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PRINCALS 

The PRINCALS algorithm was first described in Van Rijckevorsel and De Leeuw 
(1979) and De Leeuw and Van Rijckevorsel (1980); also see Gifi (1981, 1985). 
Characteristic features of PRINCALS are the ability to specify any of a number of 
measurement levels for each variable separately and the treatment of missing 
values by setting weights in the loss function equal to 0. 

Notation 
The following notation is used throughout this chapter unless otherwise noted: 

n Number of cases (objects) 

m Number of variables 

p Number of dimensions 

For variable j, j m= 1, ,K  

h j  n-vector with categorical observations 

k j  Number of categories (distinct values) of variable j 

G j  Indicator matrix for variable j, of order n k j×  

The elements of G j  are defined as i n r k j= =1 1, , ; , ,K K  

g
i r j

i r jj ir1 6 =
%&'
1

0

when the th object is in the th category of variable 

when the th object is not in the th category of variable 
 

M j  Binary, diagonal n n×  matrix 

The diagonal elements of M j  are 

m
i k

i kj ii
j

j
1 6 =

%&'
1 1

0 1

when the th observation is within the range [

when the th observation is outside the range [

, ]

, ]
 

D j  Diagonal matrix containing the univariate marginals; that is, the column 
sums of G j  
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The quantification matrices and parameter vectors are: 

X Object scores, of order n p×  

Y j  Multiple category quantifications, of order k pj ×  

y j  Single category quantifications, of order k j  

a j  Variable weights (equal to component loadings) of order p 

Q Transformed data matrix of order n m×  with columns q G yj j j=  

Y  Collection of multiple and single category quantifications 

Note: The matrices G j , M j , and D j  are exclusively notational devices; they are 

stored in reduced form, and the program fully profits from their sparseness by 

replacing matrix multiplications with selective accumulation. 

Objective Function Optimization 

The PRINCALS objective is to find object scores X and a set of Y j  (for 

j m= 1, ,K ) — the underlining indicates that they are possibly restricted—so that 

the function 

σ X Y X G Y X G Y;1 6 4 9 4 9= −
′

−
�
��

�
��∑1 m Mj j j j jj

tr  

is minimal, under the normalization restriction ′ =∗X M X Imn , where the matrix 

M M∗ = ∑ j
j

, and I is the p p×  identity matrix. The inclusion of M j  in 

σ X Y;1 6  ensures that there is no influence of data values outside the range [ , ]1 k j , 

which may be really missing or merely regarded as such; M∗  contains the number 

of “active” data values for each object. The object scores are also centered; that is, 
they satisfy ′ =∗u M X 0 , with u denoting an n-vector with ones. 
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The following measurement levels are distinguished in PRINCALS: 

Multiple Nominal 

Y Yj j= (unrestricted)  

Single Nominal 

Y y aj j j= ′ (rank-one restrictions only)  

(Single) Ordinal 

Y y aj j j= ′  and y Cj j∈  (rank-one and montonicity restrictions) 

 (Single) Numerical 

Y y aj j j= ′  and y Lj j∈  (rank-one and linearity restrictions) 

For each variable, these levels can be chosen independently. The general 

requirement in the “single” options is Y y aj j j= ′ ; that is, Y j  is of rank one; for 

identification purposes, y j  is always normalized so that ′ =y D yj j j n , which 

implies that the variance of the quantified variable q G yj j j=  is 1. In the ordinal 

case, the additional restriction y Cj j∈  means that y j  must be located in the 

convex cone of all k j -vectors with nondecreasing elements. In the numerical case, 

the additional restriction y Lj j∈  means that y j  must be located in the subspace 

of all k j -vectors that are a linear transformation of the vector consisting of k j  

successive integers. 

Optimization is achieved through the following iteration scheme twice: 

(1)  Initialization (a) or (b) 

(2)  Update object scores 
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(3)  Orthonormalization 

(4)  Update category quantifications 

(5)  Convergence test: repeat (2)–(4) or continue 

(6)  Rotation 

The first time (for the initial configuration) initialization (a) described below is 
used and all single variables are temporarily treated as single numerical. Multiple 
nominal variables are treated as multiple nominal. The second time (for the final 
configuration) initialization (b) is used. Steps (1) through (6) are explained below. 

(1)  Initialization 

(a) The object scores X are initialized with random numbers, which are 

normalized so that ′ =∗u M X 0  and ′ =∗X M X Imn , yielding 
~
X . For multiple 

variables, the initial category quantifications are obtained as 
~ ~
Y D G Xj j j= ′−1 . 

For single variables, the initial category quantifications are defined as the first 
k j  successive integers, normalized so that ′ =u D yj j

~ 0  and ~ ~′ =y D yj j j n , and 

the initial variable weights are calculated as the vector ~ ~ ~a X G yj j j= ′ , rescaled 

to unit length. 

(b) All relevant quantities are copied from the results of the first cycle. 

(2)  Update object scores 

First, the auxiliary score matrix Z is computed as 

Z M G Y← ∑ j j j
j

~
 

and centered with respect to M∗ : 

~
Z M M uu M u M u Z← − ′ ′∗ ∗ ∗ ∗1 6< A . 

These two steps yield locally the best updates when there are no orthogonality 
constraints. 

(3)  Orthonormalization 

The orthonormalization problem is to find an M∗ -orthonormal X+  that is closest 

to 
~
Z  in the least squares sense. In PRINCALS, this is done by setting 

X M M Z+
∗
−

∗
−← m1 2 1 2 1 2GRAM

~4 9  

which is equal to the genuine least squares estimate up to a rotation—see (6). The 

notation GRAM( ) is used to denote the Gram-Schmidt transformation (Björk and 

Golub, 1973). 
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(4)  Update category quantifications; loop across variable j = 1, , mK  

(a) For multiple nominal variables, the new category quantifications are computed 
as: 

 Y D G Xj j j
+ −= ′1 ~

 

(b) For single variables, first an unconstrained update is computed in the same 
way: 

 
~
Y D G Xj j j= ′− +1  

 Next, one cycle of an ALS algorithm (De Leeuw et al., 1976) is executed for 

computing a rank-one decomposition of 
~
Y j , with restrictions on the left-hand 

vector. This cycle starts from the previous single quantifications ~y j  with 

 a Y D yj j j j
+ = ′~ ~  

 When the current variable is numerical, we are ready; otherwise we compute 

 y Y aj j j
∗ += ~

 

 Now, when the current variable is single nominal you can simply obtain y j
+ by 

normalizing y j
∗  in the way indicated below; otherwise the variable must be 

ordinal, and you have to insert the weighted monotonic regression process 

 y yj j
∗ ∗← WMON4 9  

 which make y j
∗  monotonically increasing. The weights used are the diagonal 

elements of D j , and the subalgorithm used is the up-and-down-blocks 

minimum violators algorithm (Kruskal, 1964; Barlow et al., 1972). The result 
is normalized: 

 y y y D yj j j j jn+ ∗ ∗ ∗ −
= ′1 2 1 24 9  

 Finally, we set 

 Y y aj j j
+ + += ′  
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(5)  Convergence test 

The difference between consecutive values of the quantity 

TFIT = ′ + ′
�

!
   

"

$
###∈ ∉

∑ ∑∑1 m j s j j s
j J

j j

j Js

y D y a a1 6 1 6  

where y j s1 6  denotes the sth column of Y j  and where J is an index set recording 

which variables are multiple, is compared with the user-specified convergence 
criterion e—a small positive number. It can be shown that TFIT = −p X Yσ ;1 6 . 

Steps (2) through (4) are repeated as long as the loss difference exceeds ε . 

(6)  Rotation 

As remarked in (3), during iteration the orientation of X and Y with respect to the 

coordinate system is not necessarily correct; this also reflects that σ X Y;1 6  is 

invariant under simultaneous rotations of X and Y. From the theory of principal 

components, it is known that if all variables would be single, the matrix A — which 

can be formed by stacking the row vectors a j́—has the property that ′A A  is 

diagonal. Therefore you can rotate so that the matrix 

1 1 1m m mj j

j

j j j

j

′ = ′ = ′∑ ∑A A a a Y D Y  

becomes diagonal. The corresponding eigenvalues are printed after the convergence 
message of the program. The calculation involves tridiagonalization with 
Householder transformations followed by the implicit QL algorithm (Wilkinson, 
1965). 

Diagnostics 

Maximum Rank (may be issued as a warning when exceeded) 

The maximum rank pmax  indicates the maximum number of dimensions that can 

be computed for any data set. In general 
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p n k m m mj

j J

max min , max , max ,= − +
�

�
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�

�
�� − −

�

�
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�

�
��

%
&K
'K

(
)K
*K∈

∑1 0 12 1 21 6 1 62 7 , 

where m1  is the number of multiple variables with no missing values, m2  is the 
number of single variables, and J is an index set recording which variables are 
multiple. Although the number of nontrivial dimensions may be less than pmax  
when m = 2 , PRINCALS does allow dimensionalities all the way up to pmax . 
When, due to empty categories in the actual data, the rank deteriorates below the 
specified dimensionality, the program stops. 

Marginal Frequencies 

The frequencies table gives the univariate marginals and the number of missing values 
(that is, values that are regarded as out of range for the current analysis) for each 
variable. These are computed as the column sums of D j  and the total sum of M j . 

Fit and Loss Measures 

When the HISTORY option is in effect, the following fit and loss measures are 
reported: 

(a) Total fit. This is the quantity TFIT defined in (5). 

(b) Total loss. This is σ X Y;1 6 , computed as the sum of multiple loss and single 

loss defined below. 

(c) Multiple loss. This measure is computed as 

TMLOSS tr= − ′∑p m j j j
j

1 Y D Y  

(d) Single loss. This measure is computed only when some of the variables are 
single: 

SLOSS tr= ′ + ′
∉ ∉
∑ ∑1 m j j j

j J

j j

j J

Y D Y a a  
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Eigenvalues and Correlations between Optimally Scaled Variables 

If there are no missing data, the eigenvalues printed by PRINCALS are those of 

1 mR Q1 6 , where R Q1 6  denotes the matrix of correlations between the optimally 

scaled variables in the columns of Q. For multiple variables, q j  is defined here as 

G yj j1 61 . When all variables are single or when p = 1, R Q1 6  itself is also printed. 

If there are missing data, then the eigenvalues are those of the matrix with elements 

′ ∗
−q M qj

1
1 , which is not necessarily a correlation matrix, although it is positive 

semidefinite. 
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