
CSTABULATE 

This document describes the algorithms used in the complex sampling estimation procedure 
CSTABULATE.  

Complex sample data must contain both the values of the variables to be analyzed and the 
information on the current sampling design. The sampling design includes the sampling 
method, strata and clustering information, inclusion probabilities and the overall sampling 
weights. 

The sampling design specification for CSTABULATE may include up to three stages of 
sampling.  Any of the following general sampling methods may be assumed in the first stage: 
random sampling with replacement, random sampling without replacement and equal 
probabilities and random sampling without replacement and unequal probabilities. The first 
two sampling methods can also be specified for the second and the third sampling stage. 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

 

H  Number of strata. 

hn  Sampled number of primary sampling units (PSU) per stratum. 

hf  Sampling rate per stratum. 

him  Number of elements in the 
thi sampled unit in stratum h , hni ,,1…= . 

hijy  Value of variable y for the
thj element in the 

thi sampled unit in stratum h . 

hijw  Overall sampling weight for the 
thj element in the 

thi sampled unit in stratum h . 

n  Total number of elements in the sample. 

N  Total number of elements in the population. 

Y  Population total sum for variable y .  

Weights 

Overall weights specified for each ultimate element are processed as given. They can be 
obtained as a product of weights for corresponding units computed in each sampling stage. 

When sampling without replacement in a given stage, substituting hihiw π1=  for unit i  in 

stratum h results in the application of the estimator for the population totals due to Horvitz 
and Thompson (1952). The corresponding variance estimator (2) or (3) will also be unbiased. 

hiπ  is the probability of unit i  from stratum h being selected in the given stage. 



If sampling with replacement in a given stage, substituting )(1 hihhi pnw =  yields the 

estimator for the population totals due to Hansen and Hurwitz (1943). Repeatedly selected 
units should be replicated in the data. The corresponding variance estimator (1) will be 

unbiased. hip  is the probability of selecting unit i  in a single draw from stratum h in the 

given stage. 

Weights obtained in each sampling stage need to be multiplied when processing multi-stage 
samples. The resulting overall weights for the elements in the final stage are used in all 
expressions and formulas below. 

Z expressions 

hijhijhij ywz =  hijhijhij ywz ′=′  

∑
=

=
him

j
hijhi zz

1

 ∑
=

′=′
him

j
hijhi zz

1

 

∑
=

=
hn

i
hi

h
h z

n
z

1

1
 ∑

=

′=′
hn

i
hi

h
h z

n
z

1

1
 

)()(
1

1
),(

1

2
hhi

n

i
hhi

h
h zzzz

n
yyS

h

′−′−
−

=′ ∑
=

 

For multi-stage samples, the index h denotes a stratum in the given stage, and i stands for 

unit from h in the same stage. The index j runs over all final stage elements contained in 

unit hi . 

Variable Total 
An estimate for the population total of variable y  in a single-stage sample is the weighted 

sum over all the strata and all the clusters: 
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Alternatively, we compute the weighted sum over all the elements in the sample: 
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The latter expression is more general as it also applies to multi-stage samples. 

Variables Total Covariance 
For a multi-stage sample containing a with replacement sampling stage, all specifications 
other than weights are ignored for the subsequent stages. They make no contribution to the 
variance estimates. 

Single stage sample 

The covariance of the total for variables y and y′  in a single-stage sample is estimated by 

the following: 
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where )ˆ,ˆ( YYU h ′  is an estimate contribution from stratum Hh ,,1…= and depends on 

the sampling method as follows: 

• For sampling with replacement  

),()ˆ,ˆ( 2 yySnYYU hhh ′=′   (1) 

• For simple random sampling  

),()1()ˆ,ˆ( 2 yySnfYYU hhhh ′−=′   (2) 

• For sampling without replacement and unequal probabilities 
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In the variance estimator (3), hiπ  and hjπ  are the inclusion probabilities for units i and j in 

stratum h , and hijπ  is the joint inclusion probability for the same units. This estimator is 

due to Yates and Grundy (1953) and Sen (1953). 



For each stratum h containing a single element, the covariance contribution )ˆ,ˆ( YYU h ′ is 

always set to zero. 

Two-stage sample 

When the sample is obtained in two stages and sampling without replacement is applied in 
the first stage, we use the following estimate for the covariance of the total for variables 
y and y′ : 
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where 

• hiπ  is the first stage inclusion probability for the primary sampling unit i  in stratum h . In 

the case of simple random sampling, the inclusion probability is equal to the sampling rate 

hf  for stratum h. 

• hiK  is the number of second stage strata in the primary sampling unit i  within the first 

stage stratum h. 

• )ˆ,ˆ( YYU hik ′  is a covariance contribution from the second stage stratum k  from the 

primary sampling unit hi . It depends on the second stage sampling method. The 
corresponding formula (1) or (2) applies. 

Three-stage sample 

When the sample is obtained in three stages where sampling in the first stage is done without 
replacement and simple random sampling is applied in the second stage, we use the 
following estimate for the covariance of the total for variables y and y′ : 
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where 

• hikf  is the sampling rate for the secondary sampling units in the second stage stratum hik . 

• hikjL is the number of the third stage strata in the secondary sampling unit hikj . 

• )ˆ,ˆ( YYU hikjl ′  is a covariance contribution from the third stage stratum l contained in the 

secondary sampling unit hikj . It depends on the third stage sampling method. The 

corresponding formula (1) or (2) applies. 



Variable total variance 

The variance of the total for variable y  in a complex sample is estimated by 

)ˆ,ˆ(ˆ)ˆ(ˆ YYCYV =  

with )ˆ,ˆ(ˆ YYC  defined above. 

Population Size Estimation 
An estimate for the population size corresponds to the estimate for the variable total; it is 
sum of the sampling weights. We have the following estimate for the single-stage samples: 
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More generally, 
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The variance of N̂ is obtained by replacing hijy  with 1; that is, by replacing hijz  with hijw  

in the corresponding variance estimator formula for )ˆ(ˆ YV . 

Cell Estimates: One-Way Tables 
Let the population be classified according to the values of single categorical row variable and 
possibly one or more categorical variables in the layer. Categories for the row variable are 
enumerated by Rr ,,1…= and categories for the layer variables are given by Ll ,,1…= . 

Each combination of the values ),( lr  defines a domain and a cell in the one-way table 

),( lr , Rr ,,1…= . For each cell ),( lr  we define a corresponding indicator variable: 
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Sizes 

To estimate a cell population size or a table population size, we replace iy  with ),( lriδ  in 

the formula for the population total and obtain the following expressions: 



• Cell population size 
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• Table population size 
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Similarly, in order to estimate variances of the above estimators, we substitute hijy  with 

),( lrhijδ  in the corresponding formula for the whole population. The following 

substitutions of hijz  in the formulas for )ˆ(ˆ YV are used for estimating the variances of these 

estimators: 

• Cell population size 

),(),( lrwlrz hijhijhij δ=  

• Table population size 
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Proportions 

A table proportion estimate is computed at each layer category as follows: 

),(ˆ),(ˆ),(ˆ lNlrNlrPtab +=  

This estimator is a ratio and we apply Taylor linearization formulas as suggested by 

Woodruff (1971). The following substitution of hijz  in the formulas for )ˆ(ˆ YV  are used for 

estimating the variance of the table proportion at a given layer: 
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Cell Estimates: Two-Way Tables 
Let the population be cross-classified according to the values of a categorical row variable, a 
categorical column variable and possibly one or more categorical variables in the layer. 
Categories for the row variable are enumerated by Rr ,,1…= , while categories for the 

column variable are denoted by Cc ,,1…= and categories for the layer variables are given 

by Ll ,,1…= . Each combination of values ),,( lcr  defines a domain and a cell in the 

two-way table ),,( lcr , where Rr ,,1…=  and Cc ,,1…=  . For each cell ),,( lcr  we 

define a corresponding indicator variable: 
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We will also use the following indicator notation: 

• Row indicator 
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• Column indicator 
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• Table indicator 
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Sizes 

To estimate various domain sizes, we substitute iy  with iδ  in the corresponding formula 

for the whole population as follows: 

• Cell population size 
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• Row population size 
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• Column population size 
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Similarly, in order to estimate variance of the above estimators, we substitute hijy  with hijδ  

in the corresponding formula for the whole population. The following substitutions of hijz  in 

the formulas for )ˆ(ˆ YV  are used for estimating variances of: 

• Cell population size 

),,(),,( lcrwlcrz hijhijhij δ=  

• Row population size 

),,(),,( lrwlrz hijhijhij +=+ δ  

• Column population size 

),,(),,( lcwlcz hijhijhij +=+ δ  

• Table population size 

),,(),,( lwlz hijhijhij ++=++ δ  



Proportions 

We define various proportion estimates to be computed as follows: 

• Row population proportion 

),,(ˆ),,(ˆ),,(ˆ lrNlcrNlcrProw +=  

• Column population proportion 

),,(ˆ),,(ˆ),,(ˆ lcNlcrNlcrPcol +=  

• Table population proportion 

),,(ˆ),,(ˆ),,(ˆ lNlcrNlcrPtab ++=  

• Marginal column population proportion 

),,(ˆ),,(ˆ),,(ˆ lNlcNlcPmcol +++=+  

• Marginal row population proportion 

),,(ˆ),,(ˆ),,(ˆ lNlrNlrPmrow +++=+  

In order to estimate variances of the above estimators, again apply the Taylor linearization 

formulas as for the one-way tables. The following substitutions of ijz  in the formulas for 

)ˆ(ˆ YV  are used for estimating variances of: 

• Row population proportion 
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• Column population proportion 
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• Table population proportion 
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• Marginal column population proportion 
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• Marginal row population proportion 
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Standard Errors 

Let Z  denote any of the domain quantities defined above: cell population sizes or 

proportions. Then the standard error of an estimator Ẑ  is the square root of its estimated 
variance: 

)ˆ(ˆ)ˆ( ZVZSE = . 

Coefficient of variation 

The coefficient of variation of the estimator Ẑ  is the ratio of its standard error and its value: 
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The coefficient of variation is undefined when 0ˆ =Z . 



Confidence Limits 

Sizes 

A level α−1  confidence interval is constructed for a given 10 ≤≤ α  for any domain size 

dN  defined earlier. The confidence bounds are then given by 

)2/1()ˆ(ˆ αν −± tNSEN dd  

where )ˆ( dNSE  is the estimated standard error of dN̂ , and )2/1( αν −t is the 

)21(100 α−  percentile of the t distribution with ν degrees of freedom. 

Proportions 

For any domain proportion dP , we use the logistic transformation ))1(ln()( pppf −=  

and obtain the following α−1  level confidence bounds for the transformed estimate: 
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These bounds are transformed back to the original metric using the logistic inverse 
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Degrees of freedom 

The degrees of freedom ν  for the t  distributions above is calculated as the difference 
between the number of primary sampling units and the number of strata in the first stage of 
sampling. We shall also refer to this quantity as the sample design degrees of freedom. 

Design Effects 

Sizes 

The design effect Deff  for a two-way table cell population size is estimated by 
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)),,(ˆ(ˆ lcrNV is an estimate of the variance of ),,(ˆ lcrN  under the complex sample 

design, while )),,(ˆ(ˆ lcrNVsrs  is its estimate of variance under the simple random sampling 

assumption as follows: 
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Computations of the design effects for the one-way table cells, as well as for the row, column 
and table population sizes are analogous to the one above. 

Proportions 

Deff for a two-way table population proportion is estimated by 

)),,(ˆ(ˆ
)),,(ˆ(ˆ

lcrPV

lcrPV
Deff

tabsrs

tab= . 

)),,(ˆ(ˆ lcrPV tab  is an estimate of the variance of ),,(ˆ lcrPtab  under the complex sample 

design, while )),,(ˆ(ˆ lcrPV tabsrs  is its estimate of variance under the simple random 

sampling assumption: 
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Computations of the design effects for one-way table proportions, as well as for the row, 
column, marginal row and marginal column population proportions are analogous to the one 
above. 

Design effects for various estimates are computed only when the condition 1
ˆ

<
N

n
 is 

satisfied. 

Design effect square root 

We also compute the square root of a design effect Deff . 

Design effects and their applications have been discussed by Kish (1965) and Kish (1995). 



Tests of Independence for Two-Way Tables 
Let the population be cross-classified according to the values of a categorical row variable, a 
categorical column variable and possibly one a more categorical variables in the layer. 
Categories for the row variable are enumerated by Rr ,,1…= , while categories for the 

column variable are denoted by Cc ,,1…= . When the layer variables are given we assume 

that their categories coincide with the strata in the first sampling stage. In the following we 
omit reference to the layers as the formulas apply for each stratum separately when needed. 

We use a contrast matrix C defined as follows. Let RA be the contrast matrix given by 

][ 11 ′−= −− RRR 1|IA . 

1−RI  is an identity matrix of size 1−R  and 1−R1  is a vector with 1−R elements equal to 1. 

Define C  to be a )1)(1( −−× CRRC  matrix defined by the following Kronecker product: 

CR AAC ⊗= . 

Adjusted Pearson statistic test of independence 

We provide an adjusted Pearson statistic test. The Pearson statistic is computed according to 
the following standard formula: 
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Since under the null hypothesis, the asymptotic distribution of 2X  is generally not a chi-

square distribution, we perform an adjustment using the following Δ̂  matrix: 
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P̂  is a vector and 
P

D ˆ  is a diagonal matrix of size RC containing elements ),(ˆ crP . 

PPDM
P

ˆˆˆ[ˆ
ˆ ′−= ] is a multinomial covariance matrix estimating the asymptotic covariance 

of P̂  under the simple random sampling design, while )ˆ(ˆ PV  estimates covariance matrix of 

P̂  under the complex sampling design. 

We use the F-based variant of the Rao and Scott’s (1984) second-order adjustment  
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The asymptotic distribution of 2FX  is approximated by the ),( νddF  distribution where 

ν  is the number of the sample design degrees of freedom. 

Properties of this test are given in a review of simulation studies by Rao and Thomas (2003). 

Adjusted likelihood ratio test of independence 

The likelihood ratio test statistic is given by 
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The adjusted likelihood ratio statistic is computed in an analogous manner to the Pearson 

adjustment where Δ̂  is the same as before and 
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Again, the asymptotic distribution of adjusted statistic 2FG  is approximated by the 

),( νddF  distribution where ν is the number of the sample design degrees of freedom. 

Residuals 

Under the independence hypothesis, the expected table proportion estimates are given by 

),(ˆ),(ˆ),(ˆ cPrPcrE ++=  and residual are defined as ),(ˆ),(ˆ),(ˆ crEcrPcrR −=  for 

Rr ,,1…=  and Cc ,,1…= . 

Standardized residuals are computed by  
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)),(ˆ(ˆ crRV denotes the estimated residual variance for Rr ,,1…=  and Cc ,,1…= . 

Let PPDM
P

ˆˆˆ[ˆ
ˆ ′−= ] estimate the asymptotic covariance matrix under simple random 

sampling where P̂  and 
P

D ˆ  are defined as above. X  is another contrast matrix specified by 

][ CRCR A1|1AX ⊗⊗= .  

Contrast matrices RA and CA , as well as the unit vectors R1  and C1 , are defined as earlier. 

Variance estimates for residuals are obtained from the diagonal of the following matrix:  

]ˆ)ˆ()[ˆ(ˆ])ˆ(ˆ[)ˆ(ˆ 11 MXXMXXIPVXXMXXMIRV ′′−′′−= −− . 

Odds Ratios and Risks 
These statistics are computed only for 22 ×  tables. If any layers are specified, they must 
correspond to the first stage strata. 

Let 11N̂ , 12N̂ , 21N̂  and 22N̂  be the cell population size estimates, +1N̂ , +2N̂ , 1
ˆ

+N , 2
ˆ

+N  

marginal estimates and ++N̂ the population size estimate. 

Estimates and variances 

The odds ratio is defined by the following expression: 
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Risk differences are given by 
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The following substitutions of ijz  in the formulas for )ˆ(ˆ YV  are used for estimating 

variances: 

• Odds ratio 
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• Risk ratio 1RR  
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• Risk difference 1D  
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The estimations of variance for 2RR  and 2D  are performed using similar substitutions. 

Confidence limits  

A level α−1 confidence interval is constructed for a given 10 ≤≤ α  for odds ratio, risk 
ratio and risk difference in every table. 

For the odds ratio or risk ratio R  we use the logarithm transformation and obtain the 
confidence bounds 

)2/1(
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These bounds are transformed back to the original metric using the exponential function. 

No transformations are used when estimating confidence bounds for a risk difference D : 

)2/1()ˆ(ˆ αν −± tDSED . 



Tests of Homogeneity for One-Way Tables 
Let the population be classified according to the values of a categorical row variable and 
possibly one a more categorical variables in the layer. Categories for the row variable are 
enumerated by Rr ,,1…= . When the layer variables are given we assume that their 

categories coincide with the strata in the first sampling stage. In the following we omit 
references to the layers as the formulas apply for each stratum separately when needed. 

We study proportions )()()( += NrNrP . Test of homogeneity consists in testing the 

null hypothesis RrP 1)(:0 =H  for 1,,1 −= Rr … . 

Adjusted Pearson statistic test  

We perform an adjusted Pearson statistic test for testing the homogeneity. The Pearson test 
statistic is computed according to the following standard formula: 
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Since the asymptotic distribution of 2X  is generally not the chi-square distribution, we 

apply an adjustment using the Δ̂  matrix given by: 
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1
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)ˆ(ˆ
0PV is the estimated covariance matrix under the complex sample design, while )ˆ(ˆ

0PM  

is an estimated asymptotic covariance matrix under the simple random sampling given by 

]ˆˆ)ˆ([)ˆ(ˆ
0000 PPPPM ′−= diag , 

where 0P̂  is a vector and )ˆ( 0Pdiag  is a diagonal matrix of size 1−R containing elements 

)(ˆ rP , 1,,1 −= Rr … . 

We use the F-based variant of the Rao and Scott’s (1984) second-order adjustment  

Δ̂

2
2

tr

X
FX =  

with 

2

2

ˆ
)ˆ(

Δ
Δ

tr

tr
d = . 



The asymptotic distribution of 2FX  is approximated by the ),( νddF  distribution where 

ν  is the number of the sample design degrees of freedom. 

Adjusted likelihood ratio test  

The likelihood ratio test statistic is given by 
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The adjusted likelihood ratio statistic is computed in an identical way as the adjustment for 
the Pearson statistic:  
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 d and Δ̂  are the same as specified before. Again, the asymptotic distribution of adjusted 

statistic 2FG  is approximated by the ),( νddF  distribution where ν  is the number of the 

sample design degrees of freedom. 
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