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The Probit procedure is used to estimate the effects of one or more independent 
variables on a dichotomous dependent variable. The program is designed for 
dose-response analyses and related models, but Probit can also estimate logistic 
regression models. 

Notation 
The following notation is used throughout this chapter unless otherwise stated: 

 
m  Number of covariate patterns 

ni  Number of subjects for ith covariate pattern 

ri  Number of responses for ith covariate pattern 
p  Number of independent variables 
q  Number of levels of the grouping variable.  q = 0  when there is no grouping 

variable 

c Natural response rate 

X  n p q× +( )  matrix with element xij , which represents the jth covariate for the 

ith covariate pattern 
γ  p ×1 vector with element γ j , which represents the slope parameter of the jth 

independent variable 

α  q ×1vector with element α j , which represents the parameter for the jth level 

of the grouping variable 

β  ( )p q+ ×1 vector which is a composite of γ and α  

s  Total number of parameters in the model, equal to p q+  if the natural 

response rate is set to a constant, p q+ +1 if the natural response rate is to be 

estimated by the model 

                                                
1
 This algorithm applies to SPSS 5.0 and later releases. To learn about algorithms 

for previous releases, call SPSS Technical Support. 



2   PROBIT 

 

Model 
The model assumes a dichotomous dependent variable with probability P for the 
event of interest. Since the procedure assumes aggregated data for every 
covariate pattern, the random variable yi  takes a binomial distribution. 
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Hence, the log likelihood, L, for m observations after ignoring the constant factor 
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For dose-response models, it is further assumed that 

P c c Fi i= + −1a f e jX' β   (1) 

where Xi  is the vector of covariates for the ith covariate pattern and F iX 'βe j has 

two forms: 

F

e

e

e

i
z

i

i

i

X

X

X

X

'

/

'

'

'
β

β

β

β
e j = +

R

S
|
|

T
|
| −

−∞z

1

1

2

2 2

if logit model

dz if probit model
π

 (2) 

When there is no grouping variable, xij  is simply the observed value of the jth 

independent variable for the ith covariate pattern, and β = γ .  When there is a 
grouping variable, a set of indicator variables is constructed. There will be q  
indicator variables l li iq1, ,K  added to the X  matrix and q  parameters α α1, ,K q  

added to the β  vector. 
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l
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1 if the th covariate pattern is in the th level

0 otherwise
 

Hence, the Xi  vector has p q+  elements and the associated parameter vector β  is 

expanded to β β β β1 1, , , , ,K Kp p p q+ +d i , where α βj p j= +  . 

Maximum-Likelihood Estimates (MLE) 
To obtain the maximum likelihood estimates for c, and β β1, ,K p q+ , set the 

following equations, (3) and (4), equal to 0: 
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where L
jβ

*  is the derivative of L with respect to βj , and F iX 'βe j and Pi  are 

defined by equations (1) and (2). 

Algorithm 

Probit uses the algorithms proposed and implemented in NPSOL by Gill, Murray, 
Saunders, and Wright. The loss function for this procedure is the negative of the 
log-likelihood described in the model. The derivatives for the parameters are 
described in equations (3) and (4). The only bound for the parameters is 0 1< <c . 
For more details of the NPSOL algorithms, see CNLR (constrained nonlinear 
regression). 
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Natural Response Rate 

When the user specifies a fixed number for the natural response rate, Lc
*  is set to 

0 for iterations and the bound for c is set equal to the fixed number.  

Initial Values 

The initial value for each β  is set to 0. If there is a control group, the initial value 
of c , designated by c0 ,  is set to the ratio of the response to the number of 
subjects for the control group. If there is no control group, then c0  is set to the 
minimum ratio of the response to the number of subjects, over all covariate 
patterns. 

Criteria 

Users can control two criteria, ITER and CONV. ITER is the maximum number 
of iterations allowed. The default value is max ,50 3 1s +a fb g. CONV (criterion of 
convergence) is the same as the OPTOLERANCE criterion in CNLR. 

Asymptotic Covariance Matrix 

The asymptotic covariance matrix for the MLE $, $ , , $c p qβ β1 K +e j  is estimated by 
I−1 , where I is the information matrix containing the negatives of the second 
partial derivatives of L. 
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where 
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Frequency Table and Goodness of Fit 
For every covariate pattern i, i m= 1, ,K , compute 
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$

$ $

$P c c Fi i= + −1b g  

Then the expected frequency is equal to 

$ $E n Pi i i=  

The Pearson chi-square statistic is defined by  
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Fiducial Limits, RMP, and Parallelism 
 
The parallelism test statistic, fiducial limits, and relative median potency are 
available when there is only one covariate (predictor variable). Assuming that 
$ , , $α α1 K q  are the MLE’s for α α1, ,K q  and $γ  is the MLE for γ , v j( $ )α  is the 

asymptotic variance for $α j , v( $ )γ  is the asymptotic variance for $γ , and 

cov( $ , $ )α γj  is the asymptotic covariance for $α j  and $γ .  

Fiducial Limits for Effective dose x 

For level of the grouping variable j  and P = 0.01 through 0.09, 0.10 through 0.90 
(by 0.05), and 0.91 through 0.99, compute 

y
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Then the effective dose x j  to obtain probability P  of response for level j  is 

defined by 

x yj j= − $ / $α γd ie j  

and the 95% fiducial limit for effective dose x j  is computed by 
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The heterogeneity factor is used if the Pearson chi-square statistic is significant. 

Note: If the covariate (predictor variable) x is transformed, transform it back to 
the original metrics for the estimate and its two limits. For example, if log10  is 
applied to the predictor for the analysis and $ , $, $x x xL Uand  are the lower limit, the 
estimate, and the upper limit on the log10  scale, then 10 10$ $x xL Uand  are the lower 
and upper limits on the original scale. 
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Relative Median Potency 

The relative median potency is available when there is a factor variable and the 
covariate is transformed. It is not available if there is no factor variable or if there 
is more than one covariate.  

The estimate of relative median potency for group j  versus group k  is 

M jk k j= −$ $ / $α α γd i  

and its 95% confidence limit is 
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Note: If the covariate (predictor variable) x is transformed, transform it back to 
the original metrics for the relative median potency. 

Parallelism Test Chi-Square Statistic 

The parallelism test is available only if there is a factor variable. 
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where χ 0
2 is the Pearson chi-square statistic, assuming that the group variable is 

in the model and χ j
2  is the Pearson chi-square for the jth group and the degrees of 

freedom for χ 2 is q −1. 
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