MEANS

Cases are cross-classified on the basis of multiple independent variables, and for each cell of the resulting cross-classification, basic statistics are calculated for a dependent variable.

Notation

The following notation is used throughout this chapter unless otherwise stated:

$X_{i p}$	Value for the p th independent variable for case i
Y_{i}	Value for the dependent variable for case i
w_{i}	Weight for case i
P	Number of independent variables
N	Number of cases

Statistics

For each value of the first independent variable $\left(X_{1}\right)$, for each value of the pair $\left(X_{1}, X_{2}\right)$, for the triple $\left(X_{1}, X_{2}, X_{3}\right)$, and similarly for the P-tuple $\left(X_{1}, X_{2}, \ldots, X_{P}\right)$, the following are computed:

Sum of Case Weights for the Cell

$W=\sum_{i=1}^{N} w_{i} l_{i}$
where $l_{i}=1$ if the i th case is in the cell, $l_{i}=0$ otherwise.

The Sum and Corrected Sum of Squares

$$
\begin{aligned}
& S M Y=\sum_{i=1}^{N} w_{i} l_{i} Y_{i} \\
& S S Y=\sum_{i=1}^{N} w_{i} l_{i} Y_{i}^{2} \\
& C S S=S S Y-S M Y^{2} / W
\end{aligned}
$$

The Mean

$$
\bar{Y}=\frac{\sum_{i=1}^{N} w_{i} l_{i} Y_{i}}{W}
$$

Harmonic mean

$$
\bar{Y}_{h}=\frac{\sum_{i=1}^{N} w_{i}}{\sum_{i=1}^{N} w_{i} y_{i}^{-1}}
$$

Both summations are over cases with positive w_{i} values.

Geometric mean

$$
\bar{Y}_{g}=\left(\prod_{i=1}^{N} y_{i}^{w_{i}}\right)^{1 / W}
$$

The product is taken over cases with positive w_{i} values.

Variance

$$
S^{2}=\frac{C S S}{W-1}
$$

Standard Deviation

$$
S=\sqrt{\text { variance }}
$$

Standard Error of the Mean

$$
S E M=\frac{S}{\sqrt{W}}
$$

Skewness (computed if $\boldsymbol{U} \geq 3$ and $S^{2}>0$), and its standard error

$$
g_{1}=\frac{W M_{3}}{(W-1)(W-2) S^{3}} \quad \operatorname{se}\left(g_{1}\right)=\sqrt{\frac{6 W(W-1)}{(W-2)(W+1)(W+3)}}
$$

Kurtosis (computed if $\boldsymbol{U} \geq 4$ and $\boldsymbol{S}^{2}>0$), and its standard error

$$
g_{2}=\frac{W(W+1) M_{4}-3(W-1) M_{2}^{2}}{(W-1)(W-2)(W-3) S^{4}} \quad \operatorname{se}\left(g_{2}\right)=\sqrt{\frac{4\left(W^{2}-1\right) \operatorname{se}\left(g_{1}\right)^{2}}{(W-3)(W+5)}}
$$

Minimum

$$
\min _{i} X_{i}
$$

4 MEANS

Maximum

$$
\max _{i} X_{i}
$$

Range

Maximum - Minimum

Percent of Total \mathbf{N}

For each category j of the independent variable,
$\% \operatorname{Tot}_{j}=\left(\frac{\sum_{i=1}^{N} w_{i} l_{i}}{W}\right) \times 100$
where $l_{i}=1$ if the i th case is in the j th category, $l_{i}=0$ otherwise.

Percent of Total Sum

For each category j of the independent variable,
$\% \operatorname{TotSum}_{j}=\left(\frac{\sum_{i=1}^{N} w_{i} l_{i} Y_{i}}{W}\right) \times 100$
where $l_{i}=1$ if the i th case is in the j th category, $l_{i}=0$ otherwise.

Median

Find the first score interval ($x 2$) containing more than t cases.
median $= \begin{cases}x_{2} & \text { if } t-c p_{1} \geq 100 / W \\ \left\{1-\left[(W+1) / 2-c c_{1}\right]\right\} x_{1} & \text { if } t-c p_{1}<100 / W \\ +\left[(W+1) / 2-c c_{1}\right] x_{2} & \end{cases}$
where
$t=(W+1) / 2$
$c p_{1}<t<c p_{2}$
x_{1} and x_{2} are the values corresponding to $c p_{1}$ and $c p_{2}$, respectively
$c c_{1}$ is the cumulative frequency up to x_{1}
$c p_{1}$ is the cumulative percent up to x_{1}

Grouped Median

The formulas for the grouped median can be found in "Appendix 8: Grouped Percentiles" (app08_grouped_percentiles.pdf).

ANOVA and Test for Linearity

If the analysis of variance table or test for linearity are requested, only the first independent variable is used. Assume it takes on J distinct values (groups). The previously described statistics are calculated and printed for each group separately, as well as for all cases pooled. Symbols subscripted from 1 to J will denote group statistics, unsubscripted the total. Thus for group j,

- $S M Y_{j}$ is the sum of the dependent variable.
and
- $\quad X_{j}$ the value of the independent variable. Note that the standard deviation and sum of squares printed in the last row of the summary table are pooled within group values.

6 MEANS

Analysis of Variance

Source	Sum of Squares	df
Between Groups	Total-Within Groups	$J-1$
Regression	$\frac{\left(\sum_{j=1}^{J} x_{j} S M Y_{j}-\left(\sum_{j=1}^{J} w_{j} X_{j}\right)\left(\sum_{j=1}^{J} S M Y_{j}\right) / W\right)^{2}}{\sum_{j=1}^{J} w_{j} X_{j}^{2}-\left(\sum_{j=1}^{J} w_{j} X_{j}\right)^{2} / W}$	1
Deviation from Regression	Between-Regression Within Groups Total $\sum_{j=1}^{J} C S S_{j}$ $\sum_{j=1}^{J} S S Y_{j}-\left(\sum_{j=1}^{J} S M Y_{j}\right)^{2} / W$	$J-2$

The mean squares are calculated by dividing each sum of squares by its degrees of freedom. The F ratios are the mean squares for each source divided by the within groups mean square. The significance level for the F is from the F distribution with the degrees of freedom for the numerator and denominator mean squares. If there is only one group the ANOVA is not done; if there are fewer than three groups or the independent variable is a string variable, the test for linearity is not done.

Correlation Coefficient

$$
r=\frac{\sum_{j=1}^{J} X_{j} S M Y_{j}-\left(\sum_{j=1}^{J} W_{j} X_{j}\right) S M Y / W}{\sqrt{\left(\sum_{j=1}^{J} W_{j} X_{j}^{2}-\left(\sum_{j=1}^{J} W_{j} X_{j}\right)^{2} / W\right)\left(S S Y-S M Y^{2} / W\right)}}
$$

Eta

$$
(\text { eta })^{2}=\frac{\text { Sum of Squares Between Groups }}{\text { Total Sum of Squares }}
$$

References

Blalock, H. M. 1972. Social statistics. New York: McGraw-Hill.
Bliss, C. I. 1967. Statistics in biology, Volume 1. New York: McGraw-Hill.

Hays, W. L. 1973. Statistics for the social sciences. New York: Holt, Rinehart and Winston.

