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Complex Samples: Model Testing 

This document describes the methods used for conducting linear hypothesis tests based on 
the estimated parameters in CS models. 

Required input is a set of the linear hypothesis, parameter estimates and their covariance 
matrix estimated for the complex sample design. Some methods require an estimate of the 
parameter covariance matrix under the simple random sampling assumption as well. Also 
needed is the number of degrees of freedom for the complex sample design; typically this 
will be the difference between the number of primary sampling units and the number of 
strata in the first stage of sampling. 

Given consistent estimates of the above constructs, no additional restrictions are imposed on 
the complex sample design. 

Notations 
p  Number of regression parameters in the model. 

r  The number of linear hypothesis considered. 

L  Generalized linear hypothesis matrix with r  rows and p columns. 

K  Hypothesis value vector with r elements. 

B  Vector of p unknown population parameters. 

B̂  Vector of p estimated population parameters (solution). 

)ˆˆ B(V  Estimated covariance matrix for B̂  given the complex sample design. 

ν  The number of sampling design degrees of freedom. 
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Hypothesis Testing 
Given matrix L  with r rows and p columns, and vector K with r  elements, the following 

test of generalized linear hypothesis is performed: 

KLB =:0H . 

It is assumed that LB is estimable. 

Wald chi-square test 

Wald 2Χ statistic proposed by Koch et al. (1975) is defined by 

K)B(L)L)B(V(L)KB(L −′′−=Χ − ˆˆˆˆ2 . 

Asymptotic distribution of the 2Χ  test statistic is chi-square with Ir  degrees of freedom, 

where )ˆˆ( L)B(VL ′= rankrI . If rrI < , −′)L)B(V(L ˆˆ  is a generalized inverse such that 

Wald tests are effective for restricted set of hypothesis II KBL =  containing a particular 

subset I  of independent rows from 0H . 

Wald F test 

Wald F statistic suggested by Fellegi (1980) is computed by the formula 
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This statistic is asymptotically approximated by the F-distribution )1,( +− II rrF ν , where 

ν  is the number of the sampling design degrees of freedom. The statistic is undefined 

if Ir<ν . See Korn and Graubard (1990) for the properties of this statistic. 

Adjusted Wald chi-square test 

Wald 2
srsΧ  statistic under the simple random sampling assumption is given by the following 

expression: 

K)B(L)L)B(V(L)KB(L −′′−=Χ − ˆˆˆˆ2
srssrs . 
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)B(V ˆˆ
srs  is an asymptotic covariance matrix estimated under the simple random sampling 

assumption. If rrank srs <′)ˆˆ( L)B(VL , adjusted Wald tests are effective for restricted set 

of hypothesis II KBL =  containing a particular subset I  of independent rows from 0H . 

Since the asymptotic distribution of 2
srsΧ  is generally not a chi-square distribution, we apply 

an adjustment using the ˆ  matrix given by: 

)L)B(V(L)L)B(V(L ′′= − ˆˆˆˆˆ
srs . 

)B(V ˆˆ  is an estimated asymptotic covariance matrix under the complex sample design. 

We use second-order adjustment as in Rao and Scott’s (1984) given by 
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Asymptotic distribution of 2
adjΧ  is approximated by the chi-square distribution with d  

degrees of freedom. See Graubard and Korn (1993) for properties of this statistic in reference 
to regression problems. 

Adjusted Wald F test 

We also use the F-based variant of the Rao and Scott’s (1984) second-order adjustment 
defined by the following: 
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Asymptotic distribution of adjF  is approximated by the F-distribution ),( νddF  where d  

is defined as above and ν  is the number of the sample design degrees of freedom. See 
Thomas and Rao (1987) for the heuristic derivation of this test, and Rao and Thomas (2003) 
for a review of the related simulation studies. 

Individual tests 

Each row l ′ of matrix L may also be tested separately. For such tests, or when matrix 

L contains a single row, the statistics above simplify as follows: 
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and 

adjadj FF =Χ==Χ 22 . 

Asymptotic distribution used for test statistics 2Χ and 2
adjΧ  is the chi-square distribution 

with 1 degree of freedom. Test statistics F and adjF  are approximated by the F-distribution 

),1( νF  with ν  as defined earlier. Tests are undefined if ll )B(V ˆˆ′ is not positive. 

P-values 

Given a value of test statistic T and a corresponding cumulative distribution function G as 

specified above, the p-value p of the given test is computed as )(1 TGp −= . 

Multiple comparison tests 
In addition to the testing methods mentioned in the previous section, the hypothesis 

KLB =:0H  can also be tested using the multiple row hypotheses testing technique. Let 

il ′  be the i-th row vector of matrix L , and ik  be the i-th element of vector K . The i-th row 

hypothesis is iii klH =′B:0 . Testing 0H  is the same as testing multiple hypotheses 

{ } R

iiH 10 =  simultaneously, where R  is the number of non-redundant row hypotheses. A 

hypothesis iH 0  is redundant if there exists another hypothesis ijH j ≠,0  such that 

0,, ≠== cckkcll jiji . 

For each individual hypothesis iH 0 , tests described in the previous section can be 

performed. Let ip  denotes the p-value for testing iH 0 , and *
ip  denotes the adjusted p-

value. The conclusion from the multiple testing is, at level α  (the family-wise type I error), 

reject iii klH =′B:0  if α<*
ip ;  

reject KLB =:0H  if α<)(min *
i

i
p . 

There are different methods to adjust p-values. Five methods are provided here. Please note 
that if the adjusted p-value is bigger than 1, it is set to 1 in all the methods.  

LSD (Least Significant Difference) 

The adjusted p-values are the same as the original p-values: 
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ii pp =* . 

BONFERRONI 

The adjusted p-values are  

ii Rpp =* . 

SIDAK 

The adjusted p-values are  

R
ii pp )1(1* −−= . 

Sequential Bonferroni test (Holm) 

In sequential test, the p-values are first ordered from the smallest to the biggest, and then 

adjusted depending on the order. Let the ordered p-values be )()2()1( Rppp ≤≤≤ �  with 

corresponding hypotheses being )(0)2(0)1(0 ,,, RHHH � .  

The adjusted p-value of )(ip  is  
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Sequential Sidak test  

The adjusted p-value of )(ip  is  
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Comparison of adjustment methods 

A multiple testing procedure tells not only if 0H  is rejected, but also if each individual iH 0  

is rejected. All the methods, except LSD, control the family-wise type I error for testing 0H , 

i.e. the probability of rejecting at least one individual hypothesis under 0H . In addition, 

sequential methods also control the family-wise type I error for testing any subset of 

{ } R

iiH 10 = . 

LSD is the one without any adjustment, it rejects 0H  too often. It does not control the 

family-wise type I error and should never be used to test 0H . It is provided here mainly for 

reference. 

Bonferroni is conservative (i.e. reject less often than it should be). In some situations, it 
becomes extremely conservative when test statistics are highly correlated. 

Sidak is also conservative in most cases, but is less conservative than Bonferroni. It gives the 
exact type I error when test statistics are independent. 

Sequential Bonferroni (Holm) is as conservative as the Bonferroni in terms of testing 0H  

because the smallest adjusted p-value used in making decision is the same in both methods. 

But in term of testing individual iH 0 , it is less conservative than the Bonferroni. Sequential 

Bonferroni rejects at least as many individual hypotheses as Bonferroni.  

Sequential Sidak is as conservative as the Sidak in terms of testing 0H , but less 

conservative than the Sidak in terms of testing individual iH 0 . Sequential Sidak is less 

conservative than sequential Bonferroni. 
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