The Missing Value procedure provides descriptions of missing value patterns; estimates of means, standard deviations, covariances, and correlations (using a listwise, pairwise, EM, or regression method); and imputation of values by either EM or regression.

Notation

The following notation is used throughout this chapter unless otherwise noted:

\mathbf{X}	Data matrix
$x_{i j}$	Value of the i th case, j th variable
v	Number of variables
n	Number of cases
n_{i}	Number of nonmissing values of the i th variable
$n_{i j}$	Number of nonmissing value pairs of the i th and j th variables
n_{c}	Number of complete cases
J	Index of all variables
$J_{\#}=J($ condition $)$	Index of variables satisfying "condition"
I	Index of all cases
$I\left(k_{1}, \ldots, k_{l}\right)$	Index of cases at which variables $\left(k_{1}, \ldots, k_{l}\right)$ are not $I(J)$
$\mathbf{a}=\left[a_{i}\right]$	Index of complete cases
$\mathbf{A}=\left[a_{i j}\right]$	Matrix whose i th row, j th column element is i th element is $a_{i j}$

2 Missing Value Analysis (MVA)

Example to Illustrate Notation

$\mathbf{X}=\left[\begin{array}{ccc}43 & 76 & 34 \\ \cdot & 45 & 72 \\ 44 & 15 & 52 \\ \cdot & \cdot & 65 \\ \cdot & \cdot & 43 \\ 54 & 12 & \cdot \\ 43 & 67 & 34\end{array}\right]$
$x_{2,3}=72$
$v=3$
$n=7$
$n_{2}=5$
$n_{2,3}=4$
$n_{c}=3$
$J=\{1,2,3\}$
$J(2$ or more missing $)=\{1,2\}$
$I=\{1,2,3,4,5,6,7\}$
$I(2)=\{1,2,3,6,7\}$
$I(2,3)=\{1,2,3,7\}$
$I(J)=\{1,7\}$
$\bar{x}_{2}=43.0$

The 2 nd row, 3 rd element
Number of variables
Number of cases
Number of nonmissing values in the 2 nd variable
Number of nonmissing value pairs in the 2 nd and 3rd variables
Number of complete cases
Index of variables
The 1 st and 2 nd variables have two or more missing values
Index of cases
Index of cases at which the 2 nd variable is not missing
Index of cases at which the 2nd and 3rd variables are not missing

Index of complete cases
The 2 nd element of the vector $\overline{\mathbf{x}}=\left[\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right]$

Univariate Statistics

The index j refers to quantitative variables.
Mean

$$
\overline{\mathbf{x}}=\left[\bar{x}_{j}\right]=\left[\sum_{i} x_{i j} / n_{j} ; i \in I(j)\right]
$$

Standard Deviation

$$
\hat{\boldsymbol{\sigma}}=\left[\hat{\sigma}_{j}\right]=\left[\left(\sum_{i}\left(x_{i j}-\bar{x}_{j}\right)^{2} /\left(n_{j}-1\right)\right)^{1 / 2} ; \quad i \in I(j)\right]
$$

Extreme Low

$$
\mathrm{NL}=\left[\mathrm{nl}_{j}\right]=\left[\text { number of } x_{i j} \text { values }<\text { low_ }_{-} \text {limit }_{j}\right]
$$

Extreme High

$\mathrm{NH}=\left[\operatorname{nh}_{j}\right]=\left[\right.$ number of $x_{i j}$ values $>$ high_limit $\left._{j}\right]$
where
low_limit $_{j}=\left\{\begin{array}{lll}\bar{x}_{j}-2 * \hat{\sigma}_{j} & \text { if } & v^{*} n * \log _{10}(n)>150,000 \\ 25 t h \text { percentile of the } j \text { th varible } & \text { if } \quad v^{*} n^{*} \log _{10}(n) \leq 150,000\end{array}\right.$
and
high_limit $_{j}=\left\{\begin{array}{lrl}\bar{x}_{j}+2 * \hat{\sigma}_{j} & \text { if } & v^{*} n^{*} \log _{10}(n)>150,000 \\ 75 \text { th percentile of the } j \text { th variable } & \text { if } & v^{*} n^{*} \log _{10}(n) \leq 150,000\end{array}\right.$

Separate Variance T Test

The index k refers to quantitative variables, and index j refers to all variables.

$$
t_{j k}=\frac{\bar{x}_{j k}^{P}-\bar{x}_{k \mid \text { variable } j \text { is missing }}}{\left(\frac{\hat{\sigma}_{j k}^{P}}{n_{j k}}+\frac{\hat{\sigma}_{k \mid \text { variable } j \text { is missing }}}{n_{k k}-n_{j k}}\right)^{1 / 2}}
$$

where $\bar{x}_{j k}^{P}$ and $\hat{\sigma}_{j k}^{P}$ are defined below in Pairwise Statistics.

$$
\mathrm{df}_{j k}=\frac{\left(\frac{\hat{\sigma}_{j k}^{P}}{n_{j k}}+\frac{\hat{\sigma}_{k \mid \text { variable } j \text { is missing }}}{n_{k k}-n_{j k}}\right)^{2}}{\frac{\left(\hat{\sigma}_{j k}^{P}\right)^{2}}{n_{j k}-1}+\frac{\left(\hat{\sigma}_{k \mid \text { variable } j \text { is missing }}\right)^{2}}{n_{k k}-n_{j k}-1}} p(2-\text { tail })_{j k}=1-2 *\left|0.5-\operatorname{tcdf}\left(t_{j k}, \mathrm{df}_{j k}\right)\right|
$$

where "tcdf" is the t cumulative distribution function

Listwise Statistics

The indices j and k refer to quantitative variables.
Mean

$$
\overline{\mathbf{x}}^{L}=\left[\bar{x}_{j}^{L}\right]=\left[\sum_{i} x_{i j} / n_{c} ; i \in I(J)\right]
$$

Covariance

$$
\mathbf{C}^{L}=\left[c_{j k}^{L}\right]=\left[\sum_{i}\left(x_{i j}-\bar{x}_{j}^{L}\right) *\left(x_{i k}-\bar{x}_{k}^{L}\right) /\left(n_{c}-1\right) ; \quad i \in I(J)\right]
$$

Correlation

$$
\mathbf{R}^{L}=\left[r_{j k}^{L}\right]=\left[c_{j k}^{L} /\left(c_{j j}^{L} * c_{k k}^{L}\right)^{1 / 2}\right]
$$

Pairwise Statistics

The indices j and k refer to quantitative variables, and l refers to all variables.
Mean

$$
\overline{\mathbf{X}}^{P}=\left[\bar{x}_{l k}^{P}\right]=\left[\sum_{i} x_{i k} / n_{l k} ; i \in I(l, k)\right]
$$

Standard Deviation

$$
\hat{\boldsymbol{\sigma}}^{P}=\left[\hat{\sigma}_{l k}^{P}\right]=\left[\left(\sum_{i}\left(x_{i k}-\bar{x}_{l k}^{P}\right)^{2} /\left(n_{l k}-1\right)\right)^{1 / 2} ; \quad i \in I(l, k)\right]
$$

Covariance

$$
\mathbf{C}^{P}=\left[c_{j k}^{P}\right]=\left[\sum_{i}\left(x_{i k}-\bar{x}_{j k}^{P}\right) *\left(x_{i j}-\bar{x}_{k j}^{P}\right) /\left(n_{j k}-1\right) ; \quad i \in I(j, k)\right]
$$

Correlation

$$
\mathbf{R}^{P}=\left[r_{j k}^{P}\right]=\left[c_{j k}^{P} /\left(\hat{\sigma}_{j k}^{P} * \hat{\sigma}_{k j}^{P}\right)\right]
$$

Regression Estimated Statistics

The indices j and k refer to quantitative variables, and l refers to predictor variables.

Estimates of Missing Values

$x_{i j}^{R}= \begin{cases}x_{i j} & \text { if } x_{i j} \text { is not missing } \\ \text { regression estimated } x_{i j} & \text { if } x_{i j} \text { is missing }\end{cases}$

Regression Estimated $x_{i j}$

$x_{i j}^{R}=\beta_{0, i j}+\sum_{l} \beta_{l, i j} * x_{i l}+\varepsilon_{i j} \quad l \in J_{1}=J\left(l: x_{i l}\right.$ not missing and $\left.l \neq j\right)$
where:

- $\left[\beta_{0, i j}, \beta_{l, i j}\right]$ is computed from $\operatorname{Diag}\left(\overline{\mathbf{X}}^{P}\right)=\left[\bar{x}_{j j}^{P}\right]$ and by pivoting on the "best" " q " of the J_{1} diagonals of \mathbf{C}^{P}.
- "best" is forward stepwise selected.
- " q " is less than or equal to the user-specified maximum number of predictors; it may also be limited by the user-specified F-to-enter limit.
- " $\varepsilon_{\mathrm{ij}}$ " is the optional random error term, as specified:
i. residual of a randomly selected complete case
ii. random normal deviate, scaled by the standard error of estimate
iii. random $\mathrm{t}(\mathrm{df})$ deviate, scaled by the standard error of estimate, df is specified by the user
iv. no error term adjustment

Note that for each missing value $x_{i j}$, a unique set of regression coefficients $\left(\beta_{0, i j}, \beta_{l, i j}\right)$ and error terms $\varepsilon_{i j}$ is computed.

Mean

$$
\overline{\mathbf{x}}^{R}=\left[\bar{x}_{j}^{R}\right]=\left[\begin{array}{ll}
\sum_{i} x_{i j}^{R} / n ; & i \in I]
\end{array}\right.
$$

Covariance

$$
\mathbf{C}^{R}=\left[c_{j k}^{R}\right]=\left[\sum_{i}\left(x_{i j}^{R}-\bar{x}_{j}^{R}\right) *\left(x_{i k}^{R}-\bar{x}_{k}^{R}\right) /(n-1) ; \quad i \in I\right]
$$

Correlation

$$
\mathbf{R}^{R}=\left[r_{j k}^{R}\right]=\left[c_{j k}^{R} /\left(c_{j j}^{R} * c_{k k}^{R}\right)^{1 / 2}\right]
$$

EM Estimated Statistics

The indices j and k refer to quantitative variables, and l refers to predictor variables.
Estimates of Missing Values, Mean Vector, and Covariance Matrix

$$
\begin{aligned}
& \overline{\mathbf{x}}_{0}=\left[\bar{x}_{j}^{0}\right]=\operatorname{Diag}\left(\overline{\mathbf{X}}^{P}\right)=\left[\bar{x}_{j i}^{P}\right] \\
& \mathbf{C}_{0}=\left[c_{j k}^{0}\right]=\mathbf{C}^{P}=\left[c_{j k}^{P}\right]
\end{aligned}
$$

8 Missing Value Analysis (MVA)

For $m=1$ to M, or Until Convergence Is Attained

If $x_{i j}$ is not missing then $x_{i j}^{m}=x_{i j}$.
If $x_{i j}$ is missing then it is estimated in the m th iteration as:

$$
x_{i j}^{m}=\beta_{0, i j}^{m-1}+\sum_{l} \beta_{l, i j}^{m-1} * x_{i l} ; \quad l \in J_{2}=J\left(l: x_{i l} \text { is not missing and } l \neq j\right)
$$

where $\left[\beta_{0, i j}^{m-1}, \beta_{l, i j}^{m-1}\right]$ is computed from $\overline{\mathbf{x}}_{m-1}$ and \mathbf{C}_{m-1}.
$\overline{\mathbf{x}}_{m}=\left[\bar{x}_{j}^{m}\right]=\left[\sum_{i} w_{i} * x_{i j}^{m} / \sum_{i} w_{i} ; \quad i \in I\right]$
$\mathbf{C}_{m}=\left[c_{j k}^{m}\right]=\left[\frac{\sum_{i} w_{i} * x_{i j}^{m}\left(x_{i j}^{m}-\bar{x}_{j}^{m}\right) *\left(x_{i k}^{m}-\bar{x}_{k}^{m}\right)+\sum_{i} \sum_{s} c_{j, s \mid J 2}^{m-1}}{(n-1) * \sum_{i} w_{i} / n} ; i \in J_{2}, s \notin J_{2}\right.$, and $\left.s \neq j\right]$
where $c_{j, s \mid J 2}^{m-1}$ is the j th row, s th element of the J_{2} pivoted \mathbf{C}_{m-1}.
Note that some sources (Little \& Rubin, 1987, for example) simply use n as the denominator of the formula for \mathbf{C}_{m}, which produces full maximum likelihood (ML) estimates. The formula used by MVA produces restricted maximum likelihood (REML) estimates, which are $n /(n-1)$ times the ML estimates.

$$
\begin{aligned}
& w_{i}= \begin{cases}1 & \text { for multivariate normal } \\
\frac{1-\alpha+\alpha^{*} \lambda^{1+p / 2} * \exp \left((1-\lambda) * D^{2} / 2\right)}{1-\alpha+\alpha^{*} \lambda^{p / 2} * \exp \left((1-\lambda) * D^{2} / 2\right)} & \text { for contaminated normal } \\
(\mathrm{df}+p) /\left(\mathrm{df}+D^{2}\right) & \text { for } t(\mathrm{df})\end{cases} \\
& \begin{array}{l}
\alpha=\text { proportion of contamination } \\
\lambda=\text { ratio of standard deviations } \\
p=\text { number of predictors }=\text { number of indices in } J_{2}
\end{array} \\
& \begin{aligned}
D^{2}= & \text { Mahalanobis distance square of the current case from the mean } \\
& =\sum_{j k}\left(x_{i j}^{m}-\bar{x}_{j}^{m}\right) *\left(c_{j k}^{m}\right)^{-1} *\left(x_{i k}^{m}-\bar{x}_{k}^{m}\right)
\end{aligned} \quad \text { where }\left(c_{j k}^{m}\right)^{-1} \text { is the } j k \text { th element of } \mathbf{C}_{m}{ }^{-1} .
\end{aligned}
$$

Convergence

The algorithm is declared to have converged if, for all j,
$\left|c_{j j}^{m}-c_{j j}^{m-1}\right| / c_{j j}^{m} \leq$ CONVERGENCE

Filled-In Data

$$
\mathbf{X}_{i}^{E}=\left[x_{i j}^{E}\right]=\left[x_{i j}^{m^{\prime}}\right]
$$

where m^{\prime} is the last value of m.

Mean

$$
\mathbf{x}^{E}=\left[\bar{x}_{j}^{E}\right]=\overline{\mathbf{x}}_{m},=\left[\bar{x}_{j}^{m^{\prime}}\right]
$$

Covariance

$$
\mathbf{C}^{E}=\left[c_{j k}^{E}\right]=\mathbf{C}_{m^{\prime}}=\left[c_{j k}^{m^{\prime}}\right]
$$

Correlation

$$
\mathbf{R}^{E}=\left[r_{j k}^{E}\right]=\left[c_{j k}^{E} /\left(c_{j j}^{E} * c_{k k}^{E}\right)^{1 / 2}\right]
$$

Little's MCAR Test

$$
\begin{gathered}
\chi_{\mathrm{MCAR}}^{2}=\sum_{\text {each unique pattern }}(\text { no. of cases in pattern }) *\left(\text { Mahalanobis } D^{2} \text { of pattern mean from } \overline{\mathbf{x}}^{E}\right) \\
\quad \mathrm{DF}_{\mathrm{MCAR}}=\sum_{\text {each unique pattern }} \text { (no. of nonmissing variables) }-v
\end{gathered}
$$

References

Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, B,. 39: 1-38.

Dixon, W. J., ed. 1983. BMDP statistical software. Berkeley: University of California Press.

Little, R. J. A. 1988. A test of missing completely at random for multivariate data with missing values. Journal of the American Statistical Association, 83: 11981988.

Little, R. J. A. and Rubin, D. B. 1987. Statistical analysis with missing data. New York: John Wiley \& Sons, Inc.

Louise, T. A. 1982. Finding the observed information matrix when using the $E M$ algorithm. Journal of the Royal Statistical Society, B, 44(2): 226-233.

Orchard, T. and Woodbury, M. A. 1972. Missing information principal: Theory and applications. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1. Berkeley: University of California Press, 697-715.

Rubin, D. B. 1987. Multiple imputation for nonresponse data in surveys. New York: John Wiley \& Sons, Inc.

