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SPECTRA 

Univariate Series 
For all t, the series Xt  can be represented by 
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The following statistics are calculated: 
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Frequency 
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w w w w wp p p− − +, , , , , ,  1 0 1K K  are the periodogram weights defined by different 

data windows. 

Bivariate Series 
For the bivariate series Xt  and Yt  
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Cross-Periodogram of X and Y 
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Cospectral Density Estimate 
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Phase Spectrum Estimate 
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Data Windows
1
 

The following spectral windows can be specified. Each formula defines the upper 
half of the window. The lower half is symmetric with the upper half. In all 
formulas, p is the integer part of the number of spans divided by 2. To be concise, 
the formulas are expressed in terms of the Fejer kernel: 
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and the Dirichlet kernel: 
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where q  is any positive real number. 

                                                 
1
 This algorithm applies to SPSS 6.0 and later releases.  
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HAMMING 

Tukey-Hamming window. The weights are 
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TUKEY 

Tukey-Hanning window. The weights are 
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PARZEN 

Parzen window. The weights are 
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BARTLETT 

Bartlett window. The weights are 
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for k p= 0, ,K . 
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DANIELL UNIT 

Daniell window or rectangular window. The weights are 

Wk = 1  

for k p= 0, ,K . 

NONE 

No smoothing. If NONE is specified, the spectral density estimate is the same as 
the periodogram. It is also the case when the number of span is 1. 

W W Wp p− , , , ,K K0  

User-specified weights. If the number of weights is odd, the middle weight is 
applied to the periodogram value being smoothed and the weights on either side are 
applied to preceding and following values. If the number of weights are even (it is 
assumed that Wp  is not supplied), the weight after the middle applies to the 
periodogram value being smoothed. It is required that the weight W0  must be 
positive. 
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