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Variance Components (VARCOMP) 

The Variance Components procedure provides estimates for variances of random 
effects under a general linear model framework. Four types of estimation methods 
are available in this procedure. 

Notation 
The following notation is used throughout this chapter. Unless otherwise stated, all 
vectors are column vectors and all quantities are known. 

 
n  Number of observations, n ≥ 1 

k  Number of random effects, k ≥ 0  

m0 Number of parameters in the fixed effects, m0 0≥  

mi  Number of parameters in the ith random effect, mi ≥ 0 , i k= 1, ,K  

m Total number of parameters, m m m mk= + + +0 1 L  

σ i
2  Unknown variance of the ith random effect, σ i

2 0≥ , i k= 1, ,K  

σ e
2  Unknown variance of the residual term, same as σ k+1

2 , σ e
2 0>  

γ i
2  Unknown variance ratio of the ith random effect, γ σ σi i e

2 2 2= , γ i
2 0≥ , 

i k= 1, ,K , and γ k+ =1
2 1 

y  The length n vector of observations  

e  The length n vector of residuals 

Xi  The n mi×  design matrix, i k= 0 1, , ,K  

β0  The length m0 vector of parameters of the fixed effects 

βi  The length mi  vector of parameters of the ith random effect, i k= 1, ,K  

Unless otherwise stated, a p p×  identity matrix is denoted as I p , a p q×  zero 

matrix is denoted as 0 p q× , and a zero vector of length p is denoted as 0 p . 
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Weights 
For the sake of clarity and simplicity, the algorithms described in this chapter 
assume unit frequency weight and unit regression weight for all cases. Weights can 
be applied as described in the following two sections. 

Frequency Weight 

The WEIGHT command specifies frequency weights. 

• Cases with nonpositive frequency are excluded from all calculations in the 
procedure. 

• Non-integral frequency weight is rounded to the nearest integer. 

• The total sample size is equal to the sum of positive rounded frequency 
weights. 

Regression Weight 

The REGWGT subcommand specifies regression weights. Suppose the lth 
l n= 1, ,K0 5 case has a regression weight wi > 0  (cases with nonpositive regression 

weights are excluded from all calculations in the procedure). Let 
W = diag , ,w wn1 K1 6  be the n n×  diagonal weight matrix. Then the VARCOMP 

procedure will perform all calculations as if y is physically transformed to W y
1
2  

and Xi  to W X
1
2

i , i k= 0 1, , ,K ; and then the pertinent algorithm is applied to the 
transformed data. 

Model 
The mixed model is represented, following Rao (1973), as 

y X X e= + +
=
∑0 0

1

β βi i

i

k
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The random vectors β β1, ,K k  and e are assumed to be jointly independent. 

Moreover, the random vector βi  is distributed as Nm i mi i
0 I,σ 24 9  for i k= 1, ,K  and 

the residual vector e is distributed as Nn e n0 I,σ 24 9 . It follows from these 

assumptions that y is distributed as Nn eX V0 0
2β ,σ4 9  where 

V X X I V= ′ + =
= =

+

∑ ∑γ γi i i

i

k

n i i

i

k
2

1

2

1

1

 

where V X Xi i i= ′ , i k= 1, ,K , and V Ii n= . 

Minimum Norm Quadratic Unbiased Estimate (MINQUE) 

Given the initial guess or the prior values γ αi i
2 =  α i ≥ 01 6 , i k= +1 1, ,K , the 

MINQUE of σ  are obtained as a solution of the linear system of equations: 

S qσ =  

where S = sij= B is a k k+ × +1 10 5 0 5  symmetric matrix, q = qi; @ is a k +10 5-vector, 

and ′ = +σ σ σ1
2

1
2, ,K k4 9 . Define 

R V V X X V X X V= − ′ ′− − − − −1 1
0 0

1
0 0

14 9  

The elements of S and q are 

s

i k j k

i k j k

i k j k

i k j k

ij

i j

i

j

=

′ = =
′ = = +

= + =
= + = +

%
&
KK

'
KK

SSQ , , , , ,

SSQ , , ,

SSQ , , ,

SSQ ,

X RX

X R

RX

R

3 8
1 6
3 8
0 5

1 1

1 1

1 1

1 1

K K

K

K
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and 

q
i k

i ki
i=
′ =

= +
%&'
SSQ , ,

SSQ

X Ry

Ry
1 6
0 5

1

1

K
 

where SSQ(A) is the sum of squares of all elements of a matrix A. 

 MINQUE(0) 

The prior values are α i = 0 , i k= 1, ,K , and α k+ =1 1. Under this set of prior 

values, V I= n  and R I X X X X= − ′ ′−
n 0 0 0 01 6 . Since this R is an idempotent matrix, 

some of the elements of S and q can be simplified to 

s i k

s j k

s n

q

i k i i

k j j j

k k

k

,

,

,

trace , , ;

trace , , ;

rank

+

+

+ +

+

= ′ =
= ′ =

= −

= ′

1

1

1 1 0

1

1

1

X RX

X RX

X

y Ry

1 6
3 8

1 6

K

K

 

Using the algorithm by Goodnight (1978), the elements of S and q are obtained 
without explicitly computing R. The steps are described as follows: 

Step 1. Form the symmetric matrix: 

′ ′ ′ ′
′ ′ ′ ′

′ ′ ′ ′
′ ′ ′ ′

�

!

      

"

$

######

X X X X X X X y

X X X X X X X y

X X X X X X X y

y X y X y X y y

0 0 0 1 0 0

1 0 1 1 1 1

0 1

0 1

L

L

M M M M

L

L

k

k

k k k k k

k
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Step 2. Sweep the above matrix by pivoting on each diagonal of ′X X0 0 . This 
produces the following matrix: 

G GX X GX X GX y

X X G X RX X RX X Ry

X X G X RX X RX X Ry

y X G y RX y RX y Ry

′ ′ ′
′ ′ ′ ′

′ ′ ′ ′
′ ′ ′ ′

�

!

      

"

$

######

0 1 0 0

1 0 1 1 1 1

0 1

0 1

L

L

M M M M

L

L

k

k

k k k k k

k

 

where G X X= ′ −
0 01 6 . In the process of computing the above matrix, the rank of X0  

is obtained as the number of nonzero pivots found.  

Step 3. Form S and q. The MINQUE(0) of σ  are $σ = −S q . 

MINQUE(1) 

The prior values are α i = 1, i k= +1 1, ,K . Under this set of prior values, 

V X X= ′
=

+

∑ i i

i

k

1

1

. Using Giesbrecht (1983), the matrix S and the vector q are obtained 

through an iterative procedure. The steps are described as follows: 

Step 1. Construct the augmented matrix A X X X y= 0 1 L k . Then compute the 

m m+ × +1 10 5 0 5  matrix T A Ak+ = ′10 5 . 

Step 2. Define H X Xl i i

i l

k

0 5 = ′
=

+

∑
1

, and T A H Al l0 5 0 5= ′ −1 , l k= 1, ,K . Update T l+10 5  to 

T l0 5  using the W Transform given in Goodnight and Hemmerle (1979). The 

updating formula is 

T T A H X I X H X X H Al l l l m l l l l ll0 5 0 5 0 5 0 5 0 54 9= − ′ + ′ ′+ +
−

+
− −

+
−

1 1
1

1
1

1
1  
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Step 3. Once T A H A A V A1 1
1 10 5 0 5= ′ = ′− −  is obtained, apply the Sweep operation to 

the diagonal elements of upper left m m0 0×  submatrix of T 10 5 . The resulting matrix 

will contain the quadratic form ′y Ry , the vectors ′y RX j , j k= 1, ,K , and the 

matrices ′X RXi j , i k= 1, ,K , j k= 1, ,K . 

Step 4. Compute the elements of S and q. Since RVR R= , then 

SSQ tr SSQ , ,

SSQ rank tr SSQ

SSQ SSQ

RX X RX X RX

R X X RX RX

Ry y Ry y RX

j j j j i

i

k

i i

i

k

j

j

k

j

j

k

j k

n

3 8 3 8 3 8

0 5 1 6 1 6 3 8

0 5 3 8

= ′ − ′ =

= − − ′ −

= ′ − ′

=

= =

=

∑

∑ ∑

∑

1

0

1 1

1

1K

 

The MINQUE(1) of σ  are $σ = −S q . 

Maximum Likelihood Estimate (MLE) 
The maximum likelihood estimates are obtained using the algorithm by Jennrich 
and Sampson (1976). The algorithm is an iterative procedure that combines 
Newton-Raphson steps and Fisher scoring steps. 

Parameters 

The parameter vector is θ
β
γ=

�

!
   

"

$
###

0
2

2σ e

 where γ 2
1
2

2
=

�

!

   

"

$

###

γ

γ
M

k

. 
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Likelihood Function 

The likelihood function is 

L L n
e e≡ = − − ′ −�

�
�
�

− − −θ β β0 5 0 5 1 6 1 62 2 2 1 2 1
2 0 0

1
0 0

2π σ σV y X V y Xexp . 

The log-likelihood function is 

l L
n n

e
e

= = − − − − − ′ −−log log log log .
2

2
2

1

2

1

2
2

2 0 0
1

0 0π σ
σ

0 5 4 9 1 6 1 6V y X V y Xβ β  

The Gradient Vector 

∂
∂ σ
∂

∂ γ σ
∂

∂ σ σ σ

l

l
i k

l n

e

i e
i i i i

e e e

β0
2 0

1

2 2
1 1 1

2 4
1

2

1

1

2

1

2
1

1

2 2

= ′

= ′ ′ − ′ =

= ′ −

−

− − −

−

X V r

r V X X V r X V X

r V r

,

tr , , , ,

.

4 9 K   

where r y X= − 0 0β . The gradient vector is 

dl

d

l

l

l

e

θ

β

γ
=

�

!

       

"

$

#######

∂
∂
∂

∂
∂

∂ σ

0

2

2
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The Hessian Matrix 

∂
∂ ∂ σ

2

0 0
2 0

1
0

1l

eβ β
= − ′ −X V X  

∂
∂ γ ∂ σ

∂
∂ γ ∂ γ σ

2

2
0

2
1 1

0

2

2 2
1 1

2
1 1 1

1
1

1

2

1
1 1

l
i k

l
i k j k

i e
i i

i j
i j j i

e
i i j j

β
= − ′ ′ =

= ′ ′ − ′ ′ ′ = =

− −

− − − − −

r V X X V X

X V X X V X r V X X V X X V r

, , ,

tr , , ; , , ,

K

K K4 9
 

∂
∂ σ ∂ σ

∂
∂ σ ∂ γ σ

∂
∂ σ ∂ σ σ σ

2

2
0

4
1

0

2

2 2 4
1 1

2

2 2 4 6
1

1

1

2
1

2

1

l

l
j k

l n

e e

e j e
j j

e e e e

β
= − ′

= − ′ ′ =

= − ′

−

− −

−

r V X

r V X X V r

r V r

, ,K  

The Hessian matrix is 

d l

d d

l l l

l l l

l l l

e

e

e e e e

2

2

0 0

2

0
2

2

0
2

2

2
0

2

2 2

2

2 2

2

2
0

2

2 2

2

2 2

θ θ

β β β γ β

γ β γ γ γ

β γ

=

�

!

        

"

$

########

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂ σ

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂ σ

∂
∂ σ ∂

∂
∂ σ ∂

∂
∂ σ ∂ σ
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where 

∂
∂ ∂

∂
∂ γ ∂

∂
∂ γ ∂

2

2
0

2

1
2

0

2

2
0

l

l

l

k

γ β

β

β

=

�

!

        

"

$

########

M ,                
∂

∂ ∂

∂
∂ γ ∂ γ

∂
∂ γ ∂ γ

∂
∂ γ ∂ γ

∂
∂ γ ∂ γ

2

2 2

2

1
2

1
2

2

1
2 2

2

2
1
2

2

2 2

l

l l

l l

k

k k k

γ γ
=

�

!

        

"

$

########

L

M O M

L

 

and 

∂
∂ σ ∂

∂
∂ σ ∂ γ

∂
∂ σ ∂ γ

2

2 2

2

2
1
2

2

2 2

l

l

l
e

e

e k

γ
=

�

!

        

"

$

########

M  

The Fisher Information Matrix 

As E nr 00 5 =  and E n er V r′�� �� =−1 2σ , the expected second derivatives are 

E
l

e

∂
∂ ∂ σ

2

0 0
2 0

1
0

1

β β
�
��

�
�� = − ′ −X V X  

E
l

i k

E
l

i k j k

i
m

i j
i j j i

∂
∂ γ ∂

∂
∂ γ ∂ γ

2

2
0

2

2 2
1 1

0
1

1

2
1 1

β

�
��

�
�� = ′ =

�
��

�
��

= − ′ ′ = =− −

0

X V X X V X

, ,

tr , , , , ,

K

K K4 9
 



 Variance Components (VARCOMP) 

 

10

E
l

E
l

j k

E
l n

e
m

e j e
j j

e e e

∂
∂ σ ∂

∂
∂ σ ∂ γ σ

∂
∂ σ ∂ σ σ

2

2
0

2

2 2 2
1

2

2 2 4

0

1

2
1

2

β

�
��

�
�� = ′

�
��

�
��

= − ′ =

�
��

�
�� = −

−

0

X V Xtr , , ,4 9 K  

The Fisher Information matrix is 

E
d l

d d

l

E
l

E
l

E
l

E
l

m m m m

m m m
e

m
e e e

2

2

0 0
2

2 2

2

2 2

2

2 2

2

2 2

0 0 0

0 0

0

θ θ

β β

γ γ γ

γ

�
��

�
�� =

�
��

�
��

�
��

�
��

′
�
��

�
��

�
��

�
��

�

!

        

"

$

########

× −

− ×

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂ σ

∂
∂ σ ∂

∂
∂ σ ∂ σ

0 0

0

0

1 6

1 6  

where 

E
l

E
l

E
l

E
l

E
l

k

k k k

∂
∂ ∂

∂
∂ γ ∂ γ

∂
∂ γ ∂ γ

∂
∂ γ ∂ γ

∂
∂ γ ∂ γ

2

2 2

2

1
2

1
2

2

1
2 2

2

2
1
2

2

2 2

γ γ

�
��

�
�� =

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�

!

        

"

$

########

L

M O M

L

 

and 
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E
l

E
l

E
l

e

e

e k

∂
∂ σ ∂

∂
∂ σ ∂ γ

∂
∂ σ ∂ γ

2

2 2

2

2
1
2

2

2 2

γ

�
��

�
�� =

�
��

�
��

�
��

�
��

�

!

        

"

$

########

M  

Iteration Procedure 

Initial Values 

• Fixed Effect Parameters: $β0 0 0 0= ′ ′−X X X y1 6 . 

• Random Effect Variance Components: For the ith i k= 1, ,K0 5 random effect, 

compute $βi i i i= ′ ′−X X X y1 6 . Then assign the variance of the mi  elements of $βi  

using divisor mi −11 6 to the estimate $σ i
2  if mi ≥ 2; otherwise $σ i

2 0= .  

• Residual Variance: $σ e n2 = ′r r  where X X X X= 0 1 L k  and 

r y X X X y= − ′ ′−0 5 . If $σ e
2 0=  but k ≥ 1 then reset $σ e

2 810= −  so that the 

iteration can continue. 

The variance ratios are then computed as $ $ $γ σ σi i e
2 2 2= , i k= 1, ,K . Following the 

same method in which the residual variance is initialized, $σ e
2 0>  for k ≥ 1.  

Updating 

At the sth iteration s = 0 1, ,K0 5 , the parameter vector is updated as 

$ $ $θ θ θs s s+ = +10 5 0 5 0 5ρ∆   

where ∆ $θ s0 5  is the value of increment ∆θ  evaluated at θ θ= $
s0 5 , and ρ > 0 is a step 

size such that l ls s
$ $θ θ+ ≥10 5 0 54 9 4 9 . The increment vector depends on the choice of 

step type—Newton-Raphson versus Fisher scoring. The step size is determined by 
the step-halving technique with ρ = 1 initially and a maximum of 10 halvings.  
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Choice of Step 

Following Jennrich and Sampson (1976), the first iteration is always the Fisher 
scoring step because it is more robust to poor initial values. For subsequent 
iteration the Newton-Raphson step is used if: 

1. The Hessian matrix is nonnegative definite, and 

2. The increment in the log-likelihood function of step 1 is less than or equal to 
one. 

Otherwise the Fisher scoring step is used. The increment vector for each type of 
step is: 

• Newton-Raphson Step: ∆θ
θ θ θ

= −
�
��

�
��

−
d l

d d

dl

d

2 1

. 

• Fisher Scoring Step: ∆θ
θ θ θ

= −
�
��

�
��

�
��

�
��

−

E
d l

d d

dl

d

2 1

. 

Convergence Criteria 

Given the convergence criterion ε > 0 , the iteration is considered converged when 
the following criteria are satisfied:  

1. l l ls s s
$ $ max , $θ θ θ+ − < × �� ��1 10 5 0 5 0 54 9 4 9 4 9ε , and 

2. ρ ε$ $ max , $θ θ θs s s+ − < ×1 10 5 0 5 0 54 9 4 9  where a  is the sum of absolute values 

of elements of the vector a. 

Negative Variance Estimates 

Negative variance estimates can occur at the end of an iteration. An ad hoc method 
is to set those estimates to zero before the next iteration. 
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Covariance Matrix 

Let $θ  be the vector of maximum likelihood estimates. Their covariance matrix is 
given by 

cov $

$

θ
θ θ θ θ

4 9 = −
�
��

�
��

�
�
��

�
�
��

=

−

E
d l

d d

2
1

 

Let 

ψ

β

=

�

!

      

"

$

######

0

1
2

2

2

σ

σ
σ

M

k

e

  

be the original parameters. Their maximum likelihood estimates are given by 

$

$

$ $

$ $

$

ψ

β

=

�

!

      

"

$

######

0
2

1
2

2 2

2

σ γ

σ γ
σ

e

e k

e

M  

and their covariance matrix is estimated by  

cov $ cov $ψ θ2 7 4 9= ′J J  
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where 

J

I 0 0

0 I=
�

!
   

"

$
###

×

×

m m k m

k m e k

0 0 0

0

2

0 0 1

σ γ  

which is the m k m k0 01 1+ + × + +1 6 1 6  Jacobian matrix of transforming θ  to ψ . 

Restricted Maximum Likelihood Estimate (REML) 
The restricted maximum likelihood method finds a linear transformation on y such 
that the resulting vector does not involve the fixed effect parameter vector β0  
regardless of their values. It has been shown that these linear combinations are the 
residuals obtained after a linear regression on the fixed effects. Suppose r is the 
rank of X0 ; then there are at most n r−  linearly independent combinations. Let K 
be an n n r× −0 5  matrix whose columns are these linearly independent 
combinations. Then the properties of K are (Searle et al., 1992, Chapter 6): 

′ =

′ =
− ×K X 0

K TM

0 0n r m0 5  

where T is a n r n− ×0 5  matrix with linearly independent rows and  

M I X X X X= − ′ ′−
n 0 0 0 01 6  

It can be shown that REML estimation is invariant to K (Searle et al., 1992, 
Chapter 6); thus, we can choose K such that ′ = −K K In r  to simplify calculations. It 

follows that the distribution of ′K y  is Nn r e− ′0 K VK,σ 24 9. 

Parameters 

The parameter vector is θ γ=
�
!  

"
$##

2

2σ e

 where γ 2
1
2

2
=

�

!

   

"

$

###

γ

γ
M

k

. 
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Likelihood Function 

The likelihood function of ′K y is 

L L n r
e e≡ = ′ − ′ ′ ′− − − −θ0 5 0 5 0 54 90 52 2 2 1 2 1

2
1 2π σ σK VK y K K VK K yexp . 

It can be shown (Searle et al., 1992) that 

R V V X X V X X V K K VK K≡ − ′ ′ = ′ ′− − − − − −1 1
0 0

1
0 0

1 14 9 0 5  

Thus, the log-likelihood function is 

l L
n r n r

e
e

= = − − − − − ′ − ′log log log log .
2

2
2

1

2

1

2
2

2π σ
σ

0 5 4 9 K VK y Ry  

The Gradient Vector 

∂
∂ γ σ
∂

∂ σ σ σ

l
i k

l n r

i e
i i i i

e e e

2 2

2 4 2

1

2

1

2
1

1

2 2

= ′ ′ − ′ =

= ′ −
−

y RX X Ry X RX

y Ry

tr , ,1 6
0 5

K

 

The gradient vector is 

dl

d

l

l

e

θ
γ=

�

!

    

"

$

####

∂
∂
∂

∂ σ

2

2
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The Hessian Matrix 

∂
∂ γ ∂ γ σ

∂
∂ σ ∂ γ σ

∂
∂ σ ∂ σ σ σ

2

2 2 2

2

2 2 4

2

2 2 6 4

1 1

2
1 1

1

2
1

1

2

l
i k j k

l
j k

l n r

i j e
i i j j i j j i

e j e
j j

e e e e

= − ′ ′ ′ + ′ ′ = =

= − ′ ′ =

= − ′ + −

y RX X RX X Ry X RX X RX

y RX X Ry

y Ry

tr , , ; , ,

, ,

3 8 K K

K

 

The Hessian matrix is 

d l

d d

l l

l l
e

e e e

2

2

2 2

2

2 2

2

2 2

2

2 2
θ θ

γ γ γ

γ

=

�

!

     

"

$

#####

∂
∂ ∂

∂
∂ ∂ σ

∂
∂ σ ∂

∂
∂ σ ∂ σ

 

where 

∂
∂ ∂

∂
∂ γ ∂ γ

∂
∂ γ ∂ γ

∂
∂ γ ∂ γ

∂
∂ γ ∂ γ

2

2 2

2

1
2

1
2

2

1
2 2

2

2
1
2

2

2 2
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The Fisher Information Matrix 
Since ′ = − ×K X 00 0n r m0 5  and trace RV0 5 = −n r , the expected second derivatives are 
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The Fisher Information matrix is 
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Iteration Procedure 

Initial Values 

• Random Effect Variance Components: For the ith i k= 1, ,K0 5 random effect, 

compute $βi i i i= ′ ′−X X X y1 6 . Then assign the variance of the mi  elements of $βi  

using divisor mi −11 6 to the estimate $σ i
2  if mi ≥ 2, otherwise $σ i

2 0= .  

• Residual Variance: $σ e n r2 = ′ −r r 0 5  where X X X X= 0 1 L k  and 

r y X X X y= − ′ ′−0 5 . If $σ e
2 0=  but k ≥ 1 then reset $σ e

2 810= −  so that the 

iteration can continue. 

The variance ratios are then computed as $ $ $γ σ σi i e
2 2 2= , i k= 1, ,K . Following the 

way the residual variance is initialized, $σ e
2 0>  for k ≥ 1.  

Updating 

At the sth iteration s = 0 1, ,K0 5 , the parameter vector is updated as 

$ $ $θ θ θs s s+ = +10 5 0 5 0 5ρ∆   

where ∆ $θ s0 5  is the value of increment ∆θ  evaluated at θ θ= $
s0 5 , and ρ > 0 is a step 

size such that l ls s
$ $θ θ+ ≥10 5 0 54 9 4 9 . The increment vector depends on the choice of 

step type—Newton-Raphson versus Fisher scoring. The step size is determined by 
the step-halving technique with ρ = 1 initially and a maximum of 10 halvings. 

Choice of Step 

Following Jennrich and Sampson (1976), the first iteration is always the Fisher 
scoring step because it is more robust to poor initial values. For subsequent 
iterations, the Newton-Raphson step is used if: 

1. The Hessian matrix is non-negative definite, and 

2. The increment in the log-likelihood function of previous step is less than or 
equal to one. 
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Otherwise, the Fisher scoring step is used instead. The increment vector for each 
type of step is: 

• Newton-Raphson Step:∆θ
θ θ θ

= −
�
��

�
��

−
d l

d d

dl

d

2 1

. 

• Fisher Scoring Step: ∆θ
θ θ θ

= −
�
��

�
��

�
��

�
��

−

E
d l

d d

dl

d

2 1

. 

Convergence Criteria 

Given the convergence criterion ε > 0 , the iteration is considered converged when 
the following criteria are satisfied:  

1. l l ls s s
$ $ max , $θ θ θ+ − < × �� ��1 10 5 0 5 0 54 9 4 9 4 9ε , and 

2. ρ ε$ $ max , $θ θ θs s s+ − < ×1 10 5 0 5 0 54 9 4 9  where a  is the sum of absolute values 

of elements of the vector a. 

Negative Variance Estimates 

Negative variance estimates can occur at the end of an iteration. An ad hoc method 
is to set those estimates to zero before the next iteration. 

Covariance Matrix 

Let $θ  be the vector of maximum likelihood estimates. Their covariance matrix is 
given by 

cov $

$

θ
θ θ θ θ

4 9 = −
�
��

�
��

�
�
��

�
�
��

=

−

E
d l

d d

2
1
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Let 

ψ =
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be the original parameters. Their maximum likelihood estimates are given by 

$

$ $

$ $

$

ψ =

�

!
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$

#####

σ γ

σ γ
σ

e

e k

e

2
1
2

2 2

2

M
 

and their covariance matrix is estimated by  

cov $ cov $ψ θ2 7 4 9= ′J J  

where 

J
I=

�
!  

"
$##

σ e k
2

0 1

γ
 

which is the k k+ × +1 10 5 0 5  Jacobian matrix of transforming θ  to ψ . 

ANOVA Estimate 
The ANOVA variance component estimates are obtained by equating the expected 
mean squares of the random effects to their observed mean squares. The 
VARCOMP procedure offers two types of sum of squares: Type I and Type III (see 
Appendix 11 for details). 
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Let 
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be the vector of variance components. 

Let 

q =

�

!

    

"

$

####

MS

MS

MSE
k

1

M
 

where MSi , i k= 1, ,K  is the observed mean squares of the ith random effect, and 
MSE  is the residual mean squares. 

Let 

S

s

s

s

=

′

′
′

�

!

    

"

$

####
+

1

1

M

k

k

 

be a k k+ × +1 10 5 0 5  matrix whose rows are coefficients for the expected mean 
squares. For example, the expected mean squares of the ith random effect is ′siψ . 
Algorithms for computing the expected mean squares can be found in the section 
“Univariate Mixed Model” in the chapter GLM Univariate and Multivariate. The 
ANOVA variance component estimates are then obtained by solving the system of 
linear equations: 

S qψ =  
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