PLUM

The purpose of the PLUM procedure is to model the dependence of an ordinal categorical
response variable on a set of discrete and/or continuous independent variables.

Since the choice and the number of response categories can be quite arbitrary, it is
essential to model the dependence such that the choice of the response categories does not
affect the conclusion of the inference. That is, the final conclusion should be the same if any
two or more adjacent categories of the old scale are combined. Such considerations lead to
modeling the dependence of the response on the independent variables by means of the
cumulative response probability.
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The ordinal response variable, which takesinteger valuesfrom 1to J, J= 2.
The number of categories of the ordinal response.
The number of subpopulations.

mx pA matrix with vector-element xiA, the observed values at theith

subpopulation, determined by the independent variables specified in the
command.

Mx P matrix with vector-element X;, the observed values of the location
mode!l’ s independent variables at the ith subpopulation.

Mx ¢ matrix with vector-element z, the observed values of the scale
mode!’ s independent variables at the ith subpopulation.

The frequency weight for the s-th observation which belongs to the cell
correspondingto Y = | at subpopulation i.

The sum of frequency weights of the observations that bel ong to the cell
correspondingto Y = | at subpopulation i.

The cumulative total up to and including Y = | at subpopulationii.

The margina frequency of subpopulationi.

The sum of all frequency weights.

The cumulative response probability up to and including Y = j at
subpopulation i.

The cell response probability correspondingto Y = j at subpopulation i.
(J —1) x 1 vector of threshold parameters in the location part of the mode!.
px 1 vector of location parametersin the location part of the model.

g1 vector of scale parametersin the scale part of the model.

The { (J-1)+p+q} x 1 vector of unknown parameters in the general model.

The {(J-1)+p+q} * 1 vector of maximum likelihood estimates of the
parametersin the general model.

The {(J-1)+p} x 1 vector of maximum likelihood estimates of the parameters
in the location-only model.

The cumulative response probability estimate based on the maximum
likelihood estimate B in the general model.



Vij The cumulative response probability estimate based on the maximum
likelihood estimateB in the location-only model.

Tijj The céll response probability estimate based on the maximum likelihood
estimate B in the general model.

7 i The cell response probability estimate based on the maximum likelihood
estimate B in the location-only mode.

é Number of non-redundant parameters in the general model. If al parameters

are non-redundant, € = (J-1) + p+ q.

€ Number of non-redundant parametersin the location-only model. If all
parameters are non-redundant, € = (J-1) + p.

Data Aggregation

Observations with negative or missing frequency weights are discarded. Observations are
aggregated by the definition of subpopulations. Subpopulations are defined by the cross-
classifications of the set of independent variables specified in the command.

Let n, be the marginal count of subpopulation i,

J

n = Znij

j=1

If there is no observation for the cell of Y = | at subpopulation i, it is assumed that n; =0,

provided that n; # 0. A non-negative scalar ¢ €[0,1) may be added to any zero cell (i.e., cell
with ny; = 0) if itsmarginal count n; is nonzero. The value of ¢ is zero by defaullt.

Data Assumptions

Model

Let (nil,...,niJ)T be the Jx1 vector of counts for the categories of Y at subpopulation. It is
assumed that each (nil,...,niJ)T is independently multinomial distributed with probability
vector (7%iq,..., m)T of dimension J x 1 and fixed total n.

Let ); = Prob( Y<j| x) be the cumulative response probability for Y, i.e,

forj=1,...,J-1. Noticethat ) ;; =1, hence only thefirst J-1) 'sare needed in the model.



General Model

The general model is given by
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where 77, isrelated to the cumulative probability ), by alink function link(); ),
nij = link(y ;).

forj=1,...,J1landi=1, ..., m Possibleformsof link() ) are

|og(1L) Logit link
-y

log(—log(1-y)) Complementary log-log link
—log(—1og(y)) Negative Log-log link

o (y) Probit link

tan(7z( y—05)) Cauchit (Inverse Cauchy) link

link( y) =

The numerator in the right hand side of the general model specifies the location of the model,
6 - ﬁTxi . Inthe location part of the model, 6 is the vector of thresholds. Vaues of the
thresholds are subject to a monotonicity property 64 <...<63_4. B is the vector of location
parameters.

The denominator, 0(z), isthe scale. Possible forms of o(z)are

2 1 if unity scaleis assumed
o(2) = .
exp(rT z) if non-constant scaleis assumed

T isthe vector of scale parameters.

Location-Only Model

If 0(z)=1is assumed, then 77;; =6 — BTxi. The general model is said to reduce to the

location-only model. The parameter B reducesto B = (GT,BT)T.

Log-likelihood Function

The log-likelihood of the model is
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inwhich r;; isthe cumulative total

the argument ¢; is given by

y..
¢ij =log ———|.,
Vii+1 = Vi

and the function g(¢) is

g(¢) = log(1+exp(g)) = Iog(

Yijaa
Yija1=Yj

Notice that a constant term c:z_mllog{ni I/ (njqL..n3 N} which is independent of the
1=

unknown parameters has been excluded here. Thus, | is in fact the kernel of the true log-

likelihood function.

Further details of the log-likelihood function can be found at the end of this chapter.

Derivatives of the Log-likelihood Function

Details of derivatives can be found at the end of this chapter.

First Derivative

Thefirst derivative of | with respectto By ,k =1,...,(J-D+ p+(q,is
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and dyy/dn;; =0.

Second Derivative

The second derivative is
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fors, k=1, ...,(d-1) + p+qg. Thefirst term of the equation is
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The second term is
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To caculate the third term, notice that
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and azyiJ /oBony =0. Ri has the following form:
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The third term can be calculated by applying these equations.

Expectation of the Second Derivative

Fors k=1,...,(J-1) +p+q,
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Parameter Estimation

Maximum Likelihood Estimate

To obtain the maximum likelihood estimate of B, a Fisher Scoring iterative estimation
method or Newton-Raphson iterative estimation method can be used. Let B® pe the
parameter vector at iteration t and ol / 9B M be avector of the first derivatives of | evaluated
a B=B"_ Moreover, let AM be a{(J-1)+p+q} x{(J-1)+p+qg} matrix such that
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For a location-only model, the corresponding formulas use the first (J-1)+p elements of
a1 /9B® and the upper { (J-1)+p} x{ (I-1)+p} submatrix of A,

Newton - Raphson approach

Fisher Scoring approach

B=B"

The parameter vector B at iteration t +1 is updated by BD where
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and &> 0 isastepping scalar such that I(B(”l))—I(B(t)) >0.

Stepping

Use step-halving method if I(B(”l))— I(B(t)) <0. Let V be the maximum number of stepsin
step-halving, the set of values of ¢is{1/2°v=0, ..., V-1}.



Starting Values of the Parameters
Location-Only Model

T
If alocation-only model is specified, set BO = (G(O)T,OT) where

forj=1,...,J1

General Model

If a general model is specified, first ignore the scale part (i.e., by assuming that = 0 and
T
treat the model asif it is alocation-only model) and use BO = (O(O)T,OT) as the starting

_ —r =T\ T _
value to obtain the maximum likelihood estimate B =(eT,sT) . After B is obtained, find
A A A T
the maximum likelihood estimate B =(6T,|3T,%T) of the genera model by sarting at

(67.6707) .

T
The above practice is essentially the same as taking BO = (6 OToT ,OT) . The advantage

is that the maximum likelihood estimate B can be obtained in the process of finding B.

Ordinal Adjustments for the Threshold Parameters

If the monotonicity property 64 <...< 6 ;_4 isnot preserved at the end of any iteration, ad hoc
adjustment will be taken before the next iteration starts. If B(Jt) > oW

j+1
6" and 6, are set to (6 +6()

for some j, then both
)/2 before the next iteration. This value is then

compared with H(jtlz and so on.

Convergence Criteria

Given two convergence criteria & >0 and £,>0, the iteration is considered to be
converged if one of the following criteria are satisfied:

1 ‘I(B(Hl))—I(B(t))‘ <&

2, max‘Bi(”l) - B,t‘ <&p.
|



Statistics

Model Information

Final Model, General

The value of —2log-likelihood of the model is given by
—21(B)
where [ (B) isthe value of the log-likelihood evaluated at B .

Final Model, Location-Only

If unity scaleis assumed, the general model reduces to the location-only model. The value of
—2log-likelihood of the model is given by

-21(B).

Initial Model, Intercept-Only

In the initial model, when the intercepts are the only parameters in the model, the parameter
T
vector is B(O) = (e © T,oT,oT) . The value of the —2log-likelihood is

—21(8(@).

Model Chi-Square

The value of the Model Chi-square statistic is given by the difference between any two
nesting models of interest.

General Model versus Intercept-Only Model

The following statistic is available when a general model is specified. The Model Chi-square
statistic is given by

—21(B@)—21(B).

Under that null hypothesis that Hq:p =0 and t = 0, the Model Chi-square is asymptotically
chi-squared distributed with & —(J — 1) degrees of freedoms.



Location-Only Model versus Intercept-Only Model
The following statistic is available when a location-only model is specified. The Model Chi-
sguare statistic is given by

—21(B@)-21(B).

Under that null hypothesis that Hg:p =0, the Model Chi-square is asymptotically chi-
squared distributed with & — (J — 1) degrees of freedoms.

General Model versus Location-Only Model

The following statistic is available when a general model is specified. The Model Chi-sguare
statistic is given by

—21(B)-2I(B).

Under that null hypothesis that Hg:t =0, the Model Chi-square is asymptotically chi-
squared distributed with é—& degrees of freedoms.

Likelihood Ratio Test for Equal Slopes Assumption

For location-only model, a likelihood ratio test of parallel linesin the location is performed.
If the regression lines are not parallel, the location can be specified as

nj=6;—Bi"x

forj=1,...,J-1 That is, the location parameters B ; (or slopes) vary with the levels of the
response. The parameter for the above “non-parallel” location-only model is
B=(©",8],...) )7 which is of dimension {(J-1)+(3-1)p} x1. The first derivative

dl /0B of the log-likelihood is the same as in the “paralel” model, except that
Rik =91 1 9By is replaced by the following:

_Bnij 3 ij 1<k<(J-)
“Xik—{(I-D+sp] (I-D+p<k<(I-D+sp+p, s=1..,(3-2)

Similarly, the expected value of the second derivative is the same as in the parallel model,
except that the Ry is replaced by the above equation.

To test the null hypothesis of paralelism Hg:B1 =...= B j_1, find the maximum likelihood

estimate B of the parallel location-only model and the maximum likelihood estimate é of
the non-parallel model. The Model Chi-square statistic is given by

_2I(B)-2I(B).
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Under the null hypothesis, the Moddl Chi-square statistic is asymptotically chi-squared
distributed with (k-2)p degrees of freedoms.

Pseudo R Squares

Cox and Snell’s R Square

The Cox and Snell’s R? for ageneral model is

2
2 . L(B(O)) n
Res=1 [ L(é) ]

Replace B by B for alocation-only model.

Nagelkerke’s R Square

The Nagelkerke' sR is

Rés

2 _
RN - 1— L(B(O))Zln

McFadden’s R Square

The McFadden’s R? for ageneral model is

L G))
M = [I(B“’))J

Replace B by B for alocation-only model.

Predicted Cell Counts & Cumulative Totals

Predicted Cell Counts

The estimated cell response probability based on the maximum likelihood estimate for the
general model is

Vi1 j=1

=1V~ Vija  1=2.,3-1
1-Viga =13
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At each subpopulation i, the predicted count for response category Y = j is
fij =1y 7ij

The (raw) residual is n; —fy; and the standardized residual is (ny; —ﬁij)/,/ni T (1-75).

Replace jj; by jj, 7ijj by 7jj, and fy; by ry; for alocation-only model.

Predicted Cumulative Totals, General Model

The predicted cumulative total up to and including Y = j is
fij =nibij.

The (raw) residual is r;; —f;j and the standardized residual is (r —r}j)/Jni Vij (1= i) -

Replace ﬁij by yj; and fj; by r; for alocation-only model.

Goodness of Fit Measures

Pearson Goodness of Fit Measure
The Pearson goodness of fit measure for ageneral model is
SR
i1 7

Under the null hypothesis, the Pearson goodness-of-fit statistic is asymptotically chi-squared
distributed with m(J — 1) — & degrees of freedom.

Replace 7. i by 7 ijj and € by € for alocation-only model.

Deviance Goodness of Fit Measure

The Deviance goodness of fit measure for ageneral model is
m J

D=2 n; lo
22 ij g[ 7_[” ]
i=1 j=1

Under the null hypothesis, the Deviance goodness-of-fit statistic is asymptotically chi-
squared distributed with m(J — 1) — & degrees of freedom.

Replace 7. i by 7 ijj and € by € for alocation-only model.

12



Covariance and Correlation Matrices

The estimate of the covariance matrix of B is

A
9BIB| .
B=B

2
o
9BIB

Let 6 bethe {(J-1)+p+q} x 1 vector of the square roots of the diagonal elementsin Cov(é) .
The estimate of the correlation matrix of B is

Newton - Raphson method

Cov(B) =
Fisher Scoring method

B=B

Cor(B) = Diag(6 ~Y)Cov(B)Diag(6 ).
Replace B by B and 6 by ¢ (a{(J—1)+ p} x1 vector) for alocation-only model.

Parameter Statistics

An estimate of the standard deviation of ék is 0y . TheWwald statistic for ék is

A

wald, = By
Ok

Under the null hypothesis that Hq: B, =0, Waldy is asymptotically chi-squared distributed
with 1 degree of freedom.

Based on the asymptotic normality of the parameter estimate, a 100(1-a) % Wad
confidence interval for By is

By £21_4/20%

where z,_,,, isthe upper (1- a /2)100" percentile of the standard normal distribution.

Replace ék by B, and &, by 0, for alocation-only model.

Linear Hypothesis Testing

For ageneral model, let L be amatrix of coefficients for the linear hypotheses
Ho:LB=c

where c isa k x 1 vector of constants. The Wald statistic for Hg is

13



wald(L,c) = (LB—c)T{LCov(B)L"} }(LB-¢).

Under the null hypothesis, Wald(L,c) is asymptotically chi-squared distributed with |
degrees of freedom, where | istherank of L .

Replace B by B for alocation-only model.
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