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CORRESPONDENCE 

The CORRESPONDENCE algorithm consists of three major parts: 

1. A singular value decomposition (SVD) 

2. Centering and rescaling of the data and various rescalings of the results 

3. Variance estimation by the delta method. 

Other names for SVD are “Eckart-Young decomposition” after Eckart and Young 
(1936), who introduced the technique in psychometrics, and “basic structure” 
(Horst, 1963). The rescalings and centering, including their rationale, are well 
explained in Benzécri (1969), Nishisato (1980), Gifi (1981), and Greenacre (1984). 
Those who are interested in the general framework of matrix approximation and 
reduction of dimensionality with positive definite row and column metrics are 
referred to Rao (1980). The delta method is a method that can be used for the 
derivation of asymptotic distributions and is particularly useful for the 
approximation of the variance of complex statistics. There are many versions of the 
delta method, differing in the assumptions made and in the strength of the 
approximation (Rao, 1973, ch. 6; Bishop et al., 1975, ch. 14; Wolter, 1985, ch. 6). 

Other characteristic features of CORRESPONDENCE are the ability to fit 
supplementary points into the space defined by the active points, the ability to 
constrain rows and/or columns to have equal scores, and the ability to make biplots 
using either chi-squared distances, as in standard correspondence analysis, or 
Euclidean distances. 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

1t  Total number of rows (row objects) 

1s  Number of supplementary rows  

1k  Number of rows in analysis (i 11 st − ) 

2t  Total number of columns (column objects) 

2s  Number of supplementary columns  
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2k  Number of columns in analysis ( 22 st − ) 

 p Number of dimensions 

Data-Related Quantities 

ijf  Nonnegative data value for row i and column j: collected in table F 

fi+  Marginal total of row i, i k= 1 1, ,K  

f j+  Marginal total of column j, j k= 1 2, ,K  

 N Grand total of F 

Scores and Statistics 

ris  Score of row object i on dimension s 

c js  Score of column object j on dimension s 

I Total inertia 

Basic Calculations 
One way to phrase the CORRESPONDENCE objective (cf. Heiser, 1981) is to say 
that we wish to find row scores { }ris  and column scores { }c js  so that the function 

( ) ( )∑∑ ∑ −=
i j s

jsisijjsis crfcr 2}{};{σ  

is minimal, under the standardization restriction either that 

f r ri is it
st

i

+ =∑ δ  

or 
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f c cj js jt
st

j

+ =∑ δ  

where δ st is Kronecker’s delta and t is an alternative index for dimensions. The 
trivial set of scores ({1},{1}) is excluded. 

The CORRESPONDENCE algorithm can be subdivided into five steps, as 
explained below. 

1. Data scaling and centering 

When rows and/or columns are specified to be equal, first the frequencies of the 
rows/columns to be equal are summed. The sums are put into the row/column with 
the smallest row/column number and the other rows/columns are set to zero. 

1.1 Measure is Chi Square 

The first step is to form the auxiliary matrix Z with general element 

z
f

f f

f f

Nij
ij

i j

i j
= −

+ +

+ +
 

The standardization with Chi Square measure is always rcmean (both row and 
column means removed. 
 

1.2 Measure is Euclidean 
 

When Euclidean measure is choosen, the auxiliary matrix Z is formed in two steps: 

1. 
N

ff
ff

~
j

~
i

ij
~

ij
++−=  

  With ~
ijf , ~

if + , and ~
jf +  depending on the standardization option.: 

 
  (a) standardization option rmean (remove row means) 

   ij
~

ij ff = , ++ = i
~

i ff , 
2k

N
f ~

j =+  
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 (b) standardization option cmean (remove column means) 

  ij
~

ij ff = , 
1k

N
f ~

i =+ , j
~
j ff ++ =  

 
  (c) rcmean (remove both row and column means) 

   ij
~

ij ff = , ++ = i
~

i ff , j
~
j ff ++ =  

 
  (d) standardization option rsum (equalize row totals, then remove row means) 

   
+

+=
i

~
iij~

ij f

ff
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1k

N
f ~

i =+ , 
2k

N
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 (e) standardization option csum (equalize column totals, then remove column 

 means) 
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2. Then, if not computed yet in step 1, ~
if + , or/and ~

jf +  are computed: 

  
1k

N
f ~

i =+ , 
2k

N
f ~

j =+ , and  
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2. Singular value decomposition 

When rows and/or columns are specified as supplementary, first these rows and/or 

colums of Z are set to zero, yielding Z  

Let the singular value decomposition of Z be denoted by 
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’LKZ Λ=  

with K K I’ = , L L I’ = , and Λ  diagonal. This decomposition is calculated by a 

routine based on Golub and Reinsch (1971). It involves Householder reduction to 

bidiagonal form and diagonalization by a QR procedure with shifts. The routine 

requires an array with more rows than columns, so when k k1 2<  the original table 

is transposed and the parameter transfer is permuted accordingly. 

3. Adjustment to the row and column metric 

The arrays of both the left-hand singular vectors and the right-hand singular vectors 
are adjusted row-wise to form scores that are standardized in the row and in the 
column marginal proportions, respectively: 

,~ Nfkr ~
iisis +=  

.~ Nflc ~
jjsjs +=  

 

This way, both sets of scores satisfy the standardization restrictions simultaneously. 

4. Determination of variances and covariances 

For the application of the delta method to the results of generalized eigenvalue 
methods under multinomial sampling, the reader is referred to Gifi (1990, ch. 12) 
and Israels&&  (1987, Appendix B). It is shown there that N time variance-covariance 

matrix of a function φ  of the observed cell proportions { }Nfpp ~
ijij ==  

asymptotically reaches the form 
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Here the quantities π ij  are the cell probabilities of the multinomial distribution, 

and ∂φ ∂pij  are the partial derivatives of φ  (which is either a generalized 

eigenvalue or a generalized eigenvector) with respect to the observed cell 
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proportion. Expressions for these partial derivatives can also be found in the above-

mentioned references. 

5. Normalization of row and column scores 

Depending on the normalization option chosen, the scores are normalized. The 
normalization option q can be chosen to be any value in the interval [-1,1]  or it can 
be specified according to the following designations: 







−
=

principal column

principal row

lsymmetrica

q

,1

,1

,0

 

There is a fifth possibility, choosing the designation “principal”, that does not 
correspond to a q-value.  

When “principal” is chosen, normalization parameters α for the rows and β for the 
columns are both set to 1. When one of the other options is chosen, α and β are 
functions of q: 

 α = (1+q)/2, 

 β = (1-q)/2. 
 

The normalization implies a compensatory rescaling of the coordinate axes of the 
row scores and the column scores: 

.~
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The general formula for the weighted sum of squares that results from this 
rescaling is 
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The estimated variances and covariances are adjusted according to the type of 

normalization chosen. 
 

Diagnostics 
After printing the data, CORRESPONDENCE optionally also prints a table of row 

profiles and column profiles, which are { }+iij ff  and { }jij ff + , respectively. 

Singular Values, Maximum Rank and Inertia 

All singular values λ s  defined in step 2 are printed up to a maximum of 

( ) ( ){ }1,1min 21 −− kk . Small singular values and corresponding dimensions are 

suppressed when they don’t exceed the quantity ( ) 721
21 10−kk ; in this case a 

warning message is issued. Dimensionwise inertia and total inertia are given by the 

relationships 

∑ ∑∑ +==
s s i

is
~

i
s N

rf
I

2
2λ  

where the right-hand part of this equality is true only if the normalization is row 
principal (but for the other normalizations similar relationships are easily derived 
from step 5). The quantities “proportion explained” are equal to inertia divided by 

total inertia: λ s I2 . 

Supplementary Points 

Supplementary row and column points are given by 
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Mass, Scores, Inertia and Contributions 

The mass, scores, inertia and contributions for the row and columns points 

(including supplementary points) are given in the Overview Row Points Table and 

the Overview Column Points Table. These tables are printed in p dimensions. The 

tables are given first for rows, then for columns. The masses are the marginal 

proportions ( Nf ~
i+  and Nf ~

j+ , respectively). The inertia of the rows/columns 

is given by: 
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For supplementary points, the contribution to the inertia of dimensions is zero. The 

contribution of the active points to the inertia of each dimension is given by 
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The contribution of dimensions to the inertia of each point is given by 
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Confidence Statistics of Singular Values and Scores 

The computation of variances and covariances is explained in step 4. Since the row 
and column scores are linear functions of the singular vectors, an adjustment is 
necessary depending on the normalization option chosen. From these adjusted 
standard deviations and correlations are derived in the standard way. 

Permutations of the Input Table 

For each dimension s, let ( )siρ  be the permutation of the first 1t  integers that 

would sort the sth column of { }isr  in ascending order. Similarly, let ( )sjρ  be the 

permutation of the first 2t  integers that would sort the sth column of { }jsc  in 

ascending order. Then the permuted data matrix is given by ( ) ( ){ }sjsif ρρ , . 



10   Error! Reference source not found. 

References 
Benzécri, J. P. 1969. Statistical analysis as a tool to make patterns emerge from 

data. In: Methodologies of Pattern Recognition, S. Watanabe, ed. New York: 
Academic Press. 

Bishop, Y. M. M., Fienberg, S. E., and Holland, P. W. 1975. Discrete multivariate 
analysis: Theory and practice. Cambridge, Mass.: MIT Press. 

Eckart, C., and Young, G. 1936. The approximation of one matrix by another one 
of lower rank. Psychometrika, 1: 211–218. 

Gifi, A. 1981. Nonlinear multivariate analysis. Leiden: Department of Data 
Theory.  

Golub, G. H., and Reinsch, C. 1971. Linear algebra, Chapter I.10. In: Handbook for 
Automatic Computation, Volume II, J. H. Wilkinson and C. Reinsch, eds. New 
York: Springer-Verlag. 

Greenacre, M. J. 1984. Theory and applications of correspondence analysis. 
London: Academic Press.  

Heiser, W. J. 1981. Unfolding analysis of proximal data. Doctoral dissertation. 
Department of Data Theory, University of Leiden.  

Horst, P. 1963. Matrix algebra for social scientists. New York: Holt, Rinehart, and 
Winston.  

Israëls, A. 1987. Eigenvalue techniques for qualitative data. Leiden: DSWO Press.  

Nishisato, S. 1980. Analysis of categorical data: dual scaling and its applications. 
Toronto: University of Toronto Press.  

Rao, C. R. 1973. Linear statistical inference and its applications, 2nd ed. New 
York: John Wiley & Sons, Inc.  

Rao, C. R. 1980. Matrix approximations and reduction of dimensionality in 
multivariate statistical analysis. In: Multivariate Analysis, Vol. 5, P. R. 
Krishnaiah, ed. Amsterdam: North-Holland.  

Wolter, K. M. 1985. Introduction to variance estimation. Berlin: Springer-Verlag.  


