MVA

The Missing Value procedure provides descriptions of missing value patterns; estimates of means, standard deviations, covariances, and correlations (using a listwise, pairwise, EM, or regression method); and imputation of values by either EM or regression.

Notation

The following notation is used throughout this chapter unless otherwise noted:

X	Data matrix
x _{ij}	Value of the <i>i</i> th case, <i>j</i> th variable
V	Number of variables
n	Number of cases
n _i	Number of nonmissing values of the <i>i</i> th variable
n _{ij}	Number of nonmissing value pairs of the <i>i</i> th and <i>j</i> th variables
n _c	Number of complete cases
J	Index of all variables
$J_{\#} = J(\text{condition})$	Index of variables satisfying "condition"
Ι	Index of all cases
$I(k_1,\ldots,k_l)$	Index of cases at which variables $(k_1,, k_l)$ are not missing
I(J)	Index of complete cases
$\mathbf{a} = [a_i]$	Vector whose <i>i</i> th element is a_i
$\mathbf{A} = \begin{bmatrix} a_{ij} \end{bmatrix}$	Matrix whose <i>i</i> th row, <i>j</i> th column element is a_{ij}

Example to Illustrate Notation

	43	76	34
		45	72
	44	15	52
X =			65
			43
	54	12	
	43	67	34

$x_{2,3} = 72$	The 2nd row, 3rd element
v = 3	Number of variables
n = 7	Number of cases
$n_2 = 5$	Number of nonmissing values in the 2nd variable
$n_{2,3} = 4$	Number of nonmissing value pairs in the 2nd and 3rd variables
$n_c = 3$	Number of complete cases
$J = \{1, 2, 3\}$	Index of variables
$J(2 \text{ or more missing}) = \{1,2\}$	The 1st and 2nd variables have two or more missing values
$J(2 \text{ or more missing}) = \{1,2\}$	The 1st and 2nd variables have two of more missing variaes
$I = \{1, 2, 3, 4, 5, 6, 7\}$	Index of cases
(), ()	č
$I = \{1, 2, 3, 4, 5, 6, 7\}$	Index of cases
$I = \{1, 2, 3, 4, 5, 6, 7\}$ $I(2) = \{1, 2, 3, 6, 7\}$	Index of cases Index of cases at which the 2nd variable is not missing Index of cases at which the 2nd and 3rd variables are not

Univariate Statistics

The index j refers to quantitative variables.

Mean

$$\overline{\mathbf{x}} = \left[\overline{x}_j\right] = \left[\sum_i x_{ij} / n_j; \ i \in I(j)\right]$$

Standard Deviation

$$\hat{\boldsymbol{\sigma}} = \left[\hat{\boldsymbol{\sigma}}_{j}\right] = \left[\left(\sum_{i} \left(x_{ij} - \bar{x}_{j}\right)^{2} / \left(n_{j} - 1\right)\right)^{1/2}; \quad i \in I(j)\right]$$

Extreme Low

$$NL = [nl_j] = [number of x_{ij} values < low_limit_j]$$

Extreme High

$$\mathbf{NH} = \left[\mathbf{nh}_{j}\right] = \left[\mathbf{number of } x_{ij} \text{ values } > \text{ high}_{limit}_{j}\right]$$

where

$$\text{low_limit}_{j} = \begin{cases} \overline{x}_{j} - 2 * \hat{\sigma}_{j} & \text{if } v * n * \log_{10}(n) > 150,000\\ 25th \text{ percentile of the } j\text{th varible} & \text{if } v * n * \log_{10}(n) \le 150,000 \end{cases}$$

and

$$\operatorname{high_limit}_{j} = \begin{cases} \overline{x}_{j} + 2 * \hat{\sigma}_{j} & \text{if} \quad v * n * \log_{10}(n) > 150,000\\ 75th \text{ percentile of the } j\text{th variable} & \text{if} \quad v * n * \log_{10}(n) \le 150,000 \end{cases}$$

Separate Variance T Test

The index k refers to quantitative variables, and index j refers to all variables.

$$t_{jk} = \frac{\overline{x}_{jk}^{P} - \overline{x}_{k|\text{variable } j \text{ is missing}}}{\left(\frac{\hat{\sigma}_{jk}^{P}}{n_{jk}} + \frac{\hat{\sigma}_{k|\text{variable } j \text{ is missing}}}{n_{kk} - n_{jk}}\right)^{1/2}}$$

where \bar{x}_{jk}^{P} and $\hat{\sigma}_{jk}^{P}$ are defined below in **Pairwise Statistics**.

$$\mathrm{df}_{jk} = \frac{\left(\frac{\hat{\sigma}_{jk}^{P}}{n_{jk}} + \frac{\hat{\sigma}_{k|\text{variable } j \text{ is missing}}}{n_{kk} - n_{jk}}\right)^{2}}{\left(\frac{\hat{\sigma}_{jk}^{P}}{n_{jk} - 1} + \frac{\left(\hat{\sigma}_{k|\text{variable } j \text{ is missing}}\right)^{2}}{n_{kk} - n_{jk} - 1}} p(2 - \mathrm{tail})_{jk} = 1 - 2 * \left| 0.5 - \mathrm{tcdf}(t_{jk}, \mathrm{df}_{jk}) \right|$$

where "tcdf" is the *t* cumulative distribution function

Listwise Statistics

The indices *j* and *k* refer to quantitative variables.

Mean

$$\overline{\mathbf{x}}^{L} = \left[\overline{x}_{j}^{L}\right] = \left[\sum_{i} x_{ij} / n_{c}; i \in I(J)\right]$$

Covariance

$$\mathbf{C}^{L} = \left[c_{jk}^{L}\right] = \left[\sum_{i} \left(x_{ij} - \overline{x}_{j}^{L}\right) * \left(x_{ik} - \overline{x}_{k}^{L}\right) / \left(n_{c} - 1\right); \quad i \in I(J)\right]$$

Correlation

$$\mathbf{R}^{L} = \left[r_{jk}^{L} \right] = \left[c_{jk}^{L} / \left(c_{jj}^{L} * c_{kk}^{L} \right)^{1/2} \right]$$

Pairwise Statistics

The indices *j* and *k* refer to quantitative variables, and *l* refers to all variables.

Mean

$$\overline{\mathbf{X}}^{P} = \left[\overline{x}_{lk}^{P}\right] = \left[\sum_{i} x_{ik} / n_{lk}; i \in I(l,k)\right]$$

Standard Deviation

$$\hat{\boldsymbol{\sigma}}^{P} = \left[\hat{\boldsymbol{\sigma}}_{lk}^{P}\right] = \left[\left(\sum_{i} \left(x_{ik} - \bar{x}_{lk}^{P}\right)^{2} / \left(n_{lk} - 1\right)\right)^{1/2}; \quad i \in I(l,k)\right]$$

Covariance

$$\mathbf{C}^{P} = \left[c_{jk}^{P}\right] = \left[\sum_{i} \left(x_{ik} - \overline{x}_{jk}^{P}\right) * \left(x_{ij} - \overline{x}_{kj}^{P}\right) / \left(n_{jk} - 1\right); \quad i \in I(j,k)\right]$$

Correlation

$$\mathbf{R}^{P} = \begin{bmatrix} r_{jk}^{P} \end{bmatrix} = \begin{bmatrix} c_{jk}^{P} / \left(\hat{\sigma}_{jk}^{P} * \hat{\sigma}_{kj}^{P} \right) \end{bmatrix}$$

Regression Estimated Statistics

The indices j and k refer to quantitative variables, and l refers to predictor variables.

Estimates of Missing Values

 $x_{ij}^{R} = \begin{cases} x_{ij} & \text{if } x_{ij} \text{ is not missing} \\ \text{regression estimated } x_{ij} & \text{if } x_{ij} \text{ is missing} \end{cases}$

Regression Estimated x_{ij}

$$x_{ij}^{R} = \beta_{0,ij} + \sum_{l} \beta_{l,ij} * x_{il} + \varepsilon_{ij} \qquad l \in J_1 = J(l: x_{il} \text{ not missing and } l \neq j)$$

where:

• $[\beta_{0,ij},\beta_{l,ij}]$ is computed from $\text{Diag}(\overline{\mathbf{X}}^P) = [\overline{x}_{jj}^P]$

and by pivoting on the "best" "q" of the J_1 diagonals of \mathbf{C}^P .

- "best" is forward stepwise selected.
- "q" is less than or equal to the user-specified maximum number of predictors; it may also be limited by the user-specified *F*-to-enter limit.
- " ϵ_{ij} " is the optional random error term, as specified:
 - i. residual of a randomly selected complete case
 - ii. random normal deviate, scaled by the standard error of estimate
 - iii. random t(df) deviate, scaled by the standard error of estimate, df is specified by the user
 - iv. no error term adjustment

Note that for each missing value x_{ij} , a unique set of regression coefficients $(\beta_{0,ij}, \beta_{l,ij})$ and error terms ε_{ij} is computed.

Mean

$$\overline{\mathbf{x}}^{R} = \left[\overline{x}_{j}^{R}\right] = \left[\sum_{i} x_{ij}^{R} / n; \quad i \in I\right]$$

Covariance

$$\mathbf{C}^{R} = \left[c_{jk}^{R} \right] = \left[\sum_{i} \left(x_{ij}^{R} - \overline{x}_{j}^{R} \right) * \left(x_{ik}^{R} - \overline{x}_{k}^{R} \right) / (n-1); \qquad i \in I \right]$$

Correlation

$$\mathbf{R}^{R} = \left[r_{jk}^{R} \right] = \left[c_{jk}^{R} / \left(c_{jj}^{R} * c_{kk}^{R} \right)^{1/2} \right]$$

EM Estimated Statistics

The indices j and k refer to quantitative variables, and l refers to predictor variables.

Estimates of Missing Values, Mean Vector, and Covariance Matrix

$$\overline{\mathbf{x}}_{0} = \left[\overline{x}_{j}^{0}\right] = \operatorname{Diag}\left(\overline{\mathbf{X}}^{P}\right) = \left[\overline{x}_{jj}^{P}\right]$$
$$\mathbf{C}_{0} = \left[c_{jk}^{0}\right] = \mathbf{C}^{P} = \left[c_{jk}^{P}\right]$$

For m = 1 to M, or Until Convergence Is Attained

If x_{ij} is not missing then $x_{ij}^m = x_{ij}$.

If x_{ij} is missing then it is estimated in the *m*th iteration as:

$$\begin{aligned} x_{ij}^{m} &= \beta_{0,ij}^{m-1} + \sum_{l} \beta_{l,ij}^{m-1} * x_{il}; \quad l \in J_{2} = J(l: x_{il} \text{ is not missing and } l \neq j) \\ \text{where } \left[\beta_{0,ij}^{m-1}, \beta_{l,ij}^{m-1} \right] \text{ is computed from } \overline{\mathbf{x}}_{m-1} \text{ and } \mathbf{C}_{m-1}. \\ \overline{\mathbf{x}}_{m} &= \left[\overline{x}_{j}^{m} \right] = \left[\sum_{i} w_{i} * x_{ij}^{m} / \sum_{i} w_{i}; \quad i \in I \right] \\ \mathbf{C}_{m} &= \left[c_{jk}^{m} \right] = \left[\frac{\sum_{i} w_{i} * x_{ij}^{m} (x_{ij}^{m} - \overline{x}_{j}^{m}) * (x_{ik}^{m} - \overline{x}_{k}^{m}) + \sum_{i} \sum_{s} c_{j,s|J^{2}}^{m-1}}{(n-1)^{*} \sum_{i} w_{i} / n}; \quad i \in J_{2}, s \notin J_{2}, \text{ and } s \neq j \right] \end{aligned}$$

where $c_{j,s|J2}^{m-1}$ is the *j*th row, *s*th element of the J_2 pivoted \mathbf{C}_{m-1} .

Note that some sources (Little & Rubin, 1987, for example) simply use *n* as the denominator of the formula for C_m , which produces full maximum likelihood (ML) estimates. The formula used by MVA produces restricted maximum likelihood (REML) estimates, which are n/(n-1) times the ML estimates.

$$w_{i} = \begin{cases} 1 & \text{for multivariate normal} \\ \frac{1 - \alpha + \alpha * \lambda^{1+p/2} * \exp((1 - \lambda) * D^{2} / 2)}{1 - \alpha + \alpha * \lambda^{p/2} * \exp((1 - \lambda) * D^{2} / 2)} & \text{for contaminated normal} \\ \frac{1 - \alpha + \alpha * \lambda^{p/2} * \exp((1 - \lambda) * D^{2} / 2)}{1 - \alpha + \alpha * \lambda^{p/2} * \exp((1 - \lambda) * D^{2} / 2)} & \text{for t(df)} \\ \frac{1 - \alpha + \alpha * \lambda^{p/2} * \exp((1 - \lambda) * D^{2} / 2)}{1 - \alpha + \alpha * \lambda^{p/2} * \exp((1 - \lambda) * D^{2} / 2)} & \text{for t(df)} \\ \alpha = \mathbf{proportion} \text{ of contamination} \\ \lambda = \mathbf{ratio} \text{ of standard deviations} \\ p = \text{ number of predictors } = \text{ number of indices in } J_{2} \\ D^{2} = \text{ Mahalanobis distance square of the current case from the mean} \\ = \sum_{jk} (x_{ij}^{m} - \overline{x}_{j}^{m}) * (c_{jk}^{m})^{-1} * (x_{ik}^{m} - \overline{x}_{k}^{m}) \\ \text{where } (c_{jk}^{m})^{-1} \text{ is the } jk \text{th element of } \mathbf{C}_{m}^{-1}. \end{cases}$$

Convergence

The algorithm is declared to have converged if, for all *j*,

$$\left|c_{jj}^{m}-c_{jj}^{m-1}\right|/c_{jj}^{m} \leq \text{CONVERGENCE}$$

Filled-In Data

$$\mathbf{X}_{i}^{E} = \begin{bmatrix} x_{ij}^{E} \end{bmatrix} = \begin{bmatrix} x_{ij}^{m'} \end{bmatrix}$$

where m is the last value of m.

Mean

$$\overline{\mathbf{x}}^E = \left[\overline{x}_j^E\right] = \overline{\mathbf{x}}_{m'} = \left[\overline{x}_j^{m'}\right]$$

Covariance

$$\mathbf{C}^E = \begin{bmatrix} c_{jk}^E \end{bmatrix} = \mathbf{C}_{m'} = \begin{bmatrix} c_{jk}^{m'} \end{bmatrix}$$

Correlation

$$\mathbf{R}^{E} = \begin{bmatrix} r_{jk}^{E} \end{bmatrix} = \begin{bmatrix} c_{jk}^{E} / (c_{jj}^{E} * c_{kk}^{E})^{1/2} \end{bmatrix}$$

Little's MCAR Test

 $\chi^2_{\text{MCAR}} = \sum_{\text{each unique pattern}} (\text{no. of cases in pattern}) * (\text{Mahalanobis } D^2 \text{ of pattern mean from } \overline{\mathbf{x}}^E)$

$$DF_{MCAR} = \sum_{each unique pattern} (no. of nonmissing variables) - v$$

References

- Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum likelihood from incomplete data via the *EM* algorithm. *Journal of the Royal Statistical Society*, *B*, 39: 1–38.
- Dixon, W. J., ed. 1983. *BMDP statistical software*. Berkeley: University of California Press.
- Little, R. J. A. 1988. A test of missing completely at random for multivariate data with missing values. *Journal of the American Statistical Association*, 83: 1198–1988.
- Little, R. J. A. and Rubin, D. B. 1987. *Statistical analysis with missing data*. New York: John Wiley & Sons, Inc.

- Louise, T. A. 1982. Finding the observed information matrix when using the *EM* algorithm. *Journal of the Royal Statistical Society*, *B*, 44(2): 226–233.
- Orchard, T. and Woodbury, M. A. 1972. Missing information principal: Theory and applications. *Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability*, Vol. 1. Berkeley: University of California Press, 697–715.
- Rubin, D. B. 1987. Multiple imputation for nonresponse data in surveys. New York: John Wiley & Sons, Inc.