CROSSTABS

The notation and statistics refer to bivariate subtables defined by a row variable X
and a column variable Y, unless specified otherwise. By default, CROSSTABS
deletes cases with missing values on a table-by-table basis.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Distinct values of row variable arranged in ascending order:
Xl< X2 < .. <XR

Distinct values of column variable arranged in ascending order:
Yi<Y, <---<Yo

Sum of cell weights for casesin cell (i, j)

R
fjj , thejth column subtotal
=1
C
fij , the ith row subtotal
=1
C R
Z Cj = Z r; , the grand total
=1 =1

Marginal and Cell Statistics

Count

count = fj;
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Expected Count
Ei' =

riCj
I w

Row Percent

row percent :100><(fij/ri)

Column Percent

column percent =100 x( fi /Cj)

Total Percent

total percent = 100><(fij /W)

Residual

Ri = fij — B

Standardized Residual
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Adjusted Residual

Chi-Square Statistics

Pearson’s Chi-Square

The degrees of freedom are (R-1)(C -1).

Likelihood Ratio
xtr=-2% fjIn(&;/f;)
i

The degrees of freedom are (R-1)(C -1).

Fisher’s Exact Test

If the table isa 2x2 table, not resulting from a larger table with missing cells,
with at least one expected cell count less than 5, then the Fisher exact test is
calculated. See Appendix 5 for details.
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Yates Continuity Corrected for 2 x 2 Tables

W(|f11f25 = 11| ~05W)?

if |f11f22 - f12 f21| > 0.5W

r{r
Xg - 112G C2

0 otherwise
The degrees of freedom are 1.

Mantel-Haenszel Test of Linear Association
2 _ 2
Xwn =(W=Dr

where r is the Pearson correlation coefficient to be defined later. The degrees of
freedom are 1.

Other Measures of Association

Phi Coefficient

For atablenot 2x2

2
_|Xp
?=\w

Fora 2x2 table only, ¢ isequal to the Pearson correlation coefficient so that the
sign of ¢ matchesthat of the correlation coefficients.
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Coefficient of Contingency

2 )
cC=|— P
XptW

Cramér's V

2V
— p
V‘[wm—l)]

where q = min{R,C}.

Measures of Proportional Reduction in Predictive Error

Lambda

Let fi and fny be the largest cell count in row i and column j, respectively.
Also, let r,, be the largest row subtotal and ¢, the largest column subtotal. Define
/]Y\x as the proportion of relative error in predicting an individual’s Y category
that can be eliminated by knowledge of the X category. /]Y\x is computed as
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The standard errors are

R C 2
i (0 = 8; + A05)" ~WAy
|

W-c,
where

ij

_[1 ifjiscolumnindex for fi,
10 otherwise

_[1 ifjisindexforcy
1710 otherwise

Lambda for predicting X from'Y, /]Y\x , is obtained by permuting the indices in the
above formulae.

The two asymmetric lambdas are averaged to obtain the symmetric lambda.
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The standard errors are

. 1 ifiisrowindexforfmj
“10 otherwise

. _[1 ifiisindexforr,
' 70 otherwise

and where

1 ifjiscolumnindex for f,,
0 otherwise

. _[1 ifjisindexforc,
o =
' |0 otherwise
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Goodman and Kruskal’s Tau (Goodman & Kruskal, 1954)

Similarly defined is Goodman and Kruskal’stau (7):

with standard error

4 1 1 )
ASE]_: FZ f” (V—J) EZ f”CJ _Cj -W —2 f” - f”
1] =1

inwhich
C C
é':WZ—ZcJ-2 and v:Wz fijz/ri —ZCJ-Z
1 ] =1
T xly and its standard error can be obtained by interchanging the roles of X and Y.

The significance level is based on the chi-square distribution, since
(W=)(C-Dryy ~ X(2R—l)(C— )

2
(W-1)(R-1) Ty ~ X(rR-1)(c-1)
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Uncertainty Coefficient
Let UY\x be the proportional reduction in the uncertainty (entropy) of Y that can

be eliminated by knowledge of X. It is computed as

_U(X)+U(Y) -U(XY)
UY‘X - U(Y)

where

O

u(yY) = —i%ln{wjj

=1

and

f.. f.
U(XY)= —Z%In(%], for f;; >0

]

The asymptotic standard errors are

ASE, = m\/z fi {U(Y) In(:_l.]j +U(X) —U(XY)] |n(cwjj}

) \/P—VV[U(X) +U(Y) ~U(X))?
ASE, = o]
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The formulasfor U x|y can be obtained by interchanging the rolesof X and Y.

A symmetric version of the two asymmetric uncertainty coefficients is defined
asfollows:

y zz[u(x)w(v)—u(xv)}
U(X)+U(Y)

with asymptotic standard errors

ASE, = o (X)2+U ok Z fi {U(XY)In(\r/ivizj)‘[U(X) +U(Y)]In(%)}
]

or

ASE, = 2 ]\/P—[U(X)+U(Y) ~u(x)J? fw

WU(X)+U(Y)

Cohen’s Kappa

Cohen’skappa (k) , defined only for square table (R=C), is computed as
R R
WA fii— ) ng




SSSSSSSSSSS
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Kendall’s Tau-b and Tau-c

Define

G = hz fric + hz fri
<I k<] > K>]

Dy = hz fric + hz fh
<| >J >| <J

P:ch

1)

Q= Z fiy Dj

]

ij ~ij

Note: the P and Q listed above are double the “usual” P (number of concordant
pairs) and Q (number of discordant pairs). Likewise, D, is double the “usual”
P+ Q+ Xg (the number of concordant pairs, discordant pairs, and pairs on which
the row variable is tied) and D is double the “usual” P+Q+Y, (the number of
concordant pairs, discordant pairs, and pairs on which the column variable is tied).

Kendall’s Tau-b

with standard error
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1
AR, Dc>\/

where

1]

Vij =i Dc +Cj D,

Under the independence assumption, the standard error is

Z i (G - Dij)2 ‘%(P‘Q)Z
]

ASE, =2
Dr DC

Kendall’'s Tau-c

. - 4P-Q

© w(g-1)

with standard error

ASE; =ﬁ\/g fi(Cy - Dy)° ‘%(P -Q)°

or, under the independence assumption,

e A G
1]

where

q=min{R, C}

2
fij (2D Dc (G ~ Dy ) + 75wy} -W3rh(Dy +D;)?
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Gamma

Gamma () is estimated by

o
[
O

gv)
+
O

with standard error

4 2
ASE| = E fii i — PD;i
' (P+Q)2\/|,J J(QCIJ J)

or, under the hypothesis of independence,

SEo :ﬁ\/z f(Gy -Dy)° ‘%(P -Q)?

1]

Somers’ d

Somers d with row variable X as the independent variableis calculated as

P-Q
dyix = D
r

with standard error

ASEF%\/Z fij{Dr(Cij _Dij) ‘(P‘Q)(W‘R)}z
r\ 3

or, under the hypothesis of independence,
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ASEq =Dir\/z fi(Gy —D;)° ‘%(P -Q?
1]

By interchanging the roles of X and Y, the formulas for Somers d with X as the
dependent variable can be obtained.

Symmetric version of Somers dis

(P-Q

1
E(Dc"'Dr)

d=

The standard error is

202

ASEl:—Tb),/Dr De

(Dr + DC

where afb isthe variance of Kendall’s 7y,

ASE :ﬁ\/z f” (CIJ — Dij)z _%(P —Q)Z

Pearson’sr

The Pearson’ s product moment correlation r is computed as

cov(X,Y) _ S

SX)sY) T
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where

cov(X, Y) = Z, XY, f; —[i xiri][ivjcj ]/w

and

2

C C
_ 2
J:_‘]_ J:_‘]_

The varianceof r is

var, = T_{lz ;| {T( X, - X)(Y; =) -%[(xi -X)°S(Y) +(Y, —V)ZS(X)]}Z

If the null hypothesisistrue,

2

2\/2
Z iy XPY? - Z fii X, Y]
B Bi

varg =
[Z i Xiz] ZCJYJZ
I J
where
R
)? = Z Xiri/W

1=1
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and
C
Y = Yicj /W
17
2

Under the hypothesisthat o =0,

rvw-2
\ll—r2

isdistributed asat with W -2 degrees of freedom.

t=

Spearman Correlation

Eta

The Spearman’s rank correlation coefficient rg is computed by using rank scores
R for X; and G for Y. These rank scores are defined as follows:

R :Zrk +(r, +1)/2 fori =12,...,R

C = c. +(c. +1)/2 forj:l,2,...,C
i hZJh (l )/

The formulas for rg and its asymptotic variance can be obtained from the Pearson
formulas by substituting R and C; for X; and Y;, respectively.

Asymmetric 17 with the column variable Y as dependent is

"
ny = 1‘@
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where
) R 1 C 2
Sw = ) Y fj ‘Zr— Zijij
1,] =1 =1
Relative Risk

Consider a 2x2 table (thatis, R=C =2). In a case-contral study, the relative
risk is estimated as

_fufe
f12f21

The 100(1-a) percent CI for the relative risk is obtained as
[RO eXp(_Zl—a/ZV)’ Ro eXp(Zl—a/ZV)]

where

The relative risk ratios in a cohort study are computed for both columns. For
column 1, therisk is

_ fu(for+ f)

R =
(11 + f12)

and the corresponding 100(1-a) percent Cl is

[ Reep(~21-q2v)  Reexp| Zl—a/ZV)]
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where

Y2
ve [ fo f22 ]
fia(fia+ fi2)  faa(fn+ f22)

Therelative risk for column 2 and the confidence interval are computed similarly.

McNemar-Bowker’s Test

Notations

Algorithm

This statistic is used to test if a square table is symmetric.

n Dimension of the table (both row and column)

o} Unknown population cell probability of row i and columnj
ij

n Observed counts cell count of row i and column j

Given a NXNsguare table, the McNemar-Bowker's statistic is used to test the
hypothesis H, @ p; = p;; for al (i<j) v.s. H,:p; # p; for at least one pair
of (i,j). The statistic is defined by the formula

, _ < (g +n; >0)(n; —n;)°
X z n; +n;

<]

Where |() isthe indicator function. Under the null hypothesis, ¥ hasan
asymptotic Chi-square distribution with N(n—1)/2 degrees of freedom. The null

hypothesiswill be rejected if Y % hasa large value. The two-sided p-valueis equal

to 1-F(n(n-1)/2, x?), where F(df , [} isthe CDF of Chi-square
distribution with df degrees of freedom.
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A Special Case: 2x2 Tables

For 2x2 table, the statistic reduces to the classical McNemar (1947) statistic for
which exact p-value can be computed. The two-tailed probability level is

min(ny,,n,;) +n
2 Z EIIZ . 21 El/ 2) Ny +Nyy
= |

Conditional Independence and Homogeneity

The Cochran's and Mantel-Haenzel statistics test the independence of two
dichotomous variables, controlling for one or more other categorical variables.

These “other” categorical variables define a number of strata, across which these
statistics are computed.

The Breslow-Day statistic is used to test homogeneity of the common odds ratio,
which is a weaker condition than the conditional independence (i.e., homogeneity
with the common odds ratio of 1) tested by Cochran’'s and Mantel-Haenszel
statistics. Tarone's statistic is the Breslow-Day statistic adjusted for the consistent

but inefficient estimator such as the Mantel-Haenszel estimator of the common
oddsratio.

Notation and Definitions

The addition of strata requires the following modifications to the notation:

K The number of strata.
fijk Sum of cell weights for casesin the ith row of the jth column of the kth
strata.
R
Cik Z fijk . thejth column of the kth strata subtotal.
i=1
C
fi ) fij . theith row of the ki sirata subtota.
j=1
C R
Nk 2 Cik = 2 lik , the grand total of the kth strata.

j=1 i=1
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fikCik

Eijk E(fijk)z

column of the kth strata.

, the expected cell count of the ith row of the jth

A stratum such that n, =0 is omitted from the analysis. (K must be modified
accordingly.) If n, =0 for al k, then no computation is done.

Preliminarily, define for each k

~ fin
Bk = '
lik
dx = Pak — Pok»
A k
Pk =—
Ny
and
(g
Wy = 1KkM2k
Nk

Cochran’s Statistic

Cochran’'s (1954) statisticis

K K K
ZWkdk/ZWk ZWkdk
C= k=1 k=1 — k=1

K

K K '
ZWkI@k(l— P) ZWk ZWkI@k(l— P)

k=1 k=1 k=1
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All stratum such that ry =0 or ry, =0 are excluded, because d is undefined. |If
every stratum is such, C is undefined. Note that a stratum such that ry, >0 and
o >0 but that ¢ =0 or ¢y =0 is a valid stratum, although it contributes
nothing to the denominator or numerator. However, if every stratum is such, C is

again undefined. So, in order to compute a non system missing value of C, at least
one stratum must have all non-zero marginal totals.

Alternatively, Cochran’s statistic can be written as

K
Z(fllk - E19x)
_ k1 '

C —
K
ZWk Pr (1- Px)
k=1

When the number of strata is fixed as the sample sizes within each stratum
increase, Cochran’s statistic is asymptotically standard normal, and thus its square
isasymptotically distributed as a chi-squared distribution with 1 d.f.

Mantel and Haeszel's Statistic

Mantel and Haenszel's (1959) statistic is simply Cochran’'s statistic with small-
sample corrections for continuity and variance “inflation”. These corrections are
desirable when ry and ry are small, but the corrections can make a noticeable

difference even for relatively large ry and rp (Snedecor and Cochran, 1980, p.
213). The statistic is defined as:

K K
{1 (fra~ E1n)b08 son) | (fa — Eqgi}
M = k=1 k=1
< M I
ZM P (21— Pr)
Nk -1
k=1

where sgn is the signum function
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1 ifx>0
gn(x) =40 ifx=0
-1 ifx<O

Any stratum in which n, =1 is excluded from the computation. If every stratumis
such, then M is undefined. M is aso undefined if every stratum is such that
rk =0, rpx =0, ¢ =0, or ¢y =0. In order to compute a non system missing
value of M, at least one stratum must have al non-zero marginal totals, just as for
C.

When the number of strata is fixed as the sample sizes within each stratum
increase, or when the sample sizes within each strata are fixed as the number of
strata increases, this statistic is asymptotically standard normal, and thus its square
isasymptotically distributed as a chi-squared distribution with 1 d.f.

The Breslow-Day Statistic

The Bresdow-Day statistic for any estimator 6 is

K A
2 { f1ax — E(f11k |01|f 0)}°
= V(fuklek: )

E and V are based on the exact moments, but it is customary to replace them with

the asymptotic expectation and variance. Let E and V mean the estimated
asymptotic expectation and the estimated asymptotic variance, respectively. Given

the Mantel-Haenszel common odds ratio estimator 8,,,,, we use the following
statistic as the Breslow-Day statistic:

K N N
B Z{fllk: E(f11k|QI.If;0MH)}2
V(f1axlci; Omn)

where

E(f1axlow: Omn) = fra

satisfies the equations
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Frai (N — e — G + faie) _ P

< = MH »
(rk — fra)(Cak = f11x)

with constraints such that

fi =0,
Mk — fic >0,
C — f1k >0,

M — Ty —Ce + Frae 2 6;

and

1

N N 1 1 1 1

V(fllklolk;eMH)=[ —t—t+——+—= j
fie  fook foe Faok

with constraints such that

fAllk > 0,
frok =T — i >0,
fo =Ci — frax >0,

foou =N = —Ci + f1 > 0;

All stratum such that ry, =0 or ¢y =0 are excluded. If every stratum is such, B

is undefined. Stratum such that fA11k =0 are also excluded. If every stratum is
such, then B is undefined.

Breslow-Day’s statistic is asymptotically distributed as a chi-squared random
variable with K-1 degrees of freedom under the null hypothesis of a constant odds
ratio.

Tarone’s Statistic

Tarone (1985) proposes an adjustment to the Bredow-Day statistic when the
common odds ratio estimator is consistent but inefficient, specifically when we
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have the Mantel-Haenszel common odds ratio estimator. The adjusted statistic,
Tarone's statistic, for 8,,,, is

2
K
K X A , !Z{fllk_E(fllklo.Lk;gMH)}
12V Uk — E(fa IO Omn )} L=t
= V(fuklck:Oun)

K
ZV(f11k|01ki9MH)
k=1

K

2
2{ f12 = E(F1ax ou; Bn )}}

_ gLkt

K
Zv(fllklclk;gMH)
k=1

where E and V are as before.

The required data conditions are the same as for the Breslow-Day statistic
computation. T is, of course, undefined, when B is undefined.

T isaso asymptotically distributed as a chi-squared random variable with K-1
degrees of freedom under the null hypothesis of a constant odds ratio.

Estimation of the Common Odds Ratio

For K strataof 2 X 2 tables, write the true odds ratios as

6. = P (1= Poy)
o =l Pak)
(1- pik) P2k

for K=1,...,K. And, assuming that the true common odds ratio exists,

6 =6,=..=6,, Mantel and Haenszel’s (1959) estimator of this common odds
retiois
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K

2 frax Foox
n
o — k=l K
MH — K .
2 f1ok Fork
n
k=1 K

If every stratum issuch that fi5 =0 or fy =0, then 9MH is undefined.
The (natural) log of the estimated common odds ratio is asymptotically normal.
Note, however, that if fiq, =0 or foo, =0 inevery stratum, then 8y iszero and

Iog(@?M H ) is undefined.
The Asymptotic Confidence Interval

Robins et al. (1986) give an estimated asymptotic variance for Iog(@?MH) that is
appropriate in both asymptotic cases:

K
2 (frax + Fooi) Frak ook
2

n A _ Nk
°[log(Oyp )] = *=L— -
2( 11k 22k)2
K
2 (frax + F2oi) Frok Foue + (Frok + Foax) Frak Fook
2
Nk

+ k=1

S S
2 11k ' 22k 12k ' 21k
(kz_l . )(gi "

K
2 (frok + fork) F1ok Forx
2
N

+ k=1

& o f

12k 121k 42

2(2 e )
k=1

An asymptotic (100 - @ )% confidence interval for log(6) is

log(Bwn) + z(a ! 2)6{10g(Byp )]
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where z(a / 2) isthe upper a / 2 critical value for the standard normal distribution.
All these computations are valid only if 8y, is defined and greater than O.

The Asymptotic P-value

We compute an asymptotic P-value under the null hypothesis that
6 (=6 Vk) =6, (>0) against a 2-sided alternative hypothesis (6 # 6,), using
the standard normal variate, as follows

o 1215 [109hn) - Iog(eo)lj:Zp{bllog(éMH); 109(6)|
o110g(By)] ollog(Bwr)] |

given that log(Byy ) is defined.
Alternatively, we can consider using f9MH and the estimated exact variance of
@?MH , which is still consistent in both limiting cases:

°110g(Om ) Gt -

Then, the asymptotic P-value may be approximated by

],

The caveat for this formula is that 9MH may be quite skewed even in moderate
sample sizes (Robins et al., 1986, p. 314).

Omn — 6o

Pr(|Z|> —
o{log(Emn )16,
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