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DISCRIMINANT 

No analysis is done for any subfile group for which the number of non-empty 
groups is less than 2 or the number of cases or sum of weights fails to exceed the 
number of non-empty groups. An analysis may be stopped if no variables are 
selected during variable selection or the eigenanalysis fails. 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

  g Number of groups 

  p Number of variables 

  q Number of variables selected 

Xijk  Value of variable i for case k in group j 

f jk  Case weights for case k in group j 

mj  Number of cases in group j 

nj  Sum of case weights in group j 

 n Total sum of weights 
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Within-groups Sums of Squares and Cross-product Matrix (W) 
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Total Sums of Squares and Cross-product Matrix (T) 
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Individual Group Covariance Matrices C ja fFH IK  
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Within-groups Correlation Matrix (R) 
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Univariate F and Λ  for Variable I 
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Rules of Variable Selection 
Both direct and stepwise variable entry are possible. Multiple inclusion levels may 
also be specified. 

Method = Direct 

For direct variable selection, variables are considered for inclusion in the order in 
which they are written on the ANALYSIS = list. A variable is included in the 
analysis if, when it is included, no variable in the analysis will have a tolerance less 
than the specified tolerance limit (default = 0.001). 

Stepwise Variable Selection 

At each step, the following rules control variable selection: 

•  Eligible variables with higher inclusion levels are entered before eligible 
variables with lower inclusion levels. 

•  The order of entry of eligible variables with the same even inclusion level 
is determined by their order on the ANALYSIS = specification. 

•  The order of entry of eligible variables with the same odd level of 
inclusion is determined by their value on the entry criterion. The variable 
with the “best” value for the criterion statistic is entered first. 

•  When level-one processing is reached, prior to inclusion of any eligible 
variables, all already-entered variables which have level one inclusion 
numbers are examined for removal. A variable is considered eligible for 
removal if its F-to-remove is less than the F value for variable removal, 
or, if probability criteria are used, the significance of its F-to-remove 
exceeds the specified probability level. If more than one variable is 
eligible for removal, that variable is removed that leaves the “best” value 
for the criterion statistic for the remaining variables. Variable removal 
continues until no more variables are eligible for removal. Sequential 
entry of variables then proceeds as described previously, except that after 
each step, variables with inclusion numbers of one are also considered for 
exclusion as described before. 

•  A variable with a zero inclusion level is never entered, although some 
statistics for it are printed. 
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Ineligibility for Inclusion 

A variable with an odd inclusion number is considered ineligible for inclusion if: 

•  The tolerance of any variable in the analysis (including its own) drops 
below the specified tolerance limit if it is entered, or 

•  Its F-to-enter is less than the F-value for a variable to enter value, or 

•  If probability criteria are used, the significance level associated with its F-
to-enter exceeds the probability to enter. 

A variable with an even inclusion number is ineligible for inclusion if the first 
condition above is met. 

Computations During Variable Selection 
During variable selection, the matrix W is replaced at each step by a new matrix 
W∗  using the symmetric sweep operator described by Dempster (1969). If the first 
q variables have been included in the analysis, W may be partitioned as: 

W W

W W
11 12

21 22

L
NM

O
QP  

where W11 is q q× . At this stage, the matrix W∗  is defined by 
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In addition, when stepwise variable selection is used, T is replaced by the matrix 
T ∗ , defined similarly. 
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The following statistics are computed: 

Tolerance 
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If a variable’s tolerance is less than or equal to the specified tolerance limit, or its 
inclusion in the analysis would reduce the tolerance of another variable in the 
equation to or below the limit, the following statistics are not computed for it or 
any set including it. 

F-to-Remove 
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with degrees of freedom g −1 and n q g− − +1. 

F-to-Enter 
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Wilks’ Lambda for Testing the Equality of Group Means 

Λ = W T11 11  

with degrees of freedom q, g −1, and n g− . 



DISCRIMINANT  7 

 

The Approximate F Test for Lambda (the “overall F”), also known as Rao’s R (Tatsuoka, 1971) 
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with degrees of freedom qh and r s qh+ −1 2 . The approximation is exact if q or h 
is 1 or 2. 

Rao’s V (Lawley-Hotelling trace) (Rao, 1952; Morrison, 1976) 
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When n g−  is large, V, under the null hypothesis, is approximately distributed as 

χ 2  with q g −1a f degrees of freedom. When an additional variable is entered, the 

change in V, if positive, has approximately a χ 2  distribution with g −1 degrees of 
freedom. 

The Squared Mahalanobis Distance (Morrison, 1976) between groups a and b 
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The F value for Testing the Equality of Means of Groups a and b 
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The Sum of Unexplained Variations (Dixon, 1973) 
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Classification Functions 
Once a set of q variables has been selected, the classification functions (also known 
as Fisher’s linear discriminant functions) can be computed using 
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for the constant, where pj  is the prior probability of group j. 

Canonical Discriminant Functions 
The canonical discriminant function coefficients are determined by solving the 
general eigenvalue problem 

T W V WV−( ) = λ  
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where V is the unscaled matrix of discriminant function coefficients and l  is a 
diagonal matrix of eigenvalues. The eigensystem is solved as follows: 

The Cholesky decomposition 

W LU=  

is formed, where L is a lower triangular matrix, and U L= ′ . 

The symmetric matrix L BU− −1 1 is formed and the system 

L T W U I UV− −−( ) − ( ) =1 1 0λb g  

is solved using tridiagonalization and the QL method. The result is m eigenvalues, 
where m q g= −min , 1b g and corresponding orthonormal eigenvectors, UV. The 

eigenvectors of the original system are obtained as 

V U UV= −1a f 

For each of the eigenvalues, which are ordered in descending magnitude, the 
following statistics are calculated: 
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Canonical Correlation 
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Wilks’ Lambda 

Testing the significance of all the discriminating functions after the first k: 

Λk i
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The significance level is based on 

χ 2 2 1= − − + −n q g ka fc hln Λ , 

which is distributed as a χ 2  with q k g k− − −a fa f1  degrees of freedom. 

The Standardized Canonical Discriminant Coefficient Matrix D 

The standard canonical discriminant coefficient matrix D is computed as 

D S V= −
11

1  

where 
S = diag w w wpp11 22, , ,…e j 
S11 = partition containing the first q rows and columns of S 

V = matrix of eigenvectors such that 

′V W V11  = I 

The Correlations Between the Canonical Discriminant Functions and the 
Discriminating Variables 

The correlations between the canonical discriminant functions and the 
discriminating variables are given by 

R S W V= −
11

11
11  
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If some variables were not selected for inclusion in the analysis q p<a f , the 

eigenvectors are implicitly extended with zeroes to include the nonselected 
variables in the correlation matrix. Variables for which Wii = 0  are excluded from S 
and W for this calculation; p then represents the number of variables with non-zero 
within-groups variance. 

The Unstandardized Coefficients 

The unstandardized coefficients are calculated from the standardized ones using 

B S D= − −n ga f 11
1  

The associated constants are: 
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The group centroids are the canonical discriminant functions evaluated at the group 
means: 
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Tests For Equality Of Variance 

Box’s M is used to test for equality of the group covariance matrices. 

M n g nj
j

j

g

= − ′ − −
=
∑a f d i a flog logC C1

1

 



12   DISCRIMINANT 

where 
′C  = pooled within-groups covariance matrix excluding groups with singular 

covariance matrices 

C ja f  = covariance matrix for group j. 

Determinants of ′C  and C ja f are obtained from the Cholesky decomposition. If any 
diagonal element of the decomposition is less than 10 11− , the matrix is considered 
singular and excluded from the analysis. 

log log logC j
ii j

i

p

l p na f d i= − −
=
∑2 1

1

 

where lii  is the ith diagonal entry of L such that nj
j− = ′1d i a fC L L . 

Similarly, 

log log log′ = − ′ −
=
∑C 2

1
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where 

′ − ′ = ′n ga fC L L 

′n = sum of weights of cases in all groups with nonsingular covariance matrices 

The significance level is obtained from the F distribution with t1  and t2  degrees of 
freedom using (Cooley and Lohnes, 1971): 
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If e e1
2

2−  is zero, or much smaller than e t2 2,  cannot be computed or cannot be 
computed accurately. If 

e e e e2 2 2 1
20 0001= + −. e j  

the program uses Bartlett’s χ 2  statistic rather than the F statistic: 

χ 2
11= −M eb g  

with t1  degrees of freedom. 

For testing the group covariance matrix of the canonical discriminant functions, the 

procedure is similar. The covariance matrices C ja f and ′C  are replaced by D j  and 

′D , where 

D B C Bj
j= ′ a f  
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is the group covariance matrix of the discriminant functions. 

The pooled covariance matrix in this case is an identity, so that 

′ = − − −∑D I Dn g nm j j

j

a f d i1  

where the summation is only over groups with singular D j . 

Classification 
The basic procedure for classifying a case is as follows: 

•  If X  is the 1× q  vector of discriminating variables for the case, the 1× m  
vector of canonical discriminant function values is 

f XB a= +  

•  A chi-square distance from each centroid is computed 

χ j j j j
2 1= − −

′−f f D f fd i d i  

where D j  is the covariance matrix of canonical discriminant functions for 

group j and f j  is the group centroid vector. If the case is a member of group j, 

χ j
2  has a χ 2  distribution with m degrees of freedom. P( )X G  is the 

significance level of such a χ j
2 . 

•  The classification, or posterior probability P j( | )G X , is 
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where pj  is the prior probability for group j. A case is classified into the group 

for which P j( | )G X  is highest. 
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The actual calculation of P j( | )G X  is 

g P

P

g g

g g

g g

j j j j

j

j
j

j

j
j

j

j

g j
j

j

= − +

=

−
F
HG

I
KJ

−
F
HG

I
KJ

− > −

R

S

||||||

T

||||||

=
∑

log log

( | )

exp max

exp max

max

1

2

46

0

2

1

D

G X

χe j

if 

otherwise

 

If individual group covariances are not used in classification, the pooled within-
groups covariance matrix of the discriminant functions (an identity matrix) is 
substituted for D j  in the above calculation, resulting in considerable simplification. 

If any D j  is singular, a pseudo-inverse of the form 

D j11
1 0

0 0

−L
N
MM

O
Q
PP  

replaces D j
−1 and D j11  replaces D j . D j11 is a submatrix of D j  whose rows and 

columns correspond to functions not dependent on preceding functions. That is, 
function 1 will be excluded only if the rank of D j = 0, function 2 will be excluded 

only if it is dependent on function 1, and so on. This choice of the pseudo-inverse 
is not optimal for the numerical stability of D j11

1− , but maximizes the discrimination 

power of the remaining functions. 
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Cross-Validation 
The following notation is used in this section: 

 
X jk~

 ( , , )X Xjk qjk
T

1 …  
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 Sample mean of jth group excluding point X jk~
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Σ  Polled sample covariance matrix 

Σ j  Sample covariance matrix of jth group 

Σ jk  Polled sample covariance matrix without point X jk~
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(
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d a b0
2 ( , )

~ ~  = ( ) ( )~ ~ ~ ~a b a bT
jk

T− −−Σ 1  

Cross-validation applies only to linear discriminant analysis (not quadratic). During 

cross-validation, SPSS loops over all cases in the data set. Each case, say X jk~ , is 

extracted once and treated as test data. The remaining cases are treated as a new 

data set.  
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Here we compute d X Mjk jk0
2 ( , )~ ~  and  d X Mjk i0

2 ( , )
~ ~

 ( ,..., . )i g i j= ≠1 . If there is 

an i  ( )i j≠  that satisfies (log( ) ( , ) / log( ) ( , ) /
~ ~ ~ ~P d X M P d X Mi jk i j jk jk− > −0

2
0
22 2), 

then the extracted point X jk~ is misclassified. The estimate of prediction error rate is 

the ratio of the sum of misclassified case weights and the sum of all case weights. 

To reduce computation time, the linear discriminant method is used instead of 
the canonical discriminant method. The theoretical solution is exactly the same for 
both methods. 

Rotations 
Varimax rotations may be performed on either the matrix of canonical discriminant 
function coefficients or on that of the correlation between the canonical 
discriminant functions and the discrimination variables (the structure matrix). The 
actual algorithm for the rotation is described in FACTOR. 
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The unrotated structure matrix is 

R S W V= −
11

1
11  

If the rotation transformation matrix is represented by K, the rotated standardized 
coefficient matrix DR  is given by 

D DKR =  
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The rotated matrix of pooled within-groups correlations between the canonical 
discriminant functions and the discriminating variables RR  is 

R RKR =  

The eigenvector matrix V satisfies 

′ −( ) = =V T W V Λ diag λ λ λ
1 2
, , ,…

ma f 

where the λ k  are the eigenvalues. 

The equivalent matrix for the rotated coefficient VR  

V T W VR Rb g a f′ −  

is not diagonal, meaning the rotated functions, unlike the unrotated ones, are 
correlated for the original sample, although their within-groups covariance matrix 
is an identity. The diagonals of the above matrix may still be interpreted as the 
between-groups variances of the functions. They are the numerators for the 
proportions of variance printed with the transformation matrix. The denominator is 
their sum. After rotation, the columns of the transformation are exchanged, if 
necessary, so that the diagonals of the matrix above are in descending order. 
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