
Microsoft .NET User Guide for IBM
SPSS Statistics

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 37.

Product Information

This edition applies to version 24, release 0, modification 0 of IBM SPSS Statistics and to all subsequent releases and
modifications until otherwise indicated in new editions.

Contents

Chapter 1. Getting Started 1

Chapter 2. Running IBM SPSS Statistics
Commands 5

Chapter 3. Retrieving Dictionary
Information 7

Chapter 4. Working With Case Data in
the Active Dataset 9
Reading Case Data 9
Creating New Variables in the Active Dataset . .. 12
Appending New Cases 14

Chapter 5. Creating and Managing
Multiple Datasets 15

Chapter 6. Retrieving Output from
Syntax Commands 19

Chapter 7. Running Python and R
Programs from .NET 23

Chapter 8. Creating Custom Output .. 25
Creating Pivot Tables 25

The SimplePivotTable Method 25
General Approach to Creating Pivot Tables . .. 27
Creating Pivot Tables from Data with Splits .. 31

Creating Text Blocks 33

Chapter 9. Deploying Your Application 35

Notices 37
Trademarks 39

Index 41

iii

iv Microsoft .NET User Guide for IBM SPSS Statistics

Chapter 1. Getting Started

The IBM® SPSS® Statistics - Integration Plug-in for Microsoft .NET enables an application developer to
create .NET applications that can invoke and control the IBM SPSS Statistics backend through the XD
API. The plug-in includes two .NET assemblies, both of which are added to the Global Assembly Cache
(GAC) during installation of the plug-in.
v SPSS.BackendAPI.dll. A .NET assembly which loads spssxd_p.dll and makes the XD API available

from .NET.
v SPSS.BackendAPI.Controller.dll. A .NET assembly that wraps the low level XD API functions

exposed to .NET by SPSS.BackendAPI.dll. It provides functions that invoke IBM SPSS Statistics, execute
syntax commands, provide access to the data, and allow for the creation of custom pivot tables. This is
the library intended for use by application developers.

Note: The IBM SPSS Statistics - Integration Plug-in for Microsoft .NET is strictly for use by an external
.NET application that needs to access the IBM SPSS Statistics backend processor. It is not for use from
within IBM SPSS Statistics.

You invoke the IBM SPSS Statistics backend with the Processor class from the SPSS.BackendAPI.Controller
library. The constructor for this class is overloaded and provides two approaches for enabling the class
instance to locate the IBM SPSS Statistics backend library spssxd_p.dll . spssxd_p.dll is located in the IBM
SPSS Statistics install directory and should not be moved.
v Processor(). Creates an instance of the Processor class and uses the location of IBM SPSS Statistics 24

stored in the Windows registry.
v Processor(SpssXdPath). Creates an instance of the Processor class and looks for spssxd_p.dll in the

location specified by SpssXdPath.

To help get you started with writing applications for the IBM SPSS Statistics - Integration Plug-in for
Microsoft .NET, a sample Visual Basic Class (shown below) is provided that gives an example of creating
an instance of the Processor class. How you access the sample class and use the plug-in in your
development environment depends on whether you have Visual Studio.

Visual Studio users. The sample class is installed as the Visual Studio item template
SPSS_Statistics-.NET_Integration_Plug-In240Class (accessible from the Add New Item choice on the Visual
Studio Project menu). Adding the item template to a project creates references to the copies of
SPSS.BackendAPI.dll and SPSS.BackendAPI.Controller.dll stored in the GAC so there is no need to manually
add references to these libraries during development.

Users without Visual Studio. The sample class is available for download from Example VB.NET Class on
the IBM SPSS Predictive Analytics community (https://developer.ibm.com/predictiveanalytics/). To use
the sample class you'll need to manually create references to SPSS.BackendAPI.dll and
SPSS.BackendAPI.Controller.dll. Both files can be found in the NET directory under the directory where
IBM SPSS Statistics 24 is installed--for example, C:\Program Files\IBM\SPSS\Statistics\24\NET.
Imports SPSS.BackendAPI.Controller
Imports Microsoft.Win32

Public Class SPSS_Statistics_
Sub PlugIn()

Dim SPSS_Processor As Processor
Dim SpssXdPath As String = "" ’Optional: Add your SPSS Statistics location
If Not SpssXdPath Is String.Empty Then

SPSS_Processor = New Processor(SpssXdPath)
Else

SPSS_Processor = New Processor()
End If

’Todo: Add your code here

© Copyright IBM Corporation 1989, 2016 1

https://developer.ibm.com/predictiveanalytics/

SPSS_Processor.StopSPSS()
End Sub

End Class

The sample class includes the following items that should always be present in an application that uses
the IBM SPSS Statistics - Integration Plug-in for Microsoft .NET:
v An Imports SPSS.BackendAPI.Controller statement. It is up to you to decide how to deploy

SPSS.BackendAPI.Controller.dll and SPSS.BackendAPI.dll with your application. See the topic Chapter 9,
“Deploying Your Application,” on page 35 for more information.

v A statement to instantiate the Processor class, either with or without an argument specifying the
location of spssxd_p.dll .
In addition to instantiating the Processor class, you must start the IBM SPSS Statistics backend before
utilizing most of the available API's. You can do this directly by calling the StartSPSS method, as in
SPSS_Processor.StartSPSS(). Note that the IBM SPSS Statistics backend is automatically started when
you call the Submit method, so an explicit call to StartSPSS may not be necessary.

v A call to the StopSPSS method of the Processor instance. This method should be called before exiting
your application to ensure that all temporary files are removed.

Example

The following is a simple example of using the sample class to create a dataset in IBM SPSS Statistics,
compute descriptive statistics and generate output.
Imports SPSS.BackendAPI.Controller
Imports Microsoft.Win32

Public Class SPSS_Statistics_
Sub PlugIn()

Dim SPSS_Processor As Processor
SPSS_Processor = New Processor()

SPSS_Processor.StartSPSS("c:\temp\test.txt")
Dim cmdLines As System.Array = New String() _
{"DATA LIST FREE /salary (F).", _
"BEGIN DATA", _
"21450", _
"30000", _
"57000", _
"END DATA.", _
"DESCRIPTIVES salary."}
SPSS_Processor.Submit(cmdLines)

SPSS_Processor.StopSPSS()
End Sub

End Class

v The StartSPSS method is called with an argument specifying the path to a file where any output is
written. In this example, output will be generated by the DESCRIPTIVES procedure and written to the
file c:\temp\test.txt.

v A string array specifies IBM SPSS Statistics command syntax that creates a dataset and runs the
DESCRIPTIVES procedure. The command syntax is submitted to IBM SPSS Statistics using the Submit
method. See the topic Chapter 2, “Running IBM SPSS Statistics Commands,” on page 5 for more
information.

You can instantiate the sample class and run the example code from the following module:
Module Module1

Sub Main()
Dim p As New SPSS_Statistics_
p.PlugIn()

End Sub
End Module

Documentation

2 Microsoft .NET User Guide for IBM SPSS Statistics

Documentation for the SPSS.BackendAPI.Controller library can be found in the NET directory under the
directory where IBM SPSS Statistics 24 is installed--for example, C:\Program Files\IBM\SPSS\Statistics\
24\NET. For Visual Studio users, the documentation is integrated into the Visual Studio IDE, and
available from the help contents and from the Dynamic Help window. The documentation includes
simple code examples for each of the available methods.

Chapter 1. Getting Started 3

4 Microsoft .NET User Guide for IBM SPSS Statistics

Chapter 2. Running IBM SPSS Statistics Commands

The Submit method from the Processor class is used to submit syntax commands to IBM SPSS Statistics
for processing. It takes a string that resolves to one or more complete syntax commands, or an array of
strings that resolves to one or more complete syntax commands. By default, output from syntax
commands is written to the standard output stream. You can direct output to an in-memory workspace
where it is stored as XML and can then be retrieved using XPath expressions. See the topic Chapter 6,
“Retrieving Output from Syntax Commands,” on page 19 for more information.

Submitting a Single Command

You submit a single command to IBM SPSS Statistics by providing a string representation of the
command as shown in this example. When submitting a single command in this manner the period (.) at
the end of the command is optional.
Processor.Submit(_
"GET FILE=’c:/data/Employee data.sav’.")
Processor.Submit("DESCRIPTIVES SALARY.")

v The Submit method is called twice; first to submit a GET command and then to submit a DESCRIPTIVES
command.

Submitting Commands Using an Array

You can submit multiple commands as an array of strings where each array element is a string
representation of a syntax command. The string for each command must be terminated with a period (.)
as shown in this example.
Processor.Submit(_
"GET FILE=’c:/data/Employee data.sav’.")
Dim cmdLines As System.Array = New String() _

{"DESCRIPTIVES SALARY SALBEGIN.","FREQUENCIES EDUC JOBCAT."}
Processor.Submit(cmdLines)

v The Submit method is called with an array that specifies a DESCRIPTIVES and a FREQUENCIES command.

You can also use the elements of an array to represent parts of a command so that a single array specifies
one or more complete syntax commands. When submitting multiple commands in this manner, each
command must be terminated with a period (.) as shown in this example.
Processor.Submit(_
"GET FILE=’c:/data/Employee data.sav’.")
Dim cmdLines As System.Array = New String() _

{"OMS /SELECT TABLES ", _
"/IF COMMANDS = [’Descriptives’ ’Frequencies’] ", _
"/DESTINATION FORMAT = HTML ", _
"IMAGES = NO OUTFILE = ’c:/temp/stats.html’.", _
"DESCRIPTIVES SALARY SALBEGIN.", _
"FREQUENCIES EDUC JOBCAT.", _
"OMSEND."}

Processor.Submit(cmdLines)

v The Submit method is called with an array that specifies an OMS command followed by a DESCRIPTIVES
command, a FREQUENCIES command, and an OMSEND command. The first four elements of the array are
used to specify the OMS command.

Submitting Multiple Commands In a Single String

You can specify multiple commands in a single string using the character sequence "\n" as a delimiter as
shown in this example.
Processor.Submit(_
"GET FILE=’c:/data/Employee data.sav’.")
Processor.Submit("DESCRIPTIVES SALARY.\nFREQUENCIES EDUC.")

© Copyright IBM Corporation 1989, 2016 5

v A single string is used to submit both a FREQUENCIES command and a DESCRIPTIVES command. IBM
SPSS Statistics interprets "\n" as a newline character.

Displaying Command Syntax Generated by the Submit Method

For debugging purposes, it is convenient to see the completed syntax passed to IBM SPSS Statistics by
any calls to the Submit method. This is enabled through command syntax with SET PRINTBACK ON MPRINT
ON.
Processor.Submit("SET PRINTBACK ON MPRINT ON.\n" + _
"GET FILE=’c:/data/Employee data.sav’.")
Dim varName As String
varName = Processor.GetVariableName(1)
Processor.Submit("FREQUENCIES /VARIABLES=" + varName + ".")

The generated command syntax is written to the standard output stream and shows the completed
FREQUENCIES command as well as the GET command. In the present example the variable with index value
1 in the dataset has the name gender.
4 M> GET FILE=’c:/data/Employee data.sav’.
6 M> FREQUENCIES /VARIABLES=gender.

6 Microsoft .NET User Guide for IBM SPSS Statistics

Chapter 3. Retrieving Dictionary Information

The Processor class provides a number of methods for retrieving dictionary information from the active
dataset. Variables are specified by their position in the dataset, starting with 0 for the first variable in file
order. This is referred to as the index value of the variable. The following information is available:
v GetDataFileAttributeNames(). Names of any datafile attributes for the active dataset.
v GetDataFileAttributes(attrName). The attribute values for the specified datafile attribute.
v GetMultiResponseSet(mrsetName). The details of the specified multiple response set.
v GetMultiResponseSetNames(). The names of any multiple response sets for the active dataset.
v GetSplitVariableNames(). Returns the names of the split variables, if any, in the active dataset.
v GetVariableAttributeNames(index). Names of any custom variable attributes for the specified variable.
v GetVariableAttributes(index,attrName). The attribute values for a specified attribute of a specified

variable.
v GetVariableCount(). The number of variables in the active dataset.
v GetVariableCValueLabel(index). The value labels for the specified string variable.
v GetVariableFormat(index). The display format for the specified variable; for example, F8.2.
v GetVariableLabel(index). The variable label for the specified variable.
v GetVariableMeasurementLevel(index). The measurement level for the specified variable: "nominal",

"ordinal", "scale", or "unknown".
v GetVariableMissingValues(index). Any user-missing values for the specified variable.
v GetVariableName(index). The variable name for the specified variable.
v GetVariableNValueLabel(index). The value labels for the specified numeric variable.
v GetVariableType(index). The variable type (numeric or string) for the specified variable.
v WeightVariable. Property that returns the name of the weight variable, if any.

Example

Consider the common scenario of running a particular block of command syntax only if a specific
variable exists in the dataset. For example, you are processing many datasets containing employee
records and want to split them by gender--if a gender variable exists--to obtain separate statistics for the
two gender groups. We will assume that if a gender variable exists, it has the name gender, although it
may be spelled in upper case or mixed case. The following sample code illustrates the approach:
Dim name As String
Processor.Submit(_
"GET FILE=’c:/data/Employee data.sav’.")
For i As Integer = 0 To Processor.GetVariableCount() - 1

name = Processor.GetVariableName(i)
If LCase(name) = "gender" Then

Dim cmdLines As System.Array = New String() _
{"SORT CASES BY " + name + ".", _
"SPLIT FILE LAYERED BY " + name + "."}

Processor.Submit(cmdLines)
Exit For

End If
Next i

7

8 Microsoft .NET User Guide for IBM SPSS Statistics

Chapter 4. Working With Case Data in the Active Dataset

The IBM SPSS Statistics - Integration Plug-in for Microsoft .NET provides the ability to read case data
from the active dataset, create new variables in the active dataset, and append new cases to the active
dataset. Three classes are provided: the DataCursor class allows you to read cases from the active dataset,
the DataCursorWrite class allows you to add new variables (and their case values) to the active dataset,
and the DataCursorAppend class allows you to append new cases to the active dataset.

The following rules apply to the use of data cursors:
v You cannot use the Submit method from the Processor class while a data cursor is open. You must

close the cursor first using the Close method. In particular, if you need to save changes made to the
active dataset to an external file, then use the Submit method to submit a SAVE command after closing
the cursor.

v Only one data cursor can be open at any point in an application. To define a new data cursor, you
must first close the previous one.

Note: For users of the 14.0.2 version of the plug-in who are upgrading to the 16.0.1 version, the
GetDataCursorInstance method from the Processor class has been deprecated and replaced with the
GetReadCursorInstance method from the Processor class.

Reading Case Data
To retrieve case data, you first create an instance of the DataCursor class using the GetReadCursorInstance
method from the Processor class. To specify that case data are to be retrieved for all variables in the
active dataset, use the form of the method without an argument, as in GetReadCursorInstance().

You can also specify a selected set of variables to retrieve. Variables are specified by their position in the
dataset, starting with 0 for the first variable in file order. For example, to create an instance of the
DataCursor class for retrieving case data for just the 5th and 3rd variables in file order, use
GetReadCursorInstance(indexSet), where indexSet is a 1-dimension array with the elements 5 and 3.

The following rules apply to retrieved values:
v String values are right-padded to the defined width of the string variable.
v System-missing values are always returned as a value of Nothing. By default, user-missing values are

returned as a value of Nothing. You can specify that user-missing values be treated as valid with the
UserMissingInclude property from the DataCursor class.

v By default, data retrieved from a variable representing a date, or a date and a time, is given as the
number of seconds from October 14, 1582. You can specify a set of IBM SPSS Statistics variables with
date or datetime formats to convert to Date data type values when reading data from IBM SPSS
Statistics. See the example on handling datetime values.

v The DataCursor class honors case filters specified with the FILTER or USE commands.

Retrieving Cases Sequentially

You can retrieve cases one at a time in sequential order using the GetRow method from the DataCursor
class. For example:
Processor.Submit("GET FILE=’c:/data/demo.sav’.")
Dim cur as DataCursor = Processor.GetReadCursorInstance()
Dim result as System.Array
’First case

9

result = cur.GetRow()
’Second case
result = cur.GetRow()
cur.Close()

v Each call to GetRow retrieves the next case in the active dataset. Calling GetRow after the last case has
been read returns a value of Nothing.

v The case data is returned as a 1-dimension array where each element corresponds to the case data for a
specific variable. When you invoke the DataCursor class with GetReadCursorInstance(), as in this
example, the elements correspond to the variables in file order.

Retrieving All Cases

You can retrieve all cases at once using the GetAllRows method from the DataCursor class. For example:
Processor.Submit("GET FILE=’c:/data/demo.sav’.")
Dim cur as DataCursor = Processor.GetReadCursorInstance()
Dim result as System.Array
result = cur.GetAllRows()
cur.Close()

v The case data is returned as a 2-dimension array where the first dimension refers to the case number
(starting with 0 for the first case) and the second dimension indexes the variables in the active dataset.
For example, result(n,m) is the value of the mth variable for the nth case. When you invoke the
DataCursor class with GetReadCursorInstance(), as in this example, the elements in the second
dimension correspond to the variables in file order.

Missing Data

By default, missing values (user and system) are returned as Nothing.
Dim cmdLines As System.Array = New String() _
{"DATA LIST LIST (’,’) /numVar (f) stringVar (a4).", _
"BEGIN DATA", _
"1,a", _
",b", _
"3,,", _
"9,d", _
"END DATA.", _
"MISSING VALUES numVar (9) stringVar (’ ’)."}
Processor.Submit(cmdLines)
Dim cur As DataCursor = Processor.GetReadCursorInstance()
Dim result as System.Array
result = cur.GetAllRows()
cur.Close()

The values of result are:
1 a
Nothing b
3 Nothing
Nothing d

You can specify that user-missing values be treated as valid data by setting the UserMissingInclude
property of the DataCursor instance to True, as shown in the following reworking of the previous
example.
Dim cmdLines As System.Array = New String() _
{"DATA LIST LIST (’,’) /numVar (f) stringVar (a4).", _
"BEGIN DATA", _
"1,a", _
",b", _
"3,,", _
"9,d", _
"END DATA.", _
"MISSING VALUES numVar (9) stringVar (’ ’)."}
Processor.Submit(cmdLines)
Dim cur As DataCursor = Processor.GetReadCursorInstance()
cur.UserMissingInclude = True
Dim result as System.Array
result = cur.GetAllRows()
cur.Close()

The values of result are:

10 Microsoft .NET User Guide for IBM SPSS Statistics

1 a
Nothing b
3
9 d

Handling Data with Splits

When reading datasets in which split file processing is in effect, you'll need to be aware of the behavior
at a split boundary. Detecting split changes is necessary when you're creating custom pivot tables from
data with splits and want separate results displayed for each split group (using the SplitChange method
from the DataCursor class). The IsEndSplit method, from the DataCursor class, allows you to detect split
changes when reading from datasets that have splits.
Dim cmdLines As System.Array = New String() _
{"DATA LIST FREE /salary (F) jobcat (F).", _
"BEGIN DATA", _
"21450 1", _
"45000 1", _
"30000 2", _
"30750 2", _
"103750 3", _
"72500 3", _
"57000 3", _
"END DATA.", _
"SPLIT FILE BY jobcat."}
Processor.Submit(cmdLines)
Dim cur As DataCursor = Processor.GetReadCursorInstance()
cur.UserMissingInclude = False
For i As Integer = 1 To cur.CaseCount()

cur.GetRow()
If cur.IsEndSplit() Then

Console.WriteLine("A new split begins at case: {0}", i)
cur.GetRow()

End If
Next
cur.Close()

v cur.IsEndSplit() returns a Boolean—true if a split boundary has been crossed, and false otherwise.
For the sample dataset used in this example, split boundaries are crossed when reading the 3rd and
5th cases.

v The value returned from the GetRow method is Nothing at a split boundary. In the current example, this
means that Nothing is returned when attempting to read the 3rd and 5th cases. Once a split has been
detected, you call GetRow again to retrieve the first case of the next split group, as shown in this
example.

v Although not shown in this example, IsEndSplit also returns true when the end of the dataset has
been reached. This scenario would occur if you replace the For loop with a While True loop that
continues reading until the end of the dataset is detected. Although a split boundary and the end of
the dataset both result in a return value of true from IsEndSplit, the end of the dataset is identified by
a return value of Nothing from a subsequent call to GetRow.

Handling IBM SPSS Statistics Datetime Values

When retrieving values of IBM SPSS Statistics variables with date or datetime formats, you'll most likely
want to convert the values to Date data type values. By default, date or datetime variables are not
converted and are simply returned in the internal representation used by IBM SPSS Statistics (floating
point numbers representing some number of seconds and fractional seconds from an initial date and
time). To convert variables with date or datetime formats to Date data type values, you use the
GetReadCursorInstance(indexSet,dateindexSet) form of the GetReadCursorInstance method.
Dim cmdLines As System.Array = New String() _
{"DATA LIST FREE /case (F) value (DATE10).", _
"BEGIN DATA", _
"1 28-OCT-1990", _
"END DATA."}
Processor.Submit(cmdLines)
Dim indexSet() As Integer = {0, 1}
Dim dateindexSet() As Integer = {1}

Chapter 4. Working With Case Data in the Active Dataset 11

Dim cur As DataCursor = Processor.GetReadCursorInstance(indexSet, dateindexSet)
Dim result As System.Array
result = cur.GetRow()
cur.Close()

v The first argument to GetReadCursorInstance specifies the set of variables to retrieve and the second
argument specifies the set of variables to convert to Date data type values. The values specified for the
second argument must be a subset of those for the first argument. Variables are specified by their
position in the dataset, starting with 0 for the first variable in file order.

The value of result is:
1 10/28/1990 12:00:00 AM

Creating New Variables in the Active Dataset
To add new variables along with their case values to the active dataset, you first create an instance of the
DataCursorWrite class using the GetWriteCursorInstance method from the Processor class.
v All of the methods available with the DataCursor class are also available with the DataCursorWrite

class.
v When adding new variables, the CommitDictionary method must be called after the statements defining

the new variables and prior to setting case values for those variables. You cannot add new variables to
an empty dataset.

v When setting case values for new variables, the CommitCase method must be called for each case that is
modified. The GetRow method is used to advance the record pointer by one case, or you can use the
GetRows method to advance the record pointer by a specified number of cases.

v Changes to the active dataset do not take effect until the cursor is closed.
v Write mode supports multiple data passes and allows you to add new variables on each pass. In the

case of multiple data passes where you need to add variables on a data pass other than the first, you
must call the AllocNewVarsBuffer method to allocate the buffer size for the new variables. When used,
AllocNewVarsBuffer must be called before reading any data with GetRow, GetRows, or GetAllRows.

v The SetVariableNameAndType and SetOneVariableNameAndType methods, from the DataCursorWrite
class, are used to add new variables to the active dataset. The SetValueChar and SetValueNumeric
methods are used to set case values.

Example

In this example we create a new string variable and a new numeric variable and populate their case
values for the first and third cases in the active dataset. A sample dataset is first created.
Dim cmdLines As System.Array = New String() _
{"DATA LIST FREE /case (A5).", _
"BEGIN DATA", _
"case1", _
"case2", _
"case3", _
"END DATA."}
Processor.Submit(cmdLines)
Dim cur As DataCursorWrite = Processor.GetWriteCursorInstance()
Dim varName As String() = {"numvar", "strvar"}
Dim varType As Integer() = {0, 1}
Dim varLabel As String() = {"Sample numeric variable", _

"Sample string variable"}
cur.SetVariableNameAndType(varName, varType)
cur.SetVariableLabel(varName(0), varLabel(0))
cur.SetVariableLabel(varName(1), varLabel(1))
cur.CommitDictionary()
cur.GetRow()
cur.SetValueNumeric(varName(0), 1.0)
cur.SetValueChar(varName(1), "a")
cur.CommitCase()
cur.GetRows(2)
cur.SetValueNumeric(varName(0), 3.0)
cur.SetValueChar(varName(1), "c")
cur.CommitCase()
cur.Close()

12 Microsoft .NET User Guide for IBM SPSS Statistics

v The first argument to the SetVariableNameAndType method is an array of strings that specifies the name
of each new variable. The second argument is an array of integers specifying the variable type of each
variable. Numeric variables are specified by a value of 0 for the variable type. String variables are
specified with a type equal to the defined length of the string (maximum of 32767). In this example, we
create a numeric variable named numvar and a string variable of length 1 named strvar.

v After calling SetVariableNameAndType you have the option of specifying variable properties (in addition
to the variable type) such as the measurement level, variable label, and missing values. In this example
variable labels are specified using the SetVariableLabel method.

v Specifications for new variables must be committed to the cursor's dictionary before case values can be
set. This is accomplished by calling the CommitDictionary method, which takes no arguments. The
active dataset's dictionary is updated when the cursor is closed.

v To set case values, you first position the record pointer to the desired case using the GetRow or GetRows
method. GetRow advances the record pointer by one case and GetRows advances it by a specified
number of cases. In this example we set case values for the first and third cases. Note: To set the value
for the first case in the dataset you must call GetRow as shown in this example.

v Case values are set using the SetValueNumeric method for numeric variables and the SetValueChar
method for string variables. For both methods, the first argument is the variable name and the second
argument is the value for the current case. A numeric variable whose value is not specified, or
specified as Nothing, is set to the system-missing value. A string variable whose value is not specified,
or specified as Nothing, will have a blank value. When setting values of IBM SPSS Statistics date or
date/time variables, you can specify a Date data type as the value for the SetValueNumeric method. If
you specify an integer value, it will be interpreted as the number of seconds from October 14, 1582.

v The CommitCase method must be called to commit the values for each modified case. Changes to the
active dataset take effect when the cursor is closed.

Note: To save the modified active dataset to an external file, use the Submit method (following the Close
method) to submit a SAVE command, as in:
Processor.Submit("SAVE OUTFILE=’c:/data/mydata.sav’.")

Example: Multiple Data Passes

Sometimes more than one pass of the data is required, as in the following example involving two data
passes. The first data pass is used to read the data and compute a summary statistic. The second data
pass is used to add a summary variable to the active dataset.
Dim cmdLines As System.Array = New String() _
{"DATA LIST FREE /var (F).", _
"BEGIN DATA", _
"57000", _
"40200", _
"21450", _
"21900", _
"END DATA."}
Processor.Submit(cmdLines)
Dim cur As DataCursorWrite = Processor.GetWriteCursorInstance()
Dim row As System.Array
Dim total As Integer = 0
cur.AllocNewVariablesBuffer(8)
For i As Integer = 1 To cur.CaseCount()

row = cur.GetRow()
total = total + row(0)

Next
Dim meanVal As Double = total / cur.CaseCount()
cur.Reset()
cur.SetOneVariableNameAndType("mean", 0)
cur.CommitDictionary()
For i As Integer = 1 To cur.CaseCount()

row = cur.GetRow()
cur.SetValueNumeric("mean", meanVal)
cur.CommitCase()

Next
cur.Close()

Chapter 4. Working With Case Data in the Active Dataset 13

v Because we'll be adding a new variable on the second data pass, the AllocNewVarsBuffer method is
called to allocate the required space. In the current example we're creating a single numeric variable,
which requires 8 bytes.

v The first For loop is used to read the data and total the case values.
v After the data pass, the Reset method must be called prior to defining new variables.
v The SetOneVariableNameAndType method is used to add a single new variable. The first argument is the

variable name and the second argument is the variable type. In this example, we create a numeric
variable named mean. The CommitDictionary method is called to commit this variable to the cursor.

v The second data pass (second For loop) is used to set the case values of the new variable.

Appending New Cases
To append new cases to the active dataset, you first create an instance of the DataCursorAppend class
using the GetAppendCursorInstance method from the Processor class. The DataCursorAppend class cannot
be used to add new variables or read case data from the active dataset. A dataset must contain at least
one variable in order to append cases to it, but it need not contain any cases.
v The CommitCase method must be called for each case that is added.
v The EndChanges method must be called before the cursor is closed.
v Changes to the active dataset do not take effect until the cursor is closed.
v The SetValueChar and SetValueNumeric methods are used to set variable values for new cases.

Example

In this example two new cases are appended to the active dataset.
Dim cmdLines As System.Array = New String() _
{"DATA LIST FREE /case (F) value (A1).", _
"BEGIN DATA", _
"1 a", _
"END DATA."}
Processor.Submit(cmdLines)
Dim cur As DataCursorAppend = Processor.GetAppendCursorInstance()
cur.SetValueNumeric("case", 2)
cur.SetValueChar("value", "b")
cur.CommitCase()
cur.SetValueNumeric("case", 3)
cur.SetValueChar("value", "c")
cur.CommitCase()
cur.EndChanges()
cur.Close()

v For both the SetValueNumeric and SetValueChar methods, the first argument is the variable name, as a
string, and the second argument is the value for the current case. A numeric variable whose value is
not specified, or specified as Nothing, is set to the system-missing value. A string variable whose value
is not specified, or specified as Nothing, will have a blank value. The value will be valid unless you
explicitly define the blank value to be missing for that variable. When setting values of IBM SPSS
Statistics date or date/time variables, you can specify a Date data type as the value for the
SetValueNumeric method. If you specify an integer value, it will be interpreted as the number of
seconds from October 14, 1582.

v The CommitCase method must be called to commit the values for each new case. Changes to the active
dataset take effect when the cursor is closed. When working in append mode, the cursor is ready to
accept values for a new case (using SetValueNumeric and SetValueChar) once CommitCase has been
called for the previous case.

v The EndChanges method signals the end of appending cases and must be called before the cursor is
closed or the new cases will be lost.

14 Microsoft .NET User Guide for IBM SPSS Statistics

Chapter 5. Creating and Managing Multiple Datasets

Using a data step, you can create and work concurrently with multiple datasets. Data steps are initiated
with the GetDatastepInstance method from the Processor class.

Once a data step has been initiated, you access existing datasets and create new datasets with the
DsDataset class. DsDataset objects provide access to the case data and variable information contained in a
dataset, allowing you to read from the dataset, add new cases, modify existing cases, add new variables,
and modify properties of existing variables.

Limitations
v Within a data step you cannot create a cursor, a pivot table, or a text block, and you cannot call the

StartProcedure method or the Submit method from the Processor class.
v You cannot start a data step if there are pending transformations. If you need to access case data in the

presence of pending transformations, use a cursor.
v Only one data step can exist at a time.
v An instance of the DsDataset class cannot be used outside of the data step in which it was created.

Note: DsDataset objects can also be created between StartProcedure and EndProcedure and not
associated with a data step.

v A new dataset created with the DsDataset class is not set to be the active dataset. To make the dataset
the active one, use the SetActive method of the associated Datastep object.

v The DsDataset class does not honor case filters specified with the FILTER or USE commands.

Example: Creating a New Dataset
Dim datastepObj As Datastep = Processor.GetDatastepInstance()
Dim dsObj As New DsDataset("newDataset", True)
Dim varsObj As DsVariableCollection = dsObj.VarList
Dim caseObj As DsCases = dsObj.Cases
Dim varObj As DsVariable
varsObj.Add("numvar", 0)
varsObj.Add("strvar", 1)
varObj = varsObj.Item("numvar")
varObj.Label = "Sample numeric variable"
varObj = varsObj.Item("strvar")
varObj.Label = "Sample string variable"
Dim values As Object() = {1, "a"}
caseObj.Add(values)
values(0) = 2
values(1) = "b"
caseObj.Add(values)
datastepObj.Dispose()

v Once a data step has been initiated, you create a new dataset with the DsDataset class. The first
argument specifies the name of the new dataset, and setting the second argument to True specifies that
this DsDataset object is a new dataset (you can also create DsDataset objects for existing datasets,
allowing you to access and/or modify cases and variables).

v You add variables to a dataset using the Add (or Insert) method of the DsVariableCollection object
associated with the dataset. The DsVariableCollection object is accessed from the VarList property of
the DsDataset object, as in dsObj.VarList. The arguments to the Add method are the name of the new
variable and the variable type (0 for numeric variables, and an integer equal to the defined length of
the string for string variables).

v Variable properties, such as the variable label and measurement level, are set through properties of the
associated DsVariable object, accessible from the DsVariableCollection object. For example,
varsObj.Item("numvar") accesses the DsVariable object associated with the variable numvar.

v You add cases to a dataset using the Add (or Insert) method of the DsCases object associated with the
dataset. The DsCases object is accessed from the Cases property of the DsDataset object, as in

15

dsObj.Cases. The argument to the Add method is an array specifying the case values. Values specified
in the array must match the corresponding variable type--a double for a numeric variable, and a string
for a string variable.
Note: When setting case values of IBM SPSS Statistics date or date/time variables, you can specify the
value as a Date data type. If you specify an integer value, it will be interpreted as the number of
seconds from October 14, 1582.

v You end a data step with the Dispose method of the associated Datastep instance.

Example: Saving New Datasets

When creating new datasets that you intend to save, you'll want to keep track of the dataset names since
the save operation is done outside of the associated data step. In this example, a sample dataset
containing employee data for three departments is first created. Three new datasets, one for each
department, are then created and saved.
Dim cmdLines As System.Array
cmdLines = New String() _
{"DATA LIST FREE /dept (F2) empid (F4) salary (F6).", _
"BEGIN DATA", _
"7 57 57000", _
"5 23 40200", _
"3 62 21450", _
"3 18 21900", _
"5 21 45000", _
"5 29 32100", _
"7 38 36000", _
"3 42 21900", _
"7 11 27900", _
"END DATA.", _
"DATASET NAME saldata.", _
"SORT CASES BY dept."}
Processor.Submit(cmdLines)
Dim datastepObj As Datastep = Processor.GetDatastepInstance()
Dim dsObj As New DsDataset()
Dim caseObj As DsCases = dsObj.Cases
Dim newdsObj As DsDataset
Dim newvarsObj As DsVariableCollection
Dim newcaseObj As DsCases
Dim dept As Integer
Dim dsNames As New StringDictionary()
’ Create the new datasets
newdsObj = New DsDataset(Nothing, True)
newvarsObj = newdsObj.VarList
newcaseObj = newdsObj.Cases
dept = caseObj.Item(0, 0)
dsNames.Add(dept, newdsObj.Name)
newvarsObj.Add("dept", 0)
newvarsObj.Add("empid", 0)
newvarsObj.Add("salary", 0)
For Each row As System.Array In caseObj

If row(0) <> dept Then
newdsObj = New DsDataset(Nothing, True)
dept = row(0)
dsNames.Add(dept, newdsObj.Name)
newcaseObj = newdsObj.Cases
newvarsObj = newdsObj.VarList
newvarsObj.Add("dept", 0)
newvarsObj.Add("empid", 0)
newvarsObj.Add("salary", 0)

End If
newcaseObj.Add(row)

Next
datastepObj.Dispose()
’ Save the new datasets
For Each de As DictionaryEntry In dsNames

cmdLines = New String() _
{"DATASET ACTIVATE " & de.Value & ".", _
"SAVE OUTFILE=’/mydata/saldata_" & de.Key & ".sav’."}

Processor.Submit(cmdLines)
Next
cmdLines = New String() _
{"DATASET ACTIVATE saldata.", _
"DATASET CLOSE ALL."}
Processor.Submit(cmdLines)

16 Microsoft .NET User Guide for IBM SPSS Statistics

v Instantiating the DsDataset class without arguments, as in DsDataset(), creates a DsDataset object for
the active dataset--in this case, the sample dataset.

v The code newdsObj = New DsDataset(Nothing, True) creates a new dataset. The name of the dataset is
available from the Name property, as in newdsObj.Name. In this example, the names of the new datasets
are stored to the dictionary dsNames.

v To save new datasets created with the DsDataset class, use the SAVE command after calling the Dispose
method to end the data step. In this example, DATASET ACTIVATE is used to activate each new dataset,
using the dataset names stored in dsNames.

Example: Modifying Case Values
Dim cmdLines As System.Array
cmdLines = New String() _
{"DATA LIST FREE /cust (F2) amt (F5).", _
"BEGIN DATA", _
"210 4500", _
"242 6900", _
"370 32500", _
"END DATA."}
Processor.Submit(cmdLines)
Dim datastepObj As Datastep = Processor.GetDatastepInstance()
Dim dsObj As New DsDataset()
Dim caseObj As DsCases = dsObj.Cases
For I As Integer = 0 To caseObj.Count - 1

caseObj.Item(I, 1) = 1.05 * caseObj.Item(I, 1)
Next
datastepObj.Dispose()

v The DsCases object, accessed from the Cases property of a DsDataset object, allows you to read, modify,
and append cases. To access the value for a given variable within a particular case you can use the
Item property of the DsCases object, specifying the case number and the index of the variable (index
values represent position in the active dataset, starting with 0 for the first variable in file order, and
case numbers start from 0). For example, caseObj.Item(I, 1) specifies the value of the variable with
index 1 for case number I.
Note: When setting case values of IBM SPSS Statistics date or date/time variables, you can specify the
value as a Date data type. If you specify an integer value, it will be interpreted as the number of
seconds from October 14, 1582.

Example: Comparing Datasets

DsDataset objects allow you to concurrently work with the case data from multiple datasets. As a simple
example, we'll compare the cases in two datasets and indicate identical cases with a new variable added
to one of the datasets.
Dim cmdLines As System.Array
cmdLines = New String() _
{"DATA LIST FREE /id (F2) salary (DOLLAR8) jobcat (F1).", _
"BEGIN DATA", _
"1 57000 3", _
"3 40200 1", _
"2 21450 1", _
"END DATA.", _
"SORT CASES BY id.", _
"DATASET NAME empdata1.", _
"DATA LIST FREE /id (F2) salary (DOLLAR8) jobcat (F1).", _
"BEGIN DATA", _
"3 41000 1", _
"1 59280 3", _
"2 21450 1", _
"END DATA.", _
"SORT CASES BY id.", _
"DATASET NAME empdata2."}
Processor.Submit(cmdLines)
Dim datastepObj As Datastep = Processor.GetDatastepInstance()
Dim dsObj1 As New DsDataset("empdata1")
Dim dsObj2 As New DsDataset("empdata2")
Dim varsObj As DsVariableCollection = dsObj2.VarList
Dim caseObj1 As DsCases = dsObj1.Cases
Dim caseObj2 As DsCases = dsObj2.Cases
Dim nvars As Integer = varsObj.Count
varsObj.Add("match", 0)
For I As Integer = 0 To caseObj1.Count - 1

Chapter 5. Creating and Managing Multiple Datasets 17

caseObj2.Item(I, nvars) = 1
For J As Integer = 0 To nvars - 1

If caseObj1.Item(I, J) <> caseObj2.Item(I, J) Then
caseObj2.Item(I, nvars) = 0
Exit For

End If
Next

Next
datastepObj.Dispose()

v The two datasets are first sorted by the variable id which is common to both datasets.
v dsObj1 and dsObj2 are DsDataset objects associated with the two datasets empdata1 and empdata2 to be

compared.
v The new variable match, added to empdata2, is set to 1 for cases that are identical and 0 otherwise.

18 Microsoft .NET User Guide for IBM SPSS Statistics

Chapter 6. Retrieving Output from Syntax Commands

To retrieve command output, you first route it via the Output Management System (OMS) to an area in
memory referred to as the XML workspace where it is stored as an XPath DOM that conforms to the
Output XML Schema. Output is retrieved from this workspace with functions that employ XPath
expressions.

Constructing the correct XPath expression (IBM SPSS Statistics currently supports XPath 1.0) requires an
understanding of the Output XML schema. The output schema spss-output-1.8.xsd is distributed with
IBM SPSS Statistics. Documentation is included in the IBM SPSS Statistics Help system. It is also
provided with the IBM SPSS Statistics - Programmability SDK (available from the IBM SPSS Predictive
Analytics community) and accessible from \documentation\OutputSchema\oms_oxml_schema_intro.htm
within the IBM SPSS Statistics - Programmability SDK.

Example

In this example, we'll retrieve the mean value of a variable calculated from the Descriptives procedure.
Dim handle, context, xpath As String
’Route output to the XML workspace.
Dim cmdLines As System.Array = New String() _
{"GET FILE=’c:/data/Employee data.sav’.", _
"OMS SELECT TABLES ", _
"/IF COMMANDS=[’Descriptives’] SUBTYPES=[’Descriptive Statistics’] ", _
"/DESTINATION FORMAT=OXML XMLWORKSPACE=’desc_table’ ", _
"/TAG=’desc_out’.", _
"DESCRIPTIVES VARIABLES=salary, salbegin, jobtime, prevexp ", _
"/STATISTICS=MEAN.", _
"OMSEND TAG=’desc_out’."}
Processor.Submit(cmdLines)
’Get output from the XML workspace using XPath.
handle = "desc_table"
context = "/outputTree"
xpath = "//pivotTable[@subType=’Descriptive Statistics’]" + _

"/dimension[@axis=’row’]" + _
"/category[@varName=’salary’]" + _
"/dimension[@axis=’column’]" + _
"/category[@text=’Mean’]" + _
"/cell/@text"

Dim result() As String = Processor.EvaluateXPath(handle,context,xpath)
Processor.DeleteXPathHandle(handle)

v The OMS command is used to direct output from a syntax command to the XML workspace. The
XMLWORKSPACE keyword on the DESTINATION subcommand, along with FORMAT=OXML, specifies the XML
workspace as the output destination. It is a good practice to use the TAG subcommand, as done here, so
as not to interfere with any other OMS requests that may be operating. The identifiers used for the
COMMANDS and SUBTYPES keywords on the IF subcommand can be found in the OMS Identifiers dialog
box, available from the Utilities menu in IBM SPSS Statistics.

v The XMLWORKSPACE keyword is used to associate a name with this XPath DOM in the workspace. In the
current example, output from the DESCRIPTIVES command will be identified with the name desc_table.
You can have many XPath DOM's in the XML workspace, each with its own unique name.

v The OMSEND command terminates active OMS commands, causing the output to be written to the
specified destination--in this case, the XML workspace.

v You retrieve values from the XML workspace with the EvaluateXPath method from the Processor class.
The method takes an explicit XPath expression, evaluates it against a specified XPath DOM in the XML
workspace, and returns the result as a 1-dimension array of string values.

v The first argument to the EvaluateXPath function specifies the XPath DOM to which an XPath
expression will be applied. This argument is referred to as the handle name for the XPath DOM and is
simply the name given on the XMLWORKSPACE keyword on the associated OMS command. In this case the
handle name is desc_table.

19

v The second argument to EvaluateXPath defines the XPath context for the expression and should be set
to "/outputTree" for items routed to the XML workspace by the OMS command.

v The third argument to EvaluateXPath specifies the remainder of the XPath expression (the context is
the first part) and must be quoted. Since XPath expressions almost always contain quoted strings,
you'll need to use a different quote type from that used to enclose the expression. For users familiar
with XSLT for OXML and accustomed to including a namespace prefix, note that XPath expressions for
the EvaluateXPath function should not contain the oms: namespace prefix.

v The XPath expression in this example is specified by the variable xpath. It is not the minimal expression
needed to select the mean value of interest but is used for illustration purposes and serves to highlight
the structure of the XML output.
//pivotTable[@subType=’Descriptive Statistics’] selects the Descriptives Statistics table.
/dimension[@axis=’row’]/category[@varName=’salary’] selects the row for the variable salary.
/dimension[@axis=’column’]/category[@text=’Mean’] selects the Mean column within this row, thus
specifying a single cell in the pivot table.
/cell/@text selects the textual representation of the cell contents.

v When you have finished with a particular output item, it is a good idea to delete it from the XML
workspace. This is done with the DeleteXPathHandle method, whose single argument is the name of
the handle associated with the item.

If you're familiar with XPath, you might want to convince yourself that the mean value of salary can also
be selected with the following simpler XPath expression:
//category[@varName=’salary’]//category[@text=’Mean’]/cell/@text

Note: To the extent possible, construct your XPath expressions using language-independent attributes,
such as the variable name rather than the variable label. That will help reduce the translation effort if you
need to deploy your code in multiple languages. Also consider factoring out language-dependent
identifiers, such as the name of a statistic, into constants. You can obtain the current language used for
pivot table output with the syntax command SHOW OLANG.

You may also consider using text_eng attributes in place of text attributes in XPath expressions.
text_eng attributes are English versions of text attributes and have the same value regardless of the
output language. The OATTRS subcommand of the SET command specifies whether text_eng attributes are
included in OXML output.

Retrieving Images Associated with an Output XPath DOM

You can retrieve images associated with output routed to the XML workspace. In this example, we'll
retrieve a bar chart associated with output from the Frequencies procedure.
Dim cmdLines As System.Array = New String() _
{"GET FILE=’c:/data/Employee data.sav’.", _
"OMS SELECT CHARTS ", _
"/IF COMMANDS=[’Frequencies’] ", _
"/DESTINATION FORMAT=OXML IMAGES=YES", _
"CHARTFORMAT=IMAGE IMAGEROOT=’myimages’ IMAGEFORMAT=JPG XMLWORKSPACE=’demo’.", _
"FREQUENCIES VARIABLES=jobcat", _
" /BARCHART PERCENT", _
" /ORDER=ANALYSIS.", _
"OMSEND."}
Processor.Submit(cmdLines)
handle = "demo"
context = "/outputTree"
xpath = "//command[@command=’Frequencies’]" + _

"/chartTitle[@text=’Bar Chart’]" + _
"/chart/@imageFile"

Dim result() As String = Processor.EvaluateXPath(handle, context, xpath)
Dim imageName As String = result(0)
Dim imageSize As Integer = 0
Dim imageType As String = String.Empty
Dim imageObj As Byte() = Processor.GetImage(handle, imageName, imageSize, imageType)
Dim fs As New FileStream("c:\temp\result.jpg", FileMode.Create, FileAccess.Write)

20 Microsoft .NET User Guide for IBM SPSS Statistics

fs.Write(imageObj, 0, imageSize)
fs.Flush()
fs.Close()
Processor.DeleteXPathHandle(handle)

v The OMS command routes output from the FREQUENCIES command to an output XPath DOM with the
handle name of demo.

v To route images along with the OXML output, the IMAGES keyword on the DESTINATION subcommand
(of the OMS command) must be set to YES, and the CHARTFORMAT, MODELFORMAT, or TREEFORMAT keyword
must be set to IMAGE.

v The EvaluateXPath function is used to retrieve the name of the image associated with the bar chart
output from the FREQUENCIES command. In the present example, the value returned by EvaluateXPath
is a list with a single element, which is then stored to the variable imageName.

v The GetImage function retrieves the image, which is then written to an external file.
The first argument to the GetImage function specifies the particular XPath DOM and must be a valid
handle name defined by a previous IBM SPSS Statistics OMS command.
The second argument to GetImage is the filename associated with the image in the OXML
output--specifically, the value of the imageFile attribute of the chart element associated with the
image.
The third argument to GetImage is the amount of memory required for the image and is a value that is
returned by the function.
The fourth argument to GetImage is a string specifying the image type and is a value that is returned
by the function. The possible values are: “PNG”, “JPG”, “BMP".

Writing XML Workspace Contents to a File

When writing and debugging XPath expressions, it is often useful to have a sample file that shows the
XML structure. This is provided by the GetXmlUtf16 method from the Processor class, as well as by an
option on the OMS syntax command. The following program block recreates the XML workspace for the
preceding example and writes the XML associated with the handle desc_table to the file
c:\temp\descriptives_table.xml.
’Route output to the XML workspace.
Dim cmdLines As System.Array = New String() _
{"GET FILE=’c:/data/Employee data.sav’.", _
"OMS SELECT TABLES ", _
"/IF COMMANDS=[’Descriptives’] SUBTYPES=[’Descriptive Statistics’] ", _
"/DESTINATION FORMAT=OXML XMLWORKSPACE=’desc_table’ ", _
"/TAG=’desc_out’.", _
"DESCRIPTIVES VARIABLES=salary, salbegin, jobtime, prevexp ", _
"/STATISTICS=MEAN.", _
"OMSEND TAG=’desc_out’."}
Processor.Submit(cmdLines)
’Write an item from the XML workspace to a file.
Processor.GetXmlUtf16("desc_table","c:/temp/descriptives_table.xml")
Processor.DeleteXPathHandle("desc_table")

The section of c:\temp\descriptives_table.xml that specifies the Descriptive Statistics table, including the
mean value of salary, is as follows (the output is written in Unicode (UTF-16)):
<pivotTable subType="Descriptive Statistics" text="Descriptive Statistics">
<dimension axis="row" text="Variables">

<category label="Current Salary" text="Current Salary"
varName="salary" variable="true">
<dimension axis="column" text="Statistics">

<category text="N">
<cell number="474" text="474"/>

</category>
<category text="Mean">
<cell decimals="2" format="dollar" number="34419.567510548"
text="$34,419.57"/>

</category>
</dimension>

</category>

Note: The form GetXmlUtf16(String) of the GetXmlUtf16 method returns the content associated with a
specified handle, without writing the content to a file.

Chapter 6. Retrieving Output from Syntax Commands 21

Retrieving a DOM as an XmlDocument Object

As an alternative to the GetXmlUtf16 method for retrieving an entire XPath DOM, you can use the
GetXmlObject method to return the contents of an output DOM as an XmlDocument object. This allows you
to process the contents using the powerful methods available for .NET XmlDocument objects. The root
element of the associated DOM has a default namespace with the URI http://xml.spss.com/spss/oms, so
depending on which XmlDocument methods you use, you may have to add this URI and an associated
arbitrary prefix to the XmlNamespaceManager. XPath references will then need to include this prefix, as
shown in the following code sample that extracts the text attribute from each cell element, for an XPath
DOM specified by handle.
Dim result As Xml.XmlDocument = Processor.GetXmlObject(handle)
Dim nsmgr As XmlNamespaceManager = New XmlNamespaceManager(result.NameTable)
nsmgr.AddNamespace("spss", "http://xml.spss.com/spss/oms")
Dim root As XmlElement = result.DocumentElement
Dim nodeList As XmlNodeList
nodeList = root.SelectNodes("//spss:cell/@text", nsmgr)

22 Microsoft .NET User Guide for IBM SPSS Statistics

Chapter 7. Running Python and R Programs from .NET

The IBM SPSS Statistics BEGIN PROGRAM command provides the ability to integrate the capabilities of
external programming languages with IBM SPSS Statistics command syntax. The supported languages are
the Python programming language and R. This enables you to utilize the extensive set of scientific and
statistical programming libraries available with the Python language and R to create custom algorithms
that you can apply to your data. Results can be written to a dataset or the XML workspace and then
retrieved by your .NET program.

Python Programs

Once you have installed the IBM SPSS Statistics - Integration Plug-in for Python, you have full access to
the Python programming language by including Python code in a BEGIN PROGRAM PYTHON-END PROGRAM
block (within command syntax) and submitting the command syntax with the Submit method from the
Processor class. For example:
Dim cmdLines As System.Array
cmdLines = New String() _
{"BEGIN PROGRAM PYTHON.", _
"import spss", _
"<Python code>", _
"END PROGRAM."}
Processor.Submit(cmdLines)

v The Python statement import spss imports the Python modules (installed with the IBM SPSS Statistics
- Integration Plug-in for Python) that allow the Python processor to interact with IBM SPSS Statistics.
Your Python language code follows the import statement.

v You can omit the keyword PYTHON on BEGIN PROGRAM--it is the default.

Complete documentation on the functionality available with the IBM SPSS Statistics - Integration Plug-in
for Python is available in the SPSS Statistics Help system under Integration Plug-in for Python.

R Programs

Once you have installed the IBM SPSS Statistics - Integration Plug-in for R, you have full access to the R
programming language by including R code in a BEGIN PROGRAM R-END PROGRAM block (within command
syntax) and submitting the command syntax with the Submit method from the Processor class. For
example:
Dim cmdLines As System.Array
cmdLines = New String() _
{"BEGIN PROGRAM R.", _
"<R code>", _
"END PROGRAM."}
Processor.Submit(cmdLines)

Complete documentation on the functionality available with the IBM SPSS Statistics - Integration Plug-in
for R is available in the SPSS Statistics Help system under Integration Plug-in for R.

Inserting Programs From Command Syntax Files

You can use the IBM SPSS Statistics INSERT command to include BEGIN PROGRAM-END PROGRAM blocks
contained in command syntax files. This allows you to store your programs as separate code files and
include them as needed. For example:
Processor.Submit("INSERT FILE=’/myprograms/program_block.sps’.")

The file /myprograms/program_block.sps would contain a BEGIN PROGRAM block, as in:

23

BEGIN PROGRAM PYTHON.
import spss
<Python code>
END PROGRAM.

24 Microsoft .NET User Guide for IBM SPSS Statistics

Chapter 8. Creating Custom Output

The IBM SPSS Statistics - Integration Plug-in for Microsoft .NET provides the ability to create output in
the form of custom pivot tables and text blocks. Using the Output Management System (OMS), the
output can be rendered in a variety of formats such as HTML, text, or XML that conforms to the Output
XML Schema (xml.spss.com/spss/oms).

Creating Pivot Tables
The following figure shows the basic structural components of a pivot table. Pivot tables consist of one or
more dimensions, each of which can be of the type row, column, or layer. In this example there is one
dimension of each type. Each dimension contains a set of categories that label the elements of the
dimension--for instance, row labels for a row dimension. A layer dimension allows you to display a
separate two dimensional table for each category in the layered dimension--for example, a separate table
for each value of minority classification, as shown here. When layers are present the pivot table can be
thought of as stacked in layers, with only the top layer visible.

Each cell in the table can be specified by a combination of category values. In the example shown here,
the indicated cell is specified by a category value of Male for the Gender dimension, Custodial for the
Employment Category dimension, and No for the Minority Classification dimension.

The SimplePivotTable Method
Pivot tables are created with the BasePivotTable class. For the common case of creating a pivot table with
a single row dimension and a single column dimension, the BasePivotTable class provides the
SimplePivotTable method. The arguments to the method provide the dimensions, categories, and cell
values. No other methods are necessary in order to create the table structure and populate the cells. See if
you require more functionality than the SimplePivotTable method provides.
Dim cmdLines As System.Array = New String() _
{"GET FILE=’c:/examples/data/demo.sav’.", _
"OMS SELECT TABLES", _
"/IF SUBTYPES=[’SimpleTableDemo’]", _
"/DESTINATION FORMAT=HTML OUTFILE=’c:/temp/simpletable.htm’."}
Processor.Submit(cmdLines)
Dim title As String = "Sample Pivot Table"
Dim templateName As String = "SimpleTableDemo"
Dim table As BasePivotTable = _
Processor.GetBasePivotTableInstance(title, templateName, Nothing)
table.SimplePivotTable(_

"Row Dimension", _
New Object() {"1", "2"}, _
"Column Dimension", _

Figure 1. Pivot table structure

25

New Object() {"A", "B"}, _
New Object() {"1A", "1B", "2A", "2B"})

table.Close()
Processor.Submit("OMSEND.")

Result

v The BasePivotTable class requires an active dataset, so a dataset is opened with the GET syntax
command.

v In order to produce something other than a textual representation of a pivot table, you route the
output with OMS. To route pivot table output to OMS, you include the TABLES keyword on the SELECT
subcommand of the OMS command, as in this example. As specified on the OMS command, the pivot
table in this example will be rendered in HTML and routed to the file c:/temp/simpletable.htm.

v To create a pivot table, you create an instance of the BasePivotTable class with the
GetBasePivotTableInstance method from the Processor class. The first argument to the
GetBasePivotTableInstance method is a required string that specifies the title that appears with the
table.

v The second argument to the GetBasePivotTableInstance method is a string that specifies the OMS
(Output Management System) table subtype for this table. This value is required (even if you don't
route the output with OMS), must begin with a letter, and have a maximum of 64 bytes. The table
subtype can be used on the SUBTYPES keyword of the OMS command, as done here, to include this pivot
table in the output for a specified set of subtypes.
Note: By creating the pivot table instance within a StartProcedure-EndProcedure block, you can
associate the pivot table output with a command name, as for pivot table output produced by syntax
commands. The command name is the argument to the StartProcedure function and can used on the
COMMANDS keyword of the OMS command to include the pivot table in the output for a specified set of
commands (along with optionally specifying a subtype as discussed above).

v The third argument to the GetBasePivotTableInstance method is a string that specifies an optional
outline title for the table, or Nothing, as in this example. When output is routed to OMS in OXML
format, the outline title specifies a heading tag that will contain the output for the pivot table.

Once you've created an instance of the BasePivotTable class, you use the SimplePivotTable method to
create the structure of the table and populate the table cells. The method has four different calling
signatures. The signature used in this example makes use of all possible arguments. The arguments used
in this example, are in order:
v rowdim. A label for the row dimension, given as a string. If empty, the row dimension label is hidden.
v rowcats. A 1-dimensional System.Array of categories for the row dimension. Labels can be given as

numeric values or strings. They can also be specified as a CellText object. CellText objects allow you
to specify that category labels be treated as variable names or variable values, or that cell values be
displayed in one of the numeric formats used in pivot tables, such as the format for a mean. When you
specify a category as a variable name or variable value, pivot table display options such as display
variable labels or display value labels are honored.
Note: The number of rows in the table is equal to the number of elements in rowcats, when provided. If
rowcats is omitted, the number of rows is equal to the number of elements in the argument cells.

v coldim. A label for the column dimension, given as a string. If empty, the column dimension label is
hidden.

Figure 2. Output of Simple Pivot Table

26 Microsoft .NET User Guide for IBM SPSS Statistics

v colcats. A 1-dimensional System.Array of categories for the column dimension. The array can contain
the same types of items as rowcats described above.
Note: The number of columns in the table is equal to the number of elements in colcats, when provided.
If colcats is omitted, the number of columns is equal to the length of the first element of cells.

v cells. This argument specifies the values for the cells of the pivot table, and can be given as a 1- or
2-dimensional System.Array. In the current example, cells is given as the 1-dimensional array {"1A",
"1B", "2A", "2B"}. It could also have been specified as the 2-dimensional array {{"1A", "1B"},
{"2A", "2B"}}.
Elements in the pivot table are populated in row-wise fashion from the elements of cells. In the current
example, the table has two rows and two columns (as specified by the row and column labels), so the
first row will consist of the first two elements of cells and the second row will consist of the last two
elements. When cells is 2-dimensional, each 1-dimensional element specifies a row. For example, with
cells given by {{"1A", "1B"}, {"2A", "2B"}}, the first row is {"1A", "1B"} and the second row is
{"2A", "2B"}.
Cells can be given as numeric values or strings, or CellText objects (as described for rowcats above).

v Numeric values specified for cell values, row labels, or column labels, are displayed using the default
format for the pivot table. Instances of the BasePivotTable class have an implicit default format of
Count, which displays values rounded to the nearest integer. You can change the default format using
the SetDefaultFormatSpec method from the BasePivotTable class. You can also override the default
format for specific cells or labels by specifying the value as a CellText.Number object and providing a
format, as in CellText.Number(22,FormatSpec.GeneralStat).

v The Close method of the BasePivotTable class closes the table object. If the pivot table is not part of a
StartProcedure-EndProcedure block, the output will be produced when the last open pivot table or text
block is closed. If the pivot table is part of a StartProcedure-EndProcedure block, the output will be
produced when EndProcedure is called.

Note: If you're creating a pivot table from data with splits, you'll probably want separate results displayed
for each split group. See the topic “Creating Pivot Tables from Data with Splits” on page 31 for more
information.

General Approach to Creating Pivot Tables
The BasePivotTable class provides methods for creating pivot tables that can't be created with the
SimplePivotTable method. The basic steps for creating a pivot table are:
1. Create an instance of the BasePivotTable class
2. Add dimensions
3. Define categories
4. Set cell values

Step 1: Adding Dimensions
You add dimensions to a pivot table with the Append or Insert method.

Example: Using the Append Method
Dim table As BasePivotTable = _

Processor.GetBasePivotTableInstance(title, templateName, Nothing)
Dim coldim As Dimension = table.Append(Dimension.Place.column, "coldim")
Dim rowdim1 As Dimension = table.Append(Dimension.Place.row, "rowdim-1")
Dim rowdim2 As Dimension = table.Append(Dimension.Place.row, "rowdim-2")

v The first argument to the Append method specifies the type of dimension, using a member of the
Dimension.Place Enumeration: Dimension.Place.row for a row dimension, Dimension.Place.column for
a column dimension, and Dimension.Place.layer for a layer dimension.

v The second argument to Append is a string that specifies the name used to label this dimension in the
table.

Chapter 8. Creating Custom Output 27

The order in which the dimensions are appended determines how they are displayed in the table. Each
newly appended dimension of a particular type (row, column, or layer) becomes the current innermost
dimension in the displayed table. In the example above, rowdim-2 is the innermost row dimension since it
is the last one to be appended. Had rowdim-2 been appended first, followed by rowdim-1, rowdim-1 would
be the innermost dimension.

Note: Generation of the resulting table requires more code than is shown here.

Example: Using the Insert Method
Dim table As BasePivotTable = _

Processor.GetBasePivotTableInstance(title, templateName, Nothing)
Dim rowdim1 As Dimension = table.Append(Dimension.Place.row, "rowdim-1")
Dim rowdim2 As Dimension = table.Append(Dimension.Place.row, "rowdim-2")
Dim rowdim3 As Dimension = table.Insert(2, Dimension.Place.row, "rowdim-3")
Dim coldim As Dimension = table.Append(Dimension.Place.column, "coldim")

v The first argument to the Insert method specifies the position within the dimensions of that type (row,
column, or layer). The first position has index 1 and defines the innermost dimension of that type in
the displayed table. Successive integers specify the next innermost dimension and so on. In the current
example, rowdim-3 is inserted at position 2 and rowdim-1 is moved from position 2 to position 3.

v The second argument to Insert specifies the type of dimension, using a member of the
Dimension.Place Enumeration: spss.Dimension.Place.row for a row dimension,
spss.Dimension.Place.column for a column dimension, and spss.Dimension.Place.layer for a layer
dimension.

v The third argument to Insert is a string that specifies the name used to label this dimension in the
displayed table.

Note: Generation of the resulting table requires more code than is shown here.

Step 2: Defining Categories
Categories for a dimension are defined using the SetCategory method of the associated Dimension object
(created with the Append or Insert method).

Example
Dim table As BasePivotTable = _

Processor.GetBasePivotTableInstance(title, templateName, Nothing)
Dim coldim As Dimension = table.Append(Dimension.Place.column, "coldim")
Dim rowdim1 As Dimension = table.Append(Dimension.Place.row, "rowdim-1")
Dim rowdim2 As Dimension = table.Append(Dimension.Place.row, "rowdim-2")
coldim.SetCategory(New CellText.NString("C"))
coldim.SetCategory(New CellText.NString("D"))
coldim.SetCategory(New CellText.NString("E"))
rowdim1.SetCategory(New CellText.NString("A1"))
rowdim1.SetCategory(New CellText.NString("B1"))
rowdim2.SetCategory(New CellText.NString("A2"))
rowdim2.SetCategory(New CellText.NString("B2"))

v You set categories after you add dimensions, so the SetCategory method calls follow the Append or
Insert method calls.

Figure 3. Resulting table structure

Figure 4. Resulting table structure

28 Microsoft .NET User Guide for IBM SPSS Statistics

v The argument to SetCategory is a single category expressed as a CellText object (one of
CellText.Number, CellText.NString, CellText.VarName, or CellText.VarValue). When you specify a
category as a variable name or variable value, pivot table display options such as display variable
labels or display value labels are honored. In the present example, we use string objects whose single
argument is the string specifying the category.

v For a given dimension, the order of the categories displayed in the table, is the order in which they are
created. For instance, the first column has a category value of "C", the second column has a category
value of "D", etc.

Notes
v Generation of the resulting table (shown above) requires more code than is shown here.
v When specifying numeric category values with CellText.Number objects, values will be formatted using

the pivot table's default format, unless a specific format is supplied, as in
CellText.Number(22,FormatSpec.GeneralStat). Instances of the BasePivotTable class have an implicit
default format of Count, which displays values rounded to the nearest integer. You can change the
default format using the SetDefaultFormatSpec method from the BasePivotTable class.

Step 3: Setting Cell Values
There are two methods for setting cell values: setting values one cell at a time using the SetCell method,
or setting entire rows or columns using the SetCellsByRow or SetCellsByColumn method.

Example: Using the SetCell Method

This example reproduces the table created in the SimplePivotTable example.
Dim table As BasePivotTable = _

Processor.GetBasePivotTableInstance(title, templateName, Nothing)
Dim rowdim As Dimension = table.Append(Dimension.Place.row, "Row Dimension")
Dim coldim As Dimension = table.Append(Dimension.Place.column, _

"Column Dimension")
rowdim.SetCategory(New CellText.NString("1"))
rowdim.SetCategory(New CellText.NString("2"))
coldim.SetCategory(New CellText.NString("A"))
coldim.SetCategory(New CellText.NString("B"))
table.SetCell(New Object() {New CellText.NString("1"), _

New CellText.NString("A")}, _
New CellText.NString("1A"))

table.SetCell(New Object() {New CellText.NString("1"), _
New CellText.NString("B")}, _
New CellText.NString("1B"))

table.SetCell(New Object() {New CellText.NString("2"), _
New CellText.NString("A")}, _
New CellText.NString("2A"))

table.SetCell(New Object() {New CellText.NString("2"), _
New CellText.NString("B")}, _
New CellText.NString("2B"))

v The Append method is used to add a row dimension and then a column dimension to the structure of
the table. The table specified in this example has one row dimension and one column dimension.

v The SetCategory method is used to create the four categories needed for the table--two categories for
the row dimension and two categories for the column dimension.

v Cell values are set with the SetCell method. The first argument is a 1-dimensional System.Array of
categories (one for each dimension) that specifies the cell. The first element specifies a category in the
first appended dimension (what we have named "Row Dimension"), the second element specifies a

Figure 5. Resulting table structure

Chapter 8. Creating Custom Output 29

category in the second appended dimension (what we have named "Column Dimension"), etc. In this
example, the array{New CellText.NString("1"), New CellText.NString("A")} specifies the cell whose
"Row Dimension" category is "1" and "Column Dimension" category is "A".

v The second argument to the SetCell method is the cell value. Cell values must be specified as
CellText objects (one of CellText.Number, CellText.NString, CellText.VarName, or CellText.VarValue).

Example: Setting Cell Values by Row or Column

The SetCellsByRow and SetCellsByColumn methods allow you to set cell values for entire rows or
columns with one method call. To illustrate the approach we'll use the SetCellsByRow method to
reproduce the table created in the SimplePivotTable example. It is a simple matter to rewrite the example
to set cells by column.

Note: You can only use the SetCellsByRow method with pivot tables that have one column dimension and
you can only use the SetCellsByColumn method with pivot tables that have one row dimension.
Dim table As BasePivotTable = _

Processor.GetBasePivotTableInstance(title, templateName, Nothing)
Dim rowdim As Dimension = table.Append(Dimension.Place.row, "Row Dimension")
Dim coldim As Dimension = table.Append(Dimension.Place.column, _

"Column Dimension")
rowdim.SetCategory(New CellText.NString("1"))
rowdim.SetCategory(New CellText.NString("2"))
coldim.SetCategory(New CellText.NString("A"))
coldim.SetCategory(New CellText.NString("B"))
table.SetCellsByRow(New Object() {New CellText.NString("1")}, _

New Object() {New CellText.NString("1A"), _
New CellText.NString("1B")})

table.SetCellsByRow(New Object() {New CellText.NString("2")}, _
New Object() {New CellText.NString("2A"), _

New CellText.NString("2B")})

v The SetCellsByRow method is called for each of the two categories in the row dimension.
v The first argument to the SetCellsByRow method is a 1-dimensional System.Array of categories (one for

each row dimension) that specifies a row. Each element of the array must be specified as a CellText
object (one of CellText.Number, CellText.NString, CellText.VarName, or CellText.VarValue).

v The second argument to the SetCellsByRow method is a 1-dimensional System.Array of cell values that
specifies the cells in the row, one element for each column category in the single column dimension.
Each element of the array must be specified as a CellText object. The first element in the array will
populate the first column category, the second will populate the second column category, and so on.

Note

When specifying numeric cell values with CellText.Number objects, values will be formatted using the
pivot table's default format, unless a specific format is supplied, as in
CellText.Number(22,FormatSpec.GeneralStat). Instances of the BasePivotTable class have an implicit
default format of Count, which displays values rounded to the nearest integer. You can change the default
format using the SetDefaultFormatSpec method from the BasePivotTable class.

Generating the Pivot Table Output
The Close method of the BasePivotTable class closes the table object. If the pivot table is not part of a
StartProcedure-EndProcedure block, the output will be produced when the last open pivot table or text
block is closed. If the pivot table is part of a StartProcedure-EndProcedure block, the output will be
produced when EndProcedure is called.

Using Cell Values in Expressions
Once a cell's value has been set it can be accessed and used to specify the value for another cell. Cell
values are stored as a CellText object (one of CellText.Number, CellText.NString, CellText.VarName, or
CellText.VarValue). To use a cell value in an expression, you obtain a string or numeric representation of
the value using the ToString or ToNumber method.

Example: Numeric Representations of Cell Values

30 Microsoft .NET User Guide for IBM SPSS Statistics

Dim table As BasePivotTable = _
Processor.GetBasePivotTableInstance(title, templateName, Nothing)

Dim rowdim As Dimension = table.Append(Dimension.Place.row, "Row Dimension")
Dim coldim As Dimension = table.Append(Dimension.Place.column, _

"Column Dimension")
rowdim.SetCategory(New CellText.NString("1"))
rowdim.SetCategory(New CellText.NString("2"))
coldim.SetCategory(New CellText.NString("A"))
coldim.SetCategory(New CellText.NString("B"))
table.SetCell(New Object() {New CellText.NString("1"), _

New CellText.NString("A")}, _
New CellText.Number(11))

Dim cell As Object = table.GetCell(New Object() _
{New CellText.NString("1"), _
New CellText.NString("A")})

Dim cellValue As Double = cell.ToNumber()
table.SetCell(New Object() {New CellText.NString("1"), _

New CellText.NString("B")}, _
New CellText.Number(2 * cellValue))

v The GetCell method is used to obtain the cell object for a specified cell. The argument is a
1-dimensional System.Array of categories (one for each dimension) that specifies the cell. Each element
of the array must be specified as a CellText object. The first element of the array specifies a category
in the first appended dimension (what we have named "Row Dimension"), the second element specifies
a category in the second appended dimension (what we have named "Column Dimension"), etc.

v In this example, the ToNumber method is used to obtain a numeric representation of the cell object with
category values {"1","A"}. The numeric value of the cell is stored in the variable cellValue and used to
specify the value of another cell.

v Character representations of numeric values stored as CellText.NString objects, such as
CellText.NString("11"), are converted to a numeric value by the ToNumber method.

Example: String Representations of Cell Values
Dim table As BasePivotTable = _

Processor.GetBasePivotTableInstance(title, templateName, Nothing)
Dim rowdim As Dimension = table.Append(Dimension.Place.row, "Row Dimension")
Dim coldim As Dimension = table.Append(Dimension.Place.column, _

"Column Dimension")
rowdim.SetCategory(New CellText.NString("1"))
rowdim.SetCategory(New CellText.NString("2"))
coldim.SetCategory(New CellText.NString("A"))
coldim.SetCategory(New CellText.NString("B"))
table.SetCell(New Object() {New CellText.NString("1"), _

New CellText.NString("A")}, _
New CellText.NString("abc"))

Dim cell As Object = table.GetCell(New Object() _
{New CellText.NString("1"), _
New CellText.NString("A")})

Dim cellValue As String = cell.ToString()
table.SetCell(New Object() {New CellText.NString("1"), _

New CellText.NString("B")}, _
New CellText.NString(cellValue & "d"))

v The GetCell method is used to obtain the cell object for a specified cell. The argument is a
1-dimensional System.Array of categories (one for each dimension) that specifies the cell. Each element
of the array must be specified as a CellText object. The first element of the array specifies a category
in the first appended dimension (what we have named "Row Dimension"), the second element specifies
a category in the second appended dimension (what we have named "Column Dimension"), etc.

v In this example, the ToString method is used to obtain a string representation of the cell with category
values {"1","A"}. The string value is stored in the variable cellValue and used to specify the value of
another cell.

v Numeric values stored as CellText.Number objects are converted to a string value by the ToString
method.

Creating Pivot Tables from Data with Splits
When generating pivot tables from data with splits, you may want to produce separate results for each
split group. This is accomplished with the SplitChange method from the DataCursor class (also available
with the DataCursorWrite class).

Chapter 8. Creating Custom Output 31

Example

In this example, a split is created and separate averages are calculated for the split groups. Results for
different split groups are shown in a single pivot table. In order to understand the example, you will
need to be familiar with creating pivot tables using the BasePivotTable class.
Dim cmdLines As System.Array = New String() _

{"GET FILE=’c:/data/employee data.sav’.", _
"SORT CASES BY GENDER.", _
"SPLIT FILE LAYERED BY GENDER.", _
"OMS SELECT TABLES", _
"/IF SUBTYPES=[’SplitChange’]", _
"/DESTINATION FORMAT=HTML OUTFILE=’c:/temp/splitchange.htm’."}

Processor.Submit(cmdLines)
Dim table As BasePivotTable = Processor.GetBasePivotTableInstance(_

"Table Title", "SplitChange", Nothing)
table.Append(Dimension.Place.row, "Minority Classification")
table.Append(Dimension.Place.column, "coldim", True, False)
Dim cur As DataCursor = Processor.GetReadCursorInstance()
Dim salary As Integer = 0, salarym As Integer = 0
Dim n As Integer = 0, m As Integer = 0
Dim minorityIndex As Integer = 9
Dim salaryIndex As Integer = 5
Dim row As System.Array = cur.GetRow()
cur.SplitChange()
While True

If cur.IsEndSplit() Then
If n > 0 Then

salary = salary / n
End If
If m > 0 Then

salarym = salarym / m
End If
’Populate the pivot table with values for the previous split group
table.SetCell(New Object() _

{New CellText.NString("No"), New CellText.NString("Average Salary")}, _
New CellText.Number(salary, FormatSpec.Count))

table.SetCell(New Object() _
{New CellText.NString("Yes"), New CellText.NString("Average Salary")}, _
New CellText.Number(salarym, FormatSpec.Count))

salary = 0
salarym = 0
n = 0
m = 0
’Try to get the first case of the next split group
row = cur.GetRow()
If Not row Is Nothing Then

cur.SplitChange()
Else

’There are no more cases, so quit
Exit While

End If
End If
If row(minorityIndex) = 1 Then

salarym += row(salaryIndex)
m += 1

ElseIf row(minorityIndex) = 0 Then
salary += row(salaryIndex)
n += 1

End If
row = cur.GetRow()

End While
cur.Close()
table.Close()

Result

Figure 6. Pivot table displaying results for separate split groups

32 Microsoft .NET User Guide for IBM SPSS Statistics

v Command syntax is first submitted to create a split on a gender variable. The LAYERED subcommand on
the SPLIT FILE command indicates that results for different split groups are to be displayed in the
same table.

v The SplitChange method is called after getting the first case from the active dataset. This is required so
that the pivot table output for the first split group is handled correctly.

v Split changes are detected using the IsEndSplit method from the DataCursor class (also available with
the DataCursorWrite class). Once a split change is detected, the pivot table is populated with the
results from the previous split.

v The value returned from the GetRow method is Nothing at a split boundary. Once a split has been
detected, you will need to call GetRow again to retrieve the first case of the new split group, followed
by SplitChange.
Note: IsEndSplit returns true when the end of the dataset has been reached. Although a split boundary
and the end of the dataset both result in a return value of true from IsEndSplit, the end of the dataset
is identified by a return value of Nothing from a subsequent call to GetRow, as shown in this example.

Creating Text Blocks
Text blocks are created with the TextBlock class.
Dim cmdLines As System.Array = New String() _
{"GET FILE=’c:/examples/data/demo.sav’.", _
"OMS SELECT TEXTS", _
"/IF LABELS = [’Text block name’]", _
"/DESTINATION FORMAT=HTML OUTFILE=’c:/temp/textblock.htm’."}
Processor.Submit(cmdLines)
Dim tb As TextBlock = Processor.GetTextBlockInstance(_

"Text block name", "A single line of text.", Nothing)
tb.Close()
Processor.Submit("OMSEND.")

v The TextBlock class requires an active dataset, so a dataset is opened with the GET syntax command.
v In the common case that you're creating text blocks along with other output such as pivot tables, you'll

probably be routing the output with OMS. To route text block output to OMS, you include the TEXTS
keyword on the SELECT subcommand of the OMS command, as in this example. As specified on the OMS
command, the text block in this example will be rendered in HTML and routed to the file
c:/temp/textblock.htm.

v You create an instance of the TextBlock class with the GetTextBlockInstance method from the
Processor class. The first argument to the GetTextBlockInstance method is a required string that
specifies the title that appears with the table. The title can be used on the LABELS keyword of the OMS
command, as done here, to limit the textual output routed to OMS.

v The second argument to the GetTextBlockInstance method is the content of the text block as a string.
Additional lines can be appended using the Append method of the TextBlock instance.

v The third argument to the GetTextBlockInstance method is a string that specifies an optional outline
title for the text block, or Nothing, as in this example. When output is routed to OMS in OXML format,
the outline title specifies a heading tag that will contain the output for the text block.

Chapter 8. Creating Custom Output 33

34 Microsoft .NET User Guide for IBM SPSS Statistics

Chapter 9. Deploying Your Application

You can deploy a .NET application that you have developed, but your application can only be used with
a licensed IBM SPSS Statistics application. For information about licensing or distribution arrangements,
please contact IBM Corp. directly.

In order for your application to run properly, the target computer must have:
v An IBM SPSS Statistics application. Support for the IBM SPSS Statistics - Integration Plug-in for

Microsoft .NET was introduced in version 14.0.2.
v The .NET Integration assemblies for IBM SPSS Statistics.
v A means for the .NET Integration assemblies to locate spssxd_p.dll .

.NET Integration Assemblies for IBM SPSS Statistics

Copies of these libraries are included with the IBM SPSS Statistics - Integration Plug-in for Microsoft
.NET and are located in the NET directory under the directory where IBM SPSS Statistics 24 is
installed--for example, C:\Program Files\IBM\SPSS\Statistics\24\NET.

Deploy versions of these libraries that match the version of spssxd_p.dll on the target machine. You can
check the version of spssxd_p.dll from the value of SpssdxVersion in spssdxcfg.ini, located in the IBM SPSS
Statistics application's root directory.

Locating spssxd_p.dll

You must provide the means for instances of the Processor class, from SPSS.BackendAPI.Controller.dll, to
locate the IBM SPSS Statistics backend API library spssxd_p.dll . See the topic Chapter 1, “Getting Started,”
on page 1 for more information.

35

36 Microsoft .NET User Guide for IBM SPSS Statistics

Notices

This information was developed for products and services offered in the US. This material might be
available from IBM in other languages. However, you may be required to own a copy of the product or
product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without
incurring any obligation to you.

37

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

The performance data and client examples cited are presented for illustrative purposes only. Actual
performance results may vary depending on specific configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to
non-IBMproducts. Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or withdrawal without notice,
and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to actual people or business enterprises is
entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

38 Microsoft .NET User Guide for IBM SPSS Statistics

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks
of Adobe Systems Incorporated in the United States, and/or other countries.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon,
Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or
its affiliates.

Notices 39

http://www.ibm.com/legal/us/en/copytrade.shtml

40 Microsoft .NET User Guide for IBM SPSS Statistics

Index

Special characters
.NET

class template 1
DataCursor class 9
DataCursorAppend class 14
DataCursorWrite class 12
EvaluateXPath method 19
Processor class 1
Submit method 5

A
Append method 27

B
BasePivotTable class

Append method 27
Insert method 27
SetCategory method 28
SetCell method 29
SetCellsByColumn method 29
SetCellsByRow method 29
SimplePivotTable method 25

D
data

appending cases 9, 14
creating new variables 9, 12
reading active dataset from .NET 9

dictionary
reading dictionary information from

.NET 7

I
Insert method 27

O
output

reading output results from .NET 19
OXML

reading output XML from .NET 19

P
pivot tables 25

R
running command syntax from .NET 5

S
SetCategory method 28
SetCell method 29
SetCellsByColumn method 29
SetCellsByRow method 29
SimplePivotTable method 25
SPSS.BackendAPI.Controller.dll 1
SPSS.BackendAPI.dll 1

T
TextBlock class 33

V
Visual Studio 1

X
XML workspace 19

writing contents to an XML file 19
XPath expressions 19

41

42 Microsoft .NET User Guide for IBM SPSS Statistics

IBM®

Printed in USA

	Contents
	Chapter 1. Getting Started
	Chapter 2. Running IBM SPSS Statistics Commands
	Chapter 3. Retrieving Dictionary Information
	Chapter 4. Working With Case Data in the Active Dataset
	Reading Case Data
	Creating New Variables in the Active Dataset
	Appending New Cases

	Chapter 5. Creating and Managing Multiple Datasets
	Chapter 6. Retrieving Output from Syntax Commands
	Chapter 7. Running Python and R Programs from .NET
	Chapter 8. Creating Custom Output
	Creating Pivot Tables
	The SimplePivotTable Method
	General Approach to Creating Pivot Tables
	Step 1: Adding Dimensions
	Step 2: Defining Categories
	Step 3: Setting Cell Values
	Generating the Pivot Table Output
	Using Cell Values in Expressions

	Creating Pivot Tables from Data with Splits

	Creating Text Blocks

	Chapter 9. Deploying Your Application
	Notices
	Trademarks

	Index
	Special characters
	A
	B
	D
	I
	O
	P
	R
	S
	T
	V
	X

