COXREG

Cox (1972) first suggested the models in which factors related to lifetime have a
multiplicative effect on the hazard function. These models are called proportional
hazards (PH) models.

Under the proportional hazards assumption, the hazard function h of t given Xis
of the form

hit[x) = ho(t) e )

where x is a known vector of regressor variables associated with the individual, 3
is a vector of unknown parameters, and hy(t) is the baseline hazard function for an
individual with x =0. Hence, for any two covariates sets x; and X,, the log
hazard functions h(t|x;) and h(t|x,) should be parallel acrosstime.

When afactor does not affect the hazard function multiplicatively, stratification
may be useful in model building. Suppose that individuals can be assigned to one of
m different strata, defined by the levels of one or more factors. The hazard function
for anindividual in the jth stratum is defined as

hj (tIx) = hg; (t) e*P @

There are two unknown components in the model: the regression parameter 3 and the
baseline hazard function hy; (t) . The estimation for the parametersis described below.

Estimation

We begin by considering a nonnegative random variable T representing the
lifetimes of individuals in some population. Let f(t|x) denote the probability
density function (pdf) of T given a regressor x and let S(t|x) be the survivor
function (the probability of an individual surviving until timet). Hence
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S(t|x) = J f (ulx)du ©)
t
The hazard h(t|x) isthen defined by

_ ftix)

R

h(t[x)

4

Another useful expression for S(t|x) intermsof h(t|x) derived from equations (3)
and (4) is

S(t|x) = exp[—J‘; h(u|x) duj (5
Thus,
InS(t[x) = —J';h(u|x) du ©6)

For some purposes, it is also useful to define the cumulative hazard function
t

H(tIx) :I h(ulx)du = ~InS(t|x) %
0

Assume that the hazard function has the form of equation (1). The survivor function
can be written as

S(t ) = [5p(t)]**P ®

where S(t) isthe baseline survivor function defined by

So(t) = exp(—Ho(t) ©)
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and
Holt) = [ ro(uae

Some relationships between S(t|x), H(t|x) and Hg(t), Sp(t) and hy(t) which
will be used later are

Ing(t]x) = —=H(t|x) = —exp(x'B)Ho(t) (10)
In(=InSt|x)) = x'B+InHy (1) (11)

To estimate the survivor function S(t|x), we can see from equation (8) that there
are two components, B and S(t), which need to be estimated. The approach we
use hereisto estimate 3 from the partial likelihood function and then to maximize
the full likelihood for Sy(t).

Estimation of Beta

Assume that

*  Thereare mlevelsfor the stratification variable.

* Individualsin the same stratum have proportional hazard functions.

* Therelative effect of the regressor variablesis the same in each stratum.

Let tj; <<t be the observed uncensored failure time of the n; individualsin

the jth stratum and X; 1o Xk be the corresponding covariates. Then the partial
likelihood function is defined by

L(B) =

d; (12a)
B

m K es]uﬂ
J=L 1= X!

we !
I0R

ji



4 COXREG

where dj; isthe sum of case weights of individuals whose lifetime is equal to t;
and S;; is the weighted sum of the regression vector x for those dj; individuals,
W is the case weight of individual |, and R;; is the set of individuals alive and
uncensored just prior to tj; in the jth stratum. Thus the log-likelihood arising from
equation (12a) is

m i m i
I =InL(B) = S,iB- djiin § weP (12b)
and the first derivatives of | are
W|X|rex"B
ol m X (r) I0R
D, = = SH —dj— | r=1.., 13
Br d,Br 12_1; L JI W|eX"B 1 p ( )
I0R

T

In equation (13), Sgir) is the rth component of Sj; :(S(l) ,Sj(ip)) . The

i

maximum partial likelihood estimate (MPLE) of B is obtained by setting
]

equal to zerofor r =1,..., p, where p is the number of independent variablesin the

model. The equations

=0 (r=1...,p) can usualy be solved by using the

r
Newton-Raphson method.

Note that from equation (12a) the partial likelihood function L(B) is invariant
under trandation. All the covariates are centered by their corresponding overall
mean. The overall mean of a covariate is defined as the sum of the product of
weight and covariate for all the censored and uncensored cases in each stratum. For
notational simplicity, X; used in the Estimation Section denotes centered
covariates.
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Three convergence criteriafor the Newton-Raphson method are available:

e Absolute value of the largest difference in parameter estimates between
iterations (J) divided by the value of the parameter estimate for the previous
iteration; that is,

o
parameter estimate for previous iteration

BCON =

« Absolute difference of the log-likelihood function between iterations divided
by the log-likelihood function for previous iteration.

e Maximum number of iterations.

]

The asymptotic covariance matrix for the MPLE f% = (,@l ,,ép) is estimated by

|1 where | is the information matrix containing minus the second partial
derivativesof InL. The (r, s)-th element of | is defined by

(72
le=-E—2 _InL

989 Bs

K. ZWIXISXIreXiB ZWIXIreXiB ZWIXIseXiB (14)
_ n q IR ILR;; IR
- Z I X 2

j:l 1=1 \/Vle .
IR w eXiP
IR,

We can dso write |l in amatrix form as



6 COXREG

where X(tj;) isa nj; x p matrix which represents the p covariate variables in the

model evaluated at time tji, nj; isthe number of distinct individuasin R;; , and

j ji »
V(tji) isa nj; xnj; matrix with thelth diagonal element v;;(t;; ) defined by

Vi (tji) =h (tii )W' _(W' P (t“ ))2

exp(xiB)
3w exp(x;)

hOR;

Pt ) =

and the (I, k) element vy, (t;; ) defined by

Vlk(tji):WI pl(tji)xwkpk(tji)

Estimation of the Baseline Function

After the MPLE B of B is found, the baseline survivor function Soj(t) is
estimated separately for each stratum. Assume that, for a stratum, t; <---<t, are
observed lifetimes in the sample. There are n; at risk and d; deathsat t;, and in
the interval [t_;,t;) there are A; censored times. Since )(t) is a survivor
function, it is non-increasing and left continuous, and thus éo(t) must be constant
except for jJumps at the observed lifetimes tq,...,ty.

Further, it follows that

S(ty) =1
and

St +) = Soltia)
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Writing S(t +) = p; (i =1,...,k) , the observed likelihood function is of the form

Ly = |_| |_| (pleff(xiﬁ) _ piexp(xn?'))m4 |—| ( ple:T(x;B))""' |—| (DEXp(XiB) )V\d

where D; isthe set of individualsdying at t; and G isthe set of individuals with
censored times in [t _1.1i) . (Note that if the last observation is uncensored, Cyyq
isempty and p, =0.)

If welet a; = p/pi—1 (i =1...,k), Ly canbewritten as

=~

L = (1 a’ (X'B)) |_| o exp(xiB)

i=1 10D I0R -D,

Differentiating InL; with respect to a4,...,a) and setting the equations equal to
zero, we get

Zvvlexpx.B Zwlexp =1k )

exp(xiB)

We then plug the MPLE f% of B into equation (15) and solve these k equations

Separately.
There are two things worth noting:

« Ifany |Dj|=1, &; can be solved explicitly.

(16)
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« If |Dj|>1, equation (7) must be solve iteratively for &;. A good initial value

for a; is

a; =exp % 17

where d; = ZW| istheweight sum for set D; . (See Lawless, 1982, p. 361.)
1D

Oncethe &;, i =1...,k arefound, S(t) isestimated by

S(t) = ﬂ ai (18)
ix(t <t)

Since the above estimate of S(t) requires some iterative calculations when ties
exist, Breslow (1974) suggests using equation (17) as an estimate for a;j ; however,
wewill usethisasan initial estimate.

The asymptotic variance for —Inéo(t) can be found in Chapter 4 of Kalbfleisch
and Prentice (1980). At a specified timet, it is consistently estimated by

-2
var(—lnéo(t)): Z'Di| ZW| exp(xif%) +a'l ta (19)

t<t IR

whereaisa px1vector with the jth element defined by

Wi Xjj exp(xif&)

> o= :

<t .
wi exp(xiB)
IR
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and | isthe information matrix. The asymptotic variance of é(t [X) is estimated by

ezx'é(é(t |x))2 var(-In(1)) (20)

Selection Statistics for Stepwise Methods

COX REGRESSION offers the same methods for variable selection as LOGISTIC
REGRESSION. For the details of these methods, and stepwise algorithms, see the
LOGISTIC REGRESSION chapter. Here we will only define the three removal
statistics—Wald, LR, and Conditional—and the Score entry statistic.

Score Statistic

The score statistic is calculated for every variable not in the model to decide which
variable should be added to the model. First we compute the information matrix
for all eligible variables based on the parameter estimates for the variables in the
model and zero parameter estimates for the variables not in the model. Then we
partition the resulting into four submatrices as follows:

A A
{ 11 12] 21)
A Ap

where A,; and A,, are square matrices for variables in the model and variables
not in the model, respectively, arf, is the cross-product matrix for variables in
and out. The score statistic for varialde is defined by

Dy B22iDyx

where Dy is the first derivative of the log-likelihood with respect to _alll the
parameters associated with and B,,; is equal to(Azz‘i —A21‘iA111A12‘i) ,
and Ay and Ajp; are the submatrices i, and A;, associated with
variable x; .
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Wald Statistic

The Wald statistic is calculated for the variables in the model to select variables for
removal. The Wald statistic for variable x ; is defined by

BiB11Bj

where f% j isthe parameter estimate associated with x; and By, j isthe submatrix
of Alj associated with Xj .

LR (Likelihood Ratio) Statistic

The LR statistic is defined as twice the log of the ratio of the likelihood functions of
two models evaluated at their own MPLES. Assume that r variables are in the
current model and let us call the current model the full model. Based on the
MPLES of parameters for the full model, I(full) is defined in equation (12b). For
each of r variables deleted from the full model, MPLES are found and the reduced
log-likelihood function, I(reduced), is calculated. Then LR statistic is defined as

—2((reduced) —I(full))

Conditional Statistic

The conditional statistic is also computed for every variable in the model. The
formula for conditional statistic is the same as LR statistic except that the
parameter estimates for each reduced model are conditional estimates, not MPLES.

T

The conditional estimates are defined as follows. ﬁet (f&lﬁr) be the

MPLES for ther variables (blocks) an@ be the asymptotic covariance for the
parameters left in the model givéﬂ is
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where éi is the MPLE for the parameter(s) associated with x; and fi(i) is ﬁ
without éi : ng) is the covariance between the parameter estimates left in the

model é(i) and I§>i , and C(Z'% is the covariance of [§i . Then the conditional statistic
for variable x; isdefined by

—2(|(E(i)) - I(full))

where |(E(i)) isthe log-likelihood function evaluated at E(i) .

Note that all these four statistics have a chi-sgquare distribution with degrees of
freedom equal to the number of parameters the corresponding model has.

Statistics

Initial Model Information

The initiadl model for the first method is for a model that does not include
covariates. The log-likelihood function | is equal to

where njDi isthe sum of weights of individualsin set Rj; .

Model Information

When a stepwise method is requested, at each step, -2 log-likelihood function and
three chi-square statistics (model chi-sgquare, improvement chi-square, and overall
chi-square) and their corresponding degrees of freedom and significance are
printed.
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-2 Log-Likelihood

m K
-2 Z S'ji[g—dji In ZV\/l e)(p(xié)

]=11=1 IR

ji

where f% isthe MPLE of (3 for the current model.

Improvement Chi-Square

(-2 log-likelihood function for previous model) — ( —2 log-likelihood function for
current model).

The previous model is the model from the last step. The degrees of freedom are
equal to the absolute value of the difference between the number of parameters
estimated in these two models.

Model Chi-Square

(-2 log-likelihood function for initial model) — ( —2 log-likelihood function for
current model).

The initial model is the final model from the previous method. The degrees of
freedom are equal to the absolute value of the difference between the number of
parameters estimated in these two model.

Note: The values of the model chi-square and improvement chi-square can be
less than or equal to zero. If the degrees of freedom are equal to zero, the chi-
square is not printed.

Overall Chi-Square

The overall chi-square statistic tests the hypothesis that all regression coefficients
for the variables in the model are identically zero. This statistic is defined as

u’'(0)1 "u(0)

where u(O) represents the vector of first derivatives of the partial log-likelihood
function evaluated g8 = 0. The elements af are defined in equatigii3) andl is
defined in equatioiil4).
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Information for Variables in the Equation

For each of the single variables in the equation, MPLE, SE for MPLE, Wald
statistic, and its corresponding df, significance, and partial R are given. For asingle
variable, Ris defined by

_{ wald -2

12
— — xsign of MPLE
-2 log- likelihood for the intial model

if Wald >2. Otherwise Ris set to zero.
For a multiple category variable, only the Wald statistic, df, significance, and
partia R are printed, where Ris defined by

) Wald - 20t V2
-2 log- likelihood for the intial model

if Wald > 2df . Otherwise Ris set to zero.

Information for the Variables Not in the Equation

For each of the variables not in the equation, the Score statistic is calculated and its
corresponding degrees of freedom, significance, and partial R are printed. The
partiadl R for variables not in the equation is defined similarly to the R for the
variables in the equation by changing the Wald statistic to the Score statistic.

There is one overal statistic called the residual chi-square. This statistic tests if
all regression coefficients for the variables not in the equation are zero. It is defined

by
u'(B)B22 u(p)

where u(ﬁ) is the vector of first derivatives of the partial log-likelihood function
with respect to al the parameters not in the equation evaluated at MPLE 3 and

By isequal to (Az ~AATTAL)  and A isdefined in equation (21).
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Survival Table

For each stratum, the estimates of the baseline cumulative survival (&) and
hazard (Hg) function and their standard errors are computed. The estimate &, for
S has been discussed in equations (15) through (18). It is easy to see from
equation (9) that Ho(t) isestimated by

Ho(t) = ~InS(t)

and the asymptotic variance of I:|0(t) is defined in equation (19). Finaly, the
cumulative hazard function H(t|x) and survival function S(t|x) are estimated by

H(t|x) = exp(x’f%)ﬁo(t)
and, for agiven x,

exp(x’f%—a)

8t = [0 =[510]

The asymptotic variances are
var(l—](t |x)) = exp(2x’f5) var(l—]o(t))
and

var(é(t |x)) = exp(ZX'G)(é(t |x))2 var(ﬁo(t))
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Diagnostic Statistics

DFBETA

Three casewise diagnostic statistics, Residual, Partial Residual, and DFBETAS, are
produced. Both Residual and DFBETA are computed for all distinct individuals.
Partial Residuals are calculated only for uncensored individuals.

Assume that there are n; subjects in stratum j and k j distinct observed events
ty <---<tkj . Define the selected probability for thelth individual at time t; as

A

exp(xj(t )B)

Wh exp(x (t)B )A)
HCR

if Ithindividual isin R

0 otherwise

_ 1 if Ithindividual isin D;
%)= 0 otherwise

n= ZJ[M (t)-dip(t )]

The changes in the maximum partial likelihood estimate of beta due to the deletion
of a single observation have been discussed in Cain and Lange (1984) and Storer
and Crowley (1985). The estimate of DFBETA computed is derived from
augmented regression models. The details can be found in Storer and Crowley

(1985). When the Ith individua in the jth stratum is deleted, the change AB; is
estimated by
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— -1,
m =u —-vly

and X'(t;) isan nj x p matrix which represents the p covariate variables in the
model evaluated at t;, and n;; isthe number of individualsin R;; .

Partial Residuals

Partial residuals can only be computed for the covariates which are not time
dependent. At time t; in stratum j, Xg isthe px1 observed covariate vector for
any gth individual in set D; , where D; isthe set of individuals dying at t;. The
partial residual y 4 isdefined by



Residuals
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Rewriting the above formulain a univariate form, we get

Wi Xih exp(xié)
Vgh:Xgh_mR ( é) ’ h:lv---!p!gDDi
W expl x|
IDZR | [

where Xgp, is the hth component for xg . For every variable, the residuals can be
plotted against times to test the proportional hazards assumption.

Theresiduals g are computed by
& = H(t; Ix;) = exp(xiB) (Ho(t))

which is the same as the estimate of the cumulative hazard function.

Plots
For a specified pattern, the covariate values x. are determined and x;:[:% is
computed. There are three plots available in COXREG.

Survival Plot

For stratum j, (ti St |xc)), i =1...,k; areplotted where

St Ixc) = (éo(ti ))exp(xgé)
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When PATTERN(ALL) is requested, for every uncensored time t; in stratum j the
survival function is estimated by

K, K, .
Z w (b Ixc) z wi (So(t ))exp(XCB)
§u) = _f=

j K
=1 =1

Then (ti S )) i =1,...,k; areplotted for stratum j.

Hazard Plot

For stratum j, (ti (G |xc)), i =1,...,k; areplotted where

H(t Ixc) = exp(x;;[i) Ho(t)

LML Plot
The log-minus-log plot is used to see whether the stratification variable should be
included as a covariate. For stratum j, (ti ,x;:[g +In I3|0(ti )) ,i=1...,kj areplotted.
If the plot shows parallelism among strata, then the stratum variable should be a
covariate.
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