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QUEST Algorithm 

This document describes the tree growing process of the QUEST algorithm. QUEST is 
proposed by Loh and Shih (1997), and stands for Quick, Unbiased, Efficient, Statistical Tree. 
It is a tree-structured classification algorithm that yields a binary decision tree. A comparison 
study of QUEST and other algorithms was conducted by Lim et al (2000).  

Notations 
Y The dependent variable, or target variable. It has to be nominal categorical. 

If Y is categorical with J classes, its class takes values in C = {1, …, J}.  

mX , m = 1, …, M The set of all predictor variables. A predictor can be continuous (including 
ordinal categorical) or nominal categorical.  

{ } N

nnn y 1, == x  
The whole learning sample. 

)(t  The learning samples that fall in node t.   

nf  The frequency weight associated with case n. Non-integral positive value is 
rounded to its nearest integer.  
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∈
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∈
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∑
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π( )j , j = 1, …, J Prior probability of Y = j, j = 1, …, J.  

),( tjp ,  j = 1, …, J The probability of a case in class j and node t.  

)|( tjp , j = 1, …, J The probability of a case in class j given that it falls into node t.  

)|( jiC  The cost of miss-classifying a class j case as a class i case. Clearly 

0)|( =jjC . 

QUEST Tree Growing Process 
The QUEST tree growing process consists of the selection of a split predictor, selection of a 
split point for the selected predictor, and stopping.  In this algorithm, only univariate splits 
are considered. 
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Selection of split predictor 
1. For each continuous predictor X, perform an ANOVA F test that tests if all the different 

classes of the dependent variable Y have the same mean of X, and calculate the p-value 
according to the F statistics.  For each categorical predictor, perform a Pearson’s chi-
square test of Y and X’s independence, and calculate the p-value according to the chi-
square statistics.  

2. Find the predictor with the smallest p-value and denote it *X .  

3. If this smallest p-value is less than α / M, where α ∈ ( , )0 1  is a user specified level of 

significance and M is the total number of predictor variables, predictor *X  is selected 
as the split predictor for the node.  If not, go to 4. 

4. If this smallest p-value is greater than or equal to α / M, then  

•  For each continuous predictor X, compute a Levene’s F-statistic based on the 
absolute deviation of X from its class mean to test if the variances of X for different 
classes of Y are the same, and calculate the p-value for the test.  

•  Find the predictor with the smallest p-value and denote it as **X . 

•  If this smallest p-value is less than α /(M + M1), where M1 is the number of 

continuous predictors, **X  is selected as the split predictor for the node.  Otherwise, 
this node is not split. 

ANOVA F test 

Suppose, for node t, there are tJ  classes of dependent variable Y. The F-statistic for a 

continuous predictor X is given by 
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Its corresponding p-value is given by 

( )XtftX FJtNJFp >−−= ))(,1(Pr  
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where F(Jt - 1, N t Jf t( ) − ) follows a F-distribution with degrees of freedom Jt - 1 and 

N t Jf t( ) − .  

Pearson’s chi-square test 

Suppose, for node t, there are tJ  classes of dependent variable Y. The Pearson’s Chi-square 

statistic, for categorical predictor X with tI  categories, is by given 
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where I y j x in n( )= ∧ =  = 1 if case n has yn = j and xn = i; 0 otherwise. 

The corresponding p-value is given by ( )22Pr Xp dX >= χ  where χ d
2  follows a chi-

squared distribution with degrees of freedom d = (Jt - 1)(It - 1).   

Levene’s F test 

For continuous predictor X, calculate )()(
. txxz ny

nn −= . The Levene’s F statistics for 

predictor X is the ANOVA F-statistic for nz .   

Selection of split point 

At a node, suppose that a predictor variable X has been selected for splitting. The next step is 
to determine the split point. If X is a continuous predictor variable, a split point d in the split 
X ≤  d is to be determined. If X is a nominal categorical predictor variable, a subset K of the 
set of all values taken by X in the split X ∈  K is to be determined.  The algorithm is as 
follows. 

Continuous splitting predictor 

If the selected predictor variable X is continuous: 
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1. Group classes of dependent variable Y into two super-classes. If there are only two 
classes of Y, go to step 2. Otherwise, calculate the sample mean of X for each class of Y. 
If all class means are identical, the class with the most cases is gathered as super-class A 
and the other classes as super-class B.  If there are two or more classes with the same 
maximum number of cases, the one with the smallest class index j is chosen to form A 
and the rest to B.  If not all the class means are identical, a k-means clustering method, 
with the initial cluster centers set at the two most extreme class means, is applied to class 
means to divide classes of Y into two super-classes: A and B.  

Let Ax and 2
As  denote the sample mean and variance for super-class A, Bx and 2

Bs  the 

sample mean and variance for super-class B. 

2. If 0),min( 22 =BA ss , order the two super-classes by their variance in increasing order 

and denote the variances by 2
2

2
1 ss ≤ , and the corresponding means by 21, xx . Let ε  be 

a very small positive number, say 1210−=ε . 

If 21 xx < , )1(1 ε+= xd . Else, )1(1 ε−= xd . 

3. If 0),min( 22 ≠BA ss , quadratic discriminant analysis (QDA) is applied to determine the 

split point d. QDA assumes that X follows a normal distributions in each super-class with 
the calculated sample mean and variance. The split point is among the roots that make 
probability )|,Pr()|,Pr( tBxtAx =  for node t, where  
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Solving )|,()|,( tBXPtAXP =  is equivalent to solving the following quadratic 

equation  

02 =++ cbxax , 

where 

22
BA ssa −= ,  ( )222 ABBA sxsxb −= ,   

A

B
BABAAB stBp

stAp
sssxsxc

)|(
)|(

log2 222222 +−= . 



 5 

If there is only one real root, it is chosen to be the split point, provided this yields two non-

empty nodes. If there are two real roots, choose the one that is closer to Ax , provided this 

yields two non-empty nodes. Otherwise use the mean 2/)( BA xx +  as split point. 

Note: In step 3, the prior probability distribution for the dependent variable is needed. When 
user specified costs are involved, the altered priors can be used to replace the priors 

(optional). The altered prior is defined as ′π ( )j  = 
C j j

C j j
j
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Nominal splitting predictor 

If the selected predictor variable X is nominal and with more than two categories (if X is 
binary, the split point is clear), QUEST first transforms it into a continuous variable (call it 
ξ ) by assigning the largest discriminant coordinates to categories of the predictor. QUEST 

then applies the split point selection algorithm for continuous predictor on ξ  to determine 

the split point.  

Transform a categorical predictor into a continuous predictor 

Let X be a nominal categorical predictor taking values in the set {b1, …, bI}. Transform X 
into a continuous variable ξ  such that the ratio of between-classes to within-classes sum 

squares of ξ  is maximized (the classes here refer to the classes of dependent variable). The 

details are as following. 

•  Transforms each value x of X in  into an I-dimensional dummy vector v = (v1, …, vI)’, 

where 


 =

=
otherwise0

1 i
i

bx
v .  

•  Calculate the overall and class j mean of ν . 

f

n
nn

N

f∑
∈=

v
v ,  

jf

n
nnn

j

N

jyIf

,

)(

)(∑
∈

=
=

v
v .  

•  Calculate the following I I×  matrices. 

∑
=

′−−=
J

j

jj
jfN

1

)()(
, ))(( vvvvB  

∑
∈

′−−=
n

nnnf ))(( vvvvT  



 6 

•  Perform single value decomposition on T to obtain T = QDQ’, where Q is an 

I I× orthogonal matrix, D = diag(d1, …, dI) such that d1 ≥  … ≥  dI ≥  0.  Let D
−

1

2  = 

diag( d1
* , …, d I

* ) where 2/1* −= ii dd  if di > 0, 0 otherwise. Perform single value 

decomposition on 2

1

2

1 −−
′BQDQD  to obtain its eigenvector a which is associated with 

its largest eigenvalue. 

•  The largest discriminant coordinate of v is the projection  

va QD ′′=
−

2

1

ξ . 

Note: The original QUEST by Loh and Shih (1997) transforms a categorical predictor into a 
continuous predictor at a considered node based on the data in the node. SPSS 
implementation of QUEST does the transformation only once at the very beginning based on 
the whole learning sample. 

Stopping 

The stopping step checks if the tree growing process should be stopped according to the 
following stopping rules. 

1. If a node becomes pure; that is, all cases belong to the same dependent variable class at 
the node, the node will not be split.  

2. If all cases in a node have identical values for each predictor, the node will not be split.  

3. If the current tree depth reaches the user-specified maximum tree depth limit value, the 
tree growing process will stop.  

4. If the size of a node is less than the user-specified minimum node size value, the node 
will not be split. 

5. If the split of a node results in a child node whose node size is less than the user-
specified minimum child node size value, the node will not be split.  

Missing Values 
If the dependent variable of a case is missing, this case will be ignored in the analysis. If all 
predictor variables of a case are missing, this case will be ignored. If the frequency weight is 
missing, zero or negative, the case will be ignored. 

Otherwise, the surrogate split method will be used to deal with missing data in predictor 
variables. If a case has a missing value at the selected predictor, the assignment will be done 
based on surrogate split. Method of defining and calculating surrogate splits is the same as 
that in CART (see CART algorithm for details). 
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