GLM
Univariate and Multivariate

GLM (general linear model) is a general procedure for analysis of variance and
covariance, aswell asregression. It can be used for both univariate and multivariate
designs. Repeated measures analysisis also available. Algorithms that apply only to
repeated measures are in the chapter GLM Repeated Measures.

For information on post hoc tests, see Appendix 10. For sums of sgquares, see
Appendix 11. For distribution functions, see Appendix 12. For Box’s M test, see
Appendix 14.

Notation

The following notation is used throughout this chapter. Unless otherwise stated, all
vectors are column vectors and all quantities are known.

n Number of cases.

N Effective sample size.

p Number of parameters (including the constant, if it exists) in the model.

r Number of dependent variables in the model.

Y n x r matrix of dependent variables. The rows are the cases and the columns
are the dependent variables. Theithrow isyi, i =1,...,n.

X n x p design matrix. The rows are the cases and the columns are the
parameters. Theithrow is X, i =1,...,n.

x Number of nonredundant columns in the design matrix. Also the rank of the
design matrix.

w Regression weight of the ith case.

fi Frequency weight of the ith case.

B p %1 unknown parameter matrix. The columns are the dependent variables.
Thejth column is bj, j=1...,r.

z r x r unknown common multiplier of the covariance matrix of any row of

Y. The (i, j)th dement is o, i=1...,r, j=1...r.
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Model

The model is Y =XB and y| is independently distributed as a p-dimensiona
normal distribution with mean x{B and covariance matrix w; 5. Theith case is
ignored if w; < 0.

Frequency Weight and Total Sample Size

The frequency weight fi is the number of replications represented by an SPSS casg;

therefore, the weight must be a non-negative integer. It is computed by rounding
the value in the SPSS weight variable to the nearest integer. The total sample sizeis

N = Z'nlfi I(w; >0), where I(w; >0) =1if w; >0 and isequal to 0 otherwise.
i=

The Cross-Product and Sums-of-Squares Matrices

To prepare for the SWEEP operation, an augmented row vector of length (p+r) is
formed:

z =(xi.yi)

Thenthe (p+r) x(p +r) matrix is computed:
n

Z'WZ = Zi:lfiwizizi' .

This matrix is partitioned as

Y'WX  Y'WY

X'WX  X'WY
Z2'WZ :( j

The upper left px p submatrix is X'WX and the lower right r Xr submatrix is
Y'WY.
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Sweep Operation

Three important matrices, G, B, and S, are obtained by sweeping the Z'WZ matrix
asfollows:

1. Sweep sequentially the first p rows and the first p columns of Z'WZ, starting
from the first row and the first column.

2. After the pth row and the pth column are swept, the resulting matrix is

-G B
B S

where G isa px p symmetric g, generalized inverse of X'WX, B isthe pxr
matrix of parameter estimates and Sisthe r xr symmetric matrix of sums of
sguares and cross products of residuals.

The SWEEP routine is adapted from Algorithm AS 178 by Clarke (1982) and
Remarks R78 by Ridout and Cobby (1989).

Residual Covariance Matrix

The estimated rxr covariance matrix is = =S/(N -rx) provided r, <N. If

r, =N, then £ =0.1f r, > N, then all elements of > are system missing.
The residua degrees of freedom is N-r,. If r, >N, then the degrees of
freedom is system missing.

Parameter Estimates

Let the elements of > be Oij, the elements of G, g;» and the elements of B, lij.

Then var(by) is estimated by & jj g for i =L...,p; j =1...,r and cov(by,bys) is
estimated by 0 js g, fori,r=1...,p;j,s=1...,r.
Standard Error of Bij

by ) = g

When the ith parameter is redundant, the standard error is system missing.
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The t Statistic

For testing Hp: by; =0 versus Hy:by; # 0, thet statistic is

_ B,J-/se(f)ij) if the standard error is positive
SYSMIS otherwise

The significance value for this statistic is 2(1~ CDF.T([t|, N ~ry)) where CDF.T is
the SPSS function for the cumulative t distribution.

Partial Eta Squared Statistic

6”2/(6”2 +(N-ry)var(;))  if ry <N and the denominator is positive
1 if ry = Nbutby; #0
SYSMIS otherwise

n® =

The value should be within 0< 172 <1.

Noncentrality Parameter

c=lt
Observed Power

1-NCDF.T(t;, N —ry,c) +NCDF. T(—t;,N —-ryx,c) ry, <N

P=1svsmis 2N,
or any argumentsto NCDF. T

or IDF.T are SYSMIS

where t; =IDF.T(1-a/2,N -ry) and a is the user-specified chance of Type |
error (0<a <1). NCDF.T and IDF.T are the SPSS functions for the cumulative
noncentral t distribution and for the inverse cumulative t distribution, respectively.

The default value is a = 0.05. The observed power should be within 0< p<1.
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Confidence Interval

Correlation

For the p% level, the individual univariate confidence interval for the parameter is
by £t se{b; )

where t, = IDF.T(05(1+p/100),N -r,) for i =1...,n;j =1...,r. The default
valueof pis95 (0 < p <100).

corr(qu , Brs) —10js gir/(se(b,j ) x se(brs)) if the #mdwd errors are positive
SYSMIS otherwise

fori,r=1...,p;j,s=1,...,r.

Estimated Marginal Means

L Matrix

Estimated margina means (EMMEANS) are computed as the generic I'Bm
expression with appropriate | and m vectors. | is a column vector of length p and m
is a column vector of length r. Since the | vector is chosen to be aways estimable,
the quantity I'Bm isin fact the estimated modified marginal means (Searle, Speed,
and Milliken, 1980). When covariates (or products of covariates) are present in the
effects, the overall means of the covariates (or products of covariates) are used in
the | matrix. Suppose X and Y are covariates and they appear as X*Y in an effect;
then the mean of X*Y isused instead of the product of the mean of X and the mean
of Y.

For each level combination of the between subjects factors in TABLES, identify
the nonmissing cases with positive caseweights and positive regression weights
which are associated with the current level combination. Suppose the cases are
classified by three between-subjects factors: A, B and C. Now A and B are
specified in TABLES and the current level combination is A=1 and B=2. A casein
the cell A=1, B=2, and C=3 is associated with the current level combination,
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M Matrix

whereas a case in the cell A=1, B=3 and C=3 is not. Compute the average of the
design matrix rows corresponding to these cases.

If an effect contains a covariate, then its parameters which belong to the current
level combination are equal to the mean of the covariate, and are equa to O
otherwise. Using the above example, for effect A*X where X is a covariate, the
parameter [A=1]*X belongs to the current level combination where the parameter
[A=2]*X does not. If the effect contains a product of covariates, then the mean of
the product is applied.

The result is the | vector for the current between-subjects factor level
combination. When none of the between-subjects effects contain covariates, the
vector always forms an estimable function. Otherwise, a non-estimable function
may occur, depending on the data.

The M matrix isformed as a series of Kronecker products
M=I.0A0 B A;
where

I, if the kth within subjects factor is specified in TABLES
A= (I/n)1,,  otherwise

with 1, -acolumn vector of length r, and all of its elements equal to 1.

If OVERALL or only between-subjects factors are specified in TABLES, then
Ay = (UYL, fork=1,....t.

The column for a particular within-subjects factor level combination, denoted
by m, is extracted accordingly from thisM matrix.

Standard Error

se(l'l%m): 1/(I'GI)(m’im) ifN-ry >0 1)
SYSMIS otherwise

Since | are coefficients of an estimable function, the standard error is the same for
any generalized inverse G.
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Significance
Thet statisticis
(= [VBm/s(IBm)  if s Bm)> 0
SYSMIS otherwise

If the t statistic is not system missing, then the significance is computed based on a
t distribution with N —ry degrees of freedom.

Pairwise Comparison

Between-Subjects Factor

Suppose the | vectors are indexed by the level of the between-subjects factor as

li,.iy+ Is=L...,ng and s=1,...,b where ng is the number of levels of between-

subjects factor s and b is the number of between-subjects factors specified inside
TABLES. The difference in estimated marginal means of level igand level ig of
between-subjects factor s at fixed levels of other between-subjects factorsis

I
- . P . R i i’ = i i
(Illv---vls—lvlsv|s+1v-~v|b l|1v~~~7|s—1iléils+1’~~~7|b) Bm for ig,ig=1,...,Nngig Z ig.

The standard error of the difference is computed by substituting for | in (1):
I

I olsplgslgiarolp i sls- gl -ip

Within-Subjects Factor

Suppose the m vectors are indexed by level of the within-subjects factor as
mj . ., Js=L...ngand s=1,...,w, where ng is the number of levels of within-
subjects factor s and w is the number of within-subjects factors specified inside
TABLES. The difference in estimated marginal means of level jcand level g of
within-subjects factor s at fixed levels of other within-subjects factorsis

- m11,...,js_l,j;,js+1,...,jb)

"B(mjl,.. for jo,ji=1....Ngjs % js.

~vjs—l’jsvjs+1v~ . ~vjb

The standard error of the difference is computed by substituting for m in (1)

I sls-pilslstse - olp i ls—lgilsen -l
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Confidence Interval

The (1-a) x100% confidenceinterval is

|'ém + tl—a/Z;N—rx X Se(l'ém)

and ty_g/2;N-r,, IS the (1-a/2)*x100% percentile of a t distribution with N —ry
degrees of freedom. No confidence interval is computed if N—ry <0.

Saved Values

Temporary variables can be added to the working data file. These include predicted
values, residuals, and diagnostics.

Predicted Values

Residuals

The nxr matrix of predicted values is Y = XB. The ith row of Vis yi = x;é,
i =1,...,n. Let the dlements of Y be ¥ij and the elements of XGX' be T -

The standard error of Y; is

Se(f/ij):\/?ﬁj 75 fori=1...,mj=1...r

The weighted predicted value of theith caseis /w; ¥i .

The nxr matrix of residualsisE=Y -Y.
Theithrowof Eis& =y! -y, i=1...,n.
Let the elements of E be & then

éj :yij —9ij,for i :l,...,n;j =1...,r

The weighted residual is \/w; & .
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Deleted Residuals (PRESS Residuals)

The deleted residual is the predicted residual for the ith case that results from
omitting the ith case from estimation. It is:

& /(Yw; —m;) if w >0andw; 7 <1

DRESID;; =
! {svsws otherwise.

fori=1...,n;j =1,...,r.

Standardized Residuals
The standardized residual isthe residual divided by the standard deviation of data:

ZRESIDj; = {(yij i )/(1/&,-,- /wi) ifw >0

SYSMIS otherwise

Studentized Residuals
The standard error for ; is

A) — &” (]/W| _n-ii) if Wi >Oandwi T <l
) {SYSMIS otherwise.

for i =1,...,mj =1...,r. The Studentized residua is the residual divided by the
standard error of the residual.

& /se(8)) ifw >0andse(§;) >0

SRESID;; =
I {SYSMIS otherwise
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Diagnostics

Cook’s Distance

Cook’s Distance D measures the change to the solution that results from omitting
each observation. The formulais

2

Joyaw ) | (@w - )7
fori=1...,n;j =1...,r. Thisformulais eguivalent to
D, = (& /5(8;))" ({3 )/ sl )) fx proviced w; > 0 andsf ) >0.
When w; <0 or 5e(§; ) = 0, D is system missing.

Leverage (Uncentered)

The leverage for theith case (i =1,...,n) for al dependent variablesis

W, 7iji if W, >0

LEVER; =
! {SYSMIS otherwise

Hypothesis Testing

Let L bean | x p known matrix, M be an r xm known matrix and K bean | xm
known matrix. The test hypotheses Hy:LBM =K versus H{:LBM K are
testable if and only if LB isestimable.

The following results apply to testable hypotheses only. Nontestable hypotheses are
excluded.

The hypothesis SSCP matrix is Sy = (LBM -K)'(LGL') }(LBM -K) and the
error SSCP matrix is S =M 'SM .
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Four test statistics, based on the eigenvalues of sglsH , are available: Wilks
lambda, Hotelling-Lawley trace, Pillai’ s trace, and Roy’s largest root.
Let the eigenvalues of Sg'Sy be A; 2.2 A, 20 and A;_q,...,Ap, =0, and

let r. =rank(Sg); S= min(l,rE); Ne =N—Ty; mD:%(|I’E—||—1);

n“=3(ng-r. -1).

Wilks’ Lambda

det(Sg) 4 1

=l Il irevm

When H_ istrue, the F statistic

(¢r-20) (1-N"7)
Ire NYT

follows asymptotically an F distribution, where

¢=neg—1(rg -1 +1)

v=23(rg -2
_(12r2-4) /(12 +12 -5) it (17 +rZ -5) >0
e (I
1 otherwise

The degrees of freedom are (Ir,¢7 — 20). The F statistic isexact if s=1, 2. See
Rao (1951) and Section 8c.5 of Rao (1973) for details.

The eta-squared statistic is 72 =1 - AUS.
The noncentrality parameter is A = (&t —2u )y 2] (1 -n 2).

The power is 1-NCDF.F(Fg,Ire,(ér —2v),A) where F, is the upper 100

percentage point of the central F distribution, and a is user-specified on the ALPHA
keyword on the CRI TERI A subcommand.
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Hotelling-Lawley Trace

In the SPSS software, the name Hotelling-Lawley trace is shortened to Hotelling's
trace

m
T = trace( SE'S :Z A
E H) k=1 K
When H,istrue, the F stetistic

2(snD+1)
F=e 7
s(ZmD+s+1) s

follows asymptotically an F disribution with degrees of freedom
(S(Zm* +s+1),2(sn* +1)). The F dtatistic isexact if s=1.

The eta-squared statistic is 7° = (T/9)/(T/s+1).

The noncentrality parameter is A = 2(sn* +1)/72 / (1 —/72).

The power is 1- NCDF. F(Fa,s(Zm* +s+1),2(sn* +1),/\) where F, is the upper
100a percentage point of the central F distribution, and a is user-specified on the
ALPHA keyword on the CRI TERI A subcommand.

Pillai’s Trace

V = trace{Sy (S +SE)_1) = Z:ll/‘ k/(1+Ay)

When H_ istrue, the F statistic

(2n"+s+1)

i (2mD+s+1) (s-V)
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follows asymptotically an F disribution with degrees of freedom
(S(Zm* + s+1),s(2n* +s +1)). TheF statisticisexact if s=1.

The eta-squared statistic is /72 =V/s.

The noncentrality parameter is A = s(Zn* +s +1)/72 / (1 -n 2) .

The power is 1-NCDF. F(Fa,s(Zm* +s+1),s(2n* +s +1),/\) where F, is the

upper 100a percentage point of the central F distribution and a is user-specified on
the ALPHA keyword on the CRI TERI A subcommand.

Roy’s Largest Root
=1
which is the largest eigenval ue of sglsH . When H,istrue, the F statisticis
F=0(ne-a +ry)/a

where « =max(l,rg) is an upper bound of F that yields a lower bound on the
significance level. The degrees of freedom are (&,ne — & +ry). The F statistic is
exactif s=1.

The eta-squared statistic is 772 = 0/(1+0).
The noncentrality parameter is A = (ng —@ +1,,)7° /(1 —/72).

The power is 1-NCDF.F(F,,«,ne -« +1,4), where F, is the upper 100a

percentage point of the central F distribution and a is user-specified on the ALPHA
keyword on the CRI TERI A subcommand.
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Individual Univariate Test

__ S ;i/I -
F—m, i=1...,m

where S, and S, are the ith diagonal elements of the matrices S, and S,
respectively. Under the null hypothesis, the F statistic has an F distribution with
degrees of freedom (I,n-ry).

The partial eta-squared statistic is 7” = Sy / (Sp +Sg;)-
The noncentrality parameter is A = (n—r,) Sy /Sg; -

The power is 1~ NCDF.F(F,,1,n-r,,A) where F, is the upper 1000 percentage

point of the central F distribution and a is user-specified on the ALPHA keyword
on the CRI TERI A subcommand.

Bartlett’s Test of Sphericity

Bartlett’ s test of sphericity is printed when the Residual SSCP matrix is requested.

Hypotheses

In Bartlett's test of sphericity the null hypothesis is Hg:X :UZIr versus the
alternative hypothesis Hy: 2 # 02Ir where 02 >0 is unspecified and I isan rxr
identity matrix.

Likelihood Ratio Test Statistic

|A|n/2

W if trace(A) >0

A=
SYSMIS if trace(A) < 0
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where A :(Y —Xé)'W(Y —Xé) is the r xr matrix of residual sums of squares
and cross products.

Chi-Square Approximation

Define W = A%". When n is large and under the null hypothesis that for n—ry =1
andr=2,

Pr(-p(n-ry)logW <c) :Pr()(% so) +a)2(Pr(/\%+4 se) —Pr()(% SC)) +O(n'3)

where

f=r(r+1/2-1
p=1-(2r% +r +2)/(6r(n ~1y))
(r+2)(r =)(r —2)(2r3 +6r2 +3r +2)
vt 288r2(n -1y )? p*
(n-ry)°p

Chi-Square Statistic

_|=p(n=rx)logW if W>0
SYSMIS otherwise

Degrees of Freedom

f=r(r+1)/2-1



16 GLM Univariate and Multivariate

Significance
1~ CDF.CHISQ(c, f) —w,(CDF.CHISQ(c, f +4) ~CDF.CHISQ(c, f))

where CDF.CHISQ is the SPSS function for the cumulative chi-square
distribution. The significance is reset to zero whenever the computed value is less
than zero due to floating point imprecision.

Custom Hypothesis Tests

The TEST subcommand offers custom hypothesistests. The hypothesis term is any
effect specified (either explicitly or implicitly) in the DESIGN subcommand. The
error term can be alinear combination of effects that are specified in the DESIGN
subcommand or a sum of squares with specified degrees of freedom. The TEST
subcommand is available only for univariate analysis, therefore, an F statistic is
computed. When the error term is a linear combination of effects and no value for
degrees of freedom is specified, the error degrees of freedom is approximated by
the Satterthwaite (1946) method.

Notation

The following notation is used in this section:

S Number of effectsin the linear combination

Os Coefficient of the sth effect in the linear combination, s=1,...,S

Is Degrees of freedom of the sth effect in the linear combination, s=1,..., S
MSq Mean square of the sth effect in the linear combination, s=1,...,S

Q Linear combination of effects

|Q Degrees of freedom of the linear combination

MSq Mean square of the linear combination
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Error Term

Mean Squares

If the error term is alinear combination of effects, the error mean squareis

S

MSQ:quxMSS

s=1

If the user supplied the mean squares, MSg is equal to the number specified after
the keyword VS. If MSqg <0, the custom error term isinvalid, and M, is equal
to the system-missing value and an error message is i ssued.

Degrees of Freedom

If MSqg =0 and the user did not supply the error degrees of freedom, then the error
degrees of freedom is approximated using the Satterthwaite (1946) method. Define

2 .
d, = |(aMSy) Jis iflg>0
0 otherwise

S
Then D = Z ds . The approximate error degrees of freedomis

s=1

o :{(MSQ)Z/D if D>0

SYSMIS otherwise

If MSg =0 and the user supplied the error degrees of freedom, g is equal to the
number following the keyword DF. If I <0, the custom degrees of freedom is
invalid. In this case, lg is equal to the system-missing value and an error message
isissued.
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Hypothesis Test

F Statistic

The null hypothesis is that all parameters of the hypothesis effect are zero. The F
statistic is used for testing this null hypothesis. Suppose the mean sguare and the
degrees of freedom of the hypothesis effect are MSy, and |y ; then the F statistic is

MSy
F= MSQ
SYSMIS otherwise

if MSg >0& MSy; 20

Significance Level

The significance level is

1-CDF.KF,Iy,lg) ifly >0lg >0& F #SYSMIS

significance = {SYSMIS otherwise

where CDF.F is the SPSS function for the F cumulative distribution function.

Univariate Mixed Model

This section describes the algorithms pertaining to a random effects model. GLM
offers mixed model analysis only for univariate models—that is, for r =1.

Notation

The following notation is used throughout this section. Unless otherwise stated, all
vectors are column vectors and all quantities are known.

k Number of random effects, k = 0.
Po Number of parameters in the fixed effects, pg = 0.
B Number of parametersin theith random effect, p, 20,1 =1,...,k.

aiz Unknown variance of the ith random effect, aiz >0,i=1...,k.
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ag Unknown variance of the residual term, aé >0.

Xi The nx p; design matrix, i =0,,...,k.

Bo Thelength pg vector of parameters of the fixed effects.

Bi Thelength p; vector of parameters of the ith random effect, i =1,...,K.
L The sx p full row rank matrix. The rows are estimable functions. s=1.

Relationships between these symbols and those defined at the beginning of the
chapter are:

* P=Potpte
o X =[XqlXq]...|Xk]

Bo

. B= B:l

Bk
The mixed model is represented, following Rao (1973), as

Y =XoBo + Z Xipi +e
1=1

The random vectors f;,...,fx and e are assumed to be jointly independent.
Moreover, the random vector B; is distributed as Nn(o,aizl n) fori=1...,k and

the residual vector eis distributed as Ny (0,02W ™). Thus,

E(Y)=XoBo
k

cov(Y) = Z o?Xi X! +o2w ™t
=1
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Expected Mean Squares

For the estimable function L, the expected hypothesis sum of squaresis

1 1
E(SS) = E(Y'WZALWZY)
1 1 K 1 1
=BoXpW2A W2X g+ Z o? tra:e(X’kwa LW2X k) + 03 trace(A | )
=1

where

1
2

1 -
AL =W2XGL'(LGL)'LGX'W

1 1 -
Since L =LGX'WX, trace(A)=s and X'W?A W2X =L'(LGL") L. The
1 1
matrix X'"W2A | W?2X can therefore be computed in the following way:

1. Compute an sxs upper triangular matrix U such that U'U =LGL'by the
Cholesky decomposition.

2. Invert the matrix U to give U
3. ComputeC=L'U™L

1 1
Now we have X'W2A W2X=CC'. If the rows of C are partitioned into the
same-size submatrices as those contained in X—that is,

1 1
where C; isa p x s submatrix—then X{W?2A W ?2X, =C;Ci,i=01...,k.
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Since trace(C;C}) is equal to the sum of squares of the elementsin C;, denoted
by SSQ(C;), the matrices C;C; need not be formed. The preferred computational
formula for the expected sum of squaresis

k
E(SS.) =B6CoCoBo+ Z 07 SSQ(C;)+s05

=1
Finally the expected mean square is

k
1 1 1
E(MS) = E(SY) =SBeCoChbo+ y 0F SSQ(Ci)+ 02
1=1

For the residual term, the expected residual mean squareis; E(MSE) = o2.
Note: GLM does not compute the term %BbCoCbBo but reports the fixed effects
whose corresponding row block in Cq contains nonzero elements.

Hypothesis Test in Mixed Models

Suppose MS is the mean square for the effect whose estimable functionisL, and
s, isthe associated degrees of freedom. The F statistic for testing this effect is

_ M&

 MSy

where MSg( ) isthe mean square of the error term with sg( | degrees of freedom.

Null Hypothesis Expected Mean Squares

If the effect being tested is afixed effect, its expected mean square is

E(MS,) =05 +01 ++ +¢0f +Q(L)
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where ¢,...,¢, are coefficients and Q(L) is a quadratic term involving the fixed
effects. Under the null hypothesis, it is assumed that Q(L)=0. Although the

quadratic term may involve effects that are unrelated to the effect being tested, such
effects are assumed to be zero in order to draw a correct inference for the effect
being tested. Therefore, under the null hypothesis, the expected mean squareis

E(MS,) = 02 +,07 4,07

If the effect being tested is a random effect, say thejth (1< j < k) random effect, its
expected mean square is

E(MS,) = 03 +10F - 4,07
Under the null hypothesis 0’j2 = 0; hence, the expected mean square is

EMs) =03+ 3 aof
1<i<Ki#]

Error Mean Squares

Let MS be the mean square of the ith (i =1,...,k) random effect. Let s be the

corresponding degrees of freedom. The error term is then found as a linear
combination of the expected mean squares of the random effects:

MSg() = aMS +-- +aMS +QMSE
such that
E(MSg (1)) = uE(MS) +-- +QE(MS) +0j1E(MSE) =02 +0107 +-- +0%

If 5§ =0 (1<i<k) theng =0
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The error degrees of freedom is computed using the Satterthwaite (1946) method:

(M)
S (ams)?/s

I<i<k;5>0

Se(L) =

If the design is balanced, the above F statistic is approximately distributed as an F
distribution with degrees of freedom (sL,sE(L)) under the null hypothesis. The

statistic is exact when only one random effect is used as the error term—that is,
0i, =1 and g =0 for i ziy. If the design is not balanced, the above approximation

may not be valid (even when only one random effect is used as the error term)
because the hypothesis term and the error term may not be independent.
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