CSTABULATE

This document describes the algorithms used in the complex sampling estimation procedure
CSTABULATE.

Complex sample data must contain both the values of the variables to be analyzed and the
information on the current sampling design. The sampling design includes the sampling
method, strata and clustering information, inclusion probabilities and the overall sampling
weights.

The sampling design specification for CSTABULATE may include up to three stages of
sampling. Any of the following general sampling methods may be assumed in the first stage:
random sampling with replacement, random sampling without replacement and equal
probabilities and random sampling without replacement and unequal probabilities. The first
two sampling methods can a so be specified for the second and the third sampling stage.

Notation

The following notation is used throughout this chapter unless otherwise stated:

H Number of strata.

n, Sampled number of primary sampling units (PSU) per stratum.

fh Sampling rate per stratum.

m,, Number of elementsin the i " sampled unitinstratum h, i =1,...,1n, .

Yhi Valueof variable  for the ] ™ dlement in the i ™ sampled unit in stratum h.

Wi Overall sampling weight for the | ™ element in the i " sampled unit in stratum h.
n Total number of elementsin the sample.

N Total number of elementsin the population.

Y Population total sum for variable Y .

Weights

Overall weights specified for each ultimate element are processed as given. They can be
obtained as a product of weights for corresponding units computed in each sampling stage.

When sampling without replacement in a given stage, substituting W, = ZI/ 7T, for unit Iin

stratum hresults in the application of the estimator for the population totals due to Horvitz
and Thompson (1952). The corresponding variance estimator (2) or (3) will also be unbiased.

7ty isthe probability of unit i from stratum h being selected in the given stage.



If sampling with replacement in a given stage, substituting W, =ZI/(nh phi) yields the

estimator for the population totals due to Hansen and Hurwitz (1943). Repeatedly selected
units should be replicated in the data. The corresponding variance estimator (1) will be

unbiased. Py, is the probability of selecting unit I in asingle draw from stratum hin the
given stage.

Weights obtained in each sampling stage need to be multiplied when processing multi-stage
samples. The resulting overall weights for the elements in the final stage are used in all
expressions and formulas below.

Z expressions
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For multi-stage samples, the index h denotes a stratum in the given stage, and i stands for
unit from hin the same stage. The index | runs over al final stage elements contained in

unit hi .

Variable Total

An estimate for the population total of variable Yy in a single-stage sample is the weighted
sum over al the strata and al the clusters:
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Alternatively, we compute the weighted sum over all the elements in the sample:



~ n
Y= Z WY,
i=1
The latter expression is more general asit also applies to multi-stage samples.

Variables Total Covariance

For a multi-stage sample containing a with replacement sampling stage, all specifications
other than weights are ignored for the subsequent stages. They make no contribution to the
variance estimates.

Single stage sample

The covariance of the total for variables Yy and y’ in a single-stage sample is estimated by
the following:

where Uh(YA,YA') is an estimate contribution from stratum h=1,..., H and depends on
the sampling method as follows:

. For sampling with replacement

U, (YY) =n,S(y,Y) (1)

« For simple random sampling

U, (Y,Y") =@~ f)n.SE(y,Y) @

. For sampling without replacement and unequal probabilities

A A, D Shy T T ’ ’
U,(,Y) = ZZ(%_]-)(ZN — 2y )2y — Zy) &
i1 i>] hij

Inthe variance estimator (3), 77; and 77y, aretheinclusion probabilities for units ifand jin

stratum h, and Ty is the joint inclusion probability for the same units. This estimator is
due to Yates and Grundy (1953) and Sen (1953).



For each stratum h containing a single element, the covariance contribution U, (Y,Y") is
always set to zero.

Two-stage sample

When the sample is obtained in two stages and sampling without replacement is applied in
the first stage, we use the following estimate for the covariance of the total for variables

yand y':
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where

. Tt isthefirst stage inclusion probability for the primary sampling unit I instratum h.In
the case of simple random sampling, the inclusion probability is equal to the sampling rate
f,, for stratum h.

. K,; isthe number of second stage strata in the primary sampling unit I within the first
stage stratum h.

- U, (Y,Y’) is a covariance contribution from the second stage stratum K from the

primary sampling unit hi. It depends on the second stage sampling method. The
corresponding formula (1) or (2) applies.

Three-stage sample

When the sample is obtained in three stages where sampling in the first stage is done without
replacement and simple random sampling is applied in the second stage, we use the
following estimate for the covariance of the total for variables y and Y :

H Nyige Lhikj
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where

. f isthe sampling rate for the secondary sampling unitsin the second stage stratum hik .

- Lyy; isthe number of the third stage stratain the secondary sampling unit hikj .

« Uy (Y,Y?) is a covariance contribution from the third stage stratum | contained in the

secondary sampling unit hikj . It depends on the third stage sampling method. The
corresponding formula (1) or (2) applies.



Variable total variance

The variance of the total for variable Y in acomplex sampleis estimated by
V(Y)=C(Y,Y)
with C(Y,Y) defined above.

Population Size Estimation

An estimate for the population size corresponds to the estimate for the variable total; it is
sum of the sampling weights. We have the following estimate for the single-stage samples:

More generally,

~ n

N=>w.
i=1

The variance of N is obtained by replacing Y,;; with 1; that is, by replacing Z,; with W

in the corresponding variance estimator formula for VV (YA) :

Cell Estimates: One-Way Tables

L et the population be classified according to the values of single categorical row variable and
possibly one or more categorical variables in the layer. Categories for the row variable are
enumerated by I =1,..., Rand categories for the layer variablesare givenby | =1,...,L.

Each combination of the values (r,l) defines a domain and a cell in the one-way table
(r,1),r=1,...,R.Foreachcel (r,l) we define acorresponding indicator variable:

1 if thesampleunit hij isinthecell (r,l)

o (r,1)=
h”( ) {0 otherwise
Sizes

To estimate a cell population size or atable population size, we replace y; with &, (r,l) in
the formula for the population total and obtain the following expressions:



« Céll population size

N = we ()

. Table population size

n R

NG+ =D > wé (r1).

i=1 r=1

Similarly, in order to estimate variances of the above estimators, we substitute Yy,; with

Oy (r,1) in the corresponding formula for the whole population. The following

substitutions of Zy; in the formulas for V (Y) are used for estimating the variances of these
estimators:

« Céll population size
Zyi; (r,1) = wW; 6y (1, 1)

e Tablepopulation size

z; (+,1) = ZR:Whij O (1,1)

Proportions
A table proportion estimate is computed at each layer category as follows:

P (r,1) = N(r,1)/N (1)

This estimator is a ratio and we apply Taylor linearization formulas as suggested by
Woodruff (1971). The following substitution of Z,; in the formulas for V(Y) are used for
estimating the variance of the table proportion at a given layer:

Oy (r,1) = 0y (+1|)|5tab(r1|)
N(+,1)

Zy; (r,I) = Wh;



Cell Estimates: Two-Way Tables

Sizes

Let the population be cross-classified according to the values of a categorical row variable, a
categorical column variable and possibly one or more categorical variables in the layer.

Categories for the row variable are enumerated by r =1,..., R, while categories for the
column variable are denoted by ¢ =1,...,C and categories for the layer variables are given
by | =1,...,L. Each combination of values (r,C,|) defines a domain and a cell in the
two-way table (r,c,l), where r =1,...,R and c=1,...,C . For each cell (r,c,l) we
define a corresponding indicator variable:

1 if thesampleunit hijisinthecell (r,c,l)

0 otherwise

5hij(r!C!|):{

We will also use the following indicator notation:

e Row indicator

510 =36.(r,c)

e  Column indicator

5(re)=Y8 ()

e Tableindicator

R C

S.(++1)=>>6(r.cl)

r=1 c=1

To estimate various domain sizes, we substitute Y, with &, in the corresponding formula
for the whole population as follows:

e Cdl population size

I\Al(r,c,l):Zn:V\/ié‘i(r,c,I)



e Row population size

mmm:iw@mu)

e  Column population size

I\AI(+,C,I):Zn:vvi§i(+,c,I)

e Table population size

NGmD=iw@&tw

i=1

Similarly, in order to estimate variance of the above estimators, we substitute Y with 0 hij

in the corresponding formula for the whole population. The following substitutions of Zy; in
the formulas for V (YA) are used for estimating variances of:

e Cdl population size

Zy; (r,c,1) = Wy; 8y (r, ¢, 1)
e Row population size

Zyi; (r+,1) = Wy O (r+,1)
e  Column population size
Zy; (+.cl)= Whj 5hij (+,c,l)
e Tablepopulation size

Zhij (+’+, l ) - Whij §hij (+1+) | )



Proportions
We define various proportion estimates to be computed as follows:

e Row population proportion
P..(r.cl)=N(r,cl)/N(+1)

e  Column population proportion

P, (r.c,l)=N(r,c,1)/N(+c,l)

e Table population proportion

P, (r,c.)=N(r,c,1)/N(+1)

e Marginal column population proportion
Py (+.¢1) = N(+,c)/N(+,+1)
e Marginal row population proportion

P (r+D)=N(@r+1)/N@H+1)

In order to estimate variances of the above estimators, again apply the Taylor linearization
formulas as for the one-way tables. The following substitutions of Z; in the formulas for

v (YA) are used for estimating variances of:

e Row population proportion

S (1,C1) = 8y (1 +,1) P, (r,C1)
N(r,+1)

z; (r,c1)=wy,

e Column population proportion

S (r,¢,1) = 8, (+,¢, )P, (r,c, 1)
N(+cl)

z; (r,c) =wy,



e Table population proportion

Oy (r,c1) =6y (+1+!|)I3tab(ric1|)
N(++1)

z; (r,c) =wy,
e Marginal column population proportion

i (+.C1) = O (+:+,1) Py (+,C,1)
N(+,+1)

Zy; (+.cl)= Whj

e Marginal row population proportion

i (10 1) = O (44,1 P (7 4, 1)
N(+,+1)

z; (r+1) =wy,

Standard Errors

Let Z denote any of the domain quantities defined above: cell population sizes or

proportions. Then the standard error of an estimator Z is the square root of its estimated
variance:

SE(2Z)=N(2).

Coefficient of variation

The coefficient of variation of the estimator Z isthe ratio of its standard error and its value:

CV(Z) = SEZEZ) .

The coefficient of variation is undefined when 2 =0.



Confidence Limits

Sizes
A level 1— confidence interval is constructed for agiven 0 < o <1 for any domain size
N, defined earlier. The confidence bounds are then given by
N, + SE(N)t, (1-a/2)
whaeSE(IQd) is the estimated standard error of Nd , and t,(1-a/2)is the
100(1— &/ 2) percentile of the t distribution with v degrees of freedom.

Proportions

For any domain proportion P, , we use the logistic transformation f (p) = In(p/(1— p))
and obtain the following 1— & level confidence bounds for the transformed estimate:

A

P\, SE(P) . .
|n(1_ Ad)J_r Ad(l_éj)tv(l al?2).

These bounds are transformed back to the original metric using the logistic inverse

f(y) = exp(y)/(1+exp(y)).

Degrees of freedom

The degrees of freedom v for the t distributions above is calculated as the difference
between the number of primary sampling units and the number of strata in the first stage of
sampling. We shall also refer to this quantity as the sample design degrees of freedom.

Design Effects

Sizes

The design effect Deff for atwo-way table cell population size is estimated by

_ V(N(r,cl))

Deff < .
Vas(N(r,c.1))



\7(|§I(r,c,|))is an estimate of the variance of N(r,c,l) under the complex sample

design, while \LS(I\AI (r,c,1)) isits estimate of variance under the simple random sampling
assumption as follows:

V..(N(re) = a-D-L1 Ka,ehN=N,cl).
N n-1

Computations of the design effects for the one-way table cells, as well as for the row, column
and table population sizes are analogous to the one above.

Proportions

Deff for atwo-way table population proportion is estimated by

_ V(P (r,cl)
Vo (Pa(ric 1)

Deff

\7(FA’tab (r,c,1)) isan estimate of the variance of If’tab (r,c,1) under the complex sample

design, while \7srs(lf’tab (r,c,1)) is its estimate of variance under the simple random
sampling assumption:

) N Py (r,c,1)1— Py (r,c,1))

o n
N=010-— ¢
Ves(Rap (1, 1)) = (1 N n-1 N(++1)

Computations of the design effects for one-way table proportions, as well as for the row,
column, marginal row and marginal column population proportions are analogous to the one
above.

n
Design effects for various estimates are computed only when the condition ﬁ <l is
satisfied.
Design effect square root

We also compute the square root of a design effect +/ Deff .

Design effects and their applications have been discussed by Kish (1965) and Kish (1995).



Tests of Independence for Two-Way Tables

Let the population be cross-classified according to the values of a categorical row variable, a
categorical column variable and possibly one a more categorical variables in the layer.

Categories for the row variable are enumerated by r =1,..., R, while categories for the

column variable are denoted by ¢ =1,...,C . When the layer variables are given we assume

that their categories coincide with the strata in the first sampling stage. In the following we
omit reference to the layers as the formulas apply for each stratum separately when needed.

We use a contrast matrix C defined asfollows. Let A  be the contrast matrix given by
Ag=[lry I_lR—l]"

| ; isanidentity matrix of sizeR—1 and 1; , isavector with R —1elementsequal to 1.

DefineC tobea RC x (R—1)(C —1) matrix defined by the following Kronecker product:

C=A,®A..

Adjusted Pearson statistic test of independence

We provide an adjusted Pearson statistic test. The Pearson statistic is computed according to
the following standard formula:

2 ”i S, (P(r,c) - P(r,+)P(+,0))?
=1 o1 P(r+)P(+,¢)

[

Since under the null hypothesis, the asymptotic distribution of X % is generaly not a chi-
square distribution, we perform an adjustment using the following A matrix:

A =n(C'DZMD3'C)™(C'DZV (P)D;'C).

~

P is a vector and D, is a diagonal matrix of size RC containing elements Is(r,c).

~

M= [6 b ISIS' ] isamultinomial covariance matrix estimating the asymptotic covariance
of IAD under the simple random sampling design, While\7 (|5) estimates covariance matrix of
|5 under the complex sampling design.

We use the F-based variant of the Rao and Scott’s (1984) second-order adjustment



FX?2 =22
trA

with

_ (trA)?
trA2

The asymptotic distribution of FX ? is approximated by the F (d,dVv) distribution where
V isthe number of the sample design degrees of freedom.

Properties of thistest are given in areview of simulation studies by Rao and Thomas (2003).

Adjusted likelihood ratio test of independence

Residuals

The likelihood ratio test statistic is given by

e P(r c)
Zn;; P(r, c)In(P( T

The adjusted likelihood ratio statistic is computed in an analogous manner to the Pearson
adjustment where A isthe same as before and

GZ

trA

FG? =

with

_ (trA)?
trA2

Again, the asymptotic distribution of adjusted statistic FG? is approximated by the

F(d,dv) distribution where Vv isthe number of the sample design degrees of freedom.

Under the independence hypothesis, the expected table proportion estimates are given by
E(r,c) = P(r,+)P(+,C) and residua are defined as R(r,c) = P(r,c)— E(r,c) for
r=1...,Randc=1...,C.

Standardized residual s are computed by



Ii(r,c)

V(R(r,c))

\7(FAQ(r,C)) denotes the estimated residual variancefor r =1,...,Rand c=1,...,C.

Let M = [Dﬁ> — PP’ estimate the asymptotic covariance matrix under simple random

sampling where IAD and D 5 are defined asabove. X is another contrast matrix specified by
X=[Ar®1.|1; ®A_].

Contrast matrices A and A . , aswell asthe unit vectors 1; and 1., are defined as earlier.

Variance estimates for residuals are obtained from the diagonal of the following matrix:

V(R) =[I = MX(X'MX) XV (P)[I - X(X'MX)*X'M].

Odds Ratios and Risks

These statistics are computed only for 2X 2 tables. If any layers are specified, they must
correspond to the first stage strata.

A A A A A A

Let N;;, Nj,, N,, and sz be the cell population size estimates, N, , N,, , N, |<I+2
marginal estimatesand N, , the population size estimate.

Estimates and variances

The oddsratio is defined by the following expression:

Z> Z>
2

o

Py
,\;U

Il
=z Z>

Ny /N,
Ny /N,

Risk differences are given by

Py
,_?U
Z> Z>



The following substitutions of Z; in the formulas for \7(YA) are used for estimating

variances:
e Oddsratio
0., (1D) 6,12 4,2 4,22
Zy (1,C) = Wy ( hllj\](l)_ hlljfl(l - hI|J\]( )+ h”N“( ))><OR
11 12 21 2

e Riskratio RR,

S (DN, J. (12 6.2DN, 5. (22
Zhij(ryc):Whij( hkl(l'? 12_ huA(l’ )_ thA( ,\) 22+ hlkl( ))XRRl

117 "1+ N1+ N 21 N 2+ 2+

e Riskdifference D,

5hij (1-1) le - 5hij (1-2) Nn _ 5hij (211) sz - 5hij (212) I\Alzl)

z; (r,c) = wy; ( Nz Nz

The estimations of variance for RR, and D, are performed using similar substitutions.

Confidence limits

A level 1— o confidence interval is constructed for a given O < o <1 for odds ratio, risk
ratio and risk difference in every table.

For the odds ratio or risk ratio R we use the logarithm transformation and obtain the
confidence bounds

In(R) SEéR) t (1-al2).

These bounds are transformed back to the original metric using the exponential function.

No transformations are used when estimating confidence bounds for arisk difference D :

D+ SE(D)t, (1-a/2).



Tests of Homogeneity for One-Way Tables

Let the population be classified according to the values of a categorical row variable and
possibly one a more categorical variables in the layer. Categories for the row variable are

enumerated by r =1,...,R. When the layer variables are given we assume that their
categories coincide with the strata in the first sampling stage. In the following we omit

references to the layers as the formulas apply for each stratum separately when needed.
We study proportions P(r) = N(r)/N(+). Test of homogeneity consists in testing the
null hypothesis H, : P(r) =1/R for r =1,...,R-1.

Adjusted Pearson statistic test

We perform an adjusted Pearson statistic test for testing the homogeneity. The Pearson test
statistic is computed according to the following standard formula:

X? = ni R(P(r)-1/R)?.

Since the asymptotic distribution of X % s generally not the chi-square distribution, we
apply an adjustment using the A matrix given by:

A=n(M(P)) "V (R,).

\7(|50) is the estimated covariance matrix under the complex sample design, while M (ISO)
is an estimated asymptotic covariance matrix under the simple random sampling given by

M (P,) =[diag(P,) — P,P;].

where lso isavector and di ag(lso) is a diagonal matrix of size R —1 containing elements
P(r),r=1...,R-1.
We use the F-based variant of the Rao and Scott’s (1984) second-order adjustment

2 =X
trA

with

d_m&z

trA2



The asymptotic distribution of FX ? is approximated by the F(d,dv) distribution where
V isthe number of the sample design degrees of freedom.

Adjusted likelihood ratio test
The likelihood ratio test statistic is given by

G2 = ZnZR: P(r) In(RP(r))

The adjusted likelihood ratio statistic is computed in an identical way as the adjustment for

the Pearson statistic:
2
FG? = GA .
trA

d and & are the same as specified before. Again, the asymptotic distribution of adjusted
statistic FG? is approximated by the F(d,dv) distribution where v isthe number of the

sample design degrees of freedom.
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