
i

Java Plug-in User Guide for IBM SPSS
Statistics

Note: Before using this information and the product it supports, read the general information
under Notices on p. 28.

This edition applies to IBM® SPSS® Statistics 21 and to all subsequent releases and modifications
until otherwise indicated in new editions.
Adobe product screenshot(s) reprinted with permission from Adobe Systems Incorporated.
Microsoft product screenshot(s) reprinted with permission from Microsoft Corporation.

Licensed Materials - Property of IBM

© Copyright IBM Corporation 1989, 2012.

U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Contents
1 Getting started with the Integration Plug-in for Java 1

Invoking IBM SPSS Statistics from an external Java application. 1
Creating IBM SPSS Statistics extension commands in Java . 3

2 Running IBM SPSS Statistics commands 6

3 Retrieving dictionary information 8

4 Working with case data in the active dataset 10

Reading case data . 10
Creating new variables in the active dataset . 13
Appending new cases . 15

5 Retrieving output from syntax commands 17

6 Creating custom output 21

Creating pivot tables . 21
Creating text blocks . 23
Creating output for extension commands . 24

© Copyright IBM Corporation 1989, 2012. iii

7 Deploying an external Java application 26

Appendix

A Notices 28

Index 31

iv

Chapter

1
Getting started with the Integration
Plug-in for Java

The IBM® SPSS® Statistics - Integration Plug-in for Java enables an application developer to
create Java applications that can invoke and control the IBM® SPSS® Statistics processor, or
to implement extension commands in Java that can then be run from within SPSS Statistics.
Extension commands are SPSS Statistics commands that are implemented in an external language
(Python, R or Java) and allow users who are proficient in that language to share external functions
with users of standard SPSS Statistics command syntax.

With the Integration Plug-in for Java, you can do the following:
Execute SPSS Statistics command syntax.
Read case data from the active dataset.
Get information about data in the active dataset.
Add new variables and append cases to the active dataset.
Get output results from syntax commands.
Create custom output in the form of pivot tables and text blocks.

The Integration Plug-in for Java is installed with SPSS Statistics and SPSS Statistics Server
and requires no separate installation or configuration. For version 21 of SPSS Statistics, the
Integration Plug-in for Java supports Java version 6.

The Integration Plug-in for Java is designed to work with Unicode mode. Use of the Integration
Plug-in for Java with code page mode is not recommended.

Complete documentation for all of the classes and methods available with the Integration
Plug-in for Java is available in the Help system under the heading Integration Plug-in for Java
API Reference.

Invoking IBM SPSS Statistics from an external Java application

The interface for invoking IBM® SPSS® Statistics and controlling the SPSS Statistics processor
is provided in the JAR file spssjavaplugin.jar, which is installed with your SPSS Statistics
product. The JAR file contains the com.ibm.statistics.plugin package, which contains the Java
classes available with the IBM® SPSS® Statistics - Integration Plug-in for Java. Following are
the locations of spssjavaplugin.jar by operating system. Be sure to add spssjavaplugin.jar to
your Java class path.

On Windows, spssjavaplugin.jar is located in the SPSS Statistics installation directory.

© Copyright IBM Corporation 1989, 2012. 1

2

Chapter 1

On Linux and UNIX Server systems, spssjavaplugin.jar is located in the bin directory under
the SPSS Statistics installation directory.
On Mac OS, spssjavaplugin.jar is located in the bin directory under the Content directory
in the SPSS Statistics application bundle.

Note: For information on deploying your application on end user machines, please see Deploying
an external Java application.

When invoked from an external Java application, the SPSS Statistics processor runs without an
associated instance of the SPSS Statistics client. In this mode, output generated from SPSS
Statistics can be managed with parameters specified on the method that starts the processor or
through use of the SPSS Statistics Output Management System, which is invoked with the OMS
command.

The following is a simple example of using the Integration Plug-in for Java to create a dataset in
SPSS Statistics, compute descriptive statistics and generate output. It illustrates the basic features
of invoking SPSS Statistics from an external Java application.

import com.ibm.statistics.plugin.*;

public class demo {public static void main(String[] args) {

try {
StatsUtil.start();
String[] command={"OMS",

"/DESTINATION FORMAT=HTML OUTFILE='/output/demo.html'.",
"DATA LIST FREE /salary (F).",
"BEGIN DATA",
"21450",
"30000",
"57000",
"END DATA.",
"DESCRIPTIVES salary.",
"OMSEND."};

StatsUtil.submit(command);
StatsUtil.stop();

} catch (StatsException e) {
e.printStackTrace();

}
}

}

The statement import com.ibm.statistics.plugin.* imports all of the classes in the
com.ibm.statistics.plugin package.
The StatsUtil.start method starts the SPSS Statistics processor.
A string array specifies SPSS Statistics command syntax that creates a dataset and runs the
DESCRIPTIVES procedure. The command syntax is submitted to SPSS Statistics using the
StatsUtil.submit method. Output from the DESCRIPTIVES procedure is routed to an
HTML file using the OMS command.
The StatsUtil.stop method stops the SPSS Statistics processor and should be called
to properly end an SPSS Statistics session.
The StatsException class is a subclass of the native Java Exception class, and handles
exceptions that are specific to the Integration Plug-in for Java. It can be inherited to define
custom exception classes for your application.

3

Getting started with the Integration Plug-in for Java

Creating IBM SPSS Statistics extension commands in Java

This topic describes aspects of extension commands that are specific to implementing extension
commands in Java. Detailed information on creating extension commands is provided in the
article “Writing IBM SPSS Statistics Extension Commands”, available from the SPSS community
at http://www.ibm.com/developerworks/spssdevcentral.

Implementation code

The implementation code can consist of a JAR file or Java class files.
When using a JAR file, the name of the JAR file must be the same as the name of the extension
command. For multi-word command names, spaces between words should be replaced with
underscores when constructing the name of the JAR file. The JAR file must contain a class
file with the same name as the JAR file and the class must not be part of a package.
When using standalone Java class files, there must be one class file with the same name as that
of the extension command. For multi-word command names, spaces between words should
be replaced with underscores when constructing the name of the Java class file.

Whether using a JAR file or standalone Java class files, the class file with the same name as the
extension command should contain the following:

A constructor method, which does not have a parameter, for the class.
A public static method named Run with a single Hashtable argument that should be specified
as follows:
Hashtable<String, Hashtable<String, Object>>

A public method that implements the command.

XML command syntax specification

For extension commands implemented in Java, the Language attribute of the Command
element should be set to “Java”.
For Java extension commands implemented with a JAR file, the Mode attribute of the
Command element should be set to “Package”.

Sample Java class

The following is an example of a Java class for an extension command named DEMO, which
simply takes a variable list as input and prints out the list. It demonstrates the basic structure of
the implementation code and the means by which values are passed from the command syntax
(submitted by the user) to the method that implements the command.

http://www.ibm.com/developerworks/spssdevcentral

4

Chapter 1

import java.util.Arrays;
import java.util.HashSet;
import java.util.ArrayList;
import java.util.Hashtable;
import java.util.List;
import com.ibm.statistics.plugin.*;

public class DEMO {

public DEMO() {
System.out.println("This is the constructor method");

}

public static void Run(Hashtable<String, Hashtable<String, Object>> args)
{

try {
List<TemplateClass> testList = Arrays.asList(

Extension.Template("VARIABLES", "","vars", "existingvarlist", true));

SyntaxClass oobj = Extension.Syntax(testList);
Extension.processcmd(oobj, args, "printvars");

} catch (Exception e) {
e.printStackTrace();

}
}

public void printvars(@ParamName("vars") ArrayList<String> variables)
{

System.out.println("variables = " + variables);
}

}

Briefly, the functions of the Run, Template, Syntax and processcmd methods are as follows:
IBM® SPSS® Statistics parses the command syntax entered by the user and passes the
specified values to the Run function in a single argument—args in this example.
The Run function contains calls to the Extension.Syntax, Extension.Template, and
Extension.processcmd methods, which are designed to work together.
Extension.Template specifies the details needed to process a specified keyword in the
syntax for an extension command. In this example, the extension command contains the
single keyword VARIABLES.
Extension.Syntax validates the values passed to the Run function according to the
templates specified for the keywords.
Extension.processcmd parses the values passed to the Run function and calls the function
that will actually implement the command—in this example, the printvars method.

Values of specific keywords from the submitted syntax are mapped to variables in the method
that implements the command (printvars in this example) using a Java annotation. In this
example, the Extension.Template method specifies that the value of the VARIABLES keyword
is associated with the identifier “vars”. The argument to the printvars method specifies
that this identifier is mapped to the local variable variables. This is accomplished with the
@ParamName("vars") annotation. You include such an annotation for each keyword in the
syntax for the extension command.

The annotation mechanism also requires that arguments to the implementation method are defined
as object types, not primitive data types. In particular, you must use the object types Integer, Short,
Long, Float, Double, Byte, Character and Boolean instead of the primitive data types int, short,

5

Getting started with the Integration Plug-in for Java

long, float, double, byte, char and boolean. Note that in the above example, the value passed to the
printvars method is an array of strings and is defined as an ArrayList object.

Deploying an extension command

To deploy an extension command, it is best to create an extension bundle for the command and
add both the implementation code (JAR file or Java class files) and the XML file specifying the
command syntax to the bundle. You can distribute the extension bundle (spe) file to other users
who can then install it and begin using your extension command. Information on extension bundles
is available from Core System>Utilities>Working with extension bundles, in the Help system.

Chapter

2
Running IBM SPSS Statistics
commands

The submit method from the StatsUtil class is used to submit syntax commands to IBM®
SPSS® Statistics for processing. It takes a string that resolves to a complete syntax command,
or an array of strings that resolves to one or more complete syntax commands. Output from
syntax commands can be written to the standard output stream or to an external file. It can also
be directed to an in-memory workspace where it is stored as XML and can then be retrieved
using XPath expressions. For more information, see the topic Retrieving output from syntax
commands in Chapter 5 on p. 17.

Submitting a single command

You submit a single command to SPSS Statistics by providing a string representation of the
command as shown in this example. When submitting a single command in this manner the
period (.) at the end of the command is optional.

StatsUtil.submit("GET FILE='/data/Employee data.sav'.");
StatsUtil.submit("DESCRIPTIVES SALARY.");

The submit method is called twice; first to submit a GET command and then to submit a
DESCRIPTIVES command.

Submitting commands using an array

You can submit multiple commands as an array of strings where each array element is a string
representation of a syntax command. The string for each command must be terminated with a
period (.) as shown in this example.

StatsUtil.submit("GET FILE='/data/Employee data.sav'.");
String[] cmdLines = {"DESCRIPTIVES SALARY SALBEGIN.","FREQUENCIES EDUC JOBCAT."};
StatsUtil.submit(cmdLines);

The submit method is called with an array that specifies a DESCRIPTIVES and a
FREQUENCIES command.

You can also use the elements of an array to represent parts of a command so that a single array
specifies one or more complete syntax commands. When submitting multiple commands in this
manner, each command must be terminated with a period (.) as shown in this example.

© Copyright IBM Corporation 1989, 2012. 6

7

Running IBM SPSS Statistics commands

StatsUtil.submit("GET FILE='/data/Employee data.sav'.");
String[] cmdLines = {"OMS /SELECT TABLES ",

"/IF COMMANDS = ['Descriptives' 'Frequencies'] ",
"/DESTINATION FORMAT = HTML ",
"IMAGES = NO OUTFILE = '/output/stats.html'.",
"DESCRIPTIVES SALARY SALBEGIN.",
"FREQUENCIES EDUC JOBCAT.",
"OMSEND."};

StatsUtil.submit(cmdLines);

The submit method is called with an array that specifies an OMS command followed by a
DESCRIPTIVES command, a FREQUENCIES command, and an OMSEND command. The first
four elements of the array are used to specify the OMS command.

Displaying command syntax generated by the submit method

For debugging purposes, it is convenient to see the completed syntax passed to SPSS Statistics by
any calls to the submit method. This is enabled through command syntax with SET PRINTBACK

ON MPRINT ON.

String[] cmdLines = {"SET PRINTBACK ON MPRINT ON.",
"GET FILE='/data/Employee data.sav'."};
StatsUtil.submit(cmdLines);
String varName;
varName = StatsUtil.getVariableName(1);
StatsUtil.submit("FREQUENCIES /VARIABLES=" + varName + ".");

The generated command syntax shows the completed FREQUENCIES command as well as the
GET command. In the present example the variable with index value 1 in the dataset has the
name gender.

M> GET FILE='c:/data/Employee data.sav'.
M> FREQUENCIES /VARIABLES=gender.

Chapter

3
Retrieving dictionary information

The Cursor, DataUtil and StatsUtil classes provide a number of methods for retrieving
dictionary information from the active dataset. The following information is available:

Cursor.getDataFileAttributes. The attribute values for a specified datafile attribute.
Cursor.getDataFileAttributesNames. Names of any datafile attributes for the active dataset.
Cursor.getMultiResponseSet. The details of a specified multiple response set.
Cursor.getMultiResponseSetNames. The names of any multiple response sets for the active
dataset.
Cursor.getNumericMissingValues. The user-missing values, if any, for a specified numeric
variable.
Cursor.getNumericValueLabels. The value labels, if any, for a specified numeric variable.
Cursor.getStringMissingValues. The user-missing values, if any, for a specified string variable.
Cursor.getStringValueLabels. The value labels, if any, for a specified string variable.
Cursor.getVariableAttributeNames. Names of any custom variable attributes for a specified
variable.
Cursor.getVariableAttributes. The attribute values for a specified attribute of a specified
variable.
Cursor.getVariableCount. The number of variables in the active dataset.
Cursor.getVariableFormat. The display format for a specified variable; for example, F8.2.
Cursor.getVariableLabel. The variable label, if any, for a specified variable.
Cursor.getVariableMeasurementLevel. The measurement level for a specified variable.
Cursor.getVariableName. The variable name for a variable specified by its index position.
Index positions start with 0 for the first variable in file order.
Cursor.getVariableRole. The variable role (for example, INPUT or TARGET) for a specified
variable.
Cursor.getVariableType. The variable type (numeric or string) for a specified variable.
DataUtil.getVariableIndex. The index position, in the active dataset, of a specified variable.
DataUtil.getVariableNames. The names of the variables in the active dataset.
StatsUtil.getSplitVariableNames. The names of the split variables, if any.
StatsUtil.getWeightVariable. The name of the weight variable, if any.

Example

Consider the common scenario of running a particular block of command syntax only if a specific
variable exists in the dataset. For example, you are processing many datasets containing employee
records and want to split them by gender—if a gender variable exists—to obtain separate statistics
for the two gender groups. We will assume that if a gender variable exists, it has the name gender,

© Copyright IBM Corporation 1989, 2012. 8

9

Retrieving dictionary information

although it may be spelled in upper case or mixed case. The following sample code illustrates the
approach:

StatsUtil.submit("GET FILE='/data/Employee data.sav'.");
DataUtil datautil = new DataUtil();
String[] varnames = datautil.getVariableNames();
datautil.release();
for(String name: varnames){

if(name.toLowerCase().equals("gender")){
String[] command={"SORT CASES BY " + name + ".",

"SPLIT FILE LAYERED BY " + name + "."};
StatsUtil.submit(command);

}
}

Chapter

4
Working with case data in the active
dataset

The IBM® SPSS® Statistics - Integration Plug-in for Java provides the ability to read case data
from the active dataset, create new variables in the active dataset, and append new cases to the
active dataset. The functionality for reading from and writing to the active dataset is provided in
the Cursor class. An instance of the Cursor class creates an open cursor, which provides access
to the active dataset. The following rules apply to the use of cursors:

You cannot use the submit method from the StatsUtil class while a data cursor is open.
You must close the cursor first using the close method. In particular, if you need to save
changes made to the active dataset to an external file, then use the submit method to submit
a SAVE command after closing the cursor.
Only one data cursor can be open at any point in an application. To define a new data cursor,
you must first close the previous one.

While the Cursor class provides the full set of methods for accessing the active dataset, the
simpler DataUtil class is a wrapper for the Cursor class and provides the ability to read cases,
create new variables and append new cases. The examples in this section use the DataUtil class.
Because the DataUtil class is a wrapper for the Cursor class, the above limitations on cursors
also apply to DataUtil objects. The following apply:

You cannot use the submit method from the StatsUtil class while a DataUtil object
exists. You must release the resources associated with the object with the release method.
As with cursors, if you need to save changes made to the active dataset to an external file, then
use the submit method to submit a SAVE command after releasing the DataUtil object.
Only one DataUtil object can exist at a time. To create a new DataUtil object, you must
first release the previous one.

Reading case data

You retrieve cases using the fetchCases method from the DataUtil class. You can retrieve
cases one at a time in sequential order or you can retrieve multiple cases (including all cases)
with a single call to the fetchCases method.

System-missing values are always returned as the Java null value, however you can specify
whether user-missing values are treated as valid or also returned as null. See the example
on missing data.
By default, data retrieved from a variable representing a date, or a date and a time, is given as
the number of seconds from October 14, 1582. You can specify that values read from IBM®
SPSS® Statistics variables with date or datetime formats be converted to Java Calendar
objects with the setConvertDateTypes method as shown in the following example.

© Copyright IBM Corporation 1989, 2012. 10

11

Working with case data in the active dataset

When retrieving cases, any case filtering specified with the FILTER or USE commands is
honored.

Example

StatsUtil.submit("GET FILE='/data/demo.sav'.");
DataUtil datautil = new DataUtil();
datautil.setConvertDateTypes(true);
Case[] data = datautil.fetchCases(false, 0);
Double numvar;
String strvar;
Calendar datevar;
for(Case onecase: data){

for(int i = 0;i<onecase.getCellNumber();i++){
CellValueFormat format = onecase.getCellValueFormat(i);
if(format == CellValueFormat.DOUBLE){

numvar = onecase.getDoubleCellValue(i);
}
else if(format == CellValueFormat.STRING){

strvar = onecase.getStringCellValue(i);
}
else if(format == CellValueFormat.DATE){

datevar = onecase.getDateCellValue(i);
}

}
}
datautil.release();

You first create an instance of the DataUtil class. In this example, the variable datautil is
a DataUtil object.
The setConvertDateTypes method specifies that values read from SPSS Statistics
variables with date or datetime formats will be converted to Java Calendar objects.
The fetchCases method retrieves all cases from the active dataset. The first argument
specifies that user-missing values will be treated as missing and thus converted to the Java
null value. The second argument specifies that all cases, starting with case 0, will be retrieved
from the active dataset. You can retrieve cases starting from an arbitrary case number by
specifying a different value for the second argument. You can also retrieve a specified number
of cases, using an overloaded form of fetchCases with a third argument specifying the
number of cases to retrieve.
The fetchCases method returns a Case object, which represents an array of cases. The
items in a given element of the array correspond to the values of the variables in a particular
case of data from the active dataset, in file order. You can get the number of items in each
case from the getCellNumber method of the Case object.
The type of value in each item of a case is available from the getCellValueFormat method
of the Case object. Values are retrieved from the Case object with methods specific to each
type of value, as shown here for numeric, string and date values.

Retrieving data for a subset of variables

You can specify a subset of variables for which data will be retrieved. You can specify the set
of variables by name or by their index position in the active dataset. Index positions start with
0 for the first variable in file order.

12

Chapter 4

StatsUtil.submit("GET FILE='/data/employee data.sav'.");
DataUtil datautil = new DataUtil();
String[] varNames = new String[]{"id","educ","salary"};
datautil.setVariableFilter(varNames);
Case[] data = datautil.fetchCases(false, 0);

The setVariableFilter method specifies the subset of variables for which data will be
retrieved. In this example, only data for the variables id, educ and salary will be retrieved.

Missing data

The first argument to the fetchCases method specifies whether user-missing values are
converted to the Java null value or treated as valid data. System-missing values are always
converted to the Java null value.

String[] command={"DATA LIST LIST (',') /numVar (f) stringVar (a4).",
"BEGIN DATA",
"1,a",
",b",
"3,,",
"9,d",
"END DATA.", _
"MISSING VALUES numVar (9) stringVar (' ')."}
StatsUtil.submit(command);
DataUtil datautil = new DataUtil();
Case[] data = datautil.fetchCases(false, 0);
datautil.release();

Setting the first argument to fetchCases to false specifies that user-missing values are converted
to the Java null value. The values read from SPSS Statistics and stored in the variable data are:

1 a
null b
3 null
null d

You can specify that user-missing values be treated as valid data by setting the first argument to
the fetchCases method to true. The values of data are now:

1 a
null b
3
9 d

Handling Data with Splits

The getSplitIndex method, from the DataUtil class, allows you to detect split changes
when reading from datasets that have splits.

13

Working with case data in the active dataset

String[] command={"DATA LIST FREE /salary (F) jobcat (F).",
"BEGIN DATA",
"21450 1",
"45000 1",
"30000 2",
"30750 2",
"103750 3",
"72500 3",
"57000 3",
"END DATA.",
"SPLIT FILE BY jobcat."};
StatsUtil.submit(command);
DataUtil datautil = new DataUtil();
int splitindex;
splitindex = datautil.getSplitIndex(0);
while(splitindex!=-1){

System.out.println("A new split begins at case: " + splitindex);
splitindex = datautil.getSplitIndex(splitindex);

}
datautil.release();

datautil.getSplitIndex gets the case number of the first case in the split following the
specified case. For the sample dataset used in this example, split boundaries are crossed when
reading the 3rd and 5th cases. Case numbers start from 0.
If there are no split boundaries following the specified case, then datautil.getSplitIndex
returns -1.

Creating new variables in the active dataset

The DataUtil class enables you to add new variables, along with their case values, to the
active dataset.

Example

In this example we create a new string variable, a new numeric variable and a new date variable,
and populate case values for them. A sample dataset is first created.

14

Chapter 4

String[] command={"DATA LIST FREE /case (A5).",
"BEGIN DATA",
"case1",
"case2",
"case3",
"END DATA."};
StatsUtil.submit(command);
Variable numVar = new Variable("numvar",0);
Variable strVar = new Variable("strvar",1);
Variable dateVar = new Variable("datevar",0);
dateVar.setFormatType(VariableFormat.DATE);
double[] numValues = new double[]{1.0,2.0,3.0};
String[] strValues = new String[]{"a","b","c"};
Calendar dateValue = Calendar.getInstance();
dateValue.set(Calendar.YEAR, 2012);
dateValue.set(Calendar.MONTH, Calendar.JANUARY);
dateValue.set(Calendar.DAY_OF_MONTH, 1);
Calendar[] dateValues = new Calendar[]{dateValue};
DataUtil datautil = new DataUtil();
datautil.addVariableWithValue(numVar, numValues, 0);
datautil.addVariableWithValue(strVar, strValues, 0);
datautil.addVariableWithValue(dateVar, dateValues, 0);
datautil.release();

The Variable class creates the specification for a new variable to be added to the active
dataset. The first argument to the constructor is the name of the variable and the second
argument is an integer specifying the variable type. Numeric variables have a variable
type of 0 and string variables have a variable type equal to the defined length of the string
(maximum of 32767 bytes).
The addVariableWithValue method of the DataUtil class adds a new variable to the
active dataset. The first argument to the method is the Variable object that specifies the
properties of the variable. The second argument is an array that specifies the value of the
variable for each case in the active dataset to be populated. The third argument specifies the
index of the case at which to begin populating the variable values. Case indexes start with 0
for the first case in the active dataset.
For numeric variables, cases that are not populated are set to the system-missing value. For
string variables, cases that are not populated are set to a blank value. In this example, only the
first case is populated for the variable dateVar.
Variables representing a date, or a date and a time, in IBM® SPSS® Statistics are numeric
variables that have a date or datetime format. In the above example, the variable dateVar is
a numeric variable whose format has been set to DATE with the setFormatType method
of the associated Variable object. When setting the value for such a variable, use a Java
Calendar object as shown in this example.

Note: To save the modified active dataset to an external file, use the submit method (following
the release method) to submit a SAVE command, as in:

StatsUtil.submit("SAVE OUTFILE='/data/mydata.sav'.")

Example: Multiple data passes

Sometimes more than one pass of the data is required, as in the following example involving two
data passes. The first data pass is used to read the data and compute a summary statistic. The
second data pass is used to add a summary variable to the active dataset.

15

Working with case data in the active dataset

String[] command={"DATA LIST FREE /var (F).",
"BEGIN DATA",
"40200",
"21450",
"21900",
"END DATA."};
StatsUtil.submit(command);
Double total = 0.0;
DataUtil datautil = new DataUtil();
Case[] data = datautil.fetchCases(false, 0);
for(Case onecase: data){

total = total + onecase.getDoubleCellValue(0);
}
Double meanval = total/data.length;
Variable mean = new Variable("mean",0);
double[] meanVals = new double[data.length];
for (int i=0;i<data.length;i++){

meanVals[i]=meanval;
}
datautil.addVariableWithValue(mean, meanVals, 0);
datautil.release();

Appending new cases

The DataUtil class enables you to append new cases to the active dataset.

Example

In this example a single case is appended to the active dataset.

String[] command={"DATA LIST FREE /case (F) value (A1) date(ADATE).",
"BEGIN DATA",
"1 a 01/01/2012",
"END DATA."};
StatsUtil.submit(command);
Case newcase = new Case(3);
DataUtil datautil = new DataUtil();
Calendar date = Calendar.getInstance();
date.set(Calendar.YEAR, 2013);
date.set(Calendar.MONTH, Calendar.JANUARY);
date.set(Calendar.DAY_OF_MONTH, 1);
newcase.setCellValue(0, 2);
newcase.setCellValue(1, "b");
newcase.setCellValue(2, date);
datautil.appendCase(newcase);
datautil.release();

To append a case to the active dataset, you create a Case object that represents a single case,
and populate it with the values of the variables for the case. The variable values are populated
with the setCellValue method of the Case object. The first argument to this method is
the index of the associated variable in the active dataset, starting with 0 for the first variable
in file order. In this example, the variable case has index 0, the variable value has index 1
and the variable date has index 2. The second argument to the setCellValue method is
the value of the variable for the given case.
To specify the value of variable with a date or datetime format, use a Java Calendar object
as shown in this example.

16

Chapter 4

The appendCase method of the DataUtil object appends the case. Its only argument
is the Case object that specifies the case.
A numeric variable whose value is not specified in the Case object is set to the system-missing
value. A string variable whose value is not specified in the Case object will have a blank
value. The value will be valid unless you explicitly define the blank value to be missing for
that variable. You can also use an overloaded form of the setCellValue method to set the
value of a specified cell in the Case object to the Java null value, in which case it will be
treated the same as if the value of the cell was not specified.

Chapter

5
Retrieving output from syntax
commands

You can retrieve output generated by IBM® SPSS® Statistics commands without writing the
output to an external file. This is accomplished by routing the output via the Output Management
System (OMS) to an area in memory referred to as the XML workspace where it is stored as an
XPath DOM that conforms to the SPSS Statistics Output XML Schema. Output is retrieved from
this workspace with functions that employ XPath expressions.

Constructing the correct XPath expression (SPSS Statistics currently supports XPath 1.0)
requires an understanding of the Output XML schema. The output schema spss-output-1.8.xsd is
distributed with SPSS Statistics. Documentation is included in the SPSS Statistics Help system.

Example

In this example, we’ll retrieve the mean value of a variable calculated from the Descriptives
procedure.

String[] command={"GET FILE='/data/Employee data.sav'.",
"OMS SELECT TABLES ",
"/IF COMMANDS=['Descriptives'] SUBTYPES=['Descriptive Statistics'] ",
"/DESTINATION FORMAT=OXML XMLWORKSPACE='desc_table' ",
"/TAG='desc_out'.",
"DESCRIPTIVES VARIABLES=salary, salbegin, jobtime, prevexp ",
"/STATISTICS=MEAN.",
"OMSEND TAG='desc_out'."};

StatsUtil.submit(command);
String handle = "desc_table";
String context = "/outputTree";
String xpath = "//pivotTable[@subType='Descriptive Statistics']" +

"/dimension[@axis='row']" +
"/category[@varName='salary']" +
"/dimension[@axis='column']" +
"/category[@text='Mean']" +
"/cell/@text";

String result = StatsUtil.evaluateXPath(handle, context, xpath);
StatsUtil.deleteXPathHandle(handle);

The OMS command is used to direct output from a syntax command to the XML
workspace. The XMLWORKSPACE keyword on the DESTINATION subcommand, along with
FORMAT=OXML, specifies the XML workspace as the output destination. It is a good practice
to use the TAG subcommand, as done here, so as not to interfere with any other OMS requests
that may be operating. The identifiers used for the COMMANDS and SUBTYPES keywords on
the IF subcommand can be found in the OMS Identifiers dialog box, available from the
Utilities menu in SPSS Statistics.
The XMLWORKSPACE keyword is used to associate a name with this XPath DOM in the
workspace. In the current example, output from the DESCRIPTIVES command will be
identified with the name desc_table. You can have many XPath DOM’s in the XML
workspace, each with its own unique name.

© Copyright IBM Corporation 1989, 2012. 17

18

Chapter 5

The OMSEND command terminates active OMS commands, causing the output to be written to
the specified destination—in this case, the XML workspace.
You retrieve values from the XML workspace with the evaluateXPath method from the
StatsUtil class. The method takes an explicit XPath expression, evaluates it against a
specified XPath DOM in the XML workspace, and returns the result as an array of string
values.
The first argument to the evaluateXPath function specifies the XPath DOM to which an
XPath expression will be applied. This argument is referred to as the handle name for the
XPath DOM and is simply the name given on the XMLWORKSPACE keyword on the associated
OMS command. In this case the handle name is desc_table.
The second argument to evaluateXPath defines the XPath context for the expression and
should be set to "/outputTree" for items routed to the XML workspace by the OMS
command.
The third argument to evaluateXPath specifies the remainder of the XPath expression (the
context is the first part). Since XPath expressions almost always contain quoted strings, you’ll
need to use a different quote type from that used to enclose the expression. For users familiar
with XSLT for OXML and accustomed to including a namespace prefix, note that XPath
expressions for the evaluateXPath function should not contain the oms: namespace prefix.
The XPath expression in this example is specified by the variable xpath. It is not the minimal
expression needed to select the mean value of interest but is used for illustration purposes and
serves to highlight the structure of the XML output.
//pivotTable[@subType='Descriptive Statistics'] selects the Descriptives
Statistics table.
/dimension[@axis='row']/category[@varName='salary'] selects the row for
the variable salary.
/dimension[@axis='column']/category[@text='Mean'] selects the Mean column
within this row, thus specifying a single cell in the pivot table.
/cell/@text selects the textual representation of the cell contents.
When you have finished with a particular output item, it is a good idea to delete it from
the XML workspace. This is done with the deleteXPathHandle method, whose single
argument is the name of the handle associated with the item.

If you’re familiar with XPath, note that the mean value of salary can also be selected with the
following simpler XPath expression:

//category[@varName='salary']//category[@text='Mean']/cell/@text

Note: To the extent possible, construct your XPath expressions using language-independent
attributes, such as the variable name rather than the variable label. That will help reduce the
translation effort if you need to deploy your code in multiple languages. Also consider factoring
out language-dependent identifiers, such as the name of a statistic, into constants. You can obtain
the current language used for pivot table output with the syntax command SHOW OLANG.

19

Retrieving output from syntax commands

You may also consider using text_eng attributes in place of text attributes in XPath expressions.
text_eng attributes are English versions of text attributes and have the same value regardless of
the output language. The OATTRS subcommand of the SET command specifies whether text_eng
attributes are included in OXML output.

Writing XML workspace contents to a file

When writing and debugging XPath expressions, it is often useful to have a sample file that shows
the XML structure. This can be obtained with the getXMLUTF16 method from the StatsUtil
class, as well as by an option on the OMS syntax command. The following code recreates the
XML workspace for the preceding example and writes the XML associated with the handle
desc_table to an external file.

String[] command={"GET FILE='/data/Employee data.sav'.",
"OMS SELECT TABLES ",
"/IF COMMANDS=['Descriptives'] SUBTYPES=['Descriptive Statistics'] ",
"/DESTINATION FORMAT=OXML XMLWORKSPACE='desc_table' ",
"/TAG='desc_out'.",
"DESCRIPTIVES VARIABLES=salary, salbegin, jobtime, prevexp ",
"/STATISTICS=MEAN.",
"OMSEND TAG='desc_out'."};

StatsUtil.submit(command);
String result = StatsUtil.getXMLUTF16("desc_table");
Writer out = new OutputStreamWriter(new FileOutputStream("/output/descriptives_table.xml"));
out.write(result);
out.close();
StatsUtil.deleteXPathHandle("desc_table");

The section of the output file that specifies the Descriptive Statistics table, including the mean
value of salary, is as follows (the output is written in Unicode (UTF-16)):

<pivotTable subType="Descriptive Statistics" text="Descriptive Statistics">
<dimension axis="row" text="Variables">

<category label="Current Salary" text="Current Salary"
varName="salary" variable="true">

<dimension axis="column" text="Statistics">
<category text="N">

<cell number="474" text="474"/>
</category>
<category text="Mean">

<cell decimals="2" format="dollar" number="34419.567510548"
text="$34,419.57"/>

</category>
</dimension>

</category>

Retrieving images associated with an output XPath DOM

You can retrieve images associated with output routed to the XML workspace. In this example,
we’ll retrieve a bar chart associated with output from the Frequencies procedure.

20

Chapter 5

String[] command={"GET FILE='/data/Employee data.sav'.",
"OMS SELECT CHARTS ",
"/IF COMMANDS=['Frequencies'] ",
"/DESTINATION FORMAT=OXML IMAGES=YES",
"CHARTFORMAT=IMAGE IMAGEROOT='myimages' IMAGEFORMAT=JPG XMLWORKSPACE='demo'.",
"FREQUENCIES VARIABLES=jobcat",
" /BARCHART PERCENT",
" /ORDER=ANALYSIS.",
"OMSEND."};

StatsUtil.submit(command);
String handle = "demo";
String context = "/outputTree";
String xpath = "//command[@command='Frequencies']" +

"/chartTitle[@text='Bar Chart']" +
"/chart/@imageFile";

String[] result = StatsUtil.evaluateXPath(handle, context, xpath);
String imageName = result[0];
BufferedImage imageObj = StatsUtil.getImage(handle, imageName);
File outputFile = new File("/output/barchart.jpg");
ImageIO.write(imageObj, "JPG", outputFile);
StatsUtil.deleteXPathHandle(handle);

The OMS command routes output from the FREQUENCIES command to an output XPath
DOM with the handle name of demo.
To route images along with the OXML output, the IMAGES keyword on the DESTINATION
subcommand (of the OMS command) must be set to YES, and the CHARTFORMAT,
MODELFORMAT, or TREEFORMAT keyword must be set to IMAGE.
The evaluateXPath function is used to retrieve the name of the image associated with
the bar chart output from the FREQUENCIES command. In the present example, the value
returned by evaluateXPath is a list with a single element, which is then stored to the
variable imageName.
The getImage method of the StatsUtil class retrieves the image, which is then written to
an external file.
The first argument to the getImage function specifies the particular XPath DOM and must be
a valid handle name defined by a previous SPSS Statistics OMS command.
The second argument to getImage is the filename associated with the image in the OXML
output—specifically, the value of the imageFile attribute of the chart element associated
with the image.

Chapter

6
Creating custom output

The IBM® SPSS® Statistics - Integration Plug-in for Java provides the ability to create output in
the form of custom pivot tables and text blocks. Using the Output Management System (OMS), the
output can be rendered in a variety of formats such as HTML, text, or XML that conforms to the
IBM® SPSS® Statistics Output XML Schema. If you are generating output as part of an extension
command implemented in Java, then the output will be displayed in the Viewer by default.

Creating pivot tables
The following figure shows the basic structural components of a pivot table. For IBM® SPSS®
Statistics version 21, the IBM® SPSS® Statistics - Integration Plug-in for Java supports pivot
tables with one row dimension and one column dimension. Each dimension contains a set of
categories that label the elements of the dimension—for instance, row labels for a row dimension.

Each cell in the table can be specified by a combination of category values. In the example shown
here, the indicated cell is specified by a category value of Male for the Gender dimension and
Custodial for the Employment Category dimension.

Figure 6-1
Pivot table structure

Pivot tables are created with the PivotTable class, as shown in the following example. This
example assumes that you are creating pivot table output for an external Java application that will
invoke SPSS Statistics, so that the output is routed with OMS.

© Copyright IBM Corporation 1989, 2012. 21

22

Chapter 6

String[] command={
"OMS SELECT TABLES",
"/IF SUBTYPES=['pivotTableDemo']",
"/DESTINATION FORMAT=HTML OUTFILE='/output/pivottable.html'."

};
StatsUtil.submit(command);
Object[] rowLabels = new Object[] {"row1", "row2"};
Object[] colLabels = new Object[] { "columnA", "columnB"};
Object[][] cells = new Object[][] {{"1A","1B"}, {"2A","2B"}};
String title = "Sample pivot table";
String templateName = "pivotTableDemo";
String outline = "";
String caption = "";
String rowDim = "Row dimension";
String columnDim = "Column dimension";
boolean hideRowDimTitle = false;
boolean hideRowDimLabel = false;
boolean hideColDimTitle = false;
boolean hideColDimLabel = false;
PivotTable table = new PivotTable(cells, rowLabels, colLabels,

title, templateName, outline, caption, rowDim,
columnDim, hideRowDimTitle, hideRowDimLabel,
hideColDimTitle, hideColDimLabel, FormatSpec.COEFFICIENT);

table.createSimplePivotTable();
StatsUtil.submit("OMSEND.");

Result

Figure 6-2
Sample pivot table

In this example, pivot table output is routed to an external HTML file using OMS (Output
Management System). The OMS command specifies that only tables with a table subtype of
pivotTableDemo (to be defined below) will be included in the output. It also specifies the path
to the output file and that the output will be rendered in HTML.
The command syntax for the OMS command is submitted to SPSS Statistics. This starts an
OMS session. The session is closed with the OMSEND command, which then writes the output
to the destination file.
Note: As an alternative to routing output with OMS, you can also specify output formats and
destinations using an overloaded form of the StatsUtil.start method that accepts a
string with output specifications. OMS offers greater flexibility but, for simple applications,
specifying output on the start method may be sufficient.
To create a pivot table, you create an instance of the PivotTable class. The arguments
are as follows:
cells. This argument specifies the values for the cells of the pivot table, and must be given as a
2-dimensional array, where each element of the array specifies the cells in a given row of the
pivot table. Only Double and String objects can be specified in this array.
rowLabels. A 1-dimensional array of categories for the row dimension. Only Double and
String objects can be specified in this array.

23

Creating custom output

colLabels. A 1-dimensional array of categories for the column dimension. Only Double and
String objects can be specified in this array.
title. A string specifying the title of the table.
templateName A string that specifies the OMS (Output Management System) table subtype for
this table. This value must begin with a letter, and have a maximum of 64 bytes. The table
subtype can be used on the SUBTYPES keyword of the OMS command, as done here, to include
this pivot table in the output for a specified set of subtypes.
Note: By creating the pivot table instance within a startProcedure-endProcedure
block, you can associate the pivot table output with a command name, as for pivot table output
produced by syntax commands. The command name is the argument to the startProcedure
function and can used on the COMMANDS keyword of the OMS command to include the pivot
table in the output for a specified set of commands (along with optionally specifying a subtype
as discussed above).
outline. A string that specifies an optional outline title for the table. When routing output
to an SPV file with OMS, or generating output in the Viewer for an extension command
implemented in Java, the pivot table will be nested under an item with the outline name.
When output is routed to OMS in OXML format, the outline title specifies a heading tag that
will contain the output for the pivot table.
caption. A string that specifies a table caption.
rowDim. A string specifying the label for the row dimension.
columnDim. A string specifying the label for the column dimension.
hideRowDimTitle. A boolean specifying whether to hide the row dimension title.
hideRowDimLabels. A boolean specifying whether to hide the row labels.
hideColDimTitle. A boolean specifying whether to hide the column dimension title.
hideColDimLabels. A boolean specifying whether to hide the column labels.
format. Specifies the format to be used for displaying numeric values, including cell values,
row labels, and column labels. The argument is specified as a FormatSpec enum.

Creating text blocks

Text blocks are created with the addTextBlock method in the StatsUtil class.

String[] command={"OMS SELECT TEXTS",
"/IF LABELS = ['Text block name']",
"/DESTINATION FORMAT=HTML OUTFILE='/output/textblock.htm'."
};
StatsUtil.submit(command);
StatsUtil.startProcedure("demo");
StatsUtil.addTextBlock("Text block name", "The first line of text.");
StatsUtil.addTextBlock("Text block name", "The second line of text.",1);
StatsUtil.endProcedure();
StatsUtil.submit("OMSEND.");

In the common case that you’re creating text blocks along with other output such as pivot
tables, you’ll probably be routing the output with OMS (unless you are creating text blocks for
an extension command implemented in Java). To route text block output to OMS, you include

24

Chapter 6

the TEXTS keyword on the SELECT subcommand of the OMS command, as in this example. As
specified on the OMS command, the text block in this example will be routed to an HTML file.
The addTextBlock method must be called within a startProcedure - endProcedure
block, as shown in this example. startProcedure - endProcedure blocks define a set
of output (pivot tables and text blocks) that is associated with a name (in this example, demo).
When routing output to a Viewer (spv) file with OMS or creating output for an extension
command implemented in Java, startProcedure - endProcedure blocks allow you
to group output under a common heading, as is done for the set of output generated by an
IBM® SPSS® Statistics command.
The first argument to the addTextBlock method is a string that specifies the name of the text
block. The name can be used on the LABELS keyword of the OMS command, as done here,
to limit the textual output routed to OMS.
The second argument to the addTextBlockmethod is the content of the text block as a string.
You can append additional lines by calling an overloaded version of the addTextBlock
method, supplying the same text block name, the content for the next line, and an integer
specifying the number of lines to skip before the new line. You can also use the escape
sequence \n to specify line breaks, allowing you to specify multiple lines in a single call
to addTextBlock.

Creating output for extension commands

Pivot tables and text blocks created from extension commands are displayed in the Viewer
by default. If you are displaying output in the Viewer then you will probably want to group
your output under a common heading. This is done by wrapping the output generation in
a startProcedure - endProcedure block, which is actually required for text blocks
but optional for pivot tables. If you don’t wrap your output in a startProcedure -

endProcedure block, then your output will be grouped under the heading UserProcedure in the
Viewer. Following is a reworking of the example in Creating pivot tables , but wrapping the pivot
table generation in a startProcedure - endProcedure block.

Object[] rowLabels = new Object[] {"row1", "row2"};
Object[] colLabels = new Object[] { "columnA", "columnB"};
Object[][] cells = new Object[][] {{"1A","1B"}, {"2A","2B"}};
String title = "Sample pivot table";
String templateName = "pivotTableDemo";
String outline = "";
String caption = "";
String rowDim = "Row dimension";
String columnDim = "Column dimension";
boolean hideRowDimTitle = false;
boolean hideRowDimLabel = false;
boolean hideColDimTitle = false;
boolean hideColDimLabel = false;
StatsUtil.startProcedure("Demo");
PivotTable table = new PivotTable(cells, rowLabels, colLabels,

title, templateName, outline, caption, rowDim,
columnDim, hideRowDimTitle, hideRowDimLabel,
hideColDimTitle, hideColDimLabel, FormatSpec.COEFFICIENT);

table.createSimplePivotTable();
StatsUtil.endProcedure();

25

Creating custom output

The argument to the startProcedure method specifies the name associated with the
generated output, and is the name of the heading under which the output is grouped in the
Viewer.
Although not utilized in this example, the outline argument to the PivotTable method
specifies a heading under which the pivot table will appear. This heading will be nested under
the heading specified by the argument to the startProcedure method. When the argument
is omitted, as in this example, the pivot table appears directly under the heading specified by
the argument to the startProcedure method.
The endProcedure method must be called to end the block.

Chapter

7
Deploying an external Java
application

A Java application that externally invokes IBM® SPSS® Statistics through the IBM® SPSS®
Statistics - Integration Plug-in for Java must be deployed on a machine that has a licensed SPSS
Statistics application. For information about licensing or distribution arrangements, please contact
IBM Corp. directly. Support for the Integration Plug-in for Java was introduced in version 21.

As discussed in Getting started with the Integration Plug-in for Java, the JAR file containing the
Java package for the Integration Plug-in for Java is located in the SPSS Statistics installation
directory, so your application must be able to locate this directory. A utility distributed with the
IBM® SPSS® Statistics - Programmability SDK is provided for this purpose. This software
development kit (SDK) is available from http://www.ibm.com/developerworks/spssdevcentral.

The utility provides two means for obtaining the SPSS Statistics installation directory. You can
either run a script which will write the location of the latest installed version of SPSS Statistics to
a .ini file, or you can import a JAR file with methods that will allow you to obtain that location
or the locations of all installed versions of SPSS Statistics (beginning with version 21). The
components available with the utility can be found in the StatisticsUtil folder under the location
where you extract the ZIP file containing the Programmability SDK.

Using an ini file

To write the location of the latest installed version of SPSS Statistics (beginning with version 21)
to a .ini file, run StatisticsUtil.bat (for Windows platforms) or StatisticsUtil.sh (for non-Windows
platforms). The script writes the location of SPSS Statistics to the file Statistics.ini, located in the
folder that contains the script. Specifically, it creates a key-value pair with STATISTICS_PATH
as the key and the location as the value—for example, STATISTICS_PATH=C:\Program
Files\IBM\SPSS\Statistics\21. If Statistics.ini already exists, the script updates the file. If
Statistics.ini does not exist, then the script will create it.

Using methods in the JAR file

The file StatisticsUtil.jar provides the following two methods in the Utility class:
getStatisticsLocationLatest. This method returns a string with the path to the latest installed
version of SPSS Statistics, starting with version 21.
getStatisticsLocationAll. This method returns a string array with the paths to all installed
versions of SPSS Statistics, starting with version 21.

© Copyright IBM Corporation 1989, 2012. 26

http://www.ibm.com/developerworks/spssdevcentral

27

Deploying an external Java application

Notes

For instances of the client version of SPSS Statistics, the term ‘latest’ means the highest
installed version. For instances of the server version of SPSS Statistics on UNIX platforms,
where multiple instances with the same version number may exist on the same machine, the
‘latest’ version is the one with the highest version number and the most recent time stamp.
If there is both a client and a server version of SPSS Statistics installed as the latest version,
then the path to the server version is the one written to the .ini file or returned by the
getStatisticsLocationLatest method.

Appendix

A
Notices

This information was developed for products and services offered worldwide.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently
available in your area. Any reference to an IBM product, program, or service is not intended to
state or imply that only that IBM product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any IBM intellectual property right
may be used instead. However, it is the user’s responsibility to evaluate and verify the operation
of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents.
You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785,
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing, Legal and Intellectual Property Law, IBM Japan Ltd., 1623-14,
Shimotsuruma, Yamato-shi, Kanagawa 242-8502 Japan.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES
PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties
in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions
of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and
do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites
are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including
this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Software Group, Attention: Licensing, 233 S. Wacker Dr., Chicago, IL 60606, USA.

© Copyright IBM Corporation 1989, 2012. 28

29

Notices

Such information may be available, subject to appropriate terms and conditions, including in
some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program
License Agreement or any equivalent agreement between us.

Information concerning non-IBM products was obtained from the suppliers of those products,
their published announcements or other publicly available sources. IBM has not tested those
products and cannot confirm the accuracy of performance, compatibility or any other claims
related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of individuals,
companies, brands, and products. All of these names are fictitious and any similarity to the names
and addresses used by an actual business enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color illustrations may not
appear.

Trademarks

IBM, the IBM logo, ibm.com, and SPSS are trademarks of IBM Corporation, registered in
many jurisdictions worldwide. A current list of IBM trademarks is available on the Web at
http://www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel
Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

This product uses WinWrap Basic, Copyright 1993-2007, Polar Engineering and Consulting,
http://www.winwrap.com.

Other product and service names might be trademarks of IBM or other companies.

Adobe product screenshot(s) reprinted with permission from Adobe Systems Incorporated.

http://www.ibm.com/legal/copytrade.shtml

30

Appendix A

Microsoft product screenshot(s) reprinted with permission from Microsoft Corporation.

Index
data
appending cases, 10, 15
creating new variables, 10, 13
reading active dataset from Java, 10

dictionary
reading dictionary information from Java, 8

Java
DataUtil class, 10
evaluateXPath method, 17
Submit method, 6

legal notices, 28

output
reading output results from Java, 17

OXML
reading output XML from Java, 17

pivot tables, 21

running command syntax from Java, 6

trademarks, 29

XML workspace, 17
XPath expressions, 17

© Copyright IBM Corporation 1989, 2012. 31

	Java Plug-in User Guide for IBM SPSS Statistics
	Contents
	1. Getting started with the Integration Plug-in for Java
	Invoking IBM SPSS Statistics from an external Java application
	Creating IBM SPSS Statistics extension commands in Java

	2. Running IBM SPSS Statistics commands
	3. Retrieving dictionary information
	4. Working with case data in the active dataset
	Reading case data
	Creating new variables in the active dataset
	Appending new cases

	5. Retrieving output from syntax commands
	6. Creating custom output
	Creating pivot tables
	Creating text blocks
	Creating output for extension commands

	7. Deploying an external Java application
	A. Notices
	Index

