Variance Components (VARCOMP)

The Variance Components procedure provides estimates for variances of random
effects under a general linear model framework. Four types of estimation methods
are availablein this procedure.

Notation

The following notation is used throughout this chapter. Unless otherwise stated, al
vectors are column vectors and all quantities are known.

n Number of observations, n=1

k Number of random effects, k =0

My Number of parameters in the fixed effects, my =0

m Number of parametersin theith random effect, m 20,1 =1,...,k

m Total number of parameters, M= Mg + My +---+ My

O'iz Unknown variance of the ith random effect, Uiz >0,i=1,...,k

Ug Unknown variance of the residual term, same as UEH, Ug >0

yiz Unknown variance ratio of the ith random effect, yiz = Uiz / Ué , yiz 20,
i=1...k and yZ, =1

y The length n vector of observations

€ The length n vector of residuals

Xi The nx my design matrix, i =0.4,...,k

Bo The length my vector of parameters of the fixed effects

B The length my vector of parameters of the ith random effect, i =1,...,K

Unless otherwise stated, a px p identity matrix is denoted as I ,, a pxq zero
matrix is denoted as 0 ,xq, and a zero vector of length p is denoted as 0,,.
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Weights

For the sake of clarity and simplicity, the agorithms described in this chapter
assume unit frequency weight and unit regression weight for all cases. Weights can
be applied as described in the following two sections.

Frequency Weight

The WEIGHT command specifies frequency weights.

»  Cases with nonpositive frequency are excluded from all calculations in the
procedure.

» Non-integral frequency weight isrounded to the nearest integer.

e The total sample size is equal to the sum of positive rounded frequency
weights.

Regression Weight

Model

The REGWGT subcommand specifies regression weights. Suppose the Ith
(I=1,...,n) case has aregression weight w; >0 (cases with nonpositive regression
weights are excluded from all caculations in the procedure). Let
W =diag(wy,...,w,) be the nxn diagonal weight matrix. Then the VARCOMP
1
procedure will perform all calculations as if y is physicaly transformed to W 2y

1
and X; to W2X;, i=01,...,k; and then the pertinent algorithm is applied to the
transformed data.

The mixed model is represented, following Rao (1973), as

y=XoBo+ ) XiBj+e
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The random vectors B4,...,Bx and e are assumed to be jointly independent.
Moreover, the random vector B; is distributed as Ny, (O,aizl m) fori=1...,k and

the residual vector e is distributed as Nn(O,aéln). It follows from these

assumptionsthat y is distributed as Nn(X oBos agv) where

k k+1
V= Zyizxix; +, = ZViZVi
1=1 1=1
WhereVi :XiXi', i :L...,k,and Vi :|n.

Minimum Norm Quadratic Unbiased Estimate (MINQUE)

Given the initial guess or the prior values y? =a; (a;20), i=1...,k+1, the
MINQUE of 0 are obtained as a solution of the linear system of equations:

So=q

where S:{s,j} isa(k+1)x(k+1) symmetric matrix, q ={q; } isa (k +1)-vector,

2

and o' :(a ,...,aﬁﬂ). Define

R=V-V™Xo(XpV™Xo) Xpv 7
The elements of Sand q are

i) =Lk j=lok
i=1...,k, j=k+1

i=k+1 j=1....k

i=k+1  j=k+1
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_[SSQ(X{Ry) i=1...k
&= SSQ(Ry) i=k+1

where SSQ(A) isthe sum of squares of all elements of amatrix A.

MINQUE(0)

The prior values are a; =0, i=1...,k, and ay4; =1. Under this set of prior
values, V =1, and R =1, -Xg(XpXg) Xp. SincethisR isan idempotent matrix,
some of the elements of S and g can be simplified to

S k+1 = trace(X{RX;)  i=1...k
sernj =tracgX[RX ) j=1...k;
Sk+1k+1 = N—rank(Xg)

Ok+1 =Y'Ry

Using the agorithm by Goodnight (1978), the elements of S and q are obtained
without explicitly computing R. The steps are described as follows:

Step 1. Form the symmetric matrix:

XoXo  XpXy - XoXg Xy
XiXo  XpXp - XXy Xyy
XikXo XXy - XiXg  Xky
LY Xo Y Xy o Y Xg oYY
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Step 2. Sweep the above matrix by pivoting on each diagonal of XpXg. This
produces the following matrix:

G GXpX; - GXpXx GXby]
XiXoG  XiRX; - Xi{RX,  XjRy
XiXoG XiRX; -+ XiRX, XkRy

LY XoG  Y'RXp - Y'RXg YRy |

where G = (XpX) . In the process of computing the above matrix, the rank of X
is obtained as the number of nonzero pivots found.

Step 3. Form Sand g. The MINQUE(0) of 0 are 6 =S™q.

MINQUE(1)

The prior velues are a; =1, i=1...,k+1. Under this set of prior values,
k+1

V= Z XiX; . Using Giesbrecht (1983), the matrix S and the vector q are obtained
throulg_kl1 an iterative procedure. The steps are described as follows:
Step 1. Construct the augmented matrix A = [Xo| X1| e X y]. Then compute the
(m+1)x(m+1) matrix Tsp) =A'A.

k+1
Step 2. Define H ) = Zx;xi ,and Ty =A'HJA, [ =1,....k. Update T,y to

T(|) using the W Transform given in Goodnight and Hemmerle (1979). The
updating formulais

Ty = Taan ~AHGEX) (| m +xiH(|1+1)x,) XiH A



6  Variance Components (VARCOMP)

Step 3. Once Ty = A'H(_l%A =A'V A is obtained, apply the Sweep operation to
the diagonal elements of upper left my x my submatrix of T(l). The resulting matrix
will contain the quadratic form y'Ry, the vectors y'RX;, j=1...,k, and the
matrices X{RX;,i=1...k, j=1....k.

Step 4. Compute the elements of Sand q. Since RVR =R, then
k
SSQ(RX ) = tr(X{RX )~ ZSSQ(X'jRXi) i=1...k
=1
¢ ‘
SSQ(R) = n-rank(X ) - Ztr(X{RXi)— Z SSQ(RX )
=1 =1
k
SSQ(Ry) =y'Ry = ) SSQ[y'RX;)
=1

The MINQUE(1) of 0 ale 6 =S q.

Maximum Likelihood Estimate (MLE)

The maximum likelihood estimates are obtained using the algorithm by Jennrich
and Sampson (1976). The algorithm is an iterative procedure that combines
Newton-Raphson steps and Fisher scoring steps.

Parameters

Bo vi
The parameter vector is 6 =| y? | where y2 =| :

2 2
O¢ Yk
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Likelihood Function

Thelikelihood functionis

- 12 v
L= L(G) = (27T) I’]/Z‘ng‘ exp(—%(y - XoBo) \ l(y _XoBo)/O'g).
The log-likelihood function is

! (y- XoBo)' V7Hy =X oBo).

n n 2\ 1
| =logL =—-—log(2m) ——loglog )| —=logV|—
gL =~ log(2m) - log(og) -~ loglV] 202
The Gradient Vector
ol :iZX'OV_lr,
IBo og
o"'_|2: 12r'V‘lxix;V‘lr—ltr(x;V‘lxi), i=1...k,
oyi 20¢ 2
Jl_ 1 I" _lI’— n
do 20% 202"

where r =y - XqBq. The gradient vector is

C o]
IBo
di l
do | gy?
ol
_dagj
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The Hessian Matrix

2
L:_izxrov—lxo
dBedBo  0o%

2
ayidBo O¢

2
ayioyy 2 o

2
TN Y
900 Oe

21 1

=——— VX X'V i=1...k
dagdyjz 203 =

2

J°1  _ n —ir'v_lr

doidos 20¢ oS

The Hessian matrix is

il ra v
BBy IBedY®  IBeIoa
dd _| 4%l P 2|
dede | ay2aB, dy2dy?:  dy2doZ
e a va
| 00208y d020y? 002003 |
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where

dy3oB dyioyi dyioyi
2 | P2l
Iy%9Bg R ay%ay?

7 A

| IykIBo | | IyidyE dykoyi |
and

7%

2050y}
>l
dago'?yz

A2

_o"'aéo"’yﬁ_

The Fisher Information Matrix

AsE(r)=0, and E(r'v_lr) = nag, the expected second derivatives are

2
g2 :—izxg)V‘lx0
dBOdBO O¢

2
[L]omo =1k
ayidBo

2
E| - 0; | . :_itr(X{V—lXjX'jv—lXi) i=1...kj=1....k

9
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2
6~ |=0p,
d0¢dBo

1 . 1
dagé’yjz 205

721 __n
J aéo"ag 20@1

The Fisher Information matrix is

221
dBodBo

E d—2| =10 E|
dodo | | (m=mg)xmy,

. 4o

OI

where

2
E ilz =
ayeoy

and

221
E 2 2
ayidyi

2
£~
| \9vikdyi

tr(x'jv‘lx J- )

|
|

|
|

1
!

Va )
dy2yi

b J
dykdyk

i=1...k,

Om,

2
e 02
oy dog

2
€
0000% ) |
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2
I
E
00gdy1

2
| 5ozay?
| 9069k |

2
E( dzl 2J:
00g0y

[teration Procedure

Initial Values

Updating

- Fixed Effect Parameters: B = (XpXo) Xby.

e Random Effect Variance Components: For the ith (i =1,...,k) random effect,
compute B; =(X!X;) X!y. Then assign the variance of the m elements of Bi
using divisor (m —1) to the estimate &7 if m = 2; otherwise &7 = 0.

« Resdual Variance G2=r'r/n  where X:[XO|X1|---|Xk] and

r=y-(X'X)"X'y. If 62=0 but k>1 then reset &2=10"% so that the
iteration can continue.

The variance ratios are then computed as f/iz = 6?/&5, i=1,...,k. Following the
same method in which the residual variance isinitialized, &2 >0 for k1.

Atthe sthiteration (s=0/1,...), the parameter vector is updated as

Os1) =65 + PO

where Aé(s) isthe value of increment A6 evaluated at 6 = é(s), and p>0isastep

size such that I(é(s +1)) > I(é(s)). The increment vector depends on the choice of

step type—Newton-Raphson versus Fisher scoring. The step size is determined by
the step-halving technique wigh=1 initially and a maximum of 10 halvings.
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Choice of Step

Following Jennrich and Sampson (1976), the first iteration is always the Fisher
scoring step because it is more robust to poor initia values. For subsequent
iteration the Newton-Raphson step is used if:

1. TheHessian matrix is nonnegative definite, and

2. The increment in the log-likelihood function of step 1 is less than or equal to
one.

Otherwise the Fisher scoring step is used. The increment vector for each type of
stepis:

-1
d3 ) T d
dodo ) do’

*  Newton-Raphson Step: A6 = (—

a2 ) d
e Fisher Scoring Step: A8 =| —-E| —— —.
dode de

Convergence Criteria

Given the convergence criterion £ > 0, the iteration is considered converged when
the following criteria are satisfied:

L |1(Bsa)-1(8s) <2 max(],‘ (b))

2. <p(é(s+1) —é(s) )> <ex max(],<é(s)>) where (a) is the sum of absolute values

)

of elements of the vector a.

Negative Variance Estimates

Negative variance estimates can occur at the end of an iteration. An ad hoc method
isto set those estimates to zero before the next iteration.
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Covariance Matrix

Let 6 be the vector of maximum likelihood estimates. Their covariance matrix is

given by
5 -1
A d“l
Cov(e) ) [_E[MJ e:é]
Let
_BO_
ot
b=
ok
o3|

be the original parameters. Their maximum likelihood estimates are given by

5T

~2n2
Oe)1

=
1

A DnD
OeVk
~ 2
L Oe |

and their covariance matrix is estimated by

cov(P)=J cov(é)J’
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where

Iy Or;bxk 0rTb
J=|0kxm, Oelk Y

0 0 1

whichisthe (my +k +1) x (mg +k +1) Jacobian matrix of transforming 6 to .

Restricted Maximum Likelihood Estimate (REML)

The restricted maximum likelihood method finds a linear transformation on y such
that the resulting vector does not involve the fixed effect parameter vector g

regardiess of their values. It has been shown that these linear combinations are the
residuals obtained after a linear regression on the fixed effects. Suppose r is the
rank of Xg; then there are at most n—r linearly independent combinations. Let K

be an nx(n-r) matrix whose columns are these linearly independent
combinations. Then the properties of K are (Searle et a., 1992, Chapter 6):

KXo = O(n-ryxm,
K'=TM

where T isa(n—r)xn matrix with linearly independent rows and

It can be shown that REML estimation is invariant to K (Searle et a., 1992,
Chapter 6); thus, we can choose K such that K'K =1,,_, to simplify calculations. It

follows that the distribution of K'y is Nn_r(o, aéK'VK).

Parameters

2

2
Y1
The parameter vector is 0 = {y } where y2 =\ :

2
g 2
€ Vi



Variance Components (VARCOMP) 15

Likelihood Function

The likelihood function of K'yis

L=L(0)= (2n)‘(”‘r)/2‘ggK'VK‘_j/2 exp(-3y'K(K 'VK) K 'y/ag).
It can be shown (Searle et al., 1992) that

R=V -V X,(XoV ™Xg) XV =K(K'VK) K’

Thus, the log-likelihood function is

1
202

_ __n-r _n-r 2y 1 , B ,
| =logL = Tlog(ZH) Tlog(ae) EIog|K VK| y'Ry.

The Gradient Vector

dl 1 1 .
—= Y'RX; XiRy —=tr(X{RX; i=1...k
dy,z 20_% 173 2 ( ! I)

Jl_ 1 (n-r)

2 5 aYRY T

dog 20, 20¢

The gradient vector is

Pl
d _| ay?
49 | 4l

dag
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The Hessian Matrix

7?1 1 1 . .
= T yRXXIRXXRy + tr(X{RX | X RX; i=1..kj=1..
07yi2(7yj2 Uéy iNRAGAGTRY 5 ( iRAGAG |) J

va

1 .
=- y'RX:X'Ry j=1...,k
dagdyjz 2er1 I

el ——iy'Ry+n_r
daéo"ag Ug Zaé

The Hessian matrix is

221 721
d?l _ (}’yzo'?y2 dyzdag
dode 22| 4%

é’agé’yz dagdag

where
a Pl E
ovioy;  9yiovk 2050y7
7% . . . %1
o"yzé’y2 - : A : and é’agdyz -
va va va
oviov:  ovRovE] | 9020y7 |

The Fisher Information Matrix
Since K'Xg = O(pr)xm, ad trace(RV) =n-r, the expected second derivatives are

2
E 0; | 2 :—itr(X{RXjX'iji) i=1...kj=1...k
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2
E ”72' 5 |=- 12tr(X'jRXj) j=1...k
000y 20¢

221 n-r
B 2|52
00g00¢ 20,

The Fisher Information matrix is

2 2
o o) dozn)
E[dljz ay2dy dy290?

dede A2 221
E J 02 J 2 E J 2 2
e?Y Oegd0og

where
_ , X i
557~ A7)
ayioyi ayioyk
2
ayeoy
2 2
5m7) * Haa]
| \9vikdyi ViV ) |
and
_ 21
. d02dy?
e?V1
2
E( dzl ZJ:
20g0y
21
. 2020y
L 0e9Vk ) |
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[teration Procedure

Initial Values
e Random Effect Variance Components: For the ith (i =1,...,k) random effect,
compute B; = (X{X;) Xiy. Then assign the variance of the my elements of Bi
using divisor (m —1) to the estimate &7 if m =2, otherwise &2 = 0.

 Residual Variance: &2=r'r/(n-r) where X:[XO|X1|---|Xk] and

r=y-(X'X)"X'y. If 62=0 but k>1 then reset §2=10"% so that the
iteration can continue.

The variance ratios are then computed as f/iz = 6?/&5, i=1,...,k. Following the
way the residual variance isinitialized, &2 >0 for k1.

Updating
Atthe sthiteration (s=0/1,...), the parameter vector is updated as

Os1) =B + AB(g

where Aé(s) isthe value of increment A6 evaluated at 6 = é(s), and p>0isastep

size such that I(é(s +1)) > I(é(s)). The increment vector depends on the choice of

step type—Newton-Raphson versus Fisher scoring. The step size is determined by
the step-halving technique wigh=1 initially and a maximum of 10 halvings.

Choice of Step

Following Jennrich and Sampson (1976), the first iteration is always the Fisher
scoring step because it is more robust to poor initial values. For subsequent
iterations, the Newton-Raphson step is used if:

1. The Hessian matrix is non-negative definite, and

2. The increment in the log-likelihood function of previous step is less than or
equal to one.
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Otherwise, the Fisher scoring step is used instead. The increment vector for each
type of stepis:

-1
d J di

« Newton-Raphson Sep:AO =| ——| —.
ap ® [dede do

a2 ) d
e Fisher Scoring Step: A8 =| —-E| —— —.
dode de

Convergence Criteria

Given the convergence criterion £> 0, the iteration is considered converged when
the following criteria are satisfied:

L |1(Bsa)-1(8s) <2 max(],‘ (b))

2. <p(é(s+1) —é(s) )> <ex max(],<é(s)>) where (a) is the sum of absolute values

)

of elements of the vector a.

Negative Variance Estimates

Negative variance estimates can occur at the end of an iteration. An ad hoc method
isto set those estimates to zero before the next iteration.

Covariance Matrix

Let 6 be the vector of maximum likelihood estimates. Their covariance matrix is

given by
-1
e:é]

cov(B) = [E[%)
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Let
o?
p=|
ot
o2

be the original parameters. Their maximum likelihood estimates are given by

~2n2
OeV1

b= 5,
OeVk

~2
O¢

and their covariance matrix is estimated by
cov(()=J cov(é)J'

where

J:Uglk Y
0 1

which isthe (k +1) x (k +1) Jacobian matrix of transforming 6 to Y.

ANOVA Estimate

The ANOVA variance component estimates are obtained by equating the expected
mean squares of the random effects to their observed mean squares. The
VARCOMP procedure offers two types of sum of squares: Type | and Type Ill (see
Appendix 11 for details).
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Let
of
p=|
ok
os

be the vector of variance components.

Let
MS
9| vs,
MSE

where MS, i =1,...,k is the observed mean squares of the ith random effect, and
MSE isthe residual mean squares.

Let
s
s=| |
Sk
Sk+1

be a (k+1)x(k+1) matrix whose rows are coefficients for the expected mean
squares. For example, the expected mean squares of the ith random effect is Sy .
Algorithms for computing the expected mean squares can be found in the section
“Univariate Mixed Model” in the chaptegBLM Univariate and Multivariate. The
ANOVA variance component estimates are then obtained by solving the system of
linear equations:

Sy =q
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