ERROR BARS

This document describes the algorithms for error bar computation of the mean, median and their confidence intervals for a simple random sample.

Notation

The following notation is used throughout this document unless otherwise noted:

Let $y_{1} \leq \ldots \leq y_{m}$ be m ordered observations for the sample and w_{1}, \ldots, w_{m} be the corresponding case weights. Then
$w w_{i}=\sum_{k=1}^{i} w_{k}=$ cumulative sum of weights up to and including y_{i}
and
$W=w w_{m}=\sum_{k=1}^{m} w_{k}=$ total sum of weights
$p=\frac{C I}{100}, C I$ is the confidence interval level $0 \leq C I<100$.

Descriptive Statistics

Mean (\bar{y})

$$
\bar{y}=\frac{\sum_{i=1}^{m} w_{i} y_{i}}{W}
$$

Confidence Interval for the Mean

Lower bound $=\bar{y}-I D F \cdot T\left(\frac{p+1}{2}, W-1\right) \cdot S E$
Upper bound $=\bar{y}+I D F \cdot T\left(\frac{p+1}{2}, W-1\right) \cdot S E$
where SE is the standard error, and IDF.T is the inverse student t function documented in the COMPUTE command.

Variance (s^{2})

$$
s^{2}=\frac{1}{W-1} \sum_{i=1}^{m} w_{i}\left(y_{i}-\bar{y}\right)^{2}
$$

Standard Deviation

$$
s=\sqrt{s^{2}}
$$

Standard Error

$$
S E=\frac{s}{\sqrt{W}}
$$

Median

The Aempirical method in the EXAMINE procedure is used for computation of the median. Let
$v=\frac{W}{2}$
and k satisfies
$w w_{k} \leq v<w w_{k+1}$
Then,
$g=v-w w_{k}$
Let m be the estimated median, then it is defined as
$m=\left\{\begin{array}{cc}\left(y_{k}+y_{k+1}\right) / 2, & g=0 \\ y_{k+1}, & g>0\end{array}\right.$

Confidence Interval for the Median

Note: the case weights w_{1}, \cdots, w_{m} must be integers for the following computation. If at least one weight is not integer, an error message is issued.

Let

$$
\begin{aligned}
b_{i} & =\operatorname{Pr}[\operatorname{Binomial}(W, 0.5) \geq i] \\
& =\sum_{j=i}^{W}\binom{W}{i} 0.5^{W} \\
& =I B(0.5 ; i, W-i)
\end{aligned}
$$

where IB is the incomplete Beta function.
Define

$$
\begin{aligned}
\gamma_{i} & =\operatorname{Pr}[i \leq \operatorname{Binomial}(W, 0.5) \leq W-i] \\
& =b_{i}-b_{W-i+1}
\end{aligned}
$$

and define
$\gamma_{w / 2+1}=0$, if W is even;
$\gamma_{(w+1) / 2}=0$, if W is odd.

Algorithm: Hettmansperger-Sheather Interpolation (1986)

1. Re-index all the cases to be $x_{1} \leq x_{2}, \ldots, \leq x_{W}$ in which

$$
x_{1}=x_{2}, \ldots=x_{w w_{1}}=y_{1}
$$

$$
x_{w w_{1}+1}=x_{w w_{1}+2} \ldots=x_{w w_{2}}=y_{2}
$$

$$
\vdots
$$

$$
x_{w w_{m-1}+1}=x_{w w_{m-1}+2} \ldots=x_{w w_{m}}=y_{m}
$$

2. If W is even, compute $\gamma_{0}, \ldots, \gamma_{W / 2}$.

If W is odd, compute $\gamma_{0}, \ldots, \gamma_{(W+1) / 2}$.
3. Choose the smallest index k such that $\gamma_{k+1} \leq p$. If k is found, go to Step 4 ; otherwise, stop and issue a message.
4. Compute
$l=\frac{\gamma_{k}-p}{\gamma_{k}-\gamma_{k+1}}$,
and

$$
\lambda=\frac{(W-k) l}{k+(W-2 k) l} .
$$

The p confidence interval is
Lower bound $=\lambda \cdot x_{k+1}+(1-\lambda) \cdot x_{k}$

$$
\text { Upper bound }=\lambda \cdot x_{W-k}+(1-\lambda) \cdot x_{W-k+1}
$$

References

Hettmansperger, T. P., and Sheather, S. J. 1986. Confidence Interval Based on Interpolated Order Statistics, Statistical Probability Letters, 4: 75-79.

