
ARIMA Algorithms

The ARIMA procedure computes the parameter estimates for a given seasonal or non-seasonal
univariate ARIMA model. It also computes the fitted values, forecasting values, and other related
variables for the model.

Notation
The following notation is used throughout this chapter unless otherwise stated:

yt (t=1, 2, ..., N) Univariate time series under investigation.

N Total number of observations.

at (t = 1, 2, ... , N) White noise series normally distributed with mean zero and variance .

p Order of the non-seasonal autoregressive part of the model

q Order of the non-seasonal moving average part of the model

d Order of the non-seasonal differencing

P Order of the seasonal autoregressive part of the model

Q Order of the seasonal moving-average part of the model

D Order of the seasonal differencing

s Seasonality or period of the model

AR polynomial of B of order p,

MA polynomial of B of order q,

Seasonal AR polynomial of BS of order P,

Seasonal MA polynomial of BS of order Q,

Differencing operator

B Backward shift operator with and

Models
A seasonal univariate ARIMA(p,d,q)(P,D,Q)s model is given by
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where

and μ is an optional model constant. It is also called the stationary series mean, assuming that,
after differencing, the series is stationary. When NOCONSTANT is specified, μ is assumed
to be zero.

An optional log scale transformation can be applied to yt before the model is fitted. In this chapter,
the same symbol, yt, is used to denote the series either before or after log scale transformation.
Independent variables x1, x2, …, xm can also be included in the model. The model with

independent variables is given by

where

, are the regression coefficients for the independent variables.

Estimation

Basically, two different estimation algorithms are used to compute maximum likelihood (ML)
estimates for the parameters in an ARIMA model:

Melard’s algorithm is used for the estimation when there is no missing data in the time
series. The algorithm computes the maximum likelihood estimates of the model parameters.
The details of the algorithm are described in (Melard, 1984), (Pearlman, 1980), and (Morf,
Sidhu, and Kailath, 1974).
A Kalman filtering algorithm is used for the estimation when some observations in the time
series are missing. The algorithm efficiently computes the marginal likelihood of an ARIMA
model with missing observations. The details of the algorithm are described in the following
literature: (Kohn and Ansley, 1986) and (Kohn and Ansley, 1985).

Initialization of ARMA parameters

The ARMA parameters are initialized as follows:

Assume that the series follows an ARMA(p,q)(P,Q) model with mean 0; that is:

In the following and represent the lth lag autocovariance and autocorrelation of
respectively, and and represent their estimates.
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Non-seasonal AR parameters

For AR parameter initial values, the estimated method is the same as that in appendix A6.2 of
(Box, Jenkins, and Reinsel, 1994). Denote the estimates as .

Non-seasonal MA parameters

Let

The cross covariance

Assuming that an AR(p+q) can approximate , it follows that:

The AR parameters of this model are estimated as above and are denoted as .

Thus can be estimated by

And the error variance is approximated by

with .

Then the initial MA parameters are approximated by and estimated by

So can be calculated by , and . In this procedure, only are used and all
other parameters are set to 0.



4

ARIMA Algorithms

Seasonal parameters

For seasonal AR and MA components, the autocorrelations at the seasonal lags in the above
equations are used.

Diagnostic Statistics
The following definitions are used in the statistics below:

Number of parameters.

without model constant
with model constant

SSQ Residual sum of squares , where e is the residual vector

Estimated residual variance. , where

SSQ’ Adjusted residual sum of squares. , where Ω is the
theoretical covariance matrix of the observation vector computed at MLE

Log-Likelihood

=

Akaike Information Criterion (AIC)

=

Schwartz Bayesian Criterion (SBC)

Generated Variables

Predicted Values

Forecasting Method: Conditional Least Squares (CLS or AUTOINT)

In general, the model used for fitting and forecasting (after estimation, if involved) can be
written as



5

ARIMA Algorithms

where

Thus, the predicted values (FIT)t are computed as follows:

where

Starting Values for Computing Fitted Series. To start the computation for fitted values, all
unavailable beginning residuals are set to zero and unavailable beginning values of the fitted
series are set according to the selected method:

CLS. The computation starts at the (d+sD)-th period. After a specified log scale transformation,
if any, the original series is differenced and/or seasonally differenced according to the model
specification. Fitted values for the differenced series are computed first. All unavailable
beginning fitted values in the computation are replaced by the stationary series mean, which is
equal to the model constant in the model specification. The fitted values are then aggregated to
the original series and properly transformed back to the original scale. The first d+sD fitted
values are set to missing (SYSMIS).

AUTOINIT. The computation starts at the [d+p+s(D+P)]-th period. After any specified log scale
transformation, the actual d+p+s(D+P) beginning observations in the series are used as beginning
fitted values in the computation. The first d+p+s(D+P) fitted values are set to missing. The fitted
values are then transformed back to the original scale, if a log transformation is specified.

Forecasting Method: Unconditional Least Squares (EXACT)

As with the CLS method, the computations start at the (d+sD)-th period. First, the original series
(or the log-transformed series if a transformation is specified) is differenced and/or seasonally
differenced according to the model specification. Then the fitted values for the differenced series
are computed. The fitted values are one-step-ahead, least-squares predictors calculated using the
theoretical autocorrelation function of the stationary autoregressive moving average (ARMA)
process corresponding to the differenced series. The autocorrelation function is computed by
treating the estimated parameters as the true parameters. The fitted values are then aggregated
to the original series and properly transformed back to the original scale. The first d+sD fitted
values are set to missing (SYSMIS). The details of the least-squares prediction algorithm for the
ARMA models can be found in (Brockwell and Davis, 1991).

Residuals

Residual series are always computed in the transformed log scale, if a transformation is specified.
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Standard Errors of the Predicted Values

Standard errors of the predicted values are first computed in the transformed log scale, if a
transformation is specified.

Forcasting Method: Conditional Least Squares (CLS or AUTOINIT)

Forecasting Method: Unconditional Least Squares (EXACT)

In the EXACT method, unlike the CLS method, there is no simple expression for the standard
errors of the predicted values. The standard errors of the predicted values will, however, be given
by the least-squares prediction algorithm as a byproduct.
Standard errors of the predicted values are then transformed back to the original scale for each

predicted value, if a transformation is specified.

Confidence Limits of the Predicted Values

Confidence limits of the predicted values are first computed in the transformed log scale, if a
transformation is specified:

where is the -th percentile of a t distribution with df degrees of freedom and α
is the specified confidence level (by default α=0.05).
Confidence limits of the predicted values are then transformed back to the original scale for

each predicted value, if a transformation is specified.

Forecasting

Forecasting Values

Forcasting Method: Conditional Least Squares (CLS or AUTOINIT)

, the l-step-ahead forecast of at the time t, can be represented as:

Note that
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if
if

if
if

Forecasting Method: Unconditional Least Squares (EXACT)

The forecasts with this option are finite memory, least-squares forecasts computed using the
theoretical autocorrelation function of the series. The details of the least-squares forecasting
algorithm for the ARIMA models can be found in (Brockwell et al., 1991).

Standard Errors of the Forecasting Values

Forcasting Method: Conditional Least Squares (CLS or AUTOINIT)

For the purpose of computing standard errors of the forecasting values, the model can be written
in the format of weights (ignoring the model constant):

where

Then

se

Note that, for the predicted value, . Hence, at any time t.

Computation of Weights. Ψ weights can be computed by expanding both sides of the following
equation and solving the linear equation system established by equating the corresponding
coefficients on both sides of the expansion:

An explicit expression of Ψ weights can be found in (Box et al., 1994).

Forecasting Method: Unconditional Least Squares (EXACT)

As with the standard errors of the predicted values, the standard errors of the forecasting values
are a byproduct during the least-squares forecasting computation. The details can be found
in (Brockwell et al., 1991).
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