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MULTIPLE CORRESPONDENCE 

Multiple Correspondence Analysis, also known as homogeneity analysis, quantifies 
nominal (categorical) data by assigning numerical values to the cases (objects) and 
categories, such that in the low-dimensional representation of the data, objects 
within the same category are close together and objects in different categories are 
far apart. Each object is as close as possible to the category points of categories that 
apply to the object. In this way, the categories divide the objects into homogeneous 
subgroups. Variables are considered homogeneous when they classify objects that 
are in the same categories into the same subgroups. 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

 
n  Number of analysis cases (objects) 

 

wn
 

Weighted number of analysis cases: 1

n

i

i

w

=
∑

 

totn
 

Total number of cases (analysis + supplementary) 

iw
 Weight of object i ; 

1iw =
 if cases are unweighted; 

0iw =
 if object i is 

supplementary. 

W  Diagonal tot totn n×
 matrix, with iw

on the diagonal. 

m  Number of analysis variables 

 

wm
 

Weighted number of analysis variables ( 1

m

w j

j

m v

=

=∑
) 

totm
 

Total number of variables (analysis + supplementary) 

H  The data matrix (category indicators), of order tot totn m×
, after 

discretization,  imputation of missings , and listwise deletion, if applicable. 

p
 Number of dimensions 
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For variable j , 1, , totj m�=  

jv  variable weight; 1jv =  if weight for variable j  is not 

specified or if variable j  is supplementary 

jk  Number of categories of variable j (number of distinct values 

in jh , thus,  including supplementary objects) 

jG  Indicator matrix for variable j , of order tot jn k×  

The elements of jG  are defined as 1, , ; 1, ,tot ji n r k= =� �  

( )
1 when the th object is in the th category of variable 

0 when the th object is not in the th category of variable j ir
i r j

g
i r j


= 


 

 

jD  Diagonal j jk k×  matrix, containing the weighted univariate marginals; 

i.e., the weighted  column sums of jG   ( jD j j′= G WG ) 

jM  Diagonal tot totn n×  matrix, with diagonal elements defined as 

 

( )

0 when the th observation is missing and missing strategy variable  is passive

when the th object is in th category of variable  and th category is only
0

used by supplementary objects (i.e. wh
j ii

i j

i r j rm =

( )

   

en 0)

otherwise

j rr

j

d

v






 =



 

 

*M  
jj

M∑  

The quantification matrices and parameter vectors are: 

X  

 

Object scores, of order totn p×  

wX  Weighted object scores ( w =X WX ) 
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nX  

 

X normalized according to requested normalization option 

jY  Category quantifications (centroid coordinates),  of order jk p× .  

Note: The matrices W , jG , jM , *M , and jD  are exclusively notational devices; 

they are stored in reduced form, and the program fully profits from their sparseness 
by replacing matrix multiplications with selective accumulation. 

 

Discretization 
Discretization is done on the unweighted data. 

Multiplying   

First, the orginal variable is standardized. Then the standardized values are 
multiplied by 10 and rounded, and  a value is added such that the lowest value is 1. 

Ranking  

The original variable is ranked in ascending order, according to the alphanumerical 
value. 

Grouping into a specified number of categories with a normal distribution 

First, the original variable is standardized. Then cases are assigned to categories 
using intervals as defined in Max (1960).  

Grouping into a specified number of categories with a uniform distribution 
First the target frequency is computed as n  divided by the number of specified 
categories, rounded.  Then the original categories are assigned to grouped 
categories such that the frequencies of the grouped categories are as close to the 
target frequency as possible. 
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Grouping equal intervals of specified size 

First the intervals are defined as lowest value + interval size, lowest value + 

2*interval size, etc. Then cases with values in the thk interval are assigned to 
category k .   

Imputation of Missing Values 
When there are variables with missing values specified to be treated as active 
(impute mode or extra category), then first the jk ’s for these variables are 

computed before listwise deletion. Next the category indicator with the highest 
weighted frequency (mode; the smallest if multiple modes exist), or 1jk +  (extra 

category) is imputed. Then listwise deletion is applied if applicable. Finally the 

jk ’s are adjusted. 

Configuration 
MULTIPLE CORRESPONDENCE can read a configuration from a file to be used 
as the initial configuration or as a fixed configuration in which to fit variables.  

For an initial configuration see step 1 in the Objective Function Optimization 
section.  

A fixed configuration X  is centered and orthonormalized as described in the 
optimization section in step 3 (with X  instead of Z ) and step 4 (except for the 

factor 1 2
wn ), and the result is postmultiplied with 1 2 (this leaves the 

configuration unchanged if it is already centered and orthogonal). The analysis 
variables are set to supplementary and variable weights are set to one.  Then  
MULTIPLE CORRESPONDENCE proceeds as described in the Supplementary 
Variables section.  

Objective Function Optimization 

Objective Function 

The MULTIPLE CORRESPONDENCE objective is to find object scores X  and a 
set of jY  (for 1, ,j m�= )  so that the function 
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( ) ( ) ( )1; ( ) trw j j j j j

j

n pσ − ′ = − −  ∑X Y X G Y M W X G Y  

is minimal, under the normalization restriction w wn m∗′ =X M WX I  ( I is the p p×  

identity matrix). The inclusion of jM  in ( );σ X Y  ensures that there is no 

influence of passive missing values (missing values in variables that have missing 
option passive, or missing option not specified ). M∗  contains the number of active 

data values for each object. The object scores are also centered; i.e. they satisfy 

∗′ =u M WX 0  with u  denoting an  n -vector with ones. 

Optimization 
Optimization is achieved by executing the following iteration scheme: 

1. Initialization 

2. Update category quantifications 

3. Update object scores 

4. Orthonormalization 

5. Convergence test: repeat (2) (4) or continue 

6. Rotation 

Steps (1) through (6) are explained below. 

(1) Initialization 

If an initial configuration is not specified, the object scores X  are initialized with 
random numbers. Then X  is orthonormalized (see step 4) so that ∗′ =u M WX 0  

and w wn m∗′ =X M WX I , yielding w
+X .  

 (2) Update category quantifications; loop across variables 1, …,j = m               

( variables 1, …, m  are analysis variables): 

With fixed current values w
+X  the update of  jY is  

                               jY+   1
j j w
− +′= D G X  

 (3) Update object scores 

First the auxiliary score matrix Z  is computed as 
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j j j
j

+← ∑Z M G Y  

and centered with respect to W and M∗ : 

( )( )∗
∗ ∗′ ′= −X I M uu W u M Wu Z  

These two steps yield locally the best updates when there would be no 
orthogonality constraints. 

(4) Orthonormalization 

To find an ∗M -orthonormal X+  that is closest to X∗  in the least squares sense, 

we use for the Procrustes rotation (Cliff, 1966) the singular value decomposition 
1 21 2 1 2 * 1 2

*wm − ′=M W X K � , 

then 1 21 2 1 2 1 2
*w wn m − ′M W KL yields ∗M -orthonormal weighted object scores: 

1 2 1 * 1/ 2
w w wn m+ − −

∗ ′←X M WX L � , and 1
w

+ − +=X W X . 

The calculation of L  and  is based on tridiagonalization with Householder 
transformations followed by the implicit QL algorithm (Wilkinson, 1965). 

(5) Convergence test 

The difference between consecutive values of the quantity  

TFIT = ( )1
 ( ) trw j j j j

j

pn v− ′∑ Y D Y , 

is compared with the user-specified convergence criterion ε  - a small positive 

number. It can be shown that TFIT = ( );wm σ− X Y . Steps (2) through (4) are 

repeated as long as the loss difference exceeds ε. 

After convergence TFIT is also equal to 1 2tr( ) , with as computed in step (4) 

during the last iteration. (See also Model Summary, and Correlations Transformed 

Variables for interpretation of 1 2 ).  

(6) Rotation 

To achieve principal axes orientation, +X  is rotated with the matrix L . Then step 
(2) is executed, yielding the rotated quantifications. 
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Supplementary Objects 
To compute the object scores for supplementary objects, after convergence steps 
(2) and (3) are repeated, with the zero’s in W temporarily set to ones in computing 

Z  and +X . If a supplementary object has missing values, passive treatment is 
applied. 

Supplementary Variables 
The quantifications for supplementary variables are computed after convergence, 
by executing step (2) once. 

Diagnostics 

Maximum Rank (may be issued as a warning when exceeded) 

The maximum rank maxp indicates the maximum number of dimensions that can 

be computed for any data set. In general 

max min 1, j
j

p n k m∑
  

= − −  
  

  

if there are no variables with missing values to be treated as passive.  If there are 
variables with missing values to be treated as passive, the maximum rank is 

max 1min 1, max( ,1)jp n k m∑
  = − −    

  

with 1m  the number of variables without missing values to be treated as passive. 

Here jk  is exclusive supplementary objects (that is, a category only used by 

supplementary objects is not counted in computing the maximum rank). Although 
the number of nontrivial dimensions may be less than maxp when 2m = ,  

MULTIPLE CORRESPONDENCE does allow dimensionalities all the way up to 

maxp . When, due to empty categories in the actual data, the rank detoriates below 

the specified dimensionality, the program stops. 
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Descriptives 
The descriptives tables gives the weighted univariate marginals and the weighted 
number of missing values (system missing, user defined missing, and values 0≤ ) 
for each variable.  

Fit and Loss Measures 
When the HISTORY option is in effect, the following fit and loss measures are 
reported: 

(a) Fit (VAF). This is the quantity TFIT as defined in step (5). 

(b) Loss. This is ( );σ X Y .  

Model Summary 

Cronbach’s Alpha 

Cronbach’s Alpha per dimension  ( 1, ,s p= … ): 

1 2 1 2( 1) /( ( 1))s w s s wm mα λ λ= − − ,   

Total  Cronbach’s Alpha is 

( )1 2 1 21 ( 1)w s s ws s
m mα λ λ= − −∑ ∑  

with sλ the ths diagonal element of as computed in step (4) during the last 

iteration. 

Variance Accounted For  

Variance Accounted For per dimension  ( 1, ,s p= … ):  

1
( ) ( )VAF  tr( )s w j j s j j sj

n v− ′= ∑ y D y , (% of variance is VAF 100 /s wm× ), 

Eigenvalue 

Eigenvalue per dimension: 

1 2 =VAFs sλ , 
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 with sλ the ths diagonal element of as computed in step (4) during the last 

iteration. (See also Optimization step (5), and Correlations Transformed Variables 

for interpretation of 1 2 ).  

The Total Variance Accounted For is the mean over dimensions. So, the total  
eigenvalue is 

1 2 1tr( )= VAFss
p− ∑ . 

 If there are no passive missing values, the eigenvalues 1 2  are those of the 
correlation matrix (see the Correlations and Eigenvalues section) weighted with 
variable weights: 

w
jj j jjr v r= , and 1 2w w

jl lj jljr r v r= =  

If there are passive missing values, then the eigenvalues are those of the matrix 
1

c * cwm −′Q M Q ,  with 

( )1 2
c * */( )wn− ′ ′= −Q I M uu W u M Wu Q , 

(for Q  see the Correlations and Eigenvalues section) which is not necessarily a 
correlation matrix, although it is positive semi-definite. This matrix is weighted 
with variable weights in the same way as R . 

Inertia 

The inertia per dimension is the eigenvalue per dimension divided by wm . The 

total inertia is the total eigenvalue divided by wm . 

Correlations and Eigenvalues 

Before transformation 

1
c cwn− ′=R H WH , with cH weighted centered and normalized H .  

For the eigenvalue decomposition of R  (to compute the eigenvalues), first row j  

and column j  are removed from R if j  is a supplementary variable, and then ijr  

is multiplied by ( )1 2
i jv v . 

If passive missing treatment is applicable for a variable, missing values are imputed 
with the variable mode, regardless of the passive imputation specification.   
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After transformation 

After transformation p correlation matrices  are computed ( 1, ,s p= … ):   

1
( ) ( ) ( )s w s sn− ′=R Q WQ ,  

with ( ) 1 21 2
( ) ( ) ( ) ( )s j w j j s j s j j sn

−
′=q G Y Y D Y .  

Usually, for the higher eigenvalues, the first eigenvalue of ( )sR  is equal to 1 2
sλ  

(see Model Summary section). The lower values of 1 2  are in most cases the 
second or subsequent eigenvalues of ( )sR . 

If there are missing values, specified to be treated as passive, the mode of the 
quantified variable or the quantification of an extra category (as specified in syntax; 
if not specified, default (mode) is used) is imputed before computing correlations. 

Then the eigenvalues of the correlation matrix do not equal 1 2 (see Model 
Summary section). The quantification of an extra category is computed as 

( 1)( ) k sj
j +

Y

1

i i is

i I i I

w w x

−

∈ ∈

 
 =
  
∑ ∑ , 

with I an index set recording which objects have missing values. 

For the eigenvalue decomposition of R  (to compute the eigenvalues), first row j  

and column j  are removed from R if j  is a supplementary variable, and then ijr  

is multiplied by ( )1 2
i jv v . 

Discrimination measures 
The discrimination measures are the dimensionwise variances of the quantified 
variables, which are equal to the dimensionwise squared correlations of the 
quantified variables with the object scores. For variable j  and dimension s the 

discrimination measure is 

1
( ) ( )Discr js w j s j j sn− ′= y D y , 

which is equal to the squared correlation between ( )j j sG y  and  sx . 
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Object Scores and quantifications 

Normalization 

If 1 2  gives the eigenvalues, then 1 4  gives the singular values, that can be used 
to spread the inertia over the object scores X and the category quantifications Y . 

During the optimization phase, variable principal normalization is used, then 
n =X X  and n =Y Y , else 

n 1 4( )a
wm−=X X  

n 1 1 4( 1)( ) b
wm− −=Y Y , 

with (1 ) / 2a q= + , (1 ) / 2b q= − , and q  any real value in the closed interval [-1,1], 

except for independent normalization: then there is no q  value and 1a b= = .  

1q = −  is equal to variable principal normalization, 1q =  is equal to object 

principal normalization,  0q =  is equal to symmetrical normalization.   

Contributions object scores 

Mass 

The mass of  object i  is 

*

*
Mass

tr( )
ii

i
m=
M W

. 

Inertia 

The inertia of  object i  is 

* ( ), 0

1
Inertia Mass

ij
ij

j
i i

ii j hj h

v

m d
≠

= −∑ ,  

where ( ) ijj hd  is the frequency of the category of object i  on variable j , and 

0ijh ≠ indicates to exclude a variable if object i  has a missing value on the 

variable and the missing option for the variable is passive.  

Contribution of point to inertia of dimension 

The contribution of  object i  to the inertia of dimension s  is 
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2
*Contribution ii is

is
w w

m x

n m
= . 

Contribution of dimension to inertia of point  

The contribution of  dimension s  to the inertia of object i  is 

2
* Inertia

Contribution
Inertia

ii is
s

w w
si

i

m x

n m=  

Quantifications 

The quantifications are the centroid coordinates. If a category is only used by 
supplementary objects (i.e. treated as a passive missing), the centroid coordinates 
for this category are computed as  

1 2 1 1 4( 1)
( )

b
j r w jr i

i I

n n− −

∈

= ∑y x  

where ( )j ry is the thr row of jY , jrn  is the number of objects that have category 

r , and I is an index set recording which objects are in category r . 

Contributions quantifications 

Mass 

The mass of  category r  of  variable j  is 

( )
( )

*
Mass

tr( )
j rr

j r
d

=
M W

. 

Inertia 

The inertia of  category r  of  variable j  is 

* ( )

1
( ) ( )

( )
Inertia Mass

n

i ii j ir

i
j r j r

j rr

w m g

d
== −
∑

, 

if there are no missing values with missing option passive, this is equal to 
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( )
1

Mass j r
wm

− , and then the total inertia for variable j  is 
( 1)j j

w

v k

m

−
. 

Contribution of point to inertia of dimension 

The contribution of  category r  of  variable j to the inertia of dimension s  is 

2
( )

( )

( )Contribution
Inertia

j rs
j rr

w w
j rs

s

y
d

n m= , 

the total contribution of  variable j to the inertia of dimension s  is 
1 2

Discrj js

s

v

λ
. 

Contribution of dimension to inertia of point  

The contribution of  dimension s  to the inertia of category r  of  variable j  is 

2
( )

( )

( )
( )

Contribution
Inertia

j rs
j rr

w w
s j r

j r

y
d

n m= . 

Residuals 

Residuals gives plots per dimension of n
( )j j sG y  against the approximation n

sx . 
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