IBM SPSS Statistics 23 Command
Syntax Reference

<||IH

Note
FBefore using this information and the product it supports, read the information in[“Notices” on page 2157

Product Information

This edition applies to version 23, release 0, modification 0 of IBM SPSS Statistics and to all subsequent releases and
modifications until otherwise indicated in new editions.

Contents

Introduction: A Guide to Command
Syntax

Add-On Modules.

Release History .

Extension Commands .

Universals
Commands
Running Commands
Subcommands
Keywords .
Values in Command Spec1f1cat10ns
String Values in Command Specifications
Delimiters .
Command Order
Files . .
Command Flle
Journal File
Data Files .
Variables .
Variable Names .
Keyword TO .
Keyword ALL
Scratch Variables
System Variables .
Variable Types and Formats .
Input and Output Formats
String Variable Formats
Numeric Variable Formats
Date and Time Formats

FORTRAN:-like Input Format Spec1f1cat10ns.

Transformation Expressions .
Numeric expressions
Numeric functions .
Arithmetic functions
Statistical functions .
Random variable and d1str1but10n functlons
Date and time functions .
String expressions .
String functions . .
String /numeric conversion functlons
LAG function.
VALUELABEL functlon
Logical expressions .
Logical functions
Scoring expressions.
Missing values

2SLS .

Overview.

Examples.

EQUATION Subcommand
INSTRUMENTS Subcommand.
ENDOGENOUS Subcommand

CONSTANT and NOCONSTANT Subcommands

. 37

. 37
. 38
. 39
. 39
. 39
. 39
. 40
. 40
.43
. 43
.44
. 44
. 46
. 46
. 47
. 48
. 48
. 50
. 50
. 50
. 51
. 52
. 57
. 62
. 62
. 63
. 65
. 66
. 67
. 68
.78
. 84
. 84
. 88
. 89
. 89
. 89
.92
. 93
. 95

. 101
. 101
. 102
. 102
. 102
. 103

103

SAVE Subcommand .
PRINT Subcommand .
APPLY Subcommand.

ACF

Overview.

Example . .

VARIABLES Subcommand

DIFF Subcommand

SDIFF Subcommand .

PERIOD Subcommand .
LN and NOLOG Subcommands .
SEASONAL Subcommand .
MXAUTO Subcommand.
SERROR Subcommand .

PACF Subcommand .

APPLY Subcommand .

References

ADD DOCUMENT .

Overview .

ADD FILES

Overview.

Examples.

FILE Subcommand .

RENAME Subcommand .

BY Subcommand . .

DROP and KEEP Subcomrnands .

IN Subcommand .

FIRST and LAST Subcommands .

MAP Subcommand

Adding Cases from leferent Data Sources

ADD VALUE LABELS .

Overview.
Examples .
Value Labels for Strmg Varlables

ADP

Overview.

Examples.

FIELDS Subcommand
PREPDATETIME Subcommand
SCREENING Subcommand.
ADJUSTLEVEL Subcommand .
OUTLIERHANDLING Subcommand
REPLACEMISSING Subcommand
REORDERNOMINAL Subcommand.
RESCALE Subcommand.
TRANSFORM Subcommand
CRITERIA Subcommand

OUTFILE Subcommand .

. 103
. 103
. 103

. 105
. 105
. 106
. 106
. 106
. 107
. 107
. 107
. 108
. 108
. 108
. 109
. 109
. 110

- M
S

. 113
. 113
. 115
. 115
. 115
. 116
. 116
. 117
. 117
. 118
. 118

. 119
. 119
. 119
. 120

. 121
S 122
. 123
123
. 124
. 126
. 126
. 126
127
127
127
. 128
. 129
. 129

iii

AGGREGATE

Overview.
Example . .
OUTFILE Subcommand .
Creating a New Aggregated Data Flle versus
Appending Aggregated Variables.
BREAK Subcommand .
DOCUMENT Subcommand
PRESORTED Subcommand.
Aggregate Functions .
MISSING Subcommand .
Including Missing Values .
Comparing Missing-Value Treatments .

AIM.

Overview.

Grouping Varlable .
CATEGORICAL Subcornrnand
CONTINUOUS Subcommand .
CRITERIA Subcommand
MISSING Subcommand .
PLOT Subcommand .

ALTER TYPE.
Overview. .
PRINT Subcommand

ALSCAL

Overview.

Example . .
VARIABLES Subcommand
INPUT Subcommand.
SHAPE Subcommand
LEVEL Subcommand . .
CONDITION Subcommand
FILE Subcommand
MODEL Subcommand
CRITERIA Subcommand
PRINT Subcommand .
PLOT Subcommand .
OUTFILE Subcommand .
MATRIX Subcommand .
Specification of Analyses
References

ANACOR

Overview.
Example . .
TABLE Subcommand

Casewise Data .

Table Data
DIMENSION Subcommand .
NORMALIZATION Subcommand
VARIANCES Subcommand.
PRINT Subcommand .
PLOT Subcommand .
MATRIX Subcommand .
Analyzing Aggregated Data

iV IBM SPSS Statistics 23 Command Syntax Reference

. 131
. 131
. 132
. 132

. 133
. 134
. 135
. 135
. 135
. 138
. 138
. 139

141
. 141
. 142
. 142
. 142
. 142
. 142
. 143

. 145
. 145
. 146

. 147
. 148
. 149
. 149
. 149
. 150
. 150
. 151
. 151
. 153
. 153
. 154
. 155
. 155
. 156
. 157
. 160

. 161
. 161
. 162
. 162
. 162
. 163
. 163
. 163
. 164
. 164
. 165
. 166
. 167

ANOVA .

Overview.

Examples.

VARIABLES Subcommand

COVARIATES Subcommand

MAXORDERS Subcommand

METHOD Subcommand.
Regression Approach . .
Classic Experimental Approach
Hierarchical Approach
Example .

Summary of Analysis Methods

STATISTICS Subcommand .
Cell Means . .
Regression Coeff1c1ents for the Covarlates .
Multiple Classification Analysis

MISSING Subcommand .

References

APPLY DICTIONARY

Overview. .

FROM Subcommand

NEWVARS Subcommand .
SOURCE and TARGET Subcommands .
FILEINFO Subcommand

VARINFO Subcommand.

AREG.

Overview. .

VARIABLES Subcommand

METHOD Subcommand. .

CONSTANT and NOCONSTANT Subcommands
RHO Subcommand

MXITER Subcommand .

APPLY Subcommand .

References

ARIMA

Overview.

VARIABLES Subcommand

MODEL Subcommand .
Parameter-Order Subcommands .
Initial Value Subcommands. .
Termination Criteria Subcommands .
CINPCT Subcommand .

APPLY Subcommand. .
FORECAST Subcommand .
References

AUTORECODE.

Overview.

Example . .

VARIABLES Subcommand

INTO Subcommand .

BLANK Subcommand

GROUP Subcommand .

SAVE TEMPLATE Subcommand
Template File Format.

APPLY TEMPLATE Subcommand

. 169
. 169
. 170
. 171
. 171
. 171
. 171
. 172
. 172
. 172
. 173
. 173
. 175
. 175
. 175
. 176
. 176
. 176

77
. 178
. 178
. 179
. 179
. 180
. 181

. 183
. 183
. 185
. 185

185

. 185
. 186
. 186
. 187

. 189
. 189
. 191
. 191
. 192
. 193
. 194
. 194
. 194
. 195
. 196

. 197
. 197
. 198
. 198
. 199
. 199
. 199
. 200
. 201
. 201

Interaction between APPLY TEMPLATE and SAVE GROUPBY subcommand236

TEMPLATE202 DROP subcommand237
PRINT Subcommand. . . L.202
DESCENDING Subcommand Lo oo 202 CATPCA239
Overview.240
BEGIN DATA-END DATA. 203 Example . . . L 242
Overview.203 VARIABLES Subcommand .
Examples.204 ANALYSIS Subcommand243
Level Keyword. 243
BEGIN EXPR-ENDEXPR 205 SPORD and SPNOM Keywords 2 %
Overview. . 505 DISCRETIZATION Subcommand.244
OUTFILE subcommand 206 GROUPING Keyword245
Specifying expressions206 NCAT Keyword245
MISSING Subcommand245
ACTIVE Keyword.246
Overview. .. : o2 SUPPLEMENTARY Subcommand 246
CONFIGURATION Subcommand 246
BEGIN PROGRAM-END PROGRAM 213 DIMENSION Subcommand247
Overview. 22138 NORMALIZATION Subcommand 247
MAXITER Subcommand.247
BOOTSTRAP 215 CRITITER Subcommand.?248
Overview.215 ROTATION Subcommand248
Examples.216 RESAMPLE Subcommand249
SAMPLING Subcommand J R |74 PRINT Subcommand.249
VARIABLES Subcommand217 PLOT Subcommand251
CRITERIA Subcommand218 BIPLOT Keyword253
MISSING Subcommand218 SAVE Subcommand253
OUTFILE Subcommand255
BREAK219
Overview.29 CATREG257
Examples, s 19 Overview.258
Examples.25
CACHE2721 VARIABLES Subcommand L. L262
ANALYSIS Subcommand262
LEVEL Keyword 262
CAS_EPLOT fe e e 228 SPORD and SPNOM Keywords263
Overview.22 pGCRETIZATION Subcommand.263
Examples. . . Ce e e e 025 GROUPING Keyword263
VARIABLES Subcommand22 DISTR Keyword263
DIFF Subcommand225 MISSING Subcommand . . . 64
SDIFF Subcommand25 guppEMENTARY Subcommand 264
PERIOD Subcommand226 pyTIAL Subcommand264
LN and NOLOG Subcommands 226 MAXITER Subcommand. 265
ID Subcommand226 CRITITER Subcommand.266
FORMAT Subcommand22 REGULARIZATION Subcommand266
MARK Subcommand.228 RESAMPLE Subcommand266
SPLIT Subcommand229 PRINT Subcommand 267
APPLY Subcommand.229 PLOT Subcommand268
SAVE Subcommand268
CASESTOVARS23 OUTFILE Subcommand269
Overview. . . e iC) |
Examples.23 CCF927
ID subcommand233 Overview. om
INDEX subcommand.23 Example . . . S o,
VIND subcommand28 \ARIABIES Subcommand27
COUNT subcommand 25 prpgypcommand2%2
FIXED subcommand23 SDIFF Subcommand 273
AUTOFIX subcommand.235 PERIOD Subcommand . . Y,
RENAME subcommand23 LN and NOLOG Subcommands273
SEPARATOR subcommand.236

Contents V

SEASONAL Subcommand .
MXCROSS Subcommand
APPLY Subcommand.
References

CD.

Overview.
Examples.

Preserving and Restormg the Workmg D1rectory

Setting.

CLEAR TIME PROGRAM

Overview.
Example .

CLEAR TRANSFORMATIONS

Overview.
Examples.

CLUSTER .

Overview.

Example .

Variable List. .

MEASURE Subcommand
Measures for Interval Data .
Measures for Frequency Count Data
Measures for Binary Data

METHOD Subcommand.

SAVE Subcommand .

ID Subcommand

PRINT Subcommand .

PLOT Subcommand .

MISSING Subcommand .

MATRIX Subcommand .
Matrix Output .
Matrix Input
Format of the Matrix Data Flle
Split Files.
Missing Values .
Example: Output to External F11e
Example: Output Replacing Active Dataset
Example: Input from Active Dataset .
Example: Input from External File
Example: Input from Active Dataset .

CODEBOOK .

Overview.

Examples.

Variable List. .
VARINFO Subcommand
FILEINFO Subcommand
STATISTICS Subcommand .
OPTIONS Subcommand .

COMMENT

Overview.
Examples.

Vi IBM SPSS Statistics 23 Command Syntax Reference

. 274
. 274
. 274
. 275

. 277
. 277
. 277

. 278

. 279
. 279
. 279

. 281
. 281
. 281

. 283
. 284
. 285
. 285
. 285
. 285
. 286
. 286
. 289
. 290
. 290
. 291
. 291
. 292
. 292
. 293
. 293
. 293
. 294
. 294
. 294
. 294
. 294
. 295
. 295

. 297
. 297
. 298
. 299
. 299
. 300
. 301
. 302

. 305
. 305
. 305

COMPARE DATASETS
Overview. .
COMPDATASET subcommand
VARIABLES subcommand .
CASEID subcommand

SAVE subcommand

OUTPUT subcommand .

COMPUTE.

Overview.
Syntax rules .
Numeric variables .
String variables.
Operations .
Numeric variables.
String variables.
Examples.
Arithmetic operatlons
Arithmetic functions .
Statistical functions
Missing-Value functions .
String functions
Scoring functions .

CONJOINT

Overview.

Examples.

PLAN Subcommand

DATA Subcommand .

SEQUENCE, RANK, or SCORE Subcommand
SUBJECT Subcommand .

FACTORS Subcommand.

PRINT Subcommand .

UTILITY Subcommand .

PLOT Subcommand .

CORRELATIONS .

Overview.

Example .

VARIABLES Subcommand

PRINT Subcommand . .

STATISTICS Subcommand .

MISSING Subcommand .

MATRIX Subcommand . .
Format of the Matrix Data Flle
Split Files.

Missing Values .
Example .
Example .
Example .

CORRESPONDENCE .

Overview.
Example . .
TABLE Subcommand
Casewise Data .
Aggregated Data .
Table Data
DIMENSION Subcommand
SUPPLEMENTARY Subcommand

. 307
. 307
. 308
. 308
. 308
. 308
. 310

. 311
.31
.31
. 311
. 312
. 312
. 312
. 312
. 313
. 313
. 313
. 313
. 314
. 314
. 315

. 317
. 317
. 319
. 319
. 320
. 320
. 321
. 321
. 323
. 323
. 324

. 325
. 325
. 326
. 326
. 326
. 327
. 327
. 327
. 328
. 328
. 328
. 328
. 328
. 328

. 329
. 329
. 330
. 331
. 331
. 331
. 332
. 332
. 333

EQUAL Subcommand

MEASURE Subcommand
STANDARDIZE Subcommand.
NORMALIZATION Subcommand
PRINT Subcommand .

PLOT Subcommand .

OUTFILE Subcommand .

COUNT .

Overview.
Examples.

COXREG

Overview.

VARIABLES Subcommand
STATUS Subcommand
STRATA Subcommand
CATEGORICAL Subcommand
CONTRAST Subcommand .
METHOD Subcommand.
MISSING Subcommand .
PRINT Subcommand .
CRITERIA Subcommand
PLOT Subcommand .
PATTERN Subcommand.
OUTFILE Subcommand .
SAVE Subcommand . .
EXTERNAL Subcommand .

CREATE.

Overview.
Examples.
CSUM Function
DIFF Function .
FFT Function
IFFT Function .
LAG Function .
LEAD Function.
MA Function
PMA Function .
RMED Function
SDIFF Function.
T4253H Function .
References

CROSSTABS.

Overview.
Examples. .
VARIABLES subcommand .
TABLES subcommand
General mode .
Integer mode
CELLS subcommand . .
STATISTICS subcommand .
METHOD subcommand .
MISSING subcommand .
FORMAT subcommand .
COUNT subcommand .
BARCHART subcommand .
WRITE subcommand .

. 333
. 334
. 334
. 334
. 335
. 335
. 337

. 339
. 339
. 340

. 341
. 342
. 343
. 343
. 344
. 344
. 344
. 346
. 347
. 347
. 348
. 348
. 349
. 349
. 349
. 350

. 351
. 351
. 352
. 353
. 353
. 353
. 354
. 354
. 355
. 355
. 356
. 356
. 357
. 357
. 358

. 359
. 360
. 361
. 361
. 362
. 362
. 362
. 363
. 365
. 366
. 367
. 367
. 367
. 368
. 368

Reading a CROSSTABS Procedure Output file

HIDESMALLCOUNTS Subcommand

SHOWDIM Subcommand .
References

CSCOXREG .

Overview.

Examples. .

Variable List Subcommand
VARIABLES Subcommand .
PLAN Subcommand .
JOINTPROB Subcommand
MODEL Subcommand
CUSTOM Subcommand .
CRITERIA Subcommand
STATISTICS Subcommand .
TEST Subcommand

TESTASSUMPTIONS Subcommand .

DOMAIN Subcommand .
MISSING Subcommand .

SURVIVALMETHOD Subcommand .

PRINT Subcommand .
SAVE Subcommand .
PLOT Subcommand .
PATTERN Subcommand.
OUTFILE Subcommand .

CSDESCRIPTIVES
Overview. .

PLAN Subcommand .
JOINTPROB Subcommand .
SUMMARY Subcommand .
MEAN Subcommand.

SUM Subcommand

RATIO Subcommand . .
STATISTICS Subcommand .
SUBPOP Subcommand .
MISSING Subcommand .

CSGLM .
Overview. .
CSGLM Variable Llst
PLAN Subcommand . .
JOINTPROB Subcommand .
MODEL Subcommand .
INTERCEPT Subcommand .
INCLUDE Keyword .
SHOW Keyword .
Example . .
CUSTOM Subcommand .
EMMEANS Subcommand .
CONTRAST Keyword
CRITERIA Subcommand .
STATISTICS Subcommand .
TEST Subcommand
TYPE Keyword.
PADJUST keyword
DOMAIN Subcommand .
MISSING Subcommand .
PRINT Subcommand .

369

. 370
. 370
. 370

. 371

. 372
. 373
. 373
. 374
. 375
. 375
. 375
. 376
. 377
. 378
. 378
. 379
. 379
. 380
. 380
. 381
. 381
. 383
. 383
. 384

. 385

. 385
. 386
. 386
. 386
. 387
. 387
. 387
. 388
. 388
. 388

. 391

Contents

. 392
. 393
. 393
. 393
. 393
. 394
. 394
. 394
. 394
. 395
. 396
. 397
. 398
. 398
. 398
. 399
. 399
. 399
. 399
. 400

vii

SAVE Subcommand .
OUTFILE Subcommand .

CSLOGISTIC.
Overview. . .
CSLOGISTIC Varlable Llst .
PLAN Subcommand .
JOINTPROB Subcommand
MODEL Subcommand
INTERCEPT Subcommand .

INCLUDE Keyword .

SHOW Keyword .

Example . .
CUSTOM Subcommand

Example .

Example .

Example . . .
ODDSRATIOS Subcommand .

Example .

Example . .
CRITERIA Subcommand
STATISTICS Subcommand .
TEST Subcommand

TYPE Keyword.

PADJUST Keyword
DOMAIN Subcommand .
MISSING Subcommand .
PRINT Subcommand .
SAVE Subcommand .
OUTFILE Subcommand .

CSORDINAL .

Overview.

Variable List. .

PLAN Subcommand . .
JOINTPROB Subcommand .
MODEL Subcommand

LINK Subcommand .
CUSTOM Subcommand . .
ODDSRATIOS Subcommand .
CRITERIA Subcommand
STATISTICS Subcommand .
NONPARALLEL Subcommand
TEST Subcommand

DOMAIN Subcommand .
MISSING Subcommand .
PRINT Subcommand .

SAVE Subcommand .
OUTFILE Subcommand .

CSPLAN

Overview.

Basic Spec1f1cat10n

Syntax Rules
Examples. .
CSPLAN Command .
PLAN Subcommand . .
PLANVARS Subcommand .
SRSESTIMATOR Subcommand
PRINT Subcommand .

. 400
. 401

. 403
. 404
. 405
. 406
. 406
. 406
. 406
. 407
. 407
. 407
. 407
. 408
. 409
. 409
. 409
. 410
. 411
. 411
. 412
. 412
. 412
. 412
. 413
. 413
. 413
. 414
. 414

. 417
. 418
. 419
. 419
. 420
. 420
. 420
. 421
. 422
. 424
. 425
. 425
. 426
. 426
. 427
. 427
. 428
. 429

. 431
. 433
. 434
. 434
. 435
. 437
. 437
. 437
. 438
. 438

viili IBM SPSS Statistics 23 Command Syntax Reference

DESIGN Subcommand .
STAGELABEL Keyword .
STRATA Keyword .
CLUSTER Keyword .

METHOD Subcommand.
ESTIMATION Keyword .

SIZE Subcommand

RATE Subcommand .
MINSIZE Keyword
MAXSIZE Keyword .

MOS Subcommand
MIN Keyword .

MAX Keyword . ..
STAGEVARS Subcommand .
STAGEVARS Variables
ESTIMATOR Subcommand .

POPSIZE Subcommand .

INCLPROB Subcommand .

CSSELECT

Overview.

Example . .

PLAN Subcommand

CRITERIA Subcommand
STAGES Keyword .
SEED Keyword. .

CLASSMISSING Subcommand

DATA Subcommand .
RENAMEVARS Keyword
PRESORTED Keyword .

SAMPLEFILE Subcommand
OUTFILE Keyword
KEEP Keyword.
DROP Keyword

JOINTPROB Subcommand

Structure of the Joint Probab1ht1es Flle .

SELECTRULE Subcommand
PRINT Subcommand .

CSTABULATE
Overview. .

PLAN Subcornrnand .
JOINTPROB Subcommand .
TABLES Subcommand
CELLS Subcommand . .
STATISTICS Subcommand .
TEST Subcommand
SUBPOP Subcommand .
MISSING Subcommand .

CTABLES .

Overview. .

Syntax Conventlons .

Examples.

TABLE Subcommand
Variable Types .

Category Variables and Multlple Response Sets

Stacking and Nesting.
Scale Variables .
Specifying Summaries

. 439
. 439
. 439
. 439
. 439
. 440
. 441
. 441
. 442
. 442
. 442
. 442
. 442
. 443
. 443
. 444
. 444
. 445

. 447
. 447
. 449
. 449
. 449
. 449
. 449
. 450
. 450
. 450
. 450
. 450
. 451
. 451
. 451
. 451
. 451
. 452
. 453

. 455
. 455
. 456
. 456
. 456
. 457
. 457
. 458
. 458
. 458

. 461
. 463
. 464
. 464
. 465
. 465

466

. 466
. 468
. 468

Formats for Summaries .
Missing Values in Summaries .
SLABELS Subcommand .
CLABELS Subcommand .
CATEGORIES Subcommand
Explicit Category Specification
Implicit Category Specification
Totals . o
Empty Categorles . .
TITLES Subcommand: Titles, Captlons, and Corner
Text
Significance Testmg
Chi-Square Tests: SIGTEST Subcornrnand
Pairwise Comparisons of Proportions and
Means: COMPARETEST Subcommand .
FORMAT Subcommand .
VLABELS Subcommand .
SMISSING Subcommand
MRSETS Subcommand .
PCOMPUTE Subcommand .
PPROPERTIES Subcommand .
HIDESMALLCOUNTS Subcommand

CURVEFIT.

Overview. .

VARIABLES Subcornmand

MODEL Subcommand
UPPERBOUND Subcommand .
CONSTANT and NOCONSTANT Subcommands
CIN Subcommand.

PLOT Subcommand .

ID Subcommand

SAVE Subcommand .

PRINT Subcommand .

APPLY Subcommand. .
TEMPLATE Subcommand .
References

DATA LIST.

Overview.

Examples.

Operations .

Fixed-Format Data
Freefield Data .

FILE Subcommand

ENCODING Subcommand .

FIXED, FREE, and LIST Keywords

TABLE and NOTABLE Subcommands .

RECORDS Subcommand

SKIP Subcommand

END Subcommand

Variable Definition

Variable Names

Variable Location .

Fixed-Format Data
Freefield Data .

Variable Formats . .
Column-Style Format Spec1f1cat10ns
FORTRAN:-like Format Specifications
Numeric Formats . Lo

. 474
. 474
. 475
. 476
. 477
. 477
. 478
. 480

. 481

. 481
. 482
. 482

. 483
. 485
. 486
. 486
. 486
. 487
. 488
. 488

. 489
. 489
. 491
. 491
. 492

492

. 492
. 492
. 492
. 493
. 493
. 493
. 494
. 494

. 495
. 496
. 497
. 497
. 498
. 498
. 498
. 498
. 499
. 500
. 500
. 502
. 502
. 503
. 503
. 503
. 504
. 505
. 505
. 505
. 506
. 506

Implied Decimal Positions .
String Formats .

DATAFILE ATTRIBUTE

Overview.

DATASET ACTIVATE

Overview.

DATASET CLOSE.

Overview.

DATASET COPY .

Overview.

DATASET DECLARE

Overview.

DATASET DISPLAY .

Overview.

DATASET NAME .

Overview.

DATE .

Overview.
Syntax Rules
Starting Value and Per10d1c1ty
BY Keyword.
Example 1 . .
Example 2
Example 3
Example 4
Example 5
Example 6
Example 7

DEFINE-'ENDDEFINE .

Overview.
Examples.
Macro Arguments .
Keyword Arguments .
Positional Arguments. .
Assigning Tokens to Arguments .
Defining Defaults .
Controlling Expansion
Macro Directives
Macro Expansion in Comments
String Manipulation Functions.
SET Subcommands for Use with Macro
Restoring SET Specifications
Conditional Processing .
Unquoted String Constants in Cond1t1ona1 'IF
Statements
Looping Constructs
Index Loop .
List-Processing Loop . .
Direct Assignment of Macro Varlables .

Contents

. 506
. 508

. 511
. 511

. 513
. 513

. 515
. 515

. 517
. 517

. 521
. 521

. 523
. 523

. 525
. 525

. 529
. 529
. 530
. 530
. 531
. 531
. 531
. 532
. 532
. 533
. 534
. 534

. 537
. 538
. 540
. 541
. 542
. 542
. 543
. 546
. 546
. 546
. 546
. 546
. 548
. 548
. 549

. 549
. 550
. 550
. 550
. 551

ix

DELETE VARIABLES .

Overview.

DESCRIPTIVES
Overview. .
VARIABLES Subcornmand
Z Scores . .
SAVE Subcommand .
STATISTICS Subcommand
SORT Subcommand .
MISSING Subcommand .

DETECTANOMALY .

Overview.

Examples.

VARIABLES Subcommand .
HANDLEMISSING Subcommand
CRITERIA Subcommand

SAVE Subcommand .

OUTFILE Subcommand .

PRINT Subcommand .

DISCRIMINANT.
Overview. .
GROUPS Subcommand
VARIABLES Subcommand .
SELECT Subcommand
ANALYSIS Subcommand

Inclusion Levels
METHOD Subcommand.
OUTFILE Subcommand .
TOLERANCE Subcommand
PIN and POUT Subcommands
FIN and FOUT Subcommands.
VIN Subcommand. -
MAXSTEPS Subcommand .
FUNCTIONS Subcommand
PRIORS Subcommand
SAVE Subcommand .
STATISTICS Subcommand
ROTATE Subcommand .
HISTORY Subcommand .
CLASSIFY Subcommand
PLOT Subcommand .
MISSING Subcommand .
MATRIX Subcommand .

Matrix Output .

Matrix Input

Format of the Matrix Data Flle

Split Files. . .

STDDEV and CORR Records .

Missing Values .

Examples.

DISPLAY

Overview.

Examples.

SORTED Keyword
VARIABLES Subcommand

X IBM SPSS Statistics 23 Command Syntax Reference

. 553
. 553

. 555
. 555
. 556
. 556
. 556
. 557
. 557
. 558

. 561
. 561
. 563
. 563
. 564
. 564
. 565
. 566
. 566

. 569
. 570
. 571
. 571
. 572
. 572
. 572
. 573
. 574
. 574
. 574
. 574
. 575
. 575
. 575
. 576
. 576
. 578
. 579
. 579
. 579
. 580
. 580
. 581
. 581
. 581
. 581
. 582
. 582
. 582
. 582

. 585
. 585
. 586
. 586
. 586

DMCLUSTER
DMLOGISTIC
DMROC .
DMTABLES
DMTREE

DO IF.

Overview.
Examples.
Syntax Rules
Logical Expressions
Operations .
Flow of Control

Missing Values and Loglcal Operators .

ELSE Command

ELSE IF Command
Nested DO IF Structures
Complex File Structures .

DO REPEAT-END REPEAT .

Overview.
Examples.
PRINT Subcommand

DOCUMENT .

Overview.
Examples.

DROP DOCUMENTS

Overview.
Examples.

ECHO.

Overview.

END CASE

Overview.
Examples.

END FILE .

Overview.
Examples.

ERASE .

Overview.
Examples.

EXAMINE .

Overview.

Examples.

VARIABLES Subcommand

COMPARE Subcommand .
TOTAL and NOTOTAL Subcommands .

. 587

. 589

. 591

. 593

. 595

. 597
. 598
. 598
. 599
. 600
. 600
. 600
. 601
. 601
. 602
. 603
. 603

. 605
. 605
. 606
. 607

. 609
. 609
. 610

. 611
. 611
. 611

. 613
. 613

. 615
. 615
. 616

. 621
. 621
. 621

. 623
. 623
. 623

. 625
. 626
. 626
. 627
. 627
. 628

ID Subcommand .
PERCENTILES Subcommand .
PLOT Subcommand .
STATISTICS Subcommand
CINTERVAL Subcommand .
MESTIMATORS Subcommand.
MISSING Subcommand .
References

EXECUTE .

Overview.
Examples.

EXPORT

Overview.

Examples.

Methods of Transportmg Portable Flles
Magnetic Tape . L
Communications Programs

Character Translation.

OUTFILE Subcommand .

TYPE Subcommand . .

UNSELECTED Subcommand

DROP and KEEP Subcommands .

RENAME Subcommand .

MAP Subcommand

DIGITS Subcommand

EXTENSION .

Overview.
Examples.
SPECIFICATION Subcommand

EXSMOOTH .

Overview. .

VARIABLES Subcommand

MODEL Subcommand

PERIOD Subcommand

SEASFACT Subcommand .

Smoothing Parameter Subcommands
Keyword GRID.

INITTIAL Subcommand

APPLY Subcommand.

References

FACTOR

Overview. .

VARIABLES Subcommand
MISSING Subcommand .
METHOD Subcommand.
SELECT Subcommand
ANALYSIS Subcommand
FORMAT Subcommand .
PRINT Subcommand .

PLOT Subcommand .
DIAGONAL Subcommand
CRITERIA Subcommand .
EXTRACTION Subcommand .
ROTATION Subcommand .
SAVE Subcommand .

. 628
. 628
. 629
. 630
. 630
. 631
. 631
. 632

. 633
. 633
. 633

. 635
. 635
. 636
. 636
. 636
. 637
. 637
. 637
. 637
. 638
. 638
. 638
. 639
. 639

. 641
. 641
. 641
. 642

. 643
. 643
. 645
. 645
. 646
. 646
. 647
. 648
. 648
. 649
. 650

. 651
. 652
. 653
. 653
. 654
. 654
. 654
. 655
. 655
. 657
. 657
. 658
. 659
. 659
. 660

MATRIX Subcommand .
Matrix Output .
Matrix Input

Format of the Matrix Data Flle

Split Files.

Example: Factor Correlatlon Matrlx Output to

External File.

Example: Factor Correlatlon Matrlx Output

Replacing Active Dataset

Example: Factor-Loading Matrix Output

Replacing Active Dataset

Example: Matrix Input from active dataset
Example: Matrix Input from External File .
Example: Matrix Input from active dataset
Example: Using Saved Coefficients to Score an

External File.
References

FILE HANDLE

Overview.

Example . .

NAME Subcommand
MODE Subcommand .
RECFORM Subcommand
LRECL Subcommand. .
ENCODING Subcommand .

FILE LABEL .

Overview.

FILE TYPE-END FILE TYPE

Overview.
Examples.
Specification Order
Types of Files

. 661
. 662
. 662
. 662
. 663

. 663
. 663
. 663
. 663
. 663
. 664

. 664
. 664

. 665

. 665
. 666
. 666
. 666
. 666
. 667
. 667

. 669

. 669

. 671

Subcommands and Thelr Defaults for Each Flle

Type . . .
FILE Subcommand
ENCODING Subcommand
RECORD Subcommand .
CASE Subcommand .
WILD Subcommand .
DUPLICATE Subcommand
MISSING Subcommand .
ORDERED Subcommand

FILTER .

Overview.
Examples.

FINISH

Overview.

FIT .

Overview.

Example . . .
ERRORS Subcommand .
OBS Subcommand.

DFE and DFH Subcommands .

. 672
. 673
. 675
. 675

. 675
. 676
. 676
. 676
. 677
. 678
. 679
. 680
. 681

. 683

. 683
. 684

. 685

. 685

. 687

Contents

. 687
. 688
. 688
. 688
. 688

xi

Output Considerations for SSE
References

FLIP

Overview.

Example . .
VARIABLES Subcommand
NEWNAMES Subcommand

FORMATS .

Overview.
Syntax Rules
Examples.

FREQUENCIES.
Overview. .
VARIABLES subcommand
FORMAT subcommand .
BARCHART subcommand .
PIECHART subcommand
HISTOGRAM subcommand
GROUPED subcommand
PERCENTILES subcommand .
NTILES subcommand
STATISTICS subcommand .
MISSING subcommand .
ORDER subcommand

GENLIN .

Overview.

Variable List. .
MODEL Subcommand
CRITERIA Subcommand
REPEATED Subcommand .
EMMEANS Subcommand .
MISSING Subcommand .
PRINT Subcommand .
SAVE Subcommand .
OUTFILE Subcommand .

GENLINMIXED .

Overview.

Examples. .
DATA_ STRUCTURE Subcommand .
FIELDS Subcommand
TARGET_OPTIONS Subcommand
FIXED Subcommand .

RANDOM Subcommand .
BUILD_OPTIONS Subcommand .
EMMEANS Subcommand .
EMMEANS_OPTIONS Subcommand
OUTFILE Subcommand .

SAVE Subcommand .

GENLOG

Overview.

Variable List.
Logit Model .
Cell Covariates .

xil IBM SPSS Statistics 23 Command Syntax Reference

. 689
. 689

. 691
. 691
. 692
. 692
. 692

. 695
. 695
. 696
. 696

. 697
. 697
. 698
. 698
. 699
. 699
. 700
. 700
. 701
. 701
. 702
. 703
. 703

. 705
. 707
. 709
. 711
. 715
. 719
. 724
. 727
. 727
. 729
. 731

. 733
. 734
. 735
. 739
. 740
. 740
. 743
. 744
. 745
. 747
. 748
. 749
. 749

. 751
. 751
. 752
. 753
. 753

CSTRUCTURE Subcommand .
GRESID Subcommand
GLOR Subcommand .
MODEL Subcommand
CRITERIA Subcommand
PRINT Subcommand .
PLOT Subcommand .
MISSING Subcommand .
SAVE Subcommand .
DESIGN Subcommand .
References

GET

Overview. .

FILE Subcommand .
DROP and KEEP Subcommands .
RENAME Subcommand .

MAP Subcommand

GET CAPTURE.

Overview. .

CONNECT Subcommand .

UNENCRYPTED Subcommands .

SQL Subcommand.

Data Conversion .
Variable Names and Labels
Missing Values .

GET DATA.
Overview. . .
TYPE Subcommand .
FILE subcommand

Subcommands for TYPE= ODBC and TYPE OLEDB
. 769

CONNECT subcommand

ENCRYPTED and UNENCRYPTED

subcommands .

SQL subcommand . .
ASSUMEDSTRWIDTH subcommand

Subcommands for TYPE=XLS, XLSX, and XLSM

SHEET subcommand . .
CELLRANGE subcommand
READNAMES subcommand
Subcommands for TYPE=TXT .
ENCODING subcommand . .
ARRANGEMENT subcommand .
FIRSTCASE subcommand .
DELCASE subcommand.
FIXCASE subcommand . .
IMPORTCASES subcommand .
DELIMITERS subcommand.
QUALIFIER subcommand .

VARIABLES subcommand for ARRANGEMENT

= DELIMITED .

VARIABLES subcommand for ARRANGEMENT

= FIXED .

Variable Format Spec1f1cat10ns for TYPE TXT

GET SAS
Overview. .
DATA Subcommand

. 753
. 754
. 754
. 755
. 755
. 755
. 756
. 757
. 757
. 758
. 759

. 761
. 761
. 762
. 762
. 763
. 764

. 765
. 765
. 766
. 766
. 766
. 766
. 766
. 766

. 767
. 768
. 768

. 769
769

. 769
. 769
. 770

770

. 770
. 770
. 771
. 771
. 771
. 771
. 772
. 772
. 772
. 772
. 772

. 773

. 773

. 773
773

. 775
. 775
. 776

ENCODING Subcommand .
FORMATS Subcommand

Creating a Formats File with PROC FORMAT

SAS Data Conversion.
Variable Names
Variable Labels .
Value Labels.
Missing Values .
Variable Types .

GET STATA

Overview.

FILE Keyword . .
ENCODING Subcommand

GET TRANSLATE.

Overview.
Operations .
Spreadsheets
Databases .
Tab-Delimited ASCH Flles .
FILE Subcommand
TYPE Subcommand . .
FIELDNAMES Subcommand .
RANGE Subcommand

DROP and KEEP Subcommands .

MAP Subcommand

GETCOGNOS

Overview. .

MODE subcommand .
CONNECTION subcommand
LOCATION subcommand .
IMPORT subcommand .
FILTER subcommand. ..
PARAMETERS subcommand .

GETTMA1

Overview. .
CONNECTION subcommand
VIEW subcommand .
RENAME subcommand .

GGRAPH

Overview.

GRAPHDATASET Subcommand .

NAME Keyword .
DATASET Keyword .
VARIABLES Keyword
TRANSFORM Keyword .
MISSING Keyword
REPORTMISSING Keyword
CASELIMIT Keyword
GRAPHSPEC Subcommand
SOURCE Keyword
EDITABLE Keyword .
LABEL Keyword .

DEFAULTTEMPLATE Keyword .

TEMPLATE Keyword
VIZSTYLESHEET Keyword.

. 776
. 777

777

. 778
. 778
. 778
. 778
. 778
. 778

. 781
. 781
. 781
. 782

. 785
. 785
. 786
. 786
. 787
. 787
. 788
. 788
. 788
. 789
. 789
. 790

. 791
. 792
. 792
. 792
. 793
. 793
. 793
. 793

. 795
. 795
. 796
. 797
. 797

. 799
. 800
. 801
. 801
. 801
. 801
. 805
. 806
. 806
. 806
. 807
. 807
. 810
. 810
. 810
. 810
. 811

VIZMAP Keyword
GPL Examples .

GLM

Overview.

General Linear Model (GLM) and MANOVA

Models
Custom Hypothes1s Spec1f1cat1ons

LMATRIX, MMATRIX, and KMATRIX

Subcommands . .
CONTRAST Subcommand

GLM: Univariate
Overview.

Example . .

GLM Variable Llst
RANDOM Subcommand
REGWGT Subcommand .
METHOD Subcommand. .
INTERCEPT Subcommand .
MISSING Subcommand .
CRITERIA Subcommand
PRINT Subcommand .
PLOT Subcommand .
TEST Subcommand
LMATRIX Subcommand.
KMATRIX Subcommand .
CONTRAST Subcommand .
POSTHOC Subcommand
EMMEANS Subcommand .
SAVE Subcommand .
OUTFILE Subcommand .
DESIGN Subcommand .

GLM: Multivariate
Overview. .

GLM Variable Llst
PRINT Subcommand .
MMATRIX Subcommand

GLM: Repeated Measures .

Overview.

Example . .

GLM Variable Llst .

WSFACTOR Subcommand .
Contrasts for WSFACTOR .

WSDESIGN Subcommand .

MEASURE Subcommand

EMMEANS Subcommand .

GRAPH .

Overview.
Examples.

TITLE, SUBTITLE, and FOOTNOTE Subcommands

BAR Subcommand

LINE Subcommand

PIE Subcommand .

HILO Subcommand . .
ERRORBAR Subcommand .
SCATTERPLOT Subcommand .

. 811
. 812

. 817
. 818
. 819
. 820
. 821

. 821
. 822

. 823
. 824
. 825
. 825
. 826
. 826
. 826
. 827
. 827
. 828
. 828
. 829
. 830
. 830
. 831
. 832
. 833
. 836
. 837
. 838
. 838

. 841
. 841
. 842
. 842
. 843

. 845
. 845
. 846
. 847
. 847
. 848
. 850
. 850
. 851

. 853
. 855

. 856
856

. 857
. 857
. 858
. 858
. 858
. 859

xiii

HISTOGRAM Subcommand
PARETO Subcommand .
PANEL Subcommand . .
COLVAR and ROWVAR Keywords .
COLOP and ROWOP Keywords .
INTERVAL Subcommand
CI Keyword .
STDDEV Keyword
SE Keyword. . .
TEMPLATE Subcommand
Elements and Attributes Independent of Chart
Types or Data .
Elements and Attributes Dependent on Chart
Type
Elements and Attrlbutes Dependent on Data
MISSING Subcommand .

HILOGLINEAR .

Overview.

Example .

Variable List. .
METHOD Subcommand
MAXORDER Subcommand.
CRITERIA Subcommand
CWEIGHT Subcommand
PRINT Subcommand .
PLOT Subcommand .
MISSING Subcommand .
DESIGN Subcommand .
References

HOMALS

Overview.

Example .

VARIABLES Subcommand
ANALYSIS Subcommand
NOBSERVATIONS Subcommand
DIMENSION Subcommand
MAXITER Subcommand. -
CONVERGENCE Subcommand .
PRINT Subcommand .

PLOT Subcommand .

SAVE Subcommand .

MATRIX Subcommand .

HOST.

Overview.
Syntax.
Quoted Strlngs
TIMELIMIT Keyword
Using TIMELIMIT to Return Control
Working Directory. .
UNC Paths on Wlndows Operatmg Systerns .

IF

Overview.

Examples.

Operations .
Numeric Varlables
String Variables.

. 859
. 859
. 860
. 860
. 860
. 861
. 861
. 861
. 861
. 862

. 862

. 862

862

. 863

. 865
. 865
. 867
. 867
. 867
. 867
. 868
. 868
. 870
. 870
. 871
. 871
. 872

. 873
. 873
. 874
. 874
. 875
. 875
. 876
. 876
. 876
. 876
. 877
. 878
. 879

. 881
. 881
. 881
. 882
. 882
. 882
. 883
. 883

. 885
. 885
. 886
. 888
. 888
. 888

Xiv IBM SPSS Statistics 23 Command Syntax Reference

Missing Values and Logical Operators .

IGRAPH.

Overview.

General Syntax . .
X1,Y, and X2 Subcommands .
CATORDER Subcommand .

X1LENGTH, YLENGTH, and X2LENGTH

Subcommands . .
NORMALIZE Subcommand

COLOR, STYLE, and SIZE Subcornmands .

STACK Subcommand. .
SUMMARYVAR Subcommand
PANEL Subcommand .
POINTLABEL Subcommand
CASELABEL Subcommand.
COORDINATE Subcommand .
EFFECT Subcommand
TITLE, SUBTITLE, and CAPTION
Subcommands . .
VIEWNAME Subcommand .
CHARTLOOK Subcommand .
REFLINE Subcommand .
SPIKE Subcommand .
FORMAT Subcommand .
KEY Keyword .

Element Syntax.
SCATTER Subcommand
AREA Subcommand .
BAR Subcommand
PIE Subcommand .
BOX Subcommand
LINE Subcommand .
ERRORBAR Subcommand .
HISTOGRAM Subcommand
FITLINE Subcommand .

Summary Functions .

IMPORT .

Overview.

Examples.

FILE Subcommand

TYPE Subcommand . .
DROP and KEEP Subcornmands .
RENAME Subcommand .

MAP Subcommand

INCLUDE
Overview. .
ENCODING Keyword
Examples. .
FILE Subcommand

INFO .

INPUT PROGRAM-END INPUT
PROGRAM

Overview.
Examples.

. 888

. 891
. 894
. 895
. 895
. 895

. 896
. 896
. 896
. 897
. 898
. 898
. 898
. 898
. 898
. 898

. 899
. 899
. 899
. 900
. 900
. 901
. 901
. 901
. 901
. 902
. 902
. 903
. 904
. 905
. 906
. 907
. 908
. 909

. M
.91
. 912
. 912
. 912
. 912
. 913
. 913

. 915
. 915
. 916
. 916
. 916

. 917

. 919
. 919
. 920

Input Programs.
Input State .
More Examples.

INSERT .
OVERVIEW .

FILE Keyword .
SYNTAX Keyword
ERROR Keyword .
CD Keyword
ENCODING Keyword
INSERT vs. INCLUDE

KEYED DATA LIST .

Overview.
Examples.
FILE Subcommand
KEY Subcommand
IN Subcommand .

TABLE and NOTABLE Subcommands .

ENCODING Subcommand .

KM .

Overview.

Examples. . .
Survival and Factor Varlables .
STATUS Subcommand
STRATA Subcommand

PLOT Subcommand .

ID Subcommand

PRINT Subcommand . ..
PERCENTILES Subcommand .
TEST Subcommand
COMPARE Subcommand
TREND Subcommand

SAVE Subcommand .

KNN

Overview.

Examples.

Variable Lists .
EXCEPT Subcommand .
CASELABELS Subcommand
FOCALCASES Subcommand .
RESCALE Subcommand.
PARTITION Subcommand .
MODEL Subcommand
CRITERIA Subcommand
CROSSVALIDATION Subcommand
MISSING Subcommand .
VIEWMODEL Subcommand
PRINT Subcommand .

SAVE Subcommand .
OUTFILE Subcommand .

LEAVE

Overview.
Examples.

. 921
. 921
. 921

. 923
. 923
. 924
. 924
. 924
. 924
. 925
. 925

. 927
. 927
. 929
. 930
. 930
. 930
. 931
. 931

. 933
. 933
. 935
. 935
. 935
. 936
. 936
. 937
. 937
. 937
. 937
. 938
. 938
. 939

. M
. 942
. 944
. 944
. 944
. 945
. 945
. 945
. 946
. 947
. 948
. 949
. 949
. 950
. 950
. 950
. 951

. 953
. 953
. 953

LINEAR .
Overview. .
FIELDS Subcommand

BUILD_OPTIONS Subcommand .

ENSEMBLES Subcommand.
SAVE Subcommand .
OUTFILE Subcommand .

LIST

Overview.

Examples.

VARIABLES Subcommand
FORMAT Subcommand .
CASES Subcommand .

LOGISTIC REGRESSION
Overview. .

VARIABLES Subcommand
CATEGORICAL Subcommand.
CONTRAST Subcommand .
METHOD Subcommand.
SELECT Subcommand

ORIGIN and NOORIGIN Subcommands .

ID Subcommand

PRINT Subcommand .
CRITERIA Subcommand
CLASSPLOT Subcommand .
CASEWISE Subcommand
MISSING Subcommand .
OUTFILE Subcommand .
SAVE Subcommand . .
EXTERNAL Subcommand .
References

LOGLINEAR .
Overview.
Variable List.

Logit Model .

Cell Covariates .
CWEIGHT Subcommand
GRESID Subcommand
CONTRAST Subcommand .
CRITERIA Subcommand
PRINT Subcommand .
PLOT Subcommand .
MISSING Subcommand .
DESIGN Subcommand .

LOOP-END LOOP
Overview.

Examples.

IF Keyword .
Indexing Clause

BY Keyword.

Missing Values .
Creating Data

MANOVA

Overview.

. 955
. 955
. 956
. 957
. 959
. 959
. 959

. 961
. 961
. 962
. 962
. 962
. 963

. 965
. 966
. 967
. 968
. 968
. 970
. 971
. 971
. 972
. 972
. 973
. 974
. 974
. 975
. 975
. 975
. 976
. 976

. 977
. 977
. 979
. 980
. 980
. 980
. 981
. 981
. 983
. 984
. 984
. 985
. 985

. 987
. 987
. 988
. 989
. 989
. 992
. 993
. 994

. 997
. 999

Contents XV

MANOVA and General Linear Model (GLM). . . 999 ANALYSIS Subcommand1031
CONDITIONAL and UNCONDITIONAL

MANOVA: Univariate. 1001 Keywords1032
Overview1002
Example.1003 MANOVA: Repeated Measures . . . 1035
MANOVA Varlable Llst1003 Overview1035
ERROR Subcommand1004 Example. . . A 106 15)
CONTRAST Subcommand 1004 MANOVA Varlable L1st O 106 14)
PARTITION Subcommand. 1006 WSFACTORS Subcommand 1037
METHOD Subcommand1007 CONTRAST for WSFACTORS 1038
PRINT and NOPRINT Subcommands1007 PARTITION for WSFACTORS 1039
CELLINFO Keyword1008 WSDESIGN Subcommand. 1039
PARAMETERS Keyword 1009 MWITHIN Keyword for Simple Effects .. . 1039
SIGNIF Keyword.1009 MEASURE Subcommand 1040
HOMOGENEITY Keyword1009 RENAME Subcommand 1040
DESIGN Keyword1010 PRINT Subcommand1041
ERROR Keyword.1010 References1041
OMEANS Subcommand1010
PMEANS Subcommand1011 MATCHFILES.1043
RESIDUALS Subcommand 1012 Overview . . 1043
POWER Subcommand1012 B Subcommand1045
CINTERVAL Subcommand 1013 Text Data Files 1046
PLOT Subcommand 1013 BY Subcommand 1046
MISSING Subcommand1014 Duplicate Cases1046
MATRIX Subcommand.1014 TABLE Subcommand1047
Format of the Matrix Data Flle1015 RENAME Subcommand . . 1047
Spllt Files and Variable Order1015 DROP and KEEP Subcommands1048
Additional Statistics.1015 IN Subcommand1048
ANALYSIS Subcommand1016 RIRST and LAST Subcommands. 1049
DESIGN Subcommand - . 1016 MAP Subcommand1049
Partitioned Effects: Number in Parentheses 1017
Nested Effects: WITHIN Keyword 1018
Simple Effects: WITHIN and MWITHIN MATRIX-END MATRIX 1051
Overview1053
Keywords1018 Terminolo 1053
Pooled Effects: Plus Slgn1018 BY e
MUPLUS Keyword1019 Matrix Variables 1054
Effects of Continuous Variables 1019 String Variables in Matrix Programs coe 10
Error Terms for Individual Effects 1020 Syntax of Mattlx Language Cooe e 10
CONSTANT Keywor d. . . 100 Comments in Matrix Programs 1055
References . . . N T | Matrix Notation105
Matrix Notation Shorthand Lo . 1055
. . Construction of a Matrix from Other Matrlces 1055
MANOVA: Multivariate 1023 Matrix Operations1056
Overview . . coe e e 1023 Conformable Matrices 1056
MANOVA Varlable Llst A 02 Scalar Expansion L1056
TRANSFORM Subcommand1024 Arithmetic Operators 1056
Variable Lists . . . - . . 1025 Relational Operators1057
CONTRAST, BASIS, and ORTHONORM Logical Operators1057
Keywords coee e 1025 Precedence of Operators 1058
Transformation Methodso 1025 MATRIX and Other Commands. 1058
RENAME Subcommand L1027 Matrix Statements . . 1059
PRINT and NOPRINT Subcommands 1028 Exchanging Data with IBM SPSS Stat1st1cs Data
ERROR Keyword. 1028 FlleS 1059
SIGNIF Keyword.1028 MATRIX and END MATRIX Commands 1059
TRANSFORM KeyWOI’d 1029 COMPUTE Statement 1059
HOMOGENEITY Keyword1029 String Values on COMPUTE Statements .. . 1060
PLOT Subcommand.1029 Arithmetic Operations and Comparisons. . . 1060
PCOMPS Subcommand1029 Matrix Functions. 1060
DISCRIM Subcommand 1030 CALL Statement 1065
POWER Subcommand1030 PRINT Statement.1066
CINTERVAL Subcommand 1031 Matrix Expression 1066

XVl IBM SPSS Statistics 23 Command Syntax Reference

FORMAT Keyword .
TITLE Keyword .
SPACE Keyword .
RLABELS Keyword .
RNAMES Keyword .
CLABELS Keyword .
CNAMES Keyword .
Scaling Factor in Dlsplays
Matrix Control Structures .
DO IF Structures .
LOOP Structures . .
Index Clause on the LOOP Statement
IF Clause on the LOOP Statement . .
IF Clause on the END LOOP Statement .
BREAK Statement

READ Statement: Reading Character Data
Variable Specification o
FILE Specification
FIELD Specification .

SIZE Specification
MODE Specification .
REREAD Specification .
FORMAT Specification .

WRITE Statement: Writing Character Data
Matrix Expression Specification .
OUTFILE Specification .

FIELD Specification .
MODE Specification .
HOLD Specification .
FORMAT Specification .

GET Statement: Reading IBM SPSS Statlstlcs Data

Files . .
Variable Spec1f1cat10n
FILE Specification
VARIABLES Spec1f1cat10n
NAMES Specification
MISSING Specification .

SYSMIS Specification

SAVE Statement: Writing IBM SPSS Statlstlcs Data

Files . o
Matrix Express1on Spec1f1cat10n .
OUTFILE Specification .

VARIABLES Specification .
NAMES Specification
STRINGS Specification .

MGET Statement: Reading Matrix Data Flles
FILE Specification e
TYPE Specification . .

Names of Matrix Variables from MGET

MSAVE Statement: Writing Matrix Data Files
Matrix Expression Specification . .
TYPE Specification .

OUTFILE Specification .
VARIABLES Specification .
FACTOR Specification .
FNAMES Specification .
SPLIT Specification .
SNAMES Specification .

DISPLAY Statement .

RELEASE Statement.

Macros Using the Matrix Language

. 1066
. 1067
. 1067
. 1067
. 1067
. 1067
. 1067
. 1067
. 1068
. 1068
. 1069
. 1070
. 1070
. 1070
. 1070
. 1070
. 1071
. 1071
. 1071
. 1072
. 1072
. 1072
. 1073
. 1073
. 1073
. 1073
. 1073
. 1074
. 1074

. 1074

. 1074
. 1075
. 1075
. 1075
. 1075
. 1076

. 1076

. 1076
. 1077
. 1077
. 1077
. 1078
. 1078
. 1078
. 1078
. 1078
. 1079
. 1079
. 1080
. 1080
. 1081
. 1081
. 1081
. 1082
. 1082
. 1082
. 1082
. 1082
. 1083

MATRIX DATA. . 1085
Overview . 1085
Examples . 1087
Operations . . 1088
Format of the Raw Matrlx Data Flle . 1089
VARIABLES Subcommand . 1089
Variable VARNAME_ . 1090
Variable ROWTYPE_ . 1090
FILE Subcommand . . 1091
FORMAT Subcommand . 1091
Data-Entry Format . 1091
Matrix Shape . . 1091
Diagonal Values . . 1091
SPLIT Subcommand. . 1092
FACTORS Subcommand . 1093
CELLS Subcommand . 1094
CONTENTS Subcommand .. . 1095
Within-Cells Record Definition 1096

Optional Specification When ROWTYPE_ Is
Explicit . e . 1097
N Subcommand . . 1098
MCONVERT . 1099
Overview . 1099
Examples . . 1100
MATRIX Subcommand . . . 1100
REPLACE and APPEND Subcommands . . 1100
MEANS . 1103
Overview . 1103
Examples . . 1104
TABLES Subcommand . 1104
CELLS Subcommand . 1105
STATISTICS Subcommand. . 1106
MISSING Subcommand . 1106
References . . 1106
MISSING VALUES . . 1107
Overview . 1107
Examples . . . 1108
Specifying Ranges of Mlssmg Values . . 1108
MIXED . 1111
Overview . 1112
Examples . 1113
Case Frequency . . 1114
Covariance Structure Llst . . 1114
Variable List . . 1115
CRITERIA Subcommand . 1116
EMMEANS Subcommand . . 1116
FIXED Subcommand . 1118
METHOD Subcommand . 1119
MISSING Subcommand . 1119
PRINT Subcommand . . 1119
RANDOM Subcommand . . 1120
REGWGT Subcommand . 1121
REPEATED Subcommand . . 1121
SAVE Subcommand . . 1122
TEST Subcommand . . 1123
Contents XVii

MLP .

Overview

Examples

Variable Lists .

EXCEPT Subcommand
RESCALE Subcommand
PARTITION Subcommand.

ARCHITECTURE Subcommand .

CRITERIA Subcommand

STOPPINGRULES Subcommand

MISSING Subcommand
PRINT Subcommand
PLOT Subcommand .
SAVE Subcommand .
OUTFILE Subcommand

MODEL CLOSE .

Overview

MODEL HANDLE

Overview

NAME Subcommand

FILE keyword .

OPTIONS subcommand
MISSING keyword .

MAP subcommand .

MODEL LIST

Overview

MODEL NAME

Overview
Example.

MRSETS .

Overview .
Syntax Conventions . .
MDGROUP Subcommand .
MCGROUP Subcommand .
DELETE Subcommand .
DISPLAY Subcommand.

MULT RESPONSE .
Overview .
GROUPS Subcommand
VARIABLES Subcommand
FREQUENCIES Subcommand
TABLES Subcommand .
PAIRED Keyword
CELLS Subcommand
BASE Subcommand .
MISSING Subcommand
FORMAT Subcommand

MULTIPLE CORRESPONDENCE .

Overview

Example.

Options .

VARIABLES Subcommand

. 1125
. 1126
. 1128
. 1129
. 1130
. 1130
. 1131
. 1132
. 1134
. 1137
. 1138
. 1138
. 1140
. 1141
. 1142

. 1143
. 1143

. 1145
. 1145
. 1147
. 1148
. 1148
. 1148
. 1149

. 1151
. 1151

. 1153
. 1153
. 1153

. 1155
. 1155
. 1156
. 1156
. 1157
. 1157
. 1157

. 1159

. 1159

. 1161
. 1161
. 1162
. 1162
. 1163
. 1164
. 1164
. 1164
. 1165

. 1167
. 1168
. 1168
. 1169
. 1170

Xxviil IBM SPSS Statistics 23 Command Syntax Reference

ANALYSIS Subcommand . .
DISCRETIZATION Subcommand
GROUPING Keyword .
NCAT Keyword .
MISSING Subcommand
PASSIVE Keyword
ACTIVE Keyword .
SUPPLEMENTARY Subcommand .
CONFIGURATION Subcommand .
DIMENSION Subcommand .
NORMALIZATION Subcommand .
MAXITER Subcommand
CRITITER Subcommand
PRINT Subcommand
PLOT Subcommand .
SAVE Subcommand .
OUTFILE Subcommand

MULTIPLE IMPUTATION

Overview

Examples

Variable Lists .

IMPUTE Subcommand .
CONSTRAINTS Subcommand .
MISSINGSUMMARIES Subcommand .
IMPUTATIONSUMMARIES Subcommand
ANALYSISWEIGHT Subcommand .
OUTFILE Subcommand

MVA .

Overview
Syntax Rules

Symbols .
Missing Indicator Var1ab1es
VARIABLES Subcommand
CATEGORICAL Subcommand
MAXCAT Subcommand
ID Subcommand . .
NOUNIVARIATE Subcommand
TTEST Subcommand

Display of Statistics .
CROSSTAB Subcommand .
MISMATCH Subcommand
DPATTERN Subcommand .
MPATTERN Subcommand.
TPATTERN Subcommand .
LISTWISE Subcommand
PAIRWISE Subcommand .
EM Subcommand . .
REGRESSION Subcommand .

N OF CASES .

Overview

NAIVEBAYES .

Overview

Examples

Variable Lists .
EXCEPT Subcommand
FORCE Subcommand .

. 1170
. 1170
. 1171
. 1171
. 1171
. 1172
. 1172
. 1172
. 1172
. 1172
. 1173
. 1173
. 1174
. 1174
. 1175
. 1177
. 1178

. 1179

. 1179
. 1181
. 1182
. 1183
. 1185
. 1186
. 1187
. 1188
. 1188

. 1189

. 1190
. 1191
. 1191
. 1191
. 1192
. 1192
. 1192
. 1192
. 1193
. 1193
. 1193
. 1194
. 1194
. 1195
. 1195
. 1196
. 1196
. 1196
. 1197
. 1198

. 1201

. 1201

. 1203

. 1203
. 1205
. 1206
. 1207
. 1207

TRAININGSAMPLE Subcommand .
SUBSET Subcommand .

CRITERIA Subcommand .
MISSING Subcommand

PRINT Subcommand

SAVE Subcommand .

OUTFILE Subcommand

NEW FILE

Overview

NLR.

Overview

Operations . .
Weighting Cases .
Missing Values

Examples .

MODEL PROGRAM Command
Caution: Initial Values .

DERIVATIVES Command . .

CONSTRAINED FUNCTIONS Command

CLEAR MODEL PROGRAMS Command.

CNLR and NLR Commands .

OUTFILE Subcommand

FILE Subcommand .

PRED Subcommand.

SAVE Subcommand . .

CRITERIA Subcommand .

Checking Derivatives for CNLR and NLR
Iteration Criteria for CNLR .
Tteration Criteria for NLR .

BOUNDS Subcommand ..
Simple Bounds and Linear Constramts
Nonlinear Constraints .

LOSS Subcommand . .

BOOTSTRAP Subcommand

References .

NOMREG.

Overview

Variable List . .
CRITERIA Subcommand .
FULLFACTORIAL Subcommand
INTERCEPT Subcommand
MISSING Subcommand
MODEL Subcommand .
STEPWISE Subcommand .
OUTFILE Subcommand
PRINT Subcommand
SAVE Subcommand .
SCALE Subcommand
SUBPOP Subcommand .
TEST Subcommand .

NONPAR CORR .

Overview

Examples . .
VARIABLES Subcommand
PRINT Subcommand
SAMPLE Subcommand.

. 1207
. 1208
. 1209
. 1209
. 1209
. 1210
. 1210

. 121

L1211

. 1213
. 1214
. 1215
. 1215
. 1215
. 1216
. 1216
. 1216
. 1217
. 1218
. 1218
. 1218
. 1218
. 1219
. 1219
. 1220
. 1221
. 1221
. 1221
. 1222
. 1223
. 1223
. 1223
. 1224
. 1224
. 1225

. 1227
. 1228
. 1229
. 1229
. 1230
. 1230
. 1230
. 1231
. 1233
. 1234
. 1234
. 1235
. 1236
. 1236
. 1236

. 1239
. 1239
. 1240
. 1240
. 1240
1241

MISSING Subcommand

MATRIX Subcommand . .
Format of the Matrix Data F11e .
Split Files
Missing Values
Examples

NPTESTS

Overview

MISSING Subcommand
CRITERIA Subcommand .
ONESAMPLE Subcommand .
INDEPENDENT Subcommand .
RELATED Subcommand

NPAR TESTS .

Overview

BINOMIAL Subcommand
CHISQUARE Subcommand .
COCHRAN Subcommand.
FRIEDMAN Subcommand

J-T Subcommand . .

K-S Subcommand (One-Sample)
K-S Subcommand (Two- Sample)
K-W Subcommand . . .
KENDALL Subcommand .
M-W Subcommand .
MCNEMAR Subcommand
MEDIAN Subcommand

MH Subcommand

MOSES Subcommand .

RUNS Subcommand

SIGN Subcommand .

W-W Subcommand .
WILCOXON Subcommand
STATISTICS Subcommand.
MISSING Subcommand
SAMPLE Subcommand.
METHOD Subcommand
References .

NUMERIC

Overview
Examples

OLAP CUBES.

Overview

Options .

TITLE and FOOTNOTE Subcommands
CELLS Subcommand

CREATE Subcommand . .
HIDESMALLCOUNTS Subcommand

OMS.

Overview

Basic Operation . .

SELECT Subcommand .

IF Subcommand .
COMMANDS Keyword
SUBTYPES Keyword

. 1241
. 1241
. 1242
. 1242
. 1242
. 1242

. 1245

. 1246
. 1247
. 1247
. 1248
. 1251
. 1253

. 1257

. 1258
. 1259
. 1260
. 1261
. 1261
. 1262
. 1262
. 1263
. 1264
. 1264
. 1265
. 1265
. 1266
. 1266
. 1267
. 1268
. 1268
. 1269
. 1270
. 1270
. 1270
. 1271
. 1271
. 1272

. 1273

. 1273
. 1273

. 1275

. 1275
. 1276
. 1276
. 1276
. 1277
. 1279

. 1281

Contents

. 1283
. 1283
. 1284
. 1286
. 1286
. 1286

Xix

LABELS Keyword
INSTANCES Keyword .
Wildcards . . .

EXCEPTIF Subcommand .

DESTINATION Subcommand
FORMAT Keyword .
NUMBERED Keyword .
IMAGES and IMAGEFORMAT Keywords
CHARTSIZE and IMAGEROOT Keywords
IMAGEMAP Keyword . o
TREEFORMAT Keyword .
CHARTFORMAT Keyword
MODELFORMAT Keyword .
TABLES Keyword .
REPORTTITLE Keyword .
OUTFILE Keyword .
XMLWORKSPACE Keyword
OUTPUTSET Keyword .
FOLDER Keyword .
VIEWER Keyword

COLUMNS Subcommand .
DIMNAMES Keyword .
SEQUENCE Keyword .

TAG Subcommand .
NOWARN Subcommand

Routing Output to SAV Files . .
Data File Created from One Table .
Data Files Created from Multiple Tables .

Data Files Not Created from Multiple Tables

Controlling Column Elements to Control
Variables in the Data File .
Variable Names

OXML Table Structure .

Command and Subtype Identlflers

OMSEND.
Overview
TAG Keyword.
FILE Keyword.
LOG Keyword

OMSINFO

Overview

OMSLOG.
Overview . .
FILE Subcommand .
APPEND Subcommand
FORMAT Subcommand

ONEWAY .

Overview

Analysis List . .
POLYNOMIAL Subcommand
CONTRAST Subcommand
POSTHOC Subcommand .
RANGES Subcommand .
PLOT MEANS Subcommand .
STATISTICS Subcommand.
MISSING Subcommand

. 1287
. 1287
. 1287
. 1288
. 1288
. 1288
. 1289
. 1289

1290

. 1291
. 1291
. 1291
. 1292
. 1292
. 1292
. 1292
. 1292
. 1293
. 1293
. 1293
. 1294
. 1294
. 1295
. 1296
. 1296
. 1296
. 1297
. 1298

1300

. 1301
. 1303
. 1304
. 1306

. 1307
. 1307
. 1307
. 1307
. 1308

. 1309
. 1309

. 1311

. 1311
. 1311

. 1312
. 1312

. 1313
. 1313
. 1314
. 1314
. 1315
. 1316
. 1317
. 1317
. 1318
. 1318

XX IBM SPSS Statistics 23 Command Syntax Reference

MATRIX Subcommand .
Matrix Output.
Matrix Input . .
Format of the Matrlx Data Flle .
Split Files
Missing Values
Example.
Example.
Example.
Example. .
TEMPLATE Subcommand
References .

OPTIMAL BINNING
Overview

VARIABLES Subcommand
CRITERIA Subcommand .
MISSING Subcommand
OUTFILE Subcommand
PRINT Subcommand

ORTHOPLAN .

Overview

Examples .
FACTORS Subcommand
REPLACE Subcommand
OUTFILE Subcommand
MINIMUM Subcommand .
HOLDOUT Subcommand .
MIXHOLD Subcommand .

OUTPUT ACTIVATE

Overview

OUTPUT CLOSE

Overview

OUTPUT DISPLAY .

Overview

OUTPUT EXPORT .

Overview

Examples

NAME Keyword . .
CONTENTS Subcommand
DOC Subcommand .
HTML Subcommand
REPORT Subcommand .
PDF Subcommand

PPT Subcommand

TEXT Subcommand .

XLS, XLSX, and XLSM subcommands .

BMP Subcommand .
EMF Subcommand .
EPS Subcommand
JPG Subcommand
PNG Subcommand .
TIF Subcommand

. 1318
. 1319
. 1319
. 1319
. 1319
. 1319
. 1320
. 1320
. 1320
. 1320
. 1320
. 1320

. 1321

. 1321
. 1322
. 1323
. 1324
. 1324
. 1324

. 1327

. 1327
. 1328
. 1329
. 1329
. 1329
. 1330
. 1330
. 1330

. 1331

. 1331

. 1333

. 1333

. 1335

. 1335

. 1337

. 1339
. 1340
. 1340
. 1340
. 1341
. 1343
. 1344
. 1345
. 1346
. 1348
. 1350
. 1351
. 1352
. 1352
. 1353
. 1354
. 1354

OUTPUT MODIFY .

Overview

Basic Operation .

NAME Keyword .

SELECT Subcommand .

IF Subcommand .
DELETEOBJECT Subcommand
INDEXING Subcommand .

OBJECTPROPERTIES Subcommand

TABLE Subcommand .
TABLECELLS Subcommand .
GRAPHS Subcommand
TEXTS Subcommand
REPORT Subcommand .

OUTPUT NAME .

Overview

OUTPUT NEW

Overview

OUTPUT OPEN .

Overview

OUTPUT SAVE
Overview
PASSPROTECT Subcommand

OVERALS

Overview

Examples .

VARIABLES Subcommand
ANALYSIS Subcommand .
SETS Subcommand .
NOBSERVATIONS Subcommand
DIMENSION Subcommand .
INITIAL Subcommand .
MAXITER Subcommand
CONVERGENCE Subcommand
PRINT Subcommand

PLOT Subcommand .

SAVE Subcommand .

MATRIX Subcommand .

PACF

Overview

Example. .

VARIABLES Subcommand
DIFF Subcommand .

SDIFF Subcommand.

PERIOD Subcommand . .
LN and NOLOG Subcommands
SEASONAL Subcommand.
MXAUTO Subcommand
APPLY Subcommand
References .

PARTIAL CORR .

Overview

. 1357
. 1358
. 1359
. 1359
. 1360
. 1361
. 1363
. 1363
. 1364
. 1365
. 1368
. 1372
. 1372
. 1374

. 1375
. 1375

. 1377
. 1377

. 1379
. 1379

. 1383
. 1383
. 1385

. 1387

. 1387

. 1388
. 1389
. 1389
. 1389
. 1390
. 1390
. 1390
. 1390
. 1391
. 1391
. 1391
. 1393
. 1393

. 1395
. 1395

. 1396
. 1396
. 1396
. 1396
. 1397
. 1397
. 1397
. 1398
. 1398
. 1398

. 1399
. 1399

VARIABLES Subcommand .
SIGNIFICANCE Subcommand .
STATISTICS Subcommand.
FORMAT Subcommand
MISSING Subcommand
MATRIX Subcommand .

Matrix Output.

Matrix Input .

Format of the Matr1x Data Flle .

Split Files
Missing Values
Examples

PERMISSIONS
Overview .
PERMISSIONS Subcommand .

PLANCARDS .

Overview

Examples .
FACTORS Subcommand
FORMAT Subcommand
OUTFILE Subcommand
TITLE Subcommand.
FOOTER Subcommand.

PLS .

Overview

Examples

Variable Lists .

ID Subcommand . .
MODEL Subcommand . .
OUTDATASET Subcommand.
CRITERIA Subcommand .

PLUM

Overview

Variable List

Weight Variable . .
CRITERIA Subcommand .
LINK Subcommand . .
LOCATION Subcommand.
MISSING Subcommand
PRINT Subcommand
SAVE Subcommand .
SCALE Subcommand
TEST Subcommand .

POINT .

Overview

Examples .
FILE Subcommand .
ENCODING Subcommand
KEY Subcommand .

PPLOT.

Overview

Example. .
VARIABLES Subcommand

. 1400
. 1401
. 1401
. 1401
. 1402
. 1402
. 1402
. 1403
. 1403
. 1403
. 1403
. 1403

. 1405
. 1405
. 1405

. 1407
. 1407

. 1408

. 1408

. 1409

. 1410

. 1410

. 1410

. 1413
. 1413
. 1414
. 1415
. 1416
. 1416
. 1416
. 1417

. 1419
. 1419

. 1420
. 1420
. 1420
. 1421
. 1421
. 1422
. 1422
. 1423
. 1423
. 1424

. 1427

. 1427
. 1428
. 1428
. 1429
. 1429

. 1431
. 1432
. 1433
. 1433

Contents XXi

DISTRIBUTION Subcommand
FRACTION Subcommand .
TIES Subcommand .

TYPE Subcommand .

PLOT Subcommand .

STANDARDIZE and NOSTANDARDIZE

Subcommands.

DIFF Subcommand .

SDIFF Subcommand.

PERIOD Subcommand . .
LN and NOLOG Subcommands
APPLY Subcommand
TEMPLATE Subcommand .
References .

PREDICT.

Overview

Syntax Rules .
Date Specifications .
Case Specifications .
Valid Range

Examples

PREFSCAL .

Overview

Examples .
VARIABLES Subcommand
INPUT Subcommand
PROXIMITIES Subcommand
WEIGHTS Subcommand .
INITIAL Subcommand . .
CONDITION Subcommand .
TRANSFORMATION Subcommand
MODEL Subcommand . .
RESTRICTIONS Subcommand
PENALTY Subcommand
CRITERIA Subcommand .
PRINT Subcommand

PLOT Subcommand .
OPTIONS Subcommand
OUTFILE Subcommand

PRESERVE .

Overview
Example.

PRINCALS .

Overview

Example. .

VARIABLES Subcommand
ANALYSIS Subcommand . .
NOBSERVATIONS Subcommand
DIMENSION Subcommand .
MAXITER Subcommand
CONVERGENCE Subcommand
PRINT Subcommand

PLOT Subcommand .

SAVE Subcommand .

MATRIX Subcommand .

. 1433
. 1434
. 1435
. 1435
. 1436

. 1436
. 1437
. 1437
. 1437
. 1437
. 1438
. 1439
. 1439

. 1441
. 1441
. 1442
. 1442
. 1442
. 1442
. 1442

. 1445
. 1446
. 1447
. 1447
. 1448
. 1449
. 1449
. 1450
. 1451
. 1451
. 1452
. 1453
. 1453
. 1454
. 1454
. 1455
. 1457
. 1457

. 1459
. 1459
. 1459

. 1461
. 1461
. 1462
. 1462
. 1463
. 1464
. 1464
. 1464
. 1464
. 1464
. 1465
. 1467
. 1467

xxil IBM SPSS Statistics 23 Command Syntax Reference

PRINT .

Overview

Examples

Formats .

Strings . .
RECORDS Subcommand .
OUTFILE Subcommand
ENCODING Subcommand
TABLE Subcommand

PRINT EJECT.

Overview
Examples

PRINT FORMATS

Overview
Examples

PRINT SPACE.

Overview
Examples

PROBIT

Overview .

Variable Spec1f1cat10n
MODEL Subcommand .
LOG Subcommand . .
CRITERIA Subcommand .
NATRES Subcommand .
PRINT Subcommand
MISSING Subcommand
References .

PROCEDURE OUTPUT .

Overview
Examples

PROXIMITIES .

Overview

Example.

Variable Spec1f1cat10n

STANDARDIZE Subcommand

VIEW Subcommand. .

MEASURE Subcommand .
Measures for Interval Data
Measures for Frequency-Count Data
Measures for Binary Data .

Transforming Measures in Proximity Matrlx

PRINT Subcommand

ID Subcommand .

MISSING Subcommand

MATRIX Subcommand .
Matrix Output.
Matrix Input . .
Format of the Matrlx Data Flle .
Split Files

Example: Matrix Output to IBM SPSS Statlshcs

External File

Example: Matrix Output to External Flle

. 1469

. 1469
. 1470
. 1470
. 1471
. 1472
. 1472
. 1472
. 1473

. 1475

. 1475
. 1476

. 1477

. 1477
. 1478

. 1479

. 1479
. 1479

. 1481

. 1481
. 1482
. 1483
. 1484
. 1484
. 1485
. 1485
. 1486
. 1486

. 1487

. 1487
. 1487

. 1489

. 1490
. 1490
. 1490
. 1491
. 1491
. 1492
. 1492
. 1493
. 1493

1496
. 1496
. 1496
. 1497
. 1497
. 1497
. 1498
. 1498

. 1498

. 1499
. 1499

Example: Matrix Output to Working File .
Example: Matrix Input from External File
Example: Matrix Input from Working File
Example: Matrix Output to and Then Input
from Working File e
Example: Q-factor Analy51s

References . . .

PROXSCAL.

Overview .
Variable List Subcommand
TABLE Subcommand
SHAPE Subcommand .
INITIAL Subcommand .
WEIGHTS Subcommand .
CONDITION Subcommand .
TRANSFORMATION Subcommand
SPLINE Keyword
PROXIMITIES Subcommand
MODEL Subcommand . .
RESTRICTIONS Subcommand
VARIABLES Keyword .
SPLINE Keyword
ACCELERATION Subcommand
CRITERIA Subcommand .
PRINT Subcommand
PLOT Subcommand .
OUTFILE Subcommand
MATRIX Subcommand .

QUICK CLUSTER
Overview

Variable List .
CRITERIA Subcommand .
METHOD Subcommand
INITIAL Subcommand .
FILE Subcommand .
PRINT Subcommand
OUTFILE Subcommand
SAVE Subcommand .
MISSING Subcommand

RANK .

Overview

Example. .

VARIABLES Subcommand

Function Subcommands
INTO Keyword

TIES Subcommand .

FRACTION Subcommand

PRINT Subcommand

MISSING Subcommand

References .

RATIO STATISTICS

Overview

Examples

Case Frequency .
Variable List .
MISSING Subcommand

. 1499
. 1499
. 1499

. 1499
. 1500
. 1500

. 1501
. 1502

. 1503
. 1503
. 1505
. 1506
. 1506
. 1507
. 1507
. 1507
. 1508
. 1508
. 1509
. 1509
. 1509
. 1510
. 1510

. 1511

. 1512
. 1513
. 1514

. 1515
. 1515

. 1516
. 1517
. 1517
. 1517
. 1518
. 1518
. 1519
. 1519
. 1519

. 1521
. 1521
. 1522
. 1522
. 1522
. 1523
. 1524
. 1524
. 1525
. 1525
. 1525

. 1527
. 1527
. 1527
. 1528
. 1528
. 1528

OUTFILE Subcommand
PRINT Subcommand

RBF .

Overview

Examples

Variable Lists .

EXCEPT Subcommand
RESCALE Subcommand
PARTITION Subcommand.

ARCHITECTURE Subcommand .

CRITERIA Subcommand .
MISSING Subcommand
PRINT Subcommand
PLOT Subcommand .
SAVE Subcommand .
OUTFILE Subcommand

READ MODEL
Overview

Example. . .
FILE Subcommand .

KEEP and DROP Subcommands

TYPE Subcommand .
TSET Subcommand .

RECODE .

Overview

Syntax Rules .
Numeric Variables
String Variables

Operations .
Numeric Varlables
String Variables

Examples

INTO Keyword
Numeric Variables
String Variables

CONVERT Keyword

RECORD TYPE .

Overview

Examples .

OTHER Keyword

SKIP Subcommand .
CASE Subcommand .
MISSING Subcommand
DUPLICATE Subcommand
SPREAD Subcommand .

REFORMAT.

REGRESSION.

Overview

Examples .
VARIABLES Subcommand .
DEPENDENT Subcommand .
METHOD Subcommand
STATISTICS Subcommand.

. 1529
. 1530

. 1533
. 1533
. 1536
. 1536
. 1537
. 1537
. 1538
. 1539
. 1540
. 1540
. 1540
. 1542
. 1543
. 1544

. 1545
. 1545
. 1546
. 1546
. 1546
. 1547
. 1547

. 1549

. 1549
. 1550
. 1550
. 1550
. 1550
. 1551
. 1551
. 1551
. 1551
. 1551
. 1552
. 1552

. 1555

. 1555
. 1556
. 1557
. 1558
. 1558
. 1559
. 1559
. 1560

. 1563

. 1565
. 1566
. 1570
. 1570
. 1570
. 1571
. 1572

Contents XXxiii

Global Statistics .
Equation Statistics
Statistics for the Independent Varlables
CRITERIA Subcommand . - .
Tolerance and Minimum Tolerance Tests .
Criteria for Variable Selection
Confidence Intervals .
ORIGIN and NOORIGIN Subcommands
REGWGT Subcommand
DESCRIPTIVES Subcommand
SELECT Subcommand .
MATRIX Subcommand . .
Format of the Matrix Data Frle .
Split Files
Missing Values
Example. .
MISSING Subcommand
RESIDUALS Subcommand
CASEWISE Subcommand .
SCATTERPLOT Subcommand
PARTIALPLOT Subcommand
OUTFILE Subcommand
SAVE Subcommand . .
TEMPLATE Subcommand .
References .

RELIABILITY .

Overview

VARIABLES Subcommand

SCALE Subcommand

MODEL Subcommand .

STATISTICS Subcommand.

ICC Subcommand

SUMMARY Subcommand

METHOD Subcommand

MISSING Subcommand

MATRIX Subcommand .
Matrix Output.
Matrix Input . .
Format of the Matrlx Data Flle .
Split Files
Missing Values
Example: Matrix Output to External Frle
Example: Matrix Output to Active Dataset
Example: Matrix Output to Active Dataset
Example: Matrix Input from External File
Example: Matrix Input from Working File

RENAME VARIABLES

Overview
Examples . .
Mixed Case Varrable Names .

REPEATING DATA.

Overview
Operations .

Cases Generated

Records Read .

Reading Past End of Record
Examples .

. 1572
. 1572
. 1573
. 1573
. 1574
. 1574
. 1574
. 1575
. 1575
. 1576
. 1577
. 1577
. 1578
. 1578
. 1578
. 1578
. 1579
. 1579
. 1580
. 1581
. 1581
. 1581
. 1582
. 1583
. 1583

. 1585
. 1585

. 1586
. 1586
. 1587
. 1587
. 1588
. 1588
. 1589
. 1589
. 1589
. 1589
. 1590
. 1590
. 1590
. 1590
. 1590

1591
1591

. 1591
. 1591

. 1593
. 1593
. 1593
. 1594

. 1595
. 1595

. 1596
. 1596
. 1596
. 1597
. 1597

XXiv IBM SPSS Statistics 23 Command Syntax Reference

STARTS Subcommand .

OCCURS Subcommand

DATA Subcommand.

FILE Subcommand .

ENCODING Subcommand

LENGTH Subcommand
CONTINUED Subcommand .

ID Subcommand .

TABLE and NOTABLE Subcornmands

REPORT .

Overview
Examples
Defaults .
Options .
FORMAT subcommand
OUTFILE subcommand
VARIABLES subcommand.
Column contents .
Column heading .
Column heading ahgnment
Column format
STRING subcommand .
BREAK subcommand
Column contents .
Column heading .
Column heading alignment
Column format . .
Using Dates as break varlables .
SUMMARY subcommand .
Aggregate functions.
Composite functions
Summary titles
Summary print formats
Other summary keywords.
TITLE and FOOTNOTE subcommands
MISSING subcommand

REPOSITORY ATTRIBUTES .
Overview

FILE Keyword. .
DESCRIPTION Keyword .
KEYWORDS Keyword .

AUTHOR Keyword . .
VERSIONLABEL Keyword
EXPIRATION Keyword

TOPICS Keyword

SECURITY Subcommand

REPOSITORY CONNECT .
Overview

SERVER Subcommand

LOGIN Subcommand .

REPOSITORY COPY .

Overview
Examples

REREAD .

Overview

. 1599
. 1600
. 1600
. 1601
. 1601
. 1601
. 1602
. 1604
. 1605

. 1607

. 1608
. 1609
. 1610
. 1611
. 1611
. 1613
. 1613
. 1614
. 1614
. 1614
. 1614
. 1615
. 1616
. 1616
. 1617
. 1617
. 1617
. 1619
. 1619
. 1620
. 1621
. 1622
. 1623
. 1624
. 1625
. 1626

. 1627

. 1627
. 1628
. 1628
. 1628
. 1629
. 1629
. 1629
. 1629
. 1630

. 1631

. 1631
. 1632
. 1632

. 1635

. 1635
. 1636

. 1639

. 1639

Examples .o
FILE Subcommand . .
COLUMN Subcommand .

RESPONSE RATE .

Overview

Examples .
VARIABLES subcommand
MINRATE subcommand
MAXCOUNT subcommand .

RESTORE

Overview
Example.

RMV.

Overview

LINT Function
MEAN Function .
MEDIAN Function .
SMEAN Function
TREND Function.

ROC.

Overview . .
varlist BY Varname(varvalue).
MISSING Subcommand
CRITERIA Subcommand .
PRINT Subcommand

PLOT Subcommand .

SAMPLE .

Overview
Examples

SAVE

Overview

Examples .

OUTFILE Subcommand

VERSION Subcommand
Variable Names

UNSELECTED Subcommand

DROP and KEEP Subcommands

RENAME Subcommand

MAP Subcommand .

COMPRESSED, UNCOMPRESSED and
ZCOMPRESSED Subcommands .

NAMES Subcommand . .
PERMISSIONS Subcommand.
PASSPROTECT Subcommand

SAVE CODEPAGE .
Overview

OUTFILE Subcommand
ENCODING Subcommand
UNSELECTED Subcommand .
DROP and KEEP Subcommands
PASSPROTECT Subcommand

. 1640
. 1641
. 1642

. 1645

. 1645
. 1646
. 1646
. 1647
. 1647

. 1649

. 1649
. 1649

. 1651

. 1651

. 1652
. 1652
. 1652
. 1653
. 1653

. 1655

. 1655

. 1656
. 1656
. 1656
. 1657
. 1657

. 1659

. 1659
. 1660

. 1661

. 1661

. 1662
. 1663
. 1663
. 1663
. 1663
. 1664
. 1664
. 1665

. 1665
. 1665
. 1665
. 1666

. 1667
. 1667

. 1668
. 1668
. 1668
. 1669
. 1669

SAVE DATA COLLECTION 1671

Overview . . F R (74 |
OUTFILE subcommand 1673
METADATA subcommand 1673
UNSELECTED subcommand. 1673
DROP and KEEP subcommands. 1673
MAP subcommand1674
SAVEMODEL. 1675
Overview1675
OUTFILE Subcommand -1676
KEEP and DROP Subcommands1676
TYPE Subcommand.1676
SAVE TRANSLATE 1679
Overview . . . L. ... L1681
Operations.1682
Spreadsheets1682
dBASE 1682
Comma- Dehmlted (CSV) Text Flles. ... 1682
Tab-Delimited Text Files 1683
SASFiles1683
Stata Filesles4
SPSS/PC+ System Flles I (6.2
ODBC Database Sources 1685
TYPE Subcommand.1685
VERSION Subcommand 1686
ENCODING Subcommand 1687
OUTFILE Subcommand 1688
FIELDNAMES Subcommand. 1688
CELLS Subcommand 1689
TEXTOPTIONS Subcommand 1689
EDITION Subcommand 1690
PLATFORM Subcommand 1690
VALFILE Subcommand.1690
ODBC Database Subcommands 1690
CONNECT Subcommand L1691
ENCRYPTED and UNENCRYPTED
Subcommands.1691
TABLE Subcommand 1691
SQL Subcommand L1691
BULKLOADING Subcommand Lo 01692
APPEND Subcommand 1693
REPLACE Subcommand1693
UNSELECTED Subcommand. 1693
DROP and KEEP Subcommands 1693
RENAME Subcommand16%
MISSING Subcommand16%
MAP Subcommand16%
SAVETM11697
Overview . . L. ... L 1e97
CONNECTION subcommand Lo 1698
CUBE subcommand.1699
MAPPINGS subcommand. 1699
SCRIPT1701
Overview 1701
Running Basic Scrlpts That Contam Syntax
Commands.1701

Contents XXV

SEASON .

Overview

VARIABLES Subcommand
MODEL Subcommand .
MA Subcommand
PERIOD Subcommand .
APPLY Subcommand
References .

SELECT IF .

Overview
Examples

SELECTPRED.

Overview

Examples

Variable lists

EXCEPT subcommand
SCREENING subcommand
CRITERIA subcommand
MISSING Subcommand
PRINT subcommand
PLOT subcommand .

SET .

Overview

Example. .

WORKSPACE and MXCELLS Subcommands
FORMAT Subcommand .

TLOOK and CTEMPLATE Subcommands
ONUMBERS, OVARS, TNUMBERS, and TVARS
Subcommands.

TFIT Subcommand .

RNG, SEED, and MTINDEX Subcommands
EPOCH Subcommand .

ERRORS, MESSAGES, RESULTS and
PRINTBACK Subcommands .

JOURNAL Subcommand .

MEXPAND and MPRINT Subcommands
MITERATE and MNEST Subcommands .
BLANKS Subcommand. .
UNDEFINED Subcommand .

MXERRS Subcommand.

MXWARNS Subcommand .

MXLOOPS Subcommand .

EXTENSIONS Subcommand .

BLOCK Subcommand .

BOX Subcommand .

LENGTH and WIDTH Subcommands
HEADER Subcommand .

CCA, CCB, CCC, CCD, and CCE Subcommands
DECIMAL Subcommand .

CACHE Subcommand .

SMALL Subcommand .

OLANG Subcommand .

DEFOLANG Subcommand

SCALEMIN Subcommand.

SORT Subcommand .

LOCALE Subcommand.

THREADS Subcommand .

XXV1

. 1703
. 1703
. 1704
. 1704
. 1705
. 1705
. 1705
. 1706

. 1707
. 1707
. 1708

171

L1711

. 1713
. 1713
. 1714
. 1714
. 1715
. 1716
. 1716
. 1717

. 1719

. 1722

. 1723
. 1724
. 1724
. 1724

. 1725
. 1725
. 1725
. 1726

. 1726
. 1727
. 1727
. 1727
. 1727
. 1727
. 1728
. 1728
. 1728
. 1728
. 1729
. 1729
. 1729
. 1729

1729

. 1730
. 1731
. 1731
. 1731
. 1732
. 1732
. 1732
. 1733
. 1733

IBM SPSS Statistics 23 Command Syntax Reference

MCACHE Subcommand

UNICODE Subcommand .

FUZZBITS Subcommand .

MIOUTPUT Subcommand. .
ROWSBREAK, CELLSBREAK, and TOLERANCE
Subcommands.

ZCOMPRESSION Subcommand
CMPTRANS Subcommand
DIGITGROUPING Subcommand .
XVERSION and OATTRS Subcommands .
TABLERENDER Subcommand
REPDEFER Subcommand .

ODISPLAY Subcommand .
BASETEXTDIRECTION Subcommand
SUMMARY Subcommand .

SHIFT VALUES .

Overview

SHOW .

Overview
Example.
Subcommands.

SIMPLAN.

Overview

Examples .

MODEL subcommand .
TARGETOPTS subcommand .
SIMINPUT subcommand .
FIXEDINPUT Subcommand .
CORRELATIONS Subcommand .
CONTINGENCY Subcommand .
AUTOFIT Subcommand
STOPCRITERIA subcommand
MISSING Subcommand
VALUELABELS Subcommand
PLAN Subcommand

SOURCE Keyword .

SIMPREP BEGIN-SIMPREP END

SIMRUN

Overview

Example. .

PLAN Subcommand
CRITERIA Subcommand .
DISTRIBUTION Subcommand
SCATTERPLOT Subcommand
BOXPLOT Subcommand .
TORNADO Subcommand .
PRINT Subcommand
VIZSTYLESHEET Keyword
OUTFILE Subcommand

SORT CASES.

Overview

OUTFILE Subcommand
PASSPROTECT Subcommand

. 1734
. 1734
. 1735

. 1735

. 1735
. 1736
. 1736
. 1737
. 1737
. 1738
. 1738
. 1738
. 1739
. 1739

1741

. 1741

. 1743

. 1744
. 1744
. 1744

. 1749

. 1750
. 1752
. 1753
. 1754
. 1755
. 1760
. 1761
. 1762
. 1762
. 1762
. 1763
. 1764
. 1764
. 1765

1767

. 1769

. 1770
. 1771
. 1771
. 1772
. 1772
. 1774
. 1774
. 1774
. 1775
. 1775
. 1776

777

. 1777
. 1778
. 1778

Examples . .
SORT CASES with Other Procedures .

SORT VARIABLES.

Overview

SPATIAL ASSOCIATION RULES .
Overview .
MAPSPEC subcommand . .
AUTOBINNING subcommand .
AGGREGATION subcommand .
DATASET subcommand
RULEGENERATION subcommand
MODELTABLES subcommand
MAPOUTPUT subcommand .
WORDCLOUD subcommand.
RULESTABLE subcommand .
SAVE subcommand .

SPATIAL MAPSPEC .
Overview

MAPPRO]ECTION subcornmand
MAP subcommand . .
DATA subcommand .

SPECFILE subcommand

SPATIAL TEMPORAL PREDICTION
Overview .

MAPSPEC subcornmand .

AGGREGATION subcommand

DATASET subcommand

TIMEFIELDS subcommand .
MODELBUILDING subcommand .
MODELTABLES subcommand
MAPOUTPUT subcommand .

SAVE subcommand .

SPCHART

Overview

Example. .

TEMPLATE Subcommand .

TITLE, SUBTITLE, and FOOTNOTE

Subcommands.

XR and XS Subcommands
Data Organization
Variable Specification
(XBARONLY) Keyword

I and IR Subcommands
Data Organization
Variable Specification

P and NP Subcommands .
Data Organization
Variable Specification

C and U Subcommands
Data Organization
Variable Specification

CPCHART Subcommand .
Data Organization
Variable Specification

STATISTICS Subcommand.

. 1779
. 1779

. 1781
. 1781

. 1783
. 1784
. 1785
. 1785
. 1785
. 1786
. 1787
. 1788
. 1788
. 1789
. 1790
. 1790

. 1793
. 1794

. 1794
. 1795
. 1796
. 1798

1799

. 1800
. 1801
. 1801
. 1801
. 1802
. 1803
. 1804
. 1805
. 1805

. 1807
. 1808

. 1810
. 1810

. 1810
. 1810
. 1812
. 1812
. 1813
. 1813
. 1814
. 1814
. 1815
. 1816
. 1816
. 1817
. 1818
. 1818
. 1819
. 1820
. 1820
. 1821

The Process Capability Indices
The Process Performance Indices
Process Data
Measure(s) for Assessmg Normahty
RULES Subcommand
ID Subcommand . .
CAPSIGMA Subcommand
SPAN Subcommand .

CONFORM and NONCONFORM Subcommands

SIGMAS Subcommand . .
MINSAMPLE Subcommand .
LSL and USL Subcommand
TARGET Subcommand .
MISSING Subcommand
NORMAL Subcommand
REFERENCE Subcommand

SPECTRA

Overview
Example. .
VARIABLES Subcommand
CENTER Subcommand.
WINDOW Subcommand .
PLOT Subcommand .

BY Keyword
CROSS Subcommand
SAVE Subcommand .
APPLY Subcommand
References .

SPLIT FILE .

Overview

LAYERED and SEPARATE Subcommands
Examples

STAR JOIN .

Overview

SELECT subcommand

FROM subcommand

JOIN subcommand .
OUTFILE subcommand .
PASSPROTECT subcommand

Example: STAR JOIN with two lookup table frles
Example: STAR JOIN with two key-value pairs in

the same file

Example: STAR JOIN wrth two keys requrred to

match cases

STRING

Overview
Examples

SUBTITLE

Overview
Examples

SUMMARIZE

Overview
Example.

Contents

. 1821
. 1822
. 1822
. 1823
. 1823
. 1824
. 1824

. 1825

1825
. 1825
. 1825
. 1825
. 1826
. 1826
. 1826
. 1827

. 1829

. 1829
. 1830
. 1830
. 1831
. 1831
. 1832
. 1832
. 1833
. 1833
. 1834
. 1835

. 1837

. 1837
. 1838
. 1838

. 1839

. 1839
. 1840
. 1841
. 1841
. 1842
. 1842

1843

. 1844

. 1845

. 1847

. 1847
. 1847

. 1849

. 1849
. 1849

. 1851

. 1851
. 1852

xxvii

TABLES Subcommand .

TITLE and FOOTNOTE Subcommands

CELLS Subcommand
MISSING Subcommand
FORMAT Subcommand
STATISTICS Subcommand.

SURVIVAL

Overview
Examples .
TABLE Subcommand
INTERVAL Subcommand .
STATUS Subcommand .
PLOTS Subcommand
PRINT Subcommand
COMPARE Subcommand .
CALCULATE Subcommand .
Using Aggregated Data.
MISSING Subcommand
WRITE Subcommand
Format . .
Record Order .

SYSFILE INFO

Overview

TCM ANALYSIS .
Overview

MODELSYSTEM Subcommand
EXPRESSIONS Subcommand.

SCENARIOPERIOD subcommand .

SCENARIO subcommand .

SCENARIOGROUP subcommand .

TARGETLIST subcommand
OPTIONS subcommand

TCM APPLY

Overview

MODELSYSTEM Subcommand
OPTIONS subcommand
TARGETFILTER subcommand
SERIESFILTER subcommand .

FILTEREDOUTPUT subcommand .

SYSTEMOUTPUT subcommand .
SAVE subcommand .

OUTFILE subcommand .
PASSPROTECT subcommand

TCM MODEL .

Overview

DATASETTINGS subcommand
DATAFILTER subcommand .
BUILDOPTIONS subcommand .
TARGETFILTER subcommand
SERIESFILTER subcommand .

FILTEREDOUTPUT subcommand .

SYSTEMOUTPUT subcommand .
SAVE subcommand .

OUTFILE subcommand .
PASSPROTECT subcommand

. 1853
. 1853
. 1853
. 1854
. 1855
. 1855

. 1857
. 1857

. 1859
. 1859
. 1859
. 1860
. 1861
. 1862
. 1862
. 1863
. 1864
. 1864
. 1864
. 1865
. 1866

. 1867
. 1867

. 1869
. 1870
. 1871
. 1871
. 1871
. 1873
. 1874
. 1875
. 1875

. 1877
. 1878

. 1879
. 1879
. 1881
. 1882
. 1883
. 1885
. 1886
. 1886
. 1887

. 1889
. 1891

. 1893
. 1898
. 1899
. 1901
. 1902
. 1902
. 1904
. 1905
. 1906
. 1906

Xxxviil IBM SPSS Statistics 23 Command Syntax Reference

FIELDSGROUP subcommand
FIELDS subcommand .

TDISPLAY
Overview
TYPE Subcommand

TEMPORARY .

Overview
Examples

TIME PROGRAM

Overview
Example.

TITLE

Overview
Examples

TMS BEGIN.

Overview

EXAMPLES

DESTINATION Subcommand

TMS END.

Overview
PRINT Subcommand

TMS IMPORT .

Overview

Examples .
INFILE Subcommand
SAVE Subcommand .
OUTFILE Subcommand

TMS MERGE .

Overview

TRANSFORMATIONS MODEL and

DESTINATION Subcommands .
PRINT Subcommand

TREE
Overview .
Model Variables .

Measurement Level .

FORCE Keyword.
DEPCATEGORIES Subcommand
TREE Subcommand .

PRINT Subcommand

GAIN Subcommand.

PLOT Subcommand .

RULES Subcommand

SAVE Subcommand .

METHOD Subcommand .
GROWTHLIMIT Subcommand .
VALIDATION Subcommand .
CHAID Subcommand .

CRT Subcommand

QUEST Subcommand .

. 1906
. 1907

. 1909

. 1909
. 1910

. 1911

. 1911
. 1912

. 1913

. 1913
. 1913

. 1915

. 1915
. 1915

. 1917

. 1917
. 1920
. 1921

. 1923

. 1923
. 1924

. 1925

. 1925
. 1925
. 1926
. 1926
. 1926

. 1929

. 1929

. 1930
. 1930

. 1931

. 1932
. 1934
. 1935
. 1935
. 1935
. 1936
. 1938
. 1938
. 1940
. 1941
. 1942
. 1943
. 1944
. 1945
. 1946
. 1948
. 1948

COSTS Subcommand

Custom Costs .
PRIORS Subcommand .
SCORES Subcommand .
PROFITS Subcommand.
INFLUENCE Subcommand
OUTFILE Subcommand
MISSING Subcommand
TARGETRESPONSE Subcommand

TSAPPLY.

Overview

Examples .
Goodness-of-Fit Measures .
MODELSUMMARY Subcommand
MODELSTATISTICS Subcommand .
MODELDETAILS Subcommand .
SERIESPLOT Subcommand
OUTPUTFILTER Subcommand .
SAVE Subcommand . .
AUXILIARY Subcommand
MISSING Subcommand

MODEL Subcommand .

TSET

Overview

DEFAULT Subcommand

ID Subcommand .

MISSING Subcommand
MXNEWVARS Subcommand.
MXPREDICT Subcommand
NEWVAR Subcommand
PERIOD Subcommand .
PRINT Subcommand

TSHOW

Overview
Example.

TSMODEL

Overview

Examples

Goodness-of-Fit Measures .
MODELSUMMARY Subcommand
MODELSTATISTICS Subcommand .
MODELDETAILS Subcommand .
SERIESPLOT Subcommand
OUTPUTFILTER Subcommand .
SAVE Subcommand . .
AUXILIARY Subcommand
MISSING Subcommand

MODEL Subcommand . . .
EXPERTMODELER Subcommand .
EXSMOOTH Subcommand

ARIMA Subcommand .

TRANSFERFUNCTION Subcommand.

AUTOOUTLIER Subcommand .
OUTLIER Subcommand

. 1948
. 1949
. 1949
. 1950
. 1951
. 1951
. 1952
. 1952
. 1953

. 1955
. 1956

. 1957
. 1958
. 1958
. 1960
. 1960
. 1961
. 1962
. 1963
. 1964
. 1965
. 1965

. 1967
. 1967

. 1967
. 1968
. 1968
. 1968
. 1968
. 1968
. 1968
. 1968

. 1971
. 1971
. 1971

. 1973
. 1974

. 1976
. 1977
. 1978
. 1979
. 1980
. 1981
. 1981
. 1982
. 1983
. 1984
. 1984
. 1986
. 1987
. 1988
. 1990
. 1992
. 1993

TSPLOT .

Overview .

Basic Specification

Example. .

VARIABLES Subcommand
DIFF Subcommand .

SDIFF Subcommand.

PERIOD Subcommand . .
LN and NOLOG Subcommands
ID Subcommand .

FORMAT Subcommand
MARK Subcommand

SPLIT Subcommand.

APPLY Subcommand

T-TEST.

Overview

Examples .
VARIABLES Subcommand
TESTVAL Subcommand
GROUPS Subcommand.
PAIRS Subcommand .
CRITERIA Subcommand .
MISSING Subcommand

TWOSTEP CLUSTER.
Overview

Variable List .
CATEGORICAL Subcommand
CONTINUOUS Subcommand
CRITERIA Subcommand
DISTANCE Subcommand . .
HANDLENOISE Subcommand .
INFILE Subcommand
MEMALLOCATE Subcommand
MISSING Subcommand

NOSTANDARDIZE Subcommand .

NUMCLUSTERS Subcommand .
OUTFILE Subcommand

PRINT Subcommand
VIEWMODEL Subcommand
SAVE Subcommand .

UNIANOVA .

Overview

Example. . .
UNIANOVA Varlable Llst .
RANDOM Subcommand .
REGWGT Subcommand
METHOD Subcommand
INTERCEPT Subcommand
MISSING Subcommand
CRITERIA Subcommand .
PRINT Subcommand
PLOT Subcommand .
TEST Subcommand .
LMATRIX Subcommand
KMATRIX Subcommand .
CONTRAST Subcommand
POSTHOC Subcommand .

. 1995

. 1995
. 1996
. 1997
. 1997
. 1997
. 1998
. 1998
. 1998
. 1998
. 1999
. 2001
. 2002
. 2002

. 2005

. 2005
. 2006
. 2006
. 2007
. 2007
. 2007
. 2008
. 2008

. 2009

. 2009
. 2010
. 2010
. 2011
. 2011
. 2011
. 2011
. 2012
. 2012
. 2012
. 2013
. 2013
. 2013
. 2013
. 2014
. 2014

. 2015

Contents

. 2016
. 2017
. 2017
. 2018
. 2018
. 2018
. 2019
. 2019
. 2020
. 2020
. 2021
. 2022
. 2022
. 2023
. 2024
. 2025

XX1X

EMMEANS Subcommand .
SAVE Subcommand .
OUTFILE Subcommand
DESIGN Subcommand .

UPDATE .

Overview
Examples R
FILE Subcommand .
Text Data Files
BY Subcommand . .
RENAME Subcommand
DROP and KEEP Subcommands
IN Subcommand .
MAP Subcommand .

USE .

Overview
Syntax Rules .
DATE Spec1f1cat10ns
Case Specifications . .
Keywords FIRST and LAST .
PERMANENT Subcommand .
Examples

VALIDATEDATA .

Overview

Examples

Variable Lists .
VARCHECKS Subcommand
IDCHECKS Subcommand .
CASECHECKS Subcommand.

RULESUMMARIES Subcommand .

CASEREPORT Subcommand .
SAVE Subcommand .
Defining Validation Rules .

Single-Variable Validation Rules .
Cross-Variable Validation Rules .

VALUE LABELS.

Overview
Examples

VARCOMP .

Overview

Example.

Variable List . .
RANDOM Subcommand .
METHOD Subcommand
INTERCEPT Subcommand
MISSING Subcommand
REGWGT Subcommand
CRITERIA Subcommand .
PRINT Subcommand
OUTFILE Subcommand
DESIGN Subcommand .

VARIABLE ALIGNMENT

Overview

. 2028
. 2029
. 2029
. 2030

. 2031

. 2031
. 2033
. 2033
. 2034
. 2034
. 2034
. 2035
. 2035
. 2036

. 2037

. 2037
. 2037
. 2038
. 2038
. 2038
. 2038
. 2038

. 2039

. 2039
. 2041
. 2042
. 2043
. 2044
. 2044
. 2044
. 2045
. 2045
. 2046
. 2046
. 2047

. 2049

. 2049
. 2050

. 2053

. 2053
. 2054
. 2054
. 2054
. 2055
. 2055
. 2055
. 2056
. 2056
. 2056
. 2057
. 2057

. 2059

. 2059

XXX IBM SPSS Statistics 23 Command Syntax Reference

VARIABLE ATTRIBUTE.

Overview
Example.

VARIABLE LABELS

Overview
Examples

VARIABLE LEVEL .

Overview

VARIABLE ROLE

Overview

VARIABLE WIDTH .

Overview

VARSTOCASES .

Overview

Example. .

MAKE Subcommand

ID Subcommand .

INDEX Subcommand
Simple Numeric Index .
Variable Name Index
Multiple Numeric Indices .

NULL Subcommand

COUNT Subcommand . .

DROP and KEEP Subcommands

VECTOR .

Overview

Examples . .
VECTOR: Short Form .

VECTOR outside a Loop Structure .

VERIFY
Overview
VARIABLES Subcommand
Examples

WEIGHT .

Overview
Examples

WLS.

Overview

Example. .
VARIABLES Subcommand
SOURCE Subcommand.
DELTA Subcommand
WEIGHT Subcommand

CONSTANT and NOCONSTANT Subcommands

SAVE Subcommand .
PRINT Subcommand
APPLY Subcommand

. 2061

. 2061
. 2062

. 2063

. 2063
. 2064

. 2065

. 2065

. 2067

. 2067

. 2069

. 2069

. 2071

. 2071
. 2072
. 2073
. 2073
. 2073
. 2073
. 2074
. 2074
. 2075
. 2075
. 2075

. 2077

. 2077
. 2078
. 2079
. 2080

. 2083

. 2083
. 2083
. 2084

. 2085

. 2085
. 2086

. 2087

. 2087
. 2088
. 2089
. 2089
. 2089

. 2090

2090
. 2090
. 2090
. 2090

WRITE .

Overview

Examples

Formats .

Strings . .
RECORDS Subcommand .
OUTFILE Subcommand
ENCODING Subcommand
TABLE Subcommand

WRITE FORMATS .

Overview
Examples

XGRAPH .
Overview .
CHART Expressmn .
Functions
Data Element Types
Measurement Level .
Variable Placeholder.
Case Numbers

Blending, Clustermg, and Stackmg .

Labels
BIN Subcornmand
START Keyword .
SIZE Keyword
DISPLAY Subcommand
DOT Keyword
DISTRIBUTION Subcommand
TYPE Keyword
COORDINATE Subcommand
SPLIT Keyword .
ERRORBAR Subcommand
CI Keyword .
STDDEV Keyword .
SE Keyword
MISSING Subcommand
USE Keyword .
REPORT Keyword
PANEL Subcommand .

COLVAR and ROWVAR Keywords.

COLOP and ROWOP Keywords.
TEMPLATE Subcommand .
FILE Keyword.
TITLES Subcommand
TITLE Keyword .
SUBTITLE Keyword .
FOOTNOTE Keyword .
3-D Bar Examples
Population Pyramid Examples
Dot Plot Examples

XSAVE.

Overview

Examples .

OUTFILE Subcommand -
DROP and KEEP Subcommands.
RENAME Subcommand

. 2093

. 2093
. 2094
. 2094
. 2095
. 2095
. 2096
. 2096
. 2096

. 2099

. 2099
. 2100

. 2101

. 2102
. 2102
. 2103
. 2104
. 2104
. 2105
. 2105
. 2105
. 2106
. 2106
. 2106
. 2107
. 2107
. 2107
. 2107
. 2107
. 2107
. 2107
. 2108
. 2108
. 2108
. 2108
. 2108
. 2108
. 2108
. 2109
. 2109
. 2109
. 2110
. 2110
. 2110
. 2111
. 2111
. 2111
. 2111
. 2112
. 2113

. 2115

. 2115
. 2116
. 2117
. 2117
. 2118

MAP Subcommand .

COMPRESSED, UNCOMPRESSED and
ZCOMPRESSED Subcommands .
PERMISSIONS Subcommand.

Commands and Program States
Program States .
Determining Command Order
Unrestricted Utility Commands .
File Definition Commands.
Input Program Commands
Transformation Commands
Restricted Transformations
Procedures .

Defining Complex Files
Rectangular File .
Nested Files
Nested Files with Mlssmg Records
Grouped Data.
Using DATA LIST
Using FILE TYPE GROUPED
Mixed Files. .
Reading Each Record ina Mlxed Frle .
Reading a Subset of Records in a Mixed File
Repeating Data .o
Fixed Number of Repeatmg Groups
Varying Number of Repeating Groups

Using the Macro Facility .

Example 1: Automating a File-Matching Task
Example 2: Testing Correlation Coefficients .
Example 3: Generating Random Data .

Canonical Correlation and Ridge
Regression Macros

Canonical Correlation Macro .

Ridge Regression Macro

File Specifications for IBM SPSS
Collaboration and Deployment
Services Repository Objects

Versions .
Using File Handles for IBM SPSS Collaboratlon

and Deployment Services Repository Locations.

Setting the Working Directory to a IBM SPSS
Collaboration and Deployment Services
Repository Location .

TABLES and IGRAPH Command
Syntax Converter .

Notices
Trademarks

Index

Contents

. 2118

. 2118
. 2119

2121

. 2121
. 2122
. 2124
. 2124
. 2124
. 2125
. 2126
. 2126

. 2127

. 2127
. 2128
. 2128
. 2129
. 2129
. 2130
. 2132
. 2132

2132
. 2133
. 2133
. 2134

. 2137

. 2137
. 2142
. 2145

. 2149

. 2149
. 2149

. 2151

. 2152

. 2152

. 2153

. 2155

. 2157

. 2159

. 2161

xxxi

xxxil IBM SPSS Statistics 23 Command Syntax Reference

Introduction: A Guide to Command Syntax

The Command Syntax Reference is arranged alphabetically by command name to provide quick access to
detailed information about each command in the syntax command language. This introduction groups
commands into broad functional areas. Some commands are listed more than once because they perform
multiple functions, and some older commands that have been deprecated in favor of newer and better
alternatives (but are still supported) are not included here. Changes to the command syntax language
(since version 12.0), including modifications to existing commands and addition of new commands, are
provided in the section [“Release History” on page 12/

Core System

The Core system contains the core functionality plus a number of charting procedures. There are also
numerous add-on modules that contain specialized functionality.

Getting Data

You can read in a variety of data formats, including data files saved in IBM® SPSS® Statistics format, SAS
datasets, database tables from many database sources, Excel and other spreadsheets, and text data files
with both simple and complex structures.

Get. Reads IBM SPSS Statistics data files.

Import. Reads portable data files created with the Export command.

Add Files. Combines multiple data files by adding cases.

Match Files. Combines multiple data files by adding variables.

Update. Replaces values in a master file with updated values.

Get Translate. Reads spreadsheet and dBASE files.

Get Data. Reads Excel files, text data files, and database tables.

Get Data. Reads Excel files, text data files, and database tables.

Get Capture. Reads database tables.

Get SAS. Reads SAS dataset and SAS transport files.

Get Stata. Reads Stata data files.

Data List. Reads text data files.

Begin Data-End Data. Used with Data List to read inline text data.

File Type. Defines mixed, nested, and grouped data structures.

Record Type. Used with File Type to read complex text data files.

Input Program. Generates case data and/or reads complex data files.

© Copyright IBM Corporation 1989, 2014 1

End Case. Used with Input Program to define cases.
End File. Used with Input Program to indicate end of file.

Repeating Data. Used with Input Program to read input cases whose records contain repeating groups of
data.

Reread. Used with Input Program to reread a record.
Keyed Data List. Reads data from nonsequential files.

Point. Used with Keyed Data to establish the location at which sequential access begins (or resumes) in a
keyed file.

Dataset Name. Provides the ability to have multiple data sources open at the same time.
Dataset Activate. Makes the named dataset the active dataset.
Saving and Exporting Data

You can save data in numerous formats, including IBM SPSS Statistics data file, Excel spreadsheet,
database table, delimited text, and fixed-format text.

Save. Saves the active dataset in IBM SPSS Statistics format.
Xsave. Saves data in IBM SPSS Statistics format without requiring a separate data pass.
Export. Saves data in portable format.

Save Data Collection. Saves a data file in IBM SPSS Statistics format and a metadata file in IBM SPSS
Data Collection MDD format for use in IBM SPSS Data Collection applications.

Write. Saves data as fixed-format text.

Save Translate. Saves data as tab-delimited text and comma-delimted (CSV) text.

Save Translate. Saves data in Excel and other spreadsheet formats and dBASE format.

Save Translate. Replaces or appends to existing database tables or creates new database tables.
Statistics Adapter

Repository Attributes. Sets attributes for an object in a

Repository Connect. Establishes a connection to a IBM SPSS Collaboration and Deployment Services
Repository and logs in the user.

Repository Copy. Copies an arbitrary file from the local file system to a IBM SPSS Collaboration and
Deployment Services Repository or copies a file from a IBM SPSS Collaboration and Deployment Services
Repositoryto the local file system.

Data Definition

IBM SPSS Statistics data files can contain more than simply data values. The dictionary can contain a
variety of metadata attributes, including measurement level, display format, descriptive variable and

value labels, and special codes for missing values.

2 IBM SPSS Statistics 23 Command Syntax Reference

Apply Dictionary. Applies variable and file-based dictionary information from an external IBM SPSS
Statistics data file.

Datafile Attribute. Creates user-defined attributes that can be saved with the data file.

Variable Attribute. Creates user-defined variable attributes that can be saved with variables in the data
file.

Variable Labels. Assigns descriptive labels to variables.

Value Labels. Assigns descriptive labels to data values.

Add Value Labels. Assigns descriptive labels to data values.

Variable Level. Specifies the level of measurement (nominal, ordinal, or scale).

Missing Values. Specifies values to be treated as missing.

Rename. Changes variable names.

Formats. Changes variable print and write formats.

Print Formats. Changes variable print formats.

Write Formats. Changes variable write formats.

Variable Alignment. Specifies the alignment of data values in the Data Editor.

Variable Width. Specifies the column width for display of variables in the Data Editor.

Mrsets. Defines and saves multiple response set information.

Data Transformations

You can perform data transformations ranging from simple tasks, such as collapsing categories for
analysis, to more advanced tasks, such as creating new variables based on complex equations and
conditional statements.

Autorecode. Recodes the values of string and numeric variables to consecutive integers.
Compute. Creates new numeric variables or modifies the values of existing string or numeric variables.
Count. Counts occurrences of the same value across a list of variables.

Create. Produces new series as a function of existing series.

Date. Generates date identification variables.

Leave. Suppresses reinitialization and retains the current value of the specified variable or variables when
the program reads the next case.

Numeric. Declares new numeric variables that can be referred to before they are assigned values.
Rank. Produces new variables containing ranks, normal scores, and Savage and related scores for

numeric variables.

Introduction: A Guide to Command Syntax 3

Recode. Changes, rearranges, or consolidates the values of an existing variable.
RMYV. Replaces missing values with estimates computed by one of several methods.

Shift Values. Creates new variables that contain the values of existing variables from preceding or
subsequent cases.

String. Declares new string variables.

Temporary. Signals the beginning of temporary transformations that are in effect only for the next
procedure.

TMS Begin. Indicates the beginning of a block of transformations to be exported to a file in PMML
format (with IBM SPSS Statistics extensions).

TMS End. Marks the end of a block of transformations to be exported as PMML.

TMS Import. Converts a PMML file containing ADP tranformations into command syntax.

TMS Merge. Merges a PMML file containing exported transformations with a PMML model file.
File Information

You can add descriptive information to a data file and display file and data attributes for the active
dataset or any selected IBM SPSS Statistics data file.

Add Documents. Creates a block of text of any length in the active dataset.
Display. Displays information from the dictionary of the active dataset.

Compare Datasets. Compares the contents of the active dataset to another dataset in the current session
or an external data file in IBM SPSS Statistics format.

Document. Creates a block of text of any length in the active dataset.

Drop Documents. Deletes all text added with Document or Add Documents.

Sysfile Info. Displays complete dictionary information for all variables in a IBM SPSS Statistics data file.
File Transformations

Data files are not always organized in the ideal form for your specific needs. You may want to combine
data files, sort the data in a different order, select a subset of cases, or change the unit of analysis by
grouping cases together. A wide range of file transformation capabilities is available.

Delete Variables. Deletes variables from the data file.

Sort Cases. Reorders the sequence of cases based on the values of one or more variables.

Weight. Case replication weights based on the value of a specified variable.

Filter. Excludes cases from analysis without deleting them from the file.

N of Cases. Deletes all but the first n cases in the data file.

Sample. Selects a random sample of cases from the data file, deleting unselected cases.

4 IBM SPSS Statistics 23 Command Syntax Reference

Select If. Selects cases based on logical conditions, deleting unselected cases.

Split File. Splits the data into separate analysis groups based on values of one or more split variables.
Use. Designates a range of observations for time series procedures.

Aggregate. Aggregates groups of cases or creates new variables containing aggregated values.
Casestovars. Restructures complex data that has multiple rows for a case.

Varstocases. Restructures complex data structures in which information about a variable is stored in more
than one column.

Flip. Transposes rows (cases) and columns (variables).

Add Files. Combines multiple IBM SPSS Statistics data files or open datasets by adding cases.

Match Files. Combines multiple IBM SPSS Statistics data files or open datasets by adding variables.

Star Join. Combines multiple IBM SPSS Statistics data files or open datasets by adding variables.

Update. Replaces values in a master file with updated values.

Programming Structures

As with other programming languages, the command syntax contains standard programming structures
that can be used to do many things. These include the ability to perform actions only if some condition is

true (if/then/else processing), repeat actions, create an array of elements, and use loop structures.

Break. Used with Loop and Do If-Else If to control looping that cannot be fully controlled with
conditional clauses.

Do If-Else If. Conditionally executes one or more transformations based on logical expressions.
Do Repeat. Repeats the same transformations on a specified set of variables.
If. Conditionally executes a single transformation based on logical conditions.

Loop. Performs repeated transformations specified by the commands within the loop until they reach a
specified cutoff.

Vector. Associates a vector name with a set of variables or defines a vector of new variables.
Programming Utilities

Define. Defines a program macro.

Echo. Displays a specified text string as text output.

Execute. Forces the data to be read and executes the transformations that precede it in the command
sequence.

Host. Executes external commands at the operating system level.

Include. Includes commands from the specified file.

Introduction: A Guide to Command Syntax 5

Insert. Includes commands from the specified file.

Script. Runs the specified script file.

General Utilities

Cache. Creates a copy of the data in temporary disk space for faster processing.

Clear Transformations. Discards all data transformation commands that have accumulated since the last
procedure.

Erase. Deletes the specified file.

File Handle. Assigns a unique file handle to the specified file.

New File. Creates a blank, new active dataset.

Permissions. Changes the read/write permissions for the specified file.

Preserve. Stores current Set command specifications that can later be restored by the Restore command.
Print. Prints the values of the specified variables as text output.

Print Eject. Displays specified information at the top of a new page of the output.
Print Space. Displays blank lines in the output.

Restore. Restores Set specifications that were stored by Preserve.

Set. Customizes program default settings.

Show. Displays current settings, many of which are set by the Set command.
Subtitle. Inserts a subtitle on each page of output.

Title. Inserts a title on each page of output.

Matrix Operations

Matrix. Using matrix programs, you can write your own statistical routines in the compact language of
matrix algebra.

Matrix Data. Reads raw matrix materials and converts them to a matrix data file that can be read by
procedures that handle matrix materials.

Mconvert. Converts covariance matrix materials to correlation matrix materials or vice versa.

Output Management System

The Output Management System (OMS) provides the ability to automatically write selected categories of
output to different output files in different formats, including IBM SPSS Statistics data file format, HTML,
XML, and text.

OMS. Controls the routing and format of output. Output can be routed to external files in XML, HTML,

text, and SAV (IBM SPSS Statistics data file) formats.

6 IBM SPSS Statistics 23 Command Syntax Reference

OMSEnd. Ends active OMS commands.

OMSInfo. Displays a table of all active OMS commands.

OMSLog. Creates a log of OMS activity.

Output Documents

These commands control Viewer windows and files.

Output Activate. Controls the routing of output to Viewer output documents.

Output Close. Closes the specified Viewer document.

Output Display. Displays a table of all open Viewer documents.

Output Export. Exports output to external files in various formats (e.g., Word, Excel, PDF, HTML, text).

Output Name. Assigns a name to the active Viewer document. The name is used to refer to the output
document in subsequent Output commands.

Output New. Creates a new Viewer output document, which becomes the active output document.

Output Open. Opens a Viewer document, which becomes the active output document. You can use this
command to append output to an existing output document.

Output Save. Saves the contents of an open output document to a file.

Charts

Caseplot. Casewise plots of sequence and time series variables.

GGraph. Bar charts, pie charts, line charts, scatterplots, custom charts.

Pplot. Probability plots of sequence and time series variables.

Spchart. Control charts, including X-Bar, 1, s, individuals, moving range, and u.

Time Series

The Core system provides some basic time series functionality, including a number of time series chart

types. Extensive time series analysis features are provided in the Forecasting option. See the topic
[“Add-On Modules” on page § for more information.

ACF. Displays and plots the sample autocorrelation function of one or more time series.

CCF. Displays and plots the cross-correlation functions of two or more time series.

PACEF. Displays and plots the sample partial autocorrelation function of one or more time series.
Tsplot. Plot of one or more time series or sequence variables.

Fit. Displays a variety of descriptive statistics computed from the residual series for evaluating the
goodness of fit of models.

Predict. Specifies the observations that mark the beginning and end of the forecast period.

Introduction: A Guide to Command Syntax

Tset. Sets global parameters to be used by procedures that analyze time series and sequence variables.
Tshow. Displays a list of all of the current specifications on the Tset, Use, Predict, and Date commands.

Verify. Produces a report on the status of the most current Date, Use, and Predict specifications.

Add-On Modules

Add-on modules are not included with the Core system. The commands available to you will depend on
your software license.

Statistics Base

ALSCAL. Multidimensional scaling (MDS) and multidimensional unfolding (MDU) using an alternating
least-squares algorithm.

Cluster. Hierarchical clusters of items based on distance measures of dissimilarity or similarity. The items
being clustered are usually cases, although variables can also be clustered.

Codebook. Reports the dictionary information -- such as variable names, variable labels, value labels,
missing values -- and summary statistics for all or specified variables and multiple response sets in the

active dataset.

Correlations. Pearson correlations with significance levels, univariate statistics, covariances, and
cross-product deviations.

Crosstabs. Crosstabulations (contingency tables) and measures of association.
Curvefit. Fits selected curves to a line plot.
Descriptives. Univariate statistics, including the mean, standard deviation, and range.

Discriminant. Classifies cases into one of several mutually exclusive groups based on their values for a
set of predictor variables.

Examine. Descriptive statistics, stem-and-leaf plots, histograms, boxplots, normal plots, robust estimates
of location, and tests of normality.

Factor. Identifies underlying variables, or factors, that explain the pattern of correlations within a set of
observed variables.

Frequencies. Tables of counts and percentages and univariate statistics, including the mean, median, and
mode.

Graph. Bar charts, pie charts, line charts, histograms, scatterplots, etc.

KNN. Classifies and predicts cases based upon the values "nearest neighboring" cases.
Linear. Creates a predictive model for a continuous target.

List. Individual case listing.

Means. Group means and related univariate statistics for dependent variables within categories of one or
more independent variables.

Mult Response. Frequency tables and crosstabulations for multiple-response data.

8 IBM SPSS Statistics 23 Command Syntax Reference

Nonparametric. Collection of one-sample, independent samples, and related samples nonparametric tests.

Nonpar Corr. Rank-order correlation coefficients: Spearman’s rho and Kendall’s tau-b, with significance
levels.

Npar Tests. Collection of one-sample, independent samples, and related samples nonparametric tests.

OLAP Cubes. Summary statistics for scale variables within categories defined by one or more categorical
grouping variables.

Oneway. One-way analysis of variance.

Partial Corr. Partial correlation coefficients between two variables, adjusting for the effects of one or more
additional variables.

Plum. Analyzes the relationship between a polytomous ordinal dependent variable and a set of
predictors.

Proximities. Measures of similarity, dissimilarity, or distance between pairs of cases or pairs of variables.

Quick Cluster. When the desired number of clusters is known, this procedure groups cases efficiently
into clusters.

Ratio Statistics. Descriptive statistics for the ratio between two variables.

Regression. Multiple regression equations and associated statistics and plots.

Reliability. Estimates reliability statistics for the components of multiple-item additive scales.
Report. Individual case listing and group summary statistics.

ROC. Receiver operating characteristic (ROC) curve and an estimate of the area under the curve.
Simplan. Creates a simulation plan for use with the Simrun command.

Simprep Begin-Simprep End. Specifies a block of compute statements and variable definition statements
that create a custom model for use with the Simplan command.

Simrun. Runs a simulation based on a simulation plan created by the Simplan command.

Summarize. Individual case listing and group summary statistics.

TTest. One sample, independent samples, and paired samples t tests.

Twostep Cluster. Groups observations into clusters based on a nearness criterion. The procedure uses a
hierarchical agglomerative clustering procedure in which individual cases are successively combined to

form clusters whose centers are far apart.

Unianova. Regression analysis and analysis of variance for one dependent variable by one or more
factors and/or variables.

Xgraph. Creates 3-D bar charts, population pyramids, and dot plots.
Advanced Statistics
Coxreg. Cox proportional hazards regression for analysis of survival times.

Introduction: A Guide to Command Syntax 9

Genlin. Generalized Linear Model. Genlin allows you to fit a broad spectrum of “generalized” models in
which the distribution of the error term need not be normal and the relationship between the dependent
variable and predictors need only be linear through a specified transformation.

Genlinmixed. Generalized linear mixed models extend the linear model so that the target is linearly
related to the factors and covariates via a specified link function, the target can have a non-normal
distribution, and the observations can be correlated. Generalized linear mixed models cover a wide
variety of models, from simple linear regression to complex multilevel models for non-normal
longitudinal data.

Genlog. A general procedure for model fitting, hypothesis testing, and parameter estimation for any
model that has categorical variables as its major components.

GLM. General Linear Model. A general procedure for analysis of variance and covariance, as well as
regression.

Hiloglinear. Fits hierarchical loglinear models to multidimensional contingency tables using an iterative
proportional-fitting algorithm.

KM. Kaplan-Meier (product-limit) technique to describe and analyze the length of time to the occurrence
of an event.

Mixed. The mixed linear model expands the general linear model used in the GLM procedure in that the
data are permitted to exhibit correlation and non-constant variability.

Survival. Actuarial life tables, plots, and related statistics.

Varcomp. Estimates variance components for mixed models.

Regression

Logistic Regression. Regresses a dichotomous dependent variable on a set of independent variables.
Nomreg. Fits a multinomial logit model to a polytomous nominal dependent variable.

NLR, CNLR. Nonlinear regression is used to estimate parameter values and regression statistics for
models that are not linear in their parameters.

WLS. Weighted Least Squares. Estimates regression models with different weights for different cases.
2SLS. Two-stage least-squares regression.
Custom Tables

Ctables. Produces tables in one, two, or three dimensions and provides a great deal of flexibility for
organizing and displaying the contents.

Decision Trees

Tree. Tree-based classification models.

Categories

Catreg. Categorical regression with optimal scaling using alternating least squares.
CatPCA. Principal components analysis.

10 IBM SPSS Statistics 23 Command Syntax Reference

Overals. Nonlinear canonical correlation analysis on two or more sets of variables.

Correspondence . Displays the relationships between rows and columns of a two-way table graphically
by a scatterplot matrix.

Multiple Correspondence. Quantifies nominal (categorical) data by assigning numerical values to the
cases (objects) and categories, such that objects within the same category are close together and objects in

different categories are far apart.

Proxscal. Multidimensional scaling of proximity data to find a least-squares representation of the objects
in a low-dimensional space.

Complex Samples
CSPlan. Creates a complex sample design or analysis specification.
CSSelect. Selects complex, probability-based samples from a population.

CSDescriptives. Estimates means, sums, and ratios, and computes their standard errors, design effects,
confidence intervals, and hypothesis tests.

CSTabulate. Frequency tables and crosstabulations, and associated standard errors, design effects,
confidence intervals, and hypothesis tests.

CSGLM. Linear regression analysis, and analysis of variance and covariance.

CSLogistic. Logistic regression analysis on a binary or multinomial dependent variable using the
generalized link function.

CSOrdinal. Fits a cumulative odds model to an ordinal dependent variable for data that have been
collected according to a complex sampling design.

Neural Networks

MLP. Fits flexible predictive model for one or more target variables, which can be categorical or scale,
based upon the values of factors and covariates.

RBF. Fits flexible predictive model for one or more target variables, which can be categorical or scale,
based upon the values of factors and covariates. Generally trains faster than MLP at the slight cost of
some model flexibility.

Forecasting

Season. Estimates multiplicative or additive seasonal factors.

Spectra. Periodogram and spectral density function estimates for one or more series.

Tsapply. Loads existing time series models from an external file and applies them to data.

Tsmodel. Estimates exponential smoothing, univariate Autoregressive Integrated Moving Average
(ARIMA), and multivariate ARIMA (or transfer function models) models for time series, and produces
forecasts.

Conjoint

Conjoint. Analyzes score or rank data from full-concept conjoint studies.

Introduction: A Guide to Command Syntax 11

Orthoplan. Orthogonal main-effects plan for a full-concept conjoint analysis.

Plancards. Full-concept profiles, or cards, from a plan file for conjoint analysis.

Bootstrapping

Bootstrap. Bootstrapping is an alternative to parametric estimates when the assumptions of those
methods are in doubt, or where parametric inference is impossible or requires very complicated formulas
for the calculation of standard errors.

Missing Values

Multiple Imputation. Performs multiple imputations of missing values. Many other procedures can
analyze a multiply-imputed dataset to produce pooled results which are more accurate than the
singly-imputed datasets produced by MVA.

MVA. Missing Value Analysis. Describes missing value patterns and estimates (imputes) missing values.
Data Preparation

ADP. Automatically prepares data for modeling.

Detectanomaly. Searches for unusual cases based on deviations from the norms of their cluster groups.

Validatedata. Identifies suspicious and invalid cases, variables, and data values in the active dataset.

Optimal Binning. Discretizes scale “binning input” variables to produce categories that are “optimal”
with respect to the relationship of each binning input variable with a specified categorical guide variable.

Release History

This section details changes to the command syntax language occurring after release 12.0. Information is
organized alphabetically by command and changes for a given command are grouped by release. For
commands introduced after 12.0, the introductory release is noted. Additions of new functions (used for
instance with COMPUTE) and changes to existing functions are detailed under the heading Functions, located
at the end of this section.

ADD FILES

Release 22.0
* PASSWORD keyword introduced on the FILE subcommand.

ADP

Release 18
¢ Command introduced.

AGGREGATE

Release 13.0
* MODE keyword introduced.
* OVERWRITE keyword introduced.

Release 17.0
e AGGREGATE runs without a break variable.

12 IBM SPSS Statistics 23 Command Syntax Reference

Release 22.0
e CLT, CGT, CIN, and COUT functions introduced.

ALTER TYPE

Release 16.0

¢ Command introduced.
APPLY DICTIONARY

Release 14.0

* ATTRIBUTES keyword introduced on FILEINFO and VARINFO subcommands.

Release 18
* ROLE keyword introduced on VARINFO subcommands.

Release 22.0
* PASSWORD keyword introduced on the FROM subcommand.

AUTORECODE

Release 13.0
e BLANK subcommand introduced.

* GROUP subcommand introduced.

e APPLY TEMPLATE and SAVE TEMPLATE subcommands introduced.

BEGIN EXPR - END EXPR

Release 21.0
* Command block introduced as SIMPREP BEGIN-SIMPREP END.

Release 23.0

* SIMPREP BEGIN-SIMPREP END deprecated. Command block renamed to BEGIN EXPR-END EXPR.

BEGIN GPL

Release 14.0

¢ Command introduced.

BEGIN PROGRAM

Release 14.0

¢ Command introduced.

BOOTSTRAP

Release 18

¢ Command introduced.

CASEPLOT

Release 14.0

Introduction: A Guide to Command Syntax

13

 For plots with one variable, new option to specify a value with the REFERENCE keyword on the FORMAT
subcommand.

CATPCA

Release 13.0
e NDIM keyword introduced on PLOT subcommand.

¢ The maximum label length on the PLOT subcommand is increased to 64 for variable names, 255 for
variable labels, and 60 for value labels (previous value was 20).

Release 23.0

* RANDIMPU keyword introduced on MISSING subcommand.

* ROTATION subcommand introduced.

e RESAMPLE subcommand introduced.

¢ SORT and NOSORT keywords introduced for LOADING on the PRINT subcommand.

* VAF, OBELLAREA, LDELLAREA, CTELLAREA, NELLPNT, and keywords introduced on PLOT subcommand.
* OBELLAREA, LDELLAREA, and CTELLAREA keywords introduced on SAVE subcommand.

* ELLCOORD keyword introduced on OUTFILE subcommand.

CATREG

Release 13.0

* The maximum category label length on the PLOT subcommand is increased to 60 (previous value was
20).

Release 17.0

* MULTISTART and FIXSIGNS keywords added to INITIAL subcommand.

* REGULARIZATION subcommand added.

* RESAMPLE subcommand added.

* REGU keyword added to PRINT subcommand.

* REGU keyword added to PLOT subcommand.

* SUPPLEMENTARY categories not occuring in data used to create the model are now interpolated.

CD

Release 13.0
¢ Command introduced.

CODEBOOK

Release 17.0
¢ Command introduced.

Release 18
* ROLE keyword added to VARINFO subcommand.

COMPARE DATASETS

Release 21
¢ Command introduced.

14 1BM SPSS Statistics 23 Command Syntax Reference

Release 22.0
* PASSWORD keyword introduced on the COMPDATASET subcommand.
e MATCHPASS, MISMATCHPASS, and ENCRYPTEDPW keywords introduced on the SAVE subcommand.

CORRESPONDENCE

Release 13.0
* For the NDIM keyword on the PLOT subcommand, the default is changed to all dimensions.

¢ The maximum label length on the PLOT subcommand is increased to 60 (previous value was 20).
CROSSTABS

Release 19.0

e HIDESMALLCOUNTS subcommand introduced.

* SHOWDIM subcommand introduced.

> PROP and BPROP keywords introduced on the CELLS subcommand.

CSGLM

Release 13.0
¢ Command introduced.

CSLOGISTIC

Release 13.0

¢ Command introduced.

Release 17.0
* Added support for SET THREADS.

CSORDINAL

Release 15.0
* Command introduced.

Release 17.0
* Added support for SET THREADS.

CTABLES

Release 13.0
* HSUBTOTAL keyword introduced on the CATEGORIES subcommand.

Release 14.0

* INCLUDEMRSETS keyword introduced on the SIGTEST and COMPARETEST subcommands.
* CATEGORIES keyword introduced on the SIGTEST and COMPARETEST subcommands.

* MEANSVARIANCE keyword introduced on the COMPARETEST subcommand.

Release 18.0
* MERGE keyword introduced on the COMPARETEST subcommand.
e PCOMPUTE and PPROPERTIES subcommands introduced.

Introduction: A Guide to Command Syntax 15

Release 19.0
e HIDESMALLCOUNTS subcommand introduced.

CURVEFIT

Release 19.0
e TEMPLATE subcommand introduced.

DATA LIST

Release 16.0
¢ ENCODING subcommand added for Unicode support.

DATAFILE ATTRIBUTE

Release 14.0
¢ Command introduced.

DATASET ACTIVATE

Release 14.0
¢ Command introduced.

DATASET CLOSE

Release 14.0
¢ Command introduced.

DATASET COPY

Release 14.0
¢ Command introduced.

DATASET DECLARE

Release 14.0
¢ Command introduced.

DATASET DISPLAY

Release 14.0
¢ Command introduced.

DATASET NAME

Release 14.0
¢ Command introduced.

DEFINE-'ENDDEFINE

Release 14.0

* For syntax processed in interactive mode, modifications to the macro facility may affect macro calls
occurring at the end of a command. See the topic [“Overview” on page 538 for more information.

16 IBM SPSS Statistics 23 Command Syntax Reference

DETECTANOMALY

Release 14.0
¢ Command introduced.

DISPLAY

Release 14.0
e ATTRIBUTES keyword introduced.

Release 15.0
* GATTRIBUTES keyword introduced.

DO REPEAT-END REPEAT

Release 14.0
* ALL keyword introduced.

EXTENSION

Release 16.0
¢ Command introduced.

FILE HANDLE

Release 13.0
¢ The NAME subcommand is modified to accept a path and/or file.

Release 16.0
¢ ENCODING subcommand added for Unicode support.

FILE TYPE

Release 16.0
¢ ENCODING subcommand added for Unicode support.

GENLIN

Release 15.0
¢ Command introduced.

Release 16.0

¢ Added multinomial and tweedie distributions; added MLE estimation option for ancillary parameter of
negative binomial distribution (MODEL subcommand, DISTRIBUTION keyword). Notes related to the
addition of the new distributions added throughout.

* Added cumulative Cauchit, cumulative complementary log-log, cumulative logit, cuamulative negative
log-log, and cumulative probit link functions (MODEL subcommand, LINK keyword).

* Added likelihood-ratio chi-square statistics as an alternative to Wald statistics (CRITERIA subcommand,
ANALYSISTYPE keyword).

* Added profile likelihood confidence intervals as an alternative to Wald confidence intervals (CRITERIA
subcommand, CITYPE keyword).

Introduction: A Guide to Command Syntax 17

* Added option to specify initial value for ancillary parameter of negative binomial distribution
(CRITERIA subcommand, INITIAL keyword).

¢ Changed default display of the likelihood function for GEEs to show the full value instead of the
kernel (CRITERIA subcommand, LIKELIHOOD keyword).

GENLINMIXED

Release 19
¢ Command introduced.

Release 20

* Ordinal targets can be analyzed using the Multinomial distribution and the complementary log-log,
cauchit, logit, negative log-log, or probit link functions.

GET CAPTURE

Release 15.0
e UNENCRYPTED subcommand introduced.

GET DATA

Release 13.0
e ASSUMEDSTRWIDTH subcommand introduced for TYPE=0DBC.

Release 14.0
e ASSUMEDSTRWIDTH subcommand extended to TYPE=XLS.
e TYPE=OLEDB introduced.

Release 15.0
e ASSUMEDSTRWIDTH subcommand extended to TYPE=0OLEDB.

Release 16.0
e TYPE=XLSX and TYPE=XLSM introduced.

Release 17.0
¢ ENCRYPTED subcommand introduced.

Release 21.0
e ENCODING subcommand introduced.

Release 23.0
* UTF16, UTF16BE, and UTF16LE keywords added to ENCODING subcommand.

GET SAS

Release 19
 ENCODING subcommand introduced.

GET STATA

Release 14.0
¢ Command introduced.

18 IBM SPSS Statistics 23 Command Syntax Reference

Release 19
e ENCODING subcommand introduced.

GETCOGNOS

Release 21.0

¢ Command introduced.

Release 23.0
* CREDENTIAL keyword introduced on CONNECTION subcommand.
* Value STOREDCREDENTIAL added to MODE keyword on CONNECTION subcommand.

GETTM1

Release 22.0.0.1
¢ Command introduced.

Release 23.0
* MODE and CREDENTIAL keywords introduced on CONNECTION subcommand.

GGRAPH

Release 14.0
¢ Command introduced.

Release 15.0
¢ RENAME syntax qualifier deprecated.
* COUNTCI, MEDIANCI, MEANCI, MEANSD, and MEANSE functions introduced.

Release 17.0
* Added SOURCE=VIZTEMPLATE to support visualization templates.
e Added VIZSTYLESHEET keyword to support visualization stylesheets.

Release 19.0

¢ Added LOCATION=FILE to support visualization templates stored in an arbitrary location on the file
system.

Release 20.0
¢ Added VIZMAP keyword to support map visualizations.

GLM

Release 17.0
¢ POSTHOC subcommand: T2, T3, GH, and C keywords are not valid when multiple factors in the model.

* PLOT subcommand: new WITH keyword allows you to fix covariate values for profile plots.
GRAPH

Release 13.0
e PANEL subcommand introduced.
e INTERVAL subcommand introduced.

Introduction: A Guide to Command Syntax 19

HOST

Release 13.0
¢ Command introduced.

INCLUDE

Release 16.0
* ENCODING keyword added for Unicode support.

Release 22.0
* PASSWORD keyword introduced on the FILE subcommand.

INSERT

Release 13.0
¢ Command introduced.

Release 16.0
e ENCODING keyword added for Unicode support.

Release 22.0
* PASSWORD keyword introduced.

KEYED DATA LIST

Release 16.0
* ENCODING subcommand added for Unicode support.

KNN

Release 17.0

¢ Command introduced.
LINEAR

Release 19

¢ Command introduced.
LOGISTIC REGRESSION

Release 13.0
e QUTFILE subcommand introduced.

Release 14.0

* Modification to the method of recoding string variables. See the topic |”Overview” on page 966| for
more information.

MATCH FILES

Release 22.0
* PASSWORD keyword introduced on the FILE and TABLE subcommands.

20 IBM SPSS Statistics 23 Command Syntax Reference

MISSING VALUES

Release 16.0

* Limitation preventing assignment of missing values to strings with a defined width greater than eight

bytes removed.
MLP

Release 16.0
¢ Command introduced.

MODEL CLOSE

Release 13.0
¢ Command introduced.

MODEL HANDLE

Release 13.0
¢ Command introduced.

MODEL LIST

Release 13.0
¢ Command introduced.

MRSETS

Release 14.0
* LABELSOURCE keyword introduced on MDGROUP subcommand.

e CATEGORYLABELS keyword introduced on MDGROUP subcommand.

MULTIPLE CORRESPONDENCE

Release 13.0
¢ Command introduced.

MULTIPLE IMPUTATION

Release 17.0
¢ Command introduced.

NAIVEBAYES

Release 14.0
¢ Command introduced.

NOMREG

Release 13.0
* ENTRYMETHOD keyword introduced on STEPWISE subcommand.

¢ REMOVALMETHOD keyword introduced on STEPWISE subcommand.

* IC keyword introduced on PRINT subcommand.

Introduction: A Guide to Command Syntax

21

Release 15.0
* ASSOCIATION keyword introduced on PRINT subcommand.

Release 17.0
* Added support for SET THREADS and SET MCACHE.

NONPARAMETRIC

Release 18

¢ Command introduced.
NPAR TESTS

Release 17.0
* Increased limits on number of variables allowed in the analysis.

OLAP CUBES

Release 19.0
e HIDESMALLCOUNTS subcommand introduced.

OMS

Release 13.0
* TREES keyword introduced on SELECT subcommand.
» IMAGES, IMAGEROOT, CHARTSIZE, and IMAGEFORMAT keywords introduced on DESTINATION subcommand.

Release 14.0
* XMLWORKSPACE keyword introduced on DESTINATION subcommand.

Release 16.0

» IMAGEFORMAT=VML introduced for FORMAT=HTML on DESTINATION subcommand.

¢ IMAGEMAP keyword introduced for FORMAT=HTML on DESTINATION subcommand.
* FORMAT=SPV introduced for saving output in Viewer format.

e CHARTFORMAT keyword introduced.

* TREEFORMAT keyword introduced.

* TABLES keyword introduced.

* FORMAT=SVWSOXML is no longer supported.

Release 17.0

* MODELS keyword introduced on SELECT subcommand.
e FORMAT=DOC, XLS, PDF, and SPW introduced.

* MODELFORMAT keyword introduced.

Release 19.0
e IMAGEFORMAT=VML introduced for FORMAT=0XML on DESTINATION subcommand.

* For version 19.0.0.1 and higher, the IMAGEMAP keyword will no longer generate image map tooltips for
major tick labels.

Release 21.0
e FORMAT=XLSX added to DESTINATION subcommand.

22 IBM SPSS Statistics 23 Command Syntax Reference

Release 22.0

* FORMAT=REPORTHTML and FORMAT=REPORTMHT added to DESTINATION subcommand.

* REPORTTITLE keyword added to DESTINATION subcommand.
ONEWAY

Release 19.0
e TEMPLATE subcommand introduced.

OPTIMAL BINNING

Release 15.0
¢ Command introduced.

OUTPUT ACTIVATE

Release 15.0
¢ Command introduced.

OUTPUT CLOSE

Release 15.0

¢ Command introduced.
OUTPUT DISPLAY

Release 15.0

¢ Command introduced.
OUTPUT EXPORT

Release 17.0

¢ Command introduced.

Release 21.0

* Subcommands XLSX and XLSM added.

e STYLING keyword added to HTML subcommand.

* BREAKPOINTS keyword added to DOC subcommand.

Release 22.0.
e Subcommand REPORT added.
* INTERACTIVELAYERS keyword added to HTML subcommand

OUTPUT NAME

Release 15.0
* Command introduced.

OUTPUT MODIFY

Release 22.0

¢ Command introduced.

Introduction: A Guide to Command Syntax

23

OUTPUT NEW

Release 15.0
¢ Command introduced.

Release 16.0
* TYPE keyword is obsolete and is ignored.

OUTPUT OPEN

Release 15.0

¢ Command introduced.

Release 17.0
* LOCK keyword introduced.

Release 21.0
* PASSWORD keyword introduced.

OUTPUT SAVE

Release 15.0

¢ Command introduced.

Release 16.0
* TYPE keyword introduced.

Release 17.0
* LOCK keyword introduced.

Release 21.0
e PASSPROTECT subcommand introduced.

PER ATTRIBUTES

Release 16.0
¢ Command introduced as PER ATTRIBUTES.

Release 17.0
e VERSIONLABEL keyword extended to support multiple labels.

Release 18.0
* PER ATTRIBUTES deprecated. Command name changed to REPOSITORY ATTRIBUTES.

PER CONNECT

Release 15.0
¢ Command introduced as PER CONNECT.

Release 17.0
* DOMAIN keyword deprecated on the LOGIN subcommand.
* PROVIDER keyword introduced on the LOGIN subcommand.

24 IBM SPSS Statistics 23 Command Syntax Reference

Release 18.0

* PER CONNECT deprecated. Command name changed to REPOSITORY CONNECT.

PER COPY

Release 16.0
e Command introduced as PER COPY.

Release 18.0
* PER COPY deprecated. Command name changed to REPOSITORY COPY.

PLANCARDS

Release 14.0
* PAGINATE subcommand is obsolete and no longer supported.

PLS

Release 16.0

¢ Command introduced.
POINT

Release 16.0
¢ ENCODING subcommand added for Unicode support.

PPLOT

Release 19.0
e TEMPLATE subcommand introduced.

PREFSCAL

Release 14.0
¢ Command introduced.

PRINT

Release 16.0
¢ ENCODING subcommand added for Unicode support.

PRINT EJECT

Release 16.0
e ENCODING subcommand added for Unicode support.

PRINT SPACE

Release 16.0
e ENCODING subcommand added for Unicode support.

RBF

Introduction: A Guide to Command Syntax

25

Release 16.0

¢ Command introduced.
REGRESSION

Release 13.0
* PARAMETER keyword introduced on OUTFILE subcommand.

Release 16.0
* Added support for SET THREADS and SET MCACHE.

Release 17.0
* Added option to specify confidence level on CI keyword of STATISTICS subcommand.

Release 19.0
e TEMPLATE subcommand introduced.

RELIABILITY

Release 17.0
¢ Increased limits on numbers of variables allowed on the VARIABLES and SCALE lists.

REPEATING DATA

Release 16.0
* ENCODING subcommand added for Unicode support.

REPOSITORY ATTRIBUTES

Release 16.0
¢ Command introduced as PER ATTRIBUTES.

Release 17.0
* VERSIONLABEL keyword extended to support multiple labels.

Release 18.0
e PER ATTRIBUTES deprecated. Command name changed to REPOSITORY ATTRIBUTES.

REPOSITORY CONNECT

Release 15.0
¢ Command introduced as PER CONNECT.

Release 17.0
* DOMAIN keyword deprecated on the LOGIN subcommand.
¢ PROVIDER keyword introduced on the LOGIN subcommand.

Release 18.0
* PER CONNECT deprecated. Command name changed to REPOSITORY CONNECT.

REPOSITORY COPY

26 IBM SPSS Statistics 23 Command Syntax Reference

Release 16.0
¢ Command introduced as PER COPY.

Release 18.0
* PER COPY deprecated. Command name changed to REPOSITORY COPY.

RESPONSE RATE

Release 18.0

¢ Command introduced.
ROC

Release 18.0
* MODELQUALITY keyword introduced.

SAVE

Release 21.0
e ZCOMPRESSED subcommand added.
e PASSPROTECT subcommand added.

SAVE CODEPAGE

Release 23.0
¢ Command introduced.

SAVE DATA COLLECTION

Release 15.0
* Command introduced as SAVE DIMENSIONS.

Release 18.0
* SAVE DIMENSIONS deprecated. Command name changed to SAVE DATA COLLECTION.

SAVE TRANSLATE

Release 14.0

* Value STATA added to list for TYPE subcommand.
e EDITION subcommand introduced for TYPE=STATA.
¢ SQL subcommand introduced.

e MISSING subcommand introduced.

¢ Field/column names specified on the RENAME subcommand can contain characters (for example, spaces,
commas, slashes, plus signs) that are not allowed in IBM SPSS Statistics variable names.

* Continuation lines for connection strings on the CONNECT subcommand do not need to begin with a
plus sign.

Release 15.0

* ENCRYPTED subcommand introduced.

* Value CSV added to list for TYPE subcommand.

e TEXTOPTIONS subcommand introduced for TYPE=CSV and TYPE=TAB.

Introduction: A Guide to Command Syntax 27

Release 16.0
* VERSION=12 introduced for writing data in Excel 2007 XLSX format with TYPE=XLS.

Release 17.0
e UNENCRYPTED subcommand introduced.

Release 18.0
* VERSION=9 introduced for writing SAS 9+ files with TYPE=SAS.

Release 19
¢ ENCODING subcommand introduced.

Release 22.0
* BOM keyword added to ENCODING subcommand.

Release 23.0
* Support for versions 9-13 of Stata added to VERSION subcommand.
* BULKLOADING subcommand added.

SAVETM1

Release 22.0.0.1

¢ Command introduced.
SCRIPT

Release 16.0

* Scripts run from the SCRIPT command now run synchronously with the command syntax stream.

Release 17.0
* Ability to run Python scripts introduced.

SELECTPRED

Release 14.0

¢ Command introduced.
SET

Release 13.0

* RNG and MTINDEX subcommands introduced.

* Default for MXERRS subcommand increased to 100.
e SORT subcommand introduced.

e LOCALE subcommand introduced.

Release 14.0
¢ Default for WORKSPACE subcommand increased to 6144.

Release 15.0
* LABELS replaces VALUES as the default for the TNUMBERS subcommand.

* JOURNAL subcommand is obsolete and no longer supported.

28 IBM SPSS Statistics 23 Command Syntax Reference

¢ Value EXTERNAL added to list for SORT subcommand, replacing the value INTERNAL as the default. Value
SS is deprecated.

Release 16.0

* MCACHE subcommand introduced.
* THREADS subcommand introduced.
e UNICODE subcommand introduced.

Release 16.0.1
e BOTHLARGE keyword introduced for the TFIT subcommand.

Release 17.0
e FUZZBITS subcommand introduced.
e MIOUTPUT subcommand introduced.

Release 18.0

* ROWSBREAK, CELLSBREAK, and TOLERANCE subcommands introduced for controlling display of large pivot
tables.

e ZCOMPRESSION subcommand introduced.
e COMPRESSION subcommand is obsolete and ignored.
* REPDEFER subcommand introduced.

Release 19.0

* XVERSION subcommand introduced.

e 0OATTRS subcommand introduced.

* DIGITGROUPING subcommand introduced.
* TABLERENDER subcommand introduced.

e CMPTRANS subcommand introduced.

Release 20.0

¢ FAST keyword introduced for the TABLERENDER subcommand, replacing the LIGHT keyword, which is
deprecated.

* Value BPortugu (Brazilian Portuguese) added to list for OLANG subcommand.

Release 21.0
e ODISPLAY subcommand introduced.

Release 22.0

¢ OSLOCALE keyword added to LOCALE subcommand.
e BASETEXTDIRECTION subcommand added.

* SUMMARY subcommand added.

SHIFT VALUES

Release 17.0

¢ Command introduced.
SHOW

Release 13.0

Introduction: A Guide to Command Syntax 29

e BLKSIZE and BUFNO subcommands are obsolete and no longer supported.
* HANDLES subcommand introduced.
e SORT subcommand introduced.

Release 15.0
e TMSRECORDING subcommand introduced.

Release 16.0

e UNICODE subcommand introduced.
e MCACHE subcommand introduced.
* THREADS subcommand introduced.

Release 17.0
e FUZZBITS subcommand introduced.

Release 18.0

e EXTPATHS subcommand introduced.

e ZCOMPRESSION subcommand introduced.

e COMPRESSION subcommand removed because it is obsolete.
e REPDEFER subcommand introduced.

Release 19.0

e TABLERENDER subcommand introduced.

e XVERSION subcommand introduced.

e QOATTRS subcommand introduced.

* DIGITGROUPING subcommand introduced.
* CMPTRANS subcommand introduced.

Release 21.0
e ODISPLAY subcommand introduced.

Release 22.0
* PLUGINS subcommand introduced.

SIMPLAN

Release 21.0
¢ Command introduced.

Release 22.0

* LOCK keyword introduced on FIXEDINPUT subcommand.

* CONTINGENCY subcommand added.

* CONTINGENCY keyword added to specifications for CATEGORICAL distribution on SIMINPUT subcommand.
* Added global SOURCE keyword and deprecated SOURCE keyword for DISTRIBUTION=EMPIRICAL.

* MISSING subcommand added.

e VALUELABELS subcommand added.

SIMPREP BEGIN-SIMPREP END

Release 21.0

30 IBM SPSS Statistics 23 Command Syntax Reference

¢ Command introduced.

Release 23.0

¢ Command block deprecated for release 23.0 and higher. Name of command block changed to BEGIN

EXPR-END EXPR.

SIMRUN

Release 21.0
¢ Command introduced.

Release 22.0

* Added support for saving the simulated data to the active dataset by specifying an asterisk (*) on the

FILE keyword of the OUTFILE subcommand.
* REFLINES keyword added to DISTRIBUTION subcommand.
e ASSOCIATIONS keyword added to PRINT subcommand.
¢ OPTIONS subcommand added.

SORT VARIABLES

Release 16.0.
¢ Command introduced.

Release 18.0.
* ROLE keyword introduced.

SPATIAL ASSOCIATION RULES

Release 23.0
¢ Command introduced.

SPATIAL MAPSPEC

Release 23.0
¢ Command introduced.

SPATIAL TEMPORAL PREDICTION

Release 23.0
* Command introduced.

SPCHART

Release 15.0

* (XBARONLY) keyword introduced on XR and XS subcommands.

e RULES subcommand introduced.
e ID subcommand introduced.

Release 19.0

e CPCHART subcommand introduced.

* NORMAL subcommand introduced.

* REFERENCE subcommand introduced.

Introduction: A Guide to Command Syntax

31

* Following keywords introduced on STATISTICS subcommand: N, MEAN, STDDEV, CAPSIGMA, LSL, USL,
TARGET, AZLOUT, AZUOUT, CZLOUT, CZUOUT, PZLOUT, PZUOUT.

STAR JOIN

Release 21.0
¢ Command introduced.

Release 22.0
* PASSWORD keyword introduced on the FROM and JOIN subcommands.

SYSFILE INFO

Release 22.0
e PASSWORD keyword introduced.

TCM ANALYSIS

Release 23.0
¢ Command introduced.

TCM APPLY

Release 23.0
¢ Command introduced.

TCM MODEL

Release 23.0
¢ Command introduced.

TMS BEGIN

Release 15.0
¢ Command introduced.

Release 16.0
e Added support for new string functions CHAR.CONCAT, CHAR.LENGTH, and CHAR.SUBSTR within TMS blocks.

Release 21.0
e Added support for comparison operators and logical operators.

TMS END

Release 15.0
¢ Command introduced.

TMS IMPORT

Release 18
¢ Command introduced.

TMS MERGE

32 IBM SPSS Statistics 23 Command Syntax Reference

Release 15.0

¢ Command introduced.
TREE

Release 13.0

¢ Command introduced.

Release 18.0
e TARGETRESPONSE subcommand introduced.

TSAPPLY

Release 14.0

¢ Command introduced.
TSMODEL

Release 14.0

¢ Command introduced.
TSPLOT

Release 14.0
* For plots with one variable, REFERENCE keyword modified to allow specification of a value.

UNIANOVA

Release 17.0

¢ POSTHOC subcommand: T2, T3, GH, and C keywords are not valid when multiple factors in the model.
UPDATE

Release 22.0
* PASSWORD keyword introduced on the FILE subcommand.

VALIDATEDATA

Release 14.0
¢ Command introduced.

VALUE LABELS

Release 14.0
¢ The maximum length of a value label is extended to 120 bytes (previous limit was 60 bytes).

Release 16.0

¢ Limitation preventing assignment of missing values to strings with a defined width greater than eight
bytes removed.

VARIABLE ATTRIBUTE

Release 14.0

Introduction: A Guide to Command Syntax 33

¢ Command introduced.
VARIABLE ROLE

Release 18.0
¢ Command introduced.

WRITE

Release 16.0
e ENCODING subcommand added for Unicode support.

Release 22.0
* BOM keyword added.

XGRAPH

Release 13.0
¢ Command introduced.

XSAVE

Release 21.0
e ZCOMPRESSED subcommand added.

Functions

Release 13.0
e APPLYMODEL and STRAPPLYMODEL functions introduced.
e DATEDIFF and DATESUM functions introduced.

Release 14.0
e REPLACE function introduced.
e VALUELABEL function introduced.

Release 16.0

* CHAR.INDEX function introduced.
* CHAR.LENGTH function introduced.
* CHAR.LPAD function introduced.

* CHAR.MBLEN function introduced.
* CHAR.RINDEX function introduced.
* CHAR.RPAD function introduced.

* CHAR.SUBSTR function introduced.
* NORMALIZE function introduced.

* NTRIM function introduced.

* STRUNC function introduced.

Release 17.0
e MEDIAN function introduced.

* mult and fuzzbits arguments introduced for the RND and TRUNC functions.

34 IBM SPSS Statistics 23 Command Syntax Reference

e NEIGHBOR and DISTANCE functions added to APPLYMODEL and STRAPPLYMODEL.

Extension Commands

In addition to the commands available in the Core system and add-on modules, there are numerous
extension commands available for use with IBM SPSS Statistics. Extension commands are IBM SPSS
Statistics commands that are implemented in the Python *, R, or Java programming language. For
example, IBM SPSS Statistics - Essentials for Python, which is installed by default with IBM SPSS
Statistics, includes a set of Python extension commands that are installed with SPSS Statistics. And IBM
SPSS Statistics - Essentials for R, which is available from the SPSS Community website at

lhttp:/ /www.ibm.com /developerworks/spssdevcentrall includes a set of extension commands that are
implemented in the R programming language. Many more extension commands are hosted on the SPSS
Community website and available from the Download Extension Bundles dialog, which is accessed from
Utilities > Extension Bundles > Download and Install Extension Bundles.

By convention, extension commands that are authored by IBM Corp. have names that begin with SPSSINC
or STATS. Complete syntax help for each of the extension commands is available by positioning the cursor
within the command (in a syntax window) and pressing the F1 key. It is also available by running the
command and including the /HELP subcommand. For example:

STATS TABLE CALC /HELP.

The command syntax help is not, however, integrated with the SPSS Statistics Help system and is not
included in the Command Syntax Reference. Extension commands that are not authored by IBM Corp.
might follow the convention of providing documentation with the HELP subcommand.

Extension commands require the IBM SPSS Statistics Integration Plug-in(s) for the language(s) in which
the command is implemented; Python, R, or Java. For information, see How to Get Integration Plug-ins,
available from Core System>Frequently Asked Questions in the Help system.

Note: The IBM SPSS Statistics - Integration Plug-in for Java is installed as part of IBM SPSS Statistics
and does not require separate installation.

Information on writing your own extension commands is available from the following sources:

* The article "Writing IBM SPSS Statistics Extension Commands”, available from the SPSS Community
website at http:/ /www.ibm.com /developerworks /spssdevcentrall

¢ The chapter on Extension Commands in Programming and Data Management for IBM SPSS Statistics,
available in PDF from the Articles page at|http://www.ibm.com/developerworks/spssdevcentrall

Introduction: A Guide to Command Syntax ~ 35

http://www.ibm.com/developerworks/spssdevcentral
http://www.ibm.com/developerworks/spssdevcentral
http://www.ibm.com/developerworks/spssdevcentral

36 IBM SPSS Statistics 23 Command Syntax Reference

Universals

This part of the Command Syntax Reference discusses general topics pertinent to using command syntax.
The topics are divided into five sections:

explains command syntax, including command specification, command order, and running
commands in different modes. In this section, you will learn how to read syntax charts, which
summarize command syntax in diagrams and provide an easy reference. Discussions of individual
commands are found in an alphabetical reference in the next part of this manual.

discusses different types of files used by the program. Terms frequently mentioned in this
manual are defined. This section provides an overview of how files are handled.

[Variableg and [Variable Types and Formats| contain important information about general rules and
conventions regarding variables and variable definition.

[Transformations| describes expressions that can be used in data transformation. Functions and
operators are defined and illustrated. In this section, you will find a complete list of available functions
and how to use them.

Commands

Commands are the instructions that you give the program to initiate an action. For the program to
interpret your commands correctly, you must follow certain rules.

Syntax Diagrams

Each command described in this manual includes a syntax diagram that shows all of the subcommands,
keywords, and specifications allowed for that command. By recognizing symbols and different type fonts,
you can use the syntax diagram as a quick reference for any command.

Lines of text in italics indicate limitation or operation mode of the command.

Elements shown in upper case are keywords to identify commands, subcommands, functions,
operators, and other specifications. In the sample syntax diagram below, T-TEST is the command and
GROUPS is a subcommand.

Elements in lower case describe specifications that you supply. For example, varlist indicates that you
need to supply a list of variables.

Elements in bold are defaults. There are two types of defaults. When the default is followed by **, as
ANALYSIS#* is in the sample syntax diagram below, the default (ANALYSIS) is in effect if the
subcommand (MISSING) is not specified. If a default is not followed by **, it is in effect when the
subcommand (or keyword) is specified by itself.

Parentheses, apostrophes, and quotation marks are required where indicated.

Unless otherwise noted, elements enclosed in square brackets ([]) are optional. For some commands,
square brackets are part of the required syntax. The command description explains which specifications
are required and which are optional.

Braces ({ }) indicate a choice between elements. You can specify any one of the elements enclosed
within the aligned braces.

Ellipses indicate that you can repeat an element in the specification. The specification
T-TEST PAIRS=varlist [WITH varlist [(PAIRED)]] [/varlist ...]

means that you can specify multiple variable lists with optional WITH variables and the keyword PAIRED
in parentheses.

Most abbreviations are obvious; for example, varname stands for variable name and varlist stands for
a variable list.

The command terminator is not shown in the syntax diagram.

37

Command Specification

The following rules apply to all commands:

Commands begin with a keyword that is the name of the command and often have additional
specifications, such as subcommands and user specifications. Refer to the discussion of each command
to see which subcommands and additional specifications are required.

Commands and any command specifications can be entered in upper and lower case. Commands,
subcommands, keywords, and variable names are translated to upper case before processing. All user
specifications, including variable names, labels, and data values, preserve upper and lower case.

Spaces can be added between specifications at any point where a single blank is allowed. In addition,
lines can be broken at any point where a single blank is allowed. There are two exceptions: the END
DATA command can have only one space between words, and string specifications on commands such
as TITLE, SUBTITLE, VARIABLE LABELS, and VALUE LABELS can be broken across two lines only by
specifying a plus sign (+) between string segments. See the topic|”String Values in Commandl

[Specifications” on page 39| for more information.

R

Many command names and keywords can be abbreviated to the first three or more characters that can
be resolved without ambiguity. For example, COMPUTE can be abbreviated to COMP but not COM because
the latter does not adequately distinguish it from COMMENT. Some commands, however, require that all
specifications be spelled out completely. This restriction is noted in the syntax chart for those
commands.

unning Commands

You can run commands in either batch (production) or interactive mode. In batch mode, commands are
read and acted upon as a batch, so the system knows that a command is complete when it encounters a

ne

w command. In interactive mode, commands are processed immediately, and you must use a

command terminator to indicate when a command is complete.

Interactive Mode

The following rules apply to command specifications in interactive mode:

Each command must start on a new line. Commands can begin in any column of a command line and
continue for as many lines as needed. The exception is the END DATA command, which must begin in
the first column of the first line after the end of data.

Each command should end with a period as a command terminator. It is best to omit the terminator on
BEGIN DATA, however, so that inline data are treated as one continuous specification.

The command terminator must be the last nonblank character in a command.

In the absence of a period as the command terminator, a blank line is interpreted as a command
terminator.

Note: For compatibility with other modes of command execution (including command files run with
INSERT or INCLUDE commands in an interactive session), each line of command syntax should not exceed
256 characters.

Ba

tch (Production) Mode

The following rules apply to command specifications in batch mode:

38

All commands in the command file must begin in column 1. You can use plus (+) or minus (-) signs in
the first column if you want to indent the command specification to make the command file more
readable.

If multiple lines are used for a command, column 1 of each continuation line must be blank.
Command terminators are optional.

A line cannot exceed 256 characters; any additional characters are truncated.

IBM SPSS Statistics 23 Command Syntax Reference

The following is a sample command file that will run in either interactive or batch mode:

GET FILE=/MYFILES/BANK.SAV'
/KEEP ID TIME SEX JOBCAT SALBEG SALNOW
/RENAME SALNOW = SAL90.

DO IF TIME LT 82.

+ COMPUTE RATE=0.05.

ELSE.

+ COMPUTE RATE=0.04.

END IF.

COMPUTE SALNOW=(1+RATE)*SAL90.

EXAMINE VARIABLES=SALNOW BY SEX.

Subcommands

Many commands include additional specifications called subcommands.

¢ Subcommands begin with a keyword that is the name of the subcommand. Most subcommands
include additional specifications.

¢ Some subcommands are followed by an equals sign before additional specifications. The equals sign is
usually optional but is required where ambiguity is possible in the specification. To avoid ambiguity, it
is best to use the equals signs as shown in the syntax diagrams in this manual.

* Most subcommands can be named in any order. However, some commands require a specific
subcommand order. The description of each command includes a section on subcommand order.

* Subcommands are separated from each other by a slash. To avoid ambiguity, it is best to use the
slashes as shown in the syntax diagrams in this manual.

Keywords

Keywords identify commands, subcommands, functions, operators, and other specifications.

* Keywords identifying logical operators (AND, OR, and NOT); relational operators (EQ, GE, GT, LE, LT, and
NE); and ALL, BY, TO, and WITH are reserved words and cannot be used as variable names.

Values in Command Specifications
The following rules apply to values specified in commands:
* A single lowercase character in the syntax diagram, such as 1, w, or d, indicates a user-specified value.

* The value can be an integer or a real number within a restricted range, as required by the specific
command or subcommand. For exact restrictions, read the individual command description.

* A number specified as an argument to a subcommand can be entered with or without leading zeros.

String Values in Command Specifications

* Each string specified in a command should be enclosed in single or double quotes.
* To specify a single quote or apostrophe within a quoted string, either enclose the entire string in
double quotes or double the single quote/apostrophe. Both of the following specifications are valid:

'Client''s Satisfaction'

"Client's Satisfaction"
* To specify double quotes within a string, use single quotes to enclose the string:
'Categories Labeled "UNSTANDARD" in the Report'
* String specifications can be broken across command lines by specifying each string segment within
quotes and using a plus (+) sign to join segments. For example,
'One, Two'
can be specified as

'One, '
+ ' Two'

The plus sign can be specified on either the first or the second line of the broken string. Any blanks
separating the two segments must be enclosed within one or the other string segment.

Universals 39

* Multiple blank spaces within quoted strings are preserved and can be significant. For example, "This
string” and "This string" are treated as different values.

Delimiters
Delimiters are used to separate data values, keywords, arguments, and specifications.

* A blank is usually used to separate one specification from another, except when another delimiter
serves the same purpose or when a comma is required.

* Commas are required to separate arguments to functions. Otherwise, blanks are generally valid
substitutes for commas.

* Arithmetic operators (+, —, ¥, and /) serve as delimiters in expressions.

* Blanks can be used before and after operators or equals signs to improve readability, but commas
cannot.

* Special delimiters include parentheses, apostrophes, quotation marks, the slash, and the equals sign.
Blanks before and after special delimiters are optional.

* The slash is used primarily to separate subcommands and lists of variables. Although slashes are
sometimes optional, it is best to enter them as shown in the syntax diagrams.

* The equals sign is used between a keyword and its specifications, as in STATISTICS=MEAN, and to show
equivalence, as in COMPUTE target variable=expression. Equals signs following keywords are
frequently optional but are sometimes required. In general, you should follow the format of the syntax
charts and examples and always include equals signs wherever they are shown.

Command Order

Command order is more often than not a matter of common sense and follows this logical sequence:
variable definition, data transformation, and statistical analysis. For example, you cannot label, transform,
analyze, or use a variable in any way before it exists. The following general rules apply:

* Commands that define variables for a session (DATA LIST, GET, GET DATA, MATRIX DATA, etc.) must
precede commands that assign labels or missing values to those variables; they must also precede
transformation and procedure commands that use those variables.

¢ Transformation commands (IF, COUNT, COMPUTE, etc.) that are used to create and modify variables must
precede commands that assign labels or missing values to those variables, and they must also precede
the procedures that use those variables.

* Generally, the logical outcome of command processing determines command order. For example, a
procedure that creates new variables in the active dataset must precede a procedure that uses those
new variables.

In addition to observing the rules above, it is often important to distinguish between commands that
cause the data to be read and those that do not, and between those that are stored pending execution
with the next command that reads the data and those that take effect immediately without requiring that
the data be read.

¢ Commands that cause the data to be read, as well as execute pending transformations, include all
statistical procedures (e.g., CROSSTABS, FREQUENCIES, REGRESSION); some commands that save/write the
contents of the active dataset (e.g., DATASET COPY, SAVE TRANSLATE, SAVE); AGGREGATE; AUTORECODE;
EXECUTE; RANK; and SORT CASES.

¢ Commands that are stored, pending execution with the next command that reads the data, include
transformation commands that modify or create new data values (e.g., COMPUTE, RECODE), commands
that define conditional actions (e.g., DO IF, IF, SELECT IF), PRINT, WRITE, and XSAVE. For a

comprehensive list of these commands, see ["Commands That Are Stored, Pending Execution” on page]
/

* Commands that take effect immediately without reading the data or executing pending commands
include transformations that alter dictionary information without affecting the data values (e.g.,
MISSING VALUES, VALUE LABELS) and commands that don't require an active dataset (e.g., DISPLAY, HOST,
INSERT, OMS, SET). In addition to taking effect immediately, these commands are also processed

40 IBM SPSS Statistics 23 Command Syntax Reference

unconditionally. For example, when included within a DO IF structure, these commands run regardles
of whether or not the condition is ever met. For a comprehensive list of these commands, see
[‘Commands That Take Effect Immediately”]

Example

DO IF expense = 0.

- COMPUTE profit=-99.

- MISSING VALUES expense (0).

ELSE.

- COMPUTE profit=income-expense.

END IF.

LIST VARIABLES=expense profit.

e COMPUTE precedes MISSING VALUES and is processed first; however, execution is delayed until the data

are read.

e MISSING VALUES takes effect as soon as it is encountered, even if the condition is never met (i.e., even if
there are no cases where expense=0).

* LIST causes the data to be read; thus, both COMPUTE and LIST are executed during the same data pass.

* Because MISSING VALUES is already in effect by this time, the first condition in the DO IF structure will
never be met, because an expense value of 0 is considered missing and so the condition evaluates to
missing when expense is 0.

Commands That Take Effect Inmediately
These commands take effect immediately. They do not read the active dataset and do not execute
pending transformations.

Commands That Modify the Dictionary
“ADD DOCUMENT” on page 111
"ADD VALUE LABELS” on page 119
“APPLY DICTIONARY” on page 177
“DATAFILE ATTRIBUTE” on page 511
["'DELETE VARIABLES” on page 553|
["'DOCUMENT” on page 609

["DROP DOCUMENTS” on page 611
[“EXTENSION” on page 641|

[“FILE LABEL” on page 669

[“FORMATS” on page 695|

[“MISSING VALUES” on page 1107|
["MRSETS” on page 1155|

["'NUMERIC” on page 1273|

["OUTPUT EXPORT” on page 1337
["PRINT FORMATS” on page 1477]
["'RENAME VARIABLES” on page 1593
['STRING” on page 1847

[“TMS IMPORT” on page 1925

["'TMS MERGE” on page 1929

["VALUE LABELS” on page 2049
["VARTABLE ALIGNMENT” on page 2059
["VARIABLE ATTRIBUTE” on page 2061|
["VARTABLE LABELS” on page 2063
“VARIABLE LEVEL” on page 2065
“VARIABLE ROLE” on page 2067]

Universals

S

41

["VARIABLE WIDTH” on page 2069

["WEIGHT” on page 2085

["WRITE FORMATS” on page 2099

Other Commands That Take Effect Immediately
[“CD” on page 277

“CLEAR TIME PROGRAM” on page 279|
“CLEAR TRANSFORMATIONS” on page 281]
“CSPLAN” on page 431|

“DATASET CLOSE” on page 515

“DATASET DECLARE” on page 521|

“DATASET DISPLAY” on page 523|

“DATASET NAME” on page 525|

“DISPLAY” on page 585
[“ECHO” on page 613|
[“ERASE” on page 623
[“FILE HANDLE” on page 665|
[“FILTER” on page 683

[“HOST” on page 881|

[“INCLUDE” on page 915|

[“INSERT” on page 923]

["'MODEL CLOSE” on page 1143
["'MODEL HANDLE” on page 1145|
["'MODEL LIST” on page 1151|

['N OF CASES” on page 1201

["'NEW FILE” on page 1211/

[“OMS” on page 1281|

["'OMSEND” on page 1307]
[“OMSINFO” on page 1309
[“OMSLOG” on page 1311]
[‘OUTPUT ACTIVATE” on page 1331|
["OUTPUT CLOSE” on page 1333|
[OUTPUT DISPLAY” on page 1335
[“OUTPUT NAME” on page 1375|
“OUTPUT NEW” on page 1377
“OUTPUT OPEN” on page 1379
“"OUTPUT SAVE” on page 1383|
“PERMISSIONS” on page 1405|
“PRESERVE” on page 1459
“READ MODEL” on page 1545|
“"RESTORE” on page 1649
“SAVE MODEL” on page 1675|
“SCRIPT” on page 1701

“SET” on page 1719
“SHOW” on page 1743|
[“SPLIT FILE” on page 1837

42 IBM SPSS Statistics 23 Command Syntax Reference

['SUBTITLE” on page 1849
[’SYSFILE INFO” on page 1867
["TDISPLAY” on page 1909
“TITLE” on page 1915|

“TSET” on page 1967
“TSHOW” on page 1971]
“USE” on page 2037]

Commands That Are Stored, Pending Execution
These commands are stored, pending execution with the next command that reads the data.

“BOOTSTRAP” on page 215|
“BREAK” on page 219
“CACHE” on page 221]

“COMPUTE” on page 311|

[“COUNT” on page 339

[“DO IF” on page 597

[“'DO REPEAT-END REPEAT” on page 605
[“IE” on page 885|

["'LEAVE” on page 953

["LOOP-END LOOP” on page 987

['N OF CASES” on page 1201]

["PRINT” on page 1469|

[‘PRINT EJECT” on page 1475|

[“PRINT SPACE” on page 1479
["'RECODE” on page 1549|

['SAMPLE” on page 1659

['SELECT IF” on page 1707
["'TEMPORARY” on page 1911|

["'TIME PROGRAM” on page 1913|
["WRITE” on page 2093

["XSAVE” on page 2115|

Files

IBM SPSS Statistics reads, creates, and writes different types of files. This section provides an overview of
these types and discusses concepts and rules that apply to all files.

Command File

A command file is a text file that contains syntax commands. You can type commands in a syntax
window in an interactive session, use the Paste button in dialog boxes to paste generated commands into
a syntax window, and/or use any text editor to create a command file. You can also edit a journal file to
produce a command file. See the topic [‘Journal File” on page 44| for more information. The following is
an example of a simple command file that contains both commands and inline data:

DATA LIST /ID 1-3 Gender 4 (A) Age 5-6 Opinionl TO Opinion5 7-11.
BEGIN DATA
001F2621221
002M5611122

Universals 43

003F3422212
329M2121212
END DATA.
LIST.

* Case does not matter for commands but is significant for inline data. If you specified f for female and
m for male in column 4 of the data line, the value of Gender would be f or m instead of F or M as it is
now.

¢ Commands can be in upper or lower case. Uppercase characters are used for all commands throughout
this manual only to distinguish them from other text.

Journal File

IBM SPSS Statistics keeps a journal file to record all commands either run from a syntax window or
generated from a dialog box during a session. You can retrieve this file with any text editor and review it
to learn how the session went. You can also edit the file to build a new command file and use it in
another run. An edited and tested journal file can be saved and used later for repeated tasks. The journal
file also records any error or warning messages generated by commands. You can rerun these commands
after making corrections and removing the messages.

The journal file is controlled by the File Locations tab of the Options dialog box, available from the Edit
menu. You can turn journaling off and on, append or overwrite the journal file, and select the journal
filename and location. By default, commands from subsequent sessions are appended to the journal.

The following example is a journal file for a short session with a warning message.

DATA LIST /ID 1-3 Gender 4 (A) Age 5-6 Opinionl TO Opinion5 7-11.
BEGIN DATA

001F2621221

002M5611122

003F3422212

004F45112L2

>Warning # 1102

>An invalid numeric field has been found. The result has been set to the
>system-missing value.

END DATA.

LIST.

Figure 1. Records from a journal file

¢ The warning message, marked by the > symbol, tells you that an invalid numeric field has been found.
Checking the last data line, you will notice that column 10 is L, which is probably a typographic error.
You can correct the typo (for example, by changing the L to 1), delete the warning message, and
submit the file again.

Data Files

A wide variety of data file formats can be read and written, including raw data files created by a data
entry device or a text editor, formatted data files produced by a data management program, data files
generated by other software packages, and IBM SPSS Statistics data files.

Raw Data Files

Raw data files contain only data, either generated by a programming language or entered with a data
entry device or a text editor. Raw data arranged in almost any format can be read, including raw matrix
materials and nonprintable codes. User-entered data can be embedded within a command file as inline
data (BEGIN DATA-END DATA) or saved as an external file. Nonprintable machine codes are usually
stored in an external file.

Commands that read raw data files include:
- [GET DATA]
- [DATA LIST]
 IMATRIX DATA|

44 1BM SPSS Statistics 23 Command Syntax Reference

Complex and hierarchical raw data files can be read using commands such as:
+ INPUT PROGRAM|
* [FILE TYPE

+ [REREAD]

+ [REPEATING DATA|

Data Files Created by Other Applications

You can read files from a variety of other software applications, including:

* Excel spreadsheets (GET DATA|command).
» Database tables (GET DATA|command).

* IBM SPSS Data Collection data sources (GET DATA|command).
* Delimited (including tab-delimited and CSV) and fixed-format text data files (DATA LIST| (GET DATA).

» dBase and Lotus files (GET TRANSLATE| command).
* SAS datasets (EET SAS| command).
» Stata data files 1|GET STATEI command).

IBM SPSS Statistics Data Files

IBM SPSS Statistics data files are files specifically formatted for use by IBM SPSS Statistics, containing

both data and the metadata (dictionary) that define the data.

+ To save the active dataset in IBM SPSS Statistics format, use [SAVH or [XSAVE, On most operating
systems, the default extension of a saved IBM SPSS Statistics data file is .sav. IBM SPSS Statistics data
files can also be matrix files created with the MATRIX=0UT subcommand on procedures that write
matrices.

* To open IBM SPSS Statistics data files, use

IBM SPSS Statistics Data File Structure

The basic structure of IBM SPSS Statistics data files is similar to a database table:

* Rows (records) are cases. Each row represents a case or an observation. For example, each individual
respondent to a questionnaire is a case.

* Columns (fields) are variables. Each column represents a variable or characteristic that is being
measured. For example, each item on a questionnaire is a variable.

IBM SPSS Statistics data files also contain metadata that describes and defines the data contained in the
file. This descriptive information is called the dictionary. The information contained in the dictionary
includes:

* Variable names and descriptive variable labels (VARIABLE LABELS command).
* Descriptive values labels (VALUE LABELS|command).

* Missing values definitions (MISSING VALUES|command).

* Print and write formats dFORMAT§| command).

Use DISPLAY DICTIONARY to display the dictionar\lf for the active dataset. See the topic['DISPLAY” on page]

for more information. You can also use [SYSFILE INFQ| to display dictionary information for any IBM
SPSS Statistics data file.

Long Variable Names

In some instances, data files with variable names longer than eight bytes require special consideration:

* If you save a data file in portable format (see EXPORT]), variable names that exceed eight bytes are
converted to unique eight-character names. For example, mylongrootnamel, mylongrootname2, and
mylongrootname3 would be converted to mylongro, mylong_2, and mylong_3, respectively.

Universals 45

* When using data files with variable names longer than eight bytes in version 10.x or 11.x, unique,
eight-byte versions of variable names are used; however, the original variable names are preserved for
use in release 12.0 or later. In releases prior to 10.0, the original long variable names are lost if you save
the data file.

* Matrix data files (commonly created with the MATRIX OUT subcommand, available in some procedures)
in which the VARNAME_ variable is longer than an eight-byte string cannot be read by releases prior
to 12.0.

Variables

The columns in IBM SPSS Statistics data files are variables. Variables are similar to fields in a database
table.

* Variable names can be defined with numerous commands, including |DATA LIS I| ET DATA

NUMERIC [STRING, [VECTOR| [COMPUTE, and [RECODE| They can be changed with the
V. |

'ARTIABLES| command.

+ Optional variable attributes can include descriptive variable labels (VARIABLE LABELY command),
value labels (VALUE LABELS|command), and missing value definitions (MISSING VALUES|
command).

The following sections provide information on variable naming rules, syntax for referring to inclusive
lists of variables (keywords ALL and T0), scratch (temporary) variables, and system variables.

Variable Names

Variable names are stored in the dictionary of the data file. Observe the following rules when establishing
variable names or referring to variables by their names on commands:

* Each variable name must be unique; duplication is not allowed.

* Variable names can be up to 64 bytes long, and the first character must be a letter or one of the
characters @, #, or $. Subsequent characters can be any combination of letters, numbers,
nonpunctuation characters, and a period (.). In code page mode, sixty-four bytes typically means 64
characters in single-byte languages (for example, English, French, German, Spanish, Italian, Hebrew,
Russian, Greek, Arabic, and Thai) and 32 characters in double-byte languages (for example, Japanese,
Chinese, and Korean). Many string characters that only take one byte in code page mode take two or
more bytes in Unicode mode. For example, € is one byte in code page format but is two bytes in
Unicode format; so résumé is six bytes in a code page file and eight bytes in Unicode mode.

Note: Letters include any nonpunctuation characters used in writing ordinary words in the languages
supported in the platform's character set.

* Variable names cannot contain spaces.

* A # character in the first position of a variable name defines a scratch variable. You can only create
scratch variables with command syntax. You cannot specify a # as the first character of a variable in
dialog boxes that create new variables.

e A $ sign in the first position indicates that the variable is a system variable. The $ sign is not allowed
as the initial character of a user-defined variable.

* The period, the underscore, and the characters $, #, and @ can be used within variable names. For
example, A._$@#1 is a valid variable name.

* Variable names ending with a period should be avoided, since the period may be interpreted as a
command terminator. You can only create variables that end with a period in command syntax. You
cannot create variables that end with a period in dialog boxes that create new variables.

* Variable names ending in underscores should be avoided, since such names may conflict with names of
variables automatically created by commands and procedures.

* Reserved keywords cannot be used as variable names. Reserved keywords are ALL, AND, BY, EQ, GE,
GT, LE, LT, NE, NOT, OR, TO, and WITH.

46 1BM SPSS Statistics 23 Command Syntax Reference

* Variable names can be defined with any mixture of uppercase and lowercase characters, and case is
preserved for display purposes.

* When long variable names need to wrap onto multiple lines in output, lines are broken at underscores,
periods, and points where content changes from lower case to upper case.

Mixed Case Variable Names
Variable names can be defined with any mixture of upper- and lowercase characters, and case is
preserved for display purposes.

* Variable names are stored and displayed exactly as specified on commands that read data or create
new variables. For example, compute NewVar = 1 creates a new variable that will be displayed as
NewVar in the Data Editor and in output from any procedures that display variable names.

¢ Commands that refer to existing variable names are not case sensitive. For example, FREQUENCIES
VARIABLES = newvar, FREQUENCIES VARIABLES = NEWVAR, and FREQUENCIES VARIABLES = NewVar are all
functionally equivalent.

¢ In languages such as Japanese, where some characters exist in both narrow and wide forms, these
characters are considered different and are displayed using the form in which they were entered.

* When long variable names need to wrap onto multiple lines in output, attempts are made to break
lines at underscores, periods, and changes from lower to upper case.

You can use the RENAME VARIABLES command to change the case of any characters in a variable name.

Example
RENAME VARIABLES (newvariable = NewVariable).

* For the existing variable name specification, case is ignored. Any combination of upper and lower case
will work.

* For the new variable name, case will be preserved as entered for display purposes.

For more information, see the RENAME VARIABLES command.

Long Variable Names

In some instances, data files with variable names longer than eight bytes require special consideration:

 If you save a data file in portable format (see [EXPORT]), variable names that exceed eight bytes are
converted to unique eight-character names. For example, mylongrootnamel, mylongrootname2, and
mylongrootname3 would be converted to mylongro, mylong_2, and mylong_3, respectively.

* When using data files with variable names longer than eight bytes in version 10.x or 11.x, unique,
eight-byte versions of variable names are used; however, the original variable names are preserved for
use in release 12.0 or later. In releases prior to 10.0, the original long variable names are lost if you save
the data file.

* Matrix data files (commonly created with the MATRIX OUT subcommand, available in some procedures)
in which the VARNAME_ variable is longer than an eight-byte string cannot be read by releases prior
to 12.0.

Keyword TO

You can establish names for a set of variables or refer to any number of consecutive variables by
specifying the beginning and the ending variables joined by the keyword T0.

To establish names for a set of variables with the keyword T0, use a character prefix with a numeric
suffix.

* The prefix can be any valid name. Both the beginning and ending variables must use the same prefix.

* The numeric suffix can be any integer, but the first number must be smaller than the second. For
example, ITEM1 TO ITEM5 establishes five variables named ITEM1, ITEM2, ITEM3, ITEM4, and ITEM5.

Universals 47

* Leading zeros used in numeric suffixes are included in the variable name. For example, V001 TO V100
establishes 100 variables--V001, V002, V003, ..., V100. V1 TO V100 establishes 100 variables--V1, V2, V3,
..., V100.

The keyword TO can also be used on procedures and other commands to refer to consecutive variables on
the active dataset. For example, AVAR TO VARB refers to the variables AVAR and all subsequent variables
up to and including VARB.

* In most cases, the TO specification uses the variable order on the active dataset. Use the DISPLAY
command to see the order of variables on the active dataset.

* On some subcommands, the order in which variables are named on a previous subcommand, usually
the VARIABLES subcommand, is used to determine which variables are consecutive and therefore are
implied by the TO specification. This is noted in the description of individual commands.

Keyword ALL

The keyword ALL can be used in many commands to specify all of the variables in the active dataset. For
example,
FREQUENCIES /VARIABLES = ALL.

or
OLAP CUBES income by ALL.

In the second example, a separate table will be created for every variable in the data file, including a
table of income by income.

Scratch Variables
You can use scratch variables to facilitate operations in transformation blocks and input programs.

* To create a scratch variable, specify a variable name that begins with the # character—for example, #ID.
Scratch variables can be either numeric or string.

* Scratch variables are initialized to 0 for numeric variables or blank for string variables.

* Scratch variables cannot be used in procedures and cannot be saved in a data file (but they can be
written to an external text file with PRINT or WRITE).

* Scratch variables cannot be assigned missing values, variable labels, or value labels.

* Scratch variables can be created between procedures but are always discarded as the next procedure
begins.

* Scratch variables are discarded once a TEMPORARY command is specified.

* The keyword TO cannot refer to scratch variables and permanent variables at the same time.

* Scratch variables cannot be specified on a WEIGHT command.

e Scratch variable cannot be specified on the LEAVE command.

 Scratch variables are not reinitialized when a new case is read. Their values are always carried across
cases. (So using a scratch variable can be essentially equivalent to using the LEAVE command.)

Because scratch variables are discarded, they are often useful as loop index variables and as other
variables that do not need to be retained at the end of a transformation block. See the topic
[Clause” on page 989 for more information. Because scratch variables are not reinitialized for each case,
they are also useful in loops that span cases in an input program. See the topic [Creating Data” on page|
for more information.

Example

DATA LIST LIST (",") /Name (A15).
BEGIN DATA

Nick Lowe

Dave Edmunds

END DATA.

48 IBM SPSS Statistics 23 Command Syntax Reference

STRING LastName (A15).
COMPUTE #index=INDEX(Name, " ").
COMPUTE LastName=SUBSTR(Name, #index+1).

LIST.
Name LastName
Nick Lowe Lowe

Dave Edmunds Edmunds

Figure 2. Listing of case values

* #index is a scratch variable that is set to the numeric position of the first occurrence of a blank space in
Name.

* The scratch variable is then used in the second COMPUTE command to determine the starting position of
LastName within Name.

¢ The default LIST command will list the values of all variables for all cases. It does not include #index
because LIST is a procedure that reads the data, and all scratch variables are discarded at that point.

In this example, you could have obtained the same end result without the scratch variable, using:
COMPUTE LastName=SUBSTR(Name, INDEX(Name, " ")+1).

The use of a scratch variable here simply makes the code easier to read.

Example: Scratch variable initialization

DATA LIST FREE /Varl.

BEGIN DATA

222

END DATA.

COMPUTE Var2=Varl+Var2.

COMPUTE Var3=0.

COMPUTE Var3=Varl+Var3.

COMPUTE #ScratchVar=Varl+#ScratchVar.
COMPUTE Var4=#ScratchVar.

LIST.

Varl Var2 Var3 Vard

2.00 2.00 2.00
2.00 2.00 4.00
2.00 2.00 6.00

Figure 3. Listing of case values

* The new variable Var2 is reinitialized to system-missing for each case, therefore Varl+Var2 always
results in system-missing.

¢ The new variable Var3 is reset to 0 for each case (COMPUTE Var3=0), therefore Varl+Var3 is always
equivalent to Varl+0.

* #ScratchVar is initialized to 0 for the first case and is not reinitialized for subsequent cases; so
Varl+#ScratchVar is equivalent to Varl+0 for the first case, Varl+2 for the second case, and Varl+4 for
the third case.

* Var4 is set to the value of #ScratchVar in this example so that the value can be displayed in the case
listing.

In this example, the commands:

COMPUTE #ScratchVar=Varl+#ScratchVar.
COMPUTE Var4=#ScratchVar.

are equivalent to:

COMPUTE Var4=Varl+Var4.
LEAVE Var4.

Universals 49

System Variables

System variables are special variables created during a working session to keep system-required
information, such as the number of cases read by the system, the system-missing value, and the current
date. System variables can be used in data transformations.

¢ The names of system variables begin with a dollar sign ($).
* You cannot modify a system variable or alter its print or write format. Except for these restrictions, you
can use system variables anywhere that a normal variable is used in the transformation language.

* System variables are not available for procedures.

$CASENUM. Current case sequence number. For each case, $CASENUM is the number of cases read up to
and including that case. The format is F8.0. The value of $CASENUM is not necessarily the row number
in a Data Editor window (available in windowed environments), and the value changes if the file is
sorted or new cases are inserted before the end of the file.

$SYSMIS. System-missing value. The system-missing value displays as a period (.) or whatever is used as
the decimal point.

$JDATE. Current date in number of days from October 14, 1582 (day 1 of the Gregorian calendar). The format
is F6.0.

$DATE. Current date in international date format with two-digit year. The format is A9 in the form
dd-mmm-yy.

$DATE11. Current date in international date format with four-digit year. The format is A1l in the form
dd-mmm-yyyy.

$TIME. Current date and time. $TIME represents the number of seconds from midnight, October 14, 1582,
to the date and time when the transformation command is executed. The format is F20. You can display
this as a date in a number of different You can also use it in|date and time functions

SLENGTH. The current page length. The format is F11.0. For more information, see SET.

$SWIDTH. The current page width. The format is F3.0. For more information, see SET.

Variable Types and Formats

There are two basic variable types:

 String. Also referred to alphanumeric. String values can contain any combination of letters, numbers,
and other characters.

* Numeric. Numeric values are stored internally as double-precision floating-point numbers.

Variable formats determine how raw data is read into storage and how values are displayed and written.
For example, all dates and times are stored internally as numeric values, but you can use date and time
format specifications to both read and display date and time values in standard date and time formats.
The following sections provide details on how formats are specified and how those formats affect how
data are read, displayed, and written.

Input and Output Formats

Values are read according to their input format and displayed according to their output format. The
input and output formats differ in several ways.

* The input format is either specified or implied on the DATA LIST, GET DATA, or other data definition
commands. It is in effect only when cases are built in an active dataset.

50 IBM SPSS Statistics 23 Command Syntax Reference

¢ Output formats are automatically generated from input formats, with output formats expanded to
include punctuation characters, such as decimal indicators, grouping symbols, and dollar signs. For
example, an input format of DOLLAR7.2 will generate an output format of DOLLAR10.2 to accommodate
the dollar sign, grouping symbol (comma), and decimal indicator (period).

¢ The formats (specified or default) on NUMERIC, STRING, COMPUTE, or other commands that create new
variables are output formats. You must specify adequate widths to accommodate all punctuation
characters.

* The output format is in effect during the entire working session (unless explicitly changed) and is
saved in the dictionary of IBM SPSS Statistics data files.

* Qutput formats for numeric variables can be changed with[FORMATS, [PRINT FORMATS| and [WRITE]|
ﬁ ORMAT

String Variable Formats

¢ The values of string variables can contain numbers, letters, and special characters and can be up to
32,767 bytes.

* System-missing values cannot be generated for string variables, since any character is a legal string
value.

* When a transformation command that creates or modifies a string variable yields a missing or
undefined result, a null string is assigned. The variable displays as blanks and is not treated as
missing.

* String formats are used to read and write string variables. The input values can be alphanumeric
characters (A format) or the hexadecimal representation of alphanumeric characters (AHEX format).

* For fixed-format raw data, the width can be explicitly specified on commands such as and
or implied if column-style specifications are used. For freefield data, the default width is 1;
if the input string may be longer, w must be explicitly specified. Input strings shorter than the specified
width are right-padded with blanks.

¢ The output format for a string variable is always A. The width is determined by the input format or the
format assigned on the [STRING|command. Once defined, the width of a string variable can only be
changed with the]ALTER TYPE| command.

A Format (Standard Characters)

The A format is used to read standard characters. Characters can include letters, numbers, punctuation
marks, blanks, and most other characters on your keyboard. Numbers entered as values for string
variables cannot be used in calculations unless you convert them to numeric format with the NUMBER
function. See the topic|“String/numeric conversion functions” on page 8§ for more information.

Fixed data:

With fixed-format input data, any punctuation—including leading, trailing, and embedded
blanks—within the column specifications is included in the string value. For example, a string value of
Mr. Ed

(with one embedded blank) is distinguished from a value of
Mr. Ed

(with two embedded blanks). It is also distinguished from a string value of
MR. ED

(all upper case), and all three are treated as separate values. These can be important considerations for
any procedures, transformations, or data selection commands involving string variables. Consider the
following example:

DATA LIST FIXED /ALPHAVAR 1-10 (A).
BEGIN DATA
Mr. Ed

Universals 51

Mr. Ed
MR. ED
Mr. Ed
Mr. Ed
END DATA.
AUTORECODE ALPHAVAR /INTO NUMVAR.
LIST.

AUTORECODE recodes the values into consecutive integers. The following figure shows the recoded values.

ALPHAVAR NUMVAR

Mr. Ed 4
Mr. Ed 4
MR. ED 2
Mr. Ed 3
Mr. Ed 1

Figure 4. Different string values illustrated

AHEX Format (Hexadecimal Characters)
The AHEX format is used to read the hexadecimal representation of standard characters. Each set of two
hexadecimal characters represents one standard character.

* The w specification refers to columns of the hexadecimal representation and must be an even number.
Leading, trailing, and embedded blanks are not allowed, and only valid hexadecimal characters can be
used in input values.

* For some operating systems (e.g., IBM CMS), letters in hexadecimal values must be upper case.

* The default output format for variables read with the AHEX input format is the A format. The default
width is half the specified input width. For example, an input format of AHEX14 generates an output
format of A7.

* Used as an output format, the AHEX format displays the printable characters in the hexadecimal
characters specific to your system. The following commands run on a UNIX system--where A=41
(decimal 65), a=61 (decimal 97), and so on--produce the output shown below:

DATA LIST FIXED
/A,B,C,D,E,F,G,H,1,J,K,L,M,N,0,P,Q,R,S,T,U,V,W,X,Y,Z 1-26 (A).

FORMATS ALL (AHEX2).

BEGIN DATA

ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopgrstuvwxyz

END DATA.

LIST.

ABCDEFGHTIJIKLMNOPQRSTUVWIXYZ

41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A
61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A

Figure 5. Display of hexadecimal representation of the character set with AHEX format

Numeric Variable Formats

e By default, if no format is explicitly specified, commands that read raw data--such as DATA LIST and
GET DATA--assume that variables are numeric with an F format type. The default width depends on
whether the data are in fixed or freefield format. For a discussion of fixed data and freefield data, see

DATA L1

* Numeric variables created by COMPUTE, COUNT, or other commands that create numeric variables are
assigned a format type of F8.2 (or the default numeric format defined on [SET FORMAT)).

 If a data value exceeds its width specification, an attempt is made to display some value nevertheless.
First, the decimals are rounded, then punctuation characters are taken out, then scientific notation is
tried, and if there is still not enough space, an ellipsis (...) is displayed, indicating that a value is
present but cannot be displayed in the assigned width.

¢ The output format does not affect the value stored in the file. A numeric value is always stored in
double precision.

52 IBM SPSS Statistics 23 Command Syntax Reference

e For all numeric formats, the maximum width is 40.

e For numeric formats where decimals are allowed, the maximum number of decimals is 16.

* For default numeric (F) format and scientific notation (E) format, the decimal indicator of the input
data from text data sources (read by commands such as DATA LIST and GET DATA) must match the IBM

SPSS Statistics locale decimal indicator (period or comma). Use [SET DECIMALjto set the decimal
indicator. Use SHOW DECIMAL]to display the current decimal indicator.

F, N, and E Formats

The following table lists the formats most commonly used to read in and write out numeric data. Format
names are followed by total width (w) and an optional number of decimal positions (d). For example, a
format of F5.2 represents a numeric value with a total width of 5, including two decimal positions and a
decimal indicator.

Table 1. Common numeric formats.

Format type Sample format | Sample input |Fixed output |Fixed output |Freefield Freefield
format value ouput format |output value

Fw F5 1234 F5.0 1234 F5.0 1234

Fw F5 1.234 F5.0 1* F5.0 1*

Fw.d F5.2 1234 F6.2 1234.0 F6.2 1234.0

Fw.d F5.2 1.234 F6.2 1.23* F6.2 1.23*

Nw N5 00123 F5.0 123 F5.0 123

Nw N5 123 F5.0 A F5.0 123

Nw.d N5.2 12345 F6.2 12345 F6.2 12345

Nw.d N5.2 12.34 F6.2 z F6.2 F

Ewd E8.0 1234E3 E10.3 1234E+06 E10.3 1234E+06*

Ew.d E8.0 1234 E10.3 1234E+03 E10.3 1234E+03

" Only the display is truncated. The value is stored in full precision.
" System-missing value.

¥ Scientific notation is accepted in input data with F, COMMA, DOLLAR, DOT, and PCT formats. The same rules
apply as specified below.

For fixed data:

* With the N format, only unsigned integers are allowed as input values. Values not padded with leading
zeros to the specified width or those containing decimal points are assigned the system-missing value.
This input format is useful for reading and checking values that should be integers containing leading
Zeros.

¢ The E format reads all forms of scientific notation. If the sign is omitted, + is assumed. If the sign (+ or
-) is specified before the exponent, the E or D can be omitted. A single space is permitted after the E or
D and/or after the sign. If both the sign and the letter E or D are omitted, implied decimal places are
assumed. For example, 1.234E3, 1.234+3, 1.234E+3, 1.234D3, 1.234D+3, 1.234E 3, and 1234 are all
legitimate values. Only the last value can imply decimal places.

e E format input values can be up to 40 characters wide and include up to 15 decimal positions.

* The default output width (w) for the E format is either the specified input width or the number of
specified decimal positions plus 7 (d+7), whichever is greater. The minimum width is 10 and the
minimum decimal places are 3.

e The DATA LIST command can read fixed-format numeric data with implied decimal positions. See the
topic [“Implied Decimal Positions” on page 506 for more information.

Universals 53

For freefield data:

* F format w and d specifications do not affect how data are read. They only determine the output
formats (expanded, if necessary). 1234 is always read as 1234 in freefield data, but a specified F5.2
format will be expanded to F6.2 and the value will be displayed as 1234.0 (the last decimal place is
rounded because of lack of space).

* When the N format is used for freefield data, input values with embedded decimal indicators are
assigned the system-missing value, but integer input values without leading zeroes are treated as valid.
For example, with an input format of N5.0, a value of 123 is treated the same as a value of 00123, but a
value of 12.34 is assigned the system-missing value.

* The E format for freefield data follows the same rules as for fixed data except that no blank space is
permitted in the value. Thus, 1.234E3 and 1.234+3 are allowed, but the value 1.234 3 will cause
mistakes when the data are read.

* The default output E format and the width and decimal place limitations are the same as with fixed
data.

N (Restricted Numeric) Output Format

N format input values are assigned an F output format. To display, print, and write N format values with

leading zeroes, use the FORMATS command to specify N as the output format. See the topic ['FORMATS”

for more information.

COMMA, DOT, DOLLAR, and PCT Formats

The numeric formats listed below read and write data with embedded punctuation characters and
symbols, such as commas, dots, and dollar and percent signs. The input data may or may not contain
such characters. The data values read in are stored as numbers but displayed using the appropriate
formats.

* DOLLAR. Numeric values with a leading dollar sign, a comma used as the grouping separator, and a
period used as the decimal indicator. For example, $1,234.56.

* COMMA. Numeric values with a comma used as the grouping separator and a period used as decimal
indicator. For example, 1,234.56.

¢ DOT. Numeric values with a period used as the grouping separator and a comma used as the decimal
indicator. For example, 1.234,56.

¢ PCT. Numeric values with a trailing percent sign. For example, 123.45%.

The input data values may or may not contain the punctuation characters allowed by the specified
format, but the data values may not contain characters not allowed by the format. For example, with a
DOLLAR input format, input values of 1234.56, 1,234.56, and $1,234.56 are all valid and stored internally as
the same value--but with a COMMA input format, the input value with a leading dollar sign would be
assigned the system-missing value.

Example

DATA LIST LIST (" ") /dollarVar (DOLLAR9.2) commaVar (COMMA9.2)
dotVar (D0T9.2) pctvar (PCT9.2).

BEGIN DATA

1234 1234 1234 1234

$1,234.00 1,234.00 1.234,00 1234.00%

END DATA.

LIST.

dollarVar commaVar dotVar pctVar

$1,234.00 1,234.00 1.234,00 1234.00%
$1,234.00 1,234.00 1.234,00 1234.00%

Figure 6. Output illustrating DOLLAR, COMMA, DOT, and PCT formats

54 IBM SPSS Statistics 23 Command Syntax Reference

Other formats that use punctuation characters and symbols are date and time formats and custom
currency formats. For more information on date and time formats, see [“Date and Time Formats” on page|
E7| Custom currency formats are output formats only, and are defined with the [SET command.

Binary and Hexadecimal Formats

Data can be read and written in formats used by a number of programming languages such as PL/I,
COBOL, FORTRAN, and Assembler. The data can be binary, hexadecimal, or zoned decimal. Formats
described in this section can be used both as input formats and output formats, but with fixed data only.

The default output format for all formats described in this section is an equivalent F format, allowing the
maximum number of columns for values with symbols and punctuation. To change the default, use
FORMATS or WRITE FORMATS.

IBw.d (integer binary):

The IB format reads fields that contain fixed-point binary (integer) data. The data might be generated by
COBOL using COMPUTATIONAL data items, by FORTRAN using INTEGER*2 or INTEGER*4, or by
Assembler using fullword and halfword items. The general format is a signed binary number that is 16 or
32 bits in length.

The general syntax for the IB format is IBw.d, where w is the field width in bytes (omitted for
column-style specifications) and d is the number of digits to the right of the decimal point. Since the
width is expressed in bytes and the number of decimal positions is expressed in digits, d can be greater
than w. For example, both of the following commands are valid:

DATA LIST FIXED /VARL (IB4.8).

DATA LIST FIXED /VAR1 1-4 (IB,8).

Widths of 2 and 4 represent standard 16-bit and 32-bit integers, respectively. Fields read with the IB
format are treated as signed. For example, the one-byte binary value 11111111 would be read as -1.

PIBw.d (positive integer binary) :

The PIB format is essentially the same as IB except that negative numbers are not allowed. This
restriction allows one additional bit of magnitude. The same one-byte value 11111111 would be read as
255.

PIBHEXw (hexadecimal of PIB):

The PIBHEX format reads hexadecimal numbers as unsigned integers and writes positive integers as
hexadecimal numbers. The general syntax for the PIBHEX format is PIBHEXw, where w indicates the total
number of hexadecimal characters. The w specification must be an even number with a maximum of 16.

For input data, each hexadecimal number must consist of the exact number of characters. No signs,
decimal points, or leading and trailing blanks are allowed. For some operating systems (such as IBM
CMS), hexadecimal characters must be upper case. The following example illustrates the kind of data that
the PIBHEX format can read:

DATA LIST FIXED
/VARL 1-4 (PIBHEX) VARZ 6-9 (PIBHEX) VAR3 11-14 (PIBHEX).
BEGIN DATA

0001 0002 0003
0004 0005 0006
0007 0008 0009
000A 000B 000C
000D 00OE 00OF
00FO 0B2C FFFF
END DATA.

LIST.

Universals 55

The values for VAR1, VAR2, and VAR3 are listed in the figure below. The PIBHEX format can also be used
to write decimal values as hexadecimal numbers, which may be useful for programmers.

VARL VAR2 VAR3
1 2 3
4 5 6
7 8 9
10 11 12

13 14 15
240 2860 65535

Figure 7. Output displaying values read in PIBHEX format

Zw.d (zoned decimal):

The 7 format reads data values that contain zoned decimal data. Such numbers may be generated by
COBOL systems using DISPLAY data items, by PL/I systems using PICTURE data items, or by
Assembler using zoned decimal data items.

In zoned decimal format, one digit is represented by one byte, generally hexadecimal F1 representing 1,
F2 representing 2, and so on. The last byte, however, combines the sign for the number with the last
digit. In the last byte, hexadecimal A, F, or C assigns +, and B, D, or E assigns —. For example,
hexadecimal D1 represents 1 for the last digit and assigns the minus sign (-) to the number.

The general syntax of the Z format is Zw.d, where w is the total number of bytes (which is the same as
columns) and d is the number of decimals. For input data, values can appear anywhere within the
column specifications. Both leading and trailing blanks are allowed. Decimals can be implied by the input
format specification or explicitly coded in the data. Explicitly coded decimals override the input format
specifications.

The following example illustrates how the Z format reads zoned decimals in their printed forms on IBM
mainframe and PC systems. The printed form for the sign zone (A to I for +1 to +9, and so on) may vary
from system to system.

DATA LIST FIXED /VARL 1-5 (Z) VAR2 7-11 (Z,2) VAR3 13-17 (Z)
VARG 19-23 (Z,2) VAR5 25-29 (Z) VAR6 31-35 (Z,2).
BEGIN DATA

1234A 1234A 1234B 1234B 1234C 1234C

1234D 1234D 1234E 1234F 1234F 1234F

1234G 12346 1234H 1234H 12341 12341

12340 12340 1234K 1234K 1234L 1234L

1234M 1234M 1234N 1234N 12340 12340

1234P 1234P 1234Q 1234Q 1234R 1234R

1234{ 1234{ 1234} 1234} 1.23M 1.23M

END DATA.

LIST.

The values for VARI to VARG are listed in the following figure.

VAR1 VARZ VAR3 VAR4 VAR5 VARG

12341 123.41 12342 123.42 12343 123.43
12344 123.44 12345 123.45 12346 123.46
12347 123.47 12348 123.48 12349 123.49
-12341 -123.41 -12342 -123.42 -12343 -123.43
-12344 -123.44 -12345 -123.45 -12346 -123.46
-12347 -123.47 -12348 -123.48 -12349 -123.49
12340 123.40 -12340 -123.40 -1 -1.23

Figure 8. Output displaying values read in Z format
The default output format for the Z format is the equivalent F format, as shown in the figure. The default
output width is based on the input width specification plus one column for the sign and one column for

the implied decimal point (if specified). For example, an input format of 74.0 generates an output format
of F5.0, and an input format of Z4.2 generates an output format of F6.2.

56 IBM SPSS Statistics 23 Command Syntax Reference

Pw.d (packed decimal):

The P format is used to read fields with packed decimal numbers. Such numbers are generated by
COBOL using COMPUTATIONAL-3 data items and by Assembler using packed decimal data items. The
general format of a packed decimal field is two four-bit digits in each byte of the field except the last.
The last byte contains a single digit in its four leftmost bits and a four-bit sign in its rightmost bits. If the
last four bits are 1111 (hexadecimal F), the value is positive; if they are 1101 (hexadecimal D), the value is
negative. One byte under the P format can represent numbers from -9 to 9.

The general syntax of the P format is Pw.d, where w is the number of bytes (not digits) and d is the
number of digits to the right of the implied decimal point. The number of digits in a field is (2*w-1).

PKw.d (unsigned packed decimal):

The PK format is essentially the same as P except that there is no sign. That is, even the rightmost byte
contains two digits, and negative data cannot be represented. One byte under the PK format can represent
numbers from 0 to 99. The number of digits in a field is 2*w.

RBw (real binary):

The RB format is used to read data values that contain internal format floating-point numbers. Such
numbers are generated by COBOL using COMPUTATIONAL-1 or COMPUTATIONAL-2 data items, by
PL/1 using FLOATING DECIMAL data items, by FORTRAN using REAL or REAL*8 data items, or by
Assembler using floating-point data items.

The general syntax of the RB format is RBw, where w is the total number of bytes. The width specification
must be an even number between 2 and 8. Normally, a width specification of 8 is used to read
double-precision values, and a width of 4 is used to read single-precision values.

RBHEXw (hexadecimal of RB):

The RBHEX format interprets a series of hexadecimal characters as a number that represents a
floating-point number. This representation is system-specific. If the field width is less than twice the
width of a floating-point number, the value is right-padded with binary zeros. For some operating
systems (for example, IBM CMS), letters in hexadecimal values must be upper case.

The general syntax of the RBHEX format is RBHEXw, where w indicates the total number of columns. The
width must be an even number. The values are real (floating-point) numbers. Leading and trailing blanks
are not allowed. Any data values shorter than the specified input width must be padded with leading
Zeros.

Date and Time Formats

Date and time formats are both input and output formats. Like numeric formats, each input format
generates a default output format, automatically expanded (if necessary) to accommodate display width.
Internally, all date and time format values are stored as a number of seconds: date formats (e.g., DATE,
ADATE, SDATE, DATETIME) are stored as the number of seconds since October 14, 1582; time formats (TIME,
DTIME) are stored as a number of seconds that represents a time interval (e.g., 10:00:00 is stored internally
as 36000, which is 60 seconds x 60 minutes x 10 hours).

+ All date and time formats have a minimum input width, and some have a different minimum output.
Wherever the input minimum width is less than the output minimum, the width is expanded
automatically when displaying or printing values. However, when you specify output formats, you
must allow enough space for displaying the date and time in the format you choose.

* Input data shorter than the specified width are correctly evaluated as long as all the necessary elements
are present. For example, with the TIME format, 1:2, 01 2, and 01:02 are all correctly evaluated even

Universals 57

though the minimum width is 5. However, if only one element (hours or minutes) is present, you must
use a time function to aggregate or convert the data. See the topic|“Date and time functions” on page|
for more information.

 If a date or time value cannot be completely displayed in the specified width, values are truncated in
the output. For example, an input time value of 1:20:59 (1 hour, 20 minutes, 59 seconds) displayed with
a width of 5 will generate an output value of 01:20, not 01:21. The truncation of output does not affect
the numeric value stored in the working file.

The following table shows all available date and time formats, where w indicates the total number of
columns and d (if present) indicates the number of decimal places for fractional seconds. The example
shows the output format with the minimum width and default decimal positions (if applicable). The
format allowed in the input data is much less restrictive. See the topic|“Input Data Specification” on page|

for more information.

Table 2. Date and time formats

Min w In | Min w

General form Format type Out Maxw |Maxd Example

dd-mmm-yy DATEw 9 9 40 28-OCT-90
DATEw

dd-mmm-yyyy 10 11 28-OCT-1990

mm/dd/yy ADATEw 8 8 40 10/28/90
ADATEw

mm/dd/yyyy 10 10 10/28/1990

dd.mm.yy EDATEw 8 8 40 28.10.90
EDATEw

dd.mm.yyyy 10 10 28.10.1990

yyddd JDATEw 5 5 40 90301
JDATEw

yyyyddd 7 7 1990301

yy/mm/dd SDATEw 8 8 40 90/10/28
SDATEw

yyyy/mm/dd 10 10 1990/10/28

qQyy QYRw 4 6 40 4Q90
QYRw

q Q yyyy 6 8 4 Q 1990

mmm yy MOYRw 6 6 40 OCT 90
MOYRw

mmm yyyy 8 8 OCT 1990

ww WK yy WKYRw 6 8 40 43 WK 90
WKYRw

ww WK yyyy 8 10 43 WK 1990

(name of the day) WKDAYw 2 2 40 SU

(name of the month) MONTHw 3 3 40 JAN

58 IBM SPSS Statistics 23 Command Syntax Reference

Table 2. Date and time formats (continued)

Min w In | Min w
General form Format type Out Maxw |Maxd Example
hh:mm TIMEw 5 5 40 01:02
hh:mm:ss.s TIMEw.d 10 10 40 16 01:02:34.75
dd hh:mm DTIMEw 1 1 40 20 08:03
dd hh:mm:ss.s DTIMEw.d 13 13 40 16 20 08:03:00
dd-mmm-yyyy hh:mm DATETIMEw 17 17 40 20-JUN-1990 08:03
dd-mmm-yyyy hhimm:ss.s | DATETIMEw.d 22 22 40 16 20-JUN-1990
08:03:00

" All date and time formats produce sortable data. SDATE, a date format used in a number of Asian
countries, can be sorted in its character form and is used as a sortable format by many programmers.

Input Data Specification

The following general rules apply to date and time input formats:

¢ The century value for two-digit years is defined by the SET EPOCH value. By default, the century
range begins 69 years prior to the current year and ends 30 years after the current year. Whether all
four digits or only two digits are displayed in output depends on the width specification on the
format.

* Dashes, periods, commas, slashes, or blanks can be used as delimiters in the input values. For example,
with the DATE format, the following input forms are all acceptable:

28-0CT-90 28/10/1990 28.0CT.90 28 October, 1990
The displayed values, however, will be the same: 28-OCT-90 or 28-OCT-1990, depending on whether
the specified width allows 11 characters in output.

¢ The JDATE format does not allow internal delimiters and requires leading zeros for day values of less

than 100 and two-digit-year values of less than 10. For example, for January 1, 1990, the following two
specifications are acceptable:

90001 1990001
However, neither of the following is acceptable:

90 1 90/1

* Months can be represented in digits, Roman numerals, or three-character abbreviations, and they can
be fully spelled out. For example, all of the following specifications are acceptable for October:

10 X 0CT October
* The quarter in QYR format is expressed as 1, 2, 3, or 4. It must be separated from the year by the letter
Q. Blanks can be used as additional delimiters. For example, for the fourth quarter of 1990, all of the
following specifications are acceptable:
4Q90 4Q1990 4 Q 90 4 Q 1990

On some operating systems, such as IBM CMS, Q must be upper case. The displayed output is 4 Q 90
or 4 Q 1990, depending on whether the width specified allows all four digits of the year.

* The week in the WKYR format is expressed as a number from 1 to 53. Week 1 begins on January 1, week
2 on January 8, and so on. The value may be different from the number of the calendar week. The
week and year must be separated by the string WK. Blanks can be used as additional delimiters. For
example, for the 43rd week of 1990, all of the following specifications are acceptable:

43WK90 43WK1990 43 WK 90 43 WK 1990

Universals 59

On some operating systems, such as IBM CMS, WK must be upper case. The displayed output is 43 WK
90 or 43 WK 1990, depending on whether the specified width allows enough space for all four digits of
the year.

* In time specifications, colons can be used as delimiters between hours, minutes, and seconds. Hours
and minutes are required, but seconds are optional. A period is required to separate seconds from
fractional seconds. Hours can be of unlimited magnitude, but the maximum value for minutes is 59
and for seconds 59.999. . . .

 Data values can contain a sign (+ or —) in TIME and DTIME formats to represent time intervals before or
after a point in time.

Example: DATE, ADATE, and JDATE

DATA LIST FIXED
/VAR1 1-17 (DATE) VAR2 21-37 (ADATE) VAR3 41-47 (JDATE).

BEGIN DATA

28-10-90 10/28/90 90301
28.0CT.1990 X 28 1990 1990301
28 October, 2001 Oct. 28, 2001 2001301
END DATA.

LIST.

¢ Internally, all date format variables are stored as the number of seconds from 0 hours, 0 minutes, and 0
seconds of Oct. 14, 1582.

The LIST output from these commands is shown in the following figure.

VAR1 VAR2 VAR3
28-0CT-1990 10/28/1990 1990301
28-0CT-1990 10/28/1990 1990301
28-0CT-2001 10/28/2001 2001301

Figure 9. Output illustrating DATE, ADATE, and JDATE formats

Example: QYR, MOYR, and WKYR
DATA LIST FIXED /VARL 1-10 (QYR) VAR2 12-25 (MOYR) VAR3 28-37 (WKYR).

BEGIN DATA

4Q90 10/90 43WK90

4.Q 90 Oct-1990 43 WK 1990
4 Q 2001 October, 2001 43 WK 2001
END DATA.

LIST.

* Internally, the value of a QYR variable is stored as midnight of the first day of the first month of the
specified quarter, the value of a MOYR variable is stored as midnight of the first day of the specified
month, and the value of a WKYR format variable is stored as midnight of the first day of the specified
week. Thus, 4Q90 and 10/90 are both equivalent to October 1, 1990, and 43WK90 is equivalent to
October 22, 1990.

The LIST output from these commands is shown in the following figure.

VAR1 VAR2 VAR3
4 Q 1990 OCT 1990 43 WK 1990
4 Q 1990 OCT 1990 43 WK 1990
4 Q 2001 OCT 2001 43 WK 2001

Figure 10. Output illustrating QYR, MOYR, and WKYR formats

Example: TIME

DATA LIST FIXED

/VARL 1-11 (TIME,2) VARZ 13-21 (TIME) VAR3 23-28 (TIME).
BEGIN DATA

1:2:34.75 1:2:34.75 1:2:34

END DATA.

LIST.

e TIME reads and writes time of the day or a time interval.

60 IBM SPSS Statistics 23 Command Syntax Reference

¢ Internally, the TIME values are stored as the number of seconds from midnight of the day or of the time
interval.

The LIST output from these commands is shown in the following figure.

VAR1 VARZ VAR3
1:02:34.75 1:02:34 1:02

Figure 11. Output illustrating TIME format

Example: WKDAY and MONTH

DATA LIST FIXED

/VARL 1-9 (WKDAY) VAR2 10-18 (WKDAY)

VAR3 20-29 (MONTH) VAR4 30-32 (MONTH) VAR5 35-37 (MONTH).
BEGIN DATA

Sunday Sunday January 1 Jan
Monday Monday February 2 Feb
Tues Tues March 3 Mar
Wed Wed April 4 Apr
Th Th Oct 10 Oct
Fr Fr Nov 11 Nov
Sa Sa Dec 12 Dec
END DATA.

FORMATS VAR2 VAR5 (F2).

LIST.

* WKDAY reads and writes the day of the week; MONTH reads and writes the month of the year.

* Values for WKDAY are entered as strings but stored as numbers. They can be used in arithmetic
operations but not in string functions.

* Values for MONTH can be entered either as strings or as numbers but are stored as numbers. They can be
used in arithmetic operations but not in string functions.

* To display the values as numbers, assign an F format to the variable, as was done for VAR2 and VAR5
in the above example.

The LIST output from these commands is shown in the following figure.

VARL VAR2 VAR3 VAR4 VAR5
SUNDAY 1 JANUARY JAN 1
MONDAY 2 FEBRUARY FEB 2
TUESDAY 3 MARCH MAR 3
WEDNESDAY 4 APRIL APR 4
THURSDAY 5 OCTOBER 0CT 10
FRIDAY 6 NOVEMBER NOV 11
SATURDAY 7 DECEMBER DEC 12

Figure 12. Output illustrating WKDAY and MONTH formats

Example: DTIME and DATETIME
DATA LIST FIXED /VARL 1-14 (DTIME) VAR2 18-42 (DATETIME).

BEGIN DATA

20 8:3 20-6-90 8:3

20:8:03:46 20/JUN/19960 8:03:46

20 08 03 46.75 20 June, 2001 08 03 46.75
END DATA.

LIST.

e DTIME and DATETIME read and write time intervals.
* The decimal point explicitly coded in the input data for fractional seconds.

* The DTIME format allows a — or + sign in the data value to indicate a time interval before or after a
point in time.

¢ Internally, values for a DTIME variable are stored as the number of seconds of the time interval, while
those for a DATETIME variable are stored as the number of seconds from 0 hours, 0 minutes, and 0
seconds of Oct. 14, 1582.

Universals 61

The LIST output from these commands is shown in the following figure.

VAR1 VAR2
20 08:03:00 20-JUN-1990 08:03:00
20 08:03:46 20-JUN-1990 08:03:46
20 08:03:46 20-JUN-2001 08:03:46

Figure 13. Output illustrating DTIME and DATETIME formats

FORTRAN-like Input Format Specifications

You can use FORTRAN-like input format specifications to define formats for a set of variables, as in the
following example:

DATA LIST FILE=HUBDATA RECORDS=3
/MOHIRED, YRHIRED, DEPT1 TO DEPT4 (T12, 2F2.0, 4(1X,F1.0)).

* The specification T12 in parentheses tabs to the 12th column. The first variable (MOHIRED) will be
read beginning from column 12.
* The specification 2F2.0 assigns the format F2.0 to two adjacent variables (MOHIRED and YRHIRED).

* The next four variables (DEPT1 to DEPT4) are each assigned the format F1.0. The 4 in 4(1X,F1.0)
distributes the same format to four consecutive variables. 1X skips one column before each variable.
(The column-skipping specification placed within the parentheses is distributed to each variable.)

Transformation Expressions

Transformation expressions are used in commands such as COMPUTE, IF, DO IF, LOOP IF, and SELECT IF.
Release history

Release 13.0
e APPLYMODEL and STRAPPLYMODEL functions introduced.
e DATEDIFF and DATESUM functions introduced.

Release 14.0
e REPLACE function introduced.
e VALUELABEL function introduced.

Release 16.0

e CHAR.INDEX function introduced.
e CHAR.LENGTH function introduced.
* CHAR.LPAD function introduced.

e CHAR.MBLEN function introduced.
e CHAR.RINDEX function introduced.
* CHAR.RPAD function introduced.

* CHAR.SUBSTR function introduced.
* NORMALIZE function introduced.

* NTRIM function introduced.

* STRUNC function introduced.

Release 17.0

* MEDIAN function introduced.

e mult and fuzzbits arguments introduced for the RND and TRUNC functions.

* NEIGHBOR and DISTANCE functions added to APPLYMODEL and STRAPPLYMODEL.

62 IBM SPSS Statistics 23 Command Syntax Reference

Numeric expressions

Numeric expressions can be used with the COMPUTE and IF commands and as part of a logical expression
for commands such as IF, DO IF, LOOP IF, and SELECT IF. Arithmetic expressions can also appear in the
index portion of a LOOP command, on the REPEATING DATA command, and on the PRINT SPACES command.

New numeric variables created with transformation expressions have an unknown measurement level
until after the next command that reads the data (such as a statistical or charting procedure or the
EXECUTE command). For information on default measurement level assignment, see [SET SCALEMIN}

Arithmetic operations
The following arithmetic operators are available:

+. Addition

—. Subtraction

*. Multiplication
/. Division

**. Exponentiation
* No two operators can appear consecutively.

* Arithmetic operators cannot be implied. For example, (VAR1) (VAR2) is not a legal specification; you
must specify VAR1*VARZ.

* Arithmetic operators and parentheses serve as delimiters. To improve readability, blanks (not commas)
can be inserted before and after an operator.

* To form complex expressions, you can use variables, constants, and functions with arithmetic
operators.

* The order of execution is as follows: functions; exponentiation; multiplication, division, and unary —;
and addition and subtraction.

* Operators at the same level are executed from left to right.

* To override the order of operation, use parentheses. Execution begins with the innermost set of
parentheses and progresses out.

Numeric constants

* Constants used in numeric expressions or as arguments to functions can be integer or noninteger,
depending on the application or function.

* You can specify as many digits in a constant as needed as long as you understand the precision
restrictions of your computer.

* Numeric constants can be signed (+ or —) but cannot contain any other special characters, such as the
comma or dollar sign.

* Numeric constants can be expressed with scientific notation. Thus, the exponent for a constant in
scientific notation is limited to two digits. The range of values allowed for exponents in scientific
notation is from —99 to +99.

Complex numeric arguments

* Except where explicitly restricted, complex expressions can be formed by nesting functions and
arithmetic operators as arguments to functions.

 The order of execution for complex numeric arguments is as follows: functions; exponentiation;
multiplication, division, and unary —; and addition and subtraction.

* To control the order of execution in complex numeric arguments, use parentheses.

Universals 63

Arithmetic operations with date and time variables

Most date and time variables are stored internally as the number of seconds from a particular date or as
a time interval and therefore can be used in arithmetic operations. Many operations involving dates and
time can be accomplished with the extensive collection of [date and time functions]

* A date is a floating-point number representing the number of seconds from midnight, October 14, 1582.
Dates, which represent a particular point in time, are stored as the number of seconds to that date. For
example, October 28, 2007, is stored as 13,412,908,800.

* A date includes the time of day, which is the time interval past midnight. When time of day is not
given, it is taken as 00:00 and the date is an even multiple of 86,400 (the number of seconds in a day).

A time interval is a floating-point number representing the number of seconds in a time period, for
example, an hour, minute, or day. For example, the value representing 5.5 days is 475,200; the value
representing the time interval 14:08:17 is 50,897.

e QYR, MOYR, and WKYR variables are stored as midnight of the first day of the respective quarter, month,
and week of the year. Therefore, 1 Q 90, 1/90, and 1 WK 90 are all equivalents of January 1, 1990,
0:0:00.

WKDAY variables are stored as 1 to 7 and MONTH variables as 1 to 12.

You can perform virtually any arithmetic operation with both date format and time format variables. Of
course, not all of these operations are particularly useful. You can calculate the number of days between
two dates by subtracting one date from the other—but adding two dates does not produce a very
meaningful result.

By default, any new numeric variables that you compute are displayed in F format. In the case of
calculations involving time and date variables, this means that the default output is expressed as a
number of seconds. Use the FORMATS (or PRINT FORMATS) command to specify an appropriate format for
the computed variable.

Example

DATA LIST FREE /Datel Date2 (2ADATE10).

BEGIN DATA

6/20/2006 10/28/2006

END DATA.

COMPUTE DateDiffl=(Date2-Datel)/60/60/24.
COMPUTE DateDiff2=DATEDIFF(Date2,Datel, "days").
COMPUTE FutureDatel=Date2+(10+60%60%24) .

COMPUTE FutureDate2=DATESUM(Date2, 10, "days").
FORMATS FutureDatel FutureDate2 (ADATE10).

* The first two COMPUTE commands both calculate the number of days between two dates. In the first one,
Date2-Datel yields the number of seconds between the two dates, which is then converted to the
number of days by dividing by number of seconds in a minute, number of minutes in an hour, and
number of hours in a day. In the second one, the DATEDIFF function is used to obtain the equivalent
result, but instead of an arithmetic formula to produce a result expressed in days, it simply includes
the argument "days".

* The second pair of COMPUTE commands both calculate a date 10 days from Datfe2. In the first one, 10
days needs to be converted to the number of seconds in ten days before it can be added to Date2. In
the second one, the "days" argument in the DATESUM function handles that conversion.

* The FORMATS command is used to display the results of the second two COMPUTE commands as dates,
since the default format is F, which would display the results as the number of seconds since October
14, 1582.

For more information on date and time functions, see ["Date and time functions” on page 78}

Conditional statements and case selection based on dates

To specify a date as a value in a conditional statement, use one of the data aggregation functions to
express the date value. For example,

64 IBM SPSS Statistics 23 Command Syntax Reference

*%kthis worksx*x,

SELECT IF datevar >= date.mdy(3,1,2006).

**xthe following do not work*xx,

SELECT IF datevar >= 3/1/2006. /*this will select dates >= 0.0015.
SELECT IF datevar >= "3/1/2006" /*this will generate an error.

See the topic|”Aggregation functions” on page 78| for more information.

Domain errors

Domain errors occur when numeric expressions are mathematically undefined or cannot be represented
numerically on the computer for reasons other than missing data. Two common examples are division by
0 and the square root of a negative number. When there is a domain error, a warning is issued, and the
system-missing value is assigned to the expression. For example, the command COMPUTE TESTVAR =
TRUNC(SQRT(X/Y) * .5) returns system-missing if X/Y is negative or if Y is 0.

The following are domain errors in numeric expressions:

**. A negative number to a noninteger power.

/. A divisor of 0.

MOD. A divisor of 0.

SORT . A negative argument.

EXP. An arqument that produces a result too large to be represented on the computer.
LG10. A negative or 0 argument.

LN. A negative or 0 arqument.

ARSIN. An argument whose absolute value exceeds 1.

NORMAL. A negative or 0 argument.

PROBIT. A negative or 0 arqument, or an arqument 1 or greater.

Numeric functions

Numeric functions can be used in any numeric expression on IF, SELECT IF, DO IF, ELSE IF, LOOP IF, END
LOOP IF, and COMPUTE commands. Numeric functions always return numbers (or the system-missing value
whenever the result is indeterminate). The expression to be transformed by a function is called the
argument. Most functions have a variable or a list of variables as arguments.

* In numeric functions with two or more arguments, each argument must be separated by a comma.
Blanks alone cannot be used to separate variable names, expressions, or constants in transformation
expressions.

* Arguments should be enclosed in parentheses, as in TRUNC(INCOME), where the TRUNC function returns
the integer portion of the variable INCOME.

* Multiple arguments should be separated by commas, as in MEAN(Q1,Q2,Q3), where the MEAN function
returns the mean of variables Q1, Q2, and Q3.

Example

COMPUTE Square_Root = SQRT(var4).

COMPUTE Remainder = MOD(var4, 3).

COMPUTE Average = MEAN.3(varl, var2, var3, vard).
COMPUTE Trunc_Mean = TRUNC(MEAN(varl TO vard)).

* SQRT(vard) returns the square root of the value of var4 for each case.
e MOD(var4, 3) returns the remainder (modulus) from dividing the value of var4 by 3.

Universals 65

* MEAN.3(varl, var2, var3, var4) returns the mean of the four specified variables, provided that at
least three of them have nonmissing values. The divisor for the calculation of the mean is the number
of nonmissing values.

* TRUNC(MEAN(varl TO var4)) computes the mean of the values for the inclusive range of variables and
then truncates the result. Since no minimum number of nonmissing values is specified for the function,
a mean will be calculated (and truncated) as long as at least one of the variables has a nonmissing
value for that case.

Arithmetic functions

* All arithmetic functions except MOD, RND and TRUNC have single arguments; MOD has two while RND and
TRUNC have from one to three. Multiple arguments must be separated by a comma.

* Arguments can be numeric expressions, as in RND (Ax*2/B).
ABS. ABS(numexpr). Numeric. Returns the absolute value of numexpr, which must be numeric.

RND. RND(numexpr[,mult,fuzzbits]). Numeric. With a single argument, returns the integer nearest to
that argument. Numbers ending in .5 exactly are rounded away from 0. For example, RND(-4.5) rounds
to -5. The optional second argument, mult, specifies that the result is an integer multiple of this
value—for example, RND(-4.57,0.1) = -4.6. The value must be numeric but cannot be 0. The default is 1.

The optional third argument, fuzzbits, is the number of least-significant bits by which the internal
representation of numexpr (expressed as a 64-bit floating point binary) may fall short of the threshold for
rounding up (e.g., 0.5 when rounding to an integer) but still be rounded up. For example, the sum 9.62 -
5.82 - 9.21 + 6.91 has an internal representation of 1.499999999999998 (on an Intel processor). With
fuzzbits set to 0 and mult set to 1, this expression will round to 1.0, although the exact sum is 1.50 which
would round to 2.0. Allowing the rounding threshold to have a small fuzziness compensates for the
minute differences between calculations with floating point numbers and exact results. In this case,
adding a fuzziness of 4 bits is sufficient to produce the expected result of 2.0.

If the argument fuzzbits is omitted, the value specified by SET FUZZBITS is used. The installed setting of
FUZZBITS is 6, which should be sufficient for most applications. Setting fuzzbits to 0 produces the same
results as in release 10. Setting fuzzbits to 10 produces the same results as in releases 11 and 12.

To produce the same results as in release 13, use the following expression in place of the RND function:
TRUNC (numexpr,1,0) + ((.5+TRUNC(numexpr,1,0)-numexpr)<max(le-13,min(.5,numexprle-13)))

To produce the same results as in releases 14, 15, and 16 use:
RND (numexpr, 1,12.5-1n(max (1e-50,abs (numexpr)))/1n(2))

TRUNC. TRUNC(numexpr[,mult,fuzzbits]). Numeric. Returns the value of numexpr truncated toward 0.
The optional second argument, mult, specifies that the result is an integer multiple of this value—for
example, TRUNC(4.579,0.1) = 4.5. The value must be numeric but cannot be 0. The default is 1.

The optional third argument, fuzzbits, is the number of least-significant bits by which the internal
representation of numexpr (expressed as a 64-bit floating point binary) may fall short of the nearest
rounding boundary and be rounded up before truncating. For example, the sum 9.62 - 5.82 - 9.21 + 6.91
has an internal representation of 1.499999999999998 (on an Intel processor). With fuzzbits set to 0 and
mult set to 0.1, this expression will truncate to 1.4, although the exact sum is 1.50 which would truncate
to 1.5. Adding a small fuzziness to the nearest rounding boundary (in this case, 1.5) compensates for the
minute differences between calculations with floating point numbers and exact results. In this case,
adding a fuzziness of 5 bits is sufficient to produce the expected result of 1.5.

If the argument fuzzbits is omitted, the value specified by SET FUZZBITS is used. The installed setting of
FUZZBITS is 6, which should be sufficient for most applications. Setting fuzzbits to 0 produces the same
results as in release 10. Setting fuzzbits to 10 produces the same results as in releases 11 and 12.

66 IBM SPSS Statistics 23 Command Syntax Reference

To produce the same results as in release 13 use:
TRUNC (numexpr,1,0)+(TRUNC (numexpr,1,0)+1-numexpr <= le-13)

To produce the same results as in releases 14, 15, and 16 use:
TRUNC (numexpr,1,12.5-Tn(max (1le-50,abs (numexpr)))/In(2))

MOD. MOD(numexpr,modulus). Numeric. Returns the remainder when numexpr is divided by modulus.
Both arguments must be numeric, and modulus must not be 0.

SQRT. SQRT(numexpr). Numeric. Returns the positive square root of numexpr, which must be numeric
and not negative.

EXP. EXP(numexpr). Numeric. Returns e raised to the power numexpr, where e is the base of the natural
logarithms and numexpr is numeric. Large values of numexpr may produce results that exceed the
capacity of the machine.

LG10. LG10(numexpr). Numeric. Returns the base-10 logarithm of numexpr, which must be numeric and
greater than 0.

LN. LN(numexpr). Numeric. Returns the base-e logarithm of numexpr, which must be numeric and
greater than 0.

LNGAMMA. LNGAMMA (numexpr). Numeric. Returns the logarithm of the complete Gamma function of
numexpr, which must be numeric and greater than 0.

ARSIN. ARSIN(numexpr). Numeric. Returns the inverse sine (arcsine), in radians, of numexpr, which
must evaluate to a numeric value between -1 and +1.

ARTAN. ARTAN(numexpr). Numeric. Returns the inverse tangent (arctangent), in radians, of numexpr,
which must be numeric.

SIN. SIN(radians). Numeric. Returns the sine of radians, which must be a numeric value, measured in
radians.

COS. COS(radians). Numeric. Returns the cosine of radians, which must be a numeric value, measured in
radians.

Statistical functions

* Each argument to a statistical function (expression, variable name, or constant) must be separated by a
comma.

¢ The .n suffix can be used with all statistical functions to specify the number of valid arguments. For
example, MEAN.2(A,B,C,D) returns the mean of the valid values for variables A, B, C, and D only if at
least two of the variables have valid values. The default for n is 2 for SD, VARIANCE, and CFVAR and 1 for
other statistical functions. If the number specified exceeds the number of arguments in the function, the
result is system-missing.

¢ The keyword TO can be used to refer to a set of variables in the argument list.

SUM. SUM(numexpr,numexpr][,..]). Numeric. Returns the sum of its arguments that have valid,
nonmissing values. This function requires two or more arguments, which must be numeric. You can
specify a minimum number of valid arguments for this function to be evaluated.

MEAN. MEAN(numexpr,numexpr][,..]). Numeric. Returns the arithmetic mean of its arguments that have

valid, nonmissing values. This function requires two or more arguments, which must be numeric. You
can specify a minimum number of valid arguments for this function to be evaluated.

Universals 67

MEDIAN. MEDIAN (numexpr,numexpt[,..]). Numeric. Returns the median (50th percentile) of its
arguments that have valid, nonmissing values. This function requires two or more arguments, which
must be numeric. You can specify a minimum number of valid arguments for this function to be
evaluated.

SD. SD(numexpr,numexpr][,..]). Numeric. Returns the standard deviation of its arguments that have valid,
nonmissing values. This function requires two or more arguments, which must be numeric. You can
specify a minimum number of valid arguments for this function to be evaluated.

VARIANCE. VARIANCE(numexpr,numexpr][,..]). Numeric. Returns the variance of its arguments that have
valid values. This function requires two or more arguments, which must be numeric. You can specify a
minimum number of valid arguments for this function to be evaluated.

CFVAR. CFVAR(numexpr,numexprl,...]). Numeric. Returns the coefficient of variation (the standard
deviation divided by the mean) of its arguments that have valid values. This function requires two or
more arguments, which must be numeric. You can specify a minimum number of valid arguments for
this function to be evaluated.

MIN. MIN(value,value],..]). Numeric or string. Returns the minimum value of its arguments that have
valid, nonmissing values. This function requires two or more arguments. For numeric values, you can
specify a minimum number of valid arguments for this function to be evaluated.

MAX. MAX(value,valuel[,..]). Numeric or string. Returns the maximum value of its arguments that have
valid values. This function requires two or more arguments. For numeric values, you can specify a
minimum number of valid arguments for this function to be evaluated.

Example
COMPUTE maxsum=MAX.2(SUM(varl TO var3), SUM(var4 TO varé6)).
¢ MAX.2 will return the maximum of the two sums provided that both sums are nonmissing.

e The .2 refers to the number of nonmissing arguments for the MAX function, which has only two
arguments because each SUM function is considered a single argument.

e The new variable maxsum will be nonmissing if at least one variable specified for each SUM function is
nonmissing.

Random variable and distribution functions

Random variable and distribution function keywords are all of the form prefix.suffix, where the prefix
specifies the function to be applied to the distribution and the suffix specifies the distribution.

* Random variable and distribution functions take both constants and variables for arguments.

* A function argument, if required, must come first and is denoted by x (quantile, which must fall in the
range of values for the distribution) for cumulative distribution and probability density functions and p
(probability) for inverse distribution functions.

* All random variable and distribution functions must specify distribution parameters as noted in their
definitions.

* All arguments are real numbers.

* Restrictions to distribution parameters apply to all functions for that distribution. Restrictions for the
function parameter x apply to that particular distribution function. The program issues a warning and
returns system-missing when it encounters an out-of-range value for an argument.

The following are possible prefixes:
CDF. Cumulative distribution function. A cumulative distribution function CDF.d_spec(x,a,...) returns a

probability p that a variate with the specified distribution (d_spec) falls below x for continuous functions
and at or below x for discrete functions.

68 IBM SPSS Statistics 23 Command Syntax Reference

IDF. Inverse distribution function. Inverse distribution functions are not available for discrete distributions.
An inverse distribution function IDF.d_spec(p,a,...) returns a value x such that CDF.d_spec(x,a,...)=p
with the specified distribution (d_spec).

PDF. Probability density function. A probability density function PDF.d_spec(x,a,...) returns the density
of the specified distribution (d_spec) at x for continuous functions and the probability that a random
variable with the specified distribution equals x for discrete functions.

RV. Random number generation function. A random number generation function RV.d_spec(a,...)
generates an independent observation with the specified distribution (d_spec).

NCDF. Noncentral cumulative distribution function. A noncentral distribution function
NCDF.d_spec(x,a,b,...) returns a probability p that a variate with the specified noncentral distribution
falls below x. It is available only for beta, chi-square, F, and Student’s t.

NPDF. Noncentral probability density function. A noncentral probability density function
NCDF.d_spec(x,a,...) returns the density of the specified distribution (d_spec) at x. It is available only
for beta, chi-square, F, and Student’s t.

SIG. Tuil probability function. A tail probability function SIG.d_spec(x,a,...) returns a probability p that a
variate with the specified distribution (d_spec) is larger than x. The tail probability function is equal to 1
minus the cumulative distribution function.

The following are suffixes for continuous distributions:

BETA. Beta distribution. The beta distribution takes values in the range 0<x<1 and has two shape
parameters, o and B. Both « and f must be positive, and they have the property that the mean of the
distribution is a/(a+B).

Noncentral beta distribution. The noncentral beta distribution is a generalization of the beta distribution
that takes values in the range O<x<1 and has an extra noncentrality parameter, A, which must be greater
than or equal to 0.

BVNOR. Bivariate normal distribution. The bivariate normal distribution takes real values and has one
correlation parameter, p, which must be between -1 and 1, inclusive.

CAUCHY. Cauchy distribution. The Cauchy distribution takes real values and has a location parameter, 6,
and a scale parameter, g; ¢ must be positive. The Cauchy distribution is symmetric about the location
parameter, but has such slowly decaying tails that the distribution does not have a computable mean.

CHISQ. Chi-square distribution. The chi-square(v) distribution takes values in the range x>=0 and has one
degrees of freedom parameter, v; it must be positive and has the property that the mean of the
distribution is v.

Noncentral chi-square distribution. The noncentral chi-square distribution is a generalization of the
chi-square distribution that takes values in the range x>=0 and has an extra noncentrality parameter, A,
which must be greater than or equal to 0.

EXP. Exponential distribution. The exponential distribution takes values in the range x>=0 and has one
scale parameter, 8, which must be greater than 0 and has the property that the mean of the distribution is

1/B.
E. F distribution. The F distribution takes values in the range x>=0 and has two degrees of freedom

parameters, vl and v2, which are the "numerator" and "denominator" degrees of freedom, respectively.
Both v1 and v2 must be positive.

Universals 69

Noncentral F distribution. The noncentral F distribution is a generalization of the F distribution that takes
values in the range x>=0 and has an extra noncentrality parameter, A, which must be greater than or
equal to 0.

GAMMA. Gamma distribution. The gamma distribution takes values in the range x>=0 and has one shape
parameter, «, and one scale parameter, . Both parameters must be positive and have the property that
the mean of the distribution is /.

HALFNRM. Half-normal distribution. The half-normal distribution takes values in the range x>=p and has
one location parameter, p1, and one scale parameter, 6. Parameter ¢ must be positive.

IGAUSS. Inverse Gaussian distribution. The inverse Gaussian, or Wald, distribution takes values in the
range x>0 and has two parameters, 1 and A, both of which must be positive. The distribution has mean

.

LAPLACE. Laplace or double exponential distribution. The Laplace distribution takes real values and has one
location parameter, p1, and one scale parameter, 8. Parameter f§ must be positive. The distribution is
symmetric about p and has exponentially decaying tails.

LOGISTIC. Logistic distribution. The logistic distribution takes real values and has one location parameter,
1, and one scale parameter, g. Parameter ¢ must be positive. The distribution is symmetric about 1 and
has longer tails than the normal distribution.

LNORMAL. Lognormal distribution. The lognormal distribution takes values in the range x>=0 and has
two parameters, | and o, both of which must be positive.

NORMAL. Normal distribution. The normal, or Gaussian, distribution takes real values and has one
location parameter, p1, and one scale parameter, 6. Parameter ¢ must be positive. The distribution has
mean p and standard deviation G.

Three functions in releases earlier than 6.0 are special cases of the normal distribution functions:
CDFNORM(arg)=CDF.NORMAL(x,0,1), where arg is x; PROBIT(arg)=IDF.NORMAL(p,0,1), where arg is p; and
NORMAL (arg)=RV.NORMAL(0,c), where arg is ©.

PARETO. Pareto distribution. The Pareto distribution takes values in the range xmin<x and has a threshold
parameter, xmin, and a shape parameter, a. Both parameters must be positive.

SMOD. Studentized maximum modulus distribution. The Studentized maximum modulus distribution takes
values in the range x>0 and has a number of comparisons parameter, k*, and degrees of freedom
parameter, v, both of which must be greater than or equal to 1.

SRANGE. Studentized range distribution. The Studentized range distribution takes values in the range x>0
and has a number of samples parameter, k, and degrees of freedom parameter, v, both of which must be
greater than or equal to 1.

T. Student t distribution. The Student t distribution takes real values and has one degrees of freedom
parameter, v, which must be positive. The Student t distribution is symmetric about 0.

Noncentral t distribution. The noncentral t distribution is a generalization of the t distribution that takes
real values and has an extra noncentrality parameter, A, which must be greater than or equal to 0. When

A equals 0, this distribution reduces to the t distribution.

UNIFORM. Uniform distribution. The uniform distribution takes values in the range a<x<b and has a
minimum value parameter, a, and a maximum value parameter, b.

70 IBM SPSS Statistics 23 Command Syntax Reference

The uniform random number function in releases earlier than 6.0 is a special case:
UNIFORM(arg)=RV.UNIFORM(0,b), where arg is parameter b. Among other uses, the uniform distribution
commonly models the round-off error.

WEIBULL. Weibull distribution. The Weibull distribution takes values in the range x>=0 and has one scale
parameter, 5, and one shape parameter, «, both of which must be positive.

The following are suffixes for discrete distributions:

BERNOULLI. Bernoulli distribution. The Bernoulli distribution takes values 0 or 1 and has one success
probability parameter, 8, which must be between 0 and 1, inclusive.

BINOM. Binomial distribution. The binomial distribution takes integer values 0<=x<=n, representing the
number of successes in n trials, and has one number of trials parameter, n, and one success probability
parameter, 0. Parameter n must be a positive integer and parameter 6 must be between 0 and 1, inclusive.

GEOM. Geometric distribution. The geometric distribution takes integer values x>=1, representing the
number of trials needed (including the last trial) before a success is observed, and has one success
probability parameter, 8, which must be between 0 and 1, inclusive.

HYPER. Hypergeometric distribution. The hypergeometric distribution takes integer values in the range
max(0, Np+n—N)<=x<=min(Np,n), and has three parameters, N, n, and Np, where N is the total number
of objects in an urn model, n is the number of objects randomly drawn without replacement from the
urn, Np is the number of objects with a given characteristic, and x is the number of objects with the
given characteristic observed out of the withdrawn objects. All three parameters are positive integers, and
both n and Np must be less than or equal to N.

NEGBIN. Negative binomial distribution. The negative binomial distribution takes integer values in the
range x>=r, where x is the number of trials needed (including the last trial) before r successes are
observed, and has one threshold parameter, r, and one success probability parameter, 6. Parameter r must
be a positive integer and parameter 6 must be greater than 0 and less than or equal to 1.

POISSON. Poisson distribution. The Poisson distribution takes integer values in the range x>=0 and has
one rate or mean parameter, A. Parameter A must be positive.

Probability Density Functions

The following functions give the value of the density function with the specified distribution at the value
quant, the first argument. Subsequent arguments are the parameters of the distribution. Note the period
in each function name.

PDF.BERNOULLI. PDEBERNOULLI(quant, prob). Numeric. Returns the probability that a value from the
Bernoulli distribution, with the given probability parameter, will be equal to quant.

PDFE.BETA. PDEBETA(quant, shapel, shape2). Numeric. Returns the probability density of the beta
distribution, with the given shape parameters, at quant.

PDF.BINOM. PDEBINOM(quant, n, prob). Numeric. Returns the probability that the number of successes
in n trials, with probability prob of success in each, will be equal to quant. When n is 1, this is the same
as PDEBERNOULLL

PDEBVNOR. PDEBVNOR(quant1, quant2, corr). Numeric. Returns the probability density of the standard
bivariate normal distribution, with the given correlation parameter, at quantl, quant2.

PDECAUCHY. PDECAUCHY(quant, loc, scale). Numeric. Returns the probability density of the Cauchy
distribution, with the given location and scale parameters, at quant.

Universals 71

PDFE.CHISQ. PDECHISQ(quant, df). Numeric. Returns the probability density of the chi-square
distribution, with df degrees of freedom, at quant.

PDF.EXP. PDEEXP(quant, shape). Numeric. Returns the probability density of the exponential
distribution, with the given shape parameter, at quant.

PDFF. PDEF(quant, dfl, df2). Numeric. Returns the probability density of the F distribution, with
degrees of freedom dfl and df2, at quant.

PDEGAMMA. PDEGAMMA (quant, shape, scale). Numeric. Returns the probability density of the gamma
distribution, with the given shape and scale parameters, at quant.

PDF.GEOM. PDE.GEOM(quant, prob). Numeric. Returns the probability that the number of trials to
obtain a success, when the probability of success is given by prob, will be equal to quant.

PDFEHALFNRM. PDEHALFNRM(quant, mean, stddev). Numeric. Returns the probability density of the
half normal distribution, with specified mean and standard deviation, at quant.

PDEHYPER. PDEHYPER(quant, total, sample, hits). Numeric. Returns the probability that the number of
objects with a specified characteristic, when sample objects are randomly selected from a universe of size
total in which hits have the specified characteristic, will be equal to quant.

PDFIGAUSS. PDEIGAUSS(quant, loc, scale). Numeric. Returns the probability density of the inverse
Gaussian distribution, with the given location and scale parameters, at quant.

PDFELAPLACE. PDELAPLACE(quant, mean, scale). Numeric. Returns the probability density of the
Laplace distribution, with the specified mean and scale parameters, at quant.

PDFELOGISTIC. PDELOGISTIC(quant, mean, scale). Numeric. Returns the probability density of the
logistic distribution, with the specified mean and scale parameters, at quant.

PDFLNORMAL. PDELNORMAL(quant, a, b). Numeric. Returns the probability density of the log-normal
distribution, with the specified parameters, at quant.

PDF.NEGBIN. PDENEGBIN(quant, thresh, prob). Numeric. Returns the probability that the number of
trials to obtain a success, when the threshold parameter is thresh and the probability of success is given
by prob, will be equal to quant.

PDENORMAL. PDENORMAL(quant, mean, stddev). Numeric. Returns the probability density of the
normal distribution, with specified mean and standard deviation, at quant.

PDF.PARETO. PDEPARETO(quant, threshold, shape). Numeric. Returns the probability density of the
Pareto distribution, with the specified threshold and shape parameters, at quant.

PDFE.POISSON. PDEPOISSON(quant, mean). Numeric. Returns the probability that a value from the
Poisson distribution, with the specified mean or rate parameter, will be equal to quant.

PDFET. PDET(quant, df). Numeric. Returns the probability density of Student's t distribution, with the
specified degrees of freedom df, at quant.

PDFE.UNIFORM. PDEUNIFORM(quant, min, max). Numeric. Returns the probability density of the
uniform distribution, with the specified minimum and maximum, at quant.

PDEWEIBULL. PDEWEIBULL(quant, a, b). Numeric. Returns the probability density of the Weibull
distribution, with the specified parameters, at quant.

72 IBM SPSS Statistics 23 Command Syntax Reference

NPDF.BETA. NPDEBETA(quant, shapel, shape2, nc). Numeric. Returns the probability density of the
noncentral beta distribution, with the given shape and noncentrality parameters, at quant.

NPDF.CHISQ. NPDE.CHISQ(quant, df, nc). Numeric. Returns the probability density of the noncentral
chi-square distribution, with df degrees of freedom and the specified noncentrality parameter, at quant.

NPDEF. NPDEF(quant, dfl, df2, nc). Numeric. Returns the probability density of the noncentral F
distribution, with degrees of freedom dfl and df2 and noncentrality nc, at quant.

NPDFET. NPDET(quant, df, nc). Numeric. Returns the probability density of the noncentral Student's t
distribution, with the specified degrees of freedom df and noncentrality nc, at quant.

Tail probability functions

The following functions give the probability that a random variable with the specified distribution will be
greater than quant, the first argument. Subsequent arguments are the parameters of the distribution. Note
the period in each function name.

SIG.CHISQ. SIG.CHISQ(quant, df). Numeric. Returns the cumulative probability that a value from the
chi-square distribution, with df degrees of freedom, will be greater than quant

SIG.F. SIG.F(quant, df1, df2). Numeric. Returns the cumulative probability that a value from the F
distribution, with degrees of freedom dfl and df2, will be greater than quant.

Cumulative distribution functions

The following functions give the probability that a random variable with the specified distribution will be
less than quant, the first argument. Subsequent arguments are the parameters of the distribution. Note the
period in each function name.

CDF.BERNOULLI. CDEBERNOULLI(quant, prob). Numeric. Returns the cumulative probability that a
value from the Bernoulli distribution, with the given probability parameter, will be less than or equal to
quant.

CDFE.BETA. CDEBETA(quant, shapel, shape2). Numeric. Returns the cumulative probability that a value
from the Beta distribution, with the given shape parameters, will be less than quant.

CDF.BINOM. CDEBINOM(quant, n, prob). Numeric. Returns the cumulative probability that the number
of successes in n trials, with probability prob of success in each, will be less than or equal to quant. When
n is 1, this is the same as CDEBERNOULLI.

CDFEBVNOR. CDEBVNOR(quantl, quant2, corr). Numeric. Returns the cumulative probability that a
value from the standard bivariate normal distribution, with the given correlation parameter, will be less
than quantl and quant2.

CDECAUCHY. CDECAUCHY(quant, loc, scale). Numeric. Returns the cumulative probability that a value
from the Cauchy distribution, with the given location and scale parameters, will be less than quant.

CDE.CHISQ. CDECHISQ(quant, df). Numeric. Returns the cumulative probability that a value from the
chi-square distribution, with df degrees of freedom, will be less than quant.

CDEEXP. CDEEXP(quant, scale). Numeric. Returns the cumulative probability that a value from the
exponential distribution, with the given scale parameter, will be less than quant.

CDEF. CDEF(quant, df1, df2). Numeric. Returns the cumulative probability that a value from the F
distribution, with degrees of freedom dfl and df2, will be less than quant.

Universals 73

CDEGAMMA. CDEGAMMA(quant, shape, scale). Numeric. Returns the cumulative probability that a
value from the Gamma distribution, with the given shape and scale parameters, will be less than quant.

CDFE.GEOM. CDEGEOM(quant, prob). Numeric. Returns the cumulative probability that the number of
trials to obtain a success, when the probability of success is given by prob, will be less than or equal to
quant.

CDEHALFNRM. CDEHALFNRM(quant, mean, stddev). Numeric. Returns the cumulative probability that
a value from the half normal distribution, with specified mean and standard deviation, will be less than
quant.

CDEHYPER. CDEHYPER(quant, total, sample, hits). Numeric. Returns the cumulative probability that
the number of objects with a specified characteristic, when sample objects are randomly selected from a
universe of size total in which hits have the specified characteristic, will be less than or equal to quant.

CDEIGAUSS. CDEIGAUSS(quant, loc, scale). Numeric. Returns the cumulative probability that a value
from the inverse Gaussian distribution, with the given location and scale parameters, will be less than
quant.

CDFELAPLACE. CDELAPLACE(quant, mean, scale). Numeric. Returns the cumulative probability that a
value from the Laplace distribution, with the specified mean and scale parameters, will be less than
quant.

CDELOGISTIC. CDELOGISTIC(quant, mean, scale). Numeric. Returns the cumulative probability that a
value from the logistic distribution, with the specified mean and scale parameters, will be less than quant.

CDELNORMAL. CDELNORMAL(quant, a, b). Numeric. Returns the cumulative probability that a value
from the log-normal distribution, with the specified parameters, will be less than quant.

CDENEGBIN. CDENEGBIN(quant, thresh, prob). Numeric. Returns the cumulative probability that the
number of trials to obtain a success, when the threshold parameter is thresh and the probability of
success is given by prob, will be less than or equal to quant.

CDFNORM. CDFNORM(zvalue). Numeric. Returns the probability that a random variable with mean 0
and standard deviation 1 would be less than zvalue, which must be numeric.

CDENORMAL. CDENORMAL(quant, mean, stddev). Numeric. Returns the cumulative probability that a
value from the normal distribution, with specified mean and standard deviation, will be less than quant.

CDEPARETO. CDEPARETO(quant, threshold, shape). Numeric. Returns the cumulative probability that a
value from the Pareto distribution, with the specified threshold and shape parameters, will be less than
quant.

CDEPOISSON. CDEPOISSON(quant, mean). Numeric. Returns the cumulative probability that a value
from the Poisson distribution, with the specified mean or rate parameter, will be less than or equal to
quant.

CDESMOD. CDESMOD(quant, a, b). Numeric. Returns the cumulative probability that a value from the
Studentized maximum modulus, with the specified parameters, will be less than quant.

CDESRANGE. CDESRANGE(quant, a, b). Numeric. Returns the cumulative probability that a value from
the Studentized range statistic, with the specified parameters, will be less than quant.

CDET. CDET(quant, df). Numeric. Returns the cumulative probability that a value from Student's t
distribution, with the specified degrees of freedom df, will be less than quant.

74 IBM SPSS Statistics 23 Command Syntax Reference

CDFEUNIFORM. CDEUNIFORM(quant, min, max). Numeric. Returns the cumulative probability that a
value from the uniform distribution, with the specified minimum and maximum, will be less than quant.

CDEWEIBULL. CDEWEIBULL(quant, a, b). Numeric. Returns the cumulative probability that a value
from the Weibull distribution, with the specified parameters, will be less than quant.

NCDFEBETA. NCDEBETA(quant, shapel, shape2, nc). Numeric. Returns the cumulative probability that a
value from the noncentral Beta distribution, with the given shape and noncentrality parameters, will be
less than quant.

NCDE.CHISQ. NCDE.CHISQ(quant, df, nc). Numeric. Returns the cumulative probability that a value
from the noncentral chi-square distribution, with df degrees of freedom and the specified noncentrality
parameter, will be less than quant.

NCDFEF. NCDEF(quant, dfl, df2, nc). Numeric. Returns the cumulative probability that a value from the
noncentral F distribution, with degrees of freedom dfl and df2, and noncentrality nc, will be less than
quant.

NCDET. NCDET(quant, df, nc). Numeric. Returns the cumulative probability that a value from the
noncentral Student's t distribution, with the specified degrees of freedom df and noncentrality nc, will be
less than quant.

Inverse distribution functions

The following functions give the value in a specified distribution having a cumulative probability equal
to prob, the first argument. Subsequent arguments are the parameters of the distribution. Note the period
in each function name.

IDFE.BETA. IDEBETA(prob, shapel, shape2). Numeric. Returns the value from the Beta distribution, with
the given shape parameters, for which the cumulative probability is prob.

IDE.CAUCHY. IDECAUCHY(prob, loc, scale). Numeric. Returns the value from the Cauchy distribution,
with the given location and scale parameters, for which the cumulative probability is prob.

IDF.CHISQ. IDE.CHISQ(prob, df). Numeric. Returns the value from the chi-square distribution, with the
specified degrees of freedom df, for which the cumulative probability is prob. For example, the chi-square
value that is significant at the 0.05 level with 3 degrees of freedom is IDE.CHISQ(0.95,3).

IDEEXP. IDEEXP(p, scale). Numeric. Returns the value of an exponentially decaying variable, with rate
of decay scale, for which the cumulative probability is p.

IDEF. IDEFE(prob, dfl, df2). Numeric. Returns the value from the F distribution, with the specified
degrees of freedom, for which the cumulative probability is prob. For example, the F value that is
significant at the 0.05 level with 3 and 100 degrees of freedom is IDE.F(0.95,3,100).

IDEGAMMA. IDEGAMMA (prob, shape, scale). Numeric. Returns the value from the Gamma
distribution, with the specified shape and scale parameters, for which the cumulative probability is prob.

IDEHALFNRM. IDEHALFNRM(prob, mean, stddev). Numeric. Returns the value from the half normal
distribution, with the specified mean and standard deviation, for which the cumulative probability is
prob.

IDFEIGAUSS. IDEIGAUSS(prob, loc, scale). Numeric. Returns the value from the inverse Gaussian
distribution, with the given location and scale parameters, for which the cumulative probability is prob.

IDFELAPLACE. IDELAPLACE(prob, mean, scale). Numeric. Returns the value from the Laplace
distribution, with the specified mean and scale parameters, for which the cumulative probability is prob.

Universals 75

IDE.LOGISTIC. IDELOGISTIC(prob, mean, scale). Numeric. Returns the value from the logistic
distribution, with specified mean and scale parameters, for which the cumulative probability is prob.

IDELNORMAL. IDELNORMAL(prob, a, b). Numeric. Returns the value from the log-normal distribution,
with specified parameters, for which the cumulative probability is prob.

IDENORMAL. IDENORMAL(prob, mean, stddev). Numeric. Returns the value from the normal
distribution, with specified mean and standard deviation, for which the cumulative probability is prob.

IDEPARETO. IDEPARETO(prob, threshold, shape). Numeric. Returns the value from the Pareto
distribution, with specified threshold and scale parameters, for which the cumulative probability is prob.

IDESMOD. IDESMOD(prob, a, b). Numeric. Returns the value from the Studentized maximum modulus,
with the specified parameters, for which the cumulative probability is prob.

IDE.SRANGE. IDESRANGE(prob, a, b). Numeric. Returns the value from the Studentized range statistic,
with the specified parameters, for which the cumulative probability is prob.

IDET. IDET(prob, df). Numeric. Returns the value from Student's t distribution, with specified degrees of
freedom df, for which the cumulative probability is prob.

IDFE.UNIFORM. IDEUNIFORM(prob, min, max). Numeric. Returns the value from the uniform
distribution between min and max for which the cumulative probability is prob.

IDEWEIBULL. IDEWEIBULL(prob, a, b). Numeric. Returns the value from the Weibull distribution, with
specified parameters, for which the cumulative probability is prob.

PROBIT. PROBIT(prob). Numeric. Returns the value in a standard normal distribution having a
cumulative probability equal to prob. The argument prob is a probability greater than 0 and less than 1.

Random variable functions

The following functions give a random variate from a specified distribution. The arguments are the
parameters of the distribution. You can repeat the sequence of pseudorandom numbers by setting a seed
in the Preferences dialog box before each sequence. Note the period in each function name.

NORMAL. NORMAL(stddev). Numeric. Returns a normally distributed pseudorandom number from a
distribution with mean 0 and standard deviation stddev, which must be a positive number. You can
repeat the sequence of pseudorandom numbers by setting a seed in the Random Number Seed dialog box
before each sequence.

RV.BERNOULLI. RV.BERNOULLI(prob). Numeric. Returns a random value from a Bernoulli distribution
with the specified probability parameter prob.

RV.BETA. RV.BETA(shapel, shape2). Numeric. Returns a random value from a Beta distribution with
specified shape parameters.

RV.BINOM. RV.BINOM(n, prob). Numeric. Returns a random value from a binomial distribution with
specified number of trials and probability parameter.

RV.CAUCHY. RV.CAUCHY(loc, scale). Numeric. Returns a random value from a Cauchy distribution with
specified location and scale parameters.

RV.CHISQ. RV.CHISQ(df). Numeric. Returns a random value from a chi-square distribution with specified
degrees of freedom df.

76 IBM SPSS Statistics 23 Command Syntax Reference

RV.EEXP. RV.EXP(scale). Numeric. Returns a random value from an exponential distribution with specified
scale parameter.

RV.F. RV.EF(df1, df2). Numeric. Returns a random value from an F distribution with specified degrees of
freedom, dfl and df2.

RV.GAMMA. RV.GAMMA (shape, scale). Numeric. Returns a random value from a Gamma distribution
with specified shape and scale parameters.

RV.GEOM. RV.GEOM(prob). Numeric. Returns a random value from a geometric distribution with
specified probability parameter.

RV.HALFNRM. RV.HALFNRM(mean, stddev). Numeric. Returns a random value from a half normal
distribution with the specified mean and standard deviation.

RV.HYPER. RV.HYPER(total, sample, hits). Numeric. Returns a random value from a hypergeometric
distribution with specified parameters.

RV.IGAUSS. RV.IGAUSS(loc, scale). Numeric. Returns a random value from an inverse Gaussian
distribution with the specified location and scale parameters.

RV.ILAPLACE. RV.LAPLACE(mean, scale). Numeric. Returns a random value from a Laplace distribution
with specified mean and scale parameters.

RV.LOGISTIC. RV.LOGISTIC(mean, scale). Numeric. Returns a random value from a logistic distribution
with specified mean and scale parameters.

RV.ILNORMAL. RV.LNORMAL(a, b). Numeric. Returns a random value from a log-normal distribution
with specified parameters.

RV.NEGBIN. RV.NEGBIN(threshold, prob). Numeric. Returns a random value from a negative binomial
distribution with specified threshold and probability parameters.

RV.NORMAL. RVNORMAL(mean, stddev). Numeric. Returns a random value from a normal distribution
with specified mean and standard deviation.

RV.PARETO. RV.PARETO(threshold, shape). Numeric. Returns a random value from a Pareto distribution
with specified threshold and shape parameters.

RV.POISSON. RV.POISSON(mean). Numeric. Returns a random value from a Poisson distribution with
specified mean/rate parameter.

RV.T. RV.T(df). Numeric. Returns a random value from a Student's t distribution with specified degrees of
freedom df.

RV.UNIFORM. RV.UNIFORM(min, max). Numeric. Returns a random value from a uniform distribution
with specified minimum and maximum. See also the UNIFORM function.

WEIBULL. RV.WEIBULL(a, b). Numeric. Returns a random value from a Weibull distribution with
specified parameters.

UNIFORM. UNIFORM(max). Numeric. Returns a uniformly distributed pseudorandom number between
0 and the argument max, which must be numeric (but can be negative). You can repeat the sequence of
pseudorandom numbers by setting the same Random Number Seed (available in the Transform menu)
before each sequence.

Universals 77

Date and time functions

Date and time functions provide aggregation, conversion, and extraction routines for dates and time
intervals. Each function transforms an expression consisting of one or more arguments. Arguments can be
complex expressions, variable names, or constants. Date and time expressions and variables are legitimate
arguments.

Aggregation functions
Aggregation functions generate date and time intervals from values that were not read by date and time
input formats.

* All aggregation functions begin with DATE or TIME, depending on whether a date or a time interval is
requested. This is followed by a subfunction that corresponds to the type of values found in the data.

* The subfunctions are separated from the function by a period (.) and are followed by an argument list
specified in parentheses.

¢ The arguments to the DATE and TIME functions must be separated by commas and must resolve to
integer values.

» Functions that contain a day argument--for example, DATE.DMY (d,m,y)--check the validity of the
argument. The value for day must be an integer between 0 and 31. If an invalid value is encountered, a
warning is displayed and the value is set to system-missing. However, if the day value is invalid for a
particular month—for example, 31 in September, April, June, and November or 29 through 31 for
February in nonleap years—the resulting date is placed in the next month. For example DATE.DMY (31,
9, 2006) returns the date value for October 1, 2006. A day value of 0 returns the last day of the
previous month.

DATE.DMY. DATE.DMY (day,month,year). Numeric. Returns a date value corresponding to the indicated
day, month, and year. The arguments must resolve to integers, with day between 0 and 31, month
between 1 and 13, and year a four-digit integer greater than 1582. To display the result as a date, assign a
date format to the result variable.

DATE.MDY. DATE.MDY (month,day,year). Numeric. Returns a date value corresponding to the indicated
month, day, and year. The arguments must resolve to integers, with day between 0 and 31, month
between 1 and 13, and year a four-digit integer greater than 1582. To display the result as a date, assign a
date format to the result variable.

DATE.MOYR. DATE.MOYR(month,year). Numeric. Returns a date value corresponding to the indicated
month and year. The arguments must resolve to integers, with month between 1 and 13, and year a
four-digit integer greater than 1582. To display the result as a date, assign a date format to the result
variable.

DATE.QYR. DATE.QYR(quarter,year). Numeric. Returns a date value corresponding to the indicated
quarter and year. The arguments must resolve to integers, with quarter between 1 and 4, and year a
four-digit integer greater than 1582. To display the result as a date, assign a date format to the result
variable.

DATE.WKYR. DATE.WKYR(weeknum,year). Numeric. Returns a date value corresponding to the
indicated weeknum and year. The arguments must resolve to integers, with weeknum between 1 and 53,
and year a four-digit integer greater than 1582. The date value returned represents the first day of the
specified week for that year. The first week starts on January 1 of each year; so the date returned for any
given week value will differ between years. To display the result as a date, assign a date format to the
result variable.

DATE.YRDAY. DATE.YRDAY (year,daynum). Numeric. Returns a date value corresponding to the
indicated year and daynum. The arguments must resolve to integers, with daynum between 1 and 366
and with year being a four-digit integer greater than 1582. To display the result as a date, assign a date
format to the result variable.

78 IBM SPSS Statistics 23 Command Syntax Reference

TIME.DAYS. TIME.DAYS(days). Numeric. Returns a time interval corresponding to the indicated number
of days. The argument must be numeric. To display the result as a time, assign a time format to the result
variable.

TIME.HMS. TIME.HMS(hours[,minutes,seconds]). Numeric. Returns a time interval corresponding to the
indicated number of hours, minutes, and seconds. The minutes and seconds arguments are optional.
Minutes and seconds must resolve to numbers less than 60 if any higher-order argument is non-zero. All
arguments except the last non-zero argument must resolve to integers. For example TIME.HMS(25.5) and
TIME.HMS(0,90,25.5) are valid, while TIME.HMS(25.5,30) and TIME.HMS(25,90) are invalid. All
arguments must resolve to either all positive or all negative values. To display the result as a time, assign
a time format to the result variable.

Example

DATA LIST FREE
/Year Month Day Hour Minute Second Days.
BEGIN DATA
2006 10 28 23 54 30 1.5
END DATA.
COMPUTE Datel=DATE.DMY(Day, Month, Year).
COMPUTE Date2=DATE.MDY (Month, Day, Year).
COMPUTE MonthYear=DATE.MOYR(Month, Year).
COMPUTE Time=TIME.HMS (Hour, Minute, Second).
COMPUTE Duration=TIME.DAYS(Days).
LIST VARIABLES=Datel to Duration.
FORMATS
Datel (DATE11) Date2 (ADATE10) MonthYear (MOYRS8)
Time (TIME8) Duration (Time8).
LIST VARIABLES=Datel to Duration.

#%% IST Results Before Applying Formats#x
Datel Date2 MonthYear Time Duration
13381372800 13381372800 13379040000 86070 129600

#%%IST Results After Applying Formats*xx
Datel Date2 MonthYear Time Duration
28-0CT-2006 10/28/2006 OCT 2006 23:54:30 36:00:00

* Since dates and times are stored internally as a number of seconds, prior to applying the appropriate
date or time formats, all the computed values are displayed as numbers that indicate the respective
number of seconds.

¢ The internal values for Datel and Date2 are exactly the same. The only difference between DATE.DMY
and DATE.MDY is the order of the arguments.

Date and time conversion functions

The conversion functions convert time intervals from one unit of time to another. Time intervals are
stored as the number of seconds in the interval; the conversion functions provide a means for calculating
more appropriate units, for example, converting seconds to days.

Each conversion function consists of the CTIME function followed by a period (.), the target time unit, and
an argument. The argument can consist of expressions, variable names, or constants. The argument must
already be a time interval. See the topic [“‘Agorecation functions” on page 78 for more information. Time

conversions produce noninteger results with a default format of F8.2.

Since time and dates are stored internally as seconds, a function that converts to seconds is not necessary.

CTIME.DAYS. CTIME.DAYS(timevalue). Numeric. Returns the number of days, including fractional days,
in timevalue, which is a number of seconds, a time expression, or a time format variable.

CTIME.HOURS. CTIME.HOURS(timevalue). Numeric. Returns the number of hours, including fractional
hours, in timevalue, which is a number of seconds, a time expression, or a time format variable.

CTIME.MINUTES. CTIME.MINUTES(timevalue). Numeric. Returns the number of minutes, including
fractional minutes, in timevalue, which is a number of seconds, a time expression, or a time format
variable.

Universals 79

CTIME.SECONDS. CTIME.SECONDS(timevalue). Numeric. Returns the number of seconds, including
fractional seconds, in timevalue, which is a number, a time expression, or a time format variable.

Example

DATA LIST FREE (",")
/StartDate (ADATE12) EndDate (ADATE12)
StartDateTime (DATETIME20) EndDateTime(DATETIME20)
StartTime (TIME1Q) EndTime (TIME10).

BEGIN DATA

3/01/2003, 4/10/2003

01-MAR-2003 12:00, 02-MAR-2003 12:00

09:30, 10:15

END DATA.

COMPUTE days = CTIME.DAYS(EndDate-StartDate).

COMPUTE hours = CTIME.HOURS (EndDateTime-StartDateTime).

COMPUTE minutes = CTIME.MINUTES(EndTime-StartTime).

* CTIME.DAYS calculates the difference between EndDate and StartDate in days—in this example, 40 days.

e CTIME.HOURS calculates the difference between EndDateTime and StartDateTime in hours—in this
example, 24 hours.

e CTIME.MINUTES calculates the difference between EndTime and StartTime in minutes—in this example,
45 minutes.

YRMODA function

YRMODA(arg list). Convert year, month, and day to a day number. The number returned is the number of
days since October 14, 1582 (day 0 of the Gregorian calendar).

* Arguments for YRMODA can be variables, constants, or any other type of numeric expression but must
yield integers.

* Year, month, and day must be specified in that order.

* The first argument can be any year between 0 and 99, or between 1582 to 47516.

* If the first argument yields a number between 00 and 99, 1900 through 1999 is assumed.

¢ The month can range from 1 through 13. Month 13 with day 0 yields the last day of the year. For
example, YRMODA(1990,13,0) produces the day number for December 31, 1990. Month 13 with any

other day yields the day of the first month of the coming year--for example, YRMODA(1996,13,1)
produces the day number for January 1, 1991.

* The day can range from 0 through 31. Day 0 is the last day of the previous month regardless of
whether it is 28, 29, 30, or 31. For example, YRMODA(1990,3,0) yields 148791.00, the day number for
February 28, 1990.

* The function returns the system-missing value if any of the three arguments is missing or if the
arguments do not form a valid date after October 14, 1582.

* Since YRMODA yields the number of days instead of seconds, you can not display it in date format unless
you convert it to the number of seconds.

Extraction functions
The extraction functions extract subfields from dates or time intervals, targeting the day or a time from a
date value. This permits you to classify events by day of the week, season, shift, and so forth.

Each extraction function begins with XDATE, followed by a period, the subfunction name (what you want
to extract), and an argument.

XDATE.DATE. XDATE.DATE(datevalue). Numeric. Returns the date portion from a numeric value that
represents a date. The argument can be a number, a date format variable, or an expression that resolves
to a date. To display the result as a date, apply a date format to the variable.

XDATE.HOUR. XDATE.HOUR(datetime). Numeric. Returns the hour (an integer between 0 and 23) from
a value that represents a time or a datetime. The argument can be a number, a time or datetime variable
or an expression that resolves to a time or datetime value.

80 IBM SPSS Statistics 23 Command Syntax Reference

XDATE.JDAY. XDATE.JDAY(datevalue). Numeric. Returns the day of the year (an integer between 1 and
366) from a numeric value that represents a date. The argument can be a number, a date format variable,
or an expression that resolves to a date.

XDATE.MDAY. XDATE.MDAY (datevalue). Numeric. Returns the day of the month (an integer between 1
and 31) from a numeric value that represents a date. The argument can be a number, a date format
variable, or an expression that resolves to a date.

XDATE.MINUTE. XDATE.MINUTE(datetime). Numeric. Returns the minute (an integer between 0 and
59) from a value that represents a time or a datetime. The argument can be a number, a time or datetime
variable, or an expression that resolves to a time or datetime value.

XDATE.MONTH. XDATE.MONTH(datevalue). Numeric. Returns the month (an integer between 1 and
12) from a numeric value that represents a date. The argument can be a number, a date format variable,
or an expression that resolves to a date.

XDATE.QUARTER. XDATE.QUARTER(datevalue). Numeric. Returns the quarter of the year (an integer
between 1 and 4) from a numeric value that represents a date. The argument can be a number, a date
format variable, or an expression that resolves to a date.

XDATE.SECOND. XDATE.SECOND(datetime). Numeric. Returns the second (a number between 0 and
60) from a value that represents a time or a datetime. The argument can be a number, a time or datetime
variable or an expression that resolves to a time or datetime value.

XDATE.TDAY. XDATE.TDAY (timevalue). Numeric. Returns the number of whole days (as an integer)
from a numeric value that represents a time interval. The argument can be a number, a time format
variable, or an expression that resolves to a time interval.

XDATE.TIME. XDATE.TIME(datetime). Numeric. Returns the time portion from a value that represents a
time or a datetime. The argument can be a number, a time or datetime variable or an expression that
resolves to a time or datetime value. To display the result as a time, apply a time format to the variable.

XDATE.WEEK. XDATE.WEEK(datevalue). Numeric. Returns the week number (an integer between 1 and
53) from a numeric value that represents a date. The argument can be a number, a date format variable,
or an expression that resolves to a date.

XDATE.WKDAY. XDATE.WKDAY (datevalue). Numeric. Returns the day-of-week number (an integer
between 1, Sunday, and 7, Saturday) from a numeric value that represents a date. The argument can be a
number, a date format variable, or an expression that resolves to a date.

XDATE.YEAR. XDATE.YEAR(datevalue). Numeric. Returns the year (as a four-digit integer) from a
numeric value that represents a date. The argument can be a number, a date format variable, or an
expression that resolves to a date.

Example

DATA LIST FREE (",")

/StartDateTime (datetime25).
BEGIN DATA
29-0CT-2003 11:23:02
1 January 1998 1:45:01
21/6/2000 2:55:13
END DATA.
COMPUTE dateonly=XDATE.DATE(StartDateTime).
FORMATS dateonly (ADATE10).
COMPUTE hour=XDATE.HOUR(StartDateTime).
COMPUTE DayofWeek=XDATE.WKDAY (StartDateTime).
COMPUTE WeekofYear=XDATE.WEEK(StartDateTime).
COMPUTE quarter=XDATE.QUARTER(StartDateTime).

* The date portion extracted with XDATE.DATE returns a date expressed in seconds; so, FORMATS is used to
display the date in a readable date format.

Universals 81

* Day of the week is an integer between 1 (Sunday) and 7 (Saturday).
* Week of the year is an integer between 1 and 53 (January 1-7 = 1).

Date differences

The DATEDIFF function calculates the difference between two date values and returns an integer (with any
fraction component truncated) in the specified date/time units. The general form of the expression is
DATEDIFF(datetime2, datetimel, "unit").

where datetime2 and datetimel are both date or time format variables (or numeric values that represent
valid date/time values), and “unit” is one of the following string literal values, enclosed in quotes:

* Years

e Quarters
* Months
* Weeks
* Days

* Hours

* Minutes
* Seconds

Example

DATA LIST FREE /datel date2 (2ADATE10).

BEGIN DATA

1/1/2004 2/1/2005

1/1/2004 2/15/2005

1/30/2004 1/29/2005

END DATA.

COMPUTE years=DATEDIFF(date2, datel, "years").

* The result will be the integer portion of the number of years between the two dates, with any
fractional component truncated.

* One "year" is defined as the same month and day, one year before or after the second date argument.

* For the first two cases, the result is 1, since in both cases the number of years is greater than or equal
to 1 and less than 2.

* For the third case, the result is 0, since the difference is one day short of a year based on the definition
of year.

Example

DATA LIST FREE /datel date2 (2ADATE10).

BEGIN DATA

1/1/2004 2/1/2004

1/1/2004 2/15/2004

1/30/2004 2/1/2004

END DATA.

COMPUTE months=DATEDIFF(date2, datel, "months").

* The result will be the integer portion of the number of months between the two dates, with any
fractional component truncated.

* One "month" is defined as the same day of the month, one calendar month before or after the second
date argument.

* For the first two cases, the result will be 1, since both February 1 and February 15, 2004, are greater
than or equal to one month and less than two months after January 1, 2004.

* For the third case, the result will be 0. By definition, any date in February 2004 will be less than one
month after January 30, 2004, resulting in a value of 0.

Date increments

The DATESUM function calculates a date or time value a specified number of units from a given date or
time value. The general form of the function is:

DATESUM(datevar, value, "unit", "method").

82 IBM SPSS Statistics 23 Command Syntax Reference

* datevar is a date/time format variable (or a numeric value that represents a valid date/time value).

* value is a positive or negative number. For variable-length units (years, quarters, months), fractional
values are truncated to integers.

e "unit" is one of the following string literal values enclosed in quotes: years, quarters, months, weeks,
days, hours, minutes, seconds.

e "method" is an optional specification for variable-length units (years, quarters, months) enclosed in
quotes. The method can be "rollover" or "closest". The rollover method advances excess days into
the next month. The closest method uses the closest legitimate date within the month. This is the
default.

Example

DATA LIST FREE /datevarl (ADATE10).

BEGIN DATA

2/28/2004

2/29/2004

END DATA.

COMPUTE rollover_year=DATESUM(datevarl, 1, "years", "rollover").
COMPUTE closest_year=DATESUM(datevarl, 1, "years", "closest").
COMPUTE fraction_year=DATESUM(datevarl, 1.5, "years").

FORMATS rollover_year closest_year fraction_year (ADATE10).
SUMMARIZE

/TABLES=datevarl rollover_year closest_year fraction_year
/FORMAT=VALIDLIST NOCASENUM

/CELLS=NONE.

datevart rollover_year | closest_year | fraction_year
1 02/28/2004 02/28/20035 0228020035 08/28/2005
2 0272872004 03012005 0202802005 05/29/2005

Figure 14. Results of rollover and closest year calculations

* The rollover and closest methods yield the same result when incrementing February 28, 2004, by one
year: February 28, 2005.

* Using the rollover method, incrementing February 29, 2004, by one year returns a value of March 1,
2005. Since there is no February 29, 2005, the excess day is rolled over to the next month.

* Using the closest method, incrementing February 29, 2004, by one year returns a value of February 28,
2005, which is the closest day in the same month of the following year.

* The results for fraction_year are exactly the same as for closest_year because the closest method is used
by default, and the value parameter of 1.5 is truncated to 1 for variable-length units.

* All three COMPUTE commands create new variables that display values in the default F format, which for
a date value is a large integer. The FORMATS command specifies the ADATE format for the new variables.

Example

DATA LIST FREE /datevarl (ADATE1O).
BEGIN DATA
01/31/2003
01/31/2004
03/31/2004
05/31/2004
END DATA.
COMPUTE rollover_month=DATESUM(datevarl, 1, "months", "rollover").
COMPUTE closest_month=DATESUM(datevarl, 1, "months", "closest").
COMPUTE previous_month_rollover =
DATESUM(datevarl, -1, "months", "rollover").
COMPUTE previous_month_closest =
DATESUM(datevarl, -1, "months", "closest").
FORMATS rollover_month closest_month
previous_month_rollover previous_month_closest (ADATE10).
SUMMARIZE

Universals 83

/TABLES=datevarl rollover_month closest_month
previous_month_rollover previous_month_closest
/FORMAT=VALIDLIST NOCASENUM

/CELLS=NONE.

previous_ previous_
datevart rollover _month closest_mornth month_rollover month_closest
1 01/31/2003 030352003 02/28/2003 1203172002 1203112002
2 01/31/2004 Q30272004 02/28/2004 12031/2003 120312003
3 03/31/2004 Q5401 F2004 04/30/2004 030252004 0202952004
4 05/31/2004 Q7401 2004 0E,/30/2004 05/01,/2004 0443042004

Figure 15. Results of month calculations

* Using the rollover method, incrementing by one month from January 31 yields a date in March, since
February has a maximum of 29 days; and incrementing one month from March 31 and May 31 yields
May 1 and July 1, respectively, since April and June each have only 30 days.

* Using the closest method, incrementing by one month from the last day of any month will always
yield the closest valid date within the next month. For example, in a nonleap year, one month after
January 31 is February 28, and one month after February 28 is March 28.

* Using the rollover method, decrementing by one month (by specifying a negative value parameter)
from the last day of a month may sometimes yield unexpected results, since the excess days are rolled
back to the original month. For example, one month prior to March 31 yields March 3 for nonleap
years and March 2 for leap years.

* Using the closest method, decrementing by one month from the last day of the month will always
yield the closest valid date within the previous month. For example, one month prior to April 30, is
March 30 (not March 31), and one month prior to March 31 is February 28 in nonleap years and
February 29 in leap years.

String expressions

Expressions involving string variables can be used on COMPUTE and IF commands and in logical
expressions on commands such as IF, DO IF, LOOP IF, and SELECT IF.

* A string expression can be a constant enclosed in quotes (for example, 'IL'), a string function, or a
string variable. See the topic [“String functions”| for more information.

* An expression must return a string if the target variable is a string.

* The string returned by a string expression does not have to be the same length as the target variable;
no warning messages are issued if the lengths are not the same. If the target variable produced by a
COMPUTE command is shorter, the result is right-trimmed. If the target variable is longer, the result is
right-padded.

String functions

* The target variable for each string function must be a string and must have already been declared (see
STRING).

* Multiple arguments in a list must be separated by commas.

* When two strings are compared, the case in which they are entered is significant. The LOWER and
UPCASE functions are useful for making comparisons of strings regardless of case.

* String functions that include a byte position or count argument or return a byte position or count may
return different results in Unicode mode than in code page mode. For example, é is one byte in code
page mode but is two bytes in Unicode mode; so résumé is six bytes in code page mode and eight
bytes in Unicode mode.

* In Unicode mode, trailing blanks are always removed from the values of string variables in string
functions unless explicitly preserved with the NTRIM function.

84 IBM SPSS Statistics 23 Command Syntax Reference

* In code page mode, trailing blanks are always preserved in the values of string variables unless
explicitly removed with the RTRIM function.

For more information on Unicode mode, see[“UNICODE Subcommand” on page 1734

CHAR.INDEX. CHAR.INDEX(haystack, needle[, divisor]). Numeric. Returns a number indicating the
character position of the first occurrence of needle in haystack. The optional third argument, divisor, is a
number of characters used to divide needle into separate strings. Each substring is used for searching and
the function returns the first occurrence of any of the substrings. For example, CHAR.INDEX(var1, 'abcd’)
will return the value of the starting position of the complete string "abed" in the string variable varl;
CHAR.INDEX(var1, 'abcd’, 1) will return the value of the position of the first occurrence of any of the
values in the string; and CHAR.INDEX(varl, 'abcd’, 2) will return the value of the first occurrence of
either "ab" or "cd". Divisor must be a positive integer and must divide evenly into the length of needle.
Returns 0 if needle does not occur within haystack.

CHAR.LENGTH. CHAR.LENGTH(strexpr). Numeric. Returns the length of strexpr in characters, with any
trailing blanks removed.

CHAR.LPAD. CHAR.LPAD(strexprl length[strexpr2]). String. Left-pads strexprl to make its length the
value specified by length using as many complete copies as will fit of strexpr2 as the padding string. The
value of length represents the number of characters and must be a positive integer. If the optional
argument strexpr2 is omitted, the value is padded with blank spaces.

CHAR.MBLEN. CHAR MBLEN(strexpr,pos). Numeric. Returns the number of bytes in the character at
character position pos of strexpr.

CHAR.RINDEX. CHAR.RINDEX(haystack,needle[,divisor]). Numeric. Returns an integer that indicates the
starting character position of the last occurrence of the string needle in the string haystack. The optional
third argument, divisor, is the number of characters used to divide needle into separate strings. For
example, CHAR.RINDEX(var1, 'abcd') will return the starting position of the last occurrence of the entire
string "abcd" in the variable varl; CHAR RINDEX(varl, 'abcd’, 1) will return the value of the position of
the last occurrence of any of the values in the string; and CHAR.RINDEX(varl, 'abcd’, 2) will return the
value of the starting position of the last occurrence of either "ab" or "cd". Divisor must be a positive
integer and must divide evenly into the length of needle. If needle is not found, the value 0 is returned.

CHAR.RPAD. CHAR.RPAD(strexprl,length[,strexpr2]). String. Right-pads strexprl with strexpr2 to extend
it to the length given by length using as many complete copies as will fit of strexpr2 as the padding
string. The value of length represents the number of characters and must be a positive integer. The
optional third argument strexpr2 is a quoted string or an expression that resolves to a string. If strepxr2 is
omitted, the value is padded with blanks.

CHAR.SUBSTR. CHAR.SUBSTR(strexpr,pos[,length]). String. Returns the substring beginning at character
position pos of strexpr. The optional third argument represents the number of characters in the substring.
If the optional argument length is omitted, returns the substring beginning at character position pos of
strexpr and running to the end of strexpr. For example CHAR.SUBSTR('abcd’, 2) returns 'bed" and
CHAR.SUBSTR('abed', 2, 2) returns 'bc'. (Note: Use the SUBSTR function instead of CHAR.SUBSTR if you
want to use the function on the left side of an equals sign to replace a substring.)

CONCAT. CONCAT(strexpr,strexpr],..]). String. Returns a string that is the concatenation of all its
arguments, which must evaluate to strings. This function requires two or more arguments. In code page
mode, if strexpr is a string variable, use RTRIM if you only want the actual string value without the
right-padding to the defined variable width. For example, CONCAT(RTRIM(stringvarl),
RTRIM(stringvar?2)).

LENGTH. LENGTH(strexpr). Numeric. Returns the length of strexpr in bytes, which must be a string
expression. For string variables, in Unicode mode this is the number of bytes in each value, excluding

Universals 85

trailing blanks, but in code page mode this is the defined variable length, including trailing blanks. To get
the length (in bytes) without trailing blanks in code page mode, use LENGTH(RTRIM(strexpr)).

LOWER. LOWER(strexpr). String. Returns strexpr with uppercase letters changed to lowercase and other
characters unchanged. The argument can be a string variable or a value. For example, LOWER(namel)
returns charles if the value of namel is Charles.

LTRIM. LTRIM(strexpr[,char]). String. Returns strexpr with any leading instances of char removed. If char
is not specified, leading blanks are removed. Char must resolve to a single character.

MAX. MAX(value,valuel,..]). Numeric or string. Returns the maximum value of its arguments that have
valid values. This function requires two or more arguments. For numeric values, you can specify a
minimum number of valid arguments for this function to be evaluated.

MIN. MIN(value,valuel,..]). Numeric or string. Returns the minimum value of its arguments that have
valid, nonmissing values. This function requires two or more arguments. For numeric values, you can
specify a minimum number of valid arguments for this function to be evaluated.

MBLEN.BYTE. MBLEN.BYTE(strexpr,pos). Numeric. Returns the number of bytes in the character at byte
position pos of strexpr.

NORMALIZE. NORMALIZE(strexp). String. Returns the normalized version of strexp. In Unicode mode,
it returns Unicode NFC. In code page mode, it has no effect and returns strexp unmodified. The length of
the result may be different from the length of the input.

NTRIM. NTRIM(varname). Returns the value of varname, without removing trailing blanks. The value of
varname must be a variable name; it cannot be an expression.

REPLACE. REPLACE(al, a2, a3[, a4]). String. In al, instances of a2 are replaced with a3. The optional
argument a4 specifies the number of occurrences to replace; if a4 is omitted, all occurrences are replaced.
Arguments al, a2, and a3 must resolve to string values (literal strings enclosed in quotes or string
variables), and the optional argument a4 must resolve to a non-negative integer. For example,
REPLACE("abcabc", "a", "x") returns a value of "xbcxbc" and REPLACE("abcabc”, "a", "x", 1) returns a
value of "xbcabc".

RTRIM. RTRIM(strexpr[,char]). String. Trims trailing instances of char within strexpr. The optional second
argument char is a single quoted character or an expression that yields a single character. If char is
omitted, trailing blanks are trimmed.

STRUNC. STRUNC (strexp, length). String. Returns strexp truncated to length (in bytes) and then trimmed
of any trailing blanks. Truncation removes any fragment of a character that would be truncated.

UPCASE. UPCASE(strexpr). String. Returns strexpr with lowercase letters changed to uppercase and
other characters unchanged.

Deprecated string functions

The following functions provide functionality similar to the newer CHAR functions, but they operate at the
byte level rather than the character level. For example, the INDEX function returns the byte position of
needle within haystack, whereas CHAR. INDEX returns the character position. These functions are supported
primarily for compatibility with previous releases.

INDEX. INDEX(haystackneedle[,divisor]). Numeric. Returns a number that indicates the byte position of

the first occurrence of needle in haystack. The optional third argument, divisor, is a number of bytes used
to divide needle into separate strings. Each substring is used for searching and the function returns the

86 IBM SPSS Statistics 23 Command Syntax Reference

first occurrence of any of the substrings. Divisor must be a positive integer and must divide evenly into
the length of needle. Returns 0 if needle does not occur within haystack.

LPAD. LPAD(strexprl,length[,strexpr2]). String. Left-pads strexprl to make its length the value specified
by length using as many complete copies as will fit of strexpr2 as the padding string. The value of length
represents the number of bytes and must be a positive integer. If the optional argument strexpr2 is
omitted, the value is padded with blank spaces.

RINDEX. RINDEX(haystack,needle[,divisor]). Numeric. Returns an integer that indicates the starting byte
position of the last occurrence of the string needle in the string haystack. The optional third argument,
divisor, is the number of bytes used to divide needle into separate strings. Divisor must be a positive
integer and must divide evenly into the length of needle. If needle is not found, the value 0 is returned.

RPAD. RPAD(strexprl,length[,strexpr2]). String. Right-pads strexprl with strexpr2 to extend it to the
length given by length using as many complete copies as will fit of strexpr2 as the padding string. The
value of length represents the number of bytes and must be a positive integer. The optional third
argument strexpr2 is a quoted string or an expression that resolves to a string. If strepxr2 is omitted, the
value is padded with blanks.

SUBSTR. SUBSTR(strexpr,pos|,length]). String. Returns the substring beginning at byte position pos of
strexpr. The optional third argument represents the number of bytes in the substring. If the optional
argument length is omitted, returns the substring beginning at byte position pos of strexpr and running
to the end of strexpr. When used on the left side of an equals sign, the substring is replaced by the string
specified on the right side of the equals sign. The rest of the original string remains intact. For example,
SUBSTR(ALPHA6,3,1)="*" changes the third character of all values for ALPHAG to *. If the replacement
string is longer or shorter than the substring, the replacement is truncated or padded with blanks on the
right to an equal length.

Example

STRING stringVarl stringVar2 stringVar3 (A22).
COMPUTE stringVarl=' Does this'.
COMPUTE stringVar2="'ting work?"'.
COMPUTE stringVar3=
CONCAT(RTRIM(LTRIM(stringVarl)), " ",
REPLACE(stringVar2, "ting", "thing")).
e The CONCAT function concatenates the values of stringVarl and stringVar2, inserting a space as a literal

string (" ") between them.

¢ The RTRIM function strips off trailing blanks from stringVarl. In code page mode, this is necessary to
eliminate excessive space between the two concatenated string values because in code page mode all
string variable values are automatically right-padded to the defined width of the string variables. In
Unicode mode, this has no effect because trailing blanks are automatically removed from string
variable values in Unicode mode.

e The LTRIM function removes the leading spaces from the beginning of the value of stringVarl.
* The REPLACE function replaces the misspelled "ting" with "thing" in stringVar2.

The final result is a string value of "Does this thing work?”
Example

This example extracts the numeric components from a string telephone number into three numeric
variables.

DATA LIST FREE (",") /telephone (Al6).
BEGIN DATA

111-222-3333

222 - 333 - 4444

333-444-5555

444 - 555-6666

555-666-0707

END DATA.

Universals 87

STRING #telstr(Al6).

COMPUTE #telstr = telephone.

VECTOR tel(3,f4).

LOOP #i = 1 to 2.

- COMPUTE #dash = CHAR.INDEX(#telstr,"-").

- COMPUTE tel (#i) NUMBER (CHAR.SUBSTR(#telstr,1,#dash-1),f10).
- COMPUTE #telstr = CHAR.SUBSTR(#telstr,#dash+1).
END LOOP.

COMPUTE tel(3) = NUMBER(#telstr,f10).

EXECUTE.

FORMATS tell tel2 (N3) tel3 (N4).

* A temporary (scratch) string variable, #telstr, is declared and set to the value of the original string
telephone number.

e The VECTOR command creates three numeric variables--tell, tel2, and tel3--and creates a vector
containing those variables.

* The LOOP structure iterates twice to produce the values for tell and tel2.

» COMPUTE #dash = CHAR.INDEX(#telstr,"-") creates another temporary variable, #dash, that contains the
position of the first dash in the string value.

e On the first iteration, COMPUTE tel(#i) = NUMBER(CHAR.SUBSTR(#telstr,1,#dash-1),f10) extracts
everything prior to the first dash, converts it to a number, and sets tell to that value.

» COMPUTE #telstr = CHAR.SUBSTR(#telstr,#dash+1l) then sets #telstr to the remaining portion of the
string value after the first dash.

* On the second iteration, COMPUTE #dash. .. sets #dash to the position of the “first” dash in the modified
value of #telstr. Since the area code and the original first dash have been removed from #telstr, this is
the position of the dash between the exchange and the number.

» COMPUTE tel(#)... sets tel2 to the numeric value of everything up to the “first” dash in the modified
version of #telstr, which is everything after the first dash and before the second dash in the original
string value.

e COMPUTE #telstr... then sets #felstr to the remaining segment of the string value--everything after the
“first” dash in the modified value, which is everything after the second dash in the original value.

» After the two loop iterations are complete, COMPUTE tel(3) = NUMBER(#telstr,f10) sets tel3 to the
numeric value of the final segment of the original string value.

String/numeric conversion functions

NUMBER. NUMBER((strexpr,format). Numeric. Returns the value of the string expression strexpr as a
number. The second argument, format, is the numeric format used to read strexpr. For example,
NUMBER(stringDate,DATE11) converts strings containing dates of the general format dd-mmm-yyyy to a
numeric number of seconds that represent that date. (To display the value as a date, use the FORMATS
or PRINT FORMATS command.) If the string cannot be read using the format, this function returns
system-missing.

STRING. STRING(numexpr,format). String. Returns the string that results when numexpr is converted to
a string according to format. STRING(-1.5,F5.2) returns the string value '-1.50". The second argument
format must be a format for writing a numeric value.

Example

DATA LIST FREE /tell tel2 tel3.
BEGIN DATA
123 456 0708
END DATA.
STRING telephone (Al12).
COMPUTE telephone=
CONCAT(STRING(tel1,N3), "-", STRING(tel2, N3), "-", STRING(tel3, N4)).

* A new string variable, telephone, is declared to contain the computed string value.
* The three numeric variables are converted to strings and concatenated with dashes between the values.

* The numeric values are converted using N format to preserve any leading zeros.

88 IBM SPSS Statistics 23 Command Syntax Reference

LAG function

LAG. LAG(variable[, n]). Numeric or string. The value of variable in the previous case or n cases before.
The optional second argument, n, must be a positive integer; the default is 1. For example,
prev4=LAG(gnp,4) returns the value of gnp for the fourth case before the current one. The first four cases
have system-missing values for prev4.

* The result is of the same type (numeric or string) as the variable specified as the first argument.

* The first n cases for string variables are set to blanks. For example, if PREV2=LAG (LNAME,2) is specified,
blanks will be assigned to the first two cases for PREV?2.

* When LAG is used with commands that select cases (for example, SELECT IF and SAMPLE), LAG counts

cases after case selection, even if specified before these commands. See the topic [“Command Order” on|
page 40| for more information.

Note: In a series of transformation commands without any intervening EXECUTE commands or other
commands that read the data, lag functions are calculated after all other transformations, regardless of
command order. For example,

COMPUTE Tagvar=LAG(varl).
COMPUTE varl=varl#2.

and

COMPUTE Tagvar=LAG(varl).
EXECUTE.
COMPUTE varl=varl*2.

yield very different results for the value of lagvar, since the former uses the transformed value of varl
while the latter uses the original value.

VALUELABEL function

VALUELABEL. VALUELABEL (varname). String. Returns the value label for the value of variable or an
empty string if there is no label for the value. The value of varname must be a variable name; it cannot
be an expression.

Example

STRING labelvar (A120).

COMPUTE Tabelvar=VALUELABEL(varl).

DO REPEAT varlist=var2, var3, vard
/newvars=labelvar2, labelvar3, labelvar4.

- STRING newvars(A120).

- COMPUTE newvars=VALUELABEL (varlist).

END REPEAT.

Logical expressions

Logical expressions can appear on the COMPUTE, IF, SELECT IF, DO IF, ELSE IF, LOOP IF, and END LOOP IF
commands. A logical expression is evaluated as true or false, or as missing if it is indeterminate. A logical
expression returns 1 if the expression is true, 0 if it is false, or system-missing if it is missing. Thus,
logical expressions can be any expressions that yield this three-value logic.

* The simplest logical expression is a logical variable. A logical variable is any numeric variable that has
the values 1, 0, or system-missing. Logical variables cannot be strings.

* Logical expressions can be simple logical variables or relations, or they can be complex logical tests
involving variables, constants, functions, relational operators, logical operators, and parentheses to
control the order of evaluation.

* On an IF command, a logical expression that is true causes the assignment expression to be executed.
A logical expression that returns missing has the same effect as one that is false--that is, the assignment
expression is not executed and the value of the target variable is not altered.

Universals 89

* On a DO IF command, a logical expression that is true causes the execution of the commands
immediately following the DO IF, up to the next ELSE IF, ELSE, or END IF. If it is false, the next ELSE IF
or ELSE command is evaluated. If the logical expression returns missing for each of these, the entire
structure is skipped.

* On a SELECT IF command, a logical expression that is true causes the case to be selected. A logical
expression that returns missing has the same effect as one that is false--that is, the case is not selected.

* On a LOOP IF command, a logical expression that is true causes looping to begin (or continue). A
logical expression that returns missing has the same effect as one that is false--that is, the structure is
skipped.

* On an END LOOP IF command, a logical expression that is false returns control to the LOOP command for
that structure, and looping continues. If it is true, looping stops and the structure is terminated. A
logical expression that returns a missing value has the same effect as one that is true--that is, the
structure is terminated.

Example

DATA LIST FREE (",") /a.

BEGIN DATA

1, , 1, ,

END DATA.

COMPUTE b=a.

* The following does NOT work since the second condition
is never evaluated.

DO IF a=1.

COMPUTE al=1.

ELSE IF MISSING(a).

COMPUTE al=2.

END IF.

* On the other hand the following works.

DO IF MISSING(b).

COMPUTE b1=2.

ELSE IF b=1.

COMPUTE bl=1.

END IF.

* The first DO IF will never yield a value of 2 for al because if a is missing, then DO IF a=1 evaluates as
missing and control passes immediately to END IF. So al will either be 1 or missing.

* In the second DO IF, however, we take care of the missing condition first; so if the value of b is
missing, DO IF MISSING(b) evaluates as true and b1 is set to 2; otherwise, b1 is set to 1.

String variables in logical expressions
String variables, like numeric variables, can be tested in logical expressions.

* String variables must be declared before they can be used in a string expression.
* String variables cannot be compared to numeric variables.

* If strings of different lengths are compared, the shorter string is right-padded with blanks to equal the
length of the longer string.

* The magnitude of strings can be compared using LT, GT, and so on, but the outcome depends on the
sorting sequence of the computer. Use with caution.

* User-missing string values are treated the same as nonmissing string values when evaluating string
variables in logical expressions. In other words, all string variable values are treated as valid,
nonmissing values in logical expressions.

Relational operators
A relation is a logical expression that compares two values using a relational operator. In the command
IF (X EQ 0) Y=1

the variable X and 0 are expressions that yield the values to be compared by the EQ relational operator.
The following are the relational operators:

EQ or =. Equal to

90 IBM SPSS Statistics 23 Command Syntax Reference

NE or ~= or = = or <>. Not equal to
LT or <. Less than

LE or <=. Less than or equal to

GT or >. Greater than

GE or >=. Greater than or equal to

* The expressions in a relation can be variables, constants, or more complicated arithmetic expressions.

* Blanks (not commas) must be used to separate the relational operator from the expressions. To make
the command more readable, use extra blanks or parentheses.

* For string values, “less than” and “greater than” results can vary by locale even for the same set of

characters, since the national collating sequence is used. Language order, not ASCII order, determines

where certain characters fall in the sequence.

NOT logical operator

The NOT logical operator reverses the true/false outcome of the expression that immediately follows.

* The NOT operator affects only the expression that immediately follows, unless a more complex logical

expression is enclosed in parentheses.
* You can substitute ~ or ~ for NOT as a logical operator.

* NOT can be used to check whether a numeric variable has the value 0, 1, or any other value. For
example, all scratch variables are initialized to 0. Therefore, NOT (#ID) returns false or missing when
#ID has been assigned a value other than 0.

AND and OR logical operators
Two or more relations can be logically joined using the logical operators AND and OR. Logical operators
combine relations according to the following rules:

¢ The ampersand (&) symbol is a valid substitute for the logical operator AND. The vertical bar (|) is a

valid substitute for the logical operator OR.

* Only one logical operator can be used to combine two relations. However, multiple relations can be
combined into a complex logical expression.

* Regardless of the number of relations and logical operators used to build a logical expression, the
result is either true, false, or indeterminate because of missing values.

* Operators or expressions cannot be implied. For example, X EQ 1 OR 2 is illegal; you must specify X EQ

1 0R X EQ 2.

* The ANY and RANGE functions can be used to simplify complex expressions.
AND . Both relations must be true for the complex expression to be true.
OR . If either relation is true, the complex expression is trie.

The following table lists the outcomes for AND and OR combinations.

Table 3. Logical outcomes

Expression Outcome Expression Outcome
true AND true = true true OR true = true
true AND false = false true OR false = true
false AND false = false false OR false = false

Universals

91

Table 3. Logical outcomes (continued)

Expression Outcome Expression Outcome
true AND missing = missing true OR missing = true*

missing AND missing = missing missing OR missing = missing
false AND missing = false* false OR missing = missing

" Expressions where the outcome can be evaluated with incomplete information. See the topic
(values in logical expressions” on page 98| for more information.

Example

DATA LIST FREE /varl var2 var3.
BEGIN DATA

DATA.
ECT IF varl = 4 OR ((var2 > varl) AND (varl <> var3)).

* Any case that meets the first condition--varl = 4--will be selected, which in this example is only the
last case.

* Any case that meets the second condition will also be selected. In this example, only the third case
meets this condition, which contains two criteria: var2 is greater than varl and varl is not equal to var3.

Order of evaluation

* When arithmetic operators and functions are used in a logical expression, the order of operations is
functions and arithmetic operations first, then relational operators, and then logical operators.

* When more than one logical operator is used, NOT is evaluated first, then AND, and then OR.
¢ To change the order of evaluation, use parentheses.

Logical functions

* Each argument to a logical function (expression, variable name, or constant) must be separated by a
comma.

* The target variable for a logical function must be numeric.

* The functions RANGE and ANY can be useful shortcuts to more complicated specifications on the IF, DO
IF, and other conditional commands. For example, for non-missing values, the command

SELECT IF ANY(REGION,"NW","NE","SE").
is equivalent to
SELECT IF (REGION EQ "NW" OR REGION EQ "NE" OR REGION EQ "SE").

RANGE. RANGE(test,lo,hi[,lo,hi,..]). Logical. Returns 1 or true if test is within any of the inclusive
range(s) defined by the pairs lo, hi. Arguments must be all numeric or all strings of the same length, and
each of the lo, hi pairs must be ordered with lo <= hi. Note: For string values, results can vary by locale
even for the same set of characters, since the national collating sequence is used. Language order, not
ASCII order, determines where certain characters fall in the sequence.

ANY. ANY(test,value[,value,...]). Logical. Returns 1 or true if the value of test matches any of the

subsequent values; returns 0 or false otherwise. This function requires two or more arguments. For
example, ANY(varl, 1, 3, 5) returns 1 if the value of varl is 1, 3, or 5 and 0 for other values. ANY can

92 IBM SPSS Statistics 23 Command Syntax Reference

also be used to scan a list of variables or expressions for a value. For example, ANY(1, varl, var2, var3)
returns 1 if any of the three specified variables has a value of 1 and 0 if all three variables have values
other than 1.

See [“Treatment of missing values in arguments” on page 96 for information on how missing values are
handled by the ANY and RANGE functions.

Scoring expressions

Scoring expressions apply model XML from an external file to the active dataset and generate predicted
values, predicted probabilities, and other values based on that model.

* Scoring expressions must be preceded by a MODEL HANDLE command that identifies the external XML
model file and optionally does variable mapping.

* Scoring expressions require two arguments: the first identifies the model, and the second identifies the
scoring function. An optional third argument allows users to obtain the probability (for each case)
associated with a selected category, in the case of a categorical target variable. It is also used in nearest
neighbor models to specify a particular neighbor.

* Prior to applying scoring functions to a set of data, a data validation analysis is performed. The
analysis includes checking that data are of the correct type as well as checking that the data values are
in the set of allowed values defined in the model. For example, for categorical variables, a value that is
neither a valid category nor defined as user-missing would be treated as an invalid value. Values that
are found to be invalid are treated as system-missing.

The following scoring expressions are available:

ApplyModel. ApplyModel(handle, "function", value). Numeric. Applies a particular scoring function to the
input case data using the model specified by handle and where "function" is one of the following string
literal values enclosed in quotes: predict, stddev, probability, confidence, nodeid, cumhazard, neighbor,
distance. The model handle is the name associated with the external XML file, as defined on the MODEL
HANDLE command. The optional third argument applies when the function is "probability", "neighbor",
or "distance". For "probability", it specifies a category for which the probability is calculated. For
"neighbor" and "distance", it specifies a particular neighbor (as an integer) for nearest neighbor models.
ApplyModel returns system-missing if a value can not be computed. String values must be enclosed in
quotes. For example, ApplyModel (namel, 'probability', 'reject'), where namel is the model’s handle
name and 'reject' is a valid category for a target variable that is a string.

StrApplyModel. StrApplyModel(handle, "function”, value). String. Applies a particular scoring function to
the input case data using the model specified by handle and where "function" is one of the following
string literal values enclosed in quotes: predict, stddev, probability, confidence, nodeid, cumhazard,
neighbor, distance. The model handle is the name associated with the external XML file, as defined on the
MODEL HANDLE command. The optional third argument applies when the function is "probability",
"neighbor", or "distance". For "probability", it specifies a category for which the probability is calculated.
For "neighbor" and "distance", it specifies a particular neighbor (as an integer) for nearest neighbor
models. StrApplyModel returns a blank string if a value cannot be computed.

The following scoring functions are available:

Scoring function Description

PREDICT Returns the predicted value of the target variable.

STDDEV Standard deviation.

PROBABILITY Probability associated with a particular category of a target variable. Applies only to

categorical variables. In the absence of the optional third parameter, category, this
is the probability that the predicted category is the correct one for the target
variable. If a particular category is specified, then this is the probability that the
specified category is the correct one for the target variable.

Universals 93

Scoring function

CONFIDENCE

NODEID
CUMHAZARD
NEIGHBOR

DISTANCE

Description

A probability measure associated with the predicted value of a categorical target variable.
Applies only to categorical variables.

The terminal node number. Applies only to tree models.
Cumulative hazard value. Applies only to Cox regression models.

The ID of the kth nearest neighbor. Applies only to nearest neighbor models. In the
absence of the optional third parameter, k, this is the ID of the nearest neighbor.
The ID is the value of the case labels variable, if supplied, and otherwise the case
number.

The distance to the kth nearest neighbor. Applies only to nearest neighbor models. In
the absence of the optional third parameter, k, this is the distance to the nearest
neighbor. Depending on the model, either Euclidean or City Block distance will
be used.

The following table lists the set of scoring functions available for each type of model that supports
scoring. The function type denoted as PROBABILITY (category) refers to specification of a particular
category (the optional third parameter) for the PROBABILITY function.

Table 4. Supported functions by model type.

Model type

Supported functions

Tree (categorical target)

PREDICT, PROBABILITY, PROBABILITY (category), CONFIDENCE,
NODEID

Tree (scale target)

PREDICT, NODEID, STDDEV

Boosted Tree (C5.0)

PREDICT, CONFIDENCE

Linear Regression

PREDICT, STDDEV

Automatic Linear Models

PREDICT

Binary Logistic Regression

PREDICT, PROBABILITY, PROBABILITY (category), CONFIDENCE

Conditional Logistic Regression

PREDICT

Multinomial Logistic Regression

PREDICT, PROBABILITY, PROBABILITY (category), CONFIDENCE

General Linear Model

PREDICT, STDDEV

Discriminant

PREDICT, PROBABILITY, PROBABILITY (category)

TwoStep Cluster PREDICT
K-Means Cluster PREDICT
Kohonen PREDICT

Neural Net (categorical target)

PREDICT, PROBABILITY, PROBABILITY (category), CONFIDENCE

Neural Net (scale target)

PREDICT

94 IBM SPSS Statistics 23 Command Syntax Reference

Table 4. Supported functions by model type (continued).

Model type

Supported functions

Naive Bayes

PREDICT, PROBABILITY, PROBABILITY (category), CONFIDENCE

Anomaly Detection

PREDICT

Ruleset

PREDICT, CONFIDENCE

Generalized Linear Model (categorical target)

PREDICT, PROBABILITY, PROBABILITY (category), CONFIDENCE

Generalized Linear Model (scale target)

PREDICT, STDDEV

Generalized Linear Mixed Model (categorical
target)

PREDICT, PROBABILITY, PROBABILITY (category), CONFIDENCE

Generalized Linear Mixed Model (scale target)

PREDICT

Ordinal Multinomial Regression

PREDICT, PROBABILITY, PROBABILITY (category), CONFIDENCE

Cox Regression

PREDICT, CUMHAZARD

Nearest Neighbor (scale target)

PREDICT, NEIGHBOR, NEIGHBOR(K), DISTANCE, DISTANCE (K)

Nearest Neighbor (categorical target)

PREDICT, PROBABILITY, PROBABILITY (category),
CONFIDENCE,NEIGHBOR, NEIGHBOR (K),DISTANCE, DISTANCE (K)

* For the Binary Logistic Regression, Multinomial Logistic Regression, and Naive Bayes models, the

value returned by the CONFIDENCE function is identical to that returned by the PROBABILITY function.

* For the K-Means model, the value returned by the CONFIDENCE function is the least distance.

* For tree and ruleset models, the confidence can be interpreted as an adjusted probability of the
predicted category and is always less than the value given by PROBABILITY. For these models, the
confidence value is more reliable than the value given by PROBABILITY.

* For neural network models, the confidence provides a measure of whether the predicted category is

much more likely than the second-best predicted category.

* For Ordinal Multinomial Regression and Generalized Linear Model, the PROBABILITY function is
supported when the target variable is binary.

* For nearest neighbor models without a target variable, the available functions are NEIGHBOR and

DISTANCE.

Missing values

Functions and simple arithmetic expressions treat missing values in different ways. In the expression

(varl+var2+var3)/3

the result is missing if a case has a missing value for any of the three variables.

In the expression

MEAN(varl, var2, var3)

Universals

95

the result is missing only if the case has missing values for all three variables.

For statistical functions, you can specify the minimum number of arguments that must have nonmissing
values. To do so, type a period and the minimum number after the function name, as in:

MEAN.2(varl, var2, var3)

The following sections contain more information on the treatment of missing values in functions and
transformation expressions, including special missing value functions.

Treatment of missing values in arguments

If the logic of an expression is indeterminate because of missing values, the expression returns a missing
value and the command is not executed. The following table summarizes how missing values are
handled in arguments to various functions.

Table 5. Missing values in arguments

Function Returns system-missing if
MOD (x1,x2) x1 is missing, or x2 is missing and x1 is not 0.
MAX.n (x1,x2,...xk) Fewer than n arguments are valid; the default n is 1.

MEAN.n (x1,x2,...xk)
MIN.n (x1,x2,...x1)

SUM.n (x1,x2,...xk)

CFVAR.n (x1,x2,...xk) Fewer than n arguments are valid; the default n is 2.
SD.n (x1,x2,...xk)

VARIANCE.n (x1,x2,...xk)

LPAD(x1,x2,x3) x1 or x2 is illegal or missing.

LTRIM(x1,x2)

RTRIM(x1,x2)

RPAD(x1,x2,x3)

SUBSTR(x1,x2,x3) x2 or x3 is illegal or missing.

NUMBER (x, format) The conversion is invalid.

STRING(x,format)

INDEX (x1,x2,x3) x3 is invalid or missing.

RINDEX(x1,x2,x3)

LAG (x,n) x is missing n cases previously (and always for the first n cases); the

default n is 1.

96 IBM SPSS Statistics 23 Command Syntax Reference

Table 5. Missing values in arguments (continued)

Function Returns system-missing if

ANY (x,x1,x2,...xk) For numeric values, if x is missing or all the remaining arguments
are missing, the result is system-missing. For string values,
user-missing value are treated as valid values, and the result is
never missing.

RANGE (x,x1,x2,...xk1,xk2) For numeric values, the result is system-missing if:
° X is missing, or
* all the ranges defined by the remaining arguments are missing, or

* any range has a starting value that is higher than the ending
value.

A numeric range is missing if either of the arguments that define the
range is missing. This includes ranges for which one of the
arguments is equal to the value of the first argument in the
expression. For example: RANGE (x, x1, x2) is missing if any of the
arguments is missing, even if x1 or x2 is equal to x.

For string values, user-missing values are treated as valid values,
and the result is only missing if any range has a starting value that
is higher than the ending value.

VALUE (x) x is system-missing.

MISSING (x) Never.
NMISS (x1,x2,...xk)
NVALID (x1,x2,...xk)

SYSMIS (x)

¢ Any function that is not listed in this table returns the system-missing value when the argument is
missing.

¢ The system-missing value is a displayed as a period (.) for numeric variables.

* String variables do not have system-missing values. An invalid string expression nested within a
complex transformation yields a null string, which is passed to the next level of operation and treated
as missing. However, an invalid string expression that is not nested is displayed as a blank string and
is not treated as missing.

Missing values in numeric expressions

Most numeric expressions receive the system-missing value when any one of the values in the expression
is missing. Some arithmetic operations involving 0 can be evaluated even when the variables have
missing values. These operations are:

* 0 * missing = 0

* 0 / missing =0

* MOD(0, missing) = 0
The .n suffix can be used with the statistical functions SUM, MEAN, MIN, MAX, SD, VARIANCE, and CFVAR to
specify the number of valid arguments that you consider acceptable. The default of # is 2 for SD,
VARIANCE, and CFVAR, and 1 for other statistical functions. For example,
COMPUTE FACTOR = SUM.2(SCORE1 TO SCORE3).

Universals 97

computes the variable FACTOR only if a case has valid information for at least two scores. FACTOR is
assigned the system-missing value if a case has valid values for fewer than two scores. If the number
specified exceeds the number of arguments in the function, the result is system-missing.

Missing values in string expressions

* If the numeric argument (which can be an expression) for the functions LPAD and RPAD is illegal or
missing, the result is a null string. If the padding or trimming is the only operation, the string is then
padded to its entire length with blanks. If the operation is nested, the null string is passed to the next
nested level.

* If a numeric argument to SUBSTR is illegal or missing, the result is a null string. If SUBSTR is the only
operation, the string is blank. If the operation is nested, the null string is passed to the next nested
level.

 If a numeric argument to INDEX or RINDEX is illegal or missing, the result is system-missing.

String user-missing values are treated as missing by statistical and charting procedures and missing
values functions. They are treated as valid in other transformation expressions.

DATA LIST LIST /stringvar (al) numvar(f5.2).
BEGIN DATA
Ilall 1
llbll 2
IICII 99
END DATA.
MISSING VALUES stringvar ('c') numvar (99).
COMPUTE newnuml=numvar.
STRING newstring (al).
COMPUTE newstring=stringvar.
DO IF numvar <> 1.
COMPUTE num_eval=1.
END IF.
DO IF stringvar <> "a".
COMPUTE string_eval=1.
END IF.
COMPUTE num_missing=missing(numvar).
COMPUTE string_missing=missing(stringvar).
LIST.

stringvar numvar newnuml newstring num_eval string_eval num missing string missing

a 1.00 1.00 a . . .00 .00
b 2.00 2.00 b 1.00 1.00 .00 .00
c 99.00 C 1.00 1.00 1.00

* The value of "c" is declared user-missing for stringvar.
 All three values of stringvar are treated as valid in COMPUTE newstring=stringvar.

* DO IF stringvar <> "a" is evaluated as true for the value of "c" rather than missing. This returns a
value of 1 for the variable string_eval rather than system-missing.

* The MISSING function recognizes "c" as missing. This returns a value of 1 for the variable
string_missing.

Missing values in logical expressions

In a simple relation, the logic is indeterminate if the expression on either side of the relational operator is
missing. When two or more relations are joined by logical operators AND and OR, a missing value is
always returned if all of the relations in the expression are missing. However, if any one of the relations
can be determined, IBM SPSS Statistics tries to return true or false according to the logical outcomes. See
the topic[“AND and OR logical operators” on page 91| for more information.

* When two relations are joined with the AND operator, the logical expression can never be true if one of
the relations is indeterminate. The expression can, however, be false.

¢ When two relations are joined with the OR operator, the logical expression can never be false if one
relation returns missing. The expression, however, can be true.

98 IBM SPSS Statistics 23 Command Syntax Reference

Missing value functions

* Each argument to a missing-value function (expression, variable name, or constant) must be separated
by a comma.

* With the exception of the MISSING function, only numeric values can be used as arguments in
missing-value functions.

* The keyword TO can be used to refer to a set of variables in the argument list for functions NMISS and
NVALID.

¢ The functions MISSING and SYSMIS are logical functions and can be useful shortcuts to more
complicated specifications on the IF, DO IF, and other conditional commands.

VALUE. VALUE(variable). Numeric. Returns the value of variable, ignoring user missing-value definitions
for variable, which must be a numeric variable name or a vector reference to a variable name.

MISSING. MISSING(variable). Logical. Returns 1 or true if variable has a system- or user-missing value.
The argument should be a variable name in the active dataset.

SYSMIS. SYSMIS(numvar). Logical. Returns 1 or true if the value of numvar is system-missing. The
argument numvar must be the name of a numeric variable in the active dataset.

NMISS. NMISS(variable],..]). Numeric. Returns a count of the arguments that have system- and
user-missing values. This function requires one or more arguments, which should be variable names in
the active dataset.

NVALID. NVALID(variable[,..]). Numeric. Returns a count of the arguments that have valid, nonmissing

values. This function requires one or more arguments, which should be variable names in the active
dataset.

Universals 99

100 1BM SPSS Statistics 23 Command Syntax Reference

2SLS

2SLS is available in the Regression option.
2SLS [EQUATION=]dependent variable WITH predictor variable

[/[EQUATION=]dependent variable...]
/INSTRUMENTS=varlist
[/ENDOGENOUS=varlist]

[/{CONSTANTxx}
{NOCONSTANT}

[/PRINT=COV]
[/SAVE = [PRED] [RESID]]

[/APPLY[="'model name']]
**Default if the subcommand or keyword is omitted.

This command reads the active dataset and causes execution of any pending commands. See the topic
[“Command Order” on page 40| for more information.

Example

2SLS VAROL WITH VARO2 VARO3
/INSTRUMENTS VARO3 LAGVAROL.

Overview

2SLS performs two-stage least-squares regression to produce consistent estimates of parameters when one
or more predictor variables might be correlated with the disturbance. This situation typically occurs when
your model consists of a system of simultaneous equations wherein endogenous variables are specified as
predictors in one or more of the equations. The two-stage least-squares technique uses instrumental
variables to produce regressors that are not contemporaneously correlated with the disturbance.
Parameters of a single equation or a set of simultaneous equations can be estimated.

Options

New Variables. You can change NEWVAR settings on the TSET command prior to 2SLS to evaluate the
regression statistics without saving the values of predicted and residual variables, or you can save the
new values to replace the values that were saved earlier, or you can save the new values without erasing
values that were saved earlier (see the TSET command). You can also use the SAVE subcommand on 2SLS
to override the NONE or the default CURRENT settings on NEWVAR.

Covariance Matrix. You can obtain the covariance matrix of the parameter estimates in addition to all of
the other output by specifying PRINT=DETAILED on the TSET command prior to 2SLS. You can also use the
PRINT subcommand to obtain the covariance matrix, regardless of the setting on PRINT.

Basic Specification

The basic specification is at least one EQUATION subcommand and one INSTRUMENTS subcommand.

* For each specified equation, 2SLS estimates and displays the regression analysis-of-variance table,
regression standard error, mean of the residuals, parameter estimates, standard errors of the parameter
estimates, standardized parameter estimates, ¢ statistic significance tests and probability levels for the
parameter estimates, tolerance of the variables, and correlation matrix of the parameter estimates.

© Copyright IBM Corporation 1989, 2014 101

e If the setting on NEWVAR is either ALL or the default CURRENT, two new variables containing the predicted
and residual values are automatically created for each equation. The variables are labeled and added to
the active dataset.

Subcommand Order

¢ Subcommands can be specified in any order.

Syntax Rules

* The INSTRUMENTS subcommand must specify at least as many variables as are specified after WITH on
the longest EQUATION subcommand.

* If a subcommand is specified more than once, the effect is cumulative (except for the APPLY
subcommand, which executes only the last occurrence).

Operations
* 2SLS cannot produce forecasts beyond the length of any regressor series.
e 2SLS honors the WEIGHT command.

e 2SLS uses listwise deletion of missing data. Whenever a variable is missing a value for a particular
observation, that observation will not be used in any of the computations.

Examples

TSET NEWVAR=NONE .

2SLS buyoff WITH buycd buybk offer_typel offer_type2
/INSTRUMENTS offer_typel offer_type2 Indisccd Indiscbk buycd_1 buybk_1
/CONSTANT .

EQUATION Subcommand

EQUATION specifies the structural equations for the model and is required. The actual keyword EQUATION is
optional.

* An equation specifies a single dependent variable, followed by keyword WITH and one or more
predictor variables.

* You can specify more than one equation. Multiple equations are separated by slashes.

Example

2SLS EQUATION=Y1 WITH X1 X2
/INSTRUMENTS=X1 LAGX2 X3.

* In this example, Y1 is the dependent variable, and X1 and X2 are the predictors. The instruments that
are used to predict the X2 values are X1, LAGX2, and X3.

INSTRUMENTS Subcommand

INSTRUMENTS specifies the instrumental variables. These variables are used to compute predicted values
for the endogenous variables in the first stage of 2SLS.

* At least one INSTRUMENTS subcommand must be specified.

* If more than one INSTRUMENTS subcommand is specified, the effect is cumulative. All variables that are
named on INSTRUMENTS subcommands are used as instruments to predict all the endogenous variables.

* Any variable in the active dataset can be named as an instrument.

* Instrumental variables can be specified on the EQUATION subcommand, but this specification is not
required.

* The INSTRUMENTS subcommand must name at least as many variables as are specified after WITH on the
longest EQUATION subcommand.

* If all the predictor variables are listed as the only INSTRUMENTS, the results are the same as results from
ordinary least-squares regression.

102 IBM SPSS Statistics 23 Command Syntax Reference

Example

2SLS DEMAND WITH PRICE, INCOME
/PRICE WITH DEMAND, RAINFALL, LAGPRICE
/INSTRUMENTS=INCOME, RAINFALL, LAGPRICE.

* The endogenous variables are PRICE and DEMAND.

* The instruments to be used to compute predicted values for the endogenous variables are INCOME,
RAINFALL, and LAGPRICE.

ENDOGENOUS Subcommand

All variables that are not specified on the INSTRUMENTS subcommand are used as endogenous variables by
2SLS. The ENDOGENOUS subcommand simply allows you to document what these variables are.

¢ Computations are not affected by specifications on the ENDOGENOUS subcommand.

Example

2SLS Y1 WITH X1 X2 X3
/INSTRUMENTS=X2 X4 LAGY1
/ENDOGENOUS=Y1 X1 X3.

* In this example, the ENDOGENOUS subcommand is specified to document the endogenous variables.

CONSTANT and NOCONSTANT Subcommands

Specify CONSTANT or NOCONSTANT to indicate whether a constant term should be estimated in the regression
equation. The specification of either subcommand overrides the CONSTANT setting on the TSET command
for the current procedure.

* CONSTANT is the default and specifies that the constant term is used as an instrument.
> NOCONSTANT eliminates the constant term.

SAVE Subcommand

SAVE saves the values of predicted and residual variables that are generated during the current session to
the end of the active dataset. The default names FIT_n and ERR_n will be generated, where n increments
each time variables are saved for an equation. SAVE overrides the NONE or the default CURRENT setting on
NEWVAR for the current procedure.

PRED . Save the predicted value. The new variable is named FIT_n, where n increments each time a
predicted or residual variable is saved for an equation.

RESSID. Save the residual value. The new variable is named ERR_n, where n increments each time a
predicted or residual variable is saved for an equation.

PRINT Subcommand

PRINT can be used to produce an additional covariance matrix for each equation. The only specification
on this subcommand is keyword COV. The PRINT subcommand overrides the PRINT setting on the TSET
command for the current procedure.

APPLY Subcommand

APPLY allows you to use a previously defined 2SLS model without having to repeat the specifications.

¢ The only specification on APPLY is the name of a previous model. If a model name is not specified, the
model that was specified on the previous 25LS command is used.

* To change the series that are used with the model, enter new series names before or after the APPLY
subcommand.

2sts 103

* To change one or more model specifications, specify the subcommands of only those portions that you
want to change after the APPLY subcommand.

* If no series are specified on the command, the series that were originally specified with the model that
is being reapplied are used.

Example

2SLS Y1 WITH X1 X2 / X1 WITH Y1 X2
/INSTRUMENTS=X2 X3.

2SLS APPLY
/INSTRUMENTS=X2 X3 LAGX1.

* In this example, the first command requests 2SLS using X2 and X3 as instruments.
* The second command specifies the same equations but changes the instruments to X2, X3, and LAGX1.

104 1BM SPSS Statistics 23 Command Syntax Reference

ACF

ACF VARIABLES= series names

[/DIFF={1%*}]
{n }

[/SDIFF={1%*}]
{n }

[/PERIOD=n]

[/{NOLOG**}]
{LN }

[/SEASONAL]
[/MXAUTO={16%+}]
{n }
[/SERROR={ INDx+}]
{MA }
[/PACF]

[/APPLY [='model name']]

**Default if the subcommand is omitted and there is no corresponding specification on the TSET
command.

This command reads the active dataset and causes execution of any pending commands. See the topic
[“Command Order” on page 40| for more information.

Example
ACF TICKETS.

Overview

ACF displays and plots the sample autocorrelation function of one or more time series. You can also
display and plot the autocorrelations of transformed series by requesting natural log and differencing
transformations within the procedure.

Options

Modifying the Series. You can request a natural log transformation of the series using the LN
subcommand and seasonal and nonseasonal differencing to any degree using the SDIFF and DIFF
subcommands. With seasonal differencing, you can specify the periodicity on the PERIOD subcommand.

Statistical Output. With the MXAUTO subcommand, you can specify the number of lags for which you
want autocorrelations to be displayed and plotted, overriding the maximum specified on TSET. You can
also display and plot values at periodic lags only using the SEASONAL subcommand. In addition to
autocorrelations, you can display and plot partial autocorrelations using the PACF subcommand.

Method of Calculating Standard Errors. You can specify one of two methods of calculating the standard
errors for the autocorrelations on the SERROR subcommand.

Basic Specification

The basic specification is one or more series names.

* For each series specified, ACF automatically displays the autocorrelation value, standard error,
Box-Ljung statistic, and probability for each lag.

105

* ACF plots the autocorrelations and marks the bounds of two standard errors on the plot. By default,
ACF displays and plots autocorrelations for up to 16 lags or the number of lags specified on TSET.

* If a method has not been specified on TSET, the default method of calculating the standard error (IND)
assumes that the process is white noise.

Subcommand Order

¢ Subcommands can be specified in any order.

Syntax Rules
* VARIABLES can be specified only once.

¢ Other subcommands can be specified more than once, but only the last specification of each one is
executed.

Operations
¢ Subcommand specifications apply to all series named on the ACF command.

¢ If the LN subcommand is specified, any differencing requested on that ACF command is done on the
log-transformed series.

 Confidence limits are displayed in the plot, marking the bounds of two standard errors at each lag.

Limitations

¢ A maximum of one VARIABLES subcommand. There is no limit on the number of series named on the
list.

Example

ACF VARIABLES = TICKETS
/LN
/DIFF=1
/SDIFF=1
/PER=12
/MXAUT0=50.

* This example produces a plot of the autocorrelation function for the series TICKETS after a natural log
transformation, differencing, and seasonal differencing have been applied. Along with the plot, the
autocorrelation value, standard error, Box-Ljung statistic, and probability are displayed for each lag.

* LN transforms the data using the natural logarithm (base e) of the series.

e DIFF differences the series once.

e SDIFF and PERIOD apply one degree of seasonal differencing with a period of 12.

* MXAUTO specifies that the maximum number of lags for which output is to be produced is 50.

VARIABLES Subcommand

VARIABLES specifies the series names and is the only required subcommand.

DIFF Subcommand

DIFF specifies the degree of differencing used to convert a nonstationary series to a stationary one with a
constant mean and variance before the autocorrelations are computed.

* You can specify 0 or any positive integer on DIFF.
 If DIFF is specified without a value, the default is 1.
¢ The number of values used in the calculations decreases by 1 for each degree—1 of differencing.

Example

ACF VARIABLES = SALES
/DIFF=1.

106 IBM SPSS Statistics 23 Command Syntax Reference

¢ In this example, the series SALES will be differenced once before the autocorrelations are computed
and plotted.

SDIFF Subcommand

If the series exhibits a seasonal or periodic pattern, you can use the SDIFF subcommand to seasonally
difference the series before obtaining autocorrelations.

* The specification on SDIFF indicates the degree of seasonal differencing and can be 0 or any positive
integer.

* If SDIFF is specified without a value, the degree of seasonal differencing defaults to 1.

* The number of seasons used in the calculations decreases by 1 for each degree of seasonal differencing.

* The length of the period used by SDIFF is specified on the PERIOD subcommand. If the PERIOD
subcommand is not specified, the periodicity established on the TSET or DATE command is used (see the
PERIOD subcommand).

PERIOD Subcommand

PERIOD indicates the length of the period to be used by the SDIFF or SEASONAL subcommands.

* The specification on PERIOD indicates how many observations are in one period or season and can be
any positive integer greater than 1.

¢ The PERIOD subcommand is ignored if it is used without the SDIFF or SEASONAL subcommands.

 If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If TSET PERIOD is not

specified, the periodicity established on the DATE command is used. If periodicity was not established
anywhere, the SDIFF and SEASONAL subcommands will not be executed.

Example

ACF VARIABLES = SALES
/SDIFF=1M
/PERIOD=12.

* This command applies one degree of seasonal differencing with a periodicity (season) of 12 to the
series SALES before autocorrelations are computed.

LN and NOLOG Subcommands

LN transforms the data using the natural logarithm (base ¢) of the series and is used to remove varying
amplitude over time. NOLOG indicates that the data should not be log transformed. NOLOG is the default.

* If you specify LN on an ACF command, any differencing requested on that command will be done on
the log-transformed series.

* There are no additional specifications on LN or NOLOG.
* Only the last LN or NOLOG subcommand on an ACF command is executed.

* If a natural log transformation is requested when there are values in the series that are less than or
equal to zero, the ACF will not be produced for that series because nonpositive values cannot be log
transformed.

> NOLOG is generally used with an APPLY subcommand to turn off a previous LN specification.

Example

ACF VARIABLES = SALES
/LN.

¢ This command transforms the series SALES using the natural log transformation and then computes
and plots autocorrelations.

ACE 107

SEASONAL Subcommand

Use the SEASONAL subcommand to focus attention on the seasonal component by displaying and plotting
autocorrelations at periodic lags only.
¢ There are no additional specifications on SEASONAL.

* If SEASONAL is specified, values are displayed and plotted at the periodic lags indicated on the PERIOD
subcommand. If PERIOD is not specified, the periodicity established on the TSET or DATE command is
used (see the PERIOD subcommand).

 If SEASONAL is not specified, autocorrelations for all lags up to the maximum are displayed and plotted.

Example

ACF VARIABLES = SALES
/SEASONAL
/PERIOD=12.

* In this example, autocorrelations are displayed only at every 12th lag.

MXAUTO Subcommand

MXAUTO specifies the maximum number of lags for a series.

* The specification on MXAUTO must be a positive integer.

* If MXAUTO is not specified, the default number of lags is the value set on TSET MXAUTO. If TSET MXAUTO is
not specified, the default is 16.

e The value on MXAUTO overrides the value set on TSET MXAUTO.

Example

ACF VARIABLES = SALES
/MXAUTO=14.

* This command sets the maximum number of autocorrelations to be displayed for the series SALES to
14.

SERROR Subcommand

SERROR specifies the method of calculating the standard errors for the autocorrelations.
* You must specify either the keyword IND or MA on SERROR.
* The method specified on SERROR overrides the method specified on the TSET ACFSE command.

* If SERROR is not specified, the method indicated on TSET ACFSE is used. If TSET ACFSE is not specified,
the default is IND.

IND . Independence model. The method of calculating the standard errors assumes that the underlying
process is white noise.

MA . MA model. The method of calculating the standard errors is based on Bartlett’s approximation. With
this method, appropriate where the true MA order of the process is k-1, standard errors grow at increased
lags .

Example

ACF VARIABLES = SALES
/SERROR=MA.

¢ In this example, the standard errors of the autocorrelations are computed using the MA method.

1. Pankratz, A. 1983. Forecasting with univariate Box-Jenkins models: Concepts and cases. New York: John Wiley and Sons.

108 IBM SPSS Statistics 23 Command Syntax Reference

PACF Subcommand

Use the PACF subcommand to display and plot sample partial autocorrelations as well as autocorrelations
for each series named on the ACF command.

* There are no additional specifications on PACF.
» PACF also displays the standard errors of the partial autocorrelations and indicates the bounds of two
standard errors on the plot.

* With the exception of SERROR, all other subcommands specified on that ACF command apply to both the
partial autocorrelations and the autocorrelations.

Example

ACF VARIABLES = SALES
/DIFFERENCE=1
/PACF.

* This command requests both autocorrelations and partial autocorrelations for the series SALES after it
has been differenced once.

APPLY Subcommand

APPLY allows you to use a previously defined ACF model without having to repeat the specifications.

* The only specification on APPLY is the name of a previous model in quotation marks. If a model name
is not specified, the model specified on the previous ACF command is used.

* To change one or more model specifications, specify the subcommands of only those portions you want
to change after the APPLY subcommand.

¢ If no series are specified on the ACF command, the series that were originally specified with the model
being reapplied are used.

* To change the series used with the model, enter new series names before or after the APPLY
subcommand.

Example

ACF VARIABLES = TICKETS
/LN
/DIFF=1
/SDIFF=1
/PERIOD=12
/MXAUTO=50.
ACF VARIABLES = ROUNDTRP
/APPLY.
ACF APPLY
/NOLOG.
ACF APPLY 'MOD_2"
/PERIOD=6.
* The first command requests a maximum of 50 autocorrelations for the series TICKETS after a natural
log transformation, differencing, and one degree of seasonal differencing with a periodicity of 12 have

been applied. This model is assigned the default name MOD_1.
* The second command displays and plots the autocorrelation function for the series ROUNDTRP using
the same model that was used for the series TICKETS. This model is assigned the name MOD_2.

* The third command requests another autocorrelation function of the series ROUNDTRP using the same
model but without the natural log transformation. Note that when APPLY is the first specification after
the ACF command, the slash (/) before it is not necessary. This model is assigned the name MOD_3.

* The fourth command reapplies MOD_2, autocorrelations for the series ROUNDTRP with the natural
log and differencing specifications, but this time with a periodicity of 6. This model is assigned the
name MOD_4. It differs from MOD_2 only in the periodicity.

ACE 109

References
Box, G. E. P, and G. M. Jenkins. 1976. Time series analysis: Forecasting and control, Rev. ed. San Francisco:
Holden-Day.

Pankratz, A. 1983. Forecasting with univariate Box-Jenkins models: Concepts and cases. New York: John Wiley
and Sons.

110 1BM SPSS Statistics 23 Command Syntax Reference

ADD DOCUMENT

ADD DOCUMENT
"text'
"text'.

This command takes effect immediately. It does not read the active dataset or execute pending
transformations. See the topic [‘Command Order” on page 40| for more information.

Example

ADD DOCUMENT
"This data file is a 10% random sample from the"
"master data file. It's seed value is 13254689.".

Overview

ADD DOCUMENT saves a block of text of any length in the active dataset. The result is equivalent to the
DOCUMENT command. The documentation can be displayed with the DISPLAY DOCUMENT command.

When GET retrieves a data file, or APPLY DICTIONARY is used to apply documents from another data file, or
ADD FILES, MATCH FILES, or UPDATE is used to combine data files, all documents from each specified file
are copied into the working file. DROP DOCUMENTS can be used to drop those documents from the working
file.

Basic Specification

The basic specification is ADD DOCUMENT followed by one or more optional lines of quoted text. The text is
stored in the file dictionary when the data file is saved in IBM SPSS Statistics format.

Syntax Rules

* Each line must be enclosed in single or double quotation marks, following the standard rules for
quoted strings.

* Each line can be up to 80 bytes long (typically 80 characters in single-byte languages), including the
command name but not including the quotation marks used to enclose the text. If any line exceeds 80
bytes, an error will result and the command will not be executed.

* The text can be entered on as many lines as needed.
* Multiple ADD DOCUMENT commands can be specified for the same data file.

* The text from each ADD DOCUMENT command is appended to the end of the list of documentation,
followed by the date in parentheses.

e An ADD DOCUMENT command with no quoted text string appends a date in parentheses to the
documentation.

e DISPLAY DOCUMENTS will display all documentation for the data file specified on the ADD DOCUMENT
and/or DOCUMENT commands. Documentation is displayed exactly as entered; each line of the ADD
DOCUMENT command is displayed as a separate line, and there is no line wrapping.

DROP DOCUMENTS deletes all documentation created by both ADD DOCUMENT and DOCUMENT.

Example

If the command name and the quoted text string are specified on the same line, the command name
counts toward the 80-byte line limit, so it’s a good idea to put the command name on a separate line, as
in:
ADD DOCUMENT

"This is some text that describes this file.".

© Copyright IBM Corporation 1989, 2014 111

Example

To insert blank lines between blocks of text, enter a null string, as in:

ADD DOCUMENT
"This is some text that describes this file."

"This is some more text preceded by a blank line.".

112 IBM SPSS Statistics 23 Command Syntax Reference

ADD FILES

ADD FILES FILE={'savfile'|'dataset'} [PASSWORD='password']
}

{*
[/RENAME=(01d varnames=new varnames)...]
[/IN=varname]
/FILE=... [PASSWORD='password']... [/RENAME=...] [/IN=...]
[/BY varlist]
[/MAP]

[/KEEP={ALL#* }] [/DROP=varlist]
{varlist}
[/FIRST=varname] [/LAST=varname]
**Default if the subcommand is omitted.

Release History

Release 22.0
* PASSWORD keyword introduced on the FILE subcommand.

Example
ADD FILES FILE="/data/schooll.sav" /FILE="/data/school2.sav".

Overview

ADD FILES combines cases from 2 up to 50 open data sets or external IBM SPSS Statistics data files by
concatenating or interleaving cases. When cases are concatenated, all cases from one file are added to the
end of all cases from another file. When cases are interleaved, cases in the resulting file are ordered
according to the values of one or more key variables.

The files specified on ADD FILES can be external IBM SPSS Statistics data files and/or currently open
datasets. The combined file becomes the new active dataset.

In general, ADD FILES is used to combine files containing the same variables but different cases. To
combine files containing the same cases but different variables, use MATCH FILES. To update existing IBM
SPSS Statistics data files, use UPDATE.

Options

Variable Selection. You can specify which variables from each input file are included in the new active
dataset using the DROP and KEEP subcommands.

Variable Names. You can rename variables in each input file before combining the files using the RENAME
subcommand. This permits you to combine variables that are the same but whose names differ in
different input files or to separate variables that are different but have the same name.

Variable Flag. You can create a variable that indicates whether a case came from a particular input file
using IN. When interleaving cases, you can use the FIRST or LAST subcommands to create a variable that

flags the first or last case of a group of cases with the same value for the key variable.

Variable Map. You can request a map showing all variables in the new active dataset, their order, and the
input files from which they came using the MAP subcommand.

113

Basic Specification

* The basic specification is two or more FILE subcommands, each of which specifies a file to be
combined. If cases are to be interleaved, the BY subcommand specifying the key variables is also
required.

* All variables from all input files are included in the new active dataset unless DROP or KEEP is specified.

Subcommand Order
* RENAME and IN must immediately follow the FILE subcommand to which they apply.

e BY, FIRST, and LAST must follow all FILE subcommands and their associated RENAME and IN
subcommands.

Syntax Rules

* RENAME can be repeated after each FILE subcommand. RENAME applies only to variables in the file
named on the FILE subcommand immediately preceding it.

* BY can be specified only once. However, multiple key variables can be specified on BY. When BY is
used, all files must be sorted in ascending order by the key variables (see SORT CASES).

e FIRST and LAST can be used only when files are interleaved (when BY is used).
e MAP can be repeated as often as desired.

Operations

* ADD FILES reads all input files named on FILE and builds a new active dataset. ADD FILES is executed
when the data are read by one of the procedure commands or the EXECUTE, SAVE, or SORT CASES
commands.

— If the current active dataset is included and is specified with an asterisk (FILE=*), the new merged
dataset replaces the active dataset. If that dataset is a named dataset, the merged dataset retains that
name. If the current active dataset is not included or is specified by name (for example,
FILE=Datasetl), a new unnamed, merged dataset is created, and it becomes the active dataset. For
information on naming datasets, see ["'DATASET NAME” on page 525,

* The resulting file contains complete dictionary information from the input files, including variable
names, labels, print and write formats, and missing-value indicators. It also contains the documents
from each input file. See DROP DOCUMENTS for information on deleting documents.

* For each variable, dictionary information is taken from the first file containing value labels, missing
values, or a variable label for the common variable. If the first file has no such information, ADD FILES
checks the second file, and so on, seeking dictionary information.

* Variables are copied in order from the first file specified, then from the second file specified, and so on.
Variables that are not contained in all files receive the system-missing value for cases that do not have
values for those variables.

* If the same variable name exists in more than one file but the format type (numeric or string) does not
match, the command is not executed.

* If a numeric variable has the same name but different formats (for example, F8.0 and F8.2) in different
input files, the format of the variable in the first-named file is used.

* If a string variable has the same name but different formats (for example, A24 and A16) in different
input files, the command is not executed.

* If the active dataset is named as an input file, any N and SAMPLE commands that have been specified
are applied to the active dataset before the files are combined.

* If only one of the files is weighted, the program turns weighting off when combining cases from the
two files. To weight the cases, use the WEIGHT command again.

Limitations
¢ A maximum of 50 files can be combined on one ADD FILES command.

¢ The TEMPORARY command cannot be in effect if the active dataset is used as an input file.

114 1BM SPSS Statistics 23 Command Syntax Reference

Examples

ADD FILES FILE="/data/schooll.sav"
/FILE="/data/school2.sav".

ADD FILES concatenates cases from the IBM SPSS Statistics data files schooll.sav and school2.sav. All
cases from schooll.sav precede all cases from school2.sav in the resulting file.

SORT CASES BY LOCATN DEPT.

ADD FILES FILE="/data/source.sav" /FILE=* /BY LOCATN DEPT
/KEEP AVGHOUR AVGRAISE LOCATN DEPT SEX HOURLY RAISE /MAP.
SAVE OUTFILE="/data/prsnnl.sav".

* SORT CASES sorts cases in the active dataset in ascending order of their values for LOCATN and DEPT.

e ADD FILES combines two files: the external IBM SPSS Statistics data file source.sav and the sorted active
dataset. The file source.sav must also be sorted by LOCATN and DEPT.

* BY indicates that the keys for interleaving cases are LOCATN and DEPT, the same variables used on
SORT CASES.

* KEEP specifies the variables to be retained in the resulting file.

* MAP produces a list of variables in the resulting file and the two input files.
* SAVE saves the resulting file as a new IBM SPSS Statistics data file named prsnnl.sav.

FILE Subcommand

FILE identifies the files to be combined. A separate FILE subcommand must be used for each input file.
* An asterisk may be specified on FILE to indicate the active dataset.

¢ Dataset names instead of file names can be used to refer to currently open datasets.

* The order in which files are named determines the order of cases in the resulting file.

PASSWORD Keyword

The PASSWORD keyword specifies the password required to open an encrypted IBM SPSS Statistics data
file. The specified value must be enclosed in quotation marks and can be provided as encrypted or as
plain text. Encrypted passwords are created when pasting command syntax from the Save Data As
dialog. The PASSWORD keyword is ignored if the file is not encrypted.

Example

GET DATA /TYPE=XLS /FILE='/temp/excelfilel.xls'.
DATASET NAME exceldatal.
GET DATA /TYPE=XLS /FILE='/temp/excelfile2.x1s'.
ADD FILES FILE='exceldatal'

/FILE=*

/FILE='/temp/mydata.sav'.

RENAME Subcommand

RENAME renames variables in input files before they are processed by ADD FILES. RENAME follows the FILE
subcommand that specifies the file containing the variables to be renamed.

* RENAME applies only to the FILE subcommand immediately preceding it. To rename variables from
more than one input file, enter a RENAME subcommand after each FILE subcommand that specifies a file
with variables to be renamed.

* Specifications for RENAME consist of a left parenthesis, a list of old variable names, an equals sign, a list
of new variable names, and a right parenthesis. The two variable lists must name or imply the same
number of variables. If only one variable is renamed, the parentheses are optional.

* More than one such specification can be entered on a single RENAME subcommand, each enclosed in
parentheses.

¢ The TO keyword can be used to refer to consecutive variables in the file and to generate new variable
names.

ADD FILES 115

RENAME takes effect immediately. KEEP and DROP subcommands entered prior to RENAME must use the old
names, while those entered after RENAME must use the new names.

 All specifications within a single set of parentheses take effect simultaneously. For example, the
specification RENAME (A,B = B,A) swaps the names of the two variables.

e Variables cannot be renamed to scratch variables.

* Input data files are not changed on disk; only the copy of the file being combined is affected.

Example

ADD FILES FILE="/data/clients.sav" /RENAME=(TEL_NO, ID_NO = PHONE, ID)
/FILE="/data/master.sav" /BY ID.

* ADD FILES adds new client cases from the file clients.sav to existing client cases in the file master.sav.

* Two variables on clients.sav are renamed prior to the match. TEL_NO is renamed PHONE to match the
name used for phone numbers in the master file. ID_NO is renamed ID so that it will have the same
name as the identification variable in the master file and can be used on the BY subcommand.

* The BY subcommand orders the resulting file according to client ID number.

BY Subcommand

BY specifies one or more key variables that determine the order of cases in the resulting file. When BY is
specified, cases from the input files are interleaved according to their values for the key variables.

* BY must follow the FILE subcommands and any associated RENAME and IN subcommands.
* The key variables specified on BY must be present and have the same names in all input files.
* Key variables can be string or numeric.

 All input files must be sorted in ascending order of the key variables. If necessary, use SORT CASES
before ADD FILES.

* Cases in the resulting file are ordered by the values of the key variables. All cases from the first file
with the first value for the key variable are first, followed by all cases from the second file with the
same value, followed by all cases from the third file with the same value, and so forth. These cases are
followed by all cases from the first file with the next value for the key variable, and so on.

* Cases with system-missing values are first in the resulting file. User-missing values are interleaved
with other values.

DROP and KEEP Subcommands

DROP and KEEP are used to include only a subset of variables in the resulting file. DROP specifies a set of
variables to exclude and KEEP specifies a set of variables to retain.

* DROP and KEEP do not affect the input files on disk.
e DROP and KEEP must follow all FILE and RENAME subcommands.

* DROP and KEEP must specify one or more variables. If RENAME is used to rename variables, specify the
new names on DROP and KEEP.

> DROP and KEEP take effect immediately. If a variable specified on DROP or KEEP does not exist in the
input files, was dropped by a previous DROP subcommand, or was not retained by a previous KEEP
subcommand, the program displays an error message and does not execute the ADD FILES command.

e DROP cannot be used with variables created by the IN, FIRST, or LAST subcommands.

* KEEP can be used to change the order of variables in the resulting file. With KEEP, variables are kept in
the order in which they are listed on the subcommand. If a variable is named more than once on KEEP,
only the first mention of the variable is in effect; all subsequent references to that variable name are
ignored.

* The keyword ALL can be specified on KEEP. ALL must be the last specification on KEEP, and it refers to
all variables not previously named on that subcommand. It is useful when you want to arrange the
first few variables in a specific order.

116 1BM SPSS Statistics 23 Command Syntax Reference

Example

ADD FILES FILE="/data/particle.sav" /RENAME=(PARTIC=pollutel)
/FILE="/data/gas.sav" /RENAME=(0ZONE TO SULFUR=polTut2 TO pollute4)
/KEEP=pollutel pollute2 pollute3 pollute4.

* The renamed variables are retained in the resulting file. KEEP is specified after all the FILE and RENAME
subcommands, and it refers to the variables by their new names.

IN Subcommand

IN creates a new variable in the resulting file that indicates whether a case came from the input file
named on the preceding FILE subcommand. IN applies only to the file specified on the immediately
preceding FILE subcommand.

* IN has only one specification, the name of the flag variable.

¢ The variable created by IN has the value 1 for every case that came from the associated input file and
the value O for every case that came from a different input file.

* Variables created by IN are automatically attached to the end of the resulting file and cannot be

dropped. If FIRST or LAST are used, the variable created by IN precedes the variables created by FIRST
or LAST.

Example

ADD FILES FILE="/data/weekl0.sav" /FILE="/data/weekll.sav"
/IN=INWEEK11 /BY=EMPID.

* IN creates the variable INWEEK11, which has the value 1 for all cases in the resulting file that came
from the input file week11.sav and the value O for those cases that were not in the file week11.sav.

Example

ADD FILES FILE="/data/weekl0.sav" /FILE="/data/weekll.sav"
/IN=INWEEK11 /BY=EMPID.
IF (NOT INWEEK11) SALARY1=0.

* The variable created by IN is used to screen partially missing cases for subsequent analyses.

* Since IN variables have either the value 1 or 0, they can be used as logical expressions, where 1 = true
and 0 = false. The IF command sets the variable SALARY1 equal to O for all cases that came from the
file INWEEK11.

FIRST and LAST Subcommands

FIRST and LAST create logical variables that flag the first or last case of a group of cases with the same
value on the BY variables. FIRST and LAST must follow all FILE subcommands and their associated RENAME
and IN subcommands.

* FIRST and LAST have only one specification, the name of the flag variable.

e FIRST creates a variable with the value 1 for the first case of each group and the value 0 for all other
cases.

* LAST creates a variable with the value 1 for the last case of each group and the value 0 for all other
cases.

* Variables created by FIRST and LAST are automatically attached to the end of the resulting file and
cannot be dropped.

Example

ADD FILES FILE="/data/schooll.sav" /FILE="/data/school2.sav"
/BY=GRADE /FIRST=HISCORE.

* The variable HISCORE contains the value 1 for the first case in each grade in the resulting file and the
value 0 for all other cases.

ADD FILES 117

MAP Subcommand

MAP produces a list of the variables included in the new active dataset and the file or files from which
they came. Variables are listed in the order in which they exist in the resulting file. MAP has no
specifications and must follow after all FILE and RENAME subcommands.

* Multiple MAP subcommands can be used. Each MAP subcommand shows the current status of the active
dataset and reflects only the subcommands that precede the MAP subcommand.

* To obtain a map of the active dataset in its final state, specify MAP last.

* If a variable is renamed, its original and new names are listed. Variables created by IN, FIRST, and LAST
are not included in the map, since they are automatically attached to the end of the file and cannot be
dropped.

Adding Cases from Different Data Sources

You can add cases from any data source that IBM SPSS Statistics can read by defining dataset names for
each data source that you read (DATASET NAME command) and then using ADD FILES to add the cases from
each file. The following example merges the contents of three text data files, but it could just as easily
merge the contents of a text data file, and Excel spreadsheet, and a database table.

Example

DATA LIST FILE="/data/gasdatal.txt"
/1 0ZONE 10-12 CO 20-22 SULFUR 30-32.
DATASET NAME gasdatal.
DATA LIST FILE="/data/gasdata2.txt"
/1 0ZONE 10-12 CO 20-22 SULFUR 30-32.
DATASET NAME gasdata2.
DATA LIST FILE="/data/gasdata3.txt"
/1 0ZONE 10-12 CO 20-22 SULFUR 30-32.
DATASET NAME gasdata3.
ADD FILES FILE='gasdatal'
/FILE="'gasdata2'
/FILE='gasdata3'.
SAVE OUTFILE='/data/combined_data.sav'.

118 1BM SPSS Statistics 23 Command Syntax Reference

ADD VALUE LABELS

ADD VALUE LABELS varlist value 'label' value 'label'...[/varlist...]

This command takes effect immediately. It does not read the active dataset or execute pending
transformations. See the topic [Command Order” on page 40| for more information.

Example

ADD VALUE LABELS JOBGRADE 'P' 'Parttime Employee'
'C' 'Customer Support'.

Overview

ADD VALUE LABELS adds or alters value labels without affecting other value labels already defined for that
variable. In contrast, VALUE LABELS adds or alters value labels but deletes all existing value labels for that
variable when it does so.

Basic Specification
The basic specification is a variable name and individual values with associated labels.

Syntax Rules

* Labels can be assigned to values of any previously defined variable. It is not necessary to enter value
labels for all of a variable’s values.

* Each value label must be enclosed in single or double quotes.

* To specify a single quote or apostrophe within a quoted string, either enclose the entire string in
double quotes or double the single quote/apostrophe.

* Value labels can contain any characters, including blanks.

* The same labels can be assigned to the same values of different variables by specifying a list of
variable names. For string variables, the variables on the list must have the same defined width (for
example, A8).

¢ Multiple sets of variable names and value labels can be specified on one ADD VALUE LABELS command
as long as each set is separated from the previous one by a slash.

* To continue a label from one command line to the next, specify a plus sign (+) before the continuation
of the label and enclose each segment of the label, including the blank between them, in single or
double quotes.

Operations

e Unlike most transformations, ADD VALUE LABELS takes effect as soon as it is encountered in the
command sequence. Thus, special attention should be paid to its position among commands.

¢ The added value labels are stored in the active dataset dictionary.
e ADD VALUE LABELS can be used for variables that have no previously assigned value labels.
* Adding labels to some values does not affect labels previously assigned to other values.

Limitations

* Value labels cannot exceed 120 bytes.

Examples
Adding Value Labels

119

ADD VALUE LABELS V1 TO V3 1 'Officials & Managers'
6 'Service Workers'
/V4 'N' 'New Employee'.

* Labels are assigned to the values 1 and 6 of the variables between and including V1 and V3 in the
active dataset.

* Following the required slash, a label for the value N for the variable V4 is specified. N is a string value
and must be enclosed in single or double quotes.

* If labels already exist for these values, they are changed in the dictionary. If labels do not exist for
these values, new labels are added to the dictionary.

* Existing labels for other values for these variables are not affected.

Specifying a Label on Multiple Lines

ADD VALUE LABELS OFFICE88 1 "EMPLOYEE'S OFFICE ASSIGNMENT PRIOR"
+ " T0 1988".

* The label for the value 1 for OFFICESS is specified on two command lines. The plus sign concatenates
the two string segments, and a blank is included at the beginning of the second string in order to
maintain correct spacing in the label.

Value Labels for String Variables

* For string variables, the values and the labels must be enclosed in single or double quotes.

* If a specified value is longer than the defined width of the variable, the program displays a warning
and truncates the value. The added label will be associated with the truncated value.

* If a specified value is shorter than the defined width of the variable, the program adds blanks to
right-pad the value without warning. The added label will be associated with the padded value.

* If a single set of labels is to be assigned to a list of string variables, the variables must have the same
defined width (for example, A8).

Example

ADD VALUE LABELS STATE 'TEX' 'TEXAS' 'TEN' 'TENNESSEE'
'MIN' 'MINNESOTA'.

* ADD VALUE LABELS assigns labels to three values of the variable STATE. Each value and each label is
specified in quotes.

* Assuming that the variable STATE is defined as three characters wide, the labels TEXAS, TENNESSEE,
and MINNESOTA will be appropriately associated with the values TEX, TEN, and MIN. However, if
STATE was defined as two characters wide, the program would truncate the specified values to two
characters and would not be able to associate the labels correctly. Both TEX and TEN would be
truncated to TE and would first be assigned the label TEXAS, which would then be changed to
TENNESSEE by the second specification.

Example
ADD VALUE LABELS STATE REGION "U" "UNKNOWN".

* The label UNKNOWN is assigned to the value U for both STATE and REGION.

e STATE and REGION must have the same defined width. If they do not, a separate specification must
be made for each, as in the following;:
ADD VALUE LABELS STATE "U" "UNKNOWN" / REGION "U" "UNKNOWN".

120 IBM SPSS Statistics 23 Command Syntax Reference

ADP

ADP is available in the Data Preparation option.

ADP
/FIELDS [TARGET=targetField]
INPUT=predictorFieldlist
[ANALYSISWEIGHT=analysisweightField]
[/PREPDATETIME
[DATEDURATION={YES** (REFERENCE={CURRENT** }
{YMD(datespec)}
UNIT={AUTO** b
{YEARS[(SUFFIX={'_years' })] }
{suffixname}
{MONTHS[(SUFFIX={"'_months })]}
{suffixname}
{DAYS[(SUFFIX={' days' })] }
{suffixname}
{NO 1
[TIMEDURATION={YES#* (REFERENCE={CURRENT** }
{HMS (timespec)}
UNIT={AUTO** N
{HOURS[(SUFFIX={'_hours' })] }
{suffixname}
{MINUTES[(SUFFIX={'_minutes'})]}
{suffixname}
{SECONDS[(SUFFIX={"'_seconds'})]}
{ 1
{NO }

suffixname
[EXTRACTYEAR={YES[(SUFFIX={'_year' DY
{suffixname}
{NOw= }
[EXTRACTMONTH={YES[(SUFFIX={'_month' })1}]
{suffixname}
{NOw= }
[EXTRACTDAY={YES(SUFFIX={'_day' b
{suffixname}
{NOw= }
[EXTRACTHOUR={YES (SUFFIX={'_hour' Wi
{suffixname}
{NOw= }
[EXTRACTMINUTE={YES (SUFFIX={'_minute' })}]
{suffixname}
{NOw= }
[EXTRACTSECOND={YES (SUFFIX={"'_second' })}]
{suffixname}
{NOw= }
[/SCREENING [PCTMISSING={YES#**(MAXPCT={50**})}]
{value}
{NO }
[UNIQUECAT={YES** (MAXCAT={100** })}]
{integer}
{NO
[SINGLECAT={YES (MAXPCT={95** })}]
{value}
{NOw= }
[/ADJUSTLEVEL [INPUT={YES%x}] [TARGET={YES##}]]
{NO) {NO)
[MAXVALORDINAL={10+* }]
{integer}
[MINVALCONTINUQUS={5** 1
{integer}
[/OUTLIERHANDLING [INPUT={YES**}] [TARGET={YES}]]
{NO) {NO
[CUTOFF=SD({3** })]
{value}
[REPLACEWITH={CUTOFFVALUE**}]
{MISSING 1
[/REPLACEMISSING [INPUT={YES+[(EXCLUDE ([CONTINUOUS] [NOMINAL] [ORDINAL]))]
{NO
[TARGET={YES[(EXCLUDE ([CONTINUOUS] [NOMINAL] [ORDINAL]))]}
{NO**
[/REORDERNOMINAL [INPUT={YES }] [TARGET={YES }]
{NO#*=} {NO#*x}
[/RESCALE [INPUT={ZSCORE#x([MEAN={0#* }] [SD={1x* }]1)}]
{value} {value}
{MINMAX ([MIN={0%+ }] [MAX={100%%}])}
{value} {value}

]

PR

121

{NONE }
[TARGET={BOXCOX** ([MEAN={0** }] [SD={1*x }])}]
{value} {value}
{NONE }
[/TRANSFORM [MERGESUPERVISED={YES**(PVALUE={0.05%*})}]
{value }
{NO }
[MERGEUNSUPERVISED={YES{ ([ORDINAL] [NOMINAL] [MINPCT={10** })}]
{value}
{NO*=* 1
[BINNING={SUPERVISED** (PVALUE={0.05%*})}]
{value }
{NONE }
[SELECTION={YES** (PVALUE={0.05%*})}]
{NO
[CONSTRUCTION={YES } (ROOT={feature })]
{rootname}
{NOwx}
[/CRITERIA [SUFFIX(TARGET={'_transformed'} INPUT={'_transformed'})]
{suffixname } {suffixname }
/OUTFILE PREPXML='filespec'

** Default if the subcommand or keyword is omitted.

This command reads the active dataset and causes execution of any pending commands. See the topic
[“Command Order” on page 40| for more information.

Release History

Release 18

¢ Command introduced.

Example

ADP
/FIELDS TARGET=targetVar
INPUT=varl var2 var3
/OUTFILE PREPXML='file.xml"'.

Overview

Automated Data Preparation helps to prepare data for analysis by automating tedious and repetitive data
preparation tasks that would otherwise be done manually. The operations it performs improve analysis
speed, predictive power, and robustness. A key capability of the component is feature space
construction—the discovery of useful sets of predictors from the data through transformation and
combination of existing fields. Feature selection offers the ability to narrow the attribute space by
screening out irrelevant fields, but Automated Data Preparation pairs selection and construction
capabilities in order to automatically remove irrelevant fields that slow down or confuse algorithms and
create new fields that boost predictive power.

Note that supported operations are performed without knowing what algorithms will be run on the data
in further analyses—it is not a generalized data cleaner, nor does it have an understanding of business
rules. Basic cleaning and integrity checks can be done using the IBM SPSS Statistics Data Validation
procedure.

Options

Date and Time Handling. The year, month, and day can be extracted from fields containing dates, and
new fields containing the durations since a reference date computed. Likewise, the hour, minute, and
second can be extracted from fields containing times, and new fields containing the time since a reference

time computed.

Screening. Fields with too many missing values, and categorical fields with too many unique values, or
too many values concentrated in a single value, can be screened and excluded from further analysis.

122 IBM SPSS Statistics 23 Command Syntax Reference

Rescaling. Continuous inputs can optionally be rescaled using a z score or min-max transformation. A
continuous target can optionally be rescaled using a Box-Cox transformation.

Transformations. The procedure can suggest transformations used to merge similar categories of
categorical inputs, bin values of continuous inputs, and construct and select new input fields from
continuous inputs using principal components analysis.

Other Target and Input Handling. The procedure can apply rules for handling outliers, replace missing
values, recode the categories of nominal fields, and adjust the measurement level of continuous and
ordinal fields.

Output. The procedure creates an XML file containing suggested operations. This can be merged with a
model XML file using the Merge Model XML dialog (Utilities>Merge Model XML) or transformed into
command syntax using TMS IMPORT.

Basic Specification

The basic specification is the ADP command with a FIELDS subcommand specifying the inputs and
optionally a target, and an OUTFILE subcommand specifying where the transformation rules should be
saved.

Syntax Rules

¢ The VARIABLES and OUTFILE subcommands are required; all other subcommands are optional.
* Subcommands may be specified in any order.

* Only a single instance of each subcommand is allowed.

* An error occurs if a keyword is specified more than once within a subcommand.

* Parentheses, equals signs, and slashes shown in the syntax chart are required.

¢ The command name, subcommand names, and keywords must be spelled in full.

* Empty subcommands are not allowed.

Limitations
* SPLIT FILE is ignored by this command.

Examples

Basic Specification

ADP
/FIELDS TARGET=targetField
INPUT=fieldl field2 field3
/OUTFILE PREPXML='file.xml'.

¢ ADP processes the target and input fields using the default settings.

* OUTFILE saves an XML file containing suggested operations. This can be merged with a model XML file
using the Merge Model XML dialog (Utilities>Merge Model XML) or transformed into command
syntax using TMS IMPORT.

FIELDS Subcommand

The FIELDS subcommand is used to specify the target, inputs, and optional weights.
* The FIELDS subcommand and the INPUT keyword are required.

TARGET Keyword

ADP 123

Specify a single field that will be used as a target in further analyses. The target field is processed based
upon its defined measurement level; nominal, ordinal, or continuous. Use the VARIABLE LEVEL command
to change a target field's measurement level.

INPUT Keyword

Specify one or more fields that will be used as inputs in further analsyses. Input fields are processed
based upon their defined measurement level; nominal, ordinal, or continuous. Use the VARIABLE LEVEL
command to change an input field's measurement level.

ANALYSISWEIGHT Keyword

Specify a variable containing analysis (regression) weights. The procedure incorporates analysis weights
where appropriate in operations used to prepare the data.

The analysis weight variable must be numeric. Cases with a negative or zero analysis weight are ignored.

PREPDATETIME Subcommand

The PREPDATETIME subcommand specifies handling of date and time fields.

* If PREPDATETIME is not specified, by default the procedure computes date and time durations since the
current date and time.

* The original date and time fields will not be recommended as model inputs following automated data
preparation.

DATEDURATION Keyword

The DATEDURATION keyword computes the number of years/months/days since a reference date for each
variable containing dates.

REFERENCE = CURRENT | YMD('datespec') . Reference date. Specify CURRENT to use the current date as
the reference date. Use YMDto specify a custom reference date with the year, month, and day, in that order,
in parentheses using a valid date format in quotes. The default is CURRENT.

UNIT=AUTO | YEARS | MONTHS | DAYS. Date units for computed durations. Specify the units for the
computed durations. AUTOdetermines the units based on the following rules. The default is AUTO.

¢ If the minimum number of elapsed days is less than 31, then the duration is returned in days.

¢ If the minimum number of elapsed days is less than 366 but greater than or equal to 31, then the
duration is returned in months. The number of months between two dates is calculated based on
average number of days in a month (30.4375): months = days/ 30.4375.

¢ If the minimum number of elapsed days greater than or equal to 366, then the duration is returned in
years. The number of years between two dates is calculated based on average number of days in a year
(365.25): years = days / 365.25.

Explicitly specifying YEARS, MONTHS, or DAYS returns the duration in years, months, or days, respectively.
Optionally, in parentheses, specify SUFFIX= with a suffix in quotes. The default suffix depends upon the
unit; YEARS, MONTHS, and DAYS have defaults _years, _months, and _days, respectively.

TIMEDURATION Keyword

The TIMEDURATION keyword computes the number of hours/minutes/seconds since a reference time for
each variable containing times.

124 1BM SPSS Statistics 23 Command Syntax Reference

REFERENCE = CURRENT | HMS('timespec'). Reference date. Specify CURRENT to use the current time as
the reference time or use HMSand the hour, minute, and second, in that order, in parentheses using a valid
time format in quotes. The default is CURRENT.

UNIT = AUTO | HOURS | MINUTES | SECONDS. Date units for computed durations. Specify the units
for the computed durations. AUTOdetermines the units based on the following rules. The default is AUTO.

¢ If the minimum number of elapsed seconds is less than 60, then the duration is returned in seconds.

¢ If the minimum number of elapsed seconds is larger than or equal to 60 but less than 3600, then the
duration is returned in minutes.

* If the minimum number of elapsed seconds is larger than or equal to 3600, then the duration is
returned in hours.

Explicitly specifying HOURS, MINUTES, or SECONDS returns the duration in hours, minutes, or seconds,
respectively. Optionally, in parentheses, specify SUFFIX= with a suffix in quotes. The default suffix
depends upon the unit; HOURS, MINUTES, and SECONDS have defaults _hours, _minutes, and _seconds,
respectively.

EXTRACTYEAR Keyword

The EXTRACTYEAR keyword extracts the year element from a date variable.

Optionally specify the SUFFIX keyword in parentheses with a suffix in quotes. The default suffix is _year.
EXTRACTMONTH Keyword

The EXTRACTMONTH keyword extracts the month element from a date variable.

Optionally specify the SUFFIX keyword in parentheses with a suffix in quotes. The default suffix is
_month.

EXTRACTDAY Keyword

The EXTRACTDAY keyword extracts the day element from a date variable.

Optionally specify the SUFFIX keyword in parentheses with a suffix in quotes. The default suffix is _day.
EXTRACTHOUR Keyword

The EXTRACTHOUR keyword extracts the hour element from a time variable.

Optionally specify the SUFFIX keyword in parentheses with a suffix in quotes. The default suffix is _hour.
EXTRACTMINUTE Keyword

The EXTRACTMINUTEkeyword extracts the minute element from a time variable.

Optionally specify the SUFFIX keyword in parentheses with a suffix in quotes. The default suffix is
_minute.

EXTRACTSECOND Keyword
The EXTRACTSECOND keyword extracts the second element from a time variable.

Optionally specify the SUFFIX keyword in parentheses with a suffix in quotes. The default suffix is
_second.

ADP 125

SCREENING Subcommand

The SCREENING subcommand specifies settings for excluding unsuitable fields.

PCTMISSING = YES(MAXPCT=value) | NO. Screen out fields with too many missing values. Fields with
more than MAXPCT missing values are removed from further analysis. Specify a value greater than or
equal to 0, which is equivalent to deselecting this option, and less than or equal to 100, though fields
with all missing values are automatically excluded. The default is 50.

UNIQUECAT = YES(MAXCAT=integer) | NO. Screen out nominal fields with too many unique
categories.Nominal fields with more than MAXCATcategories are removed from further analysis. Specify a
positive integer. The default is 100.

SINGLECAT = YES(MAXPCT=value) | NO. Screen out categorical fields that are nearly constant. Ordinal
and nominal fields with a category that contains more than MAXPCT of the records are removed from
further analysis. Specify a value greater than or equal to 0, equivalent to deselecting this option, and less
than or equal to 100, though constant fields are automatically excluded. The default is 95.

ADJUSTLEVEL Subcommand

The ADJUSTLEVEL subcommand recasts ordinal fields with too many categories as continuous and
continuous fields with too few unique values as ordinal. By default, the measurement levels of ordinal
fields with more than 10 categories and continuous fields with fewer than 5 unique values are adjusted.

INPUT=YES | NO. Check inputs and adjust measurement level if necessary. By default, inputs are checked.

TARGET = YES | NO. Check target and adjust measurment level if necessary. By default, the target is
checked.

MAXVALORDINAL = integer. Maximum number of categories allowed for ordinal fields. Ordinal fields with
more than MAXVALORDINALcategories are recast as continuous fields. Specify a positive integer. The default
is 10. The value of MAXVALORDINALmust be greater than or equal to MINVALCONTINUOUS.

MINVALCONTINUOUS = integer. Minimum number of unique values allowed for continuous fields.
Continuous fields with less than MINVALCONTINUOUS unique values are recast as ordinal fields. Specify a
positive integer. The default is 5. The value of MINVALCONTINUOUS must be less than or equal to
MAXVALORDINAL.

OUTLIERHANDLING Subcommand

The OUTLIERHANDLING subcommand checks fields for outliers and replaces the outlying values with less
extreme values or missing values.

INPUT=YES | NO. Check inputs for outliers. By default, inputs are checked.
TARGET=YES | NO. Check target for outliers. By default, the target is checked.

CUTOFF=SD(value) . Cutoff for determining outliers. If a value is more than SD"robust" standard deviations
from the mean value for a field, then it is considered an outlier. Specify a positive number. The default is
3 standard deviations.

REPLACEWITH = CUTOFFVALUE | MISSING. Value to replace outliers with. CUTOFFVALUE replaces
outliers with the cutoff for determining outliers. MISSING replaces outliers with the system-missing value.
These missing values can be further handled by the REPLACEMISSING subcommand. The default is
CUTOFFVALUE.

126 IBM SPSS Statistics 23 Command Syntax Reference

REPLACEMISSING Subcommand

The REPLACEMISSING subcommand replaces missing values in continuous, ordinal, and nominal fields
with the mean, median, or mode, respectively.

INPUT=YES | NO. Replace missing values in input fields. By default, missing values are replaced in inputs.
Optionally specify the keyword EXCLUDE and a list in parentheses of the field measurement levels to
determine which input fields should be checked; for example: INPUT=YES causes the procedure to replace
missing values in all input fields, while INPUT=YES (EXCLUDE (CONTINUOUS NOMINAL)) causes the procedure
to replace missing values in fields with the ordinal measurement level.

TARGET= NO | YES. Replace missing values in the target. By default, missing values are not replaced in
the target. When replacing missing values in the target, optionally specify the keyword EXCLUDE as
described for the INPUTkeyword above.

REORDERNOMINAL Subcommand

The REORDERNOMINAL subcommand recodes the values of nominal fields from least frequently occurring to
most frequently occurring. The new field values start with 0 as the least frequent category. Note that the
new field will be numeric even if the original field is a string. For example, if a nominal field's data
values are "A", "A", "A", "B", "C", "C", then automated data preparation would recode "B" into 0, "C" into
1, and "A" into 2.

INPUT=NO | YES. Reorder values of inputs. By default, values of nominal inputs are not reordered. This
specification is ignored if there are no nominal inputs.

TARGET=NO | YES. Reorder values of the target. By default, values of a nominal target are not reordered.
This specification is ignored if the target is not nominal.

RESCALE Subcommand

The RESCALE subcommand is used to rescale continuous fields. Different methods are available for inputs
and the target.

INPUT Keyword

The INPUT keyword specifies the method for rescaling continuous input fields.
e Z score rescaling is performed by default with a mean of 0 and standard deviation of 1.
¢ If there are no continuous inputs, INPUT is ignored.

ZSCORE(MEAN=value SD=value). Z score transformation. Using the observed mean and standard
deviation as population parameter estimates, the fields are standardized and then the z scores are
mapped to the corresponding values of a normal distribution with the specified MEAN and SD. Specify a
number for MEAN and a positive number for SD. The defaults are 0 and 1, respectively, corresponding to
standardized rescaling.

MINMAX(MIN=value MAX=value). Min-Max transformation. Using the observed minimum and
maximum as population parameter estimates, the fields are mapped to the corresponding values of a
uniform distribution with the specified MINand MAX. Specify numbers with MAX greater than MIN.
NONE. Do not rescale inputs.

TARGET Keyword

The TARGET keyword specifies the method for rescaling a continuous target.

ADP 127

* Box-Cox rescaling is performed by default with a target mean of 0 and target standard deviation of 1.

* If there is no target, or it is not continuous, TARGET is ignored.

BOXCOX(MEAN=value SD=value). Box-Cox transformation. This transforms a continuous target using the
Box-Cox transformation into a field that has an approximately normal distribution with the specified MEAN

and SD. Specify a number for MEANand a positive number for SD. The defaults are 0 and 1, respectively.

NONE. Do not rescale target.

TRANSFORM Subcommand

The TRANSFORM subcommand is used to merge similar categories of categorical inputs, bin values of
continuous inputs, and construct and select new input fields from continuous inputs using principal
components analysis.

MERGESUPERVISED Keyword

The MERGESUPERVISED keyword specifies how to merge similar categories of a nominal or ordinal input in
the presence of a target.

* If there are no categorical inputs, MERGESUPERVISED is ignored.
* If there is no target specified on the FIELDS subcommand, MERGESUPERVISED is ignored.

YES(PVALUE=value). Supervised merge. Similar categories are identified based upon the relationship
between the input and the target. Categories that are not significantly different; that is, having a p-value
greater than the value of PVALUE, are merged. Specify a value greater than 0 and less than or equal to 1.
The default is 0.05. YES is the default.

NO. Do not merge categories.
MERGEUNSUPERVISED Keyword

The MERGEUNSUPERVISED keyword specifies how to merge similar categories of a nominal or ordinal input
when there is no target.

* If there are no categorical inputs, MERGEUNSUPERVISEDi s ignored.
e If there is a target specified on the FIELDS subcommand, MERGEUNSUPERVISED is ignored.

YES(ORDINAL | NOMINAL | MINPCT=value). Unsupervised merge. The equal frequency method is used
to merge categories with less than MINPCTof the total number of records. Specify a value greater than or
equal to 0 and less than or equal to 100. The default is 10 if MINPCTis not specified. If YES is specified
without ORDINAL or NOMINAL, then no merging is performed.

NO. Do not merge categories. NO is the default.

BINNING Keyword

The BINNING keyword specifies how to discretize continuous inputs in the presence of a categorical target.
SUPERVISED(PVALUE=value). Supervised binning. Bins are created based upon the properties of
"homogeneous subsets", which are identified by the Scheffe method using PVALUE as the alpha for the
critical value for determining homogeneous subsets. SUPERVISED is the default. Specify a value greater

than 0 and less than or equal to 1. The default is 0.05

If there is no target specified on the FIELDS subcommand, or the target is not categorical, or there are no
continuous inputs, then SUPERVISED is ignored.

128 IBM SPSS Statistics 23 Command Syntax Reference

NONE. Do not bin values of continuous inputs.
SELECTION Keyword

The SELECTION keyword specifies how to perform feature selection for continuous inputs in the presence
of a continuous target.

YES(PVALUE=value). Perform feature selection. A continuous input is removed from the analysis if the
p-value for its correlation with the target is greater than PVALUE. YES is the default.

If there is no target specified on the FIELDSsubcommand, or the target is not continuous, or there are no
continuous inputs, then YESis ignored.

NO. Do not perform feature selection.
CONSTRUCTION Keyword

The CONSTRUCTIONkeyword specifies how to perform feature construction for continuous inputs in the
presence of a continuous target.

YES(ROOT-=rootname). Perform feature construction. New predictors are constructed from groups of
"similar" predictors using principal component analysis. Optionally specify the rootname for constructed

predictors using ROOT in parentheses. Specify a rootname (no quotes). The default is feature

If there is no target specified on the FIELDS subcommand, or the target is not continuous, or there are no
continuous inputs, then YES is ignored.

NO. Do not perform feature construction. NO is the default.

CRITERIA Subcommand

The CRITERIA subcommand is used to specify the suffixes applied to transformed target and inputs.
SUFFIX Keyword
The SUFFIX keyword specifies the suffixes applied to transformed target and inputs.

TARGET=suffixname. Suffix for transformed target. Specify a suffix in quotes. The default is _transformed.
If there is no target specified on the FIELDS subcommand, TARGET is ignored.

INPUT=suffixname. Suffix for transformed inputs. Specify a suffix in quotes. The default is _transformed.

OUTFILE Subcommand

The OUTFILE subcommand saves an XML-format file containing the rules for preparing the data.
* The OUTFILEsubcommand is required.
¢ File names must be specified in full. ADP does not supply extensions.

PREPXML="filespec'. Save rules for preparing data to an XML file. The rules are saved in an XML format to

the specified file. This file can be merged with model PMML using TMS MERGE or transformed into
command syntax using TMS IMPORT

ADP 129

130 IBM SPSS Statistics 23 Command Syntax Reference

AGGREGATE

AGGREGATE [OUTFILE={'savfile'|'dataset'}]
{* }
[MODE={REPLACE }] [OVERWRITE={NO }]
{ADDVARIABLES} {YES}
[/MISSING=COLUMNWISE] [/DOCUMENT]

[/PRESORTED] [/BREAK=[varlist[({Axx})]][varlist...]]
{0 }

/aggvar['label'] aggvar['label']...=function(arguments)

[/aggvar ...]

This command reads the active dataset and causes execution of any pending commands. See the topic
[“Command Order” on page 40| for more information.

Release History

Release 13.0
* MODE keyword introduced.
e OVERWRITE keyword introduced.

Release 17.0
e AGGREGATE runs without a break variable.

Release 22.0
e CLT, CGT, CIN, and COUT functions introduced.

Example

AGGREGATE
/OUTFILE="/temp/temp.sav'
/BREAK=gender
/age_mean=MEAN (age) .

Overview

AGGREGATE aggregates groups of cases in the active dataset into single cases and creates a new aggregated
file or creates new variables in the active dataset that contain aggregated data. The values of one or more
variables in the active dataset define the case groups. These variables are called break variables. A set of
cases with identical values for each break variable is called a break group. If no break variables are
specified, then the entire dataset is a single break group. Aggregate functions are applied to source
variables in the active dataset to create new aggregated variables that have one value for each break

group.
Options

Data. You can create new variables in the active dataset that contain aggregated data, replace the active
dataset with aggregated results, or create a new data file that contains the aggregated results.

Documentary Text. You can copy documentary text from the original file into the aggregated file using
the DOCUMENT subcommand. By default, documentary text is dropped.

Aggregated Variables. You can create aggregated variables using any of 19 aggregate functions. The
functions SUM, MEAN, and SD can aggregate only numeric variables. All other functions can use both

numeric and string variables.

© Copyright IBM Corporation 1989, 2014 131

Labels and Formats. You can specify variable labels for the aggregated variables. Variables created with
the functions MAX, MIN, FIRST, and LAST assume the formats and value labels of their source variables. All
other variables assume the default formats described under .

Basic Specification

The basic specification is at least one aggregate function and source variable. The aggregate function
creates a new aggregated variable in the active dataset.

Subcommand Order
* If specified, OUTFILE must be specified first.

* If specified, DOCUMENT and PRESORTED must precede BREAK. No other subcommand can be specified
between these two subcommands.

e MISSING, if specified, must immediately follow OUTFILE.
* The aggregate functions must be specified last.

Operations

* When replacing the active dataset or creating a new data file, the aggregated file contains the break
variables plus the variables created by the aggregate functions.

* AGGREGATE excludes cases with missing values from all aggregate calculations except those involving
the functions N, NU, NMISS, and NUMISS.

* Unless otherwise specified, AGGREGATE sorts cases in the aggregated file in ascending order of the values
of the grouping variables.

* PRESORTED uses a faster, less memory-intensive algorithm that assumes the data are already sorted into
the desired groups.

* AGGREGATE ignores split-file processing. To achieve the same effect, name the variable or variables used
to split the file as break variables before any other break variables. AGGREGATE produces one file, but the
aggregated cases will then be in the same order as the split files.

Example

AGGREGATE
/OUTFILE="/temp/temp.sav'
/BREAK=gender marital
/age_mean=MEAN (age)
/age_median=MEDIAN (age)
/income_median=MEDIAN(income).

* AGGREGATE creates a new IBM SPSS Statistics data file, temp.sav, that contains two break variables
(gender and marital) and all of the new aggregate variables.

* BREAK specifies gender and marital as the break variables. In the aggregated file, cases are sorted in
ascending order of gender and in ascending order of marital within gender. The active dataset remains
unsorted.

* Three aggregated variables are created: age_mean contains the mean age for each group defined by the
two break variables; age_median contains the median age; and income_median contains the median
income.

OUTFILE Subcommand
OUTFILE specifies the handling of the aggregated results. It must be the first subcommand on the
AGGREGATE command.

* OUTFILE='file specification' saves the aggregated data to a new file, leaving the active dataset
unaffected. The file contains the new aggregated variables and the break variables that define the
aggregated cases.

132 IBM SPSS Statistics 23 Command Syntax Reference

¢ A defined dataset name can be used for the file specification, saving the aggregated data to a dataset in
the current session. The dataset must be defined before being used in the AGGREGATE command. See the
topic |"'DATASET DECLARE” on page 521|for more information.

e OUTFILE=* with no additional keywords on the OUTFILE subcommand will replace the active dataset
with the aggregated results.

* OUTFILE=* MODE=ADDVARIABLES appends the new variables with the aggregated data to the active
dataset (instead of replacing the active dataset with the aggregated data).

e OUTFILE=+ MODE=ADDVARIABLES OVERWRITE=YES overwrites variables in the active dataset if those
variable names are the same as the aggregate variable names specified on the AGGREGATE command.

e MODE and OVERWRITE can be used only with OUTFILE=*; they are invalid with OUTFILE='fiTe
specification'.

* Omission of the OUTFILE subcommand is equivalent to OUTFILE=* MODE=ADDVARIABLES.

Example

AGGREGATE
/BREAK=region
/sales_mean = MEAN(varl)
/sales_median = MEDIAN(varl)
/sales_sum = SUM(varl).

* The aggregated variables are appended to the end of each case in the active data file. No existing cases
or variables are deleted.

* For each case, the new aggregated variable values represent the mean, median, and total (sum) sales
values for its region.

Creating a New Aggregated Data File versus Appending Aggregated
Variables

When you create a new aggregated data file with OUTFILE='file specification' or OUTFILE=x*
MODE=REPLACE, the new file contains:

¢ The break variables from the original data file and the new aggregate variables defined by the
aggregate functions. Original variables other than the break variables are not retained.

* One case for each group defined by the break variables. If there is one break variable with two values,
the new data file will contain only two cases.

When you append aggregate variables to the active dataset with OUTFILE=« MODE=ADDVARIABLES, the
modified data file contains:

 All of the original variables plus all of the new variables defined by the aggregate functions, with the
aggregate variables appended to the end of each case.

* The same number of cases as the original data file. The data file itself is not aggregated. Each case with
the same value(s) of the break variable(s) receives the same values for the new aggregate variables. For
example, if gender is the only break variable, all males would receive the same value for a new
aggregate variable that represents the average age.

Example

DATA LIST FREE /age (F2) gender (F2).
BEGIN DATA
251
351
20 2
30 2
60 2
END DATA.
*create new file with aggregated results.
AGGREGATE
/OUTFILE="/temp/temp.sav'
/BREAK=gender
/age_mean=MEAN (age)
/groupSize=N.
+append aggregated variables to active dataset.
AGGREGATE

AGGREGATE 133

/OUTFILE=+ MODE=ADDVARIABLES
/BREAK=gender
/age_mean=MEAN (age)
/groupSize=N.

temp.zav - Data Editor [_ [O] x|
Eile Edit “iew Data Transform Analwze Graphe Utlities Add-one Wwindow Help
|8:gendel |
gender | age_mean | groupSize war war vaﬂ

1 1 30.00 2

2 2 35.67 3

3

4

L5}

G
4 [+ |\Data View £ Variahle View 7 I« | By

Figure 16. New aggregated data file

Untitled - Data Editor [_ [O] x|
Eile Edit “iew Data Transform Analwze Graphe Utlities Add-one Wwindow Help
|‘I2 : age |
age gender | age _m2an| groupSize war vaﬂ

1 25 1 30.00 2

2 35 1 J0.0a 2

3 20 2 36.67 3

4 30 2 36.67 3

5 B0 2 3667 3

5
] I\Bata\ﬂew A variable View f K | 2P

Figure 17. Aggregate variables appended to active dataset

BREAK Subcommand

BREAK lists the optional grouping variables, also called break variables. Each unique combination of values
of the break variables defines one break group.

* The variables named on BREAK can be any combination of variables in the active dataset.

* Unless PRESORTED is specified, aggregated variables are appended to the active dataset (OUTFILE=*
MODE=ADDVARIABLES), AGGREGATE sorts cases after aggregating. By default, cases are sorted in ascending
order of the values of the break variables. AGGREGATE sorts first on the first break variable, then on the
second break variable within the groups created by the first, and so on.

 Sort order can be controlled by specifying an A (for ascending) or D (for descending) in parentheses
after any break variables.

¢ The designations A and D apply to all preceding undesignated variables.

* The subcommand PRESORTED overrides all sorting specifications, and no sorting is performed with
OUTFILE=+ MODE=ADDVARIABLES.

Example

AGGREGATE
/BREAK=region
/sales_mean = MEAN(varl)
/sales_median = MEDIAN(varl)
/sales_sum = SUM(varl).

134 IBM SPSS Statistics 23 Command Syntax Reference

For each case, the new aggregated variable values represent the mean, median, and total (sum) sales
values for its region.

Example with no BREAK variable

AGGREGATE
/sales_mean = MEAN(varl)
/sales_median = MEDIAN(varl)
/sales_sum = SUM(varl).

For each case, the new aggregated variable values represent the mean, median, and total (sum) sales
values for the entire dataset.

DOCUMENT Subcommand

DOCUMENT copies documentation from the original file into the aggregated file.
e DOCUMENT must appear after OUTFILE but before BREAK.

* By default, documents from the original data file are not retained with the aggregated data file when
creating a new aggregated data file with either OUTFILE="file specification' or OUTFILE=*
MODE=REPLACE. The DOCUMENT subcommand retains the original data file documents.

* Appending variables with OUTFILE=+ MODE=ADDVARIABLES has no effect on data file documents, and the
DOCUMENT subcommand is ignored. If the data file previously had documents, they are retained.

PRESORTED Subcommand

If the data are already sorted into the desired groups, you can reduce run time and memory requirements
by using the PRESORTED subcommand.

* If specified, PRESORTED must precede BREAK. The only specification is the keyword PRESORTED. PRESORTED
has no additional specifications.

* When PRESORTED is specified, the program forms an aggregate case out of each group of adjacent cases
with the same values for the break variables. Unless the cases are sorted by the break variables, the
results will be quite different from what would be produced if PRESORTED were not specified.

* When PRESORTED is specified, if AGGREGATE is appending new variables to the active dataset rather than
writing a new file or replacing the active dataset, the cases must be sorted in ascending order by the
BREAK variables.

Example

AGGREGATE OUTFILE='/temp/temp.sav'
/PRESORTED
/BREAK=gender marital
/mean_age=MEAN (age) .

Aggregate Functions

An aggregated variable is created by applying an aggregate function to a variable in the active dataset.
The variable in the active dataset is called the source variable, and the new aggregated variable is the
target variable.

* The aggregate functions must be specified last on AGGREGATE.

* The simplest specification is a target variable list, followed by an equals sign, a function name, and a
list of source variables.

* The number of target variables named must match the number of source variables.

* When several aggregate variables are defined at once, the first-named target variable is based on the
first-named source variable, the second-named target is based on the second-named source, and so on.

AGGREGATE 135

* Only the functions MAX, MIN, FIRST, and LAST copy complete dictionary information from the source
variable. For all other functions, new variables do not have labels and are assigned default dictionary
print and write formats. The default format for a variable depends on the function used to create it
(see the list of available functions below).

* You can provide a variable label for a new variable by specifying the label in single or double quotes
immediately following the new variable name. Value labels cannot be assigned in AGGREGATE.

* To change formats or add value labels to an active dataset created by AGGREGATE, use the PRINT
FORMATS, WRITE FORMATS, FORMATS, or VALUE LABELS command. If the aggregate file is written to disk,
first retrieve the file using GET, specify the new labels and formats, and resave the file.

The following is a list of available functions:

SUM(varlist). Sum across cases.

MEAN(varlist). Mean across cases.

MEDIAN (varlist). Median across cases.

SD(varlist). Standard deviation across cases.

MAX(varlist). Maximum value across cases. Complete dictionary information is copied from the source
variables to the target variables.

MIN (varlist). Minimum value across cases. Complete dictionary information is copied from the source
variables to the target variables.

PGT (varlist,value). Percentage of cases greater than the specified value.
PLT(varlist,value). Percentage of cases less than the specified value.
PIN(varlist,valuel,value2). Percentage of cases between valuel and value2, inclusive.

POUT (varlist,valuel,value2). Percentage of cases not between valuel and value2. Cases where the source
variable equals valuel or value2 are not counted.

FGT(varlist,value). Fraction of cases greater than the specified value.
FLT (varlist,value). Fraction of cases less than the specified value.
FIN(varlist,valuel,value2). Fraction of cases between valuel and value2, inclusive.

FOUT (varlist,valuel,value2). Fraction of cases not between valuel and value2. Cases where the source
variable equals valuel or value2 are not counted.

CGT(varlist,value). Count of cases greater than the specified value.
CLT(varlist,value). Count of cases less than the specified value.
CIN(varlist,valuel,value2). Count of cases between valuel and value2, inclusive.

COUT(varlist,valuel,value2). Count of cases not between valuel and value2. Cases where the source variable
equals valuel or value? are not counted.

N(varlist). Weighted number of cases in break group.

136 IBM SPSS Statistics 23 Command Syntax Reference

NU(varlist). Unweighted number of cases in break group.
NMISS(varlist). Weighted number of missing cases.
NUMISS(varlist). Unweighted number of missing cases.

FIRST (varlist). First nonmissing observed value in break group. Complete dictionary information is copied
from the source variables to the target variables.

LAST (varlist). Last nonmissing observed value in break group. Complete dictionary information is copied

from the source variables to the target variables.

* The functions SUM, MEAN, and SD can be applied only to numeric source variables. All other functions
can use short and long string variables as well as numeric ones.

* The N and NU functions do not require arguments. Without arguments, they return the number of
weighted and unweighted valid cases in a break group. If you supply a variable list, they return the
number of weighted and unweighted valid cases for the variables specified.

* For several functions, the argument includes values as well as a source variable designation. Either
blanks or commas can be used to separate the components of an argument list.

 For percentage, fraction, and count within or outside a specified range, the first value specified should
be less than or equal to the second. If not, they are automatically reversed. If the two values are equal,
PIN, FIN, and CIN calculate the percentage, fraction, or count equal to the argument. POUT, FOUT, and
COUT calculate the percentage, fraction or count not equal to the argument.

* String values specified in an argument should be enclosed in quotes.

Using the MEAN Function

AGGREGATE OUTFILE='AGGEMP.SAV' /BREAK=LOCATN
/AVGSAL 'Average Salary' AVGRAISE = MEAN(SALARY RAISE).

* AGGREGATE defines two aggregate variables, AVGSAL and AVGRAISE.
* AVGSAL is the mean of SALARY for each break group, and AVGRAISE is the mean of RAISE.
* The label Average Salary is assigned to AVGSAL.

Using the PLT Function

AGGREGATE OUTFILE=* /BREAK=DEPT
/LOWVAC,LOWSICK = PLT (VACDAY SICKDAY,10).

* AGGREGATE creates two aggregated variables: LOWVAC and LOWSICK. LOWVAC is the percentage of
cases with values less than 10 for VACDAY, and LOWSICK is the percentage of cases with values less
than 10 for SICKDAY.

Using the FIN Function

AGGREGATE OUTFILE='GROUPS.SAV' /BREAK=0CCGROUP
/COLLEGE = FIN(EDUC,13,16).

* AGGREGATE creates the variable COLLEGE, which is the fraction of cases with 13 to 16 years of
education (variable EDUC).

Using the PIN Function

AGGREGATE OUTFILE=* /BREAK=CLASS
/LOCAL = PIN(STATE,'IL','I0").

* AGGREGATE creates the variable LOCAL, which is the percentage of cases in each break group whose
two-letter state code represents Illinois, Indiana, or Iowa. (The abbreviation for Indiana, IN, is between
IL and IO in an alphabetical sort sequence.)

AGGREGATE 137

MISSING Subcommand

By default, AGGREGATE uses all nonmissing values of the source variable to calculate aggregated variables.
An aggregated variable will have a missing value only if the source variable is missing for every case in
the break group. You can alter the default missing-value treatment by using the MISSING subcommand.
You can also specify the inclusion of user-missing values on any function.

MISSING must immediately follow OUTFILE.

COLUMNWISE is the only specification available for MISSING.

If COLUMNWISE is specified, the value of an aggregated variable is missing for a break group if the source
variable is missing for any case in the group.

COLUMNWISE does not affect the calculation of the N, NU, NMISS, or NUMISS functions.

COLUMNWISE does not apply to break variables. If a break variable has a missing value, cases in that
group are processed and the break variable is saved in the file with the missing value. Use SELECT IF if
you want to eliminate cases with missing values for the break variables.

Including Missing Values

You can force a function to include user-missing values in its calculations by specifying a period after the

function name.

* AGGREGATE ignores periods used with the functions N, NU, NMISS, and NUMISS if these functions have no
arguments.

¢ User-missing values are treated as valid when these four functions are followed by a period and have a
variable as an argument. NMISS. (AGE) treats user-missing values as valid and thus gives the number of
cases for which AGE has the system-missing value only.

The effect of specifying a period with N, NU, NMISS, and NUMISS is illustrated by the following:

N = N. = N(AGE) + NMISS(AGE) = N.(AGE) + NMISS. (AGE)

NU = NU. = NU(AGE) + NUMISS(AGE) = NU.(AGE) + NUMISS. (AGE)

* The function N (the same as N. with no argument) yields a value for each break group that equals the
number of cases with valid values (N(AGE)) plus the number of cases with user- or system-missing
values (NMISS (AGE)).

* This in turn equals the number of cases with either valid or user-missing values (N. (AGE)) plus the
number with system-missing values (NMISS. (AGE)).

e The same identities hold for the NU, NMISS, and NUMISS functions.

Default Treatment of Missing Values

AGGREGATE OUTFILE='AGGEMP.SAV' /MISSING=COLUMNWISE /BREAK=LOCATN
/AVGSAL = MEAN(SALARY).

¢ AVGSAL is missing for an aggregated case if SALARY is missing for any case in the break group.

Including User-Missing Values

AGGREGATE OUTFILE=* /BREAK=DEPT
/LOVAC = PLT.(VACDAY,10).

* LOVAC is the percentage of cases within each break group with values less than 10 for VACDAY, even
if some of those values are defined as user missing.

Aggregated Values that Retain Missing-Value Status

AGGREGATE OUTFILE='CLASS.SAV' /BREAK=GRADE
/FIRSTAGE = FIRST. (AGE).

* The first value of AGE in each break group is assigned to the variable FIRSTAGE.

e If the first value of AGE in a break group is user missing, that value will be assigned to FIRSTAGE.
However, the value will retain its missing-value status, since variables created with FIRST take
dictionary information from their source variables.

138 IBM SPSS Statistics 23 Command Syntax Reference

Comparing Missing-Value Treatments

The table below demonstrates the effects of specifying the MISSING subcommand and a period after the
function name. Each entry in the table is the number of cases used to compute the specified function for
the variable EDUC, which has 10 nonmissing cases, 5 user-missing cases, and 2 system-missing cases for
the group. Note that columnwise treatment produces the same results as the default for every function

except the MEAN function.

Table 6. Default versus columnwise missing-value treatments
Default

Function

N

N.

N(EDUC)

N. (EDUC)
MEAN (EDUC)
MEAN. (EDUC)
NMISS (EDUC)

NMISS. (EDUC)

17

17

10

15

10

15

Columnwise

17

17

10

15

AGGREGATE

139

140 1BM SPSS Statistics 23 Command Syntax Reference

AIM

AIM is available in the Statistics Base option.
AIM grouping-var

[/CATEGORICAL varlist]
[/CONTINUOUS varlist]

[/CRITERIA [ADJUST = {BONFERRONI**}] [CI = {95% }]
{NONE } {value}

[HIDENOTSIG = {NO**}]] [SHOWREFLINE = {NO }]]
{YES } {YES*x}

[/MISSING {EXCLUDE*+}]
{INCLUDE }
[/PLOT [CATEGORY] [CLUSTER [(TYPE = {BAR+})]] [ERRORBAR]
{PIE }

[IMPORTANCE [([X = {GROUP+ }] [Y = {TEST* }1)1] 1]
{VARIABLE} {PVALUE}

* Default if the keyword is omitted.
** Default if the subcommand or keyword is omitted.

This command reads the active dataset and causes execution of any pending commands. See the topic
[“Command Order” on page 40| for more information.

Example

AIM TSC_1
/CATEGORICAL type
/CONTINUOUS price engine_s horsepow wheelbas width Tength
curb_wgt fuel_cap mpg
/PLOT CLUSTER.

Overview

AIM provides graphical output to show the relative importance of categorical and scale variables to the
formation of clusters of cases as indicated by the grouping variable.

Basic Specification

The basic specification is a grouping variable, a CATEGORICAL or CONTINUOUS subcommand, and a PLOT
subcommand.

Subcommand Order
* The grouping variable must be specified first.
* Subcommands can be specified in any order.

Syntax Rules

* All subcommands should be specified only once. If a subcommand is repeated, only the last
specification will be used.

Limitations

The WEIGHT variable, if specified, is ignored by this procedure.

141

Grouping Variable

* The grouping variable must be the first specification after the procedure name.

¢ The grouping variable can be of any type (numeric or string).

Example

AIM clu_id
/CONTINUOUS age work salary.

* This is a typical example where CLU_ID is the cluster membership saved from a clustering procedure
(say TwoStep Cluster) where AGE, WORK, and SALARY are the variables used to find the clusters.

CATEGORICAL Subcommand

Variables that are specified in this subcommand are treated as categorical variables, regardless of their
defined measurement level.

* There is no restriction on the types of variables that can be specified on this subcommand.
* The grouping variable cannot be specified on this subcommand.

CONTINUOUS Subcommand

Variables that are specified in this subcommand are treated as scale variables, regardless of their defined
measurement level.

* Variables specified on this subcommand must be numeric.

* The grouping variable cannot be specified on this subcommand.

CRITERIA Subcommand

The CRITERIA subcommand offers the following options in producing graphs.

ADJUST = BONFERRONI | NONE. Adjust the confidence level for simultaneous confidence intervals or the
tolerance level for simultaneous tests. BONFERRONI uses Bonferroni adjustments. This is the default. NONE
specifies that no adjustments should be applied.

CI = number. Confidence Interval. This option controls the confidence level. Specify a value greater than 0
and less than 100. The default value is 95.

HIDENOTSIG = NO | YES. Hide groups or variables that are determined to be not significant. YES specifies
that all confidence intervals and all test results should be shown. This is the default. NO specifies that only
the significant confidence intervals and test results should be shown.

SHOWREFLINE = NO | YES. Display reference lines that are the critical values or the tolerance levels in tests.
YES specifies that the appropriate reference lines should be shown. This is the default. NO specifies that
reference lines should not be shown.

MISSING Subcommand

The MISSING subcommand specifies the way to handle cases with user-missing values.

* A case is never used if it contains system-missing values in the grouping variable, categorical variable
list, or the continuous variable list.

e If this subcommand is not specified, the default is EXCLUDE.

EXCLUDE. Exclude both user-missing and system-missing values. This is the default.

142 1BM SPSS Statistics 23 Command Syntax Reference

INCLUDE . User-missing values are treated as valid. Only system-missing values are not included in the
analysis.

PLOT Subcommand
The PLOT subcommand specifies which graphs to produce.

CATEGORY. Within Cluster Percentages. This option displays a clustered bar chart for each categorical
variable. The bars represent percentages of categories in each cluster. The cluster marginal count is used
as the base for the percentages.

CLUSTER (TYPE=BAR | PIE). Cluster frequency charts. Displays a bar or pie chart, depending upon the
option selected, representing the frequency of each level of the grouping variable.

ERRORBAR. Error Bar. This option displays an error bar by group ID for each continuous variable.

IMPORTANCE (X=GROUP | VARIABLE Y=TEST | PVALUE). Attribute Importance. This option
displays a bar chart that shows the relative importance of the attributes/variables. The specified options
further control the display. X = GROUP causes values of the grouping variable to be displayed on the x
axis. A separate chart is produced for each variable. X = VARIABLE causes variable names to be displayed
on the x axis. A separate chart is produced for each value of the grouping variable. Y = TEST causes test
statistics to be displayed on the y axis. Student’s ¢ statistics are displayed for scale variables, and
chi-square statistics are displayed for categorical variables. Y = PVALUE causes p-value-related measures to
be displayed on the y axis. Specifically, —log,,(pvalue) is shown so that in both cases larger values
indicate "more significant” results.

Example: Importance Charts by Group

AIM clu_id
/CONTINUOUS age work salary
/CATEGORICAL minority
/PLOT CATEGORY CLUSTER (TYPE = PIE) IMPORTANCE (X=GROUP Y=TEST).

* A frequency pie chart is requested.

* Student’s t statistics are plotted against the group ID for each scale variable, and chi-square statistics
are plotted against the group ID for each categorical variable.

Example: Importance Charts by Variable

AIM clu_id
/CONTINUOUS age work salary
/CATEGORICAL minority
/CRITERIA HIDENOTSIG=YES CI=95 ADJUST=NONE
/PLOT CATEGORY CLUSTER (TYPE = BAR)
IMPORTANCE (X = VARIABLE, Y = PVALUE).

* A frequency bar chart is requested.

* —loglO(pvalue) values are plotted against variables, both scale and categorical, for each level of the
grouping variable.

* In addition, bars are not shown if their p values exceed 0.05.

AIM 143

144 1BM SPSS Statistics 23 Command Syntax Reference

ALTER TYPE

ALTER TYPE varlist([input format =] {output format }) [varlist...]

{AMIN [+ [n[%]] }
{AHEXMIN [+ [n[%]]}

[/PRINT {[ALTEREDTYPES#*] [ALTEREDVALUES]}]

{NONE 1

** Default if subcommand omitted.

Release History

Release 16.0

Command introduced.

Example

ALTER TYPE StringDatel to StringDate4 (Datell).
ALTER TYPE ALL (A=AMIN).

Overview

ALTER TYPE can be used to change the fundamental type (string or numeric) or format of variables,
including changing the defined width of string variables.

Options

You can use the T0 keyword to specify a list of variables or the ALL keyword to specify all variables in
the active dataset.

The optional input format specification restricts the type modification to only variables in the list that
match the input format. If the input format doesn't include a width specification, all variables that
match the basic format are included. An input format specification without a width specification
includes all variables that match the basic format, regardless of defined width.

AMIN or AHEXMIN can be used as the output format specification to change the defined width of a string
variable to the minimum width necessary to display all observed values of that variable without
truncation.

AMIN + n or AHEXMIN + n sets the width of string variables to the minimum necessary width plus n
bytes.

AMIN + n% or AHEXMIN + n% sets the width of string variables to the minimum necessary width plus n
percent of that width. The result is rounded to an integer.

Basic Specification

The basic specification is the name of a variable in the active dataset followed by an output format
specification enclosed in parentheses, as in:
ALTER TYPE StringVar (A4).

Syntax Rules

All variables specified or implied in the variable list(s) must exist in the active dataset.
Each variable list must be followed by a format specification enclosed in parentheses.

Format specifications must be valid IBM SPSS Statistics formats. For information on valid format
specifications, see [“Variable Types and Formats” on page 50

If specified, the optional input format must be followed by an equals sign and then the output format.

145

* If a variable is included in more than one variable list on the same ALTER TYPE command, only the
format specification associated with the last instance of the variable name will be applied. (If you want
to "chain" multiple modifications for the same variable, use multiple ALTER TYPE commands.)

Operations

e If there are no pending transformations and the command does not include any AMIN or AHEXMIN format
specifications and does not include ALTEREDVALUES on the PRINT subcommand, the command takes
effect immediately. It does not read the active dataset or execute pending transformations.

* If there are pending transformations or the command includes one or more AMIN or AHEXMIN format
specifications or includes ALTEREDVALUES on the PRINT subcommand, the command reads the active
dataset and causes execution of any pending transformations.

* Converting a numeric variable to string will result in truncated values if the numeric value cannot be
represented in the specified string width.

* Converting a string variable to numeric will result in a system-missing value if the string contains
characters that would be invalid for the specified numeric format.

Examples

DATA LIST FREE
/Numvarl (F2) Numvar2 (F1)
StringVarl (A20) StringVar2 (A30)
StringDatel (All) StringDate2 (A10) StringDate3 (Al10).
BEGIN DATA
1 23 a234 b2345 28-0ct-2007 10/28/2007 10/29/2008
END DATA.
ALTER TYPE Numvarl (F5.2) Numvar2 (F3).
ALTER TYPE
StringDatel to StringDate3 (A1l = DATE1l).
ALTER TYPE
StringDatel to StringDate3 (A10 = ADATE10).
ALTER TYPE ALL (A=AMIN).
* The first ALTER TYPE command changes the formats of Numvarl and Numuvar2 from F2 and F1 to F5.2

and F3.

* The next ALTER TYPE command converts all string variables between StringDatel and StringDate3 (in file
order) with a defined string width of 11 to the numeric date format DATE1l (dd-mmm-yyyy). The only
variable that meets these criteria is StringDatel; so that is the only variable converted.

* The third ALTER TYPE command converts all string variables between StringDatel and StringDate3 with
a defined string width of 10 to the numeric date format ADATE1l (mm/dd/yyyy). In this example, this
conversion is applied to StringDate2 and StringDate3.

e The last ALTER TYPE command changes the defined width of all remaining string variables to the
minimum width necessary for each variable to avoid truncation of any values. In this example,
StringVarl changes from A20 to A4 and StringVar2 changes from A30 to A5. This command reads the
data and executes any pending transformation commands.

PRINT Subcommand

The optional PRINT subcommand controls the display of information about the variables modified by the
ALTER TYPE command. The following options are available:

ALTEREDTYPES. Display a list of variables for which the formats were changed and the old and new formats.
This is the default.

ALTEREDVALUES. Display a report of values that were changed if the fundamental type (string or numeric) was
changed or the defined string width was changed. This report is limited to the first 25 values that were

changed for each variable.

NONE. Don't display any summary information. This is an alternative to ALTEREDTYPES and/or
ALTEREDVALUES and cannot be used in combination with them.

146 1BM SPSS Statistics 23 Command Syntax Reference

ALSCAL

ALSCAL is available in the Statistics Base option.

ALSCAL VARIABLES=varlist
[/FILE="savfile'|'dataset']
[CONFIG [({INITIAL**})]] [ROWCONF [({INITIAL*x})]]
{FIXeD '} {FIXED

[COLCONF [({INITIAL**})]1] [SUBJWGHT[({INITIAL#*})]]
{FIXED } {FIXED }

[STIMWGHT[({INITIAL**})]]
{FIXED 1

[/INPUT=ROWS ({ALL**})]
no}

[/SHAPE={SYMMETRIC#x}]
{ASYMMETRIC }
{RECTANGULAR}

[/LEVEL={ORDINAL** [([UNTIE] [SIMILAR])1}]
INTERVAL[({1%+})]

{

{

{ {n 1}
{RATIO[({1%+})]
} }

n

NOMINAL
[/CONDITION={MATRIX+** |

{ROW
{UNCONDITIONAL}
[/{MODEL }={EUCLID**}]
{METHOD} {INDSCAL }
{ASCAL }
{ 1
{GEMSCAL }

[/CRITERIA=[NEGATIVE] [CUTOFF({0**})] [CONVERGE({.001})]
{n} {n}

[ITER({30%*})] [STRESSMIN({.005%*})] [NOULB]
{n} {n

[DIMENS ({2%* ** })] [DIRECTIONS(n)]
{min[,max]}

[CONSTRAIN] [TIESTORE(n)1]
[/PRINT=[DATAx+] [HEADER]] [/PLOT=[DEFAULT**] [ALL]]
[/OUTFILE="savfile'|'dataset']
[/MATRIX=IN(E 'savfile'| 'dataset'i)]

**Default if the subcommand or keyword is omitted.

This command reads the active dataset and causes execution of any pending commands. See the topic
[“Command Order” on page 40| for more information.

Example
ALSCAL VARIABLES=ATLANTA TO TAMPA.

ALSCAL was originally designed and programmed by Forrest W. Young, Yoshio Takane, and Rostyslaw J.
Lewyckyj of the Psychometric Laboratory, University of North Carolina.

© Copyright IBM Corporation 1989, 2014 147

Overview

ALSCAL uses an alternating least-squares algorithm to perform multidimensional scaling (MDS) and
multidimensional unfolding (MDU). You can select one of the five models to obtain stimulus coordinates
and/or weights in multidimensional space.

Options

Data Input. You can read inline data matrices, including all types of two- or three-way data, such as a
single matrix or a matrix for each of several subjects, using the INPUT subcommand. You can read square
(symmetrical or asymmetrical) or rectangular matrices of proximities with the SHAPE subcommand and
proximity matrices created by PROXIMITIES and CLUSTER with the MATRIX subcommand. You can also read
a file of coordinates and/or weights to provide initial or fixed values for the scaling process with the
FILE subcommand.

Methodological Assumptions. You can specify data as matrix-conditional, row-conditional, or
unconditional on the CONDITION subcommand. You can treat data as nonmetric (nominal or ordinal) or as
metric (interval or ratio) using the LEVEL subcommand. You can also use LEVEL to identify ordinal-level
proximity data as measures of similarity or dissimilarity, and you can specify tied observations as untied
(continuous) or leave them tied (discrete).

Model Selection. You can specify the most commonly used multidimensional scaling models by selecting
the correct combination of ALSCAL subcommands, keywords, and criteria. In addition to the default
Euclidean distance model, the MODEL subcommand offers the individual differences (weighted) Euclidean
distance model (INDSCAL), the asymmetric Euclidean distance model (ASCAL), the asymmetric individual
differences Euclidean distance model (AINDS), and the generalized Euclidean metric individual differences
model (GEMSCAL).

Output. You can produce output that includes raw and scaled input data, missing-value patterns,
normalized data with means, squared data with additive constants, each subject’s scalar product and
individual weight space, plots of linear or nonlinear fit, and plots of the data transformations using the
PRINT and PLOT subcommands.

Basic Specification

The basic specification is VARIABLES followed by a variable list. By default, ALSCAL produces a
two-dimensional nonmetric Euclidean multidimensional scaling solution. Input is assumed to be one or
more square symmetric matrices with data elements that are dissimilarities at the ordinal level of
measurement. Ties are not untied, and conditionality is by subject. Values less than O are treated as
missing. The default output includes the improvement in Young’s S-stress for successive iterations, two
measures of fit for each input matrix (Kruskal’s stress and the squared correlation, RSQ), and the derived
configurations for each of the dimensions.

Subcommand Order
Subcommands can be named in any order.

Operations

* ALSCAL calculates the number of input matrices by dividing the total number of observations in the
dataset by the number of rows in each matrix. All matrices must contain the same number of rows.
This number is determined by the settings on SHAPE and INPUT (if used). For square matrix data, the
number of rows in the matrix equals the number of variables. For rectangular matrix data, it equals the
number of rows specified or implied. For additional information, see the INPUT and SHAPE
subcommands below.

148 1BM SPSS Statistics 23 Command Syntax Reference

¢ ALSCAL ignores user-missing specifications in all variables in the configuration/weights file. See the
topic [“FILE Subcommand” on page 151| for more information. The system-missing value is converted
to 0.

* With split-file data, ALSCAL reads initial or fixed configurations from the configuration/weights file for
each split-file group. See the topic [“FILE Subcommand” on page 151 for more information. If there is
only one initial configuration in the file, ALSCAL rereads these initial or fixed values for successive
split-file groups.

* By default, ALSCAL estimates upper and lower bounds on missing values in the active dataset in order
to compute the initial configuration. To prevent this, specify CRITERIA=NOULB. Missing values are always
ignored during the iterative process.

Limitations

* A maximum of 100 variables on the VARIABLES subcommand.

* A maximum of six dimensions can be scaled.

e ALSCAL does not recognize data weights created by the WEIGHT command.

¢ ALSCAL analyses can include no more than 32,767 values in each of the input matrices. Large analyses
may require significant computing time.

Example

* Air distances among U.S. cities.
* Data are from Johnson and Wichern (1982), page 563.
DATA LIST
/ATLANTA BOSTON CINCNATI COLUMBUS DALLAS INDNPLIS
LITTROCK LOSANGEL MEMPHIS STLOUIS SPOKANE TAMPA 1-60.
BEGIN DATA
0
1068 0
461 867 0
549 769 107 0
805 1819 943 1050 0
508 941 108 172 882 0
505 1494 618 725 325 562 0
2197 3052 2186 2245 1403 2080 1701 0
366 1355 502 586 464 436 137 1831 0
558 1178 338 409 645 234 353 1848 294 0
2467 2747 2067 2131 1891 1959 1988 1227 2042 1820 0
467 1379 928 985 1077 975 912 2480 779 1016 2821 0O
END DATA.

ALSCAL VARIABLES=ATLANTA TO TAMPA

/PLOT.

¢ By default, ALSCAL assumes a symmetric matrix of dissimilarities for ordinal-level variables. Only
values below the diagonal are used. The upper triangle can be left blank. The 12 cities form the rows
and columns of the matrix.

* The result is a classical MDS analysis that reproduces a map of the United States when the output is
rotated to a north-south by east-west orientation.

VARIABLES Subcommand

VARIABLES identifies the columns in the proximity matrix or matrices that ALSCAL reads.
* VARIABLES is required and can name only numeric variables.

¢ FEach matrix must have at least four rows and four columns.

INPUT Subcommand

ALSCAL reads data row by row, with each case in the active dataset representing a single row in the data
matrix. (VARIABLES specifies the columns.) Use INPUT when reading rectangular data matrices to specify
how many rows are in each matrix.

ALSCAL 149

* The specification on INPUT is ROWS. If INPUT is not specified or is specified without ROWS, the default is
ROWS (ALL). ALSCAL assumes that each case in the active dataset represents one row of a single input
matrix and that the result is a square matrix.

* You can specify the number of rows (1) in each matrix in parentheses after the keyword ROWS. The
number of matrices equals the number of observations divided by the number specified.

* The number specified on ROWS must be at least 4 and must divide evenly into the total number of rows
in the data.

* With split-file data, 1 refers to the number of cases in each split-file group. All split-file groups must
have the same number of rows.

Example

ALSCAL VARIABLES=V1 to V7 /INPUT=ROWS(8).

* INPUT indicates that there are eight rows per matrix, with each case in the active dataset representing
one row.

* The total number of cases must be divisible by 8.

SHAPE Subcommand

Use SHAPE to specify the structure of the input data matrix or matrices.
* You can specify one of the three keywords listed below.
* Both SYMMETRIC and ASYMMETRIC refer to square matrix data.

SYMMETRIC. Symmetric data matrix or matrices. For a symmetric matrix, ALSCAL looks only at the values
below the diagonal. Values on and above the diagonal can be omitted. This is the default.

ASYMMETRIC. Asymmetric data matrix or matrices. The corresponding values in the upper and lower
triangles are not all equal. The diagonal is ignored.

RECTANGULAR. Rectangular data matrix or matrices. The rows and columns represent different sets of
items.

Example
ALSCAL VAR=V1 TO V8 /SHAPE=RECTANGULAR.
* ALSCAL performs a classical MDU analysis, treating the rows and columns as separate sets of items.

LEVEL Subcommand

LEVEL identifies the level of measurement for the values in the data matrix or matrices. You can specify
one of the keywords defined below.

ORDINAL. Ordinal-level data. This specification is the default. It treats the data as ordinal, using Kruskal’s
least-squares monotonic transformation 2 The analysis is nonmetric. By default, the data are treated as
discrete dissimilarities. Ties in the data remain tied throughout the analysis. To change the default,
specify UNTIE and/or SIMILAR in parentheses. UNTIE treats the data as continuous and resolves ties in an
optimal fashion; SIMILAR treats the data as similarities. UNTIE and SIMILAR cannot be used with the other
levels of measurement.

INTERVAL(n). Interval-level data. This specification produces a metric analysis of the data using classical
regression techniques. You can specify any integer from 1 to 4 in parentheses for the degree of
polynomial transformation to be fit to the data. The default is 1.

2. Kruskal, J. B. 1964. Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29, 115-129.

150 IBM SPSS Statistics 23 Command Syntax Reference

RATIO(n). Ratio-level data. This specification produces a metric analysis. You can specify an integer from 1
to 4 in parentheses for the degree of polynomial transformation. The default is 1.

NOMINAL. Nominal-level data. This specification treats the data as nominal by using a least-squares
categorical transformation °. This option produces a nonmetric analysis of nominal data. It is useful when
there are few observed categories, when there are many observations in each category, and when the
order of the categories is not known.

Example
ALSCAL VAR=ATLANTA TO TAMPA /LEVEL=INTERVAL(2).

 This example identifies the distances between U.S. cities as interval-level data. The 2 in parentheses
indicates a polynomial transformation with linear and quadratic terms.

CONDITION Subcommand

CONDITION specifies which numbers in a dataset are comparable.

MATRIX. Only numbers within each matrix are comparable. If each matrix represents a different subject, this
specification makes comparisons conditional by subject. This is the default.

ROW. Only numbers within the same row are comparable. This specification is appropriate only for
asymmetric or rectangular data. They cannot be used when ASCAL or AINDS is specified on MODEL.

UNCONDITIONAL. All numbers are comparable. Comparisons can be made among any values in the
input matrix or matrices.

Example
ALSCAL VAR=V1 TO V8 /SHAPE=RECTANGULAR /CONDITION=ROW.
* ALSCAL performs a Euclidean MDU analysis conditional on comparisons within rows.

FILE Subcommand

ALSCAL can read proximity data from the active dataset or, with the MATRIX subcommand, from a matrix
data file created by PROXIMITIES or CLUSTER. The FILE subcommand reads a file containing additional
data--an initial or fixed configuration for the coordinates of the stimuli and/or weights for the matrices
being scaled. This file can be created with the OUTFILE subcommand on ALSCAL or with an input program
(created with the INPUT PROGRAM command).

* The minimum specification is the file that contains the configurations and/or weights.
* FILE can include additional specifications that define the structure of the configuration/weights file.

* The variables in the configuration/weights file that correspond to successive ALSCAL dimensions must
have the names DIM1, DIM?2, ..., DIMr, where r is the maximum number of ALSCAL dimensions. The
file must also contain the short string variable TYPE_ to identify the types of values in all rows.

* Values for the variable TYPE_ can be CONFIG, ROWCONEF, COLCONF, SUBJWGHT, and STIMWGHT,
in that order. Each value can be truncated to the first three letters. Stimulus coordinate values are
specified as CONFIG; row stimulus coordinates, as ROWCONF; column stimulus coordinates, as
COLCONEF; and subject and stimulus weights, as SUBJWGHT and STIMWGHT, respectively. ALSCAL
accepts CONFIG and ROWCONF interchangeably.

¢ ALSCAL skips unneeded types as long as they appear in the file in their proper order. Generalized
weights (GEM) and flattened subject weights (FLA) cannot be initialized or fixed and will always be
skipped. (These weights can be generated by ALSCAL but cannot be used as input.)

3. Takane, Y., E. W. Young, and J. de Leeuw. 1977. Nonmetric individual differences multidimensional scaling: An alternating least
squares method with optimal scaling features. Psychometrika, 42, 7-67.

ALSCAL 151

The following list summarizes the optional specifications that can be used on FILE to define the structure
of the configuration/weights file:

* Each specification can be further identified with the option INITIAL or FIXED in parentheses.

e INITIAL is the default. INITIAL indicates that the external configuration or weights are to be used as
initial coordinates and are to be modified during each iteration.

e FIXED forces ALSCAL to use the externally defined structure without modification to calculate the best
values for all unfixed portions of the structure.

CONFIG. Read stimulus configuration. The configuration/weights file contains initial stimulus coordinates.
Input of this type is appropriate when SHAPE=SYMMETRIC or SHAPE= ASYMMETRIC, or when the number of
variables in a matrix equals the number of variables on the ALSCAL command. The value of the TYPE_
variable must be either CON or ROW for all stimulus coordinates for the configuration.

ROWCONEF. Read row stimulus configuration. The configuration/weights file contains initial row stimulus
coordinates. This specification is appropriate if SHAPE= RECTANGULAR and if the number of ROWCONF
rows in the matrix equals the number of rows specified on the INPUT subcommand (or, if INPUT is
omitted, the number of cases in the active dataset). The value of TYPE_ must be either ROW or CON for
the set of coordinates for each row.

COLCONF. Read column stimulus configuration. The configuration/weights file contains initial column
stimulus coordinates. This kind of file can be used only if SHAPE= RECTANGULAR and if the number of
COLCONEF rows in the matrix equals the number of variables on the ALSCAL command. The value of
TYPE_ must be COL for the set of coordinates for each column.

SUBJWGHT. Read subject (matrix) weights. The configuration/weights file contains subject weights. The
number of observations in a subject-weights matrix must equal the number of matrices in the proximity
file. Subject weights can be used only if the model is INDSCAL, AINDS, or GEMSCAL. The value of TYPE_ for
each set of weights must be SUB.

STIMWGHT. Read stimulus weights. The configuration/weights file contains stimulus weights. The
number of observations in the configuration/weights file must equal the number of matrices in the
proximity file. Stimulus weights can be used only if the model is AINDS or ASCAL. The value of TYPE_ for
each set of weights must be STL

If the optional specifications for the configuration/weights file are not specified on FILE, ALSCAL
sequentially reads the TYPE_ values appropriate to the model and shape according to the defaults in the
table below.

Example
ALSCAL VAR=V1 TO V8 /FILE=ONE CON(FIXED) STI(INITIAL).
* ALSCAL reads the configuration/weights file ONE.

* The stimulus coordinates are read as fixed values, and the stimulus weights are read as initial values.

Table 7. Default specifications for the FILE subcommand

Shape Model Default specifications

SYMMETRIC EUCLID CONFIG (or ROWCONF)
SYMMETRIC INDSCAL CONFIG (or ROWCONF), SUBJWGHT
SYMMETRIC GEMSCAL CONFIG (or ROWCONF), SUBJWGHT
ASYMMETRIC EUCLID CONFIG (or ROWCONEF)
ASYMMETRIC INDSCAL CONFIG (or ROWCONF), SUBJWGHT
ASYMMETRIC GEMSCAL CONFIG (or ROWCONF), SUBJWGHT
ASYMMETRIC ASCAL CONFIG (or ROWCONFEF), STIMWGHT

152 IBM SPSS Statistics 23 Command Syntax Reference

Table 7. Default specifications for the FILE subcommand (continued)

Shape Model Default specifications

ASYMMETRIC AINDS CONFIG (or ROWCONF), SUBJWGHT, STIMWGHT
RECTANGULAR EUCLID ROWCONF (or CONFIG), COLCONF
RECTANGULAR INDSCAL ROWCONEF (or CONFIG, COLCONF, SUBJWGHT
RECTANGULAR GEMSCAL ROWCONF (or CONFIG, COLCONF, SUBJWGHT

MODEL Subcommand

MODEL (alias METHOD) defines the scaling model for the analysis. The only specification is MODEL (or METHOD)
and any one of the five scaling and unfolding model types. EUCLID is the default.

EUCLID. Euclidean distance model. This model can be used with any type of proximity matrix and is the
default.

INDSCAL. Individual differences (weighted) Euclidean distance model. ALSCAL scales the data using the
weighted individual differences Euclidean distance model . This type of analysis can be specified only if
the analysis involves more than one data matrix and more than one dimension is specified on CRITERIA.

ASCAL. Asymmetric Euclidean distance model. This model ® can be used only if SHAPE=ASYMMETRIC and more
than one dimension is requested on CRITERIA.

AINDS. Asymmetric individual differences Euclidean distance model. This option combines Young's
asymmetric Euclidean model ® with the individual differences model ”. This model can be used only
when SHAPE=ASYMMETRIC, the analysis involves more than one data matrix, and more than one dimension
is specified on CRITERIA.

GEMSCAL. Generalized Euclidean metric individual differences model. The number of directions for this
model is set with the DIRECTIONS option on CRITERIA. The number of directions specified can be equal to
but cannot exceed the group space dimensionality. By default, the number of directions equals the
number of dimensions in the solution.

Example

ALSCAL VARIABLES = V1 TO V6
/SHAPE = ASYMMETRIC

/CONDITION = ROW

/MODEL = GEMSCAL

/CRITERIA = DIM(4) DIRECTIONS(4).

* In this example, the number of directions in the GEMSCAL model is set to 4.

CRITERIA Subcommand

Use CRITERIA to control features of the scaling model and to set convergence criteria for the solution. You
can specify one or more of the following;:

4. Carroll, J. D., and J. J. Chang. 1970. Analysis of individual differences in multidimensional scaling via an n-way generalization of
“Eckart-Young” decomposition. Psychometrika, 35, 238-319.

5. Young, F. W. 1975. An asymmetric Euclidean model for multiprocess asymmetric data. In: Proceedings of U.S.—Japan Seminar on
Multidimensional Scaling. San Diego: .

6. Young, F. W. 1975. An asymmetric Euclidean model for multiprocess asymmetric data. In: Proceedings of U.S.—Japan Seminar on
Multidimensional Scaling. San Diego: .

7. Carroll, J. D., and J. J. Chang. 1970. Analysis of individual differences in multidimensional scaling via an n-way generalization of
“Eckart-Young” decomposition. Psychometrika, 35, 238-319.

ALSCAL 153

CONVERGE(n). Stop iterations if the change in S-stress is less than n. S-stress is a goodness-of-fit index. By
default, n=0.001. To increase the precision of a solution, specify a smaller value, for example, 0.0001. To
obtain a less precise solution (perhaps to reduce computing time), specify a larger value, for example,
0.05. Negative values are not allowed. If n=0, the algorithm will iterate 30 times unless a value is
specified with the ITER option.

ITER(n). Set the maximum number of iterations to n. The default value is 30. A higher value will give a
more precise solution but will take longer to compute.

STRESSMIN(n). Set the minimum stress value to n. By default, ALSCAL stops iterating when the value of
S-stress is 0.005 or less. STRESSMIN can be assigned any value from 0 to 1.

NEGATIVE. Allow negative weights in individual differences models. By default, ALSCAL does not permit the
weights to be negative. Weighted models include INDSCAL, ASCAL, AINDS, and GEMSCAL. The NEGATIVE
option is ignored if the model is EUCLID.

CUTOFF(n). Set the cutoff value for treating distances as missing to n. By default, ALSCAL treats all negative
similarities (or dissimilarities) as missing and 0 and positive similarities as nonmissing (n=0). Changing
the CUTOFF value causes ALSCAL to treat similarities greater than or equal to that value as nonmissing.
User- and system-missing values are considered missing regardless of the CUTOFF specification.

NOULB. Do not estimate upper and lower bounds on missing values. By default, ALSCAL estimates the upper
and lower bounds on missing values in order to compute the initial configuration. This specification has
no effect during the iterative process, when missing values are ignored.

DIMENS(min[,max]). Set the minimum and maximum number of dimensions in the scaling solution. By default,
ALSCAL calculates a solution with two dimensions. To obtain solutions for more than two dimensions,
specify the minimum and the maximum number of dimensions in parentheses after DIMENS. The
minimum and maximum can be integers between 2 and 6. A single value represents both the minimum
and the maximum. For example, DIMENS(3) is equivalent to DIMENS(3,3). The minimum number of
dimensions can be set to 1 only if MODEL=EUCLID.

DIRECTIONS((n). Set the number of principal directions in the generalized Euclidean model to n. This option
has no effect for models other than GEMSCAL. The number of principal directions can be any positive
integer between 1 and the number of dimensions specified on the DIMENS option. By default, the number
of directions equals the number of dimensions.

TIESTORE(n). Set the amount of storage needed for ties to n. This option estimates the amount of storage
needed to deal with ties in ordinal data. By default, the amount of storage is set to 1000 or the number of
cells in a matrix, whichever is smaller. Should this be insufficient, ALSCAL terminates and displays a
message that more space is needed.

CONSTRAIN. Constrain multidimensional unfolding solution. This option can be used to keep the initial
constraints throughout the analysis.

PRINT Subcommand

PRINT requests output not available by default. You can specify the following:

DATA. Display input data. The display includes both the initial data and the scaled data for each subject
according to the structure specified on SHAPE.

HEADER. Display a header page. The header includes the model, output, algorithmic, and data options in
effect for the analysis.

154 IBM SPSS Statistics 23 Command Syntax Reference

* Data options listed by PRINT=HEADER include the number of rows and columns, number of matrices,
measurement level, shape of the data matrix, type of data (similarity or dissimilarity), whether ties are
tied or untied, conditionality, and data cutoff value.

* Model options listed by PRINT=HEADER are the type of model specified (EUCLID, INDSCAL, ASCAL, AINDS, or
GEMSCAL), minimum and maximum dimensionality, and whether or not negative weights are permitted.

* Output options listed by PRINT=HEADER indicate whether the output includes the header page and input
data, whether ALSCAL plotted configurations and transformations, whether an output dataset was
created, and whether initial stimulus coordinates, initial column stimulus coordinates, initial subject
weights, and initial stimulus weights were computed.

* Algorithmic options listed by PRINT=HEADER include the maximum number of iterations permitted, the
convergence criterion, the maximum S-stress value, whether or not missing data are estimated by
upper and lower bounds, and the amount of storage allotted for ties in ordinal data.

Example
ALSCAL VAR=ATLANTA TO TAMPA /PRINT=DATA.
* In addition to scaled data, ALSCAL will display initial data.

PLOT Subcommand

PLOT controls the display of plots. The minimum specification is simply PLOT to produce the defaults.

DEFAULT. Default plots. Default plots include plots of stimulus coordinates, matrix weights (if the model
is INDSCAL, AINDS, or GEMSCAL), and stimulus weights (if the model is AINDS or ASCAL). The default also
includes a scatterplot of the linear fit between the data and the model and, for certain types of data,
scatterplots of the nonlinear fit and the data transformation.

ALL. Transformation plots in addition to the default plots. A separate plot is produced for each subject if
CONDITION=MATRIX and a separate plot for each row if CONDITION=ROW. For interval and ratio data, PLOT=ALL
has the same effect as PLOT=DEFAULT. This option can generate voluminous output, particularly when
CONDITION=ROW.

Example
ALSCAL VAR=V1 TO V8 /INPUT=ROWS(8) /PLOT=ALL.

* This command produces all of the default plots. It also produces a separate plot for each subject’s data
transformation and a plot of V1 through V8§ in a two-dimensional space for each subject.

OUTFILE Subcommand

OUTFILE saves coordinate and weight matrices to a data file in IBM SPSS Statistics format. The only
specification is a name for the output file.

* The output data file has an alphanumeric (short string) variable named TYPE_ that identifies the kind
of values in each row, a numeric variable named DIMENS that specifies the number of dimensions, a
numeric variable named MATNUM that indicates the subject (matrix) to which each set of coordinates
corresponds, and variables named DIM1, DIM?, ..., DIMn that correspond to the n dimensions in the
model.

* The values of any split-file variables are also included in the output file.
* The file created by OUTFILE can be used by subsequent ALSCAL commands as initial data.

The following are the types of configurations and weights that can be included in the output file:
CONFIG. Stimulus configuration coordinates.

ROWCONF. Row stimulus configuration coordinates.

ALSCAL 155

COLCONF. Column stimulus configuration coordinates.

SUBJWGHT. Subject (matrix) weights.

FLATWGHT. Flattened subject (matrix) weights.

GEMWGHT. Generalized weights.

STIMWGHT. Stimulus weights.

Only the first three characters of each identifier are written to the variable TYPE_ in the file. For example,

CONFIG becomes CON. The structure of the file is determined by the SHAPE and MODEL subcommands, as
shown in the following table.

Table 8. Types of configurations and/or weights in output files

Shape Model TYPE_

SYMMETRIC EUCLID CON

SYMMETRIC INDSCAL CON, SUB, FLA
SYMMETRIC GEMSCAL CON, SUB, FLA, GEM
ASYMMETRIC EUCLID CON

ASYMMETRIC INDSCAL CON, SUB, FLA
ASYMMETRIC GEMSCAL CON, SUB, FLA, GEM
ASYMMETRIC ASCAL CON, STI
ASYMMETRIC AINDS CON, SUB, FLA, STI
RECTANGULAR EUCLID ROW, COL
RECTANGULAR INDSCAL ROW, COL, SUB, FLA
RECTANGULAR GEMSCAL ROW, COL, SUB, FLA, GEM
Example

ALSCAL VAR=ATLANTA TO TAMPA /OUTFILE=ONE.
* OUTFILE creates the configuration/weights file ONE from the example of air distances between cities.

MATRIX Subcommand

MATRIX reads matrix data files. It can read a matrix written by either PROXIMITIES or CLUSTER.

* Generally, data read by ALSCAL are already in matrix form. If the matrix materials are in the active
dataset, you do not need to use MATRIX to read them. Simply use the VARIABLES subcommand to
indicate the variables (or columns) to be used. However, if the matrix materials are not in the active
dataset, MATRIX must be used to specify the matrix data file that contains the matrix.

* The proximity matrices that ALSCAL reads have ROWTYPE_ values of PROX. No additional statistics
should be included with these matrix materials.

* ALSCAL ignores unrecognized ROWTYPE_ values in the matrix file. In addition, it ignores variables
present in the matrix file that are not specified on the VARIABLES subcommand in ALSCAL. The order of
rows and columns in the matrix is unimportant.

* Since ALSCAL does not support case labeling, it ignores values for the ID variable (if present) in a
CLUSTER or PROXIMITIES matrix.

* If split-file processing was in effect when the matrix was written, the same split file must be in effect
when ALSCAL reads that matrix.

* The specification on MATRIX is the keyword IN and the matrix file in parentheses.

156 IBM SPSS Statistics 23 Command Syntax Reference

¢ MATRIX=IN cannot be used unless a active dataset has already been defined. To read an existing matrix
data file at the beginning of a session, first use GET to retrieve the matrix file and then specify IN(*) on
MATRIX.

IN (filename) . Read a matrix data file. If the matrix data file is the active dataset, specify an asterisk in
parentheses (*). If the matrix data file is another file, specify the filename in parentheses. A matrix file
read from an external file does not replace the active dataset.

Example

PROXIMITIES V1 TO V8 /ID=NAMEVAR /MATRIX=0UT(*).
ALSCAL VAR=CASE1 TO CASE10 /MATRIX=IN(*).

* PROXIMITIES uses V1 through V8 in the active dataset to generate a matrix file of Euclidean distances
between each pair of cases based on the eight variables. The number of rows and columns in the
resulting matrix equals the number of cases. MATRIX=0UT then replaces the active dataset with this new
matrix data file.

e MATRIX=IN on ALSCAL reads the matrix data file, which is the new active dataset. In this instance,
MATRIX is optional because the matrix materials are in the active dataset.

* If there were 10 cases in the original active dataset, ALSCAL performs a multidimensional scaling
analysis in two dimensions on CASE1 through CASE10.

Example

GET FILE PROXMTX.
ALSCAL VAR=CASE1 TO CASE10 /MATRIX=IN(*).

e GET retrieves the matrix data file PROXMTX.

* MATRIX=IN specifies an asterisk because the active dataset is the matrix. MATRIX is optional, however,
since the matrix materials are in the active dataset.

Example

GET FILE PRSNNL.
FREQUENCIES VARIABLE=AGE.
ALSCAL VAR=CASE1 TO CASE10 /MATRIX=IN(PROXMTX).

* This example performs a frequencies analysis on the file PRSNNL and then uses a different file
containing matrix data for ALSCAL. The file is an existing matrix data file.

¢ MATRIX=IN is required because the matrix data file, PROXMTYX, is not the active dataset. PROXMTX
does not replace PRSNNL as the active dataset.

Specification of Analyses

The following tables summarize the analyses that can be performed for the major types of proximity
matrices that you can use with ALSCAL, list the specifications needed to produce these analyses for
nonmetric models, and list the specifications for metric models. You can include additional specifications
to control the precision of your analysis with CRITERIA.

Table 9. Models for types of matrix input.

Matrix | Matrix Model Replications of single Two or more individual

mode | form class Single matrix matrix matrices

Object |Symmetric | Multidimens${oWHDS Classical RMDS Replicated WMDS (INDSCAL)

by scaling multidimensional scaling | multidimensional scaling | Weighted

object multidimensional scaling

Object | Asymmetrid Multidimens{oWHDS (row conditional) RMDS (row conditional) | WMDS (row conditional)

by single scaling Classical row conditional | Replicated row Weighted row conditional

object | process multidimensional scaling | conditional multi multidimensional scaling
dimensional scaling

ALSCAL 157

Table 9. Models for types of matrix input (continued).

Matrix | Matrix Model Replications of single Two or more individual
mode |form class Single matrix matrix matrices
Object | Asymmetrid Internal CAMDS Classical RAMDS Replicated WAMDS Weighted
by multiple asymmetric | asymmetric asymmetric asymmetric
object | process multidimensiomdtidimensional scaling | multidimensional scaling | multidimensional scaling
scaling
Object | Asymmetriq External CAMDS (external) RAMDS (external) WAMDS (external)
by multiple asymmetric | Classical external Replicated external Weighted external
object | process multidimengiayahmetric asymmetric asymmetric
scaling multidimensional scaling | multidimensional scaling | multidimensional scaling
Object | Rectangular| Internal CMDU Classical internal | RMDU Replicated WMDU Weighted
by unfolding | multidimensional internal multidimensional | internal multidimensional
attribute unfolding unfolding unfolding
Object | Rectangular| External CMDU (external) Classical | RMDU (external) WMDU (external)
by unfolding | external multidimensional |Replicated external Weighted external
attribute unfolding multidimensional multidimensional
unfolding unfolding
Table 10. ALSCAL specifications for nonmetric models.
Matrix | Matrix Replications of single Two or more individual
mode form Model class Single matrix matrix matrices
Object Symmetric Multidimension @JLSCAL ALSCAL ALSCAL
by scaling VAR=varlist. VAR= varlist. VAR= varlist
object /MODEL=INDSCAL.
Object | Asymmetric | Multidimensional, scaL ALSCAL ALSCAL
by single scaling VAR= varlist VAR= varlist VAR= varlist
object process /SHAPE=ASYMMETRIC /SHAPE=ASYMMETRIC /SHAPE=ASYMMETRIC
/CONDITION=ROW. /CONDITION=ROW. /CONDITION=ROW
/MODEL=INDSCAL.
Object | Asymmetric | Internal ALSCAL ALSCAL ALSCAL
by multiple asymmetric VAR= varlist VAR= varlist VAR= varlist
object process multidimensiongISHAPE=ASYMMETRIC /SHAPE=ASYMMETRIC /SHAPE=ASYMMETRIC
scaling /MODEL=ASCAL. /MODEL=ASCAL. /MODEL=AINDS.
Object | Asymmetric | External ALSCAL ALSCAL ALSCAL
by multiple asymmetric VAR= varlist VAR= varlist VAR=varlist
object process multidimensior|giSHAPE=ASYMMETRIC /SHAPE=ASYMMETRIC /SHAPE=ASYMMETRIC
scaling /MODEL=ASCAL /MODEL=ASCAL /MODEL=AINDS
/FILE=file /FILE=file /FILE=file
COLCONF (FIX). COLCONF (FIX). COLCONF (FIX).
Object Rectangular Internal ALSCAL ALSCAL ALSCAL
by unfolding VAR=varlist VAR=varlist VAR=varlist
attribute /SHAPE=REC /SHAPE=REC /SHAPE=REC
/INP=ROWS /INP=ROWS /INP=ROWS
/CONDITION=ROW. /CONDITION(ROW) . /CONDITION=ROW
/MODEL=INDSCAL.
158 IBM SPSS Statistics 23 Command Syntax Reference

Table 10. ALSCAL specifications for nonmetric models (continued).

Matrix | Matrix Replications of single |Two or more individual
mode |form Model class | Single matrix matrix matrices
Object Rectangular External ALSCAL ALSCAL ALSCAL
by unfolding VAR=varlist VAR= varlist VAR=varlist
attribute /SHAPE=REC /SHAPE=REC /SHAPE=REC
/INP=ROWS /INP=ROWS /INP=ROWS
/CONDITION=ROW /CONDITION=ROW /CONDITION=ROW
/FILE=file /FILE=file /FILE=file
ROWCONF (FIX) . ROWCONF (FIX). ROWCONF (FIX)
/MODEL=INDSCAL.
Table 11. ALSCAL specifications for metric models.
Matrix | Matrix Replications of single |Two or more individual
mode | form Model class | Single matrix matrix matrices
ObjECt Symmetric Multidimensior] %JLSCAL ALSCAL ALSCAL
by scaling VAR=varlist VAR=varlist VAR=varlist
object /LEVEL=INT. /LEVEL=INT. /LEVEL=INT
/MODEL=INDSCAL.
Object Asymmetric Multidimensior @JLSCAL ALSCAL ALSCAL
by single scaling VAR=varlist VAR=varlist VAR=varlist
object | process /SHAPE=ASYMMETRIC /SHAPE=ASYMMETRIC /SHAPE=ASYMMETRIC
/CONDITION=ROW /CONDITION=ROW /CONDITION=ROW
/LEVEL=INT. /LEVEL=INT. /LEVEL=INT
/MODEL=INDSCAL.
ObjECt Asymmetric Internal ALSCAL ALSCAL ALSCAL
by multiple asymmetric VAR=varlist VAR=varlist VAR=varlist
object | process multidimensiongISHAPE=ASYMMETRIC /SHAPE=ASYMMETRIC /SHAPE=ASYMMETRIC
scaling /LEVEL=INT /LEVEL=INT /LEVEL=INT
/MODEL=ASCAL. /MODEL=ASCAL. /MODEL=AINDS.
Object | Asymmetric | External ALSCAL ALSCAL VAR= varlist |ALSCAL
by multiple asymmetric VAR= varlist /SHAPE=ASYMMETRIC VAR=varlist
object | process multidimensiorgISHAPE=ASYMMETRIC /LEVEL=INT /SHAPE=ASYMMETRIC
scaling /LEVEL=INT /MODEL=ASCAL /LEVEL=INT
/MODEL=ASCAL /FILE=file /MODEL=AINDS
/FILE=file COLCONF(FIX). /FILE=file
COLCONF (FIX). COLCONF (FIX).
Object |Rectangular |Internal ALSCAL ALSCAL ALSCAL
by unfolding VAR=varlist VAR=varlist VAR=varlist
attribute /SHAPE=REC /SHAPE=REC /SHAPE=REC
/INP=ROWS /INP=ROWS /INP=ROWS
/CONDITION=ROW /CONDITION=ROW /CONDITION=ROW
/LEVEL=INT. /LEVEL=INT. /LEVEL=INT
/MODEL=INDSCAL.
Object Rectangular External ALSCAL ALSCAL ALSCAL
by unfolding VAR=varlist VAR=varlist VAR=varlist
attribute /SHAPE=REC /SHAPE=REC /SHAPE=REC
/INP=ROWS /INP=ROWS /INP=ROWS
/CONDITION=ROW /CONDITION=ROW /CONDITION=ROW
/LEVEL=INT /LEVEL=INT /LEVEL=INT
/FILE=file /FILE=file /FILE=file
ROWCONF (FIX) . ROWCONF (FIX). ROWCONF (FIX)

/MODEL=INDSCAL.

ALSCAL

159

References

Carroll, J. D., and J. J. Chang. 1970. Analysis of individual differences in multidimensional scaling via an
n-way generalization of “Eckart-Young” decomposition. Psychometrika, 35, 238-319.

Johnson, R., and D. W. Wichern. 1982. Applied multivariate statistical analysis. Englewood Cliffs, N.].:
Prentice-Hall.

Kruskal, J. B. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis.
Psychometrika, 29, 1-28.

Kruskal, J. B. 1964. Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29, 115-129.

Takane, Y., E. W. Young, and J. de Leeuw. 1977. Nonmetric individual differences multidimensional
scaling: An alternating least squares method with optimal scaling features. Psychometrika, 42, 7-67.

Young, E. W. 1975. An asymmetric Euclidean model for multiprocess asymmetric data. In: Proceedings of
U.S.—Japan Seminar on Multidimensional Scaling. San Diego: .

160 1BM SPSS Statistics 23 Command Syntax Reference

ANACOR

ANACOR is available in the Categories option.

ANACOR TABLE={row var (min, max) BY column var (min, max)}
{ALL (# of rows, # of columns) }

[/DIMENSION={2** }]
{value}

[/NORMALIZATION={CANONICAL#+}]
{PRINCIPAL }
{RPRINCIPAL }
{CPRINCIPAL }
{value }

[/VARIANCES=[SINGULAR] [ROWS] [COLUMNS]]

[/PRINT=[TABLE**] [PROFILES] [SCORES**] [CONTRIBUTIONS+**]
[DEFAULT] [PERMUTATION] [NONE]]

[/PLOT=[NDIM=({1, 2%* 1
{value, value}
{ALL, MAX }

[ROWS**[(n)]] [COLUMNS**[(n)]] [DEFAULT[(n)]]
[TRROWS] [TRCOLUMNS] [JOINT[(n)]1] [NONE]]

[/MATRIX OUT=[SCORE ({+ 1)1 [VARIANCE ({*
{'savfile'|'dataset'} {'savfile'|'dataset'}

**Default if the subcommand or keyword is omitted.

This command reads the active dataset and causes execution of any pending commands. See the topic
[“Command Order” on page 40| for more information.

Example
ANACOR TABLE=MENTAL(1,4) BY SES(1,6).

Overview

ANACOR performs correspondence analysis, which is an isotropic graphical representation of the
relationships between the rows and columns of a two-way table.

Options
Number of Dimensions. You can specify how many dimensions ANACOR should compute.

Method of Normalization. You can specify one of five different methods for normalizing the row and
column scores.

Computation of Variances and Correlations. You can request computation of variances and correlations
for singular values, row scores, or column scores.

Data Input. You can analyze the usual individual casewise data or aggregated data from table cells.

Display Output. You can control which statistics are displayed and plotted. You can also control how
many value-label characters are used on the plots.

Writing Matrices. You can write matrix data files containing row and column scores and variances for
use in further analyses.

Basic Specification

© Copyright IBM Corporation 1989, 2014 161

* The basic specification is ANACOR and the TABLE subcommand. By default, ANACOR computes a
two-dimensional solution, displays the TABLE, SCORES, and CONTRIBUTIONS statistics, and plots the row
scores and column scores of the first two dimensions.

Subcommand Order

¢ Subcommands can appear in any order.

Operations

 If a subcommand is specified more than once, only the last occurrence is executed.

Limitations

e If the data within table cells contains negative values. ANACOR treats those values as 0.

Example

ANACOR TABLE=MENTAL(1,4) BY SES(1,6)
/PRINT=SCORES CONTRIBUTIONS
/PLOT=ROWS COLUMNS.

* Two variables, MENTAL and SES, are specified on the TABLE subcommand. MENTAL has values
ranging from 1 to 4, and SES has values ranging from 1 to 6.

e The row and column scores and the contribution of each row and column to the inertia of each
dimension are displayed.

* Two plots are produced. The first one plots the first two dimensions of row scores, and the second one
plots the first two dimensions of column scores.

TABLE Subcommand

TABLE specifies the row and column variables, along with their value ranges for individual casewise data.
For table data, TABLE specifies the keyword ALL and the number of rows and columns.

* The TABLE subcommand is required.

Casewise Data

 Each variable is followed by a value range in parentheses. The value range consists of the variable’s
minimum value, a comma, and the variable’s maximum value.

* Values outside of the specified range are not included in the analysis.

* Values do not have to be sequential. Empty categories receive scores of 0 and do not affect the rest of
the computations.

Example

DATA LIST FREE/VARL VAR2.
BEGIN DATA
1

P WOOO PR PWOW
RN WWWN N -

3
END DATA.
ANACOR TABLE=VAR1(3,6) BY VAR2(1,3).

e DATA LIST defines two variables, VAR1 and VAR2.
¢ VARI has three levels, coded 3, 4, and 6, while VAR2 also has three levels, coded 1, 2, and 3.

162 IBM SPSS Statistics 23 Command Syntax Reference

* Because a range of (3,6) is specified for VAR1, ANACOR defines four categories, coded 3, 4, 5, and 6. The
empty category, 5, for which there is no data, receives zeros for all statistics but does not affect the
analysis.

Table Data

* The cells of a table can be read and analyzed directly by using the keyword ALL after TABLE.

¢ The columns of the input table must be specified as variables on the DATA LIST command. Only
columns are defined, not rows.

* ALL is followed by the number of rows in the table, a comma, and the number of columns in the table,
all enclosed in parentheses.

* If you want to analyze only a subset of the table, the specified number of rows and columns can be
smaller than the actual number of rows and columns.

* The variables (columns of the table) are treated as the column categories, and the cases (rows of the
table) are treated as the row categories.

* Rows cannot be labeled when you specify TABLE=ALL. If labels in your output are important, use the
WEIGHT command method to enter your data (see|“Analyzing Ageregated Data” on page 167).

Example

DATA LIST /COLO1 TO COLO7 1-21.
BEGIN DATA
50 19 26 818 6 2
16 40 34 18 31 8 3
12 35 65 66123 23 21
11 20 58110223 64 32
14 36114185714258189
0 6 19 40179143 71
END DATA.
ANACOR TABLE=ALL(6,7).

e DATA LIST defines the seven columns of the table as the variables.

» The TABLE=ALL specification indicates that the data are the cells of a table. The (6,7) specification
indicates that there are six rows and seven columns.

DIMENSION Subcommand

DIMENSION specifies the number of dimensions you want ANACOR to compute.
* If you do not specify the DIMENSION subcommand, ANACOR computes two dimensions.
* DIMENSION is followed by an integer indicating the number of dimensions.

* In general, you should choose as few dimensions as needed to explain most of the variation. The
minimum number of dimensions that can be specified is 1. The maximum number of dimensions that
can be specified is equal to the number of levels of the variable with the least number of levels, minus
1. For example, in a table where one variable has five levels and the other has four levels, the
maximum number of dimensions that can be specified is (4 — 1), or 3. Empty categories (categories
with no data, all zeros, or all missing data) are not counted toward the number of levels of a variable.

* If more than the maximum allowed number of dimensions is specified, ANACOR reduces the number of
dimensions to the maximum.

NORMALIZATION Subcommand

The NORMALIZATION subcommand specifies one of five methods for normalizing the row and column
scores. Only the scores and variances are affected; contributions and profiles are not changed.

The following keywords are available:

CANONICAL. For each dimension, rows are the weighted average of columns divided by the matching singular
value, and columns are the weighted average of rows divided by the matching singular value. This is the default if

ANACOR 163

the NORMALIZATION subcommand is not specified. DEFAULT is an alias for CANONICAL. Use this normalization
method if you are primarily interested in differences or similarities between variables.

PRINCIPAL. Distances between row points and column points are approximations of chi-square distances. The
distances represent the distance between the row or column and its corresponding average row or
column profile. Use this normalization method if you want to examine both differences between
categories of the row variable and differences between categories of the column variable (but not
differences between variables).

RPRINCIPAL. Distances between row points are approximations of chi-square distances. This method
maximizes distances between row points. This is useful when you are primarily interested in differences
or similarities between categories of the row variable.

CPRINCIPAL. Distances between column points are approximations of chi-square distances. This method
maximizes distances between column points. This is useful when you are primarily interested in
differences or similarities between categories of the column variable.

The fifth method has no keyword. Instead, any value in the range -2 to +2 is specified after
NORMALIZATION. A value of 1 is equal to the RPRINCIPAL method, a value of 0 is equal to CANONICAL, and a
value of -1 is equal to the CPRINCIPAL method. The inertia is spread over both row and column scores.
This method is useful for interpreting joint plots.

VARIANCES Subcommand

Use VARIANCES to display variances and correlations for the singular values, the row scores, and/or the
column scores. If VARIANCES is not specified, variances and correlations are not included in the output.

The following keywords are available:
SINGULAR. Variances and correlations of the singular values.
ROWS. Variances and correlations of the row scores.

COLUMNS. Variances and correlations of the column scores.

PRINT Subcommand

Use PRINT to control which correspondence statistics are displayed. If PRINT is not specified, displayed
statistics include the numbers of rows and columns, all nontrivial singular values, proportions of inertia,
and the cumulative proportion of inertia that is accounted for.

The following keywords are available:

TABLE. A crosstabulation of the input variables showing row and column marginals.

PROFILES. The row and column profiles. PRINT=PROFILES is analogous to the CELLS=ROW COLUMN
subcommand in CROSSTABS.

SCORES. The marginal proportions and scores of each row and column.

CONTRIBUTIONS. The contribution of each row and column to the inertia of each dimension, and the
proportion of distance to the origin that is accounted for in each dimension.

PERMUTATION. The original table permuted according to the scores of the rows and columns for each
dimension.

164 1BM SPSS Statistics 23 Command Syntax Reference

NONE. No output other than the singular values.

DEFAULT. TABLE, SCORES, and CONTRIBUTIONS. These statistics are displayed if you omit the PRINT
subcommand.

PLOT Subcommand

Use PLOT to produce plots of the row scores, column scores, and row and column scores, as well as to
produce plots of transformations of the row scores and transformations of the column scores. If PLOT is
not specified, plots are produced for the row scores in the first two dimensions and the column scores in
the first two dimensions.

The following keywords are available:

TRROWS. Plot of transformations of the row category values into row scores.
TRCOLUMNS. Plot of transformations of the column category values into column scores.
ROWS. Plot of row scores.

COLUMNS. Plot of column scores.

JOINT. A combined plot of the row and column scores. This plot is not available when
NORMALIZATION=PRINCIPAL.

NONE. No plots.

DEFAULT. ROWS and COLUMNS.

* The keywords ROWS, COLUMNS, JOINT, and DEFAULT can be followed by an integer value in parentheses to
indicate how many characters of the value label are to be used on the plot. The value can range from 1
to 20; the default is 3. Spaces between words count as characters.

TRROWS and TRCOLUMNS plots use the full value labels up to 20 characters.
If a label is missing for any value, the actual values are used for all values of that variable.

Value labels should be unique.

* The first letter of a label on a plot marks the place of the actual coordinate. Be careful that
multiple-word labels are not interpreted as multiple points on a plot.

In addition to the plot keywords, the following keyword can be specified:

NDIM. Dimension pairs to be plotted. NDIM is followed by a pair of values in parentheses. If NDIM is not
specified, plots are produced for dimension 1 by dimension 2.

* The first value indicates the dimension that is plotted against all higher dimensions. This value can be
any integer from 1 to the number of dimensions minus 1.

* The second value indicates the highest dimension to be used in plotting the dimension pairs. This
value can be any integer from 2 to the number of dimensions.

* Keyword ALL can be used instead of the first value to indicate that all dimensions are paired with
higher dimensions.

* Keyword MAX can be used instead of the second value to indicate that plots should be produced up to,
and including, the highest dimension fit by the procedure.

Example

ANACOR TABLE=MENTAL(1,4) BY SES(1,6)
/PLOT NDIM(1,3) JOINT(5).

ANACOR 165

* The NDIM(1,3) specification indicates that plots should be produced for two dimension
pairs—dimension 1 versus dimension 2 and dimension 1 versus dimension 3.

* JOINT requests combined plots of row and column scores. The (5) specification indicates that the first
five characters of the value labels are to be used on the plots.

Example

ANACOR TABLE=MENTAL(1,4) BY SES(1,6)
/PLOT NDIM(ALL,3) JOINT(5).

* This plot is the same as above except for the ALL specification following NDIM, which indicates that all
possible pairs up to the second value should be plotted. Therefore, JOINT plots will be produced for
dimension 1 versus dimension 2, dimension 2 versus dimension 3, and dimension 1 versus dimension
3.

MATRIX Subcommand

Use MATRIX to write row and column scores and variances to matrix data files.
MATRIX is followed by keyword OUT, an equals sign, and one or both of the following keywords:
SCORE ('file'|'dataset'). Write row and column scores to a matrix data file.

VARIANCE ('file' | 'dataset'). Write variances to a matrix data file.

* You can specify the file with either an asterisk (*), to replace the active dataset , a quoted file
specification or a previously declared dataset name (DATASET DECLARE command), enclosed in
parentheses.

* If you specify both SCORE and VARIANCE on the same MATRIX subcommand, you must specify two
different files.

The variables in the SCORE matrix data file and their values are:

ROWTYPE_. String variable containing the value ROW for all rows and COLUMN for all columns.
LEVEL. String variable containing the values (or value labels, if present) of each original variable.
VARNAME_. String variable containing the original variable names.

DIM1...DIMn. Numeric variables containing the row and column scores for each dimension. Each variable is
labeled DIMn, where n represents the dimension number.

The variables in the VARIANCE matrix data file and their values are:
ROWTYPE_. String variable containing the value COV for all cases in the file.
SCORE. String variable containing the values SINGULAR, ROW, and COLUMN.

LEVEL. String variable containing the system-missing value for SINGULAR and the sequential row or column
number for ROW and COLUMN.

VARNAME _. String variable containing the dimension number.

DIM1..DIMn. Numeric variables containing the covariances for each dimension. Each variable is labeled DIM
1, where n represents the dimension number.

166 IBM SPSS Statistics 23 Command Syntax Reference

Analyzing Aggregated Data

To analyze aggregated data, such as data from a crosstabulation where cell counts are available but the
original raw data are not, you can use the TABLE=ALL option or the WEIGHT command before ANACOR.

Example

To analyze a 3 x 3 table, such as the table that is shown below, you could use these commands:

DATA LIST FREE/ BIRTHORD ANXIETY COUNT.
BEGIN DATA

1148

27

22

33

20

39

29

42

3347

END DATA.

WEIGHT BY COUNT.

ANACOR TABLE=BIRTHORD (1,3) BY ANXIETY (1,3).

e The WEIGHT command weights each case by the value of COUNT, as if there are 48 subjects with
BIRTHORD=1 and ANXIETY=1, 27 subjects with BIRTHORD=1 and ANXIETY=2, and so on.

ANACOR can then be used to analyze the data.

* If any table cell value equals 0, the WEIGHT command issues a warning, but the ANACOR analysis is done
correctly.

WWMN NN
N = WRN =W

* The table cell values (the WEIGHT values) cannot be negative. WEIGHT changes system-missing values and
negative values to 0.

* For large aggregated tables, you can use the TABLE=ALL option or the transformation language to enter
the table “as is.”

Table 12. 3 by 3 table

Birth Order Anxiety High Anxiety Med Anxiety Low
First 48 27 22
Second 33 20 39
Other 29 42 47

ANACOR 167

168 1BM SPSS Statistics 23 Command Syntax Reference

ANOVA

ANOVA is available in the Statistics Base option.

ANOVA VARIABLES= varlist BY varlist(min,max)...varlist(min,max)
[WITH varlist] [/VARIABLES=...]

[/COVARIATES={FIRST*+}]
WITH)
{AFTER }
[/MAXORDERS={ALLx* }]
n
{NONE }
[/METHOD={UNIQUEx+ }]
{EXPERIMENTAL}
{HIERARCHICAL}
[/STATISTICS=[MCA] [REG#+] [MEAN<x] [ALL] [NONE]]
[/MISSING={EXCLUDE#=}]
{INCLUDE }
**Default if the subcommand is omitted.
REG (table of regression coefficients) is displayed only if the design is relevant.

This command reads the active dataset and causes execution of any pending commands. See the topic
[“Command Order” on page 40| for more information.

Example

ANOVA VARIABLES=PRESTIGE BY REGION(1,9) SEX,RACE(1,2)
/MAXORDERS=2
/STATISTICS=MEAN.

Overview

ANOVA performs analysis of variance for factorial designs. The default is the full factorial model if there
are five or fewer factors. Analysis of variance tests the hypothesis that the group means of the dependent
variable are equal. The dependent variable is interval-level, and one or more categorical variables define
the groups. These categorical variables are termed factors. ANOVA also allows you to include continuous
explanatory variables, termed covariates. Other procedures that perform analysis of variance are ONEWAY,
SUMMARIZE, and GLM. To perform a comparison of two means, use TTEST.

Options

Specifying Covariates. You can introduce covariates into the model using the WITH keyword on the
VARIABLES subcommand.

Order of Entry of Covariates. By default, covariates are processed before main effects for factors. You can
process covariates with or after main effects for factors using the COVARIATES subcommand.

Suppressing Interaction Effects. You can suppress the effects of various orders of interaction using the
MAXORDERS subcommand.

Methods for Decomposing Sums of Squares. By default, the regression approach (keyword UNIQUE) is
used. You can request the classic experimental or hierarchical approach using the METHOD subcommand.

169

Statistical Display. Using the STATISTICS subcommand, you can request means and counts for each
dependent variable for groups defined by each factor and each combination of factors up to the fifth
level. You also can request unstandardized regression coefficients for covariates and multiple classification
analysis (MCA) results, which include the MCA table, the Factor Summary table, and the Model
Goodness of Fit table. The MCA table shows treatment effects as deviations from the grand mean and
includes a listing of unadjusted category effects for each factor, category effects adjusted for other factors,
and category effects adjusted for all factors and covariates. The Factor Summary table displays eta and
beta values. The Goodness of Fit table shows R and R ? for each model.

Basic Specification

* The basic specification is a single VARIABLES subcommand with an analysis list. The minimum analysis
list specifies a list of dependent variables, the keyword BY, a list of factor variables, and the minimum
and maximum integer values of the factors in parentheses.

* By default, the model includes all interaction terms up to five-way interactions. The sums of squares
are decomposed using the regression approach, in which all effects are assessed simultaneously, with
each effect adjusted for all other effects in the model. A case that has a missing value for any variable
in an analysis list is omitted from the analysis.

Subcommand Order

* The subcommands can be named in any order.
Operations

A separate analysis of variance is performed for each dependent variable in an analysis list, using the
same factors and covariates.

Limitations

¢ A maximum of 5 analysis lists.

* A maximum of 5 dependent variables per analysis list.

* A maximum of 10 factor variables per analysis list.

* A maximum of 10 covariates per analysis list.

* A maximum of 5 interaction levels.

* A maximum of 25 value labels per variable displayed in the MCA table.

* The combined number of categories for all factors in an analysis list plus the number of covariates
must be less than the sample size.

Examples

ANOVA VARIABLES=PRESTIGE BY REGION(1,9) SEX, RACE(1,2)
/MAXORDERS=2
/STATISTICS=MEAN.

* VARIABLES specifies a three-way analysis of variance—PRESTIGE by REGION, SEX, and RACE.

* The variables SEX and RACE each have two categories, with values 1 and 2 included in the analysis.
REGION has nine categories, valued 1 through 9.

* MAXORDERS examines interaction effects up to and including the second order. All three-way interaction
terms are pooled into the error sum of squares.

* STATISTICS requests a table of means of PRESTIGE within the combined categories of REGION, SEX,
and RACE.

Example: Specifying Multiple Analyses

ANOVA VARIABLES=PRESTIGE BY REGION(1,9) SEX,RACE(1,2)
/RINCOME BY SEX,RACE(1,2).

170 1BM SPSS Statistics 23 Command Syntax Reference

* ANOVA specifies a three-way analysis of variance of PRESTIGE by REGION, SEX, and RACE, and a
two-way analysis of variance of RINCOME by SEX and RACE.

VARIABLES Subcommand
VARIABLES specifies the analysis list.

* More than one design can be specified on the same ANOVA command by separating the analysis lists
with a slash.

* Variables named before the keyword BY are dependent variables. Value ranges are not specified for
dependent variables.

* Variables named after BY are factor (independent) variables.

* Every factor variable must have a value range indicating its minimum and maximum values. The
values must be separated by a space or a comma and enclosed in parentheses.

* Factor variables must have integer values. Non-integer values for factors are truncated.
* Cases with values outside the range specified for a factor are excluded from the analysis.

* If two or more factors have the same value range, you can specify the value range once following the
last factor to which it applies. You can specify a single range that encompasses the ranges of all factors
on the list. For example, if you have two factors, one with values 1 and 2 and the other with values 1
through 4, you can specify the range for both as 1,4. However, this may reduce performance and cause
memory problems if the specified range is larger than some of the actual ranges.

* Variables named after the keyword WITH are covariates.

* Each analysis list can include only one BY and one WITH keyword.

COVARIATES Subcommand

COVARIATES specifies the order for assessing blocks of covariates and factor main effects.
* The order of entry is irrelevant when METHOD=UNIQUE.

FIRST. Process covariates before factor main effects. This is the default.
WITH. Process covariates concurrently with factor main effects.

AFTER. Process covariates after factor main effects.

MAXORDERS Subcommand

MAXORDERS suppresses the effects of various orders of interaction.

ALL. Examine all interaction effects up to and including the fifth order. This is the default.

n. Examine all interaction effects up to and including the nth order. For example, MAXORDERS=3 examines all
interaction effects up to and including the third order. All higher-order interaction sums of squares are

pooled into the error term.

NONE. Delete all interaction terms from the model. All interaction sums of squares are pooled into the error
sum of squares. Only main and covariate effects appear in the ANOVA table.

METHOD Subcommand

METHOD controls the method for decomposing sums of squares.

ANOvVA 171

UNIQUE. Regression approach. UNIQUE overrides any keywords on the COVARIATES subcommand. All effects
are assessed simultaneously for their partial contribution. The MCA and MEAN specifications on the
STATISTICS subcommand are not available with the regression approach. This is the default if METHOD is
omitted.

EXPERIMENTAL. Classic experimental approach. Covariates, main effects, and ascending orders of
interaction are assessed separately in that order.

HIERARCHICAL. Hierarchical approach.

Regression Approach

All effects are assessed simultaneously, with each effect adjusted for all other effects in the model. This is
the default when the METHOD subcommand is omitted. Since MCA tables cannot be produced when the
regression approach is used, specifying MCA or ALL on STATISTICS with the default method triggers a
warning.

Some restrictions apply to the use of the regression approach:

* The lowest specified categories of all the independent variables must have a marginal frequency of at
least 1, since the lowest specified category is used as the reference category. If this rule is violated, no
ANOVA table is produced and a message identifying the first offending variable is displayed.

* Given an n-way crosstabulation of the independent variables, there must be no empty cells defined by
the lowest specified category of any of the independent variables. If this restriction is violated, one or
more levels of interaction effects are suppressed and a warning message is issued. However, this
constraint does not apply to categories defined for an independent variable but not occurring in the
data. For example, given two independent variables, each with categories of 1, 2, and 4, the (1,1), (1,2),
(1,4), (2,1), and (4,1) cells must not be empty. The (1,3) and (3,1) cells will be empty but the restriction
on empty cells will not be violated. The (2,2), (2,4), (4,2), and (4,4) cells may be empty, although the
degrees of freedom will be reduced accordingly.

To comply with these restrictions, specify precisely the lowest non-empty category of each independent
variable. Specifying a value range of (0,9) for a variable that actually has values of 1 through 9 results in
an error, and no ANOVA table is produced.

Classic Experimental Approach

Each type of effect is assessed separately in the following order (unless WITH or AFTER is specified on the
COVARIATES subcommand):

* Effects of covariates

* Main effects of factors

* Two-way interaction effects
* Three-way interaction effects
* Four-way interaction effects

* Five-way interaction effects

The effects within each type are adjusted for all other effects of that type and also for the effects of all
prior types. (See|Table 13 on page 173})

Hierarchical Approach

The hierarchical approach differs from the classic experimental approach only in the way it handles
covariate and factor main effects. In the hierarchical approach, factor main effects and covariate effects are
assessed hierarchically—factor main effects are adjusted only for the factor main effects already assessed,
and covariate effects are adjusted only for the covariates already assessed. (See [Table 13 on page 173]) The
order in which factors are listed on the ANOVA command determines the order in which they are assessed.

172 IBM SPSS Statistics 23 Command Syntax Reference

Example

The following analysis list specifies three factor variables named A, B, and C:
ANOVA VARIABLES=Y BY A,B,C(0,3).

The following table summarizes the three methods for decomposing sums of squares for this example.

* With the default regression approach, each factor or interaction is assessed with all other factors and
interactions held constant.

* With the classic experimental approach, each main effect is assessed with the two other main effects held
constant, and two-way interactions are assessed with all main effects and other two-way interactions
held constant. The three-way interaction is assessed with all main effects and two-way interactions

held constant.

* With the hierarchical approach, the factor main effects A, B, and C are assessed with all prior main
effects held constant. The order in which the factors and covariates are listed on the ANOVA command
determines the order in which they are assessed in the hierarchical analysis. The interaction effects are
assessed the same way as in the experimental approach.

Table 13. Terms adjusted for under each option

Effect

A

B

C

AB

AC

BC

ABC

Regression (UNIQUE) Experimental
All others B,C

All others AC

All others AB

All others A,B,C,AC,BC
All others A,B,C,AB,BC
All others A,B,C,AB,AC
All others A,B,C,AB,AC,BC

Hierarchical
None

A

AB
A,B,C,AC,BC
A,B,C,AB,BC
A,B,C,AB,AC

A,B,C,AB,AC,BC

Summary of Analysis Methods

The following table describes the results obtained with various combinations of methods for controlling
the entry of covariates and decomposing the sums of squares.

Table 14. Combinations of COVARIATES and METHOD subcommands.

Method

Assessments between types of
effects

Assessments within the same type of effect

METHOD=UNIQUE

Covariates, Factors, and
Interactions simultaneously

Covariates: adjust for factors, interactions, and
all other covariates

Factors: adjust for covariates, interactions, and
all other factors

Interactions: adjust for covariates, factors, and
all other interactions

ANOVA 173

Table 14. Combinations of COVARIATES and METHOD subcommands (continued).

Method

Assessments between types of
effects

Assessments within the same type of effect

METHOD=EXPERIMENTAL Covariates Covariates: adjust for all other covariates
then Factors: adjust for covariates and all other
factors
Factors
Interactions: adjust for covariates, factors, and
then all other interactions of the same and lower
orders
Interactions
METHOD=HIERARCHICAL Covariates Covariates: adjust for covariates that are
preceding in the list
then
Factors: adjust for covariates and factors
Factors preceding in the list
then Interactions: adjust for covariates, factors, and
. all other interactions of the same and lower
Interactions

orders

COVARIATES=WITH
and

METHOD=EXPERIMENTAL

Factors and Covariates
concurrently

then

Interactions

Covariates: adjust for factors and all other
covariates

Factors: adjust for covariates and all other
factors

Interactions: adjust for covariates, factors, and
all other interactions of the same and lower
orders

COVARIATES=WITH

Factors and Covariates

Factors: adjust only for preceding factors

concurrently
and Covariates: adjust for factors and preceding
then covariates
METHOD=HIERARCHICAL
Interactions Interactions: adjust for covariates, factors, and
all other interactions of the same and lower
orders
COVARIATES=AFTER Factors Factors: adjust for all other factors
and then Covariates: adjust for factors and all other
covariates
METHOD=EXPERIMENTAL Covariates
Interactions: adjust for covariates, factors, and
then all other interactions of the same and lower
orders
Interactions

174 1BM SPSS Statistics 23 Command Syntax Reference

Table 14. Combinations of COVARIATES and METHOD subcommands (continued).

Assessments between types of

Method effects Assessments within the same type of effect
COVARIATES=AFTER Factors Factors: adjust only for preceding factors
and then Covariates: adjust factors and preceding
covariates
METHOD=HIERARCHICAL Covariates
Interactions: adjust for covariates, factors, and
then all other interactions of the same and lower
. orders
Interactions

STATISTICS Subcommand

STATISTICS requests additional statistics. STATISTICS can be specified by itself or with one or more
keywords.
* If you specify STATISTICS without keywords, ANOVA calculates MEAN and REG (each defined below).

* If you specify a keyword or keywords on the STATISTICS subcommand, ANOVA calculates only the
additional statistics you request.

MEAN. Means and counts table. This statistic is not available when METHOD is omitted or when
METHOD=UNIQUE. See “Cell Means” below.

REG. Unstandardized regression coefficients. Displays unstandardized regression coefficients for the
covariates. See the topic [“Regression Coefficients for the Covariates”| for more information.

MCA. Multiple classification analysis. The MCA, the Factor Summary, and the Goodness of Fit tables are
not produced when METHOD is omitted or when METHOD=UNIQUE. See the topic [“Multiple Classification|
[Analysis” on page 176|for more information.

ALL. Means and counts table, unstandardized regression coefficients, and multiple classification analysis.

NONE. No additional statistics. ANOVA calculates only the statistics needed for analysis of variance. This is
the default if the STATISTICS subcommand is omitted.

Cell Means
STATISTICS=MEAN displays the Cell Means table.
e This statistic is not available with METHOD=UNIQUE.

* The Cell Means table shows the means and counts of each dependent variable for each cell defined by
the factors and combinations of factors. Dependent variables and factors appear in their order on the
VARIABLES subcommand.

* If MAXORDERS is used to suppress higher-order interactions, cell means corresponding to suppressed
interaction terms are not displayed.

e The means displayed are the observed means in each cell, and they are produced only for dependent
variables, not for covariates.

Regression Coefficients for the Covariates
STATISTICS=REG requests the unstandardized regression coefficients for the covariates.

* The regression coefficients are computed at the point where the covariates are entered into the
equation. Thus, their values depend on the type of design specified by the COVARIATES or METHOD
subcommand.

ANOVA 175

The coefficients are displayed in the ANOVA table.

Multiple Classification Analysis
STATISTICS=MCA displays the MCA, the Factor Summary, and the Model Goodness of Fit tables.

The MCA table presents counts, predicted means, and deviations of predicted means from the grand
mean for each level of each factor. The predicted and deviation means each appear in up to three
forms: unadjusted, adjusted for other factors, and adjusted for other factors and covariates.

The Factor Summary table displays the correlation ratio (eta) with the unadjusted deviations (the
square of eta indicates the proportion of variance explained by all categories of the factor), a partial
beta equivalent to the standardized partial regression coefficient that would be obtained by assigning
the unadjusted deviations to each factor category and regressing the dependent variable on the
resulting variables, and the parallel partial betas from a regression that includes covariates in addition
to the factors.

The Model Goodness of Fit table shows R and R ? for each model.

The tables cannot be produced if METHOD is omitted or if METHOD=UNIQUE. When produced, the MCA
table does not display the values adjusted for factors if COVARIATES is omitted, if COVARIATES=FIRST, or
if COVARIATES=WITH and METHOD=EXPERIMENTAL. A full MCA table is produced only if
METHOD=HIERARCHICAL or if METHOD=EXPERIMENTAL and COVARIATES=AFTER.

MISSING Subcommand

By default, a case that has a missing value for any variable named in the analysis list is deleted for all
analyses specified by that list. Use MISSING to include cases with user-missing data.

EXCLUDE. Exclude cases with missing data. This is the default.

INCLUDE. Include cases with user-defined missing data.

References

Andrews, E, J. Morgan, J. Sonquist, and L. Klein. 1973. Multiple classification analysis, 2nd ed. Ann Arbor:
University of Michigan.

176 IBM SPSS Statistics 23 Command Syntax Reference

APPLY DICTIONARY

APPLY DICTIONARY FROM [{'savfile'|'dataset'}] [PASSWORD='password']
{* }

[/SOURCE VARIABLES = varlist]
[/TARGET VARIABLES = varlist]
[/NEWVARS]

[/FILEINFO [ATTRIBUTES = [{REPLACE}]]
{MERGE

[DOCUMENTS = [{REPLACE}]] 1
{MERGE }

[FILELABEL]
[MRSETS = [{REPLACE}]]
{MERGE }

[VARSETS = [{REPLACE}]]
{MERGE

[WEIGHT**]
[ALL]
[/VARINFO [ALIGNMENT*+]]
[ATTRIBUTES = [{REPLACE}]]
{MERGE }
[FORMATS**]
[LEVEL#*+]
[MISSING#+]
[ROLE#+]

[VALLABELS = [{REPLACE*%}]]
{MERGE }

[VARLABEL#*x]
[WIDTHx+]

[ALL]
**Default if the subcommand is not specified.

This command takes effect immediately. It does not read the active dataset or execute pending
transformations. See the topic [“Command Order” on page 40| for more information.

Release History

Release 14.0
* ATTRIBUTES keyword introduced on FILEINFO and VARINFO subcommands.

Release 18
* ROLE keyword introduced on VARINFO subcommands.

Release 22.0
e PASSWORD keyword introduced on the FROM subcommand.

Example
APPLY DICTIONARY FROM = 'lastmonth.sav'.

© Copyright IBM Corporation 1989, 2014

177

Overview

APPLY DICTIONARY can apply variable and file-based dictionary information from an external IBM SPSS
Statistics data file or open dataset to the current active dataset. Variable-based dictionary information in
the current active dataset can be applied to other variables in the current active dataset.

* The applied variable information includes variable and value labels, missing-value flags, alignments,
variable print and write formats, measurement levels, and widths.

* The applied file information includes variable and multiple response sets, documents, file label, and
weight.

e APPLY DICTIONARY can apply information selectively to variables and can apply selective file-based
dictionary information.

¢ Individual variable attributes can be applied to individual and multiple variables of the same type
(strings of the same character length or numeric).

e APPLY DICTIONARY can add new variables but cannot remove variables, change data, or change a
variable’s name or type.

* Undefined (empty) attributes in the source dataset do not overwrite defined attributes in the active
dataset.

Basic Specification

The basic specification is the FROM subcommand and the name of an external IBM SPSS Statistics data file
or open dataset. The file specification should be enclosed in quotation marks.

Subcommand Order
The subcommands can be specified in any order.

Syntax Rules

* The file containing the dictionary information to be applied (the source file) must be an external IBM
SPSS Statistics data file or a currently open dataset.

¢ The file to which the dictionary information is applied (the target file) must be the active dataset. You
cannot specify another file.

 If a subcommand is issued more than once, APPLY DICTIONARY will ignore all but the last instance of the
subcommand.

* Equals signs displayed in the syntax chart and in the examples presented here are required elements;
they are not optional.

Matching Variable Type

APPLY DICTIONARY considers two variables to have a matching variable type if:
* Both variables are numeric. This includes all numeric, currency, and date formats.
* Both variables are string (alphanumeric).

FROM Subcommand

FROM specifies an external IBM SPSS Statistics data file or an open dataset as the source file whose
dictionary information is to be applied to the active dataset.

* FROM is required.

* Only one IBM SPSS Statistics data file or open dataset (including the active dataset) can be specified on
FROM.

* The file specification should be enclosed in quotation marks.

178 IBM SPSS Statistics 23 Command Syntax Reference

¢ The active dataset can be specified in the FROM subcommand by using an asterisk (*) as the value.
File-based dictionary information (FILEINFO subcommand) is ignored when the active dataset is used as
the source file.

PASSWORD Keyword

The PASSWORD keyword specifies the password required to open an encrypted IBM SPSS Statistics data
file. The specified value must be enclosed in quotation marks and can be provided as encrypted or as
plain text. Encrypted passwords are created when pasting command syntax from the Save Data As
dialog. The PASSWORD keyword is ignored if the file is not encrypted.

Example

APPLY DICTIONARY FROM "lastmonth.sav".

 This will apply variable information from lastmonth.sav to matching variables in the active dataset.

* The default variable information applied from the source file includes variable labels, value labels,
missing values, level of measurement, alignment, column width (for Data Editor display), and print
and write formats.

* If weighting is on in the source dataset and a matching weight variable exists in the active (target)
dataset, weighting by that variable is turned on in the active dataset. No other file information
(documents, file label, multiple response sets) from the source file is applied to the active dataset.

NEWVARS Subcommand

NEWVARS is required to create new variables in the active (target) dataset.

Example

APPLY DICTIONARY FROM "Tastmonth.sav"
/NEWVARS.

* For a new, blank active dataset, all variables with all of their variable definition attributes are copied
from the source dataset, creating a new dataset with an identical set of variables (but no data values).

* For an active dataset that contains any variables, variable definition attributes from the source dataset
are applied to the matching variables in the active (target) dataset. If the source dataset contains any
variables that are not present in the active dataset (determined by variable name), these variables are
created in the active dataset.

SOURCE and TARGET Subcommands

The SOURCE subcommand is used to specify variables in the source file from which to apply variable
definition attributes. The TARGET subcommand is used to specify variables in the active dataset to which
to apply variable definition attributes.

* All variables specified in the SOURCE subcommand must exist in the source file.

* If the TARGET subcommand is specified without the SOURCE subcommand, all variables specified must
exist in the source file.

e If the NEWVARS subcommand is specified, variables that are specified in the SOURCE subcommand that
exist in the source file but not in the target file will be created in the target file as new variables using
the variable definition attributes (variable and value labels, missing values, etc.) from the source
variable.

* For variables with matching name and type, variable definition attributes from the source variable are
applied to the matching target variable.

* If both SOURCE and TARGET are specified, the SOURCE subcommand can specify only one variable.
Variable definition attributes from that single variable in the SOURCE subcommand are applied to all
variables of the matching type. When applying the attributes of one variable to many variables, all
variables specified in the SOURCE and TARGET subcommands must be of the same type.

APPLY DICTIONARY 179

 For variables with matching names but different types, only variable labels are applied to the target
variables.

Table 15. Variable mapping for SOURCE and TARGET subcommands

SOURCE TARGET

subcommand subcommand Variable mapping

none none Variable definition attributes from the source dataset are applied to
matching variables in the active (target) dataset. New variables may be
created if the NEWVARS subcommand is specified.

many none Variable definition attributes for the specified variables are copied from
the source dataset to the matching variables in the active (target) dataset.
All specified variables must exist in the source dataset. New variables
may be created if the NEWVARS subcommand is specified.

none many Variable definition attributes for the specified variables are copied from
the source dataset to the matching variables in the active (target) dataset.
All specified variables must exist in the source dataset. New variables
may be created if the NEWVARS subcommand is specified.

one many Variable definition attributes for the specified variable in the source
dataset are applied to all specified variables in the active (target) dataset
that have a matching type. New variables may be created if the NEWVARS
subcommand is specified.

many many Invalid. Command not executed.

Example

APPLY DICTIONARY from =*
/SOURCE VARIABLES = varl
/TARGET VARIABLES = var2 var3 vard
/NEWVARS.

* Variable definition attributes for varl in the active dataset are copied to var2, var3, and var4 in the same
dataset if they have a matching type.

* Any variables specified in the TARGET subcommand that do not already exist are created, using the
variable definition attributes of the variable specified in the SOURCE subcommand.

Example

APPLY DICTIONARY from "lastmonth.sav"
/SOURCE VARIABLES = varl, var2, var3.

* Variable definition attributes from the specified variables in the source dataset are applied to the
matching variables in the active dataset.

 For variables with matching names but different types, only variable labels from the source variable are
copied to the target variable.

e In the absence of a NEWVARS subcommand, no new variables will be created.

FILEINFO Subcommand

FILEINFO applies global file definition attributes from the source dataset to the active (target) dataset.

* File definition attributes in the active dataset that are undefined in the source dataset are not affected.
* This subcommand is ignored if the source dataset is the active dataset.

¢ This subcommand is ignored if no keywords are specified.

* For keywords that contain an associated value, the equals sign between the keyword and the value is
required—for example, DOCUMENTS = MERGE.

ATTRIBUTES. Applies file attributes defined by the DATAFILE ATTRIBUTE command. You can REPLACE or MERGE
file attributes.

180 IBM SPSS Statistics 23 Command Syntax Reference

DOCUMENTS. Applies documents (defined with the DOCUMENTS command) from the source dataset to the active
(target) dataset. You can REPLACE or MERGE documents. DOCUMENTS = REPLACE replaces any documents in the
active dataset, deleting preexisting documents in the file. This is the default if DOCUMENTS is specified
without a value. DOCUMENTS = MERGE merges documents from the source and active datasets. Unique
documents in the source file that don’t exist in the active dataset are added to the active dataset. All
documents are then sorted by date.

FILELABEL. Replaces the file label (defined with the FILE LABEL command).

MRSETS. Applies multiple response set definitions from the source dataset to the active dataset. Multiple
response sets that contain no variables in the active dataset (including variables added by the same APPLY
DICTIONARY command) are ignored. You can REPLACE or MERGE multiple response sets. MRSETS = REPLACE
deletes any existing multiple response sets in the active dataset, replacing them with multiple response
sets from the source dataset. MRSETS = MERGE adds multiple response sets from the source dataset to the
collection of multiple response sets in the active dataset. If a set with the same name exists in both files,
the existing set in the active dataset is unchanged.

VARSETS. Applies variable set definitions from the source dataset to the active dataset. Variable sets are used to
control the list of variables that are displayed in dialog boxes. Variable sets are defined by selecting
Define Variable Sets from the Ultilities menu. Sets in the source data file that don't contain any variables
in the active dataset are ignored unless those variables are created by the same APPLY DICTIONARY
command. You can REPLACE or MERGE variable sets. VARSETS = REPLACE deletes any existing variable sets in
the active dataset, replacing them with variable sets from the source dataset. VARSETS = MERGE adds
variable sets from the source dataset to the collection of variable sets in the active dataset. If a set with
the same name exists in both files, the existing set in the active dataset is unchanged.

WEIGHT. Weights cases by the variable specified in the source file if there’s a matching variable in the target file.
This is the default if the subcommand is omitted.

ALL. Applies all file information from the source dataset to the active dataset. Documents, multiple response
sets, and variable sets are merged, not replaced. File definition attributes in the active dataset that are
undefined in the source data file are not affected.

Example

APPLY DICTIONARY FROM "lastmonth.sav"
/FILEINFO DOCUMENTS = REPLACE MRSETS = MERGE.

* Documents in the source dataset replace documents in the active dataset unless there are no defined
documents in the source dataset.

* Multiple response sets from the source dataset are added to the collection of defined multiple response
sets in the active dataset. Sets in the source dataset that contain variables that don’t exist in the active
dataset are ignored. If the same set name exists in both datasets, the set in the active dataset remains
unchanged.

VARINFO Subcommand

VARINFO applies variable definition attributes from the source dataset to the matching variables in the
active dataset. With the exception of VALLABELS, all keywords replace the variable definition attributes in
the active dataset with the attributes from the matching variables in the source dataset.

ALIGNMENT. Applies variable alignment for Data Editor display. This setting affects alignment (left, right,
center) only in the Data View display of the Data Editor.

ATTRIBUTES. Applies variable attributes defined by the VARIABLE ATTRIBUTE command. You can REPLACE or
MERGE variable attributes.

APPLY DICTIONARY 181

FORMATS. Applies variable print and write formats. This is the same variable definition attribute that can
be defined with the FORMATS command. This setting is primarily applicable only to numeric variables. For
string variables, this affects only the formats if the source or target variable is AHEX format and the other
is A format.

LEVEL. Applies variable measurement level (nominal, ordinal, scale). This is the same variable definition
attribute that can be defined with the VARIABLE LEVEL command.

MISSING. Applies variable missing value definitions. Any existing defined missing values in the matching
variables in the active dataset are deleted. This is the same variable definition attribute that can be
defined with the MISSING VALUES command. Missing values definitions are not applied to string variables
if the source variable contains missing values of a longer width than the defined width of the target
variable.

ROLE. Applies role assignments. See the topic [‘Overview” on page 2067 for more information.

VALLABELS. Applies value label definitions. Value labels are not applied to string variables if the source
variable contains defined value labels for values longer than the defined width of the target variable. You
can REPLACE or MERGE value labels. VALLABELS = REPLACE replaces any defined value labels from variable
in the active dataset with the value labels from the matching variable in the source dataset. VALLABELS =
MERGE merges defined value labels for matching variables. If the same value has a defined value label in
both the source and active datasets, the value label in the active dataset is unchanged.

WIDTH. Display column width in the Data Editor. This affects only column width in Data View in the Data
Editor. It has no affect on the defined width of the variable.

Example

APPLY DICTIONARY from "lastmonth.sav"
/VARINFO LEVEL MISSING VALLABELS = MERGE.

* The level of measurement and defined missing values from the source dataset are applied to the
matching variables in the active (target) dataset. Any existing missing values definitions for those
variables in the active dataset are deleted.

* Value labels for matching variables in the two datasets are merged. If the same value has a defined
value label in both the source and active datasets, the value label in the active dataset is unchanged.

182 IBM SPSS Statistics 23 Command Syntax Reference

AREG

AREG [VARIABLES=] dependent series name WITH independent series names

[/METHOD={Ph*}]
{co
ML}

[/{CONSTANT*+}]
{NOCONSTANT}

[/RHO={0** }]
{value}

[/MXITER={10%%}]
{n '}
[/APPLY [='model name'] [{SPECIFICATIONS}]]

{INITIAL }
{FIT }

**Default if the subcommand is omitted.

CONSTANT is the default if the subcommand or keyword is omitted and there is no corresponding

specification on the TSET command.
Method definitions:
PW. Prais-Winsten (GLS) estimation

CO. Cochrane-Orcutt estimation

ML. Exact maximum-likelihood estimation

Example
AREG VARY WITH VARX.

Overview

AREG estimates a regression model with AR(1) (first-order autoregressive) errors. (Models whose errors
follow a general ARIMA process can be estimated using the ARIMA procedure.) AREG provides a choice

among three estimation techniques.

For the Prais-Winsten and Cochrane-Orcutt estimation methods (keywords PW and C0), you can obtain the
rho values and statistics at each iteration, and regression statistics for the ordinary least-square and final

Prais-Winsten or Cochrane-Orcutt estimates. For the maximum-likelihood method (keyword ML), you can
obtain the adjusted sum of squares and Marquardt constant at each iteration and, for the final parameter
estimates, regression statistics, correlation and covariance matrices, Akaike’s information criterion (AIC) ®,

and Schwartz’s Bayesian criterion (SBC) °.

Options

Estimation Technique. You can select one of three available estimation techniques (Prais-Winsten,

Cochrane-Orcutt, or exact maximum-likelihood) on the METHOD subcommand. You can request regression

through the origin or inclusion of a constant in the model by specifying NOCONSTANT or CONSTANT to
override the setting on the TSET command.

8. Akaike, H. 1974. A new look at the statistical model identification. IEEE Transaction on Automatic Control, AC-19, 716-723.
9. Schwartz, G. 1978. Estimating the dimensions of a model. Annals of Statistics, 6, 461-464.

183

Rho Value. You can specify the value to be used as the initial rho value (estimate of the first
autoregressive parameter) on the RHO subcommand.

Iterations. You can specify the maximum number of iterations the procedure is allowed to cycle through
in calculating estimates on the MXITER subcommand.

Statistical Output. To display estimates and statistics at each iteration in addition to the default output,
specify TSET PRINT=DETAILED before AREG. To display only the final parameter estimates, use TSET
PRINT=BRIEF (see TSET for more information).

New Variables. To evaluate the regression summary table without creating new variables, specify TSET
NEWVAR=NONE prior to AREG. This can result in faster processing time. To add new variables without erasing
the values of previous Forecasting-generated variables, specify TSET NEWVAR=ALL. This saves all new
variables generated during the session to the active dataset and may require extra processing time.

Basic Specification

The basic specification is one dependent series name, the keyword WITH, and one or more independent
series names.

* By default, procedure AREG estimates a regression model using the Prais-Winsten (GLS) technique. The
number of iterations is determined by the convergence value set on TSET CNVERGE (default of 0.001), up
to the default maximum number of 10 iterations. A 95% confidence interval is used unless it is changed
by a TSET CIN command prior to the AREG procedure.

* Unless the default on TSET NEWVAR is changed prior to AREG, five variables are automatically created,
labeled, and added to the active dataset: fitted values (FIT#1), residuals (ERR#1), lower confidence
limits (LCL#1), upper confidence limits (UCL#1), and standard errors of prediction (SEP#1).

Subcommand Order
* VARIABLES must be specified first.
¢ The remaining subcommands can be specified in any order.

Syntax Rules
* VARIABLES can be specified only once.

* Other subcommands can be specified more than once, but only the last specification of each one is
executed.

Operations

* AREG cannot forecast beyond the end of the regressor (independent) series (see PREDICT for more
information).

* Method ML allows missing data anywhere in the series. Missing values at the beginning and end are
skipped and the analysis proceeds with the first nonmissing case using Melard’s algorithm. If
imbedded missing values are found, they are noted and the Kalman filter is used for estimation.

* Methods PW and CO allow missing values at the beginning or end of the series but not within the series.
Missing values at the beginning or end of the series are skipped. If imbedded missing values are
found, a warning is issued suggesting the ML method be used instead and the analysis terminates. (See
RMV for information on replacing missing values.)

* Series with missing cases may require extra processing time.

Limitations
¢ Maximum 1 VARIABLES subcommand.

* Maximum 1 dependent series in the series list. There is no limit on the number of independent series.

184 1BM SPSS Statistics 23 Command Syntax Reference

VARIABLES Subcommand

VARIABLES specifies the series list and is the only required subcommand. The actual keyword VARIABLES
can be omitted.

¢ The dependent series is specified first, followed by the keyword WITH and one or more independent
series.

METHOD Subcommand

METHOD specifies the estimation technique. Three different estimation techniques are available.
 If METHOD is not specified, the Prais-Winsten method is used.
* Only one method can be specified on the METHOD subcommand.

The available methods are:
PW. Prais-Winsten method. This generalized least-squares approach is the default .
CO. Cochrane-Orcutt method. "

ML. Exact maximum-likelihood method. This method can be used when one of the independent variables is
the lagged dependent variable. It can also handle missing data anywhere in the series .

Example

AREG VARY WITH VARX
/METHOD=CO.

In this example, the Cochrane-Orcutt method is used to estimate the regression model.

CONSTANT and NOCONSTANT Subcommands

CONSTANT and NOCONSTANT indicate whether a constant term should be estimated in the regression
equation. The specification overrides the corresponding setting on the TSET command.

* CONSTANT indicates that a constant should be estimated. It is the default unless changed by TSET
NOCONSTANT prior to the current procedure.

* NOCONSTANT eliminates the constant term from the model.

RHO Subcommand

RHO specifies the initial value of rho, an estimate of the first autoregressive parameter.

* If RHO is not specified, the initial rtho value defaults to 0 (equivalent to ordinary least squares).
* The value specified on RHO can be any value greater than —1 and less than 1.

* Only one rho value can be specified per AREG command.

Example

AREG VAROL WITH VARO2 VARO3
/METHOD=CO
/RH0=0.5.

* In this example, the Cochrane-Orcutt (C0O) estimation method with an initial rho value of 0.5 is used.

10. Johnston, J. 1984. Econometric methods. New York: McGraw-Hill.
11. Johnston, J. 1984. Econometric methods. New York: McGraw-Hill.

12. Kohn, R., and C. Ansley. 1986. Estimation, prediction, and interpolation for ARIMA models with missing data. Journal of the
American Statistical Association, 81, 751-761.

AREG 185

MXITER Subcommand

MXITER specifies the maximum number of iterations of the estimation process.
 If MXITER is not specified, the maximum number of iterations defaults to 10.
* The specification on MXITER can be any positive integer.

* Iteration stops either when the convergence criterion is met or when the maximum is reached,
whichever occurs first. The convergence criterion is set on the TSET CNVERGE command. The default is
0.001.

Example

AREG VARY WITH VARX
/MXITER=5.

* In this example, AREG generates Prais-Winsten estimates and associated statistics with a maximum of 5
iterations.

APPLY Subcommand

APPLY allows you to use a previously defined AREG model without having to repeat the specifications.

* The specifications on APPLY can include the name of a previous model in quotes and one of three
keywords. All of these specifications are optional.

 If a model name is not specified, the model specified on the previous AREG command is used.

* To change one or more specifications of the model, specify the subcommands of only those portions
you want to change after the APPLY subcommand.

* If no series are specified on the AREG command, the series that were originally specified with the model
being reapplied are used.

* To change the series used with the model, enter new series names before or after the APPLY
subcommand. If a series name is specified before APPLY, the slash before the subcommand is required.

APPLY with the keyword FIT sets MXITER to 0. If you apply a model that used FIT and want to obtain
estimates, you will need to respecify MXITER.

The keywords available for APPLY with AREG are:

SPECIFICATIONS. Use only the specifications from the original model. AREG should create the initial values.
This is the default.

INITIAL. Use the original model’s final estimates as initial values for estimation.
FIT. No estimation. Estimates from the original model should be applied directly.

Example

AREG VARY WITH VARX
/METHOD=CO
/RH0=0.25
/MXITER=15.

AREG VARY WITH VARX
/METHOD=ML.

AREG VARY WITH VARO1
/APPLY.

AREG VARY WITH VARO1
/APPLY="'MOD_1"
/MXITER=10.

AREG VARY WITH VAROZ
/APPLY FIT.

¢ The first command estimates a regression model for VARY and VARX using the Cochrane-Orcutt
method, an initial rho value of 0.25, and a maximum of 15 iterations. This model is assigned the name
MOD_1.

186 IBM SPSS Statistics 23 Command Syntax Reference

¢ The second command estimates a regression model for VARY and VARX using the ML method. This
model is assigned the name MOD_2.

* The third command displays the regression statistics for the series VARY and VAROI using the same
method, ML, as in the second command. This model is assigned the name MOD_3.

* The fourth command applies the same method and rho value as in the first command but changes the
maximum number of iterations to 10. This new model is named MOD_4.

¢ The last command applies the last model, MOD_4, using the series VARY and VARO02. The FIT
specification means the final estimates of MOD_4 should be applied directly to the new series with no
new estimation.

References

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transaction on Automatic Control,
AC-19, 716-723.

Harvey, A. C. 1981. The econometric analysis of time series. Oxford: Philip Allan.
Johnston, J. 1984. Econometric methods. New York: McGraw-Hill.

Kohn, R., and C. Ansley. 1986. Estimation, prediction, and interpolation for ARIMA models with missing
data. Journal of the American Statistical Association, 81, 751-761.

Schwartz, G. 1978. Estimating the dimensions of a model. Annals of Statistics, 6, 461-464.

AREG 187

188 IBM SPSS Statistics 23 Command Syntax Reference

ARIMA

ARIMA [VARIABLES=] dependent series name [WITH independent series names]

[/MODEL =[(p,d,q) [(sp,sd,sq) [period]]]

[{CONSTANTt }] [{NOLOGt 11
{NOCONSTANT} {LG10 or LOG}

{LN 1
[/P={value }1 [/D=value] [/Q={value }]
{(value Tist)} {(value Tist)}
[/sP={value }1 [/Sb=value] [/SQ={value }]
{(value Tist)} {(value Tist)}

[/AR=value Tist] [/MA=value Tist]
[/SAR=value 1ist] [/SMA=value 1list]
[/REG=value 1ist] [/CON=value]

[/MXITER={10%* }] [/MXLAMB={1.0E9%+}]
{value} {value }

[/SSQPCT={0.001%*}] [/PAREPS={0.001t}]
{value } {value }

[/CINPCT={95t }]
{value}

[/APPLY [='model name'] [{SPECIFICATIONS}]]

{INITIAL
{FIT }
[/FORECAST=[{EXACT }]]
{CLS }
{AUTOINIT}

**Default if the subcommand is omitted.

tDefault if the subcommand or keyword is omitted and there is no corresponding specification on the
TSET command.

Example

ARIMA SALES
/MODEL=(0,1,1) (0,1,1).

Overview

ARIMA estimates nonseasonal and seasonal univariate ARIMA models with or without fixed regressor
variables. The procedure uses a subroutine library written by Craig Ansley that produces
maximum-likelihood estimates and can process time series with missing observations.

Options

Model Specification. The traditional ARIMA (p,d,q)(sp,sd,sq) model incorporates nonseasonal and
seasonal parameters multiplicatively and can be specified on the MODEL subcommand. You can also
specify ARIMA models and constrained ARIMA models by using the separate parameter-order
subcommands P, D, Q, SP, SD, and SQ.

Parameter Specification. If you specify the model in the traditional (p,d,q) (sp,sd,sq) format on the MODEL
subcommand, you can additionally specify the period length, whether a constant should be included in
the model (using the keyword CONSTANT or NOCONSTANT), and whether the series should first be log
transformed (using the keyword NOLOG, LG10, or LN). You can fit single or nonsequential parameters by

© Copyright IBM Corporation 1989, 2014 189

using the separate parameter-order subcommands to specify the exact lags. You can also specify initial
values for any of the parameters using the AR, MA, SAR, SMA, REG, and CON subcommands.

Iterations. You can specify termination criteria using the MXITER, MXLAMB, SSQPCT, and PAREPS
subcommands.

Confidence Intervals. You can control the size of the confidence interval using the CINPCT subcommand.

Statistical Output. To display only the final parameter statistics, specify TSET PRINT=BRIEF before ARIMA.
To include parameter estimates at each iteration in addition to the default output, specify TSET
PRINT=DETAILED.

New Variables. To evaluate model statistics without creating new variables, specify TSET NEWVAR=NONE
prior to ARIMA. This could result in faster processing time. To add new variables without erasing the
values of Forecasting-generated variables, specify TSET NEWVAR=ALL. This saves all new variables
generated during the current session to the active dataset and may require extra processing time.

Forecasting. When used with the PREDICT command, an ARIMA model with no regressor variables can
produce forecasts and confidence limits beyond the end of the series (see PREDICT for more information).

Basic Specification

The basic specification is the dependent series name. To estimate an ARIMA model, the MODEL
subcommand and/or separate parameter-order subcommands (or the APPLY subcommand) must also be
specified. Otherwise, only the constant will be estimated.

ARIMA estimates the parameter values of a model using the parameter specifications on the MODEL
subcommand and/or the separate parameter-order subcommands P, D, Q, SP, SD, and SQ.

A 95% confidence interval is used unless it is changed by a TSET CIN command prior to the ARIMA
procedure.

Unless the default on TSET NEWVAR is changed prior to ARIMA, five variables are automatically created,
labeled, and added to the active dataset: fitted values (FIT#1), residuals (ERR#1), lower confidence
limits (LCL#1), upper confidence limits (UCL#1), and standard errors of prediction (SEP#1).

By default, ARIMA will iterate up to a maximum of 10 unless one of three termination criteria is met: the
change in all parameters is less than the TSET CNVERGE value (the default value is 0.001); the
sum-of-squares percentage change is less than 0.001%; or the Marquardt constant exceeds 10° (1.0E9).

At each iteration, the Marquardt constant and adjusted sum of squares are displayed. For the final
estimates, the displayed results include the parameter estimates, standard errors, t ratios, estimate of
residual variance, standard error of the estimate, log likelihood, Akaike’s information criterion (AIC) 3
Schwartz’s Bayesian criterion (SBC) 1 and covariance and correlation matrices.

Subcommand Order

Subcommands can be specified in any order.

Syntax Rules

VARIABLES can be specified only once.

Other subcommands can be specified more than once, but only the last specification of each one is
executed.

The CONSTANT, NOCONSTANT, NOLOG, LN, and LOG specifications are optional keywords on the MODEL
subcommand and are not independent subcommands.

13. Akaike, H. 1974. A new look at the statistical model identification. IEEE Transaction on Automatic Control, AC-19, 716-723.
14. Schwartz, G. 1978. Estimating the dimensions of a model. Annals of Statistics, 6, 461-464.

190 1BM SPSS Statistics 23 Command Syntax Reference

Operations

If differencing is specified in models with regressors, both the dependent series and the regressors are
differenced. To difference only the dependent series, use the DIFF or SDIFF function on CREATE to create
a new series (see CREATE for more information).

When ARIMA is used with the PREDICT command to forecast values beyond the end of the series, the
original series and residual variable are assigned the system-missing value after the last case in the
original series.

The USE and PREDICT ranges cannot be exactly the same; at least one case from the USE period must
precede the PREDICT period. (See USE and PREDICT for more information.)

If a LOG or LN transformation is specified, the residual (error) series is reported in the logged metric; it
is not transformed back to the original metric. This is so the proper diagnostic checks can be done on
the residuals. However, the predicted (forecast) values are transformed back to the original metric.
Thus, the observed value minus the predicted value will not equal the residual value. A new residual
variable in the original metric can be computed by subtracting the predicted value from the observed
value.

Specifications on the P, D, Q, SP, SD, and SQ subcommands override specifications on the MODEL
subcommand.

For ARIMA models with a fixed regressor, the number of forecasts and confidence intervals produced
cannot exceed the number of observations for the regressor (independent) variable. Regressor series
cannot be extended.

Models of series with imbedded missing observations can take longer to estimate.

Limitations

Maximum 1 VARIABLES subcommand.
Maximum 1 dependent series. There is no limit on the number of independent series.

Maximum 1 model specification.

VARIABLES Subcommand

VARIABLES specifies the dependent series and regressors, if any, and is the only required subcommand.
The actual keyword VARIABLES can be omitted.

The dependent series is specified first, followed by the keyword WITH and the regressors (independent
series).

MODEL Subcommand

MODEL specifies the ARIMA model, period length, whether a constant term should be included in the
model, and whether the series should be log transformed.

The model parameters are listed using the traditional ARIMA (p,d,q) (sp,sd,sq) syntax.
Nonseasonal parameters are specified with the appropriate p, d, and g values separated by commas
and enclosed in parentheses.

The value p is a positive integer indicating the order of nonseasonal autoregressive parameters, d is a
positive integer indicating the degree of nonseasonal differencing, and g is a positive integer indicating
the nonseasonal moving-average order.

Seasonal parameters are specified after the nonseasonal parameters with the appropriate sp, sd, and sg
values. They are also separated by commas and enclosed in parentheses.

The value sp is a positive integer indicating the order of seasonal autoregressive parameters, sd is a
positive integer indicating the degree of seasonal differencing, and sq is a positive integer indicating
the seasonal moving-average order.

After the seasonal model parameters, a positive integer can be specified to indicate the length of a
seasonal period.

ARIMA 191

* If the period length is not specified, the periodicity established on TSET PERIOD is in effect. If TSET
PERIOD is not specified, the periodicity established on the DATE command is used. If periodicity was not
established anywhere and a seasonal model is specified, the ARIMA procedure is not executed.

The following optional keywords can be specified on MODEL:

CONSTANT. Include a constant in the model. This is the default unless the default setting on the TSET
command is changed prior to the ARIMA procedure.

NOCONSTANT . Do not include a constant.
NOLOG. Do not log transform the series. This is the default.

LG10. Log transform the series before estimation using the base 10 logarithm. The keyword L0G is an alias for
LG10.

LN. Log transform the series before estimation using the natural logarithm (base e).

* Keywords can be specified anywhere on the MODEL subcommand.

* CONSTANT and NOCONSTANT are mutually exclusive. If both are specified, only the last one is executed.

¢ LG10O (LOG), LN, and NOLOG are mutually exclusive. If more than one is specified, only the last one is
executed.

* CONSTANT and NOLOG are generally used as part of an APPLY subcommand to turn off previous
NOCONSTANT, LG10, or LN specifications

Example

ARIMA SALES WITH INTERVEN
/MODEL=(1,1,1)(1,1,1) 12 NOCONSTANT LN.

* This example specifies a model with a first-order nonseasonal autoregressive parameter, one degree of
nonseasonal differencing, a first-order nonseasonal moving average, a first-order seasonal
autoregressive parameter, one degree of seasonal differencing, and a first-order seasonal moving
average.

* The 12 indicates that the length of the period for SALES is 12.

* The keywords NOCONSTANT and LN indicate that a constant is not included in the model and that the
series is log transformed using the natural logarithm before estimation.

Parameter-Order Subcommands

P, D, Q, SP, SD, and SQ can be used as additions or alternatives to the MODEL subcommand to specify
particular lags in the model and degrees of differencing for fitting single or nonsequential parameters.
These subcommands are also useful for specifying a constrained model. The subcommands represent the
following parameters:

P. Autoregressive order.

D. Order of differencing.

Q. Moving-average order.

SP. Seasonal autoregressive order.

SD. Order of seasonal differencing.

SQ. Seasonal moving-average order.

192 IBM SPSS Statistics 23 Command Syntax Reference

* The specification on P, Q, SP, or SQ indicates which lags are to be fit and can be a single positive integer
or a list of values in parentheses.

* A single value n denotes lags 1 through n.

* A single value in parentheses, for example (1), indicates that only lag n should be fit.

A list of values in parentheses (i, j, k) denotes lags i, j, and k only.

* You can specify as many values in parentheses as you want.

* D and SD indicate the degrees of differencing and can be specified only as single values, not value lists.

* Specifications on P, D, Q, SP, SD, and SQ override specifications for the corresponding parameters on the
MODEL subcommand.

Example

ARIMA SALES
/P=2
/D=1.
ARIMA INCOME
/MODEL=L0OG NOCONSTANT
/P=(2).
ARIMA VAROL
/MODEL=(1,1,4) (1,1,4)
/Q=(2,4)
/5Q=(2,4).
ARIMA VARO2
/MODEL=(1,1,0) (1,1,0)
/Q=(2,4)
/5Q=(2,4).
* The first command fits a model with autoregressive parameters at lags 1 and 2 (P=2) and one degree of
differencing (D=1) for the series SALES. This command is equivalent to:

ARIMA SALES
/MODEL=(2,1,0).

* In the second command, the series INCOME is log transformed and no constant term is estimated.
There is one autoregressive parameter at lag 2, as indicated by P=(2).

* The third command specifies a model with one autoregressive parameter, one degree of differencing,
moving-average parameters at lags 2 and 4, one seasonal autoregressive parameter, one degree of
seasonal differencing, and seasonal moving-average parameters at lags 2 and 4. The 4’s in the MODEL
subcommand for moving average and seasonal moving average are ignored because of the Q and SQ
subcommands.

* The last command specifies the same model as the previous command. Even though the MODEL
command specifies no nonseasonal or seasonal moving-average parameters, these parameters are
estimated at lags 2 and 4 because of the Q and SQ specifications.

Initial Value Subcommands

AR, MA, SAR, SMA, REG, and CON specify initial values for parameters. These subcommands refer to the
following parameters:

AR. Autoregressive parameter values.

MA. Moving-average parameter values.

SAR. Seasonal autoregressive parameter values.
SMA. Seasonal moving-average parameter values.
REG. Fixed regressor parameter values.

CON. Constant value.

* Each subcommand specifies a value or value list indicating the initial values to be used in estimating
the parameters.

ARIMA 193

* CON can be specified only as a single value, not a value list.

* Values are matched to parameters in sequential order. That is, the first value is used as the initial value
for the first parameter of that type, the second value is used as the initial value for the second
parameter of that type, and so on.

* Specify only the subcommands for which you can supply a complete list of initial values (one for every
lag to be fit for that parameter type).

* If you specify an inappropriate initial value for AR, MA, SAR, or SMA, ARIMA will reset the value and issue
a message.

* If MXITER=0, these subcommands specify final parameter values to use for forecasting.

Example

ARIMA VARY
/MODEL (1,0,2)
/AR=0.5
/MA=0.8, -0.3.

ARIMA VARY
/MODEL (1,0,2)
/AR=0.5.

* The first command specifies initial estimation values for the autoregressive term and for the two
moving-average terms.

¢ The second command specifies the initial estimation value for the autoregressive term only. The
moving-average initial values are estimated by ARIMA.

Termination Criteria Subcommands

ARIMA will continue to iterate until one of four termination criteria is met. The values of these criteria can
be changed using any of the following subcommands followed by the new value:

MXITER. Maximum number of iterations. The value specified can be any integer equal to or greater than 0.
If MXITER equals 0, initial parameter values become final estimates to be used in forecasting. The default
value is 10.

PAREPS. Parameter change tolerance. The value specified can be any real number greater than 0. A change
in all of the parameters by less than this amount causes termination. The default is the value set on TSET
CNVERGE. If TSET CNVERGE is not specified, the default is 0.001. A value specified on PAREPS overrides the
value set on TSET CNVERGE.

SSQPCT. Sum of squares percentage. The value specified can be a real number greater than 0 and less than
or equal to 100. A relative change in the adjusted sum of squares by less than this amount causes
termination. The default value is 0.001%.

MXLAMB. Maximum lambda. The value specified can be any integer. If the Marquardt constant exceeds
this value, estimation is terminated. The default value is 1,000,000,000 (10°).

CINPCT Subcommand

CINPCT controls the size of the confidence interval.

* The specification on CINPCT can be any real number greater than 0 and less than 100.

* The default is the value specified on TSET CIN. If TSET CIN is not specified, the default is 95.
e CINPCT overrides the value set on the TSET CIN command.

APPLY Subcommand

APPLY allows you to use a previously defined ARIMA model without having to repeat the specifications.

194 1BM SPSS Statistics 23 Command Syntax Reference

* The specifications on APPLY can include the name of a previous model in quotes and one of three
keywords. All of these specifications are optional.

 If a model name is not specified, the model specified on the previous ARIMA command is used.

* To change one or more of the specifications of the model, specify the subcommands of only those
portions you want to change after the subcommand APPLY.

* If no series are specified on the ARIMA command, the series that were originally specified with the
model being reapplied are used.

* To change the series used with the model, enter new series names before or after the APPLY
subcommand. If a series name is specified before APPLY, the slash before the subcommand is required.

* APPLY with the keyword FIT sets MXITER to 0. If you apply a model that used FIT and want to obtain
estimates, you will need to respecify MXITER.

The keywords available for APPLY with ARIMA are:

SPECIFICATIONS . Use only the specifications from the original model. ARIMA should create the initial values.
This is the default.

INITIAL. Use the original model’s final estimates as initial values for estimation.
FIT. No estimation. Estimates from the original model should be applied directly.

Example

ARIMA VARL
/MODEL=(0,1,1) (0,1,1) 12 LOG NOCONSTANT.
ARIMA APPLY
/MODEL=CONSTANT.
ARIMA VAR2
JAPPLY INITIAL.
ARIMA VAR2
/APPLY FIT.

* The first command specifies a model with one degree of differencing, one moving-average term, one
degree of seasonal differencing, and one seasonal moving-average term. The length of the period is 12.
A base 10 log of the series is taken before estimation and no constant is estimated. This model is
assigned the name MOD_1.

* The second command applies the same model to the same series, but this time estimates a constant
term. Everything else stays the same. This model is assigned the name MOD_2.

* The third command uses the same model as the previous command (MOD_2) but applies it to series
VAR2. Keyword INITIAL specifies that the final estimates of MOD_2 are to be used as the initial values
for estimation.

¢ The last command uses the same model but this time specifies no estimation. Instead, the values from
the previous model are applied directly.

FORECAST Subcommand

The FORECAST subcommand specifies the forecasting method to use. Available methods are:

EXACT. Unconditional least squares. The forecasts are unconditional least squares forecasts. They are also
called finite memory forecasts. This is the default.

CLS. Conditional least squares using model constraint for initialization. The forecasts are computed by
assuming that the unobserved past errors are zero and the unobserved past values of the response series
are equal to the mean.

AUTOINIT. Conditional least squares using the beginning series values for initialization. The beginning series

values are used to initialize the recursive conditional least squares forecasting algorithm.

ARIMA 195

References

Akaike, H. 1974. A new look at the statistical model identification. IEEE Transaction on Automatic Control,
AC-19, 716-723.

Box, G. E. P, and G. C. Tiao. 1975. Intervention analysis with applications to economic and environmental
problems. Journal of the American Statistical Association, 70:3, 70-79.

Cryer, J. D. 1986. Time series analysis. Boston, Mass.: Duxbury Press.
Harvey, A. C. 1981. The econometric analysis of time series. Oxford: Philip Allan.
Harvey, A. C. 1981. Time series models. Oxford: Phillip Allan.

Kohn, R., and C. Ansley. 1985. Efficient estimation and prediction in time series regression models.
Biometrika, 72:3, 694-697.

Kohn, R., and C. Ansley. 1986. Estimation, prediction, and interpolation for ARIMA models with missing
data. Journal of the American Statistical Association, 81, 751-761.

McCleary, R., and R. A. Hay. 1980. Applied time series analysis for the social sciences. Beverly Hills, Calif.:
Sage Publications.

Melard, G. 1984. A fast algorithm for the exact likelihood of autoregressive-moving average models.
Applied Statistics, 33:1, 104-119.

Schwartz, G. 1978. Estimating the dimensions of a model. Annals of Statistics, 6, 461-464.

196 1BM SPSS Statistics 23 Command Syntax Reference

AUTORECODE

AUTORECODE VARIABLES=varlist
/INTO new varlist

[/BLANK={VALID#x}
{MISSING}

[/GROUP]

[/APPLY TEMPLATE='filespec']
[/SAVE TEMPLATE='filespec']
[/DESCENDING]

[/PRINT]
**Default if the subcommand omitted.

This command reads the active dataset and causes execution of any pending commands. See the topic
[“Command Order” on page 40| for more information.

Release History

Release 13.0

* BLANK subcommand introduced.

* GROUP subcommand introduced.

e APPLY TEMPLATE and SAVE TEMPLATE subcommands introduced.

Example
AUTORECODE VARIABLES=Company /INTO Rcompany.

Overview

AUTORECODE recodes the values of string and numeric variables to consecutive integers and puts the
recoded values into a new variable called a target variable. The value labels or values of the original
variable are used as value labels for the target variable. AUTORECODE is useful for creating numeric
independent (grouping) variables from string variables for procedures such as ONEWAY and DISCRIMINANT.
AUTORECODE can also recode the values of factor variables to consecutive integers, which may be required
by some procedures and which reduces the amount of workspace needed by some statistical procedures.

Basic Specification

The basic specification is VARIABLES and INTO. VARIABLES specifies the variables to be recoded. INTO
provides names for the target variables that store the new values. VARIABLES and INTO must name or
imply the same number of variables.

Subcommand Order

* VARIABLES must be specified first.

* INTO must immediately follow VARIABLES.

 All other subcommands can be specified in any order.

Syntax Rules

* A variable cannot be recoded into itself. More generally, target variable names cannot duplicate any
variable names already in the working file.

© Copyright IBM Corporation 1989, 2014 197

* If the GROUP or APPLY TEMPLATE subcommand is specified, all variables on the VARIABLES subcommand
must be the same type (numeric or string).

 If APPLY TEMPLATE is specified, all variables on the VARIABLES subcommand must be the same type
(numeric or string) as the type defined in the template.

* File specifications on the APPLY TEMPLATE and SAVE TEMPLATE subcommands follow the normal
conventions for file specifications. Enclosing file specifications in quotation marks is recommended.

Operations

* The values of each variable to be recoded are sorted and then assigned numeric values. By default, the
values are assigned in ascending order: 1 is assigned to the lowest nonmissing value of the original
variable; 2, to the second-lowest nonmissing value; and so on, for each value of the original variable.

* Values of the original variables are unchanged.

* Missing values are recoded into values higher than any nonmissing values, with their order preserved.
For example, if the original variable has 10 nonmissing values, the first missing value is recoded as 11
and retains its user-missing status. System-missing values remain system-missing. (See the GROUP, APPLY
TEMPLATE, and SAVE TEMPLATE subcommands for additional rules for user-missing values.)

* AUTORECODE does not sort the cases in the working file. As a result, the consecutive numbers assigned
to the target variables may not be in order in the file.

* Target variables are assigned the same variable labels as the original source variables. To change the
variable labels, use the VARIABLE LABELS command after AUTORECODE.

* Value labels are automatically generated for each value of the target variables. If the original value had
a label, that label is used for the corresponding new value. If the original value did not have a label,
the old value itself is used as the value label for the new value. The defined print format of the old
value is used to create the new value label.

> AUTORECODE ignores SPLIT FILE specifications. However, any SELECT IF specifications are in effect for
AUTORECODE.

Example

DATA LIST / COMPANY 1-21 (A) SALES 24-28.
BEGIN DATA

CATFOOD JoY 10000

OLD FASHIONED CATFOOD 11200
PQIME.CATFOOD 10900

CHOICE CATFOOD 14600

END DATA.

AUTORECODE VARIABLES=COMPANY /INTO=RCOMPANY /PRINT.

TABLES TABLE = SALES BY RCOMPANY
/TTITLE='CATFOOD SALES BY COMPANY'.

* AUTORECODE recodes COMPANY into a numeric variable RCOMPANY. Values of RCOMPANY are
consecutive integers beginning with 1 and ending with the number of different values entered for
COMPANY. The values of COMPANY are used as value labels for RCOMPANY’s numeric values. The
PRINT subcommand displays a table of the original and recoded values.

VARIABLES Subcommand

VARIABLES specifies the variables to be recoded. VARIABLES is required and must be specified first. The
actual keyword VARIABLES is optional.

* Values from the specified variables are recoded and stored in the target variables listed on INT0. Values
of the original variables are unchanged.

198 1BM SPSS Statistics 23 Command Syntax Reference

INTO Subcommand

INTO provides names for the target variables that store the new values. INTO is required and must
immediately follow VARIABLES.

¢ The number of target variables named or implied on INTO must equal the number of source variables
listed on VARIABLES.

Example
AUTORECODE VARIABLES=V1 V2 V3 /INTO=NEWVL TO NEWV3 /PRINT.

* AUTORECODE stores the recoded values of V1, V2, and V3 into target variables named NEWV1, NEWV?2,
and NEWV3.

BLANK Subcommand

The BLANK subcommand specifies how to autorecode blank string values.
¢ BLANK is followed by an equals sign (=) and the keyword VALID or MISSING.

* The BLANK subcommand applies only to string variables (both short and long strings). System-missing
numeric values remain system-missing in the new, autorecoded variable(s).

¢ The BLANK subcommand has no effect if there are no string variables specified on the VARIABLES
subcommand.

VALID . Blank string values are treated as valid, nonmissing values and are autorecoded into nonmissing values.
This is the default.

MISSING . Blank string values are autorecoded into a user-missing value higher than the highest nonmissing
value.

Example

DATA LIST /stringVar (Al).
BEGIN DATA

a

b

c
d
END DATA.
AUTORECODE
VARIABLES=stringVar /INTO NumericVar
/BLANK=MISSING.

e The values g, b, ¢, and d are autorecoded into the numeric values 1 through 4.
* The blank value is autorecoded to 5, and 5 is defined as user-missing.

GROUP Subcommand

The subcommand GROUP allows you to specify that a single autorecoding scheme should be generated for
all the specified variables, yielding consistent coding for all of the variables.

* The GROUP subcommand has no additional keywords or specifications. By default, variables are not
grouped for autorecoding.

* All variables must be the same type (numeric or string).

+ All observed values for all specified variables are used to create a sorted order of values to recode into
sequential integers.

* String variables can be of any length and can be of unequal length.

* User-missing values for the target variables are based on the first variable in the original variable list
with defined user-missing values. All other values from other original variables, except for
system-missing, are treated as valid.

* If only one variable is specified on the VARIABLES subcommand, the GROUP subcommand is ignored.

AUTORECODE 199

 If GROUP and APPLY TEMPLATE are used on the same AUTORECODE command, value mappings from the
template are applied first. All remaining values are recoded into values higher than the last value in
the template, with user-missing values (based on the first variable in the list with defined user-missing
values) recoded into values higher than the last valid value. See the APPLY TEMPLATE subcommand for
more information.

Example

DATA LIST FREE /varl (al) var2 (al).
BEGIN DATA

ad

be

cf

END DATA.

MISSING VALUES varl ("c") var2 ("f").
AUTORECODE VARIABLES=varl var2

/INTO newvarl newvar2

/GROUP.

* A single autorecoding scheme is created and applied to both new variables.
* The user-missing value "c" from varl is autorecoded into a user-missing value.

¢ The user-missing value "f" from var2 is autorecoded into a valid value.

Table 16. Original and recoded values

Original value Autorecoded value
a 1

b 2

C 6 (user-missing)

d 3

e 4

f 5

SAVE TEMPLATE Subcommand

The SAVE TEMPLATE subcommand allows you to save the autorecode scheme used by the current
AUTORECODE command to an external template file, which you can then use when autorecoding other
variables using the APPLY TEMPLATE subcommand.

SAVE TEMPLATE is followed by an equals sign (=) and a quoted file specification. The default file
extension for autorecode templates is .sat.

* The template contains information that maps the original nonmissing values to the recoded values.

* Only information for nonmissing values is saved in the template. User-missing value information is not
retained.

e If more than one variable is specified on the VARIABLES subcommand, the first variable specified is
used for the template, unless GROUP or APPLY TEMPLATE is also specified, in which case a common
autorecoding scheme for all variables is saved in the template.

Example

DATA LIST FREE /varl (al) var2 (al).
BEGIN DATA

ad

be

cf

END DATA.

MISSING VALUES varl ("c") var2 ("f").
AUTORECODE VARIABLES=varl var2

/INTO newvarl newvar2

/SAVE TEMPLATE='/temp/varl_template.sat'.

¢ The saved template contains an autorecode scheme that maps the string values of "a" and "b" from
varl to the numeric values 1 and 2, respectively.

200 IBM SPSS Statistics 23 Command Syntax Reference

¢ The template contains no information for the value of "c" for varl because it is defined as
user-missing.

¢ The template contains no information for values associated with var2 because the GROUP subcommand
was not specified.

Template File Format

An autorecode template file is actually a data file in IBM SPSS Statistics format that contains two
variables: Source_ contains the original, unrecoded valid values, and Target_ contains the corresponding
recoded values. Together these two variables provide a mapping of original and recoded values.

You can therefore, theoretically, build your own custom template files, or simply include the two
mapping variables in an existing data file--but this type of use has not been tested.

APPLY TEMPLATE Subcommand

The APPLY TEMPLATE subcommand allows you to apply a previously saved autorecode template to the
variables in the current AUTORECODE command, appending any additional values found in the variables to
the end of the scheme, preserving the relationship between the original and autorecode values stored in
the saved scheme.

e APPLY TEMPLATE is followed by an equals sign (=) and a quoted file specification.

* All variables on the VARIABLES subcommand must be the same type (numeric or string), and that type
must match the type defined in the template.

* Templates do not contain any information on user-missing values. User-missing values for the target
variables are based on the first variable in the original variable list with defined user-missing values.
All other values from other original variables, except for system-missing, are treated as valid.

* Value mappings from the template are applied first. All remaining values are recoded into values
higher than the last value in the template, with user-missing values (based on the first variable in the
list with defined user-missing values) recoded into values higher than the last valid value.

* If multiple variables are specified on the VARIABLES subcommand, APPLY TEMPLATE generates a grouped
recoding scheme, with or without an explicit GROUP subcommand.

Example

DATA LIST FREE /varl (al).
BEGIN DATA
abd
END DATA.
AUTORECODE VARIABLES=varl
/INTO newvarl
/SAVE TEMPLATE='/temp/varl_template.sat'.
DATA LIST FREE /var2 (al).
BEGIN DATA
abec
END DATA.
AUTORECODE VARIABLES=var2
/INTO newvar2
/APPLY TEMPLATE='/temp/varl_template.sat'.

¢ The template file varl_template.sat maps the string values a, b, and d to the numeric values 1, 2, and 3,
respectively.

¢ When the template is applied to the variable var2 with the string values a, b, and ¢, the autorecoded
values for newvar2 are 1, 2, and 4, respectively. The string value "c¢" is autorecoded to 4 because the
template maps 3 to the string value "d".

* The data dictionary contains defined value labels for all four values--the three from the template and
the one new value read from the file.

Table 17. Defined value labels for newvar2
Value Label
1 a

AUTORECODE 201

Table 17. Defined value labels for newvar2 (continued)

Value Label
2 b
3 d
4 c

Interaction between APPLY TEMPLATE and SAVE TEMPLATE

e If APPLY TEMPLATE and SAVE TEMPLATE are both used in the same AUTORECODE command, APPLY TEMPLATE
is always processed first, regardless of subcommand order, and the autorecode scheme saved by SAVE
TEMPLATE is the union of the original template plus any appended value definitions.

* APPLY TEMPLATE and SAVE TEMPLATE can specify the same file, resulting in the template being updated
to include any newly appended value definitions.

Example

AUTORECODE VARIABLES=products
/INTO productCodes
/APPLY TEMPLATE='/mydir/product_codes.sat'
/SAVE TEMPLATE='/mydir/product_codes.sat.

* The autorecode scheme in the template file is applied for autorecoding products into productCodes.

* Any data values for products not defined in the template are autorecoded into values higher than the
highest value in the original template.

* Any user-missing values for products are autorecoded into values higher than the highest nonmissing
autorecoded value.

* The template saved is the autorecode scheme used to autorecode product--the original autorecode
scheme plus any additional values in product that were appended to the scheme.

PRINT Subcommand

PRINT displays a correspondence table of the original values of the source variables and the new values of
the target variables. The new value labels are also displayed.

* The only specification is the keyword PRINT. There are no additional specifications.

DESCENDING Subcommand

By default, values for the source variable are recoded in ascending order (from lowest to highest).
DESCENDING assigns the values to new variables in descending order (from highest to lowest). The largest
value is assigned 1, the second-largest, 2, and so on.

* The only specification is the keyword DESCENDING. There are no additional specifications.

202 IBM SPSS Statistics 23 Command Syntax Reference

BEGIN DATA-END DATA

BEGIN DATA
data records
END DATA

Example
BEGIN DATA

1

3424 274 ABU DHABI 2

2 39932 86 AMSTERDAM 4

3
4

8889 232 ATHENS
3424 294 BOGOTA 3

END DATA.

Overview

BEGIN DATA and END DATA are used when data are entered within the command sequence (inline data).
BEGIN DATA and END DATA are also used for inline matrix data. BEGIN DATA signals the beginning of data
lines and END DATA signals the end of data lines.

Basic Specification

The basic specification is BEGIN DATA, the data lines, and END DATA. BEGIN DATA must be specified by itself
on the line that immediately precedes the first data line. END DATA is specified by itself on the line that
immediately follows the last data line.

Syntax Rules

BEGIN DATA, the data, and END DATA must precede the first procedure.
The command terminator after BEGIN DATA is optional. It is best to leave it out so that the program will
treat inline data as one continuous specification.

END DATA must always begin in column 1. It must be spelled out in full and can have only one space
between the words END and DATA. Procedures and additional transformations can follow the END DATA
command.

Data lines must not have a command terminator. For inline data formats, see DATA LIST.

Inline data records are limited to a maximum of 80 columns. (On some systems, the maximum may be
fewer than 80 columns.) If data records exceed 80 columns, they must be stored in an external file that
is specified on the FILE subcommand of the DATA LIST (or similar) command.

Operations

When the program encounters BEGIN DATA, it begins to read and process data on the next input line.
All preceding transformation commands are processed as the working file is built.

The program continues to evaluate input lines as data until it encounters END DATA, at which point it
begins evaluating input lines as commands.
No other commands are recognized between BEGIN DATA and END DATA.

The INCLUDE command can specify a file that contains BEGIN DATA, data lines, and END DATA . The data
in such a file are treated as inline data. Thus, the FILE subcommand should be omitted from the DATA
LIST (or similar) command.

When running the program from prompts, the prompt DATA> appears immediately after BEGIN DATA is
specified. After END DATA is specified, the command line prompt returns.

203

Examples

DATA LIST /XVAR 1 YVAR ZVAR 3-12 CVAR 14-22(A) JVAR 24.
BEGIN DATA

1 3424 274 ABU DHABI 2

2 39932 86 AMSTERDAM 4
3 8889 232 ATHENS

4 3424 294 BOGOTA

5 11323 332 LONDON

6 323 232 MANILA

7 3234 899 CHICAGO
8 78998 2344 VIENNA

9 8870 983 ZURICH

END DATA.

MEANS XVAR BY JVAR.

CTWHsFwWww

e DATA LIST defines the names and column locations of the variables. The FILE subcommand is omitted
because the data are inline.

* There are nine cases in the inline data. Each line of data completes a case.

* END DATA signals the end of data lines. It begins in column 1 and has only a single space between END
and DATA.

204 IBM SPSS Statistics 23 Command Syntax Reference

BEGIN EXPR-END EXPR

BEGIN EXPR-END EXPR is available in the Statistics Base option.

BEGIN EXPR
/OUTFILE PREPXML='filespec'

variable definition statements
COMPUTE statements

END EXPR

This command reads the active dataset and causes execution of any pending commands. See the topic
[“Command Order” on page 40| for more information.

Release History

Release 21.0
e Command block introduced as SIMPREP BEGIN-SIMPREP END.

Release 23.0
e SIMPREP BEGIN-SIMPREP END deprecated. Command block renamed to BEGIN EXPR-END EXPR.

Example for SIMPLAN

BEGIN EXPR

/OUTFILE PREPXML='/models/mymodel.xml".

NUMERIC price volume fixed unit_cost_materials unit_cost_labor.

COMPUTE revenue = pricexvolume.

COMPUTE expenses = fixed + volume*(unit_cost_materials + unit_cost_labor).
COMPUTE profit = revenue - expenses.

END EXPR.

Example for TCM ANALYSIS

BEGIN EXPR

/OUTFILE PREPXML='/scenarios/myscenarios.xml'.
COMPUTE advertising = 1.2*advertising.

END EXPR.

Overview

BEGIN EXPR indicates the beginning of a block of statements that define a set of expressions for one or
more variables. Expressions are specified with COMPUTE statements. The END EXPR command terminates the
block and writes an XML file that contains the specifications for the expressions. The XML file is used as
input to one of the following commands that then consumes the expressions:

e The SIMPLAN command creates a simulation plan for a custom model that is defined by the expressions.

e The TCM ANALYSIS command uses the expressions to generate scenario values.
Basic Specification

The only specification for BEGIN EXPR is the command name followed by the OUTFILE subcommand with
the PREPXML keyword specifying the file where the results are written. The only specification for END EXPR
is the command name.

Syntax Rules

* The OUTFILE subcommand is required.

* Equal signs (=) shown in the syntax chart are required.

¢ Subcommand names and keywords must be spelled in full.

205

* With the IBM SPSS Statistics Batch Facility (available only with IBM SPSS Statistics Server), use the -i
switch when submitting command files that contain BEGIN EXPR-END EXPR blocks.

Limitations

* COMPUTE statements within BEGIN EXPR-END EXPR blocks support a limited set of functions for building
expressions. See the topic|“Specifying expressions’| for more information.

* BEGIN EXPR-END EXPR blocks can be contained in command syntax files run via the INSERT command,
with the default SYNTAX=INTERACTIVE setting.

* BEGIN EXPR-END EXPR blocks cannot be contained within command syntax files run via the INCLUDE
command.

¢ Custom simulation models created with BEGIN EXPR-END EXPR do not support systems of simultaneous
equations or equations that are non-linear in the target variable. They also do not support equations
with string targets.

Operations
e COMPUTE statements that are used in BEGIN EXPR-END EXPR blocks do not act on the active dataset.
Related information:

[“Specifying expressions”|

OUTFILE subcommand

The OUTFILE subcommand of BEGIN EXPR saves an XML-format file that specifies the expressions.

PREPXML
Specifies the XML-format file. Enclose file specifications in quotation marks and specify full file
names. BEGIN EXPR does not supply file extensions. If the file specification refers to an existing
file, then the file is overwritten.

Note: The optional combination of an asterisk (*) and a backslash (\) preceding the XML file name
specifies that the file is a temporary file--for example, PREPXML="*\myexpressions.xml".

Specifying expressions
Expressions for temporal causal model scenarios

You can create expressions for computing scenario values for use with the TCM ANALYSIS command. The
structure of a BEGIN EXPR-END EXPR block for defining scenario expressions is as follows:

BEGIN EXPR

/OUTFILE PREPXML='filespec'.
COMPUTE statements

END EXPR.

* You can include multiple expressions, each for a different scenario, in a single BEGIN EXPR-END EXPR
block. Each expression can be defined by a single COMPUTE statement or by a set of coupled COMPUTE
statements. Coupled statements are evaluated in the order in which they are specified, as is the case for
any sequence of COMPUTE statements.

* Each variable in an expression must either exist in the active dataset and be an input or target in the
model system, or be defined by a prior COMPUTE statement in the BEGIN EXPR-END EXPR block.

* You cannot reassign a variable in a COMPUTE statement. For example, you cannot specify COMPUTE
advertising=1.1*advertising.

Example

This example specifies expressions for two scenarios that are based on the same root field advertising.

206 IBM SPSS Statistics 23 Command Syntax Reference

BEGIN EXPR

/OUTFILE PREPXML='/scenarios/myscenarios.xml'.
COMPUTE advert_10_pct = l.lxadvertising.
COMPUTE advert_20_pct = 1.2*advertising.

END EXPR.

* The first COMPUTE statement defines a scenario whose values are 10 percent larger than the values of the
root field. The second COMPUTE statement defines a scenario whose values are 20 percent larger than the
values of the root field.

* The target variable of each COMPUTE statement identifies the expression and is used in the TCM ANALYSIS
command to reference the expression.

Expressions for custom simulation models

You can create expressions that define custom simulation models for use with the SIMPLAN command. A
custom simulation model consists of a set of equations that specify the relationship between a set of
targets and a set of inputs. The relationship between each target and its associated inputs is specified
with a COMPUTE statement. In addition, variable definition commands must be provided for all input fields
that do not exist in the active dataset. The structure of a BEGIN EXPR-END EXPR block for defining custom
simulation models is as follows:

BEGIN EXPR

/OUTFILE PREPXML='filespec'.
NUMERIC or STRING statements
VARIABLE LEVEL statements
VALUE LABELS statements
COMPUTE statements

END EXPR.

* You must include a NUMERIC or STRING statement to define each input that is not in the active dataset.
Inputs that are in the active dataset, however, must not be included on NUMERIC or STRING statements.
Targets (which can only be numeric) are defined by COMPUTE statements and do not need to be defined
with NUMERIC statements.

* By default, the measurement level for all targets and for all inputs not in the active dataset is
continuous. Use VARIABLE LEVEL statements to specify the measurement level for targets and such
inputs that are ordinal or nominal. For targets, the measurement level determines the set of output
charts and tables that are generated. For inputs that will be simulated, the measurement level
determines the default set of distributions used when fitting inputs to historical data.

* Use VALUE LABELS statements to define any value labels for targets and for inputs that are not in the
active dataset. Value labels are used in output charts and tables.

 For inputs that are in the active dataset, measurement levels and value labels are taken from the active
dataset. You can override the settings from the active dataset by specifying VARIABLE LEVEL and VALUE
LABELS statements for those inputs, within the BEGIN EXPR-END EXPR block.

* Use a separate COMPUTE statement for each equation in your model. The equations may be coupled but
are evaluated in the order in which they are specified, as is the case for any sequence of COMPUTE
statements.

Examples

This example creates a custom model based on an equation that relates the target revenue to the inputs
price and volume, where volume is a field in the active dataset but price is not.

BEGIN EXPR

JOUTFILE PREPXML='/models/mymodel.xm1".
NUMERIC price.

COMPUTE revenue = price*volume.

END EXPR.

This example creates a custom model based on a set of three equations that specify profit as a function of
both revenue and expenses. None of the inputs are fields in the active dataset.

BEGIN EXPR
/OUTFILE PREPXML='/models/mymodel.xml".
NUMERIC price volume fixed unit_cost_materials unit_cost_labor.

BEGIN EXPR-END EXPR 207

COMPUTE revenue = price*volume.

COMPUTE expenses = fixed + volume*(unit_cost_materials + unit_cost_labor).
COMPUTE profit = revenue - expenses.

END EXPR.

e The NUMERIC statement defines the five inputs that are used in the model since none of the inputs are
fields in the active dataset.

* Although revenue and expenses are inputs to profit, they are defined by COMPUTE statements, so they do
not need to be defined by NUMERIC statements.

* The COMPUTE statement for profit depends on revenue and expenses so the COMPUTE statements for revenue
and expenses precede the one for profit.

Supported functions and operators

COMPUTE statements within BEGIN EXPR-END EXPR blocks support the following set of functions and
operators for building expressions.

Table 18. Arithmetic operators and functions

Symbol or keyword Definition

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation

ABS Absolute value

EXP Exponential function
LG10 Base 10 logarithm
LN Natural logarithm
MAX Maximum of list
MIN Minimum of list
MOD Modulo

RND Round

SQRT Square root

TRUNC Truncation

& Logical AND

| Logical OR

~ Logical NOT

= Equal to

~= Not equal to

< Less than

> Greater than

<= Less than or equal to
>= Greater than or equal to
() Grouping

Alternative forms of relational operators, such as AND instead of &, are supported. For a complete list, see
the section on [“Logical expressions” on page 89.|

Related information:

208 IBM SPSS Statistics 23 Command Syntax Reference

[“Overview” on page 205
[“SIMPLAN” on page 1749|

BEGIN EXPR-END EXPR 209

210 IBM SPSS Statistics 23 Command Syntax Reference

BEGIN GPL-END GPL

BEGIN GPL
gpl specification
END GPL

Release History

Release 14.0
¢ Command introduced.

Example

GGRAPH
/GRAPHDATASET NAME="graphdataset" VARIABLES=jobcat COUNT()
/GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
SOURCE: s=userSource(id("graphdataset"))
DATA: jobcat=col(source(s), name("jobcat"), unit.category())
DATA: count=col(source(s), name("COUNT"))
GUIDE: axis(dim(1), Tabel("Employment Category"))
GUIDE: axis(dim(2), label("Count"))
ELEMENT: interval(position(jobcat*count))
END GPL.

If you are looking for more details about GPL, see the GPL Reference Guide on the manuals CD.

Overview

BEGIN GPL and END GPL are used when Graphics Production Language (GPL) code is entered within the
command sequence (inline graph specification). BEGIN GPL and END GPL must follow a GGRAPH command,
without any blank lines between BEGIN GPL and the command terminator line for GGRAPH. Only comments
are allowed between BEGIN GPL and the command terminator line for GGRAPH. BEGIN GPL must be at the
start of the line on which it appears, with no preceding spaces. BEGIN GPL signals the beginning of GPL
code, and END GPL signals the end of GPL code.

For more information about GGRAPH, see["GGRAPH” on page 799 See the GPL Reference Guide on the
manuals CD for more details about GPL. The examples in the GPL documentation may look different
compared to the syntax pasted from the Chart Builder. The main difference is when aggregation occurs.
See [“Working with the GPL” on page 809 for information about the differences. See [“GPL Examples” on|
IEage 812 for examples with GPL that is similar to the pasted syntax.

Syntax Rules
* Within a GPL block, only GPL statements are allowed.
* Strings in GPL are enclosed in quotation marks. You cannot use single quotes (apostrophes).

* With the IBM SPSS Statistics Batch Facility (available only with IBM SPSS Statistics Server), use the -i
switch when submitting command files that contain GPL blocks.

Scope and Limitations
e GPL blocks cannot be nested within GPL blocks.
e GPL blocks cannot be contained within DEFINE-!ENDDEFINE macro definitions.

* GPL blocks can be contained in command syntax files run via the INSERT command, with the default
SYNTAX=INTERACTIVE setting.

* GPL blocks cannot be contained within command syntax files run via the INCLUDE command.

211

212 IBM SPSS Statistics 23 Command Syntax Reference

BEGIN PROGRAM-END PROGRAM

BEGIN PROGRAM-END PROGRAM is available in the IBM SPSS Statistics Programmability Extension. It is not
available in Statistical Services for SQL Server 2005.

BEGIN PROGRAM [programming language name] .
programming language-specific statements
END PROGRAM.

Release History

Release 14.0
¢ Command introduced.

Overview

BEGIN PROGRAM-END PROGRAM provides the ability to integrate the capabilities of external programming
languages with IBM SPSS Statistics. One of the major benefits of these program blocks is the ability to
add jobwise flow control to the command stream. Outside of program blocks, IBM SPSS Statistics can
execute casewise conditional actions, based on criteria that evaluate each case, but jobwise flow control,
such as running different procedures for different variables based on data type or level of measurement
or determining which procedure to run next based on the results of the last procedure is much more
difficult. Program blocks make jobwise flow control much easier to accomplish. With program blocks, you
can control the commands that are run based on many criteria, including:

* Dictionary information (e.g., data type, measurement level, variable names)
* Data conditions

* Output values

* Error codes (that indicate if a command ran successfully or not)

You can also read data from the active dataset to perform additional computations, update the active
dataset with results, create new datasets, and create custom pivot table output.

Command 1

et information

from dictionary,
data, output,

refurn codes, etc

Command 2 Command 3

Figure 18. Jobwise Flow Control

Operations

* BEGIN PROGRAM signals the beginning of a set of code instructions controlled by an external
programming language.

213

After BEGIN PROGRAM is executed, other commands do not execute until END PROGRAM is encountered.

Syntax Rules

Within a program block, only statements recognized by the specified programming language are
allowed.

Command syntax generated within a program block must follow interactive syntax rules. See the topic
for more information.

Within a program block, each line should not exceed 251 bytes (although syntax generated by those
lines can be longer).

With the IBM SPSS Statistics Batch Facility (available only with IBM SPSS Statistics Server), use the -i
switch when submitting command files that contain program blocks. All command syntax (not just the
program blocks) in the file must adhere to interactive syntax rules.

Within a program block, the programming language is in control, and the syntax rules for that
programming language apply. Command syntax generated from within program blocks must always
follow interactive syntax rules. For most practical purposes this means command strings you build in a
programming block must contain a period (.) at the end of each command.

Scope and Limitations

Programmatic variables created in a program block cannot be used outside of program blocks.
Program blocks cannot be contained within DEFINE-!ENDDEFINE macro definitions.

Program blocks can be contained in command syntax files run via the INSERT command, with the
default SYNTAX=INTERACTIVE setting.

Program blocks cannot be contained within command syntax files run via the INCLUDE command.

Using External Programming Languages

Use of the IBM SPSS Statistics Programmability Extension requires an Integration Plug-in for an external
language. Integration Plug-ins supported for use with BEGIN PROGRAM-END PROGRAM blocks are available for
the Python and R programming languages. For information, see How to Get Integration Plug-ins,
available from Core System>Frequently Asked Questions in the Help system. Documentation for the
plug-ins is available from the topics Integration Plug-in for Python and Integration Plug-in for R in the
Help system.

Resources for use with Integration Plug-ins are available on the SPSS Community at

lhttp:/ /www.ibm.com/developerworks/spssdevcentral} Many of the resources are packaged as extension

bundles that you can download from the Download Extension Bundles dialog. It is available from the
menus by choosing Utilities > Extension Bundles > Download and Install Extension Bundles.

214 IBM SPSS Statistics 23 Command Syntax Reference

http://www.ibm.com/developerworks/spssdevcentral

BOOTSTRAP

BOOTSTRAP is available in the Bootstrapping option.

BOOTSTRAP
[/SAMPLING METHOD={SIMPLE** H
{STRATIFIED(STRATA=varlist) }
{RESIDUAL ({RESIDUALS=varlist})}
{PREDICTED=varlist})
{WILD({RESIDUALS=varlist}) }
{PREDICTED=varlist})
[/VARIABLES [TARGET=varlist] [INPUT=varlist]]
[/CRITERIA [CILEVEL={95%% } [CITYPE={PERCENTILEx}]]
{value} {BCA }
[NSAMPLES={1000**}]
{int }
[/MISSING [USERMISSING={EXCLUDE**}]]
{INCLUDE }.

** Default if the subcommand or keyword is omitted.

This command does not read the active dataset. It is stored, pending execution with the next command
that reads the dataset. See the topic ['Command Order” on page 40| for more information.

Release History

Release 18

¢ Command introduced.

Example
BOOTSTRAP.

Overview

Bootstrapping is a method for deriving robust estimates of standard errors and confidence intervals for
estimates such as the mean, median, proportion, odds ratio, correlation coefficient or regression
coefficient. It may also be used for constructing hypothesis tests. Bootstrapping is most useful as an
alternative to parametric estimates when the assumptions of those methods are in doubt (as in the case of
regression models with heteroscedastic residuals fit to small samples), or where parametric inference is
impossible or requires very complicated formulas for the calculation of standard errors (as in the case of
computing confidence intervals for the median, quartiles, and other percentiles).

The BOOTSTRAP command signals the beginning of temporary bootstrap samples that are in effect only for
the next procedure. See for a list of procedures that support bootstrapping.

Options

Resampling method. Simple, stratified, and residuals bootstrap resampling are supported. You can also
specify the number of bootstrap samples to take.

Pooling method. Choose between percentile and BCa methods for computing confidence intervals. You
can also specify the confidence level.

Basic Specification

The basic specification is the BOOTSTRAP command.

© Copyright IBM Corporation 1989, 2014 215

By default, BOOTSTRAP draws 1000 samples using simple bootstrap resampling. When the procedure
following BOOTSTRAP is run, the pooling algorithm produces 95% confidence intervals using the percentile
method. Since no variables have been specified, no records are excluded from resampling.

Syntax Rules

* All subcommands are optional.

* Subcommands may be specified in any order.

* Only a single instance of each subcommand is allowed.

* An error occurs if a keyword is specified more than once within a subcommand.

* Parentheses, equals signs, and slashes shown in the syntax chart are required.

¢ The command name, subcommand names, and keywords must be spelled in full.

¢ Empty subcommands are not allowed.

* Any split variable defined on the SPLIT FILE command may not be used on the BOOTSTRAP command.

Limitations

* BOOTSTRAP does not work with multiply imputed datasets. If there is an Imputation_ variable in the
dataset, running BOOTSTRAP will cause an error.

e BOOTSTRAP should not be used in conjunction with the N OF CASES command.

Examples

Simple Resampling; Maintaining a Consistent Case Basis

BOOTSTRAP.
DESCRIPTIVES VARIABLES=varl var2 var3
/MISSING=VARIABLE.

* The BOOTSTRAP command requests 1000 bootstrap samples.

* No variables are specified on the BOOTSTRAP command, so no records are deleted from the resampling.
This allows the DESCRIPTIVES procedure to use variablewise deletion of missing values on the full set
of records; however, the case basis will be inconsistent across bootstrap resamples, and inferences made
from the results would be questionable.

BOOTSTRAP
/VARIABLES ANALYSIS(INPUT=varl var2 var3).
DESCRIPTIVES VARIABLES=varl var2 var3
/STATISTICS MEAN STDDEV MIN MAX
/MISSING=VARIABLE.

* This is the same as the previous analysis, but variables var1, var2, and var3 are used to determine the
case basis for resampling. Records with missing values on any of these variables are deleted from the
analysis.

* The DESCRIPTIVES procedure following BOOTSTRAP is run on the bootstrap samples.

* The STATISTICS subcommand produces the mean, standard deviation, minimum, and maximum for
variables varl, var2, and var3 on the original data. Additionally, pooled statistics are produced for the
mean and standard deviation.

* Even though the MISSING subcommand specifies variablewise deletion of missing values, the listwise

deletion performed by BOOTSTRAP is what determines the case basis. In effect, the MISSING specification
on DESCRIPTIVES is irrelevant here.

Stratified Resampling

BOOTSTRAP
/VARIABLES SAMPLING(STRATA=strataVar)
ANALYSIS(INPUTS=varl).
DESCRIPTIVES varl.

* The BOOTSTRAP command requests 1000 bootstrap samples stratified by strataVar.

* Variables varl and strataVar are used to determine the case basis for resampling. Records with missing
values on these variables are deleted from the analysis.

216 IBM SPSS Statistics 23 Command Syntax Reference

¢ The DESCRIPTIVES procedure following BOOTSTRAP is run on the bootstrap samples, and produces the
mean, standard deviation, minimum, and maximum for the variable varl on the original data.
Additionally, pooled statistics are produced for the mean and standard deviation.

SAMPLING Subcommand

The SAMPLING subcommand is used to specify the sampling method and any associated variables.
* If SAMPLING is not specified, the procedure performs simple bootstrap resampling..

SIMPLE. Simple resampling. This performs case resampling with replacement from the original dataset.
This is the default.

STRATIFIED (STRATA = varlist). Stratified resampling. Specify one or more variables that define strata
within the dataset. This performs case resampling with replacement from the original dataset, within the
strata defined by the cross-classification of strata variables, preserving the size of each stratum. Stratified
bootstrap sampling can be useful when units within strata are relatively homogeneous while units across
strata are very different.

RESIDUAL (RESIDUALS=varlist | PREDICTED=varlist). Residual resampling. Specify one or more
variables containing residuals from fitting a model to the data. The model that produced the residuals
should ideally be the same model that follows BOOTSTRAP. A residual sample is drawn by replacing each
target variable value with that case's predicted value plus a residual sampled from the entire original set
of residuals.

Specify PREDICTED as an alternative to RESIDUALS when the model residuals are not immediately available
but the predicted values are. Specify one or more variables containing predicted values from fitting a
model to the data.

If RESIDUAL is specified, the TARGET keyword is required and the variables specified on RESIDUAL should
be the residuals (or predicted values) for, and match the order of, the variables specified on TARGET.

WILD (RESIDUALS=varlist | PREDICTED=varlist). Wild bootstrap resampling. Specify one or more
variables containing residuals from fitting a model to the data. The model that produced the residuals
should ideally be the same model that follows BOOTSTRAP. A wild sample is drawn by replacing each
target variable value with that case's predicted value plus either the case's residual or the negative of the
case's residual.

Specify PREDICTED as an alternative to RESIDUALS when the model residuals are not immediately available
but the predicted values are. Specify one or more variables containing predicted values from fitting a
model to the data.

If WILD is specified, the TARGET keyword is required and the variables specified on WILD should be the
residuals (or predicted values) for, and match the order of, the variables specified on TARGET.

VARIABLES Subcommand

The VARIABLES subcommand is used to specify the target and inputs.

 If VARIABLES is not specified, the procedure performs bootstrap resampling on all the records in the
dataset. TARGET is required when performing residual resampling, but these specifications are otherwise
technically optional. However, these variables are used to determine the case basis for bootstrap
resampling, so it is important to specify these variables when there are missing values in the data.

TARGET=varlist. Target variables. Specify one or more variables that will be used as targets (responses,
dependent variables) in the procedure following BOOTSTRAP.

BOOTSTRAP 217

INPUT=varlist. [nput variables. Specify one or more variables that will be used as inputs (factors,
covariates) in the procedure following BOOTSTRAP.

CRITERIA Subcommand

The CRITERIA subcommand controls pooling options and the number of bootstrap samples to take.
CILEVEL = number. Confidence interval level. Specify a number greater than or equal to 0, and less than
100. The default value is 95. Note that bootstrapping can only support intervals up to confidence level
100*(1-2/(NSAMPLES+1)).

CITYPE = PERCENTILE | BCA. Confidence interval type. Specify PERCENTILE for percentile intervals or
BCA for BCa intervals. The default value is PERCENTILE.

NSAMPLES = integer . Number of bootstrap samples. Specify a positive integer. The default value is 1000.

MISSING Subcommand

The MISSING subcommand is used to control whether user-missing values for categorical variables are
treated as valid values. By default, user-missing values for categorical variables are treated as invalid. The
setting used here should be the same as that used on the procedure following the BOOTSTRAP command.

¢ (Cases with invalid values are deleted listwise.

e The MISSING subcommand defines categorical variables as variables with measurement level set at
Ordinal or Nominal in the data dictionary. Use the VARIABLE LEVEL command to change a variable's
measurement level.

* User-missing values for continuous variables are always treated as invalid.

* System-missing values for any variables are always treated as invalid.

USERMISSING=EXCLUDE. User-missing values for categorical variables are treated as invalid. This is the
default.

USERMISSING=INCLUDE. User-missing values for categorical variables are treated as valid values.

218 IBM SPSS Statistics 23 Command Syntax Reference

BREAK

BREAK

This command does not read the active dataset. It is stored, pending execution with the next command
that reads the dataset. See the topic [‘Command Order” on page 40| for more information.

Overview

BREAK controls looping that cannot be fully controlled with IF clauses. Generally, BREAK is used within a
DO IF-END IF structure. The expression on the DO IF command specifies the condition in which BREAK is
executed.

Basic Specification
* The only specification is the keyword BREAK. There are no additional specifications.
* BREAK must be specified within a loop structure. Otherwise, an error results.

Operations

¢ A BREAK command inside a loop structure but not inside a DO IF-END IF structure terminates the first
iteration of the loop for all cases, since no conditions for BREAK are specified.

¢ A BREAK command within an inner loop terminates only iterations in that structure, not in any outer
loop structures.

Examples

VECTOR #X(10) .

LooP #1 = 1 TO #NREC.

+ DATA LIST NOTABLE/ #X1 TO #X10 1-20.
+ LOOP #J =1 T0 10.

+ DO IF SYSMIS (#X(#J)) .
+ BREAK.

+ END IF.

+ COMPUTE X = #X(#J).

+ END CASE.

+ END LOOP.

END LOOP.

* The inner loop terminates when there is a system-missing value for any of the variables #X1 to #X10.

¢ The outer loop continues until all records are read.

© Copyright IBM Corporation 1989, 2014 219

220 IBM SPSS Statistics 23 Command Syntax Reference

CACHE

CACHE.

This command does not read the active dataset. It is stored, pending execution with the next command
that reads the dataset. See the topic [‘Command Order” on page 40| for more information.

Although the virtual active file can vastly reduce the amount of temporary disk space required, the
absence of a temporary copy of the “active” file means that the original data source has to be reread for
each procedure. For data tables read from a database source, this means that the SQL query that reads the
information from the database must be reexecuted for any command or procedure that needs to read the
data. Since virtually all statistical analysis procedures and charting procedures need to read the data, the
SQL query is reexecuted for each procedure that you run, which can result in a significant increase in
processing time if you run a large number of procedures.

If you have sufficient disk space on the computer performing the analysis (either your local computer or
a remote server), you can eliminate multiple SQL queries and improve processing time by creating a data
cache of the active file with the CACHE command. The CACHE command copies all of the data to a
temporary disk file the next time the data are passed to run a procedure. If you want the cache written
immediately, use the EXECUTE command after the CACHE command.

* The only specification is the command name CACHE.
* A cache file will not be written during a procedure that uses temporary variables.

* A cache file will not be written if the data are already in a temporary disk file and that file has not
been modified since it was written.

Example

CACHE.

TEMPORARY.

RECODE alcohol(0 thru .04 = 'sober') (.04 thru .08 = 'tipsy')
(else = 'drunk') into state.

FREQUENCIES var=state.

GRAPH. ..

No cache file will be written during the FREQUENCIES procedure. It will be written during the GRAPH
procedure.

221

222 IBM SPSS Statistics 23 Command Syntax Reference

CASEPLOT

CASEPLOT VARIABLES=varlist

[/DIFF={1}]
{n}

[/SDIFF={1}]
{n}

[/PERIOD=n]

[/{NOLOG**}]
{LN }

[/1D=varname]

[/MARK={varname 1
{date specification}

[/SPLIT {UNIFORMx«}]
{SCALE }

[/APPLY [='model name']]

For plots with one variable:

[/FORMAT=[{NOFILL**}] [{NOREFERENCEx* 11
{LEFT } {REFERENCE[(value)]}

For plots with multiple variables:

[/FORMAT={NOJOIN=*+}]
{JOIN }
{HILO }

**Default if the subcommand is omitted.

This command reads the active dataset and causes execution of any pending commands. See the topic
[“Command Order” on page 40| for more information.

Release History

Release 14.0

* For plots with one variable, new option to specify a value with the REFERENCE keyword on the FORMAT
subcommand.

Example

CASEPLOT VARIABLES = TICKETS
/LN
/DIFF
/SDIFF
/PERIOD=12
/FORMAT=REFERENCE
/MARK=Y 55 M 6.

Overview

CASEPLOT produces a plot of one or more time series or sequence variables. You can request natural log
and differencing transformations to produce plots of transformed variables. Several plot formats are
available.

Options

© Copyright IBM Corporation 1989, 2014 223

Modifying the Variables. You can request a natural log transformation of the variable using the LN
subcommand and seasonal and nonseasonal differencing to any degree using the SDIFF and DIFF
subcommands. With seasonal differencing, you can also specify the periodicity on the PERIOD
subcommand.

Plot Format. With the FORMAT subcommand, you can fill in the area on one side of the plotted values on
plots with one variable. You can also plot a reference line indicating the variable mean. For plots with
two or more variables, you can specify whether you want to join the values for each case with a
horizontal line. With the ID subcommand, you can label the vertical axis with the values of a specified
variable. You can mark the onset of an intervention variable on the plot with the MARK subcommand.

Split-File Processing. You can control how to plot data that have been divided into subgroups by a SPLIT
FILE command using the SPLIT subcommand.

Basic Specification

The basic specification is one or more variable names.

* If the DATE command has been specified, the vertical axis is labeled with the DATE_ variable at
periodic intervals. Otherwise, sequence numbers are used. The horizontal axis is labeled with the value
scale determined by the plotted variables.

1998 —
1998 —
1997 —
1996 —
1985 —
1994 —
1993 —
1982 —
1991 —
1990 —
1988 —
1988 —
1987 —
1986 —
1985
1984
1983
1982 —
1981 —
1980 —

Date

T T I |
.00 9.50 10.00 10.50 11.00
Price

Figure 19. CASEPLOT with DATE variable

Subcommand Order
* Subcommands can be specified in any order.

Syntax Rules
* VARIABLES can be specified only once.

¢ Other subcommands can be specified more than once, but only the last specification of each one is
executed.

224 IBM SPSS Statistics 23 Command Syntax Reference

Operations
* Subcommand specifications apply to all variables named on the CASEPLOT command.

e If the LN subcommand is specified, any differencing requested on that CASEPLOT command is done on
the log-transformed variables.

 Split-file information is displayed as part of the subtitle, and transformation information is displayed
as part of the footnote.

Limitations

* A maximum of one VARIABLES subcommand. There is no limit on the number of variables named on
the list.

Examples

CASEPLOT VARIABLES = TICKETS
/LN
/DIFF
/SDIFF
/PERIOD=12
/FORMAT=REFERENCE
/MARK=Y 55 M 6.

* This example produces a plot of TICKETS after a natural log transformation, differencing, and seasonal
differencing have been applied.

* LN transforms the data using the natural logarithm (base ¢) of the variable.

* DIFF differences the variable once.

* SDIFF and PERIOD apply one degree of seasonal differencing with a periodicity of 12.
* FORMAT=REFERENCE adds a reference line at the variable mean.

* MARK provides a marker on the plot at June, 1955. The marker is displayed as a horizontal reference
line.

VARIABLES Subcommand

VARIABLES specifies the names of the variables to be plotted and is the only required subcommand.

DIFF Subcommand

DIFF specifies the degree of differencing used to convert a nonstationary variable to a stationary one with
a constant mean and variance before plotting.

* You can specify any positive integer on DIFF.
 If DIFF is specified without a value, the default is 1.

¢ The number of values displayed decreases by 1 for each degree of differencing.

Example

CASEPLOT VARIABLES = TICKETS
/DIFF=2.

* In this example, TICKETS is differenced twice before plotting.

SDIFF Subcommand

If the variable exhibits a seasonal or periodic pattern, you can use the SDIFF subcommand to seasonally
difference a variable before plotting.

* The specification on SDIFF indicates the degree of seasonal differencing and can be any positive integer.
* If SDIFF is specified without a value, the degree of seasonal differencing defaults to 1.

¢ The number of seasons displayed decreases by 1 for each degree of seasonal differencing.

CASEPLOT 225

¢ The length of the period used by SDIFF is specified on the PERIOD subcommand. If the PERIOD
subcommand is not specified, the periodicity established on the TSET or DATE command is used (see the
PERIOD subcommand below).

PERIOD Subcommand

PERIOD indicates the length of the period to be used by the SDIFF subcommand.

* The specification on PERIOD indicates how many observations are in one period or season and can be
any positive integer.

* PERIOD is ignored if it is used without the SDIFF subcommand.

* If PERIOD is not specified, the periodicity established on TSET PERIOD is in effect. If TSET PERIOD is not

specified either, the periodicity established on the DATE command is used. If periodicity is not
established anywhere, the SDIFF subcommand will not be executed.

Example

CASEPLOT VARIABLES = TICKETS
/SDIFF=1
/PERIOD=12.

* This command applies one degree of seasonal differencing with 12 observations per season to TICKETS
before plotting.

LN and NOLOG Subcommands

LN transforms the data using the natural logarithm (base ¢) of the variable and is used to remove varying
amplitude over time. NOLOG indicates that the data should not be log transformed. NOLOG is the default.

* If you specify LN on CASEPLOT, any differencing requested on that command will be done on the
log-transformed variable.

* There are no additional specifications on LN or NOLOG.

* Only the last LN or NOLOG subcommand on a CASEPLOT command is executed.

* If a natural log transformation is requested, any value less than or equal to zero is set to
system-missing.

* NOLOG is generally used with an APPLY subcommand to turn off a previous LN specification.

Example

CASEPLOT VARIABLES = TICKETS
/LN.

¢ In this example, TICKETS is transformed using the natural logarithm before plotting.

ID Subcommand

ID names a variable whose values will be used as the left-axis labels.

* The only specification on ID is a variable name. If you have a variable named ID in your active dataset,
the equals sign after the subcommand is required.

» ID overrides the specification on TSET ID.

e If ID or TSET ID is not specified, the left vertical axis is labeled with the DATE_ variable created by the

DATE command. If the DATE_ variable has not been created, the observation or sequence number is
used as the label.

Example

CASEPLOT VARIABLES = VARA
/1D=VARB.

¢ In this example, the values of the variable VARB will be used to label the left axis of the plot of VARA.

226 IBM SPSS Statistics 23 Command Syntax Reference

FORMAT Subcommand

FORMAT controls the plot format.

* The specification on FORMAT is one of the keywords listed below.

e The keywords NOFILL, LEFT, NOREFERENCE, and REFERENCE apply to plots with one variable. NOFILL and
LEFT are alternatives and indicate how the plot is filled. NOREFERENCE and REFERENCE are alternatives

and specify whether a reference line is displayed. One keyword from each set can be specified. NOFILL
and NOREFERENCE are the defaults.

* The keywords JOIN, NOJOIN, and HILO apply to plots with multiple variables and are alternatives.
NOJOIN is the default. Only one keyword can be specified on a FORMAT subcommand for plots with two
variables.

The following formats are available for plots of one variable:

NOFILL. Plot only the values for the variable with no fill. NOFILL produces a plot with no fill to the left or
right of the plotted values. This is the default format when one variable is specified.

LEFT. Plot the values for the variable and fill in the area to the left. If the plotted variable has missing or
negative values, the keyword LEFT is ignored and the default NOFILL is used instead.

1999 —
1998 —
1997 <
1996 =
1995 —
1994 =~
1993
1992 4
1991 4
1990 <

Date

1989 —
1988 =
1987 <
1986 —
1985 4
1984 —
1983 —
1982 —
1981 =
1980

T T I I
950 1000 1050 11.00
Price

Figure 20. FORMAT=LEFT

NOREFERENCE. Do not plot a reference line. This is the default when one variable is specified.
REFERENCE(value) . Plot a reference line at the specified value or at the variable mean if no value is specified. A

fill chart is displayed as an area chart with a reference line and a non-fill chart is displayed as a line chart
with a reference line.

CASEPLOT 227

1999 —
1998 <
1997 <
1996 <
1995
1994 =<

D
—
1993 <
19924
1991 4
1990 —
1989 =

AN/

Date

1938 o]

1987 <

1986 —
19854
1984 <

1983 —
1982 —
1981

1980 | =
T]] I
950 10.00 10.50 11.00
Price

Figure 21. FORMAT=REFERENCE

The following formats are available for plots of multiple variables:

NOJOIN. Plot the values of each variable named. Different colors or line patterns are used for multiple
variables. Multiple occurrences of the same value for a single observation are plotted using a dollar sign
($). This is the default format for plots of multiple variables.

JOIN. Plot the values of each variable and join the values for each case. Values are plotted as described for
NOJOIN, and the values for each case are joined together by a line.

HILO. Plot the highest and lowest values across variables for each case and join the two values together. The high
and low values are plotted as a pair of vertical bars and are joined with a dashed line. HILO is ignored if
more than three variables are specified, and the default NOJOIN is used instead.

MARK Subcommand

Use MARK to indicate the onset of an intervention variable.

* The onset date is indicated by a horizontal reference line.

* The specification on MARK can be either a variable name or an onset date if the DATE_ variable exists.
* If a variable is named, the reference line indicates where the values of that variable change.

* A date specification follows the same format as the DATE command—that is, a keyword followed by a
value. For example, the specification for June, 1955, is Y 1955 M 6 (or Y 55 M 6 if only the last two
digits of the year are used on DATE).

228 IBM SPSS Statistics 23 Command Syntax Reference

1998 —
1998 —
1997 —
1996 —
1995
1994 —~
1993
1992 —
1991 —
1990
1985 —
1988 —
1987 —
1986 —
1985 —
1984 —
1983 —
1982 —
1981 —
1980 —

Date

T 1 T I
9.50 10.00 10.50 11.00
Price

Figure 22. MARK Y=1990

SPLIT Subcommand

SPLIT specifies how to plot data that have been divided into subgroups by a SPLIT FILE command. The
specification on SPLIT is either SCALE or UNIFORM.

 If FORMAT=REFERENCE is specified when SPLIT=SCALE, the reference line is placed at the mean of the
subgroup. If FORMAT=REFERENCE is specified when SPLIT=UNIFORM, the reference line is placed at the
overall mean.

UNIFORM. Uniform scale. The horizontal axis is scaled according to the values of the entire dataset. This
is the default if SPLIT is not specified.

SCALE. Individual scale. The horizontal axis is scaled according to the values of each individual subgroup.

Example

SPLIT FILE BY REGION.
CASEPLOT VARIABLES = TICKETS / SPLIT=SCALE.

* This example produces one plot for each REGION subgroup.

* The horizontal axis for each plot is scaled according to the values of TICKETS for each particular
region.

APPLY Subcommand
APPLY allows you to produce a caseplot using previously defined specifications without having to repeat
the CASEPLOT subcommands.

* The only specification on APPLY is the name of a previous model in quotes. If a model name is not
specified, the specifications from the previous CASEPLOT command are used.

* If no variables are specified, the variables that were specified for the original plot are used.

CASEPLOT 229

* To change one or more plot specifications, specify the subcommands of only those portions you want
to change after the APPLY subcommand.

* To plot different variables, enter new variable names before or after the APPLY subcommand.

Example

CASEPLOT VARIABLES = TICKETS
/LN
/DIFF=1
/SDIFF=1
/PER=12.

CASEPLOT VARIABLES = ROUNDTRP
/APPLY.

CASEPLOT APPLY
/NOLOG.

* The first command produces a plot of TICKETS after a natural log transformation, differencing, and
seasonal differencing.
* The second command plots ROUNDTRP using the same transformations specified for TICKETS.

* The third command produces a plot of ROUNDTRP but this time without any natural log
transformation. The variable is still differenced once and seasonally differenced with a periodicity of
12.

230 IBM SPSS Statistics 23 Command Syntax Reference

CASESTOVARS

CASESTOVARS
[/ID = varlist]
[/FIXED = varlist]

[/AUTOFIX = {YESw+}]
{NO }

[/VIND [ROOT = rootname]]
[/COUNT = new variable ["label"]]
[/RENAME varname=rootname varname=rootname ...]

[/SEPARATOR = {"." 1]
{"string"}]

[/INDEX = varlist]

[/GROUPBY = {VARIABLE**}]
{INDEX 1

[/DROP = varlist]

*Default if the subcommand is omitted.

This command reads the active dataset and causes execution of any pending commands. See the topic
[“Command Order” on page 40| for more information.

Example
CASESTOVARS /ID idvar /INDEX varl.

Overview

A variable contains information that you want to analyze, such as a measurement or a test score. A case
is an observation, such as an individual or an institution.

In a simple data file, each variable is a single column in your data, and each case is a single row in your
data. So, if you were recording the score on a test for all students in a class, the scores would appear in
only one column and there would be only one row for each student.

Complex data files store data in more than one column or row. For example, in a complex data file,
information about a case could be stored in more than one row. So, if you were recording monthly test
scores for all students in a class, there would be multiple rows for each student—one for each month.

CASESTOVARS restructures complex data that has multiple rows for a case. You can use it to restructure
data in which repeated measurements of a single case were recorded in multiple rows (row groups) into
a new data file in which each case appears as separate variables (variable groups) in a single row. It
replaces the active dataset.

Options
Automatic classification of fixed variables. The values of fixed variables do not vary within a row
group. You can use the AUTOFIX subcommand to let the procedure determine which variables are fixed

and which variables are to become variable groups in the new data file.

Naming new variables. You can use the RENAME, SEPARATOR, and INDEX subcommands to control the
names for the new variables.

231

Ordering new variables. You can use the GROUPBY subcommand to specify how to order the new
variables in the new data file.

Creating indicator variables. You can use the VIND subcommand to create indicator variables. An
indicator variable indicates the presence or absence of a value for a case. An indicator variable has the
value of 1 if the case has a value; otherwise, it is 0.

Creating a count variable. You can use the COUNT subcommand to create a count variable that contains
the number of rows in the original data that were used to create a row in the new data file.

Variable selection. You can use the DROP subcommand to specify which variables from the original data
file are dropped from the new data file.

Basic specification

The basic specification is simply the command keyword.

* If split-file processing is in effect, the basic specification creates a row in the new data file for each
combination of values of the SPLIT FILE variables. If split-file processing is not in effect, the basic
specification results in a new data file with one row.

* Because the basic specification can create quite a few new columns in the new data file, the use of an
ID subcommand to identify groups of cases is recommended.

Subcommand order

Subcommands can be specified in any order.
Syntax rules

Each subcommand can be specified only once.

Operations
* Original row order. CASESTOVARS assumes that the original data are sorted by SPLIT and ID variables.

* Identifying row groups in the original file. A row group consists of rows in the original data that
share the same values of variables listed on the ID subcommand. Row groups are consolidated into a
single row in the new data file. Each time a new combination of ID values is encountered, a new row is
created.

* Split-file processing and row groups. If split-file processing is in effect, the split variables are
automatically used to identify row groups (they are treated as though they appeared first on the 1D
subcommand). Split-file processing remains in effect in the new data file unless a variable that is used
to split the file is named on the DROP subcommand.

* New variable groups. A variable group is a group of related columns in the new data file that is
created from a variable in the original data. Each variable group contains a variable for each index
value or combination of index values encountered.

* Candidate variables. A variable in the original data is a candidate to become a variable group in the
new data file if it is not used on the SPLIT command or the ID, FIXED, or DROP subcommands and its
values vary within the row group. Variables named on the SPLIT, ID, and FIXED subcommands are
assumed to not vary within the row group and are simply copied into the new data file.

* New variable names. The names of the variables in a new group are constructed by the procedure.
For numeric variables, you can override the default naming convention using the RENAME and
SEPARATOR subcommands. If there is a single index variable and it is a string, the string values are used
as the new variable names. For string values that do not form valid variable names, names of the
general form Vn are used, where 7 is a sequential integer.

232 IBM SPSS Statistics 23 Command Syntax Reference

* New variable formats. With the exception of names and labels, the dictionary information for all of
the new variables in a group (for example, value labels and format) is taken from the variable in the
original data.

* New variable order. New variables are created in the order specified by the GROUPBY subcommand.

* Weighted files. The WEIGHT command does not affect the results of CASESTOVARS. If the original data
are weighted, the new data file will be weighted unless the variable that is used as the weight is
dropped from the new data file.

* Selected cases. The FILTER and USE commands do not affect the results of CASESTOVARS. It processes all
cases.

Limitations

The TEMPORARY command cannot be in effect when CASESTOVARS is executed.

Examples

The following is the LIST output for a data file in which repeated measurements for the same case are
stored on separate rows in a single variable.

insure caseid month bps bpd
BCBS 1 1 160 100
BCBS 2 1 120 70
BCBS 2 2 130 86
Prucare 1 1 160 94
Prucare 1 2 200 105
Prucare 1 3 180 105
Pruecare 2 1 135 90

The commands:

SPLIT FILE BY insure.
CASESTOVARS
/ID=caseid
/INDEX=month.

create a new variable group for bps and a new group for bpd. The LIST output for the new active dataset
is as follows:

* The row groups in the original data are identified by insure and caseid.
* There are four row groups—one for each combination of the values in insure and caseid.
* The command creates four rows in the new data file, one for each row group.

¢ The candidate variables from the original file are bps and bpd. They vary within the row group, so they
will become variable groups in the new data file.

¢ The command creates two new variable groups—one for bps and one for bpd.

* Each variable group contains three new variables—one for each unique value of the index variable
month.

ID subcommand

The ID subcommand specifies variables that identify the rows from the original data that should be
grouped together in the new data file.

* If the ID subcommand is omitted, only SPLIT FILE variables (if any) will be used to group rows in the
original data and to identify rows in the new data file.

* CASESTOVARS expects the data to be sorted by SPLIT FILE variables and then by ID variables. If split-file
processing is in effect, the original data should be sorted on the split variables in the order given on
the SPLIT FILE command and then on the ID variables in the order in which they appear in the ID
subcommand.

* A variable may appear on both the SPLIT FILE command and the ID subcommand.

CASESTOVARS 233

Variables listed on the SPLIT FILE command and on the ID subcommand are copied into the new data
file with their original values and dictionary information unless they are dropped with the DROP
subcommand.

Variables listed on the ID subcommand may not appear on the FIXED or INDEX subcommands.

Rows in the original data for which any ID variable has the system-missing value or is blank are not
included in the new data file, and a warning message is displayed.

ID variables are not candidates to become a variable group in the new data file.

NDEX subcommand

In the original data, a variable appears in a single column. In the new data file, that variable will appear
in multiple new columns. The INDEX subcommand names the variables in the original data that should be
used to create the new columns. INDEX variables are also used to name the new columns.

Optionally, with the GROUPBY subcommand, INDEX variables can be used to determine the order of the new
columns, and, with the VIND subcommand, INDEX variables can be used to create indicator variables.

String variables can be used as index variables. They cannot contain blank values for rows in the
original data that qualify for inclusion in the new data file.

Numeric variables can be used as index variables. They must contain only non-negative integer values
and cannot have system-missing or blank values.

Within each row group in the original file, each row must have a different combination of values of the
index variables.

If the INDEX subcommand is not used, the index starts with 1 within each row group and increments
each time a new value is encountered in the original variable.

Variables listed on the INDEX subcommand may not appear on the ID, FIXED, or DROP subcommands.
Index variables are not are not candidates to become a variable group in the new data file.

VIND subcommand

The VIND subcommand creates indicator variables in the new data file. An indicator variable indicates the
presence or absence of a value for a case. An indicator variable has the value of 1 if the case has a value;
otherwise, it is 0.

One new indicator variable is created for each unique value of the variables specified on the INDEX
subcommand.

If the INDEX subcommand is not used, an indicator variable is created each time a new value is
encountered within a row group.

An optional rootname can be specified after the RO0T keyword on the subcommand. The default
rootname is ind.

The format for the new indicator variables is F1.0.

Example

If the original variables are:

i

nsure caseid month bps bpd

and the data are as shown in the first example, the commands:

S
C

PLIT FILE BY insure.
ASESTOVARS
/1D=caseid
/INDEX=month

/VIND

/DROP=caseid bpd.

create a new file with the following data:

234 IBM SPSS Statistics 23 Command Syntax Reference

¢ The command created three new indicator variables—one for each unique value of the index variable
month.

COUNT subcommand

CASESTOVARS consolidates row groups in the original data into a single row in the new data file. The COUNT
subcommand creates a new variable that contains the number of rows in the original data that were used
to generate the row in the new data file.

* One new variable is named on the COUNT subcommand. It must have a unique name.

* The label for the new variable is optional and, if specified, must be delimited by single or double
quotes.

e The format of the new count variable is F4.0.
Example

If the original data are as shown in the first example, the commands:

SPLIT FILE BY insure.
CASESTOVARS

/1D=caseid
/COUNT=countvar
/DROP=insure month bpd.

create a new file with the following data:

¢ The command created a count variable, countvar, which contains the number of rows in the original
data that were used to generate the current row.

FIXED subcommand

The FIXED subcommand names the variables that should be copied from the original data to the new data
file.

* CASESTOVARS assumes that variables named on the FIXED subcommand do not vary within row groups
in the original data. If they vary, a warning message is generated and the command is executed.

* Fixed variables appear as a single column in the new data file. Their values are simply copied to the
new file.

* The AUTOFIX subcommand can automatically determine which variables in the original data are fixed.
By default, the AUTOFIX subcommand overrides the FIXED subcommand.

AUTOFIX subcommand

The AUTOFIX subcommand evaluates candidate variables and classifies them as either fixed or as the
source of a variable group.

* A candidate variable is a variable in the original data that does not appear on the SPLIT command or
on the ID, INDEX, and DROP subcommands.

* An original variable that does not vary within any row group is classified as a fixed variable and is
copied into a single variable in the new data file.

* An original variable that has only a single valid value plus the system-missing value within a row
group is classified as a fixed variable and is copied into a single variable in the new data file.

* An original variable that does vary within the row group is classified as the source of a variable
group. It becomes a variable group in the new data file.

* Use AUTOFIX=NO to overrule the default behavior and expand all variables not marked as ID or fixed or
record into a variable group.

YES. Evaluate and automatically classify all candidate variables. The procedure automatically evaluates and
classifies all candidate variables. This is the default. If there is a FIXED subcommand, the procedure

CASESTOVARS 235

displays a warning message for each misclassified variable and automatically corrects the error.
Otherwise, no warning messages are displayed. This option overrides the FIXED subcommand.

NO. Evaluate all candidate variables and issue warnings. The procedure evaluates all candidate variables and
determines if they are fixed. If a variable is listed on the FIXED subcommand but it is not actually fixed
(that is, it varies within the row group), a warning message is displayed and the command is not
executed. If a variable is not listed on the FIXED subcommand but it is actually fixed (that is, it does not
vary within the row group), a warning message is displayed and the command is executed. The variable
is classified as the source of a variable group and becomes a variable group in the new data file.

RENAME subcommand

CASESTOVARS creates variable groups with new variables. The first part of the new variable name is either
derived from the name of the original variable or is the rootname specified on the RENAME subcommand.

* The specification is the original variable name followed by a rootname.

* The named variable cannot be a SPLIT FILE variable and cannot appear on the ID, FIXED, INDEX, or
DROP subcommands.

e A variable can be renamed only once.
* Only one RENAME subcommand can be used, but it can contain multiple specifications.

* If there is a single index variable and it is a string, RENAME is ignored. The string values are used as the
new variable names. For string values that do not form valid variable names, names of the general
form Vn are used, where 7 is a sequential integer.

SEPARATOR subcommand

CASESTOVARS creates variable groups that contain new variables. There are two parts to the name of a new
variable—a rootname and an index. The parts are separated by a string. The separator string is specified
on the SEPARATOR subcommand.

* If a separator is not specified, the default is a period.

* A separator can contain multiple characters.

* The separator must be delimited by single or double quotes.

* You can suppress the separator by specifying /SEPARATOR=

* If there is a single index variable and it is a string, SEPARATOR is ignored. The string values are used as
the new variable names. For string values that do not form valid variable names, names of the general
form Vn are used, where 7 is a sequential integer.

GROUPBY subcommand

The GROUPBY subcommand controls the order of the new variables in the new data file.

VARIABLE. Group new variables by original variable. The procedure groups all variables created from an
original variable together. This is the default.

INDEX. Group new variables by index variable. The procedure groups variables according to the index
variables.

Example

If the original variables are:

insure caseid month bps bpd

and the data are as shown in the first example, the commands:

236 IBM SPSS Statistics 23 Command Syntax Reference

SPLIT FILE BY insure.
CASESTOVARS
/1D=caseid
/INDEX=month
/GROUPBY=VARIABLE.

create a new data file with the following variable order:
* Variables are grouped by variable group—bps and bpd.

Example

Using the same original data, the commands:

SPLIT FILE BY insure.
CASESTOVARS
/1D=insure caseid
/INDEX=month
/GROUPBY=INDEX.

create a new data file with the following variable order:

* Variables are grouped by values of the index variable month—1, 2, and 3.

DROP subcommand

The DROP subcommand specifies the subset of variables to exclude from the new data file.

* You can drop variables that appear on the ID list.

* Variables listed on the DROP subcommand may not appear on the FIXED or INDEX subcommand.
* Dropped variables are not candidates to become a variable group in the new data file.

* You cannot drop all variables. The new data file is required to have at least one variable.

CASESTOVARS 237

238 IBM SPSS Statistics 23 Command Syntax Reference

CATPCA

CATPCA is available in the Categories option.
CATPCA VARIABLES = varlist

/ANALYSIS = varlist
[[(WEIGHT={1%}] [LEVEL={SPORD**}] [DEGREE={
{n 1}

1 [INKNOT=

2} {2}
{n} {n}
{SPNOM } [DEGREE={2}] [INKNOT={2}]
{n} {n}

=
=
o
=

[/DISCRETIZATION = [varlist[([{GROUPING }] [{NCAT#={7%}}] [DISTR={NORMAL* }1)11]
{n} {UNIFORM}
{EQINTV={n} }
{RANKING ~ }
{MULTIPLYING}

[/MISSING = [varlist [([{PASSIVE#*}] [{MODEIMPU%}1)11]
{RANDIMPU }

{EXTRACAT }

{ACTIVE } {MODEIMPU%}

{RANDIMPU }

{EXTRACAT }

{LISTWISE]

[/SUPPLEMENTARY = [OBJECT(varlist)] [VARIABLE(varlist)]]

[/CONFIGURATION = [{INITIAL*}] (file)]
{FIXED '}

[/DIMENSION = {2#*}]
{n

[/NORMALIZATION = {VPRINCIPAL#*}]
{OPRINCIPAL }
{SYMMETRICAL }
{INDEPENDENT }
{n 1

[/MAXITER = {100%x}]
{n 1

[/CRITITER = {.00001%*}]

{value }

[/ROTATION = [{NOROTATE**}] [{KAISER**}]]
{VARIMAX } {NOKAISER}
{EQUAMAX }
{QUARTIMAX }
{PROMAX } [({4+})]

[/RESAMPLE = [{NONEx* }]]
{BOOTSTRAP} [([{1000%}] [{95%}] [{BALANCED* }][{PROCRU*}])]
{n } {m } {UNBALANCED} {REFLEC }

[/PRINT = [DESCRIP*x[(varlist)]]]
[LOADING** [{NOSORT*}]1]
{SORT }
[CORR*x]
[VAF]
[OCORR]
[QUANT[(varlist)]]
[HISTORY]
[OBJECT[([(varname)]varlist)]]
[NONE]

[/PLOT = [OBJECT#*[(varlist)][(n)]]
[LOADING**[(varlist [(CENTR[(varlist)])])]1[(n)]]
[CATEGORY (varlist)[(n)]]
[JOINTCAT[({varlist})][(n)]]

239

[TRANS[(varTist[({1%})1) [(n)]]

n

[BIPLOT[({LOADING}[(varlist)])[(varlist)]] [(n)]]
{CENTR }

[TRIPLOT[(varTist[(varlist)])1[(n)]]

[RESID(varlist[({1x})])[(n)]]

{n}
[PROJCENTR(varname, varlist)[(n)]] [NONE]]
[NDIM(value,value)]
[VAF]
[OBELLAREA [(

{STDEV+} {2%})]]
{AREA } (2%}

— *

[LDELLAREA [(

— % —

{AREA+} {0+})]]
{STDEV} {2%}

[CTELLAREA [(

— *

{AREAx} {2+})]]
{STDEV} {2%}

—TADVCADVIEC ADYV

—

[NELLPNT ({40+})
{n }

[/SAVE = [TRDATA[({TRA* }

{rootname}

[APPROX[({APP+ })1] [ELLAREAOBJ]
{rootname}

[LDELLAREA]

[OBELLAREA]

[CTELLAREA]

[(n)1)11 [oBJECTL({0BSCO* }[(n)])]]

{rootname}

[/OUTFILE = [TRDATA=('savfile'|'dataset')]]
[DISCRDATA('savfile'|'dataset')]
[OBJECT('savfile'|'dataset')]
[APPROX ('savfile'|'dataset"')]
[ELLCOORD ('savfile'|'dataset)]

** Default if the subcommand is omitted.
* Default if keyword is omitted.

This command reads the active dataset and causes execution of any pending commands. See the topic
[“Command Order” on page 40| for more information.

Release History

Release 13.0
e NDIM keyword introduced on PLOT subcommand.

¢ The maximum label length on the PLOT subcommand is increased to 64 for variable names, 255 for
variable labels, and 60 for value labels (previous value was 20).

Release 23.0

* RANDIMPU keyword introduced on MISSING subcommand.

* ROTATION subcommand introduced.

e RESAMPLE subcommand introduced.

¢ SORT and NOSORT keywords introduced for LOADING on the PRINT subcommand.

e VAF, OBELLAREA, LDELLAREA, CTELLAREA, NELLPNT, and keywords introduced on PLOT subcommand.
e OBELLAREA, LDELLAREA, and CTELLAREA keywords introduced on SAVE subcommand.

* ELLCOORD keyword introduced on OUTFILE subcommand.

Overview

CATPCA performs principal components analysis on a set of variables. The variables can be given mixed
optimal scaling levels, and the relationships among observed variables are not assumed to be linear.

240 IBM SPSS Statistics 23 Command Syntax Reference

In CATPCA, dimensions correspond to components (that is, an analysis with two dimensions results in two
components), and object scores correspond to component scores.

Options

Optimal Scaling Level. You can specify the optimal scaling level at which you want to analyze each
variable (levels include spline ordinal, spline nominal, ordinal, nominal, multiple nominal, or numerical).

Discretization. You can use the DISCRETIZATION subcommand to discretize fractional-value variables or to
recode categorical variables.

Missing Data. You can use the MISSING subcommand to specify the treatment of missing data on a
per-variable basis.

Rotation. You can use the ROTATION subcommand to choose a rotation method: Varimax, Equamax,
Quartimax, Promax, or Oblimin.

Bootstrapping. You can use the RESAMPLE subcommand to produce bootstrap estimates and confidence
intervals.

Supplementary Objects and Variables. You can specify objects and variables that you want to treat as
supplementary to the analysis and then fit them into the solution.

Read Configuration. CATPCA can read a configuration from a file through the CONFIGURATION
subcommand. This information can be used as the starting point for your analysis or as a fixed solution
in which to fit variables.

Number of Dimensions. You can specify how many dimensions (components) CATPCA should compute.

Normalization. You can specify one of five different options for normalizing the objects and variables.

Algorithm Tuning. You can use the MAXITER and CRITITER subcommands to control the values of
algorithm-tuning parameters.

Optional Output. You can request optional output through the PRINT subcommand.

Optional Plots. You can request a plot of object points, transformation plots per variable, and plots of
category points per variable or a joint plot of category points for specified variables. Other plot options
include residuals plots, a biplot, a triplot, component loadings plot, and a plot of projected centroids.
Writing Discretized Data, Transformed Data, Object (Component) Scores, and Approximations. You can
write the discretized data, transformed data, object scores, and approximations to external files for use in

further analyses.

Saving Transformed Data, Object (Component) Scores, and Approximations. You can save the
transformed variables, object scores, and approximations to the working data file.

Basic specification
The basic specification is the CATPCA command with the VARIABLES and ANALYSIS subcommands.

Syntax rules
e The VARIABLES and ANALYSIS subcommands must always appear.

+ All subcommands can be specified in any order.

CATPCA 241

Variables that are specified in the ANALYSIS subcommand must be found in the VARIABLES
subcommand.

Variables that are specified in the SUPPLEMENTARY subcommand must be found in the ANALYSIS
subcommand.

You cannot specify both ROTATION and RESAMPLE on the same command.

Operations

If a subcommand is repeated, it causes a syntax error, and the procedure terminates.

Limitations

CATPCA operates on category indicator variables. The category indicators should be positive integers.
You can use the DISCRETIZATION subcommand to convert fractional-value variables and string variables
into positive integers.

In addition to system-missing values and user-defined missing values, category indicator values that
are less than 1 are treated by CATPCA as missing. If one of the values of a categorical variable has been
coded 0 or a negative value and you want to treat it as a valid category, use the COMPUTE command to
add a constant to the values of that variable such that the lowest value will be 1. You can also use the
RANKING option of the DISCRETIZATION subcommand for this purpose, except for variables that you
want to treat as numeric, because the characteristic of equal intervals in the data will not be
maintained.

There must be at least three valid cases.
Split-file has no implications for CATPCA.

Example

CATPCA VARIABLES = TEST1 TEST2 TEST3 TO TEST6 TEST7 TEST8

/ANALYSIS = TEST1 TO TEST2(WEIGHT=2 LEVEL=ORDI)
TEST3 TO TEST5(LEVEL=SPORD INKNOT=3)
TEST6 TEST7 (LEVEL=SPORD DEGREE=3)
TEST8(LEVEL=NUME)

/DISCRETIZATION = TEST1(GROUPING NCAT=5 DISTR=UNIFORM)
TEST6(GROUPING) TEST8(MULTIPLYING)

/MISSING = TEST5(ACTIVE) TEST6(ACTIVE EXTRACAT) TEST8(LISTWISE)

/SUPPLEMENTARY = OBJECT(1 3) VARIABLE(TEST1)

/CONFIGURATION ("iniconf.sav')

/DIMENSION = 2

/NORMALIZATION = VPRINCIPAL

/MAXITER = 150

/CRITITER = .000001

/PRINT = DESCRIP LOADING CORR QUANT(TEST1 TO TEST3) OBJECT

/PLOT = TRANS(TEST2 TO TEST5) OBJECT(TEST2 TEST3)

/SAVE = TRDATA OBJECT

/OUTFILE = TRDATA('/data/trans.sav') OBJECT('/data/obs.sav').

VARIABLES defines variables. The keyword TO refers to the order of the variables in the working data
file.

The ANALYSIS subcommand defines variables that are used in the analysis. TEST1 and TEST2 have a
weight of 2. For the other variables, WEIGHT is not specified; thus, they have the default weight value of
1. The optimal scaling level for TEST1 and TEST2 is ordinal. The optimal scaling level for TEST3 to
TEST7 is spline ordinal. The optimal scaling level for TESTS is numerical. The keyword TO0 refers to the
order of the variables in the VARIABLES subcommand. The splines for TEST3 to TEST5 have degree 2
(default because unspecified) and 3 interior knots. The splines for TEST6 and TEST7 have degree 3 and
2 interior knots (default because unspecified).

DISCRETIZATION specifies that TEST6 and TESTS, which are fractional-value variables, are discretized:
TEST6 by recoding into 7 categories with a normal distribution (default because unspecified) and
TEST8 by “multiplying.” TEST1, which is a categorical variable, is recoded into 5 categories with a
close-to-uniform distribution.

MISSING specifies that objects with missing values on TEST5 and TEST6 are included in the analysis;
missing values on TEST5 are replaced with the mode (default if not specified), and missing values on

242 IBM SPSS Statistics 23 Command Syntax Reference

TESTG6 are treated as an extra category. Objects with a missing value on TESTS are excluded from the
analysis. For all other variables, the default is in effect; that is, missing values (not objects) are excluded
from the analysis.

* CONFIGURATION specifies iniconf.sav as the file containing the coordinates of a configuration that is to be
used as the initial configuration (default because unspecified).

* DIMENSION specifies 2 as the number of dimensions; that is, 2 components are computed. This setting is
the default, so this subcommand could be omitted here.

* The NORMALIZATION subcommand specifies optimization of the association between variables. This
setting is the default, so this subcommand could be omitted here.

e MAXITER specifies 150 as the maximum number of iterations (instead of the default value of 100).
e CRITITER sets the convergence criterion to a value that is smaller than the default value.

* PRINT specifies descriptives, component loadings and correlations (all default), quantifications for
TEST1 to TEST3, and the object (component) scores.

e PLOT requests transformation plots for the variables TEST2 to TEST5, an object points plot labeled with
the categories of TEST2, and an object points plot labeled with the categories of TEST3.

¢ The SAVE subcommand adds the transformed variables and the component scores to the working data
file.

e The OUTFILE subcommand writes the transformed data to a data file called trans.sav and writes the
component scores to a data file called obs.sav, both in the directory /data.

VARIABLES Subcommand

VARIABLES specifies the variables that may be analyzed in the current CATPCA procedure.
* The VARIABLES subcommand is required.

* At least two variables must be specified, except when the CONFIGURATION subcommand is used with the
FIXED keyword.

¢ The keyword TO on the VARIABLES subcommand refers to the order of variables in the working data
file. This behavior of T0 is different from the behavior in the variable list in the ANALYSIS subcommand.

ANALYSIS Subcommand

ANALYSIS specifies the variables to be used in the computations, the optimal scaling level, and the variable
weight for each variable or variable list. ANALYSIS also specifies supplementary variables and their
optimal scaling level. No weight can be specified for supplementary variables.

* At least two variables must be specified, except when the CONFIGURATION subcommand is used with the
FIXED keyword.

 All variables on ANALYSIS must be specified on the VARIABLES subcommand.
* The ANALYSIS subcommand is required.
* The keyword TO in the variable list honors the order of variables in the VARIABLES subcommand.

¢ Optimal scaling levels and variable weights are indicated by the keywords LEVEL and WEIGHT in
parentheses following the variable or variable list.

WEIGHT. Specifies the variable weight with a positive integer. The default value is 1. If WEIGHT is specified
for supplementary variables, it is ignored, and a syntax warning is issued.

LEVEL. Specifies the optimal scaling level.

Level Keyword

The following keywords are used to indicate the optimal scaling level:

CATPCA 243

SPORD. Spline ordinal (monotonic). This setting is the default. The order of the categories of the observed
variable is preserved in the optimally scaled variable. Category points will lie on a straight line (vector)
through the origin. The resulting transformation is a smooth monotonic piecewise polynomial of the
chosen degree. The pieces are specified by the user-specified number and procedure-determined
placement of the interior knots.

SPNOM. Spline nominal (nonmonotonic). The only information in the observed variable that is preserved in
the optimally scaled variable is the grouping of objects in categories. The order of the categories of the
observed variable is not preserved. Category points will lie on a straight line (vector) through the origin.
The resulting transformation is a smooth, possibly nonmonotonic, piecewise polynomial of the chosen
degree. The pieces are specified by the user-specified number and procedure-determined placement of the
interior knots.

MNOM. Multiple nominal. The only information in the observed variable that is preserved in the
optimally scaled variable is the grouping of objects in categories. The order of the categories of the
observed variable is not preserved. Category points will be in the centroid of the objects in the particular
categories. Multiple indicates that different sets of quantifications are obtained for each dimension.

ORDI. Ordinal. The order of the categories on the observed variable is preserved in the optimally scaled
variable. Category points will lie on a straight line (vector) through the origin. The resulting
transformation fits better than SPORD transformation but is less smooth.

NOMI. Nominal. The only information in the observed variable that is preserved in the optimally scaled
variable is the grouping of objects in categories. The order of the categories of the observed variable is
not preserved. Category points will lie on a straight line (vector) through the origin. The resulting
transformation fits better than SPNOM transformation but is less smooth.

NUME. Numerical. Categories are treated as equally spaced (interval level). The order of the categories
and the equal distances between category numbers of the observed variables are preserved in the
optimally scaled variable. Category points will lie on a straight line (vector) through the origin. When all
variables are scaled at the numerical level, the CATPCA analysis is analogous to standard principal
components analysis.

SPORD and SPNOM Keywords
The following keywords are used with SPORD and SPNOM:

DEGREE. The degree of the polynomial. It can be any positive integer. The default degree is 2.
INKNOT. The number of interior knots. The minimum is 0, and the maximum is the number of categories

of the variable minus 2. If the specified value is too large, the procedure adjusts the number of interior
knots to the maximum. The default number of interior knots is 2.

DISCRETIZATION Subcommand

DISCRETIZATION specifies fractional-value variables that you want to discretize. Also, you can use
DISCRETIZATION for ranking or for two ways of recoding categorical variables.

* A string variable’s values are always converted into positive integers, according to the internal numeric
representations. DISCRETIZATION for string variables applies to these integers.

* When the DISCRETIZATION subcommand is omitted or used without a variable list, fractional-value
variables are converted into positive integers by grouping them into seven categories with a
distribution of close to “normal.”

* When no specification is given for variables in a variable list following DISCRETIZATION, these variables
are grouped into seven categories with a distribution of close to “normal.”

244 1BM SPSS Statistics 23 Command Syntax Reference

* In CATPCA, values that are less than 1 are considered to be missing (see MISSING subcommand).
However, when discretizing a variable, values that are less than 1 are considered to be valid and are
thus included in the discretization process.

GROUPING. Recode into the specified number of categories or recode intervals of equal size into categories.

RANKING. Rank cases. Rank 1 is assigned to the case with the smallest value on the variable.

MULTIPLYING. Multiply the standardized values of a fractional-value variable by 10, round, and add a value
such that the lowest value is 1.

GROUPING Keyword
GROUPING has the following keywords:

NCAT. Number of categories. When NCAT is not specified, the number of categories is set to 7.

EQINTYV. Recode intervals of equal size. The size of the intervals must be specified (no default). The
resulting number of categories depends on the interval size.

NCAT Keyword
NCAT has the keyword DISTR, which has the following keywords:

NORMAL. Normal distribution. This setting is the default when DISTR is not specified.

UNIFORM. Uniform distribution.

MISSING Subcommand

In CATPCA, we consider a system-missing value, user-defined missing values, and values that are less than
1 as missing values. The MISSING subcommand allows you to indicate how to handle missing values for
each variable.

PASSIVE. Exclude missing values on a variable from analysis. This setting is the default when MISSING is not
specified. Passive treatment of missing values means that in optimizing the quantification of a variable,
only objects with nonmissing values on the variable are involved and that only the nonmissing values of
variables contribute to the solution. Thus, when PASSIVE is specified, missing values do not affect the
analysis. Further, if all variables are given passive treatment of missing values, objects with missing
values on every variable are treated as supplementary.

ACTIVE. Impute missing values. You can choose to use mode imputation. You can also consider objects
with missing values on a variable as belonging to the same category and impute missing values with an
extra category indicator.

LISTWISE. Exclude cases with missing values on a variable. The cases that are used in the analysis are cases
without missing values on the specified variables. Also, any variable that is not included in the
subcommand receives this specification.

* The ALL keyword may be used to indicate all variables. If ALL is used, it must be the only variable
specification.

* A mode or extracat imputation is done before listwise deletion.

PASSIVE Keyword

If correlations are requested on the PRINT subcommand, and passive treatment of missing values is
specified for a variable, the missing values must be imputed. For the correlations of the quantified
variables, you can specify the imputation with one of the following keywords:

CATPCA 245

MODEIMPU. Impute missing values on a variable with the mode of the quantified variable. MODEIMPU is the
default.

EXTRACAT. Impute missing values on a variable with the quantification of an extra category. This treatment
implies that objects with a missing value are considered to belong to the same (extra) category.

RANDIMPU. Impute each missing value on a variable with the quantified value of a different random category
number based on the marginal frequencies of the categories of the variable.

Note that with passive treatment of missing values, imputation applies only to correlations and is done
afterward. Thus, the imputation has no effect on the quantification or the solution.

ACTIVE Keyword
The ACTIVE keyword has the following keywords:

MODEIMPU. Impute missing values on a variable with the most frequent category (mode). When there are
multiple modes, the smallest category indicator is used. MODEIMPU is the default.

EXTRACAT. Impute missing values on a variable with an extra category indicator. This implies that objects
with a missing value are considered to belong to the same (extra) category.

RANDIMPU. Impute each missing value on a variable with a different random category number based on the
marginal frequencies of the categories.

Note that with active treatment of missing values, imputation is done before the analysis starts and thus
will affect the quantification and the solution.

SUPPLEMENTARY Subcommand

The SUPPLEMENTARY subcommand specifies the objects and/or variables that you want to treat as
supplementary. Supplementary variables must be found in the ANALYSIS subcommand. You cannot weight
supplementary objects and variables (specified weights are ignored). For supplementary variables, all
options on the MISSING subcommand can be specified except LISTWISE.

OBJECT. Objects that you want to treat as supplementary are indicated with an object number list in parentheses
following OBJECT. The keyword T0 is allowed. The OBJECT specification is not allowed when
CONFIGURATION = FIXED.

VARIABLE. Variables that you want to treat as supplementary are indicated with a variable list in parentheses
following VARIABLE. The keyword T0 is allowed and honors the order of variables in the VARIABLES
subcommand. The VARIABLE specification is ignored when CONFIGURATION = FIXED, because in that case all
variables in the ANALYSIS subcommand are automatically treated as supplementary variables.

CONFIGURATION Subcommand

The CONFIGURATION subcommand allows you to read data from a file containing the coordinates of a
configuration. The first variable in this file should contain the coordinates for the first dimension, the
second variable should contain the coordinates for the second dimension, and so forth.

INITIAL(file). Use the configquration in the external file as the starting point of the analysis.
FIXED(file). Fit variables in the fixed configuration that is found in the external file. The variables to fit in

should be specified on the ANALYSIS subcommand but will be treated as supplementary. The
SUPPLEMENTARY subcommand and variable weights are ignored.

246 IBM SPSS Statistics 23 Command Syntax Reference

DIMENSION Subcommand

DIMENSION specifies the number of dimensions (components) that you want CATPCA to compute.

e The default number of dimensions is 2.

DIMENSION is followed by an integer indicating the number of dimensions.

¢ If there are no variables specified as MNOM (multiple nominal), the maximum number of dimensions that
you can specify is the smaller of the number of observations minus 1 and the total number of
variables.

 If some or all of the variables are specified as MNOM (multiple nominal), the maximum number of
dimensions is the smaller of a) the number of observations minus 1 and b) the total number of valid
MNOM variable levels (categories) plus the number of SPORD, SPNOM, ORDI, NOMI, and NUME variables minus
the number of MNOM variables (if the MNOM variables do not have missing values to be treated as
passive). If there are MNOM variables with missing values to be treated as passive, the maximum number
of dimensions is the smaller of a) the number of observations minus 1 and b) the total number of valid
MNOM variable levels (categories) plus the number of SPORD, SPNOM, ORDI, NOMI, and NUME variables, minus
the larger of c) 1 and d) the number of MNOM variables without missing values to be treated as passive.

* If the specified value is too large, CATPCA adjusts the number of dimensions to the maximum.
¢ The minimum number of dimensions is 1.

NORMALIZATION Subcommand

The NORMALIZATION subcommand specifies one of five options for normalizing the object scores and the
variables. Only one normalization method can be used in a given analysis.

VPRINCIPAL. This option optimizes the association between variables. With VPRINCIPAL, the coordinates of the
variables in the object space are the component loadings (correlations with object scores) for SPORD, SPNOM,
ORDI, NOMI, and NUME variables, and the centroids for MNOM variables. This setting is the default if the
NORMALIZATION subcommand is not specified. This setting is useful when you are primarily interested in
the correlations between the variables.

OPRINCIPAL. This option optimizes distances between objects. This setting is useful when you are primarily
interested in differences or similarities between the objects.

SYMMETRICAL. Use this normalization option if you are primarily interested in the relation between objects and
variables.

INDEPENDENT. Use this normalization option if you want to examine distances between objects and correlations
between variables separately.

The fifth method allows the user to specify any real value in the closed interval [-1, 1]. A value of 1 is
equal to the OPRINCIPAL method, a value of 0 is equal to the SYMMETRICAL method, and a value of -1 is
equal to the VPRINCIPAL method. By specifying a value that is greater than —1 and less than 1, the user
can spread the eigenvalue over both objects and variables. This method is useful for making a
tailor-made biplot or triplot. If the user specifies a value outside of this interval, the procedure issues a
syntax error message and terminates.

MAXITER Subcommand

MAXITER specifies the maximum number of iterations that the procedure can go through in its
computations. If not all variables are specified as NUME and/or MNOM, the output starts from iteration 0,
which is the last iteration of the initial phase, in which all variables except MNOM variables are treated as
NUME.

 If MAXITER is not specified, the maximum number of iterations is 100.

CATPCA 247

* The specification on MAXITER is a positive integer indicating the maximum number of iterations. There
is no uniquely predetermined (that is, hard-coded) maximum for the value that can be used.

CRITITER Subcommand

CRITITER specifies a convergence criterion value. CATPCA stops iterating if the difference in fit between the
last two iterations is less than the CRITITER value.

 If CRITITER is not specified, the convergence value is 0.00001.

¢ The specification on CRITITER is any positive value.

ROTATION Subcommand

The ROTATION subcommand specifies the method for rotation to a simple component structure.

* When a rotation method is specified, both the unrotated loadings results and rotated loadings are
displayed (if LOADING is specified on the PRINT or PLOT subcommand).

* If VARIMAX, QUARTIMAX, or EQUAMAX is specified, the component transformation matrix is also displayed. If
PROMAX or OBLIMIN is specified, the pattern and structure maxtrices are displayed, as well as the
components correlation matrix.

* Besides the loadings, rotation also affects component scores and category scores, for which only the
rotated results are displayed.

e The same command cannot contain both ROTATION and RESAMPLE subcommands.
The following alternatives are available:
NOROTATE. No rotation. This is the default setting.

VARIMAX. Varimax rotation. An orthogonal rotation method that minimizes the number of variables that
have high loadings on each component. It simplifies the interpretation of the components.

QUARTIMAX. Quartimax rotation. A rotation method that minimizes the number of components needed
to explain each variable. It simplifies the interpretation of the observed variables.

EQUAMAX. Equamax rotation. A rotation method that is a combination of the Varimax method, which
simplifies the components, and the Quartimax method, which simplifies the variables. The number of
variables that load highly on a component and the number of components needed to explain a variable
are minimized .

PROMAX(kappa). Promax Rotation. An oblique (non-orthogonal) rotation, which allows components to be
correlated. It can be calculated more quickly than a direct Oblimin rotation, so it is useful for large
datasets. The amount of correlation (obliqueness) that is allowed is controlled by the kappa parameter.
The value must be greater than or equal to 1 and less 10,000. The default value is 4.

OBLIMIN(delta). Direct Oblimin rotation. A method for oblique (non-orthogonal) rotation. When delta
equals 0, components are most oblique. As delta becomes more negative, the components become less
oblique. Positive values permit additional component correlation. The value must be less than or equal to
0.8. The default value is 0.

KAISER. Kaiser normalization. In the rotation process the loadings are divided by the square root of their
communalities, to prevent relatively large loadings dominating the rotation. This is the default setting.

NOKAISER. Turn off Kaiser normalization.

248 IBM SPSS Statistics 23 Command Syntax Reference

RESAMPLE Subcommand

The RESAMPLE subcommand specifies the resampling method used for estimation of stability.

* If plots of loadings, categories, or component scores are requested, additional plots are given, jointly
displaying the points for the data sample and the bootstrap estimates. Transformation plots include
confidence regions. A plot for the eigenvalues is also displayed.

* If a two-dimensional solution is specified, confidence ellipse plots for the eigenvalues, the component
loadings, the category points, and the object points are displayed.

 The display of ellipses in the loadings, categories, and component scores plots can be controlled by
specifying the keywords LDELLAREA, CTELLAREA, OBELLAREA, and NELLPNT on the PLOT subcommand.

¢ The same command cannot contain both ROTATION and RESAMPLE subcommands.
The following alternatives are available:

NONE. Do not perform resampling. This is the default setting.

BOOTSTRAP. Perform resampling.

BOOTSTRAP parameters

The BOOTSTRAP keyword can be followed by a list of optional parameters, enclosed in parentheses. The
general form is: (number of samples, confidence interval, BALANCED | UNBALANCED, PROCRU|REFLEC)

* The first parameter is the number of bootstrap samples. The value must be a positive integer. The
default value is 1000.

* The second parameter is the confidence interval, expressed as a percentage. The value must be a
positive number less than 100. The default value is 95.

* If only one of the two numeric parameters is specified, it is used as the number of bootstrap samples.

* BALANCED specifies a balanced bootstrap, and UNBALANCED specifies an unbalanced bootstrap. The default
setting is BALANCED.

* PROCRU specifies the Procrustes rotation method, and REFLEC specifies the reflection rotation method.
The default setting is PROCRU.

Example

/RESAMPLE=BOOTSTRAP (5000, REFLEC)

* Since only one numeric parameter is specified, it is used as the number of bootstrap samples.
* In the absence of BALANCED or UNBALANCED, the bootstrap sample is balanced.

e The reflection rotation method is used.

PRINT Subcommand

The Model Summary (Cronbach's alpha and Variance Accounted For) and the HISTORY statistics (the
variance accounted for, the loss, and the increase in variance accounted for) for the initial solution (if
applicable) and last iteration are always displayed. That is, they cannot be controlled by the PRINT
subcommand. The PRINT subcommand controls the display of additional optional output. The output of
the procedure is based on the transformed variables. However, the keyword 0CORR can be used to request
the correlations of the original variables, as well.

The default keywords are DESCRIP, LOADING, and CORR. However, when some keywords are specified, the
default is nullified and only what was specified comes into effect. If a keyword is duplicated or if a
contradicting keyword is encountered, the last specified keyword silently becomes effective (in case of
contradicting use of NONE, only the keywords following NONE are effective). An example is as follows:

CATPCA 249

/PRINT <=> /PRINT = DESCRIP LOADING CORR
/PRINT = VAF VAF <=> /PRINT = VAF
/PRINT = VAF NONE CORR <=> /PRINT = CORR

If a keyword that can be followed by a variable list is duplicated, a syntax error occurs, and the
procedure will terminate.

The following keywords can be specified:

DESCRIP(varlist). Descriptive statistics (frequencies, missing values, and mode). The variables in the varlist
must be specified on the VARIABLES subcommand but need not appear on the ANALYSIS subcommand. If
DESCRIP is not followed by a varlist, descriptives tables are displayed for all variables in the varlist on the
ANALYSIS subcommand.

VAF. Variance accounted for (centroid coordinates, vector coordinates, and total) per variable and per dimension.

LOADING. Component loadings for variables with optimal scaling level that result in vector quantification (that
is, SPORD, SPNOM, ORDI, NOMI, and NUME). The LOADING keyword can be followed by SORT or NOSORT in
parentheses. If you specify SORT, the loadings are sorted by size. The default setting is NOSORT.

QUANT (varlist). Category quantifications and category coordinates for each dimension. Any variable in the
ANALYSIS subcommand may be specified in parentheses after QUANT. (For MNOM variables, the coordinates
are the quantifications.) If QUANT is not followed by a variable list, quantification tables are displayed for
all variables in the varlist on the ANALYSIS subcommand.

HISTORY. History of iterations. For each iteration (including 0, if applicable), the variance accounted for,
the loss (variance not accounted for), and the increase in variance accounted for are shown.

CORR. Correlations of the transformed variables and the eigenvalues of this correlation matrix. If the analysis
includes variables with optimal scaling level MNOM, ndim (the number of dimensions in the analysis)
correlation matrices are computed; in the ith matrix, the quantifications of dimension i, i = 1, ... ndim, of
MNOM variables are used to compute the correlations. For variables with missing values specified to be
treated as PASSIVE on the MISSING subcommand, the missing values are imputed according to the
specification on the PASSIVE keyword (if no specification is made, mode imputation is used).

OCORR. Correlations of the original variables and the eigenvalues of this correlation matrix. For variables with
missing values specified to be treated as PASSIVE on the MISSING subcommand, the missing values are
imputed with the variable mode.

OBJECT ((varname)varlist). Object scores (component scores). Following the keyword, a varlist can be given
in parentheses to display variables (category indicators), along with object scores. If you want to use a
variable to label the objects, this variable must occur in parentheses as the first variable in the varlist. If
no labeling variable is specified, the objects are labeled with case numbers. The variables to display, along
with the object scores and the variable to label the objects, must be specified on the VARIABLES
subcommand but need not appear on the ANALYSIS subcommand. If no variable list is given, only the
object scores are displayed.

NONE. No optional output is displayed. The only output that is shown is the model summary and the
HISTORY statistics for the initial iteration (if applicable) and last iteration.

The keyword TO in a variable list can only be used with variables that are in the ANALYSIS subcommand,

and TO applies only to the order of the variables in the ANALYSIS subcommand. For variables that are in
the VARIABLES subcommand but not in the ANALYSIS subcommand, the keyword TO cannot be used. For

250 IBM SPSS Statistics 23 Command Syntax Reference

example, if /VARIABLES = v1 TO v5 and /ANALYSIS = v2 vl v4, then /PLOT OBJECT (vl TO v4) will give
two object plots (one plot labeled with v1 and one plot labeled with v4).

PLOT Subcommand

The PLOT subcommand controls the display of plots. The default keywords are OBJECT and LOADING. That
is, the two keywords are in effect when the PLOT subcommand is omitted or when the PLOT subcommand
is given without any keyword. If a keyword is duplicated (for example, /PLOT = RESID RESID), only the
last keyword is effective. If the keyword NONE is used with other keywords (for example, /PLOT = RESID
NONE LOADING), only the keywords following NONE are effective. When keywords contradict, the later
keyword overwrites the earlier keywords.

* All the variables to be plotted must be specified on the ANALYSIS subcommand.

e If the variable list following the keywords CATEGORIES, TRANS, RESID, and PROJCENTR is empty, it will
cause a syntax error, and the procedure will terminate.

* The variables in the variable list for labeling the object point following 0BJECT, BIPLOT, and TRIPLOT
must be specified on the VARIABLES subcommand but need not appear on the ANALYSIS subcommand.
This flexibility means that variables that are not included in the analysis can still be used to label plots.

¢ The keyword TO in a variable list can only be used with variables that are in the ANALYSIS
subcommand, and TO applies only to the order of the variables in the ANALYSIS subcommand. For
variables that are in the VARIABLES subcommand but not in the ANALYSIS subcommand, the keyword T0
cannot be used. For example, if /VARIABLES = v1 TO v5 and /ANALYSIS = v2 v1 v4, then /PLOT
OBJECT(v1 TO v4) will give two object plots, one plot labeled with vl and one plot labeled with v4.

* For multidimensional plots, all of the dimensions in the solution are produced in a matrix scatterplot if
the number of dimensions in the solution is greater than 2 and the NDIM plot keyword is not specified;
if the number of dimensions in the solution is 2, a scatterplot is produced.

The following keywords can be specified:

OBJECT (varlist)(n). Plots of the object points. Following the keyword, a list of variables in parentheses can
be given to indicate that plots of object points labeled with the categories of the variables should be
produced (one plot for each variable). The variables to label the objects must be specified on the
VARIABLES subcommand but need not appear on the ANALYSIS subcommand. If the variable list is omitted,
a plot that is labeled with case numbers is produced.

CATEGORY(varlist)(n). Plots of the category points. Both the centroid coordinates and the vector
coordinates are plotted. A list of variables must be given in parentheses following the keyword. For
variables with optimal scaling level MNOM, categories are in the centroids of the objects in the particular
categories. For all other optimal scaling levels, categories are on a vector through the origin.

LOADING (varlist (CENTR(varlist)))(1). Plot of the component loadings optionally with centroids. By default,
all variables with an optimal scaling level that results in vector quantifi