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PLUM 

The purpose of the PLUM procedure is to model the dependence of an ordinal categorical 
response variable on a set of discrete and/or continuous independent variables.  

Since the choice and the number of response categories can be quite arbitrary, it is 
essential to model the dependence such that the choice of the response categories does not 
affect the conclusion of the inference. That is, the final conclusion should be the same if any 
two or more adjacent categories of the old scale are combined.  Such considerations lead to 
modeling the dependence of the response on the independent variables by means of the 
cumulative response probability. 

Notations 
Y  The ordinal response variable, which takes integer values from 1 to J, J ≥ 2. 

J  The number of categories of the ordinal response. 

m The number of subpopulations. 

X A  m p A�  matrix with vector-element xi
A , the observed values at the ith 

subpopulation, determined by the independent variables specified in the 
command.  

X   m p�  matrix with vector-element xi , the observed values of the location 
model’s independent variables at the ith subpopulation. 

Z   m q�  matrix with vector-element zi , the observed values of the scale 
model’s independent variables at the ith subpopulation.  

fijs  The frequency weight for the s-th observation which belongs to the cell 
corresponding to Y j�  at subpopulation i.  

nij  The sum of frequency weights of the observations that belong to the cell 
corresponding to Y j�  at subpopulation i. 

rij  The cumulative total up to and including Y j�  at subpopulation i.  

ni  The marginal frequency of subpopulation i. 

n  The sum of all frequency weights. 

γ ij  The cumulative response probability up to and including Y j�  at 
subpopulation i. 

πij  The cell response probability corresponding to Y j�  at subpopulation i.  

�  ( )J � �1 1 vector of threshold parameters in the location part of the model. 

�  p �1 vector of location parameters in the location part of the model. 

�  q �1 vector of scale parameters in the scale part of the model. 

B � ( , , )� � �T T T T  The {(J-1)+p+q} × 1 vector of unknown parameters in the general model. 

� ( � , � , � )B � � � �T T T T  The {(J-1)+p+q} × 1 vector of maximum likelihood estimates of the 
parameters in the general model. 

� � �
B � ( , )� �T T T The {(J-1)+p} × 1 vector of maximum likelihood estimates of the parameters 

in the location-only model. 

�γ ij  The cumulative response probability estimate based on the maximum 

likelihood estimate �B  in the general model. 
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�γ ij  The cumulative response probability estimate based on the maximum 

likelihood estimate
�
B  in the location-only model. 

�πij  The cell response probability estimate based on the maximum likelihood 

estimate �B  in the general model. 
�πij  The cell response probability estimate based on the maximum likelihood 

estimate 
�
B  in the location-only model. 

�e  Number of non-redundant parameters in the general model. If all parameters 
are non-redundant, ê  = (J-1) + p+ q.  

�
e  Number of non-redundant parameters in the location-only model. If all 

parameters are non-redundant, e
�

= (J-1) + p. 

Data Aggregation 
Observations with negative or missing frequency weights are discarded. Observations are 
aggregated by the definition of subpopulations. Subpopulations are defined by the cross-
classifications of the set of independent variables specified in the command.  

Let ni be the marginal count of subpopulation i,  

n ni ij

j

J

�
�

�
1

 

If there is no observation for the cell of Y j�  at subpopulation i, it is assumed that nij � 0, 

provided that ni � 0 . A non-negative scalar δ �[ , )0 1  may be added to any zero cell (i.e., cell 
with nij � 0) if its marginal count ni   is nonzero. The value of δ  is zero by default. 

Data Assumptions 

Let ( ,..., )n ni iJ1
T  be the J �1 vector of counts for the categories of Y at subpopulation. It is 

assumed that each ( ,..., )n ni iJ1
T  is independently multinomial distributed with probability 

vector ( ,..., )π πi iJ1
T of dimension J �1 and fixed total ni. 

Model 
Let ijγ = Prob( Y ≤ j| xi) be the cumulative response probability for Y, i.e.,   

γ πij il

l

j

�
�

�
1

 

for j = 1, …, J-1. Notice that γ iJ � 1, hence only the first J-1 γ ’s are needed in the model.  
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General Model 

The general model is given by 

 =  
T

η
θ

σij
j i

i

�  � x

z( )
 

where ijη is related to the cumulative probability ijγ by a link function link( ijγ ), 

 =  link(η γij ij ) , 

for j = 1, …, J-1 and i = 1, …, m.  Possible forms of link( γ ) are  

link( ) =  

Logit link

Complementary log - log link

Negative Log - log link

Probit link

Cauchit (Inverse Cauchy) link

γ

γ
γ

γ
γ

γ
π γ

log( )

log( log( ))

log( log( ))

( )

tan( ( . ))

1
1

05

1

�
� �

� �

�

�

�

���

�

���
��

. 

The numerator in the right hand side of the general model specifies the location of the model, 

θ j i�  �Tx .  In the location part of the model, �  is the vector of thresholds. Values of the 

thresholds are subject to a monotonicity property θ θ1 1� �
�

� J . � is the vector of location 
parameters. 

The denominator, σ ( )zi , is the scale. Possible forms of σ ( )z are  

σ
τ

( )
exp( )

z
z

�
���
1 if unity scale is assumed

if non - constant scale is assumedT . 

�  is the vector of scale parameters. 

Location-Only Model 

If σ ( )zi � 1 is assumed, then η θij j i� �  �Tx . The general model is said to reduce to the 

location-only model. The parameter B  reduces to B � ( , )� �T T T. 

Log-likelihood Function 
The log-likelihood of the model is  
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l r r gij ij i j ij

j

J

i

m

� �
�

�

�

�

�� ϕ ϕ( ) ( )1

1

1

1

 

in which rij  is the cumulative total  

r nkij

k

j

�
�

�
1

, 

the argument ϕ ij  is given by 

ϕ
γ

γ γij
ij

i j ij
�

�

�
��

�
	
�

log
1

, 

and the function g( )ϕ  is 

g
i j

i j ij
( ) ( ( ))ϕ ϕ

γ
γ γ

� 	 �
�

�
��

�
	


�

�

log exp log1
1

1
 

Notice that a constant term c n n ni i iJ
i

m
�

�

� log{ !/ ( ! !)}1
1

�  which is independent of the 

unknown parameters has been excluded here. Thus, l is in fact the kernel of the true log-
likelihood function. 

Further details of the log-likelihood function can be found at the end of this chapter.  

Derivatives of the Log-likelihood Function 
Details of derivatives can be found at the end of this chapter. 

First Derivative  

The first derivative of l with respect to Bk k J p q, ,...,( )� � 	 	1 1 , is  






�





�

�

�

��l

B

l
U Q

k

i

ij
ij ijk

j

J

i

m

ϕ
1

1

1
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in which 
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�

l
r ri

ij
ij i j

ij

i jϕ
γ

γ( )1
1
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Uij
i j

ij i j ij
�

�
�

�

γ
γ γ γ

1

1( )
, 

and 

Q P Pij ijk
ij

ij
i j k

ij

i j

i j

i j
�
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�
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γ

γ
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in which  

P
B

k J

x
J k J p

z J p k J p q

ijk
ij

k
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i

i k J

i
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T

T
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z

z
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1
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, 

δ jk � 1 if j = k, 0 otherwise, and PiJk = 0. For i = 1, …, m, j = 1, …, J-1, 
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Logit link

Complementary log - log link

Negative Log - log link

Probit link

cos Cauchit link2

�
, 

and 
 
 �γ ηiJ iJ/ 0. 

Second Derivative  

The second derivative is 
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for s, k = 1, …, (J – 1) + p + q. The first term of the equation is  
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The second term is  
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To calculate the third term, notice that 
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where 
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and 
 
 �P BiJk s/ 0 . Moreover, 




 


�





2γ
η

γ
η

ij

s ij
ij

ij

ij
ijsB

R P  

and 
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The third term can be calculated by applying these equations. 

Expectation of the Second Derivative 

For s, k = 1, …, (J – 1) + p + q,  
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Parameter Estimation 

Maximum Likelihood Estimate 

To obtain the maximum likelihood estimate of B , a Fisher Scoring iterative estimation 

method or Newton-Raphson iterative estimation method can be used. Let B( )t  be the 

parameter vector at iteration t and 
 
l t/ ( )B  be a vector of the first derivatives of l evaluated 

at B B� ( )t . Moreover, let A ( )t  be a {(J-1)+p+q} × {(J-1)+p+q} matrix such that 

A B B

B B

( ) ( )

( )

t

sk

s k

s k

l

B B

l

B B

t

t

�
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Newton - Raphson approach

E Fisher Scoring approach

  

For a location-only model, the corresponding formulas use the first (J-1)+p elements of 


 
l t/ ( )B  and the upper {(J-1)+p} × {(J-1)+p} submatrix of A ( )t . 

The parameter vector B  at iteration t 	1 is updated by B( )t�1  where 

A B A B
B

( ) ( ) ( ) ( )
( )

t t t t
t

l� � 	 




1 ξ   

and ξ � 0 is a stepping scalar such that l lt tB B( ) ( )� � �1 0� � � � . 

Stepping 

Use step-halving method if l lt tB B( ) ( )� � 
1 0� � � � . Let V be the maximum number of steps in 

step-halving, the set of values of ξ is {1/2v: v = 0, …, V-1}. 
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Starting Values of the Parameters 

Location-Only Model 

If a location-only model is specified, set B 0( ) ( ) ,0 0� � T T T� �  where 

θ j

ik

k

j

i

m

i

i

m

n

n

( )0 11

1

�

�

�

������

�

	









��

�

��

�
link  

for j = 1, …, J-1.  

General Model 

If a general model is specified, first ignore the scale part (i.e., by assuming that = 0 and 

treat the model as if it is a location-only model) and use B 0( ) ( ) ,0 0� � T T T� �  as the starting 

value to obtain the maximum likelihood estimate 
� � �
B � � �T T T

,� � . After 
�
B  is obtained, find 

the maximum likelihood estimate � � , � , �B � � � �T T T T� �  of the general model by starting at 

� �
� �T T T T

, ,0� � .  

The above practice is essentially the same as taking B 0 0( ) , ,0 � � (0) T T T T� � . The advantage 

is that the maximum likelihood estimate 
�
B  can be obtained in the process of finding �B .  

Ordinal Adjustments for the Threshold Parameters 

If the monotonicity property θ θ1 1� �
�

� J  is not preserved at the end of any iteration, ad hoc 

adjustment will be taken before the next iteration starts. If θ θj
t

j
t( ) ( )�
�1 for some j, then both 

θ j
t( )  and θ j

t
�1

( )  are set to θ θj
t

j
t( ) ( ) /	
�1 2� �  before the next iteration. This value is then 

compared with θ j
t
�2

( )  and so on. 

Convergence Criteria 

Given two convergence criteria ε k � 0 and ε p � 0 , the iteration is considered to be 

converged if one of the following criteria are satisfied: 

1. l lt t
k( ) ( )( ) ( )B B� � 
1 ε . 

2. max ( )

i
i
t

i
t

pB B� � 
1 ε . 
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Statistics 

Model Information 

Final Model, General 

The value of –2log-likelihood of the model is given by 

�2l( � )B  

where l( � )B  is the value of the log-likelihood evaluated at �B . 

Final Model, Location-Only 

If unity scale is assumed, the general model reduces to the location-only model.  The value of 
–2log-likelihood of the model is given by 

�2l( )
�
B . 

Initial Model, Intercept-Only 

In the initial model, when the intercepts are the only parameters in the model, the parameter 

vector is B 0 0( ) , ,0 � � (0) T T T T� � .  The value of the –2log-likelihood is 

�2 0l( )( )B . 

Model Chi-Square 

The value of the Model Chi-square statistic is given by the difference between any two 
nesting models of interest.  

General Model versus Intercept-Only Model 

The following statistic is available when a general model is specified. The Model Chi-square 
statistic is given by 

� �2 20l l( ) ( � )( )B B . 

Under that null hypothesis that H0:� �� �0 0 and , the Model Chi-square is asymptotically 

chi-squared distributed with ê  – (J – 1) degrees of freedoms. 
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Location-Only Model versus Intercept-Only Model 

The following statistic is available when a location-only model is specified. The Model Chi-
square statistic is given by 

� �2 20l l( ) ( )( )B B
�

. 

Under that null hypothesis that H0:� � 0 , the Model Chi-square is asymptotically chi-

squared distributed with e
�

 – (J – 1) degrees of freedoms. 

General Model versus Location-Only Model 

The following statistic is available when a general model is specified. The Model Chi-square 
statistic is given by 

� �2 2l l( ) ( � )
�
B B . 

Under that null hypothesis that H0:� � 0, the Model Chi-square is asymptotically chi-

squared distributed with ê – e
�

 degrees of freedoms.  

Likelihood Ratio Test for Equal Slopes Assumption 

For location-only model, a likelihood ratio test of parallel lines in the location is performed. 
If the regression lines are not parallel, the location can be specified as 

η θij j j i� �  � Tx  

for j = 1, …, J-1. That is, the location parameters � j  (or slopes) vary with the levels of the 

response. The parameter for the above “non-parallel” location-only model is 

B �
�

( , ,..., )� � �T T T T
j J 1  which is of dimension {(J-1)+(J-1)p} × 1. The first derivative 


 
l / B  of the log-likelihood is the same as in the “parallel” model,  except that 
P Bijk ij k� 
 
η /  is  replaced by the following: 

P
B

k J

x J sp k J sp p s Jijk
ij

k

jk

i k J sp
�





�
� � �

� � 	 � � � 	 	 � �
��� � � �

η δ 1 1

1 1 1 21

( )

( ) ( ) , ,..., ( )[ {( ) }]
. 

Similarly, the expected value of the second derivative is the same as in the parallel model, 
except that the Pijk  is replaced by the above equation.  

To test the null hypothesis of parallelism H J0 1 1: ...� �� �
�

, find the maximum likelihood 

estimate 
�
B  of the parallel location-only model and the maximum likelihood estimate 

��
B  of 

the non-parallel model.  The Model Chi-square statistic is given by  

� �2 2l l( ) ( )
� ��
B B . 
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Under the null hypothesis, the Model Chi-square statistic is asymptotically chi-squared 
distributed with (k-2)p degrees of freedoms. 

Pseudo R Squares 

Cox and Snell’s R Square 

The Cox and Snell’s R2 for a general model is 

R
L

L

n

CS
2

0
2

1� �
�
��

�
	


( )

( � )

( )B

B
 

Replace �B  by 
�
B  for a location-only model. 

Nagelkerke’s R Square 

The Nagelkerke’s R2 is  

R
R

L nN
CS2
2

0 21
�

� ( )( ) /B
 

McFadden’s R Square 

The McFadden’s R2 for a general model is 

R
l

l
M
2

0
1� �
�
��

�
	


( � )

( )( )

B

B
 

Replace �B  by 
�
B  for a location-only model. 

Predicted Cell Counts & Cumulative Totals 

Predicted Cell Counts 

The estimated cell response probability based on the maximum likelihood estimate for the 
general model is 

�

�

� � ,...,
�

π
γ
γ γ

γ
ij

i

ij i j

i J

j

j J

j J

�
�

� � �
� �

�
��

��
�

�

1

1

1

1

2 1

1
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At each subpopulation i, the predicted count for response category Y j�  is 

� �n nij i ij� π  

The (raw) residual is n nij ij� �  and the standardized residual is ( � ) / � ( � )n n nij ij i ij ij� �π π1 .  

Replace �γ ij  by 
�γ ij , �πij  by 

�πij , and �nij  by 
�
nij  for a location-only model. 

Predicted Cumulative Totals, General Model 

The predicted cumulative total up to and including Y j�  is  

� �r nij i ij� γ ,  

The (raw) residual is r rij ij� �  and the standardized residual is ( � ) / � ( � )r r nij ij i ij ij� �γ γ1 . 

Replace �γ ij  by 
�γ ij  and �rij  by 

�
rij  for a location-only model. 

Goodness of Fit Measures 

Pearson Goodness of Fit Measure 

The Pearson goodness of fit measure for a general model is  

X
n n

n
ij i ij

i ijj

J

i

m
2

2

11

�
�

��

�� ( � )

�

π
π

, 

Under the null hypothesis, the Pearson goodness-of-fit statistic is asymptotically chi-squared 
distributed with m(J – 1) – ê  degrees of freedom. 

Replace �πij  by 
�πij  and �e  by 

�
e  for a location-only model. 

Deviance Goodness of Fit Measure 

The Deviance goodness of fit measure for a general model is 

D n
n

nij
ij

i ijj

J

i

m

�
�
��

�
	


��

��2
11

log
�π

 

Under the null hypothesis, the Deviance goodness-of-fit statistic is asymptotically chi-
squared distributed with m(J – 1) – ê  degrees of freedom. 

Replace �πij  by 
�πij  and �e  by 

�
e  for a location-only model. 
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Covariance and Correlation Matrices 

The estimate of the covariance matrix of �B  is 

Cov

Newton - Raphson method

E Fisher Scoring method

( � )
�

�

B
B B

B B

B B

B B

�

� 


 


� 


 


�
��

�
	


�

�
���

�
���

�

�

2

2

l

l
. 

Let ��  be the {(J-1)+p+q} × 1 vector of the square roots of the diagonal elements in Cov( � )B .  

The estimate of the correlation matrix of �B  is 

Cor( Diag( Cov( Diag(� ) � ) � ) � )B B� � �� �1 1 . 

Replace �B  by 
�
B  and ��  by 

�
�  (a {( ) }J p� 	 �1 1 vector) for a location-only model. 

Parameter Statistics 

An estimate of the standard deviation of �Bk  is �σ k . The Wald statistic for �Bk  is 

Wald k
k

k

B
�

�

�σ
 

Under the null hypothesis that H Bk0 0: � , Wald k  is asymptotically chi-squared distributed 
with 1 degree of freedom. 

Based on the asymptotic normality of the parameter estimate, a 100(1- )α % Wald 

confidence interval for �Bk  is 

� �/B zk k� �1 2α σ  

where 2/1 α−z  is the upper (1-α /2)100th percentile of the standard normal distribution. 

Replace �Bk  by 
�
Bk  and �σ k  by 

�σ k  for a location-only model. 

Linear Hypothesis Testing 
For a general model, let L  be a matrix of coefficients for the linear hypotheses 

H0:LB c�  

where c  is a k �1 vector of constants. The Wald statistic for H0  is  



 14 

Wald( ) = ( Cov(T TL c LB c L B L LB c, � ) { � ) } ( � )� ��1 . 

Under the null hypothesis, Wald( )L c,  is asymptotically chi-squared distributed with l 
degrees of freedom, where l is the rank of L .  

Replace �B  by 
�
B  for a location-only model. 
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