MANOVA

The program performs univariate and multivariate analysis of variance and
covariance for any crossed and/or nested design.

Analysis of Variance

Notation

The experimental design model (the model with covariates will be discussed |ater)

can be expressed as
Y = W B + E
N xp Nxm mxp Nxp
where
Y is the observed matrix
W is the design matrix
B isthe matrix of parameters
E isthe matrix of random errors
N isthe total number of observations
p is the number of dependent variables
m isthe number of parameters

Since the rows of W will be identical for all observations in the same cell, the
model is rewritten in terms of cell means as

Y. = A B + E.
gxp gxm mxp gxp

where g isthe number of cellsand Y, and E, denote matrices of means.
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Reparameterization
The reparameterization of the model (Bock, 1975; Finn, 1977) is done by factoring
A into
A = K L
gxm gXxr rxm

K forms a column basis for the model and hasrank r. L contains the coefficients of
linear combinations of parameters and rank r. The contrast matrix L can be
specified by the user. Given L, K can be obtained from AL'(LL')_l. For designs
with more than one factor, L, and hence K, can be constructed from Kronecker
products of contrast matrices of each factor. After reparameterization, the model

can be expressed as
Y =AB+E
gxp
=K(LB)+E
K 0 + E
Cgxrorxp gxp

Parameter Estimation

An orthogona decomposition (Golub, 1969) is performed on K. That is, K is
represented as

K =QR

where Q is an orthonormal matrix such that Q'DQ =1 ; D isthe diagona matrix of
cell frequencies; and R is an upper-triangular matrix.
The normal equation of the model is

(K'DK)8 =K DY
or
R6=Q'DY =U

Thistriangular system can therefore be solved forming the cross-product matrix.
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Significance Tests

The sum of squares and cross-products (SSCP) matrix due to the model is
6'R'RE=U'U

and since var(U) =R var(6)R' =1 0 £ the SSCP matrix of each individual effect
can be obtained from the components of

Ui
U'U=(Ug,...,U)| ¢ [=UU{+. +U UL
Uk

Therefore the hypothesis SSCP matrix for testing H,:0,, =0 is

Sy= U, Uj

pxp pxmy  Myxp
The default error SSCP matrix is the pooled within-groups SSCP:
SE=Y'Y-Y'DY

if the pooled within-groups SSCP matrix does not exist, the residual SSCP matrix is
used:

Sg=Y'Y-U'U
Four test criteria are available. Each of these statistics is a function of the nonzero

eigenvalues A; of the matrix SHSE. The number of nonzero eigenvalues, s, is
equal to min(p, ny).
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Pillai’s Criterion (Pillai, 1967)

Approximate F =(ng - p—s)T/(b(s—T)) with bg and (ng— p+s) degrees of
freedom, where

Ne = degrees of freedom for Sg
b = max(p, n,)

Hotelling’s Trace

S
T= Z/h
1=1

Approximate F:2(sn+1)T/(sz(2m+s+1)) with g2m+s+1) and 2(sn+1)
degrees of freedom where

m=(|n, - p|—1)/2
n= (ne_ p—l)/Z
Wilks’ Lambda (Rao, 1973)
S

T=[1y@a+x)

1=1

Approximate F :(1—T]/I )(MI +1-n, p/2)/(T1/I nhp) with n, p
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and (MI +1-n,p/2) degrees of freedom, where

12 :(pznrz,—4)/(p2+nr2,—5)
M =ng—(p+1-ny)/2

Roy’s Largest Root

T=21/(1+A4)

Stepdown F Tests
The stepdown F statistics are

(t2—tg)/nh

i :tg/(ne—i+1)

with ny and ng—i+1 degrees of freedom, where t, and t are the ith diagonal
element of Tg and T respectively, and where
Sg =TeTe

SE +SH =T'T

Design Matrix

K

Estimated Cell Means

<
1

P

D>
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Analysis of Covariance

Model

Y. K 0 + X. B + E.
gxp gxr rxp gxq gxp gxp

where g, p, and r are as before and q is the number of covariates, and X, isthe
mean of X, the matrix of covariates.

Parameter Estimation and Significance Tests

For purposes of parameter estimation, no initia distinction is made between
dependent variables and covariates.

The normal eguation of the model

V. = K 0 + E.
gx(p+q) gxr rx(p+q) gx(p+q)

is
(K'DK)8 =K DY.
or

RO=Q'DV. =U



or

é = (éy éx)
rx(p+a) rxp rxq

If Sg and Sy are partitioned as

Y YX
s = sy s
S(EXY) S(EX)

Y) (YX)
Sr = ixv) zx)}

then the adjusted error SSCP matrix is
-1
0 _olY YX X XY
sg =si¥) -sp )(S(E )) s)
and the adjusted total SSCP matrix is

-1
=) -5

The adjusted hypothesis SSCP matrix isthen

SH =SP-SE

The estimate of B is

-1
S(TX)) S(T XY)
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The adjusted parameter estimates are

Repeated Measures

ndfb Degrees of freedom for al between-subject factors (including the constant)

Notation
The following notation is used within this section unless otherwise stated:
k Degrees of freedom for the within-subject factor
ssed Orthonormal transformed error matrix
N Total number of observations
Statistics

Greenhouse-Geisser Epsilon

(o{ss=)’
99eps= ————— %
k x tr((SSED) )
Huynh-Feldt Epsilon
N x k x ggeps— 2

hfeps= 5
k x(N - ndfb) —k* x ggeps

if hfeps>1, set hfeps=1
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Lower bound Epsilon

1
Ibeps=—
P k

Effect Size

Notation

The following notation is used within this section unless otherwise stated:

dfh Hypothesis degrees of freedom
dfe Error degrees of freedom

F F test

W Wilks’ lambda

(7]

Number of non-zero eigenvalues e 2
Hotelling's trace

< -

Pillai’s trace

Statistic

dihxF SShyp
dfhx F +dfe SShyp+SSerror

Partial eta- squared =

Eta - squared(Wilks) = 1-W¥S

T/s

Eta - squared(Hotelling's) = Tstl
s

sum of sguares for effect
total (corrected) sum of squares

Total eta-squared =
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SSfor effect - df (effect) x MSE
corrected total SS + MSE

Hay's omega- squared =

Pilla :V/S
Power

Univariate Non-Centrality

1= SS hyp
SS error

x dfe

Multivariate Non-Centrality

For a single degree of freedom hypothesis

A =T xdfe

where T is Hotelling’s trace andfe is the error degrees of freedom. Approximate
power non-centrality based on Wilks’ lambda is

_ Wilks' etasquare
1-Wilks etasguare

x dfe(W)

where dfe(W) is the errordf from Rao’'sF-approximation to the distribution of
Wilks’ lambda.

Hotelling’s Trace

_ Hotelling's eta square 9
1-Hotelling's eta square

dfe(H)

where dfe(H) is the error df from the F-approximation to the distribution of
Hotelling's trace.
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Pillai’s Trace

Pillai’s eta square
1- Fillai’s eta square

x de(P)

where dfe(P) is the error df from Pillai's F-approximation to the distribution of
Pillai’s trace.

Approximate Power

Approximate power is computed using an Edgeworth Series Expansion
(Mudholkar, Chaubey, and Lin, 1976).

r=u;+A4
b=A/r

V3 2pr1) am? 80(1+3+337-770%) 176(1+4b- 2100 +23800° - 20750*)
Kl: [ 1- - > + 73 + 57
U1 a 3 3'r 9
_sl(,. 2 , 80 , 178
9 73 29,4
U 3'v; 303
e ¥ 2o+1) 1602 B13+39D+405%2 ~10250%) 160(L+4b- 872 + 116807 ~1544*)
Ky =9 — + - +
? (UJ CI 373 B4

23 2 104 160
Lo 2 104
Wy 33 Fuj

Y\ g2 321+3b+21b? -620%) 32(8+32b~177b? +45500° - 66250
Ka =< — - -
( ] 2712 363 Bt

32 256
Cl 3t e a
3U2 3U2

U1
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K4=

{ . )4/3 16(1+ D +12b2 —44b3) 256(1+ Ab+6b2 + 24703 - 458b4)
+

Uy 36,3 B4

_ 43 16, 256
36u§ P U‘Z1
2
Power = 1- ®(Y) —%e‘YZ/ 2 {%(YZ -1) +%(Y3 - w)%(ﬁ -10v3+ 15y)}

Joint and Individual Confidence Intervals

Theintervals are calculated as follows:
Lower bound = parameter estimate —kY stderr

Upper bound = parameter estimate +kY stderr

where stderr is the standard error of the parameter estimate, and k is the critical
constant whose val ue depends upon the type of confidence interval requested.

Univariate Intervals

Individual Confidence Intervals

k =/(F(a;1,ne))

where
neisthe error degrees of freedom
aisthe confidence level desired

F isthe percentage point of the F distribution
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Joint Confidence Intervals

For Scheffé intervals:
k =/(nhOF(a; nh,ne))

where

ne is the error degrees of freedom

nh is the hypothesis degrees of freedom
ais the confidence level desired

F is the percentage point of thadistribution

For Bonferroni intervals:
=t(a/(20nh), ne)

where

ne is the error degrees of freedom

nh is the hypothesis degrees of freedom
ais 100 minus the confidence level desired

F is the percentage point of Studerttistribution

Multivariate Intervals

The value of the multiplier& for the multivariate case is computed as follows:
Let

p = the number of dependent variables
nh = the hypothesis degrees of freedom
ne = the error degrees of freedom
a = thedesired confidence level
s=min(p, nh)

=(Inh~p|- / )/2

=(ne-p-1)/2
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For Roy’s largest root, define
c=G/(1-G)
where

G =GCR(a; s, m, n), the percentage point of the largest root distribution

For Wilks’ lambda, define

t =(pOinh)® -4
b=p0Op+nh*nh-5
r=4(t/b)ifbz0, eser=1
u=(pOnh-2)/4

t=pOnh
b=(nh+ne-(p+nh+1)/2)0r -2 Cu
f =(tOF(at,b)) /b

W=y o)

c=(1-wW)/W

For Hotelling's trace, define

t=92m+s+1)
b=2(sn+1)

T = (stF(a;t,b)) /o
c=T



MANOVA 15

For Pillai’s trace, define

t = s(max(p, nh))
b=gne-p+s)

D =(F(a;t,b)t) /b
v =(s0)/(c+])
c=V/(1-V)

Now for each of the above criteria, the critical value is

K =/(nelc)

For Bonferroni intervals,

K= t(a/(2 p(nh)); ne)

wheret is the percentage point of the Studenhtistribution.

Regression Statistics

Correlation between independent variables and predicted dependent variables

where

X; =ith predictor (covariate)

Y; = jth predicted dependent variable

rj = correlation between ith predictor and jth dependent variable
R; = multiple Rfor jth dependent variable across al predictors
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