
Model-driven systems development from IBM

Global markets are increasingly competitive;
our products need to be more innovative to
differentiate themselves in this environment.
At the same time, systems are becoming
increasingly complex. Increasing language
capabilities, rapidly changing technology and
the global flow of information are a few of the
drivers of this complexity. Along with
increasing complexity is an increase in the
pace of change, which is creating a need to
deliver more capability in less time. Further,
systems are becoming more integrated and
interdependent. Traditional systems
development methods are not able to keep
pace with these demands.

Within the aerospace and defense markets,
the changes in systems development are
especially dramatic because of the changing
nature of threats coupled with rapid changes
in technology.

Defense systems must become more agile
and capabilities deployed more quickly to
address today’s complex threats. Thus, our
development methods must help us integrate
and deploy complex and scalable functionality
more quickly.

Doing more for less

Software permeates everything, including
aerospace and defense systems. Software
development productivity has improved, but
the software has ballooned in size. Systems
today require constant updates, yet
development organizations are expected to
reduce the total cost of ownership of these

systems. We must do more for less: innovate
to stay ahead of the competition, but manage
risk; meet new technical challenges, but
manage cost.

The approach to system development and
delivery is changing in fundamental ways.
Historically, development life cycles were
lengthy for the highly customized, proprietary
solutions that were needed and demanded.
Costs were a secondary concern.

Today, fewer components provide more
functionality, yet their underlying code counts
are significantly higher, adding to their
complexity, development and management
costs. In addition, systems must integrate
with existing and future systems instantly.
To succeed in today’s rapidly changing and
increasingly complex world, we must find
ways to manage this complexity to deliver
innovative systems to market more rapidly
and at lower costs.

What makes systems complex

Systems can be characterized by their
attributes, which fall into two groups:

• ‘‘Black box’’ attributes—externally
observable characteristics, including
the services the system provides.

• ‘‘White box’’ attributes—resources
that make up the system. The
system’s white-box resources are
encapsulated in its black-box services.

Systems development may be thought of as
the specification of the black-box attributes of
the system (that is, its requirements) and the
delivery of the integrated system components
that meet those requirements. A complete
MDSD approach thus combines strong
requirements management and modeling
solutions to ensure that the delivery of the
system is in line with expectations. With MDSD,
we first break open the black box, and look at
the system as a white box—this represents a
transformation. Next, we break down (or,
“decompose”) the system into pieces to
understand how the pieces work together to
meet the black-box requirements, thereby
deriving requirements on the pieces.

In building systems, we are faced with two
different kinds of complexity:

• Creative/dynamic

• Transactional

Creative/dynamic complexity arises because
teams of people need to work together
creatively to architect optimal, robust
systems. Transactional complexity arises
when we try to manage all the components
that make up a complex system.

Creative/dynamic complexity can be
managed with a governance process. Model-
driven systems development (MDSD) enables
us to manage transactional complexity.

Requirements management—integral to
successful systems development

Requirements represent the client (external
and internal) through all phases of the
development life cycle. Requirements
management simplifies and enhances the
communication and traceability of
requirements (the collection of system
capabilities as expressed by the client),
collaboration and verification throughout the
enterprise.

A poorly expressed requirement can have a
domino effect that leads to time-consuming
rework, inadequate deliveries and exceeded
budgets. A poor requirement can even bring
a business out of compliance or even cause
injury or death. Requirements management is
an activity that can deliver a high, fast return
on investment.

Requirements management helps you:

• Ensure that requirements are
persistent at all levels of
decomposition.

• Assess impact of requirement change
to reduce risk.

• Adapt to change throughout all levels
of your traceability matrix.

• Incorporate test and QA early in the
process.

• Find gaps in traceability.

• Ensure everything is accounted for.

MDSD enables development success

Model-driven systems development (MDSD)
is the progressive, iterative refinement of a
set of models to drive development of your
system. MDSD is straight-forward yet

powerful—and it enables extraordinarily
complex things to be built from simple pieces.
It applies across a wide range of domains and
levels of abstraction from very abstract to
very concrete, from business modeling to the
modeling of embedded software. MDSD is an
extension to the Rational Unified Process®.

MDSD is a method for designing large
complex systems consisting of workers,
hardware and software that consists of a set
of transformations that progressively refine
our knowledge, requirements, and design.
The power of MDSD lies in the power of its
abstractions, in its ability to model
components of a system.

Why model a system?

We model to manage complexity, to simplify
and abstract essential aspects of a system.
Modeling enables us to test before we build,
to detect errors early and reduce rework,
resulting in savings in time and money.

Models help teams communicate more
effectively, and can help you integrate and
test your products much earlier in the
development lifecycle. This reduces costs and
increases quality, by enabling you to catch
errors earlier in the process when they are
much less expensive to fix, and by reducing
rework. MDSD uses a set of transformations
to iteratively refine your models and your
understanding of the system you are
building; this helps reduce risk with the
increase in knowledge gained through the
iterations.

Core issues that MDSD addresses

MDSD addresses a core set of system
development problems:

• Overwhelming complexity: MDSD
manages complexity by managing
levels of abstraction and levels of
detail

• Not considering appropriate
viewpoints: MDSD provides multiple
views to address multiple concerns

• System does not meet functional,
performance and other system
concerns: MDSD integrates form and
function

• Lack of scalability: MDSD consists of
isomorphic composite recursive
structures and method to address
scalability

Benefits of MDSD

PLS03028-USEN-00

MDSD provides many benefits. Some of the
more significant benefits include:

• Reduced risk

• Enhanced team communication

• Explicit processes for reasoning
about system issues and performing
trade studies

• Early detection of errors

• Integration as you go, better
architecture

• Traceability

Reduce risk

Many of the activities of MDSD are strictly
designed to reduce risk. Models increase
understanding, reducing what is unknown,
both technically and operationally, so that
your technical knowledge increases as you
complete iterations. As you produce concrete
deliverables, you can better estimate time to
completion. Increased levels of specificity
reduce the variance in a solution space. By
increasing knowledge and reducing variance,
MDSD reduces risk.

Enhance team communication

Words can be imprecise. Models can improve
communication by making specific a
particular aspect of a system. Models can also
make system issues visible through the use
of diagrams—it is often easier to point to a
diagram than to describe something in words.

Diagrams can eliminate ambiguity. The very
act of modeling or diagramming can force you
to be concrete and specific. An MDSD
diagram can be printed on a plotter, posted in
a central lobby, and become the focal point
for discussions about the system across a
broad set of stakeholders.

MDSD can also improve communication
throughout a development organization. It
provides engineers in different disciplines
with a unifying language they can use to deal
with systems issues. Systems engineers can
create models that can be handed to
engineers in other disciplines (for example,
hardware and software development) to
serve as specification for their design.
Common use case models can drive system
development, testing and documentation.

A common language promotes common
understanding. Unified Modeling Language
(UML) and Systems Modeling Language
(SysML) derive from the same meta-object

framework; therefore, products in one or the
other are likely to be understandable by
multiple disciplines. Cross-organizational
discussions are facilitated and use cases, or
common system threads, can bring together
stakeholders, developers and users around a
common vision.

Make explicit the processes for reasoning
about system issues

Often, many of our design decisions are
implicit—resulting from many years of
experience. While this experience can be
valuable, if not made explicit it can lead to
premature design decisions, or decisions that
have not been adequately reasoned through,
communicated, tested or verified.

Complexity demands explicit processes.
Following a repeatable process improves
quality and consistency—and increases our
chances for success. In MDSD, process is
performing repeatable tasks to produce
quality results—in the form of a working
system or component of a system.

Detect errors early, when less expensive to
correct

A well designed process for developing
systems enables early error detection and
resolution. The cost of errors rises
significantly when discovered later in the
system development life cycle or after release.

Trace changes to requirements

Traceability is a common requirement for the
systems being built. Often, it is explicitly
stated in the contract that traceability
matrices shall be provided to demonstrate
how the requirements of the system have
been implemented and tested. Traceability is
also needed to do effective fault or impact
analysis—to determine causes for faults and
to determine which parts of the system will
be affected by a requirements change.

MDSD can help ease the provision and
maintenance of traceability information.
Three of the core processes of MDSD—
operations analysis, logical decomposition
and joint realization tables—allow for a great
deal of the traceability problem to be
automated. SysML provides semantic
modeling support for traceability, and the
Rational® systems and software delivery
platform provides tools and support for
traceability.

PLS03028-USEN-00

Components of the IBM MDSD solution

The model-driven systems development
(MDSD) solution from IBM includes two
industry-leading tools:

• Telelogic® DOORS®

• Telelogic® Rhapsody®

MDSD opens DOORS to a better requirements
management process
DOORS is a requirements management and
requirements engineering solution that can
deliver quality by optimizing requirements
communication, collaboration and verification
throughout the enterprise. It helps you
engineer requirements across disciplines
(software, mechanical, electrical) at a system
level throughout the product lifecycle. DOORS
is a multi-platform system designed to ensure
conformance to requirements and compliance
to regulations by capturing, linking, analyzing
and tracing changes to requirements.

The DOORS component of the IBM MDSD
solution enables you to manage millions of
requirements and thousands of traceability
links, and provides:

• An intuitive document-oriented
interface that is easy to adopt

• Comprehensive traceability analysis
capabilities that help ensure that no
requirement is overlooked

• Change notification that ensures that
changes are not missed and that
their effects can be thoroughly
analyzed

• Integration with popular design,
development and test environments
that provide complete life cycle
traceability

Using DOORS as a component of your MDSD
requirements engineering process enables
you to:

• Improve collaboration by providing
greater visibility of your project
goals.

• Respond to changing customer needs
effectively and under control.

• Deliver the high-quality systems and
software your customers need, on
time and within budget.

When it is used with quality management
solutions, DOORS can:

• Reduce the risk of overlooked
defects, change requests and
requirements

• Enable you to test to requirements,
rather than just the build, to ensure
that you deliver the project according
to contract

• Improve process maturity by
providing the automated transfer of
information—a first step in creating a
repeatable process

• Shorten development cycles and
accelerates time-to-market by
improving project communication,
collaboration and information
visibility

DOORS provides scalability, traceability,
change management and impact analysis,
integration with vendor products, and
business process optimization to your IBM
MDSD solution.

MDSD improves productivity and quality with
Rhapsody

Rhapsody is a UML® 2.1- and OMG SysML™-
based model-driven development
environment for technical, real-time or
embedded systems and software engineering.
Rhapsody enables the reuse of existing
software assets, whether source code or
model based. It provides a flexible
development environment that enables
function-oriented and object-oriented
graphical design techniques to co-exist in one
environment.

The Rhapsody model-driven development
(MDD) environment for real time or
embedded systems engineering, software
development, and test—based on UML® and
SysML—enables embedded systems
engineers and software developers to
improve productivity, quality and
communication by abstracting complex
designs graphically, automating the software
development process and reducing cost by
finding defects through continual testing early
in the development lifecycle, when defects
are less costly to correct.

Some of the Rhapsody component’s key
enabling technologies benefit embedded or
real-time software developers and systems
engineers with:

• A systems and software
development environment with
complete design portability that

PLS03028-USEN-00

PLS03028-USEN-00

supports SysML, UML, DoDAF,
MODAF, AUTOSAR and Domain
Specific Languages

• Complete application generation
for 8-, 16- and 32-bit applications

• Code visualization and reverse
engineering

• Integrated requirements modeling,
traceability and analysis

• Model-driven testing

• Small- and large-team
collaboration

Learn more about DOORS and Rhapsody

To learn more about the DOORS component
of the IBM MDSD solution, visit the Telelogic
DOORS pages on ibm.com (http://www-
01.ibm.com/software/awdtools/doors/product
line/). You may also wish to visit the Telelogic
DOORS features and benefits site on ibm.com
(http://www-
01.ibm.com/software/awdtools/doors/feature
s/) or on telelogic.com
(http://www.telelogic.com/products/doors/in
dex.cfm). Download the DOORS data sheet
from telelogic.com
(http://download.telelogic.com/download/arti
cle/RAD14037-USEN-00.pdf).

To learn more about the Rhapsody
component of the IBM MDSD solution, visit
the Telelogic Rhapsody site on ibm.com
(http://www-
01.ibm.com/software/awdtools/rhapsody/).
You may also wish to learn more about
Rhapsody’s features and benefits on ibm.com
(http://www-
01.ibm.com/software/awdtools/rhapsody/feat
ures/) or on telelogic.com
(http://www.telelogic.com/products/rhapsody
/index.cfm). Download the Rhapsody data
sheet from telelogic.com
(http://download.telelogic.com/download/arti
cle/RAD14043-USEN-00.pdf).

Why IBM for MDSD?

The MDSD solution from IBM scales
successfully from small to large projects. Its
treatment of functional requirements,
including analysis of the system context,
leads to flexible, robust solutions. IBM MDSD
enables you to align your products, systems
and software development life cycles with
business objectives and customer needs to
dramatically improve quality and
predictability while taming complexity to
significantly reduce time to market and
overall costs.

© Copyright IBM Corporation 2008

IBM Corporation
New Orchard Road
Armonk, NY 10504
U.S.A.

Produced in the United States of America
9-08
All Rights Reserved

IBM, the IBM logo, ibm.com, DOORS, Focal Point, Rational,
Rational Unified Process, Rhapsody, Synergy, System
Architect, Tau, Teamcenter and Telelogic are trademarks or
registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. If
these and other IBM trademarked terms are marked on their
first occurrence in this information with a trademark symbol (®
or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM
trademarks is available on the Web at "Copyright and
trademark information" at ibm.com/legal/copytrade.shtml.

Microsoft, Windows, Windows NT, and the Windows logo are
trademarks of Microsoft Corporation in the United States, other
countries, or both.

Other company, product, or service names may be trademarks
or service marks of others.

References in this publication to IBM products or services do
not imply that IBM intends to make them available in all
countries in which IBM operates.

http://www-01.ibm.com/software/awdtools/doors/productline/
http://www-01.ibm.com/software/awdtools/doors/productline/
http://www-01.ibm.com/software/awdtools/doors/productline/
http://www-01.ibm.com/software/awdtools/doors/features/
http://www-01.ibm.com/software/awdtools/doors/features/
http://www-01.ibm.com/software/awdtools/doors/features/
http://www.telelogic.com/products/doors/index.cfm
http://www.telelogic.com/products/doors/index.cfm
http://download.telelogic.com/download/article/RAD14037-USEN-00.pdf
http://download.telelogic.com/download/article/RAD14037-USEN-00.pdf
http://www-01.ibm.com/software/awdtools/rhapsody/
http://www-01.ibm.com/software/awdtools/rhapsody/
http://www-01.ibm.com/software/awdtools/rhapsody/features/
http://www-01.ibm.com/software/awdtools/rhapsody/features/
http://www-01.ibm.com/software/awdtools/rhapsody/features/
http://www.telelogic.com/products/rhapsody/index.cfm
http://www.telelogic.com/products/rhapsody/index.cfm
http://download.telelogic.com/download/article/RAD14043-USEN-00.pdf
http://download.telelogic.com/download/article/RAD14043-USEN-00.pdf

