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GENLOG 
Poisson Loglinear Model 

This chapter describes the algorithm to calculate maximum-likelihood estimates for 
the Poisson loglinear model. This algorithm is applicable only to aggregated data. 
See “Aggregated Data (Poisson)” on p. 16 for producing aggregated data. 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

 
B Generic categorical dependent (response) variable. Its categories are 

indexed by an array of integers. 

r Number of categories of B.  

p Number of nonredundant (nonaliased) parameters. 

i Generic index for the category of B.  

k Generic index for the parameter.  

n
i
 Observed count in the ith response of B.  

N Total observed count, equal to ni

i

r

=
∑

1

.  

mi  Expected count.    

zi  Cell structure value. 

β k  The kth nonredundant parameter. 

β Vector of β β β0 1, ,,K p3 8′ . 

xik  An element in the ith row and the kth column of the design matrix. 

• Because of the Poisson distribution assumptions, the logit model is not 
applicable for a Poisson distribution. 

• The Poisson distribution is available in GENLOG only. 



2   GENLOG Poisson Loglinear Model 

Components of the Model 
There are two components in a loglinear model: the random component and the 
systematic component.  

Random Component 

The random component describes the joint distribution of the counts.  

• The count ni; @has a Poisson distribution with parameter mi . 

• The counts n ni i and ′  are independent if i i≠ ′ . 

• The joint probability distribution of ni; @  is the product of these r independent 

Poisson distributions. The probability density function is 
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• The expected count is E n mi i1 6 = . 

• The covariance is 
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Systematic Component 

The systematic component describes the linkage function between the expected 
counts and the parameters. The expected counts are themselves functions of 
parameters. For i r= 1, ,K , 
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where 

v xi ik k

k

p

=
=

∑ β
1

  (1) 

Since there are no constraints on the observed counts, β 0  is a free parameter in a 
Poisson loglinear model. 

Cell Structure Values 
Cell structure values play two roles in SPSS loglinear procedures, depending on 

their signs. If zi > 0, it is a usual weight for the corresponding cell and log zi1 6 is 

sometimes called the offset. If zi ≤ 0, a structural zero is imposed on the cell 

(B i= ). Contingency tables containing at least one structural zero are called 

incomplete tables. If ni = 0 but zi > 0, the cell ( B i= ) contains a sampling zero. 

Although SPSS still considers a structural zero part of the contingency table, it is 

not used in fitting the model. Cellwise statistics are not computed for structural 

zeros. 

Maximum-Likelihood Estimation 
The multinomial log-likelihood is 

L L n m mp i i i
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β β β1 6 3 8 1 62 7= = + −
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1

, , logK constant  (2) 

Likelihood Equations 

It can be shown that  
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Let g β β β1 6 1 6 1 63 8= ′g gp0 , ,K  be the p + ×1 10 5  gradient vector with 

g
L

k
k

β ∂
∂β

1 6 =  

The maximum-likelihood estimates $ $ , , $β β β= ′
0 K p4 9  are regarded as a solution to 

the vector of likelihood equations: 

g β1 6 = 0   (3) 

Hessian Matrix 

The likelihood equations are nonlinear functions of β. Solving them for $β  requires 
an iterative method. The Newton-Raphson method is used. It can be shown that 
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Let H β1 6  be the p p+ × +1 10 5 0 5 information matrix, where −H β1 6  is the Hessian 

matrix of (2). The elements of H β1 6  are 

h
L

k p l pkl
k l

β ∂
∂β ∂β

1 6 = = =
2

0 1, , , ,K K and  (4) 
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Note: H β1 6  is a symmetric positive definite matrix. The asymptotic covariance 

matrix of $β  is estimated by H−1 β1 6. 

Newton-Raphson Method 
Let β s0 5  denote the sth approximation for the solution to (3). By the Newton-
Raphson method,  

β β β βs s s s+ −= +1 10 5 0 5 0 5 0 54 9 4 9H g  

Define q H gβ β β β1 6 1 6 1 6= + . The kth element of q β1 6  is 

q xk i ik

i

r

β η1 6 =
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  (5) 

where 

ηi
i i i i im v n m z

=
+ − > >%&'
1 6 if  and m

otherwise
i0 0

0
 

Then  

H qβ β βs s s0 5 0 5 0 54 9 4 9+ =1   (6) 

Thus, given β s0 5 , the s +10 5th approximation β s+10 5  is found by solving the system 
of equations in (6). 

Initial Values 

SPSS uses the β 00 5, which corresponds to a saturated model as the initial value for 
β . Then the initial estimates for the expected cell counts are 

m
n z

zi
i i

i

0 0

0 0
0 5 =

+ >
≤

%&'
∆ if  

if
 (7) 

where ∆ ≥ 0 is a constant. 
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Note: For saturated models, SPSS adds ∆ to ni  if zi > 0. This is done to avoid 
numerical problems in the case that some observed counts are 0. We advise users to 
set ∆ to 0 whenever all observed counts (other than structural zeros) are positive. 

The initial values for ηi  are 

ηi
i i i i i i im m z n m z m0

0 0 00 0

0

0 5 0 5 0 5 0 54 9 4 9= + − > >%
&K
'K

log / if  and 

otherwise
 (8) 

Stopping Criteria 

SPSS checks the following conditions for convergence: 

1. max /i i
s

i
s

i
sm m m+ −�� �� <10 5 0 5 0 5 ε  provided that mi

s0 5 > 0 

2. maxi i
s

i
sm m+ −�� �� <10 5 0 5 ε  

3. g pk
k

p 2

0
1$ /β ε4 9 0 5

=∑��� �
�� + <  

The iteration is said to be converged if either conditions 1 and 3 or conditions 2 
and 3 are satisfied. The iteration is said to be not converged if neither pair of 
conditions is satisfied within the maximum number of iterations. 

Algorithm 

The iteration process uses the following steps: 

1. Calculate mi
00 5  using (7) and ni

00 5  using (8). 

2. Set s = 0 . 

3. Calculate H β s0 54 9 using (4) evaluated at mi
s0 5 , and q β s0 54 9 using (5) evaluated 

at η ηi i
s= 0 5 . 

4. Solve for β s+10 5  using (6). 

5. Calculate v xi ik k
s

k
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0 5 0 5β  and  
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6. Check whether the stopping criteria are satisfied. If yes, iteration stops and the 
process is declared converged. Otherwise continue. 

7. Increase s by 1 and check whether the maximum iteration has been reached. If 
yes, iteration stops and the process is declared not converged. Otherwise, 
repeat steps 3-7. 

Estimated Cell Counts 
The estimated expected count is 
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Goodness-of-Fit Statistics 
The Pearson chi-square statistic is 

X Xi
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If any Xi
2  is system missing, then X2  is also system missing.  

The likelihood-ratio chi-square statistic is 

G Gi
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If any Gi
2  is system missing, then G2  is also system missing.  

Degrees of Freedom 

The degrees of freedom for each statistic is defined as a r p E= − − −1 , where E is 
the number of cells with z mi i≤ =0 0 or $ . 

Significance Level 

The significance level (or the p value) for the Pearson chi-square statistic is 

Prob 2χ a X> 24 9  and that for the likelihood-ratio chi-square statistic is 

Prob 2χ a G> 24 9 . In both cases, χ a
2  is the central chi-square distribution with a 

degrees of freedom. 
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Residuals 
Goodness-of-fit statistics provide only broad summaries of how models fit data. 
The pattern of lack of fit is revealed in cell-by-cell comparisons of observed and 
fitted cell counts. 

Simple Residuals 

The simple residual of the ith cell is 
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Standardized Residuals 

The standardized residual for the ith cell is 

r
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Notice that r Xi
S
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r 4 92 2
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=∑  when all zi > 0. Hence, standardized residuals are 

also known as Pearson residuals. Although the standardized residuals are 

asymptotically normal, their asymptotic variances are less than 1. 

Adjusted Residuals 

The adjusted residual is the simple residual divided by its estimated standard 
error. This statistic for the ith cell is 
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hkl  is the (k,l)th element of H−1 $β4 9. The adjusted residuals are asymptotically 

standard normal. 

Deviance Residuals 

Pierce and Schafer (1986) and McCullagh and Nelder (1989) define the signed 
square root of the individual contribution to the G2  statistic as the deviance 
residual. This statistic for the ith cell is 

r n m di
D

i i i= −sign $1 6  

where 

d

n n m n m z m n

m z m n

z n m
i

i i i i i i i i

i i i i

i i i

=

− − > > >
> ≥ =
> =

%
&
KK

'
KK

2 0 0 0

2 0 0 0

0 0

log / $ $ , $ ,

$ , $ ,

$

1 62 7 1 64 9 if  and 

if  and 

if  and 

SYSMIS otherwise

 

When all zi > 0, r Gi
D

i

r 4 92 2

1
=

=∑ . 



GENLOG Poisson Loglinear Model   11 

 

Generalized Residual 

Consider a linear combination of the cell counts d ni i
i

r

=∑ 1
, where di  are real 

numbers.  

The estimated expected value is  
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The simple residual for this linear combination is 
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The standardized residual for this linear combination is 
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Using the results in Christensen (1990, p. 227), the adjusted residual for this linear 
combination is 
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hkl  is the (k,l)th element of H−1 β1 6. 

Generalized Log-Odds Ratio 
Consider a linear combination of the natural logarithm of cell counts 
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The variance is 
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Wald Statistic 

The null hypothesis is 
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Under H0 , W asymptotically distributes as a chi-square distribution with 1 degree 

of freedom. The significance level is Prob 1
2χ ≥ W4 9 . Note: W will be system 

missing if (10) is 0. 

Asymptotic Confidence Interval 

The asymptotic 1 100− ×α0 5 % confidence interval for (9) is 
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where zα /2  is the upper α / 2  point of the standard normal distribution. The default 

value of α is 0.05. 

Aggregated Data (Poisson) 
This section shows how data are aggregated for a Poisson distribution. The 
following notation is used in this section: 

 
vi  The number of SPSS cases for B i i r= = 1, ,K0 5 
nis  The sth SPSS caseweight for B i=    s vi= 1, ,K1 6  
xis  Covariate 
zis  Cell weight 
cis  GRESID coefficient 
eis  GLOR coefficient 

vi
+  The number of positive zis (cell weights) for 1 ≤ ≤s vi  

The cell count is 

n
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and 
1≤ ≤∑ s vi

*
means summation over the range of s with the terms zis > 0. 

The cell weight value is 
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If no variable is specified as the cell weight variable, then all cases have unit cell 
weights by default. 

The cell covariate value is 
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The cell GRESID coefficient is 
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There are no defaults for the GRESID coefficients. 

The cell coefficient is 
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There are no defaults for the GLOR coefficients. 
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