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LOGISTIC REGRESSION 

Logistic regression regresses a dichotomous dependent variable on a set of 
independent variables. Several methods are implemented for selecting the 
independent variables. 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

n  The number of observed cases 
p  The number of parameters 
y  n �1 vector with element yi , the observed value of the 

ith case of the dichotomous dependent variable 

X  n p�  matrix with element xij , the observed value of 

the ith case of the jth parameter 

β  p �1 vector with element β j , the coefficient for the 

jth parameter 

w  n �1 vector with element wi , the weight for the ith 

case 

  l Likelihood function 

  L Log likelihood function 

  I Information matrix 

Model 
The linear logistic model assumes a dichotomous dependent variable Y with probability 
π , where for the ith case, 

π
η
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or 
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ln ’π
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Hence, the likelihood function l for n observations y yn1, ,K , with probabilities 
π π1, ,K n  and case weights w wn1, ,K , can be written as 

l i
w y

i
w y

i

n
i i i i= - -

=

ºπ π1
1

1

1 6 1 6  

It follows that the logarithm of l is 

L l w y w yi i i i i i

i

n

= = + - -
=

Êln ln ln1 6 1 6 1 6 1 62 7π π1 1
1

 

and the derivative of L with respect to β j  is 
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Maximum Likelihood Estimates (MLE) 
The maximum likelihood estimates for β  satisfy the following equations 

w y xi i i ij

i

n

- =
=

Ê $p1 6 0

1

, for the jth parameter 

where xi0 1=  for i n= 1, ,K . 

Note the following: 

(1) A Newton-Raphson type algorithm is used to obtain the MLEs. Convergence 
can be based on 

(a) Absolute difference for the parameter estimates between the iterations 

(b) Percent difference in the log-likelihood function between successive 
iterations 

(c) Maximum number of iterations specified 



LOGISTIC REGRESSION   3 

 

(2) During the iterations, if $ ( $ )p pi i1-  is smaller than 10 8−  for all cases, the log-
likelihood function is very close to zero. In this situation, iteration stops and the 
message “All predicted values are either 1 or 0” is issued. 

After the maximum likelihood estimates $β  are obtained, the asymptotic covariance 
matrix is estimated by I −1 , the inverse of the information matrix I, where 
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and 

$ $’ηi i= X β . 

Stepwise Methods of Selecting Variables 
Several methods are available for selecting independent variables. With the forced 
entry method, any variable in the variable list is entered into the model. There are 
two stepwise methods: forward and backward. The stepwise methods can use either 
the Wald statistic, the likelihood ratio, or a conditional algorithm for variable 
removal. For both stepwise methods, the score statistic is used to select variables 
for entry into the model. 

Three statistics used later are defined as follows: 

Score Statistic 

The score statistic is calculated for each variable not in the model to determine 

whether the variable should enter the model. Assume that there are r1  variables, 

namely, α α1 1
, ,K r  in the model and r2  variables, γ γ1 2

, ,K r , not in the model. 

The score statistic for γ i  is defined as 
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S L Bi ii
= *

γ4 92

22,  

if γ i  is not a categorical variable. If γ i  is a categorical variable with m categories, 

it is converted to a m −11 6 -dimension dummy vector. Denote these new m −1 

variables as ~ , , ~γ γi i mK
+ -2 . The score statistic for γ i  is then 

S L B Li i=
�

* *

~ , ~γ γ4 9 22  

where L~ ~ ~, ,γ
* * *
�
=

+ -

L L
i i mγ γK

24 9 and the m m− × −1 11 6 1 6  matrix B22, i  is 
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in which α∼  is the design matrix for variables α α1 1
, ,K r  and γ i~

 is the design 

matrix for dummy variables ~ , , ~γ γi i mK
+ -2 . Note that α∼  contains a column of ones 

unless the constant term is excluded from η . Based on the MLEs for the 

parameters in the model, V is estimated by $ Diag $ $ , , $ $V = - -π π π π1 11 11 6 1 6= BK n n . 

The asymptotic distribution of the score statistic is a chi-square with degrees of 

freedom equal to the number of variables involved. 

Note the following: 

(1) If the model is through the origin and there are no variables in the model, 

B22, i  is defined by A22
1
, i

−  and $V  is equal to 1
4

In . 

(2) If B22, i  is not positive definite, the score statistic and residual chi-square 

statistic are set to be zero. 
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Wald Statistic 

The Wald statistic is calculated for the variables in the model to determine whether 
a variable should be removed. If the ith variable is not categorical, the Wald 
statistic is defined by 

Waldi
i

i

=
$

$
$

β
σ

β

2

2
 

If it is a categorical variable, the Wald statistic is computed as follows: 

Let $βi  be the vector of maximum likelihood estimates associated with the m −1 

dummy variables, and C  the asymptotic covariance matrix for $βi . The Wald 

statistic is 

Waldi i i= � -$ $β βC 1  

The asymptotic distribution of the Wald statistic is chi-square with degrees of 
freedom equal to the number of parameters estimated. 

Likelihood Ratio (LR) Statistic 

The LR statistic is defined as two times the log of the ratio of the likelihood 
functions of two models evaluated at their MLEs. The LR statistic is used to 
determine if a variable should be removed from the model. Assume that there are 
r1  variables in the current model which is referred to as a full model. Based on the 
MLEs of the full model, l(full) is calculated. For each of the variables removed 
from the full model one at a time, MLEs are computed and the likelihood function 
l(reduced) is calculated. The LR statistic is then defined as 

LR
l reduced

l full
L reduced L full= −

�
��

�
�� = − −2 2ln

1 6
1 6 1 6 1 62 7  

LR is asymptotically chi-square distributed with degrees of freedom equal to the 
difference between the numbers of parameters estimated in the two models. 

Conditional Statistic 

The conditional statistic is also computed for every variable in the model. The 

formula for the conditional statistic is the same as the LR statistic except that the 



6   LOGISTIC REGRESSION 

 

parameter estimates for each reduced model are conditional estimates, not MLEs. 

The conditional estimates are defined as follows. Let $ $ , , $β =
′

β β1 1
K r4 9  be the 

MLE for the r1  variables in the model and C be the asymptotic covariance matrix 

for $β . If variable xi  is removed from the model, the conditional estimate for the 

parameters left in the model given $β  is 

~ $ $β β βi i
i i

i1 6 1 6
1 6 1 6= − �� ��

−
c c12 22

1
 

where $βi  is the MLE for the parameter(s) associated with xi  and $β i1 6  is $β  with 
$βi  removed, c12

i1 6  is the covariance between $β i1 6  and $βi , and c22
i1 6  is the 

covariance of $βi . Then the conditional statistic is computed by 

− −�� ��2 L L fulli
~
β1 64 9 1 6  

where L i
~
β1 64 9  is the log likelihood function evaluated at $β i1 6 . 

Stepwise Algorithms 

Forward Stepwise (FSTEP) 

(1) If FSTEP is the first method requested, estimate the parameter and likelihood 
function for the initial model. Otherwise, the final model from the previous 
method is the initial model for FSTEP. Obtain the necessary information: 
MLEs of the parameters for the current model, predicted probability $π i , 
likelihood function for the current model, and so on. 

(2) Based on the MLEs of the current model, calculate the score statistic for every 
variable eligible for inclusion and find its significance. 

(3) Choose the variable with the smallest significance. If that significance is less 
than the probability for a variable to enter, then go to step 4; otherwise, stop 
FSTEP. 

(4) Update the current model by adding a new variable. If this results in a model 
which has already been evaluated, stop FSTEP. 

(5) Calculate LR or Wald statistic or conditional statistic for each variable in the 
current model. Then calculate its corresponding significance. 

(6) Choose the variable with the largest significance. If that significance is less 
than the probability for variable removal, then go back to step 2; otherwise, if 
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the current model with the variable deleted is the same as a previous model, 
stop FSTEP; otherwise, go to the next step. 

(7) Modify the current model by removing the variable with the largest 
significance from the previous model. Estimate the parameters for the 
modified model and go back to step 5. 

Backward Stepwise (BSTEP) 

(1) Estimate the parameters for the full model which includes the final model from 
previous method and all eligible variables. Only variables listed on the BSTEP 
variable list are eligible for entry and removal. Let the current model be the 
full model. 

(2) Based on the MLEs of the current model, calculate the LR or Wald statistic or 
conditional statistic for every variable in the model and find its significance. 

(3) Choose the variable with the largest significance. If that significance is less 
than the probability for a variable removal, then go to step 5; otherwise, if the 
current model without the variable with the largest significance is the same as 
the previous model, stop BSTEP; otherwise, go to the next step. 

(4) Modify the current model by removing the variable with the largest 
significance from the model. Estimate the parameters for the modified model 
and go back to step 2. 

(5) Check to see any eligible variable is not in the model. If there is none, stop 
BSTEP; otherwise, go to the next step. 

(6) Based on the MLEs of the current model, calculate the score statistic for every 
variable not in the model and find its significance. 

(7) Choose the variable with the smallest significance. If that significance is less 
than the probability for variable entry, then go to the next step; otherwise, stop 
BSTEP. 

(8) Add the variable with the smallest significance to the current model. If the 
model is not the same as any previous models, estimate the parameters for the 
new model and go back to step 2; otherwise, stop BSTEP. 
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Statistics 

Initial Model Information 

If β 0  is not included in the model, the predicted probability is estimated to be 0.5 

for all cases and the log likelihood function L 01 6  is 

L W W0 05 0 69314721 6 1 6= = -ln . .  

with W wi

i

n

=
=

Ê
1

. If β 0  is included in the model, the predicted probability is estimated as 

$π 0
1= =

Êw y

W

i i

i

n

 

and β 0  is estimated by 

$ ln
$

$
β π

π0
0

01
=

-
�
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�
��  

with asymptotic standard error estimated by 

$
$ $

$

σ
π πβ 0
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The log likelihood function is 
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1
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01 6 1 6=
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Model Information 

The following statistics are computed if a stepwise method is specified. 

(a) -2 Log Likelihood 

- + - -
=

Ê2 1 1
1

w y w yi i i i i i

i

n

ln $ ln $π π1 6 1 6 1 63 8  

(b) Model Chi-Square 

2(log likelihood function for current model - log likelihood function for initial model) 

The initial model contains a constant if it is in the model; otherwise, the model has 
no terms. The degrees of freedom for the model chi-square statistic is equal to the 
difference between the numbers of parameters estimated in each of the two models. 
If the degrees of freedom is zero, the model chi-square is not computed. 

(c) Block Chi-Square 

2(log likelihood function for current model - log likelihood function for the final 
model from the previous method.)  

The degrees of freedom for the block chi-square statistic is equal to the difference 
between the numbers of parameters estimated in each of the two models. 

(d) Improvement Chi-Square 

2(log likelihood function for current model - log likelihood function for the model 
from the last step ) 

The degrees of freedom for the improvement chi-square statistic is equal to the 
difference between the numbers of parameters estimated in each of the two models. 

(e) Goodness of Fit 

w yi i i

i ii

n -
-

=

Ê
$

$ $

π
π π
1 6
1 6

2

1
1

 

(f) Cox and Snell’s R2 (Cox and Snell, 1989; Nagelkerke, 1991) 
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where l $β4 9  is the likelihood of the current model and l(0) is the likelihood of the 

initial model; that is, l W0 051 6 1 6= log .  if the constant is not included in the model; 

l W o o o o0 1 11 6 1 6= B 1 6= - + -$ log $ / $ log $π π π π  if the constant is included in the 

model, where $ /π o i ii

n
w y W=Ê . 

(g) Nagelkerke’s R2 (Nagelkerke, 1981) 

R R RN CS CS
2 2 2= / max4 9 

where max
/

R l
CS

W2 2
1 04 9 1 6< A= - . 

Hosmer-Lemeshow Goodness-of-Fit Statistic 

The test statistic is obtained by applying a chi-square test on a 2 × g  contingency 
table. The contingency table is constructed by cross-classifying the dichotomous 
dependent variable with a grouping variable (with g groups) in which groups are 
formed by partitioning the predicted probabilities using the percentiles of the 
predicted event probability. In the calculation, approximately 10 groups are used 
(g = 10). The corresponding groups are often referred to as the “deciles of risk” 
(Hosmer and Lemeshow , 1989).  

If the values of independent variables for observation i and i’ are the same, 
observation i and i' are said to be in the same block. When one or more blocks 
occur within the same decile, the blocks are assigned to this same group. Moreover, 
observations in the same block are not divided when they are placed into groups. 
This strategy may result in fewer than 10 groups (that is, g ≤ 10 ) and consequently, 
fewer degrees of freedom.  

Suppose that there are Q blocks, and the qth block has mq number of 
observations, q Q= 1, ,K .  Moreover, suppose that the kth group (k g= 1, ,K ) is 
composed of the q1th, …, qkth blocks of observations. Then the total number of 

observations in the kth group is s mk j
q

qk= ∑
1

. The total observed frequency of 

events (that is, Y = 1) in the kth group, call it O1k, is the total number of 
observations in the kth group with Y = 1. Let E1k be the total expected frequency of 



LOGISTIC REGRESSION   11 

 

the event (that is, Y = 1) in the kth group; then E1k is given by E sk k k1 = ξ , where 
ξ k  is the average predicted event probability for the kth group. 

ξ πk j j k
q

q
m s

k= ∑ $ /
1

 

The Hosmer-Lemeshow goodness-of-fit statistic is computed as  

χ
ξHL

k k

k kk

g
O E

E
2 1 1

2

11
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=
−

−
=

∑ ( )

( )
 

The p value is given by Pr χ χ2 2≥
HL4 9  where χ 2 is the chi-square statistic 

distributed with degrees of freedom g − 20 5 . 

Information for the Variables Not in the Equation 

For each of the variables not in the equation, the score statistic is calculated along 
with the associated degrees of freedom, significance and partial R. Let Xi  be a 
variable not currently in the model and Si  the score statistic. The partial R is 
defined by 

Partial R

S df

L initial
S dfi

i

_ =
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> ×
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2
2
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otherwise

 

where df  is the degrees of freedom associated with Si , and L initial1 6  is the log 
likelihood function for the initial model. 

The residual Chi-Square printed for the variables not in the equation is defined as 

R L B LCS =
�

* *

γ γ4 9 22  

where L L L
rγ

* * *=
�

γ γ1
2

, ,K4 9 . 



12   LOGISTIC REGRESSION 

 

Information for the Variables in the Equation 

For each of the variables in the equation, the MLE of the Beta coefficients is 
calculated along with the standard errors, Wald statistics, degrees of freedom, 
significances, and partial R. If Xi  is not a categorical variable currently in the 

equation, the partial R is computed as 

Partial R

Wald

L initial
Waldi

i
i

_
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=

−
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>
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&
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2

2
2

0

if 

otherwise

 

If Xi  is a categorical variable with m categories, the partial R is then 

Partial R

Wald m

L initial
Wald mi
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Casewise Statistics 

(a) Individual Deviance 

The deviance of the ith case, Gi , is defined as 

G
y y y

y y
i

i i i i i i

i i i i

=
+ - - >

- + - -

%
&K
'K

2 1 1

2 1 1

ln $ ln $ $

ln $ ln $

π π π

π π

1 6 1 6 1 63 8
1 6 1 6 1 63 8

if 

otherwise
 

(b) Leverage 

The leverage of the ith case, hi , is the ith diagonal element of the matrix 

$ $ $V X X CVX X V
1
2

1
2

1
′ ′

−4 9  

where 



LOGISTIC REGRESSION   13 

 

$ Diag $ $ , , $ $V = - -π π π π1 11 11 6 1 6= BK n n  

(c) Studentized Residual 

~
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G

h
i

i

i

∗ =
−1

 

(d) Logit Residual 

~
$ $

e
e

i
i

i i

=
-π π11 6  

where e yi i i= - $π . 

(e) Standardized Residual 

z
e

i
i

i i

=
-$ $π π11 6

 

(f) Cook’s Distance 

D
z h

hi
i i

i
=

−

2

1
 

(g) DFBETA 

Let Dβ i  be the change of the coefficient estimates from the deletion of case i. It is 
computed as 

Dβ i
i i

i

e

h
=

� �

-

-

X CVX X$4 9 1

1
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(h) Predicted Group 

If $ .π i � 0 5, predicted group = group in which y = 1 . 

Note the following: 

For the unselected cases with nonmissing values for the independent variables in 

the analysis, the leverage 
~
hi4 9  is computed as 

~ $

$
h h

V h

V h
i i

i i

i i
= −

+

2

1
 

where 

h Vi i i i= ′ ′
−$ $X X CVX X4 9 1

 

For the unselected cases, the Cook’s distance and DFBETA are calculated based on 
~
hi . 


