑘𝑘=1

 

Where K is the number of lags to be tested and we will fix K as 18, and  𝛾𝛾�𝑘𝑘 is the kth lag autocorrelation of 
residual. The statistic 𝑄𝑄(𝐾𝐾) is approximately distributed as 𝜒𝜒2(𝐾𝐾 −𝑚𝑚), where m is the number of parameters 
other than constant term and predictor related parameters. Therefore the p-value of 𝑄𝑄(𝐾𝐾) can be computed as 

𝑝𝑝 = 1 − Pr (𝜒𝜒2(𝐾𝐾 −𝑚𝑚) ≤ 𝑄𝑄(𝐾𝐾)) 

If p-value is less than significant level 𝛼𝛼, then residual values exhibit autocorrelation. That is, the model does 
not explain all the autocorrelation and might need to be manually adjusted. 

7.4. Predictor importance 

Suppose for 𝑘𝑘 predictor series, 𝑋𝑋𝑖𝑖𝑡𝑡 , 𝑖𝑖 = 1,2,⋯ , 𝑘𝑘, and 𝑁𝑁�𝑡𝑡 ,𝑉𝑉𝑖𝑖𝑡𝑡 , 𝑖𝑖 = 1,2,⋯ , 𝑘𝑘 are the noise forecast and transfer 
functions based on model we built, then the predictor importance can be compute using approximate leave-
one-out method which is described as following: 

Step1. Compute series 𝑄𝑄𝑡𝑡
(0) = �𝑐𝑐 + ∑ 𝑉𝑉𝑖𝑖𝑡𝑡𝑘𝑘

𝑖𝑖=1 � and 𝑄𝑄𝑡𝑡
(𝑖𝑖) = �𝑁𝑁�𝑡𝑡 + 𝑐𝑐 + ∑ 𝑉𝑉𝑗𝑗𝑡𝑡𝑗𝑗≠𝑖𝑖 �, 𝑖𝑖 = 1,2,⋯ , 𝑘𝑘 

Step 2. Compute series �̂�𝑖𝑡𝑡
(𝑖𝑖) = 𝑄𝑄𝑡𝑡

(𝑖𝑖), 𝑖𝑖 = 1,2,⋯ , 𝑘𝑘 if the dependent series is not differenced, otherwise  

�̂�𝑖𝑡𝑡
(𝑖𝑖) = 𝑄𝑄𝑡𝑡

(𝑖𝑖) − � 𝜏𝜏𝑗𝑗𝑖𝑖𝑡𝑡−𝑗𝑗

𝑑𝑑+𝐷𝐷𝑠𝑠

𝑗𝑗=1

, 𝑖𝑖 = 0,1,2,⋯ ,𝑘𝑘 

where 𝜏𝜏𝑗𝑗 is the coefficient corresponding to power 𝑗𝑗 of the difference operator ∆. 

Step 3. The approximate leave-one-out predicted value as follows: 

• If the dependent series is not transformed, then 
                                                     𝑦𝑦�𝑡𝑡

(𝑖𝑖) = �̂�𝑖𝑡𝑡
(𝑖𝑖), 𝑖𝑖 = 0,1,2,⋯ , 𝑘𝑘  

• If the transformed function is log, then 

                              𝑦𝑦�𝑡𝑡
(𝑖𝑖) = exp ��̂�𝑖𝑡𝑡

(𝑖𝑖)  +
𝜎𝜎𝑍𝑍𝑡𝑡
2

2
� , 𝑖𝑖 = 0,1,2,⋯ , 𝑘𝑘  

• If the transformed function if square root, then 
                                             𝑦𝑦�𝑡𝑡

(𝑖𝑖) = ��̂�𝑖𝑡𝑡
(𝑖𝑖) �

2
+ σZt

2 , 𝑖𝑖 = 0,1,2,⋯ , 𝑘𝑘 

where σZt
2  is the variance of Zt, which is same as that in the section 4.1,4.2 and 4.3. 

Step 4.  Compute leave-one-out absolute percent error series for each predictor 
 
 



 

𝑠𝑠𝑡𝑡
(𝑖𝑖) = �

𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡
(𝑖𝑖)

𝑦𝑦𝑡𝑡
� , 𝑖𝑖 = 0,1,2,⋯ , 𝑘𝑘 

And then trim series 𝑠𝑠𝑡𝑡
(𝑖𝑖) by removing the top n*5% largest 𝑠𝑠𝑡𝑡

(𝑖𝑖) . 

Step 5. Compute the leave-one-out mean absolute percent error based on the trimmed series in step 4 for each 
predictor         

𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸(𝑖𝑖) =
100
𝑛𝑛∗

�𝑠𝑠𝑡𝑡
(𝑖𝑖)

𝑛𝑛∗

𝑡𝑡=1

, 𝑖𝑖 = 0,1,2,⋯ , 𝑘𝑘 

Where 𝑛𝑛∗ is the number of cases in the trimmed series of 𝑠𝑠𝑡𝑡
(𝑖𝑖). 

Step 6. The predictor importance can be computed as 

𝑃𝑃𝐼𝐼(𝑖𝑖) =
𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸(𝑖𝑖)

∑ 𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸(𝑖𝑖)𝑘𝑘
𝑖𝑖=0

, 𝑖𝑖 = 0,1,2,⋯ , 𝑘𝑘 

8.  Scenario analysis 
For a given transfer function model, scenario analysis can be performed by substituting values of given 
predictors in a given time span, and checking how the forecast values of the target will be affected. 
Specifically, user needs to specify the following input for a scenario analysis: 

• Predictor names in the model for scenario analysis. 
• The beginning time, 𝑡𝑡𝑏𝑏 , and end time, 𝑡𝑡𝑠𝑠   for predictors to be modified. 
• A vector of values to be used as substitute for each predictor specified for scenario analysis. 
• The last time 𝑡𝑡𝑠𝑠 at which the target will be forecasted, where𝑡𝑡𝑠𝑠 ≥ 𝑡𝑡𝑏𝑏. 
 
Based on the above information, forecast will be performed from 𝑡𝑡 = 𝑡𝑡𝑏𝑏 to 𝑡𝑡 = 𝑡𝑡𝑠𝑠. 

Appendix A: Double seasonal ARIMA model 
A double seasonal ARIMA(p,d,q)(P1, D1, Q1)(P2, D2,Q2) model can be described as: 

Δ𝑖𝑖𝑡𝑡 = 𝑐𝑐 +
𝜃𝜃𝑞𝑞(𝐵𝐵) ΘQ1(Bs1)ΘQ2(Bs2)
𝜙𝜙𝑝𝑝(𝐵𝐵)ΦP1(Bs1)ΦP2(Bs2)

𝑎𝑎𝑡𝑡  

where 

• 𝑠𝑠1 : the first seasonality or period of the model 
• 𝑠𝑠2: the second seasonality or period of the model, and 𝑠𝑠2 > 𝑠𝑠1 
• 𝜙𝜙𝑝𝑝(𝐵𝐵): non-seasonal AR polynomial of order 𝑝𝑝, 𝜙𝜙𝑝𝑝(𝐵𝐵) = 1 − 𝜑𝜑1𝐵𝐵 − 𝜑𝜑2𝐵𝐵2 −⋯− 𝜑𝜑𝑝𝑝𝐵𝐵𝑝𝑝  
• 𝜃𝜃𝑞𝑞(𝐵𝐵): non-seasonal MA polynomial of order 𝐸𝐸, 𝜃𝜃𝑞𝑞(𝐵𝐵) = 1 − 𝜗𝜗1𝐵𝐵 − 𝜗𝜗2𝐵𝐵2 − ⋯− 𝜗𝜗𝑞𝑞𝐵𝐵𝑞𝑞  
• ΦP1(Bs1): the first seasonal AR polynomial of 𝐵𝐵𝑠𝑠1  with order 𝑃𝑃1,  ΦP1(Bs1) = 1 −Φ11Bs1 −

Φ12B2s1 − ⋯−Φ1P1BP1s1  
• ΘQ1(Bs1): the first seasonal MA polynomial of 𝐵𝐵𝑠𝑠1  with order 𝑄𝑄1,  ΘQ1(Bs1) = 1 − Θ11Bs1 −

Θ12B2s1 − ⋯− Θ1Q1BQ1s1  
• ΦP2(Bs2): the second seasonal AR polynomial of 𝐵𝐵𝑠𝑠2  with order 𝑃𝑃2,  ΦP2(Bs2) = 1 −Φ21Bs2 −

Φ22B2s2 − ⋯− Φ2P2BP2s2  
• ΘQ2(Bs2):  the second seasonal MA polynomial of 𝐵𝐵𝑠𝑠2  with order 𝑄𝑄2,  ΘQ2(Bs2) = 1 − Θ21Bs2 −

Θ22B2s2 − ⋯− Θ2Q2BQ2s2  
 
 



 

• Δ: differencing operator, Δ = (1 − 𝐵𝐵)𝑑𝑑(1 − 𝐵𝐵𝑠𝑠1)𝐷𝐷1(1 − 𝐵𝐵𝑠𝑠2)𝐷𝐷2  
 

Since parameter estimation and forecast of the double seasonal ARIMA(p, d, q)(P1, D1, Q1)(P2, D2,Q2) are 
similar to the similar to the  ARIMA(p, d, q)(P1, D1, Q1), we just give some implementation here: 

Implementation notes: 

• Initial values:  the initial values for non-seasonal AR and MA part are computed using the algorithm 
in Section 6. For each seasonal AR and MA part, the autocorrelations at the corresponding seasonal 
lags are computed, and then algorithm for non-seasonal AR and MA will be used. 

• Forecasting: we need to re-write the ARIMA(p, q)(P1, Q1)(P2, Q2) model as 
ARMA(p+s1P1+s2P2,q+s1Q1+s2Q2) by computing the product of non-seasonal and seasonal 
polynomials using the algorithm in Appendix B. 

Appendix B: Ratio and product of two polynomials 
 

Ratio of two polynomials 

Suppose 𝜙𝜙𝑝𝑝(𝐵𝐵) = 1 − 𝜑𝜑1𝐵𝐵 − 𝜑𝜑2𝐵𝐵2 − ⋯− 𝜑𝜑𝑝𝑝𝐵𝐵𝑝𝑝, and 𝜃𝜃𝑞𝑞(𝐵𝐵) = 1 − 𝜗𝜗1𝐵𝐵 − 𝜗𝜗2𝐵𝐵2 − ⋯− 𝜗𝜗𝑞𝑞𝐵𝐵𝑞𝑞   are two 
polynomials of degree p and q respectively. Of course some of the coefficients in the above polynomials can 
be zero. 

We want to compute the coefficients 𝜓𝜓𝑗𝑗 in the power series representation 

𝜃𝜃𝑞𝑞(𝐵𝐵)
𝜙𝜙𝑝𝑝(𝐵𝐵) = 1 + 𝜓𝜓1B + 𝜓𝜓2B2 + ⋯ 

These coefficients can be obtained as follows.  Define 𝜗𝜗0′ = 1, 𝜗𝜗𝑖𝑖′ = −𝜗𝜗𝑖𝑖 , 𝑖𝑖 = 1,⋯ , 𝐸𝐸,  𝜗𝜗𝑗𝑗′ = 0 for 𝑗𝑗 > 𝐸𝐸 and 
𝜑𝜑𝑗𝑗 = 0 for 𝑗𝑗 > 𝑝𝑝.  Now recursively compute 𝜓𝜓𝑗𝑗by the following recursions: 

 

𝜓𝜓0 = 𝜗𝜗0′ = 1, 𝑗𝑗 = 0;

𝜓𝜓𝑗𝑗 − � 𝜑𝜑𝑗𝑗𝜓𝜓𝑗𝑗−𝑘𝑘
0<𝑘𝑘≤𝑗𝑗

= 𝜗𝜗𝑗𝑗′ ,  0 ≤ 𝑗𝑗 < max(𝑝𝑝, 𝐸𝐸 + 1);

𝜓𝜓𝑗𝑗 − � 𝜑𝜑𝑗𝑗𝜓𝜓𝑗𝑗−𝑘𝑘
0<𝑘𝑘≤𝑝𝑝

= 0, 𝑗𝑗 ≥ max(𝑝𝑝, 𝐸𝐸 + 1)

 

These equations can be easily solved successively for𝜓𝜓0,𝜓𝜓1,𝜓𝜓2,⋯.  Thus 

𝜓𝜓0 = 𝜗𝜗0′ = 1 

𝜓𝜓1 = 𝜗𝜗1′ + 𝜓𝜓0𝜑𝜑1 

𝜓𝜓2 = 𝜗𝜗2′ + 𝜓𝜓0𝜑𝜑2 + 𝜓𝜓1𝜑𝜑1 

𝜓𝜓3 = 𝜗𝜗3′ + 𝜓𝜓0𝜑𝜑3 + 𝜓𝜓1𝜑𝜑2 + 𝜓𝜓2𝜑𝜑1 

⋯ 

 

Product of two polynomials 

For two polynomials 𝑓𝑓𝑝𝑝(𝐵𝐵) = 𝑓𝑓0 + 𝑓𝑓1𝐵𝐵 + 𝑓𝑓2𝐵𝐵2 + ⋯+ 𝑓𝑓𝑝𝑝𝐵𝐵𝑝𝑝 and 𝑎𝑎𝑞𝑞(𝐵𝐵) = 𝑎𝑎0+𝑎𝑎1𝐵𝐵+𝑎𝑎2𝐵𝐵2 + ⋯+ 𝑎𝑎𝑞𝑞𝐵𝐵𝑞𝑞  ,  

the coefficients of the product  

𝑓𝑓𝑝𝑝(𝐵𝐵)𝑎𝑎𝑞𝑞(𝐵𝐵) = 𝜉𝜉0 + 𝜉𝜉1𝐵𝐵 + 𝜉𝜉1𝐵𝐵2 + ⋯+ 𝜉𝜉𝑝𝑝+𝑞𝑞𝐵𝐵𝑝𝑝+𝑞𝑞 

 
 
 
 



 

 
can be computed as  

𝜉𝜉𝑗𝑗 = �𝑓𝑓𝑘𝑘𝑎𝑎𝑗𝑗−𝑘𝑘, 𝑗𝑗 = 0,1,⋯ , 𝑝𝑝 + 𝐸𝐸
𝑗𝑗

𝑘𝑘=0

 

In the summation, 𝑓𝑓𝑗𝑗 = 0, if 𝑗𝑗 > 𝑝𝑝 and 𝑎𝑎𝑗𝑗 = 0, if 𝑗𝑗 > 𝐸𝐸. 

Appendix C: Theoretical ACF of an ARMA process  
Suppose an ARMA (p, q) process with the AR polynomial 𝜙𝜙𝑝𝑝(𝐵𝐵) = 1 − 𝜑𝜑1𝐵𝐵 − 𝜑𝜑2𝐵𝐵2 − ⋯− 𝜑𝜑𝑝𝑝𝐵𝐵𝑝𝑝 and MA 
polynomial𝜃𝜃𝑞𝑞(𝐵𝐵) = 1 − 𝜗𝜗1𝐵𝐵 − 𝜗𝜗2𝐵𝐵2 − ⋯− 𝜗𝜗𝑞𝑞𝐵𝐵𝑞𝑞 , and error variance 𝜎𝜎2. Let 𝛾𝛾(∙) be the required ACF 
which can be computed recursively by solving: 

𝛾𝛾(𝑘𝑘) − 𝜑𝜑1𝛾𝛾(𝑘𝑘 − 1) −⋯− 𝜑𝜑𝑝𝑝𝛾𝛾(𝑘𝑘 − 𝑝𝑝) = 𝜎𝜎2�𝜗𝜗𝑗𝑗′
𝑞𝑞

𝑗𝑗=𝑘𝑘

𝜓𝜓𝑗𝑗−𝑘𝑘, 0 ≤ 𝑘𝑘 < max (𝑝𝑝, 𝐸𝐸 + 1) 

𝛾𝛾(𝑘𝑘) − 𝜑𝜑1𝛾𝛾(𝑘𝑘 − 1) −⋯− 𝜑𝜑𝑝𝑝𝛾𝛾(𝑘𝑘 − 𝑝𝑝) = 0,                         𝑘𝑘 ≥ max (𝑝𝑝, 𝐸𝐸 + 1) 

where 𝜗𝜗0′ = 1, 𝜗𝜗𝑖𝑖′ = −𝜗𝜗𝑖𝑖, 𝑖𝑖 = 1,⋯ , 𝐸𝐸 and 𝜗𝜗𝑖𝑖′ = 0 if 𝑖𝑖 > 𝐸𝐸, and 𝜓𝜓𝑗𝑗s are coefficients in  𝜃𝜃𝑞𝑞
(𝐵𝐵)

𝜙𝜙𝑝𝑝(𝐵𝐵)
= 1 + 𝜓𝜓1B +

𝜓𝜓2B2 + ⋯.  

Based on Tunnicliffe(1979),Kohn and Ansley(1985) give a efficient method to compute 𝛾𝛾(0),⋯ , 𝛾𝛾(𝑝𝑝). The 
method can be described as below: 

Step 1. Compute the auto-covariance of 𝐸𝐸𝑡𝑡 = 𝜃𝜃𝑞𝑞(𝐵𝐵)𝑎𝑎𝑡𝑡 :  

𝐶𝐶𝑈𝑈(𝑗𝑗) = ��𝜗𝜗𝑖𝑖′𝜗𝜗𝑖𝑖+𝑗𝑗′

𝑞𝑞−𝑗𝑗

𝑖𝑖=0

,     0 ≤ 𝑗𝑗 ≤ 𝐸𝐸

0,                   𝑗𝑗 > 𝐸𝐸

; 

When 𝐸𝐸 = 0(I,e. pure AR case), 𝐶𝐶𝑈𝑈(𝑗𝑗) = 0 for 𝑗𝑗 > 0 and 𝐶𝐶𝑈𝑈(0) = 0. 

If the model is a pure MA(q), then the subsequent steps will not be needed and 𝛾𝛾(𝑘𝑘) = 𝐶𝐶𝑈𝑈(𝑘𝑘). 

If the model is pure AR(p) or ARMA(p,q), the following arrays are needed to compute auto-covariance: 

• 𝜷𝜷 is a lower triangular array of size 𝐸𝐸 by 𝐸𝐸 + 1, i.e. the element, 𝛽𝛽𝑖𝑖,𝑗𝑗 is needed only for 𝑗𝑗 ≤ 𝑖𝑖, here 
𝑖𝑖 = 1,2,⋯ , 𝐸𝐸 and 𝑖𝑖 = 0,1,2,⋯ , 𝐸𝐸 

• 𝒅𝒅 is an array of size 𝐸𝐸 by 1, the element 𝑑𝑑𝑘𝑘 = 𝛽𝛽𝑘𝑘,𝑘𝑘,𝑘𝑘 = 1,2,⋯ , 𝐸𝐸 
• 𝝓𝝓 is a lower triangular array of size 𝑝𝑝 by 𝑝𝑝, i,e, the element  𝜙𝜙𝑖𝑖,𝑗𝑗 are needed only for 𝑗𝑗 ≤ 𝑖𝑖, here 

𝑖𝑖, 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝. 
• 𝜶𝜶 is an array of size 𝑝𝑝 by 1, the element 𝛼𝛼𝑘𝑘 = 𝜙𝜙𝑘𝑘,𝑘𝑘, 𝑘𝑘 = 1,2,⋯ , 𝑝𝑝 
• 𝒗𝒗 is a 𝑝𝑝 + 1 by 𝑝𝑝 + 1 array with the indexes going from 0 to 𝑝𝑝. It is also almost lower triangular and 

only the last row of the 𝑣𝑣 is needed in final auto-covariance computations. 
The computations of these arrays, except for 𝑣𝑣, are backwards, i.e. the last rows/values are initialized first and 
then the earlier values are computed: 

Step 2. Initialize the last rows of 𝜙𝜙 and 𝛽𝛽 as: 

𝜙𝜙𝑝𝑝,𝑗𝑗 = 𝜑𝜑𝑗𝑗 , 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝 

𝛽𝛽𝑞𝑞,𝑗𝑗 = 𝐶𝐶𝑈𝑈(𝑗𝑗), 𝑗𝑗 = 0,1,2,⋯ , 𝐸𝐸 

Step 3. Recursively compute earlier values of 𝜙𝜙 and 𝛼𝛼: 
 
 
 
 
 
 



 

For 𝑘𝑘 = 𝑝𝑝 − 1,⋯ ,1, 

𝛼𝛼𝑘𝑘+1 = 𝜙𝜙𝑘𝑘+1,𝑘𝑘+1 

𝜙𝜙𝑘𝑘,𝑗𝑗 =
𝜙𝜙𝑘𝑘+1,𝑗𝑗 + 𝛼𝛼𝑘𝑘+1 ∗ 𝜙𝜙𝑘𝑘+1,𝑘𝑘+1−𝑗𝑗

1 − 𝛼𝛼𝑘𝑘+12 , 𝑗𝑗 = 1,2,⋯ , 𝑘𝑘 

At the end,  

𝛼𝛼1 = 𝜙𝜙1,1 

Step 4. Recursively compute earlier values of 𝛽𝛽 and 𝑑𝑑 

For 𝑘𝑘 = 𝐸𝐸 − 1,⋯ ,1 

𝑑𝑑𝑘𝑘+1 = 𝛽𝛽𝑘𝑘+1,𝑘𝑘+1 

𝛽𝛽𝑘𝑘,𝑗𝑗 = 𝛽𝛽𝑘𝑘+1,𝑗𝑗 + 𝑑𝑑𝑘𝑘+1 ∗ 𝜙𝜙𝑘𝑘,𝑘𝑘+1−𝑗𝑗, 𝑗𝑗 = 1,2,⋯ , 𝑘𝑘 

𝛽𝛽𝑘𝑘,0 = 𝐶𝐶𝑈𝑈(0) 

Finally, 

𝑑𝑑1 = 𝛽𝛽1,1 

Step 5. Compute 𝑣𝑣 using 𝛼𝛼 and 𝑑𝑑, 

𝑣𝑣0,0 =
1
2
𝐶𝐶𝑈𝑈(0) 

For 𝑘𝑘 = 0,1,⋯ , 𝑝𝑝 − 1 

𝑣𝑣𝑘𝑘,𝑘𝑘+1 = 𝑑𝑑𝑘𝑘+1 

𝑣𝑣𝑘𝑘+1,𝑗𝑗 =
𝑣𝑣𝑘𝑘,𝑗𝑗 + 𝛼𝛼𝑘𝑘+1𝑣𝑣𝑘𝑘,𝑘𝑘+1−𝑗𝑗

1 − 𝛼𝛼𝑘𝑘+12 , 𝑗𝑗 = 0,1,⋯ , 𝑘𝑘 + 1 

Step 6. Compute the auto-covariance 

Initialize  

𝛾𝛾(0) = 𝑣𝑣𝑝𝑝,0 

𝛾𝛾(𝑘𝑘) = 0, 𝑘𝑘 > 0 

Then the auto-covariance will be computed recursively: 

𝛾𝛾(𝑘𝑘) = �𝜑𝜑𝑖𝑖

𝑘𝑘

𝑖𝑖=1

𝛾𝛾(𝑘𝑘 − 𝑖𝑖) + 𝑣𝑣𝑝𝑝,𝑘𝑘, 𝑘𝑘 = 1,2,⋯ , 𝑝𝑝 

𝛾𝛾(𝑘𝑘) = �𝜑𝜑𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝛾𝛾(𝑘𝑘 − 𝑖𝑖), 𝑘𝑘 > 𝑝𝑝  

Finally, 

𝛾𝛾(0) = 2 ∗ 𝑣𝑣𝑝𝑝,0 

 

Implementation notes: 

1. In step 3, since computation of any row/value of 𝝓𝝓 depends only on one previous row/value, one 
only needs temporary storage two vector of size 𝑝𝑝 for 𝝓𝝓. 

2. Step 3 and step 4 can be loop together if we want the efficient storage because the kth row of 𝜷𝜷 
depends on the kth 𝝓𝝓. 

3. If 𝐸𝐸 < 𝑝𝑝, then 𝑑𝑑𝑘𝑘 = 0 for 𝑘𝑘 > 𝐸𝐸.  
4. If 𝑝𝑝 < 𝐸𝐸, we set the 𝜑𝜑𝑘𝑘 = 0 for 𝑝𝑝 < 𝑘𝑘 ≤ 𝐸𝐸, which in practice means applying the algorithm with p 

replaced by 𝐸𝐸. Therefore, the auto-covariance will be computed based on the qth row of 𝑣𝑣. 



 

Appendix D: Stationary condition check 
During the parameters estimation, we need to check the roots of a polynomial are outside unit circle which is 
also called stationary condition check. Here we just discuss how to check stationary condition for AR 
polynomial. For polynomial of MA and denominator polynomial of each predictor, the similar algorithm can 
be used. 

Suppose  𝜙𝜙𝑝𝑝(𝐵𝐵) = 1 − 𝜑𝜑1𝐵𝐵 − 𝜑𝜑2𝐵𝐵2 − ⋯− 𝜑𝜑𝑝𝑝𝐵𝐵𝑝𝑝 is an AR polynomial of degree 𝑝𝑝. Let 𝜑𝜑1,1,𝜑𝜑2,2,⋯ ,𝜑𝜑𝑝𝑝,𝑝𝑝 
be the first 𝑝𝑝 partial auto-correlations of corresponding AR process. Then the stationary condition is 
equivalent to the fact all these partial auto-correlation must be less than one in absolute value. These partial 
correlations can be computed recursively using Durbin-Levinson algorithm applied in reverse. See page 242 
of Brockwell and Davis(1991) for details.  

Let 𝜑𝜑𝑝𝑝,𝑖𝑖 = 𝜑𝜑𝑝𝑝, 𝑖𝑖 = 1,⋯ , 𝑝𝑝. Then the other partial auto-correlation 𝜑𝜑1,1,𝜑𝜑2,2,⋯ ,𝜑𝜑𝑝𝑝−1,𝑝𝑝−1can be computed 
recursively by 

𝜑𝜑𝑚𝑚−1,𝑖𝑖 =
�𝜑𝜑𝑚𝑚,𝑖𝑖 + 𝜑𝜑𝑚𝑚,𝑚𝑚 ∗ 𝜑𝜑𝑚𝑚,𝑚𝑚−𝑖𝑖�

�1 − 𝜑𝜑𝑚𝑚,𝑚𝑚
2 �

, 𝑚𝑚 = 𝑝𝑝, 𝑝𝑝 − 1,⋯ ,2  𝑎𝑎𝑛𝑛𝑑𝑑 𝑖𝑖 = 1,⋯ ,𝑚𝑚 − 1  
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Time Series Algorithm: Combined Forecasts  
 
 

1. Introduction 
In new traditional time series, we will output top N models for a time series 𝑦𝑦𝑡𝑡 by expert modeler. Some models will be 
exponential smoothing models and others will be ARIMA models. Although we can get a best model according to 
specified criteria from the top N models, this best model may not be good enough to capture all patterns of the time 
series. Therefore, it may not produce good forecast values. To tackle this problem, we propose to combine forecasts 
from all these top N models together to generate final forecasts. 

2. Combined forecasts process 
Suppose that we have forecast models Fi, i = 1,⋯ ,𝑁𝑁, the combined forecast process consists 3 steps: 1) encompassing 
tests, 2) weights assignment, 3) forecasts combination and prediction interval. 

Step 1. Encompassing tests 

In this step, we will eliminate some models that are encompassed by other models: 

1-1) The models, Fi, i = 1,⋯ ,𝑁𝑁, are ranked by MAPE from the best to worst. Without loss of generality, we 
assume that after ranking, the models are F1, F2,⋯ , F𝑁𝑁. 

1-2) Let S1 = ∅, S2 = { F1, F2,⋯ , F𝑁𝑁}. 
1-3) Select the best mode from S2, denote it as  Fbest and let S1 = S1 ∪ { Fbest}, S2 = S2 − { Fbest}. 
1-4) Encompassing test will be used to test whether some models in S2 are encompassed by the best model Fbest. If 

yes, eliminate these models fromS2. Encompassing test will be described in section 2. 
1-5) If S2 = ∅,  go to step 2. Otherwise, go to 1-3). 

Step 2. Weights assignment 

This step assigns weights to the selected models in S1 from step 1. Suppose that there are M in S1 and they are Fi, i =
1,⋯ , M. There are two weights assignment method: 

• Equal weights (simple average): an equal weight is assigned to each model, 𝐹𝐹𝑖𝑖, 𝑖𝑖 = 1,⋯ ,𝑀𝑀, 𝑤𝑤𝑖𝑖 = 1/𝑀𝑀. 
• Root mean squared error(RMSE) weights: a weight based on RMSE of each model is assigned to each model, 

Fi, i = 1,⋯ , M, wi = 1/RMSEi
∑ 1/RMSEjM
j=1

. 

Step 3. Forecasts combination and prediction interval 

This step performs the weighted combination of forecasts based on model Fi, i = 1,⋯ , M, and corresponding weight 
wi.  For each t, combined forecast produces a value  y�c,t according to the expression 

y�c,t = �wiy�i,t

M

i=1

 

where y�i,t denotes the prediction from model Fi at time t. 

Suppose the prediction intervals for y�i,t, i = 1,2,⋯ , M are (Li, Ui), respectively, then the prediction interval for y�c,t is 
�∑ wiLiM

i=1 ,∑ wiUi
M
i=1 �. 



 

3. Encompassing test 
 

HLM test, which is discussed by Harvey, Leybourne and Newbold (1998), can be used to test if one forecast model is 
encompassed by another forecast model.  

Suppose that we have two forecast models, Fi and Fj, and the one-step-ahead forecast at time t from model Fi and Fj are 
y�i,t and y�j,t, respectively. Then a loss differential sequence dt is defined as 

dt = �e𝑖𝑖,t − e𝑗𝑗,t�e𝑖𝑖,t, t = 1,2,⋯ , n 

where ei,t = yt − y�i,t and ej,t = yt − y�j,t, respectively. 

Based on dt, the test statistic is computed as 

T = �
n − 1

n
�
1/2 d�

�var(d�)
 

where d� = 1
n
∑ dtn
t=1  and var�d�� = 1

n2
∑ �dt − d��2n
t=1 . 

The p-value is computed as p = 2 ∗ P(tn−1 > |𝑇𝑇|), where tn−1 is random variable following t distribution with degree 
of freedom n − 1. If the p value is less than significant level α(default is 0.05), then Fi is not encompassing the Fj. 
Otherwise, Fi is encompassing Fj , and Fj should be removed from forecast model set. 

 

Reference: 

Harvey, D.I., Leybourne,S.J. and Newbold,P.(1998) Tests for forecast encompassing, Journal of business and 
economic statistics, 16, 254-258 
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Time Series Algorithm: Exponential Smoothing  
 
 

1.  Introduction 
Exponential smoothing originated in Robert G. Brown’s work [1] as an analyst for the US Navy 
during World War II. After Brown’s opening, several models were developed for trends and 
seasonality besides level. The taxonomy of Hyndman [2] is helpful in describing the family members 
of exponential smoothing. Besides the level component, the trend and seasonality component are 
take into account by denotes as (no trend N, additive trend A, damped additive trend DA, 
multiplicative trend M, damped multiplicative trend DM) * (no seasonality N, additive seasonality 
A, multiplicative seasonality M), so 15 possible model type combinations are defined. 

6 of 15 models are supported in SPSS TSMODEL procedure, and they can be classified by 
Hyndman’s taxonomy which is shown in Table I. Brown’s exponential smoothing model is also 
supported in SPSS TSMODEL procedure. It belongs to Brown’s polynomial exponential smoothing 
model, and is listed in Table 1. 

SPSS EXSMOOTH procedure supports 12 of 15 models, including all models with no trend N, 
additive trend A, damped additive trend DA, and multiplicative trend M. 

So, the Time Series Engine will support the union of models from TSMODEL and EXSMOOTH 
procedure, which is means that all models with no trend N, additive trend A, damped additive 
trend DA, multiplicative trend M, and plus Brown’s exponential smoothing are supported. 

Table 1 

Taxonomy of exponential smoothing model and supported models in SPSS 

Trend Component Seasonal Component 
no seasonality N additive seasonality A multiplicative 

seasonality M 
no trend N N,N 

simple exponential 
smoothing 

N,A 
Simple seasonal 
exponential 
smoothing 

N,M 
 

additive trend A A,N 
Holt’s linear method 

A, A 
Additive Holt-
Winters’ method 

A,M 
Multiplicative Holt-
Winters’ method 

damped additive 
trend DA 

DA,N 
Damped trend 
method 

DA,A 
 

DA,M 
 

multiplicative trend M M,N M,A M,M 
  



 

damped 
multiplicative trend 
DM 

   

polynomial 
exponential 

Brown’s exponential 
smoothing 

  

 

2.  Exponential smoothing models 
 

2.1  Notation 
The following notation is used throughout this document unless otherwise stated: 

𝑌𝑌𝑡𝑡  (𝑡𝑡 = 1,2,⋯ ,𝑛𝑛 ) Univariate time series under investigation, where 𝑌𝑌1 𝑎𝑎𝑛𝑛𝑑𝑑 𝑌𝑌𝑛𝑛 is not 
missing 

𝑛𝑛 Total number of observations 

𝑠𝑠 The seasonal length for the model included seasonal component 

𝜑𝜑𝑡𝑡 The seasonal phase at time 𝑡𝑡 for the model included seasonal 

component 

𝛼𝛼 Level smoothing weight 

𝛾𝛾 Trend smoothing weight 

𝜙𝜙 Damped trend smoothing weight 

𝛿𝛿 Season smoothing weight 

𝐿𝐿(𝑡𝑡) Level smoothing states at time 𝑡𝑡 

𝑇𝑇(𝑡𝑡) Trend smoothing states at time 𝑡𝑡 

𝐸𝐸(𝑡𝑡) Seasonal smoothing states at time 𝑡𝑡 

𝑌𝑌�𝑡𝑡(𝑘𝑘) Model-estimated 𝑘𝑘-step ahead forecast at time 𝑡𝑡 for series 𝑌𝑌 

𝑌𝑌�𝑡𝑡 Model-estimated one-step ahead forecast at time 𝑡𝑡 for series 𝑌𝑌 

𝜎𝜎𝑡𝑡2(𝑘𝑘) Variance of the 𝑘𝑘-step ahead forecast at time 𝑡𝑡 for series 𝑌𝑌 

 

Implementation note: 

1. For an input series 𝑌𝑌 for exponential smoothing, the effective span should be checked first and 
denote: 
• The first non-missing value as 𝑌𝑌1 with 𝑡𝑡 = 1 
• The last non-missing value as 𝑌𝑌𝑛𝑛 with 𝑡𝑡 = 𝑛𝑛 

 
 
 



 

No Trend, No Seasonality Model (Simple Exponential Smoothing) 

𝐿𝐿(𝑡𝑡) = �𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) 

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2(1 + (𝑘𝑘 − 1)𝛼𝛼2) 

No Trend, Additive Seasonality Model (Simple seasonal Exponential Smoothing) 

𝐿𝐿(𝑡𝑡) = �𝛼𝛼�𝑌𝑌𝑡𝑡 − 𝐸𝐸(𝑡𝑡 − 𝑠𝑠)� + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝐸𝐸(𝑡𝑡) = �𝛿𝛿�𝑌𝑌𝑡𝑡 − 𝐿𝐿(𝑡𝑡)� + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐸𝐸(𝑡𝑡 − 𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) + 𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠) 

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + �𝜓𝜓𝑗𝑗2
𝑘𝑘−1

𝑗𝑗=1

� 

where 𝜓𝜓𝑗𝑗 = �
𝛼𝛼 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 ≠ 0

𝛼𝛼 + 𝛿𝛿(1 − 𝛼𝛼) 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 = 0 

No Trend, Multiplicative Seasonality Model  

𝐿𝐿(𝑡𝑡) = �𝛼𝛼
(𝑌𝑌𝑡𝑡 𝐸𝐸(𝑡𝑡 − 𝑠𝑠)⁄ ) + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝐿𝐿(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

𝐸𝐸(𝑡𝑡) = �𝛿𝛿
(𝑌𝑌𝑡𝑡 𝐿𝐿(𝑡𝑡)⁄ ) + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝐸𝐸(𝑡𝑡 − 𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) ∙ 𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠) 

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + ���𝜓𝜓𝑗𝑗+𝑖𝑖𝑠𝑠 𝐸𝐸𝑡𝑡+𝑘𝑘 𝐸𝐸𝑡𝑡+𝑘𝑘−𝑗𝑗⁄ �2
𝑠𝑠

𝑗𝑗=1

∞

𝑖𝑖=0

� 

 where 𝜓𝜓𝑗𝑗 = �
𝛼𝛼 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 ≠ 0

𝛼𝛼 + 𝛿𝛿(1 − 𝛼𝛼) 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 = 0, and 𝜓𝜓𝑗𝑗 = 0 for 𝑗𝑗 = 0 𝑝𝑝𝑝𝑝 𝑗𝑗 > 𝑘𝑘 

Additive Trend, No Seasonality Model (Holt’s Exponential Smoothing) 

𝐿𝐿(𝑡𝑡) = �𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝑇𝑇(𝑡𝑡) = �𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) + 𝑘𝑘𝑇𝑇(𝑡𝑡) 

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + �(𝛼𝛼 + 𝑗𝑗𝛼𝛼𝛾𝛾)2
𝑘𝑘−1

𝑗𝑗=1

� 

 
 
 
 



 

Additive Trend, Additive Seasonality Model (Winters’ Additive Exponential Smoothing) 

𝐿𝐿(𝑡𝑡) = �𝛼𝛼�𝑌𝑌𝑡𝑡 − 𝐸𝐸(𝑡𝑡 − 𝑠𝑠)� + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝑇𝑇(𝑡𝑡) = �𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝐸𝐸(𝑡𝑡) = �𝛿𝛿�𝑌𝑌𝑡𝑡 − 𝐿𝐿(𝑡𝑡)� + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐸𝐸(𝑡𝑡 − 𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) + 𝑘𝑘𝑇𝑇(𝑡𝑡) + 𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠) 

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + �𝜓𝜓𝑗𝑗2
𝑘𝑘−1

𝑗𝑗=1

� 

where 𝜓𝜓𝑗𝑗 = �
𝛼𝛼 + 𝑗𝑗𝛼𝛼𝛾𝛾 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 ≠ 0

𝛼𝛼 + 𝑗𝑗𝛼𝛼𝛾𝛾 + 𝛿𝛿(1 − 𝛼𝛼) 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 = 0 

Additive Trend, Multiplicative Seasonality Model (Winters’ Multiplicative Exponential Smoothing) 

𝐿𝐿(𝑡𝑡) = �𝛼𝛼(𝑌𝑌𝑡𝑡 𝐸𝐸(𝑡𝑡 − 𝑠𝑠)⁄ ) + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝑇𝑇(𝑡𝑡) = �𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝐸𝐸(𝑡𝑡) = �𝛿𝛿
(𝑌𝑌𝑡𝑡 𝐿𝐿(𝑡𝑡)⁄ ) + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝐸𝐸(𝑡𝑡 − 𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

𝑌𝑌�𝑡𝑡(𝑘𝑘) = �𝐿𝐿(𝑡𝑡) + 𝑘𝑘𝑇𝑇(𝑡𝑡)�𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠) 

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + ���𝜓𝜓𝑗𝑗+𝑖𝑖𝑠𝑠 𝐸𝐸𝑡𝑡+𝑘𝑘 𝐸𝐸𝑡𝑡+𝑘𝑘−𝑗𝑗⁄ �2
𝑠𝑠

𝑗𝑗=1

∞

𝑖𝑖=0

� 

 where 𝜓𝜓𝑗𝑗 = �
𝛼𝛼 + 𝑗𝑗𝛼𝛼𝛾𝛾 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 ≠ 0

𝛼𝛼 + 𝑗𝑗𝛼𝛼𝛾𝛾 + 𝛿𝛿(1 − 𝛼𝛼) 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 = 0, and 𝜓𝜓𝑗𝑗 = 0 for 𝑗𝑗 = 0 𝑝𝑝𝑝𝑝 𝑗𝑗 > 𝑘𝑘 

Damped Additive Trend, No Seasonality Model (Damped-Trend Exponential Smoothing) 

𝐿𝐿(𝑡𝑡) = �𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) + 𝜙𝜙𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) + 𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝑇𝑇(𝑡𝑡) = �𝛾𝛾�𝐿𝐿
(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛾𝛾)𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) + �𝜙𝜙𝑖𝑖𝑇𝑇(𝑡𝑡)
𝑘𝑘

𝑖𝑖=1

 

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + ��𝛼𝛼 + 𝛼𝛼𝛾𝛾𝜙𝜙 �𝜙𝜙𝑗𝑗 − 1� (𝜙𝜙 − 1)⁄ �2
𝑘𝑘−1

𝑗𝑗=1

� 

 
 
 



 

Damped Additive Trend, Additive Seasonality Model 

𝐿𝐿(𝑡𝑡) = �𝛼𝛼�𝑌𝑌𝑡𝑡 − 𝐸𝐸(𝑡𝑡 − 𝑠𝑠)� + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) + 𝜙𝜙𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) + 𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝑇𝑇(𝑡𝑡) = �𝛾𝛾�𝐿𝐿
(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛾𝛾)𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

𝐸𝐸(𝑡𝑡) = �𝛿𝛿�𝑌𝑌𝑡𝑡 − 𝐿𝐿(𝑡𝑡)� + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐸𝐸(𝑡𝑡 − 𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) + �𝜙𝜙𝑖𝑖𝑇𝑇(𝑡𝑡)
𝑘𝑘

𝑖𝑖=1

+ 𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠) 

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + �𝜓𝜓𝑗𝑗2
𝑘𝑘−1

𝑗𝑗=1

� 

where 𝜓𝜓𝑗𝑗 = �
𝛼𝛼 + 𝛼𝛼𝛾𝛾𝜙𝜙 �𝜙𝜙𝑗𝑗 − 1� (𝜙𝜙 − 1)⁄ 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 ≠ 0

𝛼𝛼 + 𝛿𝛿(1 − 𝛼𝛼) + 𝛼𝛼𝛾𝛾𝜙𝜙 �𝜙𝜙𝑗𝑗 − 1� (𝜙𝜙 − 1)⁄ 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 = 0
 

Damped Additive Trend, Multiplicative Seasonality Model 

𝐿𝐿(𝑡𝑡) = �𝛼𝛼
(𝑌𝑌𝑡𝑡 𝐸𝐸(𝑡𝑡 − 𝑠𝑠)⁄ ) + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) + 𝜙𝜙𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝐿𝐿(𝑡𝑡 − 1) + 𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

𝑇𝑇(𝑡𝑡) = �𝛾𝛾�𝐿𝐿
(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛾𝛾)𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

𝐸𝐸(𝑡𝑡) = �𝛿𝛿
(𝑌𝑌𝑡𝑡 𝐿𝐿(𝑡𝑡)⁄ ) + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝐸𝐸(𝑡𝑡 − 𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

𝑌𝑌�𝑡𝑡(𝑘𝑘) = �𝐿𝐿(𝑡𝑡) + �𝜙𝜙𝑖𝑖𝑇𝑇(𝑡𝑡)
𝑘𝑘

𝑖𝑖=1

� 𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠) 

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + ���𝜓𝜓𝑗𝑗+𝑖𝑖𝑠𝑠 ∗ 𝐸𝐸𝑡𝑡+𝑘𝑘 𝐸𝐸𝑡𝑡+𝑘𝑘−𝑗𝑗⁄ �2
𝑠𝑠

𝑗𝑗=1

∞

𝑖𝑖=1

� 

where 𝜓𝜓𝑗𝑗 = �
𝛼𝛼 + 𝛼𝛼𝛾𝛾𝜙𝜙 �𝜙𝜙𝑗𝑗 − 1� (𝜙𝜙 − 1)⁄ 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 ≠ 0

𝛼𝛼 + 𝛿𝛿(1 − 𝛼𝛼) + 𝛼𝛼𝛾𝛾𝜙𝜙 �𝜙𝜙𝑗𝑗 − 1� (𝜙𝜙 − 1)⁄ 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 = 0
, and 𝜓𝜓𝑗𝑗 = 0 for 𝑗𝑗 =

0 𝑝𝑝𝑝𝑝 𝑗𝑗 > 𝑘𝑘 

Multiplicative Trend, No Seasonality Model 

𝐿𝐿(𝑡𝑡) = �𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) ∙ 𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) ∙ 𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝑇𝑇(𝑡𝑡) = �𝛾𝛾
(𝐿𝐿(𝑡𝑡) 𝐿𝐿(𝑡𝑡 − 1)⁄ ) + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) ∙ 𝑇𝑇(𝑡𝑡)𝑘𝑘  



 

 

 

Multiplicative Trend, Additive Seasonality Model 

𝐿𝐿(𝑡𝑡) = �𝛼𝛼�𝑌𝑌𝑡𝑡 − 𝐸𝐸(𝑡𝑡 − 𝑠𝑠)� + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) ∙ 𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) ∙ 𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝑇𝑇(𝑡𝑡) = �𝛾𝛾
(𝐿𝐿(𝑡𝑡) 𝐿𝐿(𝑡𝑡 − 1)⁄ ) + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

𝐸𝐸(𝑡𝑡) = �𝛿𝛿�𝑌𝑌𝑡𝑡 − 𝐿𝐿(𝑡𝑡)� + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐸𝐸(𝑡𝑡 − 𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) ∙ 𝑇𝑇(𝑡𝑡)𝑘𝑘 + 𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠) 

Multiplicative Trend, Multiplicative Seasonality 

𝐿𝐿(𝑡𝑡) = �𝛼𝛼(𝑌𝑌𝑡𝑡 𝐸𝐸(𝑡𝑡 − 𝑠𝑠)⁄ ) + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) ∙ 𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) ∙ 𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝑇𝑇(𝑡𝑡) = �𝛾𝛾
(𝐿𝐿(𝑡𝑡) 𝐿𝐿(𝑡𝑡 − 1)⁄ ) + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

𝐸𝐸(𝑡𝑡) = �𝛿𝛿
(𝑌𝑌𝑡𝑡 𝐿𝐿(𝑡𝑡)⁄ ) + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝐸𝐸(𝑡𝑡 − 𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

𝑌𝑌�𝑡𝑡(𝑘𝑘) = �𝐿𝐿(𝑡𝑡) ∙ 𝑇𝑇(𝑡𝑡)𝑘𝑘�𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠) 

Brown’s Exponential Smoothing 

𝐿𝐿(𝑡𝑡) = �𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

𝑇𝑇(𝑡𝑡) = �𝛼𝛼�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛼𝛼)𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡  𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) + �(𝑘𝑘 − 1) + 𝛼𝛼−1�𝑇𝑇(𝑡𝑡) 

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + �(2𝛼𝛼 + (𝑗𝑗 − 1)𝛼𝛼2)2
𝑘𝑘−1

𝑗𝑗=1

� 

3.  Workflow of exponential smoothing models 
 

3.1  Series validation 
Series validation is used to check whether the series are admissible for the model type. Including 
check the effective span corresponding to the number of parameters (𝛼𝛼, 𝛾𝛾,𝜙𝜙, 𝛿𝛿 included in model) 
and ensure is at least one non-missing value per season when seasonality component is involved. 
The steps of validation are as follow: 
 
 
 
 



 

1. Set 𝑠𝑠𝑝𝑝𝑎𝑎𝑛𝑛 = 𝑛𝑛. 
2. Set number of non-missing values in 𝑠𝑠𝑝𝑝𝑎𝑎𝑛𝑛 as 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑. 
3. Number of parameters in specified model:  𝑘𝑘. 
4. If 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑 ≤ 𝑘𝑘 , issue error for “too few values in 𝑌𝑌”. 
5. If seasonality component is involved, compute number of valid value for each season: 

𝐸𝐸𝐶𝐶𝑝𝑝𝐸𝐸𝑛𝑛𝑡𝑡𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑠𝑠. 
If 𝑚𝑚𝑖𝑖𝑛𝑛(𝐸𝐸𝐶𝐶𝑝𝑝𝐸𝐸𝑛𝑛𝑡𝑡𝑖𝑖) = 0, issue error for “not enough values for seasonality in 𝑌𝑌”. 

 

3.2  Series transformation 
Transform 𝑌𝑌 according to transformation options (none, nature log, square root transformation): 

𝑌𝑌𝑡𝑡 = �
𝑌𝑌𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑡𝑡𝑝𝑝𝑎𝑎𝑛𝑛𝑠𝑠 𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛 = 𝑁𝑁𝑂𝑂𝑁𝑁𝐸𝐸

𝑠𝑠𝑝𝑝𝑎𝑎(𝑌𝑌𝑡𝑡), 𝑖𝑖𝑓𝑓 𝑡𝑡𝑝𝑝𝑎𝑎𝑛𝑛𝑠𝑠 𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛 = 𝐿𝐿𝑂𝑂𝐺𝐺 𝑎𝑎𝑛𝑛𝑑𝑑 𝑌𝑌 > 0
�𝑌𝑌𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑡𝑡𝑝𝑝𝑎𝑎𝑛𝑛𝑠𝑠 𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛 = 𝐸𝐸𝑄𝑄𝑅𝑅𝑇𝑇 𝑎𝑎𝑛𝑛𝑑𝑑 𝑌𝑌 ≥ 0

 

 

3.3  Construct objective function 
Make an objective function for this model. 

1. Let 𝜷𝜷 = (𝛽𝛽1,𝛽𝛽2,⋯ ,𝛽𝛽𝑘𝑘) be all the parameters in the model, and define the sum of squares of the 
one-step ahead prediction error, SSE, as objective function: 

𝑂𝑂(𝜷𝜷) = ��𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1
(𝜷𝜷)�

2
 

where 𝑌𝑌�𝑡𝑡−1
(𝜷𝜷) is the one-step ahead prediction value at time 𝑡𝑡 − 1 based on parameters 𝜷𝜷. 

2. Degree of freedom: 𝑑𝑑𝑓𝑓 = 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑 − 𝑘𝑘 

3.4  Parameter initialization 
The initial values of smoothing parameters are chosen by a grid search to minimize SSE. The steps of 
parameter initialization are as follow: 

1. Grid search to minimize SSE within search range with specified step: 
2. Search range and step for parameter(s): 

• For model with a single parameter 𝛼𝛼 (Simple or Brown model), search range is [0, 1] with 
number of steps = 100.  

• For model includes 2 parameters, the number of search steps = 10 for each parameter.  
• For model has 3 parameters, the number of search steps = 10 for each parameter.  

3. For a specified parameter , check whether the model with 𝜷𝜷 are admissible with Zero-One stable 
constraint: 

• For non-seasonal models, all parameters should be in the range of (0, 1), 
• For seasonal models, all parameter should be in the range of (0, 1), and admissible for 

stationary condition. 
• Admissible for stationary condition: 

Construct an (𝑠𝑠 + 1) order polynomial with following coefficients: 



 

𝑐𝑐𝑝𝑝𝑠𝑠𝑓𝑓𝑓𝑓𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

 1,                                                   𝑖𝑖𝑓𝑓 𝑖𝑖 = 0               
−(1 − 𝛼𝛼 − 𝛼𝛼 ∙ 𝛾𝛾),                        𝑖𝑖𝑓𝑓 𝑖𝑖 = 1                 
𝛼𝛼 ∙ 𝛾𝛾,                                               𝑖𝑖𝑓𝑓 2 ≤ 𝑖𝑖 ≤ 𝑠𝑠 − 1
−�1− 𝛼𝛼 ∙ 𝛾𝛾 − 𝛿𝛿 ∙ (1 − 𝛼𝛼)�,         𝑖𝑖𝑓𝑓 𝑖𝑖 = 𝑠𝑠              
−(1 − 𝛼𝛼) ∙ (𝛿𝛿 − 1),                       𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                     

 

If all the roots of the polynomial are outside the unit circle, the model is admissible for 
stationary condition. 

4. If a parameter 𝛽𝛽𝑖𝑖 not following the constrain, and if it is close to its boundary, 
(𝑠𝑠𝑝𝑝𝑤𝑤𝑠𝑠𝑝𝑝𝐵𝐵𝑝𝑝𝐸𝐸𝑛𝑛𝑑𝑑,𝐸𝐸𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝐵𝐵𝑝𝑝𝐸𝐸𝑛𝑛𝑑𝑑) with default range (0, 1), then shift the parameter value according to 
following rules: 
• if |𝛽𝛽𝑖𝑖 − 𝑠𝑠𝑝𝑝𝑤𝑤𝑠𝑠𝑝𝑝𝐵𝐵𝑝𝑝𝐸𝐸𝑛𝑛𝑑𝑑| < 𝐶𝐶 ∗ 𝜖𝜖, 𝛽𝛽𝑖𝑖 = 𝛽𝛽𝑖𝑖 + 𝑠𝑠ℎ𝑖𝑖𝑓𝑓𝑡𝑡, 
• if |𝐸𝐸𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝐵𝐵𝑝𝑝𝐸𝐸𝑛𝑛𝑑𝑑 − 𝛽𝛽𝑖𝑖| < 𝐶𝐶 ∗ 𝜖𝜖, 𝛽𝛽𝑖𝑖 = 𝛽𝛽𝑖𝑖 − 𝑠𝑠ℎ𝑖𝑖𝑓𝑓𝑡𝑡. 
where 𝑠𝑠ℎ𝑖𝑖𝑓𝑓𝑡𝑡 = 0.001, 𝐶𝐶 = 4 and 𝜖𝜖 = 10−16 at default. 

5. Using back-casting to compute initial smoothing states based on given parameters 𝜷𝜷. Details of 
back-casting can be found in Section 3.4.1. 

6. Based on the given parameters 𝜷𝜷 and computed initial smoothing states, compute sum of square 
of one-step ahead prediction error, SSE: 

𝑂𝑂(𝜷𝜷) = ��𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1
(𝜷𝜷)�
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7. Repeat step 3 to 6 to check all the steps for all the parameters. The parameters 𝜷𝜷 with minimized 
SSE are selected as initial value for estimation. 

 

Back-casting for initial smoothing states 
Smoothing states 𝐿𝐿(𝑡𝑡), 𝑇𝑇(𝑡𝑡), and 𝐸𝐸(𝑡𝑡) defined in Section 2 are critical in exponential smoothing 
models for both model estimation and forecasting. Level, trend, and seasonality states, as well as k-
step ahead forecasting, are all based on the initial smoothing states before the series started. Given 
specified parameters, initial smoothing states can be computed and used for forecasting and model 
evaluation. 

Initial smoothing states are made by back-casting from 𝑡𝑡 = 𝑛𝑛 to = 0. 

1. Compute level and trend states of 𝑡𝑡 = 𝑛𝑛 + 1, seasonality states of 𝑡𝑡 = 𝑛𝑛 + 1, … ,𝑛𝑛 + 𝑠𝑠. 
1.1. Level state for all models:  

𝐿𝐿(𝑛𝑛 + 1) = 𝑌𝑌𝑛𝑛 
 

1.2. For trend in the non-seasonal models including (A,N), (DA,N), and (M,N): 
𝑇𝑇(𝑛𝑛 + 1) = −𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠 

It is the negative slope of the regression line (with intercept) fitted for  𝑌𝑌𝑡𝑡 , 𝑡𝑡 = 1, … ,𝑛𝑛 with time 𝑡𝑡 as a 
regressor. 

1.3. For seasonal models with no trend, including (N,A) and (N,M), seasonal phase 𝜑𝜑𝑡𝑡 =
𝑚𝑚𝑝𝑝𝑑𝑑(𝑡𝑡, 𝑠𝑠) is defined for 𝑌𝑌𝑡𝑡. Elements of initial seasonal states for back-casting, 𝑺𝑺𝒆𝒆𝒆𝒆𝒅𝒅 =
(𝐸𝐸(𝑛𝑛 + 1), … , 𝐸𝐸(𝑛𝑛 + 𝑠𝑠), ), are seasonal averages minus the sample mean: 

𝐸𝐸(𝑛𝑛 + 𝑖𝑖) =
𝑠𝑠𝐸𝐸𝑚𝑚𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑(𝑖𝑖)
𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑(𝑖𝑖)

−𝑚𝑚𝑠𝑠𝑎𝑎𝑛𝑛(𝑌𝑌), 𝑖𝑖 = 1, … , 𝑠𝑠. 

Where: 



 

- 𝑠𝑠𝐸𝐸𝑚𝑚𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑(𝑖𝑖) = ∑ 𝑌𝑌𝑡𝑡 ∙ 𝐼𝐼𝑖𝑖(𝑡𝑡)𝑛𝑛
𝑡𝑡=1  is the sum of valid values of 𝑌𝑌 with seasonal phase 

𝑚𝑚𝑝𝑝𝑑𝑑(𝜑𝜑𝑛𝑛 + 𝑖𝑖, 𝑠𝑠), where 𝜑𝜑𝑛𝑛 is the seasonal phase of 𝑌𝑌𝑛𝑛, and 𝐼𝐼𝑖𝑖(𝑡𝑡) =

�1, 𝑖𝑖𝑓𝑓 𝑚𝑚𝑝𝑝𝑑𝑑(𝑡𝑡, 𝑠𝑠) = 𝑚𝑚𝑝𝑝𝑑𝑑(𝜑𝜑𝑛𝑛 + 𝑖𝑖, 𝑠𝑠) 
0, 𝑝𝑝𝑡𝑡ℎ𝑠𝑠𝑝𝑝𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠 is the season dummies 

- 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑(𝑖𝑖) = ∑ 𝐼𝐼𝑖𝑖(𝑡𝑡)𝑛𝑛
𝑡𝑡=1  is the count of valid values of 𝑌𝑌 with seasonal phase 𝑚𝑚𝑝𝑝𝑑𝑑(𝜑𝜑𝑛𝑛 +

𝑖𝑖, 𝑠𝑠) 
- 𝑚𝑚𝑠𝑠𝑎𝑎𝑛𝑛(𝑌𝑌) is the mean of 𝑌𝑌 excluded missing values 
- 𝑝𝑝 = 𝑚𝑚𝑝𝑝𝑑𝑑(𝑎𝑎, 𝑠𝑠), means 𝑎𝑎 − 𝑝𝑝 is an integer multiple of 𝑠𝑠. 

1.4. For additive seasonal models, including (A,A), (DA,A), and (M,A), fit 𝑌𝑌(𝑡𝑡) = 𝑎𝑎1𝑡𝑡 +
∑ 𝜃𝜃𝑖𝑖𝐼𝐼𝑖𝑖(𝑡𝑡)𝑠𝑠
𝑖𝑖=1  to series 𝑌𝑌 (without intercept) where t as a regressor and 𝐼𝐼𝑖𝑖(𝑡𝑡) are seasonal 

dummies:  

𝐼𝐼𝑖𝑖(𝑡𝑡) = �1, 𝑖𝑖𝑓𝑓 𝑚𝑚𝑝𝑝𝑑𝑑(𝑖𝑖, 𝑠𝑠) = 𝑚𝑚𝑝𝑝𝑑𝑑(𝑡𝑡, 𝑠𝑠)
0, 𝑝𝑝𝑡𝑡ℎ𝑠𝑠𝑝𝑝𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠 , 𝑖𝑖 = 1, … , 𝑠𝑠 

Then 𝑇𝑇(𝑛𝑛 + 1) = −𝑎𝑎1, and 𝐸𝐸(𝑛𝑛 + 𝑖𝑖) = 𝜃𝜃𝑚𝑚𝑚𝑚𝑑𝑑(𝜑𝜑𝑛𝑛+𝑖𝑖,𝑠𝑠) −𝑚𝑚𝑠𝑠𝑎𝑎𝑛𝑛(𝜽𝜽), 𝑖𝑖 = 1, … , 𝑠𝑠, where 𝜽𝜽 =
(𝜃𝜃1,⋯ ,𝜃𝜃𝑠𝑠). 

1.5. For multiplicative seasonal models, including (A,M), (DA,M), and (M,M), fit a separate line 
𝑌𝑌𝑡𝑡 = 𝜇𝜇𝑖𝑖 + 𝜃𝜃𝑖𝑖𝑡𝑡 for series 𝑌𝑌 (with intercept) with same seasonal phase 𝑚𝑚𝑝𝑝𝑑𝑑(𝑖𝑖, 𝑠𝑠), 𝑖𝑖 = 1, … , 𝑠𝑠, 
using time 𝑡𝑡 as a regressor. Denote 𝝁𝝁 = (𝜇𝜇1, … , 𝜇𝜇𝑠𝑠) and 𝜽𝜽 = (𝜃𝜃1, … ,𝜃𝜃𝑠𝑠). 

Then 𝑇𝑇(𝑛𝑛 + 1) = −𝑚𝑚𝑠𝑠𝑎𝑎𝑛𝑛(𝜽𝜽), and 𝐸𝐸(𝑛𝑛 + 𝑖𝑖) =
𝜇𝜇𝑚𝑚𝑜𝑜𝑑𝑑(𝜑𝜑𝑛𝑛+𝑖𝑖,𝑠𝑠)+𝜃𝜃𝑚𝑚𝑜𝑜𝑑𝑑(𝜑𝜑𝑛𝑛+𝑖𝑖,𝑠𝑠)

𝑚𝑚𝑠𝑠𝑠𝑠𝑛𝑛(𝝁𝝁)+𝑚𝑚𝑠𝑠𝑠𝑠𝑛𝑛(𝜽𝜽) , 𝑖𝑖 = 1, … , 𝑠𝑠.  

 

2. Using back-casting to compute smoothing states, this can be achieved by reversing the time 
order and smoothing backward. Back-casting starts from 𝑡𝑡 = 𝑛𝑛 and ends at 𝑡𝑡 = 0 with 𝑌𝑌0 is 
missing. 
In each step, 𝑌𝑌𝑡𝑡, 𝐿𝐿(𝑡𝑡 + 1), 𝑇𝑇(𝑡𝑡 + 1), and 𝐸𝐸(𝑡𝑡 + 𝑠𝑠) are used to compute 𝐿𝐿(𝑡𝑡), 𝑇𝑇(𝑡𝑡), and 𝐸𝐸(𝑡𝑡) 
according to the formula in Section 2.  

For example, following is level state in simple model: 

𝐿𝐿(𝑡𝑡) = 𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 − 1) 

In back-casting: 

𝐿𝐿(𝑡𝑡) = 𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 + 1) 

More back-casting examples can be found in Appendix A: Some back-casting formula for initial 
smoothing states. 

3. The initial smoothing states are: 
𝐿𝐿′ = 𝐿𝐿(0) 
𝑇𝑇′ = −𝑇𝑇(0) 
𝑺𝑺′ = �𝐸𝐸(1 − 𝑠𝑠), 𝐸𝐸(2 − 𝑠𝑠), … 𝐸𝐸(−1),𝐸𝐸(0)� 
     = �𝐸𝐸(1), 𝐸𝐸(2), … , 𝐸𝐸(−1 + 𝑠𝑠),𝐸𝐸(0)� 

 

3.5  Estimate model 
A modified version of Levenberg-Marquardt algorithm is used to estimate the specified model. 



 

The first derivative of objective function is 
𝜕𝜕𝑂𝑂(𝜷𝜷)
𝜕𝜕𝛽𝛽𝑖𝑖

= �𝑂𝑂(𝜷𝜷) − 𝑂𝑂�𝜷𝜷�𝒊𝒊�� /𝛿𝛿 

where 𝜷𝜷�𝒊𝒊 = (𝛽𝛽1,⋯ ,𝛽𝛽𝑖𝑖 + 𝛿𝛿,⋯ ,𝛽𝛽𝑘𝑘) and 𝛿𝛿 = −0.0001 if 𝛽𝛽𝑖𝑖 is positive and 0.0001 otherwise. 

Parameter estimation process is as follows: 

1. Set initial parameters 𝜷𝜷(𝟎𝟎) = (𝛽𝛽1,⋯ ,𝛽𝛽𝑘𝑘) which is from Section 3.4 “Parameter initialization”  
2. Compute objective function O�𝛃𝛃(0)�. 
3. Let  𝑚𝑚 = 0 and  𝜆𝜆 = 0.001. 
4. Compute  𝑘𝑘×𝑘𝑘 matrix 𝑨𝑨 = �𝐴𝐴𝑖𝑖𝑗𝑗� and 𝑘𝑘×1 vector 𝑮𝑮 = (𝑎𝑎1,𝑎𝑎2,⋯ ,𝑎𝑎𝑘𝑘)𝑇𝑇, where 𝐴𝐴𝑖𝑖𝑗𝑗 =

∑ 𝜕𝜕𝜕𝜕�𝜷𝜷(𝑚𝑚)�
𝜕𝜕𝛽𝛽𝑖𝑖

𝜕𝜕𝜕𝜕�𝜷𝜷(𝑚𝑚)�
𝜕𝜕𝛽𝛽𝑗𝑗

𝑛𝑛
𝑡𝑡=1   and 𝑎𝑎𝑖𝑖 = ∑ 𝜕𝜕𝜕𝜕�𝜷𝜷(𝑚𝑚)�

𝜕𝜕𝛽𝛽𝑖𝑖
∗ 𝑂𝑂�𝜷𝜷(𝑚𝑚)�𝑛𝑛

𝑡𝑡=1 , and compute the scaling quantities 𝐷𝐷𝑖𝑖 =

�𝐴𝐴𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1,⋯ ,𝑘𝑘 . Let 𝑀𝑀𝑎𝑎𝑥𝑥𝐷𝐷 = 𝑚𝑚𝑎𝑎𝑥𝑥
𝑖𝑖

{𝐷𝐷𝑖𝑖}, if 𝐷𝐷𝑖𝑖
𝑀𝑀𝑠𝑠𝑥𝑥𝐷𝐷

< 10−8, then𝐷𝐷𝑖𝑖 = 0. 

5. 𝐴𝐴𝑖𝑖𝑗𝑗 = 0 if 𝐷𝐷𝑖𝑖 = 0 or 𝐷𝐷𝑗𝑗 = 0, otherwise 𝐴𝐴𝑖𝑖𝑗𝑗 = 𝐴𝐴𝑖𝑖𝑗𝑗/(𝐷𝐷𝑖𝑖 ∗ 𝐷𝐷𝑗𝑗). 𝑎𝑎𝑖𝑖 = 0, if 𝐷𝐷𝑖𝑖 = 0, otherwise 𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑖𝑖/𝐷𝐷𝑖𝑖. 
6. Let 𝐴𝐴𝑖𝑖𝑖𝑖 = 1 + 𝜆𝜆. Compute 𝒉𝒉 = 𝑨𝑨−𝑮𝑮. Then the elements of 𝒉𝒉 are scaled as ℎ𝑖𝑖 = ℎ𝑖𝑖/𝐷𝐷𝑖𝑖. 
7. 𝐽𝐽 = 0 
8. 𝜷𝜷(𝑚𝑚+1) = 𝜷𝜷(𝑚𝑚) −  𝒉𝒉. 
9. Check the admissibility constraints on new parameter  𝜷𝜷(𝑚𝑚+1) according to step 3 in Section 3.4.  

If it is admissible, go to step 11. 

Else, let 𝜷𝜷𝑖𝑖
(𝑚𝑚+1) = �𝛽𝛽1

(𝑚𝑚+1),⋯ ,𝛽𝛽𝑖𝑖
(𝑚𝑚),⋯ ,𝛽𝛽𝑘𝑘

(𝑚𝑚+1)� , 𝑖𝑖 = 1,⋯ ,𝑘𝑘. If there is one parameter vector, 

𝜷𝜷𝑖𝑖′
(𝑚𝑚+1), is admissible, then 𝜷𝜷(𝑚𝑚+1) = 𝜷𝜷𝑖𝑖′

(𝑚𝑚+1) and go to step 11. If there is no parameter vector 

𝜷𝜷𝑖𝑖
(𝑚𝑚+1), 𝑖𝑖 = 1,⋯ ,𝑘𝑘 admissible, then go to step 10. 

10. 𝒉𝒉 = 𝒉𝒉/2, 𝐽𝐽 = 𝐽𝐽 + 1. If  𝐽𝐽 ≤ 6, go to step 8. If  𝐽𝐽 > 6, compute 𝜆𝜆 = 𝜆𝜆 ∗ 100. If 𝜆𝜆 > 109, then output 
𝜷𝜷(𝑚𝑚) as finial estimation and stop, else go to step 6.  

11. Compute objective function 𝑂𝑂�𝜷𝜷(𝑚𝑚+1)�,  
If 𝑂𝑂�𝜷𝜷(𝑚𝑚+1)� > 𝑂𝑂�𝜷𝜷(𝑚𝑚)�, then 𝜆𝜆 = 𝜆𝜆 ∗ 100, 𝑚𝑚 = 𝑚𝑚 + 1. If λ > 109, then output 𝜷𝜷(𝑚𝑚) as finial 
estimation and stop, else go to step 6. 
if 𝑂𝑂�𝜷𝜷(𝑚𝑚)� − 𝑂𝑂�𝜷𝜷(𝑚𝑚+1)� < 10−5 ∗ 𝑂𝑂�𝜷𝜷(𝑚𝑚)�, the estimation converged. Output 𝜷𝜷(𝑚𝑚+1) as final 
estimation and stop. Else, go to step 12. 

12. If 𝑚𝑚𝑎𝑎𝑥𝑥
𝑖𝑖

�𝛽𝛽𝑖𝑖
(𝑚𝑚+1) − 𝛽𝛽𝑖𝑖

(𝑚𝑚)� < 0.0001, then output 𝜷𝜷(𝑚𝑚+1) as finial estimation and stop, else, 𝑚𝑚 = 𝑚𝑚 +

1. If 𝑚𝑚 ≤ 50  , compute  𝜆𝜆 = 𝜆𝜆 ∗ 0.1, then go to step 4. Otherwise output 𝜷𝜷(𝑚𝑚) as finial estimation 
and stop. 

 

3.6  Post estimation 
Goodness-of-fit statistics are based on the original series 𝑌𝑌. 

Mean Squared Error (MSE) 

𝑀𝑀𝐸𝐸𝐸𝐸 =
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1�

2𝑛𝑛
𝑡𝑡=1
𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑 − 𝑘𝑘

 

Root Mean Squared Error (RMSE) 
𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸 = √𝑀𝑀𝐸𝐸𝐸𝐸 



 

Mean Absolute Percent Error (MAPE) 

𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸 =
100
𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑

��
𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1

𝑌𝑌𝑡𝑡
�

𝑛𝑛

𝑡𝑡=1

 

Maximum Absolute Percent Error (MaxAPE) 

𝑀𝑀𝑎𝑎𝑥𝑥𝐴𝐴𝑃𝑃𝐸𝐸 = 100𝑚𝑚𝑎𝑎𝑥𝑥 ��
𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1

𝑌𝑌𝑡𝑡
�� 

Root Mean Squared Percent Error (RMSPE) 

𝑅𝑅𝑀𝑀𝐸𝐸𝑃𝑃𝐸𝐸 = �
100
𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑

��
𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1

𝑌𝑌𝑡𝑡
�
2𝑛𝑛

𝑡𝑡=1

 

Mean Absolute Error (MAE) 

𝑀𝑀𝐴𝐴𝐸𝐸 =
1

𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑
��𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1�
𝑛𝑛

𝑡𝑡=1

 

Maximum Absolute Error (MaxAE) 
𝑀𝑀𝑎𝑎𝑥𝑥𝐴𝐴𝐸𝐸 = 𝑚𝑚𝑎𝑎𝑥𝑥��𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1�� 

 

Bayesian Information Criterion (BIC) 

𝐵𝐵𝐼𝐼𝐶𝐶 = 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑×𝑠𝑠𝑛𝑛 �
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1�

2𝑛𝑛
𝑡𝑡=1

𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑
�+ 𝑘𝑘×𝑠𝑠𝑛𝑛(𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑) 

Akaike Information Criterion (AIC) 

𝐴𝐴𝐼𝐼𝐶𝐶 = 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑×𝑠𝑠𝑛𝑛 �
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1�

2𝑛𝑛
𝑡𝑡=1

𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑
� + 2𝑘𝑘 

R-squared 

𝑅𝑅2 = 1 −
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1�

2𝑛𝑛
𝑡𝑡=1
∑ (𝑌𝑌𝑡𝑡 − 𝑌𝑌�)2𝑛𝑛
𝑡𝑡=1

 

Stationary R-squared 

𝑅𝑅𝑆𝑆2 = 1 −
∑ �𝑖𝑖𝑡𝑡 − �̂�𝑖𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1

∑ (∆𝑖𝑖𝑡𝑡 − ∆𝑖𝑖����)2𝑛𝑛
𝑡𝑡=1

 

Where the sum is over the terms in which both 𝑖𝑖𝑡𝑡 − �̂�𝑖𝑡𝑡−1 and ∆𝑖𝑖𝑡𝑡 − ∆𝑖𝑖���� are not missing. 

∆𝑖𝑖���� is the simple mean model for the differenced transformed series, which is equivalent to 
the univariate baseline model ARIMA(0, d, 0)(0, D, 0). 

For the exponential smoothing models currently under consideration, use the differencing 
orders (corresponding to their equivalent ARIMA models if there is on) 

𝑑𝑑 = �2, Brown and Holt
1, 𝑝𝑝𝑡𝑡ℎ𝑠𝑠𝑝𝑝 , 𝐷𝐷 = �0, 𝑠𝑠 = 1

1, 𝑠𝑠 > 1. 



 

Note: Both the stationary and usual R-squared can be negative with range (−∞, 1]: 

• Negative R-squared value means that the model under consideration is worse than 
the baseline model 

• Zero R-squared value means that the model under consideration is as good or bad as 
the baseline model 

• Positive R-squared value means that the model under consideration is better than the 
baseline model 

 

3.7  Forecast 
The final forecasting 𝑌𝑌�𝑡𝑡∗(ℎ) and their prediction intervals can be computed as below: 

Step 1. Compute 𝑘𝑘-step ahead forecast at time 𝑡𝑡, 𝑌𝑌�𝑡𝑡(𝑘𝑘) , according to the formula in Section 2. 

Step 2. Compute prediction variance, 𝜎𝜎𝑡𝑡2(𝑘𝑘) 

For the models with analytical expression 𝜎𝜎𝑡𝑡2(𝑘𝑘) in Section 2 , compute 𝜎𝜎𝑡𝑡2(𝑘𝑘) expression. 

For the models without analytical expression 𝜎𝜎𝑡𝑡2(𝑘𝑘): (M, N), (M, A), (M, M) and 2 double seasonal 
models, 𝜎𝜎𝑡𝑡2(𝑘𝑘) computation is described in Section 3.7.1. 

Step 3. Compute final forecast and the corresponding 100(1− 𝛼𝛼)% prediction intervals as follows: 

• If the series 𝑌𝑌 is not transformed, then final forecast  
                                                     𝑌𝑌�𝑡𝑡∗(ℎ) = 𝑌𝑌�𝑡𝑡(ℎ)  
and the 100(1 − 𝛼𝛼)% prediction interval is 

�𝑌𝑌�𝑡𝑡(ℎ) − 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑡𝑡(ℎ),𝑌𝑌�𝑡𝑡(ℎ) + 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑡𝑡(ℎ)� 

• If the transformed function is log, then 

                            𝑌𝑌�𝑡𝑡∗(ℎ) = exp �𝑌𝑌�𝑡𝑡(ℎ) + 𝜎𝜎𝑡𝑡2(ℎ)
2
�  

and the 100(1 − 𝛼𝛼)% prediction interval is 

          �exp �𝑌𝑌�𝑡𝑡(ℎ) − 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑡𝑡(ℎ)� , exp �𝑌𝑌�𝑡𝑡(ℎ) + 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑡𝑡(ℎ)�� 

• If the transformed function if square root, then 

                                             𝑌𝑌�𝑡𝑡∗(ℎ) = �𝑌𝑌�𝑡𝑡(ℎ)�
2

+ 𝜎𝜎𝑡𝑡2(ℎ) 

and the 100(1 − 𝛼𝛼)% prediction interval is 

              ��𝑌𝑌�𝑡𝑡(ℎ)− 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑡𝑡(ℎ)�
2

, �𝑌𝑌�𝑡𝑡(ℎ) + 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑡𝑡(ℎ)�
2
� 

In above expressions, tdf,α/2 is the (1 − α/2)100th percentile of the t distribution with degree of 
freedom f = nvalid − k . 

 

 

 

 



 

Implementation note: 

1. During forecasting, only the observations in estimation span, Yt (t = 1,2,⋯ , n ), will be used 
whatever the observations in forecast span , Yt (t = n + 1, n + 2,⋯ , n + k ),are provided or not. 

2. if df = 0, then we use (1 − α/2)100th percentile of the standard normal distribution. 
3. For square root transformation, If 𝑌𝑌�𝑡𝑡(ℎ) < 0, then  forecast value 𝑌𝑌�𝑡𝑡∗(ℎ) and corresponding 

confidence interval will be missing. If 𝑌𝑌�𝑡𝑡(ℎ) > 0 but 𝑌𝑌�𝑡𝑡(ℎ)− 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑡𝑡(ℎ) < 0, then the lower 
boundary of confidence interval will be missing value. 

Simulation procedures for prediction variances 
Bootstrap simulation procedures for k step prediction variance to compute prediction variances as 
following: 

1. Simulate errors (𝜀𝜀𝑖𝑖, 𝑖𝑖 = 1, … ,𝑘𝑘) for k forecast point form a normal distribution with mean 0 and 
variance as prediction variance 𝜎𝜎2 

2. Recursive to compute forecast values from n+1 to n+k based on prediction value and simulated 
error 
2.1 Generate simulated forecast values at time n+i (𝑖𝑖 = 1, … ,𝑘𝑘) based on 1-step forecast 

expression in Section 2 and simulated error generated in step 1.  
2.2   Update level, trend, and seasonal states based on state update expressions in Section 2. 

When 𝑌𝑌𝑡𝑡 is missing, use corresponding 1-step simulated forecast value 𝑌𝑌�𝑡𝑡−1∗  as substitutes. 
2.3   Repeat step 2.1 and 2.2 to recursive calculate forecast values  𝑌𝑌�𝑛𝑛

(1)(1),𝑌𝑌�𝑛𝑛
(1)(2), … ,𝑌𝑌�𝑛𝑛

(1)(𝑘𝑘). 

3. Repeat step 1 and 2 M times to produce M forecast paths in forecast periods (M = 5000 by 
default), each path has the simulated forecast values from 1 to k. 

4. Compute variance 𝜎𝜎𝑡𝑡2(𝑖𝑖) = 𝑣𝑣𝑎𝑎𝑝𝑝 �𝑌𝑌�𝑛𝑛∗(𝑖𝑖)�  , 𝑖𝑖 = 1, …𝑘𝑘 for each forecast time based the M prediction 

values in time 𝑛𝑛 + 𝑖𝑖. 
For generating simulated forecast value in step 2, two expressions are provided with different error 
types: 

• Additive errors: 𝑌𝑌�𝑛𝑛∗(𝑘𝑘) = 𝑌𝑌�𝑛𝑛(𝑘𝑘) + 𝜀𝜀𝑘𝑘 
• Multiplicative errors: 𝑌𝑌�𝑛𝑛∗(𝑘𝑘) = 𝑌𝑌�𝑛𝑛(𝑘𝑘)(1 + 𝜀𝜀𝑘𝑘) 

The error type can be selected by the model types: 

• If trend and seasonal components are all non-multiplicative, apply additive error for 
simulation 

• otherwise, apply multiplicative error for simulation 
 

Model Notation Error type 
Multiplicative trend with no 
seasonality 

(M, N) Multiplicative 

Multiplicative trend with 
additive seasonality 

(M, A) Multiplicative 

  



 

Multiplicative trend with 
multiplicative seasonality 

(M, M) Multiplicative 

Additive trend with double 
additive seasonality 

(A, A, A) Additive 

Additive trend with double 
multiplicative seasonality 

(A, M, M) Multiplicative 

 

Implementation note: 

1. When the number of non-missing simulated forecast values 𝑌𝑌�𝑛𝑛∗(𝑖𝑖) at time n+i less than 1000, 

the variance of forecast step i to k, 𝜎𝜎𝑡𝑡2(𝑗𝑗) = 𝑣𝑣𝑎𝑎𝑝𝑝 �𝑌𝑌�𝑛𝑛∗(𝑗𝑗)� , 𝑖𝑖 ≤ 𝑗𝑗 ≤ 𝑘𝑘, will not be computed, and 

a warning will be issued as “Some prediction intervals cannot be computed”. 

4.  Double seasonal exponential smoothing models 
The section extends the Holt-Winter exponential smoothing to incorporate a second seasonal 
component. The additive and multiplicative versions are introduced here. 

Please note we consider two seasonal patterns are both additive and multiplicative at the same time. 
The trend is fixed as additive for double seasonal case. 

4.1  Additive Double Seasonal Holt-Winter Exponential Smoothing 
Level:  𝐿𝐿(𝑡𝑡) = 𝛼𝛼�𝑌𝑌𝑡𝑡 − 𝐸𝐸(𝑡𝑡 − 𝑠𝑠1) −𝑊𝑊(𝑡𝑡 − 𝑠𝑠2)� + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1)� 

Trend:  𝑇𝑇(𝑡𝑡) = 𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 − 1) 

Seasonality 1: 𝐸𝐸(𝑡𝑡) = 𝛿𝛿�𝑌𝑌𝑡𝑡 − 𝐿𝐿(𝑡𝑡) −𝑊𝑊(𝑡𝑡 − 𝑠𝑠2)�+ (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠1) 

Seasonality 2: 𝑊𝑊(𝑡𝑡) = 𝜔𝜔�𝑌𝑌𝑡𝑡 − 𝐿𝐿(𝑡𝑡) − 𝐸𝐸(𝑡𝑡 − 𝑠𝑠1)� + (1 −𝜔𝜔)𝑊𝑊(𝑡𝑡 − 𝑠𝑠2) 

    𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) + 𝑘𝑘𝑇𝑇(𝑡𝑡) + 𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠1) + 𝑊𝑊(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠2) 

where 𝑠𝑠1 and 𝑠𝑠2 are the lengths of two seasonalities, 𝑊𝑊 is a new term representing the seasonal index 
for the 2nd seasonal component, and 𝜔𝜔 is a new smoothing parameter for it. The estimation method 
for initial smoothed values is described in Section 4.1. 

For parameters (α, γ, δ, and ω), the grid search method for Holt-Winters’ method still can be used 
here. Considering one more parameter added, search step can set as 5 for each parameter.  With the 
initial parameters, Levenberg-Marquardt algorithm (LMA) for old Holt-Winters’ methods can 
applied to get estimated parameters. Details of grid search and LMA can be found in Section 3.4 step 
2, and Section 3.5. 

4.2  Multiplicative Double Seasonal Holt-Winter Exponential Smoothing 
Level:  𝐿𝐿(𝑡𝑡) = 𝛼𝛼�𝑌𝑌𝑡𝑡 �𝐸𝐸(𝑡𝑡 − 𝑠𝑠1) ∙ 𝑊𝑊(𝑡𝑡 − 𝑠𝑠2)�⁄ � + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1)� 

 

 



 

Trend:  𝑇𝑇(𝑡𝑡) = 𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 − 1) 

Seasonality 1: 𝐸𝐸(𝑡𝑡) = 𝛿𝛿�𝑌𝑌𝑡𝑡 �𝐿𝐿(𝑡𝑡) ∙ 𝑊𝑊(𝑡𝑡 − 𝑠𝑠2)�⁄ �+ (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠1) 

Seasonality 2: 𝑊𝑊(𝑡𝑡) = 𝜔𝜔�𝑌𝑌𝑡𝑡 �𝐿𝐿(𝑡𝑡) ∙ 𝐸𝐸(𝑡𝑡 − 𝑠𝑠1)�⁄ � + (1 −𝜔𝜔)𝑊𝑊(𝑡𝑡 − 𝑠𝑠2) 

    𝑌𝑌�𝑡𝑡(𝑘𝑘) = �𝐿𝐿(𝑡𝑡) + 𝑘𝑘𝑇𝑇(𝑡𝑡)� ∙ 𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠1) ∙ 𝑊𝑊(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠2) 

where α, γ, δ and ω are smoothing parameters.  

4.3  Initialization for smoothed values in double seasonal exponential smoothing 
To calculate initial smoothed values for the level, trend and seasonal components, Williams and 
Miller’s procedure (1999)[2] (proposed for standard Holt-Winters) is adapted for Double Seasonal 
Holt-Winters.  

Without loss of generality, here we assume 𝑠𝑠1 is the smaller length (𝑠𝑠1 < 𝑠𝑠2). Following steps are for 
multiplicative method (the differences of seasonal index for additive method are given in 
parenthesis): 

• Initial trend, 𝑇𝑇0, was chosen as the average of 

(a) 1 𝑠𝑠2⁄  of the difference between the mean of the first 𝑠𝑠2 and second 𝑠𝑠2 observations 

(b) the average of the first differences for the first 𝑠𝑠2 observations 

• Initial level, 𝐿𝐿0, was chosen as the mean of first 2×𝑠𝑠2 observations minus (𝑠𝑠2 + 0.5) times the 
initial trend. 

• The initial values for the short seasonal index, 𝐸𝐸𝑡𝑡, were set as the average of the ratios of actual 
observation to 𝑠𝑠1-point centred moving average (set as the average of the differences of actual 
observation to 𝑠𝑠1-point centred moving average), taken from the corresponding 𝐸𝐸𝑡𝑡 phase in each 
of the 𝑠𝑠1 observations within the first 𝑠𝑠2 observations. If 2×𝑠𝑠1 > 𝑠𝑠2, use the first 2×𝑠𝑠1 
observations. 

• The initial values for the long seasonal index, 𝑊𝑊𝑡𝑡, were set as the average of the ratios of actual 
observation to 𝑠𝑠2-point centred moving average (set as the average of the differences of actual 
observation to 𝑠𝑠2-point centred moving average), taken from the corresponding 𝑊𝑊𝑡𝑡 phase in each 
of the 𝑠𝑠2 observations within the first 2×𝑠𝑠2 observations, divided (subtracted) by the 
corresponding initial value of the smoothed short seasonal index, 𝐷𝐷𝑡𝑡. 

Analysis for irregular component 
 

An irregular component can be computed by  

𝐼𝐼(𝑡𝑡) = 𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡 

 

 



 

 Based on the irregular component, larger variance interval detection and auto-correlation analysis 
will be performed.  The algorithms are same as that we did in automatic time series exploration in 
“Time Series Exploration - ADD.docx”.  So please refer the section 2.4 in “Time Series Exploration - 
ADD.docx” directly. 

For outlier detection, we use same method as that in the TCM. The method can be described as following: 

Step 1: compute the square score at time 𝑡𝑡: 

𝑠𝑠𝑠𝑠𝑞𝑞𝑞𝑞,𝑡𝑡 =
(𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡)2

𝑀𝑀𝐸𝐸𝐸𝐸
 

where 𝑀𝑀𝐸𝐸𝐸𝐸 is mean squared error which is defined in the Section 3.6.  

Step 2. Compute the outlier probability as  

𝑝𝑝𝑠𝑠𝑞𝑞𝑞𝑞,𝑡𝑡 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝜒𝜒12 ≤ 𝑠𝑠𝑠𝑠𝑞𝑞𝑞𝑞,𝑡𝑡� 

where 𝜒𝜒12 is a random variable with a chi-squared distribution with 1 degree of freedom. 

Step 3.  𝑌𝑌𝑡𝑡 is an outlier if 𝑝𝑝𝑠𝑠𝑞𝑞𝑞𝑞,𝑡𝑡 ≥ 𝜅𝜅, where 𝜅𝜅 is significant level and the default is 0.95.   

Step4.  If the number of outliers from step 3 is less than 𝑠𝑠(default is 10), then output all outliers. 
Otherwise, output top 𝑠𝑠 outliers that have top 𝑠𝑠 largest square scores.  

 

Appendix A: Some back-casting formula for initial smoothing states 

Below table demonstrates some back-casting formula, more can be derived from the formula in 
Section 2 by reversing the time order and smoothing backwards from 𝑡𝑡 = 𝑛𝑛 to 𝑡𝑡 = 0 with 𝑌𝑌0 is 
missing. 

Table 3. Back-casting for initial smoothing states 

Model type 𝑌𝑌𝑡𝑡 is not missing 𝑌𝑌𝑡𝑡 is missing 

simple 𝐿𝐿(𝑡𝑡) = 𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 + 1) 𝐿𝐿(𝑡𝑡) = 𝐿𝐿(𝑡𝑡 + 1) 

Brown 𝐿𝐿(𝑡𝑡) = 𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 + 1) 

𝑇𝑇(𝑡𝑡) = 𝛼𝛼�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 + 1)� + (1 − 𝛼𝛼)𝑇𝑇(𝑡𝑡 + 1) 

𝐿𝐿(𝑡𝑡) = 𝐿𝐿(𝑡𝑡 + 1)
+ 𝑇𝑇(𝑡𝑡
+ 1) 

𝑇𝑇(𝑡𝑡) = 𝑇𝑇(𝑡𝑡 + 1) 

Holt 𝐿𝐿(𝑡𝑡) = 𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 + 1) + 𝑇𝑇(𝑡𝑡 + 1)� 

𝑇𝑇(𝑡𝑡) = 𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 + 1)� + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 + 1) 

𝐿𝐿(𝑡𝑡) = 𝐿𝐿(𝑡𝑡 + 1)
+ 𝑇𝑇(𝑡𝑡
+ 1) 

𝑇𝑇(𝑡𝑡) = 𝑇𝑇(𝑡𝑡 + 1) 

  



 

Damp 𝐿𝐿(𝑡𝑡) = 𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 + 1) + 𝜙𝜙𝑇𝑇(𝑡𝑡 + 1)� 

𝑇𝑇(𝑡𝑡) = 𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 + 1)� + (1 − 𝛾𝛾)𝜙𝜙𝑇𝑇(𝑡𝑡 + 1) 

𝐿𝐿(𝑡𝑡) = 𝐿𝐿(𝑡𝑡 + 1)
+ 𝜙𝜙𝑇𝑇(𝑡𝑡
+ 1) 

𝑇𝑇(𝑡𝑡) = 𝜙𝜙𝑇𝑇(𝑡𝑡 + 1) 

Simple season 

 

𝐿𝐿(𝑡𝑡) = 𝛼𝛼�𝑌𝑌𝑡𝑡 − 𝐸𝐸(𝑡𝑡 + 𝑠𝑠)� + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 + 1) 

𝐸𝐸(𝑡𝑡) = 𝛿𝛿�𝑌𝑌𝑡𝑡 − 𝐿𝐿(𝑡𝑡)� + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 + 𝑠𝑠) 

𝐿𝐿(𝑡𝑡) = 𝐿𝐿(𝑡𝑡 + 1) 

𝐸𝐸(𝑡𝑡) = 𝐸𝐸(𝑡𝑡 + 𝑠𝑠) 

Additive winter 

 

𝐿𝐿(𝑡𝑡) = 𝛼𝛼�𝑌𝑌𝑡𝑡 − 𝐸𝐸(𝑡𝑡 + 𝑠𝑠)� + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 + 1) + 𝑇𝑇(𝑡𝑡 + 1)� 

𝑇𝑇(𝑡𝑡) = 𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 + 1)� + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 + 1) 

𝐸𝐸(𝑡𝑡) = 𝛿𝛿�𝑌𝑌𝑡𝑡 − 𝐿𝐿(𝑡𝑡)� + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 + 𝑠𝑠) 

𝐿𝐿(𝑡𝑡) = 𝐿𝐿(𝑡𝑡 + 1)
+ 𝑇𝑇(𝑡𝑡
+ 1) 

𝑇𝑇(𝑡𝑡) = 𝑇𝑇(𝑡𝑡 + 1) 

𝐸𝐸(𝑡𝑡) = 𝐸𝐸(𝑡𝑡 + 𝑠𝑠) 

Multiplicative 
winter 

𝐿𝐿(𝑡𝑡) = 𝛼𝛼(𝑌𝑌𝑡𝑡 𝐸𝐸(𝑡𝑡 + 𝑠𝑠)⁄ ) + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 + 1) + 𝑇𝑇(𝑡𝑡 + 1)� 

𝑇𝑇(𝑡𝑡) = 𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 + 1)� + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 + 1) 

𝐸𝐸(𝑡𝑡) = 𝛿𝛿(𝑌𝑌𝑡𝑡 𝐿𝐿(𝑡𝑡)⁄ ) + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 + 𝑠𝑠) 

𝐿𝐿(𝑡𝑡) = 𝐿𝐿(𝑡𝑡 + 1)
+ 𝑇𝑇(𝑡𝑡
+ 1) 

𝑇𝑇(𝑡𝑡) = 𝑇𝑇(𝑡𝑡 + 1) 

𝐸𝐸(𝑡𝑡) = 𝐸𝐸(𝑡𝑡 + 𝑠𝑠) 

 
 
 
 
 
 
 



 

Time Series Algorithm: Expert Modeler 

1.  Introduction 
Expert Modeler in Time Series component is an automatic model identification tool. With time 
series specified, Expert Modeler can perform on that and give a recommended time series model 
or top N models. The evaluated model types can be: 

1. Exponential Smoothing Expert Model (ES EM) 

The Expert Modeler only considers exponential smoothing models. 

2. Univariate ARIMA Expert Model (Univariate ARIMA EM) 

The Expert Modeler only considers univariate ARIMA models. 

3. Exhaustive ARIMA Search 

The Expert Modeler do exhaustive search based on user specified ARIMA parameters. 

4. Univariate Expert Model (default for univariate time series) 

The Expert Modeler considers Exponential Smoothing Expert Model, Univariate ARIMA 
Expert Model, and Exhaustive ARIMA Search. 

 

5. Transfer Function Expert Model 

The Expert Modeler considers multivariate ARIMA models with input series specified 

6. Multivariate Expert Model (default for the case with predictor time series) 

 

 

Univariate EM = Model(s) with better 
selection criterion 

Input: series, seasonal length                                                           

Exhaustive ARIMA Search 
(Turn off by default) 

Univariate ARIMA EM 
(Turn on by default) 

ES EM 
(Turn on by default) 



 

The Expert Modeler considers Transfer Function Expert Model first, if it drops all predictor 
series and ends up with a univariate ARIMA model, this univariate ARIMA model will be 
compared with Exponential Smoothing Expert Model and Exhaustive ARIMA Search (if it is 
turned on) by model selection criterion to determine the final recommendation. 

7. Double Seasonal Expert Model (default for series with two seasonalities specified) 

The Expert Modeler only considers 3 double seasonal models, and ignores any input series. 

 

By default, only one model is recommended for a target time series. It is also supported to request 
the top N models from Expert Modeler, so N = 1 by default. For different evaluated model types, 
final number of recommended models can be less than N. 

1.1  Notation 
The following notation is used throughout this document unless otherwise stated: 

𝑌𝑌𝑡𝑡  (𝑡𝑡 = 1,2,⋯ ,𝑛𝑛 ) Univariate time series under investigation, where 𝑌𝑌1 𝑎𝑎𝑛𝑛𝑑𝑑 𝑌𝑌𝑛𝑛 is not 
missing.  

𝑠𝑠 The period of seasonality 

𝑘𝑘 The number of parameters in estimated model 

 

1.2  Model Selection Criterion 
To sort and select models among several candidate models, following model selection criterions, 
all in smaller-is-better form, can be compute for each model. 

• Bayesian Information Criterion (BIC) on whole series (default) 

𝐵𝐵𝐼𝐼𝐶𝐶 = 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑×ln�
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1
𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑

� + 𝑘𝑘×ln(𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑) 

where 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑 is the total number of non-missing values. 

• Akaike Information Criteria (AIC) on whole series 

𝐴𝐴𝐼𝐼𝐶𝐶 = 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑×ln�
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1
𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑

� + 2𝑘𝑘 

• Average Squared Error (ASE) on testing set 

𝐴𝐴𝐸𝐸𝐸𝐸 =
1

𝑛𝑛𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡
� �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�

2
𝑛𝑛𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡

𝑡𝑡=1

 

 



 

where 𝑌𝑌𝑡𝑡 and 𝑌𝑌�𝑡𝑡 are observed and forecasted value in the testing set, 𝑌𝑌�𝑡𝑡 is 𝑘𝑘-step ahead 
forecasting based on training set, 𝑛𝑛𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡 is the number of non-missing points in testing set. 

Note: 

1. Model selection criterion on testing set is provided for advanced user, the last 𝑛𝑛𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡 
number of non-missing points can be used as testing set. Rules are as following:  
• If 𝑠𝑠 > 1 and 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑 ≥ 4𝑠𝑠, then 𝑛𝑛𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡 = min(𝑠𝑠,𝑛𝑛𝑚𝑚𝑠𝑠𝑥𝑥𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡) , 𝑛𝑛𝑚𝑚𝑠𝑠𝑥𝑥𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡 = 20 by default. 
• If 𝑠𝑠 = 1, or 𝑠𝑠 > 1 but 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑 < 4𝑠𝑠,  then  𝑛𝑛𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡 = 5 by default. 

2. When model selection criterion is ASE over testing set, the model parameters would be re-
estimated based on the whole series, and all post-estimation statistics would be calculated 
based the new parameter estimates. 

3. If a model is a perfect fit, its ∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�
2𝑛𝑛

𝑡𝑡=1  would be 0, then the perfect fit model is the 
priority selection, export its 𝐵𝐵𝐼𝐼𝐶𝐶 and 𝐴𝐴𝐼𝐼𝐶𝐶 as sysmis and give a warning message about the 
perfect fit (similar to what we did in LE and TCM). If more than one model are perfect fit, 
sort them by ascending order of number of parameters in models. 

2.  Exponential Smoothing Expert Model 
Input: 

• series 𝑌𝑌 
• The seasonal length for the model included seasonal component: 𝑠𝑠 

Process: 

• For non-seasonal series: fit all 5 non-seasonal models, including (N, N), (A, N), (DA, N), (M, 
N) and Brown’s models. 

• For seasonal series, 
- If series 𝑌𝑌 are positive: fit 12 models (all models except Brown). 
- If series 𝑌𝑌 are not all positive: fit 8 models (all models except Brown and Multiplicative 

seasonality models, (N, M), (A, M), (DA, MN), and (M, M) models). 
Output: 

• The recommended exponential smoothing expert models  are the top N models sorted by 
model selection criterion. 

 

 

 



 

3.  Univariate ARIMA Expert Model 

3.1  Constant series 
• Before doing anything, first check if 𝑌𝑌𝑡𝑡 is a constant series. If Y is constant, fit model with a 

constant only. This is the final model (don’t need to go through any of the following steps). 
• If, in step 3 “Check for difference”, any difference is taken, after each difference check if the 

differenced series is constant. If it is constant, fitting constant model for the differenced series 
as the final model.   

3.2  Small sample 
• If number of non-missing observations is less than 3s, set s=1 and go through the following 

steps to build a non-seasonal model. 
• Otherwise, go through the following steps to build a model. 
3.3  Step 1: Interpolation of missing values in the series 𝒀𝒀𝒕𝒕 
If there is any missing in the series, the series will be interpolated in this step. The interpolated 
series will be used in all the subsequent steps.  

Interpolation step first determines what interpolation method is to be used for interpolation. 
There are two methods of interpolation, one, which takes into account the possible seasonal 
nature and the other, which does not.  If the period of seasonality s=1, no seasonal pattern and use 
method (a) to impute missing values.  If s>1, the seasonal pattern may be present (i.e. its 
contribution could be significant).  In this case determine if the seasonal pattern is significant or 
not as follows:  

Calculate sample ACF of the series. If the ACF have absolute t-values greater than 1.6 for all the 
first six lags, take the simple difference of the series and calculate the ACF of the differenced series. 
(Note: difference only once, not twice even if the first six lags of ACF of the differenced series are 
bigger than 1.6. This is because that quadratic trend cannot be taken cared by method (b) anyway.) 
Let m1 = max(ACF(1) to ACF(k)), where k = s-1 for s ≤ 4, k = s-2 for 4 < s ≤ 9, and k = 8 for s ≥ 10. 
Let m2 = max(ACF(s), ACF(2s)). If m1 > m2, then there is no seasonal pattern and use (a) to 
impute missing values.  Otherwise there is a seasonal pattern and use (b) to impute missing 
values. 

Note:  If for some reason, like insufficient number of ACF values, impute missing values using 
method (a). 

(a) Without seasonal pattern: 
Missing values are linearly interpolated using the nearest non-missing neighbors.  

(b) With seasonal pattern: 
Missing values are linearly interpolated using the nearest non-missing data of the same season. 
For example, consider a monthly time series. Assume that missing values occur in May of year 
m and m+1.  Use the linear interpolations between observations in May of year m-1 and year 
m+2 for the missing values.  

 



 

If all values for some season are missing, use method (a) to impute. If for a missing value there 
is no non-missing of the same season before or after it, use the closet non-missing value of the 
same season to impute it. 

3.4  Step 2: Check for transformation (log or square root) 
To check transformation: 

• No transformation if the series 𝑌𝑌𝑡𝑡 has some negative values. 
• For positive series 𝑌𝑌𝑡𝑡, fit (by ordinary least square) a high order AR(p) model, on 𝑌𝑌, 𝑠𝑠𝑝𝑝𝑎𝑎(𝑌𝑌) and 

square root of  𝑌𝑌. 
• For non-negative series 𝑌𝑌𝑡𝑡, fit (by ordinary least square) a high order AR(p) model, on 𝑌𝑌, and 

square root of  𝑌𝑌. 
Compare the log likelihood function of the un-transformed series for each model, and pick the one 
has the biggest log likelihood. Let  𝑠𝑠max denote the biggest log likelihood of the three models, and 
𝑠𝑠𝑌𝑌 the log likelihood of the model for 𝑌𝑌 itself. In fact we transform the data only if 𝑠𝑠max ≠ 𝑠𝑠𝑌𝑌, and 

both 1
𝑛𝑛

(𝑠𝑠max − 𝑠𝑠𝑌𝑌)  and �𝑠𝑠max−𝑠𝑠𝑌𝑌
𝑠𝑠𝑌𝑌

� are bigger than 4%, where n is the number of cases. 

Rules for choosing order p: 

• for s≤3, consider AR(10); 
• for 4≤s≤11, consider AR(14) (AR(10) if there are not enough data); 
• for s≥12, consider a high order AR model with lags 1 to 6, s to s+3, 2s to 2s+2 (if sample size is 

less than 50, drop lags≥2s ). 
Note:  If it was determined that a log or square root transformation is needed then the series 
should be transformed accordingly and this transformed series is used in all the subsequent steps. 

3.5  Step 3: Check for difference 
In this step the differencing order of the model is decided.  This step is divided in two steps, step 
(a) and step (b).  In step (a) a preliminary attempt at the differencing order determination is made.  
The intermediate models fit in this step are AR models and can be fit by ordinary least squares. If 
some differencing is found necessary then the series is differenced accordingly and this 
differenced series is used in step (b). In step (b) the series could be differenced further.  In this step 
some intermediate ARMA models are fit using conditional least squares, i.e. CLS option in our 
AMModelSpec. If step (b) suggests some differencing it should be done and this differenced series 
is used in subsequent steps. 

Some clarifications: 

• The reference to “true” models in the explanation of critical values 𝐶𝐶(𝑖𝑖, 𝑗𝑗)can be ignored by the 
programmers.  

• Symbol t(c) refers to the t-statistic corresponding to the constant in the model. 
•  
Step (a) 

• Case s = 1: 
 



 

- Fit model 𝑌𝑌(𝑡𝑡) = 𝑐𝑐 + 𝜙𝜙1𝑌𝑌(𝑡𝑡 − 1) + 𝜙𝜙2𝑌𝑌(𝑡𝑡 − 2) + 𝑎𝑎(𝑡𝑡) by ordinary least square method. Check 
𝜙𝜙1 and 𝜙𝜙2 against the critical values listed in Table 1. If {𝜙𝜙1 > 𝐶𝐶(1,1) and − 𝜙𝜙2 > 𝐶𝐶(1,2)}, 
then take simple difference twice, i.e. calculate (1 − 𝐵𝐵)2𝑌𝑌(𝑡𝑡).  

- Otherwise fit model 𝑌𝑌(𝑡𝑡) = 𝑐𝑐 + 𝜙𝜙𝑌𝑌(𝑡𝑡 − 1) + 𝑎𝑎(𝑡𝑡). If {|𝑡𝑡(𝑐𝑐)| < 2 and 𝜙𝜙 > 𝐶𝐶(2,1)} or {|𝑡𝑡(𝑐𝑐)| ≥
2 and (𝜙𝜙 − 1) 𝑠𝑠𝑠𝑠(𝜙𝜙)⁄ > 𝐶𝐶(3,1)}, then difference the series once, i.e. calculate  (1 − 𝐵𝐵)𝑌𝑌𝑡𝑡.   

- Otherwise no difference. 
• Case s > 1: 

- Fit model Y(t) = c +ϕ1Y(t − 1) + ϕ2Y(t − s) + ϕ3Y(t − s − 1) + a(t) by ordinary least square 
method. The critical values C(i, j) for s = 4 and s = 12 are in Table 2 and Table 3. If {ϕ1 >
𝐶𝐶(1,1) and ϕ2 > 𝐶𝐶(1,2) and− ϕ3 > 𝐶𝐶(1,3)}, take difference (1 − B)(1 − B)sY(t). 

- Otherwise if ϕ1 ≤ ϕ2, fit model Y(t) = c + ϕY(t − s) + a(t). If {|t(c)| < 2 𝑎𝑎𝑛𝑛𝑑𝑑 𝜙𝜙 > 𝐶𝐶(2,1)}  or 
{|t(c)| ≥ 2 and (ϕ− 1) se(ϕ)⁄ > 𝐶𝐶(3,1)}, take difference(1 − B)sY(t). 

- Otherwise if ϕ1 > ϕ2, fit model Y(t) = c + ϕY(t − 1) + a(t).  If {|t(c)| < 2 𝑎𝑎𝑛𝑛𝑑𝑑 𝜙𝜙 > 𝐶𝐶(4,1)} or 
{|t(c)| ≥ 2 and (ϕ− 1) se(ϕ)⁄ > 𝐶𝐶(5,1)}, take difference (1 − B)Y(t). 

- Otherwise no difference. 
Note: if t value is not available in above fitting, treat it as if t=0.  

Step (b) 

For data after step (a), call it 𝑖𝑖(𝑡𝑡).  

If the number of non-missing Z is 10 or less, go to step 4. 

• Case s=1: 
- Fit an ARMA(1,1) model (1 − 𝜙𝜙𝐵𝐵)𝑖𝑖(𝑡𝑡) = 𝑐𝑐 + (1 − 𝜃𝜃)𝑎𝑎(𝑡𝑡) by conditional least square. 
- If 𝜙𝜙 > 0.88 and |𝜙𝜙 − 𝜃𝜃| > 0.12, take difference (1 − 𝐵𝐵)𝑖𝑖(𝑡𝑡). 
- If 𝜙𝜙 < 0.88 but not too far away from 0.88, say, 0.88 −𝜙𝜙 < 0.03, ACF of Z should be checked. 

If the ACF have absolute t-values greater than 1.6 for all the first six lags, take difference 
(1 − 𝐵𝐵)𝑖𝑖(𝑡𝑡). 

• Case s>1 and the number of non-missing Z is less than 3s, do the same as in case s=1. 
• Case s>1 and the number of non-missing Z is greater than or equal to 3s. 

- Fit an ARMA(1,1)(1,1) model (1 − ϕ1B)(1− ϕ2Bs)Z(t) = c + (1 − θ1B)(1− θ2Bs)a(t). 
- If both 𝜙𝜙1 and 𝜙𝜙2 > 0.88, and |𝜙𝜙1 − 𝜃𝜃1| > 0.12  &|𝜙𝜙2 − 𝜃𝜃2| > 0.12, take difference (1 −
𝐵𝐵)(1 − 𝐵𝐵)𝑠𝑠𝑖𝑖(𝑡𝑡). 

- If only 𝜙𝜙1  > 0.88, and|𝜙𝜙1 − 𝜃𝜃1| > 0.12, take difference(1 − B)Z(t). If 𝜙𝜙1 < 0.88 but not too 
far away from 0.88, say, 0.88− 𝜙𝜙1 < 0.03, ACF of Z should be checked. If the ACF have 
absolute t-values greater than 1.6 for all the first six lags, take difference (1 − B)Z(t). 

- If only 𝜙𝜙2  > 0.88, and |𝜙𝜙2 − 𝜃𝜃2| > 0.12, take difference (1 − B)sZ(t). 
Repeat this step, until no difference is needed. 

Note, in the case that the fitting is terminated due to instability or non-convergence or insufficient 
number of data, do not difference, go to step 4.  

Critical values used in step (a) 
Definition of critical values C(i, j) in Table 1: 

 

 

 



 

True model 1:  (1 − B)2Y(t) = a(t) 

Critical values: C(1,1) and C(1,2) for ϕ1 and −ϕ2 in fitting model 

Y(t) = c +ϕ1Y(t − 1) + ϕ2Y(t − 2) + a(t) 

 

True model 2:  (1 − B)Y(t) = a(t)  

Critical values: C(2,1) for ϕ in fitting model  

Y(t) = c +ϕY(t − 1) + a(t) 

 

True model 3:   (1 − B)Y(t) = c0 + a(t), c0 ≠ 0 

Critical values: C(3,1) for (ϕ− 1) se(ϕ)⁄  in fitting model  

Y(t) = c +ϕY(t − 1) + a(t) 

 

Table 1: Critical values at significant level 0.05 for s=1  
(1st row: C(1,1), C(1,2); 2nd row: C(2,1);  3rd row: C(3,1)). 

Simple size Critical values 

n=50 
1.616 0.617 
0.734 

  -1.678 

n=100 
1.807 0.807 
0.863   

  -1.661 

n=200 
1.904 0.904 
0.930  
-1.653 

n=300 
1.937 0.937 
0.954 
-1.650 

 

Definition of critical values C(i, j) in Table 2 and 3: 

True model 1:  (1 − B)(1 − B𝑠𝑠)Y(t) = a(t) 

Critical values: C(1,1), C(1,2), and C(1,3) for ϕ1, ϕ2 and −𝜙𝜙3 in fitting model 

𝑌𝑌(𝑡𝑡) = 𝑐𝑐 + 𝜙𝜙1𝑌𝑌(𝑡𝑡 − 1) + 𝜙𝜙2𝑌𝑌(𝑡𝑡 − 𝑠𝑠) + 𝜙𝜙3𝑌𝑌(𝑡𝑡 − 𝑠𝑠 − 1) + 𝑎𝑎(𝑡𝑡) 

 

True model 2:  (1 − B𝑠𝑠)Y(t) = a(t)  

Critical values: C(2,1) for ϕ in fitting model  

Y(t) = c + ϕY(t − 𝑠𝑠) + a(t) 

 

 

 

 



 

True model 3:   (1 − B𝑠𝑠)Y(t) = c0 + a(t), c0 ≠ 0 

Critical values: C(3,1) for (ϕ− 1) se(ϕ)⁄  in fitting model  

Y(t) = c + ϕY(t − 𝑠𝑠) + a(t) 

 

True model 4:  (1 − B)Y(t) = a(t)  

Critical values: C(4,1) for ϕ in fitting model  

Y(t) = c +ϕY(t − 1) + a(t) 

 

True model 5:   (1 − B)Y(t) = c0 + a(t), c0 ≠ 0 

Critical values: C(5,1) for (ϕ− 1) se(ϕ)⁄  in fitting model  

Y(t) = c +ϕY(t − 1) + a(t) 

 

Table 2: Critical values at significant level 0.05 for s=4 
(1st row: C(1,1), C(1,2), C(1,3); 2nd row: C(2,1);  3rd row: C(3,1) ; 4th row: 
C(4,1) ; 5th row: C(5,1)). 

Simple size Critical values 

n=50 

0.557 0.823 0.458 
0.849 
-1.680 
0.734 
-1.678 

n=100 

0.773  0.911  0.704 
0.908 
-1.661 
0.921 
-1.661 

n=200 

0.886  0.947  0.838 
0.947 
-1.653 
0.930 
-1.653 

n=300 

0.925  0.961  0.889 
0.963 
-1.650 
0.954 
-1.650 

 

 

 

 



 

Table 3: Critical values at significant level 0.05 for s=12 
(1st row: C(1,1), C(1,2), C(1,3); 2nd row: C(2,1);  3rd row: C(3,1) ; 4th row: 
C(4,1) ; 5th row: C(5,1)). 

Simple size Critical values 

n=50 

0.494 0.811 0.401 
0.851 
-1.688 
0.734 
-1.678 

n=100 

0.759  0.909  0.690  
0.907 
-1.663 
0.921 
-1.661 

n=200 

0.882  0.947  0.835  
0.946 
-1.653 
0.930 
-1.653 

n=300 

0.922 0.961  0.886  
0.961 
-1.650 
0.954 
-1.650 

 

 

Note:  

• Critical values C(i, j) depend on sample size n.  
- Other than the negative critical values and C(1,3) in Table 2 and Table 3, the critical values 

approximately depend on 1/n linearly. We may use this approximate relationship to get a 
better critical value for an arbitrary n. Suppose that critical values for sample size n1 and 
n2 are C1 and C2, and n1 and n2 are the closest two sided neighbors if 50 < n < 300, or 
closest one sided neighbors if 36 ≤ n < 50 or if 300 < n ≤ 1000 (don’t want to extrapolate too 
far), then the critical value C for sample size n is  

𝐶𝐶 = 𝐶𝐶1 +
𝐶𝐶2 − 𝐶𝐶1

(1 𝑛𝑛2⁄ − 1 𝑛𝑛1⁄ )
(1 𝑛𝑛⁄ − 1 𝑛𝑛1⁄ ) 

For n <36, use critical values for n=36. For n > 1000, use critical values for n=1000. For 
C(1,3) in Table 2 and Table 3, C(1,3)=C(1,1)*C(1,2) 

- For the negative critical values, the better critical values are C(3,1)=t(0.05, n-3) in Table 1, 
C(3,1)=t(0.05, n-s-2) and C(5,1)=t(0.05,n-3) in Table 2 and Table 3. Where t(0.05, df) is the 5% 
percentile of t-distribution with degree of freedom df. 

• Critical values also depend on period of seasonality s.  
- Only critical values for s = 1, 4, 12 are simulated. For 1 < s < 8, use the critical values of s = 

4. For 𝑠𝑠 ≥ 8, use the critical values of s = 12. 
-  



 

3.6  Step 4: Identify the order of ARMA(p,q)(P,Q) 
The earlier steps determine if a transformation (square root, log or differencing) is needed.  In this 
step, tentative orders for the non-seasonal AR and MA polynomials, p and q are decided. If 
seasonality is present the orders of the seasonal AR and MA polynomials are taken to be 1, i.e. P = 
Q = 1. 

The determination of p and q is done in the following way: 

1. Use sample ACF to determine p and q.  This step can be inconclusive. Use sample PACF to 
determine p and q.  This step can be inconclusive.  

2. Use EACF to determine p and q. Choose a model among the models identified by ACF, 
PACF and EACF. How to choose the model is explained later. 

 
Seasonal part for s>1: let P=1, Q=1. 

Non-seasonal part: Use ACF and PACF to see if a clear model can be identified. If not, use EACF 
to find both p and q.  

Rules used in identifying orders. 

Determine integers M and K as follows: 

• M = 8 for s = 1 or s ≥10. 
• M = s-1 for 2 ≤ s ≤ 4.  
• M = s-2 for 4 < s ≤ 9.  
• Note: if  4M+2 > n, set M to be the biggest integer that is smaller than or equal to  (n-2)/4, 

where n is the length of the series. 
• K = 3 for s = 1 or s ≥ 5.  
• K = 1 for s = 2.  
• K = 2 for s = 3, 4.  

Order determination rules using ACF, PACF and EACF:  

• ACF:  
For the first M ACF, let k1 be the smallest number such that all ACF(k1+1) to ACF(M) are 
insignificant (i.e. |t| statistic  < 2). If k1 ≤ K, then p=0 and q=k1. It may not identify a 
model at all. 

• PACF:  
For the first M PACF, let k2 be the smallest number such that all PACF(k2+1) to PACF(M) 
are insignificant (i.e. |t| statistic  < 2). If k2 ≤ K, then p=k2 and q=0. It may not identify a 
model at all. 

• EACF:  
Build an M by M EACF array, do the following: 

 

 

 



 

- Examine the first row, find the maximum order. This is an MA model, denoted by 
ARMA(0,q0). 

- Examine the second row, find the maximum order. Denote the model as ARMA(1,q1) 
- Examine the third row, find the maximum order. Denote the model as ARMA(2,q2) 

and so on.  
- In the above “maximum order” of each row means that all EACF in that row above 

that order are insignificant.  
- Identify p and q as the model that has the smallest p+q. If the smallest p+q is achieved 

by several model, choose the one with smaller q because AR parameters are easier to fit. 
 
Among the models identified by ACF, PACF and EACF, choose the one having the smallest p+q. 
In the case that there is a tie, do the following. If the tie involves the model identified by EACF, 
choose it. If the tie is a 2-way tie between models identified by ACF and PACF, choose the one by 
PACF. 

When none of ACF, PACF or EACF give a low order model, i.e. p+q≤4, increase |t|-value to 2.8 
and check ACF, PACF and EACF as before to identify a model. If this still doesn’t give a low order 
model, then take the high order model identified at this step. 

3.7  Step 5: Fit the model and delete insignificant parameters 
Fit the model with identified order by conditional least square. Delete the insignificant parameters 
the following way. 

(a) If there is at least one parameter is significant (|t|≥2), go to b). Otherwise, delete the most 
insignificant parameter one at time until at least one parameter is significant, then go to b). 

(b) Delete simultaneously all parameters with |t|<0.5 repeatedly until all the left over parameters 
are with |t|≥0.5. Then refit the model and Delete simultaneously all parameters with |t|<1 
repeatedly until all the left over parameters are with |t|≥1, then refit the model and delete 
parameters with |t|<2. 

Fit the resulted model using the maximum likelihood (ML) method. If there are insignificant 
parameters (|t|<2), delete them and refit by ML method. Repeat until all parameters are of  |t|≥2. 

Note:  

• The model resulted from step 4 is always with a constant term. 
• If an empty model is resulted after deletions, change it into a model with only constant term. 
• For s>1, if estimation of the initial model identified in step 4 is failed, reduce seasonal MA 

order to Q=0 and continue. This may happen often on short series. 
 

3.8  Step 6: Diagnostic checking and model modification 
After fit the model in step 5, check to see if Ljung-Box statistics Q(K) is significant where K=2s for 
s>1 and K=18 for s=1. (Note: if K≥n, set K as the biggest integer that is smaller than or equal to 
n/4, where n is as defined in Ljung-Box statistics at the end.) If it is not significant, stop and we  
 
 



 

are done. Otherwise check ACF/PACF of residuals. For s=1, let M=K. For s>1, let M=s-1 for s<15 
and M=14 for s≥15.  If all residual ACF(1) to ACF(M), ACF(s) and ACF(2s) are insignificant 
(|t|≤2.5), stop. Otherwise stop and report: “there are significant values in residual ACF” if (a) the 
model has been modified once already. Otherwise modify non-seasonal and seasonal part of the 
model the following way.  

(a) For non-seasonal part, if residual ACF(1) to ACF(M) have one or two isolated significant lags 
(|t|>2.5), add these lags to non-seasonal MA part of the model. Otherwise, if the residual 
PACF(1) to PACF(M) have one or two isolated significant lags (|t|>2.5) add these lags to non-
seasonal AR part of the model.  

(b) For seasonal part, if  none of ACF(s) and ACF(2s), or none of PACF(s) and PACF(2s), are 
significant, seasonal part doesn’t need to be modified. Otherwise if PACF(s) is significant and 
PACF(2s) is insignificant, add seasonal AR lag 1. Otherwise if ACF(s) is significant and ACF(2s) 
is insignificant, add seasonal MA lag 1. Otherwise if PACF(s) is insignificant and PACF(2s) is 
significant, add seasonal AR lag 2. Otherwise if ACF(s) is insignificant and ACF(2s) is 
significant, add seasonal MA lag 2. Otherwise add seasonal AR lag 1 and 2.  

A significant lag, say lag 𝑠𝑠, is added in the model the following way.  

• If 𝑠𝑠 ≤ 𝑀𝑀, just simply add lag 𝑠𝑠 in the model. If lag 𝑠𝑠 is in the model already, add lag 2𝑠𝑠 in the 
model if 2𝑠𝑠 is not already in and if 2𝑠𝑠 is not one of the significant lags and 2𝑠𝑠 ≤ 𝑀𝑀. For example, 
if ACF of residuals from non-seasonal model Y(t) = (1 − θ1B)a(t) has a single significant lag at 
lag 2, then the modified model is Y(t) = (1 − θ1B − θ2B2)a(t), if ACF of residuals has a single 
significant lag at lag 1, then the modified  model is  also Y(t) = (1 − θ1B− θ2B2)a(t).  

• For s>1, if 𝑠𝑠 is multiple of s, add the lag to the seasonal part. If the lag 𝑠𝑠 is already in the model, 
add 2𝑠𝑠 in the model if 2𝑠𝑠 is not already in and if 2𝑠𝑠 is not one of the significant lags and 2𝑠𝑠 ≤ 𝐾𝐾. 
For example, if non-seasonal MA lag 3 and seasonal MA lag 1 are decided to be added in 
model 𝑌𝑌(t) = (1 − θ1B)(1 − Θ1Bs)a(t), then the modified  model is 𝑌𝑌(t) = (1 − θ1B −
θ3B3)(1− Θ1Bs − Θ2B2s)a(t). 

In all other situations, stop and report “there are significant values in residual ACF”. 

If the model is modified, go back to step 5. 

Ljung-Box statistics 

Ljung-Box statistics Q(K) is defined as 

𝑄𝑄(𝐾𝐾) = 𝑛𝑛(𝑛𝑛 + 2)�
𝑝𝑝𝑘𝑘2

𝑛𝑛 − 𝑘𝑘

𝐾𝐾

𝑘𝑘=1

 

where 𝑝𝑝𝑘𝑘 is the kth lag ACF of residual, 𝑛𝑛 is the number of non-missing residuals. Q(K) is 
approximately distributed as Chisq(K-m), where m is the number of parameters other than the 
constant term. Q(K) is significant (at 0.05 level) if Q(K)>Chisq(0.05,K-m). 



 

4.  Exhaustive ARIMA Search 
Exhaustive ARIMA search performs several ARIMA models specified by user, and evaluates the 
estimated modes by a specified model selection criterion. 

Following are rules to specify exhaustive searching. 

• For autoregressive part and moving average part, use one of following methods: 
- Specify a maximum number T1 and T2, search from models satisfied 𝑝𝑝 + 𝐸𝐸 ≤ 𝑇𝑇1 and 

𝑃𝑃 + 𝑄𝑄 ≤ 𝑇𝑇2. 
- Specify the range of lag for parameters. This is the default method for Exhaustive 

ARIMA Search, 0 ≤ 𝑝𝑝 ≤ 5, 0 ≤ 𝐸𝐸 ≤ 5, 0 ≤ 𝑃𝑃 ≤ 2, and 0 ≤ 𝑄𝑄 ≤ 2 by default. 

• For differencing 

- Specify the range of d and D. 0 ≤ 𝑑𝑑 ≤ 2, and 0 ≤ 𝐷𝐷 ≤ 1 by default. 

• For model selection criterion, it follows the subsection “Model Selection Criterion” in 
“Introduction”. 

The result models of Exhaustive ARIMA search are the top N models sorted by model selection 
criterion. 

5.  Univariate Expert Model 
In this case, the Exponential Smoothing Expert Model, Univariate ARIMA Expert Model, and  
Exhaustive ARIMA Search (if it is turned on) are computed, sort their result models and select 
Univarite Expert Model by model selection criterion. 

6.  Transfer Function Expert Model 
Transfer function expert model can automatically build a well fitting model for specified target 
time series. Distinguished from univariate ARIMA expert model, transfer function expert model 
can specify some predictor series, each can be set as: 

• A candidate predictor series which will be evaluated to decide whether can be included in 
final model. 

• A forced predictor series to be built into final model directly. 
6.1  Inputs 

• A target series or dependent series 𝑌𝑌𝑡𝑡 

• Candidate input series or predictors 

- Time series 𝑋𝑋1(𝑡𝑡) to 𝑋𝑋𝐾𝐾(𝑡𝑡) 
- Event series 𝐼𝐼1(𝑡𝑡) to 𝐼𝐼𝑀𝑀(𝑡𝑡) 

 
 
 
 



 

• Forced input series or predictors 

- Time series X1∗(t) to XF∗(t) 
- Event series I1∗(t) to IL∗(t) 

 
6.2  Small sample 
• If n<=10, drop all predictors. Use Univariate Expert Model (or Univariate ARIMA Expert 

Model depending on user's request).  
• If 10 <n<3s or 10 <n<20, set s=1 to build a non-seasonal model. But all the predictors are kept. 

 
6.3  Step 1: Identify an ARIMA(p,d,q)(P,D,Q) model for Y(t)  
Use the univariate procedure to identify an ARIMA model for 𝑌𝑌𝑡𝑡 (see Section ‘Univariate ARIMA 
Expert Model’). In this step, the following are accomplished. 

(a) All missing values of 𝑌𝑌𝑡𝑡 are imputed if there is any. 

(b) Transformation of 𝑌𝑌𝑡𝑡 is done if it is needed. 

(c) Differencing orders d and D are found, and the corresponding difference of𝑌𝑌𝑡𝑡  is done.  

Note: the imputed, transformed and differenced 𝑌𝑌𝑡𝑡  is named as 𝑖𝑖𝑡𝑡, and will be used in (d) and 
subsequent steps in Section ‘Transfer Function Expert Model’. 

 
(d) An ARIMA(p,q)(P,Q) model for 𝑖𝑖𝑡𝑡 is identified. 

Note:  

• In the case where s>1, if P=D=Q=0 is identified, i.e. no seasonal pattern at all, from now on, we 
will treat as if s=1. 

• If the error variance for the model just found is zero (this corresponds to a perfect fit situation), 
stop. This is the final model. 
 

6.4  Step 2: Cleaning input series 
Time span is determined by output series 𝑌𝑌𝑡𝑡. If within the span there are missing values in some 
input series, drop these series from the model since our estimation procedure doesn’t allow 
missing values in input series. Also drop the input series if it is a constant over the time span. 

Note: the number of input series may be reduced after this step. 

6.5  Step 3: Transformation of input series. 
If it is found that 𝑌𝑌𝑡𝑡 needs to be transformed in step 1, apply the same transformation to all 
positive input series, and these transformed series will be used in the subsequent steps. 

Implementation note: 

1. It is recommended adding a setting for whether to apply the target series transformation to 
input series. By default, the transformation should be applied. 



 

6.6  Step 4: Difference input series 
If differencing orders d and/or D found in step 1(c) are nonzero, for each input series 𝑋𝑋𝑖𝑖(𝑡𝑡), take 
difference 𝑋𝑋𝑖𝑖′(𝑡𝑡) = (1 − 𝐵𝐵)𝑑𝑑(1− 𝐵𝐵𝑠𝑠)𝐷𝐷𝑋𝑋𝑖𝑖(𝑡𝑡). Difference input series as following steps: 

(a) Calculate 𝐶𝐶𝐶𝐶𝐹𝐹(𝑘𝑘) = 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 �𝑖𝑖(𝑡𝑡),𝑋𝑋𝑖𝑖′(𝑡𝑡 − 𝑘𝑘)� for k=0 to 12.  
(b) Check the significance of CCF coefficients. 

(b.1) If for some 𝑋𝑋𝑖𝑖′(𝑡𝑡), one or more of CCF(0) to CCF(12) is significant (|𝑡𝑡| > 2), 𝑋𝑋𝑖𝑖′ is used as 
the final differencing series 𝛥𝛥𝑋𝑋 for 𝑋𝑋𝑖𝑖. 

(b.2) If for some 𝑋𝑋𝑖𝑖′(𝑡𝑡), none of CCF(0) to CCF(12) is significant (|𝑡𝑡| > 2), find both non-
seasonal and seasonal differencing orders for series 𝑋𝑋𝑖𝑖′(𝑡𝑡) by step 3 of univariate ARIMA 
procedure, call them 𝑑𝑑𝑖𝑖, 𝐷𝐷𝑖𝑖. Compare 𝑑𝑑𝑖𝑖 and 𝐷𝐷𝑖𝑖 with 0 and do the following: 

• If 𝑑𝑑𝑖𝑖 = 0 & 𝐷𝐷𝑖𝑖 = 0, drop 𝑋𝑋𝑖𝑖′(𝑡𝑡) from the model. 
• If 𝑑𝑑𝑖𝑖 > 0 & 𝐷𝐷𝑖𝑖 = 0, take difference 𝑋𝑋𝑖𝑖′′(𝑡𝑡) = (1 − 𝐵𝐵)𝑑𝑑𝑖𝑖𝑋𝑋𝑖𝑖′(𝑡𝑡). 
• If 𝑑𝑑𝑖𝑖 = 0 & 𝐷𝐷𝑖𝑖 > 0, take difference 𝑋𝑋𝑖𝑖′′(𝑡𝑡) = (1 − 𝐵𝐵𝑠𝑠)𝐷𝐷𝑖𝑖𝑋𝑋𝑖𝑖′(𝑡𝑡). 
• If 𝑑𝑑𝑖𝑖 > 0 & 𝐷𝐷𝑖𝑖 > 0, take difference 𝑋𝑋𝑖𝑖′′(𝑡𝑡) = (1 − 𝐵𝐵)𝑑𝑑𝑖𝑖(1− 𝐵𝐵𝑠𝑠)𝐷𝐷𝑖𝑖𝑋𝑋𝑖𝑖′(𝑡𝑡). 

If 𝑋𝑋𝑖𝑖′′(𝑡𝑡) is generated from above conditions, calculate again 𝐶𝐶𝐶𝐶𝐹𝐹(𝑘𝑘) = 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 �𝑖𝑖(𝑡𝑡),𝑋𝑋𝑖𝑖′′(𝑡𝑡 −

𝑘𝑘)� for k=0 to 12. If none of CCF(0) to CCF(12) is significant (|𝑡𝑡| ≥ 2), drop 𝑋𝑋𝑖𝑖(𝑡𝑡) from the 

model; otherwise, 𝑋𝑋𝑖𝑖′′ is used as the final differencing series 𝛥𝛥𝑋𝑋 for 𝑋𝑋𝑖𝑖. 

(c) If 𝑋𝑋𝑖𝑖 is not dropped, its final differencing series 𝛥𝛥𝑋𝑋 is used instead of 𝑋𝑋𝑖𝑖 in model in 
subsequent analysis.  

 
Note:  
• Each time 𝑋𝑋𝑖𝑖(𝑡𝑡) is differenced, check if it becomes a constant series. If it becomes constant after 

differencing, drop it out from the model. 

• If the input series is differenced, this differenced series will be used in the subsequent steps. 

• After this step, the number of input series may be further reduced because some may be 
dropped.  

• For CCF computation, 

𝐶𝐶𝐶𝐶𝐹𝐹(𝑘𝑘) =
𝐶𝐶𝑘𝑘𝑋𝑋𝑍𝑍

𝐸𝐸𝑋𝑋𝐸𝐸𝑍𝑍
 

where  

𝐶𝐶𝑘𝑘𝑋𝑋𝑍𝑍 =
1

𝑛𝑛 − 1
� (𝑋𝑋𝑡𝑡−𝑘𝑘 − 𝑋𝑋�)(𝑖𝑖𝑡𝑡 − �̅�𝑖)
𝑛𝑛

𝑡𝑡=𝑘𝑘+1

 

𝐸𝐸𝑋𝑋 = �
1

𝑛𝑛 − 1
�(𝑋𝑋𝑡𝑡 − 𝑋𝑋�)2
𝑛𝑛

𝑡𝑡=1

 



 

𝐸𝐸𝑍𝑍 = �
1

𝑛𝑛 − 1
�(𝑖𝑖𝑡𝑡 − �̅�𝑖)2
𝑛𝑛

𝑡𝑡=1

 

𝑋𝑋� = ∑ 𝑋𝑋𝑡𝑡𝑛𝑛
𝑡𝑡=1
𝑛𝑛

 is the sample mean of 𝑋𝑋, and �̅�𝑖 = ∑ 𝑍𝑍𝑡𝑡𝑛𝑛
𝑡𝑡=1
𝑛𝑛

 is the sample mean of 𝑖𝑖. 

6.7  Step 5: Fit the model 

6.7.1  Initial model 
Fit the following initial model by conditional least square method, 

𝑖𝑖(𝑡𝑡) = 𝑐𝑐 + ���𝜔𝜔𝑖𝑖𝑗𝑗𝐵𝐵𝑗𝑗
𝑚𝑚

𝑗𝑗=0

�
𝑖𝑖

𝛥𝛥𝑋𝑋𝑖𝑖(𝑡𝑡) + �𝛽𝛽𝑘𝑘(1− 𝐵𝐵)𝑑𝑑(1− 𝐵𝐵𝑠𝑠)𝐷𝐷𝐼𝐼𝑘𝑘(𝑡𝑡)
𝑀𝑀

𝑘𝑘=1

+ 𝑁𝑁(𝑡𝑡) 

where ∑  𝑖𝑖 sums over all the un-dropped input series, the noise series N(t) follows a model which 
has the exact same lags as the ARMA(p,q)(P,Q) model found for Z(t) in step 1(d) but no constant 
term.  That is to fit an AMModel with ARMA part corresponding to model obtained in Step 1(d) 
and transfer function specified by 

���𝜔𝜔𝑖𝑖𝑗𝑗𝐵𝐵𝑗𝑗
𝑚𝑚

𝑗𝑗=0

�
𝑖𝑖

𝛥𝛥𝑋𝑋𝑖𝑖(𝑡𝑡) + �𝛽𝛽𝑘𝑘(1− 𝐵𝐵)𝑑𝑑(1− 𝐵𝐵𝑠𝑠)𝐷𝐷𝐼𝐼𝑘𝑘(𝑡𝑡)
𝑀𝑀

𝑘𝑘=1

 

 For example, suppose that the model found in step 1(d) for Z(t) is 

(1 − 𝜑𝜑1𝐵𝐵 − 𝜑𝜑3𝐵𝐵3)𝑖𝑖(𝑡𝑡) = 1 + (1 − 𝜃𝜃2𝐵𝐵2)(1− 𝛩𝛩1𝐵𝐵12)𝑎𝑎(𝑡𝑡) 

then the model for N(t) would be the above model with constant term dropped, i.e. 

(1 −𝜑𝜑1𝐵𝐵 − 𝜑𝜑3𝐵𝐵3)𝑁𝑁(𝑡𝑡) = (1 − 𝜃𝜃2𝐵𝐵2)(1− 𝛩𝛩1𝐵𝐵12)𝑎𝑎(𝑡𝑡) 

Choose value m: 

• For non-seasonal time series, m= 8; 
• For seasonal series, e.g. monthly data, m=s+3. If s+3>20, take m=20. 
When the total number of parameters is bigger than 1/2 of the sample size, decrease the order m 
so that the total number of parameters is less than 1/2 of sample size. If this cannot be done, (i.e. 
even m=0 would result that total number of parameters is bigger than 1/2 of sample size), then set 
m=0. 

6.7.2  Predictor deletion 
Drop the insignificant time series predictor, 𝛥𝛥𝑋𝑋𝑖𝑖(𝑡𝑡), one at a time. Start from the last predictor, 
suppose that 𝛥𝛥𝑋𝑋𝑖𝑖(𝑡𝑡)  is the first one that none of its �𝜔𝜔𝑖𝑖𝑗𝑗�𝑗𝑗=0

𝑚𝑚  is significant, then drop 𝛥𝛥𝑋𝑋𝑖𝑖(𝑡𝑡) from 

the model, rebuild the initial model, and refit the model. Repeat this until no more time series 
predictor need to be dropped.  



 

Then, drop the insignificant event predictor, 𝐼𝐼𝑖𝑖, one at a time. Start from the last predictor, suppose 
that 𝐼𝐼𝑖𝑖(𝑡𝑡)  is the first one that its 𝛽𝛽𝑖𝑖 is insignificant, then drop 𝐼𝐼𝑖𝑖(𝑡𝑡) from the model, rebuild the 
initial model, and refit the model. Repeat this until no more event predictor need to be dropped. 

6.7.3  Parameter deletion, model modification and refit: 
• ARMA part 

Delete all insignificant parameters (|𝑡𝑡| < 2) in ARIMA part. 

• Constant term 

Delete insignificant constant term only if the differencing order found in step 1(c), d or D, is 
not zero. 

• Refit the model if it is modified. 

• Delete ARMA part and constant term as before. 

• TSF part of each 𝑋𝑋𝑖𝑖(𝑡𝑡), but not any intervention/event series I(t) 

(a) If only one or two 𝜔𝜔𝑖𝑖𝑗𝑗 terms, 𝜔𝜔𝑖𝑖𝑗𝑗0  and 𝜔𝜔𝑖𝑖𝑗𝑗1 , are significant (|𝑡𝑡| ≥ 2), no rational form is 
needed (i.e. denominator polynomial not needed). Use 𝜔𝜔𝑖𝑖𝑗𝑗0𝛥𝛥𝑋𝑋𝑖𝑖(𝑡𝑡 − 𝑗𝑗0) + 𝜔𝜔𝑖𝑖𝑗𝑗1𝛥𝛥𝑋𝑋𝑖𝑖(𝑡𝑡 − 𝑗𝑗1).  

(b) If more than two 𝜔𝜔𝑖𝑖𝑗𝑗 terms are significant, assuming that  𝜔𝜔𝑖𝑖𝑗𝑗0  is the first significant one, 
use the form 

�𝜔𝜔𝑖𝑖𝑗𝑗0 + 𝜔𝜔𝑖𝑖(𝑗𝑗0+1)𝐵𝐵 + 𝜔𝜔𝑖𝑖(𝑗𝑗0+2)𝐵𝐵2�𝐵𝐵𝑗𝑗0
(1 − 𝛿𝛿1𝐵𝐵 − 𝛿𝛿2𝐵𝐵2) 𝛥𝛥𝑋𝑋𝑖𝑖(𝑡𝑡) 

• Refit the modified model, if there are any insignificant parameters (|𝑡𝑡| < 2) in the numerator, 
delete them and also delete other insignificant non-denominator parameters. Again, delete 
insignificant constant term only if the differencing order, d or D, is not zero. Repeat this step 
until all numerator parameters are significant. 

• Refit the model, delete all insignificant parameters. Repeat this step until all parameters are 
significant. 

Note: In each refitting, use previous estimates as initial values for both numerators and 
denominators, yet leave the initial values of ARMA part of N(t) to the default values.  

Fit the resulted model by ML method. If there are insignificant parameters, delete them and refit 
by ML method. Repeat until all parameters are significant.  

6.8  Step 6: Diagnostic checking and model modification  
Check the residual and modify the model exactly the same way as those in step 6 of univariate 
procedure (see Section ‘Univariate ARIMA Expert Model’). If model is modified, refit the model 
by CLS method. If there are insignificant parameters, delete them and refit by ML method. 

 

 



 

6.9  Special cases 
If all predictors are deleted after above steps, choose the model found in step 1, i.e. Univariate 
ARIMA Expert Model for Y, as the expert model. 

If any of the multivariate model estimation fails, choose Univariate ARIMA Expert Model for Y as 
the expert model. 

7.  Multivariate Expert Model 
For the target series specified with predictor series, Expert Modeler considers Transfer Function 
Expert Model first, if it drops all predictor series and ends up with a univariate ARIMA model, 
this univariate ARIMA model will be compared with Exponential Smoothing Expert Model and 
Exhaustive ARIMA Search (if it is turned on) by model selection criterion to determine the final 
recommendation. This is the default type for target series with predictor series specified. 

8.  Double Seasonal Expert Model 
For a given series with two seasonality lengths specified, Expert Model can find one or more 
reasonable models among above ES and ARIMA models based on model selection criterion (say 
BIC or AIC, “average squared error on testing set” is not supported here). 

Following models will be estimated: 

• Single seasonal Univariate Expert Model for each seasonality 
• Double seasonal models includes: 

- Two ES models: additive and multiplicative double seasonal ES models 
- One double seasonal ARIMA with identified orders of parameters 

Implementation note: 

• A setting can be used to specify whether only estimate the double seasonal models. 
 

Following method can be used to identify the order of parameters in ARIMA: 

1. First, use existing Univariate ARIMA Expert Model algorithm to indentify (𝑝𝑝,𝑑𝑑, 𝐸𝐸)×
(𝑃𝑃1,𝐷𝐷1,𝑄𝑄1)𝑠𝑠1 (here 𝑠𝑠1 is the smaller seasonality length). 
• If orders of (𝑃𝑃1,𝐷𝐷1,𝑄𝑄1)𝑠𝑠1 are all 0, reduce the model to a single seasonal 𝐴𝐴𝑅𝑅𝐼𝐼𝑀𝑀𝐴𝐴(𝑝𝑝,𝑑𝑑, 𝐸𝐸)×

(𝑃𝑃2,𝐷𝐷2,𝑄𝑄2)𝑠𝑠2, use Univariate ARIMA Expert Model process to identify the model structure 
and estimate the parameters; 

• Else, go to step 2. 
2. Then, simplify the same algorithm to indentify (𝑃𝑃2,𝐷𝐷2,𝑄𝑄2)𝑠𝑠2: 

• For 𝐷𝐷2, difference the series based on 𝑑𝑑 and 𝐷𝐷1: 
𝑖𝑖(𝑡𝑡) = (1 − 𝐵𝐵)𝑑𝑑(1 − 𝐵𝐵𝑠𝑠1)𝐷𝐷1𝑌𝑌(𝑡𝑡) 

 

 



 

Fit model 𝑖𝑖(𝑡𝑡) = 𝑐𝑐 + 𝜙𝜙𝑖𝑖(𝑡𝑡 − 𝑠𝑠2). If {|𝑡𝑡(𝑐𝑐)| < 2 𝑎𝑎𝑛𝑛𝑑𝑑 𝜙𝜙 > 𝐶𝐶(2,1)}  or {|𝑡𝑡(𝑐𝑐)| ≥
2 𝑎𝑎𝑛𝑛𝑑𝑑 (𝜙𝜙 − 1) 𝑠𝑠𝑠𝑠(𝜙𝜙)⁄ > 𝐶𝐶(3,1)}, take difference(1 − 𝐵𝐵𝑠𝑠2)𝑖𝑖(𝑠𝑠). All the critical values 𝐶𝐶(𝑖𝑖, 1) 
can reuse the values in Univariate ARIMA Expert Model. 

 

• For 𝑃𝑃2 and 𝑄𝑄2, set as 1. Then fit the model and delete the insignificant parameters. 
• If (𝑃𝑃2,𝐷𝐷2,𝑄𝑄2)𝑠𝑠2 in the final model are all 0, then it will reduced to the single seasonal 

𝐴𝐴𝑅𝑅𝐼𝐼𝑀𝑀𝐴𝐴(𝑝𝑝, 𝑑𝑑, 𝐸𝐸)×(𝑃𝑃1,𝐷𝐷1,𝑄𝑄1)𝑠𝑠1. 
 
 
 
  



Time Series Algorithm: Outlier Detection 
 

1. Introduction 
The observed series may be contaminated by so called outliers. These outliers may change the mean level 

(deterministic outliers) of the uncontaminated series. Outlier detection procedure is to find if there are 

outliers and what their locations, types, and magnitudes are when there are outliers.  

The model for the uncontaminated series may or may not be known. When the model for uncontaminated 

series is known, user can specify the model and the outlier detection is done with respect to this user-

specified model. When the model for uncontaminated series is unknown, outlier detection is combined with 

model identification in Expert modeler.  

Seven types of deterministic outliers are considered. They are additive outliers (AO), innovational outliers 

(IO), level shift (LS), temporary (or transient) change (TC), seasonal additive (SA), local trend (LT), and 

AO patch (AOP). Instead of calling them outliers, LS, TC, SA, and LT are also referred to as structure 

changes by some people.  

The rest of the sections are arranged as follows: Section 2 gives the definition of outliers. Section 3 

estimates the magnitude of outliers assuming outlier location and outlier type are known. In the section 4, 

the outliers including type and magnitude are detected automatically under two situations of model is 

known and unknown. The section 5 is for output. 

2.  Definitions of outliers 

2.1. Models considered for uncontaminated series  
Suppose that the dependent series 𝑌𝑌𝑡𝑡 , 𝑡𝑡 = 1,2,⋯ ,𝑛𝑛  can be decomposed into uncontaminated series 𝑈𝑈𝑡𝑡 

which does not contain information of outlier and another series 𝑂𝑂𝑡𝑡  which contains the information of 

outliers including type and magnitude, i.e. 

𝑌𝑌𝑡𝑡 = 𝑈𝑈𝑡𝑡 + 𝑂𝑂𝑡𝑡  



 

 And assume that the uncontaminated series 𝑈𝑈t  follows either univariate ARIMA or transfer function 

models of form 

                                          𝑈𝑈𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 1
∆
𝑁𝑁𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜃𝜃∗(𝐵𝐵)

∆𝜙𝜙∗(𝐵𝐵)
𝑎𝑎𝑡𝑡                              Eq. (1) 

where 

• 𝜇𝜇𝑡𝑡  is the level function and 𝑁𝑁𝑡𝑡  is the disturbance or noise series follows an zero mean 

ARIMA(p,q)(P,Q) model. For univariate ARIMA, 𝛥𝛥𝜇𝜇t  is constant. For transfer function model, 

µt depends on other predictor series.  

• B is backward shift operator with 𝐵𝐵𝑌𝑌𝑡𝑡 = 𝑌𝑌𝑡𝑡−1 and 𝐵𝐵𝑎𝑎𝑡𝑡 = 𝑎𝑎𝑡𝑡−1  

• Δ is differencing operator Δ = (1 − 𝐵𝐵)𝑑𝑑(1 − 𝐵𝐵𝑠𝑠)𝐷𝐷, where 𝑑𝑑 and 𝐷𝐷 are the order of difference in 

non-seasonal and seasonal part, respectively. 

• 𝜙𝜙∗(𝐵𝐵) = 𝜙𝜙𝑝𝑝(𝐵𝐵)𝛷𝛷𝑇𝑇(𝐵𝐵𝑠𝑠) , where 𝜙𝜙𝑝𝑝(𝐵𝐵) and  𝛷𝛷𝑇𝑇(𝐵𝐵𝑠𝑠) are the auto-regressive lag polynomial with 

order p and seasonal auto-regressive lag polynomial with order P, respectively, and 𝑠𝑠  is the 

seasonal length. 

• 𝜃𝜃∗(𝐵𝐵) = 𝜃𝜃𝑞𝑞(𝐵𝐵)𝛩𝛩𝑄𝑄(𝐵𝐵𝑠𝑠), where 𝜃𝜃𝑞𝑞(𝐵𝐵) and 𝛩𝛩𝑄𝑄(𝐵𝐵𝑠𝑠) are the moving average lag polynomial with 

order q and seasonal moving average lag polynomial with order Q, respectively. 

• 𝑎𝑎𝑡𝑡 is white noise series normally distributed with mean zero and variance 𝜎𝜎2, where 𝑡𝑡 = 1,⋯ ,𝑛𝑛 

To conform to the model representation used in the ARIMA ADD, model in Eq. (1) can be re-written as 

Δ𝑈𝑈𝑡𝑡 = Δ𝜇𝜇𝑡𝑡 + 𝑁𝑁𝑡𝑡 

where Δµt is the constant plus transfer function part  in document ARIMA ADD. 

2.2. Definition outlier 

Types of outliers are defined as following: 

AO (Additive Outliers) 

Assume that an AO outlier occurs at time t = T, the observed series can be represented as 

𝑌𝑌𝑡𝑡 = 𝑈𝑈𝑡𝑡 + 𝑤𝑤𝐼𝐼𝑇𝑇(𝑡𝑡) 

where 𝐼𝐼𝑇𝑇(𝑡𝑡) = �0, 𝑡𝑡 ≠ 𝑇𝑇
1 𝑡𝑡 = 𝑇𝑇 is a pulse function, 𝑤𝑤 is the deviation from the true 𝑈𝑈t caused by the outlier. 

IO (Innovational Outliers) 

Assume that an IO outlier occurs at time t = T, then  



 

𝑌𝑌𝑡𝑡 = 𝜇𝜇𝑡𝑡 +
𝜃𝜃∗(𝐵𝐵)
𝛥𝛥𝜙𝜙∗(𝐵𝐵)

(𝑎𝑎𝑡𝑡 + 𝑤𝑤𝐼𝐼𝑇𝑇(𝑡𝑡)) 

LS (Level Shift) 

Assume that a LS outlier occurs at time 𝑡𝑡 = 𝑇𝑇, then 

𝑌𝑌𝑡𝑡 = 𝑈𝑈𝑡𝑡 + 𝑤𝑤𝐸𝐸𝑇𝑇(𝑡𝑡) 

where 𝐸𝐸𝑇𝑇(𝑡𝑡) = 1
1−𝐵𝐵

𝐼𝐼𝑇𝑇(𝑡𝑡) = �0, 𝑡𝑡 < 𝑇𝑇
1 𝑡𝑡 ≥ 𝑇𝑇 is a step function. 

 

TC (Temporary/Transient Change) 

Assume that a TC outlier occurs at time t = T, then 

𝑌𝑌𝑡𝑡 = 𝑈𝑈𝑡𝑡 + 𝑤𝑤𝐷𝐷𝑇𝑇(𝑡𝑡) 

where 𝐷𝐷𝑇𝑇(𝑡𝑡) = 1
1−𝛿𝛿𝐵𝐵

𝐼𝐼𝑇𝑇(𝑡𝑡), 0 < 𝛿𝛿 < 1 is a damp function. 

 

SA (Seasonal Additive) 

Assume that a SA outlier occurs at time t = T, then 

𝑌𝑌𝑡𝑡 = 𝑈𝑈𝑡𝑡 + 𝑤𝑤𝐸𝐸𝐸𝐸𝑇𝑇(𝑡𝑡) 

where 𝐸𝐸𝐸𝐸𝑇𝑇(𝑡𝑡) = 1
1−𝐵𝐵𝑠𝑠

𝐼𝐼𝑇𝑇(𝑡𝑡) = �1, 𝑡𝑡 = 𝑇𝑇 + 𝑘𝑘𝑠𝑠, 𝑘𝑘 > 0
0, 𝑝𝑝𝑡𝑡ℎ𝑠𝑠𝑝𝑝𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠  is a step seasonal pulse function, and 𝑠𝑠 is seasonal 

length. 

 

LT (Local Trend) 

Assume that a LT outlier occurs at time t = T, then 

𝑌𝑌𝑡𝑡 = 𝑈𝑈𝑡𝑡 + 𝑤𝑤𝑇𝑇𝑇𝑇(𝑡𝑡) 

where 𝑇𝑇𝑇𝑇(𝑡𝑡) = 1
(1−𝐵𝐵)𝑠𝑠

𝐼𝐼𝑇𝑇(𝑡𝑡) = �𝑡𝑡 + 1 − 𝑇𝑇, 𝑡𝑡 ≥ 𝑇𝑇
0, 𝑝𝑝𝑡𝑡ℎ𝑠𝑠𝑝𝑝𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠 is a local trend function. 



 

AO patch 

An AO patch is a group of two or more consecutive AO outliers. An AO patch can be described by its 

starting time and length. Assume that there is a patch of AO outliers of length k at time 𝑡𝑡 = 𝑇𝑇, the observed 

series can be represented as 

𝑌𝑌𝑡𝑡 = 𝑈𝑈𝑡𝑡 + �𝑤𝑤𝑖𝑖𝐼𝐼𝑇𝑇−1+𝑖𝑖(𝑡𝑡)
𝑘𝑘

𝑖𝑖=1

 

Due to masking effect, patch of AO outliers is very difficult to detect when searching for outliers one by 

one. This is why AO patch is considered as a separate type from individual AO. For type AO patch, we will 

search for the whole patch together.  

Summary 

For an outlier of type O at time 𝑇𝑇, except AO patch, we can write 

                                                                  𝑌𝑌𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝑤𝑤𝐿𝐿𝑚𝑚(𝐵𝐵)𝐼𝐼𝑡𝑡 + 𝜃𝜃∗(𝐵𝐵)
𝛥𝛥𝜙𝜙∗(𝐵𝐵)

𝑎𝑎𝑡𝑡      Eq. (2) 

Where 

                                                               𝐿𝐿𝑚𝑚(𝐵𝐵) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

1, 𝑂𝑂 = 𝐴𝐴𝑂𝑂
1

�∆𝜋𝜋(𝐵𝐵)�
, 𝑂𝑂 = 𝐼𝐼𝑂𝑂

1
(1−𝐵𝐵)

, 𝑂𝑂 = 𝐿𝐿𝐸𝐸
1

(1−𝛿𝛿𝐵𝐵)
, 𝑂𝑂 = 𝑇𝑇𝐶𝐶

1
(1−𝐵𝐵𝑠𝑠)

, 𝑂𝑂 = 𝐸𝐸𝐴𝐴
1

(1−𝐵𝐵)2
, 𝑂𝑂 = 𝐿𝐿𝑇𝑇

                    Eq. (3) 

with 𝜋𝜋(𝐵𝐵) = 𝜙𝜙∗(𝐵𝐵)
𝜃𝜃∗(𝐵𝐵)

. 

Suppose there are 𝑀𝑀 outliers at times 𝑇𝑇1,⋯ ,𝑇𝑇𝑀𝑀  with types 𝑂𝑂1,𝑂𝑂2,⋯ ,𝑂𝑂𝑀𝑀   and magnitude 𝑤𝑤1,𝑤𝑤2,⋯ ,𝑤𝑤𝑀𝑀 . 

The model incorporates all these outliers is  

                                     𝑌𝑌𝑡𝑡 = 𝜇𝜇𝑡𝑡 + ∑ 𝑤𝑤𝑘𝑘𝐿𝐿𝜕𝜕𝑘𝑘(𝐵𝐵)𝑀𝑀
𝑘𝑘=1 𝐼𝐼𝑇𝑇𝑘𝑘(𝑡𝑡) + 𝜃𝜃∗(𝐵𝐵)

𝛥𝛥𝜙𝜙∗(𝐵𝐵)
𝑎𝑎𝑡𝑡                                    Eq. (4) 



 

3.  Estimate the effects of an outlier 

If the model, and the type and location of outliers are known, but the model parameters in Eq. (1)  and 

magnitudes of outliers are not known, then all parameters and magnitudes in Eq. (4) will be estimated using 

ML method. The initial parameters in Eq. (1) will be computed using the method in ARIMA ADD and 

initial magnitudes of outliers will be set to 0. 

If the model, the model parameters in Eq. (1) and the type and location of an outlier are known, then 

magnitude of outliers will be estimated as following: 

Non-AO patch outliers 

For any type of outlier at time 𝑇𝑇, except AO patch, we can write 

                                                         𝑌𝑌𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝑤𝑤𝐿𝐿(𝐵𝐵)𝐼𝐼𝑇𝑇(𝑡𝑡) + 𝜃𝜃∗(𝐵𝐵)
𝛥𝛥𝜙𝜙∗(𝐵𝐵)

𝑎𝑎𝑡𝑡                                    Eq. (5) 

Let 𝑠𝑠𝑡𝑡 = 𝜋𝜋(𝐵𝐵)∆(𝑌𝑌𝑡𝑡 − 𝜇𝜇𝑡𝑡) = 𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡 = 𝑁𝑁𝑡𝑡 − 𝑁𝑁�𝑡𝑡 be the residual, where 𝑌𝑌�𝑡𝑡  is the prediction of 𝑌𝑌𝑡𝑡 , assuming 

that there is no outlier. Let 𝑥𝑥𝑡𝑡 = 𝜋𝜋(𝐵𝐵)𝐿𝐿(𝐵𝐵)𝛥𝛥𝐼𝐼𝑇𝑇(𝑡𝑡). So 

𝑠𝑠𝑡𝑡 = 𝑤𝑤𝑥𝑥𝑡𝑡 + 𝑎𝑎𝑡𝑡  

From residuals 𝑠𝑠𝑡𝑡, the parameters for outliers at time 𝑇𝑇 are estimated by least square regression of  𝑠𝑠𝑡𝑡 on 𝑥𝑥𝑡𝑡, 

i.e.   

                                                                       𝑤𝑤(𝑇𝑇) = ∑ 𝑠𝑠𝑡𝑡𝑥𝑥𝑡𝑡𝑛𝑛
𝑡𝑡=1
∑ 𝑥𝑥𝑡𝑡

2𝑛𝑛
𝑡𝑡=1

                                                              Eq. (6) 

And  

𝑉𝑉𝑎𝑎𝑝𝑝(𝑤𝑤(𝑇𝑇)) =
𝜎𝜎2

∑ 𝑥𝑥𝑡𝑡2𝑛𝑛
𝑡𝑡=1

 

Note: when there are missing residuals, the regression should use only non-missing pairs of et and xt. 

For j = 1 (AO), 2 (IO), 3 (LS), 4 (TC), 5 (SA), 6 (LT), define 

                                                                       𝜆𝜆𝑗𝑗(𝑇𝑇) =
𝑤𝑤𝑗𝑗(𝑇𝑇)

�𝑉𝑉𝑠𝑠𝑞𝑞�𝑤𝑤𝑗𝑗(𝑇𝑇)�
                                  Eq. (7) 

Under the null hypothesis of no outlier, 𝜆𝜆𝑗𝑗(𝑇𝑇) is distributed as 𝑁𝑁(0,1) assuming the model and model 

parameters are known. 



 

AO patch outliers 

For an AO patch of length k starting at time 𝑇𝑇, let 𝑥𝑥𝑖𝑖(𝑡𝑡;𝑇𝑇) = 𝜋𝜋(𝐵𝐵)𝛥𝛥𝐼𝐼𝑇𝑇+𝑖𝑖−1(𝑡𝑡) for 𝑖𝑖 =  1 to 𝑘𝑘, then 

                                                                𝑠𝑠𝑡𝑡 = ∑ 𝑤𝑤𝑖𝑖(𝑇𝑇)𝑘𝑘
𝑖𝑖=1 𝑥𝑥𝑖𝑖(𝑡𝑡;𝑇𝑇) + 𝑎𝑎𝑡𝑡                               Eq. (8) 

Multiple linear regression can be used to fit this model. For an AO patch starting at time 𝑇𝑇, we have: 

                                                           𝑤𝑤(𝑇𝑇) = {𝑤𝑤1(𝑇𝑇),⋯ ,𝑤𝑤𝑘𝑘(𝑇𝑇)} = (𝑋𝑋𝑇𝑇′ 𝑋𝑋𝑇𝑇)−1𝑋𝑋𝑇𝑇′ 𝒆𝒆  Eq. (9) 

Where 𝐞𝐞 = (𝑠𝑠1,⋯ , 𝑠𝑠𝑛𝑛)′  and 𝑋𝑋𝑇𝑇 = �𝑥𝑥1(𝑇𝑇),⋯ , 𝑥𝑥𝑘𝑘(𝑇𝑇)� with 𝑥𝑥𝑖𝑖(𝑇𝑇) = �𝑥𝑥𝑖𝑖(1;𝑇𝑇),⋯ , 𝑥𝑥𝑖𝑖(𝑛𝑛;𝑇𝑇)�′, and 

                                                        𝜏𝜏(𝑤𝑤𝑖𝑖(𝑇𝑇)) = 𝑤𝑤𝑖𝑖(𝑇𝑇)

�𝜎𝜎2��𝑋𝑋𝑇𝑇
′𝑋𝑋𝑇𝑇�

−1
�
𝑖𝑖𝑖𝑖

                   Eq. (10) 

                                                                𝜒𝜒2(𝑇𝑇) = 𝑤𝑤′(𝑇𝑇)�𝑋𝑋𝑇𝑇
′𝑋𝑋𝑇𝑇�𝑤𝑤(𝑇𝑇)
𝜎𝜎2

                  Eq. (11) 

Assuming the model and model parameters are known, 𝜏𝜏(𝑤𝑤𝑖𝑖(𝑇𝑇)) is distributed as 𝑁𝑁(0,1) under the null 

hypothesis 𝑤𝑤𝑖𝑖(𝑇𝑇) = 0, and χ2(𝑇𝑇) is of Chi-square distribution with degree of freedom being k under the 

null hypothesis  𝑤𝑤1(𝑇𝑇) = ⋯ = 𝑤𝑤𝑘𝑘(𝑇𝑇) = 0. 

4.  Detection of outliers 
In practice, locations and types of outliers are unknown. Quite often the model for 𝑈𝑈𝑡𝑡 is unknown as well. 

Even the model is known, the parameters in the model are unknown Here we propose a procedure that can 

detect outlier automatically.   

Outlier detection is offered for 1) user-specified model; 2) unknown model. In the second situation, the 

expert modeler without outlier detection is used iteratively to find a proper model after adjusting outlier 

effects.  

4.1 Critical values 
In the outlier detection, three critical values are needed: 

•  𝐶𝐶1 : Critical value for non-AO patch deterministic outliers. The critical value depends on series 

length 𝑛𝑛. An approximate relationship between 𝐶𝐶1  and 𝑛𝑛 is 

                                                         𝐶𝐶1(𝑛𝑛) = �0.9 + 2.2 ln(𝑛𝑛)  

which is used in TSMODEL procedure in SPSS Statistics based on some simulations. We also use 

it in this document. 

•  𝐶𝐶2 : Critical for AO patch. The critical value depends on series length 𝑛𝑛 and patch length 𝑘𝑘. A An 

approximate relationship between 𝐶𝐶2 , 𝑛𝑛 and 𝑘𝑘 is  



 

𝐶𝐶2(𝑘𝑘,𝑛𝑛) = −2.4 + 1.2𝑘𝑘 + 2.6 ln(𝑘𝑘) + 2.6 ln(𝑛𝑛) 

which is used in TSMODEL procedure in SPSS Statistics based on some simulations. We also use 

it in this document. 

4.2 Outlier detection procedure 
Following, 𝑀𝑀  represent the total number of outliers, 𝐾𝐾  represent the number of outliers found in one 

iteration. 𝑁𝑁𝑎𝑎𝑑𝑑𝑗𝑗 represents the number of times data being adjusted for outliers. 

1. Set  𝑀𝑀 = 0,  𝑌𝑌𝑡𝑡∗ = 𝑌𝑌𝑡𝑡, and 𝑁𝑁𝑎𝑎𝑑𝑑𝑗𝑗 = 0. 

2. Assuming no outliers for 𝑌𝑌𝑡𝑡∗: 

• For user-specified model, use ML method to fit the model on 𝑌𝑌𝑡𝑡∗. 

• For unknown model, use expert modeler without outlier detection to find and fit a 

proper model on 𝑌𝑌𝑡𝑡∗. 

        Suppose the model is 𝑌𝑌𝑡𝑡∗ = 𝜇𝜇𝑡𝑡 + 𝜃𝜃∗(𝐵𝐵)
Δ𝜙𝜙∗(𝐵𝐵)

𝑎𝑎𝑡𝑡. 

 Note: a) this step is only visited once at beginning for user-specified model. 

3. Compute the residuals 𝑠𝑠𝑡𝑡 = 𝑌𝑌𝑡𝑡∗ − 𝑌𝑌�𝑡𝑡∗ = 𝑁𝑁𝑡𝑡∗ − 𝑁𝑁�𝑡𝑡∗ from the fitted model.  

Let 𝑡𝑡1, 𝑡𝑡2,⋯ , 𝑡𝑡𝑚𝑚 be the times with non-missing residuals.  

Steps 4 to 13 identify outlier candidates, adjust residuals. 

4. Set 𝐾𝐾 = 0.  

5. Detect a possible non-AOP outlier. 

Using residuals, 𝑠𝑠𝑡𝑡 , and parameter estimates from the fitted model, calculate the following 

statistics for outliers other than AO patch by Eq. (6) and (7): 

Test statistics: 𝜆𝜆𝐷𝐷 = max
𝑗𝑗

�max
𝑖𝑖
��𝜆𝜆𝑗𝑗(𝑡𝑡𝑖𝑖)���. 

Outlier type: 𝑂𝑂 = 𝑎𝑎𝑝𝑝𝑎𝑎max
𝑗𝑗

�max
𝑖𝑖
��𝜆𝜆𝑗𝑗(𝑡𝑡𝑖𝑖)���. 

Location of outlier: 𝑇𝑇𝐷𝐷 = 𝑎𝑎𝑝𝑝𝑎𝑎max
𝑡𝑡𝑖𝑖

(|𝜆𝜆𝜕𝜕(𝑡𝑡𝑖𝑖)|). 

Magnitude of outlier: 𝑤𝑤𝜕𝜕(𝑇𝑇𝐷𝐷). 

 Note:  



 

• Use 𝛿𝛿 = 0.8 as default in calculating 𝜆𝜆 for TC outliers. 

• Don’t consider LS if 𝑡𝑡𝑖𝑖 is too close to either beginning or end of the series, say,  𝑖𝑖 ≤ 𝑎𝑎 or 

𝑚𝑚 − 𝑖𝑖 ≤ 𝑎𝑎 − 2, with 𝑎𝑎 = 5  as default. 

• Don’t consider SA if 𝑠𝑠 = 1. 

6. Detect a possible AO patch (see section “AO patch detection” for details).  

If an AO patch is detected, let 𝑘𝑘𝐴𝐴𝜕𝜕𝑇𝑇   and 𝑇𝑇𝐴𝐴𝜕𝜕𝑇𝑇  represent the length and the starting time of the 

patch, �𝑤𝑤𝑗𝑗(𝑇𝑇𝐴𝐴𝜕𝜕𝑇𝑇), 𝜏𝜏 �𝑤𝑤𝑗𝑗(𝑇𝑇𝐴𝐴𝜕𝜕𝑇𝑇)��
𝑗𝑗=1

𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴
   the magnitudes and t-values of AOs in the patch, 𝜒𝜒𝐴𝐴𝜕𝜕𝑇𝑇2  the 

Chi-Square statistics related to this AO patch.  

Else, set 𝜒𝜒𝐴𝐴𝜕𝜕𝑇𝑇2 = 0. 

7. If ( 𝜆𝜆𝐷𝐷 < 𝐶𝐶1 and 𝜒𝜒𝐴𝐴𝜕𝜕𝑇𝑇2 < 𝐶𝐶2(𝑘𝑘𝐴𝐴𝜕𝜕𝑇𝑇)), go to 14. 

8. If (𝜆𝜆𝐷𝐷 ≥ 𝐶𝐶1 and 𝜒𝜒𝐴𝐴𝜕𝜕𝑇𝑇2 < 𝐶𝐶2(𝑘𝑘𝐴𝐴𝜕𝜕𝑇𝑇)), go to 11. 

9. If (𝜆𝜆𝐷𝐷 < 𝐶𝐶1 and 𝜒𝜒𝐴𝐴𝜕𝜕𝑇𝑇2 ≥ 𝐶𝐶2(𝑘𝑘𝐴𝐴𝜕𝜕𝑇𝑇)), go to 12. 

10. If (𝜆𝜆𝐷𝐷 ≥ 𝐶𝐶1 and 𝜒𝜒𝐴𝐴𝜕𝜕𝑇𝑇2 ≥ 𝐶𝐶2(𝑘𝑘𝐴𝐴𝜕𝜕𝑇𝑇)), { 

If  �𝜆𝜆𝐷𝐷
𝐶𝐶1
�
2

> 𝜒𝜒𝐴𝐴𝐴𝐴𝐴𝐴
2

𝐶𝐶1(𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴)
    and 𝜆𝜆𝐷𝐷 > max

𝑖𝑖
�𝜏𝜏 �𝑤𝑤𝑗𝑗(𝑇𝑇𝐴𝐴𝜕𝜕𝑇𝑇)��, go to 11. 

Else, go to 12. 

} 

11. There is a possible non-AOP deterministic outlier at time 𝑇𝑇𝐷𝐷 of type O. { 

Set 𝐾𝐾 = 𝐾𝐾 + 1.  

Adjust residuals by removing the effect of this possible outlier: 

𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑡𝑡 − 𝑤𝑤𝜕𝜕(𝑇𝑇𝐷𝐷)𝜋𝜋(𝐵𝐵)𝐿𝐿𝜕𝜕(𝐵𝐵)Δ𝐼𝐼𝑇𝑇𝐷𝐷(𝑡𝑡)  

} 

Go to 13. 

12. There is a possible AO patch of length 𝑘𝑘𝐴𝐴𝜕𝜕𝑇𝑇  at time 𝑇𝑇𝐴𝐴𝜕𝜕𝑇𝑇  { 



 

Set 𝐾𝐾 = 𝐾𝐾 + 𝑘𝑘𝐴𝐴𝜕𝜕𝑇𝑇  . 

Adjust residuals by removing the effect of this possible AO patch: 

𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑡𝑡 − � 𝑤𝑤𝑖𝑖(𝑇𝑇𝐴𝐴𝜕𝜕𝑇𝑇)𝜋𝜋(𝐵𝐵)Δ𝐼𝐼𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴+𝑖𝑖−1(𝑡𝑡)
𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴

𝑖𝑖=1

 

 } 

13. Calculate the new estimate of 𝜎𝜎2 to be the variance of trimmed 𝑠𝑠𝑡𝑡, with top (min(n*5%,10) – M – 

K) biggest |𝑠𝑠𝑡𝑡| removed. 

Go to 5. 

14. If 𝐾𝐾 = 0, { 

If 𝑀𝑀 = 0, stop. No outlier of any type is found. 

If 𝑀𝑀 > 0, go to 21. 

 } 

15. If 𝐾𝐾 > 0, set 𝑀𝑀∗ = 𝑀𝑀, 𝑀𝑀 = 𝑀𝑀 + 𝐾𝐾. 

Steps 16 to 17 fit the joint model, and delete insignificant outlier candidate one at a time. 

16. For 𝐾𝐾 > 0, check if there are redundant outlier candidates among all the 𝑀𝑀 outlier candidates. An 

outlier candidate is redundant if there is another outlier candidate being of same type and same 

occurring time. This also applies to AO candidates found through either AO patch search or 

individual AO search. If there are redundant outlier candidates, combine them into one and 𝑀𝑀 to 

reflect the number of non-redundant outlier candidates. For the outliers formed by combining 

redundant outliers, their estimated magnitudes (that will be used as initial values in the following 

model estimation) should also be adjusted: 𝑤𝑤 = 𝑤𝑤1 + 𝑤𝑤2 if combining two redundant outliers of 

magnitude 𝑤𝑤1 and 𝑤𝑤2, and 𝛿𝛿 = (𝛿𝛿1 + 𝛿𝛿2)/2 (the mean) for TC outliers. 

Incorporate all 𝑀𝑀 outlier candidates in the following intervention model for original series Yt:  

𝑌𝑌𝑡𝑡 = 𝜇𝜇𝑡𝑡 + �𝑤𝑤𝑘𝑘𝐿𝐿𝜕𝜕𝑘𝑘(𝐵𝐵)
𝑀𝑀

𝑘𝑘=1

𝐼𝐼𝑇𝑇𝑘𝑘(𝑡𝑡) +
𝜃𝜃∗(𝐵𝐵)
𝛥𝛥𝜙𝜙∗(𝐵𝐵)

𝑎𝑎𝑡𝑡 

Estimate this model by ML method with initial parameters set at the previously estimated values. 

Please note that w’s for outliers are part of parameters to be estimated. Also please note that δ’s 

for TC outliers are parameters between 0 and 1. 

17. From result of step 16, if there are insignificant outlier candidates, delete them one at a time, i.e.:  



 

If min
𝑘𝑘
�� 𝑤𝑤𝑘𝑘
�𝑉𝑉𝑠𝑠𝑞𝑞(𝑤𝑤𝑘𝑘)

�� = �
𝑤𝑤𝑗𝑗

�𝑉𝑉𝑠𝑠𝑞𝑞�𝑤𝑤𝑗𝑗�
� = �𝑡𝑡�𝑤𝑤𝑗𝑗�� < 𝐶𝐶1 { 

Delete the outlier at time 𝑇𝑇𝑗𝑗, set 𝑀𝑀 =  𝑀𝑀 − 1.  

If 𝑀𝑀 > 0, go to 16 with the remaining outliers. 

} 

18. If the 𝑀𝑀 outliers are the same as or a subset of the previous 𝑀𝑀∗ outliers, go to 21. 

19. If 𝑀𝑀 > 0 { 

If model is unknown { 

Adjust data by removing the 𝑀𝑀 outlier effects: 

𝑌𝑌𝑡𝑡∗ = 𝑌𝑌𝑡𝑡 −�𝑤𝑤𝑘𝑘𝐿𝐿𝜕𝜕𝑘𝑘(𝐵𝐵)
𝑀𝑀

𝑘𝑘=1

𝐼𝐼𝑇𝑇𝑘𝑘(𝑡𝑡) 

Set 𝑁𝑁𝑎𝑎𝑑𝑑𝑗𝑗 = 𝑁𝑁𝑎𝑎𝑑𝑑𝑗𝑗 + 1.  

 } 

 else { 

𝑌𝑌𝑡𝑡∗ = 𝑌𝑌𝑡𝑡 

} 

} 

20. If model is unknown and 𝑁𝑁𝑎𝑎𝑑𝑑𝑗𝑗 = 1, go to 2 to re-identify model. Otherwise, go to 3. 

21. Now 𝑀𝑀 outliers in total are found. Use ML method to fit the following model that incorporates all 

the outliers on the original input series 𝑌𝑌𝑡𝑡  with initial parameter values set at the previously 

estimated values: 

𝑌𝑌𝑡𝑡 = 𝜇𝜇𝑡𝑡 + �𝑤𝑤𝑘𝑘𝐿𝐿𝜕𝜕𝑘𝑘(𝐵𝐵)
𝑀𝑀

𝑘𝑘=1

𝐼𝐼𝑇𝑇𝑘𝑘(𝑡𝑡) +
𝜃𝜃∗(𝐵𝐵)
Δ𝜙𝜙∗(𝐵𝐵)

𝑎𝑎𝑡𝑡 

Delete insignificant parameter (|t-value|<2) one at a time starting with the most insignificant 

parameter (only delete parameter that is related to outliers for user-specified model), refit. Repeat 

until all parameters are significant. Please note that a TC outlier becomes an AO outlier when 

denominator parameter of a TC is insignificant and numerator parameter is significant. 

Implementation note: 



 

• Throughout the whole outlier detection procedure, 𝑌𝑌𝑡𝑡 and predictors in 𝜇𝜇𝑡𝑡 represent log or square 

root transformed series if the transformations are requested in user-specified model or found 

necessary by the expert modeler. When model is unknown, only the initial use of expert modeler 

identifies the transformation. Subsequent use of expert modeler should skip the transformation 

identification step. 

4.3 AO patch detection 
Following detection procedure produces a candidate AO patch: AOpatch. If AOpatch is not null, Chi-

square statistics χ2 related to it is also produced. I here use pseudo code to describe how a candidate AO 

patch is found. First, some functions are defined. 

LongestPiece(patch1, crit, patch2, nsig) 

For the given patch patch1, find the longest sub-patch patch2 of consecutive significant AOs in the 

patch. An AO in the patch is significant if its τ–value defined in Eq. (10) equals or is bigger than crit. 

LongestPiece returns a new patch patch2, and nsig the number of significant AOs in patch1. 

Shorten(patch1, crit, patch2, nsig) 

For the given patch patch1, shorten it by removing insignificant AOs at both ends. Shorten returns a 

new patch patch2, and nsig the number of significant AOs in patch1. 

StepShorten(patch1, crit0, crit1, nstep, patch2, ChiSq) 

For the given patch patch1, use Shorten() to shorten it in nstep steps. Each step uses the patch found 

in the previous step to fit the model in Eq. (8) if it is not already done, and use a higher critical value to 

shorten it based on the newly fitted values. The critical value for step 𝑖𝑖 is 𝑐𝑐𝑝𝑝𝑖𝑖𝑡𝑡0 + 𝑖𝑖 ∗ (𝑐𝑐𝑝𝑝𝑖𝑖𝑡𝑡1 −

𝑐𝑐𝑝𝑝𝑖𝑖𝑡𝑡0)/𝑛𝑛𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝. StepShorten returns a new patch patch2 such that there are no insignificant AOs at 

either end of the patch (this may need extra fit and shorten steps Shorten( , crit1, ,)), and the Chi-

Square statistics (Eq. (11)) related to patch2: ChiSq. If at any step, the patch length after Shorten() is 1 

or less, stop and return patch2 = null. 

Detection procedure 

Let 𝐶𝐶𝐴𝐴𝑂𝑂𝑃𝑃0 =  2.5, 𝐶𝐶𝐴𝐴𝑂𝑂𝑃𝑃1 =  𝐶𝐶1. 

1. Consider maximum patch length 𝑘𝑘 = 𝑘𝑘𝑚𝑚𝑠𝑠𝑥𝑥 (default 𝑘𝑘𝑚𝑚𝑠𝑠𝑥𝑥 = 5).  

2. Use multiple least square regression to fit model in Eq. (8) to calculate 𝜒𝜒2(𝑡𝑡)  and 

�𝑤𝑤𝑗𝑗(𝑡𝑡), 𝜏𝜏 �𝑤𝑤𝑗𝑗(𝑡𝑡)��
𝑗𝑗=1

𝑘𝑘
    for all eligible patches, where 𝑡𝑡  represents the starting time of the patch. 

A patch starting at time 𝑡𝑡 is eligible if any of the following conditions is satisfied. 



 

a) All residuals in the patch, 𝑠𝑠𝑡𝑡 to 𝑠𝑠𝑡𝑡+𝑘𝑘−1, are non-missing. 

b) Either 𝑡𝑡 = 1  or 𝑠𝑠𝑡𝑡−1 is missing, and first two residuals 𝑠𝑠𝑡𝑡 and 𝑠𝑠𝑡𝑡+1 in the patch are non-

missing. 

c) If 𝑡𝑡 = 𝑛𝑛 − 𝑘𝑘 + 1  and there are at least 2 consecutive non-missing residuals in the patch. 

Please note that this is the last possible patch and 𝑠𝑠𝑡𝑡 could be missing. 

3. Find the first 𝐿𝐿 (default 𝐿𝐿 =  3) patches of largest 𝜒𝜒2(𝑡𝑡𝑖𝑖), sorted in decreasing order: Toppatch[𝑠𝑠], 

𝑠𝑠 =  1 to 𝐿𝐿.   

4. Set AOpatch0 = AOpatch = null. 

5. LongestPiece (Toppatch[1], CAOP0, newpatch, nsig) 

6. If length(newpatch) == nsig, { 

If (length(newpatch)  > 1), AOpatch0 = newpatch. 

} 

7. Else { 

7a) patch1=newpatch 

7b) 𝑠𝑠 = 𝑠𝑠 + 1 

7c) Shorten(Toppatch[𝑠𝑠], CAOP0, newpatch, nsig).  

7d) If (length(newpatch)  == nsig) {  

If (length(newpatch)  > 1), AOpatch0 = newpatch. 

      } 

7e) Else if 𝑠𝑠 < 𝐿𝐿, go to 7b). 

7f) Else if (length(patch1)  > 1), AOpatch0 = patch1. 

} 

8. If (length(AOpatch0)  > 1), StepShorten(AOpatch0, CAOP0, CAOP1, nstep, AOpatch, 𝜒𝜒2), where 

nstep=2 as default. 

 



 

Implementation note:  

• Step 1 to 3 can be done together with the step 5 of “A combined Procedure” using one data pass. 

• In the step 2 of AO patch detection procedure, when fitting the model in Eq. (8), the cases with 

missing residuals are eliminated. Also AO at time 𝑡𝑡 + 𝑖𝑖 − 1 is treated as insignificant if 𝑠𝑠𝑡𝑡+𝑖𝑖−1 is 

missing. 

Some recursive relationships can be used do multiple regression for starting time 𝑇𝑇 + 1 based on 

that for starting time 𝑇𝑇: 

 

Let 𝜋𝜋(𝐵𝐵)∆= −∑ 𝜋𝜋𝑖𝑖𝐵𝐵𝑖𝑖∞
𝑖𝑖=0  with 𝜋𝜋0 = −1, then 𝑋𝑋𝑇𝑇 in Eq.(9) for starting time 𝑇𝑇 will be  

𝑋𝑋𝑇𝑇 = �𝐱𝐱1(𝑇𝑇),⋯ , 𝐱𝐱𝑘𝑘(𝑇𝑇)� 

where  𝐱𝐱𝑖𝑖(𝑇𝑇) = �𝑥𝑥𝑖𝑖(1;𝑇𝑇),⋯ , 𝑥𝑥𝑖𝑖(𝑛𝑛;𝑇𝑇)�′ = (0,⋯ ,0,−𝜋𝜋0,⋯ ,−𝜋𝜋𝑛𝑛−𝑇𝑇−𝑖𝑖+1) 

The 𝑋𝑋𝑇𝑇+1, 𝑋𝑋𝑇𝑇+1′ 𝑋𝑋𝑇𝑇+1 and (𝑋𝑋𝑇𝑇+1′ 𝑋𝑋𝑇𝑇+1)−1 for the start time 𝑇𝑇 + 1 can be computed as 

𝑋𝑋𝑇𝑇+1 = � 𝟎𝟎
𝑋𝑋𝑇𝑇[1: (𝑛𝑛 − 1), ]� 

𝑋𝑋𝑇𝑇+1′ 𝑋𝑋𝑇𝑇+1 = 𝑋𝑋𝑇𝑇′ 𝑋𝑋𝑇𝑇 − 𝐮𝐮𝑇𝑇𝐮𝐮𝑇𝑇′  

(𝑋𝑋𝑇𝑇+1′ 𝑋𝑋𝑇𝑇+1)−1 = (𝑋𝑋𝑇𝑇′ 𝑋𝑋𝑇𝑇)−1 +
(𝑋𝑋𝑇𝑇′ 𝑋𝑋𝑇𝑇)−1𝐮𝐮𝑇𝑇𝐮𝐮𝑻𝑻′ (𝑋𝑋𝑇𝑇′ 𝑋𝑋𝑇𝑇)−1

1 − 𝐮𝐮𝑇𝑇′ (𝑋𝑋𝑇𝑇′ 𝑋𝑋𝑇𝑇)−1𝐮𝐮𝑇𝑇
 

where 𝑋𝑋𝑇𝑇[1: (𝑛𝑛 − 1), ] is a matrix formed by row 1 to row 𝑛𝑛 − 1 of matrix 𝑋𝑋𝑇𝑇, and 

𝐮𝐮𝑇𝑇 = (−𝜋𝜋𝑛𝑛−𝑇𝑇 ,⋯ ,−𝜋𝜋𝑛𝑛−𝑇𝑇−𝑘𝑘+1)′.  

5.  Output 
After outlier model building, all outputs that are listed in the ARIMA ADD are needed. In addition, below 

outlier information will be output: 

• Outlier location 

• Outlier type 

• Magnitude estimate 

• Standard error of magnitude 

• t value  

• p value 
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Any references in this information to non-IBM Web sites are provided for convenience only and do not 
in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part 
of the materials for this IBM product and use of those Web sites is at your own risk. 

IBM may use or distribute any of the information you supply in any way it believes appropriate without 
incurring any obligation to you. 

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the 
exchange of information between independently created programs and other programs (including this 
one) and (ii) the mutual use of the information which has been exchanged, should contact: 

IBM Software Group, Attention: Licensing, 233 S. Wacker Dr., Chicago, IL 60606, USA. 
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Such information may be available, subject to appropriate terms and conditions, including in some 
cases, payment of a fee. 

The licensed program described in this document and all licensed material available for it are provided 
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement 
or any equivalent agreement between us. 

Any performance data contained herein was determined in a controlled environment. Therefore, the 
results obtained in other operating environments may vary significantly. Some measurements may 
have been made on development-level systems and there is no guarantee that these measurements will 
be the same on generally available systems. Furthermore, some measurements may have been 
estimated through extrapolation. Actual results may vary. Users of this document should verify the 
applicable data for their specific environment. 

Information concerning non-IBM products was obtained from the suppliers of those products, their 
published announcements or other publicly available sources. IBM has not tested those products and 
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM 
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of 
those products. 

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without 
notice, and represent goals and objectives only. 

This information contains examples of data and reports used in daily business operations.  To 
illustrate them as completely as possible, the examples include the names of  individuals, 
companies, brands, and products. All of these names are fictitious and any similarity to the names and 
addresses used by an actual business enterprise is entirely coincidental. 

If you are viewing this information softcopy, the photographs and color illustrations may not appear. 

 
Trademarks 

IBM, the IBM logo, ibm.com, and SPSS are trademarks of IBM Corporation, registered in many 
jurisdictions worldwide. A current list of IBM trademarks is available on the Web at 
http://www.ibm.com/legal/copytrade.shtml. 

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, 
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or 
its subsidiaries in the United States and other countries. 

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. 

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in 
the United States, other countries, or both. 

UNIX is a registered trademark of The Open Group in the United States and other countries. 

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United 
States, other countries, or both. 

Other product and service names might be trademarks of IBM or other companies. 
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