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ALSCAL 

Initial Configuration 
The first step is to estimate an additive constant ck , which is added to the observed 

proximity measures (for example, oijk ). Thus, 

o o cijk ijk k
∗ = +  

such that for all triples the triangular inequality holds: 

o o oijk jlk ilk
∗ ∗ ∗+ ≥  

and positivity holds oijk
∗ ≥ 0 , 

where 

oijk
∗  is the adjusted proximity between stimulus i and stimulus j for subject k 

o jlk
∗  is the adjusted proximity between stimulus j and stimulus l for subject k 

oilk
∗  is the adjusted proximity between stimulus i and stimulus l for subject k 

The constant ck , which is added, is as small as possible to estimate a zero point for 

the dissimilarity data, thus bringing the data more nearly in line with the ratio level 

of measurement. This step is necessary to make the Bk
∗  matrix, described below, 

positive semidefinite (that is, with no imaginary roots). 

The next step is to compute a scalar product matrix Bk
∗∗  for each subject k by 

double centering Ok
∗ , the adjusted proximity matrix for each subject. An element 

of the Bk
∗∗  matrix bijk

∗∗  is computed as follows: 

b o o o oijk ijk i k jk k
∗∗ ∗ ∗ ∗ ∗= − − − +�
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where 

oi k.
∗  are the row means for the adjusted proximities for subject k  

o jk.
∗  are the column means for the adjusted proximities for subject k  

o k..
∗  is the grand mean for subject k  

Double centering to convert distances to scalar products is necessary because a 
scalar products matrix is required to compute an initial configuration using the 
Young-Householder-Torgerson procedure. 

Next the individual subject matrices are normalized so that they have the same 

variance. The normalized matrix Bk
∗  is found for each subject. The elements of the 

matrix are 
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where  n is the number of stimuli, and n n −11 6  is the number of off-diagonal 

elements in the Bk
∗∗  matrix. The denominator is both the root mean square and the 

standard deviation of the unnormalized scalar products matrix B∗∗ . (It is both 

because b k..
∗∗ = 0 , due to double centering.) Bk

∗  is thus a matrix with elements bijk
∗ , 

which are scalar products for individual subject k. Normalization of individual 

subjects’ matrices equates the contribution of each individual to the formation of a 

mean scalar products matrix and thus the resulting initial configuration. 

Next an average scalar products matrix B∗ over the subjects is computed. The 
elements of this matrix are 
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where m is the number of subjects. 

The average B∗ matrix used in the previous step is used to compute an initial 
stimulus configuration using the classical Young-Householder multidimensional 
scaling procedure 
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B XX∗ = ′  

where X is an n r×  matrix of n stimulus points on r dimensions, and ′X is the 
transpose of the X matrix; that is, the rows and columns are interchanged. The X 
matrix is the initial configuration. 

For the weighted ALSCAL matrix model, initial weight configuration matrices 

Wk  for each of the m subjects are computed. The initial weight matrices Wk are 

r r×  matrices, where r is the number of dimensions. Later the diagonals of Wk  

will form rows of the W matrix, which is an n r×  matrix. The matrices Wk  are 

determined such that B YW Yk k
∗ = ′ , where Y XT=  and TT I′ = , and where T is 

an orthogonal rotation of the configuration X to a new orientation Y. T is computed 

by the Schönemann-de Leeuw procedure discussed by Young, Takane, and 

Lewyckyj (1978). T rotates X so that Wk is as diagonal as possible (that is, off-

diagonal elements are as close to zero as possible on the average over subjects). 

Off-diagonal elements represent a departure from the model (which assumes that 

subjects weight only the dimensions of the stimulus space). 

Optimization Algorithm 
The optimization algorithm is a series of steps which are repeated (iterated) until 
the final solution is achieved. The steps for the optimization algorithm are 
performed successively because disparities, weights, and coordinates cannot be 
solved for simultaneously. 

Distance 

Distances are computed according to the weighted Euclidean model 

d w x xijk ka ia ja
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where 

wka  is the weight for subject k on a dimension a, 

xia  is the coordinate of stimulus i on dimension a, 

x ja  is the coordinate of stimulus j on dimension a. 

The first set of distances is computed from the coordinates and weights found in the 
previous steps. Subsequently, new distances are computed from new coordinates 
found in the iteration process (described below). 

Optimal Scaling 

Optimal scaling for ordinal data use Kruskal’s least-squares monotonic 
transformation. This yields disparities that are a monotonic transformation of the 
data and that are as much like the distances (in a least squares sense) as possible. 
Ideally, we want the distances to be in exactly the same rank order as the data, but 
usually they are not. So we locate a new set of numbers, called disparities, which 
are in the same rank order as the data and which fit the distances as well as 
possible. When we see an order violation we replace the numbers that are out of 
order with a block of values that are the mean of the out-of-order numbers. 

When there are ties in the data, the optimal scaling process is changed 
somewhat. Kruskal’s primary and secondary procedures are used in ALSCAL. 

Normalization 

The disparities computed previously are now normalized for technical reasons 
related to the alternating least squares algorithm (see Young, de Leeuw, and 
Takane, 1979). During the course of the optimization process, we want to minimize 
a measure of error called SSTRESS. But the monotone regression procedure 
described above only minimizes the numerator of the SSTRESS formula. Thus, the 
formula below is applied to readjust the length of the disparities vector so that 
SSTRESS is minimized: 

D D D D D Dk
N

k k k k k
∗ ∗ ∗ −

= ′�� �� ′�� ��
1
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where 

Dk
*  

is a column vector with 
n n −1

2

1 6
 elements containing all the disparities for 

subject k, 

Dk  
is a column vector with 

n n −1

2

1 6
 elements containing all the distances for 

subject k, 

 D Dk k
′  is the sum of the squared distances, 

 D Dk k
′ *  is the sum of the cross products. 

The normalized disparities vector Dk
N*  is a conditional least squares estimate for 

the distances; that is, it is the least squares estimate for a given iteration. The 
previous D∗  values are replaced by D∗N  values, and subsequent steps utilize the 
normalized disparities. 

SSTRESS 

The Takane-Young-de Leeuw formula is used: 

SSTRESS
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where dijk
*  values are the normalized disparity measures computed previously, and 

dijk  are computed as shown above. Thus SSTRESS is computed from the 
normalized disparities and the previous set of coordinates and weights. 

Termination 

The current value of SSTRESS is compared to the value of SSTRESS from the 
previous iteration. If the improvement is less than a specified value (default equals 
0.001), iteration stops and the output stages has been reached. If not, the program 
proceeds to the next step. (This step is skipped on the first iteration.) 
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Model Estimation 

In ALSCAL the weights and coordinates cannot be solved for simultaneously, so 
we do it successively. Thus, the model estimation phase consists of two steps: (i) 
estimation of subject weights and (ii) estimation of stimulus coordinates. 

(i) Estimation of subject weights. (This step is skipped for the simple, that is, 
unweighted, Euclidean model.) 

A conditional least-squares estimate of the weights is computed at each iteration: 

W D P P P~ ’= ∗ −4 9 1
 

The derivation of the computational formula is as follows: 

We have found disparities such that 

d dijk ijk
∗ =~ ,2  

where 

d w x xijk ka ia ja

a

r
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1

= −
=

∑ 3 8  

Let pija  be the unweighted distance between stimuli i and j as projected onto 

dimension a, that is, 

p x xija ia ja= −3 82
. 

Then 

d d w pijk ijk ka ija
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In matrix notation, this is expressed as D WP∗ = ′ , where D∗  is now an 

m
n n

×
−1

2

1 6
 matrix having one row for every subject and one column for each 

stimulus pair; W is an m r×  matrix having one row for every subject and one 
column for each dimension; and ′P  has one row for every dimension and one 
column for every stimulus pair. 

We wish to solve for W, WP D′ = ∗~ , which we do by noting that 

WP P P P D P P P′ ′ = ′− ∗ −1 6 1 61 1 . 

Therefore, 

W D P P P= ′∗ −1 6 1  

and we have the conditional least squares estimate for W. We have in fact 
minimized SSTRESS at this point relative to the previously computed values for 
stimulus coordinates and optimal scaling. We replace the old subject weights with 
the newly estimated values. 

(ii) Estimation of Stimulus Coordinates. The next step is to estimate coordinates, one 

at a time, using the previously computed values for D∗  (disparities) and weights. 
Coordinates are determined one at a time by minimizing SSTRESS with regard to a 
given coordinate. Equation (2) allows us to solve for a given coordinate xle : 

∂
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Equation (2) can be substituted back into equation (1). This equation with one 
unknown, xle , is then set equal to zero and solved by standard techniques. All the 
other coordinates except xle  are assumed to be constant while we solve for xle . 

Immediately upon solving for xle , we replace the value for xle  used on the 
previous iteration with the newly obtained value, and then proceed to estimate the 
value for another coordinate. We successively obtain values for each coordinate of 
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point l, one at a time, replacing old values with new ones. This continues for point l 
until the estimates stabilize. We then move to a new point and proceed until new 
coordinates for all stimuli are estimated. We then return to the beginning of the 
optimization algorithm (the previous step above) and start another iteration. 
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