LOGLINEAR

The LOGLINEAR procedure models cell frequencies using the multinomial
response model and produces maximum likelihood estimates of parameters by the
Newton-Raphson method. The contingency tables are converted to two-way | x J
tables, with | and J being the dimensions of the independent and dependent
categorical variables respectively.

Notation
The following notation is used throughout this chapter unless otherwise stated:
My Observed frequency of cell (i, j)
| Dimension of the row variable, associated with independent variables
J Dimension of the column variable, associated with dependent variables
Wj Weight of cll (i, j)
By Coefficientsin theloglinear model; 1<k < p
,B(l) Estimateof [ atthelthiteration
k
.ék Final estimate of [
m; Expected values of y;
r‘q(l) Estimate of m); at thelthiteration
]
m; Estimate of m; at thefinal iteration
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Model
In the general LOGLINEAR model, the logarithms of the cell frequencies are
formulated as a linear function of the parameters. The actual form of the model is
determined by the contrast and the effects specified. The model has the form
m; p
yi =il L |=4+Y B 1<isl1gj<
Wij =
where A; are chosen so that ij = Znij , and Xk are the independent
] ]
variablesin the linear model.
Contrasts

The values of X are determined by the types of contrasts specified in the
procedure. The default contrast is DEVIATION.

Computational Algorithm

To estimate the coefficients, a series of weighted regressions is used for iterative
calculations. The iterative process is outlined (also see Haberman, 1978) as
follows:

L o 0 , 0
(1) Obtaininitial approximations yi(j ) and use them to obtain ,BE( ).

(2) Obtain the next approximations yi(jl) and m(jl>,

(3) Usethe updated yi(jl) in (2) to obtain the next approximations ,8(k1).

|+

(4) Repeat steps 2 and 3, replacing ﬁ(kl) with ﬁf( Y . Continue repeating this until
convergence is achieved.

The computations begin with selection of initial approximations m(jo) =n; +0 for
m; . The default for J is 0.5. If the model is saturated, J is added to ny
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permanently. So, for a saturated model, the observed counts ny; are increased by d.
If the model is not saturated, J is added to nj; only at the initial step and is then
subtracted at the second step.

The maximum likelihood estimates ﬁk of By are found by the Newton-
Raphson method. Let ,8(') be the column vector containing the ML estimates at the
Ith iteration; then

BO = (Cw))‘law)

B0+ = g0 +(C('+1))_la('+1), forl =0,

where the (k, 1) -element of cl is

o = i i(xﬁ" —ai(l'())(xijl _gi(ll))m(jl)

1

1l
11
iy

)= foricisl, 1sksp

and the kth element of a(o) is

z Xijkm(jo) Z Yij m(,-o)
]

0
of
Z, j

al((o) = z Xi]kyl(jO)m(JO) _ [
[N
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and the kth el ement of a(') is
ORs (h
ak = Xijk(nij _ml ) forl>1.
>

The estimated cell means are updated by

iy (v )
> wi exp(vi(,-' _1))
)

m; forl 21

where

Z(nij +6)  if the model is saturated
B

z (M) otherwise

]

and

p
Vi('l_l) = Z Xijkﬁf(l_l)
=1

The iterative process stops when either the maximum number of iterations
(default=20) is reached or

max; vi(jl *) —vi(-l) <& (with default € = 0.002).
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Computed Statistics

Correlation Matrix of Parameter Estimates

Let C be the fina C") and H =C™. The correlation between Z?i and bj is
computed as

hihj

Goodness of Fit

The Pearson chi-square is computed as

2 _ (ny _mi)z
ooy Bl

o m;

and the likelihood-ratio chi-squareis

nij
L=2 nij |n[}\—]

The degrees of freedom are | x(J -1) - p— E, where E is the number of cells with
njw; < 0 and pisthe number of coefficientsin the model.
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Residuals

Residuals

reﬁidualij =y ‘ﬁh

Standardized Residuals

Mj — M

gandard residualjj =

5

Adjusted Residuals

M —m;

Y

adjusted residualjj; =

where

' 1‘%‘ M Z(Xijk _éik)(xijl _éil)hklil




Generalized Residuals

Consider alinear combination of the cell counts
z d” nij
1]

The estimated expected value is computed as
> dify
[

Two generalized residuals are computed.

Residuals
residual = z d” nij - Z dlj ﬁ']l
[ ]

Adjusted Residuals

Zdij nj — Zdij my
adjusted residual = ! Sl

\/a

where

2
_ o [ jdij] ) p P
Ci—__dumj Z ] szkflhkl
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Analysis of Dispersion
Following Haberman (1982), define
SY) = Tota dispersion
SY|X) = Conditional dispersion
S(X) = Dispersion due to fit

SX)

R =——-=Measure of association

Y)

For entropy
J

SY) =My By In(p))
=1

S(le Z M Z Pij In(p,“)
1=1

SX) = (Y) - 9 Y|X)

For concentration
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where

.M,
p; = M
LY
Pii =

Haberman (1977) shows that, under the hypothesis that Y and X are independent,
- 2
‘//E - ZS(X) - /Y|(J_1)

in the case of entropy, and

Yc - MU-ISX) - xfa

S(Y)

in the case of concentration.
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