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HOMALS 

The iterative HOMALS algorithm is a modernized version of Guttman (1941). The 
treatment of missing values, described below, is based on setting weights in the loss 
function equal to zero, and was first described in De Leeuw and Van Rijckevorsel 
(1980). Other possibilities do exist and can be accomplished by recoding the data 
(Gifi, 1981; Meulman, 1982). 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

n Number of cases (objects) 

m Number of variables 

p Number of dimensions 

For variable j, j m= 1, ,K  

h j  n-vector with categorical observations 

k j  Number of valid categories (distinct values) of variable j 

G j  Indicator matrix for variable j, of order n k j×  

g
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0

when the th object is in the th category of variable 

when the th object is not in the th category of variable 
 

M j  Binary, diagonal n n×  matrix, with diagonal elements defined as 

m
i k

i kj ii
j

j
1 6 =

%&'
1 1

0 1

when the th observation is within the range [

when the th observation is outside the range [

, ]

, ]
 

D j  Diagonal matrix containing the univariate marginals, i.e., the column sums 
of G j . 
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The quantification matrices are 

X Object scores, of order n p×  

Y j  Category quantifications, of order k pj ×  

Y Concatenated category quantification matrices, of order k pj
j

×∑ . 

Note: The matrices G j , M j , and D j  are exclusively notational devices; they are 
stored in reduced form, and the program fully profits from their sparseness by 
replacing matrix multiplications with selective accumulation. 

Objective Function Optimization 
The HOMALS objective is to find object scores X and a set of Y j  (for 
j m= 1, ,K ) so that the function 

σ X Y X G Y M X G Y;1 6 3 8 3 8= −
′

−�
��

�
��∑1 m j j j j j

j
tr  

is minimal, under the normalization restriction ′ =∗X M X Imn , where the matrix 

M M∗ = ∑ j
j

, and I is the p p×  identity matrix. The inclusion of M j  in 

σ X Y;1 6  ensures that there is no influence of data values outside the range [ , ]1 k j , 

which may be really missing or merely regarded as such; M∗  contains the number 

of “active” data values for each object. The object scores are also centered; that is, 
they satisfy ′ =∗u M X 0 , with u denoting an n-vector with ones. 

Optimization is achieved through the following iteration scheme: 

1. Initialization 

2. Update object scores 

3. Orthonormalization 

4. Update category quantifications 

5. Convergence test: repeat steps 2-4 or continue 

6. Rotation 
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These steps are explained below. 

1. Initialization 

The object scores X are initialized with random numbers, which are 

normalized so that ′ =∗u M X 0  and ′ =∗X M X Imn , yielding 
~
X . Then the 

first category quantifications are obtained as 
~ ~
Y D G Xj j j= ′−1 . 

2. Update object scores 

First the auxiliary score matrix Z is computed as 

Z M G Y← ∑ j j j
j

~
 

and centered with respect to M∗ : 

~
Z M M uu M u M u Z← − ′ ′∗ ∗ ∗ ∗1 6< A . 

These two steps yield locally the best updates when there are no orthogonality 
constraints. 

3. Orthonormalization 

The orthonormalization problem is to find an M∗ -orthonormal X+  that is 

closest to 
~
Z  in the least squares sense. In HOMALS, this is done by setting 

X M M Z+
∗
−

∗
−← m1 2 1 2 1 2GRAM

~4 9  

which is equal to the genuine least squares estimate up to a rotation. The 
notation GRAM( ) is used to denote the Gram-Schmidt transformation (Björk 
and Golub, 1973). 

4. Update category quantifications 

For j m= 1, ,K  the new category quantifications are computed as: 

Y D G Xj j j
+ −= ′1 ~
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5. Convergence test 

The difference between consecutive loss function values 

σ ~
;
~

X Y3 8 − + +σ X Y;4 9  is compared with the user-specified convergence 

criterion ε —a small positive number. Steps 2 to 4 are repeated as long as the 

loss difference exceeds ε . 

6. Rotation 

As indicated in step 3, during iteration the orientation of X and Y with respect 

to the coordinate system is not necessarily correct; this also reflects that 
σ X Y;1 6  is invariant under simultaneous rotations of X and Y. From theory it 

is known that solutions in different dimensionality should be nested; that is, the 
p-dimensional solution should be equal to the first p columns of the p +11 6 -
dimensional solution. Nestedness is achieved by computing the eigenvectors of 

the matrix 1 m j j j
j

′∑ Y D Y . The corresponding eigenvalues are printed after 

the convergence message of the program. The calculation involves 

tridiagonalization with Householder transformations followed by the implicit 

QL algorithm (Wilkinson, 1965). 

Diagnostics 

Maximum Rank (may be issued as a warning when exceeded) 

The maximum rank pmax  indicates the maximum number of dimensions that can 

be computed for any data set. In general we have: 

p n k mj
j

max min , max ,= − �
��

�
�� −

�
��

�
��

%&'
()*∑1 111 6 1 6 , 

where m1  is the number of variables with no missing values. Although the number 

of nontrivial dimensions may be less than pmax  when m = 2 , HOMALS does 

allow dimensionalities all the way up to pmax . 
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Marginal Frequencies 

The frequencies table gives the univariate marginals and the number of missing values 

(that is, values that are regarded as out of range for the current analysis) for each 

variable. These are computed as the column sums of D j  and the total sum of M j . 

Discrimination Measure 

These are the dimensionwise variances of the quantified variables. For variable j 
and dimension s, we have 

η js j s j j s n2 = ′y D y1 6 1 6 , 

where y j s1 6  is the sth column of Y j , corresponding to the sth quantified variable 

G yj j s1 6 . 

Eigenvalues 

The computation of the eigenvalues that are reported after convergence is discussed 

in step 6. With the HISTORY option, the sum of the eigenvalues is reported during 

iteration under the heading “total fit.” Due to the fact that the sum of the 

eigenvalues is equal to the trace of the original matrix, the sum can be computed as 

1 2m js
sj
η∑∑ . The value of σ X Y;1 6  is equal to p m js

sj
− ∑∑1 2η . 
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