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COXREG 

Cox (1972) first suggested the models in which factors related to lifetime have a 
multiplicative effect on the hazard function. These models are called proportional 
hazards (PH) models. 

Under the proportional hazards assumption, the hazard function h of t given X is 
of the form 

h t h t ex x2 7 1 6= ′
0

β   (1) 

where x is a known vector of regressor variables associated with the individual, β  

is a vector of unknown parameters, and h t01 6  is the baseline hazard function for an 

individual with x = 0 . Hence, for any two covariates sets x1  and x2 , the log 

hazard functions h t x12 7  and h t x22 7  should be parallel across time. 

When a factor does not affect the hazard function multiplicatively, stratification 

may be useful in model building. Suppose that individuals can be assigned to one of 

m different strata, defined by the levels of one or more factors. The hazard function 

for an individual in the jth stratum is defined as 

h t h t ej j|x x1 6 1 6= ′
0

β   (2) 

There are two unknown components in the model: the regression parameter β  and the 

baseline hazard function h tj0 1 6 . The estimation for the parameters is described below. 

Estimation 

We begin by considering a nonnegative random variable T representing the 

lifetimes of individuals in some population. Let f t |x1 6  denote the probability 

density function (pdf) of T given a regressor x and let S t |x1 6  be the survivor 

function (the probability of an individual surviving until time t). Hence 
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S t f u du
t

| |x x1 6 1 6=
∞I   (3) 

The hazard h t |x1 6  is then defined by 

h t
f t

S t
|

|

|
x

x

x
1 6 1 6

1 6=   (4) 

Another useful expression for S t |x1 6  in terms of h t |x1 6  derived from equations (3) 

and (4) is 

S t h u du
t

| exp |x x1 6 1 6= −
�
��

�
��I0  (5) 

Thus, 

ln | |S t h u du
t

x x1 6 1 6= −I0   (6) 

For some purposes, it is also useful to define the cumulative hazard function 

H t h u du S t
t

| | ln |x x x1 6 1 6 1 6= = −I0  (7) 

Assume that the hazard function has the form of equation (1). The survivor function 
can be written as 

S t S t|
exp

x
x1 6 1 6 1 6= ′

0
β

  (8) 

where S t01 6  is the baseline survivor function defined by 

S t H t0 01 6 1 62 7= −exp   (9) 
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and 

H t h u du
t

0 0
0

1 6 1 6= I  

Some relationships between S t |x1 6 , H t |x1 6  and H t01 6 , S t01 6  and h t01 6  which 

will be used later are 

ln | | exp

ln ln | ln

S t H t H t

S t H t
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x x

1 6 1 6 1 6 0 5

1 62 7 0 5

= − = − ′
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0

0

 

(10)

(11)

 

To estimate the survivor function S t |x1 6 , we can see from equation (8) that there 

are two components, β  and S t01 6 , which need to be estimated. The approach we 

use here is to estimate β  from the partial likelihood function and then to maximize 

the full likelihood for S t01 6 . 

Estimation of Beta 
Assume that 

• There are m levels for the stratification variable. 

• Individuals in the same stratum have proportional hazard functions. 

• The relative effect of the regressor variables is the same in each stratum. 

Let t tj jk j1 < <L  be the observed uncensored failure time of the n j  individuals in 
the jth stratum and x xj jk j1, ,K  be the corresponding covariates. Then the partial 
likelihood function is defined by 
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where d ji  is the sum of case weights of individuals whose lifetime is equal to t ji  

and S ji  is the weighted sum of the regression vector x for those d ji  individuals, 

wl  is the case weight of individual l, and R ji  is the set of individuals alive and 

uncensored just prior to t ji  in the jth stratum. Thus the log-likelihood arising from 

equation (12a) is 
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 (12b) 

and the first derivatives of l are 
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In equation (13), S ji
r1 6  is the rth component of S ji ji ji

p
S S= �� ��

′
11 6 1 6, ,K . The 

maximum partial likelihood estimate (MPLE) of β  is obtained by setting 
∂

∂ β
l

r
 

equal to zero for r p= 1, ,K , where p is the number of independent variables in the 

model. The equations 
∂

∂ β
l

r p
r

= =0 1, ,K1 6  can usually be solved by using the 

Newton-Raphson method. 

Note that from equation (12a) the partial likelihood function L β1 6  is invariant 

under translation. All the covariates are centered by their corresponding overall 

mean. The overall mean of a covariate is defined as the sum of the product of 

weight and covariate for all the censored and uncensored cases in each stratum. For 

notational simplicity, xl  used in the Estimation Section denotes centered 

covariates. 
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Three convergence criteria for the Newton-Raphson method are available: 

• Absolute value of the largest difference in parameter estimates between 
iterations δ1 6  divided by the value of the parameter estimate for the previous 
iteration; that is, 

BCON
parameter estimate for previous iteration

= δ
 

• Absolute difference of the log-likelihood function between iterations divided 
by the log-likelihood function for previous iteration. 

• Maximum number of iterations. 

The asymptotic covariance matrix for the MPLE $ $ , , $β =
′

β β1 K p4 9  is estimated by 

I−1  where I is the information matrix containing minus the second partial 

derivatives of ln L . The (r, s)-th element of I is defined by 
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We can also write I in a matrix form as 

I d x t V t x trs ji ji ji ji

i

k

j

m j

= ′
==
∑∑ 3 84 9 3 8 3 84 9

11
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where x t ji3 8  is a n pji ×  matrix which represents the p covariate variables in the 

model evaluated at time t ji , n ji  is the number of distinct individuals in R ji , and 

V t ji3 8  is a n nji ji×  matrix with the lth diagonal element v tll ji3 8  defined by 

v t p t w w p t

p t
w

ll ji l ji l l l ji

l ji

l

h h
h Rji

3 8 3 8 3 84 9

3 8 4 9
4 9

= −

=
′

′
∈
∑

2

exp $

exp $

x

x

β

β

 

and the (l, k) element v tlk ji3 8  defined by 

v t w p t w p tlk ji l l ji k k ji3 8 3 8 3 8= ×  

Estimation of the Baseline Function 
After the MPLE $β  of β  is found, the baseline survivor function S tj0 1 6  is 
estimated separately for each stratum. Assume that, for a stratum, t tk1 < <L  are 
observed lifetimes in the sample. There are ni  at risk and di  deaths at ti , and in 
the interval t ti i−1, 6  there are λ i  censored times. Since S t01 6  is a survivor 
function, it is non-increasing and left continuous, and thus $S t01 6  must be constant 
except for jumps at the observed lifetimes t tk1, ,K . 

Further, it follows that 

$S t0 1 11 6 =  

and 

$ $S t S ti i0 0 1+ = +1 6 1 6  
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Writing $S t pi i0 + =1 6 i k= 1, ,K1 6 , the observed likelihood function is of the form 

L p p p pi i

w

l D
i

w

l C
k

w

l Ci

k
l l

l

i

l
l

i

l
l

k

1 1 1
1 1

= −�
�

�
�

�
�

�
�

%
&K
'K

(
)K
*K

�
�

�
�−

′ ′

∈
−

′

∈

′

∈=
∏ ∏ ∏∏

+

exp exp exp expx x x xβ β β β1 6 1 6 1 6 1 6  

where Di  is the set of individuals dying at ti  and Ci  is the set of individuals with 
censored times in t ti i−1, 6 . (Note that if the last observation is uncensored, Ck +1  
is empty and pk = 0 .) 

If we let α i i ip p= −1 i k= 1, ,K1 6 , L1  can be written as 

L i

w
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Differentiating ln L1  with respect to α α1, ,K k  and setting the equations equal to 
zero, we get 
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We then plug the MPLE $β  of β  into equation (15) and solve these k equations 
separately. 

There are two things worth noting: 

• If any Di = 1 , $α i  can be solved explicitly. 
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• If Di > 1 , equation (7) must be solve iteratively for $α i . A good initial value 

for $α i  is 

$ exp
exp $

α i
i

l l
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∑ x β4 9

 (17) 

where d wi l

l Di

=
∈
∑  is the weight sum for set Di . (See Lawless, 1982, p. 361.) 

Once the $α i , i k= 1, ,K  are found, S t01 6  is estimated by 

$ $

:

S t i

i t ti

01 6
1 6

=
<

∏α   (18) 

Since the above estimate of S t01 6  requires some iterative calculations when ties 
exist, Breslow (1974) suggests using equation (17) as an estimate for α i ; however, 
we will use this as an initial estimate. 

The asymptotic variance for − ln $S t01 6  can be found in Chapter 4 of Kalbfleisch 
and Prentice (1980). At a specified time t, it is consistently estimated by 
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where a is a p ×1 vector with the jth element defined by 
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and I is the information matrix. The asymptotic variance of $ |S t x1 6  is estimated by 

e S t S t2 2
0

′ −x x
$ $ | var ln $β 1 64 9 1 64 9  (20) 

Selection Statistics for Stepwise Methods 
COX REGRESSION offers the same methods for variable selection as LOGISTIC 
REGRESSION. For the details of these methods, and stepwise algorithms, see the 
LOGISTIC REGRESSION chapter. Here we will only define the three removal 
statistics—Wald, LR, and Conditional—and the Score entry statistic. 

Score Statistic 

The score statistic is calculated for every variable not in the model to decide which 
variable should be added to the model. First we compute the information matrix I 
for all eligible variables based on the parameter estimates for the variables in the 
model and zero parameter estimates for the variables not in the model. Then we 
partition the resulting I into four submatrices as follows: 

A A

A A
11 12

21 22

�
! 

"
$#   (21) 

where A11  and A22  are square matrices for variables in the model and variables 

not in the model, respectively, and A12  is the cross-product matrix for variables in 

and out. The score statistic for variable xi  is defined by 

′D B Dx i xi i22,  

where Dxi
 is the first derivative of the log-likelihood with respect to all the 

parameters associated with xi  and B22,i  is equal to A A A A22 21 11
1

12
1

, , ,i i i− − −4 9 , 

and A22,i  and A12,i  are the submatrices in A22  and A12  associated with 

variable xi . 
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Wald Statistic 

The Wald statistic is calculated for the variables in the model to select variables for 
removal. The Wald statistic for variable x j  is defined by 

$ $
,′β βj j jB11  

where $β j  is the parameter estimate associated with x j  and B11, j  is the submatrix 

of A11
1−  associated with x j . 

LR (Likelihood Ratio) Statistic 

The LR statistic is defined as twice the log of the ratio of the likelihood functions of 
two models evaluated at their own MPLES. Assume that r variables are in the 
current model and let us call the current model the full model. Based on the 
MPLES of parameters for the full model, l(full) is defined in equation (12b). For 
each of r variables deleted from the full model, MPLES are found and the reduced 
log-likelihood function, l(reduced), is calculated. Then LR statistic is defined as 

–2(l(reduced) – l(full)) 

Conditional Statistic 

The conditional statistic is also computed for every variable in the model. The 

formula for conditional statistic is the same as LR statistic except that the 

parameter estimates for each reduced model are conditional estimates, not MPLES. 

The conditional estimates are defined as follows. Let $ $ , , $β β β=
′

1 K r4 9  be the 

MPLES for the r variables (blocks) and C be the asymptotic covariance for the 

parameters left in the model given $βi  is 

~ $ $β β βi i
i i

i1 6 1 6
1 6 1 6= − �� ��

−
C C12 22

1
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where $βi  is the MPLE for the parameter(s) associated with xi  and $β i1 6  is $β  

without $βi , C12
i1 6  is the covariance between the parameter estimates left in the 

model $β i1 6  and $βi , and C22
i1 6  is the covariance of $βi . Then the conditional statistic 

for variable xi  is defined by  

− −�� ��2 l l fulli
~
β1 64 9 1 6  

where l i
~
β1 64 9  is the log-likelihood function evaluated at 

~
β i1 6 . 

Note that all these four statistics have a chi-square distribution with degrees of 

freedom equal to the number of parameters the corresponding model has. 

Statistics 

Initial Model Information 

The initial model for the first method is for a model that does not include 
covariates. The log-likelihood function l is equal to  

l d nji ji

i

k

j

m j

0

11

1 6 4 9= − ∗

==
∑∑ ln  

where n ji
∗  is the sum of weights of individuals in set R ji . 

Model Information 

When a stepwise method is requested, at each step, -2 log-likelihood function and 
three chi-square statistics (model chi-square, improvement chi-square, and overall 
chi-square) and their corresponding degrees of freedom and significance are 
printed. 
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–2 Log-Likelihood 

− ′ − ′
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11

s xji ji l l
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d w

ji

j

$ ln exp $β β4 9  

where $β  is the MPLE of β  for the current model. 

Improvement Chi-Square 

(–2 log-likelihood function for previous model) – ( –2 log-likelihood function for 
current model). 

The previous model is the model from the last step. The degrees of freedom are 
equal to the absolute value of the difference between the number of parameters 
estimated in these two models. 

Model Chi-Square 

(–2 log-likelihood function for initial model) – ( –2 log-likelihood function for 
current model). 

The initial model is the final model from the previous method. The degrees of 
freedom are equal to the absolute value of the difference between the number of 
parameters estimated in these two model. 

Note: The values of the model chi-square and improvement chi-square can be 
less than or equal to zero. If the degrees of freedom are equal to zero, the chi-
square is not printed. 

Overall Chi-Square 

The overall chi-square statistic tests the hypothesis that all regression coefficients 
for the variables in the model are identically zero. This statistic is defined as 

′ −u I u0 011 6 1 6  

where u 01 6  represents the vector of first derivatives of the partial log-likelihood 
function evaluated at β = 0 . The elements of u are defined in equation (13) and I is 
defined in equation (14). 
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Information for Variables in the Equation 

For each of the single variables in the equation, MPLE, SE for MPLE, Wald 
statistic, and its corresponding df, significance, and partial R are given. For a single 
variable, R is defined by 

R = −
−

�
! 

"
$# ×Wald

2 log - likelihood for the intial model
sign of MPLE

2
1 2

 

if Wald > 2 . Otherwise R is set to zero.  
For a multiple category variable, only the Wald statistic, df, significance, and 

partial R are printed, where R is defined by  

R = − ∗
−

�
! 

"
$#

Wald df

2 log - likelihood for the intial model

2
1 2

 

if Wald df> 2 . Otherwise R is set to zero.  

Information for the Variables Not in the Equation 

For each of the variables not in the equation, the Score statistic is calculated and its 
corresponding degrees of freedom, significance, and partial R are printed. The 
partial R for variables not in the equation is defined similarly to the R for the 
variables in the equation by changing the Wald statistic to the Score statistic. 

There is one overall statistic called the residual chi-square. This statistic tests if 
all regression coefficients for the variables not in the equation are zero. It is defined 
by 

′u B u$ $β β4 9 4 922  

where u $β4 9  is the vector of first derivatives of the partial log-likelihood function 

with respect to all the parameters not in the equation evaluated at MPLE $β  and 

B22  is equal to A A A A22 21 11
1

12
1

− − −4 9  and A is defined in equation (21). 
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Survival Table 

For each stratum, the estimates of the baseline cumulative survival S01 6  and 

hazard H01 6  function and their standard errors are computed. The estimate $S0  for 

S0  has been discussed in equations (15) through (18). It is easy to see from 

equation (9) that H t01 6  is estimated by 

$ ln $H t S t0 01 6 1 6= −  

and the asymptotic variance of $H t01 6  is defined in equation (19). Finally, the 

cumulative hazard function H t |x1 6  and survival function S t |x1 6  are estimated by 

$ | exp $ $H t H tx x1 6 4 9 1 6= ′β 0  

and, for a given x,  

$ | $ $exp $ exp $

S t S t S t
a

x
x x1 6 1 6 1 64 9 4 9

= =
′ ∗ ′ −

0 0
β β

 

The asymptotic variances are 

var $ | exp $ var $H t H tx x1 64 9 4 9 1 64 9= ′2 0β  

and 

var $ | exp $ $ | var $S t S t H tx x x1 64 9 4 9 1 64 9 1 64 9= ′2
2

0β  



COXREG   15 

 

Diagnostic Statistics 
Three casewise diagnostic statistics, Residual, Partial Residual, and DFBETAs, are 
produced. Both Residual and DFBETA are computed for all distinct individuals. 
Partial Residuals are calculated only for uncensored individuals. 

Assume that there are n j  subjects in stratum j and k j  distinct observed events 
t tk j1 < <L . Define the selected probability for the lth individual at time ti  as 
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DFBETA 

The changes in the maximum partial likelihood estimate of beta due to the deletion 

of a single observation have been discussed in Cain and Lange (1984) and Storer 

and Crowley (1985). The estimate of DFBETA computed is derived from 

augmented regression models. The details can be found in Storer and Crowley 

(1985). When the lth individual in the jth stratum is deleted, the change ∆β j  is 

estimated by 
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∆β l l lv r= − −1 1

m
I  
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and ′x ti1 6  is an n pji ×  matrix which represents the p covariate variables in the 

model evaluated at ti , and n ji  is the number of individuals in R ji . 

Partial Residuals 

Partial residuals can only be computed for the covariates which are not time 
dependent. At time ti  in stratum j, xg  is the p ×1  observed covariate vector for 
any gth individual in set Di , where Di  is the set of individuals dying at ti . The 
partial residual γ g  is defined by 
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Rewriting the above formula in a univariate form, we get 

γ gh gh

l lh l
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l l

l R

ix

w x

w
h p g Di

i

= −

′

′
= ∈∈

∈

∑
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, , , ,

x

x

β

β

4 9

4 9
1K  

where xgh  is the hth component for xg . For every variable, the residuals can be 

plotted against times to test the proportional hazards assumption. 

Residuals 

The residuals ei  are computed by 

e H t H ti i i i i= = ′$ | exp $ $x x1 6 4 9 1 64 9β 0  

which is the same as the estimate of the cumulative hazard function. 

Plots 

For a specified pattern, the covariate values xc  are determined and ′xc
$β  is 

computed. There are three plots available in COXREG. 

Survival Plot 

For stratum j, t S ti i c, $ |0 x1 64 9 , i k j= 1, ,K  are plotted where 

$ | $ exp $

S t S ti c i
cx

x1 6 1 64 9 4 9=
′

0
β
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When PATTERN(ALL) is requested, for every uncensored time ti  in stratum j the 

survival function is estimated by 

$

$ | $ exp $

S t

w S t
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w S t

w

i
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l
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1

1
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Then t S ti i, $1 64 9 , i k j= 1, ,K  are plotted for stratum j. 

Hazard Plot 

For stratum j, t H ti i c, $ |x1 64 9 , i k j= 1, ,K  are plotted where 

$ | exp $ $H t H ti c c ix x1 6 4 9 1 6= ′ β 0  

LML Plot 

The log-minus-log plot is used to see whether the stratification variable should be 

included as a covariate. For stratum j, t H ti c i, $ ln $′ +x β 01 64 9 , i k j= 1, ,K  are plotted. 

If the plot shows parallelism among strata, then the stratum variable should be a 

covariate. 
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