> PASW’ Collaboration and Deployment
Services 4.1 Customization Reference

SPSS Inc.233 South Wacker Drive, 11th Floor
Chicago, IL 60606-6412

Tel: (312) 651-3000

Fax: (312) 651-3668

SPSS is a registered trademark.
PASW is a registered trademark of SPSS Inc.

The SOFTWARE and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure
by the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of The Rights in Technical
Data and Computer Software clause at 52.227-7013. Contractor/manufacturer is SPSS Inc., 233 South Wacker
Drive, 11th Floor, Chicago, IL 60606-6412.

Patent No. 7,023,453

Licensee understands and agrees that the Sample Code provided hereunder is provided as-is without warranty.
Licensee further agrees that SPSS Inc. or its suppliers are not required to maintain or support such Sample Code.
Licensee’s right to use such code shall be set forth in a separate agreement between SPSS Inc. or a distributor of
SPSS Inc. and Licensee.

General notice: Other product names mentioned herein are used for identification purposes only and may be
trademarks of their respective companies.

Windows and Active Directory are registered trademarks of Microsoft Corporation in the United States and/or
other countries.

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

Eclipse is a registered trademark of the Eclipse Foundation.DataDirect, DataDirect Connect, INTERSOLYV, and
SequeLink are registered trademarks of DataDirect Technologies.

Copyright (c) 1995-2003 International Business Machines Corporation and others All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the Software, and to permit persons to
whom the Software is furnished to do so, provided that the above copyright notice(s) and this permission notice
appear in all copies of the Software and that both the above copyright notice(s) and this permission notice appear
in supporting documentation.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR
ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or otherwise to
promote the sale, use or other dealings in this Software without prior written authorization of the copyright holder.
Printed in the United States of America.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of
the publisher.

Preface

PASW Collaboration and Deployment Services is an enterprise-level application that enables
widespread use and deployment of predictive analytics. PASW Collaboration and Deployment
Services provides centralized, secure, and auditable storage of analytical assets, advanced
capabilities for management and control of predictive analytic processes, as well as sophisticated
mechanisms of delivering the results of analytical processing to the end users. The benefits of
PASW Collaboration and Deployment Services include safeguarding the value of analytical assets,
ensuring compliance with regulatory requirements, improving the productivity of analysts, and
minimizing the IT costs of managing analytics.

Technical Support

The services of SPSS Inc. Technical Support are available to registered customers of SPSS Inc..
Customers may contact Technical Support for assistance in using SPSS Inc. products or for
installation help for one of the supported hardware environments. To reach Technical Support,
see the SPSS Inc. Web site at http://mww.spss.com, or contact your local office, listed on the
SPSS Inc. Web site at http://www.spss.com/worldwide. Be prepared to identify yourself, your
organization, and the serial number of your system.

Tell Us Your Thoughts

Your comments are important. Please let us know about your experiences with SPSS Inc.
products. Please send e-mail to suggest@us.ibm.com, or write to SPSS Inc., Attn: Director of
Product Planning, 233 South Wacker Drive, 11th Floor, Chicago IL 60606-6412.

Contents

1 Customization Overview 1
PrerEqUISIEESo e 1
2 Deployment Portal Customization 3
Customizingthe User Interface. i e e e 3
Authentication Customization 5

3 URL Parameters 7

Base Path. i
QUBIY StING . .ot e e 7
Common Parameterso e e 8
Report Parameterst e 14
Scoring Parameters. 16
Custom Dialog Parameterst e e 18
HTML TeChniqUes. . . . oot e e e e e e e e e 25

4 PASW Tag Library 28

JavaServer Pages ArchiteCture oot e 29
Supported HemsS 30
REPOMtS . . o 30
JODS L e 31
Scoring Models. 31
Custom Dialogs oo 32
Building an Application. 32
Implementation Details. e 35
Public JavaScript AP, o 36
runRepositoryltem Function. 36
getBookmarkedValues Function. 37
retrievePromptValues e 37

PASW Tag Library Tag Referenceo e 38

credential Tagot 38
repoSItoryltemM Tag.ot e 1
repositoryltemPromptTag 45
FEPOIE Tag . ottt e 46
reportPrompPt Tag. . .. oo e 46
outputlocation Tagot ot 46
sourceLinkPrompt Tago i e 47
sourceLinkRepositoryltem Tag.ot e 50
sourcelinkReport Tag i 50
sourcelinkVariable Tag i 51
actionHandler Tagot e 52
actionParameter Tag ot 53

Tag Library Beans. 53
Credential Bean. oot 54
ReportBean Bean 54
SearchBean Bean. e 55
PevMetaDataBean Bean. i 56
ScoringBean Bean 57
JavaServer Pages Samples 58
5 Portal Integration 60
Installationo 61
Configuration 62

6 Scripting 67

Command Line Scripting. e 67
Global Keywordso e 67
Repository Connections. it e 68
Content Repository FUNCLiONS i e e 68
Process Management Functions i 86

APl RefErENCE . ..o 89
Content Repository APIS i e 90
Process Management APIs 124

7 HTML Archive 132

File StrUCtUIe . . oot 132
Creating HTMLC Filesot 133
Custom HTMLC File Exampleo e 133

8 Customization Example 134
PASW Tag Library. 134
Report Definitions e 134
Running PASW BIRT Report Designer Reports. 135
Running Visualization Reports i 138
Javascript APl ... 138
Visualization Report Interactivity o 138

URL Fragmentso e e 139
Tab Extension Framework. 140
Index 142

vi

Chapter

Customization Overview

Deployment Portal serves as a thin-client interface into the repository, allowing any user with a
browser and valid credentials to work with content stored within the repository. However, the
default appearance and functionality may not be optimal for all users. For example, you may
want to modify the appearance of the browser interface to better match a corporate standard.
Alternatively, you may wish to create your own interface to repository content.

PASW Collaboration and Deployment Services offers a variety of approaches for customizing
the interaction with content stored in the repository.

m Modify package components, such as images and stylesheets, to control the Deployment
Portal appearance. For more information, see Deployment Portal Customization.

m Reference repository content directly using uniform resource locators (URL) parameters.
For more information, see URL Parameters.

m Create custom web pages based on information obtained from reports and queries stored in the
repository using Java Server Page tags. For more information, see PASW Tag Library.

® Embed repository content, such as reports, on portal pages. For more information, see Portal

Integration.
m Perform batch processing of repository content using Python scripting. For more information,
see Scripting.
Prerequisites

For proper processing of custom dialogs, the following requirements must be satisfied:

m A PASW Statistics server must be set up in Deployment Manager and then designated as the
default server for executing custom dialog syntax using browser-based Deployment Manager.
It is also possible to configure individual custom dialogs to use a PASW Statistics server
different from the system default.

B The user must be assigned the Run Custom Dialogs action to be able to execute custom dialogs.

m PASW Statistics save file access is enabled by PASW Statistics Data File Driver Service,
which must be installed, started, and then designated as the driver for PASW Statistics data
using browser-based Deployment Manager. The software is available as a download to SPSS
Inc. customers.

Important! PASW Statistics Data File Driver Service must run on host with the same operating
system type as the repository host. For example, it is impossible to use PASW Collaboration and
Deployment Services running on a Linux server in conjunction with PASW Statistics Data File
Driver Service running on a Windows server.

2

Chapter 1

For information about PASW Collaboration and Deployment Services system configuration and
actions, see the administrator’s documentation.

Chapter

Deployment Portal Customization

Administrators can customize certain elements of the Deployment Portal user interface by
modifying various files in a repository package (peb-webcontent.package) and redeploying the
package with the Package Manager utility. Experience with stylesheets (.CSS) is recommended.
In addition, the system can be configured to use a custom authentication mechanism,
eliminating the need to manually enter credentials when accessing the Deployment Portal.

Customizing the User Interface

To customize the Deployment Portal user interface:

1. In the staging directory of your repository installation, copy the file peb-webcontent.package and
store it in a separate directory. Use this file as a back up if you want to revert to the default
user interface in the future.

2. In the staging directory of your repository installation, open peb-webcontent.package with a file
compression utility such as WinZip® and extract its contents to a temporary directory.

3. In the extracted images directory, modify or replace any of the following graphics as desired:

m headerbanner.gif: The main banner on the top of the Deployment Portal user interface
containing the company logo and product name. See Figure 2-1, #1. To display properly, the
banner should be a maximum of 50 pixels tall.

m bottombackground.gif: The grid-style graphic in the bottom-right corner of the Deployment
Portal Home screen. See Figure 2-1, #2.

m floatingsquares.gif: The grid-style graphic in the bottom-left corner of the Deployment Portal
Login screen.

4

Chapter 2
Figure 2-1
Default user interface
] Deployment Portal - Home - Microsoft Internet Explorer M
File Edit View Favorites Toaols Help :,'

Deployment Portal

— ||
‘fh Home @ Content Repository Preferences @ My Jobs E Model Management |§| About @ Help

Search l:l Advanced Search Welcome admin Logout

With Deployment Portal, you can:

= Browse publizhed cortent by folder,

Bookmark frequently-used content.

= Wieyy content properties and options.

Search contert by title, author, description, keyword, and ather fields.
= Wiewe and montor your submitted jobs.

Change your preferences.

a ‘j Local intranet

4. In the extracted config directory, open the UlConfig.xml file in a simple text editor such as
Notepad. Modify settings to suppress certain elements of the user interface as desired. When
finished, save and close the file. Following are common elements to suppress.

B Footer: The bottom footer bar containing the “Powered by” logo (suppressed by default).
Change value from false to true to display.

B FileHeader: The gray file information bar containing the file name and date/time last

modified, displayed when viewing a document. See Figure 2-2. Change value from true to
false to suppress.

<component-configuration>
<component-name>Footer</component-name>
<component-visibile>false</component-visibile>

</component-configuration>

<component-configuration>
<component-name>FileHeader</component-name>
<component-visibile>true</component-visibile>

</component-configuration>

5

Deployment Portal Customization

Figure 2-2
File header

| €] Deployment Portal - stderr.txt - Microsoft Internet Explorer g@
© File Edit W¥ew Favorites Tools Help -a.

Deployment Portal

{21 preferences

EP Content Repository [Z) My Jobs E Abouwt | @ Help
Search Advanced Search Wiglcome admin Logout

Content Repositary = stderr.txt

€, Home

Content Repository Modified On: 111005 12:32 PM

File: =stoerr taxt

IAResourcebundle: create resource bundle: en

Installinywhere 2005
Version: 9.0

Mon Now 10 0%:56:19 C3T Z003

Free Memory: 14539 KB
Total Memory: 16320 kKB

No Arguments

iava.class.vnath: M
1l >

Q http:{chikkroeger: G050 pebfjsp/com/spss layoutheader . jsprsearchParam=4# ‘:j Local intranet

5. In the extracted css directory, open the spsstyles.css file in a simple text editor such as Notepad.
Modify style settings as desired. When finished, save and close the file.

6. Using a file compression utility such as WinZip, compress all folders and customized files that
were extracted previously. Save the file as peb-webcontent.package (be sure to use a .package file
extension, not default .Zip).

7. Stop the repository server.

8. Use the Package Manager utility to install the customized peb-webcontent.package file you saved.
For instructions, see the configuration documentation. When finished, log out and close Package
Manager.

9. Start the repository server.

10. Wait several minutes and open Deployment Portal (http://<hostname>:<port>/peb) to verify
your changes.

Authentication Customization

If single sign-on is configured and enabled at your site, manual entry of security credentials is
not necessary for accessing Deployment Portal. However, if single sign-on is not enabled, the
system can still be customized to avoid manual credential entry.

6

Chapter 2

The Deployment Portal architecture includes a Java interface named
AuthenticationCriterialnterface. This interface includes the following methods:

public String getUserName()
public String getPassword()
public String getProvider()

To customize authentication, you must first create a Java class that implements this interface, such
as com.spss.AuthenticationCriterialmpl. Your class must provide the username, password, and
provider authentication information. These values may be supplied by a variety of sources, such
as a previously authenticated intranet site or portal. The class should be placed in the classpath
for the application server.

Next, configure the system to use your class. In the browser-based Deployment Manager,
modify the following Deployment Portal configuration settings:

m Configured Authentication Criteria Class. Supply the name of your custom class.
m Use Configured Authentication Criteria. Select this option to enable the use of your class.

After configuring you authentication class, users should be able to enter the Deployment Portal
without entering credentials, provided that the credentials supplied by the custom class are valid.
In addition, URL references to repository items will not need to include credential information.

Chapter

3

URL Parameters

You can access Deployment Portal reports and other repository objects using direct URLs
(Uniform Resource Locators). With URLSs, you can directly share reporting information in
different ways such as embedding reporting into your external web sites and applications. This
reference document lists various Deployment Portal URL parameters and contains some tips for
building and using Deployment Portal URL query strings. For assistance, contact Technical
Support.

The URL parameters outlined in this document are unrelated to the URLs available in
Deployment Manager and described in the Deployment Manager documentation.

Base Path

The base path for all requests is http://hostname:port/peb/view/<content
repository path> OR http://hostname:port/peb/view?id=<object-id>

where:

B hostname is the name or IP address of server Deployment Portal is installed on

B port is the port number

B <content repository path> is the resource path of the repository object on which to act
|

<object-1id> is the resource ID of the repository object on which to act

Examples
http://yourserver:8080/peb/view/sample/employee.dbg

http://yourserver:8080/peb/view?id=0a58c3461e885d240000010£4cc607188375

Query String

The base path for the URL reference can be followed by a query string containing parameters
that provide additional processing information. The query string begins with a question mark and
contains parameter/value pairs separated by ampersands (&). Note that if a repository item is
referenced by its resource identifier, the question mark initiating the query string is already present
for the id parameter and should not be repeated for any other parameters.

At a minimum, a URL must contain the content repository path in the base path or the id
parameter. Other parameters are optional. Unless otherwise stated, parameters and their values
are case sensitive. Some parameters, such as username and password, are used in virtually all
URL queries, while the use of other parameters may depend on the type of item being referenced
in the query. Note that the system can be configured to use a custom authentication mechanism

8

Chapter 3

to eliminate the need to supply security credential parameters in the query string. For more
information, see the topic Authentication Customization in Chapter 2 on p. 5.

Reserved characters like & and excluded US-ASCII characters like # should be URL encoded
before being specifying as a parameter value in the query string. However, characters in the
reserved set are not reserved in all contexts. In general, a character is reserved if the semantics
of the URI changes if the character is replaced with its escaped US-ASCII encoding. Hence
some characters (like ?, =, and :) are not reserved in the parameter values, but characters like &
and # are, and hence need to be URL encoded.

For example, the & character should be URL encoded as $26. Thus, the following URL:
http://yourserver:8080/peb/view/sample/employee.dbq?username=testuser&admin
should be specified as

http://yourserver:8080/peb/view/sample/employee.dbq?username=testuser%26admin

The following sections describe each parameter.

Common Parameters

id

Common parameters are used in virtually all URL references, or are used across multiple types
of repository items.

The id parameter specifies the repository identifier for the item on which to act.

Syntax

id=<identifier>
where <identifier> is the repository object identifier

Examples

http://yourserver:8080/peb/view?id=0a58c3461e885d240000010£4cc607188375

version

The version parameter specifies the version of the repository object on which to act. Special
characters, such as spaces, must be escaped. Eliminate this parameter to display the LATEST
version.

Syntax

version=m.<version marker>
where <version marker> is the version of the repository object.

OR

9

URL Parameters

version=1.<label>
where <1abel> is the version label of the repository object.

Examples

http://yourserver:8080/peb/view/sample/employee.dbg
?version=m.1:2006-12-04%2020:39:17.995

http://yourserver:8080/peb/view/sample/employee.dbg
?version=1.firstVersion

username
The username parameter specifies the user ID with which to log in to Deployment Portal.

Syntax

username=user_1ID
where user_1D is the user ID of the person logging in to Deployment Portal.

Example

http://yourserver:8080/peb/view/sample/employee.dbg?username=validUser
password
The password parameter specifies the password with which to log on to Deployment Portal.

Syntax

password=password
where password is the password of the person logging on to the server.

Example

http://yourserver:8080/peb/view/sample/employee.dbg?username=validUser&password=pass

provider

The provider parameter specifies the security provider with which to log on to Deployment
Portal. A value for provider must be specified if the username and password parameters
are used.

Syntax

provider=<provider>
where <provider> is the security provider for Deployment Portal. Valid values include:

m Native for the built-in provider

m AD/<domain> for Active Directory, where <domain> corresponds to the DNS namespace

10

Chapter 3

m ADL/<domain> for Active Directory with local override, where <domain> corresponds to
the DNS namespace

B iSeries for iSeries
m devidapOpenLDAP for OpenLDAP

Example

http://yourserver:8080/peb/view/sample/employee.dbqg
?username=validUser&password=pass&provider=Native

promptstate

The promptstate parameter specifies whether to suppress the runtime prompt dialog for
prompted variable values that are not specified in the query string.

Syntax

promptstate=x

where:

1 will suppress the runtime prompt dialog and use the specified default variable value for any
prompted variables that are not specified.

2 will display the runtime prompt dialog for any prompted variables that are not specified.
Alternately, you can eliminate this parameter to allow the prompt dialog to be displayed.

Example

http://yourserver:8080/peb/view/sample/employee.dbg?&username=validUser
&password=pass&provider=Native&fragment=true&outputtype=html
&var_EmployeeID=l&promptstate=1

waitstate

The waitstate parameter specifies whether to suppress the Wait screen while a report is running.

Syntax

waltstate=x
where 1 will suppress the Wait screen. Eliminate this parameter to display the Wait screen.

Example

http://yourserver:8080/peb/view/sample/employee.dbg?username=validUser
&password=pass&provider=Native&fragment=true&outputtype=html
&var_EmployeeID=1l&promptstate=l&waitstate=1&fragment=true

il

URL Parameters
partld

The partId parameter identifies a specific part of the repository object being referenced. For
HTMLC files, this parameter can reference a specific file within the archive. For PASW Statistics
output files (.5pw), the parameter corresponds to the index as shown in the outline for the file. For
example, to get the first part, specify part1d=0.

Syntax

partId=<reference_id>

where <reference_id> is either:
m the relative path and name of a file within an HTMLC file
m the index of the desired output within an .spw file

Example

http://yourserver:8080/peb/view/output.htmlc?username=validUser
&password=pass&provider=Native&partId=img/chart.png

http://yourserver:8080/peb/view/output.spw?username=validUser
&password=pass&provider=Native&partId=1

outputtype

The outputtype parameter specifies the file type of the result set.

Syntax
outputtype=file_type
where file type corresponds to one of the values in the following table.

Table 3-1
Output types

Report Type Value Returns
Showcase html HTML
pdf Portable Document Format
wk4 Lotus 1-2-3
text text
csv comma separated values
biff8 Microsoft Excel
xlsx Microsoft Excel 2007 XML
format
rptdocument PASW BIRT Report Designer
report document

12

Chapter 3
Report Type Value Returns
PASW BIRT Report Designer HTML HTML
Excel 97/2003 Microsoft Excel
Power Point Microsoft PowerPoint
Word Document Microsoft Word
PDF Portable Document Format
PDF - Fit to Page Width Portable Document Format using
width magnification
PDF - Page Break Pagination Portable Document Format using
Only page break pagination
PDF - Fit to Whole Page Portable Document Format using
page magnification
PostScript PostScript format
PostScript - Fit to Page Width PostScript format using width
magnification
Postcript - Page Break PostScript format using page
Pagination Only break pagination
PostScript - Fit to Whole Page PostScript format using page
magnification
BIRT RPT Document PASW BIRT Report Designer
report document
ask a prompt for the user at runtime to
specify an output format
Visualization png Portable Network Graphics
format
emf Enhanced Metafile format
ipeg JPEG
html HTML. This is a valid output
format for visualization reports
only when the output is a table. If
HTML is specified as the format
for a visualization report that does
not produce a table, the output is
converted to a PNG image.
pdf PDF
ask a prompt for the user at runtime to
specify an output format
Custom dialogs SPW PASW Statistics web output
viewer
HTML HTML
Example
http://yourserver:8080/peb/view/sample/employee.dbg?username=validUser
&password=pass&provider=Native&fragment=true&outputtype=html
format

The format parameter specifies whether to return the original file stored to the repository, rather
than running the file.

13

URL Parameters

Syntax

format=raw

where raw will return the original file. For example, in the case of a ShowCase Query definition,
using the format parameter will download the original *.dbq file instead of running the query
dynamically.

Example
http://yourserver:8080/peb/view/sample/employee.dbg?username=validUser

&password=pass&provider=Native&format=raw

fragment

The fragment parameter specifies whether to display the Deployment Portal user interface
elements (i.e., header, footer, Content Repository tree) with the report results.

Syntax

fragment=true
where true will suppress the Deployment Portal interface elements. Eliminate this parameter
to display the Deployment Portal interface.

Example

http://yourserver:8080/peb/view/sample/employee.dbg?username=validUser
&password=pass&provider=Native&fragment=true

Parameters for Variables

For non-report repository items that use variables, such as jobs, the value for a variable can be
specified by including the variable name and value in the URL query string. For custom dialogs,
jobs, and scoring, variable value prompts will appear for all variables or no variables, depending
on the value of the parameter.

For report items, the variable name must be preceded by the var_ prefix. For more information,
see the topic Parameters for Variables on p. 16.

Syntax

<variable>=<value>

where:
B <variable> is the name of the variable to satisfy

B <value> is the value to use to satisfy the specified report variable

Example

http://yourserver:8080/peb/view/sample/myJob?username=validUser
&password=pass&provider=Native®ion=1

14

Chapter 3

Report Parameters

Report parameters are used in references to reports stored within the repository. The reports may
be visualization reports, PASW BIRT Report Designer reports, or ShowCase reports.

dbcredential_datasourcename
The dbcredential_ datasourcename parameter specifies the credential with which to log

on to the data source. This is used if the data source user ID differs from the Deployment Portal
user ID.

Syntax
dbcredential_datasourcename=<credential id>

where datasourcename is the name of the given data source and <credential id> is the id
of the credential object to be used for logging on to the data source.

Example

http://yourserver:8080/peb/view/sample/employee.dbqg
?dbcredential_yourDS=0a58c346cd5b72010000010£3d£6d5e28130

dbuser_datasourcename

The dbuser_datasourcename parameter specifies the user ID with which to log on to the data
source. This is used if the data source user ID differs from the Deployment Portal user ID.

Syntax

dbuser_datasourcename=user_ID
where datasourcename is the name of the given data source and user_1ID is the user ID
of the person logging on to the data source.

Example

http://yourserver:8080/peb/view/sample/employee.dbg?dbuser_yourDS=sa

dbpwd_datasourcename

The dbpwd_datasourcename parameter specifies the password with which to log on to the data
source. This is used if the data source user ID differs from the Deployment Portal user ID.

Syntax

dbpwd_datasourcename=password
where datasourcename is the name of the given data source and password is the password
of the person logging on to the data source.

15

URL Parameters

Example

http://yourserver:8080/peb/view/sample/employee.dbg
?dbuser_yourDB=sa&dbpwd_yourDB=sa

Note

If the dbcredential_datasourcename parameter has been specified, then that parameter
will be considered for logging on to the data source before the dbuser_datasourcename
and dbpwd_datasourcename parameters.

width

The width parameter specifies width of the resulting image or graph. This parameter is used
specifically with visualization reports.

For reports containing height and width specifications, both height and width parameters
must be provided. If either parameter is missing, the graph would be rendered with its default
height and width.

Syntax

width=x
where x is the integer value in pixels.

Example

http://yourserver:8080/peb/view/sample/employee.dbg?username=validUser
&password=pass&provider=Native&fragment=true&outputtype=html
&var_EmployeeID=1l&promptstate=l&waitstate=1&width=500&height=1000

height

The height parameter specifies height of the resulting image or graph. This parameter is used
specifically with visualization reports.

For reports containing height and width specifications, both height and width parameters
must be provided. If either parameter is missing, the graph would be rendered with its default
height and width.

Syntax

height=x
where x is the integer value in pixels.

Example

http://yourserver:8080/peb/view/sample/employee.dbg?username=validUser
&password=pass&provider=Native&fragment=true&outputtype=html
&var_EmployeeID=1&PROMPTSTATE=1&waitstate=1&width=500&height=1000

16

Chapter 3

var_variable

The var_variable parameter specifies the value to use to satisfy the specified report variable.

Syntax

var_variable=value

where:

variable is the name of the variable to satisfy. To locate the variable name, in ShowCase
Query or Report Writer, from the Query menu, select Variables. A list of variable names for the
current report is displayed.

value is the value to use to satisfy the specified report variable

Example

http://yourserver:8080/peb/view/sample/employee.dbg?username=validUser
&password=pass&provider=Native&fragment=true&outputtype=html&var_EmployeeID=1
Notes

m For reports, specifying a variable value on the URL will suppress the runtime prompt for that
variable.

m To specify a single variable value (=), use the syntax var_Lastname=Curtis

m To specify multiple variable values (IN), use the syntax
var_Lastname=Curtis&var_Lastname=McLind

m To specify a range of variable values (BETWEEN), use the syntax
var_Dateship=3-1-2007&var_Dateship=3-31-2007

m To specify values for multiple variables, use the syntax
var_Lastname=Curtis&var_Dateship=3-1-2007&var_Dateship=3-31-2007

Scoring Parameters

Scoring parameters are used when referencing scoring configurations to generate scores.

dataset

The dataset parameter specifies the location of a SQL data provider definition that will be used for
batch scoring. The value of this parameter will be a relative path within the repository.

Syntax

dataset=dpd_location
where dpd_location is the path to the data provider definition in the repository.
Example

http://yourserver:8080/peb/view/myPMML.xml?username=validUser
&password=pass&scoring_configuration=testConfig

17

URL Parameters

&dataset=/datasets/dataset.sqgldpd

dataset_label

The dataset_label parameter allows the user to specify the appropriate version of the dataset.
The specified dataset version must be compatible with the data provider defined in the scoring
configuration. If not specified, the LATEST version is used.

Syntax

dataset_label=myLabel
where myLabel is the label for the desired dataset version.
Example

http://yourserver:8080/peb/view/myPMML.xml?username=validUser
&password=pass&scoring_configuration=testConfig
&dataset=/datasets/dataset.sgldpd&dataset_label=PRODUCTION

dataset_rowlimit

The user may limit the amount of data processed from the dataset for batch scoring. This will help
prevent long running processes. The dataset_rowlimit specifies the number of rows of data that
will be extracted from the dataset.

Syntax

dataset_rowlimit=x
where x is the number of dataset rows to be extracted.

Example

http://yourserver:8080/peb/view/myPMML.xml?username=validUser
&password=pass&scoring_configuration=testConfig
&dataset=/datasets/dataset.sgldpd&dataset_rowlimit=1000

scoring_configuration

The scoring_configuration parameter specifies the scoring configuration used by the scoring
engine to score the specified model.

Syntax

scoring_configuration=configName

where configName is the name of scoring configuration to use for scoring. The specified
configuration must be able to process a scoring request. A reference to a suspended configuration
will be unable to produce scores.

18

Chapter 3

Example
http://yourserver:8080/peb/view/myPMML.xml?username=validUser

&password=pass&scoring_configuration=testConfig
&dataset=/datasets/dataset.sgldpd

batch_type

The batch_type parameter specifies which scoring input prompts should be displayed. If the
parameter specifies dataset, the scoring interface will generate the input prompts for the dataset
and label. If the batch_type is not specified and parameter inputs are not defined, the interface
based on scoring parameters is used.

Syntax

batch_type=inputPrompt
where inputPrompt indicates the source for the input prompts. Currently, the only supported
source is dataset. Omit this parameter to prompt the user for input values based on parameters.

Example
http://yourserver:8080/peb/view/myPMML.xml?username=validUser

&password=pass&scoring_configuration=testConfig&batch_type=dataset

Custom Dialog Parameters
Custom dialog parameters are used when referencing custom dialog (.spd) files.

Note: This functionality requires PASW Statistics adapters in the PASW Collaboration and
Deployment Services environment. For more information, see the PASW Statistics installation
documentation.

dataset.uri

The URI of the dataset to be use by the custom dialog. For DPDs and .saV files in the repository,
the URI can be specified as a repository path or the resource ID. When the URI references a file on
the file system, the path to the file must be valid from the PASW Statistics Data File Driver server
that is used to retrieve the variable metadata. It must also be a valid path on the PASW Statistics
Server that will execute the syntax. If a repository dataset object is used, the version of the object
can be appended to the URI either as a version maker or a label.

Syntax

dataset.uri=myURI

where myURI is the URI for the dataset.

Example

http://yourserver:8080/peb/view/myDialog.spd

19

URL Parameters

?dataset.uri=spsscr:///Datasets/SpecificURI.sav

http://yourserver:8080/peb/view/myDialog. spd
?dataset.uri=spsscr:///?1id=0a30063bc975eded0000011cafb8deda8327.

http://yourserver:8080/peb/view/myDialog. spd
?dataset.uri=file:///C:/Program%$20Files/SPSSInc/Samples/accidents.sav

dataset.table

For Enterprise View data sources, the table to be used by the custom dialog. If no name is
specified, the user will be prompted to select from the list of tables available in the DPD.

Syntax
dataset.table=myTable

where myTable is the table to use.

Example

http://yourserver:8080/peb/view/myDialog. spd
?dataset.uri=spsscr:///DPDs/myDPD&dataset.table=myTableName

dataset.prompt

Indicates that the user will be forced to select a dataset for the custom dialogs. Otherwise, the
dataset selected for the first dialog opened by the user that contains matching search criteria
during a session will be used for any subsequent custom dialogs that are not configured to use a
specific dataset.

Syntax
dataset.prompt=indicator

where indicator is either true or false.

Example

http://yourserver:8080/peb/view/myDialog.spd?dataset.prompt=true

dataset.search.criteria

Search criteria to be used for generating a list of data sets at run time. The entire search string
must be entered on a single line. Multiple conditions may be combined using parenthesis and
and/or logic.

Search criteria
$$repository/title_field_name=<0bject name>

$$search/mimetype=<0bject MIME type>

20

Chapter 3

$$repository/version_created_by_field=<Created by user stamp>
$8repository/version_created_date_field=<Version created date>
$Srepository/description_field_name=<0bject description>

$$repository/object_last_modified_by=<Created by user stamp>

Syntax

dataset.search.criteria=myCriteria

where myCriteria is the search expression.

Example
locates all DPDs

http://yourserver:8080/peb/view/myDialog. spd
?dataset.search.criteria="'S$$search/mimetype%$3Dapplication/x-vnd.spss-data-provider'

locates all SAV files

http://yourserver:8080/peb/view/myDialog.spd
?dataset.search.criteria="'$$search/mimetype%3Dapplication/x-vnd.spss-spss-data%200r%20
$$Ssearch/mimetype%3Dapplication/x-vnd.spss-statistics-data’

locates all files that match the keyword SPECIAL_DATASET
http://yourserver:8080/peb/view/myDialog. spd
?dataset.search.criteria="'S$Srepository/keyword_field name%$3D%3DSPECIAL_DATASET'

variable.display

Whether to show variable names or labels.

Syntax

variable.display=<type>
where <type> is either:

B names to show variable names
m |abels to show variable labels

Example

http://yourserver:8080/peb/view/myDialog.spd
?dataset.uri=spsscr:///Datasets/SpecificURI.sav&variable.display=1labels

variable.sort
The sort criterion used for ordering variables.

Syntax

variable.sort=<myCriteria>

21

URL Parameters

where <myCriteria> is:

® none to do no additional sorting beyond the original order in the data

m alphanumeric for an alphanumeric sort of field names or labels, whichever is displayed
B measurement to sort by the field measurement levels

Example

http://yourserver:8080/peb/view/myDialog. spd
?dataset.uri=spsscr:///Datasets/SpecificURI.sav&variable.sort=alphanumeric

stylesheet.url
If you are using a CSS style sheet stored in the repository, the repository URL of the style sheet.

Syntax

stylesheet.url=myURL

where myURL is the URL for the style sheet.

Example

http://yourserver:8080/peb/view/myDialog.spd
?stylesheet.url=/peb/view/EditBox_pes.css&fragment=true

stylesheet.name
If you are using a CSS style sheet embedded in the custom dialog file, the name of the style sheet.

The style sheet file can be added to the custom dialog file using compressed archive software,
such as WinZip.

Syntax

stylesheet.name=myStyles.css

where myStyles.css is the name of the style sheet.

Example

http://yourserver:8080/peb/view/myDialog. spd
?stylesheet.name=EditBox.css

javascript.url
If you are using a JavaScript stored in the repository, the repository URL of the script file.

Syntax

javascript.url=myURL

22

Chapter 3

where myURL is the URL for the JavaScript file.

Example

http://yourserver:8080/peb/view/myDialog. spd
?javascript.url=/peb/view/EditBox_pes.js&fragment=true

javascript.name

If you are using a JavaScript sheet embedded in the custom dialog file, the name of the script file.

Syntax
javascript.name=myFile

where myFile is the name of the JavaScript file.

Example

http://yourserver:8080/peb/view/myDialog.spd?javascript.name=EditBox.js

validate.method

A validation method from the specified JavaScript file to call before a page is submitted. The form
that is being submitted should be the only parameter for the method. Upon evaluating the form
input, the method should return a Boolean value. The method should return true if everything is
valid and false if the submit should be cancelled.

Syntax
validate.method=myMethod

where myMethod is the name of the method in the JavaScript file to use for validation.

Example

http://yourserver:8080/peb/view/myDialog.spd?javascript.name=EditBox.js
&validate.method=myValidate

output format

The format of the output to create. Default format is PASW Statistics Web Output viewer format
(.spw. In some cases, it may be appropriate to create HTML instead. The output format is case
sensitive.

This parameter specifies the same information as the outputtype parameter, but is honored
only for custom dialogs.

Syntax

output. format=myFormat

23

URL Parameters

where myFormat is the format for the output. Valid values include:
m SPW for PASW Statistics web output viewer
m HTML for HTML output

Example
http://yourserver:8080/peb/view/myDialog.spd?output.format=SPW
output.filename

The name of the output file. If not specified, the output file will be generated with the same name
as the custom dialog file name but without the .Spw extension.

Syntax

output.filename=myFile

where myFile is the name for the output file.

Example

http://yourserver:8080/peb/view/myDialog. spd
?output. filename=MyOutputName. spw

showOutline
Indicates whether the outline should be displayed. Default is true.

Syntax

showOutline=indicator

where indicator is either true or false.

Example
http://yourserver:8080/peb/view/myDialog.spd?showOutline=true
allowPivoting
Indicates whether table manipulation should be allowed. When the option is disabled, the user

will not be allowed to pivot, flip, or change layers, save views or open data in a new window.
Default is true.

Syntax

allowPivoting=indicator

where indicator is either true or false.

24

Chapter 3
Example
http://yourserver:8080/peb/view/myDialog.spd?allowPivoting=true

allowPrinterFriendly

Indicates whether the printer friendly display can be opened for a particular table. Default is true.

Syntax

allowPrinterFriendly=indicator

where indicator is either true or false.

Example
http://yourserver:8080/peb/view/myDialog.spd?allowPrinterFriendly=true
allowDownload

Indicates whether the data can be downloaded to a local data file. Default is true.

Syntax

allowDownload=indicator

where indicator is either true or false.

Example

http://yourserver:8080/peb/view/myDialog.spd?allowDownload=true

showlogs

Indicates whether log entries should be shown in the output. Default is true.

Syntax

showLogs=indicator

where indicator is either true or false.

Example

http://yourserver:8080/peb/view/myDialog.spd?showLogs=true

25

URL Parameters

statistics.server

PASW Statistics server used to execute the syntax of the custom dialog. The value may be a URI
or a name that references a server defined in PASW Collaboration and Deployment Services. If
you have multiple servers, this value can specify the URI or name of a PASW Collaboration
and Deployment Services cluster.

Syntax

statistics.server=serverIdentifier

where serverldentifier identifies the server to use for execution.

Example

http://yourserver:8080/peb/view/myDialog.spd?
statistics.server=spsscr:///?21d=0a30063bc975eded40000011lcafb8deda8327

http://yourserver:8080/peb/view/myDialog.spd
?statistics.server=localStatisticsServer

http://yourserver:8080/peb/view/myDialog. spd
?statistics.server=copServerCluster

statistics.server.credential

The credential that should be used to connect to the PASW Statisticsserver when executing syntax.
The value may be a URI or a name that references a PASW Collaboration and Deployment
Services credential.

Syntax

statistics.server.credential=myCredential

where myCredential identifies the credential under which execution occurs.

Example

http://yourserver:8080/peb/view/myDialog.spd?statistics.server=1localStatisticsServer
&statistics.server.credential=spsscr:///?1d=0a30063bc975eded0000011lcafb8deda8327.

http://yourserver:8080/peb/view/myDialog.spd?statistics.server=1localStatisticsServer
&statistics.server.credential=administrator

HTML Techniques

Use an HTML editor

Many HTML editors can simplify the creation of URL query strings and insert the proper
delimiters between parameters.

26

Chapter 3

Use HTML forms to submit requests

Deployment Portal requests can be submitted from HTML forms included on a web page. For
example, a form can be used to allow a user to:

m Select from a list of available reports

m Select an output file type

m Specify prompted variables prior to submitting the report request
|

Supply an ID and password prior to running a report

The following example references a custom dialog file in the action for a form.

<form name="'AnalyzeOptions' method='"POST" target="Iframe_1"
action='/peb/view/SamplesStatistics/SPD/Simple.spd?fragment=true&promptstate=1&waitstate=1'>
<inputtype='hidden' name="'username' value="userA'/>
<inputtype="hidden' name="'password' value='passwordA/>
<input type="hidden' name="provider' value='Native'/>
<input type="hidden' name="'dataset.uri' value="spsscr:///SamplesStatistics/SAV/multipleResponseData.sav'/>
<input type="hidden' name="allowPivoting' value="false'/>

<input name='PromptParameter1’ type="checkbox' value="true'/>
Check the box to select parameter 1

<input type="submit' value="Run Report' />
</form>

Use the repository to store custom web pages containing relative paths

The repository can be used as a central location for storing all files for a custom web site. Relative
or absolute paths can be used within the custom web site to link to items such as .css style sheets,
images, Deployment Portal reporting objects, and JavaScript.

For example, you might store a folder called MyWebPage in the repository containing a custom
web page called MyWebPage.htm and resources such as images, stylesheets, and JavaScript files.
MyWebPage.htm can contain relative references to the resources such as the following:

<script language="javascript" src="MyJS.js?fragment=true">
</script>

<LINK REL="StyleSheet" HREF="MyStyles.css?fragment=true"
TYPE="text/css" MEDIA="screen" />

Note that for such relative references to work properly, the web page needs to be accessed using
the parameter fragment=true in the URL. For example:

http://yourserver:port/peb/view/MyWebPage/MyWebPage.htm?
username=validUser&password=pass&provider=Native&fragment=true

27

URL Parameters

If you want to store the resources for your web site in a different repository location from
where your web page is stored, they can be referenced from your web page (for example,
MyWebPage.htm) using absolute paths as follows:

<script language="javascript"
src="/peb/view/MyWebPage/js/MyJdS.js?fragment=true">

</script>

<LINK REL="StyleSheet"
HREF="/peb/view/MyWebPage/CSS/MyStyles.css?fragment=true"
TYPE="text/css" MEDIA="screen" />

Or, they can be referenced by using the full host name and port in the path:

<img src="http://yourserver:8080/peb/view/MyWebPage/images/MyLogo.gif?
fragment=true">

<script language="javascript" src="http://yourserver:8080/peb/view/
MyWebPage/js/MyJS.js?fragment=true">

</script>

<LINK REL="StyleSheet" HREF="http://yourserver:8080/peb/view/
MyWebPage/CSS/MyStyles.css?fragment=true" TYPE="text/css"
MEDIA="screen"/>

Chapter

PASW Tag Library

A JavaServer Pages (JSP) tag library is provided with PASW Collaboration and Deployment
Services for administrators and advanced users who want to create relationships between
repository items and create custom Web pages (.jSp pages) containing items that can feed values to
one another. The tag library provides the following basic functionality:

Authentication: You can set the user, password, and security provider and share across any items
or prompts defined on the page. Authentication is required to access the items in the repository
and for data source authentication.

Items: You can specify the definition of items, including the target “container” (<div> or
<iframe> element). The items will run using a POST request for IFRAME targets and using
AJAX (Asynchronous JavaScript and XML) for DIV targets.

Prompts: You can use prompts to dynamically adjust the parameters used to run items. The
prompt location is only restricted to a location on the current page. Prompts can either be user
defined or a selected parameter from an existing item definition.

Linking Relationships: You can define relationships between either:
B source report items and target report, job, scoring, or custom dialog items

B a list of prompts and a target item. Both the activation location (DIV or IFRAME) and the
timing (ONDEMAND, ONLOAD, or NONE) are supported.

The tag library framework is made up of three main parts:
m Public JavaScript API.
m Custom tags and their interactions with each other.

m Tag library beans for data set retrieval. For more information, see the topic Tag Library
Beans on p. 53.

This document describes each tag function available in the JSP tag library provided with PASW
Collaboration and Deployment Services, and includes usage examples. After reading this
document, we recommend reviewing the sample .jsp files shipped with the tag library before
creating your own custom pages. For more information, see the topic JavaServer Pages Samples
on p. 58.

28

29

PASW Tag Library

Upgrading to PASW Tag Library

Note that previous versions of PASW Collaboration and Deployment Services used a .tld
file named reporting-taglib.tld. Any existing JSP pages using that name should be updated to
reference pasw-taglib.tld.

JavaServer Pages Architecture

The “JSP Architecture” figure illustrates the architecture underlying the use the tag library. The
application server hosting the repository includes a servlet engine that transforms the information
contained in the library tags into input for web services included in PASW Collaboration and
Deployment Services.
Figure 4-1
JSP Architecture

Deployment Repository
Database Server

Web Browser

®

JSP Pages

4—»'*'-1—:-

Servlet Engina Web Services

In general, the process of running items using the tag library is as follows:

» The JSP developer uses custom tags to define credentials, prompts, items, and item relationships
in a .jsp file and stores the file on the application server hosting repository.

» When a client accesses the .jSp page, the server evaluates the tags and generates XML data islands
or HTML elements as appropriate, which are used by the JavaScript components of the framework
to identify and manage relationships between items and prompts.

» Validations are carried out in each tag handler and appropriate error messages are displayed on the
page so the user is aware of any errors at each stage of page creation.

» A servlet provides support for running items and processing and returning the output.

» The web service associated with the item type is invoked to run the item and perform various
validations.

30

Chapter 4

Supported Items

Reports

A variety of repository items can be referenced in JSP pages using the PASW Tag Library. When
processing the page, the MIME type of the item determines how the item gets processed. Valid
items include:

B Reports

m Jobs

® Scoring models
|

Custom interface definitions

For a report, the repository item must reference one of the following types of files:
m PASW BIRT Report Designer report design (*.rptdesign)
m Showcase Suite report (*.dbq or *.rpt)

m Visualization definition (*.vi2)
The following properties should be considered when working with report items:

Output. A report item typically generates a single output. Visualization reports, however, generate
an imagemap in addition to the visualization. The output for the item can be delivered in a variety
of formats that depend on the report type. Available formats include:

HyperText Markup Language (*.html)
Portable document format (*.pdf)

Report document (*.rptdocument)

HTML Complete (*.htmic)

MIME HTML (*.mht)

Microsoft Word document (*.doc)
Microsoft PowerPoint (*.ppt)

Portable Network Graphic (*.png)
Enhanced Metafile (*.emf)

Joint Photographic Experts Group (*.jpeg)

Prompts. When processed, the item will prompt for values for any variables defined in the report.
Location restrictions. Output of the *.rptdocument type can only be displayed in an IFRAME.
Item linking. Report items can be used as sources for subsequent items or as targets of other items.

Supported tags. Report items do not support the outputLocation tag. All other tags in the
tag library are supported.

31

Jobs

PASW Tag Library

The item may include additional information controlling the output display, such as the window
title or the presence of a toolbar.

For a job, the repository item must reference a PASW Collaboration and Deployment Services
job, which has a MIME type of application/x-vnd.spss-prms-job. The following properties should
be considered when working with job items:

Output. A job item can generate any number of outputs of varying types. The output produced
depends on the steps contained within the job.

Prompts. When processed, the item will prompt for values for any job parameters defined for
the job.

Location restrictions. Output from the individual steps within the job must be explicitly defined.
Item linking. Job items can be used as targets of other items but not as sources.

Supported tags. Job items do not support the actionHandler tag. All other tags in the tag
library are supported.

Scoring Models

For a scoring model, the repository item must reference a file configured for scoring. Valid types
of files include:

m scenario (*.scn)

® PASW Modeler stream (*.str)

®m Predictive Model Markup Language (PMML)
|

Real Time predictive application definition
The following properties should be considered when working with scoring items:
Output. A scoring item produces HTML output.

Prompts. When processed, the item can prompt for values for parameters, a data file, a data
provider definition, and a model name.

Item linking. Scoring items can be used as targets of other items but not as sources.

Supported tags. Scoring items do not support the outputLocation and actionHandler tags.
All other tags in the tag library are supported.

32

Chapter 4

Custom Dialogs

Note: This functionality requires PASW Statistics adapters in the PASW Collaboration and
Deployment Services environment. For more information, see the PASW Statistics installation
documentation.

For a custom web interface, the repository item must reference a dialog definition (*.spd). The
following properties should be considered when working with custom dialog items:

Output. A custom dialog item generates:
B a single output file (*.Spw) that must be targeted to a frame or window
m HTML that can be targeted to a frame/window or a DIV

Prompts. When processed, the item will prompt for values for any prompts defined in the dialog
definition. The item can also prompt for data sets. However, any help for prompts defined in the
.spd file is not used. The application should include its own help references.

Location restrictions. The output can be viewed in a frame, DIV, or a new window.
Item linking. Dialog items can be used as targets of other items but not as sources.

Supported tags. Dialog items do not support the actionHandler tag. All other tags in the
tag library are supported.

The web deployment properties described for use in a URL referencing a custom dialog item can
be specified in the tag library either as properties nested in the repositoryItem tag or using
the sourceLinkPrompt tag. For more information, see the topic Custom Dialog Parameters in
Chapter 3 on p. 18.

The dataset.uri and dataset.table properties should always be defined, with
the latter applying to data provider definitions only. In contrast, the javascript.url,
javascript.name, stylesheet.url, and stylesheet.name properties are all ignored.
Values for those properties should be defined within the JSP itself.

Building an Application

Each JSP page in a custom application must define some standard directives to allow the tag
library to be used and referenced properly. The first, the page directive, sets properties for the
entire page itself. These properties include:

m |anguage, the scripting language used by the page
m contentType, the MIME type and character set used for responses to clients

B session, whether or not the tag library stores information on the session

The second directive, taglib, indicates which tags will be used by the JSP page. Properties defined
for this directive include:

m uri, the proper path to pasw-taglib.tld
m prefix, a scope for the tags

33

PASW Tag Library

Note that previous versions of PASW Collaboration and Deployment Services used a .tld
file named reporting-taglib.tld. Any existing JSP pages using that name should be updated to
reference pasw-taglib.tld.

The following sample uses the page directive to define the content type as text/html using the
UTF-8 character set, the scripting language as Java, and use of the session object as true. The
taglib directive identifies the location of the reporting .tld file and specifies a prefix of r for all
tags defined within.

<%®@ page contentType="text/html;charset=utf-8"
language="java" session="true" %>

<%@ taglib uri="/WEB-INF/tlds/pasw-taglib.tld" prefix="r" %>

<IDOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
http://www.w3.0rg/TR/html4/loose.dtd">

<html>
<!-Rest of HTML/ JSP goes here >
</html>

To put your application into production you should plan on creating a web application archive
(.war) file containing the .jsp files and deploy it as a separate web application on your application
server. This is the preferred method.

For example, the structure of expanded sample reporting tag library application archive
(paswTagLib.war) included in the default installation of PASW Collaboration and Deployment
Services is as follows:

paswTagLib
index.html
setup.html
—s
<JavaScript files> |
—sp
<Java Server Page files>
—META-INF
MANIFEST.MF
WEB-INF
| web.xml
| weblogic.xml
b
| <Java archive files>
Lds
pasw-taglib.tld
reporting-taglib.tld
Lxsl

<Extensible Stylesheet Language files>

34

Chapter 4

Note that the TLD (Tag Library descriptions) file and libraries (.jar files) are included in the
deployed .war file. The TLD file is also referenced in the application descriptor file (web.xml):

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPEweb-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
<filter>
<filter-name>Common Authentication Filter</filter-name>
<filter-class>com.spss.report.taglib.filter. AuthFilter</filter-class>
<init-param>
<param-name>PARAMETER_ENCODING</param-name>
<param-value>UTF-8</param-value>
<description>Parameter Encoding</description>
</init-param>
<init-param>
<param-name>SSO_ADAPTER_CLASS</param-name>
<param-value>com.spss.er.sso.authenticator.SessionAuthenticatorlmpl</param-value>
<description>SS0 Authenticator Impl class</description>
</init-param>
</filter>
<filter-mapping>
<filter-name>Common Authentication Filter</filter-name>
<url-pattern>/reportingTaglib/*</url-pattern>
</filter-mapping>
<filter-mapping>
<filter-name>Common Authentication Filter</filter-name>
<url-pattern>/tagLib/*</url-pattern>
</filter-mapping>
<servlet>
<servlet-name>ReportingTaglibServlet</servlet-name>
<display-name>
Servlet responsible for fulfilling all requests from
reporting taglibs
</display-name>
<servlet-class>
com.spss.report.taglib.servlet.ReportingTaglibServlet
</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>ReportingTaglibServlet</servlet-name>
<url-pattern>/reportingTaglib/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
<servlet-name>ReportingTaglibServlet</serviet-name>
<url-pattern>/tagLib/*</url-pattern>
</servlet-mapping>

<!-Start: Taglib Node »

<taglib>

35

PASW Tag Library

<taglib-uri>/reporting-taglib.tid</taglib-uri>
<taglib-location>/WEB-INF/tlds/pasw-taglib.tld</taglib-location>
</taglib>

<!-End : Taglib Node >

<l-start : Security-Constraint Node -
<!-End : Security-Constraint Node >
</web-app>

The application descriptor also specifies that ReportingTaglibServiet servlet is mapped to
the /taglib and /reportingTagLib URL patterns, and either URL would call the servlet. The
servlet Java class is com.spss.report.taglib.serviet.ReportingTaglibServiet. Optional single
sign-on functionality is enabled by a servlet filter Common Authentication Filter which uses
com.spss.report.taglib.filter.AuthFilter class and is mapped to the servlet by URL. The filter is
initialized with encoding and SSO adaptor class parameters.

For more information about .war files, see online resources such as
http://java.sun.convj2ee/tutorial/1_3-fcs/doc/WebComponents3.html. Also see your
application server’s documentation for additional information and requirements.

Important! Application .war files that are not deployed by PASW Collaboration and Deployment
Services installation scripts or Package Manager, such as tag library or custom applications, may
need to have class loader order modified. For example, for reporting and scoring tag library
applications on WebSphere, class loader order must be set to Classes |oaded with application class
loader first and .war class loader policy to Sngle class loader for application.

Implementation Details

Users creating custom .jSp pages should be aware of the following information.

m Each time the server stops, any .jsp that are placed directly in the tmp/deploy directory files are
lost. To preserve your .jSp files, save backup copies to a local drive and copy them back to the
server after each restart. Production applications should by packaged in .war files. For more
information, see the topic Building an Application on p. 32.

m Internet Explorer 6.0 and Mozilla Firefox™ 1.5 are supported. Firefox has the following
restrictions:
m For reports containing images and/or charts, the .mht output format combines all the
images/charts and HTML in a single file compatible with Internet Explorer only.
m ShowCase Report Writer reports (.rpt) use special technology for charts. This technology
is only compatible with Internet Explorer.

m The server pre-validates all tags to the extent possible and writes error messages to the HTTP
response as they are identified. This provides the JSP developer assistance in resolving
problems as a page is being created. For example, the following items are validated: verify
all required credentials are defined; verify credentials; verify report parameters exist; verify
column names exists for a report object; verify the linkage between items is logically sound.

m The tags require a repository server.

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/WebComponents3.html

36

Chapter 4

m The tag library supports links between prompts and items, between row clicks and target
items, between reports and drill-down reports in the same frame, and between prompts/table
rows and target items opened in separate windows.

m All linkage behavior is hidden from the user and is defined using
sourceLinkRepositoryItem and/or sourceLinkPrompt JSP tags. The
user is not required to understand any technology beyond JSP tag usage.

m All target items must be predefined with parameters to receive the passed parameters.

m For custom dialogs, the standard CSS defines default styles that are included automatically
at the point the repositoryItem tag is used. To override those styles, include a custom
style sheet after the repositoryItem tag. For example:

<r:repositoryltem name="sample" inputURI="spsscr:///myDialog.spd"
..more here...
</rrrepositoryltem>

<link rel="stylesheet" type="text/css" href="MyStyles.css">

Public JavaScript API

The framework provides JavaScript functions for processing repository items, retrieving
bookmarked report values, and retrieving cascading prompt values.

runRepositoryltem Function

The public JavaScript function provided by the framework for running an item is
runRepositoryItem. It allows the developer to run an item by connecting this JavaScript to an
event handler, and activate an item when using prompts. However, when running an item directly
using this function, the normal prompt validation is bypassed. It is the application’s responsibility
to validate any parameters before invoking function.

The function accepts three arguments.

B a string corresponding to the name of the item to execute. The name must have been defined
using the name attribute of the repositoryItem tag.

B an Array of data values to use as parameter values when running the item. The array has the
following structure:

var thisVar = new Object();
thisVar.value = "param_value",
thisVar.columnName = "param_name";
var linkedData = new Array(thisVar);

B an optional parameter specifying a target location for the item output. This follows the same
rules as the location attribute of the repositoryItem tag. It may be the ID of a DIV, the
name of an IFRAME or FRAME, *NEW or *windowName. If omitted, the default location
from the repositoryItem is used.

37

PASW Tag Library

The data value array many be specified in one of the following ways:

® null (or omitted). In this case, any necessary values are retrieved using any
sourceLinkPrompt tags defined for the item.

m the link data from actionHandler. actionHandler tags define functions to call and the
parameter values which are captured as part of the event. Those parameters can be passed
directly to the runRepositoryItem APIL

m user defined. The JavaScript calling the runRepositoryItem API can define the values
of the array above as necessary. The columnName is the name of the column defined in the
sourceLinkVariable tag. The value is the value to pass as the parameter.

getBookmarkedValues Function

The getBookmarkedvalues function retrieves the values of cells that have been bookmarked in
a PASW BIRT Report Designer report. The id attribute of the cell should be set to the bookmark
value. This function can be used for linking complex PASW BIRT Report Designer reports
involving crosstabs and nested tables.

The getBookmarkedvalues function accepts two arguments:

® a parent node in the DOM of the PASW BIRT Report Designer report that the function needs
to traverse to get the cell values matching the items specified in the bookmarks array

B an array of bookmarks defined in the PASW BIRT Report Designer report whose values are
needed. For example, [“bookid1”,”bookid2”].

The function returns an array of data values to use as parameter values when running the report.
The array has the following structure:

var thisVar = new Object();
thisVar.value = "cell_value”;
thisVar.columnName = "bookmark";

The columnName is the name of the bookmark. The value is the value of the specified cell that
is bookmarked.

retrievePromptValues

The retrievePromptvalues function should be called when using parameters with custom

controls, and supports both cascading and non-cascading prompts. Call this function in the body

onLoad handler to load the initial values of the prompt (or the parent prompt in the case of a

cascading prompt). Call this function in the onChange handler of the control used to define the

cascading parameter. The function will make calls to the server and get the prompt values to fill

the parameter controls with updated values depending on the parent parameter value selected.
The retrievePromptvalues function accepts four arguments:

B astring denoting the name of the report containing the definitions of the cascading parameters.
The name must have been defined as the name attribute of a repositoryItem tag.

38

Chapter 4

B a string corresponding to the name of the parameter in the report. For cascading parameters,
this string is the name of the cascading parameter group. The cascading group must be
present in the report.

® a user-defined function that accepts an array of value and display text for the new options.
The array can be null, in which case the function should clear the control. This function

will be called by retrieveCascadingPromptValues to populate the parameter controls
with new values.

function callback(options) {
// logic to clear the control
// logic to add value and display text to control
for(vari = 0; i <options.length; i++) {
control.value = optionsli].value;
Display Text for control = options[i].displayText;
ki
ki

B an array of the selected preceding values present in the cascading group. This array is only
needed for cascading parameters and should be omitted for a non-cascading parameter. The
parameters must be in sequential order. To get the list of the parent cascading parameter,
specify preceding values:

var precedingvals= new Array();

The preceding values array has the following structure. For example, to get the list of cities in MN:

precedingvals= new Array();
precedingvals[0]= "USA",
precedingVals[1]="MN";

PASW Tag Library Tag Reference

The various tags included in the PASW Tag Library are dependent on each other and, for
validation purposes, need to know that the references are correctly met. The tags must also be
defined in the correct sequence. The following sections describe each available tag in detail.

This tag library depends upon JSP 1.1.

credential Tag

The credential tag defines both a data source login credential and a repository login credential.
The credential is referenced by name for all items and/or prompts defined on the page. It should
be defined prior to any tags that may reference the credential. In normal use, it would be the first
tag referenced in the JSP.

The credential tag can contain properties elements. For, example, in the case of J. D.
Edwards (JDE) enabled data sources, the credential looks like the following:

<credential>
<properties>
<property name="JDE_LIBRARY_LIST_SELECTED" value="liblist_name"/>
</properties>

39

PASW Tag Library
</credential>

Tag Nesting:

® None

Expected Output:

m None. This tag provides authentication information. The tag does not produce output, but
caches the credentials using the name attribute as a key for later use with a report or prompt
tag.

Table 4-1

Attributes for the credential tag

Name Required Description

name true Either an internal name for

the repository credential or the
name of a data source used in a
repository item object. This is
used to link items and prompts to
this credential and to satisfy any
data source logins required by
referenced items.

B For repository credentials,
this must match the
name provided on the
repositoryCreden-
tialName attribute of the
repositoryItem tag.

B For database credentials,
the name must match the
data source name as it is
referenced by the item using
that data source.

This name is used to store the
credential values in a session
variable. All credentials must
have a unique name.

useSSO false Indicates if Single Sign On
credential for Kerberos should be
used. If this attribute is set to true,
then the username, password, and
provider attributes must not be
specified.

When using SSO, the
Authentication Filter must be
configured in the web.xml file.
For more information, see the
topic Building an Application on
p. 32.

40

Chapter 4

Name Required Description

credentialDefinitionName false The name of a credential defined
as a resource in the repository.

If this value is specified, the
username, password, and
provider attributes do not need
to be defined as the credential
resource includes this information.

provider false For repository credentials, this
is the optional security provider
name. Valid values include:

® Native for the built-in
provider

B AD/<domain> for Active
Directory, where <domain>
corresponds to the DNS
namespace

B ADL/<domain> for Active
Directory with local
override, where <domain>
corresponds to the DNS
namespace

B Series for iSeries

B devidapOpenLDAP for
OpenLDAP

If not specified, the built-in
repository security provider is
used. This attribute is ignored for
database credentials.

username false The user name to use for
authentication.

password false The password for the specified
username. The password is used
internally by the tag library. It is
NOT written to the JSP result.

Sample Usage:

The following sample specifies three credentials. This first is for accessing the repository

with a specified username and password. The value of Native for provider indicates that the
username/password pair for validation is defined in the native local security provider. The second
credential employs single sign-on for the repository using the user’s previously authenticated
credentials. The third credential is for a data source named Northwind.

<r:credential name="repositoryCredential" provider="Native"
username='admin' password='password'/>

<r:credential name="repositorySSO" useSSO="true" />

<r:credential name="Northwind" username='sa' password='sa'/>

41

PASW Tag Library

repositoryltem Tag

The repositoryItem tag is the main tag for for defining repository item definitions that will be
used by the application. The repositoryItem tag may reference reports (ShowCase reports,
PASW BIRT Report Designer reports or visualization reports), jobs, scoring items, or SPD files.
The repository items may be run directly, used to provide prompts, or ran programatically.

Any sourceLinkPrompt and sourceLinkRepositoryItem tags should be nested within
the repositoryItem tag.

B Use a nested sourcelLinkRepositoryItem tag if this item will be run when the user
clicks on a different item.

B Use sourceLinkPrompt when the parameter values will come from prompts defined on the
page or defined directly in the item.

You may optionally specify aditional properties that are specific to a type of repository item. The
property names must be in lower case for them to work in the Firefox browser. These property
values will be passed to the URL to run the repository item. The properties are specified as a
nested XML block.

Tag Nesting:

m This tag may include one sourcel.inkRepositoryItem and/or multiple
sourceLinkPrompt and outputLocation tags.

Table 4-2

Attributes for the repositoryltem tag

Name Required Description

name true Defines a unique name for the
item. The name can then be
referenced by other tags or via
the runRepositoryItem()
JavaScript APL

inputURI true The item definition to be used

to render the report output. This
value must specify a URI that
may be used to locate the item
definition. The following URI
schemes are supported:

B file: References a specific
file on the application server
and/or a network file location

B spsscr: References a file in
the repository. This scheme
allows files to be referenced
by identifier or hierarchical
path within the repository.
Specific version markers can
be specified. If no version or
label is specified, the latest
version is used.

B scoring: References a
model configuration from
the repository. Scoring
configurations are referenced

42

Chapter 4

Name Required Description
by name from the tag
libraries. If a scoring
configuration is renamed, the
tag library reference must
also be modified.

activate true Specifies when the item will be

activated. Options include:

® ONDEMAND: Runs the
item when activated by a row
click on a source report.

B ONLOAD: Runs the item
when the page initially loads.

B NONE: Item does not run
automatically. In this case,
the item is used to provide
prompts or prompt values.

Regardless of the activate

setting, any report may

be run programatically by

using the public JavaScript

runRepositoryItem() APIL

location false The destination for the output
resulting from running the

item. The usage varies slightly

depending on what the target type

is.

B For DIV targets, the location
should specify the ID of the
DIV tag where the output is
to be placed.

B For [IFRAME targets, the
location must specify the
name of the frame.

B To open the output in a new
window, specify a location of
*NEW.

B To direct the output to a
named window, use an
asterisk (*) followed by the
window name. For example,
*MYWINDOW will open a new
window called MYWINDOW
and will reuse that window
on each activation of the link.

repositoryCredentialName true The name of the credential that

should be used when accessing
the item from the repository and
running the item via the reporting
service. The credential should
have been previously defined
using the credential tag.

43

PASW Tag Library

Name

Required

Description

outputType

false

The type of output to generate.
The supported output types vary
by item type. Normally this will
be either HTML or PNG but other
options include:

PASW BIRT Report Designer
Reports: HTML, PDF,
RPTDocument, PowerPoint,
Word Document, HTMLC

Visualization Reports: PNG, EMF,
JPEG, HTML

ShowCase Query: HTML, PDF,
CSV, WK4, Excel 97/2003, xIsx

ShowCase Report Writer: HTML,
PDF, MHT

If not specified, the output will
default to HTML (or PNG for
visualization reports). When a
PASW BIRT Report Designer or
ShowCase report is used as a link
source, the outputType will be
ignored and HTML generated
since the other output types don’t
support linking.

To display reports using
the viewer, specify a type of
RPTDocument. For this type, the
target must be an iframe.

showTitle

false

Specifies whether the title bar

of the BIRT Viewer is to be
shown. Specify the value as either
true or false. This setting only
applies when the outputType is
RPTDocument which displays in
the Report Viewer. Default is true.

title

false

Specifies the title for BIRT
Viewer. This setting only
applies when the outputType is
RPTDocument which displays
in the Report Viewer. If not
specified, the default title is
displayed.

showToolBar

false

Specifies whether the ToolBar

of the BIRT Viewer is to be
shown. Specify the value as either
true or false. This setting only
applies when the outputType is
RPTDocument which displays in
the Report Viewer. Default is true.

44

Chapter 4

Name

Required

Description

showNavigationBar

false

Specifies whether the navigation
bar of the BIRT Viewer is to be
shown. Specify the value as either
true or false. This setting only
applies when the outputType is
RPTDocument which displays in
the Report Viewer. Default is true.

width

false

This is the width of the output
image. The width must be
greater than 0 and specified in
conjunction with the height. If not
specified, the default width and
height are used.

height

false

This is the height to use when
output is an image. The width
must also be specified or the
setting will have no effect. The
value must be greater than 0.

Sample Usage:

The following sample defines an item named AllCountries for a PASW BIRT Report Designer

report stored in the repository.

<r:repositoryltem name="AllCountries"

inputURI="spsscr:///SampleReports/BIRT/CountrySales.rptdesign"
repositoryCredentialName="repositoryCredential"

outputType="HTML" width="400" height="300"
activate="ONLOAD" location="ReportDIV">

</rrrepositoryltem>

To prompt for parameter values for an item, include a sourceLinkPrompt tag. The following
sample retrieves a value for the parameter ShipCountry using the JavaScript function getValue.

<r:repositoryltem name="CountrySales"

inputURI="spsscr:///SampleReports/BIRT/CountrySalesByCity.rptdesign”
repositoryCredentialName="repositoryCredential"

outputType="HTML" activate="ONDEMAND" location="ReportDIV">
<r:sourceLinkPrompt targetNameParameter="ShipCountry"

getValueJSFunction="getValue('IDFilter')"/>

</rrrepositoryltem>

To run a second item in response to a user action, include a sourceLinkRepositoryltemtag. The
following sample runs the visualization report CityDetails in response to an action in the source

report AllCountries.

<r:repositoryltem name="CityDetails"

inputURI="spsscr:///SampleReports/Vis/CitiesBarChart.viz"
repositoryCredentialName="repositoryCredential"

outputType="png" width="400" height="300"

activate="ONDEMAND" location="SecondReportDIV">
<r:sourcelinkRepositoryltem sourceReportName="AllCountries">

<r:sourcelLinkVariable columnName="ShipCountry" targetNameParameter="ShipCountry"/>

45

PASW Tag Library

</r:sourcelinkRepositoryltem>
</r:repositoryltem>

repositoryltemPrompt Tag

The repositoryItemPrompt tag generates the HTML for a prompt variable that is defined

in the referenced item. The item that the prompt is referencing must be defined using the
repositoryItem tag before this tag can be used. Use this when you want prompt controls such
as those used in Deployment Portal to be used in your application.

This tag generates the HTML prompt controls in the location corresponding to where the tag
is used. The tag must be associated with a particular parameter of an item to be useful. The
association with parameters is done using the sourceLinkPrompt tag, where the promptID of
the sourceLinkPrompt must match the promptID of this tag.

Tag Nesting:

® None

Expected Output:

B An HTML element that allows the user to select and/or type personal values depending on
the promptType, which is selected as parameterName. The repositoryItemPrompt
tag supports all parameters Deployment Portal supports. As a result, all types of prompts are
supported and the appropriate HTML element is generated.

Table 4-3

Attributes for the repositoryltemPrompt tag

Name Required Description

promptld false A unique identifier that can

be referenced from the
promptId attribute of the
sourceLinkPrompt tag.

repositoryltemName true A reference to the name of

the item as defined in the name
attribute of the repositoryItem
tag.

parameterName false Name of the prompt variable as
defined in the item.

Sample Usage:
The following sample prompts for a value for the Employeel D parameter in the Employees report.

<repositoryItem name="Employees"
inputURI="file:///d:/yourDS/ReportTaglib/Employees.dbqg"
repositoryCredentialName="localhost" activate="NONE" />

<repositoryItemPrompt promptId="EmployeeIdPrompt"
repositoryItemName="Employees" parameterName="EmployeeID" />

46

Chapter 4

report Tag

This tag is deprecated. Use the repositoryItem tag instead

reportPrompt Tag

This tag is deprecated. Use the repositoryItemPrompt tag instead

outputLocation Tag

This tag associates the generated output that exists in the repository with the location on the page
where the output is displayed. When the item runs, the output is retrieved from the repository and
displayed at the specified target location on the page.

This tag must always be nested within a repositoryItem tag.

Tag Nesting:

m None

Table 4-4

Attributes for the outputlLocation tag

Name Required Description

outputld false This is the path to the output

that exists in the repository. For
custom dialogs, this attribute
should be omitted. The output
from running the syntax is
automatically detected.

location true This attribute specifies where the

output should be placed on the

page.

B For DIV targets, the location
should specify the ID of the
DIV tag where the output is
to be placed.

B For [IFRAME targets, the
location must specify the
name of the frame.

® To open the report output
in a new window, specify a
location of *NEW.

B To direct the output to a
named window, use an
asterisk (*) followed by
the window name. For
example, *MYREPORTS
will open a new window
called MYREPORTS and will
reuse that window on each
activation of the link.

47

PASW Tag Library

Name Required Description

HTML outputs may target a DIV.
All other outputs should target an
IFRAME or a window.

partld false This is used to identify the specific
part or item of the SPW archive
output.

Note: This functionality
requires PASW Statistics
adapters in the PASW
Collaboration and Deployment
Services environment. For
more information, see the
PASW Statistics installation
documentation.

Sample Usage:

The following sample specifies an output location for a chart stored in the repository using the
ChartFRAME TFRAME tag.

<outputLocation outputId="spsscr:///output/output_chart.png”
location="ChartFRAME"” />

If the attribute values depend on parameter values, use the sourceLinkPrompt tag to define
matches for the parameters. If a match is found, it is substituted for the parameter. For example,
the following sample defines two outputLocation tags with filenames that depend on parameters.

<repositoryItem name= “Call_Center_Score”
inputURI= “spsscr:///job/Call Center”
repositoryCredentialName="1localhost”
activate="ONDEMAND” />
<outputLocation outputId ="spsscr:///output/output_tab_${JobParaml}.png”
location="ChartFRAME” />
<outputLocation outputId="/output/output_chart_${JobParam2}.html”
location="ReportDIV” />
<sourceLinkPrompt promptId="JobParaml” parameterValue="Jan” />
<sourceLinkPrompt promptId=“JobParam2”
targetNameParameter="html_id_for_the_value” />
</repositoryItem>

For JobParaml, a value of Jan is substituted in the name, resulting in output_chart_Jan.png
appearing at ChartFRAME.

For JobParam?2, the value associated with the html control for the parameter is substituted in
the name. If that value is lllinois, the file output_tab_Illinois.html appears at ReportDIV.

sourcelinkPrompt Tag

The sourceLinkPrompt tag associates the item parameters with the prompts providing their
values. These could be user defined HTML elements, javaScript functions, prompts created using
the repositoryItemPrompt tag, or directly specified values.

48

Chapter 4

The sourceLinkPrompt tag must always be nested within a repositoryItemtag. When
the item runs, the parameter values are retrieved using the sourceLinkPrompts.

Tag Nesting:

® None

Validations Performed:

m None

Expected Output:

m None

Table 4-5

Attributes for the sourcelLinkPrompt tag

Name Required Description

targetNameParameter true Name of the report parameter as it
is defined in the report definition.

promptld false The promptId could be the ID
of a reportPrompt tag or the
name of an HTML control. When
a prompt value is needed, the
reportPrompt or the HTML
control will be used to determine
the prompt value.

Either promptId,
parameterValue or
getValueJSFunction should
be specified.

parameter Value false Specifies a value for the parameter

instead of prompting for one.
This should be specified when the
application knows the parameter
value when the JSP is being
processed. In that case, the value
can be specified directly using this
attribute.

If parametervalue is
specified, then promptId and
getValueJSFunction should
not be used.

49

PASW Tag Library

Name Required Description

getValueJSFunction false Identifies a function to call to
retrieve the prompt value(s). The
function should return either a
single value or return an array of
values.

This attribute should include
the function name, parentheses
and any parameters as necessary.
For example, for a function
called MyGetValues that takes
one parameter, set the attribute
to MyGetValues ('myPromp-
tID').

validateJSFunction false Identifies a function to call to to
provide validation of the prompt.
The function should return true
if the prompts are valid.

This attribute should include
the function name, parentheses
and any parameters as necessary.
For example, for a function
called MyValidate that takes one
parameter, set the attribute to
MyValidate ('myPromptID').

Sample Usage:

The following sample prompts for two parameter values using reportPrompt tags. The
sourceLinkPrompt tags for the CountrySales report use the identifiers for those prompts to
supply their values to the report.

<r:repositoryltem name="CountrySales"
reportDefinitionURI="spsscr:///SampleReports/BIRT/CountryCity_cascadingParameter.rptdesign"
repositoryCredentialName="repositoryCredential"
outputType="HTML" activate="ONDEMAND" location="ReportDIV">
<r:sourceLinkPrompt targetNameParameter="ShipCountry" promptld="IDFilter"/>
<r:sourceLinkPrompt targetNameParameter="ShipCity" promptld="IDFilter1"/>
</rrrepositoryltem>

<table width="95%" cellspacing="1" bgcolor="black">
<tr bgcolor="white">
<r:repositoryltemPrompt promptld="IDFilter" repositoryltemName="CountrySales1"
parameterName="ShipCountry'/>
</tr>
<tr bgcolor="white">
<r:repositoryltemPrompt promptld="IDFilter1" repositoryltemName="CountrySales1"
parameterName="ShipCity"/>
</tr>
</table>

50

Chapter 4

sourcelinkRepositoryltem Tag

The sourcelLinkRepositoryItem tag identifies the source item and variables used to satisfy
the item’s defined parameters. Using this mechanism, when the source item is clicked, the parent
item runs using the parameters defined within the nested sourceLinkVariable tags.

This tag must always be nested within a repositoryItem tag. It should contain one or more
nested sourceLinkVariable tags.

Tag Nesting:

B The sourceLinkRepositoryItem tag contains one or more sourcelLinkVariable tags
that identify the source column and the target parameter names.

Expected Output:
m None
Table 4-6
Attributes for the sourcelLinkRepositoryltem tag
Name Required Description
sourceName true Name of the repositoryItem
that will serve as the source of the
relationship
linkType false Determines what action on the
source report will trigger the
running of the current report.
Currently there is only one
supported 1inkType, row. For
this type, when a row in the source
report is clicked, the target report
runs. In future releases, additional
linkTypes may be added.
Sample Usage:

The following sample identifies CityDetails as the report to run in response to a user action
in the AllCountries report.

<r:repositoryltem name="CityDetails"
inputURI="spsscr:///SampleReports/BIRT/CountrySalesByCity.rptdesign”
repositoryCredentialName="repositoryCredential"
outputType="HTML" width="400" height="300"
activate="ONDEMAND" location="SecondReportDIV">
<r:sourcelinkRepositoryltem sourceReportName="AllCountries">

<r:sourcelLinkVariable columnName="ShipCountry"
targetNameParameter="ShipCountry" />

</r:sourcelinkRepositoryltem>

</r:repositoryltem>

sourcelinkReport Tag

This tag is deprecated. Use the sourceLinkRepositoryItem tag instead

51

PASW Tag Library

sourcelinkVariable Tag

The sourcelLinkVariable tag defines the mapping between the variable or column to use in
the source item and the parameter as defined in the target item. This tag must always be nested
under a sourceLinkRepositoryItem tag.

Tag Nesting:

® None

Validations Performed:

® None

Expected Output:

® None

Table 4-7
Attributes for the sourcelLinkVariable tag

Name Required Description

columnName true For ShowCase reports, this
attribute specifies the name

of the column in the source
report. For Visualization reports,
this attribute contains the id

of the sourcevariable or
derivedvariable element of
the Visualization specification.
Currently only categorical
variables are supported.

targetNameParameter true Name of the parameter in the
target query

Sample Usage:

The following sample maps the ShipCountry variable in the AllCountriesreport to the ShipCountry
parameter in the CityDetails report.

<r:repositoryltem name="CityDetails"
inputURI="spsscr:///SampleReports/Vis/CitiesBarChart.viz"
repositoryCredentialName="repositoryCredential"
outputType="png" width="400" height="300"
activate="ONDEMAND" location="SecondReportDIV">
<r:sourcelinkRepositoryltem sourceName="AllCountries">

<r:sourcelinkVariable columnName="ShipCountry" targetNameParameter="ShipCountry"/>

</r:sourcelinkRepositoryltem>

</r:repositoryltem>

52

Chapter 4

actionHandler Tag

Defines the action handlers that should be applied to the item. When action handlers are defined,
the automatic linking setup using sourceLinkRepositoryItem no longer applies. The
application builder is responsible for running any target items using the runRepositoryItem

public Java script API.

Tag Nesting:

B Any data values that need to be passed as parameters to the JavaScript function should be
defined using nested actionParameter tags.

Table 4-8
Attributes for the actionHandler tag
Name Required Description
event true The event name. Valid events
include:
m onclick
B onmouseover
B onmouseout
function true The name of the Java Script
function to call when the event
occurs. This should be the
function name only, without () or
any parameters.
partld false This is used to identify the specific
part of the report that the actions
should apply to.
Sample Usage:

The following repositoryItem tag defines three action handlers, one for each type of event
that could occur. Each handler calls a unique JavaScript function that defines the subsequent

processing.

<r:repositoryItem name="AllCountries"
inputURI="spsscr:///SampleReports/BIRT/CountrySales.rptdesign"

repositoryCredentialName="repositoryCredential"

outputType="HTML"
width="400" height
activate="ONLOAD"

<r:actionHandler event="onclick"
<r:actionParameter name="ShipCountry"/>

</r:actionHandler>

<r:actionHandler event="onmouseover"
<r:actionParameter name="ShipCountry"/>

</r:actionHandler>

<r:actionHandler event="onmouseout"

</r:repositoryItem>

=n 3 OO n
location="ReportDIV">

function="myOnClick">

function="myOnOver">

function="myOnOut" />

53

actionParameter Tag

PASW Tag Library

There should be an actionParameter for each data value from the item that needs to be passed
to the actionHandler JavaScript function. This tag must be nested within the actionHandler

tag.

Tag Nesting:

m None

Table 4-9

Attributes for the actionParameter tag

Name Required Description

name true Name of the column or variable
that defines which value from the
report results should be passed to
the function.

B For visualization reports,
the name is the id attribute
of the sourcevariable
or derivedvariable
element. Currently only
categorical variables are
supported.

B For ShowCase reports, this
would be the column name.

Sample Usage:

The following sample defines an actionParameter named ShipCountry that gets passed to the

JavaScript function myOnClick when the user clicks the report.

<r:actionHandler event="onclick" function="myOnClick">

<r:actionParameter name="ShipCountry"/>

</r:actionHandler>

Tag Library Beans

The framework includes tag library beans that can be used together for a variety of purposes.
For example, the beans can be used to retrieve a data set that can then be used to build custom

HTML controls.

In order to use the beans, you must first declare references to them in the JSP. This is done

through the import attribute of the page directive.

<%@ page contentType="text/html;charset=utf-8"

language="java"
session="true"
import="java.util.Map"
import="java.util.HashMap"

import="com.spss.report.taglib.bean.ReportBean"

import="com.spss.report.taglib.bean.Credential"

%>

54

Chapter 4
The code samples for beans use the JavaServer Pages Standard Tag Library (JSTL) which should
be included using the taglib directive.
<%@ taglib uri="http://java.sun.com/jstl/core" prefix="c" %>
For more information on JSTL, refer to the Sun documentation
(http://java.sun.com/products/jsp/jstl/).

Credential Bean
The Credential bean defines the credentials that will be used by other beans. The code sample
below creates two credentials and stores them in a HashMap. In the sample below, the localhost
credential provides the logon information for the repository. The ps4008 credential is for a SQL
Server data source called ps4008 that is referenced by the report definition.
<%
Map credentialMap = new HashMap();
Credential repositoryCredential = new Credential("localhost","Native","admin”,"spss",null);
Credential datasourceCredential = new Credential("ps4008",null,"sa","sa",null);
credentialMap.put(‘localhost’,repositoryCredential);
credentialMap.put('ps4008",datasourceCredential);
%>

ReportBean Bean

The ReportBean is used to retrieve the data for a data set that is defined in a report definition.
The code below uses the previously created credentialMap to retrieve a data set. Visualization
reports do not support this function.

<%—Creating JavaBeans %>
<jsp:useBean id="report" class="com.spss.report.taglib.bean.ReportBean">
<jsp:setProperty name="report" property="reportDefinitionURI"
value="file:///d:/SPSS/ps4008/Test.dbq" />
<jsp:setProperty name="report" property="repositoryCredentialName"
value="localhost" />
<jsp:setProperty name="report" property="host" value="localhost" />
<jsp:setProperty name="report" property="port" value="8080" />
<jsp:setProperty name="report" property="dataSetName"
value="DataSet1" />
<jsp:setProperty name="report" property="credentialMap"
value="<%=credentialMap%>" />
</jsp:useBean>

The properties used in this code are:

m reportDefinitionURI. The location of the report
m repositoryCredentialName. The host name

m port.The port name

http://java.sun.com/products/jsp/jstl/
http://java.sun.com/products/jsp/jstl/

55

PASW Tag Library

dataSetName. For PASW BIRT Report Designer reports this is the name of the data set

as defined in the report definition. This does not apply to ShowCase reports and should
be omitted.

credentialMap. A reference to a HashMap containing the credentials to use

The ReportBean can then be run to return the data set. The data can be used to generate a list
control as shown in the code below.

<SELECT style="WIDTH :250 px" ID="EmployeelD_Prompt' NAME="EmployeelD_Prompt"

TABINDEX="2">

<c:forEach var="row" items="${report.rows}">

<c:forEach var="column" items="$§{row.columns}">
<c:if test="${column.name == "EmployeelD"}'>

<OPTION VALUE='<c:out value="${column.value}"' />'>
<c:out value="${column.value}' />
</OPTION>

</c:if>
</c:forEach>

</c:forEach>
</SELECT>

SearchBean Bean

The SearchBean bean provides a query mechanism for locating content in the repository that meet
specified criteria. For example, the bean can retrieve a list of data provider definition and PASW
Statistics data file (.sav) sources in the repository that match a specified search criterion. The code
below defines bean properties to query for all data provider definition and PASW Statistics data
sources using the MIME types associated with those sources.

<jsp:useBean id="data_sources"

class="com.spss.report.taglib.bean.SearchBean" scope="page">
<jsp:setProperty name="data_sources" property="request" value="<%= request %>" />
<jsp:setProperty name="data_sources" property="credentialName"
value="AuthenticationCredential" />
<jsp:setProperty name="data_sources" property="searchQuery"
value="<%= "('$$search/mimetype'="application/x-vnd.spss-spss-data’ or "

+"$$search/mimetype'="application/x-vnd.spss-statistics-data' or"
+ "$$search/mimetype'="application/x-vnd.spss-data-provider')" %>" />

</jsp:useBean>

The properties used in this code are:

request. An HttpServletRequest object.

credentialName. Credential needed to connect to repository. In this case, the value
corresponds to the credential AuthenticationCredential defined using the credential tag.

searchQuery. String denoting the search criterion. The structure of this string matches the
syntax used for the dataset.search.criteria parameter for URL strings.

56

Chapter 4

The SearchBean can then be run to return the matching data sources. The code below presents the
name, modification date, version label, and author metadata for the data sources in a table.

<Table border="0" height="100%" width="100%" cellpadding="0" cellspacing="0">
<tr>
<td align="center" bgcolor="#EEEEEE" style="padding-top:5px; padding-bottom:5px;">
Data Source
</td>
<td align="center" bgcolor="#EEEEEE" style="padding-top:5px; padding-bottom:5px;">
Modified Date
</td>
<td align="center" bgcolor="#EEEEEE" style="padding-top:5px; padding-bottom:5px;">
Version Label
</td>
<td align="center" bgcolor="#EEEEEE" style="padding-top:5px; padding-bottom:5px;">
Author
</td>
</tr>
<c:forEach var="data_source" items="$§{data_sources.records}" varStatus="status"
begin="0" end="3" step="1">
<tr>
<td align="center" bgcolor="#EEEEEE" style="padding-top:5px; padding-bottom:5px;">
<c:out value="${data_source.title}" />
</td>
<td align="center" bgcolor="#EEEEEE" style="padding-top:5px; padding-bottom:5px;">
<c:out value="${data_source.modifiedDate}" />
</td>
<td align="center" bgcolor="#EEEEEE" style="padding-top:5px; padding-bottom:5px;">
<c:out value="${data_source.versionLabel}" />
</td>
<td align="center" bgcolor="#EEEEEE" style="padding-top:5px; padding-bottom:5px;">
<c:out value="${data_source.author}" />
</td>
</tr>
</c:forEach>
</Table>

PevMetaDataBean Bean

The PevMetaDataBean bean retrieves variable metadata from data provider definition and PASW
Statistics data file (.sav) sources. The code below defines properties for the bean to query a .sav file.

<jsp:useBean id="variables"
class="com.spss.report.taglib.bean.PevMetaDataBean" scope="page">
<jsp:setProperty name="variables" property="request" value="<%= request %>" />
<jsp:setProperty name="variables" property="dataseturi"
value="spsscr:///sav_files/demo.sav" />
<jsp:setProperty name="variables" property="credentialName"
value="AuthenticationCredential" />
</jsp:useBean>

57

PASW Tag Library

The properties used in this code are:
B reguest. An HttpServletReqguest object.
m dataseturi. The URI for the data file or data provider definition containing the variables.

m credentialName. Credential needed to connect to repository. In this case, the value
corresponds to the credential AuthenticationCredential defined using the credential tag.

The PevMetaDataBean can then be run to return the metadata for the variables in the dataset. The
code below presents the metadata in a table.

<Table border="0" height="100%" width="100%" cellpadding="0" cellspacing="0">
<tr>
<td align="center" bgcolor="#EEEEEE" style="padding-top:5pXx;
padding-bottom:5px;">
Variable Name
</td>
</tr>
<c:forEach var="group" items="$§{variables.variablesMetaData}" >
<c:forEach var="v" items="$§{group.variableMetaData}' varStatus="status"
begin="0" end="3" step="1">
<tr>
<td align="center" bgcolor="#EEEEEE" style="padding-top:5px;
padding-bottom:5px;">
<c:out value="${status.count}" /> <c:out value="${v.name}" />
</td>
</tr>
</c:forEach>
</c:forEach>
</Table>

ScoringBean Bean

The ScoringBean bean retrieves a list of scoring configurations for a specified model that are
able to respond to a scoring request. The getScoringConfigurations method of the bean
accepts the following parameters:

m credential. Credentials for accessing the repository defined using the Credential bean.
m modelLocationUri. The URI for a model in the repository.

Alternatively, instead of supplying a Credential bean item, the following two parameters can
be used for specifying credentials:

B request. An HttpServletRequest object.

m credentialName. Credential needed to connect to the repository defined using the
credential tag.

The following code retrieves the scoring configurations for the model KMeans.xml that can
respond to a scoring request using a credential defined using the credential tag:

<r:credential name="repositoryCredential" provider="Native"
username="'<%= request.getParameter("userid")%>"'

58

Chapter 4

password="'<%= request.getParameter('password")%>' />

<%
String[] configurations = ScoringBean.getScoringConfigurations(request,

“repositoryCredential’, "spsscr:///Sample/KMeans.xml");

%>

The array returned by the bean can be used to populate a form from which a user can select a
scoring configuration to use for subsequent scoring.

<form id="selectConfigurationForm" target="Scoringlframe" method="POST">
<div style="display:none">
<input name="userid" type="text" value="<%= request.getParameter("userid")%>"/>
<input name="password" type="text" value="<%= request.getParameter("password")%>"/>
</div>
Select Scoring Configuration:
<select name="selectedConfiguration" onchange="onSelectConfiguration(this)">
<option></option>
<%
for (int i=0; i < configurations.length; i++)
{
%>
<option value="<%= configurations[il.replaceAll(' I, "%20")%>">
<%= configurationsli] %></option>
<%
}
%>
</select>
</form>

JavaServer Pages Samples

PASW Collaboration and Deployment Services includes a variety of JSP samples illustrating the
use of the tag library. The samples are grouped into the following categories:

m Reporting. Using PASW BIRT Report Designer and visualization reports interactively,
including running a second report in response to a selection. To access these samples, go to:

http://<server-name>:<port>/reportTagLib/index.html

m Scoring. Generating scores for a predictive model configured for scoring. To access these
samples, go to:

http://<server-name>:<port>/scoringTagLib/index.html

m PASW Statistics syntax. Generating and executing PASW Statistics syntax, as well as working
with the resulting output. To access these samples, go to:

http://<server-name>:<port>/spssSyntaxTagLib/index.html

Note: This functionality requires PASW Statistics adapters in the PASW Collaboration and
Deployment Services environment. For more information, see the PASW Statistics installation
documentation.

59

PASW Tag Library

If the URL for a set of samples fails to return an introduction page, the package or war file
containing the samples may not be deployed to the repository server. Use the Package Manager
tool to deploy the desired package or deploy the war file in accordance with the documentation for
your application server. The war files to be deployed are under the ./components/paswTagLib/apps
and ./components/paswTagLib/scoring directories of the repository installation.

On the introduction page for the samples, click View Source for any sample to examine its
source code. To explore their functionality, you can run the samples from the page by clicking
Run. However, successful execution requires:

® sample resources in a specific folder structure in the repository.

m valid credentials for accessing the resources referenced in the samples.

Instructions for configuring the environment for successful sample execution are available from
the introduction page for the samples.

Chapter

Portal Integration

The PASW Collaboration and Deployment Services web services architecture provides the ability
to integrate it with portal servers. This enables delivery of highly customized content through
pluggable user interface components that utilize Web services to produce fragments of markup
code that are aggregated into a portal page. Typically, a portal page is displayed as a collection of
non-overlapping windows, where each window displays a segment of content. Some examples of
portal applications are e-mail, weather reports, discussion forums, and news. Similarly, PASW
Collaboration and Deployment Services portals can be used to deliver customized content, such as
output of reports and analytical processing, charts, diagrams, etc.

PASW Collaboration and Deployment Services supports portal integration based on JSR
268 standard. JSR 268, proposed by Java Community Process group (http://jcp.org), enables
interpretability for portlets between different Web portals. This specification defines a set
of APIs for interaction between the portlet container and the portlet, addressing the areas of
personalization, presentation and security. Implementation of JSR 168 include IBM Web Portal
from WebSphere, Oracle Application Server Portal 10g, BEA WebLogic Portal, Vignette Portal,
Sun Portal Server, and JBoss. PASW Collaboration and Deployment Services also supports portal
integration with Microsoft SharePoint server using Web Parts.

Officially supported portal environments include:
m WebSphere Portal Server 6.1

Weblogic Portal Server 10.0

JBoss Portal Server 2.6.1

Sun Java Enterprise System 5

Microsoft Sharepoint 2007 Server

PASW Collaboration and Deployment Services may also be integrated with other portal
environments based on JSR 168 and J2SE 5.0.

PASW Collaboration and Deployment Services is packaged with a portlet and a Web Part
which can be used to deliver repository content to portal users.

60

http://jcp.org

61

Portal Integration

Figure 5-1
PASW Collaboration and Deployment Services portlet displaying repository content in a portal server
window

AnalyticaCentral

Weather Portlet PASW Portlet

I

Miami, FL, US

Curr‘ently Tue Wed Clustered box plot

_.)Ja‘.; \',>$.1 / \',Q.r 7 140

e 4 & 4 £ Government
Pt 2rpts St

120 Hoemaocracy

Partly Mostly Mostly W wilitary
Claudy sunny Sunny .OnePartv

FAF 65F/78F 6BF/78F 1007

Complete Forecast

POP_1983

News Feeds

Yahoo! Finance: RHT
News - Latest Financial
News for RED HAT INC

' Open Source Software, Major o]
Software Suppliers Converge (at i
seeking Alpha : : —

)]
Mon, 7 Jan 2008 16:03:34 Cathalic Islamic Marxist Protelstant
Eto/GMT LEADER
' Linux, Leopard Can't Bite Vista b
(at Forbes.com)
Fri, 4 Jan 2008 23:30:30 M
Etc/GMT [i] =
' Red Hat CED Targets Oracle,
Microsoft (AP)
Fri, 4 lan 2008 21:56:55

@
o
1

i
o
1

*

ra
o
|

o

The architecture of PASW Collaboration and Deployment Services also enables creation of
custom JSR 168-compliant portlets and SharePoint Web Parts that use PASW Collaboration and
Deployment Services Web services.

Installation

PASW Collaboration and Deployment Services portal components are distributed on the repository
installation Disk 2 in /PORTLET as PASWPortlet.war (portlet) and PASMAEbPart.wsp (Web Part).

Portlet installation

» The procedure for installing PASAMPortlet.war varies depending on the portal server type. Refer to
portal server vendor documentation for details.

Web Part installation

SharePoint Web Part installation prerequisites include:
B Microsoft SharePoint 2007
B Microsoft Web Service Enhancement 2.0 (WSE 2.0 SP3)

To install the Web Part:

1. Copy PASW\EbPart.wsp from the repository installation disk to a predefined location on the
SharePoint host, for example, c:\temp.

62

Chapter 5

From the /bin directory of the SharePoint server installation run the following commands:

stsadm -0 addsolution -filename c¢:\tmp\paswwebpart.wsp
stsadm -o deploysolution -name paswwebpart.wsp -immediate -allowgacdeployment -url http://<hostname>

Use SharePoint administration utilities to add the Web Part to the Web Part gallery and to
subsequently deploy it. For more information, see Microsoft SharePoint documentation.

Once the component has been installed, it must be configured to access a specific resource in
repository. Component preferences must also be set up.

Configuration

2.

After the portal component has been installed and the portal page layout has been completed,
you will be prompted to configure the component to access a repository resource. The general
procedure for configuring portal access to PASW Collaboration and Deployment Services involves
defining the repository server, specifying repository credentials, selecting the resource to be
delivered to the portal, and if necessary, specifying data source credentials and default prompt
values. You can also configure components’ appearance and behavior by setting the preferences.

Configuring the portlet

Open the portlet configuration page. The page may open differently depending on the portal
server type.

Specify the repository host and port and whether the server requires a secure connection.

Figure 5-2
Portlet configuration: specifying the repository

PASW Deployment Server Portlet - Configuration

Identify a Deployment Server

Server:
Port: J
Secure: |:|

Mext

Specify the PASW Collaboration and Deployment Services user credentials and security provider
for login authentication.

63

Portal Integration
Figure 5-3
Portlet configuration: specifying repository credentials

PASW Deployment Server Portlet - Configuration

Enter Login Credential

Login adrin
Name:
Password: weee
Provider: Local User Repository [V]

es

3. Select the repository resource to be delivered to the portal. Make sure the correct resource
version is specified.

Figure 5-4
Portlet configuration: selecting the resource

PASW Deployment Server Portlet - Configuration

Enter Deployment Server Reporting Content URI

[ir Current Path f
Type Title Author Date Modified Mime Type
. . . . Mar 11, 2009 PASW BIRT
campaign_impact.rptdesign admin 08 A6 PM Repart
@ LaTEST
C
Previous Selection: spsscrAffcampaign_impact.rptdesign

e

4. If necessary, specify the credentials for the data source referenced by the resource; for example
if a report uses a database, database credentials must be provided. Note that depending on the
resource, it may be necessary to specify credentials for multiple data sources

64

Chapter 5

Figure 5-5
Portlet configuration: specifying data source credentials

PASW Deployment Server Portlet - Configuration

Enter Deployment Server DataSource Login

Data

Source: EngXPlanner

User ID:

Password: |

£ vour Deployment Portal User ID and Password are not valid for this data
source, Enter the correct User ID and Password, then click Mext,

5. If the resource includes prompts (for example, a report may allow for a dynamic selection of
values), specify the default prompt settings.

Figure 5-6
Portlet configuration: setting default prompt values

PASW Deployment Server Portlet - Configuration

Select Parameter VYalues

Project
FSPSS.com v

e

6. Verify that configuration information is correct. To start over, click Refresh.

Figure 5-7
Portlet configuration: confirmation page

PASW Deployment Server Portlet - Configuration

Confirm Configuration Input
Deployment Server: chiaessaoulow
Port: 80
Protocol: http
Fepository User: Mativeladmin
Report URI: spsscrifffcampaign_impact.rptdesign
Data Source: EngxPlanner
Data Source User: readonly

Pararmeter Walue Assignment: project 574179

Fiefrash M ek

7. Click Next to proceed to viewing the resource.

65

Portal Integration

Figure 5-8
Portlet configuration: completion message

PASW Deployment Server Portlet - Configuration

Configuration complete.
ou may now return to Wiew rmode to validate your warl,

M et

Portlet settings can been edited after the initial configuration: for example, it can be pointed to
a different repository resource if necessary.

» Certain aspects of the appearance and behavior of the portlet are set through its preferences. The
following preferences are available:

Preference Description

expiration-cache The expiration period for the portlet cache, i.e., the time in seconds
after which the portlet output expires. -1 indicates that the output
never expires. The default value is 600.

log-messages Specifies whether portlet messages will be appended to the portal
server log file. The default value is NO.
reenter-dsLogin Specifies whether the user must provide the data source credentials

for the portlet instance every time she logs into the portal. The
default value is NO.

reenter-parameter Specifies whether the user must reenter the prompt values for the
portlet instance every time she logs into the portal. The default value
is NO.

refresh-parameter Specifies whether the user can enter different parameter values and
re-display the content based on those values. The default value is NO.

use-single-sign-on Specifies whether the portlet will be used with single sign-on. The
default value is NO.

validate-input-parameter Enables user input parameter validation in order to protect against
cross-site scripting attacks. The default value is YES.

window-height The height of the portlet window (pixels). The default value is 750.

window-title Descriptive name for the portlet instance.

window-width The width of the portlet window (percent). The default value is 100%.

Preferences are set with portal server administration facilities and the way they are accessed will
differ depending on the server type.

Configuring the Web Part

Web Part configuration involves the same basic steps as the portlet configuration: setting up access
to the repository resource and configuration option. Note that the number of displayed items in the
repository tree (when you select the resource) is controlled by an additional configuration option.

66

Chapter 5
Single Sign-on

PASW Collaboration and Deployment Services allows single sign-on access, and special
configuration of the portal server may be required to enable it for the portlet or Web part. The
procedures for enabling single sign-on will be different depending on the portal server. For
example, JBoss portal configuration is as follows:

» <JBossinstallation folder>/bin/run.bat file must be modified to include Java arguments for
Kerberos-based single sign-on as in the example below.

set SSO_O0PTS=-Djava.security.krb5.realm=SSOREALM.COM
-Djava.security.krb5.kdc=kdchost.ssorealm.com
-Djavax.security.auth.useSubjectCredsOnly=false

set JAVA_OPTS=%JAVA_OPTS% -Dprogram.name=%PROGNAME% %SS0_OPTS%
set JAVA_OPTS=%JAVA_OPTS% -Xms128m -Xmx512m -XX:PermSize=64m -XX:MaxPermSize=256m

» The following section must be added to <JBoss installation
folder>/server/default/conf/login-config.xml.

<application-policy name="com.sun.security.jgss.initiate">

<authentication>
<login-module code = "com.sun.security.auth.module.Krb5LoginModule" flag = "required">
<module-option name="useTicketCache">true</module-option>

<module-option name="debug">false</module-option>

</login-module>

</authentication>

</application-policy>

Known Issues

® When PASW Collaboration and Deployment Services portlet is used with JBoss portal, the
repository tree view may not expand. In order to correct the problem, modify the <JBoss
installation folder>/bin/run.bat (run.sh on UNIX) to increase the new generation and
permanent generation size by adding the following arguments to JAVA_OPTS:

-XX:MaxNewSize=256m -XX:MaxPermSize=256m

m Cookie settings in the Safari browser may prevent some repository artifacts from being
displayed in the PASW Collaboration and Deployment Services portlet without first prompting
for credentials. The browser cookie policy should be set to Always instead of Only from sites |
visit to avoid repeated requests for credentials.

Chapter

Scripting

PASW Collaboration and Deployment Services provides a scripting framework with a set of
Content Repository and Process Management APIs that advanced users and administrators can
use to write independent routines or batch jobs that combine a set of routines. This can greatly
simplify bulk tasks such as changing security permissions for a large group of users, labeling or
removing a label from a large number of folders/files, or uploading/downloading a large number
of folders/files. The framework includes the ability to perform tasks from the command line, as
well as a rich API for interacting with PASW Collaboration and Deployment Services within
your own Python code.

For general information about Python, a dynamic object-oriented programming language,
see the Python site (http://mww.python.org).

The scripting framework can be used on Windows, Unix, and iSeries platforms. For instructions
on installing the framework, consult the repository installation document for the desired platform.

Command Line Scripting

The Python file CADSTool.py can be used from the command line to manipulate resources stored
within the repository. The general syntax used for calling PASW Collaboration and Deployment
Services scripting operations from the command line is:

python CADSTool.py <Operation> <Keywords>

Where:
B <Operation> designates the function to invoke

B <Keywords> defines keyword/value pairs used as input parameters to the function

Global Keywords

Table 6-1 lists the keywords supported by all PASW Collaboration and Deployment Services
scripting functions. The second column lists any optional, shortened versions of the keywords.
Note that keywords are case sensitive.

Table 6-1
Global Keywords
Keyword Optional Usage
Short Version
--user -u The user name to connect to the repository server
--password -p The password to connect to the repository server
--host -q The host/server name where the repository is installed

67

http://www.python.org

68

Chapter 6
Keyword Optional Usage
Short Version
--port -o The repository server port number
--useDefault -z Indicates that user, password, host, and port need to be
read from the Authorization.properties file
-h The scripting module help information

Repository Connections

You must specify the repository user ID, password, host, and port at the end of every command.
There are two ways to provide this connection information:

m Using keywords, such as
--user <user> --password <password> --host <host> --port <port>

m Through the Authorization.properties file, where the command contains a
--useDefault parameter (or the short version -z). This retrieves the connection
information from the Authorization.properties file, which is located at <Scripting
folder>\Lib\site-packages\config\Authorization.properties. Use a simple text editor to modify
the following values in the file to match the settings of your repository:

Authorization Information

user=admin

password=spss

host=yourhost
port=80

Parameters passed through the command line always have precedence.

B [f --user and --password are provided via the command line and the --useDefault or
-z parameter is also provided, the user and password from the command line are used, with
the host and port retrieved from the Authorization.properties file.

m [f all the configurable information (--user <user> --password <password> --host
<host> --port <port>) is provided via the command line, but the --useDefault
or -z parameter is also used, the --useDefault is ignored and only the command line
information is used.

For all APIs described in this guide, the syntax and examples use the -z parameter in an effort to
use the minimum number of required parameters.

Content Repository Functions

This section outlines the Python command line usage of scripts for repository functions. Every
operation contains detailed syntax information, an example, and expected messages.

Keywords

Table 6-2 lists the keywords supported for repository functions. The second column lists any
optional, shortened versions of the keywords.

Important: Keywords are case sensitive.

69

Scripting
Table 6-2
Keywords for repository APIs
Keyword Optional Usage
Short Version
--source -s The source file/folder path
--target -t The target folder path
--version -v The version of a file
--principal -r The user who needs to be granted permission
--permission -n The permission type (such as read, write, modify, delete)
--label -1 The label to assign to a version of a file
--criteria -c The search criteria for searching metadata attributes of
files/folders
--author -a The author name for a file/folder
--description -d The description for a file/folder
--title -i The title for a file/folder
--expirationDate -q The expiration date for a file/folder
--expirationStartDate The expiration start date for a file/folder
--expirationEndDate The expiration end date for a file/folder
--keyword -k The keyword for a file/folder
--cascade -X Indicates that security settings for a folder should
propagate to subfolders and files
--provider -f The security provider used to retrieve the users/principals
--createVersion -b Indicates that a new version of a file is to be created
--contentLanguage -9 The content language for a file/folder
--topic The topic(s) assigned to a file/folder. You can enter
multiple values such a --topic "topicl;topic2"
--modifiedBy The user who modified a file/folder
--mimeType The mime type of a file
--createdBy The user who created a file/folder

--submittedHierarchy

Indicates whether to search the Submitted Jobs folder

--propertyName The name of a custom property
--customProperty The name/value pair of a custom property to be updated
--propertyName The name of the custom property to retrieve valid values

for

For all operations that accept label and version information, the user should either specify a
label or a version, but not both. If no version or label is specified for a given folder/file, the

latest version is used.

Operations

The following sections list all repository scripting operations supported for PASW Collaboration

and Deployment Services.

70

Chapter 6

advanceSearch

Searches for files and folders in the repository, based on various parameters. Note that currently
expirationStartDate and expirationEndDate do not work when used in conjunction with
other search fields (such as title, author, etc).

Syntax

python CADSTool.py advanceSearch --author <author>
--title <title> --description <description>
--createdBy <createdBy> --modifiedBy <modifiedBy>
--keyword <keyword> --label <label>

--topic <topic>

--expirationStartDate <expirationStartDate>

--expirationEndDate <expirationEndDate>

--submittedHierarchy -z

Where:

<author> is the name of the author.

<title> is the title of the file/folder.

<description> is the description of the file/folder.

<createdBy> is the name of the user who created the file/folder.
<modifiedBy> is the name of the user who modified the file/folder.
<keyword> is the keyword associated with the file/folder.

<label> is the label for the version marker.

<topic> is the topic associated with the file/folder.

<expirationStartDate> is the expiration start date of the file/folder. The date format
1S YYYY-MM-DDThh :mm: ss . sTZD (for example, 1997-07-16T19:20:30.45+01:00),
where:

yyvy = four-digit year

MM = two-digit month (01 is January, etc.)

DD = two-digit day of month (01 through 31)

hh = two-digit hour (00 through 23, no am/pm)

mm = two-digit minute (00 through 59)

ss = two-digit second (00 through 59)

s = digits representing a decimal fraction of a second, with a valid range of 0 to 999

TZD = time zone designator (Z or +hh:mm or —hh : mm)

B <expirationEndDate> is the expiration end date of the file/folder. The date format is
YYYY-MM-DDThh:mm:ss.sTZD.

B <submittedHierarchy> indicates the file/folder is in the Submitted Jobs folder.

All parameters are optional.

Example

python CADSTool.py advanceSearch --author "admin" --title "demo" --label "Label 1"
--useDefault -z

71

Scripting

Messages

The following messages may display when using this API:

® When the API completes successfully, a list of all files and folders matching the search criteria
is displayed. This typically includes the file names with their fully qualified path and versions.

B Error searching files and folders

applySecurity

Sets the security access control list (ACL) for a file/folder in the repository.

Note: For all security related operations, three web services are involved: Directory Information
Service, Provider Information Service, and repository Service. For more information about the
web services, see the web services documentation included with PASW Collaboration and
Deployment Services.

Syntax

python CADSTool.py applySecurity --source "<source>" --principal "<principal>"
--permission "<permission>" --provider "<provider>" --cascade -z

Where:

B <source> is the fully qualified repository path of the file/folder to apply the security ACL
to. This is a required parameter.

B <principals> is the user (such as admin) to apply to the specified file/folder as part of the
ACL. This is a required parameter.

B <permission> is the type of permission to apply to the specified file/folder (such as read,
write, modify, delete, or owner). This is a required parameter.

B <provider> is the security provider to use for retrieving information about the users
(principals). This is an optional parameter.

B --cascade is used when setting security on a folder, to propagate the security settings to all
files and subfolders within the specified folder. This is an optional parameter.

Examples

m The following example applies security to a file/folder:

python CADSTool.py applySecurity --source "/Temp Folder/Temp.txt" --principal Joe
--permission modify_acl --provider Native -z

m The following example applies security to a folder and all its files and subfolders:

python CADSTool.py applySecurity --source "/Temp Folder/" --principal Joe
--permission modify_acl --provider Native --cascade -z

Messages

The following messages may display when using this API:

B <permission> permission set successfully for <source>.

72

Chapter 6

B <source> No such file/folder exists. Please try again.
B <permission> Invalid permission type, Please try again.

B <source> Error setting security ACL.

cascadeSecurity

Propagates a folder’s security settings to all files and subfolders within the folder.

Syntax

python CADSTool.py cascadeSecurity --source "<source>" -z

Where:

B <source> is the fully qualified path of the folder in the repository. This is a required
parameter.

Example

python CADSTool.py cascadeSecurity --source "/Temp Folder/" -z

Messages

The following messages may display when using this API:
B Security ACL cascaded successfully for <source>.
B <source> No such folder exists. Please try again.

B <source> Error cascading security ACL.

copyResource

Copies a file or folder to another folder in the repository. A renaming feature is provided for this
API, where the specified file/folder can be renamed when it is copied. The cases described at the
beginning of moveResource on p. 81 also apply to this copyResource APL

Syntax
python CADSTool.py copyResource --source "<source>" --target "<target>" -z
Where:

B <source> is the fully qualified Content Repository path of the file/folder to copy. This is a
required parameter.

B <target> is the fully qualified repository path where the file/folder is to be copied. This is a
required parameter.

Examples
m The following example copies a file:

python CADSTool.py copyResource --source "/Temp Folder/Temp.txt" --target

73

Scripting

"/Sample Folder" -z

m The following example copies and renames a file:

python CADSTool.py copyResource --source "/Temp Folder/Temp.txt" --target
"/Sample Folder/New.txt" -z

Messages

The following messages may display when using this API:

B <source> copied successfully.

B <source> No such file/folder exists. Please try again.
B <target> No such folder exists. Please try again.
|

<source> Error copying file/folder.

createFolder

Creates a new folder at a specified location in the repository.

Syntax

python CADSTool.py createFolder --source "<source>" -z

Where:

B <source> is the fully qualified path of the new folder to create. This is a required parameter.
Based on the provided path, the new folder is created, including any subfolders.

Example
m The following example creates Temp Folder if it does not already exist.

python CADSTool.py createFolder --source "/Temp Folder/Sample Folder" -z

Messages

The following messages may display when using this API:

B <source> Folder created successfully.

B <source> No such folder exists. Please try again.
B <folder> Folder already exists. Please try again.
B <source> Error creating folder.

deleteFile

Deletes a file from the repository, including all its versions.

Syntax

python CADSTool.py deleteFile --source "<source>" --submittedHierarchy -z

74

Chapter 6

Where:

B <source> is the fully qualified repository path of the file to delete. This is a required
parameter.

B --submittedHierarchy deletes a file from the Submitted Jobs folder. This is an optional
parameter.

Example

m The following example deletes a file from the repository, including all its versions:

python CADSTool.py deleteFile --source "/Temp Folder/Temp.txt" -z

m The following example deletes a file from the Submitted Jobs folder, including all its versions:

python CADSTool.py deleteFile --source "Submitted Jobs/admin/

2007-05-21.14.10.22.422-test.dbg/test.dbg.html" --submittedHierarchy -z

Messages

The following messages may display when using this API:

B <source> deleted successfully.

B <source> No such file exists. Please try again.

B <source> Error deleting file.

deleteFileVersion

Deletes a specific version of a file from the repository.

Syntax

python CADSTool.py deleteFileVersion --source "<source>" --version "<version>"

--label "<label>" --submittedHierarchy -z

Where:

B <source> is the fully qualified repository path of the file to delete. This is a required
parameter.

B <version> is the specific version of the file to delete. This is an optional parameter.
B <label> is the label of the file to delete. This is an optional parameter.

B --submittedHierarchy deletes a specific version of a file from the Submitted Jobs folder.
This is an optional parameter.

Examples
m The following example deletes a specific version of a file:

python CADSTool.py deleteFileVersion --source "/Temp Folder/Temp.txt" --version
"0:2006-08-25 21:15:49.453" -z

m The following example deletes a file with a specific label:

python CADSTool.py deleteFileVersion --source "/Temp Folder/Temp.txt" --label

75

Scripting

"versionl" -z

m The following example deletes a file with a specific label from the Submitted Jobs folder:

python CADSTool.py deleteFileVersion --source "Submitted Jobs/admin/
2007-05-21.14.10.22.422-test.dbg/test.dbg.html" --label "LATEST" -z

Messages

The following messages may display when using this API:
B <source> deleted successfully.
B <source> No such file exists. Please try again.

B <source> Error deleting file.
deleteFolder
deleteFolder deletes a folder from the repository, including all its contents.

Syntax

python CADSTool.py deleteFolder --source <source> --submittedHierarchy -z

Where:

B <source> is the fully qualified repository path of the folder to delete. This is a required
parameter.

B --submittedHierarchy deletes a specific version of the folder from the Submitted Jobs

folder. This is an optional parameter.

Examples

m The following example deletes a folder:

python CADSTool.py deleteFolder --source "/Temp Folder/" -z

m The following example deletes a folder from the Submitted Jobs folder:

python CADSTool.py deleteFolder --source "Submitted Jobs/admin/
2007-05-21.14.10.22.422-test.dbg/" --submittedHierarchy -z

Messages

The following messages may display when using this API:
B <source> deleted successfully.
B <source> No such folder exists. Please try again.

B <source> Error deleting folder.

downloadFile

Downloads a specific version of a file from the repository onto the local file system.

76

Chapter 6

Syntax

python CADSTool.py downloadFile --source "<source>" --version "<version>" --label
"<label>" --target "<target>" -z

Where:

B <source> is the fully qualified repository path or Object URI of the folder containing the
file to download. The Object URI can be obtained by viewing the properties of a folder in
Deployment Manager. This is a required parameter.

B <version> is the version of the file to download. This is an optional parameter.
B <label> is the label of the file to be downloaded. This is an optional parameter.

B <target> is the fully qualified path (on the local file system) where the file is to be
downloaded.

Examples

m The following example downloads the latest version of the file:

python CADSTool.py downloadFile --source "/Temp Folder/Temp.txt" --target "C:\Temp\"

m The following example downloads a specific version of the file using a version marker:

python CADSTool.py downloadFile --source "/Temp Folder/Temp.txt" --version
"0:2006-08-25 21:15:49.453" --target "C:\Temp\" -z

m The following example downloads a labeled version of the file:

python CADSTool.py downloadFile --source "/Temp Folder/Temp.txt" --label "version 1"
--target "C:\Temp\" -z

Messages

The following messages may display when using this API:

B <source> File downloaded successfully.

B <source> No such file exists. Please try again.
B <target> No such folder exists. Please try again.
B <source> Error downloading File.

export

Starts an export from the Content Repository, allowing you to select which files and folders to
export, and saving the *.pes export file to the local file system.

Syntax

python CADSTool.py export --source "<source>" --target "<target>" -z

77

Scripting
Where:
B <source> is the fully qualified repository path of the folder to export. This is a required
parameter.

B <target> is the fully qualified path (on the local file system) for the *.pes export file to
create. This is a required parameter.
Example

python CADSTool.py export --source "/Temp Folder/" --target "C:\Demo\Temp.pes" -z

Messages

The following messages may display when using this API:
B <source> exported successfully.
B <source> No such folder exists. Please try again.

B <source> Error exporting folder.

getAllVersions

Retrieves a list of all versions of a file in the repository.

Syntax

python CADSTool.py getAllVersions --source "<source>" --submittedHierarchy -z

Where:

B <source> is the fully qualified repository path of the file to retrieve versions for. This is a
required parameter.

B --submittedHierarchy retrieves versions from the Submitted Jobs folder. This is an
optional parameter.

Examples

m The following example retrieves all versions of a specified file:

python CADSTool.py getAllVersions --source "/Temp Folder/Temp.txt" -z

m The following example retrieves all versions of a specified file from the Submitted Jobs folder:

python CADSTool.py getAllVersions --source "Submitted Jobs/admin/
2007-05-21.14.10.22.422-test.dbg/test.dbg.html" --submittedHierarchy" -z

Messages

The following messages may display when using this API:

B <source> No such file exists. Please try again.

78

Chapter 6

B <source> Error retrieving file versions.

m When the process completes successfully, the information for every file version is displayed,
including version marker and label information.

getAccessControlList

Retrieves the security access control list (ACL) for a specified file/folder in the Content Repository.

Syntax

python CADSTool.py getAccessControlList --source "<source>" -z

Where:

B <source> is the fully qualified path of the file/folder. This is a required parameter.

Example

python CADSTool.py getAccessControlList --source "/Temp Folder/Temp.txt" -z

Messages

The following messages may display when using this API:
B <source> No such file/folder exists. Please try again.

B Error retrieving security details for <source>.

getChildren

Retrieves the list of all files and folders in a specified folder of the repository.

Syntax

python CADSTool.py getChildren --source "<source>" -z

Where:

B <source> is the fully qualified path of the folder. This is a required parameter.

Example

python CADSTool.py getChildren --source "/Temp Folder" -z

Messages

The following messages may display when using this API:
B When the command completes successfully, it lists all contents of the specified folder.
B <source> No such folder exists. Please try again.

B <source> Error getting resources.

79

Scripting
getCustomPropertyValue

Retrieves the valid values accepted by a specified custom property.

Syntax

python CADSTool.py getCustomPropertyValue --propertyName
"<propertyName>" --propertyName "<propertyName>" -z

Where:

B <propertyName> is the name of the custom property. This is an optional parameter.

Example

python CADSTool.py getCustomPropertyValue --propertyName "Custom Number" -z

Messages

The following messages may display when using this API:
B <propertyName> takes values as <valid values>

B Error retrieving property details for <propertyName>.

getMetadata

Retrieves the metadata attributes of a file or folder in the repository.

Syntax

python CADSTool.py getMetadata --source "<source>" --version "<version>" --label
"<label>" --submittedHierarchy -z

Where:

B <source> is the fully qualified repository path of the file/folder to retrieve metadata for. For
folders, the version/label attributes are ignored. This is a required parameter.

B <version> is the version of the file/folder to retrieve metadata for. This is an optional
parameter.

<label> is the label of the file/folder to retrieve metadata for. This is an optional parameter.

--submittedHierarchy retrieves metadata from the Submitted Jobs folder. This is an
optional parameter.

Examples

m The following example retrieves metadata for a specific version of a file/folder:

python CADSTool.py getMetadata --source "/Temp Folder/Temp.txt" --version
"1:2006-08-25 21:15:49.453" -z

80

Chapter 6

m The following example retrieves metadata for a labeled version of a file/folder:

python CADSTool.py getMetadata --source "/Temp Folder/Temp.txt" --label "version 1" -z

m The following example retrieves metadata for a labeled version of a file/folder in the
Submitted Jobs folder:

python CADSTool.py getMetadata --source "Submitted Jobs/admin/

2007-05-21.14.10.22.422-test.dbg/test.dbg.html" --label "LATEST" --submittedHierarchy -z

Messages

The following messages may display when using this API:

B <source> No such file exists. Please try again.

B <source> Error retrieving file metadata.

® When the process completes successfully, all metadata information for the specified file/folder
is displayed, including any custom metadata properties.

import

Imports an existing *.pes export file from the local file system to the repository.

Syntax
python CADSTool.py import --source "<source>" --target "<target>" -z
Where:

B <source> is the fully qualified path (on the local file system) of the *.pes export file to import
to the repository. This is a required parameter.

B <target> is the fully qualified repository path to import the *.pes export file to. This is a
required parameter.

Example

python CADSTool.py import --source "C:\Demo\Sample.pes" --target "/Temp Folder/" -z

Messages

The following messages may display when using this API:

B <source> imported successfully.

B <source> No such file exists. Please try again.
B <target> No such folder exists. Please try again.
B <source> Error importing folder.

81

Scripting

moveResource

Moves a file or folder to another folder in the repository. A renaming feature is provided for
this API, where the specified file/folder can be renamed when it is moved. The following cases
describe the behavior of the renaming feature:

If the source is /Temp Folder/Temp.txt and the target is /Demo Folder:
m Case 1: If folder Demo Folder exists, Temp.txt is moved to Demo Folder.

m Case 2: If folder Demo Folder does not exist, Temp.txt is moved to “/ “ and renamed to
Demo Folder.

If the source is /Temp Folder/Temp.txt and the target is /[Demo Folder/Abc.dat:

m Case 1: If folder Demo Folder exists, Temp.txt is moved to Demo Folder and renamed to
Abc.dat.

m Case 2: If folder Demo Folder does not exist, an error is displayed.

Syntax

python CADSTool.py moveResource --source "<source>" --target "<target>" -z

Where:

B <source> is the fully qualified repository path of the file/folder to move. This is a required
parameter.

B <target> is the fully qualified repository path where the file/folder is to be moved. This is a
required parameter.

Examples

m The following example moves a file:

python CADSTool.py moveResource --source "/Temp Folder/Temp.txt" --target
"/Sample Folder" -z

m The following example moves a folder:

python CADSTool.py moveResource --source "/Temp Folder/" --target "/Sample Folder -z

m The following example moves and renames a file:

python CADSTool.py moveResource --source "/Temp Folder/Temp.txt" --target
"/Sample Folder/New.txt" -z

Messages

The following messages may display when using this API:

B <source> moved successfully.

B <source> No such file/folder exists. Please try again.
B <target> No such folder exists. Please try again.
B <source> Error moving file/folder.

82

Chapter 6

removelabel

Removes a label from a file in the repository.

Syntax

python CADSTool.py removeLabel --source "<source>" --label "<label>" -z

Where:
B <source> is the fully qualified path of the file in the repository. This is a required parameter.

B <label> is the label name to remove from the specified file. This is a required parameter.

Example

python CADSTool.py removeLabel --source "/Temp Folder/Temp.txt" --label "version 1" -z

Messages

The following messages may display when using this API:
B Label removed successfully for <source>.
B <source> No such folder exists. Please try again.
B <source> Error deleting label.
|

<label> No such label exists. Please try again.

removeSecurity

Removes the security access control list (ACL) from a specified file or folder in the repository.

Syntax

python CADSTool.py removeSecurity --source "<source>" --principal "<principal>"
--provider "<provider>" --cascade -z

Where:

B <source> is the fully qualified path of the file/folder to remove security from. This is a
required parameter.

B <principal> is the user/principal (such as admin) to remove security from for the specified
file/folder. This is a required parameter.

B <provider> is the security provider to use for retrieving information about the users
(principals). This is an optional parameter.

B --cascade is used when removing security from a folder, to remove the security settings
from all files and subfolders within the specified folder. This is an optional parameter.

Example

python CADSTool.py removeSecurity --source "/Temp Folder/Temp.txt" --principal Joe
--provider Native --cascade -z

83

Scripting
Messages

The following messages may display when using this API:
B <source> All the security ACL removed successfully.
B <source> No such folder exists. Please try again.

B <source> Error deleting security ACL.

search

Searches for files and folders in the repository. The results are a list of files/folders matching the
search criteria, and their versions.

Note: The search API accepts a search string as an input parameter. The parameter value is used
to search the metadata information of files and folders in the repository. The API returns a list
of all files and folders with matching criteria.

Syntax

python CADSTool.py search --criteria "<criteria>" -z

Where:

B <criteria> is the search string used to search metadata for all files and folders in the
Content Repository. This is a required parameter.

Example

python CADSTool.py search --criteria "Age" -z

Python Example

from pes.api.PESImpl import PESImpl

pesImpl = PESImpl ("admin", "spss", "localhost", "8080")
resourceSpecifierList = pesImpl.search
(
"age",
)
Messages

The following messages may display when using this API:

® When the search completes successfully, a list of all files and folders matching the search
criteria are displayed. This typically includes the file names with their fully qualified path and
versions.

B <criteria> No file or folder matches the search criteria.

B Error searching files and folders.

84

Chapter 6

setlabel

Applies a label to a version of a file in the repository. If the file is already labeled, the original
label is removed and replaced with the new label.

Syntax

python CADSTool.py setLabel --source "<source>" --version "<version>" --label
"<label>" -z

Where:
B <source> is the fully qualified path of the file in the repository. This is a required parameter.
B <version> is the version of the file to apply the label to. This is a required parameter.

B <label> is the label name to apply to the specified version of the file. This is a required

parameter.
Example
python CADSTool.py setLabel --source "/Temp Folder/Temp.txt" --version
"1:2006-08-25 21:15:49.453" --label "versionNo3" -z
Messages

The following messages may display when using this API:
B Label set successfully for <source>.
B <source> No such folder exists. Please try again.

B <source> Error setting label.

setMetadata

Applies metadata properties to files and folders in the repository. Table 6-3 lists the metadata
properties and whether they can be applied to files and/or folders.

Table 6-3

Metadata properties and resource types

Metadata Property Resource Type

Author File

Description File/Folder

Title File/Folder

Expiration Date File/Folder

Keyword File

Topics File

Custom Metadata File/Folder

Syntax
python CADSTool.py setMetadata --source "<source>" --version "<version>" --label
"<label>" --author "<author>" --title "<title>" --description "<description>"
--expirationDate "<expirationDate>" --topic "<topic>" --keyword "<keyword>"

--customProperty "<customProperty>" -z

85

Scripting

Where:

B <source> is the fully qualified repository path of the file or folder to set metadata on. This is
a required parameter.

<author> is the author of the file/folder. This is an optional parameter.
<title> is the title of the file/folder. This is an optional parameter.

<description> is the description of the file/folder. This is an optional parameter.

<expirationDate> is the expiration date of the file/folder. This is an optional
parameter. The date format is YYYY-MM-DDThh:mm: ss . sTzD (for example,
1997-07-16T19:20:30.45+01:00), where:

vyvy = four-digit year

MM = two-digit month (01 is January, etc.)

DD = two-digit day of month (01 through 31)

hh = two-digit hour (00 through 23, no am/pm)

mm = two-digit minute (00 through 59)

ss = two-digit second (00 through 59)

s = digits representing a decimal fraction of a second, with a valid range of 0 to 999
TZD = time zone designator (Z or +hh:mm or —hh : mm)

B <keyword> is the keyword for the file/folder. This is an optional parameter.

B <version> is the specific version of the file/folder to apply metadata on. This is an optional
parameter.

B <label> is the labeled version of the file/folder to apply metadata on. This is an optional
parameter.

B <topic> is the topic to apply to the file/folder. This is an optional parameter.

B <customProperty> is the custom property values to apply to the file/folder. This is
an optional parameter. The values are specified as <customProperty>=<value>.
To apply more than one custom property, use a semicolon (;) as a separator
(<customProperty>=<value>;<customProperty>=<value>)
Separate multi-select property values with the | operator
(<customProperty>=optl|opt2;<customProperty>=value).

Note: At least one optional parameter must be provided to use the setMetadata APL

Example

python CADSTool.py setMetadata --source "/Temp Folder/Temp.txt" --version
"0:2006-08-25 21:15:49.453" -label "versionl" --author "Joe" --title "Titlel.txt"
--description "Test File" --topic "topicl;topic2" --expirationDate "21-08-06"
--keyword "age" --customProperty "multi=hi|hello|bye;Complexity Degree=Simple" -z
Messages

The following messages may display when using this API:
B <source> Metadata set successfully.
B <source> No such file/folder exists. Please try again.

B <source> Error setting metadata.

86

Chapter 6

uploadFile

uploadFile saves a file to the Content Repository from the local file system, with the option of
creating a new version of the file if it already exists.

Syntax

python CADSTool.py uploadFile --source "<source>" --target
"<target>" --createVersion -z

Where:

B <source> is the fully qualified path (on the local file system) of the file to upload. This is a
required parameter.

B <target> is the fully qualified path of the folder in the repository where the file is to be
uploaded. This is a required parameter.

B --createVersion indicates that the specified file already exits and a new version should
be created. This is an optional parameter.

Examples
®m In the following example, the <target> is a fully qualified path for Temp Folder:

python CADSTool.py uploadFile --source "C:\Temp\Temp.txt" --target "/Temp Folder" -z

m If Temp.txt already exists in the/Temp Folder, use the --createversion parameter:

python CADSTool.py uploadFile --source "C:\Temp\Temp.txt" --target "/Temp Folder"
--createvVersion -z

Messages

The following messages may display when using this API:

B <source> File uploaded successfully.

B <source> No such file exists. Please try again.

B <target> No such folder exists. Please try again.

B <source> Error Uploading File.

Process Management Functions

This section outlines the Python command line usage of scripts for process management functions.
Every API contains detailed syntax information, an example, and expected messages.

Keywords

Table 6-4 lists the keywords supported for Process Management APIs. The second column lists
any optional, shortened version of keywords provided. The table only lists keywords specific to
Process Management APIs. For additional keywords that apply to both Process Management APIs
and repository APIs, see Table 6-1 and Table 6-2.

87

Scripting
Table 6-4
Keywords for Process Management APls
Keyword Optional Usage
Short Version
--source -s The source job, including the path
--target -t The target folder path
--notification -J Indicates that the job will run with notifications
--async -m Indicates that the job will run asynchronously
--execId -y The execution Id for the job
--jobStepName -q The job step name
--log Indicates that logs should not be deleted. If used in
conjunction with --target, logs are stored in a location
specified by --target. Otherwise, logs are displayed
inline.
Operations

The following sections list all Process Management scripting APIs supported for PASW
Collaboration and Deployment Services. The syntax and examples shown contain the minimum
number of required parameters.

executeJob

Runs a job synchronously or asynchronously based on the parameters passed. In the case of a
synchronous run, the API does not return until the job completes. In the case of an asynchronous
run, the API returns after the job starts.

Syntax

python CADSTool.py

Where:

executedJob --source "<source>" --notification --async -z

B <source> is the fully qualified path of the job in the repository. This is a required parameter.

B --notification is used to run the job with notifications. This is an optional parameter.

B --async is used to run the job asynchronously. This is an optional parameter.

Examples

m The following example runs the job synchronously without notifications:

python CADSTool.py

executedJob --source "/Temp Folder/Temp Job" -z

m The following example runs the job synchronously with notifications:

python CADSTool.py

executedJob --source "/Temp Folder/Temp Job" --notification -z

88

Chapter 6

® The following example runs the job asynchronously without notifications:

python CADSTool.py executedJob --source "/Temp Folder/Temp Job" --async -z

m The following example runs the job asynchronously with notifications:

python CADSTool.py executeJob --source "/Temp Folder/Temp Job" --async --notification -z

Messages

The following messages may display when using this API:
B <source> Job executed successfully. Job execution Id is <execId>.
B <source> No such job exists. Please try again.

B <source> Error executing job.

getJobExecutionDetails

Lists run details for a specific job, including any job steps and iterations.

Syntax

python CADSTool.py getJobExecutionDetails --execId "<execID>" --log --target
"<target>" -z

Where:
B --execIdis the execution Id of the job. This is a required parameter.

B --log indicates that the job log should be displayed inline. If the --1og parameter is not
included, any log generated by a job step run is not displayed. This is an optional parameter.

B <target> is the location (on the local file system) to store the logs. This is an optional
parameter, and is only used in conjunction with the --1og parameter.

Examples

m The following example lists the details of a specific job run:

python CADSTool.py getJobExecutionDetails --execId "0a58c3710016a7860000010d1a6a87
b48400" -z

m The following example lists the details of a specific job run, with the log displayed inline:

python CADSTool.py getJobExecutionDetails --execId "0a58c3710016a7860000010d1a6a87
b48400" --log -z

m The following example lists the details of a specific job run, with the job logs stored in
a specific location:

python CADSTool.py getJobExecutionDetails --execId "0a58c3710016a7860000010d1a6a87
b48400" --log --target "c:\logs" -z

89

Scripting
Messages

The following messages may display when using this API:

® For a successful run, all run details are listed for the job, job steps, and job iterations. Logs are
displayed inline or saved to a specified location on the local file system.

B <execId> No such execution exists. Please try again.
<execId> Error displaying details of a job execution.

--target cannot be used without --log parameter

getJobExecutionlist

Lists current runs and completed runs for a specific job, for all versions of the job.

Syntax
python CADSTool.py getdJobExecutionList --source "<sgource>" -z

Where:

B <source> is the fully qualified path of the job in the repository. This is a required parameter.

Example

python CADSTool.py getJobExecutionList --source "/Temp Folder/Temp Job" -z

Messages

The following messages may display when using this API:

m For a successful run of the specified job, all run details such as execution Id, job name, job
execution status, and job execution start and end time are listed.

B <source> No such job exists. Please try again.

B <source> Error displaying execution list for a job.

API Reference

The PASW Collaboration and Deployment Services scripting framework allows interaction with
repository objects directly within Python scripts. Within your Python code, import the PESImpl
class from the pes.api.PESImpl module. Create a PESImpl object using the connection
information for the repository to which to connect.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl ("admin", "spss", "localhost", "8080")

Specific functions can then be accessed using the pesImpl object.

90

Chapter 6

Content Repository APlIs

This section outlines the PESImpl functions used for working with resources stored in the
repository. Every function contains detailed syntax information, an example, and expected
messages.

APIs

The following sections list all Content Repository scripting APIs supported for PASW
Collaboration and Deployment Services.

Notes:

m For all APIs with optional parameters Label and Version, use either Label or Version, but
not both. If no Version or Label is specified for a given file/folder, the latest version is used.

m For all APIs described in this guide that require a path to files/folders in the Content
Repository, either the path or the Object URI can be used. The Object URI can be obtained
by viewing the object properties in Deployment Manager.

® For methods requiring input of source or target repository or file system paths that contain
non-Latin Unicode characters, the strings must be specified as Unicode objects, for example:

identificationSpecifier = pesImpl.uploadFile
(source=u'C:\Analytics\La Pefia.txt"',
target=u'/La Pefia')

advanceSearch Method

Searches for files and folders in the Content Repository, based on various parameters passed as
input. Note that currently expirationStartDate and expirationEndDate do not work
when used in conjunction with other search fields (such as title, author, etc).

You can search on the following items:
Author

Description

Title

Created By
Modified By
Expiration Start Date
Expiration End Date
Mime Type

Label

Keyword

Topics

The following sections describe Python API usage.

91

Method Signature:

PageResult advanceSearch
) throws InsufficientParameterException

Input Parameters:

(criteriaDict, submittedHierarchy

Table 6-5 lists the input parameters for the advanceSearch APL

Table 6-5

Input parameters for advanceSearch AP/

Scripting

Field

Required? Type

Example Value

Description

criteriaDict

Yes Dictionary

-~

}

"author":"admin",
"title":"search",
"label":"label 1",

The dictionary contains the
key/value of pair against
which the search will be
done. The acceptable key
values are:

¢ author

e title

* description

* createdBy
*modifiedBy

* expirationStartDate
* expirationEndDate

* mimeType

¢ label

* keyword

* topic

submittedHierarchy No

Boolean

True Or False

Indicates whether the
file/folder is in the
Submitted Jobs folder

Information Returned:

Table 6-6 lists the information returned by the advanceSearch APL

Table 6-6

Information returned by advanceSearch API
Type Description

PageResult See PageResult on p. 123.
Exceptions:

Table 6-7 lists possible exceptions returned by the advanceSearch APIL

Table 6-7

Possible exceptions for advanceSearch AP/

Type

Description

InsufficientParameterException

This exception is displayed if the mandatory parameters

are not specified.

92

Chapter 6

Code Snippet:

The advanceSearch API creates an object of class PESImpl by passing the user name,
password, host, and port. The advanceSearch API can be called on the instance of the
PESImpl object.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl ("admin", "spss", "localhost", "8080")

create a dictionary containing all search items.

criteriaDict = {
‘author':
‘title': ‘search’
‘label’ ‘label 1°
‘createdBy': ‘admin',
‘modifiedBy': ‘Mike’

'admin',

}
here the files will be looked for the criteria "Age"
pageResult = pesImpl.advanceSearch(criteriaDict)

rows = pageResult.getRows ()
for row in rows:
print row.getAuthor ()
print row.getTitle()
for childRow in row.getChildRow () :
print childRow.getVersionMarker ()
print childRow.getUri ()

applySecurity Method

Sets the security ACL for a file/folder in the Content Repository. The following sections describe
Python API usage.

Method Signature:

Boolean applySecurity (source, principal, permission, provider, cascade) throws
ResourceNotFoundException, InsufficientParameterException, IllegalParameterException

Input Parameters:

Table 6-8 lists the input parameters for the applySecurity APL

Table 6-8
Input parameters for applySecurity AP/
Field Required? |Type Example Value Description
source Yes String " /Temp The fully qualified path or
Folder/Temp.txt" Object URI of the file or folder
or in the Content Repository
"0a58c3670016a7860000
010dceeleaa28219"
principal Yes String admin The user (such as admin)
to apply to the specified
file/folder as part of the ACL
permission | Yes String READ, WRITE, DELETE, The type of permission
MODIFY_ACL, OR OWNER to apply to the specified
file/folder

93

Scripting

Field Required? |Type Example Value Description

provider No String Native The security provider to use
for applying security to users
(such as Native)

cascade No Boolean |True or False Propagates the security
settings to all files and
subfolders within the specified
folder

Information Returned:

Table 6-9 lists the information returned by the applySecurity APL

Table 6-9

Information returned by applySecurity AP/

Type Description

Boolean True or False based on whether the API runs
successfully.

Exceptions:

Table 6-10 lists possible exceptions returned by the applySecurity APL

Table 6-10
Possible exceptions for applySecurity API
Type Description
ResourceNotFoundException This exception is displayed if the
source file does not exist.
InsufficientParameterException This exception is displayed if any
of the required parameters are not
specified.
IllegalParameterException This exception is displayed if the
specified user or security provider
name is incorrect.
Code Snippet:

The applySecurity API creates an object of class PESImpl by passing the user name,

password, host, and port. The applySecurity API can be called on the instance of the
PESTImpl object.

from pes.api.PESImpl import PESImpl

pesImpl = PESImpl ("admin", "spss", "localhost", "8080")
bSuccess = pesImpl.applySecurity

(

source="/Temp Folder/Temp.txt",

principal="Joe",

permission="modify_acl",

provider="Native"

)

One can also specify the cascade flag to cascade the
security permissions. By default cascade flag is

false

bSuccess = pesImpl.applySecurity

(

94

Chapter 6

source="/Temp Folder/",
principal="Joe",
permission="modify_acl",
provider="Native"
cascade="True"

cascadeSecurity Method

Propagates a folder’s security settings to all files and subfolders within the folder. The following
sections describe Python API usage.

Method Signature:

Boolean cascadeSecurity (source) throws ResourceNotFoundException,
InsufficientParameterException

Input Parameters:

Table 6-11 lists the input parameters for the cascadeSecurity APL

Table 6-11
Input parameters for cascadeSecurity AP

Field Required? |Type Example Value Description

source | Yes String "/Temp Folder" The fully qualified path or
or Object URI of the folder in the
"0a58c3670016a7860000 Content Repository
010dceeleaa28219"

Information Returned:

Table 6-12 lists the information returned by the cascadeSecurity APIL

Table 6-12
Information returned by cascadeSecurity API

Type Description

Boolean |True or False based on whether the API runs
successfully.

Exceptions:

Table 6-13 lists possible exceptions returned by the cascadeSecurity APL

Table 6-13

Possible exceptions for cascadeSecurity API

Type Description

ResourceNotFoundException This exception is displayed if the source folder does not exist.

InsufficientParameterException |This exception is displayed if any of the required parameters
are not specified.

95

Scripting

Code Snippet:

The cascadeSecurity API creates an object of class PESImpl by passing the user name,
password, host, and port. The cascadeSecurity API can be called on the instance of the
PESImpl object.

from pes.api.PESImpl import PESImpl

pesImpl = PESImpl ("admin", "spss", "localhost", "8080")

here the source value is a fully qualified path
bSuccess = pesImpl.cascadeSecurity (source="/Temp Folder")

alternatively here the source value is a ResourcelID
bSuccess = pesImpl.cascadeSecurity ("0a58c3670016a7860000010dceeleaa28219")

copyResource Method
Copies a file or folder to another folder in the Content Repository. The specified file/folder can be

renamed when it is copied. The cases described at the beginning of moveResource Method on p.
112 also apply to this copyResource API. The following sections describe Python API usage.

Method Signature:

uri copyResource (source, target) throws ResourceNotFoundException,
InsufficientParameterException

Input Parameters:

Table 6-14 lists the input parameters for the copyResource API.

Table 6-14
Input parameters for copyResource API
Field Required? |Type Example Value Description
source | Yes String "/Temp Folder/Temp.txt" The fully qualified path or Object
or URI of the file or folder in the
"0a58c3670016a7860000 Content Repository
010dceeleaa28219"
target |Yes String "/New Folder" The fully qualified path or Object
or URI of the folder to copy the file
"/New Folder/abc.dat" to. A new file name can also
be provided for renaming the
specified file/folder when it is
copied.

Information Returned:

Table 6-15 lists the information returned by the copyResource APIL.

Table 6-15
Information returned by copyResource API
Type Description

uri URI of the copied file/folder

96

Chapter 6

Exceptions:

Table 6-16 lists possible exceptions returned by the copyResource APL

Table 6-16

Possible exceptions for copyResource API

Type Description

ResourceNotFoundException This exception is displayed if the source file or target folder

does not exist.

InsufficientParameterException This exception is displayed if any of the required parameters
are not specified.

Code Snippet:

The copyResource API creates an object of class PESImpl by passing the user name, password,
host, and port. The copyResource API can be called on the instance of the PESTmp1 object.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl("admin", "spss", "localhost", "8080")

uri = pesImpl.copyResource
(

source="/Temp/Temp.txt",
target="/New Folder"

)

following code snippet prints the uri.
print uri

createFolder Method

Creates a new folder at a specified location in the Content Repository. The following sections
describe Python API usage.

Method Signature:

uri createFolder (source) throws InsufficientParameterException,
ResourceAlreadyExistsException

Input Parameters:

Table 6-17 lists the input parameters for the createFolder APL

Table 6-17
Input parameters for createfolder API
Field Required? | Type Example Value Description
source |Yes String "/Temp Folder/Sample The folder(s) to create in the
Folder" Content Repository

Information Returned:

Table 6-18 lists the information returned by the createFolder APIL

97

Scripting
Table 6-18
Information returned by createfFolder API
Type Description
uri URI of the folder created
Exceptions:
Table 6-19 lists possible exceptions returned by the createFolder APIL
Table 6-19
Possible exceptions for createFolder API
Type Description
InsufficientParameterException This exception is displayed if any of the required
parameters are not specified.
ResourceAlreadyExistsException This exception is displayed if the specified folder already
exists in the Content Repository.

Code Snippet:

The createFolder API creates an object of class PESImpl by passing the user name, password,
host, and port. The createFolder API can be called on the instance of the PESImp1l object.

from pes.api.PESImpl import PESImpl

pesImpl = PESImpl ("admin", "spss", "localhost", "8080")
here creating a folder at the specified location

uri = pesImpl.createFolder

%ource="/Temp Folder/Sample Folder"

following code snippet prints the uri
print uri

deleteFile Method

Deletes a file from the Content Repository, including all its versions. The following sections
describe Python API usage.

Method Signature:

Boolean deleteFile (source, submittedHierarchy) throws ResourceNotFoundException,
InsufficientParameterException, IllegalParameterException

Input Parameters:

Table 6-20 lists the input parameters for the deleteFile APL

98

Chapter 6

Table 6-20
Input parameters for deleteFile API

Field Required? | Type Example Value Description

source | Yes String "/Temp Folder/Temp.txt" The fully qualified path or Object
or URI of the file in the Content
"0a58c3670016a7860000 chosﬁmy
010dceeleaa28219"

sub- No Boolean |True or False Indicates whether the file is in

mit- the Submitted Jobs folder

ted-

Hier-

archy

Information Returned:

Table 6-21 lists the information returned by the deleteFile APIL

Table 6-21
Information returned by deleteFile API

Type

Description

Boolean |True or False based on whether the API runs successfully.

Exceptions:

Table 6-22 lists possible exceptions returned by the deleteFile APL

Table 6-22
Possible exceptions for deleteFile AP/

Type

Description

ResourceNotFoundException

does not exist.

This exception is displayed if the source file or target folder

InsufficientParameterException

This exception is displayed if any of the required
parameters are not specified.

IllegalParameterException

delete is a folder.

This exception is displayed if the specified resource to

Code Snippet:

The deleteFile API creates an object of class PESTmp1 by passing the user name, password,
host, and port. The deleteFile API can be called on the instance of the PESTImpl object.

from pes.api.PESImpl import PESImpl

pesImpl

bSuccess

= PESImpl ("admin", "spss", "localhost", "8080")

= pesImpl.deleteFile(source="/Temp/Temp.txt")

deleteFileVersion Method

Deletes a specific version of a file from the Content Repository. The following sections describe
Python API usage.

99

Scripting

Method Signature:

Boolean deleteFileVersion (source,version,label, submittedHierarchy) throws
ResourceNotFoundException, InsufficientParameterException, IllegalParameterException

Input Parameters:

Table 6-23 lists the input parameters for the deleteFileVersion APL

Table 6-23
Input parameters for deleteFileVersion AP/

Field Required? Type |Example Value Description
source Yes String | "/Temp The fully qualified
Folder/Temp.txt" path or Object URI of
or the file in the Content
"0a58c3670016a78600 Repoﬁkﬂy
00010dceeleaa28219"
version No. String | "0:2006-08-25 The specific version of
Either 21:15:49.453" the file to delete
version
or label
must be
specified.
label No. String | "Version 1" The specific labeled
Either version of the file to
version delete
or label
must be
specified.
submittedHierarchy No Boolean | True or False Indicates whether the
file is in the Submitted
Jobs folder

Information Returned:

Table 6-24 lists the information returned by the deleteFilevVersion APIL

Table 6-24

Information returned by deleteFileVersion API

Type Description

Boolean True or False based on whether the API runs
successfully.

Exceptions:

Table 6-25 lists possible exceptions returned by the deleteFilevVersion APL

Table 6-25

Possible exceptions for deleteFileVersion AP/

Type Description

ResourceNotFoundException This exception is displayed if the source file or target
folder does not exist.

100

Chapter 6
Type Description
InsufficientParameterException This exception is displayed if any of the required
parameters are not specified.
IllegalParameterException This exception is displayed if the specified resource to
delete is a folder.

Code Snippet:

The deleteFileVersion API creates an object of class PESImpl by passing the user name,
password, host, and port. The deleteFileversion API can be called on the instance of the
PESTImpl object.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl ("admin", "spss", "localhost", "8080")

here delete the file by specifying version value
bSuccess = pesImpl.deleteFileVersion

(

source="/Temp/Temp.txt",

version="1:2006-08-25 21:15:49.453"

)

here delete the file by specifying label value

bSuccess = pesImpl.deleteFileVersion
(

source="/Temp/Temp. txt",
label="version 1"

)

deleteFolder Method

Deletes a folder and all its contents from the Content Repository. The following sections describe
Python API usage.

Method Signature:

Boolean deleteFolder (source, submittedHierarchy) throws ResourceNotFoundException,
IllegalParameterException, InsufficientParameterException

Input Parameters:

Table 6-26 lists the input parameters for the deleteFolder APL

Table 6-26
Input parameters for deleteFolderAPI
Field Required?| Type |Example Value Description
source Yes String | "/Temp Folder" The fully qualified path or
or Object URI of the folder
"0a58c3670016a78600 in the Content Repository
00010dceeleaa28219"
submittedHierarchy |No Boolean| True or False Indicates whether the
folder is in the Submitted
Jobs folder

101

Scripting

Information Returned:

Table 6-27 lists the information returned by the deleteFolder APIL

Table 6-27
Information returned by deleteFolder API

Type Description

Boolean True or False based on whether the API runs
successfully.

Exceptions:

Table 6-28 lists possible exceptions returned by the deleteFolder APL

Table 6-28
Possible exceptions for deleteFolder AP/

Type Description
ResourceNotFoundException This exception is displayed if the folder does not exist.
InsufficientParameterException

This exception is displayed if any of the required parameters
are not specified.

IllegalParameterException This exception is displayed if the specified resource to
delete is not a folder.

Code Snippet:

The deleteFolder API creates an object of class PESImpl by passing the user name, password,
host, and port. The deleteFolder API can be called on the instance of the PESTmp1 object.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl ("admin", "spss", "localhost", "8080")

bSuccess = pesImpl.deleteFolder (source="/Temp Folder")

downloadFile Method

Downloads a specific version of a file from the Content Repository onto the local file system. The
following sections describe Python API usage.

Method Signature:

resourceSpecifier downloadFile (source, target, version, label) throws
ResourceNotFoundException, InsufficientParameterException

Input Parameters:

Table 6-29 lists the input parameters for the downloadFile APL

102

Chapter 6

Table 6-29

Input parameters for downloadFile API

Field Required? |Type Example Value Description

source | Yes String "/Temp Folder/Temp.txt" The fully qualified Content
or Repository path or Object URT of
"0a58c3670016a7860000 the file to download
010dceeleaa28219"

target |Yes String | "C:\Temp" The fully qualified path (on the

local file system) of the folder to
download the file to

version [No. Either |String |"0:2006-08-25 The specific version of the file to
version or 21:15:49.453" download
label can be
specified.

label No. Either |String |"Version 2" The specific labeled version of
version or the file to download
label can be
specified.

Information Returned:

Table 6-30 lists the information returned by the downloadFile APIL

Table 6-30

Information returned by downloadFile AP/
Type Description

Resource See Resource on p. 122.
Exceptions:

Table 6-31 lists possible exceptions returned by the downloadFile APL

Table 6-31

Possible exceptions for downloadFile API

Type Description

ResourceNotFoundException This exception is thrown if the source file or target
folder does not exist.

InsufficientParameterException This exception is thrown if any of the required
parameters are not specified.

Code Snippet:

The downloadFile API creates an object of class PESImpl by passing the user name, password,
host, and port. The downloadFile API can be called on the instance of the PESImp1l object.

from pes.api.PESImpl import PESImpl

pesImpl = PESImpl ("admin", "spss", "localhost", "8080")
here we specify the version
resource = pesImpl.downloadFile

(

source="/Temp Folder/Temp.txt",
target="c:/Temp",
version="0:2006-08-25 21:15:49.453",
)

103

Scripting

Or alternatively a label can be specified.
resource = pesImpl.downloadFile
(
source="/Temp Folder/Temp.txt",
target="c:/Temp",
label="1label 1"
)
Or alternatively here the location of the file to
download is passed as a ResourcelD
resource = pesImpl.downloadFile
(
source="0a58c3670016a7860000010dceeleaa28219",
target="c:/Temp",
label="1label 1"
)
Following snippet prints Author, Title and
ResourceID
print resource.getAuthor ()
print resource.getTitle()
print resource.getResourcelID()

exportResource Method
Starts an export from the Content Repository, allowing the user to select which files and folders to

export, and saving the *.pes export file to the local file system. The following sections describe
Python API usage.

Method Signature:

Boolean exportResource (source, target) throws ResourceNotFoundException,
InsufficientParameterException

Input Parameters:

Table 6-32 lists the input parameters for the exportResource APL

Table 6-32
Input parameters for exportResource AP/
Field Required? | Type Example Value Description
source |Yes String "/Temp Folder" The fully qualified Content
or Repository path or Object URI
"0a58c3670016a78 of the folder to export
60000010dceeleaa2 8219"
target |Yes String "C:\Temp\backup.pes" The fully qualified path (on the
local file system) and *.pes file
name to export the folder to

Information Returned:

Table 6-33 lists the information returned by the exportResource API.

Table 6-33
Information returned by exportResource API

Type Description
Boolean True or False based on whether the API runs successfully.

104

Chapter 6

Exceptions:

Table 6-34 lists possible exceptions returned by the exportResource APL

Table 6-34

Possible exceptions for exportResource AP/

Type Description

ResourceNotFoundException This exception is displayed if the source file or target folder

does not exist.

InsufficientParameterException This exception is displayed if any of the required parameters
are not specified.

IllegalParameterException This exception is displayed if the specified target is a folder.
Only a *.pesfile is allowed.

Code Snippet:

The exportResource API creates an object of class PESImpl by passing the user name,
password, host, and port. The exportResource API can be called on the instance of the
PESImpl object.

from pes.api.PESImpl import PESImpl

pesImpl = PESImpl ("admin", "spss", "localhost", "8080")

bSuccess = pesImpl.exportResource

éource="/Temp Folder",

target="C:\Temp\backup.pes"
)

getAccessControlList Method

Retrieves the security ACL for the specified file/folder in the Content Repository. The following
sections describe Python API usage.

Method Signature:

list getAccessControlList (source, submittedHierarchy) throws ResourceNotFoundException,
InsufficientParameterException

Input Parameters:

Table 6-35 lists the input parameters for the getAccessControlList APL

Table 6-35
Input parameters for getAccessControlList AP/
Field Required? Type |Example Value Description
source Yes String | "/Temp The fully qualified path
Folder/Temp.txt" or Object URI of the
or file/folder in the Content
"0a58c3670016a78600 Rﬁpoﬁuny
00010dceeleaa28219"
submittedHierarchy No Boolean| True or False Indicates whether the
file/folder is in the
Submitted Jobs folder

105

Scripting
Information Returned:

Table 6-36 lists the information returned by the getAccessControlList APL

Table 6-36
Information returned by getAccessControlList APl

Type Description

Dictionary A dictionary is displayed containing the user name(s) and the associated
permission. For example:

{"admin":"MODIFY_ACL", "Joe":"DELETE"}

Exceptions:

Table 6-37 lists possible exceptions returned by the getAccessControlList APL
Table 6-37

Possible exceptions for getAccessControlList APl

Type Description

ResourceNotFoundException This exception is displayed if the source file or target
folder does not exist.

InsufficientParameterException This exception is displayed if any of the required
parameters are not specified.

Code Snippet:

The getAccessControlList API creates an object of class PESImpl by passing the user name,
password, host, and port. The getAccessControlList API can be called on the instance of
the PESImpl object.

from pes.api.PESImpl import PESImpl

pesImpl = PESImpl ("admin", "spss", "localhost", "8080")
aclDic = pesImpl. getAccessControlList
(
source = ""/Temp Folder/Temp.txt"
)
this will display all the dictionary contents
print aclDic

getAllVersions Method

Retrieves a list of all versions of a file in the Content Repository. The following sections describe
Python API usage.

Method Signature:

resourceList getAllVersions (source, submittedHierarchy) throws
ResourceNotFoundException, InsufficientParameterException, IllegalParameterException

Input Parameters:

Table 6-38 lists the input parameters for the getAllversions APL

106

Chapter 6

Table 6-38
Input parameters for getAllVersions AP/
Field Required?Type Example Value Description
source Yes String | "/Temp The fully qualified path or
Folder/Temp.txt" Object URI of the file in
or the Content Repository
"0a58c3670016a78600
00010dceeleaa28219"
submittedHierarchy No Boolean | True or False Indicates whether the file

is in the Submitted Jobs
folder

Information Returned:

Table 6-39 lists the information returned by the getAllversions APL

Table 6-39

Information returned by getAllVersions AP/

Type Description

resourcelist A list of resource objects. See Resource on p. 122.
Exceptions:

Table 6-40 lists possible exceptions returned by the getAllversions APL

Table 6-40

Possible exceptions for getAllVersions API

Type

Description

ResourceNotFoundException

This exception is displayed if the source file does not exist.

InsufficientParameterException

This exception is displayed if any of the required parameters
are not specified.

IllegalParameterException

This exception is displayed if the specified source is a
folder.

Code Snippet:

The getallversions API creates an object of class PESImpl by passing the user name,
password, host, and port. The getAllvVersions API can be called on the instance of the

PESImpl object.

from pes.api.PESImpl import PESImpl

pesImpl =

PESImpl ("admin",

"spss",

"localhost",

"8080")

here the source value is a fully qualified path

resourceList =

following code snippet iterates over the list of

resources and prints author,

For resource in resourcelList:
print resource.getAuthor ()

print resource.getTitle()

print resource.getResourcelID()

title and resourcelID

alternatively here the source value is a ResourcelID

resourceList =

pesImpl.getAllVersions (source="/Temp Folder/Temp.txt")

pesImpl.getAllVersions (source="0a58c3670016a7860000010dceeleaa28219")

107

Scripting

following code snippet iterates over the list of
resources and prints author, title and resourceID

For resource in resourceList:
print resource.getAuthor ()

print resource.getTitle()
print resource.getResourcelID()

getChildren Method

Retrieves a list of all files and folders within a specified Content Repository folder. The following
sections describe Python API usage.

Method Signature:

ResourcelList getChildren (source, submittedHierarchy)
InsufficientParameterException

throws ResourceNotFoundException,

Input Parameters:

Table 6-41 lists the input parameters for the getChildren APL

Table 6-41
Input parameters for getChildren API
Field Required?| Type Example Value Description
source Yes String | "/Temp Folder" The fully qualified path or
or Object URI of the folder in
"0a58c3670016a7860the Content Repository
00010dceeleaa28219"
submittedHierarchy No Boolean | True or False Indicates whether the folder is
in the Submitted Jobs folder

Information Returned:

Table 6-42 lists the information returned by the getChildren APL

Table 6-42

Information returned by getChildren API

Type Description
ResourcelList See Resource on p. 122.
Exceptions:

Table 6-43 lists possible exceptions returned by the getChildren APL

Table 6-43
Possible exceptions for getChildren API

Type

Description

InsufficientParameterException

This exception is displayed if any of the required
parameters are not specified.

ResourceNotFoundException

This exception is displayed if the folder does not exist.

108

Chapter 6

Code Snippet:

The getChildren API creates an object of class PESImpl by passing the user name, password,
host, and port. The getChildren API can be called on the instance of the PESImpl object.

from pes.api.PESImpl import PESImpl

pesImpl = PESImpl ("admin", "spss", "localhost", "8080")
here the source value is a fully qualified path
resourceList = pesImpl.getChildren(source="/Temp Folder")

alternatively here the source value is a ResourcelID
resourceList = pesImpl.getChildren (source="0a58c3670016a7860000010dceeleaa28219")

following code snippet iterates over the list of
resources and prints author, title and resourceID
for resource in resourceList:

print resource.getAuthor ()
print resource.getTitle()
print resource.getResourcelID()

getCustomPropertyValue Method

Retrieves the valid values accepted by a specified custom property. The following sections
describe Python API usage.

Method Signature:

list getCustomPropertyValue (propertyName) throws ResourceNotFoundException,
InsufficientParameterException

Input Parameters:

Table 6-44 lists the input parameters for the getCustomPropertyvalue APIL

Table 6-44

Input parameters for getCustomPropertyValue AP/

Field Required?| Type |Example Value Description

propertyName Yes String | "FreeForm" The name of the custom property

Information Returned:

Table 6-45 lists the information returned by the getCustomPropertyvalue APL

Table 6-45
Information returned by getCustomPropertyValue AP/

Type |Description

list Returns a list of valid values the custom property accepts. If the property requires a selection
(for example, single select or multi-select), the list contains all valid values for the selection. If
it is a free-form property, the list contains the type of data the property accepts (for example,
String, Date, or Number).

Exceptions:

Table 6-46 lists possible exceptions returned by the getCustomPropertyvalue APL

109

Scripting

Table 6-46

Possible exceptions for getCustomPropertyValue API

Type Description

ResourceNotFoundException This exception is displayed if the source file or target folder
does not exist.

InsufficientParameterException This exception is displayed if any of the required
parameters are not specified.

Code Snippet:

The getCustomPropertyValue API creates an object of class PESImpl by passing the
user name, password, host, and port. The getCustomPropertyValue API can be called on
the instance of the PESImpl object.

from pes.api.PESImpl import PESImpl

pesImpl = PESImpl ("admin", "spss", "localhost", "8080")
list = pesImpl.getCustomPropertyValue
(
propertyName = "FreeForm"
)
getMetadata Method

Retrieves the metadata attributes of a file or folder in the Content Repository, including any
custom properties and topic information. The following sections describe Python API usage.

Method Signature:

Resource getMetadata (source, version, label, submittedHierarchy) throws
ResourceNotFoundException, InsufficientParameterException

Input Parameters:

Table 6-47 lists the input parameters for the getMetadata APL

Table 6-47
Input parameters for getMetadata API

Field Required?| Type |Example Value Description
source Yes String | "/Temp The fully qualified path
Folder/Temp.txt" or Object URI of the file
or or folder in the Content
"0a58c3670016a78600 Repoﬁumy
00010dceeleaa28219"
version No. String | "0:2006-08-25 The specific version of the
Either 21:15:49.453" file or folder
version
or label
can be
specified.

110

Chapter 6

Field Required?| Type |Example Value Description
label No. String | "Version 1" The specific labeled version
Either of the file or folder
version
or label
can be
specified.
submittedHierarchy No Boolean| True or False Indicates whether the file is
in the Submitted Jobs folder

Information Returned:

Table 6-48 lists the information returned by the getMetadata APL

Table 6-48

Information returned by getMetadata AP/
Type Description

Resource See Resource on p. 122.
Exceptions:

Table 6-49 lists possible exceptions returned by the getMetadata API.

Table 6-49

Possible exceptions for getMetadata AP/

Type Description

ResourceNotFoundException This exception is displayed if the source file or folder does
not exist.

InsufficientParameterException This exception is displayed if any of the required
parameters are not specified.

Code Snippet:

The getMetadata API creates an object of class PESImpl by passing the user name, password,
host, and port. The getMetadata API can be called on the instance of the PESTmp1 object.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl ("admin", "spss", "localhost", "8080")

This will retrieve the metadata of the latest
version of the specified.

resource = pesImpl.getMetadata (source="/Temp Folder/Temp.txt")
Following snippet prints Author, Title and

ResourceID

print resource.getAuthor ()

print resource.getTitle()

print resource.getResourcelID()

following statement will print all associated custom
metadata
print resource.getCustomMetadata ()

following statement prints all the topics defined on
resource
print resource.getTopicList ()

Here we specify version

m

Scripting

resource = pesImpl.getMetadata (source="/Temp Folder/Temp.txt",version="1:2006-08-25
21:15:49.453")

We can also specify label to get metadata of a file

Resource = pesImpl.getMetadata (source="/Temp Folder/Temp.txt",label="label 1")

importResource Method

Imports an existing *.pes export file from the local file system to the Content Repository. The
following sections describe Python API usage.

Method Signature:

Boolean importResource (source, target) throws ResourceNotFoundException,
InsufficientParameterException

Input Parameters:

Table 6-50 lists the input parameters for the importResource APL

Table 6-50
Input parameters for importResource API
Field Required? |Type Example Value Description
source | Yes String "C:\Temp\New.pes" The fully qualified path (on the
local file system) of the *.pesfile
to import
target |Yes String "/Temp Folder" The fully qualified Content
or Repository path or Object URI
"0a58c3670016a7860000 of the folder to import to
010dceeleaa28219"

Information Returned:

Table 6-51 lists the information returned by the importResource API.

Table 6-51

Information returned by importResource AP/

Type Description

Boolean True or False based on whether the API runs successfully.
Exceptions:

Table 6-52 lists possible exceptions returned by the importResource APL

Table 6-52

Possible exceptions for importResource AP/

Type Description

ResourceNotFoundException This exception is displayed if the source file or target folder
does not exist.

InsufficientParameterException This exception is displayed if any of the required parameters
are not specified.

12

Chapter 6

Code Snippet:

The importResource API creates an object of class PESImpl by passing the user name,
password, host, and port. The importResource API can be called on the instance of the
PESImpl object.

from pes.api.PESImpl import PESImpl

pesImpl = PESImpl ("admin", "spss", "localhost", "8080")

bSuccess = pesImpl.importResource

éource="C:\Temp\New.pes",

target="/Temp Folder"
)

moveResource Method

Moves a file or folder to another folder in the Content Repository. The specified file/folder can be
renamed when it is moved. The following cases describe the behavior of the renaming feature:

If the source is /Temp Folder/Temp.txt and the target is /Demo Folder:
m Case 1: If folder Demo Folder exists, Temp.txt is moved to Demo Folder.

m Case 2: If folder Demo Folder does not exist, Temp.txt is moved to “/ “ and renamed to
Demo Folder.

If the source is /Temp Folder/Temp.txt and the target is /[Demo Folder/Abc.dat:

m Case 1: If folder Demo Folder exists, Temp.txt is moved to Demo Folder and renamed to
Abc.dat.

m Case 2: If folder Demo Folder does not exist, an error is displayed.

The following sections describe Python API usage.

Method Signature:

Boolean moveResource (source, target) throws
ResourceNotFoundException, InsufficientParameterException

Input Parameters:

Table 6-53 lists the input parameters for the moveResource APL

13

Scripting

Table 6-53

Input parameters for moveResource API

Field Required? Type |Example Value Description

source Yes String | "/Temp The fully qualified path
Folder/Temp.txt" or Object URI of the file
or or folder in the Content
"0a58c3670016a78600 |Repository
00010dceeleaaz28219"

target Yes String | "/New Folder" The fully qualified path or
or Object URI of the folder
" /New to move the file to. A

Folder/abc.dat"

new file name can also be
provided for renaming the
specified file/folder when
it is moved.

Information Returned:

Table 6-54 lists the information returned by the moveResource APIL

Table 6-54

Information returned by moveResource API

Type Description

Boolean True or False based on whether the API runs successfully.
Exceptions:

Table 6-55 lists possible exceptions returned by the moveResource APL

Table 6-55

Possible exceptions for move Resource API

Type

Description

ResourceNotFoundException

does not exist.

This exception is displayed if the source file or target folder

InsufficientParameterException

are not specified.

This exception is displayed if any of the required parameters

Code Snippet:

The moveResource API creates an object of class PESTmp1 by passing the user name, password,
host, and port. The moveResource API can be called on the instance of the PESImp1 object.

from pes.api.PESImpl import PESImpl

pesImpl =

PESImpl ("admin",

"spss", "localhost", "8080")

here moving a File to the specified location

bSuccess =

(

pesImpl.moveResource

source="/Temp Folder/Temp.txt",
target="/New Folder"

)

here moving a Folder to the specified location

bSuccess =

(

pesImpl.moveResource

source="/Temp Folder",

114

Chapter 6

target="/New Folder"
)

removelabel Method

Removes a label from a file in the Content Repository. The following sections describe Python
API usage.

Method Signature:

uri removeLabel (source, label) throws ResourceNotFoundException,
InsufficientParameterException

Input Parameters:

Table 6-56 lists the input parameters for the removeLabel APL

Table 6-56
Input parameters for removelLabel API
Field Required? | Type Example Value Description
source | Yes String "/Temp Folder/Temp.txt" |The fully qualified path or Object
or URI of the file in the Content
"0a58c3670016a7860000 Rﬁpoﬁuny
010dceeleaa28219"
label | Yes String "Version 1" The label name to remove

Information Returned:

Table 6-57 lists the information returned by the removelLabel API.

Table 6-57

Information returned by removelabel API

Type Description

uri URI of the updated file
Exceptions:

Table 6-58 lists possible exceptions returned by the removeLabel APIL.

Table 6-58
Possible exceptions for removelabel API
Type Description
ResourceNotFoundException This exception is displayed if the source file does not exist.
InsufficientParameterException This exception is displayed if any of the required
parameters are not specified.
Code Snippet:

The removeLabel API creates an object of class PESImpl by passing the user name, password,
host, and port. The removeLabel API can be called on the instance of the PESImp1 object.

115

Scripting

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl ("admin", "spss", "localhost", "8080")

here label "Version 1" will be removed from "/Temp
Folder/Temp.txt" file

uri = pesImpl.removeLabel (source="/Temp Folder/Temp.txt", label=
' Version 1")

following code snippet prints the uri.
print uri

removeSecurity Method

Removes the security ACL from a specified file or folder in the Content Repository. The following
sections describe Python API usage.
Method Signature:

Boolean removeSecurity (source, principal, provider, cascade) throws
ResourceNotFoundException, InsufficientParameterException, IllegalParameterException

Input Parameters:

Table 6-59 lists the input parameters for the removeSecurity APL

Table 6-59
Input parameters for removeSecurity API

Field Required? |Type Example Value Description
source Yes String " /Temp The fully qualified path or
Folder/Temp.txt" Object URI of the file or folder
or in the Content Repository
"0a58c3670016a7860000
010dceeleaa28219"
principal Yes String admin The user (such as admin) to
remove from the specified
file/folder
provider No String Native The security provider (such as
Native) to use for obtaining the
information about users
cascade No Boolean |True or False Propagates the security settings
to all files and subfolders within
the specified folder

Information Returned:

Table 6-60 lists the information returned by the removeSecurity APL

Table 6-60
Information returned by removeSecurity AP/

Type Description
Boolean True or False based on whether the API runs successfully.

116

Chapter 6

Exceptions:

Table 6-61 lists possible exceptions returned by the removeSecurity APL

Table 6-61

Possible exceptions for removeSecurity API

Type Description

ResourceNotFoundException This exception is displayed if the source file or target folder
does not exist.

InsufficientParameterException This exception is displayed if any of the required
parameters are not specified.

IllegalParameterException This exception is displayed if the specified user or security
provider name is incorrect.

Code Snippet:

The removeSecurity API creates an object of class PESImpl by passing the user name,
password, host, and port. The removeSecurity API can be called on the instance of the
PESImpl object.

from pes.api.PESImpl import PESImpl

pesImpl = PESImpl ("admin", "spss", "localhost", "8080")
bSuccess = pesImpl.removeSecurity

(

source="/Temp Folder/Temp.txt",

principal="Joe",

provider="Native"

)

One can also specify the cascade flag to cascade the
security permissions. By default cascade flag is

false

bSuccess = pesImpl.removeSecurity

(

source="/Temp Folder/Temp.txt",

principal="Joe",

provider="Native",

cascade="True"

)

search Method

Searches for files in the Content Repository and displays a list of files that match the search
criteria, and their versions. The following sections describe Python APT usage.

Method Signature:

PageResult search (criteria) throws InsufficientParameterException

Input Parameters:

Table 6-62 lists the input parameters for the search API.

Table 6-62
Input parameters for search AP/
Field Required? |Type Example Value | Description

criteria Yes String "Age" The value used to search file metadata

17

Scripting

Information Returned:

Table 6-63 lists the information returned by the search APIL
Table 6-63

Information returned by search API

Type Description

PageResult Returns the list of files based on the search criteria used. See PageResult on

p. 123..

Exceptions:

Table 6-64 lists possible exceptions returned by the search APIL.
Table 6-64

Possible exceptions for search AP/

Type Description
InsufficientParameterException This exception is displayed if any of the required

parameters are not specified.
Code Snippet:

The search API creates an object of class PESImpl by passing the user name, password, host,
and port. The search API can be called on the instance of the PESImp1l object.

from pes.api.PESImpl import PESImpl

pesImpl = PESImpl ("admin", "spss", "localhost", "8080")

here the files will be looked for the criteria "Age"
pageResult = pesImpl.search(criteria="Age")

following code snippet iterates over the list of
resources and prints author, title and resourcelID

rows = pageResultList.getRows ()
for row in rows:
print row.getAuthor ()
print row.getTitle()
print row.getResourceID()

setlLabel Method

Applies a label to a version of a file in the Content Repository. If the file is already labeled, the
original label is replaced with the new label. The following sections describe Python API usage.

Method Signature:

uri setLabel (source, version, label) throws
ResourceNotFoundException, InsufficientParameterException

Input Parameters:

Table 6-65 lists the input parameters for the setLabel APIL.

118

Chapter 6

Table 6-65
Input Parameters for setlLabel API
Field Required? |Type Example Value Description
source | Yes String "/Temp Folder/Temp.txt" |[The fully qualified path or
or Object URI of the file in the
"0a58c3670016a7860000 Content Repository
010dceeleaaz28219"
version |Yes String "0:2006-08-25 The specific version of the file
21:15:49.453"
label Yes String "Version 1" The label to apply to the file

Information Returned:

Table 6-66 lists the information returned by the setLabel APIL

Table 6-66

Information returned by setlLabel API

Type Description

uri URI of the updated file
Exceptions:

Table 6-67 lists possible exceptions returned by the setLabel API.

Table 6-67

Possible exceptions for setLabel API

Type Description

ResourceNotFoundException This exception is displayed if the source file or version
does not exist.

InsufficientParameterException This exception is displayed if any of the required
parameters are not specified.

Code Snippet:

The setLabel API creates an object of class PESImpl by passing the user name, password, host,
and port. The setLabel API can be called on the instance of the PESTImp1 object.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl ("admin", "spss", "localhost", "8080")

here label "Version 1" will be set to "/Temp
Folder/Temp.txt" file

uri = pesImpl.setLabel (source="/Temp Folder/Temp.txt", version=
"1:2006-08-25 21:15:49.453", label=" Version 1")

following code snippet prints the uri.
print uri

setMetadata Method

Applies metadata properties to files and folders in the Content Repository. Table 6-68 lists the
metadata properties and whether they can be applied to files and/or folders.

119

Scripting
Table 6-68
Keywords for Content Repository APls
Metadata Property Resource Type
Author File
Description File/Folder
Title File/Folder
Expiration Date File/Folder
Keyword File
Topics File
Custom Metadata File/Folder
The following sections describe Python API usage.
Method Signature:
uri setMetadata (source, version, label, props) throws
ResourceNotFoundException, InsufficientParameterException
Input Parameters:
Table 6-69 lists the input parameters for the setMetadata API.
Table 6-69
Input parameters for setMetadata AP/
Field Required?ype Example Value Description
source Yes String "/Temp Folder/Temp.txt" The fully qualified
or path or Object URI of
"0a58c3670016a7860000 the file/folder in the
010dceeleaa28219" Content Repository
version No. String "0:2006-08-25 21:15:49.453" The specific version
Either of the file to be
version downloaded
or label
can be
specified.
label No. String "Label 1" The label of the
Either specific version
version
or label
can be
specified.
props Yes Dictionary Contains all the

‘author': 'admin',
‘title': 'newTitle',
‘description', 'desc',
‘topic':[a,b],
‘customProperty':

‘FreeForm': ‘abcd'’

}

{ ‘language':'hindi|english',

metadata to be set,
in the Dictionary
with the metadata
name as keys. As
shown in the Example
Value column, it
takes the list as a
value from topic
and Dictionary for
customProperty.
For the rest of the
metadata it takes
string.

120

Chapter 6

Information Returned:

Table 6-70 lists the information returned by the setMetadata APIL

Table 6-70
Information returned by setMetadata API

Type Description

uri URI of the file/folder for which metadata
was set

Exceptions:

Table 6-71 lists possible exceptions returned by the setMetadata API.

Table 6-71

Possible exceptions for setMetadata AP

Type Description

InsufficientParameterException This exception is displayed if any of the required
parameters are not specified.

ResourceNotFoundException This exception is displayed if the source file/folder does
not exist.

Code Snippet:

The setMetadata API creates an object of class PESImpl by passing the user name, password,
host, and port. The setMetadata API can be called on the instance of the PESImp1 object.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl ("admin", "spss", "localhost", "8080")

dictionary containing customProperty values.
customPropertyDic = {‘'freeform':'demo', ‘complexity:'medium',
‘language' : 'hindi|english’

dictionary containing all the metadata.
propertyDic = {‘author':"authorName", ‘title':"title",
‘description':"description",
‘keyword' : "keyword",
‘topic':[‘topic 1', 'topic 2'],
‘customProperty' :customProperyDic
}

uri = pesImpl.setMetadata
(
source="/Temp Folder/Temp.txt",
version="0:2006-08-25:15:49.453",
props=propertyDic
)

you can use label instead of version
uri = pesImpl.setMetadata
(
source="/Temp Folder/Temp.txt",

label="1label 1",

props=propertyDic
)

following code snippet prints the uri
print uri

121

Scripting
uploadFile Method

Saves a file to the Content Repository from the local file system, with the option of creating a new
version of the file if it already exists. The following sections describe Python API usage.

Method Signature:

IdentificationSpecifier uploadFile (source, target, versionFlag) throws
ResourceNotFoundException, ResourceAlreadyExistsException,
InsufficientParameterException

Input Parameters:

Table 6-72 lists input parameters for the uploadrile APL

Table 6-72
Input parameters for uploadFile AP/
Field Required? |Type Example Value Description
source Yes String "C:\Temp\Temp. txt" The fully qualified path (on
the local file system) of the
file to upload
target Yes String "/Temp Folder The fully qualified path of
the destination folder in the
Content Repository where the
file is to be uploaded
versionFlag No Boolean |True or False If the specified file already
exists, a new version of the
file is created

Information Returned:

Table 6-73 lists the information returned by the uploadFile APL

Table 6-73

Information returned by uploadFile API

Type Description

uri URI of the uploaded file
Exceptions:

Table 6-74 lists possible exceptions returned by the uploadrFile APL

Table 6-74

Possible exceptions for uploadFile API

Type Description

ResourceNotFoundException This exception is displayed if the source file or target folder
does not exist.

ResourceAlreadyExistsException This exception is displayed if a file/folder with the same

name as the source file exists in the target folder and the
createVersion parameter is not specified.
InsufficientParameterException This exception is displayed if any of the required
parameters are not specified.

122

Chapter 6

Code Snippet:

The uploadrile API creates an object of class PESImpl by passing the user name, password,
host, and port. The uploadFile API can be called on the instance of the PESTmp1 object.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl ("admin", "spss", "localhost", "8080")

uri = pesImpl.uploadFile

(
source="C:\Temp\Temp.txt",
target="/Temp Folder",
versionFlag=True

)

print uri

Wrapper Classes

The classes in this section are wrappers for objects returned from the PASW Collaboration and
Deployment Services web services. The wrappers provide an easier interface for displaying the
data.

Resource

The Resource class acts as a simplified wrapper to the Content Repository object
ResourceSpecifer.Resource, which is returned through various API calls. This allows users
to retrieve object-specific data through an easier interface. Along with metadata information, this
class captures any custom metadata information associated with the specified object in the Content
Repository. Table 6-75 lists all methods available in the Resource class.

Table 6-75

Resource class methods

Method Name Description

getAccessControlList Returns a dictionary of an object’s security permissions. It
contains the user name as a key and only the highest permission
given to the user. For example:
If user Joe has delete permission on resource X, then
getAccessControlList of the resource object representing X
will return { *Joe': 'DELETE' } and not all three permissions
(read, write, delete) from the web service call.

getOwner Returns the name of the owner of the object as a string

getAuthor Returns the name of the author of the object as a string

getContentSize Returns the size of the object

getCreatedBy Returns the name of the user who created the object as a string

getCreationDate Returns the creation date of the object as a datetime object

getDescription Returns the description of the object as a list

getDescriptionLanguage Returns the language of the object as a list

getExpirationDate Returns the expiration date of the object as a datetime object

isExpired Indicates whether the specified object has expired or not

getMimeType Returns the file type of the object as a string

getModificationDate Returns the last modified date of the object as a datetime object

getObjectCreationDate Returns the object creation date of the object as a datetime object

123

Scripting
Method Name Description
getObjectLastModifiedBy Returns the user who last modified the object as a string
getObjectLastModifiedDate Returns the object last modified date of the object as a datetime
object
getResourcelID Returns the Object URI of the object as a string
getResourcePath Returns the path of the specified object as a string
getTitle Returns the Title for the object as a string
getTopicList Returns a list of Topics for the object
getVersionMarker Returns the version of the object as a string.
getVersionLabel Returns the label of the object as a string
getCustomMetadata Returns any custom properties associated with the object as a
dictionary
getKeywordList Returns a list of keywords associated with the object

IdentificationSpecifier

This class acts as a simplified wrapper to the Content Repository object
IdentificationSpecifier, which is returned through various API calls. This allows users
to retrieve identification-specific data through an easier interface. Table 6-76 lists all methods
available in the IdentificationSpecifier class.

Table 6-76
IdentificationSpecifier class methods
Method Name Description
getIdentifier Returns the identifier value of an object as a string
getVersionMarker Returns the version of an object as a string
getVersionLabel Returns the label applied to an object as a string
PageResult

This class is used as a simplified wrapper to the PageResult object, which is returned from the
queryExecution API. This allows users to retrieve data specific to a job run through an easier
interface. Table 6-77 lists all methods available in the PageResult class.

Table 6-77
PageResult class methods
Method Name Description
getRows Returns a list of row objects, which is a wrapper around
the Process Management Row object
SearchResult

This class acts as a simplified wrapper to the Row object in PageResult, which is returned
from the Search web service. The SearchResult class differs from the Row wrapper class,
though the purpose of both classes is the same. Table 6-78 lists all methods available in the
SearchResult class.

124

Chapter 6
Table 6-78
SearchResult class methods
Method Name Description
getTitle Returns the name of the file/folder
getAuthor Returns the author of the file/folder
getMimeType Returns the mime type of the file
getObjectLastModifiedBy |Returns the user who last modified the
file/folder
getModified Returns the date and time the file/folder was
last modified
getFolderPath Returns the location of the file/folder
getFolder Returns the name of parent folder of the
file/folder
getParentURI Returns the Object URI of the parent
getTopic Returns the topics associated with the
file/folder
getChildRow Returns the list of SearchChildRow
objects (see the following section for more
information)
SearchChildRow

This class acts as a simplified wrapper to the ChildRow object. It provides simplified access
to various fields in the ChildRow object. Table 6-79 lists all methods available in the

SearchChildRow class.

Table 6-79
SearchChildRow class methods

Method Name

Description

getExpirationDate

Returns the expiration date of the file/folder

getKeyword Returns the keywords associated with the

version of the file/folder
getVersionLabel Returns the version label of the file/folder
getDescription Returns the description of the file/folder
getLanguage Returns the language

getVersionCreationDate

Returns date and time the file/folder was
created

getVersionMarker

Returns the version marker of the file/folder

getUri

Returns the Object URI of the file/folder

Process Management APIs

This section outlines the PESImpl functions used for working with jobs stored in the repository.
Every function contains detailed syntax information, an example, and expected messages.

125

Scripting
APIs

The following sections list all Process Management scripting APIs supported for PASW
Collaboration and Deployment Services.

Note: For all APIs described in this guide that require a path to files/folders in the Content

Repository, either the path or the Object URI can be used. The Object URI can be obtained by
viewing the object properties in Deployment Manager.

cancelJob Method
Cancels a running job. The following sections describe Python API usage.

Method Signature:

bSuccess = canceldob (executionId) throws
RemoteException, DatabaseException, SchedulingException, AuthorizationException

Input Parameters:

Table 6-80 lists the input parameters for the cancelJob APIL

Table 6-80
Input parameters for cancelJob API
Field Required? Type |Example Value Description
executionId Yes String | 0a58c33d002ce9%0800 Execution ID for the job
00010e0ccf7b01800e

Information Returned:

Table 6-81 lists the information returned by the cancelJob API.

Table 6-81
Information returned by cancelJob API

Type Description
bSuccess Returns a message when the job is cancelled
Code Snippet:

The cancelJob API creates an object of class PESImpl by passing the user name, password,
host, and port. The cancelJob API can be called on the instance of the PESImp1 object.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl ("admin", "spss", "localhost", "8080")

bSuccess = pesImpl.cancelJob (executionId="'0a58c33d002ce9080000010e0ccf7b01800e")

126

Chapter 6

executeJob Method

Runs an Deployment Manager job synchronously or asynchronously based on the parameters
passed. In the case of a synchronous run, the API does not return until the job completes. In
the case of an asynchronous run, the API returns after the job starts. The following sections
describe Python API usage.

Method Signature:

executionID executeJob(source,notification,asynchronous) throws RemoteException,
SchedulingException

Input Parameters:

Table 6-82 lists the input parameters for the executeJob APL

Table 6-82
Input parameters for executeJob API
Field Required? |Type Example Value Description
source Yes String "C:\Temp\Temp.txt" |The fully qualified path (on the
local file system) of the file to
upload
notification No Boolean | True or False Indicates whether the job runs
with or without notifications.
Default is False.
asynchronous No Boolean | True or False Indicates whether the job runs
asynchronously. Default is
False.

Information Returned:

Table 6-83 lists the information returned by the executedob APIL

Table 6-83
Information returned by executeJob API
Type Description

executionID | String containing the execution ID (for example,
0a58c33d002ce9080000010daaf94ae88100)

Code Snippet:

The executeJob API creates an object of class PESImpl by passing the user name, password,
host, and port. The executeJob API can be called on the instance of the PESTImpl object.

from pes.api.PESImpl import PESImpl
pesImpl = PESImpl ("admin", "spss", "localhost", "8080")

To run the job asynchronously and without notification.
executionId = pmImpl.executedJob(source='/Test', asynchronous=True)

To run the job synchronously and without notification.
executionId = pmImpl.executedJob(source='/Test')

To run the job asynchronously and with notifications.

executionId = pmImpl.executedJob(source='/Test', notification = True, asynchronous=True)

127

getJobExecutionDetails Method

Scripting

Lists the run details for a specific job, including any job steps and iterations. The following
sections describe Python API usage.

Method Signature:

executionDetailsDict getJobExecutionDetails (executionId, log, target) throws RemoteException,

ObjectNotFoundException,

Input Parameters:

DatabaseException,

SchedulingException, AuthorizationException

Table 6-84 lists the input parameters for the getJobExecutionDetails APL

Table 6-84

Input parameters for getJobExecutionDetails API

Field Required? | Type Example Value Description

execu- | Yes String 0a58c33d002ce%080000 The execution Id of the job

tionId 010e0ccf7b01800e

log No Boolean |True or False Indicates whether the job log is
displayed inline

target |No String "c:\logs" The location (on the local file
system) to store the logs. Only
used in conjunction with the
--1log parameter.

Information Returned:

Table 6-85 lists the information returned by the getJobExecutionDetails APL

Table 6-85

Information returned by getJobExecutionDetails API

Type

Description

executionDetailsDict

{

}

"job": [executionDetails],
"jobStepIteration": [executionDetails]

eventName,
endDateTime, log,
Methods that can be
used to access above information is get_attribute_eventUuid(),
get_attribute_eventName () ,get_attribute_executionSuccess(),
get_attribute_executionState(),get_attribute_startDateTime(),
get_attribute_endDateTime () ,get_element_log(),
get_element_artifactLocation ()

Dictionary containing a list of run details for the job, job step, and job step
iterations. The dictionary is structured as follows:

The executionDetails object contains details like eventUuid,
executionSuccess, executionState, startDateTime,
artifactLocation etc.

Methods that can be used to access the above information are:

get_attribute_eventUuid(),get_attribute_eventName (),
get_attribute_executionSuccess (),
get_attribute_startDateTime (),get_attribute_endD ateTime(),
get_element_log () ,get_element_artifactLocatio n()

"jobStep": [executionDetails],

get_attribute_execution Statel(),

128

Chapter 6

Code Snippet:

The getJobExecutionDetails API creates an object of class PESImpl by passing the
user name, password, host, and port. The getJobExecutionDetails API can be called on
the instance of the PESImpl object.

from pes.api.PESImpl import PESImpl

pesImpl = PESImpl ("admin", "spss", "localhost", "8080")

Note that even though log is false, we do get log

details if any in execution Details object.

executionDetailsDict = pesImpl. getJobExecutionDetails

(executionId=" 0a58c35a50bd8291000001144e£7935b8088")

stores the logs generated at the target location.

executionDetailsDict = pesImpl. getJobExecutionDetails (executionId="

0a58c35a50bd8291000001144e£7935b8088", log=True,
target="c:\logs")

getJobExecutionList Method

Lists the runs for a specific job, including any currently running jobs and completed jobs, for all
versions of the job. The following sections describe Python API usage.

Method Signature:

PageResult getJobExecutionList (source)

Input Parameters:

Table 6-86 lists the input parameters for the getJobExecutionList APL

Table 6-86
Input parameters for getJobExecutionList AP/
Field Required? |Type Example Value Description
source Yes String "/testJob" The fully qualified path of the job in the
Content Repository.

Information Returned:

Table 6-87 lists the information returned by the getJobExecutionList APIL.

Table 6-87

Information returned by getJobExecutionList APl
Type Description

PageResult See PageResult on p. 123..
Code Snippet:

The getJobExecutionList API creates an object of class PESImpl by passing the user name,
password, host, and port. The getJobExecutionList API can be called on the instance of
the PESImpl object.

from pes.api.PESImpl import PESImpl

129

Scripting

pesImpl = PESImpl ("admin", "spss", "localhost", "8080")
pageResult = pesImpl.getJobExecutionList ("\testJob")
rows = pageResult.getRows ()
if rows:
for row in rows:

print row.getPath()

print row.getObjId()

print row.getEventObjId()

print row.getVersionMarker ()

print row.getEventStartDateTime ()

print row.getEventEndDateTime ()

Wrapper Classes

The classes in this section are wrappers for objects returned from the PASW Collaboration and
Deployment Services web services. The wrappers provide an easier interface for displaying the
data.

PageResult

This class acts as a simplified wrapper to the Process Management object PageResult, which is
returned from the queryExecution API. This allows users to retrieve job execution specific
data through an easier interface. Table 6-88 lists all methods available in the PageResult class.

Table 6-88

PageResult class methods

Method Name Description

getRows Returns a list of the row object, which is a wrapper

around the Process Management Row object

Row

This class acts as a simplified wrapper to the Process Management object Row, which is returned
from the queryExecution API. Table 6-89 lists all methods available in the Row class.

Table 6-89

Row class methods

Method Name Description

getObjId Returns the execution ID of the job
getPath Returns the path of the job
getVersionMarker Returns the version marker of the job that

was run
getVersionLabel Returns the version label of the job that was

run

getEventObjId
getEventState

Returns the event ID of the job that was run

Returns the state of the running job

getEventCompletionCode Returns the completion code of the job

getEventStartDateTime

Returns the start date and time of the job

getEventEndDateTime

Returns the end date and time of the job

getQueuedDateTime

Returns the queued date and time of the job

130

Chapter 6

jobExecutionDetails

This class is returned from the getJobExecutionDetails API. It stores the run details for a job
and stores a list of jobStepExecution objects. This class contains the ExecutionDetails
object, to which it delegates all of its method calls. Table 6-90 lists all methods available in

the jobExecutionDetails class.

Table 6-90
JjobExecutionDetails class methods

Method Name

Description

getJobStepDetails

Returns a list of jobStepExecu-
tionDetails objects

getArtifactLocation

Returns a list of job artifact locations

getCompletionCode Returns the completion code of the job
getEndDateTime Returns the end date and time of the job
getEventName Returns the event name of the job
getEventUUID Returns the event ID of the job

getExecutionState

Returns the run state of the job

Returns success or failure status of the
job

Indicates whether there were any
warnings

getExecutionSuccess

getExecutionWarning

getLog Returns the log (as string) generated

Indicates whether e-mail notifications
are enabled or not

Returns the queued date and time of

getNotificationEnabled

getQueuedDateTime

the job

getStartDateTime Returns the start date and time of the
job

getUserName Returns the name of the user who ran
the job

getUUID Returns the execution ID of the job

jobStepExecutionDetails

This class stores the run details for a job step and stores a list of
jobStepChildExecutionDetails objects. This class contains the ExecutionDetails
object, to which it delegates all of its method calls.Table 6-91 lists all methods available in
the jobStepExecutionDetails class.

Table 6-91

jobStepExecutionDetails class methods
Method Name Description
getJobStepChldExecution- Returns a list of jobStepChildExecu-
List tionDetails objects

getArtifactLocation Returns a list of job artifact locations

getCompletionCode Returns the completion code of the job
getEndDateTime Returns the end date and time of the job
getEventName Returns the event name of the job

131

Method Name

Description

getEventUUID

Returns the event ID of the job

getExecutionState

Returns the run state of the job

getExecutionSuccess

Returns success or failure status of the job

getExecutionWarning

Indicates whether there were any warnings

getLog

Returns the log (as string) generated

getNotificationEnabled

Indicates whether e-mail notifications are
enabled or not

getQueuedDateTime

Returns the queued date and time of the job

getStartDateTime Returns the start date and time of the job
getUserName Returns the name of the user who ran the job
getUUID Returns the execution ID of the job

jobStepChildExecutionDetails

Scripting

This class stores the run details for job step iterations (for iterative jobs). This class contains the
ExecutionDetails object, to which it delegates all of its method calls.Table 6-92 lists all
methods available in the jobStepChildExecutionDetails class.

Table 6-92

jobStepChildExecutionDetails class methods

Method Name

Description

getArtifactLocation

Returns a list of job artifact locations

getCompletionCode Returns the completion code of the job
getEndDateTime Returns the end date and time of the job
getEventName Returns the event name of the job
getEventUUID Returns the event ID of the job

getExecutionState

Returns the run state of the job

getExecutionSuccess

Returns success or failure status of the job

getExecutionWarning

Indicates whether there were any warnings

getLog

Returns the log (as string) generated

getNotificationEnabled

Indicates whether e-mail notifications are
enabled

getQueuedDateTime

Returns the queued date and time of the job

getStartDateTime Returns the start date and time of the job
getUserName Returns the name of the user who ran the job
getUUID Returns the execution ID of the job

Chapter

7

HTML Archive

An HTML report typically involves a number of HTML files displaying a variety of referenced
images using style sheets to control the appearance of the output. Due to the number of files
involved, managing and sharing this output can be a challenge. If one file is missing or incorrectly
referenced, the pages do not display correctly.

The HTML Archive, or HTMLC, format addresses the issue of managing numerous
intra-linked files by placing all associated HTML artifacts into a single, cross-browser archive file.
The repository includes a viewer enabling a variety of client applications to display the contents of
the archive. When accessing an HTMLC file stored in the repository, relative cross-references
within the archive are silently replaced with full paths that reference the archive file. This allows
links to files within the archive to resolve completely and display correctly.

File Structure

An HTMLC archive file contains:

m aprimary HTML file at the root of the archive. When rendering an HTMLC archive, the
viewer uses the first file with an .html extension at the archive root as the primary file.

m secondary files referenced by the primary file, such as cascading style sheets, images,
javascript, or other HTML files. Secondary files can exist in any folder within the archive.

All references to files within the archive should use relative paths.

Creating HTMLC Files

HTMLC files can be created in PASW BIRT Report Designer when working with report designs
stored in the repository. However, custom HTMLC files can also be created using a file archiver
such as the Java Archive tool or WinZip. To manually create an HTMLC file:

1. Create the structure for the files in the file system.

2. Create an archive containing those files and folders, specifying an extension of .htmlc for the
output file.

The files in the archive may be created manually or automatically. In PASW Statistics, for
example, you can export the results of an analysis as HTML. The resulting HTML and image
files can be archived as an HTMLC file. Alternatively, you can use an HTML editor to manually
create pages to be archived.

132

133

HTML Archive

Custom HTMLC File Example

For this example, consider the folder structure shown in the “Archive Files” figure.

Figure 7-1
Archive Files

0 o &)

[images gss, hkml

The HTML file gss.html references images contained in the images folder and uses styles
contained in a cascading stylesheet in the css folder. Using the Java Archive tool, the following
command creates an HTMLC file named custom.HTMLC containing the files.

jar -cvfM custom.HTMLC gss.htm images css

The contents of the resulting archive appear in “HTMLC Archive” figure.

Figure 7-2
HTMLC Archive

Mame Tvpe Path
}my_styles.css Cascading Style Sheet Document css!,
2 HTML Dacurment

@g . JPEi Image imagest,
@ gss2.jpg JPEG Image images

Storing this single archive in the repository allows the gss.html page to be displayed in repository
clients, such as the Deployment Portal or Deployment Manager, with its referenced graphics
using the defined styles.

Chapter

Customization Example

The Model Management page of Deployment Portal provides the ability to monitor the ongoing
performance of models deployed to repository as scenario files. These scenarios are associated
with PASW Collaboration and Deployment Services jobs that can be executed on demand or
scheduled. Scenario files are created with the PASW Modeler application, and they use streams
for underlying analytical processing. Model evaluation and champion challenger jobs in PASW
Collaboration and Deployment Services are set up and executed using Deployment Manager, and
Deployment Portal is used only to view the results. The information displayed as tabs on the
Model Management page can include a listing of the best and worst performing models, trends of
model performance, champion models, and a listing of all deployed scenarios. The options on the
Configuration tab can be used to specify display parameters and show or hide individual tabs.

For information on using the Model Management page, see the Deployment Portal help system.
The user interface mainly consists of a single Java server page (JSP), MMDMaster.jsp. The
interface components rendered on the page are either reports from PASW BIRT Report Designer
or Visualization reports. These reports are rendered using the PASW Tag Library. The page itself

is integrated into Deployment Portal using the Tab Extension framework.

PASW Tag Library

The PASW Tag Library provides support for running the PASW BIRT Report Designer and
Visualization reports that generate the bulk of the content on the Model Management page. The
tag library also supports interactivity between reports, allowing a source report to invoke a target
report. The source report passes parameters to the target report for processing.

Report Definitions

The Report definitions used by the Model Management page are stored in the following directory
within the repository installation:

<installation-directory>\components\peb-mmd\reports

To examine the reports, open the PASW BIRT Report Designer reports in PASW BIRT Report
Designer. The visualization reports can be opened using the PASW Viz Designer, or a text
or XML editor.

The reports are provided for reference purposes, and should not be directly modified. Any
modification of the reports will not be supported by SPSS Inc.. However, you may copy the
reports and modify the copies as desired.

134

135

Customization Example

Running PASW BIRT Report Designer Reports

The Model Management page involves four master reports that are displayed in four tabs. These
tabs are displayed in the “Model Management tabs” figure.

Figure 8-1

Model Management tabs
€ dome 7 ConentRepository [T Preferences [T WyReports [T Wodel Management S oAnemt 4 Help
Search | Got .mm Welcome admin Logoud
|' Parfgrmancs | Trands | Championg SeanARinE [Configurs | :

Each of the tabs corresponds to a master PASW BIRT Report Designer report. When the tab
loads, the master PASW BIRT Report Designer report associated with the tab runs using the
PASW Tag Library framework.

On the master JavaServer Page, there is one tag for each PASW BIRT Report Designer report.
The example below shows the tag used for the Performance Tab.

<|-The tag that represents the report >
<pasw-taglib:repositoryltem
name="Performance_Tab_Report_Tag"
inputURI="<<path of the Performance Report>>"
repositoryCredentialName="localhost"
activate="ONLOAD"
location="Performance_Tab_Report_Output"
outputType="HTML">
<pasw-taglib:sourceLinkPrompt
targetNameParameter="LeastPerformingScenarios"
parameterValue="<<localized text>>" />

<l-
<<<< Few other parameters which represent localized text>>>>
>

<!-This value comes from the User defined prompts >

<pasw-taglib:sourceLinkPrompt
promptld="Performance_Tab_NumberOfPerformers_Prompt"
targetNameParameter="NumberQfPerformers"/>

<I-The value of this parameter is specified in the tag itself >

<pasw-taglib:sourcelLinkPrompt
targetNameParameter="RunsFromDate"
parameterValue="<%=scenariosFrom%>"/>

<pasw-taglib:sourceLinkPrompt
targetNameParameter="RunsToDate"
parameterValue="<%=scenariosTo%>"/>

</pasw-taglib:repositoryltem>

repositoryltem Tag

The PASW BIRT Report Designer report information is specified in the repositoryltem tag.

136

Chapter 8

<pasw-taglib:repositoryltem
name="Performance_Tab_Report_Tag"
inputURI="<<path of the Performance Report>>"
repositoryCredentialName="localhost"
activate="ONLOAD"
location="Performance_Tab_Report_Output"
outputType="HTML">np

The repositoryltem tag has following attributes:

m name. The repositoryltem tag should be uniquely identified using the name attribute. The
runRepositoryltem public API uses this name to render the report. For the Performance tab,
the name is Performance_Tab_Report_Tag.

® inputURI. This attribute specifies the location of the PASW BIRT Report Designer report.
For the Model Management page, all of the PASW BIRT Report Designer reports are picked
up from the server’s file system in the peb-mmd directory of the repository installation. The
URI specified must be a valid URI.

m activate. This parameter determines when the report is run. For the Performance tab, the value
is ONLOAD, indicating the report will run when the page loads. A value of ONDEMAND
indicates that the user is responsible to initiate running of the report by calling the runReport
public API provided by the Reporting tag library. For more information, see the topic
Javascript API on p. 138.

m |ocation. This specifies the location in which the report is to be rendered. This attribute
corresponds to the id of the HTML element, which can be either a DIV or an IFRAME. For
Model Management, the report location always points to a DIV.

m outputType. This specifies the format in which the report is to be rendered using the PASW
Tag Library. The output format specified must be one which is supported by the PASW BIRT
Report Designer Report Engine. For the PASW BIRT Report Designer reports used in Model
Management, the output type is always HTML.

sourcelinkPrompt Tag

The sourceLinkPrompt tag specifies the linking of prompts to the report. In other words, this tag
specifies how the report acquires the prompt values while running.

There are two ways in which the prompt values are specified for Model Management. The first
method is using the parameterValue attribute, such as:

<pasw-taglib:sourcelLinkPrompt
targetNameParameter="RunsFromDate"
parameterValue="<%=scenariosFrom%>"/>

Here, the name of the prompt is RunsFromDate, which is defined in the PASW BIRT Report
Designer report. The value for this prompt is specified in the parameterValue attribute. The value
passed in this attribute is directly passed to the report.

The second method of specifying prompt values is by linking a user prompt to the report
parameter. For example:

<pasw-taglib:sourceLinkPrompt
promptld="Performance_Tab_NumberOfPerformers_Prompt"

137

Customization Example
targetNameParameter="NumberQfPerformers"/>

<input type="hidden" id="Performance_Tab_NumberOfPerformers_Prompt"
name="Performance_Tab_NumberOfPerformers_Prompt"
value="<%=userProfile.getPerformanceSize()%>"/>

Here the promptld attribute points to the id defined by the hidden HTML input tag. In this case,
the value specified in the hidden field Performance_Tab_Number OfPerformers_Prompt would be
passed as the prompt value for the report parameter Number OfPerformers while running the report.

Credentials

The reports comprising the Model Management page query the database underlying the repository
for their content. Consequently, the reports need a data source corresponding to that database.
This data source, MMDDataSource, is created within the repository when the user initially loads
the Model Management page and is used whenever access to the repository database is required
by any of the tags.

To access the MMDDataSource data source, the reports must specify valid credentials. The
credential tag within the JavaServer pages allows the definition of these credentials.

<pasw-taglib:credential
name="MMDDataSource"
username="<<some db user name>>"
password="<< password for the user>>"/>

The credentials for this data source are collected via Login.jsp before displaying the page and
correspond to the username and password for the database underlying the repository. When valid
credentials are obtained, the credentials are cached for the duration of the session and are used
to run the PASW BIRT Report Designer reports. The Model Management PASW BIRT Report
Designer reports are defined such that the name of the datasource is MMDDataSource.

In addition to the data source credentials, the Model Management reports also require
credentials for the user executing the report.

<pasw-taglib:credential
name="localhost"
provider="<< some provider id >>"
username="<< name of some CR user >>"
password="<<password of the user >>" />

These credentials have the name localhost. Given that the repository may be configured to allow
multiple security providers, the provider attribute is required.

The repositoryltem tag requires valid repository user credentials, which are specified in the
repositoryCredential Name attribute of the tag. For Model Management, the value for this attribute
is localhost, which corresponds to the user name, provider, and password of the user who has
logged into Deployment Portal.

138

Chapter 8

Running Visualization Reports

The methodology to run visualization reports is identical to that used for PASW BIRT Report
Designer reports. However, there are a few differences in the usage.

m Visualization reports use a value of ONDEMAND for the activate attribute of the
repositoryltem tag instead of the ONLOAD value used by PASW BIRT Report Designer
reports.

m Parameters required for the visualization reports are passed by the master PASW BIRT Report
Designer reports. For more information, see the topic Visualization Report Interactivity
on p. 138.

Javascript API

The tag library has a framework built using JavaScript methods. These JavaScript methods
provide both a sound validation framework and a handle to the user to run the reports on demand.

In order to run the reports on demand, the tag library provides a public API. This public API is
available in the reportTagLibPublicAPI js file within the pasw-taglib.war. The JavaScript file
contains the following API:

function runRepositoryltem(reportName, linkData, targetld)

For Model Management, this function is used to invoke the child reports for the master report.

For example, when the Scenario tab is visible, the Scenario report data is displayed. When
the user clicks on the link for a scenario in the master report, the JavaScript method showDetails
is called. This JavaScript method is embedded within the PASW BIRT Report Designer
report and indirectly calls the runRepositoryltem method to run two reports. One report is the
Scenario details PASW BIRT Report Designer report and the other is the Scenario Comparison
visualization report.

If the linkData in the API call is null, the report runs with the data available within the
JavaServer page supplied using the various PASW Tag Library tags. Just before calling
runRepositoryltem, the Javascript code stores the parameter values to the html hidden control. The
tag library framework picks up these values and passes them as parameters to the report being run.

The targetID fields correspond to the individual DIV ids where the report is to be rendered.

Visualization Report Interactivity

The Performance vs. Scenario graph generated by the visualization report for the Champions
Tab supports interactivity. Whenever the user clicks on a bar in the graph, the details of the
corresponding scenario are displayed in an adjacent area. The reports use the actionHandler and
actionParameter tags to achieve this functionality.

Using the actionHandler tag is not necessarily required for visualization reports. Typically, the
sourceLinkRepositoryltem tag would work just as well for visualization reports. However, in the
case of the Model Management page, the visualization chart can occur multiple times on the page.
The application needs special logic to be able to expand detail rows and to run the target reports
with specific output locations. The actionHandler tags offer that additional level of control.

139

Customization Example

The section of the page that renders the Performance vs. Scenario Visualization report follows:

<pasw-taglib:repositoryltem
name="Champions_Scenario_Index_Report"
inputURI="ChampionsScenariolndex.viz"
repositoryCredentialName="localhost"
activate="ONDEMAND"
outputType="HTML"
location="championsTabVisReport">
<pasw-taglib:actionHandler event="onclick" function="selectCCScenario">
<pasw-taglib:actionParameter name="filename" />
<pasw-taglib:actionParameter name="filepath" />
<pasw-taglib:actionParameter name="ccid" />
<pasw-taglib:actionParameter name="equivalencekey" />
</pasw-taglib:actionHandler>
</pasw-taglib:repositoryltem>

The repositoryltem tag gives details about the bar chart to be rendered. The nested actionHandler
tag indicates that the JavaScript function selectCCScenario should be called whenever the onClick
event occurs for the bars. The actionParameter tags nested within the actionHandler tag indicate
that filename, filepath, ccid, and equivalencekey will be passed to the selectCCScerario function.

Each of these fields is defined within the visualization report XML. The definition for the
filename variable is shown below:

<sourceVariable

categorical="true"
id="filename"
source="delimitedFileSource_430"
sourceName="ct_filename">

This tag indicates that the column defined as ct_filename within the dataset will be used as
filename by this report.

The JavaScript function selectCCScerario receives the id of the report on which the event
occurred and an array of the parameter values. Internally, it calls runReport for dependent child
reports and passes them the value array. For more information, see the topic Javascript API
on p. 138.

URL Fragments

The Model Management page displays some repository artifacts in an -lFRAME. These artifacts
are the outputs generated by certain job runs.

An artifact is loaded by setting the source of the -lFRAME to the URL having the following
format:

http://<servername>:<port>/peb/view?id=<artifact resource id>

For more information, see the topic URL Parameters in Chapter 3 on p. 7.

140

Chapter 8

Tab Extension Framework

The navigation tabs of Deployment Portal can be expanded to include custom entries using the
Tab Extension framework. The Model Management functionality uses this framework to add an
entry point into the Model Management page.

Figure 8-2

Model Management extension

%, Home @ Content Repository | (2] Preferences @ My Jobhs I @ Model Management I E About @ Help
Search Advanced Search Wielcome admin Logout

With PASW Deployment Portal, you can:
= Brovyse published content by folder.
Bookmark freguertly-used contert.

= View cortent properiss and options.

Search content by title, author, description, kesyweord, and other fields. ‘
= Viewy and monitar your submitted jobs.

Change your preferences. ‘

Deployment Portal reads extension files present in the following directory:

<installation-directory>\components\peb\extensions

These files are scanned to find all instances of the peb-extension elements. These elements will
be individually rendered in the interface, provided the user credentials include any required
actions. Any custom application must provide:

m Extension XML file or an entry in an existing extension XML for the application

B Appropriate entries in the localized text (.tX) file

The Model Management functionality is contained within the peb-mmd.package file in the staging
directory of the repository installation. The package includes the file mmd_extension.xml in the
peb/extensions directory. This XML file controls the appearance and functionality of the Model
Management tab.

<file-viewer>
<peb-extension>
<tab-id>pebMmdTab</tab-id>
<tab-key>mmd/pebMmdTabTitle</tab-key>
<tab-url>
/peb-mmd/controller?actionName=LoginToMMDAction
</tab-url>
<tab-icon>/image2?file=somelcon.gif</tab-icon>
<tab-position>2</tab-position>
<tab-security>
<capability>RunReport</capability>
<capability>ViewModelManagementDashboard</capability>
</tab-security>
</peb-extension>
</file-viewer>

141

Customization Example

Elements defined within this file include:

tab-id. This should be the unique id for the tab. In this case it is pebMmdTab.

tab-key. The key references the text appearing on the new tab. For localization purposes,
Model Management isolates any localized text in XML files having .tx extensions. The key
identifies the element in the localization file containing the text to be displayed. In this case,
the mmd/pebMmdTabTitle key corresponds to the text Model Management.

tab-url. This URL is invoked when the user clicks the tab. The URL can be either fully
qualified (starting with a slash °/* character) or relative to the Deployment Portal application.
In the latter case, the context is assumed to be peb. The link must point to a valid URI, with
the URI location specified being the responsibility of the custom application. For Model
Management, the link includes a reference to the war file peb-mmd.war.

tab-security. This tag identifies the actions required to access the tab. If the current user does
not have these actions, the tab will not be displayed in the header JSP. Model Management
requires the RunReport and ViewModel ManagementDashboard actions.

actionHandler tag, 52, 138
actionParameter tag, 53, 138
actions, 1
activate attribute
report tag, 136
repositoryltem tag, 42
advanceSearch, 70, 90
allowDownload parameter
in URL queries, 24
allowPivoting parameter
in URL queries, 23
allowPrinterFriendly parameter
in URL queries, 24
applySecurity, 71, 92
authentication, 5

batch_type parameter
in URL queries, 18
BIRT reports
JSP samples, 58

cancelJob, 125
cascadeSecurity, 72, 94
class loader
for custom applications, 35
order, 35
policy, 35
columnName attribute
sourceLinkVariable tag, 51
contentType attribute
of page directive, 32
cookies, 66
copyResource, 72, 95
createFolder, 73, 96
creating
HTMLC files, 133
Credential bean, 54
credential tag, 38, 137

credentialDefinitionName attribute

credential tag, 40
credentials, 1
custom dialogs, 1, 32
customizing
Deployment Portal, 3

dataset parameter
in URL queries, 16
dataset label parameter
in URL queries, 17
dataset.prompt parameter
in URL queries, 19

Index

dataset_rowlimit parameter
in URL queries, 17
dataset.search.criteria parameter
in URL queries, 19
dataset.table parameter
in URL queries, 19
dataset.uri parameter
in URL queries, 18
dbcredential _datasourcename parameter
in URL queries, 14
dbpwd_datasourcename parameter
in URL queries, 14
dbuser_datasourcename parameter
in URL queries, 14
deleteFile, 73, 97
deleteFileVersion, 74, 98
deleteFolder, 75, 100
Deployment Portal
customizing, 3
downloadFile, 75, 101

emf files, 12

event attribute
actionHandler tag, 52

Excel files, 12

executeJob, 87, 126

export, 76

exportResource, 103

format parameter

in URL queries, 12
fragment parameter

in URL queries, 13
function attribute

actionHandler tag, 52

getAccessControlList, 78, 104
getAllVersions, 77, 105
getBookmarkedValues function, 37
getChildren, 78, 107
getCustomPropertyValue, 79, 108
getJobExecutionDetails, 88, 127
getJobExecutionList, 89, 128
getMetadata, 79, 109
getValueJSFunction attribute
sourceLinkPrompt tag, 49

height attribute
repositoryltem tag, 44

142

143

height parameter
in URL queries, 15
HTMLC files, 132
creating, 133
structure, 132

id parameter
in URL queries, 8
IdentificationSpecifier class, 123
import, 80
importResource, 111
inputURI attribute
repositoryltem tag, 42

javascript.name parameter

in URL queries, 22
javascript.url parameter

in URL queries, 21
jobExecutionDetails class, 130
jobs, 31
jobStepChildExecutionDetails class, 131
jobStepExecutionDetails class, 130
jpeg files, 12
JSP samples

accessing, 58
JSR 168, 60

language attribute
of page directive, 32
linkType attribute
sourceLinkRepositoryltem tag, 50
localhost credentials, 137
location attribute
outputLocation tag, 47
report tag, 136
repositoryltem tag, 42
Lotus files, 11

MMDDataSource, 137
moveResource, 81, 112

name attribute
actionParameter tag, 53
credential tag, 39
repositoryltem tag, 41, 136

output
for custom dialogs, 32
for jobs, 31
for reports, 30
for scoring models, 31
output.filename parameter
in URL queries, 23
output.format parameter
in URL queries, 22

Index

outputld attribute
outputLocation tag, 46
outputLocation tag, 46
outputType attribute
report tag, 136
repositoryltem tag, 43
outputtype parameter
in URL queries, 11

page directive, 32
PageResult class, 91, 117, 123, 128-129
parameterName attribute
repositoryltemPrompt tag, 45
parameterValue attribute
sourceLinkPrompt tag, 48, 136
partld attribute
actionHandler tag, 52
outputLocation tag, 47
partld parameter
in URL queries, 11
password attribute
credential tag, 40
password parameter
in URL queries, 9
PASW Statistics custom dialogs, 1
PASW Statistics Data File Driver Service, 1
PASW Statistics server, 1
PDF files, 12
PevMetaDataBean bean, 56
png files, 12
portal, 60
single sign-on, 66
portlet, 60
postscript files, 12
PowerPoint files, 12
prefix attribute
of taglib directive, 32
prepackaged portlets, 60
promptld attribute
repositoryltemPrompt tag, 45
sourceLinkPrompt tag, 48, 136
prompts
for custom dialogs, 32
for jobs, 31
for reports, 30
for scoring models, 31
promptstate parameter
in URL queries, 10
provider attribute
credential tag, 40
provider parameter
in URL queries, 9

removelLabel, 82, 114
removeSecurity, 82, 115
report tag, 46

144

Index

ReportBean bean, 54
reportDefinitionURI attribute
report tag, 136
reportPrompt tag, 46
reports, 30
repository items, 30
custom dialogs, 32
jobs, 31
reports, 30
scoring models, 31
repositoryCredentialName attribute
repositoryltem tag, 42, 137
repositoryltem tag, 41, 135
repositoryltemName attribute
repositoryltemPrompt tag, 45
repositoryltemPrompt tag, 45
Resource class, 102, 106-107, 110, 122
retrievePromptValues function, 37
Row class, 129
runRepositoryltem, 138
runRepositoryltem function, 36

Safari browser, 66
scoring models, 31
scoring_configuration parameter
in URL queries, 17
ScoringBean bean, 57
search, 83, 116
SearchBean bean, 55
SearchChildRow class, 124
SearchResult class, 123
session attribute
of page directive, 32
setLabel, 84, 117
setMetadata, 84, 118
showLogs parameter
in URL queries, 24
showNavigationBar attribute
repositoryltem tag, 44
showOutline parameter
in URL queries, 23
showTitle attribute
repositoryltem tag, 43
showToolBar attribute
repositoryltem tag, 43
single sign-on, 66
sourceLinkPrompt tag, 47, 136
sourceLinkReport tag, 50
sourceLinkRepositoryltem tag, 50
sourceLinkVariable tag, 51
sourceName attribute
sourceLinkRepositoryltem tag, 50
statistics.server parameter
in URL queries, 25
statistics.server.credential parameter
in URL queries, 25

stylesheet.name parameter
in URL queries, 21

stylesheet.url parameter
in URL queries, 21

taglib directive, 32
targetNameParameter attribute
sourceLinkPrompt tag, 48
sourceLinkVariable tag, 51
title attribute
repositoryltem tag, 43

uploadFile, 86, 121
uri attribute
of taglib directive, 32
URL parameters
example, 139
username attribute
credential tag, 40
username parameter
in URL queries, 9
useSSO attribute
credential tag, 39

validate.method parameter

in URL queries, 22
validateJSFunction attribute

sourceLinkPrompt tag, 49
var_variable parameter

in URL queries, 16
variable parameters

in URL queries, 16
variable.display parameter

in URL queries, 20
variable.sort parameter

in URL queries, 20
version parameter

in URL queries, 8
visualization reports

JSP samples, 58
visualiztion reports

interactivity, 138

waitstate parameter
in URL queries, 10
war file, 32
Web Part, 60
WebSphere, 35
width attribute
repositoryltem tag, 44
width parameter
in URL queries, 15
Word files, 12

	PASW® Collaboration and Deployment Services 4.1 Customization Reference
	Table of Contents
	1. Customization Overview
	Prerequisites

	2. Deployment Portal Customization
	Customizing the User Interface
	Authentication Customization

	3. URL Parameters
	Base Path
	Query String
	Common Parameters
	id
	version
	username
	password
	provider
	promptstate
	waitstate
	partId
	outputtype
	format
	fragment
	Parameters for Variables

	Report Parameters
	dbcredential_datasourcename
	dbuser_datasourcename
	dbpwd_datasourcename
	width
	height
	var_variable

	Scoring Parameters
	dataset
	dataset_label
	dataset_rowlimit
	scoring_configuration
	batch_type

	Custom Dialog Parameters
	dataset.uri
	dataset.table
	dataset.prompt
	dataset.search.criteria
	variable.display
	variable.sort
	stylesheet.url
	stylesheet.name
	javascript.url
	javascript.name
	validate.method
	output.format
	output.filename
	showOutline
	allowPivoting
	allowPrinterFriendly
	allowDownload
	showLogs
	statistics.server
	statistics.server.credential

	HTML Techniques

	4. PASW Tag Library
	JavaServer Pages Architecture
	Supported Items
	Reports
	Jobs
	Scoring Models
	Custom Dialogs

	Building an Application
	Implementation Details
	Public JavaScript API
	runRepositoryItem Function
	getBookmarkedValues Function
	retrievePromptValues

	PASW Tag Library Tag Reference
	credential Tag
	repositoryItem Tag
	repositoryItemPrompt Tag
	report Tag
	reportPrompt Tag
	outputLocation Tag
	sourceLinkPrompt Tag
	sourceLinkRepositoryItem Tag
	sourceLinkReport Tag
	sourceLinkVariable Tag
	actionHandler Tag
	actionParameter Tag

	Tag Library Beans
	Credential Bean
	ReportBean Bean
	SearchBean Bean
	PevMetaDataBean Bean
	ScoringBean Bean

	JavaServer Pages Samples

	5. Portal Integration
	Installation
	Configuration

	6. Scripting
	Command Line Scripting
	Global Keywords
	Repository Connections
	Content Repository Functions
	Keywords
	Operations

	Process Management Functions
	Keywords
	Operations

	API Reference
	Content Repository APIs
	APIs
	Wrapper Classes

	Process Management APIs
	APIs
	Wrapper Classes

	7. HTML Archive
	File Structure
	Creating HTMLC Files
	Custom HTMLC File Example

	8. Customization Example
	PASW Tag Library
	Report Definitions
	Running PASW BIRT Report Designer Reports
	repositoryItem Tag
	sourceLinkPrompt Tag
	Credentials

	Running Visualization Reports
	Javascript API
	Visualization Report Interactivity

	URL Fragments
	Tab Extension Framework

	Index

