FREQUENCIES

If the absolute value of any observation is greater than 10^{13}, no calculations are done. For sorting of the observations, see Appendix 6. For information on percentiles for grouped data, see Appendix 8.

Notation

The following notation is used throughout this chapter unless otherwise stated:

X_{k}	Value of the variable for case k
w_{k}	Weight for case k
$N V$	Number of distinct values the variable assumes
N	Number of cases
W	Sum of weights of the cases

Basic Statistics

The values are sorted into ascending order and the following calculated:

Sum of Weights of Cases Having Each Value of X

$f_{j}=\sum_{i=1}^{N} w_{i} k_{i} \quad j=1,2, \ldots, N V$
where
$k_{i}= \begin{cases}1 & \text { if } X_{i}=X_{j} \\ 0 & \text { otherwise }\end{cases}$
where X_{j} is the j th largest distinct value of X.

2 FREQUENCIES

Relative Frequency (Percentage) for each Value of X

$$
R f_{j}=\left(\frac{f_{j}}{W^{\prime}}\right) \times 100
$$

where

$$
W^{\prime}=\sum_{i=1}^{N V} f_{i} \text { (sum over all categories including those declared as missing values) }
$$

Adjusted Frequency (Percentage)

$$
A f_{j}=\left(\frac{f_{j}}{W}\right) \times 100
$$

where

$$
W=\sum_{i=1}^{N V} f_{i} k_{i} \quad \text { (sum over nonmissing categories) }
$$

and

$$
k_{i}= \begin{cases}0 & \text { if } X_{i} \text { has been declared missing } \\ 1 & \text { otherwise }\end{cases}
$$

For all X_{j} declared missing, an adjusted frequency is not printed.

Cumulative Frequency (Percentage)

$$
C f_{j}=\sum_{i=1}^{j} f_{i}
$$

Minimum

$$
\min _{k} X_{k}
$$

Maximum

$$
\max _{k} X_{k}
$$

Mode

Value of X_{j} which has the largest observed frequency. If several are tied, the smallest value is selected.

Range

Maximum - Minimum

The p th percentile

Find the first score interval ($x 2$) containing more than $t p$ cases.
p th percentile $= \begin{cases}x_{2} & \text { if } t p-c p_{1} \geq 100 / W \\ \left\{1-\left[(W+1) p / 100-c c_{1}\right]\right\} x_{1} & \text { if } t p-c p_{1}<100 / W \\ +\left[(W+1) p / 100-c c_{1}\right] x_{2} & \end{cases}$
where
$t p=(W+1) p / 100$
$c p_{1}<t p<c p_{2}$
x_{1} and x_{2} are the values corresponding to $c p_{1}$ and $c p_{2}$, respectively
$c c_{1}$ is the cumulative frequency up to x_{1}
$c p_{1}$ is the cumulative percent up to x_{1}

4 FREQUENCIES

Mean

$$
\bar{X}=\frac{\sum_{j=1}^{N V} f_{j} X_{j}}{W}
$$

Moments about the mean are calculated as:

$$
M_{j}=\sum_{i=1}^{N V} f_{i}\left(X_{i}-\bar{X}\right)^{j} \quad j=2,3,4
$$

Variance

$$
S^{2}=\frac{M_{2}}{(W-1)}
$$

Standard Deviation

$$
S=\sqrt{S^{2}}
$$

Standard Error of the Mean

$$
S E M=\frac{S}{\sqrt{W}}
$$

Skewness (computed if $W \geq 3$ and $S^{2}>0$) (Bliss, 1967, p. 144)

$$
g_{1}=\frac{W M_{3}}{(W-1)(W-2) S^{3}} \quad \operatorname{se}\left(g_{1}\right)=\sqrt{\frac{6 W(W-1)}{(W-2)(W+1)(W+3)}}
$$

Kurtosis (computed if $W \geq 4$ and $S^{2}>0$)

$$
g_{2}=\frac{W(W+1) M_{4}-3(W-1) M_{2}^{2}}{(W-1)(W-2)(W-3) S^{4}} \quad \operatorname{se}\left(g_{2}\right)=\sqrt{\frac{4\left(W^{2}-1\right) \operatorname{se}\left(g_{1}\right)^{2}}{(W-3)(W+5)}}
$$

References

Blalock, H. M. 1972. Social statistics. New York: McGraw-Hill.

Bliss, C. I. 1967. Statistics in biology, Volume 1. New York: McGraw-Hill.

