

IBM SPSS Modeler 18.1 Algorithms
Guide

Note: Before using this information and the product it supports, read the general information
under “Notices” at the end of this document.

This edition applies to IBM SPSS Modeler 18.1 and to all subsequent releases and modifications
until otherwise indicated in new editions.
Adobe product screenshot(s) reprinted with permission from Adobe Systems Incorporated.
Microsoft product screenshot(s) reprinted with permission from Microsoft Corporation.

Licensed Materials - Property of IBM

© Copyright IBM Corporation 1994, 2017.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Preface
IBM® SPSS® Modeler is the IBM Corp. enterprise-strength data mining workbench. SPSS
Modeler helps organizations to improve customer and citizen relationships through an in-depth
understanding of data. Organizations use the insight gained from SPSS Modeler to retain
profitable customers, identify cross-selling opportunities, attract new customers, detect fraud,
reduce risk, and improve government service delivery.

SPSS Modeler’s visual interface invites users to apply their specific business expertise, which
leads to more powerful predictive models and shortens time-to-solution. SPSS Modeler offers
many modeling techniques, such as prediction, classification, segmentation, and association
detection algorithms. Once models are created, IBM® SPSS® Modeler Solution Publisher
enables their delivery enterprise-wide to decision makers or to a database.

About IBM Business Analytics

IBM Business Analytics software delivers complete, consistent and accurate information that
decision-makers trust to improve business performance. A comprehensive portfolio of business
intelligence, predictive analytics, financial performance and strategy management, and analytic
applications provides clear, immediate and actionable insights into current performance and the
ability to predict future outcomes. Combined with rich industry solutions, proven practices and
professional services, organizations of every size can drive the highest productivity, confidently
automate decisions and deliver better results.

As part of this portfolio, IBM SPSS Predictive Analytics software helps organizations predict
future events and proactively act upon that insight to drive better business outcomes. Commercial,
government and academic customers worldwide rely on IBM SPSS technology as a competitive
advantage in attracting, retaining and growing customers, while reducing fraud and mitigating
risk. By incorporating IBM SPSS software into their daily operations, organizations become
predictive enterprises – able to direct and automate decisions to meet business goals and achieve
measurable competitive advantage. For further information or to reach a representative visit
http://www.ibm.com/spss.

Technical support

Technical support is available to maintenance customers. Customers may contact Technical
Support for assistance in using IBM Corp. products or for installation help for one of the
supported hardware environments. To reach Technical Support, see the IBM Corp. web site
at http://www.ibm.com/support. Be prepared to identify yourself, your organization, and your
support agreement when requesting assistance.

http://www-01.ibm.com/software/data/businessintelligence/
http://www-01.ibm.com/software/data/businessintelligence/
http://www-01.ibm.com/software/analytics/spss/
http://www-142.ibm.com/software/products/us/en/category/SWQ30
http://www-142.ibm.com/software/products/us/en/category/SWQ10
http://www-142.ibm.com/software/products/us/en/category/SWQ10
http://www.ibm.com/spss
http://www.ibm.com/support

Adjusted Propensities Algorithms
Adjusted propensity scores are calculated as part of the process of building the model, and will
not be available otherwise. Once the model is built, it is then scored using data from the test or
validation partition, and a new model to deliver adjusted propensity scores is constructed by
analyzing the original model’s performance on that partition. Depending on the type of model,
one of two methods may be used to calculate the adjusted propensity scores.

Model-Dependent Method

For rule set and tree models, the following method is used:

1. Score the model on the test or validation partition.

2. Tree models. Calculate the frequency of each category at each tree node using the test/validation
partition, reflecting the distribution of the target value in the records scored to that node.

Rule set models. Calculate the support and confidence of each rule using the test/validation
partition, reflecting the model performance on the test/validation partition.

This results in a new rule set or tree model which is stored with the original model. Each time
the original model is applied to new data, the new model can subsequently be applied to the raw
propensity scores to generate the adjusted scores.

General Purpose Method

For other models, the following method is used:

1. Score the model on the test or validation partition to compute predicted values and predicted
raw propensities.

2. Remove all records which have a missing value for the predicted or observed value.

3. Calculate the observed propensities as 1 for true observed values and 0 otherwise.

4. Bin records according to predicted raw propensity using 100 equal-count tiles.

5. Compute the mean predicted raw propensity and mean observed propensity for each bin.

6. Build a neural network with mean observed propensity as the target and predicted raw propensity
as a predictor. For the neural network settings:

Use a random seed, value 0
Use the "quick" training method
Stop after 250 cycles
Do not use prevent overtaining option
Use expert mode
Quick Method Expert Options:

Use one hidden layer with 3 neurons and persistence set to 200
Learning Rates Expert Options:

Alpha 0.9

Adjusted Propensities Algorithms

Initial Eta 0.3
High Eta 0.1
Eta decay 50
Low Eta 0.01

The result is a neural network model that attempts to map raw propensity to a more accurate
estimate which takes into account the original model’s performance on the testing or validation
partition. To calculate adjusted propensities at score time, this neural network is applied to the raw
propensities obtained from scoring the original model.

Anomaly Detection Algorithm

Overview

The Anomaly Detection procedure searches for unusual cases based on deviations from the
norms of their cluster groups. The procedure is designed to quickly detect unusual cases for data-
auditing purposes in the exploratory data analysis step, prior to any inferential data analysis. This
algorithm is designed for generic anomaly detection; that is, the definition of an anomalous case
is not specific to any particular application, such as detection of unusual payment patterns in the
healthcare industry or detection of money laundering in the finance industry, in which the
definition of an anomaly can be well-defined.

Primary Calculations

Notation

The following notation is used throughout this chapter unless otherwise stated:

ID The identity variable of each case in the data file.
n The number of cases in the training data Xtrain .
Xok, k = 1, …, K The set of input variables in the training data.
Mk, k ∈ {1, …, K} If Xok is a continuous variable, Mk represents the grand mean, or average of

the variable across the entire training data.
SDk, k ∈ {1, …, K} If Xok is a continuous variable, SDk represents the grand standard deviation,

or standard deviation of the variable across the entire training data.
XK+1 A continuous variable created in the analysis. It represents the percentage of

variables (k = 1, …, K) that have missing values in each case.
Xk, k = 1, …, K The set of processed input variables after the missing value handling is

applied. For more information, see the topic “Modeling Stage.”
H, or the boundaries of H:
[Hmin, Hmax]

H is the pre-specified number of cluster groups to create. Alternatively, the
bounds [Hmin, Hmax] can be used to specify the minimum and maximum
numbers of cluster groups.

nh, h = 1, …, H The number of cases in cluster h, h = 1, …, H, based on the training data.
ph, h = 1, …, H The proportion of cases in cluster h, h = 1, …, H, based on the training

data. For each h, ph = nh/n.
Mhk, k = 1, …, K+1, h = 1,
…, H

SDhk, k ∈ {1, …, K+1}, h
= 1, …, H
{nhkj}, k ∈ {1, …, K}, h =
1, …, H, j = 1, …, Jk

If Xk is a continuous variable, Mhk represents the cluster mean, or average
of the variable in cluster h based on the training data. If Xk is a categorical
variable, it represents the cluster mode, or most popular categorical value of
the variable in cluster h based on the training data.
If Xk is a continuous variable, SDhk represents the cluster standard deviation,
or standard deviation of the variable in cluster h based on the training data.
The frequency set {nhkj} is defined only when Xk is a categorical variable.
If Xk has Jk categories, then nhkj is the number of cases in cluster h that fall
into category j.

m An adjustment weight used to balance the influence between continuous and
categorical variables. It is a positive value with a default of 6.

VDIk, k = 1, …, K+1 The variable deviation index of a case is a measure of the deviation of
variable value Xk from its cluster norm.

Anomaly Detection Algorithm

GDI The group deviation index GDI of a case is the log-likelihood distance d(h,

s), which is the sum of all of the variable deviation indices {VDIk, k = 1,
…, K+1}.

anomaly index The anomaly index of a case is the ratio of the GDI to that of the average
GDI for the cluster group to which the case belongs.

variable contribution
measure

The variable contribution measure of variable Xk for a case is the ratio of
the VDIk to the case’s corresponding GDI.

pctanomaly or nanomaly A pre-specified value pctanomaly determines the percentage of cases to be
considered as anomalies. Alternatively, a pre-specified positive integer value
nanomaly determines the number of cases to be considered as anomalies.

cutpointanomaly A pre-specified cutpoint; cases with anomaly index values greater than
cutpointanomaly are considered anomalous.

kanomaly A pre-specified integer threshold 1≤kanomaly≤K+1 determines the number of
variables considered as the reasons that the case is identified as an anomaly.

Algorithm Steps

This algorithm is divided into three stages:

Modeling. Cases are placed into cluster groups based on their similarities on a set of input
variables. The clustering model used to determine the cluster group of a case and the sufficient
statistics used to calculate the norms of the cluster groups are stored.

Scoring. The model is applied to each case to identify its cluster group and some indices are
created for each case to measure the unusualness of the case with respect to its cluster group.
All cases are sorted by the values of the anomaly indices. The top portion of the case list is
identified as the set of anomalies.

Reasoning. For each anomalous case, the variables are sorted by its corresponding variable
deviation indices. The top variables, their values, and the corresponding norm values are presented
as the reasons why a case is identified as an anomaly.

Modeling Stage

This stage performs the following tasks:

1. Training Set Formation. Starting with the specified variables and cases, remove any case with
extremely large values (greater than 1.0E+150) on any continuous variable. If missing value
handling is not in effect, also remove cases with a missing value on any variable. Remove variables
with all constant nonmissing values or all missing values. The remaining cases and variables are
used to create the anomaly detection model. Statistics output to pivot table by the procedure are
based on this training set, but variables saved to the dataset are computed for all cases.

2. Missing Value Handling (Optional). For each input variable Xok, k = 1, …, K, if Xok is a continuous

variable, use all valid values of that variable to compute the grand mean Mk and grand standard
deviation SDk. Replace the missing values of the variable by its grand mean. If Xok is a
categorical variable, combine all missing values into a “missing value” category. This category is
treated as a valid category. Denote the processed form of {Xok} by {Xk}.

Anomaly Detection Algorithm

3. Creation of Missing Value Pct Variable (Optional). A new continuous variable, XK+1, is created that
represents the percentage of variables (both continuous and categorical) with missing values in
each case.

4. Cluster Group Identification. The processed input variables {Xk, k = 1, …, K+1} are used to create
a clustering model. The two-step clustering algorithm is used with noise handling turned on (see
the TwoStep Cluster algorithm document for more information).

5. Sufficient Statistics Storage. The cluster model and the sufficient statistics for the variables by
cluster are stored for the Scoring stage:
 The grand mean Mk and standard deviation SDk of each continuous variable are stored,

k ∈ {1, …, K+1}.
 For each cluster h = 1, …, H, store the size nh. If Xk is a continuous variable, store the cluster

mean Mhk and standard deviation SDhk of the variable based on the cases in cluster h. If Xk is
a categorical variable, store the frequency nhkj of each category j of the variable based on the
cases in cluster h. Also store the modal category Mhk. These sufficient statistics will be used
in calculating the log-likelihood distance d(h, s) between a cluster h and a given case s.

Scoring Stage

This stage performs the following tasks on scoring (testing or training) data:

1. New Valid Category Screening. The scoring data should contain the input variables {Xok,k= 1, …,
K} in the training data. Moreover, the format of the variables in the scoring data should be the
same as those in the training data file during the Modeling Stage.

Cases in the scoring data are screened out if they contain a categorical variable with a valid
category that does not appear in the training data. For example, if Region is a categorical variable
with categories IL, MA and CA in the training data, a case in the scoring data that has a valid
category FL for Region will be excluded from the analysis.

2. Missing Value Handling (Optional). For each input variable Xok, if Xok is a continuous variable, use
all valid values of that variable to compute the grand mean Mk and grand standard deviation SDk.
Replace the missing values of the variable by its grand mean. If Xok is a categorical variable,
combine all missing values and put together a missing value category. This category is treated
as a valid category.

3. Creation of Missing Value Pct Variable (Optional depending on Modeling Stage). If XK+1 is created in
the Modeling Stage, it is also computed for the scoring data.

4. Assign Each Case to its Closest Non-Noise Cluster. The clustering model from the Modeling Stage
is applied to the processed variables of the scoring data file to create a cluster ID for each case.
Cases belonging to the noise cluster are reassigned to their closest non-noise cluster. See the
TwoStep Cluster algorithm document for more information on the noise cluster.

5. Calculate Variable Deviation Indices. Given a case s, the closest cluster h is found. The variable
deviation index VDIk of variable Xk is defined as the contribution dk(h, s) of the variable to its
log-likelihood distance d(h, s). The corresponding norm value is Mhk, which is the cluster sample
mean of Xk if Xk is continuous, or the cluster mode of Xk if Xk is categorical.

Anomaly Detection Algorithm

6. Calculate Group Deviation Index. The group deviation index GDI of a case is the log-likelihood

distance d(h, s), which is the sum of all the variable deviation indices {VDIk, k = 1, …, K+1}.

7. Calculate Anomaly Index and Variable Contribution Measures. Two additional indices are calculated
that are easier to interpret than the group deviation index and the variable deviation index.

The anomaly index of a case is an alternative to the GDI, which is computed as the ratio of the
case’s GDI to the average GDI of the cluster to which the case belongs. Increasing values of this
index correspond to greater deviations from the average and indicate better anomaly candidates.

A variable’s variable contribution measure of a case is an alternative to the VDI, which is
computed as the ratio of the variable’s VDI to the case’s GDI. This is the proportional contribution
of the variable to the deviation of the case. The larger the value of this measure, the greater
the variable’s contribution to the deviation.

Odd Situations

Zero Divided by Zero

The situation in which the GDI of a case is zero and the average GDI of the cluster that the case
belongs to is also zero is possible if the cluster is a singleton or is made up of identical cases and
the case in question is the same as the identical cases. Whether this case is considered as an
anomaly or not depends on whether the number of identical cases that make up the cluster is large
or small. For example, suppose that there is a total of 10 cases in the training and two clusters are
resulted in which one cluster is a singleton; that is, made up of one case, and the other has nine
cases. In this situation, the case in the singleton cluster should be considered as an anomaly as it
does not belong to the larger cluster. One way to calculate the anomaly index in this situation is to
set it as the ratio of average cluster size to the size of the cluster h, which is:

Following the 10 cases example, the anomaly index for the case belonging to the singleton cluster
would be (10/2)/1 = 5, which should be large enough for the algorithm to catch it as an anomaly.
In this situation, the variable contribution measure is set to 1/(K+1), where (K+1) is the number of
processed variables in the analysis.

Nonzero Divided by Zero

The situation in which the GDI of a case is nonzero but the average GDI of the cluster that the case
belongs to is 0 is possible if the corresponding cluster is a singleton or is made up of identical cases
and the case in question is not the same as the identical cases. Suppose that case i belongs to cluster
h, which has a zero average GDI; that is, average(GDI)h = 0, but the GDI between case i and
cluster h is nonzero; that is, GDI(i, h) ≠ 0. One choice for the anomaly index calculation of case i
could be to set the denominator as the weighted average GDI over all other clusters if this value is
not 0; else set the calculation as the ratio of average cluster size to the size of cluster h. That is,

Anomaly Detection Algorithm

This situation triggers a warning that the case is assigned to a cluster that is made up of identical
cases.

Reasoning Stage

Every case now has a group deviation index and anomaly index and a set of variable deviation
indices and variable contribution measures. The purpose of this stage is to rank the likely
anomalous cases and provide the reasons to suspect them of being anomalous.

1. Identify the Most Anomalous Cases. Sort the cases in descending order on the values of the anomaly

index. The top pctanomaly % (or alternatively, the top nanomaly) gives the anomaly list, subject
to the restriction that cases with an anomaly index less than or equal to cutpointanomaly are not
considered anomalous.

2. Provide Reasons for Considering a Case Anomalous. For each anomalous case, sort the variables by

their corresponding VDIk values in descending order. The top kanomaly variable names, its value
(of the corresponding original variable Xok), and the norm values are displayed as reasoning.

Blank Handling

Blanks and missing values are handled in model building as described in “Algorithm Steps”,
based on user settings.

Generated Model/Scoring

The Anomaly Detection generated model can be used to detect anomalous records in new data
based on patterns found in the original training data. For each record scored, an anomaly score is
generated and a flag indicating anomaly status and/or the anomaly score are appended as new fields

Predicted Values

For each record, the anomaly score is calculated as described in “Scoring Stage”, based on the
cluster model created when the model was built. If anomaly flags were requested, they are
determined as described in “Reasoning Stage.”

Blank Handling

In the generated model, blanks are handled according to the setting used in building the model.
For more information, see the topic “Scoring Stage.”

Apriori Algorithms

Overview

Apriori is an algorithm for extracting association rules from data. It constrains the search space
for rules by discovering frequent itemsets and only examining rules that are made up of frequent
itemsets (Agrawal and Srikant, 1994).

Apriori deals with items and itemsets that make up transactions. Items are flag-type conditions
that indicate the presence or absence of a particular thing in a specific transaction. An itemset is a
group of items which may or may not tend to co-occur within transactions.

IBM® SPSS® Modeler uses Christian Borgelt’s Apriori implementation. Full details on this
implementation can be obtained at

http://fuzzy.cs.uni-magdeburg.de/~borgelt/doc/apriori/apriori.html.

Deriving Rules

Apriori proceeds in two stages. First it identifies frequent itemsets in the data, and then it
generates rules from the table of frequent itemsets.

Frequent Itemsets

The first step in Apriori is to identify frequent itemsets. A frequent itemset is defined as an
itemset with support greater than or equal to the user-specified minimum support threshold smin.
The support of an itemset is the number of records in which the itemset is found divided by
the total number of records.

The algorithm begins by scanning the data and identifying the single-item itemsets (i.e.
individual items, or itemsets of length 1) that satisfy this criterion. Any single items that do
not satisfy the criterion are not be considered further, because adding an infrequent item to an
itemset will always result in an infrequent itemset.

Apriori then generates larger itemsets recursively using the following steps:

E Generate a candidate set of itemsets of length k (containing k items) by combining existing
itemsets of length :

For every possible pair of frequent itemsets p and q with length 1) compare the
first items (in lexicographic order); if they are the same, and the last item in q is
(lexicographically) greater than the last item in p, add the last item in q to the end of p to create a
new candidate itemset with length k.

E Prune the candidate set by checking every length subset of each candidate itemset; all

subsets must be frequent itemsets, or the candidate itemset is infrequent and is removed from
further consideration.

E Calculate the support of each itemset in the candidate set, as

http://fuzzy.cs.uni-magdeburg.de/%7Eborgelt/doc/apriori/apriori.html

10

Apriori Algorithms

where is the number of records that match the itemset and N is the number of records in the
training data. (Note that this definition of itemset support is different from the definition used for
rule support.)

E Itemsets with support ≥ smin are added to the list of frequent itemsets.

E If any frequent itemsets of length k were found, and k is less than the user-specified maximum
rule size kmax, repeat the process to find frequent itemsets of length (k+1).

Generating Rules

When all frequent itemsets have been identified, the algorithm extracts rules from the frequent
itemsets. For each frequent itemset L with length k > 1, the following procedure is applied:

E Calculate all subsets A of length of the itemset such that all the fields in A are input fields
and all the other fields in the itemset (those that are not in A) are output fields. Call the latter
subset . (In the first iteration this is just one field, but in later iterations it can be multiple fields.)

E For each subset A, calculate the evaluation measure (rule confidence by default) for the rule
 as described below.

E If the evaluation measure is greater than the user-specified threshold, add the rule to the rule table,
and, if the length k’ of A is greater than 1, test all possible subsets of A with length

Evaluation Measures

Apriori offers several evaluation measures for determining which rules to retain. The different
measures will emphasize different aspects of the rules, as detailed in the IBM® SPSS® Modeler
User’s Guide. Values are calculated based on the prior confidence and the posterior confidence,
defined as

and

where c is the support of the consequent, a is the support of the antecedent, r is the support of
the conjunction of the antecedent and the consequent, and N is the number of records in the
training data.

Rule Confidence. The default evaluation measure for rules is simply the posterior confidence
of the rule,

Confidence Difference (Absolute Confidence Difference to Prior). This measure is based on the
simple difference of the posterior and prior confidence values,

Apriori Algorithms

Confidence Ratio (Difference of Confidence Quotient to 1). This measure is based on the ratio of
posterior confidence to prior confidence,

Information Difference (Information Difference to Prior). This measure is based on the information
gain criterion, similar to that used in building C5.0 trees. The calculation is

where r is the rule support, a is the antecedent support, c is the consequent support, is
the complement of antecedent support, and is the complement of consequent support.

Normalized Chi-square (Normalized Chi-squared Measure). This measure is based on the chi-squared
statistical test for independence of categorical data, and is calculated as

Blank Handling

Blanks are ignored by the Apriori algorithm. The algorithm will handle records containing blanks
for input fields, but such a record will not be considered to match any rule containing one or
more of the fields for which it has blank values.

Effect of Options

Minimum rule support/confidence. These values place constraints on which rules may be entered
into the table. Only rules whose support and confidence values exceed the specified values can be
entered into the rule table.

Maximum number of antecedents. This determines the maximum number of antecedents that will
be examined for any rule. When the number of conditions in the antecedent part of the rule equals
the specified value, the rule will not be specialized further.

Only true values for flags. If this option is selected, rules with values of false will not be considered
for either input or output fields.

Optimize Speed/Memory. This option controls the trade-off between speed of processing and
memory usage. Selecting Speed will cause Apriori to use condition values directly in the frequent
itemset table, and to load the transactions into memory, if possible. Selecting Memory will
cause Apriori to use pointers into a value table in the frequent itemset table. Using pointers in

Apriori Algorithms

the frequent itemset table reduces the amount of memory required by the algorithm for large
problems, but it also involves some additional work to reference and dereference the pointers
during model building. The Memory option also causes Apriori to process transactions from
the file rather than loading them into memory.

Generated Model/Scoring

The Apriori algorithm generates an unrefined rule node. To create a model for scoring new
data, the unrefined rule node must be refined to generate a ruleset node. Details of scoring for
generated ruleset nodes are given below.

Predicted Values

Predicted values are based on the rules in the ruleset. When a new record is scored, it is compared
to the rules in the ruleset. How the prediction is generated depends on the user’s setting for
Ruleset Evaluation in the stream options.
 Voting. This method attempts to combine the predictions of all of the rules that apply to the

record. For each record, all rules are examined and each rule that applies to the record is used
to generate a prediction. The sum of confidence figures for each predicted value is computed,
and the value with the greatest confidence sum is chosen as the final prediction.

 First hit. This method simply tests the rules in order, and the first rule that applies to the record
is the one used to generate the prediction.

There is a default rule, which specifies an output value to be used as the prediction for records
that don’t trigger any other rules from the ruleset. For rulesets derived from decision trees, the
value for the default rule is the modal (most prevalent) output value in the overall training data.
For association rulesets, the default value is specified by the user when the ruleset is generated
from the unrefined rule node.

Confidence

Confidence calculations also depend on the user’s Ruleset Evaluation stream options setting.
 Voting. The confidence for the final prediction is the sum of the confidence values for rules

triggered by the current record that give the winning prediction divided by the number of rules
that fired for that record.

 First hit. The confidence is the confidence value for the first rule in the ruleset triggered by
the current record.

If the default rule is the only rule that fires for the record, it’s confidence is set to 0.5.

Blank Handling

Blanks are ignored by the algorithm. The algorithm will handle records containing blanks for
input fields, but such a record will not be considered to match any rule containing one or more of
the fields for which it has blank values.

Automated Data Preparation
Algorithms

The goal of automated data preparation is to prepare a dataset so as to generally improve the
training speed, predictive power, and robustness of models fit to the prepared data.

These algorithms do not assume which models will be trained post-data preparation. At the end
of automated data preparation, we output the predictive power of each recommended predictor,
which is computed from a linear regression or naïve Bayes model, depending upon whether the
target is continuous or categorical.

Notation

The following notation is used throughout this chapter unless otherwise stated:

X A continuous or categorical variable
Value of the variable X for case i.

 Frequency weight for case i. Non-integer positive values are rounded to the nearest
integer. If there is no frequency weight variable, then all . If the frequency
weight of a case is zero, negative or missing, then this case will be ignored.
Analysis weight for case i. If there is no analysis weight variable, then all . If
the analysis weight of a case is zero, negative or missing, then this case will be ignored.

n Number of cases in the dataset
is not missing , where expression is the indicator function taking

value 1 when the expression is true, 0 otherwise.
is not missing

and are not missing

and are not missing

The mean of variable X, is not missing

and are not missing

A note on missing values

Listwise deletion is used in the following sections:
 “Univariate Statistics Collection ”

Automated Data Preparation Algorithms

 “Basic Variable Screening ”
 “Measurement Level Recasting ”
 “Missing Value Handling ”
 “Outlier Identification and Handling ”
 “Continuous Predictor Transformations ”
 “Target Handling ”
 “Reordering Categories ”
 “Unsupervised Merge ”

Pairwise deletion is used in the following sections:
 “Bivariate Statistics Collection ”
 “Supervised Merge ”
 “Supervised Binning ”
 “Feature Selection and Construction ”
 “Predictive Power ”

A note on frequency weight and analysis weight

The frequency weight variable is treated as a case replication weight. For example if a case has
a frequency weight of 2, then this case will count as 2 cases.

The analysis weight would adjust the variance of cases. For example if a case of a variable X
has an analysis weight , then we assume that .

Frequency weights and analysis weights are used in automated preparation of other variables, but
are themselves left unchanged in the dataset.

Date/Time Handling

Date Handling

If there is a date variable, we extract the date elements (year, month and day) as ordinal variables.
If requested, we also calculate the number of elapsed days/months/years since the user-specified
reference date (default is the current date). Unless specified by the user, the “best” unit of duration
is chosen as follows:

1. If the minimum number of elapsed days is less than 31, then we use days as the best unit.

2. If the minimum number of elapsed days is less than 366 but larger than or equal to 31, we use
months as the best unit. The number of months between two dates is calculated based on average
number of days in a month (30.4375): months = days / 30.4375.

3. If the minimum number of elapsed days is larger than or equal to 366, we use years as the best
unit. The number of years between two dates is calculated based on average number of days in a
year (365.25): years = days / 365.25.

Automated Data Preparation Algorithms

Once the date elements are extracted and the duration is obtained, then the original date variable
will be excluded from the rest of the analysis.

Time Handling

If there is a time variable, we extract the time elements (second, minute and hour) as ordinal
variables. If requested, we also calculate the number of elapsed seconds/minutes/hours since
the user-specified reference time (default is the current time). Unless specified by the user, the
“best” unit of duration is chosen as follows:

1. If the minimum number of elapsed seconds is less than 60, then we use seconds as the best unit.

2. If the minimum number of elapsed seconds is larger than or equal to 60 but less than 3600, we
use minutes as the best unit.

3. If the minimum number of elapsed seconds is larger than or equal to 3600, we use hours as the
best unit.

Once the elements of time are extracted and time duration is obtained, then original time predictor
will be excluded.

Univariate Statistics Collection

Continuous Variables

For each continuous variable, we calculate the following statistics:
 Number of missing values: is missing
 Number of valid values:
 Minimum value:
 Maximum value:
 Mean, standard deviation, skewness. (see below)
 The number of distinct values I.
 The number of cases for each distinct value :
 Median: If the distinct values of X are sorted in ascending order, , then the

median can be computed by , where .

Note: If the number of distinct values is larger than a threshold (default is 5), we stop updating
the number of distinct values and the number of cases for each distinct value. Also we do not
calculate the median.

Categorical Numeric Variables

For each categorical numeric variable, we calculate the following statistics:
 Number of missing values: is missing

Automated Data Preparation Algorithms

 Number of valid values:
 Minimum value: (only for ordinal variables)
 Maximum value: (only for ordinal variables)
 The number of categories.
 The counts of each category.
 Mean, Standard deviation, Skewness (only for ordinal variables). (see below)
 Mode (only for nominal variables). If several values share the greatest frequency of

occurrence, then the mode with the smallest value is used.
 Median (only for ordinal variables): If the distinct values of X are sorted in ascending order,

, then the median can be computed by ,
where .

Notes:

1. If an ordinal predictor has more categories than a specified threshold (default 10), we stop
updating the number of categories and the number of cases for each category. Also we do not
calculate mode and median.

2. If a nominal predictor has more categories than a specified threshold (default 100), we stop
collecting statistics and just store the information that the variable had more than threshold
categories.

Categorical String Variables

For each string variable, we calculate the following statistics:
 Number of missing values: is missing
 Number of valid values:
 The number of categories.
 Counts of each category.
 Mode: If several values share the greatest frequency of occurrence, then the mode with the

smallest value is used.

Note: If a string predictor has more categories than a specified threshold (default 100), we stop
collecting statistics and just store the information that the predictor had more than threshold
categories.

Mean, Standard Deviation, Skewness

We calculate mean, standard deviation and skewness by updating moments.

1. Start with .

2. For j=1,..,n compute:
is not missing

Automated Data Preparation Algorithms

 is not missing

3. After the last case has been processed, compute:
Mean:

Standard deviation:

Skewness:

If or , then skewness is not calculated.

Basic Variable Screening

1. If the percent of missing values is greater than a threshold (default is 50%), then exclude the
variable from subsequent analysis.

2. For continuous variables, if the maximum value is equal to minimum value, then exclude the
variable from subsequent analysis.

3. For categorical variables, if the mode contains more cases than a specified percentage (default
is 95%), then exclude the variable from subsequent analysis.

4. If a string variable has more categories than a specified threshold (default is 100), then exclude the
variable from subsequent analysis.

Checkpoint 1: Exit?

This checkpoint determines whether the algorithm should be terminated. If, after the screening
step:

1. The target (if specified) has been removed from subsequent analysis, or

2. All predictors have been removed from subsequent analysis,

then terminate the algorithm and generate an error.

Measurement Level Recasting

For each continuous variable, if the number of distinct values is less than a threshold (default
is 5), then it is recast as an ordinal variable.

. Check if
an

Automated Data Preparation Algorithms

For each numeric ordinal variable, if the number of categories is greater than a threshold (default
is 10), then it is recast as a continuous variable.

Note: The continuous-to-ordinal threshold must be less than the ordinal-to-continuous threshold.

Outlier Identification and Handling

In this section, we identify outliers in continuous variables and then set the outlying values to a
cutoff or to a missing value. The identification is based on the robust mean and robust standard
deviation which are estimated by supposing that the percentage of outliers is no more than 5%.

Identification

1.

2. Calculate univariate statistics in each interval:

,

,

3. Let , , and .

4. Between two tail intervals and , find one interval with the least number of cases.

5. If , then
is 0.05). If it does, then

is less than a threshold (default

d , go to step 4; otherwise, go to step 6.

Else . Check if is less than a threshold, . If it is, then
and , go to step 4; otherwise, go to step 6.

6. Compute the robust mean and robust standard deviation within the range
. See below for details.

7. If satisfies the conditions:

 or

where cutoff is positive number (default is 3), then is detected as an outlier.

Handling

Outliers will be handled using one of following methods:
 Trim outliers to cutoff values. If then replace by

, and if then replace
by .

 Set outliers to missing values.

Automated Data Preparation Algorithms

Update Univariate Statistics

After outlier handling, we perform a data pass to calculate univariate statistics for each continuous
variable, including the number of missing values, minimum, maximum, mean, standard deviation,
skewness, and number of outliers.

Robust Mean and Standard Deviation

Robust mean and standard deviation within the range are calculated
as follows:

and

where and

Missing Value Handling

Continuous variables. Missing values are replaced by the mean, and the following statistics are
updated:

 Standard deviation: , where .

 Skewness: , where and

 The number of missing values:
 The number of valid values:

Ordinal variables. Missing values are replaced by the median, and the following statistics are
updated:
 The number of cases in the median category: , where is the

original number of cases in the median category.
 The number of missing values:
 The number of valid values:

Nominal variables. Missing values are replaced by the mode, and the following statistics are
updated:
 The number of cases in the modal category: , where is the original

number of cases in the modal category.
 The number of missing values:
 The number of valid values:

Automated Data Preparation Algorithms

Continuous Predictor Transformations
We transform a continuous predictor so that it has the user-specified mean (default
0) and standard deviation (default 1) using the z-score transformation, or minimum

 (default 0) and maximum (default 100) value using the min-max transformation.

Z- score Transformation

Suppose a continuous variable has mean and standard deviation sd. The z-score transformation is

where is the transformed value of continuous variable X for case i.

Since we do not take into account the analysis weight in the rescaling formula, the rescaled values
follow a normal distribution .

Update univariate statistics

After a z-score transformation, the following univariate statistics are updated:
 Number of missing values:
 Number of valid values:

 Minimum value:

 Maximum value:

 Mean:
 Standard deviation:

 Skewness:

Min-Max Transformation

Suppose a continuous variable has a minimum value and a minimum value . The
min-max transformation is

where is the transformed value of continuous variable X for case i.

Update univariate statistics

After a min-max transformation, the following univariate statistics are updated:
 The number of missing values:

Automated Data Preparation Algorithms

 The number of valid values:

 Minimum value:

 Maximum value:

 Mean:

 Standard deviation:

 Skwness:

Target Handling

Nominal Target

For a nominal target, we rearrange categories from lowest to highest counts. If there is a tie on
counts, then ties will be broken by ascending sort or lexical order of the data values.

Continuous Target

The transformation proposed by Box and Cox (1964) transforms a continuous variable into one
that is more normally distributed. We apply the Box-Cox transformation followed by the z score
transformation so that the rescaled target has the user-specified mean and standard deviation.

Box-Cox transformation. This transforms a non-normal variable Y to a more normally distributed
variable:

where are observations of variable Y, and c is a constant such that all values
are positive. Here, we choose .

The parameter λ is selected to maximize the log-likelihood function:

where and .

We perform a grid search over a user-specified finite set [a,b] with increment s. By default a=−3,
b=3, and s=0.5.

The algorithm can be described as follows:

1. Compute where j is an integer such that .

Automated Data Preparation Algorithms

2. For each , compute the following statistics:

Mean:

Standard deviation:

Skewness:

Sum of logarithm transformation:

3. For each , compute the log-likelihood function . Find the value of j with the largest
log-likelihood function, breaking ties by selecting the smallest value of . Also find the
corresponding statistics , and .

4. Transform target to reflect user’s mean (default is 0) and standard deviation (default

is 1):

where and .

Update univariate statistics. After Box-Cox and Z-score transformations, the following univariate
statistics are updated:
 Minimum value:

 Maximum value:
 Mean:
 Standard deviation:
 Skewness:

Bivariate Statistics Collection

For each target/predictor pair, the following statistics are collected according to the measurement
levels of the target and predictor.

Continuous target or no target and all continuous predictors

If there is a continuous target and some continuous predictors, then we need to calculate the
covariance and correlations between all pairs of continuous variables. If there is no continuous
target, then we only calculate the covariance and correlations between all pairs of continuous
predictors. We suppose there are there are m continuous variables, and denote the covariance
matrix as , with element , and the correlation matrix as , with element .

We define the covariance between two continuous variables X and Y as

Automated Data Preparation Algorithms

where and are not missing and
 and are not missing .

The covariance can be computed by a provisional means algorithm:

1. Start with .

2. For j=1,..,n compute:

 and are not missing

and are not missing

After the last case has been processed, we obtain:

3. Compute bivariate statistics between X and Y:

Number of valid cases:

Covariance:

Correlation:

Note: If there are no valid cases when pairwise deletion is used, then we let and .

Categorical target and all continuous predictors

For a categorical target Y with values and a continuous predictor X with values
, the bivariate statistics are:

Mean of X for each Y=i, i=1,...,J:

Automated Data Preparation Algorithms

Sum of squared errors of X for each Y=i, i=1,...,J:

Sum of frequency weight for each Y=i, i=1,...,J:

 is not missing

Number of invalid cases

Sum of weights (frequency weight times analysis weight) for each Y=i, i=1,...,J:

 is not missing

Continuous target and all categorical predictors

For a continuous target Y and a categorical predictor X with values i=1,...,J, the bivariate statistics
include:

Mean of Y conditional upon X:

Sum of squared errors of Y:

Mean of Y for each , i=1,...,J:

Automated Data Preparation Algorithms

Sum of squared errors of Y for each , i=1,...,J:

Sum of frequency weights for , i=1,...,J:

 is not missing

Sum of weights (frequency weight times analysis weight) for , i=1,...,J:

 is not missing

Categorical target and all categorical predictors

For a categorical target Y with values j=1,...,J and a categorical predictor X with values i=1,...,I,
then bivariate statistics are:

Sum of frequency weights for each combination of and :

Sum of weights (frequency weight times analysis weight) for each combination of and
:

Categorical Variable Handling

In this step, we use univariate or bivariate statistics to handle categorical predictors.

Reordering Categories

For a nominal predictor, we rearrange categories from lowest to highest counts. If there is a tie on
counts, then ties will be broken by ascending sort or lexical order of the data values. The new field
values start with 0 as the least frequent category. Note that the new field will be numeric even if
the original field is a string. For example, if a nominal field’s data values are “A”, “A”, “A”, “B”,
“C”, “C”, then automated data preparation would recode “B” into 0, “C” into 1, and “A” into 2.

Automated Data Preparation Algorithms

Identify Highly Associated Categorical Features

If there is a target in the data set, we select a ordinal/nominal predictor if its p-value is not larger
than an alpha-level (default is 0.05). See “P-value Calculations ” for details of
computing these p-values.

Since we use pairwise deletion to handle missing values when we collect bivariate statistics,
we may have some categories with zero cases; that is, for a category i of a categorical
predictor. When we calculate p-values, these categories will be excluded.

If there is only one category or no category after excluding categories with zero cases, we set the
p-value to be 1 and this predictor will not be selected.

Supervised Merge

We merge categories of an ordinal/nominal predictor using a supervised method that is similar to a
Chaid Tree with one level of depth.

1. Exclude all categories with zero case count.

2. If X has 0 categories, merge all excluded categories into one category, then stop.

3. If X has 1 category, go to step 7.

4. Else, find the allowable pair of categories of X that is most similar. This is the pair whose test

statistic gives the largest p-value with respect to the target. An allowable pair of categories for an
ordinal predictor is two adjacent categories; for a nominal predictor it is any two categories. Note
that for an ordinal predictor, if categories between the ith category and jth categories are excluded
because of zero cases, then the ith category and jth categories are two adjacent categories. See
“P-value Calculations ” for details of computing these p-values.

5. For the pair having the largest p-value, check if its p-value is larger than a specified alpha-level

(default is 0.05). If it does, this pair is merged into a single compound category and
at the same time we calculate the bivariate statistics of this new category. Then a new set of
categories of X is formed. If it does not, then go to step 6.

6. Go to step 3.

7. For an ordinal predictor, find the maximum value in each new category. Sort these maximum

values in ascending order. Suppose we have r new categories, and the maximum values are:
 , then we get the merge rule as: the first new category will contain all original

categories such that , the second new category will contain all original categories such that
 ,…, and the last new category will contain all original categories such that .

For a nominal predictor, all categories excluded at step 1 will be merged into the new category
with the lowest count. If there are ties on categories with the lowest counts, then ties are broken
by selecting the category with the smallest value by ascending sort or lexical order of the original
category values which formed the new categories with the lowest counts.

Automated Data Preparation Algorithms

Bivariate statistics calculation of new category

When two categories are merged into a new category, we need to calculate the bivariate statistics
of this new category.

Scale target. If the categories i and can be merged based on p-value, then the bivariate statistics
should be calculated as:

Categorical target. If the categories i and can be merged based on p-value, then the bivariate
statistics should be calculated as:

Update univariate and bivariate statistics

At the end of the supervised merge step, we calculate the bivariate statistics for each new category.
For univariate statistics, the counts for each new category will be sum of the counts of each
original categories which formed the new category. Then we update other statistics according to
the formulas in the “Univariate Statistics Collection” section, though note that the statistics only
need to be updated based on the new categories and the numbers of cases in these categories.

P-value Calculations

Each p-value calculation is based on the appropriate statistical test of association between the
predictor and target.

Scale target

We calculate an F statistic:

Automated Data Preparation Algorithms

where .

Based on F statistics, the p-value can be derived as

is a random variable following a F distribution with and

degrees of freedom.

At the merge step we calculate the F statistic and p-value between two categories i and of X as

where is the mean of Y for a new category merged by i and :

and is a random variable following a F distribution with 1 and
 degrees of freedom.

Nominal target

The null hypothesis of independence of X and Y is tested. First a contingency (or count) table is
formed using classes of Y as columns and categories of the predictor X as rows. Then the expected
cell frequencies under the null hypothesis are estimated. The observed cell frequencies and the
expected cell frequencies are used to calculate the Pearson chi-squared statistic and the p-value:

where is the observed cell frequency and is the estimated
expected cell frequency for cell following the independence model. If ,
then . How to estimate is described below.

The corresponding p-value is given by , where follows a chi-squared
distribution with degrees of freedom.

When we investigate whether two categories i and of X can be merged, the Pearson chi-squared
statistic is revised as

where

Automated Data Preparation Algorithms

and the p-value is given by .

Ordinal target

Suppose there are I categories of X, and J ordinal categories of Y. Then the null hypothesis of
the independence of X and Y is tested against the row effects model (with the rows being the
categories of X and columns the classes of Y) proposed by Goodman (1979). Two sets of expected
cell frequencies, (under the hypothesis of independence) and (under the hypothesis that
the data follow a row effects model), are both estimated. The likelihood ratio statistic is

where

The p-value is given by .

Estimated expected cell frequencies (independence assumption)

If analysis weights are specified, the expected cell frequency under the null hypothesis of
independence is of the form

where and are parameters to be estimated, and if , otherwise .

Parameter estimates , , and hence , are obtained from the following iterative procedure.

1.

2.

3.

4.

Automated Data Preparation Algorithms

5. If (default is 0.001) or the number of iterations is larger than a

threshold (default is 100), stop and output and as the final estimates
. Otherwise, and go to step 2.

Estimated expected cell frequencies (row effects model)

In the row effects model, scores for classes of Y are needed. By default, (the order of a
class of Y) is used as the class score. These orders will be standardized via the following linear
transformation such that the largest score is 100 and the lowest score is 0.

Where and are the smallest and largest order, respectively.

The expected cell frequency under the row effects model is given by

where , in which , and , , and are unknown
parameters to be estimated.

Parameter estimates and hence are obtained from the following iterative procedure.

1. , ,

2.

3.

4.
,

5.
otherwise

6.

7. If (default is 0.001) or the number of iterations is larger than a

threshold (default is 100), stop and output and as the final estimates
. Otherwise, and go to step 2.

Unsupervised Merge

If there is no target, we merge categories based on counts. Suppose that X has I categories which
are sorted in ascending order. For an ordinal predictor, we sort it according to its values, while
for nominal predictor we rearrange categories from lowest to highest count, with ties broken

Automated Data Preparation Algorithms

by ascending sort or lexical order of the data values. Let be the number of cases for the ith
category, and be the total number of cases for X. Then we use the equal frequency method
to merge sparse categories.

1. Start with and g=1.

2. If , go to step 5.

3. If , then ; otherwise the original categories will

be merged into the new category g and let , and , then go to step 2.

4. If , then merge categories using one of the following rules:

i) If , then categories will be merged into category g and I will be left
unmerged.

ii) If g=2, then will be merged into category g=2.

iii) If g>2, then will be merged into category .

If , then go to step 3.

5. Output the merge rule and merged predictor.

After merging, one of the following rules holds:
 Neither the original category nor any category created during merging has fewer than

 cases, where b is a user-specified parameter satisfying (default is
10) and [x] denotes the nearest integer of x.

 The merged predictor has only two categories.

Update univariate statistics. When original categories are merged into one new
category, then the number of cases in this new category will be . At the end of the
merge step, we get new categories and the number of cases in each category. Then we update
other statistics according to the formulas in the “Univariate Statistics Collection” section,
though note that the statistics only need to be updated based on the new categories and the
numbers
of cases in these categories.

Continuous Predictor Handling

Continuous predictor handling includes supervised binning when the target is categorical,
predictor selection when the target is continuous and predictor construction when the target is
continuous or there is no target in the dataset.

After handling continuous predictors, we collect univariate statistics for derived or constructed
predictors according to the formulas in the “Univariate Statistics Collection” section. Any
derived predictors that are constant, or have all missing values, are excluded from further
analysis.

Automated Data Preparation Algorithms

Supervised Binning

If there is a categorical target, then we will transform each continuous predictor to an ordinal
predictor using supervised binning. Suppose that we have already collected the bivariate statistics
between the categorical target and a continuous predictor. Using the notations introduced in
“Bivariate Statistics Collection ”, the homogeneous subset will be identified by the Scheffe
method as follows:

The supervised algorithm follows:

1. Sort the means in ascending order, denote as .

2. Start with i=1 and q=J.

3.

4. If , go to step 3.

5. Else compute the cut point of bins. Suppose we have homogeneous subsets and we
assume that the means of these subsets are , and standard deviations are

, then the cut points between the ith and (i+1)th homogeneous subsets are

computed as .

6. Output the binning rules. Category 1: ; Category 2: ;…; Category
: .

Feature Selection and Construction

If there is a continuous target, we perform predictor selection using p-values derived from the
correlation or partial correlation between the predictors and the target. The selected predictors are
grouped if they are highly correlated. In each group, we will derive a new predictor using principal
component analysis. However, if there is no target, we will do not implement predictor selection.

To identify highly correlated predictors, we compute the correlation between a scale and a group as
follows: suppose that X is a continuous predictor and continuous predictors form
a group G. Then the correlation between X and group G is defined as:

where is correlation between X and .

Automated Data Preparation Algorithms

Let be the correlation level at which the predictors are identified as groups. The predictor
selection and predictor construction algorithm is as follows:

1. (Target is continuous and predictor selection is in effect) If the p-value between a continuous
predictor and target is larger than a threshold (default is 0.05), then we remove this predictor from
the correlation matrix and covariance matrix. See “Correlation and Partial Correlation ” on p.
34 for details on computing these p-values.

2. Start with and i=1.

3. If , stop and output all the derived predictors, their source predictors and coefficient
of each source predictor. In addition, output the remaining predictors in the correlation matrix.

4. Find the two most correlated predictors such that their correlation in absolute value is larger than
, and put them in group i. If there are no predictors to be chosen, then go to step 9.

5. Add one predictor to group i such that the predictor is most correlated with group i and the
correlation is larger than . Repeat this step until the number of predictors in group i is
greater than a threshold (default is 5) or there is no predictor to be chosen.

6. Derive a new predictor from the group i using principal component analysis. For more
information, see the topic “Principal Component Analysis.”

7. (Both predictor selection and predictor construction are in effect) Compute partial correlations
between the other continuous predictors and the target, controlling for values of the new predictor.
Also compute the p-values based on partial correlation. See “Correlation and Partial Correlation ”
for details on computing these p-values. If the p-value based on partial correlation between a
continuous predictor and continuous target is larger than a threshold (default is 0.05), then remove
this predictor from the correlation and covariance matrices.

8. Remove predictors that are in the group from the correlation matrix. Then let i=i+1 and go to
step 4.

9. , then go to step 3.

Notes:
 If only predictor selection is needed, then only step 1 is implemented. If only predictor

construction is needed, then we implement all steps except step 1 and step 7. If both predictor
selection and predictor construction are needed, then all steps are implemented.

 If there are ties on correlations when we identify highly correlated predictors, the ties will be
broken by selecting the predictor with the smallest index in dataset.

Principal Component Analysis

Let be m continuous predictors. Principal component analysis can be described
as follows:

1. Input , the covariance matrix of .

2. Calculate the eigenvectors and eigenvalues of the covariance matrix. Sort the eigenvalues (and
corresponding eigenvectors) in descending order, .

Automated Data Preparation Algorithms

3. Derive new predictors. Suppose the elements of the first component are , then

the new derived predictor is .

Correlation and Partial Correlation

Correlation and P-value

Let be the correlation between continuous predictor X and continuous target Y, then the
p-value is derived form the t test:

where is a random variable with a t distribution with degrees of freedom,
and . If , then set p=0; If , then set p=1.

Partial correlation and P-value

For two continuous variables, X and Y, we can calculate the partial correlation between them
controlling for the values of a new continuous variable Z:

Since the new variable Z is always a linear combination of several continuous variables, we
compute the correlation of Z and a continuous variable using a property of the covariance rather
than the original dataset. Suppose the new derived predictor Z is a linear combination of original
predictors :

Then for any a continuous variable X (continuous predictor or continuous target), the correlation
between X and Z is

where , and .

If or is less than , let . If is larger than 1, then set it to
1; If is less than −1, then set it to −1. (This may occur with pairwise deletion). Based on
partial correlation, the p-value is derived from the t test

where is a random variable with a t distribution with degrees of freedom,
and . If , then set p=0; if , then set p=1.

Discretization of Continuous Predictors

Automated Data Preparation Algorithms

Discretization is used for calculating predictive power and creating histograms.

Discretization for calculating predictive power

If the transformed target is categorical, we use the equal width bins method to discretize a
continuous predictor into a number of bins equal to the number of categories of the target.
Variables considered for discretization include:
 Scale predictors which have been recommended.
 Original continuous variables of recommended predictors.

Discretization for creating histograms

We use the equal width bins method to discretize a continuous predictor into a maximum of 400
bins. Variables considered for discretization include:
 Recommended continuous variables.
 Excluded continuous variables which have not been used to derive a new variable.
 Original continuous variables of recommended variables.
 Original continuous variables of excluded variables which have not been used to derive a

new variable.
 Scale variables used to construct new variables. If their original variables are also continuous,

then the original variables will be discretized.
 Date/time variables.

After discretization, the number of cases and mean in each bin are collected to create histograms.

Note: If an original predictor has been recast, then this recast version will be regarded as the
“original” predictor.

Predictive Power

Collect bivariate statistics for predictive power

We collect bivariate statistics between recommended predictors and the (transformed) target. If
an original predictor of a recommended predictor exists, then we also collect bivariate statistics
between this original predictor and the target; if an original predictor has a recast version, then
we use the recast version.

If the target is categorical, but a recommended predictor or its original predictor/recast version is
continuous, then we discretize the continuous predictor using the method in “Discretization of
Continuous Predictors ” and collect bivariate statistics between the categorical target and the
categorical predictors.

Automated Data Preparation Algorithms

Bivariate statistics between the predictors and target are same as those described in “Bivariate
Statistics Collection.”

Computing predictive power

Predictive power is used to measure the usefulness of a predictor and is computed with respect
to the (transformed) target. If an original predictor of a recommended predictor exists, then we
also compute predictive power for this original predictor; if an original predictor has a recast
version, then we use the recast version.

Scale target. When the target is continuous, we fit a linear regression model and predictive power
is computed as follows.

 Scale predictor:

 Categorical predictor: , where and .

Categorical target. If the (transformed) target is categorical, then we fit a naïve Bayes model and
the classification accuracy will serve as predictive power. We discretize continuous predictors
as described in “Discretization of Continuous Predictors”, so we only consider the predictive
power of categorical predictors.

If is the of number cases where and , , and
then the chi-square statistic is calculated as

where

and Cramer’s V is defined as

References

Box, G. E. P., and D. R. Cox. 1964. An analysis of transformations. Journal of the Royal
Statistical Society, Series B, 26, 211–246.

Goodman, L. A. 1979. Simple models for the analysis of association in cross-classifications
having ordered categories. Journal of the American Statistical Association, 74, 537–552.

Bayesian Networks Algorithms

Bayesian Networks Algorithm Overview
A Bayesian network provides a succinct way of describing the joint probability distribution
for a given set of random variables.

Let V be a set of categorical random variables and G = (V, E) be a directed acyclic graph with
nodes V and a set of directed edges E. A Bayesian network model consists of the graph G together
with a conditional probability table for each node given values of its parent nodes. Given the value
of its parents, each node is assumed to be independent of all the nodes that are not its descendents.
The joint probability distribution for variables V can then be computed as a product of conditional
probabilities for all nodes, given the values of each node’s parents.

Given set of variables V and a corresponding sample dataset, we are presented with the task of
fitting an appropriate Bayesian network model. The task of determining the appropriate edges in
the graph G is called structure learning, while the task of estimating the conditional probability
tables given parents for each node is called parameter learning.

Primary Calculations

IBM® SPSS® Modeler offers two different methods for building Bayesian network models:
 Tree Augmented Naïve Bayes. This algorithm is used mainly for classification. It efficiently

creates a simple Bayesian network model. The model is an improvement over the naïve
Bayes model as it allows for each predictor to depend on another predictor in addition to the
target variable. Its main advantages are its classification accuracy and favorable performance
compared with general Bayesian network models. Its disadvantage is also due to its simplicity;
it imposes much restriction on the dependency structure uncovered among its nodes.

 Markov Blanket estimation. The Markov blanket for the target variable node in a Bayesian
network is the set of nodes containing target’s parents, its children, and its children’s parents.
Markov blanket identifies all the variables in the network that are needed to predict the target
variable. This can produce more complex networks, but also takes longer to produce. Using
feature selection preprocessing can significantly improve performance of this algorithm.

Notation

The following notation is used throughout this algorithm description:

A directed acyclic graph representing the Bayesian Network model

A dataset

Categorical target variable

The ith predictor

The parent set of the ith predictor besides target . For TAN models, its size is ≤1.

The number of cases in

Bayesian Networks Algorithms

The number of predictors

Denote the number of records in for which take its jth value and for which
takes its kth value.

 Denote the number of records in for which takes its jth value.

The number of non-redundant parameters of TAN

The Markov blanket boundary about target

A subset of

A subset of , such that variables and are conditionally independent
with respect to

An undirected arc between variables in G. and are adjacent to each
other.

 A directed arc from to in G. is a parent of , and is a child of .

A variable set which represents all the adjacent variables of variable in G,
ignoring the edge directions.

 The conditional independence (CI) test function which returns the p-value of the test.

The significance level for CI tests between two variables. If the p-value of the test is
larger than then they are independent, and vice-versa.

The cardinality of ,

 The cardinality of the parent set of .

Handling of Continuous Predictors

BN models in IBM® SPSS® Modeler can only accommodate discrete variables. Target variables
must be discrete (flag or set type). Numeric predictors are discretized into 5 equal-width bins
before the BN model is built. If any of the constructed bins is empty (there are no records with a
value in the bin’s range), that bin is merged to an adjacent non-empty bin.

Feature Selection via Breadth-First Search

Feature selection preprocessing works as follows:

E It begins by searching for the direct neighbors of a given target Y, based on statistical tests of
independence. For more information, see the topic “Markov Blanket Conditional Independence
Test.” These variables are known as the parents or children of Y, denoted by .

E For each , we look for , or the parents and children of X.

E For each , we add it to if it is not independent of Y.

The explicit algorithm is given below.

Bayesian Networks Algorithms

RecognizeMB
(

D : Dataset, eps : threshold
)
{

// Recognize Y's parents/children
CanADJ_Y = X \ {Y};
PC = RecognizePC(Y,CanADJ_Y,D,eps);
MB = PC;

// Collect spouse candidates, and remove false
// positives from PC
for (each X_i in PC){

CanADJ_X_i = X \ X_i;
CanSP_X_i = RecognizePC(X_i,CanADJ_X_i,D,eps);
if (Y notin CanSP_X_i) // Filter out false positive

MB = MB \ X_i;
}
// Discover true positives among candidates
for (each X_i in MB)

for (each Z_i in CanSP_X_i and Z_i notin MB)
if (I(Y,Z_i|{S_Y,Z_i + X_i}) ≤ eps) then

MB = MB + Z_i;
return MB;

}

Bayesian Networks Algorithms

RecognizePC (
T : target to scan,
ADJ_T : Candidate adjacency set to search,
D : Dataset,
eps : threshold,
maxSetSize :)

{
NonPC = {empty set};
cutSetSize = 0;
repeat

for (each X_i in ADJ_T){
for (each subset S of {ADJ_T \ X_i} with |S| = cutSetSize){

if (I(X_i,T|S) > eps){
NonPC = NonPC + X_i;
S_T,X_i = S;
break;

}
}

}
if (|NonPC| > 0){

ADJ_T = ADJ_T \ NonPC;
cutSetSize +=1;
NonPC = {empty set};

} else
break;

until (|ADJ_T| ≤ cutSetSize) or (cutSetSize > maxSetSize)
return ADJ_T;

}

Tree Augmented Naïve Bayes Method

The Bayesian network classifier is a simple classification method, which classifies a case
 by determining the probability of it belonging to the ith target category .

These probabilities are calculated as

where is the parent set of besides , and it may be empty. is the conditional
probability table (CPT) associated with each node . If there are n independent predictors,
then the probability is proportional to

Bayesian Networks Algorithms

When this dependence assumption (conditional independence between the predictors given the
class) is made, the classifier is called naïve Bayes (NB). Naïve Bayes has been shown to be
competitive with more complex, state-of-the-art classifiers. In recent years, a lot of work has
focused on improving the naïve Bayes classifier. One important method is to relax independence
assumption. We use a tree augmented naïve Bayesian (TAN) classifier (Friedman, Geiger, and
Goldszmidt, 1997), and it is defined by the following conditions:
 Each predictor has the target as a parent.
 Predictors may have one other predictor as a parent.

An example of this structure is shown below.

Figure 5-1
Structure of an simple tree augmented naïve Bayes model.

TAN Classifier Learning Procedure

Let represent a categorical predictor vector. The algorithm for the TAN
classifier first learns a tree structure over using mutual information conditioned on . Then it
adds a link (or arc) from the target node to each predictor node.

The TAN learning procedure is:

1. Take the training data D, and as input.

2. Learn a tree-like network structure over by using the Structure Learning algorithm outlined

below.

3. Add as a parent of every where .

4. Learning the parameters of TAN network.

TAN Y

X1 X2 ... Xn

Bayesian Networks Algorithms

TAN Structure Learning

We use a maximum weighted spanning tree (MWST) method to construct a tree Bayesian network
from data (Chow and Liu, 1968). This method associates a weight to each edge corresponding to
the mutual information between the two variables. When the weight matrix is created, the MWST
algorithm (Prim, 1957) gives an undirected tree that can be oriented with the choice of a root.

The mutual information of two nodes is defined as

 Pr

We replace the mutual information between two predictors with the conditional mutual
information between two predictors given the target (Friedman et al., 1997). It is defined as

Pr

The network over can be constructed using the following steps:

1. Compute between each pair of variables.

2. Use Prim’s algorithm (Prim et al., 1957) to construct a maximum weighted spanning tree with
the weight of an edge connecting to by .

This algorithm works as follows: it begins with a tree with no edges and marks a variable at a
random as input. Then it finds an unmarked variable whose weight with one of the marked
variables is maximal, then marks this variable and adds the edge to the tree. This process is
repeated until all variables are marked.

3. Transform the resulting undirected tree to directed one by choosing as a root node and setting
the direction of all edges to be outward from it.

TAN Parameter Learning

Let be the cardinality of . Let denote the cardinality of the parent set of , that
is, the number of different values to which the parent of can be instantiated. So it can be
calculated as . Note implies . We use to denote the number of
records in D for which takes its jth value. We use to denote the number of records in
D for which take its jth value and for which takes its kth value.

Maximum Likelihood Estimation

The closed form solution for the parameters and
that maximize the log likelihood score is

Pr
Pr Pr

Pr
Pr Pr

Bayesian Networks Algorithms

.

where denotes the number of cases with in the training data.

Note that if , then .

The number of parameters K is

TAN Posterior Estimation

Assume that Dirichlet prior distributions are specified for the set of parameters as
well as for each of the sets , , and (Heckerman, 1999). Let

 and denote corresponding Dirichlet distribution parameters such that a n d

 . Upon observing the dataset D, we obtain Dirichlet posterior distributions with the

following sets of parameters:

The posterior estimation is always used for model updating.

Adjustment for small cell counts

To overcome problems caused by zero or very small cell counts, parameters can be estimated
as posterior parameters and using
uninformative Dirichlet priors and

Markov Blanket Algorithms

The Markov blanket algorithm learns the BN structure by identifying the conditional independence
relationships among the variables. Using statistical tests (such as chi-squared test or G test),
this algorithm finds the conditional independence relationships among the nodes and uses these
relationships as constraints to construct a BN structure. This algorithm is referred to as a
dependency-analysis-based or constraint-based algorithm.

Markov Blanket Conditional Independence Test

The conditional independence (CI) test tests whether two variables are conditionally independent
with respect to a conditional variable set. There are two familiar methods to compute the CI test:

 (Pearson chi-square) test and (log likelihood ratio) test.

Bayesian Networks Algorithms

Suppose are two variables for testing and S is a conditional variable set such that .
Let be the observed count of cases that have and , and is
the expect number of cases that have and under the hypothesis that are
independent.

Chi-square Test

We assume the null hypothesis is that are independent. The test statistic for this
hypothesis is

Suppose that N is the total number of cases in D, is the number of cases in D where

 takes its ith category, and and are the corresponding numbers for Y and S. So
is the number of cases in D where takes its ith category and takes its jth category.
, and are defined similarly. We have:

Because where is the degrees of freedom for the
 distribution, we get the p-value for as follows:

As we know, the larger p-value, the less likely we are to reject the null hypothesis. For a given
significance level , if the p-value is greater than we cannot reject the hypothesis that are
independent.

We can easily generalize this independence test into a conditional independence test:

The degree of freedom for is:

Likelihood Ratio Test

We assume the null hypothesis is that are independent. The test statistic for this
hypothesis is

Bayesian Networks Algorithms

or equivalently,

The conditional version of the independence test is

The test is asymptotically distributed as a distribution, where degrees of freedom are the
same as in the test. So the p-value for the test is

In the following parts of this document, we use to uniformly represent the p-value of
whichever test is applied. If , we say variable X and Y are independent, and if

, we say variable X and Y are conditionally independent given variable set S.

Markov Blanket Structure Learning

This algorithm aims at learning a Bayesian networks structure from a dataset. It starts with a
complete graph G. Let , and compute for each variable pair in G. If

, remove the arc between . Then for each arc perform an exhaustive
search in to find the smallest conditional variable set S such that .
If such S exist, delete arc . After this, orientation rules are applied to orient the arcs in G.

Markov Blanket Arc Orientation Rules

Arcs in the derived structure are oriented based on the following rules:

1. All patterns of the of the form or are updated to if

2. Patterns of the form are updated so that

3. Patterns of the form are updated to

4. Patterns of the form

Bayesian Networks Algorithms

are updated so that

After the last step, if there are still undirected arcs in the graph, return to step 2 and repeat until
all arcs are oriented.

Deriving the Markov Blanket Structure

The Markov Blanket is a local structure of a Bayesian Network. Given a Bayesian Network G
and a target variable Y, to derive the Markov Blanket of Y, we should select all the directed
parents of Y in G denoted as , all the directed children of Y in G denoted as and all the
directed parents of in G denoted as . and their arcs inherited from G
define the Markov Blanket .

Markov Blanket Parameter Learning

Maximum Likelihood Estimation

The closed form solution for the parameters that maximize
the log likelihood score is

Note that if , then .

The number of parameters K is

Posterior Estimation

Assume that Dirichlet prior distributions are specified for each of the sets
 (Heckerman et al., 1999). Let denote corresponding

Dirichlet distributed parameters such that . Upon observing the dataset D, we

obtain Dirichlet posterior distributions with the following sets of parameters:

The posterior estimate is always used for model updating.

Bayesian Networks Algorithms

Adjustment for Small Cell Counts

To overcome problems caused by zero or very small cell counts, parameters can be estimated as
posterior parameters using uninformative Dirichlet priors
specified by .

Blank Handling

By default, records with missing values for any of the input or output fields are excluded from
model building. If the Use only complete records option is deselected, then for each pairwise
comparison between fields, all records containing valid values for the two fields in question
are used.

Model Nugget/Scoring

The Bayesian Network Model Nugget produces predicted values and probabilities for scored
records.

Tree Augmented Naïve Bayes Models

Using the estimated model from training data, for a new case , the probability of
it belonging to the ith target category is calculated as . The target category
with the highest posterior probability is the predicted category for this case, , is predicted by

Markov Blanket Models

The scoring function uses the estimated model to compute the probabilities of Y belongs to
each category for a new case . Suppose is the parent set of Y, and denotes the
configuration of given case , denotes the direct children set of
Y,

denotes the parent set (excluding Y) of the ith variable in . The score for each category
of Y is computed by:

where the joint probability that and is:

,

,
,

Bayesian Networks Algorithms

where

Note that c is never actually computed during scoring because its value cancels from the numerator
and denominator of the scoring equation given above.

Binary Classifier Comparison Metrics
The Binary Classifier node generates multiple models for a flag output field. For details on how
each model type is built, see the appropriate algorithm documentation for the model type.

The node also reports several comparison metrics for each model, to help you select the optimal
model for your application. The following metrics are available:

Maximum Profit

This gives the maximum amount of profit, based on the model and the profit and cost settings. It
is calculated as

where is defined as

if is a hit
otherwise

r is the user-specified revenue amount per hit, and c is the user-specified cost per record. The sum

is calculated for the j records with the highest , such that

Maximum Profit Occurs in %

This gives the percentage of the training records that provide positive profit based on the
predictions of the model,

 where n is the overall number of records included in building the model.

Lift

This indicates the response rate for the top q% of records (sorted by predicted probability), as a
ratio relative to the overall response rate,

Lift

where k is q% of n, the number of training records used to build the model. The default value of q
is 30, but this value can be modified in the binary classifier node options.

Overall Accuracy

This is the percentage of records for which the outcome is correctly predicted,

Binary Classifier Comparison Metrics

where is the predicted outcome value for record i and is the observed value.

Area Under the Curve (AUC)

This represents the area under the Receiver Operating Characteristic (ROC) curve for the model.
The ROC curve plots the true positive rate (where the model predicts the target response and the
response is observed) against the false positive rate (where the model predicts the target response
but a nonresponse is observed). For a good model, the curve will rise sharply near the left axis and
cut across near the top, so that nearly all the area in the unit square falls below the curve. For an
uninformative model, the curve will approximate a diagonal line from the lower left to the upper
right corner of the graph. Thus, the closer the AUC is to 1.0, the better the model.

Figure 6-1
ROC curves for a good model (left) and an uninformative model (right)

The AUC is computed by identifying segments as unique combinations of predictor values that
determine subsets of records which all have the same predicted probability of the target value.
The s segments defined by a given model’s predictors are sorted in descending order of predicted
probability, and the AUC is calculated as

where is the cumulative number of false positives for segment i, that is, false positives for
segment i and all preceding segments , is the cumulative number of true positives, and

 .

C5.0 Algorithms
The code for training C5.0 models is licensed from RuleQuest Research Ltd Pty, and the algorithms
are proprietary. For more information, see the RuleQuest website at http://www.rulequest.com/.

Note: Modeler 13 upgraded the C5.0 version from 2.04 to 2.06. See the RuleQuest website
for more information.

Scoring

A record is scored with the class and confidence of the rule that fires for that record.

If a rule set is directly generated from the C5.0 node, then the confidence for the rule is calculated
as

The scoring process retrieves the confidence values from the PMML file. In case there are no
saved confidence values, they will be calculated as:

Scores with rule set voting

When voting occurs between rules within a rule set the final scores assigned to a record are
calculated in the following way. For each record, all rules are examined and each rule that applies
to the record is used to generate a prediction and an associated confidence. The sum of confidence
figures for each output value is computed, and the value with the greatest confidence sum is
chosen as the final prediction. The confidence for the final prediction is the confidence sum for
that value divided by the number of rules that fired for that record.

Scores with boosted C5.0 classifiers (decision trees and rule sets)

When scoring with a boosted C5.0 rule set the n rule sets that make up the boosted rule set (one
rule set for each boosting trial) vote using their individual scores (as obtained above) to arrive
at the final score assigned to the case by the boosted rule set.

The voting for boosted C5 classifiers is as follows. For each record, each composite classifier
(rule set or decision tree) assigns a prediction and a confidence. The sum of confidence figures for
each output value is computed, and the value with the greatest confidence sum is chosen as the
final prediction. The confidence for the final prediction by the boosted classifier is the confidence
sum for that value divided by confidence sum for all values.

number correct in leaf
total number of records in leaf

number correct in leaf
total number of records in leaf number of categories in the target

http://www.rulequest.com/

Carma Algorithms

Overview

The continuous association rule mining algorithm (Carma) is an alternative to Apriori that
reduces I/O costs, time, and space requirements (Hidber, 1999). It uses only two data passes and
delivers results for much lower support levels than Apriori. In addition, it allows changes in
the support level during execution.

Carma deals with items and itemsets that make up transactions. Items are flag-type conditions
that indicate the presence or absence of a particular thing in a specific transaction. An itemset is a
group of items which may or may not tend to co-occur within transactions.

Deriving Rules

Carma proceeds in two stages. First it identifies frequent itemsets in the data, and then it generates
rules from the lattice of frequent itemsets.

Frequent Itemsets

Carma uses a two-phase method of identifying frequent itemsets.

Phase I: Estimation

In the estimation phase, Carma uses a single data pass to identify frequent itemset candidates.
A lattice is used to store information on itemsets. Each node in the lattice stores the items
comprising the itemset, and three values for the associated itemset:
 count: number of transactions containing the itemset since the itemset was added to the lattice
 firstTrans: the record index of the transaction for which the itemset was added to the lattice
 maxMissed: upper bound on the number of occurrences of the itemset before it was added to

the lattice

The lattice also encodes information on relationships between itemsets, which are determined
by the items in the itemset. An itemset Y is an ancestor of itemset X if X contains every item in
Y. More specifically, Y is a parent of X if X contains every item in Y plus one additional item.
Conversely, Y is a descendant of X if Y contains every item in X, and Y is a child of X if Y contains
every item in X plus one additional item.

For example, if X = {milk, cheese, bread}, then Y = {milk, cheese} is a parent of X, and Z =
{milk, cheese, bread, sugar} is a child of X.

Initially the lattice contains no itemsets. As each transaction is read, the lattice is updated in
three steps:

E Increment statistics. For each itemset in the lattice that exists in the current transaction, increment

the count value.

Carma Algorithms

E Insert new itemsets. For each itemset v in the transaction that is not already in the lattice, check all

subsets of the itemset in the lattice. If all possible subsets of the itemset are in the lattice with
 , then add the itemset to the lattice and set its values:

 count is set to 1
 firstTrans is set to the record index of the current transaction
 maxMissed is defined as

where w is a subset of itemset v, is the ceiling of up to transaction i for varying
support (or simply for constant support), and |v| is the number of items in itemset v.

E Prune the lattice. Every k transactions (where k is the pruning value, set to 500 by default), the
lattice is examined and small itemsets are removed. A small itemset is defined as an itemset for
which maxSupport < i, where maxSupport = (maxMissed + count)/i.

Phase II: Validation

After the frequent itemset candidates have been identified, a second data pass is made to compute
exact frequencies for the candidates, and the final list of frequent itemsets is determined based
on these frequencies.

The first step in Phase II is to remove infrequent itemsets from the lattice. The lattice is pruned
using the same method described under Phase I, with n as the user-specified support level for
the model.

After initial pruning, the training data are processed again and each itemset v in the lattice is
checked and updated for each transaction record with index i:

E If firstTrans(v) < i, v is marked as exact and is no longer considered for any updates. (When all
nodes in the lattice are marked as exact, phase II terminates.)

E If v appears in the current transaction, v is updated as follows:
 Increment count(v)
 Decrement maxMissed(v)
 If firstTrans(v) = i, set maxMissed(v) = 0, and adjust maxMissed for every superset w of v in

the lattice for which maxSupport(w) > maxSupport(v). For such supersets, set maxMissed(w)
= count(v) - count(w).

 If maxSupport(v) < n, remove v from the lattice.

Generating Rules

Carma uses a common rule-generating algorithm for extracting rules from the lattice of itemsets
that tends to eliminate redundant rules (Aggarwal and Yu, 1998). Rules are generated from the
lattice of itemsets (see “Frequent Itemsets”) as follows:

E For each itemset in the lattice, get the set of maximal ancestor itemsets. An itemset Y is a maximal
ancestor of itemset X if , where c is the specified confidence threshold for rules.

Carma Algorithms

E Prune the list of maximal ancestors by removing maximal ancestors of all of X’s child itemsets.

E For each itemset in the pruned maximal ancestor list, generate a rule , where X−Y is
the itemset X with the items in itemset Y removed.

For example, if X the itemset {milk, cheese, bread} and Y is the itemset {milk, bread}, then the
resulting rule would be milk, bread cheese

Blank Handling

Blanks are ignored by the Carma algorithm. The algorithm will handle records containing blanks
for input fields, but such a record will not be considered to match any rule containing one or
more of the fields for which it has blank values.

Effect of Options

Minimum rule support/confidence. These values place constraints on which rules may be entered
into the table. Only rules whose support and confidence values exceed the specified values can be
entered into the rule table.

Maximum rule size. Sets the limit on the number of items that will be considered as an itemset.

Exclude rules with multiple consequents. This option restricts rules in the final rule list to those
with a single item as consequent.

Set pruning value. Sets the number of transactions to process between pruning passes. For more
information, see the topic “Frequent Itemsets.”

Vary support. Allows support to vary in order to enhance training during the early transactions in
the training data. For more information, see “Varying support” below.

Allow rules without antecedents. Allows rules that are consequent only, which are simple
statements of co-occuring items, along with traditional if-then rules.

Varying support

If the vary support option is selected, the target support value changes as transactions are
processed to provide more efficient training. The support value starts large and decreases in four
steps as transactions are processed. The first support value s1 applies to the first 9 transactions,
the second value s2 applies to the next 90 transactions, the third value s3 applies to transactions
100-4999, and the fourth value s4 applies to all remaining transactions. If we call the final
support value s, and the estimated number of transactions t, then the following constraints are
used to determine the support values:

E If or , set .

E If , set , such that .

E If , set , such that .

Carma Algorithms

E If , set , such that .

In all cases, if solving the equation yields s1 > 0.5, s1 is set to 0.5, and the other values adjusted
accordingly to preserve the relation , where s(i) is the target support (one of the
values s1, s2, s3, or s4) for the ith transaction.

Generated Model/Scoring

The Carma algorithm generates an unrefined rule node. To create a model for scoring new data,
the unrefined rule node must be refined to generate a ruleset node. Details of scoring for generated
ruleset nodes are given below.

Predicted Values

Predicted values are based on the rules in the ruleset. When a new record is scored, it is compared
to the rules in the ruleset. How the prediction is generated depends on the user’s setting for
Ruleset Evaluation in the stream options.
 Voting. This method attempts to combine the predictions of all of the rules that apply to the

record. For each record, all rules are examined and each rule that applies to the record is used
to generate a prediction. The sum of confidence figures for each predicted value is computed,
and the value with the greatest confidence sum is chosen as the final prediction.

 First hit. This method simply tests the rules in order, and the first rule that applies to the record
is the one used to generate the prediction.

There is a default rule, which specifies an output value to be used as the prediction for records
that don’t trigger any other rules from the ruleset. For rulesets derived from decision trees, the
value for the default rule is the modal (most prevalent) output value in the overall training data.
For association rulesets, the default value is specified by the user when the ruleset is generated
from the unrefined rule node.

Confidence

Confidence calculations also depend on the user’s Ruleset Evaluation stream options setting.
 Voting. The confidence for the final prediction is the sum of the confidence values for rules

triggered by the current record that give the winning prediction divided by the number of rules
that fired for that record.

 First hit. The confidence is the confidence value for the first rule in the ruleset triggered by
the current record.

If the default rule is the only rule that fires for the record, it’s confidence is set to 0.5.

Blank Handling

Carma Algorithms

Blanks are ignored by the algorithm. The algorithm will handle records containing blanks for
input fields, but such a record will not be considered to match any rule containing one or more of
the fields for which it has blank values.

There is an exception to this: when a numeric field is examined based on a split point,
user-defined missing values are included in the comparison. For example, if you define -999 as a
missing value for a field, Carma will still compare it to the split point for that field, and may return
a match if the rule is of the form (X < 50). You may need to preprocess specially coded numeric
missing values (replacing them with $null$, for example) before scoring data with Carma.

C&RT Algorithms

Overview of C&RT

C&RT stands for Classification and Regression Trees, originally described in the book by the
same name (Breiman, Friedman, Olshen, and Stone, 1984). C&RT partitions the data into two
subsets so that the records within each subset are more homogeneous than in the previous subset.
It is a recursive process—each of those two subsets is then split again, and the process repeats
until the homogeneity criterion is reached or until some other stopping criterion is satisfied (as do
all of the tree-growing methods). The same predictor field may be used several times at different
levels in the tree. It uses surrogate splitting to make the best use of data with missing values.

C&RT is quite flexible. It allows unequal misclassification costs to be considered in the tree
growing process. It also allows you to specify the prior probability distribution in a classification
problem. You can apply automatic cost-complexity pruning to a C&RT tree to obtain a more
generalizable tree.

Primary Calculations

The calculations directly involved in building the model are described below.

Frequency and Case Weight Fields

Frequency and case weight fields are useful for reducing the size of your dataset. Each has a
distinct function, though. If a case weight field is mistakenly specified to be a frequency field, or
vice versa, the resulting analysis will be incorrect.

For the calculations described below, if no frequency or case weight fields are specified, assume
that frequency and case weights for all records are equal to 1.0.

Frequency Fields

A frequency field represents the total number of observations represented by each record. It is
useful for analyzing aggregate data, in which a record represents more than one individual. The
sum of the values for a frequency field should always be equal to the total number of observations
in the sample. Note that output and statistics are the same whether you use a frequency field or
case-by-case data. The table below shows a hypothetical example, with the predictor fields sex
and employment and the target field response. The frequency field tells us, for example, that 10
employed men responded yes to the target question, and 19 unemployed women responded no.
Table 9-1
Dataset with frequency field

Sex Employment Response Frequency
M Y Y 10
M Y N 17
M N Y 12
M N N 21
F Y Y 11
F Y N 15

 59

C&RT Algorithms

Sex

Employment

Response

Frequency

F N Y 15
F N N 19

The use of a frequency field in this case allows us to process a table of 8 records instead of
case-by-case data, which would require 120 records.

Case weights

The use of a case weight field gives unequal treatment to the records in a dataset. When a case
weight field is used, the contribution of a record in the analysis is weighted in proportion to
the population units that the record represents in the sample. For example, suppose that in
a direct marketing promotion, 10,000 households respond and 1,000,000 households do not
respond. To reduce the size of the data file, you might include all of the responders but only a
1% sample (10,000) of the nonresponders. You can do this if you define a case weight equal to
1 for responders and 100 for nonresponders.

Model Parameters

C&RT works by choosing a split at each node such that each child node created by the split is
more pure than its parent node. Here purity refers to similarity of values of the target field. In a
completely pure node, all of the records have the same value for the target field. C&RT measures
the impurity of a split at a node by defining an impurity measure. For more information, see the
topic “Impurity Measures.”

The following steps are used to build a C&RT tree (starting with the root node containing all
records):

Find each predictor’s best split. For each predictor field, find the best possible split for that field,
as follows:
 Range (numeric) fields. Sort the field values for records in the node from smallest to largest.

Choose each point in turn as a split point, and compute the impurity statistic for the resulting
child nodes of the split. Select the best split point for the field as the one that yields the largest
decrease in impurity relative to the impurity of the node being split.

 Symbolic (categorical) fields. Examine each possible combination of values as two subsets.
For each combination, calculate the impurity of the child nodes for the split based on that
combination. Select the best split point for the field as the one that yields the largest decrease
in impurity relative to the impurity of the node being split.

Find the best split for the node. Identify the field whose best split gives the greatest decrease in
impurity for the node, and select that field’s best split as the best overall split for the node.

Check stopping rules, and recurse. If no stopping rules are triggered by the split or by the parent
node, apply the split to create two child nodes. (For more information, see the topic “Stopping
Rules.”) Apply the algorithm again to each child node.

C&RT Algorithms

Blank Handling

Records with missing values for the target field are ignored in building the tree model.

Surrogate splitting is used to handle blanks for predictor fields. If the best predictor field to be
used for a split has a blank or missing value at a particular node, another field that yields a split
similar to the predictor field in the context of that node is used as a surrogate for the predictor
field, and its value is used to assign the record to one of the child nodes.

Note: If Surrogate splitting is used (where a particular rule does not fit into a node) the Confidence
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

For example, suppose that X* is the predictor field that defines the best split s* at node t. The
surrogate-splitting process finds another split s, the surrogate, based on another predictor field X
such that this split is most similar to s* at node t (for records with valid values for both predictors).
If a new record is to be predicted and it has a missing value on X* at node t, the surrogate split s is
applied instead. (Unless, of course, this record also has a missing value on X. In such a situation,
the next best surrogate is used, and so on, up to the limit of number of surrogates specified.)

In the interest of speed and memory conservation, only a limited number of surrogates is
identified for each split in the tree. If a record has missing values for the split field and all
surrogate fields, it is assigned to the child node with the higher weighted probability, calculated as

where Nf,j(t) is the sum of frequency weights for records in category j for node t, and Nf(t) is the
sum of frequency weights for all records in node t.

If the model was built using equal or user-specified priors, the priors are incorporated into the
calculation:

where π(j) is the prior probability for category j, and pf(t) is the weighted probability of a record
being assigned to the node,

where Nf,j(t) is the sum of the frequency weights (or the number of records if no frequency
weights are defined) in node t belonging to category j, and Nf,j is the sum of frequency weights
for records belonging to category in the entire training sample.

C&RT Algorithms

Predictive measure of association

Let (resp.) be the set of learning cases (resp. learning cases in node t) that has
non-missing values of both X* and X. Let be the probability of sending a case in

 to the same child by both and , and be the split with maximized probability
.

The predictive measure of association between s* and at node t is

where (resp.) is the relative probability that the best split s* at node t sends a case with
non-missing value of X* to the left (resp. right) child node. And where

if is categorical

if is continuous

with

 ,

,

and being the indicator function taking value 1 when both splits s* and send
the case n to the same child, 0 otherwise.

Effect of Options

Impurity Measures

There are three different impurity measures used to find splits for C&RT models, depending on the
type of the target field. For symbolic target fields, you can choose Gini or twoing. For continuous
targets, the least-squared deviation (LSD) method is automatically selected.

Gini

The Gini index g(t) at a node t in a C&RT tree, is defined as

C&RT Algorithms

where i and j are categories of the target field, and

where π(j) is the prior probability value for category j, Nj(t) is the number of records in category
j of node t, and Nj is the number of records of category j in the root node. Note that when the
Gini index is used to find the improvement for a split during tree growth, only those records in
node t and the root node with valid values for the split-predictor are used to compute Nj(t) and
Nj, respectively.

The equation for the Gini index can also be written as

Thus, when the records in a node are evenly distributed across the categories, the Gini index takes
its maximum value of 1 - 1/k, where k is the number of categories for the target field. When all
records in the node belong to the same category, the Gini index equals 0.

The Gini criterion function Φ(s, t) for split s at node t is defined as

where pL is the proportion of records in t sent to the left child node, and pR is the proportion sent
to the right child node. The proportions pL and pR are defined as

and

The split s is chosen to maximize the value of Φ(s, t).

C&RT Algorithms

Twoing

The twoing index is based on splitting the target categories into two superclasses, and then
finding the best split on the predictor field based on those two superclasses. The superclasses
C1 and C2 are defined as

and

where C is the set of categories of the target field, and p(j|tR) and p(j|tL) are p(j|t), as defined as
in the Gini formulas, for the right and left child nodes, respectively. For more information, see
the topic “Gini.”

The twoing criterion function for split s at node t is defined as

where tL and tR are the nodes created by the split s. The split s is chosen as the split that
maximizes this criterion.

Least Squared Deviation

For continuous target fields, the least squared deviation (LSD) impurity measure is used. The
LSD measure R(t) is simply the weighted within-node variance for node t, and it is equal to the
resubstitution estimate of risk for the node. It is defined as

where NW(t) is the weighted number of records in node t, wi is the value of the weighting field for
record i (if any), fi is the value of the frequency field (if any), yi is the value of the target field, and
y(t) is the (weighted) mean for node t. The LSD criterion function for split s at node t is defined as

The split s is chosen to maximize the value of Φ(s,t).

C&RT Algorithms

Stopping Rules

Stopping rules control how the algorithm decides when to stop splitting nodes in the tree. Tree
growth proceeds until every leaf node in the tree triggers at least one stopping rule. Any of the
following conditions will prevent a node from being split:
 The node is pure (all records have the same value for the target field)
 All records in the node have the same value for all predictor fields used by the model
 The tree depth for the current node (the number of recursive node splits defining the current

node) is the maximum tree depth (default or user-specified).
 The number of records in the node is less than the minumum parent node size (default or

user-specified)
 The number of records in any of the child nodes resulting from the node’s best split is less

than the minimum child node size (default or user-specified)
 The best split for the node yields a decrease in impurity that is less than the minimum change

in impurity (default or user-specified).

Profits

Profits are numeric values associated with categories of a (symbolic) target field that can be used
to estimate the gain or loss associated with a segment. They define the relative value of each value
of the target field. Values are used in computing gains but not in tree growing.

Profit for each node in the tree is calculated as

where j is the target field category, fj(t) is the sum of frequency field values for all records in node
t with category j for the target field, and Pj is the user-defined profit value for category j.

Priors

Prior probabilities are numeric values that influence the misclassification rates for categories of
the target field. They specify the proportion of records expected to belong to each category of the
target field prior to the analysis. The values are involved both in tree growing and risk estimation.

There are three ways to derive prior probabilities.

Empirical Priors

By default, priors are calculated based on the training data. The prior probability assigned to each
target category is the weighted proportion of records in the training data belonging to that category,

C&RT Algorithms

In tree-growing and class assignment, the Ns take both case weights and frequency weights
into account (if defined); in risk estimation, only frequency weights are included in calculating
empirical priors.

Equal Priors

Selecting equal priors sets the prior probability for each of the J categories to the same value,

User-Specified Priors

When user-specified priors are given, the specified values are used in the calculations involving
priors. The values specified for the priors must conform to the probability constraint: the sum of
priors for all categories must equal 1.0. If user-specified priors do not conform to this constraint,
adjusted priors are derived which preserve the proportions of the original priors but conform
to the constraint, using the formula

where π’(j) is the adjusted prior for category j, and π(j) is the original user-specified prior for
category j.

Costs

Gini. If costs are specified, the Gini index is computed as

where C(i|j) specifies the cost of misclassifying a category j record as category i.

Twoing. Costs, if specified, are not taken into account in splitting nodes using the twoing criterion.
However, costs will be incorporated into node assignment and risk estimation, as described in
Predicted Values and Risk Estimates, below.

LSD. Costs do not apply to regression trees.

Pruning

Pruning refers to the process of examining a fully grown tree and removing bottom-level splits
that do not contribute significantly to the accuracy of the tree. In pruning the tree, the software
tries to create the smallest tree whose misclassification risk is not too much greater than that of the
largest tree possible. It removes a tree branch if the cost associated with having a more complex
tree exceeds the gain associated with having another level of nodes (branch).

C&RT Algorithms

It uses an index that measures both the misclassification risk and the complexity of the tree,
since we want to minimize both of these things. This cost-complexity measure is defined as
follows:

R(T) is the misclassification risk of tree T, and is the number of terminal nodes for tree T. The
term α represents the complexity cost per terminal node for the tree. (Note that the value of α is
calculated by the algorithm during pruning.)

Any tree you might generate has a maximum size (Tmax), in which each terminal node contains
only one record. With no complexity cost (α = 0), the maximum tree has the lowest risk, since
every record is perfectly predicted. Thus, the larger the value of α, the fewer the number of
terminal nodes in T(α), where T(α) is the tree with the lowest complexity cost for the given α. As
α increases from 0, it produces a finite sequence of subtrees (T1, T2, T3), each with progressively
fewer terminal nodes. Cost-complexity pruning works by removing the weakest split.

The following equations represent the cost complexity for {t}, which is any single node, and
for Tt, the subbranch of {t}.

If is less than , then the branch Tt has a smaller cost complexity than the single
node {t}.

The tree-growing process ensures that for (α = 0). As α increases from 0,
both and grow linearly, with the latter growing at a faster rate. Eventually, you
will reach a threshold α’, such that for all α > α’. This means that when α
grows larger than α’, the cost complexity of the tree can be reduced if we cut the subbranch Tt
under {t}. Determining the threshold is a simple computation. You can solve this first inequality,

, to find the largest value of α for which the inequality holds, which is also
represented by g(t). You end up with

You can define the weakest link (t) in tree T as the node that has the smallest value of g(t):

Therefore, as α increases, is the first node for which . At that point, { }
becomes preferable to , and the subbranch is pruned.

With that background established, the pruning algorithm follows these steps:

E Set α1 = 0 and start with the tree T1 = T(0), the fully grown tree.

C&RT Algorithms

E Increase α until a branch is pruned. Prune the branch from the tree, and calculate the risk estimate

of the pruned tree.

E Repeat the previous step until only the root node is left, yielding a series of trees, T1, T2, ... Tk.

E If the standard error rule option is selected, choose the smallest tree Topt for which

E If the standard error rule option is not selected, then the tree with the smallest risk estimate R(T)
is selected.

Secondary Calculations

Secondary calculations are not directly related to building the model, but give you information
about the model and its performance.

Risk Estimates

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for
the tree as a whole.

Risk Estimates for Symbolic Target Field

For classification trees (with a symbolic target field), the risk estimate r(t) of a node t is computed
as

where C(j*(t)|j) is the misclassification cost of classifying a record with target value j as j*(t),
Nf,j(t) is the sum of the frequency weights for records in node t in category j (or the number of
records if no frequency weights are defined), and Nf is the sum of frequency weights for all
records in the training data.

If the model uses user-specified priors, the risk estimate is calculated as

Note that case weights are not considered in calculating risk estimates.

Risk Estimates for numeric target field

For regression trees (with a numeric target field), the risk estimate r(t) of a node t is computed as

C&RT Algorithms

where fi is the frequency weight for record i (a record assigned to node t), yi is the value of the
target field for record i, and is the weighted mean of the target field for all records in node t.

Tree Risk Estimate

For both classification trees and regression trees, the risk estimate R(T) for the tree (T) is
calculated by taking the sum of the risk estimates for the terminal nodes r(t):

where T’ is the set of terminal nodes in the tree.

Gain Summary

The gain summary provides descriptive statistics for the terminal nodes of a tree.
If your target field is continuous (scale), the gain summary shows the weighted mean of the

target value for each terminal node,

If your target field is symbolic (categorical), the gain summary shows the weighted percentage of
records in a selected target category,

where xi(j) = 1 if record xi is in target category j, and 0 otherwise. If profits are defined for the
tree, the gain is the average profit value for each terminal node,

where P(xi) is the profit value assigned to the target value observed in record xi.

Generated Model/Scoring

Calculations done by the C&RT generated model are described below

C&RT Algorithms

Predicted Values

New records are scored by following the tree splits to a terminal node of the tree. Each terminal
node has a particular predicted value associated with it, determined as follows:

Classification Trees

For trees with a symbolic target field, each terminal node’s predicted category is the category with
the lowest weighted cost for the node. This weighted cost is calculated as

where C(i|j) is the user-specified misclassification cost for classifying a record as category i when
it is actually category j, and p(j|t) is the conditional weighted probability of a record being in
category j given that it is in node t, defined as

where π(j) is the prior probability for category j, Nw,j(t) is the weighted number of records in node
t with category j (or the number of records if no frequency or case weights are defined),

and Nw,j is the weighted number records in category j (any node),

Regression Trees

For trees with a numeric target field, each terminal node’s predicted category is the weighted mean
of the target values for records in the node. This weighted mean is calculated as

where Nw(t) is defined as

C&RT Algorithms

Confidence

For classification trees, confidence values for records passed through the generated model are
calculated as follows. For regression trees, no confidence value is assigned.

Classification Trees

Confidence for a scored record is the proportion of weighted records in the training data in the
scored record’s assigned terminal node that belong to the predicted category, modified by the
Laplace correction:

Note: If Surrogate Splitting is used (where a particular rule does not fit into a node) the Confidence
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

Blank Handling

In classification of new records, blanks are handled as they are during tree growth, using
surrogates where possible, and splitting based on weighted probabilities where necessary. For
more information, see the topic “Blank Handling.”

CHAID Algorithms

Overview of CHAID

CHAID stands for Chi-squared Automatic Interaction Detector. It is a highly efficient statistical
technique for segmentation, or tree growing, developed by (Kass, 1980). Using the significance of
a statistical test as a criterion, CHAID evaluates all of the values of a potential predictor field. It
merges values that are judged to be statistically homogeneous (similar) with respect to the target
variable and maintains all other values that are heterogeneous (dissimilar).

It then selects the best predictor to form the first branch in the decision tree, such that each
child node is made of a group of homogeneous values of the selected field. This process continues
recursively until the tree is fully grown. The statistical test used depends upon the measurement
level of the target field. If the target field is continuous, an F test is used. If the target field is
categorical, a chi-squared test is used.

CHAID is not a binary tree method; that is, it can produce more than two categories at any
particular level in the tree. Therefore, it tends to create a wider tree than do the binary growing
methods. It works for all types of variables, and it accepts both case weights and frequency
variables. It handles missing values by treating them all as a single valid category.

Exhaustive CHAID

Exhaustive CHAID is a modification of CHAID developed to address some of the weaknesses
of the CHAID method (Biggs, de Ville, and Suen, 1991). In particular, sometimes CHAID may
not find the optimal split for a variable, since it stops merging categories as soon as it finds
that all remaining categories are statistically different. Exhaustive CHAID remedies this by
continuing to merge categories of the predictor variable until only two supercategories are left.
It then examines the series of merges for the predictor and finds the set of categories that gives
the strongest association with the target variable, and computes an adjusted p-value for that
association. Thus, Exhaustive CHAID can find the best split for each predictor, and then choose
which predictor to split on by comparing the adjusted p-values.

Exhaustive CHAID is identical to CHAID in the statistical tests it uses and in the way it treats
missing values. Because its method of combining categories of variables is more thorough than
that of CHAID, it takes longer to compute. However, if you have the time to spare, Exhaustive
CHAID is generally safer to use than CHAID. It often finds more useful splits, though depending
on your data, you may find no difference between Exhaustive CHAID and CHAID results.

Primary Calculations

The calculations directly involved in building the model are described below.

Frequency and Case Weight Fields

Frequency and case weight fields are useful for reducing the size of your dataset. Each has a
distinct function, though. If a case weight field is mistakenly specified to be a frequency field, or
vice versa, the resulting analysis will be incorrect.

CHAID Algorithms

For the calculations described below, if no frequency or case weight fields are specified, assume

that frequency and case weights for all records are equal to 1.0.

Frequency Fields

A frequency field represents the total number of observations represented by each record. It is
useful for analyzing aggregate data, in which a record represents more than one individual. The
sum of the values for a frequency field should always be equal to the total number of observations
in the sample. Note that output and statistics are the same whether you use a frequency field or
case-by-case data. The table below shows a hypothetical example, with the predictor fields sex
and employment and the target field response. The frequency field tells us, for example, that 10
employed men responded yes to the target question, and 19 unemployed women responded no.
Table 10-1
Dataset with frequency field

Sex Employment Response Frequency
M Y Y 10
M Y N 17
M N Y 12
M N N 21
F Y Y 11
F Y N 15
F N Y 15
F N N 19

The use of a frequency field in this case allows us to process a table of 8 records instead of
case-by-case data, which would require 120 records.

Case weights

The use of a case weight field gives unequal treatment to the records in a dataset. When a case
weight field is used, the contribution of a record in the analysis is weighted in proportion to
the population units that the record represents in the sample. For example, suppose that in
a direct marketing promotion, 10,000 households respond and 1,000,000 households do not
respond. To reduce the size of the data file, you might include all of the responders but only a
1% sample (10,000) of the nonresponders. You can do this if you define a case weight equal to
1 for responders and 100 for nonresponders.

Binning of Scale-Level Predictors

Scale level (continuous) predictor fields are automatically discretized or binned into a set of
ordinal categories. This process is performed once for each scale-level predictor in the model,
prior to applying the CHAID (or Exhaustive CHAID) algorithm. The binned categories are
determined as follows:

1. The data values yi are sorted.

CHAID Algorithms

2. For each unique value, starting with the smallest, calculate the relative (weighted) frequency of

values less than or equal to the current value yi:

where wk is the weight for record k (or 1.0 if no weights are defined).

3. Determine the bin to which the value belongs by comparing the relative frequency with the ideal
bin percentile cutpoints of 0.10, 0.20, 0.30, etc.

where W is the total weighted frequency for all records in the training data, , and

 If the bin index for this value is different from the bin index for the previous data value, add a

new bin to the bin list and set its cutpoint to the current data value.
 If the bin index is the same as the bin index for the previous value, update the cut point for

that bin to the current data value.

Normally, CHAID will try to create k = 10 bins by default. However, when the number of records
having a single value is large (or a set of records with the same value has a large combined
weighted frequency), the binning may result in fewer bins. This will happen if the weighted
frequency for records with the same value is greater than the expected weighted frequency in a bin
(1/kth of the total weighted frequency). This will also happen if there are fewer than k distinct
values for the binned field for records in the training data.

Model Parameters

CHAID works with all types of continuous or categorical fields. However, continuous predictor
fields are automatically categorized for the purpose of the analysis.For more information, see the
topic “Binning of Scale-Level Predictors.”

Note that you can set some of the options mentioned below using the Expert Options for
CHAID. These include the choice of the Pearson chi-squared or likelihood-ratio test, the level of
 , the level of , score values, and details of stopping rules.

CHAID Algorithms

The CHAID algorithm proceeds as follows:

Merging Categories for Predictors (CHAID)

To determine each split, all predictor fields are merged to combine categories that are not
statistically different with respect to the target field. Each final category of a predictor field X
will represent a child node if X is used to split the node. The following steps are applied to each
predictor field X:

1. If X has one or two categories, no more categories are merged, so proceed to node splitting below.

2. Find the eligible pair of categories of X that is least significantly different (most similar) as
determined by the p-value of the appropriate statistical test of association with the target field. For
more information, see the topic “Statistical Tests Used.”

For ordinal fields, only adjacent categories are eligible for merging; for nominal fields, all pairs
are eligible.

3. For the pair having the largest p-value, if the p-value is greater than , then merge the
pair of categories into a single category. Otherwise, skip to step 6.

4. If the user has selected the Allow splitting of merged categories option, and the newly formed

compound category contains three or more original categories, then find the best binary split
within the compound category (that for which the p-value of the statistical test is smallest). If that
p-value is less than or equal to , perform the split to create two categories from
the compound category.

5. Continue merging categories from step 1 for this predictor field.

6. Any category with fewer than the user-specified minimum segment size records is merged

with the most similar other category (that which gives the largest p-value when compared with
the small category).

Merging Categories for Predictors (Exhaustive CHAID)

Exhaustive CHAID works much the same as CHAID, except that the category merging is more
thoroughly tested to find the ideal set of categories for each predictor field. As with regular
CHAID, each final category of a predictor field X will represent a child node if X is used to split
the node. The following steps are applied to each predictor field X:

1. For each predictor variable X, find the pair of categories of X that is least significantly different
(that is, has the largest p-value) with respect to the target variable Y. The method used to
calculate the p-value depends on the measurement level of Y. For more information, see the
topic “Statistical Tests Used.”

2. Merge into a compound category the pair that gives the largest p-value.

3. Calculate the p-value based on the new set of categories of X. This represents one set of categories
for X. Remember the p-value and its corresponding set of categories.

CHAID Algorithms

4. Repeat steps 1, 2, and 3 until only two categories remain. Then, compare the sets of categories

of X generated during each step of the merge sequence, and find the one for which the p-value
in step 3 is the smallest. That set is the set of merged categories for X to be used in determining
the split at the current node.

Splitting Nodes

When categories have been merged for all predictor fields, each field is evaluated for its
association with the target field, based on the adjusted p-value of the statistical test of association,
as described below.

The predictor with the strongest association, indicated by the smallest adjusted p-value, is
compared to the split threshold, . If the p-value is less than or equal to , that field is
selected as the split field for the current node. Each of the merged categories of the split field
defines a child node of the split.

After the split is applied to the current node, the child nodes are examined to see if they warrant
splitting by applying the merge/split process to each in turn. Processing proceeds recursively until
one or more stopping rules are triggered for every unsplit node, and no further splits can be made.

Statistical Tests Used

Calculations of the unadjusted p-values depend on the type of the target field. During the merge
step, categories are compared pairwise, that is, one (possibly compound) category is compared
against another (possibly compound) category. For such comparisons, only records belonging to
one of the comparison categories in the current node are considered. During the split step, all
categories are considered in calculating the p-value, thus all records in the current node are used.

Scale Target Field (F Test).

For models with a scale-level target field, the p-value is calculated based on a standard
ANOVA F-test comparing the target field means across categories of the predictor field under
consideration. The F statistic is calculated as

and the p-value is

where

CHAID Algorithms

and F(I − 1, Nf − I) is a random variable following an F-distribution with (I − 1) and (Nf − I)
degrees of freedom.

Nominal Target Field (Chi-Squared Test)

If the target field Y is a set (categorical) field, the null hypothesis of independence of X and Y is
tested. To do the test, a contingency (count) table is formed using classes of Y as columns and
categories of the predictor X as rows. The expected cell frequencies under the null hypothesis of
independence are estimated. The observed cell frequencies and the expected cell frequencies are
used to calculate the chi-squared statistic, and the p-value is based on the calculated statistic.

Pearson Chi-squared test

The Pearson chi-square statistic is calculated as

where is the observed cell frequency and is the expected
cell frequency for cell (xn = i, yn = j) from the independence model as described below. The
corresponding p value is calculated as , where follows a chi-square
distribution with d = (J − 1)(I − 1) degrees of freedom.

Expected Frequencies for Chi-Square Test

Likelihood-ratio Chi-squared test

The likelihood-ratio chi-square is calculated based on the expected and observed frequencies, as
described above. The likelihood ratio chi-square is calculated as

and the p-value is calculated as

Expected frequencies for chi-squared tests

For models with no case weights, expected frequencies are calculated as

CHAID Algorithms

where

If case weights are specified, the expected cell frequency under the null hypothesis of
independence takes the form

where are parameters to be estimated, and

The parameter estimates , , and hence , are calculated based on the following iterative
procedure:

Ordinal Target Field (Row Effects Model)

If the target field Y is ordinal, the null hypothesis of independence of X and Y is tested against
the row effects model, with the rows being the categories of X and the columns the categories
of Y(Goodman, 1979). Two sets of expected cell frequencies, (under the hypothesis of
independence and (under the hypothesis that the data follow the row effects model), are both
estimated. The likelihood ratio statistic is computed as

and the p-value is calculated as

CHAID Algorithms

Expected Cell Frequencies for the Row Effects Model

For the row effects model, scores for categories of Y are needed. By default, the order of each
category is used as the category score. Users can specify their own set of scores. The expected
cell frequency under the row effects model is

where sj is the score for category j of Y, and

Parameter estimates , , , and hence are calculated using the following iterative
procedure:

Bonferroni Adjustment

The adjusted p-value is calculated as the p-value times a Bonferroni multiplier. The Bonferroni
multiplier controls the overall p-value across multiple statistical tests.

Suppose that a predictor field originally has I categories, and it is reduced to r categories after
the merging step. The Bonferroni multiplier B is the number of possible ways that I categories
can be merged into r categories. For r = I, B = 1. For 2 ≤ r < I,

CHAID Algorithms

Ordinal predictor

Nominal predictor

Ordinal with a missing value

Blank Handling

If the target field for a record is blank, or all the predictor fields are blank, the record is ignored in
model building. If case weights are specified and the case weight for a record is blank, zero, or
negative, the record is ignored, and likewise for frequency weights.

For other records, blanks in predictor fields are treated as an additional category for the field.

Ordinal Predictors

The algorithm first generates the best set of categories using all non-blank information. Then the
algorithm identifies the category that is most similar to the blank category. Finally, two p-values
are calculated: one for the set of categories formed by merging the blank category with its most
similar category, and the other for the set of categories formed by adding the blank category as a
separate category. The set of categories with the smallest p-value is used.

Nominal Predictors

The missing category is treated the same as other categories in the analysis.

Effect of Options

Stopping Rules

Stopping rules control how the algorithm decides when to stop splitting nodes in the tree. Tree
growth proceeds until every leaf node in the tree triggers at least one stopping rule. Any of the
following conditions will prevent a node from being split:
 The node is pure (all records have the same value for the target field)
 All records in the node have the same value for all predictor fields used by the model
 The tree depth for the current node (the number of recursive node splits defining the current

node) is the maximum tree depth (default or user-specified).
 The number of records in the node is less than the minumum parent node size (default or

user-specified)
 The number of records in any of the child nodes resulting from the node’s best split is less

than the minimum child node size (default or user-specified)
 The best split for the node yields a p-value that is greater than the ·split (default or

user-specified).

CHAID Algorithms

Profits

Profits are numeric values associated with categories of a (symbolic) target field that can be used
to estimate the gain or loss associated with a segment. They define the relative value of each value
of the target field. Values are used in computing gains but not in tree growing.

Profit for each node in the tree is calculated as

where j is the target field category, fj(t) is the sum of frequency field values for all records in node
t with category j for the target field, and Pj is the user-defined profit value for category j.

Score Values

Scores are available in CHAID and Exhaustive CHAID. They define the order and distance
between categories of an ordinal categorical target field. In other words, the scores define the
field’s scale. Values of scores are involved in tree growing.

If user-specified scores are provided, they are used in calculation of expected cell frequencies,
as described above.

Costs

Costs, if specified, are not taken into account in growing a CHAID tree. However, costs will be
incorporated into node assignment and risk estimation, as described in Predicted Values and
Risk Estimates, below.

Secondary Calculations

Secondary calculations are not directly related to building the model, but give you information
about the model and its performance.

Risk Estimates

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for
the tree as a whole.

Risk Estimates for Symbolic Target Field

For classification trees (with a symbolic target field), the risk estimate r(t) of a node t is computed
as

CHAID Algorithms

where C(j*(t)|j) is the misclassification cost of classifying a record with target value j as j*(t),
Nf,j(t) is the sum of the frequency weights for records in node t in category j (or the number of
records if no frequency weights are defined), and Nf is the sum of frequency weights for all
records in the training data.

Note that case weights are not considered in calculating risk estimates.

Risk Estimates for numeric target field

For regression trees (with a numeric target field), the risk estimate r(t) of a node t is computed as

where fi is the frequency weight for record i (a record assigned to node t), yi is the value of the
target field for record i, and is the weighted mean of the target field for all records in node t.

Tree Risk Estimate

For both classification trees and regression trees, the risk estimate R(T) for the tree (T) is
calculated by taking the sum of the risk estimates for the terminal nodes r(t):

where T’ is the set of terminal nodes in the tree.

Gain Summary

The gain summary provides descriptive statistics for the terminal nodes of a tree.
If your target field is continuous (scale), the gain summary shows the weighted mean of the

target value for each terminal node,

If your target field is symbolic (categorical), the gain summary shows the weighted percentage of
records in a selected target category,

where xi(j) = 1 if record xi is in target category j, and 0 otherwise. If profits are defined for the
tree, the gain is the average profit value for each terminal node,

CHAID Algorithms

where P(xi) is the profit value assigned to the target value observed in record xi.

Generated Model/Scoring

Calculations done by the CHAID generated model are described below

Predicted Values

New records are scored by following the tree splits to a terminal node of the tree. Each terminal
node has a particular predicted value associated with it, determined as follows:

Classification Trees

For trees with a symbolic target field, each terminal node’s predicted category is the category with
the lowest weighted cost for the node. This weighted cost is calculated as

where C(i|j) is the user-specified misclassification cost for classifying a record as category i when
it is actually category j, and p(j|t) is the conditional weighted probability of a record being in
category j given that it is in node t, defined as

where π(j) is the prior probability for category j, Nw,j(t) is the weighted number of records in node
t with category j (or the number of records if no frequency or case weights are defined),

and Nw,j is the weighted number records in category j (any node),

Regression Trees

For trees with a numeric target field, each terminal node’s predicted category is the weighted mean
of the target values for records in the node. This weighted mean is calculated as

where Nw(t) is defined as

CHAID Algorithms

Confidence

For classification trees, confidence values for records passed through the generated model are
calculated as follows. For regression trees, no confidence value is assigned.

Classification Trees

Confidence for a scored record is the proportion of weighted records in the training data in the
scored record’s assigned terminal node that belong to the predicted category, modified by the
Laplace correction:

Note: If Surrogate Splitting is used (where a particular rule does not fit into a node) the Confidence
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

Blank Handling

In classification of new records, blanks are handled as they are during tree growth, being treated as
an additional category (possibly merged with other non-blank categories). For more information,
see the topic “Blank Handling.”

For nodes where there were no blanks in the training data, a blank category will not exist for
the split of that node. In that case, records with a blank value for the split field are assigned a
null value.

Cluster Evaluation Algorithms
This document describes measures used for evaluating clustering models.
 The Silhouette coefficient combines the concepts of cluster cohesion (favoring models which

contain tightly cohesive clusters) and cluster separation (favoring models which contain
highly separated clusters). It can be used to evaluate individual objects, clusters, and models.

 The sum of squares error (SSE) is a measure of prototype-based cohesion, while sum of
squares between (SSB) is a measure of prototype-based separation.

 Predictor importance indicates how well the variable can differentiate different clusters. For
both range (numeric) and discrete variables, the higher the importance measure, the less
likely the variation for a variable between clusters is due to chance and more likely due to
some underlying difference.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Continuous variable k in case i (standardized).

The sth category of variable k in case i (one-of-c coding).

N Total number of valid cases.
 The number of cases in cluster j.

Y Variable with J cluster labels.
The centroid of cluster j for variable k.

 The distance between case i and the centroid of cluster j.

 The distance between the overall mean and the centroid of cluster j.

Goodness Measures

The average Silhouette coefficient is simply the average over all cases of the following calculation
for each individual case:

where A is the average distance from the case to every other case assigned to the same cluster and
B is the minimal average distance from the case to cases of a different cluster across all clusters.

Unfortunately, this coefficient is computationally expensive. In order to ease this burden, we use
the following definitions of A and B:
 A is the distance from the case to the centroid of the cluster which the case belongs to;
 B is the minimal distance from the case to the centroid of every other cluster.

Cluster Evaluation Algorithms

Distances may be calculated using Euclidean distances. The Silhouette coefficient and its average
range between −1, indicating a very poor model, and 1, indicating an excellent model. As found
by Kaufman and Rousseeuw (1990), an average silhouette greater than 0.5 indicates reasonable
partitioning of data; less than 0.2 means that the data do not exhibit cluster structure.

Data Preparation

Before calculating Silhouette coefficient, we need to transform cases as follows:

1. Recode categorical variables using one-of-c coding. If a variable has c categories, then it is stored
as c vectors, with the first category denoted (1,0,...,0), the next category (0,1,0,...,0), ..., and the
final category (0,0,...,0,1). The order of the categories is based on the ascending sort or lexical
order of the data values.

2. Rescale continuous variables. Continuous variables are normalized to the interval [−1, 1] using the
transformation [2*(x−min)/(max−min)]−1. This normalization tries to equalize the contributions
of continuous and categorical features to the distance computations.

Basic Statistics

The following statistics are collected in order to compute the goodness measures: the centroid
of variable k for cluster j, the distance between a case and the centroid, and the overall mean u.

For with an ordinal or continuous variable k, we average all standardized values of variable
k within cluster j. For nominal variables, is a vector of probabilities of occurrence
for each state s of variable k for cluster j. Note that in counting , we do not consider cases with
missing values in variable k. If the value of variable k is missing for all cases within cluster j,

is marked as missing.

The distance between case i and the centroid of cluster j can be calculated in terms of the
weighted sum of the distance components across all variables; that is

where denotes a weight. At this point, we do not consider differential weights, thus
equals 1 if the variable k in case i is valid, 0 if not. If all equal 0, set .

The distance component is calculated as follows for ordinal and continuous variables

For binary or nominal variables, it is

Cluster Evaluation Algorithms

where variable k uses one-of-c coding, and is the number of its states.

The calculation of is the same as that of , but the overall mean u is used in place of and

is used in place of .

Silhouette Coefficient

The Silhouette coefficient of case i is

where denotes cluster labels which do not include case i as a member, while is the cluster
label which includes case i. If equals 0, the Silhouette of case i is
not used in the average operations.

Based on these individual data, the total average Silhouette coefficient is:

Sum of Squares Error (SSE)

SSE is a prototype-based cohesion measure where the squared Euclidean distance is used. In order
to compare between models, we will use the averaged form, defined as:

Average SSE

Sum of Squares Between (SSB)

SSB is a prototype-based separation measure where the squared Euclidean distance is used. In
order to compare between models, we will use the averaged form, defined as:

Average SSB

Predictor Importance

The importance of field i is defined as

Cluster Evaluation Algorithms

where denotes the set of predictor and evaluation fields, is the significance or
p-value computed from applying a certain test, as described below. If equals zero, set

 , where MinDouble is the minimal double value.

Across Clusters

The p-value for categorical fields is based on Pearson’s chi-square. It is calculated by

where

where .
 If , the importance is set to be undefined or unknown;
 If , subtract one from I for each such category to obtain ;
 If , subtract one from J for each such cluster to obtain ;
 If or , the importance is set to be undefined or unknown.

The degrees of freedom are .

The p-value for continuous fields is based on an F test. It is calculated by

p-value = Prob{ },

where

 If N=0, the importance is set to be undefined or unknown;
 If , subtract one from J for each such cluster to obtain ;
 If or , the importance is set to be undefined or unknown;
 If the denominator in the formula for the F statistic is zero, the importance is set to be

undefined or unknown;
 If the numerator in the formula for the F statistic is zero, set p-value = 1;

The degrees of freedom are .

Cluster Evaluation Algorithms

Within Clusters

The null hypothesis for categorical fields is that the proportion of cases in the categories in
cluster j is the same as the overall proportion.

The chi-square statistic for cluster j is computed as follows

If , the importance is set to be undefined or unknown;

If , subtract one from I for each such category to obtain ;

If , the importance is set to be undefined or unknown.

The degrees of freedom are .

The null hypothesis for continuous fields is that the mean in cluster j is the same as the overall
mean.

The Student’s t statistic for cluster j is computed as follows

with degrees of freedom.

If or , the importance is set to be undefined or unknown;

If the numerator is zero, set p-value = 1;

Here, the p-value based on Student’s t distribution is calculated as

p-value = 1 − Prob{ }.

References

Kaufman, L., and P. J. Rousseeuw. 1990. Finding groups in data: An introduction to cluster
analysis. New York: John Wiley and Sons.

Tan, P., M. Steinbach, and V. Kumar. 2006. Introduction to Data Mining. : Addison-Wesley.

COXREG Algorithms

Cox Regression Algorithms

Cox (1972) first suggested the models in which factors related to lifetime have a multiplicative
effect on the hazard function. These models are called proportional hazards models. Under the
proportional hazards assumption, the hazard function h of t given X is of the form

where x is a known vector of regressor variables associated with the individual, is a vector of
unknown parameters, and is the baseline hazard function for an individual with .
Hence, for any two covariates sets and , the log hazard functions and should
be parallel across time.

When a factor does not affect the hazard function multiplicatively, stratification may be useful in
model building. Suppose that individuals can be assigned to one of m different strata, defined
by the levels of one or more factors. The hazard function for an individual in the jth stratum is
defined as

There are two unknown components in the model: the regression parameter and the baseline
hazard function . The estimation for the parameters is described below.

Estimation

We begin by considering a nonnegative random variable T representing the lifetimes of individuals
in some population. Let denote the probability density function (pdf) of T given a regressor
x and let be the survivor function (the probability of an individual surviving until time
t). Hence

The hazard is then defined by

Another useful expression for in terms of is

Thus,

For some purposes, it is also useful to define the cumulative hazard function

COXREG Algorithms

Under the proportional hazard assumption, the survivor function can be written as

where is the baseline survivor function defined by

and

Some relationships between , and , and which will be used later are

To estimate the survivor function , we can see from the equation for the survivor function
that there are two components, and , which need to be estimated. The approach we use
here is to estimate from the partial likelihood function and then to maximize the full likelihood
for .

Estimation of Beta

Assume that
 There are m levels for the stratification variable.
 Individuals in the same stratum have proportional hazard functions.
 The relative effect of the regressor variables is the same in each stratum.

Let be the observed uncensored failure time of the individuals in the jth
stratum and be the corresponding covariates. Then the partial likelihood function
is defined by

where is the sum of case weights of individuals whose lifetime is equal to and is
the weighted sum of the regression vector x for those individuals, is the case weight of
individual l, and is the set of individuals alive and uncensored just prior to in the jth
stratum. Thus the log-likelihood arising from the partial likelihood function is

COXREG Algorithms

and the first derivatives of l are

 is the rth component of . The maximum partial likelihood estimate

(MPLE) of is obtained by setting equal to zero for , where p is the number of
independent variables in the model. The equations can usually be
solved by using the Newton-Raphson method.

Note that from its equation that the partial likelihood function is invariant under
translation. All the covariates are centered by their corresponding overall mean. The overall mean
of a covariate is defined as the sum of the product of weight and covariate for all the censored and
uncensored cases in each stratum. For notational simplicity, used in the Estimation Section
denotes centered covariates.

Three convergence criteria for the Newton-Raphson method are available:
 Absolute value of the largest difference in parameter estimates between iterations divided

by the value of the parameter estimate for the previous iteration; that is,

BCON parameter estimate for previous iteration
 Absolute difference of the log-likelihood function between iterations divided by the

log-likelihood function for previous iteration.
 Maximum number of iterations.

The asymptotic covariance matrix for the MPLE is estimated by where I
is the information matrix containing minus the second partial derivatives of . The (r, s)-th
element of I is defined by

We can also write I in a matrix form as

COXREG Algorithms

where is a matrix which represents the p covariate variables in the model evaluated
at time , is the number of distinct individuals in , and is a matrix with
the lth diagonal element defined by

and the (l, k) element defined by

Estimation of the Baseline Function
After the MPLE of is found, the baseline survivor function is estimated separately for
each stratum. Assume that, for a stratum, are observed lifetimes in the sample.
There are at risk and deaths at , and in the interval there are censored times.
Since is a survivor function, it is non-increasing and left continuous, and thus must be
constant except for jumps at the observed lifetimes .

Further, it follows that

and

Writing , the observed likelihood function is of the form

where is the set of individuals dying at and is the set of individuals with censored times in
. (Note that if the last observation is uncensored, is empty and)

If we let , can be written as

Differentiating with respect to and setting the equations equal to zero, we get

We then plug the MPLE of into this equation and solve these k equations separately.

COXREG Algorithms

There are two things worth noting:
 If any , can be solved explicitly.

 If , the equation for the cumulative hazard function must be solved iteratively for
. A good initial value for is

where is the weight sum for set . (See Lawless, 1982, p. 361.)

Once the , are found, is estimated by

Since the above estimate of requires some iterative calculations when ties exist, Breslow
(1974) suggests using the equation for when as an estimate; however, we will use
this as an initial estimate.

The asymptotic variance for can be found in Chapter 4 of Kalbfleisch and Prentice
(1980). At a specified time t, it is consistently estimated by

where a is a p×1 vector with the jth element defined by

and I is the information matrix. The asymptotic variance of is estimated by

Selection Statistics for Stepwise Methods

The same methods for variable selection are offered as in binary logistic regression. For more
information, see the topic “Stepwise Variable Selection.” Here we will only define the three
removal statistics—Wald, LR, and Conditional—and the Score entry statistic.

COXREG Algorithms

Score Statistic

The score statistic is calculated for every variable not in the model to decide which variable should
be added to the model. First we compute the information matrix I for all eligible variables based
on the parameter estimates for the variables in the model and zero parameter estimates for the
variables not in the model. Then we partition the resulting I into four submatrices as follows:

where and are square matrices for variables in the model and variables not in the model,
respectively, and is the cross-product matrix for variables in and out. The score statistic
for variable is defined by

Wald Statistic

The Wald statistic is calculated for the variables in the model to select variables for removal.
The Wald statistic for variable is defined by

where is the parameter estimate associated with and is the submatrix of associated
with .

LR (Likelihood Ratio) Statistic

The LR statistic is defined as twice the log of the ratio of the likelihood functions of two models
evaluated at their own MPLES. Assume that r variables are in the current model and let us call the
current model the full model. Based on the MPLES of parameters for the full model, l(full) is
defined in “Estimation of Beta.” For each of r variables deleted from the full model, MPLES
are found and the reduced log-likelihood function, l(reduced), is calculated. Then LR statistic is
defined as

–2(l(reduced) – l(full))

Conditional Statistic

The conditional statistic is also computed for every variable in the model. The formula for
conditional statistic is the same as LR statistic except that the parameter estimates for each
reduced model are conditional estimates, not MPLES. The conditional estimates are defined as

COXREG Algorithms

follows. Let be the MPLES for the r variables (blocks) and C be the asymptotic
covariance for the parameters left in the model given is

where is the MPLE for the parameter(s) associated with and is without , is
the covariance between the parameter estimates left in the model and , and is the
covariance of . Then the conditional statistic for variable is defined by

b

where is the log-likelihood function evaluated at .

Note that all these four statistics have a chi-square distribution with degrees of freedom equal to
the number of parameters the corresponding model has.

Statistics

The following output statistics are available.

Initial Model Information

The initial model for the first method is for a model that does not include covariates. The
log-likelihood function l is equal to

where is the sum of weights of individuals in set .

Model Information

When a stepwise method is requested, at each step, the −2 log-likelihood function and three
chi-square statistics (model chi-square, improvement chi-square, and overall chi-square) and their
corresponding degrees of freedom and significance are printed.

–2 Log-Likelihood

where is the MPLE of for the current model.

COXREG Algorithms

Improvement Chi-Square

(–2 log-likelihood function for previous model) – (–2 log-likelihood function for current model).

The previous model is the model from the last step. The degrees of freedom are equal to the
absolute value of the difference between the number of parameters estimated in these two models.

Model Chi-Square

(–2 log-likelihood function for initial model) – (–2 log-likelihood function for current model).

The initial model is the final model from the previous method. The degrees of freedom are equal
to the absolute value of the difference between the number of parameters estimated in these
two model.

Note: The values of the model chi-square and improvement chi-square can be less than or equal to
zero. If the degrees of freedom are equal to zero, the chi-square is not printed.

Overall Chi-Square

The overall chi-square statistic tests the hypothesis that all regression coefficients for the variables
in the model are identically zero. This statistic is defined as

where represents the vector of first derivatives of the partial log-likelihood function evaluated
at . The elements of u and I are defined in “Estimation of Beta.”

Information for Variables in the Equation

For each of the single variables in the equation, MPLE, SE for MPLE, Wald statistic, and its
corresponding df, significance, and partial R are given. For a single variable, R is defined by

sign of MPLE

if Wald . Otherwise R is set to zero. For a multiple category variable, only the Wald statistic,
df, significance, and partial R are printed, where R is defined by

 Wald df

2 log-likelihood for the intial model

if Wald df. Otherwise R is set to zero.

Wald
2 log-likelihood for the intial model

COXREG Algorithms

Information for the Variables Not in the Equation

For each of the variables not in the equation, the Score statistic is calculated and its corresponding
degrees of freedom, significance, and partial R are printed. The partial R for variables not in the
equation is defined similarly to the R for the variables in the equation by changing the Wald
statistic to the Score statistic.

There is one overall statistic called the residual chi-square. This statistic tests if all regression
coefficients for the variables not in the equation are zero. It is defined by

where is the vector of first derivatives of the partial log-likelihood function with
respect to all the parameters not in the equation evaluated at MPLE and is equal to

 and A is defined in “Score Statistic.”

Survival Table

For each stratum, the estimates of the baseline cumulative survival and hazard function
and their standard errors are computed. is estimated by

and the asymptotic variance of is defined in “Estimation of the Baseline Function.” Finally,
the cumulative hazard function and survival function are estimated by

and, for a given x,

The asymptotic variances are

Plots

and

For a specified pattern, the covariate values are determined and is computed. There are three
plots available for Cox regression.

COXREG Algorithms

Survival Plot

For stratum j, , are plotted where

Hazard Plot

For stratum j, , are plotted where

LML Plot

The log-minus-log plot is used to see whether the stratification variable should be included as
a covariate. For stratum j, , are plotted. If the plot shows
parallelism among strata, then the stratum variable should be a covariate.

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

Scoring

Survival and cumulative hazard estimates are given in “Survival Table.” Conditional upon

survival until time t0, the probability of survival until time t is

Blank Handling

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.

Additionally, records with “total” survival time (past + future) greater than the record with the
longest observed uncensored survival time are also assigned a predicted value of $null$.

References

Breslow, N. E. 1974. Covariance analysis of censored survival data. Biometrics, 30, 89–99.

COXREG Algorithms

Cain, K. C., and N. T. Lange. 1984. Approximate case influence for the proportional hazards
regression model with censored data. Biometrics, 40, 493–499.

Cox, D. R. 1972. Regression models and life tables (with discussion). Journal of the Royal
Statistical Society, Series B, 34, 187–220.

Kalbfleisch, J. D., and R. L. Prentice. 2002. The statistical analysis of failure time data, 2 ed.
New York: John Wiley & Sons, Inc.

Lawless, R. F. 1982. Statistical models and methods for lifetime data. New York: John Wiley &
Sons, Inc..

Storer, B. E., and J. Crowley. 1985. A diagnostic for Cox regression and general conditional
likelihoods. Journal of the American Statistical Association, 80, 139–147.

Decision List Algorithms
The objective of decision lists is to find a group of individuals with a distinct behavior pattern; for
example, a high probability of buying a product. A decision list model consists of a set of decision
rules. A decision rule is an if-then rule, which has two parts: antecedent and consequent. The
antecedent is a Boolean expression of predictors, and the consequent is the predicted value of the
target field when the antecedent is true. The simplest construct of a decision rule is a segment
based on one predictor; for example, Gender = ‘Male’ or Age .

A record is covered by a rule if the rule antecedent is true. If a case is covered by one of the
rules in a decision list, then it is considered to be covered by the list.

In a decision list, order of rules is significant; if a case is covered by a rule, it will be ignored
by subsequent rules.

Algorithm Overview

The decision list algorithm can be summarized as follows:

E Candidate rules are found from the original dataset.

E The best rules are appended to the decision list.

E Records covered by the decision list are removed from the dataset.

E New rules are found based on the reduced dataset.

The process repeats until one or more of the stopping criteria are met.

Terminology of Decision List Algorithm

The following terms are used in describing the decision list algorithm:

Model. A decision list model.

Cycle. In every rule discovery cycle, a set of candidate rules will be found. They will then be
added to the model under construction. The resulting models will be inputs to the next cycle.

Attribute. Another name for a variable or field in the dataset.

Source attribute. Another name for predictor field.

Extending the model. Adding decision rules to a decision list or adding segments to a decision rule.

Group. A subset of records in the dataset.

Segment. Another name for group.

Decision List Algorithms

Main Calculations

Notation

The following notations are used in describing the decision list algorithm:

Data matrix. Columns are fields (attributes), and rows are records (cases).

A collection of list models.

The ith list model of L.

A list model that contains no rules.

 The estimated response probability of list Li.

N Total population size

 The value of the mth field (column) for the nth record (row) of X.

 The subset of records in X that are covered by list model Li.

Y The target field in X.

The value of the target field for the nth record.

A Collection of all attributes (fields) of X.

 The jth attribute of X.

R A collection of rules to extend a preceding rule list.

The kth rule in rule collection R.

T A set of candidate list models.
ResultSet A collection of decision list models.

Primary Algorithm

The primary algorithm for creating a decision list model is as follows:

1. Initialize the model.

E Let d = Search depth, and w = Search width.

E If L = , add to L.

E T = .

2. Loop over all elements of L.

E Select the records not covered by rules of :

E Call the decision rule algorithm to create an alternative rule set R on . For more information,
see the topic “Decision Rule Algorithm.”

Decision List Algorithms

E Construct a set of new candidate models by appending each rule in R to .

E Save extended list(s) to T.

3. Select list models from T.

E Calculate the estimated response probability of each list model in T as

E Select the w lists in T with the highest as .

4. Add to ResultSet.

5. If d = 1 or = , return ResultSet and terminate; otherwise, reduce d by one and repeat from
step 2.

Decision Rule Algorithm

Each rule is extended in decision rule cycles. With decision rules, groups are searched for
significantly increased occurrence of the target value. Decision rules will search for groups
with a higher or lower probability as required.

Notation

The following notations are used in describing the decision list algorithm:

Data matrix. Columns are fields (attributes), and rows are records (cases).

R A collection of rules to extend a preceding rule list.

The ith rule in rule collection R.

A special rule that covers all the cases in X.

 The estimated response probability of Ri.

N Total population size.

 The value of the mth field (column) for the nth record (row) of X.

 The subset of records in X that are covered by rule Ri.

Y The target field in X.

The value of the target field for the nth record.

A Collection of all attributes (fields) of X.

The jth attribute of X. If Allow attribute re-use is false, A excludes
attributes existing in the preceding rule.

SplitRule(X,) The rule split algorithm for deriving rules about and records in X.
For more information, see the topic “Decision Rule Split Algorithm.”

T A set of candidate list models.
ResultSet A collection of decision list models.

Decision List Algorithms

Algorithm Steps

The decision rule algorithm proceeds as follows:

1. Initialize the rule set.

E Let d = Search depth, and w = Search width.

E If R = , add to R.

E T = .

2. Loop over all rules in R.

E Select records covered by rule .

E Create an empty set S of new segments.

E Loop over attributes in A.
 Generate new segments based on attribute :

SplitRule

 Add new segments to S.

E Construct a set of new candidate rules by extending with each segment in S.

E Save extended rules to T. If S = , add to ResultSet.

3. Select rules from T.

E Calculate the estimated response probability for each extended rule in T as

E Select the w rules with the highest as .

Add to ResultSet.

E If d = 1, return ResultSet and terminate. Otherwise, set R = , T = , reduce d by one, a n d
repeat from step 2.

Decision Rule Split Algorithm

The decision rule split algorithm is used to generate high response segments from a single attribute
(field). The records and the attribute from which to generate segments should be given. This
algorithm is applicable to all ordinal attributes, and the ordinal attribute should have values that
are unambiguously ordered. The segments generated by the algorithm can be used to expand an
n-dimensional rule to an (n + 1)-dimensional rule. This decision rule split algorithm is sometimes
referred to as the sea-level method.

Decision List Algorithms

Notation

The following notations are used in describing the decision rule split algorithm:

Data matrix. Columns are fields (attributes), and rows are records (cases).

C A sorted list of attribute values (categories) to split. Values are sorted
in ascending order.

The ith category in the list of categories C.

 The value of the split field (attribute) for the nth record (row) of X.

Y The target field in X.

The value of the target field for the nth record.

N Total population size.
M Number of categories in C.

Observed response probability of category .

 A segment of categories,

The confidence interval (CI) for the response probability of .

 The category with the higher response probability from .

 The category with the larger number of records from .

Algorithm Steps

The decision rule split algorithm proceeds as follows:

1. Compute of each category .

If , will be skipped.

2. Find local maxima of to create a segment set.

where I is a positive integer satisfying the conditions

The segment set is the ordered segments based on

Decision List Algorithms

3. Select a segment in SegmentSet.

E If SegmentSet is empty, return ResultSet and terminate.

E Select the segment with the highest response probability .

E If or , remove the segment from SegmentSet and choose another.

4. Validate the segment.

E If the following conditions are satisfied:
 The size of the segment exceeds the minimum segment size criterion

where

 Response probability for the segment is significantly higher than that for the overall sample,
as indicated by non-overlapping confidence intervals

For more information, see the topic “Confidence Intervals.”
 Extending the segment would lower the response probability

and

then add the segment to ResultSet, and remove any segments from ResultSet that have
 as parent and for which .

5. Extend the segment.

E Add to , where

if
 if and

otherwise

E Adjust R or L accordingly, i.e. if , set ; if , set
.

E Return to SegmentSet, and repeat from step 3.

Confidence Intervals

The confidence limits for are calculated as

Decision List Algorithms

or .

where n is the coverage of the rule or list, x is the response frequency of the rule or list, α is the
desired confidence level, and is the inverse cumulative distribution function for F with a
and b degrees of freedom, for percentile .

Secondary Measures

For each segment, the following measures are reported:

Coverage. The number of records in the segment, .

Frequency. The number of records in the segment for which the response is true,
 .

Probability. The proportion of records in the segment for which the response is true, ,
Frequency
Coverage

Blank Handling

In decision list models, blank values for input fields can be treated as a separate category that can
be used to define segments, or can be excluded from the model, depending on the expert model
option. The default is to use blanks as a category for defining segments. Records with blank
values for the target field are excluded from model building.

Generated Model/Scoring

The decision list generated model consists of a set of segments. When scoring new data, each
record is evaluated for membership in each segment, in order. The first segment in model order
that describes the record based on the predictor fields claims the record and determines the
predicted value and the probability. Records where the predicted value is not the response value
will have a value of $null. Probabilities are calculated as described above.

Blank Handling

In scoring data with a decision list generated model, blanks are considered valid values for
defining segments. If the model was built with the expert option Allow missing values in conditions
disabled, a record with a missing value for one of the input fields will not match any segment
that depends on that field for its definition.

DISCRIMINANT Algorithms
No analysis is done for any subfile group for which the number of non-empty groups is less
than two or the number of cases or sum of weights fails to exceed the number of non-empty
groups. An analysis may be stopped if no variables are selected during variable selection or
the eigenanalysis fails.

Notation

The following notation is used throughout this chapter unless otherwise stated:
Table 14-1
Notation

Notation Description
g Number of groups
p Number of variables
q Number of variables selected

 Value of variable i for case k in group j

 Case weights for case k in group j

Number of cases in group j

Sum of case weights in group j

n Total sum of weights

Basic Statistics

The procedure calculates the following basic statistics.

Mean

Variances

variable in group

variable

 variable in group

variable

DISCRIMINANT Algorithms

Within-Groups Sums of Squares and Cross-Product Matrix (W)

Total Sums of Squares and Cross-Product Matrix (T)

Within-Groups Covariance Matrix

Individual Group Covariance Matrices

Within-Groups Correlation Matrix (R)

if
SYSMIS otherwise

Total Covariance Matrix

Univariate F and Λfor Variable I

with g−1 and n−g degrees of freedom

with 1, g−1 and n−g degrees of freedom

Rules of Variable Selection

Both direct and stepwise variable entry are possible. Multiple inclusion levels may also be
specified.

Method = Direct

DISCRIMINANT Algorithms

For direct variable selection, variables are considered for inclusion in the order in which they are
passed from the upstream node. A variable is included in the analysis if, when it is included,
no variable in the analysis will have a tolerance less than the specified tolerance limit (default
= 0.001).

Stepwise Variable Selection

At each step, the following rules control variable selection:
 Eligible variables with higher inclusion levels are entered before eligible variables with lower

inclusion levels.
 The order of entry of eligible variables with the same even inclusion level is determined by

their order in the upstream node.
 The order of entry of eligible variables with the same odd level of inclusion is determined

by their value on the entry criterion. The variable with the “best” value for the criterion
statistic is entered first.

 When level-one processing is reached, prior to inclusion of any eligible variables, all
already-entered variables which have level one inclusion numbers are examined for removal.
A variable is considered eligible for removal if its F-to-remove is less than the F value for
variable removal, or, if probability criteria are used, the significance of its F-to-remove
exceeds the specified probability level. If more than one variable is eligible for removal, that
variable is removed that leaves the “best” value for the criterion statistic for the remaining
variables. Variable removal continues until no more variables are eligible for removal.
Sequential entry of variables then proceeds as described previously, except that after each step,
variables with inclusion numbers of one are also considered for exclusion as described before.

 A variable with a zero inclusion level is never entered, although some statistics for it are
printed.

Ineligibility for Inclusion

A variable with an odd inclusion number is considered ineligible for inclusion if:
 The tolerance of any variable in the analysis (including its own) drops below the specified

tolerance limit if it is entered, or
 Its F-to-enter is less than the F-value for a variable to enter value, or
 If probability criteria are used, the significance level associated with its F-to-enter exceeds the

probability to enter.

A variable with an even inclusion number is ineligible for inclusion if the first condition above
is met.

DISCRIMINANT Algorithms

Computations During Variable Selection

During variable selection, the matrix W is replaced at each step by a new matrix using the
symmetric sweep operator described by Dempster (1969). If the first q variables have been
included in the analysis, W may be partitioned as:

where W11 is q×q. At this stage, the matrix is defined by

In addition, when stepwise variable selection is used, T is replaced by the matrix , defined
similarly.

The following statistics are computed.

Tolerance

TOL

if
if variable is not in the analysis and
if variable is in the analysis and

If a variable’s tolerance is less than or equal to the specified tolerance limit, or its inclusion in the
analysis would reduce the tolerance of another variable in the equation to or below the limit, the
following statistics are not computed for it or any set including it.

F-to-Remove

with degrees of freedom g−1 and n−q−g+1.

F- to-Enter

with degrees of freedom g−1 and n−q−g.

Wilks’ Lambda for Testing the Equality of Group Means

with degrees of freedom q, g−1 and n−g.

DISCRIMINANT Algorithms

The Approximate F Test for Lambda (the “overall F”), also known as Rao’s R (Tatsuoka,
1971)

with degrees of freedom qh and r/s+1−qh/2. The approximation is exact if q or h is 1 or 2.

Rao’s V (Lawley-Hotelling Trace) (Rao, 1952; Morrison, 1976)

When n−g is large, V, under the null hypothesis, is approximately distributed as with q(g−1)
degrees of freedom. When an additional variable is entered, the change in V, if positive, has
approximately a distribution with g−1 degrees of freedom.

The Squared Mahalanobis Distance (Morrison, 1976) between groups a and b

The F Value for Testing the Equality of Means of Groups a and b (Smallest F ratio)

The Sum of Unexplained Variations (Dixon, 1973)

Classification Functions
Once a set of q variables has been selected, the classification functions (also known as Fisher’s
linear discriminant functions) can be computed using

for the coefficients, and

DISCRIMINANT Algorithms

for the constant, where is the prior probability of group j.

Canonical Discriminant Functions

The canonical discriminant function coefficients are determined by solving the general eigenvalue
problem

where V is the unscaled matrix of discriminant function coefficients and λ is a diagonal matrix of
eigenvalues. The eigensystem is solved as follows:

The Cholesky decomposition

is formed, where L is a lower triangular matrix, and .

The symmetric matrix is formed and the system

is solved using tridiagonalization and the QL method. The result is m eigenvalues, where
 and corresponding orthonormal eigenvectors, UV. The eigenvectors of the

original system are obtained as

For each of the eigenvalues, which are ordered in descending magnitude, the following statistics
are calculated.

Percentage of Between-Groups Variance Accounted for

Canonical Correlation

DISCRIMINANT Algorithms

Wilks’ Lambda

Testing the significance of all the discriminating functions after the first k:

The significance level is based on

which is distributed as a with (q−k)(g−k−1) degrees of freedom.

The Standardized Canonical Discriminant Coefficient Matrix D

The standard canonical discriminant coefficient matrix D is computed as

where

S=diag

S11= partition containing the first q rows and columns of S

V is a matrix of eigenvectors such that =I

The Correlations Between the Canonical Discriminant Functions and the Discriminating
Variables

The correlations between the canonical discriminant functions and the discriminating variables
are given by

If some variables were not selected for inclusion in the analysis (q<p), the eigenvectors are
implicitly extended with zeroes to include the nonselected variables in the correlation matrix.
Variables for which are excluded from S and W for this calculation; p then
represents the number of variables with non-zero within-groups variance.

The Unstandardized Coefficients

The unstandardized coefficients are calculated from the standardized ones using

DISCRIMINANT Algorithms

The associated constants are:

The group centroids are the canonical discriminant functions evaluated at the group means:

Tests For Equality Of Variance

Box’s M is used to test for equality of the group covariance matrices.

log log

where

 = pooled within-groups covariance matrix excluding groups with singular covariance matrices

 = covariance matrix for group j.

Determinants of and are obtained from the Cholesky decomposition. If any diagonal
element of the decomposition is less than 10-11, the matrix is considered singular and excluded
from the analysis.

where is the ith diagonal entry of L such that . Similarly,

where

= sum of weights of cases in all groups with nonsingular covariance matrices

The significance level is obtained from the F distribution with t1 and t2 degrees of freedom
using (Cooley and Lohnes, 1971):

if
if

where

DISCRIMINANT Algorithms

if
if

If is zero, or much smaller than e2, t2 cannot be computed or cannot be computed
accurately. If

the program uses Bartlett’s statistic rather than the F statistic:

with t1 degrees of freedom.

For testing the group covariance matrix of the canonical discriminant functions, the procedure is
similar. The covariance matrices and are replaced by and , where

is the group covariance matrix of the discriminant functions.

The pooled covariance matrix in this case is an identity, so that

where the summation is only over groups with singular .

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

Generated model/scoring

The basic procedure for classifying a case is as follows:
 If X is the 1×q vector of discriminating variables for the case, the 1×m vector of canonical

discriminant function values is

DISCRIMINANT Algorithms

where

 A chi-square distance from each centroid is computed

where is the covariance matrix of canonical discriminant functions for group j and is
the group centroid vector. If the case is a member of group j, has a distribution with
m degrees of freedom. P(X|G), labeled as P(D>d|G=g) in the output, is the significance
level of such a .

 The classification, or posterior probability, is

is the prior probability for group j. A case is classified into the group for which
is highest.

The actual calculation of is

if

otherwise

If individual group covariances are not used in classification, the pooled within-groups covariance
matrix of the discriminant functions (an identity matrix) is substituted for in the above
calculation, resulting in considerable simplification.

If any is singular, a pseudo-inverse of the form

replaces and replaces . is a submatrix of whose rows and columns
correspond to functions not dependent on preceding functions. That is, function 1 will be excluded
only if the rank of , function 2 will be excluded only if it is dependent on function 1, and
so on. This choice of the pseudo-inverse is not optimal for the numerical stability of , but
maximizes the discrimination power of the remaining functions.

Cross-Validation (Leave-one-out classification)

The following notation is used in this section:
Table 14-2
Notation

Notation Description

DISCRIMINANT Algorithms

Notation Description
Sample mean of jth group

Sample mean of jth group excluding point

Polled sample covariance matrix

 Sample covariance matrix of jth group

 Polled sample covariance matrix without point

Cross-validation applies only to linear discriminant analysis (not quadratic). During
cross-validation, all cases in the dataset are looped over. Each case, say , is extracted once and
treated as test data. The remaining cases are treated as a new dataset.

Here we compute and . If there is an i

satisfies (), then the extracted point

is misclassified. The estimate of prediction error rate is the ratio of the sum of misclassified
case weights and the sum of all case weights.

To reduce computation time, the linear discriminant method is used instead of the canonical
discriminant method. The theoretical solution is exactly the same for both methods.

Blank Handling (discriminant analysis algorithms scoring)

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.

References

Anderson, T. W. 1958. Introduction to multivariate statistical analysis. New York: John Wiley &
Sons, Inc.

DISCRIMINANT Algorithms

Cooley, W. W., and P. R. Lohnes. 1971. Multivariate data analysis. New York: John Wiley &
Sons, Inc..

Dempster, A. P. 1969. Elements of Continuous Multivariate Analysis. Reading, MA:
Addison-Wesley.

Dixon, W. J. 1973. BMD Biomedical computer programs. Los Angeles: University of California
Press.

Tatsuoka, M. M. 1971. Multivariate analysis. New York: John Wiley & Sons, Inc. .

Ensembles Algorithms
Ensembles are used to enhance model accuracy (boosting), enhance model stability (bagging),
build models for very large datasets (pass, stream, merge), and generally combine scores from
different models.
 For more information, see the topic “Very large datasets (pass, stream, merge) algorithms.”
 For more information, see the topic “Bagging and Boosting Algorithms.”
 For more information, see the topic “Ensembling model scores algorithms.”

Bagging and Boosting Algorithms

Bootstrap aggregating (Bagging) and boosting are algorithms used to improve model stability and
accuracy. Bagging works well for unstable base models and can reduce variance in predictions.
Boosting can be used with any type of model and can reduce variance and bias in predictions.

Notation

The following notation is used for bagging and boosting unless otherwise stated:

K The number of distinct records in the training set.
Predictor values for the kth record.

Target value for the kth record.

 Frequency weight for the kth record.

Analysis weight for the kth record.

N The total number of records; .
M The number of base models to build; for bagging, this is the number of

bootstrap samples.
The model built on the mth bootstrap sample.

 Simulated frequency weight for the kth record of the mth bootstrap sample.

 Updated analysis weight for the kth record of the mth bootstrap sample.

 Predicted target value of the kth record by the mth model.

For a categorical target, the probability that the kth record belongs to
category , i=1, ..., C, in model m.
For any condition , is 1 if holds and 0 otherwise.

Ensembles Algorithms

Bootstrap Aggregation

Bootstrap aggregation (bagging) produces replicates of the training dataset by sampling with
replacement from the original dataset. This creates bootstrap samples of equal size to the original
dataset. The algorithm is performed iteratively over k=1,..,K and m=1,...,M to generate frequency
weights:

Then a model is built on each replicate. Together these models form an ensemble model. The
ensemble model scores new records using one of the following methods; the available methods
depend upon the measurement level of the target.

Scoring a Continuous Target

 Mean

 Median

Sort and relabel them

if is odd

if is even

Scoring a Categorical Target

 Voting

where
 Highest probability

 Highest mean probability

Ensembles Algorithms

Bagging Model Measures

Accuracy

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated
with each ensemble method), and base models.

For categorical targets, the classification accuracy is

For continuous targets, it is

where

Note that R2 can never be greater than one, but can be less than zero.

For the naïve model, is the modal category for categorical targets and the mean for continuous
targets.

Diversity

Diversity is a range measure between 0 and 1 in the larger-is-more-diverse form. It shows how
much predictions vary across base models.

For categorical targets, diversity is

where .

For continuous targets, diversity is

D

Ensembles Algorithms

Adaptive Boosting

Adaptive boosting (AdaBoost) is an algorithm used to boost models with continuous targets
(Freund and Schapire 1996, Drucker 1997).

1. Initialize values.

Set
if analysis weights specified

otherwise

Set m=1, , and . Note that analysis weights are initialized even if the
method used to build base models does not support analysis weights.

2. Build base model m, , using the training set and score the training set.

Set the model weight for base model m,

where .

3. Set weights for the next base model.

where . Note that analysis weights are always updated. If

the method used to build base models does not support analysis weights, the frequency weights
are updated for the next base model as follows:

If m<M, set m=m+1 and go to step 2. Otherwise, the ensemble model is complete.

Note: base models where or are removed from the

ensemble.

Scoring

AdaBoost uses the weighted median method to score the ensemble model.

Sort and relabel them , retaining the association of the model weights, ,
and relabeling them

Ensembles Algorithms

The ensemble predicted value is then , where i is the value such that

Stagewise Additive Modeling using Multiclass Exponential loss

Stagewise Additive Modeling using a Multiclass Exponential loss function (SAMME) is an
algorithm that extends the original AdaBoost algorithm to categorical targets.

1. Initialize values.

Set
if analysis weights specified

otherwise

Set m=1, , and . Note that analysis weights are initialized even if the
method used to build base models does not support analysis weights.

2. Build base model m, , using the training set and score the training set.

Set the model weight for base model m,

where .

3. Set weights for the next base model.

where . Note that analysis weights are always updated. If the
method used to build base models does not support analysis weights, the frequency weights are
updated for the next base model as follows:

If m<M, set m=m+1 and go to step 2. Otherwise, the ensemble model is complete.

Note: base models where or are removed from the ensemble.

Scoring

SAMME uses the weighted majority vote method to score the ensemble model.

The predicted value of the kth record for the mth base model is .

The ensemble predicted value is then . Ties are resolved

at random.

Ensembles Algorithms

The ensemble predicted probability is .

Boosting Model Measures

Accuracy

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated
with each ensemble method), and base models.

For categorical targets, the classification accuracy is

For continuous targets, it is

where

Note that R2 can never be greater than one, but can be less than zero.

For the naïve model, is the modal category for categorical targets and the mean for continuous
targets.

References

Drucker, H. 1997. Improving regressor using boosting techniques. In: Proceedings of the 14th
International Conferences on Machine Learning , D. H. Fisher,Jr., ed. San Mateo, CA: Morgan
Kaufmann, 107–115.

Freund, Y., and R. E. Schapire. 1995. A decision theoretic generalization of on-line learning and
an application to boosting. In: Computational Learning Theory: 7 Second European Conference,
EuroCOLT ’95, , 23–37.

Very large datasets (pass, stream, merge) algorithms

We implement the PSM features PASS, STREAM, and MERGE through ensemble modeling.
PASS builds models on very large data sets with only one data pass; STREAM updates the
existing model with new cases without the need to store or recall the old training data; MERGE
builds models in a distributed environment and merges the built models into one model.

Ensembles Algorithms

In an ensemble model, the training set will be divided into subsets called blocks, and a model will
be built on each block. Because the blocks may be dispatched to different threads (here one process
contains one thread) and even different machines, models in different processes can be built at the
same time. As new data blocks arrive, the algorithm simply repeats this procedure. Therefore it
can easily handle the data stream and perform incremental learning for ensemble modeling.

Pass

The PASS operation includes following steps:

1. Split the data into training blocks, a testing set and a holdout set. Note that the frequency weight,
if specified, is ignored when splitting the training set into blocks (to prevent blocks from being
entirely represented by a single case) but is accounted for when creating the testing and holdout
sets.

2. Build base models on training blocks and build a reference model on the testing set. A single

model is built on the testing set and each training block.

3. Evaluate each base model by computing the accuracy based on the testing set. Select a subset
of base models as ensemble elements according to accuracy.

4. Evaluate the ensemble model and the reference model by computing the accuracy based on

the holdout set. If the ensemble model’s performance is not better than the reference model’s
performance on the holdout set, we use the reference model to score the new cases.

Computing Model Accuracy

The accuracy of a base model is assessed on the testing set. For each vector of predictors and
the corresponding label observed in the testing set T, let be the label predicted by the
given model. Then the testing error is estimated as:

Categorical
target.

Continuous
target.

Where is 1 if and 0 otherwise.

The accuracy for the given model is computed by A=1−E. The accuracy for the whole ensemble
model and the reference model is assessed on the holdout set.

Ensembles Algorithms

Stream

When new cases arrive and the user wants to update the existing ensemble model with these
cases, the algorithm will:

1. Start a PASS operation to build an ensemble model on the new data, then

2. MERGE the newly created ensemble model and the existing ensemble model.

Merge

The MERGE operation has the following steps:

1. Merge the holdout sets into a single holdout set and, if necessary, reduce this set to a reasonable
size.

2. Merge the testing sets into a single testing set and, if necessary, reduce this set to a reasonable size.

3. Build a merged reference model on the merged testing set.

4. Evaluate every base model by computing the accuracy based on the merged testing set. Select a
subset of base models as elements of the merged ensemble model according to accuracy.

5. Evaluate the merged ensemble model and the merged reference model by computing the accuracy
based on the merged holdout set.

Adaptive Predictor Selection

There are two methods, depending upon whether the method used to build base models has an
internal predictor selection algorithm.

Method has predictor selection algorithm

The first base model is built with all predictors available to the method’s predictor selection
algorithm. Base model j (j > 1) makes the ith predictor available with probability

where is the number of times the ith predictor was selected by the method’s predictor selection
algorithm in the previous j−1 base models, is the number of times the ith predictor was made
available to the method’s predictor selection algorithm in the previous j−1 base models, C is a
constant to smooth the value of , and is a lower limit on .

Method does not have predictor selection algorithm

Each base model makes the ith predictor available with probability

Ensembles Algorithms

if
otherwise

where is the p-value of a test for the ith predictor, as defined below.
 For a categorical target and categorical predictor, is a chi-square test of

 For a categorical target and continuous predictor, is an F test of

with degrees of freedom . is the

number of cases with Y=j, and are the sample mean and sample variance of X given
Y=j, and

 For a continuous target and categorical predictor, is an F test of
with degrees of freedom . is the

number of cases with X=i, and are the sample mean and sample variance of Y given
X=i, and .

 For a continuous target and continuous predictor, is a two-sided t test of where

and with degrees of freedom . is the sample variance

of X and is the sample variance of Y.

Automatic Category Balancing

When a target category occurs relatively infrequently, many models do a poor job of predicting
members of that rarely occurring category, even if the overall prediction rate of the model is fairly
good. Automatic category balancing should improves the model’s accuracy when predicting
infrequently occurring values.

As records arrive, they are added to a training block until it is full. Then the proportion of records
in each category is computed: , where is the weighted number of records taking
category i and w is the total weighted number of records.

E If there is any category such that , where is the number of target categories
and = 0.3, then randomly remove each record from the training block with probability

This operation will tend to remove records from frequently-occurring categories. Add new records
to the training block until it is full again, and repeat this step until the condition is not satisfied.

E If there is any category such that , then recompute the frequency weight for record k as
 , where is the category of the kth record. This operation

gives greater weight to infrequently occurring categories.

Ensembles Algorithms

Model Measures

The following notation applies.

N Total number of records
M Total number of base models

 The frequency weight of record k

The observed target value of record k

 The predicted target value of record k by the ensemble model

 The predicted target value of record k by base model m

Accuracy

Accuracy is computed for the naive model, reference (simple) model, ensemble model (associated
with each ensemble method), and base models.

For categorical targets, the classification accuracy is

where

if
otherwise

For continuous targets, it is

where

Note that R2 can never be greater than one, but can be less than zero.

For the naïve model, is the modal category for categorical targets and the mean for continuous
targets.

Diversity

Diversity is a range measure between 0 and 1 in the larger-is-more-diverse form. It shows how
much predictions vary across base models.

For categorical targets, diversity is

Ensembles Algorithms

where and is defined as above.

Diversity is not available for continuous targets.

Scoring

There are several strategies for scoring using the ensemble models.

Continuous Target

Mean.

Median.

where is the final predicted value of case i, and is the mth base model’s predicted
value of case i.

Categorical Target

Voting. Assume that represents the label output of the mth base model for a given vector of
predictor values. if the label assigned by the mth base model is the kth target category
and 0 otherwise. There are total of M base models and K target categories. The majority vote
method selects the jth category if it is assigned by the plurality of base models. It satisfies the
following equation:

Let be the testing error estimated for the mth base model. Weights for the weighted majority
vote are then computed according to the following expression:

Probability voting. Assume that is the posterior probability estimated for the kth target
category by the mth base model for a given vector of predictor values. The following rules
combine the probabilities computed by the base models. The jth category is selected such that it
satisfies the corresponding equation.

Ensembles Algorithms

Ties are resolved at random.

Softmax smoothing. The softmax function can be used for smoothing the probabilities:

where is the rule-based confidence for category i and is the smoothed value.

Ensembling model scores algorithms

Ensembling scores from individual models can give more accurate predictions. By combining
scores from multiple models, limitations in individual models may be avoided, resulting in a
higher overall accuracy. Models combined in this manner typically perform at least as well as the
best of the individual models and often better.

Note that while the options for general ensembling of scores are similar to those for boosting,
bagging, and very large datasets, the specific options for combining scoring are slightly different.

Notation

The following notation applies.

N Total number of records
M Total number of base models

The observed target value of record i

 The predicted target value of record i by the ensemble model

 The predicted target value of record i by base model m

Scoring

There are several strategies for scoring using the ensemble models.

Continuous Target

Mean.

where is the final predicted value of case i, and is the mth base model’s predicted
value of case i.

Standard error.

Ensembles Algorithms

m 1 m 1

Categorical Target

Voting. Assume that represents the label output of the mth base model for a given vector of
predictor values. if the label assigned by the mth base model is the kth target category
and 0 otherwise. There are total of M base models and K target categories. The majority vote
method selects the jth category if it is assigned by the plurality of base models. It satisfies the
following equation:

Confidence-weighted (probability) voting. Assume that is the posterior probability estimated
for the kth target category by the mth base model for a given vector of predictor values. The
following rules combine the probabilities computed by the base models. The jth category is
selected such that it satisfies the corresponding equation.

Highest confidence (probability) wins.

M (maxM

Raw propensity-weighted voting. This is equivalent to confidence-weighted voting for a flag target,
where the weights for true are the propensities and the weights for false are 1−propensity.

Adjusted propensity-weighted voting. This is similar to raw propensity-weighted voting for a
flag target, where the weights for true are the adjusted propensities and the weights for false
are 1−adjusted propensity.

Average raw propensity. The raw propensities scores are averaged across the base models. If the
average is > 0.5, then the record is scored as true.

Average adjusted propensity. The adjusted propensities scores are averaged across the base models.
If the average is > 0.5, then the record is scored as true.

Factor Analysis/PCA Algorithms

Overview

The Factor/PCA node performs principal components analysis and six types of factor analysis.

Primary Calculations

Factor Extraction

Principal Components Analysis

The matrix of factor loadings based on factor m is

where

The communality of variable i is given by

Analyzing a Correlation Matrix

are the eigenvalues and are the corresponding eigenvectors of , where
is the correlation matrix.

Analyzing a Covariance Matrix

are the eigenvalues and are the corresponding eigenvectors of , where
is the covariance matrix.

The rescaled loadings matrix is

The rescaled communality of variable i is

Factor Analysis/PCA Algorithms

Principal Axis Factoring

Analyzing a Correlation Matrix

An iterative solution for communalities and factor loadings is sought. At iteration i, the
communalities from the preceding iteration are placed on the diagonal of , and the resulting is
denoted by . The eigenanalysis is performed on , and the new communality of variable j
is estimated by

The factor loadings are obtained by

Iterations continue until the maximum number (default 25) is reached or until the maximum
change in the communality estimates is less than the convergence criterion (default 0.001).

Analyzing a Covariance Matrix

This analysis is the same as analyzing a correlation matrix, except is used instead of the
correlation matrix . Convergence is dependent on the maximum change of rescaled communality
estimates.

At iteration i, the rescaled loadings matrix is . The rescaled
communality of variable i is

Maximum Likelihood

The maximum likelihood solutions of and are obtained by minimizing

with respect to and , where p is the number of variables, is the factor loading matrix, and
 is the diagonal matrix of unique variances.
The minimization of F is performed by way of a two-step algorithm. First, the conditional

minimum of F for a given y is found. This gives the function , which is minimized
numerically using the Newton-Raphson procedure. Let be the column vector containing the
logarithm of the diagonal elements of y at the sth iteration. Then

where is the solution to the system of linear equations

and where

Factor Analysis/PCA Algorithms

and is the column vector containing . The starting point is

where m is the number of factors and is the ith diagonal element of .
The values of , , and can be expressed in terms of the eigenvalues

and corresponding eigenvectors , ,..., of matrix . That is,

where

The approximate second-order derivatives

are used in the initial step and when the matrix of the exact second-order derivatives is not positive
definite or when all elements of the vector are greater than 0.1. If (Heywood
variables), the diagonal element is replaced by 1 and the rest of the elements of that column and
row are set to 0. If the value of is not decreased by step , the step is halved and halved
again until the value of decreases or 25 halvings fail to produce a decrease. (In this case, the
computations are terminated.) Stepping continues until the largest absolute value of the elements
of is less than the criterion value (default 0.001) or until the maximum number of iterations
(default 25) is reached. Using the converged value of (denoted by), the eigenanalysis is
performed on the matrix . The factor loadings are computed as

where

Factor Analysis/PCA Algorithms

Unweighted and Generalized Least Squares

The same basic algorithm is used in ULS and GLS as in maximum likelihood, except that

for ULS
 for GLS

for the ULS method, the eigenanalysis is performed on the matrix , where
are the eigenvalues. In terms of the derivatives, for ULS,

and

For GLS,

and

Also, the factor loadings of the ULS method are obtained by

The chi-square statistic for m factors for the ML and GLS methods is given by

Factor Analysis/PCA Algorithms

with degrees of freedom.

Alpha Factoring

Alpha factoring involves an iterative procedure, where at each iteration i:

The eigenvalues () and eigenvectors () of

are computed.

The new communalities are

The initial values of the communalities, , are

 and all
otherwise

where is the ith diagonal entry of .

If and all are equal to one, the procedure is terminated. If for some i, ,
the procedure is terminated.

Iteration stops if any of the following are true:

 for any

The communalities are the values when iteration stops, unless the last termination criterion is true,
in which case the procedure terminates. The factor pattern matrix is

where f is the final iteration.

Factor Analysis/PCA Algorithms

Image Factoring

Analyzing a Correlation Matrix

Eigenvalues and eigenvectors of are found.

where is the ith diagonal element of

The factor pattern matrix is

where and correspond to the m eigenvalues greater than 1 (and the associated
eigenvectors). If , the procedure is terminated.

The communalities are

The image covariance matrix is

The anti-image covariance matrix is

Analyzing a Covariance Matrix

When analyzing a covariance matrix, the covariance matrix is used instead of the correlation
matrix . The calculation is similar to the correlation matrix case.

The rescaled factor pattern matrix is

and the rescaled communality of variable i is .

Factor Analysis/PCA Algorithms

Factor Rotation

Orthogonal Rotations

Rotations are done cyclically on pairs of factors until the maximum number of iterations is
reached or the convergence criterion is met. The algorithm is the same for all orthogonal rotations,
differing only in computations of the tangent values of the rotation angles.

The factor pattern matrix is normalized by the square root of communalities:

where

 is the factor pattern matrix

The tranformation matrix is initialized to .

At each iteration i:
 The convergence criterion is

where the initial value of is the original factor pattern matrix. For subsequent iterations,
the initial value is the final value of when all factor pairs have been rotated.

For all pairs of factors ,) where , the following are computed:
 The angle of rotation is

where

Factor Analysis/PCA Algorithms

If , no rotation is done on the pair of factors.
 The new rotated factors are

where are the last values for factor j calculated in this iteration.
 The accrued rotation transformation matrix is

where and are the last calculated values of the jth and kth columns of .
 Iteration is terminated when

or the maximum number of iterations is reached.

Final rotated factor pattern matrix

where is the value of the last iteration.

Reflect factors with negative sums. If

then

Rearrange the rotated factors such that

The communalities are

Factor Analysis/PCA Algorithms

Direct Oblimin Rotation

The direct oblimin method (Jennrich and Sampson, 1966) is used for oblique rotation. The user
can choose the parameter . The default value is .

The factor pattern matrix is normalized by the square root of the communalities

where

If no Kaiser is specified, this normalization is not done.

Initializations

The factor correlation matrix is initialized to . The following are also computed:

Factor Analysis/PCA Algorithms

At each iteration, all possible factor pairs are rotated. For a pair of factors and (),
the following are computed:

A root a of the equation is computed, as well as

The rotated pair of factors is

Factor Analysis/PCA Algorithms

These replace the previous factor values.

New values are computed for

All values designated with a tilde (~) replace the original values and are used in subsequent
calculations.

The new factor correlations with factor p are

After all factor pairs have been rotated, iteration is terminated if:

MAX iterations have been done, or

where

Factor Analysis/PCA Algorithms

Otherwise, the factor pairs are rotated again.

The final rotated factor pattern matrix is

where is the value in the final iteration.

The factor structure matrix is

where is the factor correlation matrix in the final iteration.

Promax Rotation

The promax rotation is a computationally fast rotation (Hendrickson and White, 1964). The speed
is achieved by first rotating to an orthogonal varimax solution and then relaxing the orthogonality
of the factors to better fit the simple structure.

Varimax rotation is used to get an orthogonal rotated matrix .

The matrix is calculated, where

Here, is the power of promax rotation .

The matrix is calculated.

The matrix is normalized by column to a transformation matrix

where is the diagonal matrix that normalizes the columns of .

At this stage, the rotated factors are

Factor Analysis/PCA Algorithms

Because , and the diagonal elements do not equal 1, we must
modify the rotated factor to

where

The rotated factor pattern is

The correlation matrix of the factors is

The factor structure matrix is

Factor Score Coefficients

IBM® SPSS® Modeler uses the regression method of computing factor score coefficients
(Harman, 1976).

where is the factor structure matrix. For orthogonal rotations .
For principal components analysis without rotation, if any , factor score coefficients

are not computed. For principal components with rotation, if the determinant of is less
than , the coefficients are not computed. Otherwise, if is singular, factor score coefficients
are not computed.

Blank Handling

By default, a case that has a missing value for any input or output field is deleted from the
computation of the correlation matrix on which all consequent computations are based. If the Only
use complete records option is deselected, each correlation in the correlation matrix is computed
based on records with complete data for the two fields associated with the correlation, regardless
of missing values on other fields. For some datasets, this approach can lead to a nonpositive
definite matrix, so that the model cannot be estimated.

Factor Analysis/PCA Algorithms

Secondary Calculations

Field Statistics and Other Calculations

The statistics shown in the advanced output for the regression equation node are calculated in the
same manner as in the FACTOR procedure in IBM® SPSS® Statistics. For more details, see the
SPSS Statistics Factor algorithm document, available at http://www.ibm.com/support.

Generated Model/Scoring

Factor Scores

Factor scores are assigned to scored records by applying the factor score coefficients to the input
field value for the record,

where is the factor score for the kth factor, is the factor score coefficient for the ith input
field (from the matrix) and the kth factor, and is the value of the ith input field for the record
being scored. For more information, see the topic “Factor Score Coefficients.”

Blank Handling

Records with missing values for any input field in the final model cannot be scored and are
assigned factor/component score values of $null$.

http://www.ibm.com/support

Feature Selection Algorithm

Introduction

Data mining problems often involve hundreds, or even thousands, of variables. As a result,
the majority of time and effort spent in the model-building process involves examining which
variables to include in the model. Fitting a neural network or a decision tree to a set of variables
this large may require more time than is practical.

Feature selection allows the variable set to be reduced in size, creating a more manageable set
of attributes for modeling. Adding feature selection to the analytical process has several benefits:
 Simplifies and narrows the scope of the features that is essential in building a predictive model.
 Minimizes the computational time and memory requirements for building a predictive model

because focus can be directed to the subset of predictors that is most essential.
 Leads to more accurate and/or more parsimonious models.
 Reduces the time for generating scores because the predictive model is based upon only a

subset of predictors.

Primary Calculations

Feature selection consists of three steps:
 Screening. Removes unimportant and problematic predictors and cases.
 Ranking. Sorts remaining predictors and assigns ranks.
 Selecting. Identifies the important subset of features to use in subsequent models.

The algorithm described here is limited to the supervised learning situation in which a set of
predictor variables is used to predict a target variable. Any variables in the analysis can be either
categorical or continuous. Common target variables include whether or not a customer churns,
whether or not a person will buy, and whether or not a disease is present.

The terms features, variables, and attributes are often used interchangeably. Within this
document, we use variables and predictors when discussing input to the feature selection
algorithm, with features referring to the predictors that actually get selected by the algorithm for
use in a subsequent modeling process.

Screening

This step removes variables and cases that do not provide useful information for prediction and
issues warnings about variables that may not be useful.

The following variables are removed:
 Variables that have all missing values.
 Variables that have all constant values.
 Variables that represent case ID.

Feature Selection Algorithm

The following cases are removed:
 Cases that have missing target values.
 Cases that have missing values in all its predictors.

The following variables are removed based on user settings:
 Variables that have more than m1% missing values.
 Categorical variables that have a single category counting for more than m2% cases.
 Continuous variables that have standard deviation < m3%.
 Continuous variables that have a coefficient of variation |CV| < m4%. CV = standard

deviation / mean.
 Categorical variables that have a number of categories greater than m5% of the cases.

Values m1, m2, m3, m4, and m5 are user-controlled parameters.

Ranking Predictors

This step considers one predictor at a time to see how well each predictor alone predicts the target
variable. The predictors are ranked according to a user-specified criterion. Available criteria
depend on the measurement levels of the target and predictor.

The importance value of each variable is calculated as , where p is the p value of the
appropriate statistical test of association between the candidate predictor and the target variable,
as described below.

Categorical Target

This section describes ranking of predictors for a categorical target under the following scenarios:
 All predictors categorical
 All predictors continuous
 Some predictors categorical, some continuous

All Categorical Predictors

The following notation applies:
Table 17-1
Notation

Notation Description
X The predictor under consideration with I categories.
Y Target variable with J categories.
N Total number of cases.

 The number of cases with X = i and Y = j.

Feature Selection Algorithm

Notation Description

The number of cases with X = i.

 The number of cases with Y = j.

The above notations are based on nonmissing pairs of (X, Y). Hence J, N, and may be
different for different predictors.

P Value Based on Pearson’s Chi-square

Pearson’s chi-square is a test of independence between X and Y that involves the difference
between the observed and expected frequencies. The expected cell frequencies under the null
hypothesis of independence are estimated by . Under the null hypothesis,
Pearson’s chi-square converges asymptotically to a chi-square distribution with degrees
of freedom d = (I−1)(J−1).

The p value based on Pearson’s chi-square X2 is calculated by p value = Prob(> X2), where

 .

Predictors are ranked by the following rules.

1. Sort the predictors by p value in the ascending order

2. If ties occur, sort by chi-square in descending order.

3. If ties still occur, sort by degree of freedom d in ascending order.

4. If ties still occur, sort by the data file order.

P Value Based on Likelihood Ratio Chi-square

The likelihood ratio chi-square is a test of independence between X and Y that involves the ratio
between the observed and expected frequencies. The expected cell frequencies under the null
hypothesis of independence are estimated by . Under the null hypothesis, the
likelihood ratio chi-square converges asymptotically to a chi-square distribution with degrees
of freedom d = (I−1)(J−1).

The p value based on likelihood ratio chi-square G2 is calculated by p value = Prob(> G2), where

 , with

else.

Predictors are ranked according to the same rules as those for the p value based on Pearson’s
chi-square.

Cramer’s V

Feature Selection Algorithm

Cramer’s V is a measure of association, between 0 and 1, based upon Pearson’s chi-square. It is
defined as

.

Predictors are ranked by the following rules:

1. Sort predictors by Cramer’s V in descending order.

2. If ties occur, sort by chi-square in descending order.

3. If ties still occur, sort by data file order.

Lambda

Lambda is a measure of association that reflects the proportional reduction in error when values of
the independent variable are used to predict values of the dependent variable. A value of 1 means
that the independent variable perfectly predicts the dependent variable. A value of 0 means that
the independent variable is no help in predicting the dependent variable. It is computed as

.

Predictors are ranked by the following rules:

1. Sort predictors by lambda in descending order.

2. If ties occur, sort by I in ascending order.

3. If ties still occur, sort by data file order.

All Continuous Predictors

If all predictors are continuous, p values based on the F statistic are used. The idea is to perform a
one-way ANOVA F test for each continuous predictor; this tests if all the different classes of Y
have the same mean as X.

The following notation applies:
Table 17-2
Notation
Notation Description

 The number of cases with Y = j.

 The sample mean of predictor X for target class Y = j.

 The sample variance of predictor X for target class Y = j.

The grand mean of predictor X.

Feature Selection Algorithm

The above notations are based on nonmissing pairs of (X, Y).

P Value Based on the F Statistic

The p value based on the F statistic is calculated by p value = Prob{F(J−1, N−J)> F}, where

,

and F(J−1, N−J) is a random variable that follows an F distribution with degrees of freedom J−1
and N−J. If the denominator for a predictor is zero, set the p value = 0 for the predictor.

Predictors are ranked by the following rules:

1. Sort predictors by p value in ascending order.

2. If ties occur, sort by F in descending order.

3. If ties still occur, sort by N in descending order.

4. If ties still occur, sort by the data file order.

Mixed Type Predictors

If some predictors are continuous and some are categorical, the criterion for continuous predictors
is still the p value based on the F statistic, while the available criteria for categorical predictors are
restricted to the p value based on Pearson’s chi-square or the p value based on the likelihood ratio
chi-square. These p values are comparable and therefore can be used to rank the predictors.

Predictors are ranked by the following rules:

1. Sort predictors by p value in ascending order.

2. If ties occur, follow the rules for breaking ties among all categorical and all continuous predictors

separately, then sort these two groups (categorical predictor group and continuous predictor group)
by the data file order of their first predictors.

Continuous Target

This section describes ranking of predictors for a continuous target under the following scenarios:
 All predictors categorical
 All predictors continuous
 Some predictors categorical, some continuous

Feature Selection Algorithm

All Categorical Predictors

If all predictors are categorical and the target is continuous, p values based on the F statistic are
used. The idea is to perform a one-way ANOVA F test for the continuous target using each
categorical predictor as a factor; this tests if all different classes of X have the same mean as Y.

The following notation applies:
Table 17-3
Notation
Notation Description
X The categorical predictor under consideration with I categories.
Y The continuous target variable. yij represents the value of the continuous

target for the jth case with X = i.
The number of cases with X = i.

 The sample mean of target Y in predictor category X = i.

 The sample variance of target Y for predictor category X = i.

 The grand mean of target Y.

The above notations are based on nonmissing pairs of (X, Y).

The p value based on the F statistic is p value = Prob{F(I−1, N−I) > F}, where

,

in which F(I−1, N−I) is a random variable that follows a F distribution with degrees of freedom
I−1 and N−I. When the denominator of the above formula is zero for a given categorical predictor
X, set the p value = 0 for that predictor.

Predictors are ranked by the following rules:

1. Sort predictors by p value in ascending order.

2. If ties occur, sort by F in descending order.

3. If ties still occur, sort by N in descending order.

4. If ties still occur, sort by the data file order.

All Continuous Predictors

If all predictors are continuous and the target is continuous, the p value is based on the asymptotic
t distribution of a transformation t on the Pearson correlation coefficient r.

Feature Selection Algorithm

The following notation applies:
Table 17-4
Notation

Notation Description
X The continuous predictor under consideration.
Y The continuous target variable.

 The sample mean of predictor variable X.

 The sample mean of target Y.

 The sample variance of predictor variable X.

 The sample variance of target variable Y.

The above notations are based on nonmissing pairs of (X, Y).

The Pearson correlation coefficient r is

.

The transformation t on r is given by

.

Under the null hypothesis that the population Pearson correlation coefficient 𝜌𝜌 = 0, the p value
is calculated as

if
Prob else.

T is a random variable that follows a t distribution with N−2 degrees of freedom. The p value
based on the Pearson correlation coefficient is a test of a linear relationship between X and Y. If
there is some nonlinear relationship between X and Y, the test may fail to catch it.

Predictors are ranked by the following rules:

1. Sort predictors by p value in ascending order.

2. If ties occur in, sort by r2 in descending order.

3. If ties still occur, sort by N in descending order.

4. If ties still occur, sort by the data file order.

Mixed Type Predictors

If some predictors are continuous and some are categorical in the dataset, the criterion for
continuous predictors is still based on the p value from a transformation and that for categorical
predictors from the F statistic.

2

Feature Selection Algorithm

Predictors are ranked by the following rules:

1. Sort predictors by p value in ascending order.

2. If ties occur, follow the rules for breaking ties among all categorical and all continuous predictors

separately, then sort these two groups (categorical predictor group and continuous predictor group)
by the data file order of their first predictors.

Selecting Predictors

If the length of the predictor list has not been prespecified, the following formula provides an
automatic approach to determine the length of the list.

Let L0 be the total number of predictors under study. The length of the list L may be determined by

,

where [x] is the closest integer of x. The following table illustrates the length L of the list for
different values of the total number of predictors L0.

L0 L L/L0(%)
10 10 100.00%
15 15 100.00%
20 20 100.00%
25 25 100.00%
30 30 100.00%
40 30 75.00%
50 30 60.00%
60 30 50.00%
100 30 30.00%
500 45 9.00%
1000 63 6.30%
1500 77 5.13%
2000 89 4.45%
5000 141 2.82%
10,000 200 2.00%
20,000 283 1.42%
50,000 447 0.89%

Generated Model

The feature selection generated model is different from most other generated models in that it does
not add predictors or other derived fields to the data stream. Instead, it acts as a filter, removing
unwanted fields from the data stream based on generated model settings.

Feature Selection Algorithm

The set of fields filtered from the stream is controlled by one of the following criteria:
 Field importance categories (Important, Marginal, or Unimportant). Fields assigned to any

of the selected categories are preserved; others are filtered.
 Top k fields. The k fields with the highest importance values are preserved; others are filtered.
 Importance value. Fields with importance value greater than the specified value are preserved;

others are filtered.
 Manual selection. The user can select specific fields to be preserved or filtered.

GENLIN Algorithms
Generalized linear models (GZLM) are commonly used analytical tools for different types of data.
Generalized linear models cover not only widely used statistical models, such as linear regression
for normally distributed responses, logistic models for binary data, and log linear model for count
data, but also many useful statistical models via its very general model formulation.

Generalized Linear Models

Generalized linear models were first introduced by Nelder and Wedderburn (1972) and later
expanded by McCullagh and Nelder (1989). The following discussion is based on their works.

Notation

The following notation is used throughout this section unless otherwise stated:
Table 18-1
Notation

Notation Description
n Number of complete cases in the dataset. It is an integer and n ≥ 1.
p Number of parameters (including the intercept, if exists) in the model. It is an integer

and p ≥ 1.
px Number of non-redundant columns in the design matrix. It is an integer and px ≥ 1.
y n × 1 dependent variable vector. The rows are the cases.
r n × 1 vector of events for the binomial distribution; it usually represents the number of

“successes.” All elements are non-negative integers.
m n × 1 vector of trials for the binomial distribution. All elements are positive integers

and mi ≥ ri, i=1,...,n.
μ n × 1 vector of expectations of the dependent variable.
η n × 1 vector of linear predictors.
X n × p design matrix. The rows represent the cases and the columns represent the

parameters. The ith row is T i=1,...,n with if the model has an
intercept.

O n × 1 vector of scale offsets. This variable can’t be the dependent variable (y) or one of
the predictor variables (X).

 p × 1 vector of unknown parameters. The first element in is the intercept, if there is one.

ω n × 1 vector of scale weights. If an element is less than or equal to 0 or missing, the
corresponding case is not used.

f n × 1 vector of frequency counts. Non-integer elements are treated by rounding the value
to the nearest integer. For values less than 0.5 or missing, the corresponding cases are
not used.

N
Effective sample size. If frequency count variable f is not used, N = n.

Model

A GZLM of y with predictor variables X has the form

GENLIN Algorithms

E

where η is the linear predictor; O is an offset variable with a constant coefficient of 1 for each
observation; g(.) is the monotonic differentiable link function which states how the mean of
y, , is related to the linear predictor η ; F is the response probability distribution.
Choosing different combinations of a proper probability distribution and a link function can
result in different models.

In addition, GZLM also assumes yi are independent for i=1,….,n. Then for each observation,
the model becomes

T

Notes
 X can be any combination of scale variables (covariates), categorical variables (factors),

and interactions. The parameterization of X is the same as in the GLM procedure. Due to
use of the over-parameterized model where there is a separate parameter for every factor
effect level occurring in the data, the columns of the design matrix X are often dependent.
Collinearity between scale variables in the data can also occur. To establish the dependencies
in the design matrix, columns of XTΨX, where diag , are examined by
using the sweep operator. When a column is found to be dependent on previous columns,
the corresponding parameter is treated as redundant. The solution for redundant parameters
is fixed at zero.

 When y is a binary dependent variable which can be character or numeric, such as
“male”/”female” or 1/2, its values will be transformed to 0 and 1 with 1 typically representing
a success or some other positive result. In this document, we assume to be modeling the
probability of success. In this document, we assume that y has been transformed to 0/1
values and we always model the probability of success; that is, Prob(y = 1). Which original
value should be transformed to 0 or 1 depends on what the reference category is. If the
reference category is the last value, then the first category represents a success and we are
modeling the probability of it. For example, if the reference category is the last value, “male”
in “male”/”female” and 2 in 1/2 are the last values (since “male” comes later in the dictionary
than “female”) and would be transformed to 0, and “female” and 1 would be transformed to 1
as we model the probability of them, respectively. However, one way to change to model the
probability of “male” and 2 instead is to specify the reference category as the first value. Note
if original binary format is 0/1 and the reference category is the last value, then 0 would be
transformed to 1 and 1 to 0.

 When r, representing the number of successes (or number of 1s) and m, representing
the number of trials, are used for the binomial distribution, the response is the binomial
proportion y = r/m.

Probability Distribution

GZLMs are usually formulated within the framework of the exponential family of distributions.
The probability density function of the response Y for the exponential family can be presented as

GENLIN Algorithms

where θ is the canonical (natural) parameter, is the scale parameter related to the variance of y
and ω is a known prior weight which varies from case to case. Different forms of b(θ) and c(y,
/ω) will give specific distributions. In fact, the exponential family provides a notation that allows

us to model both continuous and discrete (count, binary, and proportional) outcomes. Several are
available including continuous ones: normal, inverse Gaussian, gamma; discrete ones: negative
binomial, Poisson, binomial.

The mean and variance of y can be expressed as follows

where and denote the first and second derivatives of b with respect to θ, respectively;
is the variance function which is a function of .

In GZLM, the distribution of y is parameterized in terms of the mean (μ) and a scale parameter
() instead of the canonical parameter (θ). The following table lists the distribution of y,
corresponding range of y, variance function (V(μ)), the variance of y (Var(y)), and the first
derivative of the variance function), which will be used later.
Table 18-2
Distribution, range and variance of the response, variance function, and its first derivative

Distribution Range of y V(μ) Var(y) V’(μ)
Normal (−∞,∞) 1

 0

Inverse Gaussian (0,∞) μ3 μ3 3μ2
Gamma (0,∞) μ2 μ2 2μ
Negative binomial 0(1)∞ μ+kμ2 μ+kμ2 1+2kμ
Poisson 0(1)∞ μ μ 1
Binomial(m) 0(1)m/m μ(1−μ) μ(1−μ)/m 1−2μ

Notes
 0(1)z means the range is from 0 to z with increments of 1; that is, 0, 1, 2, …, z.
 For the binomial distribution, the binomial trial variable m is considered as a part of the

weight variable ω.
 If a weight variable ω is presented, is replaced by /ω.
 For the negative binomial distribution, the ancillary parameter (k) can be user-specified.

When k = 0, the negative binomial distribution reduces to the Poisson distribution. When
k = 1, the negative binomial is the geometric distribution.

GENLIN Algorithms

Scale parameter handling. The expressions for V(μ) and Var(y) for continuous distributions include
the scale parameter which can be used to scale the relationship of the variance and mean (Var(y)
and μ). Since it is usually unknown, there are three ways to fit the scale parameter:

1. It can be estimated with jointly by maximum likelihood method.

2. It can be set to a fixed positive value.

3. It can be specified by the deviance or Pearson chi-square. For more information, see the
topic “Goodness-of-Fit Statistics.”

On the other hand, discrete distributions do not have this extra parameter (it is theoretically equal
to one). Because of it, the variance of y might not be equal to the nominal variance in practice
(especially for Poisson and binomial because the negative binomial has an ancillary parameter k).
A simple way to adjust this situation is to allow the variance of y for discrete distributions to have
the scale parameter as well, but unlike continuous distributions, it can’t be estimated by the ML
method. So for discrete distributions, there are two ways to obtain the value of :

1. It can be specified by the deviance or Pearson chi-square.

2. It can be set to a fixed positive value.

To ensure the data fit the range of response for the specified distribution, we follow the rules:
 For the gamma or inverse Gaussian distributions, values of y must be real and greater than

zero. If a value of y is less than or equal to 0 or missing, the corresponding case is not used.
 For the negative binomial and Poisson distributions, values of y must be integer and

non-negative. If a value of y is non-integer, less than 0 or missing, the corresponding case is
not used.

 For the binomial distribution and if the response is in the form of a single variable, y must
have only two distinct values. If y has more than two distinct values, the algorithm terminates
in an error.

 For the binomial distribution and the response is in the form of ratio of two variables denoted
events/trials, values of r (the number of events) must be nonnegative integers, values of m
(the number of trials) must be positive integers and mi ≥ ri, ∀ i. If a value of r is not integer,
less than 0, or missing, the corresponding case is not used. If a value of m is not integer, less
than or equal to 0, less than the corresponding value of r, or missing, the corresponding
case is not used.

The ML method will be used to estimate and possibly . The kernels of the log-likelihood
function (ℓk) and the full log-likelihood function (ℓ), which will be used as the objective function
for parameter estimation, are listed for each distribution in the following table. Using ℓ or ℓk won’t
affect the parameter estimation, but the selection will affect the calculation of information criteria.
For more information, see the topic “Goodness-of-Fit Statistics ”.

GENLIN Algorithms

Table 18-3
The log-likelihood function for probability distribution

Distribution ℓk and ℓ
Normal

Inverse Gaussian

Gamma

Negative
binomial

Poisson

Binomial(m)

where

When an individual y = 0 for the negative binomial or Poissondistributions and y = 0 or 1 for the
binomial distribution, a separate value of the log-likelihood is given. Let ℓk,i be the log-likelihood
value for individual case i when yi = 0 for the negative binomial and Poisson and 0/1 for the
binomial. The full log-likelihood for i is equal to the kernel of the log-likelihood for i; that is,
ℓi=ℓk,i.
Table 18-4
Log-likelihood

Distribution ℓk,i
Negative binomial if

GENLIN Algorithms

Distribution ℓk,i
Poisson if

Binomial(m) if
 if

 Γ(z) is the gamma function and ln(Γ(z)) is the log-gamma function (the logarithm of the
gamma function), evaluated at z.

 For the negative binomial distribution, the scale parameter is still included in ℓk for flexibility,
although it is usually set to 1.

 For the binomial distribution (r/m), the scale weight variable becomes in ℓk; that
is, the binomial trials variable m is regarded as a part of the weight. However, the scale
weight in the extra term of ℓ is still .

Link Function

The following tables list the form, inverse form, range of , and first and second derivatives
for each link function.
Table 18-5
Link function name, form, inverse of link function, and range of the predicted Mean

Note: In the power link function, if |α| < 2.2e-16, α is treated as 0.
Table 18-6
The first and second derivatives of link function
Link function First derivative Second derivative
Identity 1 0

GENLIN Algorithms

Link function First derivative Second derivative
Log

Logit

Probit Φ , where

 Φ

Complementary log-log

Power(α)

Log-complement

Negative log-log

Negative binomial

Odds power(α)

When the canonical parameter is equal to the linear predictor, , then the link function is
called the canonical link function. Although the canonical links lead to desirable statistical
properties of the model, particularly in small samples, there is in general no a priori reason why
the systematic effects in a model should be additive on the scale given by that link. The canonical
link functions for probability distributions are given in the following table.
Table 18-7
Canonical and default link functions for probability distributions

Distribution Canonical link function
Normal Identity
Inverse Gaussian Power(−2)
Gamma Power(−1)
Negative binomial Negative binomial
Poisson Log
Binomial Logit

Estimation

Having selected a particular model, it is required to estimate the parameters and to assess the
precision of the estimates.

Parameter estimation

The parameters are estimated by maximizing the log-likelihood function (or the kernel of the
log-likelihood function) from the observed data. Let s be the first derivative (gradient) vector of
the log-likelihood with respect to each parameter, then we wish to solve

GENLIN Algorithms

0

In general, there is no closed form solution except for a normal distribution with identity link
function, so estimates are obtained numerically via an iterative process. A Newton-Raphson
and/or Fisher scoring algorithm is used and it is based on a linear Taylor series approximation
of the first derivative of the log-likelihood.

First Derivatives

If the scale parameter is not estimated by the ML method, s is a p×1 vector with the form:

where and are defined in Table 18-5 “Link function name, form, inverse of link
function, and range of the predicted mean,” Table 18-2 “Distribution, range and variance of the
response, variance function, and its first derivative,” and Table 18-6 “The first and second
derivatives of link function,” respectively.

If the scale parameter is estimated by the ML method, it is handled by searching for) since

 is required to be greater than zero.

Let τ =) so = exp(τ) , then s is a (p+1)×1 vector with the following form

where is the same as the above with is replaced with exp(τ), has a different form
depending on the distribution as follows:
Table 18-8
The 1st derivative functions w.r.t. the scale parameter for probability distributions
Distribution

Normal

Inverse Gaussian

Gamma

Note: is a digamma function, which is the derivative of logarithm of a gamma function,
evaluated at z; that is, .

GENLIN Algorithms

As mentioned above, for normal distribution with identity link function which is a classical linear
regression model, there is a closed form solution for both and τ, so no iterative process is
needed. The solution for , after applying the SWEEP operation in GLM procedure, is

 xTx xT XTΨX XTΨ ,

where Ψ diag and Z is the generalized inverse of a matrix Z. If the scale
parameter is also estimated by the ML method, the estimate of τ is

 xT

Second Derivatives

Let H be the second derivative (Hessian) matrix. If the scale parameter is not estimated by the ML
method, H is a p×p matrix with the following form

T

where W is an n×n diagonal matrix. There are two definitions for W depending on which
algorithm is used: We for Fisher scoring and Wo for Newton-Raphson. The ith diagonal element
for We is

and the ith diagonal element for Wo is

where and are defined in Table 18-2 “Distribution, range and variance of the
response, variance function, and its first derivative” and Table 18-6 “The first and second
derivatives of link function,” respectively. Note the expected value of Wo is We and
when the canonical link is used for the specified distribution, then Wo = We.

If the scale parameter is estimated by the ML method, H becomes a (p+1)×(p+1) matrix with the
form

T

T

T

GENLIN Algorithms

where is a p×1 vector and T is a 1×p vector and the transpose of .
For all three continuous distributions:

The forms of are listed in the following table.
Table 18-9
The second derivative functions w.r.t. the scale parameter for probability distributions

Distribution

Normal

Inverse Gaussian

Gamma

Note: is a trigamma function, which is the derivative of , evaluated at z.

Iterations

An iterative process to find the solution for (which might include) is based on Newton-Raphson
(for all iterations), Fisher scoring (for all iterations) or a hybrid method. The hybrid method
consists of applying Fisher scoring steps for a specified number of iterations before switching
to Newton-Raphson steps. Newton-Raphson performs well if the initial values are close to the
solution, but the hybrid method can be used to improve the algorithm’s robustness from bad initial
values. Apart from improved robustness, Fisher scoring is faster due to the simpler form of
the Hessian matrix.

The following notation applies to the iterative process:
Table 18-10
Notation

Notation Description
I Starting iteration for checking complete separation and quasi-complete separation. It

must be 0 or a positive integer. This criterion is not used if the value is 0.
J The maximum number of steps in step-halving method. It must be a positive integer.
K The first number of iterations using Fisher scoring, then switching to Newton-Raphson.

It must be 0 or a positive integer. A value of 0 means using Newton-Raphson for all
iterations and a value greater or equal to M means using Fisher scoring for all iterations.

M The maximum number of iterations. It must be a non-negative integer. If the value is
0, then initial parameter values become final estimates.

p, Tolerance levels for three types of convergence criteria.

Abs A 0/1 binary variable; Abs = 1 if absolute change is used for convergence criteria
and Abs = 0 if relative change is used.

GENLIN Algorithms

And the iterative process is outlined as follows:

1. Input values for I, J, K, M, p, and Abs for each type of three convergence criteria.

2. For () compute initial values (see below), then calculate log-likelihood ℓ(0), gradient vector
and Hessian matrix based on ().

3. Let ξ=1.

4. Compute estimates of ith iteration:

() () ((, where is a generalized inverse of H. Then compute the

log-likelihood based on ().

5. Use step-halving method if : reduce ξ by half and repeat step (4). The set of values
of ξ is {0.5 j : j = 0, …, J – 1}. If J is reached but the log-likelihood is not improved, issue a
warning message, then stop.

6. Compute gradient vector and Hessian matrix based on (). Note that We is used to
calculate if i ≤ K; Wo is used to calculate if i > K.

7. Check if complete or quasi-complete separation of the data is established (see below) if
distribution is binomial and the current iteration i ≥ I. If either complete or quasi-complete
separation is detected, issue a warning message, then stop.

8. Check if all three convergence criteria (see below) are met. If they are not but M is reached,
issue a warning message, then stop.

9. If all three convergence criteria are met, check if complete or quasi-complete separation of
the data is established if distribution is binomial and i < I (because checking for complete or
quasi-complete separation has not started yet). If complete or quasi-complete separation is
detected, issue a warning message, then stop, otherwise, stop (the process converges for binomial
successfully). If all three convergence criteria are met for the distributions other than binomial,
stop (the process converges for other distributions successfully). The final vector of estimates is
denoted by (and). Otherwise, go back to step (3).

Initial Values

Initial values are calculated as follows:

1. Set the initial fitted values i for a binomial distribution (yi can be

a proportion or 0/1 value) and i for a non-binomial distribution. From these derive
= , and If becomes undefined, set .

2. Calculate the weight matrix with the diagonal element , where is
set to 1 or a fixed positive value. If the denominator of becomes 0,

3. Assign the adjusted dependent variable z with the ith observation
for a binomial distribution and for a non-binomial

distribution.

GENLIN Algorithms

4. Calculate the initial parameter values

β XT X XT z

and

T
= z Xβ z Xβ

if the scale parameter is estimated by the ML method.

Scale Parameter Handling

1. For normal, inverse Gaussian, and gamma response, if the scale parameter is estimated by the ML
method, then it will be estimated jointly with the regression parameters; that is, the last element
of the gradient vector s is with respect to τ.

2. If the scale parameter is set to be a fixed positive value, then it will be held fixed at that value for
in each iteration of the above process.

3. If the scale parameter is specified by the deviance or Pearson chi-square divided by degrees of
freedom, then it will be fixed at 1 to obtain the regression estimates through the whole iterative
process. Based on the regression estimates, calculate the deviance and Pearson chi-square values
and obtain the scale parameter estimate.

Checking for Separation

For each iteration after the user-specified number of iterations; that is, if i > I, calculate (note
here v refers to cases in the dataset)

where

if success
if failure

(is the probability of the observed response for case v) and xTβ

If we consider there to be complete separation. Otherwise, if
or and if there are very small diagonal elements (absolute value

) in the non-redundant parameter locations in the lower triangular matrix
in Cholesky decomposition of –H, where H is the Hessian matrix, then there is a quasi-complete
separation.

 GENLIN Algorithms

Convergence Criteria

where p and are the given tolerance levels for each type.

If the Hessian convergence criterion is not user-specified, it is checked based on absolute change
with H = 1E-4 after the log-likelihood or parameter convergence criterion has been satisfied. If
Hessian convergence is not met, a warning is displayed.

Parameter Estimate Covariance Matrix, Correlation Matrix and Standard Errors

The parameter estimate covariance matrix, correlation matrix and standard errors can be
obtained easily with parameter estimates. Whether or not the scale parameter is estimated by
ML, parameter estimate covariance and correlation matrices are listed for only because the
covariance between and should be zero.

Model-Based Parameter Estimate Covariance

The model-based parameter estimate covariance matrix is given by

Σm Η

where is the generalized inverse of the Hessian matrix evaluated at the parameter estimates.
The corresponding rows and columns for redundant parameter estimates should be set to zero.

Robust Parameter Estimate Covariance

The validity of the parameter estimate covariance matrix based on the Hessian depends on the
correct specification of the variance function of the response in addition to the correct specification
of the mean regression function of the response. The robust parameter estimate covariance
provides a consistent estimate even when the specification of the variance function of the response
is incorrect. The robust estimator is also called Huber’s estimator because Huber (1967) was

GENLIN Algorithms

the first to describe this variance estimate; White’s estimator or HCCM (heteroskedasticity
consistent covariance matrix) estimator because White (1980) independently showed that this
variance estimate is consistent under a linear regression model including heteroskedasticity; or
the sandwich estimator because it includes three terms. The robust (or Huber/White/sandwich)
estimator is defined as follows

Parameter Estimate Correlation

The correlation matrix is calculated from the covariance matrix as usual. Let be an element of
Σm or Σr, then the corresponding element of the correlation matrix is . The corresponding
rows and columns for redundant parameter estimates should be set to system missing values.

Parameter Estimate Standard Error

Let denote a non-redundant parameter estimate. Its standard error is the square root of the
ith diagonal element of Σm or Σr:

The standard error for redundant parameter estimates is set to a system missing value. If the
scale parameter is estimated by the ML method, we obtain and its standard error estimate

, where can be found in Table 18-9 “The second derivative functions w.r.t. the

scale parameter for probability distributions.” Then the estimate of the scale parameter
is and the standard error estimate is

Wald Confidence Intervals

Wald confidence intervals are based on the asymptotic normal distribution of the parameter
estimates. The 100(1 – α)% Wald confidence interval for j is given by

 ,

where is the 100pth percentile of the standard normal distribution.

If exponentiated parameter estimates are requested for logistic regression or log-linear models,
then using the delta method, the estimate of is , the standard error estimate of

is and the corresponding 100(1 – α)% Wald confidence interval for
is

Wald confidence intervals for redundant parameter estimates are set to system missing values.

GENLIN Algorithms

Similarly, the 100(1 – α)% Wald confidence interval for is

Chi-Square Statistics

The hypothesis is tested for each non-redundant parameter using the chi-square
statistic:

which has an asymptotic chi-square distribution with 1 degree of freedom.

Chi-square statistics and their corresponding p-values are set to system missing values for
redundant parameter estimates.

The chi-square statistic is not calculated for the scale parameter, even if it is estimated by ML
method.

P Values

Given a test statistic T and a corresponding cumulative distribution function G as specified
above, the p-value is defined as . For example, the p-value for the chi-square
test of is .

Model Testing

After estimating parameters and calculating relevant statistics, several tests for the given model
are performed.

Lagrange Multiplier Test

If the scale parameter for normal, inverse Gaussian and gamma distributions is set to a fixed value
or specified by the deviance or Pearson chi-square divided by the degrees of freedom (when the
scale parameter is specified by the deviance or Pearson chi-square divided by the degrees of
freedom, it can be considered as a fixed value), or an ancillary parameter k for the negative
binomial is set to a fixed value other than 0, the Lagrange Multiplier (LM) test assesses the
validity of the value. For a fixed or k, the test statistic is defined as

GENLIN Algorithms

where and T T evaluated at the
parameter estimates and fixed or k value. has an asymptotic chi-square distribution with 1
degree of freedom, and the p-values are calculated accordingly.

For testing , see Table 18-8 “The 1st derivative functions w.r.t. the scale parameter for
probability distributions” and see Table 18-9 “The second derivative functions w.r.t. the scale
parameter for probability distributions” for the elements of s and A, respectively.

If k is set to 0, then the above statistic can’t be applied. According to Cameron and Trivedi (1998),
the LM test statistic should now be based on the following auxiliary OLS regression (without
constant)

where and is an error term. Let the response of the above OLS regression

 be and the explanatory variable be . The estimate of the above
regression parameter α and the standard error of the estimate of α are

and

where and . Then the LM test statistic is a z statistic

and it has an asymptotic standard normal distribution under the null hypothesis of equidispersion
in a Poisson model). Three p-values are provided. The alternative hypothesis
can be one-sided overdispersion (), underdispersion) or two-sided
non-directional) with the variance function of . The calculation
of p-values depends on the alternative. For -value Φ where Φ is the
cumulative probability of a standard normal distribution; for -value Φ and for

 -value Φ

Goodness-of-Fit Statistics

Several statistics are calculated to assess goodness of fit of a given generalized linear model.

Deviance

The theoretical definition of deviance is:

y y y

GENLIN Algorithms

where y is the log-likelihood function expressed as the function of the predicted mean values

 (calculated based on the parameter estimates) given the response variable, and y y is the
log-likelihood function computed by replacing with y. The formula used for the deviance is

, where the form of for the distributions are given in the following table:
Table 18-11
Deviance for individual case

Note
 When y is a binary dependent variable with 0/1 values (binomial distribution), the deviance

and Pearson chi-square are calculated based on the subpopulations; see below.
 When y = 0 for negative binomial and Poisson distributions and y = 0 (for r = 0) or 1 (for r

= m) for binomial distribution with r/m format, separate values are given for the deviance.
Let be the deviance value for individual case i when yi = 0 for negative binomial and
Poisson and 0/1 for binomial.

Table 18-12
Deviance for individual case
Distribution

Negative Binomial if

Poisson if

Binomial(m)

 if
if

or
or

Pearson Chi-Square

where for the binomial distribution and for other distributions.

Scaled Deviance and Scaled Pearson Chi-Square

The scaled deviance is and the scaled Pearson chi-square is .

GENLIN Algorithms

Since the scaled deviance and Pearson chi-square statistics have a limiting chi-square distribution
with N – px degrees of freedom, the deviance or Pearson chi-square divided by its degrees
of freedom can be used as an estimate of the scale parameter for both continuous and discrete
distributions.

 or

If the scale parameter is measured by the deviance or Pearson chi-square, first we assume ,
then estimate the regression parameters, calculate the deviance and Pearson chi-square values
and obtain the scale parameter estimate from the above formula. Then the scaled version of both
statistics is obtained by dividing the deviance and Pearson chi-square by . In the meantime, some
statistics need to be revised. The gradient vector and the Hessian matrix are divided by and
the covariance matrix is multiplied by . Accordingly the estimated standard errors are also
adjusted, the Wald confidence intervals and significance tests will be affected even the parameter
estimates are not affected by .

Note that the log-likelihood is not revised; that is, the log-likelihood is based on because the
scale parameter should be kept the same in the log-likelihood for fair comparison in information
criteria and model fitting omnibus test.

Overdispersion

For the Poisson and binomial distributions, if the estimated scale parameter is not near the
assumed value of one, then the data may be overdispersed if the value is greater than one or
underdispersed if the value is less than one. Overdispersion is more common in practice. The
problem with overdispersion is that it may cause standard errors of the estimated parameters to be
underestimated. A variable may appear to be a significant predictor, when in fact it is not.

Deviance and Pearson Chi-Square for Binomial Distribution with 0/1 Binary Response Variable

When r and m (event/trial) variables are used for the binomial distribution, each case represents m
Bernoulli trials. When y is a binary dependent variable with 0/1 values, each case represents a
single trial. The trial can be repeated for several times with the same setting (i.e. the same values
for all predictor variables). For example, suppose the first 10 y values are 2 1s and 8 0s and x
values are the same (if recorded in events/trials format, these 10 cases is recorded as 1 case
with r = 2 and m = 10), then these 10 cases should be considered from the same subpopulation.
Cases with common values in the variable list that includes all predictor variables are regarded as
coming from the same subpopulation. When the binomial distribution with binary response is
used, we should calculate the deviance and Pearson chi-square based on the subpopulations. If we
calculate them based on the cases, the results might not be useful.

If subpopulations are specified for the binomial distribution with 0/1 binary response variable, the
data should be reconstructed from the single trial format to the events/trials format. Assume the
following notation for formatted data:
Table 18-13
Notation
Notation Description
ns Number of subpopulations.

GENLIN Algorithms

Notation Description
rj1 Sum of the product of the frequencies and the scale weights associated with y = 1 in the

jth subpopulation. So rj0 is that with y = 0 in the jth subpopulation.
mj Total weighted observations; .
yj1 The proportion of 1s in the jth subpopulation; .

The fitted probability in the jth subpopulation would be the same for each case in the
jth subpopulation because values for all predictor variables are the same for each case.)

The deviance and Pearson chi-square are defined as follows:

and ,

then the corresponding estimate of the scale parameter will be

 and .

The full log likelihood, based on subpopulations, is defined as follows:

where is the kernel log likelihood; it should be the same as the kernel log-likelihood computed
based on cases before, there is no need to compute again.

Information Criteria

Information criteria are used when comparing different models for the same data. The formulas
for various criteria are as follows.

Akaike information criteria (AIC).

Finite sample corrected (AICC).

Bayesian information criteria (BIC).

Consistent AIC (CAIC).

where ℓ is the log-likelihood evaluated at the parameter estimates. Notice that d = px if only is
included; d = px + 1 if the scale parameter is included for normal, inverse Gaussian, or gamma.

Notes
 ℓ (the full log-likelihood) can be replaced with ℓk (the kernel of the log-likelihood) depending

on the user’s choice.
 When r and m (event/trial) variables are used for the binomial distribution, then the N used

here would be the sum of the trials frequencies; . In this way, the same value

results whether the data are in raw, binary form or in summarized, binomial form.

GENLIN Algorithms

Test of Model Fit

The model fitting omnibus test is based on –2 log-likelihood values for the model under
consideration and the initial model. For the model under consideration, the value of the –2
log-likelihood is

Let the initial model be the intercept-only model if intercept is in the considered model or the
empty model otherwise. For the intercept-only model, the value of the –2 log-likelihood is

For the empty model, the value of the –2 log-likelihood is

Then the omnibus (or global) test statistic is

for the intercept-only model or

for the empty model.

S has an asymptotic chi-square distribution with r degrees of freedom, equal to the difference in
the number of valid parameters between the model under consideration and the initial model.
r = for the intercept-only model, r = for the empty model. The p-values then can
be calculated accordingly.

Note if the scale parameter is estimated by the ML method in the model under consideration, then
it will also be estimated by the ML method in the initial model.

Default Tests of Model Effects

For each regression effect specified in the model, type I and III analyses can be conducted.

Type I Analysis

Type I analysis consists of fitting a sequence of models, starting with a model with only an
intercept term (if there is one), and adding one additional effect, which can be covariates, factors
and interactions, of the model on each step. So it depends on the order of effects specified in the
model. On the other hand, type III analysis won’t depend on the order of effects.

Wald Statistics. For each effect specified in the model, type I test matrix Li is constructed
and H0: Li = 0 is tested. Construction of matrix Li is based on the generating matrix

T T where Ω is the scale weight matrix with ith diagonal element and
such that Li is estimable. It involves parameters only for the given effect and the effects
containing the given effect. If such a matrix cannot be constructed, the effect is not testable.

GENLIN Algorithms

Since Wald statistics can be applied to type I and III analysis and custom tests, we express Wald
statistics in a more general form. The Wald statistic for testing , where Li is a r×p full
row rank hypothesis matrix and K is a r×1 resulting vector, is defined by

 T T

where is the maximum likelihood estimate and Σ is the parameter estimates covariance matrix. S
has an asymptotic chi-square distribution with degrees of freedom, where LΣLT .

If , then LΣLT is a generalized inverse such that Wald tests are effective for a restricted
set of hypotheses containing a particular subset C of independent rows from H0.

For type I and III analysis, calculate the Wald statistic for each effect i according to the
corresponding hypothesis matrix Li and K=0.

Type III Analysis

Wald statistics. See the discussion of Wald statistics for Type I analysis above. L is the type III
test matrix for the ith effect.

Blank handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

Scoring

Scoring is defined as assigning one or more values to a case in a data set.

Predicted Values

Due to the non-linear link functions, the predicted values will be computed for the linear predictor
and the mean of the response separately. Also, since estimated standard errors of predicted values
of linear predictor are calculated, the confidence intervals for the mean are obtained easily.

Predicted values are still computed as long all the predictor variables have non-missing values
in the given model.

Predicted Values of the Linear Predictors

T o

Estimated Standard Errors of Predicted Values of the Linear Predictors

Predicted Values of the Means

TΣ

GENLIN Algorithms

where g−1 is the inverse of the link function. For binomial response with 0/1 binary response
variable, this the predicted probability of category 1.

Confidence Intervals for the Means

Approximate 100(1−α)% confidence intervals for the mean can be computed as follows

T o

If either endpoint in the argument is outside the valid range for he inverse link function, the
corresponding confidence interval endpoint is set to a system missing value.

Blank handling

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.

References

Aitkin, M., D. Anderson, B. Francis, and J. Hinde. 1989. Statistical Modelling in GLIM. Oxford:
Oxford Science Publications.

Albert, A., and J. A. Anderson. 1984. On the Existence of Maximum Likelihood Estimates in
Logistic Regression Models. Biometrika, 71, 1–10.

Cameron, A. C., and P. K. Trivedi. 1998. Regression Analysis of Count Data. Cambridge:
Cambridge University Press.

Diggle, P. J., P. Heagerty, K. Y. Liang, and S. L. Zeger. 2002. The analysis of Longitudinal
Data, 2 ed. Oxford: Oxford University Press.

Dobson, A. J. 2002. An Introduction to Generalized Linear Models, 2 ed. Boca Raton, FL:
Chapman & Hall/CRC.

Dunn, P. K., and G. K. Smyth. 2005. Series Evaluation of Tweedie Exponential Dispersion Model
Densities. Statistics and Computing, 15, 267–280.

Dunn, P. K., and G. K. Smyth. 2001. Tweedie Family Densities: Methods of Evaluation. In:
Proceedings of the 16th International Workshop on Statistical Modelling, Odense, Denmark: .

Gill, J. 2000. Generalized Linear Models: A Unified Approach. Thousand Oaks, CA: Sage
Publications.

Hardin, J. W., and J. M. Hilbe. 2001. Generalized Estimating Equations. Boca Raton, FL:
Chapman & Hall/CRC.

T

GENLIN Algorithms

Hardin, J. W., and J. M. Hilbe. 2003. Generalized Linear Models and Extension. Station, TX:
Stata Press.

Horton, N. J., and S. R. Lipsitz. 1999. Review of Software to Fit Generalized Estimating Equation
Regression Models. The American Statistician, 53, 160–169.

Huber, P. J. 1967. The Behavior of Maximum Likelihood Estimates under Nonstandard
Conditions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, Berkeley, CA: University of California Press, 221–233.

Lane, P. W., and J. A. Nelder. 1982. Analysis of Covariance and Standardization as Instances of
Prediction. Biometrics, 38, 613–621.

Lawless, J. E. 1984. Negative Binomial and Mixed Poisson Regression. The Canadian Journal
of Statistics, 15, 209–225.

Liang, K. Y., and S. L. Zeger. 1986. Longitudinal Data Analysis Using Generalized Linear
Models. Biometrika, 73, 13–22.

Lipsitz, S. H., K. Kim, and L. Zhao. 1994. Analysis of Repeated Categorical Data Using
Generalized Estimating Equations. Statistics in Medicine, 13, 1149–1163.

McCullagh, P. 1983. Quasi-Likelihood Functions. Annals of Statistics, 11, 59–67.

McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models, 2nd ed. London: Chapman &
Hall.

Miller, M. E., C. S. Davis, and J. R. Landis. 1993. The Analysis of Longitudinal Polytomous Data:
Generalized Estimating Equations and Connections with Weighted Least Squares. Biometrics,
49, 1033–1044.

Nelder, J. A., and R. W. M. Wedderburn. 1972. Generalized Linear Models. Journal of the
Royal Statistical Society Series A, 135, 370–384.

Pan, W. 2001. Akaike’s Information Criterion in Generalized Estimating Equations. Biometrics,
57, 120–125.

Pregibon, D. 1981. Logistic Regression Diagnostics. Annals of Statistics, 9, 705–724.

Smyth, G. K., and B. Jorgensen. 2002. Fitting Tweedie’s Compound Poisson Model to Insurance
Claims Data: Dispersion Modelling. ASTIN Bulletin, 32, 143–157.

White, H. 1980. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test
for Heteroskedasticity. Econometrica, 48, 817–836.

Williams, D. A. 1987. Generalized Linear Models Diagnostics Using the Deviance and Single
Case Deletions. Applied Statistics, 36, 181–191.

Zeger, S. L., and K. Y. Liang. 1986. Longitudinal Data Analysis for Discrete and Continuous
Outcomes. Biometrics, 42, 121–130.

θ T

Generalized linear mixed models
algorithms

Generalized linear mixed models extend the linear model so that:
 The target is linearly related to the factors and covariates via a specified link function.
 The target can have a non-normal distribution.
 The observations can be correlated.

Generalized linear mixed models cover a wide variety of models, from simple linear regression to
complex multilevel models for non-normal longitudinal data.

Notation

The following notation is used throughout this chapter unless otherwise stated:

n Number of complete cases in the dataset. It is an integer and n ≥ 1.
p Number of parameters (including the constant, if it exists) in the model. It is an integer

and p ≥ 1.
px Number of non-redundant columns in the design matrix of fixed effects. It is an integer

and px ≥ 1.
K Number of random effects.
y n× 1 target vector. The rows are records.
r n× 1 events vector for the binomial distribution representing the number of “successes”

within a number of trials. All elements are non-negative integers.
m n× 1 trials vector for the binomial distribution. All elements are positive integers and mi

≥ ri, i=1,...,n.
μ n× 1 expected target value vector.
η n× 1 linear predictor vector.
X n× p design matrix. The rows represent the records and the columns represent the

parameters. The ith row is xT where the superscript T means transpose
of a matrix or vector, with if the model has an intercept.

Z n× r design matrix of random effects.
O n× 1 offset vector. This can’t be the target or one of the predictors. Also this can’t be

a categorical field.
β p× 1 parameter vector. The first element is the intercept, if there is one.
γ r× 1 random effect vector.
ω n× 1 scale weight vector. If an element is less than or equal to 0 or missing, the

corresponding record is not used.
f n× 1 frequency weight vector. Non-integer elements are treated by rounding the value

to the nearest integer. For values less than 0.5 or missing, the corresponding records
are not used.

N
Effective sample size, If frequency weights are not used, N = n.

θ covariance parameters of the kth random effect

covariance parameters of the random effects, θ θT θT

Generalized linear mixed models algorithms

θ T T

θ covariance parameters of the residuals

θ θT θT θT θT θT

VY Covariance matrix of y, conditional on the random effects

Model

The form of a generalized linear mixed model for the target y with the random effects γ is

η E y O,y

where η is the linear predictor; g(.) is the monotonic differentiable link function; γ is a (r× 1)
vector of random effects which are assumed to be normally distributed with mean 0 and variance
matrix G, X is a (n× p) design matrix for the fixed effects; Z is a (n× r) design matrix for the
random effects; O is an offset with a constant coefficient of 1 for each observation; F is the
conditional target probability distribution. Note that if there are no random effects, the model
reduces to a generalized linear model (GZLM).

The probability distributions without random effects offered (except multinomial) are listed in
Table 19-1. The link functions offered are listed in Table 19-3. Different combinations of
probability distribution and link function can result in different models.

See “Nominal multinomial distribution” for more information on the nominal multinomial
distribution.

See “Ordinal multinomial distribution” for more information on the ordinal multinomial
distribution.

Note that the available distributions depend on the measurement level of the target:
 A continuous target can have any distribution except multinomial. The binomial distribution

is allowed because the target could be an “events” field. The default distribution for a
continuous target is the normal distribution.

 A nominal target can have the multinomial or binomial distribution. The default is
multinomial.

 An ordinal target can have the multinomial or binomial distribution. The default is
multinomial.

Table 19-1
Distribution, range and variance of the response, variance function, and its first derivative

Generalized linear mixed models algorithms

Notes

 0(1)z means the range is from 0 to z with increments of 1; that is, 0, 1, 2, …, z.
 For the binomial distribution, the binomial trial variable m is considered as a part of the

weight variable ω.
 If a scale weight variable ω is presented, is replaced by /ω.
 For the negative binomial distribution, the ancillary parameter (k) is estimated by the

maximum likelihood (ML) method. When k = 0, the negative binomial distribution reduces to
the Poisson distribution. When k = 1, the negative binomial is the geometric distribution.

The full log-likelihood function (ℓ), which will be used as the objective function for parameter
estimation, is listed for each distribution in the following table.

Table 19-2
The log-likelihood function for probability distribution

Distribution ℓ
Normal

Inverse Gaussian

Gamma

Negative
binomial

Poisson

Binomial(m)

 where

The following tables list the form, inverse form, range of , and first and second derivatives
for each link function.

Table 19-3
Link function name, form, inverse of link function, and range of the predicted mean

Link function η=g(μ) Inverse μ=g−1(η) Range of
Identity μ η

Log ln(μ) exp(η)

Logit

Probit Φ , where

Φ

Φ(η)

Complementary
log-log

ln(−(ln(1−μ)) 1−exp(−exp(η))

Generalized linear mixed models algorithms

Link function η=g(μ) Inverse μ=g−1(η) Range of

Power(α)

if is odd integer
 otherwise

Log-complement ln(1−μ) 1−exp(η)

Negative log-log −ln(−ln(μ)) exp(−exp(−η))

Note: In the power link function, if |α| < 2.2e-16, α is treated as 0.

Table 19-4
The first and second derivatives of link function

Link function First derivative Second derivative
Identity 1 0
Log

Logit

Probit Φ , where

Φ

Complementary log-log

Power(α)

Log-complement

Negative log-log

When the canonical parameter is equal to the linear predictor, , then the link function is
called the canonical link function. Although the canonical links lead to desirable statistical
properties of the model, particularly in small samples, there is in general no a priori reason why
the systematic effects in a model should be additive on the scale given by that link. The canonical
link functions for probability distributions are given in the following table.

Table 19-5
Canonical and default link functions for probability distributions

Distribution Canonical link function
Normal Identity
Inverse Gaussian Power(−2)
Gamma Power(−1)
Negative binomial Negative binomial
Poisson Log
Binomial Logit

The variance of y, conditional on the random effects, is

y γ A RA

Generalized linear mixed models algorithms

The matrix A is a diagonal matrix and contains the variance function of the model, which
is the function of the mean μ, divided by the corresponding scale weight variable; that is,
Α diag . The variance functions, V(μ), are different for different
distributions. The matrix R is the variance matrix for repeated measures.

Generalized linear mixed models allow correlation and/or heterogeneity from random effects
(G-side) and/or heterogeneity from residual effects (R-side), resulting in 4 types of models:

1. If a GLMM has no G-side or R-side effects, then it reduces to a GZLM; G=0 and R I where I

is the identity matrix and is the scale parameter. For continuous distributions (normal, inverse
Gauss and gamma), is an unknown parameter and is estimated jointly with the regression
parameters by the maximum likelihood (ML) method. For discrete distributions (negative
binomial, Poisson, binomial and multinomial), is estimated by Pearson chi-square as follows:

where for the restricted maximum pseudo-likelihood (REPL) method.

2. If a model only has G-side random effects, then the G matrix is user-specified and R I. is
estimated jointly with the covariance parameters in G for continuous distributions and ∅ = 1.

3. If a model only has R-side residual effects, then G = 0 and the R matrix is user-specified. All

covariance parameters in R are estimated using the REPL method, defined in the section
“Estimation.”

4. If a model has both G-side and R-side effects, all covariance parameters in G and R are jointly

estimated using the REPL method.

For the negative binomial distribution, there is the ancillary parameter k, which is first estimated
by the ML method, ignoring random and residual effects, then fixed to that estimate while other
regression and covariance parameters are estimated.

Fixed effects transformation

To improve numerical stability, the X matrix is transformed according to the following rules.

The ith row of X is x T, i=1,...,n with if the model has an intercept.
Suppose x is the transformation of x then the jth entry of x is defined as

x

Generalized linear mixed models algorithms

where and are centering and scaling values for , respectively, for j=1,...,p and choices
of and , are listed as follows:
 For a non-constant continuous predictor or a derived predictor which includes a continuous

predictor, if the model has an intercept, and where is the sample

mean of the jth predictor, and and where is

the sample standard deviation of the jth predictor and

Note the intercept column isn’t transformed. If the model has no intercept, and

 For a constant predictor , and , that is, scale it to 1.
 For a dummy predictor that is derived from a factor or a factor interaction, and ;

that is, leave it unchanged.

Estimation

We estimate GLMMs using linearization-based methods, also called the pseudo likelihood
approach (PL; Wolfinger and O’Connell (1994)), penalized quasi-likelihood (PQL; Breslow
and Clayton (1993)), marginal quasi-likelihood (MQL; Goldstein (1991)). They are based on
the similar principle that the GLMMs are approximated by an LMM so that well-established
estimation methods for LMMs can be applied. More specifically, the mean target function; that is,
the inverse link function is approximated by a linear Taylor series expansion around the current
estimates of the fixed-effect regression coefficients and different solutions of random effects (0
is used for MQL and the empirical Bayes estimates are used for PQL). Applying this linear
approximation of the mean target leads to a linear mixed model for a transformation of the original
target. The parameters of this LMM can be estimated by Newton-Raphson or Fisher scoring
technique and the estimates then are used to update the linear approximation. The algorithm
iterates between two steps until convergence. In general, the method is a doubly iterative process.
The outer iterations are to update the transformed target for an LMM and the inner iterations are to
estimate parameters of the LMM.

It is well known that parameter estimation for an LMM can be based on maximum likelihood
(ML) or restricted (or residual) maximum likelihood (REML). Similarly, parameter estimation
for a GLMM in the inner iterations can based on maximum pseudo-likelihood (PL) or restricted
maximum pseudo-likelihood (REPL).

Linear mixed pseudo model

Following Wolfinger and O’Connell (1993), a first-order Taylor series of μ in (1) about and
 yields

μ X Z O X Z γ

Generalized linear mixed models algorithms

where Z O is a diagonal matrix with elements consisting of evaluations of

the 1st derivative of . Since Z O , this equation can be
rearranged as

μ Z Zγ

If we define a pseudo target variable as

v y Z y O

then the conditional expectation and variance of v, based on E y γ and y γ A RA ,
are

E v γ μ Z

v γ A RA

where A diag

Furthermore, we also assume v is normally distributed. Then we consider the model of v

v Zγ ε

as a weighted linear mixed model with fixed effects β, random effects γ 0 G , error terms
ε 0 A RA , because ε v γ and diagonal weight matrix

 A . Note that the new target v (with O if an offset variable exists) is a Taylor
series approximation of the linked target y . The estimation method of unknown
parameters of β and θ, which contains all unknowns in G and R, for traditional linear mixed
models can be applied to this linear mixed pseudo model.

The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which
are expressed as the functions of covariance parameters in θ, corresponding to the linear mixed
model for v are the following:

θ v V θ r θ TV θ r θ

θ v V θ r θ TV θ r θ XTV θ X

where

denotes the effective sample size, and px denotes the rank of the design matrix of X or the number
of non-redundant parameters in X. Note that the regression parameters in β are profiled from the
above equations because the estimation of β can be obtained analytically. The covariance

Generalized linear mixed models algorithms

parameters in θ are estimated by Newton-Raphson or Fisher scoring algorithm. Following the
tradition in linear mixed models, the objection functions of minimization for estimating θ would
be θ v or θ v Upon obtaining , estimates for β and γ are computed as

 XTV X XTV v

ZTV

where is the best linear unbiased estimator (BLUE) of β and is the estimated best linear
unbiased predictor (BLUP) of γ in the linear mixed pseudo model. With these statistics, v and

are recomputed based on and the objective function is minimized again to obtain updated
. Iteration between θ v and the above equation yields the PL estimation procedure and

between θ ν and the above equation the REPL procedure.

There are two choices for (the current estimates of γ):

1. for PQL; and

2. 0 for MQL.

On the other hand, is always used as the current estimate of the fixed effects. Based on the two
objective functions (PL or REPL) and two choices of random effect estimates (PQL or MQL), 4
estimation methods can be implemented for GLMMs:

1. PL-PQL: pseudo-likelihood with = ;

2. PL-MQL: pseudo-likelihood with = ;

3. REPL-PQL: residual pseudo-likelihood with = ;

4. REPL-MQL: residual pseudo-likelihood with = .

We use method 3, REPL-PQL.

Iterative process

The doubly iterative process for the estimation of θ is as follows:

1. Obtain an initial estimate of μ, μ . Specifically, for a binomial
distribution (yi can be a proportion or 0/1 value) and for a non-binomial distribution. Also
set the outer iteration index j = 0.

2. Based on , compute

v O y and A

Fit a weighted linear mixed model with pseudo target v, fixed effects design matrix X, random
effects design matrix Z, and diagonal weight matrix . The fitting procedure, which is called
the inner iteration, yields the estimates of θ, and is denoted as θ . The procedure uses the

Generalized linear mixed models algorithms

specified settings for parameter, log-likelihood, and Hessian convergence criteria for determining
convergence of the linear mixed model. If j = 0, go to step 4; otherwise go to the next step.

3. Check if the following criterion with tolerance level is satisfied:

If it is met or maximum number of outer iterations is reached, stop. Otherwise, go to the next step.

4. Compute by setting θ then set . Depending on the choice of random effect
estimates, set = .

5. Compute the new estimate.e of μ by

 Z O

set j = j + 1 and go to step 2.

Wald confidence intervals for covariance parameter estimates

Here we assume that the estimated parameters of G and R are obtained through the above doubly
iterative process. Then their asymptotic covariance matrix can be approximated by Η , where
H is the Hessian matrix of the objective function or θ v) evaluated at . The
standard error for the ith covariance parameter estimate in the vector, say , is the square root of
the ith diagonal element of Η .

Thus, a simple Wald’s type confidence interval or test statistic for any covariance parameter
can be obtained by using the asymptotic normality. However, these can be unreliable in small
samples, especially for variance and correlation parameters that have a range of and

respectively. Therefore, following the same method used in linear mixed models, these
parameters are transformed to parameters that have range . Using the delta method, these
transformed estimates still have asymptotic normal distributions.

For variance type parameters in G and R, such as in the autoregressive, autoregressive moving
average, compound symmetry, diagonal, Toeplitz, and variance components, and in the
unstructured type, the 100(1 – α)% Wald confidence interval is given, assuming the variance
parameter estimate is and its standard error is se from the corresponding diagonal element
of Η , by

For correlation type parameters in G and R, such as in the autoregressive, autoregressive moving
average, and Toeplitz types and in the autoregressive moving average type, which usually come
with the constraint of , the 100(1 – α)% Wald confidence interval is given, assuming the
correlation parameter estimate is and its standard error is from the corresponding diagonal
element of Η , by

Generalized linear mixed models algorithms

where and are hyperbolic tangent and inverse
hyperbolic tangent, respectively.

For general type parameters, other than variance and correlation types, in G and R, such as in
the compound symmetry type and (off-diagonal elements) in the unstructured type, no
transformation is done. Then the 100(1 – α)% Wald confidence interval is simply, assuming the
parameter estimate is and its standard error is se from the corresponding diagonal element
of Η ,

se se

The 100(1 – α)% Wald confidence interval for is

where ln .

Note that the z-statistics for the hypothesis where is a covariance parameter in
θ vector, are calculated; however, the Wald tests should be considered as an approximation and
used with caution because the test statistics might not have a standardized normal distribution.

Statistics for estimates of fixed and random effects

where R v γ A RA is evaluated at the converged estimates and

T 1

 ΖT

 ΖT 1Z+ 1 T 1Z

Statistics for estimates of fixed effects on original scale

If the X matrix is transformed, the restricted log pseudo-likelihood (REPL) would be different
based on transformed and original scale, so the REPL on the transformed scale should be
transformed back on the final iteration so that any post-estimation statistics based on REPL can
be calculated correctly. Suppose the final objective function value based on the transformed and

Generalized linear mixed models algorithms

original scales are θ v and θ v , respectively, then θ v can be obtained
from θ v as follows:

θ v θ v A

Because REPL has the following extra term involved the X matrix

X TV θ X XA TV θ XA

AT XV θ X A

XV θ X A AT

XV θ X A

then XV θ X X TV θ X A and θ v θ v A . Please
note that PL values are the same whether the X matrix is transformed or not.

In addition, the final estimates of β, C11, C21 and C22 are based on the transformed scale, denoted
as and respectively. They are transformed back to the original scale, denoted as

and respectively, as follows:

 Α

T

AT

Note that A could reduce toS ; hereafter, the superscript * denotes a quantity on the transformed
scale.

Estimated covariance matrix of the fixed effects parameters

Two estimated covariance matrices of the fixed effects parameters can be calculated: model-based
and robust.

The model-based estimated covariance matrix of the fixed effects parameters is given by

Σm

The robust estimated covariance matrix of the fixed effects parameters for a GLMM is defined as
the classical sandwich estimator. It is similar to that for a generalized linear model or a generalized
estimating equation (GEE). If the model is a generalized linear mixed model and it is processed by
subjects, then the robust estimator is defined as follows

Generalized linear mixed models algorithms

Σr=Σm 1 T 1 Σm

where v X

Standard errors for estimates in fixed effects and predictions in random effects

Let denote a non-redundant parameter estimate in fixed effects. Its standard error is the square
root of the ith diagonal element of Σm or Σr,

The standard error for redundant parameter estimates is set to a system missing value.

Let denote a prediction in random effects. Its standard error is the square root of the ith
diagonal element of :

Test statistics for estimates in fixed effects and predictions in random effects

The hypothesis is tested for each non-redundant parameter in fixed effects using the
t statistic:

which has an asymptotic t distribution with degrees of freedom. See “Method for computing
degrees of freedom” for details on computing the degrees of freedom.

Wald confidence intervals for estimates in fixed effects and predictions in random effects

The 100(1 – α)% Wald confidence interval for is given by

where is the 100th percentile of the distribution.

For some models (see the list below), the exponentiated parameter estimates, their standard
errors, and confidence intervals are computed. Using the delta method, the estimate of is

 , the standard error estimate is and the corresponding 100(1 – α)% Wald
confidence interval for is

T

Generalized linear mixed models algorithms

The list of models is as follows:

1. Logistic regression (binomial distribution + logit link).

2. Nominal logistic regression (nominal multinomial distribution + generalized logit link).

3. Ordinal logistic regression (ordinal multinomial distribution + cumulative logit link).

4. Log-linear model (Poisson distribution + log link).

5. Negative binomial regression (negative binomial distribution + log link).

Testing

After estimating parameters and calculating relevant statistics, several tests for the given model
are performed.

Goodness of fit

Information criteria

Information criteria are used when comparing different models for the same data. The formulas
for various criteria are as follows.

Finite sample corrected (AICC)

Bayesian information criteria (BIC)

where ℓ is the restricted log-pseudo-likelihood evaluated at the parameter estimates. For REPL,
N is the effective sample size minus the number of non-redundant parameters in fixed effects

() and d is the number of covariance parameters.

Note that the restricted log-pseudo-likelihood values are of the linearized model, not on the
original scale. Thus the information criteria should not be compared across models with different
distribution and link function and they should be interpreted with caution.

Tests of fixed effects

For each effect specified in the model, a type III test matrix L is constructed and H0: Liβ = 0 is
tested. Construction of L and the generating estimable function (GEF) is based on the generating
matrix H XTΨX XTΨX where Ψ diag such that Liβ is estimable; that
is, L L H . It involves parameters only for the given effect and the effects containing the given
effect. For type III analysis, L does not depend on the order of effects specified in the model. If
such a matrix cannot be constructed, the effect is not testable.

Then the L matrix is then used to construct the test statistic

Generalized linear mixed models algorithms

where ∑ T . The statistic has an approximate F distribution. The numerator
degrees of freedom is and the denominator degrees of freedom is . See “Method for computing
degrees of freedom” for details on computing the denominator degrees of freedom.

In addition, we test a null hypothesis that all regression parameters (except intercept if there is
one) equal zero. The test statistic would be the same as the above F statistic except the L matrix is
from GEF. If there is no intercept, the L matrix is the whole GEF. If there is an intercept, the L
matrix is GEF without the first row which corresponds to the intercept. This test is similar to the
“corrected model” in linear models.

Estimated marginal means

There are two types of estimated marginal means calculated here. One corresponds to the
specified factors for the linear predictor of the model and the other corresponds to those for the
original scale of the target.

Estimated marginal means are based on the estimated cell means. For a given fixed set of factors,
or their interactions, we estimate marginal means as the mean value averaged over all cells
generated by the rest of the factors in the model. Covariates may be fixed at any specified value.
If not specified, the value for each covariate is set to its overall mean estimate.

Estimated marginal means are not available for the multinomial distribution.

Estimated marginal means for the linear predictor

Calculating estimated marginal means for the linear predictor

Estimated marginal means for the linear predictor are based on the link function transformation,
and constructed such that LB is estimable.

Suppose there are r combined levels of the specified categorical effect. This r×1 vector can be
expressed in the form . The variance matrix of is then computed by

V =LΣLT

The standard error for the jth element of is the square root of the jth diagonal element of V .
Let the jth element of and its standard error be and , respectively, then the corresponding
100(1 – α)% confidence interval for is given by

T T ∑ T 1

Generalized linear mixed models algorithms

where is the percentile of the t distribution with degrees of freedom.
See “Method for computing degrees of freedom” for details on computing the degrees of
freedom.

Comparing estimated marginal means for the linear predictor

We can compare estimated marginal means for the linear predictor based on a selected contrast
type, for which a set of contrasts for the factor is created. Let this set of contrasts define matrix
C used for testing the hypothesis C 0. An F statistic is used for testing given set of
contrasts for the factor as follows:

which has an asymptotic F distribution with degrees of freedom, where rank CV CT .
See “Method for computing degrees of freedom” for details on computing the denominator
degrees of freedom. The p-values can be calculated accordingly. Note that adjusted p-values
based on multiple comparisons adjustments won’t be computed for the overall test.

Each row cT of matrix C is also tested separately. The estimate for the ith row is given by cT and
its standard error by cTV c . The corresponding 100(1 – α)% confidence interval is given by

cT

The test statistic for cT is

cT

It has an asymptotic t distribution. See “Method for computing degrees of freedom” for details
on computing the degrees of freedom. The p-values can be calculated accordingly. In addition,
adjusted p-values for multiple comparisons can also computed.

Estimated marginal means in the original scale

Estimated marginal means for the target are based on the original scale. As a conditional predictor
defined by Lane and Nelder (1982), estimated marginal means for the target are derived from
those for the linear predictor.

Calculating estimated marginal means for the target

The estimated marginal means for the target are defined as

 L

C T CV CT C

Generalized linear mixed models algorithms

The variance of estimated marginal means for the target is

where is a r×r matrix and is the derivative of the inverse of
the link with respect to the jth value in and where is
from Table 19-4.

The 100(1 – α)% confidence interval for is given by

Note: is estimated marginal means for the proportion, not for the number of events when
events and trials variables are used for the binomial distribution.

Comparing estimated marginal means for the target

This is similar to comparing estimated marginal means for the linear predictor; just replace with

 and with . For more information, see the topic “Estimated marginal means for the
linear predictor.”

Multiple comparisons

The hypothesis can be tested using the multiple row hypotheses testing technique.
Let be the ith row vector of matrix C. The ith row hypothesis is . Testing is the
same as testing multiple non-redundant row hypotheses simultaneously, where R is the
number of non-redundant row hypotheses, and represents the ith non-redundant hypothesis. A
hypothesis is redundant if there exists another hypothesis such that .

Adjusted p-values. For each individual hypothesis , test statistics can be calculated. Let

denote the p-value for testing and denote the adjusted p-value. The conclusion from
multiple testing is, at level (the family-wise type I error),

reject if ;

reject if .

Several different methods to adjust p-values are provided here. Please note that if the adjusted
p-value is bigger than 1, it is set to 1 in all the methods.

Adjusted confidence intervals. Note that if confidence intervals are also calculated for the above
hypothesis, then adjusting confidence intervals is required to correspond to adjusted p-values.
The only item needed to be adjusted in the confidence intervals is the critical value from the
standard normal distribution. Assume that the original critical value is and the adjusted
critical value is .

Generalized linear mixed models algorithms

LSD (Least Significant Difference)

The adjusted p-values are the same as the original p-values:

The adjusted critical value is:

Sequential Bonferroni

The adjusted p-values are:

The adjusted critical values will correspond to the ordered adjusted p-values as follows:

Sequential Sidak

The adjusted p-values are:

The adjusted critical values will correspond to the ordered adjusted p-values as follows:

 =

Method for computing degrees of freedom

Residual method

The value of degrees of freedom is given by X , where N is the effective sample size
and X is the design matrix of fixed effects.

Generalized linear mixed models algorithms

Satterthwaite’s approximation

First perform the spectral decomposition where Γ is an orthogonal matrix of
eigenvectors and D is a diagonal matrix of eigenvalues. If is the mth row of , is the
mth eigenvalues and

where and is the asymptotic covariance matrix of obtained from the
Hessian matrix of the objective function; that is, H . If

then the denominator degree of freedom is given by

Note that the degrees of freedom can only be computed when E>q.

Scoring

For GLMMs, predicted values and relevant statistics can be computed based on solutions of
random effects. PQL-type predictions use as the solution for the random effects to compute
predicted values and relevant statistics.

PQL-type predicted values and relevant statistics

Predicted value of the linear predictor

xT zT

Standard error of the linear predictor

Predicted value of the mean

xT zT

For the binomial distribution with 0/1 binary target variable, the predicted category x is

(or success) if
(or failure) otherwise

Approximate 100(1−α)% confidence intervals for the mean

x

Generalized linear mixed models algorithms

xT zT

Raw residual on the link function transformation

Raw residual on the original scale of the target

Pearson-type residual on the link function transformation

where γ is the ith diagonal element of v γ and v γ A A where

 is an n× 1 vector of PQL-type predicted values of the mean.

Pearson-type residual on the original scale of the target

where γ is the ith diagonal element of y A A and .

Classification Table

Suppose that is the sum of the frequencies for the observations whose actual target
category is j (as row) and predicted target category is (as column), (note that J =
2 for binomial), then

where is indicator function.

Suppose that is the
th

element of the classification table, which is the row
percentage, then

γ

γ

Generalized linear mixed models algorithms

T T

The percentage of total correct predictions of the model (or “overall percent correct”) is

Nominal multinomial distribution

The nominal multinomial distribution requires some extra notation and explanation.

Notation

The following notation is used throughout this section unless otherwise stated:

S Number of super subjects.
Number of cases in the sth super subject.

Nominal categorical target for the tth case in the sth super subject. Its category values
are denoted as 1, 2, and so on.

J The total number of categories for target.

Dummy vector of , T, where if ,
otherwise . The superscript T means the transpose of a matrix or vector.

y yT yT T

T

Probability of category j for the tth case in the sth super subject; that is,
.

T

T

T

T T

T T

Generalized linear mixed models algorithms

T T

T
1

Linear predictor value for category j of the tth case in the sth super subject.

T

T

(n (J−1)) × 1 vector of linear predictor. T T

p× 1 vector of predictor variables for the tth case in the sth super subject. The first
element is 1 if there is an intercept.

X (n (J−1)) × (J−1)p design matrix of fixed effects,
r× 1 vector of coefficients for the random effect corresponding to the tth case in the
sth super subject.

Z
Design matrix of random effects, , where is the direct sum of matrices.

O n× 1 vector of offsets, , where is the offset value of
the tth case in the sth super subject. This can’t be the target (y) or one of the predictors
(X). The offset must be continuous.

1 - , where 1 is a length q vector of 1.

 p× 1 vector of unknown parameters for category j, , .
The first element in is the intercept for the category j, if there is one.

r × 1 vector of random effects for category j in the sth super subject, .

Random effects for the sth super subject,

Scale weight of the tth case in the sth super subject. It does not have to be integers. If
it is less than or equal to 0 or missing, the corresponding case is not used.

ω n× 1 vector of scale weight variable, ω T.
 Frequency weight of the tth case in the sth super subject. If it is a non-integer value, it

is treated by rounding the value to the nearest integer. If it is less than 0.5 or missing,
the corresponding cases are not used.

f n× 1 vector of frequency count variable, T
N

Effective sample size, . If frequency count variable f is not used, N = n.

Model

The form of a generalized linear mixed model for nominal target with the random effects is

Generalized linear mixed models algorithms

d
d

where is the linear predictor; X is the design matrix for fixed effects; Z is the design matrix for
random effects; γ is a vector of random effects which are assumed to be normally distributed with
mean 0 and variance matrix G; is the logit link function such that

And its inverse function is

The variance of y, conditional on the random effects is

are not supported for the multinomial distribution. is set to 1.

Estimation

Linear mixed pseudo model

Similarly to “Linear mixed pseudo model,” we can obtain a weighted linear mixed model

where v D y O and error terms with

D D

and

And block diagonal weight matrix is

T

T

Generalized linear mixed models algorithms

D D= D

The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which
are expressed as the functions of covariance parameters in θ, corresponding to the linear mixed
model for v are the following:

θ v V θ r θ TV θ r θ

θ v V θ r θ TV θ r θ XTV θ X

The parameter can be estimated by linear mixed model using the objection function θ v or
θ v , and are computed as

T T

T

Iterative process

The doubly iterative process for the estimation of is the same as that for other distributions, if we
replace and with and O respectively, and set initial estimation
of as

For more information, see the topic “Iterative process.”

Post-estimation statistics

Wald confidence intervals

The Wald confidence intervals for covariance parameter estimates are described in “Wald
confidence intervals for covariance parameter estimates.”

Statistics for estimates of fixed and random effects

Similarly to “Statistics for estimates of fixed and random effects,” the approximate
covariance matrix of is

Generalized linear mixed models algorithms

T

Where with = , and

Statistics for estimates of fixed and random effects on original scale

If the fixed effects are transformed when constructing matrix X, then the final estimates of ,

 , , and above are based on transformed scale, denoted as , , and ,
respectively. They would be transformed back on the original scale, denoted as , , ,
and , respectively, as follows:

T

T

where A .

Estimated covariance matrix of the fixed effects parameters

Model-based estimated covariance

Robust estimated covariance of the fixed effects parameters

Generalized linear mixed models algorithms

where , and is a part of corresponding to the sth super subject.

Standard error for estimates in fixed effects and predictions in random effects

Let denote a non-redundant fixed effects parameter estimate. Its standard error is the square
root of the diagonal element of

The standard error for redundant parameter estimates is set to system missing value.

Similarly, let denote the ith random effects prediction. Its standard error is the square root
of the ith diagonal element of :

Test statistics for estimates in fixed effects and predictions in random effects

Test statistics for estimates in fixed effects and predictions in random effects are as those described
in “Statistics for estimates of fixed and random effects.”

Wald confidence intervals for estimates in fixed effects and random effects predictions

Wald confidence intervals are as those described in “Statistics for estimates of fixed and random
effects.”

Testing

Information criteria

These are as described in “Goodness of fit.”

Tests of fixed effects

For each effect specified in the model, a type III test matrix L is constructed from
the generating matrix , where and

. Then the test statistic is

where and L. The statistic has an approximate F distribution.
The numerator degrees of freedom is and the denominator degree of freedom is . For more
information, see the topic “Method for computing degrees of freedom.”

Generalized linear mixed models algorithms

Scoring

PQL-type predicted values and relevant statistics

 predicted vector of the linear predictor

T z T

Estimated covariance matrix of the linear predictor

 z z
z z

where is a diagonal block corresponding to the sth super subject, the approximate covariance
matrix of ; is a part of corresponding to the sth super subject.

The estimated standard error of the jth element in , , is the square root of the jth diagonal
element of ,

Predicted value of the probability for category j

Predicted category

x

If there is a tie in determining the predicted category, the tie will be broken by choosing the

category with the highest If there is still a tie, the one with the lowest

category number is chosen.

Approximate 100(1−α)% confidence intervals for the predicted probabilities

The covariance matrix of can be computed as

T T

λT

Generalized linear mixed models algorithms

 where

with

then the confidence interval is

where is the jth diagonal element of and the estimated variance of
.

Ordinal multinomial distribution

The ordinal multinomial distribution requires some extra notation and explanation.

Notation

The following notation is used throughout this section unless otherwise stated:

S Number of super subjects.
Number of cases in the sth super subject.

Ordinal categorical target for the tth case in the sth super subject. Its category values
are denoted as consecutive integers from 1 to J.

J The total number of categories for target.

Indicator vector of , T, where if ,
otherwise . The superscript T means the transpose of a matrix or vector.

y yT yT T

T

 Cumulative target probability for category j for the tth case in the sth super subject;

λ
 where λ λT λT T

and λT ,
and

Probability of category j for the tth case in the sth super subject; that is,
and .

T T

T
1

Generalized linear mixed models algorithms

T

T

T

Linear predictor value for category j of the tth case in the sth super subject.

T

T

(n (J−1)) × 1 vector of linear predictor. T T

p× 1 vector of predictors for the tth case in the sth super subject.

r× 1 vector of coefficients for the random effect corresponding to the tth case in the
sth super subject.

O n× 1 vector of offsets, , where is the offset value of
the tth case in the sth super subject. This can’t be the target (y) or one of the predictors
(X). The offset must be continuous.

1 - , where 1 is a length q vector of 1’s.

ψ J−1 × 1 vector of threshold parameters, ψ T and

 p× 1 vector of unknown parameters.

(J−1+p) × 1 vector of all parameters Β= ψT βT T
Scale weight of the tth case in the sth super subject. It does not have to be integers. If
it is less than or equal to 0 or missing, the corresponding case is not used.

ω n× 1 vector of scale weight variable, ω T.
 Frequency weight of the ith case in the sth super subject. If it is a non-integer value, it

is treated by rounding the value to the nearest integer. If it is less than 0.5 or missing,
the corresponding cases are not used.

f n× 1 vector of frequency count variable, T
N

Effective sample size, . If frequency count variable f is not used, N = n.

A B B B B
direct (or Kronecker) product of A and B, which is equal to

m× 1 vector of 1s; T

B B B
B B B

Model

The form of a generalized linear mixed model for an ordinal target with random effects is

λ γ

T T

T T

Generalized linear mixed models algorithms

T

where is the expanded linear predictor vector; λ is the expanded cumulative target probability
vector; is a cumulative link function; X is the expanded design matrix for fixed effects
arranged as follows

Β= ψT βT T
ψ ψ βT T

Z is the expanded design matrix for random effects
arranged as follows

γ is a vector of random effects which are assumed to be normally distributed with mean 0 and
variance matrix G.

The variance of y, conditional on the random effects is

where and R I which means that R-side effects

are not supported for the multinomial distribution. is set to 1.

Generalized linear mixed models algorithms

Estimation

Linear mixed pseudo model

Similarly to “Linear mixed pseudo model,” we can obtain a weighted linear mixed model

where v D y O and error terms ε D D T with

 and

And block diagonal weight matrix is

DT D

The Gaussian log pseudo-likelihood (PL) and restricted log pseudo-likelihood (REPL), which
are expressed as the functions of covariance parameters in , corresponding to the linear mixed
model for are the following:

θ v V θ r θ TV θ r θ

θ v V θ r θ TV θ r θ XTV θ X

where V θ G θ R θ θ N denotes the effective sample
size, and denotes the total number of non-redundant parameters for .

The parameter can be estimated by linear mixed model using the objection function θ v or

θ v , and are computed as

T

Generalized linear mixed models algorithms

.

β
β

ψ

T T

T

Iterative process

The doubly iterative process for the estimation of is the same as that for other distributions, if we
replace and with and O respectively, and set initial estimation
of as

For more information, see the topic “Iterative process.”

Post-estimation statistics

Wald confidence intervals

The Wald confidence intervals for covariance parameter estimates are described in “Wald
confidence intervals for covariance parameter estimates.”

Statistics for estimates of fixed and random effects

is the approximate covariance matrix of and in should be

D D T

Statistics for estimates of fixed and random effects on original scale

If the fixed effects are transformed when constructing matrix X, then the final estimates of B,
denoted as . They would be transformed back on the original scale, denoted as , as follows:

B β A ψ AB

where

A I 1 TS
S

Generalized linear mixed models algorithms

Estimated covariance matrix of the fixed effects parameters

The estimated covariance matrix of the fixed effects parameters is described in “Statistics for
estimates of fixed and random effects.”

Standard error for estimates in fixed effects and predictions in random effects

Let be threshold parameter estimates and denote
non-redundant regression parameter estimates. Their standard errors are the square root of the
diagonal elements of Σm or Σr: and , respectively, where

is the ith diagonal element of Σm or Σr.

Standard errors for predictions in random effects are as those described in “Statistics for estimates
of fixed and random effects.”

Test statistics for estimates in fixed effects and predictions in random effects

The hypotheses are tested for threshold parameters using the
t statistic:

Test statistics for estimates in fixed effects and predictions in random effects are otherwise as
those described in “Statistics for estimates of fixed and random effects.”

Wald confidence intervals for estimates in fixed effects and random effects predictions

The 100(1 – α)% Wald confidence interval for threshold parameter is given by

Wald confidence intervals are otherwise as those described in “Statistics for estimates of fixed and
random effects.”

The degrees of freedom can be computed by the residual method or Satterthwaite method. For the
residual method, . For the Satterthwaite method, it should be similar to that
described in “Method for computing degrees of freedom.”

Testing

Information criteria

These are as described in “Goodness of fit,” with the following modifications.

Generalized linear mixed models algorithms

T Z T

For REPL, the value of N is chosen to be effective sample size minus number of non-redundant

parameters in fixed effects, , where is the number of non-redundant

parameters in fixed effects, and d is the number of covariance parameters.

For PL, the value of N is effective sample size, , and d is the number of number of

non-redundant parameters in fixed effects, , plus the number of covariance parameters.

Tests of fixed effects

For each effect specified in the model excluding threshold parameters, a type I or III test
matrix Li is constructed and H0: LiB = 0 is tested. Construction of matrix Li is based on
matrix, where X 1 X and such that LiB is estimable.
Note that LiB is estimable if and only if L0 L0H , where L0 l L β . Construction
of L0 considers a partition of the more general test matrix L L ψ L β first, where
L ψ l l consists of columns corresponding to the threshold parameters and
L β is the part of Li corresponding to regression parameters, then replace L ψ with their

sum l l to get L0.

Note that the threshold-parameter effect is not tested for both type I and III analyses and
construction of Li is the same as in GENLIN. For more information, see the topic “Default Tests
of Model Effects.” Similarly, if the fixed effects are transformed when constructing
matrix X, then H should be constructed based on transformed values.

Scoring

PQL-type predicted values and relevant statistics

predicted vector of the linear predictor

Estimated covariance matrix of the linear predictor

T Z
T

where is a diagonal block corresponding to the sth super subject, the approximate covariance
matrix of ; is a part of corresponding to the sth super subject.

The estimated standard error of the jth element in , , is the square root of the jth diagonal
element of ,

T

Generalized linear mixed models algorithms

Predicted value of the cumulative probability for category j

 =

with

Predicted category

x

where

If there is a tie in determining the predicted category, the tie will be broken by choosing the

category with the highest If there is still a tie, the one with the lowest

category number is chosen.

Approximate 100(1−α)% confidence intervals for the cumulative predicted probabilities

If either endpoint in the argument is outside the valid range for the inverse link function, the
corresponding confidence interval endpoint is set to a system missing value.

The degrees of freedom can be computed by the residual method or Satterthwaite method.
For the residual method, . For Satterthwaite’s approximation,
the L matrix is constructed by X Z where X and Z are the jth rows of
X and Z , respectively, corresponding to the jth category. For example, the L matrix is

xT zT for the 1st category. The computation should then be
similar to that described in “Method for computing degrees of freedom.”

References

Agresti, A., J. G. Booth, and B. Caffo. 2000. Random-effects Modeling of Categorical Response
Data. Sociological Methodology, 30, 27–80.

Diggle, P. J., P. Heagerty, K. Y. Liang, and S. L. Zeger. 2002. The analysis of Longitudinal
Data, 2 ed. Oxford: Oxford University Press.

Fahrmeir, L., and G. Tutz. 2001. Multivariate Statistical Modelling Based on Generalized Linear
Models, 2nd ed. New York: Springer-Verlag.

Hartzel, J., A. Agresti, and B. Caffo. 2001. Multinomial Logit Random Effects Models. Statistical
Modelling, 1, 81–102.

Hedeker, D. 1999. Generalized Linear Mixed Models. In: Encyclopedia of Statistics in Behavioral
Science, B. Everitt, and D. Howell, eds. London: Wiley, 729–738.

Generalized linear mixed models algorithms

McCulloch, C. E., and S. R. Searle. 2001. Generalized, Linear, and Mixed Models. New York:
John Wiley and Sons.

Skrondal, A., and S. Rabe-Hesketh. 2004. Generalized Latent Variable Modeling: Multilevel,
Longitudinal, and Structural Equation Models. Boca Raton, FL: Chapman & Hall/CRC.

Tuerlinckx, F., F. Rijmen, G. Molenberghs, G. Verbeke, D. Briggs, W. Van den Noortgate, M.
Meulders, and P. De Boeck. 2004. Estimation and Software. In: Explanatory Item Response
Models: A Generalized Linear and Nonlinear Approach, P. De Boeck, and M. Wilson, eds.
New York: Springer-Verlag, 343–373.

Wolfinger, R., and M. O'Connell. 1993. Generalized Linear Mixed Models: A Pseudo-Likelihood
Approach. Journal of Statistical Computation and Simulation, 4, 233–243.

Wolfinger, R., R. Tobias, and J. Sall. 1994. Computing Gaussian likelihoods and their derivatives
for general linear mixed models. SIAM Journal on Scientific Computing, 15:6, 1294–1310.

Imputation of Missing Values
The following methods are available for imputing missing values:

Fixed. Substitutes a fixed value (either the field mean, midpoint of the range, or a constant that
you specify).

Random. Substitutes a random value based on a normal or uniform distribution.

Expression. Allows you to specify a custom expression. For example, you could replace values
with a global variable created by the Set Globals node.

Algorithm. Substitutes a value predicted by a model based on the C&RT algorithm. For each field
imputed using this method, there will be a separate C&RT model, along with a Filler node that
replaces blanks and nulls with the value predicted by the model. A Filter node is then used to
remove the prediction fields generated by the model.

Details of each imputation method are provided below.

Imputing Fixed Values

For fixed value imputation, three options are available:

Mean. Substitutes the mean of the valid training data values for the field being imputed,

where is the value of field x for record i, excluding missing values, and is the number of
records with valid values for field x.

Midrange. Substitutes the value halfway between the minimum and maximum valid values for the
field being imputed,

where and are the minimum and maximum observed valid values for field x,
respectively.

Constant. Substitutes the user-specified constant value.

For imputing fixed missing values in set or flag fields, only the Constant option is available.

Note: Using fixed imputed values for scale fields will artificially reduce the variance for that field,
which can interfere with model building using the field. If you impute using fixed values and
find that the field no longer has the expected effect in a model, consider imputing with a different
method that has a smaller impact on the field’s variance.

Imputation of Missing Values

Imputing Random Values
For random value imputation, the options depend on the type of the field being imputed.

Range Fields

For range fields, you can select from a uniform distribution or a normal distribution.

Uniform distribution. Values are generated randomly on the inverval , where each value
in the interval is equally likely to be generated.

Normal distribution. Values are generated from a normal distribution with mean and variance

, where and are derived from the valid observed values of x in the training data,

Set Fields

For set fields, random imputed values are selected from the list of observed values. By default, the
probabilities of all values are equal,

for the j possible values of k. The Equalize button will return any modified values to the default
equal probabilities.

If you select Based on Audit, probabilities are assigned proportional to the relative frequencies of
the values in the training data

where is the number of records for which .

If you select Normalize, values are adjusted to sum to 1.0, maintaining the same relative
proportions,

This is useful if you want to enter your own weights for generated random values, but they aren’t
expressed as probabilities. For example, if you know you want twice as many No values as Yes
values, you can enter 2 for No and 1 for Yes and click Normalize. Normalization will adjust the
values to 0.667 and 0.333, preserving the relative weights but expressing them as probabilities.

Imputing Values Derived from an Expression

Imputation of Missing Values

For expression-based imputation, imputed values are based on a user-specified CLEM expression.
The expression is evaluated just as it would be for a filler node. Note that some expressions
may return $null or other missing values, with the result that missing values may exist even
after imputation with this method.

Imputing Values Derived from an Algorithm

For the Algorithm method, a C&RT model is built for each field to be imputed, using all other
input fields as predictors. For each record that is imputed, the model for the field to be imputed
is applied to the record to produce a prediction, which is used as the imputed value. For more
information, see the topic “Overview of C&RT.”

K-Means Algorithm

Overview

The k-means method is a clustering method, used to group records based on similarity of values
for a set of input fields. The basic idea is to try to discover k clusters, such that the records within
each cluster are similar to each other and distinct from records in other clusters. K-means is an
iterative algorithm; an initial set of clusters is defined, and the clusters are repeatedly updated until
no more improvement is possible (or the number of iterations exceeds a specified limit).

Primary Calculations

In building the k-means model, input fields are encoded to account for differences in measurement
scale and type, and the clusters are defined and updated to generate the final model. These
calculations are described below.

Field Encoding

Input fields are recoded before the values are input to the algorithm as described below.

Scaling of Range Fields

In most datasets, there’s a great deal of variability in the scale of range fields. For example,
consider age and number of cars per household. Depending on the population of interest, age
may take values up to 80 or even higher. Values for number of cars per household, however, are
unlikely to exceed three or four in the vast majority of cases.

If you use both of these fields in their natural scale as inputs for a model, the age field is
likely to be given much more weight in the model than number of cars per household, simply
because the values (and therefore the differences between records) for the former are so much
larger than for the latter.

To compensate for this effect of scale, range fields are transformed so that they all have the
same scale. In IBM® SPSS® Modeler, range fields are rescaled to have values between 0 and 1.
The transformation used is

where x’i is the rescaled value of input field x for record i, xi is the original value of x for record i,
xmin is the minimum value of x for all records, and xmax is the maximum value of x for all records.

Numeric Coding of Symbolic Fields

For modeling algorithms that base their calculations on numerical differences between records,
symbolic fields pose a special challenge. How do you calculate a numeric difference for two
categories?

K-Means Algorithm

A common approach to the problem, and the approach used in IBM® SPSS® Modeler, is to
recode a symbolic field as a group of numeric fields with one numeric field for each category or
value of the original field. For each record, the value of the derived field corresponding to the
category of the record is set to 1.0, and all the other derived field values are set to 0.0. Such
derived fields are sometimes called indicator fields, and this recoding is called indicator coding.

For example, consider the following data, where x is a symbolic field with possible values A,
B, and C:

Record # X X1’ X2’ X3’
1 B 0 1 0
2 A 1 0 0
3 C 0 0 1

In this data, the original set field x is recoded into three derived fields x1’, x2’, and x3’. x1’ is an
indicator for category A, x2’ is an indicator for category B, and x3’ is an indicator for category C.

Applying the Set Encoding Value

After recoding set fields as described above, the algorithm can calculate a numerical difference
for the set field by taking the differences on the k derived fields (where k is the number of
categories in the original set). However, there is an additional problem. For algorithms that
use the Euclidean distance to measure differences between records, the difference between two
records with different values i and j for the set is

where J is the number of categories, and xkn is value of the derived indicator for category k for
record n. But the values will be different on two of the derived indicators, xi and xj. Thus, the
sum will be , which is larger than 1.0. That means
that based on this coding, set fields will have more weight in the model than range fields that
are rescaled to 0-1 range.

To account for this bias, k-means applies a scaling factor to the derived set fields, such that a
difference of values on a set field produces a Euclidean distance of 1.0. The default scaling
factor is . You can see that this value gives the desired result by inserting the value
into the distance formula:

The user can specify a different scaling factor by changing the Encoding value for sets parameter in
the K-Means node expert options.

K-Means Algorithm

Encoding of Flag Fields

Flag fields are a special case of symbolic fields. However, because they have only two values in
the set, they can be handled in a slightly more efficient way than other set fields. Flag fields are
represented by a single numeric field, taking the value of 1.0 for the “true” value and 0.0 for the
“false” value. Blanks for flag fields are assigned the value 0.5.

Model Parameters

The primary calculation in k-means is an iterative process of calculating cluster centers and
assigning records to clusters. The primary steps in the procedure are:

1. Select initial cluster centers

2. Assign each record to the nearest cluster

3. Update the cluster centers based on the records assigned to each cluster

4. Repeat steps 2 and 3 until either:
 In step 3, there is no change in the cluster centers from the previous iteration, or
 The number of iterations exceeds the maximum iterations parameter

Clusters are defined by their centers. A cluster center is a vector of values for the (encoded) input
fields. The vector values are based on the mean values for records assigned to the cluster.

Note: The structure of the model can differ depending on the input order of the records. To
minimize the input order effect, randomly order the records before building the model.

Selecting Initial Cluster Centers

The user specifes k, the number of clusters in the model. Initial cluster centers are chosen using a
maximin algorithm:

1. Initialize the first cluster center as the values of the input fields for the first data record.

2. For each data record, compute the minimum (Euclidean) distance between the record and each
defined cluster center.

3. Select the record with the largest minimum distance from the defined cluster centers. Add a new
cluster center with values of the input fields for the selected record.

4. Repeat steps 2 and 3 until k cluster centers have been added to the model.

Once initial cluster centers have been chosen, the algorithm begins the iterative assign/update
process.

Assigning Records to Clusters

In each iteration of the algorithm, each record is assigned to the cluster whose center is closest.
Closeness is measured by the usual squared Euclidean distance

K-Means Algorithm

where Xi is the vector of encoded input fields for record i, Cj is the cluster center vector for cluster
j, Q is the number of encoded input fields, xqi is the value of the qth encoded input field for the ith
record, and cqj is the value of the qth encoded input field for the jth record.

For each record, the distance between the record and each cluster center is calculated, and the
cluster center whose distance from the record is smallest is assigned as the record’s new cluster.
When all records have been assigned, the cluster centers are updated.

Updating Cluster Centers

After records have been (re)assigned to their closest clusters, the cluster centers are updated. The
cluster center is calculated as the mean vector of the records assigned to the cluster:

where the components of the mean vector are calculated in the usual manner,

where nj is the number of records in cluster j, xqi(j) is the qth encoded field value for record i
which is assigned to cluster j.

Blank Handling

In k-means, blanks are handled by substituting “neutral” values for the missing ones. For range
and flag fields with missing values (blanks and nulls), the missing value is replaced with 0.5. For
set fields, the derived indicator field values are all set to 0.0.

Effect of Options

There are several options that affect the way the model calculations are carried out.

Maximum Iterations

The maximum iterations parameter controls how long the algorithm will continue searching
for a stable cluster solution. The algorithm will repeat the classify/update cycle no more than
the number of times specified. If and when this limit is reached, the algorithm terminates and
produces the current set of clusters as the final model.

K-Means Algorithm

Error Tolerance

The error tolerance parameter provides another means of controlling how long the algorithm will
continue searching for a stable cluster solution. The maximum change in cluster means for an
iteration t is calculated as

where Cj(t) is the cluster center vector for the jth cluster at iteration t and Cj(t - 1) is the cluster
center vector at the previous iteration. If the maximum change is less than the specified tolerance
for the current iteration, the algorithm terminates and produces the current set of clusters as
the final model.

Encoding Value for Sets

The encoding value for sets parameter controls the relative weighting of set fields in the k-means
algorithm. The default value of provides an equal weighting between range fields
and set fields. To emphasize set fields more heavily, you can set the encoding value closer to 1.0;
to emphasize range fields more, set the encoding value closer to 0.0. For more information, see
the topic “Numeric Coding of Symbolic Fields.”

Model Summary Statistics

Cluster proximities are calculated as the Euclidean distance between cluster centers,

Generated Model/Scoring
Generated k-means models provide predicted cluster memberships and distance from cluster
center for each record.

Predicted Cluster Membership

When assigning a new record with a predicted cluster membership, the Euclidean distance
between the record and each cluster center is calculated (in the same manner as for assigning
records during the model building phase), and the cluster center closest to the record is assigned as
the predicted cluster for the record.

Distances

The value of the distance field for each record, if requested, is calculated as the Euclidean
distance between the record and its assigned cluster center,

K-Means Algorithm

Blank Handling

In k-means, scoring records with a generated model handles blanks in the same way they are
handled during model building. For more information, see the topic “Blank Handling.”

KNN Algorithms
Nearest Neighbor Analysis is a method for classifying cases based on their similarity to other
cases. In machine learning, it was developed as a way to recognize patterns of data without
requiring an exact match to any stored patterns, or cases. Similar cases are near each other and
dissimilar cases are distant from each other. Thus, the distance between two cases is a measure
of their dissimilarity.

Cases that are near each other are said to be “neighbors.” When a new case (holdout) is presented,
its distance from each of the cases in the model is computed. The classifications of the most
similar cases – the nearest neighbors – are tallied and the new case is placed into the category that
contains the greatest number of nearest neighbors.

You can specify the number of nearest neighbors to examine; this value is called k. The pictures
show how a new case would be classified using two different values of k. When k = 5, the new
case is placed in category 1 because a majority of the nearest neighbors belong to category 1.
However, when k = 9, the new case is placed in category 0 because a majority of the nearest
neighbors belong to category 0.

Nearest neighbor analysis can also be used to compute values for a continuous target. In this
situation, the average or median target value of the nearest neighbors is used to obtain the
predicted value for the new case.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Y Optional 1×N vector of responses with element , where n=1,...,N
indexes the cases.

X0 P0×N matrix of features with element , where p=1,...,P0 indexes the
features and n=1,...,N indexes the cases.

X P×N matrix of encoded features with element , where p=1,...,P
indexes the features and n=1,...,N indexes the cases.

P Dimensionality of the feature space; the number of continuous features
plus the number of categories across all categorical features.

N Total number of cases.
The number of cases with Y = j, where Y is a response variable with
J categories

 The number of cases which belong to class j and are correctly classified
as j.

 The total number of cases which are classified as j.

Preprocessing

Features are coded to account for differences in measurement scale.

KNN Algorithms

Continuous

Continuous features are optionally coded using adjusted normalization:

where is the normalized value of input feature p for case n, is the original value of the
feature for case n, is the minimum value of the feature for all training cases, and

is the maximum value for all training cases.

Categorical

Categorical features are always temporarily recoded using one-of-c coding. If a feature has
c categories, then it is is stored as c vectors, with the first category denoted (1,0,...,0), the next
category (0,1,0,...,0), ..., and the final category (0,0,...,0,1).

Training

Training a nearest neighbor model involves computing the distances between cases based upon
their values in the feature set. The nearest neighbors to a given case have the smallest distances
from that case. The distance metric, choice of number of nearest neighbors, and choice of the
feature set have the following options.

Distance Metric

We use one of the following metrics to measure the similarity of query cases and their nearest
neighbors.

Euclidean Distance. The distance between two cases is the square root of the sum, over all
dimensions, of the weighted squared differences between the values for the cases.

City Block Distance. The distance between two cases is the sum, over all dimensions, of the
weighted absolute differences between the values for the cases.

KNN Algorithms

The feature weight is equal to 1 when feature importance is not used to weight distances;
otherwise, it is equal to the normalized feature importance:

See “Output Statistics ” for the computation of feature importance .

Crossvalidation for Selection of k

Cross validation is used for automatic selection of the number of nearest neighbors, between a
minimum and maximum . Suppose that the training set has a cross validation variable
with the integer values 1,2,..., V. Then the cross validation algorithm is as follows:

E For each , compute the average error rate or sum-of square error of k:
 , where is the error rate or sum-of square error when we apply the Nearest

Neighbor model to make predictions on the cases with ; that is, when we use the other
cases as the training dataset.

E Select the optimal k as: .

Note: If multiple values of k are tied on the lowest average error, we select the smallest k among
those that are tied.

Feature Selection

Feature selection is based on the wrapper approach of Cunningham and Delany (2007) and uses
forward selection which starts from features which are entered into the model. Further
features are chosen sequentially; the chosen feature at each step is the one that causes the largest
decrease in the error rate or sum-of squares error.

Let represent the set of J features that are currently chosen to be included, represents the
set of remaining features and represents the error rate or sum-of-squares error associated
with the model based on .

The algorithm is as follows:

E Start with features.

E For each feature in , fit the k nearest neighbor model with this feature plus the existing features
in and calculate the error rate or sum-of square error for each model. The feature in whose
model has the smallest error rate or sum-of square error is the one to be added to create .

E Check the selected stopping criterion. If satisfied, stop and report the chosen feature subset.
Otherwise, J=J+1 and go back to the previous step.

Note: the set of encoded features associated with a categorical predictor are considered and added
together as a set for the purpose of feature selection.

KNN Algorithms

Stopping Criteria

One of two stopping criteria can be applied to the feature selection algorithm.

Fixed number of features. The algorithm adds a fixed number of features, , in addition to those
forced into the model. The final feature subset will have features. may be
user-specified or computed automatically; if computed automatically the value is

When this is the stopping criterion, the feature selection algorithm stops when features
have been added to the model; that is, when , stop and report as the chosen
feature subset.

Note: if , no features are added and with is reported as the chosen
feature subset.

Change in error rate or sum of squares error. The algorithm stops when the change in the absolute
error ratio indicates that the model cannot be further improved by adding more features.
Specifically, if or and

where is the specified minimum change, stop and report as the chosen feature subset.

If and

stop and report as the chosen feature subset.

Note: if for , no features are added and with is reported as
the chosen feature subset.

Combined k and Feature Selection

The following method is used for combined neighbors and features selection.

1. For each k, use the forward selection method for feature selection.

2. Select the k, and accompanying feature set, with the lowest error rate or the lowest sum-of-squares
error.

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

KNN Algorithms

Output Statistics
The following statistics are available.

Percent correct for class j

Overall percent for class j

Intersection of Overall percent and percent correct

Error rate of classification

Sum-of-Square Error for continuous response

where is the estimated value of .

Feature Importance

Suppose there are in the model from the forward selection
process with the error rate or sum-of-squares error e. The importance of feature in the
model is computed by the following method.

E Delete the feature from the model, make predictions and evaluate the error rate or
sum-of-squares error based on features .

E Compute the error ratio .

The feature importance of is

KNN Algorithms

Scoring

After we find the k nearest neighbors of a case, we can classify it or predict its response value.

Categorical response

Classify each case by majority vote of its k nearest neighbors among the training cases.

E If multiple categories are tied on the highest predicted probability, then the tie should be broken by
choosing the category with largest number of cases in training set.

E If multiple categories are tied on the largest number of cases in the training set, then choose the
category with the smallest data value among the tied categories. In this case, categories are
assumed to be in the ascending sort or lexical order of the data values.

We can also compute the predicted probability of each category. Suppose is the number of
cases of the jth category among the k nearest neighbors. Instead of simply estimating the predicted
probability for the jth category by , we apply a Laplace correction as follows:

where J is the number of categories in the training data set.

The effect of the Laplace correction is to shrink the probability estimates towards to 1/J when the
number of nearest neighbors is small. In addition, if a query case has k nearest neighbors with the
same response value, the probability estimates are less than 1 and larger than 0, instead of 1 or 0.

Continuous response

Predict each case using the mean or median function.

Mean function. , where is the index set of those cases
that are the nearest neighbors of case n and is the value of the continuous response variable
for case m.

Median function. Suppose that are the values of the continuous response
variable, and we arrange from the lowest value to the highest value and
denote them as , then the median is

is odd

is even

Blank Handling

Records with missing values for any input field cannot be scored and are assigned a predicted
value and probability value(s) of $null$.

References

KNN Algorithms

Arya, S., and D. M. Mount. 1993. Algorithms for fast vector quantization. In: Proceedings of the
Data Compression Conference 1993, , 381–390.

Cunningham, P., and S. J. Delaney. 2007. k-Nearest Neighbor Classifiers. Technical Report
UCD-CSI-2007-4, School of Computer Science and Informatics, University College Dublin,
Ireland, , – .

Friedman, J. H., J. L. Bentley, and R. A. Finkel. 1977. An algorithm for finding best matches in
logarithm expected time. ACM Transactions on Mathematical Software, 3, 209–226.

Kohonen Algorithms

Overview

Kohonen models (Kohonen, 2001) are a special kind of neural network model that performs
unsupervised learning. It takes the input vectors and performs a type of spatially organized
clustering, or feature mapping, to group similar records together and collapse the input space
to a two-dimensional space that approximates the multidimensional proximity relationships
between the clusters.

The Kohonen network model consists of two layers of neurons or units: an input layer and
an output layer. The input layer is fully connected to the output layer, and each connection has
an associated weight. Another way to think of the network structure is to think of each output
layer unit having an associated center, represented as a vector of inputs to which it most strongly
responds (where each element of the center vector is a weight from the output unit to the
corresponding input unit).

Primary Calculations

Field Encoding

Scaling of Range Fields

In most datasets, there’s a great deal of variability in the scale of range fields. For example,
consider age and number of cars per household. Depending on the population of interest, age
may take values up to 80 or even higher. Values for number of cars per household, however, are
unlikely to exceed three or four in the vast majority of cases.

If you use both of these fields in their natural scale as inputs for a model, the age field is
likely to be given much more weight in the model than number of cars per household, simply
because the values (and therefore the differences between records) for the former are so much
larger than for the latter.

To compensate for this effect of scale, range fields are transformed so that they all have the
same scale. In IBM® SPSS® Modeler, range fields are rescaled to have values between 0 and 1.
The transformation used is

where x’i is the rescaled value of input field x for record i, xi is the original value of x for record i,
xmin is the minimum value of x for all records, and xmax is the maximum value of x for all records.

Numeric Coding of Symbolic Fields

For modeling algorithms that base their calculations on numerical differences between records,
symbolic fields pose a special challenge. How do you calculate a numeric difference for two
categories?

Kohonen Algorithms

A common approach to the problem, and the approach used in IBM® SPSS® Modeler, is to
recode a symbolic field as a group of numeric fields with one numeric field for each category or
value of the original field. For each record, the value of the derived field corresponding to the
category of the record is set to 1.0, and all the other derived field values are set to 0.0. Such
derived fields are sometimes called indicator fields, and this recoding is called indicator coding.

For example, consider the following data, where x is a symbolic field with possible values A,
B, and C:

Record # X X1’ X2’ X3’
1 B 0 1 0
2 A 1 0 0
3 C 0 0 1

In this data, the original set field x is recoded into three derived fields x1’, x2’, and x3’. x1’ is an
indicator for category A, x2’ is an indicator for category B, and x3’ is an indicator for category C.

Encoding of Flag Fields

Flag fields are a special case of symbolic fields. However, because they have only two values in
the set, they can be handled in a slightly more efficient way than other set fields. Flag fields are
represented by a single numeric field, taking the value of 1.0 for the “true” value and 0.0 for the
“false” value. Blanks for flag fields are assigned the value 0.5.

Model Parameters

In a Kohonen model, the parameters are represented as weights between input units and output
units, or alternately, as a cluster center associated with each output unit. Input records are
presented to the network, and the cluster centers are updated in a manner similar to that used in
building a k-means model, with an important difference: the clusters are arranged spatially in a
two-dimensional grid, and each record affects not only the unit (cluster) to which it is assigned
but also units within a neighborhood about the winning unit. For more information, see the
topic “Neighborhoods.”

Training of the Kohonen network proceeds as follows:

E The network is initialized with small random weights.

E Input records are presented to the network in random order. As each record is presented, the
output unit with the closest center to the input vector is identified as the winning unit. For more
information, see the topic “Distances.”

E The weights of the winning unit are adjusted to move the cluster center closer to the input vector.
For more information, see the topic “Weight Updates.”

E If the neighborhood size is greater than zero, then other output units that are within the
neighborhood of the winning unit are also updated so their centers are closer to the input vector.

E At the end of each cycle, the learning rate parameter (eta) is updated.

Kohonen Algorithms

E This process repeats until one of the stopping criteria is met. Training proceeds in two phases,

a gross structure phase and a fine tuning phase. Typically the first phase has a relatively large
neighborhood size and large eta to learn the overall structure of the data, and the second phase
uses a smaller neighborhood and smaller eta to fine tune the cluster centers.

Distances

Distances in a Kohonen network are calculated as Euclidean distance between the encoded input
vector and the cluster center for the output unit,

where is the value of the kth input field for the ith record, and is the weight for the kth
input field on the jth output unit.

The activation of an output unit is simply the Euclidean distance between the output unit’s
weight vector (its center) and the input vector. Note that for Kohonen networks, the output unit
with the lowest activation is the winning unit. This is in contrast to other types of neural networks,
where higher activation represents stronger response.

Neighborhoods

The neighborhood function is based on the Chebychev distance, which considers only the
maximum distance on any single dimension:

where is the location of unit x on dimension i of the output grid, and is the location of
another unit y on the same dimension.

An output unit is considered to be in the neighborhood of another output unit if
, where n is the neighborhood size.

Neighborhood size remains constant during each phase, but different phases usually use
different neighborhood sizes. By default, for Phase 1 and for Phase 2.

Weight Updates

For the winning output node, and its neighbors if the neighborhood is > 0, the weights are
adjusted by adding a portion of the difference between the input vector and the current weight
vector. The magnitude of the change is determined by the learning rate parameter (eta). The
weight change is calculated as

where W is the weight vector for the output unit being updated, I is the input vector, and is the
learning rate parameter. In individual unit terms,

Kohonen Algorithms

where is the weight corresponding to input unit j for the output unit being updated, and is
the jth input unit.

Eta Decay

At the end of each cycle, the value of is updated. The value of generally decreases across
training cycles. The user can control the rate of decrease by selecting either linear or exponential
decay.

Linear decay. This is the default decay rate. When this option is selected, the value of decays in a
linear fashion, decreasing by a fixed amount each cycle, according to the formula

where is the initial eta value for the current phase, and is the low eta for the current
training phase, calculated as the lesser of the initial eta values for the current phase and the
following phase, and c is the number of cycles set for the current phase.

Exponential decay. When this option is selected, the value of decays in an exponential fashion,
decreasing by a fixed proportion each cycle, according to the formula

The value of has a minimum value of 0.0001 to prevent arithmetic errors in taking the
logarithm.

Blank Handling

In Kohonen networks, blanks are handled by substituting “neutral” values for the missing ones.
For range and flag fields with missing values (blanks and nulls), the missing value is replaced
with 0.5. For range fields, numeric values outside the range limits found in the field’s type
information are coerced to the type-defined range. For set fields, the derived indicator field
values are all set to 0.0.

Effect of Options

Stop on. By default, training executes the specified number of cycles for each phase. If the Time
option is selected, training stops when the elapsed time reaches the specified limit (or sooner if the
specified number of cycles for both phases is completed before the time limit is reached).

Kohonen Algorithms

Random seed. Sets the seed for the random number generator used to initialize the weights of the
new network as well as the order of presentation for training records. Select a fixed seed value to
create a reproducible network.

Generated Model/Scoring

Cluster Membership

Cluster membership for a new record is derived by presenting the input vector for the record
to the network and identifying the output neuron with the closest weight vector, as described
in Distances above. The predicted value is returned as the x and y coordinates of the winning
neuron in the output grid.

Blank Handling

Blank handling for scoring is the same as during model building. For more information, see the
topic “Blank Handling.”

Linear modeling algorithms
Linear models predict a continuous target based on linear relationships between the target and
one or more predictors.

For algorithms on enhancing model accuracy, enhancing model stability, or working with very
large datasets, see “Ensembles Algorithms.”

Notation

The following notation is used throughout this chapter unless otherwise stated:

n Number of distinct records in the dataset. It is an integer and .
p Number of parameters (including parameters for dummy variables but

excluding the intercept) in the model. It is an integer and .
 Number of non-redundant parameters (excluding the intercept) currently in

the model. It is an integer and .
 Number of non-redundant parameters currently in the model.

 Number of effects excluding the intercept. It is an integer and

y target vector with elements .
f frequency weight vector.
g regression weight vector.
N

Effective sample size. It is an integer and . If there is no

frequency weight vector, N=n.
X design matrix with element . The rows represent the records

and the columns represent the parameters.
vector of unobserved errors.

 vector of unknown parameters; . is the
intercept.

vector of parameter estimates.

b vector of standardized parameter estimates. It is the result of a
sweep operation on matrix R. is the standardized estimate of the intercept
and is equal to 0.

 vector of predicted target values.

 Weighted sample mean for ,

Weighted sample mean for y.

 Weighted sample covariance between and , .

 Weighted sample covariance between and y.

 Weighted sample variance for y.

R weighted sample correlation matrix for X (excluding the
intercept, if it exists) and y.

 The resulting matrix after a sweep operation whose elements are .

Linear modeling algorithms

Model

Linear regression has the form

y Xβ ε

where ε follows a normal distribution with mean 0 and variance D , where
D . The elements of ε are independent with respect to each other.

Notes:
 X can be any combination of continuous and categorical effects.
 Constant columns in the design matrix are not used in model building.
 If n=1 or the target is constant, no model is built.

Missing values

Records with missing values are deleted listwise.

Least squares estimation

The coefficients are estimated by the least squares (LS) method. First, we transform the model
by pre-multiplying D as follows:

D y D Xβ D ε

so that the new unobserved error D ε follows a normal distribution 0 , where I is an
identity matrix and D . Then the least squares estimates of β can be
obtained from the following formula

where F diag . Note that

where diag diag , so the closed form solution of is

T T

R

Linear modeling algorithms

 is computed by applying sweep operations instead of the equation above. In addition, sweep

operations are applied to the transformed scale of X and y to achieve numerical stability.
Specifically, we construct the weighted sample correlation matrix R then apply sweep operations
to it. The R matrix is constructed as follows.

First, compute weighted sample means, variances and covariances among ,

and y :

Weighted sample means of Xi and y are and ;

Weighted sample covariance for Xi and Xj is ;

Weighted sample covariance for Xi and y is ;

Weighted sample variance for y is .

Second, compute weighted sample correlations , and .

Then the matrix R is

R
R

T

If the sweep operations are repeatedly applied to each row of , where contains the
predictors in the model at the current step, the result is

The last column R R contains the standardized coefficient estimates; that is, .
Then the coefficient estimates, except the intercept estimate if there is an intercept in the model,
are:

Model selection

The following model selection methods are supported:
 None, in which no selection method is used and effects are force entered into the model. For

this method, the singularity tolerance is set to 1e−12 during the sweep operation.

R

T

 T

Linear modeling algorithms

 Forward stepwise, which starts with no effects in the model and adds and removes effects one

step at a time until no more can be added or removed according to the stepwise criteria.
 Best subsets, which checks “all possible” models, or at least a larger subset of the possible

models than forward stepwise, to choose the best according to the best subsets criterion.

Forward stepwise

The basic idea of the forward stepwise method is to add effects one at a time as long as these
additions are worthy. After an effect has been added, all effects in the current model are checked
to see if any of them should be removed. Then the process continues until a stopping criterion
is met. The traditional criterion for effect entry and removal is based on their F-statistics and
corresponding p-values, which are compared with some specified entry and removal significance
levels; however, these statistics may not actually follow an F distribution so the results might be
questionable. Hence the following additional criteria for effect entry and removal are offered:
 Maximum adjusted R2;
 Minimum corrected Akaike information criterion (AICC); and
 Minimum average squared error (ASE) over the overfit prevention data

Candidate statistics

Some additional notations are needed describe the addition or removal of a continuous effect Xj or
categorical effect , where ℓ is the number of categories.

The number of non-redundant parameters of the eligible effect Xj or
.

 The number of non-redundant parameters in the current model (including
the intercept).

 The number of non-redundant parameters in the resulting model (including
the intercept). Note that for entering an effect

for removing an effect
 The weighted residual sum of squares for the current model.

 The weighted residual sum of squares for the resulting model after entering
the effect.

 The weighted residual sum of squares for the resulting model after removing
the effect.
The last diagonal element in the current R matrix.

 The last diagonal element in the resulting matrix.

F statistics. The F statistics for entering or removing an effect from the current model are:

Linear modeling algorithms

and their corresponding p-values are:

Adjusted R-squared. The adjusted R2 value for entering or removing an effect from the current
model is:

adj.

Corrected Akaike Information Criterion (AICC). The AICC value for entering or removing an effect
from the current model is:

Average Squared Error (ASE). The ASE value for entering or removing an effect from the current
model is:

where are the predicted values of yt and T is the number of distinct testing cases in
the overfit prevention set.

The Selection Process

There are slight variations in the selection process, depending upon the model selection criterion:
 The F statistic criterion is to select an effect for entry (removal) with the minimum (maximum)

p-value and continue doing it until the p-values of all candidates for entry (removal) are equal
to or greater than (less than) a specified significance level.

 The other three criteria are to compare the statistic (adjusted R2, AICC or ASE) of the
resulting model after entering (removing) an effect with that of the current model. Selection
stops at a local optimal value (a maximum for the adjusted R2 criterion and a minimum
for the AICC and ASE).

The following additional definitions are needed for the selection process:

FLAG A index vector which records the status of each effect. FLAGi =

1 means the effect i is in the current model, FLAGi = 0 means it is not.
denotes the number of effects with FLAGi = 1.

MAXSTEP The maximum number of iteration steps. The default value is .
MAXEFFECT The maximum number of effects (excluding intercept if exists). The default

value is .

Linear modeling algorithms

Pin The significance level for effect entry when the F-statistic criterion is used.

The default is 0.05.
Pout The significance level for effect removal when the F statistic criterion is

used. The default is 0.1.
The F statistic change. It is or for entering or removing
an effect Xj (here Xj could represent continuous or categorical for simpler
notation).
The corresponding p-value for .

MSCcurrent The adjusted R2, AICC, or ASE value for the current model.

1. Set and iter = 0. The initial model is . If the adjusted R2, AICC, or ASE
criterion is used, compute the statistic for the initial model and denote it as MSCcurrent.

2. If , iter ≤ MAXSTEP and , go to the
next step; otherwise stop and output the current model .

3. Based on the current model, for every effect j eligible for entry (see Condition below),

If FC (the F statistic criterion) is used, compute and ;

If MSC (the adjusted R2, AICC, or ASE criterion) is used, compute MSCj.
4. If FC is used, choose the effect and if < Pin, enter to the

current model.

If MSC is used, choose the effect and if < ,
enter to the current model. (For the adjusted R2 criterion, replace min with max and reverse
the inequality)

If the inequality is not satisfied, stop and output the current model.

5. If the model with the new effect is the same as any previously obtained model, stop and output the
current model; otherwise update the current model by doing the sweep operation on corresponding
row(s) and column(s) associated with Xj* in the current R matrix. Set FLAGj* and iter
= iter + 1.

If FC is used, let and ;

If MSC is used, let .

6. For every effect k in the current model; that is, ,

If FC is used, compute and ;

If MSC is used, compute MSCk.
7. If FC is used, choose the effect and if > Pout, remove

 from the current model.

If MSC is used, choose the effect and if < ,
remove from the current model. (For the adjusted R2 criterion, replace min with max and
reverse the inequality)

If the inequality is met, go to the next step; otherwise go back to step 2.

Linear modeling algorithms

8. If the model with the effect removed is the same as any previously obtained model, stop and

output the current model; otherwise update the current model by doing the sweep operation
on corresponding row(s) and column(s) associated with in the current R matrix. Set

 and iter = iter + 1.

If FC is used, let and ;

If AC is used, let AICCcurrent = AICCk* . Then go back to step 6.

Condition. In order for effect j to be eligible for entry into the model, the following conditions
must be met:

For continuous a effect Xj , ; (t is the singularity tolerance with a value of 1e−4)

For categorical effect ,

where t is the singularity tolerance, and and are diagonal elements in the
current R matrix (before entering).

For each continuous effect Xk that is currently in the model, .

with levels that is currently in the model,

where and are diagonal elements in the resulting R matrix; that is, the
results after doing the sweep operation on corresponding row(s) and column(s) associated with Xk
or in the current R matrix. The above condition is imposed so that entry of the effect
does not reduce the tolerance of other effects already in the model to unacceptable levels.

Best subsets

Stepwise methods search fewer combinations of sub-models and rarely select the best one, so
another option is to check all possible models and select the “best” based upon some criterion.
The available criteria are the maximum adjusted R2, minimum AICC, and minimum ASE over
the overfit prevention set.

Since there are free effects, we do an exhaustive search over models, which include
intercept-only model (). Because the number of calculations increases exponentially with

, it is important to have an efficient algorithm for carrying out the necessary computations.
However, if is too large, it may not be practical to check all of the possible models.

We divide the problem into 2 tiers in terms of the number of effects:
 when , we search all possible subsets
 when > 20, we apply a hybrid method which combines the forward stepwise method and

the all possible subsets method.

For each categorical effect
.

Linear modeling algorithms

Searching All Possible Subsets

An efficient method that minimizes the number of sweep operations on the R matrix (Schatzoff
1968), is applied to traverse all the models and outlined as follows:

Each sweep step(s) on an effect results in a model. So models can be obtained
through a sequence of exactly sweeps on effects. Assuming that the all possible
models on effects can be obtained in a sequence of exactly sweeps
on the first pivotal effects, and sweeping on the last effect will produce a new
model which adds the last effect to the model produced by the sequence , then
repeating the sequence will produce another distinct models (including
the last effect). It is a recursive algorithm for constructing the sequence; that is,

 and so on.

The sequence of models produced is demonstrated in the following table:

The second column indicates the indexes of effects which are pivoted on. Each parenthesis in the
third column represents a regression model. The numbers in the parentheses indicate the effects
which are included in that model.

Hybrid Method

If >20, we apply a hybrid method by combining the forward stepwise method with the all
possible subsets method as follows:

Select the effects using the forward stepwise method with the same criterion chosen for best
subsets. Say that ps is the number of effects chosen by the forward stepwise method.

Apply one of the following approaches, depending on the value of ps, as follows:
 If ps ≤ 20, do an exhaustive search of all possible subsets on these selected effects, as

described above.
 If 20 < ps ≤ 40, select ps – 20 effects based on the p-values of type III sum of squares tests from

all ps effects (see ANOVA in “Model evaluation”) and enter them into the model, then do an
exhaustive search of the remaining 20 effects via the method described above.

 If 40 < ps, do nothing and assume the best model is the one with these ps effects (with a
warning message that the selected model is based on the forward stepwise method).

k
0

Sk
0

Sequence of models produced
Only intercept

1 1 (1)
2 121 (1),(12),(2)
3 1213121 (1),(12),(2),(23),(123),(13),(3)
4 121312141213121 (1),(12),(2),(23),(123),(13),(3),(34),(134),(1234),(234),(24),(124),(14),(4)
...
 , , All models including the intercept model.

Linear modeling algorithms

Model evaluation

The following output statistics are available.

ANOVA

Weighted total sum of squares

 with d.f.

where d.f. means degrees of freedom. It is called “SS (sum of squares) for Corrected Total.”

Weighted residual sum of squares

with d.f. = dfe = N – pc. It is also called “SS for Error.”

Weighted regression sum of squares

with d.f. = . It is called “SS for Corrected Model” if there is an intercept.

Regression mean square error

Residual mean square error

F statistic for corrected model

which follows an F distribution with degrees of freedom dfr and dfe, and the corresponding
p-value can be calculated accordingly.

Type III sum of squares for each effect

Linear modeling algorithms

To compute type III SS for the effect j, the type III test matrix Li
needs to be constructed first. Construction of Li is based on the generating matrix
H XTDX XTDX where D , such that Liβ is estimable. It involves
parameters only for the given effect and the effects containing the given effect. For type III
analysis, Li doesn’t depend on the order of effects specified in the model. If such a matrix cannot
be constructed, the effect is not testable. For each effect j, the type III SS is calculated as follows

T T T

where .

F statistic for each effect

The SS for the effect j is also used to compute the F statistic for the hypothesis test H0: Liβ
= 0 as follows:

where is the full row rank of . It follows an F distribution with degrees of freedom and
, then the p-values can be calculated accordingly.

Model summary

Adjusted R square

adj.

where

Model information criteria

Corrected Akaike information criterion (AICC)

Coefficients and statistical inference

After the model selection process, we can get the coefficients and related statistics from the swept
correlation matrix. The following statistics are computed based on the R matrix.

Linear modeling algorithms

Unstandardized coefficient estimates

for .

Standard errors of regression coefficients

The standard error of is

Intercept estimation

The intercept is estimated by all other parameters in the model as

The standard error of is estimated by

where

t statistics for regression coefficients

for , with degrees of freedom and the p-value can be calculated accordingly.

100(1−α)% confidence intervals

Linear modeling algorithms

Note: For redundant parameters, the coefficient estimates are set to zero and standard errors, t
statistics, and confidence intervals are set to missing values.

Scoring

Predicted values

Diagnostics

The following values are computed to produce various diagnostic charts and tables.

Residuals

Studentized residuals

This is the ratio of the residual to its standard error.

where s is the square root of the mean square error; that is, , and is the leverage
value for the kth case (see below).

Cook’s distance

where the “leverage”

G T

is the kth diagonal element of the hat matrix

H W X XTWX XTW W X XTW

A record with Cook’s distance larger than is considered influential (Fox, 1997).

Predictor importance

Linear modeling algorithms

We use the leave-one-out method to compute the predictor importance, based on the residual sum
of squares (SSe) by removing one predictor at a time from the final full model.

If the final full model contains p predictors, , then the predictor importance can be
calculated as follows:

1. i=1

2. If i > p, go to step 5.

3. Do a sweep operation on the corresponding row(s) and column(s) associated with in the
 matrix of the full final model.

4. Get the last diagonal element in the current and denote it . Then the predictor importance of
is . Let i = i + 1, and go to step 2.

5. Compute the normalized predictor importance of :

References

Belsley, D. A., E. Kuh, and R. E. Welsch. 1980. Regression diagnostics: Identifying influential
data and sources of collinearity. New York: John Wiley and Sons.

Dempster, A. P. 1969. Elements of Continuous Multivariate Analysis. Reading, MA:
Addison-Wesley.

Fox, J. 1997. Applied Regression Analysis, Linear Models, and Related Methods. Thousand
Oaks, CA: SAGE Publications, Inc..

Fox, J., and G. Monette. 1992. Generalized collinearity diagnostics. Journal of the American
Statistical Association, 87, 178–183.

Schatzoff, M., R. Tsao, and S. Fienberg. 1968. Efficient computing of all possible regressions.
Technometrics, 10, 769–779.

Velleman, P. F., and R. E. Welsch. 1981. Efficient computing of regression diagnostics. American
Statistician, 35, 234–242.

Linear Regression Algorithms

Overview

This procedure performs ordinary least squares multiple linear regression with four methods for
entry and removal of variables (Neter, Wasserman, and Kutner, 1990).

Primary Calculations

Notation

The following notation is used throughout this chapter unless otherwise stated:

Output field for record i with variance

Case weight for record i; in IBM® SPSS® Modeler,

Regression weight for record i; if regression weight is not specified
l Number of distinct records

The sum of weights across records,

Number of input fields

Sum of case weights,

The value of the kth input field for record i

Sample mean for the kth input field,

Sample mean for the output field,

 Sample covariance for input fields and

 Sample variance for output field Y

 Sample covariance for and

Number of coefficients in the model. if the intercept is not included; otherwise

Sample correlation matrix for and

Model Parameters

The summary statistics and covariance are computed using provisional means algorithms
to update the values as each record is read:

and

Linear Regression Algorithms

where, if the intercept is included,

or if the intercept is not included,

where is the cumulative weight up to record k, and is the estimate of up to record k.

For a regression model of the form

sweep operations are used to compute the least squares estimates of and the associated
regression statistics (Dempster, 1969). The sweeping starts with the correlation matrix ,

where

and

Let be the new matrix produced by sweeping on the kth row and column of . The elements of
 are

and

Linear Regression Algorithms

If the above sweep operations are repeatedly applied to each row of in

where contains the input fields in the equation at the current step, the result is

The last row of

contains the standardized coefficients (also called beta), and

can be used to obtain the partial correlations for the variables not in the equation, controlling for
the variables already in the equation. Note that this routine is its own inverse; that is, exactly the
same operations are performed to remove an input field as to enter it.

The unstandardized coefficient estimates are calculated as

and the intercept , if included in the model, is calculated as

Automatic Field Selection

Let be the element in the current swept matrix associated with and . Variables are
entered or removed one at a time. is eligible for entry if it is an input field not currently in
the model such that

and

where t is the tolerance, with a default value of 0.0001.

Linear Regression Algorithms

The second condition above is imposed so that entry of the variable does not reduce the
tolerance of variables already in the model to unacceptable levels.

The F-to-enter value for is computed as

with 1 and degrees of freedom, where is the number of coefficients currently in
the model and

The F-to-remove value for is computed as

with 1 and degrees of freedom.

Methods for Variable Entry and Removal

Four methods for entry and removal of variables are available. The selection process is repeated
until no more independent variables qualify for entry or removal. The algorithms for these four
methods are described below.

Enter

The selected input fields are all entered in the model, with no field selection applied.

Stepwise

If there are independent variables currently entered in the model, choose such that

is minimum. is removed if (default = 2.71) or, if
probability criteria are used, (default = 0.1). If the inequality does
not hold, no variable is removed from the model.

If there are no independent variables currently entered in the model or if no entered
variable is to be removed, choose such that is maximum. is entered if

 (default = 3.84) or, (default = 0.05). If the
inequality does not hold, no variable is entered.

At each step, all eligible variables are considered for removal and entry.

Forward

This procedure is the entry phase of the stepwise procedure.

Linear Regression Algorithms

Backward

This procedure starts with all input fields in the model and applies the removal phase of the
stepwise procedure.

Blank Handling

By default, a case that has a missing value for any input or output field is deleted from the
computation of the correlation matrix on which all consequent computations are based. If the Only
use complete records option is deselected, each correlation in the correlation matrix is computed
based on records with complete data for the two fields associated with the correlation, regardless
of missing values on other fields. For some datasets, this approach can lead to a non-positive
definite matrix, so that the model cannot be estimated.

Secondary Calculations

Model Summary Statistics

The multiple correlation coefficient R is calculated as

R-square, the proportion of variance in the output field accounted for by the input fields, is
calculated as

The adjusted R-square, which takes the complexity of the model relative to the size of the training
data into account, is calculated as

Field Statistics and Other Calculations

The statistics shown in the advanced output for the regression equation node are calculated in the
same manner as in the REGRESSION procedure in IBM® SPSS® Statistics. For more details, see
the SPSS Statistics Regression algorithm document, available at http://www.ibm.com/support.

Generated Model/Scoring

Predicted Values

The predicted value for a new record is calculated as

http://www.ibm.com/support

Linear Regression Algorithms

Blank Handling

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.

Logistic Regression Algorithms

Logistic Regression Models

Logistic regression is a well-established statistical method for predicting binomial or multinomial
outcomes. IBM® SPSS® Modeler now offers two distinct algorithms for logistic regression
modeling:

Multinomial Logistic. This is the original logistic regression algorithm used in SPSS Modeler,
introduced in version 6.0. It can produce models when the target field is a set field with more
than two possible values. See below for more information. It can also produce models for flag or
binary outcomes, though it doesn’t give the same level of statistical detail for such models as the
newer binomial logistic algorithm.

Binomial Logistic. This algorithm, introduced in SPSS Modeler 11, is limited to models where the
target field is a flag, or binary field. This algorithm provides some enhanced statistical output,
relative to the output of the multinomial algorithm, and is less susceptible to problems when the
number of cells (unique combinations of predictor values) is large relative to the number of
records. For more information, see the topic “Binomial Logistic Regression.”

For models with a flag output field, selection of a logistic algorithm is controlled in the modeling
node by the Procedure option.

Multinomial Logistic Regression

The purpose of the Multinomial Logistic Regression procedure is to model the dependence of a
nominal (symbolic) output field on a set of symbolic and/or numeric predictor (input) fields.

Primary Calculations

Field Encoding

In logistic regression, each symbolic (set) field is recoded as a group of numeric fields, with one
numeric field for each category or value of the original field, except the last category, which is
defined as a reference category. For each record, the value of the derived field corresponding to
the category of the record is set to 1.0, and all of the other derived field values are set to 0.0. For
records which have the value of the reference category, all derived fields are set to 0.0. Such
derived fields are sometimes called dummy fields, and this recoding is called dummy coding.

For example, consider the following data, where x is a symbolic field with possible values A,
B, and C:

Record # X X1’ X2’
1 B 0 1
2 A 1 0
3 C 0 0

Logistic Regression Algorithms

In this data, the original set field x is recoded into two derived fields x1’ and x2’. x1’ is an
indicator for category A, and x2’ is an indicator for category B. The last category, category C, is
the reference category; records belonging to this category have both x1’ and x2’ set to 0.0.

Notation

The following notation is used throughout this chapter unless otherwise stated:

The output field, which takes integer values from 1 to J.

The number of categories of the output field.

The number of subpopulations.

 matrix with vector-element , the observed values at the ith
subpopulation, determined by the input fields specified in the command.

matrix with vector-element , the observed values of the location
model’s input fields at the ith subpopulation.
The sum of frequency weights of the observations that belong to the cell
corresponding to at subpopulation i.
The sum of all ’s.

The cell probability corresponding to at subpopulation i.

The logit of response category j relative to response category k.

vector of unknown parameters in the jth logit (that is, logit of response
category j to response category J).
Number of parameters in each logit. .

Number of non-redundant parameters in logit j after maximum likelihood
estimation. .
The total number of non-redundant parameters after maximum likelihood
estimation. .

vector of unknown parameters in the model.

 The maximum likelihood estimate of .

 The maximum likelihood estimate of .

Data Aggregation

Observations are aggregated by the definition of subpopulations. Subpopulations are defined by
the cross-classifications of the set of input fields.

Let be the marginal count of subpopulation i,

Logistic Regression Algorithms

If there is no observation for the cell of at subpopulation i, it is assumed that ,
provided that . A non-negative scalar may be added to any zero cell (that is, cell
with) if its marginal count is nonzero. The value of is zero by default.

Generalized Logit Model

In a generalized logit model, the probability of response category j at subpopulation i is

where the last category J is assumed to be the reference category.
In terms of logits, the model can be expressed as

for j = 1, …, J-1.
When J = 2, this model is equivalent to the binary logistic regression model. Thus, the above

model can be thought of as an extension of the binary logistic regression model from binary
response to polytomous nominal response.

Log-Likelihood

The log-likelihood of the model is given by

A constant that is independent of parameters has been excluded here. The value of the constant
is .

Model Parameters

Derivatives of the Log-Likelihood

For any j = 1, …, J-1, s = 1, …, p, the first derivative of l with respect to is

Logistic Regression Algorithms

For any j, j’= 1, …, J-1 and s, t = 1, …, p, the second derivative of l with respect to and is

where if , 0 otherwise.

Maximum Likelihood Estimate

To obtain the maximum likelihood estimate of , a Newton-Raphson iterative estimation method
is used. Notice that this method is the same as Fisher-Scoring iterative estimation method in
this model, since the expectation of the second derivative of l with respect to is the same
as the observed one.

Let be the vector of the first derivative of l with respect to . Moreover,
let be the matrix of the second derivative of l with respect to .
Notice that where is a matrix as

in which and is a diagonal matrix of . Let be
the parameter estimate at iteration , the parameter estimate at iteration is updated as

and is a stepping scalar such that , is a matrix
of independent vectors,

and is and is , both evaluated at .

Stepping

Use step-halving method if . Let V be the maximum number of steps in
step-halving, the set of values of is .

Starting Values of the Parameters

If intercepts are included in the model, set where

Logistic Regression Algorithms

for j = 1, …, J-1.

If intercepts are not included in the model, set

for j = 1, …, J-1.

Convergence Criteria

Given two convergence criteria and , the iteration is considered to be converged
if one of the following criteria are satisfied:

1. ̶ .

2. ̶ .

3. The maximum above element in is less than .

Checking for Separation

The algorithm checks for separation in the data starting with iteration (20 by default). To
check for separation:

1. For each subpopulation i , find .

2. If , then there is a perfect prediction for subpopulation i.

3. If all subpopulations have perfect prediction, then there is complete separation. If some patterns
have perfect prediction and the Hessian of is singular, then there is quasi-complete separation.

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

Logistic Regression Algorithms

Secondary Calculations

Model Summary Statistics

Log-Likelihood

Initial model with intercepts. If intercepts are included in the model, the predicted probability for
the initial model (that is, the model with intercepts only) is

and the value of –2 log-likelihood of the initial model is

Initial model with no intercepts. If intercepts are not included in the model, the predicted
probability for the initial model is

and the value of –2 log-likelihood of the initial model is

Final model. The value of –2 log-likelihood of the final model is

Model Chi-Square

The model chi-square is given by

If the final model includes intercepts, then the initial model is an intercept-only model. Under
the null hypothesis that , the model chi-square is asymptotically chi-squared
distributed with degrees of freedoms.

Logistic Regression Algorithms

If the model does not include intercepts, then the initial model is an empty model. Under the
null hypothesis that , the Model Chi-square is asymptotically chi-squared distributed
with degrees of freedoms.

Pseudo R-Square Measures

Cox and Snell. Cox and Snell’s is calculated as

Nagelkerke. Nagelkerke’s is calculated as

McFadden. McFadden’s is calculated as

Goodness-of-Fit Measures

Pearson. The Pearson goodness-of-fit measure is

Under the null hypothesis, the Pearson goodness-of-fit statistic is asymptotically chi-squared
distributed with degrees of freedom.

Deviance. The deviance goodness-of-fit measure is

Under the null hypothesis, the deviance goodness-of-fit statistic is asymptotically chi-squared
distributed with degrees of freedom.

Field Statistics and Other Calculations

The statistics shown in the advanced output for the logistic equation node are calculated in the
same manner as in the NOMREG procedure in IBM® SPSS® Statistics. For more details, see the
SPSS Statistics Nomreg algorithm document, available at http://www.ibm.com/support.

http://www.ibm.com/support

Logistic Regression Algorithms

Stepwise Variable Selection

Several methods are available for selecting independent variables. With the forced entry method,
any variable in the variable list is entered into the model. The forward stepwise, backward
stepwise, and backward entry methods use either the Wald statistic or the likelihood ratio statistic
for variable removal. The forward stepwise, forward entry, and backward stepwise use the score
statistic or the likelihood ratio statistic to select variables for entry into the model.

Forward Stepwise (FSTEP)

1. Estimate the parameter and likelihood function for the initial model and let it be our current model.

2. Based on the MLEs of the current model, calculate the score statistic or likelihood ratio statistic
for every variable eligible for inclusion and find its significance.

3. Choose the variable with the smallest significance (p-value). If that significance is less than the
probability for a variable to enter, then go to step 4; otherwise, stop FSTEP.

4. Update the current model by adding a new variable. If this results in a model which has already
been evaluated, stop FSTEP.

5. Calculate the significance for each variable in the current model using LR or Wald’s test.

6. Choose the variable with the largest significance. If its significance is less than the probability for
variable removal, then go back to step 2. If the current model with the variable deleted is the same
as a previous model, stop FSTEP; otherwise go to the next step.

7. Modify the current model by removing the variable with the largest significance from the previous
model. Estimate the parameters for the modified model and go back to step 5.

Forward Only (FORWARD)

1. Estimate the parameter and likelihood function for the initial model and let it be our current model.

2. Based on the MLEs of the current model, calculate the score or LR statistic for every variable
eligible for inclusion and find its significance.

3. Choose the variable with the smallest significance. If that significance is less than the probability
for a variable to enter, then go to step 4; otherwise, stop FORWARD.

4. Update the current model by adding a new variable. If there are no more eligible variable left, stop
FORWARD; otherwise, go to step 2.

Backward Stepwise (BSTEP)

1. Estimate the parameters for the full model that includes the final model from previous method and
all eligible variables. Only variables listed on the BSTEP variable list are eligible for entry and
removal. Let current model be the full model.

2. Based on the MLEs of the current model, calculate the LR or Wald’s statistic for every variable
in the BSTEP list and find its significance.

Logistic Regression Algorithms

3. Choose the variable with the largest significance. If that significance is less than the probability

for a variable removal, then go to step 5. If the current model without the variable with the largest
significance is the same as the previous model, stop BSTEP; otherwise go to the next step.

4. Modify the current model by removing the variable with the largest significance from the model.
Estimate the parameters for the modified model and go back to step 2.

5. Check to see any eligible variable is not in the model. If there is none, stop BSTEP; otherwise,
go to the next step.

6. Based on the MLEs of the current model, calculate LR statistic or score statistic for every variable
not in the model and find its significance.

7. Choose the variable with the smallest significance. If that significance is less than the probability
for the variable entry, then go to the next step; otherwise, stop BSTEP.

8. Add the variable with the smallest significance to the current model. If the model is not the
same as any previous models, estimate the parameters for the new model and go back to step
2; otherwise, stop BSTEP.

Backward Only (BACKWARD)

1. Estimate the parameters for the full model that includes all eligible variables. Let the current
model be the full model.

2. Based on the MLEs of the current model, calculate the LR or Wald’s statistic for all variables
eligible for removal and find its significance.

3. Choose the variable with the largest significance. If that significance is less than the probability
for a variable removal, then stop BACKWARD; otherwise, go to the next step.

4. Modify the current model by removing the variable with the largest significance from the model.
Estimate the parameters for the modified model. If all the variables in the BACKWARD list are
removed then stop BACKWARD; otherwise, go back to step 2.

Stepwise Statistics

The statistics used in the stepwise variable selection methods are defined as follows.

Score Function and Information Matrix

The score function for a model with parameter B is:

The (j,s)th element of the score function can be written as

Logistic Regression Algorithms

Similarly, elements of the information matrix are given by

where if , 0 otherwise.

(Note that in the formula are functions of B)

Block Notations

By partitioning the parameter B into two parts, B1 and B2, the score function, information matrix,
and inverse information matrix can be written as partitioned matrices:

where

where

Typically, B1 and B2 are parameters corresponding to two different sets of effects. The dimensions
of the 1st and 2nd partition in U, I and J are equal to the numbers of parameters in B1 and
B2 respectively.

Score Test

Suppose a base model with parameter vector with the corresponding maximum likelihood
estimate . We are interested in testing the significance of an extra effect E if it is added to the
base model. For convenience, we will call the model with effect E the augmented model. Let

 be the vector of extra parameters associated with the effect E, then the hypothesis can be
written as

Logistic Regression Algorithms

 v.s.

Using the block notations, the score function, information matrix and inverse information of the
augmented model can be written as

Then the score statistic for testing our hypothesis will be

where and are the 2nd partition of score function and inverse
information matrix evaluated at and .

Under the null hypothesis, the score statistic has a chi-square distribution with degrees of
freedom equal to the rank of . If the rank of is zero, then the score
statistic will be set to 0 and the p-value will be 1. Otherwise, if the rank of is

, then the p-value of the test is equal to , where is the cumulative
distribution function of a chi-square distribution with degrees of freedom.

Computational Formula for Score Statistic

When we compute the score statistic s, it is not necessary to re-compute and

from scratch. The score function and information matrix of the base model can be
reused in the calculation. Using the block notations introduced earlier, we have

and

In stepwise logistic regression, it is necessary to compute one score test for each effect that are not
in the base model. Since the 1st partition of and depend only on the

base model, we only need to compute , and for
each new effect.

and

Logistic Regression Algorithms

If is the s-th parameter of the j-th logit in is the t-th parameter of k-th logit in
, then the elements of , and can be expressed

as follows:

where , are computed under the base model.

Wald’s Test

In backward stepwise selection, we are interested in removing an effect F from an already fitted
model. For a given base model with parameter vector , we want to use Wald’s statistic to
test if effect F should be removed from the base model. If the parameter vector for the effect F is

, then the hypothesis can be formulated as

 vs.

In order to write down the expression of the Wald’s statistic, we will partition our parameter vector
(and its estimate) into two parts as follows:

 and

The first partition contains parameters that we intended to keep in the model and the 2nd partition
contains the parameters of the effect F, which may be removed from the model. The information
matrix and inverse information will be partitioned accordingly,

and

Using the above notations, the Wald’s statistic for effect F can be expressed as

Under the null hypothesis, w has a chi-square distribution with degrees of freedom equal to the
rank of . If the rank of is zero, then Wald’s statistic will be
set to0and the p-value will be 1. Otherwise, if the rank of is , then

Logistic Regression Algorithms

the p-value of the test is equal to , where is the cumulative distribution
function of a chi-square distribution with degrees of freedom.

Generated Model/Scoring

Predicted Values

The predicted value for a record i is the output field category j with the largest logit value ,

for j = 1, ..., J-1. The logit for reference category J, , is 1.0.

Predicted Probability

The probability for the predicted category for scored record i is derived from the logit for
category ,

If the Append all probabilities option is selected, the probability is calculated for all J categories
in a similar manner.

Blank Handling

Records with missing values for any input field cannot be scored and are assigned a predicted
value and probability value(s) of $null$.

Binomial Logistic Regression

For binomial models (models with a flag field as the target), IBM® SPSS® Modeler uses an
algorithm optimized for such models, as described here.

Notation

The following notation is used throughout this chapter unless otherwise stated:

n The number of observed cases
p The number of parameters
y vector with element , the observed value of the ith case of the

dichotomous dependent variable
X matrix with element , the observed value of the ith case of the

jth parameter

Logistic Regression Algorithms

 vector with element , the coefficient for the jth parameter

w vector with element , the weight for the ith case
l Likelihood function
L Log-likelihood function
I Information matrix

Model

The linear logistic model assumes a dichotomous dependent variable Y with probability π, where
for the ith case,

or

Hence, the likelihood function l for n observations , with probabilities and
case weights , can be written as

It follows that the logarithm of l is

and the derivative of L with respect to is

Maximum Likelihood Estimates (MLE)

The maximum likelihood estimates for satisfy the following equations

, for the jth parameter

where for .

Note the following:

1. A Newton-Raphson type algorithm is used to obtain the MLEs. Convergence can be based on
 Absolute difference for the parameter estimates between the iterations

Logistic Regression Algorithms

 Percent difference in the log-likelihood function between successive iterations
 Maximum number of iterations specified

2. During the iterations, if is smaller than 10−8 for all cases, the log-likelihood function
is very close to zero. In this situation, iteration stops and the message “All predicted values
are either 1 or 0” is issued.

After the maximum likelihood estimates are obtained, the asymptotic covariance matrix is
estimated by , the inverse of the information matrix I, where

and

Stepwise Variable Selection

Several methods are available for selecting independent variables. With the forced entry method,
any variable in the variable list is entered into the model. There are two stepwise methods:
forward and backward. The stepwise methods can use either the Wald statistic, the likelihood
ratio, or a conditional algorithm for variable removal. For both stepwise methods, the score
statistic is used to select variables for entry into the model.

Forward Stepwise (FSTEP)

1. If FSTEP is the first method requested, estimate the parameter and likelihood function for the
initial model. Otherwise, the final model from the previous method is the initial model for FSTEP.
Obtain the necessary information: MLEs of the parameters for the current model, predicted
probability, likelihood function for the current model, and so on.

2. Based on the MLEs of the current model, calculate the score statistic for every variable eligible for
inclusion and find its significance.

3. Choose the variable with the smallest significance. If that significance is less than the probability
for a variable to enter, then go to step 4; otherwise, stop FSTEP.

4. Update the current model by adding a new variable. If this results in a model which has already
been evaluated, stop FSTEP.

5. Calculate LR or Wald statistic or conditional statistic for each variable in the current model.
Then calculate its corresponding significance.

Logistic Regression Algorithms

6. Choose the variable with the largest significance. If that significance is less than the probability

for variable removal, then go back to step 2; otherwise, if the current model with the variable
deleted is the same as a previous model, stop FSTEP; otherwise, go to the next step.

7. Modify the current model by removing the variable with the largest significance from the previous

model. Estimate the parameters for the modified model and go back to step 5.

Backward Stepwise (BSTEP)

1. Estimate the parameters for the full model which includes the final model from previous method
and all eligible variables. Only variables listed on the BSTEP variable list are eligible for entry
and removal. Let the current model be the full model.

2. Based on the MLEs of the current model, calculate the LR or Wald statistic or conditional statistic

for every variable in the model and find its significance.

3. Choose the variable with the largest significance. If that significance is less than the probability for
a variable removal, then go to step 5; otherwise, if the current model without the variable with the
largest significance is the same as the previous model, stop BSTEP; otherwise, go to the next step.

4. Modify the current model by removing the variable with the largest significance from the model.

Estimate the parameters for the modified model and go back to step 2.

5. Check to see any eligible variable is not in the model. If there is none, stop BSTEP; otherwise,
go to the next step.

6. Based on the MLEs of the current model, calculate the score statistic for every variable not in

the model and find its significance.

7. Choose the variable with the smallest significance. If that significance is less than the probability
for variable entry, then go to the next step; otherwise, stop BSTEP.

8. Add the variable with the smallest significance to the current model. If the model is not the

same as any previous models, estimate the parameters for the new model and go back to step
2; otherwise, stop BSTEP.

Stepwise Statistics

The statistics used in the stepwise variable selection methods are defined as follows.

Score Statistic

The score statistic is calculated for each variable not in the model to determine whether the
variable should enter the model. Assume that there are variables, namely, in the
model and variables, , not in the model. The score statistic for is defined as

Logistic Regression Algorithms

if is not a categorical variable. If is a categorical variable with m categories, it is converted to
a -dimension dummy vector. Denote these new variables as . The
score statistic for is then

where and the matrix is

with

in which is the design matrix for variables and is the design matrix for dummy
variables . Note that contains a column of ones unless the constant term
is excluded from . Based on the MLEs for the parameters in the model, V is estimated by

 . The asymptotic distribution of the score statistic is a
chi-square with degrees of freedom equal to the number of variables involved.

Note the following:

1. If the model is through the origin and there are no variables in the model, is defined by

 and is equal to .

2. If is not positive definite, the score statistic and residual chi-square statistic are set to be zero.

Wald Statistic

The Wald statistic is calculated for the variables in the model to determine whether a variable
should be removed. If the ith variable is not categorical, the Wald statistic is defined by

If it is a categorical variable, the Wald statistic is computed as follows:

Let be the vector of maximum likelihood estimates associated with the dummy variables,
and the asymptotic covariance matrix for . The Wald statistic is

The asymptotic distribution of the Wald statistic is chi-square with degrees of freedom equal to
the number of parameters estimated.

.

Logistic Regression Algorithms

Likelihood Ratio (LR) Statistic

The LR statistic is defined as two times the log of the ratio of the likelihood functions of two
models evaluated at their MLEs. The LR statistic is used to determine if a variable should
be removed from the model. Assume that there are variables in the current model which is
referred to as a full model. Based on the MLEs of the full model, l(full) is calculated. For each of
the variables removed from the full model one at a time, MLEs are computed and the likelihood
function l(reduced) is calculated. The LR statistic is then defined as

LR is asymptotically chi-square distributed with degrees of freedom equal to the difference
between the numbers of parameters estimated in the two models.

Conditional Statistic

The conditional statistic is also computed for every variable in the model. The formula for the
conditional statistic is the same as the LR statistic except that the parameter estimates for each
reduced model are conditional estimates, not MLEs. The conditional estimates are defined as
follows. Let be the MLE for the variables in the model and C be the
asymptotic covariance matrix for . If variable is removed from the model, the conditional
estimate for the parameters left in the model given is

where is the MLE for the parameter(s) associated with and is with removed, is
the covariance between and , and is the covariance of
is computed by

Then the conditional statistic

where is the log-likelihood function evaluated at .

Statistics

The following output statistics are available.

Initial Model Information

If is not included in the model, the predicted probability is estimated to be 0.5 for all cases and
the log-likelihood function is

with . If is included in the model, the predicted probability is estimated as

Logistic Regression Algorithms

and is estimated by

with asymptotic standard error estimated by

The log-likelihood function is

Model Information

The following statistics are computed if a stepwise method is specified.

–2 Log-Likelihood

Model Chi-Square

2(log-likelihood function for current model − log-likelihood function for initial model)

The initial model contains a constant if it is in the model; otherwise, the model has no terms.
The degrees of freedom for the model chi-square statistic is equal to the difference between the
numbers of parameters estimated in each of the two models. If the degrees of freedom is zero, the
model chi-square is not computed.

Block Chi-Square

2(log-likelihood function for current model − log-likelihood function for the final model from
the previous method)

The degrees of freedom for the block chi-square statistic is equal to the difference between the
numbers of parameters estimated in each of the two models.

Improvement Chi-Square

2(log-likelihood function for current model − log-likelihood function for the model from the
last step)

The degrees of freedom for the improvement chi-square statistic is equal to the difference between
the numbers of parameters estimated in each of the two models.

Logistic Regression Algorithms

Goodness of Fit

Cox and Snell’s R-Square (Cox and Snell, 1989; Nagelkerke, 1991)

where is the likelihood of the current model and l(0) is the likelihood of the
initial model; that is, if the constant is not included in the model;

if the constant is included in the model, where
 .

Nagelkerke’s R-Square (Nagelkerke, 1981)

where .

Hosmer-Lemeshow Goodness-of-Fit Statistic

The test statistic is obtained by applying a chi-square test on a contingency table. The
contingency table is constructed by cross-classifying the dichotomous dependent variable with
a grouping variable (with g groups) in which groups are formed by partitioning the predicted
probabilities using the percentiles of the predicted event probability. In the calculation,
approximately 10 groups are used (g=10). The corresponding groups are often referred to as the
“deciles of risk” (Hosmer and Lemeshow, 2000).

If the values of independent variables for observation i and i’ are the same, observations i and
i’ are said to be in the same block. When one or more blocks occur within the same decile, the
blocks are assigned to this same group. Moreover, observations in the same block are not divided
when they are placed into groups. This strategy may result in fewer than 10 groups (that is,

) and consequently, fewer degrees of freedom.
Suppose that there are Q blocks, and the qth block has mq number of observations, .

Moreover, suppose that the kth group () is composed of the q1th, …, qkth blocks of
observations. Then the total number of observations in the kth group is . The total
observed frequency of events (that is, Y=1) in the kth group, call it O1k, is the total number of
observations in the kth group with Y=1. Let E1k be the total expected frequency of the event in the
kth group; then E1k is given by , where is the average predicted event probability
for the kth group.

The Hosmer-Lemeshow goodness-of-fit statistic is computed as

Logistic Regression Algorithms

The p value is given by Pr where is the chi-square statistic distributed with
degrees of freedom (g−2).

Information for the Variables Not in the Equation

For each of the variables not in the equation, the score statistic is calculated along with the
associated degrees of freedom, significance and partial R. Let be a variable not currently in
the model and the score statistic. The partial R is defined by

if

 otherwise

where df is the degrees of freedom associated with , and is the log-likelihood
function for the initial model.

The residual Chi-Square printed for the variables not in the equation is defined as

where g

Information for the Variables in the Equation

For each of the variables in the equation, the MLE of the Beta coefficients is calculated along with
the standard errors, Wald statistics, degrees of freedom, significances, and partial R. If is not a
categorical variable currently in the equation, the partial R is computed as

if
otherwise

If is a categorical variable with m categories, the partial R is then

if
otherwise

Casewise Statistics

The following statistics are computed for each case.

Individual Deviance

The deviance of the ith case, , is defined as

if
otherwise

g g

Logistic Regression Algorithms

Leverage

The leverage of the ith case, , is the ith diagonal element of the matrix

where

Studentized Residual

Logit Residual

Standardized Residual

Cook’s Distance

DFBETA

Let be the change of the coefficient estimates from the deletion of case i. It is computed as

Predicted Group

If , the predicted group is the group in which

y=1. Note the following:

For the unselected cases with nonmissing values for the independent variables in the analysis,
the leverage is computed as

where

Logistic Regression Algorithms

For the unselected cases, the Cook’s distance and DFBETA are calculated based on .

Generated Model/Scoring

For each record passed through a generated binomial logistic regression model, a predicted value
and confidence score are calculated as follows:

Predicted Value

The probability of the value y = 1 for record i is calculated as

where

If , the predicted value is 1; otherwise, the predicted value is 0.

Confidence

For records with a predicted value of y = 1, the confidence value is . For records with a predicted
value of y = 0, the confidence value is .

Blank Handling (generated model)

Records with missing values for any input field in the final model cannot be scored, and are
assigned a predicted value of $null$.

Neural Networks Algorithms
Neural networks predict a continuous or categorical target based on one or more predictors by
finding unknown and possibly complex patterns in the data.

For algorithms on enhancing model accuracy, enhancing model stability, or working with very
large datasets, see “Ensembles Algorithms.”

Multilayer Perceptron

The multilayer perceptron (MLP) is a feed-forward, supervised learning network with up to two
hidden layers. The MLP network is a function of one or more predictors that minimizes the
prediction error of one or more targets. Predictors and targets can be a mix of categorical and
continuous fields.

Notation

The following notation is used for multilayer perceptrons unless otherwise stated:

Input vector, pattern m, m=1,...M.

Target vector, pattern m.

I Number of layers, discounting the input layer.
Number of units in layer i. J0 = P, Ji = R, discounting the bias unit.

Set of categorical outputs.

Set of continuous outputs.

Set of subvectors of containing 1-of-c coded hth categorical field.

 Unit j of layer i, pattern m, .

Weight leading from layer i−1, unit j to layer i, unit k. No weights connect
 and the bias ; that is, there is no for any j.

, i=1,...,I.

Activation function for layer i.

w Weight vector containing all weights

Architecture

The general architecture for MLP networks is:

Neural Networks Algorithms

Note that the pattern index and the bias term of each layer are not counted in the total number
of units for that layer.

Activation Functions

Hyperbolic Tangent

 tanh

This function is used for hidden layers.

Identity

This function is used for the output layer when there are continuous targets.

Softmax

This function is used for the output layer when all targets are categorical.

Error Functions

Sum-of-Squares

where

This function is used when there are continuous targets.

Neural Networks Algorithms

Cross-Entropy

where

This function is used when all targets are categorical.

Expert Architecture Selection

Expert architecture selection determines the “best” number of hidden units in a single hidden layer.

A random sample is taken from the entire data set and split into training (70%) and testing samples
(30%). The size of random sample is N = 1000. If entire dataset has less than N records, use all of
them. If training and testing data sets are supplied separately, the random samples for training and
testing should be taken from the respective datasets.

Given Kmin and Kmax , the algorithm is as follows.

1. Start with an initial network of k hidden units. The default is k=min(g(R,P),20,h(R,P)), where

otherwise

where denotes the largest integer less than or equal to x. is the maximum
number of hidden units that will not result in more weights than there are records in the entire
training set.

If k < Kmin, set k = Kmin. Else if k > Kmax, set k = Kmax. Train this network once via the alternated
simulated annealing and training procedure (steps 1 to 5).

2. If k > Kmin, set DOWN=TRUE. Else if training error ratio > 0.01, DOWN=FALSE. Else stop and
report the initial network.

3. If DOWN=TRUE, remove the weakest hidden unit (see below); k=k−1. Else add a hidden unit;
k=k+1.

4. Using the previously fit weights as initial weights for the old weights and random weights for the
new weights, train the old and new weights for the network once through the alternated simulated
annealing and training procedure (steps 3 to 5) until the stopping conditions are met.

5. If the error on test data has dropped:

If DOWN=FALSE, If k< Kmax and the training error has dropped but the error ratio is still above
0.01, return to step 3. Else if k> Kmin, return to step 3. Else, stop and report the network with the
minimum test error.

Neural Networks Algorithms

Else if DOWN=TRUE, If |k−k0|>1, stop and report the network with the minimum test error. Else
if training error ratio for k=k0 is bigger than 0.01, set DOWN=FALSE, k=k0 return to step 3. Else
stop and report the initial network.

Else stop and report the network with the minimum test error.

If more than one network attains the minimum test error, choose the one with fewest hidden units.

If the resulting network from this procedure has training error ratio (training error divided by error
from the model using average of an output field to predict that field) bigger than 0.1, repeat the
architecture selection with different initial weights until either the error ratio is <=0.1 or the
procedure is repeated 5 times, then pick the one with smallest test error.

Using this network with its weights as initial values, retrain the network on the entire training set.

The weakest hidden unit

For each hidden unit j, calculate the error on the test data when j is removed from the network.
The weakest hidden unit is the one having the smallest total test error upon its removal.

Training

The problem of estimating the weights consists of the following parts:

E Initializing the weights. Take a random sample and apply the alternated simulated annealing
and training procedure on the random sample to derive the initial weights. Training in step 3 is
performed using all default training parameters.

E Computing the derivative of the error function with respect to the weights. This is solved via
the error backpropagation algorithm.

E Updating the estimated weights. This is solved by the gradient descent or scaled conjugate
gradient method.

Alternated Simulated Annealing and Training

The following procedure uses simulated annealing and training alternately up to K1 times.
Simulated annealing is used to break out of the local minimum that training finds by perturbing
the local minimum K2 times. If break out is successful, simulated annealing sets a better initial
weight for the next training. We hope to find the global minimum by repeating this procedure K3
times. This procedure is rather expensive for large data sets, so it is only used on a random sample
to search for initial weights and in architecture selection. Let K1=K2=4, K3=3.

1. Randomly generate K2 weight vectors between [a0−a, a0+a], where a0=0 and a=0.5. Calculate
the training error for each weight vector. Pick the weights that give the minimum training error
as the initial weights.

2. Set k1=0.

3. Train the network with the specified initial weights. Call the trained weights w.

Neural Networks Algorithms

4. If the training error ratio <= 0.05, stop the k1 loop and use w as the result of the loop. Else set

k1 = k1+1.

5. If k1 < K1, perturb the old weight to form K2 new weights by adding K2 different
random noise between [a(k1), a(k1)] where . Let be the weights that
give the minimum training error among all the perturbed weights. If , set the
initial weights to be , return to step 3. Else stop and report w as the final result.

Else stop the k1 loop and use w as the result of the loop.

If the resulting weights have training error ratio bigger than 0.1, repeat this algorithm until either
the training error ratio is <=0.1 or the procedure is repeated K3 times, then pick the one with
smallest test error among the result of the k1 loops.

Error Backpropagation

Error-backpropagation is used to compute the first partial derivatives of the error function with
respect to the weights.

First note that tanh
identity

The backpropagation algorithm follows:

For each i,j,k, set .

For each m in group T; For each p=1,...,JI, let

if cross-entropy error is used
 otherwise

For each i=I,...,1 (start from the output layer); For each j=1,...,Ji; For each k=0,...,Ji−1

E Let , where

E Set

E If k > 0 and i > 1, set

This gives us a vector of elements that form the gradient of .

Gradient Descent

Given the learning rate parameter (set to 0.4) and momentum rate (set to 0.9), the gradient
descent method is as follows.

1. Let k=0. Initialize the weight vector to , learning rate to . Let .

, then set
.

Neural Networks Algorithms

2. Read all data and find and its gradient . If , stop and report

the current network.

3. If , . This step is to make sure that the steepest gradient descent

direction dominates weight change in next step. Without this step, the weight change in next step
could be along the opposite direction of the steepest descent and hence no matter how small is,
the error will not decrease.

4. Let

5. If , then set , , and , Else and
return to step 3.

6. If a stopping rule is met, exit and report the network as stated in the stopping criteria. Else let
k=k+1 and return to step 2.

Model Update

Given the learning rate parameters (set to 0.4) and (set to 0.001), momentum rate (set
to 0.9), and learning rate decay factor β = (1/pK)*ln(η0/ηlow), the gradient descent method for
online and mini-batch training is as follows.

1. Let k=0. Initialize the weight vector to , learning rate to . Let .

2. Read records in (is randomly chosen) and find and its gradient .

3. If , . This step is to make sure that the steepest gradient descent

direction dominates weight change in next step. Without this step, the weight change in next step
could be along the opposite direction of the steepest descent and hence no matter how small is,
the error will not decrease.

4. Let .

5. If and , Else

6. . If , then set .

7. If a stopping rule is met, exit and report the network as stated in the stopping criteria. Else let
k=k+1 and return to step 2.

Scaled Conjugate Gradient

To begin, initialize the weight vector to , and let N be the total number of weights.

1. k=0. Set scalars E E . Set , and
success=true.

2. If success=true, find the second-order information: , ,
 , where the superscript t denotes the transpose.

Neural Networks Algorithms

3. Set .

4. If , make the Hessian positive definite: , , .

5. Calculate the step size: , .

6. Calculate the comparison parameter: .

7. If , error can be reduced. Set , , If
, return as the final weight vector and exit. Set , success=true. If k mod

N=0, restart the algorithm: , else set , . If
, reduce the scale parameter: . else (if): Set , success=false.

8. If , increase the scale parameter: .

9. If success=false, return to step 2. Otherwise if a stopping rule is met, exit and report the network
as stated in the stopping criteria. Else set k=k+1 , , and return to step 2.

Note: Each iteration requires at least two data passes.

Stopping Rules

Training proceeds through at least one complete pass of the data. Then the search should be
stopped according to following criteria. These stopping criteria should be checked in the listed
order. When creating a new model, check after completing an iteration. During a model update,
check criteria 1, 3, 4, 5 and 6 is after completing a data pass, and only check criterion 2 after an
iteration. In the descriptions below, a “step” means an iteration when building a new model and
a data pass when performing a model update. Let E1 denote the current minimum error and
K1 denote the iteration where it occurs for the training set, E2 and K2 are that for the overfit
prevention set, and K3=min(K1,K2).

1. At the end of each step compute the total error for the overfit prevention set. From step K2, if the
testing error does not decrease below E2 over the next n=1 steps, stop. Report the weights at step
K2. If there is no overfit prevention set, this criterion is not used for building a new model; for a
model update when there is no overfit prevention set, compute the total error for training data at
the end of each step. From step K1, if the training error does not decrease below E1 over the next
n=1 steps, stop. Report the weights at step K1.

2. The search has lasted beyond some maximum allotted time. For building a new model, simply
report the weights at step K3. For a model update, even though training stops before the
completion of current step, treat this as a complete step. Calculate current errors for training and
testing datasets and update E1, K1, E2, K2 correspondingly. Report the weights at step K3.

3. The search has lasted more than some maximum number of data passes. Report the weights
at step K3.

4. Stop if the relative change in training error is small: for and

, where are the weight vectors of two consecutive steps. Report weights
at step K3.

Neural Networks Algorithms

5. The current training error ratio is small compared with the initial error: for

 and , where is the total error from the model using the average of an

output field to predict that field; is calculated by using in the error function,

where is the weight vector of one step. Report weights at step K3.

6. The current accuracy meets a specified threshold. Accuracy is computed based on the overfit
prevention set if there is one, otherwise the training set.

Note: In criteria 4 and 5, the total error for whole training data is needed. For model updates,
these criteria will not be checked if there is an overfit prevention set.

Model Updates

When new records become available, the synaptic weights can be updated. The new records are
split into groups of the size R = min(M,2N,1000), where M is the number of training records and N
is the number of weights in the network. A single data pass is made through the new groups to
update the weights. If the last of the new groups has more than one-quarter of the records of a
normal group, then it is processed normally; otherwise, it remains in the internal buffer so that
these records can be used during the next update. Thus, after the last update there may be some
unused records remaining in the buffer that will be lost.

Radial Basis Function

A radial basis function (RBF) network is a feed-forward, supervised learning network with only
one hidden layer, called the radial basis function layer. The RBF network is a function of one or
more predictors that minimizes the prediction error of one or more targets. Predictors and targets
can be a mix of categorical and continuous fields.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Input vector, pattern m, m=1,...M.

Target vector, pattern m.

I Number of layers, discounting the input layer. For an RBF network, I=2.
Number of units in layer i. J0 = P, Ji = R, discounting the bias unit. J1
is the number of RBF units.
jth RBF unit for input , j=1, …,J1.

center of , it is P-dimensional.

width of , it is P-dimensional.

h the RBF overlapping factor.

and

.

Neural Networks Algorithms

 Unit j of layer i, pattern m, .

weight connecting rth output unit and jth hidden unit of RBF layer.

Architecture

There are three layers in the RBF network:

Input layer:

RBF layer: J1 units, , ; with

 .

Output layer: J2=R units, ; with .

Error Function

Sum-of-squares error is used:

where

The sum-of-squares error function with identity activation function for output layer can be
used for both continuous and categorical targets. For continuous targets, approximates the
conditional expectation of the target value . For categorical targets, approximates
the posterior probability of class k:

Note: though (the sum is over all classes of the same categorical target field),
may not lie in the range [0, 1].

Training

The network is trained in two stages:

1. Determine the basis functions by clustering methods. The center and width for each basis function is
computed.

2. Determine the weights given the basis functions. For the given basis functions, compute the
ordinary least-squares regression estimates of the weights.

Neural Networks Algorithms

The simplicity of these computations allows the RBF network to be trained very quickly.

Determining Basis Functions

The two-step clustering algorithm is used to find the RBF centers and widths. For each cluster, the
mean and standard deviation for each continuous field and proportion of each category for each
categorical field are derived. Using the results from clustering, the center of the jth RBF is set as:

if pth field is continuous
if pth field is a dummy field of a categorical field

where is the jth cluster mean of the pth input field if it is continuous, and is the proportion
of the category of a categorical field that the pth input field corresponds to. The width of the
jth RBF is set as

if pth field is continuous
if pth field is a dummy field of a categorical field

where is the jth cluster standard deviation of the pth field and h>0 is the RBF overlapping
factor that controls the amount of overlap among the RBFs. Since some may be zeros, we use
spherical shaped Gaussian bumps; that is, a common width

in for all predictors. In the case that is zero for some j, set it to be . If all

are zero, set all of them to be .

When there are a large number of predictors, could be easily very large and hence

is practically zero for every record and every RBF unit if is

relatively small. This is especially bad for ORBF because there would be only a constant term in
the model when this happens. To avoid this, is increased by setting the default overlapping
factor h proportional to the number of inputs: h=1 + 0.1 P.

Automatic Selection of Number of Basis Functions

The algorithm tries a reasonable range of numbers of hidden units and picks the “best”. By
default, the reasonable range [K1, K2] is determined by first using the two-step clustering method
to automatically find the number of clusters, K. Then set K1 = min(K, R) for ORBF and K1
=max{2, min(K, R)} for NRBF and K2=max(10, 2K, R).

Neural Networks Algorithms

If a test data set is specified, then the “best” model is the one with the smaller error in the test
data. If there is no test data, the BIC (Bayesian information criterion) is used to select the “best”
model. The BIC is defined as

where is the mean squared error and k= (P+1+R)J1 for

NRBF and (P+1+R)J1+R for ORBF is the number of parameters in the model.

Model Updates

When new records become available, you can update the weights connecting the RBF layer and
output layer. Again, given the basis functions, updating the weights is a least-squares regression
problem. Thus, it is very fast.

For best results, the new records should have approximately the same distribution as the
original records.

Missing Values

The following options for handling missing values are available:
 Records with missing values are excluded listwise.
 Missing values are imputed. Continuous fields impute the average of the minimum and

maximum observed values; categorical fields impute the most frequently occurring category.

Output Statistics

The following output statistics are available. Note that, for continuous fields, output statistics are
reported in terms of the rescaled values of the fields.

Accuracy

For continuous targets, it is

where

Note that R2 can never be greater than one, but can be less than zero.

For the naïve model, is the modal category for categorical targets and the mean for continuous
targets.

Neural Networks Algorithms

For each categorical target, this is the percentage of records for which the predicted value matches
the observed value.

Predictor Importance

For more information, see the topic “Predictor Importance Algorithms.”

Confidence

Confidence values for neural network predictions are calculated based on the type of output field
being predicted. Note that no confidence values are generated for numeric output fields.

Difference

The difference method calculates the confidence of a prediction by comparing the best match with
the second-best match as follows, depending on output field type and encoding used.
 Flag fields. Confidence is calculated as , where o is the output activation

for the output unit.
 Set fields. With the standard encoding, confidence is calculated as , where is

the output unit in the fields group of units with the highest activation, and is the unit
with the second-highest activation.
With binary set encoding, the sum of the errors comparing the output activation and the
encoded set value is calculated for the closest and second-closest matches, and the confidence
is calculated as , where is the error for the second-best match and is the
error for the best match.

Simplemax

Simplemax returns the highest predicted probability as the confidence.

References

Bishop, C. M. 1995. Neural Networks for Pattern Recognition, 3rd ed. Oxford: Oxford University
Press.

Fine, T. L. 1999. Feedforward Neural Network Methodology, 3rd ed. New York: Springer-Verlag.

Haykin, S. 1998. Neural Networks: A Comprehensive Foundation, 2nd ed. New York: Macmillan
College Publishing.

Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge: Cambridge University
Press.

Tao, K. K. 1993. A closer look at the radial basis function (RBF) networks. In: Conference
Record of the Twenty-Seventh Asilomar Conference on Signals, Systems, and Computers, A.
Singh, ed. Los Alamitos, Calif.: IEEE Comput. Soc. Press, 401–405.

Neural Networks Algorithms

Uykan, Z., C. Guzelis, M. E. Celebi, and H. N. Koivo. 2000. Analysis of input-output clustering
for determining centers of RBFN. IEEE Transactions on Neural Networks, 11, 851–858.

OPTIMAL BINNING Algorithms
The Optimal Binning procedure performs MDLP (minimal description length principle)
discretization of scale variables. This method divides a scale variable into a small number of
intervals, or bins, where each bin is mapped to a separate category of the discretized variable.

MDLP is a univariate, supervised discretization method. Without loss of generality, the
algorithm described in this document only considers one continuous attribute in relation to a
categorical guide variable — the discretization is “optimal” with respect to the categorical guide.
Therefore, the input data matrix S contains two columns, the scale variable A and categorical
guide C.

Optimal binning is applied in the Binning node when the binning method is set to Optimal.

Notation

The following notation is used throughout this chapter unless otherwise stated:

S The input data matrix, containing a column of the scale variable A and a
column of the categorical guide C. Each row is a separate observation, or
instance.

A A scale variable, also called a continuous attribute.
S(i) The value of A for the ith instance in S.
N The number of instances in S.
D A set of all distinct values in S.
Si A subset of S.
C The categorical guide, or class attribute; it is assumed to have k

categories, or classes.
T A cut point that defines the boundary between two bins.
TA A set of cut points.
Ent(S) The class entropy of S.
E(A, T, S) The class entropy of partition induced by T on A.
Gain(A, T, S) The information gain of the cut point T on A.
n A parameter denoting the number of cut points for the equal frequency

method.
W A weight attribute denoting the frequency of each instance. If the weight

values are not integer, they are rounded to the nearest whole numbers before
use. For example, 0.5 is rounded to 1, and 2.4 is rounded to 2. Instances
with missing weights or weights less than 0.5 are not used.

Simple MDLP

This section describes the supervised binning method (MDLP) discussed in Fayyad and Irani
(1993).

Class Entropy

Let there be k classes C1, ..., Ck and let P(Ci, S) be the proportion of instances in S that have
class Ci. The class entropy Ent(S) is defined as

OPTIMAL BINNING Algorithms

Class Information Entropy

For an instance set S, a continuous attribute A, and a cut point T, let S1 S be the subset of
instances in S with the values of A ≤ T, and S2 = S−S1. The class information entropy of the
partition induced by T, E(A, T; S), is defined as

Information Gain

Given a set of instances S, a continuous attribute A, and a cut point T on A, the information
gain of a cut point T is

MDLP Acceptance Criterion

The partition induced by a cut point T for a set S of N instances is accepted if and only if

and it is rejected otherwise.

Here in which ki is the
number of classes in the subset Si of S.

Note: While the MDLP acceptance criterion uses the association between A and C to determine
cut points, it also tries to keep the creation of bins to a small number. Thus there are situations in
which a high association between A and C will result in no cut points. For example, consider the
following data:

D Class

2 3
1 1 0
2 0 6

Then the potential cut point is T = 1. In this case:

OPTIMAL BINNING Algorithms

Since 0.5916728 < 0.6530774, T is not accepted as a cut point, even though there is a clear
relationship between A and C.

Algorithm: BinaryDiscretization

1. Calculate E(A, di; S) for each distinct value di ∈ D for which di and di+1 do not belong to the same
class. A distinct value belongs to a class if all instances of this value have the same class.

2. Select a cut point T for which E(A, T; S) is minimum among all the candidate cut points, that is,

Algorithm: MDLPCut

1. BinaryDiscretization(A, T; D, S).

2. Calculate Gain(A, T; S).

3. If then

a) .

b) Split D into D1 and D2, and S into S1 and S2.

c) MDLPCut(A, TA; D1, S1).

d) MDLPCut(A, TA; D2, S2). where S1 S be the subset of instances in S with A-values ≤ T, and
S2 = S−S1. D1 and D2 are the sets of all distinct values in S1 and S2, respectively.

Also presented is the iterative version of MDLPCut(A, TA; D, S). The iterative implementation
requires a stack to store the D and S remaining to be cut.

First push D and S into stack. Then, while (stack≠∅) do

1. Obtain D and S by popping stack.

2. BinaryDiscretization(A, T; D, S).

3. Calculate Gain(A, T; S).

4. If then

i) .

ii) Split D into D1 and D2, and S into S1 and S2.

iii) Push D1 and S1 into stack.

iv) Push D2 and S2 into stack.

OPTIMAL BINNING Algorithms

Note: In practice, all operations within the algorithm are based on a global matrix M. Its element,
mij, denotes the total number of instances that have value di ∈ D and belong to the jth class in S.
In addition, D is sorted in ascending order. Therefore, we do not need to push D and S into stack,
but only two integer numbers, which denote the bounds of D, into stack.

Algorithm: SimpleMDLP

1. Sort the set S with N instances by the value A in ascending order.

2. Find a set of all distinct values, D, in S.

3. TA = ∅.

4. MDLPCut(A, TA; D, S)

5. Sort the set TA in ascending order, and output TA.

Hybrid MDLP

When the set D of distinct values in S is large, the computational cost to calculate E(A, di; S)
for each di ∈ D is large. In order to reduce the computational cost, the unsupervised equal
frequency binning method is used to reduce the size of D and obtain a subset Def ∈ D. Then the
MDLPCut(A, TA; Ds, S) algorithm is applied to obtain the final cut point set TA.

Algorithm: EqualFrequency

It divides a continuous attribute A into n bins where each bin contains N/n instances. n is a
user-specified parameter, where 1 < n < N.

1. Sort the set S with N instances by the value A in ascending order.

2. Def = ∅.

. 3. j=1.

4. Use the aempirical percentile method to generate the dp,i which denote the th
percentiles.

5. ; i=i+1

6. If i≤n, then go to step 4.

7. Delete the duplicate values in the set Def.

Note: If, for example, there are many occurrences of a single value of A, the equal frequency
criterion may not be met. In this case, no cut points are produced.

Algorithm: HybridMDLP

1. D = ∅ ;

OPTIMAL BINNING Algorithms

2. EqualFrequency(A, n, D; S).

3. TA = ∅ .

4. MDLPCut(A, TA; D, S).

5. Output TA.

Model Entropy

The model entropy is a measure of the predictive accuracy of an attribute A binned on the class
variable C. Given a set of instances S, suppose that A is discretized into I bins given C, where
the ith bin has the value Ai. Letting Si S be the subset of instances in S with the value Ai, the
model entropy is defined as:

Merging Sparsely Populated Bins

Occasionally, the procedure may produce bins with very few cases. The following strategy deletes
these pseudo cut points:

E For a given variable, suppose that the algorithm found nfinal cut points, and thus nfinal+1 bins. For

bins i = 2, ..., nfinal (the second lowest-valued bin through the second highest-valued bin), compute

where sizeof(bin) is the number of cases in the bin.

E When this value is less than a user-specified merging threshold, is considered sparsely
populated and is merged with or , whichever has the lower class information entropy. For
more information, see the topic “Class Information Entropy.”

The procedure makes a single pass through the bins.

Blank Handling

In optimal binning, blanks are handled in pairwise fashion. That is, for every pair of fields
{binning field, target field}, all records with valid values for both fields are used to bin that
specific binning field, regardless of any blanks that may exist in other fields to be binned.

OPTIMAL BINNING Algorithms

References

Fayyad, U., and K. Irani. 1993. Multi-interval discretization of continuous-value attributes for
classification learning. In: Proceedings of the Thirteenth International Joint Conference on
Artificial Intelligence, San Mateo, CA: Morgan Kaufmann, 1022–1027.

Dougherty, J., R. Kohavi, and M. Sahami. 1995. Supervised and unsupervised discretization
of continuous features. In: Proceedings of the Twelfth International Conference on Machine
Learning, Los Altos, CA: Morgan Kaufmann, 194–202.

Liu, H., F. Hussain, C. L. Tan, and M. Dash. 2002. Discretization: An Enabling Technique. Data
Mining and Knowledge Discovery, 6, 393–423.

Predictor Importance Algorithms
Predictor importance can be determined by computing the reduction in variance of the target
attributable to each predictor, via a sensitivity analysis. This method of computing predictor
importance is used in the following models:
 Neural Networks
 C5.0
 C&RT
 QUEST
 CHAID
 Regression
 Logistic
 Discriminant
 GenLin
 SVM
 Bayesian Networks

Notation

The following notation is used throughout this chapter unless otherwise stated:

Y Target
 Predictor, where j=1,...,k

k The number of predictors
Model for Y based on predictors through

Variance Based Method

Predictors are ranked according to the sensitivity measure defined as follows.

where V(Y) is the unconditional output variance. In the numerator, the expectation operator E
calls for an integral over ; that is, over all factors but , then the variance operator V implies
a further integral over .

Predictor importance is then computed as the normalized sensitivity.

Predictor Importance Algorithms

Saltelli et al (2004) show that is the proper measure of sensitivity to rank the predictors in order
of importance for any combination of interaction and non-orthogonality among predictors.

The importance measure Si is the first-order sensitivity measure, which is accurate if the set of
the input factors (X1 , X2 ,…, Xk) is orthogonal/independent (a property of the factors), and
the model is additive; that is, the model does not include interactions (a property of the model)
between the input factors. For any combination of interaction and non-orthogonality among
factors, Saltelli (2004) pointed out that Si is still the proper measure of sensitivity to rank the
input factors in order of importance, but there is a risk of inaccuracy due to the presence of
interactions or/and non-orthogonality. For better estimation of Si, the size of the dataset should
be a few hundred at least. Otherwise, Si may be biased heavily. In this case, the importance
measure can be improved by bootstrapping.

Computation

In the orthogonal case, it is straightforward to estimate the conditional variances by computing
the multidimensional integrals in the space of the input factors, via Monte Carlo methods as
follows.

Let us start with two input sample matrices and , each of dimension N× k:

and

where N is the sample size of the Monte Carlo estimate which can vary from a few hundred to one
thousand. Each row is an input sample. From and , we can build a third matrix .

We may think of as the “sample” matrix, as the “resample” matrix, and as the matrix
where all factors except are resampled. The following equations describe how to obtain the
variances (Saltelli 2002). The ‘hat’ denotes the numeric estimates.

Predictor Importance Algorithms

where

where

and

When the target is continuous, we simply follow the accumulation steps of variance and
expectations. For a categorical target, the accumulation steps are for each category of Y. For each
input factor, is a vector with an element for each category of Y. The average of elements of is
used as the estimation of importance of the ith input factor on Y.

Convergence. In order to improve scalability, we use a subset of the records and predictors when
checking for convergence. Specifically, the convergence is judged by the following criteria:

where , D=100 and denotes the width of interest, ,

and defines the desired average relative error.

This specification focuses on “good” predictors; those whose importance values are larger than
average.

Record order. This method of computing predictor importance is desirable because it scales well to
large datasets, but the results are dependent upon the order of records in the dataset. To avoid the
effect of the record order, instead of using the original data directly, we take a sample from the
data and sort the sampled records before using them to calculate predictor importance. The
sampling method is based on a random seed determined by the value of each record, thus the
sampling results are always the same for the same dataset. The random seeds are then used to sort
the sampled records.

Predictor Importance Algorithms

References

Saltelli, A., S. Tarantola, F. , F. Campolongo, and M. Ratto. 2004. Sensitivity Analysis in Practice
– A Guide to Assessing Scientific Models. : John Wiley.

Saltelli, A. 2002. Making best use of model evaluations to compute sensitivity indices. Computer
Physics Communications, 145:2, 280–297.

QUEST Algorithms

Overview of QUEST

QUEST stands for Quick, Unbiased, Efficient Statistical Tree. It is a relatively new binary
tree-growing algorithm (Loh and Shih, 1997). It deals with split field selection and split-point
selection separately. The univariate split in QUEST performs approximately unbiased field
selection. That is, if all predictor fields are equally informative with respect to the target field,
QUEST selects any of the predictor fields with equal probability.

QUEST affords many of the advantages of C&RT, but, like C&RT, your trees can become
unwieldy. You can apply automatic cost-complexity pruning (see “Pruning”) to a QUEST tree to
cut down its size. QUEST uses surrogate splitting to handle missing values. For more
information, see the topic “Blank Handling.”

Primary Calculations

The calculations directly involved in building the model are described below.

Frequency Weight Fields

A frequency field represents the total number of observations represented by each record. It is
useful for analyzing aggregate data, in which a record represents more than one individual. The
sum of the values for a frequency field should always be equal to the total number of observations
in the sample. Note that output and statistics are the same whether you use a frequency field or
case-by-case data. The table below shows a hypothetical example, with the predictor fields sex
and employment and the target field response. The frequency field tells us, for example, that 10
employed men responded yes to the target question, and 19 unemployed women responded no.

Table 30-1
Dataset with frequency field

Sex Employment Response Frequency
M Y Y 10
M Y N 17
M N Y 12
M N N 21
F Y Y 11
F Y N 15
F N Y 15
F N N 19

The use of a frequency field in this case allows us to process a table of 8 records instead of
case-by-case data, which would require 120 records.

QUEST does not support the use of case weights.

QUEST Algorithms

Model Parameters

QUEST deals with field selection and split-point selection separately. Note that you can specify
the alpha level to be used in the Expert Options for QUEST—the default value is ·nominal = 0.05.

Field Selection

1. For each predictor field X, if X is a symbolic (categorical), or nominal, field, compute the p value
of a Pearson chi-square test of independence between X and the dependent field. If X is scale-level
(continuous), or ordinal field, use the F test to compute the p value.

2. Compare the smallest p value to a prespecified, Bonferroni-adjusted alpha level ∝B.
 If the smallest p value is less than ∝B, then select the corresponding predictor field to

split the node. Go on to step 3.
 If the smallest p value is not less than ∝B, then for each X that is scale-level (continuous),

use Levene’s test for unequal variances to compute a p value. (In other words, test whether
X has unequal variances at different levels of the target field.)

 Compare the smallest p value from Levene’s test to a new Bonferroni-adjusted alpha level ∝L.
 If the p value is less than ∝L, select the corresponding predictor field with the smallest p

value from Levene’s test to split the node.
 If the p value is greater than ∝L, the node is not split.

Split Point Selection—Scale-Level Predictor

1. If Y has only two categories, skip to the next step. Otherwise, group the categories of Y into
two superclasses as follows:
 Compute the mean of X for each category of Y.
 If all means are the same, the category with the largest weighted frequency is selected as one

superclass and all other categories are combined to form the other superclass. (If all means
are the same and there are multiple categories tied for largest weighted frequency, select
the category with the smallest index as one superclass and combine the other categories
to form the other.)

 If the means are not all the same, apply a two-mean clustering algorithm to those means to
obtain two superclasses of Y, with the initial cluster centers set at the two most extreme class
means. (This is a special case of k-means clustering, where k = 2. For more information, see
the topic “Overview.”)

2. Apply quadratic discriminant analysis (QDA) to determine the split point. Notice that QDA
usually produces two cut-off points—choose the one that is closer to the sample mean of the
first superclass.

Split Point Selection—Symbolic (Categorical) Predictor

QUEST first transforms the symbolic field into a continuous field by assigning discriminant
coordinates to categories of the predictor. The derived field is then split as if it were any other
continuous predictor as described above.

QUEST Algorithms

Chi-Square Test

The Pearson chi-square statistic is calculated as

where is the observed cell frequency and is the expected
cell frequency for cell (xn = i, yn = j) from the independence model as described below. The
corresponding p value is calculated as , where follows a chi-square
distribution with d = (J − 1)(I − 1) degrees of freedom.

Expected Frequencies for Chi-Square Test

For models with no case weights, expected frequencies are calculated as

where

F Test

Suppose for node t there are Jt classes of target field Y. The F statistic for continuous predictor X
is calculated as

where

The corresponding p value is given by

where F(Jt − 1, Nf(t) − Jt) follows an F distribution with degrees of freedom Jt − 1 and Nf(t) − Jt.

QUEST Algorithms

Levene’s Test

For continuous predictor X, calculate , where is the mean of X for records in
node t with target value yn. Levene’s F statistic for predictor X is the ANOVA F statistic for zn.

Bonferroni Adjustment

The adjusted alpha level ∝B is calculated as the nominal value divided by the number of possible
comparisons.

For QUEST, the Bonferroni adjusted alpha level ∝B for the initial predictor selection is

where m is the number of predictor fields in the model.

For the Levene test, the Bonferroni adjusted alpha level ∝L is

where mc is the number of continuous predictor fields.

Discriminant Coordinates

For categorical predictor X with values {b1,...,bI}, QUEST assigns a score value from a continuous
variable to each category of X. The scores assigned are chosen to maximize the ratio of between-
class to within-class sum of squares of for the target field classes:

For each record, transform X into a vector of dummy fields , where

otherwise

Calculate the overall and class j mean of v:

where fn is the frequency weight for record n, gn is the dummy vector for record n, Nf is the
total sum of frequency weights for the training data, and Nf,j is the sum of frequency weights
for records with category j.

Calculate the following matrices:

QUEST Algorithms

Perform singular value decomposition on T to obtain , where Q is an orthogonal
matrix, D = diag(dl,...,dI) such that . Let where

 if di > 0, 0 otherwise. Perform singular value decomposition on to
obtain its eigenvector a which is associated with its largest eigenvalue.

The largest discriminant coordinate of g is the projection

Quadratic Discriminant Analysis (QDA)

To determine the cutpoint for a continuous predictor, first group the categories of the target field Y
to form two superclasses, A and B, as described above.

If , order the two superclasses by their variance in increasing order and denote
the variances by , and the corresponding means by . Let 𝜀𝜀 be a very small positive
number, say 𝜀𝜀 = 10−12. Set the cutpoint d based on and 𝜀𝜀:

if
otherwise

Blank Handling

Records with missing values for the target field are ignored in building the tree model.

Surrogate splitting is used to handle blanks for predictor fields. If the best predictor field to be
used for a split has a blank or missing value at a particular node, another field that yields a split
similar to the predictor field in the context of that node is used as a surrogate for the predictor
field, and its value is used to assign the record to one of the child nodes.

Note: If Surrogate splitting is used (where a particular rule does not fit into a node) the Confidence
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

For example, suppose that X* is the predictor field that defines the best split s* at node t. The
surrogate-splitting process finds another split s, the surrogate, based on another predictor field X
such that this split is most similar to s* at node t (for records with valid values for both predictors).
If a new record is to be predicted and it has a missing value on X* at node t, the surrogate split s is
applied instead. (Unless, of course, this record also has a missing value on X. In such a situation,
the next best surrogate is used, and so on, up to the limit of number of surrogates specified.)

In the interest of speed and memory conservation, only a limited number of surrogates is
identified for each split in the tree. If a record has missing values for the split field and all
surrogate fields, it is assigned to the child node with the higher weighted probability, calculated as

QUEST Algorithms

where Nf,j(t) is the sum of frequency weights for records in category j for node t, and Nf(t) is the
sum of frequency weights for all records in node t.

If the model was built using equal or user-specified priors, the priors are incorporated into the
calculation:

where π(j) is the prior probability for category j, and pf(t) is the weighted probability of a record
being assigned to the node,

where Nf,j(t) is the sum of the frequency weights (or the number of records if no frequency
weights are defined) in node t belonging to category j, and Nf,j is the sum of frequency weights
for records belonging to category in the entire training sample.

Predictive measure of association

Let (resp.) be the set of learning cases (resp. learning cases in node t) that has
non-missing values of both X* and X. Let be the probability of sending a case in

 to the same child by both and , and be the split with maximized probability
.

The predictive measure of association between s* and at node t is

where (resp.) is the relative probability that the best split s* at node t sends a case with
non-missing value of X* to the left (resp. right) child node. And where

QUEST Algorithms

,

and being the indicator function taking value 1 when both splits s* and send
the case n to the same child, 0 otherwise.

Effect of Options

Stopping Rules

Stopping rules control how the algorithm decides when to stop splitting nodes in the tree. Tree
growth proceeds until every leaf node in the tree triggers at least one stopping rule. Any of the
following conditions will prevent a node from being split:
 The node is pure (all records have the same value for the target field)
 All records in the node have the same value for all predictor fields used by the model
 The tree depth for the current node (the number of recursive node splits defining the current

node) is the maximum tree depth (default or user-specified).
 The number of records in the node is less than the minumum parent node size (default or

user-specified)
 The number of records in any of the child nodes resulting from the node’s best split is less

than the minimum child node size (default or user-specified)

Profits

Profits are numeric values associated with categories of a (symbolic) target field that can be used
to estimate the gain or loss associated with a segment. They define the relative value of each value
of the target field. Values are used in computing gains but not in tree growing.

Profit for each node in the tree is calculated as

where j is the target field category, fj(t) is the sum of frequency field values for all records in node
t with category j for the target field, and Pj is the user-defined profit value for category j.

QUEST Algorithms

Priors

Prior probabilities are numeric values that influence the misclassification rates for categories of
the target field. They specify the proportion of records expected to belong to each category of the
target field prior to the analysis. The values are involved both in tree growing and risk estimation.

There are three ways to derive prior probabilities.

Empirical Priors

By default, priors are calculated based on the training data. The prior probability assigned to each
target category is the weighted proportion of records in the training data belonging to that category,

In tree-growing and class assignment, the Ns take both case weights and frequency weights
into account (if defined); in risk estimation, only frequency weights are included in calculating
empirical priors.

Equal Priors

Selecting equal priors sets the prior probability for each of the J categories to the same value,

User-Specified Priors

When user-specified priors are given, the specified values are used in the calculations involving
priors. The values specified for the priors must conform to the probability constraint: the sum of
priors for all categories must equal 1.0. If user-specified priors do not conform to this constraint,
adjusted priors are derived which preserve the proportions of the original priors but conform
to the constraint, using the formula

where π’(j) is the adjusted prior for category j, and π(j) is the original user-specified prior for
category j.

Costs

If misclassification costs are specified, they are incorporated into split calculations by using
altered priors. The altered prior is defined as

QUEST Algorithms

where .

Misclassification costs also affect risk estimates and predicted values, as described in the following
sections.

Pruning

Pruning refers to the process of examining a fully grown tree and removing bottom-level splits
that do not contribute significantly to the accuracy of the tree. In pruning the tree, the software
tries to create the smallest tree whose misclassification risk is not too much greater than that of the
largest tree possible. It removes a tree branch if the cost associated with having a more complex
tree exceeds the gain associated with having another level of nodes (branch).

It uses an index that measures both the misclassification risk and the complexity of the tree,
since we want to minimize both of these things. This cost-complexity measure is defined as
follows:

R(T) is the misclassification risk of tree T, and is the number of terminal nodes for tree T. The
term α represents the complexity cost per terminal node for the tree. (Note that the value of α is
calculated by the algorithm during pruning.)

Any tree you might generate has a maximum size (Tmax), in which each terminal node contains
only one record. With no complexity cost (α = 0), the maximum tree has the lowest risk, since
every record is perfectly predicted. Thus, the larger the value of α, the fewer the number of
terminal nodes in T(α), where T(α) is the tree with the lowest complexity cost for the given α. As
α increases from 0, it produces a finite sequence of subtrees (T1, T2, T3), each with progressively
fewer terminal nodes. Cost-complexity pruning works by removing the weakest split.

The following equations represent the cost complexity for {t}, which is any single node, and
for Tt, the subbranch of {t}.

If is less than , then the branch Tt has a smaller cost complexity than the single
node {t}.

The tree-growing process ensures that for (α = 0). As α increases from 0,
both and grow linearly, with the latter growing at a faster rate. Eventually, you
will reach a threshold α’, such that for all α > α’. This means that when α
grows larger than α’, the cost complexity of the tree can be reduced if we cut the subbranch Tt
under {t}. Determining the threshold is a simple computation. You can solve this first inequality,

, to find the largest value of α for which the inequality holds, which is also
represented by g(t). You end up with

QUEST Algorithms

You can define the weakest link (t) in tree T as the node that has the smallest value of g(t):

Therefore, as α increases, is the first node for which . At that point, { }
becomes preferable to , and the subbranch is pruned.

With that background established, the pruning algorithm follows these steps:

E Set α1 = 0 and start with the tree T1 = T(0), the fully grown tree.

E Increase α until a branch is pruned. Prune the branch from the tree, and calculate the risk estimate
of the pruned tree.

E Repeat the previous step until only the root node is left, yielding a series of trees, T1, T2, ... Tk.

E If the standard error rule option is selected, choose the smallest tree Topt for which

E If the standard error rule option is not selected, then the tree with the smallest risk estimate R(T)

is selected.

Secondary Calculations

Secondary calculations are not directly related to building the model but give you information
about the model and its performance.

Risk Estimates

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for
the tree as a whole.

Risk Estimates for Symbolic Target Field

For classification trees (with a symbolic target field), the risk estimate r(t) of a node t is computed
as

QUEST Algorithms

where C(j*(t)|j) is the misclassification cost of classifying a record with target value j as j*(t),
Nf,j(t) is the sum of the frequency weights for records in node t in category j (or the number of
records if no frequency weights are defined), and Nf is the sum of frequency weights for all
records in the training data.

If the model uses user-specified priors, the risk estimate is calculated as

Gain Summary

The gain summary provides descriptive statistics for the terminal nodes of a tree.
If your target field is continuous (scale), the gain summary shows the weighted mean of the

target value for each terminal node,

If your target field is symbolic (categorical), the gain summary shows the weighted percentage of
records in a selected target category,

where xi(j) = 1 if record xi is in target category j, and 0 otherwise. If profits are defined for the
tree, the gain is the average profit value for each terminal node,

where P(xi) is the profit value assigned to the target value observed in record xi.

Generated Model/Scoring

Calculations done by the QUEST generated model are described below.

Predicted Values

New records are scored by following the tree splits to a terminal node of the tree. Each terminal
node has a particular predicted value associated with it, determined as follows:

For trees with a symbolic target field, each terminal node’s predicted category is the category with
the lowest weighted cost for the node. This weighted cost is calculated as

QUEST Algorithms

where C(i|j) is the user-specified misclassification cost for classifying a record as category i when
it is actually category j, and p(j|t) is the conditional weighted probability of a record being in
category j given that it is in node t, defined as

where π(j) is the prior probability for category j, Nw,j(t) is the weighted number of records in node
t with category j (or the number of records if no frequency or case weights are defined),

and Nw,j is the weighted number records in category j (any node),

Confidence

Confidence for a scored record is the proportion of weighted records in the training data in the
scored record’s assigned terminal node that belong to the predicted category, modified by the
Laplace correction:

Note: If Surrogate Splitting is used (where a particular rule does not fit into a node) the Confidence
score is reduced by multiplying it by 0.9. This can result in multiple Confidence scores being
present within a single node.

Blank Handling

In classification of new records, blanks are handled as they are during tree growth, using
surrogates where possible, and splitting based on weighted probabilities where necessary. For
more information, see the topic “Blank Handling.”

Self-Learning Response Model
Algorithms

Self-Learning Response Models (SLRMs) use Naive Bayes classifiers to build models that can
be easily updated to incorporate new data, without having to regenerate the entire model. The
methods used for building, updating and scoring with SLRMs are described here.

Primary Calculations

The model-building algorithm used in SLRMs is Naive Bayes. A Bayesian Network consisting of
a Naive Bayes model for each target field is generated.

Naive Bayes Algorithms

The Naive Bayes model is an old method for classification and predictor selection that is enjoying
a renaissance because of its simplicity and stability.

Notation

The following notation is used throughout this chapter unless otherwise stated:
Table 31-1
Notation

Notation Description
J0 Total number of predictors.
X Categorical predictor vector X’ = (X1, ..., XJ), where J is the number of

predictors considered.
Mj Number of categories for predictor Xj.
Y Categorical target variable.
K Number of categories of Y.
N Total number of cases or patterns in the training data.
Nk The number of cases with Y= k in the training data.
Njmk The number of cases with Y= k and Xj=m in the training data.
πk The probability for Y= k.
𝑝𝑝jmk The probability of Xj=m given Y= k.

Naive Bayes Model

The Naive Bayes model is based on the conditional independence model of each predictor given
the target class. The Bayesian principle is to assign a case to the class that has the largest posterior
probability. By Bayes’ theorem, the posterior probability of Y given X is:

Self-Learning Response Model Algorithms

mk

Let X1, ..., XJ be the J predictors considered in the model. The Naive Bayes model assumes that
X1, ..., XJ are conditionally independent given the target; that is:

These probabilities are estimated from training data by the following equations:

Where Nk is calculated based on all non-missing Y, Nj is based on all non-missing pairs
of XJ and Y, and the factors and f are introduced to overcome problems caused by zero or
very small cell counts. These estimates correspond to Bayesian estimation of the multinomial
probabilities with Dirichlet priors. Empirical studies suggest (Kohavi, Becker, and
Sommerfield, 1997).

A single data pass is needed to collect all the involved counts.

For the special situation in which J = 0; that is, there is no predictor at all,

 . When there are empty categories in the target variable or
categorical predictors, these empty categories should be removed from the calculations.

Secondary Calculations

In addition to the model parameters, a model assessment is calculated.

Model Assessment

For a trained model, we need to assess how reliable it is. Given this problem, we face two
conditions which will result with different solutions:
 A sample of test data (not used in training or updating the model) is available. In this case we

can directly feed these data into the model, and observe the outcome.
 No extra testing data are available. This is more common since users normally apply all

available data to train the model. In this case, we have to simulate data first based on the
calibrated model parameters, such as and , then assess the trained model by scoring
these pseudo random data.

Testing with Simulated Data

In our simulation, data are generated. For each round, we can
determine the corresponding accuracy; across all rounds, average accuracy and variance can be
calculated, and they are explained as reliability statistics.

Self-Learning Response Model Algorithms

E For each round, we generate random cases as follows:
 y is assigned a random value based on the prior probabilities .
 Each is randomly assigned based on conditional probabilities

E The accuracy of each round is calculated by comparing the model’s predicted value for each case
to the case’s generated outcome y,

E The mean, variance, minimum and maximum of the accuracy estimates are calculated across
rounds.

Blank Handling

If the target is missing, or all predictors for a case are missing, the case is ignored. If every
value for a predictor is missing, or all non-missing values for a predictor are the same, that
predictor is ignored.

Updating the Model

The model can be updated by updating the cell counts , to account for the new records
and recalculating the probabilities and as described in “Naive Bayes Model.” Updating
the model only requires a data pass of new records.

Generated Model/Scoring

Scoring with a generated SLRM model is described below.

Predicted Values and Confidences

By default, the first M offers with highest predicted value will be returned. However, sometimes
low-probability offers are of interest for marketing strategy. Model settings allow you to bias the
results toward particular offers, or include random components to the offers.

Some notation for scoring offers:

Number of offers modeled already

 Scores for each offer

 Randomly generated scores for offers

Randomization factor, ranging from 0.0 (offer based
only on model prediction) to 1.0 (offer is completely
random)

 Number of cases used for training each offer

Empirical value of the amount of training cases that
will result in a reliable model. When “Take account
of model reliability” is selected in the Settings tab,
this is set to 500; otherwise 0.

Self-Learning Response Model Algorithms

User’s preferences for offers, or the ratings of the
offers. Can be any non-negative value, where
larger values means stronger recommendations for
the corresponding offers. The default setting is

Mandatory inclusion/exclusion filters. ,
where 0 indicates an excluded offer.

The final score for each offer is calculated as

The outcomes are ordered in specified order, ascending or descending, and the first M offers in
the list are recommended. The calculated score is reported as the confidence for the score.

Variable Assessment

Among all the features modeled, some are definitely more important to the accuracy of the model
than others. Two different approaches to measuring importance are proposed here: Predictor
Importance and Information Measure.

Predictor Importance

The variance of predictive error can be used as the measure of importance. With this method,
we leave out one predictor variable at a time, and observe the performance of remaining model.
A variable is regarded as more important than another if it adds more variance compared to
that of the complete model (with all variables).

When test data are available, they can be used for predictor importance calculations in a direct way.
When test data are not available, they are simulated based on the model parameters and .

In our simulation, data are generated. For each round, we determine
the corresponding accuracy for each submodel, excluding for each of the j predictors; across
all rounds, average accuracy and variance can be calculated.

E For each round, we generate random cases as follows:
 y is assigned a random value based on the prior probabilities .
 Each is randomly assigned based on conditional probabilities

Within a round, each of the predictors is excluded from the model, and the accuracy is
calculated based on the generated test data for each submodel in turn.

E The accuracies for each round are calculated by comparing the submodel’s predicted value for

each case to the case’s generated outcome y, , for each
of the j submodels.

Self-Learning Response Model Algorithms

E The mean and variance of the accuracy estimates are calculated across rounds for each submodel.

For each variable, the importance is measured as the difference between the accuracy of the full
model and the mean accuracy for the submodels that excluded the variable.

Information Measure

The importance of an explanatory variable X for a response variable Y is the extent to which the
use of X reduces uncertainty in predicting outcomes of Y. The uncertainty about predicting an
outcome Y is measured by the entropy of its distribution (Shannon 1948):

Based on a value x of the explanatory variable, the probability distribution of the outcomes Y is
the conditional distribution . The information value of using the value x for the prediction
is assessed by comparing the concentrations of the marginal distribution and the conditional
distribution . The difference between the conditional and marginal distribution entropy is:

where denotes the entropy of the conditional distribution . The value is informative
about Y if the conditional distribution is more concentrated than .

The importance of a random variable X for predicting Y is measured by the expected uncertainty
reduction, referred to as the mutual information between two variables:

The expected fraction of uncertainty reduction due to X is a mutual information index given by

This index ranges from zero to one: if and only if the two variables are independent,
and if and only if the two variables are functionally related in some form,
linearly or nonlinearly.

Sequence Algorithm

Overview of Sequence Algorithm

The sequence node in IBM® SPSS® Modeler detects patterns in sequential data, such as
purchases over time. The sequence node algorithm uses the following two-stage process for
sequential pattern mining (Agrawal and Srikant, 1995):

E Mine for the frequent sequences. This part of the process extracts the information needed for quick

responses to the pattern queries, yielding an adjacency lattice of the frequent sequences. This
structure provides an optimal configuration for the second stage.

E Generate sequential patterns online. This stage uses a pre-computed adjacency lattice. You can

extract the patterns according to specified criteria, such as support and confidence bounds, or
place restrictions on the antecedent sequence.

Primary Calculations

Itemsets, Transactions, and Sequences

A group of items associated at a single point in time constitutes an itemset, which will be
identified here using braces “{ }”. Consider the hypothetical data below representing sales at a
gourmet store.
Table 32-1
Example data - product purchases

Customer Time 1 Time 2 Time 3 Time 4
1 cheese & crackers wine beer -
2 wine beer cheese -
3 bread wine cheese & beer -
4 crackers wine beer cheese
5 beer cheese & crackers bread -
6 crackers bread - -

Customer 1 yields three itemsets: {cheese & crackers}, {wine}, and {beer}. The ampersand
denotes items appearing in a single itemset. In this case, items separated by an ampersand appear
in the same purchase. Notice that some itemsets may contain a single item only.

The complete group of itemsets for a single object, in this case a customer, constitutes a
transaction. Time refers to a purchase occasion for a particular customer and does not represent a
specific time across all customers. For example, the first purchase occasion for customer 1 may
have been on January 23 while the first occasion for customer 4 was February 12. Although the
dates are not identical, each itemset was the first for that customer. The analysis focuses on time
relative to a specific customer instead of on absolute time.

Ordering the itemsets by time yields sequences. The symbol “>” denotes an ordering of
itemsets, with the itemset on the right occurring after the itemset on the left. For example,
customer 6 yields a sequence of [{crackers} > {bread}].

Sequence Algorithm

Two common characteristics used to describe sequences are size and length. The number of

items contained in a sequence corresponds to the sequence size. The number of itemsets in the
sequence equals its length. For example, the three timepoints for customer 5 correspond to a
sequence having a length of three and a size of four.

A sequence is a subsequence of another sequence if the first can be derived by deleting
itemsets from the second. Consider the sequence:

[{wine} > {beer} > {cheese}]

Deleting the itemset cheese results in the sequence of length two [{wine} > {beer}]. This two
itemset sequence is a subsequence of the original sequence. Similar deletions reveal that the
three itemset sequence can be decomposed into three singleton subsequences ({wine}, {beer},
{cheese}) and three subsequences involving two itemsets ([{wine} > {beer}], [{beer} >
{cheese}], [{wine} > {cheese}]). A sequence that is not a subsequence of another sequence is
referred to as a maximal sequence.

Support

The support for a sequence equals the proportion of transactions that contain the sequence. The
table below shows support values for sequences that appear in at least one transaction for a set of
gourmet store sales data (note that this is a different data set from the one shown previously).

For example, the support for sequence [{wine} > {beer}] is 0.67 because it occurs in four of the
six transactions. Similarly, support for a sequential rule equals the proportion of transactions that
contain both the antecedent and the consequent of the rule, in that order. The support for the
sequential rule:

If [{cheese} >
{wine}] then [{beer}]

is 0.17 because only one of the six transactions contains these three itemsets in this order.
Sequences that do not appear in any transaction have support values of 0 and are excluded

from the mining analysis.
Table 32-2
Nonzero support values
Sequence Support Sequence Support
{cheese} 0.83 {crackers} > {cheese} 0.17
{crackers} 0.67 {beer} > {cheese & crackers} 0.17
{wine} 0.67 {cheese & crackers} > {wine} 0.17
{beer} 0.83 {cheese & crackers} > {beer} 0.17
{bread} 0.50 {bread} > {cheese & beer} 0.17
{cheese &
crackers}

0.33 {wine} > {cheese & beer} 0.17

{cheese & beer} 0.17 {cheese & crackers} > {bread} 0.17
{cheese} > {wine} 0.17 {cheese} > {wine} > {beer} 0.17
{cheese} > {beer} 0.17 {crackers} > {wine} > {beer} 0.33
{wine} > {beer} 0.67 {wine} > {beer} > {cheese} 0.33
{crackers} >
{wine}

0.33 {bread} > {wine} > {beer} 0.17

Sequence Algorithm

Sequence Support Sequence Support
{crackers} > {beer} 0.33 {bread} > {wine} > {cheese} 0.17
{wine} > {cheese} 0.50 {beer} > {cheese} > {bread} 0.17
{beer} > {cheese} 0.50 {beer} > {crackers} > {bread} 0.17
{bread} > {wine} 0.17 {crackers} > {wine} > {cheese} 0.17
{bread} > {beer} 0.17 {crackers} > {beer} > {cheese} 0.17
{bread} > {cheese} 0.17 {cheese & crackers} > {wine} > {beer} 0.17
{beer} > {bread} 0.17 {bread} > {wine} > {cheese & beer} 0.17
{beer} > {crackers} 0.17 {beer} > {cheese & crackers} > {bread} 0.17
{cheese} > {bread} 0.17 {crackers} > {wine} > {beer} > {cheese} 0.17
{crackers} >
{bread}

0.33

Typically, the analysis focuses on sequences having support values greater than a minimum
threshold, the support level. This value, defined by the user, determines the minimum level for
which sequences will be kept. Sequences with support values exceeding the threshold, referred to
as frequent sequences, form the basis of the adjacency lattice. For example, for a threshold of
0.40, sequence [{wine} > {beer}] is a frequent sequence because its support level is 0.67. By
relaxing the threshold, more sequences are classified as frequent.

Time Constraints

Defining the time at which events occur has a dramatic impact on sequences. For instance, each
purchase occasion in the gourmet data yields a new timed itemset. However, suppose a customer
bought wine and realized while walking to his car that beer was needed too. He immediately
returns to the store and buys the forgotten item. Should these two purchases be considered
separately?

One method for controlling for itemsets that occur very close in time is through a timestamp
tolerance parameter. This tolerance defines the length of time covering a single itemset.
Specifying a tolerance larger than the difference between two consecutive times results in a single
itemset at one time, such as {wine & beer} in the scenario described above.

Another time issue commonly arising in the analysis of sequences is gap. This statistic
measures the difference in time between two items and can be used to make time-based predictions
of future behavior. Gap statistics can be based on the gap between the last and penultimate sets in
sequences, or on the gaps between the last and first sets in sequences.

Sequential Patterns

Sequential patterns, or sequential association rules,identify items that frequently follow other
items in transaction-based data. A sequential pattern is simply an ordered list of itemsets. All
itemsets leading to the final itemset form the antecedent sequence, and the last itemset is the
consequent sequence. These statements have the following form:

If [antecedent] then [consequent]

Sequence Algorithm

For example, a sequential pattern for wine, beer, and cheese is: “if a customer buys wine, then
buys beer, he will buy cheese in the future”. Wine and beer form the antecedent, and cheese is
the consequent.

Notationally, the symbol “=>” separates the antecedent from the consequent in a sequential
rule. The sequence to the left of this symbol corresponds to the antecedent; the sequence on the
right is the consequent. For instance, the rule above is denoted:

[{wine} > {beer } => {cheese}]

The only notational difference between a sequence and a sequential rule is the identification
of a subsequence as a consequent.

Adjacency Lattice

The number of itemsets and sequences for a collection of transactions grows very quickly as the
number of items appearing in transactions gets larger. In practice, analyses typically involve many
transactions and these transactions include a variety of itemsets. Larger datasets require complex
methods to process the sequential patterns, particularly if rapid feedback is needed.

An adjacency lattice provides a structure for organizing sequences, permitting rapid generation
of sequential patterns. Two sequences are adjacent if adding a single item to one yields the
other, resulting in a hierarchical structure denoting which sequences are subsequences of other
sequences. The lattice also includes sequence frequencies, as well as other information.

The adjacency lattice of all observed sequences is usually too large to be practical. It may be
more useful to prune the lattice to frequent sequences in an effort to simplify the structure. All
sequences contained in the resulting structure reach a specified support level. The adjacency
lattice for the sample transactions using a support level of 0.40 is shown below.

Figure 32-1
Adjacency lattice for a threshold of 0.40 (support values in parentheses)

Sequence Algorithm

Mining for Frequent Sequences

IBM® SPSS® Modeler uses a non-sequential association rule mining approach that performs
very well with respect to minimizing I/O costs, time, and space requirements. The continuous
association rule mining algorithm (Carma), uses only two data passes and allows changes in the
support level during execution (Hidber, 1999). The final guaranteed support level depends on the
provided series of support values.

For the first stage of the mining process, the component uses a variation of Carma to apply the
approach to the sequential case. The general order of operations is:

E Read the transaction data.

E Identify frequent sequences, discarding infrequent sequences.

E Build an adjacency lattice of frequent sequences.

Carma is based upon transactions and requires only two passes through the data. In the first data
pass, referred to as Phase I, the algorithm generates the frequent sequence candidates. The second
data pass, Phase II, computes the exact frequency counts for the candidate sequences from Phase I.

Phase I

Phase I corresponds to an estimation phase. In this phase, Carma generates candidate sequences
successively for every transaction. Candidate sequences satisfy a version of the “apriori” principle
where a sequence becomes a candidate only if all of its subsequences are candidates from the
previous transactions. Therefore, the size of candidate sequences can grow with each transaction.
To prevent the number of candidates from growing too large, Carma periodically prunes candidate
sequences that have not reached a threshold frequency. Pruning may occur after processing any
number of transactions. While pruning usually lowers the memory requirements, it increases the
computational costs. At the end of the Phase I, the algorithm generates all sequences whose
frequency exceeds the computed support level (which depends on the support series). Carma can
use many support levels, up to one support level per transaction.

The table below represents support values during transaction processing with no pruning for
the gourmet data. As the algorithm processes a transaction, support values adjust to account for
items appearing in that transaction, as well as for the total number of processed transactions. For
example, after the first transaction, the lattice contains cheese, crackers, wine, and beer, each
having a support exceeding the threshold level. After processing the second transaction, the
support for crackers drops from 1.0 to 0.50 because that item appears in only one of the two
transactions. The support for the other items remains unchanged because both transactions contain
the items. Furthermore, the sequences [{wine}> {beer}] and [{beer}> {cheese}] enter the lattice
because their constituent subsequences already appear in the lattice.
Table 32-3
Carma transaction processing

 Transaction
Sequence 1 2 3 4 5 6
{cheese} 1 1 1 1 1 0.83
{crackers} 1 0.50 0.33 0.50 0.60 0.67
{wine} 1 1 1 1 0.80 0.67
{beer} 1 1 1 1 1 0.83

Sequence Algorithm

 Transaction
Sequence 1 2 3 4 5 6
{wine} > {beer} 1 1 1 0.80 0.67
{beer} > {cheese} 0.50 0.33 0.50 0.60 0.50
{bread} 0.33 0.25 0.40 0.50
{wine} > {cheese} 0.67 0.75 0.60 0.50
{cheese & beer} 0.33 0.25 0.20 0.17
{crackers} > {wine} 0.50 0.40 0.33
{crackers} > {beer} 0.50 0.40 0.33
{crackers} > {cheese} 0.25 0.20 0.17
{wine} > {beer} > {cheese} 0.50 0.40 0.33
{cheese & crackers} 0.40 0.33
{beer} > {crackers} 0.20 0.17
{beer} > {bread} 0.20 0.17
{cheese} > {bread} 0.20 0.17
{crackers} > {bread} 0.20 0.33

After completing the first data pass, the lattice contains five sequences containing one item, twelve
sequences involving two items, and one sequence composed of three items.

Phase II

Phase II is a validation phase requiring a second data pass, during which the algorithm
determines accurate frequencies for candidate sequences. In this phase, Carma does not generate
any candidate sequences and prunes infrequent sequences only once, making Phase II faster
than Phase I. Moreover, depending on the entry points of candidate sequences during Phase I,
a complete data pass my not even be necessary. In an online application, Carma skips Phase II
altogether.

Suppose the threshold level is 0.30 for the lattice. Several sequences fail to reach this level and
subsequently get pruned during Phase II. The resulting lattice appears below.

{wine}
(0.67)

{beer}
(0.83)

{crackers}
(0.67)

{cheese}
(0.83)

{bread}
(0.50)

{wine} > {beer} > {cheese}
(0.33)

Sequence Algorithm

Figure 32-2
Adjacency lattice for a threshold of 0.30 (support values in parentheses)

{crackers} > {wine} {wine} > {beer} {crackers} > {beer} {wine} > {cheese} {cheese & crackers} {beer} > {cheese} {crackers} > {bread}
(0.33) (0.67) (0.33) (0.50) (0.33) (0.50) (0.33)

Notice that the lattice does not contain [{crackers} > {wine} > {beer}] although the support for
this sequence exceeds the threshold. Although [{crackers}> {wine}> {beer}] occurs in one-third
of the transactions, Carma cannot add this sequence to the lattice until all of its subsequences
are included. The final two subsequences occur in the fourth transaction, after which the full three-
itemset sequence is not observed. In general, however, the database of transactions will be much
larger than the small example shown here, and exclusions of this type will be extremely rare.

Generating Sequential Patterns

The second stage in the sequential pattern mining process queries the adjacency lattice of the
frequent sequences produced in the first stage for the actual patterns. Aggarwal and Yu (1998a)
IBM® SPSS® Modeler uses a set of efficient algorithms for generating association rules online
from the adjacency lattice (Aggarwal and Yu, 1998). Applying these algorithms to the sequential
case takes advantage of the monotonic properties for rule support and confidence preserved by
the adjacency lattice data structures. The lattice efficiently saves all the information necessary
for generating the sequential patterns and is orders of magnitude smaller than all the patterns
it could possibly generate.

The queries contain the constraints that the resulting set of sequential patterns needs to satisfy.
These constraints fall into two categories:
 constraints on statistical indices
 constraints on the items contained in the antecedent of the patterns

{NULL}
(1.00)

Sequence Algorithm

Statistical index constraints involve support, confidence, or cause. These queries require returned
patterns to have values for these statistics within a specified range. Usually, lower confidence
bound is the primary criterion. The lower bound for the pattern support level is given by the
support level for the sequences in the corresponding adjacency lattice. Often, however, the support
specified for pattern generation exceeds the value specified for lattice creation.

For the lattice shown above, specifying a support range between 0.30 and 1.00, a confidence
range from 0.30 to 1.0, and a cause range from 0 to 1.0 results in the following seven rules:
 If [{crackers}] then [{beer}].
 If [{crackers}] then [{wine}].
 If [{crackers}] then [{bread}].
 If [{wine} > {beer}] then [{cheese}].
 If [{wine}] then [{beer}].
 If [{wine}] then [{cheese}].
 If [{beer}] then [{cheese}].

Limiting the set to only maximal sequences omits the final three rules because they are
subsequences of the fourth.

The second type of query requires the specification of the sequential rule antecedent. This type
of query returns a new singleton itemset after the final itemset in the antecedent. For example,
consider an online shopper who has placed items in a shopping cart. A future item query looks at
only the past purchases to derive a recommended item for the next time the shopper visits the site.

Blank Handling

Blanks are ignored by the sequence rules algorithm. The algorithm will handle records containing
blanks for input fields, but such a record will not be considered to match any rule containing one
or more of the fields for which it has blank values.

Secondary Calculations

Confidence

Confidence is a measure of sequential rule accuracy and equals the proportion obtained by dividing
the number of transactions that contain both the antecedent and consequent of the rule by the
number of transactions containing the antecedent. In other words, confidence is the support for the
rule divided by the support for the antecedent. For example, the confidence for the sequential rule:

If [{wine}] then
[{cheese}]

is 3/4, or 0.75. Three-quarters of the transactions that include wine also include cheese at a later
time. In contrast, the sequential rule:

If [{cheese}] then
[{wine}]

Sequence Algorithm

includes the same itemsets but has a confidence of 0.20. Only one-fifth of the transactions that
include cheese contain wine at a later time. In other words, wine is more likely to lead to cheese
than cheese is to lead to wine.

displays the confidence for every sequential rule observed in the gourmet data. Rules with
empty antecedents correspond to having no previous transaction history.
Table 32-4
Nonzero confidence values

Sequence Confidence Sequence Confidence
{cheese} 1.00 {crackers} => {cheese} 0.25
{crackers} 1.00 {beer} => {cheese & crackers} 0.20
{wine} 1.00 {cheese & crackers} => {wine} 0.50
{beer} 1.00 {cheese & crackers} => {beer} 0.50
{bread} 1.00 {bread} => {cheese & beer} 0.33
{cheese & crackers} 1.00 {wine} => {cheese & beer} 0.25
{cheese & beer} 1.00 {cheese & crackers} => {bread} 0.50
{cheese} => {wine} 0.20 {cheese} > {wine} => {beer} 1.00
{cheese} => {beer} 0.20 {crackers} > {wine} => {beer} 1.00
{wine} => {beer} 1.00 {wine} > {beer} => {cheese} 0.50
{crackers} => {wine} 0.50 {bread} > {wine} => {beer} 1.00
{crackers} => {beer} 0.50 {bread} > {wine} => {cheese} 1.00
{wine} => {cheese} 0.75 {beer} > {cheese} => {bread} 0.33
{beer} => {cheese} 0.60 {beer} > {crackers} => {bread} 1.00
{bread} => {wine} 0.33 {crackers} > {wine} => {cheese} 0.50
{bread} => {beer} 0.33 {crackers} > {beer} => {cheese} 0.50
{bread} => {cheese} 0.33 {cheese & crackers} > {wine} => {beer} 1.00
{beer} => {bread} 0.20 {bread} > {wine} => {cheese & beer} 1.00
{beer} => {crackers} 0.20 {beer} > {cheese & crackers} => {bread} 1.00
{cheese} => {bread} 0.20 {crackers} > {wine} > {beer} => {cheese} 0.50
{crackers} =>
{bread}

0.50

Generated Model/Scoring

Predicted Values

When you pass data records into a Sequence Rules model, the model handles the records in a
time-dependent manner (or order-dependent, if no timestamp field was used to build the model).
Records should be sorted by the ID field and timestamp field (if present).

For each record, the rules in the model are compared to the set of transactions processed
for the current ID so far, including the current record and any previous records with the same
ID and earlier timestamp. The k rules with the highest confidence values that apply to this set
of transactions are used to generate the k predictions for the record, where k is the number of
predictions specified when the model was built. (If multiple rules predict the same outcome for
the transaction set, only the rule with the highest confidence is used.)

Sequence Algorithm

Note that the predictions for each record do not necessarily depend on that record’s transactions.

If the current record’s transactions do not trigger a specific rule, rules will be selected based on
the previous transactions for the current ID. In other words, if the current record doesn’t add any
useful predictive information to the sequence, the prediction from the last useful transaction for
this ID is carried forward to the current record.

For example, suppose you have a Sequence Rule model with the single rule

Jam -> Bread (0.66)

and you pass it the following records:

ID Purchase Prediction
001 jam bread
001 milk bread

Notice that the first record generates a prediction of bread, as you would expect. The second record
also contains a prediction of bread, because there’s no rule for jam followed by milk; therefore the
milk transaction doesn’t add any useful information, and the rule Jam -> Bread still applies.

Confidence

The confidence associated with a prediction is the confidence of the rule that produced the
prediction. For more information, see the topic “Confidence.”

Blank Handling

Blanks are ignored by the sequence rules algorithm. The algorithm will handle records containing
blanks for input fields, but such a record will not be considered to match any rule containing one
or more of the fields for which it has blank values.

Note that the sequence algorithm generates rules that have a max length of the users in the dataset. For
example, if you have transactions such as the following, the algorithm won't find a sequence of event codes
A -> B -> C, because there are only two users in the dataset.

User Event Code
1 A
1 B
1 C
1 A
1 B
1 C
2 A
2 B
2 C

Simulation algorithms
Simulation in IBM® SPSS® Modeler refers to simulating input data to predictive models using
the Monte Carlo method and evaluating the model based on the simulated data. You do this
by using the Simulation Generation (also known as SimGen) source node. The distribution of
predicted target values can then be used to evaluate the likelihood of various outcomes.

Simulation algorithms

Creating a simulation includes specifying distributions for all inputs to a predictive model that are
to be simulated. When historical data are present, the distribution that most closely fits the data
for each input can be determined using the algorithms described in this section.

Notation

The following notation is used throughout this section unless otherwise stated:
Table 33-1
Notation

Notation Description
Value of the input variable in the ith case of the historical data

Frequency weight associated with the ith case of the historical data

Total effective sample size accounting for frequency weights

Sample mean

 Sample variance

Sample standard deviation

Distribution fitting

The historical data for a given input is denoted by:

The total effective sample size is:

The observed sample mean, sample variance and sample standard deviation are:

Simulation algorithms

Parameter estimation for most distributions is based on the maximum likelihood (ML) method,
and closed-form solutions for the parameters exist for many of the distributions. There is no
closed-form ML solution for the distribution parameters for the following distributions: negative
binomial, beta, gamma and Weibull. For these distributions, the Newton-Raphson method is used.
This approach requires the following information: the log-likelihood function, the gradient vector,
the Hessian matrix, and the initial values for the iterative Newton-Raphson process.

Discrete distributions

Distribution fitting is supported for the following discrete distributions: binomial, categorical,
Poisson and negative binomial.

Binomial distribution: parameter estimation

The probability mass function for a random variable x with a binomial distribution is:

where is the probability of success. The binomial distribution is used to describe
the total number of successes in a sequence of N independent Bernoulli trials. The parameter
estimates for the binomial distribution using the method of moments (see Johnson & Kotz (2005)
for details) are:

where NaN implies that the binomial distribution would not be an appropriate distribution to fit
the data under this criterion, and where

If is not an integer, then the parameter estimates are:

Simulation algorithms

where denotes the integer part of .

Categorical distribution: parameter estimation

The categorical distribution can be considered a special case of the multinomial distribution in
which N = 1. Suppose , i = 1, 2, …, n, has the categorical distribution and its categorical values
are denoted as 1, 2, …, J. Then an indicator variable of for category can be denoted as

if
otherwise

and the corresponding probability is . Then the probability mass function for a random variable

with the categorical distribution can be described based on and as follows:

with

The parameter estimates for are:

Poisson distribution: parameter estimation

The probability mass function for a random variable with a Poisson distribution is:

where is the rate parameter of the Poisson distribution. The parameter of the Poisson
distribution can be estimated as:

Negative binomial distribution: parameter estimation

The distribution fitting component for simulation supports the parameterization of the negative
binomial distribution that describes the distribution of the number of failures before the
th success. For this parameterization, the probability mass function for a random variable is:

for

Simulation algorithms

Γ

where are the two distribution parameters. There is no closed-form solution
for the parameters r and θ, so the Newton-Raphson method with step-halving will be used. The
method requires the following information:

(1) The log likelihood function

ln ln ln

(2) The gradient (1st derivative) vector with respect to r and θ

ln

where Γ' is a digamma function, which is the derivative of the logarithm of the gamma
function, evaluated at α.

(3) The Hessian (2nd derivative) matrix with respect to r and θ (since the Hessian matrix is
symmetric, only the lower triangular portion is displayed)

where is the trigamma function, or the derivative of the digamma function.

(4) The initial values of θ and r can be obtained from the closed-form estimates using the method
of moments:

Note

if
otherwise

An alternative parameterization of the negative binomial distribution describes the distribution of
the number of trials before the th success. Although it is not supported in distribution fitting, it is
supported in simulation when explicitly specified by the user. The probability mass function for
this parameterization, for a random variable is:

 for

where are the two distribution parameters.

Simulation algorithms

Continuous distributions

Distribution fitting is supported for the following continuous distributions: triangular, uniform,
normal, lognormal, exponential, beta, gamma and Weibull.

Triangular distribution: parameter estimation

The probability density function for a random variable with a triangular distribution is:

such that . Parameter estimates of the triangular distribution are:

Since the calculation of the mode for continuous data may be ambiguous, we transform the
parameter estimates and use the method of moments as follows (see Kotz and Rene van Dorp
(2004) for details):

From the method of moments we obtain

from which it follows that

Simulation algorithms

Note: For very skewed data or if the actual mode equals a or b, the estimated mode, , may be
less than a or greater than b. In this case, the adjusted mode, defined as below, is used:

if
if

Uniform distribution: parameter estimation

The probability density function for a random variable with a uniform distribution is:

where is the minimum and is the maximum among the values of . Hence, the parameter
estimates of the uniform distribution are:

Normal distribution: parameter estimation

The probability density function for a random variable with a normal distribution is:

Here, is the measure of centrality and is the measure of dispersion of the normal distribution.
The parameter estimates of the normal distribution are:

Lognormal distribution: parameter estimation

The lognormal distribution is a probability distribution where the natural logarithm of a random
variable follows a normal distribution. In other words, if has a lognormal distribution,
then ln() has a normal(ln(),) distribution. The probability density function for a random
variable with a lognormal distribution is:

Simulation algorithms

Define

Parameter estimates for the lognormal distribution are:

Exponential distribution: parameter estimation

The probability density function for a random variable with an exponential distribution is:

for and

The estimate of the parameter for the exponential distribution is:

Beta distribution: parameter estimation

The probability density function for a random variable with a beta distribution is:

where,

There is no closed-form solution for the parameters α and β, so the Newton-Raphson method with
step-halving will be used. The method requires the following information:

(1) The log likelihood function

ln Γ ln Γ ln Γ

(2) The gradient (1st derivative) vector with respect to α and β

Γ Γ
Γ

B α β

Simulation algorithms

Γ

where Γ' is a digamma function, which is the derivative of the logarithm of the gamma
function, evaluated at α.

(3) The Hessian (2nd derivative) matrix with respect to α and β (since the Hessian matrix is
symmetric, only the lower triangular portion is displayed)

where is the trigamma function, or the derivative of the digamma function.

(4) The initial values of α and β can be obtained from the closed-form estimates using the method
of moments:

Gamma distribution: parameter estimation

The probability density function for a random variable with a gamma distribution is:

for and

If is a positive integer, then the gamma function is given by: Γ

There is no closed-form solution for the parameters α and β, so the Newton-Raphson method with
step-halving will be used. The method requires the following information:

(1) The log likelihood function

lnΓ

(2) The gradient (1st derivative) vector with respect to α and β

Γ

Γ

Simulation algorithms

where Γ' is a digamma function, which is the derivative of the logarithm of the gamma
function, evaluated at α.

(3) The Hessian (2nd derivative) matrix with respect to α and β (since the Hessian matrix is
symmetric, only the lower triangular portion is displayed)

where is the trigamma function, or the derivative of the digamma function.

(4) The initial values of α and β can be obtained from the closed-form estimates using the method
of moments:

Weibull distribution: parameter estimation

Distribution fitting for the Weibull distribution is restricted to the two-parameter Weibull
distribution, whose probability density function is given by:

for and

There is no closed-form solution for the parameters β and γ, so the Newton-Raphson method with
step-halving will be used. The method requires the following information:

(1) The log likelihood function

(2) The gradient (1st derivative) vector with respect to β and γ

ln

(3) The Hessian (2nd derivative) matrix with respect to β and γ (since the Hessian matrix is
symmetric, only the lower triangular portion is displayed)

Simulation algorithms

where

(4) The initial values of β and γ are given by:

Goodness of fit measures

Goodness of fit measures are used to determine the distribution that most closely fits the
data. For discrete distributions, the Chi-Square test is used. For continuous distributions, the
Anderson-Darling test or the Kolmogorov-Smirnov test is used.

Discrete distributions

The Chi-Square goodness of fit test is used for discrete distributions (Dirk P. Kroese, 2011). The
Chi-Square test statistic has the following form:

where,
Table 33-2
Notation

Notation Description
k The number of classes, as defined in the table below for each discrete distribution

 The total observed frequency for class i

Simulation algorithms

Notation Description
PDF(i) Probability density function of the fitted distribution. For the Poisson and negative

binomial distributions, the density function for the last class is computed as
PDF PDF

Expected frequency for class i: = W*PDF(i)

The total effective sample size

For large W, the above statistic follows the Chi-Square distribution:

where r = number of parameters estimated from the data. The following table provides the values
of k and r for the various distributions. The value Max in the table is the observed maximum value.

Distribution Notation k (classes) r (parameters)
Binomial N+1 2

Categorical

 J J-1

Poisson

 Max + 1 1

Negative binomial

 Max + 1 2

This Chi-Square test is valid only if all values of .

The p-value for the Chi-Square test is then calculated as:

where CDF of the Chi-Square distribution.

Note: The p-value cannot be calculated for the Categorical distribution since the number of
degrees of freedom is zero.

Continuous distributions

For continuous distributions, the Anderson-Darling test or the Kolmogorov-Smirnov test is used
to determine goodness of fit. The calculation consists of the following steps:

1. Transform the data to a Uniform(0,1) distribution

2. Sort the transformed data to generate the Order Statistics

3. Calculate the Anderson-Darling or Kolmogorov-Smirnov test statistic

4. Compute the approximate p-value associated with the test statistic

Simulation algorithms

The first two steps are common to both the Anderson-Darling and Kolmogorov-Smirnov tests.
The original data are transformed to a Uniform(0,1) distribution using the transformation:

where the transformation function is given in the table below for each of the supported
distributions.

The transformed data points are sorted in ascending order to generate the Order Statistics:

Define to be the corresponding frequency weight for . The cumulative frequency up to and
including is defined as:

and where we define .

Simulation algorithms

Anderson-Darling test

The Anderson-Darling test statistic is given by:

For more information, see the section “Anderson-Darling statistic with frequency weights.”

The approximate p-value for the Anderson-Darling statistic can be computed for the following
distributions: uniform, normal, lognormal, exponential, Weibull and gamma. The p-value is not
available for the triangular and beta distributions.

Uniform distribution: p-value

The p-value for the Anderson-Darling statistic is computed based on the following result, provided
by Marsaglia (2004):

where

Normal and lognormal distributions: p-value

The p-value for the Anderson-Darling statistic is computed based on the following result, provided
by D’Agostino and Stephens (1986):

Simulation algorithms

Exponential distribution: p-value

The p-value for the Anderson-Darling statistic is computed based on the following result, provided
by D’Agostino and Stephens (1986):

Weibull distribution: p-value

The p-value for the Anderson-Darling statistic is computed based on Table 33-3 below, provided by
D’Agostino and Stephens (1986). First, the adjusted Anderson-Darling statistic is computed from:

If the value of is between two probability levels (in the table), then linear interpolation is used
to estimate the p-value. For example, if which is between and
,then the corresponding probabilities of and are p and p respectively. Then
the p-value of is computed as

If the value of is less than the smallest critical value in the table, then the p-value is 0.25; and
if is greater than the largest critical value in the table, then the p-value is 0.01.
Table 33-3
Upper tail probability and corresponding critical values for the Anderson-Darling test, for the Weibull
distribution

p-value 0.25 0.10 0.05 0.025 0.01

 0.474 0.637 0.757 0.877 1.038

Gamma distribution: p-value

Table 33-4, which is provided by D’Agostino and Stephens (1986), is used to compute the p-value
of the Anderson-Darling test for the gamma distribution. First, the appropriate row in the table
is determined from the range of the parameter α. Then linear interpolation is used to compute
the p-value, as done for the Weibull distribution. For more information, see the section
“Weibull distribution: p-value.”

Simulation algorithms

If the test statistic is less than the smallest critical value in the row, then the p-value is 0.25; and
if the test statistic is greater than the largest critical value in the row, then the p-value is 0.005.
Table 33-4
Upper tail probability and corresponding critical values for the Anderson-Darling test, for the gamma
distribution with estimated parameter α

Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test statistic, , is given by:

 Computation of the p-value is based on the modified Kolmogorov-Smirnov statistic, which is
distribution specific.

Uniform distribution: p-value

The procedure proposed by Kroese (2011) is used to compute the p-value of the
Kolmogorov-Smirnov statistic for the uniform distribution. First, the modified
Kolmogorov-Smirnov statistic is computed as

The corresponding p-value is computed as follows:

1. Set k=100

2. Define

3. Calculate and

4. If set k=k+1 and repeat step 2; otherwise, go to step 5.

5. p-value

Normal and lognormal distributions: p-value

The modified Kolmogorov-Smirnov statistic is

Simulation algorithms

The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 33-5 below,
provided by D’Agostino and Stephens (1986). If the value of D is between two probability
levels, then linear interpolation is used to estimate the p-value. For more information, see the
topic “Weibull distribution: p-value.”

If D is less than the smallest critical value in the table, then the p-value is 0.15; and if D is
greater than the largest critical value in the table, then the p-value is 0.01.
Table 33-5
Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the
Normal and Lognormal distributions
p-value 0.15 0.10 0.05 0.025 0.01
D 0.775 0.819 0.895 0.995 1.035

Exponential distribution: p-value

The modified Kolmogorov-Smirnov statistic is

The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 33-6 below,
provided by D’Agostino and Stephens (1986). If the value of D is between two probability
levels, then linear interpolation is used to estimate the p-value. For more information, see the
topic “Weibull distribution: p-value.”

If D is less than the smallest critical value in the table, then the p-value is 0.15; and if D is
greater than the largest critical value in the table, then the p-value is 0.01.
Table 33-6
Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the
Exponential distribution
p-value 0.15 0.10 0.05 0.025 0.01
D 0.926 0.995 1.094 1.184 1.298

Weibull distribution: p-value

The modified Kolmogorov-Smirnov statistic is

The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 33-7 below,
provided by D’Agostino and Stephens (1986). If the value of D is between two probability
levels, then linear interpolation is used to estimate the p-value. For more information, see the
topic “Weibull distribution: p-value.”

Simulation algorithms

If D is less than the smallest critical value in the table, then the p-value is 0.10; and if D is
greater than the largest critical value in the table, then the p-value is 0.01.

Table 33-7
Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the
Weibull distribution

p-value 0.10 0.05 0.025 0.01
D 1.372 1.477 1.557 1.671

Gamma distribution: p-value

The modified Kolmogorov-Smirnov statistic is

The p-value for the Kolmogorov-Smirnov statistic is computed based on Table 33-8 below,
provided by D’Agostino and Stephens (1986). If the value of D is between two probability
levels, then linear interpolation is used to estimate the p-value. For more information, see the
topic “Weibull distribution: p-value.”

If D is less than the smallest critical value in the table, then the p-value is 0.25; and if D is
greater than the largest critical value in the table, then the p-value is 0.005.

Table 33-8
Upper tail probability and corresponding critical values for the Kolmogorov-Smirnov test, for the
Gamma distribution

p-value 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005
D 0.74 0.780 0.800 0.858 0.928 0.990 1.069 1.13

Determining the recommended distribution

The distribution fitting module is invoked by the user, who may specify an explicit set of
distributions to test or rely on the default set, which is determined from the measurement level
of the input to be fit. For continuous inputs, the user specifies either the Anderson-Darling test
(the default) or the Kolmogorov-Smirnov test for the goodness of fit measure (for ordinal and
nominal inputs, the Chi-Square test is always used). The distribution fitting module then returns
the values of the specified test statistic along with the calculated p-values (if available) for each of
the tested distributions, which are then presented to the user in ascending order of the test statistic.
The recommended distribution is the one with the minimum value of the test statistic.

The above approach yields the distribution that most closely fits the data. However, if the p-value
of the recommended distribution is less than 0.05, then the recommended distribution may not
provide a close fit to the data.

Simulation algorithms

Anderson-Darling statistic with frequency weights

To obtain the expression for the Anderson-Darling statistic with frequency weights, we first give
the expression where the frequency weight of each value is 1:

If there is a frequency weight variable, then the corresponding four terms of the above expression
are given by:

where and are defined in the section on goodness of fit measures for continuous
distributions. For more information, see the topic “Continuous distributions.”

References

D’Agostino, R., and M. Stephens. 1986. Goodness-of-Fit Techniques. New York: Marcel Dekker.

Johnson, N. L., S. Kotz, and A. W. Kemp. 2005. Univariate Discrete Distributions, 3rd ed.
Hoboken, New Jersey: John Wiley & Sons.

Kotz, S., and J. Rene Van Dorp. 2004. Beyond Beta, Other Continuous Families of Distributions
with Bounded Support and Applications. Singapore: World Scientific Press.

Kroese, D. P., T. Taimre, and Z. I. Botev. 2011. Handbook of Monte Carlo Methods. Hoboken,
New Jersey: John Wiley & Sons.

Marsaglia, G., and J. Marsaglia. 2004. Evaluating the Anderson-Darling Distribution. Journal of
Statistical Software, 9:2, .

Simulation algorithms: run simulation

Simulation algorithms

Running a simulation involves generating data for each of the simulated inputs, evaluating the
predictive model based on the simulated data (along with values for any fixed inputs), and
calculating metrics based on the model results.

Generating correlated data

Simulated values of input variables are generated so as to account for any correlations between
pairs of variables. This is accomplished using the NORTA (Normal-To-Anything) method
described by Biller and Ghosh (2006). The central idea is to transform standard multivariate
normal variables to variables with the desired marginal distributions and Pearson correlation
matrix.

Suppose that the desired variables are , , with the desired Pearson correlation
matrix Σ , where the elements of Σ are given by . Then the NORTA algorithm is as follows:

1. For each pair and , where , use a stochastic root finding algorithm (described in the
following section) and the correlation to search for an approximate correlation of standard
bivariate normal variables.

2. Construct the symmetric matrix Σ whose elements are given by , where and .

3. Generate the standard multivariate normal variables with Pearson correlation matrix Σ .

4. Transform the variables to using

where is the desired marginal cumulative distribution, and is the cumulative standard
normal distribution function. Then the correlation matrix of will be close to the
desired Pearson correlation matrix Σ .

Stochastic root finding algorithm

Given a correlation , a stochastic root finding algorithm is used to find an approximate
correlation such that if standard bivariate normal variables and have the Pearson
correlation , then after transforming and to and (using the transformation described
in Step 4 of the previous section) the Pearson correlation between and is close to . The
stochastic root finding algorithm is as follows:

1. Let and

2. Simulate N samples of standard normal variables and , and , such that the
Pearson correlation between and is LowCorr and the Pearson correlation between

 and is HighCorr. The sample size N is set to 1000.

3. Transform the variables , , and to the variables , , and
using the transformation described in Step 4 of the previous section.

.

Simulation algorithms

4. Compute the Pearson correlation between and and denote it as . Similarly, compute

the Pearson correlation between and and denote it as .

5. If the desired correlation or then stop and set if or set
 if Otherwise go to Step 6.

6. Simulate N samples of standard bivariate normal variables and with a Pearson
correlation of . As in Steps 3 and 4, transform and

 to and and compute the Pearson correlation between and , which
will be denoted .

7. If or where ε is the tolerance level (set to 0.01), then
stop and set . Otherwise go to Step 8.

8. If , set , else set and return to Step 6.

Inverse CDF for binomial, Poisson and negative binomial distributions

Use of the NORTA method for generating correlated data requires the inverse cumulative
distribution function for each desired marginal distribution. This section describes the method for
computing the inverse CDF for the binomial, Poisson and negative binomial distributions. Two
parameterizations of the negative binomial distribution are supported. The first parameterization
describes the distribution of the number of trials before the th success, whereas the second
parameterization describes the distribution of the number of failures before the th success.

The choice of method for determining the CDF depends on the mean of the distribution. If

, where Threshold is set to 20, the following approximate normal method will be
used to compute the inverse CDF for the binomial distribution, the Poisson distribution and the
second parameterization of the negative binomial distribution.

For the first parameterization of the negative binomial distribution, the formula is as follows:

The parameters and σ are given by:
 Binomial distribution. and σ , where N is the number of trials and P

is the probability of success.
 Poisson distribution. μ λ and σ , where λ is the rate parameter.

 Negative binomial distribution (both parameterizations). μ and σ , where is
the specified number of successes and is the probability of success.

The notation used above denotes the integer part of .

If then the bisection method will be used.

Simulation algorithms

Suppose that x and z are the values of X and Z respectively, where X is a random variable with a
binomial, Poisson or negative binomial distribution, and Z is a random variable with the standard

.

normal distribution. The objective function to be used in the bisection search method is
as follows:
 Binomial distribution. Φ
 Poisson distribution. Φ z

 Negative binomial distribution (second parameterization).

where and are random variables with the beta distribution and gamma
distribution, respectively, with parameters and .

The bisection method is as follows:

1. If then stop and set . Otherwise go to step 2 to determine two values
and such that

2. If then let and . If then let μ and ,
where is the minimum integer such that .

Note: The inverse CDF for the first parameterization of the negative binomial distribution is
determined by taking the inverse CDF for the second parameterization and adding the distribution
parameter , where is the specified number of successes.

Sensitivity measures

Sensitivity measures provide information on the relationship between the values of a target and
the values of the simulated inputs that give rise to the target. The following sensitivity measures
are supported (and rendered as Tornado charts in the output of the simulation):
 Correlation. Measures the Pearson correlation between a target and a simulated input.
 One-at-a-time measure. Measures the effect on the target of modulating a simulated input by

plus or minus a specified number of standard deviations of the input.
 Contribution to variance. Measures the contribution to the variance of the target from a

simulated input.

Notation

The following notation is used throughout this section unless otherwise stated:
Table 33-9
Notation
Notation Description

Number of records of simulated data

Simulation algorithms

Correlation measure

An matrix of values of the inputs to the predictive model. The
rows ; contain the values of the inputs
for each simulated record, excluding the target value. The columns

 ; represent the set of inputs.
An vector of values of the target variable, consisting of

A known model which can generate from

The value of a sensitivity measure for the input

The correlation measure is the Pearson correlation coefficient between the values of a target
and one of its simulated predictors. The correlation measure is not supported for targets with a
nominal measurement level or for simulated inputs with a categorical distribution.

One-at-a-time measure

The one-at-a-time measure is the change in the target due to modulating a simulated input by plus
or minus a specified number of standard deviations of the distribution associated with the input.
The one-at-a-time measure is not supported for targets with an ordinal or nominal measurement
level, or for simulated inputs with any of the following distributions: categorical, Bernoulli,
binomial, Poisson, or negative binomial.

The procedure is to modulate the values of a simulated input by the specified number of standard
deviations and recompute the target with the modulated values, without changing the values of
the other inputs. The mean change in the target is then taken to be the value of the one-at-a-time
sensitivity measure for that input.

For each simulated input for which the one-at-a-time measure is supported:

1. Define the temporary data matrix

2. Add the specified number of standard deviations of the input’s distribution to each value of
in .

3. Calculate F

4. Calculate

5. Repeat Step 2, but now subtracting the specified number of standard deviations from each value of
. Continue with Steps 3 and 4 to obtain the value of in this case.

Contribution to variance measure

The contribution to variance measure uses the method of Sobol (2001) to calculate the total
contribution to the variance of a target due to a simulated input. The total contribution to variance,
as defined by Sobol, automatically includes interaction effects between the input of interest
and the other inputs in the predictive model.

Simulation algorithms

The contribution to variance measure is not supported for targets with an ordinal or nominal
measurement level, or for simulated inputs with any of the following distributions: categorical,
Bernoulli, binomial, Poisson, or negative binomial.

Let be an additional set of simulated data, in the same form as and with the same number
of simulated records.

Define the following:

For each simulated input for which the contribution to variance measure is supported, calculate

where:
 denotes the set of all inputs excluding
 is a derived data matrix where the column associated with is taken from

and the remaining columns (for all inputs excluding) are taken from

The total contribution to variance from is then given by

Note: When interaction terms are present, the sum of the over all simulated inputs for which
the contribution of variance is supported, may be greater than 1.

References

Biller, B., and S. Ghosh. 2006. Multivariate input processes. In: Handbooks in Operations
Research and Management Science: Simulation, B. L. Nelson, and S. G. Henderson, eds.
Amsterdam: Elsevier Science, 123–153.

Sobol, I. M. 2001. Global sensitivity indices for nonlinear mathematical models and their Monte
Carlo estimates. Mathematics and Computers in Simulation, 55, 271–280.

Support Vector Machine (SVM)
Algorithms

Introduction to Support Vector Machine Algorithms

The Support Vector Machine (SVM) is a supervised learning method that generates input-output
mapping functions from a set of labeled training data. The mapping function can be either a
classification function or a regression function. For classification, nonlinear kernel functions are
often used to transformed input data to a high-dimensional feature space in which the input data
become more separable compared to the original input space. Maximum-margin hyperplanes are
then created. The produced model depends on only a subset of the training data near the class
boundaries.

Similarly, the model produced by Support Vector Regression ignores any training data that is
sufficiently close to the model prediction. (Support Vectors can appear only on the error tube
boundary or outside the tube.)

SVM Algorithm Notation

SVM Types

This section describes the types of SVM available, based on the descriptions in the LIBSVM
technical report(Chang and Lin, 2003). is the kernel function selected by the user. For
more information, see the topic “SMO Algorithm.”

Support Vector Machine (SVM) Algorithms

C-S upport Vector Classification (C-SVC)

Given training vectors , i = 1, ..., l, in two classes, and a vector such that
, C-SVC solves the following dual problem:

such that and , where

and is an matrix,

The decision function is

where b is a constant term.

ε-Support Vector Regression (ε-SVR)

In regression models, we estimate the functional dependence of the dependent (target) variable
on an n-dimensional input vector x. Thus, unlike classification problems, we deal with

real-valued functions and model an mapping. Given a set of data ,
such that is an input and is a target output, the dual form of ε-Support Vector
Regression is

such that and for , and

where , , and is an matrix,

The approximate function is

where b is a constant term.

Primary Calculations

Support Vector Machine (SVM) Algorithms

The primary calculations for building SVM models are described below.

Solving Quadratic Problems

In order to find the decision function or the approximate function, the quadratic problem must be
solved. After the solution is obtained, we can get different coefficients :
 if , the corresponding training sample is a free support vector.
 if , the corresponding training sample is a boundary support vector.
 if , the corresponding training sample is a non-support vector, which doesn’t affect the

classification or regression result.

Free support vectors and boundary support vectors are called support vectors.

This document adapts the decomposition method to solve the quadratic problem using second
order information (Fan, Chen, and Lin, 2005). In order to solve all the SVM’s in a unified
framework, we’ll introduce a general form for C-SVC and ε-SVR.

For ε-SVR, we can rewrite the dual form as

such that and for i = 1, ... , l, where y is a vector with
for i = 1, ..., l and for i = l + 1, ... , 2l.

Given this, the general form is

such that for i = 1, ... , l, and

 α in W(α)

C-SVC

ε-SVR

Support Vector Machine (SVM) Algorithms

The Constant in the Decision Function

After the quadratic programming problem is solved, we get the support vector coefficients in the
decision function. We need to compute the constant term in the decision function as well. We
introduce two accessory variables r1 and r2:

E For yi = 1:

If ,

Otherwise,

E For yi = −1:

If ,

Otherwise,

After r1 and r2 are obtained, calculate

Variable Scale

For continuous input variables, linearly scale each attribute to [-1, 1] or [0, 1]:

For categorical input fields, if there are m categories, then use (0, 1, 2, ..., m) to represent the
categories and scale the values as for continuous input variables.

Model Building Algorithm

In this section, we provide a fast algorithm to train the SVM. A modified sequential minimal
optimization (SMO) algorithm is provided for C-SVC binary and ε-SVR models. A fast SVM
training algorithm based on divide-and-conquer is used for all SVMs.

Support Vector Machine (SVM) Algorithms

SMO Algorithm

Due to the density of the kernel matrix, traditional optimization methods cannot be directly applied
to solve for the vector . Unlike most optimization methods which update the whole vector in
each step of an iterative process, the decomposition method modifies a subset of per iteration.
This subset, denoted as the working set B, leads to a small sub-problem to be minimized in each
iteration. Sequential minimal optimization (SMO) is an extreme example of this approach which
restricts B to have only two elements. In each iteration no optimization algorithm is needed to
solve a simple two-variable problem. The key step of SML is the working set selection method,
which determines the speed of convergence for the algorithm.

Kernel functions

The algorithm supports four kernel functions:

Base Working Set Selection Algorithm

The base selection algorithm derives the selection set B = {i, j} based on τ, C, the target vector
y, and the selected kernel function K(xi, xj).

Let

and

if
otherwise

where τ is a small positive number.

Select

where

Support Vector Machine (SVM) Algorithms

 or

 or

Return B = {i, j}, where .

Shrink Algorithm

In order to speed up the convergence of the algorithm near the end of the iterative process, the
decomposition method identifies a possible set A containing all final free support vectors. Hence,
instead of solving the whole problem, the decomposition method works on a smaller problem:

s. t.

where is the set of shrunken variables.

Afer every min(l, 1000) iterations, we try to shrink some variables. During the iterative process

. Until is satisfied, we can shrink variables in the
following set:

Thus the set A of activated variables is dynamically reduced every min(l, 1000) iterations.

E To account for the tendency of the shrinking method to be too aggressive, we reconstruct the
gradient when the tolerance reaches

After reconstructing the gradient, we restore some of the previously shrunk variables based on
the relationship

Gradient Reconstruction

To decrease the cost of reconstruction of the gradient , during the iterations we always keep

Support Vector Machine (SVM) Algorithms

Then for the gradient

and for the gradient A we have

where t and s are the working set indices.

Unbalanced Data Strategy

For some classification problems, the algorithm uses different parameters in the SVM formulation.
The differences only affect the procedure for updating . Different conditions are handled
as follows:

For :

Conditions Update parameters

 and

 and

and

 and

 and

 and

 and

 and

Support Vector Machine (SVM) Algorithms

SMO Decomposition

The following steps are used in the SMO decomposition:

1. Find as the initial feasible solution, and set k = 1.

2. If is a stationary solution, stop.

A feasible solution is stationary if , where

 or

 or

Find a two-element working set using the working set selection algorithm. (For more
information, see the topic “Base Working Set Selection Algorithm.”)

3. If the shrink algorithm is being used to speed up convergence, apply the algorithm here. (For more
information, see the topic “Shrink Algorithm.”)

4. Derive as follows:

E If , or if solving a classification problem, use the unbalanced data strategy. (For more
information, see the topic “Unbalanced Data Strategy.”)

E If , solve the subproblem

 cont

Subject to the constraints

and let

E Otherwise, solve the subproblem

Support Vector Machine (SVM) Algorithms

subject to the same constraints described above, where τ is a small positive number and

, and let

Finally, set to be the optimal point of the subproblem.

Set , set , and go to step 2.

Fast SVM Training

For binary SVM models, the dense kernel matrix cannot be stored in memory when the number of
training samples l is large. Rather than using the standard decomposition algorithm which depends
on a cache strategy to compute the kernel matrix, a divide-and-conquer approach is used, dividing
the original problem into a set of small subproblems that can be solved by the SMO algorithm
(Dong, Suen, and Krzyzak, 2005). For each subproblem, the kernel matrix can be stored in a
kernel cache defined as part of contiguous memory. The size of the kernel matrix should be large
enough to hold all the support vectors in the whole training set and small enough to satisfy the
memory constraint. Since the kernel matrix for the subproblem is completely cached, each element
of the kernel matrix needs to be evaluated only once and must be calculated using a fast method.

There are two steps in the fast SVM training algorithm:

E Parallel optimization

E Fast sequential optimization

These steps are described in more detail below.

Parallel Optimization

Since the kernel matrix Q is symmetric and semi-positive definite, its block diagonal matrices are
semi-positive definite, and can be written as

. . .

Support Vector Machine (SVM) Algorithms

where matrices are block diagonal. Then we obtain k

optimization subproblems as described in “Base Working Set Selection Algorithm.” All the
subproblems are optimized using the SMO decomposition algorithm in parallel. After this parallel
optimization, most non-support vectors will be removed from the training set. Then a new
training set can be obtained by collecting support vectors from the sub-problems. Although the
size of the new training set is much smaller than that of the original one, the memory may not be
large enough to store the kernel matrix, especially when dealing with a large dataset. Therefore a
fast sequential optimization technique is used.

Fast Sequential Optimization

The technique for fast sequential optimization works by iteratively optimizing subsets of the
problem. Initially, the training set is shuffled, all are set to zero, and a subset
Sub is selected from the training set S. The size of the subset d is set ().

Optimization proceeds as follows:

E Apply the SMO algorithm to optimize a subproblem in Sub with kernel caching, and update and
the kernel matrix. For more information, see the topic “SMO Algorithm.”

E Select a new subset using the queue subset method. The size of the subset is chosen to be large
enough to contain all support vectors in the training set but small enough to satisfy the memory
constraint. For more information, see the topic “Queue Method for Subset Selection.”

E Return to step 1 unless any of the following stopping conditions is true:
 and (Number of learned samples) > l

 Number of learned samples

where is the change in number of support vectors between two successive subsets, l
is the size of the new training set, and T (> 1.0) is a user-defined maximum number of loops
through the data allowed.

Queue Method for Subset Selection

The queue method selects subsets of the training set that can be trained by fast sequential
optimization. For more information, see the topic “Fast Sequential Optimization.”

The method is initialized by setting the subset to contain the first d records in the training data and
the queue QS to contain all the remaining records, and computing the kernel matrix for the subset.

Once initialized, subset selection proceeds as follows: each non-support vector in the subset
is added to the end of the queue, and replaced in the subset with the record at the front of the
queue (which is consequently removed from the queue). When all non-support vectors have been
replaced, the subset is returned for optimization. On the next iteration, the same process is applied,
starting with the subset and the queue in the same state they were in at the end of the last iteration.

Support Vector Machine (SVM) Algorithms

Blank Handling

All records with missing values for any input or output field are excluded from the estimation of
the model.

Model Nugget/Scoring

The SVM Model Nugget generates predictions and predicted probabilities for output classes.
Predictions are based on the category with the highest predicted probability for each record.

To choose a predicted value, posterior probabilities are approximated using a sigmoid
function(Platt, 2000). The approximation used is

.

The optimal parameters A and B are the estimated by solving the following
regularized maximum likelihood problem with a set of labeled examples

, and N+ is the number of positive examples
and N− is the number of negative examples:

Blank Handling

Records with missing values for any input field cannot be scored and are assigned a predicted
value and probability value(s) of $null$.

Time Series Algorithms
The Time Series node builds univariate exponential smoothing, ARIMA (Autoregressive
Integrated Moving Average), and transfer function (TF) models for time series, and produces
forecasts. The procedure includes an Expert Modeler that identifies and estimates an appropriate
model for each dependent variable series. Alternatively, you can specify a custom model.

This algorithm is designed with help from professor Ruey Tsay at The University of Chicago.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Yt (t=1, 2, ..., n) Univariate time series under investigation.
n Total number of observations.

Model-estimated k-step ahead forecast at time t for series Y.

S The seasonal length.

Models

The Time Series node estimates exponential smoothing models and ARIMA/TF models.

Exponential Smoothing Models

The following notation is specific to exponential smoothing models:

Level smoothing weight

Trend smoothing weight

Damped trend smoothing weight

Season smoothing weight

Simple Exponential Smoothing

Simple exponential smoothing has a single level parameter and can be described by the following
equations:

It is functionally equivalent to an ARIMA(0,1,1) process.

Time Series Algorithms

Brown’s Exponential Smoothing

Brown’s exponential smoothing has level and trend parameters and can be described by the
following equations:

It is functionally equivalent to an ARIMA(0,2,2) with restriction among MA parameters.

Holt’s Exponential Smoothing

Holt’s exponential smoothing has level and trend parameters and can be described by the
following equations:

It is functionally equivalent to an ARIMA(0,2,2).

Damped-Trend Exponential Smoothing

Damped-Trend exponential smoothing has level and damped trend parameters and can be
described by the following equations:

It is functionally equivalent to an ARIMA(1,1,2).

Time Series Algorithms

Simple Seasonal Exponential Smoothing

Simple seasonal exponential smoothing has level and season parameters and can be described
by the following equations:

It is functionally equivalent to an ARIMA(0,1,(1,s,s+1))(0,1,0) with restrictions among MA
parameters.

Winters’ Additive Exponential Smoothing

Winters’ additive exponential smoothing has level, trend, and season parameters and can be
described by the following equations:

It is functionally equivalent to an ARIMA(0,1,s+1)(0,1,0) with restrictions among MA parameters.

Winters’ Multiplicative Exponential Smoothing

Winters’ multiplicative exponential smoothing has level, trend and season parameters and can be
described by the following equations:

There is no equivalent ARIMA model.

Time Series Algorithms

Estimation and Forecasting of Exponential Smoothing

The sum of squares of the one-step ahead prediction error, , is minimized
to optimize the smoothing weights.

Initialization of Exponential Smoothing

Let L denote the level, T the trend and, S, a vector of length s, denote the seasonal states. The
initial smoothing states are made by back-casting from t=n to t=0. Initialization for back-casting is
described here.

For all the models .

For all non-seasonal models with trend, T is the negative of the slope of the line (with intercept)
fitted to the data with time as a regressor.

For the simple seasonal model, the elements of S are seasonal averages minus the sample mean;
for example, for monthly data the element corresponding to January will be average of all January
values in the sample minus the sample mean.

For the additive Winters’ model, fit to the data where t is time and

 are seasonal dummies. Note that the model does not have an intercept. Then , and
.

For the multiplicative Winters’ model, fit a separate line (with intercept) for each season with time
as a regressor. Suppose is the vector of intercepts and is the vector of slopes (these vectors
will be of length s). Then and .

The initial smoothing states are:

ARIMA and Transfer Function Models

The following notation is specific to ARIMA/TF models:

at (t = 1, 2, ... , n) White noise series normally distributed with mean zero and variance
p Order of the non-seasonal autoregressive part of the model
q Order of the non-seasonal moving average part of the model
d Order of the non-seasonal differencing
P Order of the seasonal autoregressive part of the model
Q Order of the seasonal moving-average part of the model
D Order of the seasonal differencing

Time Series Algorithms

s Seasonality or period of the model
AR polynomial of B of order p,

MA polynomial of B of order q,

Seasonal AR polynomial of BS of order P,

Seasonal MA polynomial of BS of order Q,

Differencing operator

B Backward shift operator with and
 Prediction variance of

 Prediction variance of the noise forecasts

Transfer function (TF) models form a very large class of models, which include univariate ARIMA
models as a special case. Suppose is the dependent series and, optionally, are
to be used as predictor series in this model. A TF model describing the relationship between the
dependent and predictor series has the following form:

The univariate ARIMA model simply drops the predictors from the TF model; thus, it has the
following form:

The main features of this model are:
 An initial transformation of the dependent and predictor series, f and fi. This transformation

is optional and is applicable only when the dependent series values are positive. Allowed
transformations are log and square root. These transformations are sometimes called
variance-stabilizing transformations.

 A constant term .
 The unobserved i.i.d., zero mean, Gaussian error process with variance .
 The moving average lag polynomial MA= and the auto-regressive lag

polynomial AR= .
 The difference/lag operators and .
 A delay term, , where is the order of the delay
 Predictors are assumed given. Their numerator and denominator lag polynomials are

of the form:

 The “noise” series

Time Series Algorithms

is assumed to be a mean zero, stationary ARMA process.

Interventions and Events

Interventions and events are handled like any other predictor; typically they are coded as 0/1
variables, but note that a given intervention variable’s exact effect upon the model is determined
by the transfer function in front of it.

Estimation and Forecasting of ARIMA/TF

There are two forecasting algorithms available: Conditional Least Squares (CLS) and Exact Least
Squares (ELS) or Unconditional Least Squares forecasting (ULS). These two algorithms differ in
only one aspect: they forecast the noise process differently. The general steps in the forecasting
computations are as follows:

1. Computation of noise process through the historical period.

2. Forecasting the noise process up to the forecast horizon. This is one step ahead forecasting
during the historical period and multi-step ahead forecasting after that. The differences in CLS
and ELS forecasting methodologies surface in this step. The prediction variances of noise
forecasts are also computed in this step.

3. Final forecasts are obtained by first adding back to the noise forecasts the contributions of the
constant term and the transfer function inputs and then integrating and back-transforming the
result. The prediction variances of noise forecasts also may have to be processed to obtain the
final prediction variances.

Let and be the k-step forecast and forecast variance, respectively.

Conditional Least Squares (CLS) Method

 assuming for t<0.

where are coefficients of the power series expansion of

Minimize .

Missing values are imputed with forecast values of .

Maximum Likelihood (ML) Method (Brockwell and Davis, 1991)

Time Series Algorithms

Maximize likelihood of ; that is,

where , and is the one-step ahead forecast variance.

When missing values are present, a Kalman filter is used to calculate .

Error Variance

in both methods. Here n is the number of non-zero residuals and k is the number of parameters
(excluding error variance).

Initialization of ARIMA/TF

A slightly modified Levenberg-Marquardt algorithm is used to optimize the objective function.
The modification takes into account the “admissibility” constraints on the parameters. The
admissibility constraint requires that the roots of AR and MA polynomials be outside the unit circle
and the sum of denominator polynomial parameters be non-zero for each predictor variable. The
minimization algorithm requires a starting value to begin its iterative search. All the numerator and
denominator polynomial parameters are initialized to zero except the coefficient of the 0th power
in the numerator polynomial, which is initialized to the corresponding regression coefficient.

The ARMA parameters are initialized as follows:

Assume that the series follows an ARMA(p,q)(P,Q) model with mean 0; that is:

In the following and represent the lth lag autocovariance and autocorrelation of
 respectively, and and represent their estimates.

Non-Seasonal AR Parameters

For AR parameter initial values, the estimated method is the same as that in appendix A6.2 of
(Box, Jenkins, and Reinsel, 1994). Denote the estimates as .

Non-Seasonal MA Parameters

Let

The cross covariance

Time Series Algorithms

Assuming that an AR(p+q) can approximate , it follows that:

The AR parameters of this model are estimated as above and are denoted as .

Thus can be estimated by

And the error variance is approximated by

with .

Then the initial MA parameters are approximated by and estimated by

So can be calculated by , and . In this procedure, only are used and all
other parameters are set to 0.

Seasonal parameters

For seasonal AR and MA components, the autocorrelations at the seasonal lags in the above
equations are used.

Calculation of the Transfer Function

The transfer function needs to be calculated for each predictor series. For the predictor series ,
let the transfer function be:

Time Series Algorithms

It can be calculated as follows:

1. Calculate

2. Recursively calculate

where and are the coefficients of in the polynomials and
 respectively. Likewise, the summation limits and are the maximum degree of in

the polynomials and respectively.

All missing in the first term of are taken to be and missing in the second term
are taken to be , where is the first non-missing measurement of . is given by

where and are the and polynomials evaluated at .

Diagnostic Statistics

ARIMA/TF diagnostic statistics are based on residuals of the noise process, .

Ljung-Box Statistic

where is the kth lag ACF of residual.

Q(K) is approximately distributed as , where m is the number of parameters other than
the constant term and predictor related-parameters.

Outlier Detection in Time Series Analysis

The observed series may be contaminated by so-called outliers. These outliers may change the
mean level of the uncontaminated series. The purpose of outlier detection is to find if there are
outliers and what are their locations, types, and magnitudes.

The Time Series node considers seven types of outliers. They are additive outliers (AO),
innovational outliers (IO), level shift (LS), temporary (or transient) change (TC), seasonal additive
(SA), local trend (LT), and AO patch (AOP).

Time Series Algorithms

Notation

The following notation is specific to outlier detection:

U(t) or The uncontaminated series, outlier free. It is assumed to be a univariate ARIMA or

transfer function model.

Definitions of Outliers

Types of outliers are defined separately here. In practice any combination of these types can
occur in the series under study.

AO (Additive Outliers)

Assuming that an AO outlier occurs at time t=T, the observed series can be represented as

where is a pulse function and w is the deviation from the true U(T) caused
by the outlier.

IO (Innovational Outliers)

Assuming that an IO outlier occurs at time t=T, then

LS (Level Shift)

Assuming that a LS outlier occurs at time t=T, then

where is a step function.

TC (Temporary/Transient Change)

Assuming that a TC outlier occurs at time t=T, then

where , is a damping function.

SA (Seasonal Additive)

Assuming that a SA outlier occurs at time t=T, then

Time Series Algorithms

where is a step seasonal pulse function.

LT (Local Trend)

Assuming that a LT outlier occurs at time t=T, then

where is a local trend function.

AOP (AO patch)

An AO patch is a group of two or more consecutive AO outliers. An AO patch can be described
by its starting time and length. Assuming that there is a patch of AO outliers of length k at time
t=T, the observed series can be represented as

Due to a masking effect, a patch of AO outliers is very difficult to detect when searching for
outliers one by one. This is why the AO patch is considered as a separate type from individual
AO. For type AO patch, the procedure searches for the whole patch together.

Summary

For an outlier of type O at time t=T (except AO patch):

where

with . A general model for incorporating outliers can thus be written as
follows:

where M is the number of outliers.

Var

Time Series Algorithms

Estimating the Effects of an Outlier

Suppose that the model and the model parameters are known. Also suppose that the type and
location of an outlier are known. Estimation of the magnitude of the outlier and test statistics
are as follows.

The results in this section are only used in the intermediate steps of outlier detection procedure.
The final estimates of outliers are from the model incorporating all the outliers in which all
parameters are jointly estimated.

Non-AO Patch Deterministic Outliers

For a deterministic outlier of any type at time T (except AO patch), let be the residual and

, so:

From residuals e(t), the parameters for outliers at time T are estimated by simple linear regression
of e(t) on x(t).

For j = 1 (AO), 2 (IO), 3 (LS), 4 (TC), 5 (SA), 6 (LT), define test statistics:

(T)

Under the null hypothesis of no outlier, (T) is distributed as N(0,1) assuming the model and
model parameters are known.

AO Patch Outliers

For an AO patch of length k starting at time T, let for i = 1 to k, then

Multiple linear regression is used to fit this model. Test statistics are defined as:

Assuming the model and model parameters are known, has a Chi-square distribution with k
degrees of freedom under the null hypothesis .

Detection of Outliers

The following flow chart demonstrates how automatic outlier detection works. Let M be the total
number of outliers and Nadj be the number of times the series is adjusted for outliers. At the
beginning of the procedure, M = 0 and Nadj = 0.

Time Series Algorithms

Figure 35-1

Goodness-of-Fit Statistics

Goodness-of-fit statistics are based on the original series Y(t). Let k= number of parameters in the
model, n = number of non-missing residuals.

Time Series Algorithms

Mean Squared Error

Mean Absolute Percent Error

Maximum Absolute Percent Error

Mean Absolute Error

Maximum Absolute Error

Normalized Bayesian Information Criterion

Normalized

R-Squared

Stationary R-Squared

A similar statistic was used by Harvey (Harvey, 1989).

where

The sum is over the terms in which both and are not missing.

 is the simple mean model for the differenced transformed series, which is equivalent to the
univariate baseline model ARIMA(0,d,0)(0,D,0).

Time Series Algorithms

For the exponential smoothing models currently under consideration, use the differencing orders
(corresponding to their equivalent ARIMA models if there is one).

Note: Both the stationary and usual R-squared can be negative with range . A negative
R-squared value means that the model under consideration is worse than the baseline model. Zero
R-squared means that the model under consideration is as good or bad as the baseline model.
Positive R-squared means that the model under consideration is better than the baseline model.

Expert Modeling

Univariate Series

Users can let the Expert Modeler select a model for them from:
 All models (default).
 Exponential smoothing models only.
 ARIMA models only.

Exponential Smoothing Expert Model

Figure 35-2

Time Series Algorithms

ARIMA Expert Model

Figure 35-3

Note: If 10<n<3s, set s=1 to build a non-seasonal model.

All Models Expert Model

In this case, the Exponential Smoothing and ARIMA expert models are computed, and the model
with the smaller normalized BIC is chosen.

Note: For short series, n<max(20,3s), use Exponential Smoothing Expert Model.

Multivariate Series

In the multivariate situation, users can let the Expert Modeler select a model for them from:
 All models (default). Note that if the multivariate expert ARIMA model drops all the

predictors and ends up with a univariate expert ARIMA model, this univariate expert ARIMA
model will be compared with expert exponential smoothing models as before and the Expert
Modeler will decide which is the best overall model.

 ARIMA models only.

Time Series Algorithms

Transfer Function Expert Model

Figure 35-4

Note: For short series, n<max(20,3s), fit a univariate expert model.

Time Series Algorithms

Blank Handling

Generally, any missing values in the series data will be imputed in the Time Intervals node used
to prepare the data for time series modeling. If blanks remain in the series data submitted to
the modeling node, ARIMA models will attempt to impute values, as described in “Estimation
and Forecasting of ARIMA/TF.”

Missing values for predictors will result in the field containing the missing values to be
excluded from the time series model.

Generated Model/Scoring

Predictions or forecasts for Time Series models are intricately related to the modeling process
itself. Forecasting computations are described with the algorithm for the corresponding model
type. For information on forecasting in exponential smoothing models, see “Exponential
Smoothing Models.” For information on forecasting in ARIMA models, see “Estimation and
Forecasting of ARIMA/TF.”

Blank Handling

Blank handling for the generated model is very similar to that for the modeling node.
If any predictor has missing values within the forecast period, the procedure issues a warning

and forecasts as far as it can.

References

Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 1994. Time series analysis: Forecasting and
control, 3rd ed. Englewood Cliffs, N.J.: Prentice Hall.

Brockwell, P. J., and R. A. Davis. 1991. Time Series: Theory and Methods, 2 ed. :
Springer-Verlag.

Gardner, E. S. 1985. Exponential smoothing: The state of the art. Journal of Forecasting, 4, 1–28.

Harvey, A. C. 1989. Forecasting, structural time series models and the Kalman filter. Cambridge:
Cambridge University Press.

Makridakis, S. G., S. C. Wheelwright, and R. J. Hyndman. 1997. Forecasting: Methods and
applications, 3rd ed. ed. New York: John Wiley and Sons.

Melard, G. 1984. A fast algorithm for the exact likelihood of autoregressive-moving average
models. Applied Statistics, 33:1, 104–119.

Pena, D., G. C. Tiao, and R. S. Tsay, eds. 2001. A course in time series analysis. New York:
John Wiley and Sons.

TwoStep Cluster Algorithms

Overview

The TwoStep cluster method is a scalable cluster analysis algorithm designed to handle very large
data sets. It can handle both continuous and categorical variables or attributes. It requires only one
data pass. It has two steps 1) pre-cluster the cases (or records) into many small sub-clusters; 2)
cluster the sub-clusters resulting from pre-cluster step into the desired number of clusters. It can
also automatically select the number of clusters.

Model Parameters

As the name implies, the TwoStep clustering algorithm involves two steps: Pre-clustering and
Clustering.

Pre-cluster

The pre-cluster step uses a sequential clustering approach. It scans the data records one by one
and decides if the current record should be merged with the previously formed clusters or starts a
new cluster based on the distance criterion (described below).

The procedure is implemented by constructing a modified cluster feature (CF) tree. The CF
tree consists of levels of nodes, and each node contains a number of entries. A leaf entry (an entry
in the leaf node) represents a final sub-cluster. The non-leaf nodes and their entries are used to
guide a new record quickly into a correct leaf node. Each entry is characterized by its CF that
consists of the entry’s number of records, mean and variance of each range field, and counts for
each category of each symbolic field. For each successive record, starting from the root node, it is
recursively guided by the closest entry in the node to find the closest child node, and descends
along the CF tree. Upon reaching a leaf node, it finds the closest leaf entry in the leaf node. If
the record is within a threshold distance of the closest leaf entry, it is absorbed into the leaf entry
and the CF of that leaf entry is updated. Otherwise it starts its own leaf entry in the leaf node. If
there is no space in the leaf node to create a new leaf entry, the leaf node is split into two. The
entries in the original leaf node are divided into two groups using the farthest pair as seeds, and
redistributing the remaining entries based on the closeness criterion.

If the CF tree grows beyond allowed maximum size, the CF tree is rebuilt based on the existing
CF tree by increasing the threshold distance criterion. The rebuilt CF tree is smaller and hence
has space for new input records. This process continues until a complete data pass is finished.
For details of CF tree construction, see the BIRCH algorithm (Zhang, Ramakrishnon, and Livny,
1996).

All records falling in the same entry can be collectively represented by the entry’s CF. When a
new record is added to an entry, the new CF can be computed from this new record and the old CF
without knowing the individual records in the entry. These properties of CF make it possible to
maintain only the entry CFs, rather than the sets of individual records. Hence the CF-tree is much
smaller than the original data and can be stored in memory more efficiently.

Note that the structure of the constructed CF tree may depend on the input order of the cases or
records. To minimize the order effect, randomly order the records before building the model.

TwoStep Cluster Algorithms

Cluster

The cluster step takes sub-clusters (non-outlier sub-clusters if outlier handling is used) resulting
from the pre-cluster step as input and then groups them into the desired number of clusters. Since
the number of sub-clusters is much less than the number of original records, traditional clustering
methods can be used effectively. TwoStep uses an agglomerative hierarchical clustering method,
because it works well with the auto-cluster method (see the section on auto-clustering below).

Hierarchical clustering refers to a process by which clusters are recursively merged, until
at the end of the process only one cluster remains containing all records. The process starts by
defining a starting cluster for each of the sub-clusters produced in the pre-cluster step. (For more
information, see the topic “Pre-cluster.”) All clusters are then compared, and the pair of clusters
with the smallest distance between them is selected and merged into a single cluster. After
merging, the new set of clusters is compared, the closest pair is merged, and the process repeats
until all clusters have been merged. (If you are familiar with the way a decision tree is built, this
is a similar process, except in reverse.) Because the clusters are merged recursively in this way, it
is easy to compare solutions with different numbers of clusters. To get a five-cluster solution,
simply stop merging when there are five clusters left; to get a four-cluster solution, take the five-
cluster solution and perform one more merge operation, and so on.

Distance Measure

The TwoStep clustering method uses a log-likelihood distance measure, to accommodate both
symbolic and range fields. It is a probability-based distance. The distance between two clusters
is related to the decrease in log-likelihood as they are combined into one cluster. In calculating
log-likelihood, normal distributions for range fields and multinomial distributions for symbolic
fields are assumed. It is also assumes that the fields are independent of each other, and so are
the records. The distance between clusters i and j is defined as

where

and

In these expressions,

KA is the number of range type input fields,

KB is the number of symbolic type input fields,

TwoStep Cluster Algorithms

Lk is the number of categories for the kth symbolic field,

Nv is the number of records in cluster v,

Nvkl is the number of records in cluster v which belongs to the lth category of the kth symbolic
field,

 is the estimated variance of the kth continuous variable for all records,

is the estimated variance of the kth continuous variable for records in the vth cluster, and

< i, j > is an index representing the cluster formed by combining clusters i and j.

If is ignored in the expression for ξv, the distance between clusters i and j would be exactly the
decrease in log-likelihood when the two clusters are combined. The term is added to solve the
problem caused by , which would result in the natural logarithm being undefined. (This
would occur, for example, when a cluster has only one case.)

Number of Clusters (auto-clustering)

TwoStep can use the hierarchical clustering method in the second step to assess multiple cluster
solutions and automatically determine the optimal number of clusters for the input data. A
characteristic of hierarchical clustering is that it produces a sequence of partitions in one run: 1, 2,
3, … clusters. In contrast, a k-means algorithm would need to run multiple times (one for each
specified number of clusters) in order to generate the sequence. To determine the number of
clusters automatically, TwoStep uses a two-stage procedure that works well with the hierarchical
clustering method. In the first stage, the BIC for each number of clusters within a specified range is
calculated and used to find the initial estimate for the number of clusters. The BIC is computed as

where

and other terms defined as in “Distance Measure”. The ratio of change in BIC at each
successive merging relative to the first merging determines the initial estimate. Let be
the difference in BIC between the model with J clusters and that with (J + 1) clusters,

. Then the change ratio for model J is

TwoStep Cluster Algorithms

If , then the number of clusters is set to 1 (and the second stage is omitted).
Otherwise, the initial estimate for number of clustersk is the smallest number for which

In the second stage, the initial estimate is refined by finding the largest relative increase in distance
between the two closest clusters in each hierarchical clustering stage. This is done as follows:

E Starting with the model Ck indicated by the BIC criterion, take the ratio of minimum inter-cluster

distance for that model and the next larger model Ck+1, that is, the previous model in the
hierarchical clustering procedure,

where Ck is the cluster model containing k clusters and dmin(C) is the minimum inter-cluster
distance for cluster model C.

E Now from model Ck-1, compute the same ratio with the following model Ck, as above. Repeat for

each subsequent model until you have the ratio R2(2).

E Compare the two largest R2 ratios; if the largest is more than 1.15 times the second largest, then
select the model with the largest R2 ratio as the optimal number of clusters; otherwise, from those
two models with the largest R2 values, select the one with the larger number of clusters as the
optimal model.

Blank Handling

The TwoStep cluster node does not support blanks. Records containing blanks, nulls, or missing
values of any kind are excluded from model building.

Effect of Options

Outlier Handling

An optional outlier-handling step is implemented in the algorithm in the process of building the
CF tree. Outliers are considered as data records that do not fit well into any cluster. We consider
data records in a leaf entry as outliers if the number of records in the entry is less than a certain
fraction (25% by default) of the size of the largest leaf entry in the CF tree. Before rebuilding the
CF tree, the procedure checks for potential outliers and sets them aside. After rebuilding the CF
tree, the procedure checks to see if these outliers can fit in without increasing the tree size. At the
end of CF tree building, small entries that cannot fit in are outliers.

TwoStep Cluster Algorithms

Generated Model/Scoring

Predicted Values

When scoring a record with a TwoStep Cluster generated model, the record is assigned to the
cluster to which it is closest. The distance between the record and each cluster is calculated, and
the cluster with the smallest distance is selected as the closest, and that cluster is assigned as the
predicted value for the record. Distance is calculated in a similar manner to that used during
model building, considering the record to be scored as a “cluster” with only one record. For more
information, see the section “Distance Measure.”

If outlier handling was enabled during model building, the distance between the record and the
closest cluster is compared to a threshold C = log(V), where

where Rk is the range of the kth numeric field and Lm is number of categories for the mth symbolic
field.

If the distance from the nearest cluster is smaller than C, assign that cluster as the predicted
value for the record. If the distance is greater than C, assign the record as an outlier.

Blank Handling

As with model building, records containing blanks are not handled by the model, and are assigned
a predicted value of $null$.

TwoStep-AS Cluster Algorithms

1. Introduction
Clustering technique is widely used by retail and consumer product companies who need to learn more
about their customers in order to apply 1-to-1 marketing strategies. By means of clustering technique,
customers are partitioned into groups by their buying habits, gender, age, income level, etc., and retail and
consumer product companies can tailor their marketing and product development strategy to each
customer group.

Traditional clustering algorithms can broadly be classified into partitional clustering and hierarchical
clustering. Partitional clustering algorithms divide data cases into clusters by optimizing certain criterion
function. A well-known representative of this class is the k-means clustering. Hierarchical clustering
algorithms proceed by stages producing a sequence of partitions in which each partition is nested into the
next partition in the sequence. Hierarchical clustering can be agglomerative and divisive. Agglomerative
clustering starts with a singleton cluster (for example, a cluster that contains one data case only) and
proceeds by successively merging the clusters at each stage. On the contrary, divisive clustering starts with
one single cluster that contains all data cases and proceeds by successively separating the cluster into
smaller clusters. Notice that no initial values are needed for hierarchical clustering.

However, traditional clustering algorithms do not adequately address the problem of large datasets. This is
where the two-step clustering method can be helpful (see ref. [1][2]). This method first performs a pre-
clustering step by scanning the entire dataset and storing the dense regions of data cases in terms of
summary statistics called cluster features. The cluster features are stored in memory in a data structure
called the CF-tree. Then an agglomerative hierarchical clustering algorithm is applied to cluster the set of
cluster features. Since the set of cluster features is much smaller than the original dataset, the hierarchical
clustering can perform well in terms of speed. Notice that the CF-tree is incremental in the sense that it does
not require the whole dataset in advance and only scans the dataset once.

One essential element in the clustering algorithms above is the distance measure that reflects the relative
similarity or dissimilarity of the clusters. Chiu et al proposed a new distance measure that enables clustering
on data sets in which the features are of mixed types. The features can be continuous, nominal, categorical,
or count. This distance measure is derived from a probabilistic model in the way that the distance is
equivalent to the decrease in log-likelihood value as a result of merging two clusters. In the following, the
new distance measure will be used in both the CF-tree growth and the clustering process, unless otherwise
stated.

In this chapter, we extend the two-step clustering method into the distributed setting, specifically under the
map-reduce framework. In addition to generating a clustering solution, we also provide mechanisms for
selecting the most relevant features for clustering given data, as well as detecting rare outlier points.
Moreover, we provide an enhanced set of evaluation and diagnostic features enabling insight, interactivity,
and an improved overall user experience as required by the Analytic Catalyst application.

The chapter is organized as follows. We first declare some general notes about algorithms, development,
etc. Then we define the notations used in the document. Operations for data pre-processing are introduced
in section 4. In section 5, we briefly describe the data and the measures such as distance, tightness, and so
on. In section 6, 7, and 8, we present the key algorithms used in model building, including CF-tree growth,
Hierarchical Agglomerative Clustering (HAC), and determination of the

TwoStep-AS Cluster Algorithms

number of clusters, respectively. Section 9 describes the entire solution of distributed clustering on Hadoop.
Section 10 describes how to score new cases (to assign cluster memberships). Finally, Section 11 includes
various measures used for model evaluation and model diagnostics. Insights and interestingness are also
derived.

2. Notes
• To create CF-trees efficiently, we assume that operations within a main memory environment (for

example, RAM) is efficient, and the size of the main memory can be allocated or controlled by user.
• We assume that the data is randomly partitioned. If this assumption is not allowed, sequential

partition can still be applied. But note that the clustering result can be impacted, particularly if the
data is ordered in some special way.

• CE is implemented in the Analytic Framework.

3. Notations
The following notations are used throughout this chapter unless otherwise stated:

𝑅𝑅 Number of data partitions/splits.
𝑁𝑁𝑗𝑗 Number of cases in cluster 𝐶𝐶𝑗𝑗.

𝑁𝑁𝑗𝑗𝑗𝑗 Number of cases in cluster 𝐶𝐶𝑗𝑗 which have non-missing values in
the 𝑘𝑘th feature.

𝐾𝐾 Number of features used for clustering.
𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖) The 𝑖𝑖th data case. 𝑥𝑥𝑖𝑖 is a K-dimensional vector.

𝑥𝑥𝑖𝑖𝑗𝑗𝐴𝐴 , 𝑘𝑘 = 1, … ,𝐾𝐾𝐴𝐴
Value of the 𝑘𝑘th continuous feature of the 𝑖𝑖th data case 𝑥𝑥𝑖𝑖. There
are 𝐾𝐾𝐴𝐴 number of continuous features.

𝑥𝑥𝑖𝑖𝑗𝑗𝐵𝐵 , 𝑘𝑘 = 1, … ,𝐾𝐾𝐵𝐵
Value of the 𝑘𝑘th categorical feature of the 𝑖𝑖th data case 𝑥𝑥𝑖𝑖 . There are 𝐾𝐾𝐵𝐵
number of categorical features.

𝐿𝐿𝑗𝑗 , 𝑘𝑘 = 1, … ,𝐾𝐾𝐵𝐵 Number of categories of the 𝑘𝑘th categorical feature in the entire data.

𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗 , 𝑘𝑘 = 1, … ,𝐾𝐾𝐵𝐵, 𝑙𝑙 = 1, … , 𝐿𝐿𝑗𝑗 Number of cases in cluster 𝐶𝐶𝑗𝑗 whose 𝑘𝑘th categorical feature takes
the 𝑙𝑙th category.

𝑠𝑠𝑗𝑗𝑗𝑗 , 𝑘𝑘 = 1, … ,𝐾𝐾𝐴𝐴 Sum of values of the 𝑘𝑘th continuous feature in cluster 𝐶𝐶𝑗𝑗.
𝑠𝑠𝑗𝑗𝑗𝑗2 , 𝑘𝑘 = 1, … ,𝐾𝐾𝐴𝐴 Sum of squared values of the 𝑘𝑘th continuous feature in cluster 𝐶𝐶𝑗𝑗.
𝑑𝑑(𝑗𝑗, 𝑠𝑠) Distance between clusters 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠.
𝐶𝐶<𝑗𝑗,𝑠𝑠> Cluster formed by combining clusters 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠.

4. Data Pre-processing
Data pre-processing includes the following transformations:

• Trailing blanks are trimmed
• Date/time features are transformed into continuous ones
• Normalize continuous features
• Category values of a categorical feature are mapped into integer. As such, the expression “𝑥𝑥𝑖𝑖𝑗𝑗𝐵𝐵 = 𝑙𝑙”

indicates that the 𝑘𝑘th categorical feature of the 𝑖𝑖th case takes the 𝑙𝑙th category.
• System/user missing and invalid values are all considered as missing.

• Cases with missing values in all features are discarded.

5. Data and Measures
Let 𝑥𝑥𝑖𝑖 be the 𝑖𝑖th data case. Denote 𝐼𝐼𝑗𝑗 as the index set of cluster 𝐶𝐶𝑗𝑗, 𝐼𝐼𝑗𝑗 = �𝑖𝑖: 𝑥𝑥𝑖𝑖 ∈ 𝐶𝐶𝑗𝑗�. Let 𝐾𝐾 = 𝐾𝐾𝐴𝐴 + 𝐾𝐾𝐵𝐵 be the
total number of features in which 𝐾𝐾𝐴𝐴 of them are continuous and 𝐾𝐾𝐵𝐵 are categorical. Without loss of
generality, write 𝑥𝑥𝑖𝑖 as

𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖) = (𝑥𝑥𝑖𝑖1𝐴𝐴 , … , 𝑥𝑥𝑖𝑖𝑖𝑖𝐴𝐴
𝐴𝐴 , 𝑥𝑥𝑖𝑖1𝐵𝐵 , … , 𝑥𝑥𝑖𝑖𝑖𝑖𝐵𝐵

𝐵𝐵) (1)

where 𝑥𝑥𝑖𝑖𝑗𝑗𝐴𝐴 is the value of the 𝑘𝑘th continuous feature, 𝑘𝑘 = 1, … ,𝐾𝐾𝐴𝐴, and 𝑥𝑥𝑖𝑖𝑗𝑗𝐵𝐵 is the value of the 𝑘𝑘th categorical
feature, 𝑘𝑘 = 1, … ,𝐾𝐾𝐵𝐵. Express 𝑥𝑥𝑖𝑖𝑗𝑗𝐵𝐵 as a vector (𝑥𝑥𝑖𝑖𝑗𝑗1𝐵𝐵 , … , 𝑥𝑥𝑖𝑖𝑗𝑗𝐿𝐿𝑘𝑘

𝐵𝐵) of 𝐿𝐿𝑗𝑗 values in which each entry is either zero or
one:

𝑥𝑥𝑖𝑖𝑗𝑗𝑗𝑗𝐵𝐵 = �1, if 𝑥𝑥𝑖𝑖𝑗𝑗𝐵𝐵 takes the 𝑙𝑙th category
0, otherwise

. (2)

5.1. Cluster Feature of a Cluster

The cluster feature (sufficient statistics set) 𝐶𝐶𝐶𝐶𝑗𝑗 of a cluster 𝐶𝐶𝑗𝑗 is a collection of statistics that summarizes the
characteristics of a cluster. A possible set 𝐶𝐶𝐶𝐶𝑗𝑗 is given as

𝐶𝐶𝐶𝐶𝑗𝑗 = �𝑁𝑁𝑗𝑗 ,𝑁𝑁��⃗𝑗𝑗 , 𝑠𝑠𝑗𝑗 , 𝑠𝑠𝑗𝑗2,𝑁𝑁𝑗𝑗𝐵𝐵� (3)

where 𝑁𝑁𝑗𝑗 is the number of data cases in cluster 𝐶𝐶𝑗𝑗, 𝑁𝑁��⃗𝑗𝑗 = �𝑁𝑁𝑗𝑗𝑗𝑗 , … ,𝑁𝑁𝑗𝑗𝑖𝑖𝐴𝐴 ,𝑁𝑁𝑗𝑗1′ , … ,𝑁𝑁𝑗𝑗𝑖𝑖𝐵𝐵
′ � is a 𝐾𝐾-dimensional vector;

the 𝑘𝑘th entry is the number of data cases in cluster 𝐶𝐶𝑗𝑗 which have non-missing values in the 𝑘𝑘th feature. 𝑠𝑠𝑗𝑗 =
�𝑠𝑠𝑗𝑗1, … , 𝑠𝑠𝑗𝑗𝑖𝑖𝐴𝐴� is a 𝐾𝐾𝐴𝐴-dimensional vector; the 𝑘𝑘th entry is the sum of the non-missing values of the 𝑘𝑘th
continuous feature in cluster 𝐶𝐶𝑗𝑗, i.e.

𝑠𝑠𝑗𝑗𝑗𝑗 = ∑ 𝑥𝑥𝑖𝑖𝑗𝑗𝐴𝐴𝑖𝑖∈𝐼𝐼𝑗𝑗 (4)

for 𝑘𝑘 = 1, … ,𝐾𝐾𝐴𝐴. Similarly, 𝑠𝑠𝑗𝑗2 = �𝑠𝑠𝑗𝑗12 , … , 𝑠𝑠𝑗𝑗𝑖𝑖𝐴𝐴
2 � is a 𝐾𝐾𝐴𝐴-dimensional vector such that the 𝑘𝑘th entry is the sum

of squared non-missing values of the 𝑘𝑘th continuous feature in cluster 𝐶𝐶𝑗𝑗, i.e.

𝑠𝑠𝑗𝑗𝑗𝑗2 = ∑ (𝑥𝑥𝑖𝑖𝑗𝑗𝐴𝐴)2𝑖𝑖∈𝐼𝐼𝑗𝑗 (5)

for 𝑘𝑘 = 1, … ,𝐾𝐾𝐴𝐴.

Similarly, 𝑁𝑁𝑗𝑗𝐵𝐵 = �𝑁𝑁𝑗𝑗1𝐵𝐵 , … ,𝑁𝑁𝑗𝑗𝑖𝑖𝐵𝐵
𝐵𝐵 � is a ∑ (𝐿𝐿𝑗𝑗 − 1)𝑖𝑖𝐵𝐵

𝑗𝑗=1 -dimensional vector where the 𝑘𝑘th sub-vector 𝑁𝑁𝑗𝑗𝑗𝑗𝐵𝐵 is (𝐿𝐿𝑗𝑗 − 1)
dimensional, given by

𝑁𝑁𝑗𝑗𝑗𝑗𝐵𝐵 = (𝑁𝑁𝑗𝑗𝑗𝑗1, … ,𝑁𝑁𝑗𝑗𝑗𝑗(𝐿𝐿𝑘𝑘−1)) (6)

for 𝑘𝑘 = 1, … ,𝐾𝐾𝐵𝐵. The 𝑙𝑙th entry 𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗 represents the total number of cases in cluster 𝐶𝐶𝑗𝑗 whose 𝑘𝑘th categorical
feature takes the 𝑙𝑙th category, 𝑙𝑙 = 1, … , 𝐿𝐿𝑗𝑗 − 1, i.e.

TwoStep-AS Cluster Algorithms

𝑁𝑁𝑗𝑗𝑗𝑗𝑗𝑗 = ∑ 𝑥𝑥𝑖𝑖𝑗𝑗𝑗𝑗𝐵𝐵𝑖𝑖∈𝐼𝐼𝑗𝑗 . (7)

5.2. Updating Cluster Feature when Merging Two Clusters

When two clusters 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠 are said to merge, it simply means that the two corresponding sets of data
points are merged together to form a union. In this case, the 𝐶𝐶𝐶𝐶<𝑗𝑗,𝑠𝑠> for the merged cluster 𝐶𝐶<𝑗𝑗,𝑠𝑠> can be
calculated by simply adding the corresponding elements in 𝐶𝐶𝐶𝐶𝑗𝑗 and 𝐶𝐶𝐶𝐶𝑠𝑠, that is,

𝐶𝐶𝐶𝐶<𝑗𝑗,𝑠𝑠> = �𝑁𝑁𝑗𝑗 + 𝑁𝑁𝑠𝑠,𝑁𝑁��⃗𝑗𝑗 + 𝑁𝑁��⃗ 𝑠𝑠, 𝑠𝑠𝑗𝑗 + 𝑠𝑠𝑠𝑠 , 𝑠𝑠𝑗𝑗2 + 𝑠𝑠𝑠𝑠2,𝑁𝑁𝑗𝑗𝐵𝐵 + 𝑁𝑁𝑠𝑠𝐵𝐵�. (8)

5.3. Tightness of a Cluster

The interpretation of tightness of a cluster is that the smaller of the value of tightness, the less variation of
the data cases within the cluster. In CE, there are two tightness measures, and they will be used depending
on the specified distance measure, log-likelihood distance or Euclidean distance.

5.3.1. Tightness based on Log-likelihood Distance

The tightness 𝜂𝜂�𝑗𝑗 of a cluster 𝐶𝐶𝑗𝑗 can be defined as average negative log-likelihood function of the cluster
evaluated at the maximum likelihood estimates of the model parameters. See Ref. 1 for statistical reasoning
for definition.

The tightness 𝜂𝜂�𝑗𝑗 of a cluster 𝐶𝐶𝑗𝑗 is given by

�̂�𝜂𝑗𝑗 = 1
2
∑ ln �1 +

𝜎𝜎�𝑗𝑗𝑘𝑘
2

Δ𝑘𝑘
�𝑖𝑖𝐴𝐴

𝑗𝑗=1 + ∑ 𝐸𝐸�𝑗𝑗𝑗𝑗𝑖𝑖𝐵𝐵
𝑗𝑗=1 (9)

where 𝜎𝜎�𝑗𝑗𝑗𝑗2 is the maximum likelihood variance estimate of the 𝑘𝑘th continuous feature in cluster 𝐶𝐶𝑗𝑗.

𝜎𝜎�𝑗𝑗𝑗𝑗2 =
𝑠𝑠𝑗𝑗𝑘𝑘
2 −𝑁𝑁𝑗𝑗𝑘𝑘(𝜇𝜇�𝑗𝑗𝑘𝑘)2

𝑁𝑁𝑗𝑗𝑘𝑘
 (10)

in which �̂�𝜇𝑗𝑗𝑗𝑗 is the sample mean,

�̂�𝜇𝑗𝑗𝑗𝑗 =
𝑠𝑠𝑗𝑗𝑘𝑘
𝑁𝑁𝑗𝑗𝑘𝑘

. (11)

𝐸𝐸�𝑗𝑗𝑗𝑗 is the entropy of the 𝑘𝑘th categorical feature in cluster 𝐶𝐶𝑗𝑗,

𝐸𝐸�𝑗𝑗𝑗𝑗 = −∑ 𝑞𝑞�𝑗𝑗𝑗𝑗𝑗𝑗ln𝑞𝑞�𝑗𝑗𝑗𝑗𝑗𝑗
𝐿𝐿𝑘𝑘
𝑗𝑗=1 (12)

in which 𝑞𝑞�𝑗𝑗𝑗𝑗𝑗𝑗 is the portion of data cases in cluster 𝐶𝐶𝑗𝑗 whose 𝑘𝑘th categorical feature takes the 𝑙𝑙th category,

𝑞𝑞�𝑗𝑗𝑗𝑗𝑗𝑗 =
𝑁𝑁𝑗𝑗𝑘𝑘𝑗𝑗
𝑁𝑁′𝑗𝑗𝑘𝑘

. (13)

Finally,Δ𝑗𝑗 is appositive scalar which is added to handle the degenerating conditions and balance the
contributions between a continuous feature and a categorical one. The default value of Δ𝑗𝑗 is 0.01.

To handle missing values, the definition of tightness assumes that the distribution of missing values is the
same as for the observed non-missing points in the cluster.

Moreover, the following assumption is always applied:

𝑥𝑥ln(𝑥𝑥) = 0, if 𝑥𝑥 = 0. (14)

5.3.2. Tightness based on Euclidean Distance

The tightness 𝜂𝜂�𝑗𝑗 of a cluster 𝐶𝐶𝑗𝑗 can be defined as the average Euclidean distance from member cases to the
center/centroid of the cluster.

The tightness 𝜂𝜂�𝑗𝑗 of a cluster 𝐶𝐶𝑗𝑗 is given by

𝜂𝜂�𝑗𝑗 = �∑
𝑠𝑠𝑗𝑗𝑘𝑘
2 −𝑁𝑁𝑗𝑗𝑘𝑘(𝜇𝜇�𝑗𝑗𝑘𝑘)2

𝑁𝑁𝑗𝑗𝑘𝑘
𝑖𝑖
𝑗𝑗=1 . (15)

Notice that if any feature in cluster 𝐶𝐶𝑗𝑗 has all missing values, the feature will not be used in the
computation.

5.4. Distance Measures between Two Clusters

Suppose clusters 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠 are merged to form a new cluster 𝐶𝐶<𝑗𝑗,𝑠𝑠> that consists of the union of all data cases
in 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠. Two distance measures are available.

5.4.1. Log-likelihood Distance

The distance between 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠 can be captured by observing the corresponding decrease in log-likelihood
as the result of combining 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠 to form 𝐶𝐶<𝑗𝑗,𝑠𝑠>.

The distance measure between two clusters 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠 is defined as

𝑑𝑑(𝑗𝑗, 𝑠𝑠) = ∑ 𝑑𝑑𝑗𝑗(𝑗𝑗, 𝑠𝑠)𝑖𝑖𝐴𝐴+𝑖𝑖𝐵𝐵
𝑗𝑗=1 = 𝜉𝜉𝑗𝑗 + 𝜉𝜉𝑠𝑠 − 𝜉𝜉<𝑗𝑗,𝑠𝑠> (16)

where

𝜉𝜉𝑗𝑗 = −1
2
∑ 𝑁𝑁𝑗𝑗𝑗𝑗 ln�𝜎𝜎�𝑗𝑗𝑗𝑗2 + Δ𝑗𝑗�𝑖𝑖𝐴𝐴
𝑗𝑗=1 − ∑ 𝑁𝑁′𝑗𝑗𝑗𝑗𝐸𝐸�𝑗𝑗𝑗𝑗𝑖𝑖𝐵𝐵

𝑗𝑗=1 (17)

and

𝑑𝑑𝑗𝑗(𝑗𝑗, 𝑠𝑠) = �
�−𝑁𝑁𝑗𝑗𝑗𝑗 ln�𝜎𝜎�𝑗𝑗𝑗𝑗2 + Δ𝑗𝑗� − 𝑁𝑁𝑠𝑠𝑗𝑗 ln(𝜎𝜎�𝑠𝑠𝑗𝑗2 + Δ𝑗𝑗) + 𝑁𝑁<𝑗𝑗,𝑠𝑠>𝑗𝑗 ln�𝜎𝜎�<𝑗𝑗,𝑠𝑠>𝑗𝑗

2 + Δ𝑗𝑗��/2, if feature 𝑘𝑘 is continuous
−𝑁𝑁′𝑗𝑗𝑗𝑗𝐸𝐸�𝑗𝑗𝑗𝑗 − 𝑁𝑁′𝑠𝑠𝑗𝑗𝐸𝐸�𝑠𝑠𝑗𝑗 + 𝑁𝑁′<𝑗𝑗,𝑠𝑠>𝑗𝑗𝐸𝐸�<𝑗𝑗,𝑠𝑠>𝑗𝑗, if feature 𝑘𝑘 is categorical

 (18)

TwoStep-AS Cluster Algorithms

Note that since 𝜉𝜉<𝑗𝑗,𝑠𝑠> can be calculated by using the statistics in 𝐶𝐶𝐶𝐶<𝑗𝑗,𝑠𝑠>, the distance can be calculated by
first updating the 𝐶𝐶𝐶𝐶<𝑗𝑗,𝑠𝑠> of the merged cluster 𝐶𝐶<𝑗𝑗,𝑠𝑠>.

To handle missing values, the definition of distance assumes that the contribution of missing values equals
zero.

5.4.2. Euclidean Distance

The Euclidean distance can only be applied if all features are continuous.

The distance between two cases is clearly defined. The distance between two clusters is here defined by the
Euclidean distance between the two cluster centers. A cluster center is defined as the vector of cluster
means of each feature.

Suppose the centers/centroids of clusters 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠 are (�̂�𝜇𝑗𝑗1, … , �̂�𝜇𝑗𝑗𝑖𝑖) and (�̂�𝜇𝑠𝑠1, … , �̂�𝜇𝑠𝑠𝑖𝑖) respectively, then

𝑑𝑑(𝑗𝑗, 𝑠𝑠) = �∑ 𝑑𝑑𝑗𝑗2(𝑗𝑗, 𝑠𝑠)𝑖𝑖
𝑗𝑗=1 = �∑ ��̂�𝜇𝑗𝑗𝑗𝑗 − �̂�𝜇𝑠𝑠𝑗𝑗�

2𝑖𝑖
𝑗𝑗=1 (19)

where

𝑑𝑑𝑗𝑗(𝑗𝑗, 𝑠𝑠) = ��̂�𝜇𝑗𝑗𝑗𝑗 − �̂�𝜇𝑠𝑠𝑗𝑗�. (20)

Again, any feature in cluster 𝐶𝐶𝑗𝑗 with all missing values will not be used in the computation.

6. CF-Tree Building
CF-tree is a very compact summary of dataset in the way that each entry (leaf entry) in the leaf node is a
sub-cluster which absorbs the data cases that are close together, as measured by the tightness index 𝜂𝜂� and
controlled by a specific threshold value 𝑇𝑇. CF-tree is built dynamically as new data case is inserted, it is
used to guide to a new insertion into the correct sub-cluster for clustering purposes.

CF-tree is a height-balanced tree with four parameters:

1. The branching factor 𝐵𝐵 for the non-leaf nodes. It is the maximum number of entries that a non-leaf
node can hold. A non-leaf entry is of the form [𝐶𝐶𝐶𝐶𝑖𝑖, 𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑𝑖𝑖], 𝑖𝑖 = 1, … ,𝐵𝐵, in which 𝑐𝑐ℎ𝑖𝑖𝑙𝑙𝑑𝑑𝑖𝑖 is a pointer to
its 𝑖𝑖th child node and 𝐶𝐶𝐶𝐶𝑖𝑖 is the cluster feature of the sub-cluster represented by this child.

2. The branching factor 𝐿𝐿 for the leaf nodes. It is the maximum number of entries that a leaf node can
hold. A leaf entry is similar to a non-leaf entry except that is does not have a pointer. It is of the
form [𝐶𝐶𝐶𝐶𝑖𝑖], 𝑖𝑖 = 1, … , 𝐿𝐿.

3. The threshold parameter 𝑇𝑇 that controls the tightness 𝜂𝜂� of any leaf entries. That is, all leaf entries in
a leaf node must satisfy a threshold requirement that the tightness has to be less than 𝑇𝑇, i.e. 𝜂𝜂� ≤ 𝑇𝑇.

4. Maximum tree height 𝐻𝐻.

In addition, each leaf node has two pointers: “𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝” and “𝑛𝑛𝑝𝑝𝑥𝑥𝑛𝑛” which are used to chain all leaf nodes
together for efficient scanning.

Figure 1 illustrates a CF-tree of branching factors 𝐵𝐵 = 2, 𝐿𝐿 = 3, and 𝐻𝐻 = 1.

Figure 1. Example of a CF-tree.

6.1. Inserting a Single Case or a Sub-cluster into a CF-Tree

The procedure for inserting a data case or a sub-cluster (abbrev. “𝐸𝐸𝑛𝑛𝑛𝑛”) into a CF-tree is as follows.

Step 1. Identify the appropriate leaf node.
Starting from the root node, recursively descend the CF-tree by choosing the closest child node
according to the distance measure 𝑑𝑑.

Step 2. Modify the leaf node.
Upon reaching a leaf node, find the closest leaf entry [𝐶𝐶𝐶𝐶𝑖𝑖], say, and see if 𝐸𝐸𝑛𝑛𝑛𝑛 can be absorbed
into [𝐶𝐶𝐶𝐶𝑖𝑖] without violating the threshold requirement 𝜂𝜂� ≤ 𝑇𝑇. If so, update the CF information
in [𝐶𝐶𝐶𝐶𝑖𝑖] to reflect the absorbing action. If not, add a new entry for 𝐸𝐸𝑛𝑛𝑛𝑛 to the leaf. If there is space on
the leaf for this new entry to fit in, then we are done. Otherwise, split the leaf node by choosing the
farthest pair of entries as seeds, and redistribute the remaining entries based on the closest criteria.

Step 3. Modify the path to the leaf node.
After inserting 𝐸𝐸𝑛𝑛𝑛𝑛 into a leaf node, update the CF information for each non-leaf entry on the path
to the leaf node. If there is no leaf split, then only the corresponding CF information is needed to
update to reflect the absorbing of 𝐸𝐸𝑛𝑛𝑛𝑛. If a leaf split happens, then it is necessary to insert a new
non-leaf entry into the parent node in order to describe the newly created leaf. If the parent has
space for this entry, at all higher levels, only the CF information is needed to update to reflect the
absorbing of 𝐸𝐸𝑛𝑛𝑛𝑛. In general, however, the parent node has to split as well, and so on up to the root
node. If the root node is split, the tree height increases by one.

Notice that the growth of CF-tree is sensitive to case order. If the same data case is inserted twice but at
different time, the two copies might be entered into two distinct leaf entries. It is possible that two sub-
clusters that should be in one cluster are split across nodes. Similarly, it is also possible that two sub-clusters
that should not be in one cluster are kept together in the same node.

6.2. Threshold Heuristic

In building the CF-tree, the algorithm starts with an initial threshold value (default is 0). Then it scans the
data cases and inserts into the tree. If the main memory runs out before data scanning is finished, the
threshold value is increased to rebuild a new smaller CF-tree, by re-inserting the leaf entries of the old tree
into the new one. After the old leaf entries have been re-inserted, data scanning is resumed from the case at
which it was interrupted. The following strategy is used to update the threshold values.

TwoStep-AS Cluster Algorithms

Suppose that at step 𝑖𝑖, the CF-tree of the threshold 𝑇𝑇𝑖𝑖 is too big for the main memory after 𝑁𝑁𝑖𝑖 data cases in
the data have been scanned, and an estimate of the next (larger) threshold 𝑇𝑇𝑖𝑖+1 is needed to rebuild a new
smaller CF-tree.

Specifically, we find the first two closest entries whose tightness is greater than the current threshold, and
take it as the next threshold value. However, searching the closest entries can be tedious. So we follow
BIRCH’s heuristic to traverse along a path from the root to the most crowded leaf that has the most entries
and find the pair of leaf entries that satisfies the condition.

6.3. Rebuilding CF-Tree

When the CF-tree size exceeds the size of the main memory, or the CF-tree height is larger than 𝐻𝐻, the CF-
tree is rebuilt to a smaller one by increasing the tightness threshold.

Assume that within each node of CF-tree 𝑛𝑛𝑖𝑖, the entries are labeled contiguously from 0 to 𝑛𝑛𝑗𝑗 − 1, where 𝑛𝑛𝑗𝑗
is the number of entries in that node. Then a path from an entry in the root (level 1) to a leaf node (level ℎ)
can be uniquely represented by (𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖ℎ−1), where 𝑖𝑖𝑗𝑗 , 𝑗𝑗 = 1, … , ℎ − 1, is the label of the 𝑗𝑗th level entry on
that path. So naturally, path �𝑖𝑖1

(1), 𝑖𝑖2
(1), … , 𝑖𝑖ℎ−1

(1) � is before (or <) path �𝑖𝑖1
(2), 𝑖𝑖2

(2), … , 𝑖𝑖ℎ−1
(2) � if 𝑖𝑖1

(1) = 𝑖𝑖1
(2),…, 𝑖𝑖𝑗𝑗−1

(1) =
𝑖𝑖𝑗𝑗−1

(2) , and 𝑖𝑖𝑗𝑗
(1) <= 𝑖𝑖𝑗𝑗

(2) for 0 ≤ 𝑗𝑗 ≤ ℎ − 1. It is obvious that each leaf node corresponds to a path, since we are
dealing with tree structure, and we will just use “path” and “leaf node” interchangeably from now on.

With the natural path order defined above, it scans and frees the old tree, path by path, and at the same
time creates the new tree path by path. The procedure is as follows.

Step 1. Let the new tree start with NULL and OldCurrentPath be initially the leftmost path in the old tree.
Step 2. Create the corresponding NewCurrentPath in the new tree.

Copy the nodes along OldCurrentPath in the old tree into the new tree as the (current) rightmost
path; call this NewCurrentPath

Step 3. Insert leaf entries in OldCurrentPath to the new tree.
With the new threshold, each leaf entry in OldCurrentPath is tested against the new tree to see if it
can either by absorbed by an existing leaf entry, or fit in as a new leaf entry without splitting, in the
NewClosestPath that is found top-down with the closest criteria in the new tree. If yes and
NewClosestPath is before NewCurrentPath, then it is inserted to NewClosestPath, and deleted
from the leaf node in NewCurrentPath.

Step 4. Free space in OldCurrentPath and NewCurrentPath.
Once all leaf entries in OldCurrentPath are processed, the nodes along OldCurrentPath can be
deleted from the old tree. It is also likely that some nodes along NewCurrentPath are empty
because leaf entries that originally corresponded to this path have been “pushed forward.” In this
case, the empty nodes can be deleted from the new tree.

Step 5. Process the next path in the old tree.
OldCurrentPath is set to the next path in the old tree if there still exists one, and go to step 2.

6.4. Delayed-Split Option

If the CF-tree that resulted by inserting a data case is too big for the main memory, it may be possible that
some other data cases in the data can still fit in the current CF-tree without causing a split on any node in
the CF-tree (thus the size of the current tree remains the same and can still be in the main memory).

Similarly, if the CF-tree resulted by inserting a data case exceeds the maximum height, it may be possible
that some other data cases in the data can still fit in the current CF-tree without increasing the tree height.

Once any of the two conditions happens, such cases are written out to disk (with 𝑆𝑆1 amount of disk space
put aside for this purpose) and data scanning continues until the disk space runs out as well. The
advantage of this approach is that more data cases can fit into the tree before a new tree is rebuilt. Figure 2
illustrates the control flow of delayed-split option.

Figure 2. Control flow of delayed-split option.

6.5. Outlier-Handling Option

Outlier is defined as leaf entry (sub-cluster) of low density, which contains less than 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 (default 10) cases.

Similar to the delayed-split option, some disk space 𝑆𝑆2 is allocated for handling outliers. When the current
CF-tree is too big for the main memory, some leaf entries are treated as potential outliers (based on the
definition of outlier) and are written out to disk. The others are used to rebuild the CF-tree. Figure 3 shows
the control flow of the outlier-handling option.

Implementation notes:

• The size of any outlier leaf entry should also be less than 20% of the maximal size of leaf entries.
• The CF-tree t1 should be updated once any leaf entry is written to disk space 𝑆𝑆2.

No

Yes

No

Yes

Start

Is disk space S1
currently empty? Done

Continue receiving
data case

If current data case is to insert to
current CF-tree t1, will main
memory be empty, or tree height
larger than H?

Write current data case to disk space
S1, and update size of S1

Insert current
data case to t1

• Outliers identified here are local candidates, and they will be analyzed further in later steps, where
the final outliers will be determined.

Figure 3. Control flow of outlier-handling option.

6.6. Overview of CF-Tree Building

Figure 4 provides an overview of building a CF-tree for the whole algorithm. Initially a threshold value is
set, data is scanned, and the CF-tree is built dynamically. When the main memory runs out, or the tree
height is larger than the maximum height before the whole data is scanned, the algorithm performs the
delayed-split option, outlier-handling option, and the tree rebuilding step to rebuild a new smaller CF-tree
that can fit into the main memory. The process continues until all cases in the data are processed. When all
data is scanned, cases in disk space 𝑆𝑆1 are absorbed and entries in disk space 𝑆𝑆2 are scanned again to verify
if they are indeed outliers.

Implementation notes:

• When all data is scanned, all cases in disk space 𝑆𝑆1 will be inserted into the tree. This may result in
rebuilding the tree if necessary.

The following table shows the parameters involved in CF-tree building and their default values.

Parameter Default value
Assigned main memory (𝑀𝑀) 80*1024 bytes (TBD)
Assigned disk space for outlier-handling (𝑆𝑆2) 20% of 𝑀𝑀

Yes

No

No

Yes

No

Yes

Start

Is disk space S2
currently empty?

Done

Check each leaf entry in
current CF-tree t1 for outlier

Current leaf
entry is outlier?

Write current leaf entry
to disk space S2, and
update size of S2

Keep current leaf
entry to rebuild t1

Any more
leaf entries?

Assigned disk space for delayed-split (𝑆𝑆1) 10% of 𝑀𝑀
Adjustment constant to the tightness and
distance measures, ∆𝑘𝑘 , 𝑘𝑘 = 1, … ,𝐾𝐾𝐴𝐴

0.01

Distance measure (Log-
likelihood/Euclidean)

Log-likelihood

Initial threshold value (𝑇𝑇) 0
Branching factor (𝐵𝐵) 8
Branching factor (𝐿𝐿) 8
Maximum tree height (𝐻𝐻) 3
Delayed-split option (on/off) On
Outlier-handling option (on/off) On
Outlier definition (𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚) Leaf entry which contains less than 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 cases, default 10

Figure 4. Control flow of CF-tree building.

7. Hierarchical Agglomerative Clustering
Hierarchical Agglomerative Clustering (HAC) proceeds by steps producing a sequence of partitions in
which each partition is nested into the next partition in the sequence. See ref. [3] for details.

HAC can be implemented using two methods, as described below.

No Yes

No

Yes

Start CF-tree t1 of initial T

Has data scanning
finished? Done

Continue receiving
data case

If current data case is
to insert to current CF-
tree t1, will main
memory be empty, or
tree height larger than
H?

Re-absorb cases in S1 and
entries in S2 into t1

Delayed-split option

Outlier-handling option

Increase threshold T

Rebuild t1 with new T

Re-absorb cases in S1 and entries
in S2 into t1. Update sizes of S1
and S2.

Insert data
case to t1

7.1. Matrix Based HAC

Suppose that matrix based HAC starts with 𝐽𝐽0 clusters. At each subsequent step, a pair of clusters is chosen.
The two clusters 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠 in the pair are closest together in terms of the distance measure 𝑑𝑑(𝑗𝑗, 𝑠𝑠). A new
cluster 𝐶𝐶<𝑗𝑗,𝑠𝑠> is formed to replace one of the clusters in the pair, 𝐶𝐶𝑗𝑗, say. This new cluster contains all data
cases in 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠. The other cluster 𝐶𝐶𝑠𝑠 is discarded. Hence the number of clusters is reduced by one at each
step. The process stops when the desired number of clusters 𝐽𝐽1 is reached. Since the distance measure
between any two clusters that are not involved in the merge does not change, the algorithm is designed to
update the distance measures between the new cluster and the other clusters efficiently.

The procedure of matrix based HAC is as follows.

Step 1. For 𝑗𝑗 = 1, … , 𝐽𝐽0 − 1, {
 Compute 𝑑𝑑(𝑗𝑗, 𝑠𝑠) for 𝑠𝑠 = 𝑗𝑗 + 1, … , 𝐽𝐽0;
 Find 𝛿𝛿𝑗𝑗 = min

𝑠𝑠=𝑗𝑗+1,…,𝐽𝐽0
𝑑𝑑(𝑗𝑗, 𝑠𝑠) and 𝑠𝑠𝑗𝑗 = arg min

𝑠𝑠=𝑗𝑗+1,…,𝐽𝐽0
𝑑𝑑(𝑗𝑗, 𝑠𝑠);

}
Find 𝛿𝛿∗ = min

𝑗𝑗=1,…,𝐽𝐽0−1
𝛿𝛿𝑗𝑗 and 𝑗𝑗∗ = arg min

𝑗𝑗=1,…,𝐽𝐽0−1
𝛿𝛿𝑗𝑗, the closest pair is < 𝑗𝑗∗, 𝑠𝑠𝑗𝑗∗ >;

Step 2. For 𝐽𝐽 = 𝐽𝐽0 − 1, … , 𝐽𝐽1, {
 Merge the closest pair < 𝑗𝑗∗, 𝑠𝑠𝑗𝑗∗ >, and replace 𝐶𝐶𝑗𝑗∗ by 𝐶𝐶<𝑗𝑗∗,𝑠𝑠𝑗𝑗∗>

;
 For 𝑗𝑗 = 1, … , 𝑗𝑗∗ − 1, {
 If 𝑠𝑠𝑗𝑗 = 𝑠𝑠𝑗𝑗∗ , recompute all distances 𝑑𝑑(𝑗𝑗, 𝑠𝑠), 𝑠𝑠 = 𝑗𝑗 + 1, … , 𝐽𝐽, and update 𝛿𝛿𝑗𝑗 and 𝑠𝑠𝑗𝑗 ;

If 𝑠𝑠𝑗𝑗 ≠ 𝑠𝑠𝑗𝑗∗ , {
 Compute 𝑑𝑑 = 𝑑𝑑(𝑗𝑗, 𝑗𝑗∗);
 If 𝑑𝑑 < 𝛿𝛿𝑗𝑗, update 𝛿𝛿𝑗𝑗 = 𝑑𝑑 and 𝑠𝑠𝑗𝑗 = 𝑗𝑗∗;
 If 𝑑𝑑 = 𝛿𝛿𝑗𝑗, no change;

If 𝑑𝑑 > 𝛿𝛿𝑗𝑗 and 𝑠𝑠𝑗𝑗 = 𝑗𝑗∗,
Recompute all distances 𝑑𝑑(𝑗𝑗, 𝑠𝑠), 𝑠𝑠 = 𝑗𝑗 + 1, … , 𝐽𝐽, and update 𝛿𝛿𝑗𝑗 and 𝑠𝑠𝑗𝑗 ;

If 𝑑𝑑 > 𝛿𝛿𝑗𝑗 and 𝑠𝑠𝑗𝑗 ≠ 𝑗𝑗∗, no change;
}

 }
 For 𝑗𝑗 = 𝑗𝑗∗, recompute all distances 𝑑𝑑(𝑗𝑗, 𝑠𝑠), 𝑠𝑠 = 𝑗𝑗 + 1, … , 𝐽𝐽, and update 𝛿𝛿𝑗𝑗 and 𝑠𝑠𝑗𝑗 ;
 For 𝑗𝑗 = 𝑗𝑗∗ + 1, … , 𝑠𝑠𝑗𝑗∗ − 1, {
 If 𝑠𝑠𝑗𝑗 = 𝑠𝑠𝑗𝑗∗ , recompute all distances 𝑑𝑑(𝑗𝑗, 𝑠𝑠), 𝑠𝑠 = 𝑗𝑗 + 1, … , 𝐽𝐽, and update 𝛿𝛿𝑗𝑗 and 𝑠𝑠𝑗𝑗 ;

If 𝑠𝑠𝑗𝑗 ≠ 𝑠𝑠𝑗𝑗∗ , no change;
 }
 For 𝑗𝑗 = 𝑠𝑠𝑗𝑗∗ + 1, … , 𝐽𝐽, no change;
 Erase 𝐶𝐶𝑠𝑠𝑗𝑗∗ ;
 Find 𝛿𝛿∗ = min

𝑗𝑗=1,…,𝐽𝐽
𝛿𝛿𝑗𝑗 and 𝑗𝑗∗ = arg min

𝑗𝑗=1,…,𝐽𝐽
𝛿𝛿𝑗𝑗, the closest pair is < 𝑗𝑗∗, 𝑠𝑠𝑗𝑗∗ >;

}
Implementation notes:

• In order to reduce the memory requirement, it is not necessary to create an actual distance matrix
when determining the closest clusters.

• If the Euclidean distance is used, the ward measure will be used to find the closest clusters. We just
replace the distance measure 𝑑𝑑(𝑗𝑗, 𝑠𝑠) by

𝑁𝑁𝑗𝑗𝑁𝑁𝑠𝑠
𝑁𝑁𝑗𝑗+𝑁𝑁𝑠𝑠

𝑑𝑑2(𝑗𝑗, 𝑠𝑠). This also applies below for CF-tree based

HAC.

7.2. CF-tree Based HAC

Suppose that CF-tree based HAC starts with 𝐾𝐾0 CF-trees 𝑇𝑇𝐶𝐶𝐶𝐶𝑘𝑘 , 𝑘𝑘 = 1, … ,𝐾𝐾0 which contain 𝐽𝐽0 leaf
entries 𝐶𝐶𝑚𝑚, 𝑖𝑖 = 1, … , 𝐽𝐽0. Let 𝑙𝑙(𝐶𝐶𝑚𝑚) be the index of the CF-tree which contains the leaf entry 𝐶𝐶𝑚𝑚. For convenience,
suppose 𝐶𝐶𝑠𝑠 > 𝐶𝐶𝑗𝑗 if 𝑙𝑙(𝐶𝐶𝑠𝑠) > 𝑙𝑙�𝐶𝐶𝑗𝑗�.

At each subsequent step, a pair of leaf entries is chosen. The two leaf entries 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠 in the pair are closest
together in terms of the distance measure 𝑑𝑑(𝑗𝑗, 𝑠𝑠). A new leaf entry 𝐶𝐶<𝑗𝑗,𝑠𝑠> is formed to replace one of the leaf
entries in the pair, 𝐶𝐶𝑗𝑗, say. This new leaf entry contains all data cases in 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑠𝑠. The other leaf entry 𝐶𝐶𝑠𝑠 is
discarded. Hence the number of leaf entries is reduced by one at each step. Meanwhile, the involved CF-
trees will be updated accordingly. The process stops when the desired number of leaf entries 𝐽𝐽1 is reached.
The output is the set of updated CF-trees, whose leaf entries indicate the produced clusters.

The procedure of CF-tree based HAC is as follows.

Step 1. For 𝑗𝑗 = 1, … , 𝐽𝐽0 − 1, {
 Find the closest leaf entry 𝐶𝐶𝑠𝑠𝑘𝑘 in each CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶𝑘𝑘 for 𝑘𝑘 = 𝑙𝑙�𝐶𝐶𝑗𝑗�, … ,𝐾𝐾0, following the involved

tree structure;
 Find 𝛿𝛿𝑗𝑗 = min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘) and 𝑠𝑠𝑗𝑗 = arg min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘);

}
Find 𝛿𝛿∗ = min

𝑗𝑗=1,…,𝐽𝐽0−1
𝛿𝛿𝑗𝑗 and 𝑗𝑗∗ = arg min

𝑗𝑗=1,…,𝐽𝐽0−1
𝛿𝛿𝑗𝑗, the closest pair is < 𝑗𝑗∗, 𝑠𝑠𝑗𝑗∗ >;

Step 2. For 𝐽𝐽 = 𝐽𝐽0 − 1, … , 𝐽𝐽1, {
 Merge the closest pair < 𝑗𝑗∗, 𝑠𝑠𝑗𝑗∗ >, update CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶

𝑙𝑙(𝐶𝐶𝑗𝑗∗)
 by the new leaf entry 𝐶𝐶<𝑗𝑗∗,𝑠𝑠𝑗𝑗∗>

, and

remove the leaf entry 𝐶𝐶𝑠𝑠𝑗𝑗∗ from CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶
𝑙𝑙(𝐶𝐶𝑠𝑠𝑗𝑗∗

)
;

 For 𝑗𝑗 = 1, … , 𝑗𝑗∗ − 1, {
 If 𝑠𝑠𝑗𝑗 = 𝑠𝑠𝑗𝑗∗ , {
 Find the closest leaf entry 𝐶𝐶𝑠𝑠𝑘𝑘 in each CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶𝑘𝑘 for 𝑘𝑘 = 𝑙𝑙�𝐶𝐶𝑗𝑗�, … ,𝐾𝐾0;
 Find 𝛿𝛿𝑗𝑗 = min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘) and 𝑠𝑠𝑗𝑗 = arg min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘);

 }
If 𝑠𝑠𝑗𝑗 ≠ 𝑠𝑠𝑗𝑗∗ , {
 Compute 𝑑𝑑 = 𝑑𝑑(𝑗𝑗, 𝑗𝑗∗);
 If 𝑑𝑑 < 𝛿𝛿𝑗𝑗, update 𝛿𝛿𝑗𝑗 = 𝑑𝑑 and 𝑠𝑠𝑗𝑗 = 𝑗𝑗∗;
 If 𝑑𝑑 = 𝛿𝛿𝑗𝑗, no change;

If 𝑑𝑑 > 𝛿𝛿𝑗𝑗 and 𝑠𝑠𝑗𝑗 = 𝑗𝑗∗, {
 Find the closest leaf entry 𝐶𝐶𝑠𝑠𝑘𝑘 in each CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶𝑘𝑘 for 𝑘𝑘 = 𝑙𝑙�𝐶𝐶𝑗𝑗�, … ,𝐾𝐾0;
 Find 𝛿𝛿𝑗𝑗 = min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘) and 𝑠𝑠𝑗𝑗 = arg min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘);

 }
If 𝑑𝑑 > 𝛿𝛿𝑗𝑗 and 𝑠𝑠𝑗𝑗 ≠ 𝑗𝑗∗, no change;

}
 }
 For 𝑗𝑗 = 𝑗𝑗∗, {
 Find the closest leaf entry 𝐶𝐶𝑠𝑠𝑘𝑘 in each CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶𝑘𝑘 for 𝑘𝑘 = 𝑙𝑙�𝐶𝐶𝑗𝑗�, … ,𝐾𝐾0;
 Find 𝛿𝛿𝑗𝑗 = min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘) and 𝑠𝑠𝑗𝑗 = arg min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘);

 }
 For 𝑗𝑗 = 𝑗𝑗∗ + 1, … , 𝑠𝑠𝑗𝑗∗ − 1, {

 If 𝑠𝑠𝑗𝑗 = 𝑠𝑠𝑗𝑗∗, {
 Find the closest leaf entry 𝐶𝐶𝑠𝑠𝑘𝑘 in each CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶𝑘𝑘 for 𝑘𝑘 = 𝑙𝑙�𝐶𝐶𝑗𝑗�, … ,𝐾𝐾0;
 Find 𝛿𝛿𝑗𝑗 = min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘) and 𝑠𝑠𝑗𝑗 = arg min

𝑠𝑠𝑘𝑘>𝑗𝑗,𝑘𝑘=𝑙𝑙�𝐶𝐶𝑗𝑗�,…,𝐾𝐾0
𝑑𝑑(𝑗𝑗, 𝑠𝑠𝑘𝑘);

 }
If 𝑠𝑠𝑗𝑗 ≠ 𝑠𝑠𝑗𝑗∗ , no change;

 }
 For 𝑗𝑗 = 𝑠𝑠𝑗𝑗∗ + 1, … , 𝐽𝐽, no change;
 Find 𝛿𝛿∗ = min

𝑗𝑗=1,…,𝐽𝐽
𝛿𝛿𝑗𝑗 and 𝑗𝑗∗ = arg min

𝑗𝑗=1,…,𝐽𝐽
𝛿𝛿𝑗𝑗, the closest pair is < 𝑗𝑗∗, 𝑠𝑠𝑗𝑗∗ >;

}
Step 3. Export updated non-empty CF-trees;

Clearly, CF-tree based HAC is very similar to matrix based HAC. The only difference is that CF-tree based
HAC takes advantage of CF-tree structures to efficiently find the closest pair, rather than checking all
possible pairs as in matrix based HAC.

8. Determination of the Number of Clusters
Assume that the hierarchical clustering method has been used to produce 1, 2 … clusters already. We
consider the following two criterion indices in order to find the appropriate number of final clusters.

Bayesian Information Criterion (BIC):

BIC(𝐽𝐽) = −2∑ 𝜉𝜉𝑗𝑗
𝐽𝐽
𝑗𝑗=1 + 𝑚𝑚𝐽𝐽ln (𝑁𝑁), (23)

where 𝑁𝑁 is the total number of cases in all the 𝐽𝐽 clusters,

𝑚𝑚𝐽𝐽 = 𝐽𝐽 �2𝐾𝐾𝐴𝐴 + ∑ (𝐿𝐿𝑘𝑘 − 1)𝐾𝐾𝐵𝐵
𝑘𝑘=1 �. (24)

Akaike Information Criterion (AIC):

AIC(𝐽𝐽) = −2∑ 𝜉𝜉𝑗𝑗
𝐽𝐽
𝑗𝑗=1 + 2𝑚𝑚𝐽𝐽. (25)

Let I(𝐽𝐽) be the criterion index (BIC or AIC) of 𝐽𝐽 clusters, d(𝐽𝐽) be the distance measure between the two
clusters merged in merging 𝐽𝐽 + 1 clusters to 𝐽𝐽 clusters, and 𝐽𝐽𝐶𝐶 be the total number of sub-clusters from
which to determine the appropriate number of final clusters.

Users can supply the range for the number of clusters [𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 , 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚] in which they believe the “true” number
of clusters should lie. Notice that if 𝐽𝐽𝐶𝐶 < 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 , reset 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐽𝐽𝐶𝐶 .

The following four methods are proposed:

Method 1. Finding the number of clusters by information convergence.

Let ∆I(𝐽𝐽) = I(𝐽𝐽) − I(𝐽𝐽 + 1), where I(𝐽𝐽) can be either BIC(𝐽𝐽) or AIC(𝐽𝐽) depending on user’s choice.

If ∆I(1) ≤ 0, 𝐽𝐽𝐼𝐼 = 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚. Else, let𝑅𝑅1(𝐽𝐽) = ∆I(𝐽𝐽)/∆I(1);

Let 𝐽𝐽𝐼𝐼 be the smallest 𝐽𝐽 in [𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚, 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 − 1] which satisfies 𝑅𝑅1(𝐽𝐽) < 0.1, If none 𝐽𝐽 satisfies the condition,
let 𝐽𝐽𝐼𝐼 = 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚.

Method 2. Finding the number of cluster by the largest distance jump.

To report 𝐽𝐽𝑑𝑑 = 1 + arg max
𝐽𝐽∈[𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚−1,𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚−1]

(d(𝐽𝐽) d(𝐽𝐽 + 1)⁄) as the number of clusters.

Method 3. Finding the number of clusters by combining distance jump and information
convergence aggressively

The process goes as follows:

a) Let 𝑅𝑅2(𝐽𝐽) = d(𝐽𝐽) d(𝐽𝐽 + 1)⁄ .
b) Let 𝐽𝐽1 be the largest 𝐽𝐽 in [𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚, 𝐽𝐽𝐼𝐼 − 1] which satisfies 𝑅𝑅1(𝐽𝐽) > 0.3. If none 𝐽𝐽 satisfies the condition,

let 𝐽𝐽1 = 𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 − 1.
c) Calculate 𝑅𝑅2(𝐽𝐽) for 𝐽𝐽 in [𝐽𝐽1, 𝐽𝐽𝐼𝐼 − 1]. Suppose that the max and the second max of 𝑅𝑅2(𝐽𝐽) occurred

at 𝑚𝑚1 and 𝑚𝑚2.
d) If 𝑅𝑅2(𝑚𝑚1)

𝑅𝑅2(𝑚𝑚2)
> 1.3, report 1 + 𝑚𝑚1 as the cluster number.

e) Otherwise, report 1 + MIN(𝑚𝑚1,𝑚𝑚2).

Method 4. Finding the number of clusters by combining distance jump and information
convergence conservatively

This method performs the same steps from a) to d) in method 3. But in step e), method 4 reports 1 +
MAX(𝑚𝑚1,𝑚𝑚2).

By default, method 3 is used with BIC as the information criterion.

9. Overview of the Entire Clustering Solution
Figure 5 illustrates the overview of the entire clustering solution.

Figure 5. Control flow of the entire clustering solutin.

Done

Filter features based on
summary statistics

Start

Select features adaptively
based on clustering models

With selected features,
perform distributed clustering
with optional outlier detection

9.1. Feature Selection

9.1.1. Feature Filtering

Based on the summary statistics produced by DE, CE will perform an initial analysis and determine the
features that are not useful for making the clustering solution. Specifically, the following features will be
excluded.

Rule Status Comment
1 Frequency/analysis weight features Required
2 Identity features Required
3 Constant features Required
4 The percentage of missing values in any feature is

larger than 𝛿𝛿 (default 70%)
Required

5 The distribution of the categories of a categorical
feature is extremely imbalanced, that is 𝑅𝑅𝑀𝑀𝑆𝑆𝑆𝑆𝑅𝑅 > 𝛿𝛿
(default 0.7)

Discarded The statistic of 𝑅𝑅𝑀𝑀𝑆𝑆𝑆𝑆𝑅𝑅 is
the effect size for one
sample chi-square test.

6 One category makes up the overwhelming majority of
total population above a given percentage threshold 𝛿𝛿
(default 95%)

Required

7 The number of categories of a categorical feature is
larger than 𝛿𝛿 (default 24)

Required

8 There are categories of a categorical feature with
extremely high or low frequency, that is, the outlier
strength is larger than 𝛿𝛿 (default 3)

Discarded

9 The absolute coefficient of variation of a continuous
feature is smaller than 𝛿𝛿 (default 0.05)

Required

The remaining features will be saved for adaptive feature selection in the next step.

9.1.2. Adaptive Feature Selection

Adaptive feature selection selects the most important features for the final clustering solution. Specifically,
it performs the following steps.

Step 1. Divide the distributed data into data splits.
Step 2. Build a local CF-tree on each data split.
Step 3. Distribute local CF-trees into multiple computing units. A unique key is assigned to each CF-tree.
Step 4. On each computing unit, start with all available features:

a. Perform matrix based HAC with all features on the leaf entries to get an approximate
clustering solution, S0. Suppose there are 𝐽𝐽∗ final clusters.

b. Compute importance for the set of all features.
c. Let 𝑆𝑆∗ = 𝑆𝑆0 and 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 be the information criteria of S0.
d. Remove features with non-positive importance as many as possible, and update 𝑆𝑆∗ and 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 .
e. Repeat to do the follows:

i. Select the most unimportant feature from remaining features which are not checked.
ii. Perform matrix based HAC with remaining features (not including the selected one)

on the leaf entries to get a new approximate clustering solution, S1, with the fixed
number of 𝐽𝐽∗ clusters.

iii. If the information criteria of S1 plus the information of all discarded features
determined by S1 is lower than 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟 , then remove the selected feature, and let 𝑆𝑆∗ = 𝑆𝑆1.

iv. Continue to check the next feature.
f. Select the set of features corresponding to 𝑆𝑆∗.

Step 5. Pour together all the sets of features produced by different computing units. Discard any feature if
its occurring frequency is less than 𝑅𝑅 ∗ 𝛽𝛽 (default 𝛽𝛽 = 50%). The remaining features will be used to
build the final clustering solution.

The process described above can be implemented in parallel using one map-reduce job under the Hadoop
framework, as illustrated in Figure 6. See appendix A for details the map-reduce implementation.

Figure 6. One map-reduce job for feature selection.

Implementation notes:

 In default, the information based feature importance is used for the log-likelihood distance
measure, and the effect size based feature importance is for the Euclidean distance.

 If no features are selected, just report all features.

9.2. Distributed Clustering

The Clustering Engine (CE) can identify clusters from distributed data with high performance and
accuracy. Specifically, it performs the following steps:

Step 1. Divide the distributed data into data splits.
Step 2. Build a local CF-tree on each data split.
Step 3. Distribute local CF-trees into multiple computing units. Note that multiple CF-trees may be

distributed to the same computing unit.
Step 4. On each computing unit, with all CF-entries in the involved CF-trees, perform a series of CF-tree

based HACs, and get a specified number of sub-clusters.

Mapper 1

1. Pass data and build a
local CF-tree with all
available features,
turning off the option of
outlier detection.

2. Assign a proper key to
the built CF-tree.

3. Pass the CF-tree to a
certain reducer according
to the assigned key.

Data split 1

Reducer 1 Controller

Mapper R

Do the same as Mapper 1

Data split K

Reducer G

Do the same as Reducer 1

For each key,
1. Pour together all leaf entries in

the involved CF-tree.
2. Start with all available

features:
a. Build an approximate

clustering solution with the
selected features.

b. Remove the most
unimportant features.

c. Repeat step a) and b) until
all relevant features for
clustering have been
selected.

3. Pass the set of selected
features to the controller.

1. Pour together all the
sets of features
produced by different
reducers.

2. Select those features
which appear
frequently. The selected
features will be used in
the next map-reduce
job to build the final
clustering solution.

Step 5. Pour together all the sub-clusters produced by different computing unit, and perform matrix based
HAC to get the final clusters.
The number of final clusters is determined automatically or using a fixed one depending on the
settings.

The process described above can be implemented in parallel using one map-reduce job under the Hadoop
framework, as illustrated in Figure 7. See appendix B for details of the map-reduce implementation.

Figure 7. One map-reduce job for distributed clustering with outlier delection.

Implementation notes:

 The number of computing units is
𝑄𝑄 = ⌈𝑚𝑚𝑖𝑖𝑚𝑚(𝑅𝑅 ∗ 𝑆𝑆 𝐷𝐷1⁄ ,𝐷𝐷2 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚⁄)⌉, (28)
where 𝐷𝐷1 (default 50,000) is the number of data points which are suitable to perform CF-tree based
HAC, 𝐷𝐷2 (default 5,000) is the number of data points which are suitable to perform matrix based
HAC, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 is the minimal number of sub-clusters produced by each computing unit, and 𝑆𝑆 is the
maximal number of leaf entries, i.e. 𝐵𝐵𝐻𝐻 ∗ 𝐿𝐿, in a single CF-tree.

 The number of sub-clusters produced by each computing unit is
𝐽𝐽1 = ⌊𝑚𝑚𝑖𝑖𝑚𝑚(𝑅𝑅 ∗ 𝑆𝑆,𝐷𝐷2) 𝑄𝑄⁄ ⌋.
 (29)

9.3. Distributed Outlier Detection

Outlier detection in the Clustering Engine will be based and will build upon the outlier handling method
described previously in section 6. It is also extended to the distributed setting with the following steps:

Mapper 1

Data split 1

Reducer 1 Controller

1. Pour together all sub-clusters and CF-outliers from
reducers.

2. Perform matrix based HAC on sub-clusters to get final
regular clusters.

3. Check if CF-outliers fit with any regular clusters, and
determine true outliers.

4. Compute model evaluation measures, insights,
interestingness, etc.

5. Export PMML and StatXML.

Mapper R

Do the same as Mapper 1

Data split K

Reducer G

Do the same as Reducer 1

For each key,
1. Pour together all CF-trees and

CF-outliers with the same key
under consideration.

2. Check if the allocated CF-
outliers fit with any leaf entries
in the CF-trees.

3. Perform a series of CF-tree
based HACs on the (merged)
leaf entries to get a specified
number of sub-clusters.

4. Pass sub-clusters and
remaining CF-outliers to the
controller.

1. Pass data and build a
local CF-tree with the set
of specified features.
Suppose the option of
outlier detection is turned
on.

2. Assign a proper key to
the built CF-tree and also
CF-outliers.

3. Pass the CF-tree and CF-
outliers to a certain
reducer according to the
assigned key.

Step 1. On each data split, perform the following:
1) Generate local candidate outliers according to the method described in section 6.
2) Distribute the local candidate outliers together with the associated CF-tree to a certain

computing unit.
Step 2. Each computing unit is allocated with a set of candidate outliers and also a set of CF-trees

containing regular leaf entries. For each member in the set of candidate outliers, it will be merged
with the closest regular leaf entry only if the merging does not break the maximal tightness
threshold among the involved CF-trees. Note that we will pass the CF-trees in order to enhance the
performance of finding the closest regular leaf entry.

Step 3. Pour together all the remaining candidate outliers and sub-clusters produced by computing
machines. Do the following:
1) Perform matrix based HAC on sub-clusters, and get the final regular clusters.
2) Keep only candidate outliers whose distance from the closest regular cluster to the center of

the outlier candidate is greater than the corresponding cluster distance threshold 𝐷𝐷𝑡𝑡(𝑗𝑗)
3) Merge the rest of candidate outliers with the corresponding closest regular clusters and update

the distance threshold for each regular cluster.
4) For each remaining outlier cluster, compute its outlier strength.
5) Sort remaining outlier clusters according to outlier strength in descending order, and get the

minimum outlier strength for the top P (default 5%) percent of outliers, and use it as an outlier
threshold in scoring.

6) Export a specified number of the most extreme outlier clusters (default 20), along with the
following measures for each cluster: cluster size, outlier strength, probabilities of belonging to
each regular cluster.

Outlier strength of a cluster 𝐶𝐶𝑠𝑠 is computed as

𝑂𝑂(𝑠𝑠) = ∑ 𝑑𝑑�(𝑗𝑗,𝑠𝑠)
𝐷𝐷𝑡𝑡(𝑗𝑗)

𝑝𝑝(𝑗𝑗|𝑠𝑠)𝐽𝐽
𝑗𝑗=1 , (30)

where 𝐷𝐷𝑡𝑡(𝑗𝑗) is the distance threshold of cluster 𝐶𝐶𝑗𝑗, which is the maximum distance from cluster 𝐶𝐶𝑗𝑗 to each
center of its starting sub-clusters in matrix based HAC, �̃�𝑑(𝑗𝑗, 𝑠𝑠) is the distance from cluster 𝐶𝐶𝑗𝑗 to the center of
cluster 𝐶𝐶𝑠𝑠, and 𝑝𝑝(𝑗𝑗|𝑠𝑠) is the probability of cluster 𝐶𝐶𝑠𝑠 belonging to cluster 𝐶𝐶𝑗𝑗, that is

𝑝𝑝(𝑗𝑗|𝑠𝑠) = exp (−𝑑𝑑�(𝑗𝑗,𝑠𝑠))
∑ exp (−𝑑𝑑�(𝑗𝑗,𝑠𝑠))𝐽𝐽
𝑗𝑗=1

. (31)

Notice that the distance between the cluster center and a cluster 𝐶𝐶𝑗𝑗 is computed by considering the center of
cluster 𝐶𝐶𝑠𝑠 as a singleton cluster 𝐶𝐶𝑠𝑠′. The cluster center herein is defined as the mean for a continuous
feature, while being the mode for a categorical feature.

10. Cluster Membership Assignment

10.1. Without Outlier-Handling

Assign a case to the closest cluster according to the distance measure. Meanwhile, produce the probabilities
of the case belonging to each regular cluster.

10.2. With Outlier-Handling

10.2.1. Legacy Method

Log-likelihood distance

Assume outliers follow a uniform distribution. Calculate both the log-likelihood resulting from assigning a
case to a noise cluster and that resulting from assigning it to the closest non-noise cluster. The case is then
assigned to the cluster which leads to the larger log-likelihood. This is equivalent to assigning a case to its
closest non-noise cluster if the distance between them is smaller than a critical value 𝐶𝐶 = ln(∏ 𝑅𝑅𝑘𝑘𝑘𝑘 ∏ 𝐿𝐿𝑚𝑚𝑚𝑚),
where ∏ 𝑅𝑅𝑘𝑘𝑘𝑘 is the product of ranges of continuous fields, and ∏ 𝐿𝐿𝑚𝑚𝑚𝑚 is the product of category numbers of
categorical fields. Otherwise, designate it as an outlier.

Euclidean distance

Assign a case to its closest non-noise cluster if the Euclidean distance between them is smaller than a

critical value 𝐶𝐶 = 2� 1
𝐽𝐽𝐾𝐾𝐴𝐴

∑ ∑ 𝜎𝜎�𝑗𝑗𝑘𝑘2
𝐾𝐾𝐴𝐴
𝑘𝑘=1

𝐽𝐽
𝑗𝑗=1 . Otherwise, designate it as an outlier.

10.2.2. New Method

When scoring a new case, we compute the outlier strength of the case. If the computed outlier strength is
greater than the outlier threshold, then the case is an outlier and otherwise belongs to the closest cluster.
Meanwhile, the probabilities of the case belonging to each regular cluster are produced.

Alternatively, users can specify a customized outlier threshold (3, for example) rather than using the one
found from the data.

11. Clustering Model Evaluation
Clustering model evaluation enables users to understand the identified cluster structure, and also to learn
useful insights and interestingness derived from the clustering solution.

Note that clustering model evaluation can be done using cluster features and also the hierarchical
dendrogram when forming the clustering solution.

11.1. Across-Cluster Feature Importance

Across-cluster feature importance indicates how influential a feature is in building the clustering solution.
This measure is very useful for users to understand the clusters in their data. Moreover, it helps for feature
selection, as described in section 12.2.

Across-cluster feature importance can be defined using two methods.

11.1.1. Information Criterion Based Method

If BIC is used as the information criterion, the importance of feature 𝑘𝑘 is

Importance𝑘𝑘 = BIC𝑘𝑘
0−BIC𝑘𝑘

diff𝐾𝐾
𝑚𝑚𝑚𝑚𝑚𝑚 , (32)

where

BIC𝑘𝑘0 = �
𝑁𝑁𝑘𝑘 ln(𝜎𝜎�𝑘𝑘2 + Δ𝑘𝑘) + 2 ln(𝑁𝑁) , if feature 𝑘𝑘 is continuous
2𝑁𝑁′𝑘𝑘𝑅𝑅�𝑘𝑘 + (𝐿𝐿𝑘𝑘 − 1) ln(𝑁𝑁) , if feature 𝑘𝑘 is categorical

,

BIC𝑘𝑘 = �
∑ 𝑁𝑁𝑗𝑗𝑘𝑘 ln�𝜎𝜎�𝑗𝑗𝑘𝑘2 + Δ𝑘𝑘�
𝐽𝐽
𝑗𝑗=1 + 2𝐽𝐽 ln(𝑁𝑁) , if feature 𝑘𝑘 is continuous

2∑ 𝑁𝑁′𝑗𝑗𝑘𝑘𝑅𝑅�𝑗𝑗𝑘𝑘
𝐽𝐽
𝑗𝑗=1 + 𝐽𝐽(𝐿𝐿𝑘𝑘 − 1) ln(𝑁𝑁) , if feature 𝑘𝑘 is categorical

,

diff𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑘𝑘

(BIC𝑘𝑘0 − BIC𝑘𝑘),

and 𝑁𝑁𝑘𝑘, 𝑁𝑁′𝑘𝑘 is the total valid count of feature 𝑘𝑘 in the data, 𝜎𝜎�𝑘𝑘2 is the grand variance, and 𝑅𝑅�𝑘𝑘 is the grand
entropy.

Notice that the information measure for the overall population has been decomposed as

BIC0 = ∑ BIC𝑘𝑘0𝐾𝐾𝐴𝐴+𝐾𝐾𝐵𝐵
𝑘𝑘=1 .

While if AIC is used, across-cluster importance is

Importance𝑘𝑘 = AIC𝑘𝑘
0−AIC𝑘𝑘

diff𝐾𝐾
𝑚𝑚𝑚𝑚𝑚𝑚 , (33)

where

AIC𝑘𝑘0 = �
𝑁𝑁𝑘𝑘 ln(𝜎𝜎�𝑘𝑘2 + Δ𝑘𝑘) + 4, if feature 𝑘𝑘 is continuous
2𝑁𝑁′𝑘𝑘𝑅𝑅�𝑘𝑘 + 2(𝐿𝐿𝑘𝑘 − 1), if feature 𝑘𝑘 is categorical

,

AIC𝑘𝑘 = �
∑ 𝑁𝑁𝑗𝑗𝑘𝑘 ln�𝜎𝜎�𝑗𝑗𝑘𝑘2 + Δ𝑘𝑘�
𝐽𝐽
𝑗𝑗=1 + 4𝐽𝐽, if feature 𝑘𝑘 is continuous

2∑ 𝑁𝑁′𝑗𝑗𝑘𝑘𝑅𝑅�𝑗𝑗𝑘𝑘
𝐽𝐽
𝑗𝑗=1 + 2𝐽𝐽(𝐿𝐿𝑘𝑘 − 1), if feature 𝑘𝑘 is categorical

,

diff𝐾𝐾𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑘𝑘

(AIC𝑘𝑘0 − AIC𝑘𝑘).

Notice that, if the importance computed as above is negative, set it as zero. This also applies in the
following.

Notice that the importance of a feature will be zero if the information difference corresponding to the
feature is negative. This applies for all the calculations of information-based importance.

11.1.2. Effect Size Based Method

This method is similar to that used for defining association interestingness for bivariate variables. See ref. 6
for details.

Categorical Feature

For a categorical feature 𝑘𝑘, compute Pearson chi-square test statistic

𝜒𝜒𝑝𝑝2 = ∑ ∑ (𝑁𝑁𝑗𝑗𝑘𝑘𝑗𝑗−𝐸𝐸𝑗𝑗𝑘𝑘𝑗𝑗)2

𝐸𝐸𝑗𝑗𝑘𝑘𝑗𝑗

𝐽𝐽
𝑗𝑗=1

𝐿𝐿𝑘𝑘
𝑙𝑙=1 , (34)

where

𝑅𝑅𝑗𝑗𝑘𝑘𝑙𝑙 =
𝑁𝑁𝑗𝑗𝑘𝑘∙𝑁𝑁∙𝑘𝑘𝑗𝑗
𝑁𝑁∙𝑘𝑘∙

, (35)

and

𝑁𝑁𝑗𝑗𝑘𝑘∙ = ∑ 𝑁𝑁𝑗𝑗𝑘𝑘𝑙𝑙
𝐿𝐿𝑘𝑘
𝑙𝑙=1 , (36)

𝑁𝑁∙𝑘𝑘𝑙𝑙 = ∑ 𝑁𝑁𝑗𝑗𝑘𝑘𝑙𝑙
𝐽𝐽
𝑗𝑗=1 , (37)

𝑁𝑁∙𝑘𝑘∙ = ∑ ∑ 𝑁𝑁𝑗𝑗𝑘𝑘𝑙𝑙
𝐽𝐽
𝑗𝑗=1

𝐿𝐿𝑘𝑘
𝑙𝑙=1 . (38)

The p-value is computed as

𝑝𝑝𝑣𝑣𝑚𝑚𝑙𝑙𝑣𝑣𝑟𝑟 = Prob�Χ2 > 𝜒𝜒𝑝𝑝2�, (39)

in which Χ2 is a random variable that follows a chi-square distribution with freedom degree of (𝐽𝐽 − 1)(𝐿𝐿𝑘𝑘 −
1). Note that categories with 𝑁𝑁𝑗𝑗𝑘𝑘∙ = 0 or 𝑁𝑁∙𝑘𝑘𝑙𝑙 = 0 will be excluded when computing the statistic and degrees
of freedom.

The effect size, Cramer’s V, is

𝑅𝑅𝑠𝑠 = � 𝜒𝜒𝑝𝑝2

𝑁𝑁∙𝑘𝑘∙(𝑞𝑞−1)
�
1/2

, (40)

where

𝑞𝑞 = min (𝐽𝐽, 𝐿𝐿𝑘𝑘). (41)

The importance of feature 𝑘𝑘 is produced by the following mapping function

Importance𝑘𝑘 = �
0, 𝑝𝑝𝑣𝑣𝑚𝑚𝑙𝑙𝑣𝑣𝑟𝑟 ≥ 𝑠𝑠𝑖𝑖𝑠𝑠.

𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝐼𝐼𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑙𝑙𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝑚𝑚(𝑆𝑆𝑡𝑡 , 𝐼𝐼𝑡𝑡 ,𝑅𝑅𝑠𝑠), 𝑝𝑝𝑣𝑣𝑚𝑚𝑙𝑙𝑣𝑣𝑟𝑟 < 𝑠𝑠𝑖𝑖𝑠𝑠. (42)

where 𝑠𝑠𝑖𝑖𝑠𝑠. is significance level (default 0.05), 𝑆𝑆𝑡𝑡 is a set of threshold values to assess effect size (default 𝑆𝑆𝑡𝑡 =
{0.0, 0.2, 0.6, 1.0}), 𝐼𝐼𝑡𝑡 is a set of corresponding thresholds of importance (default
𝐼𝐼𝑡𝑡 = {0.00, 0.33, 0.67, 1.00}), and 𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝐼𝐼𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑙𝑙𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝑚𝑚(∙) is a monotone cubic interpolation
mapping function between 𝑆𝑆𝑡𝑡 and 𝐼𝐼𝑡𝑡 .

Continuous Feature

For a continuous feature 𝑘𝑘, compute F test statistic

𝐹𝐹 = 𝑆𝑆𝑆𝑆𝑅𝑅 (𝐽𝐽−1)⁄
𝑆𝑆𝑆𝑆𝐸𝐸 (𝑁𝑁∙𝑘𝑘−𝐽𝐽)⁄

, (43)

where

𝑆𝑆𝑆𝑆𝑅𝑅 = ∑ 𝑁𝑁𝑗𝑗𝑘𝑘��̂�𝜇𝑗𝑗𝑘𝑘 − �̂�𝜇𝑘𝑘�
2𝐽𝐽

𝑗𝑗=1 , (44)

𝑆𝑆𝑆𝑆𝑅𝑅 = ∑ 𝑁𝑁𝑗𝑗𝑘𝑘𝜎𝜎�𝑗𝑗𝑘𝑘2
𝐽𝐽
𝑗𝑗=1 ,

 (45)

𝑁𝑁∙𝑘𝑘 = ∑ 𝑁𝑁𝑗𝑗𝑘𝑘
𝐽𝐽
𝑗𝑗=1 , (46)

�̂�𝜇𝑘𝑘 =
∑ 𝑁𝑁𝑗𝑗𝑘𝑘𝜇𝜇�𝑗𝑗𝑘𝑘
𝐽𝐽
𝑗𝑗=1

𝑁𝑁∙𝑘𝑘
. (47)

The F statistic is undefined if the denominator equals zero. Accordingly, the p-value is calculated as

𝑝𝑝𝑣𝑣𝑚𝑚𝑙𝑙𝑣𝑣𝑟𝑟 = �
undefined, if both the numerator and denominator of 𝐹𝐹 are zero;

0, else if the denominator of 𝐹𝐹 is zero;
Prob{𝐹𝐹(𝐽𝐽 − 1,𝑁𝑁∙𝑘𝑘 − 𝐽𝐽) > 𝐹𝐹}, else.

 (48)

in which 𝐹𝐹(𝐽𝐽 − 1,𝑁𝑁∙𝑘𝑘 − 𝐽𝐽) is a random variable that follows a F-distribution with degrees of freedom 𝐽𝐽 − 1
and 𝑁𝑁∙𝑘𝑘 − 𝐽𝐽.

The effect size, Eta square, is

𝑅𝑅𝑠𝑠 = 1 −
∑ 𝑁𝑁𝑗𝑗𝑘𝑘𝜎𝜎�𝑗𝑗𝑘𝑘

2𝐽𝐽
𝑗𝑗=1

𝑁𝑁∙𝑘𝑘𝜎𝜎�𝑘𝑘
2 , (49)

where

𝜎𝜎�𝑘𝑘2 =
∑ 𝑠𝑠𝑗𝑗𝑘𝑘

2𝐽𝐽
𝑗𝑗=1 −𝑁𝑁∙𝑘𝑘𝜇𝜇�𝑘𝑘

2

𝑁𝑁∙𝑘𝑘
. (50)

The importance of feature 𝑘𝑘 is produced using the same mapping function as (42), and default 𝑆𝑆𝑡𝑡 =
{0.0, 0.04, 0.36, 1.0}.

11.2. Within-Cluster Feature Importance

Within-cluster feature importance indicates how influential a feature is in forming a cluster. Similar to
across-cluster feature importance, within-cluster feature importance can also be defined using two
methods.

11.2.1. Information Criterion Based Method

If BIC is used as the information criterion, the importance of feature 𝑘𝑘 within cluster 𝐶𝐶𝑗𝑗 (𝑗𝑗 = 1, … , 𝐽𝐽) is

Importance𝑘𝑘,𝑗𝑗 =
BIC𝑘𝑘

0−BIC𝑘𝑘,𝑗𝑗

diff𝐾𝐾,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 , (51)

where

BIC𝑘𝑘,𝑗𝑗 = �
𝑁𝑁𝑗𝑗𝑘𝑘 ln�𝜎𝜎�𝑗𝑗𝑘𝑘2 + Δ𝑘𝑘� + 𝑁𝑁𝑗𝑗𝑐𝑐𝑘𝑘 ln�𝜎𝜎�𝑗𝑗𝑐𝑐𝑘𝑘

2 + Δ𝑘𝑘� + 2 ∗ 2ln (𝑁𝑁), if feature 𝑘𝑘 is continuous
2𝑁𝑁′𝑗𝑗𝑘𝑘𝑅𝑅�𝑗𝑗𝑘𝑘 + 2𝑁𝑁′𝑗𝑗𝑐𝑐𝑘𝑘𝑅𝑅�𝑗𝑗𝑐𝑐𝑘𝑘 + 2 ∗ (𝐿𝐿𝑘𝑘 − 1) ln(𝑁𝑁) , if feature 𝑘𝑘 is categorical

, (52)

diff𝐾𝐾,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 = max

𝑘𝑘
(BIC𝑘𝑘0 − BIC𝑘𝑘,𝑗𝑗). (53)

Notice that jc represents the complement set of j in J.

If AIC is used as the information criterion, the importance of feature 𝑘𝑘 within cluster 𝐶𝐶𝑗𝑗 (𝑗𝑗 = 1, … , 𝐽𝐽) is

Importance𝑘𝑘,𝑗𝑗 =
AIC𝑘𝑘

0−AIC𝑘𝑘,𝑗𝑗

diff𝐾𝐾,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 , (54)

where

AIC𝑘𝑘,𝑗𝑗 = �
𝑁𝑁𝑗𝑗𝑘𝑘 ln�𝜎𝜎�𝑗𝑗𝑘𝑘2 + Δ𝑘𝑘� + 𝑁𝑁𝑗𝑗𝑐𝑐𝑘𝑘 ln�𝜎𝜎�𝑗𝑗𝑐𝑐𝑘𝑘

2 + Δ𝑘𝑘� + 4 ∗ 2, if feature 𝑘𝑘 is continuous
2𝑁𝑁′𝑗𝑗𝑘𝑘𝑅𝑅�𝑗𝑗𝑘𝑘 + 2𝑁𝑁′𝑗𝑗𝑐𝑐𝑘𝑘𝑅𝑅�𝑗𝑗𝑐𝑐𝑘𝑘 + 2 ∗ 2(𝐿𝐿𝑘𝑘 − 1), if feature 𝑘𝑘 is categorical

 (55)

diff𝐾𝐾,𝑗𝑗
𝑚𝑚𝑚𝑚𝑚𝑚 = max

𝑘𝑘
(AIC𝑘𝑘0 − AIC𝑘𝑘,𝑗𝑗). (56)

11.2.2. Effect Size Based Method

Within-cluster importance is defined by comparing the distribution of the feature within a cluster with the
overall distribution.

Categorical Feature

For cluster 𝐶𝐶𝑗𝑗 (𝑗𝑗 = 1, … , 𝐽𝐽) and a categorical feature 𝑘𝑘, compute Pearson chi-square test statistic

𝜒𝜒𝑝𝑝2 = ∑ (𝑁𝑁𝑗𝑗𝑘𝑘𝑗𝑗−𝐸𝐸𝑗𝑗𝑘𝑘𝑗𝑗)2

𝐸𝐸𝑗𝑗𝑘𝑘𝑗𝑗

𝐿𝐿𝑘𝑘
𝑙𝑙=1 , (57)

where

𝑅𝑅𝑗𝑗𝑘𝑘𝑙𝑙 =
𝑁𝑁𝑗𝑗𝑘𝑘∙𝑁𝑁∙𝑘𝑘𝑗𝑗
𝑁𝑁∙𝑘𝑘∙

. (58)

The p-value is computed as

𝑝𝑝𝑣𝑣𝑚𝑚𝑙𝑙𝑣𝑣𝑟𝑟 = Prob�Χ2 > 𝜒𝜒𝑝𝑝2�, (59)

in which Χ2 is a random variable that follows a chi-square distribution with freedom degree of 𝐿𝐿𝑘𝑘 − 1. Note
that importance for feature 𝑘𝑘 within cluster 𝐶𝐶𝑗𝑗 will be undefined if 𝑁𝑁𝑗𝑗𝑘𝑘∙ equals zero.

The effect size is

𝑅𝑅𝑠𝑠 = � 𝜒𝜒𝑝𝑝2

𝑁𝑁𝑗𝑗𝑘𝑘∙(𝐿𝐿𝑘𝑘−1)
�
1
2
. (60)

The importance of feature 𝑘𝑘 within cluster 𝐶𝐶𝑗𝑗 is produced using the same mapping function as (42), and
default 𝑆𝑆𝑡𝑡 = {0.0, 0.2, 0.6, 1.0}.

Continuous Feature

For cluster 𝐶𝐶𝑗𝑗 (𝑗𝑗 = 1, … , 𝐽𝐽) and a continuous feature 𝑘𝑘, compute t test statistic

𝑀𝑀 =
𝜇𝜇�𝑗𝑗𝑘𝑘−𝜇𝜇�𝑘𝑘
𝑠𝑠𝑑𝑑 �𝑁𝑁𝑗𝑗𝑘𝑘⁄

, (61)

where

𝑠𝑠𝑑𝑑 = �
𝑁𝑁𝑗𝑗𝑘𝑘

𝑁𝑁𝑗𝑗𝑘𝑘−1
𝜎𝜎�𝑗𝑗𝑘𝑘2 . (62)

The p-value is calculated as

𝑝𝑝𝑣𝑣𝑚𝑚𝑙𝑙𝑣𝑣𝑟𝑟 = �
undefined, if both the numerator and denominator of 𝑀𝑀 are zero;

0, else if the denominator of 𝑀𝑀 is zero;
1 − Prob��𝑇𝑇(𝑁𝑁𝑗𝑗𝑘𝑘 − 1)� ≤ |𝑀𝑀|�, else.

 (63)

in which 𝑇𝑇(𝑁𝑁𝑗𝑗𝑘𝑘 − 1) is a random variable that follows a t-distribution with degrees of freedom 𝑁𝑁𝑗𝑗𝑘𝑘 − 1.

The effect size is

𝑅𝑅𝑠𝑠 =
�𝜇𝜇�𝑗𝑗𝑘𝑘−𝜇𝜇�𝑘𝑘�

𝑠𝑠𝑑𝑑
.

(64)

The importance of feature 𝑘𝑘 within cluster 𝐶𝐶𝑗𝑗 is produced using the same mapping function as (42), and
default 𝑆𝑆𝑡𝑡 = {0.0, 0.2, 0.6, 1.0}.

11.3. Clustering Model Goodness

Clustering model goodness indicates the quality of a clustering solution. This measure will be computed
for the final clustering solution, and it will also be computed for approximate clustering solutions during
the process of adaptive feature selection.

Suppose there are 𝐽𝐽 regular clusters, denoted as 𝐶𝐶1,..., 𝐶𝐶𝐽𝐽. Let 𝑙𝑙(𝑖𝑖) be the regular cluster label assigned to
sub-cluster 𝑖𝑖.

Then for each sub-cluster 𝑖𝑖, the Silhouette coefficient is computed approximately as

𝑆𝑆𝑚𝑚 = Ω−Φ
max (Φ,Ω)

, (65)

where

Φ is the weighted average distance from the center of sub-cluster 𝑖𝑖 to the center of every other sub-cluster
assigned to the same regular cluster, that is,

Φ =
∑ 𝑁𝑁𝑠𝑠𝑑𝑑(𝑚𝑚,𝑠𝑠)𝑠𝑠≠𝑚𝑚 and 𝑗𝑗(𝑠𝑠)=𝑗𝑗(𝑚𝑚)

∑ 𝑁𝑁𝑠𝑠𝑠𝑠≠𝑚𝑚 and 𝑗𝑗(𝑠𝑠)=𝑗𝑗(𝑚𝑚)
, (66)

Ω is the minimal average distance from the center of sub-cluster 𝑖𝑖 to the center of sub-clusters in a different
regular cluster among all different regular clusters, that is,

Ω = min �
∑ 𝑁𝑁𝑠𝑠𝑑𝑑(𝑚𝑚,𝑠𝑠)𝑗𝑗(𝑠𝑠)=𝐶𝐶𝑗𝑗

∑ 𝑁𝑁𝑠𝑠𝑗𝑗(𝑠𝑠)=𝐶𝐶𝑗𝑗
�𝑗𝑗 = 1, … , 𝐽𝐽 and 𝐶𝐶𝑗𝑗 ≠ 𝑙𝑙(𝑖𝑖)�. (67)

Clustering model goodness is defined as the weighted average Silhouette coefficient over all starting sub-
clusters in the final stage of regular HAC, that is,

𝐺𝐺𝑀𝑀𝑀𝑀𝑑𝑑𝑚𝑚𝑀𝑀𝑠𝑠𝑠𝑠 =
∑ 𝑁𝑁𝑗𝑗𝑆𝑆𝑗𝑗𝑗𝑗
∑ 𝑁𝑁𝑗𝑗𝑗𝑗

. (68)

The average Silhouette coefficient ranges between -1 (indicating a very poor model) and +1 (indicating an
excellent model). As found by Kaufman and Rousseeuw (1990), average Silhouette greater than 0.5
indicates reasonable partitioning of data; lower than 0.2 means that data does not exhibit cluster structure.
In this regard, we can use the following function to map 𝐺𝐺𝑀𝑀𝑀𝑀𝑑𝑑𝑚𝑚𝑀𝑀𝑠𝑠𝑠𝑠 into an interestingness score:

𝐼𝐼𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑀𝑀𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑀𝑀𝑠𝑠𝑠𝑠(𝐺𝐺𝑀𝑀𝑀𝑀𝑑𝑑𝑚𝑚𝑀𝑀𝑠𝑠𝑠𝑠) = 𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝐼𝐼𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑙𝑙𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝑚𝑚(𝑆𝑆𝑡𝑡 , 𝐼𝐼𝑡𝑡 ,𝐺𝐺𝑀𝑀𝑀𝑀𝑑𝑑𝑚𝑚𝑀𝑀𝑠𝑠𝑠𝑠), (69)

where 𝑆𝑆𝑡𝑡 = {−1.0, 0.2, 0.5, 1.0}, and 𝐼𝐼𝑡𝑡 = {0.0, 0.0, 0.5, 1.0}.

Implementation notes:

 Please refer to section 9.3 for the definition of cluster center and also for the calculation of distance.
 When there is only a single sub-cluster in the regular cluster, let Φ be the tightness of the sub-

cluster.

11.4. Special Clusters

With the clustering solution, we can find special clusters, which could be regular clusters with high quality,
extreme outlier clusters, and so on.

11.4.1. Regular Cluster Ranking

To select the most useful or interesting regular clusters, we can rank them according to any of the measures
described below.

Cluster tightness

Cluster tightness is given by equation (9) or (15).

Cluster tightness is not scale-free, and it is a measure of cluster cohesion.

Cluster importance

Cluster importance indicates the quality of the regular cluster in the clustering solution. A higher
importance value means a better quality of the regular cluster.

If BIC is used as the information criterion, the importance for regular cluster 𝐶𝐶𝑗𝑗 is

Importance𝑗𝑗 =
BIC0 −BIC𝑗𝑗
diff𝐽𝐽

𝑚𝑚𝑚𝑚𝑚𝑚 , (70)

where

BIC𝑗𝑗 = ∑ BIC𝑘𝑘,𝑗𝑗
𝐾𝐾𝐴𝐴+𝐾𝐾𝐵𝐵
𝑘𝑘=1 ,

BIC0 = ∑ BIC𝑘𝑘0𝐾𝐾𝐴𝐴+𝐾𝐾𝐵𝐵
𝑘𝑘=1 ,

diff𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑗𝑗

(BIC0 − BIC𝑗𝑗).

If AIC is used as the information criterion, the importance for regular cluster 𝐶𝐶𝑗𝑗 is

Importance𝑗𝑗 =
AIC0 −AIC𝑗𝑗
diff𝐽𝐽

𝑚𝑚𝑚𝑚𝑚𝑚 , (71)

where

AIC𝑗𝑗 = ∑ AIC𝑘𝑘,𝑗𝑗
𝐾𝐾𝐴𝐴+𝐾𝐾𝐵𝐵
𝑘𝑘=1 ,

AIC0 = ∑ AIC𝑘𝑘0𝐾𝐾𝐴𝐴+𝐾𝐾𝐵𝐵
𝑘𝑘=1 ,

diff𝐽𝐽𝑚𝑚𝑚𝑚𝑚𝑚 = max
𝑗𝑗

(AIC0 − AIC𝑗𝑗).

Cluster importance is scale-free, and in some sense it is a normalized measure of cluster cohesion.

Cluster goodness

The goodness measure for regular cluster 𝐶𝐶𝑗𝑗 is defined as the weighted average Silhouette coefficient over
all starting sub-clusters in regular cluster 𝐶𝐶𝑗𝑗, that is,

𝐺𝐺𝑀𝑀𝑀𝑀𝑑𝑑𝑚𝑚𝑀𝑀𝑠𝑠𝑠𝑠𝑗𝑗 =
∑ 𝑁𝑁𝑚𝑚𝑆𝑆𝑚𝑚𝑗𝑗(𝑚𝑚)=𝐶𝐶𝑗𝑗
∑ 𝑁𝑁𝑚𝑚𝑗𝑗(𝑚𝑚)=𝐶𝐶𝑗𝑗

. (72)

We can also map 𝐺𝐺𝑀𝑀𝑀𝑀𝑑𝑑𝑚𝑚𝑀𝑀𝑠𝑠𝑠𝑠𝑗𝑗 into an interestingness score using equation (69).

Cluster goodness is also scale-free, and it is a measure of balancing cluster cohesion and cluster separation.

11.4.2. Outlier Clusters Ranking

For each outlier cluster, we have the following measures: cluster size, outlier strength. Each of the
measures can be used to rank outlier clusters, so as to find the most interesting ones.

11.4.3. Outlier Clusters Grouping

Outlier clusters can be grouped by the nearest regular cluster, using probability values.

Appendix A. Map-Reduce Job for Feature Selection
Mapper

Each mapper will handle one data split and use it to build a local CF-tree. The local CF-tree is assigned
with a unique key. Notice that if the option of outlier handling is turned on, outliers will not be passed to
reducers in case of feature selection.

Let 𝑇𝑇𝐶𝐶𝐶𝐶
(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) be the CF-tree with the key of 𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟 on data split 𝑀𝑀 (𝑀𝑀 = 1, … ,𝑅𝑅).

The map function is as follows.

Inputs:
− Data split 𝑀𝑀 // 𝑀𝑀 = 1, … ,𝑅𝑅
− 𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟 // 𝑀𝑀 = 1, … ,𝑅𝑅

 <Parameter settings>
− MainMemory // Default 80*1024 bytes
− OutlierHandling // {on, off}, default on
− OutlierHandlingDiskSpace // Default 20% of MainMemory
− OutlierQualification // Default 10 cases
− DelayedSplit // {on, off}, default on
− DelayedSplitDiskSpace // Default 10% of MainMemory
− Adjustment // Default 0.01
− DistanceMeasure // {Log-likelihood, Euclidean}, default

 // Log-likelihood
− InitialThreshold // Default 0
− NonLeafNodeBranchingFactor // Default 8
− LeafNodeBranchingFactor // Default 8
− MaxTreeHeight // Default 3

Outputs:
− 𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟)
Procedure:
1. Build a CF-tree on data split 𝑀𝑀 based on specified features and settings;
2. Assign 𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟 to the CF-tree;
3. Export 𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟);

Reducer

Each reducer can handle several keys. For each key, it first pours together all CF-trees which have the same
key. Then it builds approximate clustering solutions iteratively in order to find the most influential
features. The selected features will be passed to the controller.

Let 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) be the set of features produced for the key of 𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟 , 𝑀𝑀 = 1, … ,𝑅𝑅.

The reduce function for each key is as follows.

Inputs:

− 𝑇𝑇𝐶𝐶𝐶𝐶
(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟)

 <Parameter settings>

− Adjustment // Default 0.01
− DistanceMeasure // {Log-likelihood, Euclidean}, default Log-

 // likelihood
− AutoClustering // {on, off}, default on
− MaximumClusterNumber // Default 15
− MinimumClusterNumber // Default 2
− FixedClusterNumber // Default 5
− ClusteringCriterion // {BIC, AIC}, default BIC
− AutoClusteringMethod // {information criterion, distance jump,

 // maximum, minimum}, default minimum
Outputs:

− 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟)
Procedure:
1. Let 𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) be the set of all available features;
2. With all leaf entries in CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) and using features 𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟), perform
matrix based HAC to get an approximate cluster solution S0. Suppose the
number of approximate final clusters is 𝐽𝐽∗, which is determined automatically
or using a fixed one depending on the settings;
Compute importance for each feature in 𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟);
// Importance values should not be truncated
Compute I(S0), the information criterion of S0;

3. Let 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) and 𝐼𝐼ref =I(S0);
Find 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟), the set of features in 𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) with non-positive importance;
Let 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟);

4. With all leaf entries in CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶
(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) and using features 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟), perform

matrix based HAC to get a new solution S1 with fixed 𝐽𝐽∗;
Compute I(S1), the information criterion of S1;
Compute the information of all discarded features I(𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟)),
determined by S1, as ∑ BIC𝑘𝑘𝑘𝑘∈𝐶𝐶(𝑘𝑘𝑟𝑟𝑘𝑘𝑟𝑟)−𝐶𝐶�(𝑘𝑘𝑟𝑟𝑘𝑘𝑟𝑟) , or ∑ AIC𝑘𝑘𝑘𝑘∈𝐶𝐶(𝑘𝑘𝑟𝑟𝑘𝑘𝑟𝑟)−𝐶𝐶�(𝑘𝑘𝑟𝑟𝑘𝑘𝑟𝑟) , depending on the
setting, where

 BIC𝑘𝑘 = �
∑ 𝑁𝑁𝑗𝑗𝑘𝑘 ln�𝜎𝜎�𝑗𝑗𝑘𝑘2 + Δ𝑘𝑘�
𝐽𝐽
𝑗𝑗=1 + 2𝐽𝐽 ln(𝑁𝑁) , if feature 𝑘𝑘 is continuous

2∑ 𝑁𝑁′𝑗𝑗𝑘𝑘𝑅𝑅�𝑗𝑗𝑘𝑘
𝐽𝐽
𝑗𝑗=1 + 𝐽𝐽(𝐿𝐿𝑘𝑘 − 1) ln(𝑁𝑁) , if feature 𝑘𝑘 is categorical

;

 AIC𝑘𝑘 = �
∑ 𝑁𝑁𝑗𝑗𝑘𝑘 ln�𝜎𝜎�𝑗𝑗𝑘𝑘2 + Δ𝑘𝑘�
𝐽𝐽
𝑗𝑗=1 + 4𝐽𝐽, if feature 𝑘𝑘 is continuous

2∑ 𝑁𝑁′𝑗𝑗𝑘𝑘𝑅𝑅�𝑗𝑗𝑘𝑘
𝐽𝐽
𝑗𝑗=1 + 2𝐽𝐽(𝐿𝐿𝑘𝑘 − 1), if feature 𝑘𝑘 is categorical

;

// Though the discarded features are not used to build S1, their
// statistics are still available in CFs of final clusters in S1.

5. While (I(S1)+I(𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟))> 𝐼𝐼ref){
Find the most important feature 𝑘𝑘 in 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟);
Let 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) + {𝑘𝑘}, and 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − {𝑘𝑘};
With all leaf entries in CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) and using features 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟),
perform matrix based HAC to get a new solution S1 with fixed 𝐽𝐽∗;
Compute I(S1), the information criterion of S1;
Compute I(𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟)), the information of all discarded features;

 }
Let 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) and 𝐼𝐼ref = I(S1)+I(𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟));

6. While (𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) is not empty){
Find the most unimportant feature 𝑘𝑘 in 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟);
Let 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − {𝑘𝑘};
If (𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − {𝑘𝑘} is empty), break;
With all leaf entries in CF-tree 𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) and using features

𝐹𝐹(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − {𝑘𝑘}, perform matrix based HAC to get a new solution S1
with fixed 𝐽𝐽∗;
Compute I(S1), the information criterion of S1;
Compute I(𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) + {𝑘𝑘}), the information of all discarded features;
If (I(S1)+ I(𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) + {𝑘𝑘})<=𝐼𝐼ref){

Let 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − {𝑘𝑘};
Let 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) + {𝑘𝑘};
Let 𝐼𝐼ref = I(S1) + I(𝐹𝐹𝛼𝛼(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) + {𝑘𝑘});
Let 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) = 𝐹𝐹�(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟) − {𝑘𝑘};

}
 }
7. Export 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟);

Controller

The controller pours together all sets of features produced by reducers, and selects those features which
appear frequently. The selected features will be used in the next map-reduce job to build the final
clustering solution.

The controller runs the following procedure.

Inputs:
 <Parameter settings>

− MinFrequency // Default 50%
Outputs:

− 𝐹𝐹∗ // Set of selected features
Procedure:
1. Let 𝛽𝛽= MinFrequency, and 𝐹𝐹∗ be empty;
2. Launch a map-reduce job, and get 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟), for 𝑀𝑀 = 1, … ,𝑅𝑅 from the reducers;
3. Compute 𝐹𝐹 = ⋃ 𝐹𝐹∗(𝑘𝑘𝑀𝑀𝑘𝑘𝑟𝑟)𝑅𝑅

𝑟𝑟=1 ;
4. For each feature in 𝐹𝐹,
 If the occurring frequency is larger than 𝑅𝑅 ∗ 𝛽𝛽, add the feature into 𝐹𝐹∗;
5. Export 𝐹𝐹∗;

Appendix B. Map-Reduce Job for Distributed Clustering
Mapper

Each mapper will handle one data split and use it to build a local CF-tree.

Local outlier candidates and the local CF-tree will be distributed to a certain reducer. This is achieved by
assigning them a key, which is randomly selected from the key set �𝑘𝑘𝑀𝑀𝑘𝑘1, … , 𝑘𝑘𝑀𝑀𝑘𝑘𝑄𝑄�. The number of keys 𝑄𝑄 is
computed by equation (28).

For convenience, in the following we call leaf entries as pre-clusters. Let 𝑇𝑇𝐶𝐶𝐶𝐶
(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) and 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡

(𝑟𝑟) (𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) be the
CF-tree and the set of outliers, respectively, with the key of 𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚 (𝑖𝑖 = 1, … ,𝑄𝑄), on data split 𝑀𝑀 (𝑀𝑀 = 1, … ,𝑅𝑅).

The map function is as follows.

Inputs:
− Data split 𝑀𝑀 // 𝑀𝑀 = 1, … ,𝑅𝑅
− 𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚 // 𝑖𝑖 = 1, … ,𝑄𝑄

 <Parameter settings>
− MainMemory // Default 80*1024 bytes
− OutlierHandling // {on, off}, default on
− OutlierHandlingDiskSpace // Default 20% of MainMemory
− OutlierQualification // Default 10 cases
− DelayedSplit // {on, off}, default on
− DelayedSplitDiskSpace // Default 10% of MainMemory
− Adjustment // Default 0.01
− DistanceMeasure // {Log-likelihood, Euclidean}, default

 // Log-likelihood
− InitialThreshold // Default 0
− NonLeafNodeBranchingFactor // Default 8
− LeafNodeBranchingFactor // Default 8
− MaxTreeHeight // Default 3

Outputs:
− 𝑇𝑇(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) // Tightness threshold
− 𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)
− 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡

(𝑟𝑟) (𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)
Procedure:
1. Build a CF-tree on data split 𝑀𝑀 based on specified features and settings;
2. If (DelayedSplit=’on’),

Absorb cases in disk space 𝑆𝑆1 with tree rebuilding if necessary;
2. If (OutlierHandling=’on’),{
 Absorb entries in disk space 𝑆𝑆2 without tree rebuilding;

Check the final CF-tree for outliers;
 Mark the identified outliers and remaining entries in disk space 𝑆𝑆2 as

local outlier candidates;
 }
3. Assign 𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚 to the CF-tree and the set of outlier candidates;
4. Export 𝑇𝑇(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), 𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), and 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡
(𝑟𝑟) (𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚);

Reducer

Each reducer can handle several keys. For each key, it first pours together all CF-trees which have the same
key. Then with all leaf entries in the involved CF-trees, it performs a series of CF-tree based HACs to get a
specified number of sub-clusters. Finally, the sub-clusters are passed to the controller. The number of sub-
clusters produced for each key is computed by equation (29).

Let Ω(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) be the set of data split indices 𝑀𝑀 whose key is 𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚 , 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) and 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) be the set of sub-
clusters and the set of outliers, respectively, produced for the key of 𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚 , 𝑖𝑖 = 1, … ,𝑄𝑄.

The reduce function for each key is as follows.

Inputs:
− 𝑇𝑇(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), 𝑀𝑀 ∈ Ω(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)
− 𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), 𝑀𝑀 ∈ Ω(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)
− 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡

(𝑟𝑟) (𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), 𝑀𝑀 ∈ Ω(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)

 <Parameter settings>

− OutlierHandling // {on, off}, default on
− Adjustment // Default 0.01
− DistanceMeasure // {Log-likelihood, Euclidean}, default Log-

 // likelihood
− NumSubClusters // Number of sub-clusters produced for each key
− MinSubClusters // Minimum sub-clusters produced for each key

 // default 500
− MaximumDataPoitsCFHAC // Maximum data points for HAC, default 50,000

Outputs:
− 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)
− 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)

Procedure:
1. Let 𝐽𝐽1= NumSubClusters, 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚= MinSubClusters, and 𝐷𝐷1= MaximumDataPoitsCFHAC;
2. Compute 𝑇𝑇(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) = 𝑚𝑚𝑀𝑀𝑚𝑚�𝑇𝑇(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), 𝑀𝑀 ∈ Ω(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)�;
3. Compute 𝑆𝑆𝐶𝐶𝐶𝐶(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) = �𝑇𝑇𝐶𝐶𝐶𝐶

(𝑟𝑟)(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)|𝑀𝑀 ∈ Ω(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)�;
4. If OutlierHandling is ‘on’,{

 Compute 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) = ⋃ 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡
(𝑟𝑟) (𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)𝑟𝑟∈Ω(𝑘𝑘𝑟𝑟𝑘𝑘𝑚𝑚) ;

 For each member in 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚),{
 Find the closest leaf entry in the set of CF-trees 𝑆𝑆𝐶𝐶𝐶𝐶(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚);
 If the closest leaf entry can absorb the outlier member without
 violating the threshold requirement 𝑇𝑇(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), then merge them, and
 update𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) and the involved CF-tree;
 }
 }
5. Let 𝑀𝑀1 be the total number of leaf entries in 𝑆𝑆𝐶𝐶𝐶𝐶(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚);
 While 𝑀𝑀1 > 𝐷𝐷1,{
 Divide the set of CF-trees 𝑆𝑆𝐶𝐶𝐶𝐶(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) randomly into 𝑀𝑀2 groups,
 where 𝑀𝑀2 = ⌈𝑀𝑀1 𝐷𝐷1⁄ ⌉;
 For each group which has a larger number of leaf entries than 𝑀𝑀3, perform

CF-tree based HAC to get 𝑀𝑀3 leaf entries, where 𝑀𝑀3 = ⌊𝑚𝑚𝑀𝑀𝑚𝑚(𝐷𝐷1 𝑀𝑀2⁄ ,𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚)⌋;
 Update 𝑆𝑆𝐶𝐶𝐶𝐶(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) with new CF-trees produced in the above step;
 Compute the total number of remaining leaf entries 𝑀𝑀1;
 }
6. With the set of CF-trees 𝑆𝑆𝐶𝐶𝐶𝐶(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), perform CF-tree based HAC to get a set of 𝐽𝐽1

sub-clusters, i.e. 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚);
7. Export 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) and 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚);

Controller

The controller pours together all sub-clusters produced by reducers, and performs matrix based HAC to
get the final clusters. It identifies outlier clusters as well if the option of outlier handling is turned on.
Moreover, it computes model evaluation measures, and derives insights and interestingness from the
clustering results.

The controller runs the following procedure.

Inputs:
 <Parameter settings>

− MainMemory // Default 80*1024 bytes
− OutlierHandling // {on, off}, default on
− OutlierHandlingDiskSpace // Default 20% of MainMemory
− OutlierQualification // Default 10 cases
− ExtremeOutlierClusters // Default 20
− DelayedSplit // {on, off}, default on
− DelayedSplitDiskSpace // Default 10% of MainMemory
− Adjustment // Default 0.01
− DistanceMeasure // {Log-likelihood, Euclidean}, default

 // Log-likelihood
− InitialThreshold // Default 0
− NonLeafNodeBranchingFactor // Default 8
− LeafNodeBranchingFactor // Default 8
− MaximumTreeHeight // Default 3
− AutoClustering // {on, off}, default on
− MaximumClusterNumber // Default 15
− MinimumClusterNumber // Default 2
− FixedClusterNumber // Default 5
− ClusteringCriterion // {BIC, AIC}, default BIC
− AutoClusteringMethod // {information criterion, distance jump,

 // maximum, minimum}, default minimum
− MinSubClusters // Minimum sub-clusters produced for each key,

 // default 500
− MaxDataPoitsCFHAC // Maximum data points for CF-tree based HAC,

 // default 50,000
− MaxDataPoitsMatrixHAC // Maximum data points for matrix based HAC,

 // default 5,000
Outputs:

− PMML
− StatXML

Procedure:
1. Let 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚 = MinSubClusters, 𝐷𝐷1 = MaximumDataPoitsCFHAC, and 𝐷𝐷2 =

MaximumDataPoitsMatrixHAC;
2. Compute the number of keys
 NumKeys = 𝑄𝑄 = ⌈𝑚𝑚𝑖𝑖𝑚𝑚(𝑅𝑅 ∗ 𝑆𝑆 𝐷𝐷1⁄ ,𝐷𝐷2 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚⁄)⌉;
 // Each mapper is assigned a key which is selected randomly from the 𝑄𝑄 keys
3. Compute the number of sub-clusters produced for each key
 NumSubClusters = ⌊𝑚𝑚𝑖𝑖𝑚𝑚(𝑅𝑅 ∗ 𝑆𝑆,𝐷𝐷2) 𝑄𝑄⁄ ⌋;
4. Launch a map-reduce job, and get 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚) and 𝑆𝑆𝑜𝑜𝑣𝑣𝑡𝑡(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚), for 𝑖𝑖 = 1, … ,𝑄𝑄;
5. Compute 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠 = ⋃ 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠(𝑘𝑘𝑀𝑀𝑘𝑘𝑚𝑚)

𝑄𝑄
𝑚𝑚=1 ;

6. Perform matrix based HAC on 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠 to get the set of final regular clusters 𝑆𝑆𝑠𝑠𝑣𝑣𝑠𝑠∗ ,
where the number of final clusters is determined automatically or using a
fixed one depending on the settings;

7. If OutlierHandling is ‘on’, perform the steps from 2) to 7) in Step 3 in

 section 9.3;
8. Compute model evaluation measures, insights, and interestingness;
9. Export the clustering model in PMML, and other statistics in StatXML;

Implementation notes:

 The general procedure of the controller consists of both the controller procedure in appendix A
and that in appendix B.

Appendix C. Procedure for MonotoneCubicInterpolation()
𝑓𝑓(𝑚𝑚) = 𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑚𝑚𝑀𝑀𝐶𝐶𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝐼𝐼𝑚𝑚𝑀𝑀𝑀𝑀𝑀𝑀𝑝𝑝𝑀𝑀𝑙𝑙𝑀𝑀𝑀𝑀𝑖𝑖𝑀𝑀𝑚𝑚(𝑆𝑆𝑡𝑡 , 𝐼𝐼𝑡𝑡 , 𝑚𝑚),

where

x is the input statistic that characterizes fields or field pairs in particular aspects (for example,
distribution), association strength, etc. Its value range must be bounded below, and it must have a
monotonically increasing relationship with the interestingness score threshold values. If the two conditions
are not met, a conversion (e.g. 𝑚𝑚 = −𝑚𝑚′ 𝑀𝑀𝑀𝑀 𝑚𝑚 = |𝑚𝑚|, etc) should be carried out.

𝑆𝑆𝑡𝑡 is a set of distinct threshold values for the input statistics, which have been accepted and commonly
used by expert users to interpret the statistics. The positive infinity (+∞) is included if the input statistic is
not bounded from above.

𝐼𝐼𝑡𝑡 is a set of distinct threshold values for the interestingness scores that 𝑆𝑆𝑡𝑡 corresponds to. The threshold
values must be between 0 and 1.

The size of 𝑆𝑆𝑡𝑡 and 𝐼𝐼𝑡𝑡 must be the same. There are at least two values in 𝑆𝑆𝑡𝑡 excluding positive infinity (+∞).

Pre-processing

Let {𝑚𝑚𝑘𝑘} = 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑(𝑆𝑆𝑡𝑡) such that 𝑚𝑚1 < ⋯ < 𝑚𝑚𝑚𝑚 , where 𝑚𝑚 is the number of values in 𝑆𝑆𝑡𝑡 .

Let {𝑘𝑘} = 𝑠𝑠𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑(𝐼𝐼𝑡𝑡) such that 𝑘𝑘1 < ⋯ < 𝑘𝑘𝑚𝑚.

Condition A: There are more than two threshold values for input statistics, and they are all finite
numbers

Preparing for cubic interpolation

The following steps should be taken for preparing a cubic interpolation function construction.

Step 1, compute the slopes of the secant lines between successive points.

for 𝑘𝑘 = 1,⋯ ,𝑚𝑚 − 1.

Step 2, Initialize the tangents at every data point as the average of the secants,

for 𝑘𝑘 = 2,⋯ ,𝑚𝑚 − 1; these may be updated in further steps. For the endpoints, use one-sided
differences: 𝑚𝑚1 = ∆1 and 𝑚𝑚𝑚𝑚 = ∆𝑚𝑚−1.

Step 3, let αk = mk / Δk and βk = mk + 1 / Δk for 𝑘𝑘 = 1,⋯ ,𝑚𝑚 − 1.

If α or β are computed to be zero, then the input data points are not strictly monotone. In such cases,
piecewise monotone curves can still be generated by choosing mk = mk + 1 = 0, although global strict
monotonicity is not possible.

Step 4, update 𝐦𝐦𝐤𝐤

If 𝛼𝛼2 + 𝛽𝛽2 > 9, then set mk = τkαkΔk and mk + 1 = τkβkΔk where 𝜏𝜏𝑘𝑘 = 3
�𝛼𝛼2+𝛽𝛽2

.

Note:

1. Only one pass of the algorithm is required.

2. For 𝑘𝑘 = 1,⋯ ,𝑚𝑚 − 1, if Δk = 0 (if two successive yk = yk + 1 are equal), then set mk = mk + 1 = 0, as the spline
connecting these points must be flat to preserve monotonicity. Ignore step 3 and 4 for those k.

Cubic interpolation

After the preprocessing, evaluation of the interpolated spline is equivalent to cubic Hermite spline, using
the data xk, yk, and mk for k = 1,...,n.

To evaluate x in the range [xk, xk+1] for k = 1,...,n-1, calculate

h = xk+1 − xk and t = x−xk
h

then the interpolant is

f(x) = ykh00(t) + h ∗ mkh10(t) + yk+1h01(t) + h ∗ mk+1h11(t)

where hii(t) are the basis functions for the cubic Hermite spline.

h00(t) 2t3 − 3t2 + 1

h10(t) t3 − 2t2 + t

h01(t) − 2t3 + 3t2

h11(t) t3 − t2

Condition B: There are two threshold values for input statistics

As we have clarified in the beginning that there are at least two values in 𝑆𝑆𝑡𝑡 excluding positive infinity
(+∞), they must be both finite numbers when there are only two threshold values.

In this case the mapping function is a straight line connecting (𝑚𝑚1,𝑘𝑘1) and (𝑚𝑚2,𝑘𝑘2).

f(x) = 𝐲𝐲𝟏𝟏 + (𝐲𝐲𝟐𝟐 − 𝐲𝐲𝟏𝟏)
𝐱𝐱 − 𝐱𝐱𝟏𝟏
𝐱𝐱𝟐𝟐 − 𝐱𝐱𝟏𝟏

Condition C: Threshold values include infinity

Note that there are at least two values in 𝑆𝑆𝑡𝑡 excluding positive infinity (+∞). Take the last three statistic
threshold values and threshold values for the interestingness scores from the sorted lists, we have three
pairs of data (𝑚𝑚𝑚𝑚−2,𝑘𝑘𝑚𝑚−2), (𝑚𝑚𝑚𝑚−1,𝑘𝑘𝑚𝑚−1) and (+∞, 𝑘𝑘𝑚𝑚).

An exponential function

f(x) = a − be−cx

can be defined by the pairs, where

a = yn

b = �(yn − yn−2)xn−1
(yn − yn−1)xn−2�

(xn−1−xn−2)

c =
1

xn−1 − xn−2
ln

yn − yn−2
yn − yn−1

If 𝑚𝑚 = 3, which means there are only two distinct values in 𝑆𝑆𝑡𝑡 excluding positive infinity (+∞), the
exponential function is employed for evaluating x in the range [x1, +∞).

Otherwise, the exponential function is for evaluating x in the range [xn-1, +∞). To evaluate x in the range [x1,
xn-1), use procedures under “condition A: There are more than two threshold values for input statistics, and
they are all finite numbers” with data set {𝑚𝑚1,⋯ , 𝑚𝑚𝑚𝑚′} and {𝑘𝑘1,⋯ ,𝑘𝑘𝑚𝑚′} where 𝑚𝑚′ = 𝑚𝑚 − 1. To insure a smooth
transition to the exponential function, the tangent 𝑚𝑚𝑚𝑚′ at data point 𝑚𝑚𝑚𝑚′ is given as

𝑚𝑚𝑚𝑚′ =
d(a − be−cx)

dx
�
x=xn′

= 𝑀𝑀𝑀𝑀𝑀𝑀−𝑐𝑐𝑚𝑚𝑚𝑚′

again

a = yn

b = �(yn − yn−2)xn−1
(yn − yn−1)xn−2�

(xn−1−xn−2)

c =
1

xn−1 − xn−2
ln

yn − yn−2
yn − yn−1

References
[1] Chiu, T. (2000a). mBIRCH Clustering Algorithm (Phase 1 – Preclustering). IBM SPSS Internal

Document.
[2] Chiu, T., Fang, D., Chen, J., Wang, Y., and Jeris, C. (2001). A Robust and Scalable Clustering

Algorithm for Mixed Type Attributes in Large Database Environment. Proceedings of the seventh
ACM SIGKDD international conference on knowledge discovery and data mining, 263.

[3] Chiu, T. (1999b). Hierarchical Agglomerative Clustering Algorithm. IBM SPSS Internal Document.
[4] Chiu, T. (2004). Algorithm Design: Enhancements of Two-Step Clustering. IBM SPSS Internal

Document.
[5] Fang, D. (2000). Auto-Cluster in SPSS Clustering Component. IBM SPSS Internal Document.
[6] Xu, J. (2011). ADD – Interestingness and Insights. IBM SPSS Internal Document
[7] Zhang, T., Ramakrishnon, R., and Livny M. (1996). BIRCH: An Efficient Data Clustering Method

for Very Large Databases. Proceedings of the ACM SIGMOD conference on Management of Data, p.
103-114, Montreal, Canada.

[8] Kaufman, L., and Rousseeuw, P., J. (1990). Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley Series in Probability and Statistics. John Wiley and Sons, New York.

Generalized Linear Engine (GLE) Algorithm

1. Introduction – Phase I
Generalized linear models (GZLMs) have been commonly used analytical tools for different types of data for
quite some time because they cover not only widely used statistical models, such as linear regression for
normally distributed targets, logistic models for binary data, and log linear model for count data, but also many
useful statistical models via its very general model formulation. Since those models are under the independence
assumption, we have a new “Generalized Linear Engine” (GLE) to build them for large and distributed data and
run within Analytic Engine (AE).

GLE Phase I is mainly to replace GENLIN functionality in a Big Data situation in addition to adding the
nominal multinomial model. Section 2 describes the model. Section 3 describes parameter estimation. Inference
and model summary is given in Section 4. Scoring is presented in the last section.

2. Model
There are two subsections under the model section: (1) notations and (2) model formation. Then for the model
formation subsection, four sub-subsections are furthered derived: (1) probability distribution; (2) link function;
(3) combination of probability distribution and link function; (4) data transformation.

2.1. Notations

n Number of distinct records in the dataset. It is an integer and n ≥ 1.

p Number of parameters (including the constant, if exists) in the model. It is an integer and p ≥
1.

px Number of non-redundant columns in the design matrix. It is an integer and 1 .xp p≤ ≤

y n × 1 vector of target variable consists of , 1, , .iy i n=

r n × 1 vector of event variable for binomial distribution. It is usually the number of successes or
the number of 1’s. All elements are non-negative integers.

m n × 1 vector of trial variable for binomial distribution. All elements are positive integers and mi
≥ ri, 1, ,i n= .

µ n × 1 vector of expectation of target variable.

η n × 1 vector of linear predictor.

X n × p design matrix. The rows represent the records and the columns represent the parameters.
The ith row is ()T

1, , ,i i ipx x=x where superscript T means transpose of a matrix or vector,

1, ,i n= with 1 1ix = if model has an intercept.

O n × 1 vector of offset variable. This variable can’t be the dependent variable (y) or one of the
predictor variables (X). Also this variable can’t be a categorical variable (factor).

β p × 1 vector of unknown parameters. The first element in β is the intercept, if there is one.

ω n × 1 vector of scale weight variable. The elements don’t have to be integers. If an element is
less than or equal to 0 or missing, the corresponding record is not used.

f n × 1 vector of frequency count variable. Non-integer elements are treated by rounding the
value to the nearest integer. For values less than 0.5 or missing, the corresponding records are
not used.

N Effective sample size.
1

.
n

i
i

N f
=

= ∑ If frequency count variable f is not used, N = n.

2.2. Model formation
A GZLM of the target y with predictor variables X and offset variable O has the form

(E()) , ,g F== y Xβ +O y ~η

where η is the linear predictor; O is an offset variable with a constant coefficient of 1 for each observation; g(.)

is the monotonic differentiable link function which states how the mean of y, Ε() =y µ , is related to the linear
predictorη ; F is the target probability distribution. Choosing different combinations of a proper probability
distribution and a link function can result in different models. Some combinations are well known models and
have been provided in different SPSS procedures. The following table lists these combinations and
corresponding SPSS procedures.

Table 1: Distribution, Link Function and Corresponding SPSS Procedure

Distribution Link function Model SPSS procedure

Normal Identity Linear regression model GLM, REGRESSION

Binomial Logit Logistic regression model LOGISTIC REGRESSION

Poisson Log Log- linear model GENLOG

Nominal
multinomial

Generalized
logit

Generalized logistic regression model NUMREG

Ordinal
multinomial

Cumulative
logit

Ordinal proportional-odds model PLUM

In addition, GZLM also assumes yi are independent for record 1, , ,i n= then the model becomes

T() , ~ .i i i ig o y Fη µ= = +ix β

Notes:

 To improve numerical stability, the X matrix will be transformed, see Section 2.2.4 for details. Note that the
computation of transformation can be implemented in map/reduce environment.

 The X matrix can be any combination of continuous variables (covariates), categorical variables (factors)
and interactions. The parameterization of design matrix X is the same as in GLM procedure. See Lam
(1995a) for further details on the model parameterization.

Due to use of over-parameterized model where there is a separate parameter for every factor effect level
occurring in the data, the columns of the design matrix X are often dependent. Collinearities among
continuous variables in the data can also occur. To establish the dependencies in the design matrix, columns
of T ,X XΨ where ()1 1diag , ,n nf fω ω=Ψ are examined by using the sweep operator. When a column is
found to be dependent on previous columns, the corresponding parameter is treated as redundant. The
solution for redundant parameters is fixed at zero. Details of the sweep operator employed can be found in
Lam (1995b).

 When the target variable is in a binary format which can be character or numeric, such as the form of
male/female, 1/2, a/b, its values will be transformed to 0 and 1 with 1 as typically representing a success or
some other positive result. In this document, we assume that y has been transformed to 0/1 values and we
always model the probability of success, i.e., Prob(y = 1). Which original value should be transformed to 0
or 1 depends on what the reference category is. If the reference category is the last value, then the first
category represents a success and we are modeling the probability of it. For example, if the reference
category is the last value, “male”, “2” and “b” in “male/female”, “1/2” and “a/b” binary forms are the last
values and would be transformed to 0, and “female”, “1” and “a” would be transformed to 1 as we model
the probability of them, respectively. However, one way to change to model the probability of “male”, “2”
and “b” instead is to specify the reference category to be the first value. Note if original binary format is 0/1
and the reference category is the last value, then 0 would be transformed to 1 and 1 to 0.

 For the binomial distribution and the target is a number of events (r) occurring in a set of trials (m), in this
document, we assume that y is the binomial proportion, i.e., y = r/m.

GLE would also include ordinal and nominal multinomial distributions. However, since the model form is not
the same as that of the above traditional generalized linear models, we include them in Appendix A and
Appendix B, respectively.

2.2.1. Probability distribution

GLE will include 9 distributions which include 3 continuous ones: normal, inverse Gaussian, gamma; 5 discrete
ones: binomial, Poisson, negative binomial, ordinal multinomial, nominal multinomial; and 1 mixed
distribution: Tweedie.

Table 2 lists distribution of y, corresponding range of y, the variance function (V(µ)), the variance of y (Var(y))
and the 1st derivative of the variance function (()V µ′), which will be used later. Again ordinal multinomial and
nominal multinomial would be handled in Appendices A and B, respectively.

Table 2: Distribution, Range and Variance of the Target, Variance Function and Its 1st Derivative

Distribution Range of y V(µ) Var(y) ()V µ′

Normal (−∝, ∝) 1 φ 0

Inverse Gaussian (0, ∝) 3µ 3φµ 23µ

Gamma (0, ∝) 2µ 2φµ 2µ

Negative binomial 0(1)∝ 2kµ µ+ 2kµ µ+ 1 2kµ+

Poisson 0(1) ∝ µ µ 1

Binomial(m)
0(1)m

m
 (1)µ µ−

(1)
m

µ µ−
 1 2µ−

Tweedie [0, ∝) qµ qφµ 1qqµ −

Notes:

 0(1)z means the range is from 0 to z with increment of 1 (i.e. 0, 1, 2, …, z).

 For the binomial distribution, the binomial trial variable m is considered as a part of the weight variable ω.

 If a weight variable ω is included, φ is replaced by φ/ω.

 For the negative binomial distribution, there is an ancillary parameter (k) and there are two ways to handle
it:

1. It can be estimated with β jointly by the maximum likelihood (ML) method.

2. It can be set to a fixed positive value.

In general, only when k is known, the target y with a negative binomial distribution is a generalized linear
model. Furthermore, the default for k should be the fixed value provided by the user because, according to
McCullagh and Nelder (1989), the interpretation of using negative binomial distribution and canonical link
function might be problematical as it makes the linear predictor a function of a parameter of the variance
function.

Typical values of k range between 0.01 and 2, but we will also allow k = 0, which reduces the negative
binomial distribution to the Poisson distribution. When k = 0, we simply apply the Poisson distribution to do
the estimation. When k = 1, the negative binomial is the geometric distribution.

• The Tweedie’s class of distributions includes discrete, continuous and mixed densities as long as q ≤ 0 or q
≥ 1, where q is the exponent in the variance function, qµ . Special cases include the normal (q = 0), Poisson
(q = 1), gamma (q = 2) and inverse Gaussian (q = 3). Except those special cases, the Tweedie distributions
with other values of q cannot be written in closed form, and hence evaluation of the density is difficult.
Here, we only consider the Tweedie distributions for 1 < q < 2 which can be represented as Poisson
mixtures of gamma distributions and are mixed distributions with mass at zero and with support on the non-
negative real values. These distributions have been called “compound Poisson”, “compound gamma” and
“Poisson-gamma” distributions, but we will still call “Tweedie”. Here, the q value is set a fixed value.
Thus, the user has to give a q ∈ (1, 2).

• From the expressions for V(µ) and Var(y), continuous distributions (normal, inverse Gaussian and gamma)
and Tweedie distributions for 1 < q < 2 include the scale parameter φ which can be used to scale the
relationship of the variance and mean (Var(y) and µ). Since it is usually unknown, there are three ways to
fit the scale parameter φ:

1. It can be estimated with β jointly by ML method.

2. It can be set to a fixed positive value.

3. It can be specified by the deviance or Pearson chi-square (see Section 4.3.3).

On the other hand, discrete distributions (binomial, Poisson, negative binomial) do not have this extra
parameter (it is theoretically equal to one). Because of it, the variance of y might not be equal to the
nominal variance in practice (especially for Poisson and binomial because negative binomial has an
ancillary parameter k). A simple way to adjust this situation is to allow the variance of y of discrete
distributions to have the scale parameter φ as well. That’s why φ/ω is included in the log likelihood
function of each discrete distribution below, but, unlike φ for continuous distributions, it can’t be estimated
by ML method. So for discrete distributions, there are two ways to obtain the value of φ:

1. It can be set to a fixed positive value.

2. It can be specified by the deviance or Pearson chi-square.

To ensure the data fit the range of target y (or r and m for the binomial distribution) for the specified
distribution, the following rules are enforced:

(a) For the gamma or inverse Gaussian distributions, values of y must be real and greater than zero. If a
value of y is less than or equal to 0 or missing, the corresponding record is not used.

(b) For the negative binomial and Poisson distributions, values of y must be integer and non-negative. If a
value of y is non-integer, less than 0 or missing, the corresponding record is not used.

(c) For the binomial distribution and if the target is in the form of a single variable, y must have only two
distinct values. If y has more than two distinct values, then we stop the program and issue an error
message, such as “The target variable has more than 2 levels. A binary target must have 2 levels.”

(d) For the binomial distribution and if the target is a number of events (r) occurring in a set of trials (m),
values of r must be non-negative integers, values of m must be positive integers and mi ≥ ri, ∀ i. If a
value of r is not integer, less than 0, or missing, the corresponding record is not used. If a value of m is
not integer, less than or equal to 0, less than the corresponding value of r, or missing, the
corresponding record is not used.

(e) For the Tweedie distributions, values of y must be zero or positive real. If a value of y is less than 0 or
missing, the corresponding record is not used.

The ML method will be used to estimate β and possibly φ for continuous distributions and Tweedie distribution
or k for negative binomial. The kernels of the log likelihood function (k) and the full log likelihood function (
), which will be used as the objective function for parameter estimation, are listed for each distribution in the
following table. Using or k won’t affect the parameter estimation, but the selection will affect the
calculation of information criteria in Section 4.3.4.

Table 3: The Log Likelihood Function for Probability Distribution

Distribution k and

Normal

()2

1
ln

2

n
i i ii

k
i i

yf ω µ φ
φ ω=

 − = − +

∑

 { }
1

ln(2)
2

n
i

k
i

f
π

=

= + −∑

Inverse Gaussian

()2 3

2
1

ln
2

n
i i ii i

k
i ii i

yf y
y

ω µ φ
ωφ µ=

 − = − +

∑

 { }
1

ln(2)
2

n
i

k
i

f
π

=

= + −∑

Gamma
1

ln ln
n

i i i i i i
k i

i i i

y yf ω ω ω ω
Γ

φ φµ φµ φ=

 = − −

∑

 (){ }
1

ln
n

k i i
i

f y
=

= + −∑

Negative binomial
() () () ()() ()(){ }

1
ln 1 ln 1 ln 1 ln 1

n
i

k i i i i i i
i

f y k y k k y k kω
µ µ Γ Γ

φ=

= − + + + + −∑

 ()(){ }
1

ln 1
n

i
k i i

i
f yω

Γ
φ=

= + − +∑

Poisson
(){ }

1
ln

n
i

k i i i i
i

f yω
µ µ

φ=

= −∑

 (){ }
1

ln !
n

i
k i i

i
f yω
φ=

= + −∑

Binomial(m)

() () (){ }
1

ln 1 ln 1
n

i
k i i i i i

i
f y yω

µ µ
φ

∗

=

= + − −∑

1

ln ,
n

ii
k i

i i

m
f

r
ω
φ=

 = +

∑ where
()

!
! !

i i

i i i i

m m
r r m r

= −

Tweedie
() () ()

1 2

1
ln

1 2

q qn
i i i i

k i i
i

yf V
q q

ω µ µ
φ

− −

=

 = + − − −
∑

(){ }
1

ln
n

k i i
i

f y
=

= + −∑ (note that the ∑ term won’t include yi = 0)

Notes:

 The computation of k or can be implemented in map/reduce environment.

 When individual y = 0 for negative binomial, Poisson and Tweedie distributions and y = 0 or 1 for binomial
distribution, separate value of the log likelihood is given. Let ,k i

 be the log likelihood value for individual
record i when yi = 0 for negative binomial, Poisson and Tweedie and 0/1 for binomial.

Distribution ,k i

Negative binomial
()ln 1

 if 0ii
i i

k
f y

k
µω

φ
+

− =

Poisson if 0i
i i if yω

µ
φ

− =

Binomial(m)
()

()

ln 1 if 0

ln if 1

i
i i i

i
i i i

f y

f y

ω
µ

φ
ω

µ
φ

 − =

 =

Tweedie ()
2

 if 0
2

q
i i

i if y
q

ω µ
φ

−

− =
−

Note that the full log likelihood for i is equal to the kernel of the log likelihood for i, i.e., ,i k i=
, for

negative binomial, Poisson and Tweedie. However, for binomial with 0/1 binary target variable, they
should be different (the full log likelihood has additional term. The full log likelihood, like deviance and
Pearson chi-square, should be computed based on subpopulations. Please see Section 4.3.3.2 for details).

 ()zΓ is a gamma function and ()()ln zΓ is a log-gamma function (the logarithm of the gamma function),

evaluated at z. In general, ()()ln zΓ is calculated by using Sterling's formula, rather than first calculating

the gamma function and then taking the natural logarithm because numerical calculation of ()zΓ with
large values of z may cause an overflow.

 For binomial distribution (r/m), the scale weight variable becomes i i imω ω∗ = in k , i.e., the binomial trials

variable m is regarded as a part of weight. However, the scale weight in the extra term of is still iω .

 Vi in Tweedie distribution is an infinite series and the computational details are described in Appendix C.

2.2.2. Link function

Table 4 lists the link functions, inverse forms of them and ranges of µ for all distributions and Table 5 lists the
1st and 2nd derivatives for each link function in Table 4 which they will be used in Section 2.

Table 4: Link Function Name, Form, Inverse Form and Range of the Predicted Mean

Link function name ()gη µ=
Inverse

()1gµ η−= Range of µ̂

Identity µ η µ̂ ∈ℜ

Log ()ln µ ()exp η ˆ 0µ >

Logit ln
1
µ
µ

 −

exp()

1 exp()
η
η+

 ()ˆ 0, 1µ ∈

Probit
()1 µ−Φ , where

() 2 21
2

ze dz
ξ

ξ
π

−

−∞
Φ = ∫

()ηΦ ()ˆ 0, 1µ ∈

Complementary log-log ()()ln ln 1 µ− − ()()1 exp exp η− −

()ˆ 0, 1µ ∈

Power(α*)
0
0

α
α
≠

 =

()ln

αµ
µ

()

1/

exp

αη
η

ˆ if or 1 is an odd integer
ˆ 0 otherwise (including 0)
µ α α
µ α
∈ℜ

 > =

Log-complement ()ln 1 µ− ()1 exp η− ˆ 1µ <

Negative log-log ()()ln ln µ− − ()()exp exp η− −

()ˆ 0, 1µ ∈

Negative binomial† ln
1
k

µ

µ

 +

()
()()

exp
1 expk

η
η−

 ˆ 0µ >

Odds power(α*)
0
0

α
α
≠

 =

()()1 1

ln
1

α
µ µ

α
µ
µ

 − −

 −

()
()

1/

1/

1

1 1
exp()

1 exp()

α

α

αη

αη
η
η

 +

 + +

 +

 ()ˆ 0, 1µ ∈

 * α can be a real number. If |α| < 2.2e-16, α is treated as 0.
† The negative binomial link function becomes unavailable for negative binomial distribution with k = 0.

 Table 5: The First and Second Derivatives of Link Function

Link function name First derivative ()g ηµ
µ
∂′ = = ∆
∂

 Second derivative ()
2

2g ηµ
µ
∂′′ =
∂

Identity 1 0

Log 1
µ

 2−∆

Logit
()

1
1µ µ−

 ()2 2 1µ∆ −

Probit ()()1

1
φ µ−Φ

, where () 2 21
2

zz eφ
π

−= ()2 1 µ−∆ Φ

Complementary log-log
() ()

1
1 ln 1µ µ− −

 ()()2 1 ln 1 µ−∆ + −

Power(α)
0
0

α
α
≠

 =

1

1

ααµ

µ

−

2

1α
µ
−∆

−∆

Log-complement 1
1 µ
−
−

 2−∆

Negative log-log
()
1

lnµ µ
− ()()2 1 ln µ∆ +

Negative binomial 2

1
kµ µ+

 ()2 1 2kµ−∆ +

Odds power(α)
0
0

α
α
≠

 =
 ()

()

1

1

1
1

1

α

αµ

µ

µ µ

+

−

−

 −

()2

1 1
1

2 1

α α
µ µ

µ

 − +
∆ + −
∆ −

2.2.3. Combination of probability distribution and link function

Choosing different combinations of a proper probability distribution and a link function can result in different
models. Table 6 gives a guideline for all distributions except ordinal and nominal multinomial distributions.
Cumulative link functions in Table A.1 of Appendix A are only available for ordinal multinomial distribution
and generalized logit link function specified in Appendix B is for nominal multinomial distribution. If improper
combinations were specified, an error message will be issued.

Note that the available distributions depend on the measurement level of the target and there are 4 different
levels in the applications:

a. If a target is continuous, all distributions except nominal and ordinal multinomial would be allowed. Note
that binomial is allowed because target could be an “events” variable and user has to also specify “trials”
variable). The default is normal distribution.

b. If a target is nominal, then nominal multinomial and binomial distributions are allowed. The default is
nominal multinomial.

c. If a target is ordinal, then ordinal, nominal and binomial distributions are allowed. The default is ordinal
multinomial.

d. If a target is flag, only binomial distribution is allowed.

Table 6: Proper Combinations of Probability Distribution and Link Function

 Distribution
Link

Normal Inverse
Gaussian Gamma Negative

binomial Poisson Binomial Tweedie

Identity x x x x x x x

Log x x x x x x x

Logit x

Probit x

Complementary log-log x

Power(α) x x x x x x x

Log-complement x

Negative log-log x

Negative binomial x

Odds power(α) x

2.2.4. Data transformation

To improve numerical stability, the 𝑿𝑿 matrix will be transformed by default (the GLE component has the option
to turn it off) according to the following rules:

According to the definition of 𝑿𝑿, the ith row is 𝒙𝒙𝑚𝑚 = �𝑚𝑚𝑚𝑚1,⋯ , 𝑚𝑚𝑚𝑚𝑝𝑝�
𝑇𝑇 , 𝑖𝑖 = 1,⋯ ,𝑚𝑚, with 𝑚𝑚𝑚𝑚1 = 1 if the model has an

intercept. Suppose 𝒙𝒙𝑚𝑚∗ is the transformation of 𝒙𝒙𝑚𝑚 then the jth entry of 𝒙𝒙𝑚𝑚∗ is defined as

𝑚𝑚𝑚𝑚𝑗𝑗∗ =
𝑚𝑚𝑚𝑚𝑗𝑗 − 𝑀𝑀𝑗𝑗
𝑠𝑠𝑗𝑗

where 𝑀𝑀𝑗𝑗 and 𝑠𝑠𝑗𝑗 are centering and scaling values for 𝑚𝑚𝑚𝑚𝑗𝑗 , respectively, for 𝑗𝑗 = 1,⋯ , 𝑝𝑝 and choices of 𝑀𝑀𝑗𝑗 and 𝑠𝑠𝑗𝑗,
are listed as follows:
• For a non-constant continuous predictor or a derived predictor which includes continuous predictor,

o if the model has an intercept, 𝑀𝑀1 = 0 and 𝑀𝑀𝑗𝑗 = �̅�𝑚𝑗𝑗 , 𝑗𝑗 ≠ 1, where �̅�𝑚𝑗𝑗 is the sample mean of the jth

predictor, �̅�𝑚𝑗𝑗 = 1
𝑁𝑁
∑ 𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗𝑚𝑚
𝑚𝑚=1 and 𝑠𝑠𝑗𝑗 = 1 and 𝑠𝑠𝑗𝑗 = �𝑠𝑠𝑚𝑚𝑗𝑗

2 , 𝑗𝑗 ≠ 1 , where�𝑠𝑠𝑚𝑚𝑗𝑗
2 is the sample standard

deviation of the jth predictor and 𝑠𝑠𝑚𝑚𝑗𝑗
2 = 1

𝑁𝑁−1
∑ 𝑓𝑓𝑚𝑚�𝑚𝑚𝑚𝑚𝑗𝑗 − �̅�𝑚𝑗𝑗�

2𝑚𝑚
𝑚𝑚=1 . Note that the intercept column is not

transformed.

o if the model has no intercept, 𝑀𝑀𝑗𝑗 = 0 and 𝑠𝑠𝑗𝑗 = �𝑠𝑠𝑚𝑚𝑗𝑗
2 + �̅�𝑚𝑗𝑗2.

• For a constant predictor, say 𝑚𝑚𝑚𝑚𝑗𝑗 = 𝑀𝑀 ≠ 0, 𝑀𝑀𝑗𝑗 = 0 and 𝑠𝑠𝑗𝑗 = 𝑀𝑀, i.e., only scaled it to be 1 but not centered.
• For a dummy predictor that is derived from a factor or a factor interaction, leave it unchanged, i.e., 𝑀𝑀𝑗𝑗 = 0

and 𝑠𝑠𝑗𝑗 = 1 .

In terms of matrix format, if the model (including nominal multinomial distribution) has no intercept,

𝑿𝑿∗ = 𝑿𝑿𝑺𝑺−1, where = diag�𝑠𝑠1,⋯ , 𝑠𝑠𝑝𝑝� .

If the model (including nominal multinomial distribution) has an intercept,

𝑿𝑿∗ = 𝑿𝑿 �1 −𝒄𝒄1𝑇𝑇𝑺𝑺1−1

𝟎𝟎 𝑺𝑺1−1
� = 𝑿𝑿𝑿𝑿, where 𝒄𝒄1 = �𝑀𝑀2,⋯ , 𝑀𝑀𝑝𝑝�

𝑇𝑇
 and 𝑺𝑺1 = diag�𝑠𝑠2,⋯ , 𝑠𝑠𝑝𝑝�.

Then 𝑿𝑿 is replaced by 𝑿𝑿∗ during estimation.

For ordinal multinomial model, we have

𝑿𝑿1∗ = [𝟏𝟏𝑚𝑚 , −𝑿𝑿∗] = [𝟏𝟏𝑚𝑚, −𝑿𝑿] �1 𝒄𝒄1𝑇𝑇𝑺𝑺1−1

𝟎𝟎 𝑺𝑺1−1
� = [𝟏𝟏𝑚𝑚, −𝑿𝑿]𝑿𝑿 = 𝑿𝑿1𝑿𝑿,

where 𝟏𝟏𝑞𝑞 is a length 𝑞𝑞 vector of 1.

Implementation notes:
• Some predictors may be derived from the original predictors, say interaction term 𝑚𝑚4𝑚𝑚 = 𝑚𝑚2𝑚𝑚×𝑚𝑚3𝑚𝑚 . For

derived predictors (or composite effects), transformation is done only when all original predictors are
covariates, i.e., no transformation is needed when there is a factor in derived predictors. And their means
and standard deviations are calculated using the derived predictors.

• If the setting of a model includes intercept, normal distribution and identity link function, then the target is
centered by its mean (but not scale it due to complication scale may result) for numerical stability, i.e., 𝑘𝑘𝑚𝑚∗ =
𝑘𝑘𝑚𝑚 − 𝑘𝑘�,∀𝑖𝑖, along with the 𝑿𝑿 transformation. We will use 𝒚𝒚∗ instead of 𝒚𝒚 and treat −𝑘𝑘� as an offset value
during estimation. Note this is done internally without the users knowing.

• The whole transformation process will affect the estimates of β. After estimation, we need to transform the
estimates of β and their covariance matrix back from transformed scale to original scale. And all post-
estimation statistics and scoring would also be displayed on original scale, no matter if they are calculated
on original or transformed scale. The transform back formulae would be described below and we will
simply use 𝑿𝑿∗ = 𝑿𝑿𝑿𝑿 and notice that 𝑿𝑿 reduces to 𝑺𝑺−1 if the model has no intercept.

• The log likelihood value, ℓ, is the same on original or transformed scale.
• If the scale parameter, φ, for continuous distributions and Tweedie distribution is estimated with regression

parameters, then its estimate will be the same based on original or transformed scale.
• If the ancillary parameter, k, in negative binomial distribution is estimated with regression parameters, then

its estimate will be the same based on original or transformed scale.
• When iteration history tables are displayed, the parameter estimates in each iteration need to transform back.

In addition, it will also display the final gradient vector and Hessian matrix. Suppose the gradient vectors
based on original and transformed scale are 𝒔𝒔 and 𝒔𝒔∗ , respectively; and the Hessian matrices based on
original and transformed scale are 𝑯𝑯 and 𝑯𝑯∗, respectively. Then

𝒔𝒔 = (𝑿𝑿T)−𝟏𝟏𝒔𝒔∗ and 𝑯𝑯 = (𝑿𝑿T)−𝟏𝟏𝑯𝑯∗𝑿𝑿−1
• In the following sections, we will still use 𝑿𝑿 and 𝒚𝒚 no matter whether they are transformed or not, unless we

need to distinguish them.

3. Estimation
Having selected a particular model, it is required to estimate the parameters (β, φ) or (β, k) and to assess the
precision of the estimates. Here we only include parameter estimation first and will add other subsections later.

3.1. Parameter estimation
The parameters (β, φ, k) is estimated by maximizing the log likelihood function (or the kernel of the log
likelihood function k) from the observed data. Let s be the first derivative (gradient) vector of the log
likelihood with respect to β (and possible φ or k, see below), then we wish to solve

1

.
p×

 ∂
= = ∂ β

s 0

In general, there is no closed form solution except a normal distribution with identity link function, so estimates
are obtained numerically via an iterative process. A Newton-Raphson and/or Fisher scoring algorithm is used
and it is based on a linear Taylor series approximation of the first derivative of the log likelihood, so the first
and second derivatives are needed and will be discussed in the first two subsections. Then the iterative process
is discussed in the third subsection.

3.1.1. First derivatives

If the scale parameter φ for normal, inverse Gaussian, gamma and Tweedie is not estimated by ML method, s
is a 1p× vector with the form:

() ()
1 1

1
() () () ()

n n
i i i i i i i i

i i
i ii i i i

f y f y
V g V g
ω µ ω µ

φ µ µ φ µ µ= =

− −
= ⋅ = ⋅

′ ′∑ ∑x xs ,

where , () and () i i iV gµ µ µ′ are defined in Table 4, Table 2 and Table 5, respectively.

Notes:

 The computation of s can be implemented in map/reduce environment. I.e., assume there are J mappers, in

the jth mapper with jn records,
()

1

1 ,
() ()

jn
i i i i

j i
i i i

f y
V g
ω µ

φ µ µ=

−
= ⋅

′∑s x then combine the results from all mappers in the

reducer,
1

.
J

j
j=

= ∑s s

 1 T()i i ig oµ −= +x β is an estimate of the mean of the ith observation, obtained from an estimate of the
parameter vector β.

 For binomial distribution (r/m), iω is replaced with iω
∗ .

 If the scale parameter is specified by the deviance or Pearson chi-square, then assume φ =1 to estimate β.

If the scale parameter φ for normal, inverse Gaussian gamma and Tweedie is estimated by ML method, it is
handled by searching for ln(φ) since φ is required to be greater than zero. Similarly, if the ancillary parameter k
for negative binomial is estimated by ML method, it is still handled by searching for ln(k) (just replace φ with k)
since k is also required to be greater than zero.

Let τ = ln(φ) so φ = exp(τ) (or τ = ln(k) and k = exp(τ) for negative binomial) , then s is a (1) 1p + × vector
with the following form

()
()

1

(1) 1

1
exp () () ,

n
i i i i

i
i i i

p

f y
V g
ω µ

τ µ µ

τ τ

=

+ ×

 − ∂ ⋅ ′∂ = =
 ∂ ∂
 ∂ ∂

∑
s

x
β

where ∂ ∂β is the same as the above with φ is replaced with exp(τ) (for negative binomial, φ is not replaced),
τ∂ ∂ has a different form depending on the distribution as follows:

Table 7: The First Derivative Functions w.r.t. τ for Probability Distributions

Distribution
τ
∂
∂

Normal
()2

1
1

2 exp()

n
i i ii

i

yf ω µ
τ=

 − −

∑

Inverse Gaussian
()2

2
1

1
2 exp()

n
i i ii

i i i

yf
y

ω µ
τ µ=

 − −

∑

Gamma
1

ln 1
exp() exp() exp()

n
i i i i i i

i i i

f y yω ω ωψ
τ τ µ µ τ=

 − + − −

∑

Negative binomial

For all appropriate link functions other than negative binomial link function,

()
() ()

1

exp() 1 1ln 1 exp() ;
exp() 1 exp() exp() exp()

n
i ii i

i i
i i

yf y
τ µω

τ µ ψ ψ
τ φ τ τ µ τ τ=

 − ∂ = + + − + + ∂ +
∑

for the negative binomial link function,

()
1

1 1ln 1 exp()
exp() exp() exp()

n
i i

i i
i

f yω
τ µ ψ ψ

τ φ τ τ τ=

 ∂ = + − + + ∂
∑ .

Tweedie

1
,

n
i

i
i

f
τ=

∂
∂∑

 where

()

() ()

2

1 2

for 0
exp() 2

 for 0
exp() 1 exp() 2

q
i i

i

i

i q q
i i i i i

i
i

y
q

V
y y

V q q

ω µ
τ

τ ω µ ω µτ
τ τ

−

− −

= −∂

= ∂∂ ∂ − + > − −

Notes:

 ()zψ is a digamma function, which is the derivative of logarithm of a gamma function, evaluated at z, i.e.

() ()ln () () .
()

z zz
z z
Γ Γψ

Γ
∂ ′

= =
∂

 The method to compute digamma and trigamma functions is described in

Appendix D.

 ()
1

1 .i
ij

j

V jVα
τ

∞

=

∂
= −

∂ ∑ To avoid the possibility of floating point overflow for
1

ij
j

V
∞

=
∑

1
and , ij

j
jV

∞

=
∑ we will

evaluate
i

i

V

V
τ

∂
∂ directly. See Appendix C for details.

As mentioned above, for normal distribution with identity link function which is a classical linear regression
model, there is a closed form solution for both β and τ, so no iterative process is needed. The solution for β,
after applying the SWEEP operation, is

() () ()()T T T T

1 1
,ˆ

n n

i i i i i i i i i
i i

f f y oω ω
−

−

= =

= − = −

∑ ∑x x x X X X y oβ Ψ Ψ

where ()1 1diag , n nf fω ω=Ψ and ()−Z is the generalized inverse of a matrix Z. If the scale parameter φ is
also estimated by ML method, the estimate of τ (= ln(φ)) is

τ̂ = ()ˆln φ = ()2
T

1

1 ˆln .
n

i i i i i
i

f y o
N

ω
=

 − −

∑ x β

3.1.2. Second derivatives

Let H be the second derivative (Hessian) matrix. If the scale parameter φ for normal, inverse Gaussian, gamma
and Tweedie is not estimated by ML method, H is a p p× matrix with the form:

2
T

TH
p p×

 ∂
= = − ∂ ∂

X W X
β β

where W is an n n× diagonal matrix. There are two definitions for W depending on which algorithm is used:
We for Fisher scoring and Wo for Newton Raphson. The ith diagonal element for We is

(), 2
1 ,

() ()
i i

e i
i i

fw
V g

ω
φ µ µ

= ⋅
′

and the ith diagonal element for Wo is

()
() (), , 2 3

() () () () ,
() ()

i i i i i i
o i e i i i

i i

f V g V gw w y
V g

ω µ µ µ µµ
φ µ µ

′′ ′ ′+
= + − ⋅

′

where () and () i iV gµ µ′ ′′ are defined in Table 2 and Table 5, respectively. Then (),1 ,diag ,e e nw w=eW and

(),1 ,diag , , .o o nw w=oW Note the expected value of Wo is We and when the canonical link is used for the

specified distribution, then Wo = We. Be aware that for binomial distribution (r/m), iω is replaced with iω
∗ .

Notes:

 The computation of H can be implemented in map/reduce environment. I.e., assume there are J mappers
with jX and jW as the design matrix and an j jn n× diagonal matrix in the jth mapper, respectively, so

1

J

,

X
X=

X
 ()1diag , , JW= W W and T

j j j j= −H X W X then combine the results from all mappers in the

reducer,
2

T
1

J

j
jp p =×

 ∂
= = ∂ ∂

∑H H .

β β

If the scale parameter φ for normal, inverse Gaussian, gamma and Tweedie is estimated by ML method, H
becomes a (1) (1)p p+ × + matrix with the form

2 2

T

2 2

T 2
(1) (1)

H

p p

τ

τ τ
+ × +

 ∂ ∂
 ∂ ∂ ∂ ∂ =
 ∂ ∂

∂ ∂ ∂

β β β

β

where 2 τ∂ ∂ ∂β
 is a 1p× vector and 2 Tτ∂ ∂ ∂β

 is a 1 p× vector and the transpose of 2 τ∂ ∂ ∂β
. The form

of 2 τ∂ ∂ ∂β
 for all three continuous distributions is given below:

()2

1
.

exp() () ()

n
i i i i

i
i i i

f y
V g

ω µ
τ τ µ µ=

−∂ ∂
= − ⋅ = −

′∂ ∂ ∂∑ x
β β

Note that in theory ˆ 0∂ ∂ =β , so 2 ˆ 0τ∂ ∂ ∂ =β when evaluated at the estimates of ˆ, .β β In practice they
might not be exact 0, but they should be very close to 0.

The forms of 2 τ∂ ∂ ∂β
 for negative binomial are as follows depending on the link functions:

For all appropriate link functions other than negative binomial link function,

()
()

2

2
1

exp()
;

1 exp() ()

n
i i i i

i
i i i

f y
g

ω τ µ
τ φ τ µ µ=

−∂
= − ⋅

∂ ∂ ′+
∑ x

β

for the negative binomial link function,

2

1
.

n
i i i

i
i

fω µ
τ φ=

∂
= ⋅

∂ ∂ ∑ x
β

The forms of 2 2τ∂ ∂ are listed in Table 8.

Table 8: The Second Derivative Functions w.r.t. τ for Probability Distributions

Distribution
2

2τ
∂
∂

Normal ()2

1 2exp()

n
i i

i i
i

f yω µ
τ=

− −∑

Inverse Gaussian ()2
2

1 2exp()

n
i i

i i
i i i

f y
y

ω µ
τ µ=

− −∑

Gamma
1

ln 2
exp() exp() exp() exp() exp()

n
i i i i i i i i

i i i

f y yω ω ω ω ωψ ψ
τ τ µ µ τ τ τ=

 ′+ − − −

∑

Negative binomial

For all appropriate link functions other than negative binomial link function,

()
()

2

22

2
1

exp() 2exp() 1 ln 1 exp()
exp()1 exp()

;
1 1 1 1 1 1

exp() exp() exp() exp(2) exp() exp()

i i i i
i

n
ii i

i

i i

y

f

y y

τ µ µ τ µ
τ µ

ττ µω
φτ

ψ ψ ψ ψ
τ τ τ τ τ τ

=

 − + +
− + +

+∂ =
∂ ′ ′+ − + + −

∑

for the negative binomial link function,

()
2

2
1

1 ln 1 exp()
exp()

.
1 1 1 1 1 1

exp() exp() exp() exp(2) exp() exp()

i
n

i i

i
i i

f

y y

τ µ
τω

φτ
ψ ψ ψ ψ

τ τ τ τ τ τ
=

 − + +
∂ = ∂ ′ ′+ − + + −

∑

Tweedie

2

2
1

,
n

i
i

i
f

τ=

∂
∂∑

 where

()

() ()

2

2
22

2 1 22

for 0
exp() 2

 for 0
exp() 1 exp() 2

q
i i

i

i
i i q q

i i i i i
i

i i

y
q

V V
y y

V V q q

ω µ
τ

τ ω µ ω µτ τ
τ τ

−

− −

− = −∂ = ∂ ∂ ∂ ∂ ∂− + − > − −

Notes:

 ()zψ ′ is a trigamma function, which is the derivative of ()zψ , evaluated at z. See Appendix D for details.

 For normal and inverse Gaussian, 2 2ˆ 2Nτ∂ ∂ = −
 when evaluated at β̂ and τ̂ .

 ()
2

2 2
2

1
1 .i

ij
j

V j Vα
τ

∞

=

∂
= −

∂ ∑ Again, we will evaluate

2

2
i

i

V

V
τ

∂
∂ directly. See Appendix C for details.

 For normal distribution with identity link function, Hessian matrix is

𝐇𝐇 = −
𝑿𝑿𝑇𝑇𝜳𝜳𝑿𝑿
𝜙𝜙�

,

and augmented Hessian matrix including the parameter 𝜏𝜏 = ln𝜙𝜙 is

𝐇𝐇 = �
−(𝑿𝑿𝑇𝑇𝜳𝜳𝑿𝑿)/𝜙𝜙� 𝟎𝟎

𝟎𝟎𝑇𝑇 −𝑁𝑁
2
�.

In addition, the gradient is 0.

3.1.3. The iterative process

Note that we will implement the step-halving with Newton Raphson or Fisher scoring method first, but will
implement other methods, described in Du and Zheng (2009) and more, in the future.

An iterative process to find the solutions for β (which might include φ, k for negative binomial or ψ for
multinomial) is based on (1) Newton Raphson (for all iterations), (2) Fisher scoring (for all iterations) or (3) a
hybrid method. The hybrid method consists of applying Fisher scoring steps for a specified number of iterations
before switching to Newton Raphson steps. It is done easily by applying different formula for the Hessian
matrix at each iteration. Newton Raphson performs well if the initial values are close to the solution, but the
hybrid method can be used to improve the algorithm’s robustness to bad initial values. Apart from improved
robustness, the Fisher scoring is faster due to the simpler form of the Hessian matrix.

Some definitions are needed for an iterative process:

I Starting iteration for checking complete separation and quasi-complete separation. It
must be 0 or a positive integer. This criterion is not used if the value is 0.

J The maximum number of steps in step-halving method. It must be a positive integer.

K

The first number of iterations using Fisher scoring, then switching to Newton
Raphson. It must be 0 or a positive integer. A value of 0 means using Newton
Raphson for all iterations and a value greater or equal to M means using Fisher
scoring for all iterations.

M The maximum number of iterations. It must be a non-negative integer. If the value is
0, then initial parameter values become final estimates.

p H, , ε ε ε

Tolerance levels for three types of convergence criteria (see Section 3.1.3.2 below).

Abs A 0/1 binary variable; Abs = 1 if absolute change is used for convergence criteria and
Abs = 0 if relative change is used (see Section 3.1.3.2 below).

And the iterative process is outlined as follows:

(1) Input values for I, J, K, M, p H, , ε ε ε

 and Abs for each type of three convergence criteria.

(2) Input initial values 0β () or if no initial values are given, compute initial values 0β () (see Section 3.1.3.1

below), then calculate log likelihood (0)
 , gradient vector (0)s and Hessian matrix (0)H based on 0β () .

(3) Let ξ = 1.

(4) Compute estimates of ith iteration:

()1 1) 1)i i i iξ
−− − −−β β() () ((= H s ,

 where ()−H is a generalized inverse of .H Then compute log likelihood ()i
 based on iβ () .

(5) Use step-halving method if () (1)i i−< : reduce ξ by half and repeat step (4). I.e., the set of values of ξ is {

()1 2 :j j = 0, …, J – 1}. If J is reached but the log likelihood is not improved, issue a warning message,
then stop.

(6) Compute gradient vector ()is and Hessian matrix ()iH based on iβ () . Note that We is used to calculate ()iH
if i ≤ K; Wo is used to calculate ()iH if i > K.

(7) Check if complete or quasi-complete separation of the data is established (see the note below on how to
check them) if distribution is binomial or multinomial and the current iteration i ≥ I. If either complete or
quasi-complete separation is detected, issue a warning message, then stop.

(8) Check if all three convergence criteria (see Section 3.1.3.2 below) are met. If they are not but M is reached,
issue a warning message, then stop.

(9) If all three convergence criteria are met, check if complete or quasi-complete separation of the data is
established if distribution is binomial or multinomial and i < I (because checking for complete or quasi-
complete separation has not started yet). If complete or quasi-complete separation is detected, issue a
warning message, then stop, otherwise, stop (the process converges for binomial or multinomial
successfully). If all three convergence criteria are met for the distributions other than binomial and
multinomial, stop (the process converges for other distributions successfully). The final vector of estimates
is denoted by β̂ (and τ̂ and ψ̂ for multinomial). Otherwise, go back to step (3). See Figure 1: The
Flowchart of the Iterative Process of Parameter Estimation below.

Notes:

 How the scale parameter φ is handled in the above iterative process:

1. If φ (τ), for normal, inverse Gaussian, gamma and Tweedie distributions, is estimated by the ML
method, then φ will be estimated jointly with regression parameters β. I.e., the last element of the
gradient vector s is with respect to τ

2. If φ is set to be a fixed positive value, then φ will be held fixed at that value for in each iteration of the
above process.

3. If φ is specified for all distributions by the deviance or Pearson chi-square divided by degrees of
freedom (see Section 4.3.3), then φ will be fixed at 1 to obtain the estimates of β (and ψ for
multinomial) in the whole iterative process. Based on β̂ (and ψ̂ for multinomial), calculate the

deviance and Pearson chi-square values and obtain φ̂ , then revise some statistics, such as the gradient
vector, the Hessian matrix, the covariance matrix, etc. see Section 4.1 for details.

 Complete separation or quasi-complete separation of the data is checked for binomial, nominal multinomial
and ordinal multinomial distributions here just like what we did in CSLOGISTIC and CSORDINAL
procedures. The method is briefly described as follows, see Fang (2004) case-wise data for details):

For each iteration after a user-specified number of iterations, i.e., if i > I, and for binomial models, calculate
(note here v refers to records in the dataset)

 min min vv
p p=

max max ,vv
p p=

()()*
min min min ,1 ,v vv

p µ µ= −

where
if success (1)

1 if failfure (0)
v v

v
v v

y
p

y
µ

µ
= =

= − = =
 (vp is the probability of the observed target for record v) and

1 T();v v vg oµ −= +x β for multinomial model, the definitions of *
min max min, and p p p are modified as follows:

min ,min
vv yv

p π=

max ,max ,
vv yv

p π=

()*
min ,min min .v jv j

p π=

Note that , vv yπ has been defined before for multinomial models. Then the rules of checking complete
separation or quasi-complete separation for binomial or multinomial models would be the same. If

min max 1 p p= = (actually ()min max minmin , 0.99 p p p= > is checked) there is a complete separation. Else if
(1) max 0.99 p > or *

min 0.001 p < and if (2) there are very small diagonal elements (absolute value
7 410 3.16 10− −< ≈ ×) in the non-redundant parameter locations in matrix A, where A is the lower

triangular matrix in Cholesky decomposition of –H, where H is the Hessian matrix, such that Τ−Η = ΑΑ ,
then there is a quasi-complete separation.

The developers will evaluate whether the implementation of complete separation or quasi-complete
separation checking makes sense in map/reduce environment.

 Whenever a warning message is issued, the procedure continues and results based on the last iteration are
given, though the validity of the model fit is questionable.

 If the hybrid method converges with Fisher scoring step, the process will continue with Newton Raphson
steps till it converges again.

3.1.3.1. Initial values

The users can specify their own initial values. The order is the intercept (if there is one), regression parameters
(and the scale parameter φ if it will be estimated by the ML method for normal, inverse Gaussian and gamma
and the ancillary parameter k if it is estimated by the ML method for negative binomial) for all distributions
except multinomial. For ordinal multinomial, the order is threshold parameters and regression parameters. For
nominal multinomial, the order is regression parameters for each category (except the reference category). See
Appendices A and B for details. If the users didn’t specify them, we have to compute initial values internally.
For all distributions except multinomial, the initial values 0β () and/or the scale parameter 0φ () (if it is estimated
by ML method) are calculated as follows:

(1) Set the initial fitted values (0.5) (1)i i iy m mµ = + +i for a binomial distribution (yi can be a proportion or
0/1 value) and iyµ =i for a non-binomial distribution. From them deriving = (), () and ().i i i ig g Vη µ µ µ′ If
 iη becomes undefined, 1.iη =

(2) Calculate the weight matrix e
W with the diagonal element

()2

1 ,
() ()

i i
ei

i i

fw
V g

ω
φ µ µ

= ⋅
′

 where φ is set to 1

or a fixed positive value. If the denominator of eiw becomes 0, eiw = 0.

(3) Assign the adjusted target variable z with the ith observation () () ()i i i i i iz o y gη µ µ′= − + − for a binomial
distribution and ()i i iz oη= − for a non-binomial distribution.

(4) Calculate the initial parameter values

(0) T 1 T() ,e e
−

 = X W X X W zβ and/or

𝜙𝜙(0) =
1
𝑁𝑁
�𝒛𝒛 − 𝑿𝑿𝜷𝜷(0)�𝑇𝑇𝑾𝑾�𝑟𝑟�𝒛𝒛 − 𝑿𝑿𝜷𝜷(0)�

=
1
𝑁𝑁
�𝒛𝒛𝑇𝑇𝑾𝑾�𝑟𝑟𝒛𝒛 − 2�𝜷𝜷(0)�𝑇𝑇𝑿𝑿𝑇𝑇𝑾𝑾�𝑟𝑟𝒛𝒛 + �𝜷𝜷(0)�𝑇𝑇𝑿𝑿𝑇𝑇𝑾𝑾�𝑟𝑟𝑿𝑿𝜷𝜷(0)�

For the ancillary parameter k of negative binomial, initial k = 1, so τ = 0 for now.

Notes:

• The computation of the initial values can be implemented in map/reduce environment. I.e., assume there are
J mappers, the first 3 steps would result 𝒛𝒛𝑗𝑗 and 𝑾𝑾�𝑟𝑟,𝑗𝑗 as an 1jn × adjusted target vector and an j jn n×
diagonal matrix in the jth mapper, respectively, along with 𝑿𝑿𝑗𝑗. And 𝑿𝑿𝑗𝑗𝑇𝑇𝑾𝑾�𝑟𝑟,𝑗𝑗𝑿𝑿𝑗𝑗, 𝒛𝒛𝑗𝑗𝑇𝑇𝑾𝑾�𝑟𝑟,𝑗𝑗𝑿𝑿𝑗𝑗 , 𝒛𝒛𝑗𝑗𝑇𝑇𝑾𝑾�𝑟𝑟,𝑗𝑗𝒛𝒛𝑗𝑗 can be
computed in the jth mapper. Then combine the results from all mappers in the reducer as 𝑿𝑿𝑇𝑇𝑾𝑾�𝑟𝑟𝑿𝑿 =
∑ 𝑿𝑿𝑗𝑗𝑇𝑇𝑾𝑾�𝑟𝑟,𝑗𝑗𝑿𝑿𝑗𝑗
𝐽𝐽
𝑗𝑗=1 , 𝑿𝑿𝑇𝑇𝑾𝑾�𝑟𝑟𝒛𝒛 = ∑ 𝑿𝑿𝑗𝑗𝑇𝑇𝑾𝑾�𝑟𝑟,𝑗𝑗𝒛𝒛𝑗𝑗

𝐽𝐽
𝑗𝑗=1 and 𝒛𝒛𝑇𝑇𝑾𝑾�𝑟𝑟𝒛𝒛 = ∑ 𝒛𝒛𝑗𝑗𝑇𝑇𝑾𝑾�𝑟𝑟,𝑗𝑗𝒛𝒛𝑗𝑗

𝐽𝐽
𝑗𝑗=1 . Finally, compute 𝜷𝜷(0) based on

𝑿𝑿𝑇𝑇𝑾𝑾�𝑟𝑟𝑿𝑿 and 𝑿𝑿𝑇𝑇𝑾𝑾�𝑟𝑟𝒛𝒛, and then 𝜙𝜙(0) based on 𝒛𝒛𝑇𝑇𝑾𝑾�𝑟𝑟𝒛𝒛, �𝜷𝜷(0)�𝑇𝑇𝑿𝑿𝑇𝑇𝑾𝑾�𝑟𝑟𝒛𝒛, and �𝜷𝜷(0)�𝑇𝑇𝑿𝑿𝑇𝑇𝑾𝑾�𝑟𝑟𝑿𝑿𝜷𝜷(0).

3.1.3.2. Convergence criteria

We consider 3 types of convergence criteria here: log-likelihood convergence, parameter convergence, and
Hessian convergence. For each type, we consider both absolute and relative change. Let p H, and ε ε ε

 be

given tolerance levels for each type, then the criteria can be written as follows:

(1) Log-likelihood convergence:

() (1)

(1) 6

() (1)

 if relative change
10 .

 if absolute change

i i

i

i i

ε

ε

−

− −

−

 −
 < +

− <

(2) Parameter convergence:

()

() (1)

(1)

() (1)

p6

p

max

max

 if relative change
10 .

 if absolute change

i i

i

i i

j j

j j

j j
j

β β
ε

β

β β ε

−

−

−

−

 − < +

− <

(3) Hessian convergence:

() () ()

() () ()

T() () ()

H() 6

T() () ()
H

 if relative change
10 .

 if absolute change

i i i

i

i i i

ε

ε

−

−

−

 < +

<

s H s

s H s

Notes:

• Depending on a user’s choice, either relative or absolute change is considered.

• If the user doesn’t specify Hessian convergence criterion, we would check if it is met based on absolute
change with Hε = 1.0e-4 after specified log-likelihood convergence criterion and/or parameter convergence
criterion has been satisfied. If Hessian convergence criterion was not met, a warning message, such as “All
default or specified convergence criteria are satisfied, but Hessian convergence criterion is not. The
convergence is uncertain.” would be displayed.

3.1.3.3. Null model and intercept-only model

For the null model and intercept-only model, we provide an approximation method by considering the tradeoff
between the performance and the computational cost.

(a) Null models
If the scale parameter 𝜙𝜙 or the ancillary parameter 𝑘𝑘 is estimated by ML method,

Let �̂�𝜇0 = 𝑠𝑠−1(𝑀𝑀𝑚𝑚)

• For normal distribution,

𝜙𝜙� =
1
𝑁𝑁
�𝑓𝑓𝑚𝑚𝜔𝜔𝑚𝑚(𝑘𝑘𝑚𝑚 − �̂�𝜇0)2
𝑚𝑚

𝑚𝑚=1

• For inverse Gaussian distribution,

𝜙𝜙� =
1
𝑁𝑁
�

𝑓𝑓𝑚𝑚𝜔𝜔𝑚𝑚(𝑘𝑘𝑚𝑚 − �̂�𝜇0)2

𝑘𝑘𝑚𝑚�̂�𝜇02

𝑚𝑚

𝑚𝑚=1

• For gamma and tweedie, there is no closed form solution for 𝜙𝜙�, and it needs a iterative process. Herein,
it is approximated by its initial value calculated in Section 3.1.3.1.

• For the ancillary parameter 𝑘𝑘, it is set to 1.0.
(b) Intercept-only models

• For all distributions except multinomial
Let 𝛽𝛽0 be parameters of the intercept-only model (excluding 𝜙𝜙 and 𝑘𝑘).
There is no closed form solution for �̂�𝛽0 in addition to 𝜙𝜙� or 𝑘𝑘. �̂�𝛽0 and 𝜙𝜙� (or 𝑘𝑘) are approximated by their
initial values calculated in Section 3.1.3.1.

• For ordinal multinomial
Let 𝑩𝑩0 = �𝝍𝝍(0)𝑇𝑇 ,𝟎𝟎T�T be parameters of the threshold-only model.
If there is no offset variable,

𝜓𝜓𝑗𝑗
(0) = 𝑠𝑠 �

∑ 𝑁𝑁𝑙𝑙
𝑗𝑗
𝑙𝑙=1
𝑁𝑁

� , 𝑗𝑗 = 1,⋯ , 𝐽𝐽 − 1,

and if there is an offset variable, there is no close form solution, and it needs a iterative process. Herein,
they are approximated by their initial values given in Appendix A.

• For nominal multinomial

Let 𝜷𝜷0 = �𝜷𝜷1
(0)T,⋯ ,𝜷𝜷𝐽𝐽−1

(0)T�
T

 be parameters for the intercept-only model.
If there is no offset variable,

𝛽𝛽𝑗𝑗1
(0) = ln�

𝑁𝑁𝑗𝑗
𝑁𝑁𝐽𝐽
� ,𝛽𝛽𝑗𝑗𝑘𝑘

(0) = 0, 𝑗𝑗 = 1,⋯ , 𝐽𝐽 − 1,

and if there is an offset variable, there is no close form solution, and it needs a iterative process. Herein,
they are approximated by their initial values given in Appendix B.

Note that when there is no closed form solution for the model under consideration and the approximate model is
used, then a warning message, such as “The parameter estimates may not be accurate for the approximate model
being used”, would be displayed.

N

N

N

Y

Y

Y

Begin

Input I, J , K , M;
;,, Hp εεε

Abs.

)0(β Input

)0(β Input
N

Y

)0(β Calculate

0;,,)0()0()0(=iCalculate Hs

1+= ii

0,1 == j ξ

)()(ii onbasedCalculate βs

o
i

e
i

wo
Ki

WH
WH

←
←≤

)(

)(

.,.
,,

o

Distn = binomial
and i I≥

cs or qcs

N

Y

Display a warning
message, and results based

on the last iteration

Display a warning
message, and results based

on the last iteration

Display a warning
message, and results based

on the last iteration

i M

Y

N

≥

Log-likelihood
convergence

Parameter
convergence

Hessian
convergence

Ch
ec

k
Co

nv
er

ge
nc

e

N

N

N

Y

Y

Distn = binomial
and i < I

Check cs or qcs cs or qcs

N

Y

β̂ Display Display a warning
message, and results based

on the last iteration

Stop

Y

Y

())1()1()1()(−−
−− −= iiii sHξββ

)()(ii onbasedCalculate β

)1()(−< ii

Y j J 1

1+= jj

N

() j
21=ξ

≥ −

Check complete separation
(cs) or quasi -complete

separation (qcs)

Figure 1: The Flowchart of the Iterative Process of Parameter Estimation in GLE

3.1.4. Parameter estimation on original scale

If the X matrix is transformed, then the final estimates of β above are based on transformed scale, denoted it as
𝜷𝜷�∗. They would be transformed back on original scale, denoted it as 𝜷𝜷�, as follows:

𝜷𝜷� = 𝑿𝑿𝜷𝜷�∗

Note that 𝑿𝑿 could reduce to 𝑺𝑺−1 and hereafter in the document, superscript ∗ is added to a quantity to denote the
quantity on transformed scale.

For ordinal multinomial model, we have

𝑩𝑩� = �𝝍𝝍
�
𝜷𝜷�
� = 𝑻𝑻 �𝝍𝝍

�∗

𝜷𝜷�∗
� = 𝑻𝑻𝑩𝑩�∗

where 𝑻𝑻 = �
𝑰𝑰𝐽𝐽−1 𝑰𝑰𝐽𝐽−1⨂(𝒄𝒄1𝑇𝑇𝑺𝑺1−1)
𝟎𝟎 𝑺𝑺1−1

�.

For nominal multinomial model, we have

𝜷𝜷� = 𝑻𝑻𝜷𝜷�∗

where 𝑻𝑻 = ⨁𝑗𝑗=1
𝐽𝐽−1𝑿𝑿𝑗𝑗, and 𝑿𝑿𝑗𝑗 = 𝑿𝑿 if the model has an intercept and 𝑿𝑿𝑗𝑗 = 𝑺𝑺−1 if the model has no intercept.

Notes:

 If 𝑿𝑿 is an 𝑚𝑚×𝑚𝑚 matrix and 𝑩𝑩 is a 𝑝𝑝×𝑞𝑞 matrix, then the Kronecker product 𝑿𝑿⊗𝑩𝑩 is the 𝑚𝑚𝑝𝑝×𝑚𝑚𝑞𝑞 block
matrix,

𝑿𝑿⨂𝑩𝑩 = �
𝑀𝑀11𝑩𝑩 ⋯ 𝑀𝑀1𝑚𝑚𝑩𝑩
⋮ ⋱ ⋮

𝑀𝑀𝑚𝑚1𝑩𝑩 ⋯ 𝑀𝑀𝑚𝑚𝑚𝑚𝑩𝑩
�.

 If 𝑿𝑿 is an 𝑚𝑚×𝑚𝑚 matrix and 𝑩𝑩 is a 𝑝𝑝×𝑞𝑞 matrix, then the direct sum 𝑿𝑿⨁𝑩𝑩 is defined as

𝑿𝑿⨁𝑩𝑩 = �𝑿𝑿 𝟎𝟎
𝟎𝟎 𝑩𝑩� =

⎣
⎢
⎢
⎢
⎢
⎡
𝑀𝑀11 ⋯ 𝑀𝑀1𝑚𝑚
⋮ ⋱ ⋮

𝑀𝑀𝑚𝑚1 ⋯ 𝑀𝑀𝑚𝑚𝑚𝑚

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

𝑀𝑀11 ⋯ 𝑀𝑀1𝑞𝑞
⋮ ⋱ ⋮
𝑀𝑀𝑝𝑝1 ⋯ 𝑀𝑀𝑝𝑝𝑞𝑞⎦

⎥
⎥
⎥
⎥
⎤

In general, the direct sum of 𝑚𝑚 matrices is

⨁𝑚𝑚=1
𝑚𝑚 𝑿𝑿𝑚𝑚 = diag(𝑿𝑿1,⋯ ,𝑿𝑿𝑚𝑚) = �

𝑿𝑿1 𝟎𝟎 ⋯ 𝟎𝟎
𝟎𝟎 𝑿𝑿2 ⋯ 𝟎𝟎
⋮
𝟎𝟎

⋮
𝟎𝟎

⋱
⋯

⋮
𝑿𝑿𝑚𝑚

�.

4. Inference and Model Summary
4.1 Parameter inference

4.1.1 Parameter estimate covariance matrix, correlation matrix and
standard error

The parameter estimate covariance matrix, correlation matrix and standard errors can be obtained easily with
parameter estimates. Whether or not the scale parameter 𝜙𝜙(𝜏𝜏) is estimated by ML method, parameter estimate
covariance and correlation matrices are listed for 𝜷𝜷� only because the covariance between 𝜷𝜷� and �̂�𝜏 should be
zeros. For the ancillary parameter 𝑘𝑘 (𝜏𝜏) of negative binomial is estimated by ML method, parameter estimate
covariance and correlation matrices are still listed for 𝜷𝜷� only for simplicity purpose even though the covariance
between 𝜷𝜷� and �̂�𝜏 is generally not zero. For ordinal multinomial model, parameter estimate covariance and
correlation matrices are listed for 𝑩𝑩� = (𝝍𝝍�T,𝜷𝜷�T)T.

4.1.1.1 Parameter estimate covariance

Two parameter estimate covariance matrices can be calculated: model-based and robust.

(a) Model-based parameter estimate covariance

The parameter estimate covariance matrix is given by

𝚺𝚺𝑚𝑚 = −𝐇𝐇−

where 𝐇𝐇− is the generalized inverse of Hessian matrix H evaluated at 𝜷𝜷� (and 𝑩𝑩� for ordinal multinomial) (and 𝜙𝜙 �
if the scale parameter is estimated for normal, inverse Guassian, gamma and Tweedie distributions by ML
method or specified for all distributions by the deviance or Pearson chi-square divided by degrees of freedom).

Notes:

• For normal distribution with identity link function (linear regression model), 𝚺𝚺𝑚𝑚 = (𝑿𝑿𝑇𝑇𝜳𝜳𝑿𝑿)− where
()1 1diag , n nf fω ω=Ψ .

• For hybrid method, 𝑾𝑾𝑜𝑜 is used to calculate 𝚺𝚺𝑚𝑚 even 𝜷𝜷� converges within iterations of Fisher scoring steps.
Naturally, 𝑾𝑾𝑜𝑜 and 𝑾𝑾𝑟𝑟 are used for Newton Raphson and Fisher scoring method, respectively.

• The corresponding rows and columns for redundant parameter estimates should be set to zero.
(b) Robust parameter estimate covariance

The validity of the parameter estimate covariance matrix based on the Hessian depends on the correct
specification of the variance function of the response in addition to the correct specification of the mean
regression function of the response. The robust parameter estimate covariance provides a consistent estimate
even when the specification of the variance function of the response is incorrect. The robust estimator is also
called Huber’s estimator because Huber (1967) was the first one described this variance estimate; White’s
estimator or HCCM (heteroskedasticity consistent covariance matrix) estimator because White (1980)
independently showed that this variance estimate is consistent under a linear regression model including
heteroskedasticity; or sandwich estimator because the formula has a gradient factor “sandwiched” between two
Hessian matrices. The robust (or Huber/White/sandwich) estimator is defined as follows

𝚺𝚺𝑟𝑟 = 𝚺𝚺𝑚𝑚 ���
∂ℓ𝑚𝑚
∂𝜷𝜷

� �
∂ℓ𝑚𝑚
∂𝜷𝜷

�
T𝑚𝑚

𝑚𝑚=1

�𝚺𝚺𝑚𝑚 = 𝚺𝚺𝑚𝑚 ��𝑓𝑓𝑚𝑚 ∙ �
𝜔𝜔𝑚𝑚(𝑘𝑘𝑚𝑚 − 𝜇𝜇𝑚𝑚)
𝜙𝜙𝜙𝜙(𝜇𝜇𝑚𝑚)𝑠𝑠′(𝜇𝜇𝑚𝑚)

�
2

∙ 𝒙𝒙𝑚𝑚 ∙ 𝒙𝒙𝑚𝑚T
𝑚𝑚

𝑚𝑚=1

� 𝚺𝚺𝑚𝑚

Notes:

• The robust parameter estimate covariance matrix is justified by asymptotic arguments, but the small sample
performance might not be good. For linear regression model, some modifications can be installed to
improve small sample performance, but it is not clear if these modifications are applicable to other
generalized linear models as well.

For ordinal multinomial model,

𝚺𝚺𝑟𝑟 = 𝚺𝚺𝑚𝑚 ���
∂ℓ𝑚𝑚
∂𝑩𝑩

� �
∂ℓ𝑚𝑚
∂𝑩𝑩

�
T𝑚𝑚

𝑚𝑚=1

�𝚺𝚺𝑚𝑚

where ∂ℓ𝑚𝑚
∂𝑩𝑩

 is the first derivative for the ith record and can be found in Appendix A.

For nominal multinomial model,

𝚺𝚺𝑟𝑟 = 𝚺𝚺𝑚𝑚 ���
∂ℓ𝑚𝑚
∂𝜷𝜷

� �
∂ℓ𝑚𝑚
∂𝜷𝜷

�
T𝑚𝑚

𝑚𝑚=1

�𝚺𝚺𝑚𝑚

Where ∂ℓ𝑚𝑚
∂𝜷𝜷

 is the first derivative for the ith record and can be found in Appendix B.

4.1.1.2 Parameter estimate correlation

The correlation matrix is calculated from the covariance matrix as usual. Let 𝜎𝜎𝑚𝑚𝑗𝑗 be an element of 𝚺𝚺𝑚𝑚 or 𝚺𝚺𝑟𝑟, then
the corresponding element of the correlation matrix is

𝜎𝜎𝑚𝑚𝑗𝑗
�𝜎𝜎𝑚𝑚𝑚𝑚�𝜎𝜎𝑗𝑗𝑗𝑗

 . The corresponding rows and columns for

redundant parameter estimates should be set to system missing values.

4.1.1.3 Parameter estimate standard error

Let �̂�𝛽𝑚𝑚 denote a non-redundant parameter estimate for all distributions except multinomial. Its standard error is
the square root of the i-th diagonal element of 𝚺𝚺𝑚𝑚 or 𝚺𝚺𝑟𝑟:

𝜎𝜎�𝛽𝛽𝑚𝑚 = �𝜎𝜎𝑚𝑚𝑚𝑚

The standard error for redundant parameter estimates is set to a system missing value.

If the scale parameter is estimated by ML method, the standard estimate of �̂�𝜏 is

𝜎𝜎�𝜏𝜏 = �−
1
𝜕𝜕2ℓ
𝜕𝜕𝜏𝜏2

where 𝜕𝜕
2ℓ

𝜕𝜕𝜏𝜏2
 can be found on Table 8. However, people are usually more interested in the original than the

transformed 𝜏𝜏, so we will only list the estimation result for 𝜙𝜙. The estimate of 𝜙𝜙 is exp (�̂�𝜏), the standard error
estimated of 𝜙𝜙� is (exp (�̂�𝜏) ∙ 𝜎𝜎�𝜏𝜏).

For ordinal multinomial model:

Let 𝜓𝜓�𝑗𝑗, 𝑗𝑗 = 1,⋯ , 𝐽𝐽 − 1 , be threshold parameter estimates and �̂�𝛽𝑚𝑚 , 𝑖𝑖 = 1,⋯ , 𝑝𝑝 , denote the non-redundant
regression parameter estimates. Their standard errors are the square root of the i-th diagonal element of 𝚺𝚺𝑚𝑚 or
𝚺𝚺𝑟𝑟:

𝜎𝜎�𝜓𝜓𝑗𝑗 = �𝜎𝜎𝑗𝑗𝑗𝑗 and 𝜎𝜎�𝛽𝛽𝑗𝑗 = �𝜎𝜎(𝐽𝐽−1+𝑚𝑚),(𝐽𝐽−1+𝑚𝑚), respectively.

For nominal multinomial model,

Let �̂�𝛽𝑗𝑗𝑘𝑘 denote a non-redundant parameter estimate. It standard error is the square root of the �(𝑗𝑗 − 1)𝑝𝑝 + 𝑘𝑘�th
diagonal element of 𝚺𝚺𝑚𝑚 or 𝚺𝚺𝑟𝑟,

𝜎𝜎�𝛽𝛽𝑗𝑗𝑘𝑘 = �𝜎𝜎�(𝑗𝑗−1)𝑝𝑝+𝑘𝑘,(𝑗𝑗−1)𝑝𝑝+𝑘𝑘�

Notes

• For normal distribution with identity link function (linear regression model), the standard error of 𝜙𝜙� is

𝜎𝜎�𝜙𝜙� = 𝜙𝜙��
2
𝑁𝑁

 .

4.1.1.4 Parameter estimate covariance matrix, correlation matrix and
standard error on original scale

If the X matrix is transformed, then the model-based parameter estimate covariance matrices above are also
based on transformed scale. They should be transformed back to original scale.

(a) Model-based parameter estimate covariance

Denote the model-based parameter estimate covariance matrices based on original and transformed scale are 𝜮𝜮𝑚𝑚
and 𝜮𝜮𝑚𝑚∗ , respectively.

𝜮𝜮𝑚𝑚 = 𝑿𝑿𝜮𝜮𝑚𝑚∗ 𝑿𝑿T

For ordinal and multinomial models,

𝜮𝜮𝑚𝑚 = 𝑻𝑻𝜮𝜮𝑚𝑚∗ 𝑻𝑻T

(b) Robust parameter estimate covariance

Denote the robust parameter estimate covariance matrices based on original and transformed scale are 𝜮𝜮𝑟𝑟 and
𝜮𝜮𝑟𝑟∗ , respectively.

𝜮𝜮𝑟𝑟 = 𝑿𝑿𝜮𝜮𝑟𝑟∗𝑿𝑿T.

For ordinal and multinomial models,

𝜮𝜮𝑟𝑟 = 𝑻𝑻𝜮𝜮𝑟𝑟∗𝑻𝑻T.

(c) Parameter estimate correlation

They are calculated based on 𝜮𝜮𝑚𝑚 or 𝜮𝜮𝑟𝑟 rather than 𝜮𝜮𝑚𝑚∗ or 𝜮𝜮𝑟𝑟∗ .

(d) Parameter estimate standard error

For regression parameters, they are calculated based on 𝜮𝜮𝑚𝑚 or 𝜮𝜮𝑟𝑟 . For the scale parameter and ancillary
parameter, parameter estimate standard errors are the same no matter which scale is used.

4.1.2 Wald confidence intervals

Wald confidence interval is provided for each non-redundant parameter. Wald confidence intervals are based on
the asymptotically normal distribution of the parameter estimators. The parameter estimators includes 𝜷𝜷� (and 𝝍𝝍�
for multinomial), 𝜙𝜙� (�̂�𝜏) if 𝜙𝜙 is estimated by ML.

The 100(1 − 𝛼𝛼)% Wald confidence interval for 𝛽𝛽𝑗𝑗 is given by

��̂�𝛽𝑗𝑗 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝛽𝛽𝑗𝑗 , �̂�𝛽𝑗𝑗 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝛽𝛽𝑗𝑗�

where 𝑧𝑧𝑝𝑝 is the (100p)th percentile of the standard normal distribution.

If exponentiated parameter estimates of 𝜷𝜷 are required, then the estimate of exp (𝛽𝛽𝑗𝑗) is exp (�̂�𝛽𝑗𝑗), the standard
error estimate of exp (�̂�𝛽𝑗𝑗) is �exp (�̂�𝛽𝑗𝑗) ∙ σ�𝛽𝛽𝑗𝑗� and the corresponding 100(1 − 𝛼𝛼)% Wald confidence interval for
exp (𝛽𝛽𝑗𝑗) is

�exp ��̂�𝛽𝑗𝑗 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝛽𝛽𝑗𝑗� , exp ��̂�𝛽𝑗𝑗 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝛽𝛽𝑗𝑗��

Wald confidence intervals for redundant parameter estimates are set to system missing values.

Similarly, the 100(1 − 𝛼𝛼)% Wald confidence interval for 𝜏𝜏 is defined as

��̂�𝜏 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜏𝜏, �̂�𝜏 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜏𝜏�

where �̂�𝜏 is the maximum likelihood estimate of 𝜏𝜏, 𝜎𝜎�𝜏𝜏 is the standard error estimate of �̂�𝜏 and the corresponding
100(1 − 𝛼𝛼)% Wald confidence interval for 𝜙𝜙 (or k) is defined as

�exp��̂�𝜏 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜏𝜏�, exp��̂�𝜏 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜏𝜏��.

For ordinal multinomial distribution, in addition to 𝜷𝜷, the 100(1 − 𝛼𝛼)% Wald confidence interval for 𝜓𝜓𝑗𝑗 is
given by

�𝜓𝜓�𝑗𝑗 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜓𝜓𝑗𝑗 ,𝜓𝜓�𝑗𝑗 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜓𝜓𝑗𝑗�.

The estimate of exp�𝜓𝜓𝑗𝑗� is exp�𝜓𝜓�𝑗𝑗� , the standard error estimate of exp�𝜓𝜓�𝑗𝑗� is �exp�𝜓𝜓�𝑗𝑗� ∙ σ�𝜓𝜓𝑗𝑗� and the
corresponding 100(1 − 𝛼𝛼)% Wald confidence interval for exp�𝜓𝜓𝑗𝑗�

�exp �𝜓𝜓�𝑗𝑗 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜓𝜓𝑗𝑗� , exp �𝜓𝜓�𝑗𝑗 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜓𝜓𝑗𝑗��.

For nominal multinomial distribution, the 100(1 − 𝛼𝛼)% Wald confidence interval for 𝛽𝛽𝑗𝑗𝑘𝑘 is given by

��̂�𝛽𝑗𝑗𝑘𝑘 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝛽𝛽𝑗𝑗𝑘𝑘 , �̂�𝛽𝑗𝑗𝑘𝑘 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝛽𝛽𝑗𝑗𝑘𝑘�

The estimate of exp�𝛽𝛽𝑗𝑗𝑘𝑘� is exp��̂�𝛽𝑗𝑗𝑘𝑘�, the standard error estimate of exp��̂�𝛽𝑗𝑗𝑘𝑘� is �exp��̂�𝛽𝑗𝑗𝑘𝑘� ∙ 𝜎𝜎�𝛽𝛽𝑗𝑗𝑘𝑘� and the
corresponding 100(1 − 𝛼𝛼)% Wald confidence interval for exp�𝛽𝛽𝑗𝑗𝑘𝑘� is

�exp ��̂�𝛽𝑗𝑗𝑘𝑘 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝛽𝛽𝑗𝑗𝑘𝑘� , exp ��̂�𝛽𝑗𝑗𝑘𝑘 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝛽𝛽𝑗𝑗𝑘𝑘��

Note that Wald confidence intervals are based on estimates on the original scale.

4.1.3 Chi-square statistics

The hypothesis 𝐻𝐻0𝑚𝑚:𝛽𝛽𝑚𝑚 = 0 is tested for each non-redundant parameter using the chi-square statistic

𝑀𝑀𝑚𝑚 = �
�̂�𝛽𝑚𝑚
𝜎𝜎�𝛽𝛽𝑚𝑚
�
2

which has an asymptotic chi-square distribution with 1 degree of freedom, 𝜒𝜒12.

Note that the chi-square statistic will not be calculated for the scale parameters 𝜙𝜙 (𝜏𝜏), even it is estimated by ML
method.

For ordinal multinomial distribution, the hypothesis 𝐻𝐻0𝑗𝑗:𝜓𝜓𝑗𝑗 = 0, 𝑗𝑗 = 1,⋯ , 𝐽𝐽 − 1, and 𝐻𝐻0𝑚𝑚:𝛽𝛽𝑗𝑗 = 0, 𝑖𝑖 = 1,⋯ , 𝑝𝑝,
are tested for threshold parameters and regression parameters using the chi-square statistic

𝑀𝑀𝜓𝜓𝑗𝑗 = �
𝜓𝜓�𝑗𝑗
𝜎𝜎�𝜓𝜓𝑗𝑗

�
2

 and 𝑀𝑀𝛽𝛽𝑚𝑚 = � 𝛽𝛽�𝑚𝑚
𝜎𝜎�𝛽𝛽𝑚𝑚
�
2
, respectively.

Similarly, 𝑀𝑀𝜓𝜓𝑗𝑗 and 𝑀𝑀𝛽𝛽𝑚𝑚 has an asymptotic chi-square distribution with 1 degree.

For nominal multinomial distribution, the test statistics for the hypothesis 𝐻𝐻0,𝑗𝑗𝑘𝑘:𝛽𝛽𝑗𝑗𝑘𝑘 = 0, 𝑗𝑗 = 1,⋯ , 𝐽𝐽 − 1, 𝑘𝑘 =
1,⋯ , 𝑝𝑝, is

𝑀𝑀𝛽𝛽𝑗𝑗𝑘𝑘 = �
�̂�𝛽𝑗𝑗𝑘𝑘
𝜎𝜎�𝛽𝛽𝑗𝑗𝑘𝑘

�
2

which has an asymptotic chi-square distribution with 1 degree of freedom.

Chi-square statistics and their corresponding p-value are set to system missing values for redundant parameter
estimates.

Note that Chi-square statistics are based on estimates on the original scale.

4.1.4 P-values

The general form for calculating p-values for the tests above and below, given a test statistic T and a
corresponding cumulative distribution function 𝐺𝐺 as specified above, is defined as 𝑝𝑝 = 1 − 𝐺𝐺(𝑇𝑇). For example,
the p-value for 𝜒𝜒12 test 𝐻𝐻0: 𝛽𝛽 = 0 is 𝑝𝑝 = 1 − 𝑝𝑝𝑀𝑀𝑀𝑀𝑀𝑀(𝜒𝜒12 ≤ 𝑀𝑀).

4.2 Tests
After estimating parameters and calculating relevant statistics, several tests for the given model are performed:
(1) Lagrange multiplier (LM) test for fixed φ value or k value for negative binomial distribution; (2) model
fitting test; (3) model effect tests; (4) custom tests; and (5) estimating marginal means (EMMEANS).

4.2.1 Lagrange multiplier test

If the scale parameter 𝜙𝜙 for normal, inverse Gaussian, gamma and Tweedie distributions is set to a fixed value
or specified by the deviance or Pearson chi-square divided by the degrees of freedom (the latter case, 𝜙𝜙 can be
considered as a fixed value), or an ancillary parameter 𝑘𝑘 is set to a fixed value for negative binomial, then the
LM test is offered to assess the validity of the value. For a fixed 𝜙𝜙 value which can be any positive value or a
fixed 𝑘𝑘 value other than 0, the test statistic is defined as

𝑇𝑇𝐿𝐿𝐿𝐿 =
𝑠𝑠2

𝐴𝐴

where 𝑠𝑠 = 𝜕𝜕ℓ 𝜕𝜕𝜏𝜏⁄ (Table 7) and 𝐴𝐴 = −�𝜕𝜕
2ℓ

𝜕𝜕𝜏𝜏2
� − �− 𝜕𝜕2ℓ

𝜕𝜕𝜏𝜏𝜕𝜕𝜷𝜷𝑇𝑇
� �− 𝜕𝜕2ℓ

𝜕𝜕𝜷𝜷𝜕𝜕𝜷𝜷𝑇𝑇
�
−
�− 𝜕𝜕2ℓ

𝜕𝜕𝜷𝜷𝜕𝜕𝜏𝜏
� (Table 8) evaluated at 𝜷𝜷� and

fixed 𝜙𝜙 or 𝑘𝑘 value (𝜏𝜏 = ln(𝜙𝜙) , or ln (𝑘𝑘)). Then 𝑇𝑇𝐿𝐿𝐿𝐿 is an asymptotic chi-square with 1 degree of freedom. The
p-value can be calculated accordingly.

If the ancillary parameter 𝑘𝑘 for negative binomial is set to a fixed value, the LM test is provided to assess the
validity of the value.

For 𝑘𝑘 is set to 0, the LM test statistic is based on following auxiliary OLS regression (Cameron and Trivedi,
1998).

(𝑘𝑘𝑚𝑚 − �̂�𝜇𝑚𝑚)2 − 𝑘𝑘𝑚𝑚
�̂�𝜇𝑚𝑚

= 𝛼𝛼�̂�𝜇𝑚𝑚 + 𝜀𝜀𝑚𝑚

where �̂�𝜇𝑚𝑚 = 𝑠𝑠−1(𝒙𝒙𝑚𝑚𝑇𝑇𝜷𝜷 + 𝑀𝑀𝑚𝑚) and 𝜀𝜀𝑚𝑚 is an error term. Let the response of the above OLS regression
[(𝑘𝑘𝑚𝑚 − �̂�𝜇𝑚𝑚)2 − 𝑘𝑘𝑚𝑚 �̂�𝜇𝑚𝑚⁄] be 𝑧𝑧𝑚𝑚 and the explanatory variable �̂�𝜇𝑚𝑚 be 𝑤𝑤𝑚𝑚 . The estimate of the above regression parameter
𝛼𝛼 and the standard error of the estimate of 𝛼𝛼 are

𝛼𝛼� = ∑ 𝑟𝑟𝑚𝑚𝑤𝑤𝑚𝑚𝑧𝑧𝑚𝑚
𝑚𝑚
𝑚𝑚
∑ 𝑟𝑟𝑚𝑚𝑤𝑤𝑚𝑚

2𝑚𝑚
𝑚𝑚

 and 𝜎𝜎�𝛼𝛼 = �
1

𝑁𝑁−1∑ 𝑟𝑟𝑚𝑚(𝑧𝑧𝑚𝑚−𝛼𝛼�𝑤𝑤𝑚𝑚)2
𝑚𝑚
𝑚𝑚
∑ 𝑟𝑟𝑚𝑚𝑤𝑤𝑚𝑚

2𝑚𝑚
𝑚𝑚

Then the LM test statistic is z statistic

𝑧𝑧 =
𝛼𝛼�
𝜎𝜎�𝛼𝛼

and it has an asymptotically standard normal distribution under the null hypothesis of equidispersion in a
Poisson model (𝐻𝐻0: 𝑘𝑘 = 0) . The alternative hypothesis can be one-sided overdispersion (𝐻𝐻𝑚𝑚: 𝑘𝑘 > 0) ,
underdispersion (𝐻𝐻𝑚𝑚: 𝑘𝑘 < 0) or two-sided non-directional (𝐻𝐻𝑚𝑚: 𝑘𝑘 ≠ 0) with the variance function of 𝜙𝜙(𝜇𝜇) =
𝜇𝜇 + 𝑘𝑘𝜇𝜇2. The calculation of p-value depends on the alternative. For 𝐻𝐻𝑚𝑚: 𝑘𝑘 > 0, p-value = 1 −Φ(𝑧𝑧), where Φ(∙)
is the cumulative probability of a standard normal distribution; for 𝐻𝐻𝑚𝑚: 𝑘𝑘 < 0, p-value = Φ(𝑧𝑧); and for 𝐻𝐻𝑚𝑚 :𝑘𝑘 ≠
0, p-value= 2�1 −Φ(|𝑧𝑧|)�. We will show all three p-values.

Implementation note:

The z statistic can be calculated in one data pass under map/reduce environment as follows:

𝑧𝑧 = �
(𝑁𝑁 − 1)𝑆𝑆22

𝑆𝑆1𝑆𝑆3 − 𝑆𝑆22

where 𝑆𝑆1 = ∑ 𝑓𝑓𝑚𝑚𝑧𝑧𝑚𝑚2𝑚𝑚
𝑚𝑚=1 , 𝑆𝑆2 = ∑ 𝑓𝑓𝑚𝑚𝑧𝑧𝑚𝑚𝜇𝜇𝑚𝑚𝑚𝑚

𝑚𝑚=1 and 𝑆𝑆3 = ∑ 𝑓𝑓𝑚𝑚�̂�𝜇𝑚𝑚2𝑚𝑚
𝑚𝑚=1 .

In each mapper, compute �̂�𝜇𝑚𝑚 , 𝑧𝑧𝑚𝑚 and also accumulate 𝑆𝑆1, 𝑆𝑆2 and 𝑆𝑆3, then in the reducer, combine all parts of 𝑆𝑆1, 𝑆𝑆2
and 𝑆𝑆3 from all mappers to compute the z statistic.

4.2.2 Model fitting test

The model fitting omnibus test is based on –2 log-likelihood values for the model under consideration and the
initial model. For the model under consideration, the value of –2 log-likelihood is

−2ℓ�𝜷𝜷��.

Let initial model be the intercept-only model if intercept is in the considered model or the null model otherwise.

• For the intercept-only model, let the value of –2 log-likelihood is
−2ℓ�𝜷𝜷�0�.

• For the null model, let the value of –2 log-likelihood is
−2ℓ(𝟎𝟎).

(a) The omnibus (or global) test statistic for all distribution except multinomial distribution is
𝑆𝑆 = 2 �ℓ�𝜷𝜷�� − ℓ�𝜷𝜷�0�� for the intercept only model or

𝑆𝑆 = 2 �ℓ�𝜷𝜷�� − ℓ(𝟎𝟎)� for the null model

𝑆𝑆 has an asymptotic chi-square distribution with r degrees of freedom, equal to the difference in the number of
valid parameters between the model under consideration and the initial model. 𝑀𝑀 = 𝑝𝑝𝑚𝑚 − 1 for the intercept-only
model; 𝑀𝑀 = 𝑝𝑝𝑚𝑚 for the null model. The p-values then can be calculated accordingly.

(b) For ordinal multinomial model,
• The value of –2 log-likelihood for the model under consideration is

−2ℓ�𝑩𝑩��.

• The value of –2 log-likelihood for the thresholds-only model is
−2ℓ�𝑩𝑩�0�.

where 𝑩𝑩�0 = �𝝍𝝍� (0)𝑇𝑇 ,𝟎𝟎T�T is the parameters estimated for thresholds-only model.

Then the omnibus test statistic is

𝑆𝑆 = 2 �ℓ�𝑩𝑩�� − ℓ�𝑩𝑩�0��,

and it is asymptotically chi-square distributed with 𝑝𝑝𝑚𝑚 degrees of freedom.

(c) For nominal multinomial model,

• The value of –2 log-likelihood for the model under consideration is

−2ℓ�𝜷𝜷��.

• The value of –2 log-likelihood for the intercept-only model is
−2ℓ�𝜷𝜷�0�.

where 𝜷𝜷�0 = �𝜷𝜷�1
(0)T,⋯ ,𝜷𝜷�𝐽𝐽−1

(0)T�
T
 is the parameters estimated for intercept-only model the value of –2

log-likelihood for the null model is

−2ℓ(𝟎𝟎),

where ℓ(𝟎𝟎) = ln �1
𝐽𝐽
� ∑ 𝑟𝑟𝑚𝑚𝜔𝜔𝑚𝑚

𝜙𝜙
𝑚𝑚
𝑚𝑚=1 + 𝑀𝑀, and c is computed based on subpopulations (see Section 4.3.3.2 for

details.)
Then the omnibus test statistics is

𝑆𝑆 = 2 �ℓ�𝜷𝜷�� − ℓ�𝜷𝜷�0�� for the intercept only model or

𝑆𝑆 = 2 �ℓ�𝜷𝜷�� − ℓ(𝟎𝟎)� for the null model

and it is asymptotically chi-square distributed with 𝑀𝑀 degrees of freedom. 𝑀𝑀 = ∑ �𝑝𝑝𝑚𝑚
𝑗𝑗 − 1�𝐽𝐽−1

𝑗𝑗=1 for the
intercept-only model, where 𝑝𝑝𝑚𝑚

𝑗𝑗 is the number of non-redundant parameters in 𝜷𝜷𝑗𝑗; 𝑀𝑀 = ∑ 𝑝𝑝𝑚𝑚
𝑗𝑗𝐽𝐽−1

𝑗𝑗=1 for the null
model.

When calculating the value of –2 log-likelihood of initial model we need to setup the rules to handle the scale
parameter φ or the ancillary parameter k in the initial model and they depend on how it is handled in the model
under consideration.

(1) If the scale parameter 𝜙𝜙 or the ancillary parameter k is estimated by the ML method in the model under
consideration, then it will also be estimated by the ML method in the initial model.

(2) If the scale parameter φ or the ancillary parameter k is held fixed in the model under consideration, then the
same value is fixed in the initial model.

(3) If the scale parameter φ is specified by the deviance or Pearson chi-square divided by degrees of freedom in
the model under consideration, then that value will be held fixed in the initial model. Note that the log
likelihood for the model under consideration, would be adjusted, i.e., based on 𝜙𝜙 = 𝜙𝜙� , so the log
likelihoods for both models (the model under consideration and initial model) are calculated based on the
same scale parameter value.

The details of the calculation of initial model are given in Section 3.1.3.3. Please note that for a part of null and
intercept-only models, there are no closed form solutions, thus approximate models will be used. Thus, when the
initial model is different from the model under consideration and the approximate initial model is used, then a
warning message, such as “The omnibus test may not be accurate for the approximate initial model being used”,
would be displayed.

4.2.3 Tests for model effects

For each regression effect specified in the model, two analyses can be conducted: type I analysis and type III
analysis. The can request to do one of them, both of them or none.

4.2.3.1 Type I analysis

Type I analysis consists of fitting a sequence of models, starting with the null model as the baseline model (for
all distributions except ordinal multinomial), adding one additional effect, which can be an intercept term (if
there is one), covariates, factors and interactions, of the model on each step. For ordinal multinomial model, the
baseline model will be thresholds-only model. So it depends on the order of effects specified in the model. On
the other hand, type III analysis will not depend on the order of effects. The reason for using the null model as
the baseline model is to obtain the chi-square statistic for the first parameter 𝜷𝜷1 which might be for an intercept
or the first predictor variable.

(a) All distributions except multinomial distributions
For each effect specified in the model, type I test matrix 𝑳𝑳𝑚𝑚 is constructed and 𝐻𝐻0: 𝑳𝑳𝑚𝑚𝜷𝜷 = 𝟎𝟎 is tested. The Wald
statistic is defined by

𝑆𝑆 = �𝑳𝑳𝑚𝑚𝜷𝜷��
𝑻𝑻(𝑳𝑳𝑚𝑚𝜮𝜮𝑳𝑳𝑚𝑚𝑇𝑇)−𝑳𝑳𝑚𝑚𝜷𝜷�.

𝑳𝑳𝑚𝑚 is a 𝑀𝑀×𝑝𝑝 full row rank hypothesis matrix and is constructed based on the generating matrix 𝑯𝑯𝜔𝜔 =
(𝑿𝑿𝑇𝑇𝜴𝜴𝑿𝑿)−𝑿𝑿𝑇𝑇𝜴𝜴𝑿𝑿, where 𝜴𝜴 is the scale weight matrix with the ith diagonal element being 𝜔𝜔𝑚𝑚 and such that 𝑳𝑳𝑚𝑚𝜷𝜷 is
estimable. 𝜷𝜷� is the maximum likelihood estimate and 𝜮𝜮 is the estimated covariance matrix (𝜮𝜮 could be 𝜮𝜮𝑚𝑚 or
𝜮𝜮𝑟𝑟). The asymptotic distribution of 𝑆𝑆 is 𝜒𝜒𝑟𝑟𝐶𝐶

2 , where 𝑀𝑀𝐶𝐶 = rank(𝑳𝑳𝑚𝑚𝜮𝜮𝑳𝑳𝑚𝑚𝑇𝑇), If 𝑀𝑀𝐶𝐶 < 𝑀𝑀, (𝑳𝑳𝑚𝑚𝜮𝜮𝑳𝑳𝑚𝑚𝑇𝑇)− is a generalized
inverse such that Wald tests are effective for restricted set of hypothesis 𝑳𝑳𝑚𝑚𝐶𝐶𝜷𝜷 containing a particular subset 𝐶𝐶 of
independent rows from 𝐻𝐻0 . See Fang and Spisic (2004) for details. Then the p-values can be calculated
accordingly.

Note that for type I analysis, 𝑳𝑳𝑚𝑚 depends on the order of effects specified in the model, but for type III analysis, it
does not. If such a matrix cannot be constructed, the effect is not testable. See Chiu (1995a, b) and Zhong
(2006a) for computational details on construction of type I and III test matrices.

(b) Ordinal multinomial distributions
For ordinal multinomial model, first consider partition more general test matrix 𝑳𝑳 = �𝑳𝑳(𝝍𝝍),𝑳𝑳(𝜷𝜷)� , where
𝑳𝑳(𝝍𝝍) = �𝒍𝒍1,⋯ , 𝒍𝒍𝐽𝐽−1� consists of columns corresponding to threshold parameters and 𝑳𝑳(𝜷𝜷) be the part of 𝑳𝑳
corresponding to regression parameters. Consider matrix 𝑳𝑳0 = �𝒍𝒍0,𝑳𝑳(𝜷𝜷)� where the column vectors
corresponding to threshold parameters are replaced by their sum 𝒍𝒍0 = ∑ 𝒍𝒍𝑗𝑗

𝐽𝐽−1
𝑗𝑗=1 . Then 𝑳𝑳𝑩𝑩 is estimable if and only

if 𝑳𝑳0 = 𝑳𝑳0𝑯𝑯𝜔𝜔 , where 𝑯𝑯𝜔𝜔 = (𝑿𝑿1𝑇𝑇𝜴𝜴𝑿𝑿1)−𝑿𝑿1𝑇𝑇𝜴𝜴𝑿𝑿1 is a (1 + 𝑝𝑝)×(1 + 𝑝𝑝) matrix constructed using 𝑿𝑿1 = (𝟏𝟏,−𝑿𝑿) .
The Wald statistic for testing 𝑳𝑳𝑩𝑩 = 𝟎𝟎, where 𝑳𝑳 is a 𝑀𝑀×(𝐽𝐽 − 1 + 𝑝𝑝) full row rank hypothesis matrix is defined by

𝑆𝑆 = �𝑳𝑳𝑩𝑩��𝑇𝑇(𝑳𝑳𝜮𝜮𝑳𝑳𝑻𝑻)−𝑳𝑳𝑩𝑩�

where 𝑩𝑩� = �𝝍𝝍�𝑇𝑇 ,𝜷𝜷�𝑇𝑇�𝑇𝑇 is the maximum likelihood estimate and 𝜮𝜮 is the estimated covariance (𝜮𝜮 could be 𝜮𝜮𝑚𝑚 or
𝜮𝜮𝑟𝑟). The asymptotic distribution of S is 𝜒𝜒𝑟𝑟𝐶𝐶

2 , where 𝑀𝑀𝐶𝐶 = rank(𝑳𝑳𝚺𝚺𝑳𝑳𝑇𝑇).

For each effect specified in the model excluding threshold parameters, type I test matrix 𝑳𝑳𝑚𝑚 is constructed and
H0: 𝑳𝑳𝑚𝑚𝑩𝑩 = 0is tested. Construction of matrix 𝑳𝑳𝑚𝑚is based on matrix 𝑯𝑯𝜔𝜔 = (𝑿𝑿1𝑇𝑇𝜴𝜴𝑿𝑿1)−𝑿𝑿1𝑇𝑇𝜴𝜴𝑿𝑿1 and such that 𝑳𝑳𝑚𝑚𝑩𝑩 is
estimable. Thus, the way to construct 𝑳𝑳𝑚𝑚 (type I and III) for ordinal multinomial is the same as that for other
distributions. Note that the threshold-parameter effect is not tested for both type I and III analyses.

(c) Nominal multinomial distributions
For each effect specified in the model, 𝑳𝑳𝑚𝑚 is constructed based on the generating matrix 𝑯𝑯𝜔𝜔 = (𝑿𝑿𝑇𝑇𝜴𝜴𝑿𝑿)−𝑿𝑿𝑇𝑇𝜴𝜴𝑿𝑿,
where 𝜴𝜴 is the scale weight matrix with the ith diagonal element being 𝜔𝜔𝑚𝑚 and such that 𝑳𝑳𝑚𝑚𝜷𝜷 is estimable.

𝑆𝑆 = �𝑳𝑳𝑚𝑚′𝜷𝜷��
𝑻𝑻(𝑳𝑳𝑚𝑚′𝜮𝜮𝑳𝑳𝑚𝑚′𝑇𝑇)−𝑳𝑳𝑚𝑚′𝜷𝜷�

where 𝑳𝑳𝑚𝑚′ = 𝑰𝑰𝐽𝐽−1 ⊗ 𝑳𝑳𝑚𝑚 and 𝑀𝑀𝐶𝐶 = rank(𝑳𝑳𝑚𝑚′𝜮𝜮𝑳𝑳𝑚𝑚′𝑇𝑇) ; 𝜮𝜮 could be 𝜮𝜮𝑚𝑚 or 𝜮𝜮𝑟𝑟. The asymptotic distribution of 𝑆𝑆 is 𝜒𝜒𝑟𝑟𝐶𝐶
2 .

4.2.3.2 Type III analysis

The computation of Wald statistics for type III analysis is similar to that for type I analysis. The only difference
is that type III L matrix is constructed.

4.2.4 Custom tests

Contrasts defined as linear combination of regression parameters can be tested. For a user specified 𝑳𝑳 and 𝑲𝑲, the
hypothesis 𝐻𝐻0: 𝑳𝑳𝜷𝜷 = 𝑲𝑲 is tested only when each row of the 𝑳𝑳 matrix is checked for estimablility (i.e. check if
𝑳𝑳𝑯𝑯𝜔𝜔 = 𝑳𝑳 where 𝑯𝑯𝜔𝜔 = (𝑿𝑿𝑇𝑇𝜴𝜴𝑿𝑿)−𝑿𝑿𝑇𝑇𝜴𝜴𝑿𝑿, and 𝜴𝜴 is the scale weight matrix with the ith diagonal element is 𝜔𝜔𝑚𝑚).
Then test statistics, exponential estimation and multiple test p-value adjustment are the three subsections to be
discussed. For checking on estimability for ordinal and nominal multinomial model, please see Section 4.2.3.1
for details.

4.2.4.1 Test statistics

The test statistics used is Wald statistics (see Section 4.2.3). Then the p-values are calculated accordingly.

4.2.4.2 Exponential estimation

If 𝑳𝑳 is a 1×𝑝𝑝 row vector, we can calculate the estimate of 𝑳𝑳𝜷𝜷, its approximate standard error and its Wald
confidence interval. In the meantime, for logistic regression or log-linear models, we can also calculate exp(𝑳𝑳𝜷𝜷),
its standard error, and its confidence interval. Note for other models, exp(𝑳𝑳𝜷𝜷) might not make sense. The
following table is shown the formulae:

Table 11: Estimate, Standard Error and Wald Conference Interval for 𝑳𝑳𝜷𝜷 and exp(𝑳𝑳𝜷𝜷)

 𝑳𝑳𝜷𝜷 exp(𝑳𝑳𝜷𝜷)

Estimate 𝑳𝑳𝜷𝜷� exp�𝑳𝑳𝜷𝜷��

Std. Error 𝜎𝜎�𝑳𝑳𝜷𝜷 = �𝑳𝑳𝜮𝜮𝑳𝑳𝑻𝑻 �exp�𝑳𝑳𝜷𝜷�� ∙ 𝜎𝜎�𝑳𝑳𝜷𝜷�

Wald confidence
interval

�𝑳𝑳𝜷𝜷� − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝑳𝑳𝜷𝜷, 𝑳𝑳𝜷𝜷� + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝑳𝑳𝜷𝜷� �exp�𝑳𝑳𝜷𝜷� − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝑳𝑳𝜷𝜷� , exp�𝑳𝑳𝜷𝜷� + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝑳𝑳𝜷𝜷��

4.2.4.3 Multiple test p-value adjustment

The above hypothesis 𝐻𝐻0:𝑳𝑳𝜷𝜷 = 𝑲𝑲 can be tested using the multiple row hypotheses testing technique. Let 𝒍𝒍𝑚𝑚𝑇𝑇 be
the ith row vector of matrix 𝑳𝑳 and 𝑘𝑘𝑚𝑚 be the ith element of vector 𝑲𝑲. The ith row hypothesis is 𝐻𝐻0𝑚𝑚 : 𝒍𝒍𝑚𝑚𝑇𝑇𝜷𝜷 = 𝑘𝑘𝑚𝑚 .
Testing 𝐻𝐻0 is the same as testing multiple non-redundant row hypotheses {𝐻𝐻0𝑚𝑚∗ }𝑚𝑚=1𝑅𝑅 simultaneously, where 𝑅𝑅 is
the number of non-redundant row hypotheses, and 𝐻𝐻0𝑚𝑚∗ represents the ith non-redundant hypothesis. A hypothesis
𝐻𝐻0𝑚𝑚 is redundant if there exists another hypothesis 𝐻𝐻0𝑗𝑗 , 𝑗𝑗 ≠ 𝑖𝑖 such that 𝒍𝒍𝑚𝑚 = 𝑀𝑀𝒍𝒍𝑗𝑗 , 𝑘𝑘𝑚𝑚 = c𝑘𝑘𝑗𝑗 , 𝑀𝑀 ≠ 0.

For each individual hypothesis 𝐻𝐻0𝑚𝑚, test statistics can be calculated. Let 𝑝𝑝𝑚𝑚 denotes the p-value for testing 𝐻𝐻0𝑚𝑚,
and 𝑝𝑝𝑚𝑚∗ denotes the adjusted p-value. The conclusion from the multiple testing is, at level 𝛼𝛼 (the family-wise type
I error),

reject 𝐻𝐻0𝑚𝑚 : 𝒍𝒍𝑚𝑚𝑇𝑇𝜷𝜷 = 𝑘𝑘𝑚𝑚, if 𝑝𝑝𝑚𝑚∗ < 𝛼𝛼;

reject 𝐻𝐻0: 𝑳𝑳𝜷𝜷 = 𝑲𝑲, if min
𝑚𝑚

(𝑝𝑝𝑚𝑚∗) < 𝛼𝛼.

There are different methods to adjust p-values. Five methods are provided here. Please note that if the adjusted
p-value is bigger than 1, it is set to 1 in all the methods.

(a) LSD (Least Significant Difference)
The adjusted p-values are the same as the original p-values: 𝑝𝑝𝑚𝑚∗ = 𝑝𝑝𝑚𝑚 .

(b) Bonferroni
The adjusted p-values are 𝑝𝑝𝑚𝑚∗ = 𝑅𝑅𝑝𝑝𝑚𝑚 .

(c) Sidak
The adjusted p-values are 𝑝𝑝𝑚𝑚∗ = 1 − (1 − 𝑝𝑝𝑚𝑚)𝑅𝑅.

(d) Sequential Bonferroni
In sequential test, the p-values are first ordered from the smallest to the biggest, and then adjusted depending on
the order. Let the ordered p-values for the non-redundant row hypotheses be 𝑝𝑝(1) ≤ 𝑝𝑝(2) ≤ ⋯ ≤ 𝑝𝑝(𝑅𝑅) with
corresponding non-redundant hypotheses being be 𝐻𝐻0(1) ≤ 𝐻𝐻0(2) ≤ ⋯ ≤ 𝐻𝐻0(𝑅𝑅).

The adjusted p-value of 𝑝𝑝(𝑚𝑚) is 𝑝𝑝(𝑚𝑚)
∗ = �

𝑅𝑅𝑝𝑝(1) if 𝑖𝑖 = 1

max �(𝑅𝑅 − 𝑖𝑖 + 1)𝑝𝑝(𝑚𝑚), 𝑝𝑝(𝑚𝑚−1)
∗ � if 𝑖𝑖 ≥ 2

.

Note: if a row hypothesis is made redundant by 𝐻𝐻0(𝑚𝑚)
∗ , the p-value and adjusted p-value of this row are the same

as that of 𝐻𝐻0(𝑚𝑚)
∗ . This applies to both sequential Bonferroni and Sidak tests.

(e) Sequential Sidak

The adjusted p-value of 𝑝𝑝(𝑚𝑚) is 𝑝𝑝(𝑚𝑚)
∗ = �

1 − �1 − 𝑝𝑝(1)�
𝑅𝑅 if 𝑖𝑖 = 1

max �1 − �1 − 𝑝𝑝(𝑚𝑚)�
𝑅𝑅−𝑚𝑚+1, 𝑝𝑝(𝑚𝑚−1)

∗ � if 𝑖𝑖 ≥ 2
.

See Fang and Spisic (2004) for comparison of adjustment methods.

Note that if confidence intervals are also calculated for the above hypothesis, then adjusting confidence intervals
is required to correspond to adjusted p-values. The only item needed to be adjusted in the confidence intervals is
the critical value from the standard normal distribution. Assume that the original critical value is 𝑧𝑧1−𝛼𝛼/2 and the
adjusted critical value is 𝑧𝑧∗.

(a) LSD (Least Significant Difference)
The adjusted critical value is 𝑧𝑧∗ = 𝑧𝑧1−𝛼𝛼2

.

(b) Bonferroni
The adjusted critical value is 𝑧𝑧∗ = 𝑧𝑧1− 𝛼𝛼

2𝑅𝑅
.

(c) Sidak
The adjusted critical value is 𝑧𝑧∗ = 𝑧𝑧

1−1−(1−𝛼𝛼)1/𝑅𝑅
2

.

(d) Sequential Bonferroni
The adjusted 𝑧𝑧∗ values will correspond to the ordered adjusted p-values 𝑝𝑝(1), 𝑝𝑝(2),⋯ , 𝑝𝑝(𝑅𝑅) as follows:

𝑧𝑧(𝑖𝑖)
∗ = �

𝑧𝑧1− 𝛼𝛼
2𝑅𝑅

if 𝑖𝑖 = 1

min �𝑧𝑧1− 𝛼𝛼
2(𝑅𝑅−𝑖𝑖+1)

, 𝑧𝑧(𝑖𝑖−1)
∗ � if 𝑖𝑖 ≥ 2

.

(a) Sequential Sidak

𝑧𝑧(𝑖𝑖)
∗ =

⎩
⎨

⎧
𝑧𝑧
1−1−(1−𝛼𝛼)1/𝑅𝑅

2
if 𝑖𝑖 = 1

min �𝑧𝑧
1−1−(1−𝛼𝛼)1/(𝑅𝑅−𝑖𝑖+1)

2
, 𝑧𝑧(𝑖𝑖−1)

∗ � if 𝑖𝑖 ≥ 2
.

4.2.5 EMMEANS

There are two types of estimated marginal means (EMMEANS) calculated here. One corresponds to the specified
factors for the linear predictor of the model and the other corresponds to those for the response of the model.

EMMEANS are based on the estimated cell means. For a given fixed set of factors, or their interactions, we
estimate marginal means as the mean value averaged over all cells generated by the rest of the factors in the
model. Covariates may be fixed at any specified value. If not specified, the value for each covariate is set to its
overall mean estimate.

For ordinal and nominal multinomial model, EMMEANS are not available.

4.2.5.1 EMMEANS for the linear predictor

(a) Calculating EMMEANS for the linear predictor

EMMEANS for the linear predictor are based on the link function transformation. They are computed for the
linear predictor. Since the given model with respect to the linear predictor is a linear model (i.e. the model is 𝜼𝜼 =
𝑿𝑿𝑿𝑿 + offset), so the way to construct 𝑳𝑳 is the same as that for the GLM procedure. Each EMMEAN for the linear
predictor is constructed in the form 𝑳𝑳𝑿𝑿� such that 𝑳𝑳𝑿𝑿 is estimable.

Briefly, for a given set of factors in the model, a vector of EMMEANS for the linear predictor is created for all
combined levels of the factors. Assume there are 𝑟𝑟 levels. This 𝑟𝑟×1 vector can be expressed in the form 𝒗𝒗� = 𝑳𝑳𝑿𝑿�
where each row of 𝑳𝑳 matrix is generated as described above. Variance matrix of 𝒗𝒗� is then computed by the
following formula

𝑽𝑽(𝒗𝒗�) = 𝑳𝑳𝚺𝚺𝑳𝑳𝑇𝑇 .

Note that 𝜮𝜮 could be 𝜮𝜮𝑚𝑚 or 𝜮𝜮𝑟𝑟. The standard error for the jth element of 𝒗𝒗� is the square root of the jth diagonal
element of 𝑽𝑽(𝒗𝒗�). Let the jth element of 𝒗𝒗� and its standard error be 𝑣𝑣�𝑗𝑗 and 𝜎𝜎�𝑣𝑣𝑗𝑗, respectively, then the corresponding
100(1 – α)% Wald confidence interval for 𝑣𝑣𝑗𝑗 , 𝑗𝑗 = 1,⋯ , 𝑟𝑟 is given by

�𝑣𝑣�𝑗𝑗 − 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝑣𝑣𝑗𝑗 , 𝑣𝑣�𝑗𝑗 + 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝑣𝑣𝑗𝑗�.

(b) Comparing EMMEANS for the linear predictor

We can compare EMMEANS for the linear predictor based on a selected contrast type which a set of contrasts
for the factor is created. Let this set of contrasts define matrix 𝑪𝑪 used for testing the following hypothesis 𝐻𝐻0:𝑪𝑪𝒗𝒗 =
𝟎𝟎 (an overall test). A Wald statistic is used for testing given set of contrasts for the factor as follows:

S = (𝑪𝑪𝒗𝒗�)𝑇𝑇(𝑪𝑪𝑽𝑽(𝒗𝒗�)𝑪𝑪𝑇𝑇)−(𝑪𝑪𝒗𝒗�).

Asymptotic distribution of the Wald statistic is chi-square with 𝑟𝑟𝐼𝐼degrees of freedom, where 𝑟𝑟𝐼𝐼 =
rank(𝑪𝑪𝑽𝑽(𝒗𝒗�)𝑪𝑪𝑇𝑇). The p-value can be calculated accordingly. Note that the adjusted p-value based on multiple test
p-value adjustments (see Section 4.2.4.3) won’t be given.

Each row 𝒄𝒄𝑖𝑖𝑇𝑇 of matrix 𝑪𝑪 is also tested separately (individual tests). Estimate for the ith row is given by 𝒄𝒄𝑖𝑖𝑇𝑇𝒗𝒗� and
its standard error by �𝒄𝒄𝑖𝑖𝑇𝑇𝑽𝑽(𝒗𝒗�)𝒄𝒄𝑖𝑖. The corresponding 100(1 – α)% Wald confidence interval for 𝒄𝒄𝑖𝑖𝑇𝑇𝒗𝒗 is given by

� 𝒄𝒄𝑖𝑖𝑇𝑇𝒗𝒗� − 𝑧𝑧1−𝛼𝛼/2�𝒄𝒄𝑖𝑖𝑇𝑇𝑽𝑽(𝒗𝒗�)𝒄𝒄𝑖𝑖 , 𝒄𝒄𝑖𝑖𝑇𝑇𝒗𝒗� + 𝑧𝑧1−𝛼𝛼/2�𝒄𝒄𝑖𝑖𝑇𝑇𝑽𝑽(𝒗𝒗�)𝒄𝒄𝑖𝑖�.

The Wald statistic for 𝐻𝐻0: 𝒄𝒄𝑖𝑖𝑇𝑇𝒗𝒗 = 0 is

𝑆𝑆𝑖𝑖 = �
𝒄𝒄𝑖𝑖𝑇𝑇𝒗𝒗�

𝒄𝒄𝑖𝑖𝑇𝑇𝑽𝑽(𝒗𝒗�)𝒄𝒄𝑖𝑖
�
2

.

And it has an asymptotic chi-square distribution with 1 degree of freedom. The p-values can be calculated
accordingly. In addition, the adjusted p-values can also computed, see Section 4.2.4.3 for details.

Note:

 The usual contrast types used in 𝑪𝑪 are included

 Deviation
 Simple
 Helmert
 Difference
 Polynomial
 Repeated

See Appendix of SPSS Advanced Statistics 7.5 (1997) for definitions of these contrasts. Note the definition of
deviation is revised: each level of the factor is compared to the grand mean.

 In addition, we would like to offer pair-wise contrast (the differences between EMMEANS for each pair of
levels for the effect), 𝑪𝑪 can be constructed similarly as that in GLM procedure.

4.2.5.2 EMMEANS for the response

EMMEANS for the response are based on the original scale of the dependent variable except for the binomial
response with events/trials format (see note below). They can be defined as the estimator of the expected response
for a subject conditional on his/her belonging to a specified effect and having the averages of covariates.

(a) Calculating EMMEANS for the response

The way to construct EMMEANS for the response is based on EMMEANS for the linear predictor. Let 𝑴𝑴� 𝑐𝑐 be
EMMEANS for the response and it is defined as

𝑴𝑴� 𝑐𝑐 = 𝑔𝑔−1�𝑳𝑳𝑿𝑿�� = 𝑔𝑔−1(𝒗𝒗�).

The variance of EMMEANS for the response is

𝑽𝑽�𝑴𝑴� 𝑐𝑐� = diag�
∂𝑔𝑔−1�𝑣𝑣�𝑗𝑗�
∂𝑣𝑣�𝑗𝑗

� 𝑳𝑳𝜮𝜮𝑳𝑳𝑇𝑇diag�
∂𝑔𝑔−1�𝑣𝑣�𝑗𝑗�

∂𝑣𝑣�𝑗𝑗
�

Where diag�∂𝑔𝑔−1�𝑣𝑣�𝑗𝑗� ∂𝑣𝑣�𝑗𝑗� � a 𝑟𝑟×𝑟𝑟 matrix and ∂𝑔𝑔−1�𝑣𝑣�𝑗𝑗� ∂𝑣𝑣�𝑗𝑗� is the derivative of the inverse of the link with
respect to the jth value in 𝒗𝒗� and ∂𝑔𝑔−1�𝑣𝑣�𝑗𝑗� ∂𝑣𝑣�𝑗𝑗� = 1 𝑔𝑔′�𝑀𝑀�𝑐𝑐𝑗𝑗�⁄ where 𝑔𝑔′�𝑀𝑀�𝑐𝑐𝑗𝑗� is from Table 5. The standard error
for the jth element of 𝑴𝑴� 𝑐𝑐 and the corresponding confidence interval are calculated similar to those of 𝒗𝒗�, see Section
4.2.5.1-(a) for details.

Note:

𝑴𝑴� 𝑐𝑐 is EMMEANS for the proportion, not for the number of events when 𝑟𝑟 and 𝑚𝑚 (events/trials) variables are
used for the binomial distribution. See P. 62 for discussion about binomial response with events/trials format.

(b) Comparing EMMEANS for the response

It is similar to comparing EMMEANS for the linear predictor, just replace 𝒗𝒗� with 𝑴𝑴� 𝑐𝑐 and 𝑽𝑽(𝒗𝒗�) with 𝑽𝑽�𝑴𝑴� 𝑐𝑐�. See
Section 4.2.5.1-(b) for details.

4.2.5 Tests on original scale

(a) Lagrange multiplier test (Section 4.2.1)
(b) Model fitting test (Section 4.2.2)

All statistics calculated are the same on either original or transformed scale. Since parameters have been estimated
based on transformed scale and a lot of values are available, those statistics should be calculated based on
transformed scale.

(c) Tests for model effects (Section 4.2.3)
(d) EMMEANS and custom tests (Section 4.2.4)

For each effect specified in the model, type I or III test matrix 𝑳𝑳 is constructed from the generating matrix, 𝑯𝑯𝜔𝜔 =
(𝑿𝑿𝑇𝑇𝛀𝛀𝑿𝑿)−𝑿𝑿𝑇𝑇𝛀𝛀𝑿𝑿. We may have trouble to calculate 𝑯𝑯𝜔𝜔 directly. Use the transformed variables, we will first
calculate 𝑯𝑯𝜔𝜔

∗ = (𝑿𝑿∗𝑇𝑇𝛀𝛀𝑿𝑿∗)−𝑿𝑿∗𝑇𝑇𝛀𝛀𝑿𝑿∗. Since 𝑯𝑯𝜔𝜔 = 𝑨𝑨𝑯𝑯𝜔𝜔
∗ 𝑨𝑨−1, we can obtain 𝑯𝑯𝜔𝜔 from 𝑯𝑯𝜔𝜔

∗ , then construct type I or
III test matrix 𝑳𝑳𝑖𝑖 for the ith effect based on original scale from 𝑯𝑯𝜔𝜔.

For ordinal multinomial, use 𝑯𝑯𝜔𝜔 = (𝑿𝑿1𝑻𝑻𝛀𝛀𝑿𝑿1)−𝑿𝑿1𝑻𝑻𝛀𝛀𝑿𝑿1, 𝑯𝑯𝝎𝝎
∗ = (𝑿𝑿1∗𝑻𝑻𝛀𝛀𝑿𝑿1∗)−𝑿𝑿1∗𝑻𝑻𝛀𝛀𝑿𝑿1∗ and 𝑯𝑯𝜔𝜔 = 𝑻𝑻𝑯𝑯𝜔𝜔

∗ 𝑻𝑻−1 to
construct type I or III test matrix 𝑳𝑳.

For nominal multinomial, use 𝑯𝑯𝜔𝜔 = (𝑿𝑿𝑇𝑇𝛀𝛀𝑿𝑿)−𝑿𝑿𝑇𝑇𝛀𝛀𝑿𝑿, 𝑯𝑯𝜔𝜔
∗ = (𝑿𝑿∗𝑇𝑇𝛀𝛀𝑿𝑿∗)−𝑿𝑿∗𝑇𝑇𝛀𝛀𝑿𝑿∗ and 𝑯𝑯𝜔𝜔 = 𝑻𝑻𝑯𝑯𝜔𝜔

∗ 𝑻𝑻−1 to
construct type I or III test matrix 𝑳𝑳.

4.3 Goodness of fit
To assess goodness of fit of a given generalized linear model, we calculate three statistics: deviance, Pearson chi-
square, and information criteria.

Note that all statistics are the same on either or transformed scale. Since parameters have been estimated based
on the transformed scale and a lot of values are available, those statistics should be calculated based on the
transformed scale.

4.3.1 Deviance

The theoretical definition of deviance is as follows:

𝐷𝐷 = 2𝜙𝜙�ℓ(𝒚𝒚;𝒚𝒚) − ℓ(𝝁𝝁�;𝒚𝒚)�

where ℓ(𝝁𝝁�;𝒚𝒚) is the log likelihood function expressed as the function of the predicted mean values of 𝝁𝝁�
(calculated based on the parameter estimates) given the response variable 𝒚𝒚 and ℓ(𝒚𝒚;𝒚𝒚) is the log likelihood
function by replacing 𝝁𝝁� with 𝒚𝒚. The formula used for the deviance is ∑ 𝑓𝑓𝑖𝑖𝑑𝑑𝑖𝑖𝑛𝑛

𝑖𝑖=1 where the form of 𝑑𝑑𝑖𝑖 for the
distributions is given in the following table:

Table 9: The Form of 𝑑𝑑𝑖𝑖 for Probability Distributions

Distribution 𝑑𝑑𝑖𝑖

Normal ()2
i i iyω µ−

Inverse Gaussian ()2
2

i
i i

i i

y
y
ω µ
µ

−

Gamma 2 ln i i i
i

i i

y y µω
µ µ

 − − +

Negative binomial () 12 ln 1 ln
1

i i
i i i

i i

y y ky y k
k

ω
µ µ

 + − + +

Poisson ()2 ln i
i i i i

i

yy yω µ
µ

 − −

Binomial(m) () 12 ln 1 ln
1

i i
i i i

i i

y yy yω
µ µ

∗ − + − −

Tweedie
() ()

()()

2 1 22 1
2

1 2

q q q
i i i i

i

y q y q
q q
µ µ

ω
− − − − − + −

 − −

Note:

• When y is a binary dependent variable with 0/1 values (binomial distribution), and categorical variable
(multinomial distribution), the deviance and Pearson chi-square are calculated based on the subpopulations,
see Section 4.3.3.2 below.

• When y = 0 for negative binomial and Poisson distributions and y = 0 (for r = 0) or 1 (for r = m) for binomial
distribution with r/m format, separate values are given the deviance. Let 𝑑𝑑𝑖𝑖 be the deviance value for
individual case i when yi = 0 for negative binomial and Poisson and 0/1 for binomial.

Distribution id

Negative binomial
()ln 1

2 if 0i
i i

k
y

k
µ

ω
+

=

Poisson 2 if 0i i iyω µ =

Binomial(m)
()
()

2 ln 1 if 0 or 0

2 ln if 1 or
i i i i

i i i i i

y r

y r m

ω µ

ω µ

∗

∗

− − = =

− = =

4.3.2 Pearson chi-square

Pearson chi-square statistic is defined as follows

𝜒𝜒2 = � 𝑓𝑓𝑖𝑖𝛾𝛾𝑖𝑖
𝑛𝑛

𝑖𝑖=1

where 𝛾𝛾𝑖𝑖 = 𝜔𝜔𝑖𝑖
∗(𝑦𝑦𝑖𝑖−𝜇𝜇𝑖𝑖)2

𝑉𝑉(𝜇𝜇𝑖𝑖)
 for binomial distribution and 𝛾𝛾𝑖𝑖 = 𝜔𝜔𝑖𝑖(𝑦𝑦𝑖𝑖−𝜇𝜇𝑖𝑖)2

𝑉𝑉(𝜇𝜇𝑖𝑖)
 for other distributions.

4.3.3 Scaled deviance and Pearson chi-square

The scaled deviance is 𝐷𝐷∗ = 𝐷𝐷 𝜙𝜙⁄ and the scaled Pearson chi-square is 𝜒𝜒2∗ = 𝜒𝜒2 𝜙𝜙⁄ if 𝜙𝜙 is known from estimating
as a parameter or setting as a fixed value.

Since the scaled deviance and Pearson chi-square statistics, have a limiting chi-square distribution with degrees
of freedom equal to the number of observations (effective sample size) minus the number of non-redundant
regression parameters estimated, i.e. d.f. = N – px, the deviance or Pearson chi-square divided by its degrees of
freedom can be used as an estimate of the scale parameter 𝜙𝜙 for both continuous and discrete distributions.

𝜙𝜙� =
𝐷𝐷

𝑁𝑁 − 𝑝𝑝𝑥𝑥
 or 𝜙𝜙� =

𝜒𝜒2

𝑁𝑁 − 𝑝𝑝𝑥𝑥

If the ancillary parameter k of negative binomial is estimated by the ML method, the scale parameter 𝜙𝜙 is
measured by the deviance or Pearson chi-square divided by its degrees of freedom, then the degrees of freedom
is 𝑁𝑁 − 𝑝𝑝𝑥𝑥 − 1 not usual 𝑁𝑁 − 𝑝𝑝𝑥𝑥 because k is the extra parameter estimated by ML method.

Note that the values of the deviance and Pearson chi-square divided by the degrees of freedom (they might be
called D/df and Pearson/df, respectively) will be computed no matter how the scale parameter is treated.

If the scale parameter is measured by the deviance or Pearson chi-square, first we assume 𝜙𝜙 = 1, estimate 𝑿𝑿�,
calculate the deviance and Pearson chi-square values and obtain 𝜙𝜙� from the above formula. Then the scaled
version of both statistics is obtained by dividing the deviance and Pearson chi-square by 𝜙𝜙�. In the meantime, some
statistics need to be revised. The gradient vector and the Hessian matrix are divided by 𝜙𝜙� and the covariance
matrix is multiplied by 𝜙𝜙�. Accordingly, the estimated standard errors are also adjusted, the Wald confidence
intervals and significance tests will be affected even the parameter estimates are not affected by 𝜙𝜙�.

Note that two log likelihood values would be displayed: original one (based on 𝜙𝜙 = 1) and adjusted one (based
on 𝜙𝜙 = 𝜙𝜙� which is plugged into the log likelihood function of the corresponding distribution).

4.3.3.1 Overdispersion

For the Poisson, binomial distributions and multinomial distribution, if the estimated scale parameter 𝜙𝜙� is not
near the assumed value of one, then the data may be overdispersed if the value is greater than one or
underdispersed if the value is less than one. Overdispersion is more common in practice. The problem with
overdispersion is that it may cause standard errors of the estimated parameters to be underestimated. A variable
may appear to be a significant predictor, when in fact it is not.

4.3.3.2 Deviance and Pearson chi-square for binomial distribution with 0/1 binary
response variable and multinomial distribution

When r and m (event/trial) variables are used for the binomial distribution, each case represents m Bernoulli trials.
When y is a binary dependent variable with 0/1 values, each case represents a single trial. The trial can be repeated
for several times with the same setting (i.e. the same values for all predictors). For example, suppose the first 10
y values are 2 1s and 8 0s and x values are the same (if recorded in events/trials format, these 10 cases is recorded
as 1 case with r = 2 and m = 10), then these 10 cases should be considered from the same subpopulation. Cases
with common values in the variable list that includes all predictors are regarded as coming from the same
subpopulation. When the binomial distribution with binary response is used, we should calculate the deviance
and Pearson chi-square based on the subpopulations. If we calculate them based on the cases, the results might
not be useful.

If subpopulations are specified for the binomial distribution with 0/1 binary response variable, the data should be
reconstructed from the single trial format to the events/trials format. Assume the following notations for
reconstructed data:

ns Number of subpopulations.

rj1 Sum of the product of the frequencies and the scale weights associated with y = 1 in the jth
subpopulation. So rj0 is that with y = 0 in the jth subpopulation.

mj Total weighted observations and mj = rj1 + rj0.

yj1 The proportion of 1s in the jth subpopulation and yj1 = rj1/ mj.

 The fitted probability in the jth subpopulation (ˆ jµ would be the same for each case in the jth
subpopulation because values for all predictors are the same for each case.)

The deviance and Pearson chi-square are defined as follows:

𝐷𝐷 = 2� 𝑚𝑚𝑗𝑗 �𝑦𝑦𝑗𝑗1ln�
𝑦𝑦𝑗𝑗1
𝜇𝜇𝑗𝑗
� + �1 − 𝑦𝑦𝑗𝑗1�ln �

1 − 𝑦𝑦𝑗𝑗1
1 − 𝜇𝜇𝑗𝑗

��
𝑛𝑛𝑠𝑠

𝑗𝑗=1

and

χ2 = �
𝑚𝑚𝑗𝑗�𝑦𝑦𝑗𝑗1 − 𝜇𝜇𝑗𝑗�

2

𝜇𝜇𝑗𝑗�1 − 𝜇𝜇𝑗𝑗�

𝑛𝑛𝑠𝑠

𝑗𝑗=1

The degrees of freedom equal to the number of subpopulations minus the number of non-redundant regression
parameters estimated, i.e. d. f. = 𝑛𝑛𝑠𝑠 − 𝑝𝑝𝑥𝑥 then the values of the deviance and Pearson chi-square divided by the

jµ

degrees of freedom can be computed accordingly, and the corresponding estimate of the scale parameter 𝜙𝜙 will
be

𝜙𝜙� =
𝐷𝐷

𝑛𝑛𝑠𝑠 − 𝑝𝑝𝑥𝑥
 and 𝜙𝜙� =

𝜒𝜒2

𝑛𝑛𝑠𝑠 − 𝑝𝑝𝑥𝑥

For ordinal and nominal multinomial models, similarly, the data will be reconstructed based on subpopulations.
Assume the following notations for reconstructed multinomial data:

ns Number of subpopulations.

,i jr Sum of the product of the frequencies and the scale weights associated with the jth category
in the ith subpopulation.

mi
Total weighted observations for the ith subpopulation and ,

1

J

i i j
j

m r
=

= ∑

,ˆi jπ The fitted probability for the jth category in the ith subpopulation.

The deviance and Pearson chi-square are defined as follows:

𝐷𝐷 = 2� � 𝑟𝑟𝑖𝑖𝑗𝑗ln�
𝑟𝑟𝑖𝑖𝑗𝑗

𝑚𝑚𝑖𝑖𝜋𝜋�𝑖𝑖,𝑗𝑗
�

𝐽𝐽

𝑗𝑗=1

𝑛𝑛𝑠𝑠

𝑖𝑖=1
 and 𝜒𝜒2 = � �

�𝑟𝑟𝑖𝑖𝑗𝑗 − 𝑚𝑚𝑖𝑖𝜋𝜋�𝑖𝑖,𝑗𝑗�
2

𝑚𝑚𝑖𝑖𝜋𝜋�𝑖𝑖,𝑗𝑗

𝐽𝐽

𝑗𝑗=1

𝑛𝑛𝑠𝑠

𝑖𝑖=1

The degrees of freedom equal to 𝑛𝑛𝑠𝑠(𝐽𝐽 − 1) − 𝑑𝑑 where 𝑑𝑑 = 𝐽𝐽 − 1 + 𝑝𝑝𝑥𝑥 for the ordinal multinomial distribution;
𝑑𝑑 = ∑ 𝑝𝑝𝑥𝑥

𝑗𝑗𝐽𝐽−1
𝑗𝑗=1 for the nominal multinomial distribution, then the values of the deviance and Pearson chi-square

divided by the degrees of freedom can be computed accordingly, and the corresponding estimate of the scale
parameter 𝜙𝜙 will be

𝜙𝜙� =
𝐷𝐷

𝑛𝑛𝑠𝑠(𝐽𝐽 − 1) − 𝑑𝑑
 and 𝜙𝜙� =

𝜒𝜒2

𝑛𝑛𝑠𝑠(𝐽𝐽 − 1) − 𝑑𝑑

Notes

• For the situation of a large volume of data (“Big Data”), the number of subpopulations may be very large
when all predictors are used to define subpopulations. Thus, in the Map-Reduce environment, it may cause
a network traffic jam. The three alternating methods will be considered below based on their priorities from
high to low.
(1) A record is defined as a subpopulation;
(2) All factors in predictors are used to define subpopulations; if there are no factors in predictors, a record

forms a subpopulation;
(3) All predictors first are binned into 𝑘𝑘 bins; the subpopulations are defined on all predictors binned. 𝑘𝑘 is

set to 5 by default.
• The value of the constant 𝑐𝑐 for binomial models is calculated as follow

𝑐𝑐 = � ln �
𝑚𝑚𝑗𝑗!

𝑟𝑟𝑗𝑗0! 𝑟𝑟𝑗𝑗1!
�

𝑛𝑛𝑆𝑆

𝑗𝑗=1

.

The value of the constant 𝑐𝑐 for ordinal and nominal multinomial models is calculated as follow,

𝑐𝑐 = � ln �
𝑚𝑚𝑖𝑖!

𝑟𝑟𝑖𝑖1! ⋯ 𝑟𝑟𝑖𝑖𝐽𝐽!
�

𝑛𝑛𝑆𝑆

𝑖𝑖=1

.

4.3.4 Information Criteria

Information criteria are used when comparing different models for the same data, the following criteria are given
in smaller is better form. If we let ℓ be the log likelihood evaluated at 𝑿𝑿�, the formula for various criteria are given
as below. Note that for all distributions except multinomial, 𝑑𝑑 = 𝑝𝑝𝑥𝑥 if only 𝑿𝑿 is included; 𝑑𝑑 = 𝑝𝑝𝑥𝑥 + 1 if 𝑿𝑿 and 𝜙𝜙
for normal, inverse Gaussian, gamma and Tweedie distributions or β and k for negative binomial distribution are
included; 𝑑𝑑 = 𝐽𝐽 − 1 + 𝑝𝑝𝑥𝑥 for ordinal multinomial distribution; 𝑑𝑑 = ∑ 𝑝𝑝𝑥𝑥

𝑗𝑗𝐽𝐽−1
𝑗𝑗=1 for the nominal multinomial

distribution.

(1) Akaike information criteria (AIC)
−2ℓ + 2𝑑𝑑

(2) Finite sample corrected AIC (AICC)

−2ℓ +
2𝑑𝑑𝑁𝑁

(𝑁𝑁 − 𝑑𝑑 − 1)

(3) Bayesian information criteria (BIC)

−2ℓ + 𝑑𝑑 ln(𝑁𝑁)

(4) Consistent AIC (CAIC)

−2ℓ + 𝑑𝑑(ln(𝑁𝑁) + 1)

Notes:

• ℓ (the full log likelihood) can be replaced with ℓ𝑘𝑘 (the kernel of the log likelihood) depending on the user’s
choice.

• If the scale parameter is specified by the deviance or Pearson chi-square, the log likelihood, ℓ or ℓ𝑘𝑘 would
be original one, i.e., based on 𝜙𝜙 = 1, for fair comparison among different models.

• When r and m (event/trial) variables are used for the binomial distribution, then N used here would be the
sum of the trials frequencies, i.e. 𝑁𝑁 = ∑ 𝑓𝑓𝑖𝑖𝑛𝑛

𝑖𝑖=1 𝑚𝑚𝑖𝑖. In this way, the same value results whether the data are in
raw, binary form (using single-trial syntax) or in summarized, binomial form (events/trials syntax).

5. Scoring
Scoring is defined as assigning one or more values to a case in a data set. Two types are considered here:
predicted values and model diagnostics.

Note that if the target is not transformed, then all predicted and diagnostics values calculated are the same on
either original or transformed scale. However, if the target is transformed, then predicted values of the linear
predictors and the means (they are the same here) and their confidence intervals would be a different on original
or transformed scale. If calculated on transformed scale, those values should be added 𝑦𝑦�. To avoid confusion, all
values should be calculated on original scale.

5.1 Predicted values

Due to the non-linear link functions, the predicted values will be computed for the linear predictor and the mean
of the response separately. Also, since estimated standard errors of predicted values of linear predictor are
calculated, the confidence intervals for the mean are obtained easily.

Notice that the predicted values can be computed for the case not used in the model-building phrase. That is the
response variable can be missing and the predicted values are still computed as long all the predictor variables
have non-missing values in the given model. An additional requirement is that given predictor variable values
could be properly parameterized by using only the existing model parameters. See Woods (2004), “Guidelines
for Scoring under Various Data and Model Conditions,” for details.

5.1.1 Predicted values of the linear predictors

A predicted value of the linear predictor 𝜂𝜂𝑖𝑖 corresponding to 𝒙𝒙𝑖𝑖 is given by

�̂�𝜂𝑖𝑖 = 𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝑜𝑜𝑖𝑖 .

For ordinal multinomial model, a predicted value of the linear predictor for category j 𝜂𝜂𝑖𝑖,𝑗𝑗 corresponding to 𝒙𝒙𝑖𝑖 is
given by

�̂�𝜂𝑖𝑖,𝑗𝑗 = 𝜓𝜓�𝑗𝑗 − 𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝑜𝑜𝑖𝑖 , 𝑗𝑗 = 1, … , 𝐽𝐽 − 1.

For nominal multinomial model, a predicted value of the linear predictor for category j 𝜂𝜂𝑖𝑖,𝑗𝑗 corresponding to 𝒙𝒙𝑖𝑖
is given by

�̂�𝜂𝑖𝑖,𝑗𝑗 = 𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿�𝑗𝑗 + 𝑜𝑜𝑖𝑖 , 𝑗𝑗 = 1, … , 𝐽𝐽 − 1.

5.1.2 Estimated standard errors of predicted values of linear predictor

The estimated standard error of �̂�𝜂𝑖𝑖 is given by

𝜎𝜎�𝜂𝜂𝑖𝑖 = �𝒙𝒙𝑖𝑖𝑇𝑇𝛴𝛴𝒙𝒙𝑖𝑖

where 𝜮𝜮 could be 𝜮𝜮𝑚𝑚 or 𝜮𝜮𝑟𝑟.

For ordinal multinomial model, the estimated standard error of �̂�𝜂𝑖𝑖,𝑗𝑗 is given by

𝜎𝜎�𝜂𝜂𝑖𝑖,𝑗𝑗 = �(1,−𝒙𝒙𝑖𝑖𝑇𝑇)𝜮𝜮𝑗𝑗 �
1
−𝒙𝒙𝑖𝑖

� , 𝑗𝑗 = 1, … , 𝐽𝐽 − 1,

where 𝜮𝜮𝑗𝑗 is a reduced parameter estimates covariance (1 + p)× (1 + p) matrix from 𝜮𝜮. Suppose 𝜮𝜮 for ordinal
multinomial models has the following form:

𝜮𝜮 = �
𝜮𝜮𝜓𝜓,𝜓𝜓 𝜮𝜮𝜓𝜓,𝑿𝑿
𝜮𝜮𝑿𝑿,𝜓𝜓 𝜮𝜮𝑿𝑿,𝑿𝑿

� =

⎣
⎢
⎢
⎢
⎢
⎡ �

𝜎𝜎1,1 ⋯ 𝜎𝜎1,(𝐽𝐽−1)
⋮ ⋱ ⋮

𝜎𝜎(𝐽𝐽−1),1 ⋯ 𝜎𝜎(𝐽𝐽−1,𝐽𝐽− 1)

� �
𝜎𝜎1,𝐽𝐽 ⋯ 𝜎𝜎1,(𝐽𝐽−1+𝑝𝑝)
⋮ ⋱ ⋮

𝜎𝜎(𝐽𝐽−1),𝐽𝐽 ⋯ 𝜎𝜎(𝐽𝐽−1,𝐽𝐽− 1+𝑝𝑝)

�

�
𝜎𝜎𝐽𝐽,1 ⋯ 𝜎𝜎𝐽𝐽,(𝐽𝐽−1)
⋮ ⋱ ⋮

𝜎𝜎(𝐽𝐽−1+𝑝𝑝),1 ⋯ 𝜎𝜎(𝐽𝐽−1+𝑝𝑝,𝐽𝐽− 1)

� �
𝜎𝜎𝐽𝐽,𝐽𝐽 ⋯ 𝜎𝜎𝐽𝐽,(𝐽𝐽−1+𝑝𝑝)
⋮ ⋱ ⋮

𝜎𝜎(𝐽𝐽−1+𝑝𝑝),𝐽𝐽 ⋯ 𝜎𝜎(𝐽𝐽−1+𝑝𝑝,𝐽𝐽− 1+𝑝𝑝)

�
⎦
⎥
⎥
⎥
⎥
⎤

then 𝜮𝜮𝑗𝑗 will have the following form as it takes the corresponding elements in the j-th row and column of 𝜮𝜮 and
𝜮𝜮𝑿𝑿,𝑿𝑿:

𝜮𝜮𝑗𝑗 =

⎣
⎢
⎢
⎡ 𝜎𝜎𝑗𝑗,𝑗𝑗 �𝜎𝜎𝑗𝑗,𝐽𝐽,⋯ ,𝜎𝜎𝑗𝑗,(𝐽𝐽−1+𝑝𝑝)�

�
𝜎𝜎𝐽𝐽,𝑗𝑗
⋮

𝜎𝜎(𝐽𝐽−1+𝑝𝑝),𝑗𝑗

� 𝜮𝜮𝑿𝑿,𝑿𝑿
⎦
⎥
⎥
⎤

For nominal multinomial model, the estimated standard error of �̂�𝜂𝑖𝑖,𝑗𝑗 is given by

𝜎𝜎�𝜂𝜂𝑖𝑖,𝑗𝑗 = �𝒙𝒙𝑖𝑖𝑇𝑇𝜮𝜮𝑗𝑗𝒙𝒙𝑖𝑖 , 𝑗𝑗 = 1, … , 𝐽𝐽 − 1,

where 𝜮𝜮𝑗𝑗 is part of covariance matrix 𝜮𝜮 corresponding to the covariance matrix of 𝑿𝑿�𝑗𝑗.

5.1.3 Predicted values of the means

A predicted value, or fitted value, of the mean 𝜇𝜇𝑖𝑖 corresponding to 𝒙𝒙𝑖𝑖 is given by

�̂�𝜇𝑖𝑖 = 𝑔𝑔−1�𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝑜𝑜𝑖𝑖�

where 𝑔𝑔−1 is the inverse of the link function. For binomial distribution with 0/1 binary response variable, �̂�𝜇𝑖𝑖 is
the predicted probability of category 1.

For ordinal multinomial model, a predicted value, or fitted value, of the cumulative response probability for
category j, 𝛾𝛾𝑖𝑖,𝑗𝑗 corresponding to 𝒙𝒙𝑖𝑖 is given by

𝛾𝛾�𝑖𝑖,𝑗𝑗 = 𝑔𝑔−1�𝜓𝜓�𝑗𝑗 − 𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝑜𝑜𝑖𝑖�, 𝑗𝑗 = 1, … , 𝐽𝐽 − 1 with 𝛾𝛾�𝑖𝑖,𝐽𝐽 = 1.

For nominal multinomial model, the predicted value of the probability for category j corresponding 𝒙𝒙𝑖𝑖 is given
by

𝜋𝜋�𝑖𝑖,𝑗𝑗 = 𝑔𝑔−1��̂�𝜂𝑖𝑖,𝑗𝑗� =

⎩
⎪
⎨

⎪
⎧ exp ��̂�𝜂𝑖𝑖,𝑗𝑗�

1 + ∑ exp (�̂�𝜂𝑖𝑖,𝑘𝑘)𝐽𝐽−1
𝑘𝑘=1

, 𝑗𝑗 = 1,⋯ , 𝐽𝐽 − 1,

1
1 + ∑ exp (�̂�𝜂𝑖𝑖,𝑘𝑘)𝐽𝐽−1

𝑘𝑘=1
, 𝑗𝑗 = 𝐽𝐽.

5.1.4 Confidence intervals for the means

Approximate 100(1−α)% confidence intervals for the mean 𝜇𝜇𝑖𝑖 can be computed as follows

𝑔𝑔−1�𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝑜𝑜𝑖𝑖 ± 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜂𝜂�

For ordinal multinomial model, approximate 100(1−α)% confidence intervals for the cumulative response
probability 𝛾𝛾�𝑖𝑖,𝑗𝑗 can be computed as follows

𝑔𝑔−1 �𝜓𝜓�𝑗𝑗 − 𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝑜𝑜𝑖𝑖 ± 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜂𝜂𝑖𝑖,𝑗𝑗� , 𝑗𝑗 = 1,⋯ , 𝐽𝐽 − 1.

If either endpoint in the argument is outside the valid range for the inverse link function, the corresponding
confidence interval endpoint is set to a system missing value.

For nominal multinomial model, approximate 100(1−α)% confidence intervals for the probability, 𝜋𝜋�𝑖𝑖,𝑗𝑗 can be
computed as follows

𝜋𝜋�𝑖𝑖,𝑗𝑗 ± 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜋𝜋𝑖𝑖,𝑗𝑗 , 𝑗𝑗 = 1,⋯ , 𝐽𝐽.

where 𝜎𝜎�𝜋𝜋𝑖𝑖,𝑗𝑗 can be computed by

𝜎𝜎�𝜋𝜋𝑖𝑖,𝑗𝑗 = �
𝜕𝜕𝜋𝜋�𝑖𝑖,𝑗𝑗
𝜕𝜕�̂�𝜂𝑖𝑖,1

,⋯ ,
𝜕𝜕𝜋𝜋�𝑖𝑖,𝑗𝑗
𝜕𝜕�̂�𝜂𝑖𝑖,𝐽𝐽−1

�Cov(𝜼𝜼�𝑖𝑖) �
𝜕𝜕𝜋𝜋�𝑖𝑖,𝑗𝑗
𝜕𝜕�̂�𝜂𝑖𝑖,1

,⋯ ,
𝜕𝜕𝜋𝜋�𝑖𝑖,𝑗𝑗
𝜕𝜕�̂�𝜂𝑖𝑖,𝐽𝐽−1

�
T

,

𝜕𝜕𝜋𝜋�𝑖𝑖,𝑗𝑗
𝜕𝜕�̂�𝜂𝑖𝑖,𝑘𝑘

= �
𝜋𝜋�𝑖𝑖,𝑗𝑗�1 − 𝜋𝜋�𝑖𝑖,𝑗𝑗� 𝑗𝑗 = 𝑘𝑘
−𝜋𝜋�𝑖𝑖,𝑗𝑗𝜋𝜋�𝑖𝑖,𝑘𝑘 𝑗𝑗 ≠ 𝑘𝑘

,

Cov(𝜼𝜼�𝑖𝑖) = Cov��
�̂�𝜂𝑖𝑖,1
⋮

�̂�𝜂𝑖𝑖,𝐽𝐽−1
�� = �𝑰𝑰𝐽𝐽−1⨂𝒙𝒙𝑖𝑖𝑇𝑇�𝜮𝜮�𝑰𝑰𝐽𝐽−1⨂𝒙𝒙𝑖𝑖�

and 𝑰𝑰𝐽𝐽−1 is a (𝐽𝐽 − 1)×(𝐽𝐽 − 1) identity matrix and 𝜮𝜮 could be 𝜮𝜮𝑚𝑚 or 𝜮𝜮𝑟𝑟.

5.1.5 Predicted category for binomial and multinomial distributions

For binomial distribution with 0/1 binary response variable, the predicted category 𝑐𝑐(𝒙𝒙𝑖𝑖) is

𝑐𝑐(𝒙𝒙𝑖𝑖) = �1 (or success) if 𝜇𝜇𝑖𝑖 ≥ 0.5
0 (or failure) otherwise.

For ordinal and nominal multinomial model, the predicted category 𝑐𝑐(𝒙𝒙𝑖𝑖) is the one with the highest predicted
probability, i.e.,

𝑐𝑐(𝒙𝒙𝑖𝑖) = arg max
𝑗𝑗

𝜋𝜋�𝑖𝑖,𝑗𝑗

If there is a tie in determining 𝑐𝑐(𝒙𝒙𝑖𝑖), then tie will be broken by choosing the category with

1) Higher 𝑁𝑁𝑗𝑗 = ∑ 𝑓𝑓𝑖𝑖𝑦𝑦𝑖𝑖,𝑗𝑗𝑛𝑛
𝑖𝑖=1 .

2) If it ties in 1), choose the one with lower category number.

5.1.6 Classification table for binomial and multinomial distributions

Suppose that 𝑐𝑐(𝑗𝑗, 𝑗𝑗′) is the sum of the frequency for the observations whose actual target category is 𝑗𝑗 (as row)
and predicted target category is 𝑗𝑗′ (as column), 𝑗𝑗, 𝑗𝑗′ = 1,⋯ , 𝐽𝐽 (note that 𝐽𝐽 = 2 for binomial), then

𝑐𝑐(𝑗𝑗, 𝑗𝑗′) = �𝑓𝑓𝑖𝑖𝐼𝐼(𝑦𝑦𝑖𝑖 = 𝑗𝑗, 𝑐𝑐(𝒙𝒙𝑖𝑖) = 𝑗𝑗′)
𝑛𝑛

𝑖𝑖=1

where 𝐼𝐼(∙) is indicator function.

Suppose that 𝑝𝑝𝑗𝑗,𝑗𝑗′is the (𝑗𝑗, 𝑗𝑗′)th element of the classification table, which is row percentage, then

𝑝𝑝𝑗𝑗,𝑗𝑗′ = �
𝑐𝑐(𝑗𝑗, 𝑗𝑗′)

∑ 𝑐𝑐(𝑗𝑗, 𝑘𝑘)𝐽𝐽
𝑘𝑘=1

�×100%

The percentage of total correct predictions of the model is

𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �
∑ 𝑐𝑐(𝑗𝑗, 𝑗𝑗)𝐽𝐽
𝑗𝑗=1

∑ ∑ 𝑐𝑐(𝑗𝑗, 𝑗𝑗′)𝐽𝐽
𝑗𝑗′=1

𝐽𝐽
𝑗𝑗=1

�×100%.

5.2 Model diagnostics

In addition to predicted values, we can calculate some values which would be good for model diagnostics for all
distributions except multinomial. They include leverage values, residuals and cook’s distance values.

5.2.1 Leverage values

The leverage value ℎ𝑖𝑖 is defined as the i-th diagonal element of the hat matrix

𝑯𝑯 = 𝑾𝑾𝑒𝑒
1/2𝑿𝑿(𝑿𝑿𝑇𝑇𝑾𝑾𝑒𝑒𝑿𝑿)−𝑿𝑿𝑇𝑇𝑾𝑾𝑒𝑒

1/2

where the i-th diagonal element for 𝑾𝑾𝑒𝑒 is

𝑤𝑤𝑒𝑒,𝑖𝑖 =
𝜔𝜔𝑖𝑖

𝜙𝜙
∙

1
𝑉𝑉(𝜇𝜇𝑖𝑖)(𝑔𝑔′(𝜇𝜇𝑖𝑖))2.

5.2.2 Residuals

We will offer 5 different residuals:

(a) Raw residual

The raw residual is defined as

𝑟𝑟𝑖𝑖𝑅𝑅 = 𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖

where 𝑦𝑦𝑖𝑖 is the i-th response and �̂�𝜇𝑖𝑖 is the corresponding predicted mean. Note for binomial response with a
binary format, 𝑦𝑦 values are 0 for the reference category and 1 for the category we are modeling.

(b) Pearson residual

The Pearson residual is the square root of the i-th contribution to the Pearson chi-square, with the sign of the
raw residual.

𝑟𝑟𝑖𝑖𝑃𝑃 = sign(𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖)�𝛾𝛾𝑖𝑖 = (𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖)�
𝜔𝜔𝑖𝑖

𝑉𝑉(�̂�𝜇𝑖𝑖)
.

(c) Deviance residual

The deviance residual is defined as the square root of the contribution of the i-th observation to the deviance,
with the sign of the raw residual.

𝑟𝑟𝑖𝑖𝐷𝐷 = sign(𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖)�𝑑𝑑𝑖𝑖 .

where 𝑑𝑑𝑖𝑖 is the contribution of the i-th case to the deviance, see Table 9, and sign(𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖) is 1 if 𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖 is
positive and −1 if 𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖 is negative.

(d) Standardized (and studentized) Pearson residual

The standardized (and studentized) Pearson residual is that the Pearson residual is multiplied by the factor
(𝜙𝜙(1 − ℎ𝑖𝑖))−1/2

𝑟𝑟𝑖𝑖𝑆𝑆𝑃𝑃 = (𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖)�
𝜔𝜔𝑖𝑖

𝜙𝜙𝑉𝑉(�̂�𝜇𝑖𝑖)(1 − ℎ𝑖𝑖)
= 𝑟𝑟𝑖𝑖𝑃𝑃�

1
𝜙𝜙(1 − ℎ𝑖𝑖)

.

(e) Standardized (and studentized) deviance residual

The standardized (and studentized) deviance residual is that the deviance residual is multiplied by the factor
(𝜙𝜙(1 − ℎ𝑖𝑖))−1/2

𝑟𝑟𝑖𝑖𝑆𝑆𝐷𝐷 = sign(𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖)�𝑑𝑑𝑖𝑖�
1

𝜙𝜙(1 − ℎ𝑖𝑖)
= 𝑟𝑟𝑖𝑖𝐷𝐷�

1
𝜙𝜙(1 − ℎ𝑖𝑖)

.

(f) Likelihood residual

The likelihood residuals are defined by

𝑟𝑟𝑖𝑖𝐿𝐿 = sign(𝑦𝑦𝑖𝑖 − �̂�𝜇𝑖𝑖)�ℎ𝑖𝑖(𝑟𝑟𝑖𝑖𝑆𝑆𝑃𝑃)2 + (1 − ℎ𝑖𝑖)(𝑟𝑟𝑖𝑖𝑆𝑆𝐷𝐷)2.

5.2.3 Cook’s distance

Cook’s distance measures the change to the solution that results from omitting each observation. The formula is

𝐶𝐶𝑖𝑖 =
1
𝑝𝑝𝑥𝑥
∙

ℎ𝑖𝑖
1 − ℎ𝑖𝑖

(𝑟𝑟𝑖𝑖𝑆𝑆𝑃𝑃)2.

Note on calculating scoring for binomial response with events/trials format

When 𝑟𝑟/𝑚𝑚 format for the binomial distribution is used, the response we used is the binomial proportion 𝑦𝑦 = 𝑟𝑟/𝑚𝑚,
but to many people, the response for binomial distribution should be the number of events (r). Thus for 𝑟𝑟/𝑚𝑚
binomial distribution, the predicted value of the mean we are going to list is the expected number of trials, not the
expected proportion. Then some of the above formulae in Section 5 should be modified. We will list the modified
ones below and those unmodified ones are still the same as before.

Some notations for events/trials format we used before calculating scoring:

𝑟𝑟𝑖𝑖 # of events

𝑚𝑚𝑖𝑖 # of trials

𝑦𝑦𝑖𝑖 proportion (𝑦𝑦𝑖𝑖 = 𝑟𝑟𝑖𝑖/𝑚𝑚𝑖𝑖)

𝜇𝜇𝑖𝑖 expected proportion obtained from parameter estimation

 A predicted value of the mean: �̂�𝜇𝑖𝑖 = 𝑔𝑔−1�𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝑜𝑜𝑖𝑖�×𝑚𝑚𝑖𝑖.

 Approximate 100(1−α)% confidence interval for the mean: 𝑔𝑔−1�𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝑜𝑜𝑖𝑖 ± 𝑧𝑧1−𝛼𝛼/2𝜎𝜎�𝜂𝜂�×𝑚𝑚𝑖𝑖.

 The raw residual: 𝑟𝑟𝑖𝑖𝑅𝑅 = 𝑦𝑦𝑖𝑖𝑚𝑚𝑖𝑖 − �̂�𝜇𝑖𝑖.

 The Pearson residual: 𝑟𝑟𝑖𝑖𝑃𝑃 = (𝑦𝑦𝑖𝑖𝑚𝑚𝑖𝑖 − �̂�𝜇𝑖𝑖)�
𝜔𝜔𝑖𝑖
𝑈𝑈𝑖𝑖

, where 𝑈𝑈𝑖𝑖 = �̂�𝜇𝑖𝑖�1 − (�̂�𝜇𝑖𝑖/𝑚𝑚𝑖𝑖)� (base on # of events)

𝑟𝑟𝑖𝑖𝑃𝑃 = (𝑦𝑦𝑖𝑖 − 𝜇𝜇𝑖𝑖)�
𝜔𝜔𝑖𝑖
𝑉𝑉(𝜇𝜇)

, where 𝑉𝑉(𝜇𝜇𝑖𝑖) = 𝜇𝜇𝑖𝑖(1−𝜇𝜇𝑖𝑖)
𝑚𝑚𝑖𝑖

 (based on proportion)

 The deviance residual: 𝑟𝑟𝑖𝑖𝐷𝐷 = sign(𝑦𝑦𝑖𝑖𝑚𝑚𝑖𝑖 − �̂�𝜇𝑖𝑖)�𝑑𝑑𝑖𝑖, where 𝑑𝑑𝑖𝑖 is from Table 9 (based on # of events)

𝑟𝑟𝑖𝑖𝐷𝐷 = sign(𝑦𝑦𝑖𝑖 − 𝜇𝜇𝑖𝑖)�𝑑𝑑𝑖𝑖 (based on proportion)

Note:

 Unlike other distributions which 𝜇𝜇𝑖𝑖 and �̂�𝜇𝑖𝑖 are interchangeable, we need to distinguish 𝜇𝜇𝑖𝑖 and �̂�𝜇𝑖𝑖 for binomial
distribution with events/trials format:

 𝜇𝜇𝑖𝑖: the expected proportion used before calculating scoring;

 �̂�𝜇𝑖𝑖: the expected number of events for calculating scoring (the predicted value of the mean).

However, the Pearson residual and deviance residual are the same no matter they are based on # of events or
proportion.

Appendix A - Ordinal Multinomial Distribution
For multinomial distribution, the GENLIN procedure supports only the ordinal multinomial model (or threshold
model). The model form is not the same as the above traditional generalized linear model and would be consistent
with other SPSS procedures, such as PLUM and CSORDINAL. The target variable y is assumed to be ordinal, its
values have an intrinsic linear ordering and correspond to consecutive integers from 1 to J. The design matrix X
includes model predictors, but not an intercept. We need some new notations to define the model form:

J The number of values for the ordinal target variable, 2.J ≥

iy
Ordinal target variable for the record i. Its category values are denoted consecutive integers
from 1 to J.

jiy ,
Indicator variable of record i for category j , i.e. ,

1 if
.

0 otherwise
i

i j

y j
y

=
=

X

Design matrix ()T
1, ,X x xn= , where ()T

1, , ,i i ipx x=x is for record i , the superscript T
means transpose of a matrix or vector. Note that X includes model predictors, but not an
intercept.

ψ J – 1 × 1 vector of threshold parameters , ()T
1 2 1, , , Jψ ψ ψ −=ψ and 1 2 1.Jψ ψ ψ −< < <

β
p × 1 vector of regression parameters associated with model predictors,

()T

1 2, , , .pβ β β=β

B (J – 1 + p) × 1 vector of all parameters, ()TT T, .ψΒ = β

,i jγ Conditional cumulative target probability for category j given observed independent variable
vector ix , i.e., , (|).i j iP y jγ = ≤ ix

,i jπ Conditional target probability for category j given observed independent variable vector ix ,
i.e., , (|)i j iP y jπ = = ix and , , , 1 for 1, , .i j i j i j j Jπ γ γ −= − =

,i jη Linear predictor value of record i for category j. It is related to ,i jγ through a cumulative link
function.

The form for ordinal target y is

T
, ,() , ~ .i j i j j i i ig o y Fη γ ψ= = − + x β

Note:

• To check the dependencies here in the design matrix, columns of () ()T1, 1, ,− −X XΨ where

()1 1diag , ,n nf fω ω=Ψ are examined by using the sweep operator.

Log likelihood function

Given a record ix , iy follows a multinomial distribution. The kernel log likelihood function is

(), ,
1 1

ln ,
n J

i i
k i j i j

i j

f yω π
φ= =

=∑ ∑ where ,

1 if
,

0 otherwise
i

i j

y j
y

=
=

and the full log likelihood function ,k c= + where c is computed based on subpopulations (see Section 4.3.3.2
for details.)

Table A.1: Cumulative Link Function Name, Form, Inverse Form and Range of the Predicted Cumulative Probability

Link function name ()gη γ= Inverse ()1gγ η−= Range of γ̂

Cumulative logit ln
1
γ
γ

 −

 exp()
1 exp()

η
η+

 ()ˆ 0, 1γ ∈

Cumulative probit
()1 γ−Φ , where

() 2 21
2

ze dz
ξ

ξ
π

−

−∞
Φ = ∫

()ηΦ ()ˆ 0, 1γ ∈

Cumulative complementary log-log ()()ln ln 1 γ− − ()()1 exp exp η− − ()ˆ 0, 1γ ∈

Cumulative negative log-log ()()ln ln γ− − ()()exp exp η− − ()ˆ 0, 1γ ∈

Cumulative Cauchit ()()tan 0.5π γ
∗

− ()0.5 arctan η π ∗+ ()ˆ 0, 1γ ∈

* π in the formula is denoted pi, not the target probability.

Table A.2: The Inverse First and Second Derivatives of Cumulative Link Function

Link function name
Inverse first derivative
γ
η
∂

= ∆
∂

 Inverse second derivative
2

2

γ
η
∂
∂

Cumulative logit ()1γ γ− ()1 2γ∆ −

Cumulative probit
()()1φ γ−Φ , where

() 2 21
2

zz eφ
π

−=
()1 γ−−∆×Φ

Cumulative complementary log-log () ()1 ln 1γ γ− − ()()1 ln 1 γ∆ + −

Cumulative negative log-log ()lnγ γ− ()()1 ln γ−∆ +

Cumulative Cauchit ()()2cos 0.5π γ π
∗

− ()sin 2πγ ∗∆×

* π in the formula is denoted pi, not the target probability.

First derivatives

(1) 1

.s 0
J p− + ×

∂
 ∂∂ = = = ∂∂
 ∂

ψ
Β

β

T

1 1 1

, , , , , ,s
J pψ ψ β β−

 ∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂

 i.e.,

, , , 1

1 , , , 1

, 1, , 1
n

i j i j i ji i

ij i j i j i j

y yf j J
γω

ψ φ η π π
+

= +

 ∂∂
= − = − ∂ ∂
∑

 and

, , 1 ,

1 1 , , 1 ,

, 1, , ,
n J

i j i j i ji i
it

i jt i j i j i j

yf x t p
γ γω

β φ η η π
−

= = −

 ∂ ∂∂
= − − = ∂ ∂ ∂
∑∑

where , , , 1 for 1, ,i j i j i j j Jπ γ γ −= − =
 and ()1 T

,

0 0

1, , 1,

1
i j j i i

j

g o j J

j J

γ ψ−

=

= − + = −
 =

 x β which is from Table A.1

and
,

,

i j

i j

γ
η
∂

∂
 is defined in Table A.2 for 1, , 1j J= − and by the definition

,0 ,

,0 ,

0i i J

i i J

γ γ
η η
∂ ∂

= =
∂ ∂

. Note if

, ,0 or 1 i j i jγ γ∂ = ∂ = then
,

,

0i j

i j

γ
η
∂

=
∂

 for all cumulative link functions.

Second derivatives

2 2

T T2

T 2 2
1 1

T T

.
() ()

H
J p J p− + × − +

 ∂ ∂
 ∂ ∂ ∂ ∂ ∂ = = ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂

ψ ψ ψ β
Β Β

β ψ β β

The elements of H have two forms: (1) the expected first derivatives of the estimating equation s which is applied
to Fisher scoring and (2) the first derivatives of the estimating equation s which is applied to Newton Raphson.

(1) Expected second derivatives have the following expressions:

2
, 1 ,

11 , 1 , ,

1 , 2, , 1,
n

i j i ji i

ij j i j i j i j

f j J
γ γω

ψ ψ φ η η π
−

=− −

∂ ∂∂
= = −

∂ ∂ ∂ ∂∑

2
2

,
2

1 , , , 1

1 1 , 1, , 1,
n

i ji i

ij i j i j i j

f j J
γω

ψ φ η π π= +

 ∂∂
= − + = − ∂ ∂
∑

2

0, for - 1,
l j

l j
ψ ψ
∂

= >
∂ ∂

2
, , 1 , 1 , ,

1 , , 1 , , 1 , , 1 ,

1 1 ,

1, , 1, 1, , ,

n
i j i j i j i j i ji i

it
ij t i j i j i j i j i j i j i j

f x

j J t p

γ γ γ γ γω
ψ β φ η η π η η π η

− +

= − + +

 ∂ ∂ ∂ ∂ ∂∂
= − − − ∂ ∂ ∂ ∂ ∂ ∂ ∂

= − =

∑

2
2

, , 1

1 1 , , 1 ,

1 , , 1, , .
n J

i j i ji i
it iu

i jt u i j i j i j

f x x t u p
γ γω

β β φ η η π
−

= = −

 ∂ ∂∂
= − − = ∂ ∂ ∂ ∂
∑∑

(2) Second derivatives have the following expressions:

2
, 1 , ,

2
11 , 1 , ,

, 2, , 1,
n

i j i j i ji i

ij j i j i j i j

yf j J
γ γω

ψ ψ φ η η π
−

=− −

∂ ∂∂
= = −

∂ ∂ ∂ ∂∑

222
, , , 1 , , , 1

2 2 2 2
1 , , , 1 , , , 1

, 1, , 1,
n

i j i j i j i j i j i ji i

ij i j i j i j i j i j i j

y y y yf j J
γ γω

ψ φ η π π η π π
+ +

= + +

 ∂ ∂∂ = − − + = − ∂ ∂ ∂
∑

2

0, for - 1,
l j

l j
ψ ψ
∂

= >
∂ ∂

2
, , , , 1 ,

,2 2
1 , , , , 1 ,

2
, , , 1 , , 1

, 12 2
1 , , , 1 , , 1

,

n
i j i j i j i j i ji i

i j it
ij t i j i j i j i j i j

n
i j i j i j i j i ji i

i j it
i i j i j i j i j i j

yf x

yf x

j

γ γ γ γω π
ψ β φ η η η η π

γ γ γ γω π
φ η η η η π

−

= −

+ +
+

= + +

 ∂ ∂ ∂ ∂∂
= − − − + ∂ ∂ ∂ ∂ ∂ ∂

 ∂ ∂ ∂ ∂
− − ∂ ∂ ∂ ∂

=

∑

∑

1, , 1, 1, , ,J t p− =

22 2
, , 1 , , 1 ,

,2 2 2
1 1 , , 1 , , 1 ,

,

, 1, , ,

n J
i j i j i j i j i ji i

i j it iu
i jt u i j i j i j i j i j

yf x x

t u p

γ γ γ γω π
β β φ η η η η π

− −

= = − −

 ∂ ∂ ∂ ∂∂ = − − − ∂ ∂ ∂ ∂ ∂ ∂
=

∑∑

where
2

,
2
,

i j

i j

γ
η

∂

∂
 is defined in Table 5.2 for 1, , 1j J= − and by the definition

2 2
,0 ,

2 2
,0 ,

0i i J

i i J

γ γ
η η

∂ ∂
= =

∂ ∂
.

Initial values

Let ,
1

n

j i i j
i

N f y
=

= ∑ be the number of responses in category j, for 1, , ,j J= and
1

n

i
i

N f
=

= ∑ be the effective

sample size. Initial values for threshold parameters without and with offset variable, ,io are then computed
according to the following formulae:

(0) 1

j

l
l

j

N
g

N
ψ =

 =

∑
 and (0) 1

j

l
l

j j

N
g o

N
ψ =

 = −

∑
 for 1, , 1, j J= − respectively;

where , ,
1 1 1 1

.
j jn n

j i i l i i i l
i l i l

o f y o f y
= = = =

=∑∑ ∑∑ Initial values for all regression parameters are set to zero, i.e.

(0) 0, for 1, , .t t pβ = =

Notes:

• Similarly, the computation of , , ,k s H as well as , ,j jN N o in initial values can be implemented in
map-reduce environment.

Appendix B - Nominal Multinomial Distribution
Like ordinal multinomial distribution, the form of nominal multinomial model is not same as the other traditional
generalized linear model. So we need to introduce some new notations.

iy Nominal categorical target variable for the record i . Its category values are denoted as 1, 2, etc.

J The total number of categories for target variable.

jiy , Indicator variable for category j , i.e. 1, =jiy if jyi = , otherwise 0, =jiy .

X Design matrix T
1(, ,)n=X x x

. The ith row is ()T
1, , ,i i ipx x=x where superscript T means

transpose of a matrix or vector, 1, ,i n= with 1 1ix = if model has an intercept.

ji,π The target probability for category j given observed independent variable vector ix , i.e.

)Pr(, jyiji ==π .

ji ,η Linear predictor value of record i for category j .

jβ p × 1 vector of unknown parameters for the category j , 1,,1 −= Jj
. The first element in

jβ is the intercept for the category j , if there is one.

β T T T
1 1(, ,)J −=β β β

The form of a generalized linear model for nominal target y is

T
, ,() , ~i j i j i j i ig o y Fη π= = +x β

where ji ,η is linear predictor value of record i for category j ; io is the offset variable value of the record i
and)(⋅g is logit link function such that :

1,,1,log)(
,

,
, −=

= Jjg

Ji

ji
ji

π
π

π

Or

()
()

()

T

1
T

1 1
, ,

1
T

1

exp
, 1, , 1,

1 exp
()

1 ,
1 exp

i j i
J

i k i
k

i j i j

J

i k i
k

o
j J

o
g

j J
o

π η

−

− =

−

=

 +
 = −
 + += =
 =
+ +

∑

∑

x β

x β

x β

where
T

1(, ,)j j jpβ β=β is the regression parameter vector for target category j . There are)1(−Jp

regression parameters in total T T T
1 1(, ,)J −=β β β .

Log likelihood function

Given a record ix , iy follows a multinomial distribution. The log likelihood function for probability
distribution is

, ,
1 1

() ln() ,
n J

i i
i j i j

i j

f y cω π
φ= =

= +∑ ∑β

where c is computed based on subpopulations (see Section 4.3.3.2 for details.)

First derivatives

The first derivative for jβ is

, ,
1

()() ()
n

i i
j i j i j i

ij

fs yω π
φ=

∂
= = −

∂ ∑ββ x
β

, 1,,1 −= Jj

So the first derivative for β is

T T T
1 1

1
(() , , ()) ()

n
i i

J i i i
i

fs s ω
φ−

=

= = − ⊗∑s β β x y π

where
T

Jiii yy),,(1,1, −= y and
T

Jiii],,[1,1, −= ππ π . ⊗ is the Kronecker product such that BA⊗

produce a matrix with A ’s element ija being replaced by a matrix Baij .

Second derivatives

The second derivative (Hessian) matrix, H , is a)1()1(−×− JpJp matrix with the form:

2 2

T T
1 1 1 -12

T
(1) (1) 2 2

T T
-1 1 -1 -1

J

p J p J

J J J

− × −

 ∂ ∂
 ∂ ∂ ∂ ∂ ∂ = = ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂

β β β β

β β

β β β β

H

where the (k, j)th block element of H , for 1,,1, −= Jjk
 is

T
, ,2

1
T

T
, ,

1
(1

n
i i

i k i j i i
i

n
k j i i

i j i j i i
i

f k j

f k j

ω π π
φ
ω π π
φ

=

=

≠∂ = ∂ ∂ − − =

∑

∑

x x

β β
)x x

Initial values

For all non-intercept regression parameters, set their initial values to be zero. For intercepts, if there are any, set
for 1,,1 −= Jj

,

=

J

j
j N

N
log)0(

1β if there is no offset variable, and

j
J

j
j o

N
N

−

= log)0(

1β if there is an offset variable,

where ∑
=

=
n

i
jiij yfN

1
, , and

∑

∑

=

== n

i
jii

n

i
ijii

j

yf

oyf
o

1
,

1
,

.

Notes:

• Similarly, the computation of , , ,k s H as well as ,j jN o in initial values can be implemented in map-
reduce environment.

Appendix C - Tweedie Distribution
 Vi in Tweedie distribution is an infinite series as follows:

1

i ij
j

V V
∞

=

= ∑ and
() ()

() () ()

1

1

1

2 !

jj j
i i

ij jj

y q
V

q j j

αα α

α

ω

φ Γ α

− −

−

−
=

− −
,

where
2 ,
1

q
q

α −
=

−
 and note α is negative for 1 < q < 2. To evaluate the infinite summation for iV , the value

of j is determined for which ijV reaches a maximum (we evaluate ()max ln ijj
V here) and sum the necessary

terms of the series in that region. The method proposed by Dunn and Smyth (2005) is adopted here and
summarized as follows:

(1) Approximate the gamma functions in ()ln ijV by using Stirling’s approximation as

() () () ()1 1ln ! ln 1 ln ln 2 ,
2 2

j j j j jΓ π = + ≈ + − +

() () () () ()1 1ln ln 1 ln ln 2 ,
2 2

j j j j jΓ α Γ α α α α π − ≈ − ≈ − + − − − +

and ()ln ijV becomes

() () () ()

() () ()() () () () ()

ln ln ln ! ln

1ln 1 1 ln ln ln ln ln 2 ,
2

ij i

i

V j z j j

j z j j

Γ α

α α α α π

= − − −

 ≈ + − − + − − − − −

where
()

()

1

1

1
.

2
i i

i

y q
z

q

αα α

α

ω
φ

− −

−

−
=

−

(2) Treat j as continuous and ()ln ijV is differentiated with respect to j

() () () () ()

() () () ()

ln 1ln ln 1 ln

ln ln 1 ln ,

ij
i

i

V
z j

j j
z j

α α α

α α α

∂
≈ + − − − −

∂

≈ + − − −

since the term 1/j is ignored for j large.

(3) Set the above derivative to zero to obtain the value of j at which ()ln ijV reaches a maximum

()
2

max .
2

q
i iyj

q
ω
φ

−

=
−

If yi is large, iω large, φ small or q near 2, jmax would be large. The approximate maximum value of

()ln ijV is

() () () () ()
max, max max

1ln 1 ln ln ln 2 .
2i jV j jα α π= − − − − −

(4) Find the lower and upper bounds of j to approximate iV with .
U

L

j

i ij
j j

V V
=

= ∑ We simply search max1 Lj j≤ <

and maxUj j> such that () ()max, ,ln ln 37
Li j i jV V< − and () ()max, ,ln ln 37,

Ui j i jV V< − respectively.

(5) Compute ()ln iV in the following way to avoid the possibility of floating point overflow:

() () () ()()max max, ,ln ln ln exp ln ln .
U

L

j

i i j ij i j
j j

V V V V
=

= + −∑

• The value of j at which the series 2

1 1
 and ij ij

j j
jV j V

∞ ∞

= =
∑ ∑ reach their maximums can be still approximated by

()
2

max .
2

q
i iyj

q
ω
φ

−

=
−

 Then

() () () ()
maxmax , max

1ln 1 ln ln 2
2i jj V j α α π= − − − − and

() () () () ()
max

2
max , max max

1ln 1 ln ln ln 2 .
2i jj V j jα α π= − + − − −

Note that there are n jmax values corresponding to n complete records. Thus, jL and jU should be different for

each record. In addition, jL and jU should be different for
1

, ij
j

V
∞

=
∑

1
 ij

j
jV

∞

=
∑ and 2

1
 ij

j
j V

∞

=
∑ as well. However,

Dunn and Smyth (2005) have found it useful to choose common jL and jU for all records and all summations.

Basic idea is that searching jL and jU based on
1

 ij
j

jV
∞

=
∑ for each record then the minimum of jL and maximum

of jU from all records would be the common jL and jU, respectively.

1. Search jL and jU:

(){For 1,i n=

 () () () () () () ()ln ln 1 ln ln 1 ln 2 1i i iz y q qα α ω α α τ= − + − + − − − − −

 () ()2 / exp 2q
i i ij y qω τ−= ∗ ∗ −

}

() ()max 1, ,
ln max ln ii n

z z+

=
=

; () ()max 1, ,
ln min ln ii n

z z−

=
=

() () ()maxln 1 lncpart z α α α+ += + − + ∗ − ; () () ()maxln 1 lncpart z α α α− −= + − + ∗ −

{ }max 1, ,
max ii n

j j+

=
=

; { }max 1, ,
min ii n

j j−

=
=

()max maxln 1V j α+ += ∗ − ; ()max maxln 1V j α− −= ∗ −

limit 37=

()maxmax 1, j j+= ; maxln lnest V V +=

()(){maxWhile ln ln limitest V V +> −

 1j j= + (or 2j j= + as Dunn did which might speed the result)

 () ()()ln 1 *lnest V j cpart jα+= ∗ − −

}

Uj j=

()maxmax 1, j j−= ; maxln lnest V V −=

()(){maxWhile ln ln limitest V V −> −

 ()max 1, 1j j= − (or ()max 1, 2j j= − as Dunn did which might speed the result)

 () ()()ln 1 *lnest V j cpart jα−= ∗ − −

}

Lj j=

2. Compute ()ln ln ,
U

L

j

i ij
j j

V V
=

= ∑ ,iV
U

L

j

i ij
j j

jV jV
=

= ∑ and 2 2
U

L

j

i ij
j j

j V j V
=

= ∑ in the following way to avoid the

possibility of floating point overflow:

(){For ,L Uj j j=

 () () () ()ln ln ln 1 lnij iV j z j jΓ Γ α= − + − −

 () () ()ln ln lnij ijjV V j= +

 () () ()2ln ln 2 lnij ijj V V j= + ∗

}

() ()max, , ,
ln max ln ;

L U
i j ijj j j

V V
=

=

() ()max , ,
ln max ln ;

L U
ij ijj j j

jV jV
=

=

() ()2 2

max , ,
ln max ln

L U
ij ijj j j

j V j V
=

=

1 0; 2 0; 3 0i i isum sum sum= = =

(){For ,L Uj j j=

 () ()()max,exp ln lnij ij i jv V V= − ; 1 1i i ijsum sum v= +

 () ()()max
exp ln lnij ij ijjv jV jV= − ; 2 2i i ijsum sum jv= +

 () ()()2 2 2

max
exp ln lnij ij ijj v j V j V= − ; 23 3i i ijsum sum j v= +

}

() () ()
max,ln ln ln 1i i j iV V sum= +

() ()()max,max

2exp ln ln
1

i i
ij i j

ii

jV sumjV V
sumV

= − ∗

() ()()max

2
2

,max

3exp ln ln
1

i i
ij i j

ii

j V sumj V V
sumV

= − ∗

()1 *
i

i

i i

V
jV

V V
τ α

∂
∂ = −

()

2
22 21 *

i
i

i i

V
j V

V V
τ α

∂
∂ = −

Appendix D - Digamma and Trigamma Function
This part is based on Zhong (2006b).

This document descries the computational algorithm of the digamma and Trigamma function based on the
formulas in Abramowitz and Stegun (1972).

z A complex number

x A real number

)(zΓ The gamma function

)(zψ Digamma function

)(zψ ′ Trigamma function

Bn The Bernoulli number

The gamma function,)(zΓ , is defined by the following integral,

 0)(,)(
0

1 >= ∫
∞ −− zrealdtetz tz Γ

())(ln zΓ is a log-gamma function evaluated at z.

)(zψ is digamma function, which is the derivative of logarithm of a gamma function evaluated at z,

()

)(
)()(ln)(

z
z

z
zz

Γ
ΓΓψ
′

=
∂

∂
=

)(zψ ′ is a Trigamma function, which is the derivative of)(zψ , evaluated at z.

Digamma Function

The two main mathematical properties of the digamma function,

(1) Recurrence formulas

z
zz 1)()1(+=+ ψψ

 (2) Asymptotic formulas

()∞<∞→+−+−−=

−− ∑
∞

=

zz
zzzz

z

nz
B

z
zz

n
n

n

arg
252

1
120

1
12

1
2
1)ln(

22
1)ln(~)(

642

1
2

2

in

ψ

The Bernoulli number Bn can be defined by the contour integral,

∫ +−
= 112

!
nzn z
dz

e
z

i
nB
π

where the contour encloses the origin, has radius less than 2π, and is traversed in a counterclockwise direction
(Arfken, 1985). The first few Bernoulli number Bn are

138
854513

330
174611

798
43867

510
3617

6
7

2730
691

66
5
30
1
42
1
30
1
6
1
2
1

22

20

18

16

14

12

10

8

6

4

2

1

0 1

=
−=

=
−=

=
−=

=
−=

=
−=

=
−=

=

B
B
B
B
B
B
B
B
B
B
B
B
B

Therefore, we have following formula to calculate the digamma function,

∑ = −+
−+=

m

i ix
mxx

1 1
1)()(ψψ

where m is a positive integer.

According two formulas above, we have the following computational algorithm of digamma function for real
number x.

Algorithm 1: Digamma(x)

If (510)(−≤xabs) then

x
.-p 16512015328606057721566490 −= .

Return (p).
End if.
m = 10.
x = x + m.

2
1
x

p =

ppppppp

−

+

−

+

 −=

12
1

120
1

252
1

240
1

132
1

32760
691 .

x
xpp

2
1)ln(−+= .

For i = 1 to m do

ix
pp

−
−=

1

End for.
Return (p).

The algorithm 1 has a computed precision of 1210|| −<ε , but in practice, appears to 15 significant digits for all
positive real argument.

Trigamma Function

The nth derivative of)(zψ is called the polygamma function, denoted)()(znψ ,

 ,,,nx
dz
dz

dz
dz n

n

n

n
n 321),(ln)()(1

1
)(=== +

+

Γψψ

Trigamma function,)(zψ ′ , has two main mathematical properties,

(1) Recurrence formulas
2)()1(−−′=+′ zzz ψψ

(2) Asymptotic formulas

()∞<∞→

+−+−++=

++′ ∑∞

= +

zz
zzzzzz

z
B

zz
z

k k
k

arg
30

1
42

1
30

1
6
1

2
11

2
11~)(

97532

1 12
2

2

in

ψ

Similarly, we have following formula to calculate the digamma function,

21

1() ()
(1)

m

i
x x m

x i
ψ ψ

=
= + +

+ −∑

where m is a positive integer.

According to two formula above, we have the following computational algorithm of trigamma function for real
number x.

Algorithm 2: Trigamma(x)

If (410)(−<=xabs) then

xx
p

×
=

1
.

Return (p).
End for.
m = 10.
x = x + m.

2
1
x

p = .

p
x

ppppppp
2
111

6
1

30
1

42
1

30
1

66
5

2730
691

+

+

+

−

+

−

 +−= .

For i = 1 to m do

2)(
1

ix
pp

−
+= .

End for
Return (p).

The algorithm 2 has a computed precision of 1310|| −<ε , but in practice, appears to 15 significant digits for all
positive real argument.

References – Phase I
[1]. Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas, Graphs,

and Mathematical Tables, 9th printing. New York: Dover. Chapter 6: Gamma and Related Functions.

[2]. Arfken, G. (1985). Mathematical Methods for Physicists, 3rd printing. Orlando, FL: Academic Press.
Chapter 10: Digamma and Polygamma Functions.

[3]. Cameron, A. C. and Trivedi, P. K. (1998), Regression Analysis of Count Data, Cambridge: Cambridge
University Press.

[4]. Chiu, T. (1995a), “The four types of sum of square for univariate β-model,” SPSS Internal Document.

[5]. Chiu, T. (1995b), “Calculation of the four types of sums of squares,” SPSS Internal Document.

[6]. Chu, J. and Zhong, W. (2005), “Algorithm: Generalized Linear Models and Generalized Estimating
Equation,” SPSS Internal Document.

[7]. Chu, J. (2009), “Algorithm: Data Transformation in GENLIN,” SPSS Internal Document.

[8]. Chu, J. and Han, S. (2011), “Algorithm: Linear Engine”, IBM SPSS Internal Document.

[9]. Du, Z. and Zheng, P. (2009) “Algorithm: Unconstrained and Linearly Constrained Optimization,” SPSS
Internal Document.

[10]. Dunn, P. K. and Smyth, G. K. (2005), “Series Evaluation of Tweedie Exponential Dispersion Model
Densities,” Statistics and Computing, 15, 267–280.

[11]. Dunn, P. K. and Smyth, G. K. (2001), “Tweedie Family Densities: Methods of Evaluation,” Proceedings
of the 16th International Workshop on Statistical Modelling, Odense, Denmark, 2–6 July.

[12]. Fang, D. P (2004), “Logistic Regression in Complex Sampling,” SPSS Internal Document.

[13]. Hardin, J. W. and Hilbe, J. M. (2001), Generalized Linear Models and Extension, College Station, TX:
Stata Press.

[14]. Lam, M. L. (1995a), “Constructing the Design Matrix for the β-Model”, SPSS Internal Document.

[15]. Lam, M. L. (1995b), “Algorithm: the symmetric sweep operator”, SPSS Internal Document.

[16]. McCullagh, P. and Nelder, J. A. (1989), Generalized Linear Models, Second Edition, London: Chapman
and Hall.

[17]. Zhong, W. (2006a), “Algorithm: The construction of Type I and III L matrix”, SPSS Internal Document.

[18]. Zhong, W. (2006b), “Algorithm: Diagamma and trigamma”, SPSS Internal Document.

[19]. Dagli, A. (2012), “Simple random sampling in Map-Reduce”, IBM SPSS Internal Document.

6. Introduction – Phase II
Generalized Linear Engine Phase II (GLE Phase II) adds five main functions based on GLE Phase I (Chu and
Zhong, 2012).

• Automatic two-way interaction detection.
• Model selection, including distribution, link function and effects.
• Influential outliers for all distributions except multinomial distribution.
• Diagnostic plots for all distributions except multinomial distribution.
• Grouping analysis for all distributions, and influential target category analysis for multinomial distributions

and unusual categories detection for other distributions.

Section 7 describes automatic interaction detection. Section 8 describes model selection. Scoring and model
diagnostics are presented in Section 9 and 10. In addition, Appendix A gives grouping analysis and unusual
category detection.

7. Automatic two-way interaction detection
This section gives a method to detect two-way factor interaction 𝑋𝑋1 ∗ 𝑋𝑋2 given specific probability distribution
and link function, where 𝑋𝑋1 and 𝑋𝑋2 are two factors. In order to achieve this goal, log-likelihood ratio test between
reduced model and full model is used. Here the reduced model means a GZLM in which only predictors 𝑋𝑋1 and
𝑋𝑋2 are involved, and full model means the model contains 𝑋𝑋1 , 𝑋𝑋2 and 𝑋𝑋1 ∗ 𝑋𝑋2.

Since the computation will be complex for multinomial distribution, the log-likelihood ratio test for the
distributions except the multinomial distribution is provided from Sections 7.1 to Section 7.4. Then Section 7.5
and 7.6 introduce nominal and ordinal multinomial distribution, respectively.

However, even with this original limitation, it might not be possible to check all candidate pairs of two factors
for the model selection methods in Section 8. The reason is, if there are large number of main effects in X, the
whole process might require too much memory (so user might receive “run out of memory” message and no
output at all) or too much computational cost (so user might wait for a long time to receive output). Hence, we
provide a two-way-test pair search strategy to restrict number of the pairs in those which are more likely to be
selected to the final model in the model selection method. See Section 7.7 for details.

7.1 Notations
The notations below are just used for distributions except multinomial distribution:

𝑅𝑅 The total number of categories for factor 𝑋𝑋1.

𝑆𝑆 The total number of categories for factor X2.

𝑛𝑛𝑖𝑖𝑗𝑗 The number of records in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗.

𝑦𝑦𝑖𝑖𝑗𝑗𝑘𝑘 The target value for the kth record in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗. If the distribution
if binomial(m), then 𝑦𝑦𝑖𝑖𝑗𝑗𝑘𝑘 =

𝑟𝑟𝑖𝑖𝑗𝑗𝑖𝑖
𝑚𝑚𝑖𝑖𝑗𝑗𝑖𝑖

,where 𝑟𝑟𝑖𝑖𝑗𝑗𝑘𝑘 and 𝑚𝑚𝑖𝑖𝑗𝑗𝑘𝑘 are the events value and trials value,

respectively.

𝑓𝑓𝑖𝑖𝑗𝑗𝑘𝑘 The frequency weight for the kth record in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗.

𝑁𝑁𝑖𝑖𝑗𝑗 The total number of cases in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗.

𝑦𝑦�𝑖𝑖𝑗𝑗 The target mean in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗.

𝛼𝛼𝑖𝑖 The parameter of 𝑋𝑋1 = 𝑖𝑖.

𝛽𝛽𝑗𝑗 The parameter of 𝑋𝑋2 = 𝑗𝑗.

𝜇𝜇𝑖𝑖𝑗𝑗 The expectation of target in the combination of 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗.

7.2 Basic statistics

The below basic statistics are needed to collect:

• The total number of records: 𝑁𝑁𝑖𝑖𝑗𝑗 = ∑ 𝑓𝑓𝑖𝑖𝑗𝑗𝑘𝑘
𝑛𝑛𝑖𝑖𝑗𝑗
𝑘𝑘=1

• Target mean: 𝑦𝑦�𝑖𝑖𝑗𝑗 =
∑ 𝑓𝑓𝑖𝑖𝑗𝑗𝑖𝑖𝑦𝑦𝑖𝑖𝑗𝑗𝑖𝑖
𝑛𝑛𝑖𝑖𝑗𝑗
𝑖𝑖=1

𝑁𝑁𝑖𝑖𝑗𝑗

• The sum of square term of target: 𝑐𝑐𝑖𝑖𝑗𝑗 = ∑ 𝑓𝑓𝑖𝑖𝑗𝑗𝑘𝑘�𝑦𝑦𝑖𝑖𝑗𝑗𝑘𝑘 − 𝑦𝑦�𝑖𝑖𝑗𝑗�
2𝑛𝑛𝑖𝑖𝑗𝑗

𝑘𝑘=1

7.3 Two-way interaction test
The interaction test based on pseudo log-likelihood ratio test can be described as following steps:

1. Compute pseudo log-likelihood function, ℓfull , for full model. Please see Section 7.4 for details.
2. Compute pseudo log-likelihood function, ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟 for the model. Please see section 7.4 for detail.
3. Estimate the scale parameter based on full model:

𝜙𝜙� =
1
𝑑𝑑𝑓𝑓

��
𝑐𝑐𝑖𝑖𝑗𝑗

𝑉𝑉(𝑦𝑦�𝑖𝑖𝑗𝑗)

𝑆𝑆

𝑗𝑗=1

𝑅𝑅

𝑖𝑖=1

 where 𝑑𝑑𝑓𝑓 = ∑ ∑ 𝑁𝑁𝑖𝑖𝑗𝑗 − 𝑅𝑅 ∗ 𝑆𝑆 + 𝑐𝑐𝑆𝑆
𝑗𝑗=1

𝑅𝑅
𝑖𝑖=1 , here 𝑐𝑐 is the number of invalid categorical combinations.

4. Compute the log-likelihood ratio statistics

𝜒𝜒2 =
2(ℓ𝑓𝑓𝑟𝑟𝑡𝑡𝑡𝑡 − ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟)

𝜙𝜙�

Compute the p value

 𝑝𝑝 = 1 − 𝑃𝑃𝑟𝑟 (𝜒𝜒𝑟𝑟𝑓𝑓2 ≤ 𝜒𝜒2)

where 𝜒𝜒𝑟𝑟𝑓𝑓2 is the random variable following chi-square distribution with degree freedom 𝑑𝑑𝑓𝑓 = (𝑅𝑅 − 1) ∗
(𝑆𝑆 − 1) − 𝑐𝑐, where 𝑐𝑐 is the number of invalid categorical combinations.

5. If 𝑝𝑝 ≤ 𝛼𝛼, where 𝛼𝛼 is a significant level(the default is 0.05) then the interaction is significant.

7.4 Pseudo log-likelihood value computation
The pseudo log-likelihood functions for interaction detection are listed in the Table 7.1. Please note that compared
with the kernels of log-likelihood function, some terms are omitted because these terms are the same for the full
model and reduced model.

 Table 7.1. Distribution and pseudo log-likelihood function

Target distribution Pseudo log-likelihood

Normal ℓ = −
1
2
��𝑁𝑁𝑖𝑖𝑗𝑗�𝑦𝑦�𝑖𝑖𝑗𝑗 − 𝜇𝜇𝑖𝑖𝑗𝑗�

2
S

j=1

R

i=1

Inverse Gaussian ℓ = −
1
2
��𝑁𝑁𝑖𝑖𝑗𝑗 �

𝑦𝑦�𝑖𝑖𝑗𝑗 − 2𝜇𝜇𝑖𝑖𝑗𝑗
𝜇𝜇𝑖𝑖𝑗𝑗2

�
𝑆𝑆

𝑗𝑗=1

𝑅𝑅

𝑖𝑖=1

Gamma ℓ = −��𝑁𝑁𝑖𝑖𝑗𝑗 �ln𝜇𝜇𝑖𝑖𝑗𝑗 +
𝑦𝑦�𝑖𝑖𝑗𝑗
𝜇𝜇𝑖𝑖𝑗𝑗
�

𝑆𝑆

𝑗𝑗=1

𝑅𝑅

𝑖𝑖=1

Negative binomial

ℓ = ∑ ∑ 𝑁𝑁𝑖𝑖𝑗𝑗 �𝑦𝑦�𝑖𝑖𝑗𝑗 ln�𝑘𝑘 ∗ 𝜇𝜇𝑖𝑖𝑗𝑗� − �𝑦𝑦�𝑖𝑖𝑗𝑗 + 1
𝑘𝑘
� ln�1 + 𝑘𝑘 ∗ 𝜇𝜇𝑖𝑖𝑗𝑗��S

j=1
R
i=1 ,

where 𝑘𝑘 is a parameter which will be specified by user. If user do not

specify it, we automatically set it as 1.

Poisson ℓ = ��𝑁𝑁𝑖𝑖𝑗𝑗�𝑦𝑦�𝑖𝑖𝑗𝑗 ln�𝜇𝜇𝑖𝑖𝑗𝑗� − 𝜇𝜇𝑖𝑖𝑗𝑗�
𝑆𝑆

𝑗𝑗=1

𝑅𝑅

𝑖𝑖=1

Binomial ℓ = ��𝑁𝑁𝑖𝑖𝑗𝑗�𝑦𝑦�𝑖𝑖𝑗𝑗 ln�𝜇𝜇𝑖𝑖𝑗𝑗� + �1 − 𝑦𝑦�𝑖𝑖𝑗𝑗� ln�1 − 𝜇𝜇𝑖𝑖𝑗𝑗��
𝑆𝑆

𝑗𝑗=1

𝑅𝑅

𝑖𝑖=1

Tweedie

ℓ = ∑ ∑ Nij �
y�ij∗µij

1−q

1−q
+

µij
2−q

2−q
�S

j=1
R
i=1 ,

where 𝑞𝑞 is a parameter which will be specified by user. If user do not

specify it, we automatically set it as 1.5.

For the full model, ℓfull can be got by above formula directly by replacing 𝜇𝜇𝑖𝑖𝑗𝑗 with 𝑦𝑦�𝑖𝑖𝑗𝑗.

For reduced model, the pseudo log-likelihood value will be computed by following iterative process:

1. Input values for 𝑇𝑇1 (maximum number of iterations in the outer iterative process, tentatively set to 100),
𝜀𝜀1(tolerance level of stopping criterion in the outer iterative process, tentatively set to 10-6), 𝑇𝑇2
(maximum number of iterations in the inner iterative process, tentatively set to 5), 𝜀𝜀2(tolerance level of
stopping criterion in the inner iterative process, tentatively set to 10-6)

2. Set initial values of 𝛼𝛼𝑖𝑖
(0) = 1.0𝐸𝐸 − 6 and𝛽𝛽𝑗𝑗

(0) = 1.0𝐸𝐸 − 6. Then compute expectation value, 𝜇𝜇𝑖𝑖𝑗𝑗
(0) =

𝑔𝑔−1�𝛼𝛼𝑖𝑖
(0) + 𝛽𝛽𝑗𝑗

(0)� , and initial pseudo log-likelihood value ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟
(0) by plugging 𝜇𝜇𝑖𝑖𝑗𝑗

(0) into formulae in
Table 1 .

3. Set the iteration number 𝑡𝑡1 = 1.
4. Compute the weight, 𝑤𝑤𝑖𝑖𝑗𝑗

(𝑡𝑡1−1) , and gradient, 𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) in each combination of 𝑋𝑋1 = 𝑖𝑖, 𝑖𝑖 = 1,⋯ ,𝑅𝑅, and

𝑋𝑋2 = 𝑗𝑗, 𝑗𝑗 = 1,⋯ ,𝑆𝑆:

 𝑤𝑤𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) =

𝑁𝑁𝑖𝑖𝑗𝑗

𝑉𝑉 �𝜇𝜇𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)� �𝑔𝑔′ �𝜇𝜇𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)��
2

 +𝑁𝑁𝑖𝑖𝑗𝑗�𝑦𝑦�𝑖𝑖𝑗𝑗 − 𝜇𝜇𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)�×

𝑉𝑉�𝜇𝜇𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)�𝑔𝑔′′�𝜇𝜇𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)� + 𝑉𝑉′�𝜇𝜇𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)�𝑔𝑔′�𝜇𝜇𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)�

�𝑉𝑉 �𝜇𝜇𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)��

2
�𝑔𝑔′ �𝜇𝜇𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)��
3

and

𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) =

1

 𝑤𝑤𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) ×

𝑁𝑁𝑖𝑖𝑗𝑗�𝑦𝑦�𝑖𝑖𝑗𝑗 − 𝜇𝜇𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)�

𝑉𝑉 �𝜇𝜇𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)�𝑔𝑔′ �𝜇𝜇𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)�

5. Compute the parameters increment αi∗ and βj∗ based on wij
(𝑡𝑡1−1) and 𝑠𝑠𝑖𝑖𝑗𝑗

(𝑡𝑡1−1) with the following iterative
process:
a) Create a 𝑅𝑅×𝑆𝑆 contingency table with the 𝑤𝑤𝑖𝑖𝑗𝑗

(𝑡𝑡1−1) and 𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)for each combination of 𝑋𝑋1 = 𝑖𝑖, 𝑖𝑖 =

1,⋯ ,𝑅𝑅 and 𝑋𝑋2 = 𝑗𝑗, 𝑗𝑗 = 1,⋯ , 𝑆𝑆:

X2

 X1
1 2

 S

 1 𝑤𝑤11
(𝑡𝑡1−1) , 𝑠𝑠11

(𝑡𝑡1−1) 𝑤𝑤12
(𝑡𝑡1−1) , 𝑠𝑠12

(𝑡𝑡1−1)
 𝑤𝑤1𝑆𝑆

(𝑡𝑡1−1) , 𝑠𝑠1𝑆𝑆
(𝑡𝑡1−1)

 2 𝑤𝑤21
(𝑡𝑡1−1) , 𝑠𝑠21

(𝑡𝑡1−1) 𝑤𝑤22
(𝑡𝑡1−1) , 𝑠𝑠22

(𝑡𝑡1−1)
 𝑤𝑤2𝑆𝑆

(𝑡𝑡1−1) , 𝑠𝑠2𝑆𝑆
(𝑡𝑡1−1)

 R 𝑤𝑤𝑅𝑅1
(𝑡𝑡1−1) , 𝑠𝑠𝑅𝑅1

(𝑡𝑡1−1) 𝑤𝑤𝑅𝑅2
(𝑡𝑡1−1) , 𝑠𝑠𝑅𝑅2

(𝑡𝑡1−1)
 𝑤𝑤𝑅𝑅𝑆𝑆

(𝑡𝑡1−1) , 𝑠𝑠𝑅𝑅𝑆𝑆
(𝑡𝑡1−1)

b) Initial 𝛼𝛼𝑖𝑖∗ = 0, 𝑖𝑖 = 1,⋯ ,𝑅𝑅 and 𝛽𝛽𝑗𝑗∗ = 0, 𝑗𝑗 = 1,⋯ , 𝑆𝑆, and the iteration number 𝑡𝑡2 = 1.
c) Compute marginal mean of gradient for each row 𝑖𝑖, 𝑖𝑖 = 1,⋯ ,𝑅𝑅

𝑠𝑠𝑖𝑖∙
(𝑡𝑡1−1) =

∑ 𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)×𝑆𝑆

𝑗𝑗=1 𝑤𝑤𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)

∑ 𝑤𝑤𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)𝑆𝑆

𝑗𝑗=1

Update the 𝛼𝛼𝑖𝑖∗ for each 𝑖𝑖, 𝑖𝑖 = 1,⋯ ,𝑅𝑅:

𝛼𝛼𝑖𝑖∗ = 𝛼𝛼𝑖𝑖∗ + 𝑠𝑠𝑖𝑖∙
(𝑡𝑡1−1)

Update the 𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) for 𝑖𝑖 = 1,⋯ ,𝑅𝑅 and 𝑗𝑗 = 1,⋯ , 𝑆𝑆 in the table

 𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) = 𝑠𝑠𝑖𝑖𝑗𝑗

(𝑡𝑡1−1) − 𝑠𝑠𝑖𝑖∙
(𝑡𝑡1−1)

d) Based on the updated table, compute the marginal mean of gradient for each column 𝑗𝑗, 𝑗𝑗 =

1,⋯ , 𝑆𝑆:

 𝑠𝑠∙𝑗𝑗
(𝑡𝑡1−1) =

∑ 𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)×𝑅𝑅

𝑖𝑖=1 𝑤𝑤𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)

∑ 𝑤𝑤𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)𝑅𝑅

𝑖𝑖=1

Update the 𝛽𝛽𝑗𝑗∗ for each 𝑗𝑗, 𝑗𝑗 = 1,⋯ , 𝑆𝑆:

 𝛽𝛽𝑗𝑗∗ = 𝛽𝛽𝑗𝑗∗ + 𝑠𝑠∙𝑗𝑗
(𝑡𝑡1−1)

Update the 𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) for 𝑖𝑖 = 1,⋯ ,𝑅𝑅 and 𝑗𝑗 = 1,⋯ , 𝑆𝑆 in the table

 𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) = 𝑠𝑠𝑖𝑖𝑗𝑗

(𝑡𝑡1−1) − 𝑠𝑠∙𝑗𝑗
(𝑡𝑡1−1)

e) If max ��𝑠𝑠𝑖𝑖∙
(𝑡𝑡1−1) � , �𝑠𝑠∙𝑗𝑗

(𝑡𝑡1−1)�� ≤ ε2 or 𝑡𝑡2 > 𝑇𝑇2, then stop and output the parameter 𝛼𝛼𝑖𝑖∗ and 𝛽𝛽𝑗𝑗∗.

Otherwise let 𝑡𝑡2 = 𝑡𝑡2 + 1, and go to step c).

6. Update parameter estimates for iteration
 𝛼𝛼𝑖𝑖

(𝑡𝑡1) = 𝛼𝛼𝑖𝑖
(𝑡𝑡1−1) + 𝛼𝛼𝑖𝑖∗

 𝛽𝛽𝑖𝑖
(𝑡𝑡1) = 𝛽𝛽𝑖𝑖

(𝑡𝑡1−1) + 𝛽𝛽𝑗𝑗∗
then update expectation value

 𝜇𝜇𝑖𝑖𝑗𝑗
(𝑡𝑡1) = 𝑔𝑔−�𝛼𝛼𝑖𝑖

(𝑡𝑡1) + 𝛽𝛽𝑗𝑗
(𝑡𝑡1)�

And pseudo log-likelihood value ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟
(𝑡𝑡1) based on 𝜇𝜇𝑖𝑖𝑗𝑗

(𝑡𝑡1) using the formula listed in Table 1.
7. If ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟

(𝑡𝑡1) < ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟
(𝑡𝑡1−1) , then stop and output ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟

(𝑡𝑡1−1) .
8. If |ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟

(𝑡𝑡1) − ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟
(𝑡𝑡1−1) | < 𝜀𝜀1 or 𝑡𝑡1 > 𝑇𝑇1, then stop and output ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟

(𝑡𝑡1) , otherwise, 𝑡𝑡1 = 𝑡𝑡1 + 1, go
back to step 4.

7.5 Nominal multinomial distribution

This sub-section discusses the interaction detection for nominal multinomial distribution using log-likelihood
ratio test.

 The following notations are used for nominal multinomial distribution

𝐽𝐽 The total number of categories for target variable.

𝑅𝑅 The total number of categories for factor X1.

𝑆𝑆 The total number of categories for factor X2.

𝑛𝑛𝑖𝑖𝑗𝑗 The number of records in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗.

𝑓𝑓𝑖𝑖𝑗𝑗𝑚𝑚 The frequency weight for the mth record in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗.

𝑦𝑦𝑖𝑖𝑗𝑗𝑚𝑚 The target value for the mth record in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗.

𝝅𝝅�𝑖𝑖𝑗𝑗 𝝅𝝅�𝑖𝑖𝑗𝑗 = �𝜋𝜋�𝑖𝑖𝑗𝑗,1,⋯ ,𝜋𝜋�𝑖𝑖𝑗𝑗,𝐽𝐽−1�
𝑇𝑇
, where π�ij,k is the estimated probability of the kth target category

when 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗 and the superscript 𝑇𝑇 means transpose of a matrix or vector. Please
note that 𝜋𝜋�𝑖𝑖𝑗𝑗,𝐽𝐽 = 1 − ∑ 𝜋𝜋�𝑖𝑖𝑗𝑗,k

J−1
k=1 and is not included in the vector 𝝅𝝅�𝑖𝑖𝑗𝑗.

𝜶𝜶𝑖𝑖 𝜶𝜶𝑖𝑖 = �𝛼𝛼𝑖𝑖1,⋯ ,𝛼𝛼𝑖𝑖𝐽𝐽−1�
𝑇𝑇
, where 𝛼𝛼𝑖𝑖𝑘𝑘is the parameter of 𝑋𝑋1 = 𝑖𝑖 for the kth target category.

𝑿𝑿𝑗𝑗 𝑿𝑿𝑗𝑗 = �𝛽𝛽𝑗𝑗1,⋯ ,𝛽𝛽𝑗𝑗𝐽𝐽−1�
𝑇𝑇

, where 𝛽𝛽𝑗𝑗𝑘𝑘 is the parameter of 𝑋𝑋2 = 𝑗𝑗 for the kth target category.

The interaction detection for nominal multinomial distribution is similar to that in the previous sections.
Therefore, just some implementation notes are given as following:
Implementation notes:

(1) The following basic statistics are needed to collect:
• The total number of records for the kth target category in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗:

 𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘 = � 𝑓𝑓𝑖𝑖𝑗𝑗𝑚𝑚 ∗ 𝐼𝐼(𝑦𝑦𝑖𝑖𝑗𝑗𝑚𝑚 = 𝑘𝑘)
𝑛𝑛𝑖𝑖𝑗𝑗

𝑚𝑚=1

where (yijm = k) = �
1, yijm = k
0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

 .

• The observed probability of the kth target category in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗:

𝑦𝑦�𝑖𝑖𝑗𝑗,𝑘𝑘 =
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘

𝑁𝑁𝑖𝑖𝑗𝑗

• The total number of records in the combination X1 = i and X2 = j:

𝑁𝑁𝑖𝑖𝑗𝑗 = � 𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘

𝐽𝐽

𝑘𝑘=1

(2) The scale parameter is estimated as 1.
(3) The degree of freedom of the log-likelihood ratio test is (R ∗ S − c) ∗ (J − 1), where c is the number of

invalid categorical combinations.
(4) The parameters, 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑗𝑗 , are extended to vector, 𝜶𝜶𝑖𝑖 and 𝑿𝑿𝑗𝑗.
(5) Since only the logit link function will used for nominal multinomial distribution, the log-likelihood value

will be computed as

ℓ = ���𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘 ∗ ln�𝜋𝜋𝑖𝑖𝑗𝑗 ,𝑘𝑘�
𝐽𝐽

𝑘𝑘=1

𝑆𝑆

𝑗𝑗=1

𝑅𝑅

𝑖𝑖=1

For the full model, the 𝜋𝜋𝑖𝑖𝑗𝑗 ,𝑘𝑘 will be estimated as 𝜋𝜋�𝑖𝑖𝑗𝑗,𝑘𝑘 = 𝑦𝑦�𝑖𝑖𝑗𝑗,𝑘𝑘 for 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1, and 𝜋𝜋�𝑖𝑖𝑗𝑗,𝑘𝑘 = 1 −
∑ 𝑦𝑦�𝑖𝑖𝑗𝑗,𝑘𝑘
𝐽𝐽−1
𝑘𝑘=1 . And for the reduced model, the 𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘 will be estimated by the parameter estimates and link

function, i.e. suppose we have the parameter estimates 𝜶𝜶�𝑖𝑖 = �𝛼𝛼�𝑖𝑖1,⋯ ,𝛼𝛼�𝑖𝑖𝐽𝐽−1�
𝑇𝑇
and 𝑿𝑿�𝑗𝑗 = ��̂�𝛽𝑗𝑗1,⋯ , �̂�𝛽𝑗𝑗𝐽𝐽−1�

𝑇𝑇
,

then

𝜋𝜋�𝑖𝑖𝑗𝑗,𝑘𝑘 =

⎩
⎪
⎨

⎪
⎧ exp�𝛼𝛼�𝑖𝑖𝑘𝑘 + �̂�𝛽𝑗𝑗𝑘𝑘�

1 + ∑ exp�𝛼𝛼�𝑖𝑖𝑘𝑘 + �̂�𝛽𝑗𝑗𝑘𝑘�
𝐽𝐽−1
𝑘𝑘=1

, 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1

1
1 + ∑ exp�𝛼𝛼�𝑖𝑖𝑘𝑘 + �̂�𝛽𝑗𝑗𝑘𝑘�

𝐽𝐽−1
𝑘𝑘=1

𝑘𝑘 = 𝐽𝐽

(6) The weight, 𝑤𝑤𝑖𝑖𝑗𝑗

(𝑡𝑡1−1) , and mean of score, 𝑠𝑠𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) in Section 2.4 will be matrix 𝒘𝒘𝑖𝑖𝑗𝑗

(𝑡𝑡1−1) and vector 𝒔𝒔𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)

which can be computed as:
𝒘𝒘𝑖𝑖𝑗𝑗

(𝑡𝑡1−1) = 𝑁𝑁𝑖𝑖𝑗𝑗 ∗ �𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔�𝝅𝝅𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)� − 𝝅𝝅𝑖𝑖𝑗𝑗

(𝑡𝑡1−1) ∗ �𝝅𝝅𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)�

𝑇𝑇
�

and

𝒔𝒔𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) = �𝒘𝒘𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)�
−1
∗ 𝑁𝑁𝑖𝑖𝑗𝑗 ∗ �𝒚𝒚�𝑖𝑖𝑗𝑗 − 𝝅𝝅𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)�

where 𝑦𝑦�𝑖𝑖𝑗𝑗 = �𝑦𝑦�𝑖𝑖𝑗𝑗,1,⋯ ,𝑦𝑦�𝑖𝑖𝑗𝑗,𝐽𝐽−1�
T
.

(7) The marginal mean for each row and column in Section 2.4 can be computed as

𝒔𝒔𝑖𝑖∙
(𝑡𝑡1−1) = ��𝒘𝒘𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)
𝑆𝑆

𝑗𝑗=1

�

−1

∗ ��𝒘𝒘𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) ∗

𝑆𝑆

𝑗𝑗=1

𝒔𝒔𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)�

and

𝒔𝒔∙𝑗𝑗
(𝑡𝑡1−1) = ��𝒘𝒘𝑖𝑖𝑗𝑗

(𝑡𝑡1−1)
𝑅𝑅

𝑖𝑖=1

�

−1

∗ ��𝒘𝒘𝑖𝑖𝑗𝑗
(𝑡𝑡1−1) ∗

𝑅𝑅

𝑖𝑖=1

𝒔𝒔𝑖𝑖𝑗𝑗
(𝑡𝑡1−1)�

respectively.

7.6 Ordinal multinomial distribution

This sub-section discusses the interaction detection for ordinal multinomial distribution using log-likelihood
ratio test.
The following notations are used if the distribution is ordinal multinomial.

𝐽𝐽 The total number of categories for target variable.

𝑅𝑅 The total number of categories for predictor 𝑋𝑋1.

𝑆𝑆 The total number of categories for predictor X2.

𝑛𝑛𝑖𝑖𝑗𝑗 The number of records in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗.

𝑦𝑦𝑖𝑖𝑗𝑗𝑚𝑚 The target value for the mth record in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗.

𝑓𝑓𝑖𝑖𝑗𝑗𝑚𝑚 The frequency weight for the mth record in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗.

𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘 Conditional cumulative target probability for the kth category in the combination X1 = i and
X2 = j.

𝜋𝜋𝑖𝑖𝑗𝑗 ,k Conditional target probability for for the kth category in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗,
𝜋𝜋𝑖𝑖𝑗𝑗,k = 𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘 − 𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1.

𝜳𝜳 (𝐽𝐽 − 1)×1 vector of threshold parameter, 𝜳𝜳 = �𝜓𝜓1,⋯ ,𝜓𝜓𝐽𝐽−1�
𝑇𝑇

 and 𝜓𝜓1 < 𝜓𝜓2 < ⋯ < 𝜓𝜓𝐽𝐽−1.

𝛼𝛼𝑖𝑖 The parameter of 𝑋𝑋1 = 𝑖𝑖 .

𝜶𝜶 (𝑅𝑅 − 1)×1 parameter vector , 𝜶𝜶 = (𝛼𝛼1,⋯ ,𝛼𝛼𝑅𝑅−1)𝑇𝑇.

𝛽𝛽𝑗𝑗 The parameter of 𝑋𝑋2 = 𝑗𝑗 .

𝑿𝑿 (𝑆𝑆 − 1)×1 parameter vector , 𝑿𝑿 = (𝛽𝛽1,⋯ ,𝛽𝛽𝑆𝑆−1)𝑇𝑇.

𝜆𝜆𝑖𝑖𝑗𝑗 The parameter of the combination of 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗 .

𝝀𝝀 𝑅𝑅×𝑆𝑆 parameter vector, 𝝀𝝀 = (𝜆𝜆11,⋯ , 𝜆𝜆1𝑆𝑆,⋯𝜆𝜆𝑅𝑅1,⋯ , 𝜆𝜆𝑅𝑅𝑆𝑆)𝑇𝑇.

𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘 Linear predictor value for the kth target category in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗.

Basic statistics

The following basic statistics are needed to collect:

• The total number of records for the kth target category in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗:

 𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘 = � 𝑓𝑓𝑖𝑖𝑗𝑗𝑚𝑚 ∗ 𝐼𝐼(𝑦𝑦𝑖𝑖𝑗𝑗𝑚𝑚 = 𝑘𝑘)
𝑛𝑛𝑖𝑖𝑗𝑗

𝑚𝑚=1

where (𝑦𝑦𝑖𝑖𝑗𝑗𝑚𝑚 = 𝑘𝑘) = �
1, 𝑦𝑦𝑖𝑖𝑗𝑗𝑚𝑚 = 𝑘𝑘
0, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑒𝑒

 .

• The observed probability of the kth target category in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗:

𝑦𝑦�𝑖𝑖𝑗𝑗,𝑘𝑘 =
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘

𝑁𝑁𝑖𝑖𝑗𝑗

• The total number of records in the combination 𝑋𝑋1 = 𝑖𝑖 and 𝑋𝑋2 = 𝑗𝑗:

𝑁𝑁𝑖𝑖𝑗𝑗 = � 𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘

𝐽𝐽

𝑘𝑘=1

Interaction detection
The interaction detection is also based on the log-likelihood ration test. Please note that

• The reduced model is

𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘 = 𝑔𝑔�𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘� = 𝜓𝜓𝑘𝑘 − 𝛼𝛼𝑖𝑖 − 𝛽𝛽𝑗𝑗

where 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1, 𝑖𝑖 = 1,⋯ ,𝑅𝑅 and 𝑗𝑗 = 1,⋯ , 𝑆𝑆. And the full model is

𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘 = 𝑔𝑔�𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘� = 𝜓𝜓𝑘𝑘 − 𝜆𝜆𝑖𝑖𝑗𝑗

where 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1, 𝑖𝑖 = 1,⋯ ,𝑅𝑅 and 𝑗𝑗 = 1,⋯ , 𝑆𝑆.

• The scale parameter is 1.
• The degree of freedom of log-likelihood ratio test is 𝑑𝑑𝑓𝑓 = (𝑅𝑅 − 1) ∗ (𝑆𝑆 − 1) − 𝑐𝑐, where 𝑐𝑐 is the

number of invalid categorical combinations.

Log-likelihood value
The log-likelihood value is

ℓ = ���𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘 ∗ ln�𝜋𝜋𝑖𝑖𝑗𝑗 ,𝑘𝑘�
𝐽𝐽

𝑘𝑘=1

𝑆𝑆

𝑗𝑗=1

𝑅𝑅

𝑖𝑖=1

For both full model and reduced model, the log-likelihood value will be computed by following iterative process:

1. Input values for 𝑇𝑇1 (maximum number of iterations, tentatively set to 100), 𝜀𝜀1(tolerance level of stopping
criterion, tentatively set to 10-6) .

2. Set initial values:
 𝛼𝛼𝑖𝑖

(0) = 0, 𝑖𝑖 = 1,⋯ ,𝑅𝑅;
 𝛽𝛽𝑗𝑗

(0) = 0, 𝑗𝑗 = 1,⋯ , 𝑆𝑆;
and

 𝜓𝜓𝑘𝑘
(0) = 𝑔𝑔 �

∑ ∑ 𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖
𝑆𝑆
𝑗𝑗=1

𝑅𝑅
𝑖𝑖=1
∑ ∑ 𝑁𝑁𝑖𝑖𝑗𝑗

𝑆𝑆
𝑗𝑗=1

𝑅𝑅
𝑖𝑖=1

� , 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1

3. Compute 𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘
(0) = 𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

(0) − 𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1
(0) for 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1 and

𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘
(0) = �

0 𝑘𝑘 = 0
𝑔𝑔−1�𝜓𝜓𝑘𝑘

(0) − 𝛼𝛼𝑖𝑖
(0) − 𝛽𝛽𝑗𝑗

(0)� 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1
1 𝑘𝑘 = 𝐽𝐽

Then compute log-likelihood value ℓ(0) based on 𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘
(0) and 𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘 using the formula of log-likelihood value

for ordinal distribution.
4. Set the iteration number 𝑡𝑡1 = 1.
5. Compute estimates of 𝑡𝑡1th iteration

𝚩𝚩(𝑡𝑡1) = 𝚩𝚩(𝑡𝑡1−1) − �𝑯𝑯(𝑡𝑡1−1)�−𝒔𝒔(𝑡𝑡1−1)

 where 𝚩𝚩 = (𝜳𝜳𝑻𝑻,𝜶𝜶𝑻𝑻,𝑿𝑿𝑻𝑻)𝑻𝑻 if model is reduced model and 𝚩𝚩 = (𝜳𝜳𝑻𝑻,𝝀𝝀𝑻𝑻)𝑻𝑻 if model is full model. The
hessian matrix 𝑯𝑯 and gradient vector 𝐬𝐬 will be computed later, and (𝑯𝑯)− is the generalized inverse of
𝑯𝑯.

6. Similar to the step 3, compute 𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘
(𝑡𝑡1) and log-likelihood value ℓ(𝑡𝑡1).

7. If ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟
(𝑡𝑡1) < ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟

(𝑡𝑡1−1) , then stop and output ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟
(𝑡𝑡1−1) .

8. If |ℓ(𝑡𝑡1) − ℓ(𝑡𝑡1−1) | < 𝜀𝜀1 or 𝑡𝑡1 > 𝑇𝑇1, then stop and output ℓ(𝑡𝑡1), otherwise, 𝑡𝑡1 = 𝑡𝑡1 + 1, go back to step
5.

Gradient vector and hessian matrix for reduced model
The gradient vector s can be computed as following:

𝒔𝒔 = � 𝜕𝜕ℓ
𝜕𝜕𝜓𝜓1

,⋯ , 𝜕𝜕ℓ
𝜕𝜕𝜓𝜓𝐽𝐽−1

, 𝜕𝜕ℓ
𝜕𝜕𝛼𝛼1

,⋯ , 𝜕𝜕ℓ
𝜕𝜕𝛼𝛼𝑅𝑅−1

, 𝜕𝜕ℓ
𝜕𝜕𝛽𝛽1

,⋯ , 𝜕𝜕ℓ
𝜕𝜕𝛽𝛽𝐽𝐽−1

�
𝑇𝑇
,

where

𝜕𝜕ℓ
𝜕𝜕𝜓𝜓𝑖𝑖

= ∑ ∑ 𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
�
𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
−

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖+1

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖+1
�𝑆𝑆

𝑗𝑗=1
𝑅𝑅
𝑖𝑖=1 , 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1,

𝜕𝜕ℓ

𝜕𝜕𝛼𝛼𝑖𝑖
= −∑ ∑ �

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘
𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘

−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1
� 𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘
𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘

, 𝑖𝑖 = 1,⋯ ,𝑅𝑅 − 1𝐽𝐽
𝑘𝑘=1

𝑆𝑆
𝑗𝑗=1 ,

𝜕𝜕ℓ

𝜕𝜕𝛽𝛽𝑗𝑗
= −∑ ∑ �

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘
𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘

−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1
� 𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘
𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘

, 𝑗𝑗 = 1,⋯ , 𝑆𝑆 − 1𝐽𝐽
𝑘𝑘=1

𝑅𝑅
𝑖𝑖=1 ,

And the hessian matrix is

𝐻𝐻 =

⎝

⎜⎜
⎛

𝜕𝜕2ℓ

𝜕𝜕𝚿𝚿𝜕𝜕𝚿𝚿𝑇𝑇
𝜕𝜕2ℓ

𝜕𝜕𝚿𝚿𝜕𝜕𝛂𝛂𝑇𝑇
𝜕𝜕2ℓ

𝜕𝜕𝚿𝚿𝜕𝜕𝛃𝛃𝑇𝑇

𝜕𝜕2ℓ

𝜕𝜕𝛂𝛂𝜕𝜕𝚿𝚿𝑇𝑇
𝜕𝜕2ℓ

𝜕𝜕𝛂𝛂𝜕𝜕𝛂𝛂𝑇𝑇
𝜕𝜕2ℓ

𝜕𝜕𝛂𝛂𝜕𝜕𝛃𝛃𝑇𝑇

𝜕𝜕2ℓ

𝜕𝜕𝛃𝛃𝜕𝜕𝚿𝚿𝑇𝑇
𝜕𝜕2ℓ

𝜕𝜕𝛃𝛃𝜕𝜕𝛂𝛂𝑇𝑇
𝜕𝜕2ℓ

𝜕𝜕𝛃𝛃𝜕𝜕𝛃𝛃𝑇𝑇⎠

⎟⎟
⎞

,

where

𝜕𝜕2ℓ

𝜕𝜕𝜓𝜓𝑘𝑘−1𝜕𝜕𝜓𝜓𝑘𝑘
= ∑ ∑

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘
𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘

𝑆𝑆
𝑗𝑗=1

𝑅𝑅
𝑖𝑖=1

𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘
𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘

2 , 𝑘𝑘 = 2,⋯ , 𝐽𝐽 − 1,

𝜕𝜕2ℓ
𝜕𝜕𝜓𝜓𝑖𝑖

2 = ∑ ∑ �
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
2 �

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
−

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖+1

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖+1
� − �

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
�
2
�
𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
2 +

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖+1

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖+1
2 �� , 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1𝑆𝑆

𝑗𝑗=1
𝑅𝑅
𝑖𝑖=1 ,

𝜕𝜕2ℓ
𝜕𝜕𝜓𝜓𝑖𝑖𝜕𝜕𝜓𝜓𝑚𝑚

= 0, for |𝑘𝑘 − 𝑚𝑚| > 1,

𝜕𝜕2ℓ
𝜕𝜕𝛼𝛼𝑖𝑖

2 = ∑ ∑ ��
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
2 −

𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖−1
2 � 𝜋𝜋𝑖𝑖𝑗𝑗,k − �

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
−

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖−1
�
2
� �

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
2 �𝐽𝐽

𝑘𝑘=1
𝑆𝑆
𝑗𝑗=1 , 𝑖𝑖 = 1,⋯ ,𝑅𝑅 − 1,

𝜕𝜕2ℓ
𝜕𝜕𝛼𝛼𝑖𝑖𝜕𝜕𝛼𝛼𝑗𝑗

= 0, for 𝑖𝑖 ≠ 𝑗𝑗,

𝜕𝜕2ℓ
𝜕𝜕𝛽𝛽𝑗𝑗

2 = ∑ ∑ ��
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
2 −

𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖−1
2 � 𝜋𝜋𝑖𝑖𝑗𝑗,k − �

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
−

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖−1
�
2
� �

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
2 �𝐽𝐽

𝑘𝑘=1
𝑅𝑅
𝑖𝑖=1 , 𝑗𝑗 = 1,⋯ , 𝑆𝑆 − 1,

𝜕𝜕2ℓ
𝜕𝜕𝛽𝛽𝑖𝑖𝜕𝜕𝛽𝛽𝑗𝑗

= 0, for 𝑖𝑖 ≠ 𝑗𝑗,

𝜕𝜕2ℓ
𝜕𝜕𝜓𝜓𝑘𝑘𝜕𝜕𝛼𝛼𝑖𝑖

= −��
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
2 𝜋𝜋𝑖𝑖𝑗𝑗,k −

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
�
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1
��
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘

𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘
2

𝑆𝑆

𝑗𝑗=1

 +��
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
2 𝜋𝜋𝑖𝑖𝑗𝑗,k+1 −

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
�
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘+1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘+1
−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
��
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘+1

𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘+1
2 ,

𝑆𝑆

𝑗𝑗=1

𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1, 𝑖𝑖 = 1,⋯ ,𝑅𝑅 − 1,

𝜕𝜕2ℓ
𝜕𝜕𝜓𝜓𝑘𝑘𝜕𝜕𝛽𝛽𝑗𝑗

= −��
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
2 𝜋𝜋𝑖𝑖𝑗𝑗,k −

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
�
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1
��
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘

𝜋𝜋𝑖𝑖𝑗𝑗 ,𝑘𝑘
2

𝑅𝑅

𝑖𝑖=1

 +��
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
2 𝜋𝜋𝑖𝑖𝑗𝑗,k+1 −

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
�
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘+1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘+1
−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
��
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘+1

𝜋𝜋𝑖𝑖𝑗𝑗 ,𝑘𝑘+1
2 ,

𝑅𝑅

𝑖𝑖=1

𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1, 𝑗𝑗 = 1,⋯ , 𝑆𝑆 − 1,

𝜕𝜕2ℓ
𝜕𝜕𝛼𝛼𝑖𝑖𝜕𝜕𝛽𝛽𝑗𝑗

= ���
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
2 −

𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1
2 �𝜋𝜋𝑖𝑖𝑗𝑗,k − �

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1
�
2

�
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘

𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘
2 ,

𝐽𝐽

𝑘𝑘=1

𝑖𝑖 = 1,⋯ ,𝑅𝑅 − 1, 𝑗𝑗 = 1,⋯ , 𝑆𝑆 − 1

 Gradient vector and hessian matrix for full model
The gradient vector s can be computed as following:

𝒔𝒔 = � 𝜕𝜕ℓ
𝜕𝜕𝜓𝜓1

,⋯ , 𝜕𝜕ℓ
𝜕𝜕𝜓𝜓𝐽𝐽−1

, 𝜕𝜕ℓ
𝜕𝜕𝜆𝜆11

,⋯ , 𝜕𝜕ℓ
𝜕𝜕𝜆𝜆1𝑆𝑆

,⋯ , 𝜕𝜕ℓ
𝜕𝜕𝜆𝜆21

,⋯ , 𝜕𝜕ℓ
𝜕𝜕𝜆𝜆𝑅𝑅𝑆𝑆

�
𝑇𝑇
,

where
𝜕𝜕ℓ
𝜕𝜕𝜓𝜓𝑖𝑖

= ∑ ∑ 𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
�
𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
−

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖+1

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖+1
�𝑆𝑆

𝑗𝑗=1
𝑅𝑅
𝑖𝑖=1 , 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1,

𝜕𝜕ℓ
𝜕𝜕𝜆𝜆𝑖𝑖𝑗𝑗

= −∑ �
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
−

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖−1
�
𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
, 𝑖𝑖 = 1,⋯ ,𝑅𝑅, 𝑗𝑗 = 1,⋯ , 𝑆𝑆𝐽𝐽

𝑘𝑘=1 ,

And the hessian matrix is

𝐻𝐻 = �
𝜕𝜕2ℓ

𝜕𝜕𝚿𝚿𝜕𝜕𝚿𝚿𝑇𝑇
𝜕𝜕2ℓ

𝜕𝜕𝚿𝚿𝜕𝜕𝝀𝝀𝑇𝑇

𝜕𝜕2ℓ

𝜕𝜕𝝀𝝀𝜕𝜕𝚿𝚿𝑇𝑇
𝜕𝜕2ℓ

𝜕𝜕𝝀𝝀𝜕𝜕𝝀𝝀𝑇𝑇

�,

where

𝜕𝜕2ℓ

𝜕𝜕𝜓𝜓𝑘𝑘−1𝜕𝜕𝜓𝜓𝑘𝑘
= ∑ ∑

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘
𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘

𝑆𝑆
𝑗𝑗=1

𝑅𝑅
𝑖𝑖=1

𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘
𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘

2 , 𝑘𝑘 = 2,⋯ , 𝐽𝐽 − 1,

𝜕𝜕2ℓ
𝜕𝜕𝜓𝜓𝑖𝑖

2 = ∑ ∑ �
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
2 �

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
−

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖+1

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖+1
� − �

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
�
2
�
𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
2 +

𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖+1

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖+1
2 �� , 𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1𝑆𝑆

𝑗𝑗=1
𝑅𝑅
𝑖𝑖=1 ,

𝜕𝜕2ℓ
𝜕𝜕𝜓𝜓𝑖𝑖𝜕𝜕𝜓𝜓𝑚𝑚

= 0, for |𝑘𝑘 − 𝑚𝑚| > 1,

𝜕𝜕2ℓ
𝜕𝜕𝜆𝜆𝑖𝑖𝑗𝑗

2 = ∑ ��
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
2 −

𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖−1
2 � 𝜋𝜋𝑖𝑖𝑗𝑗 ,k − �

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖
−

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑖𝑖−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑖𝑖−1
�
2
�
𝑁𝑁𝑖𝑖𝑗𝑗,𝑖𝑖

𝜋𝜋𝑖𝑖𝑗𝑗,𝑖𝑖
2 ,𝐽𝐽

𝑘𝑘=1 𝑖𝑖 = 1,⋯ ,𝑅𝑅, 𝑗𝑗 = 1,⋯ , 𝑆𝑆,

𝜕𝜕2ℓ
𝜕𝜕𝜆𝜆𝑖𝑖𝑗𝑗𝜕𝜕𝜆𝜆𝑢𝑢𝑢𝑢

= 0, for 𝑖𝑖 ≠ 𝑢𝑢 or 𝑗𝑗 ≠ 𝑣𝑣,

𝜕𝜕2ℓ
𝜕𝜕𝜓𝜓𝑘𝑘𝜕𝜕𝜆𝜆𝑖𝑖𝑗𝑗

= − �
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
2 𝜋𝜋𝑖𝑖𝑗𝑗,k −

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
�
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘−1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘−1
��
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘

𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘
2

 + �
𝜕𝜕2𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
2 𝜋𝜋𝑖𝑖𝑗𝑗,k+1 −

𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
�
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘+1

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘+1
−
𝜕𝜕𝛾𝛾𝑖𝑖𝑗𝑗,𝑘𝑘

𝜕𝜕𝜂𝜂𝑖𝑖𝑗𝑗,𝑘𝑘
��
𝑁𝑁𝑖𝑖𝑗𝑗,𝑘𝑘+1

𝜋𝜋𝑖𝑖𝑗𝑗,𝑘𝑘+1
2 ,

𝑘𝑘 = 1,⋯ , 𝐽𝐽 − 1, 𝑖𝑖 = 1,⋯ ,𝑅𝑅, 𝑗𝑗 = 1,⋯ , 𝑆𝑆,

7.7 Two-way-test pair search strategy

Suppose there are 𝑚𝑚fac factors and 𝑚𝑚cov covariates, thus there are 𝑚𝑚(= 𝑚𝑚fac + 𝑚𝑚cov) main effects. Suppose the
number of parameters for them is 𝑝𝑝𝑚𝑚 (including the intercept).

Input values (integers) for 𝑚𝑚1 (threshold value to conduct interaction effect detection; the default is 100), 𝑚𝑚2
(threshold value to select main effects (factors) for interaction effect detection; the default is 20) and 𝑝𝑝max
(maximum number of parameters the system can handle; the default is 5000), where 𝑚𝑚1 ≥ 𝑚𝑚2.

When (pmax ≤ p𝑚𝑚 + 𝑚𝑚cov), the strategy will not be conducted. That is to say, no any interactions of two factors
and squared term of covariates are output.

When (𝑚𝑚fac < 2) and (pmax > pm + 𝑚𝑚cov), only squared term of covariates are output.

When(𝑚𝑚fac > 𝑚𝑚2) and (pmax > pm + 𝑚𝑚cov) then the strategy will be conducted with the following steps:

1. Build a generalized linear model using all main effects 𝑿𝑿1,𝑿𝑿2,⋯ ,𝑿𝑿𝑚𝑚.

2. Select the significant main effects (𝑝𝑝 < 0.05) based on Type 3 analysis (using Wald statistics in Section
3.1.1). Assume there are 𝑚𝑚′ significant effects and 𝑚𝑚fac

′ significant effects of factors.

3. If (𝑚𝑚fac
′ < 2) or (𝑚𝑚′ > 𝑚𝑚1), then stop and no interaction detection is conducted. Otherwise, sort the main

effects using p-value in ascending order.

4. Select the top 𝑚𝑚fac
′′ (= min(𝑚𝑚fac

′ ,𝑚𝑚2)) main effects to construct two-way interaction effects (of two
factors) among these 𝑚𝑚fac

′′ main effects.

5. Test all candidate interaction effects using the methods given Sections 7.3 and 7.6.

6. Calculate the total number of parameters for all significant interaction effects, denoted by 𝑝𝑝𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟 , if 𝑝𝑝𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟 <
0.5×(𝑝𝑝max − 𝑝𝑝𝑚𝑚 −𝑚𝑚cov), then stop and output all significant interaction effects and all squared term of
covariates; otherwise go to step 7.

7. Calculate effect size for each significant two-way interaction effect

𝐸𝐸𝑓𝑓𝑓𝑓𝑒𝑒𝑐𝑐𝑡𝑡𝑆𝑆𝑖𝑖𝑧𝑧𝑒𝑒 = ℓ𝑓𝑓𝑟𝑟𝑡𝑡𝑡𝑡 − ℓ𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟 − 𝑑𝑑𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑡𝑡𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛

where 𝑑𝑑𝑓𝑓𝑖𝑖𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑡𝑡𝑐𝑐𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛 denotes the difference of degrees of freedom of full and reduced models.

8. Sort all significant two-way interaction effects using their effect sizes in descending order and select and
output top-𝑘𝑘 interaction effects and all squared term of covariates, where 𝑘𝑘 is the maximum number
satisfying the number of parameters for top-𝑘𝑘 interaction effects is less than or equal to 0.5×(𝑝𝑝max − 𝑝𝑝𝑚𝑚 −
𝑚𝑚cov).

When (𝑚𝑚fac ≤ 𝑚𝑚2) and (𝑝𝑝max > 𝑝𝑝m + 𝑚𝑚cov), the strategy will be similar to the one given above, except that
the step of constructing two-way interaction effects: here, two-way interaction effects are directly constructed
among all 𝑚𝑚fac main effects rather than based on 𝑚𝑚fac

′′ significant main effects. That is to say, it doesn’t need
building a model of all main effects.

Note that the parameters settings for the model of all main effects may be different from the user’s setting for
speeding up the process of the two-way interaction detection:

• For the ancillary parameter (𝑘𝑘) in negative binomial distribution, it is set to 1.0 when 𝑘𝑘 is estimated by
MLE.

• For the scale parameter 𝜙𝜙, it is fixed to 1.0 for the following two cases: (1) the 𝜙𝜙 is estimated by MLE;
(2) the 𝜙𝜙 is estimated by Pearson chi-square or Deviance divided by degree of freedom.

8. Model selection
Model selection for generalized linear models involves 2 aspects:

(1) Distribution and/or link function specification: if both or one of them is unspecified, then we need to select
them which would be based on measurement level and storage type of the target.

(2) Variable selection or regularization: the option of variable selection can be on or off. If it is on, then the
available methods are forward stepwise, lasso (L1 regularization), elastic net (L1+L2 regularization) and
ridge regression (L2 regularization).
Notes:
(a) We assume that the inputs list is given.
(b) Two-way interaction detection is a sub-option under variable selection. Only when the variable selection

flag is on and the variable selection or regarulization method is selected as Forward-
Stepwise/L1/L1+L2/L2, user can specify the two-way interaction flag (default is off). Interaction
detection is disabled if the user specifies any higher-order effects (beyond main effects).

Hence there will be 4 scenarios from the combinations of the above 2 aspects and we will describe how each
scenario would be processed:

(1) Distribution and link function are specified and variable selection flag is off:
The main task is parameter estimation and the estimation methods would be different depending on the inputs
list size:
(1.1) If the inputs list falls into the small to median p situation, then use the Newton-Raphson in GLE

phase 1 to estimate parameters (by whole data).
Note that the list with null or intercept-only will fall into this scenario.

(1.2) If the inputs list falls into the large p situation, then use the L-BFGS in ADMM to estimate parameters
(by whole data).

(2) Distribution and link function are specified and variable selection flag is on.
The main tasks are variable selection and parameter estimation:
(2.1) If the inputs list falls into the small to median p situation and the variable selection method is

forward stepwise, then apply Section 8.1 to select variables (by sample data) and use the Newton-
Raphson to estimate parameters (by whole data).

(2.2) If the inputs list falls into the large p situation and the variable selection method is forward stepwise,
switch to the lasso method in ADMM to select variable and estimate parameters (by whole data). A
warning will be issued to let user know that variable selection method is changed.

(2.3) If the variable selection or regularization is L1, L2, or L1+L2, no matter whether the inputs list falls
into the small to medium or large p situation, use ADMM with Newton Raphson or L-BFGS to
select variable and estimate parameters (by whole data).

Note that for the list with null or intercept-only in (2.1) and (2.3), we use the Newton-Raphson to build a
null or intercept only model directly (by whole data) and issue a warning message such as "Variable
selection method is ignored because of no predictor. A null model or intercept-only model is built."

(3) Distribution and/or link function are unspecified and variable selection is off.
The main task is distribution/link function selection:

(3.1) If the inputs list falls into the small to medium p situation, then apply Section 8.2 to select
distribution and/or link function (by sample data) and use the Newton-Raphson to estimate
parameters (by whole data) for the selected distribution/link function.
Note that the list with null or intercept-only will fall into this scenario.

(3.2) If the inputs list falls into the large p situation, then apply Section 8.2 to select distribution and/or
link function (by sample data) and use the L-BFGS in ADMM ADD to estimate parameters (by
whole data) for the selected distribution/link function.

(4) Distribution and/or link function are unspecified and variable selection is on.
The main tasks are distribution/link function selection, variable selection and parameter estimation:
(4.1) If the inputs list falls into the small to medium p situation and the variable selection method is

forward stepwise, then apply Section 8.3.1 to select distribution/link function and variables (by
sample data) and use the Newton-Raphson to estimate parameters (by whole data) for the selected
distribution/link function.

(4.2) If the inputs list falls into the large p situation and the variable selection method is forward stepwise,
then apply Section 8.3.2, i.e., switch to the lasso method in ADMM to select distribution/link
function (by sample data), and use the lasso method in ADMM and selected lambda to select
variables and estimate parameters (by whole data) for the selected distribution/link function. A
warning will be issued to let user know that variable selection method is changed.

(4.3) If the variable selection/regularization is L1, L2, or L1+L2, no matter whether the inputs list falls
into the small to medium or large p situation, apply Section 8.3.2 (based on ADMM) to select
distribution/link function (by sample data), and use with Newton Raphson or L-BFGS with selected
lambda to select variables and estimate parameters (by whole data) for the selected distribution/link
function.

Note that for the list with null or intercept-only in (4.1) or (4.3), we apply Section 8.2 to select
distribution/link function based on the null or intercept only model (by sample data), and use the Newton-
Raphson to estimate parameters (by whole data) for the selected distribution/link function. Issue a warning
message such as "Variable selection method is ignored because of no predictor. A null model or intercept-
only model is built to select distribution and link function."

Implementation notes:

Regarding the initial value when using ADMM for variable selection and model building:

• When the inputs list falls into the small to medium situation, compute the initial value according to
section 3.1.3.1 in GLE phase 1.

• When the inputs list falls into the large p situation and the distribution is not binomial, ordinal or
nominal, set 1.0e-6 as the initial value for all the regression parameters.

• When ordinal multinomial distribution, no matter whether the inputs list falls into the small to medium or
large p situation, compute the initial value according to Appendix A (Ordinal Multinomial Distribution)
in GLE phase 1; When nominal multinomial distribution, no matter whether the inputs list falls into the
small to medium or large p situation, compute the initial value according to Appendix B (Nominal
Multinomial Distribution) in GLE phase 1.

8.1 Variable selection or regularization
For the small to median p situations (𝑝𝑝 < 𝑝𝑝max), four variable selection or regularization methods are supported:
(1) forward stepwise; (2) the lasso (𝐿𝐿1 regularization); (3) elastic net (the (𝐿𝐿1 + 𝐿𝐿2) regularization); (4) ridge
regression (𝐿𝐿2 regularization). For the large p situations 𝑝𝑝 ≥ 𝑝𝑝max), the lasso, elastic net and ridge regression
would be supported, but not forward stepwise. We will utilize ADMM to do the lasso, elastic net and ridge
regression and details are provided in GLE phase 3, so only forward stepwise is described in details here.

The basic idea of the forward stepwise method is to start off by choosing the best effect in addition to the intercept
if exists and then tries to enter additional effect one at a time. After an effect has been added, all effects in the
current model are checked to see if any of them should be removed. The process continues until a stopping
criterion is met.

The five candidate statistics will be supported for the effect entry or removal: (1) Likelihood ratio (LR) statistic;
(2) Score statistic (SCORE); (3) Wald statistic (WALD); (4) Finite sample corrected Akaike information criteria
(AICC); and (5) Average square error (ASE) over the testing data. More specifically, six combinations (Table
8.2) of candidate statistics are available for the effect entry and removal. The default statistics for the effect entry
and removal are SCORE and WALD, respectively.

Table 8.2. Six combinations of statistics for effect entry and removal

No Statistics

Effect entry Effect removal

1 SCORE WALD

2 SCORE LR

3 LR WALD

4 LR LR

5 AICC AICC

6 ASE ASE

It is noted that LR statistic, AICC and ASE might consume considerable computation time since a model is fitted
for each effect. Score and Wald statistic use less computation time but may be less accurate in the significance
test of the effect of interest.

The details of statistics calculations and the selection process are described below.

Implementation note:

• We only implement #1 so far and will implement other options later if time permits.

8.1.1 Candidate statistics

𝑋𝑋𝑗𝑗 A continuous effect.

�𝑋𝑋𝑗𝑗𝑠𝑠�𝑠𝑠=1
𝑚𝑚

 A categorical effect.

𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 The parameters for the current model

𝑩𝑩𝑗𝑗 The parameters for the effect j which is continuous or categorical

𝑚𝑚∗ The difference in the number of non-redundant parameters estimated of two successive
models

ℓ𝑐𝑐𝑟𝑟𝑟𝑟 The log likelihood for the current model.

ℓ𝑐𝑐𝑟𝑟𝑟𝑟+𝑗𝑗 The log likelihood for the resulting model after entering the effect j.

ℓ𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 The log likelihood for the resulting model after removing the effect j.

 (1) LR statistic

The LR statistic is defined as two times the log of the ratio of the likelihood functions of two models evaluated at
their MLEs. The LR statistics for an effect j �𝑋𝑋𝑗𝑗 or �𝑋𝑋𝑗𝑗𝑠𝑠�𝑠𝑠=1

𝑚𝑚 � entering and removing from the current model are
calculated as follows:

𝑆𝑆𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗 = 2�ℓ𝑐𝑐𝑟𝑟𝑟𝑟+𝑗𝑗 − ℓ𝑐𝑐𝑟𝑟𝑟𝑟�
𝑆𝑆𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑗𝑗 = 2�ℓ𝑐𝑐𝑟𝑟𝑟𝑟 − ℓ𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗�

The asymptotic distribution of the LR statistic, under the hypothesis that the additional or removal parameters in
the model are equal to 0, is a chi-square with 𝑚𝑚∗ degrees of freedom, where 𝑚𝑚∗ equal to the difference in the
number of non-redundant parameters estimated in two successive models, i.e., 𝜒𝜒𝑚𝑚∗

2 .

Then the p-values corresponding to the above LR statistic are

𝑝𝑝𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗 = 1 − 𝑃𝑃 �𝜒𝜒𝑚𝑚∗
2 ≤ 𝑆𝑆𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗�

𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑗𝑗 = 1 − 𝑃𝑃 �𝜒𝜒𝑚𝑚∗
2 ≤ 𝑆𝑆𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑗𝑗�

(2) AICC

The AICC values for the resulting model when an effect j enters to or is removed from the current model are
calculated as follows:

𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟+𝑗𝑗 = −2ℓ𝑐𝑐𝑟𝑟𝑟𝑟+𝑗𝑗 +
2𝑑𝑑𝑐𝑐𝑟𝑟𝑟𝑟+𝑗𝑗 ∙ 𝑁𝑁

𝑁𝑁 − 𝑑𝑑𝑐𝑐𝑟𝑟𝑟𝑟+𝑗𝑗 − 1

𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 = −2ℓ𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 +
2𝑑𝑑𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ∙ 𝑁𝑁

𝑁𝑁 − 𝑑𝑑𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 − 1

where 𝑑𝑑 (𝑑𝑑𝑐𝑐𝑟𝑟𝑟𝑟+𝑗𝑗 or 𝑑𝑑𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗) denote the degrees of freedom of the resulting model. For all distributions except
ordinal and nominal multinomial, 𝑑𝑑 = 𝑝𝑝𝑥𝑥 if only β is included; 𝑑𝑑 = 𝑝𝑝𝑥𝑥 + 1 if β and φ for normal, inverse
Gaussian, gamma and Tweedie distributions or β and k for negative binomial distribution are included. For ordinal
and nominal multinomial, d is just the number of non-redundant parameters.

(3) Score statistic

The score statistic is calculated for each effect not in the model to determine whether the effect should enter the
model.

Suppose the current model’s maximum likelihood estimate is 𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟. Using the block notations, the score function
(𝒔𝒔, the gradient vector) and information matrix (𝑰𝑰 = −𝑯𝑯, the negative Hessian matrix) of the resulting model (the
current model with additional effect j) are calculated as

𝒔𝒔�𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗� = �
𝒔𝒔𝑐𝑐𝑟𝑟𝑟𝑟(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗)
𝒔𝒔𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗) �

𝑰𝑰�𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗� = �
𝑰𝑰𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑟𝑟𝑟𝑟(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗) 𝑰𝑰𝑐𝑐𝑟𝑟𝑟𝑟,𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗)
𝑰𝑰𝑗𝑗,𝑐𝑐𝑟𝑟𝑟𝑟(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗) 𝑰𝑰𝑗𝑗,𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗) �

The inverse information matrix is

𝑱𝑱�𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗� = �
𝑱𝑱𝑐𝑐𝑟𝑟𝑟𝑟,𝑐𝑐𝑟𝑟𝑟𝑟(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗) 𝑱𝑱𝑐𝑐𝑟𝑟𝑟𝑟,𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗)
𝑱𝑱𝑗𝑗,𝑐𝑐𝑟𝑟𝑟𝑟(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗) 𝑱𝑱𝑗𝑗,𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 ,𝑩𝑩𝑗𝑗) �

Then the score statistic for the null hypothesis 𝐻𝐻0:𝑩𝑩𝑗𝑗 = 𝟎𝟎 is

𝑆𝑆𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗 = 𝒔𝒔𝑗𝑗�𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟 ,𝟎𝟎�𝑇𝑇𝑱𝑱𝑗𝑗,𝑗𝑗�𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟 ,𝟎𝟎�𝒔𝒔𝑗𝑗(𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟 ,𝟎𝟎)

Under the null hypothesis, the score statistic has a chi-square distribution with 𝑟𝑟𝑠𝑠 degrees of freedom, where 𝑟𝑟𝑠𝑠
equals to the rank of 𝑱𝑱𝑗𝑗,𝑗𝑗(𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟 ,𝟎𝟎). If 𝑟𝑟𝑠𝑠 is zero, then the score statistic will be set to 0 and the p-value will be 1.
Otherwise, the p-value is calculated as

𝑝𝑝𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗 = 1 − 𝑃𝑃 �𝜒𝜒𝑟𝑟𝑠𝑠
2 ≤ 𝑆𝑆𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗�.

 (4) Wald statistic

The Wald statistic is calculated for each effect in the model to determine whether the effect can be removed from
the model.

The current model’s parameter vector and its estimate can be partitioned into two parts as follows:

𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟 = �
𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗
𝑩𝑩𝑗𝑗

� and 𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟 = �
𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗

𝑩𝑩�𝑗𝑗
�

Similarly, the information matrix and its inverse can be partitioned as follow,

𝑰𝑰(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟) = �
𝑰𝑰𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗,𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ,𝑩𝑩𝑗𝑗) 𝑰𝑰𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗,𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗,𝑩𝑩𝑗𝑗)
𝑰𝑰𝑗𝑗,𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ,𝑩𝑩𝑗𝑗) 𝑰𝑰𝑗𝑗,𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗,𝑩𝑩𝑗𝑗) �

𝑱𝑱(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟) = �
𝑱𝑱𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗,𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ,𝑩𝑩𝑗𝑗) 𝑱𝑱𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗,𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ,𝑩𝑩𝑗𝑗)
𝑱𝑱𝑗𝑗,𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ,𝑩𝑩𝑗𝑗) 𝑱𝑱𝑗𝑗,𝑗𝑗(𝑩𝑩𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ,𝑩𝑩𝑗𝑗) �

Then the Wald statistic for the null hypothesis 𝐻𝐻0:𝑩𝑩𝑗𝑗 = 𝟎𝟎 is

𝑆𝑆𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑗𝑗 = �𝑩𝑩�𝑗𝑗�
𝑇𝑇�𝐽𝐽𝑗𝑗,𝑗𝑗(𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ,𝑩𝑩�𝑗𝑗)�−𝑩𝑩�𝑗𝑗

Under the null hypothesis, 𝑆𝑆 has a chi-square distribution with 𝑟𝑟𝑠𝑠 degrees of freedom, where 𝑟𝑟𝑠𝑠 equals to the rank
of 𝑱𝑱𝑗𝑗,𝑗𝑗(𝑩𝑩�𝑐𝑐𝑟𝑟𝑟𝑟\𝑗𝑗 ,𝑩𝑩�𝑗𝑗). If 𝑟𝑟𝑠𝑠 is zero, then the score statistic will be set to 0 and the p-value will be 1. Otherwise, the
p-value is calculated as

𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑗𝑗 = 1 − 𝑃𝑃 �𝜒𝜒𝑟𝑟𝑠𝑠
2 ≤ 𝑆𝑆𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑗𝑗�.

(5) ASE

For distributions except ordinal and nominal distributions, the ASE value over the testing data for the resulting
model when an effect enters to or is removed from the current model is

𝐴𝐴𝑆𝑆𝐸𝐸 =
1

∑ 𝑓𝑓𝑖𝑖
𝑛𝑛𝑇𝑇
𝑖𝑖=1

�𝑓𝑓𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑛𝑛𝑇𝑇

𝑖𝑖=1

where 𝑦𝑦�𝑖𝑖 = 𝑔𝑔−1�𝒙𝒙𝑖𝑖𝑇𝑇𝑿𝑿� + 𝒐𝒐𝑖𝑖� is the predicted value of 𝑦𝑦𝑖𝑖 , and 𝑛𝑛𝑇𝑇 is the number of distinct cases in the testing data.

For ordinal and nominal distributions, the ASE value is calculated as

𝐴𝐴𝑆𝑆𝐸𝐸 =
1

∑ 𝑓𝑓𝑖𝑖
𝑛𝑛𝑇𝑇
𝑖𝑖=1

�𝑓𝑓𝑖𝑖𝐼𝐼�𝑦𝑦𝑖𝑖 ≠ 𝑐𝑐(𝒙𝒙𝑖𝑖)�
𝑛𝑛𝑇𝑇

𝑖𝑖=1

𝑐𝑐(𝒙𝒙𝑖𝑖) = arg max
𝑗𝑗

𝜋𝜋�𝑖𝑖𝑗𝑗

Where 𝐼𝐼(∙) is indicator function, 𝑛𝑛𝑇𝑇 is the number of distinct cases in the testing data, 𝑐𝑐(𝒙𝒙𝑖𝑖) denotes the predicted
category for 𝒙𝒙𝑖𝑖, and 𝜋𝜋�𝑖𝑖𝑗𝑗 denotes the probability for category 𝑗𝑗 corresponding to 𝒙𝒙𝑖𝑖. The detailed calculation of 𝜋𝜋�𝑖𝑖𝑗𝑗
is given in Section 5.1 of “Algorithm: Generalized Linear Engine Phase I”.

Implementation notes:

• If ASE criterion is chosen, the data would be divided into two parts: training data and testing data. For
the current phase, the partition would be set to 30% for testing data, and users have no control over this
part. However, users can select the seed so the results can be reproduced.

• The ASE value for ordinal and nominal multinomial distribution represents the classification error
actually.

8.1.2 The selection process

When distribution, link function and effects are all specified but the user requests the selection of effects,
candidate effects are effects specified; when both distribution and link function are specified, but the effects have

not been specified, the candidate effects includes all main effects, and some interaction effects obtained in Section
7.

The criteria could be grouped into two categories: (1) LR, SCORE and WALD; (2) AICC and ASE. The former
is to select an effect for entry (removal) with minimum (maximum) p-value and continue doing it until the p-
values of all candidates for entry (removal) are equal to or greater than (less than) a specified significance level.
The latter is to compare the goodness of fit statistics (AICC or ASE) of the resulting model after entering
(removing) an effect with that of the current model and selection would be stopped at a local optimal value.

Some definitions are needed for the selection process.

FLAG A 𝑝𝑝𝑒𝑒×1 index vector which records the status of each effect. 𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑖𝑖 = 1 means the
effect i is in the current model; 𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑖𝑖 = 0 means it is not. Note that |{𝑖𝑖|𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑖𝑖 = 1}|
denotes the number of effects with 𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑖𝑖 = 1.

MAXSTEP The maximum number of iteration steps. The tentative default value is 3×𝑝𝑝𝑒𝑒 .

MAXEFFECT The maximum number of effects (excluding intercept if exists). The default value is 𝑝𝑝𝑒𝑒.

𝑝𝑝𝑖𝑖𝑛𝑛 The significance level for effect entry when LR or SCORE is used. The default is 0.05.

𝑝𝑝𝑡𝑡𝑟𝑟𝑡𝑡 The significant level for effect removed when LR or WALD is used. The default is 0.1.

𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟 The AICC value for the current model.

𝐴𝐴𝑆𝑆𝐸𝐸𝑐𝑐𝑟𝑟𝑟𝑟 The ASE value for the current model.

(1) Set {𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑖𝑖}𝑖𝑖=1

𝑝𝑝𝑒𝑒 = 0 and 𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟 = 0. The initial model is 𝜼𝜼 = 𝒐𝒐.
If LR is used, compute the log-likelihood value;
If AICC (ASE) is used, compute AICC (ASE) for the initial model and denote it as 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟 (𝐴𝐴𝑆𝑆𝐸𝐸𝑐𝑐𝑟𝑟𝑟𝑟).

(2) If {𝑖𝑖|𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑖𝑖 = 1} ≠ ∅, 𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟 < 𝑀𝑀𝐴𝐴𝑋𝑋𝑆𝑆𝑇𝑇𝐸𝐸𝑃𝑃 and |{𝑖𝑖|𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑖𝑖 = 1}| < 𝑀𝑀𝐴𝐴𝑋𝑋𝐸𝐸𝐹𝐹𝐹𝐹𝐸𝐸𝐶𝐶𝑇𝑇, go to next step (3);
otherwise stop and output the model.

(3) Based on the current model, for every effect j with 𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑖𝑖 = 0
If LR or SCORE is used, compute 𝑆𝑆𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗 and 𝑝𝑝𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗 .
If AICC (ASE) is used, compute 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑗𝑗 (𝐴𝐴𝑆𝑆𝐸𝐸𝑗𝑗).

(4) If LR or SCORE is used, choose the effect 𝑋𝑋𝑗𝑗∗, 𝑗𝑗∗ = arg min
𝑗𝑗
�𝑝𝑝𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗�, and enter 𝑋𝑋𝑗𝑗∗ to the current model if

𝑝𝑝𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗∗ < 𝑝𝑝𝑖𝑖𝑛𝑛.
If AICC (ASE) is used, choose the effect 𝑋𝑋𝑗𝑗∗, 𝑗𝑗∗ = arg min

𝑗𝑗
�𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑗𝑗� (arg min

𝑗𝑗
�𝐴𝐴𝑆𝑆𝐸𝐸𝑗𝑗�), and enter 𝑋𝑋𝑗𝑗∗ to the

current model if 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑗𝑗∗ < 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟 (𝐴𝐴𝑆𝑆𝐸𝐸𝑗𝑗∗ < 𝐴𝐴𝑆𝑆𝐸𝐸𝑐𝑐𝑟𝑟𝑟𝑟).
Then go to (5); otherwise stop and output the current model.

(5) If the model with new effect is the same as any previous ones, stop and output the current model; otherwise
update the current model: set 𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑗𝑗∗ = 1 and 𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟 = 𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟 + 1.
If AICC (ASE) is used, let 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟 = 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑗𝑗∗ (𝐴𝐴𝑆𝑆𝐸𝐸𝑐𝑐𝑟𝑟𝑟𝑟 = 𝐴𝐴𝑆𝑆𝐸𝐸𝑗𝑗∗).

(6) For every effect k in the current model (i.e., 𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑘𝑘 = 1,∀𝑘𝑘),
If LR or WALD is used, compute 𝑆𝑆𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑖𝑖 and 𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑖𝑖 .
If AICC (ASE) is used, compute 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑘𝑘 (𝐴𝐴𝑆𝑆𝐸𝐸𝑘𝑘).

(7) If LR or WALD is used, choose the effect 𝑋𝑋𝑘𝑘∗, 𝑘𝑘∗ = arg max
𝑘𝑘
�𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑖𝑖�, and remove 𝑋𝑋𝑘𝑘∗ from the current

model if 𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑖𝑖∗ > 𝑝𝑝𝑡𝑡𝑟𝑟𝑡𝑡 .
If AICC (ASE) is used, choose the effect 𝑋𝑋𝑘𝑘∗, 𝑘𝑘∗ = arg min

𝑘𝑘
{𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑘𝑘} (arg min

𝑘𝑘
{𝐴𝐴𝑆𝑆𝐸𝐸𝑘𝑘}), and remove 𝑋𝑋𝑘𝑘∗

from the current model if 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑘𝑘∗ < 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟 (𝐴𝐴𝑆𝑆𝐸𝐸𝑘𝑘∗ < 𝐴𝐴𝑆𝑆𝐸𝐸𝑐𝑐𝑟𝑟𝑟𝑟).
Then go to (8); otherwise go back to (2).

(8) If the model with the effect removed is the same as any previous one, stop and output the current model;
otherwise update the current model: set 𝐹𝐹𝐿𝐿𝐴𝐴𝐹𝐹𝑘𝑘∗ = 0 and 𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟 = 𝑖𝑖𝑡𝑡𝑒𝑒𝑟𝑟 + 1.
If AICC (ASE) is used, let 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑐𝑐𝑟𝑟𝑟𝑟 = 𝐴𝐴𝐼𝐼𝐶𝐶𝐶𝐶𝑘𝑘∗ (𝐴𝐴𝑆𝑆𝐸𝐸𝑐𝑐𝑟𝑟𝑟𝑟 = 𝐴𝐴𝑆𝑆𝐸𝐸𝑘𝑘∗).

Notes:

• The estimate method for 𝜙𝜙 or 𝑘𝑘 should be kept consistent for the model sequence generated by entering or
removing the effect. More specifically, when 𝜙𝜙 is estimated by ML method, or the deviance or Pearson chi-
square divided by degrees of freedom, estimated 𝜙𝜙� would be different for a pair of models. That is to say,
score and Wald statistics will use 𝜙𝜙� of the current model rather than of the final model (full model), because
𝜙𝜙 for the full model would be not obtained. For the same reason, 2�ℓ1,𝜙𝜙�1 − ℓ2,𝜙𝜙�2� will be used in the LR
statistics. Similar for 𝑘𝑘.

• Let 𝑰𝑰 = �𝑰𝑰11 𝑰𝑰12
𝑰𝑰21 𝑰𝑰22

� denote the information matrix, then its inverse 𝑱𝑱 = �𝑱𝑱11 𝑱𝑱12
𝑱𝑱21 𝑱𝑱22

� = 𝑰𝑰− can be calculated

as follows,
𝑱𝑱11 = 𝑰𝑰11−1 + 𝑰𝑰11−1𝑰𝑰12𝑱𝑱22𝑰𝑰21𝑰𝑰11−1

𝑱𝑱12 = −𝑰𝑰11−1𝑰𝑰12𝑱𝑱22
𝑱𝑱21 = 𝑱𝑱12𝑇𝑇

𝑱𝑱22 = [𝑰𝑰22 − 𝑰𝑰21𝑰𝑰11−1𝑰𝑰12]−

• For LR, AICC and ASE, a model is fitted for each effect adding or being removed; For SCORE and WALD,
only one model is fitted for the effect which is finally determined to add to or remove from the current model.

• The cold start for the initial model 𝜼𝜼 = 𝟎𝟎 and power link family: 𝝁𝝁 = 𝟎𝟎 when power link (including identity)
is used. Thus, the score vector 𝒔𝒔 is missing because 𝑉𝑉(𝜇𝜇𝑖𝑖) and 𝑔𝑔′(𝜇𝜇𝑖𝑖) are zero. Consequently, the score
statistic could not be conducted. To overcome this issue, we first build a intercept-only model, then use score
statistics to select the best effect for entering the model for the time based on the intercept-only model.

• For effect entry in step (4), when LR or SCORE is used, if there is a tie in determining the effect
𝑗𝑗∗(min

𝑗𝑗
{𝑝𝑝𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑟𝑟𝑗𝑗}), then select the effect with the smallest degrees of freedom. If effects still have the same

degrees of freedom, then select the one with ordering earlier in the effect list.
For effect entry in step (4), when AICC or ASE is used, if there is a tie in determining optimal value, then
select the one with the smallest degrees of freedom. If effects still have the same degrees of freedom, then
select the one with ordering earlier in the effect list.

• Similarly, for effect removal in step (7), when LR or WALD is used, if there is a tie in determining optimal
value (max

𝑘𝑘
{𝑝𝑝𝑟𝑟𝑒𝑒𝑚𝑚𝑡𝑡𝑣𝑣𝑒𝑒𝑖𝑖}), then select the effect with the largest degrees of freedom. If effects still have the

same degrees of freedom, then select the one with ordering later in the effect list.
For effect removal in step (7), when AICC or ASE is used, if there is a tie in determining optimal value, then
select the one with the largest degrees of freedom. If effects still have the same degrees of freedom, then
select the one with ordering later in the effect list.

• Regarding rules for entering for removing effects when interaction effects are presented, please refer to Chu
and Han (2011).

8.2 Distribution and link function selection
The distribution and link function selection is to select an appropriate distribution and/or link for the given data
when distribution and/or link function are not specified by user. Table 8.3 gives candidate combinations of
distribution and link function. Since there are too many link functions potentially, it will be too time consuming
to check every combination of distribution and link function. Thus we will only consider the combinations listed
on Table 8.3 and Table 8.4 according to the target’s measurement level and the storage type.

Please note that if the distribution (link function) is specified, then the distribution (link function) will not be
detected any more.

Table 8.3: List of combinations of distribution and link function

Candidate distribution Candidate link functions

Normal Identity, log, power(0.5)

Inverse Gaussian Identity, log, power(-2)

Gamma Identity, log, power(-1)

Tweedie(𝑞𝑞) Identity, log, power(1 − 𝑞𝑞)

Negative binomial(𝑘𝑘) Identity, log, Negative binomial

Poisson Identity, log, power(0.5)

Binomial Logit, Probit, complementary log-log

Nominal multinomial Generalized logit

Ordinal multinomial Cumulative logit, cumulative probit, cumulative
complimentary log-log

Table 8.4 List of candidate distributions based on measurement level and storage type of the target

Measurement level of the target Storage type of the target Candidate distribution

Continuous Positive real Normal

Inverse Gaussian

Gamma

Tweedie(𝑞𝑞)

Positive real with zeros Normal

Tweedie(𝑞𝑞)

Real or integer with
negative values

Normal

Positive integer with
zeros

Negative binomial(𝑘𝑘)

Poisson

Normal

Positive integer Negative binomial(𝑘𝑘)

Poisson

Normal

Inverse Gaussian

Gamma

Nominal

#categories = 2 Binomial

#categories > 2 Nominal multinomial

Ordinal #categories = 2 Binomial

#categories > 2 Ordinal multinomial

Flag Binomial

Notes:

• For the case that the distribution is given, the candidate link functions are determined using Table 8.3 after
checking the given distribution is compatible with the measurement level and storage type of the target in
Table 8.4.

• For the case that the link function is given, the following rules are used to determine the candidate
distributions

(1) If the link function is one of cumulative logit, cumulative probit, cumulative complimentary log-log,
cumulative negative log-log and cumulative cauchit, then the candidate distribution is ordinal
multinomial after checking the measurement level is ordinal. Otherwise, an error message should be
issued.

(2) If the link function is generalized logit, the candidate distribution is nominal multinomial after
checking the measurement level is nominal. Otherwise, an error message should be issued.

(3) If the link function is one of identity, log, and power, the candidate distributions are determined by
Table 8.4.

(4) If the link function is negative binomial, the candidate distribution is negative binomial.

(5) If other link functions are used, the candidate distribution is binomial.

8.2.1 Candidate statistics

8.2.1.1 ASE

The definition is the same to that in Section 8.1.2.

8.2.2 The selection process

A model is run for each combination of distribution and link function, given a set of effects, depending the
measurement level and the storage type of the target given in Table 8.3 and Table 8.4 on the training data, then
the best model with minimum value of ASE on the testing data is selected. Thus, the corresponding distribution
and link function are selected and output.

Implementation note:

• For the small to median p situation(𝑝𝑝 < 𝑝𝑝max), there are two ways the model is built: (1) using the
Newton-Raphson with MapReduce, see GLE phase 1 for details; (2) using ADMM with the Newton-
Raphson method, see GLE phase 3 for details.

• For the large p situation (𝑝𝑝 ≥ 𝑝𝑝max), the model is built using ADMM with L-BFGS method, see GLE
phase 3 for details.

8.3 Automatic detection of distribution, link function and
effects

When the effects in addition to at least one of distribution and link function have not been specified, we will apply
different methods, depending on the variable selection methods, to detect distribution, link function and effects
automatically.

8.3.1 The variable selection method is forward stepwise:

The two-stage model selection method is applied and its basic idea is to apply distribution and link function
selection and variable selection alternately. It starts off by getting an initial estimate of the distribution 𝐹𝐹� and the
link function 𝑔𝑔� based on a given effect set 𝑿𝑿; then estimate the optimal effects 𝑿𝑿� based on estimated 𝐹𝐹� and 𝑔𝑔�.
These two steps are performed alternatively until the convergence criterion is satisfied. In addition, an
enhancement stage of adding two-way interaction effects is provided when the size of the optimal variable set is
less than a predefined threshold.

ℂ = {𝐶𝐶𝑖𝑖} The set of potential combination of distribution and link function based on the type of the
target, where 𝐶𝐶𝑖𝑖 = (𝐹𝐹𝑖𝑖,𝑔𝑔𝑖𝑖), and 𝐹𝐹𝑖𝑖 and 𝑔𝑔𝑖𝑖 denotes the distribution and the link function,
respectively.

𝑿𝑿𝑡𝑡 The effects for the 𝑙𝑙-th iteration, including both main and interaction effects

𝑒𝑒𝑡𝑡 The ASE value for the 𝑙𝑙-th iteration.

𝜀𝜀𝑚𝑚 The tolerance level for the convergence criteria. Its default value is set to 10−4.

𝑙𝑙max The maximum number of iterations. Its default value is set to 2.

Λ1,Λ2 The significant and non-significant predictors for the optimal combination of distribution
and link function, respectively.

𝐸𝐸1,𝐸𝐸2 The candidate set of effects for variable selection.

𝑚𝑚3 Threshold value to provide an enhancement stage; the default is 100.

𝑚𝑚4 Threshold value to select main effects for constructing interaction effects; the default is 20.

The detailed process is given below,

(1) Determine candidate combinations ℂ = {𝐶𝐶𝑖𝑖}, 𝑖𝑖 = 1,⋯ ,𝑛𝑛𝑓𝑓𝑓𝑓 of distributions and link functions based on the
target’s measure level and storage type based on Table 8.3 and 8.4.

(2) Let 𝑿𝑿0 be the initial effect set, which only includes all main effects (predictors). Let �𝑿𝑿�best, �̂�𝐶best, �̂�𝑒best�
denote the optimal model.

(3) Select 3 best combinations, denoted by ℂ′, from candidate combination ℂ.

(a) Build one model for each combination in ℂ based on 𝑿𝑿0 using the training data.
(b) Calculate ASE value for each model built using the testing data.
(c) Select top 3 models with minimum ASE.

(d) Denote the optimal combination by �̂�𝐶1 and ASE value by �̂�𝑒1/2. Let 𝑿𝑿�best = 𝑿𝑿0, �̂�𝐶best = �̂�𝐶1, and �̂�𝑒best =
 �̂�𝑒1/2.

(4) Perform Type 3 analysis (using Wald statistics in Section 8.1.1) for the current optimal model. Based on p
values of effects, divide effects (predictors) into two groups: one (Λ1) is for significant predictors
(𝑝𝑝 < 0.05), and the other (Λ2) is for the non-significant predictors.

(5) Obtain the optimal effects 𝑿𝑿�1 based on �̂�𝐶1, from the candidate effects set of 𝐸𝐸1(= Λ1) and 𝐸𝐸2(= Λ2), where
𝐸𝐸1 is considered as the initial model, and forward stepwise is used to select among 𝐸𝐸2.

(6) Calculate the ASE value, �̂�𝑒1, of the model �𝑿𝑿�1, �̂�𝐶1� on the testing data.

(7) If ��̂�𝑒1 < �̂�𝑒best�, then �𝑿𝑿�best = 𝑿𝑿�1, �̂�𝐶best = �̂�𝐶1, �̂�𝑒best = �̂�𝑒1�.

(8) Let 𝑙𝑙 = 1. If 𝑙𝑙 > (𝑙𝑙max − 1), then stop and output the optimal model �𝑿𝑿�best, �̂�𝐶best, �̂�𝑒best�.

(9) Build one model for each combination in ℂ′ based on 𝑿𝑿�𝑡𝑡 using the training data, calculate ASE for each
model using the testing data.

(10) Obtain the optimal combination (denoted by �̂�𝐶𝑡𝑡+1) with minimum ASE value (denoted by �̂�𝑒𝑡𝑡+1/2).

(11) If �̂�𝑒𝑡𝑡+1/2 < �̂�𝑒best, then 𝑿𝑿�best = 𝑿𝑿�𝑡𝑡 , �̂�𝐶best = �̂�𝐶𝑡𝑡+1, and �̂�𝑒best = �̂�𝑒𝑡𝑡+1/2.

(12) Obtain the optimal effects 𝑿𝑿�𝑡𝑡+1 based on �̂�𝐶𝑡𝑡+1, from the candidate effects set of 𝐸𝐸1 = 𝑿𝑿�𝑡𝑡 and 𝐸𝐸2 = 𝑿𝑿0 −
𝐸𝐸1, where 𝐸𝐸1 is considered as the initial model, and forward stepwise is used to select among 𝐸𝐸2.

(13) Calculate the ASE value, �̂�𝑒𝑡𝑡+1, of the model �𝑿𝑿�𝑡𝑡+1, �̂�𝐶𝑡𝑡+1 � on the testing data.

(14) If ��̂�𝑒𝑡𝑡+1 < �̂�𝑒best�, then �𝑿𝑿�best = 𝑿𝑿�𝑡𝑡+1, �̂�𝐶best = �̂�𝐶𝑡𝑡+1, �̂�𝑒best = �̂�𝑒𝑡𝑡+1�.

(15) If ��𝑿𝑿�𝑡𝑡+1, �̂�𝐶𝑡𝑡+1� = �𝑿𝑿�𝑡𝑡 , �̂�𝐶𝑡𝑡�� or [𝑙𝑙 ≥ (𝑙𝑙max − 1)] or � |�̂�𝑒𝑙𝑙+1−�̂�𝑒𝑙𝑙|
�̂�𝑒𝑙𝑙+10−6

< 𝜀𝜀𝑚𝑚�, then stop and output the optimal model

�𝑿𝑿�best, �̂�𝐶best, �̂�𝑒best�; otherwise, 𝑙𝑙 = 𝑙𝑙 + 1 and go to step (9).

If �𝑿𝑿�best� < 𝑚𝑚3, an enhancement stage of adding two-way interaction effects will be provided as follows:

(1) Perform Type 3 analysis (using Wald statistics in Section 8.1.1) for the current optimal model.
(2) Sorting the main effects using p-value in ascending order and select top 𝑚𝑚′ = min��𝑿𝑿�best�,𝑚𝑚4� main

effects.
(3) Construct of two-way interaction effects (of any two different main effects, and squared term of covariates)

among the 𝑚𝑚′ main effects.
(4) Test all candidate interaction effects (using Score statistics in Section 8.1.1) based on the current optimal

model.
(5) Select the significant interaction effects (𝑝𝑝 < 0.05), and sort them using their p-values in descending order

and select and output top-𝑘𝑘 interaction effects (Denoted by 𝑿𝑿�inter), where 𝑘𝑘 is the maximum number
satisfying the number of parameters for top-𝑘𝑘 interaction effects is less than or equal to 0.5×(𝑝𝑝max − 𝑝𝑝𝑚𝑚𝑠𝑠),
where 𝑝𝑝𝑚𝑚𝑠𝑠 denotes the number of parameters for 𝑿𝑿�best (including the intercept).

(6) Obtain the optimal effects 𝑿𝑿�𝑡𝑡+2 based on �̂�𝐶best, 𝐸𝐸1 = 𝑿𝑿�best and 𝐸𝐸2 = 𝑿𝑿�inter using the method of variable
selection given in Section 8.1, where 𝐸𝐸1 is considered as the initial model, and stepwise is used to select
among 𝐸𝐸2.

(7) Calculate the ASE value, �̂�𝑒𝑡𝑡+2, of the model �𝑿𝑿�𝑡𝑡+2, �̂�𝐶best � on the testing data.
(8) If ��̂�𝑒𝑡𝑡+2 < �̂�𝑒best�, then �𝑿𝑿�best = 𝑿𝑿�𝑡𝑡+2, �̂�𝐶best = �̂�𝐶best, �̂�𝑒best = �̂�𝑒𝑡𝑡+2�.
(9) Stop and output the optimal model �𝑿𝑿�best, �̂�𝐶best, �̂�𝑒best�.

Note that parameter settings of model selection are given below:

• For the scale parameter 𝜙𝜙, it is estimated by MLE for normal, inverse Gaussian, gamma and Tweedie
distribution; it is fixed at 1.0 for binomial, Poisson, negative binomial, and multinomial.

• If both distribution and link function are not specified, then,

(1) For the ancillary parameter (𝑘𝑘) in negative binomial distribution, it is estimated by MLE;
(2) For the parameter 𝑞𝑞 in the tweedie distribution, it is set to 1.5, namely, 𝑞𝑞 = 1.5;
(3) The parameter in power function is given from Table 8.3.

• If only the distribution is given,

(1) For 𝑘𝑘, it equals to the parameter specified by user.
(2) For 𝑞𝑞, it equals to the parameter specified by user.

• If only the link function is given

(1) For the parameter in power function, it equals to the parameter specified by user.
(2) For 𝑘𝑘, it is estimated by MLE.
(3) For 𝑞𝑞, it is set to 1.5.

• For the variable selection, the statistics for effect entry and removal are SCORE and WALD, respectively.

8.3.2 The variable selection method or regularization is the lasso, elastic net or
ridge regression:

(1) Choose the candidate combinations of distributions and link functions based on the measurement level and
storage type of target.

(2) Detect the interaction terms if interaction detection flag is on based on a combination chosen with the
following rules, and then form the set of candidate effects.
When distribution and link function both are unknown, the rules are as follows:

(a) If normal is a possible distribution candidate, then normal + identify will be chosen.

(b) If binomial is a possible distribution candidate, then binomial + logit will be chosen.

(c) If measurement level is nominal, distribution is nominal multinomial, then nominal multinomial +
generalized logit will be chosen.

(d) If measurement level is ordinal, distribution is ordinal multinomial (even nominal multinomial is a
candidate), then ordinal multinomial + cumulative logit will be chosen.

When distribution is known, link function is unknown, the rules are listed in the follow table:

Distribution Link function

Normal Identity

Inverse Gaussian Power(–2)

Gamma Power(–1)

Tweedie (q) Power(1 – q)

Negative binomial (k) Log

Poisson Log

Binomial Logit

Nominal multinomial Generalized logit

Ordinal multinomial Cumulative logit

When link function is known, distribution is unknown, the rules are as below.

(a) If link function is identify, log or power, then normal will be chosen.
(b) If link function is negative binomial, then negative binomial will be chosen.
(c) If link function is generalized logit, then nominal multinomial will be chosen.
(d) If link function is one of 5 cumulative link functions (logit, probit, complimentary log-log, negative

log-log, cauchit), then ordinal multinomial will be chosen.
(e) If link function is logit, probit, complementary log-log, log-complement, negative log-log or odds

power, then binomial will be chosen.

(3) Select lambda from the grid search method described in GLE phase 3 with the chosen combination and the
set of candidate effects.

(4) Run ADMM (the lasso, ridge or elastic net) to select effects for each combination based on the selected
lambda and the training data, then compute ASE in the testing set.

(5) Choose the combination with the selected effects with the minimum ASE.

(6) If the chosen combination of distribution and link function is not the same as the one in step (2), then
another round of lambda selection based on the chosen combination is conducted to update the effect
selection.

Implementation notes:

• When running ADMMs in step (3) for each combination, we should use the results from step (2) as the
initial values.

• The more complete process should be to select the lambda for each combination, instead of finding a
lambda based on a particular combination and applying the same lambda for other combinations, in Step
(2). Since it might be too time consuming, we propose the above process. However, the grid search
method with the warm-start strategy might not take much longer than the one with a fixed lambda. Thus
we should implement both processes and do some testing to compare the performance.

• If using user-specified lambda, step 3 and step 6 will be ignored.

8.4 Handle large volume of data
The model selection will be time-consuming when there is a large volume of data, because the model building
might involve many data passes. To speed up the process of model selection, the sampling techniques are
employed, which sample a small dataset from the whole data. In addition, from a practical viewpoint, it is not
necessary to use all data for selecting an approximately best model.

Two sampling techniques are needed: (1) simple random sampling; (2) stratified random sampling. The former
is used for all distributions except binomial distribution with 0/1 format and multinomial distribution (ordinal and
nominal); the latter is used when the distribution is binomial distribution with 0/1 format and multinomial
distribution.

8.4.1 Simple Random Sampling

A subset of records is chosen from the larger set. Each record is chosen randomly such that each record has the
same probability of being chosen at any stage during the sampling process, and each subset of 𝑘𝑘 records has the
same probability of being chosen for the sample as any other subset of 𝑘𝑘 records.

The sampling will be triggered when 𝑁𝑁 > 𝑁𝑁𝑇𝑇 (=20,000 by default). The default sample size is 𝑁𝑁𝑆𝑆 = 10,000.
Please note that both exact and approximate simple random sampling can be used.

The details of simple random sampling methods see Dagli (2012).

8.4.2 Stratified Random Sampling

Stratified random sampling is a probability sampling technique wherein the entire population is divided into
different subgroups or strata, then randomly selects the final samples proportionally from the different strata.

Some definitions are needed for the stratified random sampling.

𝑁𝑁∙𝑗𝑗 The number of records for the 𝑗𝑗-th target category, 𝑗𝑗 = 1,⋯ , 𝐽𝐽, in the whole data

𝑁𝑁 The total number of records in the whole data, 𝑁𝑁 = ∑ 𝑁𝑁∙𝑗𝑗
𝐽𝐽
𝑗𝑗=1

𝑁𝑁𝑆𝑆,𝑗𝑗 The sample size for the 𝑗𝑗-th target category, 𝑗𝑗 = 1,⋯ , 𝐽𝐽

𝑁𝑁𝑆𝑆 The total sample size, 𝑁𝑁𝑆𝑆 = ∑ 𝑁𝑁𝑆𝑆,𝑗𝑗
𝐽𝐽
𝑗𝑗=1 .

𝑝𝑝𝑆𝑆,𝑗𝑗 The sampling rate for the 𝑗𝑗-th target category, 𝑗𝑗 = 1,⋯ , 𝐽𝐽

The sample size for the 𝑗𝑗-th target category is determined by the following equation

𝑁𝑁𝑆𝑆,𝑗𝑗 = �𝑝𝑝𝑆𝑆,𝑗𝑗𝑁𝑁∙𝑗𝑗�

The sampling will be triggered when 𝑁𝑁 > 𝑁𝑁𝑇𝑇 (=20,000 by default). The default sample size is 𝑁𝑁𝑆𝑆 = 20,000,
and default values for sampling rates are 𝑝𝑝𝑆𝑆,1 = ⋯𝑝𝑝𝑆𝑆,𝐽𝐽 = 𝑁𝑁𝑆𝑆

𝑁𝑁
.

Note that (1) the sampling rate 𝑝𝑝𝑆𝑆,𝑗𝑗 should ensure 𝑁𝑁𝑆𝑆,𝑗𝑗 ≥ 1; (2) the sampling rate 𝑝𝑝𝑆𝑆,𝑗𝑗 may be different for
handling the imbalanced data.

The details of stratified random sampling methods can be seen in Dagli (2013). From the viewpoint of generalized
linear engine, our requirements for stratified random sampling method are: given the parameters 𝑁𝑁𝑆𝑆,𝑗𝑗 (≥ 1), 𝑗𝑗 =
1,⋯ , 𝐽𝐽, it returns a subset of data which contains 𝑁𝑁𝑆𝑆,𝑗𝑗

′ (≥ 1) records drew randomly for the 𝑗𝑗-th target category.
Note that generally, 𝑁𝑁𝑆𝑆,𝑗𝑗

′ = 𝑁𝑁𝑆𝑆,𝑗𝑗 for small 𝑁𝑁𝑆𝑆,𝑗𝑗, and 𝑁𝑁𝑆𝑆,𝑗𝑗
′ ≈ 𝑁𝑁𝑆𝑆,𝑗𝑗 for large 𝑁𝑁𝑆𝑆,𝑗𝑗, because it is easier to ensure the

sample method will not return empty set of records for large 𝑁𝑁𝑆𝑆,𝑗𝑗.

It is noted that if 𝑁𝑁𝑆𝑆,𝑗𝑗
′ = 𝑁𝑁𝑆𝑆,𝑗𝑗 , then the sampling method is exact, otherwise, it is approximate.

9. Scoring
9.1 Prediction for binomial distribution with 0/1 binary response
variable

9.1.1 Predicted category

Given the critical probability 𝑝𝑝𝑡𝑡 (𝑝𝑝𝑡𝑡 = 0.5 by default), the predicted category 𝑐𝑐(𝒙𝒙𝑖𝑖) is

𝑐𝑐(𝒙𝒙𝑖𝑖) = �1 (or success) if 𝜇𝜇𝑖𝑖 ≥ 𝑝𝑝𝑡𝑡
0 (or failure) otherwise.

If there is a tie in determining 𝑐𝑐(𝒙𝒙𝑖𝑖), then tie will be broken by choosing the category with

3) Higher 𝑁𝑁𝑗𝑗 = ∑ 𝑓𝑓𝑖𝑖𝑦𝑦𝑖𝑖,𝑗𝑗𝑛𝑛
𝑖𝑖=1 .

4) If it ties in 1), choose the one with lower category index number.

It should be noted that the classification table should be updated accordingly as well.

9.1.2 Critical probability selection
We select the optimal critical probability based on the following two measures: (1) G-mean and (2) F-measure,
which are defined on sensitivity, specificity, and precision measures. Using the notation in Table 9.1, we give their
definitions.

Table 9.1 Classification table

Predicted class

success (positive) failure (negative)

Actual
class

success

(positive)
𝑇𝑇𝑃𝑃 = �𝑓𝑓𝑖𝑖𝐼𝐼(𝑦𝑦𝑖𝑖 = 1, 𝑐𝑐(𝒙𝒙𝑖𝑖) = 1)

𝑛𝑛

𝑖𝑖=1

 𝐹𝐹𝑁𝑁 = �𝑓𝑓𝑖𝑖𝐼𝐼(𝑦𝑦𝑖𝑖 = 1, 𝑐𝑐(𝒙𝒙𝑖𝑖) = 0)
𝑛𝑛

𝑖𝑖=1

failure

(negative)
𝐹𝐹𝑃𝑃 = �𝑓𝑓𝑖𝑖𝐼𝐼(𝑦𝑦𝑖𝑖 = 0, 𝑐𝑐(𝒙𝒙𝑖𝑖) = 1)

𝑛𝑛

𝑖𝑖=1

 𝑇𝑇𝑁𝑁 = �𝑓𝑓𝑖𝑖𝐼𝐼(𝑦𝑦𝑖𝑖 = 0, 𝑐𝑐(𝒙𝒙𝑖𝑖) = 0)
𝑛𝑛

𝑖𝑖=1

where 𝐼𝐼(∙) is indicator function.

Sensitivity and specificity denotes are two measures of the classification performance. Sensitivity (also called
the recall) measures the proportion of actual positives which are correctly identified, which is defined as

𝜌𝜌1 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑁𝑁

Specificity measures the proportion of negatives which are correctly identified, which is defined as

𝜌𝜌2 =
𝑇𝑇𝑁𝑁

𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑁𝑁

Precision (also called positive predictive value) measures the ratio of true positives to combined true and false
positives, which is defined as

𝜌𝜌3 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃

The G-mean and F-measure are defined as

𝐹𝐹– mean = �𝜌𝜌1×𝜌𝜌2

𝐹𝐹– measure =
𝜌𝜌1×𝜌𝜌3
𝜌𝜌1 + 𝜌𝜌3

The process to select a critical probability that maximize the G-mean or F-measure is given below

1) Using equal width method to define 𝑛𝑛𝑐𝑐 + 1 (𝑛𝑛𝑐𝑐 = 400 by default) critical probabilities, 𝑝𝑝𝑡𝑡,0,⋯ , 𝑝𝑝𝑡𝑡,𝑛𝑛𝑐𝑐,
between the range of [0,1], where 𝑝𝑝𝑡𝑡,𝑖𝑖 = 𝑖𝑖/𝑛𝑛𝑐𝑐.

2) For each critical probability 𝑝𝑝𝑡𝑡,𝑖𝑖, calculate the corresponding 𝑇𝑇𝑃𝑃,𝐹𝐹𝑁𝑁,𝐹𝐹𝑃𝑃 and 𝑇𝑇𝑁𝑁, and then calculate
sensitivity and specificity measures if G-mean is used for each critical probability, thus, we obtain
sensitivity and specificity vectors, respectively

𝝆𝝆1 = �𝜌𝜌1,0,⋯ ,𝜌𝜌1,𝑛𝑛𝑐𝑐�
𝝆𝝆2 = �𝜌𝜌2,0,⋯ ,𝜌𝜌2,𝑛𝑛𝑐𝑐�

If F-measure is used, sensitivity and precision measures are computed for each critical probability, thus, we
obtain sensitivity and precision vectors, respectively

𝝆𝝆1 = �𝜌𝜌1,0,⋯ ,𝜌𝜌1,𝑛𝑛𝑐𝑐�
𝝆𝝆3 = �𝜌𝜌3,0,⋯ ,𝜌𝜌3,𝑛𝑛𝑐𝑐�

3) Compute the G-mean or F-measure vectors for each critical probability, and find the critical probability
with maximum G-mean or F-measure

𝑝𝑝𝑡𝑡∗ = arg max
𝑝𝑝𝑡𝑡,𝑖𝑖

��𝜌𝜌1,𝑖𝑖×𝜌𝜌2,𝑖𝑖�

or

𝑝𝑝𝑡𝑡∗ = arg max
𝑝𝑝𝑡𝑡,𝑖𝑖

�
𝜌𝜌1,𝑖𝑖×𝜌𝜌3,𝑖𝑖

𝜌𝜌1,𝑖𝑖 + 𝜌𝜌3,𝑖𝑖
�

Implementation notes

• Only one data pass is need for calculating 𝝆𝝆1,𝝆𝝆2 or 𝝆𝝆1,𝝆𝝆3 if we store a tetrad (TP, FN, FP, TN) for each
critical probability.

9.2 ROC curve for binomial distribution with 0/1 binary response
variable

A ROC curve is a graphical plot which illustrates the performance of a binary classifier as its critical probability
is varied. It is created by plotting true positive rate (sensitivity, 𝜌𝜌1) by false positive rate (1-specificty, 𝜑𝜑 = 1 −
𝜌𝜌2) at various critical probability settings.

The process to obtain the information for ROC curve is given below

1) Using equal width method to define 𝑛𝑛𝑐𝑐 + 1 (𝑛𝑛𝑐𝑐 = 400 by default) critical probabilities, 𝑝𝑝𝑡𝑡,0,⋯ , 𝑝𝑝𝑡𝑡,𝑛𝑛𝑐𝑐,
between the range of [0,1], where 𝑝𝑝𝑡𝑡,𝑖𝑖 = 𝑖𝑖/𝑛𝑛𝑐𝑐.

2) For each critical probability 𝑝𝑝𝑡𝑡,𝑖𝑖, calculate the corresponding 𝑇𝑇𝑃𝑃,𝐹𝐹𝑁𝑁,𝐹𝐹𝑃𝑃 and 𝑇𝑇𝑁𝑁, then compute true
positive rate and false positive rate for each critical probability, thus, we obtain a vector of triads, namely

��
𝜌𝜌1,0
𝜑𝜑0
𝑝𝑝𝑡𝑡,0

� ,⋯ ,�
𝜌𝜌1,𝑛𝑛𝑐𝑐
𝜑𝜑𝑛𝑛𝑐𝑐
𝑝𝑝𝑡𝑡,𝑛𝑛𝑐𝑐

��

where 𝜑𝜑𝑖𝑖 = 1 − 𝜌𝜌2,𝑖𝑖.
3) Remove the redundancy by deleting �𝜌𝜌1,𝑖𝑖 ,𝜑𝜑𝑖𝑖 , 𝑝𝑝𝑡𝑡,𝑖𝑖�

𝑇𝑇
 if 𝜌𝜌1,𝑖𝑖 = 𝜌𝜌1,𝑖𝑖−1 and 𝜑𝜑𝑖𝑖 = 𝜑𝜑𝑖𝑖−1, 𝑖𝑖 = 1,⋯ ,𝑛𝑛𝑐𝑐 − 1.

http://en.wikipedia.org/wiki/Graph_of_a_function
http://en.wikipedia.org/wiki/Binary_classifier

4) Save �𝜌𝜌1,𝑖𝑖,𝜑𝜑𝑖𝑖 , 𝑝𝑝𝑡𝑡,𝑖𝑖�
𝑇𝑇
,where �𝜌𝜌1,𝑖𝑖 ,𝜑𝜑𝑖𝑖� is used to plot ROC curve and 𝑝𝑝𝑡𝑡,𝑖𝑖 is the corresponding critical

probability that might be shown in the plot, i.e., using a tooltip.

Implementation notes

• Only one data pass is need for calculating 𝝆𝝆1,𝝋𝝋 if we store a tetrad (TP, FN, FP, TN) for each critical
probability.

10. Model diagnostics
10.1 Influential outlier

We will identity a record to be an influential outlier based on the following two statistics for all distribution except
multinomial:

(1) Cook’s distance is larger than 4 (𝑁𝑁 − 𝑑𝑑)⁄ , where 𝑑𝑑 = 𝑝𝑝𝑥𝑥 if only 𝑿𝑿 is included; 𝑑𝑑 = 𝑝𝑝𝑥𝑥 + 1 if 𝑿𝑿 and 𝜙𝜙 for
normal, inverse Gaussian, gamma and Tweedie distributions or 𝑿𝑿 and k for negative binomial distribution
are included.

(2) The absolute of standardized deviance residual is larger than 2 (or 2.5).

The definitions of Cook’s distance and standardized deviance residual are given in Section 5.2 of Generalized
Linear Engine Phase I (Chu and Zhong, 2012)

10.2 Diagnostic plots

A scatter plot is provided for all distributions except ordinal and nominal multinomial distributions, which is used
to check whether the fitted regression model adequately represents the data.

10.2.1 Scatter plot of standardized deviance residual by predicted linear predictor
The expected pattern of this plot is that a distribution of standardized deviance residuals for varying the linear
predictors with mean 0 and constant range.

Let �̂�𝑟𝑘𝑘𝑆𝑆𝐷𝐷and �̂�𝜂𝑘𝑘 be the standardized deviance residual and the predicted linear predictor of the 𝑘𝑘-th record,
respectively, where 𝑘𝑘 = 1,⋯ ,𝑛𝑛. Note that because 𝑖𝑖 has been used below, here we use 𝑘𝑘 as a subscript. Then
the information needed for a binned scatter plot of standardized deviance residual by the predicted linear
predictor is created as follows:

1) Using equal width method to compute 𝑛𝑛𝑐𝑐 (=19 by default) cut points 𝑐𝑐1
(1),⋯ , 𝑐𝑐𝑛𝑛𝑐𝑐

(1) between the range [𝐿𝐿,𝑈𝑈] for
the x-axis, where 𝐿𝐿 = 𝑔𝑔�min𝑘𝑘(𝑦𝑦𝑘𝑘)� and 𝑈𝑈 = 𝑔𝑔�max𝑘𝑘(𝑦𝑦𝑘𝑘)�, i.e., 𝑐𝑐𝑖𝑖

(1) = 𝐿𝐿 + 𝑖𝑖×(𝑈𝑈 − 𝐿𝐿)/(𝑛𝑛𝑐𝑐 + 1). Then we
have (𝑛𝑛𝑐𝑐 + 1) intervals by letting 𝑐𝑐0

(1) = −∞ and 𝑐𝑐𝑛𝑛𝑐𝑐+1
(1) = ∞,

�𝑐𝑐0
(1), 𝑐𝑐1

(1)�, �𝑐𝑐1
(1), 𝑐𝑐2

(1)�,⋯ , �𝑐𝑐𝑛𝑛𝑐𝑐
(1), 𝑐𝑐𝑛𝑛𝑐𝑐+1

(1) �.

2) Similarly, compute 𝑛𝑛𝑐𝑐 cut points 𝑐𝑐1
(2),⋯ , 𝑐𝑐𝑛𝑛𝑐𝑐

(2) between the range [−8,8] for the y-axis: 𝑐𝑐𝑖𝑖
(2) = −8 +

𝑖𝑖×16/(𝑛𝑛𝑐𝑐 + 1). Then we have another (𝑛𝑛𝑐𝑐 + 1) intervals by letting 𝑐𝑐0
(2) = −∞ and 𝑐𝑐𝑛𝑛𝑐𝑐+1

(2) = ∞,

 �𝑐𝑐0
(2), 𝑐𝑐1

(2)�, �𝑐𝑐1
(2), 𝑐𝑐2

(2)�,⋯ , �𝑐𝑐𝑛𝑛𝑐𝑐
(2), 𝑐𝑐𝑛𝑛𝑐𝑐+1

(2) �.

3) For each two-dimension interval �𝑐𝑐𝑖𝑖
(1), 𝑐𝑐𝑖𝑖+1

(1) �×�𝑐𝑐𝑗𝑗
(2), 𝑐𝑐𝑗𝑗+1

(2) �, 𝑖𝑖, 𝑗𝑗 = 0,⋯ ,𝑛𝑛𝑐𝑐, obtain the number of
records that fall into this interval incorporating the frequency weight:

𝑛𝑛𝑖𝑖𝑗𝑗 = �𝑓𝑓𝑘𝑘𝐼𝐼𝑖𝑖𝑗𝑗(�̂�𝜂𝑘𝑘, �̂�𝑟𝑘𝑘𝑆𝑆𝑆𝑆)
𝑛𝑛

𝑘𝑘=1

and the corresponding mean ��̅̂�𝜂𝑖𝑖𝑗𝑗 , �̅̂�𝑟𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆� incorporating the frequency weight:

�̅̂�𝜂𝑖𝑖𝑗𝑗 =
1
𝑛𝑛𝑖𝑖𝑗𝑗

�𝑓𝑓𝑘𝑘𝐼𝐼𝑖𝑖𝑗𝑗(�̂�𝜂𝑘𝑘, �̂�𝑟𝑘𝑘𝑆𝑆𝑆𝑆)
𝑛𝑛

𝑘𝑘=1

�̂�𝜂𝑘𝑘

�̅̂�𝑟𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆 =
1
𝑛𝑛𝑖𝑖𝑗𝑗

�𝑓𝑓𝑘𝑘𝐼𝐼𝑖𝑖𝑗𝑗(�̂�𝜂𝑘𝑘, �̂�𝑟𝑘𝑘𝑆𝑆𝑆𝑆)
𝑛𝑛

𝑘𝑘=1

�̂�𝑟𝑘𝑘𝑆𝑆𝑆𝑆

 where

𝐼𝐼𝑖𝑖𝑗𝑗(�̂�𝜂𝑘𝑘, �̂�𝑟𝑘𝑘𝑆𝑆𝑆𝑆) = �1, if �̂�𝜂𝑘𝑘 ∈ �𝑐𝑐𝑖𝑖
(1), 𝑐𝑐𝑖𝑖+1

(1) � and �̂�𝑟𝑘𝑘𝑆𝑆𝑆𝑆 ∈ �𝑐𝑐𝑗𝑗
(2), 𝑐𝑐𝑗𝑗+1

(2) �
0, otherwise

4) Save the mean, ��̅̂�𝜂𝑖𝑖𝑗𝑗 , �̅̂�𝑟𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆� and the corresponding number of records, 𝑛𝑛𝑖𝑖𝑗𝑗 (𝑖𝑖, 𝑗𝑗 = 0,⋯ ,𝑛𝑛𝑐𝑐) for the
scatter plot of standardized deviance residual by predicted linear predictor. Note that if 𝑛𝑛𝑖𝑖𝑗𝑗 = 0, there
is no need to save it and the corresponding ��̅̂�𝜂𝑖𝑖𝑗𝑗 , �̅̂�𝑟𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆�.

Implementation notes

• If 𝑛𝑛 ≤ 𝑛𝑛plot(= 3(𝑛𝑛𝑐𝑐 + 1) = 60 by deafult), then the data will not be binned. The data point
(�̂�𝜂𝑘𝑘, �̂�𝑟𝑘𝑘𝑆𝑆𝑆𝑆) and the corresponding number of records, 𝑛𝑛𝑖𝑖𝑗𝑗, will be used for scatter plot directly.

• In addition, we consider a special case: All effects contain only factors and the number of
combinations of all factors (𝑛𝑛𝑐𝑐𝑐𝑐) in the model is less than 𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚(=100 by default), namely, 𝑛𝑛𝑐𝑐𝑐𝑐 <
𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 . Let 𝑚𝑚 = 𝑛𝑛𝑐𝑐𝑐𝑐.
(a) Compute the linear predictors �̂�𝜂𝑘𝑘, 𝑘𝑘 = 1,⋯ ,𝑚𝑚.
(b) Sorting �̂�𝜂𝑘𝑘 by an ascending order.
(c) Divide �̂�𝜂𝑘𝑘 into 𝑚𝑚 intervals as follows

�−∞,
�̂�𝜂1 + �̂�𝜂2

2
� , �

�̂�𝜂1 + �̂�𝜂2
2

,
�̂�𝜂2 + �̂�𝜂3

2
� ,⋯ , �

�̂�𝜂𝑚𝑚−1 + �̂�𝜂𝑚𝑚
2

, +∞�

(d) The intervals for �̂�𝑟𝑘𝑘𝑆𝑆𝑆𝑆 are the same to those given above, in addition, we use the same
method to compute ��̅̂�𝜂𝑖𝑖𝑗𝑗 , �̅̂�𝑟𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆�. Note that �̅̂�𝜂𝑖𝑖𝑗𝑗 = �̂�𝜂𝑖𝑖 for any 𝑗𝑗.

• 𝑛𝑛𝑖𝑖𝑗𝑗, �̅̂�𝜂𝑖𝑖𝑗𝑗 and �̅̂�𝑟𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆 can be computed in parallel in the map-reduce environment.
• For binomial distribution with 𝑟𝑟/𝑚𝑚 format, the standardized deviance residuals can be the one

based on proportion or the one based on the number of events, because they are the same.

10.3 Trend analysis from diagnostics plots

The plot in Section 10.2.1 provides the informal checks on whether a fitted regression model adequately
represents the data. It still needs the experienced analyst to make such a decision. Here we provide a trend
analysis to give a formal check which can automatically determine whether a fitted model is adequate.

By analyzing the trend of the plot, the expected pattern can be a horizontal line through 0.

The process of trend analysis contains three steps: (1) calculate the data points representing the trend; (2)
remove outliers in the trend data; (3) fit a simple linear model on given trend data points; (4) test whether
the simple linear model adequately represents the trend data.

Calculate the trend data

We consider the following three cases:

Denote �𝑥𝑥𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 ,𝑦𝑦𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 ,𝑛𝑛𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖�, 𝑖𝑖 = 0,⋯ ,𝑚𝑚 by the trend data.

• when 𝑛𝑛 > 𝑛𝑛plot, we denote �𝑥𝑥𝑖𝑖𝑗𝑗 ,𝑦𝑦𝑖𝑖𝑗𝑗 ,𝑛𝑛𝑖𝑖𝑗𝑗�, 𝑖𝑖, 𝑗𝑗 ∈ {0,⋯ ,𝑛𝑛𝑐𝑐} by the binned data obtained from Section
5.2.1, where 𝑥𝑥𝑖𝑖𝑗𝑗 = �̅̂�𝜂𝑖𝑖𝑗𝑗, and 𝑦𝑦𝑖𝑖𝑗𝑗 = �̅̂�𝑟𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆. Then, we have

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑥𝑥𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = median(𝑥𝑥𝑖𝑖0,⋯ , 𝑥𝑥𝑖𝑖0�������

𝑛𝑛𝑖𝑖0

,⋯ , 𝑥𝑥𝑖𝑖𝑛𝑛𝑐𝑐 ,⋯ , 𝑥𝑥𝑖𝑖𝑛𝑛𝑐𝑐���������
𝑛𝑛𝑖𝑖𝑛𝑛𝑐𝑐

)

𝑦𝑦𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = median(𝑦𝑦𝑖𝑖0,⋯ ,𝑦𝑦𝑖𝑖0�������
𝑛𝑛𝑖𝑖0

,⋯ ,𝑦𝑦𝑖𝑖𝑛𝑛𝑐𝑐 ,⋯ , 𝑦𝑦𝑖𝑖𝑛𝑛𝑐𝑐���������
𝑛𝑛𝑖𝑖𝑛𝑛𝑐𝑐

)

𝑛𝑛𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = � 𝑛𝑛𝑖𝑖𝑗𝑗
𝑛𝑛𝑐𝑐

𝑗𝑗=0

and 𝑚𝑚 = 𝑛𝑛𝑐𝑐.
• when 𝑛𝑛 ≤ 𝑛𝑛plot, we denote (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝑛𝑛𝑖𝑖), 𝑖𝑖 = 0,⋯ ,𝑛𝑛 − 1 by the non-aggregated data obtained from

Section 5.2.1, we have

�
𝑥𝑥𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = 𝑥𝑥𝑖𝑖
𝑦𝑦𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = 𝑦𝑦𝑖𝑖
𝑛𝑛𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = 𝑛𝑛𝑖𝑖

and 𝑚𝑚 = 𝑛𝑛.
• For the special case: all effects contain only factors and the number of combinations of all factors

(𝑛𝑛𝑐𝑐𝑐𝑐) in the model is less than 𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 , namely, 𝑛𝑛𝑐𝑐𝑐𝑐 < 𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 . We denote �𝑥𝑥𝑖𝑖𝑗𝑗 ,𝑦𝑦𝑖𝑖𝑗𝑗 ,𝑛𝑛𝑖𝑖𝑗𝑗�, 𝑖𝑖 = 1,⋯ ,𝑚𝑚, 𝑗𝑗 =
0,⋯ ,𝑛𝑛𝑐𝑐 by the aggregated data obtained from Section 5.2.1, where 𝑥𝑥𝑖𝑖𝑗𝑗 = �̅̂�𝜂𝑖𝑖𝑗𝑗, and 𝑦𝑦𝑖𝑖𝑗𝑗 = �̅̂�𝑟𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆.

⎩
⎪
⎨

⎪
⎧
𝑥𝑥𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = 𝑥𝑥𝑖𝑖1
𝑦𝑦𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = median(𝑦𝑦𝑖𝑖0,⋯ ,𝑦𝑦𝑖𝑖0�������

𝑛𝑛𝑖𝑖0

,⋯ ,𝑦𝑦𝑖𝑖𝑛𝑛𝑐𝑐 ,⋯ , 𝑦𝑦𝑖𝑖𝑛𝑛𝑐𝑐���������
𝑛𝑛𝑖𝑖𝑛𝑛𝑐𝑐

)

𝑛𝑛𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 = � 𝑛𝑛𝑖𝑖𝑗𝑗
𝑛𝑛𝑐𝑐

𝑗𝑗=0

Notes:

• For binomial distribution with 0/1 binary response, weighted mean function is used to replace
median function for calculating 𝑦𝑦𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 and (or) 𝑥𝑥𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖.

Remove the outliers

Without loss of generality, we assume that the trend data records are (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝑛𝑛𝑖𝑖), 𝑖𝑖 = 0,⋯ ,𝑚𝑚. Here, we
use modified z score to remove the outliers.

(1) Calculate the median (MED) and the median absolute deviation (MAD) for 𝑦𝑦𝑀𝑀𝑀𝑀𝑆𝑆,𝑖𝑖 , 𝑖𝑖 = 0,⋯ ,𝑚𝑚
𝑀𝑀𝑀𝑀𝑀𝑀 = median(𝑦𝑦0 ,⋯ , 𝑦𝑦0�������

𝑛𝑛0

¸⋯ ,𝑦𝑦𝑚𝑚,⋯ , 𝑦𝑦𝑚𝑚�������
𝑛𝑛𝑚𝑚

)

𝑀𝑀𝑀𝑀𝑀𝑀 = median(|𝑦𝑦0 − 𝑀𝑀𝑀𝑀𝑀𝑀|,⋯ , |𝑦𝑦0 − 𝑀𝑀𝑀𝑀𝑀𝑀|,⋯ , |𝑦𝑦𝑚𝑚 −𝑀𝑀𝑀𝑀𝑀𝑀|,⋯ , |𝑦𝑦𝑚𝑚 −𝑀𝑀𝑀𝑀𝑀𝑀|)

(2) Compute the modified z-score for 𝑦𝑦𝑖𝑖 , 𝑖𝑖 ∈ {𝑚𝑚𝑖𝑖𝑛𝑛𝐼𝐼𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥, 𝑚𝑚𝑚𝑚𝑥𝑥𝐼𝐼𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥}, where 𝑚𝑚𝑖𝑖𝑛𝑛𝐼𝐼𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥 and
𝑚𝑚𝑚𝑚𝑥𝑥𝐼𝐼𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥 are the index of minimum and maximum value of {𝑦𝑦0,⋯ , 𝑦𝑦𝑚𝑚}, respectively.

𝑧𝑧𝑖𝑖 = �

𝑦𝑦𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀
1.4826×𝑀𝑀𝑀𝑀𝑀𝑀

if 𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 0
𝑦𝑦𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀

1.2533×𝑀𝑀𝑚𝑚𝑚𝑚𝑛𝑛𝑀𝑀𝑀𝑀
if 𝑀𝑀𝑀𝑀𝑀𝑀 = 0

where 𝑀𝑀𝑚𝑚𝑚𝑚𝑛𝑛𝑀𝑀𝑀𝑀 = 1
∑ 𝑛𝑛𝑖𝑖.
𝑚𝑚
𝑖𝑖=0

∑ 𝑛𝑛𝑖𝑖|𝑦𝑦𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀|.𝑚𝑚
𝑖𝑖=1

(3) (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝑛𝑛𝑖𝑖) is removed from the trend data if |𝑧𝑧𝑖𝑖| > 3 for 𝑖𝑖 ∈ {𝑚𝑚𝑖𝑖𝑛𝑛𝐼𝐼𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥, 𝑚𝑚𝑚𝑚𝑥𝑥𝐼𝐼𝑛𝑛𝑚𝑚𝑚𝑚𝑥𝑥}.

Fit a simple linear model

For the trend data (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝑛𝑛𝑖𝑖), 𝑖𝑖 = 0,⋯ ,𝑚𝑚, we fit a simple linear model (𝑦𝑦 = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥) incorporating the
frequency weight.

Let

�̅�𝑥 =
1

∑ 𝑛𝑛𝑖𝑖𝑚𝑚
𝑖𝑖=0

�𝑛𝑛𝑖𝑖𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=0

𝑦𝑦� =
1

∑ 𝑛𝑛𝑖𝑖𝑚𝑚
𝑖𝑖=0

�𝑛𝑛𝑖𝑖𝑦𝑦𝑖𝑖

𝑚𝑚

𝑖𝑖=0

𝑆𝑆𝑚𝑚𝑚𝑚 = �𝑛𝑛𝑖𝑖(𝑥𝑥𝑖𝑖 − �̅�𝑥)2
𝑚𝑚

𝑖𝑖=0

𝑆𝑆𝑚𝑚𝑥𝑥 = �𝑛𝑛𝑖𝑖(𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)
𝑚𝑚

𝑖𝑖=0

𝑆𝑆𝑥𝑥𝑥𝑥 = �𝑛𝑛𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
𝑚𝑚

𝑖𝑖=0

Then the estimates 𝑏𝑏�0 and 𝑏𝑏�1 are given below

𝑏𝑏�1 =
𝑆𝑆𝑚𝑚𝑥𝑥
𝑆𝑆𝑚𝑚𝑚𝑚

𝑏𝑏�0 = 𝑦𝑦� − 𝑏𝑏�1�̅�𝑥

The variance 𝜎𝜎�2 can be computed as

 𝜎𝜎�2 =
∑ 𝑛𝑛𝑖𝑖(𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑚𝑚
𝑖𝑖=0

∑ 𝑛𝑛𝑖𝑖𝑚𝑚
𝑖𝑖=0 − 2

where 𝑦𝑦�𝑖𝑖 = 𝑏𝑏�0 + 𝑏𝑏�1𝑥𝑥𝑖𝑖.

Tests for the trend

The statistic for the hypothesis 𝐻𝐻0: 𝑏𝑏1 = 0 is

𝑡𝑡 =
𝑏𝑏�1�𝑆𝑆𝑚𝑚𝑚𝑚
𝜎𝜎�

which has an asymptotic t-distribution with df (= ∑ 𝑛𝑛𝑖𝑖𝑚𝑚
𝑖𝑖=0 − 2) degrees of freedom. Then calculate the

corresponding p value. If p value is less than 0.05, then the hypothesis is rejected.

The partial correlation of 𝑥𝑥 and 𝑦𝑦 adjusted for 𝑧𝑧 is calculated as follows

𝑟𝑟𝐴𝐴𝐴𝐴|𝐶𝐶 =
𝑟𝑟𝐴𝐴𝐴𝐴 − 𝑟𝑟𝐴𝐴𝐶𝐶𝑟𝑟𝐴𝐴𝐶𝐶

�(1 − 𝑟𝑟𝐴𝐴𝐶𝐶2)(1 − 𝑟𝑟𝐴𝐴𝐶𝐶2)

where 𝑟𝑟𝐴𝐴𝐴𝐴 denotes the correlation between 𝑀𝑀 and 𝐵𝐵, 𝑟𝑟𝐴𝐴𝐴𝐴 = 𝑆𝑆𝐴𝐴𝐴𝐴
�𝑆𝑆𝐴𝐴𝐴𝐴�𝑆𝑆𝐴𝐴𝐴𝐴

. It should be noted that if 𝑟𝑟𝐴𝐴𝐶𝐶 = 0

or 𝑟𝑟𝐴𝐴𝐶𝐶 = 0, then 𝑟𝑟𝐴𝐴𝐴𝐴|𝐶𝐶 is set to 0.

For the plot, we provide the following insights

• If p value is less than 0.05, the current model does not represent the data
• If p value is greater than or equal to 0.05, we calculate the partial correlation 𝑟𝑟𝑥𝑥𝑚𝑚2|𝑚𝑚

• If �𝑟𝑟𝑥𝑥𝑚𝑚2|𝑚𝑚� < 0.775, the current model may represent the data
• If �𝑟𝑟𝑥𝑥𝑚𝑚2|𝑚𝑚� ≥ 0.775, the current model does not represent the data

Appendix A: Grouping analysis and unusual category
detection

For a significant factor or factor interaction, we can infer that some categories or category combinations
should have a statistically significant impact on the target. Here, we provide analyses to indentify which
factor’s (factor interaction’s) categories have large impacts on the target. For the sake of brevity, the
description is for a significant factor, but it also works for a significant factor interaction.

For all distributions except multinomial distribution and binomial distribution with 0/1 binary response,
we propose two analyses which follow the analyses in the reference Shyr et al. (2011).

(1) Grouping analysis: Partitions all factor’s categories into a high group and a low group (with a
possible medium group) by conducting tests on whether the EMMEAN in each category is different
from that in the category with the largest or smallest EMMEAN.

(2) Unusual category detection analysis: detects possible unusual categories in the high and low groups.
For multinomial distribution (including ordinal and multinomial) and binomial distribution with 0/1
binary response, we propose two analyses which are based on tests described in the reference Agresti
(2002).

(1) Grouping analysis: partitions all categories into a significant group and an insignificant group by
conducting tests on whether the target’s categorical distribution in each category is different from
that the overall distribution (population distribution).

(2) Influential target category analysis: identifies influential target categories for each significant
category.

A.1. All distributions except multinomial and binomial
distribution with 0/1 binary response

Let the 𝑚𝑚 categories of a significant factor 𝑀𝑀 be 𝑀𝑀1,⋯ ,𝑀𝑀𝑚𝑚, and their corresponding EMMEANS are
𝑀𝑀1,⋯ ,𝑀𝑀𝑚𝑚, respectively. Let the number of records in 𝑀𝑀1,⋯ ,𝑀𝑀𝑚𝑚 be 𝑛𝑛1,⋯ ,𝑛𝑛𝑚𝑚, respectively.

A.1.1 Grouping analysis

The following process is used to find the high and low groups and the possible medium group among all
categories of a significant factor with more than 3 categories based on the EMMEANS for the target
rather than the linear predictor.

1) For a significant factor 𝑀𝑀 with 𝑚𝑚 categories, compute the EMMEANS, 𝑴𝑴 = {𝑀𝑀1,⋯ ,𝑀𝑀𝑚𝑚}, and the
corresponding variance matrix 𝑽𝑽. See Chu and Zhong (2005, 2012), and Zheng (2009) for details of
calculations of 𝑴𝑴 and 𝑽𝑽.

2) Sort the EMMEAN 𝑀𝑀𝑖𝑖 (𝑖𝑖 = 1,⋯ ,𝑚𝑚) by a descending order. Without loss of generality, assume that
they are 𝑀𝑀1,𝑀𝑀2,⋯ ,𝑀𝑀𝑚𝑚, namely, 𝑀𝑀1 has the largest EMMEAN and 𝑀𝑀𝑚𝑚 has the smallest one.

3) The category with the largest EMMEAN is firstly formed as the high group. Then test whether there
is a significant difference between the second largest EMMEAN and the largest one. The test statistic
is Wald chi-square statistics,

𝑠𝑠 =
(𝑀𝑀1 −𝑀𝑀2)2

𝜎𝜎2

with 1 degree of freedom, where 𝜎𝜎2 = 𝑽𝑽11 + 𝑽𝑽22 − 2𝑽𝑽12. The corresponding p-value is calculated
accordingly.
If the null hypothesis 𝑀𝑀1 −𝑀𝑀2 = 0 is not rejected, i.e., the p-value is greater than 𝛼𝛼 (significance
level specified by the user, default is 0.05), then the category with 𝑀𝑀2 will be added to the high
group.
It is noted that (a) if 𝑀𝑀1 −𝑀𝑀2 = 0, then it does not need to compute 𝜎𝜎2

and assign the p-value = 1.0,

i.e., the category with the second largest target mean will be added to the high group. (b) If 𝑀𝑀1 −
𝑀𝑀2 ≠ 0 and 𝜎𝜎2 = 0, then the p-value = 0.0 and stops.

http://miamoss1/RD/products/components/Documents/Algorithm%20%20EMMEANS%20and%20Custom%20Tests.doc

4) Repeat the same process for the next EMMEAN in line, i.e., compare 𝑀𝑀3 with 𝑀𝑀1, until there is no
category can be added to the high group.

5) Similarly, form the low group from the smallest EMMEAN for those categories not assigned to the
high group.

6) If there still exist some categories after forming the high and low groups, they are grouped into the
medium group.

The method used above is an extension of that in Chu and Han (2011) to the case of generalized linear
models. It should be noted that a Chi-square test is used rather than t-test.

Implementation notes

• When 𝑀𝑀𝑖𝑖 = 𝑀𝑀𝑗𝑗 and 𝑛𝑛𝑖𝑖 ≠ 𝑛𝑛𝑗𝑗, if 𝑛𝑛𝑖𝑖 > 𝑛𝑛𝑗𝑗, then 𝑀𝑀𝑖𝑖 will be first to be compared to 𝑀𝑀1 or 𝑀𝑀𝑚𝑚; if 𝑛𝑛𝑖𝑖 <
𝑛𝑛𝑗𝑗, then 𝑀𝑀𝑗𝑗 will be first to be compared to 𝑀𝑀1 or 𝑀𝑀𝑚𝑚.

A.1.2 Unusual category detection analysis
The process to detect unusual categories for a significant factor is described as follows:

1) Calculate the median of 𝑚𝑚 EMMEANS incorporating the number of records in each category.
Denote MED by the median,

𝑀𝑀𝑀𝑀𝑀𝑀 = median(𝑀𝑀1,⋯ ,𝑀𝑀1�������
𝑛𝑛1

¸⋯ ,𝑀𝑀𝑚𝑚,⋯ ,𝑀𝑀𝑚𝑚�������
𝑛𝑛𝑚𝑚

)

2) Calculate the median absolute deviation (MAD) of 𝑚𝑚 target means, again incorporating with the
number of records in each cell

𝑀𝑀𝑀𝑀𝑀𝑀 = median(|𝑀𝑀1 −𝑀𝑀𝑀𝑀𝑀𝑀|,⋯ , |𝑀𝑀1 −𝑀𝑀𝑀𝑀𝑀𝑀|,⋯ , |𝑀𝑀𝑚𝑚 −𝑀𝑀𝑀𝑀𝑀𝑀|,⋯ , |𝑀𝑀𝑚𝑚 −𝑀𝑀𝑀𝑀𝑀𝑀|)

3) Compute the modified z-score for the category 𝑀𝑀𝑖𝑖 , 𝑖𝑖 = 1,⋯ ,𝑚𝑚

𝑧𝑧𝑖𝑖 = �

𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀
1.4826×𝑀𝑀𝑀𝑀𝑀𝑀

if 𝑀𝑀𝑀𝑀𝑀𝑀 ≠ 0
𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀

1.2533×𝑀𝑀𝑚𝑚𝑚𝑚𝑛𝑛𝑀𝑀𝑀𝑀
if 𝑀𝑀𝑀𝑀𝑀𝑀 = 0

where 𝑀𝑀𝑚𝑚𝑚𝑚𝑛𝑛𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
∑ 𝑛𝑛𝑖𝑖|𝑀𝑀𝑖𝑖 − 𝑀𝑀𝑀𝑀𝑀𝑀|.𝑛𝑛
𝑖𝑖=1

4) Detect unusual categories

If 𝑧𝑧𝑖𝑖 > 3, the category 𝑀𝑀𝑖𝑖 has an unusually high EMMEAN in the high group.
If 𝑧𝑧𝑖𝑖 < −3, the category 𝑀𝑀𝑖𝑖 has an unusually low EMMEAN in the low group.

A.2. Multinomial distribution and binomial distribution with 0/1
binary response

Notations

𝑀𝑀1,⋯ ,𝑀𝑀𝑚𝑚 The 𝑚𝑚 categories of a significant factor 𝑀𝑀.

𝑛𝑛𝑖𝑖 The number of records in 𝑀𝑀𝑖𝑖.

�̂�𝑝𝑖𝑖𝑗𝑗 The EMMEAN value for 𝑗𝑗-th target category of the category 𝑀𝑀𝑖𝑖, where
∑ �̂�𝑝𝑖𝑖𝑗𝑗
𝐽𝐽
𝑗𝑗=1 = 1.

𝑝𝑝∙𝑗𝑗 The overall probability of the 𝑗𝑗-th target category, 𝑗𝑗 = 1,⋯ , 𝐽𝐽 from the whole
dataset.

A.2.1 Grouping analysis
Under the assumption that the overall target distribution is known and fixed, it will partition all categories
into two groups: a significant group and an insignificant group by the following steps:

1) Compute the EMMEANS values for the category 𝑀𝑀𝑖𝑖, ��̂�𝑝𝑖𝑖1,⋯ , �̂�𝑝𝑖𝑖𝐽𝐽�, 𝑖𝑖 = 1,⋯ ,𝑚𝑚:

�
�̂�𝑝𝑖𝑖𝑗𝑗 = 𝑔𝑔−1�𝑳𝑳𝑖𝑖𝜷𝜷𝑗𝑗� for 𝑗𝑗 = 1,⋯ , 𝐽𝐽 − 1

�̂�𝑝𝑖𝑖𝐽𝐽 = 1 −� �̂�𝑝𝑖𝑖𝑗𝑗
𝐽𝐽−1

𝑗𝑗=1
 for 𝑗𝑗 = 𝐽𝐽

where 𝑳𝑳𝑖𝑖 is L matrix for the category 𝑀𝑀𝑖𝑖.
2) Compute the Pearson’s one sample chi-square statistics and the corresponding p-value for each

category 𝑀𝑀𝑖𝑖, 𝑖𝑖 = 1,⋯ ,𝑚𝑚

𝜒𝜒𝑖𝑖2 = 𝑛𝑛𝑖𝑖�
��̂�𝑝𝑖𝑖𝑗𝑗 − 𝑝𝑝∙𝑗𝑗�

2

𝑝𝑝∙𝑗𝑗

𝐽𝐽

𝑗𝑗=1

𝑝𝑝𝑖𝑖 = 1 − Pr�𝜒𝜒(𝐽𝐽−1)
2 ≤ 𝜒𝜒𝑖𝑖2�

where 𝜒𝜒(𝐽𝐽−1)
2 is a random variable which following a chi-square distribution with df = (𝐽𝐽 − 1)

degrees of freedom.
3) Compute the effect size for each category

𝑤𝑤𝑖𝑖 = �
𝜒𝜒𝑖𝑖2

𝑛𝑛𝑖𝑖(𝐽𝐽 − 1)

4) Sort the category 𝑀𝑀1,⋯ ,𝑀𝑀𝑚𝑚 using 𝑤𝑤1 ,⋯ ,𝑤𝑤𝑚𝑚 by a descending order. Without loss of the generality,
assume that the order is 𝑀𝑀1,⋯ ,𝑀𝑀𝑚𝑚.
If 𝑝𝑝𝑖𝑖 < 𝛼𝛼, where 𝛼𝛼 is a significant level (the default is 0.05), then the category 𝑀𝑀𝑖𝑖 has a significantly
different distribution from the overall distribution and will be added into the significant group.
If 𝑝𝑝𝑖𝑖 ≥ 𝛼𝛼, then the category 𝑀𝑀𝑖𝑖 and 𝑀𝑀𝑖𝑖+1,⋯ ,𝑀𝑀𝑚𝑚 will be assigned to the insignificant group

5) The results are a list of the categories in the significant group with relevant test statistics, e.g.
𝜒𝜒𝑖𝑖2, df, 𝑝𝑝𝑖𝑖, and 𝑤𝑤𝑖𝑖 .

Implementation notes

• When 𝑤𝑤𝑖𝑖 = 𝑤𝑤𝑗𝑗 and 𝑛𝑛𝑖𝑖 ≠ 𝑛𝑛𝑗𝑗, if 𝑛𝑛𝑖𝑖 > 𝑛𝑛𝑗𝑗, then the cell 𝑀𝑀𝑗𝑗 will be first to be compared to the root
node; if 𝑛𝑛𝑖𝑖 < 𝑛𝑛𝑗𝑗, then the cell with 𝑀𝑀𝑖𝑖 will be first to be compared to the root node.

A.2.2 Influential target category analysis
It identifies target categories, which have significantly large frequency differences from that of the root
node, based on another chi-square test in the significant group (suppose it is Λ) by the following steps:

1) Compute the chi-squared statistics, and the corresponding p-value for the category 𝑖𝑖 ∈ Λ and for the
𝑗𝑗-th target category

𝜒𝜒𝑖𝑖𝑗𝑗2 =
𝑛𝑛𝑖𝑖��̂�𝑝𝑖𝑖𝑗𝑗 − 𝑝𝑝∙𝑗𝑗�

2

𝑝𝑝∙𝑗𝑗×(1 − 𝑝𝑝∙𝑗𝑗)

𝑝𝑝 = 1 − Pr�𝜒𝜒12 ≤ 𝜒𝜒𝑖𝑖𝑗𝑗2 �
where 𝜒𝜒12 is a random variable which following a chi-square distribution with df = 1 degree of
freedom.
If 𝑝𝑝 < 𝛼𝛼, where 𝛼𝛼 is a significant level (the default is 0.05 𝐽𝐽⁄ based on the Bonferroni adjustment
method), then the 𝑗𝑗-th target category is an influential target category for the category 𝑖𝑖 ∈ Λ.

2) The results are a list of influential target categories for each significant category with relevant test
statistics.

Influential target category detection analysis is only performed on the non-binary target. If the target is
binary, the chi-square statistic 𝜒𝜒𝑖𝑖,𝑗𝑗2 (𝑗𝑗 = 1,2) is equal to 𝜒𝜒𝑖𝑖2, namely, 𝜒𝜒𝑖𝑖 ,12 = 𝜒𝜒𝑖𝑖 ,22 = 𝜒𝜒𝑖𝑖2. It could be expected
that both two categories are influential for each significant cell 𝑖𝑖.

References – Phase II
[1]. Agresti, A. (2002), Categorical Data Analysis, Second Edition, Hoboken, NJ: John Wiley & Sons,

Inc.

[2]. Chu, J. and Han, S. (2011), “Algorithm: Linear Engine”, IBM SPSS Internal Document..

[3]. Chu, J. and Zhong, W. (2005), “Algorithm: Generalized linear models and generalized estimating
equation,” SPSS Internal Document.

[4]. Chu, J. and Zhong, W. (2012), “Algorithm: Generalized linear engine phase I”, IBM SPSS Internal
Document.

[5]. Dagli, A. (2012), “Simple random sampling in Map-Reduce”, IBM SPSS Internal Document

[6]. Dunn, P. K. and Smyth, G. K. (2008). “Evaluation of Tweedie exponential dispersion model
densities by Fourier inversion”. Statistics and Computing, 18, 73-86.

[7]. Mittlbock, M. and Heinzl, H. “Pseudo R-squared measures for generalized linear models,” The 1st
European Workshop on the Assessment of Diagnostic Performance, 2004, 71-80.

[8]. Shyr, J., Chu, J. and Han, S. (2011), “Category profiling and unusual category detection based on
Estimated Marginal Means (EMMEANS)”, In JSM Proceedings, Social Statistics Section,
Alexandria, VA: American Statistical Association. 4289-4300.

[9]. Zheng, P. (2009), “Algorithm: EMMEANS and custom tests,” SPSS Internal Document.

11. Introduction – Phase III
Generalized Linear Engine Phase III (GLE Phase III) adds two main features on top of GLE Phase I (Chu
and Zhong, 2012) and Phase II (Zhong and Han, 2013):

• Estimation of generalized linear models for the large p situations (the number of parameters (𝑝𝑝) is
greater than or equal to a threshold (𝑝𝑝𝑐𝑐, the default = 5000), i.e., 𝑝𝑝 ≥ 𝑝𝑝𝑐𝑐.

Besides the optimization issue for parameter estimation, the other difficult issue is the post-
estimation statistics.

• Estimation of regularized generalized linear models: 𝐿𝐿1 (the lasso), 𝐿𝐿2 (ridge regression) and
mixtures of two penalties (the elastic net). This feature is applicable for both the large p situations
and the small and medium p situations.

Both features will be solved by using the new optimization engine ADMM (Zhong, 2014) which is
distributed optimization framework and can solve the problems with large numbers of parameters and
records.

Besides the optimization issue of parameter estimation, the other difficult issue introduced by the large p
situations is the post-estimation statistics. The reason is that a large number of parameters, even after the
variable selection, would cause difficulty to calculate the parameter estimate covariance matrix (minus
inverse of Hessian matrix) and thus many statistics, such as Wald test, etc., based on it. Here, we will
firstly transform the original problem of calculating the statistics into a linear system, and then use
ADMM to solve it.

The organization of this document is Section 12 describes parameter estimation for the large p situation.
Section 13 describes parameter estimation with regularizations. Finally, how to compute post-estimation
statistics without the parameter estimate covariance matrix when p is large is given in Section 14.

Notations

𝑁𝑁 The number of data blocks (parts)

𝑝𝑝 The number of parameters. Note that it doesn’t include the scale parameter for continuous
distributions or the auxiliary parameter for the negative binomial distribution.

𝜷𝜷𝑖𝑖 𝜷𝜷𝑖𝑖 ∈ 𝐑𝐑𝑝𝑝 denotes parameters for the 𝑖𝑖-th data block

𝒛𝒛 The common global parameters, where 𝒛𝒛 ∈ 𝐑𝐑𝑝𝑝

𝒖𝒖𝑖𝑖 𝒖𝒖𝑖𝑖 ∈ 𝐑𝐑𝑝𝑝 denotes the Lagrange multipliers of the 𝑖𝑖-th term in the objective

𝑓𝑓𝑖𝑖(∙) The 𝑖𝑖-th term in the objective for the 𝑖𝑖-th data block

𝑔𝑔(∙) The regularization (penalty function)

𝜌𝜌 The augmented Lagrange parameter

𝒚𝒚 The target variable

𝑿𝑿 𝑿𝑿 = [𝑿𝑿1,⋯ ,𝑿𝑿𝑝𝑝] denotes the design matrix, where 𝑿𝑿𝑗𝑗 denotes the 𝑗𝑗-th column

‖𝒛𝒛‖1 The 𝐿𝐿1 norm of the vector 𝒛𝒛, which is defined as ‖𝒛𝒛‖1 = |𝑧𝑧1| + ⋯+ |𝑧𝑧𝑝𝑝|

‖𝒛𝒛‖2 The 𝐿𝐿2 norm of the vector 𝒛𝒛, which is defined as ‖𝒛𝒛‖2 = �𝑧𝑧12 + ⋯+ 𝑧𝑧𝑝𝑝2�
1/2

𝑝𝑝𝑐𝑐
The threshold denoting whether there is a large number of parameters (large p). If 𝑝𝑝 ≥ 𝑝𝑝𝑐𝑐, it
is called large p situation, otherwise, it is called small to medium p situation.

𝒔𝒔 The gradient vector (function)

𝐇𝐇 The Hessian matrix (function)

12. Parameter estimation for the large p situations
For the generalized linear models, the parameter estimation is based on the maximum likelihood method
as max

𝜷𝜷
ℓ(𝜷𝜷). Since ADMM usually solves the optimization problem in the form of minimization, the

maximum likelihood method can be written as

min
𝜷𝜷

−ℓ(𝜷𝜷)

The ℓ(𝜷𝜷) is separable with respect to the partition of the records, ℓ(𝜷𝜷) = ∑ ℓ𝑖𝑖(𝜷𝜷)𝑁𝑁
𝑖𝑖=1 . If we optimize

ℓ𝑖𝑖(𝜷𝜷) for each data block 𝑖𝑖, then we obtain the following form for ADMM

min𝜷𝜷𝑖𝑖,𝒛𝒛 −∑ ℓ𝑖𝑖(𝜷𝜷𝑖𝑖)𝑁𝑁
𝑖𝑖=1

𝑠𝑠. 𝑡𝑡. 𝜷𝜷𝑖𝑖 − 𝒛𝒛 = 𝟎𝟎, 𝑖𝑖 = 1,⋯ ,𝑁𝑁.
 (12.1)

For the large p situations (𝑝𝑝 ≥ 𝑝𝑝𝑐𝑐), the L-BFGS method in ADMM will be used to solve Equation (12.1).
In order to call ADMM, GLE needs to prepare three pieces of information: the fitting function, the
gradient function, and initial values.

The fitting function 𝑓𝑓𝑖𝑖(𝜷𝜷𝑖𝑖) is

𝑓𝑓𝑖𝑖(𝜷𝜷𝑖𝑖) = −ℓ𝑖𝑖(𝜷𝜷𝑖𝑖) (12.2)

The gradient of 𝑓𝑓𝑖𝑖(𝜷𝜷𝑖𝑖) is

𝐬𝐬𝑖𝑖 = −∇ℓ𝑖𝑖(𝜷𝜷𝑖𝑖) (12.3)

The initial values can be computed as

𝜷𝜷0 = 𝟎𝟎 (12.4)

Implementation notes:

• The forms of ℓ𝑖𝑖 and 𝐬𝐬𝑖𝑖 for different distributions can be found in GLE Phase I.

• If the scale parameter for continuous distributions or the auxiliary parameter for the negative
binomial distribution is estimated with regression parameters, then 𝐬𝐬𝑖𝑖 should include it and the initial
value is also set to 0.

13. Parameter estimation with regularizations
For the regularized generalized linear models, a penalty function will be added into Equation (12.1) then
we obtain the following form for ADMM

min𝜷𝜷𝑖𝑖,𝒛𝒛 −∑ ℓ𝑖𝑖(𝜷𝜷𝑖𝑖)𝑁𝑁
𝑖𝑖=1 + 𝑔𝑔(𝒛𝒛)

𝑠𝑠. 𝑡𝑡. 𝜷𝜷𝑖𝑖 − 𝒛𝒛 = 𝟎𝟎, 𝑖𝑖 = 1,⋯ ,𝑁𝑁.
 (13.1)

GLE will support the following penalty functions:

(1) The 𝐿𝐿1 regularization (the lasso): 𝑔𝑔(𝒛𝒛) = 𝜆𝜆‖𝒛𝒛‖1.

(2) The 𝐿𝐿2 regularization (ridge regression): 𝑔𝑔(𝒛𝒛) = 𝜆𝜆‖𝒛𝒛‖22.

(3) The (𝐿𝐿1 + 𝐿𝐿2) regularization (elastic net): 𝑔𝑔(𝒛𝒛) = 𝜆𝜆1‖𝒛𝒛‖1 + 𝜆𝜆2‖𝒛𝒛‖22.

Note that 𝜆𝜆, 𝜆𝜆1 and 𝜆𝜆2 are penalty parameters to regulate the strength of penalty. For lasso or ridge
regression, 𝜆𝜆 = 0 implies unconstrained solution and 𝜆𝜆 = ∞ implies totally constrained solution (𝒛𝒛 = 𝟎𝟎).
For elastic net, 𝜆𝜆1 = 𝜆𝜆2 = 0 implies unconstrained solution and one of 𝜆𝜆1 or 𝜆𝜆2 = ∞ implies totally
constrained solution (𝒛𝒛 = 𝟎𝟎). Both 𝐿𝐿1 and 𝐿𝐿2 regulations prevent overfitting by shrinking (imposing a
penalty) on the parameters. The 𝐿𝐿1 regulation can shrink some parameters to zero, performing variable
selection, while the 𝐿𝐿2 regulation shrinks all the parameters by the same proportions but eliminates none.
In terms of model fits, the 𝐿𝐿2 regulation usually performs better than the 𝐿𝐿1 regulation in practice. Even
the (𝐿𝐿1 + 𝐿𝐿2) regularization might perform better than the 𝐿𝐿1 regularization.

There are two ways to choose these parameters:

(1) They are set to fixed values in the range of [0, ∞].

(2) They are chosen by a grid search method as follows:

a) Partition the data into two parts: training and testing sets. By default, the ratio of training to
testing is 0.7: 0.3.

b) Specify the maximum value, 𝜆𝜆max :

(i) For the lasso, use the method in Park and Hastie (2007): if the target does not follow
nominal multinomial distribution or ordinal distribution,

𝜆𝜆max = max
𝑗𝑗∈{1,⋯,𝑝𝑝}

�𝑿𝑿𝑗𝑗T𝑾𝑾(𝐲𝐲 − 𝑦𝑦�𝟏𝟏)g′(𝑦𝑦�)� (13.2)

where 𝑾𝑾 is 𝑛𝑛×𝑛𝑛 diagonal matrix with the 𝑖𝑖th diagonal element

𝑤𝑤𝑖𝑖𝑖𝑖 =
𝑓𝑓𝑖𝑖𝜔𝜔𝑖𝑖

𝑉𝑉(𝑦𝑦�)(g′(𝑦𝑦�))2

where 𝑉𝑉(∙) is variance function and g(∙) is the link function.

If target follows nominal multinomial distribution

𝜆𝜆max = max
𝑗𝑗∈{1,⋯,𝑝𝑝}

� max
𝑘𝑘∈{1,⋯,𝐽𝐽−1}

�𝑿𝑿𝑗𝑗T𝑾𝑾�𝐲𝐲(𝐤𝐤) − 𝑦𝑦�(k)𝟏𝟏��� (13.3)

where 𝐽𝐽 is the number of categories of target, 𝑾𝑾 is 𝑛𝑛×𝑛𝑛 diagonal matrix with the 𝑖𝑖th
diagonal element 𝑓𝑓𝑖𝑖𝜔𝜔𝑖𝑖, 𝐲𝐲(k) = (𝑦𝑦1𝑘𝑘 ,𝑦𝑦2𝑘𝑘 ,⋯ ,𝑦𝑦𝑛𝑛𝑘𝑘)Tand 𝑦𝑦�(k) = ∑ 𝑐𝑐𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛
𝑖𝑖=1
∑ 𝑐𝑐𝑖𝑖
𝑛𝑛
𝑖𝑖=1

, Here, 𝑦𝑦𝑖𝑖𝑘𝑘 = 1 if

the target value of the 𝑖𝑖th record takes the 𝑘𝑘th category, otherwise 𝑦𝑦𝑖𝑖𝑘𝑘 = 0.

If target follows ordinal distribution

λmax = max
j∈{1,⋯,p}

�𝑿𝑿𝒋𝒋𝑻𝑻𝑾𝑾𝑾𝑾� (13.4)

where 𝑾𝑾 is 𝑛𝑛×𝑛𝑛 diagonal matrix with the 𝑖𝑖th diagonal element 𝑓𝑓𝑖𝑖𝜔𝜔𝑖𝑖, 𝑾𝑾 is a 𝑛𝑛×1 vector with
the 𝑖𝑖th element

𝑚𝑚𝑖𝑖 = ��
𝜕𝜕𝛾𝛾𝑖𝑖,𝑘𝑘
𝜕𝜕𝜂𝜂𝑖𝑖,𝑘𝑘

−
𝜕𝜕𝛾𝛾𝑖𝑖,𝑘𝑘−1
𝜕𝜕𝜂𝜂𝑖𝑖,𝑘𝑘−1

�
𝐽𝐽

𝑘𝑘=1

𝑦𝑦𝑖𝑖,𝑘𝑘
𝜋𝜋𝑖𝑖,𝑘𝑘

where 𝐽𝐽 is the number of categories of target; 𝑦𝑦𝑖𝑖,𝑘𝑘 = 1 if the target value of the ith record
takes the 𝑘𝑘th category, otherwise 𝑦𝑦𝑖𝑖,𝑘𝑘 = 0; 𝜋𝜋𝑖𝑖,𝑘𝑘 = 𝑛𝑛𝑖𝑖,𝑓𝑓

𝑛𝑛𝑓𝑓
 for 𝑘𝑘 = 1,⋯ , 𝐽𝐽 with 𝑛𝑛𝑘𝑘,𝑐𝑐 being the

number of records for the kth category of target incorporating the frequency weight and 𝑛𝑛𝑐𝑐
being the total number of records incorporating frequency weight. The 𝜕𝜕𝛾𝛾𝑖𝑖,𝑖𝑖

𝜕𝜕𝜂𝜂𝑖𝑖,𝑖𝑖
 is defined in the

GLE phase I. Since the maximum value of 𝜕𝜕𝛾𝛾𝑖𝑖,𝑖𝑖
𝜕𝜕𝜂𝜂𝑖𝑖,𝑖𝑖

− 𝜕𝜕𝛾𝛾𝑖𝑖,𝑖𝑖−1
𝜕𝜕𝜂𝜂𝑖𝑖,𝑖𝑖−1

 is less than 0.5, we will use 0.5 ∗

∑ 𝑥𝑥𝑖𝑖,𝑖𝑖
𝜋𝜋𝑖𝑖,𝑖𝑖

𝐽𝐽
𝑘𝑘=1 as approximate 𝑚𝑚𝑖𝑖, i.e. 𝑚𝑚𝑖𝑖 ≈ 0.5 ∗ ∑ 𝑥𝑥𝑖𝑖,𝑖𝑖

𝜋𝜋𝑖𝑖,𝑖𝑖

𝐽𝐽
𝑘𝑘=1 .

(ii) For ridge regression, there is no limitation of the maximum value. User could specify it. By
default we use follow value.

𝜆𝜆max = 𝑚𝑚20

(iii) For elastic net, which includes lasso and ridge regression, we will set two regularization
parameters for L1 and L2 respectively when invoking ADMM. But they can be specified
with the relationship as follows.

𝜆𝜆1 = 𝛼𝛼𝜆𝜆, 𝜆𝜆2 = (1 − 𝛼𝛼)𝜆𝜆

 Where 0 < 𝜶𝜶 < 1 , 𝜆𝜆1 is for L1 regularization and 𝜆𝜆2 is for L2 regularization. The value
of 𝜆𝜆2 can be got easily with given value of 𝜆𝜆1. Therefore, only the maximum value for
𝜆𝜆1needs to be determined. We will specify the maximum value of 𝜆𝜆1 using the same method
as that we specify the maximum value of λ for lasso in (i).

c) Set the minimal value 𝜆𝜆min = 𝑚𝑚−10.

d) Select the number of search points, 𝑛𝑛𝜆𝜆 (the default is 100), and determine those points:

𝜆𝜆max , 𝜆𝜆min 𝑚𝑚(nλ−2)Δ, 𝜆𝜆min 𝑚𝑚(nλ−3)Δ, … , 𝜆𝜆min 𝑚𝑚Δ, 𝜆𝜆min

where Δ = log 𝜆𝜆max –log 𝜆𝜆min
𝑛𝑛𝜆𝜆−1

.

Note: For elastic net, the search points of 𝜆𝜆1 are set as above. Then for each search point, the
corresponding value of 𝜆𝜆2 will be determined with a fixed value of α by following formula:

𝜆𝜆2 =
(1 − 𝛼𝛼)

𝛼𝛼
𝜆𝜆1

We will do a grid search with different combinations of λ1 and λ2, which are generated by the
combinations of search points of λ1 and search points of α.

Regarding to the sequence of the search points of α, we will use {0.1, 0.2, ... 0.9} by default.
User could specify this sequence, with each element in the sequence in the range of (0.0, 1.0).
Note that the values 0.0 and 1.0 are not allowed.

e) We will build a model for each 𝜆𝜆 (for lasso), or build a model for each 𝜆𝜆 (for ridge regression),
or build a model for each combination of 𝜆𝜆1 and 𝜆𝜆2 (for elastic net) on the training set, and
calculate the ASE value on the testing set.

f) Output the model with 𝜆𝜆 or the combination of 𝜆𝜆1 and 𝜆𝜆2 and the corresponding the minimal
ASE value.

Implementation notes:

• The warm-start strategy will be used to speed up the grid search process. It means that we will
build the models from 𝜆𝜆max to𝜆𝜆min sequentially and the next model will use the solution
obtained from the current model as the initial values.

• 𝑗𝑗 ∈ {2,⋯ , 𝑝𝑝} in Equation (13.2) and (13.3) if there is an intercept. For ordinal distribution, the
index j is always from 1 to p because the design matrix 𝑿𝑿 = [𝑿𝑿1 ,⋯ ,𝑿𝑿𝑝𝑝] does not contain
intercept in the GLE phase I.

• The definition of ASE is given in GLE Phase II.

For the large p situations, the same three pieces of information shown above need to be prepared. For the
small and medium p situations, one extra piece of information is needed: the Hessian matrix of 𝑓𝑓𝑖𝑖(𝜷𝜷𝑖𝑖):

𝐇𝐇𝑖𝑖 = −∇2ℓ𝑖𝑖(𝜷𝜷𝑖𝑖) (13.5)

Implementation notes:

• If the scale parameter for continuous distributions or the auxiliary parameter for the negative
binomial distribution is estimated with regression parameters, then (a) partial penalty in hybrid
penalty functions (Section 3.2.2 in ADMM ADD) should be used because no penalty is applied on
the scale parameter or auxiliary parameter.

• If some predictors are categorical, i.e., factors, then (b) group penalty in hybrid penalty functions
should be used.

• If the above conditions exist at the same time, then (c) partial group penalty in hybrid penalty
functions should be used.

• We will not include two-way interaction effects in the regularized generalized linear models.
• The threshold value for judging any regression parameter 𝛽𝛽 = 0 is 1.0e-12, i.e., if 𝛽𝛽 < 1.0e − 12,

then the corresponding predictor is not entered into the model.
• If a sample is used for model selection in the regularized generalized linear models, then it is possible

that 𝑁𝑁 = 1 (there is only one data block). In this case, the mean of local solutions would be just from
one local solution, 𝜷𝜷�𝑘𝑘+1 = 𝜷𝜷1𝑘𝑘+1 and 𝒖𝒖�𝑘𝑘 = 𝒖𝒖1𝑘𝑘, then they would be used to update the global
parameter 𝒛𝒛𝑘𝑘+𝟏𝟏.

14. Post-estimation statistics
Many post-estimation statistics will be based on the parameter estimate covariance matrix, 𝚺𝚺 = −𝐇𝐇−1.
For instance, confidence interval and chi-square statistics for parameters, Lagrange multiplier test, model
effect test, custom test, EMMEANS, standard errors of predicted values, and leverage values. However, it
is impossible to directly calculate the inverse of Hessian matrix 𝐇𝐇 in the large p situations because its
computational cost scales as 𝑂𝑂(𝑝𝑝3).

After analysis, we found that the post-estimation statistics have two ways to use the parameter estimate
covariance matrix

(1) Involving 𝐋𝐋𝚺𝚺𝐋𝐋T.
(2) Involving the diagonal values of 𝚺𝚺.
We would solve these two problems by transferring them into linear system problems.

14.1. Solving 𝐋𝐋𝚺𝚺𝐋𝐋𝐓𝐓

Let 𝐕𝐕 = 𝚺𝚺𝐋𝐋T ∈ 𝐑𝐑𝑝𝑝×𝑟𝑟 , then we have 𝐋𝐋𝚺𝚺𝐋𝐋T = 𝐋𝐋𝐕𝐕. Usually, 𝑟𝑟 is quite small comparing with 𝑝𝑝, so it is easier
to calculate 𝐋𝐋𝐕𝐕 with 𝐕𝐕 than to calculate 𝐋𝐋𝚺𝚺𝐋𝐋T with 𝚺𝚺. The key problem is to compute 𝐕𝐕.

To compute 𝐕𝐕, we do the transformation as follows:

𝐕𝐕 = 𝚺𝚺𝐋𝐋T ⟹ 𝚺𝚺−𝐕𝐕 = 𝐋𝐋T ⟹ (−𝐇𝐇)𝐕𝐕 = 𝐋𝐋T (14.1)

which is a linear system problem. We could use the ADMM to solve it.

Note that when 𝑟𝑟 > 1, 𝐋𝐋 is a matrix, thus, 𝐕𝐕 is a matrix as well. We will use vec operator (Lam, 1995) to
convert 𝐋𝐋 to a vector form, vec(𝐋𝐋). Thus, Equation (4.1) becomes

[𝟏𝟏𝑟𝑟 ⊗ (−𝐇𝐇)]vec(𝐕𝐕) = vec(𝐋𝐋T) (14.2)

14.1.1 ADMM for a linear system problem

Considering a general linear system 𝐀𝐀𝐀𝐀 = 𝐛𝐛, the three pieces of information used to call ADMM are

(1) the fitting function: 𝑓𝑓(𝐀𝐀) = 1
2

(𝐀𝐀T𝐀𝐀T𝐀𝐀𝐀𝐀 − 𝟐𝟐𝐛𝐛T𝐀𝐀𝐀𝐀 + 𝐛𝐛T𝐛𝐛);
(2) the gradient of 𝑓𝑓(𝐀𝐀): 𝐬𝐬 = 𝐀𝐀T𝐀𝐀𝐀𝐀 − 𝐀𝐀T𝐛𝐛;
(3) the initial value: 𝐀𝐀0 = 𝟎𝟎.

14.2. Calculating diagonal values of 𝚺𝚺

Similar to the previous section, we convert the problem of estimating the diagonal values of 𝚺𝚺 to a linear
system problem.

To obtain the 𝑖𝑖th diagonal value, we could first generate a vector, 𝐰𝐰𝑖𝑖 = [𝑤𝑤1,⋯ ,𝑤𝑤𝑖𝑖 ,⋯ ,𝑤𝑤𝑝𝑝]𝑇𝑇, where 𝑤𝑤𝑖𝑖 =
1, and 𝑤𝑤𝑗𝑗 = 0 for 𝑗𝑗 ≠ 𝑖𝑖. Then we have 𝐀𝐀𝑖𝑖 = 𝚺𝚺𝐰𝐰𝑖𝑖 and the 𝑖𝑖th element in 𝐀𝐀𝑖𝑖 is the 𝑖𝑖th diagonal value of 𝚺𝚺.

Further, we can see that to obtain 𝐀𝐀𝑖𝑖 is equivalent to solve the following linear system problem

(−𝐇𝐇)𝐀𝐀𝑖𝑖 = 𝐰𝐰𝑖𝑖 (14.3)

which we could use ADMM method to get the solution of 𝐀𝐀𝑖𝑖.

Implementation notes:

• Even there is a method to calculate 𝐋𝐋𝚺𝚺𝐋𝐋T and diagonal values of 𝚺𝚺, we still need to compute the
Hessian matrix 𝐇𝐇 after the parameter estimation process. For the large p situations, all elements in 𝐇𝐇
might not be saved in memory, not to mention the computation of 𝐋𝐋𝚺𝚺𝐋𝐋T for all effects and diagonal
values of 𝚺𝚺 is extremely time consuming, so we will try to keep the final # of parameters is less than
𝑝𝑝𝑐𝑐. For example, conduct feature selection (in the SDP (Smart Data Preprocessing) or DE
(Descriptive Engine)) before running GLE and/or select the lasso penalty to perform variable
selection within GLE.

References
[10]. Chu, J. and Zhong, W. (2012), “Algorithm: Generalized linear engine phase I”, IBM SPSS Internal

Document.

[11]. Lam, M.L (1995), “A general overview of the multivariate β-model” , SPSS Internal Document.

[12]. Park, M. Y. and Hastie, T. (2007), “L1-regularization path algorithm for generalized linear
models”, J. R. Statist. Soc. B, 69 (4): 659-677.

[13]. Zhong, W. and Han, S. (2013), “Algorithm: Generalized linear engine phase II”, IBM SPSS
Internal Document.

[14]. Zhong, W. (2014), “Algorithm: ADMM”, IBM SPSS Internal Document.

Linear-AS Modeling Algorithms

1. Linear AS (Phase I)
A linear regression model usually analyzes the relationship between one target variable (also called responses)
and a list of feature variables (also called predictors). Linear-AS, also known as the “Linear Engine”, builds
linear regression models for large and distributed data and runs within Analytic Engine (AE).

2. Notations
The following notation is used throughout the document unless otherwise stated:

n Number of distinct records in the dataset. It is an integer and 1≥n .

p Number of parameters (including parameters for dummy variables but excluding intercept)
in the model. It is an integer and 0≥p .

p∗ Number of non-redundant parameters (excluding intercept if exists) currently in the model.
It is an integer and 0 .p p∗≤ ≤

cp Number of non-redundant parameters currently in the model, so
*

*

1 if there is an intercept
 if there is no intercept

c p
p

p

 +=

.

pe Number of effects excluding intercept. it is an integer and 0 ep p≤ ≤

y 1×n vector of single target variable consists of iy .

f 1×n vector of frequency count variable. If an element is not an integer, it is computed by
rounding the value to the nearest integer. If it is less than 0.5 or if it is missing, the
corresponding case is not used.

g 1×n vector of regression weight. If there is no regression weight specified, 1=g . If
regression weight ig for case i is zero, negative or missing. The corresponding case is not
used.

N Effective sample size. it is a integer number, ∑
=

=
n

i
ifN

1

.If frequency count variable f is not

use, N=n.

X)1(+× pn design matrix. The rows represent the cases and the columns represent the
parameters. The ith row is 0(,...,)xi i ipx x= , ni ,...,2,1= , with 10 =ix , The jth column is

T
1(,...,) ,X j j njx x= , pj ,...,1,0= , with T

0 (1,...,1) .X = . If there is no intercept,

1{ }X X p
j j== is a pn× matrix.

ε 1×n vector of unobserved errors .

β 1)1(×+p vector of unknown parameters.),,(10 pββββ = . 0β is the intercept, if

exist. If there is no intercept, T
p),(1 βββ = is a 1×p vector.

β̂ 1)1(×+p vector of estimated β .)ˆ,ˆ,ˆ(ˆ
10 pββββ = . If there is an intercept, 0β̂ is its

estimate, else T
p)ˆ,ˆ(ˆ

1 βββ = is a 1×p vector.

b 1)1(×+p vector of standardized estimate of β .It is the result from sweep operation on
matrix R.),,(10 pbbbb = . If there is an intercept, 0b is its standardized estimate, else

T
pbbb),(1 = is a 1×p vector.

ŷ Predicted value of y , consists of iŷ

jX Weighted sample mean for jX , pj ,2,1=

y Weighted sample mean for the dependent variable y.

ijS Weighted sample covariance between iX and jX . pji ,2,1, =

iyS Weighted sample covariance between iX and y.

yyS Weighted sample variance for y.

R)1()1(+×+ pp weighted sample correlation matrix for X (exclude intercept, if exist)
and y. It is also used to represent the current sweeping matrix before each sweep operation
step.

R~ The result matrix after sweep operation whose elements are ijr~ .

3. Model
Linear regression of single target variable y and design matrix X has the form

= +y Xβ ε (1)

where ε follows a normal distribution with mean 0 and variance 2 1σ −D , i.e., ()2 1~ ,nN σ −Dε 0 with

()1
1diag 1 , ,1 ng g− =D . Note that the kth case will be ignored if 0kg ≤ . Then the target variable y also

follows a normal distribution with mean Xβ and variance 2 1σ −D , ()2 1~ ,nN σ −y X Dβ .

Notes:

1. The elements of ε are independent with each other, so are those of y.

2. X can be any combination of continuous and categorical effects and interaction effects (up to two-way).
The parameterization of design matrix X is the same as that in GLM procedure. See Lam (1995a) for

further details on the model parameterization. Please note that we might expand interaction effects to
include more than two-way and nested effects used in old SPSS procedures.

3.1. Missing values
List-wise deletion is used.

If missing value handling feature has been conducted in “Bivariate Data Preparation” component, then only the
target variable still has missing values and those records would be excluded.

4. Least Squares Coefficient Estimation
The coefficients would be estimated by least squares (LS) method with the following closed form solution

()T Tˆ ,X WX X Wy
−

=β

(2)

where () ()1 1 1diag , , diag , .W n n nw w g f , g f= =

The actual computation of β̂ is done by applying sweep operations instead of applying equation (2). In
addition, sweep operations would be applied to transformed scale of X and y to achieve numerical stability.
Specifically, we construct the weighted sample correlation matrix R then apply sweep operations to it. The
construction the R matrix is described as follows.

First, compute weighted sample means, variances and covariances among Xi, Xj, , 1, , ,i j p= and y :

Weights sample means of Xi and y are
1

1

1 n

i k kin
k

k
k

X w x
w =

=

=
∑

∑ (3)

 and
1

1

1 n

k kn
k

k
k

y w y
w =

=

=
∑

∑ ; (4)

Weighted sample covariance for Xi and Xj is =ijS))((
1

1

1
jkjiki

n

k
k XxXxw

N
−−

− ∑=
; (5)

Weighted sample covariance for Xi and y is))((
1

1

1

yyXxw
N

S kiki

n

k
kiy −−

−
= ∑

=

; (6)

Weighted sample variance for y is ∑
=

−
−

=
n

k
kkyy yyw

N
S

1

2)(
1

1
. (7)

If there is no intercept,
1

1
1

n

ij k ki kj
k

S w x x
N =

=
− ∑ , (8)

kki

n

k
kiy yxw

N
S ∑

=−
=

11
1

, (9)

∑
=−

=
n

k
kkyy yw

N
S

1

2

1
1

 . (10)

Second, compute weighted sample correlations
jjii

ij
ij SS

S
r = , ypji &,...,1, = . (11)

Implementation notes: All statistics are computed in map/reduce environment, see Section A.2 in Appendix
A of this section for details.

Then the matrix R is

11 12 1 1

21 22 2 2
11 12
T
12 22

1 2

1 2

p y

p y

p p pp py

y y yp yy

r r r r
r r r r

R
r r r r
r r r r

 =

R R
R = R

. (12)

If the sweep operations are repeatedly applied to each row of 11R (see Appendix B in this section), where 11R
contains predictors in the model at the current step, the result is

1 1
11 11 12

T 1 T 1
12 11 22 12 11 12R

− −

− −

= − −

R R R
R

R R R R R
 . (13)

The last column 1
11 12
−R R contains the standardized coefficient estimates, i.e., 12

1
11 RRb −= . Then the coefficient

estimates β̂ , except the intercept estimate if there is an intercept in the model could be obtained as follows:

 ˆ ,yy
j j

jj

S
b

S
β = j = 1,..., p. (14)

5. Automatic Interaction Effect Detection
We’d like to catch two-way interaction among main effects in X in the model selection phase, but including all
possible pairs would make model selection difficult and inefficient. Thus we will limit to the following steps.

1. For all covariates (continuous variables), a squared term of each covariate will be created and included in
the design matrix X, but not the cross product terms, i.e. suppose there are two continuous variables, say

1 2 and X X , then 2 2
1 2 and X X will be created, but not 1 2X X× .

2. For each pair of two factors (categorical variables), say 1 2 and X X , the ANOVA method will be used to test
whether the interaction effect 1 2X X× should be included. See Section 5.1 for details.

3. For each pair of one covariate and one factor, the ANOVA method is used as well. See Section 5.2 for
details.

However, even with this original limitation, it might not be possible to check all candidate pairs in Steps 2 and 3
or include all eligible pairs from all 3 steps for the model selection methods in Section 6. The reason is, if there
are large number of main effects in X, the whole process might require too much memory (so user might receive
“run out of memory” message and no output at all) or too much computational cost (so user might wait for a
long time to receive output). Hence, we provide a two-way-test pair search strategy to restrict number of the
pairs in those which are more likely to be selected to the final model in the model selection method. See Section
5.3 for details.

5.1. Interaction of two factors

Suppose the pair of two factors is X1 with known R levels (1, , R) and X2 with known S levels (1, ,).S
Instead of fitting a model for each pair, we will compute some statistics to implement the ANOVA method by
the following steps:

1. Create a R S× contingency table based on 1 2 and X X with the following statistics for each combination
of 1 , 1, , ,X i i R= = and 2 , 1, , :X j j S= =

ijn : the number of distinct records;

ijkf : the frequency weight for the kth distinct record, 1, , ;ijk n=

ijky : the target value for the kth distinct record, 1, , ;ijk n=

ijN : effect sample size (including frequency weights), i.e., 1
;

ijn

ij ijk
i

N f
=

= ∑

ijy : the target mean;
1

1 ;
ijn

ij ijk ijk
iij

y f y
N =

= ×∑

,yy ijC : the sum of squared terms of target, i.e. ()2

,
1

.
ijn

yy ij ijk ijk ij
k

C f y y
=

= −∑

X2

 X1
1 2

 S

 1 11 11 ,11, , yyN y C 12 12 ,12, , yyN y C
 1 1 ,1, ,S S yy SN y C

 2 21 21 ,21, , yyN y C 22 22 ,22, , yyN y C
 2 2 ,2, ,S S yy SN y C

 R 1 1 , 1, ,R R yy RN y C 2 2 , 2, ,R R yy RN y C
 ,, ,RS RS yy RSN y C

2. Compute residual sum of squares for the full model which contains two main effects 1 2 and X X and the
interaction effect 1 2X X× :

()2

,
1 1 1

ijnR S

e ijk ijk ijfull
i j k

SS f y y
= = =

= −∑∑∑

(15)

3. Denote e,interactionSS to be the difference of residual sum of squares between the full model and the main
effects only model and we will approximate it by the following iterative process:

(a) Input values for M (maximum number of iterations and the default is 10) and ε (tolerance level of
stopping criterion and the default is 1.0e-6).

(b) Compute the initial value ()2(0) (0)
,

1 1

R S

e interaction ij ij
i j

SS y N
= =

= ×∑∑ , where (0)
ijy is the means from the above

table.

(c) Set the iteration number m = 1.

(d) Update () , 1, , , 1, , ,m
ijy i R j S= = as follows:

(1)

1* (1)

1

;

S
m

ij ij
jm

ij ij S

ij
j

y N
y y

N

−

=−

=

×
= −

∑

∑
 (16)

*

() * 1

1

.

R

ij ij
m i

ij ij R

ij
i

y N
y y

N

=

=

×
= −

∑

∑
 (17)

(e) Compute ()2() ()
,

1 1
.

R S
m m

e interaction ij ij
i j

SS y N
= =

= ×∑∑

(18)

(f) If () (1)
, ,
m m

e interaction e interactionSS SS ε−− < or ,m M≥ then stop and output ()
,
m

e interactionSS . Otherwise, set m = m + 1
and go back to step (d).

4. Compute the F statistic

,

,

,e interaction interaction

e full full

SS df
F

SS df
=

(19)

where interactiondf and fulldf are the degrees of freedom corresponding to ,e interactionSS and , ,e fullSS

respectively. And ()()1 1interactiondf R S= − − − , where is the number of category combinations where
there are no valid record and 1 .full interactiondf N R S df N RS= − − − + = − + Then the F statistic follows an
asymptotic F distribution with degrees of freedom interactiondf and fulldf .

5. Compute the p-value

(),1 Pr .
interaction fulldf dfp F F= − ≤ (20)

If 0.05,p ≤ then the interaction effect 1 2X X× would be included in the design matrix X.

Please see Han (2010) for details.

5.2. Interaction of a covariate and a factor

Suppose a covariate is X1 and a factor is X2 with known S levels (1, ,).S similar to the method used in Section
5.1, the F statistic is computed by the following steps:

1. Create a 1 S× table based on 2 , 1, , ,X j j S= = with the following statistics:

jn : the number of distinct records;

jkf : the frequency weight for the kth distinct record, 1, , ;jk n=
jky : the target value for the kth distinct record, 1, , ;jk n=

jN : effective sample size (including frequency weights), i.e., 1
;

jn

j jk
i

N f
=

= ∑

1, , j jX y : the means of X1 and y; i.e., 1, 1,
1 1

1 1 and ;
j jn n

j jk jk j jk jk
i ij j

X f X y f y
N N= =

= × = ×∑ ∑

1 1 , ,, x x j yy jC C : the sum of squared terms of X1 and Y, i.e., ()1 1

2

, 1, 1,
1

,
jn

x x j jk jk j
k

C f X X
=

= −∑

()2

,
1

;
jn

yy j jk jk j
k

C f y y
=

= −∑

1 ,x y jC : the sum of cross product terms of X1 and Y, i.e., ()()1 , 1, 1,
1

.
jn

x y j jk jk j jk j
k

C f X X y y
=

= − −∑

2. Compute residual sum of squares for the full model which contains two main effects 1 2 and X X and the
interaction effect 1 2X X× :

()1

1 1

2

,
,,

1 1 ,

.
S S

x y j
e yy jfull

j j x x j

C
SS C

C= =

= −∑ ∑

(21)

3. Compute residual sum of squares for the main effects model which contains two main effects only:

1

1 1

2

,
1

,,
1

,
1

.

S

x y jS
j

e yy jmain S
j

x x j
j

C
SS C

C

=

=

=

 = −
∑

∑
∑

(22)

4. Compute the F statistic

() ()
()

, ,

,

1
,

2
e main e full

e full

SS SS S
F

SS N S
− −

=
−

(23)

and it follows an asymptotic F distribution with degrees of freedom 1S − and 2N S− .

5. Compute the p-value

()1, 21 Pr .S N Sp F F− −= − ≤ (24)

If 0.05,p ≤ then the interaction effect 1 2X X× would be included in the design matrix X.

Please see Zheng (2010) for details.

Implementation notes:

• All statistics are computed in map/reduce environment, see Section A.4 in Appendix A of this chapter
for details.

• If there is no valid record in any category then adjust S value accordingly.

• Regression weights will not be used even it is specified.

• If ,0, =fulleSS then F statistics is assigned as sysmis and the p value for F statistic is as follows:

()
()

,main ,

,main ,

0 if 0
-value =

sysmis if = 0,

e e full

e e full

SS SS
p

SS SS

 − ≠

−

If -value sysmis,p = then the interaction effect 1 2X X× would NOT be included in the design matrix
X.

Please note that we will treat 0, =fulleSS or (),main , 0e e fullSS SS− = when two criteria are met:
**

, pSSSS tfulle ××≤ ε

and 80.1, −≤ eSS fulle or () * *
,main ,e e full tSS SS SS pε− ≤ × × and

(),main , 1.0 8,e e fullSS SS e− ≤ −
respectively, where ε ∗ is machine epsilon (about 2.2e-16), p∗ is the

number of non-redundant estimated parameters for the full model and 1p RS∗ = − − here, tSS is

total sum of squares for the target and it can be computed by 2

1

()
n

t i i
i

SS f y y
=

= −∑ and please see

Section A.2 in Appendix A on how to compute it in map/reduce environment.

• Regarding Eq. (5), if 𝐶𝐶𝑚𝑚1𝑚𝑚1,𝑗𝑗 = 0, then the item �𝐶𝐶𝑚𝑚1𝑥𝑥,𝑗𝑗�
2 𝐶𝐶𝑚𝑚1𝑚𝑚1,𝑗𝑗� is set to 0.

• Regarding Eq. (6), if ∑ 𝐶𝐶𝑚𝑚1𝑚𝑚1,𝑗𝑗
𝑆𝑆
𝑗𝑗=1 = 0, then 𝑆𝑆𝑆𝑆𝑒𝑒,𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛 is set to missing. That is to say, the interaction of

𝑋𝑋1 and 𝑋𝑋2 is not significant.

5.3. Two-way-test pair search strategy

Suppose there are m main effects (factors and covariates), the number of parameters for them is 𝑝𝑝𝑚𝑚 (excluding
the intercept) and the number parameters for covariates is 𝑝𝑝𝑐𝑐𝑚𝑚 .

Input values (integers) for 𝑚𝑚1 (threshold value to conduct interaction effect detection; the default is 100), 𝑚𝑚2
(threshold value to select main effects for interaction effect detection; the default is 50) and 𝑝𝑝max (maximum
number of parameters the system can handle; the default is 5000), where 𝑚𝑚1 ≥ 𝑚𝑚2.

When (𝑝𝑝max > 𝑝𝑝𝑚𝑚 + 𝑝𝑝 𝑐𝑐𝑚𝑚) and 𝑚𝑚 > 𝑚𝑚2, then the strategy will be conducted with the following steps:

1. Build a linear model using all main effects 𝑿𝑿1,𝑿𝑿2,⋯ ,𝑿𝑿𝑚𝑚 using the sweep operation method described in
Section 4.

2. Select the significant main effects (𝑝𝑝 < 0.05) based on tests of model effects based on Wald test. Assume
there are 𝑚𝑚′ significant effects.

3. If (𝑚𝑚′ < 2) or (𝑚𝑚′ > 𝑚𝑚1), then stop and no interaction detection is conducted. Otherwise, sort the main
effects using p-value in ascending order.

4. Select the top 𝑚𝑚′′(= min(𝑚𝑚′,𝑚𝑚2)) main effects to construct two-way interaction effects (of two factors,
and one covariate and one factor) among these 𝑚𝑚′′ main effects.

5. Test all candidate interaction effects using the methods given Sections 5.1 and 5.2.

6. Calculate the total number of parameters for all significant interaction effects, denoted by 𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑟𝑟 , if 𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑟𝑟 <
(𝑝𝑝max − 𝑝𝑝𝑚𝑚 − 𝑝𝑝 𝑐𝑐𝑚𝑚), then output all significant interaction effects and stop; otherwise go to step 7.

7. Calculate effect size for each significant two-way interaction effect

𝜂𝜂2 = 𝑆𝑆𝑆𝑆𝑒𝑒,𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛
𝑆𝑆𝑆𝑆𝑖𝑖

 (25)

where 𝑆𝑆𝑆𝑆𝑒𝑒,𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑟𝑟𝑚𝑚𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 denotes to be difference of weighted residual sum of squares between the full model
and the main effects only model, please see Sections 5.1 and 5.2 for formulae and 𝑆𝑆𝑆𝑆𝑖𝑖 denotes the weighted
sum of squares for the target, please see Section 5.1 for formula.

8. Sort all significant two-way interaction effects using their effect sizes in descending order and select and
output top-𝑘𝑘 interaction effects, where 𝑘𝑘 is the maximum number satisfying the number of parameters for
top-𝑘𝑘 interaction effects is less than or equal to (𝑝𝑝max − 𝑝𝑝𝑚𝑚 − 𝑝𝑝 𝑐𝑐𝑚𝑚).

When (𝑝𝑝max > 𝑝𝑝𝑚𝑚 + 𝑝𝑝 𝑐𝑐𝑚𝑚) and 𝑚𝑚 ≤ 𝑚𝑚2, the strategy will be similar to the one given above, except that the
step of constructing two-way interaction effects: here, two-way interaction effects are directly constructed
among all 𝑚𝑚 main effects rather than based on 𝑚𝑚′′ significant main effects.

After the strategy is conducted, the total number of parameters of candidate effects for model selection methods
is smaller than a threshold value and the candidate effects will include (1) all main effects; (2) square terms of
all covariates; (3) some (or all) significant interaction effects.

6. Model Selection
For the small to median p situations (𝑝𝑝max ≥ 𝑝𝑝) which means the R matrix can be fit into memory or, we will
support three model selection methods: (1) none; (2) forward stepwise; and (3) best subsets.

For the large p situations (𝑝𝑝max < 𝑝𝑝), we will utilize ADMM to conduct model selection which is similar to
LASSO and details would be provided later.

6.1. None

No selection method is used.

6.2. Forward stepwise

The basic idea of the forward stepwise method is to start off by choosing the best effect in addition to the
intercept if exists and then tries to enter additional effect one at a time as long as these additions are worthy.
After an effect has been added, all effects in the current model are checked to see if any of them should be
removed. Then the process continues until a stop criterion is met.

The traditional criterion for effect entry and removal is based on the F-statistics, which their corresponding p-
values are used to compare with some specified entry and removal significance levels, but they do not follow an
F distribution so the results might be questionable. Hence three additional criteria for effect entry and removal
are offered: (1) maximum adj. R2; (2) minimum corrected Akaike information criterion (AICC); and (3)
minimum average square error (ASE) over the overfit prevention data.

How to calculate these statistics and the selection process are described in details below.

6.2.1. Candidate statistics

Some clearer notations are needed to calculate the following 4 statistics for a continuous effect Xj or categorical
effect 1{ }

sj sX =
 entering to and removing from the current model as follows in each step.

*
 The number of non-redundant parameters of the eligible effect Xj or 1{ }

sj sX =
 .

cp The number of non-redundant parameters in the current model (including an intercept
if exists).

rp The number of non-redundant parameters in the resulting model (including the

intercept if exists). Note that
*

*

 for entering an effect
 for removing an effect

c
r

c

p
p

p

 +=
−

pSSe The weighted residual sum of squares for the current model.

pSSe + The weighted residual sum of squares for the resulting model after entering the effect.

pSSe − The weighted residual sum of squares for the resulting model after removing the
effect.

yyr The last diagonal element in the current R matrix.

yyr The last diagonal element in the resulting R matrix.

(1) F-statistics:

The F-statistics are different for an effect Xj or 1{ }
sj sX =
 entering to and removing from the current model as

follows:

*

*

() / ()()
/()j

r
p p yy yy

enter r
p yy

SSe SSe r r N p
F

SSe N p r
+

+

− − −
= =

− ×

 and (26)

()
()

()()*

*

/

/j

c
yy yyp p

remove c
yyp

r r N pSSe SSe
F

rSSe N p
− − −−

= =
×−

, respectively. (27)

Then the p-values corresponding to the above F-statistics are

() ()* *, ,1r rj j jenter enter enterN p N pp P F F P F F
− −

= ≥ = − ≤

 and (28)

() ()* *, ,1c cj j jremove remove removeN p N pp P F F P F F
− −

= ≥ = − ≤

, respectively. (29)

(2) adj. R2:

The adj. R2 value for the resulting model when an effect entering to or removing from the current model is
as follows:

()
2

1
1 if there is an intercept

adj.
1 if there is no intercept

yy
r

yy
r

N r

N p
R

N r

N p

 −
−

−=
× − −

 (30)

(3) AICC:

The AICC value for the resulting model when an effect entering to or removing from the current model is as
follows:

(1) 2ln
1

r
yy yy

r

N S r p NAICC N
N N p

− ×
= +

− −

 (31)

(4) ASE:

The ASE value over the overfit prevention data for the resulting model when an effect entering to or removing
from the current model is as follows:

()2
1

1

1 ˆ
T

t t tT
t

t
t

ASE w y y
f =

=

= −∑
∑

 (32)

where ˆˆt ty = x β is the predicted values of yt and T is the number of distinct testing cases in the testing
(overfit prevention) data.

6.2.2. The selection process

The nature of F-statistics criterion is different from the other three criteria. The F-statistics criterion is to select
an effect for entry (removal) with the minimum (maximum) p-value and continue doing it until the p-values of
all candidates for entry (removal) are equal to or greater than (less than) a specified significance level. The other
three criteria are to compare the statistic (adj. R2, AICC or ASE) of the resulting model after entering (removing)
an effect with that of the current model and selection would be stopped at a local optimal value (a maximum for
the adj. R2 criterion but a minimum for the AICC criterion and ASE criterion). Hence the following selection
process is described in terms of the F-statistics criterion (denoted as FC) and AICC criterion (denoted as AC),
then it should be easy to change from AICC criterion to the other two criteria).

Some definitions are needed for the selection process:

FLAG A 1ep × index vector which records the status of each effect. FLAGi = 1 means
the effect i is in the current model, FLAGi = 0 means it is not. Note that
{ | 1}ii FLAG = denotes the number of effects with FLAGi = 1.

MAXSTEP The maximum number of iteration steps. The tentative default value is 3 ep× .

MAXEFFECT The maximum number of effects (excluding intercept if exists). The default value
is ep .

Pin The significance level for effect entry when F-statistics criterion is used. The
default is 0.05.

Pout The significance level for effect removal when F-statistics criterion is used. The
default is 0.1.

F∆ The F-statistic change. It is
jenterF or

jremoveF for entering or removing an effect

Xj (here Xj could represent continuous or categorical for simpler notation).

Fp∆ The corresponding p-value for F∆ .

AICCcurrent The AICC value for the current model.

(1) Set 1{ } 0
ep

i iFLAG = = and iter = 0. If there is an intercept, the initial model is yy =ˆ , otherwise it is 0ˆ =y . If
AC (AICC criterion, similarly for other two criteria) is used, compute AICC for the initial model and
denote it as AICCcurrent.

(2) If { | 0}ii FLAG φ= ≠ , iter < MAXSTEP and { | 1}ii FLAG MAXEFFECT= < , go to next step (3); otherwise
stop and output the model .

(3) Based on the current model, for every effect j eligible for entry (see Condition below) ,

if FC (F-statistics criterion) is used, compute
jenterF and

jenterp ;

if AC is used, compute AICCj.

(4) If FC is used, choose the effect { }* , arg min
jenterj j

X j p∗ = and if
*j

enterp < Pin, enter ∗jX to the current

model.

IF AC is used, choose the effect { }*
*, arg min jj j

X j AICC= and if *jAICC < currentAICC , enter ∗jX to the

current model.

(Note that for adj. R2 criterion, { }* 2arg max adj. j
j

j R= and *
2 2adj. adj. currentjR R> .)

Then go to (5); otherwise stop and output the current model.

(5) If the model with new effect is the same as any previous ones, stop and output the current model; otherwise
update the current model by doing sweep operation on corresponding row(s) and column(s) associated with

∗jX in the current R matrix. Set 1=∗jFLAG and iter = iter + 1.

If FC is used, let
*j

enterF F∆ = and
*j

F enterp p∆ = ;

if AC is used, let *jcurrent AICCAICC = .

(6) For every effect k in the current model (i.e., 1, kFLAG k= ∀),

if FC is used, compute
kremoveF and

kremovep ;

if AC is used, compute AICCk.

(7) If FC is used, choose the effect { }*
*, arg max

kremovek k
X k p= and if

*k
removep > Pout, remove ∗kX from the

current model.

If AC is used, choose the effect { }*
*, arg min kk k

X k AICC= and if *kAICC < currentAICC , remove ∗kX from

the current model.

(Note that for adj. R2 criterion, { }* 2arg max adj. k
k

k R= and *
2 2adj. > adj. currentkR R .)

Then go to (8); otherwise go back to (2).

(8) If the model with the effect removed is the same as any previous one, stop and output the current model;
otherwise update the current model by doing sweep operation on corresponding row(s) and column(s)
associated with ∗kX in the current R matrix. Set 0kFLAG ∗ = and iter = iter + 1.

If FC is used, let
*k

removeF F∆ = and
*k

F removep p∆ = ;

if AC is used, let *current kAICC AICC= . Then go back to (6).

Condition

Eligible for entry conditions for the effect j: (i.e., 0, jFLAG j= ∀)

a) For continuous effect Xj , jjr t≥ (singularity tolerance t with a default of 1e-4);

For categorical effect 1{ }
sj sX =
 ,

1 1 2 2
max{ , , , }j j j j j jr r r t≥

.

Note that here jjr and , 1, , ,
s sj jr s =

 are diagonal elements in the current R matrix (before entering).

b) For each continuous effect Xk that is currently in the model, 1kkr t ≤ .

For each categorical effect '
1{ }

sk sX =
 with ' levels that is currently in the model,

1 1 2 2 ' '
max{ , , , } 1k k k k k kr r r t ≤

.

Note that here kkr and , 1, , ',
s sk kr s =

 are diagonal elements in the resulting R matrix, i.e., the results

after doing sweep operation on corresponding row(s) and column(s) associated with Xk or '
1{ }

sk sX =
 in

the current R matrix.

The above condition is imposed so that entry of the effect does not reduce the tolerance of other effects
already in the model to unacceptable levels.

Rules for entering or removing effects when interaction effects are present:

1. NONE

No requirement need be satisfied for any effects in the model.

2. SINGLE (default)

Hierarchy requirement is satisfied for all effects in the model. It stipulates that, for any effect to be in a
model, all lower-order effects that are part of the former effect must also be in the model. For example,
given A, X, and A*X, then for A*X to be in a model, the effects A and X must also be in the model.

3. SFACTOR

Hierarchy requirement is satisfied for all factor-only effects in the model.

4. CONTAINMENT

Containment requirement is satisfied for all effects in the model. It stipulates that, for any effect to be in
the model, all effects contained in the former effect must also be in the model.

The meaning of containment is that, for any two effects F and F’, F is contained in F’, if:

• Both effects F and F’ involve the same covariate effect, if any. (Note that effects A*X and A*X*X are
not considered to involve the same covariate effect because the first involves covariate effect X and
the second involves covariate effect X**2.)†

• F’ consists of more factors than F.

• All factors in F also appear in F’.

The following table illustrates how the hierarchy and containment requirements mean for effect entering and
removing. The cells contain the order in which effects must occur in the model.

Effects SINGLE SFACTOR CONTAINMENT

A,B,A*B 1. A, B

2. A*B

1. A, B

2. A*B

1. A, B

2. A*B

X, X**2, X**3 1. X

2. X**2

3. X**3

Effects can occur in the model
in any order.

Effects can occur in the
model in any order.

A, X, X(A) 1. A, X

2. X(A)

Effects can occur in the model
in any order.

1. X

2. X(A)

Effect A can occur in the
model in any order.

A, X, X**2(A) 1. A, X

2. X**2(A)

Effects can occur in the model
in any order.

Effects can occur in the
model in any order.

† A B are factors and X is covariate effect.

‡ The intercept effect is contained in all the pure factor effect. However it is not contained in any effect
involving a covariate. No effect is contained in the intercept effect.

£ This is an important definition, since all type II, type III and Type IV estimable functions rely on this
definition.

§ In the implementing, it is useful to store “hierarchy” and “contained” information for each effect in order to
define the order of sweeping and calculation of the Type III sums of square.

6.3. Best subsets (will update the relevant default values later)
Stepwise method based on adding or removing effect one at a time with respect to some criterion is a method to
do model selection. However, these methods search fewer combinations of sub-models and rarely select the best
one, so to select the best one according to some criterion is to check all possible models. The available criteria
are (1) maximum adj. R2; (2) minimum AICC; and (3) minimum ASE over the overfit prevention data.

Since there are ep free effects no matter whether there is an intercept in the model or not, we do exhaustive

search over
ep2 models, which include intercept-only model (ˆ =y y) if there is an intercept, or the null model (

ˆ =y 0) otherwise. Because the number of calculations increases exponentially with ep , it is important to have

an efficient algorithm for carrying out the necessary computations. However, if ep is too large, it may not be
practical to check all of the possible models.

We divide the problem into 2 tiers in terms of the number of effects: (1) when 20ep ≤ , we do all-possible-

subset search; (2) when ep > 20, we apply a hybrid method which combines forward stepwise method and all
possible subset method.

6.3.1. All possible subset method for the first tier problem

If ep ≤ 20, we do exhaustive search of all the possible sub-models.

An efficient method, which was proposed by Schatzoff (1968) and would have the minimum number of sweep
operations on the R matrix, is applied to traverse all the models and outlined as follows:

Each sweep step(s) on one effect results a model. So
ep2 models can be obtained through a sequence of exactly

ep2 sweeps on effects. Assume that the all possible models on 1−ep effects can be obtained in a sequence

1−epS of exactly 12 −ep sweeps on the first 1−ep pivotal effects. And sweeping on the last effect will produce a

new model which adds the last effect to the model produced by the sequence 1−epS . Then repetition of the

sequence 1−epS will produce another 12 −ep distinct models (including the last effect). It is a recursive algorithm

for constructing the sequence epS , i.e., 1 1 2 2 2 2, , , 1, , , , 1, ,e e e e e e ep p p p p p pS S k S S k S k S k S− − − − − −
 = = − − =

etc.

The sequence of model produced is demonstrated in the following table:

k Sk
* Sequence of models produced

0 0 Only intercept

1 1 (1)**

2 121 (1),(12),(2)

3 1213121 (1),(12),(2),(23),(123),(13),(3)

4 121312141213121 (1),(12),(2),(23),(123),(13),(3),(34),(134),(1234),(234),(24),(124),(14),(4)

… … …

pe Sp
e
-1, pe, Sp

e
-1 All

ep2 models including the intercept model.

 * The indexes of effects which are pivoted on.

** Each parenthesis in the third column represents a regression model. The numbers in the parentheses
indicate the effects which are included in that model.

6.3.2. Hybrid method for the second tier problem

If ep > 20, we apply a hybrid method by combining the forward stepwise method with possibly all possible
subset method as follows:

(1) Select the effects by the stepwise method (note that the same criterion used to select the best model is also
used in the forward stepwise and see Section 6.2.2 for details). Assume ps is the number of these effects.

(2) Apply different approaches, depending on the value of ps, as follows:

(a) If ps ≤ 20, do exhaustive search of all possible subsets on these selected effects via the method in
Section 6.3.1.

(b) If 20 < ps ≤ 40, select ps – 20 effects based on the p-values of type III sum of squares tests from all ps
effects (see Section 7.2) and enter them to the model as a constant part, then do exhaustive search of all
remaining 20 effects via the method in Section 6.3.1, i.e., do exhaustive search on remaining 20 effects
with ps – 20 effects always in the model.

(c) If 40 < ps, do nothing and assume the best model is the one with these ps effects (with a warning
message that the selected model is based on the forward stepwise method).

7. Model and Predictor Summary

7.1. Coefficients and statistical inference
After the model selection process, we can get the coefficients and related statistics in or not in from the swept
correlation matrix. The following statistics are computed for each effect in the model or not in.

All the effects with FLAGj =1 are currently in the model, as well as intercept (if exists). We calculate these
below base on the R~ matrix.

• Unstandardized coefficient estimates

ˆ yy yy
j j jy

jj jj

S S
b r

S S
β = = 1, , ,j p∗= (33)

The redundant coefficient estimates are set to zero.

• Standard errors of regression coefficients

The standard error of jβ̂ is

()ˆ
ˆˆ var()

1j

jj yy yy jj e
j

jj e jj e

r r S r SS
S df S N dfβσ β

×
= = =

× −

 (34)

• Intercept estimation

If the model includes an intercept, the intercept is estimated by all other parameters in the model as

0
1

ˆ ˆ
p

j j
j

y Xβ β
=

= −∑ (35)

 The standard error of 0β̂ is estimated by

0 0

2
ˆ ˆˆ ˆ β βσ σ= with

()

()

0

1
2 2 2
ˆ ˆ*

1 1 1

1
2 2

ˆ
1 1 1

(1) ˆ ˆˆ ˆ 2 cov ,
(1)

ˆ 2 .
1

j

j

p p p
yy yy

j k j k j
j j k j

p p p
kj ee

j k j
e kk jj ej j k j

N r S
X X X

N N p

r SSSS X X X
N df S S N df

β β

β

σ σ β β

σ

−

= = = +

−

= = = +

−
= + +

− −

×
= + +

× × −

∑ ∑ ∑

∑ ∑ ∑

 (36)

• t-statistics for regression coefficients

t - statistic for jβ̂ is

ˆ

ˆ

ˆ
j

j e
jy

yy jj

dft r
r rβ

β
σ

= =

 , j = 0,1,…, p, (37)

and it follows an asymptotic t distribution with the degree of freedom edf . Then the p-value is
computed as

 ()()2 1
edfp prob t t= × − ≤ . (38)

• 100(α−1)% confidence internals

ˆ 2,
ˆ ˆ .

ejj dftαβ
β σ± × (39)

7.2. ANOVA (Tests of model effects)
• Weighted total sum of squares (SSt)

2

1

2

1

() (1) with d.f. = = 1 if there is an intercept

(1) with d.f. = = if there is no intercept

n

i i yy t
i

t n

i i yy t
i

w y y N S df N

SS

w y N S df N

=

=

− = − −

=
 = −

∑

∑
, (40)

where d.f. means degrees of freedom. It is called “SS (sum of squares) for Corrected Total” if there is
an intercept or “SS for Total” if there is no intercept.

• Weighted residual sum of squares (SSe)

2

1

ˆ() (1)
n

e i i i yy yy
i

SS w y y r N S
=

= − = −∑ with d.f. = dfe = N – pc. (41)

It is also called “SS for Error”.

• Weighted regression sum of squares (SSr)

2

1

2

1

ˆ() (1)(1) if there is an intercept

ˆ (1)(1) if there is no intercept

n

i i yy yy t e
i

r n

i i yy yy t e
i

w y y r N S SS SS

SS

w y r N S SS SS

=

=

− = − − = −

=
 = − − = −

∑

∑

, (42)

with d.f. = rdf p∗= . It is called “SS for Corrected Model” if there is an intercept, or “SS for Model” if
there is no intercept.

• Regression mean square error

/r rSS df . (43)

• Residual mean square error

/e eSS df . (44)

• F statistic for corrected model

/
/

r er r

e e e r

SS dfSS dfF
SS df SS df

⋅
= =

⋅
, (45)

which follows an F distribution with degrees of freedom dfr and dfe , and the corresponding p-value
can be calculated accordingly.

• Type III sum of squares for each effect

To compute type III SS for the effect j, 1, , ,ej p=
 type III test matrix Li needs to be constructed first.

Construction of matrix Li is based on the generating matrix

()T T ,ω

−
=H X DX X DX where 1diag(, ,)ng g=D , such that Liβ is estimable. It involves

parameters only for the given effect and the effects containing the given effect. For type III analysis, Li
doesn’t depend on the order of effects specified in the model (but it does for type I analysis). If such a
matrix cannot be constructed, the effect is not testable. See Chiu (1995a, b) for computational details on
construction of type III test matrices.

For each effect j, type III SS is calculated as follows

T T T 1ˆ ˆ()j j j j j
−=S β L L GL L β (46)

where ()T −=G X WX .

Implementation notes:

• The X matrix in G only includes the effects selected into the final model, so does R . Obtain G
from 11R (the upper left-hand p p× block matrix of R) as follows:

T
01 01

11 11 11

11 11 11

1 1 1
 if there is an intercept

 if there is no intercept

nW =

A A
G A R A

A R A

0
0 0 0 (47)

where
1

n

k
k

wnW
=

= ∑ , () ()()11 11diag 1 1 , ,1 1 ,ppN S N S= − −A and

T
01 11 1 11, , pX X = − = − A X A A . Note that and , 1, , ,i iiX S i p=

 are weighted sample mean

and variance for iX , respectively; and p denotes the number of parameters (excluding intercept) in
the final model.

After some algebra, G can be expressed as follows if there is an intercept

T T
11 11 11 11 11 11

11 11 11 11 11 11

1 nW + −
=

−

X A R A X X A R AG
A R A X A R A

. (48)

• Obtain jS by sweeping the following matrix

T

T 0

j j j

j

 −

L GL L β

L β

ˆ

ˆ()
, (49)

then the last diagonal element of the resulting matrix corresponds to jS .

• F statistic for each effect

The above SS for the effect j is also used to compute the F statistic for hypothesis test H0: Ljβ = 0 as
follows:

j j
j

e e

r
F

SS df
=

S
 (50)

where jr is the full row rank of iL . It follows an F distribution with degrees of freedom ir and edf ,

then the p-values can be calculated accordingly.

Note that the parameter estimate covariance matrix is used in the above F statistic implicitly as it is
e eSS df ×G .

7.3. Model quality measures

The squared multiple correlation coefficient (R square) or coefficient of determination is to measure of how
much of the variation in the data is explained by the model. It denoted by R2, is expressed as

2 1 1 .er
yy

t t

SSSSR r
SS SS

= = − = −

• Adjusted R square

2
2 2 (1)adj. 1 1 t yye e

t t e e

df rSS df R pR R
SS df df df

∗ ×−
= − = − = −

. (51)

• Corrected Akaike information criterion (AICC)

2ln .
1

c
e

c

SS p NAICC N
N N p

 = + − −
 (52)

7.4. Predictor importance (PI)

The predictor importance computation for all modelling engines would be based on “variance-based sensitivity
analysis” which is a model free method and has been used many models in Modeler, such as Regression (older
version of ALM), Tree, Logistic regression, genlin, etc. (see Zhong (2008) and Xu (2011) for details).

7.5. EMMEANS
The EMMEANS for significant effects would be computed and compared based on some contrasts. Please see
Zheng (2009) for details.

However, the contrast types and adjustment methods would be determined later.

7.6. Grouping and unusual category detection
For a significant factor or factor interaction from the ANOVA table, some categories or category combinations
must have statistically significant impact on the target and we can partition them into high and low groups. The
following process is used to find the high and low groups and the possible middle group among all categories
of a significant factor with at least 3 categories. Note that grouping and unusual category detection analyses
would not be conducted for any insignificant factors or factor interactions, i.e., their p-values are larger than the
significance level (including sysmis); and the description is for a significant factor, but it should be applied to a
factor interaction similarly.

1) For a significant factor with m categories, mCC ,,1 , compute the EMMENS, 1, , mEM EM and their

corresponding standard errors,
1

ˆ ˆ, , .
mEM EMσ σ

2) Sort the EMMEANS by a descending order. Without loss of generality, assume they are 1, , mEM EM

so 1EM has the largest EMMEAN and mEM has the smallest EMMEAN.

3) At first, the category with largest EMMEAN is formed the high group. Then test if there is a difference
between the second largest EMMEAS and the largest EMMEAN. The test statistic is similar to the
pairwise contrast statistics described in Zheng (2009),

()1 2

1 2
1 ˆ EM EM

EM EMt
σ −

−
= (53)

where ()1 2
ˆ EM EMσ − is the corresponding standard error for 1 2 .EM EM− It has an asymptotic t

distribution with dfe (= N – pc) degrees of freedom. The corresponding p-value could be computed as
follows:

|)|(1 1ttprobp

edf ≤−= (54)

If the null hypothesis is not rejected, i.e., the p-value > α (significance level specified by user, default is
0.05), then the category with the second largest EMMEAN will be added to the high group.

Implementation notes:

• If 021 =−EMEM , then there is no need to compute ()1 2
ˆ EM EMσ −

and assign 1=p , i.e., the
category with the second largest EMMEAN will be added to the high group.

• If 021 ≠−EMEM and 0ˆ)(21
=−EMEMσ , then 0=p and stops. Please note that 0ˆ)(21

=−EMEMσ

should only happen when there is a perfect fit, i.e., e tSS SS pε ∗ ∗< × × and 1.0 8,eSS e< − where

, and tSS pε ∗ ∗
 are defined in Section 7.2.

4) Repeat the same process for the next EMMEANS in line, i.e., compare 3EM with 1EM , compare

4EM with 1EM , etc. until there is no category can be added into the high group.
5) Similarly, form the low group from the smallest EMMEAN for those categories not assigned to the high

group.

6) If there still exist some categories after forming the high and low groups, they are grouped into the middle
group.

Furthermore, there might exist few categories or category combinations with extremely high or low
EMMEANS in the high or low group. We call such categories or category combinations “unusual categories”.
The process to detect those “unusual categories” for a significant factor is described as follows:

First, suppose there are m categories, mCC ,,1 , for a significant and corresponding EMMEANS are

mEMEM ,1 respectively. The number of records in mCC ,,1 are mnn ,,1 , respectively. Then the

unusual category detection process is described as follows:

http://miamoss1/RD/products/components/Documents/Algorithm%20%20EMMEANS%20and%20Custom%20Tests.doc

(1) Find the median of m EMMEANS, incorporating the number of records in each category (suppose The

number of records in mCC ,,1 are mnn ,,1 , respectively). Denote the median as M , then

()
mnmn EMEMmedianM ,,1 ,,

1
= , where

iniEM , is a set which contains only iEM value with in of

them.

(2) Compute the median absolute deviation (MAD) of m EMMEANS, again incorporating with the number of
records in each category

),||,,|(|
11 mnmn MEMMEMmedianMAD −−=

 (55)

where
ini MEM || − is a set which contains only || MEM i − value with but the in of them.

(3) Compute the modified z-score for each Ci

if 0
1.4826

if 0,
1.253314

i

i
i

EM M MAD
MADz

EM M MAD
MeanAD

− ≠ ×= − =
 ×

(56)

where

 1

1

1 | |.
m

i im
i

i
i

MeanAD n EM M
n =

=

= −∑
∑

(4) Detect unusual category as follows:

If 𝑧𝑧𝑖𝑖 > 3, a category iC has an unusually high EMMEAN in the high group.

If 𝑧𝑧𝑖𝑖 < −3, a category iC has an unusually low EMMEAN in the low group.

Repeat the processes for grouping and unusual category detection analyses for all significant factors and factor
interactions.

8. Scoring

8.1. Predictive and residual values
After the model has been fit, predicted and residual values are usually calculated and output.

Notice that the predicted values can be computed for the case not used in the model-building phase. That is the
response variable can be missing and the predicted values are still computed as long all the predictor variables
have non-missing values in the given model. An additional requirement is that given predictor variable values
could be properly parameterized by using only the existing model parameters. See Woods (2004), “Guidelines
for Scoring under Various Data and Model Conditions,” for details.

• Predicted values

0

ˆˆ , 1, , .
p

k ki i
i

y x k nβ
=

= =∑ (57)

• Residuals

kkk yye ˆ−= (58)

• Studentized residuals

This is the ratio of the residual to its standard error.

(1)k
k

k
k h

g

eSRES
s −

= , (59)

where s is the square root of the mean square error, i.e., e es SS df= and kh is the leverage value for
the case k (see section 8.2 below).

• Deleted residuals

The deleted residual for case k is defined as the residual for the kth case that results from dropping the
kth case from the parameter estimates.

(1)k k kDRESID e h= − . (60)

• Studentized deleted residuals

() ()1
k

k
k kk

eSDRESID
s h g

=
−

, (61)

 where () () () ()
2

2 2 21 with
1 1

k k
ek k k

e k

g es s s df s
df h

 ⋅
= = ⋅ − − −

.

8.2. Influence statistics
These statistics can be calculated for each case to measure the influence of each case on the estimates.

• Leverage values

The leverage value kh is defined as the kth diagonal element of the hat matrix H with

()1 2 T T 1 2 1 2 T 1 2−
= =H W X X WX X W W XGX W (62)

so T
k k k kh g= x Gx , 1, 2, ,k n= .

Implementation note:

We can compute kh in two ways and it is up to software engineer to decide which one is easier and
faster:

(a) Plug ()T −
=G X WX , which how to compute is described in Section 6.1, into T

k k k kh g= x Gx .

(b) Compute kh directly as follows:

()()
1 1

1

1 1

 if there is an intercept
1

 if there is no intercept
1

p p
ki i kj jk k

ij n
ii jji j

t
k t

p p
ki kjk

ij
ii jji j

x X x Xg g
r

N S S
w

h

x xg
r

N S S

∗ ∗

= =

=
∗ ∗

= =

 − −
 +
 −

=

 −

∑∑
∑

∑∑

 (63)

Computing hk is just related to the effects in the model, that is, we exclude the indices i and j
corresponding to the effects out of the model in the sum from 1 to p. but since we have constructed
the G matrix in computing type III SS, we could turn back to formula in (a) to get hk.

• Cook’s distance

()

2

22 1
k k k

k c
k

e h gCOOK
s h p

=
−

. (64)

8.3. Influential outliers
We will identity a record to be an influential outlier based on the following two statistics:

(1) Cook’s distance is larger than
4

cN p−
 (Fox, 1997).

(2) The absolute of studentized delete residual is larger than 2 (or 2.5).

The definition of Cook’s distance is in Section 8.2 and and the definition of studentized delete residual is in
Section 8.1.

9. Model diagnostics
For all assumptions in linear regression, we will only test homoskedasticity formally. If the test is rejected, the
robust (or heteroskedasticity consistent or sandwich estimator) for covariance matrix of coefficient estimates
would be computed then relevant statistics/tests would be updated accordingly. There are several assumptions
entered the inferences for the estimators of the model. If all these assumptions are held, we can be confident
about the estimated coefficients and their statistics are unbiased, efficient and consistent. The model diagnostics
is to check whether these assumptions are held, how serious the consequence if one or more assumptions were
found being violated indeed and what should be done in this situation. Currently, we focus on testing the
assumptions of normality and homoscedasticity.

9.1. Homoskedasticity

The homoskedasticity assumption is about variance of the error (2σ) is constant across records. When the
assumption is violated, the OLS coefficient estimates are still consistent, but not efficient. So for valid inference,

according to Huber (1967) or White (1980), a heteroskedastic consistent (HC) or robust estimator of covariance
matrix of the estimated coefficient should be used. To investigate the homoskedasticity assumption properly and
automatically, there are 3 steps:

(1) A test to determine if the homoskedasticity assumption is violated: a modified Breusch Pagan (BP) test
would be used.
However, keep in mind that Long and Ervin (2000) recommend that “a test for heteroskedasticity should
not be used to determine whether [an HC estimator] should be used.” So the test is only used in automatic
modeling process.

(2) If the test is rejected, compute a robust estimator to replace the model-based estimator: 4 variations would
be provided.

(3) All statistics related to inference, such as t-statistics, p-values, confidence intervals in coefficient estimates,
etc., should be computed based on robust estimators.

Three subsections describe each step in details.

9.1.1 The modified Breusch Pagan test
The original test is proposed by Breusch and Pagan (1979) based on Normality assumption on the error, then
Koenker (1981) and Koenker and Bassett (1982) release Normality assumption so it is called the modified BP
test and the test statistic is defined as follows:

() 1 2

MBP 2
,

u Z Z Z Z u

u u

Nu
S N

Nu

−′ ′ ′ −
= ×

′ −
 (65)

where N is total sample size, ∑
=

=
n

i
ifN

1
, u be a n × 1 vector of squared weighted residuals, i.e.,

()T2 2 2
1 1 2 2, , ,u n ng e g e g e= ,

1

1 ,
n

i i
i

u f u
N =

= ∑ and Z is a set of regressors which are related to u. Note that typical

Z would include all predictors in the design matrix X and their squares and cross products terms, but here we
will assume Z = X, then MBPS will follow an asymptotic chi-square distribution with cp degrees of freedom and
the p-value can be computed accordingly.

 Implementation note:

• In addition to Z = X, we also assume () 1 ()Z Z G X WXT− −′ = = to simplify the computational process
such that

T
2

1 1
MBP

2 2

1

,
x G x

n n

i i i i i i
i i

n

i i
i

f u f u Nu
S N

f u Nu

= =

=

 ⋅ ⋅ −
 = ×

 −

∑ ∑

∑
 (66)

where 0(,...,)xi i ipx x= is the ith row of X. Three summation terms should be straightforward to compute
in map/reduce environment.

9.1.2 Robust estimator of coefficient estimate covariance
When the p-value < a significance level (default = 0.05), reject the null hypothesis of homoskedasticity and
compute a robust estimator as follows:

1 2 1 2ˆ ˆ' ,GX W W XG=Ψ Ω (67)

where Ω̂ is a diagonal matrix of variance estimates of weighted residuals, 1
ˆ (, ,),ndiag ω ω= …Ω and there

are 4 estimators differ in their choice of the iω :

HC0: 2
i i i iu g eω = = (68)

HC1: i ic

N u
N p

ω =
−

 (69)

HC2:
1

1i i
i

u
h

ω =
−

 (70)

HC3:
()2

1
1

i i
i

u
h

ω =
−

 (71)

Notes:
• The estimator HC0 is introduced by White (1980), is justified by asymptotic arguments.
• The estimator HC1 – HC3 are suggested by MacKinnon and White (1985) to improve the performance

in small samples and Long and Ervin (2000) conclude that HC3 provide the best performance in
sample samples based on Monte Carlo simulation.

• Under homoskedasticity assumption, 2
i e eSS df sω = = (variance estimate of weighted residuals is

constant), nI2ˆ s=Ω and 2 Gˆ s .=Ψ

9.1.3 Affected statistics
Many statistics computed previously would be affected by replacing the original or model-based covariance
matrix 2 Gˆ s=Ψ with the robust estimator 1 2 1 2ˆ ˆ'G GX W W X=Ψ Ω (assume the (i, j) element in Ψ̂ is ,i jψ) and
they are listed according to areas:

• Statistics related to coefficient estimates (in Section 7.1):

ˆ 1, 1ˆ ,
j

j jβσ ψ + += 0, ,j p= (note that Ψ̂ includes intercept term if there is one); then t-statistics, p-

values and confidence intervals should be updated as well.

• Statistics related to tests of individual effects (in Section 7.2):
When the robust estimator is used, the F-statistics listed in ANOVA table cannot be computed based on
sum of squares anymore, included (corrected) model. For each effect j, the F-statistic should be
computed as

() 1T T Tˆ ˆˆβ L L L L βj j j j
j

j

F
r

−

=
Ψ

 (72)

and the F-statistics for corrected model (with intercept) and model (without intercept) can be computed
similarly except the L matrix is from GEF (general estimable function). If there is no intercept, the L
matrix is the whole GEF. If there is an intercept, the L matrix is GEF without the first row which
corresponds to the intercept. (Please see the GLMM document for details).

• Statistics related to EMMEANS (in Section 7.5):
When standard errors and comparison statistics are computed related to EMMEANS, the covariance
matrix of coefficient estimates should be replaced by 1 2 1 2ˆ ˆ'G GX W W X=Ψ Ω (note that the notation

used is)β̂(V in Zheng (2009)).

9.2. Plots (in Model Viewer)
In this section, we will show what information should be saved for the StatXML file to create a scatter plot of
observed by predicted target values, a scatter plot of predicted target values by residuals, histogram and PP plot
of residuals in model viewer from binned data of the whole training set.

9.2.1. Scatter plot of predicted by observed target values

Let ky and kŷ be the target observed and predicted value of the kth record, respectively, nk ,,1= . Then the
information needed for a binned scatter plot of predicted by observed target values is created as follows:

Step 1. Using equal width method to compute 19 cut points 191 ,, cutcut between the range],[ba , where

}min{ kya = and }max{ kyb = , i.e., 20/)(abiacuti −×+= . Then we have 20 intervals

],(],(,],,(],(192019110 +∞=−∞= cutcutcutcutcutcut .

Step 2. For each two-dimension interval 19,,0,],,(],(11 =× ++ jicutcutcutcut jjii , using map/reduce

algorithm in Appendix A, we can get the number of cases that fall into this interval incorporating the
frequency weight:

∑
=

++ ≤<≤<=
n

k
jkjikikfij cutycutandcutycutIfn

1
11,)ˆ(

and the corresponding mean of)ˆ,(yy incorporating the frequency weight (note that regression weight
is not included):

= ∑∑

==

n

k
kkkijk

n

k
kkkijk

fij

yyyIfyyyIf
n

jiMean
11,

ˆ)ˆ,(,)ˆ,(1),(

where (.)I is an indictor function defined as follows:

 ≤<≤<

= ++

otherwise
cutycutandcutycutif

yyI jkjiki
kkij ,0

;ˆ,1
)ˆ,(11

Step 3. Save the mean,),,(jiMean and the corresponding number of cases, ,, fijn ,19,,0, =ji for the

StatXML file. Note that if 0, =fijn , there is no need to save it and corresponding),(jiMean which

is (0, 0) as well.

9.2.2. Scatter plot of residuals by predicted target values

The construction of the scatter plot of predicted target values by residuals is very similar to that in Section 9.2.1,
nonetheless it is described in details as follows:

Let kŷ and ke be the predicted value and the residual of the kth case, respectively, nk ,,1= . Then the
information needed for a binned scatter plot of predicted values by residuals is created as follows:

Step 1. Using equal width method to compute 19 cut points)1(
19

)1(
1 ,, cutcut between the range],[ba for

the x-axis, where }min{ kya = and },max{ kyb = , i.e., 20/)()1(abiacuti −×+= . Then we
have 20 intervals :

],(],(,],,(],()1(
20

)1(
20

)1(
19

)1(
1

)1(
1

)1(
0 +∞=−∞= cutcutcutcutcutcut .

Step 2. Similarly, compute 19 cut points)2(
19

)2(
1 ,, cutcut between the range]8,8[ss− for the y-axis:

,20/168)1(siscuti ×+−= where s is the square root of the mean square error, i.e.

ee dfSSs /= . Then we have another 20 intervals :

],(],(,],,(],()2(
20

)2(
20

)2(
19

)2(
1

)2(
1

)2(
0 +∞=−∞= cutcutcutcutcutcut .

Step 3. For each two-dimension interval 19,,0,],,(],()2(
1

)2()1(
1

)1(
=× ++ jicutcutcutcut jjii , using

map/reduce algorithm in Appendix A, we can get the number of cases that fall into this interval
incorporating the frequency weight:

 ∑
=

=
n

k
kkijkfij eyIfn

1
,),ˆ(

and the corresponding mean of),ˆ(ey incorporating the frequency weight (note that regression
weight is not included):

= ∑∑

==

n

k
kkkijk

n

k
kkkijk

fij

eeyIfyeyIf
n

jiMean
11,

),ˆ(,ˆ),ˆ(1),(

 where

 ≤<≤<

= ++

otherwise
cutecutandcutycutif

eyI jkjiki
kkij ,0

;ˆ,1
),ˆ(

)2(
1

)2()1(
1

)1(

Step 4. Save the mean,),,(jiMean and the corresponding number of cases, ,, fijn ,19,,0, =ji for

scatter plot of predicted values by residuals. Note that if 0, =fijn , there is no need to save it and

corresponding),(jiMean which is (0, 0) as well.

9.2.3. Histogram and PP plot

The information needed for binned histogram and PP plot of residuals is created as follows:

Step 1. Find out 400 cut points, 4001 ,, cutcut , between]8,8[ss− , such that

,)400/16(8 siscuti ××+×−= where s is the square root of the mean square error, i.e.,

.e es SS df=

Step 2. For each bin],(1 ii cutcut − , using map/reduce algorithm in Appendix A, we can get the number of

cases of ke that fall into this bin incorporating the frequency weight:

400,,1,)(
1

1, =≤<=∑
=

− icutecutIfn
n

k
ikikfi

and the corresponding mean incorporating the frequency weight(note that regression weight is not
included):

400,,1,)(1
1

1
,

=≤<= ∑
=

− iecutecutIf
n

Mean
n

k
kikik

fi
i

where (.)I is an indictor function and scut 80 −= .

For those ke that are outside the range]8,8(ss− , we also need to record each distinct value of ke and
the number of cases that equal to this distinct value, incorporating the frequency weight.

Step 3. After step 2, suppose we have 1m distinct values,)()1(1mee << , that are less than or equal to

s8− , and 2m distinct values ,)()1(2 nmn ee <<+−
 , that are greater than s8 . And the numbers of

cases that ke equal to these distinct values are fmff ccc ,,2,1 1
,,,

 and *
,

*
,1 ,,

2 fnfmn cc +− .

Then we can get mean vector

],,,,,,,,[)()1(4001)()1(21 nmnm eeMeanMeaneeMean +−= ,

and quantile vector of residuals

],,,,,,,,[)()1(4001)()1(21 nmnm eecutcuteeQuan +−= .

Frequency in bins

],,,,,,,,,[*
,

*
,1,400,1,,2,1 21 fnfmnfffmff ccnncccFreInBin +−= ,

and cumulative percentage of residuals:

],,,[1
,400,2,1 21 fmmff cccccc

N
CumPer ++= .

where i

k

i
fk FreInBincc ∑

=

=
1

, , and iFreInBin is the ith element of FreInBin .

Step 4. For histogram, save the Mean vector, FreInBin vectors, mean and standard deviation of residuals.
Here the mean and standard deviation of residual is 0 and s , respectively. Again if the ith element of
FreInBin is 0, there is no need to save it and the corresponding element of Mean .

Step 5. For a PP plot, compute the cumulative probabilities vector of standard normal distribution from Quan
as follows:

],,,[Pr
2140021 mmpppobCum ++=

where)(ii Quanp Φ= , and iQuan is the ith element of vector Quan .

Then save the vectors CumPer and obCum Pr for the StatXML file as a PP plot is a plot of
CumPer by obCum Pr . Again if the ith element of FreInBin is 0, there is no need to save the
corresponding element of CumPer and obCum Pr .

Implementation note:

• If 400≤n , then the data will not be binned. The histogram and PP plot of residual are created as
follows:

1. The residual ke , the corresponding number of case kf , mean and standard deviation of residuals
are used for histogram of residual directly.

2. For PP plot, the residual ke are needed to sort first. Suppose after sort, the residuals are

)()2()1(neee ≤≤≤
, and the corresponding number of case are **

2
*

1 ,,, nfff
, then the

vector of cumulative percentage of residuals is

],,,[1
,,2,1 fnff cccccc

N
CumPer =

where ∑
=

=
k

i
ifk fcc

1

*
, .

And the cumulative probabilities vector of standard normal distribution is

],,,[Pr 21 npppobCum =

where)()(ii ep Φ= .

References – Phase I
[15]. Belsley, D. A., Kuh, E. and Welsch, R. E. (1980), Regression Diagnostics, New York: John Wiley & Sons,

Inc.

[16]. Chiu, Y. M. (1995a), “The four types of sum of squares for univariate β-Model,” SPSS Internal Document.

[17]. Chiu, Y. M. (1995b), “Calculation of the four types of sums of squares,” SPSS Internal Document.

[18]. Dempster, A. P. (1969), Elements of Continuous Multivariate Analysis, Reading, MA: Addison-Wesley.

[19]. Fox, J. (1997), Applied Regression Analysis, Linear Models, and Related Methods, Thousand Oaks, CA:
SAGE Publications, Inc.

[20]. Han, S. (2010), “Interaction Detection for Two Factors,” SPSS Internal Document.

[21]. Han, S. and Zheng, P. (2010), “Linear Model Output List for NextGen,” SPSS Internal Document.

[22]. Lam, M. L. (1995a), “Constructing the Design Matrix for the β-Model,” SPSS Internal Document.

[23]. Lam, M. L. (1995b), “Algorithm: the symmetric sweep operator,” SPSS Internal Document.

[24]. SAS Institute Inc. (2004), “Chapter 61 the REG Procedure,” SAS/STAR 9.1 User’s Guide, Cary, NC, USA.

[25]. SPSS Inc. “REGRESSION Algorithm,” SPSS Internal Document.

[26]. Schatzoff, M., Tsao, R. and Fienberg, S. (1968), “Efficient computing of all possible regressions,”
Technometrics, 10,769–779.

[27]. Smirnov, N.V. (1948), “Table for estimating the goodness of fit of empirical distribution,” Annals of the
Mathematical Statistics, 19,279-281.

[28]. Velleman, P. F. and Welsch, R. E. (1981), “Efficient computing of regression diagnostics,” American
Statistician, 35, 234–242.

[29]. Woods, M. (2004), “Guideline for Scoring under Various Data and Model Conditions,” SPSS Internal
Document.

[30]. Xu, J. (2011), “Evaluation of Algorithms for Predictor Importance,” SPSS Internal Document.

[31]. Zheng, P. (2009), “Algorithm: EMMEANS and Custom Tests,” SPSS Internal Document.

[32]. Zheng, P. (2010), “Detecting Factor-Covariate interaction,” SPSS Internal Document.

[33]. Zhong, R. (2008), “Algorithm: Variable Importance,” SPSS Internal Document.

Appendix A: Map Reduce Algorithm for Some Statistics

A.1. Notation

The following notation is used throughout the appendix unless otherwise stated:

n Number of distinct records in the whole dataset. It is an integer and 1≥n .

if Frequency count for record i.

ig Regression weight for record i.

iw Combined weight for record i, .i i iw f g= ×

N Effective sample size. it is a integer number, ∑
=

=
n

i
ifN

1

.If frequency count variable f is not

use, N=n.

W Total combined weight,
1

.
n

i
i

W w
=

= ∑

X Weighted mean of a continuous variable X with iy is the value for record i.

Y Weighted mean of a continuous variable Y with iy is the value for record i.

xyC
()()

1

1

if centered or a model with the intercept;

if non-centered or a model without the intercept.

n

i i i
i

xy n

i i i
i

w x X y Y
C

w x y

=

=

 − −=

∑

∑

xyS Weighted covariance between X and Y, so ;
1

xy
xy

C
S

N
=

−
 and xxS and yyS would be

weighted variance of X and Y, respectively.

xyr
Weighted correlation between X and Y, so .xy

xy
xx y

S
r

S S
=

A.2. Computing Correlation

For constructing the correlation matrix R which is a () ()1 1p p+ × + matrix, where p is the number of

parameters, there are ()1 2p p − pairs of correlation to compute. Without loss generality, suppose a pair of
variables is X and Y. Then also suppose there are M mappers and more than one reducer, then the correlation can
be computed in map/reduce environment as follows:

(1) Provisional means algorithm in each mapper:

Denote jN is the cumulative frequency weight up to record j,
1

.
j

j i
i

N f
=

= ∑

 jW is the cumulative combined weight up to record j,
1

.
j

j i
i

W w
=

= ∑

 jX is the estimate of X up to record j; jY is the estimate of Y up to record j.

 ,xy jC is the estimate of xyC up to record j.

Start with 0 0 0 0 ,0 0xyN W X Y C= = = = = , then compute the following statistics recursively for all records in
the mapper:

1 ,j j jN N f−= +

1j j jW W w−= + ,

()1 1
j

j j j j
j

w
X X x X

W− −= + − ,

()1 1
j

j j j j
j

w
Y Y y Y

W− −= + − ,

()()
2

, 1

1

1 1
,

,

if centered or a model with intercept;

if non-centered or a model without intercept.

j j
j

xy j j j j
jxy j

xy j j j j

w
C w x X y Y

WC

C w x y

− −−

−

+ − − − =

 +

(2) Combine statistics from K mappers to one reducer or from more than one reducers (without loss generality,
assume it is also K) to the “finalizer”:
Denote () () () () (), , , , and k k k k k

xyN W X Y C are the resulting statistics from the kth mapper or reducer.

Compute

 ()

1
,

K
k

k
N N

=

= ∑

()

1
,

K
k

k
W W

=

= ∑

() ()

1

1 ,
K

k k

k
X W X

W =

= ∑

() ()

1

1 ,
K

k k

k
Y W Y

W =

= ∑

() () () ()

()

1 1

1

if centered or a model with intercept;

if non-centered or a model without intercept.

K K
k k k k

xy
k k

xy K
k

xy
k

C W X Y WXY
C

C

= =

=

+ −=

∑ ∑

∑

If it is in the “finalizer” for constructing the R matrix, then also calculate the weighted variances, covariance

and correlation ,
1

xx
xx

CS
N

=
−

,
1

yy
yy

C
S

N
=

− ,
1

xy
xy

C
S

N
=

−
 and .xy

xy
xx y

S
r

S S
=

A.3. Computing statistics for interaction detection for two factors
Without loss generality, suppose a pair of factors is X1 with known R levels and X2 with known S levels and
continuous target is Y. Then the statistics needed in the R S× matrix are the number of records (ijN), the target

mean (ijY), and the sum of squared terms of target (,yy ijC) for all combinations of 1 , 1, , ,X i i R= = and

2 , 1, , .X j j S= = Please note that regression weights will not be used here even it is specified and ,yy ijC

would be computed based on “centered or a model with intercept” condition. The computation of the matrix
with ijN , ijY and ,yy ijC in each cell is similar to that in Section A.2 with frequency weight and Y value putting in

the right cell. The results from the finalizer are the table:

X2

 X1
1 2

 S

 1 11 11 ,11, , yyN Y C 12 12 ,12, , yyN Y C
 1 1 ,1, ,S S yy SN Y C

 2 21 21 ,21, , yyN Y C 22 22 ,22, , yyN Y C
 2 2 ,2, ,S S yy SN Y C

 R 1 1 , 1, ,R R yy RN Y C 2 2 , 2, ,R R yy RN Y C
 ,, ,RS RS yy RSN Y C

A.4. Computing statistics for interaction detection for a covariate and a
factor

Without loss generality, suppose a covariate is X1, a factor is X2 with known S levels and continuous target is Y.
The statistics needed in the 1 S× matrix are the number of records (jN), the means for X1 and Y (1, and j jX Y),

the sum of squared terms for X1 and Y (
1 1 , , and x x j yy jC C), and the sum of cross product terms for X1 and Y (

1 ,x y jC)

for 2 , 1, , .X j j S= = Please note that regression weights will not be used here even it is specified and

1 1 1, , ,, and x x j yy j x y jC C C would be computed based on “centered or a model with intercept” condition. The

computation of the matrix with
1 1 11 , , ,, , , , and j j j x x j yy j x y jN X Y C C C in each cell is similar to that in Section 1.2

with frequency weight and X1 and Y values putting in the right cell. The results from the finalizer are the table:

X2 = 1
 X2 = S

1 1 11 1,1 1 ,1 ,1 ,1, , , , ,x x yy x yN X Y C C C
 1 1 11, , , ,, , , , and S S S x x S yy S x y SN X Y C C C

Appendix B: Sweep operations
Sweep operations on matrix R (Dempster, 1969) are used to compute the standardized least squares estimation b

and the associated regression statistics. The sweeping starts with the correlation matrix R . Let R~ be the new
matrix produced by sweeping on the kth row and column of R . The elements of R~ are

kjki
r

rr
rr

kk

kjik
ijij ≠≠−= ,,~ ;

ki
r
rr
kk

ik
ik ≠−= ,~ ;

kj
r
r

r
kk

kj
kj ≠= ,~ ;

and
kk

kk r
r 1~ = .

For a partition matrix,

=

DC
BA

R , where A is a ss× matrix. Sweep operation is performed on the s pivot

elements in A. resulting matrix

−−
= −−

−−

BCADCA
BAAR 11

11~
.

If the above sweep operations are repeatedly applied to each row of 11R , where 11R contains independent
variables in the model at the current step, the result is

−−
= −−

−−

12
1

112122
1

1121

12
1

11
1

11~
RRRRRR

RRRR .

Sweep operation computes the determinant of a matrix.

∏
=

=
p

i
iirRDET

1

~)(.

Appendix C: A method to search (1)e sp p
C + models

1. Notations & Definitions:

a) Each model can be denoted by an array of numbers 1 2{ , , , }ept t t ,

0 if the corresponding effect is not in the model
the # of levels of the effect (for continuous variable 1)it l l

= =

, (1, ,)ei p= .

b) The search space of models 1 2S S S= ∪ . 1S represents the set of models have been detected, and 2S
represents not yet.

c) The length ijd of two distinct models, that is two distinct vectors 1{ , }ei ipt t and 1{ , }ej jpt t is computed

as follows
1

ep

ij ik jk
k

d t t
=

= −∑ .

Notes:

1. Since the number of effect is fixed at the number sp from forward stepwise, the number of non-zero

elements in vector { }it is sp .

2. The length ijd means the steps of sweep operation between two distinct models. The minimum is 2. One
continuous variable is swept out and another continuous variable is swept in, but the others holds on.

2. Algorithm:

This is an algorithm used for searching all the models with fixed effect size, when ep >30 and sp >60. Here
variable RESTART in the algorithm is an integer. For numerical stability and avoiding many round errors of
sweeping operation, we refresh the current swept matrix from initial matrix R, after doing sweeping
operations up to an extent.

Step 1. 0
1 01 02 0{ , , , },epS t t t t= = 0

2 \S S t= , 0t can be select by the last sp effects are in the model. Set
0t as the current model and calculate the corresponding criterion value of the current model. step =

0.

Step 2. If 2S φ= , stop, sort the criterion value of all the models searched and output the best one, else go
to Step 3.

Step 3. Computing all the length value between current model and the models in 2S . Select
* , 2min{arg min{ }}, 1, | |current jjt d j S= = .

Step 4. If step <RESTRAT, do sweep operation based on the current model to the model *jt , step=step+1.

Else calculate the model *jt from the initial sweep matrix R, step=0.

Step 5. *1 1 jS S t= ∪ and *2 2 \ jS S t= , Set *jt as the current model; calculate the criterion value of the

current model. go to Step 2.

Notes:

1. For set S we collect all the models whose number of positive elements in vector 1{ } ep
i iFLAG = is fixed at

sp , from 0 to 2 1
ep − . We do not need to store S1, but only S2.

2. In Step 3, if there are models with , 1 , 2current j current jd d= , we select *
1 2min{ , }j j j= .

3. As we know that the minimum length is 2, so if get the length value is 2 for the first time, we can stop
and choose the model as *jt .

4. After searching all the models, we sort all the criteria value and give out the best one. For adjusted R
square criterion, we output the model with max value. For other criterion, we output the one with min
value.

3. Example:

Here we give out an example with 5 effects, 3 are continuous, and the other 2 are categorical variables with 2
levels and 3 levels.

The length of {1,0,0,2,3} and {1,0,1,0,3} is d = 1+2=3.

All the models we search is S = {(0,0,1,2,3);(0,1,0,2,3);(0,1,1,0,3);(0,1,1,2,0); (1,0,0,2,3);(1,0,1,0,3); (1,0,1,2,0);
(1,1,0,0,3); (1,1,0,2,0); (1,1,1,0,0)}. The table below shows the detailed steps of all possible subset searching
with fixed effect size.

step
Current

model
S1 S2

Distance

vector

0 (0,0,1,2,3) (0,0,1,2,3) (0,1,0,2,3);(0,1,1,0,3);(0,1,1,2,0);
(1,0,0,2,3);(1,0,1,0,3); (1,0,1,2,0);
(1,1,0,0,3); (1,1,0,2,0); (1,1,1,0,0)

{2,…}

1 (0,1,0,2,3) (0,0,1,2,3);(0,1,0,2,3) (0,1,1,0,3); (0,1,1,2,0); (1,0,0,2,3);
(1,0,1,0,3); (1,0,1,2,0); (1,1,0,0,3);
(1,1,0,2,0); (1,1,1,0,0)

{3,4,2,…}

2 (1,0,0,2,3) (0,0,1,2,3); (0,1,0,2,3);
(1,0,0,2,3)

(0,1,1,0,3); (0,1,1,2,0); (1,0,1,0,3);
(1,0,1,2,0); (1,1,0,0,3); (1,1,0,2,0);
(1,1,1,0,0)

{5,6,3,4,5,4,7}

3 (1,0,1,0,3); (0,0,1,2,3); (0,1,0,2,3);
(1,0,0,2,3); (1,0,1,0,3);

(0,1,1,0,3); (0,1,1,2,0); (1,0,1,2,0);
(1,1,0,0,3); (1,1,0,2,0); (1,1,1,0,0)

{2,…}

4 (0,1,1,0,3); (0,0,1,2,3); (0,1,0,2,3);
(1,0,0,2,3); (1,0,1,0,3);
(0,1,1,0,3);

(0,1,1,2,0); (1,0,1,2,0); (1,1,0,0,3);
(1,1,0,2,0); (1,1,1,0,0)

{5,7,2,…}

5 (1,1,0,0,3) (0,0,1,2,3); (0,1,0,2,3);
(1,0,0,2,3); (1,0,1,0,3);
(0,1,1,0,3); (1,1,0,0,3)

(0,1,1,2,0); (1,0,1,2,0); (1,1,0,2,0);
(1,1,1,0,0)

{7,7,5,4}

6 (1,1,1,0,0) (0,0,1,2,3); (0,1,0,2,3);
(1,0,0,2,3); (1,0,1,0,3);
(0,1,1,0,3); (1,1,0,0,3);
(1,1,1,0,0)

(0,1,1,2,0); (1,0,1,2,0); (1,1,0,2,0); {3,3,3}

7 (0,1,1,2,0) (0,0,1,2,3); (0,1,0,2,3);
(1,0,0,2,3); (1,0,1,0,3);
(0,1,1,0,3); (1,1,0,0,3);
(1,1,1,0,0); (0,1,1,2,0)

(1,0,1,2,0); (1,1,0,2,0); {2,…}

8 (1,0,1,2,0) (0,0,1,2,3); (0,1,0,2,3);
(1,0,0,2,3); (1,0,1,0,3);
(0,1,1,0,3); (1,1,0,0,3);
(1,1,1,0,0); (0,1,1,2,0);
(1,0,1,2,0);

(1,1,0,2,0);

9 (1,1,0,2,0) S none

10. Linear AS (Phase II)
For Linear AS (Linear Engine) phase II, only effect size measures and the corresponding confidence intervals
(CIs) would be included. The document describes how to compute them in details. The effect size measures and
confidence intervals are complementary to significance tests because, unlike significance tests, they would not
be affected by the sample size.

The document is organized as follows: Section 11 gives notations. Then Section 12 gives definitions of effect
sizes for model effects and coefficients and computational details of their confidence intervals. To construct a
confidence interval, the bisection method is used to find the solution of probability equation for the noncentrality
parameter and it is described in Section 13.

11. Notations
The following notation is used throughout the document unless otherwise stated:

tSS Weighted total sum of squares

eSS Weighted residual sum of squares

rSS

Weighted regression sum of squares

jS Type III sum of square for the jth effect, epj ,,1= , where ep is the
number of effects excluding intercept

tdf Degrees of freedom of tSS

edf Degrees of freedom of eSS

rdf
Degrees of freedom of rSS

jr Degrees of freedom of jS

F

F statistic for corrected model ,
ee

rr

dfSS
dfSS

F =

jF F statistics for the jth effect,
ee

jj
j dfSS

rS
F =

jβ̂ The estimation of the jth parameter jβ

jβσ̂ The standard error of jβ̂

jt

t statistic for the jth parameter,
j

j
jt

βσ
β
ˆ

ˆ
=

),,(21 λdfdfF

A random variable follows the non-central F distribution with degrees of
freedom 1df and 2df , and a noncentrality parameter .λ If ,0=λ then it is
a random variable following the central F distribution with degree of freedom

1df and 2df .

α

Significance level. Please note that we only assign a confidence interval level
related to model effects and coefficient estimates in FDD (F0401 but not
F0405 in Linear Engine FDD), so the significance level here should be related
to it. For example, the default confidence interval = 95, then .05.0=α

12. Effect Size
For model effects, the effect size measures include partial eta squared and eta squared. Their definitions and the
confidence intervals are described in Section 12.1. Then for coefficient estimates, the effect size measure is the
partial eta squared. The definition and computation of confidence interval would be given in Section 12.2.

12.1. Effect sizes and confidence intervals for effects
The partial eta squared for (corrected) model and the jth effect are defined as

er

r
rp SSSS

SS
+

=2
,η

 and ,2

,
ej

j
ep SSS

S
j +
=η respectively.

Note if there is an intercept, then SSr is “SS for Corrected Model” and if there is no intercept, then SSr is “SS
for Model”. So we use (corrected) model to represent both situations.

To construct confidence intervals for those effects sizes, we need to connect the effect size with the
noncentrality parameter of test distribution which is F distribution for tests of model effects. Based on the
definition in GLM procedure, the noncentrality parameters for (corrected) model and the defined as jth effect are
defined as

e

re
r SS

SSdf ×
=λ

 and ,

e

je
e SS

Sdf
j

×
=λ respectively.

Thus the relationships between F statistics and noncententrality parameters for (corrected) model and the jth
effect are

r

r

ee

rr

dfdfSS
dfSSF λ

== and
j

e

ee

jj
j rdfSS

rS
F j

λ
== respectively.

Then the partial eta squared for (corrected) model and the jth effect can be written based on the noncentrality
parameter as

er

r
rp df+
=
λ

λ
η 2

, and ,2
,

ee

e
ep df

j

j

j +
=
λ

λ
η respectively.

If we want the confidence intervals for effect sizes to be equivalent to the F tests of model effects, which
employs a one-sided and upper tailed probability with significance level of α , we should employ a confidence
coefficient of ()α21− . Thus ()%21100 α− confidence interval of partial eta squared for both (corrected)
model and the jth effect is

,,

++ eu

u

el

l

dfdf λ
λ

λ
λ

where lλ and uλ are the lower and upper noncentrality parameters corresponding to the F statistics,

respectively. lλ for (corrected) model and the jth effect could be obtained by solving the following equations

0)1()),,(Pr(=−−≤ αλ FdfdfF ler and ,0)1()),,(Pr(=−−≤ αλ jlej FdfrF

respectively. uλ for both (corrected) model and the jth effect could be obtained solving the following equations

0)),,(Pr(=−≤ αλ FdfdfF uer and ,0)),,(Pr(=−≤ αλ juej FdfrF

respectively. Please see Section 4 for details on how to obtain lλ and .uλ

The eta squared for (corrected) model and the jth effect are defined as

t

r

SS
SS

=2η and ,2

t

j
e SS

S
j
=η respectively.

An exact confidence interval for eta squared is not available, but if we write the formula for 2η as

() ,
2

rtr

r

t

r

SSSSSS
SS

SS
SS

−+
==η

then a conservative confidence interval can be constructed as for 2
,rpη by treating rt SSSS − as eSS and

rt dfdf − as edf . Thus ()%21100 α− confidence of eta squared for (corrected) model is defined as

,,

−+−+ rtu

u

rtl

l

dfdfdfdf λ
λ

λ
λ

where lλ and uλ can be computed by solving the below equation:

0)1(
)/()(

/),,(Pr =−−

−−

≤− αλ
rtrt

rr
lrtr dfdfSSSS

dfSSdfdfdfF

and

0
)/()(

/),,(Pr =−

−−

≤− αλ
rtrt

rr
urtr dfdfSSSS

dfSSdfdfdfF

Similarly, ()%21100 α− confidence of eta squared for the jth effect is defined as

,,

−+−+ jtu

u

jtl

l

rdfrdf λ
λ

λ
λ

where lλ and uλ can be computed by solving the below equation:

0)1(
)/()(

/
),,(Pr =−−

−−
≤− αλ

jtjt

jj
ljtj rdfSSS

rS
rdfrF

and

,0
)/()(

/
),,(Pr =−

−−
≤− αλ

jtjt

jj
ujtj rdfSSS

rS
rdfrF respectively.

12.2. Effect sizes and confidence intervals for coefficients

The partial eta squared for the jth coefficient is defined as

≠=

≠>×+

=

Otherwise

0ˆand0ˆif1

0ˆand0if)ˆˆ/(ˆ

2

222

2
,

SYSMIS

dfdf

j

jeejj

p j

j

j
βσ

βσββ

η β

β

β

Then the noncentrality parameter, ,
jβλ and the test statistic related to it are defined as

2

2

ˆ

ˆ

j

j

j

β
β σ

β
λ = and ,2

jjj tF βλ== respectively.

If 0>edf and 0ˆ ≠jβ , then ()%21100 α− confidence interval of partial eta squared for jβ̂ is

,,

++ eu

u

el

l

dfdf λ
λ

λ
λ

where lλ and uλ can be computed by solving the below equations:

() 0)1(),,1(Pr 2 =−−≤ αλ jle tdfF
and

() ,0),,1(Pr 2 =−≤ αλ jue tdfF respectively.
If partial eta squared is 1 or system missing, then confidence interval will not be computed.

13. Bisection method for noncentality parameter
We would use the bisection method to solve the following equation for noncentrality parameter (λ) of
noncentral F distribution

 ,0)),,(Pr(21 =−≤ probFvaluedfdfF λ

where ,1df ,2df Fvalue and prob are known value.

Denote ,)),,(Pr()(21 probFvaluedfdfFf −≤= λλ then the bisection method is described as follows:

Step 1. If ,0)0(≤f then stop and output .0=λ

Step 2. Let 1dfFvaluex ×= . If ,0)(=xf then stop and output x=λ ; otherwise, go to step 3 to find out

two values, 1x and 2x ,such that 0)()(21 <× xfxf .

Step 3. If ,0)(>xf then xx J ×= −1
1 2 and xx J ×= 22 , where J is the minimum positive integer such that

0)()(21 ≤× xfxf .

If 0)(<xf , then xx J ×=
2
1

1 and xx J ×=
−12 2

1 , where J is the minimum positive integer such that

.0)()(21 ≤× xfxf

Step 4. If 0)(1 =xf or 0)(2 =xf , then stop and output 1x=λ if 0)(1 =xf or 2x=λ if 0)(2 =xf ;

otherwise, let
2

21 xx
x

+
= and go to step 5.

Step 5. If ε≤)(xf and ε≤− 12 xx , where ε is a tolerance level and the default is tentatively set to
,10 6− then stop and output x=λ . Otherwise, go to step 6.

Step 6. If 0)(>xf , let xx =1 , else let xx =2 . Let
2

21 xx
x

+
= , and go back to step 5.

References – Phase II
[34]. Maxwell, S. E. (2000), “Sample Size and Multiple Regression Analysis,” Psychological Methods, 5, 434–

458.

[35]. Smithson, M. (2003), Confidence Intervals, Thousand Oaks, CA: Sage Publications.

[36]. Steiger, J. H. and Fouladi, R. T. (1997), “Noncentrality Interval Estimation and the Evaluation of Statistical
Models,” in L. Harlow, S. Mulaik, and J. H. Steiger, eds., What If There Were No Significance Tests?,
222–257, Hillsdale, NJ: Erlbaum.

Linear SVM Algorithm

1. Introduction
The support vector machine (SVM) is a supervised learning method that generates input-output mapping functions
from a set of labeled training data. The mapping function can be either a classification function or a regression
function. For classification, non-linear kernel functions are often used to transform input data to a high-
dimensional feature space in which the input data become more separable compared to the original input space.
Maximum-margin hyperplanes are then created. The produced model depends on only a subset of the training data
near the class boundaries. Similarly, the model produced by support vector regression ignores any training data
that is sufficiently close to the model prediction (support vectors can appear only on the error tube boundary or
outside the tube). SVMs are also said to belong to “kernel methods”.

SVMs improve on classic classification models in the following ways: (1) Avoids underfitting. When the sample
size is small, the model may be too simple. Simple models don’t generalize well—that is, they aren’t very valid on
test data. (2) Avoids overfitting. When the sample size is large, the model may be too complex. Complex models
also do not generalize well. (3) Work well when the number of predictors is small. (4) Work well when the number
of predictors is large. Outperforms and is more valid than C5.0, C&RT, and Neural Net.

The disadvantage of the traditional SVMs is their high time complexity w.r.t the number of records, that is, the
time complexity is 𝑂𝑂(𝑛𝑛2), although it can be solved by a fast algorithm, sequential minimal optimization (SMO).
In addition, the SMO algorithm is hard to be parallelized. To overcome it, linear SVM (LSVM) is often used.

LSVM, its feature space being the same as the input space of the problem, is the newest extremely fast machine
learning algorithm. LSVM can be linearly scalable, which means that it builds a SVM model in a CPU time which
scales linearly with the number of the records. Thus, LSVM is very suited to the large scale problems in terms of
the volume of records and the number of variables (parameters). In addition, LSVM can easily handle the sparse
data where the average number of non-zero elements in one record is small.

LSVM is different from the existing SVM in IBM SPSS Modeler in the following aspects: (1) the former is linear
while the latter can be linear or nonlinear; (2) they use different optimization methods, wherethe former focuses on
the primal optimization while the latter goes directly the dual formation; (3) the former can handle large number of
records, while it is hard for the latter.

This document describes LSVM. The functions of LSVM will contain two main data mining tasks: (1)
classification, including binary and multi-class classification; (2) regression. In addition, we provide a few post-
estimation statistics: for the task of classification, we will provide an approximation probability for each
prediction, and for regression, we will provide the standard deviation of the predictive value.

All optimization included in the LSVM will be solved by ADMM algorithm (Zhong, 2014), which will be
implemented in a distributed computing environment, specifically, the map-reduce environment.

Section 2 describes the classification and regression models of LSVM. Section 3 presents the parameter
estimation. Section 4 gives the post-estimation statistics.

2. Models
𝑛𝑛 The total number of records

𝑝𝑝 The number of parameters

𝐱𝐱𝑖𝑖 The 𝑖𝑖-th record, 𝐱𝐱𝑖𝑖 ∈ ℝ𝑝𝑝

𝜔𝜔𝑖𝑖 The case weight for the 𝑖𝑖-th record

𝑦𝑦𝑖𝑖
The target, 𝑦𝑦𝑖𝑖 ∈ {+1,−1} for the binary classification, 𝑦𝑦𝑖𝑖 ∈ {1, 2,⋯ ,𝑚𝑚} for the multi-class
classification, and 𝑦𝑦𝑖𝑖 ∈ ℝ for the regression.

𝐰𝐰 The parameter vector for classification and regression; 𝐰𝐰 ∈ ℝ𝑝𝑝for the binary classification
and regression; 𝐰𝐰 = [𝐰𝐰1,𝑇𝑇 ,⋯ ,𝐰𝐰𝑚𝑚,𝑇𝑇]𝑇𝑇 ∈ ℝ𝑝𝑝𝑚𝑚 for the multi-class classification.

𝐰𝐰1,⋯ ,𝐰𝐰𝑚𝑚 The parameter vectors for the multi-class classification, and 𝐰𝐰𝑗𝑗 ∈ ℝ𝑝𝑝, 𝑗𝑗 ∈ [1,𝑚𝑚]

‖𝐱𝐱‖1 The 𝐿𝐿1 norm of the vector 𝒙𝒙, which is defined as ‖𝒙𝒙‖1 = |𝑥𝑥1| + ⋯+ |𝑥𝑥𝑝𝑝|

‖𝐱𝐱‖2 The 𝐿𝐿2 norm of the vector 𝒙𝒙, which is defined as ‖𝒙𝒙‖2 = �𝑥𝑥12 + ⋯+ 𝑥𝑥𝑝𝑝2�
1/2

𝑁𝑁 The number of data blocks (parts)

𝐵𝐵𝑖𝑖 {𝐵𝐵1 ,⋯ ,𝐵𝐵𝑁𝑁} be a partition of all data indices {1,⋯ ,𝑛𝑛}.

𝑝𝑝𝑐𝑐
The threshold denoting whether there is a large number of parameters (large p). If 𝑝𝑝 > 𝑝𝑝𝑐𝑐, it
is called large p situation, otherwise, it is called small to medium p situation.

𝒔𝒔 The gradient vector (function)

𝐇𝐇 The Hessian matrix (function)

𝜆𝜆 The parameter denoting the penalty

𝜖𝜖 The parameter denoting the sensitivity of the loss for regression

Two main tasks, classification and regression, are included. Their mathematical representations are given in
Section 2.1 and 2.2.

2.1 Classification

The classification is used to classify cases into a group of defined categories of a target (response) variable of
interest using a set of predictors. If the target has two categories, it is called the binary classification problem; if
the target has more than two categories, it is called the multi-class classification problem.

2.1.1 Binary classification

For the binary classification, let {𝐱𝐱𝑖𝑖,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑛𝑛 denote a dataset, where 𝑦𝑦𝑖𝑖 ∈ {+1,−1}, then LSVM has a general form

min𝐰𝐰 1
𝑞𝑞
‖𝐰𝐰‖𝑞𝑞

𝑞𝑞 + 𝐶𝐶 ∑ 𝜔𝜔𝑖𝑖[max(0, 1 − 𝑦𝑦𝑖𝑖𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖)]2𝑛𝑛
𝑖𝑖=1 (2.1)

where 𝑞𝑞 ∈ {1,2} and 𝐶𝐶 denotes a penalty parameter.

When 𝑞𝑞 = 1, it is called L1-regularized L2-loss LSVM, while when 𝑞𝑞 = 2, it is called L2-regularized L2-loss
LSVM. You could find more details related to Eq. (2.1) in Fan et al. (2008).

Eq. (1) can often be represented as another form

min𝐰𝐰 ∑ 𝜔𝜔𝑖𝑖[max(0, 1 − 𝑦𝑦𝑖𝑖𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖)]2𝑛𝑛
𝑖𝑖=1 + 𝜆𝜆‖𝐰𝐰‖𝑞𝑞

𝑞𝑞 (2.2)

Where 𝜆𝜆 has a relationship with 𝐶𝐶, 𝜆𝜆 = 1
𝑞𝑞×𝐶𝐶

.

The decision function is

𝑚𝑚(𝐱𝐱) = sgn(𝐰𝐰T𝐱𝐱) (2.3)

where sgn denotes the sign function, denoting the sign of a real number.

Notes:

• If the binary target is not a form of {+1,−1}, it should be mapped into {+1,−1}.
2.1.2 Multi-class classification

For the multi-class classification, LSVM has a general form of

min{𝐰𝐰1,⋯,𝐰𝐰𝑚𝑚} ∑ 𝜔𝜔𝑖𝑖 ∑ [max(0, 2 − (𝐰𝐰𝑥𝑥𝑖𝑖 − 𝐰𝐰𝑗𝑗)𝑇𝑇𝐱𝐱𝑖𝑖)]2𝑗𝑗≠𝑥𝑥𝑖𝑖
𝑛𝑛
𝑖𝑖=1 + 𝜆𝜆 ∑ �𝐰𝐰𝑗𝑗�

𝑞𝑞
𝑞𝑞𝑚𝑚

𝑗𝑗=1 (2.4)

The decision function is

𝑚𝑚(𝐱𝐱) = arg max
𝑗𝑗

(𝐰𝐰𝑗𝑗)𝑇𝑇𝐱𝐱 (2.5)

Notes:

• If the target is not a form of {1, 2,⋯ ,𝑚𝑚}, it should be mapped into {1, 2,⋯ ,𝑚𝑚}.
• For 𝑚𝑚 = 2, let 𝐰𝐰+1 = −𝐰𝐰−1 = 𝐰𝐰 and 𝜆𝜆′ = 𝜆𝜆

2
 , the optimization problem becomes

4� 𝜔𝜔𝑖𝑖[max(0, 1 −𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖)]2
𝑛𝑛

𝑖𝑖=1
+ 2𝜆𝜆‖𝐰𝐰‖𝑞𝑞

𝑞𝑞

∝� 𝜔𝜔𝑖𝑖[max(0, 1 − 𝑦𝑦𝑖𝑖𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖)]2
𝑛𝑛

𝑖𝑖=1
+ 𝜆𝜆′‖𝐰𝐰‖𝑞𝑞

𝑞𝑞

This means that the binary classification problem is a special case of the multi-class classification
problem.

• Eq. (2.4) originally comes from Eq. (2) of Weston and Watkins (1999). The main difference is that we
use L2-loss while they use L1-loss.

2.2 Regression

Support vector regression solves the following primal problems

min𝐰𝐰 ∑ 𝜔𝜔𝑖𝑖[max(0, |𝑦𝑦𝑖𝑖 − 𝐰𝐰𝑇𝑇𝐱𝐱𝑖𝑖| − 𝜖𝜖)]2𝑛𝑛
𝑖𝑖=1 + 𝜆𝜆‖𝐰𝐰‖𝑞𝑞

𝑞𝑞 (2.6)

where 𝜖𝜖 is a parameter to specify the sensitiveness of the loss. By default, 𝜖𝜖 = 0.1.

The prediction function is

𝑚𝑚(𝐱𝐱) = 𝐰𝐰T𝐱𝐱 (2.7)

3. Parameter estimation
The problems (Eqs.2.2, 2.4 and 2.6) can be written as a general form

min
𝐰𝐰

𝑓𝑓(𝐰𝐰) + 𝑔𝑔(𝐰𝐰) (3.1)

where 𝑓𝑓(𝐰𝐰) denotes the fitting function corresponding to the first term of Eqs.(2.2), (2.4) and (2.6), while 𝑔𝑔(𝐰𝐰)
denotes the penalty function corresponding to the second term �𝜆𝜆‖𝐰𝐰‖𝑞𝑞

𝑞𝑞�.

We use ADMM algorithm (Zhong, 2014) to solve the optimization problems. ADMM denotes Alternating
Direction Method of Multipliers algorithms, which is to solve large scale problems in terms of the volume of
records and the number of variables. In addition, it is implemented in distributed computing environment, more
specifically, the map-reduce environment.

If 𝑓𝑓(𝐰𝐰) can be separable w.r.t records, the form of ADMM for solving Eq. 3.1 can be written as,

min𝒙𝒙𝑖𝑖,𝒛𝒛 ∑ 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖)𝑁𝑁
𝑖𝑖=1 + 𝑔𝑔(𝒛𝒛)

𝑠𝑠. 𝑡𝑡. 𝐰𝐰𝑖𝑖 − 𝒛𝒛 = 𝟎𝟎, 𝑖𝑖 = 1,⋯ ,𝑁𝑁.
 (3.2)

 The steps of ADMM can be described as follows:

𝐰𝐰𝑖𝑖
𝑘𝑘+1 = arg min

𝐰𝐰𝑖𝑖
�𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) + (𝜌𝜌/2)�𝐰𝐰𝑖𝑖 − 𝐳𝐳𝑘𝑘 + 𝐮𝐮𝑖𝑖𝑘𝑘�2

2�

𝐳𝐳𝑘𝑘+1 = arg min
𝐳𝐳

(𝑔𝑔(𝐳𝐳) + (𝑁𝑁𝜌𝜌/2)‖𝐳𝐳 − 𝐰𝐰�𝑘𝑘+1 − 𝐮𝐮�𝑘𝑘‖22)

𝐮𝐮𝑖𝑖𝑘𝑘+1 = 𝐮𝐮𝑖𝑖𝑘𝑘 + 𝐰𝐰𝑖𝑖
𝑘𝑘+1 − 𝐳𝐳𝑘𝑘+1

 (3.3)

where 𝐰𝐰�𝑘𝑘+1 = 1
𝑁𝑁
∑ 𝐰𝐰𝑖𝑖

𝑘𝑘+1𝑁𝑁
𝑖𝑖=1 is the average of 𝐰𝐰1

𝑘𝑘+1,⋯ ,𝐰𝐰𝑁𝑁
𝑘𝑘+1; Similarly, 𝐮𝐮�𝑘𝑘 = 1

𝑁𝑁
∑ 𝐮𝐮𝑖𝑖𝑘𝑘𝑁𝑁
𝑖𝑖=1 .

In order to call ADMM algorithm, LSVM should prepare four pieces of information: optimization function,
gradient function and Hessian function of 𝑓𝑓(𝐰𝐰), and initial values. Please note that for the large p situation
(where the number of parameters 𝑝𝑝 is greater than a threshold value of 𝑝𝑝𝑐𝑐), it does not need to provide the
information of Hessian function.

3.1 Classification

Although the binary classification is a special case of the multi-class classification problem, we still estimate
parameters for it rather than estimate them by solving the multi-class classification problem. The reasons are: (1)
the number of parameters of the multi-class classification problem is twice of that of the binary classification
problem, thus, it may lead to a slow convergence of the optimization method, especially for large p situation; (2)
the initial values for the multi-class classification problem is not as good as those for the binary classification,
because the multi-class classification is more complicated than the binary one and it is hard to obtain good initial
values.

3.1.1 Binary classification

For the binary classification, 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) is defined as

𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) = ∑ 𝜔𝜔ℓ[max(0, 1 − 𝑦𝑦ℓ𝐰𝐰𝑖𝑖
𝑇𝑇𝐱𝐱ℓ)]2ℓ∈𝐴𝐴𝑖𝑖 (3.4)

The gradient for 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) is

 𝐬𝐬𝑖𝑖 = ∑ 2𝜔𝜔ℓ(−𝑦𝑦ℓ + 𝐰𝐰𝑖𝑖
𝑇𝑇𝐱𝐱ℓ)𝐱𝐱ℓℓ∈𝐴𝐴𝑖𝑖

sv (3.5)

The Hessian matrix for 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) is

 𝐇𝐇𝑖𝑖 = ∑ 2𝜔𝜔ℓ𝐱𝐱ℓ𝐱𝐱ℓ𝑇𝑇ℓ∈𝐴𝐴𝑖𝑖
sv (3.6)

where 𝐵𝐵𝑖𝑖sv = {ℓ ∈ 𝐵𝐵𝑖𝑖|1 − 𝑦𝑦ℓ𝐰𝐰𝑖𝑖
𝑇𝑇𝐱𝐱ℓ > 0} denotes the index set of support vectors.

For the small to medium p situations, the initial values can be the least square solution using all data

 𝐰𝐰0 = (𝐗𝐗𝑇𝑇𝛀𝛀𝐗𝐗 + 𝜆𝜆𝐈𝐈)−𝐗𝐗𝑇𝑇𝐲𝐲 (3.7)

where 𝐗𝐗 = [⋯ , 𝐱𝐱𝑖𝑖,⋯]𝑇𝑇 denotes the data matrix, and 𝛀𝛀 = diag(𝜔𝜔1,⋯ ,𝜔𝜔𝑛𝑛) denotes the weight matrix.

For the large p situation (where 𝑝𝑝 ≥ 𝑝𝑝𝑐𝑐), the initial values are computed as follows

 𝐰𝐰0 = 𝜂𝜂(𝐱𝐱�+1 − 𝐱𝐱�−1)
‖𝐱𝐱�+1 − 𝐱𝐱�−1‖22
� (3.8)

where 𝜂𝜂 > 2, and we tentatively choose 𝜂𝜂 = 2.5; 𝐱𝐱�+1 and 𝐱𝐱�−1 denote the weighted mean predictor vectors for
class +1 and class −1, respectively.

Notes:

• To call ADMM, the settings of parameters are: 𝑞𝑞 = 2 (𝐿𝐿2-penalty), 𝜆𝜆 = 0.1; 𝜌𝜌 = 1; use function value
convergence and parameter convergence; use default settings for other parameters of ADMM.

• If want to select variables, we will set 𝑞𝑞 = 1 (𝐿𝐿1-penalty). In addition, if there are factor variables, we
would use group penalty (or regularization) rather 𝐿𝐿1-penalty. This means that all parameters related to a
factor variable will bind together, and they will be selected or removed together.

• The threshold 𝑝𝑝𝑐𝑐 = 5000 by default.

3.1.2 Multi-class classification

For the multi-class classification, 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) is defined as

 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) = ∑ 𝜔𝜔ℓ ∑ �max �0, 2 − �𝐰𝐰𝑖𝑖
𝑥𝑥ℓ − 𝐰𝐰𝑖𝑖

𝑗𝑗�
𝑇𝑇
𝐱𝐱ℓ��

2

𝑗𝑗≠𝑥𝑥𝑙𝑙ℓ∈𝐴𝐴𝑖𝑖 (3.9)

The gradient for 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) is

 𝐬𝐬𝑖𝑖 = 𝜕𝜕𝑐𝑐𝑖𝑖(𝐰𝐰𝑖𝑖)
𝜕𝜕𝐰𝐰𝑖𝑖

= �
⋮

𝜕𝜕𝑐𝑐𝑖𝑖(𝐰𝐰𝑖𝑖)
𝜕𝜕𝐰𝐰𝑖𝑖

𝑖𝑖

⋮
� , 𝑚𝑚 ∈ [1,𝑚𝑚] (3.10)

where

𝜕𝜕𝑐𝑐𝑖𝑖(𝐰𝐰𝑖𝑖)
𝜕𝜕𝐰𝐰𝑖𝑖

𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧∑ −2𝜔𝜔ℓ �2 − �𝐰𝐰𝑖𝑖

𝑥𝑥ℓ − 𝐰𝐰𝑖𝑖
𝑗𝑗�
𝑇𝑇
𝐱𝐱ℓ� 𝐱𝐱ℓℓ,𝑗𝑗

(ℓ,𝑗𝑗)∈𝐴𝐴𝑖𝑖
sv

𝑚𝑚 = 𝑦𝑦ℓ

∑ 2𝜔𝜔ℓ �2 − �𝐰𝐰𝑖𝑖
𝑥𝑥ℓ − 𝐰𝐰𝑖𝑖

𝑗𝑗�
𝑇𝑇
𝐱𝐱ℓ� 𝐱𝐱ℓℓ

(ℓ,𝑗𝑗)∈𝐴𝐴𝑖𝑖
sv

𝑚𝑚 = 𝑗𝑗
 (3.11)

and 𝐵𝐵𝑖𝑖sv = �(ℓ, 𝑗𝑗)|2 − �𝐰𝐰𝑖𝑖
𝑥𝑥ℓ − 𝐰𝐰𝑖𝑖

𝑗𝑗�
𝑇𝑇
𝐱𝐱ℓ > 0, 𝑙𝑙 ∈ 𝐵𝐵𝑖𝑖 , 𝑗𝑗 ∈ [1,𝑚𝑚], 𝑦𝑦ℓ ≠ 𝑗𝑗�, and thoseℓ’s belonging to 𝐵𝐵𝑖𝑖sv which

denotes the index set of support vectors.

The Hessian matrix for 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) is

 𝐇𝐇𝑖𝑖 = �
⋯ ⋮ ⋯
⋯ 𝜕𝜕𝑐𝑐𝑖𝑖(𝐰𝐰𝑖𝑖)

𝜕𝜕𝐰𝐰𝑖𝑖
𝑖𝑖𝜕𝜕𝐰𝐰𝑖𝑖

𝑏𝑏,𝑇𝑇 ⋯

⋯ ⋮ ⋯
� (3.12)

where

𝜕𝜕𝑐𝑐𝑖𝑖(𝐰𝐰𝑖𝑖)

𝜕𝜕𝐰𝐰𝑖𝑖
𝑖𝑖𝜕𝜕𝐰𝐰𝑖𝑖

𝑏𝑏,𝑇𝑇 =

⎩
⎪⎪
⎨

⎪⎪
⎧∑ 2𝜔𝜔ℓ𝐱𝐱ℓ𝐱𝐱ℓ𝑇𝑇ℓ,𝑗𝑗

(ℓ,𝑗𝑗)∈𝐴𝐴𝑖𝑖
sv

𝑚𝑚 = 𝑏𝑏 = 𝑦𝑦ℓ

∑ −2𝜔𝜔ℓ𝐱𝐱ℓ𝐱𝐱ℓ𝑇𝑇ℓ
(ℓ,𝑗𝑗)∈𝐴𝐴𝑖𝑖

sv
𝑚𝑚 = 𝑦𝑦ℓ, 𝑏𝑏 = 𝑗𝑗 or 𝑚𝑚 = 𝑗𝑗, 𝑏𝑏 = 𝑦𝑦ℓ

∑ 2𝜔𝜔ℓ𝐱𝐱ℓ𝐱𝐱ℓ𝑇𝑇ℓ
(ℓ,𝑗𝑗)∈𝐴𝐴𝑖𝑖

sv

𝟎𝟎

𝑚𝑚 = 𝑏𝑏 = 𝑗𝑗
otherwise

 (3.13)

Note that for a record with target value 𝑦𝑦𝑙𝑙 , we need to update the 𝑦𝑦ℓ 's portion of the gradient and the (𝑦𝑦ℓ, 𝑦𝑦ℓ)
block of the Hessian for all indices 𝑗𝑗, where (ℓ, 𝑗𝑗) belongs to 𝐵𝐵𝑖𝑖sv; and for each such a pair we will also update
the 𝑗𝑗's portion of the gradient and (𝑗𝑗, 𝑗𝑗), (𝑗𝑗, 𝑦𝑦ℓ), and (𝑦𝑦ℓ, 𝑗𝑗) blocks of the Hessian.

The initial values can be calculated, no matter it’s large p situation or not, as

𝐰𝐰0 = �
⋮

𝐰𝐰𝑚𝑚,0

⋮
� , where 𝐰𝐰𝑚𝑚,0 = 𝜂𝜂𝐱𝐱�𝑖𝑖

‖𝐱𝐱�𝑖𝑖‖2
2 (3.14)

3.2 Regression

For the regression, 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) is defined as

 𝑓𝑓𝑖𝑖(𝐰𝐰𝑖𝑖) = ∑ 𝜔𝜔𝑙𝑙[max(0, |𝑦𝑦ℓ − 𝐰𝐰𝑖𝑖
𝑇𝑇𝐱𝐱ℓ| − 𝜖𝜖)]2ℓ∈𝐴𝐴𝑖𝑖 (3.15)

The gradient for 𝐰𝐰𝑖𝑖 is

𝐬𝐬𝑖𝑖 = ∑ 2𝜔𝜔ℓ(−𝑦𝑦ℓ + 𝐰𝐰𝑖𝑖
𝑇𝑇𝐱𝐱ℓ + 𝜖𝜖)𝐱𝐱ℓℓ∈𝐴𝐴𝑖𝑖

sv1 + ∑ 2𝜔𝜔ℓ(−𝑦𝑦ℓ + 𝐰𝐰𝑖𝑖
𝑇𝑇𝐱𝐱ℓ − 𝜖𝜖)𝐱𝐱ℓℓ∈𝐴𝐴𝑖𝑖

sv2 (3.16)

The Hessian matrix for 𝐰𝐰𝑖𝑖 is

 𝐇𝐇𝑖𝑖 = ∑ 2𝜔𝜔ℓ𝐱𝐱ℓ𝐱𝐱ℓ𝑇𝑇ℓ∈𝐴𝐴𝑖𝑖
sv1⋃𝐴𝐴𝑖𝑖

sv2 (3.17)

where 𝐵𝐵𝑖𝑖sv1 = {ℓ ∈ 𝐵𝐵𝑖𝑖|𝑦𝑦ℓ − 𝐰𝐰𝑖𝑖
𝑇𝑇𝐱𝐱ℓ − 𝜖𝜖 > 0} and 𝐵𝐵𝑖𝑖sv2 = {ℓ ∈ 𝐵𝐵𝑖𝑖| − 𝑦𝑦ℓ + 𝐰𝐰𝑖𝑖

𝑇𝑇𝐱𝐱ℓ − 𝜖𝜖 > 0} denote the sets of
support vectors.

For the small to medium p situations, the initial values can be the least square solution using all data

 𝐰𝐰0 = (𝐗𝐗𝑇𝑇𝛀𝛀𝐗𝐗 + 𝜆𝜆𝐈𝐈)−𝐗𝐗𝑇𝑇𝛀𝛀𝐲𝐲 (3.18)

For the large p situation, the initial values are computed as follows: generate a random vector 𝐰𝐰� with Gaussian
distribution 𝑁𝑁(𝟎𝟎𝑝𝑝×1, 𝐈𝐈𝑝𝑝×𝑝𝑝), then the initial values are

 𝐰𝐰0 = �𝐰𝐰�
𝑇𝑇𝐗𝐗𝑇𝑇𝛀𝛀𝐲𝐲

𝜆𝜆‖𝐰𝐰�‖22 + ‖𝐗𝐗𝐰𝐰�‖𝛀𝛀2
� �𝐰𝐰� (3.19)

where ‖𝐗𝐗𝐰𝐰�‖𝛀𝛀2 = 𝐰𝐰�𝑇𝑇𝐗𝐗𝑇𝑇𝛀𝛀𝐗𝐗𝐰𝐰�.

Notes:

• The settings of parameters are the same to those given in Section 3.1.

4. Post-estimation statistics
For the task of classification, we provide the probability output; while for the task of regression, we provide the
standard deviation.

4.1 Prediction
For the task of binary classification, the predicted category for a given 𝐱𝐱ℓ (not limit to the training records) is

𝑦𝑦�ℓ = sgn(𝐰𝐰�𝑇𝑇𝐱𝐱ℓ) (4.1)

where sgn(𝑚𝑚) = �
+1 𝑚𝑚 > 0
0 𝑚𝑚 = 0
−1 𝑚𝑚 < 0

.

Note that if 𝐰𝐰�𝑇𝑇𝐱𝐱ℓ = 0, then it is assigned to the majority class. If two classes have the same number of records,
it is assigned the positive class.

For the multi-class classification, the predicted category for given 𝐱𝐱ℓ is given by

𝑦𝑦�ℓ = arg max
𝑗𝑗

(𝐰𝐰�𝑗𝑗)𝑇𝑇𝐱𝐱ℓ (4.2)

Please note that if there are ties, it is assigned to the class with the maximal number of records. If there are still
ties, it is assigned to the class with the smallest superscript.

For the task of regression, the predicted value for given 𝐱𝐱ℓ is

 𝑦𝑦�ℓ = 𝐰𝐰�𝑇𝑇𝐱𝐱ℓ (4.3)

4.2 Performance measure
For the classification task, we will provide the percentage of total correct predictions of the model as well as the
classification table, while for the regression task, we will provide the average square error of the model.

The process of calculating the percentage of total correct predictions of the model and the classification table is

(1) Suppose that 𝑐𝑐(𝑗𝑗, 𝑗𝑗′) is the sum of the frequency for the observations whose actual target category is 𝑗𝑗 (as
row) and predicted target category is 𝑗𝑗′ (as column), 𝑗𝑗, 𝑗𝑗′ = 1,⋯ ,𝑚𝑚 (note that 𝑚𝑚 = 2 for binary
classification), then

𝑐𝑐(𝑗𝑗, 𝑗𝑗′) = �𝜔𝜔ℓ𝐼𝐼(𝑦𝑦ℓ = 𝑗𝑗, 𝑐𝑐(𝒙𝒙ℓ) = 𝑗𝑗′)
𝑛𝑛

ℓ=1

where 𝐼𝐼(∙) is indicator function and 𝑐𝑐(𝒙𝒙ℓ) denotes the predicted category.

(2) Suppose that 𝑝𝑝𝑗𝑗,𝑗𝑗′is the (𝑗𝑗, 𝑗𝑗′)th element of the classification table, which is row percentage, then

𝑝𝑝𝑗𝑗,𝑗𝑗′ = �
𝑐𝑐(𝑗𝑗, 𝑗𝑗′)

∑ 𝑐𝑐(𝑗𝑗, 𝑘𝑘)𝑚𝑚
𝑘𝑘=1

�×100%

(3) The percentage of total correct predictions of the model is

𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑙𝑙 = �
∑ 𝑐𝑐(𝑗𝑗,𝑗𝑗)𝑚𝑚
𝑗𝑗=1

∑ ∑ 𝑐𝑐(𝑗𝑗,𝑗𝑗′)𝑚𝑚
𝑗𝑗′=1

𝑚𝑚
𝑗𝑗=1

�×100% (4.4)

The average square error (ASE) for the regression can be calculated as

𝑀𝑀𝑆𝑆𝑀𝑀 = 1
∑ 𝜔𝜔ℓ𝑛𝑛
ℓ=1

∑ 𝜔𝜔ℓ(𝑦𝑦ℓ − 𝑦𝑦�ℓ)2𝑛𝑛
ℓ=1 (4.5)

4.3 Probability
For the binary classification problem, we provide a probability model to approximate the posterior class
probability. For a given 𝐱𝐱ℓ and 𝑦𝑦�ℓ, we have

�̂�𝑝ℓ = 1
�1 + 𝑚𝑚−𝑥𝑥�ℓ𝐰𝐰�𝑇𝑇𝐱𝐱ℓ�� (4.6)

Notes

• We usually give the probability of being positive class, that is,

�̂�𝑝ℓ = 1
�1 + 𝑚𝑚−𝐰𝐰�𝑇𝑇𝐱𝐱ℓ��

• The probability model is not very accurate, thus it may not make sense to compute gain, lift, etc. based
on the sorting probabilities.

• We do not use Platt (2000) method used by SVM node in SPSS Modeler (Tian and Zhong, 2007). The
reason is that Platt method involves two additional parameters, which needs an iterative optimization
method (Newton-Raphson). This means that multiple data passes are needed to obtain the estimation of
parameters.

For the multi-class classification, the probability for 𝑦𝑦, 𝑦𝑦 = 1, … ,𝑚𝑚, can be calculated as

 Pr(𝑦𝑦|𝐱𝐱ℓ) = 1
�1 + ∑ 𝑚𝑚�𝐰𝐰𝑗𝑗−𝐰𝐰𝑦𝑦�

𝑇𝑇
𝐱𝐱ℓ𝑚𝑚

𝑗𝑗=1,𝑗𝑗≠𝑥𝑥 �� (4.7)

Note that we will provide a probability for each class. That is to say, we have 𝑚𝑚 probabilities for each record.

4.4 Standard deviation

Lin and Wen (2004) pointed out that residuals �̂�𝑟ℓ = 𝑦𝑦ℓ − 𝐰𝐰�𝑇𝑇𝐱𝐱ℓ can be fit for a Laplace distribution with zero
mean, which is given as follow

Prob(𝑟𝑟) = 1
2𝜎𝜎
𝑚𝑚−

|𝑖𝑖|
𝜎𝜎 (4.8)

Here 𝜎𝜎 > 0 is a scale parameter.

Assume that �̂�𝑟𝑖𝑖 are independent, the scale parameter can be estimated by ML method, that is, the 𝜎𝜎� is

𝜎𝜎� = 1
∑ 𝜔𝜔ℓ𝑛𝑛
ℓ=1

∑ 𝜔𝜔ℓ|�̂�𝑟ℓ|𝑛𝑛
𝑙𝑙=1 (4.9)

But the ML method will be affected by some “very extreme” �̂�𝑟ℓ and causes inaccurate estimation of 𝜎𝜎. One
improved method is to estimate the scale parameter by discarding �̂�𝑟ℓ which exceed ±5𝜎𝜎�. The other method is to
use median of |�̂�𝑟ℓ| as an estimation of 𝜎𝜎, especially when there is a large number of examples. The first method
is accurate but needs two data passes, while the second method needs only one data pass but it is approximate.
We let the software engineers to decide which method is used.

Thus, for any record 𝐱𝐱ℓ, the confidence interval for the prediction of 𝑦𝑦ℓ with 100(1−α)% confidence is given by

[𝑦𝑦�ℓ ± 𝜂𝜂1−𝛼𝛼/2] (4.10)

where 𝜂𝜂𝑝𝑝 is the (100p)th percentile of the Laplace distribution with zero mean and standard deviation 𝜎𝜎�.

References
[37]. Zhong, W. (2014), Algorithm: ADMM, IBM SPSS Internal Document.

[38]. Fan et al. (2008), “LIBLINEAR: A library for large linear classification”, Journal of Machine Learning
Research, 9, 1871-1874.

[39]. Platt, (2000), “Probabilistic outputs for support vector machines and comparison to regularized likelihood
methods”: Advances in Large Margin Classifiers. Cambridge, MA.

[40]. Tian, G. and Zhong, W. (2007), Algorithm: SVM, SPSS Internal Document.

[41]. Lin C.J. and Wen R.C. Simple probabilistic predictions for support vector regression. Technical report,
Department of Computer Science, National Taiwan University, 2004.

[42]. Weston, J. and Watkins, C., Support vector machine for multi-class pattern recognition, ESANN’1999,
219-224.

Random Trees Modeling Algorithms

1. Introduction
Random Trees is a powerful new approach for strong (accurate) predictive models. It is comparable and
sometimes better than other state-of-the-art methods in classification or regression problems.

Random Trees is an ensemble model consisting of multiple CART-like trees. Each tree grows on a bootstrap
sample which is obtained by sampling the original data cases with replacement. Moreover, during tree
growth, for each node the best split variable is selected from a specified smaller number of variables which
are drawn randomly from the full set of variables. And each tree grows to the largest extent possible. There
is no pruning. In scoring, random trees combines individual tree scores by majority voting (for
classification) or average (for regression).

Because each tree model can be built independently, random trees are very suitable to be applied in
distributed setting. However, a big challenge is to handle massive data, since building even a single tree is
expensive in this case. There are several implementations which have addressed this issue. One
implementation in Apache Mahout just partitions the data and builds trees on smaller data blocks. Clearly
this method could result in weak and biased trees because data blocks could have biased distributions from
the training data. Another implementation on Apache Spark follows Google’s PLANET implementation
which can build single tree models efficiently on massive data. Spark has the ability to cache data in
memory for interactive data analysis. This implementation has benefited from this ability greatly. For
example, it can remember the last node that a case belongs to. This speeds up the process considerably since
it does not need to pass large trees to executors any more.

Our implementation is based on Apache Hadoop framework. We also adopt Google’s PLANET
implementation to build single trees. But unfortunately, Hadoop does not have the ability of caching data
for interactive data analysis. We will have to resort to other solutions to achieve desired performance.
Meanwhile, the challenging issues about large data, imbalance data, etc., will also be considered in our
implementation.

In this chapter, we describe the algorithms used to build a random trees model under the map-reduce
framework. In addition to generating the predictive solution, we also provide an enhanced set of evaluation
and diagnostic features enabling insight, interactivity, and an improved overall user experience as required
by the Analytic Catalyst and other applications.

The document is organized as follows. We first declare some general notes about algorithms, development,
etc. Then we define the notations used in the document. In section 4, we present the general workflow of the
random trees engine. Operations for data pre-processing are introduced in section 5, along with some
summary statistics that are required for model building. Section 6 describes the key components in model
building. In section 7, we present various measures used for model evaluation and model diagnostics, and
they will be computed along with the process of model building. Insights and interestingness are also
derived. Finally section 8 shows how to score new cases.

2. Notes
The Random Trees engine is implemented in a parallel distributed algorithm within Analytic Engine
(AE), based on the map-reduce framework.

3. Notations
The following notations are used throughout the document unless otherwise stated:

𝑌𝑌 Dependent variable or target. If 𝑌𝑌 is categorical with 𝐽𝐽 categories, its
set of categories is given by 𝐶𝐶 = {1, … , 𝐽𝐽}.

𝑋𝑋𝑚𝑚, 𝑚𝑚 = 1, … ,𝑀𝑀 Set of all predictor variables. If 𝑋𝑋𝑚𝑚 is categorical with 𝐼𝐼𝑚𝑚 categories, its
categories are given by 𝑀𝑀 = {1, … , 𝐼𝐼𝑚𝑚}.

ℋ = �𝑥𝑥𝑚𝑚,𝑘𝑘, 𝑦𝑦𝑘𝑘�𝑘𝑘=1
𝐾𝐾 Complete set of training cases

ℋ𝑞𝑞 , 𝑞𝑞 = 1, … ,𝑄𝑄 Bootstrap sample 𝑞𝑞, 𝑞𝑞 = 1, … ,𝑄𝑄
ℋ(𝑡𝑡) Cases that belong to node 𝑡𝑡
𝑤𝑤𝑘𝑘 Analysis weight associated with case 𝑘𝑘

𝑓𝑓𝑘𝑘 Frequency weight associated with case 𝑘𝑘. Non-integral positive value
is rounded to its nearest integer.

Ι(𝑚𝑚 = 𝑏𝑏) Indicator function taking value 1 when 𝑚𝑚 = 𝑏𝑏 and 0 otherwise.
𝜋𝜋(𝑗𝑗), 𝑗𝑗 = 1, … , 𝐽𝐽 Priority probability of 𝑌𝑌 = 𝑗𝑗, 𝑗𝑗 = 1, … , 𝐽𝐽
𝑝𝑝(𝑗𝑗, 𝑡𝑡), 𝑗𝑗 = 1, … , 𝐽𝐽 Probability of a case in class 𝑗𝑗 and node 𝑡𝑡
𝑝𝑝(𝑡𝑡) Probability of a case in node 𝑡𝑡
𝑝𝑝(𝑗𝑗|𝑡𝑡), 𝑗𝑗 = 1, … , 𝐽𝐽 Probability of a case in class 𝑗𝑗 given that it falls into node 𝑡𝑡
𝐶𝐶(𝑖𝑖|𝑗𝑗) Cost of miss-classifying a class 𝑗𝑗 case as a class 𝑖𝑖 case

4. General Workflow
The Random Trees engine builds random trees through several stages in sequence. In each stage, one or
more map-reduce jobs will be launched. The general workflow is typically as follows.

Figure 1. General workflow

5. Data Pre-processing
The Random Trees engine supports distributed data in column-based format. It requires at least one
predictor that can be flag, ordinal categorical, nominal categorical, or continuous, and a single target that
can be categorical or continuous. Flag or ordinal target is considered as categorical.

5.1. Filtering Variables

Based on the summary statistics produced by DE, the Random Trees engine will perform an initial analysis
and determine the variables which are not useful for modelling.

Specifically, the following variables will be excluded.

Rule Status Comment
1 Identity variables Required
2 Constant variables Required
3 The percentage of missing values in any variable

is larger than 𝛿𝛿 (default 0.7)
Required

4 One category makes up the overwhelming
majority of total population above a given
percentage threshold 𝛿𝛿 (default 95%)

Required

5 The number of categories of a categorical
variable is larger than 𝛿𝛿 (default 49)

Required

6 The absolute coefficient of variation of a
continuous variable is smaller than 𝛿𝛿 (default
0.05)

Required

7 Date/time variables Required

5.2. Transformations

The Random Trees engine supports frequency/analysis weights. Real frequency weights are rounded to the
nearest integer.

System/user missing and invalid values are all considered as missing. If the target of a case is missing, this
case will be ignored in the analysis. If all predictor variables of a case are missing, this case will also be
ignored. If the analysis or frequency weight is missing, zero, or negative, the case is ignored. Otherwise,
missing values will be imputed with mean for a continuous predictor or mode for a categorical predictor.

For each continuous predictor, a list of points 𝑝𝑝1, 𝑝𝑝2, … , 𝑝𝑝𝐼𝐼𝑚𝑚 (in ascending order) is determined by the tiling
method, i.e. equal-frequency binning, which has been implemented by the Descriptive engine. Notice that
the transformation rule of equal-frequency binning will not be actually applied on the variables. Instead, it
just provides the set of bin boundaries that will be checked as candidate splitting points. In default, we set
the number of bins as 10, which means we will have 9 splitting points to check for each continuous variable.

Another transformation is to encode categorical predictors, that is, to map category values into integer. This
transformation is particularly useful for string predictors.

5.3. Summary Statistics

The following summary statistics are required and computed by DE:

 Total number of cases
 Distribution of target categories (required if the option of imbalance classification is turned on)
 Interestingness indexes of the associations between predictors and target (required if the option of

weighted sampling of predictors is turned on)

6. Building Base Trees
A specified number of base trees will be built in parallel. Firstly, we initialize each tree with a root node.
Then a series of map-reduce jobs will be used to grow the trees, and each of the jobs will be responsible for
expanding a particular set of tree nodes.

For a certain map-reduce job, we suppose that the involved trees are 𝑇𝑇𝑞𝑞, 𝑞𝑞 ∈ ℚ, where ℚ is the set of labels of
involved trees, and the set of tree nodes to expand 𝑀𝑀 = {𝑡𝑡𝑞𝑞,𝑟𝑟|𝑞𝑞 ∈ ℚ, 𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞 , }, where 𝑅𝑅𝑞𝑞 is the set of node IDs
in 𝑇𝑇𝑞𝑞 which are to expand. For example, in the first map-reduce job, base trees 𝑇𝑇𝑞𝑞 are only with root nodes
and the set of tree nodes 𝑀𝑀 contains root nodes as well.

Notice that when creating the root nodes 𝑡𝑡𝑞𝑞,0 we will have an initial estimation of the number of training
cases, as follows.

�𝑡𝑡𝑞𝑞,0� = �
𝑁𝑁𝑗𝑗𝑚𝑚 ∗ 𝐽𝐽, in case of imbalance classification
𝑁𝑁 ∗ 𝛼𝛼, otherwise

,

where 𝑗𝑗𝑚𝑚 is the minority class, 𝛼𝛼 is the ratio for under-bagging, and

𝑁𝑁 = ∑ 𝑓𝑓𝑘𝑘𝐾𝐾
𝑘𝑘=1 ,

𝑁𝑁𝑗𝑗𝑚𝑚 = ∑ 𝑓𝑓𝑘𝑘I(𝑦𝑦𝑘𝑘 = 𝑗𝑗𝑚𝑚)𝐾𝐾
𝑘𝑘=1 .

6.1. Generating Bootstrap Samples

Base trees are built on 𝑄𝑄 bootstrap samples. To generate bootstrap samples, cases will be sampled with
replacement. But notice that frequencies will be produced on the fly for each case at the time when it is
processed.

In a regular bootstrap sample, the sampling rate for each case 𝑘𝑘 is 𝑓𝑓𝑘𝑘/𝑁𝑁. Then the times replicated for case 𝑘𝑘
will be 𝑟𝑟𝑟𝑟. 𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏𝑚𝑚(𝑁𝑁 ∗ 𝛼𝛼, 𝑓𝑓𝑘𝑘/𝑁𝑁).

If the option of imbalance classification is turned on, random trees will be built on balanced bootstrap
samples. We achieve this by adjusting the sampling rates specific for each target category. Suppose that
the 𝐽𝐽 target categories are with counts of 𝑁𝑁1,𝑁𝑁2, … ,𝑁𝑁𝐽𝐽, respectively. Let 𝑗𝑗𝑚𝑚 = 𝑚𝑚𝑟𝑟𝑔𝑔min {𝑁𝑁𝑗𝑗}. Then for each
case 𝑘𝑘 with target category 𝑗𝑗, the sampling rate is 𝑓𝑓𝑘𝑘/𝑁𝑁𝑗𝑗, and the times replicated for case 𝑘𝑘 will
be 𝑟𝑟𝑟𝑟. 𝑏𝑏𝑖𝑖𝑛𝑛𝑏𝑏𝑚𝑚(𝑁𝑁𝑗𝑗𝑚𝑚 , 𝑓𝑓𝑘𝑘/𝑁𝑁𝑗𝑗). This is equivalent to drawing a bootstrap sample from the minority category and
drawing randomly the same number of cases, with replacement, from the other categories.

Denote the generated bootstrap frequencies as 𝑓𝑓𝑘𝑘
𝑞𝑞, 𝑘𝑘 = 1,2, … ,𝐾𝐾, 𝑞𝑞 = 1,2, … ,𝑄𝑄.

Notice that drawn bootstrap samples should be identical across different map-reduce jobs. This can be
achieved by using the same random seeds across different jobs. But notice that the seeds should be different
across mappers within a single job in order to get different bootstrap frequencies in each data split.

6.2. Defining <key, value> Pairs

Pairs of <key, value> indicate the minimal unit of tasks. They are defined and generated by Mappers, and
passed to Reducers.

One definition of keys is by tree id, node id, and predictor id. Such keys are defined when the condition of
in-memory building is not satisfied.

Given the set 𝑀𝑀 = {𝑡𝑡𝑞𝑞,𝑟𝑟|𝑞𝑞 ∈ ℚ, 𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞}, for each 𝑡𝑡𝑞𝑞,𝑟𝑟, we randomly select 𝑀𝑀𝑖𝑖 (default value is ⌊𝑠𝑠𝑞𝑞𝑟𝑟𝑡𝑡(𝑀𝑀)⌋ for
classification and ⌊𝑀𝑀/3⌋ for regression) predictors from the total set of predictors. If the option of weighted
sampling is turned off, each predictor will be selected with equal probability. Otherwise, the selection
probabilities will be 𝐼𝐼𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑖𝑖

𝑚𝑚

∑ 𝐼𝐼𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑖𝑖
𝑚𝑚 , where 𝐼𝐼𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑚𝑚𝑚𝑚 is the interestingness index corresponding to predictor 𝑚𝑚, as

computed in section 5.3.

Notice that different random seeds should be used in order to make the selection of predictors different
across nodes, but on the other hand the selection should be the same for each node across all mappers. For
this purpose, we define random seed as a Hash function of tree id and node id.

Denote the set of selected predictors for 𝑡𝑡𝑞𝑞,𝑟𝑟 as 𝑋𝑋𝑞𝑞,𝑟𝑟. Then the keys are defined as triplets of< 𝑞𝑞, 𝑟𝑟,𝑚𝑚 >, 𝑞𝑞 ∈
ℚ, 𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞, and 𝑚𝑚 ∈ 𝑋𝑋𝑞𝑞,𝑟𝑟.

The value corresponding to a triplet key < 𝑞𝑞, 𝑟𝑟,𝑚𝑚 > is a set of statistics used to determine the best splitting
point. These statistics are summarized in appendix A.

The other form of keys is to define them as pairs of < 𝑞𝑞, 𝑟𝑟 >, 𝑞𝑞 ∈ ℚ, and 𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞′ , where 𝑅𝑅𝑞𝑞′ denotes the set of
nodes in tree 𝑞𝑞 which satisfy the condition of in-memory building. The value corresponding to such keys is
just the cases of interest including all predictors, target, analysis weight 𝑤𝑤𝑘𝑘 , and frequency weight 𝑓𝑓𝑘𝑘

𝑞𝑞.

Notice that if the option of correcting importance bias is turned on, the value will include two sets of
statistics, one computed on training cases while the other computed on validation cases. These statistics can
be computed by setting ℵ(𝑞𝑞, 𝑟𝑟) = ℓ𝑠𝑠(𝑞𝑞, 𝑟𝑟) and ℵ(𝑞𝑞, 𝑟𝑟) = ℊ𝑠𝑠(𝑞𝑞, 𝑟𝑟) in the calculation of local statistics,
where ℓ𝑠𝑠(𝑞𝑞, 𝑟𝑟) and ℊ𝑠𝑠(𝑞𝑞, 𝑟𝑟) denote the training and validation cases in data split 𝑠𝑠 which fall in node 𝑡𝑡𝑞𝑞,𝑟𝑟,
respectively.

Notice that the number of distinct cases in ℓ𝑠𝑠(𝑞𝑞, 𝑟𝑟) and ℊ𝑠𝑠(𝑞𝑞, 𝑟𝑟) will also be computed.

6.3. Partitioning OOB Cases

Bootstrap sample is generated by sampling each case with replacement. That means some cases will be
selected in the sample while the others are not included. We call the cases that are not included out-of-bag
(OOB) cases. Clearly, OOB cases are defined for a particular bootstrap sample. Given multiple bootstrap
samples, a case can be a training case for some trees, and it can be an OOB case for other trees.OOB cases
will be partitioned into validation data and testing data if the option of correcting importance bias is turned
on. To partition OOB cases, instead of generate separate partitions for each tree, we partition the data once
into validataion and testing. In this way, each case can be scored by a complete set of trees that take it as an
OOB case.

The size of the validation data could be very large if users take a small ratio 𝛼𝛼 for under-bagging. This is
likely to incur performance issue for tree growth, particularly for in-memory building as described later. In
this regard, we propose the following procedure to limit its size:

1. Let 𝐾𝐾� = 𝐾𝐾 ∗ 𝛼𝛼 ∗ 63% be the expected number of distinct cases used by a single bootstrap sample.
2. Suppose the initial sampling rate for validation data is 𝛽𝛽 (default 50%). Then we let the actual

sampling rate be 𝛽𝛽� = 𝑀𝑀𝐼𝐼𝑁𝑁(𝛽𝛽,𝐾𝐾�/𝐾𝐾).
3. For each case in the data, determine whether it is a validation case or a testing case according to the

actual sampling rate.
The option of correcting importance bias is disabled for imbalance classification.

6.4. Processing Each Case

Each mapper handles a particular local data split, and cases in the data split are processed sequentially.

Each case can be used by any base tree with three roles, i.e. training, validation, or testing. If the case has a
non-zero bootstrap frequency, it will be considered as a training case for the involved tree. Otherwise, it will
be used as either validation or testing, depending on how the OOB sample is partitioned for the base tree.

For each training or validation case, we will pass the tree and find the node that the case falls into. Then we
will update the training or validation values collected on the data split for related keys.

Specifically, the procedure is as follows.

ProcessingCase()
Inputs:

− 𝑇𝑇𝑞𝑞, 𝑞𝑞 ∈ ℚ // Current base trees
− 𝑡𝑡𝑞𝑞,𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞 ,𝑞𝑞 ∈ ℚ // Set of nodes to expand
− 𝑋𝑋𝑞𝑞,𝑟𝑟, 𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞 , 𝑞𝑞 ∈ ℚ // Set of predictors selected for 𝑡𝑡𝑞𝑞,𝑟𝑟
− < 𝑘𝑘𝑚𝑚𝑦𝑦, 𝑟𝑟𝑚𝑚𝑙𝑙𝑣𝑣𝑚𝑚 >𝑘𝑘−1 // Current <key, value> pairs
− Case 𝑘𝑘 // A valid case
− Sampling rate(s)

// Generating bootstrap frequencies, and partitioning OOB samples
Outputs:

− < 𝑘𝑘𝑚𝑚𝑦𝑦, 𝑟𝑟𝑚𝑚𝑙𝑙𝑣𝑣𝑚𝑚 >𝑘𝑘 // New <key, value> pairs
Procedure:
For each tree 𝑇𝑇𝑞𝑞, 𝑞𝑞 ∈ ℚ, repeat the follows:
1. Generate bootstrap frequencies 𝑓𝑓𝑘𝑘

𝑞𝑞, as described in section 6.1;
2. If (𝑓𝑓𝑘𝑘

𝑞𝑞 > 0),{
 Pass tree 𝑇𝑇𝑞𝑞, and get node 𝑡𝑡𝑞𝑞,𝑟𝑟 that case 𝑘𝑘 falls in;
 If (𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞), update < 𝑘𝑘𝑚𝑚𝑦𝑦, 𝑟𝑟𝑚𝑚𝑙𝑙𝑣𝑣𝑚𝑚 >𝑘𝑘−1 with case 𝑘𝑘;
 }
3. Else if the option of importance correction is turned on,{
 Determine whether case 𝑘𝑘 is a validation case using sampling rate 𝛽𝛽�;
 If yes,{

Pass tree 𝑇𝑇𝑞𝑞, and get node 𝑡𝑡𝑞𝑞,𝑟𝑟 that case 𝑘𝑘 falls in;
 If (𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞), update < 𝑘𝑘𝑚𝑚𝑦𝑦, 𝑟𝑟𝑚𝑚𝑙𝑙𝑣𝑣𝑚𝑚 >𝑘𝑘−1 with case 𝑘𝑘;
 }
 }

6.5. Splitting Nodes

We first introduce the splitting criterion and also the impurity measure which will be used to split nodes.

For a categorical target, the Gini impurity measure is

𝑖𝑖�𝑡𝑡𝑞𝑞,𝑟𝑟� = ∑ 𝐶𝐶(𝑖𝑖|𝑗𝑗)𝑝𝑝�𝑖𝑖|𝑡𝑡𝑞𝑞,𝑟𝑟�𝑝𝑝(𝑗𝑗|𝑡𝑡𝑞𝑞,𝑟𝑟)𝑖𝑖,𝑗𝑗 ,

where we let

𝑝𝑝�𝑗𝑗, 𝑡𝑡𝑞𝑞,𝑟𝑟� =
𝜋𝜋(𝑗𝑗)𝑁𝑁𝑤𝑤,𝑗𝑗(𝑖𝑖𝑞𝑞,𝑖𝑖)

𝑁𝑁𝑤𝑤,𝑗𝑗
,

𝑝𝑝�𝑡𝑡𝑞𝑞,𝑟𝑟� = ∑ 𝑝𝑝�𝑗𝑗, 𝑡𝑡𝑞𝑞,𝑟𝑟�𝑗𝑗 ,

𝑝𝑝�𝑗𝑗|𝑡𝑡𝑞𝑞,𝑟𝑟� = 𝑝𝑝(𝑗𝑗,𝑖𝑖𝑞𝑞,𝑖𝑖)
𝑝𝑝(𝑖𝑖𝑞𝑞,𝑖𝑖)

.

And the splitting criterion is the decrease of the Gini impurity measure defined as

∆𝑖𝑖�𝑝𝑝, 𝑡𝑡𝑞𝑞,𝑟𝑟� = 𝑖𝑖�𝑡𝑡𝑞𝑞,𝑟𝑟� − 𝑃𝑃𝐿𝐿𝑖𝑖(𝑡𝑡𝐿𝐿) − 𝑃𝑃𝑅𝑅𝑖𝑖(𝑡𝑡𝑅𝑅),

where 𝑃𝑃𝐿𝐿 and 𝑃𝑃𝑅𝑅 are probabilities of sending a case to the left child node 𝑇𝑇𝐿𝐿 and to the right child node 𝑇𝑇𝑅𝑅
respectively. They are estimated as 𝑃𝑃𝐿𝐿 = 𝑝𝑝(𝑖𝑖𝐿𝐿)

𝑝𝑝�𝑖𝑖𝑞𝑞,𝑖𝑖�
, 𝑃𝑃𝑅𝑅 = 𝑝𝑝(𝑖𝑖𝑅𝑅)

𝑝𝑝�𝑖𝑖𝑞𝑞,𝑖𝑖�
.

Notice that when user-specified costs are involved, the altered priors can optionally be used to replace the
priors. The altered prior is defined as 𝜋𝜋′(𝑗𝑗) = 𝐶𝐶(𝑗𝑗)𝜋𝜋(𝑗𝑗)

∑ 𝐶𝐶(𝑗𝑗)𝜋𝜋(𝑗𝑗)𝑗𝑗
, where 𝐶𝐶(𝑗𝑗) = ∑ 𝐶𝐶(𝑖𝑖|𝑗𝑗)𝑖𝑖 .

For a continuous target, the splitting criterion ∆𝑖𝑖�𝑝𝑝, 𝑡𝑡𝑞𝑞,𝑟𝑟� = 𝑖𝑖�𝑡𝑡𝑞𝑞,𝑟𝑟� − 𝑃𝑃𝐿𝐿𝑖𝑖(𝑡𝑡𝐿𝐿) − 𝑃𝑃𝑅𝑅𝑖𝑖(𝑡𝑡𝑅𝑅) is used with the Least

Squares Deviation (LSD) impurity measures 𝑖𝑖�𝑡𝑡𝑞𝑞,𝑟𝑟� = 𝑉𝑉�𝑡𝑡𝑞𝑞,𝑟𝑟�, where we let 𝑃𝑃𝐿𝐿 = 𝑁𝑁𝑤𝑤(𝑖𝑖𝐿𝐿)
𝑁𝑁𝑤𝑤(𝑖𝑖𝑞𝑞,𝑖𝑖)

, 𝑃𝑃𝑅𝑅 = 𝑁𝑁𝑤𝑤(𝑖𝑖𝑅𝑅)
𝑁𝑁𝑤𝑤(𝑖𝑖𝑞𝑞,𝑖𝑖)

.

For node 𝑡𝑡𝑞𝑞,𝑟𝑟 and predictor 𝑋𝑋𝑚𝑚, we denote the set of splitting points as Ω𝑚𝑚. Then we find the best splitting
point of 𝑋𝑋𝑚𝑚 by 𝑝𝑝𝑋𝑋𝑚𝑚 = 𝑚𝑚𝑟𝑟𝑔𝑔 max

𝑝𝑝∈Ω𝑚𝑚
�∆𝑖𝑖(𝑝𝑝, 𝑡𝑡𝑞𝑞,𝑟𝑟)�, and we let ∆𝑖𝑖𝑋𝑋𝑚𝑚 = ∆𝑖𝑖(𝑝𝑝𝑋𝑋𝑚𝑚 , 𝑡𝑡𝑞𝑞,𝑟𝑟), 𝑚𝑚 ∈ 𝑋𝑋𝑞𝑞,𝑟𝑟 .

Selecting the best splitting point from Ω𝑚𝑚 for a continuous or ordinal predictor is efficient because there are
only a few points to check. But for a categorical predictor with many categories, the searching is nontrivial.
Instead of making an exhaustive search, we find the splitting point using the optimal partitioning algorithm
proposed by Chou (1991), as described in appendix B.

Notice that when computing 𝑝𝑝𝑋𝑋𝑚𝑚 and ∆𝑖𝑖𝑋𝑋𝑚𝑚, we set ℵ(𝑞𝑞, 𝑟𝑟) = ℓ𝑠𝑠(𝑞𝑞, 𝑟𝑟), that is to compute them on training
cases. The node will be split by the point 𝑝𝑝𝑋𝑋𝑚𝑚

∗ which corresponds to max
𝑚𝑚∈𝑋𝑋𝑞𝑞,𝑖𝑖

�∆𝑖𝑖𝑋𝑋𝑚𝑚�.

If the option of correcting importance bias is turned on, we will also compute the splitting criterion on
validation cases for the splitting point 𝑝𝑝𝑋𝑋𝑚𝑚. We denote this splitting criterion as ∆𝑖𝑖𝑋𝑋𝑚𝑚

′ . Then the node will be
split by the point 𝑝𝑝𝑋𝑋𝑚𝑚

∗ which corresponds to max
𝑚𝑚∈𝑋𝑋𝑞𝑞,𝑖𝑖

�∆𝑖𝑖𝑋𝑋𝑚𝑚
′ �. Here, the splitting criterion is recomputed for the

OOB cases based on the splitting point obtained from the training data at each node. Furthermore, we will
use only the OOB cases later to compute the importance measure. The principle here is similar to a
conditional inference framework. The predictor selection criterion and splitting criterion are separated.
Please refer to Deng (2011) for details.

6.6. In-Memory Building

As tree induction progresses, the size of the input dataset for many nodes becomes small enough to fit in
memory. At any such point, rather than continuing tree induction using map-reduce jobs, we load the
training cases into memory and complete sub-tree construction. We call this process in-memory building.

Suppose that the number of distinct training cases that fall in node 𝑡𝑡𝑞𝑞,𝑟𝑟 is |ℓ(𝑞𝑞, 𝑟𝑟)|. Then whenever the
condition |ℓ(𝑞𝑞, 𝑟𝑟)| < 𝐾𝐾𝑖𝑖𝑛𝑛 is satisified, in-memory building will be triggered, where 𝐾𝐾𝑖𝑖𝑛𝑛 is a specified
threshold with default 5,000. Mappers simply output all the cases that belong to the node 𝑡𝑡𝑞𝑞,𝑟𝑟 as values in
the <key,values> pairs according to the description in 6.2. Reducer that collects all the cases for the given
node will perform all subsequent node splitting through the following steps.

InMemoryBuilding()
Inputs:

− ℓ(𝑞𝑞, 𝑟𝑟) // Training cases that fall in node 𝑡𝑡𝑞𝑞,𝑟𝑟
− ℊ(𝑞𝑞, 𝑟𝑟) // Required to correct importance bias
− 𝑇𝑇𝑞𝑞 // Current base tree 𝑇𝑇𝑞𝑞

Outputs:
− 𝑇𝑇𝑞𝑞 // Updated base tree 𝑇𝑇𝑞𝑞

Procedure:
A tree is grown starting from node 𝑡𝑡𝑞𝑞,𝑟𝑟 by repeatedly using the following steps on
each node:
1. Randomly select 𝑀𝑀𝑖𝑖 predictors from the total set of predictors;
// Using simple or weighted sampling depending on the setting.
2. Find the best split for each selected predictor using data ℓ(𝑞𝑞, 𝑟𝑟);
// For each continuous predictor, rather than checking a limited number of
// points, we sort and check all its values from the smallest to the largest.
3. If the option of correcting importance bias is turned on, recompute the
splitting criterion for each predictor’s best split using data ℊ(𝑞𝑞, 𝑟𝑟);
4. Among the best splits found in step 2, choose the one that maximizes the
splitting criterion;
5. Split the node using its best split found in step 4 if the stopping rules 1-4
in section 6.7 are not satisfied;

6.7. Stopping Rules

Stopping rules control if the tree growing process should be stopped or not. The following stopping rules
are used:

1. If a node becomes pure; that is, all cases in a node have identical values of the target variable, the node
will not be split.

2. If all cases in a node have identical values for each selected predictor, the node will not be split.
3. If the current tree depth reaches the user-specified maximum tree depth limit value, the node will not

be split.
4. If the split of a node results in a child node whose node size is less than the user-specified minimum

child node size value, the node will not be split.
5. If the number of nodes in the current tree exceeds the maximum number (default 10,000), the involved

tree will stop growing.
6. If the accuracy of the random trees is not improved any more, the modeling process will stop. The

accuracy measure is R-square for regression, classification accuracy for regular classification, and
Gmean for imbalance classification.

The following procedure is used to implement stopping rule 6:

1. Let 𝛿𝛿 = 1% and trials=10;
2. Let the ensemble contain the first tree 𝑇𝑇1 that has grown completely, and denote its accuracy as 𝑀𝑀𝑐𝑐𝑐𝑐;
3. Let Count=0 and BestAcc=𝑀𝑀𝑐𝑐𝑐𝑐;
4. Continue to check if there are new trees that have grown completely. If yes, suppose the new trees

are 𝑇𝑇𝑞𝑞1 ,𝑇𝑇𝑞𝑞1+1, … ,𝑇𝑇𝑞𝑞2 ;
5. For i=𝑞𝑞1: 𝑞𝑞2, {

Add the 𝑖𝑖th tree to the ensemble, and compute the new accuracy 𝑀𝑀𝑐𝑐𝑐𝑐′;
Count++;
If 𝑀𝑀𝑐𝑐𝑐𝑐′>BestAcc, { BestAcc=𝑀𝑀𝑐𝑐𝑐𝑐′; BestPos=Count;}
If Count==trials, {
 If (BestAcc-𝑀𝑀𝑐𝑐𝑐𝑐)/𝑀𝑀𝑐𝑐𝑐𝑐> 𝛿𝛿, {
 𝑀𝑀𝑐𝑐𝑐𝑐=BestAcc;
 Count=Count-BestPos;
 }
 Else, return the ensemble with the best accuracy;
}

}
6. Go to step 4;

In random trees, we allow base trees with much larger depth, e.g. 10. The minimum node size is one for
classification, and five for regression. Alternatively, users can also set the minimum node size by percentage
values, say one percent with respect to the root node.

6.8. Controller Design

The controller maintains a set of tree nodes that need to be expanded. In particular, we use a stack to
manage these nodes in order to support stepwise random trees building. The controller schedules a series of
map-reduce jobs off of the stack until the stack is empty. Each job is responsible for expanding a specified
number of nodes. When a job is finished, the stack is updated with the new nodes that can now be
expanded. Notice that when some nodes are expanded by in-memory building, no updates are made to the
stack because tree induction at such nodes is complete.

Specifically, the controller does as follows:

1. Initialize the stack to be empty.
2. Push the root nodes belonging to tree 𝑇𝑇𝑄𝑄 ,𝑇𝑇𝑄𝑄−1, … ,𝑇𝑇1 into the stack respectively.
3. Let 𝑁𝑁𝑀𝑀 nodes off the stack. If there are multiple data splits, run a mixture pattern of map-reduce job to

expand the nodes; Otherwise, run a task parallel pattern of map-reduce job. See sections 6.8.1, 6.8.2,
and 6.8.3 for details.

4. Meanwhile, checking if there are new evaluation measures available. If yes, check stopping rule 6. If the
rule is satisfied, go to step 10. Otherwise, update the best ensemble model and report particular
evaluation measures.

5. For some new nodes, if the involved trees satisfy stopping rule 5, such new nodes will not enter the
stack, and the involved trees are considered to be fully grown.

6. For remaining new nodes, we sort them by tree labels, 𝑞𝑞 = 1,2, … ,𝑄𝑄. And push the nodes belonging to
tree 𝑇𝑇𝑄𝑄 ,𝑇𝑇𝑄𝑄−1, … ,𝑇𝑇1 into the stack respectively.

7. Check if there are a specified number of new trees (default 5) that have been fully grown. If yes, we will
add the new trees one by one into the current ensemble model, and compute evaluation measures for
the new ensemble models by launching a map-reduce job that runs separately and in parallel with the
next job for tree growth.

8. Repeat step 3 until the stack is empty.
9. If the process is interrupted, return the ensemble model that consists of all fully grown trees.
10. Perform post-modelling analysis, including model evaluation if there are new trees generated but not

evaluated, and model interpretation.
Model evaluation measures and interpretations will be described below in section 7.

6.8.1. Mixture Pattern of Map-Reduce Job

Mixture pattern of map-reduce job, as illustrated in Figure 2, is a mixture of data parallel and task parallel
jobs.

Figure 2. An example of mixture pattern of map-reduce job

In this example, mapper 1 and mapper 2 share the same data split, but they are fed with different settings.
In our case, we let them generate and handle different bootstrap samples or trees.

Given the trees 𝑇𝑇𝑞𝑞 , 𝑞𝑞 ∈ ℚ, that are involved in a certain job for tree growth, and the set of tree nodes to
expand 𝑀𝑀 = {𝑡𝑡𝑞𝑞,𝑟𝑟|𝑟𝑟 ∈ 𝑅𝑅𝑞𝑞 , 𝑞𝑞 ∈ ℚ}, we apply the following procedure to allocate the trees to mappers that are
working on the same data split:

1. Sort trees 𝑇𝑇𝑞𝑞 according to tree labels in ascending order. Suppose the sorted trees are 𝑇𝑇(1), 𝑇𝑇(2),…, 𝑇𝑇(|ℚ|),
and the sets of nodes to expand are 𝑅𝑅(1), 𝑅𝑅(2),…, 𝑅𝑅(|ℚ|);

2. Let 𝑀𝑀𝐼𝐼𝑁𝑁𝑚𝑚 = 20 and 𝑀𝑀𝐼𝐼𝑁𝑁𝑛𝑛 = 10;
// 𝑀𝑀𝐼𝐼𝑁𝑁𝑚𝑚 is the minimum number of mappers, default 20
// 𝑀𝑀𝐼𝐼𝑁𝑁𝑛𝑛 is the minimum number of nodes handled by a mapper, default 10

3. Get the number of data spits 𝑆𝑆;
4. If 𝑆𝑆 < 𝑀𝑀𝐼𝐼𝑁𝑁𝑚𝑚, {

 Compute 𝑛𝑛𝑣𝑣𝑚𝑚 = min ��𝑀𝑀𝐼𝐼𝑁𝑁𝑚𝑚
𝑆𝑆
� , � |𝑀𝑀|

𝑀𝑀𝐼𝐼𝑁𝑁𝑛𝑛
� , � |𝑀𝑀|

�𝑅𝑅(1)�
��;

 Compute 𝑁𝑁𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛 = |𝑀𝑀|
𝑛𝑛𝑛𝑛𝑚𝑚

;
Initialize 𝑗𝑗 = 1 and 𝑛𝑛𝑒𝑒 = 0;

 For 𝑖𝑖 in 1: |ℚ|, {
 Assign the 𝑖𝑖th tree to the 𝑗𝑗th mapper;
 Compute 𝑛𝑛𝑒𝑒 = 𝑛𝑛𝑒𝑒 + �𝑅𝑅(𝑖𝑖)�;
 If (𝑛𝑛𝑒𝑒 ≥ 𝑁𝑁𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑛𝑛) and 𝑖𝑖 ≠ |ℚ|, {
 Let 𝑗𝑗 = 𝑗𝑗 + 1;
 𝑛𝑛𝑒𝑒 = 0;
 }
 }
 Let 𝑗𝑗 be the number of mappers for each data split;
}
Else, assign all trees to every mapper;
// A data parallel pattern of map-reduce job will be used for tree growth

6.8.2. Task Parallel Pattern of Map-Reduce Job

If there is only one data split, task parallel pattern of map-reduce jobs will be used to build trees. In each job,
we have multiple mappers and each mapper builds a tree on a replicate of the data split.

The mapper first generates a particular bootstrap sample, and then it builds a tree on the sample in a way
that is similar to the option of in-memory building. OOB cases will be partitioned as usual if necessary.

The number of mappers in each job is determined by the running environment, and the maximum number
of mappers equals to the total number of base trees.

6.8.3. Selecting Nodes to Expand

In a task parallel pattern of job, the number of nodes off the stack equals to the number of mappers 𝑀𝑀𝐼𝐼𝑁𝑁𝑚𝑚.

For a mixture pattern of job, we select the nodes as follows:

1. Suppose the first node in the current stack belongs to tree 𝑇𝑇𝑞𝑞 . We let all the following nodes in the stack
that belong to tree 𝑇𝑇𝑞𝑞 off the stack. Denote the number of such nodes as 𝑁𝑁𝑀𝑀.

2. Repeat the follows if 𝑁𝑁𝑀𝑀 < 𝑀𝑀𝑀𝑀𝑋𝑋𝑛𝑛,
// 𝑀𝑀𝑀𝑀𝑋𝑋𝑛𝑛 is the maximum number of nodes to expand by a single job, default 100 (needs to tune),
a) Let the first node in the current stack belongs to tree 𝑇𝑇𝑖𝑖. We let all the following nodes in the stack

that belong to tree 𝑇𝑇𝑖𝑖 off the stack.
b) Update 𝑁𝑁𝑀𝑀.

The maximum number of nodes to expand by a single job is a setting which could be deployed with respect
to concrete clusters. Basically we can set much higher maximum numbers for clusters with high computing
capability.

Note that the procedure described above ensures that each tree grows in a width-first way. This point is
important to the stopping rule of limiting the total number of nodes in a tree.

7. Model Evaluation and Insights
Suppose the ensemble model under evaluation consists of base trees 𝑇𝑇𝑞𝑞, 𝑞𝑞 = 1,2, … ,𝑄𝑄. Then we let each case
in the testing partition of the OOB samples traverse the corresponding tree(s), and take the final prediction
of a case as the combination of individual predictions by average or voting.

For convenience, we summarize the notations used for computing evaluation measures as follows.

𝑇𝑇𝑞𝑞, 𝑞𝑞 = 1,2, … ,𝑄𝑄 𝑄𝑄 trees form an ensemble model to evaluate.
ℒ𝑞𝑞 The testing partition corresponding to the 𝑞𝑞th tree.
𝑦𝑦�𝑘𝑘
𝑞𝑞 The prediction of the 𝑞𝑞th tree on case 𝑘𝑘, 𝑘𝑘 ∈ ℒ𝑞𝑞.
𝑦𝑦�𝑘𝑘 The prediction of the ensemble model on case 𝑘𝑘, 𝑘𝑘 = 1,2, … ,𝐾𝐾.
𝒯𝒯𝑘𝑘 The set of trees that take case 𝑘𝑘 as a testing case.

7.1. Evaluation Measures

7.1.1. Classification Model Evaluation

For a classification model, we compute

𝑀𝑀𝑐𝑐𝑐𝑐 = 1
𝑁𝑁
∑ 𝑓𝑓𝑘𝑘Ι(𝑦𝑦�𝑘𝑘 = 𝑦𝑦𝑘𝑘)𝐾𝐾
𝑘𝑘=1 ,

where 𝑦𝑦�𝑘𝑘 = 𝑚𝑚𝑟𝑟𝑔𝑔max
𝑗𝑗

∑ Ι(𝑦𝑦�𝑘𝑘
𝑞𝑞 = 𝑗𝑗)𝑞𝑞∈𝒯𝒯𝑖𝑖 , breaking ties arbitrarily.

Moreover, we compute the classification table. Suppose 𝑗𝑗 is one of the observed category, and 𝑗𝑗∗ is one of the
predicted category, then the count of cell < 𝑗𝑗∗, 𝑗𝑗 > in the classification table is computed

𝐶𝐶<𝑗𝑗∗,𝑗𝑗> = ∑ 𝑓𝑓𝑘𝑘Ι(𝑦𝑦�𝑘𝑘 = 𝑗𝑗∗ 𝑚𝑚𝑛𝑛𝑚𝑚 𝑦𝑦𝑘𝑘 = 𝑗𝑗)𝐾𝐾
𝑘𝑘=1 , 𝑗𝑗∗ = 1,2, … , 𝐽𝐽, 𝑗𝑗 = 1,2, … , 𝐽𝐽.

Note that if the option of imbalance classification is turned on, the evaluation measures above will not be
computed.

7.1.2. Regression Model Evaluation

For a regression model, we compute

𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 = �1
𝑁𝑁
∑ 𝑓𝑓𝑘𝑘(𝑦𝑦𝑘𝑘 − 𝑦𝑦�𝑘𝑘)2𝐾𝐾
𝑘𝑘=1 ,

where 𝑦𝑦�𝑘𝑘 = 1
|𝒯𝒯𝑖𝑖|

∑ 𝑦𝑦�𝑘𝑘
𝑞𝑞

𝑞𝑞∈𝒯𝒯𝑖𝑖 . If 𝒯𝒯𝑘𝑘 is empty, case 𝑘𝑘 will be ignored.

Moreover, we compute

 𝑅𝑅𝑠𝑠𝑞𝑞𝑣𝑣𝑚𝑚𝑟𝑟𝑚𝑚 = 1 − ∑ 𝑐𝑐𝑖𝑖(𝑥𝑥𝑖𝑖−𝑥𝑥�𝑖𝑖)2𝐾𝐾
𝑖𝑖=1
∑ 𝑐𝑐𝑖𝑖(𝑥𝑥𝑖𝑖−𝑥𝑥�)2𝐾𝐾
𝑖𝑖=1

,

where 𝑦𝑦� = 1
𝑁𝑁
∑ 𝑓𝑓𝑘𝑘𝑦𝑦𝑘𝑘𝐾𝐾
𝑘𝑘=1 .

7.1.3. Imbalance Classification Model Evaluation

If the option of imbalance classification is turned on, we will compute some measures that are specific to
imbalance classification.

For target class 𝑗𝑗, we compute true positive rate, i.e. recall rate,

𝑇𝑇𝑃𝑃𝑅𝑅𝑗𝑗 =
𝐶𝐶<𝑗𝑗,𝑗𝑗>

∑ 𝐶𝐶<𝑖𝑖,𝑗𝑗>
𝐽𝐽
𝑖𝑖

, 𝑗𝑗 = 1, … , 𝐽𝐽.

Then we compute G-mean

𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 = �∏ 𝑇𝑇𝑃𝑃𝑅𝑅𝑗𝑗
𝐽𝐽
𝑗𝑗=1 �

1/𝐽𝐽
.

Notice that any class whose recall rate is constant zero across groups will be excluded from the calculation
of the G-mean measure, and the number of 𝐽𝐽 in the formula will be adjusted accordingly.

7.2. Interpretation and Insights

7.2.1. Gini Importance

Every time a split of a node is made on predictor 𝑋𝑋𝑚𝑚 the Gini impurity criterion for the two descendent
nodes is less than the parent node. Adding up the Gini decreases for each individual predictor over all trees
in the trees gives a fast predictor importance measure that is often very consistent with the permutation
importance measure.

Denote 𝐼𝐼𝑚𝑚𝑝𝑝�𝑋𝑋𝑚𝑚,𝑇𝑇𝑞𝑞� as the importance of predictor 𝑋𝑋𝑚𝑚 at tree 𝑇𝑇𝑞𝑞, then

𝐼𝐼𝑚𝑚𝑝𝑝�𝑋𝑋𝑚𝑚,𝑇𝑇𝑞𝑞� = ∑ ∆𝑖𝑖(𝑝𝑝𝑋𝑋𝑚𝑚
∗ , 𝑡𝑡) 𝑖𝑖∈𝑇𝑇𝑞𝑞 ,

where 𝑝𝑝𝑋𝑋𝑚𝑚
∗ denotes the splitting point used by node 𝑡𝑡. Note that if predictor 𝑋𝑋𝑚𝑚 is not the splitting variable,

the corresponding Gini decrease from node 𝑡𝑡 will be zero.

The Gini importance of predictor 𝑋𝑋𝑚𝑚 is

𝐼𝐼𝑚𝑚𝑝𝑝(𝑋𝑋𝑚𝑚) = ∑ 𝐼𝐼𝑚𝑚𝑝𝑝�𝑋𝑋𝑚𝑚,𝑇𝑇𝑞𝑞�
𝑄𝑄
𝑞𝑞=1 .

Alternatively, the importance values can be normalized relative to the predictor having the largest measure
of importance. That is,

𝐼𝐼𝑚𝑚𝑝𝑝� (𝑋𝑋𝑚𝑚) = 𝐼𝐼𝑚𝑚𝑝𝑝(𝑋𝑋𝑚𝑚)
max
𝑚𝑚

�𝐼𝐼𝑚𝑚𝑝𝑝(𝑋𝑋𝑚𝑚)�
.

Notice that if the option of correcting importance bias is turned on, the Gini decreases ∆𝑖𝑖(𝑝𝑝𝑋𝑋𝑚𝑚
∗ , 𝑡𝑡) will be

computed using the validation OOB cases, as described in section 6.5.

7.2.2. Interesting Decision Rules

Random trees is formed by multiple decision trees, and each of them consists of tree nodes that represent
decision rules. Since the rules will work together as a committee in scoring, it is not easy to interpret the
results by individual rules. But on the other hand, the number of nodes or rules could be very large in
random trees. This also provides the potency to dig out some interesting rules for the purpose of model
interpretation.

For convenience, the following notations are defined.

𝐼𝐼𝑖𝑖 Set of candidate nodes from which to detect interesting decision rules
𝛿𝛿 Threshold of minimal support of candidate nodes, default 1000
𝑛𝑛𝐼𝐼 Number of interesting decision rules to report, default 5

𝛿𝛿𝐼𝐼
Interestingness threshold of filtering interesting decision rules to
report, default 0.9

𝑀𝑀(𝑡𝑡) Event that the prediction of random trees is correct on the data group
determined by node 𝑡𝑡

�̅�𝑀(𝑡𝑡)
Event that the prediction of random trees is wrong on the data group
determined by node 𝑡𝑡

𝐵𝐵(𝑡𝑡) Event that the prediction of node 𝑡𝑡 is correct on the data group
determined by node 𝑡𝑡

𝑃𝑃(∙) Probability of an event

Interesting decision rules are defined as those which have high prediction accuracy and also high agreement
with the predictions of random trees. Clearly, such rules can be used to interpret random trees predictions.
Specifically, the following procedure is used for the detection.

1. Identify the set of candidate interesting nodes 𝐼𝐼𝑖𝑖 .
a) Compute and save the count of testing cases for each leaf node in the job of model evaluation.

b) Collapse any pair of nodes into their parent node if they have the same parent and both of their
counts of testing cases are less than 𝛿𝛿.

c) Let 𝐼𝐼𝑖𝑖 be the set of remaining leaf nodes whose counts of test cases are not less than 𝛿𝛿.
2. For each node 𝑡𝑡 in 𝐼𝐼𝑖𝑖, obtain its node assignment and let𝑃𝑃(𝐵𝐵(𝑡𝑡)) be the prediction accuracy of node 𝑡𝑡 on

the data group determined by node 𝑡𝑡.
3. Launch a map-reduce job and for each node 𝑡𝑡 in 𝐼𝐼𝑖𝑖,

a) Let 𝑃𝑃(𝑀𝑀(𝑡𝑡)) be the prediction accuracy of random trees (not collapsed) on the data group
determined by node 𝑡𝑡. Clearly, 𝑃𝑃��̅�𝑀(𝑡𝑡)� = 1 − 𝑃𝑃(𝑀𝑀(𝑡𝑡)).

b) Let 𝑃𝑃(𝑀𝑀(𝑡𝑡)𝐵𝐵(𝑡𝑡)) be the ratio of cases that are predicted correctly by both random trees and node 𝑡𝑡 to
the total cases in the data group determined by node 𝑡𝑡.

c) Let 𝑃𝑃(�̅�𝑀(𝑡𝑡)𝐵𝐵�(𝑡𝑡)) be the ratio of cases that are predicted wrong by both random trees and node 𝑡𝑡 to
the total cases in the data group determined by node 𝑡𝑡.

d) Compute the interestingness index 𝐼𝐼𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑚𝑚(𝑡𝑡) = 𝑃𝑃(𝑀𝑀(𝑡𝑡)) ∗ 𝑃𝑃(𝐵𝐵(𝑡𝑡)) ∗ (𝑃𝑃(𝑀𝑀(𝑡𝑡)𝐵𝐵(𝑡𝑡)) + 𝑃𝑃(�̅�𝑀(𝑡𝑡)𝐵𝐵�(𝑡𝑡))).
4. Report the top 𝑛𝑛𝐼𝐼 nodes with the highest interestingness index 𝐼𝐼𝑖𝑖𝑛𝑛𝑑𝑑𝑒𝑒𝑚𝑚(𝑡𝑡); Optionally, users can select to

report all nodes whose interestingness index is larger than 𝛿𝛿𝐼𝐼.

8. Random Trees Scoring
8.1. Node Assignment

Suppose a random trees model consists of trees 𝑇𝑇𝑞𝑞 , 𝑞𝑞 = 1,2, … ,𝑄𝑄. An assignment (also called action or
decision) is computed for each node in the trees. To predict the target value for an incoming case, we first
find in which terminal nodes it falls, and then we combine the assignments of these terminal nodes for the
final prediction.

For any node 𝑡𝑡, let 𝑚𝑚𝑖𝑖 be the assignment given to node 𝑡𝑡,

𝑚𝑚𝑖𝑖 = �𝑗𝑗
∗(𝑡𝑡), 𝑌𝑌 is categorical
𝑦𝑦�(𝑡𝑡), 𝑌𝑌 is continuous

𝑗𝑗∗(𝑡𝑡) = 𝑚𝑚𝑟𝑟𝑔𝑔min𝑖𝑖 ∑ 𝐶𝐶(𝑖𝑖|𝑗𝑗)𝑝𝑝(𝑗𝑗|𝑡𝑡)j ,

𝑦𝑦�(𝑡𝑡) =
∑ 𝑤𝑤𝑖𝑖𝑐𝑐𝑖𝑖

𝑞𝑞𝑥𝑥𝑖𝑖𝑖𝑖∈ℋ(𝑖𝑖)

𝑁𝑁𝑤𝑤(𝑖𝑖)
.

If there is more than one category 𝑗𝑗 that achieves the minimum, choose 𝑗𝑗∗(𝑡𝑡) to be the smallest such 𝑗𝑗 for
which 𝑁𝑁𝑐𝑐,𝑗𝑗(𝑡𝑡) = ∑ 𝑓𝑓𝑘𝑘

𝑞𝑞Ι(𝑦𝑦𝑘𝑘 = 𝑗𝑗)𝑘𝑘∈ℋ(𝑖𝑖) is greater than 0, or just the smallest 𝑗𝑗 if 𝑁𝑁𝑐𝑐,𝑗𝑗(𝑡𝑡) is zero for all of them.

8.2. Case Assignment

Given a case 𝑘𝑘, we first compute the score from tree 𝑇𝑇𝑞𝑞 as 𝑦𝑦�𝑘𝑘
𝑞𝑞, that is, the assignment of the terminal node in

which the case fall. Then we combine the individual scores as

𝑦𝑦�𝑘𝑘 = �
𝑚𝑚𝑟𝑟𝑔𝑔max

𝑗𝑗
∑ Ι(𝑦𝑦�𝑘𝑘

𝑞𝑞 = 𝑗𝑗)𝑄𝑄
𝑞𝑞=1 , 𝑌𝑌 is categorical

1
𝑄𝑄
∑ 𝑦𝑦�𝑘𝑘

𝑞𝑞𝑄𝑄
𝑞𝑞=1 , 𝑌𝑌 is continuous

.

If the target variable is categorical, for each target category 𝑗𝑗, a confidence value will be calculated as

�̂�𝑝𝑘𝑘(𝑗𝑗) =
∑ Ι(𝑥𝑥�𝑖𝑖

𝑞𝑞=𝑗𝑗)𝑄𝑄
𝑞𝑞=1

𝑄𝑄
.

Note that trees with null predictions will not be counted in case assignment.

8.3. Predictor Contribution

Predictor contribution is an evaluation of the influence of each predictor on the model prediction for an
individual case. Please see Kuz’min (2011) and Palczewska (2013) for more details.

8.3.1. Regression Predictor Contribution

Each tree node, except the root node, has an associated rule according to which cases fall into this node. The
difference between mean values in the current and parent nodes represents a local increment of contribution
of the corresponding predictor, which is included in the rule of this node.

We let 𝐿𝐿𝑆𝑆𝑚𝑚,𝑖𝑖 = 𝑦𝑦�(𝑡𝑡) − 𝑦𝑦��𝑡𝑡𝑝𝑝𝑚𝑚𝑟𝑟𝑒𝑒𝑛𝑛𝑖𝑖�, where 𝑡𝑡𝑝𝑝𝑚𝑚𝑟𝑟𝑒𝑒𝑛𝑛𝑖𝑖 denotes the parent node of node 𝑡𝑡. Then the contribution of
predictor 𝑋𝑋𝑚𝑚 on the prediction of case 𝑘𝑘 is

𝑆𝑆𝑘𝑘,𝑚𝑚 =

1
𝑄𝑄∑ 𝐿𝐿𝑆𝑆𝑚𝑚,𝑖𝑖𝑖𝑖∈Θ𝑚𝑚

𝑦𝑦�𝑘𝑘 − 𝑦𝑦�𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑟𝑟𝑐𝑐𝑒𝑒𝑝𝑝𝑖𝑖

where Θ𝑚𝑚 is the set of nodes in all trees of the trees, which contain case 𝑘𝑘 and have predictor 𝑋𝑋𝑚𝑚 in their
rule, and

𝑦𝑦�𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑟𝑟𝑐𝑐𝑒𝑒𝑝𝑝𝑖𝑖 = 1
𝑄𝑄
∑ 𝑦𝑦�(𝑡𝑡𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖

𝑞𝑞)𝑄𝑄
𝑞𝑞=1 ,

where 𝑡𝑡𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖
𝑞𝑞 is the root node of tree 𝑇𝑇𝑞𝑞.

In default, we report the top 3 predictors which have the largest contributions.

8.3.2. Classification Predictor Contribution

To present the predictor contribution procedure for a classification model, we need a probabilistic
interpretation of the trees prediction process.

Let 𝑚𝑚𝑗𝑗 be a 𝐽𝐽-dimensional vector with 1 at position 𝑗𝑗, and 0 otherwise. If tree 𝑇𝑇𝑞𝑞 predicts that case 𝑘𝑘 belongs to
class 𝑗𝑗, then we write 𝑌𝑌�𝑘𝑘

𝑞𝑞 = 𝑚𝑚𝑗𝑗. The prediction of the random trees for case 𝑘𝑘 is

𝑌𝑌�𝑘𝑘 = 1
𝑄𝑄
∑ 𝑌𝑌�𝑘𝑘

𝑞𝑞𝑄𝑄
𝑞𝑞=1 .

We let 𝑌𝑌�(𝑡𝑡) be a 𝐽𝐽-dimensional vector whose 𝑗𝑗th coordinate, 𝑗𝑗 = 1,2, … , 𝐽𝐽, is defined as 𝑝𝑝(𝑗𝑗|𝑡𝑡). Then, we define
local contribution as 𝐿𝐿𝑆𝑆𝑚𝑚,𝑖𝑖 = 𝑌𝑌�(𝑡𝑡) − 𝑌𝑌��𝑡𝑡𝑝𝑝𝑚𝑚𝑟𝑟𝑒𝑒𝑛𝑛𝑖𝑖�. The overall contribution of predictor 𝑋𝑋𝑚𝑚 on the prediction of
case 𝑘𝑘 is

𝑆𝑆𝑘𝑘,𝑚𝑚 =
1
𝑄𝑄∑ 𝐿𝐿𝑆𝑆𝑚𝑚,𝑖𝑖𝑖𝑖∈Θ𝑚𝑚

𝑌𝑌�𝑖𝑖−𝑌𝑌�𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑖𝑖𝑐𝑐𝑒𝑒𝑖𝑖𝑖𝑖
,

where 𝑌𝑌�𝑖𝑖𝑛𝑛𝑖𝑖𝑒𝑒𝑟𝑟𝑐𝑐𝑒𝑒𝑝𝑝𝑖𝑖 = 1
𝑄𝑄
∑ 𝑌𝑌�(𝑡𝑡𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖

𝑞𝑞)𝑄𝑄
𝑞𝑞=1 , and the contributions are computed coordinate-wise.

Suppose the predicted target label 𝑦𝑦�𝑘𝑘 = 𝑗𝑗. Then in default, we report the top 3 predictors which have the
largest contributions at position 𝑗𝑗 in 𝑆𝑆𝑘𝑘,𝑚𝑚.

Appendix A. Computing Statistics
A.1. Local Statistics

Specifically, for a categorical predictor and a categorical target, the local statistics collected by a mapper on
data split 𝑠𝑠 will be

𝑊𝑊𝑖𝑖,𝑗𝑗
𝑠𝑠 = ∑ 𝑤𝑤𝑘𝑘𝑘𝑘∈ℵ(𝑞𝑞,𝑟𝑟) 𝑓𝑓𝑘𝑘

𝑞𝑞I(𝑥𝑥𝑚𝑚,𝑘𝑘 = 𝑖𝑖 and 𝑦𝑦𝑘𝑘 = 𝑗𝑗), 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 𝑗𝑗 = 1, … , 𝐽𝐽,

where ℵ(𝑞𝑞, 𝑟𝑟) denotes the cases of interest in the data split that fall in node 𝑡𝑡𝑞𝑞,𝑟𝑟. These cases may be
training ℓ𝑠𝑠(𝑞𝑞, 𝑟𝑟) or validation ℊ𝑠𝑠(𝑞𝑞, 𝑟𝑟) cases in particular scenarios.

For a categorical predictor and a continuous target, the statistics are

𝑊𝑊𝑖𝑖
𝑠𝑠 = ∑ 𝑤𝑤𝑘𝑘𝑘𝑘∈ℵ(𝑞𝑞,𝑟𝑟) 𝑓𝑓𝑘𝑘

𝑞𝑞I(𝑥𝑥𝑚𝑚,𝑘𝑘 = 𝑖𝑖), 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚,

𝑌𝑌�𝑖𝑖𝑠𝑠 =
∑ 𝑤𝑤𝑖𝑖𝑖𝑖∈ℵ(𝑞𝑞,𝑖𝑖) 𝑐𝑐𝑖𝑖

𝑞𝑞𝑥𝑥𝑖𝑖I(𝑚𝑚𝑚𝑚,𝑖𝑖=𝑖𝑖)

𝑊𝑊𝑖𝑖
𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚,

𝑉𝑉𝑖𝑖𝑠𝑠 =
∑ 𝑤𝑤𝑖𝑖𝑖𝑖∈ℵ(𝑞𝑞,𝑖𝑖) 𝑐𝑐𝑖𝑖

𝑞𝑞�𝑥𝑥𝑖𝑖−𝑌𝑌�𝑖𝑖
𝑠𝑠�
2
I(𝑚𝑚𝑚𝑚,𝑖𝑖=𝑖𝑖)

𝑊𝑊𝑖𝑖
𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚.

For a continuous predictor 𝑋𝑋𝑚𝑚, suppose the splitting points are 𝑝𝑝1 , 𝑝𝑝2, … , 𝑝𝑝𝐼𝐼𝑚𝑚 (in ascending order). Then if the
target is categorical, the statistics will be

𝑊𝑊𝑝𝑝𝑖𝑖,𝑗𝑗
𝑠𝑠 = ∑ 𝑤𝑤𝑘𝑘𝑘𝑘∈ℵ(𝑞𝑞,𝑟𝑟) 𝑓𝑓𝑘𝑘

𝑞𝑞I(𝑥𝑥𝑚𝑚,𝑘𝑘 ≤ 𝑝𝑝𝑖𝑖 and 𝑦𝑦𝑘𝑘 = 𝑗𝑗), 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 𝑗𝑗 = 1, … , 𝐽𝐽,

𝑊𝑊∙𝑗𝑗
𝑠𝑠 = ∑ 𝑤𝑤𝑘𝑘𝑘𝑘∈ℵ(𝑞𝑞,𝑟𝑟) 𝑓𝑓𝑘𝑘

𝑞𝑞I(𝑦𝑦𝑘𝑘 = 𝑗𝑗), 𝑗𝑗 = 1, … , 𝐽𝐽.

For a continuous predictor and a continuous target, the statistics are

𝑊𝑊𝑝𝑝𝑖𝑖
𝑠𝑠 = ∑ 𝑤𝑤𝑘𝑘𝑘𝑘∈ℵ(𝑞𝑞,𝑟𝑟) 𝑓𝑓𝑘𝑘

𝑞𝑞I(𝑥𝑥𝑚𝑚,𝑘𝑘 ≤ 𝑝𝑝𝑖𝑖), 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚,

𝑌𝑌�𝑝𝑝𝑖𝑖
𝑠𝑠 =

∑ 𝑤𝑤𝑖𝑖𝑖𝑖∈ℵ(𝑞𝑞,𝑖𝑖) 𝑐𝑐𝑖𝑖
𝑞𝑞𝑥𝑥𝑖𝑖I(𝑚𝑚𝑚𝑚,𝑖𝑖≤𝑝𝑝𝑖𝑖)

𝑊𝑊𝑖𝑖𝑖𝑖
𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚,

𝑉𝑉𝑝𝑝𝑖𝑖
𝑠𝑠 =

∑ 𝑤𝑤𝑖𝑖𝑖𝑖∈ℵ(𝑞𝑞,𝑖𝑖) 𝑐𝑐𝑖𝑖
𝑞𝑞�𝑥𝑥𝑖𝑖−𝑌𝑌�𝑖𝑖𝑖𝑖

𝑠𝑠 �
2
I(𝑚𝑚𝑚𝑚,𝑖𝑖≤𝑝𝑝𝑖𝑖)

𝑊𝑊𝑖𝑖𝑖𝑖
𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚,

𝑊𝑊𝑠𝑠 = ∑ 𝑤𝑤𝑘𝑘𝑘𝑘∈ℵ(𝑞𝑞,𝑟𝑟) 𝑓𝑓𝑘𝑘
𝑞𝑞,

𝑌𝑌�𝑠𝑠 =
∑ 𝑤𝑤𝑖𝑖𝑖𝑖∈ℵ(𝑞𝑞,𝑖𝑖) 𝑐𝑐𝑖𝑖

𝑞𝑞𝑥𝑥𝑖𝑖
𝑊𝑊𝑠𝑠 ,

𝑉𝑉𝑠𝑠 =
∑ 𝑤𝑤𝑖𝑖𝑖𝑖∈ℵ(𝑞𝑞,𝑖𝑖) 𝑐𝑐𝑖𝑖

𝑞𝑞(𝑥𝑥𝑖𝑖−𝑌𝑌�𝑠𝑠)2

𝑊𝑊𝑠𝑠 .

A.2. Global Statistics

Local statistics computed on data splits are merged into global statistics as follows.

For a categorical predictor and a categorical target,

𝑊𝑊𝑖𝑖,𝑗𝑗 = ∑ 𝑊𝑊𝑖𝑖,𝑗𝑗
𝑠𝑠

𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 𝑗𝑗 = 1, … , 𝐽𝐽.

For a categorical predictor and a continuous target,

𝑊𝑊𝑖𝑖 = ∑ 𝑊𝑊𝑖𝑖
𝑠𝑠

𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚,

𝑌𝑌�𝑖𝑖 = ∑ 𝑊𝑊𝑖𝑖
𝑠𝑠

𝑊𝑊𝑖𝑖
𝑌𝑌�𝑖𝑖𝑠𝑠𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚,

𝑉𝑉𝑖𝑖 = ∑ 𝑊𝑊𝑖𝑖
𝑠𝑠

𝑊𝑊𝑖𝑖
𝑉𝑉𝑖𝑖𝑠𝑠𝑠𝑠 + ∑ 𝑊𝑊𝑖𝑖

𝑠𝑠

𝑊𝑊𝑖𝑖
(𝑌𝑌�𝑖𝑖𝑠𝑠 − 𝑌𝑌�𝑖𝑖)(𝑌𝑌�𝑖𝑖𝑠𝑠 + 𝑌𝑌�𝑖𝑖)𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚.

For a continuous predictor and a categorical target,

𝑊𝑊𝑝𝑝𝑖𝑖,𝑗𝑗 = ∑ 𝑊𝑊𝑝𝑝𝑖𝑖,𝑗𝑗
𝑠𝑠

𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 𝑗𝑗 = 1, … , 𝐽𝐽,

𝑊𝑊∙𝑗𝑗 = ∑ 𝑊𝑊∙𝑗𝑗
𝑠𝑠

𝑠𝑠 , 𝑗𝑗 = 1, … , 𝐽𝐽.

For a continuous predictor and a continuous target,

𝑊𝑊𝑝𝑝𝑖𝑖 = ∑ 𝑊𝑊𝑝𝑝𝑖𝑖
𝑠𝑠

𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚,

𝑌𝑌�𝑝𝑝𝑖𝑖 = ∑
𝑊𝑊𝑖𝑖𝑖𝑖
𝑠𝑠

𝑊𝑊𝑖𝑖𝑖𝑖
𝑌𝑌�𝑝𝑝𝑖𝑖
𝑠𝑠

𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚,

𝑉𝑉𝑝𝑝𝑖𝑖 = ∑
𝑊𝑊𝑖𝑖𝑖𝑖
𝑠𝑠

𝑊𝑊𝑖𝑖𝑖𝑖
𝑉𝑉𝑝𝑝𝑖𝑖
𝑠𝑠

𝑠𝑠 + ∑
𝑊𝑊𝑖𝑖𝑖𝑖
𝑠𝑠

𝑊𝑊𝑖𝑖𝑖𝑖
�𝑌𝑌�𝑝𝑝𝑖𝑖

𝑠𝑠 − 𝑌𝑌�𝑝𝑝𝑖𝑖��𝑌𝑌�𝑝𝑝𝑖𝑖
𝑠𝑠 + 𝑌𝑌�𝑝𝑝𝑖𝑖�𝑠𝑠 , 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚,

𝑊𝑊 = ∑ 𝑊𝑊𝑠𝑠
𝑠𝑠 ,

𝑌𝑌� = ∑ 𝑊𝑊𝑠𝑠

𝑊𝑊
𝑌𝑌�𝑠𝑠𝑠𝑠 ,

𝑉𝑉 = ∑ 𝑊𝑊𝑠𝑠

𝑊𝑊
𝑉𝑉𝑠𝑠

𝑠𝑠 + ∑ 𝑊𝑊𝑠𝑠

𝑊𝑊
(𝑌𝑌�𝑠𝑠 − 𝑌𝑌�)(𝑌𝑌�𝑠𝑠 + 𝑌𝑌�)𝑠𝑠 .

The statistics above will be computed with ℵ(𝑞𝑞, 𝑟𝑟) = ℓ𝑠𝑠(𝑞𝑞, 𝑟𝑟), and ℵ(𝑞𝑞, 𝑟𝑟) = ℊ𝑠𝑠(𝑞𝑞, 𝑟𝑟) if necessary.

Moreover, if the condition of in-memory building is satisfied, we will get

ℓ(𝑞𝑞, 𝑟𝑟) = ⋃ ℓ𝑠𝑠(𝑞𝑞, 𝑟𝑟)𝑠𝑠 ,

ℊ(𝑞𝑞, 𝑟𝑟) = ⋃ ℊ𝑠𝑠(𝑞𝑞, 𝑟𝑟)𝑠𝑠 .

A.3. Splitting Points and Statistics

For a continuous predictor 𝑋𝑋𝑚𝑚, the set of splitting points Ω𝑚𝑚 consists of 𝑝𝑝1, 𝑝𝑝2 , … , 𝑝𝑝𝐼𝐼𝑚𝑚 (in ascending order),
which are determined by the tiling method, i.e. equal-frequency binning.

For node 𝑡𝑡𝑞𝑞,𝑟𝑟 and each splitting point 𝑝𝑝𝑖𝑖 , if the target is categorical, we have

𝑁𝑁𝑤𝑤,𝑗𝑗 = ∑ 𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘
𝑞𝑞I(𝑦𝑦𝑘𝑘 = 𝑗𝑗)𝑘𝑘∈ℋ𝑞𝑞 ,

𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝑞𝑞,𝑟𝑟) = 𝑊𝑊∙𝑗𝑗,

𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝐿𝐿) = 𝑊𝑊𝑝𝑝𝑖𝑖,𝑗𝑗,

𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝑅𝑅) = 𝑊𝑊∙𝑗𝑗 −𝑊𝑊𝑝𝑝𝑖𝑖,𝑗𝑗,

where 𝑡𝑡𝐿𝐿 and 𝑡𝑡𝑅𝑅 denote the left child and the right child split by point 𝑝𝑝𝑖𝑖 , respectively.

While if the target is continuous, we have

𝑁𝑁𝑤𝑤(𝑡𝑡𝑞𝑞,𝑟𝑟) = 𝑊𝑊,

𝑁𝑁𝑤𝑤(𝑡𝑡𝐿𝐿) = 𝑊𝑊𝑝𝑝𝑖𝑖 ,

𝑁𝑁𝑤𝑤(𝑡𝑡𝑅𝑅) = 𝑊𝑊 −𝑊𝑊𝑝𝑝𝑖𝑖,

𝑌𝑌�(𝑡𝑡𝐿𝐿) = 𝑌𝑌�𝑝𝑝𝑖𝑖,

𝑌𝑌�(𝑡𝑡𝑅𝑅) =
𝑊𝑊𝑌𝑌�−𝑊𝑊𝑖𝑖𝑖𝑖𝑌𝑌

�𝑖𝑖𝑖𝑖
𝑊𝑊−𝑊𝑊𝑖𝑖𝑖𝑖

,

𝑉𝑉�𝑡𝑡𝑞𝑞,𝑟𝑟� = 𝑉𝑉,

𝑉𝑉(𝑡𝑡𝐿𝐿) = 𝑉𝑉𝑝𝑝𝑖𝑖,

𝑉𝑉(𝑡𝑡𝑅𝑅) = 𝑊𝑊𝑊𝑊−𝑁𝑁𝑤𝑤(𝑖𝑖𝐿𝐿)𝑊𝑊(𝑖𝑖𝐿𝐿)−𝑁𝑁𝑤𝑤(𝑖𝑖𝐿𝐿)(𝑌𝑌�(𝑖𝑖𝐿𝐿)−𝑌𝑌�)(𝑌𝑌�(𝑖𝑖𝐿𝐿)+𝑌𝑌�)−𝑁𝑁𝑤𝑤(𝑖𝑖𝑅𝑅)(𝑌𝑌�(𝑖𝑖𝑅𝑅)−𝑌𝑌�)(𝑌𝑌�(𝑖𝑖𝑅𝑅)+𝑌𝑌�)
𝑁𝑁𝑤𝑤(𝑖𝑖𝑅𝑅)

.

For an ordinal categorical predictor 𝑋𝑋𝑚𝑚 with 𝐼𝐼𝑚𝑚 categories, splitting points just fall between two consecutive
categories. While for a nominal categorical predictor 𝑋𝑋𝑚𝑚 with 𝐼𝐼𝑚𝑚 categories, the set of splitting points Ω𝑚𝑚 is
the power set of the 𝐼𝐼𝑚𝑚 categories. Suppose that one of the splitting points 𝑝𝑝 corresponds to a set of predictor
categories 𝐶𝐶𝑝𝑝. Then if the target is categorical, we have

𝑁𝑁𝑤𝑤,𝑗𝑗 = ∑ 𝑤𝑤𝑘𝑘𝑓𝑓𝑘𝑘
𝑞𝑞I(𝑦𝑦𝑘𝑘 = 𝑗𝑗)𝑘𝑘∈ℋ𝑞𝑞 ,

𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝑞𝑞,𝑟𝑟) = ∑ 𝑊𝑊𝑖𝑖,𝑗𝑗𝑖𝑖 ,

𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝐿𝐿) = ∑ 𝑊𝑊𝑖𝑖,𝑗𝑗𝑖𝑖∈𝐶𝐶𝑖𝑖 ,

𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝑅𝑅) = 𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝑞𝑞,𝑟𝑟) − 𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝐿𝐿).

While if the target is continuous, we have

𝑁𝑁𝑤𝑤(𝑡𝑡𝑞𝑞,𝑟𝑟) = ∑ 𝑊𝑊𝑖𝑖𝑖𝑖 ,

𝑁𝑁𝑤𝑤(𝑡𝑡𝐿𝐿) = ∑ 𝑊𝑊𝑖𝑖𝑖𝑖∈𝐶𝐶𝑖𝑖 ,

𝑁𝑁𝑤𝑤(𝑡𝑡𝑅𝑅) = 𝑁𝑁𝑤𝑤(𝑡𝑡𝑞𝑞,𝑟𝑟) −𝑁𝑁𝑤𝑤(𝑡𝑡𝐿𝐿),

𝑌𝑌� = ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖)

𝑌𝑌�𝑖𝑖𝑖𝑖 ,

𝑌𝑌�(𝑡𝑡𝐿𝐿) = ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖𝐿𝐿)

𝑌𝑌�𝑖𝑖𝑖𝑖∈𝐶𝐶𝑖𝑖 ,

𝑌𝑌�(𝑡𝑡𝑅𝑅) = ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖𝑅𝑅)

𝑌𝑌�𝑖𝑖𝑖𝑖∉𝐶𝐶𝑖𝑖 ,

𝑉𝑉�𝑡𝑡𝑞𝑞,𝑟𝑟� = ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖𝑞𝑞,𝑖𝑖)

𝑉𝑉𝑖𝑖𝑖𝑖 + ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖𝑞𝑞,𝑖𝑖)

(𝑌𝑌�𝑖𝑖 − 𝑌𝑌�)(𝑌𝑌�𝑖𝑖 + 𝑌𝑌�)𝑖𝑖 ,

𝑉𝑉(𝑡𝑡𝐿𝐿) = ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖𝐿𝐿)

𝑉𝑉𝑖𝑖𝑖𝑖∈𝐶𝐶𝑖𝑖 + ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖𝐿𝐿)

�𝑌𝑌�𝑖𝑖 − 𝑌𝑌�(𝑡𝑡𝐿𝐿)��𝑌𝑌�𝑖𝑖 + 𝑌𝑌�(𝑡𝑡𝐿𝐿)�𝑖𝑖 ,

𝑉𝑉(𝑡𝑡𝑅𝑅) = ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖𝑅𝑅)

𝑉𝑉𝑖𝑖𝑖𝑖∉𝐶𝐶𝑖𝑖 + ∑ 𝑊𝑊𝑖𝑖
𝑁𝑁𝑤𝑤(𝑖𝑖𝑅𝑅)

�𝑌𝑌�𝑖𝑖 − 𝑌𝑌�(𝑡𝑡𝑅𝑅)��𝑌𝑌�𝑖𝑖 + 𝑌𝑌�(𝑡𝑡𝑅𝑅)�𝑖𝑖 .

Appendix B. Optimal Partitioning
Chou (1991) proposed a K-means like clustering algorithm that uses a generalization of Kullback’s
information divergence as its distance measure. It has been demonstrated to be very efficient to find the best
splitting point for a predictor with a large number of categories.

Let 𝑋𝑋 be a nominal predictor with a category set 𝑀𝑀 = {𝑐𝑐1, … , 𝑐𝑐𝑁𝑁}. The partitioning problem is to find a binary
partition 𝑀𝑀0, 𝑀𝑀1 of 𝑀𝑀 that minimizes the average impurity,

𝐼𝐼(𝑀𝑀0,𝑀𝑀1|𝑡𝑡) = 𝑝𝑝(𝑡𝑡0|𝑡𝑡)𝑖𝑖(𝑡𝑡0) + 𝑝𝑝(𝑡𝑡1|𝑡𝑡)𝑖𝑖(𝑡𝑡1),

where 𝑡𝑡0 and 𝑡𝑡1 are child nodes determined by the partition, 𝑝𝑝(𝑡𝑡0|𝑡𝑡) = 𝑝𝑝(𝑡𝑡0) 𝑝𝑝(𝑡𝑡)⁄ , and 𝑝𝑝(𝑡𝑡1|𝑡𝑡) = 𝑝𝑝(𝑡𝑡1) 𝑝𝑝(𝑡𝑡)⁄ .

Firstly, we introduce the notion of divergence. This is the key to formulating the partitioning algorithm as
an iterative descent.

For a continuous target, the centroid of node 𝑡𝑡 is

𝑣𝑣(𝑡𝑡) = 𝑀𝑀[𝑌𝑌|𝑡𝑡] ≈ 𝑌𝑌�(𝑡𝑡).

Let 𝑦𝑦� be an approximation of the centroid. Then the divergence of 𝑦𝑦� from 𝑣𝑣(𝑡𝑡) is given by

𝑚𝑚(𝑡𝑡, 𝑦𝑦�) = (𝑣𝑣(𝑡𝑡) − 𝑦𝑦�)2.

For a categorical target with 𝐽𝐽 categories, the centroid of node 𝑡𝑡 is a J-dimensional class probability vector
of 𝑝𝑝(𝑗𝑗|𝑡𝑡). Let Ψ be a real nonnegative definite 𝐽𝐽×𝐽𝐽 matrix, where it has the element 𝜑𝜑𝑖𝑖𝑗𝑗 = 1 − 𝐶𝐶(𝑖𝑖|𝑗𝑗). Then the
divergence of 𝑦𝑦� from 𝑣𝑣(𝑡𝑡) is given by

𝑚𝑚(𝑡𝑡, 𝑦𝑦�) = (𝑣𝑣(𝑡𝑡) − 𝑦𝑦�)′Ψ(𝑣𝑣(𝑡𝑡) − 𝑦𝑦�).

Let 𝛼𝛼:𝑀𝑀 → {0,1} be the function that assigns each category in 𝑀𝑀 to one of the two bins 𝑀𝑀0, or 𝑀𝑀1, and let 𝛽𝛽(∙)
be the function on {0,1} that assigns a centroid to each bin. That is, for each 𝑐𝑐 ∈ 𝑀𝑀, let

𝛼𝛼(𝑐𝑐) = �0 if 𝑐𝑐 ∈ 𝑀𝑀0
1 if 𝑐𝑐 ∈ 𝑀𝑀1

,

and for 𝑘𝑘 = 0,1, let

𝛽𝛽(𝑘𝑘) = 𝑣𝑣(𝑡𝑡𝑘𝑘).

The partitioning algorithm is as follows.

1. Let 𝑀𝑀0, 𝑀𝑀1 be an initial random partition of 𝑀𝑀, and compute 𝛽𝛽(𝑘𝑘) for 𝑘𝑘 = 0,1.
2. Update 𝛼𝛼 to 𝛼𝛼′ for fixed 𝛽𝛽, by reassigning each 𝑐𝑐 to its nearest neighbor in the divergence sense. That is,

let 𝛼𝛼′(𝑐𝑐) = arg𝑚𝑚𝑖𝑖𝑛𝑛𝑘𝑘𝑚𝑚�𝑐𝑐,𝛽𝛽(𝑘𝑘)�, breaking ties arbitrary if 𝑝𝑝(𝑐𝑐|𝑡𝑡) = 0 or if the divergences are equal.
3. Update 𝛽𝛽 to 𝛽𝛽′ for fixed 𝛼𝛼′, by recomputing the centroid of each bin.
4. Iterative steps 2 and 3 until the average impurity 𝐼𝐼(𝑀𝑀0,𝑀𝑀1|𝑡𝑡) is not reduced, or it reaches the maximal

number of iterations (default 20).

References
[43]. Jing Xu. Descriptives - ADD - Map Reduce Algorithms for Bivariate Statistics. IBM SPSS internal

design document. https://w3-
connections.ibm.com/files/form/anonymous/api/library/3e2f9545-db12-46b9-8787-
59d138d415d9/document/e71b3790-6316-4009-87db-c2c2477de27e/media/Descriptives%20-
%20ADD%20-%20Map%20Reduce%20Algorithms%20for%20Bivariate%20Statistics.docx.

[44]. H. T. Deng, G. Runger, and E. Tuv (2011). Bias of importance measures for multi-valued attributes
and solutions. Proceedings of the 21st international conference on Artificial neural networks - Volume
Part II. Pages 293-300.

[45]. L. Breiman, J. H. Friedman, R. Olshen, and C. Stone (1984). Classification and Regression Trees.
Wadsworth and Brooks.

[46]. P. A. Chou (1991). Optimal Partitioning for Classification and Regression Trees. IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 13, No. 4. Pages 340-354.

[47]. V. E. Kuz’min, P. G. Polishchuk, A. G. Artemenko, and S. A. Andronati (2011). Interpretation of
QSAR Models Based on Random Forests Methods. Molecular Informatics, 30(6-7), Pages 593-603.

[48]. A. Palczewska, J. Palczewski, R. M. Robinson, and D. Neagu (2013). Interpreting random forest
models using a feature contribution method. IEEE IRI 2013, San Francisco, California, USA, Pages
112-119.

SNA - Diffusion Analysis Algorithms

1. Introduction
A diffusion process starts with the construction of a call graph and a seed. The call graph is a
directed graph in which each node corresponds to a subscriber in the network and the weight on
each directed edge reflects the strength of connection between the caller (head of edge) and
callee (tail of edge). The weight associated with each edge is based on call data, such as the total
number of calls or the total duration of calls over a period of time. The seed is a list of
subscribers that are known to have churned during a predefined period of time, typically a subset
of the time period that was used to construct the graph (e.g., the same period, the last two weeks,
etc.).

Each such churner is assigned with an initial positive energy and all other subscribers are
assigned with zero energy. Finally, a diffusion-like process is initiated in the graph, where at
each iteration nodes transfer a fraction of their energy to their outgoing neighbors in the graph.
The exact value depends linearly on the weight associated with the edge and on a spreading
coefficient ()1,0∈d , which determines the fraction of energy that can be given away. After the
stopping condition is met, each subscriber is associated with a certain amount of energy, where
higher values are considered higher probability candidates for churning. A diffusion process like
the one described here mimics a word of mouth scenario where the information spreads among
people.

The Diffusion Analysis (DA) component implements a certain type of diffusion process. For
each node, the DA component computes the amount of energy at the end of the process
described above, as well as additional features related to this graph. These features or key
performance indicators (KPIs) can be used to build a churn prediction model for the
telecommunications industry. It should be noted that diffusion processes such as the one
described in this document can be used for additional targets such as customer retention or viral
marketing.

In this document we overview the different stages of the diffusion algorithm.

2. Notations
The following notation will be used in each part of the algorithm unless stated otherwise:

adjW Adjacency weights matrix, which can be the social graph
representation as a connectivity matrix. The matrix has mm×
elements

jiw , The (i,j) entry of adjW representing the weight (i.e., connection
strength) from node i to node j

adjT adjW normalized according to lines:

() () ∑=
k

ikadjadj wjiWjiT /,, . For each line, ()jiTadj , represents

the proportional strength of the edge ()ji, , compared to all other
outgoing edges ()ki,

()nCT Total energy vector at the end of iteration n . This is a row vector
whose dimensions are m×1

()nck
T k th element of ()nCT , representing the total energy of the k th

node at the end of iteration n
()nCF Fresh energy vector at the end of iteration n . This is a row vector,

whose dimensions are m×1
()nck

F k th element of ()nCF - fresh energy of the k th node at the end
of iteration n

()nCG Given away energy vector at the end of iteration n . This is a row
vector, whose dimensions are m×1

()nck
G k th element of ()nCG - given away energy of the k th node at the

end of iteration n
d Spreading coefficient. Fraction of fresh energy that is given away

in every iteration
m Number of nodes in the graph

iN The i th node
ε A small constant value. Used for indicating convergence of the

process.

ITERθ Maximal allowed number of iterations

3. Creating the Adjacency Matrix
The adjacency matrix adjW , which corresponds to the calls matrix, is a matrix whose entries
represent the strength of connection between two nodes. The matrix will be sparse by definition
since each caller only calls a small fraction of the available callees. Technically, the adjacency
matrix is created by the loader component. The weights of the matrix are computed according to
the settings given to the loader component. While these exact settings are described in the
relevant document, we now provide two examples of such computation.

3.1 Counting the Number of Calls as Weight
The simplest option to weight the strength of the connection between caller i and callee j is by
counting the number of calls from i to j . In this case,)(#, jicallsw ji →= .
Note: The matrix does not have to be symmetric and the weights defined here are integers.

3.2 Counting the Total Duration as Weight
Another option to weight the strength of the connection between caller i and callee j is the
summation over the total duration of calls from i to j . In this case,

∑
→

→=
)(

,)(_
jicalls

ji jicalldurationw . As in the previous case, the matrix does not have to be

symmetric and the weights defined here are also integer (duration of calls is measured in
seconds).

4. Description of the Diffusion Algorithm

4.1 Initialization
We initialize the total energy, free energy, and given away energy vectors as follows:
• () enCT = where ie equals 1 if i is in the list of churners and 0 otherwise:

()

=
else

churneraisiif
ci

T 0
1

0

• () enCF = where ie equals 1 if i is in the list of churners and 0 otherwise:

()

=
else

churneraisiif
ci

F 0
1

0

• () 0=nCG , all zeros vector

4.2 Normalization of the Adjacency Matrix
The adjacency matrix is normalized as follows:

() () ∑=
k

ikadjadj wjiWjiT /,,

Where adjW is the original adjacency matrix.

4.3 Diffusion Update Equations
The diffusion process is updated according to the following equations:

1. () () adjFF TnCdnC ⋅⋅=+1 . This equation corresponds to the fresh energy received by
the node from all its incoming neighbors. The neighbors give away a fraction governed
by the spreading coefficient; this fraction is relative to the normalized connection
strength.
A slightly different view of this equation follows. Each node that has outgoing edges,
distributes a d fraction of its fresh energy to its outgoing neighbors. Each neighbor gets
an amount that is proportional to its relative weight. Therefore, each node obtains the
sum over the energies obtained from the incoming neighbors.

2. () ())(iiFG cdiagnCnC ⋅= where

=

mm

ii

c

c
c

cdiag

,...,0,0,0
...

0,...,0,,0
0,....,0,0,

)(22

11

 and

 >

=
else

Noutifd
c i

ii 0
0)deg(

which can be rewritten as () () ∆⋅⋅= nCdnC FG where)0)deg((>=∆ iNoutdiag - a
diagonal matrix whose diagonal elements are 1 if the corresponding node has at least 1
outgoing edge, and 0 otherwise.
This equation corresponds to the given away energy of each node. This energy is only
positive if there is at least 1 outgoing edge. Each node only gives away a d fraction of
its fresh energy.

3. () () () ()111 +−++=+ nCnCnCnC GFTT . This equation represents the update of the
total energy. It is the sum of the total energy from the last iteration plus the free received
energy, minus the given away energy.

4.4 Simplification of the Update Equations
The third update equation can be rewritten as follows:

() () () ()
() () ()
() () ()∆−⋅⋅+=

∆⋅⋅−⋅⋅+=
+−++=+

adjFT

FadjFT

GFTT

TnCdnC
nCdTnCdnC

nCnCnCnC 111

Where as before,)0)deg((>=∆ iNoutdiag .
This leaves us with only two update equations: one for the total energy and one for the fresh
energy:

() ()
() () () ()∆−⋅⋅+=+

⋅⋅=+

adjFTT

adjFF

TnCdnCnC
TnCdnC

1

1

4.5 Convergence Criterion
The following criterion is used for stopping the diffusion process (indication of convergence):

() () ε<−+∀ nCnCi i
T

i
T 1,

The process stops at the smallest n for which this criterion holds.

5. Implementation Issues

5.1 Algorithm State Machine
The following state machine describes the algorithm presented above.

Circles represent states and edges represent the transitions between states. The process begins
with the normalizing state (bold circle on the left hand side). During normalization in and out
degrees are also calculated. The process continues with the computation of the weighted in and
out degrees. The next step of updating the diffusion equations is recurrent and repeats until the
termination condition is met.

5.2 Saved Data Structures
As seen in the previous section, the update equations can be rewritten in a manner that allows
for the updating and storing of () ()nCnC TF , only. The algorithm implementation follows this
description.
The following vectors are also stored: in and out degree, weighted in and out degree.

5.3 Termination of the Computation
The natural termination condition of the algorithm is when the convergence criterion is met, as
explained in the previous section. However, the diffusion process can be very slow, either due to
an incorrect choice of ε or as a result of the problem structure and initial conditions. To allow
forced termination, the code implements a hard stop: if the number of update equations has
reached a predefined value, the computation stops. Therefore, the stopping condition is as
follows:

() () ε<−+∀ nCnCi i
T

i
T 1,

Or
Number of iterations > ITERθ
The user can control ITERθ (see DA Input Settings.doc).

5.4 Parallelization Scheme
The parallelization schema of the Group Analysis (GA) algorithm is based on the PML
architecture [2]. For this section, it is assumed that the reader is familiar with the basic PML
event flow model.

In general, each worker is responsible for
n
1 lines of the adjacency matrix (namely,

n
1 of the

callers). The various stages of the DA algorithm are parallelized as follows:

• Normalization of the adjacency matrix – each worker performs parallelization of
n
1

 lines

• Update equations – each worker updates the values of
n
1

 callers (that correspond to the
n
1

lines provided to the worker). After the computation, the master collects all the sub vectors
and assigns them to the full vectors. The new (updates) ones are then transferred to the
workers for the next iteration.

• Convergence check – performed by the master after each iteration.

6. References
[1] K. Dasgupta, R. Singh, B. Viswanathan, D. Chakraborty, S. Mukherjea, A. A. Nanavati, and A.
Joshi, “Social ties and their relevance to churn in mobile telecom networks,” in EDBT ’08:
Proceedings of the 11th international conference on Extending database technology. ACM, 2008, pp.
668–677

[2] The PML User Guide with CGA and SNA

SNA - Group Analysis Algorithms

1. Introduction
This document describes the group analysis (GA) algorithm of TABI. A more
comprehensive description of the scientific ideas behind the algorithm can be found in
[1]. The algorithm gets as input records of interaction between pairs of individuals. For
the sake of this document we will assume that these are Call Details Records (CDRs).
The algorithm then outputs the following objects:

(1) a graph of individuals in which each edge denotes an alleged strong relation
between a pair of individuals. This graph is the core of the social network that the
algorithm outputs;
(2) a partition of the social network into disjoined reference groups.
(3) A set of basic key performance indices (KPIs) per each group.
(4) A set of basic key performance indices per each individual.

By this the algorithm extracts social relationships, social structures, and social features
of groups and individuals. The algorithm is composed of several phases. We will
describe the logic behind them as well as the various parameters that governs each
one of these steps. Most of the phases of the algorithm are computed in parallel over
the Parallel Machine Learning toolbox (PML) [2]. We also briefly describe the
parallelization schema as well.

2. Input, Output, and Parameters
In general, the input for TABI is the output of the loader [3] which can be comprised
from a single or multiple files. The output is composed of two comma separated files
including the basic KPIs of the groups and individuals in the network. Another file
containing the kernel relations can be output if the appropriate parameter in the kernel
section is turned on (see Section 3.1).

2.1 Running the Algorithm from a Command Line
Running the algorithm from the command line can be done via one the following
commands:

Single core, single partition
“Pmlexec” <param-file> <loader-outfile> <model.xml>

Multiple cores
mpiexec -n <ncpus> <pmlexec> <param-file> <loader-outfile> <model.xml>

Multiple partitions
 Suppose the loader output file name is foo.out

– It will generate output files called foo.out.0 etc. and well as foo.out.0.info
etc.

 Copy foo.out.0.info to foo.out.info
 Run the GA using foo.out

– The multiple training file option in the parameter file should be on

2.2 Basic information flow
The information flow of TABI is depicted in the figure below. The CDRs are collected
and presented either in a directory or in a single file of CDRs. They are processed by
the TABI loader into either a single binary file in which the most recent calls are kept for
each caller, or into a collection of such files, such that at each file about 1/n fraction of
the callers are represented where n denotes the number of loader partitions. The
loader’s output then serves as an input for the GA algorithm that produces the group
and individual KPIs. These can then be used by various applications.

2.3 Sample Parameter File
The file below is an example of a complete parameter file for the GA algorithm. The file
adheres to an XML format, contains a general section, and an inner section is referring
to the kernel parameters.

<PMLInput>
 <AlgorithmName>CGA</AlgorithmName>
 <MinClusterSize>1</MinClusterSize>
 <MaxClusterSize>100</MaxClusterSize>
 <OutputFileName>my_out.xml</OutputFileName>
 <NumIterationsConnectingNodes>1</NumIterationsConnectingNodes>
 <VerbosityLevel> 20 </VerbosityLevel>

 <OutputFormat> CSV </OutputFormat>
 <MultipleTrainFiles> True </MultipleTrainFiles>

 <KernelParams>
 <MultipleTrainFiles> True </MultipleTrainFiles>

 <SparsityLevel>0.80</SparsityLevel>
 <KernelType>Friends</KernelType>
 <NormalizingFactor>50000000</NormalizingFactor>

 </KernelParams>
 </PMLInput>

3. The Various Stages of the Algorithm

3.1 Building the Kernel Graph
The goal of this stage is to build a graph of individuals in which an edge denotes an
alleged strong relationship between pairs of individuals. In a nutshell, the algorithm
defines two individuals as related if (1) They have interacted; and (2) They interacted
with similar people. The actual kernel building is done using the following process:

1. Quantifying the relationships between every pair of individuals who have
interacted.

2. Constructing the kernel graph from only the strong relations.

In order to quantify the relations, we define the following metric. We assign to each
caller i, a vector of its recent called numbers. The length of this vector is governed by a
TABI loader [4] parameter called CyclicTableSize. For each pair i and j that interacted
at least once, we define a probability space that is based on four events: both called the
same person k, both did not call k, i called k and j did not, and vice versa. The mutual
information is then measured on that space. A more elaborate description of this metric
is available [1]. In various experiments it was found superior to more direct approaches.
The actual computation of the TABI metric is depicted in the figure below. The code can
be found in the method: IDMPBKernelFunctionFriends::ComputeKernel(.)

Given the SparsityLevel parameter s, let p = 1-s. Next, the goal is to construct a graph
containing as edges only the highest p-fraction of the edges in terms of the
quantification above. Due to the distributed nature of the algorithm, each processor
(worker) holds its own part of the computed relations and we do not want it to
communicate this large amount of data further. Therefore, the graph construction is a
twofold process. First, each worker samples its own edges, computes a threshold value
t such that only p fraction of the edge weights are above this threshold (p-percentile).
These values are then averaged by the master node to compute a common threshold
t*. Next, each worker broadcasts back to the master all the edges in the graph which
are above t*. It should be noted that the resulted kernel graph in undirected.

Kernel Parameters
The parameters below belong to the kernel section of the parameter file.

Nu
m

Parameter name Description Data
type

Defau
lt
value

Data
range

Restriction

1 MultipleTrainFiles True if multiple
partitions were used by
the loader

int 0 0,1

2 KernelVerbosity Controls the amount of
kernel printouts

int 1 1 - 100 Should be a small
number
(EndConditionValue
<< 1)

3 KernelType Type of the kernel
metric

string Friend
s

 Must be Friends

4 OutputFileName If on, The algorithm will
output the kernel graph
to that file, otherwise,
the graph will not be
output

string - -

5 NumberOfComputeIt
erations

If greater than 1, the
kernel computation will
be done in several
iterations

int 1 >0 Must be 1

6 NormalizingFactor Used in the
computation of the
metric. Recommended
to be at the same
ballpark as the size of
the population

doubl
e

50,00
0,000

> 0

Due to historical or future reasons, the other parameters are fixed. These include:
IsSparseKernel, isSparseData, IndicesData, EmptyMarker, and FilterSimilarities.

3.2 Building the Core Groups
Once the kernel graph is computed, the next step is to partition it into groups. These
are called the core groups or initial clusters. The algorithm partitions the kernel graph
using a BFS like process (with some high degree preference heuristic) for finding
connected components. A parameter called MaxClusterSize that governs the
maximum size of a cluster. The process stops adding to a group once its size limit has
been reached. The underlying assumption is that groups that are too small or too large
are not informative for various applications [1].

Relevant Parameters

Nu
m

Parameter name Description Data
type

Defau
lt
value

Data
range

Restriction

1 MinClusterSize Miminal cluster size int 1 >0
2 MaxClusterSize Maximal cluster size int 100 >

MinClu
sterSiz
e

Linking a non-core member
For each caller i not already in the core

 Let S1, S2, … Sl be the core groups to whom i called

 If (l > 0)

 Let k1, … ,kl denote the number of times I called each group

 Let j = argmax kj

 Add caller i to Sj as a non-core group member

3.3 Building the Final Groups: Linking Non Core Nodes
In order to increase the coverage of the social network we are building, the next step
that TABI takes is to add individuals who are not linked to any core group via the
following heuristic: For each such individual we go again over the call graph (not the
kernel). If a caller i called members of core clusters cluster c we will add it as a non-
core user to the cluster it called the most. This process will be done iteratively if the
parameter NumIterationsConnectingNodes is greater than 1. In this case, at each
phase j the heuristic above will be applied to the groups of iteration j-1. The whole
process is done in parallel so each worker responsible only to its own fraction of the
callers. Note that not all the callers end up in the social network. A caller who did not
communicate with any core group will be left out. There is an essential tradeoff between
the strength of the relations controlled by the sparsity threshold, the number of
connecting nodes iteration, and the coverage. As a rule of thumb, at least for churn
prediction, shooting for coverage of 50% – 75% is often desirable. The heuristics for
linking non core nodes is depicted below.

Relevant Parameters

Nu
m

Parameter name Description Data
type

Defau
lt
value

Data
range

Restriction

1 NumIterationsConne
ctingNodes

The number of
iterations in which non-
cluster nodes will be
connected using the
above hueristic

int 1 >0

2 MaxClusterSize Maximal cluster size int 100 >
MinClu
sterSiz
e

3.4 Analyzing Social Influence in the Final Groups
The next stage is to perform a basic analysis on each group in order to extract basic
KPIs of groups and individuals. The analysis is done in parallel and on the call graph.
The main analysis done at this stage is importance analysis on the call graph projected
into each group. This is essentially done via a random walk, once in the direction of the
calls to analyze authority leadership and once in the opposite direction to analyze
information spreading roles. A more elaborate description can be found in [1].

3.5 Computing the Final KPIs
In the final stage of the algorithm, we go over all the clusters and individuals in the
social network and compute the final KPIs for them. Note that TABI outputs only basic
social KPIs. These can be enhanced using various techniques. More specifically,
individual demographics, usage, and other data can be aggregated (e.g., averaged) at
the group level.

This stage is done serially on the master processor. The KPIs are then written into two
files, one for the clusters and one for the individual nodes. Note that only those who
appear in the final groups will have KPIs.

Relevant Parameters

Nu
m

Parameter name Description Data
type

Defau
lt
value

Data
range

Restriction

1 OutputFileName The name prefix of the
output file. The right
suffix will be appended
for it

string

2 OutputFormat Maximal cluster size string XML/C
SV/
Normal
/
Compa
ct

Fixed to CSV

4. Implementation Issues

4.1 Algorithm State Machine
The following state machine describes the algorithm presented above.

Circles represent states and edges represent the transitions between states. Dashed
edges represent transitions which are possible under some parameter combinations,
but are not common. The actual logic of the algorithm is complicated and should be
learned from the code. In the current implementation of TABI, the algorithm always
starts from the building kernel state.

4.2 Parallelization Model
The parallelization schema of the GA algorithm is based on the PML architecture [2].
For this section, it is assumed that the reader is familiar with the basic PML event flow
model.

The various stages of the GA algorithm are parallelized as follows:

Kernel computation

 Each worker is responsible to 1/n of the callers.

 Threshold computation: Each worker independently computes all the relations
of the form S(i,j) such that both i and j belong to its partition

 Kernel metric; Each worker computes all the relations of the form S(i,j) such
that I belongs to the worker’s partition and I called j. Note that in order to
accomplish that the worker must get all the calls matrix

Building the core groups
Done by the master. Not parallelized

Linking non core members
Each worker is responsible to about 1/n of the callers

Group analysis
At the beginning of this stage all workers have the same data and no data is
communicated via the PML. The parallelization is obtained via partitioning of the group
ids. Each worker i analyzes all the groups k such that (k modulo n) == i so about 1/n
fraction of the groups.

General note
The method getWorkerDataRequirements() of the IDMPBCGAData object defines to
the PML whether the worker needs to see all the data, just its own partition (1/n of the
callers), or no data. A similar method exists in the kernel object.

4.3 A Note on Time and Space Complexity
The most time and space consuming phase in the algorithm is the kernel building. Let d
denote the cyclic table size parameter of the loader. Roughly speaking, each caller in
the loader output graph contributes up to d computations of the kernel metric. Each
such computation involves going over to lists of length up to d. Thus, the overall space
complexity is about O(nd). TABI makes a heavy use of STL containers which typically
have a logarithmic complexity. Thus, the overall time is about O(nd2 log(nd)). The actual
time is heavily governed by the amount of page swapping of the underlying machine.
Thus, it is strongly recommended that each core will be able to hold its own partition in
the memory. As a rule of thumb, the recommended architectural guidelines are as
follows:

 At least one core per each 1M callers
 At least 2GBytes of RAM per each core

These guidelines refer to d = 100.

4.4 The GA Code
The main class that implements the GA algorithm is called IDMPBCGAData.
The computation of the kernel is delegated to a class called IDMPBKernelData with
some specific kernel functions that reside in a file called idmpb_kernel_functions.hpp.
The code of these classes can be found in a subdirectory named
src/lib/simple_algorithm.

5. References

[1] Yossi Richter, Elad Yom-Tov, Noam Slonim, Predicting customer churn in mobile
networks through analysis of social groups”, The Tenth SIAM International Conference
on Data Mining, SDM 2010

[2] The PML User Guide with CGA and SNA

[3] TABI Loader User Manual

Spatial Temporal Prediction Algorithms

1. Introduction
Spatio-temporal statistical analysis has many applications. For example, energy management for
buildings or facilities, performance analysis and forecasting for service branches, or public
transport planning. In these applications, measurements such as energy usage are often taken over
space and time. The key questions here are what factors will affect future observations, what can
we do to effect a desired change, or to better manage the system. In order to address these
questions, we need to develop statistical techniques which can forecast future values at different
locations, and can explicitly model adjustable factors to perform what-if analyses.

However, these analytical needs are not the focus of traditional spatio-temporal statistical research.
In traditional statistical research, spatio-temporal analysis is treated just as an extension of spatial
analysis and focuses more on looking for patterns in past data rather than forecasting future values.
The traditional spatio-temporal research targets different application areas such as environmental
research. There are, however, different types of spatio-temporal problems in which time is the key
component. We therefore need to treat spatio-temporal analysis as a unique type of problem itself,
not an extension to spatial analysis. Moreover, we need to explicitly model these factors to allow
for what-if analysis. Although these kinds of problems could be addressed by traditional methods,
the emphasis is quite different.

This algorithm assumes a fixed set of spatial locations (either point location or center of an area)
and equally spaced time stamps common across locations. It can issue predicted or interpolated
values at locations with no response measurements (but with available covariates). We call our
model spatio-temporal prediction (STP).

The goal of the STP algorithm is to address the needs for solving the spatio-temporal problems.
STP can generate predictions at any location within a 3D space for any future time. It also
explicitly models the external factors so we can perform what-if analysis.

1.1 Handling of missing data
The algorithm is designed to accommodate missing values in the response variable, as well as in
the predictors. We consider an observation at a given time point and location ‘complete’ if all
predictors and the response are observed at that time and location. To allow for model fitting in
spite of missing data, all of the following conditions must be met:

1. At each location, observations need to be complete for at least one sequence of at least 𝐿𝐿 +
2 consecutive time points.

2. At each location 𝑠𝑠𝑖𝑖, for any pair of locations 𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗, 𝑠𝑠𝑗𝑗 ≠ 𝑠𝑠𝑖𝑖, observations must be complete at
both locations simultaneously for at least two sequences of 𝐿𝐿 + 2 consecutive time points.

3. Overall, at least 𝐿𝐿 sequences of at least 𝐿𝐿 + 2 consecutive time points must be present in the
data (to allow for estimation of 𝛼𝛼).

4. The total number of complete samples must be at least equal to 𝑀𝑀 + 𝐿𝐿 + 2, where 𝑀𝑀 is the
number of predictors, including the intercept, and 𝐿𝐿 the user-specified lag.

5. After removing locations according to the rules above, no more than 5% of the remaining
records should be incomplete. As an example, if after removing locations, 𝑛𝑛 locations and
𝑚𝑚 time stamps remain, no more than 𝑛𝑛×𝑚𝑚×.05 records should be incomplete.

The above conditions should be verified in the following order:

Step 1. Remove locations that do not meet condition 1.

Step 2. Remove locations that violate condition 2 in the following order:

(a) Let ℐ be the set of points that violate condition 2.

(b) Eliminate from the data set the observation(s) that violate condition 2 for the greatest
number of pairs. In case of a tie, remove all observations that are tied.

(c) Update ℐ by removing any observations that now no longer violate Condition 2. That
is, remove observation that only violated the condition 2 in a pair with the
observations that were removed in Step 2b.

(d) Iterate steps 2b and 2c until ℐ is empty.

Step 3. If after Steps 1 and 2, conditions 3-5 are violated, the model cannot be fit.

2 Model
2.1 Notation
The following notation is used for the model inputs:

Name Symbol Type Dimensions
Number of time stamps 𝑚𝑚 > 𝐿𝐿 integer 1
Number of measurement locations 𝑛𝑛 ≥ 3 integer 1
Number of prediction grid points 𝑁𝑁 integer 1
Number of predictors (including intercept) 𝑀𝑀 integer 1
Index of time stamps 𝑡𝑡 ∈ {1, … ,𝑚𝑚} integer 1
Spatial coordinates 𝑠𝑠 ∈ {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛}; 𝑠𝑠𝑗𝑗 = (𝑣𝑣𝑗𝑗 , 𝑟𝑟𝑗𝑗 ,𝑤𝑤𝑗𝑗)′ vector 3×1
Targets observed at location 𝑠𝑠 and time 𝑡𝑡 𝑌𝑌𝑖𝑖(𝑠𝑠) scalar 1
Targets observed at location 𝑠𝑠 𝑌𝑌(𝑠𝑠) vector 𝑚𝑚×1
Targets observed at time 𝑡𝑡 𝑌𝑌𝑖𝑖 vector 𝑛𝑛×1
Predictors observed at location 𝑠𝑠 and time 𝑡𝑡 𝑋𝑋𝑖𝑖(𝑠𝑠) = (𝑋𝑋𝑖𝑖,1(𝑠𝑠), … ,𝑋𝑋𝑖𝑖,𝑆𝑆(𝑠𝑠))′ vector 𝑀𝑀×1
Predictors observed at location 𝑠𝑠 𝑋𝑋(𝑠𝑠) = (𝑋𝑋1(𝑠𝑠), … ,𝑋𝑋𝑚𝑚(𝑠𝑠))′ matrix 𝑚𝑚×𝑀𝑀
Predictors observed at time 𝑡𝑡 𝑋𝑋𝑖𝑖 = (𝑋𝑋𝑖𝑖(𝑠𝑠1), … ,𝑋𝑋𝑖𝑖(𝑠𝑠𝑛𝑛))′ matrix 𝑛𝑛×𝑀𝑀
Maximum autoregressive time lag 𝐿𝐿 > 0 integer 1
Length of prediction steps 𝐻𝐻 > 0 integer 1

Notes

i. For a predictor that does not vary over space, 𝑋𝑋𝑖𝑖,𝑑𝑑(𝑠𝑠1) = 𝑋𝑋𝑖𝑖,𝑑𝑑(𝑠𝑠2) = ⋯ = 𝑋𝑋𝑖𝑖,𝑑𝑑(𝑠𝑠𝑛𝑛);
ii. For a predictor that does not evolve over time, 𝑋𝑋1,𝑑𝑑(𝑠𝑠) = 𝑋𝑋2,𝑑𝑑(𝑠𝑠) = ⋯ = 𝑋𝑋𝑚𝑚,𝑑𝑑(𝑠𝑠).

The following notation is used for model definition and computation:

Name Symbol Type Dimension
Coefficient vector for linear model 𝜷𝜷 = (𝛽𝛽1, … ,𝛽𝛽𝑆𝑆) vector 𝑀𝑀
Coefficient vector for AR model 𝜶𝜶 = (𝛼𝛼1, … ,𝛼𝛼𝐿𝐿) vector 𝐿𝐿
Vector of 1’s 1 = (1, … ,1)′ vector variable
Kronecker product ⊗ operator NA

2.1 Model structure

 𝑌𝑌𝑖𝑖(𝑠𝑠) = �𝛽𝛽𝑑𝑑

𝑆𝑆

𝑑𝑑=1

𝑋𝑋𝑖𝑖,𝑑𝑑(𝑠𝑠) + 𝑍𝑍𝑖𝑖(𝑠𝑠) (1)

where 𝑍𝑍𝑖𝑖(𝑠𝑠) is mean-zero space-time correlated random process. Users can specify whether an
“intercept” term needs to be included in the model. The inference algorithm works with general
“continuous” variables, and with or without intercept.

• Autoregressive model, AR(𝐿𝐿) for time autocorrelation (Brockwell and Davis, 2002):

 𝑍𝑍𝑖𝑖(𝑠𝑠) = �𝛼𝛼𝑙𝑙

𝐿𝐿

𝑙𝑙=1

𝑍𝑍𝑖𝑖−𝑙𝑙(𝑠𝑠) + 𝜖𝜖𝑖𝑖(𝑠𝑠) (2)

Note that users need to specify the maximum AR lag 𝐿𝐿.

Let 𝜖𝜖𝑖𝑖 = (𝜖𝜖𝑖𝑖(𝑠𝑠1), … , 𝜖𝜖𝑖𝑖(𝑠𝑠𝑛𝑛))′ be the AR residual vector at time 𝑡𝑡. Since the time autocorrelation
effect has already been removed, 𝜖𝜖𝐿𝐿+1, … , 𝜖𝜖𝑚𝑚 are independent.

• Parametric or nonparametric covariance model for spatial dependence:
 𝑉𝑉(𝜖𝜖𝑖𝑖) = Σ𝑆𝑆, 𝑡𝑡 = 𝐿𝐿 + 1, … ,𝑚𝑚 (3)
where Σ𝑆𝑆 = {𝑅𝑅(𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗)}𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛 is a 𝑛𝑛×𝑛𝑛 covariance matrix of spatial covariance functions
𝑅𝑅(𝑠𝑠, 𝑠𝑠′) = 𝐶𝐶𝑏𝑏𝑟𝑟(𝑌𝑌𝑖𝑖(𝑠𝑠),𝑌𝑌𝑖𝑖(𝑠𝑠′)) at observed locations. Two alternative ways of modeling the spatial
covariance function 𝑅𝑅(𝑠𝑠𝑖𝑖, 𝑠𝑠𝑗𝑗) are implemented - a variogram-based parametric model (Cressie,
1993) and a Empirical Orthogonal Functions (EOF)-based nonparametric model (Cohen and
Johnes, 1969; Creutin and Obled, 1982).

Note that users can specify which covariance model to be used.
• If a “parametric model” is chosen, the algorithm will automatically test for the goodness-of-

fit. If the test suggests a parametric model is not adequate, the algorithm switch to EOF
model fitting and issue prediction based on EOF model.

• If a EOF model is chosen, the switching test part will be skipped, and both model fitting and
prediction will follow EOF-based algorithm.

Under this model decomposition, the covariance structure for the spatio-temporal process 𝑌𝑌 =
(𝑌𝑌𝐿𝐿+1′ , … ,𝑌𝑌𝑚𝑚′)′ is of separable form

 𝑉𝑉(𝑌𝑌) = 𝑉𝑉(𝑍𝑍) = Σ = Σ𝑇𝑇 ⊗ Σ𝑆𝑆 (4)
where Σ𝑇𝑇 = {𝛾𝛾𝑇𝑇(𝑡𝑡 − 𝑡𝑡′)}𝑖𝑖=𝐿𝐿+1,…,𝑚𝑚;𝑖𝑖′=𝐿𝐿+1,…,𝑚𝑚 is the (𝑚𝑚− 𝐿𝐿)×(𝑚𝑚 − 𝐿𝐿) AR(L) covariance matrix
with the autocovariance function.

3 Estimation algorithm
This section provides details on the multi-step procedure to fit the STP model (see Figure 1) when
the user specifies a “parametric model”. If an “empirical model” is specified, the switching test part
will be skipped, and both model fitting and prediction follows EOF-based algorithm.

Figure 1. Flowchart of algorithm steps for model fitting when a “parametric model” is specified.

Step 1: Fit regression model by ordinary least squares (OLS) regression using only observations
that have no missing values (see Section 3.1).

We first ignore the spatio-temporal dependence in the data and simply estimate the fixed
regression part by OLS and obtain the regression residuals 𝑍𝑍𝑖𝑖(𝑠𝑠).

Step 2: Fit autoregressive model using only data without missing values (see Section 3.2).

Ignoring spatial dependence in OLS residuals 𝑍𝑍𝑖𝑖(𝑠𝑠), we estimate autoregressive
coefficients by fitting the regression model (2) and obtain the AR residuals 𝜖𝜖𝑖𝑖(𝑠𝑠).

Step 3: Fit spatial covariance model and test for goodness of fit on data without missing values
(see Section 3.3).

We fit a parametric spatial covariance model. We perform two Goodness of Fit tests to
decide whether to continue with the parametric covariance model or the empirical
covariance matrix.

Step 4: Refit autoregressive model using augmented data (see Section 3.4).

We refit autoregressive model accounting for spatial dependence by generalized least
squares (GLS) and obtain improved AR coefficients 𝛼𝛼.

Step 5: Refit Regression model using augmented data (see Section 3.5).

We obtain improved regression coefficients 𝛽𝛽 by GLS to account for spatio-temporal
correlation in the data.

Step 6: Save the results for use in output and prediction.

3.1 Fit regression model
We first ignore the spatio-temporal dependence in the data and simply estimate the fixed regression
part by OLS. Assume that out of 𝑛𝑛𝑚𝑚 location-time combinations, 𝑞𝑞 samples have missing values in
either 𝑋𝑋 or 𝑌𝑌. Let 𝑌𝑌 = (𝑌𝑌1′, … ,𝑌𝑌𝑚𝑚′)′, a (𝑛𝑛𝑚𝑚 − 𝑞𝑞)×1-vector and 𝑋𝑋 = (𝑋𝑋1′ , … ,𝑋𝑋𝑚𝑚′)′, a (𝑚𝑚𝑛𝑛 − 𝑞𝑞)×𝑀𝑀
matrix, such that 𝑋𝑋 and 𝑌𝑌 contain only complete observations, i.e., observations without any
missing values. The OLS estimates of the regression coefficients are:

 𝜷𝜷� = (𝑋𝑋′𝑋𝑋)−1𝑋𝑋′𝑌𝑌 (5)

The residuals are:

 �̂�𝑍 = 𝑌𝑌 − 𝑋𝑋𝜷𝜷� . (6)

3.2 Fit autoregressive model
We estimate autoregressive coefficients by OLS assuming no spatial correlation and AR(L) as
model for time-series autocorrelation,

 �̂�𝑍𝑖𝑖 = 𝛼𝛼1�̂�𝑍𝑖𝑖−1 + ⋯+ 𝛼𝛼𝐿𝐿�̂�𝑍𝑖𝑖−𝐿𝐿 + 𝝐𝝐𝑖𝑖, (7)

where �̂�𝑍𝑖𝑖 is a 𝑛𝑛𝑖𝑖×1 vector. Note that due to the existence of missing values, the number of
locations 𝑛𝑛𝑖𝑖 varies among different time points. Moreover, for each time points t, only locations
with no missing values at 𝐿𝐿 + 1 consecutive time points, i.e., (𝑡𝑡, 𝑡𝑡 − 1, … , 𝑡𝑡 − 𝐿𝐿) can be used for
model fitting, therefore, ∑ 𝑛𝑛𝑖𝑖𝑚𝑚

𝑖𝑖=𝐿𝐿+1 ≤ [𝑛𝑛(𝑚𝑚− 𝐿𝐿) − 𝑞𝑞].

Step 1: Construct 𝑛𝑛𝑖𝑖×𝐿𝐿 time lag matrix

 �̂�𝑍𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙 = ��̂�𝑍𝑖𝑖−1, �̂�𝑍𝑖𝑖−2, … , �̂�𝑍𝑖𝑖−𝐿𝐿�, 𝑡𝑡 = 𝐿𝐿 + 1, … ,𝑚𝑚 (8)

Step 2: Let �̂�𝑍𝑙𝑙𝑚𝑚𝑙𝑙 = ��̂�𝑍𝐿𝐿+1−𝑙𝑙𝑚𝑚𝑙𝑙′ , … , �̂�𝑍𝑚𝑚−𝑙𝑙𝑚𝑚𝑙𝑙
′ �

′
 and �̂�𝑍∗ = ��̂�𝑍𝐿𝐿+1′ , … , �̂�𝑍𝑚𝑚′ �

′
. Solve the linear system

 ��̂�𝑍𝑙𝑙𝑚𝑚𝑙𝑙′ �̂�𝑍𝑙𝑙𝑚𝑚𝑙𝑙�𝜶𝜶 = �̂�𝑍𝑙𝑙𝑚𝑚𝑙𝑙′ �̂�𝑍∗ (9)

which is equivalent to solving

 � � �̂�𝑍𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙′ �̂�𝑍𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙

𝑚𝑚

𝑖𝑖=𝐿𝐿+1

�𝜶𝜶 = � �̂�𝑍𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙′ �̂�𝑍𝑖𝑖

𝑚𝑚

𝑖𝑖=𝐿𝐿+1

 (10)

using the sweep operation to find estimate 𝛼𝛼�.
Step 3: Compute the de-autocorrelated AR(L) residuals

𝜖𝜖�𝑡𝑡 = 𝑍𝑍�𝑡𝑡 − 𝛼𝛼�1𝑍𝑍�𝑡𝑡−1 −⋯− 𝛼𝛼�𝐿𝐿𝑍𝑍�𝑡𝑡−𝐿𝐿, 𝑡𝑡 = 𝐿𝐿+ 1, … ,𝑚𝑚 (11)

3.3 Fit model and check goodness of fit for spatial covariance
structure
We explicitly model the spatial covariance structure among locations, rather than using variogram
estimation.

Under the assumption of the model (stationarity, AR-relationship removed), the mean of the
residuals is 0 at all locations. We therefore estimate the unadjusted empirical covariances 𝑠𝑠𝑖𝑖𝑗𝑗 and
correlations 𝑟𝑟𝑖𝑖𝑗𝑗 assuming mean 0, i.e.,

 𝑺𝑺 = �𝑠𝑠𝑖𝑖𝑗𝑗�𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛
, 𝑠𝑠𝑖𝑖𝑗𝑗 =

1
𝑡𝑡𝑖𝑖𝑗𝑗
�𝜖𝜖�̂�𝑖(𝑠𝑠𝑖𝑖)𝜖𝜖�̂�𝑖�𝑠𝑠𝑗𝑗�
𝑖𝑖

 (12)

where 𝑡𝑡𝑖𝑖𝑗𝑗 is the number of complete residual pairs between locations 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗, and 𝑡𝑡 indexes these
pairs, i.e., the time points for which both 𝜖𝜖�̂�𝑖(𝑠𝑠𝑖𝑖) and 𝜖𝜖�̂�𝑖(𝑗𝑗) are non-missing.

 𝑟𝑟𝑖𝑖𝑗𝑗 =
𝑠𝑠𝑖𝑖𝑗𝑗

�𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑗𝑗𝑗𝑗
 (13)

To determine whether to model the spatial covariance structure parametrically or to use the
nonparametric EOF model, we perform the following two tests sequentially:

1. Fit parametric model to covariances using the parameter vector 𝝍𝝍 = (𝜎𝜎2,𝜃𝜃, 𝜏𝜏2) (Cressie
1993)

 𝐶𝐶𝑏𝑏𝑟𝑟�𝜖𝜖𝑖𝑖(𝑠𝑠𝑖𝑖), 𝜖𝜖𝑖𝑖�𝑠𝑠𝑗𝑗�;𝜓𝜓�� = �𝜎𝜎�
2𝑚𝑚𝑥𝑥𝑝𝑝�−�ℎ𝑖𝑖𝑗𝑗 𝜃𝜃�⁄ �

𝑝𝑝
�, 𝑖𝑖𝑓𝑓 ℎ𝑖𝑖𝑗𝑗 > 0;

𝜎𝜎�2 + �̂�𝜏2, 𝑏𝑏𝑡𝑡ℎ𝑚𝑚𝑟𝑟𝑤𝑤𝑖𝑖𝑠𝑠𝑚𝑚.
 (14)

where ℎ𝑖𝑖𝑗𝑗 = �𝑠𝑠𝑖𝑖 − 𝑠𝑠𝑗𝑗�2 is the Euclidean distance between locations 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗. Users need to
specify the values for the order parameter 𝑝𝑝.

𝑝𝑝 ∈ [1, 2] is a user-defined parameter that determines the class of covariance models to be
fit. 𝑝𝑝 = 1 corresponds to an exponential covariance model, 𝑝𝑝 = 2 results in a Gaussian
covariance model and 𝑝𝑝 ∈ (1, 2) belongs to the powered exponential family.

Next, determine if there is a significant decay over space by testing 𝐻𝐻0:−1 𝜃𝜃𝑝𝑝⁄ ≥ 0. If we
fail to reject 𝐻𝐻0, we conclude that the decay over space is not significant, and EOF
estimation will be used. If EOF estimation is used, there is not need to calculate 𝜃𝜃, 𝜎𝜎 or 𝜏𝜏, as
we have concluded that they are invalid descriptions of the covariance matrix. In fact, there
may not be valid solutions for these parameters, therefore they should not be estimated.

2. If the previous test rejects 𝐻𝐻0, test for homogeneity of variances among locations: if
homogeneity of variances is rejected, EOF estimation will be used. Otherwise, the
parametric covariance model will be used.

3.3.1 Fit and test parametric model

a) Enforce a minimum correlation of +.01: if 𝑟𝑟𝑖𝑖𝑗𝑗 < .01, set 𝑠𝑠𝑖𝑖𝑗𝑗 = .01�𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑗𝑗𝑗𝑗 and 𝑟𝑟𝑖𝑖𝑗𝑗 = .01.

b) Let 𝒔𝒔 be the vectorized lower triangular of the covariance matrix (excluding the diagonal, i.e.,
excluding variances), 𝒓𝒓 be the vectorized lower triangular of the correlation matrix (excl.
diagonal), and 𝒉𝒉 the corresponding vector of pairwise distances between the 𝑛𝑛 locations. 𝒔𝒔, 𝒓𝒓
and 𝒉𝒉 are each vectors of length 𝑛𝑛(𝑛𝑛 − 1) 2⁄ .

Define 𝜑𝜑 = − 1 𝜃𝜃𝑝𝑝⁄ . Fit the linear model ln 𝒔𝒔 = ln 𝜎𝜎2 + 𝜑𝜑𝒉𝒉𝑝𝑝 using a GLS fit:

 𝑨𝑨 = [1,𝒉𝒉𝑝𝑝] (15)

 𝑽𝑽−1 =
1
2
𝑻𝑻(𝑩𝑩−1 − 𝑐𝑐𝑏𝑏𝑏𝑏′)𝑻𝑻 (16)

where𝒃𝒃 = 2𝒓𝒓2 (1 − 𝒓𝒓2)⁄ , 𝒓𝒓2 is obtained by squaring each element of vector 𝒓𝒓, 𝑩𝑩−1 = diag(𝒃𝒃),
and scalar 𝑐𝑐 = 1 (1 + 𝟏𝟏′𝑩𝑩−1𝟏𝟏)⁄ . Also, let 𝑻𝑻 = diag��𝑡𝑡𝑘𝑘�,𝑘𝑘 = 1, … ,𝑛𝑛(𝑛𝑛 − 1) 2⁄ , where 𝑡𝑡𝑘𝑘 is the
number of pairs of de-autocorrelated residuals in the calculation of the corresponding element
𝑟𝑟𝑘𝑘 in 𝒓𝒓, i.e., the number of observations pairs that went into calculating 𝑟𝑟𝑘𝑘, which may be
different for each entry of the covariance matrix, depending on missing values. Note that 𝑡𝑡𝑘𝑘
corresponds to the vectorized lower triangular of �𝑡𝑡𝑖𝑖𝑗𝑗�𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛

, where 𝑡𝑡𝑖𝑖𝑗𝑗 are as defined in (12).

Let 𝜼𝜼 = (ln 𝜎𝜎2,𝜑𝜑), the GLS estimator can be calculated as

𝜼𝜼� = �𝑨𝑨′𝑽𝑽−𝟏𝟏𝑨𝑨�
−1
𝑨𝑨′𝑽𝑽−1ln 𝒔𝒔

The standard error for 𝜼𝜼� will be 𝑠𝑠𝑚𝑚(𝜼𝜼�) = �diag[(𝑨𝑨′𝑽𝑽−𝟏𝟏𝑨𝑨)−1].

Calculate the test statistic 𝑧𝑧1 = 𝜑𝜑�
𝑠𝑠𝑚𝑚(𝜑𝜑�). If 𝑧𝑧1 ≥ 𝑧𝑧.05, where 𝑧𝑧.05 is the .05 quantile of the standard

normal distribution (or critical value for selected level of significance 𝛾𝛾1), then all following
calculations will be performed using the empirical spatial covariance matrix, i.e., Σ𝑺𝑺 = 𝑺𝑺, and
the nonparametric EOF model will be used for prediction. Equivalently, a p-value 𝑝𝑝1 can be
calculated by evaluating the standard Normal cumulative distribution function (CDF) at 𝑧𝑧1 (i.e.,
𝑝𝑝1 = 𝑃𝑃(𝑍𝑍 < 𝑧𝑧1)). If 𝑝𝑝1 ≥ level of significance 𝛾𝛾1, then all following calculations will be
performed using the empirical covariance matrix.

c) If the previous test does reject 𝐻𝐻0 (i.e., we have not yet decided to continue with the empirical
covariance matrix), continue to perform the following test: Let 𝑟𝑟 = (𝑠𝑠11, 𝑠𝑠22, … , 𝑠𝑠𝑛𝑛𝑛𝑛)′ be the
(𝑛𝑛×1)-vector of location-specific variances. Calculate the weighted mean variance �̅�𝑟

 �̅�𝑟 = 1′𝑾𝑾−1𝑟𝑟 (1′𝑾𝑾−11)⁄ = 1′𝑾𝑾−1𝑟𝑟 �𝑤𝑤𝑖𝑖𝑗𝑗
∗

𝑖𝑖,𝑗𝑗

� (17)

where 𝑾𝑾 = �𝑤𝑤𝑖𝑖𝑗𝑗� = �𝑠𝑠𝑖𝑖𝑗𝑗2 𝑡𝑡𝑖𝑖𝑗𝑗� �
𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛

 is an 𝑛𝑛×𝑛𝑛 matrix, where 𝑡𝑡𝑖𝑖𝑗𝑗 is defined as in (12), and

𝑾𝑾−1 = �𝑤𝑤𝑖𝑖𝑗𝑗∗ �𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛
.

Calculate the test statistic 𝑧𝑧2 = (𝒗𝒗 − 𝑟𝑟�)′𝑾𝑾−1(𝒗𝒗 − 𝑟𝑟�). If 𝑧𝑧2 ≥ 𝜒𝜒𝑛𝑛−1,.95
2 (or critical value for

[1 − selected level of significance 𝛾𝛾2]), all following calculations will be performed using the
empirical spatial covariance matrix, i.e., Σ𝑺𝑺 = 𝑺𝑺, and the nonparametric EOF model will be
used for prediction. Equivalently, one may compute a p-value 𝑝𝑝2 by evaluating 1 minus the
𝜒𝜒𝑛𝑛−12 − CDF:𝑝𝑝2 = 𝑃𝑃(𝜒𝜒𝑛𝑛−12 > 𝑧𝑧2). If 𝑝𝑝2 < level of significance 𝛾𝛾2, then all following calculations
will be performed using the empirical spatial covariance matrix.

d) If the two tests in b) and c) do not indicate a switch to the EOF model, all following
calculations will be performed using the parametric covariance model, i.e., the spatial
covariance matrix 𝛴𝛴𝑆𝑆 is constructed according to (14). Recall that 𝜂𝜂 = (𝑙𝑙𝑛𝑛 𝜎𝜎2,−1 𝜃𝜃𝑝𝑝⁄). The
missing parameter 𝜏𝜏2 is derived as 𝜏𝜏2� = 𝑚𝑚𝑚𝑚𝑥𝑥 �0, 1

𝑛𝑛
∑ 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖=1,…,𝑛𝑛 − 𝑚𝑚𝑥𝑥𝑝𝑝�𝑙𝑙𝑛𝑛 𝜎𝜎2���.

3.4 Re-fit autoregressive model
We refit the autoregressive model accounting for spatial dependence using GLS with augmented
data:

Step 1: Compute the Cholesky factorization 𝚺𝚺𝑆𝑆 = 𝑯𝑯𝑆𝑆𝑯𝑯𝑆𝑆
′ and the inverse matrix 𝑯𝑯𝑺𝑺

′ .

Step 2: Substitute 0 for missing values such that 𝒁𝒁�𝑡𝑡−𝑙𝑙𝑚𝑚𝑔𝑔,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚 is an 𝑛𝑛×𝐿𝐿 matrix and 𝒁𝒁�𝑡𝑡,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚
is a vector of length 𝑛𝑛.

Step 3: Augment predictor matrix as follows. Let 𝒁𝒁�𝑙𝑙𝑚𝑚𝑔𝑔,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚 =
�𝒁𝒁�𝐿𝐿+1−𝑙𝑙𝑚𝑚𝑔𝑔,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚

′
, … ,𝒁𝒁�𝑚𝑚−𝑙𝑙𝑚𝑚𝑔𝑔,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚

′
� ′ be a 𝑛𝑛(𝑚𝑚− 𝐿𝐿)×𝐿𝐿 matrix and 𝒁𝒁�𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚 =

�𝒁𝒁�𝐿𝐿+1,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚
′

, … ,𝒁𝒁�𝑚𝑚,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚
′

� ′ is a vector of length 𝑛𝑛(𝑚𝑚− 𝐿𝐿), then

𝒁𝒁�𝑙𝑙𝑚𝑚𝑔𝑔,𝑚𝑚𝑣𝑣𝑔𝑔 = �𝒁𝒁�𝑙𝑙𝑚𝑚𝑔𝑔,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚, … , 𝐈𝐈𝑍𝑍𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠�

where 𝐈𝐈𝑍𝑍𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠 is a 𝑛𝑛(𝑚𝑚− 𝐿𝐿)×𝑞𝑞𝑍𝑍 indicator matrix given 𝑞𝑞𝑍𝑍 the total number of rows with
missing values in either 𝒁𝒁�∗ or 𝒁𝒁�𝑙𝑙𝑚𝑚𝑙𝑙. If there is a missing value in the ith row of either 𝒁𝒁�∗ or
𝒁𝒁�𝑙𝑙𝑚𝑚𝑙𝑙, and if this is the jth out of all 𝑞𝑞𝑍𝑍 rows that have missing values, then the jth column of
𝐈𝐈𝑍𝑍𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠 is all 0 except for the ith element, which is set to 1.

Step 4: Remove the spatial correlation: 𝒁𝒁�𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙,𝑚𝑚𝑛𝑛𝑙𝑙 = 𝑯𝑯𝑆𝑆
−1𝒁𝒁�𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙,𝑚𝑚𝑛𝑛𝑙𝑙 and 𝒁𝒁�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 =

𝑯𝑯𝑆𝑆
−1𝒁𝒁�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒, where 𝒁𝒁�𝑡𝑡−𝑙𝑙𝑚𝑚𝑔𝑔,𝑚𝑚𝑣𝑣𝑔𝑔 are the submatrices of 𝒁𝒁�𝑙𝑙𝑚𝑚𝑔𝑔,𝑚𝑚𝑣𝑣𝑔𝑔 that correspond to the rows

of the matrices 𝒁𝒁�𝑡𝑡−𝑙𝑙𝑚𝑚𝑔𝑔,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚.

Step 5: Use the same computational steps as for the linear system in equation (10) to solve
the linear system

 � � 𝒁𝒁�𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙,𝑚𝑚𝑛𝑛𝑙𝑙
′ 𝒁𝒁�𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙,𝑚𝑚𝑛𝑛𝑙𝑙

𝑚𝑚

𝑖𝑖=𝐿𝐿+1

�𝜶𝜶𝑚𝑚𝑛𝑛𝑙𝑙 = � 𝒁𝒁�𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙,𝑚𝑚𝑛𝑛𝑙𝑙
′ 𝒁𝒁�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒

𝑚𝑚

𝑖𝑖=𝐿𝐿+1

 (18)

where 𝜶𝜶𝑚𝑚𝑛𝑛𝑙𝑙 is a vector of length 𝐿𝐿 + 𝑞𝑞𝑍𝑍, and there are 𝐿𝐿∗ + 𝑞𝑞𝑍𝑍∗ non-redundant parameters in
above linear system. The AR coefficient estimate 𝜶𝜶� is the subvector consisting of the first 𝐿𝐿
elements of 𝜶𝜶�𝑚𝑚𝑛𝑛𝑙𝑙, there are 𝐿𝐿∗ non-redundant parameters in first 𝑀𝑀 elements of 𝜶𝜶�𝑚𝑚𝑛𝑛𝑙𝑙, and
𝑞𝑞𝑍𝑍∗ non-redundant parameters in last 𝑞𝑞𝑍𝑍 elements of 𝜶𝜶�𝑚𝑚𝑛𝑛𝑙𝑙.

3.5 Re-fit Regression model
Refit regression model by GLS using augmented data to account for spatio-temporal correlation in
the data.

Step 1: Substitute the following for missing values such that 𝑿𝑿𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 is a 𝑛𝑛𝑚𝑚×𝑀𝑀 matrix and
𝒀𝒀𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 is a vector of length 𝑛𝑛𝑚𝑚: at location 𝑠𝑠𝑖𝑖, use the mean of 𝒀𝒀(𝑠𝑠𝑖𝑖) and the mean of each
predictor in 𝑿𝑿(𝑠𝑠𝑖𝑖).

Step 2: Augment predictor matrix as follows.

𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙 = �𝑿𝑿𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 , 𝑰𝑰𝑋𝑋𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠�

where 𝐈𝐈𝑋𝑋𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠 is a 𝑛𝑛𝑚𝑚×𝑞𝑞 indicator matrix given 𝑞𝑞 the total number of rows with missing
values in either 𝑿𝑿 or 𝒀𝒀. If there is a missing value in ith row of either 𝑿𝑿 or 𝒀𝒀, and if this is
the jth out of all 𝑞𝑞 rows that have missing value, then the jth column of 𝐈𝐈𝑋𝑋𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠 is all 0 except
for the ith element, which is 1.

Step 3: Remove the spatial correlation: 𝑿𝑿�𝑖𝑖,𝑚𝑚𝑛𝑛𝑙𝑙 = 𝑯𝑯𝑆𝑆
−1𝑿𝑿𝑖𝑖,𝑚𝑚𝑛𝑛𝑙𝑙 and 𝒀𝒀�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 = 𝑯𝑯𝑆𝑆

−1𝒀𝒀𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒.

Step 4: Remove the autocorrelation:

 𝑿𝑿�𝑡𝑡,𝑚𝑚𝑣𝑣𝑔𝑔 = 𝑿𝑿�𝑡𝑡,𝑚𝑚𝑣𝑣𝑔𝑔 − 𝛼𝛼�1𝑿𝑿�𝑡𝑡−1,𝑚𝑚𝑣𝑣𝑔𝑔 −⋯− 𝛼𝛼�𝐿𝐿𝑿𝑿�𝑡𝑡−𝐿𝐿,𝑚𝑚𝑣𝑣𝑔𝑔, 𝑡𝑡 = 𝐿𝐿+ 1, … ,𝑚𝑚 (19)

 𝒀𝒀�𝑡𝑡,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚 = 𝒀𝒀�𝑡𝑡,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚 − 𝛼𝛼�1𝒀𝒀�𝑡𝑡−1,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚 −⋯− 𝛼𝛼�𝐿𝐿𝒀𝒀�𝑡𝑡−𝐿𝐿,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚, 𝑡𝑡 = 𝐿𝐿+ 1, … ,𝑚𝑚 (20)

Step 5: Solve the linear system

 �𝑿𝑿�𝑚𝑚𝑛𝑛𝑙𝑙
′ 𝑿𝑿�𝑚𝑚𝑛𝑛𝑙𝑙�𝜷𝜷𝑚𝑚𝑛𝑛𝑙𝑙 = 𝑿𝑿�𝑚𝑚𝑛𝑛𝑙𝑙

′ 𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 (21)

where 𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚 = �𝒀𝒀�𝐿𝐿+1,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚
′ , … ,𝒀𝒀�𝑚𝑚,𝑖𝑖𝑚𝑚𝑝𝑝𝑣𝑣𝑡𝑡𝑚𝑚

′ �′, an 𝑛𝑛(𝑚𝑚 − 𝐿𝐿)×1-vector and 𝑿𝑿�𝑚𝑚𝑣𝑣𝑔𝑔 =
�𝑿𝑿�𝐿𝐿+1,𝑚𝑚𝑣𝑣𝑔𝑔

′ , … ,𝑿𝑿�𝑚𝑚,𝑚𝑚𝑣𝑣𝑔𝑔
′ �′, a 𝑛𝑛(𝑚𝑚− 𝐿𝐿)×(𝑀𝑀 + 𝑞𝑞) matrix, 𝜷𝜷𝑚𝑚𝑛𝑛𝑙𝑙 is a vector of length 𝑀𝑀 + 𝑞𝑞, and

there are 𝑀𝑀∗ + 𝑞𝑞∗ non-redundant parameters in above linear system. The regression
coefficients estimate 𝜷𝜷� is the subvector consisting of first 𝑀𝑀 elements of 𝜷𝜷�𝑚𝑚𝑛𝑛𝑙𝑙, there are 𝑀𝑀∗
non-redundant parameters in first 𝑀𝑀 elements of 𝜷𝜷�𝑚𝑚𝑛𝑛𝑙𝑙, and 𝑞𝑞∗ non-redundant parameters in
last 𝑞𝑞 elements of 𝜷𝜷�𝑚𝑚𝑛𝑛𝑙𝑙.

3.6 Statistics to display

3.6.1 Goodness of Fit statistics

We present statistics referring to the three main elements of the model: the mean structure, the
spatial covariance structure, and the temporal structure.

1. Goodness of fit mean structure model 𝑿𝑿𝜷𝜷:

Let 𝒬𝒬 be the set of observations (𝑌𝑌𝑖𝑖(𝑠𝑠),𝑿𝑿𝑖𝑖(𝑠𝑠)) that have missing values in either 𝑌𝑌𝑖𝑖(𝑠𝑠) or
𝑿𝑿𝑖𝑖(𝑠𝑠). Note that 𝑞𝑞 has been defined as the number of observations in 𝒬𝒬.

Calculate the mean squared error (MSE) and an 𝑅𝑅2 statistic based only on complete
observations:

MSE = � �𝑌𝑌𝑖𝑖(𝑠𝑠) − 𝑌𝑌�𝑖𝑖(𝑠𝑠)�

2 (𝑛𝑛𝑚𝑚 − 𝑞𝑞 − 𝑀𝑀∗)�
𝑠𝑠∈{𝑠𝑠1,…,𝑠𝑠𝑛𝑛};
𝑖𝑖=1,…,𝑚𝑚;
𝑌𝑌𝑖𝑖(𝑺𝑺)∉𝒬𝒬

(22)

𝑅𝑅2 =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

1 − � �𝑌𝑌𝑖𝑖(𝑠𝑠) − 𝑌𝑌�𝑖𝑖(𝑠𝑠)�2

𝑠𝑠∈{𝑠𝑠1,…,𝑠𝑠𝑛𝑛};
𝑖𝑖=1,…,𝑚𝑚;
𝑌𝑌𝑖𝑖(𝑺𝑺)∉𝒬𝒬

� 𝑌𝑌𝑖𝑖(𝑠𝑠)2
𝑠𝑠∈{𝑠𝑠1,…,𝑠𝑠𝑛𝑛};
𝑖𝑖=1,…,𝑚𝑚;
𝑌𝑌𝑖𝑖(𝑺𝑺)∉𝒬𝒬

� , if there is no intercept

1 − � �𝑌𝑌𝑖𝑖(𝑠𝑠) − 𝑌𝑌�𝑖𝑖(𝑠𝑠)�2

𝑠𝑠∈{𝑠𝑠1,…,𝑠𝑠𝑛𝑛};
𝑖𝑖=1,…,𝑚𝑚;
𝑌𝑌𝑖𝑖(𝑺𝑺)∉𝒬𝒬

� (𝑌𝑌𝑖𝑖(𝑠𝑠) − 𝑌𝑌�𝑖𝑖(𝑠𝑠))2
𝑠𝑠∈{𝑠𝑠1,…,𝑠𝑠𝑛𝑛};
𝑖𝑖=1,…,𝑚𝑚;
𝑌𝑌𝑖𝑖(𝑺𝑺)∉𝒬𝒬

� , if there is an intercept

 (23)

where 𝑌𝑌�𝑖𝑖(𝑠𝑠) = 𝑿𝑿𝑖𝑖′ (𝑠𝑠)𝜷𝜷, 𝑀𝑀∗ is the number of non-redundant parameters of re-fitted regression
in first 𝑀𝑀 elements of 𝜷𝜷�𝑚𝑚𝑛𝑛𝑙𝑙, and 𝑌𝑌�𝑖𝑖(𝑠𝑠) is the mean of 𝑌𝑌 only on complete observations. Note
that for this calculation the original (untransformed) observations 𝒀𝒀 and covariates 𝑿𝑿 are
used. Alternatively, we can calculate the adjusted 𝑅𝑅2

 𝑅𝑅𝑚𝑚𝑑𝑑𝑗𝑗2 = 1 −
𝑛𝑛𝑚𝑚 − 𝑞𝑞

𝑛𝑛𝑚𝑚 − 𝑞𝑞 − 𝑀𝑀∗ (1 − 𝑅𝑅2) (24)

2. Goodness of fit for AR model:
Present t-tests for AR parameters based on variance estimates in item 3 in Section 3.6.2.

3. Goodness of fit of spatial covariance model:
Present the test statistics listed in item 5 in Section 3.6.2.

3.6.2 Model and parameter estimates

The following information should be displayed as a summary of the model:

1. Model coefficients 𝜷𝜷�, 𝜶𝜶� obtained in Sections 3.4 and 3.5

2. Standard errors of elements of 𝜷𝜷 based on 𝑉𝑉�𝜷𝜷��, the covariance matrix of 𝜷𝜷�, which is the
upper 𝑀𝑀×𝑀𝑀 submatrix of 𝑉𝑉�𝜷𝜷�𝑚𝑚𝑛𝑛𝑙𝑙�:

 𝑉𝑉�𝜷𝜷�𝑚𝑚𝑛𝑛𝑙𝑙� =
𝑆𝑆𝑆𝑆𝑒𝑒
𝑚𝑚𝑓𝑓𝑒𝑒

×�𝑿𝑿�𝑚𝑚𝑛𝑛𝑙𝑙
′ 𝑿𝑿�𝑚𝑚𝑛𝑛𝑙𝑙�

−1
=
𝑆𝑆𝑆𝑆𝑒𝑒
𝑚𝑚𝑓𝑓𝑒𝑒

×� � 𝑿𝑿�𝑖𝑖,𝑚𝑚𝑛𝑛𝑙𝑙
′ 𝑿𝑿�𝑖𝑖,𝑚𝑚𝑛𝑛𝑙𝑙

𝑚𝑚

𝑖𝑖=𝐿𝐿+1

�
−1

 (25)

where

• 𝑆𝑆𝑆𝑆𝑒𝑒 = ∑ �𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 − �𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒�
∗
�
2𝑁𝑁

𝑖𝑖=1 = �̃�𝑟𝑌𝑌�𝑌𝑌�(𝑛𝑛(𝑚𝑚− 𝐿𝐿) − 1)𝑉𝑉�𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒�,
- �𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒�

∗
 is the predicted value based on estimated 𝜷𝜷�,

- �̃�𝑟𝑌𝑌�𝑌𝑌� is corresponding element of 𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 in the correlation matrix of re-fitted
regression after sweep operation,

- 𝑛𝑛(𝑚𝑚− 𝐿𝐿) is number of transformed records used in equation (21) for re-fit
regression ,

- and 𝑉𝑉�𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒� is variance of 𝒀𝒀�𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒.
• 𝑚𝑚𝑓𝑓𝑒𝑒 = 𝑛𝑛(𝑚𝑚 − 𝐿𝐿) − 𝑝𝑝, and 𝑝𝑝 = 𝑀𝑀∗ + 𝑞𝑞∗ is the number of non-redundant parameters in

re-fitted regression.

Based on these standard errors, t-test statistics and/or p-values may be computed and
displayed according to standard definitions and output scheme of linear models (please refer
to linear model documentation):

(a) For each element 𝛽𝛽𝑗𝑗 of 𝜷𝜷� and the corresponding j-th diagonal element of 𝑉𝑉�𝜷𝜷��, 𝑗𝑗 =

1, … ,𝑀𝑀, compute the t-statistic 𝑡𝑡𝑗𝑗 = 𝛽𝛽𝑗𝑗 �𝑉𝑉�𝜷𝜷��𝑗𝑗𝑗𝑗�

(b) The p-value corresponding to 𝑡𝑡𝑗𝑗 is 2× the value of the cumulative distribution function of
a t-distribution with 𝑛𝑛𝑚𝑚 − 𝑞𝑞 − 𝑀𝑀∗ degrees of freedom, i.e., 𝑝𝑝𝑗𝑗 = 2 ∙ �1 − 𝑃𝑃�𝑡𝑡𝑛𝑛𝑚𝑚−𝑞𝑞−𝑆𝑆∗ ≤

�𝑡𝑡𝑗𝑗���.

Note that depending on the implementation of the GLS estimation in Section 3.5,
�𝑿𝑿�𝑚𝑚𝑛𝑛𝑙𝑙

′ 𝑿𝑿�𝑚𝑚𝑛𝑛𝑙𝑙�
−1

 may have already been computed, in which case this expression does not need
to be recalculated.

3. Standard errors of 𝜶𝜶 based on 𝑉𝑉(𝜶𝜶�), the covariance matrix of 𝜶𝜶�, which is the upper 𝐿𝐿×𝐿𝐿
submatrix of 𝑉𝑉�𝜶𝜶�𝑚𝑚𝑛𝑛𝑙𝑙�:

 𝑉𝑉�𝜶𝜶�𝑚𝑚𝑛𝑛𝑙𝑙� =
𝑆𝑆𝑆𝑆𝑒𝑒∗

𝑚𝑚𝑓𝑓𝑒𝑒∗
×� � 𝒁𝒁�𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙,𝑚𝑚𝑛𝑛𝑙𝑙

′ 𝒁𝒁�𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙,𝑚𝑚𝑛𝑛𝑙𝑙

𝑚𝑚

𝑖𝑖=𝐿𝐿+1

�
−1

 (26)

where

• 𝑆𝑆𝑆𝑆𝑒𝑒∗ = ∑ �𝑍𝑍�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 − �𝑍𝑍�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒�
∗
�
2𝑁𝑁

𝑖𝑖=1 = �̃�𝑟𝑍𝑍�𝑍𝑍�(𝑛𝑛(𝑚𝑚− 𝐿𝐿) − 1)𝑉𝑉�𝑍𝑍�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒�,
- �𝑍𝑍�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒�

∗
 is the predicted value based on estimated 𝛼𝛼� and 𝑍𝑍�𝑖𝑖−𝑙𝑙𝑚𝑚𝑙𝑙,𝑚𝑚𝑛𝑛𝑙𝑙

- �̃�𝑟Z�Z�is corresponding element of 𝑍𝑍�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 in the correlation matrix of re-fitted
autoregressive model after sweep operation,

- 𝑛𝑛(𝑚𝑚− 𝐿𝐿) is number of transformed records used in equation (18) for re-fit
autoregressive,

- and 𝑉𝑉�Z�t,impute� is variance of 𝑍𝑍�𝑖𝑖,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒.
• 𝑚𝑚𝑓𝑓𝑒𝑒∗ = 𝑛𝑛(𝑚𝑚− 𝐿𝐿) − 𝑝𝑝𝐴𝐴𝑅𝑅, and 𝑝𝑝𝐴𝐴𝑅𝑅 = 𝐿𝐿∗ + 𝑞𝑞𝑍𝑍∗ is the number of non-redundant

parameters in re-fitted autoregressive model.
Based on these standard errors, t-test statistics and/or p-values may be computed and
displayed according to standard definitions and output scheme of linear models.

(a) For each element 𝛼𝛼𝑗𝑗 of 𝜶𝜶� and the corresponding 𝑗𝑗-th diagonal element of 𝑉𝑉(𝜶𝜶�), 𝑗𝑗 =
1, … , 𝐿𝐿, compute the t-statistic 𝑡𝑡𝑗𝑗 = 𝛼𝛼𝑗𝑗 �𝑉𝑉(𝜶𝜶�)𝑗𝑗𝑗𝑗⁄

(b) The p-value corresponding to 𝑡𝑡𝑗𝑗 is 2×the value of the cumulative distribution function of
a t-distribution with ∑ 𝑛𝑛𝑖𝑖 − 𝐿𝐿∗𝑚𝑚

𝑖𝑖=1 degrees of freedom, i.e., 𝑝𝑝𝑗𝑗 = 2 ∙ �1 − 𝑃𝑃�𝑡𝑡∑ 𝑛𝑛𝑖𝑖−𝐿𝐿∗𝑚𝑚
𝑖𝑖=1

≤

�𝑡𝑡𝑗𝑗���.

4. Indicator of which method has been automatically chosen to model spatial covariances, either
empirical covariance (EOF) or parametric variogram model.

5. Test statistics from goodness of fit tests for parametric model:

- Test statistic 𝑧𝑧1, p-value 𝑝𝑝1, level of significance 𝛾𝛾1 used for automated test for fit of slope
parameter

- Test statistic 𝑧𝑧2, p-value 𝑝𝑝2, level of significance 𝛾𝛾2 used for testing homogeneity of
variances

6. Parametric covariance parameters 𝝍𝝍� if parametric model has been chosen

3.6.3 Tests of effects in Mean Structure Model (Type III)

For each effect specified in the model, type III test matrix L is constructed and 𝐻𝐻0: 𝐿𝐿𝑖𝑖𝛽𝛽 = 0 is
tested. Construction of type III matrix L as well as generating estimable function (GEF) is based on
the generating matrix 𝐻𝐻, which is the upper 𝑀𝑀×𝑀𝑀 submatrix of �𝑋𝑋�𝑚𝑚𝑛𝑛𝑙𝑙′ 𝑋𝑋�𝑚𝑚𝑛𝑛𝑙𝑙�

−1
𝑋𝑋�𝑚𝑚𝑛𝑛𝑙𝑙′ 𝑋𝑋�𝑚𝑚𝑛𝑛𝑙𝑙 , such that

𝐿𝐿𝑖𝑖𝛽𝛽 is estimable. It involves parameters only for the given effect. For type III analysis, L does not
depend on the order of effects specified in the model. If such a matrix cannot be constructed, the
effect is not testable.

Then the L matrix is then used to construct the test statistic

𝐹𝐹 =
�̂�𝛽′𝐿𝐿′(𝐿𝐿𝛴𝛴𝐿𝐿′)−1𝐿𝐿�̂�𝛽

𝑟𝑟𝑐𝑐

where

• �̂�𝛽 is the subvector of the first D elements of �̂�𝛽𝑚𝑚𝑛𝑛𝑙𝑙 obtained in Step 5 of Section 3.5,
• 𝑟𝑟𝑐𝑐 = 𝑟𝑟𝑚𝑚𝑛𝑛𝑘𝑘(𝐿𝐿𝛴𝛴𝐿𝐿′),
• 𝛴𝛴 is the covariance matrix of �̂�𝛽, which is the upper 𝑀𝑀×𝑀𝑀 submatrix of 𝑉𝑉��̂�𝛽𝑚𝑚𝑛𝑛𝑙𝑙� defined in

equation (25).
The statistic has an approximate F distribution. The numerator degrees of freedom 𝑚𝑚𝑓𝑓1 is 𝑟𝑟𝑐𝑐 and the
denominator degrees of freedom 𝑚𝑚𝑓𝑓2 is 𝑛𝑛𝑚𝑚 − 𝑞𝑞 − 𝑀𝑀∗, where 𝑀𝑀∗ is the number of non-redundant
parameters in the first 𝑀𝑀 parameters of refitted regression model obtained in Section 3.5. Then the
p-values can be calculated accordingly.

An additional test also should be computed, which is similar to “corrected model” if there is an
intercept or “model” if there is no intercept in ANOVA table in linear regression. Essentially, the
null hypothesis is regression parameters (except intercept if there is on) are zeros. The test statistic
would be the same as the above F statistic except the L matrix is from GEF. If there is no intercept,
the L matrix is the whole GEF. If there is an intercept, the L matrix is GEF without the first row
which corresponds to the intercept.

Statistics saved for Test of effects in Mean Structure Model (including corrected model or model):

• F statistics
• 𝑚𝑚𝑓𝑓1
• 𝑚𝑚𝑓𝑓2
• p-value

3.6.4 Location clustering for spatial structure visualization

Large spatial covariance matrix or correlation matrix are not suitable to demonstrate the relation
among the locations. Grouping method, also called community detection or position analysis
(Wasserman, 1994), can be used to identify some representative location clusters. To simplify the

implementation, hierarchical clustering (Johnson, 1967) is used to detect clusters among locations
based on STP model spatial statistics.

Please note location clustering is only supported when empirical nonparametric covariance model
is used.

Given a set of n locations {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛} in STP to be clustered, and their corresponding spatial
correlation matrix 𝑅𝑅, a n*n matrix, as the similarity matrix

𝑅𝑅 = �𝑟𝑟𝑖𝑖𝑗𝑗�𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛

Given similarity threshold 𝛼𝛼 with default value 0.2, and 𝑁𝑁𝐶𝐶 with default value 10, the process of
location clustering is described in following steps, which is based on the basic process of
hierarchical clustering.

Step 1. Initialize the clusters and similarities:

• Assign each location 𝑠𝑠𝑖𝑖 to a cluster 𝐶𝐶𝑖𝑖 (𝑖𝑖 = 1, … ,𝑛𝑛). So that for n locations, the total number
of clusters 𝑛𝑛𝐶𝐶 = 𝑛𝑛 at the beginning, and each cluster has just one location,

• Define the set of clusters: 𝐶𝐶,
• Define similarity matrix

𝑅𝑅𝐶𝐶 = �𝑟𝑟𝑖𝑖𝑗𝑗𝐶𝐶�𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛

where the similarity 𝑟𝑟𝑖𝑖𝑗𝑗𝐶𝐶 between the clusters 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗 is the similarity 𝑟𝑟𝑖𝑖𝑗𝑗 between location
𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗.

Step 2. Find 2 clusters 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗 in 𝐶𝐶 with largest similarity 𝑚𝑚𝑚𝑚𝑥𝑥�𝑟𝑟𝑖𝑖𝑗𝑗𝐶𝐶�,
If 𝑚𝑚𝑚𝑚𝑥𝑥�𝑟𝑟𝑖𝑖𝑗𝑗𝐶𝐶� > 𝛼𝛼:

• Merge 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗 into a new cluster 𝐶𝐶〈𝑖𝑖,𝑗𝑗〉 to include all locations in 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗,
• Compute similarities between the new cluster 𝐶𝐶〈𝑖𝑖,𝑗𝑗〉 and other clusters 𝐶𝐶𝑘𝑘 ,𝑘𝑘 ≠ 𝑖𝑖 𝑚𝑚𝑛𝑛𝑚𝑚 𝑗𝑗

𝑟𝑟〈𝑖𝑖,𝑗𝑗〉,𝑘𝑘
𝐶𝐶 = 𝑚𝑚𝑖𝑖𝑛𝑛�𝑟𝑟𝑖𝑖𝑘𝑘𝐶𝐶 , 𝑟𝑟𝑗𝑗𝑘𝑘𝐶𝐶 �

• Update 𝐶𝐶 by adding 𝐶𝐶〈𝑖𝑖,𝑗𝑗〉, discarding 𝐶𝐶𝑗𝑗 and 𝐶𝐶𝑖𝑖. So 𝑛𝑛𝐶𝐶 = 𝑛𝑛𝐶𝐶 − 1.
• Update similarity matrix 𝑅𝑅𝐶𝐶 by adding 𝑟𝑟〈𝑖𝑖,𝑗𝑗〉,𝑘𝑘

𝐶𝐶 , discarding 𝑟𝑟𝑖𝑖𝑘𝑘𝐶𝐶 and 𝑟𝑟𝑗𝑗𝑘𝑘𝐶𝐶 , go to step 3.

If 𝑚𝑚𝑚𝑚𝑥𝑥�𝑟𝑟𝑖𝑖𝑗𝑗𝐶𝐶� ≤ 𝛼𝛼, go to step 4.

Step 3. Repeat step 2.

Step 4. For all the detected clusters with more than 1 location, compute following statistics:

• Cluster size: 𝑛𝑛𝐶𝐶𝑖𝑖 is the number of locations in 𝐶𝐶𝑖𝑖,
• Closeness:

𝑚𝑚𝑖𝑖 =
1

𝑛𝑛𝐶𝐶𝑖𝑖�𝑛𝑛𝐶𝐶𝑖𝑖 − 1� 2⁄
�𝑟𝑟𝑘𝑘𝑙𝑙 ,∀ 𝑠𝑠𝑘𝑘, 𝑠𝑠𝑙𝑙 ∈ 𝐶𝐶𝑖𝑖,𝑚𝑚𝑛𝑛𝑚𝑚 𝑘𝑘 ≠ 𝑙𝑙.

Step 5. Define clusters for interactive visualization:

• 𝐶𝐶𝑐𝑐𝑙𝑙𝑖𝑖𝑠𝑠𝑒𝑒𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠: The first 𝑁𝑁𝐶𝐶 clusters sorted by descending closeness 𝑚𝑚𝑖𝑖,
• 𝐶𝐶𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒: The first 𝑁𝑁𝐶𝐶 clusters sorted by descending cluster size 𝑛𝑛𝐶𝐶𝑖𝑖.

Step 6. Output the union for location cluster visualization:

𝐶𝐶∗ = 𝐶𝐶𝑐𝑐𝑙𝑙𝑖𝑖𝑠𝑠𝑒𝑒𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 ∪ 𝐶𝐶𝑠𝑠𝑖𝑖𝑠𝑠𝑒𝑒

Statistics saved for spatial structure visualization including:

1. Number of excluded locations during handling of missing data
2. Spatial correlation matrix 𝑹𝑹 = �𝑟𝑟𝑖𝑖𝑗𝑗�𝑖𝑖,𝑗𝑗=1,…,𝑛𝑛

3. Statistics of each output location cluster in 𝐶𝐶∗:
• Closeness 𝑚𝑚𝑖𝑖
• Cluster size 𝑛𝑛𝐶𝐶𝑖𝑖
• Coordinates of locations in this cluster

3.7 Results saved for prediction
1. Model coefficients 𝜷𝜷�, 𝜶𝜶� and the covariance estimate 𝑉𝑉�𝜷𝜷�� as defined in (25).

2. Transformed regression residuals and predictors of 𝐿𝐿 most recent observations for prediction:

 𝒁𝒁�𝑚𝑚−𝑙𝑙+1 = 𝑯𝑯′𝑆𝑆−1𝑯𝑯𝑆𝑆

−1�𝒀𝒀𝑚𝑚−𝑙𝑙+1,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 − 𝑿𝑿𝑚𝑚−𝑙𝑙+1,𝑚𝑚𝑛𝑛𝑙𝑙𝜷𝜷�𝑚𝑚𝑛𝑛𝑙𝑙�, 𝑙𝑙 = 1, … , 𝐿𝐿 (27)

 𝑿𝑿�𝑚𝑚−𝑙𝑙+1,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒 = 𝑯𝑯′𝑆𝑆−1𝑯𝑯𝑆𝑆

−1𝑿𝑿𝑚𝑚−𝑙𝑙+1,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒, 𝑙𝑙 = 1, … , 𝐿𝐿 (28)

3. Indicator of which method has been chosen to model spatial covariances, either empirical
covariance (EOF) or parametric variogram model.

4. Parametric covariance parameters 𝜓𝜓� if parametric model has been chosen.

5. Coordinates of locations 𝑠𝑠.

6. Number of unique time points used for model build, 𝑚𝑚.

7. Number of records with missing values in the data set used in model building, 𝑞𝑞.

8. Spatial covariance matrix 𝛴𝛴𝑆𝑆.

9. 𝐻𝐻𝑆𝑆−1, inverse of Cholesky factor of spatial covariance matrix.

4 Prediction
We perform the following procedure to issue predictions for future time 𝑚𝑚 + 1, … ,𝑚𝑚 + 𝐻𝐻 at
prediction locations 𝑮𝑮 = (𝒈𝒈1, … ,𝒈𝒈𝑁𝑁) using the results saved in the output file (see Figure 2). The
input data set format should include location 𝑮𝑮, predictors 𝑿𝑿 for 𝑡𝑡 = 𝑚𝑚 + 1, … ,𝑚𝑚 + 𝐻𝐻.

Figure 2. Flowchart of algorithm steps for model prediction

4.1 Point prediction

Step 1: Construct the 𝑁𝑁×𝑛𝑛 spatial covariance matrix to capture the spatial dependence between
prediction grids 𝒈𝒈 ∈ 𝑮𝑮 and original sample locations 𝒔𝒔.

• If variogram-based spatial covariance matrix

 𝑉𝑉𝑆𝑆(𝒈𝒈) = 𝑉𝑉�𝜖𝜖𝑖𝑖(𝒈𝒈)� = 𝜎𝜎2 + 𝜏𝜏2 (29)

and

 𝑪𝑪𝑆𝑆(𝑮𝑮) = �𝐶𝐶𝑏𝑏𝑟𝑟�𝜖𝜖𝑖𝑖(𝒈𝒈𝑖𝑖), 𝜖𝜖𝑖𝑖�𝒔𝒔𝑗𝑗�;𝜓𝜓���
𝑖𝑖=1,…,𝑁𝑁;𝑗𝑗=1,…,𝑛𝑛

 (30)

according to (14) for all locations 𝒈𝒈 (whether locations were included in the model build
or not).

• If EOF-based spatial covariance function is used:

For locations gi that are included in the original sample locations 𝑠𝑠,
𝐶𝐶𝑏𝑏𝑟𝑟𝑀𝑀𝐸𝐸𝐸𝐸�𝜖𝜖𝑖𝑖(𝑔𝑔𝑖𝑖), 𝜖𝜖𝑖𝑖(𝑠𝑠)� is equal to the row corresponding to location 𝑔𝑔𝑖𝑖 in the empirical
covariance matrix 𝛴𝛴𝑆𝑆 and 𝑉𝑉𝑆𝑆(𝑔𝑔𝑖𝑖) is equal to the empirical variance at that location, i.e.,
the diagonal element of 𝛴𝛴𝑆𝑆 corresponding to that location.

For locations 𝑔𝑔𝑖𝑖 that were not included in the model build, calculate the spatial
covariance in the following way:

(a) Perform eigendecomposition on the empirical covariance matrix

𝑺𝑺 = 𝚽𝚽𝚽𝚽𝚽𝚽′

where 𝚽𝚽 = (𝜙𝜙1, … ,𝜙𝜙𝑛𝑛) with 𝛷𝛷𝑘𝑘 = �𝜙𝜙𝑘𝑘(𝑠𝑠1), … ,𝜙𝜙𝑘𝑘(𝑠𝑠𝑛𝑛)�′ is the 𝑛𝑛×𝑛𝑛 matrix of
eigenvectors and 𝚽𝚽 = diag(𝜆𝜆1, … , 𝜆𝜆𝑛𝑛) is the 𝑛𝑛×𝑛𝑛 matrix of eigenvalues.

(b) Apply inverse distance weighting (IDW) (Shepard 1968) to interpolate eigenvectors
to locations with no observations.

𝜙𝜙𝑘𝑘(𝒈𝒈) = �
𝑤𝑤𝑖𝑖(𝒈𝒈)𝜙𝜙𝑘𝑘(𝒔𝒔𝑖𝑖)
∑ 𝑤𝑤𝑗𝑗(𝒈𝒈)𝑛𝑛
𝑗𝑗=1

𝑛𝑛

𝑖𝑖=1

, 𝑘𝑘 = 1, … , 𝑛𝑛

where

𝑤𝑤𝑖𝑖(𝒈𝒈) =
1

dist(𝒈𝒈, 𝒔𝒔𝑖𝑖)𝜌𝜌

is an Inverse Distance Weighting (IDW) function with 𝜌𝜌 ≤ 𝑚𝑚 for d-dimensional
space and dist(𝒈𝒈, 𝒔𝒔𝑖𝑖) may be any distance function. As a default value, use Euclidean
distance with 𝜌𝜌 = 2 and dist(𝒈𝒈, 𝒔𝒔𝑖𝑖)2 = (𝒈𝒈 − 𝒔𝒔𝑖𝑖)′(𝒈𝒈− 𝒔𝒔𝑖𝑖).

(c) The EOF-based spatial variance-covariance functions are

 𝑉𝑉𝑆𝑆(𝒈𝒈) = 𝑉𝑉�𝜖𝜖𝑖𝑖(𝒈𝒈)� = �𝜆𝜆𝑛𝑛𝜙𝜙𝑘𝑘2(𝒈𝒈)
𝑛𝑛

𝑘𝑘=1

 (31)

and

 𝐶𝐶𝑏𝑏𝑟𝑟 �𝜖𝜖𝑡𝑡�𝒈𝒈𝑖𝑖�, 𝜖𝜖𝑡𝑡�𝒔𝒔𝑗𝑗�� = �𝜆𝜆𝑛𝑛𝜙𝜙𝑘𝑘�𝒈𝒈𝑖𝑖�𝜙𝜙𝑘𝑘�𝒔𝒔𝑗𝑗�
𝑛𝑛

𝑘𝑘=1
 (32)

and the corresponding 𝑁𝑁×𝑛𝑛 spatial covariance matrix

 𝑪𝑪𝑆𝑆(𝑮𝑮) = �𝐶𝐶𝑏𝑏𝑟𝑟𝑀𝑀𝑂𝑂𝐹𝐹 �𝜖𝜖𝑖𝑖(𝒈𝒈𝑖𝑖), 𝜖𝜖𝑖𝑖�𝒔𝒔𝑗𝑗���
𝑖𝑖=1,…,𝑁𝑁;𝑗𝑗=1,…,𝑛𝑛

 (33)

Note that under the EOF model, we allow for space-varying variances.

Step 2: Spatial interpolation to prediction locations g for the most recent L time units,
𝑍𝑍𝑚𝑚−𝐿𝐿+1, … ,𝑍𝑍𝑚𝑚

 𝒁𝒁�𝑚𝑚−𝑙𝑙+1(𝑮𝑮) = 𝑪𝑪𝑆𝑆(𝑮𝑮)𝚺𝚺𝑺𝑺−1𝒁𝒁𝑚𝑚−𝑙𝑙+1 = 𝑪𝑪𝑆𝑆(𝑮𝑮)𝒁𝒁�𝑚𝑚−𝑙𝑙+1, 𝑙𝑙 = 1, … , 𝐿𝐿 (34)

where 𝒁𝒁�𝑚𝑚−𝑙𝑙+1(𝑮𝑮) is a vector of length 𝑁𝑁.

Step 3: Iteratively forecast for future time m + 1, … , m + H at prediction locations 𝑮𝑮.

 𝒁𝒁�𝑚𝑚+1(𝑮𝑮) = 𝛼𝛼�1𝒁𝒁�𝑚𝑚(𝑮𝑮) + ⋯+ 𝛼𝛼�𝐿𝐿𝒁𝒁�𝑚𝑚−𝐿𝐿+1(𝑮𝑮) (35)

 𝒁𝒁�𝑚𝑚+2(𝑮𝑮) = 𝛼𝛼�1𝒁𝒁�𝑚𝑚+1(𝑮𝑮) + ⋯+ 𝛼𝛼�𝐿𝐿𝒁𝒁�𝑚𝑚−𝐿𝐿+2(𝑮𝑮) (36)

 𝒁𝒁�𝑚𝑚+𝐻𝐻(𝑮𝑮) = 𝛼𝛼�1𝒁𝒁�𝑚𝑚+𝐻𝐻−1(𝑮𝑮) + ⋯+ 𝛼𝛼�𝐿𝐿𝒁𝒁�𝑚𝑚+𝐻𝐻−𝐿𝐿(𝑮𝑮) (37)

where 𝒁𝒁�𝑚𝑚+𝐻𝐻(𝑮𝑮),ℎ = 1, … ,𝐻𝐻 are vectors of length 𝑁𝑁.

Step 4: Incorporate predicted systematic effect

 𝒀𝒀�𝑚𝑚+𝐻𝐻(𝑮𝑮) = 𝒁𝒁�𝑚𝑚+𝐻𝐻(𝑮𝑮) + 𝑋𝑋𝑚𝑚+ℎ(𝑮𝑮)𝜷𝜷� , ℎ = 1, … ,𝐻𝐻 (38)

where 𝒀𝒀�𝑚𝑚+𝐻𝐻(𝑮𝑮), ℎ = 1, … ,𝐻𝐻 are vectors of length 𝑁𝑁.

4.2 Prediction intervals
Under the assumption of Gaussian Process and known variance components, the prediction error
𝑌𝑌�𝑚𝑚+𝐻𝐻(𝒈𝒈𝑖𝑖) − 𝑌𝑌𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖) comes from two sources:

• The prediction error that would be incurred even if regression coefficients 𝜷𝜷 were known.

• The error in estimating regression coefficients 𝜷𝜷

The variance of prediction error is thus

 𝑉𝑉�𝑌𝑌�𝑚𝑚+𝐻𝐻(𝒈𝒈𝑖𝑖) − 𝑌𝑌𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖)�

 = �𝑿𝑿′𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖) − 𝑪𝑪′𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖)𝚺𝚺−𝟏𝟏𝑿𝑿𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒�𝑽𝑽�𝜷𝜷���𝑿𝑿′𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖) − 𝑪𝑪′𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖)𝚺𝚺−𝟏𝟏𝑿𝑿𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒�′ (39)

 +𝑽𝑽𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖) − 𝑪𝑪′𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖)𝚺𝚺−𝟏𝟏𝑪𝑪𝑚𝑚+ℎ(𝒈𝒈𝑖𝑖) (40)

Expression (39) arises from the variance expression for universal kriging, while (40) is the
variance of a predicted random effect with known variance of the random effects
(McCulloch et al. 2008, p.171).

• 𝐶𝐶𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) = 𝐶𝐶𝑇𝑇(𝑚𝑚 + ℎ) ⊗𝐶𝐶𝑆𝑆(𝑔𝑔𝑖𝑖) is the covariance vector of length nm between the
prediction 𝑌𝑌𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) and measurements 𝑌𝑌1(𝑠𝑠), … ,𝑌𝑌𝑚𝑚(𝑠𝑠). Note that 𝐶𝐶𝑇𝑇(𝑚𝑚 + ℎ) =
{𝛾𝛾𝑇𝑇(𝑚𝑚 + ℎ − 𝑡𝑡)}𝑖𝑖=1,…,𝑚𝑚 is the AR(L) covariance vector of length m and 𝐶𝐶𝑆𝑆(𝑔𝑔𝑖𝑖) =
�𝐶𝐶𝑏𝑏𝑟𝑟 �𝑌𝑌𝑖𝑖(𝑔𝑔𝑖𝑖),𝑌𝑌𝑖𝑖�𝑠𝑠𝑗𝑗���

𝑗𝑗=1,…,𝑛𝑛
 is the spatial covariance vector of length 𝑛𝑛.

• The nm×nm covariance matrix 𝛴𝛴 is defined as to 𝛴𝛴 = 𝛴𝛴𝑇𝑇 ⊗ 𝛴𝛴𝑆𝑆 and 𝛴𝛴𝑇𝑇 = {𝛾𝛾𝑇𝑇|𝑡𝑡 −
𝑡𝑡′|}𝑖𝑖,𝑖𝑖′=1,…,𝑚𝑚. Note that ΣS is a quantity stored after the model build step.

• 𝑉𝑉𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) = 𝑉𝑉�𝑌𝑌𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖)� = 𝛾𝛾𝑇𝑇(0)𝑉𝑉𝑆𝑆(𝑔𝑔𝑖𝑖) is the variance of 𝑌𝑌𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖).

• Note that expressions (39) and (40) are not computed explicitly, but instead are implemented
as described in the following.

Computational process:

Step 1: Compute the error in estimating regression coefficients 𝛽𝛽 in (39).

For 𝑙𝑙 = 1, … , 𝐿𝐿, interpolate 𝑿𝑿 to prediction locations 𝒈𝒈 for the most recent 𝐿𝐿 time units
 𝑷𝑷𝑚𝑚+1−𝑙𝑙(𝒈𝒈𝑖𝑖) = 𝑿𝑿′𝑚𝑚+1−𝑙𝑙,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒𝚺𝚺𝑺𝑺−1𝑪𝑪𝑆𝑆(𝒈𝒈𝑖𝑖) = 𝑿𝑿�′𝑚𝑚+1−𝑙𝑙,𝑖𝑖𝑚𝑚𝑝𝑝𝑛𝑛𝑖𝑖𝑒𝑒𝑪𝑪𝑆𝑆(𝒈𝒈𝑖𝑖) (41)

where 𝑷𝑷𝑚𝑚+1−𝑙𝑙(𝒈𝒈𝑖𝑖) is a vector of dimension 𝑀𝑀×1. Define

 𝑿𝑿�𝑚𝑚+ℎ−𝑙𝑙(𝒈𝒈𝑖𝑖) = �𝑷𝑷𝑚𝑚+ℎ−𝑙𝑙(𝒈𝒈𝑖𝑖), 𝑖𝑖𝑓𝑓 ℎ − 𝑙𝑙 ≤ 0;
𝑿𝑿𝑚𝑚+ℎ−𝑙𝑙(𝒈𝒈𝑖𝑖), otherwise. (42)

For 𝑡𝑡 = 𝑚𝑚 − 𝐿𝐿 + 1, … ,𝑚𝑚 (ℎ ≤ 𝑙𝑙), we only have 𝑋𝑋 at sample locations 𝑠𝑠, so 𝑋𝑋�𝑖𝑖(𝑔𝑔𝑖𝑖) =
𝑃𝑃𝑖𝑖(𝑔𝑔𝑖𝑖), the interpolated values from 𝑋𝑋𝑖𝑖(𝑠𝑠); for 𝑡𝑡 > 𝑚𝑚 (or ℎ > 𝑙𝑙), we already input 𝑋𝑋 at
prediction locations 𝑔𝑔, so there is no need to interpolate and 𝑋𝑋�𝑖𝑖(𝑔𝑔𝑖𝑖) = 𝑋𝑋𝑖𝑖(𝑔𝑔𝑖𝑖).

Then, for ℎ = 1, … ,𝐻𝐻, recursively compute the 𝑀𝑀×1 vectors 𝑊𝑊𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖)

 𝑊𝑊𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) = 𝑋𝑋𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) + �𝛼𝛼�𝑙𝑙

𝐿𝐿

𝑙𝑙=1

(𝑊𝑊�𝑚𝑚+ℎ−𝑙𝑙(𝑔𝑔𝑖𝑖) − 𝑋𝑋�𝑚𝑚+ℎ−𝑙𝑙(𝑔𝑔𝑖𝑖)) (43)

where

 𝑊𝑊�𝑚𝑚+ℎ−𝑙𝑙(𝑔𝑔𝑖𝑖) = �
0, if ℎ − 𝑙𝑙 ≤ 0; (7)
𝑊𝑊𝑚𝑚+ℎ−𝑙𝑙(𝑔𝑔𝑖𝑖), otherwise. (44)

The prediction error in estimating 𝛽𝛽, that is, expression (39) is thus
 𝑊𝑊′

𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖)𝑉𝑉(�̂�𝛽)𝑊𝑊𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) (45)
where 𝑉𝑉(�̂�𝛽) is computed in (25).

Step 2: Compute the prediction error that would be incurred if regression coefficients 𝛽𝛽 were
known, i.e., equation (40).

• Compute 𝐶𝐶𝑇𝑇(𝑚𝑚 + ℎ) by AR(L) autocovariance function 𝛾𝛾𝑇𝑇(𝑘𝑘) (McLeod 1975).

First, compute 𝛾𝛾𝑇𝑇(0), … , 𝛾𝛾𝑇𝑇(𝐿𝐿) by solving a linear system 𝑀𝑀𝑋𝑋 = 𝑏𝑏,

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1 −𝛼𝛼�1 −𝛼𝛼�2 … −𝛼𝛼�𝐿𝐿−1 −𝛼𝛼�𝐿𝐿
−𝛼𝛼�1 1 − 𝛼𝛼�2 −𝛼𝛼�3 … −𝛼𝛼�𝐿𝐿 0
−𝛼𝛼�2 −(𝛼𝛼�1 + 𝛼𝛼�3) 1 − 𝛼𝛼�4 … 0 0
−𝛼𝛼�3 −(𝛼𝛼�2 + 𝛼𝛼�4) −(𝛼𝛼�1 + 𝛼𝛼�5) … 0 0
⋮ ⋮ ⋮ ⋱ ⋮

−𝛼𝛼�𝐿𝐿−2 −(𝛼𝛼�𝐿𝐿−3 + 𝛼𝛼�𝐿𝐿−1) −(𝛼𝛼�𝐿𝐿−4 + 𝛼𝛼�𝐿𝐿) … 0 0
−𝛼𝛼�𝐿𝐿−1 −(𝛼𝛼�𝐿𝐿−2 + 𝛼𝛼�𝐿𝐿) −𝛼𝛼�𝐿𝐿−3 … 1 0
−𝛼𝛼�𝐿𝐿 −𝛼𝛼�𝐿𝐿−1 −𝛼𝛼�𝐿𝐿−2 … −𝛼𝛼�1 1 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎜
⎜
⎛

𝛾𝛾𝑇𝑇(0)
𝛾𝛾𝑇𝑇(1)
𝛾𝛾𝑇𝑇(2)
𝛾𝛾𝑇𝑇(3)
⋮

𝛾𝛾𝑇𝑇(𝐿𝐿 − 2)
𝛾𝛾𝑇𝑇(𝐿𝐿 − 1)
𝛾𝛾𝑇𝑇(𝐿𝐿) ⎠

⎟
⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎜
⎜
⎜
⎛

1
0
0
0
⋮
0
0
0⎠

⎟
⎟
⎟
⎟
⎞

(46)

Note that the first element of the vector on the right hand side (the variance of the
measurement error) is fixed to be one, to account for the normalization through the spatial
variance-covariance structure.

For 𝑘𝑘 = 𝐿𝐿 + 1, … ,𝑚𝑚 + 𝐻𝐻 − 1, recursively compute

 𝛾𝛾𝑇𝑇(𝑘𝑘) = 𝛼𝛼�1𝛾𝛾𝑇𝑇(𝑘𝑘 − 1) + ⋯+ 𝛼𝛼�𝐿𝐿𝛾𝛾𝑇𝑇(𝑘𝑘 − 𝐿𝐿) (47)

Remark: To construct the (𝐿𝐿 + 1)×(𝐿𝐿 + 1) matrix 𝑀𝑀,

 𝑀𝑀𝑖𝑖𝑗𝑗 = �
−[𝛼𝛼𝑖𝑖−1], 𝑗𝑗 = 1; 𝑖𝑖 = 1, … , 𝐿𝐿 + 1
−[𝛼𝛼𝑖𝑖−𝑗𝑗] − [𝛼𝛼𝑖𝑖+𝑗𝑗−2], 𝑗𝑗 = 2, … , 𝐿𝐿 + 1; 𝑖𝑖 = 1, … , 𝐿𝐿 + 1. (48)

where

 [𝛼𝛼𝑘𝑘] = �
−1, 𝑘𝑘 = 0;
0, 𝑘𝑘 < 0 or 𝑘𝑘 > 𝐿𝐿;
𝛼𝛼�𝑘𝑘, 0 < 𝑘𝑘 ≤ 𝐿𝐿.

 (49)

• Compute the approximated factorization of Σ𝑇𝑇−1 such that 𝑅𝑅′𝑅𝑅 ≈ Σ𝑇𝑇−1, where 𝑅𝑅 is a (𝑚𝑚−
𝐿𝐿)×𝑚𝑚 matrix (follows from Cholesky or Gram-Schmidt orthogonalization, see for example
Fuller 1975):

 𝑅𝑅 =

⎝

⎜
⎛

−𝛼𝛼�𝐿𝐿 … −𝛼𝛼�1 1 0 0 … ⋮
⋮ ⋮ ⋮ ⋱ ⋱ ⋮ ⋮ ⋮
… 0 −𝛼𝛼�𝐿𝐿 … −𝛼𝛼�1 1 0 0
… … 0 −𝛼𝛼�𝐿𝐿 … −𝛼𝛼�1 1 0
… … … 0 −𝛼𝛼�𝐿𝐿 … −𝛼𝛼�1 1⎠

⎟
⎞

 (50)

• Compute the value of expression (40):

𝛾𝛾𝑇𝑇(0)𝑉𝑉𝑆𝑆(𝑔𝑔𝑖𝑖) − (𝐶𝐶′𝑇𝑇(𝑚𝑚 + ℎ) ⊗𝐶𝐶′𝑆𝑆(𝑔𝑔𝑖𝑖))(𝑅𝑅′𝑅𝑅 ⊗ 𝐻𝐻𝑆𝑆−1
′𝐻𝐻𝑆𝑆−1)(𝐶𝐶𝑇𝑇(𝑚𝑚 + ℎ) ⊗𝐶𝐶𝑆𝑆(𝑔𝑔𝑖𝑖))

 (51)

where 𝐶𝐶′𝑆𝑆(𝑔𝑔𝑖𝑖) is a the row of 𝐶𝐶𝑆𝑆(𝐺𝐺) corresponding to location 𝑔𝑔𝑖𝑖.

Step 3: The (1 − α%) prediction interval is

 𝑌𝑌�𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) ± 𝑡𝑡𝑛𝑛𝑚𝑚−𝑞𝑞−𝑆𝑆∗,𝛼𝛼/2�𝑉𝑉[𝑌𝑌�𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) − 𝑌𝑌𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖)] (55)

where 𝑉𝑉[𝑌𝑌�𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖) − 𝑌𝑌𝑚𝑚+ℎ(𝑔𝑔𝑖𝑖)] is the sum of equations (39) and (40) as computed in
expressions (45) and (51), respectively. 𝑡𝑡𝑛𝑛𝑚𝑚−𝑞𝑞−𝑆𝑆,𝛼𝛼/2 is defined as 𝑃𝑃(𝑋𝑋 ≤ 𝑡𝑡𝑛𝑛𝑚𝑚−𝑞𝑞−𝑆𝑆∗,𝛼𝛼/2) =
1 − 𝛼𝛼/2 where 𝑋𝑋 follows t-distribution with degree freedom 𝑛𝑛𝑚𝑚 − 𝑞𝑞 − 𝑀𝑀∗. The default
value for 𝛼𝛼 is 0.05.

As final output from the prediction step, point prediction, variances of point predictions and
prediction interval (lower and upper bounds) are issued for each specified (location, time).

We remark that to perform what-if-analysis, a set of 𝑿𝑿 variables under the new settings need to be
provided. Then we re-run the prediction algorithm described in Section 4 to obtain prediction
results under adjusted settings.

References
[1] Brockwell, P., Davis, R.A. (2002), Introduction to Time Series and Forecasting, Second

Edition, New York: Springer.

[2] Cohen, A., Johnes, R. (1969), “Regression on a Random Field”, Journal of the American
Statistical Association, 64 (328), 1172-1182.

[3] Cressie, N. (1993), Statistics for Spatial Data, Revised Edition, Wiley-Interscience.

[4] Creutin, J.D., Obled, C. (1982), “Objective Analyses and Mapping Techniques for Rainfall
Fields: an Objective Comparison”, Water Resources Research, 18(2), 413-431.

[5] Fuller, W.A. (1975), Introduction to Statistical Time Series, John Wiley & Sonse, New York,
New York.

[6] Johnson S. (1967), “Hierarchical Clustering Schemes”, Psychometrika, 32(3), 241-254.

[7] McCulloch, C.E., Searle, S.R., Neuhaus, J.M. (2008), Generalized, Linear and Mixed Models,
Second Edition, John Wiley & Sons, Hoboken, New Jersey.

[8] McLeod, I. (1975), “Derivation of the Theoretical Autocovariance Function of
Autoregressive-Moving Average Time Series”, Applied Statistics, 24(2), 255-256.

[9] Shepard, D. (1968), “A two-dimensional interpolation function for irregularly-spaced data”,
Proceedings of the 1968 ACM National Conference, 517-524.

[10] Wasserman S. (1994), Social network analysis: Methods and applications. Cambridge
university press.

Temporal Causal Modeling Algorithms

1. Introduction
Forecasting and prediction are important tasks in real world applications that involve decision making. In such
applications, it is important to go beyond discovering statistical correlations and unravel the key variables that
influence the behaviors of other variables using an algebraic approach. Many real world data, such as stock price data,
are temporal in nature; that is, the values of a set of variables depend on the values of another set of variables at several
time points in the past. Temporal causal modeling, or TCM, refers to a suite of methods that attempt to discover key
temporal relationships in time series data. This chapter describes a particular method to discover temporal relationships
using a combination of Granger causality and regression algorithms for variable selection. Although this treatment
strives to be self-contained, a minimal set of papers describing the design principles behind the method can be found
in [Lozano et al., 2011, Lozano et al., 2009, Arnold et al., 2007]1.

The rest of the chapter is organized as follows. Section 2 lays the groundwork for the TCM algorithm (notation and
brief history) and explains the greedy orthogonal matching pursuit (GOMP) [Lozano et al., 2011] algorithm that is
used. Section 3 describes the techniques used to fit and forecast time series and compute approximated forecasting
intervals. Section 4 describes scenario analysis, which refers to a capability of the TCM product to “play-out” the
repercussions of artificially setting the value of a time series. Section 5 describes the detection of outliers, and
Section 6 discusses how potential causes for outliers can be established using root cause analysis.

Note: To build a temporal causal model, you need enough data points. Modeler uses the constraint
m>(L + KL + 1)
where m is the number of data points, L is the number of lags, and K is the number of predictors. Make sure your data
set is big enough so that the number of data points (m) satisfies the condition.

2. Model
Introduced by Clive Granger [Granger, 1980], Granger causality in time series is based on the intuition that a cause
should necessarily precede its effect, and that if time series 𝑚𝑚 causally affects time series 𝑏𝑏, then the past values of 𝑚𝑚
should be useful in predicting the future values of 𝑚𝑚. More specifically, time series 𝑚𝑚 is said to “Granger cause” time
series 𝑏𝑏 if the accuracy of regressing for 𝑏𝑏 in terms of past values of both 𝑚𝑚 and 𝑏𝑏 is statistically significantly better
than regressing just with past values of 𝑏𝑏. If the time series have 𝑇𝑇 time points and are denoted by {𝑚𝑚𝑖𝑖}𝑖𝑖=1𝑇𝑇 and {𝑏𝑏𝑖𝑖}𝑖𝑖=1𝑇𝑇 ,
then the following regressions are performed:

 𝑏𝑏𝑖𝑖 ≈ �𝛼𝛼𝑗𝑗

𝐿𝐿

𝑗𝑗=1

𝑚𝑚𝑖𝑖−𝑗𝑗 + �𝛽𝛽𝑗𝑗

𝐿𝐿

𝑗𝑗=1

𝑏𝑏𝑖𝑖−𝑗𝑗 (1)

 𝑏𝑏𝑖𝑖 ≈ �𝛽𝛽𝑗𝑗

𝐿𝐿

𝑗𝑗=1

𝑏𝑏𝑖𝑖−𝑗𝑗 (2)

Here 𝐿𝐿 is the number of lags; that is, the value of 𝑏𝑏 at time 𝑡𝑡 can only be determined by values of other time series at
times {𝑡𝑡 − 1, 𝑡𝑡 − 2,⋯ , 𝑡𝑡 − 𝐿𝐿}. If Equation (1) is statistically more significant (using some test for significance) than
Equation (2), then 𝑚𝑚 is deemed to Granger cause 𝑏𝑏.

1 The methods described in this chapter are particularly useful for under-determined systems, where the number of time series

(𝑛𝑛) far exceeds the number of samples (𝑚𝑚); that is 𝑛𝑛 ≫ 𝑚𝑚. Although these methods function for both over-determined (𝑚𝑚 ≫
𝑛𝑛) and fully-determined (𝑛𝑛 == 𝑚𝑚) systems, there are other approaches to pursue for such systems.

2.1 Graphical Granger Modeling

The classical definition of Granger causality is defined for a pair of time series. In the real world, we are interested in
finding not one, but all the significant time series that influence the target time series. In order to accomplish this, we
use group greedy (ℓ0) regression algorithms with variable selection (see Section 2.3). An important feature of our
TCM algorithm is that it groups influencer/predictor variables; that is, we are interested in predicting whether time
series 𝑚𝑚 as a whole – {𝑚𝑚𝑖𝑖−1, 𝑚𝑚𝑖𝑖−2,⋯ , 𝑚𝑚𝑖𝑖−𝐿𝐿} – has influence over time series 𝑏𝑏. Such grouping is a more natural
interpretation of causality and also helps sparsify the solution set. For example, without such grouping we may select
the time-lagged series 𝑚𝑚𝑖𝑖−2 to model 𝑏𝑏𝑖𝑖 but not select any other value of 𝑚𝑚, which increases the number of choices for
variable selection 𝐿𝐿-fold, where 𝐿𝐿 is the number of lags that is allowed.

2.2 Notation

The following notation is used throughout this chapter unless otherwise stated:

Table 1: Notation

Notation Type Description
𝒩𝒩 — Set of natural numbers
ℛ — Set of real numbers
\ — Regression solve operator

| . | 𝒩𝒩 Size operator
‖ . ‖2 ℛ ℓ2 norm of a vector, i.e., ‖ 𝒛𝒛‖2 = �∑ 𝑧𝑧𝑖𝑖2𝑖𝑖
𝑚𝑚 𝒩𝒩 Number of time points
𝑛𝑛 𝒩𝒩 Number of time series
𝐿𝐿 𝒩𝒩 Number of lags for each target, 𝐿𝐿 < 𝑚𝑚
𝑿𝑿 ℛ𝑚𝑚×𝑛𝑛 Design matrix of input series
𝒚𝒚 ℛ𝑚𝑚×1 Target series vector

𝐺𝐺 𝐺𝐺:ℛ𝑚𝑚×𝑛𝑛×𝐽𝐽×𝐿𝐿 → ℛ(𝑚𝑚−𝐿𝐿)×|𝐽𝐽|𝐿𝐿 Computes lag matrix
𝐽𝐽 = {𝑗𝑗1, 𝑗𝑗2,⋯ }, 1 ≤ 𝑗𝑗𝑘𝑘 ≤ 𝑛𝑛 for the set of column indices in J

𝑀𝑀 𝑀𝑀:ℛ𝑚𝑚×𝑘𝑘 → ℛ𝑘𝑘×1 Computes means for 𝑘𝑘 series
𝑆𝑆 𝑆𝑆:ℛ𝑚𝑚×𝑘𝑘 → ℛ𝑘𝑘×1 Computes standard deviations for 𝑘𝑘 series
𝜖𝜖 ℛ Tolerance value for stopping criterion

𝐾𝐾∗ 𝒩𝒩
Max number of predictors selected or
maximum number of iterations

𝐾𝐾 𝒩𝒩
Actual number of predictors selected for a
target series 𝒚𝒚

𝜷𝜷�∗ ℛ𝑘𝑘×1, 0 ≤ 𝑘𝑘 ≤ 𝐾𝐾𝐿𝐿
Estimated coefficients for predictors on the
transformed scale

In this section, we introduce the algorithm that is used to construct the temporal causal model. The list of symbols used
in the rest of this chapter is summarized in Table 1. Most of the symbols are self-explanatory; however, the function 𝐺𝐺,
which stands for grouping, requires some additional explanation. 𝐺𝐺 is a function that takes a matrix (ℛ𝑚𝑚×𝑛𝑛), a set of
column indices 𝐽𝐽, and a lag value 𝐿𝐿 and constructs a lag matrix that has (𝑚𝑚 − 𝐿𝐿) rows and (|𝐽𝐽|𝐿𝐿) columns. Basically,
for every column index 𝑗𝑗 ∈ 𝐽𝐽, 𝐺𝐺 constructs a (𝑚𝑚 − 𝐿𝐿)×𝐿𝐿 lag matrix by carefully unrolling the jth column of the input
matrix. An example of 𝐺𝐺′s action is shown below:

𝐺𝐺

⎝

⎜⎜
⎛
𝑿𝑿 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑚𝑚1 𝑏𝑏1 𝑐𝑐1 𝑚𝑚1

𝑚𝑚2 𝑏𝑏2 𝑐𝑐2 𝑚𝑚2
𝑚𝑚3 𝑏𝑏3 𝑐𝑐3 𝑚𝑚3
𝑚𝑚4 𝑏𝑏4 𝑐𝑐4 𝑚𝑚4
𝑚𝑚5 𝑏𝑏5 𝑐𝑐5 𝑚𝑚5 ⎦

⎥
⎥
⎥
⎥
⎤

, 𝐽𝐽 = {1}, 𝐿𝐿 = 2

⎠

⎟⎟
⎞
→ �

𝑚𝑚2 𝑚𝑚1
𝑚𝑚3 𝑚𝑚2
𝑚𝑚4 𝑚𝑚3

�

In this example, the input matrix 𝑿𝑿 ∈ ℛ5×4 has 4 time series (𝑛𝑛 = 4) and five time points per time series (𝑚𝑚 = 5). The
lag matrix associated with the time series in column 1, when 𝐿𝐿 (lag) is 2, is produced by invoking 𝐺𝐺(𝑿𝑿, {1}, 2). Note
that the lag matrix consists of the lag-1 vector of 𝑿𝑿 as the first column, the lag-2 vector as the second column, up to the
lag- 𝐿𝐿 vector as the 𝐿𝐿th column. Similarly, the functions (𝑀𝑀, 𝑆𝑆) accept any input matrix and compute the mean and the
standard deviation, respectively, of the matrix’s columns. For purposes of numerical stability, and to increase
interpretability during modeling, columns of the lagged matrix are both centered by the column means and scaled by
the column standard deviations 2. On the other hand, the target 𝒚𝒚 is only centered. An example of mean centering and
scaling for the lagged matrices is shown below:

��
𝑚𝑚1 𝑏𝑏1
𝑚𝑚2 𝑏𝑏2
𝑚𝑚3 𝑏𝑏3

�� →

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝑚𝑚1 − 𝑚𝑚𝜇𝜇
𝑚𝑚𝜎𝜎

𝑏𝑏1 − 𝑏𝑏𝜇𝜇
𝑏𝑏𝜎𝜎

𝑚𝑚2 − 𝑚𝑚𝜇𝜇
𝑚𝑚𝜎𝜎

𝑏𝑏2 − 𝑏𝑏𝜇𝜇
𝑏𝑏𝜎𝜎

𝑚𝑚3 − 𝑚𝑚𝜇𝜇
𝑚𝑚𝜎𝜎

𝑏𝑏3 − 𝑏𝑏𝜇𝜇
𝑏𝑏𝜎𝜎 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

Here, (𝑚𝑚𝜇𝜇 , 𝑚𝑚𝜎𝜎) and (𝑏𝑏𝜇𝜇 , 𝑏𝑏𝜎𝜎) are the means and standard deviations of the first and the second columns, (𝑚𝑚, 𝑏𝑏)
respectively.

2.3 Group Orthogonal Matching Pursuit (GOMP)
Algorithm 1: GOMP

Input: 𝑿𝑿,𝒚𝒚,𝐺𝐺,𝑀𝑀, 𝑆𝑆,𝐿𝐿, 𝜖𝜖,𝐾𝐾∗, 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 , 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙~ .
Output: 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙, 𝜷𝜷�∗.
1 𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙0 = 𝐺𝐺(𝑋𝑋, 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 ,𝐿𝐿);

2 for 𝑖𝑖 ∈ [1, (𝑚𝑚− 𝐿𝐿)] do 𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙0 (𝑖𝑖, ∶) = 𝑿𝑿𝑖𝑖𝑎𝑎𝑎𝑎0 (𝑖𝑖,∶)−𝑀𝑀(𝑿𝑿𝑖𝑖𝑎𝑎𝑎𝑎0)𝑇𝑇

𝑆𝑆(𝑿𝑿𝑖𝑖𝑎𝑎𝑎𝑎0)𝑇𝑇
;

3 𝜷𝜷�∗0 = 𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙0 ∖ �𝒚𝒚 −𝑀𝑀(𝒚𝒚)�;
4 𝒓𝒓0 = 𝒚𝒚 −𝑀𝑀(𝒚𝒚)− 𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙0 𝜷𝜷�∗0;
5 if any redundant series are found, delete them in 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 ;
6 if (�𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 � ≥ 𝐾𝐾∗), then 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 = 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 (1:𝐾𝐾∗), update 𝜷𝜷�∗0 , return 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 , 𝜷𝜷�∗0 and stop;
7 otherwise update 𝜷𝜷�∗0 and 𝒓𝒓0;
8 for 𝑘𝑘 ∈ 1, 2, 3 … �𝐾𝐾∗ − �𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 �� do
9 𝑗𝑗𝑘𝑘 = 𝑚𝑚𝑟𝑟𝑔𝑔𝑚𝑚𝑖𝑖𝑛𝑛(𝑿𝑿,𝒓𝒓𝑘𝑘−1,𝐺𝐺,𝑀𝑀, 𝑆𝑆,𝐿𝐿, 𝜖𝜖, 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 , 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙~);
10 if 𝑗𝑗𝑘𝑘 = −1, return 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙

(𝑘𝑘−1) and 𝜷𝜷�∗(𝑘𝑘−1) and stop;
11 𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙𝑘𝑘 = 𝐺𝐺�𝑿𝑿, 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙𝑘𝑘−1 ∪ 𝑗𝑗𝑘𝑘 ,𝐿𝐿�;
12 for 𝑖𝑖 ∈ [1, (𝑚𝑚− 𝐿𝐿)] do

13 𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙𝑘𝑘 (𝑖𝑖, ∶) = 𝑿𝑿𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖 (𝑖𝑖,∶)−𝑀𝑀(𝑿𝑿𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖)𝑇𝑇

𝑆𝑆(𝑿𝑿𝑖𝑖𝑎𝑎𝑎𝑎𝑖𝑖)𝑇𝑇
;

2 Although each column of the lagged matrix has a different mean and standard deviation, due to the structure of these columns,

it is possible to compute the mean and the standard deviation of the time series itself and use those to center and scale the
lagged columns.

14 𝜷𝜷�∗𝑘𝑘 = 𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙𝑘𝑘 ∖ �𝒚𝒚 −𝑀𝑀(𝒚𝒚)�;
15 𝒓𝒓𝑘𝑘 = 𝒚𝒚 −𝑀𝑀(𝒚𝒚)− 𝑿𝑿𝑚𝑚𝑛𝑛𝑙𝑙𝑘𝑘 𝜷𝜷�∗𝑘𝑘;
16 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙𝑘𝑘 = 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙𝑘𝑘−1 ∪ 𝑗𝑗𝑘𝑘;
17 if �𝒓𝒓𝑘𝑘�2 ≤ 𝜖𝜖, break;

18 return 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙𝑘𝑘 , 𝜷𝜷�∗𝑘𝑘.

We begin by describing Algorithm 1: GOMP, which will be used to establish causality of time-series data. This
algorithm receives the variables 𝑿𝑿,𝒚𝒚,𝐺𝐺,𝑀𝑀, 𝑆𝑆, 𝐿𝐿, 𝜖𝜖,𝐾𝐾∗ (described in Table 1) as input. Briefly, 𝒚𝒚 ∈ ℛ(𝑚𝑚−𝐿𝐿)×1 is a target
vector for which we want to establish the Granger causality (note that we have excluded the first 𝐿𝐿 values of 𝒚𝒚). In
contrast, 𝑿𝑿 ∈ ℛ𝑚𝑚×𝑛𝑛 is the input unlagged time series data. 𝐿𝐿 is the number of lags for each predictor in each target
series, 𝐾𝐾∗ is the maximum number of predictors to be selected per-target, and 𝜖𝜖 determines whether a new predictor
needs to be added. In addition, 𝐺𝐺,𝑀𝑀 and 𝑆𝑆 are grouping, centering, and scaling functions which have been described in
Section 2.2. 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 is the set of pre-selected predictor indices for 𝒚𝒚, and always contains the lagged 𝒚𝒚. 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙~ is the set of
forbidden predictors, if any, for 𝒚𝒚. If there are no forbidden predictors, then 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙~ = ∅. Given these, the goal is to
greedily find predictors that solve the system 𝑿𝑿𝜷𝜷 = 𝒚𝒚 subject to sparsity constraints.

The greedy algorithm approximates an ℓ0–sparse solution by itertively choosing the best predictor for addition at each
iteration. We use superscripts to denote the iteration number in Algorithm 1. For example, 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 represents the initial
values of 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙 at the 0th iteration (before the actual iteration starts). The first part of the algorithm (lines 1 – 4) constructs
and solves a linear system consisting of the predictors in 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 to obtain 𝜷𝜷∗0, the coefficient vector for predictors on the
transformed scale. At the end of this first part, we have 𝒓𝒓0, the initial residual. Then check whether there are redundant
predictor series in 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 . If yes, then delete them. If the number of predictor series in the (updated) 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 is equal to or
larger than the maximum number of iterations (i.e., |𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 | ≥ 𝐾𝐾∗) then keep the first 𝐾𝐾∗ predictor series in 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 , update
𝜷𝜷∗0, return 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 and 𝜷𝜷∗0, and stop the process (line 6); otherwise (i.e., |𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 | < 𝐾𝐾∗), update 𝜷𝜷∗0 and 𝒓𝒓0 (line 7) if any
redundant predictor series were deleted. Then start the iterative process to add one predictor series at a time (line 8).
The first step in predictor selection (line 9) consists of an argmin function that systematically goes over each eligible
predictor and evaluates its goodness (see Algorithm 2). This step is the performance critical portion of the algorithm
and can be searched in parallel. At the end of the step, 𝑗𝑗𝑘𝑘, the index corresponding to the best predictor is available.
However, if no suitable predictor is found in the argmin function (i.e., 𝑗𝑗𝑘𝑘 = −1), then return 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙𝑘𝑘−1and 𝜷𝜷∗(𝑘𝑘−1) and stop
(line 10). The next part (lines 11 – 14) re-estimates the model coefficients by adding 𝑗𝑗𝑘𝑘 to the model. Line 15 updates
the residual, 𝒓𝒓𝑘𝑘, for this model and line 16 adds 𝑗𝑗𝑘𝑘 to the model. Finally, if the ℓ2 norm of the current residuals is equal
to or smaller than the tolerance value (i.e., (‖𝒓𝒓𝑘𝑘‖2 ≤ 𝜖𝜖)), then the iterative process is terminated.

Note that if the tolerance 𝜖𝜖 is achieved by adding 𝑗𝑗𝑘𝑘, then no new iterations are required and the iterative process is
terminated. Thus the actual number of predictors selected, 𝐾𝐾, can be less than the maximum number of iterations, (i.e.,
𝐾𝐾 ≤ 𝐾𝐾∗). However, if the tolerance 𝜖𝜖 is set very small, then it is highly unlikely that such a situation will happen.

Algorithm 2: argmin

Input: 𝑿𝑿,𝒓𝒓,𝐺𝐺,𝑀𝑀, 𝑆𝑆,𝐿𝐿, 𝜖𝜖2, 𝐾𝐾∗, 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 , 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙~ .
Output: 𝑗𝑗𝑠𝑠𝑒𝑒𝑙𝑙: Selected group index.
1 𝑐𝑐𝑏𝑏𝑠𝑠𝑡𝑡 = ‖𝒓𝒓‖22, 𝑗𝑗𝑠𝑠𝑒𝑒𝑙𝑙 = −1;
2 for 𝑗𝑗 ∈ 1, 2, 3 …𝑛𝑛 do
3 if 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙 ∥ 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙~ continue;
4 𝑿𝑿𝐺𝐺𝑗𝑗 = 𝐺𝐺(𝑿𝑿, 𝑗𝑗, 𝐿𝐿);

5 for 𝑖𝑖 ∈ [1, (𝑚𝑚− 𝐿𝐿)] do 𝑿𝑿𝐺𝐺𝑗𝑗(𝑖𝑖, ∶) =
𝑿𝑿𝐺𝐺𝑗𝑗(𝑖𝑖,∶)−𝑀𝑀(𝑿𝑿𝐺𝐺𝑗𝑗)𝑇𝑇

𝑆𝑆(𝑿𝑿𝐺𝐺𝑗𝑗)𝑇𝑇
;

6 𝜷𝜷�𝑗𝑗 = 𝑿𝑿𝐺𝐺𝑗𝑗 ∖ 𝒓𝒓;

7 𝒓𝒓𝑗𝑗 = 𝒓𝒓 − �𝑿𝑿𝐺𝐺𝑗𝑗𝜷𝜷�𝑗𝑗�𝐺𝐺𝑗𝑗
;

8 if �𝒓𝒓𝑗𝑗�2
2 < (𝑐𝑐𝑏𝑏𝑠𝑠𝑡𝑡 − 𝜖𝜖2), then (𝑐𝑐𝑏𝑏𝑠𝑠𝑡𝑡, 𝑗𝑗𝑠𝑠𝑒𝑒𝑙𝑙) = ��𝒓𝒓𝑗𝑗�2

2, 𝑗𝑗�;
9 return 𝑗𝑗𝑠𝑠𝑒𝑒𝑙𝑙.

The implementation of the argmin function (line 8, Algorithm 1) is shown in Algorithm 2. The algorithm first assigns
the initial cost to be the square of the ℓ2 norm of the current residuals, and the selected group index to be −1 (line 1).
Then it loops over each series group, first checking if the time series being considered for addition (𝑗𝑗) has already been
added to the solution 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙 or if it is a forbidden predictor (line 3). If the current group (𝑗𝑗) is not yet selected, the lagged
transformed matrix corresponding to this time series (𝑿𝑿𝐺𝐺𝑗𝑗) is constructed using the 𝐺𝐺,𝑀𝑀 and 𝑆𝑆 functions (lines 4 and

5). After grouping and transforming 𝑋𝑋𝐺𝐺𝑗𝑗 , the residual �𝒓𝒓𝑗𝑗� corresponding to the candidate time series j is computed by
first regressing 𝒓𝒓 on 𝑿𝑿𝐺𝐺𝑗𝑗 (line 6), and then computing the residual (line 7). Finally, the current time series is selected as

the leading candidate if the square of the ℓ2 norm of its residual �𝒓𝒓𝑗𝑗� is lower than the previous estimate minus a
threshold value, 𝜖𝜖2. Including such a threshold value prevents selecting an (almost) identical series.

The loop in Algorithm 2 (line 2) can be thought of as iterating over all candidate series. For each candidate series, the
following computations are carried out: (1) a filter is applied in line 3 to ensure that it is a valid candidate; (2) lines 4
and 5 map the current candidate to the transformed matrix (𝑿𝑿𝐺𝐺𝑗𝑗) that represents the lag matrix to be used; (3) lines 6
and 7 evaluate the goodness of the current candidate by first solving a dense linear system and then computing the
residual; (4) line 8 applies a predicate to check if the current candidate series is better than previously evaluated
candidates. Notice that the predicate (line 8) is associative and commutative; therefore, Algorithm 2 can be parallelized
by dividing the iteration space ([1,n]) into chunks and executing each chunk in parallel. To get the globally best group,
it is sufficient to reduce the groups that were selected by each parallel instance in a tree-like fashion by applying the
predicate in line 8.

2.4 Selecting 𝑳𝑳

Both Algorithms 1 and 2 accept 𝐿𝐿 as an input parameter which can be specified by user. If 𝐿𝐿 is not explicitly specified
then the following heuristic approach can be used to determine 𝐿𝐿 based on 𝑚𝑚 (# of time points) and 𝑠𝑠 (periodicity or
seasonal length):

(1) If 𝑠𝑠 > 1 and 𝑚𝑚 ≥ 4𝑠𝑠, then 𝐿𝐿 = min(𝑠𝑠, 20).

(2) If 𝑠𝑠 = 1 or 𝑚𝑚 < 4𝑠𝑠, then 𝐿𝐿 = 5.

2.5 AR(𝑳𝑳) Model

Out of the 𝑛𝑛 series in the data, some series may be used as predictors only, so no TCM models are built for them.
However, if they are selected as predictors for some target series, then simple models need to be built for them in order
to do forecasting. For example, suppose that time series 1 is a selected predictor for time series 2, but there is no model
built for time series 1. While a model for time series 1 is not needed in order to forecast time series 2 at time (𝑡𝑡 + 1)
(where 𝑡𝑡 is the latest time in the data), forecasts for time (t + 2) require values of time series 1 for time (𝑡𝑡 + 1), which
then requires a model for time series 1.

Hence, for each predictor-only series, a simple auto-regressive (AR) model is built using the same lag, 𝐿𝐿, as used for
the target series. This model, called an AR(𝐿𝐿) model, can be constructed using Algorithm 1 by specifying 𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙0 to be the
target itself and setting the maximum number of predictors to be 1.

2.6 Post-estimation steps

Algorithm 1 selects the best predictors (time series) to model a target series 𝒚𝒚. Without loss of generality, we assume
that the model for 𝒚𝒚 is 𝒚𝒚 = 𝒚𝒚� + 𝑿𝑿𝐺𝐺∗ 𝜷𝜷�∗ + 𝒓𝒓 = 𝒚𝒚� + 𝒓𝒓, where 𝑿𝑿𝐺𝐺∗ is the selected predictor series matrix with the lagged
terms on the transformed scale, 𝜷𝜷�∗ is the estimated standardized coefficient vector, and 𝒓𝒓 = 𝒚𝒚 − 𝒚𝒚� is the residual
vector.

However, this is not the end of modeling. Several post processing steps are needed in order to complete the modeling
process for 𝒚𝒚. The steps include three parts: (1) coefficients and statistics inference; (2) tests of model effects; (3)
model quality measures.

2.6.1 Coefficients and statistical inference

The results of Algorithm 1 include 𝜷𝜷�∗ and (𝑿𝑿∗T𝑿𝑿∗)− (by solving the linear system from Cholesky decomposition),
where superscript T means the transpose of a matrix or vector, and (𝒛𝒛)− is a generalized inverse of the 𝒛𝒛 matrix. Based
on these quantities, the first step is to compute coefficient estimates, their standard errors, and statistical inference on
the original scale.

Table 2: Additional notation

Notation Description

𝐾𝐾 Actual number of predictors selected (including target itself) for 𝒚𝒚, i.e., 𝐾𝐾 = |𝐽𝐽𝑠𝑠𝑒𝑒𝑙𝑙|.

𝑝𝑝 Number of coefficient estimates in 𝜷𝜷�∗, i.e., 𝑝𝑝 = 𝐾𝐾×𝐿𝐿

𝒑𝒑𝑐𝑐 Number of non-redundant coefficient estimates in 𝜷𝜷�∗, 𝒑𝒑𝒄𝒄 ≤ 𝑝𝑝

𝑿𝑿𝐺𝐺∗

Selected predictor series matrix with lagged terms on the transformed scale. This is an
(𝑚𝑚 − 𝐿𝐿)×𝑝𝑝 matrix as 𝑿𝑿𝐺𝐺∗ = �𝑿𝑿𝐺𝐺1

∗ , … ,𝑿𝑿𝐺𝐺𝐾𝐾
∗ � with 𝑿𝑿𝐺𝐺𝑗𝑗

∗ = 𝐺𝐺(𝑿𝑿∗, 𝑗𝑗, 𝐿𝐿) = �𝑿𝑿𝐺𝐺𝑗𝑗1
∗ , … ,𝑿𝑿𝐺𝐺𝑗𝑗𝐿𝐿

∗ � (an
(𝑚𝑚 − 𝐿𝐿)×𝐿𝐿 matrix).

𝑿𝑿𝐺𝐺
Selected predictor series matrix on the original scale. This is an (𝑚𝑚 − 𝐿𝐿)×(𝑝𝑝 + 1) matrix
as 𝑿𝑿𝐺𝐺 = �𝟏𝟏,𝑿𝑿𝐺𝐺1 , … ,𝑿𝑿𝐺𝐺𝐾𝐾� = �𝟏𝟏,𝑿𝑿𝐺𝐺11 , … ,𝑿𝑿𝐺𝐺1𝐿𝐿 ,⋯ ,𝑿𝑿𝐺𝐺𝐾𝐾1 , … ,𝑿𝑿𝐺𝐺𝐾𝐾𝐿𝐿�, where 𝟏𝟏 is a column
vector of 1’s corresponding to an intercept.

𝜷𝜷�
Unstandardized coefficient estimates vector (corresponding to 𝑿𝑿𝐺𝐺), which is a (𝑝𝑝 + 1)×1
vector. The first element, �̂�𝛽0, is the intercept estimate.

𝜎𝜎�2 Estimated variance of the model based on residuals.

𝜮𝜮∗
Covariance matrix of standardized coefficient estimates on the transformed scale, i.e.,
𝜮𝜮∗ = 𝜎𝜎�2(𝑿𝑿𝐺𝐺∗T𝑿𝑿𝐺𝐺∗)−. The 𝑗𝑗th diagonal element is σ�𝛽𝛽�𝑗𝑗∗

2 and its square root, σ�𝛽𝛽�𝑗𝑗∗, is the

standard error of the 𝑗𝑗th standardized coefficent estimate.

𝜮𝜮
Covariance matrix of unstandardized coefficient estimates on the original scale. The 𝑗𝑗th
diagonal element is σ�𝛽𝛽�𝑗𝑗

2 and its square root, σ�𝛽𝛽�𝑗𝑗, is the standard error of the 𝑗𝑗th
unstandardized coefficent estimate.

𝐌𝐌 Centering vector of 𝑿𝑿, i.e., 𝐌𝐌 = �M1, … , M𝑝𝑝�
T
, where M𝑗𝑗 = 𝑀𝑀�𝑿𝑿𝑗𝑗� is the mean of 𝑿𝑿𝑗𝑗.

𝐒𝐒
Scaling matrix of 𝑿𝑿, i.e., 𝐒𝐒 = diag�S1, … , S𝑝𝑝�, where S𝑗𝑗 = 𝑆𝑆�𝑿𝑿𝑗𝑗� is the standard deviation
of 𝑿𝑿𝑗𝑗.

𝑨𝑨 Transformation matrix of 𝑿𝑿 to 𝑿𝑿∗, i.e., 𝑨𝑨 = �−𝐌𝐌
T𝐒𝐒−1
𝐒𝐒−1

�, which is a (𝑝𝑝 + 1)×𝑝𝑝 vector.

Note that 𝑿𝑿𝐺𝐺∗ = 𝑿𝑿𝐺𝐺𝑨𝑨.

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDQQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FWithout_loss_of_generality&ei=Xm5qU6W-O8SZyAT-sIHoCA&usg=AFQjCNHMzQT8qYnVk6kEv6pO03hPrLZliQ&sig2=eNA7O9dKOI53vqHQqWUE8w
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDQQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FWithout_loss_of_generality&ei=Xm5qU6W-O8SZyAT-sIHoCA&usg=AFQjCNHMzQT8qYnVk6kEv6pO03hPrLZliQ&sig2=eNA7O9dKOI53vqHQqWUE8w

The relationship between 𝜷𝜷� and 𝜷𝜷�∗ is 𝜷𝜷� = 𝑨𝑨𝜷𝜷�∗ + [𝑦𝑦�, 0, … ,0]T and the relationship between 𝜮𝜮 and 𝜮𝜮∗ is 𝜮𝜮 = 𝑨𝑨𝜮𝜮∗𝑨𝑨T.
The relevant statistics are computed as follows:

• Unstandardized coefficient estimates

�̂�𝛽𝑗𝑗 = S𝑗𝑗−1�̂�𝛽𝑗𝑗∗, 𝑗𝑗 = 1, … , 𝑝𝑝 (3)

�̂�𝛽0 = 𝒚𝒚� − 𝐌𝐌T𝐒𝐒−1𝜷𝜷�∗ (4)

• Standard errors of unstandardized coefficient estimates

σ�𝛽𝛽�𝑗𝑗 =
σ�𝛽𝛽�𝑗𝑗

∗

S𝑗𝑗
, 𝑗𝑗 = 1, … , 𝑝𝑝 (5)

σ�𝛽𝛽�0 = 𝑠𝑠𝑞𝑞𝑟𝑟𝑡𝑡

⎝

⎛�M1
S1

, … ,M𝑖𝑖

S𝑖𝑖
� 𝜮𝜮∗

⎣
⎢
⎢
⎡
M1
S1
⋮
M𝑖𝑖

S𝑖𝑖 ⎦
⎥
⎥
⎤

⎠

⎞ (6)

where 𝜮𝜮∗ = 𝜎𝜎�2(𝑿𝑿𝐺𝐺∗T𝑿𝑿𝐺𝐺∗)− and 𝜎𝜎�2 = 𝑆𝑆𝑆𝑆𝑒𝑒 𝑚𝑚𝑓𝑓𝑒𝑒⁄ with 𝑆𝑆𝑆𝑆𝑒𝑒 = ‖𝒚𝒚 − 𝒚𝒚�‖22 = ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2
𝑖𝑖=(𝑚𝑚−𝐿𝐿)
𝑖𝑖=1 and 𝑚𝑚𝑓𝑓𝑒𝑒 = 𝑚𝑚 −

𝐿𝐿 − 𝑝𝑝𝑐𝑐 − 1.

• t-statistics for coefficient estimates

𝑡𝑡𝑗𝑗 = 𝛽𝛽�𝑗𝑗
σ�𝛽𝛽�𝑗𝑗

, 𝑗𝑗 = 0, 1, … 𝑝𝑝, (7)

which follows an asymptotic t distribution with 𝑚𝑚𝑓𝑓𝑒𝑒degrees of freedom. Then the p-value is computed as

𝑝𝑝𝑖𝑖𝑗𝑗 = 2× �1 − 𝑝𝑝𝑟𝑟𝑏𝑏𝑏𝑏�𝑡𝑡𝑑𝑑𝑐𝑐𝑒𝑒 ≤ �𝑡𝑡𝑗𝑗��� (8)

• 𝟏𝟏𝟎𝟎𝟎𝟎(𝟏𝟏 − 𝜶𝜶)% confidence internals

�̂�𝛽𝑗𝑗 ± σ�𝛽𝛽�𝑗𝑗×𝑡𝑡α 2⁄ ,𝑑𝑑𝑐𝑐𝑒𝑒 (9)

where 𝛼𝛼 is the significance level and 𝑡𝑡α 2⁄ ,𝑑𝑑𝑐𝑐𝑒𝑒 is the 100(1 − 𝛼𝛼 2⁄)th percentile of the 𝑡𝑡 distribution with
𝑚𝑚𝑓𝑓𝑒𝑒 degrees of freedom.

2.6.2 Tests of model effects

For each selected predictor series for 𝒚𝒚, there are 𝐿𝐿 lagged columns associated with it. The columns can be grouped
together, considered as an effect, and tested with a null hypothesis of zero for all coefficients. This is similar to the test
of a categorical effect with all dummy variables in a (generalized) linear model setting. Only type III tests are
conducted here. For each selected predictor series 𝑿𝑿𝐺𝐺,𝑖𝑖, the type III test matrix 𝑳𝑳𝑖𝑖 is constructed and 𝐻𝐻0 ∶ 𝑳𝑳𝑖𝑖𝜷𝜷 = 𝟎𝟎 is
tested based on an F-statistic.

• F-statistics for effects

𝐹𝐹𝑖𝑖 = 𝜷𝜷�T𝑳𝑳𝑖𝑖
T�𝑳𝑳𝑖𝑖𝜮𝜮𝑳𝑳𝑖𝑖

T�
−1
𝑳𝑳𝑖𝑖𝜷𝜷�

𝑟𝑟𝑖𝑖
 (10)

where 𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑚𝑚𝑛𝑛𝑘𝑘�𝑳𝑳𝑖𝑖𝜮𝜮𝑳𝑳𝑖𝑖T�. The statistic follows an approximate F distribution with the numerator degrees of
freedom 𝑟𝑟𝑖𝑖 and the denominator degrees of freedom 𝑚𝑚𝑓𝑓𝑒𝑒. Then the p-value is computed as follows:

𝑝𝑝𝐸𝐸𝑖𝑖 = 1 − 𝑝𝑝𝑟𝑟𝑏𝑏𝑏𝑏�𝐹𝐹𝑟𝑟𝑖𝑖,𝑑𝑑𝑐𝑐𝑒𝑒 ≤ |𝐹𝐹𝑖𝑖|� (11)

2.6.3 Model quality measures

In addition to statistical inferences, the goodness of the model can be evaluated. The following model quality measures
are provided:

• Root Mean Squared Error (RMSE)

𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 = √𝑀𝑀𝑆𝑆𝑀𝑀 = �𝑆𝑆𝑆𝑆𝑒𝑒
𝑑𝑑𝑐𝑐𝑒𝑒

 (12)

Note that 𝑅𝑅𝑀𝑀𝑆𝑆𝑀𝑀 = 𝜎𝜎�.

• Root Mean Squared Percentage Error (RMSPE)

𝑅𝑅𝑀𝑀𝑆𝑆𝑃𝑃𝑀𝑀 = √𝑀𝑀𝑆𝑆𝑃𝑃𝑀𝑀 = �∑ �𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖𝑦𝑦𝑖𝑖
�
2

𝑚𝑚
𝑖𝑖=𝐿𝐿+1

(𝑚𝑚−𝐿𝐿) (13)

• R squared

𝑹𝑹𝟐𝟐 = 𝟏𝟏 − ∑ (𝒚𝒚𝒕𝒕−𝒚𝒚�𝒕𝒕)𝟐𝟐
𝒕𝒕=(𝒎𝒎−𝑳𝑳)
𝒕𝒕=𝟏𝟏
∑ (𝒚𝒚𝒕𝒕−𝒚𝒚�)𝟐𝟐𝒕𝒕=(𝒎𝒎−𝑳𝑳)
𝒕𝒕=𝟏𝟏

= 𝟏𝟏 − 𝑺𝑺𝑺𝑺𝒆𝒆
𝑺𝑺𝑺𝑺𝒕𝒕

 (14)

• Bayesian Information Criterion (BIC)

𝑩𝑩𝑰𝑰𝑪𝑪 = (𝒎𝒎− 𝑳𝑳)𝒍𝒍𝒍𝒍 � 𝑺𝑺𝑺𝑺𝒆𝒆
(𝒎𝒎−𝑳𝑳)

� + �(𝒑𝒑𝒄𝒄 + 𝟏𝟏)𝒍𝒍𝒍𝒍(𝒎𝒎− 𝑳𝑳)� (15)

• Akaike Information Criterion (AIC)

𝑨𝑨𝑰𝑰𝑪𝑪 = (𝒎𝒎− 𝑳𝑳)𝒍𝒍𝒍𝒍 � 𝑺𝑺𝑺𝑺𝒆𝒆
(𝒎𝒎−𝑳𝑳)

� + 𝟐𝟐(𝒑𝒑𝒄𝒄 + 𝟏𝟏) (15’)

3. Scoring
Once the models (𝜷𝜷� , 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠) for all the required targets (𝒚𝒚) are built and post-estimation statistics are computed,
the next task is to use these models to do scoring. There are two types of scoring: (1) fit: in-sample prediction
for the past and current values of the target series; (2) forecast: out-of-sample prediction for future values of
the target series.

3.1 Fit

Without loss of generality, we assume 𝑿𝑿 and 𝑿𝑿𝐺𝐺 are the selected predictor series matrices without lagged terms and
with lagged terms, respectively; and 𝜷𝜷� is the coefficient estimates vector for the target 𝒚𝒚, so 𝑿𝑿 = [𝑿𝑿1, … ,𝑿𝑿𝐾𝐾],

𝑿𝑿𝐺𝐺 = �𝟏𝟏,𝑿𝑿𝐺𝐺11 , … ,𝑿𝑿𝐺𝐺1𝐿𝐿 ,⋯ ,𝑿𝑿𝐺𝐺𝐾𝐾1 , … ,𝑿𝑿𝐺𝐺𝐾𝐾𝐿𝐿� and 𝜷𝜷� = ��̂�𝛽0, �̂�𝛽11, … , �̂�𝛽1𝐿𝐿 ,⋯ , �̂�𝛽𝐾𝐾1, … , �̂�𝛽𝐾𝐾𝐿𝐿�
T
. Given that all series have

𝑚𝑚 time points, in-sample prediction of 𝒚𝒚 is one-step ahead prediction and can be written as

 𝑦𝑦�𝑡𝑡 = 𝑿𝑿𝐺𝐺,𝑡𝑡𝜷𝜷� = �̂�𝛽0 + ∑ ∑ �̂�𝛽𝑗𝑗,ℓ
𝐿𝐿
ℓ=1𝑗𝑗∈𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑋𝑋𝐺𝐺𝑗𝑗ℓ,𝑡𝑡 (16)

 = �̂�𝛽0 + ∑ ∑ �̂�𝛽𝑗𝑗,ℓ
𝐿𝐿
ℓ=1𝑗𝑗∈𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑋𝑋𝑗𝑗,𝑡𝑡−ℓ; 𝑡𝑡 = 𝐿𝐿 + 1, … ,𝑚𝑚. (17)

The corresponding 100(1 − 𝛼𝛼)% confidence interval of 𝒚𝒚 is

�𝑦𝑦�𝑡𝑡 − 𝑡𝑡α 2⁄ ,𝑑𝑑𝑑𝑑𝑠𝑠×σ�, 𝑦𝑦�𝑡𝑡 − 𝑡𝑡α 2⁄ ,𝑑𝑑𝑑𝑑𝑠𝑠× σ�� ; 𝑡𝑡 = 𝐿𝐿 + 1, … ,𝑚𝑚. (18)

3.2 Forecast

Given that data is available up to time interval 𝑚𝑚, the one-step ahead forecast for 𝒚𝒚 is

𝑦𝑦�𝑚𝑚(1) = �̂�𝛽0 + ∑ ∑ �̂�𝛽𝑗𝑗,ℓ
𝐿𝐿
ℓ=1𝑗𝑗∈𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑋𝑋𝑗𝑗,𝑚𝑚+1−ℓ (19)

The ℎ-step ahead forecast for 𝒚𝒚 is

𝑦𝑦�𝑚𝑚(ℎ) = �̂�𝛽0 + ∑ ∑ �̂�𝛽𝑗𝑗,ℓ
𝐿𝐿
ℓ=1𝑗𝑗∈𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑋𝑋�𝑗𝑗,𝑚𝑚+ℎ−ℓ (20)

where

𝑋𝑋�𝑗𝑗,𝑚𝑚+ℎ−ℓ = �
𝑋𝑋𝑗𝑗,𝑚𝑚+ℎ−ℓ, ℎ ≤ ℓ
𝑋𝑋�𝑗𝑗,𝑚𝑚(ℎ − ℓ), ℎ > ℓ

Thus, forecasting the value of 𝑦𝑦𝑚𝑚+2 requires us to first forecast the values of all the predictors up to
time (𝑚𝑚 + 1). Forecasting the values of all the predictors up to time (𝑚𝑚 + 1) requires us to use Equation (19)
on all the predictors 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠. Similarly, to predict the value of 𝑦𝑦𝑚𝑚+3, we need to forecast the values of
predictors 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 at time (𝑚𝑚 + 2) by using Equation (20). This task poses a bigger problem; to forecast the
values of 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 at time (𝑚𝑚 + 2), we first need to forecast the values of the predictors of 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 at
time (𝑚𝑚 + 1). That is, as we increasingly look into the future, we need to forecast more and more values to
determine the value of 𝑦𝑦𝑚𝑚+ℎ.

3.3 Approximated forecasting variances and intervals

In this subsection, we outline how forecasting variances and intervals can be computed for TCM models. We
start by using the following representation for the linear model built by TCM for target 𝑦𝑦𝑚𝑚+ℎ:

𝑦𝑦𝑚𝑚+ℎ = �̂�𝛽0 + ∑ ∑ �̂�𝛽𝑗𝑗,ℓ
𝐿𝐿
ℓ=1𝑗𝑗∈𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑋𝑋𝑗𝑗,𝑚𝑚+ℎ−ℓ + 𝜀𝜀𝑚𝑚+ℎ (21)

where 𝜀𝜀𝑚𝑚+ℎ ~ 𝑁𝑁(0,𝜎𝜎2) and 𝜎𝜎2 is estimated as 𝜎𝜎�2 (computed in Section 2.6.1). Please note that we don’t
include parameter estimation error when defining forecasting error in TCM.

The forecasting error at 𝑚𝑚 + 1 is defined as the difference between 𝑦𝑦𝑚𝑚+1 and 𝑦𝑦�𝑚𝑚(1), which can be written as

𝑠𝑠𝑦𝑦,𝑚𝑚(1) = 𝑦𝑦𝑚𝑚+1 − 𝑦𝑦�𝑚𝑚(1) = 𝜀𝜀𝑚𝑚+1 (22)

The forecasting variance for one-step ahead forecasts is computed as 𝜎𝜎�2. For multi-step ahead forecasts, the
forecasting error at 𝑚𝑚 + ℎ is

𝑠𝑠𝑦𝑦,𝑚𝑚(ℎ) = 𝑦𝑦𝑚𝑚+ℎ − 𝑦𝑦�𝑚𝑚(ℎ) = ∑ ∑ �̂�𝛽𝑗𝑗,ℓ
𝐿𝐿
ℓ=1𝑗𝑗∈𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 ∙ 𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚(ℎ − ℓ) + 𝜀𝜀𝑚𝑚+ℎ (23)

where 𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚(ℎ − ℓ) = 𝑋𝑋𝑗𝑗,𝑚𝑚+ℎ−ℓ − 𝑋𝑋�𝑗𝑗,𝑚𝑚(ℎ − ℓ) and 𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚(ℎ − ℓ) = 0 if ℎ ≤ ℓ.

In general, 𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚(1),⋯ , 𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚(ℎ − ℓ) are not independent of each other. The larger the ℎ is, the more
complex the dependence is. In addition, 𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚(ℎ − ℓ) and 𝑠𝑠𝑋𝑋𝑖𝑖,𝑚𝑚(ℎ − ℓ) might not be independent for 𝑗𝑗, 𝑖𝑖 ∈
𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 . In order to fully consider the dependence, we need to write all time series in vector autoregressive (VAR)
format. Since we assume the number of series 𝑛𝑛 is usually large, the parameter matrix, which is an 𝑛𝑛×𝑛𝑛
matrix, might be too large to handle in computation of the forecasting variances. Therefore, we make the
assumption that all forecasting error terms in Equation (23), 𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚(ℎ − ℓ), 𝑗𝑗 ∈ 𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 , ℓ = 1, … ,𝐿𝐿, are
independent, so it is easier to compute the forecasting variances.

Based on the above independence assumption, the approximated variance of the forecasting error, 𝑠𝑠𝑦𝑦,𝑚𝑚(ℎ), is

𝜎𝜎�𝑠𝑠𝑦𝑦,𝑚𝑚,ℎ
2 = ∑ ∑ �̂�𝛽𝑗𝑗,ℓ

2 𝜎𝜎�𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚,ℎ−ℓ
2𝐿𝐿

ℓ=1𝑗𝑗∈𝐽𝐽𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜎𝜎�2 (24)

where 𝜎𝜎�𝑠𝑠𝑋𝑋𝑗𝑗,𝑚𝑚,ℎ−ℓ
2 is the variance of the forecasting error in the series 𝑋𝑋𝑗𝑗 at 𝑚𝑚 + ℎ − ℓ.

Then the corresponding 100(1 − 𝛼𝛼)% approximated forecasting interval of 𝑦𝑦𝑚𝑚+ℎ can be expressed as

�𝑦𝑦�𝑚𝑚(ℎ) − 𝑡𝑡α 2⁄ ,𝑑𝑑𝑑𝑑𝑠𝑠×𝜎𝜎�𝑠𝑠𝑦𝑦,𝑚𝑚,ℎ ,𝑦𝑦�𝑚𝑚(ℎ) + 𝑡𝑡α 2⁄ ,𝑑𝑑𝑑𝑑𝑠𝑠×𝜎𝜎�𝑠𝑠𝑦𝑦,𝑚𝑚,ℎ� (25)

4. Scenario analysis
Scenario analysis refers to a capability of TCM to “play-out” the repercussions of artificially setting the value
of a time series. A scenario is the set of forecasts that are generated by substituting the values of a root time
series by a vector of substitute values, as illustrated in Figure 1.

Figure 1: Causal graph of a root time series and the specification of the vector of substitute values

During scenario analysis, we specify the targets that we want to analyze as a response to changes in the values
of the root series (“a” in Figure 1), along with the time window. In Figure 1, we are interested in the behavior
of time series “c”, “d”, “g”, “h”, and “j” only. The rest of the time series are ignored. The figure also depicts
the vector 𝐚𝐚𝑾𝑾 of values for “a” that should be used instead of the observed or predicted values of “a”. The
values (𝒕𝒕𝒃𝒃, 𝒕𝒕𝒆𝒆,𝑻𝑻,𝑻𝑻𝒔𝒔) specify the beginning and end of the replacement values for the root series, the current
time, and the farthest time for analysis, respectively.

The partial Granger causal graph of time series “a” is shown in Figure 1. That is, “a” is the parent of itself,
“b”, “c”, and “d”. Similarly, it is the grand-parent of “e”, “f”, “g”, “h”, “i”, and “j”. Further descendents are
possible, but only two generations suffice for the sake of explanation. Figure 1 also displays the specification
of the vector 𝐚𝐚𝑊𝑊, of length 𝑊𝑊, that contains the replacement values of the root series. In the example shown
in the figure, 𝐚𝐚𝑊𝑊 starts at time 𝑡𝑡𝑏𝑏 < 𝑇𝑇, where 𝑇𝑇 is the current time, and ends at 𝑡𝑡𝑠𝑠 > 𝑇𝑇, which is in the future.
We are also given 𝑇𝑇𝑠𝑠, the last time point (𝑡𝑡𝑠𝑠 ≤ 𝑇𝑇𝑠𝑠) for which we want to perform scenario analysis on the
target variables. Finally, we are given a set of time series for which the scenario predictions are carried out.
In the figure, these are “c”, “d”, “g”, “h”, and “j”, which are marked with a thick red border. Since “b” is
required to model “g”, “b” is marked with a thick blue border to signify that it is an induced target. Given this
information, the goal of scenario analysis is to forecast the values of the target time series (“c”, “d”, “g”, “h”,
and “j”) up to time 𝑇𝑇𝑠𝑠, based on the values of the root time series 𝐚𝐚𝑊𝑊.

Notice that we have to predict values of targets up to time 𝑇𝑇𝑠𝑠, where 𝑇𝑇𝑠𝑠 can be > (𝑇𝑇 + 1) or ≤ (𝑇𝑇 + 1). When
𝑇𝑇𝑠𝑠 = (𝑇𝑇 + 2), we need to compute the values of the predictors of the target time series at time (𝑇𝑇 + 1).
Similarly, when 𝑇𝑇𝑠𝑠 = (𝑇𝑇 + 3), we need to compute the values of the predictors’ predictors at time (𝑇𝑇 + 1)
and the values of the predictors at time (𝑇𝑇 + 2) before predicting the values of the target time series at time
(𝑇𝑇 + 3).

Figure 2: Scenarios with and without predicting future values

The left-hand panel in Figure 2 depicts a scenario where the values of ancestors of targets of interest also
have to be predicted. In this particular case, 𝑻𝑻𝒔𝒔 = (𝑻𝑻 + 𝟑𝟑) and therefore it is necessary to predict the values of
the predictors of the targets at (𝑻𝑻 + 𝟏𝟏) and (𝑻𝑻 + 𝟐𝟐), and values of the predictors’ predictors at time (𝑻𝑻 + 𝟏𝟏).
The right-hand panel depicts a scenario where the entire period of prediction is earlier than the current time 𝑻𝑻
(i.e., 𝑻𝑻𝒔𝒔 < 𝑻𝑻). In this case, all the values of the predictors and their ancestors are readily available.

Determining 𝐚𝐚𝑾𝑾

In the discussion above, we have neglected the issue of 𝐚𝐚𝑊𝑊, the substitute values for time series “a”, which is
the root time series. For purposes of scenario analysis, it is sufficient to consider that 𝐚𝐚𝑊𝑊 is readily available.
In a typical use case for scenario analysis, 𝐚𝐚𝑊𝑊 will come from the values specified by the user’s direct input,
although its values could also come as input from a calling meta-process (as is the case with the use of
scenario analysis as a sub-procedure in root cause analysis, as shown in Section 6).

Caveat on scenario analysis

It is possible to carry out scenario analysis for a time period that is entirely in the future; that is 𝑡𝑡𝑏𝑏 > 𝑇𝑇.
However, forecasting errors in the remaining predictors may make such scenario analysis inherently low-
precision. That is, if 𝜃𝜃 = 𝑡𝑡𝑏𝑏 − 𝑇𝑇 and 𝑡𝑡𝑏𝑏 > 𝑇𝑇, then the precision of scenario analysis decreases with an
increase in 𝜃𝜃.

4.1 SA, the scenario analysis algorithm

Input:

The inputs to SA are: (1) 𝒓𝒓: the root time series; (2) 𝒓𝒓𝑊𝑊: the vector of replacement values for time series 𝒓𝒓; (3)
(𝑡𝑡𝑏𝑏 , 𝑡𝑡𝑠𝑠 ,𝑇𝑇,𝑇𝑇𝑠𝑠): the beginning and end time for the modified values of 𝒓𝒓, the current time, and the last time
point for which target values need to be predicted, respectively; (4) 𝐷𝐷: a set of descendant target time series of
interest along with their relation to 𝒓𝒓 (which may be input as the Granger causal graph, 𝐺𝐺). Notice that the
length of 𝒓𝒓𝑊𝑊 is 𝑡𝑡𝑠𝑠 − 𝑡𝑡𝑏𝑏 + 1 and 𝑡𝑡𝑠𝑠 ≤ 𝑇𝑇𝑠𝑠. Furthermore, it is erroneous to have a target 𝒅𝒅 ∈ 𝐷𝐷, where 𝒓𝒓 is not
an ancestor of 𝒅𝒅.

Output:

For each 𝒅𝒅 in 𝐷𝐷, we output a vector 𝒅𝒅𝑠𝑠𝑠𝑠 containing values that pertain to the scenario analysis of these time
series and the corresponding confidence intervals (when 𝑇𝑇𝑠𝑠 ≤ 𝑇𝑇) or apprxomiated forecasting intervals (when
𝑇𝑇𝑠𝑠 > 𝑇𝑇). Please note that the time period for the children series in 𝐷𝐷 is [𝑡𝑡𝑏𝑏 + 1,𝑇𝑇𝑠𝑠], for the grand-children
series is [𝑡𝑡𝑏𝑏 + 2,𝑇𝑇𝑠𝑠], etc.

Preparation:

To prepare for SA, we first calculate the closure on the set of targets 𝐷𝐷∗ that need to be predicted, which is
determined by the relationship between 𝒓𝒓 and each of the targets in 𝐷𝐷. Essentially, 𝐷𝐷∗ is computed by
iteratively looking at the path from each 𝒅𝒅 ∈ 𝐷𝐷 and adding all those intermediate nodes that are ancestors of
𝒅𝒅 and are also descendents of 𝒓𝒓. In the example shown in Figure 1, the time series “b” is itself not of primary
interest, but since it is a parent of “g”, which is of interest, “b” is also added as a target of interest to the set
{“c”, “d”, “g”, “h”, “j”}.

Next, we compute 𝑀𝑀, the set of models that need to be included in order to perform scenario analysis on 𝐷𝐷∗.
Obviously, 𝑀𝑀 contains the models for each of the series in 𝐷𝐷∗, i.e., 𝐷𝐷∗ ⊂ 𝑀𝑀; however, depending on the time
span of the scenario analysis, additional models of some time series might have to be brought in (see
Figure 2). Basically, depending on how far ahead 𝑇𝑇𝑠𝑠 is from 𝑇𝑇, we may need to compute the values of the
ancestors (other than 𝒓𝒓) of the targets of interest at time points (𝑇𝑇 + 1), … , (𝑇𝑇𝑠𝑠 − 1). That is, the set {𝑀𝑀 −𝐷𝐷∗}
(which may be ∅) contains all series that are needed for scenario analysis and are not descendants of 𝒓𝒓.

At the end of the preparation phase we have 𝐷𝐷∗ and 𝑀𝑀, which allows us to predict all the time series of
interest.

Computation:

The computation in scenario analysis is exactly that of scoring the values of a set of time series (see Section
3). For each target in 𝐷𝐷∗, we have a range of time points for which we need to fit/forecast values. For example,
for immediate children of the root (“c”, “d”, and the induced child “b” in Figure 1), this range is [𝑡𝑡𝑏𝑏 + 1,𝑇𝑇𝑠𝑠].
Similarly, for grand-children (“g”, “h”, and “j” in Figure 1), this range is [𝑡𝑡𝑏𝑏 + 2,𝑇𝑇𝑠𝑠]. Using the models in 𝑀𝑀
and substituted values 𝒓𝒓𝑊𝑊 for 𝒓𝒓, this task can be carried out.

5. Outlier detection
One of the advantages of building TCM models is the ability to detect model-based outliers. Outliers can be
defined in several ways. For now, we shall define an outlier in a time series to be a value that strays too far
from its expected (fitted) value based on the TCM models. The detection process is based on the normal
distribution assumption for series 𝒚𝒚. Consider the value of a time series 𝒚𝒚 at time 𝑡𝑡. Let 𝑦𝑦𝑡𝑡 and 𝑦𝑦�𝑡𝑡 be the
observed and expected values of 𝒚𝒚 at time 𝑡𝑡, respectively; and 𝜎𝜎�2 be the variance of 𝒚𝒚 from the TCM model
(based on residuals). Given these inputs, we call 𝑦𝑦𝑡𝑡 an outlier if the likelihood of 𝑦𝑦𝑡𝑡 when modeled as a
normal random variable with mean 𝑦𝑦�𝑡𝑡 and variance 𝜎𝜎�2 is below a particular threshold.

Input:

The inputs to OD (outlier detection) are: (1) 𝑦𝑦𝑡𝑡 ,∀ 𝑡𝑡; (2) 𝑦𝑦�𝑡𝑡 ,∀ 𝑡𝑡; (3) 𝜎𝜎�2; (4) the outlier threshold value 𝜅𝜅 ∈
(0,1] (the default is 0.95).

Computation:

a) Under the assumption that the observed value 𝑦𝑦𝑡𝑡 is a normal random variable with mean 𝑦𝑦�𝑡𝑡 and
variance 𝜎𝜎�2, compute the square score at time 𝑡𝑡 as

𝑠𝑠𝑠𝑠𝑞𝑞𝑞𝑞,𝑡𝑡 = (𝑦𝑦𝑡𝑡−𝑦𝑦�𝑡𝑡)2

𝜎𝜎�2
 (26)

b) Compute the outlier probability as

𝑝𝑝𝑠𝑠𝑞𝑞𝑞𝑞,𝑡𝑡 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝜒𝜒12 ≤ 𝑠𝑠𝑠𝑠𝑞𝑞𝑞𝑞,𝑡𝑡� (27)

where 𝜒𝜒12 is a random variable with a chi-squared distribution with 1 degree of freedom.

c) Flag 𝑦𝑦𝑡𝑡 as an outlier if 𝑝𝑝𝑠𝑠𝑞𝑞𝑞𝑞,𝑡𝑡 ≥ 𝜅𝜅.

Output:

The output to OD for series 𝒚𝒚 is a set of time points with their corresponding outlier probabilities.

6. Outlier root cause analysis
In Section 5, we saw how to detect outliers. The next logical step is to find the likely causes for a time series
whose value has been flagged as an outlier. Outlier root cause analysis refers to the capability to explore the
Granger causal graph in order to analyse the key/root values that resulted in the outlier under question. To
formalize this notion, consider a time series 𝒚𝒚, whose observed value at time 𝑡𝑡 (that is, 𝑦𝑦𝑡𝑡) has been flagged as
an outlier due to its abnormal deviation from its expected value 𝑦𝑦�𝑡𝑡. The goal of outlier root cause analysis
(ORCA) is to output the set of time series 𝒜𝒜 that can be considered as root causes of the anomalous value of
𝑦𝑦𝑡𝑡 . The idea is that setting the values of time series in the predictor set 𝑿𝑿 to their normal/expected values,
instead of their observed values, will bring the outlying 𝑦𝑦𝑡𝑡 back to normal. The normal value of 𝑦𝑦𝑡𝑡 is
unknown so we specify it with the expected value of 𝒚𝒚 at time 𝑡𝑡 as predicted by 𝒚𝒚’s univariate model, which
is an AR(L) model, and denoted as 𝑦𝑦�𝑡𝑡.

The result of ORCA has the following objective function with a constraint as follows:

 arg max𝑥𝑥∈𝒜𝒜𝑦𝑦 |𝑦𝑦�𝑡𝑡 − 𝑦𝑦�𝑡𝑡| − |𝑦𝑦�𝑡𝑡|𝑥𝑥=𝑥𝑥� − 𝑦𝑦�𝑡𝑡| (28)

 s. t. |𝑦𝑦�𝑡𝑡 − 𝑦𝑦�𝑡𝑡| ≥ |𝑦𝑦�𝑡𝑡|𝑥𝑥=𝑥𝑥� − 𝑦𝑦�𝑡𝑡|

where 𝒜𝒜𝑦𝑦 corresponds to the set of ancestors of 𝒚𝒚 according to the Granger causal graph 𝐺𝐺. The quantity
𝑦𝑦�𝑡𝑡|𝑥𝑥=𝑥𝑥� should be interpreted as the likely predicted value of 𝑦𝑦 at time 𝑡𝑡 had the value of its ancestor 𝑥𝑥 been set
to its expected value of 𝑥𝑥�. We see that Equation (28) is made up of two parts: (1) the portion |𝑦𝑦�𝑡𝑡 − 𝑦𝑦�𝑡𝑡|, which
is the degree of “outlier-ness” of 𝑦𝑦 at 𝑡𝑡 as predicted by the “Granger model”, where the outlier-ness is judged
based on what is expected from the history of 𝒚𝒚; (2) the portion |𝑦𝑦�𝑡𝑡|𝑥𝑥=𝑥𝑥� − 𝑦𝑦�𝑡𝑡|, which is the degree of “outlier-
ness” of 𝑦𝑦 at 𝑡𝑡 as predicted by the “Granger model”, if 𝑥𝑥 was corrected. In other words, Equation (28)
amounts to replacing the observed value 𝑦𝑦𝑡𝑡 by its “expected” value, given by a simpler, univariate model.
Therefore Equation (28) expresses the reduction in the degree of outlier-ness in 𝑦𝑦𝑡𝑡 brought about by
correcting 𝑥𝑥.

6.1 ORCA, the outlier root cause analysis algorithm

Input:

The inputs to ORCA are: (1) 𝒚𝒚, the anomalous time series; (2) 𝑡𝑡, the time at which the anomaly was detected;
(3) 𝑦𝑦𝑡𝑡 , the anomalous value; (4) 𝑦𝑦�𝑡𝑡, the expected value of 𝑦𝑦𝑡𝑡; (5) 𝑘𝑘, the oldest generation of ancestors to
search based on the Granger causal graph, 𝐺𝐺.

Output:

ORCA outputs the set of root causes 𝒜𝒜 of the anomaly in 𝑦𝑦𝑡𝑡 , where each 𝒙𝒙 ∈ 𝒜𝒜 maximizes the objective
function in Equation (28) by the same amount.

Preparation:

To prepare for ORCA, we first compute 𝒜𝒜𝑦𝑦, the set of ancestors that need to be examined as the potential root
causes of the anomaly in 𝑦𝑦𝑡𝑡 .

Figure 3: Outlier root cause analysis for a time series

In the example shown in Figure 3, assuming that 𝒚𝒚 =“a” and 𝑘𝑘 = 2, then 𝒜𝒜𝑦𝑦 = { “b”, “c”, “d”, “e”, “f”, “g”,
“h”, “i”, “j”}. 𝒜𝒜𝑦𝑦 can be computed by performing a reverse breadth-first search from 𝒚𝒚 to 𝑘𝑘 levels.

Second, each potential root cause 𝒙𝒙 ∈ 𝒜𝒜𝑦𝑦 is prepped for scenario analysis by computing the vector of
substitute values of 𝒙𝒙 to be used during scenario analysis. Note that the length of this substitute vector is 𝐿𝐿,
the lag. For example, consider 𝒃𝒃𝐿𝐿 , the substitute for time series “b” in Figure 3. As “b” is a parent of “a”, we
need to compute the fits of “b” from (𝑡𝑡 − 𝐿𝐿) to (𝑡𝑡 − 1). On the other hand, as “g” is a grand-parent of “a”, 𝒈𝒈𝐿𝐿
contains the fits for “g” from the time (𝑡𝑡 − 𝐿𝐿 − 1) to (𝑡𝑡 − 2) (see Section 3.1 for computation of fits). Please
note that this approach assumes that any anomalies are purely in “b” (the parent series) or “g” (the
grandparent series). In particular, it is assumed that anomalies in “b” are not caused by values in the
grandparent series, including anomalous values in the grandparent series.

Third, for each potential root cause 𝒙𝒙 ∈ 𝒜𝒜𝑦𝑦 , scenario analysis is carried out (see Section 4) using the
substitute values computed in the previous step. For the example in Figure 3, scenario analysis is called for
series “b” with the parameters (𝒓𝒓 = 𝒃𝒃, 𝒓𝒓𝑊𝑊 = 𝒃𝒃𝐿𝐿 , 𝑡𝑡𝑏𝑏 = (𝑡𝑡 − 𝐿𝐿), 𝑡𝑡𝑠𝑠 = (𝑡𝑡 − 1),𝑇𝑇 = 𝑡𝑡,𝐷𝐷 = {𝒂𝒂},𝑇𝑇𝑠𝑠 = 𝑡𝑡). And the
result of scenario analysis is 𝑦𝑦�𝑡𝑡|𝑥𝑥=𝑥𝑥�.

Computation:

The process of ORCA is as follows:

• Initiaize 𝒜𝒜, the set of potential root causes for 𝑦𝑦𝑡𝑡 , to ∅.
Initialize 𝑝𝑝𝑝𝑝𝑗𝑗𝑚𝑚𝑠𝑠𝑥𝑥 , the maximum objective function value, to 0.

• Suppose there are 𝐽𝐽 series in 𝒜𝒜𝑦𝑦, 𝒙𝒙1, … ,𝒙𝒙𝐽𝐽.
For each 𝒙𝒙𝑗𝑗, 𝑗𝑗 ∈ 1, … , 𝐽𝐽, compute 𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 = |𝑦𝑦�𝑡𝑡 − 𝑦𝑦�𝑡𝑡| − |𝑦𝑦�𝑡𝑡|𝑥𝑥𝑗𝑗=𝑥𝑥�𝑗𝑗 − 𝑦𝑦�𝑡𝑡|.
If 𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 ≥ 𝑝𝑝𝑝𝑝𝑗𝑗𝑚𝑚𝑠𝑠𝑥𝑥 , set 𝑝𝑝𝑝𝑝𝑗𝑗𝑚𝑚𝑠𝑠𝑥𝑥 = 𝑝𝑝𝑝𝑝𝑗𝑗𝑗𝑗 and store 𝒙𝒙𝑗𝑗 in 𝒜𝒜.

References
[1]. Arnold, A., Liu, Y., and Abe, N. (2007). Temporal causal modeling with graphical granger

methods. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’07, pages 66–75, New York, NY, USA. ACM.

[2]. Darema, F., George, D. A., Norton, V. A., and Pfister, G. F. (1988). A single-program-multiple-
data computational model for EPEX/FORTRAN. Parallel Computing, 7(1):11–24.

[3]. Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data processing on large clusters.
volume 51.

[4]. Duchi, J., Gould, S., and Koller, D. (2008). Projected subgradient methods for learning sparse
gaussians. In Proceedings of the Twenty-fourth Conference on Uncertainty in AI (UAI).

[5]. Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation with the
graphical lasso. Biostatistics, 9(3):432–441.

[6]. Granger, C. W. J. (1980). Testing for causality : A personal viewpoint. Journal of Economic
Dynamics and Control, 2(1):329–352.

[7]. Hsieh, C.-J., Sustik, M. A., Dhillon, I. S., and Ravikumar, P. (2011). Sparse inverse covariance
matrix estimation using quadratic approximation. In Shawe-Taylor, J., Zemel, R., Bartlett, P.,
Pereira, F., and Weinberger, K., editors, Advances in Neural Information Processing Systems 24,
pages 2330–2338. http://nips.cc/.

[8]. Kambadur, P. and Lozano, A. C. (2013). A parallel, block greedy method for sparse inverse
covariance estimation for ultra-high dimensions. In Sixteenth International Conference on
Artificial Intelligence and Statistics (AISTATS).

[9]. Li, L. and chuan Toh, K. (2010). An inexact interior point method for l1-regularized sparse
covariance selection. Technical report, National University Of Singapore.

[10]. Lozano, A. C., Abe, N., Liu, Y., and Rosset, S. (2009). Grouped graphical granger modeling
methods for temporal causal modeling. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’09, pages 577–586, New York, NY,
USA. ACM.

[11]. Lozano, A. C., Swirszcz, G., and Abe, N. (2011). Group orthogonal matching pursuit for logistic
regression. Journal of Machine Learning Research - Proceedings Track, 15:452–460.

[12]. MPI Forum (1995). Message Passing Interface. http://www.mpi-forum.org/.

[13]. MPI Forum (1997). Message Passing Interface-2. http://www.mpi-forum.org/.

[14]. O.Banerjee, El Ghaoui, L., and d’Aspremont, A. (2008). Model selection through sparse
maximum likelihood estimation for multivariate gaussian or binary data. Journal of Machine
Learning Research, 9:485–516.

[15]. Scheinberg, K., Ma, S., and Goldfarb, D. (2010). Sparse inverse covariance selection via
alternating linearization methods. CoRR, abs/1011.0097.

[16]. Scheinberg, K. and Rish, I. (2010). Learning sparse gaussian markov networks using a greedy
coordinate ascent approach. In Proceedings of the 2010 European conference on Machine

learning and knowledge discovery in databases: Part III, ECML PKDD’10, pages 196–212,
Berlin, Heidelberg. Springer-Verlag.

[17]. Strang, G. (1993). Introduction to Linear Algebra. Wellesley-Cambridge Press.

Tree-AS (CHAID) Modeling Algorithms

1. Introduction
CHAID stands for Chi-squared Automatic Interaction Detector. It is a highly efficient statistical
technique for segmentation, or tree growing, developed by (Kass, 1980). Using the significance of a
statistical test and effect size as criteria, CHAID evaluates all of the values of a potential predictor.
It merges values that are judged to be statistically homogeneous (similar) with respect to the target
variable and maintains all other values that are heterogeneous (dissimilar). It then selects the best
predictor to form the first branch in the decision tree, such that each child node is made of a group
of homogeneous values of the selected predictor. This process continues recursively until the tree is
fully grown.

Exhaustive CHAID is a modification of CHAID developed to address some of the weaknesses of
the CHAID method (Biggs, de Ville, and Suen, 1991). In particular, sometimes CHAID may not find
the optimal split for a variable, since it stops merging categories as soon as it finds that all
remaining categories are statistically different. Exhaustive CHAID remedies this by continuing to
merge categories of the predictor variable until only two super categories are left. It then examines
the series of merges for the predictor and finds the set of categories that gives the strongest
association with the target variable, and computes an adjusted p-value for that association. Thus,
Exhaustive CHAID can find the best split for each predictor, and then choose which predictor to
split on by comparing the adjusted p-values.

Although CHAID or Exhaustive CHAID is efficient for data mining, there could be performance
issues. For example, the collection of summary statistics required for the tree growth will be
expensive when the raw data is distributed and massive. Moreover, the decision of splitting rules
will also be heavy when the number of predictors becomes very large since conducting category
merge for each predictor is not trivial. In these regard, parallel calculation is necessary in order to
improve the performance.

The document is concerned with CHAID and Exhaustive CHAID related algorithms. These
algorithms will be implemented in parallel within Analytic Engine (AE), based on the map-reduce
framework.

Notice that the document provides technical details for engineers to develop the Tree engine. For a
more readable document, please refer to the algorithm document in Statistics or Modeler.

2. Notes
1. To prepare training data, invalid, system missing, and user missing values in predictors

will be considered as a single missing category.
2. The Tree engine relies on the Descriptive engine through SmartModeler doing the

following transformations:
a. Zero inflation handling

Zero inflated cases are imputed with missing values.
b. Binning continuous variables

The tiling method is used with 𝛿𝛿 (default 5) as the number of bins.
c. Supervised category merging

If the number of categories in a categorical variable is larger than 𝛿𝛿 (default 12),
supervised category merging will be used.

d. Feature selection
If the number of predictors is larger than 𝛿𝛿 (default 500), feature selection will be
applied.

e. Trim trailing blanks
f. Date/time handling

Date/time variables are transformed into continuous ones with Jan 1st, 1970 as
default reference data and 00:00:00 as default reference time.

3. Notations
The following notations are used throughout the document unless otherwise stated:

𝑌𝑌 Dependent, or target, variable. If 𝑌𝑌 is categorical with 𝐽𝐽 categories,
its category takes values in 𝐶𝐶 = {1, … , 𝐽𝐽}

𝑋𝑋𝑚𝑚, 𝑚𝑚 = 1, … ,𝑀𝑀 Set of all predictor variables. If 𝑋𝑋𝑚𝑚 is categorical with 𝐼𝐼𝑚𝑚 categories,
its category takes values in 𝐷𝐷 = {1, … , 𝐼𝐼𝑚𝑚}

ℏ = �𝑥𝑥𝑚𝑚,𝑛𝑛, 𝑦𝑦𝑛𝑛�𝑛𝑛=1
𝑁𝑁 Whole training cases

ℏ(𝑡𝑡) Training cases that fall in node 𝑡𝑡
𝑤𝑤𝑛𝑛 Case weight associated with case 𝑛𝑛

𝑓𝑓𝑛𝑛 Frequency weight associated with case 𝑛𝑛. Non-integral positive
value is rounded to its nearest integer

𝐶𝐶(𝑖𝑖|𝑗𝑗) Cost of miss-classifying a category 𝑗𝑗 case as a category 𝑖𝑖 case, 𝐶𝐶(𝑗𝑗|𝑗𝑗)
Ι(𝑎𝑎 = 𝑝𝑝) Indicator function taking value 1 when 𝑎𝑎 = 𝑝𝑝, 0 otherwise

4. Binning Continuous Predictors
CHAID and Exhaustive CHAID algorithms only accept nominal or ordinal categorical predictors.
When predictors are continuous, they are transformed into ordinal predictors before tree growth.

For a given set of break points 𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝐼𝐼−1 (in ascending order), a given 𝑥𝑥 is mapped into category
𝐶𝐶(𝑥𝑥) as follows:

𝐶𝐶(𝑥𝑥) = �
1 𝑥𝑥 ≤ 𝑎𝑎1

𝑖𝑖 + 1 𝑎𝑎𝑖𝑖 < 𝑥𝑥 ≤ 𝑎𝑎𝑖𝑖+1, 𝑖𝑖 = 1, … , 𝐼𝐼 − 2
𝐼𝐼 𝑎𝑎𝐼𝐼−1 < 𝑥𝑥

For binning continuous predictors, we use the tiling method which has been implemented by the
Descriptive engine. We use 5 as the default number of bins. For algorithm details, please refer to
Ref. 3.

The choice of the tiling method is based on some experimental results. Please refer to the document
of ‘Comparison of binning methods’ in Ref. 6.

5. CHAID Algorithm
CHAID tree grows level-by-level from the root node. The general procedure is as follows:

1. Create the root node, and mark it as the initial non-terminal leaf node.

2. Repeat the following steps until no non-terminal leaf nodes exist in the current tree:
a) Pass the training data, and collect summary statistics for each predictor and non-

terminal leaf node.
b) Merging – For each predictor and non-terminal leaf node, merge predictor

categories.
c) Splitting – For each non-terminal leaf node, select the best predictor to be used to

best split the node. If the best predictor is valid for splitting, split the node using
this predictor. Else, mark it as a terminal leaf node.

d) Stopping – For each node that was split in step c), check the child nodes to see
which nodes should be marked as terminal leaf nodes.

In the following, we will describe how each step in tree growth can be accomplished.

5.1. Creating Root Node

To grow a tree, the root node should be created in the first step.

CreateRootNode()
Inputs:

− 𝑁𝑁𝑑𝑑 // Count of valid training cases
− 𝐼𝐼𝑚𝑚, 𝑚𝑚 = 1, … ,𝑀𝑀 // Number of categories of predictor 𝑋𝑋𝑚𝑚
<Continuous target>
− 𝑉𝑉𝑑𝑑(𝑌𝑌) // Variance of target variable
<Categorical target>
− 𝐽𝐽 // Number of target categories

 <Parameter settings>

− MinParentCasesABS // Default 100
− NodeSizeRequirement // {‘absolute’, ‘percentage’}, default ‘absolute’

Outputs:
− 𝑇𝑇(0) // Initial tree
− 𝑡𝑡 // Root node

Procedure:
1. If (𝑁𝑁𝑑𝑑 = 0),
 or(NodeSizeRequirement=’absolute’ and 𝑁𝑁𝑑𝑑 < MinParentCasesABS),
 or((target is continuous)and(𝑉𝑉𝑑𝑑(𝑌𝑌) = 0)),
 or((target is categorical)and(𝐽𝐽 = 1)),
 or(𝐼𝐼𝑚𝑚 = 1,𝑚𝑚 = 1, … ,𝑀𝑀),
 Return a null tree;
2. Else,{
 Create root node 𝑡𝑡;
 Create tree 𝑇𝑇(0) which has only the root node;
 }

5.2. Collecting Summary Statistics

Summary statistics are collected for each predictor and non-terminal leaf node.

According to the type of target variable, we compute different sets of summary statistics. If the
target variable is categorical, summary statistics for a non-terminal leaf node 𝑡𝑡, predictor 𝑋𝑋𝑚𝑚
(with 𝐼𝐼𝑚𝑚 categories), and categorical target 𝑌𝑌 (with 𝐽𝐽 categories), consist of the following statistics:

Cell frequency: 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡> = ∑ 𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖 ∩ 𝑦𝑦𝑛𝑛 = 𝑗𝑗)𝑛𝑛∈ℏ(𝑡𝑡) ,

Cell weighted frequency: 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡> = ∑ 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖 ∩ 𝑦𝑦𝑛𝑛 = 𝑗𝑗)𝑛𝑛∈ℏ(𝑡𝑡) ,

where 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 𝑗𝑗 = 1, … , 𝐽𝐽.

If the target variable is continuous, summary statistics for a non-terminal leaf node 𝑡𝑡, predictor 𝑋𝑋𝑚𝑚
(with 𝐼𝐼𝑚𝑚 categories), and continuous target 𝑌𝑌 consist of the following statistics:

Count: 𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = ∑ 𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖)𝑛𝑛∈ℏ(𝑡𝑡) ,

Mean: 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> =

∑ 𝑑𝑑𝑛𝑛𝑦𝑦𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛=𝑖𝑖)𝑛𝑛∈ℏ(𝑡𝑡)

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡> ,

Variance: 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = 1

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡> ∑ 𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖)(𝑦𝑦𝑛𝑛 − 𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>)2𝑛𝑛∈ℏ(𝑡𝑡) ,

Weighted count: 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = ∑ 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖)𝑛𝑛∈ℏ(𝑡𝑡) ,

Weighted mean: 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> =

∑ 𝑤𝑤𝑛𝑛𝑑𝑑𝑛𝑛𝑦𝑦𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛=𝑖𝑖)𝑛𝑛∈ℏ(𝑡𝑡)

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> ,

Weighted variance: 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = 1

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> ∑ 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖)(𝑦𝑦𝑛𝑛 − 𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>)2𝑛𝑛∈ℏ(𝑡𝑡) ,

where 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚.

5.3. Merging

Based on summary statistics, non-significant categories are merged for each predictor and non-
terminal leaf node.

CHAID_Merging()
Inputs:
 // Global summary statistics for predictor 𝑋𝑋𝑚𝑚 and node 𝑡𝑡
 <Continuous target>

− 𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

<Categorical target>
− 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>

− 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

 where 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚 and 𝑗𝑗 = 1, … , 𝐽𝐽

 <Parameter settings>

− TreeGrowingMethod // {‘p-value’, ‘effectsize’}
− AlphaMerge // Default 0.05
− AlphaSplitMerge // Default 0.025
− EffectSizeThreshold
− BonferroniAdjustment // {true, false}, default true

− ChiSquareType // {‘pearson’, ‘likelihood’}, default ‘pearson’
− Epsilon // Default 0.001
− MaxIterations // Default 100
− MinChildCasesABS // Default 50
− MinChildCasesPct // Default 1
− NodeSizeRequirement // {‘absolute’, ‘percentage’}, default ‘absolute’
− Scores // Vector value, scores for categories of 𝑌𝑌
− SplitMergedCategories // {true, false}, default false

Outputs:
− Θ<𝑚𝑚,𝑡𝑡> // Set of merged categories
− 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> // P-value, computed for Θ<𝑚𝑚,𝑡𝑡>
− TestStatistic // Test statistic associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>
− FreedomDegrees // Freedom degrees associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>
− 𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡> // Effect size
<Continuous target>
− 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>

− 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

<Categorical target>
− 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>

− 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

where 𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>, 𝑗𝑗 = 1, … , 𝐽𝐽
Procedure:
1. If (target is continuous),
 Θ<𝑚𝑚,𝑡𝑡> = �𝑖𝑖|𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡> > 0, 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚�;
 If (target is categorical),
 Θ<𝑚𝑚,𝑡𝑡> = �𝑖𝑖|∑ 𝑛𝑛𝑖𝑖𝑗𝑗

<𝑚𝑚,𝑡𝑡>𝐽𝐽
𝑗𝑗=1 > 0, 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚�;

// Notice that if the predictor is ordinal, Θ<𝑚𝑚,𝑡𝑡> will not include the
missing category initially.

2. If (|Θ<𝑚𝑚,𝑡𝑡>| ≤ 1),
 Go to step 6;
3. If (TreeGrowingMethod=‘p-value’),{
 If (predictor is nominal),{
 𝑝𝑝𝑡𝑡 = −1;
 For ∀𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>,{
 For ∀𝑗𝑗 ∈ Θ<𝑚𝑚,𝑡𝑡> and 𝑗𝑗 > 𝑖𝑖,{
 Compute p-value 𝑝𝑝 and effect size for category 𝑖𝑖 and 𝑗𝑗;
 If (𝑝𝑝 > 𝑝𝑝𝑡𝑡),{
 𝑝𝑝𝑡𝑡 = 𝑝𝑝;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗;
 }
 Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied maximum p-values;
 }
 }
 }
 If (predictor is ordinal),{
 𝑝𝑝𝑡𝑡 = −1;
 For ∀𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>,{
 Get category 𝑗𝑗 in Θ<𝑚𝑚,𝑡𝑡> which is subsequent to 𝑖𝑖, if exists;
 Compute p-value 𝑝𝑝 and effect size for category 𝑖𝑖 and 𝑗𝑗;
 If (𝑝𝑝 > 𝑝𝑝𝑡𝑡),{

 𝑝𝑝𝑡𝑡 = 𝑝𝑝;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗;
 }
 Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied maximum p-values;
 }
 }
 If (𝑝𝑝𝑡𝑡 > AlphaMerge),{
 Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐.
 Compute summary statistics for the compound category 𝑐𝑐;
 Update Θ<𝑚𝑚,𝑡𝑡>;
 }
 Else,
 Go to step 6;
 }
 If (TreeGrowingMethod=‘effectsize’),{
 If (predictor is nominal),{
 𝑠𝑠𝑡𝑡 = 100;
 For ∀𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>,{
 For ∀𝑗𝑗 ∈ Θ<𝑚𝑚,𝑡𝑡> and 𝑗𝑗 > 𝑖𝑖,{
 Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑖𝑖 and 𝑗𝑗;
 If (𝑠𝑠𝑠𝑠 < 𝑠𝑠𝑡𝑡),{
 𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗;
 }
 }
 }
 }
 If (predictor is ordinal),{
 𝑠𝑠𝑡𝑡 = 100;
 For ∀𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>,{
 Get category 𝑗𝑗 in Θ<𝑚𝑚,𝑡𝑡> which is subsequent to 𝑖𝑖, if exists;
 Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑖𝑖 and 𝑗𝑗;
 If (𝑠𝑠𝑠𝑠 < 𝑠𝑠𝑡𝑡),{
 𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗;
 }
 }
 }
 If (𝑠𝑠𝑡𝑡 < EffectSizeThreshold),{
 Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐.
 Compute summary statistics for the compound category 𝑐𝑐;
 Update Θ<𝑚𝑚,𝑡𝑡>;
 }
 Else,
 Go to step 6;
 }
4. Let Α be the set of original categories in the new category 𝑐𝑐;
 If (TreeGrowingMethod=‘p-value’),
 and(SplitMergedCategories=true),
 and(3 ≤ |A| ≤ 15),{
 If (predictor is nominal),{
 𝑝𝑝𝑡𝑡 = 2; // Any value larger than 1 should be ok
 For (𝑘𝑘 = 1: ⌊|A|/2⌋),{
 For (∀𝐴𝐴1 with 𝑘𝑘 categories belonging to Α),{
 Let 𝐴𝐴2 = 𝐴𝐴 − 𝐴𝐴1;

 Compute p-value 𝑝𝑝 and effect size for category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2;
 // Category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2 corresponds to 𝐴𝐴1 and 𝐴𝐴2 respectively
 If (𝑝𝑝 < 𝑝𝑝𝑡𝑡),{
 𝑝𝑝𝑡𝑡 = 𝑝𝑝;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2;
 }
 Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied minimum p-values;
 }
 }
 }
 If (predictor is ordinal),{ // Set Α consists of ordered categories
 𝑝𝑝𝑡𝑡 = 2;
 Let 𝐴𝐴1 be the set consisting of the first category in 𝐴𝐴;
 Let 𝐴𝐴2 = 𝐴𝐴 − 𝐴𝐴1;
 While (𝐴𝐴2 is not empty),{
 Compute p-value 𝑝𝑝 and effect size for category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2;
 // Category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2 corresponds to 𝐴𝐴1 and 𝐴𝐴2 respectively
 If (𝑝𝑝 < 𝑝𝑝𝑡𝑡),{
 𝑝𝑝𝑡𝑡 = 𝑝𝑝;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2;
 }
 Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied minimum p-values;
 Move the first category in 𝐴𝐴2 into 𝐴𝐴1;
 }
 }
 If (𝑝𝑝𝑡𝑡 ≤ AlphaSplitMerge),{
 Split category 𝑐𝑐 into two categories 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗;
 Compute summary statistics for categories 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗;
 Update Θ<𝑚𝑚,𝑡𝑡>;
 }
 }
 If (TreeGrowingMethod=‘effectsize’),
 and(SplitMergedCategories=true),
 and(3 ≤ |A| ≤ 15),{
 If (predictor is nominal),{
 𝑠𝑠𝑡𝑡 = −1;
 For (𝑘𝑘 = 1: ⌊|A|/2⌋),{
 For (∀𝐴𝐴1 with 𝑘𝑘 categories belonging to Α),{
 Let 𝐴𝐴2 = 𝐴𝐴 − 𝐴𝐴1;
 Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2;
 // Category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2 corresponds to 𝐴𝐴1 and 𝐴𝐴2 respectively
 If (𝑠𝑠𝑠𝑠 > 𝑠𝑠𝑡𝑡),{
 𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2;
 }
 }
 }
 }
 If (predictor is ordinal),{
 𝑠𝑠𝑡𝑡 = −1;
 Let 𝐴𝐴1 be the set consisting of the first category in 𝐴𝐴;
 Let 𝐴𝐴2 = 𝐴𝐴 − 𝐴𝐴1;
 While (𝐴𝐴2 is not empty),{
 Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2;

 // Category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2 corresponds to 𝐴𝐴1 and 𝐴𝐴2 respectively
 If (𝑠𝑠𝑠𝑠 > 𝑠𝑠𝑡𝑡),{
 𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2;
 }
 Move the first category in 𝐴𝐴2 into 𝐴𝐴1;
 }
 }
 If (𝑠𝑠𝑡𝑡 ≥ EffectSizeThreshold),{
 Split category 𝑐𝑐 into two categories 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗;
 Compute summary statistics for categories 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗;
 Update Θ<𝑚𝑚,𝑡𝑡>;
 }
 }
5. Go to step 2;
6. If (TreeGrowingMethod=‘p-value’),
 and(predictor is ordinal),
 and(𝑁𝑁𝑑𝑑,𝑐𝑐𝑠𝑠𝑡𝑡_𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑚𝑚

<𝑚𝑚,𝑡𝑡> > 0),{
 // We use subscript ‘cat_missing’ to denote summary statistics for the

// missing category. Notice that this is only for ordinal predictors and we
// do not distinguish the missing category with other categories for nominal
// predictor.

 Θ1
<𝑚𝑚,𝑡𝑡> = Θ<𝑚𝑚,𝑡𝑡> ∪{cat_missing};

 Compute p-value 𝑝𝑝1 and effect size 𝑠𝑠1 for the set of merged categories Θ1
<𝑚𝑚,𝑡𝑡>;

 𝑝𝑝𝑡𝑡 = −1;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 =cat_missing;
 For ∀𝑗𝑗 ∈ Θ<𝑚𝑚,𝑡𝑡>,{
 Compute p-value 𝑝𝑝 and effect size for category 𝑗𝑗 and cat_missing;
 If (𝑝𝑝 > 𝑝𝑝𝑡𝑡),{
 𝑝𝑝𝑡𝑡 = 𝑝𝑝;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗;
 }
 Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied maximum p-values;
 }
 Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐;
 Compute summary statistics for the compound category 𝑐𝑐;
 Let Θ2

<𝑚𝑚,𝑡𝑡> be the new set of categories;
 Compute p-value 𝑝𝑝2 and effect size 𝑠𝑠2 for Θ2

<𝑚𝑚,𝑡𝑡>;
 If (𝑝𝑝1 ≠ 𝑝𝑝2),{
 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> = (𝑝𝑝1 < 𝑝𝑝2)? 𝑝𝑝1: 𝑝𝑝2;
 Θ<𝑚𝑚,𝑡𝑡> = (𝑝𝑝1 < 𝑝𝑝2)?Θ1

<𝑚𝑚,𝑡𝑡>:Θ2
<𝑚𝑚,𝑡𝑡>;

 𝐸𝐸𝑠𝑠
<𝑚𝑚,𝑡𝑡> = (𝑝𝑝1 < 𝑝𝑝2)? 𝑠𝑠1: 𝑠𝑠2;

 }
 Else, resolve tied minimum p-values;
 }
 If (TreeGrowingMethod=‘effectsize’),
 and(predictor is ordinal),
 and(𝑁𝑁𝑑𝑑,𝑐𝑐𝑠𝑠𝑡𝑡_𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑚𝑚

<𝑚𝑚,𝑡𝑡> > 0),{
 𝑠𝑠𝑡𝑡 = 100;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 =cat_missing;
 For ∀𝑗𝑗 ∈ Θ<𝑚𝑚,𝑡𝑡>,{
 Compute p-value and effect size 𝑠𝑠𝑠𝑠 for category 𝑗𝑗 and cat_missing;
 If (𝑠𝑠𝑠𝑠 < 𝑠𝑠𝑡𝑡),{
 𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗;
 }

 }
 Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐;
 Compute summary statistics for the compound category 𝑐𝑐;
 Let Θ2

<𝑚𝑚,𝑡𝑡> be the new set of categories;
 Compute p-value 𝑝𝑝2 and effect size 𝑠𝑠2 for Θ2

<𝑚𝑚,𝑡𝑡>;
 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> = (𝑠𝑠1 > 𝑠𝑠2)? 𝑝𝑝1:𝑝𝑝2;
 Θ<𝑚𝑚,𝑡𝑡> = (𝑠𝑠1 > 𝑠𝑠2)?Θ1

<𝑚𝑚,𝑡𝑡>:Θ2
<𝑚𝑚,𝑡𝑡>;

 𝐸𝐸𝑠𝑠
<𝑚𝑚,𝑡𝑡> = (𝑠𝑠1 > 𝑠𝑠2)? 𝑠𝑠1: 𝑠𝑠2;

 }
7. If (TreeGrowingMethod=‘p-value’),{
 While ∃𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>,((NodeSizeRequirement=’absolute’)and(((target is

continuous)and(𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> < MinChildCasesABS))or((target is

categorical)and(∑ 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑗𝑗 < MinChildCasesABS)))),
 or((NodeSizeRequirement=’percentage’)and(((target is

continuous)and(𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> < MinChildCasesPct*𝑁𝑁𝑑𝑑))or((target is

categorical)and(∑ 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑗𝑗 < MinChildCasesPct*𝑁𝑁𝑑𝑑)))),{
 If (predictor is nominal),{
 𝑝𝑝𝑡𝑡 = −1;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖;
 For ∀𝑗𝑗 ∈ Θ<𝑚𝑚,𝑡𝑡> and 𝑗𝑗 ≠ 𝑖𝑖,{
 Compute p-value 𝑝𝑝 and effect size for category 𝑖𝑖 and 𝑗𝑗;
 If (𝑝𝑝 > 𝑝𝑝𝑡𝑡),{
 𝑝𝑝𝑡𝑡 = 𝑝𝑝;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗;
 }
 Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied maximum p-values;
 }
 Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐;
 Compute summary statistics for the compound category 𝑐𝑐;
 Update Θ<𝑚𝑚,𝑡𝑡>;
 }
 If (predictor is ordinal),{
 𝑝𝑝𝑡𝑡 = −1;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖;
 Get category 𝑗𝑗 in Θ<𝑚𝑚,𝑡𝑡> which is antecedent to 𝑖𝑖, if exists;
 Compute p-value 𝑝𝑝 and effect size for category 𝑖𝑖 and 𝑗𝑗;
 If (𝑝𝑝 > 𝑝𝑝𝑡𝑡),{
 𝑝𝑝𝑡𝑡 = 𝑝𝑝;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗;
 }
 Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied maximum p-values;
 Get category 𝑗𝑗 in Θ<𝑚𝑚,𝑡𝑡> which is subsequent to 𝑖𝑖, if exists;
 Compute p-value 𝑝𝑝 and effect size for category 𝑖𝑖 and 𝑗𝑗;
 If (𝑝𝑝 > 𝑝𝑝𝑡𝑡),{
 𝑝𝑝𝑡𝑡 = 𝑝𝑝;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗;
 }
 Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied maximum p-values;
 Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐;
 Compute summary statistics for the compound category 𝑐𝑐;
 Update Θ<𝑚𝑚,𝑡𝑡>;
 }
 }
 }
 If (TreeGrowingMethod=‘effectsize’),{
 While ∃𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>,((NodeSizeRequirement=’absolute’)and(((target is

continuous)and(𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> < MinChildCasesABS))or((target is

categorical)and(∑ 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑗𝑗 < MinChildCasesABS)))),
 or((NodeSizeRequirement=’percentage’)and(((target is

continuous)and(𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> < MinChildCasesPct*𝑁𝑁𝑑𝑑))or((target is

categorical)and(∑ 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑗𝑗 < MinChildCasesPct*𝑁𝑁𝑑𝑑)))),{
 If (predictor is nominal),{
 𝑠𝑠𝑡𝑡 = 100;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖;
 For ∀𝑗𝑗 ∈ Θ<𝑚𝑚,𝑡𝑡> and 𝑗𝑗 ≠ 𝑖𝑖,{
 Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑖𝑖 and 𝑗𝑗;
 If (𝑠𝑠𝑠𝑠 < 𝑠𝑠𝑡𝑡),{
 𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗;
 }
 }
 Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐;
 Compute summary statistics for the compound category 𝑐𝑐;
 Update Θ<𝑚𝑚,𝑡𝑡>;
 }
 If (predictor is ordinal),{
 𝑠𝑠𝑡𝑡 = 100;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖;
 Get category 𝑗𝑗 in Θ<𝑚𝑚,𝑡𝑡> which is antecedent to 𝑖𝑖, if exists;
 Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑖𝑖 and 𝑗𝑗;
 If (𝑠𝑠𝑠𝑠 < 𝑠𝑠𝑡𝑡),{
 𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗;
 }
 Get category 𝑗𝑗 in Θ<𝑚𝑚,𝑡𝑡> which is subsequent to 𝑖𝑖, if exists;
 Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑖𝑖 and 𝑗𝑗;
 If (𝑠𝑠𝑠𝑠 < 𝑠𝑠𝑡𝑡),{
 𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗;
 }
 Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐;
 Compute summary statistics for the compound category 𝑐𝑐;
 Update Θ<𝑚𝑚,𝑡𝑡>;
 }
 }
 }
8. Compute 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> and effect size 𝐸𝐸𝑠𝑠
<𝑚𝑚,𝑡𝑡> for the set of merged categories Θ<𝑚𝑚,𝑡𝑡>;

 // If (|Θ<𝑚𝑚,𝑡𝑡>| = 1),{
 // 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> = 1;
 // 𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡> = 0;
 // }
9. If (BonferroniAdjustment=true),{
 Compute adjusted p-value by applying Bonferroni adjustments;
 Let 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> be the adjusted p-value;
 }
 // Bonferroni adjustments are described in section 5.3.2.

The function of CHAID_Merging() will be used by each Reducer in the map-reduce environment,
see Appendix A for details.

Summary statistics for a compound category can be derived from those for original categories in
the compound category. Denote the compound category as c, and the set of original categories in
the compound category as Ω, the new summary statistics are calculated as,

𝑁𝑁𝑑𝑑,𝑐𝑐
<𝑚𝑚,𝑡𝑡> = ∑ 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Ω ,

𝑦𝑦�𝑑𝑑,𝑐𝑐
<𝑚𝑚,𝑡𝑡> = ∑

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑓𝑓,𝑐𝑐
<𝑚𝑚,𝑡𝑡> 𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Ω ,

𝑉𝑉𝑑𝑑,𝑐𝑐
<𝑚𝑚,𝑡𝑡> = ∑

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑓𝑓,𝑐𝑐
<𝑚𝑚,𝑡𝑡> 𝑉𝑉𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡> +𝑖𝑖∈Ω ∑
𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑓𝑓,𝑐𝑐
<𝑚𝑚,𝑡𝑡> �𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡> − 𝑦𝑦�𝑑𝑑,𝑐𝑐
<𝑚𝑚,𝑡𝑡>��𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡> + 𝑦𝑦�𝑑𝑑,𝑐𝑐
<𝑚𝑚,𝑡𝑡>�𝑖𝑖∈Ω ,

𝑁𝑁𝑤𝑤,𝑐𝑐
<𝑚𝑚,𝑡𝑡> = ∑ 𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Ω ,

𝑦𝑦�𝑤𝑤,𝑐𝑐
<𝑚𝑚,𝑡𝑡> = ∑

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑤𝑤,𝑐𝑐
<𝑚𝑚,𝑡𝑡> 𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Ω ,

𝑉𝑉𝑤𝑤,𝑐𝑐
<𝑚𝑚,𝑡𝑡> = ∑

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑤𝑤,𝑐𝑐
<𝑚𝑚,𝑡𝑡> 𝑉𝑉𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡> +𝑖𝑖∈Ω ∑
𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑤𝑤,𝑐𝑐
<𝑚𝑚,𝑡𝑡> �𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡> − 𝑦𝑦�𝑤𝑤,𝑐𝑐
<𝑚𝑚,𝑡𝑡>��𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡> + 𝑦𝑦�𝑤𝑤,𝑐𝑐
<𝑚𝑚,𝑡𝑡>�𝑖𝑖∈Ω ,

𝑛𝑛𝑐𝑐,𝑗𝑗
<𝑚𝑚,𝑡𝑡> = ∑ 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Ω ,

𝑤𝑤𝑐𝑐,𝑗𝑗
<𝑚𝑚,𝑡𝑡> = ∑ 𝑤𝑤𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Ω .

5.3.1. p-Value and Effect Size Calculations

Calculations of (unadjusted) p-values and effect sizes in the merging step depend on the type of
target variable.

The merging step sometimes needs the p-value and effect size for a pair of original/compound
categories, and sometimes needs the p-value and effect size for all the original/compound
categories. For convenience, we denote the set of nonempty original/compound categories, for
which the p-value and effect size are computed, as Γ<𝑚𝑚,𝑡𝑡>.

Continuous Target Variable

If the target variable 𝑌𝑌 is continuous, perform an ANOVA F test that tests if the means of 𝑌𝑌 for
different categories in Γ<𝑚𝑚,𝑡𝑡> are the same. This ANOVA F test calculates the F-statistic as

𝐹𝐹 =
∑ 𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>�𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>−𝑦𝑦�

𝑤𝑤,Γ<𝑚𝑚,𝑡𝑡>
<𝑚𝑚,𝑡𝑡> �

2

𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡> (𝐼𝐼−1)�

∑ 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>𝑉𝑉𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡> (𝑁𝑁𝑓𝑓

′−𝐼𝐼)�
,

where 𝑁𝑁𝑑𝑑′ = ∑ 𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡> , 𝐼𝐼 = |Γ<𝑚𝑚,𝑡𝑡>|.

Accordingly, the p-value is calculated as

p-value=�
undefined, If both numerator and denominator of F are zero;

0, Else if denominator of F is zero;
Prob�𝐹𝐹�𝐼𝐼 − 1,𝑁𝑁𝑑𝑑′ − 𝐼𝐼� > 𝐹𝐹�, Otherwise.

And 𝐹𝐹�𝐼𝐼 − 1,𝑁𝑁𝑑𝑑′ − 𝐼𝐼� is a random variable that follows a F-distribution with degrees of freedom 𝐼𝐼 −
1 and 𝑁𝑁𝑑𝑑′ − 𝐼𝐼.

The effect size 𝐸𝐸𝑠𝑠 is evaluated by the measure of 𝐸𝐸𝑡𝑡𝑎𝑎𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑝𝑝𝑠𝑠, i.e.

𝐸𝐸𝑠𝑠 = 1 −
∑ 𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡>

∑ 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>𝑉𝑉

𝑤𝑤,Γ<𝑚𝑚,𝑡𝑡>
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡>
.

Nominal Target Variable

If the target variable 𝑌𝑌 is nominal categorical, the null hypothesis of independence of predictor 𝑋𝑋𝑚𝑚
and 𝑌𝑌 is tested. According to the parameter of ChiSquareType, the p-value is computed based on
either Pearson chi-squared statistic or likelihood ratio statistic.

The Pearson’s chi-square statistic and likelihood ratio statistic are, respectively,

𝑋𝑋2 = � �
�𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡> − 𝑚𝑚�𝑖𝑖,𝑗𝑗�
2

𝑚𝑚�𝑖𝑖,𝑗𝑗𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡>

𝐺𝐺2 = 2 � � 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>𝑠𝑠𝑛𝑛�𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡> 𝑚𝑚�𝑖𝑖,𝑗𝑗� �
𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡>

where Δ<𝑚𝑚,𝑡𝑡> denotes the set of nonempty target categories, and 𝑚𝑚�𝑖𝑖,𝑗𝑗 is the estimated expected
frequency following the independence model. The corresponding p-value is given by Prob{𝜒𝜒𝑑𝑑2 >
𝑋𝑋2} for Pearson’s chi-square test or Prob{𝜒𝜒𝑑𝑑2 > 𝐺𝐺2} for likelihood ratio test, where 𝜒𝜒𝑑𝑑2 follows a chi-
squared distribution with degrees of freedom 𝑑𝑑 = (𝐽𝐽 − 1)(𝐼𝐼 − 1), herein 𝐽𝐽 = |Δ<𝑚𝑚,𝑡𝑡>| and 𝐼𝐼 =
|Γ<𝑚𝑚,𝑡𝑡>|.If case weight is not specified, the expected frequency is estimated by

𝑚𝑚�𝑖𝑖,𝑗𝑗 =
𝑛𝑛𝑖𝑖∙𝑛𝑛∙𝑗𝑗
𝑛𝑛∙∙

where 𝑛𝑛𝑖𝑖∙ = ∑ 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡> , 𝑛𝑛∙𝑗𝑗 = ∑ 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡> , and 𝑛𝑛∙∙ = ∑ ∑ 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡> .

Else if case weight is specified, the expected frequency under the null hypothesis of independence
is of the form

𝑚𝑚𝑖𝑖,𝑗𝑗 = 𝑤𝑤�𝑖𝑖,𝑗𝑗−1𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗

where 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑗𝑗 are parameters to be estimated, and

𝑤𝑤�𝑖𝑖,𝑗𝑗 =
𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡> .

Parameters estimates 𝛼𝛼�𝑖𝑖, �̂�𝛽𝑗𝑗 , and hence 𝑚𝑚�𝑖𝑖,𝑗𝑗, are resulted from the following iterative procedure.

1. Initialize 𝑘𝑘 = 0, 𝛼𝛼𝑖𝑖
(0) = 𝛽𝛽𝑗𝑗

(0) = 1, 𝑚𝑚𝑖𝑖,𝑗𝑗
(0) = 𝑤𝑤�𝑖𝑖,𝑗𝑗−1.

2. Compute 𝛼𝛼𝑖𝑖
(𝑘𝑘+1) = 𝛼𝛼𝑖𝑖

(𝑘𝑘) 𝑛𝑛𝑖𝑖∙
∑ 𝑚𝑚𝑖𝑖,𝑗𝑗

(𝑘𝑘)
𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>

.

3. Compute 𝛽𝛽𝑗𝑗
(𝑘𝑘+1) =

𝑛𝑛∙𝑗𝑗
∑ 𝑤𝑤�𝑖𝑖,𝑗𝑗

−1𝛼𝛼𝑖𝑖
(𝑘𝑘+1)

𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡>
.

4. Compute 𝑚𝑚𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) = 𝑤𝑤�𝑖𝑖,𝑗𝑗−1𝛼𝛼𝑖𝑖

(𝑘𝑘+1)𝛽𝛽𝑗𝑗
(𝑘𝑘+1).

5. If 𝑘𝑘 + 1=MaxIterations or max𝑖𝑖,𝑗𝑗�𝑚𝑚𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) −𝑚𝑚𝑖𝑖,𝑗𝑗

(𝑘𝑘)� < Epsilon, stop and
output 𝛼𝛼𝑖𝑖

(𝑘𝑘+1), 𝛽𝛽𝑗𝑗
(𝑘𝑘+1), and 𝑚𝑚𝑖𝑖,𝑗𝑗

(𝑘𝑘+1) as the final estimates. Otherwise, 𝑘𝑘 = 𝑘𝑘 + 1, go to step 2.
Given the chi-square test statistic 𝜒𝜒𝑑𝑑2, the effect size 𝐸𝐸𝑠𝑠 is computed as

𝐸𝐸𝑠𝑠 = � 𝜒𝜒𝑑𝑑
2

𝑛𝑛∙∙𝑑𝑑𝑓𝑓
�
1/2

,

where 𝑑𝑑𝑑𝑑 = min(𝐼𝐼, 𝐽𝐽) − 1, 𝜒𝜒𝑑𝑑2 = 𝑋𝑋2, 𝐺𝐺2, or 𝐻𝐻2 in below.

Ordinal Target Variable

If the target variable 𝑌𝑌 is categorical ordinal, the null hypothesis of independence of predictor 𝑋𝑋𝑚𝑚
and 𝑌𝑌 is tested against the row effects model, with rows being the categories of 𝑋𝑋𝑚𝑚 and columns the
categories of 𝑌𝑌, proposed by Goodman (1979). Two sets of expected frequencies 𝑚𝑚�𝑖𝑖,𝑗𝑗 (under the
hypothesis of independence) and 𝑚𝑚��𝑖𝑖,𝑗𝑗 (under the hypothesis that the data follow a row effects
model), are both estimated. The likelihood ratio statistic is

𝐻𝐻2 = 2∑ ∑ 𝑚𝑚��𝑖𝑖,𝑗𝑗𝑠𝑠𝑛𝑛�𝑚𝑚��𝑖𝑖,𝑗𝑗 𝑚𝑚�𝑖𝑖,𝑗𝑗� �𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡> .

The corresponding p-value is given by Prob{𝜒𝜒𝑑𝑑2 > 𝐻𝐻2} for likelihood ratio test, where 𝜒𝜒𝑑𝑑2 follows a
chi-squared distribution with degrees of freedom 𝑑𝑑 = 𝐼𝐼 − 1, herein 𝐼𝐼 = |Γ<𝑚𝑚,𝑡𝑡>|.

In the row effects model, Scores for categories of 𝑌𝑌 are needed. By default, the order of a category
of 𝑌𝑌 is used as the category score. Users can specify their own set of scores. Scores are set at the
beginning of the tree and kept unchanged afterward. Let 𝑠𝑠𝑗𝑗 be the score for category 𝑗𝑗 of 𝑌𝑌, 𝑗𝑗 ∈
Δ<𝑚𝑚,𝑡𝑡>. The expected cell frequency under the row effects model is given by

𝑚𝑚𝑖𝑖,𝑗𝑗 = 𝑤𝑤�𝑖𝑖,𝑗𝑗−1𝛼𝛼𝑖𝑖𝛽𝛽𝑗𝑗𝛾𝛾𝑖𝑖
(𝑠𝑠𝑗𝑗−�̅�𝑠)

where

�̅�𝑠 =
∑ 𝑤𝑤∙𝑗𝑗𝑠𝑠𝑗𝑗𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>

∑ 𝑤𝑤∙𝑗𝑗𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>

in which 𝑤𝑤∙𝑗𝑗 = ∑ 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡> , 𝛼𝛼𝑖𝑖, 𝛽𝛽𝑗𝑗, and 𝛾𝛾𝑖𝑖 are unknown parameters to be estimated. Parameters
estimates 𝛼𝛼��𝑖𝑖, �̂̂�𝛽𝑗𝑗, 𝛾𝛾��𝑖𝑖 and hence 𝑚𝑚��𝑖𝑖,𝑗𝑗, are resulted from the following iterative procedure.

1. Initialize 𝑘𝑘 = 0, 𝛼𝛼𝑖𝑖
(0) = 𝛽𝛽𝑗𝑗

(0) = 𝛾𝛾𝑖𝑖
(0) = 1, 𝑚𝑚𝑖𝑖,𝑗𝑗

(0) = 𝑤𝑤�𝑖𝑖,𝑗𝑗−1.
2. Compute 𝛼𝛼𝑖𝑖

(𝑘𝑘+1) = 𝛼𝛼𝑖𝑖
(𝑘𝑘) 𝑛𝑛𝑖𝑖∙

∑ 𝑚𝑚𝑖𝑖,𝑗𝑗
(𝑘𝑘)

𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>
.

3. Compute 𝛽𝛽𝑗𝑗
(𝑘𝑘+1) =

𝑛𝑛∙𝑗𝑗

∑ 𝑤𝑤�𝑖𝑖,𝑗𝑗
−1𝛼𝛼𝑖𝑖

(𝑘𝑘+1)�𝛾𝛾𝑖𝑖
(𝑘𝑘)�

(𝑠𝑠𝑗𝑗−𝑠𝑠�)
𝑖𝑖∈Γ<𝑚𝑚,𝑡𝑡>

.

4. Compute 𝑚𝑚𝑖𝑖,𝑗𝑗
∗ = 𝑤𝑤�𝑖𝑖,𝑗𝑗−1𝛼𝛼𝑖𝑖

(𝑘𝑘+1)𝛽𝛽𝑗𝑗
(𝑘𝑘+1)�𝛾𝛾𝑖𝑖

(𝑘𝑘)�
(𝑠𝑠𝑗𝑗−�̅�𝑠)

, 𝐺𝐺𝑖𝑖 = 1 +
∑ �𝑠𝑠𝑗𝑗−�̅�𝑠�(𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>−𝑚𝑚𝑖𝑖,𝑗𝑗
∗)𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>

∑ (𝑠𝑠𝑗𝑗−�̅�𝑠)2𝑚𝑚𝑖𝑖,𝑗𝑗
∗

𝑗𝑗∈Δ<𝑚𝑚,𝑡𝑡>
.

5. Compute 𝛾𝛾𝑖𝑖
(𝑘𝑘+1) = �

𝛾𝛾𝑖𝑖
(𝑘𝑘)𝐺𝐺𝑖𝑖 , If 𝐺𝐺𝑖𝑖 > 0;

𝛾𝛾𝑖𝑖
(𝑘𝑘), Otherwise.

6. Compute 𝑚𝑚𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) = 𝑤𝑤�𝑖𝑖,𝑗𝑗−1𝛼𝛼𝑖𝑖

(𝑘𝑘+1)𝛽𝛽𝑗𝑗
(𝑘𝑘+1)�𝛾𝛾𝑖𝑖

(𝑘𝑘+1)�
(𝑠𝑠𝑗𝑗−�̅�𝑠)

.

7. If 𝑘𝑘 + 1=MaxIterations or max𝑖𝑖,𝑗𝑗�𝑚𝑚𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) −𝑚𝑚𝑖𝑖,𝑗𝑗

(𝑘𝑘)� < Epsilon, stop and
output 𝛼𝛼𝑖𝑖

(𝑘𝑘+1), 𝛽𝛽𝑗𝑗
(𝑘𝑘+1), 𝛾𝛾𝑖𝑖

(𝑘𝑘+1), and 𝑚𝑚𝑖𝑖,𝑗𝑗
(𝑘𝑘+1) as the final estimates. Otherwise, 𝑘𝑘 = 𝑘𝑘 + 1, go to

step 2.

5.3.2. Bonferroni Adjustments for CHAID

The adjusted p-value is calculated as the p-value times a Bonferroni multiplier. The Bonferroni
multiplier adjusts for multiple tests.

Suppose that there are 𝐼𝐼 original categories of predictor 𝑋𝑋𝑚𝑚, including missing category if exists, in
the set of merged categories Θ<𝑚𝑚,𝑡𝑡>, and it is reduced to 𝑠𝑠, 𝑠𝑠 = |Θ<𝑚𝑚,𝑡𝑡>|, categories after the merging
step. The Bonferroni multiplier 𝐵𝐵 is the number of possible ways that 𝐼𝐼 categories can be merged
into 𝑠𝑠 categories.

For 𝑠𝑠 = 𝐼𝐼, 𝐵𝐵 = 1. For 2 ≤ 𝑠𝑠 < 𝐼𝐼, use the following equation

𝐵𝐵 =

⎩
⎪⎪
⎨

⎪⎪
⎧ �𝐼𝐼 − 1

𝑠𝑠 − 1� , Ordinal predictor;

�(−1)𝑣𝑣
(𝑠𝑠 − 𝑣𝑣)𝐼𝐼

𝑣𝑣! (𝑠𝑠 − 𝑣𝑣)!

𝑠𝑠−1

𝑣𝑣=0

, Nominal predictor;

�𝐼𝐼 − 2
𝑠𝑠 − 2� + 𝑠𝑠 �𝐼𝐼 − 2

𝑠𝑠 − 1� , Ordinal with a missing category.

5.4. Splitting

When categories have been merged for all predictors, each predictor is evaluated for its association
with the target variable, based on the p-value or effect size of the statistical test of association. The
predictor with the strongest association, indicated by the smallest p-value or the largest effect size,
is compared to the split threshold, AlphaSplit or EffectSizeThreshold. If the p-value is
less than or equal to AlphaSplit, or the effect size is larger than or equal to
EffectSizeThreshold, that predictor is selected as the split variable for the current node. Each
of the merged categories of the split variable defines a child node of the split.

In map-reduce environment, the selection of the smallest p-value or the largest effect size can be
performed efficiently in parallel. Firstly, each Reducer finds the locally smallest p-value or the
locally largest effect size and passes it to the Controller. Then, the Controller sorts the local ones
and gets the globally smallest p-value or the globally largest effect size. The following procedure is
used during the process.

FindLocalBest()
Inputs:

− 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠
<𝑚𝑚,𝑡𝑡>

− 𝐸𝐸𝑠𝑠
<𝑚𝑚,𝑡𝑡>

 where < 𝑚𝑚, 𝑡𝑡 >∈ Ψ𝑞𝑞, Ψ𝑞𝑞 denotes the set of keys that are allocated to the 𝑝𝑝th
Reducer

 <Parameter settings>

− TreeGrowingMethod // {‘p-value’, ‘effectsize’}
− AlphaSplit // Default 0.05
− EffectSizeThreshold

Outputs:
− Ψ𝑞𝑞∗
// Set of keys with locally smallest p-values or largest effect sizes

Procedure:
1. Initially let Ψ𝑞𝑞∗ be empty;
2. If (TreeGrowingMethod=‘p-value’),{
 For ∀𝜓𝜓𝑞𝑞(𝑡𝑡) ⊆ Ψ𝑞𝑞,{ // Set 𝜓𝜓𝑞𝑞(𝑡𝑡) contains all keys in Ψ𝑞𝑞 corresponding to node 𝑡𝑡
 < 𝑚𝑚, 𝑡𝑡 >∗= 𝑎𝑎𝑝𝑝𝑎𝑎min<𝑚𝑚,𝑡𝑡>�𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>, < 𝑚𝑚, 𝑡𝑡 >∈ 𝜓𝜓𝑞𝑞(𝑡𝑡)�; // Resolve tied minimum p-values
 If (𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>∗ ≤ AlphaSplit),
 Ψ𝑞𝑞

∗ = Ψ𝑞𝑞∗ ∪ {< 𝑚𝑚, 𝑡𝑡 >∗};
 }
 }
 If (TreeGrowingMethod=‘effectsize’),{
 For ∀𝜓𝜓𝑞𝑞(𝑡𝑡) ⊆ Ψ𝑞𝑞,{
 < 𝑚𝑚, 𝑡𝑡 >∗= 𝑎𝑎𝑝𝑝𝑎𝑎max<𝑚𝑚,𝑡𝑡>�𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡>, < 𝑚𝑚, 𝑡𝑡 >∈ 𝜓𝜓𝑞𝑞(𝑡𝑡)�;
 If (𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡>∗ > EffectSizeThreshold),
 Ψ𝑞𝑞

∗ = Ψ𝑞𝑞∗ ∪ {< 𝑚𝑚, 𝑡𝑡 >∗};
 }
 }
3. Return Ψ𝑞𝑞∗;

FindGlobalBest()
Inputs:

− 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠
<𝑚𝑚,𝑡𝑡>

− 𝐸𝐸𝑠𝑠
<𝑚𝑚,𝑡𝑡>

 where < 𝑚𝑚, 𝑡𝑡 >∈ Ψ𝑞𝑞∗, 𝑝𝑝 = 1, … ,𝑅𝑅

 <Parameter settings>

− TreeGrowingMethod // {‘p-value’, ‘effectsize’}
Outputs:

− Ψ∗
// Set of keys with globally smallest p-values or largest effect sizes

Procedure:
1. Let Ψ = ⋃ Ψ𝑞𝑞∗𝑅𝑅

𝑞𝑞=1 , and Ψ∗ be empty;
2. If(TreeGrowingMethod=‘p-value’)and(Ψ is not empty),{
 For ∀𝜓𝜓(𝑡𝑡) ⊆ Ψ,{ // Set 𝜓𝜓(𝑡𝑡) contains all keys in Ψ corresponding to node 𝑡𝑡
 < 𝑚𝑚, 𝑡𝑡 >∗= 𝑎𝑎𝑝𝑝𝑎𝑎min<𝑚𝑚,𝑡𝑡>�𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>, < 𝑚𝑚, 𝑡𝑡 >∈ 𝜓𝜓(𝑡𝑡)�;
 // Resolve tied minimum p-values
 Ψ∗ = Ψ∗ ∪ {< 𝑚𝑚, 𝑡𝑡 >∗};
 }
 }
 If(TreeGrowingMethod=‘effectsize’)and(Ψ is not empty),{
 For ∀𝜓𝜓(𝑡𝑡) ⊆ Ψ,{
 < 𝑚𝑚, 𝑡𝑡 >∗= 𝑎𝑎𝑝𝑝𝑎𝑎max<𝑚𝑚,𝑡𝑡>�𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡>, < 𝑚𝑚, 𝑡𝑡 >∈ 𝜓𝜓(𝑡𝑡)�;
 Ψ∗ = Ψ∗ ∪ {< 𝑚𝑚, 𝑡𝑡 >∗};
 }
 }
3. Return Ψ∗;

If the set Ψ∗ is not empty, then the Controller will perform the splitting step. That is to split the
node using the predictor suggested by each key in Ψ∗.

Splitting()
Inputs:

− 𝑇𝑇(𝑑𝑑) // Current tree of depth 𝑑𝑑
− Θ<𝑚𝑚,𝑡𝑡>
− 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> // P-value, computed for Θ<𝑚𝑚,𝑡𝑡>
− TestStatistic // Test statistic associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>
− FreedomDegrees // Freedom degrees associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>
− 𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡> // Effect size
<Continuous target>
− 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>

− 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

<Categorical target>
− 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>

− 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

 where < 𝑚𝑚, 𝑡𝑡 >∈ Ψ∗, Ψ∗ denotes the set of keys for splitting
Outputs:

− 𝑇𝑇(𝑑𝑑 + 1) // New tree of depth 𝑑𝑑 + 1
− 𝑄𝑄 // Set of candidate non-terminal leaf nodes

Procedure:
1. Let 𝑄𝑄 be empty;
2. For ∀< 𝑚𝑚, 𝑡𝑡 >∈ Ψ∗,{

Save the following statistics for node 𝑡𝑡: 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠
<𝑚𝑚,𝑡𝑡>, TestStatistic,

FreedomDegrees, and 𝐸𝐸𝑠𝑠
<𝑚𝑚,𝑡𝑡>;

 Split node 𝑡𝑡 using predictor 𝑋𝑋𝑚𝑚 according the set of categories Θ<𝑚𝑚,𝑡𝑡>;
 Let 𝐸𝐸 be the set of child nodes 𝑡𝑡𝑖𝑖, 𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>;
 Q = Q ∪ 𝐸𝐸;
 For ∀𝑡𝑡𝑖𝑖 ∈ 𝐸𝐸,{
 // Compute and save the following statistics for child node 𝑡𝑡𝑖𝑖
 // For continuous target
 𝑁𝑁𝑑𝑑(𝑡𝑡𝑖𝑖) = 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>;

 𝑦𝑦�𝑑𝑑(𝑡𝑡𝑖𝑖) = 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>;

 𝑉𝑉𝑑𝑑(𝑡𝑡𝑖𝑖) = 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>;

 𝑁𝑁𝑤𝑤(𝑡𝑡𝑖𝑖) = 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>;

 𝑦𝑦�𝑤𝑤(𝑡𝑡𝑖𝑖) = 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>;

 𝑉𝑉𝑤𝑤(𝑡𝑡𝑖𝑖) = 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>;

 // For categorical target
 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡𝑖𝑖) = 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>, 𝑗𝑗 = 1, … , 𝐽𝐽;
 𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡𝑖𝑖) = 𝑤𝑤𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>, 𝑗𝑗 = 1, … , 𝐽𝐽;
 }
 }
3. Denote the new tree as 𝑇𝑇(𝑑𝑑 + 1);
4. Return 𝑇𝑇(𝑑𝑑 + 1) and 𝑄𝑄;

5.5. Stopping

After the split is applied to a node, the child nodes are examined to see if they warrant splitting
further.

Stopping()
Inputs:

− 𝑑𝑑 // Current tree depth
− 𝑐𝑐𝑝𝑝𝐸𝐸𝑛𝑛𝑡𝑡 // Current number of tree nodes
− 𝑄𝑄 // Set of candidate non-terminal leaf nodes
<Continuous target>
− 𝑁𝑁𝑑𝑑(𝑡𝑡)
− 𝑉𝑉𝑑𝑑(𝑡𝑡)
<Categorical target>
− 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡)

 where 𝑡𝑡 ∈ 𝑄𝑄, and 𝑗𝑗 = 1, … , 𝐽𝐽

 <Parameter settings>

− MaxTreeDepth // Default 5
− MaxNodeNumber // Default 1,000
− MinParentCasesABS // Default 100
− MinParentCasesPct // Default 2
− NodeSizeRequirement // {‘absolute’, ‘percentage’}, default ‘absolute’

Outputs:
− 𝑄𝑄 // Set of non-terminal leaf nodes

Procedure:
1. For ∀𝑡𝑡 ∈ 𝑄𝑄,{
 If (𝑑𝑑=MaxTreeDepth),
 or(𝑐𝑐𝑝𝑝𝐸𝐸𝑛𝑛𝑡𝑡=MaxNodeNumber),

 or((target is continuous)and(𝑉𝑉𝑑𝑑(𝑡𝑡) = 0)),
 or((target is categorical)and(∃𝑗𝑗,𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡) > 0 and 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡) = ∑ 𝑁𝑁𝑑𝑑,𝑘𝑘(𝑡𝑡)𝐽𝐽

𝑘𝑘=1)),
 or((NodeSizeRequirement=’absolute’)and(((target is continuous)and(𝑁𝑁𝑑𝑑(𝑡𝑡) <
 MinParentCasesABS))or((target is categorical)and(∑ 𝑁𝑁𝑑𝑑,𝑘𝑘(𝑡𝑡)𝐽𝐽

𝑘𝑘=1 <
 MinParentCasesABS)))),

 or((NodeSizeRequirement=’percentage’)and(((target is
 continuous)and(𝑁𝑁𝑑𝑑(𝑡𝑡) < MinParentCasesPct*𝑁𝑁𝑑𝑑))or((target is
 categorical)and(∑ 𝑁𝑁𝑑𝑑,𝑘𝑘(𝑡𝑡)𝐽𝐽

𝑘𝑘=1 < MinParentCasesPct*𝑁𝑁𝑑𝑑)))),
 𝑄𝑄 = 𝑄𝑄 − {𝑡𝑡};
 }
2. Return 𝑄𝑄;

6. Exhaustive CHAID Algorithm
Exhaustive CHAID differs from CHAID in that different merging strategy and Bonferroni
adjustments are used in tree growth.

6.1. Merging

Merging step uses an exhaustive search procedure to merge any similar pair until only a single pair
is left.

ExhaustiveCHAID_Merging()
Inputs:
 // Global summary statistics for predictor 𝑋𝑋𝑚𝑚 and node 𝑡𝑡
 <Continuous target>

− 𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

<Categorical target>
− 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>

− 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

 where 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚 and 𝑗𝑗 = 1, … , 𝐽𝐽

 <Parameter settings>

− TreeGrowingMethod // {‘p-value’, ‘effectsize’}
− EffectSizeThreshold
− BonferroniAdjustment // {true, false}, default true
− ChiSquareType // {‘pearson’, ‘likelihood’}, default ‘pearson’
− Epsilon // Default 0.001
− MaxIterations // Default 100
− MinChildCasesABS // Default 50
− MinChildCasesPct // Default 1
− NodeSizeRequirement // {‘absolute’, ‘percentage’}, default ‘absolute’
− Scores // Vector value, scores for categories of 𝑌𝑌
− SplitMergedCategories // {true, false}, default false

Outputs:
− Θ<𝑚𝑚,𝑡𝑡> // The set of merged categories
− 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> // P-value, computed for Θ<𝑚𝑚,𝑡𝑡>
− TestStatistic // Test statistic associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>
− FreedomDegrees // Freedom degrees associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>
− 𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡> // Effect size
<Continuous target>
− 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>

− 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

<Categorical target>
− 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>

− 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

where 𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>, 𝑗𝑗 = 1, … , 𝐽𝐽
Procedure:
1. If (target is continuous),
 Θ<𝑚𝑚,𝑡𝑡> = �𝑖𝑖|𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡> > 0, 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚�;
 If (target is categorical),
 Θ<𝑚𝑚,𝑡𝑡> = �𝑖𝑖|∑ 𝑛𝑛𝑖𝑖𝑗𝑗

<𝑚𝑚,𝑡𝑡>𝐽𝐽
𝑗𝑗=1 > 0, 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚�;

// Notice that if the predictor is ordinal, Θ<𝑚𝑚,𝑡𝑡> will not include the
missing category initially.

2. 𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠 = 0;
 Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡> = Θ<𝑚𝑚,𝑡𝑡>;

 Compute p-value 𝑝𝑝𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠 and effect size 𝐸𝐸𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠 for the set of categories Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠
<𝑚𝑚,𝑡𝑡>;

3. If (�Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠
<𝑚𝑚,𝑡𝑡>� ≤ 1),

 Go to step 7;
4. If (TreeGrowingMethod=‘p-value’),{
 If (predictor is nominal),{
 𝑝𝑝𝑡𝑡 = −1;
 For ∀𝑖𝑖 ∈ Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡>,{
 For ∀𝑗𝑗 ∈ Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡> and 𝑗𝑗 > 𝑖𝑖,{
 Compute p-value 𝑝𝑝 and effect size for category 𝑖𝑖 and 𝑗𝑗;
 If (𝑝𝑝 > 𝑝𝑝𝑡𝑡),{
 𝑝𝑝𝑡𝑡 = 𝑝𝑝;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗;
 }
 Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied maximum p-values;
 }
 }
 }
 If (predictor is ordinal),{
 𝑝𝑝𝑡𝑡 = −1;
 For ∀𝑖𝑖 ∈ Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡>,{
 Get category 𝑗𝑗 in Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡> which is subsequent to 𝑖𝑖, if exists;
 Compute p-value 𝑝𝑝 and effect size for category 𝑖𝑖 and 𝑗𝑗;
 If (𝑝𝑝 > 𝑝𝑝𝑡𝑡),{
 𝑝𝑝𝑡𝑡 = 𝑝𝑝;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗;
 }
 Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied maximum p-values;
 }
 }
 }
 If (TreeGrowingMethod=‘effectsize’),{
 If (predictor is nominal),{
 𝑠𝑠𝑡𝑡 = 100;
 For ∀𝑖𝑖 ∈ Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡>,{
 For ∀𝑗𝑗 ∈ Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡> and 𝑗𝑗 > 𝑖𝑖,{
 Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑖𝑖 and 𝑗𝑗;
 If (𝑠𝑠𝑠𝑠 < 𝑠𝑠𝑡𝑡),{
 𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗;
 }
 }
 }
 }
 If (predictor is ordinal),{
 𝑠𝑠𝑡𝑡 = 100;
 For ∀𝑖𝑖 ∈ Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡>,{
 Get category 𝑗𝑗 in Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠

<𝑚𝑚,𝑡𝑡> which is subsequent to 𝑖𝑖, if exists;
 Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑖𝑖 and 𝑗𝑗;
 If (𝑠𝑠𝑠𝑠 < 𝑠𝑠𝑡𝑡),{
 𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑖𝑖;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑗𝑗;
 }
 }

 }
 }
 Merge 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 into a compound category 𝑐𝑐;
 Compute summary statistics for the compound category 𝑐𝑐;
5. Let Α be the set of original categories in the new category 𝑐𝑐;
 If (TreeGrowingMethod=‘p-value’),
 and(SplitMergedCategories=true),
 and(3 ≤ |A| ≤ 15),{
 𝑝𝑝𝑚𝑚𝑠𝑠𝑞𝑞𝑚𝑚𝑠𝑠 = 𝑝𝑝𝑡𝑡;
 If (predictor is nominal),{
 𝑝𝑝𝑡𝑡 = 2;
 For (𝑘𝑘 = 1: ⌊|A|/2⌋),{
 For (∀𝐴𝐴1 with 𝑘𝑘 categories belonging to Α),{
 Let 𝐴𝐴2 = 𝐴𝐴 − 𝐴𝐴1;
 Compute p-value 𝑝𝑝 and effect size for category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2;
 // Category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2 corresponds to 𝐴𝐴1 and 𝐴𝐴2 respectively
 If (𝑝𝑝 < 𝑝𝑝𝑡𝑡),{
 𝑝𝑝𝑡𝑡 = 𝑝𝑝;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2;
 }
 Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied minimum p-values;
 }
 }
 }
 If (predictor is ordinal),{ // Set Α consists of ordered categories
 𝑝𝑝𝑡𝑡 = 2;
 Let 𝐴𝐴1 be the set consisting of the first category in 𝐴𝐴;
 Let 𝐴𝐴2 = 𝐴𝐴 − 𝐴𝐴1;
 While (𝐴𝐴2 is not empty),{
 Compute p-value 𝑝𝑝 and effect size for category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2;
 // Category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2 corresponds to 𝐴𝐴1 and 𝐴𝐴2 respectively
 If (𝑝𝑝 < 𝑝𝑝𝑡𝑡),{
 𝑝𝑝𝑡𝑡 = 𝑝𝑝;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2;
 }
 Else if 𝑝𝑝 = 𝑝𝑝𝑡𝑡, resolve tied minimum p-values;
 Move the first category in 𝐴𝐴2 into 𝐴𝐴1;
 }
 }
 If (𝑝𝑝𝑡𝑡 < 𝑝𝑝𝑚𝑚𝑠𝑠𝑞𝑞𝑚𝑚𝑠𝑠),{
 Split category 𝑐𝑐 into two categories 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗;
 Compute summary statistics for categories 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗;
 }
 }
 If (TreeGrowingMethod=‘effectsize’),
 and(SplitMergedCategories=true),
 and(3 ≤ |A| ≤ 15),{
 𝑠𝑠𝑚𝑚𝑠𝑠𝑞𝑞𝑚𝑚𝑠𝑠 = 𝑠𝑠𝑡𝑡;
 If (predictor is nominal),{
 𝑠𝑠𝑡𝑡 = −1;
 For (𝑘𝑘 = 1: ⌊|A|/2⌋),{
 For (∀𝐴𝐴1 with 𝑘𝑘 categories belonging to Α),{
 Let 𝐴𝐴2 = 𝐴𝐴 − 𝐴𝐴1;
 Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2;
 // Category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2 corresponds to 𝐴𝐴1 and 𝐴𝐴2 respectively

 If (𝑠𝑠𝑠𝑠 > 𝑠𝑠𝑡𝑡),{
 𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2;
 }
 }
 }
 }
 If (predictor is ordinal),{
 𝑠𝑠𝑡𝑡 = −1;
 Let 𝐴𝐴1 be the set consisting of the first category in 𝐴𝐴;
 Let 𝐴𝐴2 = 𝐴𝐴 − 𝐴𝐴1;
 While (𝐴𝐴2 is not empty),{
 Compute effect size 𝑠𝑠𝑠𝑠 for category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2;
 // Category 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2 corresponds to 𝐴𝐴1 and 𝐴𝐴2 respectively
 If (𝑠𝑠𝑠𝑠 > 𝑠𝑠𝑡𝑡),{
 𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑠𝑠;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴1;
 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗 = 𝑐𝑐𝑎𝑎𝑡𝑡_𝐴𝐴2;
 }
 Move the first category in 𝐴𝐴2 into 𝐴𝐴1;
 }
 }
 If (𝑠𝑠𝑡𝑡 > 𝑠𝑠𝑚𝑚𝑠𝑠𝑞𝑞𝑚𝑚𝑠𝑠),{
 Split category 𝑐𝑐 into two categories 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗;
 Compute summary statistics for categories 𝑐𝑐𝑎𝑎𝑡𝑡_𝑖𝑖 and 𝑐𝑐𝑎𝑎𝑡𝑡_𝑗𝑗;
 }
 }
6. Denote the new set of categories as Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠+1

<𝑚𝑚,𝑡𝑡> ;
 Compute p-value 𝑝𝑝𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠+1 and effect size 𝐸𝐸𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠+1 for the set of categories Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠+1

<𝑚𝑚,𝑡𝑡> ;
 𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠 + 1;
 Go to step 3;
7. If (TreeGrowingMethod=‘p-value’),
 𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠∗ = 𝑎𝑎𝑝𝑝𝑎𝑎min𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠{𝑝𝑝𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠};
 If (TreeGrowingMethod=‘effectsize’),
 𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠∗ = 𝑎𝑎𝑝𝑝𝑎𝑎max𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠{𝐸𝐸𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠};
 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> = 𝑝𝑝𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠∗;
 Θ<𝑚𝑚,𝑡𝑡> = Θ𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠∗

<𝑚𝑚,𝑡𝑡>;
 𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡> = 𝐸𝐸𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠𝑠𝑠∗;
8. Same as Step 6 in the procedure of CHAID_Merging();
9. Same as Step 7 in the procedure of CHAID_Merging();
10.Same as Step 8 in the procedure of CHAID_Merging();
11.Same as Step 9 in the procedure of CHAID_Merging();
 // Bonferroni adjustments are described in section 6.1.1.

The function of Exhaustive_CHAID_Merging() will be used by each Reducer in the map-
reduce environment, see Appendix A for details.

6.1.1. Bonferroni Adjustments for Exhaustive CHAID

Exhaustive CHAID merges two categories iteratively until two categories left. The Bonferroni
multiplier 𝐵𝐵 is the sum of number of possible ways of merging two categories at each iteration.

Suppose that there are 𝐼𝐼 original categories of predictor 𝑋𝑋𝑚𝑚, including missing category if exists, in
the set of merged categories Θ<𝑚𝑚,𝑡𝑡>, the Bonferroni multiplier 𝐵𝐵 is calculated as

𝐵𝐵 =

⎩
⎪
⎨

⎪
⎧
𝐼𝐼(𝐼𝐼 − 1)

2
, Ordinal predictor;

𝐼𝐼(𝐼𝐼2 − 1)
2

, Nominal predictor;

𝐼𝐼(𝐼𝐼 − 1)
2

, Ordinal with a missing category.

7. Assignment and Risk Estimation Algorithms

7.1. Assignment

Once the tree is grown successfully, we compute an assignment (also called action or decision) for
each node. To predict the target variable value for an incoming case, we first find in which terminal
node it falls, then use the assignment of that terminal node for prediction.

7.1.1. Node Assignment

For any node 𝑡𝑡, let 𝑑𝑑𝑡𝑡 be the assignment given to node 𝑡𝑡,

𝑑𝑑𝑡𝑡 = � 𝑗𝑗
∗(𝑡𝑡), 𝑌𝑌 is categorical
𝑦𝑦�𝑤𝑤(𝑡𝑡), 𝑌𝑌 is continuous

𝑗𝑗∗(𝑡𝑡) = 𝑎𝑎𝑝𝑝𝑎𝑎min𝑖𝑖 ∑ 𝐶𝐶(𝑖𝑖|𝑗𝑗)𝑝𝑝(𝑗𝑗|𝑡𝑡)j ,

𝑦𝑦�𝑤𝑤(𝑡𝑡) =
∑ 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛𝑦𝑦𝑛𝑛𝑛𝑛∈ℏ(𝑡𝑡)

𝑁𝑁𝑤𝑤(𝑡𝑡)

where 𝑝𝑝(𝑗𝑗|𝑡𝑡) is the weighted probability of a case being in category 𝑗𝑗 given that it is in node 𝑡𝑡,
defined as

𝑝𝑝(𝑗𝑗|𝑡𝑡) =
𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡)

𝑁𝑁𝑤𝑤(𝑡𝑡)
,

where 𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡) is the weighted number of cases in node 𝑡𝑡 with category 𝑗𝑗,

𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡) = � 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛Ι(𝑦𝑦𝑛𝑛 = 𝑗𝑗)
𝑛𝑛∈ℏ(𝑡𝑡)

and 𝑁𝑁𝑤𝑤(𝑡𝑡) is the weighted number of cases in node 𝑡𝑡,

𝑁𝑁𝑤𝑤(𝑡𝑡) = ∑ 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛∈ℏ(𝑡𝑡) .

If there is more than one category 𝑗𝑗 that achieves the minimum, choose 𝑗𝑗∗(𝑡𝑡) to be the smallest
such 𝑗𝑗 for which 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡) = ∑ 𝑓𝑓𝑛𝑛Ι(𝑦𝑦𝑛𝑛 = 𝑗𝑗)𝑛𝑛∈ℏ(𝑡𝑡) is greater than 0, or just the smallest 𝑗𝑗 if 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡) is zero
for all of them.

If the target variable is categorical, for each target category in node 𝑡𝑡, a confidence value is
calculated as

𝑁𝑁𝑓𝑓,𝑗𝑗(𝑡𝑡)+1

𝑁𝑁𝑓𝑓(𝑡𝑡)+𝐽𝐽
,

where 𝑁𝑁𝑑𝑑(𝑡𝑡) = ∑ 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡)𝐽𝐽
𝑗𝑗=1 .

7.1.2. Case Assignment

For a case with predictor vector Χ, the assignment or prediction 𝑑𝑑𝑇𝑇(Χ) for this case by the tree 𝑇𝑇 is

𝑑𝑑𝑇𝑇(Χ) = �𝑗𝑗
∗(𝑡𝑡(Χ)), 𝑌𝑌 is categorical
𝑦𝑦�(𝑡𝑡(Χ)), 𝑌𝑌 is continuous

where 𝑡𝑡(Χ) is the terminal node the case falls in. For categorical target, besides the prediction, the
confidence for the predicted category is also available, as computed above.

In classification of new cases, missing values are handled as they are during tree growth, being
treated as an additional category (possibly merged with other non-missing categories).

For nodes where there were no missing values in the training data, a missing category will not exist
for the split of that node. In that case, cases with a missing value for the split variable are assigned
as

𝑗𝑗∗(𝑡𝑡) = 𝑎𝑎𝑝𝑝𝑎𝑎max𝑗𝑗𝑝𝑝(𝑗𝑗|𝑡𝑡),

where 𝑝𝑝(𝑗𝑗|𝑡𝑡) is the weighted probability, as computed above.

7.2. Risk Estimation

Risk estimates describe the risk of error in predicted values for specific nodes of the tree and for the
tree as a whole.

Note that case weight is not involved in risk estimation, though it is involved in tree growing
process and assignment.

7.2.1. Risk Estimation of a Node

For classification tree, the risk estimate 𝑝𝑝(𝑡𝑡) of node 𝑡𝑡 is computed as

𝑝𝑝(𝑡𝑡) = 1
𝑁𝑁𝑓𝑓(𝑡𝑡)

∑ 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡)𝐶𝐶(𝑗𝑗∗(𝑡𝑡)|𝑗𝑗)𝐽𝐽
𝑗𝑗=1 .

For regression tree, the risk estimate 𝑝𝑝(𝑡𝑡) of node 𝑡𝑡 is computed as

𝑝𝑝(𝑡𝑡) = 1
𝑁𝑁𝑓𝑓(𝑡𝑡)

∑ 𝑓𝑓𝑛𝑛�𝑦𝑦𝑛𝑛 − 𝑦𝑦�𝑤𝑤(𝑡𝑡)�2𝑛𝑛∈ℏ(𝑡𝑡) = 𝑉𝑉𝑑𝑑(𝑡𝑡) + �𝑦𝑦�𝑑𝑑(𝑡𝑡) − 𝑦𝑦�𝑤𝑤(𝑡𝑡)�
2

.

7.2.2. Risk Estimation of a Tree

For both classification trees and regression trees, the risk estimate 𝑅𝑅(𝑇𝑇) for tree 𝑇𝑇 is calculated by
aggregating risk estimates for the terminal nodes 𝑝𝑝(𝑡𝑡):

𝑅𝑅(𝑇𝑇) =
∑ 𝑁𝑁𝑓𝑓(𝑡𝑡)𝑞𝑞(𝑡𝑡)𝑡𝑡∈𝑇𝑇′

∑ 𝑁𝑁𝑓𝑓(𝑡𝑡)𝑡𝑡∈𝑇𝑇′
,

where 𝑇𝑇′ is the set of terminal nodes in the tree.

7.3. Model Explanation

7.3.1. Classification Table

Classification table is computed only for categorical target.

Suppose 𝑗𝑗 is one of the observed category, and 𝑗𝑗∗ is one of the predicted category, then the count of
cell < 𝑗𝑗∗, 𝑗𝑗 > in the classification table is computed

𝐶𝐶<𝑗𝑗∗,𝑗𝑗> = ∑ 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡)𝑡𝑡∈𝑇𝑇𝑗𝑗∗
′ ,

where 𝑇𝑇𝑗𝑗∗
′ denotes the set of leaf nodes whose node assignment is 𝑗𝑗∗. Insight and Interestingness

Algorithms

8.1. Grouping Leaf Nodes

8.1.1. Continuous Target

Leaf nodes can be partitioned into groups with low, middle, or high target means, by the following
procedure.

1. To simplify the formulas, we assume that leaf nodes in the collection �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡�𝑇𝑇′�� are
already sorted in descending order according to target means. The target mean of leaf
node 𝑡𝑡𝑞𝑞 is 𝑦𝑦�𝑡𝑡𝑞𝑞 = 𝑦𝑦�𝑑𝑑�𝑡𝑡𝑞𝑞�, the count is 𝑁𝑁𝑡𝑡𝑞𝑞 = 𝑁𝑁𝑑𝑑�𝑡𝑡𝑞𝑞� , and the corresponding standard error is
computed as

𝑠𝑠𝑡𝑡𝑞𝑞 = �
1

𝑁𝑁𝑡𝑡𝑞𝑞(𝑁𝑁−|𝑇𝑇′|)
∑ 𝑁𝑁𝑡𝑡𝑖𝑖𝑉𝑉𝑑𝑑(𝑡𝑡𝑖𝑖)

|𝑇𝑇′|
𝑖𝑖=1 , 𝐸𝐸 = 1, … , |𝑇𝑇′|

where 𝑁𝑁 = ∑ 𝑁𝑁𝑡𝑡𝑖𝑖
�𝑇𝑇′�
𝑖𝑖=1 .

2. Conduct a one-sample t-test for the leaf node with the largest target mean. The hypothesis
is H0 : 𝑦𝑦�1 = 𝑦𝑦� vs. HA : 𝑦𝑦�1 > 𝑦𝑦�, where 𝑦𝑦� = 1

𝑁𝑁
∑ 𝑁𝑁𝑡𝑡𝑖𝑖𝑦𝑦�𝑡𝑡𝑖𝑖
�𝑇𝑇′�
𝑖𝑖=1 . We use the one-tail test because it

will provide more power. The t statistic is
𝑡𝑡 = 𝑦𝑦�𝑡𝑡1−𝑦𝑦�

𝑠𝑠𝑡𝑡1
.

The test statistic has an asymptotic t distribution with degrees of freedom 𝑑𝑑 = 𝑁𝑁 − |𝑇𝑇′|. The
corresponding p-value is computed as
p-value=1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡𝑑𝑑 ≤ 𝑡𝑡).
If p-value <= 𝛼𝛼 (significance level, default 0.05), then the high group is formed by including
the leaf node with the largest target mean.

3. Repeat the same process for the next leaf node, i.e. comparing 𝑦𝑦�𝑡𝑡2 with 𝑦𝑦�, 𝑦𝑦�𝑡𝑡3 with 𝑦𝑦�, etc.
until no leaf node can be added into the high group.

4. Similarly, conduct a one-sample t-test for the leaf node with the smallest target mean. The
hypothesis is H0 : 𝑦𝑦�𝑡𝑡�𝑇𝑇′� = 𝑦𝑦� vs. HA : 𝑦𝑦�𝑡𝑡�𝑇𝑇′� < 𝑦𝑦�. The t statistic is

𝑡𝑡 =
𝑦𝑦�𝑡𝑡�𝑇𝑇′�

−𝑦𝑦�

𝑠𝑠𝑡𝑡�𝑇𝑇′�
.

The test statistic has an asymptotic t distribution with degrees of freedom 𝑑𝑑 = 𝑁𝑁 − |𝑇𝑇′|. The
corresponding p-value is computed as
p-value=1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡𝑑𝑑 ≤ |𝑡𝑡|).
If p-value <= 𝛼𝛼 (significance level, default 0.05), then the low group is formed by including
the leaf node with the smallest target mean.

5. Repeat the same process for the next leaf node, i.e. comparing 𝑦𝑦�𝑡𝑡�𝑇𝑇′�−1 with 𝑦𝑦�, 𝑦𝑦�𝑡𝑡�𝑇𝑇′�−2 with 𝑦𝑦�,

etc. until no leaf node can be added into the low group.
6. If some leaf nodes still exist after forming the high and low groups, they are grouped into

the middle group.
7. The output is a list of the leaf nodes for the high, low, and medium groups with relevant

test statistics.
8.1.2. Categorical Target

For categorical target, leaf nodes are grouped according to the mode of the target variable in each
node, which is computed as

𝑗𝑗∗∗(𝑡𝑡) = 𝑎𝑎𝑝𝑝𝑎𝑎max𝑗𝑗𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡), 𝑡𝑡 ∈ 𝑇𝑇′.

Notice that if one leaf node has multiple modes, it will belong to several groups. This results in
overlaps between groups of leaf nodes. For each mode, a confidence value is computed as the
difference of probabilities between the mode category and the category with the second largest
frequency.

8.2. Unusual Leaf Nodes

8.2.1. Continuous Target

Detection of leaves with unusual low/high target means is based on the modified z-score method.
This method is implemented by the procedure of 𝑀𝑀𝑝𝑝𝑑𝑑𝑖𝑖𝑓𝑓𝑖𝑖𝑠𝑠𝑑𝑑𝑖𝑖𝐸𝐸𝑐𝑐𝑝𝑝𝑝𝑝𝑠𝑠(𝐴𝐴[∙],𝑊𝑊[∙]) (See Appendix B for
details).

By calling this procedure, we let 𝐴𝐴[∙] be the array of target means 𝑦𝑦�𝑑𝑑(𝑡𝑡) of leaf nodes and 𝑊𝑊[∙] be the
array of corresponding counts of cases 𝑁𝑁𝑑𝑑(𝑡𝑡), 𝑡𝑡 ∈ 𝑇𝑇′.

The procedure returns an outlier strength value 𝑂𝑂(𝑡𝑡) for each leaf node. This value can be
interpreted as

�Leaf node 𝑡𝑡 has unusually high target mean, 𝑂𝑂(𝑡𝑡) > 3,
Leaf node 𝑡𝑡 has unusually low target mean, 𝑂𝑂(𝑡𝑡) < −3.

Moreover, the outlier strength value 𝑂𝑂(𝑡𝑡) can be mapped into an interestingness score by calling
the procedure of 𝑀𝑀𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝐶𝐶𝐸𝐸𝑝𝑝𝑖𝑖𝑐𝑐𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛(𝐸𝐸𝑡𝑡 , 𝐼𝐼𝑡𝑡 , |𝑂𝑂(𝑡𝑡)|) (See Appendix C for details), where we
let the set of threshold values for outlier strength 𝐸𝐸𝑡𝑡 be {0.0, 2.0, 3.0, +∞}, and the set of threshold
values for interestingness 𝐼𝐼𝑡𝑡 be {0.00, 0.33, 0.67, 1.00}.

8.2.2. Categorical Target

For categorical target, unusual leaf nodes are defined as those who have significantly different
target distributions from the population. Thus, unusual leaf nodes herein can also been called as
significant leaf nodes. Moreover, we define influential categories as those who have the most
contributions to the significance/unusualness.

Detect significant leaf nodes

1. For each leaf node 𝑡𝑡, calculate the test statistic,

𝜒𝜒𝑡𝑡2 = �
�𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡) − 𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗�

2

𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗

𝐽𝐽

𝑗𝑗=1

where 𝑝𝑝𝑗𝑗 = 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡𝑞𝑞) 𝑁𝑁𝑑𝑑(𝑡𝑡𝑞𝑞)⁄ , and 𝑡𝑡𝑞𝑞 is the root node. The statistic 𝜒𝜒𝑡𝑡2 follows a chi-squared
distribution with degrees of freedom 𝐽𝐽 − 1. The corresponding p-value is computed, and if
p-value≤ 𝛼𝛼 (significance level, default 0.05), leaf node 𝑡𝑡 will be considered as a significant
leaf node.

2. For each leaf node 𝑡𝑡, calculate the effect size,

𝐸𝐸𝑡𝑡 = �
𝜒𝜒𝑡𝑡2

𝑁𝑁𝑑𝑑(𝑡𝑡)(𝐽𝐽 − 1)
�

1
2

Detect influential categories

1. For each category of a significant leaf node, calculate the test statistic,

𝜒𝜒𝑡𝑡,𝑗𝑗
2 =

�𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡) − 𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗�
2

𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗(1 − 𝑝𝑝𝑗𝑗)

The statistic 𝜒𝜒𝑡𝑡,𝑗𝑗
2 follows a chi-squared distribution with 1 degree of freedom. The

corresponding p-value is computed and adjusted by multiplying a constant 𝐽𝐽 , and if the
adjusted p-value is not larger than 𝛼𝛼 (significance level, default 0.05), the 𝑗𝑗th category is
considered as an influential category. In addition, it is an influential high category
if 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡) > 𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗, and an influential low category otherwise.

2. For each influential category, calculate the effect size,

𝐸𝐸𝑡𝑡,𝑗𝑗 = �
𝜒𝜒𝑡𝑡,𝑗𝑗
2

𝑁𝑁𝑑𝑑(𝑡𝑡)
�

1
2

Display strategies

If the above analyses generate too many significant leaf nodes and /or influential target categories,
we can apply the following strategy to limit them.

1. Sort all significant leaf nodes by their effect size values in descending order. Then we can
export/recommend top-k ones (default k = 3).

2. Sort high and low influential target categories in each significant leaf node by their effect
size values in descending order separately. Then we can export/recommend top-n
influential high categories and top-n influential low categories (default n = 1). If effect size
is tied, then all ties in top-n would be exported.

Notice that the effect size of each leaf node can be mapped into an interestingness score by calling
the procedure of 𝑀𝑀𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝐶𝐶𝐸𝐸𝑝𝑝𝑖𝑖𝑐𝑐𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛(𝐸𝐸𝑡𝑡 , 𝐼𝐼𝑡𝑡 ,𝐸𝐸𝑡𝑡) (See Appendix C for details), where we let
the set of threshold values for effect size 𝐸𝐸𝑡𝑡 be {0.0, 0.2, 0.6, 1.0, +∞}, and the set of threshold values
for interestingness 𝐼𝐼𝑡𝑡 be {0.00, 0.33, 0.67, 1.00, 1.00}, i.e.

𝑓𝑓(𝑥𝑥) = 𝑀𝑀𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝐶𝐶𝐸𝐸𝑝𝑝𝑖𝑖𝑐𝑐𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛(𝐸𝐸𝑡𝑡 , 𝐼𝐼𝑡𝑡 , 𝑥𝑥),

where x is the effect size 𝐸𝐸𝑡𝑡 .

Considering significance and effect size together, we will use the following mapping function for
the final interestingness score:

𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑛𝑛𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥,𝑦𝑦) = �
0, 𝑦𝑦 > 𝛼𝛼

𝑓𝑓(𝑥𝑥), 𝑦𝑦 ≤ 𝛼𝛼

where x is 𝐸𝐸𝑡𝑡 and y is p-value.

Small numbers in chi-square tests

Monte Carlo method will be used to compute exact p-values when the expected counts in chi-
square test are less than 𝛿𝛿 (default 5).

1. Randomly sample 𝑁𝑁𝑚𝑚 (default 10,000) leaf node configurations 𝑁𝑁𝑑𝑑,𝑗𝑗
𝑘𝑘 (𝑡𝑡) based on the

marginal distribution 𝑝𝑝𝑗𝑗, 𝑗𝑗 = 1, … , 𝐽𝐽, where ∑ 𝑁𝑁𝑑𝑑,𝑗𝑗
𝑘𝑘 (𝑡𝑡)𝐽𝐽

𝑗𝑗=1 = 𝑁𝑁𝑑𝑑(𝑡𝑡), and 𝑘𝑘 ∈ [1,𝑁𝑁𝑚𝑚].
2. Calculate the probability of each configuration,

𝑝𝑝𝑘𝑘 =
𝑁𝑁𝑑𝑑(𝑡𝑡)!

∏ 𝑁𝑁𝑑𝑑,𝑗𝑗
𝑘𝑘 (𝑡𝑡)!𝐽𝐽

𝑗𝑗=1
� �𝑝𝑝𝑗𝑗�

𝑁𝑁𝑓𝑓,𝑗𝑗
𝑘𝑘 (𝑡𝑡)𝐽𝐽

𝑗𝑗=1

3. Calculate the chi-square value for each configuration,

𝜒𝜒𝑡𝑡
2,𝑘𝑘 = �

�𝑁𝑁𝑑𝑑,𝑗𝑗
𝑘𝑘 (𝑡𝑡) − 𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗�

2

𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗

𝐽𝐽

𝑗𝑗=1

4. Calculate the exact p-value for leaf node 𝑡𝑡,

𝑝𝑝𝑡𝑡𝑠𝑠𝑥𝑥𝑠𝑠𝑐𝑐𝑡𝑡 = � 𝑝𝑝𝑘𝑘𝐼𝐼(𝜒𝜒𝑡𝑡
2,𝑘𝑘 ≥ 𝜒𝜒𝑡𝑡2)

𝑁𝑁𝑚𝑚

𝑘𝑘=1

5. If 𝑝𝑝𝑡𝑡𝑠𝑠𝑥𝑥𝑠𝑠𝑐𝑐𝑡𝑡≤ 𝛼𝛼 (significance level, default 0.05), leaf node 𝑡𝑡 is considered as a significant leaf
node.

6. Further, collect the chi-square test statistic for each configuration and for each target
category

𝜒𝜒𝑡𝑡,𝑗𝑗
2,𝑘𝑘 =

�𝑁𝑁𝑑𝑑,𝑗𝑗
𝑘𝑘 (𝑡𝑡) − 𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗�

2

𝑁𝑁𝑑𝑑(𝑡𝑡)𝑝𝑝𝑗𝑗(1 − 𝑝𝑝𝑗𝑗)

Then compute the exact p-value for each target category of a significant leaf node

𝑝𝑝𝑡𝑡,𝑗𝑗
𝑠𝑠𝑥𝑥𝑠𝑠𝑐𝑐𝑡𝑡 = � 𝑝𝑝𝑘𝑘𝐼𝐼(𝜒𝜒𝑡𝑡,𝑗𝑗

2,𝑘𝑘 ≥ 𝜒𝜒𝑡𝑡,𝑗𝑗
2)

𝑁𝑁𝑚𝑚

𝑘𝑘=1

8.3. Target Class Analysis

Target class analysis (TCA) applies only for a categorical target, and it is an approach of
discovering insights from a couple of leaf node groups which are formed by including the leaf node
with the highest probability of the target class one-by-one. The target class can be user-specified or
determined automatically. In default, the target class is the minority class, that is, the one which has
the minimal frequency.

To simplify the formulas, we assume that leaf nodes in the collection �𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡�𝑇𝑇′�� are already
sorted in descending order according to the probability of the target class. Then the first group 𝐺𝐺0 is
assumed to be empty, while group 𝐺𝐺1 is formed by node 𝑡𝑡1, and group 𝐺𝐺2 is formed by node 𝑡𝑡1
and 𝑡𝑡2, and so on.

Notice that if ties occur when ranking according to the probability of the target class, do the
follows:

a) Rank the tied nodes in descending order according to node sizes.

b) If ties occur in a), rank the tied nodes in ascending order according to node IDs.

For each group 𝐺𝐺𝑘𝑘, 𝑘𝑘 = 0, 1, 2, … ,𝐾𝐾, where 𝐾𝐾 = |𝑇𝑇′|, the assignment of nodes in the group is the
target class, while for other nodes the assignment is the class with the highest probability among
non-target ones. For details, please refer to Section 7.1.1. Then the classification table, i.e. confusion
matrix, is

 1 2 … 𝑐𝑐∗ … 𝐽𝐽
1 𝑁𝑁11<𝑘𝑘> 𝑁𝑁12<𝑘𝑘> … 𝑁𝑁1𝑐𝑐∗

<𝑘𝑘> … 𝑁𝑁1𝐽𝐽<𝑘𝑘>
2 𝑁𝑁21<𝑘𝑘> 𝑁𝑁22<𝑘𝑘> … 𝑁𝑁2𝑐𝑐∗

<𝑘𝑘> … 𝑁𝑁2𝐽𝐽<𝑘𝑘>
… … … … … … …
𝑐𝑐∗ 𝑁𝑁𝑐𝑐∗1

<𝑘𝑘> 𝑁𝑁𝑐𝑐∗2
<𝑘𝑘> … 𝑁𝑁𝑐𝑐∗𝑐𝑐∗

<𝑘𝑘> … 𝑁𝑁𝑐𝑐∗𝐽𝐽
<𝑘𝑘>

… … … … … … …
𝐽𝐽 𝑁𝑁𝐽𝐽1<𝑘𝑘> 𝑁𝑁𝐽𝐽2<𝑘𝑘> … 𝑁𝑁𝐽𝐽𝑐𝑐∗

<𝑘𝑘> … 𝑁𝑁𝐽𝐽𝐽𝐽<𝑘𝑘>

Note that 𝑐𝑐∗ denotes the target class, and 𝑁𝑁𝑖𝑖𝑗𝑗<𝑘𝑘> = ∑ 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡)𝑡𝑡∈𝑇𝑇𝑖𝑖
′ , where 𝑇𝑇𝑖𝑖′ is the set of leaf nodes

whose assignment is class 𝑖𝑖. In the matrix, the rows give the predicted class labels, while the
columns give the actual ones.

8.3.1. Model Accuracy

Model accuracy determined by group 𝐺𝐺𝑘𝑘 is

𝐴𝐴𝐶𝐶𝐶𝐶𝐺𝐺𝑘𝑘 =
∑ 𝑁𝑁𝑗𝑗𝑗𝑗

<𝑘𝑘>𝐽𝐽
𝑗𝑗=1

𝑁𝑁𝑓𝑓
,

where 𝑁𝑁𝑑𝑑 is the total count of cases.

8.3.2. Group Size

Total number of cases in group 𝐺𝐺𝑘𝑘 is

𝑁𝑁𝐺𝐺𝑘𝑘 = ∑ 𝑁𝑁𝑐𝑐∗𝑗𝑗
<𝑘𝑘>𝐽𝐽

𝑗𝑗=1 .

Percentage of cases is

𝑃𝑃𝑇𝑇𝐺𝐺𝐺𝐺𝑘𝑘 =
∑ 𝑁𝑁𝑐𝑐∗𝑗𝑗

<𝑘𝑘>𝐽𝐽
𝑗𝑗=1

𝑁𝑁𝑓𝑓
.

8.3.3. True Positive Rate

For class 𝑗𝑗, true positive rate, i.e. recall rate, is

𝑇𝑇𝑃𝑃𝑅𝑅𝐺𝐺𝑘𝑘
𝑗𝑗 =

𝑁𝑁𝑗𝑗𝑗𝑗
<𝑘𝑘>

∑ 𝑁𝑁𝑖𝑖𝑗𝑗
<𝑘𝑘>𝐽𝐽

𝑖𝑖=1
, 𝑗𝑗 = 1, … , 𝐽𝐽.

8.3.4. False Positive Rate

For target class 𝑐𝑐∗, false positive rate is

𝐹𝐹𝑃𝑃𝑅𝑅𝐺𝐺𝑘𝑘 =
∑ 𝑁𝑁𝑐𝑐∗𝑗𝑗

<𝑘𝑘>
𝑗𝑗≠𝑐𝑐∗

∑ ∑ 𝑁𝑁𝑖𝑖𝑗𝑗
<𝑘𝑘>

𝑗𝑗≠𝑐𝑐∗
𝐽𝐽
𝑖𝑖=1

.

8.3.5. Positive Predictive Value

For target class 𝑐𝑐∗, positive predictive value, i.e. precision, is

𝑃𝑃𝑃𝑃𝑉𝑉𝐺𝐺𝑘𝑘 =
𝑁𝑁𝑐𝑐∗𝑐𝑐∗
<𝑘𝑘>

∑ 𝑁𝑁𝑐𝑐∗𝑗𝑗
<𝑘𝑘>𝐽𝐽

𝑗𝑗=1
.

8.3.6. G-Mean

G-mean determined by group 𝐺𝐺𝑘𝑘 is

𝐺𝐺𝑚𝑚𝑠𝑠𝑎𝑎𝑛𝑛𝐺𝐺𝑘𝑘 = �∏ 𝑇𝑇𝑃𝑃𝑅𝑅𝐺𝐺𝑘𝑘
𝑗𝑗𝐽𝐽

𝑗𝑗=1 �
1/𝐽𝐽

.

Notice that classes whose recall rate is constant zero across groups will be excluded from the
calculation of the G-mean measure, and the number of 𝐽𝐽 in the formula will be adjusted
accordingly.

8.3.7. F-Measure

F-measure determined by group 𝐺𝐺𝑘𝑘 is

𝐹𝐹𝑚𝑚𝑠𝑠𝑎𝑎𝑠𝑠𝐸𝐸𝑝𝑝𝑠𝑠𝐺𝐺𝑘𝑘 =
2∗𝑇𝑇𝑇𝑇𝑅𝑅𝐺𝐺𝑘𝑘

𝑐𝑐∗ ∗𝑇𝑇𝑇𝑇𝑉𝑉𝐺𝐺𝑘𝑘
𝑇𝑇𝑇𝑇𝑅𝑅𝐺𝐺𝑘𝑘

𝑐𝑐∗ +𝑇𝑇𝑇𝑇𝑉𝑉𝐺𝐺𝑘𝑘
.

8.3.8. Decision Rule Set

In this section, we describe how to get a simplified decision rule set for each group 𝐺𝐺𝑘𝑘 by collapsing
the original tree with respect to the target class. Moreover, we compute simplicity measures for the
rule set, and use them later to select concise rule sets.

Given the original tree 𝑇𝑇, we do the follows:

1. If all the sibling leaf nodes have the same target class assignment, collapse all of them into
the parent node, and take the target class as assignment of the parent node.

2. Else, merge all the sibling nodes which have the same target class assignment into a new
leaf node, and take the target class as assignment of the new node.

The two steps above will be repeated until the tree cannot be collapsed further. Then, the simplified
decision rule set consists of rules of all leaf nodes with target class assignment in the collapsed tree.
A flag variable will be used to indicate whether the original decision rule has been collapsed.

For the simplified decision rule set, the first simplicity measure is

𝐸𝐸𝐺𝐺𝑘𝑘
1 = ∑ 𝑑𝑑(𝑡𝑡)𝑡𝑡∈𝑇𝑇∗ ,

where 𝑇𝑇∗ is the set of leaf nodes with target class assignment in the collapsed tree, and 𝑑𝑑(𝑡𝑡) denotes
the number of different predictors used by the rule of leaf node 𝑡𝑡, that is, an adjusted depth. If 𝑇𝑇∗ is
empty, let 𝐸𝐸𝐺𝐺𝑘𝑘

1 = 0.

The second simplicity measure is

𝐸𝐸𝐺𝐺𝑘𝑘
2 =

∑ 𝑑𝑑(𝑡𝑡)𝑡𝑡∈𝑇𝑇∗

∑ 𝑑𝑑(𝑡𝑡)𝑡𝑡∈𝑇𝑇∗∗

where 𝑇𝑇∗∗ is the set of leaf nodes with target class assignment in the original tree. If 𝑇𝑇∗∗ is empty,
let 𝐸𝐸𝐺𝐺𝑘𝑘

2 = 0.

8.3.9. Concise Rule Set

An optimal decision rule set could be defined using any of goodness measures, e.g. model
accuracy, G-mean, F-measure, etc. However, such an optimal rule set may often be too complicated
to be understood. Concerning this, we provide an alternative rule set, which is not-bad but simple
enough, i.e. concise rule set.

Suppose the goodness measure of the decision rule set for group 𝐺𝐺𝑘𝑘 is 𝑇𝑇𝐺𝐺𝑘𝑘, 𝑘𝑘 = 1, 2, … ,𝐾𝐾. The
goodness measure of the optimal rule set is Α, and correspondingly the first simplicity measure is Β.

To determine the concise rule set, we use the following procedure:

1. Order all the decision rule sets in ascending order according to the second simplicity
measure 𝐸𝐸𝐺𝐺𝑘𝑘

2 .
2. The concise rule set is the first one that satisfies

a. Goodness measure threshold:
𝑇𝑇𝐺𝐺𝑘𝑘
Α

> 𝛿𝛿, default 𝛿𝛿 = 90%.

b. Simplicity threshold:
𝑆𝑆𝐺𝐺𝑘𝑘
1

Β
< 𝛿𝛿, default 𝛿𝛿 = 90%.

Notice that if B equals zero, only condition a will be checked.

8.4. Tree Interestingness

The above interestingness indices are defined for tree nodes. In this section, we describe
interestingness indices for tree models.

As illustrated in the following table, there are many sub-indices, each of which characterizes one
aspect of a tree model. These sub-indices can be combined into an overall interestingness index (See
Appendix D for details), which can be used to rank different tree models.

Overall index Sub-index Description
Overall interestingness for
a classification/regression
tree

Model size, i.e.
number of tree
nodes

Given the trees have grown fully and optimally,
smaller trees would be more interesting, since they
could provide simpler and more intuitive decision
rules.

Model size, i.e. number of tree nodes 𝑁𝑁𝑡𝑡, can be
mapped into an interestingness score by calling the
procedure of 𝑀𝑀𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝐶𝐶𝐸𝐸𝑝𝑝𝑖𝑖𝑐𝑐𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛(𝐸𝐸𝑡𝑡 , 𝐼𝐼𝑡𝑡 ,𝑁𝑁𝑡𝑡),
where we let the set of threshold values for model

size 𝐸𝐸𝑡𝑡 be {3, 50, 100, +∞}, and the set of threshold
values for interestingness 𝐼𝐼𝑡𝑡 be {1.00, 0.67, 0.33, 0.00}.

Unusualness of leaf
nodes

The unusualness sub-index for a tree is computed by
averaging on unusualness interestingness indices of
leaf nodes, as defined in section 8.2.

Model accuracy The accuracy of a classification tree is

𝐴𝐴𝑐𝑐𝑐𝑐 =
∑ 𝑁𝑁𝑓𝑓,𝑗𝑗∗(𝑡𝑡)(𝑡𝑡)𝑡𝑡∈𝑇𝑇′

∑ 𝑁𝑁𝑓𝑓(𝑡𝑡)𝑡𝑡∈𝑇𝑇′
.

The accuracy of a random classification tree (using
Mode) is

𝐴𝐴𝑐𝑐𝑐𝑐0 =
𝑁𝑁𝑓𝑓,𝚥𝚥�(𝑡𝑡𝑟𝑟)(𝑡𝑡𝑟𝑟)

𝑁𝑁𝑓𝑓(𝑡𝑡𝑟𝑟)
,

where 𝑡𝑡𝑞𝑞 denotes the root node, and 𝚥𝚥̂(𝑡𝑡𝑞𝑞) is the mode
of the root node.

The accuracy of a regression tree is

𝐴𝐴𝑐𝑐𝑐𝑐 = 𝑅𝑅𝑠𝑠𝑞𝑞𝑣𝑣𝑠𝑠𝑞𝑞𝑠𝑠 = 1 −
∑ 𝑁𝑁𝑓𝑓(𝑡𝑡𝑖𝑖)𝑉𝑉𝑓𝑓(𝑡𝑡𝑖𝑖)
�𝑇𝑇′�
𝑖𝑖=1
𝑁𝑁𝑓𝑓(𝑡𝑡𝑟𝑟)𝑉𝑉𝑓𝑓(𝑡𝑡𝑟𝑟)

.

The accuracy of a random regression tree (using
Mean), 𝐴𝐴𝑐𝑐𝑐𝑐0, is zero.

Then, model accuracy can be mapped into an
interestingness score by calling the procedure
of 𝑀𝑀𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝐶𝐶𝐸𝐸𝑝𝑝𝑖𝑖𝑐𝑐𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛(𝐸𝐸𝑡𝑡 , 𝐼𝐼𝑡𝑡 ,𝐴𝐴𝑐𝑐𝑐𝑐), where
we let the set of threshold values for model
accuracy 𝐸𝐸𝑡𝑡 be {𝐴𝐴𝑐𝑐𝑐𝑐0, 1}, and the set of threshold
values for interestingness 𝐼𝐼𝑡𝑡 be {0.00, 1.00}. If the
model accuracy is lower than 𝐴𝐴𝑐𝑐𝑐𝑐0, the
interestingness will be zero.

Based on the accuracy interestingness 𝐼𝐼(𝐴𝐴𝑐𝑐𝑐𝑐), the
accuracy 𝐴𝐴𝑐𝑐𝑐𝑐 can be interpreted as

𝐼𝐼𝑛𝑛𝑠𝑠𝑖𝑖𝑎𝑎ℎ𝑡𝑡(𝐴𝐴𝑐𝑐𝑐𝑐) = �
𝑤𝑤𝑠𝑠𝑎𝑎𝑘𝑘, 𝐼𝐼(𝐴𝐴𝑐𝑐𝑐𝑐) ≤ 0.33

𝑚𝑚𝑝𝑝𝑑𝑑𝑠𝑠𝑝𝑝𝑎𝑎𝑡𝑡𝑠𝑠, 0.33 < 𝐼𝐼(𝐴𝐴𝑐𝑐𝑐𝑐) ≤ 0.67
𝑠𝑠𝑡𝑡𝑝𝑝𝑝𝑝𝑛𝑛𝑎𝑎, 𝐼𝐼(𝐴𝐴𝑐𝑐𝑐𝑐) > 0.67

Note: Relative error, that is 1 − 𝐴𝐴𝑐𝑐𝑐𝑐, will be
computed and exported for a regression tree.

References
[1] Biggs, D., B. de Ville, and E. Suen. 1991. A method of choosing multiway partitions for

classification and decision trees. Journal of Applied Statistics, 18, 49-62.
[2] Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and Regression

Trees. New York: Chapman & Hall/CRC.
[3] Fan Li, and Damir Spisic. Map-Reduce Algorithms for Univariate Statistics(ADD).
[4] Goodman, L. A. 1979. Simple models for the analysis of association in cross-classifications

having ordered categories. Journal of the American Statistical Association, 74, 537-552.
[5] Jane Chu, Sier Han. Linear Engine Phase I – Algorithm.
[6] Jing Xu. Comparison of binning methods.
[7] Jing Xu, Xueying Zhang. ADD - Interestingness and Insights.
[8] Kass, G. 1980. An exploratory technique for investigating large quantities of categorical

data. Applied Statistics, 29:2, 119-127.
[9] Sier Han, James Xu, Weicai Zhong. Algorithm: SmartReports Engine.

Appendix A. Map-Reduce Functions

A.1. Map Function

Inputs:
− Training cases in data split 𝑘𝑘

− 𝑇𝑇(𝑑𝑑) // Current tree of depth 𝑑𝑑

− 𝑄𝑄 // Set of non-terminal leaf nodes

Outputs:
 <Continuous target>

− 𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

− 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

− 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

− 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

− 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

− 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

 <Categorical target>

− 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

− 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

 where 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 𝑗𝑗 = 1, … , 𝐽𝐽, 𝑚𝑚 = 1, … ,𝑀𝑀, and 𝑡𝑡 ∈ Q
Procedure:
1. Start with
 𝑠𝑠 = 0;
 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) = 0; // For continuous target
 𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) = 0;
 𝑉𝑉𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) = 0;
 𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) = 0;
 𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) = 0;
 𝑉𝑉𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) = 0;
 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) = 0; // For categorical target
 𝑤𝑤𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) = 0;
2. Iterator points to the first case;
 While (Iterator does not point to NULL),{
 Get the current case 𝑛𝑛;
 If (𝑦𝑦𝑛𝑛 is not missing),
 and(𝑓𝑓𝑛𝑛 is not missing, zero, or negative),
 and(𝑤𝑤𝑛𝑛 is not missing, zero, or negative),{
 Assign case 𝑛𝑛 to a leaf node 𝑡𝑡 by following the splits in tree 𝑇𝑇(𝑑𝑑);
 // In order to assign cases to leaf nodes efficiently, we should take a
 // proper data structure for tree 𝑇𝑇(𝑑𝑑)
 If (𝑡𝑡 ∈ 𝑄𝑄),{
 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠 + 1) = 𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠) + 𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖); // For continuous target

 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠 + 1) = 𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) + 𝑑𝑑𝑛𝑛
𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠+1)

Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖)[𝑦𝑦𝑛𝑛 − 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠)];

 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠 + 1) =

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠)

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠+1)

�𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠) + 𝑑𝑑𝑛𝑛

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠+1)

Ι�𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖� �𝑦𝑦𝑛𝑛 − 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠)�

2
�;

 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠 + 1) = 𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) + 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖),
 𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠 + 1) = 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠) + 𝑤𝑤𝑛𝑛𝑑𝑑𝑛𝑛

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠+1)

Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖)[𝑦𝑦𝑛𝑛 − 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠)];

 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠 + 1) =

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠)

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠+1)

�𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠) + 𝑤𝑤𝑛𝑛𝑑𝑑𝑛𝑛

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠+1)

Ι�𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖� �𝑦𝑦𝑛𝑛 − 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑠𝑠)�

2
�;

 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>(𝑠𝑠 + 1) = 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>(𝑠𝑠) + 𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖 ∩ 𝑦𝑦𝑛𝑛 = 𝑗𝑗); // For categorical target
 𝑤𝑤𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>(𝑠𝑠 + 1) = 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>(𝑠𝑠) + 𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛Ι(𝑥𝑥𝑚𝑚,𝑛𝑛 = 𝑖𝑖 ∩ 𝑦𝑦𝑛𝑛 = 𝑗𝑗);

 𝑠𝑠 = 𝑠𝑠 + 1;
 }
 }
 Iterator points to the next case;
 }
3. Return the following statistics

𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) = 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠); // For continuous target
𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) = 𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠);
𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) = 𝑉𝑉𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠);
𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) = 𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠);
𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) = 𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠);
𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) = 𝑉𝑉𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑠𝑠);
𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) = 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>(𝑠𝑠); // For categorical target
𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>(𝑘𝑘) = 𝑤𝑤𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>(𝑠𝑠);

A.2. Reduce Function

Inputs:
 // Local summary statistics
 <Continuous target>

− 𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

− 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

− 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

− 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

− 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

− 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

<Categorical target>

− 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

− 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

 where 𝑘𝑘 = 1, … ,𝐾𝐾, 𝑖𝑖 = 1, … , 𝐼𝐼𝑚𝑚, 𝑗𝑗 = 1, … , 𝐽𝐽, and < 𝑚𝑚, 𝑡𝑡 >∈ Ψ𝑞𝑞, Ψ𝑞𝑞 denotes the set of keys
that are allocated to the 𝑝𝑝th Reducer

 <Parameter settings>

− TreeGrowingMethod // {‘p-value’, ‘effectsize’}
− AlphaMerge // Default 0.05
− AlphaSplit // Default 0.05
− AlphaSplitMerge // Default 0.025
− EffectSizeThreshold
− BonferroniAdjustment // {true, false}, default true
− ChiSquareType // {‘pearson’, ‘likelihood’}, default ‘pearson’
− Epsilon // Default 0.001
− MaxIterations // Default 100
− MinChildCasesABS // Default 50
− MinChildCasesPct // Default 1
− NodeSizeRequirement // {‘absolute’, ‘percentage’}, default ‘absolute’
− Scores // Vector value, scores for categories of 𝑌𝑌
− SplitMergedCategories // {true, false}, default false

− MergingMethod // {‘CHAID’, ‘Exhaustive CHAID’}, default ‘CHAID’
Outputs:

− Θ<𝑚𝑚,𝑡𝑡> // The set of merged categories
− 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡> // P-value, computed for Θ<𝑚𝑚,𝑡𝑡>
− TestStatistic // Test statistic associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>
− FreedomDegrees // Freedom degrees associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>
− 𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡> // Effect size
− 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡> // For continuous target

− 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

− 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡> // For categorical target

− 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

where 𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>, 𝑗𝑗 = 1, … , 𝐽𝐽, and < 𝑚𝑚, 𝑡𝑡 >∈ Ψ𝑞𝑞∗, Ψ𝑞𝑞∗ is the set of keys with the locally
smallest p-values

Procedure:
1. For (∀< 𝑚𝑚, 𝑡𝑡 >∈ Ψ𝑞𝑞),{

 𝑁𝑁𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = ∑ 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 ; // For continuous target

 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = ∑

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 ;

 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = ∑

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 𝑉𝑉𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 + ∑

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡> �𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘) − 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>��𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘) + 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>�𝐾𝐾

𝑘𝑘=1 ;

 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = ∑ 𝑁𝑁𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 ;

 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = ∑

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 ;

 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> = ∑

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> 𝑉𝑉𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 + ∑

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>(𝑘𝑘)

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> �𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘) − 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>��𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡>(𝑘𝑘) + 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>�𝐾𝐾

𝑘𝑘=1 ;

 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡> = ∑ 𝑛𝑛𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 ; // For categorical target

 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡> = ∑ 𝑤𝑤𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 ;

 If (MergingMethod=‘CHAID’),
 Run CHAID_Merging();

 Else,
 Run ExhaustiveCHAID_Merging();
}

2. Run FindLocalBest(); // Get the local best set of keys Ψ𝑞𝑞∗

A.2. Controller

The Controller is responsible for launching a series of map-reduce jobs during the tree growth.
Moreover, it grows the tree directly by performing tree-specific operations, e.g. splitting, stopping,
etc.

Inputs:
 <Parameter settings>

− TreeGrowthThreshold // Default 1,000,000
− AlphaMerge // Default 0.05
− AlphaSplit // Default 0.05
− AlphaSplitMerge // Default 0.025
− EffectSizeChisqTest // Default 0.05
− EffectSizeFTest // Default 0.05

− BonferroniAdjustment // {true, false}, default true
− ChiSquareType // {‘pearson’, ‘likelihood’}, default ‘pearson’
− Costs // Misclassification costs
− Epsilon // Default 0.001
− MaxIterations // Default 100
− MaxTreeDepth // Default 5
− MaxNodeNumber // Default 1,000
− MinChildCasesABS // Default 50
− MinChildCasesPct // Default 1
− MinParentCasesABS // Default 100
− MinParentCasesPct // Default 2
− NodeSizeRequirement // {‘absolute’, ‘percentage’}, default ‘absolute’
− Scores // Vector value, scores for categories of 𝑌𝑌
− SplitMergedCategories // {true, false}, default false
− MergingMethod // {‘CHAID’, ‘Exhaustive CHAID’}, default ‘CHAID’

Outputs:
− PMML // Save the model of CHAID tree
− StatXML // Save model diagnostics

Procedure:
1. If (𝑁𝑁𝑑𝑑 ≤ TreeGrowthThreshold),
 TreeGrowingMethod=‘p-value’;
 Else,
 TreeGrowingMethod=‘effectsize’;
 If (Target is continuous),
 EffectSizeThreshold=EffectSizeFTest;
 If (Target is categorical),
 EffectSizeThreshold=EffectSizeChisqTest;
2. Initially let 𝑄𝑄 be an empty set;
3. Run CreateRootNode();
4. Add the root node into 𝑄𝑄;
5. Let 𝑐𝑐𝑝𝑝𝐸𝐸𝑛𝑛𝑡𝑡 = 1; // Current number of tree nodes
 Let 𝑑𝑑 = 0; // Current tree depth
6. While (𝑄𝑄 is not empty),{
 Launch a map-reduce job, and get the following statistics

 Θ<𝑚𝑚,𝑡𝑡>, // The set of merged categories
 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>, // P-value, computed for Θ<𝑚𝑚,𝑡𝑡>
 TestStatistic, // Test statistic associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>
 FreedomDegrees, // Freedom degrees associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠

<𝑚𝑚,𝑡𝑡>
 𝐸𝐸𝑠𝑠

<𝑚𝑚,𝑡𝑡> // Effect size
 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>, // For continuous target

 𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>,

 𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>,

 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>,

 𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>,

 𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>,

 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>, // For categorical target

 𝑤𝑤𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>,

 where 𝑖𝑖 ∈ Θ<𝑚𝑚,𝑡𝑡>, 𝑗𝑗 = 1, … , 𝐽𝐽, and < 𝑚𝑚, 𝑡𝑡 >∈ Ψ𝑞𝑞∗, 𝑝𝑝 = 1, … ,𝑅𝑅;
 Run FindGlobalBest(); // Get the set Ψ∗
 If (Ψ∗ is empty) and (𝑑𝑑 = 0),
 Return an error of “Stopping rules prevent any tree growth”;
 // In other words, no inputs are sufficiently related to the target
 If (𝑑𝑑 = 0),{
 // Ψ∗ just contains the key for root node
 Save the following statistics for root node 𝑡𝑡:

 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠
<𝑚𝑚,𝑡𝑡>, // P-value, computed for Θ<𝑚𝑚,𝑡𝑡>

 TestStatistic, // Test statistic associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠
<𝑚𝑚,𝑡𝑡>

 FreedomDegrees, // Freedom degrees associated with 𝑝𝑝𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑠𝑠
<𝑚𝑚,𝑡𝑡>

 𝐸𝐸𝑠𝑠
<𝑚𝑚,𝑡𝑡> // Effect size

 // For continuous target
 𝑁𝑁𝑑𝑑(𝑡𝑡) = ∑ 𝑁𝑁𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> ;

 𝑦𝑦�𝑑𝑑(𝑡𝑡) = ∑
𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑓𝑓(𝑡𝑡)
𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> ;

 𝑉𝑉𝑑𝑑(𝑡𝑡) = ∑
𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑓𝑓(𝑡𝑡)
𝑉𝑉𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> +𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> ∑

𝑁𝑁𝑓𝑓,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑓𝑓(𝑡𝑡)
�𝑦𝑦�𝑑𝑑,𝑖𝑖

<𝑚𝑚,𝑡𝑡> − 𝑦𝑦�𝑑𝑑(𝑡𝑡)� �𝑦𝑦�𝑑𝑑,𝑖𝑖
<𝑚𝑚,𝑡𝑡> + 𝑦𝑦�𝑑𝑑(𝑡𝑡)�𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> ;

 𝑁𝑁𝑤𝑤(𝑡𝑡) = ∑ 𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> ;

 𝑦𝑦�𝑤𝑤(𝑡𝑡) = ∑
𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑤𝑤(𝑡𝑡)
𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> ;

 𝑉𝑉𝑤𝑤(𝑡𝑡) = ∑
𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑤𝑤(𝑡𝑡)
𝑉𝑉𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> +𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> ∑

𝑁𝑁𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡>

𝑁𝑁𝑤𝑤(𝑡𝑡)
�𝑦𝑦�𝑤𝑤,𝑖𝑖

<𝑚𝑚,𝑡𝑡> − 𝑦𝑦�𝑤𝑤(𝑡𝑡)� �𝑦𝑦�𝑤𝑤,𝑖𝑖
<𝑚𝑚,𝑡𝑡> + 𝑦𝑦�𝑤𝑤(𝑡𝑡)�𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> ;

 // For categorical target
 𝑁𝑁𝑤𝑤,𝑗𝑗(𝑡𝑡) = ∑ 𝑤𝑤𝑖𝑖,𝑗𝑗

<𝑚𝑚,𝑡𝑡>
𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> , 𝑗𝑗 = 1, … , 𝐽𝐽;

 𝑁𝑁𝑑𝑑,𝑗𝑗(𝑡𝑡) = ∑ 𝑛𝑛𝑖𝑖,𝑗𝑗
<𝑚𝑚,𝑡𝑡>

𝑖𝑖∈Θ<𝑚𝑚,𝑡𝑡> , 𝑗𝑗 = 1, … , 𝐽𝐽;
 }
 If (Ψ∗ is empty),
 Let 𝑄𝑄 be empty;
 Else,{
 Compute the number of new splits: 𝑛𝑛𝑠𝑠𝑤𝑤𝐸𝐸𝑝𝑝𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠 = ∑ |Θ<𝑚𝑚,𝑡𝑡>|<𝑚𝑚,𝑡𝑡>∈Ψ∗ ;
 If (𝑐𝑐𝑝𝑝𝐸𝐸𝑛𝑛𝑡𝑡 + 𝑛𝑛𝑠𝑠𝑤𝑤𝐸𝐸𝑝𝑝𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠 > MaxNodeNumber),{
 If (𝑑𝑑 = 0),
 Return an error of “The very first split has too many nodes”;
 Let 𝑄𝑄 be empty;
 }
 Else,{
 Let 𝑐𝑐𝑝𝑝𝐸𝐸𝑛𝑛𝑡𝑡 = 𝑐𝑐𝑝𝑝𝐸𝐸𝑛𝑛𝑡𝑡 + 𝑛𝑛𝑠𝑠𝑤𝑤𝐸𝐸𝑝𝑝𝑠𝑠𝑖𝑖𝑡𝑡𝑠𝑠;
 Run Splitting(); // Get tree 𝑇𝑇(𝑑𝑑 + 1) and new set 𝑄𝑄
 Let 𝑑𝑑 = 𝑑𝑑 + 1;
 Run Stopping();
 }
 }
 }
7. Calculate node assignment and risk estimation for tree 𝑇𝑇(𝑑𝑑); // See section 7
8. Save 𝑇𝑇(𝑑𝑑) in PMML;
9. Save model diagnostics in StatXML;

Appendix B. Modified Z-Score Method
The procedure of 𝑀𝑀𝑝𝑝𝑑𝑑𝑖𝑖𝑓𝑓𝑖𝑖𝑠𝑠𝑑𝑑𝑖𝑖𝐸𝐸𝑐𝑐𝑝𝑝𝑝𝑝𝑠𝑠(𝐴𝐴[∙],𝑊𝑊[∙]) is as follows:

1. Get the number of members in][⋅A , suppose it is K .
2. Find the median of][kΑ , incorporating the corresponding frequencies][kW . Denote the

median as M , then ()][]1[][,...,]1[KWW KAAmedianM = , where][][kWkA is a set which

contains only][kA value with frequency][kW .

3. Compute the median absolute deviation (MAD) of][kΑ , again including the frequencies

][kW ,

),][,...,]1[(
][]1[KWW

MKAMAmedianMAD −−=

where
][

][
kW

MkA − is a set which contains only MkA −][value frequency][kW .

4. If 0=MAD , compute outlier strength for each][kΑ

MeanAD
MkAkO

*253314.1
][][−

=

where

∑

∑

=

=

−
= K

k

K

k

kW

MkAkW
MeanAD

1

1

][

][][
.

5. Else, compute outlier strength as

MAD
MkAkO

*4826.1
][][−

= .

Appendix C. Monotone Cubic Interpolation Method
𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑛𝑛𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = 𝑀𝑀𝑝𝑝𝑛𝑛𝑝𝑝𝑡𝑡𝑝𝑝𝑛𝑛𝑠𝑠𝐶𝐶𝐸𝐸𝑝𝑝𝑖𝑖𝑐𝑐𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑎𝑎𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛(𝐸𝐸𝑡𝑡 , 𝐼𝐼𝑡𝑡 , 𝑥𝑥)

where 𝑥𝑥 is the input statistic which must have a monotonically increasing relationship with the
interestingness score threshold values. 𝐸𝐸𝑡𝑡 is a set of distinct threshold values for the input statistics,
which have been accepted and commonly used by expert users to interpret the statistics. The
positive infinity (+∞) is included if the input statistic is not bounded from above. 𝐼𝐼𝑡𝑡 is a set of
distinct threshold values for the interestingness scores that 𝐸𝐸𝑡𝑡 corresponds to. The threshold values
must be between 0 and 1. The size of 𝐸𝐸𝑡𝑡 and 𝐼𝐼𝑡𝑡 must be the same. There are at least two values in 𝐸𝐸𝑡𝑡 excluding positive infinity (+∞).

Pre-processing

Let {𝑥𝑥𝑘𝑘} = 𝑠𝑠𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝑑𝑑(𝐸𝐸𝑡𝑡) such that 𝑥𝑥1 < ⋯ < 𝑥𝑥𝑛𝑛, where 𝑛𝑛 is the number of values in 𝐸𝐸𝑡𝑡 . Let {𝑦𝑦} =
𝑠𝑠𝑝𝑝𝑝𝑝𝑡𝑡𝑠𝑠𝑑𝑑(𝐼𝐼𝑡𝑡) such that 𝑦𝑦1 < ⋯ < 𝑦𝑦𝑛𝑛.

Condition A: There are more than two threshold values for input statistics, and they are all finite
numbers

Preparing for cubic interpolation

The following steps should be taken for preparing a cubic interpolation function construction.

Step 1: Compute the slopes of the secant lines between successive points.

for 𝑘𝑘 = 1,⋯ ,𝑛𝑛 − 1.

Step 2: Initialize the tangents at every data point as the average of the secants,

for 𝑘𝑘 = 2,⋯ ,𝑛𝑛 − 1; these may be updated in further steps. For the endpoints, use one-sided
differences: 𝑚𝑚1 = ∆1 and 𝑚𝑚𝑛𝑛 = ∆𝑛𝑛−1.

Step 3: Let αk=mk / Δk and βk=mk + 1 / Δk for 𝑘𝑘 = 1,⋯ ,𝑛𝑛 − 1.

 If α or β are computed to be zero, then the input data points are not strictly monotone. In such
cases, piecewise monotone curves can still be generated by choosing mk=mk + 1=0, although global
strict monotonicity is not possible.

Step 4: Update 𝐦𝐦𝐤𝐤

If 𝛼𝛼2 + 𝛽𝛽2 > 9, then set mk=τkαkΔk and mk + 1=τkβkΔk where 𝜏𝜏𝑘𝑘 = 3
�𝛼𝛼2+𝛽𝛽2

.

Cubic interpolation

After the preprocessing, evaluation of the interpolated spline is equivalent to cubic Hermite spline,
using the data xk, yk, and mk for k=1,...,n.

To evaluate x in the range [xk, xk+1] for k=1,...,n-1, calculate

h = xk+1 − xk and t = x−xk
h

then the interpolant is

f(x) = ykh00(t) + h ∗ mkh10(t) + yk+1h01(t) + h ∗ mk+1h11(t)

where hii(t) are the basis functions for the cubic Hermite spline.

h00(t) 2t3 − 3t2 + 1

h10(t) t3 − 2t2 + t

h01(t) − 2t3 + 3t2

h11(t) t3 − t2

Condition B: There are two threshold values for input statistics

As we have clarified in the beginning that there are at least two values in 𝐸𝐸𝑡𝑡 excluding positive
infinity (+∞), they must be both finite numbers when there are only two threshold values.

In this case the mapping function is a straight line connecting (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2).

f(x) = 𝐲𝐲𝟏𝟏 + (𝐲𝐲𝟐𝟐 − 𝐲𝐲𝟏𝟏)
𝐱𝐱 − 𝐱𝐱𝟏𝟏
𝐱𝐱𝟐𝟐 − 𝐱𝐱𝟏𝟏

Condition C: Threshold values include infinity

Note that there are at least two values in 𝐸𝐸𝑡𝑡 excluding positive infinity (+∞). Take the last three
statistic threshold values and threshold values for the interestingness scores from the sorted lists,
we have three pairs of data (𝑥𝑥𝑛𝑛−2,𝑦𝑦𝑛𝑛−2), (𝑥𝑥𝑛𝑛−1,𝑦𝑦𝑛𝑛−1) and (+∞, 𝑦𝑦𝑛𝑛).

An exponential function

f(x) = a − be−cx

can be defined by the pairs, where

a = yn,

b = �(yn − yn−2)xn−1
(yn − yn−1)xn−2�

(xn−1−xn−2)
,

c = 1
xn−1−xn−2

ln yn−yn−2
yn−yn−1

.

If 𝑛𝑛 = 3, which means there are only two distinct values in 𝐸𝐸𝑡𝑡 excluding positive infinity (+∞), the
exponential function is employed for evaluating x in the range [x1, +∞).

Otherwise, the exponential function is for evaluating x in the range [xn-1, +∞). To evaluate x in the
range [x1, xn-1), use procedures under “condition A: There are more than two threshold values for
input statistics, and they are all finite numbers” with data set {𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛′} and {𝑦𝑦1,⋯ ,𝑦𝑦𝑛𝑛′}, where
𝑛𝑛′ = 𝑛𝑛 − 1. To insure a smooth transition to the exponential function, the tangent 𝑚𝑚𝑛𝑛′ at data point
𝑥𝑥𝑛𝑛′ is given as

𝑚𝑚𝑛𝑛′ =
d(a − be−cx)

dx
�
x=xn′

= 𝑝𝑝𝑐𝑐𝑠𝑠−𝑐𝑐𝑥𝑥𝑛𝑛′

where a, b, c are computed as above.

Appendix D. Overall Interestingness Methods
The following methods can be used to combine interestingness sub-indices 𝐼𝐼𝑑𝑑 (𝑑𝑑 = 1,2, … ,𝐷𝐷) into an
overall interestingness index.

Note that undefined interestingness sub-indices should be excluded from the calculation.

D.1. Weighted Average

The overall interestingness by the method of Weighted Average is

𝑂𝑂𝑣𝑣𝑠𝑠𝑝𝑝𝑎𝑎𝑠𝑠𝑠𝑠𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑛𝑛𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 =
∑ 𝑊𝑊𝐼𝐼𝑑𝑑𝐼𝐼𝑑𝑑
𝐷𝐷
𝑑𝑑=1
∑ 𝑊𝑊𝐼𝐼𝑑𝑑
𝐷𝐷
𝑑𝑑=1

,

where 𝑊𝑊𝐼𝐼𝑑𝑑 is the weight corresponding to the interestingness sub-index 𝐼𝐼𝑑𝑑 .

In default, the weights are set as 1/𝐷𝐷. Another more comprehensive choice is to use normalized
interestingness sub-indices as weights, i.e.

𝑊𝑊𝐼𝐼𝑑𝑑 = 𝐼𝐼𝑑𝑑
∑ 𝐼𝐼𝑑𝑑𝐷𝐷
𝑑𝑑=1

.

D.2. Maximum

The overall interestingness by the method of Maximum is

𝑂𝑂𝑣𝑣𝑠𝑠𝑝𝑝𝑎𝑎𝑠𝑠𝑠𝑠𝐼𝐼𝑛𝑛𝑡𝑡𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠𝑡𝑡𝑖𝑖𝑛𝑛𝑎𝑎𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑚𝑚𝑎𝑎𝑥𝑥{𝐼𝐼𝑑𝑑 ,𝑑𝑑 = 1,2, … ,𝐷𝐷}.

Time Series Algorithm: ARIMA

1. Introduction
Autoregressive Integrated Moving Average (ARIMA) model is a typical time series model which is
first popularized by Box and Jenkins (1976). The model can be built on equally spaced univariate time
series data and then forecast future values. ARIMA also can include other time series as predictor
variables, which lead to generalized ARIMA model that we call transfer function (TF) model. The
ARIMA/TF model predicts a value of a target time series as a linear combination of its own past
values, past errors(also called shocks or innovations), and current and past values of other time series.

This document discusses how to estimate ARIMA/TF model and forecast future values. The rest of the
sections are arranged as follows: Section 2 provides some notations that are used in the document.
Section 3 describes ARIMA/TF model. Forecast and parameter estimation are provided in section 4
and 5, respectively. Section 6 gives the method to initialize parameter. Post-estimation including
coefficient inference, goodness-of-fit, diagnostic statistic and predictor importance are given in Section
7. Scenario analysis is provided in Section 8. Appendix A is double seasonal ARIMA model, and
Appendix B, C and D are some fundamental computation.

2. Notations
The following notation is used throughout the document unless otherwise stated:

𝑌𝑌𝑡𝑡 Dependent series, where 𝑡𝑡 = 1,⋯ ,𝑛𝑛

𝑎𝑎𝑡𝑡
White noise series normally distributed with mean zero and variance 𝜎𝜎2, where 𝑡𝑡 =
1,⋯ ,𝑛𝑛

𝑝𝑝 Order of non-seasonal autoregressive part of the model

𝐸𝐸 Order of non-seasonal moving average part of the model

𝑑𝑑 Order of non-seasonal differencing

𝑃𝑃 Order of seasonal autoregressive part of the model

𝑄𝑄 Order of seasonal moving average part of the model

𝐷𝐷 Order of seasonal differencing

𝑠𝑠 Seasonality or period of the model

𝜙𝜙𝑝𝑝(𝐵𝐵) AR polynomial of B of order 𝑝𝑝, 𝜙𝜙𝑝𝑝(𝐵𝐵) = 1 − 𝜑𝜑1𝐵𝐵 − 𝜑𝜑2𝐵𝐵2 −⋯− 𝜑𝜑𝑝𝑝𝐵𝐵𝑝𝑝

𝜃𝜃𝑞𝑞(𝐵𝐵) MA polynomial of B of order 𝐸𝐸, 𝜃𝜃𝑞𝑞(𝐵𝐵) = 1 − 𝜗𝜗1𝐵𝐵 − 𝜗𝜗2𝐵𝐵2 − ⋯− 𝜗𝜗𝑞𝑞𝐵𝐵𝑞𝑞

ΦP(Bs) Seasonal AR polynomial of 𝐵𝐵𝑠𝑠 of order 𝑃𝑃, ΦP(Bs) = 1 −Φ1Bs − Φ2B2s − ⋯− ΦPBPs

ΘQ(Bs) Seasonal MA polynomial of 𝐵𝐵𝑠𝑠 of order 𝑄𝑄, ΘQ(Bs) = 1 − Θ1Bs − Θ2B2s − ⋯− ΘQBQs

Δ Differencing operator, Δ = (1 − 𝐵𝐵)𝑑𝑑(1 − 𝐵𝐵𝑠𝑠)𝐷𝐷

Δi Differencing operator for the ith predictor, Δi = (1 − 𝐵𝐵)𝑑𝑑𝑖𝑖(1 − 𝐵𝐵𝑠𝑠)𝐷𝐷𝑖𝑖

𝐵𝐵 Backward shift operator with 𝐵𝐵𝑌𝑌𝑡𝑡 = 𝑌𝑌𝑡𝑡−1 and 𝐵𝐵𝑎𝑎𝑡𝑡 = 𝑎𝑎𝑡𝑡−1

𝑋𝑋𝑖𝑖𝑡𝑡 The ith predictor series,𝑖𝑖 = 1,⋯ , 𝑘𝑘

𝑁𝑁�t(h) h- step-ahead prediction of noise series Nt from time t. Denote it as 𝑁𝑁�t+1 if h = 1
𝜎𝜎𝑁𝑁𝑡𝑡
2 (ℎ) Prediction variance of the noise forecasts from time t. Denote it as 𝜎𝜎𝑁𝑁𝑡𝑡+1

2 if h = 1

𝑖𝑖𝑡𝑡 𝑌𝑌𝑡𝑡 or transformed of 𝑌𝑌𝑡𝑡 (transformation is log or square root)
�̂�𝑖𝑡𝑡(ℎ) h- step-ahead prediction of 𝑖𝑖𝑡𝑡 from time t. Denote it as �̂�𝑖𝑡𝑡+1 if h = 1
𝜎𝜎𝑍𝑍𝑡𝑡
2 (ℎ) Prediction variance of the 𝑖𝑖𝑡𝑡 from time t. Denote it as 𝜎𝜎𝑍𝑍𝑡𝑡+1

2 if h = 1

3. Model
Transfer function (TF) models form a very large class of models, which include univariate ARIMA models as
a special case. A TF model describing the relationship between the dependent and predictors series has the
following form:

𝑖𝑖𝑡𝑡 = 𝑓𝑓(𝑌𝑌𝑡𝑡)

Δ𝑖𝑖𝑡𝑡 = 𝑐𝑐 + �
𝜔𝜔𝑖𝑖(𝐵𝐵)
𝛿𝛿𝑖𝑖(𝐵𝐵) Δ𝑖𝑖𝐵𝐵

𝑏𝑏𝑖𝑖𝑓𝑓𝑖𝑖(𝑋𝑋𝑖𝑖𝑡𝑡) +
𝜃𝜃∗(𝐵𝐵)
𝜙𝜙∗(𝐵𝐵)

𝑎𝑎𝑡𝑡

𝑘𝑘

𝑖𝑖=1

The univariate ARIMA model simply drops the predictors from the TF model; thus, it has the following form:

Δ𝑖𝑖𝑡𝑡 = 𝑐𝑐 +
𝜃𝜃∗(𝐵𝐵)
𝜙𝜙∗(𝐵𝐵)

𝑎𝑎𝑡𝑡

The main features of this model are:

• An initial transformation of the dependent and predictor series, 𝑓𝑓 and 𝑓𝑓𝑖𝑖. This transformation is
optional and is applicable only when the dependent and predictors series values are positive.
Allowed transformations are log and square root. These transformations are sometimes called
variance-stabilizing transformations.

• A constant term c.
• The unobserved i.i.d., zero mean, Gaussian error process at with variance σ2.
• The moving average lag polynomial θ∗(B) = θq(B)ΘQ(Bs) and the auto-regressive lag polynomial

ϕ∗(B) = ϕp(B)ΦP(Bs).
• The difference/lag operators Δ and Δi
• A delay term,Bbi, where bi is the order of the delay.
• Predictors are assumed given. Their numerator and denominator lag polynomials are:

𝜔𝜔𝑖𝑖(𝐵𝐵) = �𝜔𝜔𝑖𝑖0 − 𝜔𝜔𝑖𝑖1𝐵𝐵 −⋯−𝜔𝜔𝑖𝑖𝑣𝑣𝑖𝑖𝐵𝐵
𝑣𝑣𝑖𝑖��1 − Ω𝑖𝑖1𝐵𝐵𝑠𝑠 − ⋯− Ω𝑖𝑖𝑣𝑣𝑖𝑖𝐵𝐵

𝑣𝑣𝑖𝑖𝑠𝑠�
And

𝛿𝛿𝑖𝑖(𝐵𝐵) = �1 − 𝛿𝛿𝑖𝑖1𝐵𝐵 − ⋯− 𝛿𝛿𝑖𝑖𝑞𝑞𝑖𝑖𝐵𝐵
𝑞𝑞𝑖𝑖��1 − 𝛿𝛿𝑖𝑖1′ 𝐵𝐵𝑠𝑠 − ⋯− 𝛿𝛿𝑖𝑖𝑠𝑠𝑖𝑖

′ 𝐵𝐵𝑠𝑠𝑖𝑖𝑠𝑠�
• The noise series

𝑁𝑁𝑡𝑡 = ∆𝑖𝑖𝑡𝑡 − 𝑐𝑐 −�
𝜔𝜔𝑖𝑖(𝐵𝐵)
𝛿𝛿𝑖𝑖(𝐵𝐵) Δ𝑖𝑖𝐵𝐵

𝑏𝑏𝑖𝑖𝑓𝑓𝑖𝑖(𝑋𝑋𝑖𝑖𝑡𝑡)
𝑘𝑘

𝑖𝑖=1

is assumed to be a mean zero stationary ARMA process.
The TF model described above may be non-seasonal model or single seasonal model. However, the model
can be extended to double seasonal model, i.e. there will be two periods 𝑠𝑠1 and 𝑠𝑠2 in the model. In Appendix
A, we provide a double seasonal univariate ARIMA model for simple extension.

4. Forecasting
Since model parameters are estimated using iterative search method and in each iteration, noise forecasting
and their standard error according to the estimated model in the previous iteration are needed, we introduce
forecasting for a given model in this section firstly and then introduce parameter estimation in next section.

There are two forecasting algorithms: One is called Conditional Least Squares (CLS) forecasting and the
other is called Exact Least Squares (ELS) or Unconditional Least Squares forecasting (ULS). These two
algorithms differ in only one aspect: they forecast the noise process differently. The general steps in the
forecasting computations are as follows:

Step 1. Computation of noise process Nt. The noise values are computed during the historical period.

Step 2. Forecasting the noise process, Nt, up to the forecast horizon. This is one step ahead forecasting
during the historical period and multi-step ahead forecasting after that. The differences in CLS and ELS
forecasting methodologies surface in this step. The prediction variances of noise forecasts are also computed
in this step.

Step 3. Final forecasts are obtained by first adding back to the noise forecasts, the contributions of the
constant term and the transfer function inputs and then integrating and back-transforming the result. The
prediction variances of noise forecasts also may have to be processed to obtain the final prediction variances.

In the next three sub-sections, we will give the details of computations for these three steps.

4.1. Computation of noise process
The noise can be computed as

Nt = ∆Zt − c −�
ωi(B)
δi(B) ΔiB

bifi(Xit)
k

i=1

This step can be subdivided into a few sub-steps:

i) Compute 𝑖𝑖𝑡𝑡 = 𝑓𝑓(𝑌𝑌𝑡𝑡) and 𝑋𝑋𝑖𝑖𝑡𝑡′ = 𝑓𝑓𝑖𝑖(𝑋𝑋𝑖𝑖𝑡𝑡)
ii) Differencing and lagging various series to obtain ∆Zt and Uit = ΔiBbiXit′
iii) Obtainingωi(B)

δi(B)
Uit = Vit. We will call these as transfer function inputs which can be computed

as follows:
set 𝑉𝑉𝑖𝑖0 = 𝜔𝜔𝑖𝑖(1)

𝛿𝛿𝑖𝑖(1)
∗ 𝑈𝑈𝑖𝑖1, where 𝜔𝜔𝑖𝑖(1) = ∑ 𝜔𝜔𝑖𝑖𝑗𝑗

∗𝑣𝑣𝑖𝑖+𝑣𝑣𝑖𝑖𝑠𝑠
𝑗𝑗=0 and 𝛿𝛿𝑖𝑖(1) = ∑ 𝛿𝛿𝑖𝑖𝑗𝑗∗

𝑞𝑞𝑖𝑖+𝑠𝑠𝑖𝑖𝑠𝑠
𝑗𝑗=0 , where 𝜔𝜔𝑖𝑖𝑗𝑗

∗ and 𝛿𝛿𝑖𝑖𝑗𝑗∗
represent the coefficient corresponding to power 𝑗𝑗 of the lag polynomial 𝜔𝜔𝑖𝑖(𝐵𝐵) and 𝛿𝛿𝑖𝑖(𝐵𝐵),
respectively. The product of two polynomials is described in the appendix B.
Now set the first 𝐸𝐸𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑠𝑠 values of 𝑉𝑉𝑖𝑖𝑡𝑡 to missing. The later values of 𝑉𝑉𝑖𝑖𝑡𝑡 are computed
recursively as 𝑉𝑉𝑖𝑖𝑡𝑡 = −∑ 𝛿𝛿𝑖𝑖𝑗𝑗∗ ∗

𝑞𝑞𝑖𝑖+𝑠𝑠𝑖𝑖𝑠𝑠
𝑗𝑗=1 𝑉𝑉𝑖𝑖𝑡𝑡−𝑗𝑗 + ∑ 𝜔𝜔𝑖𝑖𝑗𝑗

∗ ∗ 𝑈𝑈𝑖𝑖𝑡𝑡−𝑗𝑗
𝑣𝑣𝑖𝑖+𝑣𝑣𝑖𝑖𝑠𝑠
𝑗𝑗=0 , with understanding that missing

𝑉𝑉𝑖𝑖𝑡𝑡−𝑗𝑗 in the first term are taken to be 𝑉𝑉𝑖𝑖0 and missing 𝑈𝑈𝑖𝑖𝑡𝑡−𝑗𝑗 in the second term are taken to be
𝑈𝑈𝑖𝑖1.
Please note that we assume that 𝑈𝑈𝑖𝑖1 is non-missing, otherwise the computations begin at the first
non-missing measurement.

iv) Now finish the final step of computing
 𝑁𝑁𝑡𝑡 = ∆𝑖𝑖𝑡𝑡 − 𝑐𝑐 − ∑ 𝜔𝜔𝑖𝑖(𝐵𝐵)

𝛿𝛿𝑖𝑖(𝐵𝐵)
Δ𝑖𝑖𝐵𝐵𝑏𝑏𝑖𝑖𝑓𝑓𝑖𝑖(𝑋𝑋𝑖𝑖𝑡𝑡)𝑘𝑘

𝑖𝑖=1
 In this computation if for any t one of the summands is missing then the whole sum is set to
missing.

4.2. Noise series forecasting
This section discusses how to use CLS method and ELS method to forecast noise series and their variance
and how to compute prediction variance of the series 𝑖𝑖𝑡𝑡 based on the prediction variance of noise. For CLS
and ELS method, there are two situations, no embedded missing and embedded missing, for them
respectively.

This section assumes that the first and last value of the 𝑁𝑁𝑡𝑡 is non-missing. Otherwise the computation is from
the first non-missing value of 𝑁𝑁𝑡𝑡 to the last non-missing value 𝑁𝑁𝑡𝑡.

For the sake of simplicity, we assume that 𝑁𝑁𝑡𝑡 follow ARMA(p,q) process and the AR polynomial is 𝜙𝜙𝑝𝑝(𝐵𝐵) =
1 − 𝜑𝜑1𝐵𝐵 − 𝜑𝜑2𝐵𝐵2 − ⋯− 𝜑𝜑𝑝𝑝𝐵𝐵𝑝𝑝, and MA polynomial is 𝜃𝜃𝑞𝑞(𝐵𝐵) = 1 − 𝜗𝜗1𝐵𝐵 − 𝜗𝜗2𝐵𝐵2 − ⋯− 𝜗𝜗𝑞𝑞𝐵𝐵𝑞𝑞 . If noise
series follow ARMA(p,q)(P,Q), it is needed to re-write as ARMA(p+sP,q+sQ) by computing the product of
non-seasonal and seasonal polynomials using the algorithm in Appendix B.

4.2.1 CLS method
Case 1: No embedded missing values

In this case the one-step-ahead forecasting is computed recursively by the following formula:

𝑁𝑁�𝑡𝑡 = −�𝜑𝜑𝑗𝑗 ∗ 𝑁𝑁𝑡𝑡−𝑗𝑗

𝑝𝑝

𝑗𝑗=1

+ �𝜗𝜗𝑗𝑗 ∗ 𝜀𝜀�̂�𝑡−𝑗𝑗

𝑞𝑞

𝑗𝑗=1

𝜀𝜀�̂�𝑡 = 𝑁𝑁𝑡𝑡 − 𝑁𝑁�𝑡𝑡

Here unavailable 𝑁𝑁𝑡𝑡−𝑗𝑗 and 𝜀𝜀�̂�𝑡−𝑗𝑗are taken to be zero.

The h-step-ahead forecasts are:

𝑁𝑁�𝑡𝑡(ℎ) = −�𝜑𝜑𝑗𝑗 ∗ 𝑇𝑇𝑡𝑡+ℎ−𝑗𝑗

𝑝𝑝

𝑗𝑗=1

+ �𝜗𝜗𝑗𝑗 ∗ 𝜀𝜀�̂�𝑡+ℎ−𝑗𝑗 , ℎ > 1
𝑞𝑞

𝑗𝑗=1

where 𝑇𝑇𝑡𝑡+ℎ−𝑗𝑗 = 𝑁𝑁𝑡𝑡+ℎ−𝑗𝑗 if available, else 𝑇𝑇𝑡𝑡+ℎ−𝑗𝑗 = 𝑁𝑁�𝑡𝑡+ℎ−𝑗𝑗. And unavailable 𝜀𝜀�̂�𝑡+ℎ−𝑗𝑗 are taken to be zero.

The prediction variance of 𝑁𝑁𝑡𝑡 is computed as

𝜎𝜎𝑁𝑁𝑡𝑡
2 (ℎ) = 𝜎𝜎2 ∗�𝜓𝜓𝑗𝑗2

ℎ−1

𝑗𝑗=0

, ℎ ≥ 1

where 𝜓𝜓𝑗𝑗are coefficients of the power series expansion of 𝜃𝜃(𝐵𝐵)/𝜙𝜙(𝐵𝐵). The ratio of two polynomials is
described in the Appendix B.

The prediction variance of the 𝑖𝑖𝑡𝑡 series is computed as:

𝜎𝜎𝑍𝑍𝑡𝑡
2 (ℎ) = 𝜎𝜎2 ∗�𝜓𝜓𝑗𝑗2

ℎ−1

𝑗𝑗=0

, ℎ ≥ 1

where 𝜓𝜓𝑗𝑗 are coefficients of the power series expansion of 𝜃𝜃(𝐵𝐵)/(Δ ∗ 𝜙𝜙(𝐵𝐵)).

Case 2: Embedded missing values

In this case, first a temporary series 𝐼𝐼𝑡𝑡 is created by imputing the missing values in 𝑁𝑁𝑡𝑡 recursively as 𝐼𝐼𝑡𝑡 = 𝑁𝑁𝑡𝑡
if 𝑁𝑁𝑡𝑡 is not missing, otherwise 𝐼𝐼𝑡𝑡 = −∑ 𝜋𝜋𝑗𝑗𝐼𝐼𝑡𝑡−𝑗𝑗𝑡𝑡−1

𝑗𝑗=1 , where 𝜋𝜋𝑗𝑗 are coefficients of the power series expansion of
𝜙𝜙(𝐵𝐵)/𝜃𝜃(𝐵𝐵). Then one-step-ahead and multi-step-ahead forecasts of 𝐼𝐼𝑡𝑡, computed using the non-missing
algorithm, are taken to be the forecasts of 𝑁𝑁𝑡𝑡.

One-step-ahead prediction variances depend on the pattern of missing values observed. Let 𝑘𝑘 be the number
of previous, contiguous missing values prior to a given time period t with or without a missing value, e.g., if
value at (𝑡𝑡 − 1) is missing but at (𝑡𝑡 − 2)it is not missing then 𝑘𝑘 = 1. Then one- step-ahead prediction
variance of noise process is

𝜎𝜎𝑁𝑁𝑡𝑡
2 = 𝜎𝜎2 ∗�𝜓𝜓𝑗𝑗2

𝑘𝑘

𝑗𝑗=0

The h-step-ahead prediction variances (in the forecast period) are same as non-missing case, i.e.,

𝜎𝜎𝑁𝑁𝑡𝑡
2 (ℎ) = 𝜎𝜎2 ∗�𝜓𝜓𝑗𝑗2

ℎ−1

𝑗𝑗=0

, ℎ > 1

where 𝜓𝜓𝑗𝑗s are coefficients of the power series expansion of 𝜃𝜃(𝐵𝐵)/𝜙𝜙(𝐵𝐵).

If there is no difference specified for dependent series, then the prediction variance of 𝑖𝑖𝑡𝑡 series is

𝜎𝜎𝑍𝑍𝑡𝑡
2 (ℎ) = 𝜎𝜎𝑁𝑁𝑡𝑡

2 (ℎ), ℎ ≥ 1

Otherwise, the prediction variance of 𝑖𝑖𝑡𝑡 is:

• One-step-ahead: 𝜎𝜎𝑍𝑍𝑡𝑡
2 = 𝜎𝜎𝑁𝑁𝑡𝑡

2 ,
• h-step-ahead: 𝜎𝜎𝑍𝑍𝑡𝑡

2 (ℎ) = 𝜎𝜎2 ∗ ∑ 𝜓𝜓𝑗𝑗2ℎ−1
𝑗𝑗=0 , where 𝜓𝜓𝑗𝑗 are coefficients of the power series expansion of

𝜃𝜃(𝐵𝐵)/(Δ ∗ 𝜙𝜙(𝐵𝐵)).

4.2.2 ELS method

Case 1: No embedded missing values

In this case, the noise forecast and the prediction variance are computed by the theta recursion method which
is provided in Chapter 5 of Brockwell and Davis(1991):

Step 1. Compute the theoretical auto-covariance function (call it 𝛾𝛾) of an ARMA process with 𝜙𝜙𝑝𝑝(𝐵𝐵)and
𝜃𝜃𝑞𝑞(𝐵𝐵) as the AR and MA polynomials and with white noise variance 1. The computation of theoretical auto-
covariance function is described in Appendix C.

Step 2. Let 𝜗𝜗0′ = 1, 𝜗𝜗𝑖𝑖′ = −𝜗𝜗𝑖𝑖 , 𝑖𝑖 = 1,⋯ , 𝐸𝐸 and 𝜗𝜗𝑖𝑖′ = 0 if 𝑖𝑖 > 𝐸𝐸. Compute

𝜅𝜅(𝑖𝑖, 𝑗𝑗)

=

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝛾𝛾(𝑖𝑖 − 𝑗𝑗), 1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑚𝑚,

𝛾𝛾(𝑖𝑖 − 𝑗𝑗) −�𝜑𝜑𝑞𝑞 ∗ 𝛾𝛾(𝑝𝑝 − |𝑖𝑖 − 𝑗𝑗|)
𝑝𝑝

𝑞𝑞=1

, min(𝑖𝑖, 𝑗𝑗) ≤ 𝑚𝑚 < max(𝑖𝑖, 𝑗𝑗) ≤ 2𝑚𝑚 𝑎𝑎𝑛𝑛𝑑𝑑 |𝑖𝑖 − 𝑗𝑗| < max (𝑝𝑝, 𝐸𝐸 + 1)

�𝜗𝜗𝑞𝑞′ 𝜗𝜗𝑞𝑞+|𝑖𝑖−𝑗𝑗|
′ ,

𝑞𝑞

𝑞𝑞=0

min(𝑖𝑖, 𝑗𝑗) > 𝑚𝑚 𝑎𝑎𝑛𝑛𝑑𝑑 |𝑖𝑖 − 𝑗𝑗| ≤ 𝐸𝐸

0, 𝑝𝑝𝑡𝑡ℎ𝑠𝑠𝑝𝑝𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠

where 𝑚𝑚 = max (𝑝𝑝, 𝐸𝐸).

This will use 𝛾𝛾(𝑗𝑗) from 𝑗𝑗 = 0,1,⋯ , (2𝑚𝑚 − 1). For storage purposes it might be convenient to compute three
vectors to store all the possible values of 𝜅𝜅(𝑖𝑖, 𝑗𝑗) in advance:

• 𝛼𝛼(𝑠𝑠) = 𝛾𝛾(𝑠𝑠), 𝑠𝑠 = 0,1,⋯ ,𝑚𝑚 − 1
• ξ(l) = γ(𝑠𝑠) − ∑ φr ∗ γ(𝑠𝑠 − r)p

r=1 , 𝑠𝑠 = 1,2,⋯ , (2𝑚𝑚 − 1). Note that 0 is NOT one of the indices and
𝜉𝜉(𝑠𝑠) = 0 for 𝑠𝑠 ≥ max (𝑝𝑝, 𝐸𝐸 + 1) because of the recursive relation 𝛾𝛾(𝑠𝑠) satisfies.

• 𝜔𝜔(𝑠𝑠) = ∑ 𝜗𝜗𝑞𝑞′𝜗𝜗𝑞𝑞+|𝑖𝑖−𝑗𝑗|
′ , 𝑠𝑠 = 0,⋯ , 𝐸𝐸𝑞𝑞

𝑞𝑞=0
Step 3. Recursively compute 𝜈𝜈𝑡𝑡 and 𝜃𝜃𝑖𝑖𝑗𝑗 as follows

𝜈𝜈0 = 𝜅𝜅(1,1)

For 𝑖𝑖 = 1,⋯ ,𝑛𝑛

𝜃𝜃𝑖𝑖,𝑖𝑖−𝑘𝑘 = 𝜈𝜈𝑘𝑘−1 �𝜅𝜅(𝑖𝑖 + 1, 𝑘𝑘 + 1) −�𝜃𝜃𝑘𝑘,𝑘𝑘−𝑗𝑗𝜃𝜃𝑖𝑖,𝑖𝑖−𝑗𝑗𝜈𝜈𝑗𝑗

𝑘𝑘−1

𝑗𝑗=0

� , 𝑘𝑘 = 0,1,2,⋯ , 𝑖𝑖 − 1

𝜈𝜈𝑖𝑖 = 𝜅𝜅(𝑖𝑖 + 1, 𝑖𝑖 + 1) −�𝜃𝜃𝑖𝑖,𝑖𝑖−𝑗𝑗2
𝑖𝑖−1

𝑗𝑗=0

𝜈𝜈𝑗𝑗

Step 4. Compute one-step-ahead forecasts of 𝑁𝑁𝑡𝑡 (and their prediction variances) as follows:

𝑁𝑁�1 = 0

𝑁𝑁�𝑘𝑘+1 =

⎩
⎪
⎨

⎪
⎧ �𝜃𝜃𝑘𝑘,𝑗𝑗�𝑁𝑁𝑘𝑘+1−𝑗𝑗 − 𝑁𝑁�𝑘𝑘+1−𝑗𝑗�

𝑘𝑘

𝑗𝑗=1

, 1 ≤ 𝑘𝑘 ≤ 𝑚𝑚,

𝜑𝜑1𝑁𝑁𝑘𝑘 + 𝜑𝜑2𝑁𝑁𝑘𝑘−1 + ⋯+ 𝜑𝜑𝑝𝑝𝑁𝑁𝑘𝑘+1−𝑝𝑝 + �𝜃𝜃𝑘𝑘,𝑗𝑗�𝑁𝑁𝑘𝑘+1−𝑗𝑗 − 𝑁𝑁�𝑘𝑘+1−𝑗𝑗�
𝑞𝑞

𝑗𝑗=1

, 𝑘𝑘 > 𝑚𝑚

The prediction variance at time 𝑡𝑡 is

𝜎𝜎𝑁𝑁𝑡𝑡
2 = 𝜎𝜎2 ∗ 𝜈𝜈𝑡𝑡−1

Step 5. Multi-step forecasting

ℎ-step-ahead forecast based on measurements up to time 𝑡𝑡(typically it will be the last point in the historical
period) is

𝑁𝑁�𝑡𝑡(ℎ) =

⎩
⎪
⎨

⎪
⎧ � 𝜃𝜃𝑡𝑡+ℎ−1,𝑗𝑗�𝑁𝑁𝑡𝑡+ℎ−𝑗𝑗 − 𝑁𝑁�𝑡𝑡+ℎ−𝑗𝑗�

𝑡𝑡+ℎ−1

𝑗𝑗=ℎ

, 1 ≤ ℎ ≤ 𝑚𝑚 − 𝑡𝑡,

�𝜑𝜑𝑖𝑖𝑁𝑁�𝑡𝑡(ℎ − 𝑖𝑖)
𝑝𝑝

𝑖𝑖=1

+ �𝜃𝜃𝑡𝑡+ℎ−1,𝑗𝑗�𝑁𝑁𝑡𝑡+ℎ−𝑗𝑗 − 𝑁𝑁�𝑡𝑡+ℎ−𝑗𝑗�
𝑞𝑞

𝑗𝑗=ℎ

, ℎ > 𝑚𝑚 − 𝑡𝑡

 The prediction variance of 𝑁𝑁𝑡𝑡 is computed as

𝜎𝜎𝑁𝑁𝑡𝑡
2 (ℎ) = 𝜎𝜎2���𝜒𝜒𝑞𝑞𝜃𝜃𝑡𝑡+ℎ−𝑞𝑞−1,𝑗𝑗−𝑞𝑞

𝑗𝑗

𝑞𝑞=0

�

2

𝜈𝜈𝑡𝑡+ℎ−𝑗𝑗−1

ℎ−1

𝑗𝑗=0

where the constants 𝜒𝜒𝑞𝑞 are calculated recursively as

𝜒𝜒0 = 1

𝜒𝜒𝑞𝑞 = � 𝜑𝜑𝑘𝑘

min (𝑝𝑝,𝑞𝑞)

𝑘𝑘=1

𝜒𝜒𝑞𝑞−𝑘𝑘, 𝑝𝑝 = 1,2,3,⋯

This finishes the computation of noise forecasting and its prediction variance.

If there is no differencing specified for the dependent series, then prediction variance for Zt series is the same
as that for the noise series i.e.,

σZt
2 (h) = σNt

2 (h), h ≥ 1

Otherwise prediction variance for Zt is computed as follows:

• One-step-ahead forecasting: 𝜎𝜎𝑍𝑍𝑡𝑡
2 = 𝜎𝜎𝑁𝑁𝑡𝑡

2 .

• h-step-ahead forecasting: Let 𝜒𝜒𝑞𝑞 be the coefficients in the expansion of 1/ �∆𝜙𝜙𝑝𝑝(𝐵𝐵)�. Then

𝜎𝜎𝑍𝑍𝑡𝑡
2 (h) = 𝜎𝜎2���𝜒𝜒𝑞𝑞∗𝜃𝜃𝑡𝑡+ℎ−𝑞𝑞−1,𝑗𝑗−𝑞𝑞

𝑗𝑗

𝑞𝑞=0

�

2

𝜈𝜈𝑡𝑡+ℎ−𝑗𝑗−1

ℎ−1

𝑗𝑗=0

where𝜃𝜃𝑛𝑛,0 = 1 and 𝜒𝜒𝑞𝑞∗ are calculated recursively as 𝜒𝜒𝑞𝑞 in h-step variance prediction of noise except
that AR coefficients 𝜑𝜑𝑘𝑘 are substituted by coefficients of ∆𝜙𝜙𝑝𝑝(𝐵𝐵).

Case 2: Embedded missing values

Kalman filter method in Chapter 12 of Brockwell and Davis(1991) will be used in this situation.

Let 𝑚𝑚 = max (𝑝𝑝, 𝐸𝐸). The state-space representation of 𝑁𝑁𝑡𝑡 is:

𝑿𝑿𝑡𝑡+1 = 𝑭𝑭𝑿𝑿𝑡𝑡 + 𝑯𝑯𝑠𝑠𝑡𝑡

𝑁𝑁𝑡𝑡 = 𝑮𝑮𝑿𝑿𝑡𝑡 + 𝑠𝑠𝑡𝑡

where 𝑿𝑿𝑡𝑡 is a state vector of 𝑚𝑚 by 1, and

𝑮𝑮 = (1, 0,⋯ ,0)1×𝑚𝑚

𝑯𝑯𝑇𝑇 = (𝜓𝜓1,⋯ ,𝜓𝜓𝑚𝑚)

where 𝜓𝜓𝑖𝑖 are coefficients in 𝜃𝜃𝑞𝑞
(𝐵𝐵)

𝜙𝜙𝑝𝑝(𝐵𝐵)
= 1 + 𝜓𝜓1B + 𝜓𝜓2B2 + ⋯

𝑭𝑭 = �

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯
𝜑𝜑𝑚𝑚 𝜑𝜑𝑚𝑚−1 ⋯ ⋯ 𝜑𝜑1

�

𝑚𝑚×𝑚𝑚

Here 𝜑𝜑𝑖𝑖 = 0 if 𝑖𝑖 > 𝑝𝑝. 𝐸𝐸(𝑠𝑠𝑡𝑡) = 0 and 𝑉𝑉𝑎𝑎𝑝𝑝(𝑠𝑠𝑡𝑡) = 𝜎𝜎2.

The Kalman recursions (see Brockwell and Davis) start with:

𝑿𝑿�1 = (0,⋯ ,0)1×𝑚𝑚
𝑇𝑇

𝚿𝚿𝟏𝟏 = 𝟎𝟎m×m

𝚷𝚷1 = 𝛀𝛀1 = 𝑱𝑱

𝑁𝑁�1 = 0

σN1
2 = σ2(𝛀𝛀1(1,1) + 1)

Where 𝑱𝑱 is an m×m symmetric matrix with its (i,j)th (𝑖𝑖 ≥ 𝑗𝑗) element being 𝑱𝑱(𝑖𝑖, 𝑗𝑗) = γ(i − j) − ∑ ψkψk+i−j
j−1
k=0 ,

where γ(∙) is the auto-covariance function of 𝑁𝑁𝑡𝑡.

For t = 1,2,3,⋯

If 𝑁𝑁𝑡𝑡 is not missing

{

Dt = 𝛀𝛀t(1,1) + 1.

𝚯𝚯t = 𝐅𝐅𝛀𝛀t(1: m, 1) + 𝐇𝐇, here 𝛀𝛀t(1: m, 1) is the first column of 𝛀𝛀t.

𝚷𝚷t+1 = 𝐅𝐅𝚷𝚷tFT + 𝐇𝐇𝐇𝐇T.

𝚿𝚿𝐭𝐭+𝟏𝟏 = 𝐅𝐅𝚿𝚿𝐭𝐭𝐅𝐅T + 𝚯𝚯t𝚯𝚯t
T/Dt.

𝛀𝛀t+1 = 𝚷𝚷t+1 − 𝚿𝚿𝐭𝐭+𝟏𝟏.

𝑿𝑿�𝑡𝑡+1 = 𝑭𝑭𝑿𝑿�𝑡𝑡 + 𝚯𝚯t �𝑁𝑁𝑡𝑡 − 𝑿𝑿�𝑡𝑡(1)� /Dt, 𝑿𝑿�𝑡𝑡(1) is the 1st element of 𝑿𝑿�𝑡𝑡.

}

Else

{

Dt = 1.

𝚯𝚯t = (0,⋯ ,0)1×m
T .

𝚷𝚷t+1 = 𝐅𝐅𝚷𝚷t𝐅𝐅T + 𝐇𝐇𝐇𝐇T.

𝚿𝚿𝐭𝐭+𝟏𝟏 = 𝐅𝐅𝚿𝚿𝐭𝐭𝐅𝐅T.

𝛀𝛀t+1 = 𝚷𝚷t+1 − 𝚿𝚿𝐭𝐭+𝟏𝟏.

𝑿𝑿�𝑡𝑡+1 = 𝑭𝑭𝑿𝑿�𝑡𝑡.

}

The one-step-ahead noise forecast and the prediction variances are given by 𝑁𝑁�𝑡𝑡+1 = 𝑿𝑿�𝑡𝑡+1(1)

and 𝜎𝜎𝑁𝑁𝑡𝑡+1
2 = σ2(𝛀𝛀t+1(1,1) + 1), respectively.

The h-step-ahead noise forecasts 𝑁𝑁�𝑡𝑡(ℎ) and the prediction variance 𝜎𝜎𝑁𝑁𝑡𝑡
2 (ℎ) can be recursively computed as

follows for h = 2,3,⋯

𝑁𝑁�𝑡𝑡(ℎ) = �𝑭𝑭ℎ−1𝑿𝑿�𝑡𝑡+1�(1)

𝛀𝛀𝐭𝐭
(h) = 𝐅𝐅𝛀𝛀𝐭𝐭

(h−1)𝐅𝐅T + 𝐇𝐇𝐇𝐇T

𝜎𝜎𝑁𝑁𝑡𝑡
2 (ℎ) = 𝜎𝜎2�𝛀𝛀𝐭𝐭

(h)(1,1) + 1�

where 𝛀𝛀𝐭𝐭
(1) = 𝛀𝛀t+1.

As before, if there is no differencing specified for the dependent series then prediction variance for Zt series is
the same as that for the noise series i.e.,

𝜎𝜎𝑍𝑍𝑡𝑡
2 (ℎ) = 𝜎𝜎𝑁𝑁𝑡𝑡

2 (ℎ), ℎ ≥ 1

Otherwise, the prediction variance of 𝑖𝑖𝑡𝑡 is:

• One-step-ahead: let 𝑘𝑘 be the number of previous, contiguous missing values prior to a given time
period t with or without a missing measurement, e.g., if value at (𝑡𝑡 − 1) is missing but at (𝑡𝑡 − 2)it is
not missing, then𝑘𝑘 = 1. If 𝑘𝑘 = 0 then 𝜎𝜎𝑍𝑍𝑡𝑡

2 = 𝜎𝜎𝑁𝑁𝑡𝑡
2 , otherwise, 𝜎𝜎𝑍𝑍𝑡𝑡

2 = 𝜎𝜎2 ∗ ∑ 𝜓𝜓𝑗𝑗2𝑘𝑘
𝑗𝑗=0 ,

• h-step-ahead: 𝜎𝜎𝑍𝑍𝑡𝑡
2 (ℎ) = 𝜎𝜎2 ∗ ∑ 𝜓𝜓𝑗𝑗2ℎ−1

𝑗𝑗=0 , ℎ > 1
where 𝜓𝜓𝑗𝑗 are coefficients of the power series expansion of 𝜃𝜃𝑞𝑞(𝐵𝐵)/(Δ ∗ 𝜙𝜙𝑝𝑝(𝐵𝐵)).

4.3. Final forecasting
The final forecasting and their prediction variance are described as below:

Step 1. Compute series 𝑄𝑄𝑡𝑡(ℎ) = �𝑁𝑁�𝑡𝑡(ℎ) + 𝑐𝑐 + ∑ 𝑉𝑉𝑖𝑖(𝑡𝑡+ℎ)
𝑘𝑘
𝑖𝑖=1 �.

Step 2. If dependent series is not differenced, then �̂�𝑖𝑡𝑡(ℎ) = 𝑄𝑄𝑡𝑡(ℎ). Otherwise the series 𝑄𝑄𝑡𝑡(ℎ) has to be
integrated as below:

�̂�𝑖𝑡𝑡(ℎ) = 𝑄𝑄𝑡𝑡(ℎ) − � 𝜏𝜏𝑗𝑗𝑖𝑖𝑡𝑡+ℎ−𝑗𝑗

𝑑𝑑+𝐷𝐷𝑠𝑠

𝑗𝑗=1

where 𝜏𝜏𝑗𝑗 is the coefficient corresponding to power 𝑗𝑗 of the difference operator ∆.

The prediction variance of 𝑖𝑖𝑡𝑡 is provided in section 4.2 for different noise computation methods.

Step 3. The final predicted value and the corresponding confidence interval are computed as follows:

• If the dependent series is not transformed, then

 𝑦𝑦�𝑡𝑡(ℎ) = �̂�𝑖𝑡𝑡(ℎ)
and the 100(1 − 𝛼𝛼)% confidence interval is

 ��̂�𝑖𝑡𝑡(ℎ) − 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑍𝑍𝑡𝑡(ℎ), �̂�𝑖𝑡𝑡(ℎ) + 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑍𝑍𝑡𝑡(ℎ)�.
• If the transformed function is log, then

 𝑦𝑦�𝑡𝑡(ℎ) = exp ��̂�𝑖𝑡𝑡(ℎ) +
𝜎𝜎𝑍𝑍𝑡𝑡
2 (ℎ)

2
�

and the 100(1 − 𝛼𝛼)% confidence interval is

 �exp ��̂�𝑖𝑡𝑡(ℎ) − 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑍𝑍𝑡𝑡(ℎ)� , exp ��̂�𝑖𝑡𝑡(ℎ) + 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑍𝑍𝑡𝑡(ℎ)��

• If the transformed function if square root, then

 y�t(h) = �Z�t(h)�
2

+ σZt
2 (h)

and the 100(1 − 𝛼𝛼)% confidence interval is

 ���̂�𝑖𝑡𝑡(ℎ) − 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑍𝑍𝑡𝑡(ℎ)�
2

, ��̂�𝑖𝑡𝑡(ℎ) + 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑍𝑍𝑡𝑡(ℎ)�
2
�

In above, 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 is the (1 − 𝛼𝛼/2)100th percentile of the t distribution with degree of freedom 𝑑𝑑𝑓𝑓 which can
be computed by the number of valid noise residuals minus the number of parameters.

Note 1: The computation in step 2 begins at the first non-missing value of 𝑄𝑄𝑡𝑡 which is usually at 𝑡𝑡 = 𝑑𝑑 +
𝐷𝐷𝑠𝑠 + 1. Unavailable 𝑖𝑖𝑡𝑡−𝑗𝑗 in the sum is replaced with �̂�𝑖𝑡𝑡−𝑗𝑗 and the sum only includes terms that correspond to
non-zero 𝜏𝜏𝑗𝑗. If any term is missing in expression the corresponding integrated forecast is set to missing.

Note 2: if the 𝑑𝑑𝑓𝑓 = 0, then we use (1 − 𝛼𝛼/2)100th percentile of the standard normal distribution.

Note 3: for square root transformation, If Z�t(h) < 0, then predicted value y�t(h) and corresponding
confidence interval will be missing. If Z�t(h) > 0 but �̂�𝑖𝑡𝑡(ℎ) − 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑍𝑍𝑡𝑡(ℎ) < 0, then the lower boundary
of confidence interval will be missing value.

4.4. Information for scoring to be saved
Suppose that time series {𝑌𝑌𝑡𝑡 , 𝑋𝑋1𝑡𝑡 ,⋯ ,𝑋𝑋𝐾𝐾𝑡𝑡}𝑡𝑡=1𝑛𝑛 are given up to time 𝑡𝑡 = 𝑛𝑛, which is called training dataset, a
time series model is built on the training dataset. Then this model is saved and the training dataset is gone. In
order to forecast from 𝑡𝑡 = 𝑛𝑛 + 1, we need to save model and other information to continue forecasting
beyond the training dataset. Here we listed the information to be saved according to model, forecasting
method and data for transfer function as following:

Model

o ARIMA part
 Transformation of target series. The possible value is none, or log or square root
 Constant
 AR parameters: non-seasonal, seasonal part
 MA parameter: non-seasonal, seasonal part
 Order of difference: non-seasonal, seasonal part

o Transfer function part
 For each predictor, the following information should be saved.

 Transformation: The possible value is none, or log or square root
 Parameters in numerator: non-seasonal, seasonal part
 Parameters in denominator: non-seasonal, seasonal part
 Order of difference: non-seasonal, seasonal part
 Lag of delay

o Outliers
 For each outlier, the type, location and magnitude are needed. For transient change outlier,

the damp parameter is also needed.
o Error variance estimation: 𝜎𝜎�2

Forecasting method

CLS forecasting method will be just used in expert molder internally and will not be needed for future
scoring. So we just give the information about ELS method. Since the theta recursion method is more
complicated, we only use it for future scoring when model is with differencing and training data has no
embedded missing value. In other situation, we need to save information related Kalman filter method.
Therefore, if the theta recursion method is used in model building without differencing, then after model
building, we need to get the information of Kalman filter method based on model parameters from the theta
recursion method.

o Theta recursion method
 Noise: 𝑁𝑁𝑛𝑛,𝑁𝑁𝑛𝑛−1,⋯ ,𝑁𝑁𝑛𝑛−𝑚𝑚+1
 Predicted noise: 𝑁𝑁�𝑛𝑛,𝑁𝑁�𝑛𝑛−1,⋯ ,𝑁𝑁�𝑛𝑛−𝑞𝑞+1
 Thetas: 𝜃𝜃𝑘𝑘,𝑘𝑘−𝑗𝑗 , 𝑘𝑘 = 𝑛𝑛 − 𝐸𝐸 + 1,⋯𝑛𝑛 − 1, 𝑗𝑗 = 𝑛𝑛 − 𝐸𝐸,⋯ , 𝑘𝑘 − 1 and 𝜃𝜃𝑛𝑛,𝑛𝑛−𝑗𝑗 , 𝑗𝑗 = 𝑛𝑛 −

𝐸𝐸,⋯ ,𝑛𝑛 − 1
 Nu: 𝜈𝜈𝑛𝑛 , 𝜈𝜈𝑛𝑛−1,⋯ , 𝜈𝜈𝑛𝑛−𝑞𝑞+1

o Kalman filter method
 State vector(m elements): 𝑿𝑿�𝑛𝑛+1
 Omega matrix (m by m symmetric): 𝛀𝛀n+1. Only lower triangular part needs to be saved.
 H vector which contains m psi weights: 𝑯𝑯𝑇𝑇 = (𝜓𝜓1,⋯ ,𝜓𝜓𝑚𝑚)

Data for transfer function

For each predictor, say the 𝑖𝑖th predictor𝑋𝑋𝑖𝑖𝑡𝑡, the following information is needed

o Predictor values: 𝑋𝑋𝑖𝑖,𝑛𝑛−𝑗𝑗 , 𝑗𝑗 = 0,1,⋯ , 𝑝𝑝𝑖𝑖 + 𝑑𝑑𝑖𝑖 + 𝑠𝑠𝐷𝐷𝑖𝑖 + 𝐸𝐸𝑖𝑖 + 𝑠𝑠𝑣𝑣𝑖𝑖 − 1
o Transfer function values: 𝑉𝑉𝑖𝑖,𝑛𝑛−𝑗𝑗 , 𝑗𝑗 = 0, 1,⋯ , 𝑝𝑝𝑖𝑖 + 𝑠𝑠𝑠𝑠𝑖𝑖

Implementation notes:

1) Similar to the section 4.2, we assume that 𝑁𝑁𝑡𝑡 follow ARMA(p,q) process. If noise series follow
ARMA(p,q)(P,Q), it is needed to re-write as ARMA(p+sP,q+sQ) by computing the product of non-
seasonal and seasonal polynomials using the algorithm in Appendix B.

2) When the theta recursion method is used, the below formulas will be used for noise forecast(we need
engineer to check old code for confirmation)
One-step-ahead noise forecast and the prediction variance are given by

𝑁𝑁�𝑛𝑛+1 = 𝜑𝜑1𝑁𝑁𝑛𝑛 + 𝜑𝜑2𝑁𝑁𝑛𝑛−1 + ⋯+ 𝜑𝜑𝑝𝑝𝑁𝑁𝑛𝑛+1−𝑝𝑝 + �𝜃𝜃𝑛𝑛,𝑗𝑗�𝑁𝑁𝑛𝑛+1−𝑗𝑗 − 𝑁𝑁�𝑛𝑛+1−𝑗𝑗�
𝑞𝑞

𝑗𝑗=1

𝜎𝜎𝑁𝑁𝑛𝑛+1
2 = 𝜎𝜎2𝜈𝜈𝑛𝑛

h-step-ahead noise forecast and the prediction variance are given by

 𝑁𝑁�𝑛𝑛(ℎ) = �
∑ 𝜑𝜑𝑖𝑖𝑁𝑁�𝑛𝑛(ℎ − 𝑖𝑖)𝑝𝑝
𝑖𝑖=1 + ∑ 𝜃𝜃𝑛𝑛+ℎ−1,𝑗𝑗�𝑁𝑁𝑛𝑛+ℎ−𝑗𝑗 − 𝑁𝑁�𝑛𝑛+ℎ−𝑗𝑗�

𝑞𝑞
𝑗𝑗=ℎ , ℎ ≤ 𝐸𝐸

∑ 𝜑𝜑𝑖𝑖𝑁𝑁�𝑛𝑛(ℎ − 𝑖𝑖)𝑝𝑝
𝑖𝑖=1 , ℎ > 𝐸𝐸

where 𝑁𝑁�𝑛𝑛(𝑗𝑗) = 𝑁𝑁𝑛𝑛−𝑗𝑗 for 𝑗𝑗 ≤ 0.

𝜎𝜎𝑁𝑁𝑛𝑛
2 (ℎ) = 𝜎𝜎2���𝜒𝜒𝑞𝑞𝜃𝜃𝑛𝑛+ℎ−𝑞𝑞−1,𝑗𝑗−𝑞𝑞

𝑗𝑗

𝑞𝑞=0

�

2

𝜈𝜈𝑛𝑛+ℎ−𝑗𝑗−1

ℎ−1

𝑗𝑗=0

 where the constants χr are calculated recursively as

𝜒𝜒0 = 1

𝜒𝜒𝑞𝑞 = � 𝜑𝜑𝑘𝑘

min (𝑝𝑝,𝑞𝑞)

𝑘𝑘=1

𝜒𝜒𝑞𝑞−𝑘𝑘, 𝑝𝑝 = 1,2,3,⋯

And the 𝜈𝜈𝑡𝑡 and 𝜃𝜃𝑖𝑖𝑗𝑗 are computed recursively as follows:

For 𝑖𝑖 = 𝑛𝑛 + 1,𝑛𝑛 + 2,⋯

𝜃𝜃𝑖𝑖,𝑖𝑖−𝑘𝑘 =

⎩
⎨

⎧
0 𝑘𝑘 ≤ 𝑖𝑖 − 𝐸𝐸 − 1

𝜈𝜈𝑘𝑘−1 �𝜅𝜅(𝑖𝑖 + 1, 𝑘𝑘 + 1) −�𝜃𝜃𝑘𝑘,𝑘𝑘−𝑗𝑗𝜃𝜃𝑖𝑖,𝑖𝑖−𝑗𝑗𝜈𝜈𝑗𝑗

𝑘𝑘−1

𝑗𝑗=0

� 𝑖𝑖 − 𝐸𝐸 ≤ 𝑘𝑘 ≤ 𝑖𝑖 − 1

𝜈𝜈𝑖𝑖 = 𝜅𝜅(𝑖𝑖 + 1, 𝑖𝑖 + 1) − � 𝜃𝜃𝑖𝑖,𝑖𝑖−𝑗𝑗2
𝑖𝑖−1

𝑗𝑗=𝑖𝑖−𝑞𝑞

𝜈𝜈𝑗𝑗 = 𝛾𝛾(0) −�𝜃𝜃𝑖𝑖,𝑘𝑘2
𝑞𝑞

𝑘𝑘=1

𝜈𝜈𝑖𝑖−𝑘𝑘

where 𝜅𝜅(𝑖𝑖 + 1, 𝑘𝑘 + 1) = ∑ 𝜗𝜗𝑞𝑞′𝜗𝜗𝑞𝑞+|𝑖𝑖−𝑘𝑘|
′ ,𝑞𝑞−|𝑖𝑖−𝑘𝑘|

𝑞𝑞=0 for 𝑖𝑖 − 𝐸𝐸 ≤ 𝑘𝑘 ≤ 𝑖𝑖 − 1 and 𝜗𝜗𝑞𝑞′ are same as that in section
4.2.2.

3) If the values of predictor𝑋𝑋𝑖𝑖,𝑛𝑛+𝑗𝑗, 𝑗𝑗 = 1,2,⋯, are needed for h-step-ahead forecast and these value are
not available, then an expert exponential smoothing model will be built to forecast these values.
However, if values𝑋𝑋𝑖𝑖,𝑛𝑛+𝑗𝑗, 𝑗𝑗 = 1,2,⋯, are available, then two options can be used: a) use these
available data directly for forecast, b) use expert exponential smoothing model to forecast the these
values.

4) For the event variable, if values are not available for 𝑡𝑡 = 𝑛𝑛 + 1,𝑛𝑛 + 2,⋯, then we just assume all the
future values are 0 without building expert smoothing model.

5. Parameter Estimation
The parameters are estimated by optimizing an objective function, which is computed using the noise
residuals (𝑁𝑁𝑡𝑡 − 𝑁𝑁�𝑡𝑡) and their prediction variance. The computation of noise, noise prediction and
corresponding variance has already been described in the section 4. There are two objective functions of
interest: CLS estimation uses objective function based on noise residuals computed using CLS forecasting
and ML estimation uses noise residuals computed using ELS forecasting.

Let 𝜷𝜷 = (𝛽𝛽1,𝛽𝛽2,⋯ ,𝛽𝛽𝑘𝑘) be all the parameter in the model excluding the error variance 𝜎𝜎2, and for given 𝛃𝛃,
𝑅𝑅𝑡𝑡(𝜷𝜷) = �𝑁𝑁𝑡𝑡

(𝜷𝜷) − 𝑁𝑁�𝑡𝑡
(𝜷𝜷)� be the noise residual at 𝑡𝑡 in historical period. If a noise value is missing, the

corresponding residual is set to missing also. The prediction variance of the residual has the following form:
𝜎𝜎𝑁𝑁𝑡𝑡
2 = 𝜎𝜎2 ∗ 𝜂𝜂𝑡𝑡, where 𝜂𝜂𝑡𝑡 = 𝜈𝜈𝑡𝑡−1 for the non-missing case and Ω𝑡𝑡(1,1) + 1.0 in embedded missing value

case when ELS method is used. For CLS method, 𝜂𝜂𝑡𝑡 are simply 1 in non-missing value situation, and will be
complex function of ARMA parameters in embedded missing value situation. For simplicity, we just set them
as 1 in this case also.

Let us define weighted residual as 𝑅𝑅𝑡𝑡∗(𝛃𝛃) = 𝑅𝑅𝑡𝑡(𝛃𝛃)/�𝜂𝜂𝑡𝑡, and weighted sum of square 𝐸𝐸 = ∑𝑅𝑅𝑡𝑡2(𝛃𝛃) /𝜂𝜂𝑡𝑡, where
the sum is taken over all non-missing residuals.

Objective function for CLS estimation

In CLS method, 𝐸𝐸 is the objective function which is minimized with respect to the model parameters.

Objective function for ML method

In ML method, the objective function is the reduced log-likelihood function of the noise series which is
given by

𝐿𝐿 = −𝑠𝑠𝑛𝑛(𝐸𝐸/𝑛𝑛) − (1/𝑛𝑛)� ln�𝜂𝜂𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

Here 𝑛𝑛 is the number of non-missing residuals. The ML estimates are computed by maximizing this
objective function. Equivalently one can minimize the following objective function also: �∏ 𝜂𝜂𝑗𝑗𝑛𝑛

𝑗𝑗=1 �1/𝑛𝑛 ∗ 𝐸𝐸.

Parameter estimates

Let 𝐸𝐸∗ be the objective function which is 𝐸𝐸 for CLS method and �∏ 𝜂𝜂𝑗𝑗𝑛𝑛
𝑗𝑗=1 �1/𝑛𝑛 ∗ 𝐸𝐸 for ML method, and 𝜕𝜕𝑅𝑅𝑡𝑡

∗(𝛃𝛃)
𝜕𝜕βi

be the first derivative of 𝑅𝑅𝑡𝑡∗(𝛃𝛃) which is computed as

𝜕𝜕𝑅𝑅𝑡𝑡∗(𝛃𝛃)
𝜕𝜕𝛽𝛽𝑖𝑖

= �𝑅𝑅𝑡𝑡∗(𝛃𝛃) − 𝑅𝑅𝑡𝑡∗�𝛃𝛃�𝐢𝐢�� /𝛿𝛿

where 𝜷𝜷�𝒊𝒊 = �β1,⋯ ,𝛽𝛽𝑖𝑖 + 𝛿𝛿,⋯ , βk� and 𝛿𝛿 = −0.0001 if 𝛽𝛽𝑖𝑖 is positive and 0.0001 otherwise.

To introduce the estimation process, the following notations are needed:

• 𝑀𝑀: The maximum number of iteration, the default is 25 ∗ 𝑘𝑘, where k is the number of parameters.
• λ: The constraint parameter, the initial value is 0.001.
• 𝐹𝐹1: The increased factor of constraint parameter, the default value is 100.
• 𝐹𝐹2: The reduced factor of constraint parameter, the default value is 0.1.
• λmax: The maximum of constraint parameter, the default value is 109.
• 𝐽𝐽: The maximum number of steps in step halving method, the default is 6.
• 𝜀𝜀𝐷𝐷: Tolerance level of scaling quantities, the default value is 10−8.
• 𝜀𝜀𝑠𝑠: Tolerance level of relative objective function change, the default value is 10−5.
• 𝜀𝜀𝛽𝛽: Tolerance level of parameter change, the default value is 10−4.

Now the parameter estimation process is as follows:

Step1. Set initial values 𝛃𝛃(0), which will be discussed in section 6.

Step 2. Compute objective function S0∗ at 𝛃𝛃(0).

Step3. Let m = 0.

Step 4. Compute 𝑘𝑘×𝑘𝑘 matrix 𝑨𝑨 = �𝐴𝐴𝑖𝑖𝑗𝑗� and 𝑘𝑘×1 vector 𝑮𝑮 = (𝑎𝑎1,𝑎𝑎2,⋯ ,𝑎𝑎𝑘𝑘)𝑇𝑇, where 𝐴𝐴𝑖𝑖𝑗𝑗 =

∑ 𝜕𝜕𝑅𝑅𝑡𝑡
∗�𝛃𝛃(m)�
𝜕𝜕𝛽𝛽𝑖𝑖

𝜕𝜕𝑅𝑅𝑡𝑡
∗�𝛃𝛃(m)�
𝜕𝜕𝛽𝛽𝑗𝑗

𝑛𝑛
𝑡𝑡=1 and 𝑎𝑎𝑖𝑖 = ∑ 𝜕𝜕𝑅𝑅𝑡𝑡

∗�𝛃𝛃(m)�
𝜕𝜕𝛽𝛽𝑖𝑖

∗ 𝑅𝑅𝑡𝑡∗�𝛃𝛃(m)�𝑛𝑛
𝑡𝑡=1 , and compute the scaling quantities 𝐷𝐷𝑖𝑖 =

�𝐴𝐴𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1,⋯ , 𝑘𝑘 . Let 𝑀𝑀𝑎𝑎𝑥𝑥𝐷𝐷 = max
i

{𝐷𝐷𝑖𝑖}, if 𝐷𝐷𝑖𝑖
𝑀𝑀𝑠𝑠𝑥𝑥𝐷𝐷

< 𝜀𝜀𝐷𝐷, then𝐷𝐷𝑖𝑖 = 0.

Step5. Compute 𝑘𝑘×𝑘𝑘 matrix 𝑨𝑨∗ = �𝐴𝐴𝑖𝑖𝑗𝑗∗ � and 𝑘𝑘×1 vector 𝑮𝑮∗ = (𝑎𝑎1∗,𝑎𝑎2∗,⋯ ,𝑎𝑎𝑘𝑘∗)𝑇𝑇, where 𝐴𝐴𝑖𝑖𝑗𝑗∗ = 𝐴𝐴𝑖𝑖𝑗𝑗/(𝐷𝐷𝑖𝑖 ∗ 𝐷𝐷𝑗𝑗),
but if 𝐷𝐷𝑖𝑖 = 0 or 𝐷𝐷𝑗𝑗 = 0, then 𝐴𝐴𝑖𝑖𝑗𝑗∗ = 0; compute 𝑎𝑎𝑖𝑖∗ = 𝑎𝑎𝑖𝑖/𝐷𝐷𝑖𝑖, but if 𝐷𝐷𝑖𝑖 = 0, then 𝑎𝑎𝑖𝑖∗ = 0.

Step 6. Let 𝐴𝐴𝑖𝑖𝑖𝑖∗ = 1 + λ. Compute 𝒉𝒉∗ = 𝑨𝑨∗−𝑮𝑮∗. Based on 𝒉𝒉∗, compute 𝒉𝒉 = (ℎ1, ℎ2,⋯ , ℎ𝑘𝑘)𝑇𝑇 where ℎ𝑖𝑖 =
ℎ𝑖𝑖∗/𝐷𝐷𝑖𝑖 and ℎ𝑖𝑖∗ are the elements of 𝒉𝒉∗.

Step 7. 𝜉𝜉 = 0.

Step 8. 𝛃𝛃(m+1) = 𝛃𝛃(m) − 𝒉𝒉.

Step 9. Check the following admissibility constraints on the parameters𝜷𝜷(m+1):

a) The roots of AR polynomial with parameters are outside the unit circle. Please see Appendix D for
details.

b) If the roots of MA polynomial are outside the unit circle.
c) If the sum of denominator polynomial coefficients is non-zero for each predictor variable. And the

roots of denominator polynomial are outside the unit circle.
If the conditions a),b) and c) hold, then go to step 11. Otherwise, let 𝛃𝛃i

(m+1) =
�β1

(m+1),⋯ , βi
(m),⋯ , βk

(m+1)�, 𝑖𝑖 = 1,⋯ , 𝑘𝑘. If there is one parameter vector, 𝛃𝛃i′
(m+1), such that the conditions a),

b) and c) hold, then 𝛃𝛃(m+1) = 𝛃𝛃i′
(m+1) and go to step 11. If there is no parameter vector 𝛃𝛃i

(m+1), 𝑖𝑖 = 1,⋯ , 𝑘𝑘
satisfy the conditions a), b) and c), then go to step 10.

Step 10. 𝒉𝒉 = 𝒉𝒉/2, 𝜉𝜉 = 𝜉𝜉 + 1. If 𝜉𝜉 ≤ 𝐽𝐽, go to step 8. If 𝜉𝜉 > 𝐽𝐽, compute λ = λ ∗ 𝐹𝐹1. If λ > λmax, then output
𝛃𝛃(m) as finial estimation and stop, else go to step 6.

Step 11. Compute objective function Sm+1
∗ at 𝛃𝛃(m+1). If Sm+1∗ > Sm∗ , then λ = λ ∗ 𝐹𝐹1. If λ > λmax, then

output 𝛃𝛃(m) as finial estimation and stop, else go to step 6. If Sm
∗ −Sm+1

∗

Sm∗
< 𝜀𝜀𝑠𝑠 then output 𝛃𝛃(m+1) as finial

estimation and stop. If Sm
∗ −Sm+1

∗

Sm∗
≥ 𝜀𝜀𝑠𝑠 , then go to step 12.

Step 12. If max
𝑖𝑖
�βi

(m+1) − βi
(m)� < 𝜀𝜀𝛽𝛽, then output 𝛃𝛃(m+1) as finial estimation and stop, else, m = m + 1. If

m ≤ 𝑀𝑀, compute λ = λ ∗ 𝐹𝐹2, then go to step 4. Otherwise output 𝛃𝛃(m) as finial estimation and stop.

Let 𝛃𝛃� be the final estimation of 𝛃𝛃. The covariance matrix of 𝛃𝛃� is 𝑨𝑨− , where 𝑨𝑨 is computed based on 𝛃𝛃�, see
the step 4 in above process. Therefore, the standard error of �̂�𝛽𝑖𝑖 is 𝜎𝜎𝑖𝑖𝑖𝑖 which is the square root of the ith
diagonal element of 𝑨𝑨−.

Let 𝐸𝐸𝑑𝑑𝑖𝑖𝑛𝑛𝑠𝑠𝑠𝑠 be the weighted sum of square based on the 𝛃𝛃�, then the error variance can be estimated as 𝜎𝜎�2 =
𝐸𝐸𝑑𝑑𝑖𝑖𝑛𝑛𝑠𝑠𝑠𝑠/(𝑛𝑛 − 𝑘𝑘).

6. Initial value
This section discusses how to set initial parameters at the beginning of the parameter estimation.

Transfer function parameters

All the numerator and denominator polynomial parameters are initialized to zero except the coefficient of the
0th power in the numerator polynomial, which is initialized to the corresponding regression coefficient using
least square method.

Denote the initial value of the 0th power parameter in the numerator polynomial as ω�i0,⋯ ,ω�k0. Then the
noise series are computed as

 𝑁𝑁𝑡𝑡 = ∆𝑖𝑖𝑡𝑡 − �̂�𝑐 − ∑ 𝜔𝜔�𝑖𝑖0𝛥𝛥𝑖𝑖𝐵𝐵𝑏𝑏𝑖𝑖𝑓𝑓𝑖𝑖(𝑋𝑋𝑖𝑖𝑡𝑡)𝑘𝑘
𝑖𝑖=1

which will be used to compute initial parameters of AR and MA.

Non-Seasonal AR parameters

The AR parameters are computed by the method in Appendix A6.2 of Box, Jenkins, and Reinsel(1994). The
method can be described as follows:

�

𝜑𝜑�1
𝜑𝜑�2
⋮
𝜑𝜑�𝑝𝑝

� = �

𝜌𝜌𝑞𝑞 𝜌𝜌𝑞𝑞−1 ⋯ 𝜌𝜌𝑞𝑞−𝑝𝑝+1
𝜌𝜌𝑞𝑞+1 𝜌𝜌𝑞𝑞 ⋯ 𝜌𝜌𝑞𝑞−𝑝𝑝+2
⋮ ⋮ ⋱ ⋮

𝜌𝜌𝑞𝑞+𝑝𝑝−1 𝜌𝜌𝑞𝑞+𝑝𝑝−2 ⋯ 𝜌𝜌𝑞𝑞

�

−1

�

𝜌𝜌𝑞𝑞+1
𝜌𝜌𝑞𝑞+2
⋮

𝜌𝜌𝑞𝑞+𝑝𝑝

�

where 𝜌𝜌𝑞𝑞−𝑝𝑝+1,⋯ 𝜌𝜌𝑞𝑞+1,𝜌𝜌𝑞𝑞+2,⋯ ,𝜌𝜌𝑞𝑞+𝑝𝑝 are autocorrelations of Nt.

Based on 𝜑𝜑�𝑖𝑖 , 𝑖𝑖 = 1,⋯ , 𝑝𝑝, the stationary condition that the roots of AR polynomial are outside the unit circles
is needed to check. If the stationary condition holds, then they are used as initial values. Otherwise, let 𝜑𝜑�𝑖𝑖 =
0.9 ∗ 𝜑𝜑�𝑖𝑖 . 𝑖𝑖 = 1,⋯ , 𝑝𝑝, then continue to check stationary condition based on updated parameters. If the
stationary condition is satisfied, then stop. Otherwise repeat this process until the stationary condition holds
and final 𝜑𝜑�𝑖𝑖 . 𝑖𝑖 = 1,⋯ , 𝑝𝑝 will be used as AR initial parameters.

Non-Seasonal MA parameters

Let

𝑤𝑤𝑡𝑡 = 𝑁𝑁𝑡𝑡 − 𝜑𝜑1𝑁𝑁𝑡𝑡−1 − ⋯− 𝜑𝜑𝑝𝑝𝑁𝑁𝑡𝑡−𝑝𝑝 = 𝑎𝑎𝑡𝑡 − 𝜃𝜃1𝑎𝑎𝑡𝑡−1 − ⋯− 𝜃𝜃𝑞𝑞𝑎𝑎𝑡𝑡−𝑞𝑞

The cross covariance function is

𝜆𝜆𝑠𝑠 = 𝐸𝐸(𝑤𝑤𝑡𝑡+𝑠𝑠𝑎𝑎𝑡𝑡) = 𝐸𝐸 ��𝑎𝑎𝑡𝑡+𝑠𝑠 − 𝜃𝜃1𝑎𝑎𝑡𝑡+𝑠𝑠−1 − ⋯− 𝜃𝜃𝑞𝑞𝑎𝑎𝑡𝑡+𝑠𝑠−𝑞𝑞�𝑎𝑎𝑡𝑡� =

⎩
⎪
⎨

⎪
⎧ 𝜎𝜎2, 𝑠𝑠 = 0
−𝜃𝜃1𝜎𝜎2, 𝑠𝑠 = 1

⋯ ⋯
−𝜃𝜃𝑞𝑞𝜎𝜎2, 𝑠𝑠 = 𝐸𝐸

0, 𝑠𝑠 > 𝐸𝐸

Assuming that an AR(p+q) can approximate Nt, it follows that:

𝑁𝑁𝑡𝑡 − 𝜑𝜑1′ 𝑁𝑁𝑡𝑡−1 −⋯− 𝜑𝜑𝑝𝑝′ 𝑁𝑁𝑡𝑡−𝑝𝑝 − 𝜑𝜑𝑝𝑝+1′ 𝑁𝑁𝑡𝑡−𝑝𝑝−1 − ⋯− 𝜑𝜑𝑝𝑝+𝑞𝑞′ 𝑁𝑁𝑡𝑡−𝑝𝑝−𝑞𝑞 = 𝑎𝑎𝑡𝑡

The AR parameters of this model are estimated as above and are denoted as 𝜑𝜑�1′ ,⋯ ,𝜑𝜑�𝑝𝑝+𝑞𝑞′ .

Thus 𝜆𝜆𝑠𝑠 can be estimated by

�̂�𝜆𝑠𝑠 ≈ 𝐸𝐸 ��𝑁𝑁𝑡𝑡+𝑠𝑠 − 𝜑𝜑�1𝑁𝑁𝑡𝑡+𝑠𝑠−1 − ⋯− 𝜑𝜑�𝑝𝑝𝑁𝑁𝑡𝑡+𝑠𝑠−𝑝𝑝��𝑁𝑁𝑡𝑡 − 𝜑𝜑�1′ 𝑁𝑁𝑡𝑡−1 −⋯− 𝜑𝜑�𝑝𝑝+𝑞𝑞′ 𝑁𝑁𝑡𝑡−𝑝𝑝−𝑞𝑞��

= �𝜌𝜌𝑠𝑠 −�𝜑𝜑�𝑗𝑗′ 𝜌𝜌𝑠𝑠+𝑗𝑗

𝑝𝑝+𝑞𝑞

𝑗𝑗=1

−�𝜑𝜑�𝑖𝑖𝜌𝜌𝑠𝑠−𝑖𝑖

𝑝𝑝

𝑖𝑖=1

+ ��𝜑𝜑�𝑖𝑖𝜑𝜑�𝑗𝑗′ 𝜌𝜌𝑠𝑠+𝑗𝑗−𝑖𝑖

𝑝𝑝+𝑞𝑞

𝑗𝑗=1

𝑝𝑝

𝑖𝑖=1

� 𝑐𝑐0

And the error variance 𝜎𝜎2 is approximated by

𝜎𝜎�2 = 𝑉𝑉𝑎𝑎𝑝𝑝 �−�𝜑𝜑�𝑗𝑗′𝑁𝑁𝑡𝑡−𝑗𝑗

𝑝𝑝+𝑞𝑞

𝑗𝑗=0

� = 𝑐𝑐0��𝜑𝜑�𝑖𝑖′𝜑𝜑�𝑗𝑗′ 𝜌𝜌𝑖𝑖−𝑗𝑗

𝑝𝑝+𝑞𝑞

𝑖𝑖=0

𝑝𝑝+𝑞𝑞

𝑖𝑖=0

Then the MA parameters are estimated by

𝜃𝜃�𝑠𝑠 = −
�̂�𝜆𝑠𝑠
𝜎𝜎�2

, 𝑠𝑠 = 1,⋯ , 𝐸𝐸

Same as the AR parameters, the stationary condition that the roots of MA polynomial are outside the unit
circles is needed to check. If the condition does not hold, update 𝜃𝜃�𝑠𝑠 = 0.9 ∗ 𝜃𝜃�𝑠𝑠 , 𝑠𝑠 = 1,⋯ , 𝐸𝐸 repeatedly until
𝜃𝜃�𝑠𝑠 , 𝑠𝑠 = 1,⋯ , 𝐸𝐸 that satisfy the condition are obtained.

Seasonal parameters

For seasonal AR and MA components, the autocorrelations at the seasonal lags in the above equations are
used.

7. Model summary and diagnostics

7.1. Coefficients and statistical inference
• Coefficients and standard error

After the model building, we can get the coefficients of AR, MA and predictors and corresponding
standard error, see section 5.

• t-statistics for coefficients
t statistics for �̂�𝛽𝑖𝑖 is

𝑡𝑡 =
�̂�𝛽𝑖𝑖
𝜎𝜎𝑖𝑖𝑖𝑖

Where 𝜎𝜎𝑖𝑖𝑖𝑖 is the standard error of �̂�𝛽𝑖𝑖, and the statistic t follows an asymptotic t distribution with the
degree of freedom (𝑛𝑛 − 𝑘𝑘), here 𝑛𝑛 is the number of non-missing residuals and 𝑘𝑘 is the number of
parameter in the model. Then the p-value is computed as

𝑝𝑝 = 2×�1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡𝑛𝑛−𝑘𝑘 ≤ |𝑡𝑡|)�

• 100(α−1)% confidence internals

�̂�𝛽 ± 𝜎𝜎𝑖𝑖𝑖𝑖×𝑡𝑡𝛼𝛼
2 ,𝑛𝑛−𝑘𝑘

7.2. Goodness-of-fit statistics

Goodness-of-fit statistics are based on the original series Y. Let k is the number of parameters in the model
and n is the number of non-missing residuals.
• Mean squared error

𝑀𝑀𝐸𝐸𝐸𝐸 =
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1

𝑛𝑛 − 𝑘𝑘

• Root mean squared error
𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸 = √𝑀𝑀𝐸𝐸𝐸𝐸

• Mean absolute percent error

𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸 =
100
𝑛𝑛

��
𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡
𝑌𝑌𝑡𝑡

�
𝑛𝑛

𝑡𝑡=1

• Maximum absolute percent error

𝑀𝑀𝑎𝑎𝑥𝑥𝐴𝐴𝑃𝑃𝐸𝐸 = 100max ��
𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡
𝑌𝑌𝑡𝑡

��

• Root mean squared percent error

𝑅𝑅𝑀𝑀𝐸𝐸𝑃𝑃𝐸𝐸 = �
100
𝑛𝑛

��
𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡
𝑌𝑌𝑡𝑡

�
2𝑛𝑛

𝑡𝑡=1

• Mean absolute error

𝑀𝑀𝐴𝐴𝐸𝐸 =
1
𝑛𝑛
��𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�
𝑛𝑛

𝑡𝑡=1

• Maximum absolute error
𝑀𝑀𝑎𝑎𝑥𝑥𝐴𝐴𝐸𝐸 = max��𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡��

• Bayesian information criterion

𝐵𝐵𝐼𝐼𝐶𝐶 = 𝑛𝑛×𝑠𝑠𝑛𝑛 �
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1

𝑛𝑛
� + 𝑘𝑘×𝑠𝑠𝑛𝑛(𝑛𝑛)

• Akaike information criterion

𝐴𝐴𝐼𝐼𝐶𝐶 = 𝑛𝑛×𝑠𝑠𝑛𝑛 �
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1

𝑛𝑛
� + 2𝑘𝑘

• R-squared

𝑅𝑅2 = 1 −
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1

∑ (𝑌𝑌𝑡𝑡 − 𝑌𝑌�)2𝑛𝑛
𝑡𝑡=1

• Stationary R-squared

𝑅𝑅𝑆𝑆2 = 1 −
∑ �𝑖𝑖𝑡𝑡 − �̂�𝑖𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1

∑ (∆𝑖𝑖𝑡𝑡 − ∆𝑖𝑖����)2𝑛𝑛
𝑡𝑡=1

Where the sum is over the terms in which both Zt − Z�t−1 and ∆Zt − ∆Z���� are not missing.

∆Z���� is the simple mean model for the differenced transformed series, which is equivalent to the univariate
baseline model ARIMA(0, d, 0)(0, D, 0).

Note: Both the stationary and usual R-squared can be negative with range (−∞, 1]: Negative R-squared value
means that the model under consideration is worse than the baseline model. Zero R-squared value means that
the model under consideration is as good or bad as the baseline model. Positive R-squared value means that
the model under consideration is better than the baseline model.

7.3. Diagnostic statistics
ARIMA/TF diagnostic statistics are based on noise residual process, 𝑅𝑅𝑡𝑡 = 𝑁𝑁𝑡𝑡 − 𝑁𝑁�𝑡𝑡.

• Residual autocorrelation function
The residual autocorrelation function can be computed as

γ�k =
∑ (Rt − R�)(Rt+k − R�)n−k
t=1

∑ (Rt − R�)2n
t=1

 for k = 0,1 … , K

where R� = ∑ Rtn
t=1
n

 is the sample mean of Rt. The maximum number of lags, K, will be specified by user and it
must be a positive number. The default value of K is 24.

Bartlett (1946) assumes that the true MA order of the process is 𝑘𝑘 − 1 and the approximate standard error is

 se(𝛾𝛾�𝑘𝑘) ≅ �
1
𝑛𝑛
�1 + 2��𝛾𝛾�𝑠𝑠�

2
𝑘𝑘−1

𝑠𝑠=1

�

The approximate 100(1 − α)% confidence interval of 𝛾𝛾𝑗𝑗 = 0 can be computed as
�−𝑠𝑠𝑠𝑠�𝛾𝛾�𝑗𝑗� ∗ 𝑧𝑧1−𝛼𝛼/2, 𝑠𝑠𝑠𝑠�𝛾𝛾�𝑗𝑗� ∗ 𝑧𝑧1−𝛼𝛼/2�

where 𝑧𝑧1−𝛼𝛼/2 is the (1 − 𝛼𝛼/2)100th percentile of the standard normal distribution.

Please note that if 𝑅𝑅𝑡𝑡 is missing value, then it will be ignored during computing 𝑅𝑅�, and 𝑛𝑛 will be the number
of non-missing residuals. And the term (𝑅𝑅𝑡𝑡 − 𝑅𝑅�)(𝑅𝑅𝑡𝑡+𝑘𝑘 − 𝑅𝑅�) and (𝑅𝑅𝑡𝑡 − 𝑅𝑅�)2 will also be ignored in 𝛾𝛾�𝑘𝑘 if 𝑅𝑅𝑡𝑡 is
missing value.

• Residual partial autocorrelation function

The kth residual partial autocorrelation function 𝜙𝜙�𝑘𝑘,𝑘𝑘 can be computed as

ϕ�1,1 = γ�1

ϕ�2,2 = (γ�2 − (γ�1)2)
[1 − (γ�1)2]�

ϕ�k,j = ϕ�k−1,j − ϕ�k,kϕ�k−1,k−j, k = 2, 3, … , j = 1, 2, … , k − 1

 ϕ�k,k =
γ�k − ∑ ϕ�k−1,jγ�k−jk−1

j=1

1 − ∑ ϕ�k−1,jγ�jk−1
j=1

, k = 3, 4, … , K

The maximum number of lags, 𝐾𝐾, will be specified by user and it must be a positive number. The default
value of 𝐾𝐾 is 24.

According to Quenouville (1949), if time series 𝑅𝑅𝑡𝑡 follows AR(𝑝𝑝) model, then

𝜙𝜙�𝑘𝑘,𝑘𝑘~̇N �0,
1
𝑛𝑛
�

Thus

se�𝜙𝜙�𝑘𝑘,𝑘𝑘� ≅ �1
𝑛𝑛

The approximate 100(1 − α)% confidence interval of 𝜙𝜙𝑘𝑘,𝑘𝑘 = 0 can be computed as
�−𝑠𝑠𝑠𝑠�𝜙𝜙�𝑘𝑘,𝑘𝑘� ∗ 𝑧𝑧1−𝛼𝛼/2, 𝑠𝑠𝑠𝑠�𝜙𝜙�𝑘𝑘,𝑘𝑘� ∗ 𝑧𝑧1−𝛼𝛼/2�

• Ljung-Box statistic

 The Ljung-Box statistic is computed as

𝑄𝑄(𝐾𝐾) = 𝑛𝑛(𝑛𝑛 + 2)�𝛾𝛾�k2/(n − k)
𝐾𝐾

𝑘𝑘=1

Where K is the number of lags to be tested and we will fix K as 18, and 𝛾𝛾�𝑘𝑘 is the kth lag autocorrelation of
residual. The statistic 𝑄𝑄(𝐾𝐾) is approximately distributed as 𝜒𝜒2(𝐾𝐾 −𝑚𝑚), where m is the number of parameters
other than constant term and predictor related parameters. Therefore the p-value of 𝑄𝑄(𝐾𝐾) can be computed as

𝑝𝑝 = 1 − Pr (𝜒𝜒2(𝐾𝐾 −𝑚𝑚) ≤ 𝑄𝑄(𝐾𝐾))

If p-value is less than significant level 𝛼𝛼, then residual values exhibit autocorrelation. That is, the model does
not explain all the autocorrelation and might need to be manually adjusted.

7.4. Predictor importance

Suppose for 𝑘𝑘 predictor series, 𝑋𝑋𝑖𝑖𝑡𝑡 , 𝑖𝑖 = 1,2,⋯ , 𝑘𝑘, and 𝑁𝑁�𝑡𝑡 ,𝑉𝑉𝑖𝑖𝑡𝑡 , 𝑖𝑖 = 1,2,⋯ , 𝑘𝑘 are the noise forecast and transfer
functions based on model we built, then the predictor importance can be compute using approximate leave-
one-out method which is described as following:

Step1. Compute series 𝑄𝑄𝑡𝑡
(0) = �𝑐𝑐 + ∑ 𝑉𝑉𝑖𝑖𝑡𝑡𝑘𝑘

𝑖𝑖=1 � and 𝑄𝑄𝑡𝑡
(𝑖𝑖) = �𝑁𝑁�𝑡𝑡 + 𝑐𝑐 + ∑ 𝑉𝑉𝑗𝑗𝑡𝑡𝑗𝑗≠𝑖𝑖 �, 𝑖𝑖 = 1,2,⋯ , 𝑘𝑘

Step 2. Compute series �̂�𝑖𝑡𝑡
(𝑖𝑖) = 𝑄𝑄𝑡𝑡

(𝑖𝑖), 𝑖𝑖 = 1,2,⋯ , 𝑘𝑘 if the dependent series is not differenced, otherwise

�̂�𝑖𝑡𝑡
(𝑖𝑖) = 𝑄𝑄𝑡𝑡

(𝑖𝑖) − � 𝜏𝜏𝑗𝑗𝑖𝑖𝑡𝑡−𝑗𝑗

𝑑𝑑+𝐷𝐷𝑠𝑠

𝑗𝑗=1

, 𝑖𝑖 = 0,1,2,⋯ ,𝑘𝑘

where 𝜏𝜏𝑗𝑗 is the coefficient corresponding to power 𝑗𝑗 of the difference operator ∆.

Step 3. The approximate leave-one-out predicted value as follows:

• If the dependent series is not transformed, then
 𝑦𝑦�𝑡𝑡

(𝑖𝑖) = �̂�𝑖𝑡𝑡
(𝑖𝑖), 𝑖𝑖 = 0,1,2,⋯ , 𝑘𝑘

• If the transformed function is log, then

 𝑦𝑦�𝑡𝑡
(𝑖𝑖) = exp ��̂�𝑖𝑡𝑡

(𝑖𝑖) +
𝜎𝜎𝑍𝑍𝑡𝑡
2

2
� , 𝑖𝑖 = 0,1,2,⋯ , 𝑘𝑘

• If the transformed function if square root, then
 𝑦𝑦�𝑡𝑡

(𝑖𝑖) = ��̂�𝑖𝑡𝑡
(𝑖𝑖) �

2
+ σZt

2 , 𝑖𝑖 = 0,1,2,⋯ , 𝑘𝑘

where σZt
2 is the variance of Zt, which is same as that in the section 4.1,4.2 and 4.3.

Step 4. Compute leave-one-out absolute percent error series for each predictor

𝑠𝑠𝑡𝑡
(𝑖𝑖) = �

𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡
(𝑖𝑖)

𝑦𝑦𝑡𝑡
� , 𝑖𝑖 = 0,1,2,⋯ , 𝑘𝑘

And then trim series 𝑠𝑠𝑡𝑡
(𝑖𝑖) by removing the top n*5% largest 𝑠𝑠𝑡𝑡

(𝑖𝑖) .

Step 5. Compute the leave-one-out mean absolute percent error based on the trimmed series in step 4 for each
predictor

𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸(𝑖𝑖) =
100
𝑛𝑛∗

�𝑠𝑠𝑡𝑡
(𝑖𝑖)

𝑛𝑛∗

𝑡𝑡=1

, 𝑖𝑖 = 0,1,2,⋯ , 𝑘𝑘

Where 𝑛𝑛∗ is the number of cases in the trimmed series of 𝑠𝑠𝑡𝑡
(𝑖𝑖).

Step 6. The predictor importance can be computed as

𝑃𝑃𝐼𝐼(𝑖𝑖) =
𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸(𝑖𝑖)

∑ 𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸(𝑖𝑖)𝑘𝑘
𝑖𝑖=0

, 𝑖𝑖 = 0,1,2,⋯ , 𝑘𝑘

8. Scenario analysis
For a given transfer function model, scenario analysis can be performed by substituting values of given
predictors in a given time span, and checking how the forecast values of the target will be affected.
Specifically, user needs to specify the following input for a scenario analysis:

• Predictor names in the model for scenario analysis.
• The beginning time, 𝑡𝑡𝑏𝑏 , and end time, 𝑡𝑡𝑠𝑠 for predictors to be modified.
• A vector of values to be used as substitute for each predictor specified for scenario analysis.
• The last time 𝑡𝑡𝑠𝑠 at which the target will be forecasted, where𝑡𝑡𝑠𝑠 ≥ 𝑡𝑡𝑏𝑏.

Based on the above information, forecast will be performed from 𝑡𝑡 = 𝑡𝑡𝑏𝑏 to 𝑡𝑡 = 𝑡𝑡𝑠𝑠.

Appendix A: Double seasonal ARIMA model
A double seasonal ARIMA(p,d,q)(P1, D1, Q1)(P2, D2,Q2) model can be described as:

Δ𝑖𝑖𝑡𝑡 = 𝑐𝑐 +
𝜃𝜃𝑞𝑞(𝐵𝐵) ΘQ1(Bs1)ΘQ2(Bs2)
𝜙𝜙𝑝𝑝(𝐵𝐵)ΦP1(Bs1)ΦP2(Bs2)

𝑎𝑎𝑡𝑡

where

• 𝑠𝑠1 : the first seasonality or period of the model
• 𝑠𝑠2: the second seasonality or period of the model, and 𝑠𝑠2 > 𝑠𝑠1
• 𝜙𝜙𝑝𝑝(𝐵𝐵): non-seasonal AR polynomial of order 𝑝𝑝, 𝜙𝜙𝑝𝑝(𝐵𝐵) = 1 − 𝜑𝜑1𝐵𝐵 − 𝜑𝜑2𝐵𝐵2 −⋯− 𝜑𝜑𝑝𝑝𝐵𝐵𝑝𝑝
• 𝜃𝜃𝑞𝑞(𝐵𝐵): non-seasonal MA polynomial of order 𝐸𝐸, 𝜃𝜃𝑞𝑞(𝐵𝐵) = 1 − 𝜗𝜗1𝐵𝐵 − 𝜗𝜗2𝐵𝐵2 − ⋯− 𝜗𝜗𝑞𝑞𝐵𝐵𝑞𝑞
• ΦP1(Bs1): the first seasonal AR polynomial of 𝐵𝐵𝑠𝑠1 with order 𝑃𝑃1, ΦP1(Bs1) = 1 −Φ11Bs1 −

Φ12B2s1 − ⋯−Φ1P1BP1s1
• ΘQ1(Bs1): the first seasonal MA polynomial of 𝐵𝐵𝑠𝑠1 with order 𝑄𝑄1, ΘQ1(Bs1) = 1 − Θ11Bs1 −

Θ12B2s1 − ⋯− Θ1Q1BQ1s1
• ΦP2(Bs2): the second seasonal AR polynomial of 𝐵𝐵𝑠𝑠2 with order 𝑃𝑃2, ΦP2(Bs2) = 1 −Φ21Bs2 −

Φ22B2s2 − ⋯− Φ2P2BP2s2
• ΘQ2(Bs2): the second seasonal MA polynomial of 𝐵𝐵𝑠𝑠2 with order 𝑄𝑄2, ΘQ2(Bs2) = 1 − Θ21Bs2 −

Θ22B2s2 − ⋯− Θ2Q2BQ2s2

• Δ: differencing operator, Δ = (1 − 𝐵𝐵)𝑑𝑑(1 − 𝐵𝐵𝑠𝑠1)𝐷𝐷1(1 − 𝐵𝐵𝑠𝑠2)𝐷𝐷2

Since parameter estimation and forecast of the double seasonal ARIMA(p, d, q)(P1, D1, Q1)(P2, D2,Q2) are
similar to the similar to the ARIMA(p, d, q)(P1, D1, Q1), we just give some implementation here:

Implementation notes:

• Initial values: the initial values for non-seasonal AR and MA part are computed using the algorithm
in Section 6. For each seasonal AR and MA part, the autocorrelations at the corresponding seasonal
lags are computed, and then algorithm for non-seasonal AR and MA will be used.

• Forecasting: we need to re-write the ARIMA(p, q)(P1, Q1)(P2, Q2) model as
ARMA(p+s1P1+s2P2,q+s1Q1+s2Q2) by computing the product of non-seasonal and seasonal
polynomials using the algorithm in Appendix B.

Appendix B: Ratio and product of two polynomials

Ratio of two polynomials

Suppose 𝜙𝜙𝑝𝑝(𝐵𝐵) = 1 − 𝜑𝜑1𝐵𝐵 − 𝜑𝜑2𝐵𝐵2 − ⋯− 𝜑𝜑𝑝𝑝𝐵𝐵𝑝𝑝, and 𝜃𝜃𝑞𝑞(𝐵𝐵) = 1 − 𝜗𝜗1𝐵𝐵 − 𝜗𝜗2𝐵𝐵2 − ⋯− 𝜗𝜗𝑞𝑞𝐵𝐵𝑞𝑞 are two
polynomials of degree p and q respectively. Of course some of the coefficients in the above polynomials can
be zero.

We want to compute the coefficients 𝜓𝜓𝑗𝑗 in the power series representation

𝜃𝜃𝑞𝑞(𝐵𝐵)
𝜙𝜙𝑝𝑝(𝐵𝐵) = 1 + 𝜓𝜓1B + 𝜓𝜓2B2 + ⋯

These coefficients can be obtained as follows. Define 𝜗𝜗0′ = 1, 𝜗𝜗𝑖𝑖′ = −𝜗𝜗𝑖𝑖 , 𝑖𝑖 = 1,⋯ , 𝐸𝐸, 𝜗𝜗𝑗𝑗′ = 0 for 𝑗𝑗 > 𝐸𝐸 and
𝜑𝜑𝑗𝑗 = 0 for 𝑗𝑗 > 𝑝𝑝. Now recursively compute 𝜓𝜓𝑗𝑗by the following recursions:

𝜓𝜓0 = 𝜗𝜗0′ = 1, 𝑗𝑗 = 0;

𝜓𝜓𝑗𝑗 − � 𝜑𝜑𝑗𝑗𝜓𝜓𝑗𝑗−𝑘𝑘
0<𝑘𝑘≤𝑗𝑗

= 𝜗𝜗𝑗𝑗′ , 0 ≤ 𝑗𝑗 < max(𝑝𝑝, 𝐸𝐸 + 1);

𝜓𝜓𝑗𝑗 − � 𝜑𝜑𝑗𝑗𝜓𝜓𝑗𝑗−𝑘𝑘
0<𝑘𝑘≤𝑝𝑝

= 0, 𝑗𝑗 ≥ max(𝑝𝑝, 𝐸𝐸 + 1)

These equations can be easily solved successively for𝜓𝜓0,𝜓𝜓1,𝜓𝜓2,⋯. Thus

𝜓𝜓0 = 𝜗𝜗0′ = 1

𝜓𝜓1 = 𝜗𝜗1′ + 𝜓𝜓0𝜑𝜑1

𝜓𝜓2 = 𝜗𝜗2′ + 𝜓𝜓0𝜑𝜑2 + 𝜓𝜓1𝜑𝜑1

𝜓𝜓3 = 𝜗𝜗3′ + 𝜓𝜓0𝜑𝜑3 + 𝜓𝜓1𝜑𝜑2 + 𝜓𝜓2𝜑𝜑1

⋯

Product of two polynomials

For two polynomials 𝑓𝑓𝑝𝑝(𝐵𝐵) = 𝑓𝑓0 + 𝑓𝑓1𝐵𝐵 + 𝑓𝑓2𝐵𝐵2 + ⋯+ 𝑓𝑓𝑝𝑝𝐵𝐵𝑝𝑝 and 𝑎𝑎𝑞𝑞(𝐵𝐵) = 𝑎𝑎0+𝑎𝑎1𝐵𝐵+𝑎𝑎2𝐵𝐵2 + ⋯+ 𝑎𝑎𝑞𝑞𝐵𝐵𝑞𝑞 ,

the coefficients of the product

𝑓𝑓𝑝𝑝(𝐵𝐵)𝑎𝑎𝑞𝑞(𝐵𝐵) = 𝜉𝜉0 + 𝜉𝜉1𝐵𝐵 + 𝜉𝜉1𝐵𝐵2 + ⋯+ 𝜉𝜉𝑝𝑝+𝑞𝑞𝐵𝐵𝑝𝑝+𝑞𝑞

can be computed as

𝜉𝜉𝑗𝑗 = �𝑓𝑓𝑘𝑘𝑎𝑎𝑗𝑗−𝑘𝑘, 𝑗𝑗 = 0,1,⋯ , 𝑝𝑝 + 𝐸𝐸
𝑗𝑗

𝑘𝑘=0

In the summation, 𝑓𝑓𝑗𝑗 = 0, if 𝑗𝑗 > 𝑝𝑝 and 𝑎𝑎𝑗𝑗 = 0, if 𝑗𝑗 > 𝐸𝐸.

Appendix C: Theoretical ACF of an ARMA process
Suppose an ARMA (p, q) process with the AR polynomial 𝜙𝜙𝑝𝑝(𝐵𝐵) = 1 − 𝜑𝜑1𝐵𝐵 − 𝜑𝜑2𝐵𝐵2 − ⋯− 𝜑𝜑𝑝𝑝𝐵𝐵𝑝𝑝 and MA
polynomial𝜃𝜃𝑞𝑞(𝐵𝐵) = 1 − 𝜗𝜗1𝐵𝐵 − 𝜗𝜗2𝐵𝐵2 − ⋯− 𝜗𝜗𝑞𝑞𝐵𝐵𝑞𝑞 , and error variance 𝜎𝜎2. Let 𝛾𝛾(∙) be the required ACF
which can be computed recursively by solving:

𝛾𝛾(𝑘𝑘) − 𝜑𝜑1𝛾𝛾(𝑘𝑘 − 1) −⋯− 𝜑𝜑𝑝𝑝𝛾𝛾(𝑘𝑘 − 𝑝𝑝) = 𝜎𝜎2�𝜗𝜗𝑗𝑗′
𝑞𝑞

𝑗𝑗=𝑘𝑘

𝜓𝜓𝑗𝑗−𝑘𝑘, 0 ≤ 𝑘𝑘 < max (𝑝𝑝, 𝐸𝐸 + 1)

𝛾𝛾(𝑘𝑘) − 𝜑𝜑1𝛾𝛾(𝑘𝑘 − 1) −⋯− 𝜑𝜑𝑝𝑝𝛾𝛾(𝑘𝑘 − 𝑝𝑝) = 0, 𝑘𝑘 ≥ max (𝑝𝑝, 𝐸𝐸 + 1)

where 𝜗𝜗0′ = 1, 𝜗𝜗𝑖𝑖′ = −𝜗𝜗𝑖𝑖, 𝑖𝑖 = 1,⋯ , 𝐸𝐸 and 𝜗𝜗𝑖𝑖′ = 0 if 𝑖𝑖 > 𝐸𝐸, and 𝜓𝜓𝑗𝑗s are coefficients in 𝜃𝜃𝑞𝑞
(𝐵𝐵)

𝜙𝜙𝑝𝑝(𝐵𝐵)
= 1 + 𝜓𝜓1B +

𝜓𝜓2B2 + ⋯.

Based on Tunnicliffe(1979),Kohn and Ansley(1985) give a efficient method to compute 𝛾𝛾(0),⋯ , 𝛾𝛾(𝑝𝑝). The
method can be described as below:

Step 1. Compute the auto-covariance of 𝐸𝐸𝑡𝑡 = 𝜃𝜃𝑞𝑞(𝐵𝐵)𝑎𝑎𝑡𝑡 :

𝐶𝐶𝑈𝑈(𝑗𝑗) = ��𝜗𝜗𝑖𝑖′𝜗𝜗𝑖𝑖+𝑗𝑗′

𝑞𝑞−𝑗𝑗

𝑖𝑖=0

, 0 ≤ 𝑗𝑗 ≤ 𝐸𝐸

0, 𝑗𝑗 > 𝐸𝐸

;

When 𝐸𝐸 = 0(I,e. pure AR case), 𝐶𝐶𝑈𝑈(𝑗𝑗) = 0 for 𝑗𝑗 > 0 and 𝐶𝐶𝑈𝑈(0) = 0.

If the model is a pure MA(q), then the subsequent steps will not be needed and 𝛾𝛾(𝑘𝑘) = 𝐶𝐶𝑈𝑈(𝑘𝑘).

If the model is pure AR(p) or ARMA(p,q), the following arrays are needed to compute auto-covariance:

• 𝜷𝜷 is a lower triangular array of size 𝐸𝐸 by 𝐸𝐸 + 1, i.e. the element, 𝛽𝛽𝑖𝑖,𝑗𝑗 is needed only for 𝑗𝑗 ≤ 𝑖𝑖, here
𝑖𝑖 = 1,2,⋯ , 𝐸𝐸 and 𝑖𝑖 = 0,1,2,⋯ , 𝐸𝐸

• 𝒅𝒅 is an array of size 𝐸𝐸 by 1, the element 𝑑𝑑𝑘𝑘 = 𝛽𝛽𝑘𝑘,𝑘𝑘,𝑘𝑘 = 1,2,⋯ , 𝐸𝐸
• 𝝓𝝓 is a lower triangular array of size 𝑝𝑝 by 𝑝𝑝, i,e, the element 𝜙𝜙𝑖𝑖,𝑗𝑗 are needed only for 𝑗𝑗 ≤ 𝑖𝑖, here

𝑖𝑖, 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝.
• 𝜶𝜶 is an array of size 𝑝𝑝 by 1, the element 𝛼𝛼𝑘𝑘 = 𝜙𝜙𝑘𝑘,𝑘𝑘, 𝑘𝑘 = 1,2,⋯ , 𝑝𝑝
• 𝒗𝒗 is a 𝑝𝑝 + 1 by 𝑝𝑝 + 1 array with the indexes going from 0 to 𝑝𝑝. It is also almost lower triangular and

only the last row of the 𝑣𝑣 is needed in final auto-covariance computations.
The computations of these arrays, except for 𝑣𝑣, are backwards, i.e. the last rows/values are initialized first and
then the earlier values are computed:

Step 2. Initialize the last rows of 𝜙𝜙 and 𝛽𝛽 as:

𝜙𝜙𝑝𝑝,𝑗𝑗 = 𝜑𝜑𝑗𝑗 , 𝑗𝑗 = 1,2,⋯ , 𝑝𝑝

𝛽𝛽𝑞𝑞,𝑗𝑗 = 𝐶𝐶𝑈𝑈(𝑗𝑗), 𝑗𝑗 = 0,1,2,⋯ , 𝐸𝐸

Step 3. Recursively compute earlier values of 𝜙𝜙 and 𝛼𝛼:

For 𝑘𝑘 = 𝑝𝑝 − 1,⋯ ,1,

𝛼𝛼𝑘𝑘+1 = 𝜙𝜙𝑘𝑘+1,𝑘𝑘+1

𝜙𝜙𝑘𝑘,𝑗𝑗 =
𝜙𝜙𝑘𝑘+1,𝑗𝑗 + 𝛼𝛼𝑘𝑘+1 ∗ 𝜙𝜙𝑘𝑘+1,𝑘𝑘+1−𝑗𝑗

1 − 𝛼𝛼𝑘𝑘+12 , 𝑗𝑗 = 1,2,⋯ , 𝑘𝑘

At the end,

𝛼𝛼1 = 𝜙𝜙1,1

Step 4. Recursively compute earlier values of 𝛽𝛽 and 𝑑𝑑

For 𝑘𝑘 = 𝐸𝐸 − 1,⋯ ,1

𝑑𝑑𝑘𝑘+1 = 𝛽𝛽𝑘𝑘+1,𝑘𝑘+1

𝛽𝛽𝑘𝑘,𝑗𝑗 = 𝛽𝛽𝑘𝑘+1,𝑗𝑗 + 𝑑𝑑𝑘𝑘+1 ∗ 𝜙𝜙𝑘𝑘,𝑘𝑘+1−𝑗𝑗, 𝑗𝑗 = 1,2,⋯ , 𝑘𝑘

𝛽𝛽𝑘𝑘,0 = 𝐶𝐶𝑈𝑈(0)

Finally,

𝑑𝑑1 = 𝛽𝛽1,1

Step 5. Compute 𝑣𝑣 using 𝛼𝛼 and 𝑑𝑑,

𝑣𝑣0,0 =
1
2
𝐶𝐶𝑈𝑈(0)

For 𝑘𝑘 = 0,1,⋯ , 𝑝𝑝 − 1

𝑣𝑣𝑘𝑘,𝑘𝑘+1 = 𝑑𝑑𝑘𝑘+1

𝑣𝑣𝑘𝑘+1,𝑗𝑗 =
𝑣𝑣𝑘𝑘,𝑗𝑗 + 𝛼𝛼𝑘𝑘+1𝑣𝑣𝑘𝑘,𝑘𝑘+1−𝑗𝑗

1 − 𝛼𝛼𝑘𝑘+12 , 𝑗𝑗 = 0,1,⋯ , 𝑘𝑘 + 1

Step 6. Compute the auto-covariance

Initialize

𝛾𝛾(0) = 𝑣𝑣𝑝𝑝,0

𝛾𝛾(𝑘𝑘) = 0, 𝑘𝑘 > 0

Then the auto-covariance will be computed recursively:

𝛾𝛾(𝑘𝑘) = �𝜑𝜑𝑖𝑖

𝑘𝑘

𝑖𝑖=1

𝛾𝛾(𝑘𝑘 − 𝑖𝑖) + 𝑣𝑣𝑝𝑝,𝑘𝑘, 𝑘𝑘 = 1,2,⋯ , 𝑝𝑝

𝛾𝛾(𝑘𝑘) = �𝜑𝜑𝑖𝑖

𝑝𝑝

𝑖𝑖=1

𝛾𝛾(𝑘𝑘 − 𝑖𝑖), 𝑘𝑘 > 𝑝𝑝

Finally,

𝛾𝛾(0) = 2 ∗ 𝑣𝑣𝑝𝑝,0

Implementation notes:

1. In step 3, since computation of any row/value of 𝝓𝝓 depends only on one previous row/value, one
only needs temporary storage two vector of size 𝑝𝑝 for 𝝓𝝓.

2. Step 3 and step 4 can be loop together if we want the efficient storage because the kth row of 𝜷𝜷
depends on the kth 𝝓𝝓.

3. If 𝐸𝐸 < 𝑝𝑝, then 𝑑𝑑𝑘𝑘 = 0 for 𝑘𝑘 > 𝐸𝐸.
4. If 𝑝𝑝 < 𝐸𝐸, we set the 𝜑𝜑𝑘𝑘 = 0 for 𝑝𝑝 < 𝑘𝑘 ≤ 𝐸𝐸, which in practice means applying the algorithm with p

replaced by 𝐸𝐸. Therefore, the auto-covariance will be computed based on the qth row of 𝑣𝑣.

Appendix D: Stationary condition check
During the parameters estimation, we need to check the roots of a polynomial are outside unit circle which is
also called stationary condition check. Here we just discuss how to check stationary condition for AR
polynomial. For polynomial of MA and denominator polynomial of each predictor, the similar algorithm can
be used.

Suppose 𝜙𝜙𝑝𝑝(𝐵𝐵) = 1 − 𝜑𝜑1𝐵𝐵 − 𝜑𝜑2𝐵𝐵2 − ⋯− 𝜑𝜑𝑝𝑝𝐵𝐵𝑝𝑝 is an AR polynomial of degree 𝑝𝑝. Let 𝜑𝜑1,1,𝜑𝜑2,2,⋯ ,𝜑𝜑𝑝𝑝,𝑝𝑝
be the first 𝑝𝑝 partial auto-correlations of corresponding AR process. Then the stationary condition is
equivalent to the fact all these partial auto-correlation must be less than one in absolute value. These partial
correlations can be computed recursively using Durbin-Levinson algorithm applied in reverse. See page 242
of Brockwell and Davis(1991) for details.

Let 𝜑𝜑𝑝𝑝,𝑖𝑖 = 𝜑𝜑𝑝𝑝, 𝑖𝑖 = 1,⋯ , 𝑝𝑝. Then the other partial auto-correlation 𝜑𝜑1,1,𝜑𝜑2,2,⋯ ,𝜑𝜑𝑝𝑝−1,𝑝𝑝−1can be computed
recursively by

𝜑𝜑𝑚𝑚−1,𝑖𝑖 =
�𝜑𝜑𝑚𝑚,𝑖𝑖 + 𝜑𝜑𝑚𝑚,𝑚𝑚 ∗ 𝜑𝜑𝑚𝑚,𝑚𝑚−𝑖𝑖�

�1 − 𝜑𝜑𝑚𝑚,𝑚𝑚
2 �

, 𝑚𝑚 = 𝑝𝑝, 𝑝𝑝 − 1,⋯ ,2 𝑎𝑎𝑛𝑛𝑑𝑑 𝑖𝑖 = 1,⋯ ,𝑚𝑚 − 1

References
[1] Bartlett, M.S. (1946). On the theoretical specification of sampling properties of autocorrelated time
series. Journal of Royal Statistical Society, Series B, 8, 27-27.

[2] Box, G.E.P. and Jenkins, G.M.(1976), Time series analysis, Forecasting and control, Holden-Day,
Oakland, California.

[3] Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. (1994). Time series analysis: Forecasting and
control, 3rd ed. Englewood Cliffs, N.J.: Prentice Hall.

[4] Brockwell, P. J., and R. A. Davis. (1991). Time Series: Theory and Methods, 2 ed. :Springer-Verlag.

[5] Kohn, R. and Ansley, C.F. (1985). Computing the likelihood and its derivatives for a Gaussian
ARMA model, Journal of Statistical Computation and Simulation. 22: 3-4, 229-263.

[6] Tunnicliffe-Wilson, G.(1979). Some efficient computational procedures for high order ARMA
models, Journal of Statistical Computation and Simulation.8,301-309.

Time Series Algorithm: Combined Forecasts

1. Introduction
In new traditional time series, we will output top N models for a time series 𝑦𝑦𝑡𝑡 by expert modeler. Some models will be
exponential smoothing models and others will be ARIMA models. Although we can get a best model according to
specified criteria from the top N models, this best model may not be good enough to capture all patterns of the time
series. Therefore, it may not produce good forecast values. To tackle this problem, we propose to combine forecasts
from all these top N models together to generate final forecasts.

2. Combined forecasts process
Suppose that we have forecast models Fi, i = 1,⋯ ,𝑁𝑁, the combined forecast process consists 3 steps: 1) encompassing
tests, 2) weights assignment, 3) forecasts combination and prediction interval.

Step 1. Encompassing tests

In this step, we will eliminate some models that are encompassed by other models:

1-1) The models, Fi, i = 1,⋯ ,𝑁𝑁, are ranked by MAPE from the best to worst. Without loss of generality, we
assume that after ranking, the models are F1, F2,⋯ , F𝑁𝑁.

1-2) Let S1 = ∅, S2 = { F1, F2,⋯ , F𝑁𝑁}.
1-3) Select the best mode from S2, denote it as Fbest and let S1 = S1 ∪ { Fbest}, S2 = S2 − { Fbest}.
1-4) Encompassing test will be used to test whether some models in S2 are encompassed by the best model Fbest. If

yes, eliminate these models fromS2. Encompassing test will be described in section 2.
1-5) If S2 = ∅, go to step 2. Otherwise, go to 1-3).

Step 2. Weights assignment

This step assigns weights to the selected models in S1 from step 1. Suppose that there are M in S1 and they are Fi, i =
1,⋯ , M. There are two weights assignment method:

• Equal weights (simple average): an equal weight is assigned to each model, 𝐹𝐹𝑖𝑖, 𝑖𝑖 = 1,⋯ ,𝑀𝑀, 𝑤𝑤𝑖𝑖 = 1/𝑀𝑀.
• Root mean squared error(RMSE) weights: a weight based on RMSE of each model is assigned to each model,

Fi, i = 1,⋯ , M, wi = 1/RMSEi
∑ 1/RMSEjM
j=1

.

Step 3. Forecasts combination and prediction interval

This step performs the weighted combination of forecasts based on model Fi, i = 1,⋯ , M, and corresponding weight
wi. For each t, combined forecast produces a value y�c,t according to the expression

y�c,t = �wiy�i,t

M

i=1

where y�i,t denotes the prediction from model Fi at time t.

Suppose the prediction intervals for y�i,t, i = 1,2,⋯ , M are (Li, Ui), respectively, then the prediction interval for y�c,t is
�∑ wiLiM

i=1 ,∑ wiUi
M
i=1 �.

3. Encompassing test

HLM test, which is discussed by Harvey, Leybourne and Newbold (1998), can be used to test if one forecast model is
encompassed by another forecast model.

Suppose that we have two forecast models, Fi and Fj, and the one-step-ahead forecast at time t from model Fi and Fj are
y�i,t and y�j,t, respectively. Then a loss differential sequence dt is defined as

dt = �e𝑖𝑖,t − e𝑗𝑗,t�e𝑖𝑖,t, t = 1,2,⋯ , n

where ei,t = yt − y�i,t and ej,t = yt − y�j,t, respectively.

Based on dt, the test statistic is computed as

T = �
n − 1

n
�
1/2 d�

�var(d�)

where d� = 1
n
∑ dtn
t=1 and var�d�� = 1

n2
∑ �dt − d��2n
t=1 .

The p-value is computed as p = 2 ∗ P(tn−1 > |𝑇𝑇|), where tn−1 is random variable following t distribution with degree
of freedom n − 1. If the p value is less than significant level α(default is 0.05), then Fi is not encompassing the Fj.
Otherwise, Fi is encompassing Fj , and Fj should be removed from forecast model set.

Reference:

Harvey, D.I., Leybourne,S.J. and Newbold,P.(1998) Tests for forecast encompassing, Journal of business and
economic statistics, 16, 254-258

2

Time Series Algorithm: Exponential Smoothing

1. Introduction
Exponential smoothing originated in Robert G. Brown’s work [1] as an analyst for the US Navy
during World War II. After Brown’s opening, several models were developed for trends and
seasonality besides level. The taxonomy of Hyndman [2] is helpful in describing the family members
of exponential smoothing. Besides the level component, the trend and seasonality component are
take into account by denotes as (no trend N, additive trend A, damped additive trend DA,
multiplicative trend M, damped multiplicative trend DM) * (no seasonality N, additive seasonality
A, multiplicative seasonality M), so 15 possible model type combinations are defined.

6 of 15 models are supported in SPSS TSMODEL procedure, and they can be classified by
Hyndman’s taxonomy which is shown in Table I. Brown’s exponential smoothing model is also
supported in SPSS TSMODEL procedure. It belongs to Brown’s polynomial exponential smoothing
model, and is listed in Table 1.

SPSS EXSMOOTH procedure supports 12 of 15 models, including all models with no trend N,
additive trend A, damped additive trend DA, and multiplicative trend M.

So, the Time Series Engine will support the union of models from TSMODEL and EXSMOOTH
procedure, which is means that all models with no trend N, additive trend A, damped additive
trend DA, multiplicative trend M, and plus Brown’s exponential smoothing are supported.

Table 1

Taxonomy of exponential smoothing model and supported models in SPSS

Trend Component Seasonal Component
no seasonality N additive seasonality A multiplicative

seasonality M
no trend N N,N

simple exponential
smoothing

N,A
Simple seasonal
exponential
smoothing

N,M

additive trend A A,N
Holt’s linear method

A, A
Additive Holt-
Winters’ method

A,M
Multiplicative Holt-
Winters’ method

damped additive
trend DA

DA,N
Damped trend
method

DA,A

DA,M

multiplicative trend M M,N M,A M,M

damped
multiplicative trend
DM

polynomial
exponential

Brown’s exponential
smoothing

2. Exponential smoothing models

2.1 Notation
The following notation is used throughout this document unless otherwise stated:

𝑌𝑌𝑡𝑡 (𝑡𝑡 = 1,2,⋯ ,𝑛𝑛) Univariate time series under investigation, where 𝑌𝑌1 𝑎𝑎𝑛𝑛𝑑𝑑 𝑌𝑌𝑛𝑛 is not
missing

𝑛𝑛 Total number of observations

𝑠𝑠 The seasonal length for the model included seasonal component

𝜑𝜑𝑡𝑡 The seasonal phase at time 𝑡𝑡 for the model included seasonal

component

𝛼𝛼 Level smoothing weight

𝛾𝛾 Trend smoothing weight

𝜙𝜙 Damped trend smoothing weight

𝛿𝛿 Season smoothing weight

𝐿𝐿(𝑡𝑡) Level smoothing states at time 𝑡𝑡

𝑇𝑇(𝑡𝑡) Trend smoothing states at time 𝑡𝑡

𝐸𝐸(𝑡𝑡) Seasonal smoothing states at time 𝑡𝑡

𝑌𝑌�𝑡𝑡(𝑘𝑘) Model-estimated 𝑘𝑘-step ahead forecast at time 𝑡𝑡 for series 𝑌𝑌

𝑌𝑌�𝑡𝑡 Model-estimated one-step ahead forecast at time 𝑡𝑡 for series 𝑌𝑌

𝜎𝜎𝑡𝑡2(𝑘𝑘) Variance of the 𝑘𝑘-step ahead forecast at time 𝑡𝑡 for series 𝑌𝑌

Implementation note:

1. For an input series 𝑌𝑌 for exponential smoothing, the effective span should be checked first and
denote:
• The first non-missing value as 𝑌𝑌1 with 𝑡𝑡 = 1
• The last non-missing value as 𝑌𝑌𝑛𝑛 with 𝑡𝑡 = 𝑛𝑛

No Trend, No Seasonality Model (Simple Exponential Smoothing)

𝐿𝐿(𝑡𝑡) = �𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡)

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2(1 + (𝑘𝑘 − 1)𝛼𝛼2)

No Trend, Additive Seasonality Model (Simple seasonal Exponential Smoothing)

𝐿𝐿(𝑡𝑡) = �𝛼𝛼�𝑌𝑌𝑡𝑡 − 𝐸𝐸(𝑡𝑡 − 𝑠𝑠)� + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐸𝐸(𝑡𝑡) = �𝛿𝛿�𝑌𝑌𝑡𝑡 − 𝐿𝐿(𝑡𝑡)� + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐸𝐸(𝑡𝑡 − 𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) + 𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠)

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + �𝜓𝜓𝑗𝑗2
𝑘𝑘−1

𝑗𝑗=1

�

where 𝜓𝜓𝑗𝑗 = �
𝛼𝛼 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 ≠ 0

𝛼𝛼 + 𝛿𝛿(1 − 𝛼𝛼) 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 = 0

No Trend, Multiplicative Seasonality Model

𝐿𝐿(𝑡𝑡) = �𝛼𝛼
(𝑌𝑌𝑡𝑡 𝐸𝐸(𝑡𝑡 − 𝑠𝑠)⁄) + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝐿𝐿(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐸𝐸(𝑡𝑡) = �𝛿𝛿
(𝑌𝑌𝑡𝑡 𝐿𝐿(𝑡𝑡)⁄) + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝐸𝐸(𝑡𝑡 − 𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) ∙ 𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠)

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + ���𝜓𝜓𝑗𝑗+𝑖𝑖𝑠𝑠 𝐸𝐸𝑡𝑡+𝑘𝑘 𝐸𝐸𝑡𝑡+𝑘𝑘−𝑗𝑗⁄ �2
𝑠𝑠

𝑗𝑗=1

∞

𝑖𝑖=0

�

 where 𝜓𝜓𝑗𝑗 = �
𝛼𝛼 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 ≠ 0

𝛼𝛼 + 𝛿𝛿(1 − 𝛼𝛼) 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 = 0, and 𝜓𝜓𝑗𝑗 = 0 for 𝑗𝑗 = 0 𝑝𝑝𝑝𝑝 𝑗𝑗 > 𝑘𝑘

Additive Trend, No Seasonality Model (Holt’s Exponential Smoothing)

𝐿𝐿(𝑡𝑡) = �𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇(𝑡𝑡) = �𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) + 𝑘𝑘𝑇𝑇(𝑡𝑡)

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + �(𝛼𝛼 + 𝑗𝑗𝛼𝛼𝛾𝛾)2
𝑘𝑘−1

𝑗𝑗=1

�

Additive Trend, Additive Seasonality Model (Winters’ Additive Exponential Smoothing)

𝐿𝐿(𝑡𝑡) = �𝛼𝛼�𝑌𝑌𝑡𝑡 − 𝐸𝐸(𝑡𝑡 − 𝑠𝑠)� + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇(𝑡𝑡) = �𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐸𝐸(𝑡𝑡) = �𝛿𝛿�𝑌𝑌𝑡𝑡 − 𝐿𝐿(𝑡𝑡)� + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐸𝐸(𝑡𝑡 − 𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) + 𝑘𝑘𝑇𝑇(𝑡𝑡) + 𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠)

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + �𝜓𝜓𝑗𝑗2
𝑘𝑘−1

𝑗𝑗=1

�

where 𝜓𝜓𝑗𝑗 = �
𝛼𝛼 + 𝑗𝑗𝛼𝛼𝛾𝛾 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 ≠ 0

𝛼𝛼 + 𝑗𝑗𝛼𝛼𝛾𝛾 + 𝛿𝛿(1 − 𝛼𝛼) 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 = 0

Additive Trend, Multiplicative Seasonality Model (Winters’ Multiplicative Exponential Smoothing)

𝐿𝐿(𝑡𝑡) = �𝛼𝛼(𝑌𝑌𝑡𝑡 𝐸𝐸(𝑡𝑡 − 𝑠𝑠)⁄) + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇(𝑡𝑡) = �𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐸𝐸(𝑡𝑡) = �𝛿𝛿
(𝑌𝑌𝑡𝑡 𝐿𝐿(𝑡𝑡)⁄) + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝐸𝐸(𝑡𝑡 − 𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑌𝑌�𝑡𝑡(𝑘𝑘) = �𝐿𝐿(𝑡𝑡) + 𝑘𝑘𝑇𝑇(𝑡𝑡)�𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠)

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + ���𝜓𝜓𝑗𝑗+𝑖𝑖𝑠𝑠 𝐸𝐸𝑡𝑡+𝑘𝑘 𝐸𝐸𝑡𝑡+𝑘𝑘−𝑗𝑗⁄ �2
𝑠𝑠

𝑗𝑗=1

∞

𝑖𝑖=0

�

 where 𝜓𝜓𝑗𝑗 = �
𝛼𝛼 + 𝑗𝑗𝛼𝛼𝛾𝛾 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 ≠ 0

𝛼𝛼 + 𝑗𝑗𝛼𝛼𝛾𝛾 + 𝛿𝛿(1 − 𝛼𝛼) 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 = 0, and 𝜓𝜓𝑗𝑗 = 0 for 𝑗𝑗 = 0 𝑝𝑝𝑝𝑝 𝑗𝑗 > 𝑘𝑘

Damped Additive Trend, No Seasonality Model (Damped-Trend Exponential Smoothing)

𝐿𝐿(𝑡𝑡) = �𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) + 𝜙𝜙𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) + 𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇(𝑡𝑡) = �𝛾𝛾�𝐿𝐿
(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛾𝛾)𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) + �𝜙𝜙𝑖𝑖𝑇𝑇(𝑡𝑡)
𝑘𝑘

𝑖𝑖=1

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + ��𝛼𝛼 + 𝛼𝛼𝛾𝛾𝜙𝜙 �𝜙𝜙𝑗𝑗 − 1� (𝜙𝜙 − 1)⁄ �2
𝑘𝑘−1

𝑗𝑗=1

�

Damped Additive Trend, Additive Seasonality Model

𝐿𝐿(𝑡𝑡) = �𝛼𝛼�𝑌𝑌𝑡𝑡 − 𝐸𝐸(𝑡𝑡 − 𝑠𝑠)� + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) + 𝜙𝜙𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) + 𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇(𝑡𝑡) = �𝛾𝛾�𝐿𝐿
(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛾𝛾)𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐸𝐸(𝑡𝑡) = �𝛿𝛿�𝑌𝑌𝑡𝑡 − 𝐿𝐿(𝑡𝑡)� + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐸𝐸(𝑡𝑡 − 𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) + �𝜙𝜙𝑖𝑖𝑇𝑇(𝑡𝑡)
𝑘𝑘

𝑖𝑖=1

+ 𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠)

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + �𝜓𝜓𝑗𝑗2
𝑘𝑘−1

𝑗𝑗=1

�

where 𝜓𝜓𝑗𝑗 = �
𝛼𝛼 + 𝛼𝛼𝛾𝛾𝜙𝜙 �𝜙𝜙𝑗𝑗 − 1� (𝜙𝜙 − 1)⁄ 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 ≠ 0

𝛼𝛼 + 𝛿𝛿(1 − 𝛼𝛼) + 𝛼𝛼𝛾𝛾𝜙𝜙 �𝜙𝜙𝑗𝑗 − 1� (𝜙𝜙 − 1)⁄ 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 = 0

Damped Additive Trend, Multiplicative Seasonality Model

𝐿𝐿(𝑡𝑡) = �𝛼𝛼
(𝑌𝑌𝑡𝑡 𝐸𝐸(𝑡𝑡 − 𝑠𝑠)⁄) + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) + 𝜙𝜙𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝐿𝐿(𝑡𝑡 − 1) + 𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇(𝑡𝑡) = �𝛾𝛾�𝐿𝐿
(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛾𝛾)𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝜙𝜙𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐸𝐸(𝑡𝑡) = �𝛿𝛿
(𝑌𝑌𝑡𝑡 𝐿𝐿(𝑡𝑡)⁄) + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝐸𝐸(𝑡𝑡 − 𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑌𝑌�𝑡𝑡(𝑘𝑘) = �𝐿𝐿(𝑡𝑡) + �𝜙𝜙𝑖𝑖𝑇𝑇(𝑡𝑡)
𝑘𝑘

𝑖𝑖=1

� 𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠)

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + ���𝜓𝜓𝑗𝑗+𝑖𝑖𝑠𝑠 ∗ 𝐸𝐸𝑡𝑡+𝑘𝑘 𝐸𝐸𝑡𝑡+𝑘𝑘−𝑗𝑗⁄ �2
𝑠𝑠

𝑗𝑗=1

∞

𝑖𝑖=1

�

where 𝜓𝜓𝑗𝑗 = �
𝛼𝛼 + 𝛼𝛼𝛾𝛾𝜙𝜙 �𝜙𝜙𝑗𝑗 − 1� (𝜙𝜙 − 1)⁄ 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 ≠ 0

𝛼𝛼 + 𝛿𝛿(1 − 𝛼𝛼) + 𝛼𝛼𝛾𝛾𝜙𝜙 �𝜙𝜙𝑗𝑗 − 1� (𝜙𝜙 − 1)⁄ 𝑓𝑓𝑝𝑝𝑝𝑝 𝑗𝑗 𝑚𝑚𝑝𝑝𝑑𝑑 𝑠𝑠 = 0
, and 𝜓𝜓𝑗𝑗 = 0 for 𝑗𝑗 =

0 𝑝𝑝𝑝𝑝 𝑗𝑗 > 𝑘𝑘

Multiplicative Trend, No Seasonality Model

𝐿𝐿(𝑡𝑡) = �𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) ∙ 𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) ∙ 𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇(𝑡𝑡) = �𝛾𝛾
(𝐿𝐿(𝑡𝑡) 𝐿𝐿(𝑡𝑡 − 1)⁄) + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) ∙ 𝑇𝑇(𝑡𝑡)𝑘𝑘

Multiplicative Trend, Additive Seasonality Model

𝐿𝐿(𝑡𝑡) = �𝛼𝛼�𝑌𝑌𝑡𝑡 − 𝐸𝐸(𝑡𝑡 − 𝑠𝑠)� + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) ∙ 𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) ∙ 𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇(𝑡𝑡) = �𝛾𝛾
(𝐿𝐿(𝑡𝑡) 𝐿𝐿(𝑡𝑡 − 1)⁄) + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐸𝐸(𝑡𝑡) = �𝛿𝛿�𝑌𝑌𝑡𝑡 − 𝐿𝐿(𝑡𝑡)� + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐸𝐸(𝑡𝑡 − 𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) ∙ 𝑇𝑇(𝑡𝑡)𝑘𝑘 + 𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠)

Multiplicative Trend, Multiplicative Seasonality

𝐿𝐿(𝑡𝑡) = �𝛼𝛼(𝑌𝑌𝑡𝑡 𝐸𝐸(𝑡𝑡 − 𝑠𝑠)⁄) + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) ∙ 𝑇𝑇(𝑡𝑡 − 1)�, 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) ∙ 𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇(𝑡𝑡) = �𝛾𝛾
(𝐿𝐿(𝑡𝑡) 𝐿𝐿(𝑡𝑡 − 1)⁄) + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝐸𝐸(𝑡𝑡) = �𝛿𝛿
(𝑌𝑌𝑡𝑡 𝐿𝐿(𝑡𝑡)⁄) + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎

𝐸𝐸(𝑡𝑡 − 𝑠𝑠) 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑌𝑌�𝑡𝑡(𝑘𝑘) = �𝐿𝐿(𝑡𝑡) ∙ 𝑇𝑇(𝑡𝑡)𝑘𝑘�𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠)

Brown’s Exponential Smoothing

𝐿𝐿(𝑡𝑡) = �𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇(𝑡𝑡) = �𝛼𝛼�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛼𝛼)𝑇𝑇(𝑡𝑡 − 1), 𝑖𝑖𝑓𝑓 𝑌𝑌𝑡𝑡 𝑖𝑖𝑠𝑠 𝑛𝑛𝑝𝑝𝑡𝑡 𝑚𝑚𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝑇𝑇(𝑡𝑡 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) + �(𝑘𝑘 − 1) + 𝛼𝛼−1�𝑇𝑇(𝑡𝑡)

𝜎𝜎𝑡𝑡2(𝑘𝑘) = 𝜎𝜎2 �1 + �(2𝛼𝛼 + (𝑗𝑗 − 1)𝛼𝛼2)2
𝑘𝑘−1

𝑗𝑗=1

�

3. Workflow of exponential smoothing models

3.1 Series validation
Series validation is used to check whether the series are admissible for the model type. Including
check the effective span corresponding to the number of parameters (𝛼𝛼, 𝛾𝛾,𝜙𝜙, 𝛿𝛿 included in model)
and ensure is at least one non-missing value per season when seasonality component is involved.
The steps of validation are as follow:

1. Set 𝑠𝑠𝑝𝑝𝑎𝑎𝑛𝑛 = 𝑛𝑛.
2. Set number of non-missing values in 𝑠𝑠𝑝𝑝𝑎𝑎𝑛𝑛 as 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑.
3. Number of parameters in specified model: 𝑘𝑘.
4. If 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑 ≤ 𝑘𝑘 , issue error for “too few values in 𝑌𝑌”.
5. If seasonality component is involved, compute number of valid value for each season:

𝐸𝐸𝐶𝐶𝑝𝑝𝐸𝐸𝑛𝑛𝑡𝑡𝑖𝑖 , 𝑖𝑖 = 1, … , 𝑠𝑠.
If 𝑚𝑚𝑖𝑖𝑛𝑛(𝐸𝐸𝐶𝐶𝑝𝑝𝐸𝐸𝑛𝑛𝑡𝑡𝑖𝑖) = 0, issue error for “not enough values for seasonality in 𝑌𝑌”.

3.2 Series transformation
Transform 𝑌𝑌 according to transformation options (none, nature log, square root transformation):

𝑌𝑌𝑡𝑡 = �
𝑌𝑌𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑡𝑡𝑝𝑝𝑎𝑎𝑛𝑛𝑠𝑠 𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛 = 𝑁𝑁𝑂𝑂𝑁𝑁𝐸𝐸

𝑠𝑠𝑝𝑝𝑎𝑎(𝑌𝑌𝑡𝑡), 𝑖𝑖𝑓𝑓 𝑡𝑡𝑝𝑝𝑎𝑎𝑛𝑛𝑠𝑠 𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛 = 𝐿𝐿𝑂𝑂𝐺𝐺 𝑎𝑎𝑛𝑛𝑑𝑑 𝑌𝑌 > 0
�𝑌𝑌𝑡𝑡 , 𝑖𝑖𝑓𝑓 𝑡𝑡𝑝𝑝𝑎𝑎𝑛𝑛𝑠𝑠 𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝𝑛𝑛 = 𝐸𝐸𝑄𝑄𝑅𝑅𝑇𝑇 𝑎𝑎𝑛𝑛𝑑𝑑 𝑌𝑌 ≥ 0

3.3 Construct objective function
Make an objective function for this model.

1. Let 𝜷𝜷 = (𝛽𝛽1,𝛽𝛽2,⋯ ,𝛽𝛽𝑘𝑘) be all the parameters in the model, and define the sum of squares of the
one-step ahead prediction error, SSE, as objective function:

𝑂𝑂(𝜷𝜷) = ��𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1
(𝜷𝜷)�

2

where 𝑌𝑌�𝑡𝑡−1
(𝜷𝜷) is the one-step ahead prediction value at time 𝑡𝑡 − 1 based on parameters 𝜷𝜷.

2. Degree of freedom: 𝑑𝑑𝑓𝑓 = 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑 − 𝑘𝑘

3.4 Parameter initialization
The initial values of smoothing parameters are chosen by a grid search to minimize SSE. The steps of
parameter initialization are as follow:

1. Grid search to minimize SSE within search range with specified step:
2. Search range and step for parameter(s):

• For model with a single parameter 𝛼𝛼 (Simple or Brown model), search range is [0, 1] with
number of steps = 100.

• For model includes 2 parameters, the number of search steps = 10 for each parameter.
• For model has 3 parameters, the number of search steps = 10 for each parameter.

3. For a specified parameter , check whether the model with 𝜷𝜷 are admissible with Zero-One stable
constraint:

• For non-seasonal models, all parameters should be in the range of (0, 1),
• For seasonal models, all parameter should be in the range of (0, 1), and admissible for

stationary condition.
• Admissible for stationary condition:

Construct an (𝑠𝑠 + 1) order polynomial with following coefficients:

𝑐𝑐𝑝𝑝𝑠𝑠𝑓𝑓𝑓𝑓𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

 1, 𝑖𝑖𝑓𝑓 𝑖𝑖 = 0
−(1 − 𝛼𝛼 − 𝛼𝛼 ∙ 𝛾𝛾), 𝑖𝑖𝑓𝑓 𝑖𝑖 = 1
𝛼𝛼 ∙ 𝛾𝛾, 𝑖𝑖𝑓𝑓 2 ≤ 𝑖𝑖 ≤ 𝑠𝑠 − 1
−�1− 𝛼𝛼 ∙ 𝛾𝛾 − 𝛿𝛿 ∙ (1 − 𝛼𝛼)�, 𝑖𝑖𝑓𝑓 𝑖𝑖 = 𝑠𝑠
−(1 − 𝛼𝛼) ∙ (𝛿𝛿 − 1), 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

If all the roots of the polynomial are outside the unit circle, the model is admissible for
stationary condition.

4. If a parameter 𝛽𝛽𝑖𝑖 not following the constrain, and if it is close to its boundary,
(𝑠𝑠𝑝𝑝𝑤𝑤𝑠𝑠𝑝𝑝𝐵𝐵𝑝𝑝𝐸𝐸𝑛𝑛𝑑𝑑,𝐸𝐸𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝐵𝐵𝑝𝑝𝐸𝐸𝑛𝑛𝑑𝑑) with default range (0, 1), then shift the parameter value according to
following rules:
• if |𝛽𝛽𝑖𝑖 − 𝑠𝑠𝑝𝑝𝑤𝑤𝑠𝑠𝑝𝑝𝐵𝐵𝑝𝑝𝐸𝐸𝑛𝑛𝑑𝑑| < 𝐶𝐶 ∗ 𝜖𝜖, 𝛽𝛽𝑖𝑖 = 𝛽𝛽𝑖𝑖 + 𝑠𝑠ℎ𝑖𝑖𝑓𝑓𝑡𝑡,
• if |𝐸𝐸𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝐵𝐵𝑝𝑝𝐸𝐸𝑛𝑛𝑑𝑑 − 𝛽𝛽𝑖𝑖| < 𝐶𝐶 ∗ 𝜖𝜖, 𝛽𝛽𝑖𝑖 = 𝛽𝛽𝑖𝑖 − 𝑠𝑠ℎ𝑖𝑖𝑓𝑓𝑡𝑡.
where 𝑠𝑠ℎ𝑖𝑖𝑓𝑓𝑡𝑡 = 0.001, 𝐶𝐶 = 4 and 𝜖𝜖 = 10−16 at default.

5. Using back-casting to compute initial smoothing states based on given parameters 𝜷𝜷. Details of
back-casting can be found in Section 3.4.1.

6. Based on the given parameters 𝜷𝜷 and computed initial smoothing states, compute sum of square
of one-step ahead prediction error, SSE:

𝑂𝑂(𝜷𝜷) = ��𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1
(𝜷𝜷)�

2

7. Repeat step 3 to 6 to check all the steps for all the parameters. The parameters 𝜷𝜷 with minimized
SSE are selected as initial value for estimation.

Back-casting for initial smoothing states
Smoothing states 𝐿𝐿(𝑡𝑡), 𝑇𝑇(𝑡𝑡), and 𝐸𝐸(𝑡𝑡) defined in Section 2 are critical in exponential smoothing
models for both model estimation and forecasting. Level, trend, and seasonality states, as well as k-
step ahead forecasting, are all based on the initial smoothing states before the series started. Given
specified parameters, initial smoothing states can be computed and used for forecasting and model
evaluation.

Initial smoothing states are made by back-casting from 𝑡𝑡 = 𝑛𝑛 to = 0.

1. Compute level and trend states of 𝑡𝑡 = 𝑛𝑛 + 1, seasonality states of 𝑡𝑡 = 𝑛𝑛 + 1, … ,𝑛𝑛 + 𝑠𝑠.
1.1. Level state for all models:

𝐿𝐿(𝑛𝑛 + 1) = 𝑌𝑌𝑛𝑛

1.2. For trend in the non-seasonal models including (A,N), (DA,N), and (M,N):
𝑇𝑇(𝑛𝑛 + 1) = −𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑠𝑠

It is the negative slope of the regression line (with intercept) fitted for 𝑌𝑌𝑡𝑡 , 𝑡𝑡 = 1, … ,𝑛𝑛 with time 𝑡𝑡 as a
regressor.

1.3. For seasonal models with no trend, including (N,A) and (N,M), seasonal phase 𝜑𝜑𝑡𝑡 =
𝑚𝑚𝑝𝑝𝑑𝑑(𝑡𝑡, 𝑠𝑠) is defined for 𝑌𝑌𝑡𝑡. Elements of initial seasonal states for back-casting, 𝑺𝑺𝒆𝒆𝒆𝒆𝒅𝒅 =
(𝐸𝐸(𝑛𝑛 + 1), … , 𝐸𝐸(𝑛𝑛 + 𝑠𝑠),), are seasonal averages minus the sample mean:

𝐸𝐸(𝑛𝑛 + 𝑖𝑖) =
𝑠𝑠𝐸𝐸𝑚𝑚𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑(𝑖𝑖)
𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑(𝑖𝑖)

−𝑚𝑚𝑠𝑠𝑎𝑎𝑛𝑛(𝑌𝑌), 𝑖𝑖 = 1, … , 𝑠𝑠.

Where:

- 𝑠𝑠𝐸𝐸𝑚𝑚𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑(𝑖𝑖) = ∑ 𝑌𝑌𝑡𝑡 ∙ 𝐼𝐼𝑖𝑖(𝑡𝑡)𝑛𝑛
𝑡𝑡=1 is the sum of valid values of 𝑌𝑌 with seasonal phase

𝑚𝑚𝑝𝑝𝑑𝑑(𝜑𝜑𝑛𝑛 + 𝑖𝑖, 𝑠𝑠), where 𝜑𝜑𝑛𝑛 is the seasonal phase of 𝑌𝑌𝑛𝑛, and 𝐼𝐼𝑖𝑖(𝑡𝑡) =

�1, 𝑖𝑖𝑓𝑓 𝑚𝑚𝑝𝑝𝑑𝑑(𝑡𝑡, 𝑠𝑠) = 𝑚𝑚𝑝𝑝𝑑𝑑(𝜑𝜑𝑛𝑛 + 𝑖𝑖, 𝑠𝑠)
0, 𝑝𝑝𝑡𝑡ℎ𝑠𝑠𝑝𝑝𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠 is the season dummies

- 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑(𝑖𝑖) = ∑ 𝐼𝐼𝑖𝑖(𝑡𝑡)𝑛𝑛
𝑡𝑡=1 is the count of valid values of 𝑌𝑌 with seasonal phase 𝑚𝑚𝑝𝑝𝑑𝑑(𝜑𝜑𝑛𝑛 +

𝑖𝑖, 𝑠𝑠)
- 𝑚𝑚𝑠𝑠𝑎𝑎𝑛𝑛(𝑌𝑌) is the mean of 𝑌𝑌 excluded missing values
- 𝑝𝑝 = 𝑚𝑚𝑝𝑝𝑑𝑑(𝑎𝑎, 𝑠𝑠), means 𝑎𝑎 − 𝑝𝑝 is an integer multiple of 𝑠𝑠.

1.4. For additive seasonal models, including (A,A), (DA,A), and (M,A), fit 𝑌𝑌(𝑡𝑡) = 𝑎𝑎1𝑡𝑡 +
∑ 𝜃𝜃𝑖𝑖𝐼𝐼𝑖𝑖(𝑡𝑡)𝑠𝑠
𝑖𝑖=1 to series 𝑌𝑌 (without intercept) where t as a regressor and 𝐼𝐼𝑖𝑖(𝑡𝑡) are seasonal

dummies:

𝐼𝐼𝑖𝑖(𝑡𝑡) = �1, 𝑖𝑖𝑓𝑓 𝑚𝑚𝑝𝑝𝑑𝑑(𝑖𝑖, 𝑠𝑠) = 𝑚𝑚𝑝𝑝𝑑𝑑(𝑡𝑡, 𝑠𝑠)
0, 𝑝𝑝𝑡𝑡ℎ𝑠𝑠𝑝𝑝𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠 , 𝑖𝑖 = 1, … , 𝑠𝑠

Then 𝑇𝑇(𝑛𝑛 + 1) = −𝑎𝑎1, and 𝐸𝐸(𝑛𝑛 + 𝑖𝑖) = 𝜃𝜃𝑚𝑚𝑚𝑚𝑑𝑑(𝜑𝜑𝑛𝑛+𝑖𝑖,𝑠𝑠) −𝑚𝑚𝑠𝑠𝑎𝑎𝑛𝑛(𝜽𝜽), 𝑖𝑖 = 1, … , 𝑠𝑠, where 𝜽𝜽 =
(𝜃𝜃1,⋯ ,𝜃𝜃𝑠𝑠).

1.5. For multiplicative seasonal models, including (A,M), (DA,M), and (M,M), fit a separate line
𝑌𝑌𝑡𝑡 = 𝜇𝜇𝑖𝑖 + 𝜃𝜃𝑖𝑖𝑡𝑡 for series 𝑌𝑌 (with intercept) with same seasonal phase 𝑚𝑚𝑝𝑝𝑑𝑑(𝑖𝑖, 𝑠𝑠), 𝑖𝑖 = 1, … , 𝑠𝑠,
using time 𝑡𝑡 as a regressor. Denote 𝝁𝝁 = (𝜇𝜇1, … , 𝜇𝜇𝑠𝑠) and 𝜽𝜽 = (𝜃𝜃1, … ,𝜃𝜃𝑠𝑠).

Then 𝑇𝑇(𝑛𝑛 + 1) = −𝑚𝑚𝑠𝑠𝑎𝑎𝑛𝑛(𝜽𝜽), and 𝐸𝐸(𝑛𝑛 + 𝑖𝑖) =
𝜇𝜇𝑚𝑚𝑜𝑜𝑑𝑑(𝜑𝜑𝑛𝑛+𝑖𝑖,𝑠𝑠)+𝜃𝜃𝑚𝑚𝑜𝑜𝑑𝑑(𝜑𝜑𝑛𝑛+𝑖𝑖,𝑠𝑠)

𝑚𝑚𝑠𝑠𝑠𝑠𝑛𝑛(𝝁𝝁)+𝑚𝑚𝑠𝑠𝑠𝑠𝑛𝑛(𝜽𝜽) , 𝑖𝑖 = 1, … , 𝑠𝑠.

2. Using back-casting to compute smoothing states, this can be achieved by reversing the time
order and smoothing backward. Back-casting starts from 𝑡𝑡 = 𝑛𝑛 and ends at 𝑡𝑡 = 0 with 𝑌𝑌0 is
missing.
In each step, 𝑌𝑌𝑡𝑡, 𝐿𝐿(𝑡𝑡 + 1), 𝑇𝑇(𝑡𝑡 + 1), and 𝐸𝐸(𝑡𝑡 + 𝑠𝑠) are used to compute 𝐿𝐿(𝑡𝑡), 𝑇𝑇(𝑡𝑡), and 𝐸𝐸(𝑡𝑡)
according to the formula in Section 2.

For example, following is level state in simple model:

𝐿𝐿(𝑡𝑡) = 𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 − 1)

In back-casting:

𝐿𝐿(𝑡𝑡) = 𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 + 1)

More back-casting examples can be found in Appendix A: Some back-casting formula for initial
smoothing states.

3. The initial smoothing states are:
𝐿𝐿′ = 𝐿𝐿(0)
𝑇𝑇′ = −𝑇𝑇(0)
𝑺𝑺′ = �𝐸𝐸(1 − 𝑠𝑠), 𝐸𝐸(2 − 𝑠𝑠), … 𝐸𝐸(−1),𝐸𝐸(0)�
 = �𝐸𝐸(1), 𝐸𝐸(2), … , 𝐸𝐸(−1 + 𝑠𝑠),𝐸𝐸(0)�

3.5 Estimate model
A modified version of Levenberg-Marquardt algorithm is used to estimate the specified model.

The first derivative of objective function is
𝜕𝜕𝑂𝑂(𝜷𝜷)
𝜕𝜕𝛽𝛽𝑖𝑖

= �𝑂𝑂(𝜷𝜷) − 𝑂𝑂�𝜷𝜷�𝒊𝒊�� /𝛿𝛿

where 𝜷𝜷�𝒊𝒊 = (𝛽𝛽1,⋯ ,𝛽𝛽𝑖𝑖 + 𝛿𝛿,⋯ ,𝛽𝛽𝑘𝑘) and 𝛿𝛿 = −0.0001 if 𝛽𝛽𝑖𝑖 is positive and 0.0001 otherwise.

Parameter estimation process is as follows:

1. Set initial parameters 𝜷𝜷(𝟎𝟎) = (𝛽𝛽1,⋯ ,𝛽𝛽𝑘𝑘) which is from Section 3.4 “Parameter initialization”
2. Compute objective function O�𝛃𝛃(0)�.
3. Let 𝑚𝑚 = 0 and 𝜆𝜆 = 0.001.
4. Compute 𝑘𝑘×𝑘𝑘 matrix 𝑨𝑨 = �𝐴𝐴𝑖𝑖𝑗𝑗� and 𝑘𝑘×1 vector 𝑮𝑮 = (𝑎𝑎1,𝑎𝑎2,⋯ ,𝑎𝑎𝑘𝑘)𝑇𝑇, where 𝐴𝐴𝑖𝑖𝑗𝑗 =

∑ 𝜕𝜕𝜕𝜕�𝜷𝜷(𝑚𝑚)�
𝜕𝜕𝛽𝛽𝑖𝑖

𝜕𝜕𝜕𝜕�𝜷𝜷(𝑚𝑚)�
𝜕𝜕𝛽𝛽𝑗𝑗

𝑛𝑛
𝑡𝑡=1 and 𝑎𝑎𝑖𝑖 = ∑ 𝜕𝜕𝜕𝜕�𝜷𝜷(𝑚𝑚)�

𝜕𝜕𝛽𝛽𝑖𝑖
∗ 𝑂𝑂�𝜷𝜷(𝑚𝑚)�𝑛𝑛

𝑡𝑡=1 , and compute the scaling quantities 𝐷𝐷𝑖𝑖 =

�𝐴𝐴𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1,⋯ ,𝑘𝑘 . Let 𝑀𝑀𝑎𝑎𝑥𝑥𝐷𝐷 = 𝑚𝑚𝑎𝑎𝑥𝑥
𝑖𝑖

{𝐷𝐷𝑖𝑖}, if 𝐷𝐷𝑖𝑖
𝑀𝑀𝑠𝑠𝑥𝑥𝐷𝐷

< 10−8, then𝐷𝐷𝑖𝑖 = 0.

5. 𝐴𝐴𝑖𝑖𝑗𝑗 = 0 if 𝐷𝐷𝑖𝑖 = 0 or 𝐷𝐷𝑗𝑗 = 0, otherwise 𝐴𝐴𝑖𝑖𝑗𝑗 = 𝐴𝐴𝑖𝑖𝑗𝑗/(𝐷𝐷𝑖𝑖 ∗ 𝐷𝐷𝑗𝑗). 𝑎𝑎𝑖𝑖 = 0, if 𝐷𝐷𝑖𝑖 = 0, otherwise 𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑖𝑖/𝐷𝐷𝑖𝑖.
6. Let 𝐴𝐴𝑖𝑖𝑖𝑖 = 1 + 𝜆𝜆. Compute 𝒉𝒉 = 𝑨𝑨−𝑮𝑮. Then the elements of 𝒉𝒉 are scaled as ℎ𝑖𝑖 = ℎ𝑖𝑖/𝐷𝐷𝑖𝑖.
7. 𝐽𝐽 = 0
8. 𝜷𝜷(𝑚𝑚+1) = 𝜷𝜷(𝑚𝑚) − 𝒉𝒉.
9. Check the admissibility constraints on new parameter 𝜷𝜷(𝑚𝑚+1) according to step 3 in Section 3.4.

If it is admissible, go to step 11.

Else, let 𝜷𝜷𝑖𝑖
(𝑚𝑚+1) = �𝛽𝛽1

(𝑚𝑚+1),⋯ ,𝛽𝛽𝑖𝑖
(𝑚𝑚),⋯ ,𝛽𝛽𝑘𝑘

(𝑚𝑚+1)� , 𝑖𝑖 = 1,⋯ ,𝑘𝑘. If there is one parameter vector,

𝜷𝜷𝑖𝑖′
(𝑚𝑚+1), is admissible, then 𝜷𝜷(𝑚𝑚+1) = 𝜷𝜷𝑖𝑖′

(𝑚𝑚+1) and go to step 11. If there is no parameter vector

𝜷𝜷𝑖𝑖
(𝑚𝑚+1), 𝑖𝑖 = 1,⋯ ,𝑘𝑘 admissible, then go to step 10.

10. 𝒉𝒉 = 𝒉𝒉/2, 𝐽𝐽 = 𝐽𝐽 + 1. If 𝐽𝐽 ≤ 6, go to step 8. If 𝐽𝐽 > 6, compute 𝜆𝜆 = 𝜆𝜆 ∗ 100. If 𝜆𝜆 > 109, then output
𝜷𝜷(𝑚𝑚) as finial estimation and stop, else go to step 6.

11. Compute objective function 𝑂𝑂�𝜷𝜷(𝑚𝑚+1)�,
If 𝑂𝑂�𝜷𝜷(𝑚𝑚+1)� > 𝑂𝑂�𝜷𝜷(𝑚𝑚)�, then 𝜆𝜆 = 𝜆𝜆 ∗ 100, 𝑚𝑚 = 𝑚𝑚 + 1. If λ > 109, then output 𝜷𝜷(𝑚𝑚) as finial
estimation and stop, else go to step 6.
if 𝑂𝑂�𝜷𝜷(𝑚𝑚)� − 𝑂𝑂�𝜷𝜷(𝑚𝑚+1)� < 10−5 ∗ 𝑂𝑂�𝜷𝜷(𝑚𝑚)�, the estimation converged. Output 𝜷𝜷(𝑚𝑚+1) as final
estimation and stop. Else, go to step 12.

12. If 𝑚𝑚𝑎𝑎𝑥𝑥
𝑖𝑖

�𝛽𝛽𝑖𝑖
(𝑚𝑚+1) − 𝛽𝛽𝑖𝑖

(𝑚𝑚)� < 0.0001, then output 𝜷𝜷(𝑚𝑚+1) as finial estimation and stop, else, 𝑚𝑚 = 𝑚𝑚 +

1. If 𝑚𝑚 ≤ 50 , compute 𝜆𝜆 = 𝜆𝜆 ∗ 0.1, then go to step 4. Otherwise output 𝜷𝜷(𝑚𝑚) as finial estimation
and stop.

3.6 Post estimation
Goodness-of-fit statistics are based on the original series 𝑌𝑌.

Mean Squared Error (MSE)

𝑀𝑀𝐸𝐸𝐸𝐸 =
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1�

2𝑛𝑛
𝑡𝑡=1
𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑 − 𝑘𝑘

Root Mean Squared Error (RMSE)
𝑅𝑅𝑀𝑀𝐸𝐸𝐸𝐸 = √𝑀𝑀𝐸𝐸𝐸𝐸

Mean Absolute Percent Error (MAPE)

𝑀𝑀𝐴𝐴𝑃𝑃𝐸𝐸 =
100
𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑

��
𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1

𝑌𝑌𝑡𝑡
�

𝑛𝑛

𝑡𝑡=1

Maximum Absolute Percent Error (MaxAPE)

𝑀𝑀𝑎𝑎𝑥𝑥𝐴𝐴𝑃𝑃𝐸𝐸 = 100𝑚𝑚𝑎𝑎𝑥𝑥 ��
𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1

𝑌𝑌𝑡𝑡
��

Root Mean Squared Percent Error (RMSPE)

𝑅𝑅𝑀𝑀𝐸𝐸𝑃𝑃𝐸𝐸 = �
100
𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑

��
𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1

𝑌𝑌𝑡𝑡
�
2𝑛𝑛

𝑡𝑡=1

Mean Absolute Error (MAE)

𝑀𝑀𝐴𝐴𝐸𝐸 =
1

𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑
��𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1�
𝑛𝑛

𝑡𝑡=1

Maximum Absolute Error (MaxAE)
𝑀𝑀𝑎𝑎𝑥𝑥𝐴𝐴𝐸𝐸 = 𝑚𝑚𝑎𝑎𝑥𝑥��𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1��

Bayesian Information Criterion (BIC)

𝐵𝐵𝐼𝐼𝐶𝐶 = 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑×𝑠𝑠𝑛𝑛 �
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1�

2𝑛𝑛
𝑡𝑡=1

𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑
�+ 𝑘𝑘×𝑠𝑠𝑛𝑛(𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑)

Akaike Information Criterion (AIC)

𝐴𝐴𝐼𝐼𝐶𝐶 = 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑×𝑠𝑠𝑛𝑛 �
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1�

2𝑛𝑛
𝑡𝑡=1

𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑
� + 2𝑘𝑘

R-squared

𝑅𝑅2 = 1 −
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡−1�

2𝑛𝑛
𝑡𝑡=1
∑ (𝑌𝑌𝑡𝑡 − 𝑌𝑌�)2𝑛𝑛
𝑡𝑡=1

Stationary R-squared

𝑅𝑅𝑆𝑆2 = 1 −
∑ �𝑖𝑖𝑡𝑡 − �̂�𝑖𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1

∑ (∆𝑖𝑖𝑡𝑡 − ∆𝑖𝑖����)2𝑛𝑛
𝑡𝑡=1

Where the sum is over the terms in which both 𝑖𝑖𝑡𝑡 − �̂�𝑖𝑡𝑡−1 and ∆𝑖𝑖𝑡𝑡 − ∆𝑖𝑖���� are not missing.

∆𝑖𝑖���� is the simple mean model for the differenced transformed series, which is equivalent to
the univariate baseline model ARIMA(0, d, 0)(0, D, 0).

For the exponential smoothing models currently under consideration, use the differencing
orders (corresponding to their equivalent ARIMA models if there is on)

𝑑𝑑 = �2, Brown and Holt
1, 𝑝𝑝𝑡𝑡ℎ𝑠𝑠𝑝𝑝 , 𝐷𝐷 = �0, 𝑠𝑠 = 1

1, 𝑠𝑠 > 1.

Note: Both the stationary and usual R-squared can be negative with range (−∞, 1]:

• Negative R-squared value means that the model under consideration is worse than
the baseline model

• Zero R-squared value means that the model under consideration is as good or bad as
the baseline model

• Positive R-squared value means that the model under consideration is better than the
baseline model

3.7 Forecast
The final forecasting 𝑌𝑌�𝑡𝑡∗(ℎ) and their prediction intervals can be computed as below:

Step 1. Compute 𝑘𝑘-step ahead forecast at time 𝑡𝑡, 𝑌𝑌�𝑡𝑡(𝑘𝑘) , according to the formula in Section 2.

Step 2. Compute prediction variance, 𝜎𝜎𝑡𝑡2(𝑘𝑘)

For the models with analytical expression 𝜎𝜎𝑡𝑡2(𝑘𝑘) in Section 2 , compute 𝜎𝜎𝑡𝑡2(𝑘𝑘) expression.

For the models without analytical expression 𝜎𝜎𝑡𝑡2(𝑘𝑘): (M, N), (M, A), (M, M) and 2 double seasonal
models, 𝜎𝜎𝑡𝑡2(𝑘𝑘) computation is described in Section 3.7.1.

Step 3. Compute final forecast and the corresponding 100(1− 𝛼𝛼)% prediction intervals as follows:

• If the series 𝑌𝑌 is not transformed, then final forecast
 𝑌𝑌�𝑡𝑡∗(ℎ) = 𝑌𝑌�𝑡𝑡(ℎ)
and the 100(1 − 𝛼𝛼)% prediction interval is

�𝑌𝑌�𝑡𝑡(ℎ) − 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑡𝑡(ℎ),𝑌𝑌�𝑡𝑡(ℎ) + 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑡𝑡(ℎ)�

• If the transformed function is log, then

 𝑌𝑌�𝑡𝑡∗(ℎ) = exp �𝑌𝑌�𝑡𝑡(ℎ) + 𝜎𝜎𝑡𝑡2(ℎ)
2
�

and the 100(1 − 𝛼𝛼)% prediction interval is

 �exp �𝑌𝑌�𝑡𝑡(ℎ) − 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑡𝑡(ℎ)� , exp �𝑌𝑌�𝑡𝑡(ℎ) + 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑡𝑡(ℎ)��

• If the transformed function if square root, then

 𝑌𝑌�𝑡𝑡∗(ℎ) = �𝑌𝑌�𝑡𝑡(ℎ)�
2

+ 𝜎𝜎𝑡𝑡2(ℎ)

and the 100(1 − 𝛼𝛼)% prediction interval is

 ��𝑌𝑌�𝑡𝑡(ℎ)− 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑡𝑡(ℎ)�
2

, �𝑌𝑌�𝑡𝑡(ℎ) + 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑡𝑡(ℎ)�
2
�

In above expressions, tdf,α/2 is the (1 − α/2)100th percentile of the t distribution with degree of
freedom f = nvalid − k .

Implementation note:

1. During forecasting, only the observations in estimation span, Yt (t = 1,2,⋯ , n), will be used
whatever the observations in forecast span , Yt (t = n + 1, n + 2,⋯ , n + k),are provided or not.

2. if df = 0, then we use (1 − α/2)100th percentile of the standard normal distribution.
3. For square root transformation, If 𝑌𝑌�𝑡𝑡(ℎ) < 0, then forecast value 𝑌𝑌�𝑡𝑡∗(ℎ) and corresponding

confidence interval will be missing. If 𝑌𝑌�𝑡𝑡(ℎ) > 0 but 𝑌𝑌�𝑡𝑡(ℎ)− 𝑡𝑡𝑑𝑑𝑑𝑑,𝛼𝛼/2 ∗ 𝜎𝜎𝑡𝑡(ℎ) < 0, then the lower
boundary of confidence interval will be missing value.

Simulation procedures for prediction variances
Bootstrap simulation procedures for k step prediction variance to compute prediction variances as
following:

1. Simulate errors (𝜀𝜀𝑖𝑖, 𝑖𝑖 = 1, … ,𝑘𝑘) for k forecast point form a normal distribution with mean 0 and
variance as prediction variance 𝜎𝜎2

2. Recursive to compute forecast values from n+1 to n+k based on prediction value and simulated
error
2.1 Generate simulated forecast values at time n+i (𝑖𝑖 = 1, … ,𝑘𝑘) based on 1-step forecast

expression in Section 2 and simulated error generated in step 1.
2.2 Update level, trend, and seasonal states based on state update expressions in Section 2.

When 𝑌𝑌𝑡𝑡 is missing, use corresponding 1-step simulated forecast value 𝑌𝑌�𝑡𝑡−1∗ as substitutes.
2.3 Repeat step 2.1 and 2.2 to recursive calculate forecast values 𝑌𝑌�𝑛𝑛

(1)(1),𝑌𝑌�𝑛𝑛
(1)(2), … ,𝑌𝑌�𝑛𝑛

(1)(𝑘𝑘).

3. Repeat step 1 and 2 M times to produce M forecast paths in forecast periods (M = 5000 by
default), each path has the simulated forecast values from 1 to k.

4. Compute variance 𝜎𝜎𝑡𝑡2(𝑖𝑖) = 𝑣𝑣𝑎𝑎𝑝𝑝 �𝑌𝑌�𝑛𝑛∗(𝑖𝑖)� , 𝑖𝑖 = 1, …𝑘𝑘 for each forecast time based the M prediction

values in time 𝑛𝑛 + 𝑖𝑖.
For generating simulated forecast value in step 2, two expressions are provided with different error
types:

• Additive errors: 𝑌𝑌�𝑛𝑛∗(𝑘𝑘) = 𝑌𝑌�𝑛𝑛(𝑘𝑘) + 𝜀𝜀𝑘𝑘
• Multiplicative errors: 𝑌𝑌�𝑛𝑛∗(𝑘𝑘) = 𝑌𝑌�𝑛𝑛(𝑘𝑘)(1 + 𝜀𝜀𝑘𝑘)

The error type can be selected by the model types:

• If trend and seasonal components are all non-multiplicative, apply additive error for
simulation

• otherwise, apply multiplicative error for simulation

Model Notation Error type
Multiplicative trend with no
seasonality

(M, N) Multiplicative

Multiplicative trend with
additive seasonality

(M, A) Multiplicative

Multiplicative trend with
multiplicative seasonality

(M, M) Multiplicative

Additive trend with double
additive seasonality

(A, A, A) Additive

Additive trend with double
multiplicative seasonality

(A, M, M) Multiplicative

Implementation note:

1. When the number of non-missing simulated forecast values 𝑌𝑌�𝑛𝑛∗(𝑖𝑖) at time n+i less than 1000,

the variance of forecast step i to k, 𝜎𝜎𝑡𝑡2(𝑗𝑗) = 𝑣𝑣𝑎𝑎𝑝𝑝 �𝑌𝑌�𝑛𝑛∗(𝑗𝑗)� , 𝑖𝑖 ≤ 𝑗𝑗 ≤ 𝑘𝑘, will not be computed, and

a warning will be issued as “Some prediction intervals cannot be computed”.

4. Double seasonal exponential smoothing models
The section extends the Holt-Winter exponential smoothing to incorporate a second seasonal
component. The additive and multiplicative versions are introduced here.

Please note we consider two seasonal patterns are both additive and multiplicative at the same time.
The trend is fixed as additive for double seasonal case.

4.1 Additive Double Seasonal Holt-Winter Exponential Smoothing
Level: 𝐿𝐿(𝑡𝑡) = 𝛼𝛼�𝑌𝑌𝑡𝑡 − 𝐸𝐸(𝑡𝑡 − 𝑠𝑠1) −𝑊𝑊(𝑡𝑡 − 𝑠𝑠2)� + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1)�

Trend: 𝑇𝑇(𝑡𝑡) = 𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 − 1)

Seasonality 1: 𝐸𝐸(𝑡𝑡) = 𝛿𝛿�𝑌𝑌𝑡𝑡 − 𝐿𝐿(𝑡𝑡) −𝑊𝑊(𝑡𝑡 − 𝑠𝑠2)�+ (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠1)

Seasonality 2: 𝑊𝑊(𝑡𝑡) = 𝜔𝜔�𝑌𝑌𝑡𝑡 − 𝐿𝐿(𝑡𝑡) − 𝐸𝐸(𝑡𝑡 − 𝑠𝑠1)� + (1 −𝜔𝜔)𝑊𝑊(𝑡𝑡 − 𝑠𝑠2)

 𝑌𝑌�𝑡𝑡(𝑘𝑘) = 𝐿𝐿(𝑡𝑡) + 𝑘𝑘𝑇𝑇(𝑡𝑡) + 𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠1) + 𝑊𝑊(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠2)

where 𝑠𝑠1 and 𝑠𝑠2 are the lengths of two seasonalities, 𝑊𝑊 is a new term representing the seasonal index
for the 2nd seasonal component, and 𝜔𝜔 is a new smoothing parameter for it. The estimation method
for initial smoothed values is described in Section 4.1.

For parameters (α, γ, δ, and ω), the grid search method for Holt-Winters’ method still can be used
here. Considering one more parameter added, search step can set as 5 for each parameter. With the
initial parameters, Levenberg-Marquardt algorithm (LMA) for old Holt-Winters’ methods can
applied to get estimated parameters. Details of grid search and LMA can be found in Section 3.4 step
2, and Section 3.5.

4.2 Multiplicative Double Seasonal Holt-Winter Exponential Smoothing
Level: 𝐿𝐿(𝑡𝑡) = 𝛼𝛼�𝑌𝑌𝑡𝑡 �𝐸𝐸(𝑡𝑡 − 𝑠𝑠1) ∙ 𝑊𝑊(𝑡𝑡 − 𝑠𝑠2)�⁄ � + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 − 1) + 𝑇𝑇(𝑡𝑡 − 1)�

Trend: 𝑇𝑇(𝑡𝑡) = 𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 − 1)� + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 − 1)

Seasonality 1: 𝐸𝐸(𝑡𝑡) = 𝛿𝛿�𝑌𝑌𝑡𝑡 �𝐿𝐿(𝑡𝑡) ∙ 𝑊𝑊(𝑡𝑡 − 𝑠𝑠2)�⁄ �+ (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 − 𝑠𝑠1)

Seasonality 2: 𝑊𝑊(𝑡𝑡) = 𝜔𝜔�𝑌𝑌𝑡𝑡 �𝐿𝐿(𝑡𝑡) ∙ 𝐸𝐸(𝑡𝑡 − 𝑠𝑠1)�⁄ � + (1 −𝜔𝜔)𝑊𝑊(𝑡𝑡 − 𝑠𝑠2)

 𝑌𝑌�𝑡𝑡(𝑘𝑘) = �𝐿𝐿(𝑡𝑡) + 𝑘𝑘𝑇𝑇(𝑡𝑡)� ∙ 𝐸𝐸(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠1) ∙ 𝑊𝑊(𝑡𝑡 + 𝑘𝑘 − 𝑠𝑠2)

where α, γ, δ and ω are smoothing parameters.

4.3 Initialization for smoothed values in double seasonal exponential smoothing
To calculate initial smoothed values for the level, trend and seasonal components, Williams and
Miller’s procedure (1999)[2] (proposed for standard Holt-Winters) is adapted for Double Seasonal
Holt-Winters.

Without loss of generality, here we assume 𝑠𝑠1 is the smaller length (𝑠𝑠1 < 𝑠𝑠2). Following steps are for
multiplicative method (the differences of seasonal index for additive method are given in
parenthesis):

• Initial trend, 𝑇𝑇0, was chosen as the average of

(a) 1 𝑠𝑠2⁄ of the difference between the mean of the first 𝑠𝑠2 and second 𝑠𝑠2 observations

(b) the average of the first differences for the first 𝑠𝑠2 observations

• Initial level, 𝐿𝐿0, was chosen as the mean of first 2×𝑠𝑠2 observations minus (𝑠𝑠2 + 0.5) times the
initial trend.

• The initial values for the short seasonal index, 𝐸𝐸𝑡𝑡, were set as the average of the ratios of actual
observation to 𝑠𝑠1-point centred moving average (set as the average of the differences of actual
observation to 𝑠𝑠1-point centred moving average), taken from the corresponding 𝐸𝐸𝑡𝑡 phase in each
of the 𝑠𝑠1 observations within the first 𝑠𝑠2 observations. If 2×𝑠𝑠1 > 𝑠𝑠2, use the first 2×𝑠𝑠1
observations.

• The initial values for the long seasonal index, 𝑊𝑊𝑡𝑡, were set as the average of the ratios of actual
observation to 𝑠𝑠2-point centred moving average (set as the average of the differences of actual
observation to 𝑠𝑠2-point centred moving average), taken from the corresponding 𝑊𝑊𝑡𝑡 phase in each
of the 𝑠𝑠2 observations within the first 2×𝑠𝑠2 observations, divided (subtracted) by the
corresponding initial value of the smoothed short seasonal index, 𝐷𝐷𝑡𝑡.

Analysis for irregular component

An irregular component can be computed by

𝐼𝐼(𝑡𝑡) = 𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡

 Based on the irregular component, larger variance interval detection and auto-correlation analysis
will be performed. The algorithms are same as that we did in automatic time series exploration in
“Time Series Exploration - ADD.docx”. So please refer the section 2.4 in “Time Series Exploration -
ADD.docx” directly.

For outlier detection, we use same method as that in the TCM. The method can be described as following:

Step 1: compute the square score at time 𝑡𝑡:

𝑠𝑠𝑠𝑠𝑞𝑞𝑞𝑞,𝑡𝑡 =
(𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡)2

𝑀𝑀𝐸𝐸𝐸𝐸

where 𝑀𝑀𝐸𝐸𝐸𝐸 is mean squared error which is defined in the Section 3.6.

Step 2. Compute the outlier probability as

𝑝𝑝𝑠𝑠𝑞𝑞𝑞𝑞,𝑡𝑡 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝜒𝜒12 ≤ 𝑠𝑠𝑠𝑠𝑞𝑞𝑞𝑞,𝑡𝑡�

where 𝜒𝜒12 is a random variable with a chi-squared distribution with 1 degree of freedom.

Step 3. 𝑌𝑌𝑡𝑡 is an outlier if 𝑝𝑝𝑠𝑠𝑞𝑞𝑞𝑞,𝑡𝑡 ≥ 𝜅𝜅, where 𝜅𝜅 is significant level and the default is 0.95.

Step4. If the number of outliers from step 3 is less than 𝑠𝑠(default is 10), then output all outliers.
Otherwise, output top 𝑠𝑠 outliers that have top 𝑠𝑠 largest square scores.

Appendix A: Some back-casting formula for initial smoothing states

Below table demonstrates some back-casting formula, more can be derived from the formula in
Section 2 by reversing the time order and smoothing backwards from 𝑡𝑡 = 𝑛𝑛 to 𝑡𝑡 = 0 with 𝑌𝑌0 is
missing.

Table 3. Back-casting for initial smoothing states

Model type 𝑌𝑌𝑡𝑡 is not missing 𝑌𝑌𝑡𝑡 is missing

simple 𝐿𝐿(𝑡𝑡) = 𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 + 1) 𝐿𝐿(𝑡𝑡) = 𝐿𝐿(𝑡𝑡 + 1)

Brown 𝐿𝐿(𝑡𝑡) = 𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 + 1)

𝑇𝑇(𝑡𝑡) = 𝛼𝛼�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 + 1)� + (1 − 𝛼𝛼)𝑇𝑇(𝑡𝑡 + 1)

𝐿𝐿(𝑡𝑡) = 𝐿𝐿(𝑡𝑡 + 1)
+ 𝑇𝑇(𝑡𝑡
+ 1)

𝑇𝑇(𝑡𝑡) = 𝑇𝑇(𝑡𝑡 + 1)

Holt 𝐿𝐿(𝑡𝑡) = 𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 + 1) + 𝑇𝑇(𝑡𝑡 + 1)�

𝑇𝑇(𝑡𝑡) = 𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 + 1)� + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 + 1)

𝐿𝐿(𝑡𝑡) = 𝐿𝐿(𝑡𝑡 + 1)
+ 𝑇𝑇(𝑡𝑡
+ 1)

𝑇𝑇(𝑡𝑡) = 𝑇𝑇(𝑡𝑡 + 1)

Damp 𝐿𝐿(𝑡𝑡) = 𝛼𝛼𝑌𝑌𝑡𝑡 + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 + 1) + 𝜙𝜙𝑇𝑇(𝑡𝑡 + 1)�

𝑇𝑇(𝑡𝑡) = 𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 + 1)� + (1 − 𝛾𝛾)𝜙𝜙𝑇𝑇(𝑡𝑡 + 1)

𝐿𝐿(𝑡𝑡) = 𝐿𝐿(𝑡𝑡 + 1)
+ 𝜙𝜙𝑇𝑇(𝑡𝑡
+ 1)

𝑇𝑇(𝑡𝑡) = 𝜙𝜙𝑇𝑇(𝑡𝑡 + 1)

Simple season

𝐿𝐿(𝑡𝑡) = 𝛼𝛼�𝑌𝑌𝑡𝑡 − 𝐸𝐸(𝑡𝑡 + 𝑠𝑠)� + (1 − 𝛼𝛼)𝐿𝐿(𝑡𝑡 + 1)

𝐸𝐸(𝑡𝑡) = 𝛿𝛿�𝑌𝑌𝑡𝑡 − 𝐿𝐿(𝑡𝑡)� + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 + 𝑠𝑠)

𝐿𝐿(𝑡𝑡) = 𝐿𝐿(𝑡𝑡 + 1)

𝐸𝐸(𝑡𝑡) = 𝐸𝐸(𝑡𝑡 + 𝑠𝑠)

Additive winter

𝐿𝐿(𝑡𝑡) = 𝛼𝛼�𝑌𝑌𝑡𝑡 − 𝐸𝐸(𝑡𝑡 + 𝑠𝑠)� + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 + 1) + 𝑇𝑇(𝑡𝑡 + 1)�

𝑇𝑇(𝑡𝑡) = 𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 + 1)� + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 + 1)

𝐸𝐸(𝑡𝑡) = 𝛿𝛿�𝑌𝑌𝑡𝑡 − 𝐿𝐿(𝑡𝑡)� + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 + 𝑠𝑠)

𝐿𝐿(𝑡𝑡) = 𝐿𝐿(𝑡𝑡 + 1)
+ 𝑇𝑇(𝑡𝑡
+ 1)

𝑇𝑇(𝑡𝑡) = 𝑇𝑇(𝑡𝑡 + 1)

𝐸𝐸(𝑡𝑡) = 𝐸𝐸(𝑡𝑡 + 𝑠𝑠)

Multiplicative
winter

𝐿𝐿(𝑡𝑡) = 𝛼𝛼(𝑌𝑌𝑡𝑡 𝐸𝐸(𝑡𝑡 + 𝑠𝑠)⁄) + (1 − 𝛼𝛼)�𝐿𝐿(𝑡𝑡 + 1) + 𝑇𝑇(𝑡𝑡 + 1)�

𝑇𝑇(𝑡𝑡) = 𝛾𝛾�𝐿𝐿(𝑡𝑡) − 𝐿𝐿(𝑡𝑡 + 1)� + (1 − 𝛾𝛾)𝑇𝑇(𝑡𝑡 + 1)

𝐸𝐸(𝑡𝑡) = 𝛿𝛿(𝑌𝑌𝑡𝑡 𝐿𝐿(𝑡𝑡)⁄) + (1 − 𝛿𝛿)𝐸𝐸(𝑡𝑡 + 𝑠𝑠)

𝐿𝐿(𝑡𝑡) = 𝐿𝐿(𝑡𝑡 + 1)
+ 𝑇𝑇(𝑡𝑡
+ 1)

𝑇𝑇(𝑡𝑡) = 𝑇𝑇(𝑡𝑡 + 1)

𝐸𝐸(𝑡𝑡) = 𝐸𝐸(𝑡𝑡 + 𝑠𝑠)

Time Series Algorithm: Expert Modeler

1. Introduction
Expert Modeler in Time Series component is an automatic model identification tool. With time
series specified, Expert Modeler can perform on that and give a recommended time series model
or top N models. The evaluated model types can be:

1. Exponential Smoothing Expert Model (ES EM)

The Expert Modeler only considers exponential smoothing models.

2. Univariate ARIMA Expert Model (Univariate ARIMA EM)

The Expert Modeler only considers univariate ARIMA models.

3. Exhaustive ARIMA Search

The Expert Modeler do exhaustive search based on user specified ARIMA parameters.

4. Univariate Expert Model (default for univariate time series)

The Expert Modeler considers Exponential Smoothing Expert Model, Univariate ARIMA
Expert Model, and Exhaustive ARIMA Search.

5. Transfer Function Expert Model

The Expert Modeler considers multivariate ARIMA models with input series specified

6. Multivariate Expert Model (default for the case with predictor time series)

Univariate EM = Model(s) with better
selection criterion

Input: series, seasonal length

Exhaustive ARIMA Search
(Turn off by default)

Univariate ARIMA EM
(Turn on by default)

ES EM
(Turn on by default)

The Expert Modeler considers Transfer Function Expert Model first, if it drops all predictor
series and ends up with a univariate ARIMA model, this univariate ARIMA model will be
compared with Exponential Smoothing Expert Model and Exhaustive ARIMA Search (if it is
turned on) by model selection criterion to determine the final recommendation.

7. Double Seasonal Expert Model (default for series with two seasonalities specified)

The Expert Modeler only considers 3 double seasonal models, and ignores any input series.

By default, only one model is recommended for a target time series. It is also supported to request
the top N models from Expert Modeler, so N = 1 by default. For different evaluated model types,
final number of recommended models can be less than N.

1.1 Notation
The following notation is used throughout this document unless otherwise stated:

𝑌𝑌𝑡𝑡 (𝑡𝑡 = 1,2,⋯ ,𝑛𝑛) Univariate time series under investigation, where 𝑌𝑌1 𝑎𝑎𝑛𝑛𝑑𝑑 𝑌𝑌𝑛𝑛 is not
missing.

𝑠𝑠 The period of seasonality

𝑘𝑘 The number of parameters in estimated model

1.2 Model Selection Criterion
To sort and select models among several candidate models, following model selection criterions,
all in smaller-is-better form, can be compute for each model.

• Bayesian Information Criterion (BIC) on whole series (default)

𝐵𝐵𝐼𝐼𝐶𝐶 = 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑×ln�
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1
𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑

� + 𝑘𝑘×ln(𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑)

where 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑 is the total number of non-missing values.

• Akaike Information Criteria (AIC) on whole series

𝐴𝐴𝐼𝐼𝐶𝐶 = 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑×ln�
∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�

2𝑛𝑛
𝑡𝑡=1
𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑

� + 2𝑘𝑘

• Average Squared Error (ASE) on testing set

𝐴𝐴𝐸𝐸𝐸𝐸 =
1

𝑛𝑛𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡
� �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�

2
𝑛𝑛𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡

𝑡𝑡=1

where 𝑌𝑌𝑡𝑡 and 𝑌𝑌�𝑡𝑡 are observed and forecasted value in the testing set, 𝑌𝑌�𝑡𝑡 is 𝑘𝑘-step ahead
forecasting based on training set, 𝑛𝑛𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡 is the number of non-missing points in testing set.

Note:

1. Model selection criterion on testing set is provided for advanced user, the last 𝑛𝑛𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡
number of non-missing points can be used as testing set. Rules are as following:
• If 𝑠𝑠 > 1 and 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑 ≥ 4𝑠𝑠, then 𝑛𝑛𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡 = min(𝑠𝑠,𝑛𝑛𝑚𝑚𝑠𝑠𝑥𝑥𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡) , 𝑛𝑛𝑚𝑚𝑠𝑠𝑥𝑥𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡 = 20 by default.
• If 𝑠𝑠 = 1, or 𝑠𝑠 > 1 but 𝑛𝑛𝑣𝑣𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑 < 4𝑠𝑠, then 𝑛𝑛𝑇𝑇𝑠𝑠𝑠𝑠𝑡𝑡 = 5 by default.

2. When model selection criterion is ASE over testing set, the model parameters would be re-
estimated based on the whole series, and all post-estimation statistics would be calculated
based the new parameter estimates.

3. If a model is a perfect fit, its ∑ �𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡�
2𝑛𝑛

𝑡𝑡=1 would be 0, then the perfect fit model is the
priority selection, export its 𝐵𝐵𝐼𝐼𝐶𝐶 and 𝐴𝐴𝐼𝐼𝐶𝐶 as sysmis and give a warning message about the
perfect fit (similar to what we did in LE and TCM). If more than one model are perfect fit,
sort them by ascending order of number of parameters in models.

2. Exponential Smoothing Expert Model
Input:

• series 𝑌𝑌
• The seasonal length for the model included seasonal component: 𝑠𝑠

Process:

• For non-seasonal series: fit all 5 non-seasonal models, including (N, N), (A, N), (DA, N), (M,
N) and Brown’s models.

• For seasonal series,
- If series 𝑌𝑌 are positive: fit 12 models (all models except Brown).
- If series 𝑌𝑌 are not all positive: fit 8 models (all models except Brown and Multiplicative

seasonality models, (N, M), (A, M), (DA, MN), and (M, M) models).
Output:

• The recommended exponential smoothing expert models are the top N models sorted by
model selection criterion.

3. Univariate ARIMA Expert Model

3.1 Constant series
• Before doing anything, first check if 𝑌𝑌𝑡𝑡 is a constant series. If Y is constant, fit model with a

constant only. This is the final model (don’t need to go through any of the following steps).
• If, in step 3 “Check for difference”, any difference is taken, after each difference check if the

differenced series is constant. If it is constant, fitting constant model for the differenced series
as the final model.

3.2 Small sample
• If number of non-missing observations is less than 3s, set s=1 and go through the following

steps to build a non-seasonal model.
• Otherwise, go through the following steps to build a model.
3.3 Step 1: Interpolation of missing values in the series 𝒀𝒀𝒕𝒕
If there is any missing in the series, the series will be interpolated in this step. The interpolated
series will be used in all the subsequent steps.

Interpolation step first determines what interpolation method is to be used for interpolation.
There are two methods of interpolation, one, which takes into account the possible seasonal
nature and the other, which does not. If the period of seasonality s=1, no seasonal pattern and use
method (a) to impute missing values. If s>1, the seasonal pattern may be present (i.e. its
contribution could be significant). In this case determine if the seasonal pattern is significant or
not as follows:

Calculate sample ACF of the series. If the ACF have absolute t-values greater than 1.6 for all the
first six lags, take the simple difference of the series and calculate the ACF of the differenced series.
(Note: difference only once, not twice even if the first six lags of ACF of the differenced series are
bigger than 1.6. This is because that quadratic trend cannot be taken cared by method (b) anyway.)
Let m1 = max(ACF(1) to ACF(k)), where k = s-1 for s ≤ 4, k = s-2 for 4 < s ≤ 9, and k = 8 for s ≥ 10.
Let m2 = max(ACF(s), ACF(2s)). If m1 > m2, then there is no seasonal pattern and use (a) to
impute missing values. Otherwise there is a seasonal pattern and use (b) to impute missing
values.

Note: If for some reason, like insufficient number of ACF values, impute missing values using
method (a).

(a) Without seasonal pattern:
Missing values are linearly interpolated using the nearest non-missing neighbors.

(b) With seasonal pattern:
Missing values are linearly interpolated using the nearest non-missing data of the same season.
For example, consider a monthly time series. Assume that missing values occur in May of year
m and m+1. Use the linear interpolations between observations in May of year m-1 and year
m+2 for the missing values.

If all values for some season are missing, use method (a) to impute. If for a missing value there
is no non-missing of the same season before or after it, use the closet non-missing value of the
same season to impute it.

3.4 Step 2: Check for transformation (log or square root)
To check transformation:

• No transformation if the series 𝑌𝑌𝑡𝑡 has some negative values.
• For positive series 𝑌𝑌𝑡𝑡, fit (by ordinary least square) a high order AR(p) model, on 𝑌𝑌, 𝑠𝑠𝑝𝑝𝑎𝑎(𝑌𝑌) and

square root of 𝑌𝑌.
• For non-negative series 𝑌𝑌𝑡𝑡, fit (by ordinary least square) a high order AR(p) model, on 𝑌𝑌, and

square root of 𝑌𝑌.
Compare the log likelihood function of the un-transformed series for each model, and pick the one
has the biggest log likelihood. Let 𝑠𝑠max denote the biggest log likelihood of the three models, and
𝑠𝑠𝑌𝑌 the log likelihood of the model for 𝑌𝑌 itself. In fact we transform the data only if 𝑠𝑠max ≠ 𝑠𝑠𝑌𝑌, and

both 1
𝑛𝑛

(𝑠𝑠max − 𝑠𝑠𝑌𝑌) and �𝑠𝑠max−𝑠𝑠𝑌𝑌
𝑠𝑠𝑌𝑌

� are bigger than 4%, where n is the number of cases.

Rules for choosing order p:

• for s≤3, consider AR(10);
• for 4≤s≤11, consider AR(14) (AR(10) if there are not enough data);
• for s≥12, consider a high order AR model with lags 1 to 6, s to s+3, 2s to 2s+2 (if sample size is

less than 50, drop lags≥2s).
Note: If it was determined that a log or square root transformation is needed then the series
should be transformed accordingly and this transformed series is used in all the subsequent steps.

3.5 Step 3: Check for difference
In this step the differencing order of the model is decided. This step is divided in two steps, step
(a) and step (b). In step (a) a preliminary attempt at the differencing order determination is made.
The intermediate models fit in this step are AR models and can be fit by ordinary least squares. If
some differencing is found necessary then the series is differenced accordingly and this
differenced series is used in step (b). In step (b) the series could be differenced further. In this step
some intermediate ARMA models are fit using conditional least squares, i.e. CLS option in our
AMModelSpec. If step (b) suggests some differencing it should be done and this differenced series
is used in subsequent steps.

Some clarifications:

• The reference to “true” models in the explanation of critical values 𝐶𝐶(𝑖𝑖, 𝑗𝑗)can be ignored by the
programmers.

• Symbol t(c) refers to the t-statistic corresponding to the constant in the model.
•
Step (a)

• Case s = 1:

- Fit model 𝑌𝑌(𝑡𝑡) = 𝑐𝑐 + 𝜙𝜙1𝑌𝑌(𝑡𝑡 − 1) + 𝜙𝜙2𝑌𝑌(𝑡𝑡 − 2) + 𝑎𝑎(𝑡𝑡) by ordinary least square method. Check
𝜙𝜙1 and 𝜙𝜙2 against the critical values listed in Table 1. If {𝜙𝜙1 > 𝐶𝐶(1,1) and − 𝜙𝜙2 > 𝐶𝐶(1,2)},
then take simple difference twice, i.e. calculate (1 − 𝐵𝐵)2𝑌𝑌(𝑡𝑡).

- Otherwise fit model 𝑌𝑌(𝑡𝑡) = 𝑐𝑐 + 𝜙𝜙𝑌𝑌(𝑡𝑡 − 1) + 𝑎𝑎(𝑡𝑡). If {|𝑡𝑡(𝑐𝑐)| < 2 and 𝜙𝜙 > 𝐶𝐶(2,1)} or {|𝑡𝑡(𝑐𝑐)| ≥
2 and (𝜙𝜙 − 1) 𝑠𝑠𝑠𝑠(𝜙𝜙)⁄ > 𝐶𝐶(3,1)}, then difference the series once, i.e. calculate (1 − 𝐵𝐵)𝑌𝑌𝑡𝑡.

- Otherwise no difference.
• Case s > 1:

- Fit model Y(t) = c +ϕ1Y(t − 1) + ϕ2Y(t − s) + ϕ3Y(t − s − 1) + a(t) by ordinary least square
method. The critical values C(i, j) for s = 4 and s = 12 are in Table 2 and Table 3. If {ϕ1 >
𝐶𝐶(1,1) and ϕ2 > 𝐶𝐶(1,2) and− ϕ3 > 𝐶𝐶(1,3)}, take difference (1 − B)(1 − B)sY(t).

- Otherwise if ϕ1 ≤ ϕ2, fit model Y(t) = c + ϕY(t − s) + a(t). If {|t(c)| < 2 𝑎𝑎𝑛𝑛𝑑𝑑 𝜙𝜙 > 𝐶𝐶(2,1)} or
{|t(c)| ≥ 2 and (ϕ− 1) se(ϕ)⁄ > 𝐶𝐶(3,1)}, take difference(1 − B)sY(t).

- Otherwise if ϕ1 > ϕ2, fit model Y(t) = c + ϕY(t − 1) + a(t). If {|t(c)| < 2 𝑎𝑎𝑛𝑛𝑑𝑑 𝜙𝜙 > 𝐶𝐶(4,1)} or
{|t(c)| ≥ 2 and (ϕ− 1) se(ϕ)⁄ > 𝐶𝐶(5,1)}, take difference (1 − B)Y(t).

- Otherwise no difference.
Note: if t value is not available in above fitting, treat it as if t=0.

Step (b)

For data after step (a), call it 𝑖𝑖(𝑡𝑡).

If the number of non-missing Z is 10 or less, go to step 4.

• Case s=1:
- Fit an ARMA(1,1) model (1 − 𝜙𝜙𝐵𝐵)𝑖𝑖(𝑡𝑡) = 𝑐𝑐 + (1 − 𝜃𝜃)𝑎𝑎(𝑡𝑡) by conditional least square.
- If 𝜙𝜙 > 0.88 and |𝜙𝜙 − 𝜃𝜃| > 0.12, take difference (1 − 𝐵𝐵)𝑖𝑖(𝑡𝑡).
- If 𝜙𝜙 < 0.88 but not too far away from 0.88, say, 0.88 −𝜙𝜙 < 0.03, ACF of Z should be checked.

If the ACF have absolute t-values greater than 1.6 for all the first six lags, take difference
(1 − 𝐵𝐵)𝑖𝑖(𝑡𝑡).

• Case s>1 and the number of non-missing Z is less than 3s, do the same as in case s=1.
• Case s>1 and the number of non-missing Z is greater than or equal to 3s.

- Fit an ARMA(1,1)(1,1) model (1 − ϕ1B)(1− ϕ2Bs)Z(t) = c + (1 − θ1B)(1− θ2Bs)a(t).
- If both 𝜙𝜙1 and 𝜙𝜙2 > 0.88, and |𝜙𝜙1 − 𝜃𝜃1| > 0.12 &|𝜙𝜙2 − 𝜃𝜃2| > 0.12, take difference (1 −
𝐵𝐵)(1 − 𝐵𝐵)𝑠𝑠𝑖𝑖(𝑡𝑡).

- If only 𝜙𝜙1 > 0.88, and|𝜙𝜙1 − 𝜃𝜃1| > 0.12, take difference(1 − B)Z(t). If 𝜙𝜙1 < 0.88 but not too
far away from 0.88, say, 0.88− 𝜙𝜙1 < 0.03, ACF of Z should be checked. If the ACF have
absolute t-values greater than 1.6 for all the first six lags, take difference (1 − B)Z(t).

- If only 𝜙𝜙2 > 0.88, and |𝜙𝜙2 − 𝜃𝜃2| > 0.12, take difference (1 − B)sZ(t).
Repeat this step, until no difference is needed.

Note, in the case that the fitting is terminated due to instability or non-convergence or insufficient
number of data, do not difference, go to step 4.

Critical values used in step (a)
Definition of critical values C(i, j) in Table 1:

True model 1: (1 − B)2Y(t) = a(t)

Critical values: C(1,1) and C(1,2) for ϕ1 and −ϕ2 in fitting model

Y(t) = c +ϕ1Y(t − 1) + ϕ2Y(t − 2) + a(t)

True model 2: (1 − B)Y(t) = a(t)

Critical values: C(2,1) for ϕ in fitting model

Y(t) = c +ϕY(t − 1) + a(t)

True model 3: (1 − B)Y(t) = c0 + a(t), c0 ≠ 0

Critical values: C(3,1) for (ϕ− 1) se(ϕ)⁄ in fitting model

Y(t) = c +ϕY(t − 1) + a(t)

Table 1: Critical values at significant level 0.05 for s=1
(1st row: C(1,1), C(1,2); 2nd row: C(2,1); 3rd row: C(3,1)).

Simple size Critical values

n=50
1.616 0.617
0.734

 -1.678

n=100
1.807 0.807
0.863

 -1.661

n=200
1.904 0.904
0.930
-1.653

n=300
1.937 0.937
0.954
-1.650

Definition of critical values C(i, j) in Table 2 and 3:

True model 1: (1 − B)(1 − B𝑠𝑠)Y(t) = a(t)

Critical values: C(1,1), C(1,2), and C(1,3) for ϕ1, ϕ2 and −𝜙𝜙3 in fitting model

𝑌𝑌(𝑡𝑡) = 𝑐𝑐 + 𝜙𝜙1𝑌𝑌(𝑡𝑡 − 1) + 𝜙𝜙2𝑌𝑌(𝑡𝑡 − 𝑠𝑠) + 𝜙𝜙3𝑌𝑌(𝑡𝑡 − 𝑠𝑠 − 1) + 𝑎𝑎(𝑡𝑡)

True model 2: (1 − B𝑠𝑠)Y(t) = a(t)

Critical values: C(2,1) for ϕ in fitting model

Y(t) = c + ϕY(t − 𝑠𝑠) + a(t)

True model 3: (1 − B𝑠𝑠)Y(t) = c0 + a(t), c0 ≠ 0

Critical values: C(3,1) for (ϕ− 1) se(ϕ)⁄ in fitting model

Y(t) = c + ϕY(t − 𝑠𝑠) + a(t)

True model 4: (1 − B)Y(t) = a(t)

Critical values: C(4,1) for ϕ in fitting model

Y(t) = c +ϕY(t − 1) + a(t)

True model 5: (1 − B)Y(t) = c0 + a(t), c0 ≠ 0

Critical values: C(5,1) for (ϕ− 1) se(ϕ)⁄ in fitting model

Y(t) = c +ϕY(t − 1) + a(t)

Table 2: Critical values at significant level 0.05 for s=4
(1st row: C(1,1), C(1,2), C(1,3); 2nd row: C(2,1); 3rd row: C(3,1) ; 4th row:
C(4,1) ; 5th row: C(5,1)).

Simple size Critical values

n=50

0.557 0.823 0.458
0.849
-1.680
0.734
-1.678

n=100

0.773 0.911 0.704
0.908
-1.661
0.921
-1.661

n=200

0.886 0.947 0.838
0.947
-1.653
0.930
-1.653

n=300

0.925 0.961 0.889
0.963
-1.650
0.954
-1.650

Table 3: Critical values at significant level 0.05 for s=12
(1st row: C(1,1), C(1,2), C(1,3); 2nd row: C(2,1); 3rd row: C(3,1) ; 4th row:
C(4,1) ; 5th row: C(5,1)).

Simple size Critical values

n=50

0.494 0.811 0.401
0.851
-1.688
0.734
-1.678

n=100

0.759 0.909 0.690
0.907
-1.663
0.921
-1.661

n=200

0.882 0.947 0.835
0.946
-1.653
0.930
-1.653

n=300

0.922 0.961 0.886
0.961
-1.650
0.954
-1.650

Note:

• Critical values C(i, j) depend on sample size n.
- Other than the negative critical values and C(1,3) in Table 2 and Table 3, the critical values

approximately depend on 1/n linearly. We may use this approximate relationship to get a
better critical value for an arbitrary n. Suppose that critical values for sample size n1 and
n2 are C1 and C2, and n1 and n2 are the closest two sided neighbors if 50 < n < 300, or
closest one sided neighbors if 36 ≤ n < 50 or if 300 < n ≤ 1000 (don’t want to extrapolate too
far), then the critical value C for sample size n is

𝐶𝐶 = 𝐶𝐶1 +
𝐶𝐶2 − 𝐶𝐶1

(1 𝑛𝑛2⁄ − 1 𝑛𝑛1⁄)
(1 𝑛𝑛⁄ − 1 𝑛𝑛1⁄)

For n <36, use critical values for n=36. For n > 1000, use critical values for n=1000. For
C(1,3) in Table 2 and Table 3, C(1,3)=C(1,1)*C(1,2)

- For the negative critical values, the better critical values are C(3,1)=t(0.05, n-3) in Table 1,
C(3,1)=t(0.05, n-s-2) and C(5,1)=t(0.05,n-3) in Table 2 and Table 3. Where t(0.05, df) is the 5%
percentile of t-distribution with degree of freedom df.

• Critical values also depend on period of seasonality s.
- Only critical values for s = 1, 4, 12 are simulated. For 1 < s < 8, use the critical values of s =

4. For 𝑠𝑠 ≥ 8, use the critical values of s = 12.
-

3.6 Step 4: Identify the order of ARMA(p,q)(P,Q)
The earlier steps determine if a transformation (square root, log or differencing) is needed. In this
step, tentative orders for the non-seasonal AR and MA polynomials, p and q are decided. If
seasonality is present the orders of the seasonal AR and MA polynomials are taken to be 1, i.e. P =
Q = 1.

The determination of p and q is done in the following way:

1. Use sample ACF to determine p and q. This step can be inconclusive. Use sample PACF to
determine p and q. This step can be inconclusive.

2. Use EACF to determine p and q. Choose a model among the models identified by ACF,
PACF and EACF. How to choose the model is explained later.

Seasonal part for s>1: let P=1, Q=1.

Non-seasonal part: Use ACF and PACF to see if a clear model can be identified. If not, use EACF
to find both p and q.

Rules used in identifying orders.

Determine integers M and K as follows:

• M = 8 for s = 1 or s ≥10.
• M = s-1 for 2 ≤ s ≤ 4.
• M = s-2 for 4 < s ≤ 9.
• Note: if 4M+2 > n, set M to be the biggest integer that is smaller than or equal to (n-2)/4,

where n is the length of the series.
• K = 3 for s = 1 or s ≥ 5.
• K = 1 for s = 2.
• K = 2 for s = 3, 4.

Order determination rules using ACF, PACF and EACF:

• ACF:
For the first M ACF, let k1 be the smallest number such that all ACF(k1+1) to ACF(M) are
insignificant (i.e. |t| statistic < 2). If k1 ≤ K, then p=0 and q=k1. It may not identify a
model at all.

• PACF:
For the first M PACF, let k2 be the smallest number such that all PACF(k2+1) to PACF(M)
are insignificant (i.e. |t| statistic < 2). If k2 ≤ K, then p=k2 and q=0. It may not identify a
model at all.

• EACF:
Build an M by M EACF array, do the following:

- Examine the first row, find the maximum order. This is an MA model, denoted by
ARMA(0,q0).

- Examine the second row, find the maximum order. Denote the model as ARMA(1,q1)
- Examine the third row, find the maximum order. Denote the model as ARMA(2,q2)

and so on.
- In the above “maximum order” of each row means that all EACF in that row above

that order are insignificant.
- Identify p and q as the model that has the smallest p+q. If the smallest p+q is achieved

by several model, choose the one with smaller q because AR parameters are easier to fit.

Among the models identified by ACF, PACF and EACF, choose the one having the smallest p+q.
In the case that there is a tie, do the following. If the tie involves the model identified by EACF,
choose it. If the tie is a 2-way tie between models identified by ACF and PACF, choose the one by
PACF.

When none of ACF, PACF or EACF give a low order model, i.e. p+q≤4, increase |t|-value to 2.8
and check ACF, PACF and EACF as before to identify a model. If this still doesn’t give a low order
model, then take the high order model identified at this step.

3.7 Step 5: Fit the model and delete insignificant parameters
Fit the model with identified order by conditional least square. Delete the insignificant parameters
the following way.

(a) If there is at least one parameter is significant (|t|≥2), go to b). Otherwise, delete the most
insignificant parameter one at time until at least one parameter is significant, then go to b).

(b) Delete simultaneously all parameters with |t|<0.5 repeatedly until all the left over parameters
are with |t|≥0.5. Then refit the model and Delete simultaneously all parameters with |t|<1
repeatedly until all the left over parameters are with |t|≥1, then refit the model and delete
parameters with |t|<2.

Fit the resulted model using the maximum likelihood (ML) method. If there are insignificant
parameters (|t|<2), delete them and refit by ML method. Repeat until all parameters are of |t|≥2.

Note:

• The model resulted from step 4 is always with a constant term.
• If an empty model is resulted after deletions, change it into a model with only constant term.
• For s>1, if estimation of the initial model identified in step 4 is failed, reduce seasonal MA

order to Q=0 and continue. This may happen often on short series.

3.8 Step 6: Diagnostic checking and model modification
After fit the model in step 5, check to see if Ljung-Box statistics Q(K) is significant where K=2s for
s>1 and K=18 for s=1. (Note: if K≥n, set K as the biggest integer that is smaller than or equal to
n/4, where n is as defined in Ljung-Box statistics at the end.) If it is not significant, stop and we

are done. Otherwise check ACF/PACF of residuals. For s=1, let M=K. For s>1, let M=s-1 for s<15
and M=14 for s≥15. If all residual ACF(1) to ACF(M), ACF(s) and ACF(2s) are insignificant
(|t|≤2.5), stop. Otherwise stop and report: “there are significant values in residual ACF” if (a) the
model has been modified once already. Otherwise modify non-seasonal and seasonal part of the
model the following way.

(a) For non-seasonal part, if residual ACF(1) to ACF(M) have one or two isolated significant lags
(|t|>2.5), add these lags to non-seasonal MA part of the model. Otherwise, if the residual
PACF(1) to PACF(M) have one or two isolated significant lags (|t|>2.5) add these lags to non-
seasonal AR part of the model.

(b) For seasonal part, if none of ACF(s) and ACF(2s), or none of PACF(s) and PACF(2s), are
significant, seasonal part doesn’t need to be modified. Otherwise if PACF(s) is significant and
PACF(2s) is insignificant, add seasonal AR lag 1. Otherwise if ACF(s) is significant and ACF(2s)
is insignificant, add seasonal MA lag 1. Otherwise if PACF(s) is insignificant and PACF(2s) is
significant, add seasonal AR lag 2. Otherwise if ACF(s) is insignificant and ACF(2s) is
significant, add seasonal MA lag 2. Otherwise add seasonal AR lag 1 and 2.

A significant lag, say lag 𝑠𝑠, is added in the model the following way.

• If 𝑠𝑠 ≤ 𝑀𝑀, just simply add lag 𝑠𝑠 in the model. If lag 𝑠𝑠 is in the model already, add lag 2𝑠𝑠 in the
model if 2𝑠𝑠 is not already in and if 2𝑠𝑠 is not one of the significant lags and 2𝑠𝑠 ≤ 𝑀𝑀. For example,
if ACF of residuals from non-seasonal model Y(t) = (1 − θ1B)a(t) has a single significant lag at
lag 2, then the modified model is Y(t) = (1 − θ1B − θ2B2)a(t), if ACF of residuals has a single
significant lag at lag 1, then the modified model is also Y(t) = (1 − θ1B− θ2B2)a(t).

• For s>1, if 𝑠𝑠 is multiple of s, add the lag to the seasonal part. If the lag 𝑠𝑠 is already in the model,
add 2𝑠𝑠 in the model if 2𝑠𝑠 is not already in and if 2𝑠𝑠 is not one of the significant lags and 2𝑠𝑠 ≤ 𝐾𝐾.
For example, if non-seasonal MA lag 3 and seasonal MA lag 1 are decided to be added in
model 𝑌𝑌(t) = (1 − θ1B)(1 − Θ1Bs)a(t), then the modified model is 𝑌𝑌(t) = (1 − θ1B −
θ3B3)(1− Θ1Bs − Θ2B2s)a(t).

In all other situations, stop and report “there are significant values in residual ACF”.

If the model is modified, go back to step 5.

Ljung-Box statistics

Ljung-Box statistics Q(K) is defined as

𝑄𝑄(𝐾𝐾) = 𝑛𝑛(𝑛𝑛 + 2)�
𝑝𝑝𝑘𝑘2

𝑛𝑛 − 𝑘𝑘

𝐾𝐾

𝑘𝑘=1

where 𝑝𝑝𝑘𝑘 is the kth lag ACF of residual, 𝑛𝑛 is the number of non-missing residuals. Q(K) is
approximately distributed as Chisq(K-m), where m is the number of parameters other than the
constant term. Q(K) is significant (at 0.05 level) if Q(K)>Chisq(0.05,K-m).

4. Exhaustive ARIMA Search
Exhaustive ARIMA search performs several ARIMA models specified by user, and evaluates the
estimated modes by a specified model selection criterion.

Following are rules to specify exhaustive searching.

• For autoregressive part and moving average part, use one of following methods:
- Specify a maximum number T1 and T2, search from models satisfied 𝑝𝑝 + 𝐸𝐸 ≤ 𝑇𝑇1 and

𝑃𝑃 + 𝑄𝑄 ≤ 𝑇𝑇2.
- Specify the range of lag for parameters. This is the default method for Exhaustive

ARIMA Search, 0 ≤ 𝑝𝑝 ≤ 5, 0 ≤ 𝐸𝐸 ≤ 5, 0 ≤ 𝑃𝑃 ≤ 2, and 0 ≤ 𝑄𝑄 ≤ 2 by default.

• For differencing

- Specify the range of d and D. 0 ≤ 𝑑𝑑 ≤ 2, and 0 ≤ 𝐷𝐷 ≤ 1 by default.

• For model selection criterion, it follows the subsection “Model Selection Criterion” in
“Introduction”.

The result models of Exhaustive ARIMA search are the top N models sorted by model selection
criterion.

5. Univariate Expert Model
In this case, the Exponential Smoothing Expert Model, Univariate ARIMA Expert Model, and
Exhaustive ARIMA Search (if it is turned on) are computed, sort their result models and select
Univarite Expert Model by model selection criterion.

6. Transfer Function Expert Model
Transfer function expert model can automatically build a well fitting model for specified target
time series. Distinguished from univariate ARIMA expert model, transfer function expert model
can specify some predictor series, each can be set as:

• A candidate predictor series which will be evaluated to decide whether can be included in
final model.

• A forced predictor series to be built into final model directly.
6.1 Inputs

• A target series or dependent series 𝑌𝑌𝑡𝑡

• Candidate input series or predictors

- Time series 𝑋𝑋1(𝑡𝑡) to 𝑋𝑋𝐾𝐾(𝑡𝑡)
- Event series 𝐼𝐼1(𝑡𝑡) to 𝐼𝐼𝑀𝑀(𝑡𝑡)

• Forced input series or predictors

- Time series X1∗(t) to XF∗(t)
- Event series I1∗(t) to IL∗(t)

6.2 Small sample
• If n<=10, drop all predictors. Use Univariate Expert Model (or Univariate ARIMA Expert

Model depending on user's request).
• If 10 <n<3s or 10 <n<20, set s=1 to build a non-seasonal model. But all the predictors are kept.

6.3 Step 1: Identify an ARIMA(p,d,q)(P,D,Q) model for Y(t)
Use the univariate procedure to identify an ARIMA model for 𝑌𝑌𝑡𝑡 (see Section ‘Univariate ARIMA
Expert Model’). In this step, the following are accomplished.

(a) All missing values of 𝑌𝑌𝑡𝑡 are imputed if there is any.

(b) Transformation of 𝑌𝑌𝑡𝑡 is done if it is needed.

(c) Differencing orders d and D are found, and the corresponding difference of𝑌𝑌𝑡𝑡 is done.

Note: the imputed, transformed and differenced 𝑌𝑌𝑡𝑡 is named as 𝑖𝑖𝑡𝑡, and will be used in (d) and
subsequent steps in Section ‘Transfer Function Expert Model’.

(d) An ARIMA(p,q)(P,Q) model for 𝑖𝑖𝑡𝑡 is identified.

Note:

• In the case where s>1, if P=D=Q=0 is identified, i.e. no seasonal pattern at all, from now on, we
will treat as if s=1.

• If the error variance for the model just found is zero (this corresponds to a perfect fit situation),
stop. This is the final model.

6.4 Step 2: Cleaning input series
Time span is determined by output series 𝑌𝑌𝑡𝑡. If within the span there are missing values in some
input series, drop these series from the model since our estimation procedure doesn’t allow
missing values in input series. Also drop the input series if it is a constant over the time span.

Note: the number of input series may be reduced after this step.

6.5 Step 3: Transformation of input series.
If it is found that 𝑌𝑌𝑡𝑡 needs to be transformed in step 1, apply the same transformation to all
positive input series, and these transformed series will be used in the subsequent steps.

Implementation note:

1. It is recommended adding a setting for whether to apply the target series transformation to
input series. By default, the transformation should be applied.

6.6 Step 4: Difference input series
If differencing orders d and/or D found in step 1(c) are nonzero, for each input series 𝑋𝑋𝑖𝑖(𝑡𝑡), take
difference 𝑋𝑋𝑖𝑖′(𝑡𝑡) = (1 − 𝐵𝐵)𝑑𝑑(1− 𝐵𝐵𝑠𝑠)𝐷𝐷𝑋𝑋𝑖𝑖(𝑡𝑡). Difference input series as following steps:

(a) Calculate 𝐶𝐶𝐶𝐶𝐹𝐹(𝑘𝑘) = 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 �𝑖𝑖(𝑡𝑡),𝑋𝑋𝑖𝑖′(𝑡𝑡 − 𝑘𝑘)� for k=0 to 12.
(b) Check the significance of CCF coefficients.

(b.1) If for some 𝑋𝑋𝑖𝑖′(𝑡𝑡), one or more of CCF(0) to CCF(12) is significant (|𝑡𝑡| > 2), 𝑋𝑋𝑖𝑖′ is used as
the final differencing series 𝛥𝛥𝑋𝑋 for 𝑋𝑋𝑖𝑖.

(b.2) If for some 𝑋𝑋𝑖𝑖′(𝑡𝑡), none of CCF(0) to CCF(12) is significant (|𝑡𝑡| > 2), find both non-
seasonal and seasonal differencing orders for series 𝑋𝑋𝑖𝑖′(𝑡𝑡) by step 3 of univariate ARIMA
procedure, call them 𝑑𝑑𝑖𝑖, 𝐷𝐷𝑖𝑖. Compare 𝑑𝑑𝑖𝑖 and 𝐷𝐷𝑖𝑖 with 0 and do the following:

• If 𝑑𝑑𝑖𝑖 = 0 & 𝐷𝐷𝑖𝑖 = 0, drop 𝑋𝑋𝑖𝑖′(𝑡𝑡) from the model.
• If 𝑑𝑑𝑖𝑖 > 0 & 𝐷𝐷𝑖𝑖 = 0, take difference 𝑋𝑋𝑖𝑖′′(𝑡𝑡) = (1 − 𝐵𝐵)𝑑𝑑𝑖𝑖𝑋𝑋𝑖𝑖′(𝑡𝑡).
• If 𝑑𝑑𝑖𝑖 = 0 & 𝐷𝐷𝑖𝑖 > 0, take difference 𝑋𝑋𝑖𝑖′′(𝑡𝑡) = (1 − 𝐵𝐵𝑠𝑠)𝐷𝐷𝑖𝑖𝑋𝑋𝑖𝑖′(𝑡𝑡).
• If 𝑑𝑑𝑖𝑖 > 0 & 𝐷𝐷𝑖𝑖 > 0, take difference 𝑋𝑋𝑖𝑖′′(𝑡𝑡) = (1 − 𝐵𝐵)𝑑𝑑𝑖𝑖(1− 𝐵𝐵𝑠𝑠)𝐷𝐷𝑖𝑖𝑋𝑋𝑖𝑖′(𝑡𝑡).

If 𝑋𝑋𝑖𝑖′′(𝑡𝑡) is generated from above conditions, calculate again 𝐶𝐶𝐶𝐶𝐹𝐹(𝑘𝑘) = 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝 �𝑖𝑖(𝑡𝑡),𝑋𝑋𝑖𝑖′′(𝑡𝑡 −

𝑘𝑘)� for k=0 to 12. If none of CCF(0) to CCF(12) is significant (|𝑡𝑡| ≥ 2), drop 𝑋𝑋𝑖𝑖(𝑡𝑡) from the

model; otherwise, 𝑋𝑋𝑖𝑖′′ is used as the final differencing series 𝛥𝛥𝑋𝑋 for 𝑋𝑋𝑖𝑖.

(c) If 𝑋𝑋𝑖𝑖 is not dropped, its final differencing series 𝛥𝛥𝑋𝑋 is used instead of 𝑋𝑋𝑖𝑖 in model in
subsequent analysis.

Note:
• Each time 𝑋𝑋𝑖𝑖(𝑡𝑡) is differenced, check if it becomes a constant series. If it becomes constant after

differencing, drop it out from the model.

• If the input series is differenced, this differenced series will be used in the subsequent steps.

• After this step, the number of input series may be further reduced because some may be
dropped.

• For CCF computation,

𝐶𝐶𝐶𝐶𝐹𝐹(𝑘𝑘) =
𝐶𝐶𝑘𝑘𝑋𝑋𝑍𝑍

𝐸𝐸𝑋𝑋𝐸𝐸𝑍𝑍

where

𝐶𝐶𝑘𝑘𝑋𝑋𝑍𝑍 =
1

𝑛𝑛 − 1
� (𝑋𝑋𝑡𝑡−𝑘𝑘 − 𝑋𝑋�)(𝑖𝑖𝑡𝑡 − �̅�𝑖)
𝑛𝑛

𝑡𝑡=𝑘𝑘+1

𝐸𝐸𝑋𝑋 = �
1

𝑛𝑛 − 1
�(𝑋𝑋𝑡𝑡 − 𝑋𝑋�)2
𝑛𝑛

𝑡𝑡=1

𝐸𝐸𝑍𝑍 = �
1

𝑛𝑛 − 1
�(𝑖𝑖𝑡𝑡 − �̅�𝑖)2
𝑛𝑛

𝑡𝑡=1

𝑋𝑋� = ∑ 𝑋𝑋𝑡𝑡𝑛𝑛
𝑡𝑡=1
𝑛𝑛

 is the sample mean of 𝑋𝑋, and �̅�𝑖 = ∑ 𝑍𝑍𝑡𝑡𝑛𝑛
𝑡𝑡=1
𝑛𝑛

 is the sample mean of 𝑖𝑖.

6.7 Step 5: Fit the model

6.7.1 Initial model
Fit the following initial model by conditional least square method,

𝑖𝑖(𝑡𝑡) = 𝑐𝑐 + ���𝜔𝜔𝑖𝑖𝑗𝑗𝐵𝐵𝑗𝑗
𝑚𝑚

𝑗𝑗=0

�
𝑖𝑖

𝛥𝛥𝑋𝑋𝑖𝑖(𝑡𝑡) + �𝛽𝛽𝑘𝑘(1− 𝐵𝐵)𝑑𝑑(1− 𝐵𝐵𝑠𝑠)𝐷𝐷𝐼𝐼𝑘𝑘(𝑡𝑡)
𝑀𝑀

𝑘𝑘=1

+ 𝑁𝑁(𝑡𝑡)

where ∑ 𝑖𝑖 sums over all the un-dropped input series, the noise series N(t) follows a model which
has the exact same lags as the ARMA(p,q)(P,Q) model found for Z(t) in step 1(d) but no constant
term. That is to fit an AMModel with ARMA part corresponding to model obtained in Step 1(d)
and transfer function specified by

���𝜔𝜔𝑖𝑖𝑗𝑗𝐵𝐵𝑗𝑗
𝑚𝑚

𝑗𝑗=0

�
𝑖𝑖

𝛥𝛥𝑋𝑋𝑖𝑖(𝑡𝑡) + �𝛽𝛽𝑘𝑘(1− 𝐵𝐵)𝑑𝑑(1− 𝐵𝐵𝑠𝑠)𝐷𝐷𝐼𝐼𝑘𝑘(𝑡𝑡)
𝑀𝑀

𝑘𝑘=1

 For example, suppose that the model found in step 1(d) for Z(t) is

(1 − 𝜑𝜑1𝐵𝐵 − 𝜑𝜑3𝐵𝐵3)𝑖𝑖(𝑡𝑡) = 1 + (1 − 𝜃𝜃2𝐵𝐵2)(1− 𝛩𝛩1𝐵𝐵12)𝑎𝑎(𝑡𝑡)

then the model for N(t) would be the above model with constant term dropped, i.e.

(1 −𝜑𝜑1𝐵𝐵 − 𝜑𝜑3𝐵𝐵3)𝑁𝑁(𝑡𝑡) = (1 − 𝜃𝜃2𝐵𝐵2)(1− 𝛩𝛩1𝐵𝐵12)𝑎𝑎(𝑡𝑡)

Choose value m:

• For non-seasonal time series, m= 8;
• For seasonal series, e.g. monthly data, m=s+3. If s+3>20, take m=20.
When the total number of parameters is bigger than 1/2 of the sample size, decrease the order m
so that the total number of parameters is less than 1/2 of sample size. If this cannot be done, (i.e.
even m=0 would result that total number of parameters is bigger than 1/2 of sample size), then set
m=0.

6.7.2 Predictor deletion
Drop the insignificant time series predictor, 𝛥𝛥𝑋𝑋𝑖𝑖(𝑡𝑡), one at a time. Start from the last predictor,
suppose that 𝛥𝛥𝑋𝑋𝑖𝑖(𝑡𝑡) is the first one that none of its �𝜔𝜔𝑖𝑖𝑗𝑗�𝑗𝑗=0

𝑚𝑚 is significant, then drop 𝛥𝛥𝑋𝑋𝑖𝑖(𝑡𝑡) from

the model, rebuild the initial model, and refit the model. Repeat this until no more time series
predictor need to be dropped.

Then, drop the insignificant event predictor, 𝐼𝐼𝑖𝑖, one at a time. Start from the last predictor, suppose
that 𝐼𝐼𝑖𝑖(𝑡𝑡) is the first one that its 𝛽𝛽𝑖𝑖 is insignificant, then drop 𝐼𝐼𝑖𝑖(𝑡𝑡) from the model, rebuild the
initial model, and refit the model. Repeat this until no more event predictor need to be dropped.

6.7.3 Parameter deletion, model modification and refit:
• ARMA part

Delete all insignificant parameters (|𝑡𝑡| < 2) in ARIMA part.

• Constant term

Delete insignificant constant term only if the differencing order found in step 1(c), d or D, is
not zero.

• Refit the model if it is modified.

• Delete ARMA part and constant term as before.

• TSF part of each 𝑋𝑋𝑖𝑖(𝑡𝑡), but not any intervention/event series I(t)

(a) If only one or two 𝜔𝜔𝑖𝑖𝑗𝑗 terms, 𝜔𝜔𝑖𝑖𝑗𝑗0 and 𝜔𝜔𝑖𝑖𝑗𝑗1 , are significant (|𝑡𝑡| ≥ 2), no rational form is
needed (i.e. denominator polynomial not needed). Use 𝜔𝜔𝑖𝑖𝑗𝑗0𝛥𝛥𝑋𝑋𝑖𝑖(𝑡𝑡 − 𝑗𝑗0) + 𝜔𝜔𝑖𝑖𝑗𝑗1𝛥𝛥𝑋𝑋𝑖𝑖(𝑡𝑡 − 𝑗𝑗1).

(b) If more than two 𝜔𝜔𝑖𝑖𝑗𝑗 terms are significant, assuming that 𝜔𝜔𝑖𝑖𝑗𝑗0 is the first significant one,
use the form

�𝜔𝜔𝑖𝑖𝑗𝑗0 + 𝜔𝜔𝑖𝑖(𝑗𝑗0+1)𝐵𝐵 + 𝜔𝜔𝑖𝑖(𝑗𝑗0+2)𝐵𝐵2�𝐵𝐵𝑗𝑗0
(1 − 𝛿𝛿1𝐵𝐵 − 𝛿𝛿2𝐵𝐵2) 𝛥𝛥𝑋𝑋𝑖𝑖(𝑡𝑡)

• Refit the modified model, if there are any insignificant parameters (|𝑡𝑡| < 2) in the numerator,
delete them and also delete other insignificant non-denominator parameters. Again, delete
insignificant constant term only if the differencing order, d or D, is not zero. Repeat this step
until all numerator parameters are significant.

• Refit the model, delete all insignificant parameters. Repeat this step until all parameters are
significant.

Note: In each refitting, use previous estimates as initial values for both numerators and
denominators, yet leave the initial values of ARMA part of N(t) to the default values.

Fit the resulted model by ML method. If there are insignificant parameters, delete them and refit
by ML method. Repeat until all parameters are significant.

6.8 Step 6: Diagnostic checking and model modification
Check the residual and modify the model exactly the same way as those in step 6 of univariate
procedure (see Section ‘Univariate ARIMA Expert Model’). If model is modified, refit the model
by CLS method. If there are insignificant parameters, delete them and refit by ML method.

6.9 Special cases
If all predictors are deleted after above steps, choose the model found in step 1, i.e. Univariate
ARIMA Expert Model for Y, as the expert model.

If any of the multivariate model estimation fails, choose Univariate ARIMA Expert Model for Y as
the expert model.

7. Multivariate Expert Model
For the target series specified with predictor series, Expert Modeler considers Transfer Function
Expert Model first, if it drops all predictor series and ends up with a univariate ARIMA model,
this univariate ARIMA model will be compared with Exponential Smoothing Expert Model and
Exhaustive ARIMA Search (if it is turned on) by model selection criterion to determine the final
recommendation. This is the default type for target series with predictor series specified.

8. Double Seasonal Expert Model
For a given series with two seasonality lengths specified, Expert Model can find one or more
reasonable models among above ES and ARIMA models based on model selection criterion (say
BIC or AIC, “average squared error on testing set” is not supported here).

Following models will be estimated:

• Single seasonal Univariate Expert Model for each seasonality
• Double seasonal models includes:

- Two ES models: additive and multiplicative double seasonal ES models
- One double seasonal ARIMA with identified orders of parameters

Implementation note:

• A setting can be used to specify whether only estimate the double seasonal models.

Following method can be used to identify the order of parameters in ARIMA:

1. First, use existing Univariate ARIMA Expert Model algorithm to indentify (𝑝𝑝,𝑑𝑑, 𝐸𝐸)×
(𝑃𝑃1,𝐷𝐷1,𝑄𝑄1)𝑠𝑠1 (here 𝑠𝑠1 is the smaller seasonality length).
• If orders of (𝑃𝑃1,𝐷𝐷1,𝑄𝑄1)𝑠𝑠1 are all 0, reduce the model to a single seasonal 𝐴𝐴𝑅𝑅𝐼𝐼𝑀𝑀𝐴𝐴(𝑝𝑝,𝑑𝑑, 𝐸𝐸)×

(𝑃𝑃2,𝐷𝐷2,𝑄𝑄2)𝑠𝑠2, use Univariate ARIMA Expert Model process to identify the model structure
and estimate the parameters;

• Else, go to step 2.
2. Then, simplify the same algorithm to indentify (𝑃𝑃2,𝐷𝐷2,𝑄𝑄2)𝑠𝑠2:

• For 𝐷𝐷2, difference the series based on 𝑑𝑑 and 𝐷𝐷1:
𝑖𝑖(𝑡𝑡) = (1 − 𝐵𝐵)𝑑𝑑(1 − 𝐵𝐵𝑠𝑠1)𝐷𝐷1𝑌𝑌(𝑡𝑡)

Fit model 𝑖𝑖(𝑡𝑡) = 𝑐𝑐 + 𝜙𝜙𝑖𝑖(𝑡𝑡 − 𝑠𝑠2). If {|𝑡𝑡(𝑐𝑐)| < 2 𝑎𝑎𝑛𝑛𝑑𝑑 𝜙𝜙 > 𝐶𝐶(2,1)} or {|𝑡𝑡(𝑐𝑐)| ≥
2 𝑎𝑎𝑛𝑛𝑑𝑑 (𝜙𝜙 − 1) 𝑠𝑠𝑠𝑠(𝜙𝜙)⁄ > 𝐶𝐶(3,1)}, take difference(1 − 𝐵𝐵𝑠𝑠2)𝑖𝑖(𝑠𝑠). All the critical values 𝐶𝐶(𝑖𝑖, 1)
can reuse the values in Univariate ARIMA Expert Model.

• For 𝑃𝑃2 and 𝑄𝑄2, set as 1. Then fit the model and delete the insignificant parameters.
• If (𝑃𝑃2,𝐷𝐷2,𝑄𝑄2)𝑠𝑠2 in the final model are all 0, then it will reduced to the single seasonal

𝐴𝐴𝑅𝑅𝐼𝐼𝑀𝑀𝐴𝐴(𝑝𝑝, 𝑑𝑑, 𝐸𝐸)×(𝑃𝑃1,𝐷𝐷1,𝑄𝑄1)𝑠𝑠1.

Time Series Algorithm: Outlier Detection

1. Introduction
The observed series may be contaminated by so called outliers. These outliers may change the mean level

(deterministic outliers) of the uncontaminated series. Outlier detection procedure is to find if there are

outliers and what their locations, types, and magnitudes are when there are outliers.

The model for the uncontaminated series may or may not be known. When the model for uncontaminated

series is known, user can specify the model and the outlier detection is done with respect to this user-

specified model. When the model for uncontaminated series is unknown, outlier detection is combined with

model identification in Expert modeler.

Seven types of deterministic outliers are considered. They are additive outliers (AO), innovational outliers

(IO), level shift (LS), temporary (or transient) change (TC), seasonal additive (SA), local trend (LT), and

AO patch (AOP). Instead of calling them outliers, LS, TC, SA, and LT are also referred to as structure

changes by some people.

The rest of the sections are arranged as follows: Section 2 gives the definition of outliers. Section 3

estimates the magnitude of outliers assuming outlier location and outlier type are known. In the section 4,

the outliers including type and magnitude are detected automatically under two situations of model is

known and unknown. The section 5 is for output.

2. Definitions of outliers

2.1. Models considered for uncontaminated series
Suppose that the dependent series 𝑌𝑌𝑡𝑡 , 𝑡𝑡 = 1,2,⋯ ,𝑛𝑛 can be decomposed into uncontaminated series 𝑈𝑈𝑡𝑡

which does not contain information of outlier and another series 𝑂𝑂𝑡𝑡 which contains the information of

outliers including type and magnitude, i.e.

𝑌𝑌𝑡𝑡 = 𝑈𝑈𝑡𝑡 + 𝑂𝑂𝑡𝑡

 And assume that the uncontaminated series 𝑈𝑈t follows either univariate ARIMA or transfer function

models of form

 𝑈𝑈𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 1
∆
𝑁𝑁𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜃𝜃∗(𝐵𝐵)

∆𝜙𝜙∗(𝐵𝐵)
𝑎𝑎𝑡𝑡 Eq. (1)

where

• 𝜇𝜇𝑡𝑡 is the level function and 𝑁𝑁𝑡𝑡 is the disturbance or noise series follows an zero mean

ARIMA(p,q)(P,Q) model. For univariate ARIMA, 𝛥𝛥𝜇𝜇t is constant. For transfer function model,

µt depends on other predictor series.

• B is backward shift operator with 𝐵𝐵𝑌𝑌𝑡𝑡 = 𝑌𝑌𝑡𝑡−1 and 𝐵𝐵𝑎𝑎𝑡𝑡 = 𝑎𝑎𝑡𝑡−1

• Δ is differencing operator Δ = (1 − 𝐵𝐵)𝑑𝑑(1 − 𝐵𝐵𝑠𝑠)𝐷𝐷, where 𝑑𝑑 and 𝐷𝐷 are the order of difference in

non-seasonal and seasonal part, respectively.

• 𝜙𝜙∗(𝐵𝐵) = 𝜙𝜙𝑝𝑝(𝐵𝐵)𝛷𝛷𝑇𝑇(𝐵𝐵𝑠𝑠) , where 𝜙𝜙𝑝𝑝(𝐵𝐵) and 𝛷𝛷𝑇𝑇(𝐵𝐵𝑠𝑠) are the auto-regressive lag polynomial with

order p and seasonal auto-regressive lag polynomial with order P, respectively, and 𝑠𝑠 is the

seasonal length.

• 𝜃𝜃∗(𝐵𝐵) = 𝜃𝜃𝑞𝑞(𝐵𝐵)𝛩𝛩𝑄𝑄(𝐵𝐵𝑠𝑠), where 𝜃𝜃𝑞𝑞(𝐵𝐵) and 𝛩𝛩𝑄𝑄(𝐵𝐵𝑠𝑠) are the moving average lag polynomial with

order q and seasonal moving average lag polynomial with order Q, respectively.

• 𝑎𝑎𝑡𝑡 is white noise series normally distributed with mean zero and variance 𝜎𝜎2, where 𝑡𝑡 = 1,⋯ ,𝑛𝑛

To conform to the model representation used in the ARIMA ADD, model in Eq. (1) can be re-written as

Δ𝑈𝑈𝑡𝑡 = Δ𝜇𝜇𝑡𝑡 + 𝑁𝑁𝑡𝑡

where Δµt is the constant plus transfer function part in document ARIMA ADD.

2.2. Definition outlier

Types of outliers are defined as following:

AO (Additive Outliers)

Assume that an AO outlier occurs at time t = T, the observed series can be represented as

𝑌𝑌𝑡𝑡 = 𝑈𝑈𝑡𝑡 + 𝑤𝑤𝐼𝐼𝑇𝑇(𝑡𝑡)

where 𝐼𝐼𝑇𝑇(𝑡𝑡) = �0, 𝑡𝑡 ≠ 𝑇𝑇
1 𝑡𝑡 = 𝑇𝑇 is a pulse function, 𝑤𝑤 is the deviation from the true 𝑈𝑈t caused by the outlier.

IO (Innovational Outliers)

Assume that an IO outlier occurs at time t = T, then

𝑌𝑌𝑡𝑡 = 𝜇𝜇𝑡𝑡 +
𝜃𝜃∗(𝐵𝐵)
𝛥𝛥𝜙𝜙∗(𝐵𝐵)

(𝑎𝑎𝑡𝑡 + 𝑤𝑤𝐼𝐼𝑇𝑇(𝑡𝑡))

LS (Level Shift)

Assume that a LS outlier occurs at time 𝑡𝑡 = 𝑇𝑇, then

𝑌𝑌𝑡𝑡 = 𝑈𝑈𝑡𝑡 + 𝑤𝑤𝐸𝐸𝑇𝑇(𝑡𝑡)

where 𝐸𝐸𝑇𝑇(𝑡𝑡) = 1
1−𝐵𝐵

𝐼𝐼𝑇𝑇(𝑡𝑡) = �0, 𝑡𝑡 < 𝑇𝑇
1 𝑡𝑡 ≥ 𝑇𝑇 is a step function.

TC (Temporary/Transient Change)

Assume that a TC outlier occurs at time t = T, then

𝑌𝑌𝑡𝑡 = 𝑈𝑈𝑡𝑡 + 𝑤𝑤𝐷𝐷𝑇𝑇(𝑡𝑡)

where 𝐷𝐷𝑇𝑇(𝑡𝑡) = 1
1−𝛿𝛿𝐵𝐵

𝐼𝐼𝑇𝑇(𝑡𝑡), 0 < 𝛿𝛿 < 1 is a damp function.

SA (Seasonal Additive)

Assume that a SA outlier occurs at time t = T, then

𝑌𝑌𝑡𝑡 = 𝑈𝑈𝑡𝑡 + 𝑤𝑤𝐸𝐸𝐸𝐸𝑇𝑇(𝑡𝑡)

where 𝐸𝐸𝐸𝐸𝑇𝑇(𝑡𝑡) = 1
1−𝐵𝐵𝑠𝑠

𝐼𝐼𝑇𝑇(𝑡𝑡) = �1, 𝑡𝑡 = 𝑇𝑇 + 𝑘𝑘𝑠𝑠, 𝑘𝑘 > 0
0, 𝑝𝑝𝑡𝑡ℎ𝑠𝑠𝑝𝑝𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠 is a step seasonal pulse function, and 𝑠𝑠 is seasonal

length.

LT (Local Trend)

Assume that a LT outlier occurs at time t = T, then

𝑌𝑌𝑡𝑡 = 𝑈𝑈𝑡𝑡 + 𝑤𝑤𝑇𝑇𝑇𝑇(𝑡𝑡)

where 𝑇𝑇𝑇𝑇(𝑡𝑡) = 1
(1−𝐵𝐵)𝑠𝑠

𝐼𝐼𝑇𝑇(𝑡𝑡) = �𝑡𝑡 + 1 − 𝑇𝑇, 𝑡𝑡 ≥ 𝑇𝑇
0, 𝑝𝑝𝑡𝑡ℎ𝑠𝑠𝑝𝑝𝑤𝑤𝑖𝑖𝑠𝑠𝑠𝑠 is a local trend function.

AO patch

An AO patch is a group of two or more consecutive AO outliers. An AO patch can be described by its

starting time and length. Assume that there is a patch of AO outliers of length k at time 𝑡𝑡 = 𝑇𝑇, the observed

series can be represented as

𝑌𝑌𝑡𝑡 = 𝑈𝑈𝑡𝑡 + �𝑤𝑤𝑖𝑖𝐼𝐼𝑇𝑇−1+𝑖𝑖(𝑡𝑡)
𝑘𝑘

𝑖𝑖=1

Due to masking effect, patch of AO outliers is very difficult to detect when searching for outliers one by

one. This is why AO patch is considered as a separate type from individual AO. For type AO patch, we will

search for the whole patch together.

Summary

For an outlier of type O at time 𝑇𝑇, except AO patch, we can write

 𝑌𝑌𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝑤𝑤𝐿𝐿𝑚𝑚(𝐵𝐵)𝐼𝐼𝑡𝑡 + 𝜃𝜃∗(𝐵𝐵)
𝛥𝛥𝜙𝜙∗(𝐵𝐵)

𝑎𝑎𝑡𝑡 Eq. (2)

Where

 𝐿𝐿𝑚𝑚(𝐵𝐵) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

1, 𝑂𝑂 = 𝐴𝐴𝑂𝑂
1

�∆𝜋𝜋(𝐵𝐵)�
, 𝑂𝑂 = 𝐼𝐼𝑂𝑂

1
(1−𝐵𝐵)

, 𝑂𝑂 = 𝐿𝐿𝐸𝐸
1

(1−𝛿𝛿𝐵𝐵)
, 𝑂𝑂 = 𝑇𝑇𝐶𝐶

1
(1−𝐵𝐵𝑠𝑠)

, 𝑂𝑂 = 𝐸𝐸𝐴𝐴
1

(1−𝐵𝐵)2
, 𝑂𝑂 = 𝐿𝐿𝑇𝑇

 Eq. (3)

with 𝜋𝜋(𝐵𝐵) = 𝜙𝜙∗(𝐵𝐵)
𝜃𝜃∗(𝐵𝐵)

.

Suppose there are 𝑀𝑀 outliers at times 𝑇𝑇1,⋯ ,𝑇𝑇𝑀𝑀 with types 𝑂𝑂1,𝑂𝑂2,⋯ ,𝑂𝑂𝑀𝑀 and magnitude 𝑤𝑤1,𝑤𝑤2,⋯ ,𝑤𝑤𝑀𝑀 .

The model incorporates all these outliers is

 𝑌𝑌𝑡𝑡 = 𝜇𝜇𝑡𝑡 + ∑ 𝑤𝑤𝑘𝑘𝐿𝐿𝜕𝜕𝑘𝑘(𝐵𝐵)𝑀𝑀
𝑘𝑘=1 𝐼𝐼𝑇𝑇𝑘𝑘(𝑡𝑡) + 𝜃𝜃∗(𝐵𝐵)

𝛥𝛥𝜙𝜙∗(𝐵𝐵)
𝑎𝑎𝑡𝑡 Eq. (4)

3. Estimate the effects of an outlier

If the model, and the type and location of outliers are known, but the model parameters in Eq. (1) and

magnitudes of outliers are not known, then all parameters and magnitudes in Eq. (4) will be estimated using

ML method. The initial parameters in Eq. (1) will be computed using the method in ARIMA ADD and

initial magnitudes of outliers will be set to 0.

If the model, the model parameters in Eq. (1) and the type and location of an outlier are known, then

magnitude of outliers will be estimated as following:

Non-AO patch outliers

For any type of outlier at time 𝑇𝑇, except AO patch, we can write

 𝑌𝑌𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝑤𝑤𝐿𝐿(𝐵𝐵)𝐼𝐼𝑇𝑇(𝑡𝑡) + 𝜃𝜃∗(𝐵𝐵)
𝛥𝛥𝜙𝜙∗(𝐵𝐵)

𝑎𝑎𝑡𝑡 Eq. (5)

Let 𝑠𝑠𝑡𝑡 = 𝜋𝜋(𝐵𝐵)∆(𝑌𝑌𝑡𝑡 − 𝜇𝜇𝑡𝑡) = 𝑌𝑌𝑡𝑡 − 𝑌𝑌�𝑡𝑡 = 𝑁𝑁𝑡𝑡 − 𝑁𝑁�𝑡𝑡 be the residual, where 𝑌𝑌�𝑡𝑡 is the prediction of 𝑌𝑌𝑡𝑡 , assuming

that there is no outlier. Let 𝑥𝑥𝑡𝑡 = 𝜋𝜋(𝐵𝐵)𝐿𝐿(𝐵𝐵)𝛥𝛥𝐼𝐼𝑇𝑇(𝑡𝑡). So

𝑠𝑠𝑡𝑡 = 𝑤𝑤𝑥𝑥𝑡𝑡 + 𝑎𝑎𝑡𝑡

From residuals 𝑠𝑠𝑡𝑡, the parameters for outliers at time 𝑇𝑇 are estimated by least square regression of 𝑠𝑠𝑡𝑡 on 𝑥𝑥𝑡𝑡,

i.e.

 𝑤𝑤(𝑇𝑇) = ∑ 𝑠𝑠𝑡𝑡𝑥𝑥𝑡𝑡𝑛𝑛
𝑡𝑡=1
∑ 𝑥𝑥𝑡𝑡

2𝑛𝑛
𝑡𝑡=1

 Eq. (6)

And

𝑉𝑉𝑎𝑎𝑝𝑝(𝑤𝑤(𝑇𝑇)) =
𝜎𝜎2

∑ 𝑥𝑥𝑡𝑡2𝑛𝑛
𝑡𝑡=1

Note: when there are missing residuals, the regression should use only non-missing pairs of et and xt.

For j = 1 (AO), 2 (IO), 3 (LS), 4 (TC), 5 (SA), 6 (LT), define

 𝜆𝜆𝑗𝑗(𝑇𝑇) =
𝑤𝑤𝑗𝑗(𝑇𝑇)

�𝑉𝑉𝑠𝑠𝑞𝑞�𝑤𝑤𝑗𝑗(𝑇𝑇)�
 Eq. (7)

Under the null hypothesis of no outlier, 𝜆𝜆𝑗𝑗(𝑇𝑇) is distributed as 𝑁𝑁(0,1) assuming the model and model

parameters are known.

AO patch outliers

For an AO patch of length k starting at time 𝑇𝑇, let 𝑥𝑥𝑖𝑖(𝑡𝑡;𝑇𝑇) = 𝜋𝜋(𝐵𝐵)𝛥𝛥𝐼𝐼𝑇𝑇+𝑖𝑖−1(𝑡𝑡) for 𝑖𝑖 = 1 to 𝑘𝑘, then

 𝑠𝑠𝑡𝑡 = ∑ 𝑤𝑤𝑖𝑖(𝑇𝑇)𝑘𝑘
𝑖𝑖=1 𝑥𝑥𝑖𝑖(𝑡𝑡;𝑇𝑇) + 𝑎𝑎𝑡𝑡 Eq. (8)

Multiple linear regression can be used to fit this model. For an AO patch starting at time 𝑇𝑇, we have:

 𝑤𝑤(𝑇𝑇) = {𝑤𝑤1(𝑇𝑇),⋯ ,𝑤𝑤𝑘𝑘(𝑇𝑇)} = (𝑋𝑋𝑇𝑇′ 𝑋𝑋𝑇𝑇)−1𝑋𝑋𝑇𝑇′ 𝒆𝒆 Eq. (9)

Where 𝐞𝐞 = (𝑠𝑠1,⋯ , 𝑠𝑠𝑛𝑛)′ and 𝑋𝑋𝑇𝑇 = �𝑥𝑥1(𝑇𝑇),⋯ , 𝑥𝑥𝑘𝑘(𝑇𝑇)� with 𝑥𝑥𝑖𝑖(𝑇𝑇) = �𝑥𝑥𝑖𝑖(1;𝑇𝑇),⋯ , 𝑥𝑥𝑖𝑖(𝑛𝑛;𝑇𝑇)�′, and

 𝜏𝜏(𝑤𝑤𝑖𝑖(𝑇𝑇)) = 𝑤𝑤𝑖𝑖(𝑇𝑇)

�𝜎𝜎2��𝑋𝑋𝑇𝑇
′𝑋𝑋𝑇𝑇�

−1
�
𝑖𝑖𝑖𝑖

 Eq. (10)

 𝜒𝜒2(𝑇𝑇) = 𝑤𝑤′(𝑇𝑇)�𝑋𝑋𝑇𝑇
′𝑋𝑋𝑇𝑇�𝑤𝑤(𝑇𝑇)
𝜎𝜎2

 Eq. (11)

Assuming the model and model parameters are known, 𝜏𝜏(𝑤𝑤𝑖𝑖(𝑇𝑇)) is distributed as 𝑁𝑁(0,1) under the null

hypothesis 𝑤𝑤𝑖𝑖(𝑇𝑇) = 0, and χ2(𝑇𝑇) is of Chi-square distribution with degree of freedom being k under the

null hypothesis 𝑤𝑤1(𝑇𝑇) = ⋯ = 𝑤𝑤𝑘𝑘(𝑇𝑇) = 0.

4. Detection of outliers
In practice, locations and types of outliers are unknown. Quite often the model for 𝑈𝑈𝑡𝑡 is unknown as well.

Even the model is known, the parameters in the model are unknown Here we propose a procedure that can

detect outlier automatically.

Outlier detection is offered for 1) user-specified model; 2) unknown model. In the second situation, the

expert modeler without outlier detection is used iteratively to find a proper model after adjusting outlier

effects.

4.1 Critical values
In the outlier detection, three critical values are needed:

• 𝐶𝐶1 : Critical value for non-AO patch deterministic outliers. The critical value depends on series

length 𝑛𝑛. An approximate relationship between 𝐶𝐶1 and 𝑛𝑛 is

 𝐶𝐶1(𝑛𝑛) = �0.9 + 2.2 ln(𝑛𝑛)

which is used in TSMODEL procedure in SPSS Statistics based on some simulations. We also use

it in this document.

• 𝐶𝐶2 : Critical for AO patch. The critical value depends on series length 𝑛𝑛 and patch length 𝑘𝑘. A An

approximate relationship between 𝐶𝐶2 , 𝑛𝑛 and 𝑘𝑘 is

𝐶𝐶2(𝑘𝑘,𝑛𝑛) = −2.4 + 1.2𝑘𝑘 + 2.6 ln(𝑘𝑘) + 2.6 ln(𝑛𝑛)

which is used in TSMODEL procedure in SPSS Statistics based on some simulations. We also use

it in this document.

4.2 Outlier detection procedure
Following, 𝑀𝑀 represent the total number of outliers, 𝐾𝐾 represent the number of outliers found in one

iteration. 𝑁𝑁𝑎𝑎𝑑𝑑𝑗𝑗 represents the number of times data being adjusted for outliers.

1. Set 𝑀𝑀 = 0, 𝑌𝑌𝑡𝑡∗ = 𝑌𝑌𝑡𝑡, and 𝑁𝑁𝑎𝑎𝑑𝑑𝑗𝑗 = 0.

2. Assuming no outliers for 𝑌𝑌𝑡𝑡∗:

• For user-specified model, use ML method to fit the model on 𝑌𝑌𝑡𝑡∗.

• For unknown model, use expert modeler without outlier detection to find and fit a

proper model on 𝑌𝑌𝑡𝑡∗.

 Suppose the model is 𝑌𝑌𝑡𝑡∗ = 𝜇𝜇𝑡𝑡 + 𝜃𝜃∗(𝐵𝐵)
Δ𝜙𝜙∗(𝐵𝐵)

𝑎𝑎𝑡𝑡.

 Note: a) this step is only visited once at beginning for user-specified model.

3. Compute the residuals 𝑠𝑠𝑡𝑡 = 𝑌𝑌𝑡𝑡∗ − 𝑌𝑌�𝑡𝑡∗ = 𝑁𝑁𝑡𝑡∗ − 𝑁𝑁�𝑡𝑡∗ from the fitted model.

Let 𝑡𝑡1, 𝑡𝑡2,⋯ , 𝑡𝑡𝑚𝑚 be the times with non-missing residuals.

Steps 4 to 13 identify outlier candidates, adjust residuals.

4. Set 𝐾𝐾 = 0.

5. Detect a possible non-AOP outlier.

Using residuals, 𝑠𝑠𝑡𝑡 , and parameter estimates from the fitted model, calculate the following

statistics for outliers other than AO patch by Eq. (6) and (7):

Test statistics: 𝜆𝜆𝐷𝐷 = max
𝑗𝑗

�max
𝑖𝑖
��𝜆𝜆𝑗𝑗(𝑡𝑡𝑖𝑖)���.

Outlier type: 𝑂𝑂 = 𝑎𝑎𝑝𝑝𝑎𝑎max
𝑗𝑗

�max
𝑖𝑖
��𝜆𝜆𝑗𝑗(𝑡𝑡𝑖𝑖)���.

Location of outlier: 𝑇𝑇𝐷𝐷 = 𝑎𝑎𝑝𝑝𝑎𝑎max
𝑡𝑡𝑖𝑖

(|𝜆𝜆𝜕𝜕(𝑡𝑡𝑖𝑖)|).

Magnitude of outlier: 𝑤𝑤𝜕𝜕(𝑇𝑇𝐷𝐷).

 Note:

• Use 𝛿𝛿 = 0.8 as default in calculating 𝜆𝜆 for TC outliers.

• Don’t consider LS if 𝑡𝑡𝑖𝑖 is too close to either beginning or end of the series, say, 𝑖𝑖 ≤ 𝑎𝑎 or

𝑚𝑚 − 𝑖𝑖 ≤ 𝑎𝑎 − 2, with 𝑎𝑎 = 5 as default.

• Don’t consider SA if 𝑠𝑠 = 1.

6. Detect a possible AO patch (see section “AO patch detection” for details).

If an AO patch is detected, let 𝑘𝑘𝐴𝐴𝜕𝜕𝑇𝑇 and 𝑇𝑇𝐴𝐴𝜕𝜕𝑇𝑇 represent the length and the starting time of the

patch, �𝑤𝑤𝑗𝑗(𝑇𝑇𝐴𝐴𝜕𝜕𝑇𝑇), 𝜏𝜏 �𝑤𝑤𝑗𝑗(𝑇𝑇𝐴𝐴𝜕𝜕𝑇𝑇)��
𝑗𝑗=1

𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴
 the magnitudes and t-values of AOs in the patch, 𝜒𝜒𝐴𝐴𝜕𝜕𝑇𝑇2 the

Chi-Square statistics related to this AO patch.

Else, set 𝜒𝜒𝐴𝐴𝜕𝜕𝑇𝑇2 = 0.

7. If (𝜆𝜆𝐷𝐷 < 𝐶𝐶1 and 𝜒𝜒𝐴𝐴𝜕𝜕𝑇𝑇2 < 𝐶𝐶2(𝑘𝑘𝐴𝐴𝜕𝜕𝑇𝑇)), go to 14.

8. If (𝜆𝜆𝐷𝐷 ≥ 𝐶𝐶1 and 𝜒𝜒𝐴𝐴𝜕𝜕𝑇𝑇2 < 𝐶𝐶2(𝑘𝑘𝐴𝐴𝜕𝜕𝑇𝑇)), go to 11.

9. If (𝜆𝜆𝐷𝐷 < 𝐶𝐶1 and 𝜒𝜒𝐴𝐴𝜕𝜕𝑇𝑇2 ≥ 𝐶𝐶2(𝑘𝑘𝐴𝐴𝜕𝜕𝑇𝑇)), go to 12.

10. If (𝜆𝜆𝐷𝐷 ≥ 𝐶𝐶1 and 𝜒𝜒𝐴𝐴𝜕𝜕𝑇𝑇2 ≥ 𝐶𝐶2(𝑘𝑘𝐴𝐴𝜕𝜕𝑇𝑇)), {

If �𝜆𝜆𝐷𝐷
𝐶𝐶1
�
2

> 𝜒𝜒𝐴𝐴𝐴𝐴𝐴𝐴
2

𝐶𝐶1(𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴)
 and 𝜆𝜆𝐷𝐷 > max

𝑖𝑖
�𝜏𝜏 �𝑤𝑤𝑗𝑗(𝑇𝑇𝐴𝐴𝜕𝜕𝑇𝑇)��, go to 11.

Else, go to 12.

}

11. There is a possible non-AOP deterministic outlier at time 𝑇𝑇𝐷𝐷 of type O. {

Set 𝐾𝐾 = 𝐾𝐾 + 1.

Adjust residuals by removing the effect of this possible outlier:

𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑡𝑡 − 𝑤𝑤𝜕𝜕(𝑇𝑇𝐷𝐷)𝜋𝜋(𝐵𝐵)𝐿𝐿𝜕𝜕(𝐵𝐵)Δ𝐼𝐼𝑇𝑇𝐷𝐷(𝑡𝑡)

}

Go to 13.

12. There is a possible AO patch of length 𝑘𝑘𝐴𝐴𝜕𝜕𝑇𝑇 at time 𝑇𝑇𝐴𝐴𝜕𝜕𝑇𝑇 {

Set 𝐾𝐾 = 𝐾𝐾 + 𝑘𝑘𝐴𝐴𝜕𝜕𝑇𝑇 .

Adjust residuals by removing the effect of this possible AO patch:

𝑠𝑠𝑡𝑡 = 𝑠𝑠𝑡𝑡 − � 𝑤𝑤𝑖𝑖(𝑇𝑇𝐴𝐴𝜕𝜕𝑇𝑇)𝜋𝜋(𝐵𝐵)Δ𝐼𝐼𝑇𝑇𝐴𝐴𝐴𝐴𝐴𝐴+𝑖𝑖−1(𝑡𝑡)
𝑘𝑘𝐴𝐴𝐴𝐴𝐴𝐴

𝑖𝑖=1

 }

13. Calculate the new estimate of 𝜎𝜎2 to be the variance of trimmed 𝑠𝑠𝑡𝑡, with top (min(n*5%,10) – M –

K) biggest |𝑠𝑠𝑡𝑡| removed.

Go to 5.

14. If 𝐾𝐾 = 0, {

If 𝑀𝑀 = 0, stop. No outlier of any type is found.

If 𝑀𝑀 > 0, go to 21.

 }

15. If 𝐾𝐾 > 0, set 𝑀𝑀∗ = 𝑀𝑀, 𝑀𝑀 = 𝑀𝑀 + 𝐾𝐾.

Steps 16 to 17 fit the joint model, and delete insignificant outlier candidate one at a time.

16. For 𝐾𝐾 > 0, check if there are redundant outlier candidates among all the 𝑀𝑀 outlier candidates. An

outlier candidate is redundant if there is another outlier candidate being of same type and same

occurring time. This also applies to AO candidates found through either AO patch search or

individual AO search. If there are redundant outlier candidates, combine them into one and 𝑀𝑀 to

reflect the number of non-redundant outlier candidates. For the outliers formed by combining

redundant outliers, their estimated magnitudes (that will be used as initial values in the following

model estimation) should also be adjusted: 𝑤𝑤 = 𝑤𝑤1 + 𝑤𝑤2 if combining two redundant outliers of

magnitude 𝑤𝑤1 and 𝑤𝑤2, and 𝛿𝛿 = (𝛿𝛿1 + 𝛿𝛿2)/2 (the mean) for TC outliers.

Incorporate all 𝑀𝑀 outlier candidates in the following intervention model for original series Yt:

𝑌𝑌𝑡𝑡 = 𝜇𝜇𝑡𝑡 + �𝑤𝑤𝑘𝑘𝐿𝐿𝜕𝜕𝑘𝑘(𝐵𝐵)
𝑀𝑀

𝑘𝑘=1

𝐼𝐼𝑇𝑇𝑘𝑘(𝑡𝑡) +
𝜃𝜃∗(𝐵𝐵)
𝛥𝛥𝜙𝜙∗(𝐵𝐵)

𝑎𝑎𝑡𝑡

Estimate this model by ML method with initial parameters set at the previously estimated values.

Please note that w’s for outliers are part of parameters to be estimated. Also please note that δ’s

for TC outliers are parameters between 0 and 1.

17. From result of step 16, if there are insignificant outlier candidates, delete them one at a time, i.e.:

If min
𝑘𝑘
�� 𝑤𝑤𝑘𝑘
�𝑉𝑉𝑠𝑠𝑞𝑞(𝑤𝑤𝑘𝑘)

�� = �
𝑤𝑤𝑗𝑗

�𝑉𝑉𝑠𝑠𝑞𝑞�𝑤𝑤𝑗𝑗�
� = �𝑡𝑡�𝑤𝑤𝑗𝑗�� < 𝐶𝐶1 {

Delete the outlier at time 𝑇𝑇𝑗𝑗, set 𝑀𝑀 = 𝑀𝑀 − 1.

If 𝑀𝑀 > 0, go to 16 with the remaining outliers.

}

18. If the 𝑀𝑀 outliers are the same as or a subset of the previous 𝑀𝑀∗ outliers, go to 21.

19. If 𝑀𝑀 > 0 {

If model is unknown {

Adjust data by removing the 𝑀𝑀 outlier effects:

𝑌𝑌𝑡𝑡∗ = 𝑌𝑌𝑡𝑡 −�𝑤𝑤𝑘𝑘𝐿𝐿𝜕𝜕𝑘𝑘(𝐵𝐵)
𝑀𝑀

𝑘𝑘=1

𝐼𝐼𝑇𝑇𝑘𝑘(𝑡𝑡)

Set 𝑁𝑁𝑎𝑎𝑑𝑑𝑗𝑗 = 𝑁𝑁𝑎𝑎𝑑𝑑𝑗𝑗 + 1.

 }

 else {

𝑌𝑌𝑡𝑡∗ = 𝑌𝑌𝑡𝑡

}

}

20. If model is unknown and 𝑁𝑁𝑎𝑎𝑑𝑑𝑗𝑗 = 1, go to 2 to re-identify model. Otherwise, go to 3.

21. Now 𝑀𝑀 outliers in total are found. Use ML method to fit the following model that incorporates all

the outliers on the original input series 𝑌𝑌𝑡𝑡 with initial parameter values set at the previously

estimated values:

𝑌𝑌𝑡𝑡 = 𝜇𝜇𝑡𝑡 + �𝑤𝑤𝑘𝑘𝐿𝐿𝜕𝜕𝑘𝑘(𝐵𝐵)
𝑀𝑀

𝑘𝑘=1

𝐼𝐼𝑇𝑇𝑘𝑘(𝑡𝑡) +
𝜃𝜃∗(𝐵𝐵)
Δ𝜙𝜙∗(𝐵𝐵)

𝑎𝑎𝑡𝑡

Delete insignificant parameter (|t-value|<2) one at a time starting with the most insignificant

parameter (only delete parameter that is related to outliers for user-specified model), refit. Repeat

until all parameters are significant. Please note that a TC outlier becomes an AO outlier when

denominator parameter of a TC is insignificant and numerator parameter is significant.

Implementation note:

• Throughout the whole outlier detection procedure, 𝑌𝑌𝑡𝑡 and predictors in 𝜇𝜇𝑡𝑡 represent log or square

root transformed series if the transformations are requested in user-specified model or found

necessary by the expert modeler. When model is unknown, only the initial use of expert modeler

identifies the transformation. Subsequent use of expert modeler should skip the transformation

identification step.

4.3 AO patch detection
Following detection procedure produces a candidate AO patch: AOpatch. If AOpatch is not null, Chi-

square statistics χ2 related to it is also produced. I here use pseudo code to describe how a candidate AO

patch is found. First, some functions are defined.

LongestPiece(patch1, crit, patch2, nsig)

For the given patch patch1, find the longest sub-patch patch2 of consecutive significant AOs in the

patch. An AO in the patch is significant if its τ–value defined in Eq. (10) equals or is bigger than crit.

LongestPiece returns a new patch patch2, and nsig the number of significant AOs in patch1.

Shorten(patch1, crit, patch2, nsig)

For the given patch patch1, shorten it by removing insignificant AOs at both ends. Shorten returns a

new patch patch2, and nsig the number of significant AOs in patch1.

StepShorten(patch1, crit0, crit1, nstep, patch2, ChiSq)

For the given patch patch1, use Shorten() to shorten it in nstep steps. Each step uses the patch found

in the previous step to fit the model in Eq. (8) if it is not already done, and use a higher critical value to

shorten it based on the newly fitted values. The critical value for step 𝑖𝑖 is 𝑐𝑐𝑝𝑝𝑖𝑖𝑡𝑡0 + 𝑖𝑖 ∗ (𝑐𝑐𝑝𝑝𝑖𝑖𝑡𝑡1 −

𝑐𝑐𝑝𝑝𝑖𝑖𝑡𝑡0)/𝑛𝑛𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝. StepShorten returns a new patch patch2 such that there are no insignificant AOs at

either end of the patch (this may need extra fit and shorten steps Shorten(, crit1, ,)), and the Chi-

Square statistics (Eq. (11)) related to patch2: ChiSq. If at any step, the patch length after Shorten() is 1

or less, stop and return patch2 = null.

Detection procedure

Let 𝐶𝐶𝐴𝐴𝑂𝑂𝑃𝑃0 = 2.5, 𝐶𝐶𝐴𝐴𝑂𝑂𝑃𝑃1 = 𝐶𝐶1.

1. Consider maximum patch length 𝑘𝑘 = 𝑘𝑘𝑚𝑚𝑠𝑠𝑥𝑥 (default 𝑘𝑘𝑚𝑚𝑠𝑠𝑥𝑥 = 5).

2. Use multiple least square regression to fit model in Eq. (8) to calculate 𝜒𝜒2(𝑡𝑡) and

�𝑤𝑤𝑗𝑗(𝑡𝑡), 𝜏𝜏 �𝑤𝑤𝑗𝑗(𝑡𝑡)��
𝑗𝑗=1

𝑘𝑘
 for all eligible patches, where 𝑡𝑡 represents the starting time of the patch.

A patch starting at time 𝑡𝑡 is eligible if any of the following conditions is satisfied.

a) All residuals in the patch, 𝑠𝑠𝑡𝑡 to 𝑠𝑠𝑡𝑡+𝑘𝑘−1, are non-missing.

b) Either 𝑡𝑡 = 1 or 𝑠𝑠𝑡𝑡−1 is missing, and first two residuals 𝑠𝑠𝑡𝑡 and 𝑠𝑠𝑡𝑡+1 in the patch are non-

missing.

c) If 𝑡𝑡 = 𝑛𝑛 − 𝑘𝑘 + 1 and there are at least 2 consecutive non-missing residuals in the patch.

Please note that this is the last possible patch and 𝑠𝑠𝑡𝑡 could be missing.

3. Find the first 𝐿𝐿 (default 𝐿𝐿 = 3) patches of largest 𝜒𝜒2(𝑡𝑡𝑖𝑖), sorted in decreasing order: Toppatch[𝑠𝑠],

𝑠𝑠 = 1 to 𝐿𝐿.

4. Set AOpatch0 = AOpatch = null.

5. LongestPiece (Toppatch[1], CAOP0, newpatch, nsig)

6. If length(newpatch) == nsig, {

If (length(newpatch) > 1), AOpatch0 = newpatch.

}

7. Else {

7a) patch1=newpatch

7b) 𝑠𝑠 = 𝑠𝑠 + 1

7c) Shorten(Toppatch[𝑠𝑠], CAOP0, newpatch, nsig).

7d) If (length(newpatch) == nsig) {

If (length(newpatch) > 1), AOpatch0 = newpatch.

 }

7e) Else if 𝑠𝑠 < 𝐿𝐿, go to 7b).

7f) Else if (length(patch1) > 1), AOpatch0 = patch1.

}

8. If (length(AOpatch0) > 1), StepShorten(AOpatch0, CAOP0, CAOP1, nstep, AOpatch, 𝜒𝜒2), where

nstep=2 as default.

Implementation note:

• Step 1 to 3 can be done together with the step 5 of “A combined Procedure” using one data pass.

• In the step 2 of AO patch detection procedure, when fitting the model in Eq. (8), the cases with

missing residuals are eliminated. Also AO at time 𝑡𝑡 + 𝑖𝑖 − 1 is treated as insignificant if 𝑠𝑠𝑡𝑡+𝑖𝑖−1 is

missing.

Some recursive relationships can be used do multiple regression for starting time 𝑇𝑇 + 1 based on

that for starting time 𝑇𝑇:

Let 𝜋𝜋(𝐵𝐵)∆= −∑ 𝜋𝜋𝑖𝑖𝐵𝐵𝑖𝑖∞
𝑖𝑖=0 with 𝜋𝜋0 = −1, then 𝑋𝑋𝑇𝑇 in Eq.(9) for starting time 𝑇𝑇 will be

𝑋𝑋𝑇𝑇 = �𝐱𝐱1(𝑇𝑇),⋯ , 𝐱𝐱𝑘𝑘(𝑇𝑇)�

where 𝐱𝐱𝑖𝑖(𝑇𝑇) = �𝑥𝑥𝑖𝑖(1;𝑇𝑇),⋯ , 𝑥𝑥𝑖𝑖(𝑛𝑛;𝑇𝑇)�′ = (0,⋯ ,0,−𝜋𝜋0,⋯ ,−𝜋𝜋𝑛𝑛−𝑇𝑇−𝑖𝑖+1)

The 𝑋𝑋𝑇𝑇+1, 𝑋𝑋𝑇𝑇+1′ 𝑋𝑋𝑇𝑇+1 and (𝑋𝑋𝑇𝑇+1′ 𝑋𝑋𝑇𝑇+1)−1 for the start time 𝑇𝑇 + 1 can be computed as

𝑋𝑋𝑇𝑇+1 = � 𝟎𝟎
𝑋𝑋𝑇𝑇[1: (𝑛𝑛 − 1),]�

𝑋𝑋𝑇𝑇+1′ 𝑋𝑋𝑇𝑇+1 = 𝑋𝑋𝑇𝑇′ 𝑋𝑋𝑇𝑇 − 𝐮𝐮𝑇𝑇𝐮𝐮𝑇𝑇′

(𝑋𝑋𝑇𝑇+1′ 𝑋𝑋𝑇𝑇+1)−1 = (𝑋𝑋𝑇𝑇′ 𝑋𝑋𝑇𝑇)−1 +
(𝑋𝑋𝑇𝑇′ 𝑋𝑋𝑇𝑇)−1𝐮𝐮𝑇𝑇𝐮𝐮𝑻𝑻′ (𝑋𝑋𝑇𝑇′ 𝑋𝑋𝑇𝑇)−1

1 − 𝐮𝐮𝑇𝑇′ (𝑋𝑋𝑇𝑇′ 𝑋𝑋𝑇𝑇)−1𝐮𝐮𝑇𝑇

where 𝑋𝑋𝑇𝑇[1: (𝑛𝑛 − 1),] is a matrix formed by row 1 to row 𝑛𝑛 − 1 of matrix 𝑋𝑋𝑇𝑇, and

𝐮𝐮𝑇𝑇 = (−𝜋𝜋𝑛𝑛−𝑇𝑇 ,⋯ ,−𝜋𝜋𝑛𝑛−𝑇𝑇−𝑘𝑘+1)′.

5. Output
After outlier model building, all outputs that are listed in the ARIMA ADD are needed. In addition, below

outlier information will be output:

• Outlier location

• Outlier type

• Magnitude estimate

• Standard error of magnitude

• t value

• p value

A
Notices

Appendix

This information was developed for products and services offered worldwide.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available
in your area. Any reference to an IBM product, program, or service is not intended to state or imply
that only that IBM product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be used instead.
However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product,
program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785,
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing, Legal and Intellectual Property Law, IBM Japan Ltd., 1623-14,
Shimotsuruma, Yamato-shi, Kanagawa 242-8502 Japan.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions of
the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not
in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part
of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Software Group, Attention: Licensing, 233 S. Wacker Dr., Chicago, IL 60606, USA.

Notices

Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement
or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guarantee that these measurements will
be the same on generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the names and
addresses used by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

IBM, the IBM logo, ibm.com, and SPSS are trademarks of IBM Corporation, registered in many
jurisdictions worldwide. A current list of IBM trademarks is available on the Web at
http://www.ibm.com/legal/copytrade.shtml.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or
its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the United
States, other countries, or both.

Other product and service names might be trademarks of IBM or other companies.

http://www.ibm.com/legal/copytrade.shtml

Notices

Bibliography

Aggarwal, C. C., and P. S. Yu. 1998. Online generation of association rules. In: Proceedings
of the 14th International Conference on Data Engineering, Los Alamitos, Calif: IEEE
ComputerSociety Press, 402–411.

Agrawal, R., and R. Srikant. 1994. Fast Algorithms for Mining Association Rules. In:
Proceedings of the 20th International Conference on Very Large Databases, J. B. Bocca, M. Jarke,
and C. Zaniolo, eds. San Francisco: Morgan Kaufmann, 487–499.

Agrawal, R., and R. Srikant. 1995. Mining Sequential Patterns. In: Proceedings of the
Eleventh International Conference on Data Engineering, Los Alamitos, Calif.: IEEE Computer
Society Press, 3–14.

Agresti, A., J. G. Booth, and B. Caffo. 2000. Random-effects Modeling of Categorical Response Data.
Sociological Methodology, 30, 27–80.

Aitkin, M., D. Anderson, B. Francis, and J. Hinde. 1989. Statistical Modelling in GLIM.
Oxford: Oxford Science Publications.
Albert, A., and J. A. Anderson. 1984. On the Existence of Maximum Likelihood Estimates in Logistic
Regression Models. Biometrika, 71, 1–10.

Anderson, T. W. 1958. Introduction to multivariate statistical analysis. New York: John Wiley
& Sons, Inc..
Arya, S., and D. M. Mount. 1993. Algorithms for fast vector quantization. In: Proceedings of
the Data Compression Conference 1993, , 381–390.
Belsley, D. A., E. Kuh, and R. E. Welsch. 1980. Regression diagnostics: Identifying influential
data and sources of collinearity. New York: John Wiley and Sons.
Biggs, D., B. de Ville, and E. Suen. 1991. A method of choosing multiway partitions for classification
and decision trees. Journal of Applied Statistics, 18, 49–62.

Biller, B., and S. Ghosh. 2006. Multivariate input processes. In: Handbooks in Operations
Research and Management Science: Simulation, B. L. Nelson, and S. G. Henderson, eds.
Amsterdam: Elsevier Science, 123–153.

Bishop, C. M. 1995. Neural Networks for Pattern Recognition, 3rd ed. Oxford: Oxford
University Press.
Box, G. E. P., and D. R. Cox. 1964. An analysis of transformations. Journal of the Royal
Statistical Society, Series B, 26, 211–246.
Box, G. E. P., G. M. Jenkins, and G. C. Reinsel. 1994. Time series analysis: Forecasting and
control, 3rd ed. Englewood Cliffs, N.J.: Prentice Hall.
Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and
Regression Trees. New York: Chapman & Hall/CRC.
Breslow, N. E. 1974. Covariance analysis of censored survival data. Biometrics, 30, 89–99.

Brockwell, P. J., and R. A. Davis. 1991. Time Series: Theory and Methods, 2 ed. :
Springer-Verlag.
Cain, K. C., and N. T. Lange. 1984. Approximate case influence for the proportional hazards regression
model with censored data. Biometrics, 40, 493–499.

Cameron, A. C., and P. K. Trivedi. 1998. Regression Analysis of Count Data. Cambridge:
Cambridge University Press.

Bibliography

Chang, C. C., and C. J. Lin. 2003. LIBSVM: A library for support vector machines. Technical
Report. Taipei, Taiwan: Department of Computer Science, National Taiwan University.
Chow, C. K., and C. N. Liu. 1968. Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14, 462–467.
Cooley, W. W., and P. R. Lohnes. 1971. Multivariate data analysis. New York: John Wiley &
Sons, Inc..
Cox, D. R. 1972. Regression models and life tables (with discussion). Journal of the Royal
Statistical Society, Series B, 34, 187–220.
Cunningham, P., and S. J. Delaney. 2007. k-Nearest Neighbor Classifiers. Technical
Report UCD-CSI-2007-4, School of Computer Science and Informatics, University College
Dublin, Ireland, , – .

Dempster, A. P. 1969. Elements of Continuous Multivariate Analysis. Reading,
MA: Addison-Wesley.
Diggle, P. J., P. Heagerty, K. Y. Liang, and S. L. Zeger. 2002. The analysis of Longitudinal
Data, 2 ed. Oxford: Oxford University Press.
Dixon, W. J. 1973. BMD Biomedical computer programs. Los Angeles: University of
California Press.
Dobson, A. J. 2002. An Introduction to Generalized Linear Models, 2 ed. Boca Raton, FL:
Chapman & Hall/CRC.
Dong, J., C. Y. Suen, and A. Krzyzak. 2005. Fast SVM training algorithm with
decomposition on very large data sets. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27, 603–618.

Dougherty, J., R. Kohavi, and M. Sahami. 1995. Supervised and unsupervised
discretization of continuous features. In: Proceedings of the Twelfth International
Conference on Machine Learning, Los Altos, CA: Morgan Kaufmann, 194–202.

Drucker, H. 1997. Improving regressor using boosting techniques. In: Proceedings of the
14th International Conferences on Machine Learning , D. H. Fisher,Jr., ed. San Mateo, CA:
Morgan Kaufmann, 107–115.

Dunn, P. K., and G. K. Smyth. 2005. Series Evaluation of Tweedie Exponential Dispersion Model
Densities. Statistics and Computing, 15, 267–280.

Dunn, P. K., and G. K. Smyth. 2001. Tweedie Family Densities: Methods of Evaluation. In:
Proceedings of the 16th International Workshop on Statistical Modelling, Odense, Denmark: .

D’Agostino, R., and M. Stephens. 1986. Goodness-of-Fit Techniques. New York: Marcel

Dekker.

Fahrmeir, L., and G. Tutz. 2001. Multivariate Statistical Modelling Based on Generalized Linear
Models, 2nd ed. New York: Springer-Verlag.
Fan, R. E., P. H. Chen, and C. J. Lin. 2005. Working set selection using the second order
information for training SVM. Technical Report. Taipei, Taiwan: Department of Computer
Science, National Taiwan University.

Fayyad, U., and K. Irani. 1993. Multi-interval discretization of continuous-value attributes
for classification learning. In: Proceedings of the Thirteenth International Joint Conference on
Artificial Intelligence, San Mateo, CA: Morgan Kaufmann, 1022–1027.

Fine, T. L. 1999. Feedforward Neural Network Methodology, 3rd ed. New York: Springer-
Verlag.

Bibliography

Fox, J., and G. Monette. 1992. Generalized collinearity diagnostics. Journal of the American
Statistical Association, 87, 178–183.
Fox, J. 1997. Applied Regression Analysis, Linear Models, and Related Methods. Thousand
Oaks, CA: SAGE Publications, Inc..
Freund, Y., and R. E. Schapire. 1995. A decision theoretic generalization of on-line
learning and an application to boosting. In: Computational Learning Theory: 7 Second
European Conference, EuroCOLT ’95, , 23–37.

Friedman, J. H., J. L. Bentley, and R. A. Finkel. 1977. An algorithm for finding best
matches in logarithm expected time. ACM Transactions on Mathematical Software, 3, 209–
226.
Friedman, N., D. Geiger, and M. Goldszmidt. 1997. Bayesian network classifiers. Machine Learning,
29, 131–163.

Gardner, E. S. 1985. Exponential smoothing: The state of the art. Journal of Forecasting, 4, 1–
28.

Gill, J. 2000. Generalized Linear Models: A Unified Approach. Thousand Oaks, CA: Sage
Publications.
Goodman, L. A. 1979. Simple models for the analysis of association in cross-
classifications having ordered categories. Journal of the American Statistical Association, 74,
537–552.
Hardin, J. W., and J. M. Hilbe. 2003. Generalized Linear Models and Extension. Station, TX:
Stata Press.
Hardin, J. W., and J. M. Hilbe. 2001. Generalized Estimating Equations. Boca Raton, FL:
Chapman & Hall/CRC.
Harman, H. H. 1976. Modern Factor Analysis, 3rd ed. Chicago: University of Chicago Press.

Hartzel, J., A. Agresti, and B. Caffo. 2001. Multinomial Logit Random Effects Models. Statistical
Modelling, 1, 81–102.

Harvey, A. C. 1989. Forecasting, structural time series models and the Kalman filter.
Cambridge: Cambridge University Press.
Haykin, S. 1998. Neural Networks: A Comprehensive Foundation, 2nd ed. New York:
Macmillan College Publishing.
Heckerman, D. 1999. A Tutorial on Learning with Bayesian Networks. In: Learning in Graphical
Models, M. I. Jordan, ed. Cambridge, MA: MIT Press, 301–354.

Hedeker, D. 1999. Generalized Linear Mixed Models. In: Encyclopedia of Statistics in
Behavioral Science, B. Everitt, and D. Howell, eds. London: Wiley, 729–738.
Hendrickson, A. E., and P. O. White. 1964. Promax: a quick method for rotation to oblique
simple structure. British Journal of Statistical Psychology, 17, 65–70.
Hidber, C. 1999. Online Association Rule Mining. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, New York: ACM Press, 145–156.
Horton, N. J., and S. R. Lipsitz. 1999. Review of Software to Fit Generalized Estimating Equation
Regression Models. The American Statistician, 53, 160–169.

Hosmer, D. W., and S. Lemeshow. 2000. Applied Logistic Regression, 2nd ed. New York:
John Wiley and Sons.
Huber, P. J. 1967. The Behavior of Maximum Likelihood Estimates under Nonstandard
Conditions. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, Berkeley, CA: University of California Press, 221–233.

Bibliography

Jennrich, R. I., and P. F. Sampson. 1966. Rotation for simple loadings. Psychometrika, 31, 313–323.

Johnson, N. L., S. Kotz, and A. W. Kemp. 2005. Univariate Discrete Distributions, 3rd ed.
Hoboken, New Jersey: John Wiley & Sons.
Kalbfleisch, J. D., and R. L. Prentice. 2002. The statistical analysis of failure time data, 2 ed.
New York: John Wiley & Sons, Inc.
Kass, G. 1980. An exploratory technique for investigating large quantities of categorical data.
Applied Statistics, 29:2, 119–127.
Kaufman, L., and P. J. Rousseeuw. 1990. Finding groups in data: An introduction to cluster
analysis. New York: John Wiley and Sons.
Kohavi, R., B. Becker, and D. Sommerfield. 1997. Improving Simple Bayes. In:
Proceedings of the European Conference on Machine Learning, , 78–87.
Kohonen, T. 2001. Self-Organizing Maps, 3rd ed. New York: Springer-Verlag.

Kotz, S., and J. Rene Van Dorp. 2004. Beyond Beta, Other Continuous Families of Distributions
with Bounded Support and Applications. Singapore: World Scientific Press.
Kroese, D. P., T. Taimre, and Z. I. Botev. 2011. Handbook of Monte Carlo Methods. Hoboken,
New Jersey: John Wiley & Sons.
Lane, P. W., and J. A. Nelder. 1982. Analysis of Covariance and Standardization as Instances of
Prediction. Biometrics, 38, 613–621.

Lawless, R. F. 1982. Statistical models and methods for lifetime data. New York: John Wiley &
Sons, Inc..
Lawless, J. E. 1984. Negative Binomial and Mixed Poisson Regression. The Canadian
Journal of Statistics, 15, 209–225.
Liang, K. Y., and S. L. Zeger. 1986. Longitudinal Data Analysis Using Generalized Linear Models.
Biometrika, 73, 13–22.

Lipsitz, S. H., K. Kim, and L. Zhao. 1994. Analysis of Repeated Categorical Data Using Generalized
Estimating Equations. Statistics in Medicine, 13, 1149–1163.

Liu, H., F. Hussain, C. L. Tan, and M. Dash. 2002. Discretization: An Enabling Technique.
Data Mining and Knowledge Discovery, 6, 393–423.
Loh, W. Y., and Y. S. Shih. 1997. Split selection methods for classification trees. Statistica Sinica,
7, 815–840.

Makridakis, S. G., S. C. Wheelwright, and R. J. Hyndman. 1997. Forecasting: Methods and
applications, 3rd ed. ed. New York: John Wiley and Sons.
Marsaglia, G., and J. Marsaglia. 2004. Evaluating the Anderson-Darling Distribution.
Journal of Statistical Software, 9:2, .
McCullagh, P. 1983. Quasi-Likelihood Functions. Annals of Statistics, 11, 59–67.

McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models, 2nd ed. London:
Chapman & Hall.
McCulloch, C. E., and S. R. Searle. 2001. Generalized, Linear, and Mixed Models. New York:
John Wiley and Sons.

Bibliography

Melard, G. 1984. A fast algorithm for the exact likelihood of autoregressive-moving average models.
Applied Statistics, 33:1, 104–119.

Miller, M. E., C. S. Davis, and J. R. Landis. 1993. The Analysis of Longitudinal Polytomous Data:
Generalized Estimating Equations and Connections with Weighted Least Squares. Biometrics, 49,
1033–1044.

Nelder, J. A., and R. W. M. Wedderburn. 1972. Generalized Linear Models. Journal of
the Royal Statistical Society Series A, 135, 370–384.
Neter, J., W. Wasserman, and M. H. Kutner. 1990. Applied Linear Statistical Models, 3rd ed.
Homewood, Ill.: Irwin.
Pan, W. 2001. Akaike’s Information Criterion in Generalized Estimating Equations. Biometrics, 57,
120–125.

Pena, D., G. C. Tiao, and R. S. Tsay, eds. 2001. A course in time series analysis. New York:
John Wiley and Sons.
Platt, J. 2000. Probabilistic outputs for support vector machines and comparison to regularized
likelihood methods. In: Advances in Large Margin Classifiers, A. J. Smola, P. Bartlett, B. Scholkopf,
and D. Schuumans, eds. Cambridge, MA: MITPress, 61–74.

Pregibon, D. 1981. Logistic Regression Diagnostics. Annals of Statistics, 9, 705–724.

Prim, R. C. 1957. Shortest connection networks and some generalisations. Bell System
Technical Journal, 36, 1389–1401.
Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge: Cambridge
University Press.
Saltelli, A., S. Tarantola, F. , F. Campolongo, and M. Ratto. 2004. Sensitivity Analysis in
Practice
– A Guide to Assessing Scientific Models. : John Wiley.
Saltelli, A. 2002. Making best use of model evaluations to compute sensitivity indices.
Computer Physics Communications, 145:2, 280–297.
Schatzoff, M., R. Tsao, and S. Fienberg. 1968. Efficient computing of all possible regressions.
Technometrics, 10, 769–779.
Skrondal, A., and S. Rabe-Hesketh. 2004. Generalized Latent Variable Modeling: Multilevel,
Longitudinal, and Structural Equation Models. Boca Raton, FL: Chapman & Hall/CRC.
Smyth, G. K., and B. Jorgensen. 2002. Fitting Tweedie’s Compound Poisson Model to Insurance
Claims Data: Dispersion Modelling. ASTIN Bulletin, 32, 143–157.

Sobol, I. M. 2001. Global sensitivity indices for nonlinear mathematical models and their
Monte Carlo estimates. Mathematics and Computers in Simulation, 55, 271–280.
Storer, B. E., and J. Crowley. 1985. A diagnostic for Cox regression and general
conditional likelihoods. Journal of the American Statistical Association, 80, 139–147.
Tan, P., M. Steinbach, and V. Kumar. 2006. Introduction to Data Mining. : Addison-Wesley.

Tao, K. K. 1993. A closer look at the radial basis function (RBF) networks. In:
Conference Record of the Twenty-Seventh Asilomar Conference on Signals, Systems, and
Computers, A. Singh, ed. Los Alamitos, Calif.: IEEE Comput. Soc. Press, 401–405.

Tatsuoka, M. M. 1971. Multivariate analysis. New York: John Wiley & Sons, Inc. .

Bibliography

Tuerlinckx, F., F. Rijmen, G. Molenberghs, G. Verbeke, D. Briggs, W. Van den

Noortgate, M. Meulders, and P. De Boeck. 2004. Estimation and Software. In:

Explanatory Item Response Models: A Generalized Linear and Nonlinear Approach,

P. De Boeck, and M. Wilson, eds. New York: Springer-Verlag, 343–373.

Uykan, Z., C. Guzelis, M. E. Celebi, and H. N. Koivo. 2000. Analysis of input-
output clustering for determining centers of RBFN. IEEE Transactions on Neural
Networks, 11, 851–858.
Velleman, P. F., and R. E. Welsch. 1981. Efficient computing of regression diagnostics.
American Statistician, 35, 234–242.

White, H. 1980. A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct
Test for Heteroskedasticity. Econometrica, 48, 817–836.

Williams, D. A. 1987. Generalized Linear Models Diagnostics Using the Deviance and
Single Case Deletions. Applied Statistics, 36, 181–191.

Wolfinger, R., R. Tobias, and J. Sall. 1994. Computing Gaussian likelihoods and their
derivatives for general linear mixed models. SIAM Journal on Scientific Computing, 15:6,
1294–1310.

Wolfinger, R., and M. O'Connell. 1993. Generalized Linear Mixed Models: A
Pseudo-Likelihood Approach. Journal of Statistical Computation and Simulation, 4,
233–243.
Zeger, S. L., and K. Y. Liang. 1986. Longitudinal Data Analysis for Discrete and Continuous
Outcomes. Biometrics, 42, 121–130.
Zhang, T., R. Ramakrishnon, and M. Livny. 1996. BIRCH: An efficient data

clustering method for very large databases. In: Proceedings of the ACM SIGMOD

Conference on Management of Data, Montreal, Canada: ACM, 103–114.

	Algorithms Guide
	Preface
	Algorithms
	Adjusted Propensities Algorithms
	Anomaly Detection Algorithm
	Apriori Algorithms
	Automated Data Preparation Algorithms
	Bayesian Networks Algorithms
	Binary Classifier Comparison Metrics
	C5.0 Algorithms
	Carma Algorithms
	C&RT Algorithms
	CHAID Algorithms
	Cluster Evaluation Algorithms
	COXREG Algorithms
	Decision List Algorithms
	DISCRIMINANT Algorithms
	Ensembles Algorithms
	Factor Analysis/PCA Algorithms
	Feature Selection Algorithm
	GENLIN Algorithms
	Generalized linear mixed models algorithms
	Imputation of Missing Values
	K-Means Algorithm
	KNN Algorithms
	Kohonen Algorithms
	Linear modeling algorithms
	Linear Regression Algorithms
	Logistic Regression Algorithms
	Neural Networks Algorithms
	OPTIMAL BINNING Algorithms
	Predictor Importance Algorithms
	QUEST Algorithms
	Self-Learning Response Model Algorithms
	Sequence Algorithm
	Simulation algorithms
	Support Vector Machine (SVM) Algorithms
	Time Series Algorithms
	TwoStep Cluster Algorithms
	TwoStep-AS Cluster Algorithms
	Generalized Linear Engine (GLE) Algorithm
	Linear-AS Modeling Algorithms
	Linear SVM Algorithm
	Random Trees Modeling Algorithms
	SNA - Diffusion Analysis Algorithms
	SNA - Group Analysis Algorithms
	Spatial Temporal Prediction Algorithms
	Temporal Causal Modeling Algorithms
	Tree-AS (CHAID) Modeling Algorithms
	Time Series Algorithm: Combined Forecasts
	Time Series Algorithm: Exponential Smoothing
	Time Series Algorithm: Expert Modeler

	Notices
	Bibliography

