NOMREG

The purpose of the Multinomial Logistic Regression procedure is to model the dependence
of anominal categorical response on a set of discrete and/or continuous predictor variables.

Notation

The following notation is used throughout this chapter unless otherwise stated:

r‘ij

log(7ij; / 7ijk)
Bj=(Ljr-Bijp)
p

nr

Pj

B=(B1...p 1)
B =By B)

Data Aggregation

The response variable, which takes integer values from 1 to J.
The number of categories of the nominal response.
The number of subpopulations.

mx pA matrix with vector-element )qA, the observed values at the

ith subpopulation, determined by the independent variables specified
in the command.

mx p matrix with vector-element X;, the observed values of the
location model’ s independent variables at the ith subpopul ation.

The frequency weight for the s-th observation which belongs to the
cell correspondingto Y = | at subpopulationii.

The sum of frequency weights of the observations that belong to the
cell correspondingto Y = | at subpopulation i.

The sum of al ny's.
The cell probability correspondingto Y = | at subpopulationii.
The logit of response category j to response category k.

px1 vector of unknown parametersin the j-th logit (i.e., logit of
response category j to response category J).

Number of parametersin each logit. p= 1.

Number of non-redundant parametersin logit j after maximum
likelihood estimation. p> pj' 2 0.

The total number of non-redundant parameters after maximum
J-1

likelihood estimation. p™ = o p;" .

(J =21 p %1 vector of unknown parameters in the model.

The maximum likelihood estimate of B .

The maximum likelihood estimate of 7ij; .

Observations with negative or missing frequency weights are discarded. Observations are
aggregated by the definition of subpopulations. Subpopulations are defined by the cross-



classifications of either the set of independent variables specified in the command or the set
of independent variables specified in the subpopul ation command.

Let n; be the marginal count of subpopulationi,
k
n = 2 nij .

j=1

If there is no observation for the cell of Y = | at subpopulation i, it is assumed that n; =0,

provided that n; # 0. A non-negative scalar ¢ €[0,1) may be added to any zero cell (i.e., cell
with n; = 0) if itsmarginal count n; is nonzero. The value of ¢ is zero by defaullt.

Data Assumptions

Let (nil,...,niJ)T be the J x1 vector of counts for the categories of Y at subpopulation. It is
assumed that each (nil,...,niJ)T is independently multinomial distributed with probability
vector (7%iq,..., m)T of dimension Jx1 and fixed total n;.

Model

Generalized Logit Model

In a Generalized Logit model, the probability 7.;; of response category j at subpopulationi is

ep(x] B;)
I J1 :
1+ Y explx{ Bi)

7

where the last category J is assumed to be the reference category.

In terms of logits, the model can be expressed as

]7..
Iog[i}xf B
N

forj=1,...,J1

When J = 2, this model is equivalent to the binary Logistic Regression model. Thus, the
above model can be thought of as an extension of the binary Logistic Regression model from
binary response to polytomous nominal response.



1-1 Matched Case Control Model by Conditional Likelihood Approach

The above model can also be used to estimate the parameters in the conditional likelihood of
the 1-1 Matched Case Control Model. In this case, let m be the number of matching pairs, x;
be the vector of independent variables for the case and x;, that for the control. The
conditional log-likelihood for the m matched pairsis given by

e (xi1 = xi2) B}
1+exp{(Xi1 —X;2) B}

inwhich g isthe vector of parameters for the difference between the values of independent

variables of the case and those of the control. This conditional likelihood is identical to the
unconditional log-likelihood of abinary (i.e., k = 2) logistic regression model when

e Thereisno intercept term in the model.
e The set of subpopulationsis defined by the set of matching pairs.

e The independent variables in the model are set to equal to the differences between the
values for the case and the control.

e The number of response categories is J = 2, and the value of the response is 1 (or a
constant), i.e.,, Y=1.

Log-likelihood

Thelog-likelihood of the model is given by

I(B) =iini,- log(75;)

i=1 j=1

:Zznij log exp(x{ B )

I1
i=1 j=1 1+ zk:leXp(Xi' Bk)

A constant that is independent of parameters has been excluded here. The value of the
) m
constant is c=zizllog{ni (ngl..ngh}.

Parameter Estimation

First and Second Derivatives of the Log-likelihood

Foranyj=1,...,J-1,s=1, .., p, thefirst derivative of | withrespectto 5 is



m

ol
985 = zxis(nij - 7T).

i=1

Foranyj,j’=1,...,J1sst=1 ..., p, the second derivative of | with respect to 5;;and

is

2 U
aﬂjsaﬁj’t é 1 NS/t 1 J] ]
where ¢, =1ifj=]", O otherwise.

Maximum Likelihood Estimate

To obtain the maximum likelihood estimate of B, a Newton-Raphson iterative estimation
method is used. Notice that this method is the same as Fisher-Scoring iterative estimation
method in this model, since the expectation of the second derivative of | with respect to B is
the same as the observed one.

Let dl /0B be the (J-1)px1 vector of the first derivative of | with respect to B.

Moreover, let [az| /aBaB] be the (J-D)px(J-Dp matrix of the second derivative of |
. . 2 m * * .
with respect to B. Notice that —[a I/aBaB]: E 1Xi A Xi" where A; is a
I =
(J-D)x(J-1 matrix as

A; = (Diag(r= D) - A=) Ay,

inwhich 7709 = (7,..., 75 4) and Diag(n™) isa (J-1)x(J—1) diagonal matrix of

™9 Let B(M") be the parameter estimate at iteration v, the parameter estimate B("*D at
iteration v + 1 is updated as

m -1 Jl
(v+) _ g(v) 2 AWV
B =B + -1X, AYYX BB(V)
1=

and ¢>0 is a stepping scalar such that I(B("*Y)-1(B(”)20, X" isa (J-1)px(3-1)

matrix of independent vectors,

i O 0
Xi=|. . ol
0 0 X



and Al is A; and 91 /9B is 9l /9B, both evaluated at B = B).

Stepping
Use step-halving method if I(B(V+1))—I(B(V)) <0. Let V be the maximum number of steps
in step-halving, the set of valuesof éis{1/2"v=0, ..., V-1}.

Starting Values of the Parameters

If intercepts are included in the model, set B(JO) = (,B(j(i) ,0,...,0)” where

O _ 1og 7| _og| =
Nig
i=

m
S
1

1

forj=1,...,J1
If intercepts are not included in the model, set

p{? =(0,...0)
forj=1,...,J1

Convergence Criteria

Given two convergence criteria & >0 and &,>0, the iteration is considered to be
converged if one of the following criteria are satisfied:

1 ‘I(B(V“))—I(B("))

< Eg-

2. max‘Bi<“+1) -BY
|

<£p.

3. The maximum above element in 9l / 9B (“*Y is less than min( ¢, Ep).

Stepwise Procedures

Score Function and Information Matrix

Thelog likelihood function of the model is:



B)=3 > n,log(r,)

A congtant that is independent of parameters has been excluded here. The value of the

constant is € = Z log{n.!/(n,!..n;"}.

The score function for amodel with parameter B is:

ae)

VB =38

The (j,s)-th element of the score function can be written as

U, =5

= i Xis(nij - ni”ij)

Similarly, elements of the information matrix are given by

(1B, :%

= _Z ni)gsxitni-j (5” - nl-j)

where 6”, =1if j=j ,Ootherwise.

(Notethat 7:;; in the formula are functions of B)

Block Notations

By partitioning the parameter B into two parts, B, and B, , the score function, information
matrix, and inverse information matrix can be written as partitioned matrices:



van-PiL

B‘@H where | (B, B,) =1(B)
_O0 0B [
I(B,,B,) 0
H

PG5

I(B)=1(8,B,)
- Ell(Bl’ BZ) IlZ(B.I.’ BZ)E
A(BLB,) 1(B,B,)

PU(B.B) 01(B.BI[

_0 0BOB,  0BOB, O

“0U(B.B) 1(B.B)L

[ 0B,0B, 0B,0B, [D

 Mu(B.B) I,(B.B)
1B =R B = EL(BP B) J,(B, BZ)E

where

‘]11 = |11 + |11 |12 ‘]22 |21 |11
‘]12 = _|11|12‘]22

S
‘]21 = ‘]12

Jo =[5 = 1ylyl,]

Typically, B, and B, are parameters corresponding to two different sets of effects. The
dimensions of the 1% and 2™ partition in U, | and J are equal to the numbers of
parametersin B, and B, respectively.

Score Test

Suppose a base model with parameter vector B, with the corresponding maximum

likelihood estimate ébase. We are interested in testing the significance of an extra effect E if
it is added to the base model. For convenience, we will cal the model with effect E the



augmented model. Let B be the vector of extra parameters associated with the effect E,
then the hypothesis can be written as

Ho:Bg =0 vs H;:Bc #0.

Using the block notations, the score function, information matrix and inverse information of
the augmented model can be written as

base ase’B

_ basebase(Bbase’ BE) Ibase,E(Bbase' BE)
B8 =S e

B base,base base’B) ‘JbaseE(Bbase’B)
e 8= S

Then the score statistic for testing our hypothesis will be

5=U ¢ (Byaee:0)" I & (Brae OU ¢ (Biee:0)

where UE(I%DaSE] 0) and JE]E(éDase,O) are the 2" partition of score function and inverse

information matrix evaluated at B, = ébase and B =0.

Under the null hypothesis, the score statistic S has a chi-square distribution with degrees of
freedom equal to the rank of J. (B, B,). If the rank of Jg (B, B,) is zero, then the

score statistic will be set to 0 and the p-value will be 1. Otherwise, if the rank of
Je (B, B,) isrg (rg >0), then the p-value of the test is equal to 1— F(S;r), where

F(L¥z) isthe cumulative distribution function of a chi-square distribution with r. degrees
of freedom.

Computational Formula for Score Statistic

When we compute the score statistic S, it is not necessary to re-compute U (B, 0) and

| (I%base,O) from scratch. The score function and information matrix of the base model can
be reused in the calculation. Using the block notations introduced earlier, we have



Wald’s Test

U (B 0) = EU Ue (B 0) E@AE(BWO)H

and

~ a |(énase) Ibase,E(éDase’o)
' (Brow0) = E E,base(énase’o) lE,E(ébase’o) E

In stepwise logistic regression, it is necessary to compute one score test for each effect that
are not in the base model. Since the 1* partition of U (B, ,,0) and | (B, .,0) depend only

on the base model, we only need to compute UE(éDase,O), Ibase]E(éDase,O) and
| EYE(I_3>base,0) for each new effect.

If s isthe sth parameter of j-th logit in By, and 5, isthet-th parameter of k-th logit

in Bg, then the elements of UE(I%Dase,O), Ibase,E(ébase,O) and IElE(éDase,O) can be
expressed as followings,

U (B Ol = imk -n#,)

[l E,E(énaseio)]kt,k’t’ = _i N X %o 7 (O — 7))

[I base,E(énasmo)]js,kt = _2 nixisxitﬁij (ij -7t

where 7, , 7i,. are computed under the base model.

In backward stepwise selection, we are interested in removing an effect F from an aready
fitted model. For a given base model with parameter vector B, .., we want to use Wald's
statistic to test if effect F should be removed from the base model. If the parameter vector for
the effect Fis B , then the hypothesis can be formulated as



Hy:B- =0 vs H,;:B:. #0.

In order to write down the expression of the Wald's statistic, we will partition our parameter
vector (and its estimate) into two parts as follows,

BD%:%B“; Eand Bm:EBgS:‘FE

The first partition contains parameters that we intended to keep in the model and the 2™
partition contains the parameters of the effect F, which may be removed from the model. The
information matrix and inverse information will be partitioned accordingly,

_ base\F,base\F(Bbase\F’Bbase\F) Ibase\F,F(Bbase\F’BF)
I(Bbase)_g IF,base\F(Bbase\F’BF) IF,F(Bbase\F’BF) E

and

J(B ) - E‘base\F,base\F (Bbase\F ’ Bbase\F) ‘Jbase\F,F (Bbase\F ' BF )E
pase JF,base\F(Bbase\F’BF) ‘]F,F(Bbase\F’BF)

Using the above notations, the Wald' s statistic for effect F can be expressed as

W= B:"[Je ¢ (B » B )l Be.

Under the null hypothesis, W has a chi-square distribution with degrees of freedom equalsto
therank of Jp ¢ (Byagr  Be) - If therank of Jp ¢ (Byoer s Be) iszero, thenthe Wald's

statistic will be set to 0 and the p-vaue will be 1. Otherwise, if the rank of
Je £ (Byasar 1 B ) is 1z (1 >0), then the p-value of the test isequal to 1—F(w;r¢),

where F(W;r) isthe cumulative distribution function of a chi-square distribution with r.
degrees of freedom.

Algorithms

Forward Stepwise (FSTEP)
1. Estimate the parameter and likelihood function for the initial model and let it be our

current model.

10



2. Based on the MLEs of the current model, calculate the score statistic or likelihood ratio

statistic for every variable eligible for inclusion and find its significance.

3. Choose the variable with the smallest significance (p-value). If that significance is less

than the probability for a variable to enter, then go to step 4; otherwise, stop FSTEP.

4. Update the current model by adding a new variable. If this resultsin a model which has
already been evaluated, stop FSTEP.

5. Cadculate the significance for each variable in the current model using LR or Wald's
test.

6. Choose the variable with the largest significance. If its significance is less than the
probability for variable removal, then go back to step 2. If the current model with the
variable deleted is the same as a previous model, stop FSTEP; otherwise go to the next step.

7. Modify the current model by removing the variable with the largest significance from

the previous model. Estimate the parameters for the modified model and go back to step 5.

Forward Only (FORWARD)
1. Estimate the parameter and likelihood function for the initial model and let it be our

current model.

2. Based on the MLEs of the current model, calculate the score or LR statistic for every

variable eligible for inclusion and find its significance.

3. Choose the variable with the smallest significance. If that significance is less than the

probability for avariable to enter, then go to step 4; otherwise, stop FORWARD.

4. Update the current model by adding a new variable. If there are no more €eligible
variable left, stop FORWARD; otherwise, go to step 2.

Backward Stepwise (BSTEP)
1. Estimate the parameters for the full model that includes the final model from previous

method and all eligible variables. Only variables listed on the BSTEP variable list are

eligible for entry and removal. Let current model be the full model.

2. Based on the MLEs of the current model, calculate the LR or Wald's statistic for every
variablein the BSTEP list and find its significance.

3. Choose the variable with the largest significance. If that significance is less than the
probability for a variable removal, then go to step 5. If the current model without the variable
with the largest significance is the same as the previous model, stop BSTEP; otherwise go to

the next step.

11



4. Modify the current model by removing the variable with the largest significance from

the model. Estimate the parameters for the modified model and go back to step 2.

5. Check to see any €dligible variable is not in the model. If there is none, stop BSTEP,
otherwise, go to the next step.

6. Based on the MLEs of the current model, calculate LR statistic or score statistic for

every variable not in the model and find its significance.

7. Choose the variable with the smallest significance. If that significance is less than the

probability for the variable entry, then go to the next step; otherwise, stop BSTEP.

8. Add the variable with the smallest significance to the current model. If the model is not
the same as any previous models, estimate the parameters for the new model and go back to
step2; otherwise, stop BSTEP.

Backward Only (BACKWARD)
1. Estimate the parameters for the full model that includes all eligible variables. Let the

current model be the full model.

2. Based on the MLEs of the current model, calculate the LR or Wald's statistic for all

variables eligible for removal and find its significance.

3. Choose the variable with the largest significance. If that significance is less than the

probability for a variable removal, then stop BACKWARD; otherwise, go to the next step.

4. Modify the current model by removing the variable with the largest significance from
the model. Estimate the parameters for the modified model. If al the variables in the
BACKWARD list are removed then stop BACKWARD; otherwise, go back to step 2.

Statistics

Model Information

Initial Model, Intercept-Only

If intercepts are included in the model, the predicted probability for the initial model (that is,
the model with intercepts only) is

and the value of the -2log-likelihood of theinitial model is

12



m J

-2A(R)=-2) " ny log(7).

i=1 j=1

Initial Model, Empty

If intercepts are not included in the model, the predicted probability for the initial model is
~ 1

T = K]

and the value of the -2log-likelihood of the initial model is

=2l(7) = -2N Iog(%).

Final Model

The value of -2log-likelihood of the final model is

m J

-2(R)=-2) " ny log( 7).

i=1 j=1

Model Chi-Square

The Model Chi-squareis given by

“2(7)-{-21(7)} .

Model with Intercepts versus Intercept-only Model

If the final model incl udesinterc_epts, then the initial model is an intercept-only model. Under
the null hypothesis that Hq:p'™ ' = 0, the Model Chi-square is asymptotically chi-
squared distributed with p™ — (J — 1) degrees of freedoms.

Model without Intercepts versus Empty Model
If the model does not include intercepts, then the initial model is an empty model. Under the

null hypothesis that Hg:p=0, the Model Chi-square is asymptotically chi-squared
distributed with p™ degrees of freedoms.

13



Pseudo R Square

Cox and Snell’s R Square

The Cox and Snell'sR% is

2
L(n))

2
Res =l (um

Nagelkerke’s R Square

The Nagelkerke' sR? is

Rés

2 _
RN - 1— L(-ﬁ)Z/n ’

McFadden’s R Square

The McFadden's R is

2 =1—(@].
M=

Goodness of Fit Measures

Pearson Goodness of Fit Measure

The Pearson goodness of fit measureis
-3y ant
i=1 j=1 & n”

Under the null hypothesis, the Pearson goodness-of-fit statistic is asymptotically chi-squared
distributed with m(J — 1) — p™ degrees of freedom.

Deviance Goodness of Fit Measure

The Deviance goodness of fit measureis

14



m J n.
D=2 n: log —— |.
22 g(”iﬁii]

i=1 j=1

Under the null hypothesis, the Deviance goodness-of-fit statistic is asymptotically chi-
squared distributed with m(J— 1) — p™ degrees of freedom.

Overdispersion Adjustments

Let K> 0 be an estimate of the overdispersion parameter. Possible estimates of this
parameter are

* A positive value specified in the command. If no value is specified, 1 is assumed.

e Theratio of Pearson goodness-of-fit measure to its degrees of freedom:

X2

o2
m(k-1)— p"

* Theratio of Deviance goodness of fit measure to its degrees of freedoms:

D

P
m(k -1) - p"

Covariance and Correlation Matrices

The estimate of the covariance matrix of the parameters is the inverse of the negative of the

second derivative of the log-likelihood evaluated at B = B("), multiplied by the estimate of
the overdispersion parameter.

m -1
Cov(B) = K!z XA } .
i=1

Let & bethe (J-1)px 1 vector of the square roots of the diagonal elementsin Cov(é) . The
estimate of the correlation matrix of B is

Cor(B) = Diag(é ~Y)Cov(B)Diag(6 }) .

Parameter Statistics

An estimate of the standard deviation of éjs is 0 js. The Wald statistic for éjs is

15
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is
st

Wald js =

Under the null hypothesis that Hy:Bjs =0, Wald 5 is asymptotically chi-squared distributed
with 1 degree of freedom.
If Bjs Based on the asymptotic normality of the parameter estimate, a 100(1- a) % Wald

confidenceinterval for Bjg is
Bjs x Z1—a'/20js
where z_,,, istheupper (1-a /2)100™ percentile of the standard normal distribution.

Predicted Cell Counts
At each subpopulation i, the predicted count for response category Y = j is

fij =N 7
The (raw) residual is n; -y and the standardized residual is (n; — ;) / \/ny 75; (1— 75;) .

Likelihood Based Partial Effects
A likelihood ratio test is performed for any effect (except intercept) in the model. The
procedure to perform alikelihood ratio test for any effect e isasfollows:
1. Form asubmodel that has all the effectsin the working model but the one (€) of interest.
2. Fit the submodel and calculate the value of its —2log-likelihood, denote it by —2I(ﬁ(e)).
Moreover, let the number of non-redundant parametersin this submodel be p(”é) .

3. Cdculate the difference between the —2log-likelihood of the submodel and that of the
working model, {~2I(7:(g))} —{~2I(7)} .

Under the null hypothesis that the effect e of interest is zero, {-2I(7i(g))} —{-2I(7)} is
asymptotically chi-squared distribution with p™ — p(g degrees of freedoms.

Linear Hypothesis Testings

For each gx p matrix of linear combinations L , J Wald's tests are performed. Each of the
first J — 1 Wald's tests corresponds to a Wald's test on each of the J — 1 logits. The last
Wald's tests corresponds to a Wald' s test joint for all the J — 1 logits. In the followings, it is
assumed that g = Rank(L) < p.

The Wald' stest corresponding to the j-th logit is

16



wald(L, j) = (LB;){LCov(B; )L} M(LB)).

Under the null hypothesis that Hg:LB; =0, Wald(L,]) is asymptotically chi-squared
distributed with q degrees of freedoms.
LetL" bea(J—1)q x (J—1)p matrix,

The Wald'sjoint test for al logitsis
Wald(L o) = (L"B)’{L Cov(B)L" } }(L"B).

Under the null hypothesis that HO:L*B=0, wald(L o) is asymptotically chi-squared
distributed with (J-1)q degrees of freedoms.

Classification Table

Suppose that c(j, ]’ ) isthe (j, j’ )-th element of the classification table, j,j’ =1, ...,J.c(,]’ )
is the sum of the frequencies for the observations whose actual response category isj (as
row) and predicted response category isj’ (as column) respectively.

The predicted response category for subpopulationi is

i g = mex( ;)

Should there be atie, choose the category with the smallest category number.

Forj,j =1,...,J,c(j,] )isgivenas

m
(i, | )=2nij5ji*j'-
i=1
The percentage of total correct predictions of the model is

n .
D)
p(o) = J‘f 100% .

The percentage of correct predictions of the model for response category j is

17



p(e) =| <0 oo
LT
i=1

Checking for Separation

The algorithm checks for separation in the data starting with iteration v (20 by default).
To check for separation:

1. For each subpopulation i , find j*:frij* = max( 7).
i
2. If nij* =n;, then thereis a perfect prediction for subpopulation i.

3. If all subpopulations have perfect prediction, then there is complete separation. If some
patterns have perfect prediction and the Hessian of B is singular, then there is quasi-
complete separation.
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