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PROXSCAL 

PROXSCAL performs multidimensional scaling of proximity data to find a least-
squares representation of the objects in a low-dimensional space. Individual 
differences models can be specified for multiple sources. A majorization algorithm 
guarantees monotone convergence for optionally transformed, metric and 
nonmetric data under a variety of models and constraints.  

Detailled mathematical derivations concerning the algorithm can be found in 
Commandeur and Heiser (1993). 

Notation 
The following notation is used throughout this chapter, unless stated otherwise. 
For the dimensions of the vectors and matrices are used: 

 
n Number of objects 

m Number of sources 

p Number of dimensions 

s Number of independent variables 

h maximum(s, p) 

l Length of transformation vector 

r Degree of spline 

t Number of interior knots for spline 

 

The input and input-related variables are: 
 

k∆  n n×  matrix with raw proximities for source k 

kW  n n×  matrix with weights for source k 

E  n s×  matrix with raw independent variables 

F  n p×  matrix with fixed coordinates 

 

Output and output-related variables are: 
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ˆ
kD  n n×  matrix with transformed proximities for source k 

Z  n p×  matrix with common space coordinates 

kA  p p×  matrix with space weights for source k 

kX  n p×  matrix with individual space coordinates for source k 

Q  n h×  matrix with transformed independent variables 

B  h p×  matrix with regression weights for independent variables 

S  ( )l r t× +  matrix of coefficients for the spline basis 

 

Special matrices and functions are: 
 

J  T T/−I 11 1 1 , centering matrix of appropriate size 

( )kD X  n n×  matrix with distances, with elements { }ijkd , 

where ( ) ( )ijk ik jk ik jkd = − −x x x x  

kV  n n×  matrix with elements { }ijkv , where 
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Introduction 
The following loss function is minimized by PROXSCAL, 
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which is the weighted mean squared error between the transformed proximities 
and the distances of n object within m sources. The transformation function for the 
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proximities provides nonnegative, monotonically nondecreasing values for the 

transformed proximities ˆ
ijkd . The distances ( )dij kX  are simply the Euclidean 

distances between the object points, with the coordinates in the rows of kX .  

The main algorithm consists of the following major steps: 

1. find initial configurations kX , and evaluate the loss function; 

2. find an update for the configurations kX ; 

3. find an update for the transformed proximities ˆ
ijkd ; 

4. evaluate the loss function; if some predefined stop criterion is satisfied, stop; 
otherwise, go to step 2. 

Preliminaries 
At the start of the procedure, several preliminary computations are performed to 
handle missing weights or proximities, and initialize the raw proximities. 

Missings 

On input, missing values may occur for both weights and proximities. If a weight 
is missing, it is set equal to zero. If a proximity is missing, the corresponding 
weight is set equal to zero. 

Proximities 

Only the upper or lower triangular part (without the diagonal) of the proximity 
matrix is needed. In case both triangles are given, the weighted mean of both 
triangles is used. Next, the raw proximities are transformed such that similarities 
become dissimilarities by multiplying with 1− , taking into account the 
conditionality, and setting the smallest dissimilarity equal to zero.  

Transformations 

For ordinal transformations, the nonmissing proximities are replaced by their 
ascending rank numbers, also taking into account the conditionality. For spline 
transformations, the spline basis S  is computed. 
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Normalization 

The proximities are normalized such that the weighted squared proximities equal 
the sum of the weights, again, taking into account the conditionality. 

Step 1: Initial Configuration 
PROXSCAL allows for several initial configurations. Before determining the 
initial configuration, missings are handled, and the raw proximities are initialized. 
Finally, after one of the starts described below, the common space Z  is centered 
on the origin and optimally dilated in accordance with the normalized proximities. 

Simplex Start 

The simplex start consists of a rank-p approximation of the matrix ( )−V B J . Set 

H , an n p×  columnwise orthogonal matrix, satisfying T
p=H H I  equal to pI , 

where pI  denotes the matrix with the first p columns of the identity matrix. The 

nonzero rows are selected in such a way that the first ( )=Z B J H  contains the p  

columns of ( )B J  with the largest diagonal elements. The following steps are 

computed in turn, until convergence is reached: 

1. For a fixed Z , T=H PQ , where TPQ  is taken from the singular value 

decomposition T( ) =B J Z PLQ ; 

2. For a fixed H , 1/ 22 ( )− −=Z V B J H , where −V  is the pseudo-inverse of V . 

For a restricted common space Z , the second step is adjusted in order to fullfill 
the restictions. This procedure was introduced in Heiser (1985). 

Torgerson Start 

The proximities are aggregated over sources, squared, double centered and 
multiplied with 0.5− , after which an eigenvalue decomposition is used to 
determine the coordinate values, thus 

 * T0.5− =JD J Q 4  , 

where elements of *D  are defined as 
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followed by 1/ 2=Z Q , where only the first p positive ordered eigenvalues 

( 1 2 nλ λ λ≥ ≥ ≥K ) and eigenvectors are used. This technique, classical scaling, is 

due to Torgerson (1952, 1958) and Gower (1966) and also known under the names 
Torgerson scaling or Torgerson-Gower scaling. 

(Multiple) Random Start 

The coordinate values are randomly generated from a uniform distribution using 
the default random number generator from the SPSS system. 

User-Provided Start 

The coordinate values provided by the user are used. 

Step 2: Configuration Update 

Update for the Common Space 

The common space Z  is related to the individual spaces kX ( )1,...,k m=  through 

the model k k=X ZA , where kA  are matrices containing space weights. 

Assume that weight matrix kA is of full rank. Only considering Z defines (1.1) as 

 ( )2 T T2 ,cσ = + −z z Hz z t  (3.1) 

where 
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 (3.2) 

for which a solution is found as 
 −=z H t  (3.3) 

Several special cases exist for which (3.3) can be simplified. First, the weights 

matrices kW  may all be equal, or even all equal to one. In these cases H  will 

simplify, as will the pseudo-inverse of H . Another simplification is concerned 
with the different models, reflected in restrictions for the space weights. Equation 
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(3.3) provides a solution for Z , where kA  is of full rank. This model is the 

generalized Euclidean model, also known as IDIOSCAL (Carroll and Chang, 

1972). The weighted Euclidean model, or INDSCAL, restricts kA  to be diagonal, 

which does simplify H , but not the pseudo-inverse. The identity model requires 

k =A I  for all k, and does simplify H  and its pseudo-inverse, for the kronecker 

product ⊗  vanishes. 
To avoid computing the pseudo-inverse of a large matrix, PROXSCAL uses 

three technical simplifications when appropriate. First, the pseudo-inverse can be 
replaced by a proper inverse by adding the nullspace, taking the proper inverse and 
then subtracting the nullspace again as 

 ( ) 1−− = + −H H N N  

where ( ) ( )T T/=N 11 1 1 . 

Furthermore, a dimensionwise approach (Heiser and Stoop, 1986) is used 
which results in a solution for dimension a  of Z  as  

 ,a a a
−z = V z  

where 

 T T
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1
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m

a k a k k a
km =

= ∑V V e A A e  

where ae  is the a-th column of an identity matrix, and 

 T T

1

1
( ) ,

m

a k k k k a k k a
km =

 = − ∑z B X X A V P A A e  

with aP  an n p×  matrix equal to Z , but with the a-th column containing zeros. 

Still, the proper inverse of a n n×  matrix is required. The final simplification is 

concerned with a majorization function in which the largest eigenvalue of V  
allows for an easy update (Heiser, 1987; Groenen, Heiser, and Meulman, 1999). 
Instead of the largest eigenvalue itself, an upper bound is used for this scalar 
(Wolkowicz and Styan, 1980). 

Update for the Space Weights 

An update for the space weights ( )1,...,k k m=A  for the generalized Euclidean 

model is given by 

 ( ) ( )( )-1T T
k k k k=A Z V Z Z B X X . (3.4) 
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Suppose, T
k k kP L Q  is the singular value decomposition of ,kA for which the 

diagonal matrix with singular values kL is in nonincreasing order. Then, for the 

reduced rank model, the best ( )r r p< rank approximation of kA is given by 
T

k kR T , where kR contains the first r columns of k kP L , and kT  contains the first 

r columns of kQ .  

For the weighted Euclidean model, (3.4) reduces to a diagonal matrix 

 ( ) ( )( )-1T T diag  diagk k k k=A Z V Z Z B X X .  

The space weights for the identity model need no update, since k =A I  for all k. 

Simplifications can be obtained if all weights W  are equal to one and for the 
reduced rank model, which can be done in r dimensions, as explained in Heiser 
and Stoop (1986). 

Restrictions 

Fixed coordinates 

If some of the coordinates of Z  are fixed by the user, then only the free 
coordinates of Z  need to be updated. The dimensionwise approach is taken one 
step further, which results in an update for object i on dimension a as 

T T T T T
T T

1 1

1 1 1 1
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pm m

ia i k k k a j k k a k j i a ia
k j a ki a i i a i
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m m

+

= ≠ =
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%

 

where the ath column of Z is divided into a ia ia iz= +z z e% , with ie the ith column of 

the identity matrix, and T T

1

1 m

a j k k a k
km =

= ∑V e A A e V .  

This update procedure will only locally minimize (3.1) and repeatedly cycling 
through all free coordinates until convergence is reached, will provide global 
optimization. After all free coordinates have been updated, Z  is centered on the 
origin. On output, the configuration is adapted as to coincide with the initial fixed 
coordinates. 

Independent variables 

Independent variables Q  are used to express the coordinates of the common space 

Z  as a weighted sum of these independent variables as 
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An update for Z  is found by performing the following calculations for 1,...,j h= : 
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4. optionally, compute optimally transformed variables by regressing 

1 1
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 
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q T b I V q% , where T T

1

1 m

j j k k j k
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= ∑V b A A b V  and 

1k is greater than or equal to the largest eigenvalue of jV , on the original 

variable jq . Missing elements in the original variable are replaced with the 

corresponding values from jq% . 

Finally, set T

1

h

j j
j=

= = ∑Z QB q b . 

Independent variables restrictions were introduced for the MDS model in Bentler 
and Weeks (1978), Bloxom (1978), de Leeuw and Heiser (1980) and Meulman 
and Heiser (1984). If there are more dimensions (p) than independent variables (s), 
p-s dummy variables are created and treated completely free in the analysis. The 
transformations for the independent variables from Step 4 are identical to the 
transformations of the proximities, except that the nonnegativety constraint does 
not apply. After transformation, the variables q  are centered on the origin, 

normalized on n, and the reverse normalization is applied to the regression weights 
b . 
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Step 3: Transformation Update 

Conditionality 

Two types of conditionalities exist in PROXSCAL. Conditionality refers to the 
possible comparison of proximities in the transformation step. For unconditional 
transformations, all proximities are allowed to be compared with each other, 
irrespective of the source. Matrix-conditional transformations only allow for 
comparison of proximities within one matrix k, in PROXSCAL refered to as one 
source k. Here, the transformation is computed for each source seperately (thus m 
times). 

Transformation Functions 

All transformation functions in PROXSCAL result in nonnegative values for the 
transformed proximities. After the transformation, the transformed proximities are 
normalized and the common space is optimally dilated accordingly. The following 
transformations are available. 

Ratio 

ˆ =D . No transformation is necessary, since the scale of D̂  is adjusted in the 
normalization step. 

Interval 

ˆ α β= +D . Both α  and β  are computed using linear regression, in such a 

way that both parameters are nonnegative. 

Ordinal 

( )ˆ WMON ,=D : . Weighted monotone regression (WMON) is computed 

using the up-and-down-blocks minimum violators algorithm (Kruskal, 1964; 
Barlow et al., 1972). For the secondary approach to ties, ties are kept tied, the 
proximities within tieblocks are first contracted and expanded afterwards. 
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Spline 

( )ˆvec =D Sb . PROXSCAL uses monotone spline transformations (Ramsay, 

1988). In this case, the spline transformation gives a smooth nondecreasing 
piecewise polynomial transformation. It is computed as a weighted regression of 
D  on the spline basisS . Regression weights b  are restricted to be nonnegative 
and computed using nonnegative alternating least squares (Groenen, van Os and 
Meulman, 2000). 

Normalization 

After transformation, the transformed proximities are normalized such that the 
sum-of-squares of the weighted transformed proximities are equal to mn(n-1)/2 in 
the unconditional case and equal to n(n-1)/2 in the matrix-conditional case. 

Step 4: Termination 
After evaluation of the loss function, the old function value and new function 
values are used to decide whether iterations should continue. If the new function 
value is smaller than or equal to the minimum Stress value MINSTRESS, provided 
by the user, iterations are terminated. Also, if the difference in consecutive Stress 
values is smaller than or equal to the convergence criterion DIFFSTRESS, 
provided by the user, iterations are terminated. Finally, iterations are terminated if 
the current number of iterations, exceeds the maximum number of iterations 
MAXITER, also provided by the user. In all other cases, iterations continue. 

Remaining Issues 

Acceleration 

For the identity model without further restictions, the common space can be 

updated with acceleration as new update old2= −Z Z Z , also refered to as the 
relaxed update. 

Lowering dimensionality 

For a restart in p-1 dimensions, the p-1 most important dimensions need to be 
identified. For the identity model, the first p-1 principal axes are used. For the 
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weighted Euclidean model, the p-1 most important space weights are used, and for 
the generalized Euclidean and reduced rank models, the p-1 largest singular values 
of the space weights determine the remaining dimensions. 

Stress measures 

The following statistics are used for the computation of the Stress measures: 
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where ( )d X  is the average distance. 

The loss function minimized by PROXSCAL, normalized raw Stress, is given by: 

( ) ( ) ( )
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D X X

D
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ρ
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X

X
. 

Note that at a local minimum of X , α  is equal to one. The other Fit and Stress 
measures provided by PROXSCAL are given by: 

Stress-I: 
( ) ( ) ( )
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2 2

2

ˆ 2η η α ρ α

η α

+ −D X X

X
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Stress-II: 
( ) ( ) ( )

( )

2 2

2

ˆ 2η η α ρ α

κ α

+ −D X X

X
, with 

( )
( )

2 ˆη
α

ρ
=

D

X
. 

S-Stress: ( ) ( ) ( )4 4 2ˆ 2η η α ρ α+ −D X X , with 
( )
( )

2
2

4

ρ
α

η
=

X

X
. 

Dispersion Accounted For (DAF): 21 σ− . 

Tucker’s coefficient of congruence: 21-σ . 

Decomposition of normalized raw Stress 

Each part of normalized raw Stress, as described before, is assigned to objects and 
sources. Either sum over objects or sum over sources are equal to total normalized 
raw Stress. 

Transformations on output 

On output, whenever fixed coordinates or independent variables do not apply, the 
models are not unique. In these cases transformations of the common space and  
the space weights are in order.  

For the identity model, the common space Z is rotated to principal axes. For the 

weighted Euclidean model, ( ) 1/ 2Tdiag n
−

=Z Z Z Z  so that 

( )Tdiag n=Z Z I , and reverse tranformations are applied to the space weights 

kA . Further, the sum over sources of the squared space weights are put in 

descending order as to specify the importance of the dimensions. For the 

generalized Euclidean model, the Cholesky decomposition T T=Z Z LL  specifies 

the common space on output as ( ) 1Tn
−

=Z Z L , so that T n=Z Z I . 
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