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MIXED 

Overview 
This document summarizes the computational algorithms discussed in Wolfinger, 
Tobias and Sall (1994). 

Notation 
 Overall covariance parameter vector 

G�  A vector of covariance parameters associated with random effects. 

k  A vector of covariance parameters associated with the k-th random 
effect. 

R  A vector of covariance parameters associated with the residual term. 

K  Number of random effects. 

rS  Number of repeated subjects. 

kS  Number of subjects in k-th random effect. 

)(�V  The n×n covariance matrix of y. This matrix is sometimes denoted by 

)(�yV . The subscript is removed here for a cleaner notation. 

)(sV�  First derivative of )(V  with respect to the s-th parameter in � .  

)(stV��  Second derivative of )(�V with respect to s and t-th parameter in � .  

)( RR  The n×n covariance matrix of �. 

)( Rs �R�  First derivative of )( RR  with respect to the s-th parameter in R�  

)( Rst �R��  Second derivative of )( R�R with respect to s and t-th parameter in 

R� . 

)( GG  The covariance matrix of random effects. 
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)(s GG�  First derivative of )( GG with respect to s-th parameter in G� . 

)( GstG��  Second derivative of )( GG  with respect to s and t-th parameter in 

G� . 

)( kk �V  The covariance matrix of the k-th random effect for one random subject.  

)( ksk, �V�  First derivative of )( kk �V  with respect to s-th parameter in k� . 

)( kstk, �V��  Second derivative of )( kk �V  with respect to s and t-th parameter in 

k� . 

y  n by 1 vector of dependent variable. 

X  n by p design matrix of fixed effects. 

Z  n by q design matrix of random effects. 

r  n by 1 vector of residual. 

�  p by 1 vector of fixed effects parameters. 

�  q by 1 vector of random effects parameters. 

�  n by 1 vector of residual error. 

cW  n by n diagonal matrix of case weights. 

rwW  n by n diagonal matrix of regression weights. 

Model 

In this document, we assume a mixed effect model of the form 

ZXy ++=   (1) 

In this model, we assume that �  is distributed as )]([N RR0,  and �  is 

independently distributed as )]([N GG0, . Therefore y is distributed as 

)]([N VX , where )()()( R
T

G RZZGV += . The unknown parameters 

include the regression parameters in �  and covariance parameters in � . 

Estimation of these model parameters relies on the use of a Newton-Ralphson or 
scoring algorithm. When we use either algorithm for finding MLE or REML 
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solutions, we need to compute )(1 ��V  and its derivatives with respect to � , 

which are computationally infeasible for large n. Wolfinger et.al.(1994) discussed 

methods that can avoid direct computation of )(1 ��V . They tackled the problem 

by using the SWEEP algorithm and exploiting the block diagonal structure of G 
and R. In the first half of this document, we will detail the algorithm for mixed 
model without subject blocking. In second half of the document we will refine the 
algorithm to exploit the structure of G  and this is the actual implementation of the 
algorithm. 

If there are regression weights, the covariance matrix )( RR  will be replaced by 
1/2

rwR
1/2

rwR WRWR −−= )()(* . For simpler notations, we will assume that the 

weights are already included in the matrix )( RR  and they will not be displayed 

in the remainder of this document. When case weights are specified, they will be 
rounded to nearest integer and each case will be entered into the analysis multiple 
times depending on the rounded case weight. Since replicating a case will lead to 
duplicate repeated measures (Note: repeated measures are unique within a repeated 

subject), non-unity case weights will only be allowed for )( RR  with scaled 

identity structure. In MIXED, only cases with positive case weight and regression 
weight will be included analysis. 

Fixed Effect Parameterization: 

The parameterization of fixed effects is the same as in the GLM procedure. 

Random Effects Parameterization: 

If we have K random effects and there are Sk random subjects in k-th random effect, 
the design matrix Z  will be partitioned as 

[ ]KZZZZ 21 �= , 

where kZ  is the design matrix of  the k-th random effect. Each kZ  can be 

partitioned further by random subjects as below, 

[ ]
kkSk2k1k ZZZZ �= , k=1,...,K. 
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Number of columns in the design matrix kjZ  (j-th random subject of k-th random 

effect) is equal to number of levels of the k-th random effect variable. 

Under this partition, the )(G G�  will be a block diagonal matrix which can be 

expressed as 

[ ])()( 1k kkSG VIG
k

⊗⊕= =
K . 

It should also be noted that each random effect has its own parameter vector k� , 

k=1,...,K, and there are no functional constraints between elements in these 

parameter vectors. Thus ( )K��� ,...,1G = . 

When there are correlated random effects, kjZ  will be a combined design matrix 

of the correlated random effects. Therefore in subsequent sections, each random 
effect can either be one single random effect or a set of correlated random effects. 

Repeated Subjects: 

When the REPEATED subcommand is used, )(R R�  will be a block diagonal 

matrix where i-th block is )(R Ri � , i=1,...,SR. That is, 

)()( i1i
R RR R

S
=⊕=  

The dimension of  )(R Ri �  will be equal to number of cases in one repeated 

subject but all )(R Ri �  share the same parameter vector R� . 

Likelihood Functions 

Recall that the –2 times log likelihood of MLE is 

�

������

2logn

)(r)(V)(r|)(V|log),(2 1T
MLE

+

+=− −�
 (2) 
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and the –2 times log likelihood of REML is 

�

�

2log)p(n||log

)()()(|)(|log)(2 REML

−++

+=−
−

−

XVX’

rVrV
1

1T�
 (3) 

where n  is the number of observations and p  is the rank of fixed effect design 

matrix. From (2) and (3), we can see that the key component of the likelihood 
functions are 

.|)(’|log)(

)()()’()(

|)(|log)(

1
3

1
2

1

XVX

rVr

V

θθ

θθθθ

θθ

�

�

�

�

�

�

�

�

 (4) 

Therefore, in each estimation iteration, we need to compute )(1 �� , )(2 ��  and 

)(3 ��  as well as their 1st and 2nd derivatives with respective to � . 

Newton & Scoring Algorithms 

Covariance parameters in �  can be found by maximizing (2) or (3), however, there 

are no closed form solutions in general. Therefore Newton and scoring algorithms 

are used to find the solution numerically. The algorithm is outlined as below, 

1. Compute starting value and initial log-likelihood (REML or ML). 

2. Compute gradient vector g  and Hessian matrix H  of the log-likelihood 

function using last iteration's estimate 1i−� . (See later section for computation 

of g and H) 

3. Compute the new step gHd 1−−= . 

4. Let 1= . 

5. Compute estimates of i-th iteration dii 1 += −  . 
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6. Check if i�  generates valid covariance matrices and improve the likelihood. If 

not, reduce �  by half and repeat step (5). If this process is repeated for pre-

specified no. of times and the stated conditions are still not satisfied, stop. 

7. Check convergence of the parameter. If convergence criteria are met, then 
stop. Otherwise, go back to step (2).  

Newton’s algorithm performs well if the starting value is close to the solution. In 
order to improve the algorithm’s robustness to bad starting values, the scoring 
algorithm is used in the first few iterations. This can be done easily be applying 
different formulae for the Hessian matrix at each iteration. Apart from improved 
robustness, the scoring algorithm is faster due to the simpler form of the Hessian 
matrix. 

Convergence Criteria 

There are three types of convergence criteria: parameter convergence, log-
likelihood convergence and Hessian convergence. For parameter and log-likelihood 
convergence, they are subdivided into absolute and relative. If we let �  be some 
given tolerance level and 

 i,s�  be s-th parameter in i-th iteration, 

 i�  be the log-likelihood in log-likelihood in i-th iteration, 

 ig  be the gradient vector in i-th iteration, 

 and iH  be the hessian matrix in i-th iteration, then the criteria can be written as 

follows,  

Absolute parameter convergence: ��� <− − ||max 1i,si,ss  

Relative parameter convergence:  �
	

�

�

||
max

1is,

1is,is,
s  

(if 01, �
�is , the denominator will be replaced by 1) 

Absolute log-likelihood convergence:  �<− − || 1ii ��  

Relative log-likelihood convergence:  �
	

�

�

||
||

1

1

i

ii

�

��
 

(if 01 ��i� , the denominator will be replaced by 1) 

Absolute Hessian convergence:  �<−
i

1
i

T
i gHg  
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Relative Hessian convergence: 
gHg i

1
i

T
i �

�

|| i�
 

(if 0�i� , the denominator will be replaced by 1) 

Starting value of Newton’s Algorithm 

If no prior information is available, we can choose the initial values of G  and R  
to be the identity. However, it is highly desirably to estimate the scale of the 
parameter. By ignoring the random effects, and assuming the residual errors are 

i.i.d. with variance 2
 , we can fit a GLM model and estimate 2
  by the residual 

sum of squares 2
̂ . Then we choose the starting value of Newton’s algorithm to be 

1

ˆ 2

+
=

K



kG  and 
1

ˆ 2

+
=

K



R . 

Confidence Intervals of Covariance Parameters  

The estimate �̂  (ML or REML) is asymptotically normally distributed. Its variance 

covariance matrix can be approximated by 1H2 −− , where H  is the hessian 

matrix of the log-likelihood function evaluated at �̂ . A simple Wald’s  type 
confidence interval for any covariance parameter can be obtained by using the 
asymptotic normality of the parameter estimates, however it is not very appropriate 
for variance parameters and correlation parameters that have a range of ),0[ ∞  and 

]1,1[−  respectively. Therefore these parameters are transformed to parameters that 

have range ),( ∞−∞ . Using uniform delta method, see for example (van der Vaart, 

1998), these transformed estimates still have asymptotic normal distributions.  

Suppose we are estimation a variance parameter 2
  by 2
n
̂  that is distributed as 

)]ˆ(Var,[N 2
n

2 

  asymptotically. The transformation we used is )log( 2
  which 

can correct the skewness of 2
n
̂ , moreover )ˆlog( 2

n
  has the range ),( ∞−∞  

which matches that of normal distribution. Using delta method, one can show that 
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the asymptotic distribution of )ˆlog( 2
n
  is )]ˆ(Var),[log(N 2

n
42 


 − . Thus, a 

%100)1( �−  confidence interval of )log( 2
  is given by 

])ˆ(Varz)ˆlog(,)ˆ(Varz)ˆ[log( 2
n

2
n2/1

2
n

2
n

2
n2/1

2
n 







��

−
−

−
− +−  

where 2/1z
�−  is the upper )2/1( �−  percentage point of standard normal 

distribution. By inverting this confidence interval, a %100)1( �−  confidence 

interval for 2
  is given by 

( ) ( )])ˆ(Varz)ˆlog(exp,)ˆ(Varz)ˆlog([exp 2
n

2
n2/1

2
n

2
n

2
n2/1

2
n 







��

−
−

−
− +−

 

When we need a confidence interval for a correlation parameter � , a possible 

transformation will be its generalized logit 
)]1/()1log[(5.0)(harctan ��� −+= . The resulting confidence interval for �  

will be 

( )( ) ( )( )])ˆ(Var)ˆ1(zˆharctantanh,)ˆ(Var)ˆ1(zˆharctan[tanh 12
2/1

12
2/1 ������

��

−
−

−
− −−−−

 

Fixed and Random Effect Parameters 

Estimation and prediction 

After we obtain an estimate of � , best linear unbiased estimator (BLUE) of � and 

best linear unbiased predictor (BLUP) of �  can be found by solving the mixed 

model equations, Henderson (1984). 









=














+ −

−

−−−

−−

yRZ

yRX

GXRZXRZ

ZRXXRX
1T

1T

11T1T

1T1T

ˆ

ˆ

ˆˆˆ

ˆˆ

�
�

 (5) 
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The solution of  (5) can be expressed as 

]XVZyV[ZG

)X(yVZG

yVX)XV(X

1T1T

1T

1T1T

ˆˆˆˆ

ˆˆˆˆ

ˆˆˆ

−−

−

−−−

−=

−=

=

 (6) 

The covariance matrix C of �̂ and �̂ is given by 









=













+
=

=
−

−−−

−−

2221

21
T

11

11T1T

1T1T

CC

CC

GZRZXRZ

ZRXXRX

C

ˆˆ

ˆˆ

ˆˆˆ

ˆˆ

)ˆ,ˆ(Cov ��

 (7) 

where 

GZVXCGZRZC

CXVZGC

XVXC

TT

T

T

ˆˆˆ)ˆˆ(ˆ

ˆˆˆˆ

)ˆ(ˆ

1
21

111
22

11
1

21

1
11

����

�

��

	��

	�

�

 

Custom Hypotheses 

In general, one can construct estimators or predictors for  

[ ] 







= LLLb 10   (8) 
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for some hypothesis matrix L . Estimators or predictors of Lb  can easily be 

constructed by substituting �̂ and �̂  into (8) and its variance covariance matrix can 

be approximated by TLCL . If 1L  is zero and L0  is estimable, bL ˆ  is called 

the best linear unbiased estimator of L0 . If 1L  is nonzero and L0  is 

estimable, bL ˆ  is called the best linear unbiased predictor of Lb . 

To test the hypothesis aLb =:H0  for a given vector a , we can use the statistic 

( ) ( )
q

aˆˆˆ T
−−=

− bL)LC(LabL
F

1T

 (9) 

where q is the rank of the matrix L . The statistic in (9) has an approximate F 
distribution. The numerator degrees of freedom is q  and the denominator degree 

of freedom can be obtained by Satterthwaite (1946) approximation. The method 
outlined below is similar to Giesbrecht and Burns (1985), McLean and Sanders 
(1988), and Fai and Cornelius (1996). 

Satterthwaite’s Approximation 

To find the denominator degrees of freedom of (9), we first perform the spectral 

decomposition � DLCL TTˆ  where  is an orthogonal matrix of 

eigenvectors and D is a diagonal matrix of eigenvalues. If we let m� be the m-th 

row of L , md be the m-th eigenvalues and  

m
T

m gg 1

2
m

m
)ˆ(

d2
−∑

=
�

 

where 
���

��
�

�
ˆ

T
mm

m

C
g

��
 and 1)ˆ( −��  is the covariance matrix of the estimated 

covariance parameters. If we let  
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�
�

�
	

�
q

1m
m

m

m 2)I(
2

E  

then the denominator degree of freedom is given by 

qE

E2

	
� . 

Note that the degrees of freedom can only be computed when E>q. 

Type I &III Statistics 

Type I or III test statistics are special cases of custom hypothesis tests.  

Estimated Marginal Means (EMMEANS) 
Estimated marginal means are special cases of custom hypothesis test. The 
construction of the L matrix for EMMEANS can be found in "Estimated Marginal 
Means" section of GLM’s algorithm document. If Bonferroni or Sidak adjustment is 
requested for multiple comparisons, they will be computed according to the 
algorithm detailed in Appendix 10:Post Hoc Tests. 

Saved Values 

If predicted values is requested, it will be computed by 

ZXy ˆˆˆ +=   (10) 

using the estimates given in (6). 

If fixed predicted values is requested, it will be computed by 

Xy ˆˆ =   (11) 
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If residual is requested, it will be computed by 

yyr −= ˆ   (12) 

If standard errors or degrees of freedom are requested for predicted values, a L  
matrix will be constructed for each case and the formula in custom hypothesis 
section will be used to obtain the requested values. 

Information Criteria 

Information criteria are for model comparison, the following criteria are given in 
smaller is better form. If we let �  be the log-likelihood of (REML or ML), n be 

total number of cases (or total of case weights if used) and d  is number of model 
parameters, the formula for various criteria are given as below, 

•  Akaike information criteria (AIC), Akaike (1974):  

� �2 2� d  

•  Finite sample corrected (AICC), Hurvich and Tsai (1989):  

� � �
� �

2
2

1
�

d n

n d( )
 

•  Bayesian information criteria (BIC), Schwarz (1978):  

� � �2� d nlog( )  

•  Consistent AIC (CAIC), Bozdogan (1987): 

� � � �2 1� d n(log( ) ) 

For REML, the value of n is chosen to be total number of cases minus number 
fixed effect parameters and d is number of covariance parameters. For ML, the 
value of n is total number of cases and d is number of fixed effect parameters plus 
number of covariance parameters. 
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1st and 2nd Derivatives of )(k ��  

In each Newton or scoring iteration we need to compute the 1st and 2nd derivatives 

of the components of the log-likelihood )(k �� , k=1,2,3. Here we let 

)(�
��
�

� kkg � and )(
2

�
����

�
� kkH � , 3,2,1k � , then the 1st derivatives 

with respect to the s-th parameter in �  is given by 

)
~~

(][

,][

),(][

11
3

11
2

1
1

XVVVXtrg

rVVrVg

VVtrg

s
T

s

ss

ss

��

��

�

	�

	�

�

�

�

�

 (13) 

and the 2nd derivatives with respect to s and t-th parameter are given by 

),()(][ 111
1 sttsst VVtrVVVVtrH ���� ��� �	�  

rVVVr

rVVXXVVVr

rVVVVVrH

st
T

t
T

s
T

ts
T

st

11

111

111
2

~~
2

2][

��

���

���

	

	

�

��

��

��

 (14) 

)
~~

(

)
~~~~

(

)
~~

(2][

11

1111

111
3

XVVVXtr

XVVVXXVVVXtr

XVVVVVXtrH

st
T

t
T

s
T

ts
T

st

��

����

���

	

	

�

�

��

��

 

where XCX �
~

 for a matrix C  satisfying PXVXCCT �� �� )’( 1  and 

XyyVX’X)VX(X’Ir 111 ˆ][ −=−= −−− .  
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Derivatives w.r.t. Parameters in G 

Derivatives with respect to parameters in G  can be constructed by from the entries 
of  

�
�
�

�

�

�
�
�

�

�

�

�
�
�

�

�

�
�
�

�

�
�

���

���

���

rVrZVrXVr

rVZZVZXVZ

rVXZVXXVX

rrWZrWXrW

rZWZZWXZW

rXWZXWXXW

ZrXW

TTT

TTT

TTT

111

111

111

111

111

111

1

),(),(),(

),(),(),(

),(),(),(

);;(

 (15) 

The matrix );;(1 ZrXW  can be computed from );;(1 ZyXW  given in (27), by 

using the following relationship, 

0Xbyr 	�  

where 0b  is the current estimate of � . 

Using the above formula, we can obtain the following expressions, 

011

0
111

),(),( bXyWyyW

XbVyyVyrVr TTT

	�

	� ���

 (16) 

011

0
111

),(),( bXXWyXW

XbVXyVXrVX TTT

	�

	� ���

 (17) 
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011

0
111

),(),( bXZWyZW

XbVZyVZrVZ TTT

	�

	� ���

 (18) 

In terms of the elements in );;(1 ZrXW  matrix, we can write down the 1st 

derivatives of  1� , 2�  and 3�  with respect to a parameter s�  of the G matrix, 

),),(),((][

),,(),(][

),),((][

11,3

11,2

1,1

PXZWGZXWtrg

rZWGrZWg

GZZWtrg

ssG

s
T

sG

ssG

�

�

�

	�

	�

�

 (19) 

For the second derivatives, we first define the following simplification factors 

stts
st
G GZZWGZZWGZZWH ���� ),(),(),( 1111 �	�

),(),( 112 rZWGZXWH s
s
G

��

),(),(),(),(),(2 111112 rZWGZrWrZWGZZWGZrWH stts
st
G

���� 	�

),(),( 113 XZWGZXWH s
s
G

��

),(),(),(),(),(2 111113 XZWGZXWXZWGZZWGZXWH stts
st
G

���� 	�  

then second derivatives of 1� , 2�  and 3�  w.r.t. s�  and t�  (in G) are given by 

]Pt
G3

s
G3

st
G3stG,3

t
G2

Ts
G2

st
G2stG,2

st
G1stG,1

HPtr[HP]tr[H][H

HP)2(HH][H

)tr(H][H

−=

−=

=

 (20) 

Derivatives w.r.t. Parameters in R 

To compute  R derivatives, we need to introduce the matrices 
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s

0(1)s
0

W
W

∂
∂−=  

and 

ts

0
2

(2)st
0

W
W

∂∂
∂−=  

where s�  and t�  are the sth and tth parameters of R . Therefore, 

BRA

BRRRRRRRRRRRRRABAW

BRA

BRRRABAW

BRABAW

ts

s

T

sttsst
Tst

T

s
Ts

T

)]([

][),(

)]([

),(

),(

1

11111111)2(
0

1

11)1(
0

1
0

�	�

		�

�	�

�

�

�

���

�

��������

�

��

�

��

�

������

�

 

The matrices A and B can be X , Z , Z
~

or r , where  

111 ��� ��� )ZRZG(ZZMZ
~ T , and 

0
111 ]’)’([ XbyyVXXVXXIr 	�	� ���  

Remark: The matrix 111 )( ��� � ZRZG T involved in Z
~

can be obtained by 

pre/post multiply ��� )( 1ZLRZLI TT  by L and TL  ). 

Using these notations, the 1st derivatives of )(�k� with respect to a parameter in 

R are as follows,  
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)tr(][

),
~

(),()
~

,(

),()
~

,(2),(][

)),(tr()(][

3,3

0
)1(

00

)1(
00

)1(
0,2

)1(
0

1
,1

s
RsR

s

ss
sR

s
ssR

Hg

rZWZZWZrW

rZWZrWrrWg

MZZWRRtrg

	�

	

�	�

	� � �

 (21) 

To compute 2nd derivatives w.r.t. s�  and t�  (of R), we need to consider the 

following simplification factors. 

MZZMWZZWMZZW

RRRRRRH

)t()s()st(

stts
st
R

),(),(),( 1
0

1
0

2
0

111
1

		

�	� ��� ����
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~

,(),(
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0
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)1(
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)1(
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rZWZXWrZWZXW

rZWZZWZXWrXWH
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sss
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��
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~
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)],(),()
~

,([2

),()
~

,(2
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~
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~
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),(

)1(
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)1(
0

)1(
0

)1(
00

)2(
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0
)2(
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rZWrZWZZW

MZrWZZWZrW

rZWZrW

rZWZZWZrW

rrWH
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st

stst
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)1(
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)1(
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)],(),
~

(),([

)],(),()
~

,([2

),()
~

,(2

),
~

(),()
~
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),(

)1(
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)1(
0

)1(
0

)1(
00

)2(
00

0
)2(

00

)2(
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XZWXZWZZW

MZXWZZWZXW

XZWZXW

XZWZZWZXW
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st

stst
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	�

		

�

	

	�

  

Based on these simplification terms, the entries of the Hessian matrices are given 
by 

P)HPHPtr(H][H

HP)2(HH][H

Htr][H

t
R3

s
R3

st
R3stR,3

t
R2

Ts
R2

st
R2stR,2

st
R1stR,1

−=

−=

= )(

 (22) 

G&R cross derivatives 

These section gives expressions for the 2nd derivatives of  1� , 2�  and 3�  with 

respect to a parameter s�  in G and a parameter t�  in R. First, we introduce the 

following simplification terms, 
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~
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Based on these simplification terms, the second derivatives are given by 

)(][ 1,1
st
GRstGR HtrH �   

t
R

Ts
G

st
GRstGR HHHH 222,2 )(2][ 	�  23) 

)(][ 333,3 PHPHPHtrH t
R

s
G

st
GRstGR 	�   

Gradient & Hessian of REML 

The restricted log likelihood is given by 

2logp)(n|)(|log

)()()(|)(|log)|(2

1

1

	���

�������	
�

�

XVX

rVrVy

T

T
REML�

 

where p is equal to the rank of X . 

Therefore the sth element of the gradient vector is given by 

ssss gggg ][][][][ 321 ���  

and the (s,t)-th element of the Hessian matrix is given by 

stststst HHHH ][][][][ 321 ���  
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If scoring algorithm is used, the Hessian can be simplified to  

st][H][H[H] 3st1st +−= . 

Gradient & Hessian of MLE 

The log likelihood is given by 

2logn

)()()(|)(|log)|(2 1

�

�������	 � rVrVy T
MLE�

 

Therefore the sth element of the gradient vector is given by 

sss ggg ][][][ 21 ��  

and the (s,t)th element of the Hessian matrix is given by 

ststst HHH ][][][ 21 �� . 

If scoring algorithm is used the Hessian can be simplified to  

st1st ][H[H] −= . 

It should be noted that the Hessian matrices for the scoring algorithm in both ML 

and REML are not ‘exact’. In order to speed up calculation, some second derivative 

terms are dropped. Therefore, they are only used in intermediate step of 

optimization but not for standard error calculations. 
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Cross Product matrices 

During the estimation we need to construct several cross product matrices in each 

iteration, namely: Z)y;(X;W0 , Z)y;(X;W1 , Z)y;(X;WA
0 , 

Z)y;(X;WA
1 , y)(X;Wb0 , and y)(X;Wb1 . The sweeping operator (see for 

example Goodnight (1979)) is used in constructing these matrices. Basically, the 
sweeping operator performs the following transformation  

�
�

�
�
�

�

		
��

�

�
�
�

�
��

��

BA’BCA’B

BAA
C’B

BA
. 

The steps needed to construct these matrices are outlined below, 

 

STEP 1:  

Construct 
















=

−−−

−−−

−−−

yRyZRZXRZ

ZRyyRyXRy

ZRXyRXXRX

Z)y;(X;W
1T1T1T

1T1T1T

1T1T1T

0  (24) 

 

STEP 2: 

Construct Z)y;(X;WA
0  which is an augmented version of Z)y;(X;W0 . It is 

given by the following expression. 









⋅

⋅+
=

−

00

0
T1TT

A
0 WZ)L,(W

)(Z,WLZLRZLI
Z)y;(X;W  (25) 

where L is the lower-triangular Cholesky root of G, i.e. G=LLT and W0(Z, . ) is the 

rows of W0 corresponding to Z. 
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STEP 3:  

Sweeping );;(0 ZyXWA  by pivoting on diagonal elements in upper-left partition 

will give us the matrix );;(1 ZyXWA , which is shown below. 









⋅−

⋅
=

Z)y;(X;W(1,1)Z)LW,(W

)W(Z,(1,1)LW(1,1)W
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10
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1  (26) 

where  
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�
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�
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���

yVyZVyXVy

yVZZVZXVZ

yVXZVXXVX

ZyXW
TTT

TTT

TTT

111

111

111

1 );;(  (27) 

and  

−−+= ZL)RZL(I(1,1)W 1TTA
1 . 

During the sweeping, if we accumulate the log of the i-th diagonal element just 

before i-th sweep, we will obtain  ||log||log||log RVZLRZLI 1TT −=+ −  

as a by-product. Thus, adding to this quantity by ||log R  will give us )(1 �� . 

 

STEP 4: 

Consider the following submatrix );(0 yXWb  of );;(1 ZyXW , 

�
�
�

�

�
�
�

�
�

��

��

yVyXVy

yVXXVX
yXW TT

TT

b 11

11

0 );( . (28) 
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Sweeping );(0 yXWb  by pivoting on diagonal elements of XVXT 1� will give 

us 









=

−−

)(

)(

2 ��T
0

0
1T

b1 b

bXVX
y)(X;W  (29) 

where b0 is an estimate of �0 in current iteration. After this step, we will obtain 

)(2 ��  and ||)( 1
3 XVXT ���� .  
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