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Introduction to Algorithms

Throughout much of the documentation, we avoid detailed discussion of the inner workings of
procedures in order to promote readability. The algorithms documents are designed as a resource
for those interested in the specific calculations performed by procedures.

The algorithms are available in two forms:

m Integrated into the overall Help system. In the Contents tab, there is a section labeled
“Algorithms” which contains all the algorithms in alphabetic order. In the Index tab, each
procedure’s main index entry has a second-level “algorithms” index entry.

B As a separate document in PDF format, available on the Manuals CD.

Algorithms Used in Multiple Procedures

For some statistics, such as the significance of a ¢ test, the same algorithms are used in more than
one procedure. Another example is the group of post hoc tests that are used in ONEWAY and GLM.
You can find algorithms for these tests in the appendixes.

Choice of Formulas

Starting with the first statistics course, students learn that there are often several equivalent ways
to compute the same quantity. For example, the variance can be obtained using either of the
following formulas:

N

7= (v —7)°/(N-1)

=1
N N 2
S= > 2> ) /N|/(WN-1)
=1 1=1

Since the formulas are algebraically equal, the one preferred is often the one easier to use (or
remember). For small data sets consisting of “nice” numbers, the arbitrary choice of several
computational methods is usually of little consequence. However, for handling large data sets
or “troublesome” numbers, the choice of computational algorithms can become very important,
even when those algorithms are to be executed by a computer. Care must be taken to choose an
algorithm that produces accurate results under a wide variety of conditions without requiring
extensive computer time. Often, these two considerations must be balanced against each other.

You may notice that the same statistic is computed differently in various routines. Among the
reasons for this are the precision of the calculations and the desirability of computing many
statistics in the same procedure. For example, in the paired ¢ test procedure (T-TEST), the need
to compute both the correlation coefficient and the standard error of the difference led to the
selection of a different algorithm than would have been chosen for computation of only the
standard error. Throughout the years of development, the personal preferences of many designers

© Copyright IBM Corporation 1989, 2011. 1
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and programmers have also influenced the choice of algorithms. Now, as new routines are added
and old ones are updated, any unnecessary diversity is being replaced by a consistent core
of algorithms.

Missing Values

Since similar options for treatment of missing values are available in many procedures, treatment
of missing values has often not been specified in each chapter. Instead, the following rules
should be used:

m  [f listwise deletion has been specified and a missing value is encountered, the case is not
included in the analysis. This is equivalent, for purposes of following the algorithms, to
setting the case weight to zero.

m [f variable-wise deletion is in effect, a case has zero weight when the variable with missing
values is involved in computations.

m [f pairwise deletion has been specified, a case has zero weight when one or both of a pair of
variables included in a computation is missing.

m [f missing-values declarations are to be ignored, all cases are always included in the
computation.

It should be noted again that the computer routines do not alter case weights for cases with missing
data but, instead, actually exclude them from the computations. Missing-value specifications do
not apply when a variable is used for weighting. All values are treated as weights.



2SLS Algorithms

2SLS produces the two-stage least-squares estimation for a structure of simultaneous linear
equations.

Notation

The following notation is used throughout this chapter unless otherwise stated:

p Number of predictors

P1 Number of endogenous variables among p predictors

P2 Number of non-endogenous variables among p predictors

k Number of instrument variables

n Number of cases

y nx1 vector which consists of a sample of the dependent variable
Z nxp matrix which represents observed predictors

B px1 parameter vector

X

nx1 matrix with element x;j, which represents the observed value of the
jth instrumental variable for case i.

VA Submatrix of Z with dimension nxpj, which represents observed endogenous
variables

V2 Submatrix of Z with dimension nxp;, which represents observed
non-endogenous variables

B1 Subvector of p with parameters associated with Z
B Subvector of p with parameters associated with Z»

Model

The structure equations of interest are written in the form:

y=128= [thﬂ['gl] te

&)
where
zzmthﬁz[?]
2
and e and § are the disturbances with zero means and covariance matrices ¢2I,, and ¢21,,,
respectively.
Estimation

The estimation technique used was developed by Theil; (Theil, 1953), (Theil, 1953). First
premultiply both sides of the model equation by X' to obtain

Xy=X1Z8+X¢

© Copyright IBM Corporation 1989, 2011. 3
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. . . . b 1
Since the disturbance vector has zero mean and covariance matrix o2 (X X), then
1

(X'X> X' would have a covariance matrix 021,,. Thus, multiplying (X'X) to both sides
of the above equation results in a multiple linear regression model

-

—3 —3 1] 1 - % ’
(X’X) X'y = (X’X) *X'78 + (X X) X'e
The ordinary least-square estimator /2 for 3 is

f= (z’x(x’x)—lx’z> 1z’x(x’x) X'y

Computational Details

» 2SLS constructs a matrix R,

1 Vv
=y w)

where

M = Cza;(cxz)ilclzz

V= Cza(clm)ilc zy

and C., is the correlation matrix between Z and X, and C,.. is the correlation matrix among
instrumental variables.

» Sweep the matrix R to obtain regression coefficient estimate for 3.
» Compute sum of the squares of residuals (SSE) by
yly — uZ'y — y/Zu, +uZ' Zu’
where
’ ’ -1 i ’ 1 -1_, B
u:yX(XX) XZ[ZX(XX) Xz]
» Compute the statistics for the ANOVA table and for variables in the equation. For more

information, see the topic REGRESSION Algorithms on p. 799.
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ACF/PACF Algorithms

Procedures ACF and PACF print and plot the sample autocorrelation and partial autocorrelation
functions of a series of data.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Zi ith observation of input series, i=1,...,n
Tk kth lag sample autocorrelation

. kth lag sample partial autocorrelation
Ork g ple p

Basic Statistics

The following formulas are used if no missing values are encountered. If missing values are
present, see Series with Missing Values for modification of some formulas.

Sample Autocorrelation

n—k
> (e~ D) e — )
=
Z (z; — )

where 7 is the average of the n observations.

Standard Error of Sample Autocorrelation
There are two formulas for the standard error of 7, based on different assumptions about

the autocorrelation. Under the assumption that the true MA order of the process is k—1, the
approximate variance of r;(Bartlett, 1946) is:

k-1
1'@7"(7%)5% (1 + QZ rf)
=1

The standard error is the square root (Box and Jenkins, 1976), p. 35. Under the assumption that
the process is white noise,

var() =4 (255)

Box-Ljung Statistic
At lag k, the Box-Ljung statistic is defined by
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2
T

)=

=n( 2
@ =n(n+ )]:1 n—1

When # is large, Qy, has a chi-square distribution with degrees of freedom k—p—¢, where p and ¢
are autoregressive and moving average orders, respectively. The significance level of Q) is
calculated from the chi-square distribution with k—p—¢g degrees of freedom.

Sample Partial Autocorrelation
(;511 =T
4522 = (7“2 - ”f)/(l _7"%)

Drj = e 1j — Prrdr 1k k=2, 5 =12, k-1
k-1 k-1

Sk = T — > be—rghos | /{1 =D r-rymi | E=3....
j=1 j=1

Standard Error of Sample Partial Autocorrelation
Under the assumption that the AR(p) model is correctand p < k — 1,
drr =2 N (0, 1)(Quenouville, 1949)
Thus

vor(fu) = 1

Series with Missing Values

If there are missing values in x, the following statistics are computed differently (Cryer, 1986).
First, define

T = average of nonmissing x1, . .. ,&,,
R T, if z; is not missing
t SYSMIS, if z; is missing

for k=0,1,2,..., and j=1,....n

p® _ ] 45054k, if both are not missing
37 | SYSMIS, otherwise

. . . k k
my = the number of nonmissing values in bg ), by

mqg = the number of nonmissing values in z
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Sample Autocorrelation

_sum of nonmissing v{*’,... (¥,
sum of nonmissing »{”,....5{"

ry =

Standard Error of Sample Autocorrelation

k—1

se(rk) = J m%) (1 + z r?) (MA assumption)
=1

se(ry) = /(mOTS)mO (white noise)

Box-Ljung Statistic

3 \w

k
Q@ =mo m0+22

Standard Error of Sample Partial Autocorrelation
se (qgkk) = %
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AIM Algorithms

The Attribute Importance (AIM) procedure performs tests to find out if the groups are
homogeneous.

Notation

The following notation is used throughout this chapter unless otherwise stated:

G Number of groups.

C Number of categories in the categorical variable.

Nij Number of cases in the jth category in the ith group,i=1, ..., Gandj =1,

, C. Assume that n;; > 0.

T Number of cases in the ith group. n; = E —170j

n Overall number of cases. n = £, n;. Assume 7>0.

Pj Overall proportion of cases in the jth category.p; = %Zlemj

T Mean of the continuous variable in the ith group.

8i Standard deviation of the continuous variable in the ith group. Assume
that 8i > 0.

- €]

Overall mean of the continuous variable. 7 = % E T
i=1

Test of Homogeneity of Proportions

This test is performed only for categorical variables. The null hypothesis is that the proportion
of cases in the categories in the ith group is the same as the overall proportion. If C > 1, the
Chi-square statistic for the ith group is computed as follows:

B nw nlp])
Z n
-1 iDj

The degrees of freedom is C—1. The significance is the probability that a Chi-square random
variate with this degrees of freedom will have a value greater than the x? statistic.

If C<1, the Chi-square statistic is always 0 with zero degrees of freedom, and the significance
value is undefined.

Test of Equality of Means

This test is performed only for continuous variables. The null hypothesis is that the mean (of a
continuous variable) in the ith group is the same as the overall mean. If n; > 1 and s; > 0, the
Student’s ¢ statistic for the ith group is computed as follows:

_ (@ —1)
si/\/Mi
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The degrees of freedom is n; — 1. The significance is the probability that a Student’s # random
variate with this degrees of freedom will have a value greater than the ¢ statistic.

When n; > 1 but s; = 0, this implies that the continuous variable is constant in the ith group. In
this case, the Student’s ¢ statistic is infinity with positive degrees of freedom n; — 1, and the

significance value is zero.

If n; <1, then s; is undefined. In this case, the Student’s ¢ statistic is undefined, the degrees of
freedom is 0, and the significance value is undefined.

Graphical Display of Significance

Since significance values are often very small numbers, the negative common logarithm (—logy,)
of significance values are displayed instead in the bar charts.



ALSCAL Algorithms

ALSCAL attempts to find the structure in a set of distance measures between objects or cases.

Initial Configuration

The first step is to estimate an additive constant ¢z, which is added to the observed proximity
measures (for example, o;;5). Thus,

ijk = 0jjk T Ck
such that for all triples the triangular inequality holds:

* * *
Oiik T Ojik = Ojtk

and positivity holds of;;, > 0,

where
o5k is the adjusted proximity between stimulus i and stimulus j for subject &
Ok is the adjusted proximity between stimulus j and stimulus / for subject k&
01k is the adjusted proximity between stimulus i and stimulus / for subject &

The constant ¢, which is added, is as small as possible to estimate a zero point for the dissimilarity
data, thus bringing the data more nearly in line with the ratio level of measurement. This step

is necessary to make the B} matrix, described below, positive semidefinite (that is, with no
imaginary roots).

The next step is to compute a scalar product matrix B}* for each subject £ by double centering
%> the adjusted proximity matrix for each subject. An element of the B;* matrix b}/, is
computed as follows:

1
w0k *2 *2 *2 *2
ik = —5(%1@ —0j} — O T 0'%)
where
0} 1 are the row means for the adjusted proximities for subject &
o, are the column means for the adjusted proximities for subject &
o'k is the grand mean for subject £

Double centering to convert distances to scalar products is necessary because a scalar products
matrix is required to compute an initial configuration using the Young-Householder-Torgerson
procedure.

© Copyright IBM Corporation 1989, 2011. 10
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Next the individual subject matrices are normalized so that they have the same variance. The
normalized matrix B} is found for each subject. The elements of the matrix are

ok

{Z Z ( ff/c)2/(n(n _ 1))}

1/2

where 7 is the number of stimuli, and n(n — 1) is the number of off-diagonal elements in the
B;* matrix. The denominator is both the root mean square and the standard deviation of the
unnormalized scalar products matrix B** (It is both because 4*} = 0, due to double centering.)
Bj, is thus a matrix with elements 47, , which are scalar products for individual subject k.
Normalization of individual subjects’ matrices equates the contribution of each individual to the
formation of a mean scalar products matrix and thus the resulting initial configuration.

Next an average scalar products matrix B* over the subjects is computed. The elements of this
matrix are

> Ui
k

proo— k.

1] m

where m is the number of subjects.

The average B* matrix used in the previous step is used to compute an initial stimulus
configuration using the classical Young-Householder multidimensional scaling procedure

B* = XX

where X is an n x r matrix of # stimulus points on  dimensions, and X is the transpose of the X
matrix; that is, the rows and columns are interchanged. The X matrix is the initial configuration.

For the weighted ALSCAL matrix model, initial weight configuration matrices W, for each of
the m subjects are computed. The initial weight matrices Wy, are r x » matrices, where r is the
number of dimensions. Later the diagonals of W will form rows of the W matrix, which is an

n x r matrix. The matrices W}, are determined such that Bf = YWY , where Y = XT and
TT = I and where T is an orthogonal rotation of the configuration X to a new orientation Y. T is
computed by the Schonemann-de Leeuw procedure discussed by Young, Takane, and Lewyckyj
(Young, Takane, and Lewyckyj, 1978). T rotates X so that W, is as diagonal as possible (that is,
off-diagonal elements are as close to zero as possible on the average over subjects). Off-diagonal
elements represent a departure from the model (which assumes that subjects weight only the
dimensions of the stimulus space).
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Optimization Algorithm
The optimization algorithm is a series of steps which are repeated (iterated) until the final solution

is achieved. The steps for the optimization algorithm are performed successively because
disparities, weights, and coordinates cannot be solved for simultaneously.

Distance

Distances are computed according to the weighted Euclidean model

.
2 2
dijk = Zwka($ia ~ Zja)
a=1

where
Wka is the weight for subject k£ on a dimension a,
Zia is the coordinate of stimulus i on dimension a,
Zja is the coordinate of stimulus j on dimension a.

The first set of distances is computed from the coordinates and weights found in the previous
steps. Subsequently, new distances are computed from new coordinates found in the iteration
process (described below).

Optimal Scaling

Optimal scaling for ordinal data use Kruskal’s least-squares monotonic transformation. This yields
disparities that are a monotonic transformation of the data and that are as much like the distances
(in a least squares sense) as possible. Ideally, we want the distances to be in exactly the same rank
order as the data, but usually they are not. So we locate a new set of numbers, called disparities,
which are in the same rank order as the data and which fit the distances as well as possible. When
we see an order violation we replace the numbers that are out of order with a block of values that
are the mean of the out-of-order numbers. When there are ties in the data, the optimal scaling
process is changed somewhat. Kruskal’s primary and secondary procedures are used in ALSCAL.

Normalization

The disparities computed previously are now normalized for technical reasons related to the
alternating least squares algorithm (Takane, Young, and de Leeuw, 1977). During the course of
the optimization process, we want to minimize a measure of error called SSTRESS. But the
monotone regression procedure described above only minimizes the numerator of the SSTRESS
formula. Thus, the formula below is applied to readjust the length of the disparities vector so
that SSTRESS is minimized:

D;¥ = D} (D,'D;) (D,'D})
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where
D; is a column vector with @ elements containing all the disparities for subject £,
Dy is a column vector with % elements containing all the distances for subject £,
D.'Dy is the sum of the squared distances,
D.'Dj is the sum of the cross products.

The normalized disparities vector D}V is a conditional least squares estimate for the distances;
that is, it is the least squares estimate for a given iteration. The previous D* values are replaced by
D*N values, and subsequent steps utilize the normalized disparities.

SSTRESS

The Takane-Young-de Leeuw formula is used:

[ [T -]
SSTRESS(1)=8§= | =Y |—

et SN dih
i J

where dj;; values are the normalized disparity measures computed previously, and d; ;5 are
computed as shown above. Thus SSTRESS is computed from the normalized disparities and
the previous set of coordinates and weights.

Termination

The current value of SSTRESS is compared to the value of SSTRESS from the previous iteration.
If the improvement is less than a specified value (default equals 0.001), iteration stops and the
output stages has been reached. If not, the program proceeds to the next step. (This step is skipped
on the first iteration.)

Model Estimation

In ALSCAL the weights and coordinates cannot be solved for simultaneously, so we do it
successively. Thus, the model estimation phase consists of two steps: (i) estimation of subject
weights and (ii) estimation of stimulus coordinates.

(i) Estimation of subject weights. (This step is skipped for the simple, that is, unweighted,
Euclidean model.)

A conditional least-squares estimate of the weights is computed at each iteration:

WiD*P<P'P)_1
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The derivation of the computational formula is as follows:

We have found disparities such that

z]k dzyk?

where

2
Uk = E wka Tijag — xJa)

Let p;;, be the unweighted distance between stimuli 7 and j as projected onto dimension a, that is,
2
Dija = ('Iin, - -rja,) .
Then
r
df =, =) Wrabija-
a=1

In matrix notation, this is expressed as D* = WP', where D* is now an m x matrix
having one row for every subject and one column for each stimulus pair; W is an m X r matrix
having one row for every subject and one column for each dimension; and P’ has one row for
every dimension and one column for every stimulus pair.

n(n—1)
2

We wish to solve for W, WP'=D*, which we do by noting that
1 1 -1 ’ -

WP P(P P) - D*P(P P)

Therefore,

Lo\ —1
W — D*P(P P)

and we have the conditional least squares estimate for W. We have in fact minimized SSTRESS at
this point relative to the previously computed values for stimulus coordinates and optimal scaling.
We replace the old subject weights with the newly estimated values.

(ii) Estimation of Stimulus Coordinates. The next step is to estimate coordinates, one at a time, using
the previously computed values for D* (disparities) and weights. Coordinates are determined
one at a time by minimizing SSTRESS with regard to a given coordinate. Equation (2) allows us
to solve for a given coordinate x;,:

35
a5 1 k
5@6 (91’16 ( )
glit - 4“%@2 (xle lee'rje + 2$le bljkxle + bljk«T]e) (2)

J
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Equation (2) can be substituted back into equation (1). This equation with one unknown, ., is
then set equal to zero and solved by standard techniques. All the other coordinates except 2. are
assumed to be constant while we solve for z;..

Immediately upon solving for z;., we replace the value for ;. used on the previous iteration with
the newly obtained value, and then proceed to estimate the value for another coordinate. We
successively obtain values for each coordinate of point /, one at a time, replacing old values with
new ones. This continues for point / until the estimates stabilize. We then move to a new point and
proceed until new coordinates for all stimuli are estimated. We then return to the beginning of the
optimization algorithm (the previous step above) and start another iteration.
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ANACOR Algorithms

The ANACOR algorithm consists of three major parts:
1. A singular value decomposition (SVD)
2. Centering and rescaling of the data and various rescalings of the results

3. Variance estimation by the delta method.

Other names for SVD are “Eckart-Young decomposition” after Eckart and Young (1936), who
introduced the technique in psychometrics, and “basic structure” (Horst, 1963). The rescalings
and centering, including their rationale, are well explained in Benzécri (1969), Nishisato (1980),
Gifi (1981), and Greenacre (1984). Those who are interested in the general framework of matrix
approximation and reduction of dimensionality with positive definite row and column metrics
are referred to Rao (1980). The delta method is a method that can be used for the derivation

of asymptotic distributions and is particularly useful for the approximation of the variance of
complex statistics. There are many versions of the delta method, differing in the assumptions
made and in the strength of the approximation (Rao, 1973, ch. 6; Bishop et al., 1975, ch. 14;
Wolter, 1985, ch. 6).

Notation

The following notation is used throughout this chapter unless otherwise stated:

k1 Number of rows (row objects)
ko Number of columns (column objects)
p Number of dimensions

Data-Related Quantities

fij Nonnegative data value for row i and column j: collected in table
fi+ Marginal total of row i, ¢ = 1, ..., k1

f1s Marginal total of columnj, j =1, ..., k2

N Grand total of F

Scores and Statistics

Tis Score of row object i on dimension s
Cjs Score of column object j on dimension s
1 Total inertia

© Copyright IBM Corporation 1989, 2011. 17
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Basic Calculations

One way to phrase the ANACOR objective (cf. Heiser, 1981) is to say that we wish to find row
scores {r;s} and column scores {c;,} so that the function

o({rists{ess}) = Z Zfijz (rss — ¢js)°

5

is minimal, under the standardization restriction either that
Z JitTisTit = 5%

i
or

st
> fricisci =13
j

where §°¢ is Kronecker’s delta and t is an alternative index for dimensions. The trivial set of
scores ({1},{1}) is excluded.
The ANACOR algorithm can be subdivided into five steps, as explained below.

Data scaling and centering

The first step is to form the auxiliary matrix Z with general element

25 = fis A iy
VT N

Singular value decomposition
Let the singular value decomposition of Z be denoted by
Z = KAL'

with K'K = I, L'L = I, and L diagonal. This decomposition is calculated by a routine based
on Golub and Reinsch (1971). It involves Householder reduction to bidiagonal form and
diagonalization by a QR procedure with shifts. The routine requires an array with more rows
than columns, so when k; < k. the original table is transposed and the parameter transfer is
permuted accordingly.

Adjustment to the row and column metric

The arrays of both the left-hand singular vectors and the right-hand singular vectors are adjusted
row-wise to form scores that are standardized in the row and in the column marginal proportions,
respectively:

ris = kis/\/ Fit /N,
¢js = ljs// f1i/N-
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This way, both sets of scores satisfy the standardization restrictions simultaneously.

Determination of variances and covariances

For the application of the delta method to the results of generalized eigenvalue methods under
multinomial sampling, the reader is referred to Gifi (1981, ch. 12) and Israéls (1987, Appendix
B). It is shown there that N time variance-covariance matrix of a function ¢ of the observed cell
proportions p = {p;; = f;;/IN} asymptotically reaches the form

. NEZAYEZAN % R
X cov(qﬁ(p));;ﬂ”(api) (0pij> ;;T” Opi; ;;% Opi;

Here the quantities r;; are the cell probabilities of the multinomial distribution, and d¢/dp;; are
the partial derivatives of ¢ (which is either a generalized eigenvalue or a generalized eigenvector)
with respect to the observed cell proportion. Expressions for these partial derivatives can also

be found in the above-mentioned references.

Normalization of row and column scores

Depending on the normalization option chosen, the scores are normalized, which implies a
compensatory rescaling of the coordinate axes of the row scores and the column scores. The
general formula for the weighted sum of squares that results from this rescaling is

rOW scores: Z fisrl, = N2 (1+q)

2
column scores: Z fricis=NA(1-q)
J

The parameter ¢ can be chosen freely or it can be specified according to the following designations:

0, canonical
g=4 1, row principal
—1, column principal

There is a fifth possibility, choosing the designation “principal,” that does not fit into this scheme.

It implies that the weighted sum of squares of both sets of scores becomes equal to NA2. The
estimated variances and covariances are adjusted according to the type of normalization chosen.

Diagnostics

After printing the data, ANACOR optionally also prints a table of row profiles and column
profiles, which are {f;;/fi+} and {f;;/ f+;}, respectively.
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Singular Values, Maximum Rank and Inertia

All singular values A, defined in step 2 are printed up to a maximum of min {(%; — 1), (k2 — 1)}.
Small singular values and corresponding dimensions are suppressed when they don’t exceed the
quantity (k; kg)l/ 1077, in this case a warning message is issued. Dimensionwise inertia and total
inertia are given by the relationships

2 fi+r?s
T=2N=22"%"

where the right-hand part of this equality is true only if the normalization is row principal (but
for the other normalizations similar relationships are easily derived from Normalization of row
and column scores ). The quantities “proportion explained” are equal to inertia divided by total
inertia: A2/1.

Scores and Contributions

This output is given first for rows, then for columns, and always preceded by a column of marginal
proportions (f;+ /N and f1;/N, respectively). The table of scores is printed in p dimensions. The
contribution to the inertia of each dimension is given by

P T
8 N Az
o f+i 2

Tjis = N Cs

The above formula is true only under the row principal normalization option. For the other
normalizations, similar relationships are again easily derived from Normalization of row and
column scores ) The contribution of dimensions to the inertia of each point is given by, for
s,t=1,...,p,

_ .2 2

Tis = rz’s/E Tit
t

2 2

Gjs = st/E Cjt
t

Variances and Correlation Matrix of Singular Values and Scores

The computation of variances and covariances is explained in Determination of variances and
covariances . Since the row and column scores are linear functions of the singular vectors, an
adjustment is necessary depending on the normalization option chosen. From these adjusted
variances and covariances the correlations are derived in the standard way.

Permutations of the Input Table

For each dimension s, let p(i|s) be the permutation of the first &, integers that would sort the
sth column of {r;;} in ascending order. Similarly, let p(jls) be the permutation of the first

ko integers that would sort the sth column of {¢;,} in ascending order. Then the permuted data
matrix is given by { focijs),0(/s) }-
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ANOVA Algorithms

This chapter describes the algorithms used by the ANOVA procedure.
Model and Matrix Computations

Notation

The following notation is used throughout this section unless otherwise stated:

N Number of cases
F Number of factors
CN Number of covariates
ks Number of levels of factor i
Yi Value of the dependent variable for case k&
Z; Value of the jth covariate for case £
W Weight for case k
w Sum of weights of all cases
The Model

A linear model with covariates can be written in matrix notation as

Y=XB+ZC+e )
where
Y N x 1 vector of values of the dependent variable
X Design matrix (IV x p) of rank ¢ < p
a Vector of parameters (p x 1)
V/ Matrix of covariates (N x CN)
C Vector of covariate coefficients (CN x 1)
€ Vector of error terms (N x 1)
Constraints

To reparametrize equation (1) to a full rank model, a set of non-estimable conditions is needed.
The constraint imposed on non-regression models is that all parameters involving level 1 of
any factor are set to zero.

For regression model, the constraints are that the analysis of variance parameters estimates for
each main effect and each order of interactions sum to zero. The interaction must also sum to
zero over each level of subscripts.

© Copyright IBM Corporation 1989, 2011. 22
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For a standard two way ANOVA model with the main effects «; and 3;, and interaction parameter
7i;, the constraints can be expressed as

a1 =1 =7 =71 =0 non — regression
Qe = o = Yie = Yoj =0 regression

where e indicates summation.

Computation of Matrices

X'X

Non-regression Model

The X'X matrix contains the sum of weights of the cases that contain a particular combination of
parameters. All parameters that involve level 1 of any of the factors are excluded from the matrix.
For a two-way design with k1 = 2 and k> = 3, the symmetric matrix would look like the following:

(a3 B2 Bs Y22 Y23
a2 Noe Naa Nas Noo Nag
B2 Nez 0 N2z 0
B3 Nas 0 Nas
Y22 Noo 0
Y23 Nag

The elements N;, or NV,; on the diagonal are the sums of weights of cases that have level i of @ or
level j of 8. Off-diagonal elements are sums of weights of cases cross-classified by parameter
combinations. Thus, N,3 is the sum of weights of cases in level 3 of main effect 83, while N5 is
the sum of weights of cases with a; and 3.

Regression Model
A row of the design matrix X is formed for each case. The row is generated as follows:

If a case belongs to one of the 2 to k; levels of factor 7, a code of 1 is placed in the column
corresponding to the level and 0 in all other &; — 1 columns associated with factor i. If the case
belongs in the first level of factor 7, -1 is placed in a/l the k; — 1 columns associated with factor i.
This is repeated for each factor. The entries for the interaction terms are obtained as products of
the entries in the corresponding main effect columns. This vector of dummy variables for a case
will be denoted as d(4),i = 1,..., NC, where NC is the number of columns in the reparametrized
design matrix. After the vector d is generated for case k, the ijth cell of X X is incremented by
d(i)d{(j)wy, where i = 1,...,NC and j > i.
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Checking and Adjustment for the Mean

After all cases have been processed, the diagonal entries of X X are examined. Rows and
columns corresponding to zero diagonals are deleted and the number of levels of a factor is
reduced accordingly. If a factor has only one level, the analysis will be terminated with a message.
If the first specified level of a factor is missing, the first non-empty level will be deleted from the
matrix for non-regression model. For regression designs, the first level cannot be missing. All
entries of X X are subsequently adjusted for means.

The highest order of interactions in the model can be selected. This will affect the generation of
X'X If none of these options is chosen, the program will generate the highest order of interactions
allowed by the number of factors. If sub-matrices corresponding to main effects or interactions in
the reparametrized model are not of full rank, a message is printed and the order of the model is
reduced accordingly.

Cross-Product Matrices for Continuous Variables

Provisional means algorithm are used to compute the adjusted-for-the-means cross-product
matrices.

Matrix of Covariates ZZ

The covariance of covariates m and / after case k has been processed is

k k
wy | Wiy, — Z wiZy | | WeZpk — Z Wj Zmj
Jj=1 j=1

727 (=27, (k—1
ml( ) ml( )+ ‘/Vk»lx”kf]_

where W, is the sum of weights of the first & cases.

The Vector Z’Y

The covariance between the mth covariate and the dependent variable after case & has been
processed is

k k

wy | WeYe — Z w;Y; WeZme — Z (YA
J=1 J=1

WiWi_1

ZY (k) =2 Y (k—1)+

The Scalar Y'Y

The corrected sum of squares for the dependent variable after case £ has been processed is
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2
k
W WkYk - ZIUJ‘Y}
’ ! ]:1
YYk)=YY(Ek-1
() (k—1)+ AT

The Vector X'Y

X'Y is a vector with NC rows. The ith element is

N
XIYZ- = Z kakék,
k=1

where, for non-regression model, §; = 1 if case & has the factor combination in column i of X'X;
3, = 0 otherwise. For regression model, §;, = d(i) where d(i) is the dummy variable for column i
of case k. The final entries are adjusted for the mean.

Matrix X'Z

The (i, m)th entry is

N

X/Zim = Z kawkék
k=1

where §;, has been defined previously. The final entries are adjusted for the mean.

Computation of ANOVA Sum of Squares
The full rank model with covariates
Y=X8+ZC +e
can also be expressed as
Y = X;b, + X,,b,y, + ZC + €
where X and b are partitioned as

by,
X = [Xyx|X,,] and 8 = [b ]

The normal equations are then

77 7ZX, 7Z'X, C 7Y
Xl XX XpX, | [be | =]X3Y (2)
X'wZ X, Xp X pXon | [Dm X' Y
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The normal equations for any reduced model can be obtained by excluding those entries from
equation (2) corresponding to terms that do not appear in the reduced model.

Thus, for the model excluding b,,,
Y =X;b,+ZC +e

the solution to the normal equation is:

¢l_Jzz zXx, ) '[zY 3)
br | | X:Z XX XY

The sum of squares due to fitting the complete model (explained SS) is
~ 7 ~ ~ 7 ZI,Y ~ 7 ’ A~ ! ~ 7 !
R(C, by, by) = [C ,bk,bm] XY | =€ZY + 5, XY + b, X Y
X, Y

For the reduced model, it is

R(C,by) = [c B;g] {}ZJY] = CZY+h. XY

The residual (unexplained) sum of squares for the complete model is

RSS=Y'Y - R(C, b, by,) and similarly for the reduced model. The total sum

of squares is YY. The reduction in the sum of squares due to including b, in a model that
already includes by, and C will be denoted as R(b,,|C, b). This can also be expressed as

R(bm‘ca bk‘) = R(C7bk:> bm) - R(Cwbk)

There are several ways to compute R(b,,|C, b). The sum of squares due to the full model, as
well as the sum of squares due to the reduced model, can each be calculated, and the difference
obtained (Method 1).

R(bp,|Cby)=CZY+b, X, Y+b, X, Y-CZY -b,X,Y
A sometimes computationally more efficient procedure is to calculate
R(bm|ca bk) - me;lem

where b,, are the estimates obtained from fitting the full model and T, is the partition of the
inverse matrix corresponding to b, (Method 2).

Tc Tck Tcm
ch Tk Tkm

me ka m

[z’/z ZX,  ZXn
kaz XX, XkaJ =

X' mZ XpXi XX
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Model and Options

Notation

Let b be partitioned as

mj
b= |M|_ | mF
D d,
Ldp—1
where
M Vector of main effect coefficients
m; Vector of coefficients for main effect i
m® M excluding m;
M M including only m; through m;_;
D Vector of interaction coefficients
dj Vector of kth order interaction coefficients
dy, Vector of coefficients for the ith of the kth order interactions
D) D excluding dy
Dk* D including only d; through dy_1
di“ d;, excluding dy,
C Vector of covariate coefficients
i Covariate coefficient
c® C excluding ¢;
CcH C including only ¢; through ¢;_1

Models

Different types of sums of squares can be calculated in ANOVA.

Sum of Squares for Type of Effects

| Covariates | Main Effects | Interactions
Experimental and ‘ R(C) ‘ R(M|C) ‘ R(dk\c, Mka*)

Hierarchical
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Covariates with Main R(C,M) R(C,M) R(dx|C, M, D**)
Effects
Covariates after Main R(C|M) R(M) R(dx|C, M. D")
Effects
Regression R(C/M, D) R(M|C,D) R(dx|C, M, D")

All sums of squares are calculated as described in the introduction. Reductions in sums of squares
(R{A|B)) are computed using Method 1. Since all cross-product matrices have been corrected for
the mean, all sums of squares are adjusted for the mean.

Sum of Squares Within Effects

Covariates Main Effects Interactions
Default Experimental R(ci ‘C(i)) R(mi Ic, M(i)) R(dki |C, M, D**, dg”)
Covariates with Main (%) (i) same as default
;| M, i|C, M
Effects R(C M, C ) R(m IC )
Covariates after Main ) 0) RV I0) same as default
Effects R<Cl M, C ) R<ml M )
Regression R(e:/M, €, D) | R(m/M®,C,D) R(d,|C, M, D))
Hierarchical R(ci \C”) R(m7;|C, M”) same as default
Hierarchical and Covariates R(Ci |CH, 1\/[) R(m,- \Mi*) same as default
with Main Effects or
Hierarchical and Covariates
after Main Effects

Reductions in sums of squares are calculated using Method 2, except for specifications involving
the Hierarchical approach. For these, Method 1 is used. All sums of squares are adjusted for
the mean.

Degrees of Freedom

Main Effects

F

dfar =3 (ki — 1)

1=1

Main Effect i

(ki — 1)
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Covariates

df. = CN

Covariate i

Interactions
Interactions d,:
df, = number of linearly independent columns corresponding to interaction d,. in X' X
Interactions d,.,:

df = number of independent columns corresponding to interaction d,, in X X

Model
F-1
dfvioder = dfyr +dfe+ > dfs
r=1
Residual

W —1 —dfuroder

Total

Ww-1

Multiple Classification Analysis

Notation
Yiir Value of the dependent variable for the kth case in level j of main effect i
Tij Sum of weights of observations in level j of main effect i
ks Number of nonempty levels in the ith main effect

w Sum of weights of all observations
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Basic Computations

Mean of Dependent Variable in Level j of Main Effect i

i
Yij =Y Yijr/ni
k=1

Grand Mean

V=220 Yir/W
i gk

Coefficient Estimates

The computation of the coefficient for the main effects only model (b;;) and coefficients for the
main effects and covariates only model (51- j) are obtained as previously described.

Calculation of the MCA Statistics (Andrews, et al., 1973)

Deviations

For each level of each main effect, the following are computed:

Unadjusted Deviations

The unadjusted deviation from the grand mean for the jth level of the ith factor:

mij :?ij -Y

Deviations Adjusted for the Main Effects

ki
ml = bij — Z bijnij/ﬂ/, where bil =0.

¥
i=2

Deviations Adjusted for the Main Effects and Covariates (Only for Models with Covariates)

ki
mfj = Eij — Z Eijnij/ﬂ", where Eil =0.

i=2
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ETA and Beta Coefficients

For each main effect i, the following are computed:

k.
ETAi — Z nij (?ZJ - ?)Z/YIY
j=2

Beta Adjusted for Main Effects

k;
Beta; = Z Mij (mllj) 2/Y'Y
=2

Beta Adjusted for Main Effects and Covariates

k;
Beta; = | Znij (777,22]-)2/Y'Y
=2

Squared Multiple Correlation Coefficients

Main effects model

2 _ R(M)
R =3~

Main effects and covariates model

2 _ BRM.C)
Rmc - Yy

The computations of R(M), R(M,C), and Y'Y are outlined previously.

Unstandardized Regression Coefficients for Covariates

Estimates for the C vector, which are obtained the first time covariates are entered into the model,
are printed.

Cell Means and Sample Sizes

Cell means and sample sizes for each combination of factor levels are obtained from the X'Y and
X'X matrices prior to correction for the mean.

— (x'y), .
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Means for combinations involving the first level of a factor are obtained by subtraction from
marginal totals.

Matrix Inversion

The Cholesky decomposition (Stewart, 1973) is used to triangularize the matrix. If the tolerance is
less than 10 ~®, the matrix is considered singular.
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In the ordinary regression model the errors are assumed to be uncorrelated. The model considered
here has the form

»
yz:a+2bixti+ut t=1,...,n
w, = pus 5 ¥ e

0

where ¢, is an uncorrelated random error with variance ¢? and zero mean. The error terms

uy follow a first-order autoregressive process. The constant term a can be included or excluded
as specified. In the discussion below, if a is not included, it is set to be zero and not involved in
the subsequent computation.

Two computational methods—Prais-Winsten and Cochrane-Orcutt—are described here.

Cochrane-0Orcutt Method

Note that model (1) on p. 33 can be rewritten in two equivalent forms as:

r

¥ — pyi—1 = a(l — p) + Z b; ('JJu' - ,Ol’(tq)i) + €t ?2)

i=1

p P
Y —a— meu = P(ytl —a— Z bix(t—l)i> + e 3)

i=1 i=1

Defining y; = y; — py;—1 and x}; = xy — pry_1); fort =2, ..., n, equation (2) can be rewritten
as
p
yi =a(l—p)+ Z bixi; + e (2%)
i=1

Starting with an initial value for p, the difference y; and z; in equation (2*) are computed and
OLS then applied to equation (2*) to estimate a and b;. These estimates in turn can be used in
equation (3) to update j and the standard error of the estimate §.

Initial Results

An initial value for p can be pre-set by the user or set to be zero by default. The OLS method is
used to obtain an initial estimate for a (if constant term is include) and ;.

ANOVA

Based on the OLS results, an analysis of variance table is constructed in which the degrees of
freedom for regression are p, the number of X variables in equation (1) on p. 33, while the degrees
of freedom for the residual are n — p* — 1 if initial p # 0 and are n — p* otherwise. p* is the

© Copyright IBM Corporation 1989, 2011. 33
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number of coefficients in equation (1). The sums of squares, mean squares, and other statistics are
computed as in the REGRESSION procedure.

Intermediate Results

At each iteration, the following statistics are calculated:

Rho

An updated value for p is computed as

where the residuals %, are obtained from equation (1) on p. 33.

Standard Error of rho

An estimate of the standard error of 4

where p* = p + 1 if there is a constant term; p otherwise.

Durbin-Watson Statistic

n—1

> G- &)

pw = =L

n
~2
> é
=1
where
€1 =+1— /’52111

Uy — Plj—1 1=2,...,1n

RSy
I
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Mean Square Error

An estimate of the variance of ¢,
7
~ o 2
(U — plr—1)

MSE =2
n—2—p*

Final Results

Iteration terminates if either all the parameters change by less than a specified value (default
0.001) or the number of iterations exceeds the cutoff value (default 10).

The following variables are computed for each case:
FIT
Fitted responses are computed as
n=un
and
U=y +pus—1 t=2,...,n
in which p is the final estimate of p, and
b
Ur=a+ Z bizy;
i=1

at:yt_gt t:17...,TL

ERR

Residuals are computed as
gt:yt_gt tZQ, NN

& =/1—-p*(y1 — )

SEP

Standard error of predicted values at time ¢
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1 ~
SEP = VMSE\/(W + h1>

and
SEP, = VMSE,/ (1 n Et> t=2 ....n
where

iLi = XZ' (X*/X*) _IXIi

in which X is the predictor vector at time i with the first component 1 if a constant term is
included in equation (2*) on p. 33. X* is a (n — 1) x p* design matrix for equation (2*). The first
column has value of 1 — g if a constant term is included in equation (2%*).

LCL and UCL
95% prediction interval for the future y;, is

Uk T tn—1-p0.0255E Py

Other Statistics

Other statistics such as Multiple R, R-Squared, Adjusted R-Squared, and so on, are computed.
Consult the REGRESSION procedure for details.

Prais-Winsten Method

This method is a modification of the Cochrane-Orcutt method on p. 33 in that the first case gets
explicit treatment. By adding an extra equation to (2*) on p. 33, the model has the form of

P
(1-phyn =a(l = p)+ D bi(1 = plari+(1 — p)us
0 4
v :a(lfp)—i—meri—i—q t=2,...,n

i=1

Like the Cochrane-Orcutt method, an initial value of p can be set by the user or a default value of
zero can be used. The iterative process of estimating the parameters is performed via weighted
least squares (WLS). The weights used in WLS computation are w1 = (1 — #2)/(1 — p)* and

w; = 1 fori =2, ...,n. The computation of the variance of ¢; and the variance of j is the same as
that of the WLS in the REGRESSION procedure.
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Initial Results

The WLS method is used to obtain initial parameter estimates.

ANOVA

The degrees of freedom are p for regression and n — p* for residuals.

Intermediate Results

The formulas for RHO, SE Rho, DW, and MSE are exactly the same as those in the
Cochrane-Orcutt method on p. 33. The degrees of freedom for residuals, however, are n — 1 — p*.

Final Results

The following variables are computed for each case.

SEP

Standard error of predicted value at time ¢ is computed as

1 -
SEP, = \/MSE\/(l — h1>

SEPt:\/Wq/(lJrfzt) t=2 ....n

where £ is computed as
~ ’ -1 1
hi =X (XX") X,

in which X is the predictor vector at time i and X* is a n x p* design matrix for equation (4) on
p. 36. If a constant term is included in the model, the first column of X* has a constant value of
1 — j, the first row of X* is /w1 (211, ..., ®1,), and p* = p+ 1.

LCL and UCL
95% prediction interval for y;, at time & is

Uk £ tnp0.0255EP;
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The ARIMA procedure computes the parameter estimates for a given seasonal or non-seasonal
univariate ARIMA model. It also computes the fitted values, forecasting values, and other related
variables for the model.

Notation

The following notation is used throughout this chapter unless otherwise stated:

n(=1,2, .., N) Univariate time series under investigation.
N Total number of observations.
a(t=1,2,..,N) White noise series normally distributed with mean zero and variance o2.
P Order of the non-seasonal autoregressive part of the model
q Order of the non-seasonal moving average part of the model
d Order of the non-seasonal differencing
P Order of the seasonal autoregressive part of the model
0 Order of the seasonal moving-average part of the model
D Order of the seasonal differencing
S Seasonality or period of the model
¢p(B) AR polynomial of B of order p, ¢p (B) =1 — 1B — ¢2B* — ... — 0, B®
8, (B) MA polynomial of B of order q, 8, (B) =1 — 9, B — 9, B* — ... — ¥,B¢
®p (B?) Seasonal AR polynomial of BS of order P,
Op(B°)=1—-0,B* — ®:B*? — ... — &pB°T
Q¢ (B®) Seasonal MA polynomial of BS of order Q,
Qo (B*)=1-©:B* - 0,B* — ... - QuB*?
A Differencing operator A = (1 — B)*(1 — B*)”
B Backward shift operator with BY, = Y;_1 and Ba; = a;_1

Models

A seasonal univariate ARIMA(p,d,q)(P,D,Q)s model is given by
®(B)[Ay; — p] =O(Blay t=1,...,N

where

®(B) = ¢, (B) 2p (B)

O(B) = 0,(B) Oq (B)

and p is an optional model constant. It is also called the stationary series mean, assuming that, after
differencing, the series is stationary. When NOCONSTANT is specified, p is assumed to be zero.

An optional log scale transformation can be applied to y; before the model is fitted. In this chapter,
the same symbol, yy, is used to denote the series either before or after log scale transformation.

© Copyright IBM Corporation 1989, 2011. 38
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Independent variables x1, x7, ..., Xy can also be included in the model. The model with
independent variables is given by

d(B) |A (yt — Zci:r,-t) — ,LL] = O(B)ay
i=1
where
¢,1=1,2,...,m, are the regression coefficients for the independent variables.
Estimation

Basically, two different estimation algorithms are used to compute maximum likelihood (ML)
estimates for the parameters in an ARIMA model:

m  Melard’s algorithm is used for the estimation when there is no missing data in the time
series. The algorithm computes the maximum likelihood estimates of the model parameters.
The details of the algorithm are described in (Melard, 1984), (Pearlman, 1980), and (Morf,
Sidhu, and Kailath, 1974).

m A Kalman filtering algorithm is used for the estimation when some observations in the time
series are missing. The algorithm efficiently computes the marginal likelihood of an ARIMA
model with missing observations. The details of the algorithm are described in the following
literature: (Kohn and Ansley, 1986) and (Kohn and Ansley, 1985).

Initialization of ARMA parameters

The ARMA parameters are initialized as follows:

Assume that the series Y; follows an ARMA(p,q)(P,Q) model with mean 0; that is:
Yi—oVia— Yo p=as —brag1 — - — g0t

In the following ¢; and p; represent the /th lag autocovariance and autocorrelation of
Y; respectively, and ¢, and g; represent their estimates.

Non-seasonal AR parameters

For AR parameter initial values, the estimated method is the same as that in appendix A6.2 of

(Box, Jenkins, and Reinsel, 1994). Denote the estimates as <p1, e (pp g

Non-seasonal MA parameters
Let
w=Y, 1Y 1 — o —pYe p=ar —Orae1 — - — 04004

The cross covariance
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[=0
=1
l=q
[>q

T4
—0102
N = E(wipas) = E((aq — 01044001 — -+ — Ogapq—q)ag) = e
—b40,
Assuming that an AR(p+q) can approximate Y3, it follows that:
Vi—9 Y- =0 Y= ¢ Y1 — =@ Yipq =
The AR parameters of this model are estimated as above and are denoted as gZa'l, N @; +q-
Thus ); can be estimated by
A~ E((YHZ —1Yip1 — o — SﬁthJrlfp) (Yt - Sallytfl - 99/p+th*P*q))
pt+q p pt+q
= | P Z PiPi+i — Z Yip1—i + Z Z PiPiPi+ji—i | €0
i=1 j=1

And the error variance o2 is approximated by

ptq , p+qpt+q , p+q p+q ,
A2 o o s o !
Gi=Var| => ¢ Yo | =3 D 0w e =) Y b ipig
j=0 i=0 =0 i=0 ;=0
with gy = —1.

Then the initial MA parameters are approximated by 8; = —);/¢2 and estimated by

p+yg p ptaq
Pl*Z@jPHJ ZQ Pl—i "‘ZZ‘P%‘PJPZJr] i
R = M = S = b=
DD bibipig
i=0 j=0

So §; can be calculated by ap] , @i, and {py }f’Ll 4

other parameters are set to 0.

Seasonal parameters

In this procedure, only {4;}7+ are used and all

For seasonal AR and MA components, the autocorrelations at the seasonal lags in the above

equations are used.
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The following definitions are used in the statistics below:

Ny

SSO

~2
a

S50’

Log-Likelihood

L=—Nln(6,) — 354 —

52
252

Number of parameters.

NP +q+P+Q+m without model constant
PT lp+qg+P+Q+m~+1 with model constant
Residual sum of squares SSQ = e/e, where e is the residual vector

Estimated residual variance. 62 = %, where dff = N — N,

Adjusted residual sum of squares. $SQ’ = (55Q) \Qll/N, where Q is the
theoretical covariance matrix of the observation vector computed at MLE

Nln(2x)

2

Akaike Information Criterion (AIC)

AIC=—2L 4 2N,

Schwartz Bayesian Criterion (SBC)

SBC = —2L + In(N)N,

Generated Variables

The following variables are generated for each case.

Predicted Values

Computation of predicted values depends upon the forecasting method.

Forecasting Method: Conditional Least Squares (CLS or AUTOINT)

In general, the model used for fitting and forecasting (after estimation, if involved) can be

written as

¥ — D(B)ys = ®(B)p + O(B)ay + Z ¢;®(B) Ay

where

D(B)=©(B)A -1
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®(B)u = ®()p

Thus, the predicted values (FIT); are computed as follows:
(FIT), =9 =D (B) i + ¢ (B)p+ © (B) &, —I—ZCZ-CI) (B) Axyy
i=1

where
ar=yr—fh 1<t<n

Starting Values for Computing Fitted Series. To start the computation for fitted values, all
unavailable beginning residuals are set to zero and unavailable beginning values of the fitted
series are set according to the selected method:

CLS. The computation starts at the (d+sD)-th period. After a specified log scale transformation,

if any, the original series is differenced and/or seasonally differenced according to the model
specification. Fitted values for the differenced series are computed first. All unavailable beginning
fitted values in the computation are replaced by the stationary series mean, which is equal to the
model constant in the model specification. The fitted values are then aggregated to the original
series and properly transformed back to the original scale. The first d+sD fitted values are set to
missing (SYSMIS).

AUTOINIT. The computation starts at the [d+p+s(D+P)]-th period. After any specified log scale
transformation, the actual d+p+s(D+P) beginning observations in the series are used as beginning
fitted values in the computation. The first d+p+s(D+P) fitted values are set to missing. The fitted
values are then transformed back to the original scale, if a log transformation is specified.

Forecasting Method: Unconditional Least Squares (EXACT)

As with the CLS method, the computations start at the (d+sD)-th period. First, the original series
(or the log-transformed series if a transformation is specified) is differenced and/or seasonally
differenced according to the model specification. Then the fitted values for the differenced series
are computed. The fitted values are one-step-ahead, least-squares predictors calculated using the
theoretical autocorrelation function of the stationary autoregressive moving average (ARMA)
process corresponding to the differenced series. The autocorrelation function is computed by
treating the estimated parameters as the true parameters. The fitted values are then aggregated
to the original series and properly transformed back to the original scale. The first d+sD fitted
values are set to missing (SYSMIS). The details of the least-squares prediction algorithm for the
ARMA models can be found in (Brockwell and Davis, 1991).

Residuals

Residual series are always computed in the transformed log scale, if a transformation is specified.

(ERR), =y, — (FIT), t=1,2,...,N
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Standard Errors of the Predicted Values

Standard errors of the predicted values are first computed in the transformed log scale, if a
transformation is specified.

Forecasting Method: Conditional Least Squares (CLS or AUTOINIT)

(SEP), =6, t=1,2,...,N

Forecasting Method: Unconditional Least Squares (EXACT)

In the EXACT method, unlike the CLS method, there is no simple expression for the standard
errors of the predicted values. The standard errors of the predicted values will, however, be given
by the least-squares prediction algorithm as a byproduct.

Standard errors of the predicted values are then transformed back to the original scale for each
predicted value, if a transformation is specified.

Confidence Limits of the Predicted Values

Confidence limits of the predicted values are first computed in the transformed log scale, if a
transformation is specified:

(LCL), = (FIT), — w24 (SEP), t=1,2,...,N
(UCL), = (FIT), + t1 a/24(SEP), t=1,2,...,N

where 1, /2 4¢ is the (1 — «/2)-th percentile of a ¢ distribution with df degrees of freedom and a
is the specified confidence level (by default a=0.05).

Confidence limits of the predicted values are then transformed back to the original scale for
each predicted value, if a transformation is specified.

Forecasting

The following values are computed for each forecast period.

Forecasting Values

Computation of forecasting values depends upon the forecasting method.

Forcasting Method: Conditional Least Squares (CLS or AUTOINIT)

¥t (1), the [-step-ahead forecast of y;.; at the time ¢, can be represented as:
Je () =D (B) iy +®(B)p+ O (B)ayi + Y ci® (B) Awi iy
i=1

Note that
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N /T if [ <i
==\ g0 —d) i D>

Py Y- = G- (1) ifi<i
E A if 1>

Forecasting Method: Unconditional Least Squares (EXACT)
The forecasts with this option are finite memory, least-squares forecasts computed using the

theoretical autocorrelation function of the series. The details of the least-squares forecasting
algorithm for the ARIMA models can be found in (Brockwell et al., 1991).

Standard Errors of the Forecasting Values

Computation of these standard errors depends upon the forecasting method.

Forcasting Method: Conditional Least Squares (CLS or AUTOINIT)

For the purpose of computing standard errors of the forecasting values, the model can be written
in the format of weights (ignoring the model constant):

= e 0 (B) = 3 o
i=0
where
Po =1
Then
selge (O] = {1+0F + 93+ + 07, o
Note that, for the predicted value, I = 1. Hence, (SEP), = &, at any time .

Computation of PWeights. ¥ weights can be computed by expanding both sides of the following
equation and solving the linear equation system established by equating the corresponding
coefficients on both sides of the expansion:

¢p (B) @p (B) Ay (B) = 0, (B) ©q (B)
An explicit expression of ¥ weights can be found in (Box et al., 1994).
Forecasting Method: Unconditional Least Squares (EXACT)
As with the standard errors of the predicted values, the standard errors of the forecasting values

are a byproduct during the least-squares forecasting computation. The details can be found in
(Brockwell et al., 1991).
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Automated Data Preparation
Algorithms

The goal of automated data preparation is to prepare a dataset so as to generally improve the
training speed, predictive power, and robustness of models fit to the prepared data.

These algorithms do not assume which models will be trained post-data preparation. At the end
of automated data preparation, we output the predictive power of each recommended predictor,
which is computed from a linear regression or naive Bayes model, depending upon whether the
target is continuous or categorical.

Notation

The following notation is used throughout this chapter unless otherwise stated:

X A continuous or categorical variable
Ti Value of the variable X for case i.
fi Frequency weight for case i. Non-integer positive values are rounded to the nearest

integer. If there is no frequency weight variable, then all f; = 1. If the frequency
weight of a case is zero, negative or missing, then this case will be ignored.

w; Analysis weight for case i. If there is no analysis weight variable, then all w, = 1. If
the analysis weight of a case is zero, negative or missing, then this case will be ignored.

n Number of cases in the dataset

Nx > w  fiI (i is not missing), where I (expression) is the indicator function taking
value 1 when the expression is true, 0 otherwise.

Wx Yo, fiwiI (2; is not missing)

Nxy

T
Z fiI (x; and y; are not missing)
=1
Wxy n ‘
Z fiw;I (z; and y; are not missing)

i=1

E n
The mean of variable X, ﬁz fiwixiI (z; 1s not missing)
i=1
M% i
> fawi(zi —3)"
=1
Ty L .
Ty Z fiwiziI (z; and y; are not missing)
=1
Mxy

> fowi (2 — Ty) (vi — 7,)
i=1

A note on missing values

Listwise deletion is used in the following sections:

m  Univariate Statistics Collection on p. 48

© Copyright IBM Corporation 1989, 2011. 46
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Basic Variable Screening on p. 50
Measurement Level Recasting on p. 50
Missing Value Handling on p. 52

Outlier Identification and Handling on p. 51
Continuous Predictor Transformations on p. 53
Target Handling on p. 54

Reordering Categories on p. 58

Unsupervised Merge on p. 63

Pairwise deletion is used in the following sections:
B Bivariate Statistics Collection on p. 55
Supervised Merge on p. 59

Supervised Binning on p. 65

Feature Selection and Construction on p. 65

Predictive Power on p. 68

A note on frequency weight and analysis weight

The frequency weight variable is treated as a case replication weight. For example if a case has
a frequency weight of 2, then this case will count as 2 cases.

The analysis weight would adjust the variance of cases. For example if a case z; of a variable X
has an analysis weight w;, then we assume that 2:; ~ N (u, Z—,Q)

Frequency weights and analysis weights are used in automated preparation of other variables, but
are themselves left unchanged in the dataset.

Date/Time Handling

Date Handling

If there is a date variable, we extract the date elements (year, month and day) as ordinal variables.
If requested, we also calculate the number of elapsed days/months/years since the user-specified
reference date (default is the current date). Unless specified by the user, the “best” unit of duration
is chosen as follows:

1. If the minimum number of elapsed days is less than 31, then we use days as the best unit.

2. If the minimum number of elapsed days is less than 366 but larger than or equal to 31, we use
months as the best unit. The number of months between two dates is calculated based on average
number of days in a month (30.4375): months = days / 30.4375.

3. If the minimum number of elapsed days is larger than or equal to 366, we use years as the best
unit. The number of years between two dates is calculated based on average number of days in a
year (365.25): years = days / 365.25.
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Once the date elements are extracted and the duration is obtained, then the original date variable
will be excluded from the rest of the analysis.

Time Handling

If there is a time variable, we extract the time elements (second, minute and hour) as ordinal
variables. If requested, we also calculate the number of elapsed seconds/minutes/hours since
the user-specified reference time (default is the current time). Unless specified by the user, the
“best” unit of duration is chosen as follows:

If the minimum number of elapsed seconds is less than 60, then we use seconds as the best unit.

If the minimum number of elapsed seconds is larger than or equal to 60 but less than 3600, we
use minutes as the best unit.

If the minimum number of elapsed seconds is larger than or equal to 3600, we use hours as the
best unit.

Once the elements of time are extracted and time duration is obtained, then original time predictor
will be excluded.

Univariate Statistics Collection

Continuous Variables

For each continuous variable, we calculate the following statistics:
Number of missing values: N3'**™9 = S~ 1, T (x; is missing)
Number of valid values: Nx

Minimum value: min; z;

Maximum value: max; z;

Mean, standard deviation, skewness. (see below)

The number of distinct values /.

The number of cases for each distinct value s;: ¢; = 37, fi1 (x; = ;)

Median: If the distinct values of X are sorted in ascending order, s1 < 82 < -+ < S, then the

median can be computed by Median (X) = min {si : % > 0.5}, where cc; = Z Ci.
i=1

Note: If the number of distinct values is larger than a threshold (default is 5), we stop updating
the number of distinct values and the number of cases for each distinct value. Also we do not

calculate the median.

Categorical Numeric Variables

For each categorical numeric variable, we calculate the following statistics:

ol . maissing n . 2 L
B Number of missing values: Ny = >y fid (z; is missing)
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Number of valid values: Nx

Minimum value: min; z; (only for ordinal variables)
Maximum value: max; 2; (only for ordinal variables)
The number of categories.

The counts of each category.

Mean, Standard deviation, Skewness (only for ordinal variables). (see below)

Mode (only for nominal variables). If several values share the greatest frequency of
occurrence, then the mode with the smallest value is used.
®  Median (only for ordinal variables): If the distinct values of X are sorted in ascending order,

81 < 83 < --- < sy, then the median can be computed by Median (X) = min {si : iﬁx > 0.5},

2
where cc; = 375, ¢
Notes:

If an ordinal predictor has more categories than a specified threshold (default 10), we stop
updating the number of categories and the number of cases for each category. Also we do not
calculate mode and median.

If a nominal predictor has more categories than a specified threshold (default 100), we stop
collecting statistics and just store the information that the variable had more than threshold
categories.

Categorical String Variables

For each string variable, we calculate the following statistics:

®  Number of missing values: N3***" = " | £ (; is missing)
Number of valid values: Nx

The number of categories.

Counts of each category.

Mode: If several values share the greatest frequency of occurrence, then the mode with the
smallest value is used.

Note: If a string predictor has more categories than a specified threshold (default 100), we stop

collecting statistics and just store the information that the predictor had more than threshold
categories.

Mean, Standard Deviation, Skewness
We calculate mean, standard deviation and skewness by updating moments.
1. Start with N = W =z©@ = M%% = 3% = 0.

2. For j=1,..,n compute:

N)(ﬁ) =1 )(gjfl) + f;I (x; is not missing)
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W)((j) = W)((jfl) + fjw;I (z; is not missing)

_ fiw; —(j-1)
vy = = X, — X
7 W)((J) ( J )

f(]) — f(]fl) _|_ va]-

. 504 Dy G-1)
2(5) _ A 2(5-1) Wx WX 2

MY = M L W
Dy G-1)

WX; WXJ

MY = M3 330 R (W) — 250, ) 02

3. After the last case has been processed, compute:

Mean: z =z

.. M
Standard deviation: sd = {/ X
Nx—
Nx 1 e
Skewness: skew — (x—2) (‘ij{l) -

If Ny < 2or sd> < 10729, then skewness is not calculated.

Basic Variable Screening

1. If the percent of missing values is greater than a threshold (default is 50%), then exclude the
variable from subsequent analysis.

2. For continuous variables, if the maximum value is equal to minimum value, then exclude the
variable from subsequent analysis.

3. For categorical variables, if the mode contains more cases than a specified percentage (default
is 95%), then exclude the variable from subsequent analysis.

4. If a string variable has more categories than a specified threshold (default is 100), then exclude the

variable from subsequent analysis.

Checkpoint 1: Exit?

This checkpoint determines whether the algorithm should be terminated. If, after the screening
step:

1. The target (if specified) has been removed from subsequent analysis, or

2. All predictors have been removed from subsequent analysis,

then terminate the algorithm and generate an error.

Measurement Level Recasting

For each continuous variable, if the number of distinct values is less than a threshold (default
is 5), then it is recast as an ordinal variable.
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For each numeric ordinal variable, if the number of categories is greater than a threshold (default
is 10), then it is recast as a continuous variable.

Note: The continuous-to-ordinal threshold must be less than the ordinal-to-continuous threshold.

Outlier Identification and Handling

In this section, we identify outliers in continuous variables and then set the outlying values to a
cutoff or to a missing value. The identification is based on the robust mean and robust standard
deviation which are estimated by supposing that the percentage of outliers is no more than 5%.

Identification

1. Compute the mean and standard deviation from the raw data. Split the continuous variable into

non-intersecting intervals: I; = (T + (i — 1) X 8dy, T+ 1 X 8dy],i = —3, —2,-+-,2,3,4, where
I 3= (—00,T — 3sdy], Is = (T + 3sdy, + 0] and sdy, = sd x 1/ FE=T.

2. Calculate univariate statistics in each interval:
Ni, =30 Fil (x5 € L), Wy, = 30, fowil (x5 € I)

Zw_ FiwjuI(x;€1;) . ; L
=1 V‘;I: AN ]\fflzi = 22:1 fjwj(x; — 1711,)2] (z; € L)

3. Letl=-3,r=4,and p=0.

Ty, =

4. Between two tail intervals I; and I,., find one interval with the least number of cases.

If Ni, < Np, then poyrrent = ;—2 Check if p + peurrent 18 less than a threshold pepyesnorq (default
is 0.05). If it does, then p = p + poyrrens and I =1+ 1, go to step 4; otherwise, go to step 6.

Else pourrent = IX,I; . Check if p + peurren: 18 less than a threshold, pipreshorg. I it is, then

P =P+ Peurrens and r = r — 1, go to step 4; otherwise, go to step 6.

6. Compute the robust mean Z,.».s: and robust standard deviation sd,,p.s: Within the range
(T4 (1-1) x sd,T+r x sd]. See below for details.

7. 1If z; satisfies the conditions:
vV Wi (ll - f"“Ob'lwt) < —cutof f X 8dyopust OF /W5 (l’i - frol‘mst) > cutof f X sdropust

where cutoffis positive number (default is 3), then x; is detected as an outlier.

Handling

Outliers will be handled using one of following methods:

B Trim outliers to cutoff values. If \/w; (2; — Frobust) < —cutof f X sdyobust then replace x; by
Trobust — cutoff X Sdrobust/\/ wi, and if VWi (372 - f7'obus1‘,) > CUtOff X Sdrobust then replace
Z; by f7‘ol7ust + CUtOff X Sdrobust/\/ w;.

m  Set outliers to missing values.
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Update Univariate Statistics

After outlier handling, we perform a data pass to calculate univariate statistics for each continuous
variable, including the number of missing values, minimum, maximum, mean, standard deviation,
skewness, and number of outliers.

Robust Mean and Standard Deviation

Robust mean and standard deviation within the range (Z + (I — 1) X sd, T + r x sd] are calculated
as follows:

T —
Ty obust = Zl‘zz I’VL-ifL-
roous Z;“:l I/VIL

and
sd bust = ‘]Wfobust
TobUST — r
Zi:l Nli -1
where M7, .. =37 Ay, and Ap, = M7 + Wi (Trobust — z)°

Missing Value Handling

Continuous variables. Missing values are replaced by the mean, and the following statistics are
updated:

m  Standard deviation: sd x ]gvlel, where N = Nx + N;?issing .

: L = (D) (k2 o _ [Nx—1
m  Skewness: skew x 72, where L; = <N72)< i ) and L = /5
®m  The number of missing values: Ny****" =0

B  The number of valid values: Nx = N

Ordinal variables. Missing values are replaced by the median, and the following statistics are
updated:

m  The number of cases in the median category: cpedian + Ny o 7, Where cpedian is the
original number of cases in the median category.

m  The number of missing values: Ny****"9 = (

B The number of valid values: Ny = N

Nominal variables. Missing values are replaced by the mode, and the following statistics are
updated:

B The number of cases in the modal category: ¢, oqe + N;?i“mg , where ¢,,,04¢ is the original
number of cases in the modal category.

®  The number of missing values: Ny****" =0

B The number of valid values: Ny = N
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Continuous Predictor Transformations

We transform a continuous predictor so that it has the user-specified mean Z, ., (default
0) and standard deviation sd,, .., (default 1) using the z-score transformation, or minimum
min,, .., (default 0) and maximum max,., (default 100) value using the min-max transformation.

Z-score Transformation

Suppose a continuous variable has mean = and standard deviation sd. The z-score transformation is

/ 5dyser _ _
x; = - X (zj — T) + Tuser

7. . . .
where z; is the transformed value of continuous variable X for case i.

Since we do not take into account the analysis weight in the rescaling formula, the rescaled values
7 . . . S ,2
x; follow a normal distribution N (fwer, %

Update univariate statistics

After a z-score transformation, the following univariate statistics are updated:
®  Number of missing values: Ng/*"" = N**™
B Number of valid values: Ny = Nx
. . . 1 . —_ —_—
B Minimum value: min (Ll) = Sd;% X (mina; — T) + Tyser

. ’ : — —
B Maximum value: max (m,) = duser  (max z; — ) + Tuser
1
B Mean: T = Tyqer
. . 7
m Standard deviation: sd (l ) = sdyser

m  Skewness: skew (11) = skew ()

Min-Max Transformation

Suppose a continuous variable has a minimum value min z; and a minimum value max ;. The
min-max transformation is

/ MaXyger — Millyger . .
x; = _ X (x; — min x;) + min
maxx; —mine; user

[ . . .
where x; is the transformed value of continuous variable X for case i.

Update univariate statistics

After a min-max transformation, the following univariate statistics are updated:

B The number of missing values: N7**"9 = N>
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B The number of valid values: Ny = Nx
. . - ’ -
B Minimum value: min (l}) = min,eer
. !
B Maximum value: max (z; | = max,ser,

. 7 — MaXyser—MiNyser = ; ;
B Mean: 7 = Tmaxm;—mma; X (Il',' — mma:l) + MiN g ger

max x; —min x;

. . 7 _ .
m  Standard deviation: sd (ac ) = MXuser “MNuser » gf

B Skwness: skew (11) = skew (x)

Target Handling

Nominal Target

For a nominal target, we rearrange categories from lowest to highest counts. If there is a tie on
counts, then ties will be broken by ascending sort or lexical order of the data values.

Continuous Target

The transformation proposed by Box and Cox (1964) transforms a continuous variable into one
that is more normally distributed. We apply the Box-Cox transformation followed by the z score
transformation so that the rescaled target has the user-specified mean and standard deviation.

Box-Cox transformation. This transforms a non-normal variable Y to a more normally distributed
variable:

((g:—0)*—1)
N =g\ =4 AF#O
gi (A) = g (yi, A) ln(y:\—c) -

where y;,i = 1,2, ---,n are observations of variable Y, and c is a constant such that all values
y; — ¢ are positive. Here, we choose ¢ = min (Y') — 1.

The parameter A is selected to maximize the log-likelihood function:

Ny . [Ny -1

L) = - | P s )R]+ O DY Al )
i=1

where (sd (g (V) = 5225 Sy fiwilgs (V) — 3 (V)" and g (V) = o Sy fiwigi (V).

We perform a grid search over a user-specified finite set [a,b] with increment s. By default a=-3,
b=3, and s=0.5.

The algorithm can be described as follows:

Compute \; = a+ (j — 1) * s where j is an integer such that a < A; < b.
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2. For each };, compute the following statistics:

Mean: g (};) = WLY Y fiwigi()

Standard deviation: sd (g (A7) = \/ 57 Sy fiwilg: (\g) =9 ()
(N];—yn,) ﬁ Z:;l Fiwalgi(25) =33 )°

Skewness: skew (g (A;)) = sd(g(A))®

Sum of logarithm transformation: > ; f;In (y; — ¢)

3. For each A;, compute the log-likelihood function L (A;). Find the value of j with the largest
log-likelihood function, breaking ties by selecting the smallest value of A;. Also find the
corresponding statistics g (A*), sd (g (A\*)) and skew (g (\*)).

4. Transform target to reflect user’s mean y,,..,. (default is 0) and standard deviation sd,,... (default
is 1):

’ Sdyser

Y = m X (gi ()‘*) - y()‘*)) T Yuser

where g (A) = g S, fiaigs(A) and sd (g (\)) = /ey S0, Sl () — 3 (00)%.

Update univariate statistics. After Box-Cox and Z-score transformations, the following univariate
statistics are updated:

®  Minimum value: Sj(d;(S;:)) X (g (min () — ¢, A*) =G (A%)) + Juser

Maximum value: Sj(dg“(;e:)) X (g (max (y;) — ¢, \*) =G (A)) + Uysor
Mean: 7,,...
Standard deviation: sd,, s,

Skewness: skew (g (A*))

Bivariate Statistics Collection

For each target/predictor pair, the following statistics are collected according to the measurement
levels of the target and predictor.

Continuous target or no target and all continuous predictors

If there is a continuous target and some continuous predictors, then we need to calculate the
covariance and correlations between all pairs of continuous variables. If there is no continuous
target, then we only calculate the covariance and correlations between all pairs of continuous
predictors. We suppose there are there are m continuous variables, and denote the covariance
matrix as C, xm, With element ¢;;, and the correlation matrix as R,, xm, with element 7;;.

‘We define the covariance between two continuous variables X and Y as
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1 n _ 3
CXy = m; fiw; (x5 — my) (¥i — )

where Z, = W;xy Sor, @1 (z; and y; are not missing) and
U = Wy 2iz1 ¥il (27 and y; are not missing).

The covariance can be computed by a provisional means algorithm:
Start with Ny = W) =z, =3, = M) = 0.

For j=1,..,n compute:

N)(g;, = N)(g;l) + f;I (x; and y; are not missing)

W)%), = W)(g;l) + fjw;I (x; and y; are not missing)

fj wy
[€)]
Wy

Vpj =

(z; — Ty)

L Loy

Yo = Yp + Vy;

M = MG + (@5 -7,) (y; — ) (fjwj - (f"'u’-")2>
).

After the last case has been processed, we obtain:

My = MY = S0, fowi (2 — F,) (vi — T.)

Compute bivariate statistics between X and Y-

Number of valid cases: Nxy

1 . JR— J\IXY
Covariance: cxy — g
Correlation: rxy T —

Note: If there are no valid cases when pairwise deletion is used, then we let cxy = 0 and rxy = 0.

Categorical target and all continuous predictors

For a categorical target Y with values i = 1,2, ---,.J and a continuous predictor X with values
x1, - T,, the bivariate statistics are:

Mean of X for each Y=i, i=1,....J:

> fiwzil (y; = 4)
>y fiwgI (y; = 1)

T
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Sum of squared errors of X for each Y=i, i=1,...,J:

n
M% = ijwj(a:j — T i)2I (yj =1)
=1

Sum of frequency weight for each Y=i, i=1,....J:

T
N, = Z fiI (y; = © A x; is not missing)
j=1
Number of invalid cases
J
Nxy =Y N
=1

Sum of weights (frequency weight times analysis weight) for each Y=i, i=1,....J:

n
W, = Z fiwil (y; =i A x; is not missing)
j=1

Continuous target and all categorical predictors

For a continuous target Y and a categorical predictor X with values i=1,...,J, the bivariate statistics
include:

Mean of Y conditional upon X:

I R

Dic1 2 fiwsyl (x5 =)
I : .
>i=1 Z;L:I fwejI (xj = i)

r =

Sum of squared errors of Y:

n

— \2

My =" fjwily; —a)
1=1

Mean of Y for each X =1, i=1,...J:

7. = Z?:l fjwjyjf (x]- = 'i)
J Z;.L:1 fjw]I (1_] — 'I/)
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Sum of squared errors of Y for each X =i, i=1,...,.J:
T
ME =" fiwily; —9:)"1 (x5 = )
j=1
Sum of frequency weights for X =i, i=1,....J:
K
N;. = Z fjl (z; =i A y; is not missing)
j=1

Sum of weights (frequency weight times analysis weight) for X = i, i=1,....J:

n
W;. = Z fjw;1 (z; =i A yj is not missing)
j=1

Categorical target and all categorical predictors

For a categorical target ¥ with values j=1,....J and a categorical predictor X with values i=1,...,7,
then bivariate statistics are:

Sum of frequency weights for each combination of z; = i and y; = j:
n
Nij = > ful (z, =i Ayg = j)
k=1

Sum of weights (frequency weight times analysis weight) for each combination of x;, = 7 and
Y =J:
n
Wij=>_ fewrd (g =i Ay = j)
kel

Categorical Variable Handling

In this step, we use univariate or bivariate statistics to handle categorical predictors.

Reordering Categories

For a nominal predictor, we rearrange categories from lowest to highest counts. If there is a tie on
counts, then ties will be broken by ascending sort or lexical order of the data values. The new field
values start with 0 as the least frequent category. Note that the new field will be numeric even if
the original field is a string. For example, if a nominal field’s data values are “A”, “A”, “A”, “B”,
“C”, “C”, then automated data preparation would recode “B” into 0, “C” into 1, and “A” into 2.
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Identify Highly Associated Categorical Features

If there is a target in the data set, we select a ordinal/nominal predictor if its p-value is not larger
than an alpha-level aerection (default is 0.05). See P-value Calculations on p. 60 for details of
computing these p-values.

Since we use pairwise deletion to handle missing values when we collect bivariate statistics,
we may have some categories with zero cases; that is, /V;. = 0 for a category i of a categorical
predictor. When we calculate p-values, these categories will be excluded.

If there is only one category or no category after excluding categories with zero cases, we set the
p-value to be 1 and this predictor will not be selected.

Supervised Merge

We merge categories of an ordinal/nominal predictor using a supervised method that is similar to a
Chaid Tree with one level of depth.

1. Exclude all categories with zero case count.
2. If X has 0 categories, merge all excluded categories into one category, then stop.
3. If X'has 1 category, go to step 7.

4. FElse, find the allowable pair of categories of X that is most similar. This is the pair whose test
statistic gives the largest p-value with respect to the target. An allowable pair of categories for an
ordinal predictor is two adjacent categories; for a nominal predictor it is any two categories. Note
that for an ordinal predictor, if categories between the ith category and jth categories are excluded
because of zero cases, then the ith category and jth categories are two adjacent categories. See
P-value Calculations on p. 60 for details of computing these p-values.

5. For the pair having the largest p-value, check if its p-value is larger than a specified alpha-level
Qselection (default is 0.05). If it does, this pair is merged into a single compound category and
at the same time we calculate the bivariate statistics of this new category. Then a new set of
categories of X is formed. If it does not, then go to step 6.

6. Go to step 3.

7. For an ordinal predictor, find the maximum value in each new category. Sort these maximum
values in ascending order. Suppose we have r new categories, and the maximum values are:
i1 < iz < --- < i,, then we get the merge rule as: the first new category will contain all original
categories such that X < i, the second new category will contain all original categories such that
i1 < X < i3,..., and the last new category will contain all original categories such that X > i, _1.

For a nominal predictor, all categories excluded at step 1 will be merged into the new category
with the lowest count. If there are ties on categories with the lowest counts, then ties are broken
by selecting the category with the smallest value by ascending sort or lexical order of the original
category values which formed the new categories with the lowest counts.
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Bivariate statistics calculation of new category

When two categories are merged into a new category, we need to calculate the bivariate statistics
of this new category.

Scale target. If the categories i and i' can be merged based on p-value, then the bivariate statistics
should be calculated as:

N',Z'/' :NZ—FAVZ’

V[/i,i' R ‘VZ .+ Wi' .

Wy .

Yiy . =Y.+ @y . — 7 .)

M2, = M2 AME AW @ —T ) +Wo G — T )

Categorical target. If the categories i and i’ can be merged based on p-value, then the bivariate
statistics should be calculated as:
N;

#5 = Nij + Ny

Wi = Wij + Wy

Update univariate and bivariate statistics

At the end of the supervised merge step, we calculate the bivariate statistics for each new category.
For univariate statistics, the counts for each new category will be sum of the counts of each
original categories which formed the new category. Then we update other statistics according to
the formulas in Univariate Statistics Collection on p. 48, though note that the statistics only need
to be updated based on the new categories and the numbers of cases in these categories.

P-value Calculations

Each p-value calculation is based on the appropriate statistical test of association between the
predictor and target.

Scale target
We calculate an F statistic:
T W@ -7, (T 1)
25:1 ME/ (Zf:l Ny = I)
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E;l Wiy,

Based on F statistics, the p-value can be derived as

where 3, =

I
p=Pr(F{I-1Y N.—I|>F
=1

where F (I -1, Zle N, -1 ) is a random variable following a F distribution with 7 — 1 and
25:1 N;. — I degrees of freedom.
At the merge step we calculate the F statistic and p-value between two categories i and i of X as
W (. — ?m)Q + Wy (Y. — @m)Q
(M2 +M32) /(Ni.+ Ny —2)
p=Pr(F(1,N;. + Ny —2)>F)

where 3, . is the mean of Y for a new category 4, i merged by i and i :

We oo
W+ W, Y

Yii- = y;. +
and F'(I —1,N; + N, —2) is a random variable following a F' distribution with 1 and
N;. + N,». — 2 degrees of freedom.

Nominal target

The null hypothesis of independence of X and Y is tested. First a contingency (or count) table is
formed using classes of Y as columns and categories of the predictor X as rows. Then the expected
cell frequencies under the null hypothesis are estimated. The observed cell frequencies and the
expected cell frequencies are used to calculate the Pearson chi-squared statistic and the p-value:

J I 2
-y Z mw)

j=11i=1

where N;; = >, . p fad (xx = i Ayg = j) is the observed cell frequency and 77;; is the estimated
expected cell frequency for cell (x = i, yx = j) following the independence model. If /n;; = 0,
then \“:7’;”) = 0. How to estimate 77;; is described below.

The corresponding p-value is given by p = Pr (x3 > X?), where x7 follows a chi-squared
distribution with d = (J — 1) (I — 1) degrees of freedom.

When we investigate whether two categories i and i of X can be merged, the Pearson chi-squared
statistic is revised as
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~ N 2
2=y (N — i) N (Nirj — vy ;)

S\ T i

and the p-value is given by p = Pr (x3 ; > X?).

Ordinal target

Suppose there are [ categories of X, and J ordinal categories of Y. Then the null hypothesis of
the independence of X and Y is tested against the row effects model (with the rows being the
categories of X and columns the classes of Y) proposed by Goodman (1979). Two sets of expected
cell frequencies, /;; (under the hypothesis of independence) and i ; (under the hypothesis that
the data follow a row effects model), are both estimated. The likelihood ratio statistic is

I J
ERE) 9 W

i=1 j=1

where

HZQJ _ ) myj In <mu/m”> m”/m“ >0
0 else

The p-value is given by p = Pr (x3_; > H?).

Estimated expected cell frequencies (independence assumption)

If analysis weights are specified, the expected cell frequency under the null hypothesis of
independence is of the form

—1

mi; = wij Oziﬁj

where a; and 8; are parameters to be estimated, and w;; = % if N;; > 0, otherwise w;; = 1.
i

Parameter estimates &;, Bj, and hence 7h;;, are obtained from the following iterative procedure.

k=0, oago) = ﬁ;o) =1, mgg) = Ei—jl

a(k+1) _ N;. _ O[(k) N;.
i - —15m — % (D)
' ZJ Wi By ' Zj Mij
B+ _ N,
P 421 U;jlagkﬂ)
(k+1) _ ——1 (k+1) p(k+1)
m;; =W o ﬂj
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E;“H) - ml(f) < ¢ (default is 0.001) or the number of iterations is larger than a

threshold (default is 100), stop and output a§k+1), ,8§k+1) and mz(.fﬂ) as the final estimates
&;, Bj, ;. Otherwise, k = k 4 1 and go to step 2.

If max; ; |m

Estimated expected cell frequencies (row effects model)

In the row effects model, scores for classes of ¥ are needed. By default, s} (the order of a
class of ) is used as the class score. These orders will be standardized via the following linear
transformation such that the largest score is 100 and the lowest score is 0.

55 =100 (55 — $fuin) / (Shax — Stin)

* o
Where s, and s

*

T .ax are the smallest and largest order, respectively.

The expected cell frequency under the row effects model is given by
— 1
Mij = W;; o657

where 5 = Z;.Izl W".jsj/z;]:l W ;, in which W.; = ¥;W;;, and «;, 3;, and +; are unknown

parameters to be estimated.
Parameter estimates &;, 3 i %, and hence ﬁzij are obtained from the following iterative procedure.

Lok=00f = 8" =4 = 1,m{)) = ;!

ij ij
2. (k+1) _ N _ (k) N;
R S DR M
3. gUt) N,
7 - vaila(lkﬁ»l)(y(k))(sj—E)
4. - (s5—73) Z (s '7§)(N1-,-7m’.‘.)
o 1 (k1) (k1) (k) o 3 i—mi
My; = Wi &y B; (%— ) ,Gi=1+ sz (7P,

8 LD {”/i(k)Gi Gi>0
' ~F) otherwise

6. _ (Sj*g)
m§?+1) _ mijlal(k+l)ﬂj(k+l) (72(k+1))
7. (k+1)

If max; ; ’m — mgf)’ < ¢ (default is 0.001) or the number of iterations is larger than a

i
threshold (default is 100), stop and output afkﬂ) , ﬁ;’”l) ) yi(kﬂ) and ml(»;”'ﬂ) as the final estimates

&i, B]-,':yi, ﬁzij. Otherwise, £ = k£ 4+ 1 and go to step 2.

Unsupervised Merge

If there is no target, we merge categories based on counts. Suppose that X has 7 categories which
are sorted in ascending order. For an ordinal predictor, we sort it according to its values, while
for nominal predictor we rearrange categories from lowest to highest count, with ties broken
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by ascending sort or lexical order of the data values. Let ¢; be the number of cases for the ith
category, and Nx be the total number of cases for X. Then we use the equal frequency method
to merge sparse categories.

Start with j; = j» = 1 and g=1.
If j1 > I, go to step 5.

If Zfijl ¢; < [b% x Nx], then j» = jo + 1; otherwise the original categories ji1,j1 + 1, -, j2 will
be merged into the new category g and let j; = j2 + 1, j2 = j; and g = g + 1, then go to step 2.

If j» > I, then merge categories using one of the following rules:

i) If g = 1, then categories 1,2, ---,I — 1 will be merged into category g and / will be left
unmerged.

i) If g=2, then j;, 51 + 1,-- -, I will be merged into category g=2.
iii) If g>2, then jq, 51 + 1, -, I will be merged into category g — 1.
If j2 < I, then go to step 3.

Output the merge rule and merged predictor.

After merging, one of the following rules holds:

m Neither the original category nor any category created during merging has fewer than
[b% x Nx]| cases, where b is a user-specified parameter satisfying 1 < b < 100 (default is
10) and [x] denotes the nearest integer of x.

®  The merged predictor has only two categories.

Update univariate statistics. When original categories ji,j1 + 1,- - -, j2 are merged into one new
category, then the number of cases in this new category will be Z: 4, ¢+ At the end of the
merge step, we get new categories and the number of cases in each category. Then we update
other statistics according to the formulas in Univariate Statistics Collection on p. 48, though
note that the statistics only need to be updated based on the new categories and the numbers
of cases in these categories.

Continuous Predictor Handling

Continuous predictor handling includes supervised binning when the target is categorical,
predictor selection when the target is continuous and predictor construction when the target is
continuous or there is no target in the dataset.

After handling continuous predictors, we collect univariate statistics for derived or constructed
predictors according to the formulas in Univariate Statistics Collection on p. 48. Any derived
predictors that are constant, or have all missing values, are excluded from further analysis.
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Supervised Binning

If there is a categorical target, then we will transform each continuous predictor to an ordinal
predictor using supervised binning. Suppose that we have already collected the bivariate statistics
between the categorical target and a continuous predictor. Using the notations introduced in
Bivariate Statistics Collection on p. 55, the homogeneous subset will be identified by the Scheffe
method as follows:

If |Z.; — T.;] < Coriticar then Z.; and Z.; will be a homogeneous subset, where
Ceritical = Max (T.;) — min (T.;) if Nxy = J; otherwisec.pizicar = B * C, where

J ) J 2
R= 2 1) Fa(l -1, Nxy —J)and C = MS x f 2=/ ppg [ 2, M0

Nxy J °
The supervised algorithm follows:
1. Sort the means z.; in ascending order, denote as T.(1) < T.i2) < -+ < Ty

2. Start with =1 and g=J.

3. IfZ.(y) — B.(3)| < ceriticat, then {Z.(;),- -+, %) } can be considered a homogeneous subset. At the
same time we compute the mean and standard deviation of this subset: Z.; 4) = W and
, W
M2i.q 3 r 2
5d~(i.q) = W, where Af(zi’q) = ZZ:Z- AA(;C) and A.(k) = ]W.Q(k) + W (:BA(i’q) — Ji(k)) R

then seti = ¢+ 1 and ¢ = J; Otherwise ¢ = g — 1.
4. Ifi < J, go to step 3.

5. Else compute the cut point of bins. Suppose we have r < .J homogeneous subsets and we
assume that the means of these subsets are Tfk(l), Tf‘m, e ,Tf‘(r), and standard deviations are

sdf‘(l ) sdf“(z), cee sdf‘(r), then the cut points between the ith and (i+1)th homogeneous subsets are
st‘i)+c

— 7* T -
computed as cut; = Tiy + (sdz‘.)+sdz‘i+l)+25) (‘7”(11-{-1) l(i)).

6. Output the binning rules. Category 1: X < cuty; Category 2: cut; < X < cuty;...; Category
Dcout, 1 < X.

Feature Selection and Construction

If there is a continuous target, we perform predictor selection using p-values derived from the
correlation or partial correlation between the predictors and the target. The selected predictors are
grouped if they are highly correlated. In each group, we will derive a new predictor using principal
component analysis. However, if there is no target, we will do not implement predictor selection.

To identify highly correlated predictors, we compute the correlation between a scale and a group as
follows: suppose that X is a continuous predictor and continuous predictors Xq, X2, - -, X,,, form
a group G. Then the correlation between X and group G is defined as:

rxg = min{|rxx,|,X; € G}

where rx x, is correlation between X and X;.
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Let agy0up be the correlation level at which the predictors are identified as groups. The predictor
selection and predictor construction algorithm is as follows:

(Target is continuous and predictor selection is in effect ) If the p-value between a continuous
predictor and target is larger than a threshold (default is 0.05), then we remove this predictor
from the correlation matrix and covariance matrix. See Correlation and Partial Correlation on p.
67 for details on computing these p-values.

Start with agroup = 0.9 and i=1.

If ogroup < 0.1, stop and output all the derived predictors, their source predictors and coefficient
of each source predictor. In addition, output the remaining predictors in the correlation matrix.

Find the two most correlated predictors such that their correlation in absolute value is larger than
Qgroup, and put them in group i. If there are no predictors to be chosen, then go to step 9.

Add one predictor to group i such that the predictor is most correlated with group 7 and the
correlation is larger than o group. Repeat this step until the number of predictors in group i is
greater than a threshold (default is 5) or there is no predictor to be chosen.

Derive a new predictor from the group i using principal component analysis. For more
information, see the topic Principal Component Analysis on p. 66.

(Both predictor selection and predictor construction are in effect) Compute partial correlations
between the other continuous predictors and the target, controlling for values of the new predictor.
Also compute the p-values based on partial correlation. See Correlation and Partial Correlation on
p. 67 for details on computing these p-values. If the p-value based on partial correlation between a
continuous predictor and continuous target is larger than a threshold (default is 0.05), then remove
this predictor from the correlation and covariance matrices.

Remove predictors that are in the group from the correlation matrix. Then let i=i+1 and go to
step 4.

Qgroup = Cgroup — 0.1, then go to step 3.

Notes:

m If only predictor selection is needed, then only step 1 is implemented. If only predictor
construction is needed, then we implement all steps except step 1 and step 7. If both predictor
selection and predictor construction are needed, then all steps are implemented.

m [f there are ties on correlations when we identify highly correlated predictors, the ties will be
broken by selecting the predictor with the smallest index in dataset.

Principal Component Analysis

Let X3, X5, -+, X, be m continuous predictors. Principal component analysis can be described
as follows:
Input C,;, %, the covariance matrix of Xy, X5, -+, X,

Calculate the eigenvectors and eigenvalues of the covariance matrix. Sort the eigenvalues (and
corresponding eigenvectors) in descending order, Ay > Ay > -+ > A,,.
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3. Derive new predictors. Suppose the elements of the first component v; are v11, v12, - - -, V1m, then
the new derived predictor is :}%Xl + %Xz + o4 %Xm.

Correlation and Partial Correlation

Correlation and P-value

Let rxy be the correlation between continuous predictor X and continuous target Y, then the
p-value is derived form the ¢ test:

p=Pr(t(Nxy —2)| >1)

where ¢ (Nxy — 2) is a random variable with a ¢ distribution with Nxy- — 2 degrees of freedom,
andt = rxy, /%. Ifrg(y = 1, then set p=0; If Nxv < 2, then set p=1.
XY

Partial correlation and P-value

For two continuous variables, X and Y, we can calculate the partial correlation between them
controlling for the values of a new continuous variable Z:

_ XYy ~TrxzTvz
rxv|z = 5 5
\/1 *'TXZ\/l “Tyz

Since the new variable Z is always a linear combination of several continuous variables, we
compute the correlation of Z and a continuous variable using a property of the covariance rather
than the original dataset. Suppose the new derived predictor Z is a linear combination of original
predictors X, Xa,---, X!

Z=aX1+aXo+ -+ anXy

Then for any a continuous variable X (continuous predictor or continuous target), the correlation
between X and Z is
Czx

VCZZCXX
2

m m
where Czx = Zi:l aiCx,x, and Czz = Zi:l a;Cx; x; + QZigﬁj a,-a,chin.

TzxX =

If1—7r%, or1—ri, isless than 107'%, let rxy z = 0. If rxy7 is larger than 1, then set it to
I; If rxy|z is less than —1, then set it to —1. (This may occur with pairwise deletion). Based on
partial correlation, the p-value is derived from the 7 test

p=Pr (|t (Nxy —3)| > 1)

where ¢t (Nxy — 3) is a random variable with a ¢ distribution with Nxy — 3 degrees of freedom,
andt = rxy |z, /55— If 7%y, = 1, then set p=0; if Nxy < 3, then set p=1.
XY |Z



68

Automated Data Preparation Algorithms

Discretization of Continuous Predictors

Discretization is used for calculating predictive power and creating histograms.

Discretization for calculating predictive power

If the transformed target is categorical, we use the equal width bins method to discretize a
continuous predictor into a number of bins equal to the number of categories of the target.
Variables considered for discretization include:

B Scale predictors which have been recommended.

®  Original continuous variables of recommended predictors.

Discretization for creating histograms

We use the equal width bins method to discretize a continuous predictor into a maximum of 400
bins. Variables considered for discretization include:

B  Recommended continuous variables.

m  Excluded continuous variables which have not been used to derive a new variable.
®  Original continuous variables of recommended variables.
(]

Original continuous variables of excluded variables which have not been used to derive a
new variable.

m  Scale variables used to construct new variables. If their original variables are also continuous,
then the original variables will be discretized.

m Date/time variables.
After discretization, the number of cases and mean in each bin are collected to create histograms.

Note: If an original predictor has been recast, then this recast version will be regarded as the
“original” predictor.

Predictive Power

Collect bivariate statistics for predictive power

We collect bivariate statistics between recommended predictors and the (transformed) target. If
an original predictor of a recommended predictor exists, then we also collect bivariate statistics
between this original predictor and the target; if an original predictor has a recast version, then

we use the recast version.

If the target is categorical, but a recommended predictor or its original predictor/recast version
is continuous, then we discretize the continuous predictor using the method in Discretization of
Continuous Predictors on p. 68 and collect bivariate statistics between the categorical target and
the categorical predictors.
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Bivariate statistics between the predictors and target are same as those described in Bivariate
Statistics Collection on p. 55.

Computing predictive power

Predictive power is used to measure the usefulness of a predictor and is computed with respect
to the (transformed) target. If an original predictor of a recommended predictor exists, then we
also compute predictive power for this original predictor; if an original predictor has a recast
version, then we use the recast version.

Scale target. When the target is continuous, we fit a linear regression model and predictive power
is computed as follows.

2
m  Scale predictor: 7%, = (ﬁ)

1
m Categorical predictor: 1 — g—;, where S, = Z MZand Sy = Y"1 | fiwily; — 7.)°.
i=1

Categorical target. If the (transformed) target is categorical, then we fit a naive Bayes model and
the classification accuracy will serve as predictive power. We discretize continuous predictors as
described in Discretization of Continuous Predictors on p. 68, so we only consider the predictive
power of categorical predictors.

If N;; is the of number cases where X =iand Y = j, N; = Z}]:l N;j,and N ; = Zle Nij,
then the chi-square statistic is calculated as

N 2
J <Nz'j*Nz'j>
2 _
ceyy
-k ;

1=1 ]:1 .]

N, N.g
Nxvy

where N;; =

and Cramer’s V is defined as

"= (NXY G <21, e 1>>m
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Bootstrapping Algorithms

Bootstrapping is a method for deriving robust estimates of standard errors and confidence
intervals for estimates such as the mean, median, proportion, odds ratio, correlation coefficient
or regression coefficient. It may also be used for constructing hypothesis tests. Bootstrapping
is most useful as an alternative to parametric estimates when the assumptions of those methods
are in doubt (as in the case of regression models with heteroscedastic residuals fit to small
samples), or where parametric inference is impossible or requires very complicated formulas
for the calculation of standard errors (as in the case of computing confidence intervals for the
median, quartiles, and other percentiles).

Notation

The following notation is used throughout this chapter unless otherwise stated:

K Number of distinct records in the dataset.

Xy The kth distinct record, i=1,...K.

Sr Frequency weight of the Ath record.

N Number of records, N = S, fx.

B Number of bootstrap samples.

Tow Generated frequency weight for the kth record of the bth bootstrap sample.
T Statistic to bootstrap.

Ty The bth bootstrap copy of statistic 7.

Ty £ £ Tpy Ordered bootstrap values.

Sampling

The following sampling methods are available.

Jackknife Sampling

Jackknife sampling is used in combination with bootstrap sampling to approximate influence
functions that are used in computing BCa confidence intervals. The algorithm is performed by
leaving out one record at a time, and outputs the following frequency weights:

fl —1 f1 fl
f2 f—1 fo
fK fK fK -1
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Case Resampling

In the context of bootstrapping, case resampling means to randomly sample with replacement
from the original dataset. This creates bootstrap samples of equal size to the original dataset. The
algorithm is performed iteratively over k=1,..,K and b=1,...,B to generate frequency weights:

ruv.binom <J\"7 %) k=1

fr
NS

For =

rv.binom | N — Zf:_llflfi, otherwise

Stratified Sampling

When subpopulations vary considerably, it is advantageous to sample each subpopulation
(stratum) independently. Stratification is the process of grouping members of the population into
relatively homogeneous subgroups before sampling. The strata should be mutually exclusive:
every element in the population must be assigned to only one stratum. The strata should also be
collectively exhaustive: no population element can be excluded. Then simple case resampling is
applied within each stratum to generate frequency weights f;', .

Residual Sampling

Residual sampling supports bootstrapping of regression models. In this case, the predicted
variable for each record will be adjusted with a residual that is randomly sampled in the residual
set with replacement. This adjusted variable will be used as the dependent variable in the new
bootstrap sample. Residual sampling assumes homoscedastic residuals.

The following notation applies to residual sampling:

(zr, ) Data pairs used to build regression models.
i Predicted values under the fitted model.

éx Residuals, éx = yr — J.

(x7,y5:) Data pairs for the bth bootstrap sample.

For i=1,..,N, the algorithm sets:

Ed
Ty = Tr(i)

where k(i) maps i to k based upon f; that is, if /1=3 and f,=5, then k(1)=k(3)=1, k(4)=k(8)=2,
and so on.

For i=1,..,N and b=1,...,B, the algorithm sets:

y;;i = @k(i) + é x rv.multinomial (f1, ..., fx)
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where ¢ is the 1xk matrix of residuals and rv.multinomial (f1, ..., fx ) produces a kx1 matrix
representing a single draw from a multinomial distribution with relative frequencies fy, ..., fk.

Wild Bootstrap Sampling

Wild bootstrap is similar to residual sampling, but the sign of the bootstrap residual for each
record is randomly reversed. Wild bootstrap is useful in the presence of heteroscedastic residuals
and small sample sizes.

For i=1,..,N, the algorithm sets:

*
Ti = Tk(i)

where k(i) maps i to k based upon fy; that is, if /=3 and f,=5, then k&(1)=k(3)=1, k(4)=k(8)=2,
and so on.

For i=1,..,N and b=1,...,B, the algorithm sets:
Ypi = Ur(y + (1 — 2rv.bernoulli (0.5)) (é x rv.multinomial (f1, ..., fx))

where ¢ is the 1xk matrix of residuals and rv.multinomial ( f1, ..., fx ) produces a kx1 matrix
representing a single draw from a multinomial distribution with relative frequencies fi, ..., fk.

Pooling

The following pooling methods are available: bootstrap estimates and percentile-t pivotal tests.
Bootstrap Estimates

Bias

The bias of statistic 7' can be estimated by the following equation

B
Bias(T)=B 'Y Ty —T
b=1

Standard error

The standard error of statistic 7 can be estimated by the standard deviation of the bootstrap values
with the following equation

2

1 B B
SE ~ 73_12 (Tg‘—Blng‘>

b=1
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Percentile confidence interval

Suppose that 7 estimates a scalar 6, that we want an interval with left- and right-tail errors both
equal to «, and that bootstrap values are ordered as 7y < .. <Tp). The basic percentile
confidence interval is

bo = T y1yay O1-0 = T(Bina-a)

If (B + 1) « is not an integer, then interpolation can be used. A simple method that works well for
approximately normal estimators is linear interpolation on the normal quantile scale. For example,
suppose the integer part of (B + 1) « is k, then we define

. . o) - ()
Tieime = Ty + g2 (L) — o1 () (

Tlhy) — T&:))

where @~ (-) is the inverse normal(0,1) distribution. Similarly, if (B + 1) (1 — «) is not an
integer, the same interpolation can be used by replacing o with 1 — « in the equation above.
Clearly such interpolations fail if &=0, B or B+1. If this happens, we quote the extreme value and
the implied level of error equal to 1/ (B + 1).

BCa confidence interval

The influence value of the ksth record in the sth stratum is approximated by

ljack,sk,q = (Ns - 1) (T - T—sks)

where 1y, is the estimate calculated from the original data but with the frequency f.,, — 1 for
the k4th record in the sth stratum. It is reasonably to assume the empirical influence values
lsks il_;'a,(:k:,.‘;ls:s .

Defining l;ks = l.x, N/ N, the BCa confidence interval is given as

Oo =T p4nay O1-0 = T(prna-a)

where

&= 0w+ %),

a(wtza)
Zo = @7 (a),
1 H{Tr<t
w=® 1<‘{B+1}|>7

73
Zs:ks fsks l.qk’s

S LY LLYLH T
=% (Zs,kaSk’s Em)wz.

Interpolation will be used as in the Percentile confidence interval.
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Percentile-t Pivotal Tests

Suppose the null hypothesis is Hy : T = Tj.

Scalar T

Let zo = (T — Ty) /SE and z; = (Ty — T) /SE;, where SE and SE; are the standard errors of T
and Ty, respectively. We estimate the standard error from the standard errors calculated within
the procedure.

The alternative hypothesis canbe Hs : T > Ty, Ha : T < Ty, or H4 : T # Ty, which correspond
to right-sided, left-sided, and two-sided p-values, respectively. The bootstrap right-sided p-value
is calculated as

[{s > 20} +1
Bt1

p:

The bootstrap left-sided p-value is calculated as

{# <0} +1
N B+1

p

The bootstrap two-sided p-value is calculated as .

[{z? > 2}| +1
B+1

p:

Vector T

Let zo = (T — Tp)  Cov(T) (T — Tp) and z; = (Ty — T)" Cou(Ty¥) ™ (T} — T), where
Cov (T) and Cov (Ty) are the covariance matrices of T and T}, respectively. We estimate the
covariance matrix from the covariance matrix calculated within the procedure.

The alternative hypothesis is H4 : T # Tj, and the bootstrap p-value can be calculated as

{2 > 20} +1
B+1

p:

The percentile-¢ pivotal tests can also support bootstrap testing for the null

hypothesis of Hy : LT = Ty where L is a matrix of linear combinations.

In this case, let 2 = (LT — To)" {LCov (T) LT}fl (LT — Tp) and

5 = (LTy — LT)"{LCou (Ty) LT}—1 (LT} — LT). The alternative hypothesis is H, : LT # Ty,
and nd the bootstrap p-value can be calculated as

{2} 41
N B+1

b
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The CATPCA procedure quantifies categorical variables using optimal scaling, resulting in
optimal principal components for the transformed variables. The variables can be given mixed
optimal scaling levels and no distributional assumptions about the variables are made.

In CATPCA, dimensions correspond to components (that is, an analysis with two dimensions
results in two components), and object scores correspond to component scores.

Notation

The following notation is used throughout this chapter unless otherwise stated:

n Number of analysis cases (objects)

Naw n

Weighted number of analysis cases: Z w;
=1

Ntot Total number of cases (analysis + supplementary)

w; Weight of object i; w; = 1 if cases are unweighted; w; = 0 if object i is
supplementary.

W Diagonal n:0t X n10r matrix, with w; on the diagonal.

m Number of analysis variables

M m
Weighted number of analysis variables (17, = Z v5)

j=1

Miot Total number of variables (analysis + supplementary)

mi Number of analysis variables with multiple nominal scaling level.

my Number of analysis variables with non-multiple scaling level.

M1 Weighted number of analysis variables with multiple nominal scaling level.

Muwz Weighted number of analysis variables with non-multiple scaling level.

J Index set recording which variables have multiple nominal scaling level.

H The data matrix (category indicators), of order nsor X Mmyos, after
discretization, imputation of missings , and listwise deletion, if applicable.

p Number of dimensions

For variable j; j = 1, ..., myo

Uj Variable weight; v; = 1 if weight for variable j is not specified or if variable
Jj is supplementary

kj Number of categories of variable j (number of distinct values in h;, thus,
including supplementary objects)

G; Indicator matrix for variable j, of order n:or X k;

The elements of G, are defined asi =1, ..., nor;r =1, ..., k5
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1 when the ith object is in the rth category of variable j
0 when the ith object is not in the rth category of variable j

Diagonal k; x k; matrix, containing the weighted univariate marginals; i.e.,
the weighted column sums of G; (D= G ;WG;)
Diagonal n40: X 140+ matrix, with diagonal elements defined as

when the ith observation is missing and missing strategy variable j is passive
when the ith object is in rth category of variable j and rth category is only

used by supplementary objects (i.e. when d(j),, = 0)
otherwise

XMy

I-spline basis for variable j, of order k; x (s; + £;) (see Ramsay (1988)
for details)

Spline coefficient vector, of order s; + ¢;
Spline intercept.

Degree of polynomial

Number of interior knots

The quantification matrices and parameter vectors are:

X
X

Xn
Y;
Yi
a;
an,

Y

Object scores, of order 745, X p
Weighted object scores (X, = WX)

X normalized according to requested normalization option

Centroid coordinates, of order k; x p. For variables with optimal scaling
level multiple nominal, this are the category quantifications

Category quantifications for variables with non-multiple scaling level, of
order k;

Component loadings for variables with non-multiple scaling level, of order p
a; normalized according to requested normalization option

Collection of category quantifications (centroid coordinates) for variables
with multiple nominal scaling level (Y;), and vector coordinates for

non-multiple scaling level (y;a ;).

Note: The matrices W, G;, M;, M., and D; are exclusively notational devices; they are
stored in reduced form, and the program fully profits from their sparseness by replacing matrix
multiplications with selective accumulation.

Discretization

Discretization is done on the unweighted data.
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Multiplying

First, the original variable is standardized. Then the standardized values are multiplied by 10 and
rounded, and a value is added such that the lowest value is 1.

Ranking

The original variable is ranked in ascending order, according to the alphanumerical value.

Grouping into a specified number of categories with a normal distribution

First, the original variable is standardized. Then cases are assigned to categories using intervals
as defined in Max (1960).

Grouping into a specified number of categories with a uniform distribution
First the target frequency is computed as divided by the number of specified categories, rounded.

Then the original categories are assigned to grouped categories such that the frequencies of the
grouped categories are as close to the target frequency as possible.

Grouping equal intervals of specified size

First the intervals are defined as lowest value + interval size, lowest value + 2*interval size, etc.
Then cases with values in the kth interval are assigned to category £.

Imputation of Missing Values

When there are variables with missing values specified to be treated as active (impute mode or
extra category), then first the %;’s for these variables are computed before listwise deletion. Next
the category indicator with the highest weighted frequency (mode; the smallest if multiple modes
exist), or k; + 1 (extra category) is imputed. Then listwise deletion is applied if applicable. And
then the &;’s are adjusted.

If an extra category is imputed for a variable with optimal scaling level Spline Nominal, Spline
Ordinal, Ordinal or Numerical, the extra category is not included in the restriction according to

the scaling level in the final phase.

For more information, see the topic Objective Function Optimization on p. 80.

Configuration

CATPCA can read a configuration from a file, to be used as the initial configuration or as a
fixed configuration in which to fit variables.

For an initial configuration see step 1 in Objective Function Optimization
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A fixed configuration X is centered and orthonormalized as described in the optimization
section in step 3 (with X instead of Z) and step 4 (except for the factor na %), and the result is
postmultiplied with A'/2 (this leaves the configuration unchanged if it is already centered and
orthogonal). The analysis variables are set to supplementary and variable weights are set to one.
Then CATPCA proceeds as described in Supplementary Variables .

Objective Function

The CATPCA objective is to find object scores X and a set of Y ; (for j=1,...,m) — the underlining
indicates that they may be restricted in various ways — so that the function

o(X;Y) = n;lzc—ltr((x ~G;Y,;) M;W(X - ijj))

wherecispifje Jandcis1ifj ¢ J,

is minimal, under the normalization restriction X M, WX = n,,m,I (I is the pxp identity
matrix). The inclusion of M; in o(X;Y) ensures that there is no influence of passive missing
values (missing values in variables that have missing option passive, or missing option not
specified). M, contains the number of active data values for each object. The object scores are
also centered; that is, they satisfy u' M, WX = 0 with u denoting an n-vector with ones.

Optimal Scaling Levels
The following optimal scaling levels are distinguished in CATPCA:
Multiple Nominal.Y ; = Y ; (equality restriction only).
Nominal.Y ; = y]-a’ ; (equality and rank — one restrictions).
Spline Nominal.Y ; = yja jand y; = d; + S;b; (equality, rank — one, and spline restrictions).

Spline Ordinal. Y, = y;a jand y; = d; + S,b; (equality, rank — one, and monotonic spline
restrictions), with b; restricted to contain nonnegative elements (to guarantee monotonic I-splines).

Ordinal.Y ; = y;a ; and y; € C; (equality, rank — one, and monotonicity restrictions). The
monotonicity restriction y; € C; means that y; must be located in the convex cone of all
k;-vectors with nondecreasing elements.

Numerical.Y ; = yja' ;and y; € L; (equality, rank — one, and linearity restrictions). The linearity
restriction y; € L; means that y; must be located in the subspace of all k;-vectors that are a linear
transformation of the vector consisting of k; successive integers.

For each variable, these levels can be chosen independently. The general requirement for all
options is that equal category indicators receive equal quantifications. The general requirement
for the non-multiple options is le = yja' j> thatis, ¥ ; is of rank one; for identification purposes,
y; is always normalized so that y ;D;y; = n,.
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Objective Function Optimization

Optimization is achieved by executing the following iteration scheme:
1. [Initialization I or II
Update category quantifications
Update object scores
Orthonormalization

Convergence test: repeat (2) through (4) or continue

SANE A

Rotation and reflection

The first time (for the initial configuration) initialization I is used and variables that do not have
optimal scaling level Multiple Nominal or Numerical are temporarily treated as numerical,

the second time (for the final configuration) initialization II is used. Steps (1) through (6) are
explained below.

Initialization

I. If an initial configuration is not specified, the object scores X are initialized with

random numbers. Then X is orthonormalized (see step 4) so that u' M, WX = 0 and
X'M,WX = n,m,I, yielding X;;. The initial component loadings are computed as the cross
products of X7 and the centered original variables (I — M,uu' W/ (u'Mqu))hj, rescaled
to unit length.

II. All relevant quantities are copied from the results of the first cycle.

Update category quantifications; loop across analysis variables

With fixed current values X, the unconstrained update of Y is

Y;=D;'G';X]

Multiple nominal: Y= Y;.

For non-multiple scaling levels first an unconstrained update is computed in the same way:
Y;=D;'G';X]

next one cycle of an ALS algorithm (De Leeuw et al., 1976) is executed for computing a rank-one
decomposition of Y ;, with restrictions on the left-hand vector, resulting in

ZERELY
Nominal: y;=7¥;.

For the next four optimal scaling levels, if variable j was imputed with an extra category, y; is
inclusive category &; in the initial phase, and is exclusive category &; in the final phase.
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Spline nominal and spline ordinal: yj= d; + S;b;.

The spline transformation is computed as a weighted regression (with weights the diagonal
elements of D;) of ¥, on the I-spline basis S;. For the spline ordinal scaling level the elements of
b; are restricted to be nonnegative, which makes y; monotonically increasing

Ordinal: y;«<— WMON(y;) .

The notation WMON( ) is used to denote the weighted monotonic regression process, which
makes y; monotonically increasing. The weights used are the diagonal elements of D; and the
subalgorithm used is the up-and-down-blocks minimum violators algorithm (Kruskal, 1964;
Barlow et al., 1972).

Numerical: y7 <« WLIN(y;).

The notation WLIN( ) is used to denote the weighted linear regression process. The weights
used are the diagonal elements of D ;.

Next y; is normalized (if variable j was imputed with an extra category, y; is inclusive category
k; from here on):

" -1/2
1/2_ % ! 5
vy =mi’y; (y ijYj)
Then we update the component loadings:
aj‘: ’I"L,u—}lYley;—

+.0F
ja]

Finally, we set Y =y
Update object scores
First the auxiliary score matrix Z is computed as
Z « 3;M;G;Y ]

and centered with respect to W and M,:

X* = (I - M*uu'W/(u'M*Wu)) Z

These two steps yield locally the best updates when there would be no orthogonality constraints.

Orthonormalization

To find an M. -orthonormal X7 that is closest to X* in the least squares sense,

we use for the Procrustes rotation (Cliff, 1966) the singular value decomposition

mi MV PWeX s = KA'/2L’, then yields n 222 WL 2K L -orthonormal weighted
object scores: X} « n}u/QmwM;lWX*LAfl/zL', and X* = W~1X I The calculation of L
and A is based on tridiagonalization with Householder transformations followed by the implicit
QL algorithm (Wilkinson, 1965).
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Convergence test

The difference between consecutive values of the quantity

TFIT = (pryy) > ojte(Y ;D5 Y5 ) + D vja jay
jed iéJ

is compared with the user-specified convergence criterion € - a small positive number. It can be
shown that TFIT = my,1 + pmy2 — o(X;Y). Steps (2) through (4) are repeated as long as the
loss difference exceeds e.

After convergence TFIT is also equal to tr (Al/ %), with A as computed in the Orthonormalization
step during the last iteration. (See also Model Summary and variable correlations Correlations
and Eigenvalues for interpretation of A'/?).

Rotation and reflection

To achieve principal axes orientation, X1 is rotated with the matrix L. In addition the sth column
of X is reflected if for dimension s the mean of squared loadings with a negative sign is higher
than the mean of squared loadings with a positive sign. Then step (2) is executed, yielding the
rotated and possibly reflected quantifications and loadings.

Supplementary Objects

To compute the object scores for supplementary objects, after convergence the category
quantifications and object scores are again updated (following the steps in Objective Function
Optimization ), with the zero’s in W temporarily set to ones in computing Z and X*. If a
supplementary object has missing values, passive treatment is applied.

Supplementary Variables

The quantifications for supplementary variables are computed after convergence. For
supplementary variables with multiple nominal scaling level, the Update Category Quantification
step is executed once. For non-multiple supplementary variables, an initial a; is computed as

in the Initialization step. Then the rank-one and restriction substeps of the Update Category
Quantification step are repeated as long as the difference between consecutive values of

a’;a; exceeds .00001, with a maximum of 100 iterations. For more information, see the topic
Objective Function Optimization on p. 80.

Diagnostics

The procedure produces the following diagnostics.
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Maximum Rank (may be issued as a warning when exceeded)

The maximum rank pp,,x indicates the maximum number of dimensions that can be computed
for any dataset. In general

Pmax = min (n — 1, (ZjEJ k1> — my — mz)

if there are variables with optimal scaling level multiple nominal without missing values to be
treated as passive. If variables with optimal scaling level multiple nominal do have missing values
to be treated as passive, the maximum rank is

Pmax = Min (n -1, (ZjGJ kj> —max (ms, 1) — m2>

with m3 the number of variables with optimal scaling level multiple nominal without missing
values to be treated as passive.

Here k; is exclusive supplementary objects (that is, a category only used by supplementary objects
is not counted in computing the maximum rank). Although the number of nontrivial dimensions
may be less than py,x when m=2, CATPCA does allow dimensionalities all the way up to ppmax-
When, due to empty categories in the actual data, the rank deteriorates below the specified
dimensionality, the program stops.

Descriptives

The descriptives tables gives the weighted univariate marginals and the weighted number of
missing values (system missing, user defined missing, and values less than or equal to 0) for
each variable.

Fit and Loss Measures
When the HISTORY option is in effect, the following fit and loss measures are reported:
Total fit (VAF). This is the quantity TFIT as defined in the Convergence Test step.
Total less. This is o(X;Y), computed as the sum of multiple loss and single loss defined below.
Multiple loss. This measure is computed as
TMLOSS = (mu1 + piz) = ((nup) ™ ey vstr (Y 5DY5) 40t 5 vyt (YD)
Single loss. This measure is computed only when some of the variables are single:

SLOSS = 1,1 32,4 vitr (Y'ijYj) =Y wvaja;
it

Model Summary

Model summary information consists of Cronbach’s alpha and the variance accounted for.
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Cronbach's Alpha

Cronbach’s Alpha per dimension (s=1,...,p):
G5 = My ( i/z — 1) / (Ai/z(mw — 1))
Total Cronbach’s Alpha is

o= mey (zsxyﬂ - 1)/25A§/? (M — 1)

with X, the sth diagonal element of A as computed in the Orthonormalization step during the last
iteration.

Variance Accounted For

Variance Accounted For per dimension (s=1,...,p):
Multiple Nominal variables:
VAF1, = n;lz vtr (yl(j)SDjy(j)s), (% of variance is VAF 1, x 100/m.,1),
jed
Non-Multiple variables:
VAF2, = Z vjas,, (% of variance is VAF2, x 100/m.z).
i¢J
Eigenvalue per dimension:

AV2=VAF1,+VAF2,,

with X, the sth diagonal element of A as computed in the Orthonormalization step during the
last iteration. (See also the Convergence Test step and variable correlations Correlations and
Eigenvalues for interpretation of A'/?).

The Total Variance Accounted For for multiple nominal variables is the mean over dimensions,
and for non-multiple variables the sum over dimensions. So, the total eigenvalue is

tr (AY/2) =p~1¥,VAF1,+XsVAF2,.

If there are no passive missing values, the eigenvalues A'/? are those of the correlation matrix
(see Correlations and Eigenvalues ) weighted with variable weights:
w12,

=

W — o \\/—
r--—vjr”,andr]-l—rlj 5T

17
If there are passive missing values, then the eigenvalues are those of the matrix m,,Q ;M1 Qc,
with Q¢ = n;1/2 (I — M*uu'W/ (u'M*Wu))Q, (see Correlations and Eigenvalues ) which is
not necessarily a correlation matrix, although it is positive semi-definite. This matrix is weighted
with variable weights in the same way as R.
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Variance Accounted For

The Variance Accounted For table gives the VAF per dimension and per variable for centroid
coordinates, and for non-multiple variables also for vector coordinates (see Quantifications ).

Centroid Coordinates

VAF;, = v;tr (Y,jSDijs)

Vector Coordinates

VAF]‘S = 1)‘7‘012 fOI'j §é J

Js?
Correlations and Eigenvalues

Before Transformation

R = n;lchWHc, with H¢ weighted centered and normalized H. For the eigenvalue
decomposition of R (to compute the eigenvalues), first row j and column j are removed from R if;j
. . . L 1/2

is a supplementary variable, and then r;; is multiplied by (v;v;) .

If passive missing treatment is applicable for a variable, missing values are imputed with the
variable mode, regardless of the passive imputation specification.

After Transformation

When all analysis variables are non-multiple, and there are no missing values, specified to be
treated as passive, the correlation matrix is:

R = I’L;IQIWQ, with q; = Gjyj‘.

The first p eigenvalues of R equal A/2. (See also the Convergence Test step and Model Summary
for interpretation of A1/?). When there are multiple nominal variables in the analysis, p correlation
matrices are computed (s=1,...,p):

R = mle/(s)WQ(s),

, -1/2
)i = Gjy; for non-multiple variables and q(,); = ni)/QGjY(j)s (Y (j)SDjY(j)S> for

multiple nominal variables.

with qq

Usually, for the higher eigenvalues, the first eigenvalue of R, is equal to AY ?(see Model
Summary ). The lower values of A'/? are in most cases the second or subsequent eigenvalues of
R,

(s):

If there are missing values, specified to be treated as passive, the mode of the quantified variable
or the quantification of an extra category (as specified in syntax; if not specified, default (mode) is
used) is imputed before computing correlations. Then the eigenvalues of the correlation matrix do
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not equal A'/? (see Model Summary section). The quantification of an extra category for multiple
nominal variables is computed as

-1
Y(J‘)(kﬁl)s = (Zielwi) D ie1 Wiis,
with 7 an index set recording which objects have missing values.

For the quantification of an extra category for non-multiple variables first Y (; . 1s computed

(k5+1)
as above, and then

1
12
Y (k1) = T (ZU@) DILIA (I

8

For the eigenvalue decomposition of R (to compute the eigenvalues), first row j and column j are
removed from R if j is a supplementary variable, and then 7;; is multiplied by (v,-vj)l/ 2,

Object Scores and Loadings

If all variables have non-multiple scaling level, normalization partitions the first p singular values
of nw *W1/2QV1/2 divided by m,, over the objects scores X and the loadings A, with Q the
matrix of quantified variables (see Correlations and Eigenvalues ), and V a diagonal matrix with
elements v;. The singular value decomposition of ne ! PW12QV1/2 is

SVD (n;UZWl/QQVl/Q) — K&'/2L

With X = K, (the subscript p denoting the first p columns of K) and A = (L'I>1/ 2)p, XA’ gives

the best p-dimensional approximation of ny, "/ *W1/2QV1/2,

The first p singular values <I>,17/ * equal AY4, with A as computed in the Orthonormalization
step during the last iteration. (See also the Convergence Test step and Model Summary for
interpretation of A/?).

For partitioning the first p singular values we write

(k2'21) =K, 88} L, = KA AYAL,, (ath=1, sce below).
P

During the optimization phase, variable principal normalization is used. Then, after convergence
X = ni*W-Y2K, and A = V-1/2L,A1/4,

If variable principal normalization is requested, X™ = X and A" = A, else X™ = XA*/* and
AT = AAYH-D) with a=(1+¢)/2, b=(1—q)/2, and ¢ any real value in the closed interval [-1,1],
except for independent normalization: then there is no ¢ value and a=b=1. g=—1 is equal to
variable principal normalization, g=1 is equal to object principal normalization, g=0 is equal to
symmetrical normalization.

When there are multiple nominal variables in the analysis, there are p matrices Q,), s=1,...p, (see
Correlations and Eigenvalues ). Then one of the singular values of ng "/ W1/ 2Q5) VY/? equals
A
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If a variable has multiple nominal scaling level, the normalization factor is reflected in the
centroids: Y1 = Y, AL/40-1),

Quantifications

For variables with non- -multiple scaling level the quantifications y; are displayed, the vector
coordinates y; (a ( ) and the centroid coordinates: Y; with variable principal normalization,

1G‘r ;wxh w1th one of the other normalization options. For multiple nominal variables the
quantlﬁcatlons are the centroid coordinates Yn

If a category is only used by supplementary objects (i.e. treated as a passive missing), only

centroid coordinates are displayed for this category, computed as y;y, = =ny/ Zn‘lz x; for
i€l
variables with non-multiple scaling level and y;), = =ny’ n Z x; A 4=1) for variables with
el

multiple nominal scaling level, where y ;. is the rth row of Y, nj, is the number of objects that
have category r, and / is an index set recording which objects are in category 7.
Residuals

For non-multiple variables, Residuals gives a plot of the quantified variable j (G ;y;) against

the approximation, Xa;. For multiple nominal variables plots per dimension are produced of

G;y(}), against the approximation x'.

Projected Centroids

The projected centroids of variable / on variable j, j ¢ .J, are
, ~1/2
Ylaj (a jaj)

Scaling factor Biplot, triplot, and loading plot

In plots including both the object scores or centroids and loadings (loading plot including
centroids, biplot with objects and loadings, and triplot with objects, centroids and loadings), the
object scores and centroids are rescaled using the following scaling factor:

b
. E n n
2 max (alsj...jams)
s=1
P
n

Z ‘min (asllls, ,xgs)‘ + (max (:c?s, ...,xns)
s=1

Scalefactor =
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CATREG (Categorical regression with optimal scaling using alternating least squares) quantifies
categorical variables using optimal scaling, resulting in an optimal linear regression equation
for the transformed variables. The variables can be given mixed optimal scaling levels and no
distributional assumptions about the variables are made.

Notation

The following notation is used throughout this chapter unless otherwise stated:

n Number of analysis cases (objects)
T n
Weighted number of analysis cases: Z w;
i=1
Mot Total number of cases (analysis + supplementary)
w; Weight of object i; w; = 1 if cases are unweighted; w; = 0 if object i is
supplementary.
W Diagonal 740, X n4o¢ matrix, with w; on the diagonal.
p Number of predictor variables
m Total number of analysis variables
r Index of response variable
Jp Index set of predictor variables
H The data matrix (category indicators), of order nsos x m, after discretization,
imputation of missings , and listwise deletion, if applicable.
4 Number of dimensions
M Lasso penalty
A Ridge penalty
For variable j; j =1, ...,m
k; Number of categories of variable j (number of distinct values in h;, thus,
including supplementary objects)
G, Indicator matrix for variable j, of order 74, X kj
The elements of G, are defined asi =1, ..., noe;r =1, ..., k5

_ |1 when the ith object is in the rth category of variable j
9 =10 when the ith object is not in the rth category of variable j

D, Diagonal k; x k; matrix, containing the we;ighted univariate marginals; i.e.,
the weighted column sums of G; (D;= G ;WG;)

f Vector of degrees of freedom for the predictor variables, of order p

S; I-spline basis for variable j, of order k; x (s; + ¢;) (see Ramsay (1988)
for details)

b; Spline coefficient vector, of order s; + ¢;

d; Spline intercept.

© Copyright IBM Corporation 1989, 2011. 89



90

CATREG Algorithms
8j Degree of polynomial
t; Number of interior knots

The quantification matrices and parameter vectors are:

yr Category quantifications for the response variable, of order k..
yi Category quantifications for predictor variable j, of order k;

b Regression coefficients for the predictor variables, of order p
\%

Accumulated contributions of predictor variables: Z b;G;y,
JEIp

Note: The matrices W, G;, and D; are exclusively notational devices; they are stored in reduced
form, and the program fully profits from their sparseness by replacing matrix multiplications
with selective accumulation.

Discretization

Discretization is done on the unweighted data.

Multiplying

First, the original variable is standardized. Then the standardized values are multiplied by 10 and
rounded, and a value is added such that the lowest value is 1.

Ranking

The original variable is ranked in ascending order, according to the alphanumerical value.

Grouping into a specified number of categories with a normal distribution

First, the original variable is standardized. Then cases are assigned to categories using intervals
as defined in Max (1960).

Grouping into a specified number of categories with a uniform distribution
First the target frequency is computed as divided by the number of specified categories, rounded.

Then the original categories are assigned to grouped categories such that the frequencies of the
grouped categories are as close to the target frequency as possible.

Grouping equal intervals of specified size

First the intervals are defined as lowest value + interval size, lowest value + 2*interval size, etc.
Then cases with values in the kth interval are assigned to category 4.
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Imputation of Missing Values

When there are variables with missing values specified to be treated as active (impute mode or
extra category), then first the &;’s for these variables are computed before listwise deletion. Next
the category indicator with the highest weighted frequency (mode; the smallest if multiple modes
exist), or k; + 1 (extra category) is imputed. Then listwise deletion is applied if applicable. And
then the k;’s are adjusted.

If an extra category is imputed for a variable with optimal scaling level Spline Nominal, Spline
Ordinal, Ordinal or Numerical, the extra category is not included in the restriction according to
the scaling level in the final phase.

For more information, see the topic Objective Function Optimization on p. 92.

Objective Function

The CATREG objective is to find the set of y,, b, and y;, j € Jp, so that the function

S A R
U(yT’b"YJ) - (GTy’I' JE prjGJyj W GrYr ]E Jp bJG]yj

is minimal, under the normalization restriction y',,D,ryT = n,,. The quantifications of the
response variable are also centered; that is, they satisfy u WG, y, = 0 with u denoting an
n-vector with ones.

With regularization, the loss function is subjected to:

P

[ B} <t, for Ridge,
j€d,

P

/18] <t for Lasso,
j 6 JI}

P P

[ |8l <tiand [ 337 <t, for Elastic Net.
Jedp JEeJp

The constrained loss functions can also be written as penalized loss functions:

. P
rridge _ p 4y, i ﬁyz
JeJp
P
plasso _p ooy [ sign(8;)8;
JeJp
p P
emnet — p o4y, ] sign(B)B;+ A [ ﬁﬂz
jeJdp JE€Jp



92

CATREG Algorithms

Optimal Scaling Levels

The following optimal scaling levels are distinguished in CATREG:
Nominal. Equality restrictions only.
Spline Nominal. y; = d; 4 S;a; (equality and spline restrictions).

Spline Ordinal. y; = d; + S;a; (equality and monotonic spline restrictions), with a; restricted to
contain nonnegative elements (to guarantee monotonic I-splines).

Ordinal. y; € C; (equality and monotonicity restrictions). The monotonicity restriction
y; € C; means that y; must be located in the convex cone of all k;-vectors with nondecreasing
elements.

Numerical. y; € L; (equality and linearity restrictions). The linearity restriction y; € L; means
that y; must be located in the subspace of all k;-vectors that are a linear transformation of the
vector consisting of k; successive integers.

For each variable, these levels can be chosen independently. The general requirement for all
options is that equal category indicators receive equal quantifications. For identification purposes,
y; is always normalized so that y’ Dy = nw.

Objective Function Optimization

Optimization is achieved by executing the following iteration scheme:
Initialization I or II

Update category quantifications response variable

Update category quantifications and regression coefficients predictor variables

Convergence test: repeat (2) through (3) or continue

Steps (1) through (4) are explained below.

Initialization
I. Random

The initial category quantifications §; (for j=1, ..., m) are defined as the k; category indicators
of variable j, normalized such that u WG;¥; = 0 and ¥,D,§; = n.,, and the initial regression
coefficients are the correlations with the response variable.

II. Numerical

In this case, the iteration scheme is executed twice. In the first cycle, (initialized with initialization
I) all variables are treated as numerical. The second cycle, with the specified scaling levels, starts
with the category quantifications and regression coefficients from the first cycle.
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III. Multistart (ALL)

Choosing all multiple systematic starts guarantees obtaining the global optimal solution when
the spline ordinal or ordinal scaling level is specified for one or more predictors (Van der Kooij,
Meulman, and Heiser, 2006). When this option is chosen, the iteration scheme is executed

2% times, where s is the number of predictor variables with (spline) ordinal scaling level and 2¢ is
the number of all possible sign patterns for the regression coefficients of the predictor variables
with (spline) ordinal scaling level. Each execution of the iteration scheme starts with the same
initial category quantifications and regression coefficients (initialized with initialization I), but
with different sign patterns for the coefficients. In the iteration process, the signs are held fixed.
Finally, the iteration scheme is executed one more time using the optimal sign pattern (the pattern
resulting in the highest R2, or RSQregU if regularization is applied).

I'V. Multistart (value)

When a threshold value is specified with the multiple systematic starts option, the iteration scheme
is executed twice for a selection of sign patterns for the regression coefficients of the predictor
variables with (spline) ordinal scaling level. The sign patterns are selected by a combination of a
percentage of loss of variance strategy and a hierarchical strategy (Van der Kooij, Meulman, and
Heiser, 2006).

3
The maximum number of sign patterns with this option is 1 + Z i.

i=1

In the first cycle (initialized with initialization I) all variables are treated as nominal. The second
cycle, with the specified scaling levels, starts with the category quantifications and regression
coefficients from the first cycle. After one iteration in the second cycle, the decrease in variance
going from the last iteration in the first cycle to the first iteration in the second cycle is determined
for predictors with (spline) ordinal scaling level. If the percentage of decrease for a predictor is
above the specified threshold value, the predictor is allowed to have a negative sign. Then the
second cycle continues a number of times: one time with the regression coefficient for all (spline)
ordinal predictor positive and ¢ times with the regression coefficient for one (spline) ordinal
predictor negative, where ¢q is the number of predictors with (spline) ordinal scaling level that are
allowed to have a negative sign. If the ‘all positive’ sign pattern gives a better result (higher R2, or
RSQregu if regularization is applied) then the ‘one negative’ signs patterns, the iteration scheme is
executed one more time using the ‘all positive’ sign pattern. Else, if one of the ‘one negative’
signs patterns gives a better result then the ‘all positive’ sign pattern, the best ‘one negative’
signs pattern is selected and the second cycle is repeated for the ‘two negatives’ signs patterns:
the patterns formed by adding one more negative sign to the best ‘one negative’ signs pattern.
Then, the results of the ‘two negatives’ signs patterns are compared to the ‘one negative’ signs
pattern and the ‘one negative’ signs pattern is selected if its result is better. Else, the second cycle
is repeated for the ‘three negatives’ signs patterns, and so on.

V. Fixsigns

In this case, the iteration scheme is executed twice. In the first cycle, (initialized with initialization
I) all variables are treated as nominal. The second cycle, with the specified scaling levels,
starts with the category quantifications and regression coefficients from the first cycle and fixed
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signs (read from a user-specified file) for the regression coefficients of the predictor variables
with (spline) ordinal scaling level.

Update category quantifications response variable

With fixed current values y;, j € J, the unconstrained update of y, is
¥, =D 'G \Wv

Nominal: y} =y,

For the next four optimal scaling levels, if variable j was imputed with an extra category, y: is
inclusive category %, in the initial phase, and is exclusive category k, in the final phase.

Spline nominal and spline ordinal: y;= d, + S,a,.

The spline transformation is computed as a weighted regression (with weights the diagonal
elements of D) of y,. on the I-spline basis S,.. For the spline ordinal scaling level the elements of
a, are restricted to be nonnegative, which makes y;: monotonically increasing

Ordinal: y}<— WMON(y,) .

The notation WMON( ) is used to denote the weighted monotonic regression process, which
makes y; monotonically increasing. The weights used are the diagonal elements of D,. and the
subalgorithm used is the up-and-down-blocks minimum violators algorithm (Kruskal, 1964;
Barlow et al., 1972).

Numerical: y«— WLIN(¥,).

The notation WLIN( ) is used to denote the weighted linear regression process. The weights
used are the diagonal elements of D...

Next y; is normalized (if the response variable was imputed with an extra category, y is inclusive
category k, from here on):

—1/2
1/2 & % "
y:r: nw/ v (y TDTyT>

Update category quantifications and regression weights predictor variables

For updating a predictor variable j, j € J,, first the contribution of variable j is removed from
v:v; = v — b;G;y; Then the unconstrained update of y; is

7, =D; G ;W(G,y, — v;)
Next §; is restricted and normalized as in step (2) to obtain y;.“.
Finally, we update the regression coefficient

b} = 9Dy
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Regularized regression coefficients are obtained as

5 :

8 = 1% for Ridge,

F=(8 - ’\2—1wj)+ = 37 — ALifB; > 0andB; + 4Lif3; < 0 for Lasso, and
AL

B} —Zw; 8- 3r+ 3
/3; = (5 1:)\2 J)+ = ( JHA;)J“if,B]’-‘ > Oand%if@‘ < 0 for Elastic Net (van der Kooij,

Convergence test

The difference between consecutive values of the apparent Prediction Error is compared with the
user-specified convergence criterion € a small positive number.

The difference between consecutive values of the quantity

APE:n;1 Gy, — f BiGiy; | W Gy, — f BiG;y;
jeJdy jeJdp

Without regularization, APE is equal to 1 minus the squared multiple regression coefficient. Steps
(2) and (3) are repeated as long as the APE difference exceeds «.

Diagnostics

The procedure produces the following diagnostics.

Descriptive Statistics

The descriptives tables gives the weighted univariate marginals and the weighted number of
missing values (system missing, user defined missing, and values less than or equal to 0) for
each variable.

Fit and error measures

The squared multiple regression coefficient and the Apparent Prediction Error for each iteration
are reported in the History table. Also, the decrease in APE for each iteration is reported.

Summary Statistics

The following model summary statistics are available.

Multiple R

hR= (Gryr)’Wv(nwVIWV) e
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Multiple R Square
R2
Adjusted Multiple R Square

1 (1= B2)(ny — 1)(ny — 1-0'F)

with u a p-vector of ones.

Regularization “R Square” (1-Error)

RSQ™®8Y — 1 — APE

regu

Without regularization, RSQ is equal to R2.

Apparent Prediction Error

APE as computed in the convergence step in the last iteration of the optimization algorithm. For
more information, see the topic Objective Function Optimization on p. 92.

Expected Prediction Error

The expected prediction error is computed for the standardized (quantified) data. Only when for
all variables the numeric scaling level is specified, the EPE is computed for the raw data as well.

Supplementary objects (test cases)

The expected prediction error for the training data (active cases) is

2
n

i 1
EPE"™™ = =37 | (Goyr)i — | D £iGw;
w . .
1=1 Jj€d, i

and the standard error is

n 1/2
SEtrain _ LZ w; (EPE;;rain _ EPEtrain) 2
iy i=1

For the test data (supplementary objects), the expected prediction error is

2

1
EPE®S = ———3 " | (Gyy); - | D BiGyy;

Niot — N
tot €8 jed, ;

where S is the index set of supplementary objects.
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1/2

1 2
(ot — ”)2 i€s Z

For the estimation of the quantification of a supplementary category (a category only occurring
with supplementary cases), see the Quantification section below.

Multiplying EPEU3i0 GEfrain ppgtest .4 gptest iy

1 n 1 n
— hy, — — > hy,
T Z " Ny Z "
=1 =1
(the variance of the response variable for the active cases) yields the EPE and SE for the raw data.

Resampling, .632 Bootstrap

Bootstrap datasets are created by randomly drawing (with replacement) # times from the active
objects (training data), including the object (case) weights.

(.632)

EPEPOOt — Er"*? = & 4 OP

where the optimism is estimated as
Sp T
OP = .632( Err err

(1)

and Err"’, the leave-one-out bootstrap estimate of prediction error, is

2
— . b —i
Err (1 Z |C’ 7 Z w; ( r}%«) Z 3 Gjy] for‘C’ ‘ #0
beC—* Jj€J, i
where €~ is the set of indices of the bootstrap samples b (b = 1, ..., B) that

(a) do not contain observation i,

(b) do contain the categories that apply to observation i for variables with nominal or ordinal
transformations,

(c) do not require extrapolation for observation / for variables with spline transformations.

'Y is the number of observations for which ‘C *"| # 0. (The set ‘C*i| may become empty

if, for example, observation i has one of the extreme categories on a variable with a spline
transformation, and this category has a frequency of one. Then each bootstrap sample that does
not contain this observation, also does not contain the extreme category; thus for observation i
all bootstrap samples are excluded.)
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The Standard Error is computed as

n

/
ggboot _ <ni22 w; (Ez(l) _ E(i))Q) 1/2

W i=1

Adding multiplication with the variance of the response variable for the cases in bootstrap sample
b in the computation of E(l)(... w;var (h%)(...)), yields the EPE and SE for the raw data.

Resampling, Cross-validation

The data are randomly divided into K disjoint subsets of the active objects (training data),
including the object (case) weights.

2

n
EPECY = L3S wi| (Gk) - [ S0 5 tayt

Wi=1 ick jed, ;

where k (k = 1, ..., K) indexes the kth subset and —k the remaining part of the data.

The Standard Error is computed as
Lo o\ /2
SgCVY — (—22 w; <EPE§V - EPECV> )
w2

Adding multiplication with the variance of the response variable for the cases with the kth part
removed in the computation of EPECV(... w;var (h;*)(...)), yields the EPE and SE for the
raw data.

Quantifications of categories that do not occur in a bootstrap sample or in the data with the kth
part removed, are estimated as for supplementary categories (see Quantifications on p. 101).

ANOVA Table

Sum of Squares df Mean Sum of Squares
Regression nwR? u'f o R (u’f) -1
Residual nw(l — RQ) nw—1-— u'f nw(l _ RZ) (nw —-1- u/f)71

F = MSyeg/MS;es
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Correlations and Eigenvalues

Before transformation

R = n,;lH'CWHc , with H¢ weighted centered and normalized H excluding the response
variable.

After transformation

R = n,'Q WQ, the columns of Q are q; = G,y;, j € J,.

Statistics for Predictor Variables

The following statistics are produced for each predicted variable.

Beta

The standardized regression coefficient is Beta;j=b;.

Standard Error Beta
The standard error of Beta; is estimated by
7 1/2
SE (Beta)) = ((1 - RQ)/<nw “1-u f)t])

with ¢; the tolerance for variable j (see below).

Degrees of Freedom
The degrees of freedom for a variable depend on the optimal scaling level:
Numerical.f; = 1.
Spline ordinal, spline nominal.f; = s; + ¢; minus the number of elements equal to zero in a;.

Ordinal, nominal.f; =the number of distinct values in y; minus 1.

F-Value

F; = (Beta; /SE(Beta;))”

Zero-order correlation

Correlations between the transformed response variable G,y, and the transformed predictor
variables G,y;:

rej = ng' (Gry,) WGy,
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Partial correlation
. —1/2
PartialCortj= b;((1/t;)(1 — R?) + b3)

with ¢; the tolerance for variable j (see Tolerance ).

When a regularization method is applied, the OLS coefficients are computed as
1~
g* = ("wR) Q W(GTyT)

with R the correlation matrix after transformation and R~ is computed using the eigenvectors
and eigenvalues of R, where R, is the correlation matrix of the predictors that have regression
coefficients > 0, and R2 is computed as

, , —1/2\ 2

Part correlation
 F. 1/2
PartCorrj= b;t;
with ¢; the tolerance for variable j (see Tolerance ).

For computation of the OLS coefficients if regularization is applied, see Partial correlation .

Importance
Pratt’s measure of relative importance (Pratt, 1987)
ImpJ: bj Trj /R2

The relative importance is only displayed if no regularization is applied.

Tolerance
The tolerance for the optimally scaled predictor variables is given by

t; = )“p_ﬁ
with r,, the jth diagonal element of R,,, where R, is the correlation matrix of predictors that
have regression coefficients > 0.

The tolerance for the original predictor variables is also reported and is computed in the same
way, using the correlation matrix for the original predictor variables, discretized, imputed, and
listwise deleted, if applicable.
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Quantifications

The quantifications are y;, j=1,...,m.

Supplementary objects

The category indicators of supplementary objects are replaced by the quantification of the
categories if these categories also appear in the active data. If a category is only used by
supplementary objects, the category quantification is estimated by interpolation for variables
with numeric or spline scaling level if the supplementary category lies within the range of the
categories in the active data. If the variable has numeric scaling level and the non-occuring
category lies outside the range of categories in the active data, then extrapolation is applied. In all
other cases, the category indicator is replaced by a system-missing value.

Predicted and residual values
There is an option to save the predicted values v and the residual values G,y, — v.

Whether for a supplementary object the predicted and residual value can be computed, depends
on whether all categories of the object are quantified (which is the case if all categories also
appear with the active objects) or can be estimated by inter- or extrapolation (see Quantifications
on p. 101).

Residual Plots

The residual plot for predictor variable j displays two sets of points: unnormalized quantifications
(b;¥,) against category indicators, and residuals when the response variable is predicted from all
predictor variables except variable j (G,y, — (v — b;G,y;)) against category indicators.

Regularization

If regularization is specified, all above diagnostics apply to the selected or specified regularized
model. If more than one model is specified (more than one penalty value), diagnostics for each
model can be requested.

Statistics

APE (see Apparent Prediction Error on p. 96), EPE (see Expected Prediction Error on p. 96), and
the Standardized sum of coefficients for each model.

The standardized sum of coefficients are computed as
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P
[ &
JEdy for Ridge

I &)

jed,

P

[ sign(s;s;
jeJp

P

] sign(s;)s;
jed,

for Lasso and Elastic Net

Coefficients

The regularized standardized coefficients for each model.

Paths

The regularized standardized coefficients are plotted on the y-axis against the standardized sum
of coefficients for each model on the x-axis. For the Elastic net, multiple plots are produced: a
Lasso paths plot for each specified value of the ridge penalty.
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CCF computes the cross-correlation functions of two or more time series.

Notation

The following notation is used throughout this chapter unless otherwise stated:

XY Any two series of length n

Tay (k) Sample cross correlation coefficient at lag k&
Sz Standard deviation of series X

Sy Standard deviation of series Y

Chy(k) Sample cross covariance at lag k

Cross Correlation

The cross correlation coefficient at lag & is estimated by

rah) = <20
SySy
where
n—k
IN (o —Z) (e — %), k=0,1,2,...
Coy(k) =9 1Tk
INT e — D)@k —7), k=-1,-2,...
t=1
Sy = % (x; — T)
t—1

S, = %Z (e — 7)°

The cross correlation function is not symmetric about & = 0.

Approximate standard error of 7., (k) is

The standard error is based on the assumption that the series are not cross correlated and one of
the series is white noise. (The general formula for the standard error can be found in (Box and
Jenkins, 1976), p. 376, 11.1.7.)
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CLUSTER Algorithms

CLUSTER produces hierarchical clusters of items based on distance measures of dissimilarity or
similarity.

Cluster Measures

For more information, see the topic Proximities Measures on p. 764.

Clustering Methods
The cluster method defines the rules for cluster formation. For example, when calculating the

distance between two clusters, you can use the pair of nearest objects between clusters or the pair
of furthest objects, or a compromise between these methods.

Notation

The following notation is used unless otherwise stated:

S Matrix of similarity or dissimilarity measures
Sij Similarity or dissimilarity measure between cluster i and cluster j
N; Number of cases in cluster i

General Procedure

Begin with N clusters each containing one case. Denote the clusters 1 through M.

®m  Find the most similar pair of clusters p and g(p > ¢). Denote this similarity s,,. If a
dissimilarity measure is used, large values indicate dissimilarity. If a similarity measure
is used, small values indicate dissimilarity.

®  Reduce the number of clusters by one through merger of clusters p and ¢g. Label the new
cluster #(= ¢) and update similarity matrix (by the method specified) to reflect revised
similarities or dissimilarities between cluster ¢ and all other clusters. Delete the row and
column of S corresponding to cluster p.

m  Perform the previous two steps until all entities are in one cluster.

®  For each of the following methods, the similarity or dissimilarity matrix S is updated to reflect
revised similarities or dissimilarities (s;,) between the new cluster ¢ and all other clusters r
as given below.

Average Linkage between Groups

Before the first merge, let V; = 1 for i = 1 to N. Update s, by

Str = Spr T Sqr
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Update N; by
Ny = Np + Ny
and then choose the most similar pair based on the value

s/ (NilNj)

Average Linkage within Groups
Before the first merge, let SUM; = 0 and N; = 1 fori = 1 to N. Update s4, by
Str = Spr + Sgr
Update SU M; and N; by
SUM; = SUM, + SUM, + 5pq
Ny = N, + Ny

and choose the most similar pair based on

SUM; + SUM; + s
((Ni + Nj)(N; + Nj — 1)) /2

Single Linkage
Update sy, by
[ min (spy, s¢r) if S is a dissimilarity matrix
Str { max (Spr, Sqr) if S is a similarity matrix
Complete Linkage
Update s;, by
max (Spr, Sqr) if S is a dissimilarity matrix
Str = { min (spy, Sgr)  if S is a similarity matrix
Centroid Method
Update s;, by

Np + Nq Nqu
S = —S S — S
TN AN T TN AN T (N, N
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Median Method

Update s;, by

Str = (Spr + 5qr) /2 = Spq/4

Ward's Method

Update sy, by

1
Str = m[(Nr + Np)srp + (Nr + Ng)srg — Nyspq]
Update the coefficient by

W =W + 55y

Note that for Ward’s method, the coefficient given in the agglomeration schedule is really the
within-cluster sum of squares at that step. For all other methods, this coefficient represents the
distance at which the clusters p and ¢ were joined.
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This document describes measures used for evaluating clustering models.

m  The Silhouette coefficient combines the concepts of cluster cohesion (favoring models which
contain tightly cohesive clusters) and cluster separation (favoring models which contain
highly separated clusters). It can be used to evaluate individual objects, clusters, and models.

B The sum of squares error (SSE) is a measure of prototype-based cohesion, while sum of
squares between (SSB) is a measure of prototype-based separation.

B Predictor importance indicates how well the variable can differentiate different clusters. For
both range (numeric) and discrete variables, the higher the importance measure, the less
likely the variation for a variable between clusters is due to chance and more likely due to
some underlying difference.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Tik Continuous variable k in case i (standardized).

Tiks The sth category of variable & in case 7 (one-of-c coding).

N Total number of valid cases.

N; The number of cases in cluster j.

Y Variable with J cluster labels.

Hik The centroid of cluster j for variable k.

D, The distance between case i and the centroid of cluster ;.

Dy The distance between the overall mean » and the centroid of cluster j.

Goodness Measures

The average Silhouette coefficient is simply the average over all cases of the following calculation
for each individual case:

(B —A)/max (A, B)

where 4 is the average distance from the case to every other case assigned to the same cluster and
B is the minimal average distance from the case to cases of a different cluster across all clusters.

Unfortunately, this coefficient is computationally expensive. In order to ease this burden, we use
the following definitions of 4 and B:

B A is the distance from the case to the centroid of the cluster which the case belongs to;

B B is the minimal distance from the case to the centroid of every other cluster.
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Distances may be calculated using Euclidean distances. The Silhouette coefficient and its average
range between —1, indicating a very poor model, and 1, indicating an excellent model. As found
by Kaufman and Rousseeuw (1990), an average silhouette greater than 0.5 indicates reasonable
partitioning of data; less than 0.2 means that the data do not exhibit cluster structure.

Data Preparation

Before calculating Silhouette coefficient, we need to transform cases as follows:

1. Recode categorical variables using one-of-c coding. If a variable has ¢ categories, then it is stored
as ¢ vectors, with the first category denoted (1,0,...,0), the next category (0,1,0,...,0), ..., and the
final category (0,0,...,0,1). The order of the categories is based on the ascending sort or lexical
order of the data values.

2. Rescale continuous variables. Continuous variables are normalized to the interval [—1, 1] using the
transformation [2*(x—min)/(max—min)]—1. This normalization tries to equalize the contributions
of continuous and categorical features to the distance computations.

Basic Statistics

The following statistics are collected in order to compute the goodness measures: the centroid
;1 of variable k for cluster j, the distance between a case and the centroid, and the overall mean u.

For 15, with an ordinal or continuous variable &, we average all standardized values of variable
k within cluster j. For nominal variables, p; is a vector {¢ ;1. } of probabilities of occurrence
for each state s of variable £ for cluster j. Note that in counting , we do not consider cases with
missing values in variable k. If the value of variable % is missing for all cases within cluster j,
ik 1s marked as missing.

The distance D;; between case i and the centroid of cluster j can be calculated in terms of the
weighted sum of the distance components d7;;, across all variables; that is

o9
2 _ Zh¥ijkdin
" Ypw;jik

where w;;;, denotes a weight. At this point, we do not consider differential weights, thus

w; ;5 equals 1 if the variable k in case i is valid, 0 if not. If all w;; equal 0, set Dzj =0.

2

The distance component d7;,, is calculated as follows for ordinal and continuous variables
) 2
dijy, = (i — pn)

For binary or nominal variables, it is

Si
1
d%jk = S_kz (l“zks - @jks)Q
s=1
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where variable k uses one-of-c coding, and Sy, is the number of its states.

The calculation of D; is the same as that of D;;, but the overall mean u is used in place of p;; and

ti55 1s used in place of a;%.
Silhouette Coefficient

The Silhouette coefficient of case i is

min {Dyj, j € C_i} — D,
max (min {D;;,j € C_;}, D)

where C_; denotes cluster labels which do not include case i as a member, while ¢; is the cluster
label which includes case i. If max (min {D;;,j € C_;}, D;.,) equals 0, the Silhouette of case i is

not used in the average operations.

Based on these individual data, the total average Silhouette coefficient is:

S0 — iz min {.Dijyj € .C—i} — Dic,
N <~ max (min{D;;,j € C_;}, Djc,)

Sum of Squares Error (SSE)

SSE is a prototype-based cohesion measure where the squared Euclidean distance is used. In order
to compare between models, we will use the averaged form, defined as:

1 2
Average SSE = NZ Z Dy,
jec i€j

Sum of Squares Between (SSB)

SSB is a prototype-based separation measure where the squared Euclidean distance is used. In
order to compare between models, we will use the averaged form, defined as:

1
Average SSB = NZ Nijz
jeC

Predictor Importance

The importance of field i is defined as

—logyg (sig:)
max;eq (—logyg (sig;))

VI =
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where 2 denotes the set of predictor and evaluation fields, sig; is the significance or
p-value computed from applying a certain test, as described below. If sig; equals zero, set
sig; = MinDouble, where MinDouble is the minimal double value.

Across Clusters
The p-value for categorical fields is based on Pearson’s chi-square. It is calculated by
p-value = Prob(y2 > X?),

where

where N;; = N;.N;/N (X).

® If N (X) =0, the importance is set to be undefined or unknown;
m If N, = 0, subtract one from / for each such category to obtain I ;
B If N ; = 0, subtract one from J for each such cluster to obtain J "

m IfJ <lorl <1,the importance is set to be undefined or unknown.
The degrees of freedom are (I' - 1) (J' — 1).

The p-value for continuous fields is based on an F test. It is calculated by
p-value = Prob{F' (J — 1,N — J) > F},

where

J

S Ni(@ -3/ - 1)
j=1

J

D (N = 1)si/(N =)

j=1

F=

If N=0, the importance is set to be undefined or unknown;
If N; = 0, subtract one from J for each such cluster to obtain J '

IfJ <lorN<J /, the importance is set to be undefined or unknown;

If the denominator in the formula for the F statistic is zero, the importance is set to be
undefined or unknown;

m  [f the numerator in the formula for the F statistic is zero, set p-value = 1;

The degrees of freedom are (J' —1,N— ])
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Within Clusters

The null hypothesis for categorical fields is that the proportion of cases in the categories in
cluster j is the same as the overall proportion.

The chi-square statistic for cluster j is computed as follows

I 2
X2 — Z (Nij — iji)

i=1 Njpi

If N; = 0, the importance is set to be undefined or unknown;

If p; = 0, subtract one from / for each such category to obtain I';
If I' < 1, the importance is set to be undefined or unknown.

The degrees of freedom are d = I' — 1.

The null hypothesis for continuous fields is that the mean in cluster j is the same as the overall
mean.

The Student’s ¢ statistic for cluster j is computed as follows

(= 7T

s/

with d = N; — 1 degrees of freedom.

If N; <1 ors; =0, the importance is set to be undefined or unknown;
If the numerator is zero, set p-value = 1;

Here, the p-value based on Student’s # distribution is calculated as

p-value =1 — Prob{|T (d)| < |t]}.
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CNLR is used to estimate the parameters of a function by minimizing a smooth nonlinear loss
function (objective function) when the parameters are subject to a set of constraints.

Model

Consider the model

f=f<§,g>

where g is a px1 parameter vector, x is an independent variable vector, and fis a function
of x and 4.

Goal

Find the estimate #* of ¢ such that §* minimizes

F=Fy,f)
subject to

0
1< Arae oy

e(y)

where F'is the smooth loss function (objective function), which can be specified by the user.

A} is an mj, x p matrix of linear constraints, and C { 4 ) is an my x 1 vector of nonlinear

~

constraint functions. 1 = (1' 1,1 >, where 1,1 ,and 1’ represent the lower bounds,
~B ~L ~N ~B ~L ~N )
linear constraints and nonlinear constraints, respectively. The upper bound u is defined similarly.

Algorithm

CNLR uses the algorithms proposed and implemented in NPSOL by Gill, Murray, Saunders, and
Wright. A description of the algorithms can be found in the User’s Guide for NPSOL, Version 4.0
(Gill, Murray, Saunders, and Wright, 1986).

The method used in NPSOL is a sequential quadratic programming (SQP) method. For an
overview of SQP methods, see (Gill, Murray, and Saunders, 1981), pp. 237-242.

The basic structure of NPSOL involves major and minor iterations. Based on the given initial
value 9(9 of ¢ the algorithm first selects an initial working set that includes bounds or general
inequaﬁity constraints that lie within a crash tolerance (CRSHTOL). At the kth iteration, the
algorithm starts with
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Minor Iteration

This iteration searches for the direction Py, which is the solution of a quadratic subproblem;
that is, Py, is found by minimizing

g P+ 1P'H,P

subject to
P
1P <dapl<a®

where g, is the gradient of F at ¢(*), the matrix Hj, is a positive-definite quasi-Newton

approximation to the Hessian of the Lagrangian function, A y is the Jacobian matrix of the
nonlinear-constraint vector C evaluated at %), and

1" = (15,11,1x)

k _/ _l _I
( ): (UB,UL,U.N)

=]

IB = lB — q(’”)

~

IL = IL — ALq(k)

Iy =1y C (q<k>>

g =ug —q®

~

u; =uy, — ALg(k)

uy =uy — C <q(k))

~

The linear feasibility tolerance, the nonlinear feasibility tolerance, and the feasibility tolerance are
used to decide if a solution is feasible for linear and nonlinear constraints.
Once the search direction Py, is found, the algorithm goes to the major iteration.
Major Iteration

The purpose of the major iteration is to find a non-negative scalar «y, such that

g = o) + Py,

~
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satisfies the following conditions:

m 9D produces a “sufficient decrease” in the augmented Lagrangian merit function

L{ons) = (o) Xnfe(0) )+ 32(s (o) )

The summation terms involve only the nonlinear constraints. The vector A is an estimate of
the Lagrange multipliers for the nonlinear constraints. The non-negative slack variables
{3;} allow nonlinear inequality constraints to be treated without introducing discontinuities.
The solution of the QP subproblem defined in Minor Iteration provides a vector triple that
serves as a direction search for 4, \ and s. The non-negative vector of penalty parameters

{p) is initialized to zero at the beginning of the first major iteration. Function precision criteria
are used as a measure of the accuracy with which the functions F and ¢; can be evaluated.

m 9D is close to a minimum of F along P}. The criterion is

g' <e(k+1)> P,

where 7 is the Line Search Tolerance and 0 < n < 1. The value of 7 determines the accuracy
with which «a;, approximates a stationary point of " along Pj. A smaller value of » produces a
more accurate line search.

< —ng (P

B The step length is in a certain range; that is,
1%+ — g || = ||ayPy|| < Step Limit

Convergence Tests

After «y is determined from the major iteration, the following conditions are checked:

B /+1 < Maximum number of major iterations

m  The sequence {0(1)} converged at 1) ; that is,

JouPy] < \/?(1 n ||e<k+1>||)

m 9+ satisfies the Kuhn-Tucker conditions to the accuracy requested; that is,

~

o o) = (oo () i ()

and
|lres;|| < FTOL for all j,

where g, is the projected gradient, g is the gradient of " with respect to the free parameters,
res; is the violation of the jth nonlinear constraint, FTOL is the Nonlinear Feasibility
Tolerance, and r is the Optimality Tolerance.

If none of these three conditions are satisfied, the algorithm continues with the Minor Iteration to
find a new search direction.
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Termination

The following are termination conditions.

Underflow. A single underflow will always occur if machine constants are computed
automatically. Other floating-point underflows may occur occasionally, but can usually
be ignored.

Overflow. If the printed output before the overflow error contains a warning about serious
ill-conditioning in the working set when adding the jth constraint, it may be possible to avoid
the difficulty by increasing the magnitude of FTOL, LFTOL, or NFTOL and rerunning the
program. If the message recurs after this change, the offending linearly dependent constrains
(with index ‘) must be removed from the problem.

Optimal solution found.

Optimal solution found, but the requested accuracy could not be achieved, NPSOL terminates
because no further improvement can be made in the merit function. This is probably caused
by requesting a more accurate solution than is attainable with the given precision of the
problem (as specified by FPRECISION).

No point has been found that satisfies the linear constraints. NPSOL terminates without
finding a feasible point for the given value of LFTOL. The user should check that there are no
constraint redundancies and ensure that the value of LFTOL is greater than the precision of
parameter estimates.

No point has been found which satisfies the nonlinear constraints. There is no feasible point
found in QP subproblems. The user should check the validity of constraints. If the user is
convinced that a feasible point does exist, NPSOL should be restarted at a different starting
point.

Too many iterations. If the algorithm appears to be making progress, increase the value of
ITER and rerun NPSOL. If the algorithm seems to be “bogged down”, the user should check
for incorrect gradients.

Cannot improve on current point. A sufficient decrease in the merit function could not be
attained during the final line search. This sometimes occurs because an overly stringent
accuracy has been requested; for example, Optimality Tolerance is too small or a too-small
step limit is given when the parameters are measured on different scales.

Please note the following:

Unlike the other procedures, the weight function is not treated as a case replicate in CNLR.

When both weight and loss function are specified, the algorithm takes the product of these
two functions are the loss function.

If the loss function is not specified, the default loss function is a squared loss function and
the default output in NLR will be printed. However, if the loss function is not a squared loss
function, CNLR prints only the final parameter estimates, iteration history, and termination
message. In order to obtain estimates of the standard errors of parameter estimates and
correlations between parameter estimates, the bootstrapping method can be requested.
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Bootstrapping Estimates

Bootstrapping is a nonparametric technique of estimating the standard error of a parameter
estimate using repeated samples from the original data. This is done by sampling with
replacement. CNLR computes and saves the parameter estimates for each sample generated.
This results, for each parameter, in a sample of estimates from which the standard deviation is
calculated. This is the estimated standard error.

Mathematically, the bootstrap covariance matrix S for the p parameter estimates is

S = (sij)

pXp

where

and 9ik is the CNLR parameter estimate of #; for the kth bootstrap sample and m is the number
of samples generated by the bootstrap. By default, m = mp(zﬁ. The standard error for the jth
parameter estimate is estimated by

Sig
m—1

and the correlation between the ith and jth parameter estimates is estimated by

Sij

VvSiiSi

The “95% Trimmed Range” values are the most extreme values that remain after trimming from
the set of estimates for a parameter, the g largest, and the g smallest estimates, where g is the
largest integer not exceeding 0.025m.
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This procedure performs conjoint analysis using ordinary least squares.

Notation

The following notation is used throughout this chapter unless otherwise stated:

n The total number of regular cards in the PLAN file.

p The total number of factors.

d The number of discrete factors.

l The number of linear factors.

q The number of quadratic factors.

my The number of levels of levels of the ith discrete factor.
@ij The jth level of the ith discrete factor i=1,...,d.

T The ith linear factor, i=1,...,1.

Zi The ith ideal or anti-ideal factor, i=1,...,q.

T The response for the ith card, i=i....,n.

t The total number of subjects being analyzed at the same time. (When

/SUBJECT is specified, ¢ is usually 1.)

Model

The model for the response r; for the ith card from a subject is
P
r; = Bg + Zujkji
Jj=1

where ujy,, is the utility (part worth) associated with the k;;th level of the jth factor on the ith card.

Design Matrix

A design matrix X is formed from the values in the PLAN file. There is one row for each card
in the PLAN file. The columns of the matrix are defined by each of the factor variables in the
following manner:

m  There is a column of 1s for the constant. This column is used for the estimate of 3.

B For each discrete factor containing m; levels, m; — 1 columns are formed. Each column
represents the deviation of one of the factor levels from the overall mean. There is a 1 in the
column if that level of the factor was observed, a—1 if the last level of the factor was observed,
or a 0 otherwise. These columns are used to estimate the m; — 1 values of «;;.
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®m  For each linear factor, there is one column which is the centered value of that factor (x;; — ;).
These columns are used to estimate the values for 3;.

®  For each quadratic factor there are two columns, one which contains the centered value of the
factor (z;; — Z:), the next which contains the square of the centered factor value (z;; — z;)”.
These columns are used to estimate the values of 5*.

Converting Card Numbers to Ranks

If the observations are card numbers, they are converted to ranks. If card number 7 has a value of
k, then r; = k.

Estimation

The estimates
~ ~ ! 7 -1 ’
(B5a877) = (x'x) Xy
are computed by using a QR decomposition (see MANOVA) where

)T if responses are scores
Yi n+1—r; ifresponses are ranks

The variance-covariance matrix of these estimates is
~9 st

& (X x)

where

t n

G2 =" (ryj —7i;)*/(nt —d —1—2g — 1)

i=1 j=1
The values of 4 are computed by
Y1 = A1 — 297
and
Y2 = Vi
with variances
var(§j1) = var (35,) — 4zco0 (%51, 3j2) + 43?1}@7’(’3/]-2)

and
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var(32) = var (3)

where

cov(Yj1, ¥j2) = cov (&;‘1, %2) — 2321)&7"(%2)
The value for Bo is calculated by

Bo = By — BT — (RunZi + 4in72)

with variance

var (ﬁg) = aE;lal

where
- - — —
a= (1, =Tl ooy — XLy — 215215+ s —zq,zq)
and
U(L‘T‘BS cov <B§, Bl) cov (BS, ﬁ’;‘1> cov ([;’8, %‘2)
Y, = varp )
varyy
varyg,
Utility (Part Worth) Values
Discrete Factors
ajk fork=1,...,m; —1
~ m;—1
YET) =D aj, fork =m
J=1
Linear Factors
i = STk

Ideal or Anti-ideal Factors

N R 22
’U;Jk = ’7]12]]4 + /Y]Qij
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Standard Errors of Part Worths

The standard error of part worth u;, = /var{u;;) where var(u;;) is defined below:

Discrete Factors

Uar(ézjk) fork=1,...,m; -1
var(ujk) =< m;—1 m;—1

Z 'var(djk) —2 Z Zcov (&ji, @jl) for k = m;

i=1 i=1 I<i

Linear Factors

UGT(U,J']C> = CL’%’UCL‘T‘ (B])

Ideal or Anti-ideal Factors

var (ujr) = zpvar(j1) + 223cov(31, 452) + zpvar(¥j2)

Importance Scores

The importance score for factor 7 is

ANGE;
IMP; = 100],}%#

Z RANGE;
=1

where RANGE; is the highest minus lowest utility for factor i. If there is a SUBJECT command,
the importance for each factor is calculated separately for each subject, and these are then
averaged.

Predicted Scores

p
Ty = Bo + E Ujk,,
Jj=1

where iy, is the estimated utility (part worth) associated with the k;;th level of the jth factor.
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Correlations
Pearson and Kendall correlations are calculated between predicted (#;) and the observed

(r;) responses. See the CORRELATIONS and NONPAR CORR chapters for algorithms. Pearson
correlations for holdouts are not calculated.

Simulations

Each person is assigned a probability p; for each simulation i. The probabilities are all computed
based on the predicted score (#;) for that product. The probabilities are computed as follows:

Max Utility

_ )1 if R = max (7)
Pi= Y0 otherwise

BTL

T
Pi = "

D7)
J

Logit

el
Pi =

Probabilities are averaged across respondents for the grouped simulation results. For the BTL and
Logit methods, only subjects having all positive #; values are used.
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The user-specified treatment for missing values is used for computation of all statistics except,
under certain conditions, the means and standard deviations.

Notation

The following notation is used throughout this section unless otherwise specified:

N Number of cases

X Value of the variable k for case /

w; Weight for case /

W Sum of weights of cases used in computation of statistics for variable k

Whj Sum of weights of cases used in computation of statistics for variables k and j
Statistics

The following statistics are available.

Means and Standard Deviations

]\T
Z w Xy
_ =1

Xk Wi
al 5

Sk = | | Do wiXpy — X Wi | /(Wi — 1)
-1

Note: If no treatment for missing values is specified (default is pairwise), means and standard
deviations are computed based on all nonmissing values for each variable. If missing values are to
be included or listwise is chosen, that option is used for means and standard deviations as well.

Cross-product Deviations and Covariances

The cross-product deviation for variables i and j is
N N N
Cij = Y wiXaXj — [ > wiXa || Y wiXj | /Wy

The covariance is
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Sij = 21—
YW -1

Pearson Correlation

Significance Level of r
The significance level for r;; is based on

Wij — 2

2

t=17i;
J
1—rZJ

which, under the null hypothesis, is distributed as a t with W;; — 2 degrees of freedom. By default,
the significance level is two-tailed.
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The CORRESPONDENCE algorithm consists of three major parts:
1. A singular value decomposition (SVD)
2. Centering and rescaling of the data and various rescalings of the results

3. Variance estimation by the delta method.

Other names for SVD are “Eckart-Young decomposition” after Eckart and Young (1936), who
introduced the technique in psychometrics, and “basic structure” (Horst, 1963). The rescalings
and centering, including their rationale, are well explained in Benzécri (1969), Nishisato (1980),
Gifi (1981), and Greenacre (1984). Those who are interested in the general framework of matrix
approximation and reduction of dimensionality with positive definite row and column metrics
are referred to Rao (1980). The delta method is a method that can be used for the derivation

of asymptotic distributions and is particularly useful for the approximation of the variance of
complex statistics. There are many versions of the delta method, differing in the assumptions
made and in the strength of the approximation (Rao, 1973, ch. 6; Bishop et al., 1975, ch. 14;
Wolter, 1985, ch. 6).

Other characteristic features of CORRESPONDENCE are the ability to fit supplementary
points into the space defined by the active points, the ability to constrain rows and/or columns to
have equal scores, and the ability to make biplots using either chi-squared distances, as in standard
correspondence analysis, or Euclidean distances.

Notation

The following notation is used throughout this chapter unless otherwise stated:

5] Total number of rows (row objects)

S Number of supplementary rows

k1 Number of rows in analysis ({1 — s1)

15} Total number of columns (column objects)
RY) Number of supplementary columns

ko Number of columns in analysis (t2 — s2)
4 Number of dimensions

Data-related quantities:

fis Nonnegative data value for row i and column j: collected in table F
fir Marginal total of row i, i =1, ..., k1

f+i Marginal total of column j, 7 =1, ..., ko

N Grand total of '
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Scores and statistics:

Tis Score of row object i on dimension s
Cis Score of column object j on dimension s
1 Total inertia

Basic Calculations

One way to phrase the CORRESPONDENCE objective (cf. Heiser, 1981) is to say that we wish
to find row scores {r;;} and column scores {¢;} so that the function

o({ris}ki{ejs}) = Z Zf“'z (rss — ¢js)”

8

is minimal, under the standardization restriction either that
Z firrisrie = 6%

i
or

i
Y Friciseii =8
j

where §°¢ is Kronecker’s delta and ¢ is an alternative index for dimensions. The trivial set of
scores ({1},{1}) is excluded.

The CORRESPONDENCE algorithm can be subdivided into five steps, as explained below.

Data scaling and centering

When rows and/or columns are specified to be equal, first the frequencies of the rows/columns
to be equal are summed. The sums are put into the row/column with the smallest row/column
number and the other rows/columns are set to zero.

Measure is Chi Square

The first step is to form the auxiliary matrix Z with general element

25 = fii A S+
I i Fr N

The standardization with Chi Square measure is always rcmean (both row and column means
removed.

Measure is Euclidean

When Euclidean measure is choosen, the auxiliary matrix Z is formed in two steps:

SRSV o8 o
> o=t TR
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With £, f1, and f77 depending on the standardization option.

N

rmean (remove row means).f; = fi;; f1 = fir; f3; = %,

cmean (remove column means).fg = fiis [ = %; =14

rcmean (remove both row and column means).fg = fips Sl = fins 15 = f4i

rsum (equalize row totals, then remove row means). = fi]ilf;*; = %; fjj = %
i 2

csum (equalize column totals, then remove column means).f; = fijfﬁf_“ sy = é\’—l; L= %
2

~

» Then, if not computed yet in the previous step, f/3 , or/and f7; are computed:

z75

~_ N g~ N o
z‘+_k1’f+j_k2’andzu—m

Singular value decomposition

When rows and/or columns are specified as supplementary, first these rows and/or colums of Z
are set to zero, yielding Z

Let the singular value decomposition of Z be denoted by
Z = KAL

with K'K = I, L'L = I, and A diagonal. This decomposition is calculated by a routine based
on Golub and Reinsch (1971). It involves Householder reduction to bidiagonal form and
diagonalization by a QR procedure with shifts. The routine requires an array with more rows
than columns, so when k; < k the original table is transposed and the parameter transfer is
permuted accordingly.

Adjustment to the row and column metric

The arrays of both the left-hand singular vectors and the right-hand singular vectors are adjusted
row-wise to form scores that are standardized in the row and in the column marginal proportions,
respectively:

Fis - kis/ i:,/*Na

&js = lis/+/ f3;/N.

This way, both sets of scores satisfy the standardization restrictions simultaneously.

Determination of variances and covariances

For the application of the delta method to the results of generalized eigenvalue methods under
multinomial sampling, the reader is referred to Gifi (1990, ch. 12) and Israéls (1987, Appendix
B). It is shown there that N time variance-covariance matrix of a function ¢ of the observed cell
proportions p = {p;; = f{;/N} asymptotically reaches the form
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N nto=E alEa) Sz || S g,

Opi;

Here the quantities 7;; are the cell probabilities of the multinomial distribution, and d¢/8p;; are
the partial derivatives of @ (which is either a generalized eigenvalue or a generalized eigenvector)
with respect to the observed cell proportion. Expressions for these partial derivatives can also

be found in the above-mentioned references.

Normalization of row and column scores

Depending on the normalization option chosen, the scores are normalized. The normalization
option ¢ can be chosen to be any value in the interval [-1,1] or it can be specified according to
the following designations:

0, symmetrical
qg==< 1, row principal

—1, column principal

There is a fifth possibility, choosing the designation “principal”, that does not correspond to
a g-value.

When “principal” is chosen, normalization parameters o for the rows and p for the columns are
both set to 1. When one of the other options is chosen, a and 3 are functions of ¢:

a = (1+¢)/2
p=(1-9)2

The normalization implies a compensatory rescaling of the coordinate axes of the row scores
and the column scores:

- @
Tis = ris>‘57
— =, 18
Cjs = Cjs ;.

The general formula for the weighted sum of squares that results from this rescaling is

TOW SCOTes: E frird, = N2>

. 28
column scores: Z I5; ]S = NX:

The estimated variances and covariances are adjusted according to the type of normalization
chosen.

Diagnostics

After printing the data, CORRESPONDENCE optionally also prints a table of row profiles and
column profiles, which are {f;;/fi; } and {fi;/f1;}, respectively.
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Singular Values, Maximum Rank and Inertia
All singular values \; defined in the second step are printed up to a maximum of
min {(k; — 1), (ks — 1)}. Small singular values and corresponding dimensions are suppressed

when they don’t exceed the quantity (kq kz)l/ *1077; in this case a warning message is issued.
Dimensionwise inertia and total inertia are given by the relationships

. f ™~ r.z
I = )\2 — 2+ 18
PR
where the right-hand part of this equality is true only if the normalization is row principal (but

for the other normalizations similar relationships are easily derived from step 5). The quantities
“proportion explained” are equal to inertia divided by total inertia: A\2/1.

Supplementary Points

Supplementary row and column points are given by

,Sup7§: i \2a—2
Tis = fN C]S/\s
G dit

Sup __ } : i \28-2
st - fN rls/\s
i +3

Mass, Scores, Inertia and Contributions

The mass, scores, inertia and contributions for the row and columns points (including
supplementary points) are given in the Overview Row Points Table and the Overview Column
Points Table. These tables are printed in p dimensions. The tables are given first for rows, then
for columns. The masses are the marginal proportions (f{} /N and f}; /N, respectively). The
inertia of the rows/columns is given by:

ko
_ 2
i

k1
_ E 2
i

For supplementary points, the contribution to the inertia of dimensions is zero. The contribution
of the active points to the inertia of each dimension is given by

R S

TlS - N >\2(M
s

~ 2

g o= 453 %
8 TN A2

The contribution of dimensions to the inertia of each point is given by
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o S
Ois =N~ 1,
~ 2 y2-28
0. — 5i Gt
is = N T I

Confidence Statistics of Singular Values and Scores

The computation of variances and covariances is explained in step 4. Since the row and column
scores are linear functions of the singular vectors, an adjustment is necessary depending on the
normalization option chosen. From these adjusted standard deviations and correlations are derived
in the standard way.

Permutations of the Input Table

For each dimension s, let p(i|s) be the permutation of the first ¢ integers that would sort the
sth column of {r;,} in ascending order. Similarly, let p(j|s)be the permutation of the first £,
integers that would sort the sth column of {¢;,} in ascending order. Then the permuted data

matrix is given by { f,(ijs).p(j1s) |-
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Cox (1972) first suggested the models in which factors related to lifetime have a multiplicative
effect on the hazard function. These models are called proportional hazards models. Under the
proportional hazards assumption, the hazard function 4 of ¢ given X is of the form

h(t|x) = ho(t)e #

where x is a known vector of regressor variables associated with the individual, 3 is a vector of
unknown parameters, and kg (¢) is the baseline hazard function for an individual with x = 0.
Hence, for any two covariates sets x; and x», the log hazard functions A(t|x;) and h(t|x2) should
be parallel across time.

When a factor does not affect the hazard function multiplicatively, stratification may be useful in
model building. Suppose that individuals can be assigned to one of m different strata, defined
by the levels of one or more factors. The hazard function for an individual in the jth stratum is
defined as

?

hi(t]x) = hoj(t)e* #

There are two unknown components in the model: the regression parameter 3 and the baseline
hazard function hg,;(¢). The estimation for the parameters is described below.

Estimation

We begin by considering a nonnegative random variable 7 representing the lifetimes of individuals
in some population. Let f(¢|x) denote the probability density function (pdf) of 7 given a regressor
x and let S(t|x)} be the survivor function (the probability of an individual surviving until time

t). Hence

S(thx) = [ (ulx)du
t
The hazard h(¢|x) is then defined by

h(t|x) = F(tx)

S(¢[x)

Another useful expression for S(¢|x) in terms of A(t|x) is

S(tx) = exp (—/Oth(ux)du>

Thus,
i
InS(tx) = f/ h{u|x)du
0
For some purposes, it is also useful to define the cumulative hazard function
t
H(t|x) = / hiu|x)du = —In S(t|x)
0

© Copyright IBM Corporation 1989, 2011. 132
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Under the proportional hazard assumption, the survivor function can be written as
S(tlx) = [So(1))* (2)
where Sy (t) is the baseline survivor function defined by
Sa(t) = exp (—Ho(t))
and
¢
Hoy(t) = /0 ho(u)da
Some relationships between S(t|x), H(¢|x) and Hy(t), So(t) and hg(t) which will be used later are
In (%) = ~H(t}x) = — exp (x 8) Ho(t)

In(—1In S(tx)) = x 8+ In Hy(t)

To estimate the survivor function S(¢|x), we can see from the equation for the survivor function
that there are two components, 8 and Sy(¢), which need to be estimated. The approach we use
here is to estimate /3 from the partial likelihood function and then to maximize the full likelihood
for Sy(%).

Estimation of Beta

Assume that
m  There are m levels for the stratification variable.
® Individuals in the same stratum have proportional hazard functions.

m  The relative effect of the regressor variables is the same in each stratum.

Lett;; < --+ <t be the observed uncensored failure time of the n; individuals in the jth
stratum and x;y, . . ., x;, be the corresponding covariates. Then the partial likelihood function is
defined by

m kK eSIjiﬁ

L(g) = H H ;i
Z wlex,zﬁ

IER;;

where dj; is the sum of case weights of individuals whose lifetime is equal to ¢;; and S; is
the weighted sum of the regression vector x for those d;; individuals, w; is the case weight of
individual /, and R;; is the set of individuals alive and uncensored just prior to t;; in the jth
stratum. Thus the log-likelihood arising from the partial likelihood function is

m  kj

m kj ,
I=WLB) =3 SuB-> > duln| > we?

j=1i=1 j=14i=1 lER;;
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and the first derivatives of / are

> wyzpe* P

lERji
Uﬁr E § ,ﬁ , T=1,...,p
E : x
j=1i=1 wie !

I€R;;

S’ (") is the rth component of S;; = (S](:Ll), s S (p )) The maximum partial likelihood estimate
(MPLE) of 3 is obtained by setting 57~ equal to zero for r=1,...,p, where p is the number of
independent variables in the model. The equations W =0 (r =1,...,p) can usually be
solved by using the Newton-Raphson method.

Note that from its equation that the partial likelihood function L(3) is invariant under
translation. All the covariates are centered by their corresponding overall mean. The overall mean
of a covariate is defined as the sum of the product of weight and covariate for all the censored and
uncensored cases in each stratum. For notational simplicity, x; used in the Estimation Section
denotes centered covariates.

Three convergence criteria for the Newton-Raphson method are available:
B Absolute value of the largest difference in parameter estimates between iterations (§) divided
by the value of the parameter estimate for the previous iteration; that is,

BCON = . 9 — .
parameter estimate for previous iteration

m  Absolute difference of the log-likelihood function between iterations divided by the
log-likelihood function for previous iteration.

B Maximum number of iterations.

The asymptotic covariance matrix for the MPLE 8= (Bl, 3p> is estimated by I=! where I
is the information matrix containing minus the second partial derivatives of In L. The (7, s)-th
element of I is defined by

I, =-Egglas;nL

S5
, ,
i > wizszpe™ P > wzpe* > wiage* P
m 3

lERy; IER;; [€ER;;
S%0 _— 2
xX
=1 =1 E wre™ ! >
xX
I€R; § wpe !

leR;;

We can also write I in a matrix form as

k;

o= (00 V (1)

=1 1:=1
where x(¢;;) is a n;; x p matrix which represents the p covariate variables in the model evaluated

at time ¢;;, nj; is the number of distinct individuals in R;;, and V (¢;;) is a nj; x nj; matrix with
the /th diagonal element vy;(t;;) defined by
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vnltys) = pulti)wn — (wip(t5:))?

exp (xllf'?)

TS e (<)

heR;;

ni(ti)

and the (/, k) element vx(t;;) defined by

vk (i) = wipi(t:) X wepk(ti)

Estimation of the Baseline Function

After the MPLE 3 of 8 is found, the baseline survivor function Sy, (t) is estimated separately for
each stratum. Assume that, for a stratum, #; < --- < ¢, are observed lifetimes in the sample.
There are n; at risk and d; deaths at ¢;, and in the interval [t;_1,%;) there are A; censored times.
Since S (t) is a survivor function, it is non-increasing and left continuous, and thus Sy (¢) must be
constant except for jumps at the observed lifetimes ¢4, ..., tf.

Further, it follows that

So(t1) =1

and

So(ti+) = So(tis1)

Writing So(t;+) = pi(i = 1,..., k), the observed likelihood function is of the form

L= ﬁ { 11 (pfxﬁ (0) _ o (XIlﬂ)>wllgi (pjxﬁ ("I"B))wl} 1l <p:<p (X'zﬁ)>wl

i=1 \leD; 1€Ck1

where D; is the set of individuals dying at ¢; and C; is the set of individuals with censored times in
[ti-1,t;). (Note that if the last observation is uncensored, C'yy1 is empty and py = 0)

Ifwe let o; = p;/p;—1(i = 1,...,k), Ly can be written as

k s o w ,
Ll:HH (l_a;ﬂcp(xzﬁ)> ! H a;)lexp(xzﬁ)

i=11€D leR;—D;

Differentiating In L.; with respect to o, .. ., o and setting the equations equal to zero, we get
w; exp (x’l B) ,

ZWZZ’MZGXP(Xlﬁ> 1217...,]\7

lep; 1 —ay leR;

We then plug the MPLE 3 of 3 into this equation and solve these k equations separately.

There are two things worth noting:

m Ifany |D;| = 1, &; can be solved explicitly.
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|' -| exp (—Xlzﬁ)
a = |1— w; exp (Xli/j? _
{ Zwlexp (x l,B)J
leR;
m If|D;| > 1, the equation for the cumulative hazard function must be solved iteratively for
&;. A good initial value for é; is

~ —d;
G = €Xp v
Z wy exp (x lﬁ)
leR;
where d; = Z w; 1s the weight sum for set D;. (See Lawless, 1982, p. 361.)
leD;

Once the &;, 7 =1,...,k are found, Sy(t) is estimated by
Sot)y = J[ &
i:(t.,' <t)

Since the above estimate of .Sy (¢) requires some iterative calculations when ties exist, Breslow
(1974) suggests using the equation for «; when |D;| > 1 as an estimate; however, we will use
this as an initial estimate.

The asymptotic variance for — In S, (t) can be found in Chapter 4 of Kalbfleisch and Prentice
(1980). At a specified time ¢, it is consistently estimated by

va,r<f In So(t)) = Z | D;| (Z wy exp (xllﬁ)) -2 +aTla
ti<t 1ER;

where a is a px1 vector with the jth element defined by

Z Wplyj exp (Xllf})
Z ‘Dz‘ IER; .
bt (Z Wy exp (x,l,é))

I€ER;

and I is the information matrix. The asymptotic variance of S(t|x) is estimated by

2B (S(tlx)) 2var (7 In So(t))

Selection Statistics for Stepwise Methods

The same methods for variable selection are offered as in binary logistic regression. For more
information, see the topic Stepwise Variable Selection on p. 531. Here we will only define the
three removal statistics—Wald, LR, and Conditional—and the Score entry statistic.
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Score Statistic

The score statistic is calculated for every variable not in the model to decide which variable should
be added to the model. First we compute the information matrix I for all eligible variables based
on the parameter estimates for the variables in the model and zero parameter estimates for the
variables not in the model. Then we partition the resulting I into four submatrices as follows:

|:A11 A12 :|
A21 A22

where A;; and A,; are square matrices for variables in the model and variables not in the model,
respectively, and A, is the cross-product matrix for variables in and out. The score statistic
for variable x; is defined by

1
D E¢B22,iD£I:i

where D, is the first derivative of the log-likelihood with respect to all the parameters associated

) . 1 .
with x; and Bay; is equal to (Aga; — Agl_,iAﬁlAlgli) ,and Ay ; and A;,; are the submatrices
in A,; and A, associated with variable x;.

Wald Statistic

The Wald statistic is calculated for the variables in the model to select variables for removal.
The Wald statistic for variable x; is defined by

B;‘Bll,ij

where Bj is the parameter estimate associated with x; and By; ; is the submatrix of A;;' associated
with X; .

LR (Likelihood Ratio) Statistic

The LR statistic is defined as twice the log of the ratio of the likelihood functions of two models
evaluated at their own MPLES. Assume that r variables are in the current model and let us call
the current model the full model. Based on the MPLES of parameters for the full model, /(full)
is defined in Estimation of Beta . For each of r variables deleted from the full model, MPLES
are found and the reduced log-likelihood function, /(reduced), is calculated. Then LR statistic is
defined as

=2(l(reduced) — I(full))

Conditional Statistic

The conditional statistic is also computed for every variable in the model. The formula for
conditional statistic is the same as LR statistic except that the parameter estimates for each
reduced model are conditional estimates, not MPLES. The conditional estimates are defined as
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follows. Let 3 = (Bl, . 37.) be the MPLES for the r variables (blocks) and C be the asymptotic

covariance for the parameters left in the model given j3; is

5 5 i D\ s

By = By — €8 (Cg )) Bi

where j3; is the MPLE for the parameter(s) associated with x; and B(i) is 4 without 4;, C§Q is

the covariance between the parameter estimates left in the model B(,L-) and 3;, and ng) is the
covariance of 5;. Then the conditional statistic for variable x; is defined by

—2(U(be) — 1(full))
where Z(B(i)> is the log-likelihood function evaluated at B(i).

Note that all these four statistics have a chi-square distribution with degrees of freedom equal to
the number of parameters the corresponding model has.

Statistics

The following output statistics are available.

Initial Model Information

The initial model for the first method is for a model that does not include covariates. The
log-likelihood function / is equal to

m  kj

10) ==Y djiln(n})

j=1i=1

where n7; is the sum of weights of individuals in set R;;.

Model Information

When a stepwise method is requested, at each step, the —2 log-likelihood function and three
chi-square statistics (model chi-square, improvement chi-square, and overall chi-square) and their
corresponding degrees of freedom and significance are printed.

-2 Log-Likelihood

m kK
—22 Z Slji,’é — dji In Z w; exXp (X,lfé)

j:l i=1 lERJ‘i

where 3 is the MPLE of 3 for the current model.
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Improvement Chi-Square
(-2 log-likelihood function for previous model) — ( -2 log-likelihood function for current model).

The previous model is the model from the last step. The degrees of freedom are equal to the
absolute value of the difference between the number of parameters estimated in these two models.

Model Chi-Square
(-2 log-likelihood function for initial model) — ( -2 log-likelihood function for current model).
The initial model is the final model from the previous method. The degrees of freedom are equal
to the absolute value of the difference between the number of parameters estimated in these

two model.

Note: The values of the model chi-square and improvement chi-square can be less than or equal to
zero. If the degrees of freedom are equal to zero, the chi-square is not printed.

Overall Chi-Square

The overall chi-square statistic tests the hypothesis that all regression coefficients for the variables
in the model are identically zero. This statistic is defined as

u' (0)I1u(0)

where u(0) represents the vector of first derivatives of the partial log-likelihood function evaluated
at 5 = 0. The elements of u and I are defined in Estimation of Beta .

Information for Variables in the Equation

For each of the single variables in the equation, MPLE, SE for MPLE, Wald statistic, and its
corresponding df, significance, and partial R are given. For a single variable, R is defined by

1/2
— Wald—2 .
E= [_2 Tog-Tikelihood for the intial model] x sign of MPLE

if Wald > 2. Otherwise R is set to zero. For a multiple category variable, only the Wald statistic,
df, significance, and partial R are printed, where R is defined by

172
R— _ Wald-2.df /
-2 log-likelihood for the intial model

if Wald > 2df. Otherwise R is set to zero.
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Information for the Variables Not in the Equation

For each of the variables not in the equation, the Score statistic is calculated and its corresponding
degrees of freedom, significance, and partial R are printed. The partial R for variables not in the
equation is defined similarly to the R for the variables in the equation by changing the Wald
statistic to the Score statistic.

There is one overall statistic called the residual chi-square. This statistic tests if all regression
coefficients for the variables not in the equation are zero. It is defined by

i ()33
where u(ﬁ) is the vector of first derivatives of the partial log-likelihood function with

respect to all the param{eters not in the equation evaluated at MPLE /3 and B, is equal to
(As2 — A2;A7'As) and A is defined in Score Statistic .

Survival Table

For each stratum, the estimates of the baseline cumulative survival (Sy) and hazard (H,) function
and their standard errors are computed. H(¢) is estimated by

H()(t) =—In g()(t)

and the asymptotic variance of Hy(#) is defined in Estimation of the Baseline Function . Finally,
the cumulative hazard function H (¢|x} and survival function S(¢|x) are estimated by

H(tx) = exp (x'3) Ho t)
and, for a given X,

N N exp XI,B

8(tx) = [So()] 2)

The asymptotic variances are

var (ﬁ(tlx)) = exp (QX’B> var (f[o (t))

and

var (g(tlx)) = exp (QX'B) (g(tlx))zva,r(ffo(t)>

Diagnostic Statistics

Three casewise diagnostic statistics, Residual, Partial Residual, and DFBETAs, are produced.
Both Residual and DFBETA are computed for all distinct individuals. Partial Residuals are
calculated only for uncensored individuals.

Assume that there are n; subjects in stratum j and k; distinct observed events t1 < - -+ < #y,.
Define the selected probability for the /th individual at time ¢; as
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exp (X,l (tz)B)

Z wy, exp (X,h(ti)B)

m (tz) = heR;

if /th individual is in R;

0 otherwise

and

kg
W = Zdi [pa(ti) — pi (t:)]

(t:) = 1 if/th individual is in D;
Y% =90 otherwise
k;

= Z (i (ts) — dipi (83)]

i=1

The changes in the maximum partial likelihood estimate of beta due to the deletion of a single
observation have been discussed in Cain and Lange (1984) and Storer and Crowley (1985). The
estimate of DFBETA computed is derived from augmented regression models. The details can be
found in Storer and Crowley (1985). When the /th individual in the jth stratum is deleted, the
change Ag,; is estimated by

1y-1
Afy = -1y

where

w= ulz'ag(wl7 ceey wnﬂ)

k;
v = Z dipr(t:)(xi(t;) — x(t;)wp(t;))

p(ti) = (pl(ti)v <oy Pny, (tl))
mp = u; — Ullilvl

and x (#;) is an nj; x p matrix which represents the p covariate variables in the model evaluated at
t;, and nj; is the number of individuals in R;;.

Partial Residuals

Partial residuals can only be computed for the covariates which are not time dependent. At time
t; in stratum j, 2, is the px1 observed covariate vector for any gth individual in set D;, where
D; is the set of individuals dying at ¢;. The partial residual v, is defined by

A/gl
Y= .. | =x4—p{ti)x
,ygl)
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Rewriting the above formula in a univariate form, we get

E W1 €XP (X ZB)
leR;
Voh = Zgh — = h=1,...,p,9 € D;

Z wy exp (XIZB> ’

leR;

where x4, is the ith component for 2,. For every variable, the residuals can be plotted against
times to test the proportional hazards assumption.

Residuals

The residuals e; are computed by
€; = I:I(t,|x7) = exXp (X/iB) (ﬁg(@))

which is the same as the estimate of the cumulative hazard function.

Plots
For a specified pattern, the covariate values x,. are determined and x,. is computed. There are three
plots available for Cox regression.
Survival Plot
For stratum j, (ti, Sy (ti\xc)), i=1,...,k; are plotted where
N N exp (x, p’g)
S(tifx.) = (So(t:))
When PATTERN(ALL) is requested, for every uncensored time ¢; in stratum j the survival
function is estimated by
ks k; o
e A i ~ eXp X Cﬁ
3 wiS(tilxe) wi(So(ts)) (7)
Grpy _ I=1 _i=1
S(t;) = Py = P
>_wi >_wi
1=1 1=1
Then (ti, S‘(ti)), i=1,...,k; are plotted for stratum ;.
Hazard Plot

For stratum j, (ti7 Igl(ti\xc)), i=1,...,k; are plotted where

H(t;|x.) = exp (X'cfé)ﬁo(ti)
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LML Plot

The log-minus-log plot is used to see whether the stratification variable should be included as
a covariate. For stratum j, (ti, X 5+ 1n flo(ti) ,t=1,...,k; are plotted. If the plot shows
parallelism among strata, then the stratum variable should be a covariate.
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CREATE produces new series as a function of existing series.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Existing Series X1, ..., Xn

New Series Yi, ..., Y,

Cumulative Sum (CSUM(X))

J
Y; = ZXi j=1,....,n
=1

Differences of Order m (DIFF(X,m))

Define

Zik)=Zj(k—1)—Z; 1(k—1) k=1,....m j=k+1,...

with

Y; = Zj(m) J=m+l1,.
SYSMIS otherwise

Lag of Order m (LAG(X,m))

}/ X—m j=m ‘|'1 .,’n
SYSMIS j—1,.

Lead of Order m (LEAD(X,m))

Y, = Xjtm ij=1...,n—m
SYSMIS ]—n—m+1

© Copyright IBM Corporation 1989, 2011. 144
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Moving Average of Length m (MA(X,m))

If m is odd, define

- om— 1
1=
then
q
Y. = ZXj+k/7n JZQ+1,Jn—q
=
k=—q
SYSMIS otherwise

If m is even, define ¢ = m/2 and

q

k=—q+1
then
vi o (Zj1+Z)/2 j=q+1,...,n—¢
J SYSMIS otherwise

Running Median of Length m (X,m)

If m is odd,

m—1

q:

J

SYSMIS otherwise

If m is even, define

Zj:median(Xj,qH,...,Xj,XjH,.. Xj+q) j:q,...,n—q

?

then

Y. = (Z]_1+Z])/2 ]:C.Z+1;,7l'—q
J SYSMIS otherwise

where

N _ [ag if k& 1sodd
median(ay, ..., a) = (a(l) + a(l+1))/2 if k£ is even

[ — (k+1)/2 if k isodd
T 2 if k is even

Y. — {median(Xj_q,Xj_q_,_l,...,Xj,Xj+1,...,Xj+q) j =q+ 1,

N —4g

CREATE Algorithms
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and a(y) < a) < ... < ag, is the ordered sample of ay, .. ., ax.

Seasonal Differencing of Order m and Period p (SDIFF(X,m,p))
Define

Zik)=Zjk—1)—Z; p(k—1) k=1,....m j=pk+1,...,n

where

then

Y;=2Zij(m) j=mp+1,...,n

The T4253H Smoothing Function (T4253H(X))

The original series is smoothed by a compound data smoother based on (Velleman, 1980). The
smoother starts with:

» A running median of 4:
Let Z be the smoothed series, then
Ziy1/2 = median(X;-1, Xj, Xjp1, Xjp2) j=2,...,n—2

and

Z(g.lg = X1 Zf.l) = median(X1, X3) = 5(X1 + Xa)

VA 1_) = median(X,—1, X,) = %(Xn—l + Xn) Z(l)

n+1/2 — Xn

» A running median of Z:
Zfl) = Zos 2y = nt1/2
and
Za('l) =3(Zjp+Ziap) J=2....n-1
» A running median of 5 on Zfl), ey 2z from the previous step:

Let Z(?) be the resulting series, then
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29 =29 2 = 7!

Z§2) = median <Z1(1)7 Z2(1)’ Z?(’l))

n—1 " n—2

A —medz’an(Z(l) ZT(Ll_)l,Zr(Ll))

and

1)
J
» A running median of 3 on Zfl)., ey 2z from the previous step:

Let Z®) be the resulting series, then

(3) _ ; 2) (2 (2
Z]- = medmn(Zj_l, Zj 7Zj—|—1

) j:2’37"'7n_1
Zl(?’) = median <3Z2(3) - 223(,3); Z{2), Zég))

ZT(L3) = median <3Z(3) — 2Z(3) ZT(L2), Z(?f1>

n—1 n—2 n

» Hanning (Running Weighted Averages):

4 3 3 3 .
Z']('):%Z‘]('—)l—i_%z‘}()—i_iz_](—gl j=2,...,n—1

» Residual:

Di=X,—-2Z% i=1..n
» Repeat the previous steps on the residuals Dy, ..., D,:

» Let D§4)7 cee DS be the final result.

» Final smooth:

Yi=2z%+D® i=1..n

Prior Moving Averages of Length m (PMA(X,m))

i—1
v _ Z Xij/m i=m+1,...,n
=

j=i—m

SYSMIS i=1,...,m

2P = median <Z](1_)2, 7z, 2, 20, Zﬁz) j=3...,n—2

CREATE Algorithms
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Fast Fourier Transform (FFT(X))

The discrete Fourier transform of a sequence X = {Xy,..., X,,} is defined as

e
Y, = %ZXt exp {—i2m fi.(t — 1)}

t=1
_ %Z Xy[cos (2 fi(t — 1)) — isin (2a fy(t — 1))]
t=1
=33 Xycos 2 fy(t — 1)) +1i —%Z X, sin (21 fi(t — 1))
t=1 =1
=ap + Zbk

Thus a, b are two sequences generated by FFT and they are called real and imaginary, respectively.

n
ay = 1Y Xicos nfylt -1)) k=1,..r
=1

n
bp=—2> Xysin(rfp(t—1)) k=1,....r
t=1

where

- (n—1)/2 if n isodd
T n/2 if n iseven

and

(10:7

= ——ZXtCOb (t—1))

Inverse Fast Fourier Transform of Two Series (IFFT(a,b))

The inverse Fourier Transform of two series {a, b} is defined as

q q
X = ag — bgcos (m(t — 1)) Zakcos 2rfr(t — 1)) Zbksm 2 fre(t — 1))
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The notation and statistics refer to bivariate subtables defined by a row variable X and a column
variable Y, unless specified otherwise. By default, CROSSTABS deletes cases with missing
values on a table-by-table basis.

Notation

The following notation is used throughout this section unless otherwise stated:

X;
Y;
fis

Cj

T

Distinct values of row variable arranged in ascending order:
X1<Xa< - <Xpr

Distinct values of column variable arranged in ascending order:
Yi<Ye< - - <Ye

Sum of cell weights for cases in cell (z, 7)

R
Z fi;, the jth column subtotal

i=1

&
Z fij, the ith row subtotal
j=1
R

c
Z ¢ = Z r;, the grand total
=1

=1

Marginal and Cell Statistics

Count

count = f; j

Expected Count
ricj

R

Row Percent
row percent = 100 x (fi;/r;)

Column Percent

column percent = 100 x (fij/Cj)

Total Percent

total percent = 100 x (f;;/W)

© Copyright IBM Corporation 1989, 2011. 150
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Residual
Rij = fij — Bij

Standardized Residual

SRij =

Adjusted Residual

VEi (1= ) (1- &)

AR;; =

Chi-Square Statistics
Pearson’s Chi-Square

2
2 o Wi — Eiy)
Ao = Z E;j

ij

The degrees of freedom are (B — 1)(C — 1).

Likelihood Ratio
Xir =2 fijln(fij/Eij)
1j

The degrees of freedom are (B — 1)(C — 1).

Note: when f;; = 0, the entire term f;; In (fi;/E;;) is treated as 0, because nlzm

o log (n) =0,

and thus has no effect on the sum.

Fisher's Exact Test

If the table is a 2 x 2 table, not resulting from a larger table with missing cells, with at least one
expected cell count less than 5, then the Fisher exact test is calculated. For more information, see
the topic Significance Levels for Fisher’s Exact Test on p. 962.

Yates Continuity Corrected for 2 x 2 Tahles

2= { Wdfnfhri%&ifz;'_o'sw) ifl fi1 fo2 — f12f21[>0.5W
¢ 0 otherwise
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The degrees of freedom are 1.
Mantel-Haenszel Test of Linear Association

X?MH = (W — 1)7’2

where r is the Pearson correlation coefficient to be defined later. The degrees of freedom are 1.

Other Measures of Association

Phi Coefficient

For a table not 2 x 2

For a 2 x 2 table only, ¢ is equal to the Pearson correlation coefficient so that the sign of
¢ matches that of the correlation coefficients.

Coefficient of Contingency

2 1/2
CC = | 22
(X?, + W)

Cramérs V

) 1/2
vt
(W(q = 1))

where ¢ = min {R, C}.

Measures of Proportional Reduction in Predictive Error

Lambda

Let fim and f,,; be the largest cell count in row i and column j, respectively. Also, let r,,, be
the largest row subtotal and ¢, the largest column subtotal. Define Ay | x as the proportion of
relative error in predicting an individual’s Y category that can be eliminated by knowledge of
the X category. Ay |x is computed as
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R

Zfim — Cm

Ayix =

i—=1
W —en,

The standard errors are

2

R C R
oD il —8)" - (Z fim — cm) JW
=1

i=1 j=1

Aty =

R C
Z Z fij (055 — 05 + )\5]‘)2 - LV)‘YIX

i=1 j=1

W—cp,

if 7 is column index for f;;,
otherwise

if 7 is index for ¢,
otherwise

CROSSTABS Algorithms

Lambda for predicting X from Y, Ay x, is obtained by permuting the indices in the above formulae.

The two asymmetric lambdas are averaged to obtain the symmetric lambda.

R C
Zfzm + Z fmj —Cm —Tm
= =1

N\ =

2W —ry — cm

The standard errors are

R C ) R C
' i=1 j=1

2
Cm — Tm) /VV

ASEy =

2W -7,y —em

ASE, =

where

2W —rm—ecm
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i — 10 otherwise

or { 1 if ¢ is row index for f,;
ij

5T — 1 ifiis ipdex for 7y,
i 0 otherwise

and where
56 — { 1 if j is column index for f;p,
ij

0 otherwise

5¢ = 1 if j is index for ¢y,
© 7 10 otherwise

Goodman and Kruskal's Tau

Similarly defined is Goodman and Kruskal’s tau (7)(Goodman and Kruskal, 1954):

C
W (15 =D
i

Jj=1

C
17 2
LSS
j=1

TY|X =

with standard error

2
C C
ASEy = | &30 fij{(v ) (}Z figes - c]) - Wa(%Z 72— %f,,) }
] b =1 E *

2 le

in which
C c
2 2
§=W2=3 "¢ and v=WY fi/ri=>
i=1 inj j=1

7x|y and its standard error can be obtained by interchanging the roles of X'and Y.

The significance level is based on the chi-square distribution, since
2
(W =1)(C = Dryx ~ X(g-1)(c-1)

(VV - 1)(R - 1)7—X\Y ~ X%Rfl)(cfl)
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Uncertainty Coefficient

Let Uy x be the proportional reduction in the uncertainty (entropy) of Y that can be eliminated by
knowledge of X. It is computed as
o UX)+UY) - U(XY)

i U()

1=

R Tr; 7
1
C

-5 o ()

J=1

and
fi fi
ngl ” , fOI‘fij >0
The asymptotic standard errors are

ASE; = WU(Y)QJZLJ{ ("jf’)HU(X) U(XY)U“(ICA})}Q

2

_ VP WUOHU(Y) UXY)]?

ASE WU Y)]
where
cir;
P=) f <ln< J 2 )
z‘zj " Wfij

The formulas for Uy y- can be obtained by interchanging the roles of X and Y.

A symmetric version of the two asymmetric uncertainty coefficients is defined as follows:

UX)+UY) - U(XY)}
U(X)+U(Y)

=

with asymptotic standard errors

ASEl—TJZfH{ (gg)—[U(X)+U(Y)]ln<%>}z
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or

2

e oV E - W) U - Uy )R

ASEy =

Cohen’s Kappa

Cohen’s kappa (x), defined only for square table (R = ('), is computed as

R R
WY fa— Y ric
_ = i=1

k= R
w2 - E riC;
i=1

with variance

r=W (Xfi)(w-Efi) + 2(W- Nfu) (28 fuXrici — WEfu(ri + i)
vary = (W2— Xric;)” (w2- Xric;)’

(w- X fi)’ lwz fig(rj 4 e)? — 4(27“1'61')2]
l’(]W27 Erici)4

varg = - <W2_ lzm>2 {W‘A’ (Z mi) + (Z ricl-)Q - W(Z rici(ri + cz-))}

Kendall's Tau-b and Tau-c

Define

+
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R
D, =W?*-) r}
i=1

C
De=W2-> "¢
j=1

Cij =3 Y e+ D> Fuk

h<i k<j h>i k>j
Dij =22 fu+ 2.2 Ik
h<i k>j h>i k<j

P = Z 1iiCi;
.7

Q=) fiDy
1,)

Note: the P and Q listed above are double the “usual” P (number of concordant pairs) and Q
(number of discordant pairs). Likewise, D, is double the “usual” P + @ + X, (the number of
concordant pairs, discordant pairs, and pairs on which the row variable is tied) and D, is double
the “usual” P + @ + Y; (the number of concordant pairs, discordant pairs, and pairs on which
the column variable is tied).

Kendall's Tau-b
P—qQ
VD, D,

with standard error

Tp =

2
ASEI = ﬁ Z fij (2 DTDC(C,'J' — Dij) + Tb'Uij) — W37-b2(Dr + DC)2

4,9

where
Vi = riD. + CJ'DT

Under the independence assumption, the standard error is

> £i5(Cij — Dy)? — i(P - Q)

- 1%
ASEq = 2\ 2

D, D,



158

CROSSTABS Algorithms

Kendall’s Tau-c

q(P — Q)

T W (g 1)

with standard error

ASE; = (47—2% izjfz‘j<0ij ~ D) - %(P - Q)
or, under the independence assumption,
ASEq = 27q > £i(Cij — Dig)? - i(P - Q)
(¢ — W2 r w
where
g=min{R,C}
Gamma

Gamma () is estimated by

_P-q
- P+Q

v

with standard error

B 4 - o N2
ASE; = Foor \/Z; fi;(QCij — PDyj)

or, under the hypothesis of independence,

ASEv = 5 %:f”(% Dij)” = (P = Q)

Somers’ d

Somers’ d with row variable X as the independent variable is calculated as

P-Q
dyix = —5
)

with standard error
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ASEy = 55 |57 FiDy(Cy — Dy) — (P~ Q)W ~ Ry))?
T ’L,_]

or, under the hypothesis of independence,

2 1
ASEq = b > £ii(Cij — Diy) - (P Q)
i

By interchanging the roles of X and Y, the formulas for Somers’ d with X as the dependent

variable can be obtained.

Symmetric version of Somers’ d is

(P —Q)
5(De+ Dy)

The standard error is

9 2
ASE; = —2n /D D,

(Dr + De)

where afb is the variance of Kendall’s 7,

_ 4 e pt_ Lip g2
ASEO_W\/%:J”U(O” D;;) W(P Q)

Pearson's r

The Pearson’s product moment correlation » is computed as

cov(X,Y)
S(X)S(Y)

S
T
where

R C
cov(X,Y):ZXinfij—<ZXm> > Vi | /W
ij i=1 j=1

R R 2
S(X) = Z X2r; — (Z Xm> /W
=1 =1

and
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2
C C
SY) =) Yieg— D Yiey | /W
j=1 j=1

The variance of r is

var = Y fij{T(Xi SX) (- T) - o [(5 - XS0 + (% - 7800 }2

If the null hypothesis is true,

2

S (S |
0] 0]

varg =
() (e
i i
where
R
X =) Xiry/W
1=1
and

C
YV =Y Y /W
j=1

Under the hypothesis that p = 0,

rvW =2
V1 —r?

is distributed as a ¢ with W — 2 degrees of freedom.
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Spearman Correlation

The Spearman’s rank correlation coefficient r; is computed by using rank scores R; for X; and
C; for Y;. These rank scores are defined as follows:

RZ:ZT]{+(T1+1)/2 fori:1727"‘7R
k<i

Cj:Zch+(cj+1)/2 forj=1,2,...,C

h<j

The formulas for r, and its asymptotic variance can be obtained from the Pearson formulas by
substituting R, and C; for X; and Y}, respectively.

Eta
Asymmetric  with the column variable Y as dependent is
7’ _ 1 _ S)/VV
Y 5(Y)
where
2
R 1 C
2
S = 2= X 1 Xk
3 i=1 * \j=1
Relative Risk
Consider a 2 x 2 table (that is,R = C' = 2). In a case-control study, the relative risk is estimated as
Ry = J11/22
Ji2f2

The 100(1 — «) percent CI for the relative risk is obtained as
[Ro exp (—21_q/9v), Roexp (21_4/20) ]

where

(1+1+1+1>1/2
V= _— — —_— RN
fir  fiz far o fa

The relative risk ratios in a cohort study are computed for both columns. For column 1, the risk is
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_ fui(fa1 + fa2)
fo1(f11 + f12)

and the corresponding 100(1 — «) percent CI is

Ry

[Rl exp (—zl_a/y)), Ryexp (zl_a/gv) ]

where

= ( fi2 v fa2 >1/2
Jii(fi1 + f12)  far(for + fa2)

The relative risk for column 2 and the confidence interval are computed similarly.

McNemar-Bowker's Test

This statistic is used to test if a square table is symmetric.

Notations
n Dimension of the table (both row and column)
Dij Unknown population cell probability of row i and column j
Tij Observed counts cell count of row i and column j
Algorithm

Given a n x n square table, the McNemar-Bowker’s statistic is used to test the hypothesis
Hy : pij = py; for all (i<j) v.s. Hy @ ps; # pji for at least one pair of (i,7). The statistic is defined
by the formula

2oy I (ngj +nji > 0) (nyj — nji)*
— Nj; + nj;

1<)

Where /() is the indicator function. Under the null hypothesis, x? has an asymptotic Chi-square

distribution with n (n — 1) /2 degrees of freedom. The null hypothesis will be rejected if x? has a

large value. The two-sided p-value is equal to 1 — F (n(n — 1) /2,x?), where F (df, - ) is the

CDF of Chi-square distribution with df degrees of freedom.

A Special Case: 2x2 Tables

For 2x2 table, the statistic reduces to the classical McNemar statistic (McNemar, 1947) for which
exact p-value can be computed. The two-tailed probability level is
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7”21)
n12 + n21 T2 +Na:
(" )are)

Conditional Independence and Homogeneity

The Cochran’s and Mantel-Haenzel statistics test the independence of two dichotomous variables,
controlling for one or more other categorical variables. These “other” categorical variables define
a number of strata, across which these statistics are computed.

The Breslow-Day statistic is used to test homogeneity of the common odds ratio, which is a weaker
condition than the conditional independence (i.e., homogeneity with the common odds ratio of

1) tested by Cochran’s and Mantel-Haenszel statistics. Tarone’s statistic is the Breslow-Day
statistic adjusted for the consistent but inefficient estimator such as the Mantel-Haenszel estimator
of the common odds ratio.

Notation and Definitions

K
fijk

Cik

Tik

Nk

Eijk

The number of strata.

Sum of cell weights for cases in the ith row of the jth column of the kth strata.

R
Z fi;&, the jth column of the kth strata subtotal.
i=1

c
Z fi;k, the ith row of the kth strata subtotal.

j=1
¢ R
Z Cik = Z rix, the grand total of the kth strata.
j=1 i=1

E(fijr) = %, the expected cell count of the ith row of the jth column of the kth strata.

A stratum such that n, = 0 is omitted from the analysis. (K must be modified accordingly.) If
n, = 0 for all &, then no computation is done.

Preliminarily, define for each &

pa, = Lk

di = P1k — Pox,
e = 5%,

and
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Cochran’'s Statistic

Cochran’s statistic (Cochran, 1954) is

K K K
> wrd/ Y wr Zwkdk

C = k=1 k=1 _
K K

— :
> wepr (L—pr)/ Y wi > wipr (1 pr)
k=1 k=1 k=1

All stratum such that r1;, = 0 or ro, = 0 are excluded, because dj, is undefined. If every stratum
is such, C is undefined. Note that a stratum such that ry;, > 0 and r9, > 0 but that ¢;;, = 0 or
cor = 0 is a valid stratum, although it contributes nothing to the denominator or numerator.
However, if every stratum is such, C is again undefined. So, in order to compute a non system
missing value of C, at least one stratum must have all non-zero marginal totals.

Alternatively, Cochran’s statistic can be written as

[] =

(fllk — Ey1k)

wiPr (1 — Pr)

i
inglls

When the number of strata is fixed as the sample sizes within each stratum increase, Cochran’s
statistic is asymptotically standard normal, and thus its square is asymptotically distributed as a
chi-squared distribution with 1 d.f.

Mantel and Haeszel's Statistic

Mantel and Haenszel’s statistic (Mantel and Haenszel, 1959) is simply Cochran’s statistic with
small-sample corrections for continuity and variance “inflation.” These corrections are desirable
when ry;, and ro, are small, but the corrections can make a noticeable difference even for relatively
large r15 and 7o (Snedecor and Cochran, 1980) (p. 213). The statistic is defined as:

K
{ U.E}SQn{Z (fux — Ellk)}
M= =

>

K
Z (fiie — Eiig)

K rier
1672k .
> b (1 Be)

n —1
=1k

where sgn is the signum function

lifz >0
sgn(z) =4 0ifz =0
—-lifz <0
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Any stratum in which n; = 1 is excluded from the computation. If every stratum is such, then
M is undefined. M is also undefined if every stratum is such that r1; = 0, rop, =0, c1 = 0, or
coi, = 0. In order to compute a non system missing value of M, at least one stratum must have all
non-zero marginal totals, just as for C.

When the number of strata is fixed as the sample sizes within each stratum increase, or when
the sample sizes within each strata are fixed as the number of strata increases, this statistic is
asymptotically standard normal, and thus its square is asymptotically distributed as a chi-squared
distribution with 1 d.f.

The Breslow-Day Statistic

The Breslow-Day statistic for any estimator 4 is

K {fllk —E <f11k|61k; é) }2
h—1 V(fnk\(hk;é) .

E and V are based on the exact moments, but it is customary to replace them with the asymptotic
expectation and variance. Let &2 and V mean the estimated asymptotic expectation and the
estimated asymptotic variance, respectively. Given the Mantel-Haenszel common odds ratio
estimator éMH’ we use the following statistic as the Breslow-Day statistic:

- {fllk: ~E (fll""cl’“;éMH)}2
=1 v (fllk‘clk;éMH)

where

B =

b

E <f11k|c1k; éMH) = fnk
satisfies the equations

Fuan (e —rix—cre+ Fiie)

(hk*]ﬂcnk)(clk *}111«) - GMH’

with constraints such that

fuk 2 0,

rik — fuk > 0,

a — fue >0,

ng — 1k — C1k + f1ik = 0;

and

N N —1
. (111
V (fllk‘CIk,eMH) o (}llk + }12]0 + }‘2].76 + f22k:)

with constraints such that
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fue >0,

Jiok = 71k — f11k > 0,

foak =cr — fur >0,

fook = np — 1k — 1k + f11x > 0;

All stratum such that r1; = 0 or ¢1; = 0 are excluded. If every stratum is such, B is undefined.
Stratum such that f1;; = 0 are also excluded. If every stratum is such, then B is undefined.

Breslow-Day’s statistic is asymptotically distributed as a chi-squared random variable with K-1
degrees of freedom under the null hypothesis of a constant odds ratio.

Tarone's Statistic

Tarone (Tarone, 1985) proposes an adjustment to the Breslow-Day statistic when the common
odds ratio estimator is consistent but inefficient, specifically when we have the Mantel-Haenszel
common odds ratio estimator. The adjusted statistic, Tarone’s statistic, for ) py is

2

K
T i {fllk —E (f11k|clk;éMH)}2 ) LZI {fuk -E (fllk\qk; 9MH>}

— 14 (f11k|01k3 éMH) Ii v (fnk\clk: 9MH)
k=1

EK: {fllk ~-E (f11k|61k;9MH)} |

k=1

=B -

M)

v (f11k\c1k§ éMH)

S
Il

1

where £ and V are as before.

The required data conditions are the same as for the Breslow-Day statistic computation. T is,
of course, undefined, when B is undefined.

T is also asymptotically distributed as a chi-squared random variable with K-1 degrees of freedom
under the null hypothesis of a constant odds ratio.

Estimation of the Common Odds Ratio
For K strata of 2 x 2 tables, write the true odds ratios as

(1 — pop.
ek_p1k< Pag)

(1 — p1k) P2k

for k = 1,..., K. And, assuming that the true common odds ratio exists, § = §; = ... = 8, Mantel
and Haenszel’s estimator (Mantel et al., 1959) of this common odds ratio is
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If every stratum is such that fiop = 0 or fa1;, = 0, then éMH is undefined. The (natural) log of
the estimated common odds ratio is asymptotically normal. Note, however, that if fi;, = 0 or
fa2r = 0 in every stratum, then éMH is zero and log (éMH) is undefined.

The Asymptotic Confidence Interval

Robins et al. (Robins, Breslow, and Greenland, 1986) give an estimated asymptotic variance for
log (934 H) that is appropriate in both asymptotic cases:

ZK (f11k+f22k)f11kf22k
2

2 _ k=1 ‘nk
lOg (QJ\IH n 2 (ZK f11nfaomn ) ?
k=1 ny
ZB f11k+f22k fiapfoip +(f12k+f21k)f11kf22k
k=1 n?

2( K fnkfzmc)(ZK f12kf21k)
n k=1 ng

Z f1‘>k+f21k)fl°kf21k

+

( K f12kf21k)
k 1 g

An asymptotic (100 — «)% confidence interval for log () is
log (9MH) + Z(a/?) o |:10g (éMH)} 5
where z («/2) is the upper «/2 critical value for the standard normal distribution. All these
computations are valid only if &)y is defined and greater than 0.
The Asymptotic P-value

We compute an asymptotic P-value under the null hypothesis that 8 (= 8;¥k) = 8, (> 0) against a
2-sided alternative hypothesis (8 # 6,), using the standard normal variate, as follows

Pr <Z| ) = 2Pr (Z - [ (o) ~Toe(®) )

log (GMH) —log(6o)
log (Opp )]
given that log (QMH> is defined.

& [tos (b py) |

Alternatively, we can consider using éMH and the estimated exact variance of éMH’ which is
still consistent in both limiting cases:

&2 [log (éMHﬂ 91%/11_1

Then, the asymptotic P-value may be approximated by
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Pr(lZ >

IMH %
7[los(onp) 0

)

The caveat for this formula is that éMH may be quite skewed even in moderate sample sizes
(Robins et al., 1986).

Column Proportions Test

This section describes the computation of the column proportions test.

Notation

The following notation is used throughout this section unless otherwise stated:

R Number of rows in the sub-table.

C Number of columns in the sub-table.

A; ith category of the row variable.

B; jth category of the column variable.

fij Total case weights in cell (i,)).

¢j Marginal case weights total in jth column.

é; Rounded marginal case weights total in jth column.
z z-statistic.

X2 Chi-Square statistic.

Dij Column proportion for cell (i,).

Dij Estimated column proportion for cell (7).

Dijk Estimate of pooled column proportion of j and kth column in ith row.
p p-value of a test.

pB Bonferroni corrected p-value.

a

The significance level supplied by the user.

Conditions and Assumptions

Pairwise tests are performed on each row of all eligible innermost sub-tables within each layer.
The number of rows and columns in the sub-table must each be greater than or equal to two.

Tests are constructed by using all visible categories excluding totals and sub-totals. Hiding of
categories and showing of user-missing categories are respected.
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m [f weighting is on, cell statistics must include weighted cell counts or weighted simple column
percents; a weighted analysis will be performed. If weighting is off, cell statistics requested
must include cell counts or simple column percents; an unweighted analysis will be performed.

® A proportion will be discarded if the proportion is equal to zero or one, or the sum of case
weights in a category is less than 2; that is, if ¢; < 2. If less than two proportions are left after
discarding proportions, test will not be performed.

Statistics

The following statistics are available.

Table Layout

By By Bc
A P11 P12 pic
Ay P21 P22 paC
AR PR1 PR2 PRC
Hypothesis

Without lost of generality, we will only look at the ith row of the table. Let C* be the number of
categories in the ith row where the proportion is greater than zero and less than one, and where
the sum of case weights in the corresponding column is at least 2. In the ith row, C*(C*—1)/2
comparisons will be made among p;1, piz, -.., picc. The (j,k)th hypothesis will be

Hoji 2 pij = pie vs. Hiji : pij 7 Dik
Aggregated Statistics

Column proportions tests are based on the aggregated proportions (5;;) and cell counts for each
column (¢;). Column proportions are computed using the un-rounded cell counts p;; = ’; ; which
are equal to the proportions actually displayed.

Statistics for the (i j)th Comparisons

s s EipijtEabik
Pooled proportion: p;;r = “Eva
(Psj—Dix)

Pijr(1—Pijr) (%4‘%)

2

z statistic with a categorical variable in the columns: z =

When multiple response set defines columns there may exist cases that belong to both jth and kth
columns. Let é;; be the rounded sum of weights for such cases.

(Pij—hir)

. . 28
\/Pijk (1—pijn) (%+ oy s )

z statistic with a multiple response set in the columns: z =




170

CROSSTABS Algorithms

p-value: p=2[1 — @ (|z])]

where @ (z) is the CDF of standard normal distribution.

Alternatively, the statistic can be constructed as a chi-square statistic,
2_ 2

X' =z

the p-value will now be given by p = 1 — F (x?; 1), where F (a; df ) is the CDF of a chi-square
distribution with df degrees of freedom.

A comparison is significant if p<a (or pp < «, if Bonferroni adjusted).

Bonferroni Adjustment

If Bonferroni adjustment for multiple comparisons is requested, the p-value will be adjusted by

pxCx (C*—1) 1)

pp = min ( 5

Relationship to Pearson's Chi-Square Tests

With a categorical variable in the columns, the statistics used in column proportion tests is
equivalent to the Pearson’s chi-square test on a 2x2 table by taking j and kth column and collapsing
all rows except the ith row. Therefore performing column proportion tests on a 2x2 table will give
you the same result as Pearson’s chi-square test.

Use of Case Weights

The case weights (or frequency weights) are supposed to be integers representing number of
replications of each case. In column proportions tests, we will only check if the column marginal
¢;’s are integers. If not, they will be rounded to the nearest integer.
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Survival analysis studies the failure time distribution. This algorithm considers the Cox
proportional hazards regression model under the complex sampling setting. The failure time
is assumed to be continuous here.

Notation

The following notation is used throughout this chapter unless otherwise stated:

t;

t1i,ta;

3

0=t <--<thkig =00

X

&o

For data with one time interval, the observed end time for record i.

For data with two time intervals, the observed enter and end time for record
i, 11 < ta;.

The zero-one status indicator with é; = 1 indicating end time ¢; or ¢2; being
failure time, and §; = 0 indicating ¢; or #2; being right censoring time.

The ordered observed failure times where K is the number of distinct failure
times in the data set.

7
Predictor vector for record 7, x; = (2;1,- -, Zsp) . No intercept term.

Vector of reference values for transforming predictors. For more
information, see the topic Predictor Transformations on p. 173.

7

Design matrix X = (X1, *,Xn) .

The set of records failed at time ¢. D (¢) = {4 : ¢, = t,; = 1} for data with
one time variable, and D (t) = {7 : t2; = t,d; = 1} for data with two time
variables.

The set of records at risk at time z. R (t) = {i : t; > ¢} for data with one time
variable, and R (1) = {7 : t1; < £ < 2;} for data with two time variables.

1 ifie R()

0 otherwise

The number of records failed at time #; that is, the number of records in D (t)

The at-risk indicator for record i such that ¥; (¢) = {

Survival function at time ¢ for a given predictor vector x,
S (t) = Pr (T > t|x) where T is a random variable representing survival
time.

Hazard function at time ¢ for a given predictor vector x,
bim  prg<r<iragr>
h(tlx) = r(A<T <+ AT >t]x) )
)= i
Cumulative hazard function at time # for a given predictor vector x.

Baseline hazard function at time ¢, ho (t) = h (¢t|x = 0).

Cumulative baseline hazard function at time .

Baseline survival function at time ¢.

The number of cases in the whole population.
The number of cases/records in the sample.
The number of subjects/individuals in the sample.

© Copyright IBM Corporation 1989, 2011. 172
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w; Sampling weight for record 7, w; = 1/x;.
B The parameter of interest, the population or census parameter.
B The estimate of census parameter B from the sample.

Sampling plan. This plan is needed for sampling method, sampling weight, strata and cluster
information.

Observed sample data. Two kinds of data structures are allowed.

m Data with one time intervals: {t;, &;, x;, wi}?:l.

m  Data with two time intervals: {¢1;, t2;, d;, X4, w; }o_y, or {id;, t14, ¢2:, 8, Xi, wi };—,, Where
(t14, 2] is the time interval during which the record is at risk, and id; is the subject id for
record i. Multiple records for the same subject have the same id and same sampling weight.

Multiple records of the same subject should have disjoint time intervals. If id; is not specified,
each record is assumed from different subject.

Note: Data with one time interval is simply a special case of data with two time intervals where
t1; = 0 and ¢2; = ¢;. The rest of this document is written from the perspective of data with two
time intervals.

Predictor Transformations

To decrease the chance of over- or underflow when calculating exp(.), first a transformation

z = x — xy 1s performed on each predictor for a properly chosen xqg (reference value). Then all
the calculations described in other sections are performed on the transformed data. Except for

baseline hazards and baseline survival functions, all other quantities based on transformed data
are the same as those based on original data.

For a continuous predictor x in the original covariate list, the reference value x is chosen to be

n
Z W;x;
=1
n
Z w;
=1

Note that x( is not the mean of x when there are multiple cases per subject or x is a time dependent
predictor.

Lo

For a categorical predictor, the last category is the reference value.

The reference values for model effects derived from original predictors, such as interactions, are
derived from the reference values of the original predictors in the same way the effects are derived.
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Proportional Hazards

Model

Two phases of sampling are assumed. The first phase generates a finite population by a model
or super population. The second phase selects a sample according to a sampling plan from the
finite population generated in the first phase.

For a given predictor vector x, the hazard function at time ¢ is
h(tx) = ho (£) exp {x’ﬁ}
or
h t 1
L (R0
]LQ (t)

where hg (¢} is the baseline hazard function. The regression parameter vector doesn’t include an
intercept term because the intercept can be absorbed by the baseline hazard.

Survival and cumulative hazard functions

From this model the cumulative hazard function is

t t
H (t|x) = [ h{(ulx)du = exp (X B) [ ho (u) du = exp (X ,B) Hy (t)
0 0
t
where Hy (t) = [ ho (u) du is the baseline cumulative hazard function. The survival function is
0

S (t}x) = exp {—H (tIx)} = exp {—exp (;:’ﬁ) Hy (t)} — {5 (£)}P(x'B)

where Sg (t) = exp (—Hy (¢)) is the baseline survival function.

Pseudo Partial Likelihood and Derivatives

For a sample S = {t1;, 2;, d;, %;, w; }_, drawn from the finite population according to a sample
plan, we take the pseudo-likelihood approach. In this approach, pseudo-likelihood is a sample
estimate of the population log-likelihood, and parameter estimates are derived by maximizing
the pseudo-likelihood. Let Is (3), Us () and Js (8) denote the pseudo-likelihood, its first and
second derivatives.
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For the Breslow approximation:

Is () =) _ wid; (Xliﬁ ~In > wexp <Xlzﬁ))
=1

lER(tQi)

For the Efron approximation:

n d(ts)—1 \
Is (B) = z;wi& (X%ﬁ - @ Z ln{ Z )wl exp (x},@) — dé:%) Z wy exp (XZB)}

r=0 leR(tz leD(t2) /
Let
EO (3,t) = Z wy exp (Xlzﬁ) = Z’szi () exp (XIZ,B)
leR(t) =1

(0) , n )
B (30 = 0D S e (x18) = L wti (e (1)
leR(1) =1

PEO (B, , , L , ,
E® (,1) = ﬁ = ) wpxx exp (X 1,3) = WY () xx exp (X 15)
leR(t) I=1
EEO (8,,1) = Y1 gy wiexp (X15) — (0 2-1eD(t) Wi exp (x18)

= Sy (Vi) - =) exp (x16)
EEWY (B,t,r) = D1 R(t) WIX] €XD (x18) — a0 2-leD(t) WIX1 €Xp (x16)
= Sy (Vi () — 2 ) exp (x15)
EE® (B,t,1) = Yje gy wixix 1exp (X18) — gly ey wixix 1exp (x 13)
=D W (Yl (t) — ’15lléf§§:t))><z><'z exp (x )

EE®M (3,t,r)

X(ﬁ? Jr) EE(O)(B,t,T')
EV(B)
% (6.1) = d(E)“)(ﬂ,t) o Breslow
’ t)—-1 EE® 8,t.r
% ZT’IO W Efron

u; (ﬁ,t,?") = Xj _E(ﬁatar)

u; (8,1) =x; —X(B,1)
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EOBH(EV(BY) BB

L(B,t) = EoEn? Eogy breslow

’ d(t)—1
ﬁ ZT(:% Efron

So

D i Wil ( ~mEO (3, t2i)) Breslow
o wlol< d(tz O] Do ” 'In EE© ) (B, tai,T )) Efron
s (3) _ ¢

Us (8) =

Z(‘)lei 67 t‘z’[/

Js (B) = 35%

szégf 5 tgl)

These equations are used to calculate the needed quantities throughout the rest of the document.
When predictors are time-dependent, these equations need to be modified accordingly. For more
information, see the topic Time-Dependent Predictors on p. 186.

Parameter Estimation

To obtain the maximum pseudo-likelihood estimate of B, the Newton-Raphson iterative estimation
method is used to solve the estimating equation. Redundant parameters are fixed at zero for all
iterations. Let B(*) be the parameter estimate at iteration step v, the parameter estimate B(**1) at
iteration step v + 1 is updated as

Bt = B _¢. (JS <B(”)>)7U5 (B(v))

where (Js(.))” is a generalized inverse of Js(.). The stepping scalar £>0 is used to make
ls (B+1)) > 15 (B™). Use the step-halving method if s (B**1)) < 15 (B()). Let s be the
maximum number of steps in step-halving; the set of values of £ is then {1/2: »=0, ..., s—1}.

Starting with initial value B(?), update B(**") until one of the stopping criteria is satisfied. The
final estimate is denoted as B.

Initial values

By default, B® = 0.
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Stopping criteria

Given two small constants ¢; > 0 and ¢, > 0, the iteration stops if one of the following criteria is
satisfied:

1. Pseudo-likelihood criterion

(v+1)y_ (v)
{ |is(B )-1s(B™)| < g if relative change

Ils(B(v))H»lO*G
lis (BOHY) — 15 (B™)| < ¢ if absolute change

2. Parameter criterion

‘B;11+1)7B§11)
max; \ 7o e

EIRIESTEE

) < ¢, ifrelative change

max (‘BJ(»U-H) — BJ(-U)

) < ¢, if absolute change

3. The maximum number of iteration is reached, or maximum number of steps in step-halving
is reached.

Either relative or absolute change is considered in criteria 1 and 2.

Infinite valued parameters

There may be situations in which the maximum pseudo-likelihood estimates of some parameters
are infinite. For example, if there is no failure at one level of a binary predictor, the estimated
parameter would be infinity for this predictor. In this situation, the estimation procedure is
performed as usual. At the end of the estimation, we will check for possible infinite parameters
and issue warnings if there are any. Parameter B; is possibly infinite if both of the followings are
satisfied:

Bj : (‘T'j,max - ‘T'j,min) 2 10

2. The Hessian is singular, or se (Ej) / ‘B]‘ > 3.

When there are infinite valued parameters, the Wald statistic for hypothesis testing involving
infinite valued parameters becomes worthless.

Properties of Estimates

Variance matrix

Let

OmWm Wi (B,tam) exXp x:f3
5i11i (ﬁ t2i) - Z{m:t1i<tzm§tzi} EO(Btzm) ( ) Breslow

d(tam)—1
U, (8) = ¢ diu; (G, t2i) — Z{m:tli<t2m§t%} 3’(';;2”:) ZT(:O )
Wi (B,tam,r) exp(x,3) (1— W Efron
\ EE<0>(ﬂ’t2m7r)
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We will use the following robust variance estimation (Binder 1992, Lin 2000),
v(B)~(5s(B)) 1(8) (1:(8))

where I (f3) is the estimate of the design based variance of Us () with
" U@
a
Us (8) = wiU;" (5)
J=1

= Y uie
ie{id;=j}

Notice that the sum in Ug (8) is over all ns subjects, and the sum in UE“) {(B) is over all records

for subject j. The Us (.) is an estimate for the population total of Ug.“) (.) vectors. For more
information, see the topic Complex Samples: Covariance Matrix of Total on p. 250.

Confidence interval

The confidence interval for a single regression parameter B; is approximately

Ej — tdf,l—g\/f/ (Bj),éj + tdf,l—%\/f/ <B])

where #4571~ o is the 100 (1 — a/2) percentile of a # distribution with df degrees of freedom.

The degrees of freedom df can be user specified; its default value is the difference between the
number of primary sampling units and the number of strata in the first stage of sampling.

Design effect

For each parameter B;, its design effect is the ratio of its variance under the design to its variance
under the SRS design,

N\ V(B)

Deff (Bj) =7
Vsrs (Bj)

For SRS design, the variance matrix is

Vsns (B) = (75(8)) fsns (B) (s5(8))

where
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Ng

Isrs <]§> = Vsrs <U5 <B)) = fpe ](i 1 iijJ('a) (B> <U§'a) <B))
j=1

.
j=1

f 1— 7]’;/_ with finite population correction.
¢ = . ) . .
p 1 without finite population correction.

t Tests

Testing hypothesis Hy : B; = 0 for each non-redundant model parameter 5; is performed using
the ¢ test statistic:

t<Bj>V€gj)

The p-value for the two-sided test is given by the probability P ( |T| > ‘t (Bj)
random variable from the ¢ distribution with df degrees of freedom.

), where T'is a

Exponentiated parameter estimates

exp (Bj;) can be interpreted as a hazard ratio for main effects model. Its 1 — & confidence interval is
o (1 (5)) e (U ()

where L (Bj) ,U (B]-) are the lower and upper confidence limits for census parameter 5;.

Survival and Cumulative Hazard Functions

In this section, t] < --- < t} are the ordered observed failure times, and t§ = 0, 13| = oo are
used for convenience. The estimates are valid for ¢ € [0, max; (¢s;)].

Estimation of Baseline Survival and Cumulative Hazard Functions

Only one of these needs to be estimated because Hy (t) = —1n .Sq (¢) and Sp (¢) = exp (—Hp (1)).
The baseline functions are estimated by right continuous step functions with jumps only at
observed failure times; that is, Sy () = Sp (t) and Hy (t) = Hy (t}) for t € [t3,85,,) .
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Product-limit Estimate

The non-increasing right continuous baseline survival function Sy (¢) is estimated here. Let
the ratio jump be a; = S (¢3) /S0 (t;_4) forj=1to K, and g = 1, 50 S () = H{l,t*<t} o.

#r<
Assuming that the regression parameters are given, {«; },K:1 will be the parameters to be estimated
by maximum likelihood estimation.

Pseudo likelihood and its derivatives

Let f (¢|x) be the probability density function of failure time at ¢ for a given predictor. The
pseudo likelihood is

K ’
(o, B) = Z Z w; In (1 _ a?P(X 1-5)) + Z w; exp <X,Zﬂ) In o

7=1 |ieD(t;) i€R(t;)=D(t;)

7

We will estimate «; by maximizing I (a7 B) which is equivalent to solvmg ( B) _ =0 and
hence the following equation.

Z w; GXPEXP A) Z w; exp< B)

icD(t7) & i€R(t;)

Failure times of single failure

If there is only a single failure i; at failure time ¢3, there exists a closed form solution,
exp(—x' ;,B)
wj, exp <x ijB)

Z w; exp <XZ]§> E©) <]§,t3¥

icR(t;)

Failure times with tied failures

If there are multiple failures at failure time ¢3, Newton’s iterative method is used to solve the
equation with constraint a; € (0,1). A good initial value is

Z wy wy

1eD(t;) leD(tr)
Qj 0 = exp | — = exp

Z wy exp (X’lB> E©) ]:3,’75;?)

leR(t;)
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Kaplan-Meier estimator: a special situation of no predictors

When there are no predictors; that is, x = ( always, the product-limit estimator becomes the
Kaplan-Meier estimator,

2 wi
ieD(t;)

E W

i€R(t;)

Oé]‘:]_—

Breslow, or Nelson-Aalan, or Empirical, Estimate
Here H, (t) is estimated by a non-decreasing step function with steps at observed failure times:
>

Hy(t) = %
{k%t} EO) (B,1)

where N; (¢) is the count of failures up to time ¢ for record i.

Efron Estimate

When there are ties in failure times, the following estimation can also be used. This will reduce
to Breslow when there are no ties.

> w d(t)-1

2 i€D(t;) 1
Hy (t) = 6_ :
{k;t} d (tk) — EE© (B, t, 7‘)

Prediction of Survival and Cumulative Hazard Functions
For a given x, the cumulative hazard function and survival functions are predicted by

H (t|x) = Hy (t) exp (X’B)

S (t ‘X) = exp (—H (t| X)) _ <S,0 (t))exp(x B)

where Hy (t) and S (t) are the estimated baseline cumulative hazard function and baseline
survival function.

For variance calculation, the same formula will be used regardless of different ways to estimate
baseline functions. The variance for cumulative hazard is
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V(I:[(tlx)) ~ | Var ijq (t[x)

4§ (tx)=4;" (tIx)
where

@ = 3 @)

V; (t|X)

~Y

(E,tQi\X) -1
n I (ty <t)EW (B;t21|x>

R (50 (Botix) )
(B t[x ) ZwlYl exp <(xl —X),B)
< t\x) iwlYl (t) (x; — x) exp <(Xl - X)IB>
=1

it <t) a0 (b <HY(t)exp ((xi - x) B)
£

and Jg (B) and U; (8) are defined in Pseudo Partial Likelihood and Derivatives and Properties

of Estimates , respectively. See Lin (2000) for more details. Var (Z qu](-“) (t)) is the
j=1

design-based variance of Z quj(a) (t) which is the estimated population total of qja) (t). For

=1
more information, see the topic Complex Samples: Covariance Matrix of Total on p. 250.

The variance estimate for the survival function is
NN A 2. /A
v(s (t\x)) — (5 (t\x)) v(H (t|x))

Confidence interval for survival function

A confidence interval for S (¢x) can be calculated in the following ways. Let
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S (t|x) original
Y (t) = In S (t|x) log

the confidence interval for S (¢x) at 1 — a level is

rY(t)izam/f/( Y () = S (tx) im/ﬂ/f/(y original
exp <Y (t) £ 242 1% Y (t))) t|x ( Za/2\/ V (t))) log

P {_exp (Y (1) £ za2\/V (¥ (t>>)} = ($uk0) ™" (2o V@)

-

log — log

where z,/5 is the 1 — § upper percentile point of the standard normal distribution and

(5‘ (t|x)>2f/ (]:I (t|x)) original
V(Y) = v (H (t|x)) log
<ﬁ(t|x))2v(ﬁ(tx)) log — log

Please note that the first two confidence intervals may have values greater than 1 or less than zero
(we can truncate them to 0 or 1 if they are out of range). The third one always between 0 and 1.
However Link (1984 & 1986) suggested that the second one performed the best.

Residuals

Some residuals defined below depend on the baseline cumulative function. Three estimation
methods for baseline cumulative function are available to user. If users don’t request estimation
of cumulative hazard or survival function, but request for residuals, then use Breslow estimate
if Breslow approximation is chosen in estimating the parameters, and Efron estimate if Efron
approximation is chosen in estimating the parameters.

Schoenfeld’s partial residuals

This is calculated only for observations with 4; = 1.

rZ(SCh) = w;; (E, tgi)

where u; (.) is defined in Pseudo Partial Likelihood and Derivatives .
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Martingale residual

TZ(M) =0; — (Ho (t2;) — Ho (t1;)) exp (XliB>

Deviance residual

TZ-(D) = sign <ri(M)> \/2 [—ri(M) —0;1n ((L- - rZ(M)>]

Cox-Snell residual

ri(CS) = (Ho (t2;) — Ho (t13)) exp (X,z‘B) =4 — Tz‘(M)

Score residual

rz(sco) = w; U; (B)

where U; (8) is defined in Properties of Estimates .

DFBETA

DFBETA that measures the influence of record i on parameter estimate is
—wi,]gl (B) U, (B)

This is approximately the parameter change, B — B(i), where B(i) is the parameter estimate
when the ith record is omitted.

Aggregated residual

When there are multiple records representing a single subject (as in data with two time variables),
residuals can be given for each subject rather than for each record. Except for Schoenfeld’s and
deviance residuals, the aggregated residual for a subject is simply the sum of the corresponding
record residuals over all the records belonging to the same subject. Please notice that aggregation
can only be done for data in the format {id;, ¢;1, 2, d;, Xi, w; };_,. For Schoenfeld’s residual,

the aggregated version is the same as that of the non-aggregated version because Schoenfeld’s
residual is only defined for records with §; = 1. For deviance residual, the aggregated residual can
be derived using the aggregated Martingale residual.
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Baseline Hazard Strata

Cox regression can be extended to allow multiple baseline hazard strata (note that these are
different from the sample design strata). The baseline hazard strata divide the subjects into disjoint
groups, each of which has different baseline hazard function while the regression parameter

3 stays the same for all baseline hazard strata.

Suppose there are G baseline hazard strata. For baseline hazard stratum g, the model becomes
hy (8]%) = hog () exp {x ,3}

Let V, be the set of records belong to baseline hazard stratum g. Adding the subscript g to a
quantity denotes that it is calculated only using data in V,. For baseline stratum g, the previously

defined quantities would be {Eéj) (ﬁ,t)} , {EE,gj) (ﬁ,t)}% . Xg (8,1), ugi (8,1), Li (B,1),
j=
ng (ﬂ)a USg (/6); JSg (ﬁ)’ Ug'i (%3)

2
=0

G
The overall pseudo partial likelihood, its first and second derivatives become Is (3) = Z lsg (8),
g=1

G G
Us (8) =) Usy (8), Js (8) = Y Jsq (B)-

The parameter B can be estimated by maximizing ls () as before. The variance of the parameter
estimates and design effects are calculated by the same formulae with the following modifications:

where k; is the baseline stratum that case i belongs to, and the sum is over all cases for subject j,
no matter which baseline stratum the case is in.

After the regression parameters are estimated, the cumulative hazard and survival functions can
be estimated for each baseline stratum separately using the same formula but on data only from
that stratum. Let H,, (¢|x) denote the estimate of stratum g’s cumulative hazard function at time #
for a given predictor x. Its variance calculation is similar as before but with the following changes.

V(I{]g (t|x)) ~ | Var stjq;? (t|x)
j=1

ay} (41%)=4.") (t]x )

where

Q) = Y o (tx)

Goi (L1%) = vgi (8] %) T (i € V) — (Ag (t}x)) (JS (

well
Sa——”
N’
L
c
&
o,
N
well
S
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and vy; (¢ |x), A, (¢ x) are calculated by the same equations as before but only using data from
stratum g.

Given regression parameters at the estimated values, the residual for each record is calculated
based on the data only from the stratum that the record belongs to. If record i belongs to stratum g,
then in its residuals calculation, simply replace u;, Hy, U; by ug;, Hog, Uyg;.

Time-Dependent Predictors

Cox regression can also be extended to allow time dependent predictors, x = x (#). The Cox
regression model becomes

1

h (tx (£)) = ho () exp {x (1) 3}

The previously defined equations still apply by simply replacing x with x (¢) accordingly.

Note: If the values of a time-dependent predictor only depend on time and not the case number,
then this predictor will be absorbed in the baseline hazard function. The regression parameter
for this predictor is set as redundant.

Predictors

All predictor values for records in the risk set at each failure time are needed in the calculation.
Two kinds of time dependent predictors are allowed: piecewise constant predictors, and predictor
values that can be calculated at all the needed times.

Piecewise constant predictors

Often the predictors for a subject are measured many times during the study. Between
measurements, the predictor value is assumed to be unchanged. Data with two time variables can
handle this kind of piecewise constant predictors. For each subject, multiple records with two
time variables (see Input ) are created, one record for each distinct pattern of the time-dependent
measurements. The predictor values are constant for each record. This becomes the two failure
time variables with time-independent covariate situation.

Note: it is the user’s responsibility to create the data set of two time variables.

Calculatable predictors

The predictor values can be calculated and hence known at any time point; for example, the age of
a subject. The TIME PROGRAM command is used for this purpose.
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Survival and Cumulative Hazard Functions

For product-limit estimate, solve for {«ay} szl from:

exp <xl. (tZ) B) )
Z w; I i - = Z w; exp (xi (t3.)

€Dt ‘ i€R(t;)

(ool
S’

For Breslow estimation:

N Zz =) Wy
H@)= Y e
{kit: <t} ZZGR(t;) Wy eXp (Xz (t7) B)

For Efron estimation:

ZT:O ZleR(f;) w; exp(xz (t:)B)f@ ZZED(%) w; exp(x;(tz)ﬁ)

Using the fact that Hy (¢) and S, (¢) are right continuous step functions with jumps only at observed
failure times, then for a given predictor path up to time 7% {x (u) : © < T'}, the cumulative hazards
and survival function are estimated by step functions. For ¢ < min (7', max; (¢2;))

Htl{x(w) u<th) = Y (ﬁo (£) — Ho (tjfl))exp (x’ (#) B)
{5ty <t}
4 (t;‘) exp(x'(t;)B)

(rieay L0 (54)

The variance of H (¢|{x (u) : uw < ¢}) can be calculated as in the case without time-dependent
predictors, but with the following changes:

S (¢ {x (u)  u < 1) =

vi (IH{x (u) 1w < t}) = —Em)ié(zi;?t_l))
I(t0<t)Yi(ta) exp ((%:(ta)—x(t2)) B
S ( )

(E(O) (E,tzz ‘X(tzl)))z

o (ty < 1) B (B, ty]x (&
Alx () <) = 3 e 2= (B, tarbx (1))

-1 (E(O) (B,t%\x(@,))f
EO (B, 1x (1)) = 3wy (9 exp (1 (1) — x (1)) B)
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EO (B,1x) = S wn¥i (1) (x (1)~ x (1) exp (1 (1) — x (1)) B)
=1

There is no agreeable interpretation of the survival function when there are calculatable
time-dependent predictors. Survival curves based on a time-dependent covariate must be used
with extreme caution.

Residuals

When there are time dependent predictors, all residuals are calculated in the situation where data
with two time variables are used to handle the time-dependent predictors. Only Schoenfeld’s
residual, score residual, and DFBETA are calculated in other situations.

Hypothesis Testing

Contrasts defined as a linear combination of regression parameters can be tested. Given matrix
L with r rows and p columns, and vector K with r elements, we test the linear hypothesis

H, : LB = K if it is testable. For more information, see the topic Complex Samples: Model
Testing on p. 255.

Testing Model Assumptions

Tests are performed by considering bigger alternative models involving additional parameters.
When fitting alternative models, initial values are set to 0 for all additional parameters

and 5 = B for old parameters where B is the previously estimated value of model

h(t|x) = hy (t) exp {x'ﬁ}.

If there are baseline hazard strata or time dependent covariates in the original model, then the
alternative model should also include them. The only difference between the original and the
alternative model is that there are more predictors in the alternative model.

Testing Proportional Hazards

A key assumption of Cox regression is proportional hazards. When predictors are constant, the
hazard ratio ZE:E; = exp {(xz — xl)l B¢ is independent of time, so the hazards at different
predictor values are proportional. We test the adequacy of the proportional hazards assumption
by considering an alternative model with time-dependent coefficients. Suppose that there are p
predictors, and we are interested in testing the proportional hazard assumption for p* predictors,

assuming the first p* predictors without loss of generality.

Specific alternative model

Consider the alternative model
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h(t]x) = ho () exp {x’ﬁ (t)} — ho (t) exp {x',ﬁ vz (1) e}
where z' (1) = (z191 (), -, Tp+ g+ () is a time dependent predictor vector, and
91 (8),---, gp- (t) are p* user-specified functions of time, one for each of the predictors of interest.

This is a proportional hazards model with time dependent covariates with parameter vector
(,81, 01> . Fit this model and test Hy : § = 0.

For the time functions, the available options are

t identity
o Int log
g(t) = rd (t) rank

1— Sk (t) KM

where Sk s (t) is the Kaplan-Meier estimate of the survival function, and rd(¢) is
1 t<t]

rd() =4 j te[;gl,f;)
K+1  t>1

For simplicity, we will only allow g; (£} = --- = gp+ (t) = g (). By default, p* = p and
g (t) =1- SKM (f)

Note: When there are baseline strata, rd(f) and Sk s (t) are calculated based on the whole data,
not any individual strata.

Subpopulation Estimates

When analyses are requested for a given subpopulation, we perform calculations on the redefined
data such that if the ith record is not in the subpopulation, then

t1y =12, =0,0;=0,%;, =0

In the estimations of regression parameters and the survival/cumulative hazard functions, this
substitution is equivalent to including only the subpopulation elements in the calculations. In the
calculation of variance I (5) and Isrs (8), this means that U; (8) = 0 if the ith record is not

in the subpopulation.

Missing Values

List-wise deletion is used to determine which records are used in the analysis. Negative failure
times, ¢; or ¢1; Or ¢3;, are considered missing.
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CSDESCRIPTIVES Algorithms

This document describes the algorithms used in the complex sampling estimation procedure
CSDESCRIPTIVES. The data do not have to be sorted.

Complex sample data must contain both the values of the variables to be analyzed and the
information on the current sampling design. Sampling design includes the sampling method, strata
and clustering information, and inclusion probabilities for all units at every sampling stage. The
overall sampling weight must be specified for each observation.

The sampling design specification for CSDESCRIPTIVES may include up to three stages of
sampling. Any of the following general sampling methods may be assumed in the first stage:
random sampling with replacement, random sampling without replacement and equal probabilities
and random sampling without replacement and unequal probabilities. The first two sampling
methods can also be specified for the second and the third sampling stage.

Notation

The following notation is used throughout this chapter unless otherwise stated:

H Number of strata.

nh Sampled number of primary sampling units (PSU) per stratum.

In Sampling rate per stratum.

Mk Number of elements in the ith sampled unit in stratum 4.

Whij Overall sampling weight for the jth element in the ith sampled unit in
stratum /.

Yhij Value of variable y for the jth element in the ith sampled unit in stratum 4.

Y Population total sum for variable y.

n Total number of elements in the sample.

N Total number of elements in the population.

Weights

Overall weights specified for each ultimate element are processed as given. See Weights in
Complex Samples: Covariance Matrix of Total for more information on weights and variance
estimation methods.

Z Expressions

Zhij = WhijYhij

Mp;
Zhi = Zhij
i=1

© Copyright IBM Corporation 1989, 2011. 191
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na
- 1 E
Zh = o Zhi
1=1

Nh

2
Sk = w1 D (i = %)
i=1

For multi-stage samples, the index 4 denotes a stratum in the given stage, and 7 stands for unit
from £ in the same stage. The index j runs over all final stage elements contained in unit /i.

Variable Total

An estimate for the population total of variable y in a single-stage sample is the weighted sum
over all the strata and all the clusters:

H np mp;
YZE E E WhijYhij

h=1i=1 j=1

Alternatively, compute the weighted sum over all the elements in the sample:

n
V=2 w
i=1

The latter expression is more general because it also applies to multi-stage samples.

Variable Total Variance

For a multi-stage sample containing a with replacement sampling stage, all specifications other
than weights are ignored for the subsequent stages. They make no contribution to the variance
estimates.

Single Stage Sample

The variance of the total for variable y in a single-stage sampling is estimated by the following:

v(y)—m(y)—ém

where U}, is an estimated contribution from stratum 4 and depends on the sampling method
as follows:

m  For sampling with replacement: Uy, = np, S}
m  For simple random sampling: Uy, = (1 — f,) nsS;
m  For sampling without replacement and unequal probabilities:

Np Np ThiTh
=00 (T o )

.
i=1 i>j hij
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7n; and 7p,; are the inclusion probabilities for units 7 and j in stratum /£, and 7;; is the joint
inclusion probability for the same units. This estimator is due to Yates and Grundy (1953) and
Sen (1953).

For each stratum / containing a single element, the variance contribution U}, is always set to zero.

Two-stage Sample

When the sample is obtained in two stages and sampling without replacement is applied in the
first stage, use the following estimate for the variance of the total for variable y:

H np Ky

where

B 7y, is the first stage inclusion probability for the primary sampling unit i in stratum /4. In
the case of simple random sampling, the inclusion probability is equal to the sampling rate
fr for stratum 4.

B K; is the number of second stage strata in the primary sampling unit i within the first stage
stratum A.

B [y is a variance contribution from the second stage stratum & from the primary sampling
unit 4i. Its value depends on the second stage sampling method; the corresponding formula
from Single Stage Sample applies.

Three-stage Sample

When the sample is obtained in three stages where sampling in the first stage is done without
replacement and simple random sampling is applied in the second stage, we use the following
estimate for the variance of the total for variable y:

VAN R R Tk Kp; npik Lhikj
v (Y) = VVZ (Y> Z Z ﬂ-hLZ thk Z Z Uthjl
h=1i=1 j=1 1=1

where
B f,; 1s the sampling rate for the secondary sampling units in the second stage stratum hik.
B Lj;k; is the number of third stage strata in the secondary sampling unit hikj.

B Uk, is a variance contribution from the third stage stratum / contained in the secondary
sampling unit 4ikj. Its value depends on the second stage sampling method; the corresponding
formula from Single Stage Sample applies.
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Population Size Estimation

An estimate for the population size corresponds to the estimate for the variable total; it is sum of
the sampling weights. We have the following estimate for the single-stage samples:

H np mp;

3 W

h=1i=1 j=1

More generally,
K‘T = Z wy
i=1

The variance of N is obtained by replacing yx;; with 1; that is, by replacing zx;; with wp;; in the
corresponding variance estimator formula for V (f")
Ratio Estimation
Let R=Y/X be the ratio of the totals for variables y and x. It is estimated by
R=Y/X
where Y and X are the estimates for the corresponding variable totals.

The variance of & is approximated using the Taylor linearization formula following Woodruff
(1971). The estimate for the approximate variance of the ratio estimate V' (R) is obtained by
replacing zp;; with

Zhij = Whij (yhij - RIh-ij)/X

in the corresponding variance estimator V (Y)

Mean Estimation
The mean Y for the variable y is estimated by
Y =V/N
where Y is the estimate for the total of y and N is the population size estimate.

The variance of the mean is estimated using the ratio formulas, as the mean is a ratio of Y and
N. Accordingly, V (7) is obtained by substituting z5;; with

Zhij = Whij (yhij - ?)/N

in the corresponding variance estimator 1/ (Y)
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Domain Estimation

Let the population be divided into D domains. For each domain d define the following indicator
variables:

Snij (d) = 1 if the sample unit /ij is in the domain d
Mii\®) 1 0 otherwise

To estimate a domain population total, domain variable total, ratios and means, substitute y; with
8; (d) y; in the corresponding formula for the whole population as follows:

®m  Domain variable total: Y, = Z w;9; (d) y;
i=1

B  Domain population total: Ny = Z w;d; (d)
i=1

®m  Domain variable ratio: RB; = Yy / X4

®  Domain variable mean: ?d =Y, /Nd

Similarly, in order to estimate the variances of the above estimators, substitute yy;; with
dnij (d) ynij in the corresponding formula for the whole population. The following substitution of
z;; in the formulas for V (Y) are used for estimating the variance of:

B Domain variable total: zy,;; (d) = dni; (d) whijynis
®  Domain population total: zp;; (d) = 8pi; (d) wrij

B Domain variable ratio: zp;; = dpi; (d) whj (yhij — Rd:vhij)/)z'd

B Domain mean: zp;; = 0p; (d) whi; (yhi]- — ?d)/Z\Afd

Standard Errors

Let Z denote any of the population or subpopulation quantities defined above: variable total,
population size, ratio or mean. Then the standard error of an estimator Z is the square root of its
estimated variance:

staError (2) =V (2)

Coefficient of Variation

The coefficient of variation of the estimator Z is the ratio of its standard error and its value:

oV (Z) _ SEZ(Z)

The coefficient of variation is undefined when Z = 0.
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T Tests

Testing the hypothesis that a population quantity Z equals 8q; that is, Hy : Z = 6y, is performed
using the ¢ test statistic:

7\ _ Z-9
t (Z) B StdE'rros'(Z)
The p-value for the two-sided test is given by the probability
P(iri>¢(2))
where T is a random variable form the ¢ distribution with df degrees of freedom.

The number of the degrees of freedom is calculated as the difference between the number of
primary sampling units and the number of strata in the first stage of sampling.

Confidence Limits

A level 1—a confidence interval is constructed for a given 0 < & < 1. The confidence bounds are
defined as

Z + StdError (Z) tar (1 —a/2)

where StdError (Z) is the estimated standard error of Z, and t4 (1 — ov/2) is the
100 (1 — «a/2) percentile of the ¢ distribution with df degrees of freedom.

Design Effects

The design effect Deff is estimated by

Deff = )

Vs (Vors )

14 (Y‘) is the estimate of the variance of ¥ under the appropriate sampling design, while

Vire (?S,S) is the estimate of variance of V., under the simple random sampling assumption

as follows:
A A 2
zuz (yz )

Assuming sampling without replacement we have fpc = (1 — given that & T <1, while for
sampling with replacement we set fpc = 1. This assumptlon is 1ndependent of the sampling
specified for the complex sample design based variance V' (Y)

‘A/ST’S <YSTS> fpc
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Whereas design effect is not relevant for estimates of the population size, we do compute the
design effects for ratios and means in addition to the totals. The values of variable y in V., are
then replaced by the linearized values as follows:

B Ratio estimation (y1 — in) /X'

B Mean estimation (y, - ?) /N

When estimating design effects for domains we use the familiar substitution §; (d) y; for y; in the
Vers formula in addition to any ratio or mean substitutions.

We also provide the square root of design effect v/Def f.

Design effects and their applications have been discussed by Kish (1965) and Kish (1995).
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CSGLM is a procedure for regression analysis as well as analysis of variance and covariance
based on complex samples.

Complex sample data must contain both the values of the variables to be analyzed and the
information on the current sampling design. Sampling design includes the sampling method, strata
and clustering information, inclusion probabilities and the overall sampling weights.

Sampling design specification for CSGLM may include up to three stages of sampling. Any of the
following general sampling methods may be assumed in the first stage: random sampling with
replacement, random sampling without replacement and equal probabilities and random sampling
without replacement and unequal probabilities. The first two sampling methods can also be
specified for the second and the third sampling stage.

Notation

The following not