MIXED

Overview

This document summarizes the computational algorithms discussed in Wolfinger,
Tobias and Sall (1994).

Notation

0 Overall covariance parameter vector

9G A vector of covariance parameters associated with random effects.

0 A vector of covariance parameters associated with the k-th random
k effect.

OR A vector of covariance parameters associated with the residual term.

K Number of random effects.

S Number of repeated subjects.
r

S ‘ Number of subjectsin k-th random effect.

V (9) The nxn covariance matrix of y. This matrix is sometimes denoted by

V, (8) . The subscript is removed here for acleaner notation.

V,(0) First derivative of V() with respect to the s-th parameter in © .
V, (0) Second derivative of 'V (0) with respect to s and t-th parameter in 0 .
R (()R) The nxn covariance matrix of €.

R.(05) First derivative of R(05) with respect to the s-th parameter in 0 5

R, (05) Second derivative of R(05) with respect to s and t-th parameter in
0y .

G (BG ) The covariance matrix of random effects.
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Model

G.(0,) First derivative of G (0 ) with respect to s-th parameter in 0 .

G,(0,) Second derivative of G(0) with respect to s and t-th parameter in

0.
Vk (ek) The covariance matrix of the k-th random effect for one random subject.
V 0 First derivative of V, (0, ) with respect to s-th parameter in 0, .
k,s\Yk k\Vk k
\7k <©6,) Second derivative of V, (0, ) with respect to s and t-th parameter in
0,.
y n by 1 vector of dependent variable.
X n by p design matrix of fixed effects.
ya n by g design matrix of random effects.
r n by 1 vector of residual.
B p by 1 vector of fixed effects parameters.
Y g by 1 vector of random effects parameters.
€ n by 1 vector of residua error.
W n by n diagonal matrix of case weights.
Cc
W n by n diagonal matrix of regression weights.

2

In this document, we assume a mixed effect model of the form

y=Xp+Zy+e @

In this model, we assume that € is distributed as N[O,R(0;)] and v is
independently distributed as N[0,G(0;)]. Therefore y is distributed as
N[XPBPBV (0)], whereV (0) =ZG(0,)Z" +R(0y) . The unknown parameters

include the regresson parameters in B and covariance parameters in 0.

Estimation of these model parameters relies on the use of a Newton-Ralphson or
scoring agorithm. When we use either algorithm for finding MLE or REML
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solutions, we need to compute V ~'(0) and its derivatives with respect to 9,
which are computationally infeasible for large n. Wolfinger et.al.(1994) discussed
methods that can avoid direct computation of V ~*(8) . They tackled the problem

by using the SWEEP algorithm and exploiting the block diagonal structure of G
and R. In the first half of this document, we will detail the algorithm for mixed
model without subject blocking. In second half of the document we will refine the
agorithm to exploit the structure of G and thisis the actual implementation of the
algorithm.

If there are regression weights, the covariance matrix R(05) will be replaced by
R™(0;) =W, Y*R(0,)W, . For simpler notations, we will assume that the

weights are aready included in the matrix R(0;) and they will not be displayed

in the remainder of this document. When case weights are specified, they will be
rounded to nearest integer and each case will be entered into the analysis multiple
times depending on the rounded case weight. Since replicating a case will lead to
duplicate repeated measures (Note: repeated measures are unique within a repeated

subject), non-unity case weights will only be alowed for R(0;) with scaled

identity structure. In MIXED, only cases with positive case weight and regression
weight will be included analysis.

Fixed Effect Parameterization:

The parameterization of fixed effectsis the same asin the GLM procedure.

Random Effects Parameterization:

If we have K random effects and there are S, random subjects in k-th random effect,
the design matrix Z will be partitioned as

Z:|_Zl Z, - ZKJ’

where Z, is the design matrix of the k-th random effect. Each Z, can be
partitioned further by random subjects as below,

Z,=|2w Ze - Z | k=1
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Number of columns in the design matrix ij (j-th random subject of k-th random
effect) is equal to number of levels of the k-th random effect variable.

Under this partition, the G(85) will be a block diagonal matrix which can be
expressed as

G(0s) = Dl::ll_l S, OV, (ek)J'

It should also be noted that each random effect has its own parameter vector 0, ,
k=1,...,K, and there are no functional constraints between elements in these
parameter vectors. Thus 05 = (91,...,9K )

When there are correlated random effects, Z,; will be a combined design matrix

of the correlated random effects. Therefore in subsequent sections, each random
effect can either be one single random effect or a set of correlated random effects.

Repeated Subjects:

When the REPEATED subcommand is used, R(05) will be a block diagonal
matrix wherei-th block is R, (0) , i=1,....S.. That is,

R(0z) = DiS:RlRi (0)

The dimension of R,(0;) will be equal to number of cases in one repeated
subject but al R, (0) share the same parameter vector 0, .

Likelihood Functions

Recall that the -2 timeslog likelihood of MLE is

~2(\e(B,0) = log|V (0)|+r(8)"V (8)r(8)
+nlog2n

@
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and the -2 times log likelihood of REML is

=20 e (0) = log |V (0) | +1(0)"V (6)'r (6)

®3)
+log| X'V X |+(n—p)log2n

where N is the number of observations and P is the rank of fixed effect design

matrix. From (2) and (3), we can see that the key component of the likelihood
functions are

£,(6) =log | V() |
0,(8) =r(8)'V " (B)r (6) 4
7,(8) = log | X’V (0)X |.

Therefore, in each estimation iteration, we need to compute /,(0), ¢,(8) and
£,(8) aswell astheir 1% and 2" derivatives with respective to 0 .

Newton & Scoring Algorithms

Covariance parametersin 0 can be found by maximizing (2) or (3), however, there
are no closed form solutions in general. Therefore Newton and scoring agorithms

are used to find the solution numerically. The algorithm is outlined as below,

Compute starting value and initial log-likelihood (REML or ML).
2. Compute gradient vector g and Hessian matrix H of the log-likelihood

function using last iteration's estimate 0,_; . (See later section for computation
of gand H)

3. Computethenew step d = —H ™

g.
4. Letp=1.

5. Compute estimates of i-thiteration 0, =0,_, +pd .



6  MIXED

6. Check if 0, generates valid covariance matrices and improve the likelihood. If
not, reduce p by half and repeat step (5). If this process is repeated for pre-
specified no. of times and the stated conditions are still not satisfied, stop.

7. Check convergence of the parameter. If convergence criteria are met, then
stop. Otherwise, go back to step (2).

Newton's algorithm performs well if the starting value is close to the solution. In
order to improve the algorithm’s robustness to bad starting values, the scoring
algorithm is used in the first few iterations. This can be done easily be applying
different formulae for the Hessian matrix at each iteration. Apart from improved
robustness, the scoring algorithm is faster due to the smpler form of the Hessian
matrix.

Convergence Criteria

There are three types of convergence criteriaz parameter convergence, log-
likelihood convergence and Hessian convergence. For parameter and log-likelihood
convergence, they are subdivided into absolute and relative. If we let € be some
given tolerance level and

0,,; bes-th parameter ini-th iteration,
£, bethelog-likelihood in log-likelihood in i-th iteration,
g, bethe gradient vector ini-th iteration,

and H, be the hessian matrix in i-th iteration, then the criteria can be written as

follows,

Absolute parameter convergence:  max, [0, -0, [<e
. ‘esi B esi—l‘
Relative parameter conver gence: max,-————<g

| 9sﬁi—l |
(if 04, = 0, the denominator will be replaced by 1)
Absolute log-likelihood convergence: |/, =/, [<€
0 —0.
Relative log-likelihood conver gence: % <g
i1

(if £,_, =0, the denominator will be replaced by 1)

Absolute Hessian conver gence: g/Hg <e
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Tig-1

g Hig <
1 4i ]

(if £, =0, the denominator will be replaced by 1)

Relative Hessian conver gence:

Starting value of Newton’s Algorithm

If no prior information is available, we can choose the initial valuesof G and R
to be the identity. However, it is highly desirably to estimate the scale of the
parameter. By ignoring the random effects, and assuming the residual errors are

i.i.d. with variance 2, we can fit a GLM model and estimate G2 by the residual
sum of squares 62 . Then we choose the starti ng value of Newton’s algorithm to be

~2 ~2

) R .
K +1 K +1

Confidence Intervals of Covariance Parameters

The estimate é (ML or REML) is asymptatically normally distributed. Its variance
covariance matrix can be approximated by —2H™, where H is the hessian

A

matrix of the log-likelihood function evaluated at 6. A simple Wald's type
confidence interval for any covariance parameter can be obtained by using the
asymptotic normality of the parameter estimates, however it is not very appropriate
for variance parameters and correlation parameters that have arange of [0, 0) and

[—11] respectively. Therefore these parameters are transformed to parameters that
have range (—0o,0) . Using uniform delta method, see for example (van der Vaart,
1998), these transformed estimates still have asymptotic normal distributions.

Suppose we are estimation a variance parameter o’ by &f that is distributed as
N[o?,Var(G2)] asymptotically. The transformation we used is 10g(c*) which

can correct the skewness of G-, moreover 10g(G2) has the range (—0,)
which matches that of normal distribution. Using delta method, one can show that



8 MIXED

the asymptotic distribution of 10g(62) is N[log(c*),c*Var(G?2)]. Thus, a
(1-)100% confidence interval of 10g(c?) isgiven by

[log(6y) - Zl—qlzcgz\/ Var(67) , log(Gy)+ Zl—alzcgz\/var(&i)]

where z,_,, is the upper (1—a/2) percentage point of standard normal
distribution. By inverting this confidence interval, a (1—a)100% confidence

interval for ¢ isgiven by
[epl00(62) ~ 2, o0\ Var(32))  explogd2) +2, 0,02 Var(3?) )

When we need a confidence interval for a correlation parameter p, a possible

transformation will be its generalized logit
arctanh(p) =0.5log[(1+ p) /(1 p)]. The resulting confidence interval for p
will be

[tanHarctanh(p) -z, .., (1-5)*\Var(p) ), tanklarctanh(p)- z,.,,,(1-) *Var(p) )

Fixed and Random Effect Parameters

Estimation and prediction

After we obtain an estimate of 0, best linear unbiased estimator (BLUE) of 3 and
best linear unbiased predictor (BLUP) of Yy can be found by solving the mixed
model equations, Henderson (1984).

XTR™X Rz X"R™ yD
THh-1 —1 -1 TH-1 ©)
% RX Z'R*X+G % R yD
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The solution of (5) can be expressed as
X™VIX )Y XV

GZ'Viy-X B)
=G[Z'V Yy -Z"VXp]

b

Y ®)

The covariance matrix C of ﬁ and f' isgiven by

C = Cov(B,?)
_IXTR7X XTR7Z g -
TE'RX  Z'R7Z+G™{
_ Rf:n é aU
%21 Cn @
where

C, = (X"VX)"
C,, = -GZ'VXC,,
C,, = (Z'RZ+GYH)-C,X"VzG

Custom Hypotheses

In general, one can construct estimators or predictors for

0
Lb=[L, Ll]gg )
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for some hypothesis matrix L . Estimators or predictors of Lb can easily be
constructed by substituting 3 and f' into (8) and its variance covariance matrix can

be approximated by LCL" . If L, iszeroand L B is estimable, Lb is caled
the best linear unbiased estimator of L B. If L, is nonzero and L B is

estimable, LD iscalled the best linear unbiased pregictor of LD .

To test the hypothesis H,, : Lb = a for agiven vector a, we can use the statistic

e (L6-af LeLr)*(Lb-a)
g

©)

where q is the rank of the matrix L . The statistic in (9) has an approximate F
distribution. The numerator degrees of freedom is  and the denominator degree

of freedom can be obtained by Satterthwaite (1946) approximation. The method

outlined below is similar to Giesbrecht and Burns (1985), McLean and Sanders
(1988), and Fai and Cornelius (1996).

Satterthwaite’s Approximation

To find the denominator degrees of freedom of (9), we first perform the spectral

decomposition LCL" =T'DIl’ where Tis an orthogonal matrix of
eigenvectors and Dis a diagonal matrix of eigenvalues. If we let £ be the m-th

row of 'L, d,, be the m-th eigenvalues and

2d 2

- m

' 2(0)%g,,

ol _Crl ~
% and X(0) ™ isthe covariance matrix of the estimated
0=6

covariance parameters. If we let

where ¢, =
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Yn_|(v, > 2)

g
o1V~ 2

E =

then the denominator degree of freedom is given by

Note that the degrees of freedom can only be computed when E>g.

Type | &llI Statistics

Typel or |1 test statistics are specia cases of custom hypothesis tests.

Estimated Marginal Means (EMMEANS)

Estimated marginal means are special cases of custom hypothesis test. The
construction of the L matrix for EMMEANS can be found in "Estimated Marginal
Means' section of GLM’s algorithm document. If Bonferroni or Sidak adjustment is
requested for multiple comparisons, they will be computed according to the
algorithm detailed in Appendix 10:Post Hoc Tests.

Saved Values
If predicted values is requested, it will be computed by
§=Xp+27 (10)

using the estimates given in (6).

If fixed predicted valuesis requested, it will be computed by

y=Xp (11)
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If residual isrequested, it will be computed by
r=y-y (12)

If standard errors or degrees of freedom are requested for predicted values, a L
matrix will be constructed for each case and the formula in custom hypothesis
section will be used to obtain the requested val ues.

Information Criteria

Information criteria are for model comparison, the following criteria are given in
smaller is better form. If we let ¢ be the log-likelihood of (REML or ML), n be
total number of cases (or total of case weights if used) and d is number of model
parameters, the formula for various criteria are given as below,

» Akakeinformation criteria (AIC), Akaike (1974):
-20+2d
»  Finite sample corrected (AICC), Hurvich and Tsai (1989):

2dxn

el L
(n—d-1)

e Bayesianinformation criteria (BIC), Schwarz (1978):
—2/+dxlog(n)

e Consistent AIC (CAIC), Bozdogan (1987):
—2/+dx(log(n)+1)

For REML, the value of n is chosen to be total number of cases minus number
fixed effect parameters and d is number of covariance parameters. For ML, the
value of nistotal number of cases and d is number of fixed effect parameters plus
number of covariance parameters.
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1st and 2nd Derivatives of /7, (0)

In each Newton or scoring iteration we need to compute the 1* and 2" derivatives
of the components of the log-likelihood /,(0), k=1,23. Here we let
0 0°
=—/.(0)and H, = ——/,(0) ,k =1,2,3, then the 1% derivatives
O« 20 «(6) K~ 2000 «(0)

with respect to the s-th parameter in 0 isgiven by

[gl]s = tr(V_lVS),
[gz]s = _rv_lvsv_lr’ (3
[93]5 = _tr()?TV_leV_l)z)

and the 2" derivatives with respect to s and t-th parameter are given by

[H,]g = -tr(VVVTV) +tr(V7Vy),

H,]ly = 2r'VV VIV VT
— 2TV VXX TV, V (14)
AR

[H,], = 2tr(XTVV Vv,V X)
—tr(X™V IV VXX TV, V X)

—tr (X"™V IV, VIX)

where X = XC for a matrix C satisfying CCT = (X’V™'X)™ = P and
r=[=XX'VIX)IX'V iy =y -XB.
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Derivatives w.r.t. Parameters in G

Derivatives with respect to parametersin G can be constructed by from the entries
of

TW(X,X) W,(X,Z) W,(X,r)
W,(Xi15Z) = | W(Z,X) Wy(Z,Z) W,(Z,T)
(W, X) W(r,Z)  Wy(r,r)

[XTVviX X'Viz X'V (49

=|zZ'ViX z'V?z zZ'vV'%
r'vx r'v*z r'v*xr

The matrix W, (X;r; Z) can be computed from W, (X;y; Z) givenin (27), by
using the following relationship,

r =y - Xb,

where b, isthe current estimate of 3.

Using the above formula, we can obtain the following expressions,

r'v™r = y"Vly — y"VXb, .
= W, (y,y) — W, (y, X)b,
X'V = XTVly - XTVXb,

(17)
= W,(X,y) = Wy (X, X)b,
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Z'Vh =Z'Vly - Z'"V7Xb,

(18)
= Wl(z1 Y) - Wl(z1 x)bo

In terms of the elements in W, (X;r;Z) matrix, we can write down the 1°
derivativesof ¢,,¢, and /, with respect to aparameter 0 of the G matrix,

[gl]G,s = tr(Wl(Z1Z)Gs)’
[gz]G,s = _Wl(Z’ r)TGSWl(Z, I'), (19
[gs]G,s = _tr(Wl(X’ Z)Gswl(z’ X)P)’

For the second derivatives, we first define the following simplification factors

H, = -W,(Z,Z)GW,(Z,2)G, + W,(Z,Z2)G,

Héz = Wl(xi Z)GSWI(Z' I’)

HS, = 2W, (r,Z)G W,(Z,Z)G,W,(Z,r) - W,(r,Z)G W, (Z,r)
H?33 = Wl(X! Z)Gswl(Z' X)

HY, = 2W, (X, Z)G W,(Z,Z)G,W,(Z, X) = W,(X, Z)G W,(Z, X)

then second derivativesof ¢,,¢, and /, w.r.t. O and 0, (in G) are given by

[H,]leq =tr(HS,)
H,leq = ng -2(H Sez)T P Hth (20)
[Hiles = tr[Hgs Pl —tr[Hg, PHtes Pl

Derivatives w.r.t. Parameters in R

To compute R derivatives, we need to introduce the matrices
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W(l)S = —M
° 00,
and
W(Z)St - _ 62WO
° 00,00,

where 0, and 0, arethes" and t" parametersof R . Therefore,

W,(A,B) = ATR™B
W®P(A,B) = ATR'R,R™'B
= -A"[;2-R7(0)]B
WP (A,B) = AT[R'"R,R" - R'"RR'R,R™ - R"'R,R'R,R|B
= -AT[%-R7(0)]B

The matricesA and B canbe X ,Z Z or I , where

Z=ZM =Z(G+Z"RZ)™ and

r=[1 - X(X'VX)'X'V7y = y — Xb,

Remark: The matrix (G~ + Z"R™*Z) ™ involved in Z can be obtained by

pre/post multiply (I + LTZTR™ZL) by L and LT ).

Using these notations, the 1% derivatives of £, (0) with respect to a parameter in
R are asfollows,
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[0]rs = tr(RT'R,) — tr(WP*(Z, Z)M)
[0,]r.s = ~WS(r, 1) + 2W,(r, Z)WPS(Z, 1)
- - (21)
— W, (r, Z)WP(Z, Z)W,(Z,T1)

[93]R,s =- tr(H SR3)

To compute 2* derivatives w.rt. O, and 0, (of R), we need to consider the
following simplification factors.

HY = -R'R.R7R, + R'R,
- WP*(Z, )M = W(Z, Z) MW (Z, Z)M

HS, = WOS(X, 1) + W, (X, Z)WP(Z,Z) W(Z,1)
— W,(X,Z) WP(Z,1) = WP3(X, Z) W,(Z,T)

HR, = -W&*(r,r)
— W, (r,Z) W2%(Z,Z) W,(Z,r)
+ 2W,(r, Z) WP (Z,1)
— AW, (r, Z)W(Z, Z) - W (r, Z)IM
x [WE(Z,Z) W, (Z,1) - W (Z,1)]

Hes = WE(X, X) = Wo(X, Z) WE(Z,X)
- WE(X, Z) W,(Z, X)
+ W, (X,Z) W®(Z,2Z) W,(Z, X)
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H3s = —WP* (X, X)
— W,(X,Z) WP%(Z,2Z) W,(Z, X)
+ 2W, (X, Z) W2%(Z, X)
— AW, (X, Z) WEP(Z, Z) - WS(X, Z)IM
x [WSH(Z, Z) Wo(Z, X) = W (Z, X)]

Based on these simplification terms, the entries of the Hessian matrices are given
by

[H,]rs =tf(H§1)

[HZ]R,st = HSth _Z(sz)T PHtRz (22
[HS]R,st :tr(HSRts P_Hsﬁes PHst P)

G&R cross derivatives

These section gives expressions for the 2* derivatives of /,,/, and /, with

respect to a parameter 0, in G and a parameter 0, in R. First, we introduce the
following simplification terms,

H gRl = _chl)s(z ] Z)Gt
+2WX(Z,2)G W, (Z,Z)
—WE(Z,Z2)Wo(Z,2)G,W,(Z,2)

Hr, = AWG"(r, Z) = Wo(r, Z)MWG*(Z, Z)]
x[MW,(Z,Z) = 11G [W,(Z,Z)M —1]
x W,y(Z,r)
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Hirs = WX, Z) = Wo (X, Z)MWG(Z, Z)]
x [MW,(Z,Z) = 1]G,[W,(Z,Z)M —1]
x W,(Z, X)

Based on these simplification terms, the second derivatives are given by

[Hl]GR,st = tr(HéRl)

[Hz]GR,st = HéRZ - Z(Héz)Tsz 23)

[H3]GR,st = tr(Hém P- HSG3 PHfag P)

Gradient & Hessian of REML

Therestricted log likelihood is given by

~ 20 e (0 ]y) =1log | V(8) | +r(8)"V(O)r (8)
+log | X'VH@)X | +(n-p)log2n

where pisequal to therank of X .

Therefore the s" element of the gradient vector is given by

lals = [9.]s + [9.]s + [9;]s

and the (s,t)-th element of the Hessian matrix is given by

[H]a = [Hl]st +[H2]st +[H3]st
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If scoring algorithm is used, the Hessian can be simplified to

[H]st = _[Hl]st +[H3]st .

Gradient & Hessian of MLE

Thelog likelihood is given by

=20, (@ |y) =log | V(8) | +1(8)"V~'(0)r ()

+nlog2n

Therefore the s" element of the gradient vector is given by

[9ls = [9:)s +[9.]s

and the (st)" element of the Hessian matrix is given by

[H]st = [Hl]st + [H2]st :

If scoring algorithm is used the Hessian can be simplified to

[Hls =-{H4]q.

It should be noted that the Hessian matrices for the scoring algorithm in both ML
and REML are not ‘exact’. In order to speed up calculation, some second derivative
terms are dropped. Therefore, they are only used in intermediate step of

optimization but not for standard error calculations.
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Cross Product matrices

During the estimation we need to construct several cross product matrices in each
iteration,  namely:  W,(X;y;Z),  W,(X;y;Z)., WZ2(X:y;Z),
WA (X;y;Z), W, (X;y), and W,,(X;Y). The sweeping operator (see for

example Goodnight (1979)) is used in constructing these matrices. Basically, the
sweeping operator performs the following transformation

A B N A A B
B C ~-B'A~ C-B'AB|
The steps needed to construct these matrices are outlined below,

STEP 1:

Construct

X'TR™ X'R'y X'R™*zO
W, (X;y; Z)=EyTR‘1X y'Rly yTR‘lzB (24)
H'R™X Z'R7Z y'R™yH

STEP 2:
Construct W/ (X;y; Z) which is an augmented version of W, (X;y;Z). Itis

given by the following expression.
O+L"Z'"R™ZL L™W,(Z,)O

W (X;y;Z) =1 0 (25)
° Ol WO(EZ)L W, Ul

where L isthe lower-triangular Cholesky root of G, i.e. G=LL" and W(Z, .) isthe

rows of W, corresponding to Z.
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STEP 3:

Sweeping W, (X;y; Z) by pivoting on diagonal elements in upper-left partition

will give usthe matrix W, (X;y; Z), which is shown below.

|:| A A T |:|
WAy 2) = WA (1,1) WA (1,2)L W(Z,L)]D

R (26)
0 Wo(GZ)LW;(1,1) W, (Xiy;Z) O

where

X'VIX  X'V7z X'Vvly
W,(X;y;Z) = |ZTVX  Z'VZ ZTV Yy (27)
yTV —lx yTv—lZ yTv—ly

and

WlA @yn=01+ LTZTR_lzL)_.
During the sweeping, if we accumulate the log of the i-th diagonal element just
before i-th sweep, we will obtain log|l +L"Z"R™ZL |=log|V |-log|R |

as a by-product. Thus, adding to this quantity by log | R | will giveus 7,(0) .

STEP 4:
Consider the following submatrix W, ,(X;y) of W,(X;y; Z),

XWX X'V~
Y ] (29)

W, . (X;y) =
bO( y) |:yTV_1x yTV_]_y
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Sweeping W, ,(X;y) by pivoting on diagonal elements of X'V X will give
us

VX)) b, O
T

O (29)
b, £,(0)g

W, (X3y) = %XT
0

where b, is an estimate of B, in current iteration. After this step, we will obtain
0,(0) and £,(0) =| XTVX |.
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