
TSMODEL Algorithms

The TSMODEL procedure builds univariate exponential smoothing, ARIMA (Autoregressive
Integrated Moving Average), and transfer function (TF) models for time series, and produces
forecasts. The procedure includes an Expert Modeler that identifies and estimates an appropriate
model for each dependent variable series. Alternatively, you can specify a custom model.

This algorithm is designed with help from professor Ruey Tsay at The University of Chicago.

Notation

The following notation is used throughout this chapter unless otherwise stated:

Yt (t=1, 2, ..., n) Univariate time series under investigation.

n Total number of observations.

Model-estimated k-step ahead forecast at time t for series Y.

S The seasonal length.

Models

TSMODEL estimates exponential smoothing models and ARIMA/TF models.

Exponential Smoothing Models

The following notation is specific to exponential smoothing models:

Level smoothing weight

Trend smoothing weight

Damped trend smoothing weight

Season smoothing weight
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Simple Exponential Smoothing

Simple exponential smoothing has a single level parameter and can be described by the following
equations:

It is functionally equivalent to an ARIMA(0,1,1) process.

Brown’s Exponential Smoothing

Brown’s exponential smoothing has level and trend parameters and can be described by the
following equations:

It is functionally equivalent to an ARIMA(0,2,2) with restriction among MA parameters.

Holt’s Exponential Smoothing

Holt’s exponential smoothing has level and trend parameters and can be described by the
following equations:

It is functionally equivalent to an ARIMA(0,2,2).

Damped-Trend Exponential Smoothing

Damped-Trend exponential smoothing has level and damped trend parameters and can be
described by the following equations:
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It is functionally equivalent to an ARIMA(1,1,2).

Simple Seasonal Exponential Smoothing

Simple seasonal exponential smoothing has level and season parameters and can be described
by the following equations:

It is functionally equivalent to an ARIMA(0,1,(1,s,s+1))(0,1,0) with restrictions among MA
parameters.

Winters’s Additive Exponential Smoothing

Winter’s additive exponential smoothing has level, trend and season parameters and can be
described by the following equations:

It is functionally equivalent to an ARIMA(0,1,s+1)(0,1,0) with restrictions among MA parameters.

Winters’s Multiplicative Exponential Smoothing

Winter’s multiplicative exponential smoothing has level, trend and season parameters and can be
described by the following equations:

There is no equivalent ARIMA model.
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Estimation and Forecasting of Exponential Smoothing

The sum of squares of the one-step ahead prediction error, , is minimized
to optimize the smoothing weights.

Initialization of Exponential Smoothing

Let L denote the level, T the trend and, S, a vector of length s, denote the seasonal states. The
initial smoothing states are made by back-casting from t=n to t=0. Initialization for back-casting
is described here.

For all the models .

For all non-seasonal models with trend, T is the slope of the line (with intercept) fitted to the
data with time as a regressor.

For the simple seasonal model, the elements of S are seasonal averages minus the sample mean;
for example, for monthly data the element corresponding to January will be average of all January
values in the sample minus the sample mean.

For the additive Winters model, fit to the data where t is time and

are seasonal dummies. Note that the model does not have an intercept. Then , and
.

For the multiplicative Winters model, fit a separate line (with intercept) for each season with time
as a regressor. Suppose is the vector of intercepts and is the vector of slopes (these vectors
will be of length s). Then and .

ARIMA and Transfer Function Models

The following notation is specific to ARIMA/TF models:

at (t = 1, 2, ... , n) White noise series normally distributed with mean zero and variance .

p Order of the non-seasonal autoregressive part of the model

q Order of the non-seasonal moving average part of the model

d Order of the non-seasonal differencing

P Order of the seasonal autoregressive part of the model

Q Order of the seasonal moving-average part of the model

D Order of the seasonal differencing

s Seasonality or period of the model
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AR polynomial of B of order p,

MA polynomial of B of order q,

Seasonal AR polynomial of BS of order P,

Seasonal MA polynomial of BS of order Q,

Differencing operator

B Backward shift operator with and

Prediction variance of

Prediction variance of the noise forecasts

Transfer function (TF) models form a very large class of models, which include univariate
ARIMA models as a special case. Suppose is the dependent series and, optionally,

are to be used as predictor series in this model. A TF model describing the
relationship between the dependent and predictor series has the following form:

The univariate ARIMA model simply drops the predictors from the TF model; thus, it has the
following form:

The main features of this model are:
An initial transformation of the dependent and predictor series, f and fi. This transformation
is optional and is applicable only when the dependent series values are positive. Allowed
transformations are log and square root. These transformations are sometimes called
variance-stabilizing transformations.
A constant term .
The unobserved i.i.d., zero mean, Gaussian error process with variance .
The moving average lag polynomial MA= and the auto-regressive lag
polynomial AR= .
The difference/lag operators and .
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Predictors are assumed given. Their numerator and denominator lag polynomials are
of the form: = and

= .
The “noise” series

is assumed to be a mean zero, stationary ARMA process.

Estimation and Forecasting of ARIMA/TF

There are two forecasting algorithms available: Conditional Least Squares (CLS) and Exact Least
Squares (ELS) or Unconditional Least Squares forecasting (ULS). These two algorithms differ in
only one aspect: they forecast the noise process differently. The general steps in the forecasting
computations are as follows:

1. Computation of noise process through the historical period.

2. Forecasting the noise process up to the forecast horizon. This is one step ahead forecasting
during the historical period and multi-step ahead forecasting after that. The differences in CLS
and ELS forecasting methodologies surface in this step. The prediction variances of noise
forecasts are also computed in this step.

3. Final forecasts are obtained by first adding back to the noise forecasts the contributions of the
constant term and the transfer function inputs and then integrating and back-transforming the
result. The prediction variances of noise forecasts also may have to be processed to obtain the
final prediction variances.

Let and be the k-step forecast and forecast variance, respectively.

Conditional least squares (CLS) method

assuming for t<0.

where are coefficients of the power series expansion of .

Minimize .

Missing values are imputed with forecast values of .

Maximum likelihood (ML) method (Brockwell and Davis, 1991)

Maximize likelihood of ; that is,
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where , and is the one-step ahead forecast variance.

When missing values are present, a Kalman filter is used to calculate .

Error Variance

in both methods. Here n is the number of non-zero residuals and k is the number of parameters
(excluding error variance).

Initialization of ARIMA/TF

A slightly modified Levenberg-Marquardt algorithm is used to optimize the objective function.
The modification takes into account the “admissibility” constraints on the parameters. The
admissibility constraint requires that the roots of AR and MA polynomials be outside the unit
circle and the sum of denominator polynomial parameters be non-zero for each predictor variable.
The minimization algorithm requires a starting value to begin its iterative search. All the
numerator and denominator polynomial parameters are initialized to zero except the coefficient of
the 0th power in the numerator polynomial, which is initialized to the corresponding regression
coefficient.

The ARMA parameters are initialized as follows:

Assume that the series follows an ARMA(p,q)(P,Q) model with mean 0; that is:

In the following and represent the lth lag autocovariance and autocorrelation of
respectively, and and represent their estimates.

Non-seasonal AR parameters

For AR parameter initial values, the estimated method is the same as that in appendix A6.2 of
(Box, Jenkins, and Reinsel, 1994). Denote the estimates as .

Non-seasonal MA parameters

Let

The cross covariance
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Assuming that an AR(p+q) can approximate , it follows that:

The AR parameters of this model are estimated as above and are denoted as .

Thus can be estimated by

And the error variance is approximated by

with .

Then the initial MA parameters are approximated by and estimated by

So can be calculated by , and . In this procedure, only are used and all
other parameters are set to 0.

Seasonal parameters

For seasonal AR and MA components, the autocorrelations at the seasonal lags in the above
equations are used.

Diagnostic Statistics

ARIMA/TF diagnostic statistics are based on residuals of the noise process, .
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Ljung-Box Statistic

where is the kth lag ACF of residual.

Q(K) is approximately distributed as , where m is the number of parameters other
than the constant term and predictor related-parameters.

Outlier Detection in Time Series Analysis

The observed series may be contaminated by so-called outliers. These outliers may change the
mean level of the uncontaminated series. The purpose of outlier detection is to find if there are
outliers and what are their locations, types, and magnitudes.

TSMODEL considers seven types of outliers. They are additive outliers (AO), innovational
outliers (IO), level shift (LS), temporary (or transient) change (TC), seasonal additive (SA), local
trend (LT), and AO patch (AOP).

Notation

The following notation is specific to outlier detection:

U(t) or The uncontaminated series, outlier free. It is assumed to be a univariate
ARIMA or transfer function model.

Definitions of outliers

Types of outliers are defined separately here. In practice any combination of these types can occur
in the series under study.

AO (Additive Outliers)

Assuming that an AO outlier occurs at time t=T, the observed series can be represented as

where is a pulse function and w is the deviation from the true U(T) caused
by the outlier.

IO (Innovational Outliers)

Assuming that an IO outlier occurs at time t=T, then
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LS (Level Shift)

Assuming that a LS outlier occurs at time t=T, then

where is a step function.

TC (Temporary/Transient Change)

Assuming that a TC outlier occurs at time t=T, then

where , is a damping function.

SA (Seasonal Additive)

Assuming that a SA outlier occurs at time t=T, then

where is a step seasonal pulse function.

LT (Local Trend)

Assuming that a LT outlier occurs at time t=T, then

where is a local trend function.

AO patch

An AO patch is a group of two or more consecutive AO outliers. An AO patch can be described
by its starting time and length. Assuming that there is a patch of AO outliers of length k at time
t=T, the observed series can be represented as

Due to a masking effect, a patch of AO outliers is very difficult to detect when searching for
outliers one by one. This is why the AO patch is considered as a separate type from individual
AO. For type AO patch, the procedure searches for the whole patch together.
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Summary

For an outlier of type O at time t=T (except AO patch):

where

with . A general model for incorporating outliers can thus be written
as follows:

where M is the number of outliers.

Estimating the effects of an outlier

Suppose that the model and the model parameters are known. Also suppose that the type and
location of an outlier are known. Estimation of the magnitude of the outlier and test statistics
are as follows.

The results in this section are only used in the intermediate steps of outlier detection procedure.
The final estimates of outliers are from the model incorporating all the outliers in which all
parameters are jointly estimated.

Non-AO patch deterministic outliers

For a deterministic outlier of any type at time T (except AO patch), let be the residual
and , so:

From residuals e(t), the parameters for outliers at time T are estimated by simple linear regression
of e(t) on x(t).

For j = 1 (AO), 2 (IO), 3 (LS), 4 (TC), 5 (SA), 6 (LT), define test statistics:

(T) Var

Under the null hypothesis of no outlier, (T) is distributed as N(0,1) assuming the model and
model parameters are known.
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AO patch outliers

For an AO patch of length k starting at time T, let for i = 1 to k, then

Multiple linear regression is used to fit this model. Test statistics are defined as:

Assuming the model and model parameters are known, has a Chi-square distribution with
k degrees of freedom under the null hypothesis .

Detection of outliers

The following flow chart demonstrates how automatic outlier detection works. Let M be the total
number of outliers and Nadj be the number of times the series is adjusted for outliers. At the
beginning of the procedure, M = 0 and Nadj = 0.
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Figure 1-1

Assuming no outliers,
fit the model

Input: series to forecast, predictors, seasonal length, model (if it is known)

Is the model known?

K=0

Is K>0?

M=M+K.  Incorporating all
M outliers using intervention
model, fit the model.

Is Nadj > 1?
No

Yes

Assuming no outliers,
find the model and fit it

Yes No

Check residual for an outlier.
Is an outlier found?

Adjust residual for the outlier
found.  K=K+1

YesNo

Is M>0?

Delete insignifcant outliers
one at a time until all are
significant.  Update M.

Adjust original data for all M
outliers.  Nadj=Nadj+1

Incorporating all M outliers,
fit and delete insignificant
parameters one at a time until
all are significant.  Update M.

Stop.
No outliers.

Final model

Yes

Yes

No

No

Goodness-of-fit Statistics

Goodness-of-fit statistics are based on the original series Y(t). Let k= number of parameters in the
model, n = number of non-missing residuals.

Mean Squared Error

Mean Absolute Percent Error
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Maximum Absolute Percent Error

Mean Absolute Error

Maximum Absolute Error

Normalized Bayesian Information Criterion

Normalized

R-Squared

Stationary R-Squared

A similar statistic was used by Harvey (Harvey, 1989).

where

The sum is over the terms in which both and are not missing.

is the simple mean model for the differenced transformed series, which is equivalent to the
univariate baseline model ARIMA(0,d,0)(0,D,0).

For the exponential smoothing models currently under consideration, use the differencing orders
(corresponding to their equivalent ARIMA models if there is one).

Brown,Holt
other ,
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Note: Both the stationary and usual R-squared can be negative with range . A negative
R-squared value means that the model under consideration is worse than the baseline model. Zero
R-squared means that the model under consideration is as good or bad as the baseline model.
Positive R-squared means that the model under consideration is better than the baseline model.

Expert Modeling

Univariate series

Users can let the Expert Modeler select a model for them from:
All models (default).
Exponential smoothing models only.
ARIMA models only.

Exponential Smoothing Expert Model

Figure 1-2

ES EM = smallest BIC model

Series
Seasonal length

Non-seasonal: fit all 4 non-seasonal ES models
Seasonal and positive: fit 6 ES models (no Brown)
Seasonal and not-all-positive: fit 5 ES models (no Brown, no
multiplicative Winters)

Note: for short series, 1<n≤10, fit simple ES.
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ARIMA Expert Model

Figure 1-3

Transformation (none, log or sqrt)?

Series
Seasonal length

Impute missing

Difference order

Pattern detection (ACF, PACF,
EACF) for initial model

Fit the model by CLS

Fit the model by ML

Diagnostic checking
Ljung-Box, ACF/PACF

ARIMA EM

Delete insignificant
parameters in 3 stages:
1. |t|<0.5, 2. |t|<1, 3. |t|<2

Delete insignificant parametersModify model (only
once)

Note: for short series, do the following:
If n<=10, fit AR(1) with constant term.
If 10<n<3s, set s=1 to build a non-seasonal model.

All Models Expert Model

In this case, the Exponential Smoothing and ARIMA expert models are computed, and the model
with the smaller normalized BIC is chosen.

Note: for short series, n<max(20,3s), use Exponential Smoothing Expert Model.

Multivariate series

In the multivariate situation, users can let the Expert Modeler select a model for them from:
All models (default). Note that if the multivariate expert ARIMA model drops all the
predictors and ends up with a univariate expert ARIMA model, this univariate expert ARIMA
model will be compared with expert exponential smoothing models as before and the Expert
Modeler will decide which is the best overall model.
ARIMA models only.
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Transfer function expert model

Figure 1-4

Drop X's with missing. Transform X's. Difference X's and I's

Series to forecast: Y
Predictors: X1, X2, …
Intervention/Events: I1, I2, …

Univariate ARIMA EM for Y: (p,d,q)(P,D,Q).
Transform and difference Y.

Delete some X by CCF, further difference some X

Initial model
Delete one X if all
its parameters are
insignificant

Fit by CLS and check parameters for each X

Delete insignificant ARMA parameters

For each X, find delay, rational TF.
Delete insignificant ARMA parameters.

Fit by CLS and check parameters

Fit the model by CLS

Fit the model by ML

Diagnostic checking
Ljung-Box, ACF/PACF

Modify ARMA part as in univariate

Delete insignificant non-
denominator parameters;
then delete all insignificant
parameters.

Delete insignificant parameters

Multivariate EM

Note: For short series, n<max(20,3s), fit a univariate expert model.
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