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MANOVA 

The program performs univariate and multivariate analysis of variance and 
covariance for any crossed and/or nested design. 

Analysis of Variance 

Notation 

The experimental design model (the model with covariates will be discussed later) 
can be expressed as 

Y W E= +
× × × ×

β
N p N m m p N p

 

where 

Y is the observed matrix 

W is the design matrix 

β  is the matrix of parameters 

E is the matrix of random errors 

N is the total number of observations 

p is the number of dependent variables 

m is the number of parameters 

Since the rows of W will be identical for all observations in the same cell, the 
model is rewritten in terms of cell means as 

Y A E• •= +
× × × ×

β
g p g m m p g p

 

where g is the number of cells and Y•  and E• denote matrices of means. 
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Reparameterization 

The reparameterization of the model (Bock, 1975; Finn, 1977) is done by factoring 
A into 

A K L=
× × ×g m g r r m

 

K forms a column basis for the model and has rank r. L contains the coefficients of 

linear combinations of parameters and rank r. The contrast matrix L can be 

specified by the user. Given L, K can be obtained from AL LL′ ′ −1 6 1 . For designs 

with more than one factor, L, and hence K, can be constructed from Kronecker 

products of contrast matrices of each factor. After reparameterization, the model 

can be expressed as 

Y A E

K L E

K E

g p

g r r p g p

×
= +

= +

=
+

× × ×

β

β
θ

1 6  

Parameter Estimation 

An orthogonal decomposition (Golub, 1969) is performed on K. That is, K is 
represented as 

K QR=  

where Q is an orthonormal matrix such that ′ =Q DQ I ; D is the diagonal matrix of 
cell frequencies; and R is an upper-triangular matrix. 

The normal equation of the model is 

′ = ′K DK K DY1 6$θ  

or 

R Q DY U$θ = ′ =  

This triangular system can therefore be solved forming the cross-product matrix. 
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Significance Tests 

The sum of squares and cross-products (SSCP) matrix due to the model is 

$ $′ ′ = ′θ θR R U U  

and since var varU R R I1 6 1 6= ′ = ⊗θ Σ  the SSCP matrix of each individual effect 
can be obtained from the components of 

′ =
′

′

�

�
��
�

�
�� = ′ + + ′U U U U

U

U

U U U Uk

k

k k1

1

1 1, ,K M K1 6  

Therefore the hypothesis SSCP matrix for testing Ho h:θ = 0  is 

S U UH
p p

h
p n

h
n ph h

= ′
× × ×

 

The default error SSCP matrix is the pooled within-groups SSCP: 

S Y Y Y DYE = ′ − ′  

if the pooled within-groups SSCP matrix does not exist, the residual SSCP matrix is 
used: 

S Y Y U UE = ′ − ′  

Four test criteria are available. Each of these statistics is a function of the nonzero 

eigenvalues λ i  of the matrix S SH E
−1 . The number of nonzero eigenvalues, s, is 

equal to min ,p nh1 6 . 
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Pillai’s Criterion (Pillai, 1967) 

T i i

i

s

= +
=
∑λ λ1

1

1 6  

Approximate F n p s T b s Te= − − −1 6 1 62 7  with bs  and s n p se − +1 6  degrees of 
freedom, where 

n S

b p n
e E

h

=
=

 degrees of freedom for 

max ,1 6  

Hotelling’s Trace 

T i

i

s

=
=
∑λ

1

 

Approximate F sn T s m s= + + +2 1 2 121 6 1 64 9  with s m s2 1+ +1 6  and 2 1sn +1 6  
degrees of freedom where 

m n p

n n p
h

e

= − −
= − −

1 2

1 2

2 7
1 6  

Wilks’ Lambda (Rao, 1973) 

T i

i

s

= +
=

∏1 1
1

λ1 6  

Approximate F T Ml n p T n pl
h

l
h= − + −1 1 21 14 91 6 4 9  with n ph  
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and Ml n ph+ −1 21 6  degrees of freedom, where 

l p n p n

M n p n

h h

e h

2 2 2 2 24 5

1 2

= − + −

= − + −

4 9 4 9
1 6  

Roy’s Largest Root 

T = +λ λ1 111 6  

Stepdown F Tests 

The stepdown F statistics are 

F
t t n

t n i
i

e h

e e

=
−

− +

2 2

2 1

4 9
1 6  

with nh  and n ie − +1  degrees of freedom, where te  and t are the ith diagonal 
element of TE  and T respectively, and where 

S T T

S S T T
E E E

E H

= ′
+ = ′

 

Design Matrix 

K 

Estimated Cell Means 

$ $Y• = Κθ  
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Analysis of Covariance 

Model 

Y K X B E• • •= + +
× × × × × ×

θ
g p g r r p g q q p g p

 

where g, p, and r are as before and q is the number of covariates, and X•  is the 
mean of X, the matrix of covariates. 

Parameter Estimation and Significance Tests 

For purposes of parameter estimation, no initial distinction is made between 
dependent variables and covariates. 

Let 

V Y X

V Y X

=

=• • •

1 6
1 6  

The normal equation of the model 

V K E• •= +
× + × × + × +

θ
g p q g r r p q g p q1 6 1 6 1 6  

is 

′ = ′ •K DK K DY1 6$θ  

or 

R Q DV U$θ = ′ • =  
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or 

$ $ $θ θ θ=

× + × ×
Y X

r p q r p r q

4 9
1 6  

If S E  and ST  are partitioned as 

S
S S

S S

S
S S

S S

E
E
Y

E
YX

E
XY

E
X

T
T
Y

T
YX

T
XY

T
X

=
�
��

�
��

=
�
��

�
��

0 5 0 5
0 5 0 5

0 5 0 5
0 5 0 5

 

then the adjusted error SSCP matrix is 

S S S S SE E
Y

E
YX

E
X

E
XY∗

−
= − �� ��
1 6 1 6 1 6 1 61

 

and the adjusted total SSCP matrix is 

S S S S ST T
Y

T
YX

T
X

T
XY∗

−
= − �� ��
1 6 1 6 1 6 1 61

 

The adjusted hypothesis SSCP matrix is then 

S S SH T E
∗ ∗ ∗= −  

The estimate of B is 

$B S S= �� ��
−

T
X

T
XY1 6 1 61
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The adjusted parameter estimates are 

$ $ $ $θ θ θ∗ = −Y X B  

The adjusted cell means are 

$ $Y K∗ ∗= θ  

Repeated Measures 

Notation 

The following notation is used within this section unless otherwise stated: 

k Degrees of freedom for the within-subject factor 

SSE∗  Orthonormal transformed error matrix 

N Total number of observations 

ndfb Degrees of freedom for all between-subject factors (including the constant) 

Statistics 

Greenhouse-Geisser Epsilon 

ggeps
tr

tr

=
× �
��

�
��

∗

∗

SSE

SSE

4 94 9
4 9

2

2
k

 

Huynh-Feldt Epsilon 

hfeps
ggeps

ndfb ggeps
= × × −

× − − ×
N k

k N k

2
21 6  

if hfeps > 1, set hfeps = 1  
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Lower bound Epsilon 

lbeps =
1

k
  

Effect Size 

Notation 

The following notation is used within this section unless otherwise stated: 

dfh Hypothesis degrees of freedom 

dfe Error degrees of freedom 

F F test 

W Wilks’ lambda 

s Number of non-zero eigenvalues of HE−1  

T Hotelling’s trace 

V Pillai’s trace 

Statistic 

Partial eta - squared
SS hyp

SS hyp + SS error
= ×

× +
=dfh F

dfh F dfe
 

Eta squared Wilks’− = −1 6 1 1W s  

Eta squared Hotelling’s− =
+

1 6 T s

T s 1
 

Total eta - squared 
sum of squares for effect

total corrected  sum of squares
= 1 6  
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Hay’s omega - squared 
SS for effect df effect MSE

corrected total SS  MSE
=

− ×
+

1 6
 

Pillai = V S  

Power 

Univariate Non-Centrality 

λ = ×SS hyp

SS error
dfe  

Multivariate Non-Centrality 

For a single degree of freedom hypothesis 

λ = ×T dfe  

where T is Hotelling’s trace and dfe is the error degrees of freedom. Approximate 
power non-centrality based on Wilks’ lambda is 

λ =
−

×Wilks’ eta square

1 Wilks’ eta square
dfe W1 6  

where dfe W1 6  is the error df from Rao’s F-approximation to the distribution of 

Wilks’ lambda. 

Hotelling’s Trace 

λ =
−

×Hotelling’s eta square

1 Hotelling’s eta square
dfe H1 6  

where dfe H1 6  is the error df from the F-approximation to the distribution of 

Hotelling’s trace. 
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Pillai’s Trace 

λ =
−

×Pillai’s eta square

1 Pillai’s eta square
dfe P1 6  

where dfe P1 6  is the error df from Pillai’s F-approximation to the distribution of 
Pillai’s trace. 

Approximate Power 

Approximate power is computed using an Edgeworth Series Expansion 
(Mudholkar, Chaubey, and Lin, 1976). 

r
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Joint and Individual Confidence Intervals 

The intervals are calculated as follows: 

Lower bound = parameter estimate − ∗k  stderr 

Upper bound = parameter estimate + ∗k  stderr 

where stderr is the standard error of the parameter estimate, and k is the critical 
constant whose value depends upon the type of confidence interval requested. 

Univariate Intervals 

Individual Confidence Intervals 

k F a ne= ; ,11 62 7  

where 

ne is the error degrees of freedom 

a is the confidence level desired 

F is the percentage point of the F distribution 
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Joint Confidence Intervals 

For Scheffé intervals: 

k nh F a nh ne= ∗ ; ,1 62 7  

where 

ne is the error degrees of freedom 

nh is the hypothesis degrees of freedom 

a is the confidence level desired 

F is the percentage point of the F distribution 

For Bonferroni intervals: 

k t a nh ne= ∗21 62 7,  

where 

ne is the error degrees of freedom 

nh is the hypothesis degrees of freedom 

a is 100 minus the confidence level desired 

F is the percentage point of Student’s t distribution 

Multivariate Intervals 

The value of the multipliers k  for the multivariate case is computed as follows: 

Let 

p

nh

ne

a

s p nh

m nh p

n ne p

=
=
=

=
=
= − −
= − −

 the number of dependent variables

 the hypothesis degrees of freedom

the error degrees of freedom

 the desired confidence level

min ,1 6
2 7
1 6

1 2

1 2
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For Roy’s largest root, define 

c G G= −11 6  

where 

G GCR= a s m n; , ,1 6 , the percentage point of the largest root distribution 

For Wilks’ lambda, define 

t p nh

b p p nh nh

r t b b r

u p nh

t p nh

b nh ne p nh r u

f t F a t b b

W c

c W W

r

= ∗ −

= ∗ + −

= ≠ =

= ∗ −

= ∗

= + − + + ∗ − ∗

= ∗

= +

= −

1 6

1 6
1 6

1 62 7
1 62 7

1 62 7
1 6

2
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5

0 1

2 4
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,
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if else 

 

For Hotelling’s trace, define 

t s m s

b sn

T stF a t b b

c T

= + +
= +
=
=

2 1

2 1

1 6
1 6
1 62 7; ,
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For Pillai’s trace, define 

t s p nh

b s ne p s

D F a t b t b

V sc c

c V V

=
= − +
=
= +
= −

max ,

; ,

1 62 7
1 6
1 62 7

1 6 1 6
1 6

1

1

 

Now for each of the above criteria, the critical value is 

K ne c= ∗1 6  

For Bonferroni intervals, 

K t a p nh ne= 2 1 62 74 9;  

where t is the percentage point of the Student’s t distribution. 

Regression Statistics 

Correlation between independent variables and predicted dependent variables 

r X Y
r

Ri j
ij

j
, $4 9 =  

where 

X i

Y j

r i j

R R j

i

j

ij

j

=
=
=
=

th predictor (covariate)

th predicted dependent variable

 correlation between th predictor and th dependent variable

 multiple  for th dependent variable across all predictors

$
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