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CSLOGISTIC 

Logistic regression is a commonly used analytical tool for categorical responses. SPSS has 
procedures LOGISTIC REGRESSION (for binary response) and NOMREG (for multi-
category response) under the standard sampling setting. This document considers 
multinomial logistic regression model under the complex sampling setting extending the 
model in NOMREG to complex sampling. 

There are different approaches for analytic inference in complex sampling (Chambers and 
Skinner 2003). We will take the two-phase sampling and pseudo-likelihood estimation 
approaches. 

Notation 
iy  Categorical dependent/response variable for case i. Its category values are denoted as 

1, 2, etc. 
K The total number of categories for dependent variable. 
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Indicator variable for category k, i.e. 
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X  
Design matrix ( )′= nxxX ,,1 � , where ( )′= ipii xx ,,1 �x  is for case i.  

Note 11 =ix  if model is with intercept. 

iπ  Inclusion probability for case i. 

iw  Sampling weight for case i, iiw π/1= . 

( )kpx  The probability for response category k at x : ( ) )|Pr( xx kykp == , and denote 

( ) ( )kpkp
ii x=  for case i. 

N The number of cases in the whole population. 
N The number of cases in the sample. 
B  The parameter of interest, the population or census parameter. 

Input 
•  The sampling plan. 

This plan provides information about the sampling method, sampling weight, strata and 
cluster information. 

•  Observed sample data { } n

iiii wy 1,, =x .  

Predictors can be either categorical or continuous. The intercept, main effect, interaction 
effects and nested effects can be in the model.  
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Superpopulation model 
Two phases of sampling are assumed. The first phase generates a finite population by a 
model or super population. The second phase selects a sample according to a sampling plan 
from the finite population generated in the first phase.  

Model generating the population 

Assume that response variable y at a given x  follows a multinomial distribution with 

probability ( )kpx  for ky = . Without loss of generality, let the last category K be the 

reference category.  Then for k = 1, …, K-1, 
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where ( )′= kpkk ββ ,,1 �  is the regression parameter vector for response category k. 

There are p(K-1) regression parameters in total ( )′′′= −11 ,..., K . This model is described 

in many books, for example Agresti (2002). 

The parameter of interest 
Let B denote the MLE of the model parameter  based on the whole population. This B is 

also called the census parameter. The parameter of interest is the census parameter B, rather 
than the model parameter . The exact definition and formulation of B is described below in 

the estimating equation. 

Estimating parameters from a complex sample 

For a sample { } n

iiiyS 1, == x  drawn from the finite population according to a sample plan, 

we take the pseudo-likelihood approach. In this approach, the pseudo-likelihood is a sample 
estimate of the population log-likelihood, and parameter estimates are derived by 
maximizing the pseudo-likelihood. 

From the sample, an unbiased estimate of population log-likelihood Ul  is  
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We will maximize )(Sl  to get the estimates for census parameter B. The pseudo-score 

function is, for k = 1, …, K-1, 
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∈

⊗−=
Si

iiiiS wS xpy **)(  

Estimating equation 

For k = 1, …, K-1, 

( ) 0** =⊗−∑
∈ Si

iiiiw xpy . 

The estimator obtained by solving this equation is an estimator of the census parameter B. 

Redundant parameters 

In this procedure, the over-parameterization approach is similar to that in the NOMREG 
procedure. If a parameter is found to be redundant, it is set to zero and will not affect the 
estimation procedure.  

Parameter estimates 

To obtain the maximum pseudo-likelihood estimate of B, the Newton-Raphson iterative 

estimation method is used to solve the estimating equation. Let )(vB  be the parameter 

estimate at iteration step v, the parameter estimate )1( +vB at iteration step v + 1 is updated as 
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S
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the (k, j)th block element of ( )J , for k, j = 1, …, K-1, is  
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( )−J  is a generalized inverse of ( )J . The stepping scalar ξ > 0 is used to make 

)()( )()1( v
S

v
S ll BB ≥+ . Use step-halving method if )()( )()1( v

S
v

S ll BB <+ . Let t be the 

maximum number of steps in step-halving; the set of values of ξ  is {1/2r: r = 0, …, t-1}. 

Starting with initial values )0(B , iteratively update )1( +vB  until one of the stopping criteria 

is satisfied. The final estimate is denoted as B̂ . 

Note:  

•  Sometimes, infinite parameters may be present in the model because of complete or 
quasi-complete separation of the data (Albert and Anderson, 1984) (Santner and Duffy, 
1986).  In CSLOGISTIC, a check for separation of the data can be performed. If either 
complete or quasi-complete separation is suggested by the test, a warning is issued and 
results based on the last iteration are given. 

Initial values )0(B  

For all non-intercept regression parameters, set their initial values to be zero. For intercepts, 
if there are any, set for k=1, …, K-1, 
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iik kywN )(ˆ  is the estimated population number of responses in category k. 

Stopping criteria 

Given two convergence criteria lε > 0 and pε > 0, the iteration is considered to be converged 

if one of the following criteria is satisfied: 
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3. The maximum number of iterations is reached. 
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Properties of the estimates 

Variance matrix 

The design-based variance of B̂  (Binder 1983) has estimate 

)ˆ()ˆ(ˆ)ˆ()ˆ(ˆ BBBB −−≈ JIJV , 

where )(Î  is the estimate of design based variance of )(SS . Let ( ) iiii xpyd ⊗−= ** , 

then ( ) ∑∑
∈∈

=⊗−=
Si

ii
Si

iiiiS wwS dxpy **)(  is an estimate for population total of id  

vectors. How to calculate designed based variance matrix for total is given in “Complex 
Samples: Covariance Matrix of Total” (cs_covariance.pdf). 

Confidence intervals 

The confidence interval for a single regression parameter kjB  is approximately 
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Where )ˆ(ˆ)ˆ( kjkj BVBse =  is the estimated standard error of kjB̂ , and 
2

1,
α−df

t  is the 

)21(100 α−  percentile of t  distribution with df degrees of freedom. The degrees of 

freedom df can be user specified, and default as the difference between the number of 
primary sampling units and the number of strata in the first stage of sampling.  

Design effect 

For each parameter kjB , its design effect is the ratio of its variance under the design to its 

variance under the SRS design, 

)B(V

)B(V
BDeff

kjsrs

kj
kj ˆˆ

ˆˆ
)ˆ( = . 

For SRS design, the variance matrix is 

)ˆ()ˆ()ˆ()ˆ( BBBB −−≈ JIJV SRSSRS , 

where 
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Pseudo -2 Log Likelihood 
For the model under consideration, the pseudo –2 Log Likelihood is 

)ˆ(2 BSl− . 

Let the initial model be the intercept-only model if the intercept is in the considered model, 
or the empty model otherwise. For the initial model, the pseudo –2 Log Likelihood is 

)(2 )0(BSl− , 

where )0(B  happens to be the initial parameter values used in the iterative estimating 
procedure.  

Pseudo R Squares 

Let )(BUL  be the likelihood function for the whole population; that is, 

( ))(exp)( BB UU lL = . A sample estimate is ( ))(exp)(ˆ BB SU lL =  

Cox and Snell’s R Square 
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McFadden’s R Square 
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Hypothesis Testing 
Contrasts defined as linear combination of regression parameters can be tested. Given matrix 
L  with r  rows and )1( −Kp columns, and vector K  with r  elements, CSLogistic tests 

the linear hypothesis KLB =:0H . See “Complex Samples: Model Testing” 

(cs_modeltesting.pdf) for details. 

Custom tests 

For a user specified L  and K , KLB =:0H  is tested only when it is testable, i.e. when 

LB  is estimable. Let ),,( 11 −= KLLL � , where each kL  is a r by p matrix. The LB  is 

estimable if for every ,1,,1 −= Kk �  

HLL kk = , 

where ( ) XXXXH ′′= −
 is a pp×  matrix. 

Note: In NOMREG, only block diagonal matrices such as ),,( ** LLL �diag=  are 

considered, where *L  is a pq ×  matrix. Also in NOMREG, testability is not checked. 

Default tests of Model effects 

For each effect specified in the model, matrix ),,( ** LLL �diag=  is constructed and 

0LB =:0H  is tested. The matrix *L  is chosen to be the type III test matrix constructed 

based on matrix ( ) XXXXH ′′= −
. This construction procedure makes sure that LB  is 

estimable. It involves parameters only for the given effect and the effects containing the 
given effect. It does not depend on the order of effects specified in the model. If such a 
matrix cannot be constructed, the effect is not testable.  

Predicted values 
For a predictor pattern x , the predicted probability of each response category is 
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The predicted category )(xc  is the one with the highest predicted probability, i.e. 

)(ˆmaxarg)( kpc
k

xx = . 

Equivalently, 

( )k
k

c Bxx ˆmaxarg)( ′=  

where 0ˆ =KB  is set for the last (reference) response category. This latter formula is less 

likely to have numerical problems and should be used. 

Classification table 

A two-way table with (i,j)-th element being the counts or the sum of weights for the 
observations whose actual response category is i (as row) and predicted response category is 
j (as column) respectively.  

Odds ratio 
The ratio of odds at 1x  to odds at 2x  for response category 1k  versus 2k  is 

( ) ( )
( ) ( ) ( ))()(exp),;,(

21
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11
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2121 kkkpkp

kpkp
kkor BBxxxx

xx

xx −′−==  

For kk =1  and Kk =2  (the reference response category), odds ratio is simplified as 

( )kKkor Bxxxx )(exp),;,( 2121 ′−= . 

Equation for ),;,( 21 Kkor xx  will be the one we use to calculate odds ratios. The estimate 

and confidence interval for ),;,( 21 Kkor xx  are respectively 

( )kBxx ˆ)(exp 21 ′− , 
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( ) )(ˆ)()ˆ( 2121 xxBxx −′−= kVarCse . 

( )kjBexp  and its cofidence interval 

( )kjBexp  can be interpreted as an odds ratio for main effects model. SUDAAN calls 

( )kjBexp  the odds ratio for parameter kjB  whether or not there is an interaction effect in 

the model. Even though they may not be odds ratios for models with interaction effects, they 

are still of interest. For each ( )kjBexp , its α−1  confidence interval is 

( ) ( )[ ])ˆ(exp,)ˆ(exp kjkj BUBL , 

where )ˆ(),ˆ( kjkj BUBL  are the lower and upper confidence limits for census parameter kjB . 

Subpopulation estimates 
When analyses are requested for a given subpopulation D, we perform calculations on the 

following redefined ix  and )(kyi : 
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When computing point estimates, this substitution is equivalent to including only the 
subpopulation elements in the calculations. This is in contrast to computing the variance 
estimates where all elements in the sample need to be included. 
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Missing values 
Missing values are handled using list-wise deletion; that is, any case without valid data on 
any design, dependent, or independent variable is excluded from the analysis. 
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