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NOMREG 

The purpose of the Multinomial Logistic Regression procedure is to model the dependence 
of a nominal categorical response on a set of discrete and/or continuous predictor variables.  

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

Y  The response variable, which takes integer values from 1 to J.  

J  The number of categories of the nominal response. 

m The number of subpopulations. 

X A  m p A�  matrix with vector-element xi
A , the observed values at the 

ith subpopulation, determined by the independent variables specified 
in the command.  

X   m p�  matrix with vector-element xi , the observed values of the 
location model’s independent variables at the ith subpopulation. 

fijs  The frequency weight for the s-th observation which belongs to the 
cell corresponding to Y j�  at subpopulation i.  

nij  The sum of frequency weights of the observations that belong to the 
cell corresponding to Y j�  at subpopulation i. 

N  The sum of all nij’s. 

πij  The cell probability corresponding to Y j�  at subpopulation i. 

log( / )π πij ik  The logit of response category j to response category k.  

� j j jp� �( ,..., )β β1  p �1 vector of unknown parameters in the j-th logit (i.e., logit of 
response category j to response category J). 

p  Number of parameters in each logit. p ≥ 1. 

p j
nr

 
Number of non-redundant parameters in logit j after maximum 

likelihood estimation. p p j
nr� � 0. 

pnr  The total number of non-redundant parameters after maximum 

likelihood estimation. p pnr
j
nr

j

J=
=

−∑ 1

1
. 

B �
�

( ,..., )’ ’� �1 1J
’ ( )J p− ×1 1 vector of unknown parameters in the model. 

� ( � ,..., � )’ ’B �
�

� �1 1J
’ The maximum likelihood estimate of B . 

�πij  The maximum likelihood estimate of πij . 

 

Data Aggregation 
Observations with negative or missing frequency weights are discarded. Observations are 
aggregated by the definition of subpopulations. Subpopulations are defined by the cross-
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classifications of either the set of independent variables specified in the command or the set 
of independent variables specified in the subpopulation command. 

Let ni be the marginal count of subpopulation i,  

n ni ij

j

k

�
�

�
1

. 

If there is no observation for the cell of Y j�  at subpopulation i, it is assumed that nij � 0, 

provided that ni � 0 . A non-negative scalar δ �[ , )0 1  may be added to any zero cell (i.e., cell 
with nij � 0) if its marginal count ni   is nonzero. The value of δ  is zero by default. 

Data Assumptions 

Let ( ,..., )n ni iJ1
T  be the J �1 vector of counts for the categories of Y at subpopulation. It is 

assumed that each ( ,..., )n ni iJ1
T  is independently multinomial distributed with probability 

vector ( ,..., )π πi iJ1
T of dimension J �1 and fixed total ni. 

Model 

Generalized Logit Model 

In a Generalized Logit model, the probability πij  of response category j at subpopulation i is   

πij
i j

i k
k

J
�

�

� �
�

��
exp( )

exp( )

x  

x  

�

�1
1

1
, 

where the last category J is assumed to be the reference category.  

In terms of logits, the model can be expressed as  

log
π
π

ij

iJ
i j

�
��

�
�� � �x  �  

for j = 1, …, J-1. 

When J = 2, this model is equivalent to the binary Logistic Regression model. Thus, the 
above model can be thought of as an extension of the binary Logistic Regression model from 
binary response to polytomous nominal response. 
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1-1 Matched Case Control Model by Conditional Likelihood Approach 

The above model can also be used to estimate the parameters in the conditional likelihood of 
the 1-1 Matched Case Control Model. In this case, let m be the number of matching pairs, xil 
be the vector of independent variables for the case and xi2 that for the control. The 
conditional log-likelihood for the m matched pairs is given by 

l i i

i i

�
	

� 	
exp{( ) }

exp{( ) }

’

’

x x

x x
1 2

1 21

�

�
 

in which  is the vector of parameters for the difference between the values of independent 

variables of the case and those of the control.  This conditional likelihood is identical to the 
unconditional log-likelihood of a binary (i.e., k = 2) logistic regression model when  

•  There is no intercept term in the model. 

•  The set of subpopulations is defined by the set of matching pairs. 

•  The independent variables in the model are set to equal to the differences between the 
values for the case and the control. 

•  The number of response categories is J = 2, and the value of the response is 1 (or a 
constant), i.e., Y = 1. 

Log-likelihood 
The log-likelihood of the model is given by 

l n

n

ij ij

j

J

i

m

ij
i j

i k
k

J
j

J

i

m

( ) log

log
exp( )

exp( )

B

x  

x  

�

�
�

� �

�

�
���

�

�
���

��

�

�

��

��

�
��

π� �
11

1

1
11 1

�

�

  

A constant that is independent of parameters has been excluded here. The value of the 

constant is c n n ni i iJ
i

m
�

�

� log{ !/ ( ! !)}1
1

� . 

Parameter Estimation 

First and Second Derivatives of the Log-likelihood 

For any j = 1, …, J-1, s = 1, …, p, the first derivative of l with respect to jsβ  is 
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� 	
�

�l
x n n

js
is ij i ij

i

m

β
π( )

1

. 

For any j, j’= 1, …, J-1, s, t = 1, …, p, the second derivative of l with respect to jsβ and tj ′β  

is 




 


� 	 	
�

� �

�

�
2

1

l
n x x

js j t
i is it ij jj ij

i

m

β β
π δ π( )  

where jj ′δ = 1 if j = j’, 0 otherwise. 

Maximum Likelihood Estimate 

To obtain the maximum likelihood estimate of B , a Newton-Raphson iterative estimation 
method is used. Notice that this method is the same as Fisher-Scoring iterative estimation 
method in this model, since the expectation of the second derivative of l with respect to B  is 
the same as the observed one. 

Let 
 
l / B  be the ( )J p	 �1 1 vector of the first derivative of l with respect to B . 

Moreover, let 
 
 
2l / B B  be the ( ) ( )J p J p	 � 	1 1  matrix of the second derivative of l 

with respect to B .  Notice that 	 
 
 
 �
�

�2

1
l i i i

m
/ * *B B X  X� ’

i
 where �i  is a 

( ) ( )J J	 � 	1 1  matrix as  

  �i i i
J

i
J

i
Jn� 	� � �( ( ) )( ) ( ) ( )Diag π π π ’ , 

in which  π π πi
J

i i J
( ) ’( ,..., )�

�

� 1 1  and  Diag(πi
J( ) )�  is a ( ) ( )J J	 � 	1 1  diagonal matrix of 

 πi
J( )� . Let B( )ν  be the parameter estimate at iteration v, the parameter estimate B( )ν�1  at 

iteration v + 1 is updated as 

B B X  X
B

( ) ( ) * ( ) *
( )

ν ν ξ�

�

�

� �
�
�
��

�
�
��




�1

1

1

i i
v

i

i

m

v

l� ’  

and ξ � 0 is a stepping scalar such that l lB B( ) ( )ν ν� 	 �1 0	 
 	 
 , X* is a ( ) ( )J p J	 � 	1 1  

matrix of independent vectors,  

X

x

x

x

i
* �

�

�

����

�

�

����

i

i

i

0 0

0

0

0 0

�

�

� �

�
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and �i
( )ν  is �i  and 
 
l / ( )B ν  is 
 
l / B , both evaluated at B B� ( )ν . 

Stepping 

Use step-halving method if l lB B( ) ( )ν ν� 	 1 0	 
 	 
 . Let V be the maximum number of steps 

in step-halving, the set of values of ξ is {1/2v: v = 0, …, V-1}. 

Starting Values of the Parameters 

If intercepts are included in the model, set � j j
( ) ( )( , ,..., )0

1
0 0 0� �β  where 

β
π
πj

ij

iJ

ij

i

m

iJ

i

m

n

n

1
0 1

1

( ) log
~

~ log�
�
��

�
�� �

�

�

�����

�

�

�����
�

�

�

�
, 

for j = 1, …, J-1.   

If intercepts are not included in the model, set  

� j
( ) ( ,..., )0 0 0� �  

for j = 1, …, J-1.  

Convergence Criteria 

Given two convergence criteria ε k � 0 and ε p � 0 , the iteration is considered to be 

converged if one of the following criteria are satisfied: 

1. l l k( ) ( )( ) ( )B Bν ν ε� 	 1 . 

2. max ( )

i
i i pB Bν ν ε� 	 1 . 

3. The maximum above element in 
 
 �l / ( )B ν 1  is less than min( lε , pε ). 

Stepwise Procedures 

Score Function and Information Matrix 

The log likelihood function of the model is: 
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∑∑
= =

=
m

i

J

j
ijijnBl

1 1

)log()( π  

A constant that is independent of parameters has been excluded here. The value of the 

constant is ∑
=

=
m

i
iJii nnnc

1
1 )}!!.../(!log{ . 

The score function for a model with parameter B  is: 

B

Bl
BU

∂
∂= )(

)( . 

The (j,s)-th element of the score function can be written as 

∑
=

−=

∂
∂=

m

i
ijiijis

js
js

nnx

Bl
BU

1

)(

)(
)]([

π

β
 

Similarly, elements of the information matrix are given by 

∑
=

−−=

∂∂
∂=

m

i
ijjjijitisi

jtjs
tjjs

xxn

Bl
BI

1

2

’,

)(

)(
)]([

’’ πδπ

ββ
 

where 1’ =
jj

δ  if ’jj = , 0 otherwise. 

(Note that ijπ  in the formula are functions of B ) 

Block Notations 

By partitioning the parameter B  into two parts, 1B  and 2B , the score function, information 

matrix, and inverse information matrix can be written as partitioned matrices: 
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Typically, 1B  and 2B  are parameters corresponding to two different sets of effects. The 

dimensions of the 1st and 2nd partition in U , I  and J  are equal to the numbers of 

parameters in 1B  and 2B  respectively. 

Score Test 

Suppose a base model with parameter vector baseB  with the corresponding maximum 

likelihood estimate baseB̂ . We are interested in testing the significance of an extra effect E if 

it is added to the base model. For convenience, we will call the model with effect E the 
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augmented model. Let EB  be the vector of extra parameters associated with the effect E, 

then the hypothesis can be written as 

0:0 =EBH     v.s. 0:1 ≠EBH . 

Using the block notations, the score function, information matrix and inverse information of 
the augmented model can be written as 







=

),(

),(
),(

EbaseE

Ebasebase
Ebase BBU

BBU
BBU , 







=

),(),(

),(),(
),(

,,

,,

EbaseEEEbasebaseE

EbaseEbaseEbasebasebase
Ebase BBIBBI

BBIBBI
BBI , 







=

),(),(

),(),(
),(

,,

,,

EbaseEEEbasebaseE

EbaseEbaseEbasebasebase
Ebase BBJBBJ

BBJBBJ
BBJ . 

Then the score statistic for testing our hypothesis will be 

)0,ˆ()0,ˆ()0,ˆ( , baseEbaseEE
T

baseE BUBJBUs = , 

where )0ˆ( ,baseE BU  and )0,ˆ(, baseEE BJ  are the 2nd partition of score function and inverse 

information matrix evaluated at basebase BB ˆ=  and 0=EB . 

Under the null hypothesis, the score statistic s  has a chi-square distribution with degrees of 

freedom equal to the rank of ),( 21, BBJ EE . If the rank of ),( 21, BBJ EE  is zero, then the 

score statistic will be set to 0 and the p-value will be 1. Otherwise, if the rank of 

),( 21, BBJ EE  is Er  ( 0>Er ), then the p-value of the test is equal to );(1 ErsF− , where 

),( ErF ⋅  is the cumulative distribution function of a chi-square distribution with Er  degrees 

of freedom. 

Computational Formula for Score Statistic 

When we compute the score statistic s , it is not necessary to re-compute )0ˆ( ,baseBU  and 

)0,ˆ( baseBI  from scratch. The score function and information matrix of the base model can 

be reused in the calculation. Using the block notations introduced earlier, we have 
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,,

,
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BIBI
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In stepwise logistic regression, it is necessary to compute one score test for each effect that 

are not in the base model. Since the 1st partition of )0,ˆ( baseBU  and )0,ˆ( baseBI  depend only 

on the base model, we only need to compute )0,ˆ( baseE BU , )0,ˆ(, baseEbase BI  and 

)0,ˆ(, baseEE BI  for each new effect. 

If jsβ  is the s-th parameter of j-th logit in baseB  and ktβ  is the t-th parameter of k-th logit 

in EB , then the elements of )0,ˆ( baseE BU , )0,ˆ(, baseEbase BI  and )0,ˆ(, baseEE BI  can be 

expressed as followings, 

∑
=

−=
m

i
ikiikitktbaseE nnxBU

1

)ˆ()]0,ˆ([ π  

∑
=

−−=
m

i
ikkkikitititkktbaseEE xxnBI

1
’’’’’,, )ˆ(ˆ)]0,ˆ([ πδπ  

[ ] ∑
=

−−=
m

i
ikjkijitisiktjsbaseEbase xxnBI

1
,, )ˆ(ˆ)0,ˆ( πδπ  

where ikπ̂  , ’ˆ ikπ  are computed under the base model. 

Wald’s Test 

In backward stepwise selection, we are interested in removing an effect F from an already 

fitted model. For a given base model with parameter vector baseB , we want to use Wald’s 

statistic to test if effect F should be removed from the base model. If the parameter vector for 

the effect F is FB , then the hypothesis can be formulated as 
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0:0 =FBH     v.s.   0:1 ≠FBH . 

In order to write down the expression of the Wald’s statistic, we will partition our parameter 
vector (and its estimate) into two parts as follows, 







=

F

Fbase
base B

B
B \

    and   





=

F

Fbase
base

B

B
B

ˆ

ˆ
ˆ \ . 

The first partition contains parameters that we intended to keep in the model and the 2nd 
partition contains the parameters of the effect F, which may be removed from the model. The 
information matrix and inverse information will be partitioned accordingly, 







=

),(),(

),(),(
)(

\,\\,

\,\\\\,\

FFbaseFFFFbaseFbaseF

FFbaseFFbaseFbaseFbaseFbaseFbase
base BBIBBI

BBIBBI
BI  

and 







=

),(),(

),(),(
)(

\,\\,

\,\\\\,\

FFbaseFFFFbaseFbaseF

FFbaseFFbaseFbaseFbaseFbaseFbase
base BBJBBJ

BBJBBJ
BJ  

Using the above notations, the Wald’s statistic for effect F can be expressed as 

FFFbaseFF
T

F BBBJBw ˆ)],([ˆ
\,

−= . 

Under the null hypothesis, w  has a chi-square distribution with degrees of freedom equals to 

the rank of ),( \, FFbaseFF BBJ . If the rank of ),( \, FFbaseFF BBJ  is zero, then the Wald’s 

statistic will be set to 0 and the p-value will be 1. Otherwise, if the rank of 

),( \, FFbaseFF BBJ  is Fr  ( 0>Fr ), then the p-value of the test is equal to );(1 FrwF− , 

where );( FrwF  is the cumulative distribution function of a chi-square distribution with Fr  

degrees of freedom. 

Algorithms 

Forward Stepwise (FSTEP) 

1. Estimate the parameter and likelihood function for the initial model and let it be our 

current model. 
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2. Based on the MLEs of the current model, calculate the score statistic or likelihood ratio 

statistic for every variable eligible for inclusion and find its significance. 

3. Choose the variable with the smallest significance (p-value). If that significance is less 

than the probability for a variable to enter, then go to step 4; otherwise, stop FSTEP. 

4. Update the current model by adding a new variable. If this results in a model which has 

already been evaluated, stop FSTEP. 

5. Calculate the significance for each variable in the current model using LR or Wald’s 

test. 

6. Choose the variable with the largest significance. If its significance is less than the 

probability for variable removal, then go back to step 2. If the current model with the 

variable deleted is the same as a previous model, stop FSTEP; otherwise go to the next step. 

7. Modify the current model by removing the variable with the largest significance from 

the previous model. Estimate the parameters for the modified model and go back to step 5. 

Forward Only (FORWARD) 

1. Estimate the parameter and likelihood function for the initial model and let it be our 

current model. 

2. Based on the MLEs of the current model, calculate the score or LR statistic for every 

variable eligible for inclusion and find its significance. 

3. Choose the variable with the smallest significance. If that significance is less than the 

probability for a variable to enter, then go to step 4; otherwise, stop FORWARD. 

4. Update the current model by adding a new variable. If there are no more eligible 

variable left, stop FORWARD; otherwise, go to step 2. 

Backward Stepwise (BSTEP) 

1. Estimate the parameters for the full model that includes the final model from previous 

method and all eligible variables. Only variables listed on the BSTEP variable list are 

eligible for entry and removal. Let current model be the full model. 

2. Based on the MLEs of the current model, calculate the LR or Wald’s statistic for every 

variable in the BSTEP list and find its significance. 

3. Choose the variable with the largest significance. If that significance is less than the 

probability for a variable removal, then go to step 5. If the current model without the variable 

with the largest significance is the same as the previous model, stop BSTEP; otherwise go to 

the next step. 
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4. Modify the current model by removing the variable with the largest significance from 

the model. Estimate the parameters for the modified model and go back to step 2. 

5. Check to see any eligible variable is not in the model. If there is none, stop BSTEP; 

otherwise, go to the next step. 

6. Based on the MLEs of the current model, calculate LR statistic or score statistic for 

every variable not in the model and find its significance. 

7. Choose the variable with the smallest significance. If that significance is less than the 

probability for the variable entry, then go to the next step; otherwise, stop BSTEP. 

8. Add the variable with the smallest significance to the current model. If the model is not 

the same as any previous models, estimate the parameters for the new model and go back to 

step2; otherwise, stop BSTEP. 

Backward Only (BACKWARD) 

1. Estimate the parameters for the full model that includes all eligible variables. Let the 

current model be the full model. 

2. Based on the MLEs of the current model, calculate the LR or Wald’s statistic for all 

variables eligible for removal and find its significance. 

3. Choose the variable with the largest significance. If that significance is less than the 

probability for a variable removal, then stop BACKWARD; otherwise, go to the next step. 

4. Modify the current model by removing the variable with the largest significance from 

the model. Estimate the parameters for the modified model. If all the variables in the 

BACKWARD list are removed then stop BACKWARD; otherwise, go back to step 2. 

Statistics 

Model Information 

Initial Model, Intercept-Only 

If intercepts are included in the model, the predicted probability for the initial model (that is, 
the model with intercepts only) is  

~πij

ij

i

m

n

N
� �

�
1  

and the value of the -2log-likelihood of the initial model is 
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	 � 	
��

��2 2

11

l nij ij

j

J

i

m

(~) log(~ )π π . 

Initial Model, Empty 

If intercepts are not included in the model, the predicted probability for the initial model is 

~πij J
� 1

 

and the value of the -2log-likelihood of the initial model is 

	 � 	2 2
1

l N
J

(~) log( )π . 

Final Model 

The value of -2log-likelihood of the final model is 

	 � 	
��

��2 2

11

l nij ij

j

J

i

m

(~) log( � )π π . 

Model Chi-Square 

The Model Chi-square is given by  

	 	 	2 2l l(~) { ( � )}π π . 

Model with Intercepts versus Intercept-only Model 

If the final model includes intercepts, then the initial model is an intercept-only model. Under 

the null hypothesis that H0:�intercepts � 0 , the Model Chi-square is asymptotically chi-
squared distributed with  pnr – (J – 1) degrees of freedoms. 

Model without Intercepts versus Empty Model 

If the model does not include intercepts, then the initial model is an empty model. Under the 
null hypothesis that H0:� � 0 , the Model Chi-square is asymptotically chi-squared 
distributed with  pnr degrees of freedoms. 
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Pseudo R Square 

Cox and Snell’s R Square 

The Cox and Snell’s R2 is  

R
L

L

n
CS
2

2

1� 	
�
��

�
��

(~)

( � )

π
π

. 

Nagelkerke’s R Square 

The Nagelkerke’s R2 is  

R
R

L nN
CS2
2

21
�

	 (~) /π
. 

McFadden’s R Square 

The McFadden’s R2 is  

R
l

lM
2 1� 	

�
��

�
��

( � )

(~)

π
π

. 

Goodness of Fit Measures 

Pearson Goodness of Fit Measure 

The Pearson goodness of fit measure is  

X
n n

n
ij i ij

i ijj

J

i

m
2

2

11

�
	

��

�� ( � )

�

π
π

. 

Under the null hypothesis, the Pearson goodness-of-fit statistic is asymptotically chi-squared 
distributed with m(J – 1) – pnr degrees of freedom. 

Deviance Goodness of Fit Measure 

The Deviance goodness of fit measure is 
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Under the null hypothesis, the Deviance goodness-of-fit statistic is asymptotically chi-
squared distributed with m(J – 1) – pnr degrees of freedom. 

Overdispersion Adjustments 

Let κ̂ > 0 be an estimate of the overdispersion parameter. Possible estimates of this 
parameter are 

•  A positive value specified in the command. If no value is specified, 1 is assumed. 

•  The ratio of Pearson goodness-of-fit measure to its degrees of freedom: 

�
( )

κ �
	 	
X

m k pnr

2

1
 

 

•  The ratio of Deviance goodness of fit measure to its degrees of freedoms: 

�
( )

κ �
	 	

D

m k pnr1
 

Covariance and Correlation Matrices 

The estimate of the covariance matrix of the parameters is the inverse of the negative of the 

second derivative of the log-likelihood evaluated at B B� ( )ν , multiplied by the estimate of 
the overdispersion parameter.  

Cov( � ) � �* *B X X�
�
�


�
�
��

�

�

�κ i i i

i

m

� ’

1

1

. 

Let ��  be the (J-1)p × 1 vector of the square roots of the diagonal elements in Cov( � )B .  The 

estimate of the correlation matrix of �B  is 

Cor( Diag( Cov( Diag(� ) � ) � ) � )B B� � �� �1 1 . 

Parameter Statistics 

An estimate of the standard deviation of �B js  is �σ js . The Wald statistic for �B js  is 
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Wald js
js

js

B
�

�

�σ
 

Under the null hypothesis that H B js0 0: � , Wald js  is asymptotically chi-squared distributed 

with 1 degree of freedom. 

If B js  Based on the asymptotic normality of the parameter estimate, a 100(1- )α % Wald 

confidence interval for �B js  is 

� �/B zjs js� 	1 2α σ  

where 2/1 α−z  is the upper (1-α /2)100th percentile of the standard normal distribution. 

Predicted Cell Counts 
At each subpopulation i, the predicted count for response category Y j�  is 

� �n nij i ij� π  

The (raw) residual is n nij ij	 �  and the standardized residual is ( � ) / � ( � )n n nij ij i ij ij	 	π π1 .  

Likelihood Based Partial Effects 

A likelihood ratio test is performed for any effect (except intercept) in the model. The 
procedure to perform a likelihood ratio test for any effect e  is as follows: 

1. Form a submodel that has all the effects in the working model but the one (e) of interest. 

2. Fit the submodel and calculate the value of its –2log-likelihood, denote it by 	2l e( � )( )π . 

Moreover, let the number of non-redundant parameters in this submodel be p e
nr
( ) .  

3. Calculate the difference between the –2log-likelihood of the submodel and that of the 
working model, { ( � )} { ( � )}( )	 	 	2 2l leπ π . 

Under the null hypothesis that the effect e  of interest is zero, { ( � )} { ( � )}( )	 	 	2 2l leπ π  is 

asymptotically chi-squared distribution with p pnr
e

nr	 ( )  degrees of freedoms. 

Linear Hypothesis Testings 
For each q p�  matrix of linear combinations L , J Wald’s tests are performed. Each of the 
first J – 1 Wald’s tests corresponds to a Wald’s test on each of the J – 1 logits. The last 
Wald’s tests corresponds to a Wald’s test joint for all the J – 1 logits. In the followings, it is 
assumed that q p� �Rank(L) . 

The Wald’s test corresponding to the j-th logit is  
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Wald( CovL L L L L, ) ( � ) { ( � ) } ( � )j j j j� � � �� � �1 . 

Under the null hypothesis that H j0:L 0� � , Wald(L, )j  is asymptotically chi-squared 

distributed with q degrees of freedoms. 

Let L* be a (J – 1)q × (J – 1)p matrix, 

L

L

L

L

* �

�

�

����

�

�

����

0 0

0

0

0 0

�

�

� �

�

. 

The Wald’s joint test for all logits is  

Wald( CovL L B L B L L B, ) ( � ) { ( � ) } ( � )* * *’ *� � � �1 . 

Under the null hypothesis that H0: *L B 0� , Wald(L, )�  is asymptotically chi-squared 
distributed with (J-1)q degrees of freedoms. 

Classification Table 
Suppose that c(j, j’) is the (j, j’)-th element of the classification table, j, j’ = 1, …, J. c(j, j’) 
is the sum of the frequencies for the observations whose actual response category is j (as 
row) and predicted response category is j’ (as column) respectively.  

The predicted response category for subpopulation i is 

j
ij j

ij
*

*: � max �π π� � �  

Should there be a tie, choose the category with the smallest category number. 

For j, j’ = 1, …, J, c(j, j’) is given as 

c j j nij j j
i

m

i
( , )’ *�

�

�

� δ
1

. 

The percentage of total correct predictions of the model is 

p
c j j

n
j

n

( )
( , )

� �

�

�

���

�

�

���
�

� 1
100% . 

The percentage of correct predictions of the model for response category j is   
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p
c j j

nij
i

m
( )

( , )
� �

�

�
���

�

�
���

�

� 1

100% . 

Checking for Separation 

The algorithm checks for separation in the data starting with iteration ν chksep  (20 by default).  
To check for separation: 

1. For each subpopulation i , find j
ij j

ij
*

*: � max �π π� � � . 

2. If n n
ij i* � , then there is a perfect prediction for subpopulation i. 

3. If all subpopulations have perfect prediction, then there is complete separation.  If some 
patterns have perfect prediction and the Hessian of �B  is singular, then there is quasi-
complete separation. 
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