
Generation of Uniform Random
Numbers

Two different random number generators are available:
SPSS 12 Compatible. The random number generator used in SPSS 12 and previous releases. If
you need to reproduce randomized results generated in previous releases based on a specified
seed value, use this random number generator.
Mersenne Twister. A newer random number generator that is more reliable for simulation
purposes. If reproducing randomized results from SPSS 12 or earlier is not an issue, use this
random number generator.

Specifically, the Mersenne Twister has a far longer period (number of draws before it repeats) and
far higher order of equidistribution (its results are “more uniform”) than the SPSS 12 Compatible
generator. The Mersenne Twister is also very fast and uses memory efficiently.

SPSS 12 Compatible Random Number Generator

Uniform numbers are generated using the algorithm of (Fishman and Moore, 1981). It is a
multiplicative congruential generator that is simply stated as:

seed(t+1) = (a * seed(t)) modulo p
rand = seed(t+1) / (p+1)

where a = 397204094 and p = 231−1 = 2147483647, which is also its period. Seed(t) is a 32-bit
integer that can be displayed using SHOW SEED. SET SEED=number sets seed(t) to the specified
number, truncated to an integer. SET SEED=RANDOM sets seed(t) to the current time of day in
milliseconds since midnight.

Mersenne Twister Random Number Generator

The Mersenne Twister (MT) algorithm generates uniform 32-bit pseudorandom integers. The
algorithm provides a period of 219937−1, assured 623-dimensional equal distribution, and 32-bit
accuracy. Following the description given by Matsumoto and Nishimura (1998), the algorithm
is based on the linear recurrence:

, (1)

1

2

Generation of Uniform Random Numbers

where

x is a word vector; a w-dimensional row vector over the two-element field

is the degree of recurrence (recursion)

is an integer, , the separation point of one word

is an integer, , the middle term

is a constant matrix with entries in

is the upper (w−r) bits of

is the lower r bits of ; thus

is the word vector obtained by concatenating the upper (w−r) bits of and the lower
r bits of

Bitwise addition modulo two (XOR)

Given initial seeds , the algorithm generates by the above recurrence for
k=0, 1, ...

A form of the matrix A is chosen so that multiplication by A is very fast. candidate is

. . . (2)

where and ; then can be computed using
only bit operations

(3)

Thus calculation of the recurrence is realized with bitshift, bitwise EXCLUSIVE-OR, bitwise
OR, and bitwise AND operations.

3

Generation of Uniform Random Numbers

For improving the k-distribution to v-bit accuracy, we multiply each generated word by a suitable
invertible matrix from the right (called tempering in (Matsumoto and Kurita, 1994)).

For the tempering matrix , we choose the following successive transformations

(4)

(5)

(6)

(7)

where

l, s, t, u are integers

b, c are suitable bitmasks of word size

denotes the -bit shiftright

denotes the -bit shiftleft

To execute the recurrence, let x[0:n−1]be an array of n unsigned integers of word size, i be an
integer variable, and be unsigned constant integers of word size vectors.

Step 0
u ← ; bitmask for upper (w−r) bits

v ← ; bitmask for lower r bits
a ← ; the last row of matrix

Step 1 ← 0
Initialize the state space vector array .

Step 2 y ← ; computing

Step 3 If the least significant bit of equals to zero then
←

If the least significant bit of equals to one then
←

4

Generation of Uniform Random Numbers

Step 4 calculate
←
←
←
←
←

Step 5 ←

Step 6 Go to Step 2.

SPSS Usage

The MT algorithm provides 32 random bits in each draw. SPSS draws 64-bit floating-point
numbers in the range [0..1] with 53 random bits in the mantissa using

Draw = (226*[k(t)/25]+[k(t+1)/26])/253

There are two options for initializing the state space vector array. SET RNG=MT MTINDEX=x
accepts a 64-bit floating point number x to set the seed. SET RNG=MT MTINDEX=RANDOM uses
the current time of day in milliseconds since midnight to set the seed.

init_genrand(unsigned32 s,unsigned32 &x[])
{

;
1812433253; is an unsigned long interger from i=0 to n

}

k[0]: 8*d+4*c+2*b+a

k[1]: y = trunc(z*226)

k[2]: z*253 - y*227

where

x is the argument
a is 1 if x == 0, or 0 otherwise
b is 1 if x<0, or 0 otherwise
c is 1 if |x| >= 1, or 0 otherwise
d is an integer such that

if |x| > 1, .5 <= |x|/2d < 1,
else if |x| > 0, .5 <= |x|*2d < 1

5

Generation of Uniform Random Numbers

else x == 0 and d == 0.
e is d if |x| <= 1, else -d
z is |x|*2e

init_by_array(unsigend32 init_key[] ,int key_length, unsigned32 &x[])
{

init_genrand(19650218, x);

for ()

if then

if then
;

end for

for ()

;
if then

end for

}

1664525 is an unsigned long interger;
1566083941 is an unsigned long interger;

References

Fishman, G., and L. R. I. Moore. 1981. In search of correlation in multiplicative congruential
generators with modulus 2**31-1. In: Computer Science and Statistics, Proceedings of the 13th
Symposium on the Interface,W. F. Eddy, ed. New York: Springer-Verlag, 155–157.

Knuth, D. E. 1981. The Art of Computer Programming, volume 2, p. 106. Reading, MA:
Addison-Wesley.

Matsumoto, M., and T. Nishimura. 1998. Mersenne Twister, A 623–dimensionally equidistributed
uniform pseudorandom number generator. ACM Trans. on Modeling and Computer Simulation,
8:1, 3–30.

6

Generation of Uniform Random Numbers

Matsumoto, M., and Y. Kurita. 1994. Twisted GFSR generators II. ACM Trans. on Modeling and
Computer Simulation, 4:3, 254–266.

