GENLOG
Multinomial Loglinear and Logit Models

This chapter describes the algorithms used to calculate maximum-likelihood
estimates for the multinomia loglinear model and the multinomia logit model.
This algorithm is applicable only to aggregated data.

Notation
The following notation is used throughout this chapter unless otherwise stated:

A Generic categorica independent (explanatory) variable. Its categories are
indexed by an array of integers.

B Generic categorica dependent (response) variable. Its categories are
indexed by an array of integers.

r Number of categories of B.

c Number of categories of A.

p Number of nonredundant (nonaliased) parameters.

i

Generic index for the category of B.

j Generic index for the categories of A.

k Generic index for the parameter.

M Observed count in the ith response of B and the jth setting of A.
N j Marginal total count at the jth setting of A. It isequal to

r

N .
Zizl !

N Total observed count. It isequal to
Cc r
n: .
ijlZizl !
m; Expected count.
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7T Probability of having an observation in the ith response of B and the jth
c r
settingofA.OSlTijsland Z Z i =1.
j=1 i=1

Z; Cell structure value.

off jth normalizing constant.

B kth nonredundant parameter.

B A vector of (ﬂl,...,ﬁp)l-

Xijk An element in the ith row and the kth column of the design matrix for thej
Setting.

The same notation is used for both loglinear and logit models so that the methods
are presented in a unified way. Conceptually, one can consider aloglinear model as
a specia case of alogit model where the explanatory variable has only one level
(that is, c =1).

Components of the Model

There are two components in a loglinear model: the random component and the
systematic component.

Random Component

The random component describes the joint distribution of the counts.
« The counts {ny,...,n;} a the jth setting of A have the multinomial

(Nj,7mj,..., ) distribution.

*  Thecounts nj and ;. areindependent if j # j'.
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»  Thejoint probability distribution of {ny; } is the product of these ¢ independent
multinomial distributions. The probability density function is

c N I r
[l =7—[]"" (2)
j:l |_||:1I’l”' 1=1
»  Theexpected count is E(ny; ) = my = N; 7z

e Thecovarianceis

Cov(nij,ni,j,) :{glj”ij(csn' _”i'j) :: j :j'

where o4, =1lifa=band d,, =0ifazb.

Systematic Component

The systematic component describes the linkage function between the expected
counts and the parameters. The expected counts are themselves functions of other
parameters. Explicitly, fori =1,...,r and j =1,...,c,

m o e ifz >0
"o ifz; <0

where
p

vj = injkﬂk
=1

SPSS does not consider a; to a . as parameters, but as normalizing constants.
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Normalizing Constants

=log — ! j=1...,c (2

i=1

Cell Structure Values

The cell structure values play two rolesin SPSS loglinear procedures, depending on
their signs. If z; >0, it isausual weight for the corresponding cell and Iog(zij )is
sometimes called the offset. If z; <0, a structural zero is imposed on the cell
(B=i,A=j). Contingency tables containing at least one structural zero are called
incomplete tables. If n; =0butz; >0, the cell (B=i,A=j) contans a
sampling zero. Although SPSS dtill considers a structural zero part of the
contingency table, it is not used in fitting the model. Cellwise statistics are not
computed for structural zeros.

Maximum-Likelihood Estimation
The multinomial log-likelihood is

Cc
L(B) = L(By..... Bp) = constant + Z ©)

Likelihood Equations

It can be shown that

a Cc r
7:22 nj — m; x”k for k=1,..
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Let 9(f) = (gl(ﬂ),...,gp(ﬂ))' be the (p+1) gradient vector with

o

(B) = B

A A A\t
The maximum-likelihood estimates 3 = (ﬁl,...,ﬂp) are regarded as a solution to
the vector of likelihood equations:

9(B)=0 ©)

Hessian Matrix

The likelihood equations are nonlinear functions of 8. Solving them for ,@ requires
an iterative method. The Newton-Raphson method is used. It can be shown that

d°L ¢
9Bk IBy :_Jzzl ; ™ (X~ O3 =)
where
r
ij :%Zn\jxuk j=L...,candk=1...,p (5)

V=

Let H(B) be the px p information matrix, where —H(3) is the Hessian matrix of
(3). The elements of H(p) are

___ L _ _
hg (B) = BT k=1...,padl=1...,p (6)

Note: H(f) is a symmetric positive-definite matrix. The asymptotic covariance
matrix of /3 is estimated by H 1p).
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Newton-Raphson Method

Let [3(3) denote the sth approximation for the solution to (4). By the Newton-
Raphson method,

,3(S+1) — ,B(S) +H ‘1(3(3) )g(ﬁ(s))

Define q(8) = H(B)B+9(B). Using (5) again, the kth element of q(p) is

a(B) = nij (Xijk ‘ij) (7
where

i :{”\jvij +(ny -my) if 2 > Oandm; >0

0 otherwise

Then

H (’B(S) )'B(S"‘l) - Q(;B(S)) (8

Thus, given B9, the (s+1)th approximation 5™ is found by solving the system
of equationsin (8).
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Initial Values

SPSS uses the B(O), which corresponds to a saturated model as the initial value for
B. Thentheinitial estimates for the expected cell counts are

) _ |mj+A if ; >0
M ‘{o if 2, <0 ©

where A = 0 isaconstant.

Note: For saturated models, SPSS adds A to ny; if z; >0. This is done to avoid
numerical problemsin case some observed counts are 0. We advise usersto set A to
0 whenever all observed counts (other than structural zeros) are positive.

Theinitial valuesfor other quantities are

r

1

o = N i (10

=
and
0 0 0 . 0
7© = | too(m 1 2j) + (g =) it 7 >0 andm? >0 (1)
0 otherwise

Stopping Criteria

SPSS checks the following conditions for convergence:

St+l) _

/ m(js)) < & provided that my(® >0

)<£
> \/(25:19'3(/}))/ p<e

m{®

m{®

L maxi‘j(‘n}(j

st+l) _

2. maxi’j(‘n\(j
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Algorithm

The iteration is said to be converged if either conditions 1 and 3 or conditions 2
and 3 are satisfied. If p=0, then condition 3 will be automatically satisfied. The
iteration is said to be not converged if neither pair of conditions is satisfied within
the maximum number of iterations.

The iteration process uses the following steps:

1. Calculate m” using (9), 8 using (10), and n” using (11).

2. Sets=0.

3. Calculate H(ﬁ(s)) using (6) evaluated at my; = m(js); caculate q(ﬁ(s)) using

(7) evaluated at nyj =n{?.

4. Solvefor B using (8).

5. Calculate vi(js+1) = Z:_lxijkﬁi(s-'-l) and

\;i_s+1) r Vi(_s+1) )
rr\(S+): Nj zije' / t:1theJ if Z|J>O

6. Check whether the stopping criteria are satisfied. If yes, stop iteration and
declare convergence. Otherwise continue.

7. Increase s by 1 and check whether the maximum iteration has been reached. If yes,
stop iteration and declare the process not converged. Otherwise repeat steps 3-7.
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Estimated Normalizing Constants

s

Using (2), the maximum-likelihood estimate for a;

. N; .
aj :Iogr—o_ j=1...,c
.l
Zi:lz”e

where
p

Vij = Z XijkBk
=

Estimated Cell Counts

The estimated expected count is

| 5. i A if 7.
iy :{Nj[z”e /(thlzqe n if z; >0
0

Goodness-of-Fit Statistics

The Pearson chi-sguare statistic is
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where

f V2, . . X
(nij—mj) /mj if Zij>0,nij>0, andmj>0
X2 ={SYSMIS if z; >0, >0, and iy, =0
0 ifzijSOornij :ﬁh

If any X;;? is system missing, then X2 is also system missing.

The likelihood-ratio chi-square statistic is

where

nij(log(nij /iy )) if z; >0,n; >0 andri; >0

G2 |SYSMIS if z; >0,n; >0andriy; =0
"o if ; >0,n; =0, and iy} 2 0;
ZijSOOf'ﬂij :mj

If any Gijz is system missing, then G? isadso system missing.

Degrees of Freedom

The degrees of freedom for each statistic isdefined asa=c(r —1)- p- E, where E
is the number of cellswith z; <0 or riy; = 0.

Significance Level

The significance level (or the p value) for the Pearson chi-square statistic is
Prob(x5>X?) and that for the likelihood-ratio chi-square statistic is
Prob( )(g1 > Gz). In both cases, )(g1 is the central chi-square distribution with a
degrees of freedom.
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Analysis of Dispersion (Logit Models Only)

Entropy

SPSS provides the analysis of dispersion based on two types of dispersion: entropy
and concentration. The following definitions are used:

SA) Dispersion due to the model
S(BIA) Dispersion due to residuals
SB) Total dispersion
R=A)/SB) Measure of association

where S A) + S(B|A) = §(B). Also define

C A
A J:]_rnJ
h=cc
PR
=1
LT
n'“ - Nj

Theboundsare 0< 7; <1and 0 < 75; <1.

where

mlog(m) if0<7f <1

S‘(B):{o if 77 =0
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and
C r
SBIA)=-% N; ) S(BIA)
where
5 (B1a) = toal7y) 07 <1
0 if 7T||J =0
Concentration
r
B = N{l— nz]
2
C r
o= 3 u[1-5 )
=1 =1
Degrees of Freedom
Sour ce of Dispersion | Measure Degr ees of
Freedom
Due to model SA) f(r-1
Due to residuals S(B|A) (N=f=2)(r-2
Total B) (N-I)(r-1)

where f equals p minus the number of nonredundant columns (in the design matrix)
associated with the main effects of the dependent factors.
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Residuals

Goodness-of-fit statistics provide only broad summaries of how models fit data.
The pattern of lack of fit is revealed in cell-by-cell comparisons of observed and
fitted cell counts.

Simple Residuals
The simpleresidual of the (i,j)th cell is

o= nij _mj if Z|j >0
i Tsysmis ifz <0

Standardized Residuals

The standar dized residual for the (i,j)th cell is

rijS: 0 |fz”>0andn”:ﬁ1]
SYSMIS otherwise

The standardized residuals are aso known as Pearson residuals even though
Cc r 2
Z_ 12' l(rijs) # X?. Although the standardized residuals are asymptotically
j= 1=
normal, their asymptotic variances are less than 1.
Adjusted Residuals
The adjusted residual is the smple residual divided by its estimated standard

error. Its definition and applications first appeared in Haberman (1973) and re-
appeared on page 454 of Haberman (1979). This statistic for the (i,j)th cell is
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(mj -riy)/\fsj if z; >0andriy; >0

riJA: 0 |fz”>0andn”:ﬁ}]
SYSMIS otherwise
where
mj p p R R "
5 =M Y e

h¥ is the (kl)th element of H‘l(/}). The adjusted residuals are asymptotically

standard normal.

Deviance Residuals

Pierce and Schafer (1986) and McCullagh and Nelder (1989) define the signed
square root of the individual contribution to the G? datistic as the deviance
residual. This statistic for the (i,j)th cell is

ri = sign(ny =iy ),y

where

2(nij(log(nij /mj ))—(nij _mj )) if Z|J >0, ﬁ]l >0, and ”ij >0

d. = Zﬁ]] if Z; >Ovmj >0, and Nij =0
1
. 0 |fz”>0andn”:r?11
SYSMIS otherwise

For multinomial sampling, the individual contribution to the G? datistic is only
2njj log(nyj /), but this is negative when ny <y, Thus, an extra term

2(ny; —rhyj) is added to it so that djj >0 for all i and j. However, we still have

Z;Z:zl(“lp)z =G%.
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Generalized Residual

Cc r
Consider alinear combination of the cell counts z __lz__ldi jNij » Where dj; are
real numbers. 1= &1=

The estimated expected valueis

The standardized residual for thislinear combination is

Z(j:zlzirzldij(nij - iy
J Z;[z;ldﬁmj (S dm) Nj]

The adjusted residual for this linear combination is, as given on page 420 of
Haberman (1979),

Z;Zzldu(”u - 1iy)
NV
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Generalized Log-Odds Ratio
Consider alinear combination of the natural logarithm of cell counts

d; log(m; )
1=1

R

J:

where d;; arereal numbers with the restriction

(12)

(13)
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The variance of (13) is

c r p P

var Z Z d” |Og(mj) = Z ZW|(W|hkI (14)
=1 1=1 k=1 1=1

where

Wald Statistic

The null hypothesisis

C
HO:Z
=

The Wald statisticis

(353 ol
Z E:l Z |p=1WkW' h

Under Hg, W asymptotically distributes as a chi-square distribution with 1 degree
of freedom. The significance level is Prob()(f ZW). Note: W will be system

d; log(m; ) =0
1

W =

missing if (14) isO.
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Asymptotic Confidence Interval

The asymptotic (1- a) x100% confidence interval for (12) is

where z,,, isthe upper a /2 point of the standard normal distribution. The default
value of o is0.05.

Aggregated Data

This section shows how data are aggregated for a multinomial distribution. The
following notation is used in this section:

Vij Number of SPSScasesfor B=i (i=1...,r)and A=j (j=1...,¢)
Mijs sth SPSS caseweight for B=iandA=j (s=1,...,vj)

Xijs Covariate

Zjs Cell weight

Cijs GRESID coefficient

Sijs GLOR coefficient

Vi}’ Number of positive z;s(cell weights) for 1< s<v;
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The cell count is

* + e+
ni if vi >0
0 ifVijIOOFViT:O
where
. {nijs if njs >0and z;s >0

nijsz 0 if niszOand ZijS>O

and Z means summation over the range of swith the terms z; > 0.
1<s=y

The cell weight valueis

* . ] .
Z]SSS\I”- nijszijslnij if nij >0 and Vij >0
’ + if e = +
z; = ZJSSS\/”- Zjs | Vij if jj =0andv;; >0
0 if vj =0
1 if Vij =0

If no variable is specified as the cell weight variable, then all cases have unit cell
weights by default.
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The cell covariate valueis

*
+ .
E niXi:./n: ifn; >0andv; >0
1sssy, ijs?ijs ! Hij ij ij

* + . _ +
= Z]SSSV” XijS/Vij if nij =0and Vij >0
0

if ViJT :OOFVij =0

The cell GRESID coefficient is

Gj =

*
+ .
E nic./n;i ifn; >0andv; >0
]SSSV”- I]SCIJS 1) 1) 1)

* + . _ +
Z]SSSVU CijS/Vij if nij —Oandvij >0
0

if Vi-j'— or Vij =0

There are no defaults for the GRESID coefficients.
The cell GLOR coefficient is

* + .
ni.e./n;i ifn;>0andv; >0
Z]sssvij ijsSijs / Mij ij ij

ZESSV” 8js/ Vij if nj =0andv >0
0

if Vi-j!— :OOFVij =0

There are no defaults for the GLOR coefficients.
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