
ibm.com/redbooks

Front cover

Collaborative Application
Lifecycle Management with
IBM Rational Products

Mats Göthe
Carolyn Pampino

Philip Monson
Khurram Nizami

Katur Patel
Brianna M. Smith

Nail Yuce

An IBM blueprint for Collaborative
Application Lifecycle Management

Green-thread reference scenario showing
the Agility-at-Scale approach

IBM Jazz products incorporated
into an enterprise solution

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Collaborative Application Lifecycle Management
with IBM Rational Products

December 2008

SG24-7622-00

© Copyright International Business Machines Corporation 2008. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (December 2008)

This edition applies to IBM Rational Build Forge Enterprise Edition 7.1, Rational ClearCase 7.1, Rational
ClearQuest 7.1, Rational RequisitePro 7.1, Rational Quality Manager 1.0, Rational Requirements Composer
7.1, Rational Software Analyzer 7.0, and Rational Team Concert 1.0.

Note: Before using this information and the product it supports, read the information in “Notices” on
page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this book . xiv
Become a published author . xvii
Comments welcome. xvii

Part A. Collaborative Application Lifecycle Management defined . 1

Chapter 1. Introduction to Application Lifecycle Management and this book 3
1.1 The scope of Application Lifecycle Management . 4

1.1.1 People, process, information, and tools that drive the life cycle 4
1.1.2 The scope of this book . 7

1.2 Using this book . 11
1.2.1 Goals and objectives. 11
1.2.2 How this book is organized . 11
1.2.3 Target audience and chapters of interest . 13

Chapter 2. Collaborative Application Lifecycle Management . 15
2.1 Understanding Collaborative Application Lifecycle Management 16

2.1.1 Changes in the ALM market . 16
2.1.2 A CALM blueprint to streamline software delivery . 24

2.2 Life-cycle collaboration and management. 30
2.2.1 Success indicators . 30
2.2.2 Cycles of activity in the development organization . 35
2.2.3 Scaling agile methods. 38
2.2.4 Aligning work assignments . 44
2.2.5 Being requirements driven . 45
2.2.6 Striving for build clarity and quality . 46

Chapter 3. A scenario for CALM . 47
3.1 A story telling a tale of integrations . 48

3.1.1 Story objectives. 49
3.1.2 The context for the story . 49

3.2 The project . 49
3.3 The software delivery team . 50

3.3.1 A team of teams . 51
3.3.2 The solution team leads . 53
3.3.3 The agile development team. 54
3.3.4 The solution testing team . 55

3.4 The approach . 55
3.4.1 Phases and iterations for establishing cadence . 56
3.4.2 Frequent builds to drive clarity and quality . 57
3.4.3 Testing to drive quality . 57
3.4.4 Lean governance . 58

3.5 A story told act by act: Completing an iteration. 58
3.5.1 Act 1: Responding to a change request . 60
3.5.2 Act 2: Collaborative development . 61
© Copyright IBM Corp. 2008. All rights reserved. iii

3.5.3 Act 3: Enterprise integration builds . 63
3.5.4 Act 4: Managing quality. 64
3.5.5 Act 5: Delivering the solution . 65

3.6 Life-cycle collaboration . 66
3.6.1 Life-cycle assets in this CALM scenario . 66
3.6.2 Agility at Scale . 67

3.7 Reference architecture and configuration . 69
3.7.1 An enterprise CALM solution . 70
3.7.2 Product integrations for this scenario . 72
3.7.3 Supporting distributed teams . 73

Part B. Act 1: Responding to a change request. 77

Chapter 4. The team responds to a requirement change . 79
4.1 Introduction to change management. 80

4.1.1 The changing change management market . 80
4.1.2 The changing requirements definition and management market 83
4.1.3 Collaborative development blueprint and change management 88
4.1.4 Requirements definition and management blueprint. 93

4.2 A reference scenario for responding to a change request . 105
4.2.1 The actors . 106
4.2.2 The workflow. 106
4.2.3 Bob submits a request . 108
4.2.4 Patricia updates the project iteration plan. 108
4.2.5 Marco updates the development iteration plan . 109
4.2.6 Tammy updates the solution test plan . 109
4.2.7 Patricia confirms the project iteration plan . 110
4.2.8 Bob defines and manages the requirements . 111

4.3 Considerations in change management . 112
4.3.1 Analyzing and prioritizing requests . 112
4.3.2 Sizing requests . 113
4.3.3 Rational Team Concert for stakeholder requests . 114

Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage
stakeholder requests . 115

5.1 Act 1: Responding to a change request . 116
5.2 Rational RequisitePro and Rational Requirements Composer 117
5.3 Rational ClearQuest . 118
5.4 Jazz interoperability . 122

5.4.1 ClearQuest Connectors . 122
5.4.2 ClearCase Connectors . 124

5.5 Managing a change request with Rational RequisitePro and Rational ClearQuest . . 124
5.5.1 Bob submits a request . 127
5.5.2 Patricia updates the project iteration plan. 130
5.5.3 Marco updates the development iteration plan . 135
5.5.4 Tammy updates the solution test plan . 139
5.5.5 Patricia confirms the project iteration plan . 155
5.5.6 Bob defines and manages the requirements . 158

5.6 Life-cycle collaboration . 176
5.7 Planning and measuring success in change management . 177

5.7.1 Reporting with ClearQuest ALM . 177
5.7.2 Reporting with the Business Intelligence Reporting Tool 178
5.7.3 Reporting team health with Rational ClearQuest and BIRT 182
iv Collaborative Application Lifecycle Management with IBM Rational Products

5.8 Reference architecture and configuration . 186
5.8.1 Fitting into the enterprise ALM solution. 186
5.8.2 Configuring Rational RequisitePro and Rational Requirements Composer 189
5.8.3 Configuring Rational ClearQuest and the ALM schema 194

5.9 Problem determination and known workarounds . 203
5.9.1 General techniques. 203
5.9.2 Troubleshooting Rational ClearQuest . 204
5.9.3 Troubleshooting Rational RequisitePro. 206

Part C. Act 2: Collaborative development . 211

Chapter 6. An agile team implements a change. 213
6.1 Introduction to collaborative development. 214

6.1.1 The changing collaborative development market . 214
6.1.2 Collaborative development blueprint. 217

6.2 A reference scenario for collaborative development . 221
6.2.1 The actors . 222
6.2.2 The workflow. 222
6.2.3 Marco monitors component health . 223
6.2.4 Al identifies an asset the team can use . 224
6.2.5 Marco and Diedrie do just enough design. 225
6.2.6 Diedrie develops, builds, and tests her changes. 226
6.2.7 Diedrie delivers her changes and builds the component 226

6.3 Considerations in collaborative development . 227
6.3.1 Lifecycle solution for small teams . 227
6.3.2 Collaborative development with UCM. 228
6.3.3 Collaborative asset management . 229

Chapter 7. Rational Team Concert for collaborative development. 231
7.1 Act 2: Collaborative development . 232
7.2 Overview of Rational Team Concert . 232
7.3 Rational Team Concert for agile development . 246

7.3.1 Marco monitors component health . 247
7.3.2 Al identifies an asset that the team can reuse . 256
7.3.3 Diedrie, Marco, and Al do ‘just enough’ design. 263
7.3.4 Diedrie develops, builds, and tests her changes. 272
7.3.5 Diedrie delivers her changes and builds the component 281

7.4 Life-cycle collaboration . 286
7.5 Planning and measuring success in collaborative development 288

7.5.1 Measuring success with Rational Team Concert . 288
7.5.2 Reporting team health with Rational Team Concert . 292
7.5.3 Measuring success by role . 298

7.6 Reference architecture and configuration . 301
7.6.1 Fitting into the enterprise ALM solution. 301
7.6.2 How the products are configured for this scenario . 305

Part D. Act 3: Enterprise integration builds . 313

Chapter 8. The release engineer conducts the integration build 315
8.1 Introduction to enterprise build management . 316

8.1.1 The changing enterprise build management market. 316
8.1.2 Enterprise build management blueprint . 318

8.2 A reference scenario for enterprise build management . 325
8.2.1 The actors . 327
 Contents v

8.2.2 The workflow. 327
8.2.3 Rebecca inspects the integration build . 328
8.2.4 Rebecca runs the integration build . 328

8.3 Considerations in enterprise build management . 329
8.3.1 Managing the build artifacts . 329
8.3.2 Managing quality . 330
8.3.3 Building clarity . 331
8.3.4 Running static analysis during the build . 332
8.3.5 Automating deployment . 336

Chapter 9. Rational Build Forge for enterprise integration build 341
9.1 Act 3: Enterprise integration build . 342
9.2 Rational Build Forge Enterprise Edition . 342

9.2.1 Process automation framework. 343
9.2.2 Projects . 345
9.2.3 Jobs . 349
9.2.4 Schedule . 350
9.2.5 Environments . 351
9.2.6 Servers . 352
9.2.7 Libraries . 356

9.3 Using Rational Build Forge for an enterprise integration build 357
9.3.1 Rebecca inspects the build . 358
9.3.2 Rebecca runs the integration build . 359

9.4 Life-cycle collaboration . 375
9.5 Measuring success . 376
9.6 Reference architecture and configuration . 379

9.6.1 Fitting into the enterprise ALM solution. 379
9.6.2 How Rational Build Forge is configured for this scenario 380

9.7 Problem determination . 385

Part E. Act 4: Managing quality . 387

Chapter 10. The solution test team manages quality . 389
10.1 Introduction to managing quality . 390

10.1.1 The changing test market . 390
10.1.2 Quality management blueprint . 391

10.2 A reference scenario for managing quality . 397
10.2.1 The actors . 398
10.2.2 The workflow. 399
10.2.3 Tammy monitors quality . 400
10.2.4 Tanuj constructs tests . 400
10.2.5 Tammy prepares the test lab . 401
10.2.6 The team executes the tests . 401
10.2.7 Tammy monitors quality . 401

10.3 Considerations in quality management . 401
10.3.1 Automated testing . 402
10.3.2 Automated scanning . 403
10.3.3 Approaches to iterations . 404
10.3.4 Many test phases on the path to production . 407
vi Collaborative Application Lifecycle Management with IBM Rational Products

Chapter 11. Rational Quality Manager for managing quality 409
11.1 Act 4: Managing quality . 410
11.2 Rational Quality Manager . 410
11.3 Rational Functional Tester . 424
11.4 Rational AppScan Tester Edition for Rational Quality Manager 425
11.5 Rational Quality Manager . 425

11.5.1 Tammy monitors quality . 425
11.5.2 Tanuj constructs the tests . 430
11.5.3 Tammy configures the test lab . 441
11.5.4 The team executes the tests . 444
11.5.5 Monitoring quality . 455

11.6 Life-cycle collaboration . 463
11.6.1 Managing quality . 465
11.6.2 Requirements-driven testing . 467

11.7 Planning and measuring success in quality management . 467
11.8 Reference architecture and configuration . 470

11.8.1 Fitting into the enterprise ALM solution. 470
11.8.2 How the products are configured for this scenario . 471

11.9 Problem determination and known workarounds . 477

Part F. Act 5: Delivering the solution . 479

Chapter 12. The team delivers the solution . 481
12.1 Introduction to software delivery . 482

12.1.1 The changing of software delivery . 482
12.2 Reference scenario for solution delivery . 483

12.2.1 The actors . 484
12.2.2 The workflow. 485
12.2.3 The team moves to the end game . 485
12.2.4 The team leads assess their exit criteria. 486
12.2.5 Rebecca publishes the release. 487
12.2.6 Marco conducts a retrospective . 488

12.3 Considerations in solution delivery . 488
12.3.1 Transitioning to production . 488
12.3.2 Delivering to operations . 489

Chapter 13. The Rational ALM solution for solution delivery 495
13.1 Act 5: Delivering the solution. 496
13.2 The Rational ALM solution and solution delivery . 497

13.2.1 Rational ClearQuest and solution delivery . 497
13.2.2 Rational Team Concert, Rational Quality Manager, and solution delivery 497
13.2.3 Rational Build Forge and Solution Delivery. 497

13.3 The Rational ALM solution for solution delivery . 498
13.3.1 The team moves to the end-game . 499
13.3.2 The team leads assess their exit criteria. 504
13.3.3 Rebecca publishes the release. 511
13.3.4 Marco conducts a retrospective . 517

13.4 Life-cycle collaboration . 519
13.5 Reference architecture and configuration . 520

13.5.1 Fitting into the enterprise ALM solution. 520
13.5.2 How the products are configured for this scenario . 521
 Contents vii

Part G. Measuring team success in Application Lifecycle Management . 531

Chapter 14. Delivering and measuring success in Application
Lifecycle Management . 533

14.1 Introduction to measuring success . 534
14.2 Process understanding and implementation: Improving project success with predictability

and repeatability . 534
14.2.1 Process specifications: Implementing your process in software delivery 535
14.2.2 Process descriptions: Team understanding of the enacted process. 543

14.3 Using metrics and measurements effectively to drive team success 545
14.3.1 Selecting the right metrics. 546
14.3.2 Agile estimation. 546

14.4 Using dashboards for decision making . 551
14.5 Using retrospectives to capture lessons learned and make adjustments 553

Appendix A. Principles for Collaborative Application Lifecycle Management 557
Philosophical principles . 558

Development is not an island unto itself . 558
Software solutions are the product of many conversations. 558
Solutions are rarely sunset; they are refined and maintained for years 559
Many cycles are ripe for automation and recommendation . 560
Simplicity first . 560

Technical principles . 561
Focus on the team’s ability to produce a release of software . 561
Use multiple repositories. 561
Processes link roles and access multiple repositories . 562
Automate repetitive tasks . 562
Link people and the assets they access . 563

Appendix B. Configuring interoperability . 565
Configuring the ClearQuest ALM schema . 566

ClearQuest and the ALM schema. 566
Using the ALM schema and sample database . 566
Adding packages for the ALM schema . 567

Configuring ClearQuest ALM schema for interoperability . 569
Adding packages for interoperability to the ALM schema. 569
Configuring ClearQuest ALM system-wide settings for interoperability 571
Configuring users . 577
Configuring filter queries . 578
Configuring the ClearQuest Gateway . 581

Configuring Jazz repositories for interoperability . 583
Configuring users and licenses. 584
Configuring and deploying synchronization rules . 585

Practices for using ALM interoperability . 604
Extended ALM interoperability configuration . 610

Extended ClearQuest ALM configurations . 610
Extended Jazz configurations . 614

Appendix C. Rational Build Forge adapter templates . 623

Appendix D. Code review rules . 627
Rule categories and subcategories reference . 628
Architectural discovery patterns . 630

Design Patterns rule category. 630
viii Collaborative Application Lifecycle Management with IBM Rational Products

Object-oriented Patterns rule category . 631
Structural Patterns rule category. 632
System Patterns rule category . 633

Related publications . 635
IBM Redbooks . 635
Online resources . 635
How to get Redbooks. 636
Help from IBM . 636

Index . 637
 Contents ix

x Collaborative Application Lifecycle Management with IBM Rational Products

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2008. All rights reserved. xi

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AppScan®
Build Forge®
ClearCase®
ClearQuest®
DB2®
developerWorks®
IBM®
Jazz™
Lotus Notes®

Lotus®
Notes®
Policy Tester™
Rational Rose®
Rational Team Concert™
Rational Unified Process®
Rational®
Redbooks®
Redbooks (logo) ®

RequisitePro®
Requisite®
RUP®
S/390®
System i®
System z®
Tivoli®
WebSphere®
z/OS®

The following terms are trademarks of other companies:

ITIL is a registered trademark, and a registered community trademark of the Office of Government
Commerce, and is registered in the U.S. Patent and Trademark Office.

Snapshot, and the NetApp logo are trademarks or registered trademarks of NetApp, Inc. in the U.S. and other
countries.

SUSE, the Novell logo, and the N logo are registered trademarks of Novell, Inc. in the United States and other
countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation and/or
its affiliates.

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other
countries.

J2EE, J2SE, Java, Javadoc, JDBC, Streamline, Sun, and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Internet Explorer, Microsoft, Windows Vista, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
xii Collaborative Application Lifecycle Management with IBM Rational Products

http://www.ibm.com/legal/copytrade.shtml

Preface

Holistic, Collaborative, Community-based, End-to-End Management of all Developed
Software Assets (HCCEEMDSA) is not as succinct a term as Application Lifecycle
Management (ALM), but it might be a better way to describe what ALM means. Numerous
vendors and analysts have made several attempts to define ALM. Inevitably, ALM either
describes the technical details of individual assets all working well together across an entire
development life cycle, or it proposes a higher level of manager-oriented benefits that one
never seems to obtain. In the end, ALM is the ability for a development team (the key being a
team, not an individual) to continuously be able to answer a set of hard questions, such as the
following questions, regardless of your location, position, or project:

� How are my teams in India, Brazil, and San Jose progressing against the project plan?
� Can we enforce a development process that spans across my life-cycle activities?
� What requirements and defect fixes are implemented in this build?
� Have we implemented all requirements with sufficient quality?
� How do I best organize and trace my assets so that I can respond to a regulatory audit?

Successful IT organizations are finding that the complex ALM implementations they have
attempted over the years are brittle in their touch points and tend to be focused on individual
vendor solutions. For example, software is the result of many ever-changing conversations,
across disparate teams and geographies. It is almost humorous to think that we believed that
those brittle integrations might endure as those conversations became more rapid across
multiple languages, time zones, technologies, and iterations.

New technologies, such as XML and Web 2.0, offer flexible new capabilities that make robust,
long-lasting ALM integrations possible. Meanwhile, community-based development models
that were borrowed from the best open-source projects can help ensure that ALM solutions
are not “single-vendor” focused. To distinguish these capabilities from those of the past, we
call this new capability Collaborative Application Lifecycle Management (CALM).

Regardless, of your definition, or the questions for which you need answers, CALM is quickly
becoming a strategic necessity in today’s business-driven world. The Internet has changed
everything, making software business critical. Teams in business, development, and
operations must collaborate in an unprecedented way to provide high-impact software and
services to their customers. Gone are the days of one tool per role with many silos per
organization. Teams must access each other’s work to be successful.

With the advent of the agile and Extreme Programming development methodologies,
individuals are performing more than one traditional role. In this evermore competitive world,
companies do not have the time, nor the budget for specialists. Individuals must become
collaborators to be effective, and teams must have transparency to work well together. For
instance, successful, distributed development requires a high level of collaboration and
governed process so that teams do not overspend time and resource on micromanaging
training, handoffs, and deliveries.

Regulatory bodies around the world continue to force development organizations to provide
traceability details about artifacts throughout their application teams, not just from a single
development silo. Organizations are pinched for resources and hardware. The ability to reuse
assets, share resources, and have a common model for integrating functionality becomes
critical to staying competitive. Therefore, coordinating these development life-cycle activities
and managing the relationships between development artifacts is a mandate for success.
© Copyright IBM Corp. 2008. All rights reserved. xiii

In this IBM® Redbooks® publication, we examine Collaborative Application Lifecycle
Management from the inside out by leveraging these state-of-the-art capabilities. We define a
blueprint for CALM and provide details about the handoffs that occur in an iteration of a
sample software development project. We provide a reference scenario and architecture that
characterizes proof points for CALM business value. We offer a deployment model for IT
organizations that are looking to evolve toward a successful, proven CALM model. The
definitions, handoffs, and solutions that are described in this Redbooks publication are vendor
neutral. However, we concentrate on products that are developed and delivered by the IBM
Rational® brand in order to show a reference architecture.

Mike O’Rourke, Vice President, Rational Software Development

The team that wrote this book

This book was produced by a team of specialists from around the world working with the
International Technical Support Organization (ITSO) in Lexington, Massachusetts.

The team from left to right: Katur Patel, Mats Göthe, Brianna Smith, Khurram Nizami, Nail Yuce, Phil
Monson, and Carolyn Pampino

Mats Göthe is a Solution Architect on the Rational Cross-Product Green Threads team. He is
co-leading the Green Threads on Geographically Distributed Application Lifecycle
Management. Mats joined Rational in 1991 and has held various positions, which include
development manager for Rational Rose® development in Sweden and Rational technical
sales and service manager on the Ericsson Corporate Account team and in the Nordic
region. Mats has a doctorate (PhD.) in physics from Uppsala University and is based in Kista,
Sweden.
xiv Collaborative Application Lifecycle Management with IBM Rational Products

Carolyn Pampino is a Solution Architect on the Rational cross-product Green Threads team.
She co-leads the geographically distributed Application Lifecycle Management green thread
and was a co-lead for this Redbooks publication. Carolyn joined Rational in 2002 and has
held various positions that influence brand strategy. These positions include serving as
product manager for the Rational ClearQuest® 7.1 ALM solution, transition manager for the
Rational Build Forge® acquisition, product manager for identifying and driving integration
strategies with the Tivoli® portfolio, and product manager for launching the Rational
Professional Bundle. Prior to IBM, Carolyn was Director of Product Management,
Development, and Competitive Intelligence at BroadVision, Inc. Prior to BroadVision, she was
a Director of Development at Interleaf and contributed to the acquisition of Interleaf by
BroadVision. Carolyn received her degree with University Honors from Carnegie-Mellon
University.

Philip Monson is a Business Development Project Leader for the ITSO. Phil has been with
Lotus® and IBM for 18 years, joining the company when the early versions of Lotus Notes®
were rolled out for internal use. He has served in management, technical, and consulting
roles in the IT, Sales, and Development organizations.

Khurram Nizami is responsible for worldwide enablement of Rational products. His expertise
is in helping customers and IBM by applying practical solutions to challenges faced by the
software delivery community today. Khurram’s specialty and area of interest is Geographically
Distributed Development (GDD). Prior to working for IBM, he was a manager for Cap Gemini
Ernst & Young in the Systems Development and Integration practice, where he was a project
manager and technical lead for a number of global software delivery projects. Khurram holds
a Master of Science degree in Management of Technology from the University of Minnesota
and is a PMI-certified Project Management Professional.

Katur Patel is a Staff Software Engineer at for IBM Rational Software. He has held positions
in the server technology group, working with TSO/E and Java™ on S/390®, and was a
developer in the 300mm Fab Test Solutions Center. He supported Rational ClearQuest as a
technical support engineer before moving to his current role in the Customer Advocacy Group
for the same product. As a Customer Advocacy Group engineer, Katur has developed
expertise with the Rational ClearQuest schema design and integration with Rational Test
Manager, MultiSite, and Web applications. He holds a Master of Science degree in Computer
Science and a Graduate Certificate in Human Computer Interaction from Tufts University in
Medford, Massachusetts.

Brianna M. Smith has worked with Rational and IBM for nine years in various capacities as a
Staff Software Engineer for the Requirements Customer Advocacy Group and a Delivery
Engagement Manager. She has developed expertise in the Requirements Definition and
Management discipline as it integrates across the CALM. She has aided organizations both
within and outside IBM in end-to-end requirements process transformation and leveraged
Rational tools to support these engagements. Brianna has also aided the RequisitePro®
product group in creating Rational RequisitePro project templates to support the Rational
Unified Process (RUP®), and Business Modeling Integration.

Nail Yuce is a Rational Advisory Accredited IT Specialist in Turkey. He has been working for
Rational for over four years. He has focused on Rational products, particularly Rational
Software Architect, Rational Application Developer, Rational Build Forge, Rational
ClearCase®, Rational ClearQuest, Rational Performance Tester, and Rational Functional
Tester. He has also worked with them in Proof of Concept, Proof of Technology, and support
at customer sites in Turkey. He has a degree in Computer Science and Engineering from the
University of Hacettepe, in Ankara, Turkey.
 Preface xv

Thanks to Scott Ambler, Practice Leader Agile Development, for IBM Rational Canada, for his
contributions to this project. We also thank the following members of the IBM Software Group
for their contributions to this book:

� Bruce Baron, Marketing Manager - Rational Project and Portfolio Management

� Douglas Bush, Information Developer, Requirements Management

� David Colasurdo, Senior Development Manager, Rational Quality Manager

� Dwayne Dreakford, Product Manager - Requirements Definition and Management

� Tim Feeney, TechWorks Practice Lead - Change & Release Management

� Carlos Ferreira, Rational Asset Manager Product Manager

� Richard Forziati, Staff Software Engineer

� Kevin Haaland, Jazz Project Development Lead

� Bryan Hogan, Software Developer, Rational Enterprise Tools

� Chris Kau, Lead Architect Lotus Workforce Management

� Mathieu Lapensee, Software Quality Advisor

� Grant Larsen, Senior Technical Staff Member - Chief Architect Asset Management

� Mario Maldari, RequisitePro Composer System Test Lead

� Brian Massey, Product Manager, Automated Software Quality

� Gili Mendel, Senior Technical Staff Member - Application Architect

� Elizabeth Miller, Senior Engineering Manager, Jazz Interop

� Daniel Moul, IBM Rational Offering Management

� Douglas Mueller, Manager, Rational Automated Software Quality Products

� Lynn Mueller, Senior Consultant, IBM Certified Executive IT Specialist

� Bob Myers, Rational Internal Deployment Architect

� Chibuzo Obi, Rational Engineering Services Tools

� Stuart W. Poulin, Customer/Partner Engagement Leader, Rational Enterprise Tools

� Sreedhar Rella, ClearQuest Software Developer

� Michael Saylor, Software Architect, Rational Software Configuration Management

� Nirav Sheth, Software Developer, Rational Software Configuration Management

� Dominique Simoneau-Ritchie, Software Developer, Java

� Paul Tasillo, Rational Test Lab Manager Chief Designer

� John Vasta, Team lead, ClearQuest Connectors

� Rick Weaver, Senior Manager, Rational Cross Product Green Threads

� Carol Yutkowitz, Senior Software Engineer, IBM Jazz™ Development Team
xvi Collaborative Application Lifecycle Management with IBM Rational Products

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with specific
products or solutions, while getting hands-on experience with leading-edge technologies. You
will have the opportunity to team with IBM technical professionals, Business Partners, and
Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks® in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xvii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xviii Collaborative Application Lifecycle Management with IBM Rational Products

Part A Collaborative
Application Lifecycle
Management defined

In this part, we describe the context for this Redbooks publication. The term Application
Lifecycle Management has existed in the software industry for many years. Over the past
several years, the definition has blurred. In this part, we provide a new view that we call
Collaborative Application Lifecycle Management (CALM). We assert that, by following a
single iteration in a development project, the value of CALM becomes apparent.

This book breaks with the traditional format of most Redbooks publications by using a
storyboard to define the structure for the entire book. An overview of the storyboard, or
scenario, is described in this part, which contains the following chapters:

� Chapter 1, “Introduction to Application Lifecycle Management and this book” on page 3
� Chapter 2, “Collaborative Application Lifecycle Management” on page 15
� Chapter 3, “A scenario for CALM” on page 47

Part A

Role-based guide: To understand how the content in this part applies to your role, see the
role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7 on
page 13.
© Copyright IBM Corp. 2008. All rights reserved. 1

2 Collaborative Application Lifecycle Management with IBM Rational Products

Chapter 1. Introduction to Application
Lifecycle Management and
this book

In this chapter, we introduce the topic of Application Lifecycle Management (ALM) and define
the areas of ALM that we discuss in this book.

Specifically, we include the following sections in this chapter:

� 1.1, “The scope of Application Lifecycle Management” on page 4
� 1.2, “Using this book” on page 11

1

Role-based guide: To understand how the content in this chapter applies to your role, see
the role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7
on page 13.
© Copyright IBM Corp. 2008. All rights reserved. 3

1.1 The scope of Application Lifecycle Management

Application Lifecycle Management is a key enabler for streamlining a team’s ability to produce
a release of software. ALM consists of the core disciplines of requirements definition and
management, asset management, development, build, test, and release that are all planned
by project management and orchestrated by using some form of process. The development
tool repositories store the assets and their relationships. Charts and reports gain visibility into
a team’s progress. ALM involves the coordination of software development activities and
assets to produce and manage software applications throughout their life cycle.

1.1.1 People, process, information, and tools that drive the life cycle

In today’s world, teams of people distributed around the world must collaborate on producing
sophisticated business-critical applications in compressed time frames, while, in some cases,
adhering to government regulations. The need to streamline a team’s efficiency and govern
without impeding progress is greater than at any point in the history of software development.
Products must be introduced to market to respond to a changing competitive landscape, and
Web sites must be updated constantly to remain fresh and interesting. The life span of
software applications has shortened, and demand has dramatically increased. Software
development teams must produce meaningful and competitive products at an unprecedented
rate.

In this environment, teams can no longer act in silos where one team throws a solution “over
the wall” for the next team to integrate, test, or deploy. Nor can the disciplines of software
development be treated as silos where one team member only manages requirements, while
another only develops the source code or only tests the software. Business demands
software that meets the needs of the user. Operations teams must know how to manage
these applications and respond to problems. Business analysts are more involved in the
development process. Architects need to understand the architectural principles, patterns,
and requirements set forth by the enterprise architecture. Developers must understand the
stakeholders’ needs, the business processes, design, and reuse assets, as well as implement
and test the system. Testers are closely aligned with business analysts to ensure high quality,
customer-driven software applications.

As a result, teams that develop internal IT systems and Internet applications take a much
different approach to software development by using techniques for agile development,
mock-ups, fast paced iterations, and increased interactions with stakeholders. Software
development teams must be aware of and respond to customer demands. In addition, teams
no longer have the luxury of 18- to 24-month development cycles where every detail is deeply
analyzed and designed. Waterfall approaches to software development have given way to
agile approaches with short iterations. Built-in feedback loops are necessary for producing
software for the target users.

ALM is the vehicle that not only brings these disciplines and team members together, it drives
the transparency of their progress and governs how the team works. Today’s software
development teams cannot function without it.

At the heart of ALM lies a coordinated set of contributions between team members. This
coordination involves people, process, information, and tools with the underlying aspects of
transparency and shared responsibility for success. Within this context, teams are
self-configuring. The simplest view of this definition, as illustrated in Figure 1-1 on page 5,
involves a series of contributions between team members. While this might be an overly
simplified view, it gets to the heart of the matter: What one team member produces, another
team member consumes. Understanding these dependencies helps a project team to
4 Collaborative Application Lifecycle Management with IBM Rational Products

organize their efforts, streamline their ability to produce software, and produce a healthy
software development environment.

Figure 1-1 The coordination of people, process, information, and tools in ALM

If we agree that at the heart of ALM lies a coordinated set of handoffs between team
members, then the importance of the key fundamentals becomes abundantly clear:

� People collaborate. Teams self-organize.

Collaboration between team members is critical to successful contributions. Many times
one team member has work to complete that requires referencing or reusing the work of
another team member. By collaborating, team members gain better insight and
understanding into how to approach completing or refining their own work, and the entire
team stays current. Collaboration, however, requires trust, and trust develops through
experience. Teams that self-organize leverage their trust to build a culture where they can
flourish. In this environment, collaboration comes naturally.

� Process facilitates the flow of events or timing of what work is completed when.

A group of musicians does not play their instruments all at once. Rather, their parts are
orchestrated so that the combination of events produces a melody. Process enactment
provides the cue to each team member of when it is time to play their part.

� Plans organize the scope of work to be addressed and by whom.

A concert does not involve all work being performed at once. Rather a concert program is
defined with an ordered set of songs to produce the most effective overall experience, and
all musicians work from the same program.

In software development, iterations set the cadence. Plans are used to scope the level of
effort and to determine what work will be completed when, with a focus on achieving a
specific goal or goals. However, project planning is a continuous effort that depends on
transparency and involves evaluating the current situation and making course corrections.

Therefore, transparency into real-time performance of the team is for creating plans to
respond to current events. Transparency leads to health when the lead and team respond
to current events by balancing the workload or changing the plan accordingly. A skeleton
plan can, in some cases, come from “the top down,” but the reality comes from the bottom

People

Collaborator

Collaborator

Process
Collaborator

Information Tools

Produces References
Chapter 1. Introduction to Application Lifecycle Management and this book 5

up as each team member assumes ownership and contributes their talent to filling out the
plan.

� Information is shared in repositories.

Repositories for storing the team’s assets are shared across the team. It does not do any
good for a team member to produce a critical piece of information and store it on their
personal computer. Nor does it do any good to store that information in a repository to
which other team members do not have access.

� Tools are specific to the user’s task.

A team member who produces a rich requirements storyboard is different from the
developer who produces the source code to implement the story. Each user requires a tool
that suits their need.

These basics can be confusing when the word life cycle is brought into the picture. After all,
the team, the process, and what constitutes the beginning and end of the life cycle inherently
drive a level of detail that differs from project to project and organization to organization.
These details can be determined only when the boundaries and context for the life cycle are
well understood. Herein lies the challenge. The definition of the life cycle depends on the
nature and the context of its use. For example, application lifecycle is sometimes used
inter-changeably with software development lifecycle (SDLC), whose acronym can also be
defined as systems development lifecycle. As new business needs, technologies, and
approaches have surfaced, the needs and expectations in the ALM market have changed.

Recently the term IT Lifecycle Management entered the market to describe the alignment of
business, development, and IT operations. In IT Lifecycle Management, the cycle begins with
business needs and extends to the operations team monitoring an application in production.

Some use the term Application Lifecycle Management to define this same IT cycle. Product
Lifecycle Management addresses the complexities that are involved in managing physical
products that contain software in addition to the physical parts that comprise the product.
Portfolio management, enterprise architecture, and governance have also broadened the
scope of the software development market with needs specific to each domain. With our view
of software development expanding to include these new domains, some boundaries must be
put in place to create a meaningful book. Regardless of the size of definition of the life cycle,
the fundamental need for a coordinated set of handoffs between team members remains the
same.
6 Collaborative Application Lifecycle Management with IBM Rational Products

1.1.2 The scope of this book

By examining the handoffs that occur in a single iteration of a development project, we assert
that the value of ALM is understood well enough to scale to a larger life cycle. To clarify the
value of ALM, we focus on a single iteration in the Construction phase of a software
development project, as illustrated in Figure 1-2.

Figure 1-2 A single iteration revealing the value of ALM

Even within a single iteration, it is easy to get lost in the details of requirements management,
change management, asset management collaborative development, build management, and
quality management. Therefore, we selected a scenario that touches on each of these
disciplines in the simplest of terms, with the intent of highlighting the relationships across
disciplines, rather than highlighting the details within a single discipline.

For example, rather than provide details about every aspect of change management, we
demonstrate how a single change request impacts the activity of the rest of the team, from
iteration planning, requirements definition, asset reuse, development, build, and quality
management to final delivery. Our exploration of each discipline is enough to highlight the
interaction points across the disciplines. The intent of this book is to show how ALM helps to
streamline a team’s ability to produce a release of software by examining a single iteration.

By limiting the scope of the discussion, you can focus on the core value, rather than become
lost or overwhelmed by the complexities that are involved in every discipline that participates
in the life cycle. Clearly every organization defines the cycle differently. Different vocabularies
are used. Some organizations apply more process, while others are more lenient. Some use
sophisticated asset management techniques to perform impact analysis, where others reuse
assets in an ad hoc manner. Some use agile techniques, while others follow traditional
development patterns. It is impossible to cover every aspect of the application lifecycle. To
produce this book, we have limited the scope of the discussion to a single path through an
iteration, which is referred to as the “scenario” throughout the remainder of this book.

Construction TransitionInception Elaboration

Iteration 0

Drive out
business

risk

Iteration
1

Drive out
technical

risk

Iteration
2

Release Candidate

Unacceptable Defects

Iteration
…

Iteration
…

Stabilization
test

Iteration
3

Production

Iteration
…

Iteration
…

Demo and
obtain

feedback

Accumulated
Requests

Requests and Defects

Release

Initial
Project
Scope

Iteration

Monitor and
manage
Chapter 1. Introduction to Application Lifecycle Management and this book 7

Figure 1-3 uses heavy black ellipses to indicate how a single change request impacts each of
the software disciplines.

Figure 1-3 Tracking the impact of a single request through an iteration

Figure 1-3 shows the following sequence of actions:

1. On the far left, the product owner prioritizes the accumulated requests for the new project.
The dark black circle represents the request that we trace through the iteration.

2. The requests are added to the project stack as work items and prioritized.

3. The highest priority work items are added to the iteration plan. In this case, the request of
interest is the highest priority and, therefore, at the top of the stack.

4. One work item requires work from several areas to be completed:

a. Detailed requirements are provided to clarify the request.

b. The development team collaborates on understanding the requirements, discovers a
reusable asset, and then develops, tests, and delivers the source code to the
integration build.

c. The integration build integrates the changes of several component teams into a single
solution build. The bill of materials lists the changes that are delivered in the build.

a. The test team manages the quality of the integrated solution. The test plan includes the
requirement or requirements that must be verified. Test cases are written to satisfy the
requirement or requirements. These test cases are executed against a build running in
a specific hardware configuration. The test results are evaluated.

5. A defect is submitted and treated as a new request. If the team plans to fix the defect in
the current iteration, the defect is added to the iteration work-item stack, as illustrated in
Figure 1-3. Defects that will be fixed in a future iteration are added to the project stack or a
future iteration plan. Otherwise, the defect is added to the stack of accumulated requests
to be addressed in a future project.

Iteration

Accumulated
Requests

Initial
Project
Scope

Requests

Defects

Detailed and
Managed
Requirements

Test Logs

Bill of
Materials

Highest priority
Work items

R
ev

ie
w

Pl
an

Iteration
Work-items

Acceptance
Criteria

Staged Build

Server

Execute
against

Results

Deployed
to

Validates

Requests

Requirements

Development Integration Build

Quality Management

Tasks Next

Iteration

Triage

Tests

Test
Deliver

Develop and
Build

Integration
Build
8 Collaborative Application Lifecycle Management with IBM Rational Products

6. At the end of an iteration, the team meets the acceptance criteria and delivers a working
solution. Subsequent iterations build on the functionality until the final solution is delivered.

The choice of tools to implement the scenario largely depends on the size of the team, the
existing tools investment, development processes, and the complexity of the solution under
development. As shown in Figure 1-4, the team size can range from a small startup team to
an interconnected team of teams in a global enterprise.

Figure 1-4 Target team size for this book

System of
Projects

High
Ceremony

Low
Ceremony

Pr
oc

es
s/G

ov
er

na
nc

e

Project Com
plexity

Individual Projects
Developers

Enterprise-wide
Analysts, CIO, Operations

Cross-Business Unit
Project Leads

Scope or scaleof enterprise tool span and stakeholders

Interconnected
Teams of Teams

Pragmatic Teams

Startup
Team

Enterprise Pragmatic
Teams

Independent
Projects
Chapter 1. Introduction to Application Lifecycle Management and this book 9

The set of tools that is selected to support the reference scenario supports an interconnected
team of teams in a global enterprise, where project complexity and process ceremony tend
toward the high side. Figure 1-5 shows the products that are used in the reference scenario.

Figure 1-5 The products used in the reference scenario

The reference scenario shown in Figure 1-5 uses the following products:

� The project manager uses Rational ClearQuest 7.1.0.0 and a new “ALM Schema” with
integrations to Rational Team Concert 1.0 and Rational Quality Manager 8.0.0.0. Rational
ClearQuest is used as an information hub in this scenario and is the repository where new
requests are submitted.

� The product owner uses Rational Requirements Composer 7.1.0.0 to define and illustrate
storyboard requirements. The product owner also uses Rational RequisitePro 7.1.0.0 to
manage and trace requirements. The requirements in RequisitePro are linked back to
Rational ClearQuest to establish a traceability link between the request, the work, and the
detailed requirements.

� The solution architect uses Rational Asset Manager 7.1.0.1 to discover and reuse an
existing asset. The agile development team uses this asset as a base for the source code
that is required to develop the change request.

� An agile development team uses Rational Team Concert to develop, unit test, and build
the software component. Rational Team Concert is integrated with ClearQuest and
ClearCase. An integration with Rational Asset Manager is also provided, although it is not
shown in Figure 1-5.

� The release engineer uses IBM Rational Build Forge Enterprise Edition 7.1.0.0 with
adapters to IBM Rational ClearCase, ClearQuest, and Rational Software Analyzer 7.0.0.0
to automate the entire build process. Rational ClearCase uses the ClearCase Connector
to Rational Team Concert and manages the source for the entire solution. Rational

Plan iteration
with work item

Reuse, develop, test,
build, and deliver changes

QM

Plan tests
with work item

Alternate UCM workflow

Test integration build
WatchFire AppScan integrated

Submit defect Rational Analyzer,
ClearQuest and
ClearCase integrated

IBM Rational Team Concert

IBM Rational RequisitePro IBM Rational Requirements Composer

IBM Rational ClearQuest

Triage requests
plan iterations
with tasks and
activities

IBM Rational Asset Manager

Integrate
and build

Discover assets
for reuse

Publish
iteration

build
Link to
requirements

Create sketchManage requirements

IBM Rational Quality Manager IBM Rational Build Forge
10 Collaborative Application Lifecycle Management with IBM Rational Products

ClearCase manages the solution source code. Source code from Rational Team Concert
is copied to Rational ClearCase by using the ClearCase Connector.

� Rational Quality Manager with integrations to ClearQuest, RequisitePro, and Rational
AppScan (version to be determined (TBD)) is used by the test team to plan, manage,
construct, execute, and analyze the testing effort.

� The following products are referenced, but no detailed information is provided:

– Rational Functional Tester 8.0.0.0
– Rational Performance Tester 8.0.0.0
– Rational Services Tester 8.0.0.0
– Rational Policy Tester (version TBD)

It is our hope and intention to cover a scenario that the majority of you can relate to, with full
knowledge that we are unable to cover every case.

1.2 Using this book

In this section, we guide you through the contents of the book to help you form a strategy for
reading this book.

1.2.1 Goals and objectives

This book has the following goals and objectives:

� Provide a blueprint for ALM and each of the disciplines with the development life cycle.

� Elucidate the value of ALM by demonstrating the handoff points that occur across
disciplines in a single iteration of a software development project.

� Provide a reference scenario that characterizes the key value points for ALM.

� Provide a reference architecture for ALM deployments in enterprises that seek to support
large teams.

� Document the usage of the Rational products in support of the reference scenario.

� Demonstrate how to deploy configurations for the IBM Jazz technology-based tools
planned for the market in 2008.

� Demonstrate how the Rational ALM tools can support an Agility-at-Scale scenario.

1.2.2 How this book is organized

We have organized this book by using the reference scenario shown in Figure 1-3 on page 8.
We describe the scenario in detail in Chapter 3, “A scenario for CALM” on page 47.

The scenario is presented in the form of a storyboard. The storyboard is divided into five
major acts, each with one or more scenes. This division is similar to that of a movie script or
play. Imagine the curtain being drawn and lights going on in the theater at the end of each act.

Each of the major acts stands as a milestone in the overall life cycle and covers at least one
discipline in software development. Each scene demonstrates how one or more of the
characters completes a specific task that contributes to the act. For example, as shown in
Figure 1-6 on page 12, Act 2: Collaborative Development has five scenes. They start with the
“Marco monitors component health” and end with “Diedrie conducts a team build and delivers
for integration build.”
Chapter 1. Introduction to Application Lifecycle Management and this book 11

Figure 1-6 A story told in acts and scenes

Each part of this book corresponds to one of the acts in the storyboard. The following parts
provide a synopsis of each of the acts as illustrated in Figure 1-6:

� Part B, “Act 1: Responding to a change request” on page 77
� Part C, “Act 2: Collaborative development” on page 211
� Part D, “Act 3: Enterprise integration builds” on page 313
� Part E, “Act 4: Managing quality” on page 387
� Part F, “Act 5: Delivering the solution” on page 479

Each of these parts comprises two chapters. The first chapter in Parts B through F, which we
refer to as the “about” chapter, introduces the discipline or disciplines that come into play in
the act. It discusses the current market forces and presents a blueprint for that discipline. The
reference scenario is introduced along with additional considerations for that discipline.

The second chapter in Parts B through F, which we refer to as the “using” chapter, describes
the tools that are used, followed by a set of instructions for using the tool to complete the
scenario. As stated earlier, ALM is all about the handoffs that occur across the disciplines.
Therefore, a summary section called “Lifecycle collaboration” is provided to help you
understand the assets that are created in the act and how they relate to assets that are
referenced in the other acts. We also provide sections on measuring success and problem
determination.

Collaborative Development (two-week iterations)

The agile team develops,
validates and builds the

required changes to their
component in the solution. The
component is delivered to the

solution integration.

The business owner submits
a request for the current

iteration. The impacted team
leads update their plans, and
Patricia updates the solution

iteration plan.

2

Al
Solution
Architect

Marco
Development

Lead

Diedrie
Developer

2.5 Diedrie conducts a
team build and
delivers for
integration build

2.4 Diedrie develops,
builds, and tests her
changes

2.2 Al identifies an
asset the team can
reuse

2.
1

 M
ar

co
 m

on
ito

rs
co

m
po

ne
nt

 h
ea

lth

2.3 Diedrie and
Marco do just
enough design

Scene

Act
12 Collaborative Application Lifecycle Management with IBM Rational Products

1.2.3 Target audience and chapters of interest

Because ALM includes all software development disciplines, this book is written with many
readers in mind, each with a different level of influence and decision making power.

Project managers or team leads who have ownership in the delivery of complete application
solutions, or components into larger solution, will find value in understanding the overall
scenario provided in this book. The book clarifies the needs and benefits within ALM that can
help to identify areas of improvement across a team. It also addresses the typical patterns in
adopting ALM principles.

Tool administrators who have ownership of the deployment and maintenance of development
platforms will find the reference architecture and problem determination sections of value.
The book clarifies the deployment best practices and configurations. It also enumerates
alternative approaches and suggestions on trouble resolution.

Individuals who specialize in a specific discipline, such as requirements management,
development, release engineering, and testing, and who seek an understanding of how their
discipline fits into overall project effort will find value in a specific part of this book.

This book can also be a source for inspiration and reference for senior line of business and
development managers for deepening their understanding of ALM and the capabilities that it
can unlock in the IT organization.

We consider this book an important guide for teams who are maturing their approaches to
software delivery, by stepping up from source code management to change, quality, and
release management. We also consider this book to be an important complement to
information about the Jazz products by illustrating how a team already on the Rational
Delivery Platform, including Rational ClearCase and ClearQuest, can adopt Rational Team
Concert. To learn more about the Jazz products, see the following Web site:

http://jazz.net

To further facilitate the reading of the book, we provide a role-based guide in Table 1-1 on
page 14, based on the key shown in Figure 1-7, to the sections of interest to those of you who
perform a specific role. We use the smaller icon, which is shown in the lower right corner in
Figure 1-7 in the role map in Table 1-1 on page 14, to indicate the topics of interest.

Figure 1-7 A guide to the topics of interest in the ‘about’ and ‘using’ chapters in Parts B to F

Introduction and
blueprint

Scenario and
considerations

Using
the solution

Configuring and
troubleshooting

the solution
Chapter 1. Introduction to Application Lifecycle Management and this book 13

http://jazz.net

The first chapter of each part (the “about” chapter) is indicated in light blue (upper half of the
map). It includes a square for the “Introduction and bueprint” section and a square for the
“Scenario and considerations” section.

The second chapter of each part (the “using” chapter) is indicated in dark blue (lower half of
the map). It includes a square for the “Using the solution” section and a square for the
“Configuring and troubleshooting the solution” section.

For each role, the icon demonstrates which chapter (indicated by light or dark blue) and which
topics (indicated by a left or right square) are suggested reading material. For example, the
small icon on the right in Figure 1-7 suggests that the “Introduction and blueprint” section in
the “About” chapter is of interest. The topics of less interest are shaded in light gray.

Table 1-1 provides a map for each role to the suggested sections of interest. Refer back to
this table to help you understand how the content of each chapter applies to your role.

Table 1-1 Suggested reading by role

Role Part A
Introduction

Part B
Change
management

Part C
Collaborative
development

Part D
Enterprise
iIntegration

Part E
Quality
management

Part F
Delivery

CxO

Product owners

Project lead

Architect

Developers

Release
engineers

Testers

Tool
administrators
14 Collaborative Application Lifecycle Management with IBM Rational Products

Chapter 2. Collaborative Application
Lifecycle Management

In this chapter, we discuss Collaborative Application Lifecycle Management (CALM) and set
forth some fundamental definitions that we use throughout the book. We explain how the
Application Lifecycle Management (ALM) market is changing and discuss a blueprint for
CALM. We also explain how collaboration occurs across the life cycle.

Specifically, this chapter includes the following main sections:

� 2.1, “Understanding Collaborative Application Lifecycle Management” on page 16
� 2.2, “Life-cycle collaboration and management” on page 30

2

Role-based guide: To understand how the content in this chapter applies to your role, see
the role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7
on page 13.
© Copyright IBM Corp. 2008. All rights reserved. 15

2.1 Understanding Collaborative Application Lifecycle
Management

As discussed in Chapter 1, “Introduction to Application Lifecycle Management and this book”
on page 3, at the heart of CALM lies a coordinated set of handoffs between team members.
This coordination involves people, process, information, and tools as the team moves a
project through its life cycle. In this section, we place more emphasis on defining the life cycle
and explaining how the ALM market has changed. We provide a blueprint for ALM along with
a set of integration themes for tracing relationships through the cycle. We also provide
additional considerations.

2.1.1 Changes in the ALM market

To understand the scope for this book, it helps to understand the context from which it is
derived. The business context and priorities have changed, and as such, a new emphasis is
placed on development team productivity and efficiency.

The changing business context
Before the Internet blossomed, the focus for most software development teams was either to
produce a software product that was delivered on CD-ROM or embedded into system. The
time to market was reasonably long, with teams enjoying 12-34 month long development
cycles. In addition, the business that funded development efforts was once viewed as an
afterthought, or in some cases, a necessary “evil” to the more meaningful act of developing
software. The software produced by these teams was a luxury item, limited to businesses with
access to computers.

However, business analysts were held accountable for launching successful new software
products. They spoke with the users and listened to their needs. This constant contact with
the users inspired a new vocabulary that the business analysts attempted to convey to the
development teams. This void of contact between the users and the developers created a
cultural gap that psychologically placed the business and the development teams at odds.

At the same time, the test team set out to find defects. While the need to find and fix defects is
an important part of managing quality, this too placed the test and development teams at
psychological odds. Because the developers took pride in not having defects in their source
code, while the testers’ job was to find them, a natural tension arose between the two
organizations when their function was viewed from this perspective. The business,
development, and test teams often worked in silos unaware of, or at odds with, the others’
activities.

In this environment, the software development market matured down a path of providing
feature-deep applications that were targeted at solving the needs of a single discipline. There
are sophisticated tools for managing requirements, defects, source code, builds and test
cases, where each tool targets an individual discipline, often with each having its own
repository for managing the assets. For many years, software development tools vendors
marketed a tool or tools for each role. As these tools were adopted, team members realized
they needed to share work with each other.

The term Application Lifecycle Management surfaced to define the market need for a suite of
integrated tools to help teams manage all of the assets in a software development project. At
this time, ALM was defined by a set of roles that perform a specialized discipline with a
specialized tool or set of tools. With this definition, analysts, architects, testers, build
engineers, deployers, and project managers were all considered first-class members of the
16 Collaborative Application Lifecycle Management with IBM Rational Products

software development team. While this approach was successful at broadening the definition
of the software development team, a side-effect of this role-based approach led to silos of
capability. As such, development managers invested in the best-of-breed solution for their
particular discipline.

Then the shift occurred. The Internet blossomed, and software became a household norm. It
was no longer restricted to the few who had access. Software was everywhere. Schools,
healthcare facilities, nonprofit organizations, households, and others all had access to the
Internet. In addition to critical IT applications, software proliferated into common household
devices, mobile phones, appliances, machines, and complex systems.

Software has become a part of daily life, and as such is driving revenue for the business. The
connectivity provided by the Internet has had a direct impact on business-to-business and
business-to-consumer transactions and processes. This has driven a quantum leap on
software demands to automate, implement, integrate, and manage these new business
processes. The demand to realize these processes, required for the competitiveness in the
new online economy, has created a fundamental shift in the business context for creating
software. The context for conducting business has changed in several dimensions:

� The focus is on business outcomes.

The business, development, and operations teams must now collaborate to produce and
manage software solutions that will keep them competitive in a global market that is open
and active 24 hours a day, every day of the week. The software services provided by the IT
organization must align with business needs while conforming to a larger IT strategy. The
development team provides the service to the business.

� Distributed development is commonplace.

Teams are distributed across many geographic regions, from people who work from home
offices to offshore and outsource partners. Additionally leadership is also distributed with
organizationally distributed teams. Co-location is rare, and team distribution is the now the
norm.

Teams must learn new strategies for working across geographic boundaries. For example,
some teams have learned to follow the sun, where work completed by a team in one time
zone is handed off to team members in the next time zone, where there are several hours
left to the work day. An example of the extended work day is where the work starts in
China, is handed to India, is then given to the eastern United States, is sent next to the
western United States, and starts again in China. In each transition, several hours are
added to the work day. This is an extreme case, but in some situations, such time-zone
crossing activities, when used wisely, can considerably decrease the time to market.

� Platforms and application families or suites are the norm.

ALM solutions have evolved from point products to application suites, and many
companies have invested in these suites. Intellectual property is managed by these
repositories. ALM solutions must work with these existing repositories while introducing
new approaches to managing the software assets. In addition, strategies for software
development governance and enterprise architectures place additional emphasis on
cross-repository integration and sharing.

� Packaged applications and existing application integration are the norm.

Solutions must be produced and deployed quickly. The days of home-grown solutions are
quickly vanishing. While software solutions might be driving revenue, software is not
necessarily a core competency of the business developing that software.

For example, a pharmaceutical company is interested in investing in and developing
solutions that are pharmaceutically related such as developing a new drug or medical
device. The product is the drug or medical device, not the software that helps get them
Chapter 2. Collaborative Application Lifecycle Management 17

there. Therefore, enterprises are increasingly reaching for packaged applications that can
be configured and deployed quickly without having a vast team of developers writing
thousands of lines of code.

� Audit and compliance are business imperatives.

Regulatory compliance issues impact many enterprises around the world. Teams must
understand which regulations, if any, they must comply with before digging into the details
of knowing what it means to be compliant. When understood, proper measures can be put
in place to ensure that software development practices do not result in regulatory
penalties.

Regulatory compliance is a reality that requires organizations to govern how they run their
business with an unprecedented audit trail. Organizations must have policies and be able
to prove that the policies are enforced. For development organizations, this means that
they must be able to prove what changes went into a release of software, how it was
tested and with what result, how it was built, and where it was deployed. They might even
be asked to reproduce a version of software that was deployed several years ago. It is no
longer good enough to provide a tool for each role. Now the assets created by the team
must be traceable with each new release.

Business goals with a spotlight on development efficiency
Caught in a cross-fire of these escalating industry trends, IT development organizations are
being asked to meet goals that seem mutually exclusive. Teams are asked to increase
product quality and accelerate time to market, even as software solutions and software
development environments both become rapidly more complex.

Many business drivers compound these challenges. The key challenges are as follows:

� Lower development costs.

Development teams are asked to effectively manage and control staff development
resources by taking advantage of lower cost resources that are available through the use
of on-site, off-site, and offshore software development.

� Increase staff productivity.

Teams are expected to improve individual and project productivity to meet the backlog of
business requests. This requires that they increase the current staff capability to take
advantage of current and emerging technology, while at the same time quickly leverage
staff across project portfolios.

� Decrease time to market.

With reduced project delivery time, clients can bring projects online faster while
incorporating more business critical features. In a 24x7 global market, agility and reducing
time to market become core capabilities.

� Improve quality.

The need for software quality has risen to the forefront of business needs. The quality of
the software provided has a direct impact on the business. Standard processes, methods,
and tools drive higher quality software, which in turn, drives business results.

� Increase competitive advantage.

Software provides a critical differentiation for providing new services to customers and for
opening new markets. Driving innovation requires a unique collaboration between the
business, development, and operations teams.

As attractive as these benefits are, many challenges can prevent companies from recognizing
these benefits. To address these challenges, managers have moved away from individual and
team productivity and have focused more on organizational productivity as shown in
18 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 2-1. It is no longer good enough for a development team to “throw the solution over the
wall” to the testers. Instead businesses seek to continually align software initiatives with
business imperatives. At the same time, the competitive landscape demands business agility,
and business agility in turn demands software development agility.

Figure 2-1 Business goals evolving toward the ALM of the portfolio

Software development, in effect, provides a service to the business. Successfully executing
software development projects that are aligned with business imperatives provides a
competitive advantage in the global marketplace. Today’s software delivery challenges are
mounting as the number of projects increases and the applications become more complex.

Greater challenges
While the business seeks to improve efficiency or a competitive advantage, the challenges
imposed on the development team are difficult to overcome. Teams are confronted with
awareness, organizational, functional, geographic, and technological barriers.

Awareness barriers
Perhaps the biggest challenge in developing software is awareness. Each discipline has its
own set of tools and repositories for managing their assets. As such, it is difficult for teams to
collaborate and align their efforts. Yet information about the project, the teams, and the build
is critical to successfully manage the solution through the life cycle:

� Project awareness

With project teams distributed around the world, collecting project metrics is extremely
difficult. The rate of change requires the management of multiple releases and immediate
re-tooling to support fixing a high priority defect in the production system. Tracking the
work of all of the individuals on the team who are distributed around the world and working
on concurrent multiple releases is critical to your success, yet ripe for chaos and lack of
clarity.

� Team awareness

Amidst this chaos, individual team members must learn to effectively change context as
they move from one project to another, or from release to release. Individual team
members need awareness about the team they are joining and its culture, policies, and

Design and
construction

Continuous portfolio
and Application Lifecycle

Management aligned
with business imperatives

Team productivity via
change, quality,

and release
management

Cross organizational
process and project
management with an

emphasis on collaboration
and asset utilization

F
O

 C
 U

 S

S C O P E

Resource
availability

Software
delivery

Service and
systems

management

Process and
project

management

Software "Supply Chains"
Chapter 2. Collaborative Application Lifecycle Management 19

best practices. They also need to know how to configure their environment for the project,
how to share changes, and how the team as a whole is progressing. In essence,
individuals need awareness on how they can fit in and contribute to the team’s success.

� Build awareness

The build has a tendency to be a black box. Knowing what is planned for the next build
ensures that testers are ready with test cases and test scripts when the build arrives. Also
it important that the team has awareness in regard to the changes that have been
implemented in the build and the defects that have been fixed. This awareness helps the
test team to target their test efforts to create and use meaningful test cases. When builds
fail, the team must understand the context of the failure to quickly and efficiently resolve
the problem.

Organizational barriers
Unfortunately organizational boundaries tend to prevent teams from collaborating as freely as
they need to be successful. False boundaries tend to prevent cross-team visibility and
interaction. Embedded organizational cultures, politics, and a lack of management support
can impede progress. Teams must overcome these organizational barriers to produce
successful solutions.

Functional barriers
Software development starts with a focus on individual roles and practitioners. As a result,
there is a wide variety of tools for each discipline. As each discipline in the organization
grows, tool and vendor choices are made that best serve the needs of that discipline.
Managers who are responsible for the ALM solution are faced with the complex task of
integrating multiple teams using different tools from multiple vendors.

Geographical barriers
With teams distributed around the world, multiple barriers come into play. Team members
must collaborate to complete their work. They must have access to the work of the other team
members. Wide area networks (WANs) with high bandwidth in all geographic locations are a
must. Even if these barriers are overcome, team members must adjust to understanding how
and when to communicate with each other and gain respect for each other’s cultures.

Technology barriers
Service-oriented architectures (SOAs) demand a new approach to software development with
a whole new skill set. Organizations are faced with the challenge of retraining personnel,
which can be costly and time consuming. With this transition in coding practices, combined
with the offshoring and outsourcing of development efforts, a wide range of coding practices
and techniques is introduced. Managers are confronted with the need to institute coding best
practices and source code analysis to ensure a level of consistency in the source code.

As enterprises seek to develop and implement enterprise architectures, the need for
consistency across business units becomes an imperative. Having multiple teams implement
the same type of service in slightly different ways is not only time consuming and inefficient, it
can lead to stakeholder confusion. Users who are confronted with the multiple approaches
might perceive the enterprise as being disjointed. Such perceptions can lead to a loss of
business. Establishing consistency and reuse across solutions is an important barrier to
overcome.

Expanded definition of life cycle
The desire to satisfy the user’s needs brings the business, development, and test teams
together: Everyone must understand the user in order to produce software that will keep them
competitive. At the same time, this need for 24x7 continuous availability also brings the
20 Collaborative Application Lifecycle Management with IBM Rational Products

business and IT operations together. Service level agreements (SLAs) are made to ensure
that the software will be available to serve the business needs.

Additionally the development teams and operations teams must be aware of each others’
needs. The development teams must understand the operational constraints of the solution
they are producing. They must also know the details of the solution that can help the
operations team more successfully monitor and manage the solution. The business,
development and operations teams must collaborate to remain competitive.

Figure 2-2 provides the building blocks for this discussion based on an IT organization.
Software is developed for users and in the context of a business:

� Business owners request new solutions from the IT organization.

� IT strategy, development, and operations serve the business by producing and managing
software solutions.

Figure 2-2 Software development in the context of the business, strategy, and operations

IT Strategy

IT Operations

Development

The Business

Users
Chapter 2. Collaborative Application Lifecycle Management 21

As shown in Figure 2-3, product owners focus on their customers’ needs and driving new
revenue. This figure also shows consumers of the software who are often referred to as
“users” or “stakeholders.” The users of the system want to complete specific tasks in the most
simple, convenient, and efficient manner. A user who buys a product from a Web site has a
goal of locating, purchasing, and receiving the item that they purchase. Errors,
inconveniences, or flaws are reported to the product owner who is responsible for that line of
business.

Figure 2-3 Users making requests of the business and the business owner creating proposals

The user requests are captured by the business owner. These requests and market
assessments contribute to the creation of new business strategies. The business owners look
for new revenue opportunities and create proposals for how software solutions can improve
their revenue. This side wants to deliver value to the business. The result is the creation of a
proposal (business case) for a new or upgraded business system. This occurs in the line of
business. However collaboration with members of the IT team can take place.

As illustrated in Figure 2-4, the proposal is sent to a board that manages the portfolio. Here,
the projects proposed by the lines of business are compared and evaluated. Proposals are
reviewed against the rest of the portfolio and examined in the context of the enterprise
architecture. The approved proposal that contains the approved set of requirements, along
with the guidance or constraints of the enterprise architecture, are provided to a development
team that is tasked with implementing a solution.

Figure 2-4 Proposals evaluated in context of the portfolio and the enterprise architecture

The Business

Users

Manage
Stakeholder
Requests

Manage
Stakeholder
Requests

Use SolutionUse Solution

Requests

Proposals,
Requirements

IT Strategy

Enterprise
Architecture
Enterprise

Architecture
Manage
Portfolio

Manage
Portfolio

Manage
Stakeholder
Requests

Manage
Stakeholder
Requests Architecture Patterns,

Assets, Frameworks

The Business
Proposals,

Requirements
22 Collaborative Application Lifecycle Management with IBM Rational Products

In Figure 2-5, funded projects move into development, where the software is designed,
implemented, and tested. The development, business, and operations teams come to
agreement on a set of software requirements and acceptance criteria, which relate back to
the initial business proposal that was created by the line of business. Iterations involving
design, implementation, and testing take place until a release candidate is deemed ready for
operations. These iterations include requirements elaboration, design, development, and
testing.

Figure 2-5 Funded projects moving into development

Feedback loops ensure continuous improvement. For example, a defect found during testing
is sent back to development where it is fixed, and a new build is delivered to the test
organization. Throughout this process, status reports and metrics are used to govern the
release and to compare the project against the rest of the portfolio. When the solution team
has implemented and tested all of the requirements, a release candidate is given to
operations.

IT Strategy

Development

Enterprise
Architecture
Enterprise

Architecture
Manage
Portfolio

Manage
Portfolio

Manage
Stakeholder
Requests

Manage
Stakeholder
Requests

Develop
Solution

Develop
Solution

Quality
Management

Quality
Management

Architecture Patterns,
Assets, Frameworks

Project Approval;
Requirements,

Defects

Solution Build

The Business

Requests

Proposals,
Requirements

Status
Chapter 2. Collaborative Application Lifecycle Management 23

A release candidate transitions through multiple test environments, such as integration,
system, security, performance, and acceptance testing, before being approved for production.
In Figure 2-6, the line between quality management and transition is a gradient of ownership
between development and operations from one enterprise to the next. At some point,
however, the readiness of the release candidate is approved, and the solution is deployed into
production. The IT Information Library defines the release management process for
managing the deployment of large releases.

Figure 2-6 The IT life cycle

After the solution is rolled into production, it is monitored and managed by the operations
team. Problems found by operations are reported, prioritized, and assessed. The IT
Information Library defines the change management process for handling a request for
change. The IT life cycle continues with SLAs, and capacity plans are negotiated between
operations and the line of business.

Given this view of the IT life cycle, the scope of this book resides in the development domain,
which is highlighted in green in Figure 2-6. Portfolio management, enterprise architecture,
and IT operations are not within the scope of this book. Figure 2-6 illustrates two major
organizations in an enterprise. The disciplines of change and requirements management,
analysis and design, collaborative development, build and release management, and quality
management are all contained within the development organization.

2.1.2 A CALM blueprint to streamline software delivery

CALM enables enterprises to effectively develop and deliver software solutions. The goal of a
CALM solution is to streamline a team’s ability to deliver a release of software. To address the
needs of the ALM market, IBM Rational has produced and delivered a CALM blueprint, which
is illustrated in Figure 2-7 on page 25.

CALM defines the need for a project dashboard to continually improve and monitor software
projects along with discipline-specific modules for team members to act upon and complete

IT Strategy

IT Operations

Development

The Business

Users

Enterprise
Architecture
Enterprise

Architecture
Manage
Portfolio

Manage
Portfolio

Manage
Stakeholder

Requests

Manage
Stakeholder

Requests

Develop
Solution

Develop
Solution

Transition
Solution

Transition
Solution

Manage
Solution

Manage
SolutionUse SolutionUse Solution

Quality
Management

Quality
Management

Requests

Proposals,
Requirements

Architecture Patterns,
Assets, Frameworks

Project Approval;
Requirements,

Status

Request for Change

Service Level
Agreements, Capacity

Release

Release Candidate

Defects

Solution Build
24 Collaborative Application Lifecycle Management with IBM Rational Products

their work. The Lifecycle Service Integration layer provides the platform for integrating the
entire team and the various repositories.

Figure 2-7 Rational Software - Collaborative Application Lifecycle Management blueprint

Project health and dashboard
We cannot control what we cannot measure. How do you know that you are done if you do not
have a plan? Planning begins when the project team receives funding and continues through
the development process and into the next version of the solution. In the old days of project
management, inordinate amounts of time were devoted to building a complex Gantt chart
that, when printed, created what seemed to be wallpaper lining the office walls. Keeping such
a chart up to date with the each team member was a complex and error prone task. The
information that went into the chart rarely aligned with the actual work effort of the team.
Garbage in, garbage out. Gantt charts are nice, but do they or hinder your ability to execute?

Today, the act of planning is continuous and agile. In this context, just enough planning is
performed to get the development team moving on an iteration. The plans are constantly
assessed and updated based on the team’s progress or velocity. Planning is more like driving
an automobile, where the manner of driving constantly adjusts to changes in the road. Most
importantly, plans are built from the bottom up.

A cadence to the iterations might be set by some of the team leads, but the estimation of the
work effort comes from the people who must do the work. This estimation of work by the
individual team member then rolls up to an overall dashboard for the iteration. Any team
member can look at the plan and see the health of the project. Some team members will have
their work contained, while others might be overloaded. The work can be reassigned to other
team members, and the plan automatically reflects the change. Doing so gives an accurate
indication of the health of the project with the ability to actively manage the team’s work load.

Discipline-specific
pluggable modules
Deep functionality
Eclipse and Web
UI based on need

Collaborative Application Lifecycle ManagementSoftware
Development
Governance

Enterprise
Architecture

Project Health and Dashboard
Continually improve and monitor the ongoing status of software projects
Responsible for providing insight into delivery business value
Provide predictability, visibility, transparency

Cross-discipline
integration
Enterprise scale
Heterogeneous
vendor support

Lifecycle Service Integration
Collaborate in context
Right-size governance with process enactment
Supports globally distributed development
Choose your own path with an extensible architecture

Project status,
charts, reports
Multirepository
data warehouse
Web-based UI

Business value

Team Member

Managers

Discipline-Specific Modules

Architecture Management and Reuse

Requirements
Management
and Definition

Collaborative
Development

Quality
Management

Enterprise Build
Management

IBM and Partner Ecosystem
Chapter 2. Collaborative Application Lifecycle Management 25

It is one thing to have an accurate read on one project, but it is quite another to see accurate
information across multiple projects that leverage many repositories for storing data. This
bird’s-eye view of software development helps managers to more accurately identify which
projects are succeeding from those that need additional attention.

As businesses seek to streamline their development organizations and manage entire
portfolios, a common reporting platform across the enterprise is critical to successful
planning, execution, and governance of software development projects. Enterprises need to
deploy a consistent set of reports and dashboards that measure project health and status.
Such a reporting platform should leverage industry standard data access and storage
methods and be extensible to include third-party data, business intelligence, and reporting
tools.

Discipline-specific modules
In this new world of CALM, there is still a need for targeted functionality. The difference is that
these modules plug into an integration platform, so that the assets produced by one team
member can be consumed by another. In Eclipse, there are views that contain the
discipline-specific user interfaces. By changing a view in Eclipse, you have access to an
entirely new set of functions. In a similar vein, the management of assets requires pluggable
modules for each of the disciplines. Each module provides the functionality that is needed to
perform that discipline. A team can pick and choose from the modules that they want to
deploy for their projects.

Architecture management and reuse
The discipline of architecture management and asset reuse includes architectural models and
reusable assets. Architectural patterns from enterprise architecture are applied to specific
software development projects. Assets that have been identified as reusable have versions
and are managed in a common repository. Reusable assets can come in the form of source
code, requirements, test cases and test scripts, build scripts, and models.

In the context of CALM, these assets are identified and incorporated into a current software
development project. Additionally, the software development project might develop an asset
that the team believes is valuable to the rest of the organization. New assets are submitted to
the repository for review and use by the rest of the organization. These assets have their own
life cycle. However the key in this context is the ability to find, consume, and contribute
reusable assets to the repository.

Requirements management
The discipline of requirements management begins after the business has documented and
prioritized the direction and business needs of the solution. The business provides a project
proposal that captures the vision, stakeholder goals, and business plan for the solution. On
the development team, the analyst uses the proposal to define the requirements in a form that
the development team can act on. Where the business details the need, the analyst defines
what the solution must do. In some cases, as in this book, the business owner and the analyst
roles are performed by the same person. On agile teams, the product owner and developers
often collaborate on analyst-related activities.

The analyst uses a battery of techniques to drive to the next level of detail for the
development team, from business process models with predefined key performance
indicators, to sketches, storyboards, keywords, process flows, and diagrams. Rich text and
images live side by side to help analysts convey their needs by using a rich and detailed
vocabulary. The analyst works closely with the business to ensure that the detail they are
providing meets the initial intention of the business owner. Those details that have been
confirmed by stakeholders are then organized, managed, and tracked as requirements.
Requirements are assessed to ensure completion, accuracy, and traceability.
26 Collaborative Application Lifecycle Management with IBM Rational Products

Analysts must be able to enrich requirements with sketches, storyboards, and business
process flows; to manage requirements over time and across the life cycle; and to collaborate
with the business stakeholders to ensure that they capture the right requirement.

Collaborative development
Software is the result of countless conversations. Development has become a team sport
where teams of developers, often geographically distributed, develop great software in
concert. Co-located or geographically distributed team members require a new set of
collaborative development principles and tools.

A key capability in collaborative development is to open information to external contributors.
Product owners, analysts, program office, and other cross-organizational stakeholders need
easy access to project information to provide timely input. Development teams need a central
repository that supports their geographic distribution. Source code, work item management
for iteration planning, and build management are all important aspects of collaborative
development. Teams need insight into the project status to enable them to respond to change
and track project health.

Enterprise build management
Release engineering provides the link between the development and testing teams. This
discipline involves collecting and integrating the changes made by the development team,
ensuring that the solution compiles cleanly, running verification tests and staging the solution
to the test team.

Producing the build is far more than just compiling an application. The build process involves
an intricate set of steps that, when chained together, create an assembly line for software
delivery. Some of these steps must run sequentially while others can be performed in parallel.
Complex applications can take many hours to build. Having the option to run parallel tasks
across a pool of available worker machines can reduce the build time significantly.

Additionally builds often occur for more than one environment, with each environment
requiring a different set of variables to compile correctly. The creation of a powerful and
automated assembly line requires access to a host of third-party tools such as source code
control, change management, and static analysis tools. Web-based dashboards provide
real-time insight into the status of a running build, along with a rich history of previously run
processes. Automating this function includes the need to provide a full audit trail of what
happened. Knowing what is included in the build helps testers to target their test effort.
Therefore, a rich bill of materials that describes the build must be produced. Similar assembly
lines can be created to deploy the solution onto a test server upon the request of the test
team.

Quality management
Quality management is a shared discipline across the organization, where the development
team (developers and testers alike) seeks to understand the business and delivers what the
business needs. With quality management, every team member contributes to the quality of
the release. The business owner tests the requirements with their stakeholders. Architects
test the architecture against the requirements and the operational constraints. The
developers test their change to the code before delivering their changes. The release
engineering team conducts build verification tests to confirm the quality of the build before
staging it for the test team. The test team conducts manual, functional, performance, security,
and services tests against the solution to validate that the implementation against the
requirements. The solution leads test the release against a set of exit criteria prior to
approving it for operations.
Chapter 2. Collaborative Application Lifecycle Management 27

Storing test assets on a file system is no longer acceptable. As the name quality management
implies, all test assets must be managed in a meaningful and constructive manner. The test
effort itself involves planning the effort, constructing the test cases that were planned, and
executing test cases against a build that has been deployed in the test lab.

Testers also own a set of test servers in a test lab. Knowing which servers are in the lab,
which are available, and how they are currently configured is a critical element of the test
effort. Analyzing the results of the effort and identifying strategies for improvement are also
involved. By having the assets managed and by executing against a plan, the test team can
streamline their work, reduce redundant efforts, analyze the results, and track and report their
progress.

Life-cycle service integration
CALM involves coordinating the people on the team, so that the activities they perform and
assets they produce contribute to the delivery of a software application in an efficient and
streamlined manner. It is much like coordinating an orchestra. If every musician plays notes of
their choosing at any point during the concert, the result is a cacophony of noise. Instead, the
musicians know when they are to play and which notes they are to play at specific points in
time.

Well-known approaches for coordinating development activities involve process definition and
enactment. The Eclipse Way,1 the Open Unified Process,2 and the Rational Unified Process®
(RUP)3 are three approaches for coordinating the team activities that scale from small to large
teams.

Repositories are used to manage the resources that are produced by the team. These
include, but are not limited to, source code control, defect, test, and requirements
management systems. These systems are designed to manage the assets over time, and in
many cases, through multiple revisions.

Collaboration across the disciplines is key to transforming from silo-oriented disciplines to
collaborative software development teams. The life-cycle service integration layer ensures
that collaboration on the server side enables cross-discipline collaboration.

IBM and the partner ecosystem
As discussed in “Expanded definition of life cycle” on page 20, the life cycle continues to
expand to include disciplines beyond the traditional development team. A CALM solution must
embrace third-party solutions and encourage the formation of an ecosystem. All layers of the
blueprint call for and anticipate third-party participation, from an extensible reporting platform
and third-party discipline modules, to extensions to the life-cycle service integration platform.

Enterprise architecture and software development governance
Enterprise architectures and software development governance influence the application
lifecycle, but are not explicitly covered in this book. To understand the relationships and
differences between software development governance, enterprise architecture, and CALM,
IBM Rational has produced and is executing against an enterprise software development
blueprint as illustrated in Figure 2-8 on page 29.

Software development governance addresses the way that the deliverables of the software
development process evolve from cradle to grave. It also addresses the responsibilities,
decision rights, and policies that drive development teams to effectively manage the life
cycles of those deliverables. Packaging and tracking the effectiveness of governance

1 http://www.eclipsecon.org/2005/presentations/econ2005-eclipse-way.pdf
2 http://www.eclipse.org/epf/
3 http://www-306.ibm.com/software/awdtools/rup/
28 Collaborative Application Lifecycle Management with IBM Rational Products

http://www.eclipsecon.org/2005/presentations/econ2005-eclipse-way.pdf
http://www.eclipse.org/epf/
http://www-306.ibm.com/software/awdtools/rup/

solutions are key to the success of how an organization approaches their governance efforts.
Software development governance solutions should also be enactable within the
development environment to enable broad adoption of the solutions within the governed
organization. The effectiveness of software development governance is ultimately measured
in the incremental value experienced by the business that has been bolstered by the software
that is being produced with the governed development process.

Enterprise architecture is a methodology to organize business processes and IT
infrastructure as a way to reflect an organization’s operational model. Enterprise architects
play a key role in organizing and aligning IT investments with business strategy. The practice
of enterprise architecture has also evolved into a broad category of activities that are
designed to understand, optimize, and communicate the structure and relationships between
various business entities and elements. Included in these practices are business architecture,
performance management, organizational structure, and process architecture. Actionable
enterprise architecture is a focus on using enterprise architectures to effectively drive solution
implementation across an organization and improve business performance and productivity.

Figure 2-8 Enterprise software development blueprint

Business Operations

Enterprise Architecture
Align IT architecture and technology with business strategy
Describe, optimize, and communicate architectural models (for example, business, data,
applications, and deployment) and their relationships across an organization
Streamline delivery of solutions through “actionable enterprise architectures”

Business/IT
alignment
Actionable
enterprise
architectures

Software Development Governance
Define and manage the responsibilities, decision rights, and policies for software delivery
Identify areas to improve efficiency in software delivery
Measure the effectiveness and value of software delivery
Align IT investments with business strategy

Collaboration
Globally distributed
development
Extensible
architecture
Governance
enactment

Collaborative Application Lifecycle Management
Streamline a team’s ability to deliver software
Provide visibility, traceability, and transparency across software delivery
Leverages architecture patterns and reusable assets
Project teams comply with governance policies

Process definition
Reporting and
metrics
Right-size
governance

Enterprise Software Development

IBM and Partner Ecosystem
Chapter 2. Collaborative Application Lifecycle Management 29

2.2 Life-cycle collaboration and management

In this section, we introduce the key themes to consider for CALM and explain the best
practices. Details about how each best practice manifests in the life cycle are provided in
subsequent chapters and in the context of a CALM scenario.

2.2.1 Success indicators

CALM is analogous in that certain roles produce assets at particular points in the life cycle. To
succeed at this orchestration of people and assets, a CALM solution relies on the following
pillars, which are shown in Figure 2-9, as underpinnings to effectively develop a release of
software:

� Collaboration
� Distribution
� Traceability
� Automation
� Continuous improvement

Figure 2-9 Success indicators for Collaborative Application Lifecycle Management

Collaboration
The “collaborator” is the new role. While each discipline has a set of best practices and
common approaches, CALM focuses on the synchronization of the entire team and the
handoffs that occur across domains. These integration points facilitate a streamlined
development process, or when they are missing, create friction and chaos among the team
members. With CALM, it is not satisfactory for a team member to work in a vacuum, solely
focused on completing their own tasks. Rather, CALM demands collaboration across team
members.

By having all team members aware of what the others are doing, choices can be made that
best facilitate the progress of the whole. Members of a soccer team must collaborate to move
the ball down the field, or to prevent the opposition from scoring. If each team member acted
alone without regard for the other players on the field, their chances for success are reduced
dramatically. To improve their chances o f winning, they synchronize their moves to respond to

Collaborative Application Lifecycle Management

The coordination of development activities to
produce software applications

The life-cycle management of assets
and their relationships

Success Indicators

Continuous Improvement
Continuously assess progress and results

Traceability
Manage dependencies and impact

Collaboration
Connect stakeholders and contributors

Automation
Improve performance, compliance, and quality

Distribution
Connect software delivery chain
30 Collaborative Application Lifecycle Management with IBM Rational Products

the current situation on the field. All team members must be adept in all of the skills required
to play the game.

Similarly, software development is a team sport. Being successful in software development
does not mean that you act alone as an analyst, developer, and tester with total disregard for
the others. Today, the best team members are the collaborators. Collaborators work with
each other and respond to the current situation on the project. The agilists were the first to
discover this new power of collaboration. Now everyone realizes the need.

Software solutions are the product of many conversations. Team members must be able to
interact in many ways as shown in the following examples:

� Team awareness enables teams to know who is online so that they can have a discussion.

� Instant messaging enables team members to instantly communicate regardless of their
geographic location. The system tracks the users and whether they are online, thus
enabling others to right-click a user name wherever it appears and begin an instant
message session. An example is a developer who collaborates with a tester over a defect.

� With RSS Feeds, team members can subscribe to and be notified about events that occur
within the repository. Users can subscribe to an artifact and receive notification when
someone has made changes, or users can subscribe to the build process or other system
level events to receive updated notifications.

� Ratings enable teams to rate the quality or value of a managed resource, thus providing a
community view of the perceived value. Poorly rated assets can be improved upon, while
highly rated assets are used more often, thus improving the overall quality of the shared
assets.

� Tagging enable individuals to tag resources and search on those tags. This frees
individuals from relying solely on queries or predefined attributes. Users can tag names
that are meaningful to their current work or classification system, thus making it easier to
locate assets at the time they are needed.

A CALM solution must support people regardless of who they are and where they are. It must
also support their conversations and the assets that they create as a result of these
conversations.

Distribution
The support for flexible and agile business sourcing decisions requires a global enterprise
CALM platform to integrate distributed roles, teams, workflows, and repositories into a
responsive software delivery chain.

Geographically distributed teams are the norm in software development today. Whether team
members are in different offices in the same country or different countries, are working from
home, or are a trusted third-party provider, development teams are rarely co-located. A CALM
solution must take this into consideration by providing high-speed WAN access to all
members.

Additionally, the rise of outsourcing work to third-party providers introduces the need for high
security standards on the repositories housing the intellectual property. Access to, and
visibility of assets within, the repositories must be controlled.

Not only are the teams distributed, but the systems that manage the assets are also
distributed throughout the enterprise. There is a natural tension between the need for a
consolidated repository versus supporting existing investments in role-specific repositories.
Fundamental to both of these needs is a critical demand to harness the chaos and complexity
inherent in managing the life cycle for software solutions. Many customers view having a
repository to manage all of the assets that are created during the software development
Chapter 2. Collaborative Application Lifecycle Management 31

process as a means to this end. However, they have already invested in point solutions
across multiple vendors.

A CALM solution must connect the people wherever they are located with the assets that they
need regardless of where those assets are stored.

Traceability
Traceability involves including links to other resources both internal and external to the
repository. The Internet has made the value of linking pages of information obvious. In
software development, the ability to link to related resources becomes a fundamental need in
completing daily tasks. For example, in writing a test case, a tester must be able to view the
requirement that the test will validate. The ability to click a link to the requirement in the
context of the task streamlines and simplifies their ability to complete the test case.

Traceability also involves being able to traverse the relationships between resources in a
system. For example, having traceable artifacts enables an analyst to ask the system to show
how many test cases are written for a specific requirement. Another example is to understand
how many defects exist for a specific requirement, such as a use case, feature, or
enhancement request.

Traceability also enables a team to respond to a regulatory compliance audit. By having
traceable resources, a team can more easily respond to the auditors’ questions regarding the
number of changes that went into a release, how the changes tested, and the results of the
testing.

Traceability streamlines our ability to access resources in context of the work that we are
attempting to complete. It also enables us to understand the relationships and dependencies
between assets.

Automation
By definition, CALM involves managing a cycle. However, it is more interesting to note that
there are cycles within cycles for a single software project. Some of the tasks that are
completed by the team are creative in nature and require our attention and skill to resolve.
Other tasks, however, are noncreative and repetitive. These noncreative tasks are ripe for
automation. Test automation is a prime example and has been around for many years.

Many other forms of automation can be applied to streamline the life cycle. For example, build
automation clearly brings enormous value to team members by extending the definition of
“conducting the build” to automating the preparation of the build system, applying baselines to
source control systems, conducting the build, running build verification tests, and packaging
and staging the distribution archive for the test team. Kicking off the build can now include the
full process thanks to automation.

Automation can also include “scanning” such as conducting static analysis on the source
code. A static analysis scan can be conducted by developers prior to delivering their changes,
or it can be added to the build process prior to compilation. This type of analysis improves the
quality of the code, ensures consistency across the code base, and makes static analysis a
normal operating procedure.

Security and compliance scans can be run against a running application to consistently test
the application against a predefined set of criteria. These scans work in a manner similar to
virus scanning applications on a home PC. The definition files are created and maintained by
the vendor. Organizations that use the scanning software keep their definition files up to date
and then run scans against their applications. The scanning software produces the result of
the scan, and identified problems can be resolved before releasing the application into
production.
32 Collaborative Application Lifecycle Management with IBM Rational Products

Security scans test against a known set of tactics that are used by hackers. By using this type
of automation, an enterprise can identify potential threats and close them prior to going to
production. Compliance scans work in a similar manner, but test against certain regulations.
The organization chooses the regulation with which they must comply and run the scanning
solution against their application. The scan identifies areas of noncompliance, thus enabling
the team to respond to potential violations.

A CALM solution must facilitate the ability to automate noncreative, repetitive tasks, while
capturing the results of the automated process in a meaningful and traceable manner.

Continuous improvement
If CALM seeks to streamline the effectiveness of a software development team, then this
team must continually seek areas of improvement. Continuous planning, integration, and
testing are three important strategies to take into consideration.

Planning and feedback
Project planning is a continuous effort that involves evaluating the current situation and
making course corrections. Project planning includes the following important dimensions:

� Cadence

Iterations are used to “time box” the software deliverable. Many projects consist of more
than one iteration. Teams establish the cadence by choosing the number and length of the
iterations. In addition, policies for approaching the iterations are established. Such policies
define the frequency of the integration builds, which process to use (Open Unified Process
(OpenUP), Eclipse Way, RUP), code review best practices, and the timing for design,
development, and solution testing within each iteration.

Iteration exit criteria can also be set to establish the expectations for each component
team. Individual teams can then self-organize within the context of the cadence set by the
project leads. For example, one component team employs a continuous build strategy on
their component, while another uses a daily build strategy. The example used in this book
involves a four-week iteration that is established by the project leaders with a component
team working in two-week iterations, where their final milestone build feeds into the larger
four-week cycle.

� Transparency

Iteration plans, work items, and build results are available to all team members and
stakeholders, regardless of their geographic location or client technology, for example a
Web or rich client. This information is built into the team members’ user interface with
seamless integration to the real-time performance of the team. Transparency improves
insight into the actual work performed and provides opportunity to review and assess the
overall health of the project.

� Health

Team health involves workload balancing across the individual team members. It also
involves tracking the team’s progress toward their goals. Health also has to do with how
often the builds are failing or whether the backlog of defects is growing faster than the
team is closing them. However, health does not come by merely watching. Instead, health
is constantly monitored with action taken to ensure that the team stays on track and the
work is distributed across the team members.

� Retrospectives

At the end of every iteration, teams conduct a retrospective to understand what worked
well and what can be improved and to publish the results so that all team members can
see them. Improvements are chosen and applied to the next iteration. By conducting
retrospectives on a regular basis, teams create a culture of continuous improvement. By
Chapter 2. Collaborative Application Lifecycle Management 33

acting on ideas and implementing the improvements, teams trend toward healthy
interactions and higher quality deliveries. For more information about retrospectives, see
the following Web site developed by Norm Kerth:

http://www.retrospectives.com

Integration
Continuous integration can occur at several levels, including the developer, team build, and
solution build levels.

As a best practice, developers implement, build, and test their changes before delivering the
changes back to the team source code repository. Continuous integration starts with the
developers. This best practice can be improved upon. In many cases, the build scripts or build
environment that are used by each developer can differ from the build system, which can lead
to problems when the developers deliver their changes. For example, what is built in their
sandbox environment suddenly breaks when it is built in the team build environment.

To prevent these errors from happening, teams can use a preflight build strategy. In doing so,
the developers conduct sandbox builds that use the same environment and build scripts as
the team build. Such solutions as Rational Build Forge simplify the preflight build process and
ensure that a consistent build environment is used by all members of the team.

Increasing the frequency of the team builds ensures that errors are found early. Some teams
employ a continuous build strategy, where every source code delivery triggers a team build.
For small teams, continuous build strategies ensure high quality builds and encourage a
culture of clean source code delivery. For larger teams, with many developers delivering
changes, continuous builds might become too difficult manage. In this case, nightly builds are
more appropriate and serve to ensure that all of the deliveries from that day can build without
error.

In larger enterprises, where solutions comprise multiple components, each being delivered by
a different component team, integration builds become an important part of the continuous
improvement strategy. Leaving the integration build for the end of the development cycle can
leave the solution team open to last-minute fire drills to fix integration errors. Employing a
continuous integration build strategy is in the same spirit of continuous team builds, but at a
higher level. Because integration builds bring together multiple components, they occur less
frequently than the component build. A weekly integration build helps the team to identify
errors early, and the impacted component team can respond while the changes are still fresh
in their minds.

Testing
It is no longer acceptable to reserve testing for the final weeks of the project. Rather,
responsive teams integrate testing throughout the development cycle as indicated by the
following types of testing. Continuous testing naturally contributes to continuous
improvements in software quality.

� Developer testing

Testing is interjected throughout the cycle. Developers are responsible for testing their
changes in their sandbox. JUnit tests4 are the norm for developers. Many agile teams take
this one step further with test-driven development (TDD).

� Build verification testing

Build engineers inject build verification tests into the automated build systems. Conducting
the build no longer means “compiling.” Rather, build automation systems now include
building the solution, running build verification tests, gathering the results, staging the

4 http://www.junit.org/
34 Collaborative Application Lifecycle Management with IBM Rational Products

http://www.retrospectives.com
http://www.junit.org/

build, and publishing the results of the build. Build health is a key performance indicator for
the team. A build that does not pass build verification tests provides an indicator to the
developers that they need to implement changes to improve the health of the build, while
also warning the testers that the build might not be suitable to deploy to the test lab. A
build that passes build verification tests is most likely suitable for testing.

� Test planning

Test planning becomes a critical part of continuous improvement. By creating and executing
against a test plan, the teams can begin to measure their performance. Test plans can be
used to define the level of developer, build, and system testing that the team will perform for
the project. Test plans can even be defined on an iteration-by-iteration basis.

A test plan can be used to define which requirements will be tested. For each requirement,
a set of test cases is defined and developed. These test cases are then executed against
a build of the solution. At each point, the team can measure progress. With a managed
test plan, the teams can ask and answer the following questions:

– How many requirements do not have test cases?
– How many test scripts need to be written?
– How many tests are left to execute?

By asking these questions, the team can continually measure progress and adjust the
efforts accordingly.

Teams that develop iteratively include testing as part of the iteration plan. Every iteration
involves developer, build verification, functional, integration, and system verification testing.
Testers are involved in multiple phases of testing, from functional and integration testing to
system, performance, and security testing.

2.2.2 Cycles of activity in the development organization

If you look closer at this relationship between the developed solution and quality
management, you notice a tremendous amount of activity. First a best practice for developing
software involves the use of phases and iterations to time box the deliverable and focus the
team’s efforts. Figure 2-10 illustrates the use of phases and iterations. The first four phases
are defined in the Rational Unified Process.5 The Enterprise Unified Process extends these
phases by adding a Production and Retirement phase.6

Figure 2-10 A development cycle using phases and iterations

5 http://www-306.ibm.com/software/awdtools/rup/
6 http://www.enterpriseunifiedprocess.com/

Construction TransitionInception Elaboration

Iteration 0

Drive out
business

risk

Iteration
1

Drive out
technical

risk

Iteration
2

Release Candidate

Unacceptable Defects

Iteration
…

Iteration
…

Stabilization
test

Iteration
3

Production

Iteration
…

Iteration
…

Demo and
obtain

feedback

Accumulated
Requests

Requests and
Defects

Release

Initial
Project
Scope

Iteration

Monitor and
manage
Chapter 2. Collaborative Application Lifecycle Management 35

http://www-306.ibm.com/software/awdtools/rup/
http://www.enterpriseunifiedprocess.com/

We summarize of each of the phases as they relate to this book as follows. For more in-depth
detail about each of these phases, consult the Rational Unified Process at the following Web
address:

http://www-01.ibm.com/software/awdtools/rup/

� In the Inception phase, the team leads and product owner come to agreement on a set of
requests to define the initial scope of the project. In addition, an initial architectural vision
is created, and an assessment of the project team, tools, and environment is completed.
For this book, the team in the reference scenario has already completed this phase.

� The Elaboration phase focuses on driving out technical risk by producing an end-to-end
demonstration of the solution to prove and refine the architecture. Feature details are not
addressed, but rather a “skeleton” of the system is completed to prove feasibility and
identify areas of technical risk. This phase has also been completed by the team in the
reference scenario.

� The Construction phase involves one or more iterations that focus on completing the
functionality. Each iteration involves planning, design, development, build, and testing.
agile teams advocate multiple two- to four-week iterations, while more traditional teams
might only have one iteration. This book highlights a single iteration in the Construction
phase.

� After the acceptance criteria has been met, the solution moves into the Transition phase
for stabilization testing. Unacceptable defects found in this phase cause the solution to go
back to the Construction phase where the defect is fixed. The release candidate is then
sent back to the Transition phase for stabilization testing until all expected tests have
passed. This book ends in the Construction phase just as the handoff is about to occur.

� The verified solution is then released into the Production phase where it is monitored and
managed. Requests and defects found in the Production phase are added to the
accumulated request stack for triage. Some requests are addressed immediately with a
patch sent to production. Other requests stay in the stack until the next version is funded
and the cycle begins again. This book does not address the activities that occur during the
Production phase.

A deeper look at the development life cycle reveals cycles within cycles of activity. Each
iteration of the Construction phase includes a defined set of activities. We assert that by
examining the handoffs that occur in a single iteration of a development project, the value of
CALM is understood well enough to scale to a larger life cycle.

Figure 2-11 on page 37 provides an overview of the kinds of activities that are involved in a
single construction iteration that are driven by a set of requests.
36 Collaborative Application Lifecycle Management with IBM Rational Products

http://www-01.ibm.com/software/awdtools/rup/

Figure 2-11 A single iteration in a development project

Figure 2-11 shows the following sequence of actions:

1. A project starts by choosing from a backlog of accumulated requests. These requests are
added to the project backlog as work items.

2. The highest priority work items are added to an iteration plan, which includes the analysis,
development, and testing efforts.

3. Some requests require additional detail. This requirement detail is provided by whomever
is best suited for the task, such as the product owner or a developer. These requirements
are used by both the development and test teams. For agile teams these requirements are
captured as tests. Other teams capture the detail in a set of requirements.

4. The development team uses the requirements to write tests (test-driven development in
agile terms). Then a developer develops the solution, builds, and tests the code in a
sandbox. In agile terms, this concept is called confirmatory testing. When the tests pass,
the change set is delivered to the team build. After the team build has met a predefined
level of quality, the changes are delivered to the integration build.

5. The integration build collects source changes from each of the smaller component teams
to produce an integrated build of the full solution. The integration build is staged and then
deployed to the test servers.

6. Meanwhile, the testing team has been executing against a test plan by constructing test
cases and test scripts to validate the high-level scenarios, the requests, and the
requirements of the solution and to investigate potential scenarios that neither the
development nor the business stakeholder team’s considered. While the development
team focuses on low-level, confirmatory tests, the testing team focuses on customer
acceptance testing, feature or exploratory testing, performance testing, security testing,
policy testing, and regression testing. These tests are executed against a build on a
server, and the results of the tests are validated.

Iteration

Accumulated
Requests

Initial
Project
Scope

Project
Work

Requests

Defects

Detailed and
Managed
Requirements

Test Logs

Bill of
Materials

Highest-priority
Work items

R
ev

ie
w

Pl
an

Iteration
Work-
items

Acceptance
Criteria

Staged Build

Server

Execute
against

Results

Deployed
to

Validates

Requests

Requirements

Development Integration Build

Quality Management

Triage

Next

Iteration

Tests

Implements
Tasks

Test Deliver

Develop and
Build

Integration
Build
Chapter 2. Collaborative Application Lifecycle Management 37

7. Defects are added to the request backlog where it is triaged and either added to the
work-item stack or postponed and placed on the accumulated request backlog. Defects
that are added to the work-item stack are treated like requirements and resolved by the
developers by using test-driven development.

When looking at an iteration from a bird’s-eye view, the dependencies and relationships
across the disciplines become clearer. A single request can drive work that involves analysts,
architects, developers, release engineers, testers, and project leaders all working toward the
common goal of satisfying a single request.

2.2.3 Scaling agile methods

Agile development is on its way to becoming the dominant development paradigm. Scott
Ambler, Practice Leader for Agile Development at IBM, conducts frequent surveys to gauge
adoption and success rates. These surveys are showing a growing number of developers and
IT managers who believe their teams are using agile methodologies. To learn more about the
data and a summary of his surveys, see the following Web site:

http://www.ambysoft.com/surveys

Introducing agile development to the enterprise
When agile techniques were first developed, the teams were smaller and usually co-located.
The applications that were developed were relatively small and straightforward. Since agile
development has hit the mainstream, the picture has changed significantly, with enterprises
seeking to bring agile techniques into larger projects.

This change in scale introduces complexity that needs to be addressed in the following areas
as shown in Figure 2-12 on page 39:

� Team size

In enterprise projects, the teams are likely to be larger, ranging anywhere from fifty to
hundreds of people. The concept of a daily stand-up meeting does not make much sense
with a team this size, and it becomes more difficult to get everyone together to keep
information flowing.

� Team distribution

We have asserted that globally distributed development is the norm. Effective handoffs
between team members become more challenging. Accidental misunderstandings or
overlooked activities become more common.

� Application complexity

Enterprise applications can be extremely complex. Here a team of teams is employed,
where each team owns a component of the larger solution, with certain team members
overseeing all of the moving parts.

� Audit and compliance

Again, we have asserted that audit and compliance are now the norm. Regulations can
bring additional requirements that must be addressed in software projects.

� Internal governance mandates

Some organizations might impose specific reporting requirements that impact the
development team. By folding these requirements into the development effort, teams can
avoid last minute fire drills to collect this information.
38 Collaborative Application Lifecycle Management with IBM Rational Products

http://www.ambysoft.com/surveys

� Existing processes

Many organizations have an existing culture and processes for software development.
These processes must be taken into consideration by introducing new agile techniques
into the existing approach rather than attempting to overthrow them.

Figure 2-12 Agile mainstream challenges7

The good news is that IBM Rational has been helping customers deal with these types of
complexity issues for over a decade and can apply their lessons to help you transition to this
complex agile environment.

Relativity of agility
The need for processes and enabling technology changes as the development environment
increases in complexity. Complexity can occur in a variety of dimensions. For the purposes of
understanding how to apply agile development in the enterprise, the challenges are mapped
into two broad categories:

� Challenges related to organizational issues
� Challenges related to technical and regulatory factors

7 Scott Ambler, IBM Software Group, Rational, Practice Leader Agile Development and Per Kroll, Chief Architect - Rational Expertise
Development & Innovation (REDI), Project Lead: Eclipse Process Framework

Co-located

Geographical distribution

Global

Application complexity
Simple,
single
platform

Complex,
multi-platform

Team size
Under 10
developers

Hundreds of
developers

Organization distribution
(outsourcing, partnerships)

In-house Third party

Degree of governance

Informal Formal

Entrenched process,
people, and policy

Minimal Significant

Agile
Development

Enterprise discipline
Project
focus

Enterprise
focus

Compliance requirement

Low risk Critical,
Audited
Chapter 2. Collaborative Application Lifecycle Management 39

In Figure 2-13, the lower left corner represents the least overall project complexity, while the
upper right corner represents the greatest overall picture of project complexity.

Figure 2-13 Relationship of agility to project dynamics8

Agile development started with small, co-located teams of about six developers, working on
new projects to produce a simple application. This is represented in the lower left corner of
Figure 2-13. In this situation, the organizational, technical, and regulatory drivers are simple.
Geographic and organizational distribution is not an issue. The team is free to self-organize.
Also compliance and governance drivers are not a consideration.

Mid-size teams are more likely to have some degree of geographic or organizational
distribution and entrenched or conflicting processes. Application complexity is growing as
indicated by the need to add more team members. Having more team members who are
geographically or organizationally distributed creates a need for more coordination and
handoffs between team members. Applications with increased complexity, such as
multiplatform support, are likely to require additional testing that is performed by a team of
testers. These applications also require test servers to be configured and managed in a test
environment. Additionally, its more likely that the application is important, and thus more
attention must be paid to analysis, architecture, and staging of multiple test environments
leading up to the final deployment into production.

The larger the team is, the more complexity it faces in organizational, technical, and
regulatory drivers. The situations faced by the mid-size team are amplified on the larger team.
To manage the number of trade-offs, disparate approaches, and miscommunications, best
practices are put in place and enforced across the team. Cultural awareness becomes an
important skill to maintain healthy information exchange and motivation among team
members. Compliance with regulatory and governance policies creates a need to document
and comply with policies and processes. Yet information produced by the team can be spread
across multiple data sources, creating a challenge to effectively managing an audit.

8 Scott Ambler, IBM Software Group, Rational, Practice Leader Agile Development

Technical and Regulatory
Drivers

Compliance
Governance

Application complexity

Organizational Drivers
Team Size

Geographical Distribution
Organization Distribution

Entrenched process, people, policy

Small team
New projects
Simple application
Co-located
Minimal need for documentation

Maturing projects
Multi-platform
Growing in complexity
Remote or offshore work
Greater need for

coordination and handoffs

Mature or existing projects
50 or more developers
Complex, multi-platform

applications
Distributed teams
Need for scalability,

reproducibility, and traceability
40 Collaborative Application Lifecycle Management with IBM Rational Products

The criticality and complexity of the application also increases. The test environments
increase in complexity along with the need for a dedicated test team to catch critical defects
before the application is deployed. The test environments leading to production become more
complex, and the testing strategies for each of the environments increases in sophistication
with the addition of performance, security, and policy testing. Careful attention must be paid to
analysis and architecture issues such as recovery, fault tolerance, capacity planning, and SLA
compliance. Enterprise architecture principles and patterns also come into play.

In mid- to large-sized teams, classic agile strategies must be evaluated against, and some
times combined with, traditional approaches to create an approach that best suits the unique
needs of the team or project. For example, attempting to hold a stand-up morning meeting
with people distributed around the world suddenly seems silly for a large-sized team.
However, combining frequent and short time-boxed iterations with dedicated testing efforts
can yield tremendous gains. The traditional phased-based approach of the RUP can become
more agile by blending fast-paced, “just enough” iterations into each of the phases.

Complexity changes to the development approach
Just as complexity affects a team’s approach to agile development, it also affects their tools
and the process.

The effect of complexity on the choice of tools
In Figure 2-14, the software development tools have been mapped along a complexity
continuum. Smaller teams with low organizational and technical or compliance complexity
appear in the lower left corner, while larger teams with high organizational technical or
compliance complexity appear in the upper right corner.

Figure 2-14 Complexity changes to the approach for tools9

Smaller teams (under 10) with low organizational or technical complexity can self-organize
and choose the tools they want to use on their project. A team of this size can agree to a set
of principles and practices that describe how to work together and use the tools. Any

9 Scott Ambler, IBM Software Group, Rational, Practice Leader Agile Development

Best of breed
tools

Documented
lifecycle, shared
best practices

End-to-end tool
focus

Auditable,
reproducible

process

Open source
tools

Principles and
individual
practices

Focus on
tools integration

Process support
for distributed
development

Technical and Regulatory
Drivers

Application complexity
Compliance
Governance

Organizational Drivers
Team Size

Geographical Distribution
Organization Distribution

Entrenched process, people, policy
Chapter 2. Collaborative Application Lifecycle Management 41

modifications to the tools, principles, or processes can be discussed among the team
members easily and quickly. Open source or introductory level commercial tools might be
enough to get the job done and fit into the budget of a small team, provided that there is no
serious complexity that the team faces.

Some degree of complexity can be enough to render these tools inadequate. For example, a
small team that is developing a product that requires approval by the U.S. Food and Drug
Administration (FDA) requires more documentation and traceability across the assets than
most open source tools can offer. A small team that needs to work across organizations,
geographically distributed teams, or with external vendors might find these tools inadequate
in meeting their scalability requirements. Finally, offshore development might tip the scale
toward choosing a more robust set of tools.

Best-of-breed tools can make sense when there is a coordinated effort and more than one
project. The need for deeper capability increases, and each team adopts a best-of-breed tool
for their discipline. The need to communicate more is rising, while the ability to simply modify
the process on the fly is reduced. To avoid redundancy and improve awareness across the
team, the team might find that they need to document some of the ways they work and that
establishing best practices can be beneficial.

A focus on integration occurs as the complexity and team size increases. At this point, the
team is large enough that likely multiple managers are in place. As a result, communication
becomes more difficult as each team pushes to meet its own priorities, goals, and deadlines.
Tools that are immediately integrated and automation strategies begin to look appealing.
Understanding and adhering to agreed processes become a necessary part of coordinating
their work.

In the most complex cases, multiple complexity variables and a large team size drive a need
for an end-to-end tool and an auditable, reproducible process. These teams might be dealing
with multiple projects with different requirements, complex systems running on multiple
platforms, and advanced quality assurance, security and performance test requirements.
Compliance or governance policies mandate that processes exist, are recorded, and are
adhered to which can be proven with consistent reporting. At this level, the need to trace
requirements to deployment rises to the foreground along with the need to reproduce an
application at any point in time.

The effect of complexity on the choice of process
As the tool choice changes and team size and complexity increase, so does the need for
process. In Figure 2-15 on page 43, process choices are mapped in similar continuum as
used in Figure 2-14 on page 41. For small teams, Extreme Programming (XP), Scrum,
OpenUP, and Dynamic Systems Development Method provide enough formality to coordinate
the efforts of the team. These processes are designed intentionally to be lightweight and
easily modified.

The Eclipse Way and the RUP can be applied to teams that fall in the middle range of size of
complexity, while the RUP can scale to accommodate the largest and most complex projects.
The Eclipse Way is an agile process that has been used by the Eclipse platform team. By
providing support for planning, management, and day-to-day execution of iterative
development, test-driven development, and architecture for larger and distributed teams, it
suits the needs of the mid-range team. However, teams that are developing safety-critical
systems, in need of meeting regulatory compliance requirements, or working in specific
technologies, such as SOA, might need to look to the RUP instead.
42 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 2-15 The agile process continuum10

By providing a process framework that consists of many processes and practices, the
Rational Unified Process covers the broadest range in the team-size to complexity continuum.
Teams can choose a process definition that is close to their needs. All versions of RUP
advocate iterative development, continuous integration, stakeholder involvement, and
collaboration. The more agile variants include guidance for test-driven development, pair
programming, and just enough documentation while the more advanced variants address
distributed development, SOA, systems engineering, and compliance. The key for adopting
RUP in an agile fashion is to adopt just enough by modifying what is provided or removing
what you do not need.

Approaches to Agility at Scale
As more enterprises seek to adopt agile development, they are confronted with the questions
of which techniques work with which settings. Every team has a unique set of needs,
circumstances, and complexities. While there is no one-size-fits-all answer, we present some
ideas in the following sections.

Constant collaboration
The product owner, project manager, and team leads conduct frequent communication with
stakeholders to understand their needs, communicate progress, and ask questions. Team
members are encouraged to collaborate regardless of their geographic location. Placing tools
to facilitate collaboration in the hands of the team members improves their effectiveness and
encourages constant collaboration.

Iterative development
Many enterprises have not adopted iterative development, and yet it must be proven as an
effective tool for managing risk and achieving user acceptance more easily. Iterations help
teams to work out areas of risk while developing a “story” that can be told with the software by

10 Scott Ambler, IBM Software Group, Rational, Practice Leader Agile Development and Per Kroll, Chief Architect - Rational Expertise
Development & Innovation (REDI), Project Lead: Eclipse Process Framework

XP, Scrum,

OpenUP, Dynamic Systems

Development Method

Eclipse Way
Rational Unified Process

Technical and Regulatory
Drivers

Compliance
Governance

Application complexity

Organizational Drivers
Team Size

Geographical Distribution
Organization Distribution

Entrenched process, people, policy
Chapter 2. Collaborative Application Lifecycle Management 43

the end of the iteration. This story is then shared with the stakeholders through demonstration
of the working software. The stakeholders can then respond to early versions of the software
by making course corrections much easier to accomplish.

With iterative development, the project cadence is set by the leads, but the bottoms-up
planning is provided by the individuals. The component teams are allowed to self-organize,
provided that they work within the cadence that is set by the project leads. Team leads
constantly seek to improve the team’s health and efficiency by load balancing and rapid
response to change.

Agility of small teams
Component teams can self-organize within the framework set by the leads. Whether they are
co-located or distributed, each team can self-organize and choose the techniques that work
best for them. For example, implementing daily stand-up meetings and just enough design,
conducting continuous builds, and employing test-driven development can all occur at the
component team level. Many of these methods do not make sense across the entire solution
team. For example, a globally distributed solution team does not hold a ‘stand-up’ meeting.
Instead, it is best left to the teams to decide their culture and techniques, provided that they
work within the framework that is established by the solution team leads.

Frequent integration builds
At the component team level, the builds should happen frequently. While some development
teams build continuously, others have scheduled daily builds. This ensures the health and
quality of each component in the solution.

Each of these component teams feeds into an integration build. Instead of waiting until the
end of the cycle to conduct an integration build, an Agility-at-Scale team conducts the
integration builds as frequently as possible for the given project. All component teams deliver
their code to the integration stream, where the integration build occurs. The integration build
includes the running of JUnit tests against the solution build to assess the build quality.
Results of the build and the build verification tests are passed to the test team. This helps the
team to identify integration problems in the same iteration that they are introduced, thus
making it easier to diagnose and fix.

Frequent integration testing
The testing team conducts frequent integration testing based on periodic integration builds.
All too often, the test team receives the integration build at the end of the project. By bringing
the solution test team into each integration, defects can be identified in the same iteration in
which they are introduced. By bringing the test team into the iteration plan, they can wisely
create a test plan, determine which test cases need to be written and run, and have a much
clearer view of the quality.

In this book, the solution test team, which is led by Tammy, has the opportunity to work with a
new solution build every week. This team assesses the integration build results to determine
whether to deploy the latest build to the test lab. By conducting solution-level testing as part of
the iteration, the feedback loop by the development teams allows the teams to identify and fix
defects early and often.

2.2.4 Aligning work assignments

It is no surprise that work is assigned to team members that is expected to be completed in
an iteration, and that these work assignments occur for all members of the team. Aligning
work assignments is critical to ensuring that every team member knows what they need to do
and when they should complete the work.
44 Collaborative Application Lifecycle Management with IBM Rational Products

In the context of CALM, this best practice includes the following actions:

� Understanding the impact of a change to the current plan, knowing that the change can
impact analysis, design, development, release engineering, and testing

� Ensuring that all teams can absorb the change and deliver the release on time

� Rolling individual team plans into a cohesive project plan

� Assessing the project’s health throughout the cycle and making adjustments to work
assignments as needed

� Ensuring that all requirements have been implemented with expected quality before
releasing the software to stakeholders

The alignment of work occurs throughout this book. However, it is most apparent in Act 1 of
the story, which is covered in Part B, “Act 1: Responding to a change request” on page 77.

2.2.5 Being requirements driven

Being requirements driven is not just a matter of managing requirements. In the context of
CALM, requirements drive the scope, focus, and plans for the project. Requirements driven
includes the following concepts:

� Stakeholder requests are reviewed and prioritized before detailed requirements are
created.

� Approved requests are then elaborated as requirements.

� Requirements are associated with user stories (agile development) or use cases (OpenUP
or RUP).

� Iteration plans are driven from requirements for planning purposes. The intent is to know
when the requirements will be implemented.

� Test plans reference the requirements that will be tested. The plans align with the
development iteration plans. The intent is to know what test cases to write and when the
solution will be available in a build for test execution.

� Test cases align with requirements for validation. The intent is to ensure that the test case
is written specifically to validate the requirement or requirements.

� Iterations are complete when all planned requirements are implemented and tested, with
sufficient quality. The intent is to answer the question: Are we done?

� Defects are probably the most commonly understood artifacts that span multiple roles.
Defects found during testing must be reported back to the project leads and developers,
so that they can act upon them. Analysts are interested in understanding the quality of the
implemented requirement, such as the number of defects that have been reported against
this requirement. Therefore, treat defects like requirements that must be addressed, and if
possible, manage them in the same repository.

The theme of being requirements driven is explored in the following acts of the CALM
scenario:

� Act 1 (planning)
� Impacts Act 2 (what to develop)
� Impacts Act 3 (what is in the build)
� Act 4 (test execution validating requirements)
� Act 5 (are we done)
Chapter 2. Collaborative Application Lifecycle Management 45

2.2.6 Striving for build clarity and quality

It is not enough to know if the build passed or failed. In the context of CALM, the more
relevant question to the team is: Is this build worth my time? This question might sound
arrogant. However, when we consider the complexities that are inherent in deploying a new
build into the test lab and running a full suite of tests against it, the reasoning is quite sound.
Looking deeper, we can determine the subsequent questions:

� What is implemented in this build?
� What is its quality?

Build clarity includes identifying which requirements are implemented and which defects are
fixed. Build quality provides an indicator of which tests were run and with what result (at the
build verification test level). This best practice is intertwined with being “requirements driven.”
Knowing what is implemented in the build implies that the developers are delivering change
sets that implement requirements.

Later in the cycle, a project manager or auditor should be able to ask what tests were run for
this build in order to determine whether all tests, such as build, regression, performance,
system, security, and so on, were run against a build with acceptable results.

This theme spans several of the acts of the CALM scenario:

� In Act 2, changes are delivered by the development team.

� In Act 3, the solution build is produced, which is an aggregate of component builds.

� In Act 4, the theme comes to the surface when the test team needs to decide which daily
build to deploy.
46 Collaborative Application Lifecycle Management with IBM Rational Products

Chapter 3. A scenario for CALM

In this chapter, we describe the scenario-based approach that we used for this book. We
provide the background to the story. The rest of the book details the series of events that take
place to realize the story and deliver the release of software.

We include the following sections in this chapter:

� 3.1, “A story telling a tale of integrations” on page 48
� 3.2, “The project” on page 49
� 3.3, “The software delivery team” on page 50
� 3.4, “The approach” on page 55
� 3.5, “A story told act by act: Completing an iteration” on page 58
� 3.6, “Life-cycle collaboration” on page 66
� 3.7, “Reference architecture and configuration” on page 69

3

Role-based guide: To understand how the content in this chapter applies to your role, see
the role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7
on page 13.
© Copyright IBM Corp. 2008. All rights reserved. 47

3.1 A story telling a tale of integrations

Collaborative Application Lifecycle Management (CALM) involves deep detail in every
software development discipline across the software development life cycle. To date, much
has been written about the individual disciplines in the life cycle. We could have organized
this book around each of the disciplines, the roles, and tools that are used. To repeat such an
approach might certainly express the breadth of Application Lifecycle Management (ALM),
but might likely fail at highlighting the value of collaboration across the disciplines. As such, it
is difficult to choose the topics to discuss in meaningful detail in such a wide domain.

Therefore, rather than focus on individual roles and the tools they use, this book focuses on
the interactions that occur across the team members as they deliver a release of software.
This is where the power of storytelling comes into play.

The IBM Rational development team has created what we call the green-thread technique. A
green thread tells a story and, in doing so, explains and highlights the key goals, roles, tools,
and integration points along the way. To tell this story, we create a reference company, team
members, project, and software application. We create a setting for the story to unfold and
present that story in a series of windows or click-throughs of the software applications they
used. In doing so, we provide a practical example of how to use the Rational products from
the user’s point of view. The characters in the story have goals, constraints, interactions with
other characters, and ultimately a discrete task that they must complete.

If you are familiar with scenario-based design, you will recognize the similarities. For those of
you who know and understand use cases, a green thread is, in effect, a single scenario in a
use case that describes a path through a system. At IBM Rational, we realize that, just as use
cases help software designers understand the flow of events and alternate paths, a
green-thread scenario can help all team members to understand the basic principles and
goals of a system. Unlike a use-case scenario, the green thread is more personal and
animated with real-life characters acting in the context of their organization. The purpose of
the green thread is to help us understand the “bigger picture.”

The green thread used in this book is called “Geographically Distributed Application Lifecycle
Management.” The scenario involves a team in a fictitious enterprise that must produce a
release of software. The focus of the story is on how that team achieves the end result, a
release of their software project. The agile technique of “just enough” is applied to each role
to describe their contribution to the overall team effort. This allows us to remain focused on
how their work influences the other team members. The intent is to show the hand-off points
and relationships between the roles, rather than diving into domain-specific detail. For
example, the product owner creates a single requirement that is later referenced by the
development lead, developer, test lead, tester, and project lead. We provide “just enough”
detail in change management to illustrate the discipline and focus on how that change
request impacts the other team members.

While this is a single scenario in the deep and wide domain of ALM, we have confidence in its
power and applicability. This storyboard has been reviewed with a wide variety of people both
external and internal to IBM and is accepted as being representative of many enterprises
around the world. The key to reading this book is to focus on the interactions and hand-off
points between the characters and their representative teams. Notice how the completion of
work by one character is referenced by another character later in the story. This book makes
every attempt at highlighting these hand-off points to help you understand the relationships
between the roles and assets they produce.
48 Collaborative Application Lifecycle Management with IBM Rational Products

3.1.1 Story objectives

A good story has a set of objectives that it must meet. This storyboard targets enterprises
with teams of people distributed around the world. This enterprise-scale story has the
following objectives:

� Illustrate the value of ALM.
� Illustrate team collaboration to produce a release of software.
� Illustrate the primary disciplines in the application lifecycle.
� Set the story in a context in an enterprise environment with the following characteristics:

– Scalable products are delivered as multiple projects.
– Teams are in distributed locations.
– Agile development is introduced to existing processes.
– Governance and compliance are contributing factors to organizational pressures.
– There is a delivery chain from smaller component teams into an integrated solution.
– The Rational team-based products are already deployed and in use.
– The Rational Jazz-based products have been adopted by some of the teams.

3.1.2 The context for the story

Every story needs a context for understanding the plot, such as a time, setting, and any
background drama that leads into the opening scene. When reading a screen play, the
opening sentences set the stage for the story as in the following example:

Boston, MA 1775, the colonists are becoming weary of the tariffs levied upon them by the
King of England. Tensions are mounting as a boat full of tea enters the Boston Harbor.

The following sections serve to provide the setting for this storyboard by introducing the team
and how they are organized, the project that they are working on, and an overview for the
story that is used for the remainder of the book.

3.2 The project

As with any enterprise, multiple business optimization programs are under development at
any time. In this story, we assume that the project management office is governing several
programs at once. The proposals for the new programs have been validated and approved.
Each program is tracked, managed, and released as one with coordination cross individual
projects and components.

The story takes place in the context of a team developing a new version of the Account
Opening project. The Account Opening team is responsible for both a new development
project (Release 2) and a maintenance project on the release (Release 1) that is currently in
production. This storyboard observes the team as they deliver Release 2 of the project. The
solution, as shown in Figure 3-1 on page 50, comprises many components.This story shows
how the team leads of the solution collaborate with one of the component teams.

Synopsis: A globally distributed team has received funding to implement the second
release of a critical IT application. The team has been working for several weeks and has
just begun working on a new iteration. We meet the team on the second day of the second
iteration.
Chapter 3. A scenario for CALM 49

Figure 3-1 The many components of tehe Account Opening solution

The team has grown by acquisitions and outsourcing. The enterprise has accelerated
time-to-market for a launch in the European market by acquiring the skills and technologies of
a smaller European company. The enterprise has also increased team capacity through a
third-party provider based in another country.

The team is globally distributed:

� New development of the second release (Rel2) is delivered from a team that consists of
the corporate headquarter team, the acquired team, and the third-party provider.

� Maintenance of the first release (Rel1Maint) is delivered by the third-party provider.

The team has traditionally used the IBM Rational Unified Process (RUP), but is intrigued by
the notion of process enactment that comes with IBM Rational Team Concert and the
Rational ClearQuest ALM schema. Because this is new, they decided to start small and
slowly add a process as the teams became accustomed to using it. As such, they have
adopted the Open Unified Process (OpenUP).

This enterprise uses a global delivery platform from IBM. They have already invested in and
are using the Rational team-based products such as IBM Rational ClearCase, ClearQuest,
and RequisitePro. In addition, they have begun to introduce and adopt the newer products
from Rational such as IBM Rational Asset Manager, Rational Build Forge, RequisitePro
Composer, Rational Team Concert, Rational Quality Manager, Rational AppScan, and
Rational Software Analyzer. Some teams stay on existing platforms and deliver into the global
delivery platform that governs the solution delivery, while other teams adopt newer products.
This heterogeneous mix of products will remain in the enterprise for years to come, but with a
shift toward the newer products where appropriate.

3.3 The software delivery team

The reference team is globally distributed and comprised of several smaller teams. For the
purpose of the story, only a few of the teams are brought into the foreground. In this section,
we describe the team organization and each of the characters.

Account Opening

Credit
Check

The Solution

A component
50 Collaborative Application Lifecycle Management with IBM Rational Products

3.3.1 A team of teams

The Geographically Distributed ALM reference scenario uses a set of characters and includes
a “team of teams” with members who are distributed around the world. Each team member
has one or more roles to play and is critical to the success of the project.

Our story revolves around an enterprise solution team, which is made up of several teams.
The teams are distributed around the world and consist of both internal teams and a trusted
third-party provider. For the purposes of this scenario, we focus on three of the teams, but
assume that the other teams will function in a similar manner. The smaller development
teams are often referred to as the component team. This term is not a technical use of the
word, but rather a figurative use to describe a smaller team that owns a discrete portion of the
overall solution.

The following teams are involved in this scenario:

� Solution team leads

� An agile development team that was recently acquired by the larger enterprise (the
component team)

� A third-party solution testing team

This storyboard has the following characters:

� Bob is the product owner. He cares about managing his business and bringing value to his
users and stakeholders.

� Patricia is the project leader (or project coach). She is responsible for coordinating the
efforts of this team of teams.

� Al is the solution architect. He works with the development and test teams to ensure that a
consistent architectural approach is used and understood.

� Tammy is the test lead. She has a globally distributed quality team. Her team is
responsible for conducting solution testing, or investigative testing in agile terms.

� Rebecca is the release engineer who oversees the solution integration builds, providing
global build support to the team.

� Marco manages an agile development team. He understands the need to fit into the
solution project plan, but seeks to maintain the agile approaches that have made his team
successful.

� Diedrie is the developer who implements a change request in the scenario.

� Tanuj is the tester who is responsible for ensuring the quality of the solution.
Chapter 3. A scenario for CALM 51

Figure 3-2 summarizes the characters and teams in this story.

Figure 3-2 A global team made of many teams

The enterprise is adopting agile techniques where appropriate, while also acknowledging that
some agile techniques do not apply to their situation. Because this is a large team working
with agile techniques within the enterprise, we call this Agility at Scale. Additional detail is
provided in 3.6.2, “Agility at Scale” on page 67.

Third-party ProviderRecently Acquired Agile Team

Corporate Team Leads

Bob
Business
Owner

Patricia
Project

Manager

Al
Solution
Architect

Tammy
Test
Lead

Rebecca
Release
Engineer

Teammates

Other
Geography

Other
Geography

Marco
Development

Lead

Diedrie
Developer

Teammates Tanuj
Tester

Teammates
52 Collaborative Application Lifecycle Management with IBM Rational Products

3.3.2 The solution team leads

The team of teams is run by a team based at the corporate headquarters. This team works
with each of the component teams to coordinate the final solution. Figure 3-3 shows the
solutions team leads.

Figure 3-3 Corporate-based team leads

The team leads appear in the following order:

� Bob is the product owner. He cares about managing his business and bringing value to his
users and stakeholders. As the product owner, working in an agile environment, he works
closely with the development team, has ownership over the requirement priorities, and
facilitates discussions between the development team and their stakeholders.

� Patricia is the project leader (or project coach). She is responsible for coordinating the
efforts of this team of teams. As each team produces its iteration plan, Patricia
incorporates the plans into the overall project iteration plan. She collaborates with the
teams to establish the pace of the iterations (how many iterations for the project and how
long each will last). It is her job to ensure that all teams (development and solution test)
are working toward the same iteration goals and that the work is aligned across the teams.

� Tammy is the test lead. She has a globally distributed quality team. Her team is
responsible for conducting solution testing or investigative testing. This includes functional,
performance, and security testing at the solution level. This does not include confirmatory
testing, such as JUnit, or component-level testing, which is the responsibility of each of the
development teams. Tammy’s team conducts solution testing as part of each iteration. Her
team does a new solution build each week, thus providing an early feedback loop to the
development team. She also provides a globally distributed test environment for the
project and has ownership of a group of servers in the test lab.

� Al is the solution architect. Al works with the development and test leads to ensure the
team works from a consistent architectural approach. He provides insight into the iteration
plans by identifying the architecturally significant tasks for each iteration. He collaborates
with the developers as they design their implementations. He also seeks to reuse existing
assets wherever possible to ensure consistency in approach and implementation.

� Rebecca is the release engineer who oversees the solution integration builds, providing
global build support to the team. She sets the delivery, build, and release policies within

• We manage a team of teams that is distributed around the world.
• We are delivering an upgrade to the account opening application.

Corporate Team Leads

Bob
Business

Owner

Patricia
Project

Manager

Al
Solution
Architect

Tammy
Test
Lead

Rebecca
Release
Engineer

Teammates
Chapter 3. A scenario for CALM 53

the project. While each component team is responsible for successfully building their
component, Rebecca must bring all of the components together into a solution build. To
bring agility into this enterprise solution, Rebecca produces a weekly solution build. This
build enables the team to diagnose solution build problems as soon as they occur and
enables Tammy’s team to test the solution build more often.

� Teammates are those additional team members, such as the project management office,
support personnel, additional testers, and development teams based in the corporate
office who also contribute to the project. Their work is not highlighted in this scenario.

3.3.3 The agile development team

A smaller company was acquired by the enterprise and is located in another country. The
team from the acquired company seeks to maintain their agile development style while
working in the context of the larger solution team. For the most part, the team, which is shown
in Figure 3-4, is co-located but they interact with many other teams in the enterprise.

Figure 3-4 The smaller agile team who owns the ‘Credit Check’ component

The characters appear in the following order:

� Marco manages an agile development team. He understands the need to fit into the
solution project plan, but seeks to maintain the agile approaches that have made his team
successful. His team is self-organized and uses more frequent iterations than the rest of
the project team. Marco still conducts daily stand-up meetings with his team and employs
test-driven development techniques on his component. He is also a developer.

� Diedrie is the developer who implements a change request in the scenario. She is a
generalizing specialist on Marco’s team who designs and implements changes and
oversees the component builds.1

� Teammates are those developers on the team whose activities are similar to Diedrie’s.

1 See “Generalizing Specialists: Improving Your IT Career Skills” by Scott Ambler at the following Web address:
http://www.agilemodeling.com/essays/generalizingSpecialists.htm

• We develop, build, and test a component
called “Credit Check.”

• We are based in another country.

Recently Acquired Agile Team

Marco
Development

Lead

Diedrie
Developer

Teammates
54 Collaborative Application Lifecycle Management with IBM Rational Products

http://www.agilemodeling.com/essays/generalizingSpecialists.htm

3.3.4 The solution testing team

The solution testing team works under the direction of Tammy, who is the test lead. Some of
the solution testing has been out sourced to a trusted third-party provider that is located in
another country in a different time zone.

Figure 3-5 shows the solution test team.

Figure 3-5 The third-party provider team that conducts system integration testing

The following characters conduct the testing:

� Tanuj is the tester. He is responsible for creating the test cases and test scripts for
ensuring the quality of the solution. He also executes the tests and analyzes the results.
He logs defects when needed. Tanuj and his teammates employ a full battery of tests
including manual, functional, and performance tests.

� Teammates are those many other testers who conduct activities similar to Tanuj. Some of
these teammates are based in the third-party company with Tanuj. Others are based at
the headquarters with Tammy.

For the purposes of this scenario, we highlight the interactions between Tammy and Tanuj.

3.4 The approach

In this section, we describe the approach that is used by the team in the scenario. They have
heard a lot about agile development techniques and have begun to adopt those that apply to
their project and team size. Some of the agile techniques are discussed in this section. See
3.6.2, “Agility at Scale” on page 67, which describes these approaches in more detail.

• We are an outside agency that conducts
system integration testing.

Third-party Provider

Tanuj
Tester

Teammates
Chapter 3. A scenario for CALM 55

3.4.1 Phases and iterations for establishing cadence

The team is managing against phases and iterations. It is the first time that they have used an
iterative process and are starting small by adopting OpenUP. They have adopted the four
phases of Inception, Elaboration, Construction, and Transition and define iterations within
each of these phases as illustrated in Figure 3-6.

Figure 3-6 OpenUP phases with time-boxed iterations

Prior to the Inception phase, Bob, the product owner, developed a proposal for an upgrade to
the Account Opening project, which was reviewed and funded. He collaborated with Al, the
solution architect, and Patricia, the project manager, to solidify his proposal and build his
business case. When his proposal was approved, an initial project team was created, and
they began the Inception phase for the project.

During the Inception phase, Bob, Patricia, and Al collaborated to initiate the project. Bob
prioritized and refined the requirements. Al developed a technical approach and outlined the
architecture. He and Patricia collaborated to develop an estimated project plan that included
team sizes, skill sets, and software and hardware needs. They collaborated with other
development leads and test leads to contribute to and confirm the plans. They took the
approach of doing just enough to put their plans in place and completed the phase in less
than one week. The goal of this phase was to drive out business risk.

During the Elaboration phase, more team members were added to the project, and the team
quickly refined the requirements and architecture. A prototype of the system was developed
and tested by a small team to prove the architecture. The prototype was demonstrated to Bob
and additional stakeholders to verify the approach and obtain additional feedback and
direction. This phase lasted three weeks. The goal of this phase was to drive out technical
risk.

During the Construction phase, the full development team was brought into the project to
develop the solution. Feedback from the Elaboration phase was shared with the team, and
requirements were reviewed, refined, and prioritized. The team agreed to run four-week
iterations. This point is where the scenario begins. When the Construction phase is complete,
the team will hand the solution to the operations team for the roll out into production.

During the Transition phase, the operations team will conduct additional tests such as
performance, security, and user-acceptance testing. If unacceptable defects are found, the
solution is sent back to the Construction phase to be fixed. This loop continues until the
solution is rolled into production.

Construction TransitionInception Elaboration

Iteration
1

Iteration
1

Iteration
1

…

Release Candidate

Unacceptable Defects

Iteration
1

…Iteration
2

56 Collaborative Application Lifecycle Management with IBM Rational Products

The Production phase (not pictured in Figure 3-6 on page 56) continues until a new version is
released. Until then, the solution is monitored, managed, and maintained with hot fixes and
patches.

3.4.2 Frequent builds to drive clarity and quality

To drive quality deep into their development style, each team builds their component on a
continuous or daily basis, while the integration build is scheduled to occur weekly as
illustrated in Figure 3-7.

Diedrie is a developer who also maintains her team’s build system. She ensures that the
continuous builds flow smoothly. Other teams can choose a different approach to their builds,
provided that they occur often. The example shows two other teams that have daily scheduled
builds.

Rebecca resides over the integration build that is scheduled to occur every week. As each
team achieves a successful and stable build, they deliver their source to the solution
integration stream. By conducting weekly integration builds, the team can quickly respond to
problems in the build or that are identified by the test team.

Figure 3-7 Team builds occurring daily, with integration builds occurring weekly

3.4.3 Testing to drive quality

Each of the development teams conducts confirmatory testing on their own component. They
use a combination of unit tests and functional tests to drive quality into their component. In
addition, frequent customer testing and feedback brings insight and clarity into the quality of
the component.

The weekly integration build is used by the solution test team throughout the iteration. In agile
terms, this is called investigative testing, where many forms of testing take place, such as
exploratory, scenario, system, and user testing.

Tammy’s team has access to weekly integration builds. Her team deploys these builds into the
test lab and conducts tests. The test effort is aligned with the requirements and development

Account Opening

Diedrie

Weekly Integration Builds

Daily Builds

Rebecca
Release
Engineer

Nightly BuildsContinuous Builds
Chapter 3. A scenario for CALM 57

plan, which enables the test team to be focused on which tests to run in each integration
build. The last week of every iteration is dedicated to fixing defects.

Figure 3-8 illustrates the system testing that is done.

Figure 3-8 System testing occurring during the iteration

3.4.4 Lean governance

Gantt charts, which are large enough to form wall paper when printed, are not used by this
team. Instead the team leads established a plan for four-week iterations to which all teams
are held accountable. The team has agreed to use OpenUP as the development process and
all teams are adhering to it. Because both Rational Team Concert and ClearQuest provide
support for using OpenUp, adhering to the process is a matter of receiving work items and
completing them. This is considered a top-down approach for managing the team.

At the same time, each team member owns and manages their own work items. Team
members provide estimates for their work that rolls up into an overall plan that is managed by
their CALM solution. The team leads can view the iteration plan, the current workload and
estimates, and respond appropriately to maintain a healthy workload for the iteration. This is
considered a bottom-up approach to managing the team.

Both the bottom-up and top-down approaches are blended to create the healthiest and most
dynamic environment possible given the size of the team.

3.5 A story told act by act: Completing an iteration

The storyboard is divided into five major acts, each with one or more scenes. This division is
similar to that of a movie script or play. Imagine the curtain and lights going up in the theater
at the end of each act. Each of the major acts stands as a milestone in the overall life cycle,
while each scene within the act demonstrates how one or more of the characters completes a
specific task. By dividing the story into separate acts, the following objectives are achieved:

� The story is more consumable and reads like a play rather than an technical journal.

� The goals, resources, and character interactions can be clearly defined in the context of
the act, thus making their interdependency clear and highlighting the value of having a
CALM solution.

Iteration 1

Week 1 Week 2 Week 3 Week 4

SVT W1 SVT W2 SVT W3

Iteration 2

Week 1 Week 2 …

SVT W1 …

Synopsis: A globally distributed team has received funding to implement the second
release of a critical IT application. The team has already completed the Inception and
Elaboration phases and has just begun the final iteration of the Construction phase. We
meet the team on the first day of the iteration.
58 Collaborative Application Lifecycle Management with IBM Rational Products

� Each act builds on the previous act, but can be read independently of the others.
Therefore, you can jump directly to the part that is of interest to you.

� The life-cycle assets that are produced and consumed by each act can be highlighted in
context of how they are used by the characters.

Figure 3-9 illustrates the five major acts in the scenario. Each act has several scenes as
indicated by the numbered boxes. The story starts with Act 1, where Bob submits a request
for the iteration, followed by the development (Act 2), integration build (Act 3), testing (Act 4),
and the delivery of the solution at the end of a four-week iteration (Act 5). Each part of this
book corresponds to one of the acts in the storyboard.

Figure 3-9 Geographically Distributed Application Lifecycle Management scenario used by this book

The following subsections provide a synopsis of each of the acts shown in Figure 3-9 and
provides a pointer to the part of the book that details that act:

� Part B, “Act 1: Responding to a change request” on page 77
� Part C, “Act 2: Collaborative development” on page 211
� Part D, “Act 3: Enterprise integration builds” on page 313
� Part E, “Act 4: Managing quality” on page 387
� Part F, “Act 5: Delivering the solution” on page 479

The team has already completed the Inception and Elaboration phases and is now in the final
iteration of the Construction phase.

Product
Owner

C
om

po
ne

nt
 T

ea
m

Developer

Project
Lead

Test
Lead

So
lu

tio
n

Te
am

Respond to Change

Integration Build

3.2 Rebecca runs the
integration builds

Deliver (4 weeks)

5.3 Rebecca packages and
publishes the release

5.4 Marco conducts a
retrospective

1.1 Bob submits a request

1.3 Marco updates the
development iteration
plan

1.5 Patricia confirms the
project iteration plan

1.4 Tammy updates the
solution test plan

Release
Engineer

5.2 Patricia approves the
release

1.1 Bob explores the
release

Develop Component (2 week iterations)

2.3 Diedrie and Marco do
just enough design

2.5 Diedrie delivers her
changes and builds the
component

2.4 Diedrie develops,
builds, and tests her
changes

2.2 Al identifies an asset
the team can reuse

2.
1

 M
ar

co
 m

on
ito

rs

co
m

po
ne

nt
 h

ea
lth

Solution
Architect

So
lu

tio
n

Te
am

1.6 Bob defines and manages
the requirements

1.4 Tammy updates the
solution test plan

1.2 Patricia updates the
project iteration plan

3.1 Rebecca responds to a
failed integration build

Manage Quality

4.2 Tanuj constructs the
tests

4.3 Tanuj executes the
tests

4.4 Tammy monitors the
quality metrics

Tester

4.1 Tammy configures the
test lab

5.1 Patricia monitors solution health

1

2

5

43

Development
Lead
Chapter 3. A scenario for CALM 59

3.5.1 Act 1: Responding to a change request

The purpose of this act is to illustrate how the team collaborates to quickly triage, and plans to
implement, a new request. The following primary goals are illustrated in this act as shown in
Figure 3-10:

� The team leads update their plans to reflect the decision to implement the request.
� The product owner details and defines his request by elaborating on the requirements.

Figure 3-10 The scenes in Act 1: Responding to change request

As shown in Figure 3-10, these goals are expressed in the following scenes:

1. Bob submits a request.

Bob, the product owner, submits a request, setting it to the highest priority and assigning it
to the current iteration. In the request, he references the user interface (UI) standards that
the enterprise uses for all of its customer-facing applications. He creates a task for Patricia
and her team to size his request.

2. Patricia plans the project iteration.

Patricia assigns work to Bob to detail the requirement, Marco to implement it, and Tammy
to ensure that the request is tested per the requirements that Bob provides. This work is
linked back to the original request for traceability.

3. Marco updates the iteration plan.

Marco leads the agile development team. He conducts an iteration planning session with
his team where the work item to implement Bob’s new request comes up for discussion.
They contact Al, the architect who identifies a reusable asset for UI branding. They agree

Synopsis: The product owner submits a high priority request for the current iteration. The
team reviews the request and determines that it can be contained in the current iteration
plan. The impacted team leads update their plans, and Patricia updates the solution
iteration plan. Bob provides additional detail and definition to the requirement.

Respond to Change (1 Day)

Act 1: Respond to Change

1.1 Bob submits a request

The product owner submits a request for
the current iteration. The team determines

that it can be contained in the current
iteration plan. The impacted team leads
update their plans, and Patricia confirms

the solution iteration plan.

1.2 Patricia updates
the project
iteration plan

1.5 Patricia confirms
the project
iteration plan

Bob
Product
Owner

Patricia
Project
Lead

Marco
Development

Lead

Tammy
Test
Lead

1.6 Bob defines and manages
the requirements

1.3 Marco updates the
development iteration plan

1.4 Tammy updates the
solution test plan

1

60 Collaborative Application Lifecycle Management with IBM Rational Products

to explore its use for the implementation. Marco assigns the branding work to Diedrie for
implementation in this iteration.

4. Tammy updates the solution test plan.

Tammy receives a work item from Patricia and updates her test plan. She creates a test
case and adds it to her test plan. Tammy notices that Al is suggesting a reusable asset.
She looks at the asset and discovers a set of tests that are to be used when implementing
this asset. Tammy updates the test plan and assigns the testing to Tanuj. Finally, she
confirms the availability of the required test lab servers.

5. Bob defines and manages the requirements.

Bob receives a work assignment from Patricia to provide additional detail to his request.
He creates a sketch and a requirement to illustrate what he wants. He claims his work
complete and links his requirements to his work item.

6. Patricia confirms the project iteration plan.

Patricia reviews the task assignment to see how Marco, Tammy, and Bob are progressing
on their work items.

We explore the following concepts in this act:

� The bridge between the business and development team via a request

� How a request drives changes to development and test plans that are managed in
separate repositories

� How a request is elaborated with additional detail

� How Bob can clearly communicate his requirements by providing a sketch

See Part B, “Act 1: Responding to a change request” on page 77, for a full elaboration of this
act.

3.5.2 Act 2: Collaborative development

The purpose of this act is to illustrate how the team collaborates to quickly design, implement,
build, validate, and implement the request. The primary goals illustrated in this act are as
follows and as shown in Figure 3-11 on page 62:

� Marco works with the team to identify the appropriate owner to implement the request.

� The team identifies and incorporates an asset for reuse.

� A developer collaborates with other team members to develop, test, and build the
component with the changes to satisfy the request.

� Changes are delivered for the weekly integration build.

Synopsis: The team develops, validates, and builds the required changes to their
component. The source code is delivered to the solution integration stream.
Chapter 3. A scenario for CALM 61

Figure 3-11 The scenes in Act 2: Collaborative development

As shown in Figure 3-11, these goals are expressed in the following scenes:

1. Monitor component health. Marco conducts daily stand-up meetings to adjust the work for
the day. Diedrie and Marco collaborate on the design of Bob’s request and ask Al to guide
them on reusable assets for application branding. Diedrie and Marco examine the asset
and perform just enough analysis and design in an experimental development
environment.

2. Al identifies an asset the team can reuse and shares it with the team.

3. Diedrie and Marco do just enough design. The team practices test-driven development,
and Diedrie develops her test cases before writing the code.

4. Diedrie develops, builds, and tests her changes on her local machine. Then she makes the
required updates to the build and build verification test scripts and runs a private build.
She delivers her changes and monitors the team’s continuous build.

5. Diedrie conducts a team build and delivers to the integration build. With a successful build,
she delivers her changes to the integration stream.

We explore the following concepts in this act:

� Asset reuse
� Test-driven development
� Development team collaboration

See Part C, “Act 2: Collaborative development” on page 211, for a full elaboration of this act.

Collaborative Development (2 week iterations)

Act 2: Collaborative Development

The agile team develops, validates and
builds the required changes to their

component in the solution. The component
is delivered to the solution integration.

2.3 Diedrie and Marco
do just enough
design

2.4 Diedrie develops,
builds and tests her
changes

2.5 Diedrie conducts a
team build and delivers
for integration build2.

1
 M

ar
co

 m
on

ito
rs

co

m
po

ne
nt

he

al
th

Marco
Development

Lead

Al
Solution
Architect

Diedrie
Developer

2.2 Al identifies an asset
the team can reuse

2

62 Collaborative Application Lifecycle Management with IBM Rational Products

3.5.3 Act 3: Enterprise integration builds

The purpose of this act is to demonstrate the power of a centralized and automated
integration build. The primary goals illustrated in this act are as follows and as shown in
Figure 3-12:

� Rebecca automates the build process to gain efficiency and predictability in the builds.

� Rebecca rapidly responds to the build failures and restarts the build.

� Rebecca integrates third-party applications to enable the automation of the full build
process from gathering the latest source, to running static analysis, capturing the
delivered activities in Rational ClearQuest records, and staging the resulting build.

� Rebecca uses environments, selectors, and filters to separate the build process from the
hardware for which its compiled.

Figure 3-12 The scenes in Act 3: Enterprise integration builds

As shown in Figure 3-12, these goals are expressed in the following scenes:

1. Rebecca responds to a failed build.

Rebecca monitors the range of build projects that she is responsible for. She is notified
that the weekly Account Opening integration build failed. She inspects the build and
resolves the problem.

2. Rebecca runs the enterprise build.

Rebecca runs a new Account Opening integration build, including the latest changes. She
has automated the complete build process, which includes the creation of baselines, an
application build, build verification tests, build staging, and build announcements. The
build processes are scheduled to run weekly. She also has the option to manually request
builds on demand. The output builds are automatically posted and announced for team
consumption, the build verification test results are added, and a report of “what’s in” is
generated. The availability and staging location is included in release notifications. The
build is successful and is announced to the team.

Synopsis: The delivered changes are integrated, built, and verified on a weekly basis. The
release engineer is monitoring the build process.

Act 3: Enterprise Build

The delivered changes are integrated,
built, and verified. The release engineer

is monitoring the build process.

Rebecca
Release
Engineer

Integrate Solution

4.1 Rebecca responds
to a failed build

4.2 Rebecca runs the
enterprise build

3

Chapter 3. A scenario for CALM 63

We explore the following concepts in this act:

� Resolving a build failure

� Integration with Rational ClearCase for source code control, baselining, and staging the
completed build

� Integration with Rational ClearQuest to establish baseline and build records that provide
information about the build to the Rational ClearQuest users

� Integration with Rational Software Analyzer to perform static code analysis

� Automated notifications of build success or failure

See Part D, “Act 3: Enterprise integration builds” on page 313, for a full elaboration of this act.

3.5.4 Act 4: Managing quality

The purpose of this act is to demonstrate how the test plan organizes the team’s test effort.
The primary goals as illustrated in Figure 3-13 for this act are as follows:

� Obtain notification of a new build.
� Prepare the test servers with the build.
� Execute tests, evaluate the results, and file defects.
� Monitor quality and test team progress.

Figure 3-13 The scenes in Act 4: Managing quality

As shown in Figure 3-13, these goals are expressed in the following scenes:

� Tammy monitors quality by ensuring that her test plan is up to date with the latest
requirements from Bob.

� Tanuj constructs the test cases, test scripts, and test execution records that are needed to
sufficiently test the change.

� Tammy deploys the build to the test lab and notifies the team that the servers are ready for
testing.

Synopsis: The stability and quality of the integration builds are tested by the globally
distributed quality team.

Act 4: Manage Quality

Tammy
Test Lead

Manage Quality

Tanuj
Test Engineer

The stability and quality of the solution
integration builds are tested by the
globally distributed quality team.

4.
1,

 4
.5

Ta

m
m

y
m

on
ito

rs
 q

ua
lit

y
m

et
ric

s

4.3 Tammy prepares the
test lab

4.2 Tanuj constructs the
tests

4.4 The team executes the
tests

4

64 Collaborative Application Lifecycle Management with IBM Rational Products

� The team executes the tests. Tanuj executes the tests to validate that Bob’s request has
been developed as requested and finds a defect. He collaborates with Diedrie to close the
defect. Tammy executes a security scan and evaluates the results.

� Tammy confirms that all tests have been executed and reviews the quality metrics.

We explore the concept of quality management in this act.

See Part E, “Act 4: Managing quality” on page 387, for a full elaboration of this act.

3.5.5 Act 5: Delivering the solution

The purpose of this act is to demonstrate how the releases the iteration. The primary goals as
illustrated in Figure 3-14 for this act are as follows:

� Govern the delivery process for changes to close the release.
� Confirm that they have met the exit criteria and quality metrics.
� Package and publish the release to their stakeholders.
� Learn from the iteration.

Figure 3-14 The scenes in Act 5: Delivering the solution

As shown in Figure 3-14, these goals are expressed in the following scenes:

� The team moves into the “end game.”
� The team leads assess the exit criteria.
� Rebecca publishes the release.
� Marco conducts a retrospective.

Synopsis: The readiness of the release is assessed and the solution is delivered.

Act 5: Deliver the Solution

Deliver Solution

5.1 The team moves
into the “end game”

The readiness of the release is
assessed, and the solution is delivered.

5.4 Marco conducts a
retrospective

5.3 Rebecca publishes
the release

5.2 The team leads
assess exit criteria

5

Patricia
Project
Lead

Marco
Development

Lead

Tammy
Test
Lead

Rebecca
Release
Engineer
Chapter 3. A scenario for CALM 65

The following concepts are explored in this act:

� Governing the release to restrict source code changes
� Assessing and approving a release
� Packaging and publishing a release for re-use by external stakeholders.
� Continual improvement

See Part F, “Act 5: Delivering the solution” on page 479, for a full elaboration of this act.

3.6 Life-cycle collaboration

In this section, we highlight how collaboration occurs across the various disciplines that are
involved in producing a release of software.

3.6.1 Life-cycle assets in this CALM scenario

Each of the acts in the storyboard create or reference a set of assets. Assets that are created
in one act are often referred to in a subsequent act. Each act contains a section that identifies
the assets that are used or referenced. Figure 3-15 shows an overview of the assets.

Figure 3-15 Life-cycle assets that are created or referenced in the storyboard

Change Set

UCM Baseline(s)

UCM Stream

Work Item

JUnit files

Java files

Build

ClearCase
Workspace

Included

Included

Included

Built
from

External
Connection

Build Project

Job

ALM Baseline

BT Build

Schedule

Produces

Includes

Runs

Built
from

Staged to

BOM

Environment

UCM View

ALM Task
[Test]

ALM Task
[Implement]

ALM Task
[Define Requirement]

ALM Request
[Enhancement]

Code Rule Set

Code Analysis
Report

Worker Machines

Iteration Plan

Planned For

Workspace

Snapshot

Stream

Build

Built
from

Flow Target

Requirement Sketch

Related
Artifact

CQ:Requirement

Associated

Test Case Test Execution Test Result

Defect

Test Resource
Executed against

Test Script
Test Work Item

[Task]

Test Plan

Build

Deployed to

AssetALM Task
[Develop Architecture]

ALM Activity
[Implement]
66 Collaborative Application Lifecycle Management with IBM Rational Products

In Act 1, the ALMRequest [Enhancement] asset is created, which drives four ALMTasks:

� [Develop the architecture] for the solution architect that appears as a task in Rational
ClearQuest

� [Implement] for the development team that appears as a work item in Rational Team
Concert. The work item is added to an iteration plan.

� [Test] for the test team that is added to the test plan.

� [Define the requirements] for the product owner who creates a sketch that is linked to a
requirement, which in turn, is linked to the ALMActivity.

In Act 2, Marco and his team work with the following items:

� A reusable asset is located and added to the developers’ workspace.

� The work item is implemented by a change set that contains a set of files.

� The change set is delivered to the team build.

� Upon verification of a healthy build, the change set is delivered to the Unified Change
Management (UCM) integration stream.

In Act 3, the Rational Build Forge project automates the following tasks:

� Creates a UCM view for the source code

� Runs code analysis against the source and produces a report

� Produces the build and checks the distribution archive into Rational ClearCase

� Creates a BTBuild and ALMBaseline record in Rational ClearQuest

� Creates a bill of materials

The project uses worker machines, which provide a solution environment with abstracted
variables, a schedule, and a code rule set (used by Code Analysis).

In Act 4, Tammy and her team work with the following assets:

� The test plan is linked to requirements in RequisitePro.

� A build is deployed to a managed server in the lab.

� Test cases are updated with detail including an association with the imported
requirements from RequisitePro.

� A test script is written and associated with the test case.

� Test execution work items are generated for multiple browser configurations.

� Test results exist for each test execution record.

� A defect is associated with a line in the test execution.

In Act 5, the release delivery is supported by the following assets:

� Approvals are given by the project leadership team members.

� Notes from retrospectives are created by the project teams.

� Release packages are created and submitted as request assets.

3.6.2 Agility at Scale

The enterprise in this storyboard is undergoing a transformation. The teams have heard
about agile development and have begun to incorporate some of the techniques into the
development practice.
Chapter 3. A scenario for CALM 67

Because this is a large team, which includes a team of teams, not all agile practices make
sense. In this section, we discuss the agile practices that have been adopted by the
enterprise team, which are displayed in the callouts in Figure 3-16.

Figure 3-16 An Agility-at-Scale CALM scenario

The actively engaged product owner
Bob is the product owner for the application. He prioritizes the requirements and is actively
engaged in the iterations. He has access to the iteration builds and uses milestones to
prioritize the next iteration. He works closely with his stakeholders to receive early feedback
on the software and to provide guidance back to his team.

Iterative development
Patricia has set the cadence for the project at four-week iterations. Within each of these
iterations, the team prioritizes requirements, does just enough design, implements and tests
the team builds, builds the entire solution, and tests the solution. Patricia works with all of the
teams on a frequent basis to assess the team’s health and ability to deliver the iteration.
Modifications to the plan occur rapidly with little ceremony to maintain a realistic view of the
iteration. Patricia has frequent contact with the stakeholders to review progress and receive
feedback on their direction.

The component teams are allowed to self-organize provided that they work within the project
framework. In this storyboard, the acquired team, which is led by Marco, has decided to work
in two-week iterations.

Product
Owner

C
om

po
ne

nt
 T

ea
m

Project
Lead

Test
Lead

So
lu

tio
n

Te
am

Respond to Change

Integration Build

3.2 Rebecca runs the
integration builds

Deliver (4 weeks)

5.3 Rebecca packages and
publishes the release

5.4 Marco conducts a
retrospective

1.1 Bob submits a request

1.3 Marco updates the
development iteration
plan

1.5 Patricia confirms the
project iteration plan

1.4 Tammy updates the
solution test plan

Release
Engineer

5.2 Patricia approves the
release

1.1 Bob explores the
release

Develop Component (2 week iterations)

2.3 Dierdrie and Marco do
just enough design

2.5 Dierdrie delivers her
changes and builds the
component

2.4 Dierdrie develops,
builds and tests her
changes

2.2 Al identifies an asset
the team can reuse

2.
1

 M
ar

co
 m

on
ito

rs

co
m

po
ne

nt
 h

ea
lth

Solution
Architect

So
lu

tio
n

Te
am

1.6 Bob defines & manages
the requirements

1.4 Tammy updates the
solution test plan

1.2 Patricia updates the
Project Iteration plan

3.1 Rebecca responds to a
failed integration build

Manage Quality

4.2 Tanuj constructs tests

4.3 Tanuj executes the
tests

4.4 Tammy monitors the
quality metrics

Tester

4.1 Tammy configures the
test lab

5.1 Patricia monitors solution health

1

2

5

43

Bob is actively engaged in
interations owning RR

Patricia coordinates the
leadership team and supports
frequent collaboration with
stakeholders

Marco leads a co-located team, self
organized with local plan, build and test
ownership. Using daily stand-ups, just-
enough design, continuous builds and
test driven development. Delivers to
central integration and validation.

Centralized test management
and distributed test servers.

Weekly integrations to
ensure high quality
integration builds.

Development
Lead

Developer

Frequent integration testing
built into each iteration.

Team of teams.
Iterations in iterations.

Bottoms-up planning. Four-week
project iterations and two-week
component team iterations. Using
OpenUP, govern by using load-balancing
and rapid response to change.
68 Collaborative Application Lifecycle Management with IBM Rational Products

Agile small teams
The component team is relatively small but also geographically distributed, and some of the
members work from their home office. Marco continues to conduct daily stand-up meetings
with his team to set the priorities for each day. They are a team of generalists who own every
aspect of their part of the component, from analysis to testing. They use a continuous build
strategy to catch build problems early. They also use the agile test-driven development
technique. Each week they promote a good build to the integration build.

Frequent integration builds
Integration builds occur on a weekly basis. All component teams deliver their code to the
integration stream, where the weekly integration build occurs. The integration build includes
running of tests against the solution build to assess the build quality. Results of the build and
the build verification tests are passed to the test team.

Frequent integration testing
The solution test team, which is led by Tammy, has the opportunity to work with a new
solution build every week. The team assesses the integration build results to determine
whether they must deploy the latest build into the test lab. By conducting solution-level testing
as part of the iteration, the feedback loop by the development teams allows the teams to
identify and fix defects early and often.

3.7 Reference architecture and configuration

This scenario in this book was written to show the full power of the Rational team-based
products. Many combinations of products can be used to define a CALM solution. This is a
reference implementation, but is by no means, the only implementation. In this section, we
describe the reference implementation that is used to build this story.
Chapter 3. A scenario for CALM 69

3.7.1 An enterprise CALM solution

The configuration of software products and servers is distributed across several geographic
locations including the corporate headquarters, the acquired company’s offices, and the
trusted third-party provider. Figure 3-17 illustrates the software and servers at each location.

Figure 3-17 The software configuration used in this scenario

The product owner
The product owner uses the following applications:

� Rational RequisitePro to manage and trace requirements
� Rational Requirements Composer to define, illustrate, and storyboard requirements
� Rational ClearQuest to manage change requests

The project manager
The project manager uses Rational ClearQuest with integrations to Rational Team Concert
and Rational Quality Manager.

The development lead
The development lead uses Rational Team Concert with an integration to Rational
ClearQuest and Rational ClearCase.

The developer
The developer uses Rational Team Concert to develop, unit test, and build the software
component.

Test resources

INUS

Repository

Solution test plans

Comp test plans

Requirements Composer
and RequisitePro ClearQuest

CQI assets

CQALM assets
Sketches and so on

Requirements

Asset Manager

ClearCase /UCM

Reusable
assets

Streams

Components

Build Forge

Solution builds

Comp builds

Quality Manager
Quality Manager

Team Concert

Component
Iteration plan
work items

Workspaces

Components

Component
builds

Streams

Build assets

Web IDE

Corporate Recently Acquired

Third-party Provider

Solution
test plans

Test resources
70 Collaborative Application Lifecycle Management with IBM Rational Products

The architect
The architect uses the following applications:

� Rational Asset Manager to identify a reusable asset

� Rational ClearQuest to size a request and help the team determine whether they can
contain the request in the iteration

The release engineer
The release engineer uses the following applications:

� Rational Build Forge Enterprise with adapters to Rational ClearCase, Rational
ClearQuest, and Rational Software Analyzer to automate the entire build process.

� Rational ClearCase uses the ClearCase Connector to Rational Team Concert and
manages the source for the entire solution. Rational ClearCase manages the solution
source code. Source code from Rational Team Concert is copied to Rational ClearCase by
using the Rational ClearCase Connector.

The test lead
The test lead uses Rational Quality Manager with integrations to Rational ClearQuest,
Rational RequisitePro, and Rational AppScan Tester Edition to plan, manage, construct,
execute, and analyze the testing effort.

The tester
The tester uses Rational Quality Manager to construct and execute tests. In addition, the
following products are referenced, but no detailed information is provided:

� Rational Functional Tester
� Rational Performance Tester
� Rational Services Tester

The full product list
Detailed information in the context of the storyboard is provided on how to use the following
products (in order of appearance):

� Rational ClearQuest 7.1.0.0
� Rational RequisitePro 7.1.0.0
� Rational RequisitePro Composer 1.0.0.0
� Rational Team Concert 1.0.0.0
� Rational Asset Manager 7.1.0.1
� Rational Build Forge 7.1.0.0
� Rational Software Analyzer 7.0.0.0
� Rational Quality Manager 1.0.0.0
� Rational AppScan 5.6.0.0

Additional products referenced in the scenario
The following products are referenced in the scenario as potential integrations. Information
about how to integrate and use these products is not provided in this book.

� Rational ClearCase 7.1.0.0
� Rational Functional Tester 8.0.0.0
� Rational Performance Tester 8.0.0.0
� Rational Services Tester 8.0.0.0
� Rational ClearQuest Test Manager 7.0.1.0
Chapter 3. A scenario for CALM 71

3.7.2 Product integrations for this scenario

In this section, we provide a brief overview of the product integrations that are used to support
this storyboard.

Rational RequisitePro and Rational Requirements Composer
Rational Requirements Composer is a new product to define requirements. It provides a rich
user interface for sketching and storyboarding ideas and business processes. The product
has a database for managing the sketches. An Eclipse user interface is used to create the
sketches, storyboards, and business processes.

Rational RequisitePro manages requirements in a database. The sketches that are created in
Rational RequisitePro Composer are linked to the requirements that are managed by
Rational RequisitePro. When viewing a requirement in Rational RequisitePro, the sketch can
viewed by clicking its link when the Rational RequisitePro Composer user interface is installed
on the local desktop.

In this reference scenario, the Rational RequistePro and Requirements Composer databases
were installed on the same server. The Rational Requirements Composer user interface was
installed on a desktop. The assets created by Rational Requirements Composer are linked to
the requirements that are managed by Rational RequisitePro by using the integration that is
provided by these products.

Rational RequisitePro and Rational ClearQuest
Rational ClearQuest 7.1 was installed on a server by using an IBM DB2 database. The
Rational ClearQuest ALM schema and sample database were used.

Rational ClearQuest and RequisitePro have an existing integration that was used to support
the storyboard. The Rational RequisitePro package was applied to the new Rational
ClearQuest ALM schema by using the ALMTask and ALMActivity records. This creates a
Requirements tab on each record that contains links to requirements that are managed by
Rational RequisitePro.

Rational ClearQuest and the ClearQuest Connectors to Jazz
product-based repositories
The Rational ClearQuest Connector was used to connect the Jazz product-based
repositories, which are Rational Team Concert and Rational Quality Manager.

The Rational ClearQuest Task and Activity records are candidates for interoperating by
mapping these records to the Jazz work item. The ALMTask is mapped to the work item of the
type “Task.” The ALMActivity is also mapped to the Jazz work item “Task,” but with a parent
relationship back to its corresponding task.

Rational Team Concert and the ClearCase Connector
The ClearCase Connector is used to interoperate the source changes in Rational Team
Concert over to the integration stream in Rational ClearCase.
72 Collaborative Application Lifecycle Management with IBM Rational Products

Rational Build Forge, Rational ClearQuest, Rational ClearCase, and
Rational Software Analyzer
Rational Build Forge is used to conduct the integration builds. It uses the Rational ClearCase
adapter to collect the latest source, baseline the source, and check the packaged build back
into source control for staging.

Rational Build Forge also integrates with Rational ClearQuest to create build and baseline
records that are used to identify the build status, the baseline name, and delivered activities
between baselines.

Rational Software Analyzer is integrated to run static analysis on the source code prior to
compilation.

Rational Quality Manager and Rational AppScan
Rational Quality Manager provides integrations with test execution products. To illustrate this
capability, an integration with Rational AppScan is demonstrated.

3.7.3 Supporting distributed teams

The scenario described in 3.3, “The software delivery team” on page 50, focuses the story on
the Account Opening project leadership team, which is led by Patricia, and the CreditCheck
component development team, which is led by Marco. The description in this book on the
deployment and configuration of a collaborative development environment has been focused
on in this core scenario.

However, the Account Opening project is run by a “team of teams.” While the CreditCheck
team is one subteam, there are may other teams. In this section, we describe some of the
considerations in deploying an enterprise-sized collaborative development platform for the
Account Opening project. For larger Geographically Distributed Development teams, the
collaborative development platform must support local and remote access. Repository
replication has to be taken into consideration.

Some general site topology considerations apply:

� Identify core sites

A core site is often the owner of a program, an application, or a project. Core sites have IT
administration and can manage a global collaborative development platform.

� Identify remote sites

A remote site often contributes to collaborative development by having team members join
projects. A remote site is often lacking the administration staff to locally manage a
development infrastructure. Team members rather connect remotely to the services of a
core site.

� Identify mobility needs

Some team members are needed for mobility, which might entail working from home or
from another temporary remote location. It might also require frequent switching between
sites.
Chapter 3. A scenario for CALM 73

In the context of this book scenario, it is reasonable to make the following assumptions
regarding the deployment of an enterprise-sized collaborative development platform for the
Account Opening project:

� The Account Opening project depends on the teams and team members in multiple
geographies. The team of teams is distributed over multiple development sites and over
multiple continents.

� Larger core sites in the enterprise form hubs that serve a region of development sites with
collaborative development platform services. The Account Opening project teams use two
or more hubs that serve its geographic regions respectively.

� Team members are mobile, from time to time, and require remote access from home or
from other temporary non-office locations.

� The project depends on external service providers, for example in the test team, that from
their external site connect remotely and securely to the Account Opening project
repositories.

When deploying a collaborative development platform (Figure 3-18 on page 75) for the
geographically distributed Account Opening project, the following considerations apply:

� The Requirements repository is deployed as a central service to one of the core sites. It is
advised that the site is chosen, so that the repository is co-located with business and
application stakeholders. It is also advised that application stakeholders use a requisite
Web client to access requirements artifacts. If the integration with Rational ClearQuest is
used, mastership of the requirements records must be kept at the core site that hosts the
requirements repository. The integration of Rational RequisitePro and Rational
ClearQuest does not update records that are mastered remotely.

� The Rational ClearQuest and Rational ClearCase repositories are deployed to all core
sites with a component development team. Rational ClearQuest or Rational ClearCase
Multisite are used to replicate information across the sites. Mastership of Rational
ClearQuest ALM artifacts is automatically set and managed by the Owner field on the ALM
records. This implies that ALM Request records stay with Bob because he is the owner.
The ALM Task records stays with Patricia, and the ALM Activity records are remastered to
the replica for the owner of the activity. Other ALM records that are related to project ALM
Work Configurations stay at the site of the project administrator.

� Some project component teams, for example the CreditCheck team, use Rational Team
Concert. For those teams, a Jazz server is deployed. To establish interoperability between
the Rational ClearQuest clan, a ClearQuest Gateway server is deployed at one of the core
sites and co-located with one of the Rational ClearQuest MultiSite replicas. In Rational
Team Concert 1.0, the Rational ClearQuest Connector supports one gateway per clan.
The deployment location of the Jazz server is not required to be co-located with the
Rational ClearQuest clan or the ClearQuest Gateway.

In our scenario, the Jazz server is managed by the CreditCheck team. It is advised to
consider mastership and set up Rational Team Concert users in Rational ClearQuest with
the appropriate mastership properties. The Rational ClearQuest query that is used to
select the records to be synchronized with Rational Team Concert should also be
configured with a filter that prevents records with remote mastership to be synchronized.

� A project area and team areas for each component team are deployed to the Jazz server.
Multiple projects can share a Jazz server that then serve multiple project areas. Each
component team manages their team area for their component.
74 Collaborative Application Lifecycle Management with IBM Rational Products

� Some component teams, such as the CreditCheck team, might have local build services.
Other teams rely on the central build services in the Account Opening project that is run by
the release engineer, Rebecca. Component teams can also decide to integrate with the
central build service, but take ownership of all aspects on managing and monitoring the
component builds.

Figure 3-18 View of the collaborative development platform deployed to support the Account Opening project

Requirement

Sketch

Request

Task

Activity

Build

Rational RequisitePro and Rational Requirements Composer
Rational ClearCase
Rational ClearQuest
Multisite

CQ Gateway
CC RTC View Server

Rational Build Forge

Rational Team Concert

Work Item

Rational ClearCase
Rational ClearQuest

Rational Team Concert

Task

Activity

Work Item
Chapter 3. A scenario for CALM 75

76 Collaborative Application Lifecycle Management with IBM Rational Products

Part B Act 1: Responding to a
change request

In this part, we introduce and describe the first act in the storyboard. The first act involves the
submission of a new request against a project iteration and the teams’ response of planning
the work in the current iteration. Two important domains are discussed in this part:

� Change management
� Requirements definition and management

Chapter 4, “The team responds to a requirement change” on page 79, provides information
about change management and requirements definition and management as they relate to
the scenario. Chapter 5, “Rational ClearQuest, Requirements Composer, and RequisitePro to
manage stakeholder requests” on page 115, provides details about the IBM Rational
products that are used to support this act of the storyboard.

Part B

Role-based guide: To understand how the content in this part applies to your role, see the
role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7 on
page 13.
© Copyright IBM Corp. 2008. All rights reserved. 77

78 Collaborative Application Lifecycle Management with IBM Rational Products

Chapter 4. The team responds to a
requirement change

In this chapter, we explain how the team responds to a requirement change. As discussed in
Part A, “Collaborative Application Lifecycle Management defined” on page 1, in the scenario
for Collaborative Application Lifecycle Management (CALM), the storyboard is divided into
five major acts. This chapter and Chapter 5, “Rational ClearQuest, Requirements Composer,
and RequisitePro to manage stakeholder requests” on page 115, constitute Part B, “Act 1:
Responding to a change request” on page 77, of the storyboard. Act 1 entails responding to a
change request. Most acts in the storyboard cover one primary discipline. Act 1 is unique in
that is covers both change management and requirements definition and management.

In this chapter, we introduce the following concepts:

� Change management and requirements definition and management
� A reference scenario for managing a requirement change
� How this scenario impacts subsequent scenarios in the life cycle
� Considerations for change management and requirements definition and management
� Considerations and variations on the scenario

Specifically this chapter includes the following sections:

� 4.1, “Introduction to change management” on page 80
� 4.2, “A reference scenario for responding to a change request” on page 105
� 4.3, “Considerations in change management” on page 112

4

Role-based guide: To understand how the content in this chapter applies to your role, see
the role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7
on page 13.
© Copyright IBM Corp. 2008. All rights reserved. 79

4.1 Introduction to change management

New market realities are driving changes in change management and requirements definition
and management. In this section, we discuss these market shifts and the impact on the
software development disciplines.

4.1.1 The changing change management market

The change management discipline that traditionally placed an emphasis on the
management of defects is undergoing a significant transformation. Several factors are driving
this change as discussed in 2.1.1, “Changes in the ALM market” on page 16. The most
important factor is the shift to focus on business outcomes. The business, development, and
IT operations teams must collaboratively deliver software that delivers value to the customer
and the bottom line. As such, there is increased demand on the development team to respond
to requests and deliver software releases. Introducing a high level of collaboration is critical
because development processes, such as change management, remain fundamentally
difficult due to shifting requirements, disconnected teams, and other real-time changes.

To respond to the business needs of cost containment and increased capacity, development
organizations continually seek and refine geographic distribution. These distributed teams
deliver new applications, maintain existing application, or refactor existing applications. The
challenge in change management is to have organizationally disparate team members from
the business, development, and operations, who are also geographically distributed, act as a
team that can quickly respond to new requests. Team members who are often distributed over
multiple continents and time zones require a new set of collaborative development principles
in change management to effectively form the software supply chain that connects
stakeholder requests to integrated components and applications.

To respond to customer needs, agile methods have emerged that emphasize the importance
of continuous stakeholder involvement and guidance. This interaction between the users and
the development team drives transparency into the change management workflow. This
interaction benefits both parties. The development team receives early and continuous
feedback, which contributes to the success and viability of the software they are producing.
The product owners, analysts, program office, and other cross-organizational stakeholders
know that their requests are taken seriously by the development team and have easy access
to project information to provide timely input.

All parties that are involved have a stake in the success of the project, and through constant
feedback loops, they obtain insight into the vocabulary, culture, and unique challenges that
the other faces. Managing requests and defects that impact each iteration becomes a critical
process in establishing this feedback loop. The team’s ability to deliver software that meets
the needs of the user improves in a timely and efficient manner improves with each new
release.

As teams encourage feedback from their stakeholders, the number of requests increases.
Therefore, change management involves actively triaging and sizing change requests to
assess their impact on iteration plans. In planning iterations, distributed teams must
orchestrate the collaboration that is needed to analyze and prioritize changes. Most change
requests require work to be completed by more than one team. Most requests require work
from both development and test teams. Other requests can involve additional work from an
analyst to detail requirements or can significantly impact the architecture.

To deliver complete functionality with sufficient quality, all of this work must be added to the
iteration plan, assigned and monitored. Additionally, regulatory compliance demands that a
80 Collaborative Application Lifecycle Management with IBM Rational Products

team demonstrates what work went into a change, how it was implemented, built, and tested.
Coordinating the work that is related to a single change request not only improves the team’s
ability to deliver high quality iterations, but can also help in responding to regulatory audits.

It is clear that today’s software development teams must take a shared responsibility in the
project success. Additionally, agile methods underscore the importance that team members
participate in many roles crossing the traditional discipline silos. Disparate tools, often
separated by disciplines, are no longer enough. People and work cross the traditional
boundaries of software development disciplines. A single team member might need access to
the requirements definition, the models, source code, build, and test cases. As such, the team
member might need to collaborate with the team members who produced these assets.

The role of change management along with CALM is to link the people, information, and tools
by using a streamlined and iteration-specific process. The change is understood and tracked
across team members, disciplines, repositories, and geographies. To do so, teams need
insight into the project status to enable them to respond to change and track project health.

All of these factors require development teams to communicate and monitor progress
throughout the development life cycle and to work together to find solutions that deliver
effective software shipped on time and on budget. To succeed at this orchestration of
workflows, teams, and assets, a CALM solution relies upon the following success indicators
as underpinnings to effectively develop a release of software, as discussed in 2.2.1, “Success
indicators” on page 30. Collaborative change management takes a central role in contributing
to successful CALM.

� Collaboration

Team members must collaborate when submitting, analyzing, elaborating, triage sizing,
planning, and delivering change requests. The emphasis here is on the team. A change
typically impacts more than one discipline, and as such, all disciplines are taken into
account when addressing a change request. By doing so, a team is better equipped to
orchestrate the work in delivering committed changes with sufficient functionality and
quality.

� Traceability

Team members must ensure that the results of their changes are traceable to the
originating request and ensure that the build delivers the changes. An understanding of
the delivered changes helps the test team to efficiently and thoroughly target their testing
effort. These activities connect the requirements definition, enterprise build, and change
management workflows.

� Distribution

Teams that are distributed must ensure a close connection to the software delivery chain
that integrates their changes into versions of the solution. These teams are likely to use
separate repositories to organize assets. It is critical that these assets are linked and the
team’s distribution does not break traceability.

� Automation

Teams can improve their performance and the quality of delivered applications by
automating parts of the change management workflow and by automating the
management of application life-cycle assets. Traceability adds significant value to the
governance aspects of change management, but requires consistency and discipline to
maintain. By automating the creation and maintenance of asset traceability, the team can
more effectively apply change management and leverage its value. Many of the change
processes can also be seamlessly integrated into team collaboration to alleviate the
burden of maintaining traceability across change assets.
Chapter 4. The team responds to a requirement change 81

� Continuous improvement

Teams seek strategies to continuously improve the change process. Conducting
retrospectives at the end of each iteration and adopting lessons learned will aid in process
improvements and reduce friction.

Change management workflows in collaborative development
The change management workflows in collaborative development support the teams’ need to
engage stakeholders in providing application requests, manage and predict the impact of
these requests, and ensure the delivery of the committed change in a timely manner, with
expected functionality and with sufficient quality. Change management has transformed into
workflows that consist of the following actions:

� Submitting change requests (often as stakeholder requests or release requirements)
� Approving (or rejecting) requests
� Planning and estimating the work and delivery of approved requests
� Monitoring the work and delivery of planned requests
� Signing off on the completed delivery of requests
� Guarding the delivery of unapproved changes

As exemplified in this scenario, a single software request impacts the design, development,
build, and testing of an application. Each role during the software development process
produces content that contributes to the design, implementation, and testing of that request.
Understanding and managing the amount of effort involved to satisfy each request is critical
for a team to deliver on time or under budget. The project manager must have confidence that
all of the requests have been analyzed, implemented, and tested with sufficient quality before
agreeing to deliver the solution. The challenge for software development teams is not in
creating a single asset (source code, requirement, or test case), but rather in understanding
the relationships between those assets.

The change management discipline spans the full scope of software development and
delivery, as a single change is tracked from the initial triage and planning, through the final
delivery of the release. In this book, we touch on change management as follows:

� In Part B, “Act 1: Responding to a change request” on page 77, we discuss the leading
part of change management by discussing requirements definition and management. That
is, we discuss the initial steps of change management where requests are submitted,
triaged, approved, estimated, and planned.

� In Part C, “Act 2: Collaborative development” on page 211, the change is implemented.

� In Part D, “Act 3: Enterprise integration builds” on page 313, the change is incorporated
into the solution build as part of enterprise build management.

� In Part E, “Act 4: Managing quality” on page 387, the change is tested as part of the
team’s quality management strategy.

� Finally, in Part F, “Act 5: Delivering the solution” on page 479, the change is delivered as
part of the solution delivery.

The chapters in which we discuss change management also exemplify the benefits of
ready-to-use Rational Application Lifecycle Management (ALM) solutions that provide
support for managing many of the challenges presented by Geographically Distributed
Development (GDD) and CALM. The Rational CALM solutions provide support for a
streamlined, Agility-at-Scale application development process that is both role-based and
process-driven.
82 Collaborative Application Lifecycle Management with IBM Rational Products

4.1.2 The changing requirements definition and management market

Teams in the software development market of today must be adaptive. Months of long
requirements analysis phases are becoming a thing of the past. Yet, requirements help
provide a foundation for change management. Requirements are the items generally in the
analysis discipline, providing information to a development team in order to create a
successful software application. Requirements are leveraged throughout the entire life cycle
from defining the solution use cases to the solution validation test cases. Requirements help
to answer such key questions as: “Do we have sufficient functionality with sufficient quality?”

Project failure is often indicative of poor requirements definition or management. Failures tied
to requirement problems include incomplete requirements or incorrect requirements. In some
cases, nearly half of the software development budget can be consumed by poor
requirements. Requirement problems that are found later in the cycle prove to be more costly.
A requirement problem found in the maintenance phase of a project might be up to 200%
more expensive than requirement errors discovered and addressed during an early phase of
the project. For example, requirements errors that are discovered during the Inception phase
are much less expensive to correct than those found during the Construction phase.
Figure 4-1 shows details of the phases of the Open Unified Process (OpenUP) and Rational
Unified Process (RUP).

Figure 4-1 OpenUP and RUP phases

Misunderstood or badly communicated requirements are a key risk factor in GDD projects. In
a 24x7 globally competitive market, the stakes involved in getting it right are higher than they
have ever been. However, teams can no longer risk “analysis paralysis.” The go-to-market
time is faster than in the past and requires organizations to collaborate with their stakeholders
and obtain constant feedback and iterative refinement of assets.

Therefore, organizations are looking for ways to improve the requirements process by finding
a balance for what is enough to get started on prototyping and then using feedback loops to
gain greater clarity as the project progresses. This desire to expedite the requirements
process often calls for leveraging different types of techniques to improve the communication
and definition of requirements.

The article “Examining the ‘Big Requirements Up Front (BRUF) Approach’” describes issues
that occur during requirements management, the importance of writing just enough detail
early in the requirements process, and collaborating with stakeholders to obtain feedback.
You can find the article on the Web at the following address:

http://www.agilemodeling.com/essays/examiningBRUF.htm

Inputs to requirements come in many forms such as business process sketches with
predefined key performance indicators, application sketches, storyboards, process flows, and

Inception Elaboration Construction Transition

Inception
Iteration(s)

Lifecycle
Objective
Milestone

Lifecycle
Architecture
Milestone

Elaboration
Iteration(s)

Construction
Iteration(s)

Initial
Operational
Capability
Milestone

Transition
Iteration(s)

Product
Release

Milestone
Chapter 4. The team responds to a requirement change 83

http://www.agilemodeling.com/essays/examiningBRUF.htm

diagrams. These assets are important because they aid in the translation of business goals
and objectives to requirements. Rich text and images live side by side to help analysts convey
information by using a rich and detailed language.

Requirements definition and management tooling must be adaptive to these changing
techniques. Solution teams no longer center their requirements processes solely around the
management of requirement information. It is no longer sufficient to capture and track
requirements across the life cycle. Organizations realize the value in capturing the “right”
requirements at the appropriate level of detail that is useful for the current phase of the
software development life cycle. Involving a larger set of business oriented stakeholders to be
involved in the requirements definition process is crucial. The need to align business and IT is
bringing definition techniques “front and center” as a key element to the requirements
process.

Requirements definition, also known as requirements development, is the identification of
needs that a project must satisfy from its many stakeholders. It is an iterative process where
we define and refine problem statements. We also conceptualize possible solutions and their
impacts, involving the understanding of business goals and then eliciting, defining, and
elaborating on the user and software requirements that align with those goals.

Requirements definition focuses on the elicitation techniques that are performed by a solution
team to better understand stakeholder needs and desires. With requirements definition
activities, teams can obtain constant feedback from stakeholders and refine requirement
assets. Sketches, storyboards, and process flows are quickly created, reviewed, and refined.
The meaningful designs are retained, and the others discarded. Effective organizations allow
their requirements definition process to support an environment where the team works with
stakeholders to learn, communicate, and share a common vision.

Creativity is the key to requirements definition. The process can be fast and loose until a
shared vision begins to stabilize. Requirement assets that are derived during the
requirements definition process are refined to describe capability statements to which the
system will conform. How the requirements are expressed depends upon the requirement
process that is followed by the software development organization.

In contrast, requirements management refers to activities that are undertaken by a product or
software teams in order to gather, store, track, prioritize, and implement those requirements.
It is the process of communicating and controlling a project scope while incorporating
changes at the same time. It describes the process where a common understanding of
requirements is agreed upon by the stakeholder and the development organization and the
requirements are tracked across the software development life cycle. Requirements
management provides a systematic approach to gathering, organizing, documenting, and
managing the changing requirements of an application. Where requirements definition is free
form and creative in order to capture the ideas, requirements management brings order and
organization to the final set that will be implemented.

The following key market trends are impacting requirements definition and management:

� The spreadsheet and document-centric requirement elicitation approach is no longer
sufficient to capture the breadth of information for requirements. These methods make it
difficult to identify and address requirements change, categorize requirements, and extract
meaningful information about the requirements. All too often, the big picture or story is lost
in a long list of minute details, and analysis paralysis sets in as teams struggle to organize
and prioritize long lists of line items.

� Better requirement elicitation and definition techniques are required to align business and
IT. Solution teams that do not understand the “business” or their stakeholders spend too
many cycles refining requirement content later in the development life cycle because the
84 Collaborative Application Lifecycle Management with IBM Rational Products

requirements do not address business problems. Or worse, the software might never meet
the needs of the user due to a lack of understanding. To meet the needs of users, the
business analysts must be empowered to capture and communicate their ideas to the
development team.

� Improved collaboration is crucial across the software development life cycle regardless if it
is between the customer and IT or within the solution team. All stakeholders in the project
must be on the same page and have a common vision. The team must design a system
that satisfies the request. The developers must implement the same vision that the
architect defined. Certainly the test team must test from the same set of requirements to
confirm that the implementation meets the original need. Without this common vision, the
solution team cannot build something that addresses the business problem.

� Process rigor depends upon the type of project. Software development projects and
processes come in all sizes. There is not a one-size-fits-all approach. Some projects are
amenable to agile techniques, but more rigorous requirement processes can be adapted
where required for other projects. The agile method places rigor through continuous
feedback between stakeholders and the team, collaboration, and requirements iteration,
where traditional attempts to obtain rigor are through process-driven approaches. CALM
tools must be flexible and allow for various organization types to be effective regardless of
whether the organization is using agile, iterative, or waterfall development methods.

� There is the desire to improve effectiveness of distributed teams. Teams are not always
co-located. If teammates are not in the same building, it becomes more crucial to provide
tools that support collaboration and clear articulation of the requirements.

� Organizations are moving away from a “silo” role-based approach in the software
development processes and moving toward activity-driven functions. Traditional role lines
are blurring. Team members are wearing more than one hat and performing many
activities across the software development life cycle such as requirements elicitation,
definition, and design techniques. In a software development market with two- to
four-month project schedules, a silo approach is ineffective due to wasted time in
transitioning information between roles. Expertise in a single discipline is no longer the
norm.

Effective teams collaborate in the requirements process and share information of the
requirement assets. The “collaborator” is the new role. In agile development, these
persons are referred to as generalizing specialists as referenced in the article
“Generalizing Specialists: Improving Your IT Career Skills” at the following Web address:

http://www.agilemodeling.com/essays/generalizingSpecialists.htm

Requirements and Collaborative Application Lifecycle Management
ALM focuses on the synchronization of the entire team and the handoffs that occur across
disciplines. Requirements are assets in CALM that are used across disciplines by many roles.
Although these assets can be used across disciplines, it is not good enough to hand off
requirements. Information that is provided must be articulated in a clear and concise
language.

The evolving IT development processes necessitate greater discipline across the software
development life cycle than traditional methods. This point is also true in the area of
requirements definition. During milestone reviews, quality and consumability of requirements
are real. The information that is provided by stakeholders (as requirements) is critical to the
development organization. The stakeholders must be able to express and prioritize their
needs. Conventional elicitation techniques often are inadequate to provide the depth of
information that is needed to drive the requirements process. Collaboration between
stakeholders and the development team must be supported through the life cycle as
illustrated in Figure 4-2 on page 86.
Chapter 4. The team responds to a requirement change 85

http://www.agilemodeling.com/essays/generalizingSpecialists.htm

Figure 4-2 Collaborative requirements definition and management

The requirements process begins with the definition of a need by a stakeholder. The
stakeholder has the opportunity to convey their business problem by using the language and
vocabulary of the business and its customers. Requirements definition and management
activities ensure that the business can capture and communicate their ideas to the solution
team, and at the same time, the solution team can learn the nuances and expectations of
their customer. This is the point where the business meets development. It is in the
stakeholders’ best interest to clearly articulate the need, and having the tools that capture the
rich detail and nature of the request facilitates that goal.

The stakeholders’ request is reviewed to assess if it aligns with the business goals and
strategy for the project team. If the request aligns with the strategy and can be contained
within a given iteration, the request is added to the iteration plan. See “Work management
and iteration planning” on page 89. The iteration plan contains a list of items that must be
resolved. Members of the solution team collaborate with their peers (project manager,
developers, analysts, and so on) as part of the planning process. As part of the planning
process, activities are created and executed upon for a given iteration.

Each person on the solution team plays a critical role or roles in implementing the solution.
Information defined by the stakeholder is used to complete activities across multiple software
disciplines. These activities can include additional elicitation techniques to provide a context
for the request when the request does not provide the “full picture” that is required to
implement a solution. In this case, the business analyst contributes to the effort by providing
context around the statement that is expressed by the stakeholder. Context is provided in the
form of a business process or application sketches, storyboards, models, and other rich text
content.

These kinds of activities allow an organization to capture the “details” of the business that
might not be included in the request. Requirements content evolves through these efforts. It is
a critical point as the business and solution team come together to create a common vision

Use
Requirements
Generate and

Execute Test Cases

Requirements Definition and Management in Action
Continuous collaboration using assets across a life cycle to deliver the solution

Foundation for
Solution

Problem to
be solved

Life-cycle
management

Alignment of
workArchitect

Business
Analyst

Analyst
Define and Manage

Requirements

Use Requirements
to Implement Solution

Identify Need and
Business Process

Visual
Model

Developer

Tester

Product
Owner

Stakeholder

Iteration Planning
86 Collaborative Application Lifecycle Management with IBM Rational Products

for the solution to be developed. Need statements are shared and discussed to ensure a
common understanding, and as such, they provide the foundation for the requirements
process. The team then creates a solution to address these need statements.

The analyst then organizes and manages the requirements. Management of the
requirements includes capturing important requirement descriptors such as priority, release,
origin, and others. Additionally, pertinent traceability information for related requirements can
also be captured.

Other team members who work with the analyst use the requirements to complete their
activities. An architect reviews the requirements and defines how an application will be
implemented to solve the stakeholder request. This information can be captured in the form of
design.

Developers use the requirement and design information from previous activities to implement
the solution. The developer now has an understanding of the following concerns:

� The business need and problem
� What is expected to address that need
� Potential designs or constraints that impact the implementation of the requirement

The design information can be newly defined or used from an existing asset. The solution
should address the original need, no more or no less, and be as simple as possible to resolve
the need.

The tester also uses the requirements. Requirements identify what should be tested. Their
testing confirms that the implementation meets the original stakeholder request. Functional
verification testing is an important form of testing. Test cases link to requirements. With this
traceability, a test team can determine test coverage (how many requirements without test
cases). Additionally testers can capture how many tests have been executed for a given
requirement. Some industries, such as the pharmaceutical industry, require that each
requirement has one or more tests.

Test organizations might conduct different types of testing. Some organizations perform
functional verification test (FVT) and system verification test (SVT). In other cases, a
combination of FVT or SVT and JUnit tests are performed. Regardless of the testing process
performed, the tests that are conducted will use requirements assets. The test plans that are
created align the functions in the system that must be tested. If a team is adopting a user
story or use-case driven approach, the scenario information that is captured helps identify
test-case information. Test coverage is verified by reviewing the requirements. A test team
can verify all function points, and scenarios are tested in a system.

A football analogy
Software development is a team sport. The business goal or objective in this case is to “win”
or to “score more goals” than the other team. The acceptable requirements, then, should
always support those goals. If not, the project manager throws them out.

Requests are the assets that are triaged, sized, and planned. The requirements add detail to
a request. Requests are the “plays” that the solution team executes upon. Requirements tell
what each player must do in that play (for example, run long, sweep right, or sweep left). The
project manager is the “captain” who assesses the situation on the field. This person must
evaluate the development situation. The project manager must coordinate and work with the
team so that they are adaptive and able to address change as they encounter it. The project
manager depends on the team to identify what items they can contain within a given iteration.

The development iteration is like the “football game” (referred to as “soccer” in the U.S.). The
cadence of the iteration is like managing the “clock” on the field. The project manager and
Chapter 4. The team responds to a requirement change 87

team must identify the length of the iteration and which requirements can be contained within
a given iteration. The project manager and team work together to execute delivery of the
appropriate requirements across several iterations. The successful delivery of a function
within a given iteration allows an organization to meet the “end game” goals that are defined
in the iteration plans. The end result is providing a solution that meets the stakeholders’
needs on time and on budget.

Continuing with the sports analogy, in team sports, everyone must work together and play
their part to win. Development organizations are no different than a sports team. The
development organization must understand the “vision” of the project and work together to
execute that vision. The team must work together and understand actions that must be done
to succeed. The team must use information that is available to them and effectively adapt to
change, to avoid chaos and friction within the team. If everyone works on different requests,
there is chaos. The team must work from the same set of stakeholder requests. The
requirements provide detail, while the original request provides the context. The request is
implemented and tested by using the requirements as validation and verification points.

The software development life cycle is like a football game. A football team is not steadfast in
all the plays it will execute up front. A set of potential plays are identified before the game.
However as the game evolves different plays are executed depending upon the situation.
Plays are adjusted as the game unfolds.

Development organizations are similar to a “football team.” They must be effective to adapt to
changing needs of their stakeholders in the form of requirements by using a change request.
Additionally, development organizations must be adept to the changing industry and changing
project. Development teams that practice iterative development, agile techniques, or both are
effective at adapting to changing needs. They break the development life cycle into
measurable chunks or iterations, much like a football game is broken into halves. The
development team is adaptive to change in that they manage requests into various iterations.
Additionally requirements are adapted as more information is gleaned.

Organizations that are more waterfall in nature are often bound by decisions made early in
the project. These organizations are not as effective to easily address change as the project
unfolds. When viewed from the perspective of this sports analogy, you can make the
association that waterfall requirements analysis is similar to a coach selecting a set of plays
before the game and sticking to them. Changing the game plan is more measured in that the
requirement change is controlled through a change request process.

4.1.3 Collaborative development blueprint and change management

Collaborative development is a core component of the total ALM blueprint for software
development and delivery. See 2.1.2, “A CALM blueprint to streamline software delivery” on
page 24. A collaborative development blueprint, as seen in Figure 4-3 on page 89, is provided
to define the key areas of this space. Support for change management is a key component of
collaborative development as it impacts iteration planning, work management, and team
health and transparency. In this section, we discuss the following parts of the collaborative
development blueprint:

� Iteration planning and work item management
� Team health, transparency, and collaboration

The rest of the collaborative development blueprint is covered later in this book. In this
section, we discuss only those aspects that are related to change management. The source
code management part, and further details about work management and team health, of the
collaborative development blueprint are discussed in 6.1.2, “Collaborative development
blueprint” on page 217.
88 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 4-3 Change management blueprint

Work management and iteration planning
Development projects that are adopting an iterative development approach organize the
project into a sequence of phases or iterations. For example, the open source OpenUP
defines four phases: Inception, Elaboration, Construction, and Transition. Each of these
phases has one or more iterations.

Iterations focus the software development team on delivering and demonstrating working
code at frequent iteration milestones. The number of weeks that are assigned to each
time-boxed iteration can vary depending on the project size. Typically iterations are four
weeks, although some teams find success by using two-week iterations, while other teams
stretch to six-week iterations. The goal of having short iterations is to create an environment
where the team is focused on high-value work with no room for non-essential work or
bureaucracy. Using short iterations creates a healthy team focus, ensures the work is of value
to the solution stakeholders, and reduces risk by demonstrating working code at the end of
every iteration.

While the length of each iteration is fixed, the scope is not. This means that work will be
pushed off the iteration stack and replanned to the next iteration. This fluidity of scope is a
core part of the change management workflow as supported by the blueprint.

Source Code
Management
Workspaces
Snapshots
Baselines
Change sets
Suspend changes
Component
Streams
SVN bridge
Bridges and connectors

Work Items
Management
Iteration planning
Attachments
Audit trails
Customize
workflow
Bridges and connectors

Build
Management
Define builds
Continuous
integration
Remote
build server
Bridges

Team Health
Transparent
development
Team central
RSS/Atom Feeds
Instant messaging
Process enforcement
and customization
Dashboards
Reports
Role-based
permissions

Hundreds of users
Deep tool or
programming
language knowledge
Talks technology
language
Distributed teams

Collaborative Development
Focus on development team productivity
Enables distributed development
Flexible support for development processes
Manage change in the application life cycle

Team first
Transparency
Collaboration
Integration

Developer

Business value

Team Collaboration
View iteration plans and validate deliverable time lines
Create, update, query, and view disposition of development tasks
Overview of the resource utilization
View personalized dashboards

Web-based UI
Knows
application
domain
Talks business
language

Contributor

IBM and Partner Ecosystem

OpenUP: To learn more about OpenUP, see the following Web address:

http://epf.eclipse.org/wikis/openup/
Chapter 4. The team responds to a requirement change 89

http://epf.eclipse.org/wikis/openup/

Iteration planning, estimation, and progress tracking are centered on items of work. An
iteration plan is created by fitting top-priority work items within the time-boxed iteration. Work
items can be organized by themes, plan items, and stories. Change requests are handled as
work items. Each request represents a work item that must be triaged by the team. Estimation
techniques are used to plan the stack of work items, but the estimates have an acceptable
uncertainty due to the lack of detail at the project and iteration inception. This iteration
planning is repeated for each iteration within a release.

Practices in work management
In a fast paced iteration, there is little time for top-down assignment of work by using Gantt
charts. Instead, when a team decides to take on a work item, the work is assigned to one or
several team members. Each individual team member is responsible for managing their
workload. They commit to a reasonable amount of work for the iteration and work with the
team to resolve work overload. Hence, software development teams self-organize and
determine the work that must be done. This work is reflected in an iteration plan that is
directly tied to the teams work assignments.

The project manager uses the team performance from previous iterations to ensure that the
team commits to a reasonable amount of work for the iteration. The transparency of real-time
information about the iteration plan, project health, and team member load is a key aspect to
the success of self-organizing teams and is supported by the collaborative development
blueprint.

Just as a project goes through a life cycle, iterations also go through a life cycle but with a
different focus for work management depending on whether the iteration is in the first versus
the last week of the iteration. Consider the following examples:

� Iteration planning

The team starts each iteration by collectively selecting and organizing the work for the
iteration.

� Weekly builds

The team strives to stabilize the changes, so that weekly integrations can be delivered to
the software supply chain, that is, the solution integration.

� Stabilizing the iteration release

The team applies a stricter change control as the iteration release is stabilized.

� Iteration retrospective

The team learns from the iteration, and the plan process changes for the next iteration.

The collaborative development blueprint highlights the need for the workflow customization
and process enactments to be an integrated capability in work management and iteration
planning.

Managing change requests
All work begins with some form of request. The request describes a need identified by any
stakeholder on the project. A request is designed to allow anyone to submit petitions to the
team, such as a request for a new feature (enhancement) or a defect report. However,
requests are not limited to just features or defects. A request can come in any type defined by
the project team by using process customization. For example, a project lead might receive a
request to find additional members for the development team.

Stakeholders periodically check the status of the request and respond to any questions or
comments from the team as the request is triaged, prioritized, planned, estimated, and
90 Collaborative Application Lifecycle Management with IBM Rational Products

delivered. The tight collaboration between stakeholders and development team is key in
collaborative development.

The categorization of requests provides an indication of which team is impacted. That team
reviews the request and determines if and when it can be addressed. If the request will be
addressed in a particular project, a work item is created for that project and associated with
the request, as discussed in the next section. Anyone who is looking at a request can see
which work items are needed to fulfill it. Anyone who is looking at a work item can see which
request it is intended to complete.

A request has a defined life cycle that governs its workflow. For example, a request can be
approved, withdrawn, or rejected. When in the rejected or withdrawn state, stakeholders can
decide to re-open the request. The Rational ALM solution, which implements the collaborative
development blueprint, uses various repository objects to realize change management. In the
ClearQuest ALM solution, a new record type, called ALMRequest, maps to a request. Also, a
family of record types, called ALMTasks and ALMActivity, map to work items. The Rational
Team Concert environment uses “work item.”

Assigning and aligning work
Any one can submit a request. However, not all requests are completed. Each request can
drive work items for one or more team members. Understanding the amount of work that is
involved is essential for successful iteration planning. For example, a defect impacts a
developer and tester, while a new feature can impact an analyst, architect, one or more
developers, the release engineer, and one or more testers. The ability to trace work items
back to the originating requests helps the development team understand when all of the work
related to a single request is complete. This is particularly important when the impacted team
members are using different tools to manage their work.

The request is purposely defined outside of the context of a project. After all, requests come
in many forms. Some requests apply to the current solution under development, while others
apply to the version in production, and others seek enhancement to a future release.

Work items, however, are assigned to each of the impacted team members in the context of a
project. A request that is found in a previous version of the software might be addressed in the
project that is currently under development. In some cases, many tasks might be required to
complete a single request. Alternatively, a single request might be addressed in more than
one project. Resolving a request in most cases involves multiple disciplines. For example, the
work needed to satisfy the request might impact the development and test teams. Therefore,
work items that are created for both development and test are added to the iteration plan for
the current project.

As noted previously, work items are represented in the ClearQuest ALM solution as task and
activity records. When using the ClearQuest ALM solution, a task is an artifact that commits a
team to act on a request within the context of a specific project. A task commonly requires
more than one person to complete all of the work involved.

Therefore, activities collectively complete a task. Multiple activities can be associated with a
task. A testing task provides a good example. A single test task can involve updating the test
plan, creating test cases, creating test scripts, and running the tests. Alternatively, the task to
implement an enhancement highlights the need to assign activities to across disciplines, such
as assigning work for design, implementation, and testing.

In Rational Team Concert, a work item can have parent/child relationships to other work items
to link work items. For example, a work item with child work items is similar to a ClearQuest
ALM task with child activities.
Chapter 4. The team responds to a requirement change 91

The ability to track what work is assigned and completed for each request helps the project
teams assess their progress and determine if an additional request can be absorbed into an
iteration.

Assessing results
While the request describes the identified need and is owned by any stakeholder on the
project, work items track the work that is assigned and must be completed in order to resolve
the request. This allows you to compare the number of requests to the number of committed
work. This also allows project managers to see how much work is involved in each request
and how much of the work is completed or outstanding.

Additionally, there are times when a single request may impact more than one project, or
iteration. This separation of requests for work and the commitment to do work allows each
impacted project to manage the work as it relates to satisfying the request in that specific
project context.

The capability to align work, as part of iteration planning and tracking, is essential as the
completion of a request. Hence a request is not completed until all work, in the form of tasks
and activities, or work items, are complete. The team is done when all work related to the
committed requests is complete.

Work can be assigned to iterations of the project. This allows the project team to balance their
workload across iterations. Health metrics, in the form of dashboards, team centrals, reports,
or queries, can be created to see how the work is distributed across the team. This insight
helps the project manager to spread the workload evenly across the team members and
avoid critical path situations. Charts also help the project manager ensure that all work is
assigned.

Team health, transparency, and collaboration
Transparency is a fundamental quality for team adopting Agility at Scale. Team health and
team transparency empower the organization with self-direction in order to respond
effectively and rapidly to project challenges and changing project needs. A self-organizing
team has the authority to configure the work that it will perform and the responsibility to do
that work in the way that it chooses.

The capabilities of team health and team transparency enable teams to assess iteration
status, workload balance, and over commitments. Team health and team transparency enable
team members to act on work items as needed by the team, rather than only have work
assigned to them by their manager. The work management, as discussed in the previous
section, that provides triage and direction still remains essential to ensure that the project
remains focused on delivery commitments, but with transparency and self-direction.

The Rational CALM solution for implementing the collaborative development blueprint uses
various platform capabilities to realize team health and team transparency.

Rational Team Concert provides team health and team transparency in a completely
transparent team environment based on the collaborative capabilities in the IBM Jazz
products. Team members can use Iteration Plans, the Team Central view, MyWork view, RSS
Feeds, Chats, Notifications, Dashboards, and extensive querying and reporting capabilities.
In the Rational ClearQuest CALM solution, team health and team transparency are provided
by using in-context collaboration, notifications, reporting, and queries.
92 Collaborative Application Lifecycle Management with IBM Rational Products

4.1.4 Requirements definition and management blueprint

To address the needs of the market, Figure 4-4 illustrates the IBM Rational requirements
definition and management blueprint. In this blueprint, the requirements effort revolves
around the need. A need is defined in the form of a request. By understanding the need
expressed by a stakeholder and the business problem, a solution team can implement a
solution to address the need.

Figure 4-4 Requirements definition and management blueprint

The requirements definition focuses on the elicitation techniques that are used for capturing
high level requirements and how more detailed requirements are derived from those
statements. Requirements management focuses on how requirements content is used
throughout the software development process. Requirements assets are organized in a
central repository and leveraged by the solution team throughout the CALM life cycle.

Requirements definition and management includes the following components: manage, plan,
define, organize, and evaluate. A CALM solution should allow for a repository to define,
manage, and organize the requirements effort. See Figure 4-4 for detail.

� The product owner and team can review and ensure that the stakeholders’ need is
resolved by an implemented requirement.

� Analysts and stakeholders have the ability to obtain a better understanding of the business
through the capture of storyboards and process models. This information supplements the
need and provides context.

� The requirements become drivers for project planning activities.

� By having all of the requirement assets at their fingertips, the solution team can leverage
the requirements.

Requirements Definition and Management
Engage business stakeholders in the requirements process
Streamline management activities through enriched requirements
Establish requirements-driven design, development, and testing
Control the planning, status, and revisions of requirements

Align business and IT
Deliver the “right”
requirement
Manage change and
prioritize requirements

Business value

Analyst

Quality
Management

Bus.Process
Management

Collaborative
Development

Portfolio
Management

Integrated Requirements Management

Clearly articulate
requirements
Perform analysis
activities

Define
Elicit requests
Obtain context for
requirements
Validate, detail,
define, and
document

Plan
Align to portfolio
Define requirements
management
strategy
Prioritize

Organize
Identify trace
relationships
Verify requirements
Impact, gap, and
coverage analysis
Iterative refinement
Address change

Evaluate
Obtain
measurements for
project health
Perform
retrospectives

Contributor

Focused
collaboration
Clearer
communication
Validate content
Verify status of
business request

Collaboration
Shared view of problem definition and proposed solution
Express requirements via simplified techniques
Involve stakeholder in reviews

IBM andPartner Ecosystem
Chapter 4. The team responds to a requirement change 93

� The development, test, and documentation organizations leverage requirements content
as a foundation to support architecture and development, test, and documentation
activities.

Requirements definition and management
Integrated requirements management starts with requirements definition and management,
which coordinates the disciplines of requirements planning, definition, organization, and
evaluation. An integrated requirements management system provides a repository for
managing and organizing the requirements effort. By placing all assets in the requirements
management system, the development team has a clearer indicator of their progress.

Requirements impact the rest of the disciplines in software development. Requirements are
linked to requirements plans, sketches, and storyboards, and business process sketches help
to articulate the details of the requirement included in the plan. They are organized and traced
in the context of the plan. Plans are baselined to capture their content at a particular point in
time. Requirements are implemented and tested. Defects are reported and linked back to the
requirements. Reports become much easier to create and manage.

Plan
As mentioned earlier, requirements are an important part of the project planning activities.
Planning activities can be separated into two areas:

� Alignment to a portfolio or business goals
� Defining a requirements management strategy

Both of these planning activities use requirements as inputs to planning decisions. However,
the activities performed within them are different. All aspects of project planning is not
discussed here. For more information, see “Assigning and aligning work” on page 91.

Aligning to the portfolio
Alignment to a portfolio simply identifies the agreed upon list of needs that will be fulfilled
within a given release. Planning activities can vary for organizations depending on the
software development process that is followed. Just as shoes come in many sizes, so do
organizations, and their planning processes can also vary. In this section, we present some
examples for organizations to consider for planning.

Large enterprise organizations can use a program office to help review and filter requests and
identify a list of needs that align with a yearly strategy. Only these requests are directed to
development organizations to implement. This organization uses a top-down approach.

An agile organization is different. The team works with the project manager to define the
planning activities as mentioned in “Work management and iteration planning” on page 89.
Such organizations use a bottom-up approach. In these organizations, leads or stand-up
meeting masters serve as a team liaison. Prioritized requirements are reviewed and assigned
to iterations.

Other organizations might combine agile and larger scale planning approaches. In this
approach, requirements are aligned to an overall project plan for the solution. The project plan
might identify four- to six-week iterations for the larger solution as a whole. In this example,
smaller component teams might adopt agile approaches, follow two-week iterations, and
deliver functions into the larger solution iteration.
94 Collaborative Application Lifecycle Management with IBM Rational Products

Regardless of the organizational type, ALM tooling and processes should support portfolio
planning activities. Here are some questions to consider for requirements planning:

� As a stakeholder or customer, you are concerned with the following information and
anticipate that planning activities should provide this information:

– What are the requirements or set of requirements that implement your request? That
is, has it been considered in scope for an iteration?

– What is the business priority of your request?

– In which iteration or major release will your request implemented?

– If your request has been considered in scope for an iteration, what is the requirement
that will implement your request?

� As a project lead, you are concerned with the following information and anticipate that
planning activities should provide this information:

– What is the given status of the backlog? That is, is the request in the backlog
considered in scope for an iteration?

– Do any of the requests require reprioritization and validation with the customer or
stakeholder for the iteration?

– Which requirements must be removed from the current release to accommodate these
higher priority requirements?

– Do you need to obtain additional information from anyone to set context on the
requirements?

– Is the request mapping to themes for the iteration? Additionally, are requirements
mapping to themes as well?

– Do you need to work with anyone to address risks and define mitigation strategies?

– Are any items blocking progress?

– Who will collaborate from a pair-programming perspective to achieve continued
progress?

– What is the quality of the iteration thus far? That is, are the requirements that are
implemented and coded passing?

– Is there more work that needs to be completed?

� As a team member, you are concerned with the following information and anticipate that
planning activities should provide this information:

– What is the backlog of requests that must be reviewed so that your team can help
provide guidance of what might be contained in an iteration?

– What are the themes for the release so that you can help identify requests in the
backlog that map to a theme?

– What is the list of work items that you must complete and by when?

– What additional information is available regarding this work item?

• What is the request that initiated this work item?
• What requirements information provides context for the request?

– Do any items require your input?

– Are there blocking issues that require mitigation in order to address a requirement for
an iteration?
Chapter 4. The team responds to a requirement change 95

Defining the requirements management strategy
The requirements management strategy defines how requirements are managed for a given
release, iteration, or project. During project startup, you must answer these questions: What
are the factors that affect how requirements are managed, and what is the requirements
process followed by an organization?

Organizations must identify basic process requirements for a project. These activities might
entail agile development by nature or more rigorous methods if the organization aligns to
Capability Maturity Model Index (CMMI) or International Organization for Standard (ISO)
standards. The intention for process definition is to identify just enough process so that team
members and stakeholders understand and agree upon the information that is conveyed for
requirements in a project. If a team is following the RUP, this information is typically captured
in a Requirements Management Plan.

The following questions are a subset of probable questions to ask at the beginning of a
project:

� What is the requirement process that will be followed in the project, because this decision
will impact other decisions?

– Will the team follow iterative, agile, or waterfall development practices?
– What are the implications of the process choice?

Depending on the type of process that is followed, the kind of requirements captured,
project planning, reviews are all impacted.

� What are the pertinent types of requirements that must be captured in the projects?

� What kind of information is expected from a stakeholder and in what form? For example,
should requirements be defined in the form of a need statement, user story, and so on?

� What are pertinent categories for further refining requirements?

� Are any traceability relationships required between requirements or other assets across
the software development life cycle?

� How will progress, that is the implementation of the requirements, be measured?

� What review mechanisms will be used for validation of requirements, and what verification
or acceptance criteria might occur?

� Are deliverables required for the project?

Prioritizing
Identifying the importance of requirements is key to the requirements process. Prioritization of
the requirements aids in project planning activities to be completed in later portions of the
software development life cycle. Prioritization helps a solution team assess which functional
elements must be in a release, where other functions might be nice to have.

Define
As mentioned earlier, understanding the needs of stakeholders and their business process is
critical in the requirements process. Different types of activities can be performed for
elicitation and definition. A CALM solution should support these activities.

Tip: You can find examples of the usage of Requirements Management Plans in Rational
Method Composer.
96 Collaborative Application Lifecycle Management with IBM Rational Products

Eliciting requests
Requests allow a development organization to understand stakeholder needs. They are a
fundamental piece of the requirements process because they provide an understanding of the
business problem that must be solved.

Obtaining context for requirements
The requirements definition process has the following fundamental components as illustrated
in Figure 4-5:

� Requests
� Rich text documents
� Business processes
� Business objectives
� Glossary
� Prototypes
� Storyboards and application sketches
� Text-to-visual transformation
� Use cases

Although not all of these components come into play on every project, a combination of them
makes sense for all projects.

Figure 4-5 Integrated requirements definition and management - Requirements definition

Requirements Definition

Focuses on elicitation
techniques to drive an
understanding of the
business.
Offers various techniques
to elicit, discover, and
specify requirements.
Validates thoughts to aid in
the definition of better
requirements.

This concept responds to the evolution of our customers' requirements processes

Requests
(The need)

Storyboards
and application

sketches
Prototypes

Glossary

Business
processes

Business
objectives

Rich text
documents

Use cases

Other
techniques

Collaboratively elicit, capture,
elaborate, discuss, and review

requirements by using a variety of
techniques, fostered by
best-practice guidance

Requirements Definition

Integrated Requirements Definition and Management

• Searches and filters on requirements attributes
• Traceability between related requirements and other artifacts
• Impact and coverage analysis

Requirements in Management
Chapter 4. The team responds to a requirement change 97

The fundamental components to the requirements definition process are explained as follows:

� Rich text documents

Rich text documents can be used throughout the requirements elicitation process. For
example, an analyst might conduct interviews to obtain a better understanding of the
customer’s business. Information obtained from the interviews is key to providing context
for defining requirements.

� Business processes

Understanding the business is a key element to the requirements process. A good
understanding of business processes is important for building the right systems. Capturing
a current or “as-is” business process and later evaluating it to define a future or “to-be”
business process allows teams to define requirements that support the “to-be” process.
The “to-be” process, in turn, supports the business goals and objectives. More value is
added to the solution if information is captured about people’s roles and responsibilities,
as well as definitions of what items are handled by the business as a basis for building the
system.

� Business objectives

A business objective is a need that must be satisfied by the business. Business objectives
describe the desired value and are used to plan and manage the activities of the business.
All requirements should support at least one business objective.

� Glossary

Creating a glossary and capturing terms helps provide an understanding of industry
specific terms and so on. These terms are important for the requirements process, so that
all stakeholders involved in the development process can understand the relevant terms.

� Prototypes

Prototypes provide a working example to illustrate areas of design, features, and so on to
gather early feedback from stakeholders.

� Storyboards and application sketches

Storyboards are a sequence of sketches or wire frames that define scenarios based on a
series of tasks. They allow for multiple threads and depend on the path that the user takes
through the system. Application sketches provide a high level view of a specific scenario.
Both provide a visual context of a GUI.

� Other techniques

The capture of written process descriptions and transference into business flow diagrams
is helpful in the requirements process. Textual transformation to a process flow diagram
provides a visual representation of the information.

� Use case

A use case is a sequence of events that provides an observable result to an actor. Use
cases are helpful because they provide a “story” or scenario. They capture the functional
requirements of a system.

� Further detail requirements

This information is derived from a stakeholder’s needs. Often times more detailed
requirements, such as business rules and nonfunctional requirements, provide pertinent
supplemental detail that supports higher-level requirements defined earlier in the
requirements definition and management process.
98 Collaborative Application Lifecycle Management with IBM Rational Products

Validating, detailing, defining, and documenting
Request information and other business details are validated by the solution team to ensure
that they understand the stakeholder’s business. After this understanding is validated,
analysts might detail and further refine requirements to be used by others in the application
lifecycle. As part of the validation process, an analyst may ascertain if additional information
must be captured in order to accommodate the request.

Considerations
The following questions and comments are a subset of probable questions and comments to
consider as a result of the definition process:

� Are the need statement and business problem understood? If they are not understood,
what kind of elicitation and definition activities might occur to drive an understanding of the
business (sketches, storyboards, and so on).

� Has the request been validated? Is there an agreement on the priority of the request?

� Have supplemental detailed requirements been captured to augment higher level
requirements as needed?

Organize
Often the focus in requirements processes in the past has been on the management aspects
of requirements. Requirements are captured, organized, and traced to requirements and
other assets in the software development life cycle. Traceability relationships often have
become behavioral where teams define relationships just to have them. This type of activity, if
not measured, can become burdensome to some organizations and not necessarily provide
value. The true intention of setting traceability is to provide an understanding of requirement
relationships and potential impacts for change.

Bob, the analyst manager, defines the following feature-level requirements that have other
requirements that are traced to them:

� 1...n use cases that development will implement, which trace back to the feature
� 1...n test cases that test teams will validate

Any change at the feature level creates a suspect link down the chain, so that development
and test can react to the change and update assets. Suspect links identify requirement trace
relationships that are impacted from a requirement change. If a requirement changes on
either side of the trace, the relationship is marked suspect.

It is not enough just to have traceability without a defined process to monitor and address the
change. Otherwise, the trace relationships and change impacts are not worth much. Teams
must build a process around trace relationships that are identified. Stakeholders downstream
must monitor for change and react.

Other types of organizational approaches entail capturing many types or kinds of
requirements. Details can be depicted through technical decomposition of requirements. As
mentioned in 4.1.4, “Requirements definition and management blueprint” on page 93,
organizations should identify enough detail for the kinds of requirements that are captured,
the trace relationships that are set to provide value to the stakeholder, and other persons who
are involved in the requirements process. Organizations that adopt agile and lean approaches
focus only on those activities that provide value to the customer. If traceability relationships do
not provide value to the customer, these teams might choose to implement minimal
traceability. A CALM solution should be flexible enough to support detailed process-centric
approaches to organizing requirements to more Agility-at-Scale-oriented processes.

In the sections that follow, we describe different activities that occur during the management
of requirements. These activities help in the refinement of requirements as a solution team
Chapter 4. The team responds to a requirement change 99

has a better understanding of requirements. The management activities help provide a
clearer perspective of the objective. The intention to perform these activities is to make the
requirements more consumable across the software development life cycle. These
components, as illustrated in Figure 4-6, describe management activities and include
attributes, traceability, and impact and coverage analysis.

Figure 4-6 Integrated requirements definition and management - Requirements management

Identifying trace relationships
As the software development life cycle proceeds, more information is obtained about
requirements. As a better understanding of the problem to be solved is gained, how the
problem will be solved and additional information for the requirement can be captured. Some
of this information might include complexity, iteration or release, and other elements.
Attributes provide a mechanism to categorize requirements. Categorization of requirements
aid in project planning activities and help provide pertinent details of requirements to the
solution team.

Traceability is also helpful in organizing requirements. It identifies pertinent dependency
relationships between requirements across the software development life cycle. Traceability
also aids in describing how requirements are related to other assets across the software
development life cycle including test, design, and so on. The main goal for setting traceability
relationships is identify which requirements are related to one another and to perform
accurate change impact analysis. Trace relationships between requirements help identify the
origin of any requirements; from a design perspective, the elements that are realized from
higher level requirements; other assets that leverage requirements (that is, test assets); and
the changes or defects that impact requirements.

Requirements Management

Provides a common
understanding of
requirements between
stakeholders and
development
Categorizes requirement
information
Addresses change

This concept responds to evolution of our customers’ requirements processes

Requests
(The need)

Storyboards
and application

sketches
Prototypes

Glossary

Business
processes

Business
objectives

Rich text
documents

Use cases

Other
techniques

Collaboratively elicit, capture,
elaborate, discuss, and review

requirements by using a variety of
techniques, fostered by
best-practice guidance

Requirements Definition

Integrated Requirements Definition and Management

• Maintain consistency of project
• Traceability between related requirements and other artifacts
• Impact and coverage analysis

Requirements in Management
100 Collaborative Application Lifecycle Management with IBM Rational Products

Verifying requirements and impact, gap, or coverage analysis
Verification activities are crucial in requirements management. These activities help teams
ensure quality. Additionally, the team can verify that the software fulfills requirements, and
only those requirements expressed.

Impact, gap, and coverage analysis
Traceability is also helpful with requirements change management as it identifies how
requirement changes can impact a related requirement or requirements. These changes can
impact the software development life cycle, such as the resources, schedule, and so on.
Impact analysis is helpful when reviewing relationships between requirements. A CALM
solution should allow a team to easily identify what has changed and anticipate the impact of
that change. For example, in Figure 4-7, if the stakeholder request changes, it might have an
impact on the feature that is traced to it.

Figure 4-7 Traceability and impact analysis

Stakeholder Request Requirement 1

Feature Requirement 4

Use Case Requirement 24

Traceability and Impact Analysis

The ALM solution should identify
That there is a change that might impact
traced requirements. In this example
a change to a stakeholder request
Can impact how the feature is
delivered to implement the request.

If the stakeholder reuest
changes, this change might
impact the feature that is
traced to it.
Chapter 4. The team responds to a requirement change 101

Gap analysis information is also helpful as team members are able to discover missing
relationships where anticipated. If gaps exist, there is potential scope creep. In the example in
Figure 4-8, there is a feature requirement that is not traced to a stakeholder request. It is
more important than ever to control scope creep with lean development and limited resources
to deliver solutions.

Figure 4-8 Traceability and gap analysis

Stakeholder Request Requirement 1

Feature Requirement 4

Use Case Requirement 24

Traceability and Gap Analysis

The ALM solution should identify
that there are traceability gaps for
requirements. In this example, there
is a feature that is not related to a
stakeholder request. This missing
trace relationship might be indicative
of scope creep.
102 Collaborative Application Lifecycle Management with IBM Rational Products

Coverage analysis is also helpful for teams. Information should be usable across the software
development life cycle. Coverage analysis identifies how assets are related to one another
across disciplines. For example, in Figure 4-9, the feature requirements are leveraged in a
test plan, identifying the function that will be tested.

Figure 4-9 Traceability and coverage analysis

Iterative refinement
As the solution team gains further understanding of how to build a solution, the requirements
will become more detailed. Abstraction of the requirements naturally occurs as the context for
the requirements is obtained.

Accommodating change
Requirements definition and management is impacted by change, just like other disciplines.
Change is inevitable in the requirements life cycle. It is important to note how teams address
change and incorporate it into their requirements process. This section highlights information
about change management and its relationship with requirements. Organizations must
identify a change management strategy for requirements and ensure that the tooling that they
use supports those changes.

Change requests should be reviewed just like any other type of request. A change request is
something that changes the scope for requirements after the scope has been agreed upon.
The change request must be reviewed to assess if it makes sense to incorporate the change.
When reviewing the change request, it is important to determine the type of request. The kind
of change request might have a different impact upon the requirements process. If the change
is simply a “document” change for a type of formal deliverable, the process to implement the
change is likely less stringent.

Traceability and Coverage

Stakeholder Request Requirement 1

Feature Requirement 4

Cross discipline traceability
between test and requirements
identifying test coverage

Requirement Assets

Test Case

Test Plan

Test Case

Test Case

Test Case

Test Assets
Chapter 4. The team responds to a requirement change 103

Another type of change can be a content type of change. A content change is something that
can simply change the language that is used to express a requirement. A potential example is
the requirement text must be rephrased to be better understood. For example, the original
requirement indicates “provide a fast search mechanism.” The rephrased requirement states
“provide the ability to search on customer information and provide a result set within 5
seconds.”

The last type of change is a functional change. A functional change is something that impacts
the scope of requirement content to be delivered in a solution. The functional change might
entail the addition of a new requirement or removal of a requirement to an iteration. Often
times when changes are incorporated, concessions must be made in order to include higher
priority requirements and descope lower priority requirements.

Considerations
The following questions and comments are a subset of probable questions and comments to
consider as a result of the organization process:

� Categorize requirements to help in project planning activities and to help provide
supplemental information about the requirement. Consider the type of metrics that must
be captured about requirements for planning activities.

� Depending on the requirements process followed, identify key trace relationships for
different types of requirements.

� Use traceability as needed as part of the verification process to ensure implemented
requirement resolve original need statement.

� Use impact analysis to help define how requirement change may impact other
requirements, or potentially project planning activities.

� Identify requirement gaps to ensure that neither of the following conditions exist:

– Missing requirements where requirements should be defined
– Scope creep, new requirements added late in life cycle without identifying the impacts

Only requirements that address original need statements should be included.

� Perform coverage analysis for use requirements in other portions such as the test life cycle
to ensure that requirements are tested.

� Identify a change request process and ensure that tools support the process. Obtain an
understanding of which requirements will be impacted before implementing the change.

Evaluate
Identifying the results of a project is important to the requirements process. A solution team is
considered effective if the correct solution is delivered on time and on budget. Performing this
task is always a challenge, and there is always room for improvement. Lessons learned might
be applied to project planning activities for future projects.

Obtaining measurements for project health
As part of the assessment process, metrics capture is important. Metrics capture is described
in more detail in Chapter 14, “Delivering and measuring success in Application Lifecycle
Management” on page 533. As part of the project startup or planning activities, organizations
must identify the kind of measurements that are important in regard to the software
development process.

Performing retrospectives
The same holds true for capturing information about project health. This type of information
can also be used for retrospectives. Metric information and project health details can help
project teams improve upon their requirements process, so that they are more effective.
104 Collaborative Application Lifecycle Management with IBM Rational Products

4.2 A reference scenario for responding to a change request

In this section, we provide an overview of the steps taken by the project team to address
change request. In Chapter 5, “Rational ClearQuest, Requirements Composer, and
RequisitePro to manage stakeholder requests” on page 115, this workflow is demonstrated in
the Rational products.

This scenario provides an introduction for the scenarios to come. The requirements that are
captured here provide the building blocks for other acts in the book. Although there are many
paths that the “Respond to Change” story may cover, the story described in the following
pages is a simple one. A new request is entered in the system and is reviewed, prioritized,
sized, and scoped to implement within a given iteration. The team executes against the
iteration plans to address the need identified in the request.

Additional scenarios and best practices are covered in the 4.3, “Considerations in change
management” on page 112. The scenario begins when Bob is notified of the release and
reviews it for accuracy. Figure 4-10 shows a glimpse of Act 1: Responding to a change
request.

Figure 4-10 Act 1 - The team responding to a new change request

The requirements definition and management story begins with the product owner. This
scenario begins when Bob reviews the iteration plan and realizes that the user interface
branding is not included in the iteration. A new request is entered for the UI branding.

This act includes the following scenes:

� Bob submits a request.
� Patricia updates the project iteration plan.
� Marco updates the development iteration plan.
� Tammy updates the solution test plan.
� Patricia confirms the project iteration plan.
� Bob defines and manages the requirements.

Respond to Change (1 Day)

Act 1: Respond to Change

1.1 Bob submits a request

The product owner submits a request for
the current iteration. The team determines

that it can be contained in the current
iteration plan. The impacted team leads
update their plans, and Patricia confirms

the solution iteration plan.

1.2 Patricia updates
the project
iteration plan

1.5 Patricia confirms
the project
iteration plan

Bob
Product
Owner

Patricia
Project
Lead

Marco
Development

Lead

Tammy
Test
Lead

1.6 Bob defines and manages
the requirements

1.3 Marco updates the
development iteration plan

1.4 Tammy updates the
solution test plan

1

Chapter 4. The team responds to a requirement change 105

4.2.1 The actors

This scenario includes the several key actors as described in this section.

Bob is the name of the product owner. He cares about managing his business and bringing
value to his users and stakeholders. As the business application owner, working in an agile
environment, he works closely with the development team and has ownership over the
requirements priorities. Additionally, he ensures that the request information has appropriate
detail so that it can be implemented.

He wears more than one hat, however, in this story. He also performs analysis activities in the
requirements process. As an analyst, he performs elicitation techniques such as application
sketches business process definition, and storyboards, to provide context for requirements.
He also refines and manages requirements as needed.

Patricia is the name of the project leader. She is responsible for coordinating the efforts of
this team of teams. As each team produces its iteration plan, Patricia incorporates the plans
into the overall project iteration plan. She works with Al to establish the pace of the iterations
(how many iterations for the project and how long each will last). Her job ensures that all
teams (development and solution test) are working toward the same iteration goals and that
the work is aligned across the teams.

Al is the name of the solution architect. He works with the development and test leads to
ensure that the team works from a consistent architectural approach. He provides insight into
the iteration plans by identifying the architectural significant tasks for each iteration. He also
seeks to reuse existing assets wherever possible to ensure consistency in approach and
implementation.

Marco leads an agile development team. He understands the need to fit into Patricia’s project
plan, but seeks to maintain the agile approaches that have made his team successful. His
team is self-organized and uses more frequent iterations than the rest of the project team.
Marco still conducts daily stand-up meetings with his team and employs test-driven
development techniques on his component.

Tammy is the name of the test lead. Her team is responsible for conducting solution testing,
which includes functional, performance, and security testing at the solution level. The testing
does not include JUnit or component level testing, which is the responsibility of each team.
Tammy’s team conducts solution testing as part of the iteration. They take a new solution
build each week, thus providing an early feedback loop to the development team, when there
are defects at the solution level.

4.2.2 The workflow

Act 1 has the following workflow. The steps are described in more detail in the subsequent
headings.

1. Bob, the product owner submits a new request.

2. Patricia, the project leader, is informed of the request and updates the project iteration
plan to include the request.

3. The request is specific to GUI re-brand changes for the Credit Check component. Marco
updates the development iteration plan to include the request in the next iteration plan for
the component team.

4. The request must be included in the test assets, and Tammy updates the solution test plan
to include it.
106 Collaborative Application Lifecycle Management with IBM Rational Products

5. Patricia confirms the iteration plan to indicate the updates from the component team.

6. Bob defines and manages the requirements that are related to the request.

Figure 4-11 displays the activities that occur in Act 1: Respond to change.

Figure 4-11 The flow of steps for Act 1: Responding to a change request

Bob –
Product
Owner

Respond to Change

Submit
request

Patricia –
Project
Manager

Plan

Test
Resolve

Resolve
request

Confirm
plan

1.1 Bob
submits a
request

1.2 Patricia updates
the project
iteration plan Develop

Resolve

Plan test

Detail
requirement

Plan
development

Marco –
Dev Manager

Tammy –
Test Manager

Monitor
solution

1.5 Patricia confirms the
project iteration plan

1.3 Marco updates the development iteration plan

1.4 Tammy updates the solution test plan

1.6 Bob defines and manages the requirements

Bob –
Product
Owner
Chapter 4. The team responds to a requirement change 107

4.2.3 Bob submits a request

The workflow in this scene captures how Bob performs the following tasks:

� Creates a new request
� Assigns ownership of planning and delivery of the request to the development team

4.2.4 Patricia updates the project iteration plan

Synopsis: Bob, the product owner for the Account Opening processes, has been awaiting
the announcement that the next milestone release is available. He wants to review the
milestone and confirm its capabilities before submitting his finalized requirements for the
next project iteration milestone. Bob receives the release notification and logs into the
demonstration installation to run through the key processes for which he is responsible.

During his exploration of the milestone release, Bob finds that the release does not include
the UI branding experience that he expected. His UI requirements were partially delivered,
partially descoped and somewhat misunderstood. The inconsistencies are evident in the
CreditCheck process. Bob believes that it is critical to ensure that the Account Opening
project and associated applications have a consistent look to their interface and way in
which they are used for the company for branding. All components must meet these
characteristics.

Bob decides to submit a new request to have the UI branding completed in the next project
iteration. He opens his Web browser and logs into the change management tool. He
creates a new request where he references the UI standards that the enterprise uses for all
of its customer-facing applications. Before finalizing and submitting the new request, he
associates the request with the Account Opening second release project, AO_Rel2, sets a
high severity on the request, and sets himself as the owner of the request.

Bob now wants the project team to take responsibility for the new request. He expects the
request to show up in Patricia’s triage queue and that she will update her iteration plan
accordingly.

Synopsis: Patricia, the Account Opening project manager, is responsible for the overall
project iteration plan and the project team coordination. She and her leadership team are
triaging new requests on the Account Opening project. She reviews the UI branding
request, which was submitted to by Bob, and agrees that the work has a high priority and
must be completed in this iteration. She realizes this request impacts her project plan, the
CreditCheck component plan, and the test plan. She must create tasks to plan, assign, and
align the work across the team in order to implement the request.

Patricia assesses the properties of the request, such as size, priority, and risk. She
ascertains that the depth of this request is not difficult. As a result, no type of formalized
sizing activities have to occur by her team leads.

Patricia updates her project plan by creating and assigning new tasks for the impacted
team leads to plan. She assigns a task to Marco for him to plan his implementation, a task
to Tammy for her to update her test plan, and a task to Bob to define the requirements in
further detail.
108 Collaborative Application Lifecycle Management with IBM Rational Products

The workflow in this scene captures how Patricia performs the following tasks:

� Triages a requested change for the next iteration
� Plans work for a request by creating and assigning tasks to her team

The sizing of requests is explained in 4.3.2, “Sizing requests” on page 113.

4.2.5 Marco updates the development iteration plan

The workflow in this scene captures how the agile team performs the following tasks:

� Reviews, plans, and assigns work related to Bob’s request
� Forms, organizes, and balances the iteration plan

4.2.6 Tammy updates the solution test plan

Synopsis: Marco is the leader of the agile development team that owns the Credit Check
component. His agile team runs two-week iterations, while the project runs four-week
iterations. Marco and his team are actively planning the project C2 iteration as their next
C2A and C2B iterations. Marco conducts an iteration planning meeting with his team
where Bob’s new request is reviewed.

The team looks at the request and discusses priorities and approaches. Diedrie indicates
her interest in owning the changes. This request aligns with other UI work that she has
scheduled for the next iteration. The team settles on the decision that the work is of
medium priority, that it should be planned for the second C2B iteration, and that Diedrie
should take ownership of the development task. Marco updates the development plan,
updates the priority, and assigns the work to Diedrie.

After the meeting Diedrie completes her planning by organizing her assignments for the
iteration. She estimates each of the work items and sets preliminary due dates for each of
the changes. She finds that she is overcommitted for the iteration and identifies lower
priority work that can be taken off her list. She collaborates with Marco and others on the
team to balance work or replan for later iterations.

Synopsis: Tammy and her team conduct iteration planning for the final milestone. The
team already has their test plan strategy set for the final milestone with a focus on stability,
load, and performance testing. However, Tammy also must ensure that all requirements for
the iteration are covered by functional testing.

A few new requests have been added to the iteration and Bob’s UI branding request is one
of them. Tammy finds that UI branding is not covered by any existing test cases. The test
plan must be updated.

Tammy starts updating the iteration test plan. She accesses the test repository and opens
the test plan. She extends the UI testing section in the plan with a new test case. She
assigns the new test case to Tanuj for elaboration, creation, and configuration.

Tammy also confirms the availability of the required test servers. She finds that she must
schedule more time and servers at the test lab. She adds a request for another test server
and validates that resource demand and availability match in the new test plan.
Chapter 4. The team responds to a requirement change 109

The workflow in this scene captures how Tammy performs the following tasks:

� Updates the iteration test plan and assigns tests that are related to Bob’s request
� Allocates the required test servers to execute her test plan

4.2.7 Patricia confirms the project iteration plan

The workflow in this scene captures how Patricia performs the following tasks:

� Confirms the project iteration plan
� Collaborates with her team on iteration plans

Synopsis: Patricia reviews the overall project iteration plan. Her component teams have
completed their iteration planning, and their changes are reflected back into her project
plan. She ensures that the schedule is still on track and that shared work is aligned for the
iteration.

To ensure work alignment, Patricia runs queries to identify any tasks that might have been
pushed off the iteration plan and hence might jeopardize the complete delivery of a
request. She identifies the implementation related to the UI branding that is owned by
Diedrie. This is a high priority change that the team has demoted to a medium priority and
pushed to their second C2B iteration. Patricia disagrees with this planning and collaborates
with Marco and Diedrie to lower the risk by delivering the changes earlier.

Patricia, Marco, and Diedrie settle on a plan where the delivery is made as early as
possible. As requested by Diedrie, Patricia assigns Al to help the team and identifies a
reusable component for UI branding. As Diedrie updates her work schedule, Patricia can
view the updates to her project plan.
110 Collaborative Application Lifecycle Management with IBM Rational Products

4.2.8 Bob defines and manages the requirements

In the define and manage the requirements scene, the following steps are taken as illustrated
in Figure 4-12 on page 112.

1. Review the work.
2. Elaborate and define the requirements.
3. Manage the requirements.
4. Complete the work.

Synopsis: Bob finds that there is a new task from Patricia, the Account Opening project
manager, for him to define requirements for the re-branding of Account Opening. This is
related to the request he entered previously as the product owner.

Now that his request was accepted by the team, Bob documents it in the Requirements
Management tool to manage it through the development cycle and add detail as the
request is refined. He knows that there is not enough detail to capture the intent of the UI
branding and realizes he can capture more information in the form of a sketch to provide
more context to the request.

Bob uses a Requirements Definition tool so that he can create simple application sketches
and storyboards. After Bob creates the application sketch, he requests feedback from his
peers to ensure that everyone understands the UI branding requirement. His teammates
provide feedback about his sketches in the form of comments that he can review. Upon
agreement, Bob continues detailing and managing the requirements for this request.

Bob’s team is following an Agility at Scale approach. As a result, he captures a feature
requirement that provides more detail regarding the UI re-brand request and identifies the
elements that are being re-branded. He also identifies a nonfunctional requirement to
capture the need to comply with the corporate branding guidelines. He traces these
requirements back to the request.

Now that Bob has completed detailing the requirements, he completes the task that was
assigned to him by Patricia. To do so, he also associates the feature requirement to the
request and sets the task to complete. Patricia receives notification that Bob’s task is
completed. She makes sure that Marco, Diedrie, and Tammy are also aware of this, so that
they can begin their work.
Chapter 4. The team responds to a requirement change 111

Figure 4-12 The flow of steps for defining and managing the requirements

4.3 Considerations in change management

In this section, we discuss pertinent activities for change management. These activities
include analyzing and prioritizing requests as well as sizing them.

4.3.1 Analyzing and prioritizing requests

The scenario described in 4.2.2, “The workflow” on page 106, focuses the requirements and
change management workflows on the alignment of work and iteration planning in the
Account Opening project. However, requirements and change management at an enterprise
scale often include a requirements and portfolio analysis phase, which involves the business
stakeholders, the product owner and the program office, as outlined in 3.2, “The project” on
page 49.

Because analyzing and prioritizing requests, and the associated workflows, are out of scope
for this book, considerations are briefly discussed in this section. When extending the
requirements and change management with the analysis and prioritization workflows, take
note of the following considerations.

Requests that are submitted to a project are reviewed by the product owner. In this story, Bob,
the product owner, assesses the following information:

� Is the information that is provided by the stakeholder sufficient?
� Is the level of detail that is provided adequate?
� Was the business problem captured and can it be understood?
� Does this request fit into the scope of a business strategy, goal, or theme for the project?
� Does the stakeholder’s priority fall in line with the priority for the business?

Prioritization is simply comparing the stakeholder’s priority for the request versus the
importance and priority of the product. These views on priorities might not always align. Some
type of collaboration might need to occur between the stakeholder and the business where
concessions are made about the priority.

Define and Manage the Requirements

1.6 Bob defines and manages
the requirements

Review
work Define Manage

Patricia –
Project
Manager

Resolve
request

Bob –
Product
Owner1.2 Patricia

updates
the project
iteration
plan

Plan Complete
work
112 Collaborative Application Lifecycle Management with IBM Rational Products

The end goal is to identify a prioritized list of requests that are taken forward for the iteration.
This prioritized list may be identified as the backlog if following agile practices. This list should
be pruned for requests to implement for upcoming iterations. Review and reprioritization of
these items can occur in later activities as the requirement or development team refines the
request into requirements. This list is used, is reviewed, and is “fluid” as the team is required
to respond to change.

4.3.2 Sizing requests

This scenario focuses the story on the addition of a single request to the previously
committed release requirements stack for the next iteration in the Account Opening project.
Bob, the product owner, considers the request to be of high business priority and expects the
development team to deliver the changes as soon as possible. Also, the size and scope of the
changes are understood by the project.

However, in most cases, the size of work related to delivering more complex requests might
not be intuitively understood. Also, the delivery of a complex request, in most cases, spans
multiple components and multiple development disciplines such as development and test.
The feasibility to deliver a request in an iteration might not be consolidated across the project.

In extending the scenario to sizing, Patricia, the project manager, reviews a request that has
been submitted to the Account Opening project by Bob. In order to assess whether the team
can implement the request within the given iteration, she consults various team members to
identify if the request might be contained within the confines of the iteration. To make this
assessment, initial sizing must occur by the following teams:

� Architecture team, which is represented by Al, the solution architect
� Component team, which is represented by Marco, the CreditCheck component lead
� Test team, which is represented by Tammy, the test lead

Each person’s input is critical because the requirement will not be implemented in the given
iteration if it cannot be contained. The following elements, among others, might be considered
by as part of the sizing:

� The iteration to implement the solution
� The skills and availability of resources to implement the solution
� The architectural significance of implementing the request
� The demand for additional testing or at worst additional testing approaches
� The availability of re-usable components, frameworks, or test assets that can be leveraged

Using the ClearQuest ALM solution can be configured to manage sizing assignments. In such
a work configuration, Patricia creates a task, of type size, for tracking sizing. The task, with
Patricia as the owner, is now available to associate sizing activities for the task. She creates
sizing activities and assigns the activities to the respective team. Team members make their
assessments and can use the activity resolution field to indicate if the request can be
contained and in what iteration. Using the collaboration capabilities in the CALM solution,
teams can collaborate and validate the estimates.

For details about extending the OpenUP configuration for sizing, see the following sections:

� “Configuring ClearQuest ALM for OpenUp” on page 195
� “Adding optional resolution codes” on page 576
Chapter 4. The team responds to a requirement change 113

4.3.3 Rational Team Concert for stakeholder requests

This book captures end-to-end CALM by using the Rational CALM solution. This solution
includes the Rational ClearQuest CALM solution, Rational RequisitePro, and Rational
Requirements Composer.

However, some projects or teams might decide to deploy reduced application life-cycle
support as appropriate to their practices, maturity, or process needs. The collaborative
development blueprint captures the minimal core capabilities in requirements and change
management workflows. In this section, we discuss the considerations when deploying
application life-cycle support by using Rational Team Concert. See 6.3.1, “Lifecycle solution
for small teams” on page 227, for a similar discussion about the considerations for
collaborative development. Teams that use Rational Team Concert for application lifecycle
gain the following benefits:

� Web-based access for project stakeholders

� Requirements and change workflows, and process enactment for an agile way of working
by using the Eclipse Way process

� The creation, update, and query of requests and view disposition of development tasks

� Personalized project dashboards to team health

Teams who are using Rational Team Concert for end-to-end CALM might experience the
following limitations:

� Limited requirements management and definition by using work items
� Limited quality management by using build validation with JUnit test cases
� Limited team size or distributed repositories

For more information about using the Eclipse Way process, see the Jazz Web site at the
following address:

http://jazz.net
114 Collaborative Application Lifecycle Management with IBM Rational Products

http://jazz.net

Chapter 5. Rational ClearQuest,
Requirements Composer, and
RequisitePro to manage
stakeholder requests

In this chapter, we provide a detailed demonstration of Part B, “Act 1: Responding to a
change request” on page 77, and Chapter 4, “The team responds to a requirement change”
on page 79. The purpose of this chapter is to provide a pragmatic demonstration of how the
roles in this scenario use the Rational products to accomplish their tasks.

We discuss the following topics in this chapter:

� An overview of the product features used in the scenario

� A step-by-step demonstration of the products in the scenario

� A summary of the assets that are created and used by the team

� How to measure success for this scenario

� How the products that are used fit into a larger enterprise Application Lifecycle
Management (ALM) scenario and how they are configured

� Tips and tricks for resolving known problems

Specifically, this chapter includes the following sections:

� 5.1, “Act 1: Responding to a change request” on page 116

� 5.2, “Rational RequisitePro and Rational Requirements Composer” on page 117

� 5.3, “Rational ClearQuest” on page 118

� 5.4, “Jazz interoperability” on page 122

� 5.5, “Managing a change request with Rational RequisitePro and Rational ClearQuest” on
page 124

� 5.6, “Life-cycle collaboration” on page 176

5

© Copyright IBM Corp. 2008. All rights reserved. 115

� 5.7, “Planning and measuring success in change management” on page 177

� 5.8, “Reference architecture and configuration” on page 186

� 5.9, “Problem determination and known workarounds” on page 203

5.1 Act 1: Responding to a change request

In this chapter, we discuss step by step how the characters in the story complete Act 1 of the
storyboard, which is illustrated in Figure 5-1.

Figure 5-1 The scenes in Act 1: Responding to a change request

This act contains the following scenes:

� Bob submits a request.
� Patricia updates the project iteration plan.
� Marco updates the development iteration plan.
� Tammy updates the solution test plan.
� Bob defines and manages the requirements.
� Patricia confirms the project iteration plan.

The following IBM Rational products are used in this act:

� IBM Rational RequisitePro 7.1.0.0
� IBM Rational Requirements Composer 7.1.0.0
� IBM Rational ClearQuest 7.1.0.0
� IBM Rational Quality Manager 8.0 beta

Role-based guide: To understand how the content in this chapter applies to your role, see
the role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7
on page 13.

Respond to Change (1 Day)

Act 1: Respond to Change

1.1 Bob submits a request

The product owner submits a request for
the current iteration. The team determines

that it can be contained in the current
iteration plan. The impacted team leads
update their plans, and Patricia confirms

the solution iteration plan.

1.2 Patricia updates
the project
iteration plan

1.5 Patricia confirms
the project
iteration plan

Bob
Product
Owner

Patricia
Project
Lead

Marco
Development

Lead

Tammy
Test
Lead

1.6 Bob defines and manages
the requirements

1.3 Marco updates the
development iteration plan

1.4 Tammy updates the
solution test plan

1

116 Collaborative Application Lifecycle Management with IBM Rational Products

In addition, the following products were integrated:

� Rational RequisitePro and Rational Requirements Composer for requirements
management and storyboarding

� Rational RequisitePro and Rational ClearQuest for traceability between change requests
and requirements

� Rational ClearQuest and Rational Team Concert and Rational Quality Manager for team
interoperability in a geographically distributed environment

5.2 Rational RequisitePro and Rational Requirements
Composer

Rational RequisitePro is a requirements management application. With it, project teams can
manage their requirements, write good use cases, improve traceability, strengthen
collaboration, reduce project risk, and increase quality. Beginning with release 7.1.0.0,
RequisitePro supports an integration with Rational Requirements Composer.

Rational Requirements Composer enables requirements management definition. Rational
Requirements Composer fosters focused, natural, real-time, contextual collaboration by using
various techniques, vocabularies, and artifact types. This new tool provides improvement in
the following key areas:

� Improved requirements definition, validation, and management of requirements change
through the software development life cycle

� Increased and clearer communication among business stakeholders and IT delivery
teams wherever they are located

� Less project rework, faster project execution, and lower-cost delivery

Rational RequisitePro
Rational RequisitePro is a full featured, flexible, and integrated requirements management
tool. Requirements management is key to a project’s success. Rational RequisitePro is a
requirements management solution that aids teams in organizing their requirements. It
provides collaboration capabilities to help ensure accurate communication and management
of requirements as they evolve. Additionally, requirements can be categorized by using
attribute functions in order to define prioritization of requirements, for example.

The Extensibility Interface API is included and allows access to requirement information
outside of the context of the tooling. As a result, Rational RequisitePro can be extended by
using this API to extract information from the database or import information from external
sources or applications into Rational RequisitePro.

Rational RequisitePro offers the following key advantages among others:

� The ability to capture, track, manage, and analyze different types of requirements

� Dynamic integration between the Microsoft® Word application and a requirements
database

The requirement content stored in the database aids teams in organizing, prioritizing, and
tracking project requirements, which is something that the Word application alone cannot
do well.

� The ability to specify who is authorized to modify requirements, attributes, and documents

� In-depth traceability and coverage analysis
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 117

� Understanding of the impact of changing requirements

� Support for distributed team members by the Web

� Integratable with marketplace-leading life-cycle tools including solutions for business
modeling, defect and change tracking, visual modeling, automated testing, configuration
management, and process guidelines

These integration points help support the entire software development team and the
software development process.

Rational Requirements Composer
Team members require a number of techniques in order to elicit requirements information.
Rational Requirements Composer helps in this area because it provides functions to capture
sketches and storyboards, use cases, glossaries, and process models. With these functions,
analysts can provide context information for requirements as shown in Figure 5-2. After these
requirements are defined, they can be managed in Rational RequisitePro. Rational
Requirements Composer is a complement to Rational RequisitePro.

Figure 5-2 Rational Requirements Composer

5.3 Rational ClearQuest

Rational ClearQuest is flexible and powerful change management solution that provides
defect tracking, process automation, reporting, and life-cycle traceability for better visibility
and control of the software development life cycle. Rational ClearQuest provides a client
based on Eclipse technologies. It provides a Web interface to allow Geographically
Distributed Development (GDD) teams the ability to use a centralized data repository for
change management.
118 Collaborative Application Lifecycle Management with IBM Rational Products

In addition, databases can be multi-sited to share data across a wide area network (WAN). An
API is included to all scripted access to database information. Rational ClearQuest offers the
following key advantages among others:

� ALM package for managing a team’s work in the context of secure and role-based projects

� Real-time reporting and process enforcement to improve project visibility and control

� Automated workflows and e-mail notifications to enhance team communication and
coordination

� Access control, electronic signatures, repeatable processes, and audit trails to simplify
compliance management

� Web interface for easy access from virtually anywhere

� Integration with requirements, development, build, test, deployment, and portfolio
management tools for simplifying rapid response to change

The highly customizable architecture of Rational ClearQuest makes it an ideal tool for any
organization to adapt their existing process.

ALM Packages for Rational ClearQuest
Rational ClearQuest 7.1.0.0 includes a ready-to-use ALM solution that provides support for
managing many of the challenges presented by GDD and ALM.

The ALM package provides support for a streamlined, agile application development process
that is both role-based and process-driven, as illustrated in Figure 5-3 on page 120. Projects
define a context for completing work and can be secured by setting security policies and
defining roles. Work can be assigned to team members who are either co-located or
distributed. That work is traceable to the original request, to the project that implemented the
request, and to the build that contains the implementation of the request.

Packages for download: The ALM Packages for Rational ClearQuest are available for
Rational ClearQuest 7.0.1 users to download for free from IBM. The packages can be
accessed from the Web at the following address:

http://www.ibm.com/services/forms/preLogin.do?lang=en_US&source=swg-ratcq

Registration is required to access the packages. The download includes the ALM
Packages for Rational ClearQuest, instructions for applying the packages, a sample
database, and three tutorials for use with the sample database. The ClearQuest ALM
solution can be used with both ClearQuest versions 7.0.1 and 7.1.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 119

http://www.ibm.com/services/forms/preLogin.do?lang=en_US&source=swg-ratcq

Figure 5-3 ClearQuest ALM support of role-based development processes

The ALM schema provides a set of records with relationships that help teams manage
software development projects. The ALM schema’s principle role is to help teams manage the
work that is involved in delivering software projects. It provides useful building blocks and a
framework that facilitates custom configurations to fit into every enterprise.

There are three essential concepts to understand when working with the ALM schema in
ClearQuest:

� Projects provide the context for managing work that is created by the team members.
Users are granted access to projects through security policies, and their actions are
defined by their role.

� Managing work is enabled in the form of requests, tasks, and activities. The definition of
activities and tasks is driven by process definitions, which can change from project team to
project team.

� System-wide settings can be defined for projects and managing work. These settings
allow for reuse and consistent classification across multiple projects. They can adapt to
the enterprise. These settings typically involve a one-time setup or minor changes as the
teams grow and evolve with their use of the system. (ClearQuest administrators start
here.)

In the reference scenario, we mainly work with requests, tasks, and activities that are used to
manage work in the context of an existing project. As shown in Figure 5-4 on page 121, all
work starts with a request. Requests are planned and implemented with tasks, and tasks are
completed by using activities. When all activities are complete, the task is complete. When
the tasks are complete, the request is complete.

Tester
•Tests changes
in baselines

Developer
•Works on activities
•Develops and delivers
changes

Release Engineer
•Integrates and builds the
delivered changes

•Creates baselines

Test Lead
•Ensures quality

Team Lead
•Assigns activities to
complete tasks

Change Control Mgr
•Triages requests
•Assigns tasks to projects

Change performed
in the context of

Project and
plan definition

Work and
delivery definition

Submitter
•Submits request for
change

•(Validates the release)

Request

Task

Activity

Project

Category

Release
120 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 5-4 The flow of request, task, and activity records

A request contains a petition to the team to make a change and includes information that is
related to where and how the request was found. It is related to a category that provides
further classification for identifying where the need was found, for example, a product, feature,
component, or service. The request type identifies the nature of the request, for example
enhancement, defect, or feature. However, the request can be expanded to cover any type of
request for work. By using RUP as an example, you can create a request to “initiate an
iteration.” A request is owned by the submitter and contains references to all tasks that are
associated with it. The tasks contain information about where the request will be fixed.

A task represents the work that is needed by a team to complete their part of the request. A
task contains all information that is related to where the request will be addressed. It is owned
by someone on the project team and represents an aggregation of work spread across
multiple team members. In addition, tasks contain references to all activities that are required
to complete the task and refer back to the request that it is intended to fulfill.

Lastly, an activity is owned by an individual contributor on the project team and represents a
single unit of work. It refers back to the task that it helps to complete and can be enabled for
Unified Change Management (UCM).

More information: For more information and core concepts about setting up Rational
ClearQuest and the ALM schema, see the IBM developerWorks three-part series of
articles for “Application lifecycle management with ClearQuest 7.1.0.0.” You can find these
articles on the Web at the following addressees:

� Part 1

http://ltsbwass001.sby.ibm.com/cms/developerworks/rational/library/edge/08/m
ar08/pampino-pierce/index.html

� Part 2

http://www.ibm.com/developerworks/rational/library/edge/08/apr08/pampino-pie
rce/index.html

� Part 3

http://www.ibm.com/developerworks/rational/library/edge/08/may08/pampino-pie
rce/index.html

Initiate Request

Process Request

Process Task

Process Activities

Problem Information Close or Withdraw Request

Submit Request

Accept or Reject Request

Create Task

Accept or Reject Task

Create Activities
Complete Activities
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 121

http://ltsbwass001.sby.ibm.com/cms/developerworks/rational/library/edge/08/mar08/pampino-pierce/index.html
http://www.ibm.com/developerworks/rational/library/edge/08/may08/pampino-pierce/index.html
http://www.ibm.com/developerworks/rational/library/edge/08/may08/pampino-pierce/index.html
http://www.ibm.com/developerworks/rational/library/edge/08/apr08/pampino-pierce/index.html

5.4 Jazz interoperability

In this act, Rational Team Concert is used by the component team to receive information
about and plan for the new request that is submitted in Rational ClearQuest. To facilitate
coordination of work between Rational ClearQuest and Rational Team Concert, a connector
is configured. In a similar manner, Rational Quality Manager is used by the solution test team
to plan, manage, and execute the test effort. A connector is configured to facilitate the
coordination of work between Rational ClearQuest and Rational Quality Manager.

In this section, we discuss interoperability for the Jazz products. Rational Team Concert
provides components, called connectors, to integrate into an enterprise scale application
life-cycle solution. The following connectors are available:

� ClearQuest Connectors
� ClearCase Connectors

How the component team uses Rational Team Concert is discussed in more detail in 7.3,
“Rational Team Concert for agile development” on page 246. How the test team uses Rational
Quality Manager is discussed in 11.5, “Rational Quality Manager” on page 425.

5.4.1 ClearQuest Connectors

ClearQuest Connectors, which are available as a part of Rational Team Concert 1.0, provide
a flexible infrastructure that allows organizations to synchronize information between Rational
ClearQuest records and Rational Team Concert work items. The ClearQuest Connector for
Rational Team Concert pragmatically, and with seamless integration, lets project teams work
in both tools and share data. Through synchronization operations, the connector maps
Rational ClearQuest records, such as ALM Tasks, to Rational Team Concert work items of
type Task. When a user creates or modifies a Rational ClearQuest record, the connector
creates or modifies a corresponding Rational Team Concert work item. The creation and
modification changes also flow from work items to Rational ClearQuest records. The
ClearQuest Connector is configurable and provides an elaborate way to map a customized
schema, including workflows in Rational ClearQuest with Rational Team Concert work items.

For the scenario in this book, this integration is key to enable the work alignment required for
Patricia to fold new requests from Bob into her iteration plans as tasks. The integration is also
key for her to assign and align the task to the various contributing component or functional
teams in the project.

Project teams on the ClearQuest ALM solution consume the task assignments directly in the
Rational ClearQuest environment. Teams that use Rational Team Concert, such as Marco
and his team, use the ClearQuest Connector to create synchronized work items in their
repository for each assigned task. Marco tracks work by using the synchronized work item.
He might optionally do further planning by creating additional child work items to track more
sizable tasks. Updates made to the plan by Marco and his team in Rational Team Concert are
synchronized back to Rational ClearQuest by the ClearQuest Connector. This provides
Patricia with an updated and consolidated view of the component and functional planning for
each task that is committed for the project iteration. See Figure 5-5 on page 123.
122 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 5-5 ClearQuest Connector for team alignment

A second case of interoperability is the assignment of work. This case occurs when the
activities of a task are assigned to the team members for completion. In the case of one or
more team members that use Rational Team Concert, synchronized work items are created
in their repositories for each assigned activity. An example of this case is Diedrie being
assigned the activity to review the outcome of Al’s refinement of the architecture, which is
required to support Bob’s UI branding request. In such a scenario, Patricia, or Al, creates an
activity or type of ‘Review’, and assigns the activity to Diedrie. The activity is created as a
synchronized work item in Rational Team Concert. The new work assignment is in Diedrie’s
plan and the iteration. See Figure 5-6.

Figure 5-6 Using ClearQuest Connector for work assignments

The scenario in this chapter demonstrates how the team uses the ClearQuest ALM solution
and Rational Team Concert to achieve alignment of work. The ClearQuest Connector for
Rational Team Concert is an integrated part of the scenario to connect the teams and their
repositories. In Part C, “Act 2: Collaborative development” on page 211, the scenario turns its
focus to collaborative development by using Rational Team Concert and how the ClearQuest
Connector supports project health tracking.

Rational ClearQuest Rational Team Concert

Work item

Change set

Work item
(Task)

Project
area

Iteration

Task

Task

Task

Request

Project

Iteration

Rational ClearQuest Rational Team Concert

Request

Project

Iteration

Task
(Develop Architecture)

Activity
(Refine Architecture)

Activity
(Review)

Work item
(Activity)
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 123

Before projects can use the ClearQuest Connector, they must be configured in the Rational
ClearQuest and Rational Team Concert environments, which involves configuring the
following items:

� The Rational ClearQuest schema with a ClearQuest Connector package for Rational
Team Concert

� The ClearQuest Connector Gateway and Jazz server for Rational Team Concert

� Synchronization rules in Rational Team Concert

� Optionally: The work configurations in Rational ClearQuest and the Rational Team
Concert team area process

To configure the ClearQuest Connector for Rational Team Concert, see Appendix B,
“Configuring interoperability” on page 565.

5.4.2 ClearCase Connectors

ClearCase Connectors provide seamless interoperation between Rational Team Concert and
Rational ClearCase by using ClearCase Synchronized Stream. This capability enables a
team that is working in Rational Team Concert to access Eclipse projects that are under
Rational ClearCase source control. Alternatively, the team can deliver changes made in
Rational Team Concert to Rational ClearCase users through UCM components or versioned
object base (VOB) folders. For the scenario in this book, this integration is key to enable a
delivery chain for the component team deliveries to solution integration and for Patricia and
her leadership team in tracking the work delivery.

For details about ClearCase Synchronized Streams, see “Diedrie delivers daily changes for
solution integration” on page 285, in which we discuss the usage of ClearCase Connectors
and UCM for the book scenario, and “ClearCase Synchronized Streams” on page 288. For
additional information, see the Jazz Web site at the following address:

http://jazz.net

5.5 Managing a change request with Rational RequisitePro and
Rational ClearQuest

In this section, we follow the referenced scenario to see how the Rational ALM solution is
used by various members of the enterprise organization in their daily tasks while working on
release two of the Account Opening application and the Credit Check project.

Synopsis: Act 1 of the story exemplifies how the team responds to a new change request
that has been submitted by Bob, the product owner. This request is submitted by using
ClearQuest ALM, and assets are created to represent planned work, in the form of tasks
and activities, which need to be assigned to and worked on by various members of the
organization. Patricia, the project manager, uses Rational ClearQuest to triage these
assets to Al, the architect; Marco, one of the component leads; and Tammy, the test lead.
Additionally, Bob uses Rational RequisitePro and Rational Requirements Composer to do
additional requirements definition work and storyboarding. Each team member works on
their respective assets and keeps Patricia updated on their progress.
124 Collaborative Application Lifecycle Management with IBM Rational Products

http://jazz.net

The workflow in Figure 5-7 shows the following actions:

� Bob submits a request.
� Patricia updates the project iteration plan.
� Marco updates the development iteration plan.
� Tammy updates the solution test plan.
� Bob defines and manages the requirements.
� Patricia confirms the project iteration plan.

Act 1 is also described in 4.2, “A reference scenario for responding to a change request” on
page 105.

Figure 5-7 The flow of steps in Act 1: Responding to a change request

Bob –
Product
Owner

Respond to Change

Submit
request

Patricia –
Project
Manager

Plan

Test
Resolve

Resolve
request

Confirm
plan

1.1 Bob
submits a
request

1.2 Patricia updates
the project
iteration plan Develop

Resolve

Plan test

Detail
requirement

Plan
development

Marco –
Dev Manager

Tammy –
Test Manager

Monitor
solution

1.5 Patricia confirms the
project iteration plan

1.3 Marco updates the development iteration plan

1.4 Tammy updates the solution test plan

1.6 Bob defines and manages the requirements

Bob –
Product
Owner
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 125

In Act 1, the team creates several new artifacts and establishes traceability to support the
life-cycle collaboration. Figure 5-8 shows the life-cycle collaboration artifacts that are
established in this act.

Figure 5-8 Life-cycle collaboration artifacts established in Act 1: Responding to a change request

The following artifacts, which are created in this act, span multiple products. For each artifact,
we include the type and the tool in which they are created.

� ALM Project (Rational ClearQuest): The AO_Rel2 project on which the team is working.

� ALM Phase (Rational ClearQuest): The Construction development phase in the Open
Unified Process (OpenUP) development process that is used by the project.

� ALM Iteration (Rational ClearQuest): The Construction 02 iteration that the team is
currently planning.

� ALM Request (Rational ClearQuest): The release requirements for the project. Requests
take the form or defects and enhancements.

� ALM Task (Rational ClearQuest): The committed work, planned for an iteration, to deliver
a part of a request.

� ALM Activities (Rational ClearQuest): Work managed as UCM activities or Rational Team
Concert work items.

� Work Item (Rational Team Concert): Work planned for an iteration and monitored in
Rational Team Concert.

� Iteration Plan (Rational Team Concert): Contained work for an iteration.

� Work item (Rational Quality Manager): Test work planned and monitored in Rational
Quality Manager.

Work Item
[Task]

Requirement

ALM Task
[Implement]

ALM Task
[Detail Requirement]

ALM Request
[Enhancement]

Sketch

ALM Task
[Test]

Test Work Item
[Task]

Iteration Plan

Planned For

External
Connection

Related
Artifact

External
Connection

Test Plan Test Case

CQ:RequirementAssociated

ALM Iteration
[02]

ALM Phase
[Construction]

Assigned to

ALM Project
[AO_Rel2]

Tasks

Found in

A Created in Current Act

A Referenced

A Supporting

CQI

ALM Task
[Size]

ALM Activity
[Size]

Work Item
[Activity]External

Connection

Work Item
[Activity]

ALM Task
[Develop Architecture]

ALM Activity
[Review]

External
Connection
126 Collaborative Application Lifecycle Management with IBM Rational Products

� Test Plan (Rational Quality Manager): Test plans in Rational Quality Manager.

� Test Case (Rational Quality Manager): Test cases in Rational Quality Manager

� Requirement (Rational RequisitePro): Managed requirements that define and elaborate
on stakeholder requests.

� Requirement (Rational ClearQuest): Record supporting traceability between ALM assets
and Rational RequisitePro.

� Sketch (Rational Requirements Composer): Asset that provides requirements definitions
and elaboration.

� Reusable Asset (Rational Asset Manager): Managed asset for reuse by a development
organization, for example.

5.5.1 Bob submits a request

This scene has the task of submitting an ALMRequest record.

Figure 5-9 highlights the workflow.

Figure 5-9 Workflow for submitting a change request

Synopsis: Bob determines that the UI branding for the Credit Check application does not
conform to the organization’s standards and submits a new change request.

Bob –
Product
Owner

Respond to Change

Submit
request

Patricia –
Project
Manager

Plan

Test
Resolve

Resolve
request

Confirm
plan

1.1 Bob
submits a
request

1.2 Patricia updates
the project
iteration plan Develop

Resolve

Plan test

Detail
requirement

Plan
development

Marco –
Dev Manager

Tammy –
Test Manager

Monitor
solution

1.5 Patricia confirms the
project iteration plan

1.3 Marco updates the development iteration plan

1.4 Tammy updates the solution test plan

1.6 Bob defines and manages the requirements

Bob –
Product
Owner
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 127

Figure 5-10 shows the artifacts that are created.

Figure 5-10 Artifacts created

Submitting an ALMRequest record

Bob, the product owner uses the Rational ClearQuest Web interface to accomplish his work.
In the scenario, Bob responds to a UI branding change that needs to be submitted and
tracked. He logs into Rational ClearQuest and submits a new record of type ALMRequest as
explained in the following steps and shown in Figure 5-11 on page 130:

1. He browses to the Rational ClearQuest Web URL.

2. He enters the Rational ClearQuest login user name and password, selects a valid schema
repository name, and clicks Connect.

3. He clicks the record type list and selects ALMRequest.

Work Item
[Task]

Requirement

ALM Task
[Implement]

ALM Task
[Detail Requirement]

ALM Request
[Enhancement]

Sketch

ALM Task
[Test]

Test Work Item
[Task]

Iteration Plan

Planned For

External
Connection

Related
Artifact

External
Connection

Test Plan Test Case

CQ:RequirementAssociated

ALM Iteration
[02]

ALM Phase
[Construction]

Assigned to

ALM Project
[AO_Rel2]

Tasks

Found in

A Created in Current Act

A Referenced

A Supporting

CQI

ALM Task
[Size]

ALM Activity
[Size]

Work Item
[Activity]External

Connection

Work Item
[Activity]

ALM Task
[Develop Architecture]

ALM Activity
[Review]

External
Connection

Goal: The goal is to keep track of change requests by submitting them to a centralized
repository.
128 Collaborative Application Lifecycle Management with IBM Rational Products

4. He completes all mandatory and optional fields:

a. For Category, he chooses AccountOpening. The Project field is automatically
populated with AO_Rel2.

b. For Type, he chooses Enhancement.
c. For Severity, he chooses Sev1 - Critical.

d. For Owner, he chooses Bob.
e. Optional: He switches to the Project tab and adds Patricia to the Notify List.
f. He clicks OK to save the record.

Tip: ALMCategory records can optionally identify a current project for that category.
In this scenario, the AccountOpening category record identifies AO_Rel2 as its
current project. When submitting a request, selecting the AccountOpening value for
the Category field populates the Project Found In field with the current project from
the ALMCategory record. Setting the current project on the category reduces the
amount of information needed by a submitter and reduces the number clicks for
submitting a request.

Tip: The packages also provide hooks that provide choice list hooks for other fields
on the record such as Type and Severity. The items in the choice list are derived
from the project in the Project Found In field. These lists are blank until a Project
Found In field is identified on the record. This allows project teams to use different
values without having to modify the Rational ClearQuest schema. These
configurations are defined in the ClearQuest ALM work configurations that are
discussed in 5.8.3, “Configuring Rational ClearQuest and the ALM schema” on
page 194.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 129

Figure 5-11 New ALMRequest record being submitted by ClearQuest

Upon saving this ALMRequest record, Bob is done providing his release requirements to the
project team. We now switch to Patricia, the project manager, in the reference scenario.

5.5.2 Patricia updates the project iteration plan

Synopsis: Patricia, the Account Opening project manager, is responsible for the overall
project iteration plan and the project team coordination. She and her leadership team are
triaging new requests on the Account Opening project. She reviews the UI branding
request, which was submitted by Bob, and agrees that the work has a high priority and
must be completed in this iteration. She realizes this request impacts her project plan, the
CreditCheck component plan, and the test plan. She must create tasks to plan, assign, and
align the work across the team in order to implement the request.

Patricia assesses the properties of the request, such as size, priority, and risk. She
ascertains that the depth of this request is not difficult. As a result, no type of formalized
sizing activities must occur by her team leads.

Patricia updates her project plan by creating and assigning new tasks for the impacted
team leads to plan. She assigns a task to Marco for him to plan his implementation, a task
to Tammy for her to update her test plan, and a task to Bob to define the requirements in
further detail.
130 Collaborative Application Lifecycle Management with IBM Rational Products

This scene involves the following tasks:

� Updating the project iteration plan
� Assigning work

Figure 5-12 highlights the workflow.

Figure 5-12 Patricia updating the project iteration plan

Bob –
Product
Owner

Respond to Change

Submit
request

Patricia –
Project
Manager

Plan

Test
Resolve

Resolve
request

Confirm
plan

1.1 Bob
submits a
request

1.2 Patricia updates
the project
iteration plan Develop

Resolve

Plan test

Detail
requirement

Plan
development

Marco –
Dev Manager

Tammy –
Test Manager

Monitor
solution

1.5 Patricia confirms the
project iteration plan

1.3 Marco updates the development iteration plan

1.4 Tammy updates the solution test plan

1.6 Bob defines and manages the requirements

Bob –
Product
Owner
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 131

Figure 5-13 shows the artifacts that are created.

Figure 5-13 Artifacts created

Triaging ALMRequest records

Patricia receives an e-mail notification that a new ALMRequest has been assigned to the
project. The e-mail contains record details and the record ID for the ALMRequest that Bob
submitted to the project. Patricia also triages new submitted requests for the AccountOpening
application and the current AO_Rel2 project on a regular basis.

To triage new requests, Patricia performs the following steps:

1. She opens her ClearQuest Eclipse (or Web) client and logs in.

2. She runs the Public Queries → ALM → My Project → Triage. For the dynamic filters,
she chooses the AccountOpening category or the AO_Rel2 project. This query can also
be copied to her Personal Queries folder and further customized.

3. She clicks the new ALMRequest that Bob submitted to view the record form.

Patricia reads the details and determines that her team does not need to do any sizing work
to assess whether the change will fit in the scope of the second construction iteration. She
simply updates the iteration plan to reflect this.

Work Item
[Task]

Requirement

ALM Task
[Implement]

ALM Task
[Detail Requirement]

ALM Request
[Enhancement]

Sketch

ALM Task
[Test]

Test Work Item
[Task]

Iteration Plan

Planned For

External
Connection

Related
Artifact

External
Connection

Test Plan Test Case

CQ:RequirementAssociated

ALM Iteration
[02]

ALM Phase
[Construction]

Assigned to

ALM Project
[AO_Rel2]

Tasks

Found in

A Created in Current Act

A Referenced

A Supporting

CQI

ALM Task
[Size]

ALM Activity
[Size]

Work Item
[Activity]External

Connection

Work Item
[Activity]

ALM Task
[Develop Architecture]

ALM Activity
[Review]

External
Connection

Goal: The goal is to update the iteration plan and phase for the request record that is
submitted.
132 Collaborative Application Lifecycle Management with IBM Rational Products

Creating ALMTask records for iteration planning

Patricia now creates new ALMTask records to ensure that the teams start to plan the work for
the iteration.

To plan work, Patricia performs the following steps:

1. She opens the ALMRequest record for viewing.

2. She clicks the Utility button and selects the CreateTask action (Figure 5-14 on page 134).

This action creates new ALMTask records that are required to deliver on the request. The
project uses OpenUP, and the created tasks specify work related to requirements,
architecture, implementation, and testing.

After the ALMRequest record is successfully updated, the editor is closed. She reopens
the ALMRequest record to view and browse the new tasks.

3. Patricia views the new tasks that are added to the request.

Four tasks are created. The first task, which is assigned to Bob, is of type Define
Requirements. The second task, which is assigned to Al, is of type Develop Architecture.
There is one implementation task and one test task, each of which is unassigned. Patricia
focuses on the two unassigned tasks. She intends to assign the implementation of the
request to Marco’s team and the test task to Tammy’s team.

To assign the implementation task, Patricia performs the following steps:

1. She double-clicks the newly created ALMTask record of type Implement from the Tasks
field to open it for viewing.

2. She clicks the Modify button on the record form to put the ALMTask record in a modifiable
state.

3. She completes all mandatory and optional fields:

a. On the Description field, she adds optional instructions for the implementation.
b. For Priority, she chooses Prio1 - Urgent.
c. For Owner, she chooses Marco.
d. She switches to the Project tab and validates that the task has been planned for the

current iteration, that is phase Construction and iteration 02. To modify the plan, she
chooses from the Phase Assigned To and Iteration Assigned To fields.

4. She clicks the Apply button to save her changes.

Goal: The goal is to create the additional assets that are needed for planning the work to
implement the change request.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 133

Figure 5-14 CreateTask action creating new ALMTask records

To assign the test task, Patricia performs the following steps:

1. She double-clicks the newly created ALMTask record of type Test from the Tasks field to
open it for viewing.

2. She clicks the Modify button on the record form to put the ALMTask record in a modifiable
state and completes all mandatory and optional fields:

a. In the Description field, she adds optional instructions for the test planning.
a. For Priority, she chooses Prio1 - Urgent.
b. For Owner, she chooses Tammy.
c. For phase and iteration, she chooses Construction and 02.

3. She clicks the Apply button to save her changes.

The Define Requirements and Develop Architecture tasks have already been assigned to Bob
and Al as part of the default role in the OpenUP and project work configurations. Patricia can
optionally open the records and provide additional documentation, or set notification, to Bob
and Al in their task records.
134 Collaborative Application Lifecycle Management with IBM Rational Products

Creating an ALMActivity record for reviews

Patricia want to ensure that any architectural changes from the UI branding are reviewed and
approved by the component team. To ensure this process, she open the Develop Architecture
task that is assigned to Al. She then adds a review task that is assigned to Diedrie.

To create and assign an Activity, Patricia performs the following steps:

1. She double-clicks the ALMTask of type Develop Architecture that is assigned to Al.

2. She clicks the Utility button and selects the CreateActivity action. One or more
ALMActivities are added to the ALMTask.

3. She double-clicks the ALMActivity of type Outline Architecture, and updates the
following fields:

a. She updates the Type field to Review.
b. In the Owner field, she assigns the activity to Diedrie.
c. In the Description field, she adds optional instructions for review and approval.
d. Optional: On the Related Records tab, she adds a reference to the ALMActivity of type

Refine Architecture.

4. She clicks OK to save the changes.

Upon completion of assigning the ALMTask records, Patricia has completed the triage
process, and each member of the team can begin to do iteration planning. Both Marco and
Tammy are notified that they have new work assigned to them as news feeds or e-mail, or by
using the query capabilities in their respective tools.

5.5.3 Marco updates the development iteration plan

This scene involves the following tasks:

� Reviewing, planning, and assigning work related to Bob’s request
� Forming, organizing, and balancing the iteration plan

Goal: The goal is to create the additional assets that are needed for assigning work to
team members.

Synopsis: Marco has received new implementation work for the change request and
needs to plan the work. He updates the iteration plan with the new work.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 135

Figure 5-15 highlights the workflow.

Figure 5-15 Marco updating the iteration plan

Bob –
Product
Owner

Respond to Change

Submit
request

Patricia –
Project
Manager

Plan

Test
Resolve

Resolve
request

Confirm
plan

1.1 Bob
submits a
request

1.2 Patricia updates
the project
iteration plan Develop

Resolve

Plan test

Detail
requirement

Plan
development

Marco –
Dev Manager

Tammy –
Test Manager

Monitor
solution

1.5 Patricia confirms the
project iteration plan

1.3 Marco updates the development iteration plan

1.4 Tammy updates the solution test plan

1.6 Bob defines and manages the requirements

Bob –
Product
Owner
136 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 5-16 shows the artifacts that are created.

Figure 5-16 Artifacts created

Updating the iteration plan for the work item

Marco is triaging new work for the current iteration. He opens Rational Team Concert and can
see that a new work item is assigned to him in the iteration plan. He is also notified of this in
the RSS feeds event log.

To triage new work items, Marco performs the following steps (see Figure 5-17 on page 138):

1. He opens the current iteration plan by selecting AccountOpening → Plans →
Construction Iteration C2A → CreditCheck C2A [Construction Iteration C2A] in the
Team Artifacts view.

2. He looks for new work items that are assigned to himself or are Unassigned.

3. He opens the new work item.

Work Item
[Task]

Requirement

ALM Task
[Implement]

ALM Task
[Detail Requirement]

ALM Request
[Enhancement]

Sketch

ALM Task
[Test]

Test Work Item
[Task]

Iteration Plan

Planned For

External
Connection

Related
Artifact

External
Connection

Test Plan Test Case

CQ:RequirementAssociated

ALM Iteration
[02]

ALM Phase
[Construction]

Assigned to

ALM Project
[AO_Rel2]

Tasks

Found in

A Created in Current Act

A Referenced

A Supporting

CQI

ALM Task
[Size]

ALM Activity
[Size]

Work Item
[Activity]External

Connection

Work Item
[Activity]

ALM Task
[Develop Architecture]

ALM Activity
[Review]

External
Connection

Goal: The goal is to update the iteration plan and assign the new work item which has
been assigned to the team.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 137

4. In the Work Item editor:

a. He clicks the Planned For list for the work item and selects the Construction Iteration
C2B value.

b. He clicks the Priority list for the work item and selects the Medium value.

c. He clicks Owner and assigns the work item to Diedrie.

d. He creates an entry in the Discussions field to document the triage decision and to
provide guidance to Diedrie.

5. He clicks the Save button to apply the changes to the work item.

Figure 5-17 Marco triaging and assigning the UI branding work item to Diedrie

These steps exemplify one way to assign work to a team member. Other options are to drag
work items in the iteration plan or to right-click a work item and select Assign to Owner.

For information about additional tasks that Marco and his team must do and the artifacts that
are created, see 7.3, “Rational Team Concert for agile development” on page 246.
138 Collaborative Application Lifecycle Management with IBM Rational Products

5.5.4 Tammy updates the solution test plan

This scene involves the following tasks:

� Reviewing the work related to Bob’s request
� Updating the test plan
� Reviewing the test plan
� Submitting a request to configure lab resources
� Updating and closing the task

Figure 5-18 highlights the workflow.

Figure 5-18 Tammy updating the solution test plan

Synopsis: Tammy receives a task from Patricia indicating that there is a new UI change
request. She reviews the task and updates the solution test plan to ensure that the UI will
be tested by her team.

Bob –
Product
Owner

Respond to Change

Submit
request

Patricia –
Project
Manager

Plan

Test
Resolve

Resolve
request

Confirm
plan

1.1 Bob
submits a
request

1.2 Patricia updates
the project
iteration plan Develop

Resolve

Plan test

Detail
requirement

Plan
development

Marco –
Dev Manager

Tammy –
Test Manager

Monitor
solution

1.5 Patricia confirms the
project iteration plan

1.3 Marco updates the development iteration plan

1.4 Tammy updates the solution test plan

1.6 Bob defines and manages the requirements

Bob –
Product
Owner
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 139

Figure 5-19 shows the artifacts that are created.

Figure 5-19 Artifacts created

Reviewing the work related to Bob’s request
Tammy logs into Rational Quality Manager. From the dashboard, she sees that a new task is
assigned to her. She is also notified of this in the RSS feeds event log.

To review the task, Tammy performs the following steps:

1. She clicks the Home tab to view her dashboard.

2. In the My Tasks viewlet, she identifies the new task from Patricia (Figure 5-20).

Figure 5-20 A dashboard viewlet showing tasks

Work Item
[Task]

Requirement

ALM Task
[Implement]

ALM Task
[Detail Requirement]

ALM Request
[Enhancement]

Sketch

ALM Task
[Test]

Test Work Item
[Task]

Iteration Plan

Planned For

External
Connection

Related
Artifact

External
Connection

Test Plan Test Case

CQ:RequirementAssociated

ALM Iteration
[02]

ALM Phase
[Construction]

Assigned to

ALM Project
[AO_Rel2]

Tasks

Found in

A Created in Current Act

A Referenced

A Supporting

CQI

ALM Task
[Size]

ALM Activity
[Size]

Work Item
[Activity]External

Connection

Work Item
[Activity]

ALM Task
[Develop Architecture]

ALM Activity
[Review]

External
Connection
140 Collaborative Application Lifecycle Management with IBM Rational Products

3. She clicks the 101: Corporate UI Branding task to review and edit its contents, which are
shown in Figure 5-21.

Figure 5-21 Viewing a task in Rational Quality Manager

Updating the solution test plan

Tammy must update her test plan to ensure that the team tests the new request. To do so, she
adds a test case and updates the sizing and exit criteria in her test plan. She performs the
following steps:

1. She locates and opens the test plan for the Account Opening project. In the left navigation
menu, she hovers the mouse pointer over Planning and selects My Test Plans from the
menu (Figure 5-22).

Figure 5-22 Running the ‘My Test Plans’ query

Goal: The goal is to update the solution test plan and assign the new work item that has
been assigned to the team.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 141

A query runs to locate all of Tammy’s test plans. Then a new tab is added to Tammy’s
workspace with the list of available test plans.

2. She clicks the Account Opening test plan to open it. At this point, she has little
information other than a new enhancement request is added to the iteration. Her goal is to
ensure that it will be tested by adding placeholders to the test plan.

3. She adds and assigns a test case to the test plan.

a. In the Test Plan Table of Contents, she clicks Test Cases (Figure 5-23).

Figure 5-23 Test Cases menu item in the Test Plan Table of Contents
142 Collaborative Application Lifecycle Management with IBM Rational Products

b. Tammy clicks the Add Test Case button as highlighted in Figure 5-24. The test cases
included in this test plan are visible.

Figure 5-24 Adding a new test case in the test plan

c. In the New Test Case window, Tammy enters the following details to capture the test
case. Figure 5-25 shows the original version of this window before she enters the
details.

i. For Name, she types UI Corporate Branding.

ii. For Description, she pastes the description from the task that Patricia assigned into
the Description field.

iii. For Weight, she enters 1.

iv. For Owner, she selects Tanuj.

v. For Theme, she selects Branding.

vi. For Category, she selects Credit Check.

vii. For Function, she selects Login.

She clicks Save to create the test case.

Figure 5-25 New Test Case window
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 143

The window closes, and the test case is added to the plan. Note that the test case is listed
in plain text and is not a link.

4. She saves the test plan by clicking the Save button in the upper right corner of the Test
Plan tab. The new test case becomes a linked item in the test plan.

5. Tammy updates the exit criteria to ensure that the team does not release the software
without implementing and testing this change.

a. She clicks the Account Opening Test Plan tab to view the test plan.

b. In the Table of Contents, she clicks Exit Criteria (Figure 5-26). The exit criteria for this
plan is now visible.

c. She clicks the Add Row button in the Exit Criteria user interface, which is highlighted
with red square on the right side in Figure 5-26.

Figure 5-26 Exit Criteria managed in a test plan

d. For Exit Criteria, she enters the following values:

i. In the row that is added with the text preselected, Tammy types 100% user
interface using corporate branding.

ii. In the Current Value field, she types Pending requirements.

iii. She leaves the Status field set as Not Started.

e. Tammy clicks the Save button on the test plan. Tammy now has the following exit
criteria in her test plan:

• 100% of all Priority 1 Defects fixed
• 100% requirements test coverage
• 100% user interface using the corporate branding

Note: In Act 4, Tammy updates the requirements in the test plan by linking to the
requirements that Bob creates at the end of this act. She also creates a link between
the requirement and the test case that she just created.
144 Collaborative Application Lifecycle Management with IBM Rational Products

Exit Criteria comes into play later in the scenario as Tammy monitors quality in 11.5.5,
“Monitoring quality” on page 455, and in the final act when the team determines that the
iteration is complete in 13.3.2, “The team leads assess their exit criteria” on page 504.

The new request adds additional work for her team. Therefore, Tammy reviews the estimate
that she has provided for this iteration:

1. While viewing the Account Opening test plan, in Table of Contents, Tammy clicks Test
Estimation (Figure 5-27).

Figure 5-27 Adding sizing estimates to a test plan

The new request is a simple user interface test to confirm that the correct branding
elements are used. This single request requires that the test team perform the following
actions:

– Create the test cases.
– Determine how many test execution work items to run.
– Execute the test execution items.
– Evaluate the results and manage defects.
– Possibly update the test environments that are required for testing. For example, a new

request might require adding another browser version to the testing matrix.

Tammy is using person hours to track the test effort and sees that her test architect has
already sized this test effort. With a team of six people working on a four-week iteration,
they estimate that they can have a total of 720 person hours (6 people x 30 hours a week
x 4 weeks). Tammy and her team use 30 hours instead of 40 hours in their estimate to
allow for 10 hours a week to account for e-mail, meetings, and other tasks outside of the
test effort.

The planning estimate is currently 120 person hours. This estimates 20 hours per person
for a six person team. Tammy includes test planning and test-case construction as part of
the planning effort.

The execution effort is currently 600 person hours, which estimates 100 hours per person
over the course of the four-week iteration.

2. Taking all of this into account, Tammy adds two hours to the Planning Effort field by
changing the value to 122.

3. Tammy adds two hours to the Execution Effort field by changing the value to 602.

These estimates push the sizing effort beyond their target by a small amount. Tammy decides
that the team can absorb this small change. Had the request required a larger amount of
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 145

work, Tammy would have to reconfigure her plan to accommodate the request or work with
the Patricia, Marco, and the other development leads to manage the scope of the iteration.

Reviewing the test plan
This is the second iteration for the project. Therefore, much of the test plan was completed in
the first iteration. At this point, Tammy reviews the test plan to ensure that all changes for the
second iteration have been addressed in the plan.

Tammy reviews the following in the test plan Table of Contents:

1. She clicks Summary and sees that there is no major change in the project that requires
an update to the project summary.

2. She clicks Business Objectives. She decides to update the business objectives to
include the objective of a re-branded user interface. After all, the solution is incorporating
components from an acquired company, and all user interface elements must be updated
to comply with their corporate standards.

a. She reviews the business objectives and realizes that they do not reflect the need to
re-brand the user interface.

b. She clicks Edit to open the rich text editor.

c. She adds a line that identifies the objective of a re-branded user interface
(Figure 5-28).

Figure 5-28 Updating the Business Objectives in the test plan

d. She clicks Save.

3. She click Test Objectives and reviews them. She realizes the shared objective of a
re-branded UI. She repeats the steps from the Business Objectives section of the test
plan.

4. She clicks Quality Objectives and reviews the Quality Objectives section of the test plan.

a. She clicks Quality Objectives in the Table of Contents for the test plan.

b. She decides to add the re-branded UI as a quality goal. She clicks the Add Row button
and types a new quality goal of “100% of user interface complies with corporate
brand” as shown in Figure 5-29 on page 147.
146 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 5-29 Updated Quality Objectives

c. She clicks Save on the test plan.

5. She skips Reviews and Approvals since there are none for this test plan, and she skips
Requirements because she just reviewed them.

6. Tammy confirms her execution environments by clicking Test Environments in the Table
of Contents. In the Test Environments pane, she can add platforms such as browsers,
databases, operating systems, and other items. This list is then used to generate test
configurations for use in test execution.

a. She reviews the contents of the Platform Coverage tab (Figure 5-30). She uses the
Platform Coverage tab to create a nonbinding list of platforms that she intends to cover.

Figure 5-30 Platform coverage planned by using the Environments section in the test plan
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 147

b. In reviewing the list, Tammy decides to update the browsers to use for testing the Web
interface. She clicks the Add Platforms to be covered button, which is represented by
the pencil icon.

c. In the Available Environment Options window (Figure 5-31):

i. From the Environment Types list, she chooses Browsers. The window updates with
a list of available browsers.

ii. From the Available list, she selects Safari 3.0 and clicks the > button to move her
choice to the Selected list.

iii. She clicks OK. The platform coverage has now been updated. When the team
creates test execution work items, this new browser version is taken into account.

Figure 5-31 Updating Test Environments in the test plan

d. She clicks Save.
148 Collaborative Application Lifecycle Management with IBM Rational Products

7. She clicks the Test Environments tab and clicks the Generate Test Environments
button which is highlighted in Figure 5-32 to generate the test environments for this
iteration. The Test Environments tab describes the actual combinations of attributes that
will be used for testing. The test environments are associated with an actual test
execution.

Figure 5-32 The Test Environment tab

a. In the Generate Test Environment wizard (Figure 5-33), for Step 1, Tammy selects all of
the options. For Coverage, she selects All - All permutations and then clicks Next.

Figure 5-33 Step 1 in generating test environments
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 149

b. For Step 2 (Figure 5-34), in which the wizard displays a list of test environments based
on the platform support characteristics defined in the test plan, Tammy changes Group
by to Browsers and views the list of test environments by browser type.

c. Tammy selects each of the test environments that she plans to use in this iteration by
clicking the check box next to each configuration. Then she clicks Finish.

Figure 5-34 Selecting the Generated Test Environments grouped by browser
150 Collaborative Application Lifecycle Management with IBM Rational Products

The test environments are now added to Tammy’s test plan, some of which are shown
in Figure 5-35. She can use Group by to group the environments by type, such as by
Browser, Application Server, CPU, and so forth.

Figure 5-35 Test environments added to the test plan

Tammy is done reviewing and updating her test plan. Next she decides to confirm that the lab
resources are reserved for this test effort.

Confirming the lab resources
Tammy decides to make one final check by reviewing the reserved lab resources. She wants
to ensure that the servers that are required for this test effort are available and properly
configured to support this iteration.

Note: In this scenario, Tammy generated the test environments. This approach makes
sense if you are just getting started with Rational Quality Manager or you know that the test
environments do not yet exist in the system. An alternative is to add existing environments
into the plan. To add existing test environments to a test plan:

1. In an open test plan, click Test Environments.
2. Click the Add Existing Test Environments icon.
3. In the window that opens, select one or several test environments and click OK.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 151

1. From the Lab Management menu, Tammy selects Create Request (Figure 5-36).

Figure 5-36 Choosing New Request from the Lab Management menu

2. On the Create Request page (Figure 5-37 on page 153):

a. In the Summary field, she types a descriptive heading, such as “Macintosh running
Safari needed.” This field is required. The rest of the fields on the Create Request
page are optional.

b. In the Priority field, for Priority (of the request), she selects Normal.

c. In the Respond by field, shes sets the date to be one week from now. This is the time
by which she needs a response from the lab manager about this request.

d. In the Reservation section, she provides the start and end dates and times for which
she needs the lab resource. For example, she wants this resource for the last two
weeks of the current iteration.

e. In the Comments field, she types a detailed description of the lab resource request. In
this case, she is requesting a new configuration, which includes an Apple Macintosh
computer running Safari as the client, which is connected to a server configuration that
involves an application server and a database.

f. In the Lab Resources section, she can enter a new lab resource description or select
one from the test environments.
152 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 5-37 Creating a request for a lab resource

g. Because Tammy created test environments in “Updating the solution test plan” on
page 141, she can now use the environments to request a lab resource by clicking the
Add from Test Environment button, which is highlighted in Figure 5-38.

Figure 5-38 Adding a Lab Resource description from existing test environments

i. In the Select Test Environments window (Figure 5-39), Tammy selects one more
environments, and chooses OK.

Figure 5-39 Changing the operating system in a configuration request
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 153

The environments with all of their attributes are added in the Lab Resources section
of the request.

ii. Tammy removes any unneeded attributes, such as Application Server, from the
request by clicking the red X next to the attribute.

Since this is a client machine, her plan is to request a single client running Mac OS
10.5 and three browser types: Microsoft Internet Explorer, Apple Safari, and Mozilla
Firefox.

iii. She clicks the Add Criteria button next to Operating System (Figure 5-40).

Figure 5-40 The Add Criteria button

iv. In the Select Attribute window (Figure 5-41), she selects Installed Software and
clicks the Add button twice.

Figure 5-41 Adding attributes to the Lab Resources criteria

v. She selects the browser version for each of the Installed Software criteria. Her final
request lists an operating system and three criteria for installed software
(Figure 5-42).

Figure 5-42 A lab resource described with attributes
154 Collaborative Application Lifecycle Management with IBM Rational Products

h. When she is satisfied, she clicks Submit to send her request to the lab manager.
Alternatively, she can do one of the following steps:

• To save the request as a draft without submitting it, she can click Save.
• To clear the form, she can click Reset.
• To cancel the request, she can click Cancel.

The request appears in her dashboard under “My Requests”. It is also listed when she selects
All Requests from the Lab Management menu in the left panel.

Behind the scenes (not covered in this book), Larry the lab manager prepares the
configuration for Tammy and notifies her when it is available.

Updating and closing the task
Tammy has completed all of the work that is required to absorb the UI branding request into
the current iteration. She now closes the task that Patricia assigned to her:

1. She clicks the Home tab to view the dashboard.

2. She goes to My Tasks viewlet.

3. She clicks the UI Corporate Branding task (Figure 5-20 on page 140).

4. In the Work Item editor (Figure 5-21):

a. She creates an entry in the Discussions field to document changes that she has made
to the plan.

b. She sets the state to Complete.

c. She clicks the Save button to apply the changes to the work item. The information that
Tammy has added to work item is transferred to Patricia in Rational ClearQuest where
she can confirm the project iteration plan.

Tammy and her team begin constructing the test cases and executions for this iteration. Their
work continues in Act 4, which is covered in 10.2, “A reference scenario for managing quality”
on page 397.

5.5.5 Patricia confirms the project iteration plan

During the iteration planning, Patricia monitors the alignment of work for the ALMTasks that
has been committed to the project iteration plan. Patricia uses a set of queries for this
purpose:

� Project requests

Patricia runs a query for all ALMRequests that have ALMTasks planned for the current
project. By using this query, she can track all release requirements for the project.
Figure 5-43 on page 156 shows that the Corporate UI Branding request is planned to be
fully delivered in the current project. Figure 5-43 also shows a request for an Account
Verification Customer Portal. Note that the technical approach of this request was
delivered in an earlier project, AO_Rel1, while the implementation is still unassigned and
will be planned for the current project AO_Rel2.

� Current iteration plan

Patricia runs a query for all ALMTasks in the current iteration, for example, Construction 02
of the AO_Rel2 project. By using this query, she can track all tasks that are currently being
planned for current iteration. For teams that perform iteration planning by using
ClearQuest ALM, she can drill into the status of the ALMActivities.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 155

Patricia runs her Project Requests query and confirms that all tasks are assigned to the team
and that no team is rejecting work activities.

Figure 5-43 Patricia confirming the requests that have work planned in the current project

Patricia runs her Current Iteration query and confirms that all tasks are planned by the teams
and align with the project plan. She notices that the CreditCheck team has de-prioritized
Bob’s UI branding request (Figure 5-44 on page 157). The work has been set as medium
priority, with a due date at the end of the Construction 02 iteration. This makes Patricia
concerned. She opens the activity to discuss the plan with Marco and his team.

To align the plans, Patricia does the following actions:

1. She opens the UI Branding Activity that is assigned to Diedrie.

2. She clicks the Notes tab and reads the discussions. She confirms that the team is
planning to complete this work in the C2B iteration and that the priority of the change has
been misinterpreted.

3. She adds a new discussion entry and requests that this work is moved to the C2A iteration
and underscores that Bob regards this as a high priority for the release. She saves the
changes to the record.
156 Collaborative Application Lifecycle Management with IBM Rational Products

As shown in Figure 5-44, Patricia confirms the alignment of the project plan and the team
iteration plans. She identifies the late planned delivery of the Corporate UI Branding activity
and collaborates with Marco to align the plans.

Figure 5-44 Patricia confirming the alignment of the project plan and the team iteration plans
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 157

Marco and Diedrie receive an event notification of the changes to the UI branding work item,
and the team discusses Patricia’s view of the case (Figure 5-45). Marco and Diedrie update
the Work Item priority, Planned For, and Due Date properties to align the iteration plan.

Figure 5-45 Patricia, Marco, and Diedrie collaborating on the alignment of the iteration plan

5.5.6 Bob defines and manages the requirements

This scene involves the following actions:

� Defining the stakeholder request
� Applying additional definition techniques by using Rational Requirements Composer
� Performing technical refinement of the requirements in Rational RequisitePro
� Linking the new requirements to the ALMRequest

 Synopsis: In this section, Bob defines and manages requirements. He is notified that he
has been assigned an activity by Patricia to define the detailed requirements for the UI
branding request that he recently created.
158 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 5-46 highlights the workflow.

Figure 5-46 Requirements definition

Figure 5-47 shows the artifacts that are created.

Figure 5-47 Artifacts that are created

Define and Manage the Requirements

1.6 Bob defines and manages
the requirements

Review
work Define Manage

Patricia –
Project
Manager

Resolve
request

Bob –
Product
Owner1.2 Patricia

updates
the project
iteration
plan

Plan Complete
work

Work Item
[Task]

Requirement

ALM Task
[Implement]

ALM Task
[Detail Requirement]

ALM Request
[Enhancement]

Sketch

ALM Task
[Test]

Test Work Item
[Task]

Iteration Plan

Planned For

External
Connection

Related
Artifact

External
Connection

Test Plan Test Case

CQ:RequirementAssociated

ALM Iteration
[02]

ALM Phase
[Construction]

Assigned to

ALM Project
[AO_Rel2]

Tasks

Found in

A Created in Current Act

A Referenced

A Supporting

CQI

ALM Task
[Size]

ALM Activity
[Size]

Work Item
[Activity]External

Connection

Work Item
[Activity]

ALM Task
[Develop Architecture]

ALM Activity
[Review]

External
Connection
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 159

Opening the ALMTask to define the requirements
Bob, the product owner, gets an e-mail notification that he has been assigned ownership of an
ALMTask record. He logs into the Rational ClearQuest Web interface to get more details. He
performs the following steps:

1. Bob browses to the Rational ClearQuest Web URL.

2. He enters the Rational ClearQuest login user name and password. He selects a valid
schema repository name from the list and clicks Connect.

3. He types the record ID in the query workspace navigator search box and selects the By ID
radio button. Then he clicks Search.

4. After retrieving the record, he determines that further requirement work must be done and
transitions the task to an Opened state to let Patricia know that he is working on it:

a. He clicks the Open button to transition the record to an Opened state.
b. He clicks the Submit button to apply the changes.

Defining the stakeholder request

As a requirements best practice, it is helpful to ensure that more detailed requirements are
traced back to the original request or need statement. This step is important because the
solution team can ensure that application functions that are delivered “resolve the original
need statement.” As defined in 5.5.1, “Bob submits a request” on page 127, Bob begins the
requirements process by initiating a new request in Rational ClearQuest. Bob ensures that
this information is captured in Rational RequisitePro. The intent of including this information in
Rational RequisitePro is to reflect traceability across the life cycle and identify that the original
need statement as captured in the request. Requirements that fulfill that need statement are
managed in Rational RequisitePro.

Bob is now ready to reflect that the requirement is being defined in Rational RequisitePro. He
logs into Rational RequisitePro and submits a new requirement of type Stakeholder Request:

1. Bob browses to the Rational RequisitePro Web URL.

2. He enters the Rational RequisitePro login user name and password and selects a valid
Rational RequisitePro project in Project. Then he clicks Login.

3. He creates a stakeholder request requirement in the stakeholder request package by
selecting Create Requirement (Figure 5-48).

Figure 5-48 Selecting Create Requirement to create a stakeholder request requirement

Goal: The goal is to review the defined requirement activities and ensure that initial
requests that are captured in ClearQuest are reflective in RequisitePro.
160 Collaborative Application Lifecycle Management with IBM Rational Products

4. In the Create Requirement pane, he creates a requirement by selecting STRQ:
Stakeholder Request (Figure 5-49). Then he clicks Create.

Figure 5-49 New stakeholder request
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 161

5. In the Requirement Properties pane (Figure 5-50), he provides a short description of the
request in the Name field and a more detailed description in the description field of the
need statement.

Figure 5-50 Stakeholder request description

6. He clicks the Attributes tab and provides pertinent attribute information such as Priority.

Although the request provides the need statement and business problem, it does not provide
enough detail for a team to leverage the requirement information to implement the request. As
a result, Bob decides that it is pertinent to conduct additional requirements definition activities
in Rational Requirements Composer. The artifacts that he generates help him manage
requirements in Rational RequisitePro later.

Additional definition techniques by using Rational
Requirements Composer

Bob decides to conduct sketching techniques in Rational Requirements Composer to define
the flow of the Account Opening Login window to entail the UI branding changes. He creates
the sketch, marks elements on the sketch as requirements, and makes it available to his
peers for commenting:

Goal: Additional definition techniques, such as application sketches and storyboards, help
to convey additional information about the business and provide context for further
requirement activities. An application sketch is created and requirements are referenced
for items in the sketch.
162 Collaborative Application Lifecycle Management with IBM Rational Products

1. Bob marks the logo emblem on the sketch as a requirement (Figure 5-51).

Figure 5-51 Bank Sign On application sketch
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 163

2. He selects the element to mark as a requirement and chooses Mark as Requirement
(Figure 5-52).

Figure 5-52 Marking a requirement
164 Collaborative Application Lifecycle Management with IBM Rational Products

3. In the Mark As Requirement window (Figure 5-53), he provides a link description and
name and chooses the type of requirement. He selects the attributes and clicks OK to
create the requirement.

Figure 5-53 Defining the requirement type

After the requirement is created, it is marked with an indicator that a requirement is
present for that portion of the sketch.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 165

4. Bob informs his peers that he has created a new sketch and requests feedback to ensure
that the logo change will address the UI branding requirement:

a. With the logo selected, he requests feedback on the comment (Figure 5-54).

Figure 5-54 UI re-brand sketch comments
166 Collaborative Application Lifecycle Management with IBM Rational Products

The comment is displayed in the list of comments for that sketch (Figure 5-55).

Figure 5-55 Comments list

b. Peer respond to the comment as necessary and then close the comment thread by
selecting the Resolve option.

Managing the requirements
Now that there is an agreement on the UI changes, Bob is ready to capture more detailed
requirements information in Rational RequisitePro. These activities, which are performed in
Rational Requirements Composer, help set the context for the original need statement that he
captured as a stakeholder request. He uses the requirement information that is captured for
the logo that reflects UI branding in Rational RequisitePro Composer to create detailed
requirements in Rational RequisitePro. He does this by using the Manage Requirements
function as explained in the following steps:
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 167

1. Bob selects the requirement, which is named UI Rebrand, right-clicks, and selects selects
the Manage requirements option (Figure 5-56). Choose Add Requirement to
RequisitePro.

Figure 5-56 Selecting the Manage requirements option
168 Collaborative Application Lifecycle Management with IBM Rational Products

2. In the Create Requirements in RequisitePro - Select Requirements window (Figure 5-57),
he selects the requirement to manage, which is the UI re-brand in this example, and clicks
Next.

Figure 5-57 Choosing the requirement to manage in RequisitePro

3. In the Project Login window (Figure 5-58), he logs in to the RequisitePro project and clicks
Finish to complete the manage process.

Figure 5-58 RequisitePro login information
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 169

4. In the Select a RequisitePro Package window (Figure 5-59), he chooses the appropriate
Rational RequisitePro package to define the requirement. In this example, a Feature
requirement is created. Bob selects the System Features and Vision package and then
clicks Finish.

Figure 5-59 Selecting the RequisitePro requirement package

5. In the Results window (Figure 5-60), which indicates that a requirement has been created,
he clicks OK.

Figure 5-60 Requirement created
170 Collaborative Application Lifecycle Management with IBM Rational Products

6. Bob reviews the requirement (Figure 5-61) to ensure that it is created in the System
Features and Vision package. The requirement is read only because it contains rich text,
and the Location field defines that it is referenced from a Rational Requirements
Composer requirement.

Figure 5-61 RequisitePro requirement created from managed Rational Requirements Composer requirement

Technical refinement of requirements in Rational RequisitePro

The newly created feature requirement is now displayed in Rational RequisitePro. Bob also
completes pertinent attributes, defines the iteration, and traces the feature back to the original
stakeholder request in Rational RequisitePro. This step shows how the request was fulfilled.

Goal: The goal is to provide attribute information to categorize requirements and identify
pertinent traceability relationships between requirements.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 171

1. Bob provides information to help categorize the requirement. This information can help
with project planning and so on. He clicks the Attribute tab and categorizes the
requirements by using attribute information (Figure 5-62).

Figure 5-62 Requirement Attribute Information

2. Bob traces a feature requirement back to the stakeholder request. He clicks the
Traceability tab to set pertinent trace relationships (Figure 5-63). As mentioned
previously, as technical refinement of requirements occurs, pertinent traceability
information is defined.

Figure 5-63 Requirement Traceability information
172 Collaborative Application Lifecycle Management with IBM Rational Products

Creating a Rational ClearQuest requirement from Rational RequisitePro
After Bob creates the feature requirement, he establishes traceability to the request in
Rational ClearQuest. This step is performed so that there might be an integrated “closed loop
process” in Rational ClearQuest and Rational RequisitePro. The traceability is established by
a Rational ClearQuest requirement that allows records to be linked between Rational
ClearQuest and Rational RequisitePro, showing the requirement that fulfills the original
request that is submitted in Rational ClearQuest.

Bob completes this step by creating a ClearQuest requirement attribute:

1. Bob navigates to the Attributes tab and selects the ClearQuest Requirement attribute.

2. He right-clicks the attribute and selects Create (Figure 5-64).

Figure 5-64 Creation of a Rational ClearQuest requirement from Rational RequisitePro
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 173

3. He logs in to Rational ClearQuest in the window that opens. He provides the login and
password and selects the appropriate schema and database. The Rational ClearQuest
unique ID for the requirement is now shown (Figure 5-65).

Figure 5-65 ClearQuest Requirement unique ID

The requirement can then be linked to the Rational ClearQuest Define Requirements activity
as explained in the following section.

Linking the requirement to an activity

Upon completion of Bob’s requirement work in Rational RequisitePro and Rational
Requirements Composer, he wants to link the requirement, which was created in
RequisitePro and pushed over to ClearQuest, to the original ALMRequest record for
traceability purposes.

He perform the following steps:

1. Bob browses to the ClearQuest Web URL.

2. He enters the ClearQuest login user name and password, selects a valid schema
repository name from the list and clicks Connect.

3. He opens the ALMTask that he is working on by searching its record ID or running the All
Tasks → Run query and browsing the search result.

4. He navigates to the Related Records tab and double-clicks the UI branding request in the
Request list.

5. In the ALMRequest, he navigates to the Requirements tab and clicks the Modify button
to place the record in a modifiable state.

6. From the RAProject list, he selects AccountOpening.

7. He clicks the ClearQuest button on the form.

8. He clicks the Search button in the new window to query all requirement records.

9. He selects the desired requirement from the list and clicks OK.

Goal: The goal is to establish traceability between the requirements definition work that
was just created to the existing work activities that are associated with the change request.
174 Collaborative Application Lifecycle Management with IBM Rational Products

After the requirement is associated with the activity, it is listed on the Requirements tab as
shown in Figure 5-66.

Figure 5-66 Linked requirement record ALMRequestRecord
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 175

The association can also be reviewed by using Rational RequisitePro. Figure 5-67 shows the
traceability association in Rational RequisitePro.

Figure 5-67 Rational ClearQuest design requirement activity in Rational RequisitePro

After saving the record Bob’s work is complete. He can now transition the record into a
Complete state by using the complete action and add any additional notes to the record for
Patricia and the rest of his team:

1. Bob clicks the Complete button.
2. He provides any necessary information or notes to the description.
3. He clicks the Submit button to save the changes.

5.6 Life-cycle collaboration

In this scenario, the actors not only created new assets, but relied on the assets of their team
members who play various roles on the team. In addition, the work produced by these team
members will impact future scenes of the storyboard. We look at the following life-cycle
assets that are used by the characters in this act:

� ALM Project (Rational ClearQuest)
� ALM Phase (Rational ClearQuest)
� ALM Iteration (Rational ClearQuest)
� ALM Request (Rational ClearQuest)
176 Collaborative Application Lifecycle Management with IBM Rational Products

� ALM Task (Rational ClearQuest)
� ALM Activities (Rational ClearQuest)
� Work Item (Rational Team Concert)
� Iteration Plan (Rational Team Concert)
� Work item (Rational Quality Manager)
� Test Plan (Rational Quality Manager)
� Test Case (Rational Quality Manager)
� Exit Criteria (Rational Quality Manager)
� Test Environment (Rational Quality Manager)
� Lab Request (Rational Quality Manager)
� Requirement (Rational RequisitePro)
� Requirement (Rational ClearQuest)
� Sketch (Rational Requirements Composer)

5.7 Planning and measuring success in change management

In this section, we describe how projects plan and measure success in change management
by using the Rational ALM solution.

5.7.1 Reporting with ClearQuest ALM

Rational ClearQuest supports customized searches in the repository by using queries. The
ClearQuest ALM contains a set of preconfigured queries to be used by the preconfigured
project roles in the ALM schema, which are development leads, developers, test leads, and
testers. Utility queries are also supported for typical change management activities, such as
triaging incoming requests, identifying completed tasks, and identifying duplicate requests.
The ClearQuest ALM queries are available in the Public Queries → ALM → My Project
query folder.

ClearQuest ALM also contains a set of queries to search for most all ALM record types.
These general queries are ideal when maintaining repository information or as templates for
personal queries after adding an additional filter. The general queries are available in the
Public Queries → ALM → General query folder.

For convenience, a set of commonly used queries can be copied into the Personal Queries
and configured for the current project and current iteration. To copy a query:

1. Select the query to copy in the Rational ClearQuest Navigator and choose Copy.

2. Select the Personal Queries element and choose New Folder.

3. Rename the query to the name of the project or iteration, for example, “Current Iteration.”

4. Select the new folder and choose Paste.

5. Select the new query and choose Edit.

6. Modify the filter values to match the project and category in the current iteration by using
the Query Editor wizard. Add additional filters as needed, for example to identify records of
a specific phase, iteration, owner, or state.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 177

5.7.2 Reporting with the Business Intelligence Reporting Tool

The collaborative development blueprint identifies team health and reporting as one of the
cornerstones in successful change management. More and more organizations today have
diverse sets of stakeholders that require different views of change information in order to
support their needs for project health. To satisfy this need, flexible enterprise reporting
options are required. Truly flexible enterprise reporting must be capable of gathering, joining,
and presenting multiple data sets from multiple data sources.

The Business Intelligence Reporting Tool (BIRT) Eclipse project was established to satisfy the
need for software delivery reporting. BIRT is an Eclipse technology-based open source
reporting project. To learn more about this project, see the Web site at the following address:

http://www.eclipse.org/birt/phoenix

Open, flexible software delivery reporting with BIRT
BIRT reporting is based on data pull rather than a data set pushing to a report. This model
allows you to query on multiple data sets and data sources, as well as join the data sets as
you like. BIRT allows you to create rich variety of reports:

� Lists

Lists are the simplest reports to create. For example, a quality management team can
create a simple list report that lists all defects that have been resolved in a particular build.
They can enhance this report and group the resolved defects by component. They can
also provide summary information such as the total number of resolved defects for each
component.

� Charts

By using charts, you can aggregate numeric data and display it visually. With BIRT, you
can create a rich set of charts including pie charts, line, bar charts, and many more.
Charts can support events that allow you to “drill down” into the data to get a more specific
view. For example, you might have a pie chart that displays defects across the various
states (submitted, open, resolved, tested, closed, and so on) for a particular iteration. You
can then drill down into the particular state to get a list of all the related defects.

� Crosstabs

Crosstabs or matrixes are like data presented in tables or spreadsheets. They display data
in two dimensions. For example, you might have a crosstab that shows all the open work
items for each member of your project team by state (submitted, open, resolved, tested,
closed, and so on).

� Letters and documents

Textual documents are easy to create with BIRT. Textual documents can include multiple
report elements such as a letter to a particular set of stakeholders that includes various
data sets. Stakeholders particularly want to know about lists of defects, enhancements,
and features that were implemented that they had requested, along with a list of related
changes implemented that they might be interested in.

� Compound reports

Compound reports can bring together multiple reporting elements to present a “whole
story.” For example, you might have a milestone report that displays the requirements that
have been implemented for the milestone, confirmed severe/critical defects, or return on
investment (ROI) for work items that were implemented.

Enterprise change management reporting must be flexible enough to meet the needs of
various stakeholders. For team members who are involved in application delivery, access to
178 Collaborative Application Lifecycle Management with IBM Rational Products

http://www.eclipse.org/birt/phoenix

reporting within their local client is important. Local access to report authoring and execution
within their software delivery environment allows them to create adhoc reports to answer
tactical questions. Rational ClearQuest provides BIRT Designer within the Rational
ClearQuest Eclipse client, which gives these team members a flexible reporting solution to
meet their needs.

Additionally, stakeholders that may not operate within Eclipse also need access to reports.
Rational ClearQuest provides an enterprise reporting server where reports can be executed
and displayed via a standard Internet browser to meet these stakeholder needs.

Also, customers can embed Rational ClearQuest BIRT reports into their applications by using
the BIRT API. This increases the ability for the organization to use Rational ClearQuest
reports in various contexts throughout the organization.

Creating a Rational ClearQuest report with BIRT
The Rational ClearQuest Eclipse client includes the BIRT Designer, which allows you to
create BIRT reports from your Eclipse client as illustrated in Figure 5-68.

Figure 5-68 Report design with the Rational ClearQuest client for Eclipse

Switching to the BIRT RCP Designer places you in the BIRT perspective, allowing you to
create new reports, libraries, or templates (Figure 5-69).

Figure 5-69 Reports, report libraries, report templates created with the Rational ClearQuest BIRT client

The fundamental building blocks of a report with BIRT are data sources and data sets.

BIRT accesses the Rational ClearQuest databases by using the Rational
ClearQuest-provided Open Data Access (ODA) model. By using this method of access to
Rational ClearQuest instead of directly providing access to the databases via JDBC™ or
SQL, the Rational ClearQuest security model is preserved and you do not have to provide
database IDs and passwords freely to anyone who needs to develop reports.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 179

Data sources essentially map to Rational ClearQuest user databases (Figure 5-70). These
are the databases that Rational ClearQuest uses to store change data.

Figure 5-70 Rational ClearQuest data sources to preserve the Rational ClearQuest security model

Data sets are analogous to Rational ClearQuest built-in queries. You must create Rational
ClearQuest queries for the data sets that you will use in your BIRT reports (Figure 5-71).

Figure 5-71 Creating Rational ClearQuest queries for each Rational ClearQuest data set you will use
180 Collaborative Application Lifecycle Management with IBM Rational Products

After you create your data sources and data sets, they become a part of the arsenal of data
that you can use to create reports. Your data palette can include multiple data sources and
data sets, with which you can create powerful, complex reports that pull data from multiple
Rational ClearQuest user databases and queries (Figure 5-72).

Figure 5-72 Data sources and data sets, fundamental building blocks for reports

The report designer (Figure 5-73) provides drag-and-drop controls to make it easy to create a
rich variety of reports. This feature greatly simplifies and accelerates the design and
development process for reporting, making it possible to generate adhoc reports to get
tactical answers without a significant investment of time or effort.

Figure 5-73 Report palette for dragging reporting elements for fast report creation
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 181

One of the most powerful enterprise reporting capabilities with Rational ClearQuest BIRT is
the focus on reuse that is built into the product. Report libraries can be created to store
common reporting elements such as data sources and data sets (Figure 5-74).

Figure 5-74 Libraries making reuse simple and powerful across the enterprise

Additionally, report templates provide the ability to save common report designs so that they
can be easily used and reused with different data sources or data sets. Report templates
provide the power to create reporting formats and styles that meet the specific needs of
various stakeholders. You can then repeatedly use the templates to provide various report
data in a consistent style and format that meets the needs of your stakeholders.

5.7.3 Reporting team health with Rational ClearQuest and BIRT

In this section, we discuss the use of Rational ClearQuest and BIRT to report team health.

Measuring flow: Finding bottlenecks in change management
Measuring flow can help you find and diagnose bottlenecks in your change management
process. Flow for your change management process can be defined as the progression of
change requests through a workflow from creation to completion.
182 Collaborative Application Lifecycle Management with IBM Rational Products

Measuring flow can help you demonstrate performance against service-level agreements
(SLAs). It can also help you measure the impact of changes to your change management
process (Figure 5-75).

Figure 5-75 Example of measuring flow in the change management process

Managing iterations
As discussed in “Creating ALMTask records for iteration planning” on page 133, ClearQuest
ALM allows tasks can be assigned to iterations of a project. By doing this, the project team
can balance their workload across iterations. Additionally, charts, such as the one in
Figure 5-76 on page 184, can be created to see how the work is distributed across the team.
This insight helps project managers, such as Patricia, to spread the workload evenly across
the team members and avoid “critical path” situations. Such charts also help the project
manager to ensure that all work is assigned.

In Figure 5-76, there are five tasks in the “No value” column. No value means that they are not
assigned and can act as a trigger to the project manager that some work is slipping through
the cracks. Also note that the Construction phase is evenly balanced across each team
member, while the workload shifts in the Transition phase as expected. By running charts
such as this, project managers can govern their project more effectively, ensure that all work
is assigned and everyone is active, and prevent overwhelming individual team members with
too much work.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 183

Figure 5-76 Example of chart of load balancing over project phases

Managing new requests
In her role as project manager and triage administrator, Patricia has to periodically query for
newly submitted requests and determine whether to accept or reject them. To access the
triage queue for an ALM project, Patricia can use the preconfigured Public Queries →
ALM → General → Find Request by Project query. This query finds all requests for a
project. She can modify this query to only find all requests in the Open state with no tasks
assigned as shown in Figure 5-77.

Figure 5-77 Defining a query to triage incoming requests
184 Collaborative Application Lifecycle Management with IBM Rational Products

To understand the rate of incoming and closed requests, Patricia can also monitor a chart that
shows the count of open versus closed requests in the current project. See 5.5.2, “Patricia
updates the project iteration plan” on page 130, which exemplifies the actions that Patricia
takes when acting on new requests.

Managing tasks
In her role as project manager, Patricia must periodically measure the progress and health of
the project iteration. The component development leads also monitor health, but with a focus
on their areas of responsibilities. Patricia must also validate the teams’ progressions of the
roll-up of tasks into the requests that are committed for the current iteration.

Patricia must monitor the following key situations and metrics, among others:

� Identify tasks that are not planned for execution by the owning team.

� Identify tasks that are slipping or are not worked on and progressing to Active state.

� Identify tasks with all completed activities that should transition to a Completed state.

� Identify requests with all completed tasks that should transition to a Completed state.

� Identify tasks that are impacted by change to requests, for example, withdrawing planned
work that relates to requests that are being rejected or withdrawn.

It is a best practice to configure the commonly used queries in the Public or Private queries
folders. Roles that manage multiple projects or iterations can organize the specific queries in
subfolders as exemplified in 5.7.1, “Reporting with ClearQuest ALM” on page 177.

The state and progress of a request, a task, and activities are monitored by using the general
queries and applying filters on a project, phase, and iteration. As shown in Figure 5-78,
additional information, such as the state of contained items, can be retrieved by expanding
items in the query.

Figure 5-78 Monitoring the state of tasks and contained activities

Unaligned work
During project iteration planning, Patricia must validate that all component and functional
teams are planning to complete all assigned work within the scope of the iteration. By running
a query that selects all tasks that are assigned to the current iteration, and comparing the
Iteration field, she can identify any work that is not aligned with her project iteration plan.

In 5.5.5, “Patricia confirms the project iteration plan” on page 155, we illustrate the actions
that Patricia takes when ensuring the alignment of work.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 185

5.8 Reference architecture and configuration

In this section, we describe how Rational RequisitePro, Rational Requirements Composer,
and Rational ClearQuest are used in this act of the story. We also explain how they fit into the
overall ALM architecture and how they are configured.

5.8.1 Fitting into the enterprise ALM solution

In this section, we discuss pertinent information about the architecture for the tools that are
used in the requirements definition and management space for Rational RequisitePro,
Rational Requirements Composer, and Rational ClearQuest.

Scenario considerations
As shown in Figure 5-79, Rational Requirements Composer, Rational RequisitePro, and
Rational ClearQuest play an integral role in the success of the scenario.

Figure 5-79 Team interoperative repository configuration

Requirements information provides a foundation for other software development activities that
occur later in the life cycle.

Rational RequisitePro provides a mechanism for managing requirements across the life
cycle. Information regarding the original request that Bob captured in Rational ClearQuest is
available in Rational RequisitePro. Basic information from the original need statement
captured in Rational ClearQuest is available in Rational RequisitePro. Often there is not
enough detail to implement the request. As a result, further requirements definition activities
must occur. These elicitation activities provide additional information so that a requirement

Test resources

INUS

Repository

Solution test plans

Comp test plans

Rational Requirements Composer
and Rational RequisitePro Rational ClearQuest

CQI assets

CQALM assets

Sketches and so on

Requirements

Rational Asset Manager

Rational ClearCase/UCM

Reusable
assets

Streams

Components

Rational Build Forge

Solution builds

Comp builds

Rational Quality Manager
Quality Manager

Team Concert

Component
iteration plan
work items

Workspaces

Components

Component
Builds

Streams

Build assets

Web IDE

Corporate Recently Acquired

Third-party Provider

Solution
test plans

Test resources
186 Collaborative Application Lifecycle Management with IBM Rational Products

can be detailed. The elicitation type activities are captured in Rational Requirements
Composer. Artifacts that are captured in Rational Requirements Composer help drive the
requirements definition process. Requirements content can be flushed out through activities
to generate business process sketches, use cases, interface flows, sketches, and
storyboards regarding the UI branding for Account Opening as shown in Figure 5-80.

Figure 5-80 Requirements definition in a business context

The Rational Requirements Composer UI branding storyboard linked to the managed
requirement in Rational RequisitePro. The detailed requirement information is available for
reference to the solution and component team across the life cycle. This information can be
used by Marco’s component team in Rational Team Concert by using the ClearQuest
Connector. Additionally, the requirements information can be used by Tammy in Rational
Quality Manager to aid in the generation of test plans and test cases by using the Rational
Quality Manager and Rational Team Concert integration.

Usage model: Rational RequisitePro and Rational
Requirements Composer
In this sample setup, the solution team resides in the United States (U.S.), where the
component team is in Europe. The Rational RequisitePro Web components and database are
hosted in the U.S. Bob, the product owner, conducts requirements management activities by
using the Rational RequisitePro Web interface. He performs requirements definition and
elicitation techniques with the Rational Requirements Composer client that is installed locally
on his computer. Bob points his Rational Requirements Composer client to the Rational
Requirements Composer server that is installed on a separate server. Bob uses both tools in
day-to-day activities for requirements definition and management.

In this scenario, both the Rational Requirements Composer client and the Rational
Requirements Composer server reside on the same server. The integration between the two
tools remains the same if Rational Requirements Composer client points to the Rational
Requirements Composer server, provided that the Account Opening RequisitePro project is
properly shared and authenticated.

5

1
Business
objectives

2
Business
processes

3
Use cases

4
User interface sketches,

screen flows, and
storyboards

Documents Requirements

supported by

elaborated in

expressed in

described in

derived
from
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 187

Rational ClearQuest and the ALM schema
Rational ClearQuest and the ALM schema also play an integral role in the success of the
scenario, as illustrated in Figure 5-81. All parts of the organization interface with Rational
ClearQuest at one point or another throughout the life cycle of this application. Rational
ClearQuest acts as a central hub between requirements gathering in Rational RequisitePro
and Rational RequistePro Composer, Rational Team Concert, and the newly acquired agile
team in Europe. It also acts as the central hub for assets for the release and test teams that
are using Rational Build Forge and Rational Quality Manager.

Figure 5-81 Rational ClearQuest acting as a central hub for team interoperability

In this sample setup, the Rational ClearQuest Web components are hosted on a server in the
U.S. The back-end database server is also hosted on a machine in the U.S. Both servers
must be on their own dedicated machines for optimal performance. Bob, the product owner,
connects to Rational ClearQuest by using the Web interface, while Patricia, the project
manager, uses the Eclipse interface that is installed locally on her computer. Both clients can
provide parity in a majority of tasks that either user will use in their day-to-day activities.

In the reference scenario, Rational ClearQuest MultiSite was not used, but the Rational
ClearQuest database can be in a replicated environment based on the team structure.

Rational RequisitePro integration to Rational ClearQuest remains the same as in a multisite
environment. This is true provided that the Rational RequisitePro project is properly shared
by using Universal Naming Convention (UNC) paths over the network and remote Rational
ClearQuest clients can connect to this network share and communicate with the Rational
RequisitePro databases. Rational ClearQuest record mastership remains at the site where
the Rational RequisitePro project is registered to the Rational ClearQuest database.

Team Interop Repository Configuration

Rational Quality Manager/Rational Test Lab Manager

Rational Build Forge

Solution builds

Comp builds

Rational ClearCase/UCM

Streams

Test equipment

IN

Components

Rational RequisitePro

Rational ClearQuest ALM/UCM

Rational Requirements Composer

CQI assets

CQALM assets

Build assets

Requirements

Sketches/Storyboards/RichText

Solution
test plans

IN
Test equipmentUS EU

Component
iteration plan
work items

Workspaces

Components

Component
builds

Streams

EU
Test equipment

Component
test plans

Web
IDE
Repository

Solution test plans

Comp test plans

US EU

GSIRational Quality Manager/
Rational Test Lab Manager

Rational Team
Composer
188 Collaborative Application Lifecycle Management with IBM Rational Products

Requirement information is synchronized later from the local replica to the remote replica by
using normal Rational ClearQuest MultiSite synchronization.

The Rational ClearCase/UCM integration also operates in a multisite environment. For more
information regarding the integration, see the Redbooks publication Software Configuration
Management: A Clear Case for IBM Rational ClearCase and ClearQuest UCM, SG24-6399.
This Redbooks publication also explains how to do parallel development in geographically
distributed locations by using Rational ClearCase and Rational ClearQuest MultiSite and
includes detailed procedures for planning and implementing MultiSite for a UCM environment.

5.8.2 Configuring Rational RequisitePro and Rational Requirements
Composer

In this section, we explain how Rational RequisitePro and Rational Requirements Composer
were configured for the scenario in this book.

Rational RequisitePro
Rational RequisitePro projects are created from Rational RequisitePro project templates. A
project template is a “boilerplate” that identifies the logical organizational structure of the
project, the metadata. That is, it identifies the kinds of requirements that will be captured in
the project, views, security, and so on.

The type of project template that is chosen depends on the requirements methodology that is
followed by the team. In our example, we use the Agility at Scale for our requirements
methodology. Just enough requirement information is captured to provide the team a
foundation by which to build or implement the solution. Based on our flow, we capture the
following types of requirements in Rational RequisitePro:

� Stakeholder request

These requests reflect the initial need statement and business problems that are defined
by the stakeholder.

� Feature requirement

This type of requirement is an externally observable service that is provided by the system
that directly fulfills a stakeholder need.

� Use case

A use case captures requirements as a sequence of actions that a system performs that
yields an observable result of value to those interacting with the system.

� Supplementary requirements (supporting requirements)

These requirements define necessary system quality attributes, such as performance,
usability, and reliability, and global functional requirements that are not captured in
behavioral requirements artifacts such as use cases.

Agile approach: If you are following more of an agile approach, the need statement
requires a bit of refinement. The next level of detail is captured as a user story.

Agile approach: If you are following more of an agile approach, use cases are used
sparingly and only to provide additional detail to a user story where insufficient. Some
of the scenario-type steps might be flushed out during test driven development with
JUnit testing.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 189

Rational Requirements Composer
Like Rational RequisitePro, Rational Requirements Composer also leverages the concept of
“project.” Projects currently can be created from the Project Starter template or by using a
blank template. The Project Starter template includes the following information (Figure 5-82):

Features Package that provides the requirement types of a feature.

Glossaries Package that identifies meaningful terms.

Processes Package where process models can be stored.

Requirements Generalized requirements package. (All requirements regardless of
type are identified are organized, here, unless specified otherwise.)

Storyboards Sketches can be stored in this package.

Supplementary Nonfunctional requirements are stored in this package.

Use Cases Use cases model information.

Figure 5-82 Classic project properties of Rational Requirements Composer

Agile approach: If you are following more of an agile approach, supporting
requirements are used sparingly and only to identify nonfunctional requirements that
cannot be described in the context of a user story.
190 Collaborative Application Lifecycle Management with IBM Rational Products

Integration points between Rational RequisitePro and Rational
Requirements Composer
In this section, we discuss the integration points between Rational RequisitePro and Rational
Requirements Composer. To manage requirements in Rational RequisitePro from the
artifacts that are created in Rational Requirements Composer, the Rational Requirements
Composer project must be integrated with a Rational RequisitePro project:

1. Open the ALM project in the Repository Explorer (Figure 5-83).

Figure 5-83 Accounting Opening project properties
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 191

2. Click the Administration tab and click Edit Connection to enter the Rational RequisitPro
connection information (Figure 5-84).

Figure 5-84 Selecting the project administration properties
192 Collaborative Application Lifecycle Management with IBM Rational Products

3. In the Edit RequisitePro Connection window (Figure 5-85):

a. In the Server URL field, type the URL for RequisiteWeb in the following format:

http://<server_name>/ReqWeb

The URL is case sensitive. Therefore, you must enter it accordingly.

Figure 5-85 Editing the Rational RequsiteWeb connection

b. For Project, click Browse to navigate to the Rational RequisitePro project.

c. Navigate to the project directory for the project and select the project name to access
the project.

d. After you selecting and it is displayed in the project list box (Figure 5-86), click OK.

Figure 5-86 Selecting a project

The project name is now populated in the Project field.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 193

e. Provide a user name and a password for the project. Then click Next.

f. In the window that lists the packages in the Rational RequisitePro project, select a
package that you want to use as the default selection when managing or importing
requirements.

g. Click Finish to save the connection information.

After you complete these steps, the Rational Requirements Composer and Rational
RequisitePro project are integrated and requirements can now be managed between the two
applications.

5.8.3 Configuring Rational ClearQuest and the ALM schema

The ClearQuest ALM solution that is exemplified in this book is configured by using the
following components:

� The ClearQuest ALM packages
� The ClearQuest ALM OpenUP configuration
� The ClearQuest Connector integration package
� The Rational RequisitePro integration package
� Additional utility packages that are included in Rational ClearQuest

In this section, we discuss how Rational ClearQuest and the ClearQuest ALM solution were
configured for the book example. For details about the configuration of interoperability in the
Rational ALM solution, see Appendix B, “Configuring interoperability” on page 565.

Beginning with release 7.1.0.0, ClearQuest provides an out-of-the-box schema named “ALM”
along with two new packages to help implementing Application Lifecycle Management in
projects. The solution can be used out of the box as a new schema, or by adding the required
packages to an existing schema.

The ClearQuest schema that used in this book was created by using the ready-to-use ALM
schema and the OpenUP configuration. This schema already has applied the main packages,
which are necessary for the ALM scenario. If work is being done with an existing ready-to-use
schema or one that has been developed from scratch, the following two packages must be
applied to the schema:

� ALMWork 1.0
� ALMProject 1.0

The steps to configure the Rational ClearQuest by using the ALM schema is provided in
“Configuring the ClearQuest ALM schema” on page 566.

Packages for download: The ALM Packages for Rational ClearQuest are available for
Rational ClearQuest 7.0.1 users to download for free from IBM. The packages can be
accessed from the Web at the following address:

http://www.ibm.com/services/forms/preLogin.do?lang=en_US&source=swg-ratcq

Registration is required to access the packages. The download includes the ALM
Packages for Rational ClearQuest, instructions for applying the packages, a sample
database, and three tutorials for use with the sample database. The ClearQuest ALM
solution can be used with both ClearQuest versions 7.0.1 and 7.1.
194 Collaborative Application Lifecycle Management with IBM Rational Products

http://www.ibm.com/services/forms/preLogin.do?lang=en_US&source=swg-ratcq

Configuring ClearQuest ALM for OpenUp
The ALM schema provides an OpenUP configuration by using the ClearQuest ALM schema
and the system-wide settings. The work configuration and label records in the ClearQuest
ALM solution enable process, workflow, and terminology configurations without impacting the
underlying schema. Tool administrators or project leads can set policies for standardization,
organization, and governance of projects.

In this book, we use the sample work configurations for OpenUP that are provided with ALM
Packages for ClearQuest v7.1.

Extending OpenUP for sizing, approvals, and retrospectives
The ClearQuest ALM solution provides a base OpenUP configuration. Extensions to this
process were made to support the following extended workflows:

� Request sizing; see 4.3.2, “Sizing requests” on page 113
� Reviews and approvals; see “Patricia approves the release” on page 508
� Retrospectives; see “Retrospectives” on page 518

For details about the ALM schema additions, see the following sections:

� “Configuring Rational ClearQuest for solution delivery” on page 521
� “Adding optional resolution codes” on page 576

Configuring Rational ClearQuest ALM schema for interoperability
In addition to the required ALM packages, additional packages to support interoperability
between Rational ClearQuest and other tools, such as Rational RequisitePro, Rational
ClearQuest, and Rational Team Concert, were added. Packages that are required by UCM
are automatically added when adding the ALMWork 1.0 package and are applied to the
ALMActivity record type.

The following packages were added to the ALM schema:

� RequisitePro 1.9 enables integration with Rational RequisitePro.
� JazzInterop 1.0 enables integration with Rational Team Concert.
� Notes 5.1 enables interoperability with discussions in Rational Team Concert.

Steps to configure the ClearQuest ALM schema for interoperability with the Jazz products are
provided in “Configuring ClearQuest ALM schema for interoperability” on page 569.

The OpenUP configuration and work configuration require additions to support the parity
between the fields in Rational ClearQuest and the Jazz products OpenUP template.
Additional extensions are optional but make the integration more flexible:

� Required additions to the OpenUP work configuration in Rational ClearQuest
� Optional additions to the ClearQuest ALM schema

For details about the ALM schema additions, see the following sections:

� “Configuring ClearQuest ALM system-wide settings for interoperability” on page 571
� “Configuring the ClearQuest ALM schema” on page 566

Configuring the JazzInterop package
The JazzInterop package enables record synchronization between work items in Rational
Team Concert or Rational Quality Manager and Rational ClearQuest records. In the example
in this book, the JazzInterop package was associated with the ALMActivity, ALMTask,
ALMProject, ALMCategory, ALMResolutionCodeLabel, and ALMTypeLabel record types.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 195

The JazzInterop package is added to the ALM schema and associated with the ALM types by
using the Rational ClearQuest Designer tool.

The details about the configuration, see “Adding packages for the ALM schema” on page 567.

Configuring Jazz interoperability
Rational ClearQuest integration with the Rational Jazz server is provided by the ClearQuest
Connector that is provided as a part of the Rational Team Concert and Rational Quality
Manager products. ALM interoperability is configured by using the following components:

� ClearQuest Connector gateway that is deployed to the Rational ClearQuest database
server or a co-located server

� Synchronization rules that are deployed to the Jazz server

You can find steps to configure the Jazz products for ALM interoperability in “Configuring Jazz
repositories for interoperability” on page 583.

Configuring the ClearQuest Connector Gateway
The ClearQuest Connector Gateway performs the synchronization between Rational
ClearQuest and the Jazz server. The gateway runs on a stand-alone application server that is
provided with the Rational Team Concert and Rational Quality Manager products.

The ClearQuest Connector Gateway is deployed and co-located with the Rational ClearQuest
database. The gateway is configured with a property file that specifies the connection
information, such as the server addresses and user account information, to Rational
ClearQuest and Jazz servers.

For details about the configuration, see “Configuring the ClearQuest Gateway” on page 581.

Configuring ALM synchronization rules
The details of the synchronization between the Rational ClearCase and Jazz repositories are
specified in the synchronization rules. These rules specify the how records are paired, the
field of the items to synchronize, and details in the mapping of values. The rules also specify
the type of extended transformation that is provided by synchronization managers in the
ClearQuest Gateway.

The synchronization rules are general in concept, but specific to the ClearQuest schema that
is used. The following set of synchronization rules was elaborated and deployed to support
the example in this book:

� com.ibm.rational.clearquest.CQALM.ALMTask

This rule synchronizes ALMTasks and Work Items.

� com.ibm.rational.clearquest.CQALM.ALMActivity

This rule synchronizes ALMActivities and Work Items.

� com.ibm.rational.clearquest.CQALM.ALMCategory

This rule creates new categories from ALMCategory records.

� com.ibm.rational.clearquest.CQALM.ALMProject

This rule resolves references to ALMCategory from ALMActivity and ALMTask records.

� com.ibm.rational.clearquest.CQALM.ALMTypeLabel

This is a helper rule to synchronize the Priority reference field.
196 Collaborative Application Lifecycle Management with IBM Rational Products

� com.ibm.rational.clearquest.CQALM.ALMResolutionCodeLabel

This is a helper rule to synchronize the ResolutionCode reference field.

� com.ibm.rational.clearquest.CQALM.Attachments

This rule manages the creation and synchronization of attachments in the Rational
ClearQuest and Rational Team Concert products.

� com.ibm.rational.clearquest.CQALM.users

This rule manages the creation of new contributors in Rational Team Concert from user
records in Rational ClearQuest.

For details about the ALM schema additions, see “Configuring and deploying synchronization
rules” on page 585.

Configuring interoperability in Rational RequisitePro
By using the Rational ClearQuest v7.1 Schema Designer, as shown in Figure 5-87, the
Rational RequisitePro package was applied the to the following record types in the schema:

� ALMRequest (required)
� ALMActivity (optional)
� ALMTask (optional)
� Any other record type needed for your business logic (optional)

Figure 5-87 Applying the Rational RequisitePro package to record types

Attention: Apply the Rational RequisitePro package to all types that will support
traceability to or from a requirement in Rational RequisitePro. The configuration steps in
this book assume that traceability is established to the ALMRequest type.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 197

After all the packages are applied, check the schema to make the necessary changes to
complete the Rational RequisitePro and Rational ClearQuest integration:

1. Open each record type that has the Rational RequisitePro package applied and browse to
the field listing section in the designer.

2. Find the field called Requirements_List, which the package added, and for Back
Reference (Figure 5-88), add a reference to the field that points back to the requirement
record type. In this case, the Back Reference is called ALMRequests_List.

3. Repeat this process for each record type that the RequisitePro package added.

Figure 5-88 Requirement_List back reference field

After all back references are added, you can optionally choose to add the newly added back
reference fields to the requirements record form as shown in Figure 5-89.

Figure 5-89 References tab on the Requirement record type
198 Collaborative Application Lifecycle Management with IBM Rational Products

Integration of Rational ClearQuest and Rational RequisitePro
To manage requirements and link them back to their associated Rational ClearQuest assets,
you must configure the integration between Rational ClearQuest and Rational RequisitePro.
This configuration entails the following setup:

� Pertinent packages must be present in the Rational ClearQuest schema for the Rational
RequisitePro and Rational ClearQuest integration.

� The Rational RequisitePro project has attributes that have been created of type
“ClearQuest” for the stateful records that will be linked to Rational RequisitePro
requirements (Figure 5-90).

Figure 5-90 Project Properties - ClearQuest integration attributes

� The Rational Administration Wizard must be executed as explained in the remainder of
this section.

Tip: Review the Rational ClearQuest installation guide, which references pertinent
packages that should be present for the integration of Rational ClearQuest and Rational
RequisitePro.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 199

An administration machine with Rational Administrator, Rational RequisitePro, and Rational
ClearQuest must be installed to complete the following required steps:

1. Open Rational Administrator and select the desired project. Right-click the project and
select RequisitePro-ClearQuest Integration.

2. In the RequisitePro-ClearQuest Integration Wizard window (Figure 5-91), type the
Administrator user ID and Password and click Next.

Figure 5-91 RequisitePro-ClearQuest Integration Wizard configuration - Welcome window

3. In the Enter Web URL window (Figure 5-92), type the RequisitePro Web URL and
ClearQuest Web URL and click Next.

Figure 5-92 RequisitePro-ClearQuest Integration Wizard configuration - Enter Web URL window
200 Collaborative Application Lifecycle Management with IBM Rational Products

4. In the next window, configure the associations by selecting Add for the Action column and
then completing the following parameters as shown in Figure 5-93 and Figure 5-94:

– For Requirement Type, type FEAT.
– For Attribute, type Request.
– For Project, specify the project name.
– For RecordType, type ALMRequest.
– For Requirements List, type the name of the Reference field to Requirements record

type.
– For Back Reference, type the name of the Back Reference field from Requirements to

ALMRequest.

Click Next to complete the configuration.

Figure 5-93 shows the initial parameters.

Figure 5-93 RequisitePro-ClearQuest integration wizard configuration

Figure 5-94 shows the parameters that are displayed after scrolling to the right.

Figure 5-94 RequisitePro-ClearQuest Integration Wizard configuration
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 201

After the association is complete, the Rational Administrator window (Figure 5-95) opens and
shows details of the Rational ClearQuest database and Rational RequisitePro project, which
are integrated.

Figure 5-95 Rational Administrator with configured RequisitePro-ClearQuest integration

Setting up a Rational Team Concert feed to ClearQuest queries
Rational Team Concert has a built-in feed reader so that users can subscribe to feeds from
various types of sources. The Rational ClearQuest Web interface supports representing
query output in variables formats, such as ATOM and HTML, by using its Rest API.

To configure Rational Team Concert to subscribe to a Rational ClearQuest feed and monitor
Rational ClearQuest records:

1. Log in to Rational Team Concert and navigate to the Team Artifacts tab.

2. Right-click Feeds and select New Subscription.

3. Enter the URL in the following format to the Rational ClearQuest Web server that points to
the ATOM feed for the query that needs a subscription:

http://localhost/cqweb/restapi/CQALM/SAMPL/QUERY/Public
Queries/JazzConnector/AccountOpening/ALMTask.AccountOpening
?format=ATOM&loginId=admin&password=
202 Collaborative Application Lifecycle Management with IBM Rational Products

4. Expand the Feeds item and double-click the newly created feed to run it. The reader
should display the feed as shown in Figure 5-96.

Figure 5-96 ClearQuest ATOM feed in Rational Team Concert

5.9 Problem determination and known workarounds

In this section, we discuss general program determination techniques and must-gather type
information that can be used for troubleshooting and contacting support. We cover the
following products:

� Rational ClearQuest
� Rational RequisitePro
� Rational RequisitePro Composer

5.9.1 General techniques

In general, using problem determination techniques can greatly reduce the time to solve a
problem and help maintain a smoother running environment overall. Understanding the scope
and the narrowing down of a problem is always a good first step when tackling any new
problem that you might encounter. Formulating a problem statement to understand exactly
what the problem is and where it lies in the environment can help do this.

After the problem is defined, you can start to narrow down the scope by asking questions
regarding where the problem does not exist in the environment. In addition, questions on
when and where the problem exists and does not exist help to further narrow the scope. This
also helps to identify where gaps in information exist and where more information needs to be
gathered.

Upon completion of these questions and gathering as much data as possible, you can work
on creating a list of possible causes that might be the root of the problem. Ordering the list
and tackling the most likely cause helps to reduce the time to solve the problem.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 203

The use of self-help resources and support generated content is another way to reduce the
time to solve a problem. Visit IBM Rational support’s Web site at the following address to
search for content on specific products and problems:

http://www.ibm.com/software/rational/support

5.9.2 Troubleshooting Rational ClearQuest

While Rational ClearQuest is a flexible tool that allows organizations high amounts of
customizations, this customization can ultimately lead to issues with can arise during
configuration and deployment. We discuss some of the most common areas when working
with Rational ClearQuest and the ALM schema.

Rational ClearQuest packages
Installing and setting up Rational ClearQuest packages can cause conflicts if the schema to
which they are applied already have fields with the same name. When applying a package to
a record type, you might see the following error message:

The Name “Project” already exists

This message typically indicates that there is a field in the record type with the same name as
one that the package needs to apply. To work around this problem, you must check out the
schema and find the field name in question that is causing the conflict as indicated in the error
message and rename it to something new. After the field name is changed, apply the package
again. It should succeed, provided that there are no other duplicate field names in the
schema.

Rational ClearQuest Web client
The Rational ClearQuest Web interface has been redesigned in the 7.1.0.0 release and has a
new architecture that uses IBM WebSphere® Application Server and Change Management
Server technologies. In general, when working with errors by using the Web interface, its
always a best practice to see if the same error exists with the Eclipse interface. This
exploration helps to narrow down the scope of the problem greatly. It also allows you to focus
on troubleshooting the problem in the Eclipse environment since the architecture is generally
less complex to work with.

Performance
The ALM schema is optimally designed to work with the new Web interface. However, should
performance issues arise, see the IBM developerWorks article “IBM Rational general schema
design performance” for more advice about best practices when working the Rational
ClearQuest schema design. You can find the article at the following address:

http://www.ibm.com/developerworks/rational/library/07/0717_patel/index.html

Rational ClearQuest Eclipse client
When working with the Rational ClearQuest Eclipse interface, it is best to narrow down the
scope of the problem by determining which component might have caused the failure. Errors
can occur during one the following major use cases:

� Running queries
� Loading records to view
� Performing actions and state changes
� Running reports
204 Collaborative Application Lifecycle Management with IBM Rational Products

http://www.ibm.com/developerworks/rational/library/07/0717_patel/index.html
http://www.ibm.com/software/rational/support

Based on the type of error, there are different techniques that you can use to troubleshoot the
issue further. For ALM, specifically parent child links and reference records are used
frequently to maintain a hierarchy for project work.

Diagnostics core tracing
Diagnostic tracing is sometimes necessary to understand which component of Rational
ClearQuest is failing and helps to identify the correct action that needs to be taken to resolve
the problem. Setting up diagnostic tracing is achieved by using one of the following methods:

� ratl_diagnostics table
� Environment variables
� Microsoft Windows registry keys

ratl_diagnostics is a table that can be added to your Rational ClearQuest user database and
causes trace information to be generated for any client machine that is connecting to this
database. The table is read when the Rational ClearQuest client is launched and writes
logging information to a trace file as specified in the table. This option is good when you are
unsure about which client is causing the problem and cannot readily reproduce the problem
for any single client machine.

To create the table, use the PDSQL utility that is in the \<install dir>\ClearQuest directory of
your administration machine and run the SQL commands in Example 5-1 to generate the
required tables.

Example 5-1 SQL script to generate the ratl_diagnostic table

drop table ratl_diagnostics;
create table ratl_diagnostics (
 diag_name SQL_VARCHAR(16),
 diag_value SQL_VARCHAR(255));

After the table is created, use the SQL commands in Example 5-2 to populate them with the
necessary values.

Example 5-2 SQL statements to insert diagnostic information for tracing

insert into ratl_diagnostics (diag_name,diag_value) values ('Trace',‘SQL')
insert into ratl_diagnostics (diag_name,diag_value) values ('Output','ODS')

To update an existing trace:
update ratl_diagnostics set diag_value = 'SQL=2' where diag_name = 'Trace‘

To turn all tracing off:
update ratl_diagnostics set diag_value = '' where diag_name = 'Output‘

To troubleshoot the most common types of problems, use the trace keys in Example 5-3. For
a full listing of trace keys and their meanings, contact IBM Rational Technical Support.

Example 5-3 Trace keys for troubleshooting Rational ClearQuest

TRACE = SQL=2;THROW;DB_CONNECT=2;SESSION;EDIT;RESULTSET;API;VBASIC;PERL;PACKAGES

Important: Be advised that this option can cause a lot of overhead because every client
that accesses the database will generate trace information, which can quickly grow in size
based on transaction load.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 205

An environment variable can also be set up on individual client machines for problem
determination. You can set variables for either Windows or UNIX to help generate diagnostic
logs. On Windows, you set the variables as shown in Example 5-4, which generates the
output to c:\trace.log.

Example 5-4 Variables on Windows

set CQ_DIAG_TRACE=Throw;Db_Connect=2;SQL=2;API
set CQ_DIAG_REPORT=MESSAGE_INFO=0x70B
set CQ_DIAG_OUTPUT=c:\trace.log

On UNIX, you can set the variables as shown in Example 5-5, which generates the output in
file trace.log.

Example 5-5 Variables on UNIX

setenv CQ_DIAG_TRACE Throw;Db_Connect=2;SQL=2;API
setenv CQ_DIAG_REPORT MESSAGE_INFO=0x70B
setenv CQ_DIAG_OUTPUT trace.log

Finally diagnostic tracing can be done by using the Windows registry of the client machine
where the problem occurs. As shown in Example 5-6 you can add the following registry key to
your client system to generate trace output. Be advised to back up your registry before you
attempt to make any modifications.

Example 5-6 Rational ClearQuest registry keys to enable trace output

Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\Rational Software\ClearQuest\Diagnostic]
"Trace"="SQL=2;THROW;DB_CONNECT=2;SESSION;EDIT;RESULTSET;API;VBASIC;PERL;PACKAGES"
"Report"="MESSAGE_INFO=0X70B;DIAG_FLAGS=-1"
"Output"="C:\\temp\\cq_diagnotics.log"

5.9.3 Troubleshooting Rational RequisitePro

Rational RequisitePro users can leverage the Web interface or thick client for which there are
various troubleshooting techniques. We describe some high-level considerations for logging,
and performance and integration considerations.

Rational RequisitePro client logging
Logging information for Rational RequisitePro is stored in the <install directory>\IBM
Rational\RequisitePro\bin\error.log. This file can be viewed in a text editor and includes error
messages that are thrown by using the thick client sorted-by date. The log file is helpful in
identifying error messages that are received from the thick client.
206 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 5-97 shows a sample of the error.log file.

Figure 5-97 Rational RequisitePro error log example
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 207

Rational RequisitePro Web
Rational RequisiteWeb is powered with the Rational Web platform, which uses a combination
of the IBM HTTP Server and WebSphere. The logging information that is captured for
RequisiteWeb is stored in the profile directory for WebSphere. This directory contains various
log files, including the system out log, for example (Figure 5-98). The logs are in <install
directory>\IBM Rational\common\rwp\EmbeddedExpress\profiles\profile2\logs.

Figure 5-98 RequisitePro Web interface log example

Rational RequisitePro performance considerations
There are many factors for performance considerations. Some of these factors include usage
model for a team, size of a project, distributed nature of the team, and so on. All of these
factors cannot be described in detail in the context of this book, nor is it the focus. Good
sources for this information include technotes and Global Development and Delivery in
Practice: Experiences of the IBM Rational India Lab, SG24-7424.

Rational RequisitePro Web performance considerations
Because Rational RequisitePro Web uses the Rational Web platform as its Web server and
servlet engine, many of the performance considerations depend upon this technology. The
main consideration for Rational RequisitePro Web is the total concurrent users. As this
number becomes significant, such as 100 or more users, administrators must consider load
balancing the server. Additionally, compression for the HTTP server and adjusting the thread
pool size can also improve performance in data representation with the Web interface.
208 Collaborative Application Lifecycle Management with IBM Rational Products

Integration considerations for Rational RequisitePro and
Rational ClearQuest
Information regarding the configuration requirements for this integration is included in both
the Rational ClearQuest and Rational RequisitePro installation guides as well as in “Rational
RequisitePro and Rational ClearQuest integration” in the information center at the following
address:

https://publib.boulder.ibm.com/infocenter/cqhelp/v7r1m0/index.jsp?topic=/com.ibm.r
ational.clearquest.integrations.doc/topics/cqint_reqpro/c_reqpro_cq_integ.htm

Consider the following main points:

� The Rational ClearQuest schema must have the Rational RequisitePro package applied to
enable the integration. Review the sections that discuss various packages in the Rational
ClearQuest installation guide.

� The Rational RequisitePro project must include attributes of the Rational ClearQuest
integration that reflect stateless records that exist in Rational ClearQuest.

� The Rational Administrator project must be accessible by both Rational ClearQuest and
Rational RequisitePro because it serves as a hub for the integration.
Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests 209

https://publib.boulder.ibm.com/infocenter/cqhelp/v7r1m0/index.jsp?topic=/com.ibm.rational.clearquest.integrations.doc/topics/cqint_reqpro/c_reqpro_cq_integ.htm

210 Collaborative Application Lifecycle Management with IBM Rational Products

Part C Act 2: Collaborative
development

In this part, we introduce and describe the second act in the storyboard, which involves a
component team that is responsible for implementing the change. In Chapter 6, “An agile
team implements a change” on page 213, we provide information about collaborative
development as it relates to the scenario. Then in Chapter 7, “Rational Team Concert for
collaborative development” on page 231, we provide details about the IBM Rational products
that are used to support this act of the storyboard.

Part C

Role-based guide: To understand how the content in this part applies to your role, see the
role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7 on
page 13.
© Copyright IBM Corp. 2008. All rights reserved. 211

212 Collaborative Application Lifecycle Management with IBM Rational Products

Chapter 6. An agile team implements a
change

In this chapter, we provide an overview of collaborative development and a reference scenario
for how it can be applied by an agile component team that is working within a larger
enterprise solution team.

We include the following sections in this chapter:

� 6.1, “Introduction to collaborative development” on page 214
� 6.2, “A reference scenario for collaborative development” on page 221
� 6.3, “Considerations in collaborative development” on page 227

We also include information about how this scenario relates to the previous scenarios and
how it can impact the subsequent scenario in the life cycle.

6

Role-based guide: To understand how the content in this chapter applies to your role, see
the role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7
on page 13.
© Copyright IBM Corp. 2008. All rights reserved. 213

6.1 Introduction to collaborative development

Development is no longer an individual effort performed in isolation. Development has
become a team sport where teams of developers, who are often geographically distributed,
develop effective software in concert. New collaborative development principles and new
development tool solutions are needed to support collaborating with co-located or
geographically distributed team members.

In this chapter, we discuss the new market trends in collaborative development and how the
IBM Rational Application Lifecycle Management (ALM) solutions, such as Rational Team
Concert, which is built on Jazz, make collaborative development easy, productive, and fun.

6.1.1 The changing collaborative development market

The industry shift and development challenges that are discussed in 2.1.1, “Changes in the
ALM market” on page 16, have a direct impact on how teams develop software. In this
section, we discuss how software development and delivery have moved toward a
collaborative development model that supports a more agile way of working.

Changes toward collaborative development
Collaboration is particularly important in the practice of software delivery. After all, software is
the product of many conversations. To create software that satisfies the needs of users, many
people across the organization and geographic boundaries discuss the needs and
approaches to satisfy customer demand. These conversations result in a clear set of
requirements that can be implemented by the development team.

During development, the teams continue to collaborate to ensure that the design, prototypes,
and final implementation best suit the needs of the stakeholders. A high level of collaboration
is critical because the development process remains fundamentally difficult. The difficulty is
due, in part, to shifting requirements as the stakeholder needs become clarified with each
review and other real-time changes that are needed to provide software that best satisfies
their users’ needs. It is also due to the complexity of the products and services that are being
delivered. Today’s teams are often geographically or organizationally distributed, adding to
the risks and complications in software delivery with different time zones, organizational
boundaries, and language barriers.

All of these challenges require development teams to work closer together. Team members
need a solution that helps them act in concert regardless of their location or time zone. Team
leads seek to monitor progress throughout the development life cycle with teams that are
spread around the world.

Collaborative development pragmatically removes several of the barriers that add risk to
traditional development teams operating in silos, through the following methods:

� By using a shared vocabulary, team members can collaborate in context and jointly use
and evolve the vocabulary, rather than form a committee to establish one.

� Shared measurements allow transparency to plans, work, and results, so that teams can
configure their targets and track health based on real-time metrics.

� Shared assets avoid duplication of effort and benefit reuse by seamless access to assets
and team members.

� By using shared practices, teams can form practices and ensure consistency by
right-sized process enactment.

� By ensuring continuous improvement, teams can improve practices in small steps.
214 Collaborative Application Lifecycle Management with IBM Rational Products

Changes toward distributed development
In the modern economy, companies are continuing to expand globally by distributing their
teams around the world through a variety of means, including offshoring, acquiring,
partnering, and outsourcing. As globalization becomes more prevalent, many companies are
evolving their approach and practices for distributed development.

Traditionally global organizations assigned product or project ownership by locality, making
each location or branch responsible for delivering its own application or project, and each of
these sites worked independently. As companies expand their presence around the world,
changes are required where multiple sites become a team of teams that contributes to a
global delivery chain. Each team might own a module or component that they deliver
upstream for integration with components from other locations or companies, culminating in a
final solution, application, or product. Teams might belong to the same organization, division,
or company, or in some cases, teams cross organizational boundaries.

However, many geographically distributed teams are facing a number of issues and pain
points:

� Misunderstood or mismatched processes between teams can lead to mistakes, increased
rework, and decreased productivity.

� Cultural issues and language barriers cause delays and affect working relationships.

� Visibility and control of development activities at all sites are challenging. Coordinating
work across multiple sites is time consuming.

� Project metrics can be inconsistent or difficult to obtain, making it difficult to measure
success.

� Infrastructures and development tools can vary widely due to siloed organizations,
acquisitions, and outsourcing, limiting transparency and access.

Collaborative development is one of the identified critical success factors of distributed
development because it addresses the following areas:

� Global coordination and oversight
� Well-defined processes and workflow
� Inventory and information management
� Clear and accessible communication
� Flexible and adaptable development infrastructure

Changes toward agile development
Agile principles are successfully used by many organizations. The variations in detail and
approach are many. More organizations are attempting to grow with agile principles by
allowing smaller agile teams to contribute to the larger enterprise software supply chain, often
in geographically distributed projects.

IBM Rational customers look to Rational for recommendations on the Agility-at-Scale method.
This guidance is gaining in importance as enterprises seek to adopt and improve on agile
principles. See “Approaches to Agility at Scale” on page 43, which elaborates on the following
key Agility-at-Scale success factors:

� Constant collaboration
� Iterative development
� Agility of small teams
� Adoption of frequent builds
� Adoption of frequent integration testing
� Actively engaged stakeholders
Chapter 6. An agile team implements a change 215

Adopting some form of the agile method is no longer a question of “if” but more a question of
“how” and “when.” Teams are exploring which method makes the most sense for a particular
project given the people and circumstances surrounding the project.

Changes toward asset management
Historically enterprises have viewed asset management as a reuse-focused activity. However,
modern enterprises look to asset management as a way to address challenges with
communicating knowledge, managing delivery and governance of their assets, and
understanding the impact of changes for their asset planning. The core need to reuse still
exists, but many enterprises manage assets not to be reused, but to be measured and
reported, as well as a means to disseminate knowledge and affect decision making.

To determine the approach to managing your assets, consider the following key items:

� Examine the pain points.
� Describe the asset management scenarios to address the pain points.
� Select your asset management adoption point.

For example, the enterprise might determine that a major pain point is that they do not have a
single point of entry to understand what their assets are, across the various development
artifacts. This lack of information affects their ability to both disseminate knowledge and
understand asset relationships. By using the image in Figure 6-1, the enterprise can adopt
asset management in the “Facilitated” column, creating a repository that serves as a catalog
and information disseminator.

Figure 6-1 Asset management adoption points

• Asset planning
• Enterprise

architecture

• SOA/services
• Broker

• Catalog
• Knowledge

management
• Business

intelligence

Asset
management
opportunities

Adoption points

• Wikis
• Web server

• None
• Opportunistic

• None

Ad hoc

• Frameworks
• Domain-specific

asset libraries

• Controlled and
federated
repositories

• Re-engineering and
harvesting tools

• Open source tools

• Asset analysis
• Self-use repository
• Business

intelligence
• Asset types

Tools and
technology

• Domain-specific
architectures

• Reference
architecture

• Designed for reuse
• Patterns

• J2EE, .Net
• Policy enforced

architecture

• Some guidelines

Architecture
and design

• Platform and
architecture reviews

• Lines of business
managers or CTOs

• Enterprise architect

• Asset reviews,
change control,
certification,
policies, and impact
analysis

• Business analyst
• Other technical roles

• Publish guidelines
• Review webmaster
• Business and

technical roles
• Evangelist

Process and
roles

PlannedGovernedFacilitated

Increasing return on investment and asset use
216 Collaborative Application Lifecycle Management with IBM Rational Products

The enterprise might have several asset management adoption points under way across
various teams or groups to address their respective issues.

6.1.2 Collaborative development blueprint

The goal of a Collaborative Application Lifecycle Management (CALM) solution is to
streamline a team’s ability to develop a release of software. Collaborative development, as
part of CALM, enables a team to effectively develop and deliver software solutions.

To address the needs of the collaborative development market, Rational has produced and
delivered on a collaborative development blueprint as illustrated in Figure 6-2. Rational Team
Concert, which is built on Jazz products, is a new addition to the Rational portfolio, which
delivers on the collaborative development blueprint. The Jazz products both define a vision for
the way products can integrate to support collaborative development and provide a
technology platform to deliver on this vision.

Figure 6-2 Blueprint for collaborative development

Collaborative development using Rational Team Concert
Collaborative development coordinates the disciplines of source code management, work
items management, build management, and team health. A collaborative development
system provides a repository for managing and organizing the development effort. By placing
all assets in the collaborative development system, the development team has a clearer
indicator of their progress. Source code change sets are linked to work items. Change sets
are tracked in each build. Work item status, quantity, and distribution across team members,
along with build performance metrics, contribute to understanding the team health.

Source Code
Management
Workspaces
Snapshots
Baselines
Change sets
Suspend changes
Component
Streams
Bridges and connectors

Work Items
Management
Iteration planning
Attachments
Audit trails
Customize
workflow
Connectors

Build
Management
Define builds
Continuous
integration
Remote
build server
Bridges

Team Health
Transparent
development
Team central
RSS/Atom feeds
Instant messaging
Process enforcement
and customization
Dashboards
Reports
Role-based
permissions

Hundreds of users
Deep tool or
programming
language knowledge
Talks technology
language
Distributed teams

Collaborative Development
Focus on development team productivity
Enables distributed development
Flexible support for development processes
Manage change in the application life cycle

Team first
Transparency
Collaboration
Integration

Developer

Business value

Team Collaboration
View iteration plans and validate deliverable time lines
Create, update, query, and view disposition of development tasks
Overview of the resource utilization
View personalized dashboards

Web-based UI
Knows
application
domain
Talks business
language

Contributor

IBM and Partner Ecosystem
Chapter 6. An agile team implements a change 217

Collaborative development is enabled in Rational Team Concert, which is built on the Jazz
platform. The Jazz platform is a scalable, extensible team collaboration platform for
integrating work across the phases of the development life cycle. The Jazz platform helps
teams build software more effectively while making the software development activity more
productive and enjoyable.

The Jazz platform provides real-time collaboration that is delivered in context. Accurate
project health information is drawn directly from actual work, rather than from time-consuming
progress reports. Traceability and auditability are automated by managing all artifacts and
their inter-relationships across the life cycle. Instant messaging and other types of
collaboration are integrated to support communication and presence awareness, and RSS
feeds enable everyone to be informed of all events. The Jazz platform is built on Eclipse and
other open technologies and serves as a foundation for the Rational Software Delivery
Platform. In addition, the Jazz products are open to the IBM partner ecosystem to extend the
platform.

The Jazz platform also supports Agility-at-Scale development practices to larger distributed
teams as discussed in 2.2.3, “Scaling agile methods” on page 38. Agile development works
particularly well for smaller, co-located teams. Rational Team Concert, which is built on the
Jazz platform, provides a centralized platform for such teams. The transparency and visibility
that Jazz provides, and the interoperability with enterprise-level change management, means
that the advantages of agile methods can be extended to larger, distributed teams in an
enterprise.

Rational Team Concert for IBM System z and System i extend the core capabilities for
Collaborative Development to IBM z/OS® and IBM i development.

Source code management
Teams organize their source code, documents, and other assets by using the source control
capabilities. The source code management capabilities in Rational Team Concert provide
change-flow management to facilitate the sharing of controlled assets, retain a history of
changes made to these assets, and enable simultaneous development of multiple versions of
shared assets. With these capabilities, teams can work on several development lines at the
same time.

The source code management capability builds on the principles of components, streams,
change sets, and workspaces that provide collaborative and flexible usage models for teams
to develop, integrate, and deliver complex applications. Unique capabilities with server-based
workspaces enable users to suspend and resume changes. By doing so, an agile team can
rapidly respond to issues and deliver quick fixes, without adding risk and overhead to ongoing
development. The ability to exchange and collaborate on change sets lets team members
share work, effectively perform code reviews, deliver or withdraw changes, restore code state
snapshots, or resolve conflicting changes made by team members.

The source code management in Rational Team Concert provides rich and centralized
change management capabilities that are simple to use. It promotes team collaboration for
co-located and distributed teams.

Work items management and planning
Collaborative development starts with iteration planning. The Work Items component enables
team members to easily see and track work that is assigned to them. The component
includes defects that are submitted against the components for which they are responsible.
The team can use the Work Items component to plan development work for milestones and
obtain metrics that indicate the progress made toward the project development and quality
goals.
218 Collaborative Application Lifecycle Management with IBM Rational Products

By the seamless integration of planning and change management in Rational Team Concert,
teams can benefit from significant tool automation of the agile collaborative development
principles. In Rational Team Concert, the tasks on the project plan are the same as the actual
living tasks that the owners are working against. This alleviates the burden of project plan
updates from project manager and gives everyone full real-time transparency into the actual
progress of tasks against the plan.

The change management process and the management of work items are tightly interlinked
and need to be configured to fit the process that is adopted by the development team. The
Jazz platform provides process enactment that makes work items aware of the development
process. By using Rational Team Concert, teams can deploy ready-to-use development
processes, such as Open Unified Process (OpenUP) or The Eclipse Way, or customize the
Work Item information model, workflow, and process to fit a specific change management
process.

Build management
Build management is more than just a “compile” of a project. Build management involves the
entire process of assembling, compiling, verifying, and packaging a solution:

� The right version of the source code must be collected into the build area.
� The application is compiled for one or more operating systems.
� Build verification tests are run.
� The code is statically and dynamically analyzed.
� The build results are captured and staged.
� The entire process must leave an audit trail.
� The team depending on the build must be notified of its availability and state.
� Not at the least, the metrics that are related to build health trends must be collected and

made available to the team.

Build management also includes the capability for individual team members to extend the
project compilation capabilities in Eclipse with Personal Builds by using the software
configuration management (SCM) and build capabilities. With personal builds, developers can
run the build integration process in their personal sandbox and validate code stability prior to
delivering the changes to integration with the risk of breaking or destabilizing the team build.

The team build capabilities in Rational Team Concert are based on the Jazz platform’s
support for the automation, monitoring, and notification of the team builds. The capabilities
support a model for representing the team’s build definitions, build engines, build results, and
build notifications. The model is designed to support teams by using a range of different build
technologies and is configured by teach team to fit their build process requirements.

Team build in Rational Team Concert can be configured to run locally to the repository or
distributed by using dedicated build clients. Builds can also be integrated into Rational Build
Forge to leverage a central enterprise build function.

Team health
The team health capabilities in Rational Team Concert are based on the Jazz platform’s
support for transparency, seamless, and effortless access to assets, notification, reporting,
and monitoring capabilities. Team health capabilities enable self-organized agile teams to
respond effectively and rapidly to project challenges and changing project needs.

With the transparency of collaborative development by using Rational Team Concert, teams
can view the real-time plans and commitments that their team is working on. Notifications
keep team members updated on changes that are related to their work. In-context
collaboration, instant messaging, and collaborative asset traceability make it easy for teams
to share and re-balance work assignments.
Chapter 6. An agile team implements a change 219

To ensure team success, teams need effortless access to metrics, queries, and reports. By
integrating health indicators into the various views of the tools, team members and team roles
have continuous team health updates at their fingertips. Dashboards provide team-wide
information about the health of the project or on individual component teams. Both teams and
individuals can configure dashboards by using important health metrics as needed by role or
life-cycle phase. Views provided in Rational Team Concert, such as TeamCentral and
MyWork, bring the generic dashboard and team transparency capabilities to the fingertips of
the practitioner by providing effortless and continuous access to team events and work
schedules.

Team collaboration with team contributors
A key capability in collaborative development is to prevent a lock-in of information from
external contributors. To respond to customer needs, development teams must ensure
continuous stakeholder involvement and guidance. This interaction between the users and
the development team drives collaborative development demands on transparency. The
product owners, analysts, program office, and other cross-organizational stakeholders need
easy access to project information to provide timely input.

External team contributors demand easy access to project health information and assets by
using Web 2.0 usage patterns. By providing guest access and integrating with enterprise user
authentication services, teams can establish a balance between information security,
stakeholder access, and information management.

Rational Team Concert enables stakeholder access to the project plans for development
lines, iteration plans, and work items. This access enables stakeholders to validate the timing
and scope of project deliverables. Team contributors can also use the Web interface to create,
modify, and report on work items. This ability gives the development team early and
continuous feedback and contributes to the success and viability of the software that they are
producing. Users of the Web interface can also configure individual dashboards as required
by the needs of their role. By using the dashboard, users can combine access to work item
queries, notifications, and health metrics.

Asset management
Asset management involves the process of planning, developing, governing, and using
assets throughout their entire life cycle and across the enterprise. It includes the ability to
ensure that assets have the following capabilities:

� Can be quickly found to avoid duplication costs

� Can be consistently reviewed in an efficient manner to ensure usability and alignment with
business and technical strategic direction

� Comply with policies such as the usage of open source assets

� Can effectively be brokered between producers and consumers

� Are properly funded based on usage

Rational Asset Manager provides a published asset management repository for technical and
business assets. It uses the Reusable Asset Specification to achieve the following goals:

� Allow you to define, create, and modify assets

� Provide asset type specific search and governance

� Measure asset reuse in development

� Handle any kind of asset such as applications, business processes, business rules,
components, patterns, services, frameworks, templates, and other user-defined asset
types
220 Collaborative Application Lifecycle Management with IBM Rational Products

As such, asset management is more than just a published wiki or Web server of components
that teams can use. The primary benefit that it provides is to reduce software development,
operations and maintenance costs by improving quality by facilitating the reuse of approved
and proven assets. In addition, asset management facilitates asset usage and traceability by
integrating with other IBM Rational, WebSphere, Tivoli software development tools, as well as
your own tools.

6.2 A reference scenario for collaborative development

In the following section, we provide an overview of the steps taken by the component
development team to design, develop, test, and deliver enhancements to the component. In
7.3, “Rational Team Concert for agile development” on page 246, we demonstrate this
workflow by using Rational Team Concert.

The scenario in this chapter continues to build on the previous act in this book. In 4.2, “A
reference scenario for responding to a change request” on page 105, of Act 1, Patricia and
Marco align on an iteration plan that includes the work to re-brand the CreditCheck Web UI.
The scenario continues in 8.2, “A reference scenario for enterprise build management” on
page 325, of Act 3, where Rebecca integrates the delivered changes to the solution.

In Act 2: Collaborative development, we discuss how Diedrie collaborates with her team to
validate the design changes to the component and how she develops, tests, and delivers the
changes. Before delivering to the integration stream, she asks Marco to review her changes.
Diedrie then monitors that her delivery is successfully incorporated into the solution
integration build. This act is illustrated in Figure 6-3.

Figure 6-3 In Act 2, the component team develops and delivers requested UI branding changes

Collaborative Development (2 week iterations)

Act 2: Collaborative Development

The agile team develops, validates, and
builds the required changes to their

component in the solution. The component
is delivered to the solution integration.

2.3 Diedrie and Marco
do just enough
design

2.4 Diedrie develops,
builds, and tests her
changes

2.5 Diedrie conducts a
team build and
delivers for
integration build2.

1
 M

ar
co

 m
on

ito
rs

co

m
po

ne
nt

he

al
th

Marco
Development

Lead

Al
Solution
Architect

Diedrie
Developer

2.2 Al identifies an asset
the team can reuse

2

Chapter 6. An agile team implements a change 221

6.2.1 The actors

This scenario includes the several key actors as described in this section.

Marco is the development lead in the component team that is responsible for the delivery and
quality of the Credit Check Component in the Account Opening project. As part of the agile
team, he takes a leadership role in the architecture and implementation of the component. He
works collaboratively with his team and with Bob, Al, and Tammy to ensure that the teams
collectively deliver on the expected release requirements, design principles, and solution
quality.

Diedrie is one of the developers on the component team. As an agile developer, her
responsibilities span the end-to-end changes from design to test and delivery. She is also
supervising the continuous component builds and weekly component deliveries. She
implements the UI branding changes that Bob requested in the CreditCheck component.

Al is the software architect for the Account Opening solution, as well as for other solutions
within the enterprise. Marco and Diedrie collaborate with Al and request his guidance on
reusing the corporate assets for UI branding.

6.2.2 The workflow

In Act 2 of the ALM scenario, we capture the scenes and steps of a single request that is
being developed and delivered by Marco and his team. The agile component team
collaborates to right size the development effort by reusing assets and developing and
validating the required component changes. At the end of the act, the component is delivered
to solution integration.

The following tasks, which are shown in Figure 6-4 on page 223, are performed by the agile
component team in Act 2: Collaborative development:

� Al identifies an asset that the team can reuse.
� Diedrie and Marco do just enough design.
� Diedrie develops, builds, and tests her changes.
� Diedrie conducts a team build and delivers for the integration build.
222 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 6-4 The flow of steps for Act 2: Collaborative development

6.2.3 Marco monitors component health

The workflow in this scene captures how Marco completes the following tasks:

� Collaborates with his team at daily stand-up meetings, regardless of geographic location
� Conducts live collaboration sessions on the component iteration plan
� Enables the team to be self-organizing regarding tasks, work, and assignments

Rebecca –
Build Engineer

2.3 Diedrie and
Marco do just
enough
design

2.4 Diedrie develops,
builds, and tests
her changes

2.5 Diedrie conducts a
team build and
delivers for the
integration build

Al –
Software Architect

Diedrie –
Developer

3.2 Rebecca
runs the
integration
Build

2.2 Al identifies
an asset the
team can
reuse

DeliverBuild
Validate

Monitor

Accept

Monitor

Review
Deliver

Develop
Test
Build

Reuse
Design

Search
Collaborate

Marco –
Dev Lead

Synopsis: Marco conducts daily stand-up meetings with his component team to align the
work for the day. The team talks about their work and deliveries in the context of their live
iteration plan. Each team member has the opportunity to collaborate with the rest of the
team on work progress, change dependencies, and blocking issues.

During the daily stand-up meetings, the team uses the live iteration plan to make tactical
changes to improve project health. New work items are triaged or added. Ownership and
priorities or work are clarified. Blocking issues are reprioritized.

Diedrie has been assigned the work to re-brand the Credit Check user interface and make
other changes. She estimates and schedules the work that is assigned to her for the
current iteration.
Chapter 6. An agile team implements a change 223

6.2.4 Al identifies an asset the team can use

The workflow in this scene captures how Al completes the following tasks:

� Uses asset repositories and search to identify a reusable asset
� Uses asset scores to drive adoption decisions
� Collaborates with his team and shares guidance
� Attaches discussions and design decisions in context of the work

Synopsis: Diedrie is considering her options on the Corporate UI Branding work that is
assigned to her. She needs an advice from Al on a reusable component. She sends Al an
instant message, attaches a link to her work item, and asks for his guidance. Al knows that
a reusable component is available because he has been helping other teams on the same
topic. Sharing this component with Diedrie saves her and the rest of the team development
and testing time.

Al logs into the asset repository and starts his search in the Credit Management
community. This community is set up to support this business line, and the CreditCheck
team has approvals and permission to participate in this community.

Al searches the entries in the Credit Management community and gets several hits on
branding, but focuses his attention to the “Re-brand UI Component” asset that has
received high scores from other users. After viewing the details of the asset, Al decides to
share his discovery with Diedrie and Marco. He collaborates by sending an e-mail that
includes a link to the found asset.

Diedrie and Marco receive the e-mail and invite Al to a Web discussion about the topic. Al
shares his desktop and helps the team browse the documentation, the design, and the test
cases. Diedrie takes notes about the discussion and saves them as an attachment to her
UI branding work item. She also saves the link to the reuse component as a related
artifact.
224 Collaborative Application Lifecycle Management with IBM Rational Products

6.2.5 Marco and Diedrie do just enough design

The workflow in this scene captures how Diedrie completes the following tasks:

� Locates, inspects, and imports the reusable asset from an asset repository

� Uses a sandbox workspace to prototype on her design collaboration with other
contributors

� Uses team collaboration to validate her design with architects and stakeholders

Synopsis: Diedrie is ready to start working on the Credit Check UI branding. She opens
her work item and changes its state to indicate that work has begun. She creates a new,
clean, and updated workspace from the latest component baseline to integrate her
changes.

Diedrie then logs into the reuse repository from her development environment, by using the
link that Al provided. She reviews the online asset documentation and her notes from her
discussion with Al. She then starts importing all related assets into her workspace. Some
assets have Eclipse projects in them. Others must be pointed to a target project to be
imported.

Diedrie then proceeds and starts prototyping the redesign in one of the Credit Check UI
forms. She saves her design changes and a new change set gets created and associated
with her work assignment.

To confirm her design strategy, Diedrie invites Marco and Al to a design review of the
changes captured in the change set. Marco and Al accept her changes into their sandbox
workspaces and start browsing the changes. Both Marco and Al confirm that the design of
the changes looks good. To get validation from the stakeholder, Diedrie brings Bob into the
discussion and runs a demonstration of the updated UI form. Bob confirms that the
corporate brand design and manner of use are now correct.
Chapter 6. An agile team implements a change 225

6.2.6 Diedrie develops, builds, and tests her changes

The workflow in this scene captures how Diedrie completes the following tasks:

� Develops her changes in a local workspace
� Merges with changes made by others on her team
� Does test-driven development
� Integrates code review into development practices that are adopted by the team

6.2.7 Diedrie delivers her changes and builds the component

The workflow in this scene captures how Diedrie completes the following tasks:

� Delivers all related changes in one atomic operation
� Monitors that her delivery did not break the integration build
� Resolves her work assignment

Synopsis: Diedrie is now ready to proceed and complete the development of redesigning
all UI forms.

The component team is doing test-driven development (TDD). Diedrie iteratively focuses
first on the JUnit test that validates her change. She updates and runs her test, and
confirms that the test fails. She then iteratively applies the design pattern for the UI
changes, builds her changes, and reruns the test. She proceeds iterating until all
CreditCheck form tests pass and the code has been updated.

Diedrie is now ready to merge any incoming changes from her teammates. This is a
prerequisite to deliver her changes to integration. She accepts all incoming changes and
resolves change conflicts. In some cases, she needs to collaborate with other developers
in her team to decide on best approaches to merging their changes.

She also needs to run a private component build to validate that nothing is broken in her
workspace. As new dependencies are added in the code project, she must update the
component build script to reflect these dependencies. After completing the changes to the
build script, she requests a private build of her workspace. The build script integrates
compilation, build validations tests, and code analysis. She confirms that the build and
validation results were successful.

Diedrie is now done with her changes and must complete a code review before delivering
her changes to the component integration stream. This review is a practice that the team
enforces in their development process. She creates a new review request, attaches the
change sets, and submits the request to Marco.

Synopsis: Diedrie is now ready to deliver her changes to the integration stream and
resolve her work assignment. She makes sure that her workspace points to the integration
stream and then delivers her changes. The delivery includes her changes to the
application code, the unit tests, and changes to the build and validation scripts.

To catch any issues with her delivery as soon as possible, she requests a new integration
build to be run. She awaits the build result and validates that it completed successfully.

To complete her work, Diedrie opens her work assignment. She adds a summary of
comments on the resolution, adds an entry for the milestone release notes, changes the
state of her work to resolved, and saves her changes.
226 Collaborative Application Lifecycle Management with IBM Rational Products

6.3 Considerations in collaborative development

As discussed in this chapter, collaborative development spans the entire life cycle. The
scenario that is included in this book provides a view into the collaborative development
discipline, but does not cover every aspect or Rational tool solution configuration. In this
section, we discuss additional considerations for collaborative development:

� Considerations in deploying a CALM solution to a small project by using only Rational
Team Concert

� Considerations in deploying collaborative development by using the ClearQuest ALM
solution and Unified Change Management (UCM) to a component team

� Considerations when scaling the CALM solution to an enterprise scale

For additional considerations about deploying the Rational ALM solution and the Jazz
platform, see the following Web pages:

� Rational support

http://www.ibm.com/software/rational/support

� Rational technical resources and best practices for the Rational software platform from
developerWorks

http://www.ibm.com/developerworks/rational

� Jazz

http://jazz.net

6.3.1 Lifecycle solution for small teams

In this book, we capture an end-to-end ALM scenario. Chapter 2, “Collaborative Application
Lifecycle Management” on page 15, defines ALM, and Chapter 3, “A scenario for CALM” on
page 47, describes the scenario that is used in this book.

However, some projects or teams might decide to deploy a reduced CALM solution as
appropriate to their practices, maturity, or process needs. The collaborative development
blueprint captures the minimal core capabilities in a CALM solution to provide the following
features:

� Process enactment and change management for an agile way of working
� SCM support to manage parallel collaborative development of branches or releases
� Build automation and integrated build quality validation
� Team health and reporting to enable team transparency

The scenario that is captured in the Part C, “Act 2: Collaborative development” on page 211,
can also be viewed as a stand-alone collaborative development case for a smaller agile team.
Some limitations to end-to-end ALM apply:

� Limited requirements management and definition by using work items
� Limited quality management by using build validation with JUnit test cases
� Limited team size or distributed repositories
Chapter 6. An agile team implements a change 227

http://jazz.net
http://www.ibm.com/developerworks/rational
http://www.ibm.com/software/rational/support

Configuring Rational Team Concert for CALM
The Eclipse Way process configuration, which is available in Rational Team Concert, provides
CALM support scaled for smaller- and medium-sized agile teams. The following
considerations apply in short:

� Teams use stories and plan items to capture and organize stakeholder requests.

� Teams use parent-child relationships to organize requirements and work breakdown as
work items.

� Teams use customized work items types, and tag clouds, to manage the extended tracking
needs of CALM support.

� Teams integrate build scripts with test scripts to continuously manage quality as an
integral part of integration. Team members take multiple roles and share development and
test responsibilities.

� Teams run a project on a central server and scale multiple projects to multiple servers.

6.3.2 Collaborative development with UCM

Part 2 of our scenario is based on the story where the newly acquired agile component team
is using Rational Team Concert and integrations with the ClearQuest ALM solution to deploy
a collaborative development environment. In the larger context of the Account Opening
release, the project is run by a team of teams. While the agile CreditCheck team is one
subteam, there are many other teams. See 3.3.3, “The agile development team” on page 54.
Other component teams in the scenario might use Rational ClearCase or Rational
ClearQuest with UCM. See Figure 6-5.

Figure 6-5 UCM workflows used by the teams in the Account Opening project

The details of the UCM workflows are covered briefly in this section as an alternative tool
configuration for agile or traditional teams using collaborative development.

Create sketch Manage requirement

Submit ALM request
plan iteration with ALM task
and ALM activities

Plan iteration
with work item

Reuse,* develop, test,
Build, and deliver changes

* with Rational Asset Manager
Integrate
and build*

* Rational Analyzer and
WatchFire AppScan Integrated

Alternate UCM workflow

Plan tests
With work item

Test integration build

Submit defect
228 Collaborative Application Lifecycle Management with IBM Rational Products

Part 2 of our scenario can also be configured by using Rational ClearCase or Rational
ClearQuest with UCM. The following considerations apply:

� Component teams that use Rational ClearCase or Rational ClearQuest with UCM can use
the central Rational ClearCase or Rational ClearQuest repositories, or use Rational
ClearCase or Rational ClearQuest MultiSite for repository replication. The ClearQuest
ALM schema has specifically been designed to fully support Rational ClearQuest
MultiSite.

� Several considerations apply to how the component team structures their artifacts in
ClearQuest ALM. Component teams can have individual iteration schedules or multiple
depending projects, or need to individually configure the development process and
workflow, which is advised, to create their own ALM project. Component teams are
advised to create separate child projects that link to the parent project. In the scenario in
this book, each component team links to the parent Account Opening project by using
using ClearQuest ALM. Project parent-child relationships are managed on the Project tab
of ALM Projects. To create a new child project with a copy of the parent work
configurations and iteration plans, use the Project Wizard.

� Component teams that use UCM use UCM-enabled ALM Activity records to schedule,
track, and deliver work. UCM Change Sets are associated with the ALM Activities.

� ALM baselines are associated with BT Build records to track delivered UCM, which
enables ALM Activities.

� The state changes on ALM Activities propagate to tracking of ALM Tasks and ALM
Request for Component and project leads for project health tracking.

6.3.3 Collaborative asset management

The scenario in this book addresses a subset of asset management capabilities as
implemented in Rational Asset Manager. For the assets to achieve quality and consumability,
there is much collaboration around the development, sign-offs, communication, consumption,
measurement, and reporting of the assets. In essence, collaboration is fundamental to asset
management. Some of the collaboration capabilities that are necessary include the following
components:

Communities The interested stakeholders, producers, and consumers for a set of
assets, with their associated governance.

Asset reviews and approvals
Assets migrate through multiple states with reviews and sign-offs by
various teams and individuals.

Subscriptions/notifications
Asset producers, consumers, and other interested parties are notified
of the asset’s state through out its life cycle.

Rating Consumers and other interested parties declare their view on the
asset.

Discussion forums Searchable discussions on the assets and their usage experience.

Access rights Controlling access to the assets.

Impact analysis Understanding impacted teams, projects, and individuals.

Policy compliance Automates review processes of assets to avoid costly risks.
Chapter 6. An agile team implements a change 229

Collaboration crosses the boundaries of the development organization into the operations
teams. As the asset is approved, it can be published into runtime repositories such as
WebSphere Service Registry and Repository (WSRR) and Tivoli Change and Configuration
Management Database (CCMDB), providing bi-directional navigation and
cross-organizational collaboration (Figure 6-6).

Figure 6-6 Rational Asset Manager integrating with runtime repositories

Plan iteration
with work item

Reuse, develop, test,
build and deliver changes

Plan tests
with work item

Alternate UCM workflow

Test integration build
WatchFire AppScan integrated

Submit defect Rational Analyzer,
ClearQuest and
ClearCase integrated

IBM Rational Team Concert

IBM Rational RequisitePro IBM Rational Requirements Composer

IBM Rational ClearQuest

Triage requests
plan iterations
with task and
activities

IBM Rational Asset Manager

Integrate
and build

Discover assets
for reuse

Publish
iteration
build

Link to
requirements

Create SketchManage Requirements

IBM Rational Quality Manager IBM Rational Build Forge
230 Collaborative Application Lifecycle Management with IBM Rational Products

Chapter 7. Rational Team Concert for
collaborative development

In this chapter, we provide a detailed demonstration of Act 2: Collaborative development. The
purpose of this chapter is to provide a pragmatic demonstration of how the roles in this
scenario use Rational Team Concert to accomplish their tasks. This chapter provides the
following information:

� An overview of the product features of Rational Team Concert used in the scenario

� A step-by-step demonstration of using Rational Team Concert in the scenario

� A summary of the assets that are created and used by the team

� How to measure success for collaborative development in this scenario

� How the products used fit into a larger enterprise Application Lifecycle Management
(ALM) scenario and how they are configured

� Tips and tricks for resolving known problems

Specifically, this chapter includes the following sections:

� 7.1, “Act 2: Collaborative development” on page 232
� 7.2, “Overview of Rational Team Concert” on page 232
� 7.3, “Rational Team Concert for agile development” on page 246
� 7.4, “Life-cycle collaboration” on page 286
� 7.5, “Planning and measuring success in collaborative development” on page 288
� 7.6, “Reference architecture and configuration” on page 301

7

Role-based guide: To understand how the content in this chapter applies to your role, see
the role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7
on page 13.
© Copyright IBM Corp. 2008. All rights reserved. 231

7.1 Act 2: Collaborative development

This chapter includes a step-by-step discussion of how the characters in the story complete
Act 2 of the storyboard, which is illustrated in Figure 7-1.

Figure 7-1 Act 2: Collaborative development

This act, as shown in Figure 7-1, consists of the following scenes:

� Marco monitors component health.
� Al identifies an asset that the team can reuse.
� Diedrie and Marco do just enough design.
� Diedrie develops, builds, and tests her changes.
� Diedrie conducts a team build and delivers for an integration build.

Rational Team Concert 1.0 is used in this act. It is integrated into the following products:

� Rational ClearQuest 7.1 and the ClearQuest ALM schema to do enterprise-level change
management

This integration uses the ClearQuest Connector in Rational Team Concert.

� Rational ClearCase 7.1 to do delivery to the solution integration

This integration uses the ClearCase Connector in Rational Team Concert.

7.2 Overview of Rational Team Concert

Rational Team Concert (Figure 7-2 on page 233) is a Rational product on the Jazz team
collaboration platform. It provides the following key capabilities to support collaborative
development:

� Integrates seamlessly the development task across the delivery life cycle for the team

� Facilitates team collaboration and coordination and helps the team develop applications
more effectively and with less risk

Collaborative Development (2 week iterations)

Act 2: Collaborative Development

The agile team develops, validates, and
builds the required changes to their

component in the solution. The component
is delivered to the solution integration.

2.3 Diedrie and Marco
do just enough
design

2.4 Diedrie develops,
builds, and tests her
changes

2.5 Diedrie conducts a
team build and
delivers for the
integration build2.

1
 M

ar
co

 m
on

ito
rs

co

m
po

ne
nt

he

al
th

Marco
Development

Lead

Al
Solution
Architect

Diedrie
Developer

2.2 Al identifies an asset
the team can reuse

2

232 Collaborative Application Lifecycle Management with IBM Rational Products

� Supports team collaboration across co-located and globally distributed teams

� Establishes and maintains traceability and audit trails, and automates bookkeeping so that
teams are accountable

� Integrates into Eclipse for developers and provides Web access for external contributors

� Makes collaborative development more enjoyable

Figure 7-2 Rational Team Concert

Rational Team Concert supports and provides seamlessly integrated workflows, both for the
application life-cycle assets managed by the Jazz repository, but also to assets managed by
external repositories that are seamlessly integrated into the Jazz platform.

The following ALM domains are supported by Rational Team Concert (Figure 7-2):

� Source code management
� Work items management, including agile iteration planning
� Build management
� Team health and collaboration

Rational Team Concert provide integration into Eclipse for developers, and Web access to
team collaboration capabilities for external contributors who require easy tool access with
minimal setup.

The Jazz platform
The Jazz platform has been referenced in short in previous chapters. This platform is a
scalable, extensible team collaboration platform for integrating work across the phases of the
development life cycle. The Jazz platform helps teams build software more effectively while

Team Collaboration
View iteration plans and validate deliverable time lines
Create, update, query, and view disposition of development tasks
Overview of the resource utilization**
View personalized dashboards**

Web based UI
Knows
application
domain
Talks business
language

Source Code
Management

Workspaces
Snapshots
Baselines
Change sets
Suspend changes
Component
Streams
SVN bridge
ClearCase Connector**

Work Items
Management

Iteration planning
Attachments
Audit trails
Customize
workflow**
ClearQuest Connector**

Build
Management

Define builds
Continuous
integration
Remote
build server
Build Forge
integration *

Team Health
Transparent
development
Team central
RSS/Atom feeds
Instant messaging
Process enforcement
and customization
Dashboards**
Reports**
Role base
permissions **

100s users
Deep tool/
programming
language knowledge
Talks technology
language
Distributed teams

Collaborative Development
Application Lifecycle Management
Distributed development
Agile development processes
Focus on team productivity

Team First
Transparency
Collaboration
Integration

Contributor

Developer

Business value

* Feature provided by Build Forge
** Features in Standard EditionIBM and Partner Ecosystem
Chapter 7. Rational Team Concert for collaborative development 233

making the software development activity more agile, productive, and enjoyable. Jazz is built
on Eclipse and other open technologies. It serves as a foundation for the Rational Software
Delivery Platform and for a partner ecosystem to extend the platform.

The Jazz platform provides real-time collaboration that is delivered in context. This enables
teams to work more closely, effectively, and transparently. Team members can conduct
discussions and easily include development artifacts into the discussion, or persist the
discussion as an integral part of the artifact.

The Jazz platform also supports simple artifact exchange and collaboration between
developers by using higher value assets, such as complete change sets, as compared to the
previous more time consuming exchange of source code files or mail with code snippets.
Instant messaging and other types of collaboration are integrated to support communication
and presence awareness, and RSS feeds enable everybody to be informed of events
important to the team or to the individual.

With the Jazz platform, live project health information can be drawn directly from actual work,
rather than from time-consuming progress reports. Traceability and auditability are automated
by managing all artifacts and their inter-relationships across the life cycle.

The Jazz platform also supports Agility-at-Scale development practices to larger distributed
teams as discussed in 2.2.3, “Scaling agile methods” on page 38, and in 6.1.1, “The changing
collaborative development market” on page 214. Agile development works particularly well for
smaller co-located teams. For larger distributed teams, Rational Team Concert provides a
collaborative centralized development platform that enables the Agility-at-Scale method. The
transparency and visibility that the Jazz platform provides, and the interoperability with
enterprise-level change management, means that the advantages of agile methods and
Rational Team Concert can be extended to larger and distributed teams in the enterprise.

Rational Team Concert for IBM System z and System i extends the core capabilities for
collaborative development to IBM z/OS and IBM i development.

Scaling to a heterogeneous platform
The Jazz platform provides a range of capabilities to consolidate or support a heterogeneous
development platform by using three approaches: import, bridge, and interoperate.

In Rational Team Concert, you can import an existing change management solution by using
the import capabilities. Existing assets in CVS, Bugzilla, and other products, can be imported
and merged with the Jazz repository team artifacts.

Other source code management (SCM) solutions, such as Subversion, can bridge into the
Jazz environment while the managed artifacts reside in the external repository. Usage of the
bridge capabilities requires the original workflows to be used with the external tool. In the
case of Subversion, the SCM workflows require usage of a Subversion Eclipse client in
Rational Team Concert.

The Jazz platform provides capabilities for external repositories to interoperate with the Jazz
repository. Usage of such interoperability makes the external tool integrate seamlessly into
the Jazz workflows. A user might not even know or care that the artifacts are interoperating
with an external source as the tool gestures and ALM workflows are unchanged to regular
use. Such interoperability is available for Rational ClearCase, where Unified Change
Management (UCM) streams and components are integrated with the Jazz SCM component,
and for Rational ClearQuest, where Rational ClearQuest records are displayed on the Jazz
platform as plain work items.
234 Collaborative Application Lifecycle Management with IBM Rational Products

Jazz.net
Detailed information about the Jazz platform and Rational Team Concert is beyond the scope
of this book. You can find more information, particularly about the following topics, at the
following Web site:

http://jazz.net

� Access to the Jazz open commercial software development project
� Access to online help information about the Rational Team Concert product
� Technical in-depth material about the Jazz platform
� Access to the global Jazz community
� Guidance about Rational Team Concert deployment and configuration practices
� Samples

Project and team areas
The Jazz platform provides basic concepts to creating and managing projects as illustrated in
Figure 7-3.

Figure 7-3 Project and team areas in Rational Team Concert

The following structures are used for project and team management in Rational Team
Concert:

� Project

A project area provides definition for the project deliverables, team structure, process, and
schedule.

� Team

A team area manages team membership, roles assignments, and team artifacts.

� Category

Categories group work items by the various components or functional areas of the project
and are associated with a team area.

� Team process

A process is the collection of roles, practices, rules, and guidelines that are used to
organize and control the flow of work. The Jazz platform is process aware, and the rules of
process behavior validate preconditions and provide follow-up actions. A process can also
define project reports, queries, and work item types.

Repository

Project Area = AccountOpening

Iterations

Team Areas Work Item
Categories

AO_Rel2 C2A
AO_Rel2 C2B
AO_Rel2 T1

AccountOpening
CreditCheck

AccountOpening
CreditCheck

Process
Chapter 7. Rational Team Concert for collaborative development 235

http://jazz.net

The CreditCheck Team Area that brings development team together on collaborative
development in Rational Team Concert is shown in Figure 7-4. Some key Team Area
properties are highlighted in the figure. For example, the Team Artifacts and Team Central
views provide transparency to team health, the team members and their assigned roles, and
the iteration structure with the current iteration plan that is selected.

Figure 7-4 The CreditCheck Team Area in Rational Team Concert

Agile planning
Agile planning principles dictate that “just enough” and “live” planning are to be conducted in
order to effectively deliver working software to stakeholders. Teams should not sidetrack with
the production of expansive project plans in separate tools or documentation that does not
contribute to project delivery. Planning must be directly tied to project execution to become an
enabler to the team members and not a burden. This principle applies both at the team level
and agile iteration planning, as well as the self-configuring scheduling of work done by each
team member.

In collaborative development, planning is an activity that involves the entire team, not only the
project manager. The team consumes the release requirements and drives out the scope of
the iteration by using stories or themes. The plan realization of the stories becomes live tasks
for the team members. Each team member takes ownership of these tasks, or work items,
236 Collaborative Application Lifecycle Management with IBM Rational Products

and configures their schedule and work estimations. This collaborative effort makes the
teams self-configure their plans.

By the seamless integration of the planning and the change management in Rational Team
Concert, teams can benefit from significant tool automation of the agile collaborative
development principles. In Rational Team Concert, the tasks of the project plan are the same
as the actual living tasks that the owners are working against. This method alleviates the
burden of project plan updates from the project manager and gives everyone full real-time
transparency into the actual progress of tasks against the plan.

The following artifacts are used for agile planning in Rational Team Concert (see Figure 7-4
on page 236):

� Development line

A development line represents an area of activity within a project that typically has its own
objectives, deliverables, team, process, and schedule. Project intervals or phases are
defined within a development line and are expressed as a hierarchy of iterations.

� Iteration

Iterations are defined within a development line and are expressed as a hierarchy of
project intervals. Iteration plans are used to express the details of an iteration in terms of
work items.

� Work item

A work item is a representation of the tasks and issues that a team needs to address
during the development cycle. Work items are key for iteration planning and indicators of
the health of the project.

Work items
Work items enable team members to easily see and track work that is assigned to them and
defects that are submitted against the components for which they are responsible. The team
can use work items to plan development work for milestones and obtain metrics that indicate
the progress made toward the project development and quality goals.

Figure 7-5 on page 238 shows an example of a work item in Rational Team Concert. This
figure also shows the UI Branding work item that is assigned to Diedrie. Some key work item
properties are highlighted, such as the work item type, the iteration plan specifying when work
is scheduled, the traceability to other life-cycle collaboration artifacts, and the discussions
with other team members.
Chapter 7. Rational Team Concert for collaborative development 237

Figure 7-5 Example of a work item in Rational Team Concert

Work items in Rational Team Concert are a generic concept that captures multiple change
request types. For example, Rational Team Concert ships with the following types:

� Story
� Risk
� Task
� Enhancement
� Defect

The available set of work item types is defined in the development process. The default set of
work items is provided by the process template that is chosen at project area creation time.
Additional work item types can also be extended by editing the process definition.

Each work item type has a state transition model that defines the states that the work item
represents and the actions that users take to move the work item from one state to another. A
typical state transition model provides a path from a state of New, to In progress, to Verified,
and to Closed.

Just as work items are seamlessly integrated with iteration planning, they also integrate with
the other key ALM workflows. That is configuration management, build management, and
reporting.
238 Collaborative Application Lifecycle Management with IBM Rational Products

Work item integration with configuration management enables change sets to be associated
with a work item and to capture the traceability from a request to the delivery of the resulting
change.

Furthermore, work item integration with build management enables the tracking of the work
that was completed and delivered into a build, the builds that contain the work item, and the
build that the work item is reported against. From the build item, it is also possible to create a
new defect and associate the work item with the build. All of these capabilities are key
enablers for quality teams in configuring and executing their test plans.

Finally, the capability to report on work item metrics gives the team a wide range of
opportunities to characterize and act on project health.

Source configuration management
Teams organize their source code, documents, and other artifacts by using the source control
capabilities. The source control management capabilities in Rational Team Concert provide
change-flow management to facilitate the sharing of controlled artifacts, retain a history of
changes made to these artifacts, and enable simultaneous development of multiple versions
of shared artifacts. By doing so, teams can work on several development lines at the same
time.

The Rational Team Concert tool uses an SCM model that aligns in concept with earlier
Rational solutions. The following key ALM assets are used for configuration management:

� Component

Artifacts under source control are grouped into components. Therefore, a component is a
group of versionable artifacts, such as one or more folders and files, that share a common
root.

� Stream

A stream is a collection of one or more components. Streams are somewhat analogous to
the branches that are found in other source control management systems, but
considerably more powerful. Any component in a repository can be included in zero or
more streams. A stream represents a single history line of changes for a set of
components. That is, the version history of change sets that are delivered to the stream.
By using multiple streams, a development organization can work in parallel on projects
that use different versions, or a history of change sets, of the same components.

� Change set

A change set is an object that collects a related group of changes to the contents of one or
many files.

� Baseline

A baseline is an object that saves the state of a component and provides exactly one
consistent version of every artifact in the component. A baseline consists of one or more
change sets. Any baseline can be delivered or accepted, which effectively delivers or
accepts all of the change sets in it. A baseline saves the state of a component in a
workspace so that you can restore that state when needed.

� Snapshot

A snapshot includes one baseline for each component in a workspace or stream.

� Workspace

A workspace is an area where team members view and modify components and their
contained versionable artifacts. Workspaces are kept in the server store and can be
loaded into a local workspace.
Chapter 7. Rational Team Concert for collaborative development 239

Figure 7-6 shows the AO_Rel2 Integration stream, which governs code changes for the next
release that the component team is working on. This figure shows such key stream concepts
as the streams that are used by the team, the SCM component contained in the stream, the
Eclipse projects contained per SCM component, and the history of change sets that are
delivered to the stream.

Figure 7-6 The AO_Rel2 integration stream in the CreditCheck component

Team build
The build management capabilities in Rational Team Concert are based on the Jazz platform
support for the automation, monitoring, and notification of the team’s builds. These
capabilities support a model that represents the team’s build definitions, build engines, and
build results. The model is designed to support teams by using a range of different build
technologies and is configured by each team to fit their build process requirements.

The following artifacts are used for build management:

� Build engine

A build engine represents a build system that runs on a build server.

� Build definition

The build definition contains the details on the build and defines a particular build, such as
a weekly project-wide integration build.
240 Collaborative Application Lifecycle Management with IBM Rational Products

� Build script

The build.xml script performs the build and is referenced by the build definition.

� Build result

The build result represents the outputs from a particular run that might contain, for
example, compilation, build validation tests, code analysis, and release asset creation.

Figure 7-7 shows the integration build definition that is used by the Credit Check team. This
figure shows such key build concepts as the build definitions and build engines that are used
by the team, the AO_Rel2 build definition, and the history of the build results for the AO_Rel2
integration and the build validation runs.

Figure 7-7 Build definition used by the Credit Check team for continuous component integration and validation

The team build capability in Rational Team Concert can be integrated with Enterprise Build
solutions by using Rational Build Forge.

Process awareness
The team process capabilities help teams to consistently deploy and execute the processes
that they have agreed upon. The team process does not define the process. It is process
neutral. However, it maintains a constant presence of the process in Rational Team Concert
and encourages or enforces the processes that the team has adopted.
Chapter 7. Rational Team Concert for collaborative development 241

The team process is chosen when a new project is defined. Rational Team Concert includes
both sample and production processes, such as the Open Unified Process (OpenUp) and
Eclipse Way processes, that can be deployed as is or customized to suit the needs of a
project.

The team process governs all activities, artifacts, artifact relationships, and operations that
are pursued inside the associated project area. A process is defined by a process
specification and an iteration structure. Both are stored in the project area. The process
specification describes the roles that team members can play and the process rules that
apply to each role within the several iterations.

Rational Team Concert components and capabilities are process enabled. A process-enabled
tool component is one that is designed to play well in a world where a process known to the
system governs the work that is being done.

For example, the Eclipse Way process enforcement does not allow the following actions to
occur:

� Delivery of code with compilation errors
� Delivery of a source file without a copyright notice
� Work item creation without an assigned category (“filed against”)
� Delivery of a change set without an associated work item or comment

The process specification also defines which of the core process rules on the Jazz platform
can further be customized.

Figure 7-8 on page 243 shows an example of process awareness in Rational Team Concert.
The highlighted section exemplifies several process breakages, such as an attempt to deliver
code with compilation errors or an attempt to deliver a change set without a work item
associated. This figure also exemplifies how Rational Team Concert provides guidance on the
root cause of the process violation, as well as Quick Fix options to proceed.
242 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 7-8 Example of process awareness in Rational Team Concert

Team collaboration
Rational Team Concert provides several core team collaboration capabilities that are built into
the Jazz platform to support the agile principles of collaborative development.

Team collaboration includes the following capabilities among others:

� Transparency and team awareness

Rational Team Concert brings teams together and encourages team responsibility and
personal accountability. The collective effort and workload of the entire team is an overall
theme of most tool views and allows awareness the team’s workload and the personal
workload of each team member. The Team Central view gives transparency to the status
and recent events from the team progress. The My Work views give awareness of the
personal schedule and current priorities.

� Dashboards and other real-time views

The Web Dashboard and Team Central view are two examples of a customizable real-time
view of what is happening in the project. It provides a transparent view into the work of the
entire project team. It also enables transparency and collaboration for external team
contributors.

� Notifications

The tool components in Rational Team Concert support event notification where team
members can subscribe to changes in specific items, but also to more general event
Chapter 7. Rational Team Concert for collaborative development 243

types. Notification enables the team to more quickly react and, therefore, streamlines the
development workflows. The events also let team members make constant updates
without interrupting their ongoing work.

� Contextual collaboration

Collaboration with team members, regardless of their geographic location, is a key
success factor for distributed development. In addition, the ability to persist a discussion in
context of the topic of the discussion is key for teams to record discussions for later
reference by others on the team. This capability is highly important for agile teams to
re-balance workload and for distributed teams to share work cross geographic boundaries.

� Presence awareness

Rational Team Concert supports integration with instant messaging and provides access
to other team members at their fingertips. The seamless integration allows references to
artifacts, such as work items or change set references, to be easily included in a chat as
clickable links.

Figure 7-9 shows an example of the team collaboration capabilities in Rational Team Concert.
The highlighted section exemplifies the in-context discussion threads of a work item, the
integrated chat view, and a fly-in notification that contains team events, such as Marco’s new
instant message.

Figure 7-9 Team collaboration capabilities in Rational Team Concert
244 Collaborative Application Lifecycle Management with IBM Rational Products

Artifact traceability
In this section, we introduce the artifact traceability capabilities in Rational Team Concert.
Rational Team Concert provides a seamless experience where traceability across the
application lifecycle is provided and managed by the Jazz platform. Because this is a core
capability of the platform, we can only take a few examples of how this surfaces in the
Rational Team Concert user interface.

Work items are the entry point for multiple traceability links as in the following examples:

� To the iteration for which the work is planned
� To related artifacts
� To a change set that contain the implementation of the change
� To external repositories that hold the original source of the defect or enhancement
� To approvals that are required to deliver the change for component or solution integration

Rational Team Concert creates and manages most of the traceability in the background as
the developer conducts the regular collaborative development workflows. The artifact
traceability capabilities are embedded in the Rational Team Concert user interface, as shown
in Figure 7-5 on page 238 and in Figure 7-10, where the traceability links surface as clickable
links the UI Branding work item.

Figure 7-10 The traceability links presented on a work item
Chapter 7. Rational Team Concert for collaborative development 245

7.3 Rational Team Concert for agile development

In this section, we provide detailed information about how the agile component team uses
Rational Team Concert for collaborative development as illustrated in Figure 7-11.

The story in Act 2 is described in further detail in 6.2, “A reference scenario for collaborative
development” on page 221.

Figure 7-11 The collaborative development workflow in Act 2

Synopsis: Act 2 of the story demonstrates how Diedrie uses Rational Team Concert to
design, develop, test, integrate, and deliver the changes required by the UI Branding work
item that she has the responsibility to deliver in the current iteration. This act also
demonstrates how Diedrie collaborates with Al to find a reusable asset and how Marco
reviews and approves her design and code changes. The final scene in the act shows how
Diedrie delivers her changes to integration and monitors the build process.

Rebecca –
Build Engineer

2.3 Diedrie and
Marco do just
enough
design

2.4 Diedrie develops,
builds, and tests
her changes

2.5 Diedrie conducts a
team build and
delivers for the
integration build

Al –
Software Architect

Diedrie –
Developer

3.2 Rebecca
runs the
integration
Build

2.2 Al identifies
an asset the
team can
reuse

DeliverBuild
Validate

Monitor

Accept

Monitor

Review
Deliver

Develop
Test
Build

Reuse
Design

Search
Collaborate

Marco –
Dev Lead
246 Collaborative Application Lifecycle Management with IBM Rational Products

The usage of Rational Team Concert in Act 2 creates several new artifacts and establishes
traceability to support the life-cycle collaboration. Figure 7-12 shows the life-cycle
collaboration artifacts that are established at the end of this act. See 7.4, “Life-cycle
collaboration” on page 286, which describe the assets and relationships in Figure 7-12 in
greater detail.

Figure 7-12 Life-cycle collaboration artifacts established in collaborative development

7.3.1 Marco monitors component health

The step in this scene entails holding daily stand-up meetings.

Work Item
[Task]

Requirement

ALM Task
[Implement]

ALM Request
[Enhancement]

Sketch

ALM Task
[Test]

Iteration Plan
[Construction C2A]

Planned For

External
Connection

Related
Artifact

CQ:Requirement
Associated

ALM Iteration
[02]

ALM Phase
[Construction]

Assigned to

ALM Project
[AO_Rel2]

Tasks

Found in

CQI

Change Set

Snapshot

Stream

Java files

CC Workspace

Included

UCM Stream

Flow Target

Included

Included

Built
from

Reusable asset

Assets

Related
Artifact

Imported

JUnit files

Related
Artifact

ALM Task
[Develop Architecture]

A Created in Current Act

A Referenced

A Supporting

ALM Task
[Size]

Build

Workspace

Synopsis: Marco conducts daily stand-up meetings with his component team to align the
work for the day. The team talks about their work and deliveries in context of their live
iteration plan. Marco lets each team member have the opportunity to collaborate with the
rest of the team on work progress, change dependencies, and blocking issues.

During the daily stand-up meetings, the team uses the live iteration plan to make tactical
changes to improve project health. New work items are triaged or added. Ownership and
priorities or work is clarified. Blocking issues are reprioritized.

Diedrie has been assigned the work to re-brand the Credit Check user interface and make
other changes as well. She estimates and schedules the work assigned to her for the
current iteration.
Chapter 7. Rational Team Concert for collaborative development 247

Holding daily stand-up meetings

Marco and his team have been successful in using an agile way of working for many projects.
Recently, when the smaller company was acquired by the enterprise, changes were made to
the demands on their development processes. However, the component team seeks to
maintain their agile development style while working in the context of the larger solution team.
In fact, the previous successes from the smaller company have resulted in the adoption of a
more Agility-at-Scale approach by Patricia and the larger solution project team.

For the most part, Marco and his component team are co-located, but from time to time, team
members work from remote locations or from home. Also, the component is integrated and
tested in the larger solution. The team frequently interacts with other teams in the solution
project team, for example the functional leads in the project or the solution test team.

The component team has agreed to meet every morning to align on the work of the day. They
use a meeting room with a projector to display information in Rational Team Concert on the
wall. Remote users access information in Rational Team Concert via the Web interface.

Marco tries to keep the stand-up meeting to a short 15-minute meeting. He knows that the
team will benefit from four key topic areas:

� Project and component health
� Announcement of major work starting or to be delivered
� Resolution of any blocking items or dependencies
� Triage of selected work items

The team uses the Dashboard and Iteration Plan views in Rational Team Concert to support
stand-up meeting discussions.

Rational Team Concert Dashboard

Marco and the team use the Web dashboard to access a live overview of the component
health indicators. The dashboard helps the team identify significant changes in trends.

Marco discusses anomalies among the following trends with the team:

� The change rate; recently created, modified, and closed work items
� The incoming rate; new unassigned work items
� The project velocity and burndown
� Trends in build health

Goal: The goal is to hold daily stand-ups to let the team self-configure their plans based on
component health.

Goal: The goal is to make the dashboard a real-time view of the team health.
248 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 7-13 shows an example of the Rational Team Concert Dashboard. We describe how
the team uses these metrics in 7.5, “Planning and measuring success in collaborative
development” on page 288.

Figure 7-13 Rational Team Concert Dashboard for daily stand-up meetings to access project health indicators

Rational Team Concert iteration plan

Marco and the team use the iteration plan to display the details of the currently planned work
for the team. The iteration plan is available in Rational Team Concert or on the Web. The
seamless integration between the iteration plan and the work items, and the transparency to
the actual work scheduling made by the team members, presents the team with accurate
health indicators for the stand-up meeting. The team knows that the health indicators are real
and not an outdated view from yesterday or even last week.

Goal: The goal is to make the iteration plan a live document for the team to use for
self-configuring their team and individual schedules.
Chapter 7. Rational Team Concert for collaborative development 249

Figure 7-14 shows an example of the AO_Rel2 Construction C2A iteration plan that is used
by the team.

Figure 7-14 Rational Team Concert iteration plan for daily stand-up meetings to access planned work items
250 Collaborative Application Lifecycle Management with IBM Rational Products

Iteration plans in Rational Team Concert consolidate the plan information into plan health
indicators for the entire team and for each individual team member. Figure 7-15 shows the
details of such a plan. The health indicator shows how much of the available time for the
iteration has been scheduled (horizontal bar) and the percentage of the work that has been
estimated (vertical bar). These two health metrics are good indicators for work balancing,
overcommit, and plan quality. Over time, the comparison of estimated and actual work can be
used in retrospective to improve the planning capabilities of the team.

Figure 7-15 Diedrie’s plan health indicator for iteration C2A

As shown between Figure 7-14 on page 250 and Figure 7-15, Diedrie and the team still have
some iteration planning to complete. For example, Diedrie has estimated 75% of her work,
and the remaining 25% is adding risk and lowering the quality of the plan. She is also
overcommitted by 12 hours of work. At the stand-up meeting, Marco requests that everyone
in the team must complete their plans by the end of the day.

At the stand-up meeting, Diedrie announces that she will start working on the UI Branding
work item of all CreditCheck Web forms, which is selected in Figure 7-14 on page 250. She
intends to spend the day prototyping the changes and report the status tomorrow with a better
understanding on any new design patterns to be used by the team. She intends to sync up
with Al, the solution architect, regarding possible asset reuse. Diedrie also lets the team know
that she is overbooked and asks that others on the team see which work items can be
rebalanced.

The team triages the new incoming defects and decides who should take ownership. One of
the team members commits to look at work item 45. Marco assigns ownership by dragging
the work item in the plan to the new owner. Marco can also assign work items by right-clicking
the work item and selecting the Assign To Owner option.

At the end of the stand-up meeting, the team starts to discuss the new Web browser service
release that was just made available. The team must update the build and test machines, and
Marco adds a new task in the plan for someone to pick up.
Chapter 7. Rational Team Concert for collaborative development 251

To add a new work item task to the plan, Marco performs the following actions:

1. Marco right-clicks the unassigned role in the plan. Alternatively, he can choose a team
member to assign the new work item to. Then he selects Add Work Item → Task as
shown in Figure 7-16.

2. He uses in-place editing to enter a work item summary and description.

3. He clicks the clock icon and selects 1 hour from the menu.

4. He click Save on the iteration plan document to save the changes to the iteration plan.

Figure 7-16 Marco adding new work items to the iteration plan

Using the Rational Team Concert Web

The Rational Team Concert Web UI provides functionality for external contributors who
require easy access to view, for example, the Dashboard view or the Iteration Plan view, as
shown in Figure 7-17 on page 253.

Bob, the product owner, is attending the team stand-up meetings on a frequent basis. He only
uses the Web client to access team health from the Dashboard view or the Iteration Plan
view. During stand-up meetings, he helps the team by clarifying stakeholder requests and
release requirements. Because Bob is a registered user in the Jazz repository, the team can
use the presence awareness capabilities in Rational Team Concert to quickly connect with
Bob and resolve questions.

At the meeting today, the team discusses the UI Branding requirements and brings Bob into
the discussion by using the Chat view. Bob shares the link to the corporate branding home
page.

Goal: The goal is to enable access to team collaboration for contributors.
252 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 7-17 The iteration plan shown in the Rational Team Concert Web UI

Team Central to monitor component health

Marco and the team, by using an agile way of working, have a shared responsibility for
monitoring and reacting on component health. The Team Central view in Rational Team
Concert helps each individual team member to keep updated on team health metrics, their
individual schedule, and any events that can impact their work plans.

Figure 7-18 on page 254 show how Marco has configured Team Central to keep the
component health indicators that he is keeping as his fingertips. In Team Central, he can view
new incoming work items, the iteration plan health for his team, build stability, and major
events that he is subscribing to from his team. By hovering over the items, he can quickly
access drill-down information or click items to open their item editor views.

Goal: The goal is to provide transparency to team health and event information at the
fingertips of each team member.
Chapter 7. Rational Team Concert for collaborative development 253

Figure 7-18 Team Central view used by Marco to keep component health indicators at his fingertips

My Work view for work scheduling

At the daily stand-up meeting, Marco requested that all team members must complete their
iteration schedule and work estimation before the end of the day. Diedrie must complete this
work and open the C2A iteration plan and her My Work view.

The My Work view provides Diedrie a compilation of all work that is assigned to her for this
iteration. With this view, Diedrie can capture her schedule, in an agile way, and specify the
order in which she intends to address the stack of work. The view also keeps her updated as
new work is assigned to her. She has also used My Work customization to colorize the items,
for example, red for defects and blue for new development work. This color coding helps her
gain an additional perspective of planned work.

Goal: The goal is to provide individual work scheduling integrated with the team iteration
plan.
254 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 7-19 shows Diedrie’s current My Work view, which shows the following concepts:

� Diedrie has new work assigned to her that she must schedule into her plan for work.
� Her current plan is to start working on the Corporate UI Branding today.
� She also has a few items for the iteration that she still must estimate.

To record her estimations on a Work Item, Diedrie performs the following actions:

1. Diedrie selects the work item.

2. She clicks the clock icon on the work item and selects an assessment of hours, days, or
weeks.

To rearrange her work schedule, Diedrie drags the item to a new position in the work item
stack. The higher up in the stack she places the item, the sooner she intends to address the
work. Diedrie can also plan work for today, tomorrow, or later. To make such a change, she
drops the work item in the desired section. For scheduling new items, from the Inbox, she
drags the item to the proper stack location.

Diedrie now intends to finalize her iteration planning:

1. Diedrie drags the two new items from the Inbox to the section for next week.

2. She provides estimates for her remaining items.

3. She decides to pick up the new work item on installing the new Web browser version. She
drags the work item from the iteration plan to her My Work view section for today. In doing
so, she assigns the work to herself and plans to do it today.

4. To complete her planning, she clicks the Save icon on the view toolbar.

Figure 7-19 Diedrie’s My Work view for viewing, planning, and scheduling her work items
Chapter 7. Rational Team Concert for collaborative development 255

7.3.2 Al identifies an asset that the team can reuse

The following tasks occur in this scene as illustrated in Figure 7-20:

� Searching for a reusable asset
� Collaborating on reusable assets

Figure 7-20 Al identifying an asset for the team to reuse

Synopsis: Diedrie is considering her options on the Corporate UI Branding work that is
assigned to her. She needs advice from Al regarding a reusable component. She sends Al
an instant message, attaches a link to her work item, and asks for his guidance. Al knows
that there is a reusable component available because he has been helping other teams on
the same topic. Sharing this component with Diedrie saves her and the rest of the team
development and testing time.

Al logs into the asset repository and starts his search in the Credit Management
community. This community is set up to support this business line, and the Credit Check
team has approvals and permission to participate in this community.

Al searches the entries in the Credit Management community and gets several hits on
branding. However, he focuses his attention to the “Re-brand UI Component” asset that
has received high scores from other users. After viewing the details of the asset, he
decides to share his discovery with Diedrie and Marco. He collaborates by sending an
e-mail that includes a link to the found asset.

Diedrie and Marco receive the e-mail and invite Al to a Web discussion about the topic. Al
shares his desktop and helps the team consume the documentation, the design, and the
test cases. Diedrie makes notes about the discussion and saves them as an attachment to
the her UI branding work item. She also saves the link to the reuse component as a related
artifact.

Rebecca –
Build Engineer

2.3 Diedrie and
Marco do just
enough
design

2.4 Diedrie develops,
builds, and tests
her changes

2.5 Diedrie conducts a
team build and
delivers for the
integration build

Al –
Software Architect

Diedrie –
Developer

3.2 Rebecca
runs the
integration
Build

2.2 Al identifies
an asset the
team can
reuse

DeliverBuild
Validate

Monitor

Accept

Monitor

Review
Deliver

Develop
Test
Build

Reuse
Design

Search
Collaborate

Marco –
Dev Lead
256 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 7-21 show the life-cycle asset and relationships that are impacted in this scene.

Figure 7-21 Diedrie establishing traceability from the work item to the reusable component in Rational Asset Manager

Rational Asset Manager
Rational Asset Manager reduces software development costs and improves quality by
facilitating the reuse of all types of software development-related assets. Rational Asset
Manager provides the following key capabilities:

� Asset organization

Categorize assets based on type, attributes, and relationships between assets. Package
related artifacts of all types, such as documents, source code, executables, and test cases
into assets.

� Search

Search assets by using keywords or content search in files, documents, or archives.

� Security and access

Protect assets with fine-grained permissions based on groups, roles, users, or asset types.

� Tracking

Track asset usage, quality, approvals, feedback, and ranking.

� Collaboration

Collaborate with other project members through discussions, e-mail subscriptions, and
RSS feeds for notification of asset changes.

� User interface

Use Eclipse client integration or a Web UI.

BuildWork Item
[Task]

Requirement

ALM Task
[Implement]

ALM Request
[Enhancement]

Sketch

ALM Task
[Test]

Iteration Plan
[Construction C2A]

Planned For

External
Connection

Related
Artifact

CQ:Requirement
Associated

ALM Iteration
[02]

ALM Phase
[Construction]

Assigned to

ALM Project
[AO_Rel2]

Tasks

Found in

CQI

Change Set

Snapshot

Stream

Java files

CC Workspace

Included

UCM Stream

Flow Target

Included

Included

Built
from

Workspace

Reusable asset

Assets

Related
Artifact

Imported

JUnit files

Related
Artifact

ALM Task
[Develop Architecture]

A Created in Current Act

A Referenced

A Supporting

ALM Task
[Size]
Chapter 7. Rational Team Concert for collaborative development 257

In our scenario, Al uses the Rational Asset Manager Web UI, while Diedrie uses Eclipse
integration in her Rational Team Concert development environment.

Searching for a reusable asset

Al has been asked by Diedrie for advice on a reusable component for Corporate UI Branding.
Al knows that such a component is available because he has been helping other teams on the
same topic in other projects. By using the reuse component, Al achieves architectural
consistency across the projects that he is tracking, and it saves Diedrie and the rest of the
team development and testing time.

By using the Rational Asset Manager Web UI, Al logs into the repository and starts his search
effort. Rational Asset Manager is organized with one or more communities. A community
includes a collection of users, assets, and other relevant items that together share a common
interest for a project. Al’s projects are all part of the Credit Management community. Al,
Marco, Diedrie, and others are given permission to participate in this community.

To search the community Al performs the following actions:

1. Al selects the Communities tab and browses to the Credit Management community.

2. On the Credit Management home page, community home page (Figure 7-22 on
page 259), Al sees the popular downloads in the community and can obtain a summary of
the kinds of assets and other items that are relevant to the community.

Goal: The goal is to use the corporate reuse repository in Rational Asset Manager to
identify a proven component for reuse that saves time and effort for the development team.
258 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 7-22 The Credit Management Community in Rational Asset Manager

3. He clicks the Search for Assets tab along the top and enters a keyword search for
“Rebrand.”
Chapter 7. Rational Team Concert for collaborative development 259

4. From the list of assets that is returned on the search, Al opens the Rebrand Application
Solution asset and finds that a related asset, the “Rebrand UI Component” asset, seems
applicable to Diedrie’s request. Al clicks its link and browses this related asset to see its
details (Figure 7-23).

Figure 7-23 The Rebrand UI Component asset found in the Rational Asset Manager repository

5. Because Al wants to tag the assets that he has found for later reference, he opens the
Tags window and adds a rebrand_solution tag keyword.
260 Collaborative Application Lifecycle Management with IBM Rational Products

6. Al decides that its time to share his findings with Diedrie and Marco and to discuss the
feasibility of the reuse component. He opens the Asset Detail Tools view and chooses
e-mail to send a notification (Figure 7-24).

Figure 7-24 Al sharing his findings with Diedrie and Marco

Al puts this activity on hold pending a response from Diedrie.

Collaborating on reusable assets

Back on the component team, Diedrie is pleased that Al has found a component for the team
to reuse. She schedules a Web meeting with Al and Marco for later in the day to discuss the
topic.

At the meeting, Al shares his screen so that everyone can look closely at the branding assets.
Al opens the “Rebrand Application Solution” asset. The three look at the available
documentation for solution branding. After they walk through it, Al, Diedrie and Marco have
determined that they should proceed with the prototype design by using the asset suggested
by Al.

Diedrie documents their decisions on reuse by using the following actions:

1. Diedrie opens Rational Team Concert and starts the UI Branding work item.

2. She opens the UI Branding work item and selects the Link tab.

3. She attaches her meeting notes by dragging the document file to the Attachments section
of the Link tab.

Goal: The goal is to collaborate within the development team to provide guidance on
assets for reuse.
Chapter 7. Rational Team Concert for collaborative development 261

4. She adds a traceability link to the reusable asset by clicking the Add button and selecting
Add Related Artifact (Figure 7-25). She names the link “Rebrand Application Solution”
and pastes the URL to the asset in Rational Asset Manager.

5. She clicks the Save button to save the changes to the work item.

Figure 7-25 Diedrie capturing traceability links to the team collaboration on reuse
262 Collaborative Application Lifecycle Management with IBM Rational Products

7.3.3 Diedrie, Marco, and Al do ‘just enough’ design

This scene involves the following tasks as shown in Figure 7-26:

� Beginning the work
� Reusing the asset
� Designing
� Reviewing the design

Figure 7-26 Diedrie, Marco and Al collaborating on a design

Synopsis: Diedrie is ready to start working on Credit Check UI branding. She opens her
work item and changes its state to indicate that work has begun. She creates a new, clean,
and updated workspace from the latest component baseline to integrate her changes.

Diedrie then logs into the reuse repository, from her development environment, by using
the link that Al provided. She reviews the online asset documentation and her notes from
her discussion with Al. She then starts importing all related assets into her workspace.
Some assets have Eclipse projects in them, and others must point to a target project in
order to be imported.

Diedrie then proceeds and starts prototyping the re-design in one of the CreditCheck UI
forms. She saves her design changes, and a new change set is created and associated
with her work assignment.

To confirm her design strategy, she invites Marco and Al to a design review of the changes
that are captured in the change set. Marco and Al accept her changes into their sandbox
workspaces and start browsing the changes. Both Marco and Al confirm that the design of
the changes looks acceptable. To get validation from the stakeholder, Diedrie brings Bob
into the discussion and runs a demonstration of the updated UI form. Bob confirms that the
corporate brand design and manner of use are now correct.

Rebecca –
Build Engineer

2.3 Diedrie and
Marco do just
enough
design

2.4 Diedrie develops,
builds, and tests
her changes

2.5 Diedrie conducts a
team build and
delivers for the
integration build

Al –
Software Architect

Diedrie –
Developer

3.2 Rebecca
runs the
integration
Build

2.2 Al identifies
an asset the
team can
reuse

DeliverBuild
Validate

Monitor

Accept

Monitor

Review
Deliver

Develop
Test
Build

Reuse
Design

Search
Collaborate

Marco –
Dev Lead
Chapter 7. Rational Team Concert for collaborative development 263

Figure 7-27 show the lifecycle asset and relationships that are impacted in this scene.

Figure 7-27 Diedrie using traceability from the Work Item to the artifacts containing supplementary information

Diedrie begins her work
Diedrie begins her work by taking fundamental steps in collaborative development:

� She notifies the rest of her team on what work she is doing.
� She creates a new sandbox workspace to host her changes.

Making the work item in progress

Rational Team Concert supervises the creation of new artifacts and the bookkeeping of
traceability. As Diedrie starts working on the UI Branding work item, all related changes and
dependencies are transparently associated with the work item. Rational Team Concert
maintains traceability as changes are made, delivered, captured in baselines, built, and later
tested. By actively updating her work items state, Diedrie’s development activities become a
trackable and integral part of the team’s change process and iteration plan tracking. It enables
Rational Team Concert to automatically maintain traceability and for Diedrie’s work to
contribute to the live health indicators for the whole team.

BuildWork Item
[Task]

Requirement

ALM Task
[Implement]

ALM Request
[Enhancement]

Sketch

ALM Task
[Test]

Iteration Plan
[Construction C2A]

Planned For

External
Connection

Related
Artifact

CQ:Requirement
Associated

ALM Iteration
[02]

ALM Phase
[Construction]

Assigned to

ALM Project
[AO_Rel2]

Tasks

Found in

CQI

Change Set

Snapshot

Stream

Java files

CC Workspace

Included

UCM Stream

Flow Target

Included

Included

Built
from

Workspace

Reusable asset

Assets

Related
Artifact

Imported

JUnit files

Related
Artifact

ALM Task
[Develop Architecture]

A Created in Current Act

A Referenced

A Supporting

ALM Task
[Size]

Goal: The goal is to notify the team that the work is starting and begin associating changes
to the work item.
264 Collaborative Application Lifecycle Management with IBM Rational Products

Diedrie starts working on the UI Branding work item:

1. Diedrie opens the UI Branding work item from her My Work view.

2. She changes the state of the work item from Triage to Start Working as shown in
Figure 7-28.

Figure 7-28 In the My Work view, Diedrie choosing the UI Branding work item and Start Working

Creating a new workspace

Diedrie needs a workspace area where she can view, modify, and test her changes to the
software components before delivering them to the integration build.

Rational Team Concert provides server-side workspace management that is seamlessly
integrated into the Eclipse environment. A workspace contains a set of components, each of
which is a distinct version from a stream or another workspace. You can load (or unload) your
local workspace with the files and folders, or a subset of them, from your repository
workspace.

With Rational Team Concert, individual users can keep multiple server-side workspaces from
various streams and baselines. This is a key capability for an agile developer to easily switch
the context of work from the development of a new enhancement in a stream that contains

Goal: The goal is to use an integrated sandbox to design and develop the software
changes.
Chapter 7. Rational Team Concert for collaborative development 265

work for an upcoming iteration, to a defect fix in a stream that contains work for an urgent
hot-fix release.

Diedrie needs a workspace that is derived from the latest stabile baseline. By getting a recent
baseline, she minimizes the need to merge changes from the rest of the team when she
finally delivers the resolved work to integration.

To create a new workspace, Diedrie performs the following actions:

1. Diedrie opens the Team Artifacts view.

2. She expands the Streams node and selects the stream that she wants a workspace
created from. She right-clicks the com.ibm.ao.creditcheck.integration.ao_rel2 stream
and chooses New Repository Workspace.

3. Because Diedrie wants the latest baseline and all components in the stream, she clicks
Finish and has the workspace created and loaded into her local workspace.

4. On the are rare occasions when she might want a subset of the components or another
history version, she clicks Next and makes additional choices.

After the new workspace is loaded into Eclipse, all projects start to rebuild.

Diedrie reuses the asset
To integrate the reusable asset, Diedrie must import it into her workspace by performing the
following tasks:

� Browsing the asset repository in Rational Team Concert
� Importing the asset into her workspace

Browsing assets from Rational Team Concert
Rational Asset Manager provides integration of Eclipse with Rational Team Concert so that
Diedrie can browse the reuse assets. With the integration, Diedrie can import assets into her
workspace.

To browse the Rational Asset Manager repository, Diedrie performs the following actions:

1. Diedrie opens Rational Team Concert and the Asset Search view.

2. She clicks the Tag Clouds panel and selects the rebrand_solution task, which Al
updated during the walk through.

3. She browses the assets that Al associated with the tag. By hovering over an asset, she is
presented with a content summary like the example in Figure 7-29.

Figure 7-29 Diedrie browsing the reusable assets tagged by Al
266 Collaborative Application Lifecycle Management with IBM Rational Products

4. She double-clicks the Rebrand Application Solution asset to open the Details page
(Figure 7-30).

Figure 7-30 Diedrie browsing the details of the Rebrand Application Solution asset

Importing assets into Rational Team Concert

Diedrie is now ready to import all related assets for UI Branding into her workspace. Rational
Asset Manager tracks the asset relationships and presents an option to select and import
related assets.

To import all required assets, Diedrie performs the following steps:

1. Diedrie opens the Asset view and clicks the Import button.

2. In the Import Asset wizard (Figure 7-31 on page 268), she selects the related assets that
she wants to import. Some of the assets have Eclipse projects in them, while others must
point to a target project to be imported.

3. She opens her workspace and the existing and new Eclipse projects and validates that
files were imported to the expected locations.

4. She saves any changes.

Goal: The goal is to import the reusable assets into the workspace.
Chapter 7. Rational Team Concert for collaborative development 267

Figure 7-31 Diedrie selecting the related artifacts to be imported

Diedrie prototypes the design
With all related assets imported in her workspace, Diedrie is now ready to start prototyping
the re-design in one of the CreditCheck UI forms. She chooses the form that Bob sketched in
Rational RequisitePro Composer.

Because Diedrie is applying the UI Branding design patterns from the reusable asset, her
source code files change. The Rational Team Concert SCM component transparently tracks
all file changes, which are added to the current change set that is associated with the UI
Branding work item that Diedrie is working on. Diedrie can view her change sets by using the
Change Explorer view or the Pending Changes view that is available, for example, in the Java
Perspective as shown in Figure 7-32 on page 269.
268 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 7-32 Diedrie using the Pending Changes view and Compare Editor to view file changes in her change set

Diedrie collaborates and validates her design
To confirm her design strategy, Diedrie wants Marco and Al to look at the changes that are
captured in the change set. To collaborate with Marco, Diedrie does the following actions:

1. Diedrie opens the Chat view and creates a new instant message for Marco. She asks him
to review her design approach for the UI Branding work item.

2. She drags the change set from the work item to the Chat view. The change set is added as
a link as shown in Figure 7-33.

3. She presses the Enter key to send the message.

Figure 7-33 Diedrie sharing her design prototype (contained as a change set) with Marco in a chat
Chapter 7. Rational Team Concert for collaborative development 269

Marco is working on an urgent change in the application when he receives Diedrie’s instant
message. He can choose two alternative approaches to review Diedrie’s changes. The brief
review approach involves browsing the changes in the Change Set Explorer and reviewing
the code changes. The in-depth review approach (Figure 7-34) involves accepting Diedrie’s
changes into Marco’s workspace so that he can view and run the code.

Figure 7-34 Marco performing an in-depth review of Diedrie’s changes and accepts her change set into his workspace

To use the Change Explorer, Marco does the following actions:

1. Marco right-clicks the change set or change sets and selects Open.
2. In the Change Explorer, he browses the code changes.
3. He opens the Compare Editor to see the code-level changes side-by-side with the original

code.

To accept changes into his workspace, Marco does the following actions:

1. Marco opens the Pending Changes view and browses for outgoing changes.

2. He right-clicks the change sets and chooses Suspend.

3. He opens Diedrie’s change set, right-clicks, and chooses Accept, which applies Diedrie’s
changes to his workspace.

4. He views and runs Diedrie’s changes.

5. When Marco is done with validating Diedrie’s changes, he resumes his previous work by
right-clicking his suspended change set and selecting Resume.
270 Collaborative Application Lifecycle Management with IBM Rational Products

Both Marco and Al confirm that the design of the changes looks acceptable. To add an
in-context discussion entry in the work items, Marco performs the following steps:

1. He opens the Chat view with the instant message from Diedrie and clicks the link to the UI
Branding work item.

2. In the work item, Marco clicks the Add Comment button and enters a discussion entry for
Diedrie. He save the changes to the work item.

3. Diedrie and all other subscribers to the work item receive a notification that the work item
was updated. Diedrie clicks the notification and opens the work item to read Marco’s entry
(Figure 7-35).

Figure 7-35 Marco discussing his review of the changes in context of the work item

For further validation from the stakeholder, Diedrie brings Bob into the discussion and runs a
demonstration of the updated UI form. Bob confirms that the corporate brand design and
manner of use are now correct.
Chapter 7. Rational Team Concert for collaborative development 271

7.3.4 Diedrie develops, builds, and tests her changes

This scene entails the following tasks as illustrated in Figure 7-36 on page 273:

� Developing and testing
� Running a personal build
� Reviewing
� Delivering

Synopsis: Diedrie is now ready to proceed and complete the development of re-designing
all UI forms.

The component team is doing test-driven development (TDD), and Diedrie focuses first on
the JUnit tests that validate her changes. She updates and runs her tests to confirm that
the tests fail. She then applies the design pattern for the UI changes, builds her changes,
and re-runs the tests. She proceeds until all CreditCheck forms are updated and all tests
pass.

Diedrie is now ready to merge any incoming changes from her teammates. This is a
prerequisite to deliver her changes to the integration. She accepts all incoming changes
and resolves change conflicts. In some cases, she must collaborate with other developers
on her team to decide on the best approaches to merge their changes.

She also must run a personal component build to validate that nothing is broken in her
workspace. As new dependencies are added in the code project, she must update the
component build script to reflect these dependencies. After completing the changes to the
build script, she requests a private build of her workspace. The build script integrates
compilation, build validations tests, and code analysis. She confirms that the build and
validation results were successful.

Diedrie is now done with her changes and needs only to complete a code review before
delivering her changes to the component integration stream. This review is a practice that
the team enforces in their development process. She creates a new review request,
attaches the change sets, and submits the request to Marco.
272 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 7-36 Diedrie developing, building, and testing her changes

Figure 7-37 shows the life-cycle asset and relationships that are impacted in this scene.

Figure 7-37 Traceability established from source code changes in the workspace to the change set and work item that
Diedrie is working on

Rebecca –
Build Engineer

2.3 Diedrie and
Marco do just
enough
design

2.4 Diedrie develops,
builds and tests
her changes

2.5 Diedrie conducts a
team build and
delivers for the
integration build

Al –
Software Architect

Diedrie –
Developer

3.2 Rebecca
runs the
integration
Build

2.2 Al identifies
an asset the
team can
reuse

DeliverBuild
Validate

Monitor

Accept

Monitor

Review
Deliver

Develop
Test
Build

Reuse
Design

Search
Collaborate

Marco –
Dev Lead

BuildWork Item
[Task]

Requirement

ALM Task
[Implement]

ALM Request
[Enhancement]

Sketch

ALM Task
[Test]

Iteration Plan
[Construction C2A]

Planned For

External
Connection

Related
Artifact

CQ:Requirement
Associated

ALM Iteration
[02]

ALM Phase
[Construction]

Assigned to

ALM Project
[AO_Rel2]

Tasks

Found in

CQI

Change Set

Snapshot

Stream

Java files

CC Workspace

Included

UCM Stream

Flow Target

Included

Included

Built
from

Workspace

Reusable asset

Assets

Related
Artifact

Imported

JUnit files

Related
Artifact

ALM Task
[Develop Architecture]

A Created in Current Act

A Referenced

A Supporting

ALM Task
[Size]
Chapter 7. Rational Team Concert for collaborative development 273

Diedrie uses test-driven development

Diedrie and the component team use TDD. She focuses first on the JUnit test that validate her
changes. Diedrie uses the built-in JUnit capabilities in the Eclipse Java perspective. For each
Java project, the team uses the practice to keep a JUnit project with the unit tests for the code
project. Both code and test projects are contained and managed in the same SCM
component, which allows the team to consistently develop and deliver changes to code and
unit tests.

The Corporate UI Branding reusable asset provides Diedrie with a standard set of test cases
to validate that a form conforms to the standards and uses the standard controls. See
Figure 7-31 on page 268. For each form, she iteratively adds or updates the JUnit test cases
to include the added test statements. She runs her updated test case and confirms that the
test fails, as exemplified in Figure 7-38.

After ensuring that her test case is catching the UI Branding issue, Diedrie proceeds by
updating the Java code. She opens the project in the Java perspective and applies the design
pattern for the UI changes, builds her changes, and re-runs her test. She proceeds iteratively
until all forms are updated and all unit tests pass.

Figure 7-38 Diedrie practicing TDD and running her JUnit test cases to validate her changes

Goal: The goal is to use tests as specifications for software changes.
274 Collaborative Application Lifecycle Management with IBM Rational Products

Because Diedrie has updated her Java code and JUnit test projects, Eclipse manages her
files in her local workspace. As previously discussed, Rational Team Concert seamlessly
performs the housekeeping of changes to the workspaces and establishes traceability
between work items and the induced changes. The changes made by Diedrie to the Java
code and JUnit test are visible in the Pending Changes view. Figure 7-39 shows the assembly
of change set, associated work items, and drill-down into source code changes for individual
files.

Figure 7-39 The changes made by Diedrie associated and prepared to be delivered and resolved with
the Corporate UI Branding work item

Diedrie runs a personal build
Diedrie must minimize the risk of breaking the team integration when delivering her changes.

� She merge all recent code changes from the team.
� She test a full integration build in her local sandbox.

Keeping up with team changes

In steady state development, the team continuously delivers changes to the integration
stream. On a regular basis, Diedrie must keep up with incoming changes to avoid major
updates and merging, or at worse rework, when delivering her changes.

The Pending Changes view in Rational Team Concert helps Diedrie to view the combination
of her outgoing changes and the incoming changes that are delivered by her team members.
Any conflicts between the incoming and outgoing changes are also highlighted in the Pending
Changes view. Rational Team Concert assists by either automatically merging nonconflicting
changes or manually resolving more complex conflicting cases by using the Compare Editor.

Diedrie opens the Pending Changes view to accept any delivered changes from the team.
She finds that Marco has delivered changes that are in conflict with her code updates
(Figure 7-40 on page 276).

To keep up with changes delivered by Diedrie’s team, she must perform the following steps:

1. Diedrie opens the Pending Changes view.

2. She expands the components and identifies any incoming and outgoing change sets.

3. For all incoming change sets, she right-clicks the change set and selects Accept.
Accepting the incoming change sets can create conflicts in a workspace if the same files
that have incoming changes also were changed locally.

Goal: The goal is to develop as a collaborative team, not in a silo.
Chapter 7. Rational Team Concert for collaborative development 275

4. To resolve such conflicts, she chooses Open in Compare Editor to view and merge the
changes manually.

Figure 7-40 Diedrie identifying and resolving incoming changes to her workspace

Running a personal build

Diedrie is now getting ready to deliver her changes to integration. To minimize the risk of
destabilizing the integration stream and the continuous integration builds, she wants to do a
test run of a full integration build, before she delivers her changes to the Credit Check
integration stream.

Rational Team Concert and the integrated Jazz Build Engine provide the option to run a
private build that uses the files in any specified Jazz workspace, instead of the usual build
workspace for a given definition. That is, Diedrie requests a build to be run by using her
private undelivered code, instead of the code in the team’s stream. To take advantage of
personal builds, the Jazz Build Engine must be used along with Jazz SCM. In addition, build
scripts must be resilient to building from any Jazz workspace.

To run a personal build on her workspace, Diedrie takes the following steps:

1. Diedrie opens the Team Artifacts view and browses for the Builds section.

2. She right-clicks the com.ibm.ao.creditcheck.integration.ao_rel2 build and chooses
Request Build.

Goal: The goal is to test before delivery without breaking the component integration build.
276 Collaborative Application Lifecycle Management with IBM Rational Products

3. In the Request Build window:

a. Diedrie expands the Build Options and selects the Personal Build option.
b. Optional: She selects the workspace to build from as shown in Figure 7-41.
c. She clicks Submit to run the build.

Figure 7-41 Diedrie directing a personal build to be run on her local workspace
Chapter 7. Rational Team Concert for collaborative development 277

Diedrie waits for the build to complete. She monitors the status in the Builds view. After the
build is completed, she opens the Build result to access the build log (Figure 7-42).

Figure 7-42 Diedrie viewing the result log of her personal build

Diedrie requests a review

In this section, we explain how Diedrie requests a review of her code changes prior to
delivering the change set to integration.

Requesting a code review
Marco and his team have instituted a development process where a senior team member
reviews code changes prior to delivery into the integration stream.

Diedrie has completed her development activities of the predelivery by successfully running
her unit tests and a personal build. The personal build has passed both code analysis and
test coverage as well as build validation tests.

Goal: The goal is to collaborate with the team on the code changes.
278 Collaborative Application Lifecycle Management with IBM Rational Products

Rational Team Concert streamlines team processes by adding review items to the work item.
To submit a Change Set that is associated with a work item for review, Diedrie performs the
following steps:

1. Diedrie opens the Pending Changes view and browses for the outgoing change set.

2. Before sharing the change set with others, Diedrie right-clicks the change set and chooses
Complete.

3. She right-clicks the change set and chooses Submit for review….

4. Optional: Diedrie selects the Suspend change sets option to put further work on hold
until the review is completed. This depends on her plans to start work on the next
scheduled work item while the review is ongoing.

5. She clicks Add to add a reviewer or reviewers. For example, Diedrie adds Marco as her
reviewer.

6. She adds a short summary as a comment to the review.

7. She clicks Finish to submit the review.

Performing a code review
After the review is submitted, all reviews receive a notification that a review is due as shown in
Figure 7-43.

Figure 7-43 Marco receiving a notification to review Diedrie’s UI Branding changes

Marco receives his review notification and completes the following steps:

1. He opens the Pending Changes view and browses for current change sets in the
workspace.

2. He opens the review request. The request is hosted in the UI Branding work item that
contains the change set or change sets to be reviewed.

Reviewing change sets
A reviewer can take a variety of approaches to access the work item and the associated
change set or change sets. Two approaches are described in “Diedrie collaborates and
validates her design” on page 269. Here, it might be sufficient for Marco to do a brief review of
the code changes and look for key validation points. In his review, Marco typically looks for the
following items:

� Whether the code is obscure or hard to understand

� Whether the code is commented sufficiently, especially for Javadoc™ for APIs, but also
any obscure implementation code
Chapter 7. Rational Team Concert for collaborative development 279

� Whether the code duplicates any code that already exists and if there are opportunities to
share more code

� Whether there are any especially long or confusing methods that should be broken up

� Whether there are any “red flags” from a performance perspective

� Whether there is a cleaner, simpler, or faster way to do the implementation

� Whether the use of exceptions is appropriate

� Whether the code follows established project conventions

� Whether sufficient unit tests were delivered along with the new code

Approving the work item changes
When Marco is confident in the accuracy and stability of the changes, he can approve the
work item and the associated change set or change sets. To approve the review, Marco
completes the following steps:

1. Marco opens the reviewed work item and switches to the Approval tab.
2. Under Review UI Branding, he selects his approval entry.
3. He sets the state to Approved as shown in Figure 7-44.
4. He clicks Save to persist his changes.

Figure 7-44 Marco approving the review of the work item
280 Collaborative Application Lifecycle Management with IBM Rational Products

After the review is completed, Diedrie receives a notification that the changes have been
approved. She can now resume her suspended change set or change sets and proceed with
the delivery to the integration stream.

7.3.5 Diedrie delivers her changes and builds the component

This scene involves the following tasks as shown in Figure 7-45:

� Delivering changes for integration
� Monitoring continuous builds
� Delivering daily changes for solution integration

Figure 7-45 Diedrie delivering her changes to the integration stream and monitoring the build

Synopsis: Diedrie is now ready to deliver her changes to the integration stream and
resolve her work assignment. She makes sure that her workspace points to the integration
stream and then delivers her changes. The delivery includes her changes to the
application code, the unit tests, and changes to the build and validation scripts.

To catch any issues with her delivery as soon as possible, she requests a new integration
build to be run. She awaits the build result and validates that it completed successfully.

To complete her work Diedrie opens her work assignment. She adds summary comments
on the resolution, adds an entry for the milestone release notes, changes the state of her
work to resolved, and saves her changes.

Rebecca –
Build Engineer

2.3 Diedrie and
Marco do just
enough
design

2.4 Diedrie develops,
builds, and tests
her changes

2.5 Diedrie conducts a
team build and
delivers for the
integration build

Al –
Software Architect

Diedrie –
Developer

3.2 Rebecca
runs the
integration
Build

2.2 Al identifies
an asset the
team can
reuse

DeliverBuild
Validate

Monitor

Accept

Monitor

Review
Deliver

Develop
Test
Build

Reuse
Design

Search
Collaborate

Marco –
Dev Lead
Chapter 7. Rational Team Concert for collaborative development 281

Figure 7-46 show the life-cycle asset and relationships that are impacted in this scene.

Figure 7-46 Traceability established from the build to the change set or change sets and work item included in the
snapshot created by the build

Diedrie delivers her changes for integration

Diedrie is now ready to deliver the UI Branding work item and the changes developed for this
enhancement.

Managing the stream with flow targets
Rational Team Concert uses a concept of flow targets to manage the stream from which
changes are accepted and delivered. In this chapter, we have not discussed the use of flow
targets but simply flowing to and from the CreditCheck component integration stream. By
default, the flow target is set when creating a workspace.

The flow target setting is easily viewed in Rational Team Concert. In the Pending Changes
view, the name of the workspace is preceded with a hyphen enclosed in angle brackets (<->)
and the current flow target. Figure 7-40 on page 276 shows that Diedrie’s workspace is
flowing with the com.ibm.ao.creditcheck.integration.ao_rel2 integration stream. The
Workspace Editor view also has a section for viewing and managing the flow target or flow
targets of a workspace as shown in Figure 7-47 on page 283.

Diedrie intends to deliver her UI Branding work item to the integration stream so that no flow
target changes are required. However, later when she delivers to the Solution Integration
stream, she must use flow targets for activity.

BuildWork Item
[Task]

Requirement

ALM Task
[Implement]

ALM Request
[Enhancement]

Sketch

ALM Task
[Test]

Iteration Plan
[Construction C2A]

Planned For

External
Connection

Related
Artifact

CQ:Requirement
Associated

ALM Iteration
[02]

ALM Phase
[Construction]

Assigned to

ALM Project
[AO_Rel2]

Tasks

Found in

CQI

Change Set

Snapshot

Stream

Java files

CC Workspace

Included

UCM Stream

Flow Target

Included

Included

Built
from

Workspace

Reusable asset

Assets

Related
Artifact

Imported

JUnit files

Related
Artifact

ALM Task
[Develop Architecture]

A Created in Current Act

A Referenced

A Supporting

ALM Task
[Size]

Goal: The goal is to make code changes available to the team and to the integration builds.
282 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 7-47 Using the Workspace Editor to manage the flow target or flow targets

Delivering and resolving the work item
To deliver the changes, Diedrie completes the following steps:

1. Diedrie opens the Pending Changes view and browses the change set or change sets in
the tree.

2. She right-clicks each change set and chooses Deliver and Resolve Work Item as shown
in Figure 7-48 on page 284.

3. She selects the Resolve the associated Work Item after delivery option and enters a
resolution comment to the work item.

4. She clicks Finish to complete the delivery and mark the work item resolved.
Chapter 7. Rational Team Concert for collaborative development 283

Figure 7-48 Diedrie delivering a change set

Diedrie monitors the continuous builds

Diedrie has the responsibility in the component team to supervise builds, but it is a shared
responsibility across the entire team to act on build failures. Build notifications are available to
all team members and give transparency to build stability for the entire team.

The build definition is set to continuously build with 30-minute intervals, but only if changes
have been delivered to the CreditCheck component integration stream.

Diedrie has multiple options to monitor the build health:

� See fly-in build notifications.
� See build events in the Team Central view.
� Monitor the build queue in the Builds view.

Diedrie uses the fly-in notifications to monitor the build stability. There is a continuous stream
of notifications, of which some succeed and some fail. As she sees the builds repeatedly fail,
she turns her attention to the Build view and starts to analyze the root cause of the build
failures by using individual build items and build logs. Figure 7-42 on page 278 shows how
Diedrie can view the build status, trend, and access the build log.

Goal: The goal is to act on build and integration instabilities.
284 Collaborative Application Lifecycle Management with IBM Rational Products

Diedrie delivers daily changes for solution integration
Diedrie has the role in team to deliver the changes from Rational Team Concert to the
application integration by using Rational ClearCase. She uses the ClearCase Connector and
ClearCase Synchronized Streams in Rational Team Concert to perform the delivery.

Using the ClearCase Connector

ClearCase Synchronized Streams provide seamless interoperation between Rational Team
Concert and Rational ClearCase. The ClearCase Synchronized Stream enables a team
working in Rational Team Concert to access Eclipse projects that are under Rational
ClearCase source control, or deliver changes made in Rational Team Concert to Rational
ClearCase users of UCM components or versioned object base (VOB) folders.

Workspaces for ClearCase Synchronized Streams are used as ordinary repository
workspace. However, they are created with an additional flow target that simplifies the
resolution of conflicts that are introduced by incoming change sets that imported from
Rational ClearCase.

ClearCase Synchronized Streams are not designed to import every version of an artifact from
Rational ClearCase to a Jazz source control. Rather, they provide support for importing the
versions that are selected by a Rational ClearCase view configuration (a UCM stream or a
branch and label pair) to a Jazz stream. They also provide support for exporting change sets
from that stream to the Rational ClearCase view, where they are checked in as new versions.
This stream-based approach takes advantage of similarities between Rational ClearCase and
Jazz source control to facilitate ongoing work in both environments.

For the Credit Check team, the project is using ClearCase Synchronized Stream for each
major release stream, for example com.ibm.ao.creditcheck.integration.ao_rel2, to deliver
changes to the AO_Rel2 UCM project. The configuration of ClearCase Synchronized
Streams is further described in “Configuring ClearCase Connectors” on page 308.

Delivering to solution integration
The Credit Check team delivers their components to solution integration at regular intervals.
The solution team has agreed on the following principles that guide these deliveries:

� Deliveries are owned by the delivering team.
� Deliveries are made into the solution integration stream in Rational ClearCase.
� Only stable baselines that are successfully built should be delivered.
� Deliveries should be made at best daily or at least weekly.

To deliver the CreditCheck component to the solution integration stream, Diedrie completes
the following steps:

1. Diedrie collaborates with other team members and ensures that all changes have been
delivered.

2. She runs a build to validate the stability of the component integration stream.

3. She creates a new repository workspace, if needed, from the snapshot created by the
build.

4. She creates a new baseline for all CreditCheck components in the integration stream.

5. She changes the flow target of the workspace to the ClearCase Synchronized Integration
Stream.

Goal: The goal is to establish a software supply chain that delivers component changes for
solution integration.
Chapter 7. Rational Team Concert for collaborative development 285

6. She delivers the new baseline to the ClearCase Synchronized Integration Stream.

7. She removes the repository workspace.

Accepting changes from solution integration
The Credit Check team depends on other components in the Account Opening solution and
must accept changes from ClearCase into Rational Team Concert. The configuration of the
components and Eclipse projects in the ClearCase Synchronized Stream enable the team to
accept changes by using the synchronized stream.

To accept the changes, Diedrie performs the following steps:

1. Diedrie receives a notification from Rebecca that the daily or weekly integration is
complete.

2. She creates a new repository workspace, if needed, from the ClearCase Synchronized
Stream.

3. She accepts the new changes from ClearCase into the workspace.

7.4 Life-cycle collaboration

The collaborative development discipline touches on many of the core development assets in
ALM. Figure 7-5 on page 238 shows a summary of the assets and their part in the workflow.

Figure 7-49 shows the life-cycle assets in collaborative development and their dependencies.

Figure 7-49 Life-cycle assets in collaborative development

Work Item
[Task]

Requirement

ALM Task
[Implement]

ALM Request
[Enhancement]

Sketch

ALM Task
[Test]

Iteration Plan
[Construction C2A]

Planned For

External
Connection

Related
Artifact

CQ:Requirement
Associated

ALM Iteration
[02]

ALM Phase
[Construction]

Assigned to

ALM Project
[AO_Rel2]

Tasks

Found in

CQI

Change Set

Snapshot

Stream

Java files

CC Workspace

Included

UCM Stream

Flow Target

Included

Included

Built
from

Workspace

Reusable asset

Assets

Related
Artifact

Imported

JUnit files

Related
Artifact

ALM Task
[Develop Architecture]

A Created in Current Act

A Referenced

A Supporting

ALM Task
[Size]

Build
286 Collaborative Application Lifecycle Management with IBM Rational Products

Work items
The work items are key drivers for the scenario. The work items carry the following ALM
information:

� Provide traceability to the iteration plan for the team and hence to the responsibilities and
schedule for the assigned team member

� Provide traceability to the work assignment committed by the component team and to the
ALMActivity and ALMTask that govern the solution iteration plan

� Provide traceability to ALMRequest for stakeholder needs

� Provide traceability to the change sets that contain the code changes resolving the work
item

� Contain the approvals that govern delivery and quality of change in the software supply
chain

� Become traceable from stream, baseline, and snapshot histories

� Become traceable from build results that enumerate the change sets included in the build

By collecting metrics on work items, significant insight can be achieved on project and
iteration health. See 7.5.1, “Measuring success with Rational Team Concert” on page 288,
which elaborates on the success metrics based on work items.

Change sets
Change sets form containers for source code changes that are delivered as an atomic unit.
Change sets can live in isolation, but from an ALM perspective they have the following
characteristics:

� Provide traceability to the changes resolving a work item

� Become the unit of delivery between workspaces and streams, for example integration
streams

� Become traceable from snapshots and builds to the change sets that are included in a
build

The capability in Rational Team Concert to exchange and collaborate on change sets is key to
the collaborative development capabilities. Examples of such collaboration is demonstrated in
“Diedrie collaborates and validates her design” on page 269.

Source code (Java and JUnit)
Source code changes saved to a workspace become traceable as part of a change set. There
are multiple views in Rational Team Concert to browse and compare code changes. In
“Diedrie prototypes the design” on page 268, we show one scenario for browsing change sets
and using the Compare Editor for viewing code level changes.

Workspaces
The workspace is not a persistable ALM asset but plays an important role for hosting and
collaboration on change sets. The ability to manage change sets by applying and discarding
them from workspaces is key to the collaborative development capabilities.

Streams
Streams are key to manage change for a version of a solution, such as a release. Streams
provide traceability to the history of the following items:

� Delivered changes sets
� Baselines and snapshots
Chapter 7. Rational Team Concert for collaborative development 287

Snapshot
The snapshot item provides traceability to the version of files in a set of components at a
given time, such as at the time of a build.

Builds
The build items are key drivers for the scenario. They provide traceability to the following ALM
information:

� The snapshot taken at the time of the build
� The new work items and changes sets that are delivered into the build
� The artifacts constructed by the build
� The build result and build logs

ClearCase Synchronized Streams
ClearCase Synchronized Streams provide cross-platform traceability from Rational Team
Concert to Rational ClearCase.

7.5 Planning and measuring success in collaborative
development

In this section, we discuss how to measure success in collaborative development by using
Rational Team Concert.

7.5.1 Measuring success with Rational Team Concert

In this section, we discuss the capabilities in Rational Team Concert to monitor health and
measure success.

Agile planning
Agile planning principles dictate that just enough planning is conducted in order to deliver
working software to stakeholders. Teams should not be burdened with the production of
expansive project plans or documentation that does not contribute to project delivery.
Planning must be directly tied to project execution.

In agile planning, the team is given the requirements or work stack to be delivered in the
iteration by the product owner. The agile plan is captured in Rational Team Concert as an
iteration plan. Given this release scope, the team self-configures the following items:

� Capture of the stories that present the customer value view of the requirements
� Elaboration of the work that is involved in supporting the stories
� Work assignments and ownership
� Enumeration of perceived risks

Agile planning also empowers the entire project team to actively estimate the time they need
to complete assigned tasks. This improves the accuracy and reliability in the iteration plan.
The churn that frequently occurs in planning, replanning, and re-estimating that causes many
projects to fail is frequently caused by incorrect or unrealistic estimates that were dictated
taking a top-down approach with project deadlines.

The estimates are provided in Rational Team Concert as detailed attributes on work items.
The estimates are rolled up to parent items, such as the total for each team member, to
estimate work for a composite task, or to the entire team iteration. Estimations provide a
288 Collaborative Application Lifecycle Management with IBM Rational Products

measurement of the quality of planning for an iteration based on how much of the work
assigned to the iteration has been estimated. This gives the team a basis for understanding
whether the work allocated for the iteration can realistically be completed.

Team transparency
Transparency is a fundamental quality on a truly agile team that is empowered with
self-direction in order to respond effectively and rapidly to project challenges and changing
project needs. Transparency enables teams to “pull” tasks as needed rather than to only have
tasks that are “pushed” to them by their manager. The triage and direction provided by the
development lead still remain essential to ensure that the project remains focused on delivery
commitments, but with transparency and self-direction.

Workload balancing is a key example of team transparency benefits. In a traditional model,
the project manager regularly assesses the workload of the project team and assigns work
based on his perception of available team capacity. This approach has drawbacks as it shifts
focus of work to individuals rather than the productivity and success of the team. That is, team
members define their individual work rather than the team working against a particular
milestone.

Further, a lack of project transparency and whole team focus encourages project teams and
work owners to hide challenges and issues they are facing, working on them in isolation in
order to avoid criticism or negative perception. This limits the overall productivity and potential
of the collective project team. Project rebalancing can also become bottlenecked by the
project manager. Without transparency and a team success culture, project challenges and
changes in project work are not addressed until the project manager can reorchestrate the
project team.

Complete workload transparency creates trust among team members because it allows the
truth to be known that everyone is working hard toward project delivery by way of team
workload visibility. It also encourages team members to take responsibility for their role in the
team and hold each other accountable for the collective success of the team. Project
transparency eliminates excuses for unproductive behavior. Project transparency also
improves the overall quality of project planning, scheduling, and estimation. This is especially
true for geographically and organizationally distributed teams where work estimates might be
far more subjective or prone to distortion.

Rational Team Concert provides a completely transparent team environment that encourages
team success. As workloads change, it makes transparent the areas where help is needed
and provides team members with the ability quickly jump in and pair to complete work items.
Rational Team Concert brings together team responsibility with personal accountability
enabling teams to be responsive to the changing needs of the project. Rational Team Concert
reinforces the agile manifesto principle: “Responding to change over following a plan.”

Examples of supporting team transparency are shown in the following figures:

� Figure 7-13 on page 249, which shows the team Web Dashboard
� Figure 7-17 on page 253, which shows the team iteration plan in the Web view
� Figure 7-18 on page 254, which shows the Team Central view

The Iteration Plan view
Many organizations draft a project plan in one tool and then translate that plan to tasks and
work items in the environment that their teams use. This strategy has a number of
weaknesses. It burdens the project team and the project manager with the overhead of
constantly synchronizing their plans with a change management system and reflecting project
progress.
Chapter 7. Rational Team Concert for collaborative development 289

In Rational Team Concert, the project plan and work items are fully integrated. Hence the
tasks in the project plan are the same assets as the work items that the team is working
against. The tasks on the project plan are the same as the actual work items that the team is
working against. This alleviates the burden of project plan synchronization for progress
reporting for the entire team.

The following metrics are examples of what is collected from the iteration plan:

� Iteration and team workload and balance
� Risk level from unestimated work
� Work closure rate

Examples of iteration plans are shown in Figure 7-14 on page 250 and Figure 7-15 on
page 251.

The Team Central view
The Team Central view is a user customizable real-time view of what is happening in the
project. It provides a transparent view into the work of the entire project team. This view
empowers team members to take personal responsibility for the success of the team. It shows
the collective effort and workload of the entire team and allows you to link the team’s workload
to your own personal workload.

Team Central provides a section based view, which can be individually configured to show
measurements of the key success indicators for each team role. Some general sections apply
to all team members and roles, and Rational Team Concert provides, by default, configuration
for Team Central.

The following sections are provided in Team Central:

� The Builds section shows build events from one or more build definitions. By using this
section, team members can watch for build failures.

� The Open and New Work Items sections show work that is assigned to the individual team
member and new work for the team that is not yet assigned. By using these sections, team
members can see an overview of the work stack and new assigned work. Note that
changes are indicated on the bars, for example 5 (+2).

� The Team Load section provides a graphical summary of the total number of work hours
that remain before the iteration ends and the amount of estimated work they have
assigned for the iteration. By using this section, team members and team leads can see
an overview of work balance and overcommit.

� The Event Log section shows event notifications for the items or feeds subscribed to. By
using this section, team members can stay updated on changes to the project and
selected key items.

� The additional sections to the default set (the previous sections in this list) can be
configured to report on additional success indicators for the team. This might entail
additional work item queries or event notification sources. By using additional queries,
team members can track specific items over the project or iteration life cycle.

The My Work view can be configured by adding new sections on News, Events, or Queries.
By adding a new query section and dragging a favorite query to the section, the team gains
continuous tracking capabilities to important work metrics. Additional News and Events
sections give continuous tracking capabilities to external feeds providers, such as external
tools that generate events that must be monitored.

Figure 7-18 on page 254 shows an example of the Team Central view.
290 Collaborative Application Lifecycle Management with IBM Rational Products

The My Work view
Rational Team Concert ties the Team Central view to a similar view that is focused on
personal project responsibilities called “My Work.” The My Work view shows work items that
have been assigned specifically to you. It allows you to create a personal work schedule
based on your assigned work items and the effort required to complete them.

The tight integration of work assignment, effort estimation, and planning improves the overall
quality of the project plan. These tasks are normally centralized as the primary responsibility
of the project manager with selective input from the project team. The constant focus on
planning and input of the work owners makes the quality of planning much better. Planning,
estimation, and scheduling become an implicit part of project delivery with Rational Team
Concert. With Rational Team Concert active planning, estimation, and scheduling, your team
can keep up with the changing needs of the project.

The team-centric view of Team Concert enables teams to self-direct and self-adjust in step
with the needs of the project.

Figure 7-19 on page 255 shows an example of the My Work view.

The Web Dashboard
Rational Team Concert provides a Web portal for both development team members and
external team contributors that demand easy access to project health information and assets
by using Web 2.0 usage patterns. The Jazz Web portal is accessed by browsing the Jazz
server, for example by using the following URL:

https://localhost:9443/jazz/web

The Web portal provides access to project areas, server administration, and dashboards. In
this section, we focus the discussion on the Web Dashboard.

The Jazz Web Dashboard provides capabilities to configure shared dashboards to publish
common project health information or where individuals create and configure dashboards
based on individual monitoring needs. By providing guest access, and integrating with
enterprise user authentication services, teams can establish a balance between information
security, stakeholder access, and information management.

The Jazz Web Dashboard provides multiple tabs where viewlets are added and configured
from a range of context areas, for example:

� Personal, team member, and project information
� Preconfigured work item queries, health metrics, and trends
� Preconfigured build health metrics and trends
� General tools to publish notifications, bookmarks, and HTML formatted information

Figure 7-56 on page 300 shows an example of the Jazz Web Dashboard.
Chapter 7. Rational Team Concert for collaborative development 291

7.5.2 Reporting team health with Rational Team Concert

In collaborative development, key reports should be visible and understood by everyone on
the project. This knowledge allows everyone on the team to take responsibility for the projects
progress and make contributions to correct unhealthy project trends. For example, team
members who view a report that shows open work for the current iteration can see that scope
creep for the iteration might be a problem if the open enhancements keep rising as the project
iteration progresses. They can also sense a quality problem if the open defects keep rising as
the iteration progresses. These indicators give everyone on the project a team sense for
potential project challenges and project health.

Reporting provides projects with the ability to quickly address project challenges collectively
as a team rather than rely solely on the prowess and actions of project managers and
stakeholders to correct unhealthy trends. Agile teams have the ability to take team
responsibility for challenges and “do their part” to correct unhealthy trends. For example,
individuals who look at an overcommitted iteration can see their own individual commitments
to understand their contribution to the trend. They might look for a rise in defects and
enhancement requests. They might also validate their work estimates for open work. In doing
so, they can ask the project manager to help them address such issues as replanning work to
other iterations. They can trade or share work with peers by exchanging work items that they
can accomplish faster in their area of expertise.

Report data should be collected automatically from direct measurement, and reports should
tie real-time status to historical trend information. In this section, we exemplify the reporting in
Rational Team Concert with some key success indicators.

For additional information and examples about how to use reports to measure team success,
see the Reports section on the Jazz.net Web site (sign-on required):

https://jazz.net/jazz/web/projects/Jazz%20Project#action=jazz.viewPage&id=com.ibm.
team.reports

Blocking tasks: Keeping an eye on the critical path
Work items that must be completed and resolved before other planned work can be
completed are called blockers. These work items must be addressed with greater urgency
because they prevent the work of other work items from progressing and threaten the on-time
delivery of the iteration. Teams must be especially cognizant of work items that are blocked
and on the critical path.

Additionally, a rise trend in blocking work items late in the iteration is cause for greater
concern. Late stage blocking work items increase the risk of on-time delivery of the iteration.
Ideally, you want to keep the number of blocking work items at zero. Blocking work items
should be a focus area for status meetings. Since all contributors can get a real-time list of all
blocking work items, there should be a culture of collaborating on the resolution of blocking
work items to fast track their completion.
292 Collaborative Application Lifecycle Management with IBM Rational Products

https://jazz.net/jazz/web/projects/Jazz%20Project#action=jazz.viewPage&id=com.ibm.team.reports

In Rational Team Concert, the Blocking report (Figure 7-50) plots all open work items with the
blocker severity over time. If an iteration is specified, only those work items planned for that
iteration are shown. By using the Blocking report, teams can watch for a high or increasing
number of blocking work items close to the end of an iteration, which can indicate that the
iteration end date is in danger.

Figure 7-50 Report on open blocking work items from the Jazz project
Chapter 7. Rational Team Concert for collaborative development 293

Iteration or Sprint Burndown: Timeboxing scope of work
The Sprint Burndown report (Figure 7-51) plots the remaining backlog of work in terms of the
time estimated to complete it. Agile development methodologies, such as Scrum, use a
burndown to plot the daily progress toward the end of a sprint. Only work items that are open
and in progress, and that have an estimate specified, are included in the calculation. Ideally,
the chart shows a trend toward zero hours of remaining work as the sprint comes to a close.

The Sprint Burndown report help teams watch for burndown trends that do not approach zero,
which can indicate unrealistic planning estimates.

Figure 7-51 Sprint Burndown report from the Jazz project
294 Collaborative Application Lifecycle Management with IBM Rational Products

Team Velocity: Checking the reality of your planning and estimating
The Team Velocity report (Figure 7-52) plots the velocity of a team over time and measures
how effective a team is at estimating and planning for the current iteration. In Rational Team
Concert, each work item can specify a time estimate and, after the fact, the actual time spent.
The velocity is defined as the estimated time divided by the actual time for all closed work
items.

Ideally, a velocity trend over time of close to 1.0 is considered good. This means that the
estimates are realistic. For this report, only work items that are closed and that have both an
estimate value and a time spent value specified are included in the calculation.

The Team Velocity report helps teams watch for trend velocities that are considerably greater
than 1.0. This can indicate that the time estimates are becoming too high and some
modifications must be made when making such estimates in the future. Likewise, velocities
considerably less than 1.0 indicate that actual time spent on work is much greater than
estimated. Also, project velocity can help the team understand the credibility of future work
estimates and as a result, the integrity of the project schedule.

Figure 7-52 Team Velocity report from the Jazz project
Chapter 7. Rational Team Concert for collaborative development 295

Build results and trend: Working software for the team
The build trend is a team metric that provides value for everyone on the project. It is the
heartbeat of every project and should be highly visible to everyone on the team. Ideally, the
build trend measure is automatically generated as a result of a continuous integration system.

The build result, as shown in Figure 7-53, orients the entire team on the most important
measure for success in agile development, working software. In many organizations, the build
and build results are left in the developer domain as their concern because they are not
important to other team members. The primary reason is because, in the past, build systems
have been solely focused on integrating the code into working software but not at integrating
valuable project and change information with the build. Now, collaborative development
environments are not only delivering integrated project results with builds, but they enable the
project teams to share information and work with each other directly in the context of project
results.

Figure 7-53 Build Result view from the Jazz project
296 Collaborative Application Lifecycle Management with IBM Rational Products

The build trend, as shown in Figure 7-54, can help answer important questions about the
team. For example, it lets the development teams know how well their parallel development
and integration efforts are going. It gives the testers an early sense for the stability of the
application. It gives the project manager a read on whether the project rhythm is effective.

With Rational Team Concert, the development team and testing team are always in close
contact on the assets that are most important to both of them, especially working and not
working software. For the testing team, the build result provides an immediate view into the
working and not working components of the application. It orients them on the new changes
that were added into the latest build, giving them the vital information they need for their
testing. It also enables them to collaborate and communicate directly with the owners who
implemented specific changes and orients them on the delivery team that is responsible for
various parts of the application.

Figure 7-54 Build health report from the Jazz project
Chapter 7. Rational Team Concert for collaborative development 297

7.5.3 Measuring success by role

In this section, we describe the practices of measuring success in collaborative development
by using Rational Team Concert from a role perspective. The following roles are covered:

� Developer role
� Team lead role
� Project lead role

Diedrie: Measuring success as a developer
Diedrie has two roles, the developer role and the component builder role, on which she must
ensure success. She spends most of her development time in the Rational Team Concert
Java perspective.

In her developer role, Diedrie focuses primarily on her current work assignments and the
schedule to deliver the work in the current iteration. The My Work view helps her monitor the
assigned work and the order list that forms the schedule of completing the work. The
schedule in the My Work view is kept updated automatically by Rational Team Concert, but its
quality is only as good as the information that is provided. As a practice, Diedrie updates the
ownership, priority, and estimated and delivered work so that Rational Team Concert presents
accurate health information to her and her team. To see the bigger picture, that is the health
of the component team, she uses the iteration plan for the current iteration. This view shows
load balance and overcommits, as well as indicates new unassigned work. These are all good
indicators for her if others need her contributions.

For her builder role, Diedrie monitors the build notifications in the Team Central Build and
Events sections. When a build fails, she browses the Build Results and looks for the root
cause of the breakage. With the Build Results editor, she can create and assign new work
items to resolve build issues.

To make her daily work easier, Diedrie has customized the Java perspective to include the
Team Central and My Work views. By docking multiple views, or minimizing views as shown in
Figure 7-55, she has quick and easy access to the Team Central and My Work views when
needed. She has also added a few additional work item queries to the default options. The
following queries are her favorites:

� The Fixed to be verified query looks up all defects that she has submitted and that have
been fixed in the iteration. Diedrie wants to ensure that the fix resolves the defect that she
found. If not, she reopens the defect.

� The Monitor query looks up a set of work item by IDs that Diedrie wants to monitor. There
are a variety of reasons for her interest, such as blocking, or depending on her work,
resolving build errors. She uses this query as a complement to subscribing to work item
events.
298 Collaborative Application Lifecycle Management with IBM Rational Products

By adding a new My Queries section to Team Central, and dropping the query into the new
section, Diedrie has quick and easy access to her favorite queries as shown in Figure 7-55.

Figure 7-55 Quick and easy access to minimized views and favorite queries for monitoring Diedrie’s
success

Marco: Measuring success as a team lead
Marco must ensure that his team keeps their delivery commitments, with requested
functionality and sufficient quality. He has two primary focuses in his role as team lead when
measuring success:

� Track changes to work items in the current iteration
� Track the quality of his components in integration builds

To track changes, Marco uses Team Central and its Event Log section as explained in “The
Team Central view” on page 290. By using this view, Marco sees a list of all changes made to
work items or other events types to which he subscribes.

To monitor the build status, Marco uses the notification feeds from both the local component
integration builds and the centralized solution integration builds. Any notifications from the
builds that state a failure might draw his attention. In such situations, he browses to the build
log and seeks the source of the failures. Because the build logs are organized by component,
he can quickly determine if the failure is within his area of responsibility. For solution
integration builds, Rebecca, the release engineer, also tracks build failures and notifies Marco
if his component is breaking several subsequent builds. For component integration builds, the
team has a shared responsibility to react on build failures, and Marco expects the team to
resolve any build issues without his direction.

Through the iteration, Marco focuses on measuring success shifts. Initially in the development
phase, he focuses on tracking or planning new work. In the later stabilization phase, his
attention shifts to defects and blocking items. For these needs, he generally configures work
item queries that pick up the items to help with tracking and scoping decisions.

Marco’s team has a dashboard configured with the key health metrics that the team is using
at the stand-up meetings. This dashboard is shared within the team and serves as a common
statement of health. At some meetings, the dashboard is used, where at other meetings, the
team uses public work item queries or queries created on the fly.
Chapter 7. Rational Team Concert for collaborative development 299

For additional information and examples about measuring team success, see the
Development section of the Jazz.net Web site (sign-on required):

https://jazz.net/jazz/web/projects/Jazz%20Project#action=com.ibm.team.dashboard.vi
ewDashboard

Measuring success as a project lead
In this section, we discuss how the project lead measures project success when using
Rational Team Concert. In the Account Opening project scenario used in this book, we use a
tool configuration in which Patricia uses Rational ClearQuest to plan and monitor the project.
Hence, basing our discussion on measuring project success with Patricia in this section
seems to conflict with the scenario story. Instead we use the practices and experiences from
the Rational Jazz development team as a basis for this discussion.

Generally, the project lead role, together with the project leadership team, must balance the
tracking and management of project plans, events, and risks with the trust and delegation of
ownership and responsibility to the individual component teams. Some tracking success
metrics are key in providing health status information that can serve as team reports and
indicators for any required management action.

The Jazz team uses the Jazz Development Dashboard to measure and report project
success as shown in Figure 7-56.

Figure 7-56 The Jazz team development dashboard
300 Collaborative Application Lifecycle Management with IBM Rational Products

https://jazz.net/jazz/web/projects/Jazz%20Project#action=com.ibm.team.dashboard.viewDashboard

The Jazz team measures their success based on the following factors:

� Jazz development plan health
� Jazz development event logs
� Risks
� Cross-team expectations
� Cross-team adoptions

The Jazz development plans are the collection of individual component iteration plans that
form the composite project development plan. The Jazz Development Dashboard is
configured to show project status for the current iteration, drill-down overview pages for each
iteration, and drill-down into the individual iteration plan documents.

The Jazz development event logs are the events notifications from the life-cycle assets, filtered
by the relevance of the project health.

The Jazz risks are used to enumerate and track perceived project risks. The risks are used to
draw the team’s attention to areas of concern. The list of risks is reviewed daily with the team
leads and the leadership team. The risks are captured as work items tagged with the keyword
“pmc_risk.”

The cross-team expectations and cross-team adoptions are common cross-team directions to
which each component team is expected to conform. The dashboard surfaces these
directions, draws the attention to any new expectations, and unifies the team vision and
execution.

The Jazz team also tracks the following finer granular metrics:

� The build health is tracked by trending information about build success versus failure and
the number of test cases run on each build. Build health is also tracked by ranking the
most frequent JUnit test case failures. These metrics indicate the health of the code base,
the coverage of the tests, and any areas of frequent instability.

� Open defects are tracked by several views including themes, team, testing, and trends.
Each view provides health information about, for example, the stability of a new tool
capability, the delivered quality of each component, or the success of the project quality
team.

For information and examples about measuring project success, see the Development
section of Jazz.net Web site (sign-on required) at the following address:

https://jazz.net/jazz/web/projects/Jazz%20Project#action=com.ibm.team.dashboard.vi
ewDashboard

7.6 Reference architecture and configuration

In this section, we explain how Rational Team Concert fits into the overall solution architecture
and how the tools have been configured for this act of the storyboard.

7.6.1 Fitting into the enterprise ALM solution

Rational Team Concert as used in this act illustrates part of an enterprise ALM solution with
an agile component team that is integrated into a larger enterprise project. In this chapter, we
have presented the workflows and tool usage in Rational Team Concert for an integrated ALM
solution that supports the team in alignment of work, iteration planning, reuse, delivery of
Chapter 7. Rational Team Concert for collaborative development 301

https://jazz.net/jazz/web/projects/Jazz%20Project#action=com.ibm.team.dashboard.viewDashboard

change, and build integration. Figure 7-57 highlights the part with the enterprise ALM solution
that is discussed in this chapter.

Figure 7-57 Rational Team Concert as one part of the enterprise ALM solution

Deploying Rational Team Concert
The Jazz platform is based on client-server Java 2 platform, Enterprise Edition (J2EE™)
architectures. The Jazz server normally runs on a secured server-class machine and hosts
services, a repository, and team artifacts. Remote clients communicate with the Jazz server
over a local area network (LAN) or wide area network (WAN) by using HTTP. Remote clients
come in many forms, such as seamless integration in the Eclipse integrated development
environment (IDE) or Web browser clients and portals. In addition, Jazz-specific command
line tools or Ant scripts operate in headless mode. Web browser access benefits casual
access because there is no need to install Jazz-specific software on the machine. The Jazz
platform client-server architectures support deployments of a central server servicing globally
distributed teams, or team members, over WAN connections.

The Jazz platform is based on standard middleware as illustrated in Figure 7-58 on page 303.
Smaller teams that self-administer can use the Jazz platform on open source middleware,
such as Jabber, Tomcat, or Derby. If the team has requirements for more robust
enterprise-sized middleware, it can use the Jazz platform with IBM Lotus, WebSphere, and
DB2.

Test resources

INUS

Repository

Solution test plans

Comp test plans

Rational Requirements
Composer and RequisitePro Rational ClearQuest

CQI assets

CQALM assets

Sketches and so on

Requirements

Rational Asset Manager

Rational ClearCase /UCM

Reusable
assets

Streams

Components

Rational Build Forge

Solution builds

Comp builds

Rational Quality Manager
Rational Quality Manager

Rational Team Concert

Component
iteration plan
work items

Workspaces

Components

Component
builds

Streams

Build assets

Web IDE

Corporate Recently Acquired

Third-party provider

Solution
test plans

Test resources
302 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 7-58 Jazz platform architecture with open source middleware

In the scenario described in this book, open source middleware was used. Rational Team
Concert was deployed to a single Windows 2003 server, which runs the Jazz platform,
Jabber, Tomcat, and Derby servers. The server also runs the build engine as described in
“Configuring team builds” on page 309.

A deeper description of the Jazz architecture is provided in the Jazz Platform Technical
Overview on the Jazz.net Web site at the following address (sign-on required):

https://jazz.net/learn/LearnItem.jsp?href=content/docs/platform-overview/index.html

Integrating Rational Team Concert and Rational ClearQuest
Tool and platform interoperability is a key enabler in the enterprise ALM solution that is
described in this book. The integration between Rational Team Concert and Rational
ClearQuest is used to enable the development team to access the following information:

� Cross-team development tasks related to a request
� Detailed requirements definitions and managed requirements
� Other supplementary artifacts

By using the ClearQuest Connector for Rational Team Concert, you can synchronize
information between work items for Rational Team Concert and ClearQuest records. Through
synchronization operations, the ClearQuest Connector maps ClearQuest records, such as
ALM Activities, to Rational Team Concert work items. When a user creates or modifies a
Rational ClearQuest record, the ClearQuest Connector creates or modifies a corresponding
Rational Team Concert work item. The creation and modification changes also flow from work
items to Rational ClearQuest records.

The ClearQuest Connector has multiple parts that must be deployed, including the
ClearQuest Gateway, ClearQuest Packages, and synchronization rules files. For information
about how to configure the ClearQuest Connector parts, see “Configuring ClearCase
Connectors” on page 308.
Chapter 7. Rational Team Concert for collaborative development 303

https://jazz.net/learn/LearnItem.jsp?href=content/docs/platform-overview/index.html

Figure 7-59 shows the reference architecture for deploying the ClearQuest Connector with
Rational Team Concert and Rational ClearQuest. We recommend that you co-locate the
deployment of the ClearQuest Gateway and the Rational ClearQuest repository server
because a LAN connection is required to achieve production quality performance. It is
possible to co-deploy the ClearQuest Gateway and the Rational ClearQuest repository to a
single server, but there might be performance implications. Rational Team Concert server can
be deployed remotely from the ClearQuest Gateway by using a WAN connection.

Figure 7-59 Deployment reference architecture for Rational Team Concert interoperability

Integrating Rational Team Concert and Rational ClearCase
The software supply chain that is described in this chapter exemplifies how a team develops
and delivers components in a larger solution. The supply chain is implemented by using the
integration between Rational Team Concert and Rational ClearCase. By using this
integration, the Credit Check team can perform the following functions:

� Develop, build, and test software components by using the Rational Team Concert SCM
capabilities

� Deliver component baselines to the ClearCase Synchronized Streams for solution
integration

� Connect UCM activities with deliveries

With ClearCase Synchronized Streams, you can use the capabilities of Rational Team
Concert to work on Eclipse projects that are under Rational ClearCase source control. You
can also make projects that are under Jazz source control available to Rational ClearCase
users of UCM components or VOB folders.

To use ClearCase Synchronized Streams, you configure one or more host computers to
support synchronization between the Jazz source control and Rational ClearCase. Then you
import an initial set of projects from Rational ClearCase into a Jazz source control workspace
(known as a ClearCase Workspace). After this step is complete, users can work on these
projects in both Rational ClearCase and Rational Team Concert and periodically synchronize
work between the two environments. Figure 7-59 shows the reference architecture for deploying
the ClearCase Synchronized Streams with Rational Team Concert and Rational ClearCase.

Rational Team Concert

Rational ClearQuest

ClearQuest Gateway

LAN

WAN

Rational ClearCase

ClearCase Dynamic
View Server

LAN

LAN

WAN

WAN
304 Collaborative Application Lifecycle Management with IBM Rational Products

To use ClearCase Synchronized Streams, you must deploy one host with both a Rational
Team Concert client and a Rational ClearCase client that supports dynamic views. This host
supports the initial import and subsequent synchronization operations. Co-locate this view
server host with the Rational ClearCase repository to achieve the required Rational
ClearCase dynamic view performance over a LAN connection. Also, schedule
synchronization to occur at regular intervals, such as nightly, during periods of low Rational
ClearCase activity. The ClearCase Workspace owner monitors synchronization results in
case merges are required or errors are reported, as described in “Diedrie delivers daily
changes for solution integration” on page 285.

7.6.2 How the products are configured for this scenario

In this section, we describe the key configurations in Rational Team Concert that are used for
this act of the scenario.

Configuring project and team areas
The deployment of Rational Team Concert for the scenario in this book is captured in
Figure 7-59 on page 304. The Rational Team Concert repository is deployed co-located with
the component team. Even though this is not a technical constraint, it is beneficial to the agile
team to have local access to the server infrastructure. In practice, such a decision as this can
depend on the availability of local administrative staff and skills.

Rational Team Concert was configured with a repository that contains a single AccountOpening
project area. This project area currently only supports the Credit Check team, but in practice, it
supports other teams in the Account Opening application that decided to deploy Rational Team
Concert. A team area, named AccountOpening, was created for the project leader roles.
Another team area, named CreditCheck, was created for the Credit Check team.

When enabling access for a team, it is important to create the user account and assign the
appropriate roles for the various team areas (Figure 7-60). In the scenario in this book, the
team was created and configured with the role that is available in the OpenUP. It is also
important to personalize the user accounts. Use pictures of the team members, assign e-mail
addresses, provide instant messaging server information, and update the work environment
information. Team member properties improve team collaboration and accuracy of iteration
planning and health.

Figure 7-60 Configuring team member information
Chapter 7. Rational Team Concert for collaborative development 305

The scenario configuration did not require any configuration of additional work item types or
changes to the default work item state workflows. Such configurations are made in the Project
Area Process Configuration. To modify the process, open the project area, select the
Process Configuration tab, and browse the Project Configuration section as shown in
Figure 7-61.

Figure 7-61 Configuring the properties of the project process

Configuring the iteration plans
A project area is instantiated with a selected development process. In the scenario presented
in this book, the project uses the OpenUP. This process is preconfigured and available in
Rational Team Concert. OpenUP takes the Rational Unified Process (RUP) names for phases
and iterations.

The Credit Check team in this scenario uses two-week iterations, while the project uses
four-week iterations. To configure these differences, additional iterations were added to the
process iterations in the AccountOpening project area.

To add additional iterations, expand the Construction section in the plan, select the
Construction Iteration, and click Duplicate. Open the new iteration and click Edit
Properties. In the Edit Iteration window, update the name, ID, and dates.
306 Collaborative Application Lifecycle Management with IBM Rational Products

In this scenario, four iterations, C1A, C1B, C2A, and C2B, were created as shown in
Figure 7-62. When creating a new iteration, make sure to assign unique identifiers for each
iteration.

Rational Team Concert can also be configured to manage multiple development lines. This
scenario mainly focuses on the AO_Rel2 release. However, Figure 7-62 also shows the
AO_Rel1Maint development line that the Credit Check team participates in for maintaining the
currently deployed application.

Figure 7-62 Configuring the iteration properties

For each iteration, a new iteration plan must be created. To create a new plan:

1. Expand the Plans section in the Team Area or in the Team Artifacts view.
2. Expand the iteration, right-click, and select New → Iteration Plan (Figure 7-63).

Figure 7-63 Creating a new iteration plan

Configuring source configuration management
A simplified stream strategy was deployed for the scenario in this book:

� A main integration stream with the release history
� Integration streams for each release
� Integration streams for each maintenance of a release
Chapter 7. Rational Team Concert for collaborative development 307

Each stream contains a set of Credit Check SCM components (Figure 7-64). These
components can be architectural parts of the Credit Check component, versioned artifacts,
such as build scripts, or staging areas for release engineering.

Rational Team Concert is an Eclipse Team provider, and Eclipse projects are, when shared,
added to an SCM component. To add an Eclipse project to an SCM component:

1. Select the Eclipse project, right-click, and select Team → Share Project.

2. In the Share Project wizard, choose the Jazz Source Control repository type, select an
SCM Component in a repository workspace, and click Finish to add the project to the
component.

Figure 7-64 Account Opening and Credit Check streams in Rational Team Concert

Configuring ClearCase Connectors
In this section, we describe the key configurations in Rational Team Concert that are used for
the ClearCase Connectors.

Configuring ClearCase Synchronized Streams
In the scenario in this book, the Credit Check team delivers frequent baselines to solution
integration in Rational ClearCase. A ClearCase Synchronized Stream was configured in
Rational Team Concert to synchronize Rational Team Concert and Rational ClearCase
streams.

To create a new ClearCase workspace:

1. In Team Concert, select File → New → ClearCase Synchronized Stream.

2. Enter the ClearCase stream selector, for example,
ao_rel2_integration@\com.ibm.ao_pvob.

3. Enter a storage location for the dynamic view, for example, \\localhost\VIEWSTORAGE.
308 Collaborative Application Lifecycle Management with IBM Rational Products

4. Select the Rational Team Concert project area to connect to, which is the location of the
new repository workspace, and the team area to own the stream.

5. Type a new ClearCase Synchronized Stream name.

6. Click Finish.

Configuring ClearCase Synchronization
Synchronization between Rational Team Concert and Rational ClearCase is run as a
separate process by using the Jazz Team Build component. A Jazz account must be created
under the person whose credentials the synchronization process can run. The
synchronization process account must be a member of the team area that contains the
synchronized stream and the account’s name and password on the Jazz Build Engine
command line when starting a synchronization process. The synchronization process must
be started to enable ongoing synchronization.

To start the synchronization process, run the syncengine.startup.bat script by using the
credentials of the synchronization workspace owner.

For further details about configuring ClearCase Synchronization, go to the following Web
address:

http://jazz.net

Configuring ClearQuest Connectors
We explain how to configure ClearQuest Connectors in Appendix B, “Configuring
interoperability” on page 565.

Configuring team builds
In this section, we describe the key configurations in Rational Team Concert that are used for
the team builds.

Configuring the build engine for Rational Team Concert
The team build component of the Jazz platform provides support for the automation,
monitoring, and awareness notification of the team’s builds. The team build requires
configuration that fits the build process that is required by the team.

The agile team requires the team builds to provide continuous build support on the baselines
that the team is working on. The team expects full transparency to any issues that are
uncovered by the builds, so that team members can correct failing deliveries without further
delay.

To configure a team build:

1. Install the Jazz Build Engine and Ant toolkit on the build machine. The Jazz repository
server, or a dedicated build machine, can be selected as the build machine.

2. Configure a build engine item in the Jazz repository.

3. Configure a build definition item in the Jazz repository.

4. Request builds by using the build definition.

Configuring the build engine
Install the Jazz Build Engine and Ant toolkit on the Jazz server or on the build machine by
using the instructions provided with the software distribution or at the following Web address:

http://jazz.net
Chapter 7. Rational Team Concert for collaborative development 309

http://jazz.net
http://jazz.net

To configure the build engine:

1. In Rational Team Concert, create a new build engine item:

a. Open the Team Artifacts view.
b. Browse to the Builds section.
c. Right-click the Builds item and choose New Build Engine.
d. Give the build engine a name, for example com.ibm.ao.creditcheck.buildengine.
e. Click Save to persist the changes to the new build engine.

2. On the build machine, create a new command file, for example buildengine.startup.bat.

3. Edit the command file and add the command to start the build engine:

jbe -repository http://localhost:9080/jazz -engineId
com.ibm.creditcheck.build.engine -userId build -pass "" -sleeptime 1

4. Save and run the file to start the build engine.

Configuring the build definitions
The Jazz Team Build can manage multiple definitions of builds in parallel. Each definition
specifies a particular build, such as a continuous component build or a weekly project-wide
integration build. If builds are run from various streams, such as a maintenance stream and a
new release stream, each of the builds should have their individual definitions.

The Account Opening project maintains two parallel builds:

� The builds for the AO_Rel2 new development stream
� The builds for the AO_Rel1Maint maintenance stream

To create a build definition, Diedrie completes the following steps:

1. Diedrie opens the Team Artifacts view and browses to the Builds section.

2. She right-clicks the Builds item and chooses New Build Definition.

3. On the General tab, she enters the following information:

a. She types a name for the build, for example
com.ibm.ao.creditcheck.integration.ao_rel2.

b. She associates the build with a team area, such as CreditCheck.
c. She selects the build engine or engines to run the builds.

4. She clicks the Jazz SCM tab and enters the following information:

a. She clicks the Select button and chooses an existing integration workspace, or creates
a new workspace from the integration stream, for example
com.ibm.ao.creditcheck.integration.ao_rel2 Workspace.

b. She enters a directory where the build workspace is to be loaded, for example
C:\buildarea\creditcheck.

c. She choose Accept latest changes before loading.

5. She clicks the Ant tab and enters the following information:

a. She enters the path to the build.xml file that scripts the build step.
b. She clicks Save to persist the new build definition.

Note: The command example assumes that the build engine is running on the Jazz
server, called com.ibm.creditcheck.build.engine, and is run by the user “build” that
has a blank password.
310 Collaborative Application Lifecycle Management with IBM Rational Products

Extending build scripts with Jazz Build Ant tasks
The build steps are scripted in a build.xml file by using Ant. Rational Team Concert extends
Ant scripting with several tasks and properties when using the Jazz Build Engine. These
properties are needed to use the Jazz Ant tasks to publish information to the repository. For
example, the StartBuildActivityTask task updates the build with current activities. These
activities are visible in the Team Concert UI. This is a simple mechanism that provides
valuable awareness of the build’s activity to the team.

For more information and examples about Ant build scripts, see the following Web address:

http://jazz.net

Integrating with Rational Build Forge
In the scenario presented in this book, the Credit Check team uses the local Jazz Team Build
component for integration builds. However, other deployments can choose to integrate with a
centralized enterprise integration build service for component builds and personal builds.

Rational Team Concert provides several build templates to configure build definitions. To
integrate with Rational Build Forge:

1. Select the Build section in the Team Artifacts view, right-click and choose New Build
Definition.

2. Choose the Build Forge Build Engine build definition template.
Chapter 7. Rational Team Concert for collaborative development 311

http://jazz.net

312 Collaborative Application Lifecycle Management with IBM Rational Products

Part D Act 3: Enterprise
integration builds

This part continues with the storyboard where the release engineer conducts an integration
build of the overall solution. In Chapter 8, “The release engineer conducts the integration
build” on page 315, we provide information about Enterprise Build Management as it relates
to the scenario. In Chapter 9, “Rational Build Forge for enterprise integration build” on
page 341, we provide detailed information about the Rational products that are used to
support this act of the story.

Part D

Role-based guide: To understand how the content in this part applies to your role, see the
role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7 on
page 13.
© Copyright IBM Corp. 2008. All rights reserved. 313

314 Collaborative Application Lifecycle Management with IBM Rational Products

Chapter 8. The release engineer conducts
the integration build

In this chapter, we include the following sections:

� 8.1, “Introduction to enterprise build management” on page 316
� 8.2, “A reference scenario for enterprise build management” on page 325
� 8.3, “Considerations in enterprise build management” on page 329

8

Role-based guide: To understand how the content in this chapter applies to your role, see
the role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7
on page 13.
© Copyright IBM Corp. 2008. All rights reserved. 315

8.1 Introduction to enterprise build management

By definition, lifecycle management involves managing a cycle. However, it is more interesting
to note that there are cycles within cycles for a single software solution. Implementation
involves continuous cycles of coding, unit testing, delivering, building, deploying, and testing
against the requirements. The test results indicate the level of quality, which then drives
additional development cycles within iterations. A defect has a cycle. To produce a final result,
each of these team members must be aware of each other’s activities and work in a
coordinated and synchronized fashion. Each discipline involved in contributing to a build
(development, configuration management, testing, and release management) uses its
preferred tools for its own activities and often has a mature, well-structured process in place.
What is lacking is the quality of integration across those disciplines in producing a build.

We must be clear in that an integration build is far more than a compilation of the application.
In fact, an entire process exists to build a solution. The source code must be gathered into a
build area, the application is compiled for one or more operating systems, build verification
tests are run, the build results are staged, and the entire process must leave an audit trail. Not
only that, but reports of build performance must be prepared and submitted for review.

As illustrated in Figure 8-1, build management is the bridge between development and test.
Being sandwiched between the development and test disciplines, integration build activities
can fall through the cracks of existing toolsets. This is problematic because proficient
integration build management is crucial to overall team efficiency. If you cannot efficiently
produce software builds, both development and testing suffer.

Figure 8-1 The build bridges of development and test

8.1.1 The changing enterprise build management market

The creation of a solution build for testing and deployment into production has evolved from
compiling the application into a sophisticated synchronization and coordination of manual and
automated tasks that use multiple computing languages and operating systems. Solutions
have quickly changed from monolithic client applications running on a user’s computer. They
have become highly sophisticated composite applications that use service-oriented
architectures (SOAs) to integrate with disparate systems running in data centers spread
around the world.

For many organizations, the time spent to develop and deploy an application has been
reduced from 18-24 months to what some now call a “state of perpetual beta.” In this state,
individual aspects of an enterprise solution are constantly being updated so that the solution
is never “done.” This places even higher demands on Collaborative Lifecycle Management
(CALM). No longer can manual management of files and directories ensure that a consistent
application is deployed. This state of perpetual change requires a streamlined and efficient
enterprise integration build to keep the software deliveries cranking.
316 Collaborative Application Lifecycle Management with IBM Rational Products

In this new world, building a solution entails many dynamics and dimensions:

� Application complexity is increasing, and with it, the processes and scripts for building that
solution also increase. Solutions are made of many components that come from many
sources. Some of these components are reused across multiple solutions and might be
compiled for different operating systems. Some integration builds are highly complex with
the need to spread the load across multiple worker machines in a server pool.

� With this added complexity comes a heightened need for build clarity and quality. Build
clarity defines the features and defects that are implemented in a build. Understanding
what is in the build helps the testers determine what to test. Build quality provides an
indicator of the build stability. Release engineers are under increasing pressure to run
build verification tests against the build before staging to the test team.

� The frequency of builds impacts the team’s approach to integration build management,
from continuous, nightly, scheduled or on-demand builds. Frequency also impacts the
development and testing teams if the builds cannot be produced fast enough.

� The reason for conducting the build influences the approach. The reason might simply be
a nightly build. Another reason might be to re-create a solution that was released three
years ago. The build scripts and build environment must be recreated along with locating
the source code and test cases. Knowing why the build occurred and where the results
were staged are crucial to knowing how that build can be used. The life cycle of build
artifacts requires “promotion levels,” which are determined within the project domain and
nature and specifies its maturity in this context.

� Compliance requirements require that you have a process in place and can prove that you
use it. It also requires that you can recreate a build from any given point in time. Keeping
build scripts on one person’s personal computer is no longer sufficient. Instead the
management of the build information must be centralized and accessible by many
members of the team.

� Geographical distribution is the norm in large enterprises, and the build management
solution must support that distribution. The build servers might be in a completely different
geography than the source code. The staging servers might also be in another geographic
location. The build solution must be able to reach across these boundaries without
suffering in performance.

� Organization distribution, such as outsourcing and partnerships with third-party providers,
requires the organization to have control over what these trusted partners can or cannot
do on their networks. For example, an organization might want to allow their trusted
third-party users to run a build, but not edit the scripts that produce the build.

� The degree of governance required impacts whether the release engineering team needs
to generate reports and metrics regarding the builds. Some organizations require reports
regarding build success and failure, build server performance and so forth.

As you can see, the build is not simply an act of compiling. Enterprise build management
requires the coordination of disciplines such as source code management, change
management, and quality management. Often there is a large margin for error when one
function hands off a deliverable to another. Team members within each discipline generally
operate somewhat autonomously relative to the other disciplines, in the sense that their focus
is on their core competency, not on the linkage between their work and the overall process of
building the product. As a result, sometimes one team might not know what another team is
doing when the time comes to build the product. Against these challenges, realizing and
implementing an enterprise build management system and fulfilling the needs for audit and
compliance are almost impossible without using an enterprise build framework.

Yet amidst this rapid change of pace, many build management systems are essentially
homegrown and maintained by resident “experts.” These systems have evolved over time to
Chapter 8. The release engineer conducts the integration build 317

the point where few knowledgeable experts know how to use them. Teams often automate
their integration build processes through scripting. However, these script-driven systems
rarely scale across the increasingly large, complex, and distributed environments that
characterize modern software development. Often each task operates independently
requiring wait times to be built in and properly coordinated. Multiple approaches to building
these wait times are taken, and most often these are manually built in and estimated.

In this kind of scenario, if one step takes longer than anticipated, the entire build can break.
The lack of a consistent, repeatable process can lead to difficulties in reproducing builds. This
is particularly true in cases where processes are not adequately documented, so that
knowledge about them resides with just one or a few people.

Sorting everything out in the context of broken builds can thus be inefficient. Build results are
difficult to interpret, and much time is spent chasing down errors. A broken nightly build can
easily mean that the test team will sit idle the next day, losing precious testing time, while the
development and build teams troubleshoot the errors. Likewise, script-driven build
management systems cannot make optimal use of build server resources, because often
activities are hard coded to run on specific systems. In the same way, hard-coded scripts
make it more difficult for processes to shift, so that work can be shared or reallocated across
distributed teams. Project risk increases inordinately if a key team member who knows how to
work the build system leaves the project.

It is not hard to see the general need for improvement in the integration build process. Simply
put, home-grown build management systems are not fit for the challenges that are involved in
enterprise integration builds.

8.1.2 Enterprise build management blueprint

Enterprise build management provides the bridge between development and test. As such, it
serves as a software assembly line to keep the team moving toward a final, quality release
that is suitable for production. The approach to solving this complex set of challenges is to
automate the noncreative repetitive tasks that are involved in the process by choosing an
enterprise build management system. To choose wisely, you must first decompose the
problem into more solvable pieces:

� Capture, retain, and refine the knowledge that is currently known by a few valuable release
engineers in a way that can be shared and used by other, less knowledgeable team
members.

The process for gathering the latest code, running all build scripts, and staging the build
can be highly complex and time consuming. In many cases, the knowledge for building the
application is in the memories of a handful talented build engineers. Finding a way to
retain this knowledge is paramount.

� Automate the process to ensure that the same set of tasks is performed in every build,
with a complete bill of materials that details the contents of the build.

Rather than manually attempting to capture this information, an automated build process
ensures that the same steps are performed the same way every time the build runs. Each
change to the source code in an application triggers the need to produce a new build.
Testers must know which changes went into each build. An enterprise integration build
process must capture the changes in the bill of materials.

� Streamline and coordinate the process by defining processes that must run sequentially
(in order that one does not start until the other has successfully completed) and those that
can run in parallel across multiple worker machines.

In homegrown systems, the build scripts are often interdependent and run with cron jobs.
However, if one script in the chain takes longer than expected, the entire build can fail.
318 Collaborative Application Lifecycle Management with IBM Rational Products

Debugging the failure can be a long and arduous process. Worse, the entire build must
start again from the beginning before a good build is available. It is time to move away
from manual processes or hard-coded scripts and begin to automate the processes that
commonly exist within in the assembly line of software development.

� Decouple the build process from the hardware that runs it.

The ability to abstract and define the environments independent of the process frees the
team to focus on enhancing and streamlining the process. In this approach, only one
process is maintained rather than one process for each hardware and operating system
combination.

� Drive quality management into the build.

With a centralized build system, developers and release engineers share the same build
process and worker machines for producing the builds. We call this a preflight build. By
using the same build process and work machines as the centralized build team,
developers are protected from introducing a build-breaking problem due to compiler or
build-script mismatches. Additionally developers can catch build problems before
delivering their changes. By automating quality management activities, such as static
analysis and build verification, tests can take place at every build, thus capturing quality
issues early in the development cycle.

� Build, deploy, and test.

Each new build must be deployed to the test servers before the testers can begin.
Managing this cycle of builds and deployments through the test environments can be
highly complex and error prone. The ability to automate the build process and track each
build and deployment through the test cycle accelerates the software delivery cycle. It also
provides much needed process and compliance traceability and audit trails.

� Provide traceability and audit trails to comply with regulatory audits.

Capture a full audit trail that can be used to explain what occurred in any build or to
recreate a previously completed build. The results of the build must be managed to ensure
that the test team is testing from the proper build. Often file systems are full of build
results, and it is left to “tribal knowledge” as to which is the appropriate build to use for
testing.

Software development is a process that involves many people, and the business must absorb
the costs of when these resources are idle due to an error or failed build. To understand the
requirements of a software assembly line, IBM Rational has produced the enterprise build
management blueprint as shown in Figure 8-2 on page 320.
Chapter 8. The release engineer conducts the integration build 319

Figure 8-2 Enterprise build management blueprint

Process automation framework
Effective enterprise build management requires an adaptive process execution framework
that automates, orchestrates, manages, tracks, and logs all the processes. A process
automation framework offers the following benefits:

� Frees the team to focus on process optimization

� Increases team productivity with on-demand access to run preflight builds and immediate
feedback on build status

Teams can pinpoint and troubleshoot errors quickly, which improves quality and prevents
schedule slips.

� Enables real-time management visibility into development progress

Rather than require extensive rewrites to the existing process, the framework provides a layer
above the development team management systems by integrating with existing systems.

The release engineers are not the only team members who are interested in the status of the
build. Today, a Web-based user interface and project dashboard are required for visibility and
clarity into the build process.

A process automation framework transforms the release engineering team into an automated
software factory by empowering the team to create an assembly line of software development
as illustrated in Figure 8-3 on page 321.

IBM and Partner Ecosystem

Release Engineer

Business value

Process Automation Framework
Create and run an assembly line for software delivery

Responsible for effective execution of build and release processes
Open integration with software development tools

Increased performance drives software quality

Execute
Live execution status
Step-by-step status
Sequential or parallel
execution
Restart at point of
failure

Schedule

Trends and reports
Full audit trail for
compliance reporting
Web-console displays
real-time execution
results

Construct
Retain process
knowledge in projects
and libraries
Step-by-step
commands
Environments
Configurations
Worker machines
Administration
Security

Integrate
Adapters simplify
integrations to
existing tools
Command line
Scripts (new or
existing)
API calls

Analyze
Bill of materials
Performance reports
Custom reports
Custom queries
Job history, logs, and
audit trail
Capture output and
apply meaning using
filters

Automate complex
processes
Decouple process
from hardware
Integrate external
systems
Streamline
performance

Collaborative
Development

Quality
ManagementEnterprise Build Management
320 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 8-3 Automating the ‘assembly line’ of software development

Construct
Does your organization have a “build master,” and is that person the only one, or one of a few,
who know how to conduct the build? If that person is not available, is your team capable of
running the build? The knowledge of how products and applications are built and delivered to
your customers is a precious corporate asset. Typically, this knowledge resides in the minds
of a few individuals who can leave your organization. Should this occur, this loss will
complicate their replacements’ ability to take over and render your business vulnerable. On
this level, seeking reproducibility involves knowledge retention with the following goals:

� Protect important development knowledge.
� Reflect the entire application assembly process from source code through to deployment.
� Retain comprehensive process data in a secure centralized knowledge base.

The most crucial part of enterprise build management is constructing the process that will
reflect the needs of the development, release engineering, and test teams. This information
must captured in a centralized knowledge base that can be shared, viewed, and refined by
the key stakeholders. Each build is represented by a project, and each project has a set of
steps that must succeed for the build to be considered complete.

The process breakdown structure can be scripted into steps. Most teams already have scripts
in place such as Make or Ant. An enterprise build management solution must allow a team to
reuse existing scripts. Large and unwieldy scripts can be broken into discrete steps that
become more manageable and easier to diagnose. The needs and requirements for the
whole process should be determined precisely to deduce the environment variables,
configurations, and server needs. When this knowledge is captured in a meaningful and
constructive manner, inconsistencies and contradictions can be eliminated. The result leads
to a standard, reproducible, and consistent process flow and knowledge for the build, release,
and deployment.

Rational Build Forge

GO

Virtual
Images

Virtual
Images

Source
Control
System

1.
Provision

Build
System

6.
Provision

Test
System

Aggregated
reports
across
entire

process

2.
Extract
Source
Code

3.
Scan/Analyze

Source
Code

4.
Build

Source
Code

5.
Package

Build
Rsults

7.
Deploy
Build

Results

8.

Execute
Tests

Effect of Class Sharing on Memory Footprint in WAS V6.1

126

245

363

481

600

719

140

233

328

422

516

609

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6
Number of Running App Servers

M
eg

ab
yt

es

WAS 6.02 WAS 6.1

System configuration
Linux: IBM X-Series 335, 2x 3.2 GHz Intel Xeon, 8.00 GB RAM, Suse Enterprise Linux 9 SP3
Chapter 8. The release engineer conducts the integration build 321

Environments
You have one build machine and one script. The only way to build an application is to use that
script and that build machine, which can create bottlenecks, risk, and a single point of failure.
Depending on a single build machine is fraught with risk. Instead, the process must be
designed to abstract out environment specific variables, thus enabling a single build process
that can be used in many environments. In doing so, you ensure that the same process is
used and that a change in the process is applied to all environments. By decoupling your build
process from the hardware that runs it, you can future proof your build process.

Some organizations must support applications that run on a wide variety of hardware and
operating system combinations. When build scripts are written for every environment, the
problem can be solved. However, the risk of conducting the build in a consistent manner is
lost. If the build script changes, it is easy to lose track of which systems have the updated
script. The key is to separate the process for conducting a build from the environment on
which it will run. Over time, the hardware will change, but the build process itself will not.

Additionally any change to the process is completed once, and that process is used across
multiple environments. Having a system that helps you to create and manage multiple
environments for a single application frees your build process from its hardware. As new
operating systems are released, new environments are created and managed. The effort
spent on reusability by using environment variables and virtual servers and configurations
provides a great advantage to compact the project and mitigate the maintenance work as well
as increase understandability.

Worker machines
The use of pools of servers can decrease the amount of time required to complete a build. To
speed the build process, Rational Build Forge manages a pool of servers. Build and release
management requires scalable runs. When your frequency of build increases, you can add
new build servers just by defining them in the build and release tool with flexible selection
parameters. The optimization of the selection should be left to the tool itself. Worker machines
and their configurations are maintained together within the tool without having any
inconsistency.

For example, you must patch the system that you deployed three years ago, but do you know
how to build it? The auditors are coming in next week, and you must quickly start
documenting the build process. Reproducibility comes into play on several dimensions. The
first dimension involves time. Can your team reproduce a problem in a system that was built a
year ago or perhaps six months ago? If a high profile customer requires a patch to a system
that has since been revised several times, are you able to deliver?

Administration and security
A point to consider is the products’ ability to allow multiple project teams to share a common
infrastructure while enforcing a consistent process. When many project teams share a
repository, security considerations must be taken into account:

� Authenticate against various identity management systems.

� Decide who can do what, when, and where.

� Track who does what, when, and where and customize the actions that can be taken, such
as define who can view, run, or change a project.

� Provide team members with controlled access to predefined processes, either by project
or sub-project, or by role.

� Hide the underlying infrastructure by eliminating direct access to servers.
322 Collaborative Application Lifecycle Management with IBM Rational Products

These considerations allow better standardization and quality. Fine-grained security
capabilities are essential for a successful and reliable enterprise build management solution.

Integrate
A perennial challenge in creating higher quality software faster is the need to balance speed
and efficiency with adherence to a consistent, reliable, and structured approach. Whether the
mission is development, testing, or code control, teams do not want constraints on how they
operate, particularly in their choice of tools. Efficiency within each discipline is paramount. An
enterprise build management solution must ensure the following objectives:

� Preserve development’s freedom of choice. Allow for process standardization without the
political warfare of which tool to use for a step in the process.

� Use readily available integrations with source control, testing, defect tracking, and
packaging contribute to rapid implementation.

� Customize integrations to fit your processes and adapt to changing needs and tools over
time.

� Provide a self-documenting system with accurate, ongoing documentation of release
contents, and a bill of materials for communication and compliance.

When seen from the wider perspective of the organization as a whole, optimizing efficiency
might entail additional structure. Many software artifacts that are managed by different
servers and tools, take part in build and release management. For this reason, the tool that
you are using for build and release management should be able to support every kind of
integration:

� Command line
� Scripting
� API calls
� Adapters or connectors

Integration with existing tools, such as IBM Rational ClearCase and ClearQuest, for change
management and the reuse of existing scripts, such as ANT, is a fundamental aspect in the
enterprise build management blueprint.

Execute
In a software development environment where agile development, continuous builds, and
frequent testing are mantras, it becomes perfectly clear that the build process must be
automated and efficient. By building early and often, teams can reduce the amount of time in
the cycle of finding, fixing, and verifying a defect. Using a process engine that allows for
sequential and parallel tasks adds additional efficiency to the overall process. For example,
with Rational, builds that once took over 24 hours were reduced to approximately three hours.
This massive reduction in build time resulted in an immediate improvement in quality. The
ability to find, fix, and verify defects dramatically improved as the time required to build the
solution was reduced.

When the build projects are constructed and integrated with the existing systems, the
automated process can be run. Executing the process should be as simple as clicking a Run
button.

During execution, live execution status and step execution details provide real-time feedback
on the status of the build. The progress of the build is tracked on a centralized and
Web-based dashboard. Should the build fail, the exact step is highlighted on the dashboard.
Builds can take many hours to complete. A failure in the middle or toward the end of the build
can be costly. The ability to repair and restart a build from the point of failure saves the team
Chapter 8. The release engineer conducts the integration build 323

countless hours in waiting for the build to complete. The problem can be diagnosed, and the
build can be started from the point of failure.

During execution, the efficiency and performance of the process can be examined. It is here
where opportunities to create threads for parallel execution, instead of sequential execution,
become more evident.

There are times when only a portion of the build process needs running. The solution should
provide a way to disable (or enable) specified steps with each run. This makes testing and
debugging easier by allowing the release engineer to focus on a specific section of the
process without waiting for the entire process to run.

Last but not least teams, the build must run like clock work. Therefore, flexible scheduling for
running the build is critical to creating the software delivery assembly line.

Analyze
What good is the build if you do not know what is in it? Having a detailed bill of materials that
lists the changes that went into the build helps bring clarity into the contents of the build. This
clarity helps the test team to target their test efforts on areas that are ready for testing. It also
reduces the possibility of not testing a function due to lack of visibility. The bill of materials
also provides a key piece of information to a compliance auditor when the auditor asks what
changes went into the build. This bill of materials must be automatically produced each time
the build is run.

Within the project steps, filters and patterns must be used to interpret the output of each step
for reporting or decision making purposes. For example, there are times when the build
integrates with a third-party application to automate a step in the build. The results that are
returned from the application might be vague or come in a vocabulary that makes sense to
that application. An automation framework must provide a means of interpreting the result to
indicate whether the step has passed of failed. For example, when running a static analysis
tool, a threshold or policy can be set to determine the quality of the source code. While the
scan itself might complete successfully, enough errors are found to indicate a quality failure.
By providing the ability to filter this result, the automation framework can catch this type of
quality failure and indicate that the step has failed due to a lack of quality in code.

Custom query reports provide insight into the build results over time. A team can analyze their
success or failure rate in terms of the enterprise integration build and thus seek strategies to
improve their success rates. For example, how often does the build break and how long does
it take to fix? With this insight a team can employ strategies to improve their results.
Ready-to-use performance reports provide an indication on whether the build time can be
improved. Teams can seek strategies, such as identifying steps that can run in parallel or
steps that can be spread across multiple worker machines to optimize the build time.

Automation is powerful, but can be dangerous if the steps are not logged. Enterprise build
management solutions must capture everything that occurred as part of the automated
process, from project history, a bill of materials for each job, and a full audit trail of what
occurred.

Consider, for example, the issue of regulatory compliance. Many businesses in industries,
such as financial services and health care, are under significant pressure to document what
they do during software development projects. Documentation takes time and requires
communication, potentially reducing efficiency. But the risk of sanctions can be significant to
the company overall.

Can your team produce documentation that describes exactly how it built a product that was
released a year ago? Can it reproduce that product during a compliance audit? Likewise, can
324 Collaborative Application Lifecycle Management with IBM Rational Products

it reproduce the build and release environment itself, which includes the operating systems,
libraries, server memory configurations, and so forth?

For audit and compliancy or monitoring reasons, you must have a detailed job history and full
audit trail administration. By abstracting out the build process in a repeatable automation, the
steps taken to produce the build become visible to anyone who might need to inspect it.

By automating the procedure, you can prove to auditors that you have a process and that it is
enforced. By managing build projects in a centralized build system, your organization can
retain information about prior builds that allows the auditor to look into the past (Figure 8-4).

Figure 8-4 Ensuring traceability among the artifacts

8.2 A reference scenario for enterprise build management

In this section, we provide an overview of the steps taken by Rebecca to the complete the
weekly integration build.

In Part C, “Act 2: Collaborative development” on page 211, the development team
implemented the change. This included a developer running unit tests prior to delivery and a
team build that conducted build verification tests. Diedrie confirmed that the team build was of
sound enough quality to deliver the team’s changes to the integration stream.

The primary actor in this scenario is Rebecca, the release engineer. As shown in Figure 8-5
on page 326, Rebecca is responsible for integrating the individual team builds into an
integrated solution for the testing team. Each team is expected to conduct builds for their
component, and when sufficient quality is met, the team delivers their changes to the
integration stream for Rebecca to build.

Release

Build
Artifacts

Source
Code

Environment
Changes

Implemented with
this

Built using these

In this

Executable

This

Deployment
Artifacts

Which deployed

these

System

on this

Application

Of this
Tests

Test Results

Where these

Produced these

Build Scripts

Which required
these

Requirements

Implemented these

Approved by

Approval

Development Pre-Prod
Chapter 8. The release engineer conducts the integration build 325

Figure 8-5 Rebecca integrating the team builds into a solution

In this part, we describe Act 3 of the reference scenario, which is illustrated in Figure 8-6. This
act contains the following scenes:

� Rebecca responds to a failed build.
� Rebecca runs the integration build.

This act might appear simple with only two scenes. However, Rebecca has a sophisticated
build process that she has automated. While her scenes in the storyboard might be limited,
the build automation process is expansive.

Figure 8-6 Act 3 involves creating a successful integration build

Integration Build

Diedrie

Weekly Integration Builds

Daily Builds

Rebecca
Release
Engineer

Nightly BuildsContinuous Builds

Act 3: Integration Build

The individual team builds are
integrated into a single solution build

for testing.

Release
Engineer

Integration Build

3.1 Rebecca responds
to a failed
integration build

3.2 Rebecca runs the
integration builds

3

326 Collaborative Application Lifecycle Management with IBM Rational Products

8.2.1 The actors

Rebecca is the release engineer who oversees the solution integration builds, providing global
build support to the team. She sets the delivery, enterprise integration policies within the
project. While each component team is responsible for successfully building their component,
it is Rebecca’s job to bring all of the components together into a solution build. To bring agility
into this enterprise solution, Rebecca produces a weekly solution build. This enables the
team to diagnose solution build problems as soon as they occur and enables Tammy’s team
to test the solution build more often.

8.2.2 The workflow

At a glance, the workflow for this scenario is deceptively simple. An in-depth view into the
automation script that Rebecca uses, as provided in Figure 8-7, reveals the sophistication of
her automation.

Figure 8-7 Integration build workflow

The act starts with Rebecca inspecting the build and resolving a build failure. Then, she starts
the build and monitors the result. While the build is running, several important tasks are
automated:

� The script gathers the sources and prepares the build environment.
� Static analysis is run against the source code base.
� The solution is compiled.
� Verification tests are run.

Rebecca –
Build Engineer

3.2 Rebecca
runs the
integration
build

Inspect
failure

Resolve

DeliverBuild
Validate

Monitor

3.1 Rebecca
responds to
a failed build

Run

Monitor

Tammy
Test Lead

4.1 Tammy
configures
the test lab

Inspect
Build
result

Gather Sources

Static Analysis

Compile

Verification Test

Package

Publish

Diedrie –
Developer

2.5 Diedrie conducts a
team build and
delivers for the
integration build

Announce
Chapter 8. The release engineer conducts the integration build 327

� The solution is packaged into a distribution archive.
� The solution is published.

Publishing the solution involves staging the distribution archive, archiving and baselining
the build project, and creating records in Rational ClearQuest to publish the build result
and baseline information.

The act ends with Rebecca notifying the team of the build result.

8.2.3 Rebecca inspects the integration build

The workflow in this scene captures how Rebecca accomplishes the following tasks:

� Receives notification of the build failure
� Inspects and identifies the problem
� Resolves the problem

8.2.4 Rebecca runs the integration build

The workflow in this scene captures how Rebecca completes the following tasks:

� Runs an automated build process that performs the following actions:

– Gathers the sources and prepares the build environment
– Runs static analysis against the source code base
– Compiles the solution
– Runs a set of verification tests
– Packages the solution into a distribution archive
– Publishes the solution

� Announces the build status to the team

Synopsis: Rebecca has received notification that the integration build failed. She logs into
IBM Rational Build Forge Enterprise and inspects the build log. The Rational Build Forge
dashboard indicates that the build failed. Rebecca identifies the problem and implements a
solution.

Synopsis: Rebecca starts the build again. While her part in the storyboard is small, the
Rational Build Forge project that she uses is sophisticated. The build project that Rebecca
has created automates far more than simply compiling the solution. In fact, the compile is
just one step in a series of automated steps that take place each time she runs the
integration build.

Her project integrates with Rational ClearCase for source code, Rational ClearQuest for
Application Lifecycle Management (ALM), and Rational Software Analyzer. She also uses
Ant and JUnit. In Chapter 9, “Rational Build Forge for enterprise integration build” on
page 341, we explain the details of how she has created this automated build process.
328 Collaborative Application Lifecycle Management with IBM Rational Products

8.3 Considerations in enterprise build management

As discussed, Rational Build Forge is a highly flexible and powerful tool for creating
automation jobs. The scenario provided for this book provides a view into an automation
strategy, but does not cover every aspect. In this section, we discuss additional
considerations for enterprise build management.

8.3.1 Managing the build artifacts

Consider an example where your colleague Joe is out today, and you need to find his build
scripts. Where does he keep them?

Every time the source code is modified, the application must be built and verified. When
verified, the build is deployed to the test servers for testing. This pattern of delivering source
code changes, building the application, deploying the application to test servers, and testing
occurs regardless of the scope or magnitude of a release, whether it is a green-field
application, a major revision of an existing application, a patch, or a hot fix. When errors are
found, defects are logged, and source code is modified to fix the defect. Again, the application
must be built and deployed back to the test servers for testing. The question is, how do you
manage all of this change?

Throughout this cycle, the scripts that are used to conduct the build are updated and
maintained to ensure a successful build. These scripts are just as important as the source
code they are compiling. Therefore, they too should be managed by a software configuration
management system and versioned with each change. Just as source code is labeled (or
baselined), the scripts that are used to successfully build the application can be labeled. This
ensures an alignment of the source code and scripts that are used to successfully build the
application.

What do you do with the results of the build, such as the .ear, .war, or .exe files? After the
build is complete, the results are typically staged in a location for the rest of the team to
access. Many organizations stage the build results on a file system. This makes sense
because the file system is easily accessed by the other members of the team. However, from
a compliance perspective, this leaves the build results open to tampering by a disgruntled
employee.

Staging the results of the build in a secure repository, such as Rational Asset Manager or
Rational ClearCase, ensures that all changes have an audit trail. Not only does this prevent
unwanted tampering, but the latest version is always accessible. Also, if the team must go
back to a previous version, those versions are available with the milestone builds that are
being identified with labels (or baselines). With this in mind, the source code, the build scripts,
and the build results can all be given the same label in the source code management (SCM)
system. This enables a team to easily identify the exact version of source that was built by
using this version of the build scripts that produced this result.

However, many times builds go bad, or defects are found, and new builds are conducted.
During the course of the development cycle, builds can pile up. Teams that use an agile
continuous build strategy can encounter numerous builds in a single day. The key question for
the testing organization is knowing which build to use for testing. Often knowing which build to
test is left to tribal knowledge, where you need to know the right people to know which build to
use. Rational ClearQuest 7.0.0.0 introduced a record type for identifying the state of a build.
Tracking the builds in Rational ClearQuest helps the team identify which build to deploy to a
test server and ensures that the build that passed testing is the same build that is deployed
into production.
Chapter 8. The release engineer conducts the integration build 329

When using Rational ClearQuest, Unified Change Management (UCM), and Rational Build
Forge, the UCM activities that are delivered with each build can be automatically captured
and communicated to the team in Rational ClearQuest. This helps the test team know which
defects to verify with the new build. Teams can also identify which tests have been run against
the build. Additionally, when defects are found, they can reference the build record to indicate
which build contains the defect.

8.3.2 Managing quality

Managing quality occurs at every step of the application lifecycle, and the integration build is
no exception.

Build automation and verification testing
In Part C, “Act 2: Collaborative development” on page 211, Marco’s component team
implements an automated build strategy. For Marco and his team, they ensure that their
component builds without errors. They run build verification tests on their component to
ensure quality in their build. When they are satisfied with the quality of their build, they deliver
their changes into the integration stream. This ensures that each component has met with a
predefined quality level prior to submitting it to the integration build.

Rebecca monitors the integration build. She has automated the integration builds and
includes build verification testing at the integration level. This level of testing ensures that,
when the components come together in the integration build, a predefined level of quality is
met before deploying the build to the test servers.

By automating the builds, the team ensures that the exact same process is used for every
build, which ensures consistency and reduces the chances of human error. In addition the
automation system keeps an audit trail of every step in the automation. At any point, the team
can inspect the audit trail and determine what occurred.

Frequent integration tests
Rebecca conducts the integration build on a weekly basis, and Tammy chooses which of the
builds to deploy into the test lab. Frequent integration tests help Tammy’s team to identify
defects early in the development cycle. They are also more likely to catch regressions from
week to week.

Code review and analysis
In addition, Rebecca runs static analysis on the source code of every integration build. Static
analysis provides a consistent set of tests across the entire source code base as it is
delivered from each component team. By running source code analysis at the integration
build, it is guaranteed to happen as a step in every build, and it ensures consistency across
the code base.

Your build process is an ideal place for your organization to centralize code reviews and
analysis. Centralizing code reviews in your build process ensures that your organization’s
coding standards are being adhered to by project delivery teams. This enables you to
manage the code review and quality process at the organizational level. Build-level code
review analysis enables you to easily disseminate changes to your coding standards and best
practices without policing individual projects or developers.

For example, if your software projects include contractors or system integrators, implementing
code analysis and review ensures that everyone is following the defined coding standards.
This reduces the risk of shortcuts or applications that break common architectural and coding
best practices and weaken the quality of your application. Automating code review and
330 Collaborative Application Lifecycle Management with IBM Rational Products

analysis also makes the development organization more productive. Rather than
concentrating on the code review and analysis, teams can focus on value-added corrective
actions that progress the project toward high quality, working software.

Ideally, build-level code review and analysis should complement developer- or desktop-level
code review and analysis. Developer-level code review and analysis are important because
they catch weaknesses in individual contributors code before they are advanced and
integrated into the composite application. Code review at the developer- or desktop-level
ensures that corrections can be made early when they are easy to identify and implement.

Rational Software Analyzer provides both developer-level and desktop-level build and
integration level-code review and analysis. With this capability, you benefit from organizational
code quality management and developer-level code quality and best practices execution.

8.3.3 Building clarity

Leaving the build as a black box might be common practice, but when viewed from a life-cycle
collaboration perspective, doing so introduces risk to the team. After all, the test team
depends on the build to complete their work. Knowing what is in the build helps them to target
their testing effort and ensures that everything in the build is tested. Without knowing what is
implemented in the build, the test team can unknowingly miss the testing of critical
functionality. Also, those who must conform with regulatory compliance must be able to state
which changes where implemented in each build. Leaving the build as a black box can leave
an organization exposed when it comes time for a regulatory audit.

Rational Build Forge generates a bill of materials after each project run. The bill of materials
contains information about the steps in the run and the changes to files that resulted from it.
The bill of materials can be provided to consumers of the project run, such as the quality
assurance department, for help in understanding the contents of a new build. It can also
serve as an audit solution for your integration build process.

With the bill of materials, you can easily include other relevant information as in the following
examples:

� The ability to see a complete list of all files in the baseline that are used for this build
� The differences between this build and the last build (date/date, time/time, and label/label)
� The creation of a modified view on which the process execution is based
� A list of all defects that were included in the process run
� Automatic advancement of those defects to the next logical state in Rational ClearQuest
� Update of Rational ClearQuest with a build record of total compliance and traceability

These extensive tracking mechanisms make the Rational Build Forge system a valuable tool
for documenting processes, providing an audit trail to assist with regulatory compliance
requirements. A bill of materials offers the following benefits:

� Reduces time spent reading log data, with a less chance of errors being undetected,
which increases quality

� Quickly diagnoses build output and locates items of interest
� Greatly reduces time spent on analyzing builds and troubleshooting errors
� Produces results in faster build turnarounds, greater productivity, and faster time to market
� Provides better support to monitor systems and aids in compliance

With the bill of materials, you get complete documentation of a build’s contents. It can include
the build results, notes, environments, lists of build files, and code changes. This information
can be used to compare and summarize the state of builds across the enterprise. The system
generates a bill of materials for each build automatically.
Chapter 8. The release engineer conducts the integration build 331

Also log filters in Rational Build Forge have a crucial importance in build clarity. By using
them, we can determine success or failure or decide a conditional behavior, such as chaining
to other projects. Log filters can be used to recognize any pattern in an output and can be
useful in preparing a bill-of-materials section for our builds. For more information about log
filters, see “Log filters” on page 348.

8.3.4 Running static analysis during the build

Many organizations understand the value of static analysis, but find it difficult to implement.
This difficulty is due primarily to the fact that it requires a change in the team culture. This
means that traditional approaches to static analysis required each developer to run the
analysis on their local code base prior to delivering their change sets. This manual approach
leads to inconsistent approaches and practices.

In some cases, static analysis might even be viewed as optional. When under pressure, it is
easy to skip the static analysis step before delivering changes. By driving static analysis into
the automated build process, you ensure that the analysis is performed regularly and that the
same analysis rules are applied across the entire source code base.

In this section, we provide additional information about integration Rational Software Analyzer
as part of the build process in Rational Build Forge.

Implementing automated code review analysis into the build process
Rational Software Analyzer provides flexible, automated analysis that you can configure
based on your requirements (Figure 8-8).
332 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 8-8 Build Forge and IBM Rational Software Analyzer working together for automated code analysis

You can schedule Rational Software Analyzer to run as frequently as you need in conjunction
with your automated build schedule. For example, you might decide that analysis should be
executed for every release build or that analysis should take place for every build.
Implementing automated code review into your build process is easy with Rational Software
Analyzer and Rational Build Forge. Rational Software Analyzer includes a Rational Build
Forge adapter that allows you to easily integrate code review and analysis into any Rational
Build Forge project.

When an analysis project is run as a part of your build process, Rational Software Analyzer
creates an analysis report and includes a link to the report in the build log of Rational Build
Forge. Analysis reports are saved on the Rational Software Analyzer server and are
accessible from any standard Web browser. Rational Software Analyzer also includes the
results of the analysis in the build log.

When deciding how frequently you should do code analysis, ask yourself the following
questions:

� Will a software architect or development lead be available to respond to discoveries at the
regularly scheduled intervals?

� Is sufficient time allocated between analysis runs to respond to discovered discrepancies?

� How can we adequately address code review and analysis into our development rhythm
without being counter productive?

If your code review cycles are too frequent, you will create more frequent context
switching, which can result in unproductive development cycles.

Code is sent to build

Build
Manager

Build Server Development
Manager

Report Results

RSAR
Enterprise

Request
Reply

Benefits: IT Compliance and Governance and Automation of Process
• Automated code scanning, not dependent on individuals or location; adhere to IT compliance standards
• Code scan initiated as part of the overall build process; automated approach is more pro

active than reactive
• Generated reports enabling management or executive view into compliance related issues
• Long-running analysis can be scheduled to run overnight or off-hours

IDE

Invokes Scan

Source Code
Repository

Developers do code analysis
regularly on desktop

1

2 Code is checked in to
source control

1

2

4

3 Code issue identified; report is
generated on findings

Automated code scan as part of the build
process

5

Review results, filter log results
analyzed, determine next steps

6

5

5

6

3

4

6

Rational Build Forge and Rational Software Analyzer Workflow

5

Manager or architect
define code rules

for group or company

Server Server
Chapter 8. The release engineer conducts the integration build 333

Results from Rational Software Analyzer can be reviewed at status meetings, and key
stakeholders can decide on the required corrective actions to achieve acceptable quality
levels.

Code analysis and review planning
When you institute code review and analysis for your application or set of applications by
using Rational Software Analyzer, you create an analysis configuration. It is important to
understand the following concepts and develop a plan when creating an analysis
configuration.

Selecting an analysis domain and analysis type
First, you must decide on the language or languages that you will analyze and the type of
analysis that is required. In Rational Software Analyzer, a language is associated with an
analysis domain. For example, Java and C/C++ are analysis domains. For each analysis
domain, analysis types have different analysis objectives. Such examples include running
Java Software Metrics to measure code complexity, running Java Architectural Discovery to
understand code structure, or running Java Data Flow Analysis to find memory and resource
leaks. The documentation for Rational Software Analyzer provides a complete list of analysis
types.

When you create your analysis configurations, it is best to create separate configurations for
each analysis type since each type has a different objective. This improves your ability to
interpret and segregate results making it easier to evaluate and solve them for your team.
334 Collaborative Application Lifecycle Management with IBM Rational Products

Defining the scope of your analysis
The analysis scope defines the files that you want to analyze for the rules that you have
selected. You can analyze your entire application, potentially represented in multiple Eclipse
projects. You can choose to create separate analysis configurations for components of your
application, potentially represented in single projects. Finally, you can choose to analyze your
application as a whole as well as specific configurations for your application components.

To maximize the usefulness of your code analysis, you must strike a balance between
analysis depth and the scope of the analysis that you are conducting. For example, you can
create an analysis configuration for your entire application with a small set of critical analysis
rules across all analysis types. You can complement this by creating analysis configurations
for specific components of your application if your project teams are segmented by
component. In doing so, your component teams can better analyze and resolve the results. It
also affords the individual component teams with flexibility in scheduling their code analysis
cycle and focusing the analysis on the areas of primary importance for that component.

There is also benefit in dividing your analysis rules by type. For example, dataflow analysis
rules are performed after a successful build. Therefore, you can choose to create an analysis
configuration that includes your critical rules that must be resolved before an application can
be delivered. Then you can place that configuration before your build step and create a
separate configuration that includes your dataflow analysis rules and other noncritical rules.
By dividing the analysis rules this way, you can save valuable build time by choosing not to
build the application if your critical prebuild rules are not met. The value of such a
configuration increases as the build time increases. For example, if you have a build that
takes eight hours to complete, you can avoid building the application in instances where your
prebuild code review rules are not met.

Selecting analysis rules
Rules are the smallest building blocks of a code analysis configuration in Rational Software
Analyzer. Rules are grouped by domain, type, and category. For example, the rule “Avoid
calling finalize() except in the finally block of the finalize method” lives in the Java Code
Review domain and type under the Performance\Memory category and subcategory as
shown in Figure 8-9.

Figure 8-9 Code review rules organized by domain, type, and category
Chapter 8. The release engineer conducts the integration build 335

Rational Software Analyzer provides a large set of rules across a broad array of categories.
When creating an analysis configuration, it is best to select a small set of logically related
rules, which has the following benefits:

� Returns results faster for optimal performance

� Produces a smaller and more manageable set of analysis results that take less time to
evaluate

� The ability to fix analysis results faster, which translates to better quality code in less time

Reference scenario for automated code review and analysis
In this reference scenario, Marco (development manager) collaborates with Rebecca (build
manager), Tammy (quality manager), and Al (solution architect). Together they define the
standard code review and analysis rule set for the application that will be integrated into the
continuous integration process. The rule set spans code quality, code complexity, and code
structure.

Project leads collaborate on code review and analysis standards
The project leads define the code review rules that they will institute and the acceptable
thresholds. They select standard rules from code quality, code complexity, and code structure.
For a detailed list of code analysis rules, see Appendix D, “Code review rules” on page 627.
They decide on a few custom rules that are necessary.

Project leads define the code review and analysis schedule. The team decides to integrate
the standard analysis rules into the nightly build and the weekly integration build. This way,
developers can run the rule set on their component code throughout the week and fix
problems that are found in analysis reports. Developers check in their component code daily
for the nightly build.

Team leads define stakeholder reporting and communication requirements.

Rebecca configures Rational Build Forge and Rational Software Analyzer
In Rational Build Forge, Rebecca adds the general analysis scan to the Rational Build Forge
projects that manage the daily build and the weekly integration build:

� She creates an analysis adapter that points to the source directories for the application
and references the standard application rule set.

� She adds the adapter as a separate project step (with the .source command) to the
Rational Build Forge projects that runs the nightly build and weekly build.

Rebecca creates user IDs for key stakeholders in Rational Build Forge and adds them to an
e-mail notification group in Rational Build Forge.

Team leads establish quality baseline from initial code review
The analysis rules are run and the results are shared with the project leads. The project leads
review the results and work with Al to address quality issues that are identified by the
analysis. Al works with team to address issues.

Analysis rules are re-run to validate that the application meets quality standards. A quality
baseline is established and agreed upon by the stakeholders.
336 Collaborative Application Lifecycle Management with IBM Rational Products

Reports are used to communicate analysis results
Reports and the reporting server regularly provide everyone with a continuous view of code
quality. Figure 8-10 shows an example report as displayed in a browser. Stakeholders receive
the results by e-mail and access the report server for on-demand status. Rebecca creates a
report category for the project and saves analysis reports. She turns on notification and
sends the quality baseline results to stakeholders.

Figure 8-10 Example report from Rational Software Analyzer

8.3.5 Automating deployment

When we say “deployment,” we often think of the final rollout of a software application into the
production environment. In many cases, deployment is synonymous with “going live.”
However, deploying an application typically involves taking an application from a server (or
servers) and installing and configuring it on another set of servers. This is clearly a simplified
definition of the deployment challenge. However, by taking this simplified view, you can see a
parallel activity taking place during the development of the application. Every time the
application changes, it must be moved to the test servers for testing.

You can begin to view this as an act of deployment. Every time the application changes, it
must be built and moved to the test servers for testing as illustrated in Figure 8-11 on
page 338. Developers, build engineers, and deployers are each impacted by this need to
deploy:

� A developer must build their changes and deploy to a sandbox for unit testing before
delivering their source code changes.

� A build engineer conducts the build of all source code changes, deploys to a build
verification server, and runs a basic set of tests to verify that the build is ready for the test
team.
Chapter 8. The release engineer conducts the integration build 337

� A deployer must choose a build to deploy to the test servers, run a set of verification tests,
and notify the rest of the test team that they can begin testing.

Figure 8-11 Deployment occurring repeatedly until the final deployment into production

After all, the servers, middleware, and application must be configured properly for the
application to run, and the results of the build process (the software application) must be
moved to the test servers and configured for testing. By taking advantage of deployment to
test, a development team can gain knowledge in the details of deploying the application.

Additionally, as a release candidate moves toward production, the solution is deployed
through the various test environments of function, integration, system, performance, security,
and user acceptance testing. In this case, the build is the same, but the underlying server
configurations and the type of tests performed will change. Moving from one test environment
to the next involves an act of deployment.

The challenge of deployment
A closer look at the system under test reveals a layer of configurations. First, the proper
operating system and patch levels must be present. Second, the team must ensure that the
middleware matches the production environment to the extent at which it is feasible. If
automated test tools are used, they often require some software running on the server. Last
but not least, the latest build of the application must be deployed onto the server.

Testing against an improperly configured server, middleware, or application can lead to
results that differ when the application is rolled into production. Imagine having a test team
spend weeks or months testing an application only to have it break when rolled into
production because of a server configuration difference. Not only has your test team lost
valuable testing time, they might be pulled into a long problem resolution cycle. The bottom
line is that ensuring your test environment matches your production environment is the core
best practice for reducing configuration errors when deploying an application.

Analyze Function
Test

Performance
and

Security
Test

Acceptance
Test Production

Deploy Deploy

Deploy Deploy Deploy Deploy

Implement and
Unit Test

Build and
Verify Test

• The life cycle is actually numerous iterations that can happen quickly.
• Deployment happens over and over again, just by different people for different reasons.
• Testing happens over and over again, changing in focus as you near production.

Development Operations
338 Collaborative Application Lifecycle Management with IBM Rational Products

Also the developers, build engineers, and deployers are each impacted by the need to deploy
to a test server of some kind. If each of these servers is configured differently (which is most
likely and common), how can you guarantee quality? A developer might claim that it works on
their machine, which is a common claim. Sometimes it works because the developer’s server
is configured differently than the test team’s server. This configuration information is highly
valuable across all roles on the development team. Additionally, this same configuration
information must be communicated to the operations team for the deployment into production
to be successful.

How we do ensure that these complex configurations match? Many organizations rely on
highly skilled IT professionals to configure the servers, middleware, and applications. Not only
are these repetitive tasks, but the configurations are complex enough that a simple oversight
can lead to errors in testing or production. It is an inefficient use of IT resources and an
expensive choice, because some of the best employees are needed to perform this critical
function. IBM Tivoli Provisioning Manager automates the provisioning of servers. Just as
Rational Build Forge provides a flexible framework for automating the build process, Tivoli
Provisioning Manager provides a framework for automating the provisioning of servers from
bare metal to the top of the software stack.

The bottom line is that, not only is manual configuration of servers expensive, it can be error
prone. Adopting strategies for automating the provisioning of servers becomes a core best
practice. In doing so, the scripts that are used to build a server used in production can be
reused to build the server in the test lab.

Automating deployment
When viewed from this perspective, the repetitive nature of deployment becomes obvious,
and the opportunity for automation surfaces. Rational Build Forge provides an automation
framework that can address part of this need. For simple applications, you can create a
Rational Build Forge project that uses File Transfer Protocol (FTP) to transport the application
and a set of scripts to install it on the host machine. For more complex applications, Rational
Build Forge can be used to call Tivoli Provisioning Manager to do the deployment. Tivoli
Provisioning Manager provides an automation framework that targets the provisioning of
servers from bare metal through the application layers and even to the network and firewall
settings.

Rational Build Forge is integrated with Rational ClearCase to extract the latest of version of
the source code. Rational Build Forge features build auditing capabilities that enable you to
keep bills of materials for your builds and to access and reproduce previous build artifacts as
needed. Additionally, use Rational Build Forge to check the build results back into Rational
ClearCase, and to create build and deployment records in Rational ClearQuest.

Automating deployment as shown in Figure 8-12 on page 340 involves the following
approach:

� Use Rational ClearCase to version control your source code, build scripts, and build
results. When used with Rational ClearQuest, leverage UCM to manage team activities.

� By using Rational Build Forge, you can create a build process that retrieves the distribution
archive from Rational ClearCase. This assumes that the archive was previously checked
in by an automated build process as demonstrated in the reference scenario in this book.
Chapter 8. The release engineer conducts the integration build 339

� Use Rational ClearQuest to track builds and deployments through your test environments.
The reference scenario demonstrates how you can automate the creation of an
ALMBaseline and BTBuild record in Rational ClearQuest. You can also implement a
process for managing the deployment of your release through your test environments by
using a Rational ClearQuest deployment record. A Rational ClearQuest deployment
record enables you to track the set of build artifacts that you want to deploy through a link
to a Rational ClearCase deployment unit. You can use Rational Build Forge to
automatically create the deployment unit and manage it in Rational ClearCase.

� The deployment unit can then be used by Tivoli Provisioning Manager to deploy the build
results to the test server. This integration automates your deployment process for your
specific servers. Your Rational Build Forge project includes a call to Tivoli Provisioning
Manager, which then conducts the deployment. When Tivoli Provisioning Manager has
completed its work, the result is reported back to the step in the Rational Build Forge
project.

Figure 8-12 Automating the deployment step by using Rational Build Forge

IBM TechWorks provides a Proof-of-Technology hands-on workshop called “Discovering
Build and Deployment Automation with IBM Rational and Tivoli Solutions” that demonstrates
this capability. IBM customers can contact their sales representative to arrange to enroll in
the Proof-of-Technology workshop. The session is offered free of charge. IBM employees
can access this Proof-of-Technology workshop from the IBM TechWorks Web site.
340 Collaborative Application Lifecycle Management with IBM Rational Products

Chapter 9. Rational Build Forge for
enterprise integration build

In this chapter, we include the following sections:

� 9.1, “Act 3: Enterprise integration build” on page 342
� 9.2, “Rational Build Forge Enterprise Edition” on page 342
� 9.3, “Using Rational Build Forge for an enterprise integration build” on page 357
� 9.4, “Life-cycle collaboration” on page 375
� 9.5, “Measuring success” on page 376
� 9.6, “Reference architecture and configuration” on page 379
� 9.7, “Problem determination” on page 385

9

Role-based guide: To understand how the content in this chapter applies to your role, see
the role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7
on page 13.
© Copyright IBM Corp. 2008. All rights reserved. 341

9.1 Act 3: Enterprise integration build

In this chapter, we include a step-by-step discussion about how the characters in the story
complete Act 3 of the storyboard (Figure 9-1).

Figure 9-1 Enterprise build management

This act has the following scenes:

� Rebecca responds to a failed build.
� Rebecca runs the integration build.

The following IBM Rational products are used in this act:

� IBM Rational Build Forge Enterprise Edition
� With integrations to Rational ClearCase, Rational ClearQuest, and Rational Software

Analyzer

9.2 Rational Build Forge Enterprise Edition

In this section, we provide background information about Rational Build Forge Enterprise
Edition. By understanding the capabilities in this section, you will better understand the
step-by-step instructions that are provided in 9.3, “Using Rational Build Forge for an
enterprise integration build” on page 357.

Rational Build Forge is a centralized build and release management solution. By centralizing
the build and release processes, teams can streamline and optimize their build processes,
automatically produce a bill of materials for each job that is run, have a full audit trail for the
build and release process, and leverage reports to pinpoint problem areas and optimize
performance. Additionally all team members can use the same build process when
conducting a build, thus eliminating errors related to different build scripts, environments, or
compilers.

Act 3: Integration Build

Delivered changes are integrated, built,
and verified. The release engineer is

monitoring the build process.

Rebecca
Release
Engineer

Integrate the solution

4.1 Rebecca responds
to a failed build

4.2 Rebecca runs the
enterprise build

3

342 Collaborative Application Lifecycle Management with IBM Rational Products

9.2.1 Process automation framework

Rational Build Forge provides an adaptive framework that allows development teams to
standardize and automate repetitive tasks, share essential product information, and respond
quickly to change. After the processes are implemented in Rational Build Forge, all
stakeholders in the team can use them within their permissions.

Without using an adaptive framework, such as Rational Build Forge as shown in Figure 9-2,
continuous build integration and automation can be a challenge for contemporary
development teams that develop in different locations and use different time zones and
different tools. Figure 9-2 illustrates how Rational Build Forge automates the
code-build-release-test iterations. Rational Build Forge can integrate with any third-party
system or tool that is accessible from the command line, API, or any script. You can integrate
with your source control system, test system, and defect tracking systems to capture
information that is relevant to that release.

Figure 9-2 Rational Build Forge overview

All stakeholders in a team can run easily and effectively run the automation by using the
Rational Build Forge integrated development environment (IDE) plug-in or the Rational Build
Forge Management Console. The results of each automation job is captured in a detailed bill
of materials. The Rational Build Forge framework also ensures that all processes are run
consistently by the team members who have been given access to do so.

Process Automation
Automated, Repeatable Application Development Lifecycle

System Overview

Python, VB script, Batch, Perl, KSH Scripting

Source
Control

Product
Build

Quality
Assurance Package ReleaseDevelopment

BUILD/RELEASE FRAMEWORK

Workflow Control Acceleration Notification Scheduling Log Analysis Tracking Reporting

Management Console
Centralized Web-based, Collaborative Distributed Access, Role-Based Security

IDE Plug-ins
Developer Self-Service, Role-Based Security

Platforms UNIX, Windows Mac, Linux, Proprietary

• ClearCase
• StarTeam
• Perforce
• CVS
• PVCS
• VSS
• Synergy
• Subversion
• And so on

• ClearMake
• Ant
• NAnt
• Make
• GNUMake
• NMake
• Open Source
• And so on

• Java
• C
• C++
• C#
• And so on

Source ControlLanguages Build Tools

• TestManager
• Performance
• Functional
• Robot
• LoadRunner
• TestDirector
• WinRunner
• Junit
• And so on

Test Tools

• Tivoli
• WebSphere
• WebLogic
• WIS
• And so on

Release Tools

• RAD
• Eclipse
• Visual .NET

IDEs

• ClearQuest
• Remedy
• ChangeMan
• DevTrack
• Bugzilla
• And so on

Change Mgmt
Chapter 9. Rational Build Forge for enterprise integration build 343

Rational Build Forge also offers the following benefits:

� Reports success or failure through e-mail, RSS feeds, and on a Web-based dashboard

� Stores attempted commands and the resulting output or error messages in logs

� Can schedule the project for repeated runs, guaranteeing that the standard process is
executed the same way, every time, and occurs as often as needed

Figure 9-3 shows the Rational Build Forge ecosystem, which includes the following
components:

� The Rational Build Forge core components, which consist of the engine, management
console, and services layer with a quick report, are used to manage, automate, and report
on the automation projects.

� A pool of worker machines is used to execute the automation jobs. The system can find
available server resources at run time, rather than relying on the availability of a single
machine.

� Client access is available via a Web-based console or IDE plug-in for use by developers.

Architecturally, Rational Build Forge has a three-tiered structure:

� The Management Console
� The Build Forge Engine
� Build Forge Agents

Figure 9-3 Rational Build Forge product architecture

Build Forge Core Components

Worker Machines

DB2, Oracle,
SQL Server,

Sybase,
MySQL

Database

Build Forge
Console

Active Directory
LDAP

User Registry

Application
Server

Apache
Web ServerStatus

Results
Execute

Command

Build Forge
Services Layer

and Quick Report

Agent

Build Forge
Agent

Web Browser Client
IE 6, 7, Firefox

Agent

Agent

Agent

Agent

Agent

Agent

Agent

Server

Server
Server

Server

Server Server

Server

Server

Server

Build Forge
Perl API

Build Forge
IDE

Plug-ins

Custom
Java
Application

Perl Script

Development
Environment

Visual Studio

Eclipse

Build Forge
Engine
344 Collaborative Application Lifecycle Management with IBM Rational Products

The Management Console provides a user interface to the system. It is a Web-based PHP
application that runs on an Apache HTTP server. Through it, you can organize steps into
projects and manage the server resources and environment variables that those steps need.

The Build Forge Engine acts on instructions that were entered from the Management
Console. It uses information that is stored in the database to communicate with agents,
execute project tasks, and perform notifications. It also stores comprehensive project
information and tracks each run of a project. User and system actions are stored in it, so that
auditing and reporting data can be extracted and analyzed.

Build Forge agents are deployed on each server where the project must run a command. The
agent is a compact small binary that performs the following tasks:

� Listens for commands from the Build Forge Engine
� Executes the commands
� Sends results from the commands back to the Build Forge Engine

9.2.2 Projects

Each automation is defined and organized by a project. You use the Projects module to create
new projects and edit or view existing projects (Figure 9-4). Projects are executable sets of
steps, with their own environment group and server properties.

Figure 9-4 Projects module

Step: A step is a sequence of one or more commands for a specific purpose in Rational
Build Forge.

Projects module
Add a new project
Edit project properties
Run project
Project list
New project view
Chapter 9. Rational Build Forge for enterprise integration build 345

To change project-level properties (Figure 9-5), select Projects. Then click the icon next to
the desired project’s name. The name of the project is used to refer to the project in lists and
in the database. The project name is used to construct the project directory when the project
is executed.

A project contains a wealth of information. Some of the information is captured in a set of
steps. Other information is captured on a set of tabs:

� Project details
� Tags
� Registers

In this section, we provide information about the Project Details and Tags tabs.

Figure 9-5 Project properties

The Access property is the access group that is allowed to view and use the project. The
Access property is used along with permissions to determine what a user can do. For
example, to launch a job, you must be a member of the access group that is specified for the
project, and you must be a member of a group that has the Execute Jobs permission.
Rational Build Forge has detailed permissions that enable you to differentiate the levels of
control. For example, you can permit a developer to run a project but restrict the ability to edit
the project.

Tip: With the Rational Build Forge system, you can use any characters in the project
name. Since a project can contain steps that run on different operating systems, avoid
using special characters and symbols that can cause problems on those operating
systems.

Tags tab
Registers tab
Class
Access
Selector
Notification
Environment
346 Collaborative Application Lifecycle Management with IBM Rational Products

The Max Threads property is the maximum number of parallel processes that the project is
allowed to launch. Use this field to keep a project that uses an optimized number of system
resources. Each thread-enabled step and any inline projects (which themselves might launch
thread-enabled steps) can result in parallel processes, but all of those processes are counted
against the maximum for the parent project. The system stops launching new parallel
processes when it reaches the Max Threads value and waits until the number of parallel
processes for the project drops below the Max Threads value before continuing. You modify
this property to optimize performance.

The Run Limit property sets the maximum number of jobs of the project that are allowed at
one time. If you launch a project, but the currently active jobs already equal the limit, the new
job stays in the Waiting queue until one or more of the jobs completes. If a schedule attempts
to launch a project when the number of running projects equals the run limit, the system does
not launch a new job at all. Also, projects that are launched via an inline chain are not
considered instances of the original project and do not count toward its run limit.

Each project must be assigned to a class, which assigns global properties to groups of
projects. A class defines the interval at which Management Console and data are removed for
a project run. For additional flexibility, a project might be executed when the purge process is
executed.

The Selector property is the name of the selector to use when choosing a server for the
project. The system uses this selector as the default for any steps within the project that do
not specify their own selectors. If a selector is not specified, the project is added to the
Libraries module instead of the Projects module. Library projects use the selector of the
calling project.

The Environment property is an environment to apply after the server environment and before
the step environment.

The Start Notify, Pass Notify, Fail Notify properties direct the system to send notification
e-mails on project start, pass, or fail, by selecting an access group in one or all of these fields.

Many times a label is needed to identify the job that run. The Tag Format property on the
Tags panel (Figure 9-6) uses plain text and tag variable references to provide such an
identifier for the project.

Figure 9-6 Tags in a project

You select the Sticky check box to force all the steps of the project that use the default project
server to stay on the same server and to wait for it to become available if it is busy. Steps
within a project can run on different servers if their selectors allow it. However, you might want
all or most of the steps of a project to run on the same server, whether you specify that server
in advance.

Note: In the reference scenario, Rebecca manages the AccountOpening project in
Rational Build Forge.
Chapter 9. Rational Build Forge for enterprise integration build 347

Log filters
You use log filters (Figure 9-7) to change the success criteria for a step. By using log filters,
you can evaluate step output and set step results to Fail, Pass, or Warn based on the
contents of the step output. This gives you the ability to closely control the criteria that is used
to determine step success or failure. If filtering is not set up, Rational Build Forge determines
the success or failure of any step command by its exit status, where 0 is success and 1 is
failure.

Figure 9-7 Log filters and patterns

For example, some commands always return an exit status of 0. A reporting command, such
as net use, prints a list of mapped network drives. The command always succeeds, even if
the list does not contain the desired drive. Using a filter set, you can parse step output to look
for a specific drive and mark the step as successful if it is found.

Log filters can contain one or more filter patterns. Each filter pattern is associated with an
action and optionally an access group for notification. To use the log filter, you must assign the
log filter to a project step by using the step Result property.

When you assign a log filter to a step, the filter patterns in the log filter are run on the step
output whenever the project runs. When you assign a log filter to a step, the step result that is

Select Log Filter to edit
Pattern list actions
Edit Log Filter Pattern properties
348 Collaborative Application Lifecycle Management with IBM Rational Products

set by the log filter overrides all other criteria for determining the success or failure of the
step. This includes the exit status for the step commands or any step properties.

For example, if the step run time exceeds the time that is specified by the step Timeout
property, the step stops. But its status is not considered a failure unless its associated log
filter action causes it to be set to Fail.

Filter patterns
A filter pattern defines the character string or expression that you want to match in the step
output. Each filter pattern that you create is associated with a single filter action. Both filter
patterns and actions are defined in filter log sets. The ability to include multiple filter patterns
in a log filter and apply it to output from a single step allows you to use multiple search criteria
without constructing complex expressions (Figure 9-7 on page 348).

Classes
A class is a group of jobs. Each job must be a member of only one class. You can use classes
to set up types of jobs and apply behavior to each type globally. A job gets its default class
from the properties of its project, but you can manually choose a different class for a job when
you launch it by selecting Jobs → Start page.

9.2.3 Jobs

The Jobs module provides a list of executed projects that you can use to view project
outcomes. Use the Jobs module to launch projects, view the results of earlier runs, and get
information about currently running projects.

The Jobs module has the following tabs:

� The All tab lists all projects regardless of job status: completed, running, archived, or
locked. Use the All tab to locate a project if its status is unknown. Projects that are listed
on the All tab are displayed in the following order:

a. Currently running jobs

b. All other jobs in order of date and time completed, with the most recently completed job
listed first

Click a project to display information about the project.

� The Completed tab lists finished jobs whose logs and data you have permission to view.

� The Running tab lists projects that are currently running on any of the servers known to
the Management Console. Use the Running tab to view projects that are in process. The
system lists jobs on the Running tab until they have completed. After that, it lists them on
the Completed tab.

� The Archived tab in lists information about project runs whose file data has been deleted,
but about which the database retains console data. Use the Archived tab to view
information about jobs that have been purged.

Note: Rebecca uses a filter pattern in the first step of the AccountOpening project. See
“How Rebecca defined the project steps” on page 364 for information about her use case.

Note: In the reference scenario, Rebecca responds to a job that failed to complete. Upon
resolving the error, she restarts the job.
Chapter 9. Rational Build Forge for enterprise integration build 349

9.2.4 Schedule

After you create a project, you can schedule it to run at a future time or at regular, repeated
intervals (Figure 9-8).

Figure 9-8 Schedule module

For example, you can set up a project to run every hour or every day as shown in
Example 9-1. Project defaults, such as Selector, Environment, and Class, can be modified for
a project’s schedule. When adding a schedule, an icon appears in the Calendar view. The
number displays the number of schedules that are set for that day. Hover over the number in
the Calendar view to see what is scheduled, and hover over the Schedule to view the
schedule configuration. When many schedules exist, use the Schedule Filter to view the
projects for which you want to view schedules

Example 9-1 Scheduling Jobs

Run project every day except weekends, at 4:30 pm and .11:30 pm.
Minutes → 30
Hours → 16,23
Dates → ∗
Months → ∗
Days → 1-5

When the system has computed the next run time for the project, it displays it in the Next Run
column. The system displays a dynamic calendar on the Schedules page, as well as the form
displayed when modifying a schedule. The calendar shows the number of projects that are

Schedule module
Calender view
Selected schedule
Data set for schedule
350 Collaborative Application Lifecycle Management with IBM Rational Products

scheduled for a given day, for two months (the current and upcoming months). You can hover
over individual days to see the names and schedule parameters of all the projects scheduled
for a given day. If you have more than one project scheduled, the system displays a list so that
you can filter the calendar display by project. You can disable a schedule temporarily or
configure it to run once.

9.2.5 Environments

With the Rational Build Forge system, you can manage environment variables separately
from the projects and servers to which they apply. You use the Environments module to create
and edit environments that can be applied to servers, projects, and steps (Figure 9-9). This
paradigm provides a great deal of flexibility in creating the environment for any particular
command:

� You can create environments that contain environment variables.
� You can use the .include command to nest environments together.
� You can assign one environment to each server, one to each project, and one to each step

within a project.

Environments are a powerful feature that allows projects to have broader applicability. Step
behavior is not hardcoded and can be varied easily by changing the value of relevant
environment variables. Also using environment variables is highly recommended for
increasing easy maintainability.

Figure 9-9 Environments module

Note: In the reference scenario, Rebecca has scheduled this project to run weekly.

Add a new variable
Variable name
Variable value
Chapter 9. Rational Build Forge for enterprise integration build 351

Before the system executes a step, it applies all the relevant environments for the step to
create the step environment. It evaluates the server, project, and step environments, in that
order, which has the following ramifications:

� The step gets the environment variables for the server on which it runs.

� Project variables can override server variables, and step variables can override project
variables. The last value set wins.You can use variable actions to change this behavior.

When the system starts a job, it copies the project environment variables to a database
record that is set aside for the job, and refers to this job environment thereafter when getting
project default values. If the user modifies the starting values of any project variables when
the user starts the job, those values are recorded in the job record.

9.2.6 Servers

A server is a logical reference to a physical host that the Management Console uses to
execute projects or steps. Rational Build Forge provides a user interface for managing
servers (Figure 9-10). The server maps to a physical machine through its definition, allowing
dynamic allocation of physical resources, without requiring modification of individual projects.
The ability to dynamically allocate server resources provides key benefits such as fault
tolerance and optimal hardware utilization. To be used as a server host, a machine must have
an agent installed, and it must be configured in the Management Console.

Figure 9-10 Servers module

Note: In the reference scenario, Rebecca has defined a number of variables by using the
Environment feature. See “How Rebecca used the environment variables” on page 372.

Servers module
Servers detail list
Servers element list
Add new server
352 Collaborative Application Lifecycle Management with IBM Rational Products

Selectors
By using server selectors, you can describe the kind of server that a project or step should
use by listing desired properties and values. When you apply a selector to a project or step,
the system uses the selector to determine which servers are valid choices for the task and
then selects an available server from the valid ones. You can also use selectors to be specific,
such as choosing a specific server by name. To manage selectors, choose Servers →
Selectors to view the Selectors page (Figure 9-11).

Figure 9-11 Selectors module

A selector is a list of properties that describe the desired server. If you want to select servers
based on properties that you define, first create the appropriate collector properties. See
“Collectors” on page 354 for more information about collectors.

If a selector does not find a server that matches its property list, then the project or step fails
and the system creates a build note.

Note: In the reference scenario, Rebecca resolves her build problem by adding another
server to her pool. See 9.3.1, “Rebecca inspects the build” on page 358, for instructions on
how to add a server.

Select selector to edit
Select element link
New selector view

Note: This feature is highlighted in 9.3.1, “Rebecca inspects the build” on page 358. The
project fails because the system cannot locate an available server based on its selector.
Chapter 9. Rational Build Forge for enterprise integration build 353

Collectors
Instead of choosing servers directly, you can set up data to describe the right kind of server
for a project or step. You create collectors to attach properties to servers, and those
properties are stored as the server’s manifest.

A collector is an object that defines the set of properties that the system collects from or
assigns to a server. The collector assigned to a server is like a blueprint for the server’s
manifest. The Collectors section of the Servers module, shown in Figure 9-12, lists the
available collectors. By using this section, you can create new collectors. A collector consists
of a series of properties that are assigned to any server that uses the collector. However, the
specific values of the properties can vary from server to server, because a collector is a set of
instructions for collecting data.

Server manifests allow the system to choose the right server for a project or step dynamically,
based on the current situation.

Figure 9-12 Collectors module

Consider this simple example. You create a selector named Mercury, which selects servers
whose BF_NAME is equal to Mercury. When you run the project, the system selects the
server named Mercury. Because this property is unique, the system always chooses the
same server, and if that server is not available, the project fails for lack of an available server.

Here is a better example. You create a collector named Stats that collects RAM, the number
of processors, and hard-disk space available. You assign the collector to several servers, one
named Mercury (with 512 MB RAM), one named Mars (with 1 GB RAM), and one named
Jupiter (3 GB RAM). Then you create two selectors named MuchRam (selects servers with at
least 2 GB RAM) and NotMuchRam (selects servers with at least 256 MB RAM). Finally you
create two projects, each of which uses one of these selectors.

Select collector to edit
Collector element list
New collector view
354 Collaborative Application Lifecycle Management with IBM Rational Products

When you run the projects, the system chooses the server Jupiter for the project that uses the
MuchRam selector, because it is the only one that matches. The project that uses the
NotMuchRam selector might end up with any of the available servers.

Later you add a server, Neptune (2 GB RAM), to the system. The next time you run a project
that uses the MuchRam selector, the system might choose either Neptune or Jupiter. If
Jupiter is down for some reason, the system uses Neptune, because it is the only one left that
fits the selector.

Manifests
A manifest is a list of the properties for a specific server. Where a collector specifies a
property, such as memory size or Perl version as something to collect or assign, a manifest
stores the result of the collection operation. That is, a manifest for a server is the set of values
that the Management Console collects from or assigns to that server and stores as a record
in the database. When it chooses a server for a project or a step, the system compares a
selector against its set of manifests and chooses a matching server.

You can view the manifests for your servers in the Servers module by selecting the server
name and clicking the Manifest tab.

You cannot directly change the manifest for a server. Instead, you must edit the collector
assigned to the server or assign a different collector to the server. The collector defines the
kinds of properties that the system assigns to a server or attempts to collect from it. The
manifest is the resulting set of property values.

Figure 9-13 on page 356 illustrates the relationship between servers, selectors, collectors,
and manifests. This structure has crucial importance in the following capabilities of Rational
Build Forge:

� Repeatability for consistent usage of systems and tools based on project system and tool
requirements

� Abstraction so that projects and steps are not tied to specific physical systems

� Dynamic server management, which allows dynamic additions and removals of physical
systems

� Scalability

� Improved resource utilization

� Fault tolerance
Chapter 9. Rational Build Forge for enterprise integration build 355

Figure 9-13 Servers, collectors, selectors, and manifests

Server authentication
You use server authentication to associate login credentials to a server. You can use the
same credentials for many servers and update the credentials globally, by managing a set of
server authentications.

Server authentication stores a login name and password as a single named object that you
can associate with one or several servers. Use the Server Authentication page to create and
edit server authentications.

You can force the system to use your Management Console login credentials instead of the
server authentication that is assigned to the server, by using a special environment variable.
To override the normal authentication, add a variable named _USE_BFCREDS, with a value
of 1, to an environment used by your project or step. If you add the variable to the project
environment, the system uses the override on every step in the project.

When the system attempts to run a step whose environment contains _USE_BFCREDS=1,
the system uses the console login credentials of the user who started the project to execute
the step’s command.

Having separate server authentication is highly recommended to prevent an unprivileged user
from performing tasks in Rational Build Forge as a privileged user without needing the
credentials.

9.2.7 Libraries

The reference scenario does not use a library, but it is good to know that you can use libraries
to modularize common steps into a reusable unit. The Libraries module (Figure 9-34 on
page 384) displays library projects. When a project does not have a selector specified, it
appears in the Libraries.

Rational Build
Forge Project

Selector

Rational Build Forge
Server Definition

Collector

Manifest

Writes

Selects

Server
(Host)

Agent

System Properties

Tools

Other Services

Seeks Interrogates
Defines required server
properties, for example:

• Windows 2003
• Java 1.4.2
• Free RAM > 200 MB.

Defines properties to
collect, for example:

• Operating system
• Java version
• CPU load
356 Collaborative Application Lifecycle Management with IBM Rational Products

9.3 Using Rational Build Forge for an enterprise integration
build

In Act 3, Rebecca (the build engineer) is responsible for the solution build of the
AccountOpening project. Act 3 builds on the previous act where Diedrie delivered her
component changes to the solution build. Rebecca schedules the integration build weekly,
she monitors the jobs, and in case of any failure, she also inspects the build runs. After fixing
the issue that caused the failure, she runs the integration build project again as shown in
Figure 9-14.

Figure 9-14 Enterprise integration build

The act starts with Rebecca inspecting and resolving a build failure. Then she starts the build
and monitors the result. While the build is running, the following important tasks are automated:

� The script gathers the sources and prepares the build environment.
� Static analysis is run against the source code base.
� The solution is compiled.
� Verification tests are run.
� The solution is packaged into a distribution archive.
� The solution is published.

This task involves staging the distribution archive, archiving and baselining the build
project, and creating records in Rational ClearQuest to publish the build result and
baseline information.

This act ends with Rebecca notifying the team of the build result.

Rebecca –
Build Engineer

3.2 Rebecca
runs the
integration
build

Inspect
failure

Resolve

DeliverBuild
Validate

Monitor

3.1 Rebecca
responds to
a failed build

Run

Monitor

Tammy
Test Lead

4.1 Tammy
configures
the test lab

Inspect
Build
result

Gather Sources

Static Analysis

Compile

Verification Test

Package

Publish

Diedrie –
Developer

2.5 Diedrie conducts a
team build and
delivers for the
integration build

Announce
Chapter 9. Rational Build Forge for enterprise integration build 357

9.3.1 Rebecca inspects the build

Rebecca performs the following steps:

1. Rebecca logs into Rational BuildForge Enterprise Edition.

2. She inspects the build step details by clicking Jobs → BUILD_117 (Figure 9-15).

The Rational Build Forge dashboard indicates that the build failed in step 1 (Example 9-2
on page 364) with the message “No server could be found matching all conditions.”

Rebecca clicks that step to view the execution information. As soon as she reads the step
execution information, she realizes that the build servers are busy. The build has a timeout
error in selecting a build server according to the rules defined in the Selector, and this job
has exceeded the timeout. She has configured the Selector that allows a maximum of two
build executions at a time. She has run into this error several times and decides the project
must have an additional build server.

Figure 9-15 Jobs → BUILD_117 to view the step execution information

3. Rebecca adds a new build server by defining it in the Build Forge Server Module:

a. She clicks Servers → Add Server to open the Server module (Figure 9-10 on
page 352).

b. In the Name field, she types Build Server 2.

c. In the Host field, she types the host information.

d. She verifies that C:\buildarea is in the Path field.

e. From the Authentication box, she chooses the proper authentication definition.

f. She can still choose “Build Server 1” Collector as a Collector from the box.
Alternatively, she can define a new collector. If she decides to have a separate new
collector, she must add a new rule that recognizes the new server to the Selector.

Synopsis: Rebecca has received a notification that the integration build failed. She
inspects the build, resolves the problem, and starts the build process again. She monitors
the build to ensure that it completes successfully.
358 Collaborative Application Lifecycle Management with IBM Rational Products

g. She clicks Selector → Add Selector Variable. Then she chooses BF_NAME as the
name and == as the operator. She also types Build Server 2 as the value.

h. From the Access box, she selects Build Engineer.

Now Rebecca is ready to run the build project again, which is explained in the following
section.

9.3.2 Rebecca runs the integration build

Rebecca runs the integration build by using the following steps:

1. By using the Build Forge Management Console, she clicks the Projects module.

2. She opens the AccountOpening project and clicks the Start Project button
(Figure 9-16).

Figure 9-16 AccountOpening project

Synopsis: Rebecca opens Rational Build Forge and logs in with her credentials. She
opens the Projects module and selects the AccountOpening project.
Chapter 9. Rational Build Forge for enterprise integration build 359

3. On the next page (Figure 9-17), she ensures that the environment variable values are
correct. She clicks the Execute button at the top of the page to run the build. The build
starts when the state of the execution transitions from Waiting to Running.

Figure 9-17 AccountOpening project run details
360 Collaborative Application Lifecycle Management with IBM Rational Products

As each step executes, the result column indicates the Pass/Fail status of the step as
shown in Figure 9-18.

4. During the monitoring of execution, Rebecca can click any step name to drill down into any
of the steps to display more detail about what Rational Build Forge is doing. If she thinks
something is wrong, she can cancel the step running by clicking the Cancel icon.

Figure 9-18 Job started
Chapter 9. Rational Build Forge for enterprise integration build 361

5. Because the build succeeds this time, Rebecca examines the bill of materials
(Figure 9-19). She expands Source Changes to display the version or versions of
Rational ClearCase source controlled elements that were included in the build. The bill of
materials includes the differences between the version that is used in the build and its
previous version.

Figure 9-19 Bill of materials

Rational Build Forge generates a bill of materials after each project run. The bill of materials
contains information about the steps in the run and the changes to files that resulted from it.
The bill of materials can be provided to consumers of the project run, such as the quality
assurance department, for help in understanding the contents of a new build. It can also
serve as an audit solution for your build and release process.
362 Collaborative Application Lifecycle Management with IBM Rational Products

With the bill of materials, you can easily include other relevant information as in the following
examples:

� A complete list of all files in the baseline used for this build
� The differences between this build and the last build (date/date, time/time, and label/label)
� Modified views that the process execution is based upon
� A list of all defects that were included in the process run

These extensive tracking mechanisms make the Rational Build Forge system a valuable tool
for documenting processes, providing an audit trail to assist with regulatory compliance
requirements. With the bill of materials, you achieve the following benefits:

� Reduced time spent reading log data, with a lesser chance of errors being undetected,
which increases quality

� Quick diagnosis of build output and location of items of interest

� Great reduction in time spent analyzing builds and troubleshooting errors

� Faster build turnarounds, greater productivity, and faster time to market

� Better support to monitor systems and aid in compliance

With the bill of materials, you get complete documentation of a build’s contents. It can include
the build results, notes, environments, lists of build files, and code changes. This information
can be used to compare and summarize the state of builds across the enterprise. The system
generates a bill of materials for each build automatically.

In Rebecca’s build, regardless of the result, success or failure, she has a related e-mail
notification that informs her of the build result in accordance with our scenario. If any failure is
indicated, she can either see the details in the bill of materials or click Step Logs
(Figure 9-20).

Figure 9-20 Step logs
Chapter 9. Rational Build Forge for enterprise integration build 363

How Rebecca defined the project steps
Rebecca’s project is quite sophisticated. To understand what is happening in the integration
build project in Rational Build Forge, we look at each step in the AccountOpening project:

1. Mount the source versioned object base (VOB).

Rational ClearCase is our source control system, and the VOB server should be mounted
in this step as shown in Example 9-2. The sources for the build are obtained from the
source control system.

The VOB might already be mounted. Therefore, our build project might fail in this step. To
prevent this, Rebecca created a filter pattern as “already mounted” that clears the fail in
that condition. For similar situations, use filter patterns as a best practice.

Example 9-2 Mounting the source VOB

cleartool mount ${SOURCE_VOB}

2. Define the baseline format.

As we discussed earlier, naming conventions are important for a continuous build
integration. The BASELINE name is defined as the component name and Rational Build
Forge tag, which increases by 1 for each run. Naming conventions are crucial for reuse
and continuous build integration at all levels of software development (such as versioning,
component, streams, and so on) in addition to baselines as shown in Example 9-3.

Example 9-3 Defining the baseline format

.bset env "BASELINE=${COMPONENT}_$BF_TAG"

3. Create a build view.

It is a best practice to create and use a view before you produce a build or release as
shown in Example 9-4.

Example 9-4 Creating a build view

cleartool mkview -snapshot -tag "${PROJECT_NAME}_$BF_TAG" -tcomment
"${PROJECT_NAME} Build" -stream ${STREAM_NAME}@$PROJECT_VOB -vws
$VIEW_STG\${PROJECT_NAME}_$BF_TAG.vws $BF_SERVER_ROOT\${PROJECT_NAME}_$BF_TAG

4. Update the build view.

In Example 9-5, Rational Build Forge loads the files from the VOB server locally to the
view target directory that was created in a previous step.

Example 9-5 Updating the build view

cleartool update -add_loadrules com.ibm.ao\accountopening\creditapplication
cleartool update -add_loadrules com.ibm.ao\accountopening\ratlbankreleases

5. Create the Rational ClearCase baseline.

We create the baseline as shown in Example 9-6 on page 365 by means of ClearCase
adapter. See 9.6.2, “How Rational Build Forge is configured for this scenario” on
page 380. A ClearCase adapter fails if no changes have been made. It is similar to a
linked adapter for continuous integration. Basically, if a new baseline cannot be created
(because no additional changes have been made since the last source baseline), then the
step fails and the project stops.
364 Collaborative Application Lifecycle Management with IBM Rational Products

Example 9-6 Creating the Rational ClearCase baseline

.source "CC Interface" ByBaseline

6. Perform Rational Software Analyzer checks.

For reliability and assurance of quality, static analysis must be applied to all software
artifacts. In Example 9-7, Rebecca uses Rational Software Analyzer to implement the
code-level static analysis, as discussed in “Code review and analysis” on page 330.
Figure 9-21 shows the results of using Rational Software Analyzer.

Example 9-7 Rational Software Analyzer checks

eclipse.exe -data C:\src\RatlBankWeb -application
com.ibm.rsaz.analysis.commandline.AnalyzeApplication -rulefile
c:\src\rules.dat -exportdirectory c:\results -verbose

Figure 9-21 Rational Software Analyzer execution results

Note: Rational Software Analyzer results include a URL link to the report server of
Rational Software Analyzer (Figure 9-21).
Chapter 9. Rational Build Forge for enterprise integration build 365

7. Perform code-level static analysis.

As shown in Example 9-8, Rebecca verifies the quality with ant static analysis.

Example 9-8 Code-level static analysis

ant checkstyle

8. Ensure a Clean Environment section.

It is best practice to have a Clean Environment section in build or release projects to avoid
interference with other runs and builds as shown in Example 9-9. A build or release should
be performed in a clean and controlled environment. The clean environment ensures that
a base can be reused for all builds and releases. You might prefer to have a Clean
Environment section just before getting the source files, but it is really a matter of
approach.

Example 9-9 Clean Environment

ant clean

9. Compile the application.

Example 9-10 shows how we compile the code.

Example 9-10 Compiling the application

ant compile

10.Execute unit tests.

To ensure the quality of the build, automate the test steps or a section in the build or
release projects as a best practice. In Example 9-11, the code is tested against JUnit
scripts after the compile.

Example 9-11 Executing unit tests

ant junit-all

11.Create a distribution archive.

When the build artifacts are produced, they must be placed in a target directory for
distribution and future reuse. In Example 9-12, we create a binary distribution of the build
to the target directory.

Example 9-12 Creating a distribution archive

ant dist

12.Check in the distribution archive.

The distribution is packaged and checked in Rational ClearCase in Example 9-13 from the
distribution directory.

Example 9-13 Check-in of the distribution archive

cleartool setact $STAGING_ACTIVITY
clearfsimport RatlBankWeb.war
..\..\..\..\${PROJECT_NAME}_$BF_TAG\RatlBankReleases\web\dist\
cleartool co -nc
..\..\..\..\${PROJECT_NAME}_$BF_TAG\RatlBankReleases\web\build.xml
copy ..\build.xml ..\..\..\..\${PROJECT_NAME}_$BF_TAG\RatlBankReleases\web\.
366 Collaborative Application Lifecycle Management with IBM Rational Products

cleartool ci -nc -identical
..\..\..\..\${PROJECT_NAME}_$BF_TAG\RatlBankReleases\web\build.xml
cleartool co -nc
..\..\..\..\${PROJECT_NAME}_$BF_TAG\RatlBankReleases\web\default.properties
copy ..\default.properties
..\..\..\..\${PROJECT_NAME}_$BF_TAG\RatlBankReleases\web\.
cleartool ci -nc -identical
..\..\..\..\${PROJECT_NAME}_$BF_TAG\RatlBankReleases\web\default.properties
cleartool setact -none

13.Export the Rational Build Forge project.

Even though the Rational Build Forge project is in Rational ClearCase source control, as a
best practice, the project that we run should be exported to the target project directory, in
case it is needed for audit or other reasons as shown in Example 9-14. Otherwise
Rebecca must trace the version of the build or release project for each run by time stamp.

Example 9-14 Exporting the Build Forge project

.export ${PROJECT_NAME}_$BF_TAG/$PROJECT_DIR/dist/project.xml

14.Promote the Rational ClearCase baseline.

Add a label to the delivery baseline in order to reflect a higher degree of stability. In
Example 9-15, the promotion level is set with the baseline name and the project VOB
name.

Example 9-15 Promoting the Rational ClearCase baseline

cleartool chbl -level BUILT ${BASELINE}@$PROJECT_VOB

15.Create the deployment baseline.

The baseline is created in Rational ClearCase as shown in Example 9-16.

Example 9-16 Creating the deployment baseline

cleartool mkbl -nc -identical ${BF_TAG}_deploy

16.Create an ALMBaseline record in Rational ClearQuest.

Example 9-17 integrates the build project with a new record in ClearQuest ALM called the
ALMBaseline record. The step runs a Perl script that is provided by the ClearQuest ALM
package. The script creates the baseline record and determines which activities were
delivered between baselines. The list of activities is added to the ALMBaseline record. The
URL link of the build job is also placed in the build record, in case any team member
needs to see the job details.

Example 9-17 Creating the ALMBaseline record in Rational ClearQuest

ratlperl create_baseline_record.pl -user ${CQAL_USER} -pw "${CQALM_PASS}"
-dbname ${CQALM_DBNAME} -dbset ${CQALM_DBSET} -pvob ${CQALM_PVOB} -ucmstream
${CQALM_STREAM} -baseline "${BF_TAG}_deploy" -projectid ${CQALM_PROJECT_ID}
-logfile "${CQALM_LOGFILE}_${BF_TAG}.txt" -url
"http://9.34.119.61:82/fullcontrol/index.php?mod=jobs&action=edit&bf_id=${BF_ID
}"
Chapter 9. Rational Build Forge for enterprise integration build 367

You can see the details of the baseline record created in Figure 9-22 and Figure 9-23 on
page 369.

Figure 9-22 Baseline record
368 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 9-23 Activities in the baseline record

17.Create the Rational ClearQuest BTBuild record.

The build project also creates a BTBuild record in the ClearQuest ALM package. The step
runs a Perl script that is provided by the ClearQuest ALM package. The script populates
the required information on the ALM tab and creates a reference to the ALMBaseline
record that was created in the previous step. Example 9-18 shows how this is performed
and some of the environment variables that are defined for this project by using the
Environments module.

Example 9-18 Creating a Rational ClearQuest BTBuild record

ratlperl create_build_record.pl -user ${CQALM_USER} -pw "${CQALM_PASS}" -dbname
${CQALM_DBNAME} -dbset ${CQALM_DBSET} -pvob ${PVOB_LABEL} -baseline
"${BF_TAG}_deploy" -build "Integration_${BF_TAG}" -buildstatus "Passed"
-buildtype "Integration" -projectid ${CQALM_PROJECT_ID} -logfile
"${CQALM_LOGFILE}_${BF_TAG}.txt" -url
"http://9.34.119.61:82/fullcontrol/index.php?mod=jobs&action=edit&bf_id=${BF_ID
}

Chapter 9. Rational Build Forge for enterprise integration build 369

In Figure 9-24, you can see Build Web URL property that is set by this step. Team
members can reach the build job execution details by clicking the URL from ClearQuest
ALM.

Figure 9-24 Build Details tab showing the BTBuild record created in ClearQuest ALM
370 Collaborative Application Lifecycle Management with IBM Rational Products

The ClearQuest ALM package also extends the BTBuild record by adding an ALM tab to
the record. Figure 9-25 shows the details of the ALM properties of the build record that
was created.

Figure 9-25 ALM properties showing the BTBuild record created in ClearQuest ALM

At the end of each project run or each step, Rational Build Forge notifies the group selected in
the build project in the project level or in step level according to the need. In the
AccountOpening build project, Rebecca is notified on failure only. On success, Al, Tammy,
Patricia, Rebecca, and Marco are all notified according to our scenario.

Create user groups in Rational Build Forge to enable the best distribution of notifications and
to ensure that the right notification is assigned to the right step or project.
Chapter 9. Rational Build Forge for enterprise integration build 371

How Rebecca used the environment variables
The build steps that Rebecca defined in 9.3.2, “Rebecca runs the integration build” on
page 359, use many environment variables in commands. This approach is highly
recommended to increase the reuse of the project and increase the ease of maintenance.

Example 9-19 shows some of AccountOpening environment variables.

Example 9-19 Some of the AccountOpening environment variables

ANT_HOME=C:\Views\javatools_int\JavaTools\ant
JAVA_HOME=C:\j2sdk1.4.2_10
PATH=$JAVA_HOME\bin;$ANT_HOME\bin
VIEW_STG=//qvmw061/ccstg_c/views
PROJECT_NAME=AccountOpening
PROJECT_DIR=com.ibm.ao\accountopening\creditapplication\RatlBankWebPROJECT_VOB=\co
m.ibm.ao_pvob
SOURCE_VOB=\com.ibm.ao
CCSERVER=Build Server 1
VIEW=administrator_ao_rel2_int
COMPONENT=accountopening
BASELINE_TYPE=Incremental
VOB_PATH=com.ibm.ao\accountopening\creditapplication\RatlBankWeb
STREAM_NAME=ao_rel2_integration
CQALM_PROJECT_ID=almio00000005
PVOB_LABEL=com.ibm.ao_pvob
CQALM_LOGFILE=C:\Temp\CreateBaseline
CQALM_STREAM=ao_rel2_integration
CQALM_PVOB=\com.ibm.ao_pvob
.......
372 Collaborative Application Lifecycle Management with IBM Rational Products

How Rebecca scheduled the integration build
In our scenario, the builds are produced weekly. Rebecca opens Rational Build Forge and
opens the Schedules module. She schedules the AccountOpening builds every Friday at
17:00 p.m. (Figure 9-26) and performs the following actions:

1. In the Description field, she types the AccountOpening Weekly Build expression.
2. From the Project box, she selects the AccountOpening project.
3. From the Owner box, she selects the user Rebecca.
4. For every Friday, in the Days field, she types 5.
5. In the Hours field, she types 17 for 17:00 p.m.

Figure 9-26 Rebecca scheduling the build
Chapter 9. Rational Build Forge for enterprise integration build 373

How Rebecca integrated with Rational ClearQuest
Integration with Rational ClearQuest is fairly straight forward for Rebecca. The ALMProject
1.0 and ALMWork 1.0 packages add all the necessary record types, fields, and forms needed
to integrate Rational ClearQuest with Rational Build Forge. In addition, the ALMProject 1.0
package provides a ready-to-use Perl script that creates the BTBuild and ALMBaseline
records in Rational ClearQuest. Rational Build Forge environment variables are created to
pass information to the Perl script.

The Rational ClearQuest ALMProject ID is needed to identify the Rational ClearQuest project
to which this build belongs. By having this ID, the ALMProject record can be linked to the
BTBuild and ALMBaseline records by using reference list fields as shown in Figure 9-27. The
Perl script ensures that all the relevant data from Rational Build Forge is populated in the
appropriate fields in the Rational ClearQuest records.

The ALMProject record type also has a reference to the Unified Change Management (UCM)
project on the ALMWorkConfigrations tab, which can be used to link the specific project to the
UCM assets in Rational ClearCase. For more information about the ClearCase-ClearQuest
UCM integration, see Software Configuration Management: A Clear Case for IBM Rational
ClearCase and ClearQuest UCM, SG24-6399.

Figure 9-27 Relationships between the BTBuild, ALMBaseline, and ALMProject records in Rational ClearQuest
374 Collaborative Application Lifecycle Management with IBM Rational Products

9.4 Life-cycle collaboration

In this scenario, the actors not only created new artifacts, but relied on the artifacts of their
team members from previous acts. In addition, the work produced by these team members
will impact future scenes of the storyboard. Figure 9-28 shows the life-cycle assets that are
used by the characters in this act.

Figure 9-28 Life-cycle assets involved in this enterprise integration build scenario

The assets that are created in this act are indicated in white. The assets that are leveraged by
this act are indicated in blue. This scenario includes the following life-cycle assets:

� Job (when the project is executed and its result)

� Bill of materials and Code Analysis report

� UCM baseline

� Build and the UCM stream

� ALMBaseline record in ClearQuest ALM

� ALMBuild record in ClearQuest ALM

� Build project, which refers to the AccountOpening project, which defines all information
that pertains to this automation.

� Environment, which establishes the environment variables used for this project.

� Worker machines, which are a set of machines that are used by the automation, which are
defined by servers, collectors, and selectors.

� Schedule, which determines when to run the job.

� Code rule set used by Rational Software Analyzer

Change Set

UCM Baseline(s)

UCM Stream

Work Item
[Task]

JUnit files

Java files

Build

ClearCase
Workspace

Included Included

Included

Built
fromExternal

Connection

Build Project

Job

ALM Baseline

BT Build

Schedule

Produces

Includes

RunsBuilt
from

BOM

Environment

External
Connection

UCM View

ALM Activity
[Implement]

Code Rule Set

Code Analysis
Report

Worker Machines

ALM Task
[Implement]

ALM Request
[Enhancement]

ALM Task
[Detail Requirement]

ALM Task
[Test]

ALM Task
[Develop Architecture]

A Created in Current Act

A Referenced

A Supporting
Chapter 9. Rational Build Forge for enterprise integration build 375

9.5 Measuring success

Rational Build Forge has several report features in addition to the bill of materials, which we
mention in “9.3.2, “Rebecca runs the integration build” on page 359. It provides ready-to-use
reports that help development teams analyze their build and release processes over time.
Detailed statistics about each step of the process highlight process bottlenecks or
abnormalities so that teams can take corrective action. Additionally, server utilization reports
pinpoint ways that hardware can be used more efficiently.

Rational Build Forge also tracks critical information to help companies meet their compliance
requirements. The system captures each change that is made, by whom, and why in a
comprehensive bill of materials for the release that can be generated on demand
(Figure 9-29).

Figure 9-29 A sample report in Rational Build Forge

When you click the Report tab in the upper right of the main pane to display reports about
your system (Figure 9-30), you can choose from the following reports:

� Home
� Performance
� Analyze
� Queries
� Quick Report

Figure 9-30 Reports in Rational Build Forge
376 Collaborative Application Lifecycle Management with IBM Rational Products

Home
The reporting Home module shows the same report as the Performance module. It shows the
last job time for each project and data on the total number of jobs and how many jobs passed,
failed, or passed with warnings. Click a project name in the list to display the project
performance detail page, which graphs run times for all the jobs of the project.

Performance
The Performance module shows the last job time for each project and data on the total
number of jobs and how many jobs passed, failed, or passed with warnings. Click a project
name in the list to display the project performance detail page, which graphs run times for all
the jobs of the project. Performance reports give you an overall idea for all runs. If you need
more detailed information for your build project, you can run Analyze Reports or Queries
Reports instead.

Analyze
The Analyze module displays information about the run times and numbers of passing or
failing jobs for each project. Click an individual project name to display additional information.
When you do, the system displays a comparison of the time that is required to perform each
step in different runs and on different servers. The system displays the probability of
encountering the longest and shortest run times for each step.

Queries
You can run the following reports from the Queries module:

� Identify the project selectors and step servers for each project.

Click the Run button to display a list of projects and their steps. For each project, the
system lists the selector. For each step, the server lists all the servers that the step has
ever used in a job.

� Identify the current manifest for each server.

Choose whether to include BF_ properties in the report. With this report, you can also
compare the manifests for your servers.

� Build results historic data.

With this report, you can select a range of dates. Then the report displays the jobs in that
range, showing the number of passing and failing jobs for each project that had a job in the
range. A selected date starts at midnight (00:00) on that date. Therefore, to specify a day’s
data, select that day for the beginning and the next day for the end.

� See Server and Selector utilization historic data.

Use this option to view server usage over time.

� Locate a file based on its MD5 value.

You can search through all completed jobs for a file if you have the MD5 value for the file.
You can get an MD5 value from the bill of materials for a job, by running a .scan
command.

Quick Report
Quick Report is a licensed option in the Rational Build Forge system. It appears and functions
only if you have installed the license key for Quick Report. The installation includes a Tomcat
server running on port 8080. Therefore, the Management Console should not be set to run on
8080.
Chapter 9. Rational Build Forge for enterprise integration build 377

Running existing reports
To run an existing report:

1. Click the Wizard selection in the navigator on the left.
2. Select Start from an existing report (or click a report in the list).
3. Click the report to use. Reports are organized under Public and My Reports headings.
4. Click Run to run the report.

You also have other options to manage the selected report:

� Use Edit to edit the report in the same way as you create a new report. Remember to save
the report after you edit it.

� Use Delete to delete the report.

Creating new reports
To create a new report:

1. Click the Wizard selection in the navigator on the left.

2. Select Create a new report.

3. Define the report:

a. Click a format, such as Table, Bar Chart, Pie Chart, or Line Chart, for the report. When
you click a format, an illustration of it is displayed to the right of the format list.

b. For Title, type a title for the report. You cannot change the title after you specify it here.

c. Click Next.

4. Select a report type.

Types are organized under the Build Forge and Custom headings. Custom reports come
from configuring data sources from XML files, including exported bill of materials’ data.

For Tables, select one or more columns to use as fields in the table. For Bar Charts, Pie
Charts, and Line Charts, choose columns to use for X Series Selection and Y Series
Selection (X and Y axis of the chart). Click Next.

5. Populate the Group Ordering list.

The report shows groupings and subgroupings as you specify in the list. A grouping is
performed in order from the top of the list downward. Use the arrow controls to move fields
to and from the Group Ordering list. Single arrows move a selected item to or from the list.
Double arrows move all items to or from the list. Use the Top, Up, Down, and Bottom
buttons to sequence items in the list as you want. Click Next.

6. Populate the Sort Ordering list.

The report sorts within groups by using the fields in the list. Use the arrow controls to
move fields to and from the Sort Ordering list. Use the arrow control to the right of fields in
the Sort Ordering to change the sort order (ascending and descending). Clicking the arrow
moves a field in the direction indicated. Click Next.

7. Build one or more filters. Each filter consists of selections:

Field The field in which to filter results based on value.
Operator The operator on the field.
Value Either select a field or check the Text box and type a value.

Note: Any report that includes a calculated field, such as Total, Percent, and so on,
must have a grouping for that field.
378 Collaborative Application Lifecycle Management with IBM Rational Products

You can add more filters to the list or delete them. You can limit output by selecting Limit
output to and providing a value for rows. This option can be helpful when running tests on
designs for large reports. Click Next.

8. Run the report. It is displayed in the panel. The following options are available:

Save this Report Design
Type a name and click Save. The report is displayed in the list of reports.

HTML Download the report output in HTML format. You are prompted for a location.

Cancel Exit this report and go back to the wizard.

9.6 Reference architecture and configuration

In this section, we describe how the products used in this act of storyboard fit into the overall
solution architecture and how they are configured.

9.6.1 Fitting into the enterprise ALM solution

The Build Forge repository is installed at the corporate headquarters. Build Forge Agents
should be running at the build servers and at the targets that Rational Build Forge uses. In
this scenario, we have agents at the Rational ClearCase server, Rational ClearQuest server,
Software Analyzer, and two separate build servers (Figure 9-31).

Rebecca used the Rational Build Forge adapters for Rational ClearCase, which we discuss in
the next section.

Figure 9-31 Configuration for this scenario

Test resources

INUS

Repository

Solution test plans

Comp test plans

Rational Requirements Composer
and Rational RequisitePro Rational ClearQuest

CQI assets

CQALM assets

Sketches, and so on

Requirements

Rational Asset Manager

Rational ClearCase/UCM

Reusable
assets

Streams

Components

Rational Build Forge

Solution builds

Comp builds

Rational Quality Manager
Rational Quality Manager

Rational Team Concert

Component
iteration plan
work items

Workspaces

Components

Component
builds

Streams

Build assets

Web IDE

Corporate Recently acquired

Third-party provider

Solution
test plans

Test resources
Chapter 9. Rational Build Forge for enterprise integration build 379

9.6.2 How Rational Build Forge is configured for this scenario

The configuration that is used by Rebecca is explained in 9.3.2, “Rebecca runs the integration
build” on page 359, and illustrated in Figure 9-32. In this section, we discuss the use
configuration of Rational Build Forge adapters.

Figure 9-32 Server participation

Rational ClearCase, Rational ClearQuest, and Rational Software
Analyzer adapters
An adapter is an add-on that links the system to other, external information systems. You can
use adapters to extract information from other data sources in your software development
environment, such as source code control systems, change management systems, and test
management systems. You can also store that information in the bill of materials for each
project run. Rational Build Forge comes with adapters for the most popular source code
control systems. You can also create your own adapters to connect to other information
systems within your enterprise.

An adapter is a bi-directional interface between your project and another system, so that it
can also send information and commands to other programs. For example, the adapter for the
Rational ClearQuest change management system lists all the defect records that are
associated with the project run in the bill of materials. It also updates each defect record with
information about the project run and resolves each defect record within Rational ClearQuest.

Build Server 1

Server Participation

Build Server 2

Rational ClearCase
Server

Rational ClearQuest
Server

Rational Software
Analayzer Server

Rational Build Forge Server

Mounting sources,
creating views baselining,
setting promotion level,

creating distribution and check in,
creating a deployment baseline Software Static Analysis

Getting activities,
creating ClearQuest ALM record,

creating a build record

Performing the build, release, deployment;
compiling, optimizing, and executing unit tests;

creating all the artifacts and related results or outputs;
and so on

Build Servers

Integration Servers
380 Collaborative Application Lifecycle Management with IBM Rational Products

You can directly use the cleartool command in the project steps to have connectivity with
Rational ClearCase or you can use the Rational Build Forge ClearCase adapter.

For ClearQuest and ClearQuest ALM, you can use Perl scripts or Java directly in your
commands or the Rational Build Forge ClearQuest Adapter.

For Rational Software Analyzer, you can use the adapter that comes with Rational Software
Analyzer with installation, or you can directly use Rational Software Analyzer API in Rational
Build Forge. If you prefer to use the adapter for Rational Software Analyzer, it already has a
bill of materials section in it. Therefore, reporting is much easier than using the API. If you use
the API, you must use additional .bom commands to create the bill of materials section in the
job steps or you must look at the target “export directory.”

Adapters in Rational Build Forge are crucial for connectivity. In this book, we used Rational
ClearCase, Rational ClearQuest, and Rational Software Analyzer adapters as examples.

Adapters
An adapter is an interface to an external application. Adapters allow a Rational Build Forge
project to exchange information with an external application to accomplish a goal. For
example, this might involve checking to see if there are source code changes in a source
code management (SCM) system. If there are changes, the adapter annotates the bill of
materials with source code change information. If there are no changes, the step aborts the
remainder of the execution. This feature is especially helpful for those running “continuous
integration,” because it avoids unnecessary re-builds of the project.

An adapter is a mechanism that encapsulates actions that integrate with an external system
and reports information to the bill of materials. Adapters are the crucial bit of functionality that
allows Rational Build Forge to represent multiple branches from a single bit of input. Without
adapters, you only use the regular steps in Rational Build Forge, which function much in the
same way as a makefile. The steps execute something on a client machine, and output is
returned, a binary action. That is the basic kind of integration that is easy to set up in Rational
Build Forge. More than integration, it allows a rudimentary branching logic and looping ability.

An adapter is an instance of an adapter template (Figure 9-33 on page 382), but you can also
create your own adapter from scratch without using any adapter template as long as you obey
the tags that are described in the Rational Build Forge Help file.

When you create an adapter, you assign it a unique name and associate it with a template.
The template is an XML file. The XML file contains application commands to gather
information, instructions for analyzing information, and format details for displaying results in
the Bill of Materials report. The templates that are provided by Rational Build Forge are
designed to be used without modification. However, you can modify templates or use
templates as a model for creating a new adapter template. The adapter templates are
installed in the <bf-install>\interface directory.
Chapter 9. Rational Build Forge for enterprise integration build 381

Figure 9-33 Adapters

The adapter requires environment variables to execute application commands. In the adapter
templates, environment variables are listed in the <env> elements in the <template> section
of the XML file. For example, for the ClearCaseBaseline adapter, the following environment
variables are listed in the ClearCaseBaseline.xml file:

� <template>
� <!-- Template section. These variables are parsed out of the final XML.Use the

following syntax to help identify the variables that are needed to run this
interface if you are integrating it during a regular Build Forge step:- →

� <env name="VIEW" value="my_adapter_view" />
� <env name="VOB_PATH" value="\adapterVob" />
� <env name="CCSERVER" value="BFServerName" />
� </template>

Add a new adapter
Adapter instance list
Adapter name
Adapter instance type
Adapter instance template

Environment variables: In Rational Build Forge, environment variables are stored in
environments. Before creating an adapter, create an environment for application
environment variables.
382 Collaborative Application Lifecycle Management with IBM Rational Products

Most adapter templates send e-mail notification to users. For example, when the
ClearCaseByDate adapter executes, it sends a pass e-mail notification to users who changed
source code files. If no files were changed, it sends a fail e-mail notification.

The Rational Build Forge product provides adapter templates for the all kinds of applications
as listed in Appendix C, “Rational Build Forge adapter templates” on page 623. The
templates for Rational ClearCase and Rational ClearQuest do not require a separate license
key, but other application templates are licensed through the Rational Build Forge Adapter
Toolkit.

Adapters are an important part to the functionality of Rational Build Forge. Implementing your
own adapters to fit your workflow needs is the key to increasing connectivity with other tools.

Enabling continuous integration with Rational Build Forge
source adapters
With source code adapters, the system can monitor and track changes in source code control
systems and perform actions based on those changes. When properly linked to a project, an
adapter can be activated along with a scheduled project run. The system runs the adapter in
a special step it inserts before the first step of the project.

A link between a project and an adapter can be created to let a source control adapter know
where specifically within your source control system it should look to check for changes.
When the system runs a project that is linked to a source control adapter, the system runs the
adapter commands as though they were contained in a special step that is inserted before the
first step of the project. The ClearCaseSnapshot adapter template checks for changes since
the last time the project ran. If the step succeeds, the project proceeds as usual. If it fails, the
run is cancelled and deleted. The build tag is not incremented if no changes are found in the
source control.

Additional capabilities in Rational Build Forge not used by this scenario
This section provides a brief overview of additional capabilities that are provided by Rational
Build Forge. While these are not demonstrated in the reference scenario, the topics covered
may be of interest when creating Rational Build Forge projects.

Projects
The Pass/Fail Chain property selects the project that is executed when the project build
processor fails. By setting a pass/fail chain at the project level, you can invoke separate
actions based on the pass/fail status of the project. This capability is similar to setting pass/fail
actions at the step level within a project.

At the project level, the pass/fail actions are triggered by the project run status that is not the
step status. You can link projects together by using a feature called chaining. You can use this
feature to maintain frequently used groups of steps separately from projects that depend on
them. Other uses include executing automated test and deployment projects upon completion
of certain steps. Chaining can also be used to clean up files that are no longer needed by
development teams, by assigning a project to be run at the completion of a job of a specific
class.

Tag Sync is used to synchronize the tag variables for two projects. Select the project whose
tag variable you want to synchronize with the current project. When two projects are

.source command: A source adapter can also be executed from a step by using the

.source command. You can see an example of it when Rebecca creates a Rational
ClearCase baseline in Example 9-6 on page 365.
Chapter 9. Rational Build Forge for enterprise integration build 383

synchronized, their variables are drawn from the same pool, so that when they run in
sequence, one project gets the value 1, the next gets the value 2, and so on.

Libraries
You can use libraries to modularize common steps into a reusable unit. This reusability makes
libraries an important component for streamlining the creation of new projects. Rather than
creating the same set of steps over again, you define a library that projects can call. Use care
when making changes in libraries, because if the library changes, all projects that use it also
change.

The Libraries module (Figure 9-34) shows library projects. When a project does not have a
selector specified, it is displayed in the Libraries module. These projects absorb the selector
of any project that calls them. They are typically called by other projects through inline chains
or pass/fail chains. Libraries are run from Project Step Chains or Inlines. A library inherits the
environment from the parent project.

From the Libraries module, you can view, edit, create, or launch library projects. You can
execute a library project by itself, but you must specify a selector when you do so. You can
change a library project into a normal project by editing the project and choosing a selector
for it. When you save a library project with a selector, it becomes an ordinary project,
disappearing from the Libraries list. Aside from the lack of a selector, libraries are treated just
like any other project.

Figure 9-34 Libraries module

Libraries module
Edit library properties
Library properties
384 Collaborative Application Lifecycle Management with IBM Rational Products

Selectors
A selector contains a list of property/value pairs called variables. For each variable, you can
specify a value and a comparison. For example, you can specify a property “CompilerVersion
= 1.1” to select only servers that have that property, but you can also specify
“CompilerVersion >= 1.1” to select servers with versions 1.1, 1.3, 2, and 2.0. Selectors
support numeric and string comparison operations:

� A variable can be required or optional. When multiple servers match the required
variables, the system chooses the one that matches the most optional variables.

� You can repeat optional variables in a selector, to increase the score of a server that
matches them. For example, you might require MEM_TOTAL> = 1 GB but repeat
MEM_TOTAL >= 2 GB three times to bias the system to choose servers with memory of at
least 2 GB. See the following list of actions for details about how the system makes its
choice.

� You can use the .include statement to add environment variables from another selector.
The .include statement references an environment. If duplicate variables are in
environments, the system counts each instance of the variables when it assigns scores to
servers.

The system chooses a server by using the following sequence of actions:

1. It compiles a list of the servers that contain all the required variables in the selector.

2. It rates each server, granting the server a point for each optional variable that it matches.

– If the selector contains more than one copy of the same variable, the extra copies grant
extra points to servers that match them.

– The system assigns one extra point to the server with the lowest BF_LOADRATIO
value.

3. It chooses the server that received the most points.

9.7 Problem determination

The build can be broken for several reasons. The most important issue is to determine the
type of failure.

System-level failures
System-level failures originate in the operating system, network, database, or tool level. For
example, if you do not have a Build Forge Agent running on the target server that the build
steps use, the build project fails at the concerned step. If your network connection is not
available for that instance for a particular target server for any reason, the result is the same.
Also the tools that you command from Rational Build Forge should be up and running during
the execution of build.

Before the build engineer asks the team to do any task to fix a failure, the engineer must be
certain that the issue is not related to system-level failure.
Chapter 9. Rational Build Forge for enterprise integration build 385

Project-level failures
Project-level failures are the most valuable and most appreciated ones, because they are the
only ones that indicate if something is wrong with the build or release.

For example, if the test scripts in our build project have errors, the project is failed by Rational
Build Forge. When any filter pattern results in a failure, the project is also flagged as failed.

Conditional failures are also project-level failures. If the conditions that we set for the build
project are not fulfilled as discussed in “Selectors” on page 353, Rational Build Forge
generates a timeout failure after a certain period of time that is defined by build engineer in
the project.

For instance, in our selection of the AccountOpening build project, we require a maximum of
two actively running build projects at a time on the defined “Build Server 1.” Therefore, if we
have more than two executions of a build when we run the third project, then Rational Build
Forge waits for the defined timeout period and lets the build project fail.

Unmaintained project failures
Generally unmaintained project failures are encountered because of weak communication
environment between team members. A build project expects every software artifact that will
be used in the build or release is where it is meant to be as defined in the environment
variables. Rebecca should be notified of any change so that she can update the related
environment variable before the next scheduled project runs.

For instance, consider that Rebecca changes her password in Rational ClearQuest, but
forgets to change it in the CQALM_PASS environment variable in Rational Build Forge.
Obviously, she will have a failure when she creates the ALMBaseline record in Rational
ClearQuest in Example 9-17 on page 367.
386 Collaborative Application Lifecycle Management with IBM Rational Products

Part E Act 4: Managing quality

In this part, we highlight how our customers and IBM are applying Application Lifecycle
Management (ALM) to manage quality. Act 4 of the storyboard begins when the integration
build is complete. The test team deploys the build onto the test servers and tests the solution.
Two chapters are provided. Chapter 10, “The solution test team manages quality” on
page 389, provides information about quality management as it relates to the scenario.
Chapter 11, “Rational Quality Manager for managing quality” on page 409, provides detailed
information about the Rational products that are used to support this act of the story.

Part E

Role-based guide: To understand how the content in this part applies to your role, see the
role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7 on
page 13.
© Copyright IBM Corp. 2008. All rights reserved. 387

388 Collaborative Application Lifecycle Management with IBM Rational Products

Chapter 10. The solution test team manages
quality

In this chapter, we provide an overview of quality management along with a reference
scenario for how it can be applied by an enterprise team.

This chapter provides, describes, discusses, or contains the following topics:

� An introduction to quality management

� A reference scenario for quality management

� Information about how this scenario relates to the previous scenarios and how it can
impact the subsequent scenario in the life cycle.

� Considerations for quality management and variations on the scenario

This chapter includes the following sections:

� 10.1, “Introduction to managing quality” on page 390
� 10.2, “A reference scenario for managing quality” on page 397
� 10.3, “Considerations in quality management” on page 401

10

Role-based guide: To understand how the content in this chapter applies to your role, see
the role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7
on page 13.
© Copyright IBM Corp. 2008. All rights reserved. 389

10.1 Introduction to managing quality

The testing discipline has evolved from manual testing into a sophisticated battery of testing
techniques and testing gates. In this chapter, we discuss the evolution of testing from a
defect-driven perspective into a more holistic approach called quality management.

10.1.1 The changing test market

Testing was once viewed as an afterthought to the “more meaningful” act of developing
software. The testing organization was established to find defects. This was considered an
important step in managing the quality of the application. However, it placed the testing and
development teams at psychological odds with each other. Developers take pride in not
having defects in their source code, while the testers job is to find them. Therefore, a natural
tension arises between the two organizations when their function is viewed from this
perspective.

Software has proliferated into common household devices, appliances, and machines, in
addition to complex systems and critical IT applications. As software has become a part of
our daily life, in turn, it is driving more of the business’ bottom line. The quality of the software
has a direct impact on the business, and the reputation of the business is based on it. The
need to deliver quality software brings a new spotlight on the testing discipline. As such,
testing techniques have evolved from purely manual testing to a blend of manual and
automated functional, performance, services, security, and compliance testing to respond to
the critical role software plays in our every day life (Figure 10-1).

Figure 10-1 The changing test market

The market focus has moved from “testing” to quality management and is now trending
toward business-driven quality management. The move to quality management involves
understanding and delivering what the business needs. Quality management is a shared

Business Management
Testers work with business

analysts and security officers
to establish requirements

and validate user demands
to achieve business and

production objectives

Quality Management
Testers ensure applications
meet business objectives

Testing
Testers identify

defects in
developer’s

code
Testers

Developers

IT Executives

Business
Analysts

The changing test market
Organizational, environmental, and cultural impacts in the software development life cycle

Business Influence / Impact on Business Objectives & Results

O
rg

an
iz

at
io

na
l I

nf
lu

en
ce

Time
390 Collaborative Application Lifecycle Management with IBM Rational Products

discipline across the organization, where the development team (developers and testers
alike) seek to understand the business and deliver what the business needs.

Traditional testing made sure that the software did what the developers said it would do.
Quality and business management moves the focus to ensure that the team delivers software
that the business has defined. Rather than placing the development and testing organizations
at odds, quality management creates a common goal between the teams. The goal is to have
a common understanding of the user requirements and use these requirements to validate
the developed application. The move to quality management has the business analysts, test
and development teams closely working together. Achieving customer satisfaction is the
focus of all organizations.

10.1.2 Quality management blueprint

With quality management, every team member contributes to the quality of the release
throughout the development life cycle (Figure 10-2). The business analyst contributes the
business requirements by using the language and expectations of the user, with the intent of
defining what the user needs. A system analyst or modeler works with the business
requirements to understand and develop the application requirements to define how the
application will be implemented to satisfy user needs. Developers refine the design,
implement, build, and test the solution against the requirements and expectations of the user.

Figure 10-2 Quality management in action

Even the build system contributes to quality management through the automation of manual
tasks and the running of build verification tests. Quality management can also involve
monitoring the team build in a continuous build scenario to ensure. at delivery time. that
developer changes have not broken the team build. To have a successful build is not enough
in a quality management initiative. Automated build systems include build verification testing
to provide insight into the quality of the build. Obvious errors can be fixed early by the

Build deployment
and monitoring

Quality management in action
Continuous process, powered by automation to govern software delivery

Enabling
infrastructure

Process
guidance

Workflow
control

Automated
buildDeveloper

Modeler

Tester
Unit testing

Web service testing
Functional testing

Performance testing

Security and
compliance validation

Business model
and requirements

Visual
model

Security

Deployer

Manager

Analyst
Chapter 10. The solution test team manages quality 391

development team, leaving the test team to focus on running system-wide tests that might
uncover the not-so-obvious defects with the system.

The test team is where we traditionally look for quality management, and with the shift toward
quality management, their role is expanded. Test plans that were once overlooked or ignored
now form a type of contract back to the business by stating what the business expects. Test
teams have a battery of testing techniques to increase the quality of the application, from
traditional manual testing, to automated functional and performance testing. Security and
compliance tools are used to scan a running application by using a predefined set of criteria
to catch vulnerabilities. Service-oriented architecture (SOA) quality management is an
important aspect of service lifecycle management. It is one that reflects the need to address
multiple aspects of service quality across multiple SOA service implementations.

To address the needs of the quality management market, IBM Rational has produced and
delivered on a quality management blueprint (Figure 10-3).

Figure 10-3 IBM Rational software - Quality management blueprint

Test management
Quality management starts with test management. Test management coordinates the
disciplines of test planning, test construction, test lab setup, test execution, and test analysis.
A test management system provides a repository for managing and organizing the test effort.
By placing all assets in the test management system, the testing team has a clearer indicator
of their progress and a common repository for managing and sharing test cases and scripts.
Requirements are linked to test plans and test cases, test cases are managed in the context
of a test plan, and test scripts are placed under version control. Test execution is tracked for
the project, and defects are reported. In addition, tests can be created and reused across
multiple projects, and reports become much easier to create and manage.

Quality management blueprint

Test
Management

Test Lab
Setup

Project status
Talks the business
language
Knows the application
domain
Thousands of users
Web-based UI
Leverage data

Test
Planning

Test
Construction

Test
Execution

Test
Analysis

Specify test type
Project
requirements
Platforms
Team roles
Test cases
Quality exit criteria
Schedules

Build test scripts
Create manual
tests
Specify the test
environment

Identify the build
location
Specify lab request
Pick test tools
Select cases to run
Deploy the software

Execute UI test
Execute
Report real-time
progress
Create log files

Examine test
results
Recommend
actions
Code scanning
Error analysis
Run-time analysis

Control the planning and ongoing status of the test project
Responsible for effective execution of test and resources

QA Team

Improve team
efficiency
Develops
automated tests
Hundreds of users
Deep tool/
programming
language knowledge
Talks the technology
language

Quality ManagementRequire-
ments

Business
Defects
392 Collaborative Application Lifecycle Management with IBM Rational Products

Test planning
Before the shift in quality, the emphasis was on delivering test cases. Now, the focus has
shifted to targeting which test cases to run to meet business expectations. In quality
management, the test effort revolves around the test plan.

Instead of writing a test plan in a document or spreadsheet, the test plan is managed by the
quality management system. Test management organizes the test plans, cases, scripts, and
execution results, thus giving the entire team clarity into the plan and progress of the testing
effort.

During test planning the team is established and roles are defined. The project requirements
and exit criteria are identified. Test types, such as functional or performance tests, are
planned and scheduled, and the platforms are determined. Test plans also align test cases
with the business requirements.

In addition, the test plan provides the team with something to measure against, because it
provides insight into what needs to be done and how the team is progressing against the
plan. The test plan states what the business expects, communicates how the team plans to
meet them, and helps teams to determine when they are done. In the new paradigm, the
team is done when the exit criteria for the test plan has been met.

The test plan can range from a simple statement or grow into a comprehensive testing
strategy. Every project is different, and thus, the test plans from project to project differ to
adapt to the needs of the team. There are fundamental components to a test plan that are
worth considering for every software development project. The components, as illustrated in
Figure 10-4, are test cases, builds, reports, strategy, quality process, requirements, test
schedule, and test Environment. Each project can use as few or as many as makes sense for
the situation.

Figure 10-4 The test plan at the heart and soul of quality management

Test
plan

Test project
schedule

Builds

Reports

Requirements

Quality
process

Strategy

Environment

Test
cases

Rational Quality Manager advances
the traditional industry approach
Chapter 10. The solution test team manages quality 393

The test plan contains the following components:

� Requirements

Requirements are added to the test plan to help the test team focus their efforts and
understand exactly what is expected of the solution. By bringing the requirements into the
test plan, the test team moves closer to working with the business to ensure that the
application meets the business needs. Testers can review each requirement and build the
test cases for each of the requirements. This gives the team insight into their requirements
coverage by having direct links between requirements and test cases.

� Test schedules

The test schedule gives clarity into what is expected when. Clearly you cannot test
everything all at once. Therefore, the test schedule plans the testing over time.

� Test environment

The test environment defines what systems and software are needed to test the software
application. By defining the environments early, the test team can determine if new hardware
or software is needed. Having an inventory of the lab assets and how they are configured is
crucial to the success of the test team. The ability to automatically discover the current
configuration of a lab resource streamlines the team’s ability to locate a server and deploy a
build. As part of the test plan, servers can be reserved by the team. When reserved, the
team can configure machines with the appropriate software stack while waiting for a build
from the development team. Additionally, consideration is given to the environments that will
be used for integration, system, performance and user acceptance testing.

� Test cases

Test cases are written to verify that the requirements have been implemented as
expected. By linking test cases back to requirements, the test team has much greater
visibility into the testing progress. For example, the number of test cases per requirement
and across all requirements provides an indicator to the size of the effort. As test scripts
are written, the team has an indicator of progress against the plan. Finally, as tests are
executed, the team has insight into the testing progress and the quality of the solution.

� Builds

Test execution cannot happen without a build. Knowing when the builds are available and
what has changed in the build helps the test team to decide when to deploy a new build
into the lab. Teams that run build verification tests also have insight into the quality of the
build before spending precious time deploying it into the lab. Additionally, linking test
results and defects with a specific build helps teams to reduce the time for problem
resolution. When a defect is tied to a specific build, the developer can more easily recreate
the defect as reported by the tester.

� Reports

Reports are generated against the plan. Without a plan, the reports that a team can
produce are limited. However, with a plan, the reports become much clearer. The team
can now generate reports that tell them the following information and more:

– How many requirements have test cases
– How many requirements have been tested
– How many test cases have been implemented
– How many test cases have been run

Additionally, trend reports can be generated to gain insight into the reality of reaching the
plan. For example, are the number of requirements being added to the project trending up
or down? Understanding the direction that the defect rate is trending provides insight into
the overall quality.
394 Collaborative Application Lifecycle Management with IBM Rational Products

� Strategy

Strategy gives insight into the scope and approach to the testing effort. The team decides
items such as how much of a test plan will they develop, the level of testing that will be
executed (JUnit, build verification testing, system verification testing), how many test
environments to use, the process for advancing a build through the environments of
integration, system, user acceptance test, and so forth. The strategy defines how the team
will ensure that the solution aligns with the business objectives. The strategy creates the
definition of when quality is achieved in terms of the business objectives.

� Quality process

The quality process brings clarity to the process that is used for testing. The teams agree
on the process for defect reporting, whether test plan and test cases will be reviewed and
approved by senior members of the team, and so forth.

Each team and each project might take a different approach to applying test plans. Some
examples include creating a test plan for the entire release, for each iteration, for each test
type (functional, performance, and so on), for each test environment such as integration,
system, and user acceptance test. Agile teams can create test plans that align with the story
for the iteration, and the definition of the story affects the test plan. A test plan can even
include developer unit testing and build verification testing.

It is not expected that all of these components come into play on every project. Rather,
consideration of each of these areas helps a team to determine their strategy and approach
to each project.

Test construction
During construction, the test cases are defined and developed. The work that is completed in
the Construction phase comes from the test plan. During test planning, test cases are
identified. During the Construction phase, the test cases are developed.

All tests are managed by the quality management system. Manual tests are core to the
system rather than written in separate documents and stored on a file system. Automated
tests can be created by using any tool, and the resultant scripts are managed by the system.

A common challenge for testers is to build a test matrix to determine what tests to run against
a series of test environments. During test planning, the test environments are identified.
During construction, these environments are used to define test executions. The quality
management system should help to simplify this task by using the environments that are
defined in the test plan to guide the tester in choosing the test configurations, where each
choice is stored in the system as work item for execution. These execution work items
indicate which tests need to be run and serve as an indicator of progress.

As tests are used and refined, all changes go back into the system so that all team members
benefit from the updated tests. Tests can be shared and reused across multiple projects, thus
reducing redundancy and improving a team’s performance.

Because the test cases are managed by the quality management system, and associated
with a test plan, the team can measure progress against the plan. For example, the test lead
can ask the following questions:

� Do I have test cases for all of the requirements or for all of the test types?
� How many test scripts are written and how many are left to write for this iteration?
� How many execution items exist for this test case?
� Do all test cases have test executions?
Chapter 10. The solution test team manages quality 395

These types of questions give the test lead additional information for measuring the team’s
progress. By planning the test cases, there is now a means to measure how many are written
and how many need to be executed. In doing so, the test team has visibility into the size of the
testing effort.

Test lab setup
Lab reservation and management systems contribute to managing quality by helping the test
team to identify properly configured servers that are available for use. By managing the
servers, test teams can reduce conflicts or accidental changes to a system that is in use.
Teams can also identify servers that are either properly configured or close to the
configuration that is needed for testing, thus reducing the turnaround time in preparing the
servers for testing. By having insight and visibility into the test lab, test teams can intelligently
plan for and choose properly configured servers.

Test lab setup becomes more streamlined when server configurations are understood as part
of the test plan. By having a catalog of the servers in the lab, the test lead can ask: “Do I have
the equipment and software needed?” When the lead discovers the current equipment, the
lead can follow up with these questions: “Is it available when I need it?” and “Does it have the
software I need installed on it?” The lead can interrogate the current test lab to determine if
new hardware or software must be ordered.

When the test configurations are understood, the test lab preparation can begin. The lab
servers are configured, and test tools are deployed. When an integration build is available, it
is deployed to the servers for test execution to begin. Over time, teams gain insight into server
utilization with an understanding of which servers are being reserved and used, and which
are left idle.

Test execution
After a build is deployed on the test servers, test execution can be begin. But how does the
tester know what tests to run? This information is stored in the test plan. The tester can
reference the plan and determine which tests are supposed to be run. User interface tests,
functional tests, performance tests, and security and compliance scans are run. However
each of these test types are executed with a specific test execution engine. The quality
management platform coordinates the test execution effort and provides the means to plug-in
a wide variety of test execution engines.

For example, functional tests are a common source for automated testing. By recording a
series of events against a software solution, a tester can save time and ensure that the same
test is run against every build or iteration. Functional testing ensures the system functions as
expected.

In a similar manner, performance tests involve running a series of tests while simulating a
specified number of users who are using the system. Performance tests can be designed to
simulate a wide range of user activity over a period time. Such testing helps the team to
identify performance bottlenecks prior to going to production.

In addition, SOAs introduce a new level of complexity for testers because of the nature of
composite applications. Composite applications are composed of many services that are
often developed and deployed independently by separate development teams on different
schedules, which creates unique challenges in ensuring a high level of quality throughout the
development cycle.

Security and compliance tools are used to scan a running application by using a predefined
set of criteria. Security scans test against a known set of tactics that are used by hackers,
while compliance scans test compliance to a specified regulation. These scans work in a
396 Collaborative Application Lifecycle Management with IBM Rational Products

manner similar to virus scanning applications on a home PC. The definition files are created
and maintained by the vendor. Organizations that use the scanning software keep their
definition files up to date and run scans against their applications. The scan identifies
potential problems thus enabling the team to respond during the testing phase. By using this
type of automation, an enterprise can consistently identify potential threats and close them
prior to going to production.

With test execution built into the quality management system, groups of tests can be selected
and run against a system without human intervention. The testers monitor the result of the
automated tests as they are run, but are free to develop additional test scripts while the
automated tests run. For example, in some organizations, performance tests have grown in
sophistication where they run for several days with thousands of virtual users fully stress the
application.

With integrations to test execution engines, the results of the test effort are captured in the
quality management platform, enabling progress to be reported against the test plan. Teams
have insight into which tests have been executed and with what result.

Test analysis
Continuous improvement applies to every discipline and every step in the life cycle. Test
analysis implies that teams seek to improve their test strategy, test plans, test cases, and test
execution.

The quality management must provide a full set of reports to analyze the test team’s progress
and performance. The test plan and progress are evaluated, and action is recommended to
improve quality. Test teams can begin to analyze the quality by asking questions such as:
“Which test cases am I using the most often?” and “Which are not being used?” The heavily
used test cases are candidates for automation. The test cases that are not used might expose
a gap in the test effort or might indicate excess that is no longer needed. By analyzing the
answers to these questions, test leads can take the appropriate action to improve their test
coverage.

Many times test teams find problems that should have been found much earlier in the cycle.
Test analysis encourages teams to continually seek improvement to avoid similar problems in
future releases.

10.2 A reference scenario for managing quality

In this section, we provide an overview of the steps that are taken by the testing team to
manage the quality of the weekly integration build (Figure 10-5 on page 398). In Chapter 11,
“Rational Quality Manager for managing quality” on page 409, this workflow is demonstrated
in the Rational products. This scenario continues to build off the previous acts in this book.

In 4.2, “A reference scenario for responding to a change request” on page 105, Tammy was
notified of a changed requirement. She contributed to the sizing of the test effort for the
requirement and then updated her test plan when the team agreed to absorb the change in
their current iteration. She also reserved a group of servers and created a request to prepare
the servers with her test configuration.

In Chapter 6, “An agile team implements a change” on page 213, the development team
implemented the change. The implementation included a developer running unit tests prior to
delivery and a team build that also conducted build verification tests.
Chapter 10. The solution test team manages quality 397

In Chapter 8, “The release engineer conducts the integration build” on page 315, the release
engineer, Rebecca, conducted the integration build, which brought together changes from
multiple teams including the team that is described in Part C, “Act 2: Collaborative
development” on page 211. The build is automated and includes source code analysis and
build verification testing. The build is staged and published for the test team.

Figure 10-5 Act 4 illustrating how the team tests the solution

The quality management story continues with the test team. After her test plan was updated,
Tammy assigned a test case to Tanuj. While the development team is implementing the
change, Tanuj is able to construct the tests. However, he needs a running application to
execute his tests.

This scenario begins immediately after Tammy updated the plan in Part B, “Act 1:
Responding to a change request” on page 77, and then pauses while the development team
implements the change. It resumes again with Tammy when the weekly integration build is
announced.

10.2.1 The actors

This scenario includes the several key actors as described in this section.

Tammy is the name of the test manager. She has a global quality team distributed over
multiple sites. Her team is responsible for conducting solution testing, which includes
functional, performance, and security testing at the solution level. The testing does not
include JUnit or component level testing, which is the responsibility of each of the
development teams. Tammy’s team conducts solution testing as part of the iteration. They
take a new solution build each week, thus providing an early feedback loop to the
development team when there are defects at the solution level. She also provides a globally
distributed test environment for the project. She is the gatekeeper and owns staging.

Tanuj is the name of the tester. He is responsible for creating the test cases and test scripts.
He also executes the tests and analyzes the results. He logs defects when needed. Tanuj and
his teammates employ a full battery of tests including manual, functional, performance, and
security tests.

Act 4: Manage Quality

Tammy
Test Lead

Manage quality

Tanuj
Test Engineer

The stability and quality of the solution
integration builds are tested by the
globally distributed quality team.

4.
1,

 4
.5

Ta

m
m

y
m

on
ito

rs
 q

ua
lit

y
m

et
ric

s

4.3 Tammy prepares the
test lab

4.2 Tanuj constructs tests

4.4 The team executes
tests

4

398 Collaborative Application Lifecycle Management with IBM Rational Products

Diedrie is the developer who implemented the change request that Tanuj is testing. She takes
great pride in her work and is astute in fixing defects. In this part of the scenario, Diedrie and
Tanuj collaborate on resolving a defect in Diedrie’s solution.

10.2.2 The workflow

In Part C, “Act 2: Collaborative development” on page 211, of the Application Lifecycle
Management (ALM) scenario, we capture the scenes and steps of a single request that is
being tested by Tammy and her team. The testing team links to the requirements, constructs
the tests, prepares the test lab, and executes the test cases as defined by the plan. Tammy
monitors the test team’s progress. At the end of the act, the solution is fully tested.

The steps shown in Figure 10-6 are performed by the globally distributed testing team in Act
4: Managing quality.

Figure 10-6 The flow of steps for the Act 4: Manage quality

Quality Management

4.3 Tammy prepares the test
lab

Creates
test

scripts

Configures
tests for

execution

Execute
tests

Request
build

deployment

Collaborate
to close
defect

4.4 The team tests the
solution

Updates
test case

Confirm
test

resources

4.1, 4.5 Tammy monitors quality

Manage
test plan

Monitor
exit criteria

Approve
quality

Detail
requirement

(Act 1)

Import
requirement

Associate
test case

4.2 Tanuj constructs tests

Run
security

scan
Chapter 10. The solution test team manages quality 399

This act includes the following scenes:

� Tammy monitors quality.

– At the end of Act 1, Bob detailed the requirements. In this act, Tammy creates a link to
the requirements in her test plan.

– She associates the test case and the requirement.

� Tanuj constructs tests.

– Tanuj updates the test case that Tammy created.
– He creates a manual test script for the test case.
– Using the environments defined in the test plan, he determines the test configurations

that are needed to fully test the requirement and creates execution work items for each
test to execute.

� Tammy prepares the test lab.

– Tammy confirms that she has reserved the needed test configurations.
– She submits a request to have the integration build deployed to the test lab.

� The team tests the solution.

– Tanuj executes his manual tests.
– Tammy runs a security scan.
– They both evaluate their results.

� Tammy monitors quality.

– Tammy evaluates the exit criteria.
– Tammy confirms testing is complete and the solution has met its quality goals.

10.2.3 Tammy monitors quality

The workflow in this scene captures how Tammy completes the following tasks:

� Links to requirements in Rational RequisitePro
� Associates the requirement with a test case

10.2.4 Tanuj constructs tests

In this scene, Tanuj completes the following tasks:

� Updates the test case with additional detail
� Writes a manual test script that is associated with the test case
� Configures tests for execution

Synopsis: When Tammy updated the test plan with the new request from Bob, he had not
yet detailed the requirements. The next day Bob notified Tammy that the requirements
were complete. In this scene, Tammy links the requirements to her test plan. This scene
begins immediately after the completion of Act 1 and occurs in parallel with Act 2, where
Marco and Diedrie design and implement the request.

Synopsis: When Tammy updated the test plan with the new request from Bob, Tanuj
began constructing tests, while Diedrie and Marco were implementing the change. This
scene starts the day after Tammy updated the test plan, and Bob detailed the requirements
in Act 1.
400 Collaborative Application Lifecycle Management with IBM Rational Products

10.2.5 Tammy prepares the test lab

The workflow in this scene captures how Tammy completes the following tasks:

� Confirms that the test resources are reserved
� Inspects the build
� Deploys the build

10.2.6 The team executes the tests

The workflow in this scene captures how Tanuj and Tammy complete the following tasks:

� Execute tests
� Run a security scan

10.2.7 Tammy monitors quality

The workflow in this scene captures how Tammy and her team perform the following tasks:

� Monitor quality
� Approve quality

10.3 Considerations in quality management

As discussed, quality management spans the entire life cycle. The scenario provided for this
IBM Redbooks publication provides a view into the testing discipline, but does not cover every
aspect. Additional considerations for quality management are discussed in this section.

Synopsis: Rebecca notifies the team that a new integration build is available. Tammy
inspects the build and decides to deploy it to the test lab.

Synopsis: Tanuj and the team learn from Tammy that the new integration build has been
deployed. He executes the test scripts, the results are logged, and the test status is
updated.

Synopsis: One week later, Tammy reviews the test plan and evaluates the exit criteria.
She uses the exit criteria that is established in the test plan to measure their progress and
make adjustments. The usual cycle of defect submission and resolution occurs until the
test exit criteria is met and is complete

On the final day of the iteration, Tammy confirms that the solution meets the exit criteria.
She informs Patricia that the quality has met the expectations.
Chapter 10. The solution test team manages quality 401

10.3.1 Automated testing

The reference scenario showed how Tammy’s team conducted manual functional and
automated security scanning as part an iteration. Automated test tools can also be used with
Rational Quality Manager, which has an execution engine that allows for the execution of
automated tests from external test tools. Adapters are provided for Rational Functional Tester
and Rational Performance Tester.

Automated functional testing
Functional testing of a system ensures that the system behaves as expected according to the
requirements. Some functional tests are performed manually, as described in the reference
scenario. Other functional tests can be automated by recording the series of steps and saving
the script. The script can be run as needed to confirm that the system behaves as expected.
The automated test tool executes the test and returns the results to the user.

Rational Quality Manager can be used to manage and execute the scripts from automated
functional testing tools. An adapter is provided to execute the automated test scripts of
Rational Functional Tester. In the reference scenario, Tammy runs an automated security
scan. The execution of an automated functional test occurs in a similar manner.

See the Rational Functional Testing page at the following address for a complete list of
functional testing products, including Rational Functional Tester and Rational Tester for SOA
Quality:

http://www-306.ibm.com/software/rational/offerings/quality/functional.html

Performance testing
Performance testing is another critical type of testing to take into consideration. There are
multiple approaches to performance testing. In some organizations, the development team
(developers and testers) perform the performance tests. In other organizations, performance
testing occurs as a critical test prior to production deployment.

Performance tests are established to determine how well the system performs under various
circumstances such as having a large number of users perform the same action on the
system at the same time or over long periods of time. A series of tests are created that mimic
user behavior, involving common user paths in a lab that either mimics or is scaled-down
version of the production environment. The purpose is to ensure that the solution tested
against the same hardware and software configuration as the final production environment.
The testing includes a set of virtual users that are configured to run through a series of tests.
In many cases, these users are defined to mimic users from multiple geographies by using
the system.

By running performance tests prior to going to production, the team reduces the chances of
down time due to customer load. It also gives the team the opportunity to optimize
performance and identify potential bottlenecks before the users do.

Rational Quality Manager can be used to manage and execute the scripts from performance
testing tools. An adapter is provided to execute Rational Performance Tester scripts. In the
reference scenario, Tammy runs an automated security scan. The execution of a performance
test occurs in a similar manner.

See the Rational Performance Testing page for a complete list of performance testing
products, including Rational Performance Tester and its extensions for SAP, Siebel, SIP, Citrix
Presentation Server, and SOA Quality:

http://www-306.ibm.com/software/rational/offerings/quality/performance.html
402 Collaborative Application Lifecycle Management with IBM Rational Products

http://www-306.ibm.com/software/rational/offerings/quality/functional.html
http://www-306.ibm.com/software/rational/offerings/quality/performance.html

10.3.2 Automated scanning

Automated scans provide a unique value to test teams by scanning software using a
predefined set of rules.

Security and compliance scans
Web site security and compliance should be a top priority for organizations that are intent on
protecting sensitive company, customer, and employee data, on meeting regulatory and
corporate compliance requirements, and on defending against the high cost of a data breach.
Web sites and their applications are high focus targets for hackers because they provide a
direct route to corporate or personal data regardless of network security implementations.

In many cases organizations cannot keep up with the details and changes to regulatory
compliance, new threats, and security mandates. For example, Payment Card Industry Data
Security Standards (PCI DSS) Subsection 6.6 became a mandatory requirement on 30 June
2008. PCI DSS requires that companies ensure that all Web-facing applications are protected
against known attacks by applying either of the following methods:

� Having all custom application code reviewed for common vulnerabilities by an organization
that specializes in application security

� Installing an application layer firewall in front of Web-facing applications

Using scanning technology frees IT teams from learning and implementing tests for every
detail of these regulations by relying on experts in security or compliance provide a scanning
service.

IBM Rational AppScan and Rational Policy Tester are scanning and testing solutions that
automate application and content analysis to help organizations identify vulnerabilities,
assess compliance requirements, and improve the accuracy and reliability of online systems.

Security and compliance tools are used to scan a running application by using a predefined
set of criteria. Security scans test against a known set of tactics that are used by hackers,
while compliance scans test compliance to a specified regulation. These scans work in a
manner similar to virus scanning applications on a home PC. The definition files are created
and maintained by the vendor. Organizations that use the scanning software keep their
definition files up to date and run scans against their applications. The scan identifies
potential problems, thus enabling the team to respond during the testing phase. By leveraging
this type of automation, an enterprise can consistently identify potential threats and close
them prior to going to production.

Rational offers Web application security solutions through the Rational AppScan product
family for all stages of development and for all types of testers. The Rational AppScan family
includes the following products:

� Rational AppScan Standard Edition for IT Security, auditors, and penetration testers

� Rational AppScan Reporting Console, which provides centralized reporting on Web
application vulnerability data

� Rational AppScan Enterprise Edition, which is a Web-based, multi-user Web application
vulnerability testing and reporting solution that is used to scale security testing across the
enterprise

� Rational AppScan Tester Edition, which integrates Web application security testing into
the current QA environment
Chapter 10. The solution test team manages quality 403

Rational Web site compliance solutions include IBM Rational Policy Tester, which automates
Web site privacy, quality, and accessibility reviews to help identify issues impacting
compliance and site effectiveness. The Policy Tester family includes the following products:

� Rational Policy Tester Accessibility Edition, which helps ensure the accessibility of Web
sites to all users, including those who access sites by using assistive devices

� Rational Policy Tester Privacy Edition, which uncovers and reports online privacy
oversights that might expose the organization to undue risk

� Rational Policy Tester Quality Edition, which automates the scanning, analysis, and
reporting for online privacy, quality, and accessibility compliance

Static analysis
Scanning source code is an important aspect of an overall quality management program.
Developers can run source analysis during development, release engineers can incorporate it
into the build, or a final scan might take place prior to release.

The Rational Software Analyzer product is designed to analyze code and report any areas
where a set of selected rules have been broken. These rules can take almost any form
including basic code review, code complexity, or detection of common code patterns and
anti-patterns. Rational Software Analyzer provides the following benefits:

� Software development teams can consistently catch potential software defects in real time
earlier in the software development life cycle.

� Project team leads can more effectively manage governance and compliance IT objectives
through a customizable reporting framework.

� It automates code reviews and incorporates static analysis into the existing software
prebuild process across the life cycle, empowering teams to deliver more value.

� With a common static analysis framework, you can create a customizable and consistent
workflow for all forms of static analysis rules within a single session.

Rational Software Analyzer ships in two editions: one for the developer and one for the
enterprise:

� Rational Software Analyzer Developer Edition is a standalone Eclipse-based tool that
targets developers. As the develop code, developers can quickly run the analyzer tools to
detect early problems in their code before it is delivered to the code management system.

� The Rational Software Analyzer Enterprise Edition runs as a central service and can be
integrated with Rational Build Forge or any other build management system to perform
regular analysis of the source code in a project. The tool plays a part in the ALM and
governance processes within the enterprise. The Enterprise Edition can generate refined
analysis reports for both developers and others in the enterprise.

10.3.3 Approaches to iterations

In some organizations, it is common to conduct integration or system testing at the end of the
project. The development team works for weeks before the solution is “thrown over the wall”
for testing to begin. All too often, the development schedules take longer than expected, and
as a result, the amount of time dedicated to testing is cut short. The problems with this
approach have been well documented. The bottom line is that this practice typically leads to
lower quality solutions and a lot of blame to determine the root cause of the failure. This
section describes strategies for incorporating the test effort into development iterations.
404 Collaborative Application Lifecycle Management with IBM Rational Products

Testing at the end of an iteration
Agile and Iterative development encourage a time-boxed deliverable, where a shorter testing
time is better. Thirty-day iterations tend to be a common theme, while some teams strive for
shorter iterations, and others use longer iterations. The solution team described in this
scenario rallied around four-week iterations, while the smaller more agile team used 2x2
week iterations for each one of the solution team’s iterations.

With a thirty-day deliverable, it makes sense to system test right after the iteration. When the
development team completes iteration 1, the test team begins system testing. The
development team continues on to iteration 2. As testers find and report defects, the
developers can fix the defects in their current iteration. When that iteration is complete, the
testers deploy the build, confirm the fixed defects from the previous iteration, and test the new
functionality. To accommodate this offset model, the last iteration is dedicated to fixing the
defects that are found in the previous iteration. This approach (Figure 10-7) dramatically
shortens the amount of time between development and system test.

Figure 10-7 System testing after each iteration

This approach includes the following benefits among others:

� Developers gain insight into defects soon after developing the source code. The code is
still fresh in their minds, and they can more easily get to the root cause.

� Testers and project managers gain insight into the solution health much sooner in the
cycle. The feedback loop for the user perspective begins early in the project and can
continue to be finessed as the team progresses through their iterations.

� The testing team is more engaged in the product development and improvement. Earlier
access to the system allows the team to become more familiar with the features and
expectations of the solution.

� With the testers aligning closer to the business, this helps to shorten the feedback loop
from the business, thus giving the entire team a better gauge to measure themselves
against.

� Questions or disputes about expected behavior can be resolved early in the cycle, and if
need be, stakeholders can be contacted to gain insight into the resolution.

Any time that there is a change in approach, there is likely going to be a downside:

� By system testing after each iteration, the test team must also become more agile. The
builds are produced more often and must be deployed to test servers. Test cases and test
scripts must be ready in time for the iteration, and it is likely that they will be re-written
many times as the team learns more about the system iteration after iteration.

� The test effort for the iteration must align with the stories and requirements implemented
by the development team. The scope for each test effort becomes narrower and more

Iteration 1 Iteration 2 Iteration 3 Fix Defects

System
Test

Iteration 1

System
Test

Iteration 2

System
Test

Iteration 3
Chapter 10. The solution test team manages quality 405

targeted. To accomplish this, the teams need to communicate often, and the test team
must have insight into the development iteration plans and user stories.

� The test iteration lasts as long as the development iteration. After all, when the
development iteration ends, there is a new build available for testing. And if testing of the
previous iteration is not complete, it sits idle, causing a landslide effect for the rest of the
project.

� The last iteration must focus on fixing defects, which few developers enjoy doing, but at
least time is finally dedicated to the task.

Testing incorporated into the iteration
Agile teams can take this idea one step further by including system test as part of the
iteration. In this approach, the integration build occurs on a weekly basis. Each week a new
build is made available to the test team for testing. The cycle between finding and fixing
defects is shortened even further, thus bringing the quality of the iteration to a higher level.
The teams that use this model (Figure 10-8) can set exit criteria for the iteration, holding
themselves accountable for a high quality iteration before moving on to the next one.

Figure 10-8 System testing incorporated into the iteration

As seen in Figure 10-8, the same offset between development and system testing occurs.
However this time, the cycle is much shorter and integrated into the iteration. After the first
week’s integration build is ready, the test team begins testing. Defects are reported and fixed
in the same week. The next week’s integration build contain the fixes along with new features.
The last week of the iteration is dedicated to defect fixing.

This approach requires more discipline and communication between the teams and
fundamentally requires that the imaginary wall between development and test is removed. All
members of the team are expected to respond to changes as they occur. The test team is
tightly aligned with the development team, and both teams are aligned with the business
needs. Together they move through each iteration developing, testing and confirming user
stories intent on delivering what the business needs. The pros and cons to this approach are
similar to those in “Testing at the end of an iteration” on page 405, but somewhat amplified.
The defect cycle is extremely short, the test scope is extremely focused, and all members of
the team produce assets that are likely to be revised and improved upon in the next iteration.

Iteration 1

Week 1 Week 2 Week 3 Week 4

SVT W1 SVT W2 SVT W3

Iteration 2

Week 1 Week 2 …

SVT W1 …
406 Collaborative Application Lifecycle Management with IBM Rational Products

10.3.4 Many test phases on the path to production

Testing is no longer a discipline that occurs at the end of the development cycle. Testing is a
vital part of every iteration plan, as shown in the reference scenario. While the reference
scenario focuses on a single iteration in the Construction phase, the testing of the solution
continues through multiple testing phases before the solution is approved for production
(Figure 10-9).

Figure 10-9 Managing quality at all levels of deployment

As illustrated in Figure 10-9, testing is completed by developers, by release engineering, and
then by more formal test phases of function, performance, and acceptance testing. As an
integration build becomes more stable, it is promoted to the next level of testing, until it is
accepted and approved for production.

Every organization differs in the names and definitions of these test phases. Figure 10-10 on
page 408 provides a representative set of test environments and their definition, which are
explained as follows:

� Unit testing is lowest level of granularity and typically occurs in a developers’ sandbox or
during build verification testing.

� Function testing confirms that components of the solution function as expected. A
component must pass the function test before being promoted to an integration test.

� Integration testing combines components into groups, where the cross-component
function is confirmed to work as expected. When the group of components passes the
integration test, it is promoted to a system test, performance test, or both.

Analyze Function
Test

Performance
and

Security
Test

Acceptance
Test Production

Deploy Deploy

Deploy Deploy Deploy Deploy

Implement and
Unit Test

Build and
Verify Test

• The life cycle is actually numerous iterations that can happen quickly.
• Deployment happens over and over again, by different people for different reasons.
• Testing happens over and over again, changing in focus as you near production.

Development Operations
Chapter 10. The solution test team manages quality 407

� System testing, performance testing, and security scans are sometimes performed in
parallel. At this point, the application is reasonably stable and ready for more intensive
testing. The tests and server configuration are the most sophisticated, and where
possible, the server configuration either mimics or is a scaled-down version of the
production configuration:

– A system test exercises the system the way a user might.

– A performance test analyzes the system’s ability to respond to increased user load and
transaction volume over an extended period of time. Performance testing is used to
identify possible bottlenecks and to fine-tune the performance.

– Security and compliance scans are run against the system during this time to seek
possible security holes and incomplete regulatory compliance.

– An acceptance test involves the stakeholders’ acceptance of the solution. The
acceptance criteria is reviewed and confirmed complete.

Figure 10-10 Test phases to ensure quality in production

IT – The March Toward Production:
Managing Multiple Test Environments

Sandbox

Analyzing or
testing

performance
characteristics,

stress, load,
longevity, volume,

and tuning

Operations

Unit Test Function
Test

Integration
Test

System
Test

Acceptance
Test

Performance
Test

Simple test bed Increased complexity

Scaled down production

Module or unit
or groups of
related units

Software
components,
using stubs or

drivers

Individual
software
modules

combined and
tested as a

group

Exercising the
complete

system in the
way a user

would

Business
customer

acceptance.
Security and

access controls
can be used.
408 Collaborative Application Lifecycle Management with IBM Rational Products

Chapter 11. Rational Quality Manager for
managing quality

In this chapter, we provide detailed “how to” information for Act 4: Managing quality in the
storyboard, where the test team manages the quality of the solution.

This chapter contains the following sections:

� 11.1, “Act 4: Managing quality” on page 410
� 11.2, “Rational Quality Manager” on page 410
� 11.4, “Rational AppScan Tester Edition for Rational Quality Manager” on page 425
� 11.5, “Rational Quality Manager” on page 425
� 11.6, “Life-cycle collaboration” on page 463
� 11.8, “Reference architecture and configuration” on page 470
� 11.7, “Planning and measuring success in quality management” on page 467
� 11.9, “Problem determination and known workarounds” on page 477

11

Role-based guide: To understand how the content in this chapter applies to your role, see
the role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7
on page 13.
© Copyright IBM Corp. 2008. All rights reserved. 409

11.1 Act 4: Managing quality

In Act 1, the team responded to a new request. In Act 2, the agile team delivered the change,
and in Act 3, the integration build occurred. In this chapter, Act 4, we include a step-by-step
discussion about how the test team manages and executes tests against the integration build
using the storyboard illustrated in Figure 11-1.

Figure 11-1 Act 4: The solution test team manages quality

The act has the following scenes:

� Tammy monitors quality.
� Tanuj constructs the tests.
� Tammy prepares the test lab.
� The team executes the tests.

The following Rational products are used in this act:

� Rational Quality Manager 8.0
� Rational Functional Tester 8.0
� Rational AppScan Tester Edition for Rational Quality Manager 5.6

11.2 Rational Quality Manager

Rational Quality Manager provides a test management system that puts the team in total
control of their test efforts. Everything you need to do in test planning, construction, and
execution can be completed in Rational Quality Manager. Decisions are managed in a
database that enables the team to track against the plan.

One of the most critical questions the test team needs to answer is: “When are we done
testing?” With Rational Quality Manager, teams are better equipped to answer that question
by placing an emphasis on the test plan, which enables a team to track their progress against
the plan. A team can do as much or as little as they need.

Act 4: Manage Quality

Tammy
Test Lead

Manage Quality

Tanuj
Test Engineer

The stability and quality of the solution
integration builds are tested by the
globally distributed quality team.

4.
1,

 4
.5

Ta

m
m

y
m

on
ito

rs
 q

ua
lit

y
m

et
ric

s

4.3 Tammy prepares the
test lab

4.2 Tanuj constructs tests

4.4 The team executes
tests

4

410 Collaborative Application Lifecycle Management with IBM Rational Products

The Rational Quality Manager product provides the following features:

� A collaborative Web-based quality management solution
� A central repository for test planning, construction, deployment, and execution
� The ability to align the test effort with project requirements
� Quantifiable metrics for project tracking and decision making
� Keyword-driven manual test authoring and execution

Rational Quality Manager works for simple test management needs and yet is sophisticated
enough to scale to larger teams that share test assets across multiple releases of software.
Just about every item managed by the system can be assigned to a team member. A test plan
can be broken down into sections and assigned to different owners. Test case and test script
construction can be assigned and tracked to gauge the level of effort and progress in building
the tests. Test execution can be assigned and tracked through the execution results. Test lab
requests can be used for configuring test servers.

This assignment of work in all aspects of the test effort helps the team to ensure that all of the
expected work is completed. It also gives them insight into their progress against the work
effort.

Earlier we defined the software quality management blueprint as including test management,
test planning, test construction, lab management, test execution, and analysis. Rational
Quality Manager implements this blueprint.

Dashboard
Rational Quality Manager comes with a customizable dashboard on the home page.
Dashboards can be created for each project managed.

Upon first use of the dashboard, a welcome viewlet (Figure 11-2 on page 412) instructs users
on how to customize it. Additional viewlets are provided that can be changed to fit each user’s
needs.
Chapter 11. Rational Quality Manager for managing quality 411

Figure 11-2 Rational Quality Manager Dashboard ‘Welcome’ viewlet

Users can add or remove viewlets as needed by clicking the Add Viewlet link on the home
page. As shown in Figure 11-3, a wide variety of viewlets are provided that are ready to use.
It is simply a matter of selecting a viewlet and clicking the Add viewlet button.

Figure 11-3 Adding a viewlet to the dashboard
412 Collaborative Application Lifecycle Management with IBM Rational Products

After the viewlets are added to the dashboard, you simply drag them to a location on the
page. Tabs can be added to the dashboard to organize viewlets.

Requirements
The testing effort is often linked directly to validating the software requirements. Therefore,
Rational Quality Manager provides a means for linking to requirements from an external
repository, such as IBM Rational RequisitePro, or for storing requirements directly in the
database. The requirements menu (Figure 11-4) is used to import or locate existing
requirements. These requirements can be linked to test plans or test cases.

Figure 11-4 The Requirements menu

Planning
The Planning menu (Figure 11-5) is used to create and manage test plans. New test plans
can be created, and existing plans can be modified from this menu. Additionally test plans
can be imported into the system or exported for sharing with external stakeholders.

Figure 11-5 The Planning menu

A test plan is used to organize the test effort. Some teams create a single test plan for the
entire project. Others create a test plan for each iteration or for each test environment such as
integration test, system test, and performance test. Yet others use test plans for each test
type such as functional, performance, and security tests. Figure 11-6 on page 414 shows a
set of test plans where each test plan targeted for each release of the “Account Opening”
solution.
Chapter 11. Rational Quality Manager for managing quality 413

Figure 11-6 A set of sample test plans

The test plan is divided into multiple sections as shown in the Table of Contents in
Figure 11-7. A team can decide which of these sections to use for each testing effort.
Additionally each section can be assigned to a different team member by creating a Work
Item for that section. In the upcoming scenario, some, but not all of these sections are used
by the Account Opening team.

Figure 11-7 A test plan with sections listed in the Table of Contents
414 Collaborative Application Lifecycle Management with IBM Rational Products

By using the test plan in Rational Quality Manager, you can perform the following tasks:

� Set up a review and approval process so that you can track completed and outstanding
reviews.

� Import project requirements from external requirements management tools and associate
these requirements with test cases. You can then run reports to track those requirements
that are not yet covered. For teams that do not use external requirements management
tools, you can add requirements directly to the test plan and still run the same reports.

� Save a read-only snapshot of a test plan or test case at any point in time. Later, you can
make a copy of the snapshot and use it as the basis for a new test plan or test case.

� Attach existing documents, such as previous test plans, schedules, and other supporting
material, by using the Attachments section.

� Copy portions of existing documents into test plan sections. Certain sections of the test
plan include a rich text editor that you can use much as you might use any word
processing document. If you have content in external documents that you want to reuse,
copy the content into the appropriate test plan section.

� Create test cases and associate them with the test plan. Because test cases can also be
associated with various kinds of test scripts, you can manage your test cases and test
scripts within the test plan.

� List the various environments supported and tested by the test plan. You can add various
platforms such as browsers, databases, operating systems, and other items. This list is
then used to generate test configurations.

� Estimate the overall test planning and test execution effort.

� Define schedules for each test iteration.

� Define business objectives, test objectives, quality goals, and entrance and exit criteria.

The list of sections can be modified by clicking the Manage Sections button. Additionally Test
Plan templates can be created to define the set of sections to use in the test plan. You can
start with one of the templates and modify it as needed. If there are sections in the test plan
that you do not use, you can remove them. If the section names do not match what you are
accustomed to, you can change them to something more familiar. If there are missing
sections that you want to add to the test plan, you can create your own test plan sections and
add them to the template.

This flexibility makes the test plan suitable for both agile and formal test teams and for teams
that perform different kinds of testing, such as functional regression testing, performance
testing, system verification testing, globalization testing, and so on.

Construction
The Construction menu (Figure 11-8 on page 416) is used to work with test cases, scripts,
suites, and data. New tests can be created, and existing tests can be located for modification.
Test execution records can also be created from this menu. Additionally existing cases and
scripts can be imported and managed by Rational Quality Manager. Each of these items,
managed by the database, can be assigned to specific owners, tracked, and reused across
multiple software releases.
Chapter 11. Rational Quality Manager for managing quality 415

Figure 11-8 The Construction menu

A test case defines the characteristics for an individual test. Clicking the Create Test Case tab
opens the test case creation user interface. The Test Case Table of Contents shown in
Figure 11-9 provides sections with additional detail that describes the test case. Similar to the
test plan, teams can decide which sections to use and can modify the list of available sections
by clicking the Manage Sections button. For example, a test case can reference one or more
test scripts, or has pre- and post-conditions defined, with expected results. Requirements can
be associated with test cases to help the tester ensure requirement coverage as part of the
test creation process. Test Case templates can be created to define the set of sections for use
by the team.

Figure 11-9 An example test case
416 Collaborative Application Lifecycle Management with IBM Rational Products

A test script defines the steps that are involved in conducting the test. A test script can be a
manual or automated test, or a combination. Manual test scripts are defined directly in
Rational Quality Manager by using a rich text editor to detail each step as shown in
Figure 11-10.

Figure 11-10 Example of a manual test script

Test scripts can be written in context of the test case, or they can be created separately and
later linked to the test case. This provides flexibility in work flow while also encouraging the
reuse of existing test scripts.

Test suites can be created to group a set of related test cases. Test suites provide a list of
related test cases, and a single test case can be included in more than one test suite. A new
test suite is created by using the Create Test Suite menu item in the Construction menu.
Figure 11-11 on page 418 shows the user interface for adding existing test cases to a new
test suite.
Chapter 11. Rational Quality Manager for managing quality 417

Figure 11-11 Test cases linked to a new test suite

Existing test suites are located or modified from the Execution menu. Figure 11-12 shows the
result of running the Execution → All Test Suites.

Figure 11-12 Existing test suites
418 Collaborative Application Lifecycle Management with IBM Rational Products

A single test case can be run on different environments. For example, in a Web user interface,
different browsers can be tested. The test case is the same, but the environment is different.
Therefore, an execution record is created to run the test case in each environment. In the
previous example, an execution record is created for each browser that must be supported.
As test cases are being constructed, the execution records can be created and assigned to
team members. Test execution records are creating by using a menu item on the Construction
menu. The Execution menu is used to locate and run existing test execution records.

Lab Management
Lab machines and virtual images are a critical resource in the testing effort. Rational Quality
Manager has an optional add-on that helps a team to manage lab resources. When installed,
an additional menu for Lab Management is added to the menu bar. A lab manager uses the
menu shown in Figure 11-13 to manage the lab resources.

Figure 11-13 Lab Management menu
Chapter 11. Rational Quality Manager for managing quality 419

Machines can be added or imported into the lab management system. Characteristics of the
machine, such as its hardware, software, and operating system, can be captured and stored
in this system as shown in Figure 11-14. In a similar manner, virtual images can be recorded
by the system. These recordings provide the team with an inventory of lab machines and
virtual images to choose from by using the All Lab Resources, Find Lab Resource, or
Advanced Search menu items.

Figure 11-14 Adding a machine to the resource inventory

Lab resources can be allocated across test teams by using resource groups. A resource
group is associated with a team area, and machines are added to the resource group. This
creates a pool of machines that are specific to the members of the team area that is specified
in the resource group.

Testers can use the lab management menu to reserve resources and submit requests to have
a server configured with a specific environment or build.

Test environments define the machine characteristics, operating systems, and software
needed for specific test functions. For example, a simple environment defines an x86
machine running a Microsoft Windows Vista operating system with Firefox 3.0 installed. More
complex environments can also be defined, such as a three-tiered Web application
420 Collaborative Application Lifecycle Management with IBM Rational Products

configuration with a Web server, application server, and databases each running on different
machines or virtual images. Defining environments simplifies the request process by enabling
testers to choose predefined environments or define a new one. When defined, environments
can be used to locate available resources that match the description in the test environment.

Test execution
In test construction, test cases are turned into execution records that are owned by members
of the test team. Execution records are measured and tracked from the Execution menu
(Figure 11-15).

Figure 11-15 Execution menu

Executed tests have results and a result history. Queries can be run to view execution records
or executed results. Figure 11-16 shows the list of records that are returned by choosing the
My Test Execution Records menu item from the Execution menu.

Figure 11-16 Status of test execution for Execution work items
Chapter 11. Rational Quality Manager for managing quality 421

One or more records can be selected from the list and executed by clicking the green Play
button on the toolbar. The script execution user interface is displayed, which is shown in
Figure 11-17. For manual tests, each step of the test is performed by the tester and updated
with a status. Step through the execution, one statement at a time, and click the Apply
verdict icon after you perform it in the application that you are testing. Possible verdicts
include Passed, Blocked, Failed, and Inconclusive.

Figure 11-17 Script execution with Verdict choice to apply to each step
422 Collaborative Application Lifecycle Management with IBM Rational Products

To view the Execution results, choose My Execution Results or All Execution Results from
the Execution menu. The system returns the set of results in a list that can be quickly
scanned. By clicking the State link, you see detailed information about the execution result,
which includes information such as the verdict, and the environment on which the test was
run, as shown in Figure 11-18.

Figure 11-18 Execution Result details

For automated test scripts, adapters can be added to an execution engine. Test scripts from
automated software testing tools can be linked to test cases and managed by the system.
When it is time for execution, the test script can be launched from Rational Quality Manager
and run by the automated test tool, with the results captured and managed by Rational
Quality Manager. You can run automated test scripts for the following types of tests:

� Functional tests by using tools such as Rational Functional Tester or Rational Robot
� Security tests by using Rational AppScan Tester Edition for Rational Quality Manager
� Performance tests by using Rational Performance Tester
� Service tests by using test scripts that are created with Rational Service Tester for SOA

Quality

Adapters can be written to integrate additional automated test tools.
Chapter 11. Rational Quality Manager for managing quality 423

Test analysis (reports)
Up front test planning pays off when it comes to measuring success. By analyzing your test
runs, you can identify trends and spot where bottlenecks exist in your project. From the
Reports menu, choosing View Reports displays the reports that are available for measuring
progress and quality. Figure 11-19 shows an example report for measuring the execution
status by owner.

Figure 11-19 Reports provided to measure progress

The reports are grouped by function, such as defects, execution, summary, scorecard, and so
forth. Further reports can be created by clicking the Create Report menu item.

11.3 Rational Functional Tester

Rational Functional Tester is used to automate functional testing, regression testing, GUI
testing, and data-driven testing. In this scenario Rational Quality Manager manages the test
scripts that are produced by Rational Functional Tester. When it is time to execute the test,
Rational Quality Manager launches Rational Functional Tester, which runs the script. The
results are captured and managed by Rational Quality Manager.

In the scenario, we do not detail how to write an automated functional test. Instead we
assume that a test script is already written and managed by the system. We illustrate how
that script is managed in Rational Quality Manager, how it is executed, and how the results
are captured.
424 Collaborative Application Lifecycle Management with IBM Rational Products

11.4 Rational AppScan Tester Edition for Rational Quality
Manager

Rational AppScan Tester Edition is used to author and execute security scans. It provides
testers with standard security policies and scan templates to test their Web applications.

In this scenario, users create a Rational AppScan Tester Edition test script in Rational Quality
Manager. The test is executed from within Rational Quality Manager and displays pages and
vulnerabilities as they are discovered. When execution is complete, high-level results are
captured and used to determine whether the test script execution has passed. Testers can
use Rational AppScan Tester Edition to drill down into scan results and then log vulnerabilities
that are found by the security scan as Rational Quality Manager defects.

11.5 Rational Quality Manager

In this section, we provide detailed instructions about how the team uses the Rational Quality
Manager tools to complete the scenario that was described in Chapter 5, “Rational
ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests” on
page 115.

11.5.1 Tammy monitors quality

Tammy links to the requirements
Tammy has been notified by Bob that he has detailed the requirements for his new request.
She logs into Rational Quality Manager and opens her test plan:

1. From the Planning menu, Tammy chooses the My Test Plans query.

2. She clicks the Account Opening Rel2 test plan to open it.

3. In the Table of Contents for the test plan, she clicks Requirements.

4. In the requirements view, she clicks the Import Requirements button, which is
highlighted in Figure 11-20.

Figure 11-20 Import Requirements button

Synopsis: When Tammy updated the test plan with the new request from Bob, he had not
yet detailed the requirements. The next day Bob notified Tammy that the requirements
were complete. In this scene, Tammy links the requirements to her test plan. This scene
begins immediately after the completion of Act 1 and occurs in parallel with Act 2, where
Marco and Diedrie design and implement the request.
Chapter 11. Rational Quality Manager for managing quality 425

5. In Step 1 of the Import Requirements wizard (Figure 11-21):

a. For Source, she chooses RequisitePro.
b. She types a host name.
c. She clicks Next.

Figure 11-21 Step 1 of the Import Requirements wizard

6. In Step 2 of the Import Requirements wizard (Figure 11-22):

a. For Project, she chooses the ALM - Account Opening Project.
b. She types her Rational RequisitePro User ID and Password to log in to the repository.

c. She clicks Next.

Figure 11-22 Step 2 of the Import Requirements wizard

Important: In Rational Quality Manager 8.0 beta, we had to enable security on the
Rational RequisitePro project and ensure that the user name had a password
assigned.
426 Collaborative Application Lifecycle Management with IBM Rational Products

7. In Step 3 of the Import Requirements wizard (Figure 11-23):

a. She changes the requirement Type to Feature.
b. She selects the check box next to the UI Branding requirement in the list.
c. She clicks the Import button.

Figure 11-23 Step 2 of the Import Requirements wizard
Chapter 11. Rational Quality Manager for managing quality 427

The requirements are added to the Requirements section of the test plan as shown in
Figure 11-24 and are now available for others to reference in test plans or test cases.

d. Tammy clicks Save to save the test plan.

Figure 11-24 Requirement imported into the test plan

Tammy associates the test case with the requirement
In Act 1, Tammy created a placeholder test case in her test plan. Now that she has a link to
the requirements that Bob created in Rational RequisitePro, she can create a link to the test
case.

Tammy associates the test case to the requirement:

1. In the open test plan, Tammy clicks Test Cases in the Table of Contents.

2. She clicks the UI Corporate Branding test case.

Tip: The user interface uses the word “Import” for requirements. However, the
requirements are not imported into Rational Quality Manager. Instead, URL links are
created in Rational Quality Manager that reference the requirement that is managed in
Rational RequisitePro.
428 Collaborative Application Lifecycle Management with IBM Rational Products

3. When the test case editor opens, Tammy clicks the Requirements menu item in the Test
Case Table of Contents (Figure 11-25). In doing so, she provides information about the
requirements that are associated with this test case. Because this is a new test case, no
requirements are found.

4. She clicks the Associate Requirements button, which is highlighted in Figure 11-25.

Figure 11-25 Requirements associated with test cases

5. In the Associate Requirement panel, from the list of available requirements, she clicks the
check box next to the UI Corporate Branding requirement (Figure 11-26). She has the
option to select one or more requirements. However, in this case, she only needs this new
requirement that Bob provided.

Figure 11-26 Selecting the requirements to associate with the test case
Chapter 11. Rational Quality Manager for managing quality 429

6. She clicks OK

7. She Saves the test plan.

11.5.2 Tanuj constructs the tests

In this scene, Tanuj updates the test case, writes the test script, and creates the execution
records to test Bob’s request on all test environments.

Tanuj updates the test cases

In “Tammy monitors quality” on page 425, Tammy updated the test plan by importing and
associating a requirement with a test case that is owned by Tanuj. In this scene, Tanuj begins
working on his assignments as explained in the following steps. He is working in parallel with
Marco and Diedrie.

Tip: When linking to requirements that are managed by Rational RequisitePro, Rational
Quality Manager marks the requirements as “suspect” when they change in Rational
RequisitePro. This gives testers a visual indication to review the requirements and ensure
that the test cases are still valid.

Synopsis: When Tammy updated the test plan with the new request from Bob, Tanuj
began constructing tests, while Diedrie and Marco were implementing the change. This
scene occurs in parallel with Act 2.

Goal: The goal is to create the test cases to cover the new requirement.
430 Collaborative Application Lifecycle Management with IBM Rational Products

1. In Rational Quality Manager, Tanuj logs in and views his dashboard (Figure 11-27), where
he sees the new tasks that are assigned to him by Tammy. His tasks are all related to a
test case called UI Corporate Branding.

Figure 11-27 Tanuj reviewing his tasks in the My Tasks viewlet

2. He selects Construction → My Test Cases.

3. In the results list, he selects the UI Corporate Branding test case from the list to view it.

4. He clicks Summary in the Table of Contents for the test case to review the summary and
familiarize himself with this test case.

5. He clicks the Requirements tab to review the associated requirements for this test case.

6. He clicks the Name link for the associated requirement, and the Rational RequisitePro
Web client launches either in another browser tab or browser window depending on how
the browser is configured.

7. He selects the Account Opening project in the Project field, and enters his Rational
RequisitePro login user name and password. He then clicks Login.
Chapter 11. Rational Quality Manager for managing quality 431

8. He reviews the requirement properties (Figure 11-28). Then in the Location field of the
requirement properties, he clicks the link Composer:UI Rebrand.

Figure 11-28 Tanuj reviewing the requirement provided by Bob
432 Collaborative Application Lifecycle Management with IBM Rational Products

9. After Rational Requirements Composer launches and opens the sketch that Bob created
in Act 1 (Figure 11-29), he reviews the detail of the requirement and can now define the
expected result for his test case. He closes Requirements Composer and returns to
Rational Quality Manager.

Figure 11-29 Tanuj reviewing the sketch provided by Bob

10.He clicks Expected Results in the Table of Contents, and adds additional information
about the expected result for the test case. In this example, he can cite corporate
guidelines or provide examples of properly re-branded Web pages as a comparison. He
can also refer to the sketch that is provided by Bob.

11.He clicks Test Case Design to provide information about the test case. For this test case,
he provides a description that includes the need to ensure that the UI complies with the
corporate brand, and that because the elements are visual, this is a manual test.

12.He clicks Save to capture his changes to the test case. At this point, he decides that this
single test case will cover Bob’s requirement.

13.Tanuj reviews the tasks that are listed in the My Tasks viewlet on his dashboard. He
selects the task that is related to completing the test case design and clicks to open it.

Note: Tanuj uses the rich client that is installed on his desktop. While this book was
being written, a Web client for Rational Requirements Composer was under
development, but was not available for inclusion in this book.
Chapter 11. Rational Quality Manager for managing quality 433

14.As shown in Figure 11-30, he changes the state to Resolve and clicks Save.

Figure 11-30 Tanuj resolving a task

Tanuj writes the test script

In this scene Tanuj writes a manual test script to use for testing Bob’s request.

1. Tanuj clicks Construction → My Test Cases. The test case he’s been working on is still
visible in a tab. In the Test case editor, Tanuj clicks Test Scripts in the Table of Contents.

2. He clicks Add New Test Script, which is highlighted with a red box in Figure 11-31.

Figure 11-31 Adding a test script to a test case

Goal: The goal is to capture the execution steps, verification points, and reporting points
for the test case.
434 Collaborative Application Lifecycle Management with IBM Rational Products

3. In the New Test Scripts window (Figure 11-32):

a. He types a Name and Description.
b. He leaves Type set to Manual.
c. For Owner, he selects himself.
d. He clicks OK.

Figure 11-32 New Test Script window
Chapter 11. Rational Quality Manager for managing quality 435

The window closes, and the test script is created and linked to the test case. He clicks Save
to save the test case. The test script is now a clickable link in the test case, as shown in
Figure 11-33.

Figure 11-33 Test script linked to a test case

Tanuj can now begin writing the test script:

1. He clicks the link for the UI Corporate Branding test script, and the test script editor
opens (Figure 11-34 on page 437).

2. Tanuj chooses to reuse an automated test as Keyword in this script. He drags the
AO_Login script from the Keyword view to the first step of his script (Figure 11-34).

3. Tanuj clicks the text Click to add in the bottom left corner of the editor, which adds a step
in the test and places his cursor in the text edit field. Tanuj types the second step of the
test script and presses Enter.

Tip: A keyword is any statement or group of statements that you can reuse in other test
scripts. Many tasks in testing are composed of a sequence of steps, for example,
logging in to a page. A simple task can be saved as a keyword. That keyword can be
used in other scripts to create the full test script.

A team can build a library of keywords to streamline the writing of test scripts while
ensuring consistency for frequent tasks. Additionally, manual keywords become
candidates for automation, thus helping a team to move from manual testing to a mix of
manual and automated tests. As seen in this example, Tanuj constructs a manual test
that contains an automated login script. While this is a simple case, it is representative
of using a keyword automation as part of a larger manual test.
436 Collaborative Application Lifecycle Management with IBM Rational Products

4. After another line is added to the test script, Tanuj types the second step in the test. He
continues this procedure until he’s added all steps of the step as shown in Figure 11-34.

Figure 11-34 Creating a manual test by using an automated keyword test

5. He sets two of the steps to be verification points by clicking the Execution step icon,
which is to the right of the step number. A menu is displayed as shown in Figure 11-35.

– Execution Step is the action that you want the tester to perform when running the
script, for example, “Start the application.”

– Verification Point asks questions about the application that you are testing, for
example, “Did the User Login window open?”

– Reporting Step is a higher-level verification point. It also asks questions, but the
answers require higher visibility and often are included in reports. Reporting steps
might summarize the result of several verification points, for example, “Were you able
to log in?”

Figure 11-35 Setting a Verification Point in a manual test
Chapter 11. Rational Quality Manager for managing quality 437

6. He chooses Verification Point for steps 4 and 5. The icon changes to a blue check mark.

7. Tanuj clicks Save on the test script.

Tanuj configures the tests for execution

In this scene, Tanuj determines that the test matrix needed to fully test Bob’s request. During
test planning, Tammy defined the environments used for testing. Tanuj uses that environment
list to create one test execution record for each environment on the test matrix. A common
challenge for testers is to ensure that all combinations of test environments are tested for a
solution. Rational Quality Manager simplifies this complex task by managing the expected
environments and providing a wizard to automatically generate test execution records. The
results of each execution record are also managed by the system. In this scene, Tanuj creates
the test execution records to cover the environments that are defined in the test plan.

Test execution records specify the execution environments for the test case. Imagine a simple
browser test. Multiple client machines with a specified browser are set up for a single test
case. This ensures that the system behaves properly in a matrix of browser versions running
on different operating systems and hardware. A test execution record is created to track the
execution of each of these tests. Thus, a single browser-based test case might have one test
execution record to verify the Firefox 2.x browser on a Windows XP machine and a different
test execution record to run on a SUSE Linux machine or to run in a different browser.

1. Tanuj clicks the tab for the UI Corporate Branding test case. If a tab is not available, he
can select Construction → My Test Cases query.

2. In the Table of Contents, he clicks Test Execution Records to view what is currently
defined. Because this is a new test case, no test execution records exist.

3. He clicks the Generate Test Execution Records button from the toolbar. This starts the
Generate Test Execution Records wizard, which is shown in Figure 11-36 on page 439.
After the wizard has started, he can cancel it at any time by clicking the X in the upper right
corner.

4. In Step 1 of the wizard, he defines the following settings:

a. He sets Owner to himself.

b. He sets the Test Plan to Account_Opening Rel 2.

c. He sets Iteration to 2. Iterations are the various phases or milestones in your test plan.
Iterations are only available when you select a particular test plan.

5. He clicks Generate Test Environments tab and selects one or several environment
attributes from each section. His application always runs on the same server configuration
by using IBM WebSphere Application Server and IBM DB2 running SUSE Linux
Enterprise Server (SLES). Because this is a browser test, he is most interested in creating
client execution environments. He selects three browsers, a CPU, and all operating
systems that are defined in the test plan.

The number of execution work items that are created depends on the number of attributes
that is selected, the level of coverage that you choose, and the Advanced Properties
(Inclusions, Exclusions, and Weightings) that you select.

Goal: The goal is to determine how many test executions are needed to cover this
requirement in all test configurations.

Advanced Properties: Advanced Properties may not be visible until you select at least
two attributes from one of the lists of attributes.
438 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 11-36 Step 1 in the Generate Execution Work Items wizard

6. For Coverage, he selects the desired level to All Permutations. He uses this setting and
the Advanced Properties setting to fine-tune the execution work items that will be
generated. Coverage includes the following options:

– The Minimal option ensures that each selected attribute is covered at least once, with
no attempt to cover specific combinations of attributes. For example, if you select one
attribute from three of the columns, three execution work items are created, ensuring
that each selected attribute is covered at least once.

– The Medium - pair-wise interaction option ensures that each combination of paired
attributes is covered at least once.

– The Large - three-way interaction option ensures that each three-way combination of
attributes is covered at least once.

– The All - all permutations option ensures that all combinations of attributes are
covered at least once.

Tanuj has no need for Advanced Properties in this case. In more complex scenarios,
Advanced Properties are used to display a window with following three tabs:

– On the Exclusions tab, he can specify the attribute combinations to explicitly exclude,
for example, the Safari browser running on Windows XP.

– On the Inclusions tab, he can specify the attribute combinations to always include, for
example, Windows Internet Explorer 7.x running on Windows XP.

– On the Weightings tab, he can to set the weight or importance of each attribute relative
to the other values for that attribute.
Chapter 11. Rational Quality Manager for managing quality 439

For example, he can assign greater weight to Windows XP than SUSE Linux to ensure
that at the least Windows XP is tested.

7. He clicks Next.

The wizard creates a preview of the Generated Test Environments from which the
execution work items will be generated. Figure 11-37 shows the environments that are
presented to Tanuj.

8. He selects the configurations that he wants to keep and clicks Next.

Figure 11-37 Step 2 in the Generate Execution Work Items Wizard

9. After the wizard creates a preview of the generated execution work items, he selects the
execution work items that he wants to keep.
440 Collaborative Application Lifecycle Management with IBM Rational Products

10.From the Group By list (Figure 11-38), he groups the generated test execution records by
selecting Test Case and then clicks Finish. The wizard generates the test execution
records according to the criteria he has selected.

Figure 11-38 Step 3 in the Generate Execution Work Items wizard

11.He clicks Save on the test case. The execution records are now ready to be run. If
necessary, he can also change their ownership and reassign them to new iterations.

At this point, Tanuj has completed all of his planning and construction work. He updated the
test case that Tammy assigned to him in Act 1, wrote the associated test script, and created
the execution work items to test all permutations of the browser test environments. When the
build with Bob’s change is ready, he is ready to execute his tests.

11.5.3 Tammy configures the test lab

This scene has the following objectives:

� Perform continual integration testing by refreshing the test servers with an updating
integration build

� Reduce down-time for the test team by choosing a good build and managing the test lab

Synopsis: Acts 2 and 3 of the storyboard are complete. Marco’s team delivered the
change, and Rebecca has conducted the integration build. Rebecca notifies the team that
a new integration build is available. Tammy makes a request to deploy the build to the test
lab.
Chapter 11. Rational Quality Manager for managing quality 441

Tammy confirms the test resources

In Act 1, Tammy submitted a request to a have an Apple Macintosh client, who is running
Safari, added to her test lab. In this scene, she checks the status of her request and confirms
that she has reserved the required resources for this iteration:

1. Tammy clicks a tab on her dashboard that contains viewlets for tracking her lab resources.

2. She focuses on the Requests viewlet and sees that her request for a new client machine
is completed.

3. She reviews her reservations to confirm that she has all of the resources that are required
for this iteration. In this case, Tammy has the Reservations viewlet on the dashboard. An
alternative approach is to choose Lab Management → All Reservations.

4. She compares her reservations to the test plan.

Tammy inspects the build

This scene occurs right after Rebecca completes the integration build. As discussed in 9.6.2,
“How Rational Build Forge is configured for this scenario” on page 380, Rebecca has set the
Notify on Pass property for the project, which sends an e-mail notification to the team leads
when the integration build passes. In addition, Rational Build Forge provides RSS feeds to
which Tammy has subscribed.

1. Tammy receives an e-mail notification regarding the success of the build.

2. She also receives an RSS feed viewlet on her dashboard (Figure 11-39) that provides
information about the events that are occurring on the build server.

Figure 11-39 A news feed configured to view Build Forge server messages

3. She clicks the URL that opens the Build Forge Administration Messages window.

4. Tammy locates the integration build in the messages window and clicks the job link. From
here, she can inspect any of the build steps, such as the step named Execute unit tests.

5. She can click the Bill of Materials menu to inspect the Job Steps or Step Manifests.

6. Satisfied, she deploys the build to the test servers.

Goal: The goal is to validate the availability of test servers for use by the test team, and to
allocate additional servers if needed.

Goal: The goal is to be aware of new integration builds and determine if they are suitable
for testing.

Important: Clicking the link might open the Rational Build Forge user interface in the
same browser window, losing the Rational Quality Manager user interface. Click the
browser’s Back button to return to Rational Quality Manager.
442 Collaborative Application Lifecycle Management with IBM Rational Products

Tammy deploys the build

Since Tammy has already reserved the machines, it is now a matter of deploying the latest
build onto the resources. Tammy’s team has a set of automation jobs that streamline this
process. In this scene, Tammy chooses an automation job and prepares the test server, as
shown in Figure 11-40.

Figure 11-40 Tammy deploying the build by using a predefined deployment automation

Tammy performs the following steps:

1. Tammy selects Lab Management → All Automations. The list of available automations
is returned.

2. She selects the Deploy AO Integration Build automation.

3. She chooses an available machine from the list of Available Machines for Automations.

4. She provides a value for InstallDir.

5. She provides a value for the Build ID of the build that she just inspected in Rational Build
Forge.

6. She clicks Run, which is represented by the green arrow in the upper right corner, and
tracks the status as the automation runs.

Tip: See Chapter 9, “Rational Build Forge for enterprise integration build” on page 341, for
information and images regarding the Rational Build Forge job results.

Goal: The goal is to deploy the latest build and test tools to the test environments.
Chapter 11. Rational Quality Manager for managing quality 443

When the automation is complete, Tammy executes a “smoke test” test suite against the new
test environment. Assuming that all tests pass, Tammy notifies the team that the environment
is ready for testing.

11.5.4 The team executes the tests

Tanuj executes the tests
Tanuj learns from Tammy that the new integration build has been deployed. Tanuj is now
ready to test the re-branded user interface from all permutations of browsers. Running a
manual test requires a test case with an associated test script and one or more associated
test execution records. In “Tanuj configures the tests for execution” on page 438, Tanuj
created the test execution records. In this scene, he executes the tests.

To a run a manual test, Tanuj performs the following steps:

1. Tanuj selects Execution → My Test Executions to view the list of test execution records
that he owns.

2. He selects one or more execution records, for example, Firefox 2.0 on Windows Vista, that
he wants to run.

3. He clicks the Execute Work Item icon, which is highlighted in Figure 11-41.

Figure 11-41 Running a manual test in Rational Quality Manager

Tip: In this scenario, Tammy deploys the build by using an existing automation. An
alternative approach is to send a request to a lab manager.

Synopsis: Tanuj and the team learn from Tammy that the new integration build has been
deployed. He executes the test scripts. Then the results are logged, and the test status is
updated.
444 Collaborative Application Lifecycle Management with IBM Rational Products

4. He performs an automated keyword test. When the system prompts Tanuj to select the
adapter for running this automated test, he selects the check box next to RFT, which is the
Functional Tester adapter in this example, that is running on his test server. Then he clicks
OK (Figure 11-42).

Figure 11-42 Choosing an automated test adapter

As the automated test execution occurs, a progress window is displayed similar to the
example in Figure 11-43.

Figure 11-43 Keyword Execution Progress window

When the test execution is complete, the result field for the first step is updated to indicate
the verdict. From this point, the rest of the test involves manual testing.
Chapter 11. Rational Quality Manager for managing quality 445

5. He steps through the execution one statement at a time. As he completes each step, he
selects a Verdict from the list and clicks Apply to assign a verdict to the step. Figure 11-44
shows a Verdict of Failed applied to Step 5 in the manual test. The following verdicts are
possible:

– Passed
– Blocked
– Failed
– Inconclusive

Figure 11-44 Manual script execution showing a failed step and associated defect

6. In step 5 in his test script, he notices that the logo for the EU Account form is placed
differently from the US form. To submit a defect, Tanuj clicks the Show Defects icon on
the toolbar and chooses Add New Defect shown in Figure 11-45.

Figure 11-45 Adding and associating a defect with a line in a test execution
446 Collaborative Application Lifecycle Management with IBM Rational Products

7. In the Defects View form (Figure 11-46):

a. For Type, he keeps the setting Defect.

b. For Severity, he selects Normal.

c. For Filed Against, he chooses Account Opening.

d. In the Tags box, he adds Credit_check.

e. For Owned by, he selects Diedrie.

f. For Priority, he selects Medium.

g. For Due Date, he sets it to equal the last day of the iteration.

h. For Description, he provides meaningful text.

i. He clicks the Links Tab and click Brows to add an attachment. Then he chooses a .jpg
file from his file system. Earlier he made a window capture of both forms by placing
them side by side to identify the difference.

j. When he is satisfied with the information, he clicks Save.

Figure 11-46 A New Defect form

8. He sets the Verdict to Failed for this step. When the verdict on the last step of the test is
set, the Test execution is complete.

9. From the Execution Result tab that is displayed, Tanuj reviews the results and does not
make any changes. If necessary, he can modify the verdict and the weight distribution
from the execution results. After he makes an edit, he must click Save to save any
changes.
Chapter 11. Rational Quality Manager for managing quality 447

In addition Tanuj can add comments or attachments:

� To add an optional comment to one or several statements:

a. From the toolbar, he clicks the Show Comments icon, and the Comments View is
displayed.

b. He types the comment in the Write Comments field.

c. He clicks the X in the upper right corner of the view to close it. The comments icon
displays within each statement that has a comment.

� To add an optional attachment to one or several statements, for example, he can create a
window capture of the application under test and attach it to the statement. To attach a file
to a statement:

a. From the toolbar, he clicks the Show Attachments icon, and the Attachments View is
displayed.

b. He browses to the file, and clicks Open.

c. He clicks the X in the upper right corner of the view to close it. The attachment icon
displays within each statement that has an attachment.

Tammy runs a security scan

Tammy assigns the security and compliance scan test suites to herself. With the functional
test coming to a close and performance tests underway, she runs the scans late in the
evening after the test team has left for the day. The usual cycle of defect submission and
resolution occurs until the test exit criteria is met and is complete

Tammy creates a security test script
In this scene, Tammy writes a Rational AppScan Tester Edition test script to run a security
scan:

1. Tammy selects Construction → Create Test Script.

2. On the Create Test Script tab:

a. She provides a name and description.

b. For Owner, she selects herself.

Restriction: The defect report that is created in this scenario is stored in Rational Quality
Manager. Diedrie needs some form of notification to fix and resolve the defect. One
approach is for her to have a license for Rational Quality Manager. She can log in to the
Rational Quality Manager user interface to work with defects that are reported by the test
team.

Another approach is to use the ClearQuest Connector to create a record in Rational
ClearQuest, which then synchronizes to Rationa Team Concert. For this to work, the
ClearQuest Connector must be configured to work with the Rational ClearQuest defect
record. At the time of writing this book, the ClearQuest Connector did not work with
ClearQuest Application Lifecycle Management (ALM) record types. The restriction occurs
when a record must be created in Rational ClearQuest by the connector. Note that
synchronization works when records are created in Rational ClearQuest and pushed to
Rational Team Concert or Rational Quality Manager, as documented in this book.

Goal: The goal is to identify security vulnerabilities before approving the release for
production.
448 Collaborative Application Lifecycle Management with IBM Rational Products

c. For Type, she selects Rational AppScan Tester Edition, which populates the test script
with information specific to performing security tests, as shown in Figure 11-47.

d. For Template, she selects one to use for the creation of the security scan. For this
scan, she selects the Altoro Mutual template, which has been preconfigured with the
URL and login information of the system under test.

e. For Verdict Strategy, she keeps the default setting of Severity Threshold, which is
Medium. This setting means that the test execution will pass only if no Medium or High
severity issues are found by the security scan.

f. She clicks the Create Scan link to create an associated security scan in Rational
AppScan Tester Edition. Depending on Tammy’s browser settings, either a new tab or a
browser window opens where she can edit the scan.

Figure 11-47 Creating a Rational AppScan Tester Edition test script
Chapter 11. Rational Quality Manager for managing quality 449

3. Tammy reviews the scan in Rational AppScan Tester Edition (Figure 11-48):

a. For URLs to be scanned, she confirms the URL for the system under test.

b. For Test Policy, she confirms the one to use during the scan. The test policy is a
predefined set of security tests that the scan executes.

c. She determines that she has no need to edit the scan. She closes the window or tab to
return to Rational Quality Manager.

Figure 11-48 Reviewing a Rational AppScan Tester Edition scan

Tammy runs a security scan
Tammy has already defined a test script of the Rational AppScan Tester Edition type, to
perform a standard security scan of the Web application. A test case has also been defined to
ensure that there are no security vulnerabilities with the security theme nor associated with the
existing AppScan Tester Edition test script. The test case is part of her overall test plan. In this
act, she reviews the settings of the test case, runs the security scan, and evaluates the results.

Tammy performs the following three tasks:

� Reviews the test case and its associated requirements
� Runs a security scan
� Evaluates the results and log a defect

To review the test case and its associated requirements, Tammy performs the following steps:

1. Tammy opens her test plan and clicks Test Cases.

2. She identifies the Security test case and clicks to open it.

3. She clicks Requirements to review the security requirements that are associated with the
test case.
450 Collaborative Application Lifecycle Management with IBM Rational Products

4. She clicks Test Scripts to review the test scripts that are associated with the test case.

5. She clicks the AppScan Security Scan test script to view it and confirm that it is correct.

To execute the security scan, Tammy does the following steps from within the open test case:

1. She clicks Test Execution Records.

2. She checks the security execution item and clicks Execute.

The security scan runs against the system under test while reporting progress and pages
that are scanned on the Script Execution tab (Figure 11-49).

3. Tammy clicks View detailed statistics in Rational AppScan Tester Edition.

Figure 11-49 Rational AppScan Tester Edition Test Script Execution
Chapter 11. Rational Quality Manager for managing quality 451

4. She views the information about the scan while it is running in Rational AppScan Tester
Edition on the Progress tab as shown in Figure 11-50. When she is done reviewing the
detailed statistics, she closes the window or tab to return to Rational Quality Manager.

Figure 11-50 Rational AppScan Tester Edition scan statistics

After the execution is complete, Tammy does the following steps to review the results and log
a defect:

1. She clicks Close and show results.

2. On the Execution Result tab (Figure 11-51 on page 453), Tammy notices that the result
is Failed and reviews the number of issues that were found to see that both Medium and
High severity issues were found.

3. She clicks the View in Rational AppScan Tester Edition link to view the detailed reports.
452 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 11-51 Viewing the execution results

4. Tammy reviews the issues and decides to log a defect for a high severity cross-site
scripting vulnerability that was found on the login page.
Chapter 11. Rational Quality Manager for managing quality 453

5. As shown in Figure 11-52, she selects the issue. For Action, she verifies that the Submit
Rational Quality Manager option is selected and clicks Apply.

Figure 11-52 Rational AppScan Tester Edition test script execution results

6. When a link to the defect is added to the Work Item column, she clicks the link to review
the created defect.

7. Tammy notices that the Severity field is set to Major and the Tags field contains the term
appscan. Because the Owner field is unassigned, she sets it to the developer who is
responsible for security. She also sets the Priority to High.
454 Collaborative Application Lifecycle Management with IBM Rational Products

8. She looks at the Discussion header and clicks the attachment name to view the
attachment that was automatically created to help the developer resolve the security
vulnerability. The attachment includes information about the risk, a fix recommendation,
and information about different variants of this issue (Figure 11-53).

Figure 11-53 Defect advisory and fix recommendation

9. She closes the tab or window that contains the attachment to return to the defect.

10.When she is satisfied with the information, she clicks Save.

11.5.5 Monitoring quality

In this scene, we discuss how Tammy monitors the quality of the solution for this iteration. For
more information about the use of metrics, see 11.7, “Planning and measuring success in
quality management” on page 467.

Synopsis: One week later, Tammy reviews the test plan and evaluates the exit criteria.
She uses the Exit Criteria that was established in the test plan to measure their progress
and make adjustments. The usual cycle of defect submission and resolution occurs until
the Test Exit Criteria is met and is complete.

On the final day of the iteration, Tammy confirms that the solution meets the exit criteria.
She informs Patricia that the quality has met their expectations.
Chapter 11. Rational Quality Manager for managing quality 455

Rational Quality Manager Dashboard

Tammy and the team use their dashboards to access a live overview of the quality health
indicators. The dashboard helps the team identify significant changes in trends.

As shown in Figure 11-54, Tammy added tabs to her dashboard. She created a tab that she
calls Trends and populated it with viewlets that provide trend and real-time information, such
as the Execution Trend Report, Requirements changes, Requirement coverage status, and
Defect Arrival Resolution.

She also created a tab called Work Load, which she uses to track work items for herself and
her team. Finally, she created a tab called Lab, which she populated with viewlets from
Rational Lab Manager that give her insight into the status of her reservations and deployment
automations, along with information about the use of lab resources.

Figure 11-54 Adding tabs to the dashboard to organize viewlets

Goal: The goal is to maintain a real-time view of quality and team health.
456 Collaborative Application Lifecycle Management with IBM Rational Products

Each of these tabs are populated with viewlets that are available with Rational Quality
Manager. Figure 11-55 shows an example of some of the viewlets that are available for
monitoring quality.

Figure 11-55 Rational Quality Manager dashboard viewlets

In addition, when using Rational Test Lab Manager, viewlets are available for managing Lab
Resources, shown in Figure 11-56.

Figure 11-56 Rational Test Lab Manager provides viewlets for managing lab resources

Tammy uses a combination of viewlets, reports, and exit criteria to determine when the
iteration is complete. This is a combination that confirms that all planned work is completed,
all requirements have been validated, and defects have been fixed to the agreed upon level.
In her case, all Priority 1 defects have been closed. Satisfied with the quality of iteration,
Tammy communicates the news to her team and the team leads.

Rational Quality Manager reports
Rational Quality Manager includes a set of reports that Tammy uses to monitor the quality of
the solution and along with the status of the test execution. Reports are found by selecting
Reports → View Reports. The reports are grouped by type to help you craft your quality
monitoring strategy. In addition, you can create and run your own reports.
Chapter 11. Rational Quality Manager for managing quality 457

Assessing team health
Tammy uses the test management system as the basis for the daily discussions. The team
talks about current work assignments and work load per tester. Tammy and the team use
viewlets on their dashboards to view real-time status of workload.

Tammy uses the work item statistics, WorkItems viewlet, and WorkItem Editor Viewlet to
create views that give her insight into the team health. For example, she creates several
WorkItems viewlets with different queries that provide her with insight into the status of the
work items. For example, she configures one viewlet to show all new work items that are
unassigned as shown in Figure 11-57.

Figure 11-57 A viewlet configured to show new unassigned work

As shown by the choice of queries, she can create a variety of viewlets that provide real-time
transparent information regarding the work items on her team. She can click any of the work
items to modify them, such as assigning the unassigned work items, or reassigning work to
other team members to balance the load.

She also runs the Tester Report by using TER Count, which is in the Execution folder of the
Reports to monitor test execution records (TER) per tester.

She uses the Test Case Review report, under the Test Case folder, to see the status (draft,
review) of all test cases in her test plan. By doing this, she can ensure that all test cases are
completed for the solution.

She can also run the Test Cases by Defect report to see which test cases are impacted by
defects.

Monitoring quality
Tammy uses a combination of her dashboard and reports to measure quality and execution
status. For Tammy, it is important to measure quality by tracking when the team meets the exit
criteria. As you might recall, in 5.5.4, “Tammy updates the solution test plan” on page 139,
Tammy defined the exit criteria as follows:

� 100% of all priority 1 defects fixed
� 100% requirements test coverage
� 100% user interface using the corporate branding

To monitor quality, she created three viewlets on her dashboard that provide information for
the criteria.
458 Collaborative Application Lifecycle Management with IBM Rational Products

100% of all priority 1 defects fixed
To track against the first exit criteria, Tammy created a viewlet on her dashboard to monitor
defects:

1. For this specific metric, she creates a custom query, which is shown in Figure 11-58 by
using the following steps:

a. She selects Defects → Go To Defects.

b. She clicks Create Query from the left navigation menu.

c. She clicks the green plus sign to add a condition, and selects Priority from the list.
Then she clicks Add attribute condition.

d. For Priority, she selects High.

e. In the Add Condition box, she selects Status and clicks Add attribute condition.

f. She selects the Unresolved check box.

g. In the Add Condition box, she selects Type from the list and clicks Add attribute
condition.

h. From the list box of values, she selects Defect.

i. For Name, she types High Priority Defects.

j. She clicks Save.

Figure 11-58 A custom query to find all unresolved, high priority defects

2. She clicks the Home tab to view the dashboard and used the following steps to add the
viewlet:

a. She clicks Add Viewlet

b. She scrolls to the Quality Management section, selects Workitems Viewlet, and
clicks Add viewlet.

c. After the viewlet is added to the dashboard, she clicks the X above add viewlet to close
it.
Chapter 11. Rational Quality Manager for managing quality 459

d. In the new viewlet, she clicks the downward arrow to expose the menu options, and
selects Edit Settings (Figure 11-59).

Figure 11-59 The menu for a viewlet

e. After the viewlet opens with the settings available for editing, she clicks the Edit button
next to the Query field.

f. In the window that opens and lists the available queries (Figure 11-60), in the Personal
Queries folder, she selects the query that she just created. In this case, she selects
High Priority Defects. Then she clicks OK.

Figure 11-60 Editing the query used for a viewlet

g. In the viewlet:

i. She clicks the Appearance tab.

ii. She clears the Use computed title check box.

iii. In the Title field, she types a title, High Priority Defects, for the viewlet.

iv. She clicks Save and the editor closes. The query runs showing all unresolved, high
priority defects.

Requirements coverage
Rational Quality Manager provides real-time information about the status of requirements
coverage. An important function of any test team is to validate that the working software
meets the requirements. Tammy uses the Requirements Test Coverage and Requirements
Status by Execution reports to ensure completeness in testing as one of her exit criteria.
460 Collaborative Application Lifecycle Management with IBM Rational Products

Tammy uses a viewlet that is configured to display the Requirements Test Coverage report.
To add this viewlet she does the following steps:

1. Tammy clicks the Home tab to view the dashboard.

2. She adds the viewlet:

a. She clicks Add Viewlet.

b. She scrolls to the Quality Management section, selects Requirement Coverage
Status, and clicks Add viewlet. The viewlet is added to the dashboard.

c. She clicks the X above the Add viewlet button to close it.

d. In the new viewlet, she clicks the downward arrow and selects Edit Settings. The
viewlet opens with the settings available for editing.

e. She sets the Test Plan to the appropriate test plan, which is AO_Rel2 in this case.

f. In the viewlet, she clicks the Appearance tab to modify any settings or change the title.
She deselects the Use computed title check box.

g. On the Scope tab, no changes are needed.

h. She click Save and the editor closes. The requirements coverage report is now
available.

The Requirements Test Coverage report provides a pie chart that shows her the ratio of
requirements that are covered and not covered (Figure 11-61).

Figure 11-61 Example of a Requirements Test Coverage report

She can click the Covered section of the pie chart to view the details of all requirements that
are covered by test cases. More importantly, she clicks the Not Covered section to view all
requirements that are not covered by test cases, which is also shown in Figure 11-61. She
clicks the requirement to open it, and from there, can create and assign a test case to a team
member to ensure that it is covered.

By monitoring this report, Tammy can see when the team has created test cases for all
requirements. She uses this report in combination with the Test Execution status reports to
monitor when all tests have been executed. In particular, the Tester Using TER count report
helps Tammy to see the number of test executions per tester along with a view of the
unfinished test executions per tester. By seeing this information, she gains insight into the
workload across the team so that she can reassign work.
Chapter 11. Rational Quality Manager for managing quality 461

100% user interface by using corporate branding
To track the test effort that is related to corporate branding, Tammy created a test suite that
contains all re-branding test cases. She might have performed these steps at the beginning of
the project. We explain them here to show how they can be used to measure a team’s
progress against exit criteria.

First Tammy created a Branding theme to identify branding related test cases. As an
administrator, Tammy has the ability to modify the Category, Function, and Theme lists that
are available to users of the system.

To add a Theme for organizing test cases:

1. Tammy selects Admin → System Properties.
2. On the System tab, in the list box, she selects Test Case Categories.
3. Under Theme, she clicks the green plus sign to add a theme.
4. In the text box that is displayed, she types the theme named Branding.
5. Optional: She can assign this theme to a tester.

As test cases are created, the Branding theme is selected, which makes it easier to identify
related test cases. To create a test suite that uses this theme, Tammy completed the following
steps:

1. She selects Construction → Create Test Suite.

2. For Name, she types UI re-branding tests and types a Description. Then she clicks
Save.

3. From the Table of Contents, she clicks Test Cases.

4. She clicks the green plus sign to add a test case.

5. In the Add Test Case window, for Group by, she selects Theme, which re-orders the test
cases by themes. All of the test cases with the Branding theme are now grouped.

6. She clicks the check box next to the Branding theme, which automatically selects all test
cases with that theme (Figure 11-62), and clicks OK.

Figure 11-62 Adding test cases to a test suite, grouped by theme

Tammy can now use the test suite to monitor the progress of all tests that are related to the UI
branding. The test suite provides a grouping mechanism for a set of test cases. At a glance,
she can see which test cases have test scripts. She can also view the execution results to
determine the quality of the effort.
462 Collaborative Application Lifecycle Management with IBM Rational Products

Trend reports
Last Tammy uses trend reports to get an indication of how the quality is trending. Two reports
in particular give her insight into the completeness of the test effort:

� The Defect Arrival and Resolution report provides an indication of the rate of defects that
are found versus those that are fixed. She watches to see a decline in the arrival rate and
eventually a leveling or decline in the resolution rate.

� The Execution Trend report (Figure 11-63) helps to estimate the actual test execution
progress against the projected progress. It demonstrates what test case execution work is
complete, how much work is left, and whether progress is being made as expected.

Figure 11-63 Execution trends comparing planned versus actual execution status

11.6 Life-cycle collaboration

As shown in this scenario the test team members collaborate and depend upon the
contributions of other team members. Figure 11-64 on page 464 shows the life-cycle assets
that are involved in the quality management scenario.
Chapter 11. Rational Quality Manager for managing quality 463

Figure 11-64 Life-cycle assets involved in this quality management scenario

The following assets are created in this act:

� The test plan is linked to requirements in Rational RequisitePro.

� A build is deployed to a managed resource in the lab.

� Test cases are updated with detail and include an association with the linked requirements
from Rational RequisitePro.

� A test script is written and associated with the test case.

� Test execution records are generated for multiple browser configurations.

� Test results exist for each test execution record.

� A defect is associated with a line in the test execution.

The following assets are also referenced by this act:

� Test plan

� Build and the Unified Change Management (UCM) stream that stages it, which was
created by Rebecca in Act 3

� Bill of materials from the integration build, which was created by Rebecca in Act 3

� Requirement and sketch created in Act 1, which is used to verify the expected result of the
test case

UCM Baseline(s)

UCM Stream

Build

Built
from

Build Project

Job

ALM Baseline

BT Build

Schedule

Produces

Includes

Runs

BOM

Environment

UCM View

Test Plan Test Case Test Execution

Test Result

Defect

Test Resource

Reported
Against

References
Deployed to

Requirement

Sketch

Related
Artifact

CQ:Requirement

Associated

A Created in Current Act

A Referenced

A Supporting

Test Script

ALM Task
[Implement]

ALM Task
[Detail Requirement]

ALM Task
[Test]

ALM Task
[Develop Architecture]

ALM Activity
[Implement]

Test Work Item
[Task]

Staged to

ALM Request
[Enhancement]
464 Collaborative Application Lifecycle Management with IBM Rational Products

11.6.1 Managing quality

The manage quality theme begins from the first act of the storyboard when the team
responds to a change request (Figure 11-65). The theme continues through the last act when
the team delivers the release. In this section, we highlight the areas where quality
management comes into play in the reference scenario.

Figure 11-65 Quality management throughout the life cycle

Iteration planning
Quality management starts by including the test effort in each iteration. By conducting
integration tests in every iteration, the team can drive out defects with each iteration, which
prevents the defects from piling up into an unmanageable list by the end of the project.
Testing in each iteration also gives the test team more time to learn and work with the
solution. This additional test time allows for increased test execution over the course of the
project and increases the chances of driving down defects. Additionally as the team becomes
more familiar with the functionality, the test cases can become more detailed and
sophisticated.

Tammy the test lead is involved in planning the iterations. The test team has insight into the
planned requirements and development effort, which enables Tammy to respond with a more
meaningful and targeted test plan for each iteration.

Test planning
Test planning provides the heart beat for the test effort. While it might seem like additional
work when beginning the project, having a plan in place saves significant time over the life of
the project, whether you have a big, small, agile, or traditional plan. The test plan is worth the
investment to ensure that the team is working toward a common goal. By creating and
managing a test plan, Tammy and the rest of the team can measure their progress against the

Requirements
Product Management/ Analyst

Development
Architect/Developer

Tester
Test Practitioner/Tester

Production
Production/Deployment Manager

Requirement
Management

Build Test
Cases

Test
ResultsDefects

Service
Levels

APARs
RFEs

Final
Image

Product
Limitations

Test
Plan

Iteration 1
Iteration 2

Iteration N

Design
/Model

Requirement
Definition

Test cases link to
the requirements
in the project.

Use the information that
was learned in the project
test to help my users
(usage notes and so on).

Business
Use Cases

Use business use
cases to build test
assets

Quality Management Spans the Application Life Cycle

Changes in the last
build indicate the
function that is
available to test.

Build verification
tests indicate the
quality level of the
build

Identify the best
test cases to
automate in my
organization.

When the project
meets exit criteria,
it is ready to ship.

Measure
progress against
the plan.
Chapter 11. Rational Quality Manager for managing quality 465

plan. Tammy has produced a test plan for each iteration. She also created test plans for each
of the test environments (system test, acceptance test) at the end of the project.

The test plans include links to the requirements that will be implemented, thus enabling the
team to ensure that there are test cases for every requirement. This also gives the test team
direct access to the content and intent of each of the requirements, thus improving the quality
of the test cases.

Tammy’s plan includes exit criteria. By gaining agreement on the exit criteria, Tammy can
determine when the team has completed the work. She can now measure and report against
the exit criteria. All team leads can be aware of and measure the project against the exit
criteria. This gives the project team and the business assurance over the quality of the
release.

Tammy’s test plan is managed by the test management system. By managing it in a
database, all requirements and test cases can be linked to the plan. This makes the act of
measuring progress much easier, as the system provides reports for specified metrics.

Developer testing
As we saw in Chapter 6, “An agile team implements a change” on page 213, Diedrie builds
the source code with her changes in her local sandbox. This ensures that the source code
works in her sandbox and reduces the chances of breaking the build.

Diedrie also runs unit tests against her changes before she delivers her source code. This
initial set of testing catches the obvious defects before the source code is shared with the rest
of the team.

Build automation and verification testing
In Chapter 8, “The release engineer conducts the integration build” on page 315, and
Chapter 9, “Rational Build Forge for enterprise integration build” on page 341, we saw that
the team has implemented an automated build strategy.

For Marco and his team, they ensure that their component builds without errors. They run
build verification tests on their component to ensure quality in their build. When they are
satisfied with the quality of their build, they deliver their changes into the integration stream.
This ensures that each component has met with a predefined quality level prior to submitting
it to the integration build.

Rebecca monitors the integration build. She has automated the integration builds and
includes build verification testing at the integration level. She also runs static analysis on the
source code base to catch inconsistencies in the source. This level of testing ensures that,
when the components come together in the integration build, a predefined level of quality is
met before deploying the build to the test servers.

By automating the builds, the team ensures that the exact same process is used for every
build. This ensures consistency and reduces the chances of human error. In addition, the
automation system keeps an audit trail of every step in the automation. At any point, the team
can inspect the audit trail and determine what occurred.

Frequent integration tests
Rebecca conducts the integration build on a weekly basis, and Tammy chooses which of the
builds to deploy into the test lab. Frequent integration tests help Tammy’s team to identify
defects early in the development cycle. These test are also more likely to catch regressions
from week to week.
466 Collaborative Application Lifecycle Management with IBM Rational Products

Lab management
Tammy and the rest of the team have a catalog of servers that are available for use. They
manage the configurations and make requests to a lab manager to prepare the servers based
on the environments that they have defined. This ensures a consistent approach toward lab
reservation, reduces conflicts over server usage and helps the team to optimize server
utilization.

Test construction and execution
Tammy’s team uses a test management system to centralize their test cases, test scripts, test
executions, and test results. This helps them to reuse existing test cases and scripts, thus
reducing the amount of time of writing tests, which gives them more time to execute tests. By
linking test cases to requirements, they can ensure that all requirements have test cases that
have been executed. They can also track the planned tests versus executed tests to gauge
progress and team health.

Quality monitoring
By managing these assets in a centralized repository, reports are easily generated to provide
insight on progress. Additionally, the team established exit criteria for the iteration, which is
used to determine when they have achieved the expected quality.

During a retrospective at the end of the project, Tammy can analyze the usage rates of the
tests and test servers. This analysis helps her to continuously improve her testing effort.

11.6.2 Requirements-driven testing

The tests that are conducted by the test team tie directly back to the business requirements
that Bob submitted at the beginning of the scenario. Ultimately the requirements drive much
of the work that is completed by the team.

� Bob’s request resulted in detailed requirements.

� Requirements are referenced by Al to locate a reusable asset.

� Diedrie references the detailed requirements to understand her development task.

� Tammy adds links to the requirements in her test plan to ensure that the team validates
that the requirements have been met. She also adds the UI branding effort as an exit
criteria in her test plan.

� Tanuj references the requirements to design and construct his tests. He also uses it when
deciding if he needs to file a defect.

These are just some examples of how requirements impact the contributions of the rest of the
team.

11.7 Planning and measuring success in quality management

The test plan serves as a linchpin for measuring success. By creating and managing against
the plan, the team has a better sense of what is done and what remains to be done. The plan
gives the team one metric of completion: You are done when you have completed everything
that you planned. Reports and live metrics are then used to measure against the plan.
Rational Quality Manager provides a set of reports that are accessed from the Reports menu
(Figure 11-66 on page 468), which covers a range of information that helps the test teams
confirm the quality of the solution.
Chapter 11. Rational Quality Manager for managing quality 467

Figure 11-66 View or Create Reports by using the Reports menu

Choosing the View Reports menu item opens the set of predefined reports (Figure 11-67)
that ship with the product.

Figure 11-67 Categorized reports in Rational Quality Manager

As shown in Figure 11-67, these reports are categorized into folders as follows:

� The Defects folder shows information and trends about defects, such as defect arrival
versus resolution.

� The Execution folder provides the execution status of plans, machines, owners, trends,
and defects.

� The Lab Manager folder provides information about lab usage, requests, and
reservations,

� The Requirements folder contains the requirements coverage reports for test coverage
information about your plan requirements.

� The Scorecard folder includes summary information that shows the status of test cases,
test executions, and defects.
468 Collaborative Application Lifecycle Management with IBM Rational Products

� The Summary folder includes individual summary reports such as Execution by Test
Schedule and Tester Report using Weight.

� The Test case folder contains test case reports to list test cases by plan, configuration, or
team.

In addition, you can create your own reports that are tailored to your needs. In the following
sections, we highlight some of the report types that are available.

Trend reports
Use trend reports to gain insight on the direction that you are trending. For example, a trend
report that shows the defect arrival rate slowing might indicate a sign that the solution is
becoming stable. The Execution Trend report provides insight into the number of test
executions that are performed by the team against the plan, which can indicate whether the
schedule is a risk or on target.

Execution status
Tammy can obtain the execution status of plans, machines, owners, trends, and defects by
clicking Reports → View Reports. She also uses viewlets on her dashboard to view the
Execution Trend Report and Live Execution Status.

Click the report that you want to run, and select the parameters. Execution status reports by
plan, owner, and machine display charts with data that is divided into six color-coded
categories. All of these reports use the same status outcomes. The following reports, among
others, are of interest to Tammy:

� The Execution Status per Tester report lists the status of execution work items by their
testers or owners. You can select more than one plan to see the status of execution work
items by owners across multiple plans. Click a section of the graph to view the execution
work items that are associated with a particular status for that owner.

� The Execution and Defects by Owner report displays both the defects and the execution
work items for each owner of a test plan. Click the ID number of an execution work item or
a defect to open it.

Requirements coverage
Ensuring that all requirements are tested is an important task for the test team. Rational
Quality Manager allows testers to link to requirements in Rational RequisitePro or create
requirements directly in Rational Quality Manager. These requirements can then be
associated with a test plan. By associating them with the test plan, the test manager can
organize all requirements that will be validated by that plan. A report is provided to allow a test
manager to see all requirements that are associated with a plan.

Additionally each requirement should have at least one test case written to validate it. Test
cases have test scripts and one or more test execution records with results. A report is
provided so that test managers can ensure that all requirements in plan have a test case.

Lab management
The lab management reports provide insight into the utilization of lab resources. This insight
helps a team optimize their use of machines by seeing which machines are under or over
utilized. The following reports are among those of interest:

� The Lab Resource Utilization report shows the average daily usage of a group of
machines. You can also specify a time period to see the utilization rate during that period.
This report can be based on a group of resources or for the entire lab.
Chapter 11. Rational Quality Manager for managing quality 469

� The Machine Free Time Rate report shows how much time each machine is idle. This is
report is in the form of a bar chart with a threshold marker. You can specify a threshold,
which highlights when you go under the threshold, indicating that the machine is too idle.

� The Request Response Time report shows the average response time per request to see
how the lab managers are responding.

11.8 Reference architecture and configuration

In this section, we describe how Rational Quality Manager fits into the overall solution
architecture and how the tools have been configured for this act of the storyboard.

11.8.1 Fitting into the enterprise ALM solution

Rational Quality Manager as used in this act illustrates part of an enterprise ALM solution
with a globally distributed testing team integrated into a larger enterprise project. In this
chapter, we have presented the workflows and tool usage in Rational Quality Manager for an
integrated ALM solution that supports the team in alignment of work, iteration planning, reuse,
delivery of change, and build integration. Figure 11-68 highlights the part with the enterprise
ALM solution that is discussed in this chapter.

Figure 11-68 Rational Team Concert as one part of the enterprise ALM solution

Test resources

INUS

Repository

Solution test plans

Comp test plans

Rational Requirements Composer
and Rational RequisitePro Rational ClearQuest

CQI assets

CQALM assets

Sketches and so on

Requirements

Rational Asset Manager

Rational ClearCase/UCM

Reusable
assets

Streams

Components

Rational Build Forge

Solution builds

Comp builds

Rational Quality Manager
Rational Quality Manager

Rational Team Concert

Component
iteration plan
work items

Workspaces

Components

Component
builds

Streams

Build assets

Web IDE

Corporate Recently acquired

Third-party provider

Solution
test plans

Test resources
470 Collaborative Application Lifecycle Management with IBM Rational Products

Deploying Rational Quality Manager
Rational Quality Manager is built on the Jazz platform and provides a Web-based user
interface. Rational Quality Manager was deployed to a single Windows 2003 server. The
deployment of Rational Quality Manager is similar to that of Rational Team Concert as
described in “Deploying Rational Team Concert” on page 302. The primary difference for
Rational Quality Manager is that there is no Eclipse user interface and no build engine is
involved.

A deeper description of the Jazz architecture is provided in Jazz Platform Technical Overview
on the Jazz.net Web site at the following address (sign-on required):

https://jazz.net/learn/LearnItem.jsp?href=content/docs/platform-overview/index.html

Read the Rational Quality Manager blog for inside thoughts from the development team at the
following Web address:

http://qualitymanager.wordpress.com/

Integrating Rational Quality Manager and Rational ClearQuest
Rational Quality Manager is integrated with Rational ClearQuest in the same way as Rational
Team Concert. Work that is triaged in Rational ClearQuest must be aligned with the work that
is performed by the users of Rational Quality Manager. For the reference scenario, we are
only concerned with aligning work items that inform the test lead to add tests to the test plan.
It assumed that all test-related work occurs in and is managed by Rational Quality Manager.

We are not concerned with aligning the results of the executed tests with items that are
managed in Rational ClearQuest. Nor do we make any attempt in aligning Rational
ClearQuest Test Manager with Rational Quality Manager. See “Integrating Rational Team
Concert and Rational ClearQuest” on page 303 for more information.

For users of Rational Test Manager for ClearQuest, a utility is provided to migrate assets to
Rational Quality Manager.

11.8.2 How the products are configured for this scenario

In this section, we describe the key configurations in Rational Team Concert that are used for
this act of the scenario.

Configuring users, projects and team areas
The Rational Quality Manager repository is deployed by the corporate leads team, and all
testers use the web interface to work with and store assets in the centralized test repository.
Log in to Rational Quality Manager as a user with administrative permission, such as
ADMIN/ADMIN. The user interface has a menu for the administrator as shown in
Figure 11-69.

Figure 11-69 The Administration menu
Chapter 11. Rational Quality Manager for managing quality 471

https://jazz.net/learn/LearnItem.jsp?href=content/docs/platform-overview/index.html
http://qualitymanager.wordpress.com/

To modify user accounts, click Jazz User Administration. User accounts were created for
each of the actors in the scenario. When creating an Rational Quality Manager user account,
you choose the type of client license to give each user. Tammy and Tanuj were given Rational
Quality Manager - Tester licenses, which gives them read access to all capabilities and write
access to all capabilities unless otherwise restricted by role-based process permissions. In
addition, Tammy was given the Repository Permission of JazzAdmin, while Tanuj was given
the Jazz User permission.

Marco, Diedrie, Patricia, Bob, and Al were given Rational Quality Manager - Viewer licenses
to give them read access to all capabilities unless otherwise restricted by role-based process
permissions. In addition, they were given Jazz User Repository Permission.

User accounts in Rational Quality Manager can be personalized in the same manner as
described for Rational Team concert in “Configuring project and team areas” on page 305.

To configure the project area, click Jazz Project Administration. A team area, named
Account_Opening, was created for the test team. A team area called Lab Managers was
created for users that manage the test lab. This configuration assumes a separation between
the testers and the lab administrators.

In practice, additional team areas can be created to separate the test team’s functions. For
example, if a test team focuses on a particular area of the solution, a team area can be
created for them.

The team members were configured by using the roles that are available with the default
Rational Quality Manager process. Tammy is assigned the test lead role, while Tanuj is
assigned the tester role. The scenario configuration did not require any configuration of
additional work item types or changes to the default work item state workflows.

Configuring the Rational RequisitePro integration
Rational Quality Manager integrates with Rational RequisitePro v7.1 and requires the
Rational RequisitePro client for Web (RequisiteWeb) to implement the integration. Be sure to
select the Web Components option when installing Rational RequisitePro.

After you install and configure Rational RequisitePro, you can use it to manage your
requirements and import those requirements into Rational Quality Manager.

See the IBM Rational RequisitePro Installation and Upgrade Guide for information about
configuring RequisiteWeb. This guide is installed with the product by default
<reqpro_install_dir>\RequisitePro\doc\books\rp_install.pdf.

For information about using Rational RequisitePro, see the information center that comes with
the product and the Rational Requirements Composer Information Center at the following
address:

https://publib.boulder.ibm.com/infocenter/rpcmpose/v7r1m0/index.jsp

Restriction: Rational Quality Manager supports one, default project area with multiple
team areas. The Administration user interface does provide the ability to create new project
areas. However, these areas are not supported. Only the default project area with multiple
team areas is supported.
472 Collaborative Application Lifecycle Management with IBM Rational Products

https://publib.boulder.ibm.com/infocenter/rpcmpose/v7r1m0/index.jsp

In summary, to integrate with Rational RequisitePro:

1. Install Rational RequisitePro 7.1 and configure a RequisiteWeb server.

2. Create a Rational RequisitePro 7.1 project, and add one or more users to the project.

3. Add requirements to the project.

4. Import the requirements into a test plan in Rational Quality Manager.

5. Associate each requirement with a test case.

When using Rational Quality Manager, you can establish which Rational RequisitePro host to
use by modifying the system properties (Figure 11-70):

1. Log in as a user who has administrative privileges.

2. Click Admin → System Properties.

3. On the System Properties tab (Figure 11-70):

a. From the list box on the left, click RequisitePro Host Properties.
b. Click the green Add Connection (plus sign) icon.
c. Type the host name and port number of the Rational RequisitePro server.
d. Click Save Connections (floppy disk) icon.

Figure 11-70 Adding a Rational RequisitePro host connection

Configuring automated functional tests
Adapters for automated test tools are provided for Rational Quality Manager. A Rational
Quality Manager test script can reference files that are created by Rational Functional Tester
or Rational Robot. After you create the functional test script, it becomes a test asset in
Rational Quality Manager and can be managed like any other script. After you create the

Restriction: To obtain this version of Rational RequisitePro, you must register for the
RequisitePro 7.1 beta program.
Chapter 11. Rational Quality Manager for managing quality 473

script, you must associate it with a test case. You can then generate an execution work item
for that test case and execute it, which is identical to the way that you use scripts of other
types.

To incorporate functional tests into your workflow, you must meet the following requirements:

� The Rational Quality Manager Web client and server must be running.

� A functional test product (either Rational Functional Tester or Rational Robot) and the
corresponding adapter for Rational Quality Manager must be installed on the same
machine.

� The adapter must be running.

It is not necessary for the functional test product to be running when an execution work item
referencing a functional test script is executed.

Adapter installation
The installation files (RFTRQMAdapter.zip and RobotRQMAdapter.zip) for the adapters are
located in the adapters subfolder in a typical Quality Manager installation. To install an
adapter:

1. Download the compressed file to a machine where the functional test product is installed.
2. Extract the contents of the compressed file.
3. Edit the configuration file as needed.

Starting the adapter
To start the adapter:

1. Click the startadapter.bat batch file that is installed by default into C:\Program
Files\IBM\SDP\FunctionalTester\RQMAdapter.

2. On the Connection Information tab (Figure 11-71 on page 475):

a. For Server URL, type the URL for the Rational Quality Manager server.

b. For Login ID, type a valid ID for the Rational Quality Manager server.

c. Type the appropriate password for the Login ID.

d. For Adapter Name, type a unique Name, which is any name that you want to give your
adapter to display in the Rational Quality Manager Web UI to identify this instance of
the adapter.

e. Select Save Password if you do not want to re-enter the password each time that you
start the adapter.

f. Click Start Adapter.

After the connection is made, the word “Connected” is displayed at the bottom of the
Rational Functional Tester Adapter window.
474 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 11-71 Rational Functional Tester Adapter

3. Click the Adapter Console tab to view the adapter status.

Configuring the Rational Build Forge news feed
The Rational Quality Manager dashboard has viewlets for presenting feeds. In this section,
we explain how to configure the news feed for this scenario:

1. In Rational Build Forge, select Administration → Messages.
2. In the Message window, click the RSS button.
3. Copy the URL from the browser address.
4. In Rational Quality Manager, go to the dashboard.
5. Click the Add Viewlet button.
6. Choose the News RSS feed and add it to the dashboard.
7. Click the Edit link in the text of the feed viewlet.
8. On the Preferences tab of the News Feed window (Figure 11-72):

a. In the URL field, paste the URL.
b. Provide a user name and password for the Rational Build Forge account.
c. Click Save.

Figure 11-72 Adding a Rational Build Forge RSS feed to Rational Quality Manager

To view the news:

� When you see a URL in the news viewlet, click the URL to open the Rational Build Forge
messages window.

� Click the plus sign in the lower right corner of the viewlet to see a read only view of the
headlines.
Chapter 11. Rational Quality Manager for managing quality 475

Configuring automations for lab management
The Rational Test Lab Manager Automations are run by using Rational Build Forge behind the
scenes. Each of these automations is a Rational Build Forge job that can be called from the
Rational Quality Manager user interface. The steps for configuring Test Lab Manager
automations are as follows:

1. Install Rational Build Forge so that you can manage its lab asset information in Rational
Quality Manager.

2. Configure Rational Build Forge to work with Rational Quality Manager by modifying its
buildforge.conf file and updating its port information if it is installed on the same machine
as Rational Quality Manager.

3. Configure Rational Quality Manager to work with Rational Build Forge by updating its
integration_config.xml file to include the host name or the IP address of the Rational Build
Forge server.

4. Create machines in Rational Quality Manager with the software type “Build Forge agent”
installed. Assets defined in the manner are synchronized with Rational Build Forge.

See the Integrating section of the Rational Quality Manager online help for details about these
configurations.

After the servers are configured, you build automations by using the Rational Build Forge
projects feature. These automations are similar to the build automation that we explain in
Chapter 9, “Rational Build Forge for enterprise integration build” on page 341. Only in this
instance, automation projects are created for deploying the builds, instead of conducting the
build. The same automation concepts apply to creating deployment automations, such as
creating libraries, using environments, building projects, defining parallel and sequential steps
for an automation, and running jobs.

Some examples of commands that are used in deployment automations are stopping a
server, deploying the build from a staging location, starting a server. The examples that follow
were taken from the team’s use of Rational Test Lab Manager to deploy the product to their
own servers.

Stop a server by navigating to a directory and calling a batch file, as shown in Example 11-1.

Example 11-1 Stopping a server prior to deploying an application

cd "C:\JazzBeta2\jazz\server"
server.shutdown.bat

Call a deployment script, as shown in Example 11-2, to set the directory to the location of the
script and then call the script with parameters set.

Example 11-2 Calling a deployment script

cd "C:\RTLMDeploy"
RTLMDeploy_auto.jar -u C:\JazzBeta2 -w C:\wget -auto -n

Start a server by changing to the appropriate directory and running a batch file to start the
server as shown in Example 11-3.

Example 11-3 Changing the directory and starting the server

cd C:\JazzBeta2\jazz\server
cmd /C server.startup.bat
476 Collaborative Application Lifecycle Management with IBM Rational Products

Configuring Rational AppScan Tester Edition
Consult the Rational AppScan Tester Edition for Rational Quality Manager help to configure
Rational AppScan:

� AppScan Tester Edition 5.5 Quick Start Guide, GI11-9120

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PB
L=GI11-9120-00

� IBM Rational AppScan Tester Edition Administration Guide 7.7, SC23-9453

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PB
L=SC23-9453-00

� IBM Rational AppScan Tester Edition Troubleshooting Guide 7.7, GC23-9454

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cg
i?CTY=US&FNC=SRX&PBL=GC23-9454-00

� IBM Rational AppScan Tester Edition User Guide 7.7, SC23-9452

http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cg
i?CTY=US&FNC=SRX&PBL=SC23-9452-00

Configuring ClearQuest Connectors
We explain how to configure the ClearQuest Connector in Appendix B, “Configuring
interoperability” on page 565.

11.9 Problem determination and known workarounds

Installing Rational ClearQuest 7.1 and Rational RequisitePro 7.1 on the same server can
create port conflicts for the Web user interfaces. Running Rational Build Forge, Rational
Quality Manager, or Rational Team Concert on the same server can create port conflicts with
the Web user interfaces. In this case, create a port numbering strategy and apply it to any
products that are installed on the same server.

The Rational Quality Manager integration with Rational RequisitePro uses Requisite Web.
Therefore, be sure to have the Rational RequisitePro Web server running on your
requirements machine before attempting to import requirements to Rational Quality Manager.

When using integrations with other products, ensure that any required adapters or connectors
are running.

When using the ClearQuest Connector, make sure to start the Rational Quality Manager
server followed by the ClearQuest Connector.
Chapter 11. Rational Quality Manager for managing quality 477

http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=GI11-9120-00
http://www.elink.ibmlink.ibm.com/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC23-9453-00
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=GC23-9454-00
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=GC23-9454-00
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC23-9452-00
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi?CTY=US&FNC=SRX&PBL=SC23-9452-00

478 Collaborative Application Lifecycle Management with IBM Rational Products

Part F Act 5: Delivering the
solution

Act 5 is the final act of the storyboard. The team has entered into the end game of the
iteration. The leads ensure that all work is complete with expected quality, and the iteration is
delivered. In Chapter 12, “The team delivers the solution” on page 481, we provide
information about solution delivery as it relates to the scenario. Then in Chapter 13, “The
Rational ALM solution for solution delivery” on page 495, we provide detailed information
about the Rational products that are used to support this act of the story.

Part F

Role-based guide: To understand how the content in this part applies to your role, see the
role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7 on
page 13.
© Copyright IBM Corp. 2008. All rights reserved. 479

480 Collaborative Application Lifecycle Management with IBM Rational Products

Chapter 12. The team delivers the solution

The team has finally reached the end of the iteration. In this chapter, we provide an overview
of “Act 5: Delivering the solution” along with a reference scenario for how it can be applied by
an enterprise team.

This chapter includes the following sections:

� 12.1, “Introduction to software delivery” on page 482
� 12.2, “Reference scenario for solution delivery” on page 483
� 12.3, “Considerations in solution delivery” on page 488

In this chapter, we also include information about how this scenario relates to the previous
scenarios and how it can impact delivery scenarios outside the scope of this book.

12

Role-based guide: To understand how the content in this chapter applies to your role, see
the role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7
on page 13.
© Copyright IBM Corp. 2008. All rights reserved. 481

12.1 Introduction to software delivery

The biggest question for software teams at the end of the iteration is knowing whether their
work is done, or rather when release requirements have been completed with sufficient
quality. This is where the previous decisions by the team regarding which requirements to
implement and which tests to create and run help the team determine if they are done. The
Collaborative Application Lifecycle Management (CALM) solution needs to support this
tracking, and resulting decisions help the team achieve the required speed and quality.

As the teams approach this acceptance bar, or exit criteria, it is essential to make the team
control the change rate of the project. This is accomplished by enforcing a tighter
stabilization, or end-game, process to the iteration and by ensuring team accountability by
approvals. The review and approval process ensures that only prioritized changes are
delivered and that all functions in the team take ownership of the release quality.

Organizations that adopt agile development practices expect their development teams to
increase the delivery rate by effectively providing working solutions by each iteration. The
agile principles state, “Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.” The requirements for increased delivery rate
require that both the build and the release workflows adopted by the project are repeatable,
predictable, and implemented with a high degree of automation to achieve efficiency.

In this act of the scenario, we follow the team as the Account Opening project moves into end
game and completes the release for handoff.

12.1.1 The changing of software delivery

As discussed in 8.1.1, “The changing enterprise build management market” on page 316, the
increased business demands on software delivery, and the adoption of agile principles, are
moving development teams to shorter release cycles. More and more this moves applications
to the state of “perpetual beta,” with needs for shorter delivery iterations and tighter
integration of project and release management into the complete end-to-end life-cycle
solution:

� The release workflow must seamlessly connect to the output of the build and quality
workflows to achieve efficient release management and avoid unnecessary duplication of
work, assets, and automation.

� Software regulations and compliance require teams to efficiently manage Application
Lifecycle Management (ALM) artifacts and traceability to application changes and
approvals, without extensive manual labor, to keep up with more frequent delivery
iterations.

� Release management must seamlessly integrate with deployment tools to efficiently
deliver solutions to release repositories or deploy them to operational IT environments.

� Development organizations must retain the knowledge of how products and applications
are built and delivered. They must also maintain comprehensive process data in a secure
centralized knowledge base to enable flexible sourcing of development resources and to
minimize business vulnerability.
482 Collaborative Application Lifecycle Management with IBM Rational Products

IBM Rational ALM release management capabilities are seamlessly extended from the
development, test, and build environments that support the CALM development cycles. This
effectively bridges to the publishing and deployment cycles of the ALM life cycle
(Figure 12-1).

Figure 12-1 Build and release cycles integrating seamlessly into the ALM cycles

Build and test automation framework
The build automation framework in the enterprise build management blueprint ensures that
the build, quality, and release workflows can take an adaptable, common, modularized, and
reusable approach. This approach enables the quality and release management processes to
meet the different and changing requirements on the release workflows cross applications,
solutions, and teams.

Packaging
Software organizations tie together the transition of applications between building, packaging,
and deployment of the release. Often deployments are managed in an “over the wall” fashion.
To realize a build and release management solution that meets the expectations of agile and
business-driven development, the transition workflows must be streamlined. The extraction
and packaging of the application component from the source control repositories must be
automated as should the movement of the packages across solution staging repositories,
teams, organizations, machines, and groups. The deployment can be an intermediate drop
zone or final deployment environment.

Delivery and deployment
Typically the delivery process consists of some basic steps across may projects. Modularizing
packaging and deployment steps enables the reuse and agility of reconfiguring the delivery
process. Applying role-based security to the modularized packaging and deployment steps
can be used to enable sharing and commonality of a deployment script. In this case, the
development team can deploy to a test environment, but only specific users or roles can
deploy to staging or production environments.

12.2 Reference scenario for solution delivery

In this section, we provide an overview of the steps that are the development team takes at
the end of the final iteration in the Construction phase. Details about the activities of the
Transition phase are not covered in a step-by-step scenario. However, in this chapter, we
provide information about using Rational Asset Manager to manage the final build as a
reusable asset.

The scenario in the chapter continues to build on “Act 4: Managing quality” in this book. In
8.2, “A reference scenario for enterprise build management” on page 325, Rebecca was
running the integration build that contained the changes to UI Branding delivered by Diedrie in
the CreditCheck component team.

In “Act 5: Delivering the solution”, we explain how the development team switches to an
“end-game” process and the team leads start to assess their exit criteria for the iteration.
Chapter 12. The team delivers the solution 483

When the team agrees that the iteration exit criteria has been met, Patricia approves the
release. While the teams conduct retrospective to continuously improve their practices,
Rebecca publishes the iteration release and submits it to the reuse repository in Rational
Asset Manager (Figure 12-2).

Figure 12-2 Act 5: The team completes the iteration and delivers the solution

12.2.1 The actors

This scenario includes the several key actors as described in this section.

Patricia is the project leader. She is responsible for coordinating the plans and execution of
the project and its team of teams. During the end of the iterations, she validates that the
project is ready to close down for release and starts to tighten the process and reporting so
that nothing is slipping through the cracks. She moves the team into the end-game process.

Marco is the development lead in the Credit Check component team. He is responsible for the
delivery and quality of one of the solution components, and he enforces the end-game
process within his agile team. For the iteration release, Marco approves the component
delivery after the exit criteria for the iteration is met by his team.

Tammy is the test lead. She has a globally distributed quality team that is responsible for
conducting solution testing or investigative testing. She is monitoring the test plan and the
quality exit criteria for the iteration release and approves the release from a quality
perspective.

Rebecca is the release engineer who oversees the solution integration builds and provides
global build support to the project teams. She is also responsible for packaging, publishing,
and announcing the iteration release.

Act 5: Deliver the Solution

Deliver the solution

5.1 The team moves
into the “end game”

The readiness of the release is
assessed, and the solution is delivered.

5.4 Marco conducts a
retrospective

5.3 Rebecca publishes
the release

5.2 The team leads
assess the exit
criteria

5

Patricia
Project
Lead

Marco
Development

Lead

Tammy
Test
Lead

Rebecca
Release
Engineer
484 Collaborative Application Lifecycle Management with IBM Rational Products

12.2.2 The workflow

In “Act 5: Delivering the solution” of the ALM scenario, we capture the steps of the closure
and delivery of an iteration. This final act in the scenario begins on the last day of the iteration.

The steps in Figure 12-3 are performed by the project team.

� Patricia move the iteration to the end game.

� Marco enforce the end-game process enactment in his component team and starts
reviewing and approving deliveries.

� Patricia, Marco, and Tammy monitor and manage outstanding work to reach their exit
criteria.

� Marco approves his component release, and Tammy approves the release quality.

� Patricia approves the application release.

� Rebecca publishes and announces the application release.

� Marco, Tammy, and Patricia conduct retrospectives with their teams

Figure 12-3 Software delivery workflow for this scenario

12.2.3 The team moves to the end game

 Synopsis: The end of the iteration is approaching. Patricia and her leadership team have
been practicing an end-game process to ensure convergence of change at the end of each
iteration. During the end game, deliveries from the teams require approvals by component
leads or by project leads in the final Transition phase. Today Patricia moves the project to
the end game and requests her leadership team to enforce this process with their teams.

Marco forwards the information about the process change to his team at the next team
stand-up meeting and uses the development platform to enforce the tighter end-game
process.
Chapter 12. The team delivers the solution 485

The workflow in this scene captures how Patricia and Marco complete the following tasks:

� Assess project health and decide to move the project to the end-game practices
� Enforce the end-game practices
� Use approvals to manage change deliveries

12.2.4 The team leads assess their exit criteria

In this scene Marco, Tammy, and Patricia monitor and manage outstanding work to reach
their exit criteria and to approve the release.

Marco monitors the component exit criteria

The workflow in this scene captures how Marco completes the following tasks:

� Monitors the completion of the iteration plan
� Queries for new defects and approves deliveries
� Queries and reports on component exit criteria
� Approves the component iteration release

Tammy monitors the quality exit criteria

The workflow in this scene captures how Tammy completes the following tasks:

� Monitors the completion of the test plan
� Queries and reports on the quality exit criteria
� Approves the quality of the iteration release

Synopsis: Marco is focusing his team during the end game to converge the remaining
work in the component iteration plan. He works with his team to prioritize low priority
requests that must be pushed out of the release. He confirms updates to the iteration plan
with Patricia and Bob. He also tracks new defects that are submitted by the component
team or by the test team from test failures in component builds or solution integration
builds. He works with the owners of prioritized defects to assess impact, confirm
importance, validate test status, and approve the deliveries. His team must close all
enhancements or defects of blocking or critical severity and close all tasks of high priority
to meet their component exit criteria.

Marco is reporting his progress to the exit criteria at Patricia’s daily leadership stand-up
meetings. Today he can proudly report that his team has reached their objectives and that
he has approved the component iteration release.

 Synopsis: Tammy and her test team are monitoring the iteration test plans to validate that
the solution release has met its quality goals. She is monitoring the list of quality exit
criteria for the iteration release, which includes build validation test stability, code coverage
of test cases, functional test failures, and application load performance.

On the final day of the iteration, Tammy confirms that the solution meets the quality exit
criteria. She informs Patricia that the quality has met the expectations, all requirements
have been tested, and she has approved the release quality.
486 Collaborative Application Lifecycle Management with IBM Rational Products

Patricia approves the release

The workflow in this scene captures how Patricia completes the following tasks:

� Monitors the completion of the project iteration plan
� Monitors approvals from the project teams
� Approves the iteration release

12.2.5 Rebecca publishes the release

The workflow in this scene captures how Rebecca completes the following tasks:

� Creates a release package
� Creates a release page and announces the release
� Submits a new asset version to Rational Asset Manager

Synopsis: Patricia confirms that the release requirements that are planned for the iteration
have been implemented and there are no outstanding tasks for the team. She also
confirms with her leadership team on the approval status across the project.

She agrees that the iteration is complete and approves its release.

Synopsis: Rebecca receives a notification from Patricia that the iteration release
candidate has been approved. The release is now ready to be packaged.

Rebecca creates a new release package for the iteration release. The release code
archives are already packaged as part of the build process that automatically pulls all
release assets into the release archives. The development team has provided Rebecca
with the documentation that should be included in the release. She includes the
complementary material including the bill of materials, release notes, documentation, and
samples.

Rebecca creates a new public release page on the enterprise IT intranet. She edits the
release page and fills in the release information. She provides download links to the
release package that she just created. She saves and publishes the release page.

Rebecca uses the Account Opening RSS news feed to announce the availability of the
latest iteration release. She links the feed to the release page.

At a later date, the final production release is made as the Account Opening project exits
the Transition phase. Rebecca transitions the solution release to production by delivering it
to the enterprise reuse repository. She logs into Rational Asset Manager, adds a new
version to the Account Opening Solution asset, and submits all application release
packages to the repository. She announces the new asset to the Account Opening
community in Rational Asset Manager.
Chapter 12. The team delivers the solution 487

12.2.6 Marco conducts a retrospective

The workflow in this scene captures how Marco completes the following tasks:

� Uses the dashboard to support retrospectives
� Submits a retrospective to the team repository

12.3 Considerations in solution delivery

In this section, we discuss additional considerations for solution delivery.

12.3.1 Transitioning to production

Until now, this book has been discussing the activities that occur while the solution is under
development during the Construction phase. Some teams adopt multiple phases, such as
those defined in the Rational Unified Process (RUP) and Open Unified Process (OpenUP). At
some point, however, the team must choose a build to release to their stakeholders.

When the final construction iteration is completed, the team is confident that they have
implemented and tested all of the requirements with sufficient quality. The solution is now
stable enough for the next level of testing to occur. During transition, a wide variety of tests
can take place, either sequentially or in parallel. The test lab either mimics the production
environment or is a scaled down version. Security and compliance scans take place on this
configuration to ensure that there are no vulnerabilities. Sophisticated performance tests
begin, which can last for days and simulate hundreds or thousands of users. Eventually user
acceptance testing is performed, and the solution is deployed into production. At any point in
this phase of testing, unacceptable defects can be found that send the team back to the
Construction phase, where the fix must be implemented and system tested before moving the
solution build back to the transition environment (Figure 12-4 on page 489).

Synopsis: Each team in the Account Opening project conducts retrospective to
continuously improve the development practices. The retrospectives are owned by each
individual team and are facilitated by the team lead.

Marco calls for a retrospective with his component team. The team identifies the timeline
for the iteration, any major events during the iteration, and what the team achieved. The
team uses the dashboard to review health trends from the iteration. The team also
discusses what went well and how the team can do well more often. Marco makes the
team discuss alternative behaviors to the tasks that did not go well and what the team can
do about it. He structures his notes about behavior, practices, and agreed improvements
and submit them to the team repository.

At Patricia’s retrospective with the leadership team, Marco reviews the conclusions from
his team. Patricia’s team concludes on actions and decides to pilot new estimation
practices for Marco’s team in the next iteration.
488 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 12-4 Transition to production

Who owns this phase of testing depends on the organization. There’s a gradient of ownership
that varies from enterprise to enterprise. In some organizations, the test team might own the
performance tests, while the operations team owns security, compliance, and user
acceptance testing. In other organizations, the operations team might own all of these
activities. Ownership is not the key point, however. The important note is that a handoff
occurs, and at some point, new people will conduct tests on the solution that the development
team knows thoroughly. Sharing the knowledge of known defects and sharing test cases,
scripts, and configurations can help the teams test more efficiently. Most importantly, the team
must ensure that the same build that was tested by the test team is the one that is deployed
into production.

12.3.2 Delivering to operations

Rational Asset Manager v7.1 provides an integration to the Tivoli Change and Configuration
Management Database (CCMDB). Organizations can use Rational Asset Manager as a
definitive software library (DSL). A DSL is a secure location where the definitive, authorized
versions of software package configuration items (CIs) are stored and protected. A DSL
consists of one or more software libraries or file storage areas, which are referred to as
repositories. In Information Technology Infrastructure Library (ITIL) v3, this concept has been
broadened to be a definitive media library, where the repository can store software packages
and other forms of assets such as presentations, documents, and video files.

By publishing the release to Rational Asset Manager, Rebecca hands the release over to the
IT operations team, where they can then create the deployment scripts for rolling the release
into production. By using Rational Asset Manager as a DSL, organizations can more
effectively manage their software by knowing which version of the software is deployed into
production.

Rational Asset Manager and CCMDB work together in an integrated way to allow IT
organizations to link their development assets to deployment software configuration items
which are then eventually deployed onto runtime CIs in the IT infrastructure.

Rational Asset Manager manages metadata on assets to support asset management
scenarios. The metadata includes the obvious items such as the asset’s name, description,
version, and state. Other metadata includes the artifact’s name, description, version, and
reference (or location), as well as custom attributes, categories, and relationships to other
assets. To support the integration scenarios, Rational Asset Manager uses the Reusable
Asset Specification (RAS) from the Object Management Group (OMG) as the core structure

Construction TransitionInception Elaboration

Iteration Iteration Iteration 1 … Performance User
Acceptance

Security /
Compliance

SVT SVT

Release Candidate

Unacceptable Defects
Chapter 12. The team delivers the solution 489

for asset metadata. Additional metadata is required for integrating with tools and other
repositories such as Tivoli CCMDB.

RAS provides a structure for unique asset identification and metadata extension. The
combination provides the basis for managing references between Rational Asset Manager
and Tivoli CCMDB. By using RAS in Rational Asset Manager, the enterprise can configure
multiple asset types to meet their particular needs. Examples of asset types include
applications, components, services, word templates, and release packages (Figure 12-5).

Figure 12-5 Asset types in Rational Asset Manager

They key point here is that regardless of the asset type configuration in Rational Asset
Manager, the synchronization can still work with Tivoli CCMDB. In addition to the asset
metadata, such as ID, which is used to create a reference between Rational Asset Manager
and Tivoli CCMDB, other metadata elements, such as classification, are synchronized
between Rational Asset Manager and Tivoli CCMDB. Figure 12-6 illustrates a sample of the
asset metadata.

Figure 12-6 Asset metadata in Rational Asset Manager

Rational Asset Manager

Type: Release Package
Who: Admin for deploy
Artifacts:

deploydescriptor.xml
component.ear

Sample Asset Types
Type: Configuration Item

Who: Mgr impact analysis
Who: Dev maint and support

Type: Service Impl
Who: Dev submitting service
Who: Admin for deploy
Artifacts:

deploydescriptor.xml
component.ear

Rational Asset Manager

Reusable Asset
Specification

Overview
Name, Description, ID,

Version, State
Classification

Descriptors
Solution

Artifact name,
artifact ID and version,

artifact reference
Related assets

Relationship type,
asset ID and version

Dev-time policies

Measurements

Connections

Classification

Access control
.ppt, .doc, .uml

.ear, .xml
Asset

Tivoli CCMDB

Configuration item
metadata

Classification

Access control

synchronize
490 Collaborative Application Lifecycle Management with IBM Rational Products

Synchronizing asset classification and metadata reduces administrative overhead, simplifies
developer use, and enables the solution to the challenges introduced earlier.

The user communities and content managed by Rational Asset Manager and Tivoli CCMDB
are rather different. Each of the communities for Rational Asset Manager and Tivoli CCMDB
has many sources of content and information that they manage. Many assets have nothing to
do with configuration items, and not every configuration item should be associated with an
asset. However, several artifacts can be of interest to both user communities.

Even with selecting a subset of the assets and configuration items in the repository, a
many-to-many connection point is produced that adds to the complexity of tracing
relationships and getting the information that IT needs to run its business. Figure 12-7
illustrates this concept.

Figure 12-7 Providing traceable asset information to IT operations

There are several levels of integration for these references that are impacted by the volatility
of the references that are stored in each of the repositories.

The metadata is federated across the repositories to provide community-relevant views and
context. In some cases, this is achieved by physically replicating information, while in other
cases, links are used to allow users to navigate from one repository to the other. For any
artifact that is replicated between the repositories, the repositories declare whether they have
the master copy or the cached copy.

Different communities require different governance and authorization models. Often in a
development context, a rather coarse grained workgroup model is used to facilitate
collaboration where any member of a workgroup can perform the same operations on an
artifact once in the scope of the workgroup. However, governance requirements for CIs often
imply a much more fine-grained and restrictive model for who can perform which tasks on
specific artifacts. Rather than trying to unify these authorization models, we introduce

Sample scenarios
What development teams address the incident?
With a new version of the component EAR, what locations are affected?

Rational Asset
Manager

Rational Team
Concert

Rational
ClearCase

Rational
ClearQuest

CVS

Subversion

Data
Center 1

Data
Center N

Tivoli
Products

Tivoli CCMDB
EAR

EAR

EAR

Incident

Third-party 1

Third-party N

CI
Chapter 12. The team delivers the solution 491

bridging roles in each community that are authorized to make content from one environment
available in another environment.

The enterprise must determine what to connect across the repositories. In general, we
recommend against connecting all possible dots, as shown in Figure 12-8. It is not
reasonable to consider connecting all possible Rational Asset Manager assets for all asset
types, to all possible CIs in the CCMDB.

A more reasonable approach is to identify the cross-repository scenarios that are relevant to
the enterprise. Then identify the assets and CI relationships that are needed to support those
scenarios, selecting a subset of the assets and CI relationships that should be managed
(Figure 12-8).

Figure 12-8 Cross-repository tracing scenarios

The Rational Asset Manager and CCMDB integration is focused on establishing the core
plumbing to address the challenges that we identified earlier. This integration includes the
following major capabilities:

� Determine the appropriate Rational Asset Manager assets and CCMDB CI linkages to
create.

� Create the linkages between the Rational Asset Manager assets and CCMDB CIs.
� Keep linkages fresh.
� Discover and navigate linkages across repositories.

Rational Asset Manager v7.1 provides an integration module so that Rational Asset Manager
can be configured as a physical DSL repository in Tivoli Release Process Manager. The
integration module allows the browsing of assets in Rational Asset Manager from the DSL
application of the Tivoli Release Process Manager.

The release manager can browse for software assets in Rational Asset Manager that are
ready for deployment and can import those assets as software configuration items into the
CCMDB. CIs are created and added to the DSL catalog. The operating status of these CIs
can then be controlled in the normal way in the CCMDB and Tivoli Release Process Manager.
When the software CIs are ready for production deployment, the operating status can be
changed to Ready, for example, when the testing phase is complete and the release manager
approves the package for deployment. Software CIs in the Ready status can be added as
source CIs for deployment tasks in Tivoli Release Process Manager. Tivoli Release Process
Manager then manages the deployment of these CIs to the target resources through a
combination of manual and automated steps.

An alternate path is to export this information from Rational Asset Manager by using the
discovery library adapter (DLA), creating an International Development Markup Language
(IDML) book that can be imported by using IBM Tivoli Application Dependency Discovery into
the CCMDB.

Rational Asset Manager Tivoli CCMDB
492 Collaborative Application Lifecycle Management with IBM Rational Products

The integration between Rational Asset Manager and CCMDB also works in the other
direction. You can automatically create assets in Rational Asset Manager from existing CIs in
CCMDB. When Rational Asset Manager creates an asset from a CCMDB CI, it is stored as a
remote asset. The remote asset contains a link to the CI in the CCMDB, and similarly the user
can navigate to the asset in Rational Asset Manager from the CI in CCMDB. Remote assets
in the Rational Asset Manager repository retain much of the metadata from the CCMDB CI.
They are also given the asset type of “Configuration Item” and the category of “CCMDB,”
which can be used as search filters to more quickly search for remote assets in the Rational
Asset Manager repository.
Chapter 12. The team delivers the solution 493

494 Collaborative Application Lifecycle Management with IBM Rational Products

Chapter 13. The Rational ALM solution for
solution delivery

In this chapter, we provide detailed “how to” information for “Act 5: Delivering the solution” in
the storyboard, where the team uses the Rational ClearQuest Application Lifecycle
Management (ALM) solution to manage the release and delivery of the solution.

This chapter discusses the following topics:

� An overview of the product features that are used in the demonstrated scenario
� A step-by-step demonstration of the scenario

Specifically, this chapter includes the following sections:

� 13.1, “Act 5: Delivering the solution” on page 496
� 13.2, “The Rational ALM solution and solution delivery” on page 497
� 13.3, “The Rational ALM solution for solution delivery” on page 498
� 13.4, “Life-cycle collaboration” on page 519
� 13.5, “Reference architecture and configuration” on page 520

13

Role-based guide: To understand how the content in this chapter applies to your role, see
the role-based guide in Table 1-1 on page 14. The key for this table is shown in Figure 1-7
on page 13.
© Copyright IBM Corp. 2008. All rights reserved. 495

13.1 Act 5: Delivering the solution

This chapter includes a step-by-step discussion of how the characters in the story for Act 5 of
the storyboard, which is illustrated in Figure 13-1.

Figure 13-1 Act 5: The team completes the iteration and delivers the solution

This act, as shown in Figure 13-1, consist of the following scenes:

� Patricia moves the team into the iteration end game.
� The project team leads assess their iteration exit criteria and approve the release.
� Rebecca publishes the release.
� Marco conducts a retrospective with his team.

The following Rational products are used in this act:

� Rational ClearQuest 7.1
� Rational Team Concert 1.0

Act 5: Deliver the Solution

Deliver Solution

5.1 The team moves
into the end game

The readiness of the release is
assessed, and the solution is delivered.

5.4 Marco conducts a
retrospective

5.3 Rebecca publishes
the release

5.2 The team leads
assess the exit
criteria

5

Patricia
Project
Lead

Marco
Development

Lead

Tammy
Test
Lead

Rebecca
Release
Engineer
496 Collaborative Application Lifecycle Management with IBM Rational Products

13.2 The Rational ALM solution and solution delivery

In this section, we explain how the Rational ALM solution supports solution delivery.

13.2.1 Rational ClearQuest and solution delivery

Rational ClearQuest has been configured in this IBM Redbooks publication as the ALM team
solution that provides request management, iteration planning and alignment, defect tracking,
process and workflow automation, reporting, and life-cycle traceability for better visibility and
control of the software development life cycle. In this part of the scenario, we discuss how the
ClearQuest ALM solution is used for the phase of closing the iteration and delivering the
solution.

One of the key capabilities in the ClearQuest ALM solution is the ability to track the state of
planned work to be completed in an iteration or release. It provides the required capabilities
for project leads to continuously monitor the trends of the component or functional teams as
the project converges to completion.

At completion of a release, each team has to confirm the readiness of their contributions. The
ClearQuest ALM solution enables teams to configure approval tracking to manage such
confirmations. The ClearQuest ALM solution can also be used to manage the process of
continuous improvements, or retrospective, that are used in the Agility-at-Scale method.

13.2.2 Rational Team Concert, Rational Quality Manager, and solution delivery

Both Rational Team Concert and Rational Quality Manager provide key capabilities to the
development and test teams in answering the most critical question: “When are done?” With
Rational Team Concert, development teams track their progress and health by using the
iteration plan. This plan indicates the remaining work and its estimates to complete the
iteration. Tests place emphasize the test plan to enable a team to track their progress against
the quality objectives of that plan. In both cases, the customizable dashboard is a key
component for the teams to track their trends and plans. Dashboards can be created for each
project, iteration, view of interest, or team member.

During the end game of an iteration, it is key to focus the team on remaining work while
controlling the rate of change that is delivered to the iteration. Rational Team Concert
contains key capabilities to enact team processes, such as reviews, to manage change and
deliveries during the end game.

13.2.3 Rational Build Forge and Solution Delivery

In 8.1, “Introduction to enterprise build management” on page 316, we describe Rational
Build Forge capabilities as a build management solution that provides an adaptive framework
for standardizing and automating build tasks. In this chapter, we expand on the capabilities of
Rational Build Forge to complete ALM by contributing to the release management and system
delivery. Here Rational Build Forge provides the following benefits:

� Automation of package and deploy processes with push-button execution for increased
efficiency and reliability

� A complete bill of materials that lists the changes and contents of each build for more
accurate testing, problem resolution, and compliance management
Chapter 13. The Rational ALM solution for solution delivery 497

� Enterprise reporting for documenting delivery events

� Integration with existing development and deployment technologies so that teams can
leverage existing tool investments and integrations

13.3 The Rational ALM solution for solution delivery

In this section we provide detailed information about how the project team uses the Rational
ALM solution to deliver their iteration, as illustrated in Figure 13-2.

Figure 13-2 Software delivery workflow for this scenario

Synopsis: In Act 5: Delivering the solution, we demonstrate how the team uses the
Rational ALM solution to deliver the iteration release. The development team switches to
an end-game process to ramp down on the changes, and team leads start to assess their
exit criteria for the iteration. The team agrees that the iteration exit criteria has been met
and Patricia approves the release. While the teams conduct retrospective, to continuously
improve their practices, Rebecca publishes the iteration release.
498 Collaborative Application Lifecycle Management with IBM Rational Products

The solution delivery in Act 5 updates several assets and establishes traceability to support
the life-cycle collaboration and tracking. Figure 13-3 show the life-cycle assets that are
updated at the end of this act. See 13.4, “Life-cycle collaboration” on page 519, which
describe the updates to the artifacts and relationships in detail.

Figure 13-3 Life-cycle collaboration artifacts established in solution delivery

13.3.1 The team moves to the end-game

The following steps occur in this scene:

� Declare the end game.
� Enforce the end game.
� Review and approve changes and deliveries.

ALM Activity
[Approve release]

ALM Activity
[Retrospective]

ALM Activity
[Approve release]

ALM Activity
[Retrospective]

ALM Request
[Enhancement]

ALM Request
[Enhancement]

UCM Baseline(s)

UCM Stream

Build

Built
from

ALM Baseline

BT Build BOM

UCM View

ALM Activity
[Implement]

ALM Task
[Implement]

ALM Request
[Enhancement]

A Created in Current Act

A Referenced

A Supporting

UCM Change Set

ALM Project

ALM Task
[Approve release]

ALM Request
[Start Iteration]

ALM Task
[Retrospective]

ALM Activity
[Approve release]

ALM Activity
[Retrospective]

Work Item
[Activity]

Work Item
[Activity]

Synopsis: The end of the iteration is approaching. Patricia and her leadership team have
been practicing an end-game process to ensure convergence of change at the end of each
iteration. During the end game, deliveries from the teams require approvals by component
leads or by project leads in the final Transition phase. Today Patricia moves the project to
the end game and requests her leadership team to enforce this process with their teams.

Marco forwards the information about the process change at his next team stand-up
meeting and uses the development platform to enforce the tighter end-game process.
Chapter 13. The Rational ALM solution for solution delivery 499

Figure 13-4 show the life-cycle assets and relationship updates in the end game.

Figure 13-4 The end-game workflow in Act 5

Patricia declare the end game

To move the iteration and declare the end-game process, Patricia takes the following actions:

� She discusses her decision at her leadership team stand-up meeting.
� She instructs her team leads to enforce the end game.
� She sends a notification to the project team.

Marco enforces the end game

Marco informs the component team about the end-game process at his next team stand-up
meeting. He declares to the team that he intends to move to the stabilization phase of the
iteration. This phase enforces limitations on delivery permissions to control the change rate.

To enforce the end-game process, Marco performs the following steps in Rational Team
Concert:

1. Marco opens the AccountOpening project area and browses to the current iteration in the
Process Iterations section.

2. He expands the Construction Iteration C2B iteration and right-clicks the Stabilization
phase. Then he selects Set as Current as shown in Figure 13-5 on page 501.

Goal: The goal is to tighten the development process in order to stabilize the release and
ramp down the change rate.

Goal: The goal is to enforce the end-game process and prevent unapproved changes to be
delivered to the integration.
500 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 13-5 Enforcing the end-game by setting the Stabilization phase as current

By selecting Stabilization, Marco enforces the end-game policies to the team. The policies
are set for the entire project or per team area. In “Configuring Rational Team Concert for
solution delivery” on page 525, we discuss how to configure the Rational Team Concert
process to enforce end-game reviews and approvals as part of the delivery process.

Diedrie and Marco resolve, approve, and deliver the changes
In this section, we describe how Marco and Diedrie manage a change delivery with the
end-game practices.

Diedrie requests approval to deliver
Diedrie still has critical enhancements and defects to deliver before the final release delivery
of the component. During the end game, she must review any work item resolution with
Marco prior delivering the changes to the component integration (Figure 13-4 on page 500).
This review process is similar to the review discussed in “Diedrie requests a review” on
page 278.

To perform the review and gain approval on the delivery, Diedrie performs the following steps
in Rational Team Concert:

1. Diedrie open the Enhancement work item.

2. She clicks the Approvals tab and then clicks New Approval to create a new approval for
Marco.

3. In the New Approval window, she edits the Subject and types Deliver. She sets the due
day to today’s date.

4. She clicks Add approver and adds Marco and Patricia as the approvers.

5. She clicks OK to submit the approval requests.
Chapter 13. The Rational ALM solution for solution delivery 501

Marco approves the delivery
Marco receives a notification of the new approval request that was submitted by Diedrie. He
performs the following steps to review and approves the delivery:

1. He clicks the event notification to open the work item and reviews the change sets that are
attached to the work item.

2. He chats with or talks to Diedrie about the following aspects of the defect:

– Is this enhancement truly critical for the application and the user?

– What was the scope of the resolution? Are there any significant architectural
implications?

– How was the enhancement unit tested? Has the test team prepared test cases for the
enhancement?

3. He returns to his desk, opens the work item, and clicks the Approvals tab.

4. He selects the State column on his entry in the Approvals section and selects Approved
(Figure 13-6).

5. He saves the work item.

Figure 13-6 Marco giving the required approval to deliver a work item during the end game

Diedrie receives the notification that the enhancement has been approved for delivery. She
now proceeds with her regular workflow to deliver her changes to the component integration
stream, as discussed in “Diedrie delivers her changes for integration” on page 282.

Patricia approves a delivery for the final release
For the end game of the final release, the practices that are used by the team state that the
project manager should review and approve all deliveries. Patricia uses the Rational Team
Concert Web UI to access and approve work items.

Patricia performs the following steps to review and approve a work item:

1. Because she is as an approver, she receives a notification.

2. She browses the link in the notification and logs into the Rational Team Concert Web UI.
502 Collaborative Application Lifecycle Management with IBM Rational Products

3. On the work item, she clicks the Approvals tab. She clicks the State column on her entry
in the Approvals section and selects Approved (Figure 13-7).

Figure 13-7 Patricia giving the required approval to deliver changes for the final release of the application
Chapter 13. The Rational ALM solution for solution delivery 503

13.3.2 The team leads assess their exit criteria

In this scene Marco, Tammy, and Patricia monitor and manage outstanding work to reach
their exit criteria and to approve the release.

Marco monitors the component exit criteria

The workflow in this scene captures how Marco completes the following tasks:

� Monitors the completion of the iteration plan.
� Queries for new defects and approves deliveries.
� Queries and reports on the component exit criteria.
� Approves the component iteration release.

Marco monitors the component exit criteria
In this section, we discuss how Marco and his team are using Rational Team Concert to track
the remaining work and assess when the component has reached sufficient functionality and
quality to be signed and released.

Marco assesses his iteration plan
Marco is using the component iteration plan to review remaining work and push changes that
are of low priority to the next iteration. While this is an continuous process, primarily managed
by the individual team members that own the work, Marco focuses his attention and the
attention of the team to cleaning up the iteration plan when moving into the end game. He
also collaborates with his team members that has an indicated work overload and looks for
opportunities on workload balancing, which entails moving work to the next iteration.

Marco validates the remaining work. The following work remains in the plan:

� Defects that are of blocking or critical severity
� Other high priority work item tasks
� Enhancements with agreements on late delivery

He uses the Rational Team Concert collaboration, in context of the work items, to run the
discussions. This helps in tracking, and for other stakeholders, in understanding the
justification for the reschedule. Marco also reviews, with the owners, the risk items that are
identified for the iteration release. Marco uses the iteration plan in Rational Team Concert to
resolve many of the validation points. He also uses a handful of queries for this purpose.

Synopsis: Marco is focusing his team during the end game to converge the remaining
work in the component iteration plan. He works with his team to prioritize low priority
requests that need to be pushed out of the release. He confirms updates to the iteration
plan with Patricia and Bob. He also tracks new defects that are submitted by the
component team or by the test team from test failures in component builds or solution
integration builds. He works with the owners of prioritized defects to assess impact,
confirm importance, validate test status, and approve the deliveries. His team must close
all enhancements or defects of blocking or critical severity and close all tasks of high
priority to meet their component exit criteria.

Marco is reporting his progress to the exit criteria at Patricia’s daily leadership stand-up
meetings. Today he can proudly report that his team has reached their objectives and that
he has approved the component iteration release.
504 Collaborative Application Lifecycle Management with IBM Rational Products

To review the iteration plan, Marco performs the following actions:

1. He browses the Team Artifacts view, navigates to AccountOpening → Plans →
Construction Iteration C2B, and selects the CreditCheck C2B iteration plan.

2. He clicks the Charts tab to see a visual view of the work item closure rate for the iteration.

3. He clicks the Planned Items tab, and uses the sidebar control to configure the view. He
excludes Resolved items. For Group by, selects Folder, and for Sorts by, selects
Severity and Priority.

4. He works from the bottom up and collaborates with the work-item owners to validate
progress, estimates, and opportunities for pushing work to the next iteration.

Marco triages the new defects
Marco is monitoring new incoming defects on the iteration that are found by his component
team and by Tammy’s test team. New defects are continuously picked up by the team and
added to their schedules or pushed to later iterations. Marco is monitoring to make sure that
they do not miss any defects. He also collaborates with the defect owners to ensure that the
severity and priority set by the submitter are correct.

Marco uses Rational Team Concert to monitor the incoming defects:

� He uses the event log in the Team Central view to monitor new and updated work items.

� He uses the predefined Recently created work item query to look for new defects. He
optionally drags the query to the Team Central view for continuous monitoring of new
incoming work items.

� He uses in-context collaboration to discuss defects with the submitter and the work-item
owner.

� He ensures that the defect owner is providing estimates on new work in order to use the
iteration plan to assess overload and needs for work rebalancing.

Marco monitors the exit criteria
To monitor exit criteria in the Team Central view, Marco completes the following steps:

1. Marco opens the Team Central view.

2. He clicks the Menu button and selects New Section → Queries.

3. He right-clicks the new Queries section and selects Rename. He names the section Exit
Criteria.

4. He creates a new work item query by selecting File → New → Work Item Query.

5. He names the query C2B Blocking | Critical. He then defines the query parameters.
For example, Status is New or InProgress, FiledAgainst is CreditCheck category,
PlannedFor is Construction Iteration C2B, and Severity is Blocker or Critical.

6. To make the query public to his team, he clicks the Details tab. In the Sharing section, he
selects Share → Team Area, and from the Select a Team Area window, selects
CreditCheck. He saves the query.

7. Marco wants to track the progress and converging of the exit criteria. He drags the new
query to the new Team Central Exit Criteria section. The query is run, and the result is
represented as a bar chart with a count on the Blocking or Critical work items that remain
to be delivered during the end game. By hovering with the cursor over the bar, Rational
Team Concert open a window with the query result, including clickable links to the work
items (Figure 13-8 on page 506). Marco proceeds to configure other exit criteria queries to
be added to the Team Central section.
Chapter 13. The Rational ALM solution for solution delivery 505

Figure 13-8 Marco configuring Team Central to track the exit criteria

Marco also ensures that the rest of the team can monitor the exit criteria in the Component
Team Dashboard. To configure a dashboard for monitoring the exit criteria, Marco completes
the following actions:

1. He opens the Account Opening Project Area and clicks the Process Configuration tab.

2. He browses the Configuration section for Project Configuration → Configuration
Data → Work Item → Predefined Queries.

3. He clicks the Add button in the Predefined Queries section to add the new “C2B Blocking
| Critical” query.

4. He clicks Save to save and deploy the changes.

5. He browses to the Web UI by opening the Team Artifacts view, right-clicking the
AccountOpening project area, and choosing Open Web UI for Project.

6. In the AccountOpening dashboard, he clicks the Add New tab. On the new tab, from the
command menu, he chooses Rename. He names the new tab Exit criteria.

7. He clicks Add Viewlet and configures the new viewlet by selecting Development → Work
Item Queries. He configures the viewlet to contain the exit criteria queries that are
configured in the previous section.

Marco approves the component release
The AccountOpening team has adopted a practice where each component lead or practice
lead, such as Marco for the CreditCheck component and Tammy for the test practice,
explicitly approves their exit criteria on the application iteration release. This practice helps
Patricia to ensure that the responsibilities and ownership are clear and trackable.

Patricia is using Rational ClearQuest and the ClearQuest ALM schema to manage and
monitor the required release approvals, as discussed in “Patricia approves the release” on
page 508. For release candidates, she uses the ALMTask records to manage the team
collaboration and approval process, and the associated ALMActivities that are assigned to
each approver, for example, the component leads, to contain the approvals by the team
component or practice team. Team interoperability, which is implemented using the
ClearQuest Connectors as discussed in “Configuring interoperability” on page 565, is
synchronizing the ALMActivities with the Rational Team Concert and Rational Quality
Manager platforms. The teams approve their releases within the scope of their regular
506 Collaborative Application Lifecycle Management with IBM Rational Products

workflows. Patricia can track the approvals by monitoring the completion of the activities in
ClearQuest.

With the final release date approaching, Rebecca is building releases that become
candidates for the final release version, and Tammy is completing her test plan to validate the
release candidates. Patricia consults her leadership team on their exit criteria, and the team
decides to declare the latest build a candidate for release. Patricia submits the approval
records for the teams, as discussed in “Patricia approves the release” on page 508. Marco
receives a notification of a pending task work item to approve for the release candidate.

To approve the release candidate, Marco performs the following actions:

1. Marco opens the work item that is assigned to him by Patricia.

2. He click the Approvals tab, adds a new approval item, adds himself as an approver, and
chooses the approved state.

3. He changes the state of the work item to Completed and saves the work item.

The updated work items are synchronized with Rational ClearQuest, and Patricia can view
the completed approval by Marco.

Tammy monitors the quality exit criteria

The workflow in this scene captures how Tammy completes the following tasks:

� Monitors the completion of the test plan
� Queries and reports on quality exit criteria
� Approves the quality of the iteration release

Tammy monitors her test plan
Tammy is continuously monitoring her quality metrics. She performs this activity to maintain a
real-time view of quality and team health. The steps to continuously monitor quality are
described in “Reviewing the test plan” on page 146, and in 11.5.1, “Tammy monitors quality”
on page 425.

Tammy and her team use their dashboards to access a live view of the quality and health
metrics for the application iteration. As previously shown in Figure 11-54 on page 456, she
uses the Trends tab on the dashboard, which is populated with viewlets that provide trend and
real-time information, such as the Execution Trend Report, Requirements changes,
Requirement Coverage Status, and Defect Arrival Resolution.

Tammy assesses her quality exit criteria
Tammy uses the combination of dashboard viewlets, reports, and plan exit criteria to
determine when the iteration is complete. This is a combination of confirming that all planned
work is completed, all requirements have been validated, and defects have been fixed to the
agreed upon level.

Synopsis: Tammy and her test team are monitoring the iteration test plans to validate that
the solution release has met its quality goals. She is monitoring the list of quality exit
criteria for the iteration release, which includes build validation test stability, code coverage
of test cases, functional test failures, and application load performance.

On the final day of the iteration Tammy confirms that the solution meets the quality exit
criteria. She informs Patricia that the quality has met the expectations, all requirements
have been tested, and she has approved the release quality.
Chapter 13. The Rational ALM solution for solution delivery 507

Tammy is monitoring the list of quality exit criteria for the iteration release:

� 100% of the P1 defects fixed by development teams
� 100% of the Requirements covered with test cases
� Achieved quality objectives of all enhancements

Tammy also monitors the trends for the following items:

� Build validation test stability
� Code coverage of executing test cases
� Failures in functional test
� Application load performance

For the steps to configure the queries and reports on quality, see 11.5.5, “Monitoring quality”
on page 455.

Tammy approves the iteration quality
The AccountOpening team has adopted a practice where each component lead or practice
lead explicitly approves their exit criteria on the application iteration release. Patricia is using
Rational ClearQuest and the ClearQuest ALM schema to manage and monitor the required
release approvals, as discussed in “Patricia approves the release” on page 508.

To approve the release candidate, Tammy performs the following actions:

1. Tammy opens the work item that is assigned to her by Patricia.

2. She click the Approvals tab, adds a new approval item, adds herself as an approver, and
chooses the approved state.

3. She changes the state of the work item to Completed and saves the work item.

The updated work items are synchronized with Rational ClearQuest, and Patricia can view
the completed approval by Tammy.

Patricia approves the release

The workflow in this scene captures how Patricia completes the following tasks:

� Monitors the completion of the project iteration plan
� Monitors the approvals from the project teams
� Approves the iteration release

Patricia assesses the project iteration plan and her exit criteria
Patricia is using the project iteration plan in Rational ClearQuest to review remaining work for
the iteration. She also collaborates with her teams’ clean up of the iteration plan and moves
work to next iteration.

Synopsis: Patricia confirms that the release requirements planned for the iteration have
been implemented and there are no outstanding tasks for the team. She also confirms with
her leadership team on the approval status across the project.

She uses the ALM solution to manage and track the approvals from the component and
practice leads on the release candidate. After all approvals are collected, she makes a final
assessment of the iteration exit criteria and agrees that the iteration is complete. She
approves its release and notifies Rebecca to publish the release.
508 Collaborative Application Lifecycle Management with IBM Rational Products

Patricia validates the remaining work by querying for the following items:

� Reviewing all tasks that are planned for this iteration, but have not been closed
� Defects that are of blocking or critical severity

She uses Rational ClearQuest collaboration, in context of the ALMTask, to run the
discussions with the owner. This helps in tracking and for other stakeholders to understand.

To exit the iteration and release the application iteration, she must perform the following tasks:

� Complete all requests that are planned for the iteration.
� Complete all tasks that are planned for the iteration.
� Pass the quality exit criteria.
� Pass all component exit criteria.

Patricia uses the Project Requests and Current Iteration queries to validate the state of the
requests and tasks that are planned for the iteration. See 5.5.5, “Patricia confirms the project
iteration plan” on page 155, for details about the ClearQuest ALM queries.

Patricia approves the iteration release
The team is using Rational ClearQuest and the ALM schema to extend and configure the
work configuration to include “Approve release” as ALMTask and ALMActivity types on the
“Start Iteration” ALM Request type. The steps to configure the ALM schema for approvals are
discussed in “Configuring ALM for approvals” on page 521.

To create an approval task, Patricia completes the following actions:

1. Patricia opens the ALMRequest AO_Rel2 Construction 2 of type Start Iteration.

2. In the Tasks section, she opens the ALMTask of type Approve release. She clicks the
Modify button.

3. She clicks the Create Activity button one or more times and then clicks the Apply button
to save the changes. After saving the changes, the window is updated, and one or more
ALMActivities are listed in the Activities section.
Chapter 13. The Rational ALM solution for solution delivery 509

4. She opens the first activity, assigns it to Marco, and saves the changes. This activity
instructs Marco to approve the component for the “AO_Rel2 Construction 2” iteration. She
proceeds with the other activities and assigns them to the other component and practice
leads. Patricia can now track the completion of the team approvals. After all team leads
complete their activities, Patricia can proceed and make the final approval for the
application as shown in Figure 13-9.

5. She opens the Approve release ALMTask and updates the state to Complete. She
proceeds and sets the resolution code to Approved. She then clicks OK to save the
record.

6. Because Rebecca has been added to the notifications list, she receives an e-mail
notification that the release has been approved. Rebecca proceeds and begins the work
to package and publish the release.

Figure 13-9 Patricia tracking approvals in Rational ClearQuest
510 Collaborative Application Lifecycle Management with IBM Rational Products

13.3.3 Rebecca publishes the release

The workflow in this scene captures how Rebecca completes the following tasks:

� Creates a release package
� Creates a release page and announce the release
� Submits a new asset version to Rational Asset Manager

Patricia produces the release notes
Patricia is providing release notes with the release iteration. She uses a project template for
the document and appends information about the new capabilities that are included in the
release. She mainly receives this information from the ClearQuest ALM solution by using the
capabilities of Business Intelligence Reporting Tool (BIRT) reporting, as described in 5.7.2,
“Reporting with the Business Intelligence Reporting Tool” on page 178.

To the release notes, she adds the following information as reported from the ALM solution:

� All requests that are delivered in this iteration
� All remaining defects

Patricia also uses reports that are generated in Rational Quality Manager to state iteration
quality.

She controls the release notes document in Rational ClearCase where it picked up by the
release packaging process that is run by Rebecca.

Rebecca packages and publishes the release
Rebecca packages the release for delivery. She uses her central Rational Build Forge
infrastructure to run the release packaging for the project release.

Synopsis: Rebecca receives a notification from Patricia that the iteration release
candidate has been approved. The release is now ready to be packaged.

Rebecca creates a new release package for the iteration release. The release code
archives are already packaged as part of the build process that automatically pulls all
release assets into the release archives. The development team has provided Rebecca
with the documentation that should be included in the release. She includes the
complementary material including the bill of materials, release notes, documentation, and
samples.

Rebecca creates a new public release page on the enterprise IT intranet. She edits the
release page and completes the release information. She provides download links to the
release package that she just created. She saves and publishes the release page.

Rebecca uses the Account Opening RSS news feed to announce the availability of the
latest iteration release. She links the feed to the release page.

At a later date, the final production release is made as the Account Opening project exits
the Transition phase. Rebecca transitions the solution release to production by delivering it
to the enterprise reuse repository. She logs into Rational Asset Manager, adds a new
version to the Account Opening Solution asset, and submits all application release
packages to the repository. She announces the new asset to the Account Opening
community in Rational Asset Manager.
Chapter 13. The Rational ALM solution for solution delivery 511

To run an integration, Rebecca performs the following activities:

1. Rebecca executes the Rational Build Forge project for packaging the Account Opening
project. This project integrates with the development repositories that are used by the
project:

a. She collects the build identification from Rational ClearQuest.
b. She collect the distribution archives from Rational ClearCase.
c. She collects additional release documentation from Rational ClearCase.
d. She packages the release archives.
e. She delivers the release archives to the reuse repository.
f. She announces the availability of the delivery by using Rational Build Forge notification

capabilities.

2. Sets the release date and confirms the availability in Rational Asset Manager.

3. She publishes the asset to the IBM Tivoli Change and Configuration Management
Database (CCMDB) for use by the operations team.

4. In Rational Build Forge, Rebecca selects the appropriate build project for the end of the
iteration (or milestone). The Rational Build Forge Ant scripts generate the release
packages and communicate with Rational Asset Manager, submitting the build assets and
their relationships. In Rational Asset Manager, Rebecca finds the milestone asset and
declares it to be released. Following the asset relationship to the build asset, she selects
one or more software images and publishes them to the CCMDB as illustrated in
Figure 13-10.

Figure 13-10 Overview of Rational Build Forge, Rational Asset Manager, and the CCMDB

5. Rational Build Forge creates the Account Opening software packages and submits them
to Rational Asset Manager through the Rational Asset Manager/Ant integration. The
Rational Build Forge project creates a build asset in Rational Asset Manager and connects
it to the Milestone asset.

Rational Asset Manager

Change and Configuration
Management Database (CCMDB)

BuildForge

Publish software
image to CCMDB

Configured Item (CI)
published to CCMDB

Create assets and
relationships

Account
Opening
Product

Account
Implementation

Asset

Account
Opening

M2

Account
Implementation

Asset

BuildForge Project

ANT

Declare
milestone/iteration

complete
512 Collaborative Application Lifecycle Management with IBM Rational Products

6. In Rational Asset Manager, Rebecca searches the milestone asset for the Account
Opening project as shown in Figure 13-11. She selects the Account Opening M2
milestone asset.

Figure 13-11 Searching for assets in Rational Asset Manager
Chapter 13. The Rational ALM solution for solution delivery 513

7. Rebecca declares the milestone or iteration to be released by setting a release date on it
as shown in Figure 13-12.

Figure 13-12 Setting the release date in Rational Asset Manager
514 Collaborative Application Lifecycle Management with IBM Rational Products

8. By using the Related Assets section (shown in Figure 13-12 on page 514), Rebecca
traverses the asset relationship to the Acct Implementation Asset, which was produced
from the Rational Build Forge project (Figure 13-13).

9. Rebecca clicks the Publish to CCMDB link (shown in Figure 13-13) to publish the asset
for the milestone to the CCMDB, which is used by the operations team to manage and
track changes to the operations environment. An important aspect of managing the
operations environment includes maintaining links to all software that is deployed. By
managing the assets in Rational Asset Manager and linking to the CCMDB, the operations
team always has access to the software versions that were deployed into production.

Figure 13-13 Automatically populating Rational Asset Manager with Rational Build Forge
Chapter 13. The Rational ALM solution for solution delivery 515

10.After Rational Asset Manager and CCMDB synchronize, the relationships can be
graphically viewed as shown in Figure 13-14. The Acct Implementation Asset has a
relationship to a CCMDB proxy asset called Acct IMPLEMENTATION ASSET-1012.
Rebecca examines the asset details on that proxy asset by selecting View Asset Details.

Figure 13-14 Relationships synchronized between Rational Asset Manager and CCMDB

11.Rebecca examines the CCMDB proxy asset and clicks the Link to CCMDB
(Figure 13-15).

Figure 13-15 Traversing a link to the CCMDB
516 Collaborative Application Lifecycle Management with IBM Rational Products

12.In the Web page opened by the CCMDB that shows the details of the asset that Rebecca
just published (Figure 13-16), Rebecca examines the CCMDB configured item of the Acct
Implementation Asset, which is now ready to be deployed.

Figure 13-16 Deploying the Acct Implementation Asset to CCMDB

Rebecca’s work is done, and the final asset is now ready for deployment by the operations
team.

13.3.4 Marco conducts a retrospective

Synopsis: Each team in the Account Opening project is conducting retrospective to
continuously improve the development practices. The retrospective is owned by the team
and is facilitated by the team lead.

Marco calls for a retrospective with his component team. The team identifies the timeline
for the iteration, any major events during the iteration, and major achievements by the
team. The team discusses what went well and how the team can do well more often. Marco
makes the team discuss alternative behaviors to the tasks that did not go well and what the
team can do about it. The team uses the dashboard to review health trends from the
iteration. Marco structures his notes on team behavior, practices, and agreed
improvements. He submits his notes to the team repository.

At Patricia’s retrospective with the leadership team, Marco reviews the conclusions from
his team. Patricia’s team concludes on actions and decides to pilot new estimation
practices for Marco’s team in the next iteration.
Chapter 13. The Rational ALM solution for solution delivery 517

The workflow in this scene captures how Marco completes the following tasks:

� Uses the dashboard to support a retrospective
� Submits a retrospective to the team repository

Retrospectives
Retrospectives are a practice that is performed by agile teams that want to continuously
improve their way of working by looking back and learning by experience. This practice is
captured as one of the principles of the agile manifesto, which states:1 “At regular intervals,
the team reflects on how to become more effective, and then tunes and adjusts its behavior
accordingly.”

Every organization adopts a way to make retrospectives productive within their teams, but a
few structural techniques support the collaboration.

� Define and scope the timeframe of the discussion to the latest iteration.
� Identify major achievements by the team.
� Learn what practices went well and which did not go well.
� Agree on the practices to adjust to do well more often and on those to avoid that did not do

well.

The Rational ALM solution in retrospectives
In this section, we discuss how to use the Rational ALM solution to support and track team
retrospectives.

Rational Team Concert in retrospectives
The health of a project, as supported by the metrics collected from the life-cycle collaboration
assets and made visible through the principles around transparency, often give supporting
indications to the questions: What went well? What did not?

As discussed in 7.5.2, “Reporting team health with Rational Team Concert” on page 292, the
ALM solution provides rich data collection and reporting for health and trend analysis. The
ready-to-use reports provide a good starting point for the team to discuss and analyze the
team behaviors and practices during retrospectives. As practices are adjusted, the data
collection and reporting should also be adjusted to provide continuous learning for future
iteration retrospectives.

The team that uses Rational Team Concert might consider configuring a Retrospective Work
Item type to manage and persist notes and decisions from the retrospectives. The Eclipse
Way process comes with Retrospective as a preconfigured work item type. The steps to
configure Rational Team Concert for Retrospectives in other process configurations are
discussed in “Configuring work items of type Retrospective” on page 527.

To create a retrospective take the following actions:

1. Create a new work item of type Retrospective. Alternatively, make a new copy from a
template work item.

2. Give the name of the iteration as the headline, and set the category (Filed Against) to the
team that is conducting the retrospective.

3. Add notes in the agreed content structure in the Documentation or Discussion field as in
the following examples:

– Achievements
– What worked well
– What did not work well

1 The agile manifesto: http://agilemanifesto.org/principles.html
518 Collaborative Application Lifecycle Management with IBM Rational Products

http://agilemanifesto.org

– Adjusted practices
– Other areas

4. Save the work item changes.

As discussed in the following section, Patricia can manage the retrospectives across the
teams by using Rational ClearQuest as an alternative approach. Such an approach implies
that Marco gets a work item assigned to him through ClearQuest Connector synchronization.

Rational ClearQuest in retrospectives
The team that uses Rational ClearQuest and the ALM schema might consider extending and
configuring the work configuration to include a Conduct Retrospective workflow as ALMTask
and ALMActivity types on the Start Iteration ALM Request type. In “Configuring ALM for
approvals” on page 521, we explain how to add a retrospective workflow.

Patricia takes the following actions to initiate an iteration retrospective for the project teams:

1. Patricia opens the ALMRequest Construction 2 of type Start Iteration. She then
browses the Tasks section for a Conduct Retrospective task and opens it.

2. She clicks the Modify button to make changes to the task.

3. In the Documentation field, she adds the agreed content structure as discussed in the
previous section.

4. She clicks the Create Activity button one or more times. She then clicks the Apply button
to save the changes. After saving the changes, the window is updated, and one or more
ALMActivities are listed under the Activities section.

5. She opens the first activity, assigns it to Marco, and saves the changes. This activity
instructs Marco to conduct the retrospective for the Construction 2 iteration. She proceeds
with the other activities and assigns them to the other component and practice leads.

Patricia can now track the completion of the team retrospectives. After all team leads
complete their activities, Patricia can proceed and schedule a retrospective for her leadership
team. By using ClearQuest reporting, she can generate a retrospective summary report for
the leadership team to discuss. After the iteration retrospective is completed, she changes the
state of the Conduct Retrospective ALMTask to Complete.

13.4 Life-cycle collaboration

In this scenario, the actors mainly approve, package, and deliver assets that were already
created in the previous acts. Some steps in this act also produce artifacts of more transient
types, but are important to the life-cycle collaboration, such as queries, reports, and charts.

We look at the following life-cycle assets (Figure 13-17 on page 520) that are created and
used by the characters in this act:

� ALM Type (of type Approval and Retrospective in Rational ClearQuest)
� ALM Activity (Rational ClearQuest)
� ALM Baseline (Rational ClearQuest)
� BT Build (Rational ClearQuest)
� Build (Rational Build Forge)
� Work Item (Rational Team Concert)
Chapter 13. The Rational ALM solution for solution delivery 519

Figure 13-17 Lifecycle assets involved in this solution delivery scenario

13.5 Reference architecture and configuration

In this section, we explain how the products that are used in this act of the storyboard fit into
the overall solution architecture and how they are configured.

13.5.1 Fitting into the enterprise ALM solution

The products that are used in this act illustrate one part of an enterprise ALM solution.
Figure 13-18 on page 521 highlights the part with the enterprise ALM solution that is
discussed in this chapter.

ALM Activity
[Approve release]

ALM Activity
[Retrospective]

ALM Activity
[Approve release]

ALM Activity
[Retrospective]

ALM Request
[Enhancement]

ALM Request
[Enhancement]

UCM Baseline(s)

UCM Stream

Build

Built
from

ALM Baseline

BT Build BOM

UCM View

ALM Activity
[Implement]

ALM Task
[Implement]

ALM Request
[Enhancement]

A Created in Current Act

A Referenced

A Supporting

UCM Change Set

ALM Project

ALM Task
[Approve release]

ALM Request
[Start Iteration]

ALM Task
[Retrospective]

ALM Activity
[Approve release]

ALM Activity
[Retrospective]

Work Item
[Activity]

Work Item
[Activity]
520 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 13-18 Rational ALM solution components contributing to the solution delivery

13.5.2 How the products are configured for this scenario

In this section, we discuss the configurations in Rational ClearQuest to support solution
delivery.

Configuring Rational ClearQuest for solution delivery
The ClearQuest ALM schema can be extended with new workflows. By using a work
configuration, project managers can establish a customized work management process on a
project-by-project basis.

In this chapter, we use an extended workflow to manage approvals and retrospectives by
using ALMTasks and ALM Activities. We also use the ClearQuest Connector and
interoperability to synchronize these workflows cross the ALM solution platforms.

Configuring ALM for approvals
To define a work configuration for approvals, in Rational ClearQuest:

1. Create a new ALMResolutionCodeLabel record by selecting File → New →
ALMResolutionCodeLabel:

a. Type the name Approved.
b. Click OK to save the record.

Test resources

INUS

Repository

Solution test plans

Comp test plans

Rational Requirements Composer
and RequisitePro Rational ClearQuest

CQI assets

CQALM assets

Sketches and so on

Requirements

Rational Asset Manager

Rational ClearCase/UCM

Reusable
assets

Streams

Components

Rational Build Forge

Solution builds

Comp builds

Rational Quality Manager
Rational Quality Manager

Rational Team Concert

Component
iteration plan
work items

Workspaces

Components

Component
builds

Streams

Build assets

Web IDE

Corporate Recently Acquired

Third-party provider

Solution
test plans

Test resources
Chapter 13. The Rational ALM solution for solution delivery 521

2. Create a new ALMResolutionCode record by selecting File → New →
ALMResolutionCode:

a. For ALMRecordType, select ALMActivity.
b. For ResolutionCodeLabel, select Approved.
c. Click OK to save the record.

3. Create another ALMResolutionCode record, but for ALMRecordType, select ALMType.
Click OK to save the record.

4. Create a new ALMTypeLabel record by selecting File → New → ALMTypeRecord:

a. Enter the name Approve release and type an optional description.
b. Click OK to save the record.

5. Create a new ALMType record by selecting File → New → ALMType:

a. In the ALMRecordType field, select ALMType.
b. For TypeIndicator, select Type.
c. For Type Label, select Approve release.
d. Enter an optional description and click OK to save the record.

6. Create another ALMType, but for the ALMRecordType field, select ALMActivity.

7. Create a new ALMWorkConfiguration record by selecting File → New →
ALMWorkConfiguration:

a. Select the project to deploy this workflow to, for example AO_Rel2.
b. For the Record Type field, select ALMActivity.
c. For the Type Label, select Approve release.
d. For the ALMRoles, select Any Role in the same project as previously chosen.
e. Click OK to save the record.

8. Create another ALMWorkConfiguration (Figure 13-19 on page 523):

a. For the Record Type field, select ALMTask.
b. For the Type Label, select Approve release.
c. For the ALMRoles, select Project Manager.
d. In the Primary Children Types section:

i. Click the ... button.
ii. Select the Approve release line and double-click to add the selection.
iii. Click OK to close the window.

e. Repeat the previous step and add Approve release to the Secondary Children Type
list. Scroll the query result list and open the record with ALMType ALMRequest Start
Iteration Type.

f. Click OK to save the record.
522 Collaborative Application Lifecycle Management with IBM Rational Products

Figure 13-19 Adding a new Approve release work configuration

9. Run the query Find Work Configuration by Project (Figure 13-20 on page 524):

a. In the Dynamic Filters window, select the project to which you are adding the approval
workflow and click OK to run the query.

b. Scroll the search results and locate the ALMRequest Start Iteration Type record.

c. Click Modify.

d. In the Primary Children Types section, add the Approve release task. Click OK to save
the Work Configuration record.
Chapter 13. The Rational ALM solution for solution delivery 523

Figure 13-20 Adding the new Approve release work configuration to the Start Iteration workflow

The new workflow is now ready to be used. When starting a new iteration, by creating a Start
Iteration, the new approval task is added and pending for the completion of the iteration. We
discuss the approval workflow in “Patricia approves the release” on page 508.

Configuring ALM for retrospectives
A work configuration that implements a workflow for retrospectives can be configured in
Rational ClearQuest using the ALM schema. We provide an example of detailed step
descriptions for work configuration creation in “Configuring ALM for approvals” on page 521.

To configure a retrospective work configuration in ClearQuest:

1. Create a new ALMTypeLabel record named Retrospective.

2. Create a new ALMType record with the following characteristics:

– Type is ALMTask.
– TypeIndicator is Type.
– TypeLabel is Retrospective.

3. Create a new ALMType record with the following characteristics:

– Type is ALMActivity.
– TypeIndicator is Type.
– TypeLabel is Retrospective.
524 Collaborative Application Lifecycle Management with IBM Rational Products

4. Create a new ALMWorkConfiguration record with the following characteristics:

– Type is ALMActivity.
– TypeLabel is Retrospective.
– ALMRoles is AllRole.

5. Create a new ALMWorkConfiguration record with the following characteristics:

– Type is ALMTask.
– TypeLabel is Retrospective.
– ALMRoles is AllRole.

Add Retrospective and Primary and Secondary Children Types.

6. Run the query Find Work Configuration by Project. Locate the ALMRequest Start Iteration
Type record. Select the Modify command.

7. Run the query Find Work Configuration by Project:

a. In the Dynamic Filters window, select the project to which you are adding the approval
workflow and click OK to run the query.

b. Scroll the search result and locate the ALMRequest Start Iteration Type record.

c. Edit the Primary Children Types section, and add the Retrospective task.

d. Click OK to save the Work Configuration record.

For the retrospective workflow, no resolution code is required. To resolve a retrospective,
simply use the code Completed.

The ClearQuest Connector integrates the Retrospective workflow across Rational ClearQuest
and Rational Team Concert. New retrospectives are assigned to teams by using Rational
Team Concert and Rational Quality Manager. Notes and conclusions from completed
retrospectives synchronize to Rational ClearQuest for consolidation by Patricia and her
leadership team as discussed in “Rational ClearQuest in retrospectives” on page 519.

Configuring Rational Team Concert for solution delivery
In this section, we discuss the configurations in Rational Team Concert to support solution
delivery.

Configuring the process for approvals
Teams that use Rational Team Concert 1.0 can use the process specification for the project to
enforce the end-game policies to the team. The process specification rules that are enacted
for the end game can be configured to require reviews and approvals. As the team enters the
end game, it turns on process rules that require approvals for fixes to be delivered. Because
every code delivery must be associated with a work item, it seamlessly binds the work item,
the attached approvals, and the delivery together.

For each iteration in the end game, the level of required approvals and reviews can be
increased as required to tighten the change process. In an early iteration, the end game can
require a review, while later phases can involve two required code reviews, a team lead
approval, and two project lead approvals. The review and approval processes make the team
understood the seriousness of evaluating the risk and reward of any code change.
Chapter 13. The Rational ALM solution for solution delivery 525

To configure the process specification for approvals:

1. In Rational Team Concert, open the Project Area, for example, AccountOpening, and click
the Process Configuration tab.

2. Expand the Configuration section and locate the iteration where you want to add process
enforcement rules, for example Team Configuration → Development Lines → Main
Development → Construction → Construction Iteration C2 → Stabilization →
Operation Behavior. See Figure 13-21.

Figure 13-21 Adding Operational Behavior to the Stabilization phase to enforce end-game approvals

3. In the Operation Behavior section, scroll the list of Operations and locate the section
Source Control → Deliver (client). Select the cell in the Everyone column.

4. In the Preconditions, click Add. In the Add Preconditions window (shown at left in
Figure 13-22 on page 527), select Require work item approval from the list and click OK.

5. Make sure that the new Require work item approval item is selected in the Preconditions
section. Then click Add in the Required Approvals section.

Note: The path to the Operation Behavior element depends on the structure of the
iteration that is used in your project.
526 Collaborative Application Lifecycle Management with IBM Rational Products

6. In the New Required Approval window (shown at right in Figure 13-21), for Type, select
Approval and select and increment the approvals that are required per role for a work
item delivery, for example a single project manager.

7. Optional: Add another required approval. For Type, select Review that is to be done by
one or more developers or architects.

Figure 13-22 Adding work item approvals

8. Click Save in the Project Area to save the process changes and deploy the new
operational behavior to the team.

Configuring work items of type Retrospective
Teams that use Rational Team Concert 1.0 can benefit from the ready-to-use process
configuration for retrospectives. This configuration is available as part of the Eclipse Way
process template. If your team is using the Eclipse Way process, no further configuration is
required. If you are planning to use another process, such as the Open Unified Process
(OpenUP), which is used by the story in this book, you must complete the steps as explained
in this section to refactor the process into your project area or your customized process
template.

To locate the process specifications to refactor into your process:

1. In Rational Team Concert, open the Team Artifacts view. Expand Repository
Connections, right-click your repository connection, for example, ADMIN@localhost, and
select Administer → Process Templates.

2. In the Process Templates view, open the Eclipse Way Process and select the Process
Configuration Source tab.

3. Select Edit → Find/Replace or press Ctrl+F.

4. In the Find field, type retrospective. Click Find to go to the first and subsequent source
occurrences.

Note: The new operational behavior is only active during the selected iteration phase.
To deploy the approval process to other iterations and phases, repeat the steps in this
task to each required iteration.
Chapter 13. The Rational ALM solution for solution delivery 527

5. In the Team Artifact view, open your target project area and click the Process
Configuration Source tab.

6. Depending of the level of retrospective process functionality that you need, you can
complete one or more of the following steps. Copy the complete XML sections from the
process template into your process definition.

– In the process-specification → project-configuration → data →
configuration-data section for
com.ibm.team.workitem.configuration.workItemTypes, copy the source definition of
the Retrospective type section. Paste the XLM section into the corresponding location
in your target process definition.

– In the process-specification → project-configuration → data →
configuration-data section for com.ibm.team.workitem.configuration.workflow,
copy the source definition of the com.ibm.team.workitem.retrospectiveWorkflow
workflowDefinition section. Paste the XLM section into the corresponding location in
your target process definition.

– In the process-specification → project-configuration → data →
configuration-data section for
com.ibm.team.workitem.configuration.workflowBinding, copy the source definition
of the com.ibm.team.workitem.workItemType.retrospective query section. Paste the
XLM section into the corresponding location in your target process definition.

– In the process-specification → project-configuration → data →
configuration-data section for
com.ibm.team.workitem.editor.configuration.presentations, copy the source
definition of the com.ibm.team.workitem.editor.retrospective editor section. Paste
the XLM section into the corresponding location in your target process definition.

– In the process-specification → project-configuration → data →
configuration-data section for
com.ibm.team.workitem.editor.configuration.presentations, copy the
com.ibm.team.workitem.tab.retroOverview tab section and the
com.ibm.team.workitem.section.RetroDetails section.

– In the process-specification → project-configuration → data →
configuration-data section for
com.ibm.team.workitem.editor.configuration.workitemTypeEditorIdBinding, copy
the source definition of the com.ibm.team.workitem.editor.retrospective
workitemTypeEditorIdBinding section. Paste the XLM section into the corresponding
location in your target process definition.

– Optionally, in the process-specification → project-configuration → data →
configuration-data section for com.ibm.team.workitem.configuration.queries, copy
the source definition of the “All Retrospectives” workItemCategoryBinding section.
Paste the XLM section into the corresponding location in your target process definition.

7. Test the process configuration extension by creating a new work item.
528 Collaborative Application Lifecycle Management with IBM Rational Products

The type Retrospective is now displayed in the list and in the editor as shown in Figure 13-23.

Figure 13-23 The Retrospective editor in Rational Team Concert
Chapter 13. The Rational ALM solution for solution delivery 529

530 Collaborative Application Lifecycle Management with IBM Rational Products

Part G Measuring team
success in Application
Lifecycle Management

In this part, we discuss techniques for measuring success in software development projects.
If the purpose of Collaborative Application Lifecycle Management (CALM) is to streamline a
project team’s ability to deliver a release of software, then strategies for measuring success
are imperative to continual improvement.

This part includes Chapter 14, “Delivering and measuring success in Application Lifecycle
Management” on page 533. In this chapter, we discuss the use of process definition and
enactment, metrics, measures, dashboards, and retrospectives as techniques for measuring
success.

Part G
© Copyright IBM Corp. 2008. All rights reserved. 531

532 Collaborative Application Lifecycle Management with IBM Rational Products

Chapter 14. Delivering and measuring
success in Application
Lifecycle Management

We summarize and close this book with a discussion about measuring success in software
development projects.

This chapter includes the following sections:

� 14.1, “Introduction to measuring success” on page 534

� 14.2, “Process understanding and implementation: Improving project success with
predictability and repeatability” on page 534

� 14.3, “Using metrics and measurements effectively to drive team success” on page 545

� 14.4, “Using dashboards for decision making” on page 551

� 14.5, “Using retrospectives to capture lessons learned and make adjustments” on
page 553

14
© Copyright IBM Corp. 2008. All rights reserved. 533

14.1 Introduction to measuring success

The fundamental goal of Application Lifecycle Management (ALM) is to increase the delivery
of business value to customers. The primary endpoint for measuring success is to answer the
fundamental, universal question for everyone who is involved with the project and
organization: Is this all really working?

Software delivery processes play an important role in the long-term, repeatable success of an
organization. In ALM, the software process that is instituted encompasses all phases and
team member roles in a project. However, processes that are never truly instituted or
embraced provide no value to the organization. In fact, they can confuse project teams and
distort expected results. Processes in software delivery must be capable of being elaborated
or customized to fit your project, not vice versa. Organizations have varying levels of process
formality in ALM. It is important for the software delivery environment to be capable of flexibly
supporting their varying needs.

Agile software development and Collaborate Application Lifecycle Management (CALM)
share a common thread. In order to be agile, they must be highly collaborative, and in order to
capitalize on the benefits of collaboration, they must be flexible and agile. In this world,
responding to change is more important than following a rigid plan. For more information, see
“Manifesto for Agile Software Development,” on the Web at the following address:

http://agilemanifesto.org

Everyone shares in the responsibility of responding to change in CALM. In order to be
successful, the entire team must have individual and team level visibility, along with the
appropriate permissions to respond to changes on the project.

In CALM, reports are not used simply to communicate status, but they are active tools the
team uses for achieving project success. Teams leverage measurements and reporting as
temporary, in-context diagnostic tools to focus their teams on resolving problem areas of the
project and guide local process improvements. Metrics and measurements provide project
teams with a proverbial compass that enables them to navigate and adjust to changing
project needs.

Instituting successful methods and processes, measurements and metrics, and project
navigation approaches into your organization does not have to be a project itself. Your
software delivery environment should enable you to institute your process while providing
project teams with the flexibility they need to remain agile and adjust to project changes.
Additionally, your software delivery platform must automate the data collection and report
generation for you so that you can stay focused on what the data is telling you, and not how to
collect and transform it.

Dashboards and reports must provide measurements that are real time and focused
specifically on the areas of the project in which you are interested.

14.2 Process understanding and implementation: Improving
project success with predictability and repeatability

Process refers to the collection of practices, rules, guidelines, and conventions that are used
to organize a team’s work. A team’s process is the sum total of the that ways the team has
decided (or evolved) to do things. An organizations software delivery process is usually
defined in two ways: a process description and process implementation. The process
534 Collaborative Application Lifecycle Management with IBM Rational Products

http://agilemanifesto.org

description is the documented process, where the process specification implements the
documented process in the tools and software delivery environment that the organization
uses.

Small teams tend to have little documented process and a lightweight implementation of the
process. These types of small teams are usually located in a single location and organization
and change infrequently. They know how to work together successfully from experience and
have a common set of previous project experiences to draw upon. As the teams grow and
change more frequently, the process and implementation are defined more formally in order
to enable new and distributed team members. For example, the team might start to document
common team processes such as the workflow for different change requests or the branching
and promotion rules for their software configuration management. Larger or more complex
organizations and projects might find that they need to document and implement their
process more formally in order to be successful in software delivery.

As processes become more formalized in an organization, project teams might also find that
they become restrictive and nonconducive to projects. Therefore, it is important that
processes provide the project manager and leads with control to customize the process
definition and implementation to fit the needs of their project. This enables the organization to
continue to enforce necessary process mandates, such as regulatory compliance
requirements, and still give project owners the ability to adjust to changing project
requirements.

14.2.1 Process specifications: Implementing your process in software
delivery

When you think of software delivery processes in the literal sense, many people envision
documentation rather than practice. That is because process is frequently documented in
detail first and then provided as a reference for the project team to institute. Unfortunately,
many organizations are unable to successfully transition the documented process to an
adopted practice that the software delivery organization uses. It is common to see companies
that say they are using a particular best practice or process, but find that what is being done
in practice is different or highly variant from the defined process or best practice.

Process enactment is necessary for process adoption that increases the agility and
performance of your software delivery teams. This means that process is not simply
documentation but a specification that is used by the software delivery environment to
institute the process. As such, process adoption becomes a more natural and normal course
of software delivery. It eliminates the overhead required to govern and police necessary
process changes. Process enactment also improves the ability for project managers to plan
and estimate the project because the enacted process provides a more predictable basis for
measurement.

Processes can be defined for an organization, but they must be specified for a project.
Process definitions take the form of process templates, and those standards are customized
and specified for each project.
Chapter 14. Delivering and measuring success in Application Lifecycle Management 535

Process enactment with Rational Team Concert
In IBM Rational Team Concert, every project has an associated team process. The team
process governs all activities, artifacts, artifact relationships, and operations that are pursued
inside the associated project. A process is defined as a process specification and an
associated iteration structure. When starting a new project, a process template is used to
select the process that the project will use. The process and its behavior can then be further
customized (Figure 14-1).

Figure 14-1 Defining a process specification by customizing a process template for the project

The iteration structure defines the existing development lines and the break down of the
development lines into iterations. It also defines which iteration is the current iteration for each
development line, as illustrated in Figure 14-2.

Figure 14-2 The process adapting to the changing needs of the project as work progresses

Process
template Project area Users

{1..n}

Process
settings

Project artifacts

Work items

Requirements

Plans

Builds

Streams

Reports

New artifact
contributions

Team area
{0..n}
536 Collaborative Application Lifecycle Management with IBM Rational Products

The majority of modern software development processes and methods today follow an
iterative software development approach. Rational Team Concert provides a number of
ready-to-use process templates that implement these industry processes. For example,
Rational Team Concert includes Open Unified Process (OpenUP), Eclipse Way, and an
example process that are ready to use. Rational Team Concert also makes it easy to
customize or redesign these processes to fit your organization’s way of doing things by using
the process templates as a starting point. The process template library makes it easy to
create and share new or customized processes. For example, the Scrum process
implementation is available in IBM developerWorks at the following address:

http://www.ibm.com/developerworks/rational/library/08/0701_ellingsworth/index.html?ca=drs-

Your process controls can be customized for each project iteration. Different lines of
development might have different active controls based on the process rules that are defined
for that iteration as illustrated in Figure 14-3.

Figure 14-3 The process for two separate lines of development with varying process control based on their needs

The process specification describes the roles team that members can play and the process
rules that apply to each role across the project iterations. This specification allows you to
govern the project development process while providing the team with the flexibility that they
need to deliver their work (Figure 14-4 on page 538). For example, as your project progresses
to completion and enters the final iteration before shipment, you can issue a “code freeze”
and you might want greater control over work that is performed on the product.
Chapter 14. Delivering and measuring success in Application Lifecycle Management 537

http://www.ibm.com/developerworks/rational/library/08/0701_ellingsworth/index.html?ca=drs-

Figure 14-4 Specifying process rules based on the users role by iteration in Rational Team Concert

The process specification also defines which of the process rules can further be customized.

Example: Enactment of the OpenUP with Rational Team Concert
When you create your project work area, Rational Team Concert prompts you to specify the
process template that you will use. You can create a new process template from scratch, or
you can select a prepackaged or previously created process template. The OpenUP/Basic
process is one of the ready-to-use process templates that comes with Rational Team
Concert. OpenUP/Basic preserves the essential characteristics of the Rational Unified
Process (RUP), which includes iterative development, use cases, and scenarios that drive
development, risk management, and an architecture-centric approach. OpenUp/Basic is one
of the processes that is defined by the Eclipse Process Framework project.

You can create a new process template from scratch, or you can select a prepackaged or
previously created process template (Figure 14-5 on page 538).

Figure 14-5 Prepackaged process templates - Eclipse Way and OpenUP in Rational Team Concert
538 Collaborative Application Lifecycle Management with IBM Rational Products

When you create users for your project, you define a process role for them. Recall that with
Rational Team Concert, you can configure your process behavior based on the user role
(Figure 14-6). Every user in Rational Team Concert can have one or more user roles.

Figure 14-6 Process roles to modify the actions a user can take based on the projects selected process
Chapter 14. Delivering and measuring success in Application Lifecycle Management 539

The process template includes everything that you need to institute the process on your
project. For example, the risk work item workflow and description detailed in OpenUP
(Figure 14-7) are enacted by the process specification for OpenUP in Rational Team Concert.

Figure 14-7 Implementing the risk work item workflow process in Rational Team Concert

Rational Team Concert goes one step further by enabling you to enforce the project rules that
you have defined for your project. In doing so, it helps to prevent team members from
accidentally overstepping defined project rules and to improve the overall health and success
of the project.
540 Collaborative Application Lifecycle Management with IBM Rational Products

For example, you might institute a rule that all project team members must run JUnit tests
before they deliver their changes to the team work area. When a project team member tries to
deliver their changes without first successfully unit testing their code with JUnit, the team
advisor steps in and ensures that the process is followed. Additionally, Rational Team Concert
provides a quick fix to the problem by providing a link to run the local JUnit tests (Figure 14-8).

Figure 14-8 Team Advisor in Rational Team Concert preventing a process rule from being broken

Clearly, all projects are not the same, and you must have flexibility to institute the rules that
matter based on your project needs. Additionally, as your project progresses or your needs
change, your process also must change with you.
Chapter 14. Delivering and measuring success in Application Lifecycle Management 541

For example, you might find the need for rapid sharing of project changes with little to no
approval or review in the beginning of your project and later. As your project or milestone
nears completion, you might find that you need new changes reviewed before they are
delivered to the team area (Figure 14-9).

Figure 14-9 Team Advisor in Rational Team Concert preventing delivery of a change set without prior approval

When you enforce a process, it is critically important that you do not block or slow the
progress of project work unnecessarily. The difference between process enactment and
simple process enforcement is that process enactment provides you with contextual guidance
to resolve a process misstep. Process enactment in Rational Team Concert does not force
team members into a rigid mold, but rather it advises them about process missteps and
provides advice about potential resolutions.
542 Collaborative Application Lifecycle Management with IBM Rational Products

With the enforcement of the change set approval before promotion requirement, Rational
Team Concert provides a direct link to submit the change set for review (Figure 14-10). It
aligns the team member with the process rules that are in effect and provides them with
guidance when there is a misstep.

Figure 14-10 Direct links from Rational Team Concert to resolve process mis-steps and realign with the process

All aspects of a software development and delivery process are not executable. Process
enactment must be supported with textual descriptions in order to establish team
understanding of the process.

14.2.2 Process descriptions: Team understanding of the enacted process

The process description supplements the project team with the process details and best
practices that are instituted on the project. The project team members use the process
description to better understand the process and explore areas where they are unclear as
necessary. The process description also describes process elements that are not instituted
as rules or cannot be directly implemented in the software delivery environment.

Depending on the scope of the project, the process description can simply outline important
team considerations or describe the process in detail relating it to process standards such as
Capability Maturity Model Index (CMMI) or regulatory compliance mandates such as
Sarbanes Oxley. For small teams or simple projects, the process description can be as simple
as a project home page that describes important and necessary process or workflow
Chapter 14. Delivering and measuring success in Application Lifecycle Management 543

procedures for new and changing team members. For larger teams or complex projects, the
process can be represented formally, outlining the best practices and standards that the
organization has wholly adopted and are expected to be implemented on every project.

Process descriptions must be modular and consumable in pieces. Having smaller chunks
makes them more reusable (Figure 14-11) and easier to customize for individual projects. For
example, the OpenUP is organized at a top level by disciplines, work products, roles, and the
life-cycle process (Figure 14-12). These form the base hierarchy and are further organized
into folders or categories, making the process descriptions easy to navigate and use. Further,
the relationships between the process elements are maintained. For example, you can
navigate from a work product, such as a Requirements Management Plan, to the roles that
work with the work product such as the Business Analyst. This helps everyone understand
how their work is interrelated and used by other team members. Organizational expectations
should be that the defined process fits to the project, not vice versa.

Figure 14-11 Modular processes increasing process reusability in organizations

Figure 14-12 Organization of processes and best practices into easily separable chunks by using the
OpenUP and the Eclipse process framework

Your process description should go hand in hand with your process implementation. The
greatest risk to a lack of process adoption is too much overhead or effort that is required by a
project team to follow it. Making the implementation of the process simple and a normal part
of software delivery makes the adoption of the process consumable by project teams without
threatening individual project goals.

For example, the OpenUP description details the workflow for the Risk Work Item. This
process description is implemented by the OpenUP template in Rational Team Concerts in
the form of the Risk Work Item and the associated workflow. As a result, Rational Team

High

Reusability

Low

Process Modularity High
544 Collaborative Application Lifecycle Management with IBM Rational Products

Concert makes the association and connection between the described and defined process
in the process description and the implemented process enacted by the Rational team.

Figure 14-13 The OpenUP/Basic Web-based process description supplementing the project team with the details of the
implemented process

14.3 Using metrics and measurements effectively to drive team
success

Metrics are often used incorrectly in organizations to solely measure individual contribution
and then focus attention on weak contributors to resolve project deficiencies. Although using
discrete metrics to measure individual contribution is noble, it usually is not an effective driver
of overall project success and teamwork.

Metrics must be aligned with the theme and goals of the project. They should be visible to the
entire team and presented in a way that everyone on the team can interpret and act upon
them. Successful agile project managers focus on regulation and enablement rather than
delegation. The best metrics are established at the team level and encourage the team to
collaborate and work together on project work rather than siloing the project into individual
units that are measured independently and then aggregated to measure project success.
Over segmentation encourages individualism and leads to unhealthy behavior that divides the
project team.
Chapter 14. Delivering and measuring success in Application Lifecycle Management 545

Metrics and measurements have a life cycle, and project teams must regularly consider the
ongoing value of a metric or measurement. Completed projects can help your organization
determine which metrics provide the greatest benefit. These projects should be reused, and
those that are not benefiting the organization should be reevaluated.

14.3.1 Selecting the right metrics

Selecting and implementing metrics is an important precursor activity to a healthy project.
Metrics establish the basis for project visibility and allow the project teams to diagnose and
resolve project challenges early and quickly. The most common and important metric that all
projects must deal with is the sizing and estimating of project work. These metrics and
measurements establish the basis for many other metrics that are used to assert the health
and direction of the project. For stakeholders and customers, these metrics establish “what”
will be delivered and “when” they will get it. Although the project manager is usually the
person who is accountable for project estimation, the responsibility belongs to the entire
project team. Agile estimation provides one technique for project estimation.

14.3.2 Agile estimation

Agile measurement and estimation focus on measuring the business value that is delivered to
the customer. The basis for agile measurement is working software that is delivered to the
customer. Since different teams and team members can complete the same work in varying
amounts of time, agile estimation abstracts from time-based measures for effort to points.
Understanding agile estimation, even if you do not use it, is important because it addresses
the project dynamics of sizing, velocity, and effort that all projects will have to deal with.

In agile planning and estimation, the project or product is defined as a collection of high level
capabilities in the form of stories. These stories are collected in priority order in a product
backlog. A product backlog can be likened to an iteration plan that contains all the user
stories for the project/product (Figure 14-14).

Figure 14-14 A work item type for capturing user stories in Rational Team Concert
546 Collaborative Application Lifecycle Management with IBM Rational Products

Defining the user stories is a customer-centric activity, and your users or customers should be
highly involved in this process. As a general rule, define stories that are small enough to be
consumable and estimatable, for example, approximately 8 to 16 hours of work per story.
After the complete set of stories is defined, it is are ranked in priority order in the product
backlog (Figure 14-15).

Figure 14-15 Prioritizing user stories with your customers after they are defined

After the stories are ranked, the development team responsible for delivering the stories must
meet to size the stories.

Agile sizing: Using points to estimate the amount of project work
Points in agile estimation are the measure for the amount of effort to complete a story. The
agile point measurement system provides the team with the ability to overcome variances in
individual capability and productivity to complete work and collectively agree on the relative
size of work in relation to other stories with which they have been tasked.

For example, if asked how long it takes to implement a particular story, Marco might respond
by saying it takes 3 hours, where Diedrie might indicate that it takes 8 hours. Both of these
estimations are correct but are based on their individual capability and capacity.

If instead the team is asked to rank the size of the story relative to other stories, they can
come to an agreement on the relative size. For example, there might be 10 other stories that
must be completed. By reviewing these stories, they can agree on which stories requires the
smallest amount of work and give this a point measure, such as 10. Then they can rank the
other items that are relative to the size of the first. For example, they might determine that a
given story they have been asked to estimate is about three times as big as the smallest
story, giving it a point estimate of 30.

Estimates for size should be bound to the project team because a different project team might
have a different notion for the size of a particular story based on their collective capability and
experiences. Additionally, the more team members that will implement the story you involve
for a given body of work in the estimation effort, the greater the accuracy of the size
estimates. Particularly, at least the development leads representing different functional areas
required for story implementation should be involved. Ideally, this should not be limited to the
Chapter 14. Delivering and measuring success in Application Lifecycle Management 547

development team because software delivery involves more than writing the code. Other
team members such as quality assurance, project management, release engineering,
systems or service management, legal, marketing, and business subject matter experts
(SMEs) should be involved. Figure 14-16 shows an example of estimating stories in Rational
Team Concert.

Figure 14-16 Estimating stories in Rational Team Concert

Estimating effort
After a prioritized, estimated, elaborated product backlog of stories is established, the project
team pulls stories from the product backlog into the sprint backlog. The sprint backlog is the
iteration plan for the sprint. In general, a sprint can be likened to an iteration. User stories are
pulled from the product backlog and planned for the sprint by adding them to the sprint
backlog (Figure 14-17).

Figure 14-17 Stories taken from the product backlog and added to the sprint backlog
548 Collaborative Application Lifecycle Management with IBM Rational Products

After the stories are added to the current sprint, they are then further elaborated with the
tasks that are required to implement them. The tasks are initially estimated and assigned to
team members (Figure 14-18).

Figure 14-18 Task estimates for stories established for each story by the assigned team member

Agile estimation of effort translates the point estimations that the team has defined for stories
to a time-based unit such as days or hours. These time estimates remain imprecise until they
are assigned to a team member and the team member actively manages the time estimate.
The estimating activity is primarily done individually because each person’s estimates for
effort will be different.

Estimation of effort happens after individual team members have either been assigned work
or sign up to take on a new work item. The reason estimation happens after work assignment
is because time estimates for completing work items vary depending on the team member
that is assigned the work as in the following examples:

� Diedre (Work item: Fix logo on home page, 3 points) Work Estimate: 1 hour

� Marco (Work item: Resolve performance issue in logging service, 30 points) Work
Estimate: 24 actual hours

Traditional estimating and sizing are imprecise because they draw conclusions on the general
amount of effort that is required to complete a task rather than their specific teams’ effort to
complete a task. Agile estimation promotes an agile team by allowing team members to more
freely work and adjust to the changing project dynamics rather than be locked into a rigid,
difficult-to-change project plan. Agile estimation makes project scheduling more accurate,
and as a consequence, more dynamic (Figure 14-19 on page 550).

Agile estimation allows team members to truly take ownership of a work item. Each team
member provides the effort estimate because this person is naturally the best one to gauge it
and their estimate matters most. Team members should be encouraged to regularly review
their work item estimates and adjust them judiciously. When you make an estimation, which is
a responsibility that the whole team shares, the credibility and accuracy of the iteration plan
increases significantly.
Chapter 14. Delivering and measuring success in Application Lifecycle Management 549

Figure 14-19 Agile estimating, planning for the team to actively manage work estimates in the project

Project velocity: Aligning team capacity to the project work
Project velocity measures the amount of work that a project team can complete within an
iteration. Project velocity is a key measurement for project planning because it helps a project
team understand their capacity and plan or schedule future work accordingly.

For example, a project team might plan to deliver 100 points in the first iteration, but they only
deliver 80 points. In this case, their velocity was less than anticipated, and they might adjust
down the points that are planned for the next iteration to match their real capacity, for example
90. In this case, they believe that they can do a little better than the first iteration because the
team has become more cohesive.

Project velocity uses the team’s historical performance as a basis for measurement. For
example, in a project with three sprints (iterations) completed from a total of 6 planned sprints,
the team can use the number of points that they were able to deliver in past sprints as a basis
for the amount of story points that they can realistically deliver in the upcoming sprint.

Project velocity helps a team understand their real capacity so that they can set expectations
appropriately with stakeholders and other subteams that might depend on their contributions.
Project velocity is often expressed as a ratio with delivered points or planned points. The
velocity ratio allows for more accurate planning across subteams. Remember that point
estimations for work are relative and bound to a particular project team.

Estimating capacity based on points across teams does not work. For example, let us say that
Marco’s development team sizes a set of work items to be 300 points, and another offshore
team sizes the work items to be 900 points for the next iteration. They both deliver exactly the
work items that they planned for the iteration. Clearly, measuring by points only might
incorrectly show the offshore team as more productive.

Additionally, if there was a work item that needed to be completed for the next iteration, which
team is most likely to be capable of taking it if their next iteration was already planned? What
if Marco’s team had a project velocity of 2 and the offshore team had a velocity of .8? Clearly,
550 Collaborative Application Lifecycle Management with IBM Rational Products

Marco’s team may be best suited to take on the additional work and still deliver the work that
is planned for the next iteration.

Figure 14-20 shows an example of a Team Velocity report.

Figure 14-20 The Team Velocity report showing how the team is performing against their planned
performance

14.4 Using dashboards for decision making

Dashboards are an effective way of establishing transparency and visibility throughout the
project by communicating the current health of various parts of the project. Projects should
have at least one common shared dashboard that the entire team uses to understand and act
on overall project health. Projects should also have personal dashboards that team members
can use to focus on the project area that they own.

Projects should look at their instituted metrics if more effort is being spent on collecting
measurements rather than acting on them. Additionally, metric quality is far more important
than metric quantity on a project. The purpose and value of each metric should be visible and
understood by the entire project team.

Rational Team Concert provides the ability to create shared dashboards that provide the
entire project with measures fed by live data. Shared dashboards should be created at the
beginning of the project by the project manager and updated throughout the project. The
home page for the dashboard should include a collaborative element such as a team blog
where others can comment on observations from trend reports.

Figure 14-21 on page 552 shows the shared Jazz project dashboard. Note that it provides an
overview of the project, vital links, and a team blog where team members can interact. It also
includes a list of the Jazz Project Sub Teams hyperlinked to their dashboard. The team
dashboard is a great place for communicating news such as team members who are joining
or departing.
Chapter 14. Delivering and measuring success in Application Lifecycle Management 551

Figure 14-21 Rational Team Concert Dashboard
552 Collaborative Application Lifecycle Management with IBM Rational Products

Measurements in dashboards should be visible to the entire team in a meaningful way and
empower team members to act on them (Figure 14-22).

Figure 14-22 A dashboard displaying key project health reports that everyone on the team understands

14.5 Using retrospectives to capture lessons learned and make
adjustments

Project managers must recognize that everything on a project cannot (and should not) be
quantitatively assessed. Many important qualities that are experienced throughout the project
are best communicated by natural language rather than mathematical observations or
calculations. Project milestones, such as a completed iteration, should also include an open
project team discussion of lessons learned and “senses” by the project team. One technique
for doing so is to conduct retrospectives.
Chapter 14. Delivering and measuring success in Application Lifecycle Management 553

Retrospectives give the team a chance to look back at a completed iteration and reflect on
what worked well and what did not work so well. Retrospectives allow teams to absorb and
express quantitative results of the project in a more natural form. They allow the team to get a
“sense” for the project. These lessons learned can help them decide what changes to the
process, if any, are necessary (Figure 14-23).

During a retrospective meeting, it is important to facilitate a constructive session rather than a
synopsis of past events. Focus the team on what actions can be taken to better handle similar
challenges proactively in the future.

Figure 14-23 Capturing team conclusions and ways forward for project milestones by using retrospectives
554 Collaborative Application Lifecycle Management with IBM Rational Products

Retrospectives can be captured in the iteration plan or in a work item or change request
(Figure 14-24). Capturing retrospectives in a work item allows the team to use the product
collaboration features. For example, with Rational Team Concert, the discussion and
subscription work item features can be used to enable project team members to easily
contribute to the retrospective. This enables a geographically distributed team to provide their
input without the challenges of coordinating a real-time meeting. Team leads and team
members can gather their thoughts and provide quality input on the retrospective and have a
record of the entire team’s feedback.

Figure 14-24 Retrospectives captured in work items or change requests to facilitate collaboration
Chapter 14. Delivering and measuring success in Application Lifecycle Management 555

556 Collaborative Application Lifecycle Management with IBM Rational Products

Appendix A. Principles for Collaborative
Application Lifecycle
Management

In this appendix, we provide additional considerations for Collaborative Application Lifecycle
Management (CALM). In particular, we provide a set of philosophical and technical principles.

This appendix includes the following sections:

� “Philosophical principles” on page 558
� “Technical principles” on page 561

A

© Copyright IBM Corp. 2008. All rights reserved. 557

Philosophical principles

In this section, we present a set of philosophical principles to consider when evaluating or
designing a CALM solution.

Development is not an island unto itself

Development provides a service to the business. Technologists often like to create technology
because there is an interesting new problem to solve. However, today IT is managed more
like a business, and the software it produces directly contributes to the bottom line. Therefore,
software must be created in context of the business goals and objectives. This information
needs to seamlessly flow from the business stakeholders to the development teams that are
providing the software solutions. Information, such as current versus simulated business
processes, and key performance indicators become critical pieces of information for the
development team.

At the same time, the enterprise architecture drives project decisions in context of a larger
architectural vision such as adhering to a set of architectural principles or an architectural
framework. Furthermore, many software solutions are deployed into the IT infrastructure
where they must be managed by the operations team. Visibility into the service level
agreements, capacity, existing assets, and monitoring strategies influences how the solution
is developed and tested.

To add to the mix, software development is global in nature, with offshoring and outsourcing
becoming common realities for many organizations. Teams are comprised of people from
around the world, from within the enterprise, and with a core set of trusted partners, each
contributing to some aspect of the solution.

Therefore, the development team is not an island unto itself. Rather, the development team
innovates within the context of business goals, enterprise architectures, and operational
constraints while collaborating with people in multiple organizations and geographies. With
this perspective in mind, the role of the development team is to provide the service of
producing software for the rest of the business.

Software solutions are the product of many conversations

Often in software development, teams try to decompose solutions down to data, whether it is
objects in an object model, test cases in a test suite, or a collection of requirements in the
requirements management system. The reality, however, is that teams arrive at conclusions
after having many conversations with peers and stakeholders. Intellectual property comes
from human beings, and these people are in multiple organizations and geographies, using a
wide array of tools to produce artifacts.

A CALM solution must support people regardlesss of who they are, where they are, the
conversations they have, and the artifacts that they create as a result of these conversations.
Lifecycle management involves managing networks (or clouds) of people, artifacts, and their
shared bookmarks. Project teams set up wikis and blogs to share and communicate
information. Communities of people form around core ideas. Information and ideas are
shared liberally until they form a final state.

By linking people and the artifacts they produce, a lifecyle management solution can help
team members to easily find answers to some of the following questions:

� Who do I collaborate with most often?
� What other artifacts are linked to mine?
558 Collaborative Application Lifecycle Management with IBM Rational Products

� How can I more easily share the documents that others keep requesting?
� Who else has an artifact of interest to the work that I am attempting to complete?
� Who else is interested in this topic?
� Are there any experts I can consult?

The following basic rules involve these networks of people and artifacts:

� People collaborate to share information and exchange ideas in the context of their current
project, using a wide array of techniques such as shared bookmarks, blogs, wikis,
communities, webcasts, and demo videos.

� People produce artifacts by using a wide array of tools. In the end, the tool itself is not
important. The artifact that contains the data (and versions thereof) is what is managed.

� Some people and artifacts are extremely useful, an others are not. Ratings help others on
the team understand the importance and value of the artifacts that are produced by the
community. They can also indicate the people that provide helpful information.

� In the context of a conversation, a user might reference, share, or want to find artifacts that
are related to the discussion. Providing URLs, shared bookmarks, or both facilitates the
sharing.

� A change to one artifact impacts other artifacts and, therefore, the people who use them.
Team members must be aware of the impact of these changes.

For example, a change to a requirement might trickle all the way through design,
implementation, build scripts, test cases, and scripts, causing massive rework by the
entire team. If any member of the team is not aware of such a change, the project might
fail to meet the business expectation. Additionally, allowing the owner of an artifact to
understand the potential impact to other team members before making the change can
help them manage their changes more effectively.

The relationships between people and artifacts are fundamental to developing deployable
software.

Solutions are rarely sunset; they are refined and maintained for years

Development tools vendors often design products to support teams that create “green field”
implementations. The reality is that almost 75% of the IT budget is spent on managing
existing applications. A CALM solution at its heart must support existing investments in
software solutions. By this, it must be extremely easy to recreate a past release of the solution
or to discover which version is currently running in production.

Therefore, all artifacts should be treated as investments. By this we mean, that all artifacts
that are created during the development of a solution should be managed and versioned in
context of that solution. This goes well beyond the traditional definition of managing source
code, to encompass managing the relationships between requirements, designs, models,
source code, unit tests, build and deployment scripts, test plans, configurations, test cases,
and results. It also involves capturing the initial business goals and objectives, along with
capturing information about the operations infrastructure and transferring knowledge to the
operations team for managing and monitoring.

These artifacts need to stay in place but also move forward. To recreate past releases, and to
adhere to regulatory requirements, the state of all of the artifacts at the end of the release
must be captured and maintained. The baseline that is captured must include more than just
source code. It must also include all other artifacts that contribute to the definition and history
of the release, such as the requirements, test cases, test results, and so forth. To that end,
capturing a baseline of all resources in the project (team members, groups, roles in addition
to the artifacts) might be equally important.
Appendix A. Principles for Collaborative Application Lifecycle Management 559

At the same time, these artifacts must be reused and modified to apply to the next release of
the solution. For example, the set of requirements for one release must be validated again by
using the same test cases in the next release to ensure that there are no regressions. Team
members and the roles they play, along with the processes they use, might also move
forward.

Additionally, some artifacts can be valuable enough to package into an asset that can be
reused by anyone with access to it. The ability to package and promote assets, and reuse
existing assets, increases the value of the artifacts, while increasing the efficiency of the IT
team. As more solutions become assembled from parts of other solutions, this need for asset
reuse is only expected to increase.

Many cycles are ripe for automation and recommendation

By definition, CALM involves managing a cycle. However, it is more interesting to note that
there cycles within cycles for a single software solution. The solution moves through more
than just the cycle of strategy, design, transition, and operation. There are cycles where the
business priorities are reviewed against the current project portfolio to ensure alignment.
Priorities from operations drive maintenance cycles and hot fixes to existing applications.
Project schedules drive development software projects, which involves cycles of planning,
executing, and evaluating. Implementation involves continuous cycles of coding, unit testing,
delivering, building, deploying, and testing against the requirements. The test results indicate
the level of quality, which then drives additional development cycles within iterations. A defect
has a cycle.

Within all of these cycles, repeated patterns of activity can be automated. For example, agile
methods advocate that teams conduct continuous builds to drive out build errors and increase
the quality of the builds. This is an example of automation where the developers deliver their
code, which kicks off a build to ensure that their changes do not break the team build. In
addition, this build process includes running test scripts, code scans, or both, which provide
an indicator of build quality.

With a little imagination and a focus on the cycles that are inherent in software development,
many of the manual and mundane processes within the software development life cycle can
be automated given the proper relationships between artifacts.

Simplicity first

It is easy to grow from something simple, but it is difficult to simplify something that is
complex. Existing Application Lifecycle Management (ALM) solutions grow by taking existing
discipline-specific tools and creating loose integrations between them. To look at it another
way, each of these discipline-specific tools are already complex within their discipline. To
attempt integrations simply results in increased complexity.

When team members focus on a single discipline, it is extremely easy to delve deeper into
that domain. However, in doing so, rather than thinking of the simplest case, teams risk
building mountains of nuance until the solution is no longer usable by the people who need it
the most. Rather than thinking in terms of the individual disciplines, team members must think
about the entire team and how they interact and rely on each other’s work.

The team can set its sights on best practices for software development teams. These
team-based best practices lead to better understand the relationships between people and
the artifacts they produce, thus allowing the team to provide a high-value innovative solution,
rather than an overly complex system full of subtle nuance. The reality is that every enterprise
approaches software development differently. Attempting to handle every case is an
560 Collaborative Application Lifecycle Management with IBM Rational Products

enormous and risk-filled challenge. However, by adopting core best practices as guidelines,
the team can stay focused on achieving the goal of delivering a software release.

Technical principles

In this section, we provide a set of technical principles to consider when evaluating or
designing a CALM solution.

Focus on the team’s ability to produce a release of software

The traditional view has been to focus on a single role or domain. For example, teams focus
on requirements for analysts, test management for testers, and source code control for
developers. While this view has worked in the past, changes in the software market and in IT
demand a change in focus.

The new focus involves a team of people working on a release, where the data produced by
one individual acting in one role is needed and referenced by data produced by another
individual acting in another role. Business proposals are evaluated in light of the overall
portfolio. Projects are approved and funded. Business and system analysts collaborate to
agree on a set of software requirements. These requirements drive the design,
implementation and testing efforts. The results of the build are deployed onto test machines
and eventually into production. All of this happens in the context of a release.

In addition, regulatory compliance initiatives require that organizations produce reports
stating exactly what changed in the release of a solution, how it was tested and with what
result, and where it is deployed. To answer these questions, all resources that are produced
by the team must be managed in context of the release that they affect.

These activities must be planned, completed, and governed a coherent whole.

Use multiple repositories

While it makes sense to consolidate repositories where possible, it is also true that important
project resources always exist in other repositories. The reality is that IBM clients have
invested in solutions that house much of their data. Data about problems in production exist in
the service desk and the IBM Tivoli Change and Configuration Management Database
(CCMDB). Project funding decisions are managed by a portfolio management system,
requirements, tests, and code. Defect data is likely to remain in a slew of different
repositories, including our own repositories and those of third parties.

Therefore, you adopt a strategy that allows and expects data to be housed in multiple
repositories. In doing so, you can adopt a strategy to open your own repositories to
interoperate and share data freely without requiring multiple clients and user logins.
Appendix A. Principles for Collaborative Application Lifecycle Management 561

Processes link roles and access multiple repositories

It is relatively easy to define a state machine for a single resource. A test case has these
states. A defect has a different set of states. However, process automation becomes more
interesting when the process spans multiple roles and resources.

For example, the request to implement a new requirement can involve the following roles:

� An analyst does some form of analysis or modeling, such as modeling a business
process.

� An architect examines the impact to the system and designs the approach.

� Developers implement the code that satisfies the requirement.

� A test team evaluates the available servers, configures them with the necessary software,
creates a test plan, writes test cases, automates tests, and eventually runs tests,
evaluates the results and logs the defects.

� The project manager determines how long it will take and ensures that all of the work is
completed.

As shown in this example, a single requirement has the potential to span all roles on a
development team. You can imagine a process that defines the implementation of a
requirement with a multitude of subtasks.

Process definitions are not new. The Rational Unified Process (RUP) and the Open Unified
Process (OpenUP) are industry leading process definitions. The game changes, however,
when the process is inherently part of the team’s daily work. That is to say that the process
guides the behavior of the team. Project plans and work assignments are created in the
context of predefined process definitions. Both Rational Team Concert and Rational
ClearQuest provide implementations of OpenUP. Project teams can choose and customize
the process definitions for their project. As the team works in context of that project, the
process definition guides their action.

Automate repetitive tasks

Every day development teams are tasked with manually performing mundane tasks. They
have been doing many of these tasks for so long that they no longer seek ways to improve
them. However, when they step back at look at some of the work that they must complete,
development teams sometimes discover new approaches to completing the tasks.

For example, the act of preparing a machine for testing is something that testers face quite
often. Tracking which machines are available and which software is installed on them can be
a more complex task than one might expect. Testers can spend hours installing the operating
system, middleware, test harnesses, and most recent build of the application. Yet in recent
years, there have been advances for simplifying this task. IBM Tivoli Provisioning Manager
has the ability to prepare a machine from the bare metal up. Virtual machines have advanced
to the point where they are a normal part of the testing strategy. Rational Quality Manager
provides functionality to enable test teams to begin managing their lab, thereby automating
some of the mundane tasks that testers face most often.

Every time development teams encounter a mundane task instead of simply accepting it, they
have the opportunity to step back and ask: “Is there a way to automate this?”
562 Collaborative Application Lifecycle Management with IBM Rational Products

Link people and the assets they access

Development teams can link people and their assets in the following ways:

� Subscription and change broadcast services

Syndicate content in repositories and allow users to subscribe to feeds. A multitude of
information that users might want to obtain is available through feeds. Broadcast changes
to resources in the repositories, and let the users decide to which information they want to
subscribe.

� Team awareness

Individual team members must learn to effectively change context as they move from one
project to another, or from release to release. Individual team members need awareness
about the team they are joining and its culture, policies, and best practices. They also
need to know how to configure their environment for the project, how to share changes,
and how the team as a whole is progressing. In essence, individuals need awareness on
how they can fit in and contribute to the team’s success.

� Rating systems and tags

Use rating systems and tags to help you find the information the matters. Many
management systems rely on a set of attribute/value pairs for classifying content.
However, those attribute/value pairs are limited by the system or the people who create
them. Each individual on the team might think of the content differently or want to build
their own relationships between artifacts that are not applicable to the rest of the team.

Bringing tagging techniques into software development repositories enables team
members to tag content and surf tag clouds to discover new content. During the course of
a software release and over the span of many releases, enormous amounts of data are
produced. In this sea of data, it can become challenging to determine the inherent value to
the current task. By allowing users to rate the resources in the repository, team members
can create a shared view of the perceived quality or value of that resource.
Appendix A. Principles for Collaborative Application Lifecycle Management 563

564 Collaborative Application Lifecycle Management with IBM Rational Products

Appendix B. Configuring interoperability

In this appendix, we provide additional details a bout configuring interoperability in the
Rational Application Lifecycle Management solution (ALM) by using Rational ClearQuest,
Rational Team Concert, and Rational Quality Manager. In particular, we examine the
configuration of the Rational ClearQuest ALM schema, the ClearQuest Connector Gateway,
and the ClearQuest Connector Synchronization rules.

The use of ALM interoperability integrates work assignment and iteration planning workflows
across a team on the ClearQuest ALM solution and teams by using the Jazz platform tools or
Rational Team Concert and Rational Quality Manager.

This appendix includes the following sections:

� “Configuring the ClearQuest ALM schema” on page 566
� “Configuring ClearQuest ALM schema for interoperability” on page 569
� “Configuring Jazz repositories for interoperability” on page 583
� “Practices for using ALM interoperability” on page 604
� “Extended ALM interoperability configuration” on page 610

B

© Copyright IBM Corp. 2008. All rights reserved. 565

Configuring the ClearQuest ALM schema

In the following sections, we describe the steps to access and deploy the ClearQuest ALM
schema.

ClearQuest and the ALM schema

Beginning with release 7.1.0.0, Rational ClearQuest provides a ready-to-use schema named
“ALM” along with two new packages to help implement ALM in projects. The solution can be
used as a new schema as provided by Rational ClearQuest or by adding the required
packages to an existing schema.

The Rational ClearQuest schema that used in this IBM Redbooks publication was created by
using the ALM schema that is provided in Rational ClearQuest and by using the OpenUP
configuration that is provided as a sample with the schema. The ALM schema already has the
main packages applied, which are necessary for the ALM scenario.

Using the ALM schema and sample database

The story and examples in this Redbooks publication use the ready-to-use schema named
“ALM” that is provided with version 7.1.0.0 of Rational ClearQuest. The ALM schema extends
the capabilities in Rational ClearQuest with ALM. Rational ClearQuest v7.1.0.0 include a
preconfigured schema and sample data that greatly simplifies the configuration of the ALM
schema and ALM interoperability.

The ClearQuest ALM solution provides rich capabilities for configuring the ALM process and
workflows that are used by organizations, teams and projects. The ClearQuest ALM solution
also provides ready-to-use process configurations in the form of samples. The story and
examples in this Redbooks publication use the Open Unifies Process (OpenUP) work
configuration that is provided with the ClearQuest ALM solution.

The ClearQuest ALM solution defines a configured process and workflows by using project
definition records and ALM system-wide settings records. These record types provide the
power to modify the ALM solution without impacting the underlying schema. The project
definition records define the templates for projects, roles, and role-based workflows.

Furthermore, the system-wide settings can define categories of projects and label types that
can help set policies for standardization, organization, and governance of projects. The Label
record types provide the definition of names which appear in the user interface, most often in
the form of drop-down lists on records. Some examples of Label types are Work Type, Role,
Resolution Code, and Category Type. These settings allow for reuse and consistent
classification across multiple projects, and can adapt to the enterprise. The ALM system-wide
settings records are provided with the ALM schema sample database.

Packages for download: The ALM Packages for Rational ClearQuest are available for
Rational ClearQuest 7.0.1 users to download for free from IBM. The packages can be
accessed from the Web at the following address:

http://www.ibm.com/services/forms/preLogin.do?lang=en_US&source=swg-ratcq

Registration is required to access the packages. The download includes the ALM
Packages for Rational ClearQuest, instructions for applying the packages, a sample
database, and three tutorials for use with the sample database. The ClearQuest ALM
solution can be used with both ClearQuest versions 7.0.1 and 7.1.
566 Collaborative Application Lifecycle Management with IBM Rational Products

http://www.ibm.com/services/forms/preLogin.do?lang=en_US&source=swg-ratcq

Creating a schema repository and sample database
To create schema repository including the ALM functionality:

1. Start the Rational ClearQuest Maintenance Tool and select Schema Repository →
Create.

2. Select the Vendor database option. Click Next.

3. Select the Data Code Page to be used by ClearQuest.

4. On the Sample Database page, choose the ALM schema and select the option to create a
sample database.

Click Next.

5. Select the Vendor database option for the sample database. Click Finish. The new
schema and sample databases are created.

You have now configured the schema, applied the required ALM packages, created a sample
database, and imported the system-wide settings that are required for the ClearQuest ALM
solution. If you successfully completed these steps, proceed to “Adding packages for
interoperability to the ALM schema” on page 569.

In the following section, we explain how to configure a new or existing schema with ALM
packages and system-wide settings data.

Adding packages for the ALM schema

To configure a new or an existing schema for ALM, you must apply the following two packages
to the schema:

� ALMProject 1.0 (or later).
� ALMWork 1.0 (or later)

Installing the ALM packages
To install the ALM packages:

1. Download the ALM packages compressed file from IBM as explained in the note box on
page 566.

2. Extract the contents of the compressed file into the \Program
Files\Rational\ClearQuest\Packages directory.

3. Open a command prompt and register the ALMProject and ALMWork 1.0 packages by
using the following commands

packageutil registerpackage ALMWork 1.0 "C:\Program
Files\Rational\ClearQuest\packages\ALMWork\1.0"

packageutil registerpackage ALMProject 1.0 "C:\Program
Files\Rational\ClearQuest\packages\ALMProject\1.0"

More information: For detailed guidance about how to install the Rational ClearQuest
repository on supported vendor database solutions, see the ClearQuest Information
Center at the following address:

https://publib.boulder.ibm.com/infocenter/cqhelp/v7r1m0

Note: Use the default name SAMPL for the new ALM database base.
Appendix B. Configuring interoperability 567

https://publib.boulder.ibm.com/infocenter/cqhelp/v7r1m0

Adding a package
To apply the ALM packages to a schema:

1. Open the ClearQuest Designer.

2. Browse the ClearQuest Schema Repository Explorer view for the schema to be modified,
for example, ALM. Open the schema by logging in as an administrator.

3. Select the latest schema version (Figure B-1), and choose Revision Control → Check
Out.

Figure B-1 Applying packages ALMWork and ALMProject

4. Select Packages → Apply Package.

5. In the Package Wizard, browse and select for the package version to apply. Click Next.

6. On the Apply Packages to Record Types page, optionally select the records types to which
to apply the package. The ALM packages do not need to be applied to any record types.
Click Finish.

7. Select Team → Check In to validate and check in the changes to the schema.

The ALMProject and ALMWork packages are now ready to be used by Rational ClearQuest.

Installing the ClearQuest ALM system-wide settings
The required system-wide settings are delivered as a sample database for the ALM schema.
The records values can be imported by using the sample data files and the ClearQuest
Import Tool.

To install the system-wide settings:

1. Browse for the sample directory in the ClearQuest installation directory, for example,
C:\Program Files\Rational\ClearQuest\sample_db_files.

2. Open the schemas.ini file and scroll to the [ALM] section.

Path: The path that used in the previous commands might be different depending on
the Rational ClearQuest installation directory.
568 Collaborative Application Lifecycle Management with IBM Rational Products

3. Select Start → Rational ClearQuest Import Tool.

4. In the import tool, select the schema connection to use for the import. Log into the
database as administrator.

5. On the first page, select the record type to be imported. The record name, for example,
ALMAdmin, is given in the INI file.

6. On the second page, browse to the CSV file to import from, for example
\sample_db_files\sample_alm_admin.csv. The file name is given in the CSV file. Also,
provide a path to a new temporary log file, for example c:\temp\import.log.

7. On the third page, click Next.

8. In the window that opens that prompts you for a field name to store unique identifiers, click
No.

9. On the next page, click Next.

10.Click Finish to start the import.

11.Monitor the import summary error log.

Configuring ClearQuest ALM schema for interoperability

In this section, we explain how to configure the ClearQuest ALM schema for interoperability.

Adding packages for interoperability to the ALM schema

In addition to the packages that are required for ALM, additional packages must be applied to
support interoperability between Rational ClearQuest, Rational Team Concert, and Rational
Quality Manager. Add the following packages to the ALM schema that is to be used:

� Notes 5.1

This package is optional, but its use is recommended for collaboration purposes. The
Notes package enables interoperability with discussions in Rational Team Concert and
Rational Quality Manager.

� JazzInterop 1.0 (or later)

This package contains the required functionality for integration with the ClearQuest
Connector Gateway and Rational Team Concert or Rational Quality Manager.

Follow the steps in “Adding a package” on page 568 to apply the packages to the ALM
schema.

Note: The exact order of the files is given in the schemas.ini file and completes the
successful import of all CSV files in the [ALM] section. Each line in the INI file
represents one import of a record type and the file to import from. For example, the first
line of sampledata1=records,ALMAdmin,sample_alm_admin.csv imports ALMAdmin
records from the sample_alm_admin.csv file.

Restriction: There are limitations regarding the usage of the Notes package in ClearQuest
MultiSite configurations. Consult the Rational ClearQuest documentation.
Appendix B. Configuring interoperability 569

Applying the JazzInterop package
The JazzInterop package enables record synchronization between Rational Team Concert
and Rational Quality Manager work items and Rational ClearQuest records. The JazzInterop
package is required to be associated with all record types that are to be used in
synchronization rules definitions.

ClearQuest ALM interoperability requires the JazzInterop package to be associated with the
following record types:

� ALMActivity
� ALMTask
� ALMResolutionCodeLabel
� ALMTypeLabel
� ALMProject
� ALMCategory

Applying the Notes package
The Notes package enabling interoperability of in-context discussions between team
members who are using ClearQuest ALM records and other team members who are using
the synchronized Work Items in Rational Team Concert or Rational Quality Manager.

The Notes package should be associated with the following record types:

� ALMActivity
� ALMTask

Associating a package to record types
To associate a package:

1. Open the ClearQuest Designer.

2. Browse the ClearQuest Schema Repository Explorer view for the schema to be modified,
for example, ALM. Open the schema by logging in as an administrator.

3. Select the latest schema version and select Team → Check Out.

4. Select Packages → Setup Record Types for Package.
570 Collaborative Application Lifecycle Management with IBM Rational Products

5. In the Apply Package to Record Types window (Figure B-2), from the packages list, select
a package, for example, JazzInterop, and select the desired record types from the list.
Click Finish.

Figure B-2 Applying the JazzInterop package to ALM record types

6. Select Team → Check In to validate and check in the changes to the schema.

Configuring ClearQuest ALM system-wide settings for interoperability

The ClearQuest ALM solution comes with a set of system-wide settings that enable process,
workflow, and terminology configurations without impacting the underlying schema. Tool
administrators or project leads can set policies for standardization, organization, and
governance of projects.

One of the configuration properties in the system-wide settings is Label record types. Label
record types allows for the definition of the names that are displayed in the user interface,
most often in the form of lists on records. Some examples of Label records types are Work
Types, Roles, Resolution Codes, Category Types, Severities, and Priorities. These settings
allow for consistent classification across multiple projects or the enterprise. ALM
interoperability should be configured to allow for consistent classification across the
integrated ALM solution.

When using the ClearQuest Connector to synchronize an ALM record and Work Item, field
enumeration values, such as Priorities and ResolutionCodes, are required to be consistent
across the tools. While the ClearQuest Connector provides mapping table functionality, such
mappings are not supported for fields of reference type. A one-to-one (1:1) literal match is
required to synchronize these fields.

The configuration that is documented in this section achieves consistent classification by
extending the ClearQuest ALM system-wide settings. The following records are required to be
added:

� ALMTypeLabel and ALMType for Work Item priorities
� ALMResolutionCodeLabels and ALMResolutionCodes for Work Item resolutions
Appendix B. Configuring interoperability 571

It is also possible to extend the process definitions in Rational Team Concert and Rational
Quality Manager. This alternate configuration is described in “Extended Jazz configurations”
on page 614.

Creating new system-wide records for interoperability
To add system-wide records in ClearQuest ALM for interoperability work:

1. Open ClearQuest and log in to the ALM schema that is used as admin.

2. Select File → New and choose the ALM record type to be added, for example
ALMTypeLabel, ALMType, ALMResolutionCodeLabel, or ALMResolutionCode.

3. Enter the values for the priority or resolution code to define the new system-wide setting.

4. Click OK.

Adding priorities
ALM records of type ALMTypeLabel are used to define the enumeration values for the
ALMTask Property field. A set of new priority values is required to match the Rational Team
Concert and Rational Quality Manager priorities (Figure B-3).

The following ALMTypeLabel types should be added:

� High
� Medium
� Low
� Unassigned

Figure B-3 Extending the system-wide settings with a new priority label for high priorities
572 Collaborative Application Lifecycle Management with IBM Rational Products

ALM records of type ALMType are used to define the actual enumeration instance taking the
name from the ALMTypeLabel. New ALMType records are required to be created for the High,
Medium, Low, and Unassigned priorities (Figure B-4).

The following new ALMType records should be added with the following fields:

� High

– ALMRecordType: ALMTask
– TypeLabel: High
– TypeIndicator: Priority

� Medium

– ALMRecordType: ALMTask
– TypeLabel: Medium
– TypeIndicator: Priority

� Low

– ALMRecordType: ALMTask
– TypeLabel: Low
– TypeIndicator: Priority

� Unassigned

– ALMRecordType: ALMTask
– TypeLabel: Unassigned
– TypeIndicator: Priority

Figure B-4 System-wide settings extended with a new high priority value

Note: The Types list in the Figure B-3 is empty upon creation of the label. The list contains
references to type instances that reference the label, for example, the High Priority type
created in the following task.
Appendix B. Configuring interoperability 573

Removing original priorities
The original priority enumeration values cannot be used in combination with the ClearQuest
interoperability configuration. For new ALM deployments, remove them from the database.

The following ALMTypeLabel and ALMTypes records can be removed:

� P1 - Urgent (removed or replaced with High)
� P2 - Important (removed or replaced with Medium)
� P4 - Low (removed or replaced with Low)
� P3 - Moderate (removed)

Adding resolution codes
The ClearQuest ALM solution required a resolution code to be given when resolving ALM
activities, tasks, and requests. In Rational Team Concert, a resolution code is also provided
when resolving a Work Item. To synchronize resolved Work Items to ClearQuest ALM
records, the resolution codes in ClearQuest ALM must be extended to match the resolution
codes for the Work Items.

The following resolution codes should be added:

� New ALMResolutionCodeLabel records with the following names:

– Fixed Upstream
– Invalid
– Remind
– Won’t Fix
– Works for me
– Later
– Unresolved

Figure B-5 shows a new resolution code label added.

Figure B-5 Extending the system-wide settings with a new Resolution Code Label

Important: ALMTypes records must be deleted prior to the ALMTypeLabel records.
574 Collaborative Application Lifecycle Management with IBM Rational Products

� New ALMResolutionCode records for ALMTasks with the following names and settings:

– Fixed Upstream

• ALMRecordType: ALMTask
• ResolutionCodeLabel: Fixed Upstream

– Invalid

• ALMRecordType: ALMTask
• ResolutionCodeLabel: Invalid

– Remind

• ALMRecordType: ALMTask
• ResolutionCodeLabel: Remind

– Won’t Fix

• ALMRecordType: ALMTask
• ResolutionCodeLabel: Won’t Fix

– Works for me

• ALMRecordType: ALMTask
• ResolutionCodeLabel: Works for me

– Later

• ALMRecordType: ALMTask
• ResolutionCodeLabel: Later

– Unresolved

• ALMRecordType: ALMTask
• ResolutionCodeLabel: Unresolved

� New ALMResolutionCode records for ALMActivities with the following names and settings:

– Fixed Upstream

• ALMRecordType: ALMActivity
• ResolutionCodeLabel: Fixed Upstream

– Invalid

• ALMRecordType: ALMActivity
• ResolutionCodeLabel: Invalid

– Remind

• ALMRecordType: ALMActivity
• ResolutionCodeLabel: Remind

– Won’t Fix

• ALMRecordType: ALMActivity
• ResolutionCodeLabel: Won’t Fix

– Works for me

• ALMRecordType: ALMActivity
• ResolutionCodeLabel: Works for me

– Later

• ALMRecordType: ALMActivity
• ResolutionCodeLabel: Later
Appendix B. Configuring interoperability 575

– Unresolved

• ALMRecordType: ALMActivity
• ResolutionCodeLabel: Unresolved

Figure B-6 shows a new resolution code added for ALMTasks.

Figure B-6 System-wide settings extended with a new Fixed Upstream resolution value

Adding optional resolution codes
Resolution codes can optionally be used in approval and sizing workflows in ClearQuest
ALM. The sizing scenario is briefly discussed in 4.3.2, “Sizing requests” on page 113. The
approval scenario is discussed in “Patricia approves the release” on page 508.

To extend the system-wide settings to support approvals and sizing, add the following
resolution code labels and resolution codes to both ALMTask and ALMActivitiy records:

� Approved
� Containable
� Not Containable

Note: Each ALM record type must define its individual Resolution Codes values.
ClearQuest interoperability synchronizes both ALMTasks and ALMActivities to Jazz Work
Items. The extended Resolution Codes values are required for both ALM types.

Note: For approvals, use the resolution codes of Approved and Rejected. The Rejected
enumeration does not need to be added because it is already present in the list of
enumerations.
576 Collaborative Application Lifecycle Management with IBM Rational Products

Configuring users

Interoperability between Rational ClearQuest, Rational Team Concert, and Rational Quality
Manager requires that users who are assigned work or are participating in discussions have
user records in these repositories. Users in Rational ClearQuest must be added manually.
Users in Rational Team Concert and Rational Quality Manager can be created using a
synchronization rule for the ClearQuest Connector.

The ALMTask and ALMActivity records, participating in synchronization with Work Items, are
selected by the ClearQuest Gateway by using specified selection queries. The filter
parameters for the selection queries often use ClearQuest groups to identify records to be
synchronized. For example, a ClearQuest group can be used to identify a team that is using
Rational Team Concert or Rational Quality Manager as their prime development or test
environment. When adding Rational Team Concert users to Rational ClearQuest, consider
creating a group that can be used for such user identification. Note that all users in this group
must be mastered at the same site where the ClearQuest Gateway is located if MultiSite is
used.

The ClearQuest ALM solution uses role-based workflows. New users are assigned project
roles by using the project record.

Adding ClearQuest users
To add a user to ClearQuest:

1. Open the ClearQuest User Administration tool and log in as an administrator.

2. To add a group, select Group Action → Add Group. Type the name of the group and click
OK.

3. To add a User, select User Action → Add User. Enter the user information. Make sure to
type the e-mail address because that field is used to link Rational ClearQuest and
Rational Team Concert users. Assign the user to the appropriate groups. Click OK.

4. To add the users to the database, select DB Action → Upgrade. Select the databases to
upgrade and click OK.

5. Close the ClearQuest User Administration tool.

Configuring ALM roles
To add users to the project roles:

1. Open the current project, for example by running the Public Queries → ALM →
General → All Project. Open the project record.

2. Switch to the Team Members tab.

3. From the Roles and Members list, double-click a name to open a role.

4. In the opened ALMRole record, switch to the Members tab.

5. Click the Modify button to make the record editable.

6. Click the Add button and search for new users (project team members) to add to the role.

7. Click Apply to save the changes.

Tip: Adding a user name of Unassigned creates significant flexibility in binding the role and
primary owner in the work configurations. The Unassigned user is just a placeholder that
replaces the empty string value for Owners that is not allowed in the ClearQuest ALM
solution.
Appendix B. Configuring interoperability 577

Configuring filter queries

The ClearQuest Connector uses Rational ClearQuest queries to filter and select the records
to synchronize with work items in the Rational Team Concert and Rational Quality Manager
repositories. These filter queries are stored in a structured hierarchy of query folders in the
Public Queries or Personal Queries folder in Rational ClearQuest. The query folder names in
the folder hierarchy determine which Rational Team Concert and Rational Quality Manager
project areas the work items are to be synchronized.

To configure the filter queries:

1. Consider which ALM projects, categories, and releases should be synchronized with
which Jazz repositories and project areas. This is input is required for the next steps.

2. Create a hierarchy of query folders in Rational ClearQuest with folder names that match
the Jazz project areas of the repositories to synchronize.

3. Create one or more filter queries for each ClearQuest ALM record type to be
synchronized. Repeat this step for all project area query folders.

4. Add the root path to the hierarchy of query folders in Rational ClearQuest in the
cqconnector.properties file.

Determining which ALM assets to synchronize
The first step when configuring the selection query is to determine which records must be
synchronized and which repositories to synchronize with. In most cases, this highly depends
on how the projects and teams are organized and on the ALM tools used by the project
teams.

As a general practice, consider the following points:

� Query by record type. Only record types that are setup for synchronization can be
included, see “Applying the JazzInterop package” on page 570. For the ClearQuest ALM
schema, ALMTask and ALMActivity should be synchronized.

� Filter by ALMProject. This limits the synchronization to work only in current projects.

� Filter by the ALMCategory. This limits the synchronization to all work, regardless of the
project, to a specific part of the application.

� Filter by Groups or Users. This limits the synchronization only to work that is assigned to
selected users or specific teams.

� Filter by ALMType. This limits the synchronization to a specific discipline or workflow.

For the example used in this book, we took the following considerations for the design of the
filter queries:

� The CreditCheck component team is using Rational Team Concert and must synchronize
ClearQuest ALMTasks and ALMActivities in order to integrate project iteration planning
and work assignment workflows. The records should be assigned to a team member and
planned for the current project.

� The Account Opening test team is using Rational Quality Manager and must synchronize
ClearQuest ALMTasks and ALMActivities in order to test planning and assignment
workflows. The records should be assigned to a team member and planned for the current
project.

� The change management triage workflow, performed by the project lead, ensures that
tasks are assigned to the appropriate teams and team members.
578 Collaborative Application Lifecycle Management with IBM Rational Products

� Both teams have user groups, AO_Regional and AO_Test, defined in Rational
ClearQuest. Basing filter queries on these groups makes the maintenance simpler and
more stabile to team member changes.

Based on the filter requirements, the following filter queries were configured. Also, see
Figure B-7 on page 580.

� Filter queries for the CreditCheck component team:

– Owner.groups = AO_Regional
– (optional) Project.Name = AO_Rel2
– (optional) Project.Category = CreditCheck

� Filter queries for the Account Opening test team:

– Owner.groups = AO_Testers and AO_3rd_Party
– Optional: Project.Name = AO_Rel2

Configuring the hierarchy of query folders
To create the hierarchy of query folders in the Public Queries:

1. Open ClearQuest and log in as an administrator.

2. In the ClearQuest Navigator view, right-click Public Queries and select New Folder.

3. Right-click the New Folder and select Rename. Name the folder CQ Connector.

4. Select the new ClearQuest Connector folder and create two new subfolders. Name the
folders AccountOpening and Quality Manager.

Configuring the filter queries
To add a new selection query in Rational ClearQuest:

1. Right-click Public Queries and select CQ Connector → AccountOpening. Choose New
Query.

2. Type a name for the query, for example CreditCheck.ALMTask. Select the ALMTask type.
Click Next.

3. Select filters for the query:

a. Click the plus icon next to the Owner field and drag the Groups field subitem to the
filter pane.

b. Click and drag the Project field to the filter pane.

c. Click the plus icon next to the Project field and drag the Category field subitem to the
filter pane.

Note: The scenario in this book does not separate the test management repositories
that are used by the enterprise test team and the external third-party solution testing
team. By using filter queries based on ClearQuest groups, projects and categories can
be effectively used to synchronize the desired subset of ALM assets to a third-party
contributor.

Tip: The use of record IDs, rather than name fields, provides a more robust configuration
that is resilient to name changes.

Important: The names of the subfolders must match the names of the project areas in the
Rational Team Concert and Rational Quality Manager repositories. Create one subfolder
for each individual project area.
Appendix B. Configuring interoperability 579

d. Right-click Project and select Use Project.

e. Right-click Project.Category and select Group Project with Project.Category.

f. Right-click the top most filter and select Or. Then click Next.

g. Click the plus icon next to the Or grouping to expand the filter list. Then click the
Owner.groups filter (Figure B-7).

h. In the Define Filters pane, click the Values button.

i. Select the appropriate groups with members of the team that will use Rational Team
Concert and click OK.

j. Repeat steps h and i for the two additional filters of Project and Project.Category and
click Next.

k. Optional: Select any display fields, although they are ignored by the connector. Click
Finish.

Figure B-7 Rational ClearQuest query for Rational Team Concert Interop Synchronization

4. Repeat the first three steps to create a new query named CreditCheck.ALMActivity in the
AccountOpening query folder. Base the query on the ALMActivity record type, and use the
same query filter definition.

5. Proceed and create Test.ALMTask and Test.ALMActivity filter queries in the Quality
Manager query folder. For the Owner.groups filter, select the values AO_Testers and
AO_3rd_Party as group names.

Updating the root path to the filter queries
The root path to the hierarchy of the query folders in Rational ClearQuest must be specified in
the cqconnector.properties file:

1. Open the cqconnector.properties file in the IBM\ClearQuestConnector\gateway directory.

2. Edit or add the following cq.queryTreeRoot statement:

cq.queryTreeRoot=Public Queries/CQConnector

3. Save the cqconnector.properties file.

Tip: Before proceeding, run your new query to validate that the return result set contains
all, but only, the ALM Activity records that you want to synchronize with Rational Team
Concert.
580 Collaborative Application Lifecycle Management with IBM Rational Products

Configuring the ClearQuest Gateway

The ClearQuest Gateway is a dedicated server that performs synchronization between the
Rational ClearQuest, Rational Team Concert, and Rational Quality Manager repositories.
Because the ClearQuest Gateway connects to the Rational ClearQuest repository as a
regular ClearQuest client, Rational ClearQuest must be installed and licensed on the server
that is running the ClearQuest Gateway. The ClearQuest Gateway and the Rational
ClearQuest database must also be co-located and LAN connected.

Configuring of the ClearQuest Gateway involves the following tasks:

� Installing the ClearQuest Gateway server
� Setting the CQ_Home environment variable
� Creating and configuring the cqconnector users
� Configuring the cqconnector.properties file
� Starting the ClearQuest Gateway

For further documentation and instructions about installing the ClearQuest Gateway, see the
following Web site or the Rational Team Concert help system provided with the product:

http://jazz.net

Installing the ClearQuest Gateway
The ClearQuest Connectors are installed from the Rational Team Concert Launchpad. To
install ClearQuest Connectors:

1. Run the Rational Team Concert Launchpad.

2. Under the Install Optional Products section, select Rational Team Concert - ClearQuest
Connector.

3. Follow the instructions in the IBM Installation Manager.

Setting the CQ_Home environment variable
The ClearQuest Gateway depends on libraries that are provided in the Rational ClearQuest
client installation directory and uses the CQ_Home Windows environment variable to locate
the files.

To configure the CQ_Home Windows environment variable:

1. Open Start → Control Panel → System.

2. Click the Advanced tab.

3. Click the Environment Variables button.

4. In the System Variables section, click New.

5. Create a new variable named CQ_HOME with the path to the Rational ClearQuest installation
directory, for example, C:\Program Files\Rational\ClearQuest (Figure B-8).

6. Click OK to close the window.

Figure B-8 CQ_Home Windows environment variable
Appendix B. Configuring interoperability 581

http://jazz.net

Creating a cqconnector user in Rational ClearQuest
The ClearQuest Gateway logs into Rational ClearQuest to access record information. A
recommended practice is to create a dedicated user for the ClearQuest Gateway. Follow the
steps in “Adding ClearQuest users” on page 577 to add a new Rational ClearQuest user
named “cqconnector” for the ClearQuest Gateway.

Note that the cqconnector requires that you set SQL Editor privileges. Also note that the
cqgateway user must be given sufficient ALM security privileges to access the required
records and fields. For a simple setup, assign the cqgateway to the ALM admin role.

Creating a cqconnector user in Rational Team Concert
The ClearQuest Gateway logs into Rational Team Concert to access and update repository
information. A recommended practice is to create a dedicated user for the ClearQuest
Gateway to use when logging into Rational Team Concert. Follow the steps in “Configuring a
cqconnector user in Rational Team Concert” on page 584 to add a new Rational Team
Concert user named cqconnector.

Note that all changes to items that result from changes to corresponding ClearQuest records
are saved in the context of the cqconnector user account. Recording all changes under the
same user account has disadvantages in work item histories and regarding security. A
recommended practice is to use the External Modifier property in the synchronization rules to
avoid these limitations. The synchronization rules in “Configuring and deploying
synchronization rules” on page 585 are configured by using this setting.

Optional: Creating a cqconnector user in Rational Quality Manager
The ClearQuest Gateway logs into Rational Quality Manager to access record information. A
recommended practice is to create a dedicated user for the ClearQuest Gateway. Follow the
steps in “Configuring the cqconnector user in Rational Quality Manager” on page 585 to add
a new user named cqconnector.

Note the discussion in the previous section regarding the External Modifier synchronization
rule property.

Optional: Creating optional Rational Team Concert and Rational Query
Manager users in the ClearQuest Gateway
The outgoing synchronization processes in Rational Team Concert and Rational Quality
Manager logs into the ClearQuest Gateway for synchronization. By default, the Rational Team
Concert and Rational Quality Manager servers use the ADMIN account. Optionally, you can
create one or more users in the ClearQuest Gateway for the Rational Team Concert and
Rational Quality Manager server logins.

To create additional users in ClearQuest Gateway:

1. Open the tomcat-users.xml file from the IBM\ClearQuestConnector\gateway\tomcat\conf
directory.

2. Add or edit the user definitions as follows:

<user username="rtc" password="rct" roles="CQConnector" />
<user username="rqm" password="rqm" roles="CQConnector" />

3. Save the file and restart the ClearQuest Connector server.

Attention: Secure passwords should be provided when configuring new ClearQuest
Gateway users.
582 Collaborative Application Lifecycle Management with IBM Rational Products

Configuring cqconnector.properties file
To configure the cqconnector.properties file:

1. Locate the IBM\ClearQuestConnector\gateway\cqconnector.properties file.

2. Open the file by using a text editor.

3. Edit the file and provide information regarding the Rational ClearQuest environment as
shown in Example B-1. The example uses the following settings:

– The CQALM is the dbset name, and SAMPL is the logical database name.

– The ClearQuest Gateway uses the default cqconnector user account to log in and
synchronize ClearQuest records.

– The ClearQuest Gateway uses the default cqconnector password. A recommended
practice is to replace this default password with a secure password.

– The ClearQuest Gateway connects to both the Rational Team Concert and Rational
Quality Manager repositories. The URIs are separated with a semicolon (;) character.
Make sure to give the correct IP addresses and port numbers for the repository
servers. In this example, all servers are running on the local host. Note that port
numbers must be unique per server.

– The query uses the queries in the Public Queries/CQ Connector query.

Example: B-1 cqconnector.properties file

com.ibm.rational.interop.pollingPeriod=10
cq.dbSetDbName=CQALM/SAMPL
cq.userid=cqconnector
cq.password=cqconnector
com.ibm.team.uris=https://cqconnector:cqconnector@localhost:9443/jazz;https://c
qconnector:cqconnector@localhost:9444/jazz
cq.queryTreeRoot=Public Queries/CQConnector

4. Save the changes.

Starting the ClearQuest Gateway
To start and stop the ClearQuest Gateway server, use the server.startup.bat and
server.shutdown.bat commands in the \IBM\ClearQuestConnector\gateway folder.

Configuring Jazz repositories for interoperability

In this section, we provide details about how to configure the Jazz repositories for
interoperability. The configuration of the Jazz repositories is based on the assumption, taken
for this book, that the OpenUP template is used in Rational Team Concert and in Rational
ClearQuest.

Important: The ClearQuest Gateway requires access to the connected repositories when
started. Make sure that the Rational Team Concert and Rational Quality Manager
repository servers are started prior to starting the ClearQuest Gateway.

In addition, you are required to restart the ClearQuest Gateway after you modify the ALM
schema, upgrade the ClearQuest database to a new schema version, or add and remove
filter queries.
Appendix B. Configuring interoperability 583

Configuring users and licenses

The ClearQuest Gateway, Rational Team Concert, and Rational Quality Manager require user
accounts to access repository information. In this section, we describe how to configure the
cqconnector users.

Licenses to administer or develop external connections
The ClearQuest Connector functionality is licensed with the Standard Edition of Rational
Team Concert v 1.0. To work with external connections, a developer or tester license is
required.

To manage licenses:

1. Assign developer or tester licenses to any users that need to administer or develop
external connections.

2. Assign a ClearQuest Connector license to the user account that is used by the ClearQuest
Gateway, that is the cqconnector user account.

Configuring a cqconnector user in Rational Team Concert
The ClearQuest Gateway logs into Rational Team Concert to access repository information. A
recommended practice is to create a dedicated user for the ClearQuest Gateway.

To create a new cqconnector user:

1. Open a browser window and go to the Jazz server Admin Web UI:

https://localhost:9443/jazz/admin

2. Log in as the ADMIN administrator user.

3. In the Admin Web UI, click the User Management button on the navigation bar. Go to the
Active Users section.

4. To create a new cqconnector user, click the Create User button and fill in the cqconnector
account details as follows (Figure B-9 on page 585):

– For UserId, type cqconnector.
– For E-mail address, type cqconnector.
– For repository permissions, select Jazz users.
– For Client Access Licenses, select ClearQuest Connector or Rational Team Concert

- Developer license.

5. Save the new user.

6. Open the tomcat-users.xml file from the IBM\JazzTeamServer\server\tomcat\conf
directory and validate that cqconnector is defined. If this user is not defined, add a new
user definition:

<user username="cqconnector" password="cqconnector" fullName="cqconnector"
roles="JazzUsers"/>

7. Save the file

8. Open a Command Prompt window.

Note: Secure passwords should be provided when configuring the new cqconnector
user.
584 Collaborative Application Lifecycle Management with IBM Rational Products

9. Run the repotools.bat command from the IBM\JazzTeamServer\server directory to
encrypt passwords:

repotools -convertTomcatUsers tomcatUsersPath=tomcat/conf/tomcat-users.xml

10.Rename the file from tomcat-users.xml.converted to tomcat-users.xml.

Figure B-9 Adding the cqconnector user to Rational Team Concert

Configuring the cqconnector user in Rational Quality Manager
The ClearQuest Gateway logs into Rational Quality Manager to access record information. A
recommended practice is to create a dedicated user for the ClearQuest Gateway.

To create a new cqconnector user, follow the steps in “Configuring a cqconnector user in
Rational Team Concert” on page 584.

Configuring and deploying synchronization rules

The details of the synchronization of the Rational ClearQuest, Rational Team Concert, and
Rational Quality Manager repositories are specified in the ClearQuest Connector
synchronization rules. These rules specify how ClearQuest records and Jazz Work Items are
paired, which fields to synchronize, and any specific field value mapping to use. The rules

Note: When assigning client access licenses for the ‘cqconnector’, use a ClearQuest
Connector license or a Rational Quality Manager - Tester license.
Appendix B. Configuring interoperability 585

also specify the type of extended transformation that is provided by synchronization
managers on the ClearQuest Gateway.

The main synchronization in this example is made with ALMTasks and ALMActivities
synchronized with Work Items. New ALMTasks and ALMActivities that are created as part of
the iteration planning are created in the connected Jazz repositories. Note that new Work
Items created in Rational Team Concert or Rational Quality Manager are not synchronized to
Rational ClearQuest. Such items are considered local to the component or practice team.

The synchronization uses a simple mapping of types. By default, ALMTasks are synchronized
as Work Items of type Task. ALMActivities are synchronized as Work Items of type Defect. A
synchronization rule is defined for each record. Synchronization of the record fields requires
additional helper rules. A more generic type of mapping for ALMActivities to a Activity Work
Items type is possible as an alternate configuration.

Configuring and deploying synchronization rules entails the following tasks:

� Creating new repository connections
� Creating new or import existing synchronization rules
� Configuring the Jazz server interoperability properties
� Enabling interoperability permissions

The Rational Team Concert client is required to configure new repository connections to Jazz
repositories and to configure synchronization rules. Administrators of Rational Team Concert
and Rational Quality Manager servers require the Rational Team Concert client to perform
the configuration steps.

For further documentation and instructions about creating synchronization rules, see the
following Web site or the Rational Team Concert and Rational Quality Manager help system
provided with the product:

http://jazz.net

Creating a repository connection
To create a new ClearQuest Gateway connection:

1. Open Rational Team Concert and log in as administrator.

2. In the Team Artifacts view, select the repository connection from the Repository
Connections item.

3. Select Repository Connections → Administer → Synchronization Rules.

4. In the Synchronization Rules view, select the External Repository Connection. Choose
New → External Repository Connection.

5. Enter the details for the connection:

– For Name, type CQALM.

– For Connection for, type http://localhost:8081/InteropGateway.

Note: If no repository connection has been established, use the New command on the
Repository Connections item to create a new connection to a Rational Team Concert or
Rational Quality Manager repository.

localhost: Replace localhost with the name or IP address of the server running the
ClearQuest Connector Gateway.
586 Collaborative Application Lifecycle Management with IBM Rational Products

http://jazz.net

6. Click OK to save the changes.

7. Repeat steps 4 on page 586 through 6 to create external repository connections to
additional repositories. In the example in this book, we configured connections to both the
Rational Team Concert and Rational Quality Manager repositories. Give each connection
a unique name.

Figure B-10 shows an example of creating an external repository connection.

Figure B-10 Creating an external repository connection

Importing existing synchronization rules
The following synchronization rules are provided in the example in this book for
interoperability between Rational ClearQuest and Rational Team Concert:

� com.ibm.rational.clearquest.CQALM.ALMTask

This rule synchronizes ClearQuest ALMTasks and Jazz repository Work Items.

� com.ibm.rational.clearquest.CQALM.ALMActivity

This rule synchronizes ClearQuest ALMActivities and Jazz repository Work Items.

� com.ibm.rational.clearquest.CQALM.ALMTypeLabel

This rule is a helper rule to synchronize the Priority reference field.

� com.ibm.rational.clearquest.CQALM.ALMResolutionCodeLabel

This rule is a helper rule to synchronize the ResolutionCode reference field.

� com.ibm.rational.clearquest.CQALM.Attachments

This rule manages the creation and synchronization of attachments in Rational
ClearQuest and Rational Team Concert.

� com.ibm.rational.clearquest.CQALM.users

This rule manages the creation of new contributors in Rational Team Concert from user
records in Rational ClearQuest.

� com.ibm.rational.clearquest.CQALM.ALMProject

This rule is a helper rule to synchronize the Project reference field.

� com.ibm.rational.clearquest.CQALM.ALMCategory

This rule is a helper rule to synchronize the Project.Category reference field.
Appendix B. Configuring interoperability 587

To import an existing synchronization rule:

1. In the Synchronization Rules view, select the Project Area name, for example,
AccountOpening, and select Import Synchronization Rules.

2. Select the Use existing external repository connection option and click Finish.

3. Browse the file system for synchronization rules to import. Select one or more
synchronization rules and click Open to import.

4. Expand the project area folder and open the imported synchronization rules in the
Synchronization Rules view.

5. Optional: Edit the Name field to match the ClearQuest name of your dbset, for example
com.ibm.rational.clearquest.myALM.ALMTask.

6. Click the Save button to save the changes.

Create a new synchronization rule
To create a new synchronization rule:

1. In the Synchronization Rules view, select the Project Area name, for example
AccountOpening, and select New → Synchronization Rule.

2. Type a name for the new synchronization rule. Use a pattern to indicate the name of the
record type to be synchronized, for example
com.ibm.rational.clearquest.CQALM.ALMTask.

3. Define the mapping for the synchronization rule by using the Synchronization Rules editor.

4. Click the Save button to save the new synchronization rule.

Attention: Only new synchronization rules can be imported. If the synchronization rule
name already exists for your external connection, then import is not allowed. Use care
when deleting and re-importing synchronization rules because this might corrupt your
repository data. Deleting a synchronization rule deletes all of the connector information for
all items that used that synchronization rule and all connected items become
disconnected. For practices on how to update an existing synchronization rule, see
“Importing existing synchronization rules” on page 587.
588 Collaborative Application Lifecycle Management with IBM Rational Products

Figure B-10 shows the synchronization rule editor in Rational Team Concert.

Figure B-11 The synchronization rule editor in Rational Team Concert

com.ibm.rational.clearquest.CQALM.ALMTypeLabel
The com.ibm.rational.clearquest.CQALM.ALMTypeLabel helper synchronization rule
synchronizes Priority reference fields. Table B-1 lists the synchronization rule properties for
ALMTypeLabel.

Table B-1 ALMTypeLabel synchronization rule properties

Synchronization rule property Property value

Item type <none>

Item type qualifier

Item manager <none>

External repository CQALM

External manager ClearQuest Manager (non-user records)

External type ALMTypeLabel - com.ibm.rational.clearquest
Appendix B. Configuring interoperability 589

Table B-2 lists the synchronization rule property mappings for ALMTypeLabel.

Table B-2 ALMTypeLabel synchronization rule property mappings

com.ibm.rational.clearquest.CQALM.ALMResolutionCodeLabel
The com.ibm.rational.clearquest.CQALM.ALMResolutionCodeLabel helper synchronization
rule synchronizes ResolutionCodeLabel reference fields. Table B-3 lists the synchronization
rule properties for ALMResolutionCodeLabel.

Table B-3 ALMResolutionCodeLabel synchronization rule properties

Table B-4 lists the synchronization rule property mappings for ALMResolutionCodeLabel.

Table B-4 ALMResolutionCodeLabel synchronization rule property mappings

com.ibm.rational.clearquest.CQALM.users
The com.ibm.rational.clearquest.CQALM.users synchronization rule synchronizes user
records in Rational ClearQuest with contributors in Rational Team Concert. Table B-5 lists the
synchronization rule properties for CQALM.users.

Table B-5 CQALM.users synchronization rule properties

Item ID Item property I/O Ext ID Element property

X Name

Synchronization rule property Property value

Item type <none>

Item type qualifier

Item manager <none>

External repository CQALM

External manager ClearQuest Manager (non-user records)

External type ALMResolutionCodeLabel -
com.ibm.rational.clearquest

ID Item property I/O ID Element property

X Name

Synchronization rule property Property value

Item type Contributor

Item type qualifier

Item manager Contributor manager

External repository CQALM

External manager ClearQuest Manager (user records)

External type users - com.ibm.rational.clearquest.CQALM
590 Collaborative Application Lifecycle Management with IBM Rational Products

Table B-6 lists the synchronization rule property mappings for CQALM.users.

Table B-6 CQALM.users synchronization rule property mappings

com.ibm.rational.clearquest.CQALM.Attachment
The com.ibm.rational.clearquest.CQALM.Attachment synchronization rule synchronizes
record attachments in Rational ClearQuest records with Work Item attachments in Rational
Team Concert. Attachments can be applied to record types by using the ClearQuest
Attachments package. The ALM schema has attachments that are already configured. The
Attachments synchronization rule is invoked from other rules that mapping ClearQuest
records with Work Item types, for example ALMActivity.

Table B-7 lists the synchronization rule properties for CQALM.Attachments.

Table B-7 CQALM.Attachments synchronization rule properties

Table B-8 lists the synchronization rule property mappings for CQALM.Attachments.

Table B-8 CQALM.Attachment synchronization rule property mappings

ID Item property I/O ID Element property

EmailAddress in email

Name in fullname

X UserId in X login_name

Synchronization rule property Property value

Item type Attachment

Item type qualifier

Item manager Work Item Attachments Manager

External repository CQALM

External manager ClearQuest Manager (non-user records)

External type attachments -
com.ibm.rational.clearquest.CQALM

ID Item property I/O ID Element property

Content In/Out Content

Name In file-name
Appendix B. Configuring interoperability 591

com.ibm.rational.clearquest.CQALM.ALMActivity
The com.ibm.rational.clearquest.CQALM.ALMActivity synchronization rule synchronizes
ALMActivities records in ClearQuest with Work Items in Rational Team Concert. Table B-9
lists the synchronization rule properties for ALMActivity.

Table B-9 ALMActivity synchronization rule properties

Table B-10 lists the synchronization rule property mappings for ALMActivity.

Table B-10 com.ibm.rational.clearquest.CQALM.ALMActivity synchronization rule property mappings

Synchronization rule property Property value

Item type WorkItem - com.ibm.team.workitem

Item type qualifier Defect a

a. An alternate configuration can be used to map ALMActivities to Work Items of type Activity.
See “Adding an Activity Work Item type” on page 617.

Item manager Work Item Manager

External repository CQALM

External manager ClearQuest Manager (non-user records)

External type ALMActivity - com.ibm.rational.clearquest.CQALM

Important: When multiple Rational ClearQuest record types are mapped to Work Items,
the Item type qualifier synchronization property is required to be unequally set for each
synchronization rule. For ALMActivity synchronizations, the Item type qualifier must be set
to Defect. For additional configuration considerations using an Activity type, see “Adding
an Activity Work Item type” on page 617.

ID Item property I/O ID Element property

Priority

ResolutionCode

Project

Category

Type

modifiedBy

Attachments In/Out Attachments

Comments In/Out Notes_Log

Description In/Out Description

Filed Against In Project.Category.Name

Owned By In/Out Owner

Parent In Task

Related In ActivitiesRelated

Resolution Out ResolutionSummary
592 Collaborative Application Lifecycle Management with IBM Rational Products

Priority element property mapping settings
The priority element is a reference field synchronization property that is used for delegating
the synchronization of Priority.Name to the ALMTypeLabel synchronization rule. Table B-11
lists the element property mapping settings for Priority.

Table B-11 Priority synchronization rule properties

ResolutionCode element property mapping settings
The ResolutionCode element is a reference field synchronization property that is used for
delegating the synchronization of ResolutionCode.Name to the ALMResolutionCodeLabel
synchronization rule. Table B-12 lists the synchronization rule properties for ResolutionCode.

Table B-12 ResolutionCode synchronization rule properties

Project element property mapping settings
The Project element is a reference field synchronization property that is used for delegating
the synchronization of Project.Category.Name to the ALMProject synchronization rule.
Table B-13 lists the synchronization rule properties for Project.

Table B-13 Project synchronization rule properties

Resolution Out ResolutionCode.Name

Status Out State

Tags a In Type.Name

Summary In/Out Headline

Type b In

a. An alternate configuration can be used to map the ALMActivity type to a Work Item Subtype
property.

b. An alternate configuration can be used to map ALMActivities to Work Items of type Activity.

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.ALMTypeLabel

Value transformer <none>

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.ALMResolutionCod
eLabel

Value transformer <none>

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.ALMProject

Value transformer <none>

ID Item property I/O ID Element property
Appendix B. Configuring interoperability 593

Category element property mapping settings
The Category element is a reference field synchronization property that is used for delegating
the synchronization of Project.Category.Name to the ALMCategory synchronization rule.
Table B-14 lists the element property mapping settings for Category.

Table B-14 Category synchronization rule properties

Type element property mapping settings
The Type element is a reference field synchronization property that is used for delegating the
synchronization of Type.Name to the ALMTypeLabel synchronization rule. Table B-15 lists the
element property mapping settings for Type.

Table B-15 Type synchronization rule properties

modifiedBy element property mapping settings
The modifiedBy synchronization rule setting makes the work items to be made in the context
of the corresponding Rational ClearQuest user and not the cqconnector user that is used by
the ClearQuest Gateway. Table B-16 lists the element property mapping settings for
modifiedBy.

Table B-16 modifiedBy synchronization rule properties

Attachments item property mapping settings
The Attachments item is a field synchronization property that is used to delegate the
synchronization of Attachments by using the Work Item Attachments Transformer. Table B-17
lists the property mapping settings for Attachments.

Table B-17 Attachments synchronization rule properties

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.ALMCategory

Value transformer <none>

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.ALMTypeLabel

Value transformer <none>

Synchronization rule property Property value

External modifier X

Reference synchronization rule

Value transformer <none>

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.Attachment

Value transformer Work Item Attachments Transformer
594 Collaborative Application Lifecycle Management with IBM Rational Products

Comments item property mapping settings
The Comments item is a field synchronization property that is used to delegate the
synchronization of comments and notes by using the Work Item Comments Transformer.
Table B-18 lists the property mapping settings for Comments.

Table B-18 Comments synchronization rule properties

Description item property mapping settings
The Description item is a field synchronization property that is used for the synchronization of
Comments. Table B-19 lists the property mapping settings for Description.

Table B-19 Description property mapping settings

Filed Against item property mapping settings
The Filed Against item is a field synchronization property that is used to delegate the
synchronization of FiledAgainst and Category by using the Work Item Category Transformer.
Table B-20 lists the property mapping settings for Filed Against.

Table B-20 Filed Against property mapping settings

OwnedBy item property mapping settings
The OwnedBy item is a field synchronization property that is used to delegate the
synchronization of Owners by using the users synchronization rule. Table B-21 lists the
property mapping settings for OwnedBy.

Table B-21 OwnedBy property mapping settings

Attention: The Comments property requires that the optional Notes 5.1 package has been
added to the ALM schema and applied to the ALMActivity record type. We explain the
steps to apply the Notes package in “Applying the Notes package” on page 570. If the
Notes package is not applied, do not add this mapping.

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.users

Value transformer Work Item Comments Transformer

Synchronization rule property Property value

No transformation (just copy) X

Reference synchronization rule <none>

Value transformer <none>

Synchronization rule property Property value

Reference synchronization rule <none>

Value transformer Work Item Category Transformer

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.users

Value transformer <none>
Appendix B. Configuring interoperability 595

Parent item property mapping settings
The Parent item is a field synchronization property that is used to delegate the
synchronization of parent Tasks by using the ALMTask synchronization rule. Table B-22 lists
the property mapping settings for Parent.

Table B-22 Parent property mapping settings

Related item property mapping settings
The Related item is a field synchronization property that is used to delegate the
synchronization of related Activities by using the ALMActivity synchronization rule. Table B-20
lists the property mapping settings for Related.

Table B-23 Related item property mapping settings

Resolution - ResolutionSummary property mapping settings
The Resolution - ResolutionSummary is a field synchronization property that is used for
synchronization of the resolution summary field. Table B-24 lists the property mapping
settings for Resolution - ResolutionSummary.

Table B-24 Resolution item property mapping settings

Resolution - ResolutionCode.Name property mapping settings
The Resolution - ResolutionCode.Name is a reference field synchronization property that
uses the ResoutionCode synchronization property and the Customer Attribute Transformer to
resolve the reference. Table B-25 lists the property mapping settings for Resolution -
ResolutionCode.Name.

Table B-25 Resolution item property mapping settings

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.ALMTask

Value transformer <none>

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.ALMActivity

Value transformer <none>

Synchronization rule property Property value

Reference synchronization rule

Value transformer <none>

Synchronization rule property Property value

Reference synchronization rule

Value transformer Connect Field To Custom Attribute Transformer
596 Collaborative Application Lifecycle Management with IBM Rational Products

Status item property mapping settings
The Status item is a field synchronization property that is used for synchronization of the
resolution status field. The mapping table is required to map the state models in the Jazz
platform and ClearQuest. Table B-26 lists the property mapping settings for Status.

Table B-26 Status item property mapping settings

Table B-27 lists the property value mapping for Status.

Table B-27 Status property value mappings

Tags item property mapping settings
The Tags items is a field synchronization property that is used for synchronization of the tags
field. Table B-28 lists the property mapping settings for Tags.

Table B-28 Tags item property mapping settings

Synchronization rule property Property value

Reference synchronization rule

Value transformer <none>

Item value External value

Closed Completed

In Progress Activated

New

Reopened

Resolved

Triaged

Unconfirmed

Verified

Synchronization rule property Property value

Reference synchronization rule

Value transformer Connect Field To Custom Attribute Transformer

Note: An alternate configuration can be used to map the ALMActivity type to a Work Item
Subtype property.
Appendix B. Configuring interoperability 597

Summary item property mapping settings
The Summary item is a field synchronization property that is used for synchronization of the
summary field. Table B-29 lists the property mapping settings for Summary.

Table B-29 Summary item property mapping settings

Type item property mapping settings
The Type item is a field synchronization property that is used for synchronization of the type
field. Table B-30 lists the property mapping settings for Type.

Table B-30 Type item property mapping settings

Table B-31 lists the property value mappings for Type.

Table B-31 Type item property value mappings

com.ibm.rational.clearquest.CQALM.ALMTask
The com.ibm.rational.clearquest.CQALM.ALMTask synchronization rule synchronizes
ALMTask records in ClearQuest with Work Items in Rational Team Concert. Table B-32 lists
the synchronization rule properties for ALMTask.

Table B-32 ALMTask synchronization rule properties

Synchronization rule property Property value

Reference synchronization rule

Value transformer <none>

Synchronization rule property Property value

Reference synchronization rule

Value transformer <none>

Item value External value

defect

Note: An alternate configuration can be used to map ALMActivities to Work Items of type
Activity.

Synchronization rule property Property value

Item type WorkItem - com.ibm.team.workitem

Item type qualifier Task

Item manager Work Item Manager

External repository CQALM <your schema connection>

External manager ClearQuest Manager (non-user records)

External type ALMTask - com.ibm.rational.clearquest.CQALM
598 Collaborative Application Lifecycle Management with IBM Rational Products

Table B-33 lists the property mappings for ALMTask.

Table B-33 com.ibm.rational.clearquest.CQALM.ALMTask synchronization rule property mappings

Category element property mapping settings
Table B-34 lists the synchronization rule properties for Category.

Table B-34 Category synchronization rule properties

Important: When multiple ClearQuest record types are mapped to Work Items, the Item
type qualifier synchronization property must be unique for each synchronization rule. For
ALMTask synchronizations, the Item type qualifier must be set to Task. For additional
configuration considerations, see “Adding a new Type category” on page 621.

ID Item property I/O ID Element property

Category

Project

Type

Priority

ResolutionCode

modifiedBy

Attachments In/Out Attachments

Comments In/Out Notes_Log

Description In/Out Description

Filed Against In Project.Category.Name

Owned By In/Out Owner

Priority In/Out Priority.Name

Related In TasksRelated

Resolution Out ResolutionCode.Name

Resolution Out ResolutionSummary

Status Out State

Tags a

a. An alternate configuration can be used to map the ALMType type to a Work Item Subtype
property.

In Type.Name

Summary In/Out Headline

Type In

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.ALMCategory

Value transformer <none>
Appendix B. Configuring interoperability 599

Project element property mapping settings
Table B-35 lists the synchronization rule properties for Project.

Table B-35 Project synchronization rule properties

Type element property mapping settings
Table B-36 lists the synchronization rule properties for Type.

Table B-36 Type synchronization rule properties

Priority element property mapping settings
Table B-37 lists the synchronization rule properties for Priority.

Table B-37 Priority synchronization rule properties

ResolutionCode element property mapping settings
Table B-38 lists the synchronization rule properties for ResolutionCode.

Table B-38 ResolutionCode synchronization rule properties

modifiedBy element property mapping settings
The modifiedBy element synchronization rule setting makes the work items to be made in the
context of the corresponding ClearQuest user and not the cqconnector user that is used by
the ClearQuest Gateway. Table B-39 lists the synchronization rule properties for modifiedBy.

Table B-39 modifiedBy synchronization rule properties

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.ALMProject

Value transformer <none>

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.ALMTypeLabel

Value transformer <none>

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.ALMTypeLabel

Value transformer <none>

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.ALMResolutionCod
eLabel

Value transformer <none>

Synchronization rule property Property value

External modifier X

Reference synchronization rule

Value transformer <none>
600 Collaborative Application Lifecycle Management with IBM Rational Products

Attachments item property mapping settings
Table B-40 lists the synchronization rule properties for Attachments.

Table B-40 Attachments synchronization rule properties

Comments item property mapping settings
Table B-41 lists the synchronization rule properties for Comments.

Table B-41 Comments synchronization rule properties

Description item property mapping settings
Table B-42 lists the property mapping settings for Description.

Table B-42 Description property mapping settings

Filed Against item property mapping settings
Table B-43 lists the property mapping settings for Filed Against.

Table B-43 Filed Against property mapping settings

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.Attachment

Value transformer Work Item Attachments Transformer

Important: The Comments property requires that the optional Notes 5.1 package has
been added to the ALM schema and applied to the ALMActivity record type. The steps to
apply the Notes package is described in “Applying the Notes package” on page 570. If the
Notes package is not applied, do not add this mapping.

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.users

Value transformer Work Item Comments Transformer

Synchronization rule property Property value

No transformation (just copy) X

Reference synchronization rule <none>

Value transformer <none>

Synchronization rule property Property value

Reference synchronization rule

Value transformer Work Item Category Transformer
Appendix B. Configuring interoperability 601

OwnedBy item property mapping settings
Table B-44 lists the property mapping settings for OwnedBy.

Table B-44 OwnedBy property mapping settings

Priority item property mapping settings
Table B-45 lists the property mapping settings for Priority.

Table B-45 Priority property mapping settings

Related item property mapping settings
Table B-46 lists the property mapping settings for Related.

Table B-46 Related item property mapping settings

Resolution - ResolutionCode.Name property mapping settings
Table B-47 lists the property mapping settings for Resolution - ResolutionCode.Name.

Table B-47 Resolution property mapping settings

Resolution - ResolutionSummary property mapping settings
Table B-48 lists the property mapping settings for Resolution - ResolutionSummary.

Table B-48 Resolution property mapping settings

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.users

Value transformer <none>

Synchronization rule property Property value

Reference synchronization rule

Value transformer Connect Field To Custom Attribute Transformer

Synchronization rule property Property value

Reference synchronization rule com.ibm.rational.clearquest.CQALM.ALMTask

Value transformer <none>

Synchronization rule property Property value

Reference synchronization rule

Value transformer Connect Field To Custom Attribute Transformer

Synchronization rule property Property value

No transformation (just copy) X

Reference synchronization rule

Value transformer <none>
602 Collaborative Application Lifecycle Management with IBM Rational Products

Status item property mapping settings
Table B-49 lists the property mapping settings for Status.

Table B-49 Status item property mapping settings

Table B-50 lists the property value settings for Status.

Table B-50 Status property value mappings

Tags item property mapping settings
Table B-51 lists the property mapping settings for Tags.

Table B-51 Tags item property mapping settings

Summary item property mapping settings
Table B-52 lists the property mapping settings for Summary.

Table B-52 Summary item property mapping settings

Synchronization rule property Property value

Reference synchronization rule

Value transformer <none>

Item value External value

Closed Completed

In Progress Activated

New

Reopened

Resolved

Triaged

Unconfirmed

Verified

Synchronization rule property Property value

Reference synchronization rule

Value transformer Connect Field To Custom Attribute Transformer

Note: An alternate configuration can be used to map the ALMTask type to a Work Item
Subtype property.

Synchronization rule property Property value

Reference synchronization rule

Value transformer <none>
Appendix B. Configuring interoperability 603

Type item property mapping settings
Table B-53 lists the property mapping settings for Type.

Table B-53 Type item property mapping settings

Practices for using ALM interoperability

In this section, we provide practices for using the ClearQuest Connector for ALM
interoperability.

Starting ClearQuest Gateway
The ClearQuest Gateway must be started to enable ALM interoperability. To start the
gateway:

1. Browse the file system on the server that has the ClearQuest Gateway. Locate the
IBM\ClearQuestConnector\gateway directory.

2. Run the server.startup.bat script.

3. Monitor the startup and synchronization process logged to the Tomcat command prompt
window.

Starting Jazz server synchronization
The synchronization service on the Jazz server must be started to enable ALM
interoperability. To start the service:

1. Open a browser window and go to the Jazz server Admin Web UI:

https://localhost:9443/jazz/admin

2. Log in as the ADMIN administrator user.

3. Select Configuration → Advanced.

4. On the Advanced Properties page, scroll to the
com.ibm.team.interop.service.internal.InteropService section.

5. For the Connector - Outgoing Sync Enabled property, update it to True. By default, the
synchronization is disabled by the value False.

6. Optional: Scroll to the com.ibm.team.interop.service.internal.
OutgoingSyncScheduledTask property and update the value for the synchronization
interval Outgoing Sync Task Fixed Delay to a new value. By default, the synchronization
interval is 300 seconds.

7. Scroll to the top of the page and click Save to persist the changes.

8. Monitor the synchronization process that is logged to the Tomcat command prompt
window.

Item Value External Value

task

Tip: Additional log traces from the ClearQuest Gateway can be configured by editing the
log4j.properties file in the \jazz\connectors\gateway directory. Uncomment the following
lines:

log4j.logger.com.ibm.rational.interop.level1=DEBUG
log4j.logger.com.ibm.rational.interop.level2=DEBUG
604 Collaborative Application Lifecycle Management with IBM Rational Products

Preventing outgoing synchronization for new work items
The ALM interoperability solution that documented in this book does not support new work
items that are created in Rational Team Concert or Rational Quality Manager to be
synchronized to Rational ClearQuest. Such items are considered local to the component or
practice team and cause errors to be reported by the ALMTask and ALMActivity
synchronization rules.

Synchronization rules can be configured to disable outgoing synchronization for new work
items. This setting is available in the synchronization rules editor. By using the Team areas
enabled for new connections(1) controls, a synchronization rule can be configured to only
allow outgoing synchronization for selected team areas. In Rational Team Concert 1.0, at
least one team area must be enabled for outgoing synchronization.

Disabling outgoing synchronization for new work items has the following synchronization
behavior:

� Continues synchronization out changes for work items that were previously created from
Rational ClearQuest

� Does not attempt outgoing synchronization for new work items that are created first in
Rational Team Concert

To turn off synchronization for all used team areas, create a new team area and give it a
descriptive name, for example, cqconnector. Disable outgoing synchronization for all team
areas, with the exception on this new cqconnector team area. Optionally, archive the new
team area to avoid it from being displayed in browsers and pick lists.

Setting permissions
The process configuration in Rational Team Concert and Rational Quality Manager specifies
the actions that are permitted for each role. A user can perform all actions granted to any of
their assigned roles. All users in a repository have the “Everyone” role.

Tip: Additional log traces from the Jazz server can be configured by editing the
log4j.properties file in the \JazzTeamServer\server directory. Add the following line:

log4j.logger.com.ibm.team.interop=DEBUG
Appendix B. Configuring interoperability 605

When configuring ALM interoperability, validate that the user roles that have responsibilities to
administer remote connections, and synchronization rules have the appropriate permissions
enabled. See Figure B-12.

Figure B-12 Enabling permissions to manage synchronization rules

To enable project-wide permissions to manage synchronization rules:

1. Select the Process Configuration tab in the AccountOpening Project Area and expand
Project Configuration → Permissions.

2. In the Permissions view, select Everyone. Validate the Item Connectors, and select the
appropriate permissions for the project-wide settings.

3. Select other team roles and set the appropriate Item Connectors permissions.
606 Collaborative Application Lifecycle Management with IBM Rational Products

4. Expand Team Configuration → Permissions.

5. Repeat steps 2 on page 606 and 3 on page 606 to modify the permissions for team areas
to establish connections and synchronization. See Figure B-13.

Figure B-13 Enabling permissions to manage connections and perform synchronizations

6. Click Save to save and deploy the new permissions.

Viewing the synchronization status
The status for work items that are mapped to ClearQuest records can be viewed by using the
link that is provided with the work item. To view the synchronization status:

1. Open the work item and select the Links tab.

2. In the Links section, select the item under External connection named Synchronization
status for and click Open.

3. View the Synchronization Status page for the following detailed information:

– Synchronization state and status
– Work item and ClearQuest record field data
– Errors from last synchronization
Appendix B. Configuring interoperability 607

Be aware that the ClearQuest Connector must complete both incoming and outgoing
synchronization to establish a stabile state. Modifying records during the synchronization
often results in a conflict state. Do not modify items that are in a state of Pending outgoing.
See Figure B-14.

Figure B-14 Synchronization Status indicating ‘Pending output’

Viewing synchronization errors
The ClearQuest Connector reports errors when synchronization cannot be completed. Items
that cannot be synchronized are added to the Synchronization Status view. There might be
multiple reasons, such as the following examples, for such errors:

� Errors when connecting to Rational ClearQuest or Rational Team Concert
� Configuration errors in the synchronization rules
� Undefined values or mappings detected at synchronization

Each item in the Synchronization Status view represents a failure in synchronizing an item
pair. To view all synchronization errors:

1. Open the Synchronization Rules view and select the team area.

2. Choose Show All Unsynchronized.

3. Browse the Synchronization Status view and open each error item.

4. View the Java style stack trace to diagnose the synchronization issue.

5. If the error is understood and corrections are possible, modify the ClearQuest record, the
work item, or the synchronization rule.
608 Collaborative Application Lifecycle Management with IBM Rational Products

6. To re-run synchronization, click the Retry Incoming Synchronization or Retry Outgoing
Synchronization button, for INCOMMING_ERROR or OUTGOING_ERROR respectively.
See Figure B-15.

Figure B-15 ClearQuest Connector Synchronization Status view

After the synchronization succeeds, the item is removed from the Synchronization Status
view.

Importing changes to existing synchronization rules
The deployment of synchronization rules must be maintained because the Rational
ClearQuest schema or the Rational Team Concert and Rational Quality Manager process
specifications are refined over time due to continuous process improvement by the project
team. Some considerations should be taken when maintaining synchronization rules.

Deleting a synchronization rule deletes all of the connector information for all items that used
the synchronization rule. Essentially, all connected items become disconnected. You are
warned about this when you select the delete operation for the synchronization rule. The
entire synchronization history is removed, and there is no longer any memory that those
items were ever connected to anything. Then, if a new synchronization rule is created or
imported that is configured to select previously synchronized items, it acts as though
synchronization is being done for the first time. The Jazz server discovers that there are work

Tip: Synchronization can be disabled for items by select Stop Synchronizing. Use this
function only after considering the implications of breaking the synchronization between
the Rational ClearQuest and Rational Team Concert items.
Appendix B. Configuring interoperability 609

items that are configured for synchronization, but those items are not connected to any
external objects.

To update a new version of a synchronization rule, practice using the Import button in the
upper right area of the synchronization rule editor (Figure B-16).

Figure B-16 The Import button to update an existing synchronization rule

Extended ALM interoperability configuration

In this section, we describe the extended configurations for ALM interoperability.

Extended ClearQuest ALM configurations

In this section, we describe alternate configurations to Rational ClearQuest for ALM
interoperability.

Extending the ALM schema for iteration planning
The example ALM interoperability configuration in “Configuring and deploying
synchronization rules” on 585 does not include synchronization of Iteration plans across the
ALM solution. When using the ClearQuest ALM schema version 1.0, such synchronization
requires modifications of the PERL hook code.

To implement synchronization of iteration plans between Rational ClearQuest and Rational
Team Concert, the following configurations are suggested:

� Modify the ALM schema

– Add new RTCPlannedFor field to the ALMTask record type

– Add new RTCEstimate and RTCDueDate fields to the ALMTask and ALMActivity
record types

– Add new PERL hook code

� Modify the com.ibm.rational.clearquest.CQALM.ALMTask synchronization rule
� Modify the com.ibm.rational.clearquest.CQALM.ALMActivity synchronization rule

Adding a new field to the ClearQuest schema
To add the RTCPlannedFor field to the ALMTask record type:

1. Open the ClearQuest Designer.

2. Browse the ClearQuest Schema Repository Explorer view for the ALM schema to be
modified. Open the schema by logging in as an administrator.

3. Select the latest schema version and select Revision Control → Check Out.

4. Add new fields to ALMActivity. Select Record Types → ALMActivity → Fields and repeat
the steps to add the following fields:

– Field name: RTCEstimate with a Type of Short String
– Field name: RTCDueDate with a Type of Date
610 Collaborative Application Lifecycle Management with IBM Rational Products

5. Add new fields to ALMTask:

a. Select Record Types → ALMTask → Fields, right-click and select New Field.

b. In the New Field window, enter the following values:

• Field name: RTCPlannedFor
• Type: Short String

c. Repeat the steps to add the following fields:

• Field name: RTCEstimate with a Type of Short String
• Field name: RTCDueDate with a Type of Date

6. Add a Perl Value Change hook for RTCPlannedFor:

a. With Record Types → ALMTask → Fields selected, locate the ValueChanged cell for
the RTCPlannedFor field. Select the cell and choose Scripts → Perl.

b. Enter the script code as shown in Example B-2 into the script editor.

Example: B-2 rtcplannedfor_ValueChanged hook

sub rtcplannedfor_ValueChanged {
my($fieldname) = @_;
$fieldname as string scalar
record type name is ALMTask
field name is RTCPlannedFor
$session->OutputDebugString("\nEntering RTCPlannedFor value changed

hook\n");
my $RTCPlannedFor = $entity->GetFieldValue("$fieldname")->GetValue();
$session->OutputDebugString("\nRTCPlannedFor value is $RTCPlannedFor\n");
my @PhaseIterLBL = split(/\//, $RTCPlannedFor);
if ($#PhaseIterLBL == 1) {

$session->OutputDebugString("\nSetting PhaseLabel: $PhaseIterLBL[0]
and

IterationLabel: $PhaseIterLBL[1] on ALMTask\n");
my $failure=$entity->SetFieldValue("PhaseLabel","$PhaseIterLBL[0]");
my

$failure=$entity->SetFieldValue("IterationLabel","$PhaseIterLBL[1]");
}

}

7. Add a new base action for ALMTask record type:

a. Select Record Types → ALMTask → States and Actions → Actions, right-click and
select New Action.

b. In the New Action window, for Name, type SetRTCPlannedFor, and for Type, select
BASE. Click Finish.

c. In the Record Actions editor, click the SetRTCPlannedFor or Validation cell and
select SCRIPTS → Add to add a Perl script.
Appendix B. Configuring interoperability 611

d. In the script editor, enter &ALMTask_SetRTCPlannedFor; as highlighted in Example B-3.
Example B-3 shows how the hook code looks after you add the single statement.

Example: B-3 ALMTask_Validation hook

sub almtask_Validation {
 my($actionname, $actiontype) = @_;
 my $result;
 # $actionname as string scalar
 # $actiontype as long scalar
 # $result as string scalar
 # action is SetRTCPlannedFor
 # record type name is ALMTask
 &ALMTask_SetRTCPlannedFor;

return $result;
}

8. Add a new global script:

a. Select Global Scripts → Perl, right-click and select New Script.

b. Enter the script name as ALMTask_SetRTCPlannedFor.

c. Right-click and select Open Script.

d. Enter the script code from Example B-4 into the script editor.

Example: B-4 ALMTask_SetRTCPlannedFor script

sub ALMTask_SetRTCPlannedFor {
my $PhaseLBL = $entity->GetFieldValue("PhaseLabel")->GetValue();
my $IterationLBL = $entity->GetFieldValue("IterationLabel")->GetValue();
if ($PhaseLBL && $IterationLBL) {

my
$failure=$entity->SetFieldValue("RTCPlannedFor","$PhaseLBL/$IterationLBL");

}
}

e. Change the scripting language by selecting ALM → Version, right-clicking, and
selecting Properties. In the Properties view, select Windows or UNIX scripting and
choose PERL.

9. Select File → Save to save the changes.

10.Select ALM → Version, right-click and select Revision Control → Check-In.

Modifying the ALMTask synchronization rule
The com.ibm.rational.clearquest.CQALM.ALMTask synchronization rule must be updated to
include mapping of the RTCPlannedFor or Planned For, RTCEstimate or Estimate, and
RTCDueDate or DueDate fields and properties in the ClearQuest and Jazz repositories.

To update the synchronization rule:

1. Open the com.ibm.rational.clearquest.CQALM.ALMTask synchronization rule.

2. In the Property Mappings section, click the Add button.

Note: Users who use Basic on Windows instead of Perl should provide a similar hook in
Basic.
612 Collaborative Application Lifecycle Management with IBM Rational Products

3. In the Define Property Mapping window, set the values as provided in Table B-54.

Table B-54 com.ibm.rational.clearquest.CQALM.ALMTask synchronization rule property mappings

4. Click OK to add the new mapping.

5. Complete the Mapping details section by using the values that are provided in Table B-55
and Table B-56.

Table B-55 Planned For synchronization rule properties

Table B-56 Planned For property value mappings

6. Click Save to save and deploy the updated synchronization rule.

Modifying the ALMTask and ALMActivity forms
To use the added fields for DueDates and Estimates on the ALMTask and ALMActivity
records, these fields must be added to the record type forms. We suggest adding them to the
Resolution tab. Note that these forms changes must be reapplied after package upgrades.

Modifying the ALMActivity synchronization rule
The com.ibm.rational.clearquest.CQALM.ALMActivity synchronization rule must be updated
to include mapping of the RTCEstimate or Estimate and the RTCDueDate or DueDate fields
and properties in the ClearQuest and Jazz repositories.

To update the synchronization rule:

1. Open the com.ibm.rational.clearquest.CQALM.ALMAcitivty synchronization rule.

2. Follow the steps in “Modifying the ALMTask synchronization rule” on page 612.

ID Item property I/O ID Element property

Planned For In/Out RTCPlannedFor

Estimate Out RTCEstimate

Due Date Out RTCDueDate

Synchronization rule property Property value

Reference synchronization rule

Value transformer <none>

Item value External value

Inception Iteration I1 Inception/I1

Elaboration Iteration E1 Elaboration/E1

Construction Iteration C1 Construction/C1

Transition Iteration T1 Transition/T1

Note: The mapping values used in Table B-56 are valid when using OpenUP. If other
processes are used in the ClearQuest ALM solution, or in Rational Team Concert and
Rational Quality Manager, the values must be edited.
Appendix B. Configuring interoperability 613

3. Define the property mappings for Estimate and Due Dates. The values are provided in
Table B-57 on page 614, Table B-58, and Table B-59.

Table B-57 Property mappings added to the ALMActivity synchronization rule

Table B-58 Estimate synchronization rule properties - Estimate

Table B-59 Estimate synchronization rule properties - DueDate

4. Click Save to save and deploy the updated synchronization rule.

Extended Jazz configurations

In this section, we describe alternate configurations to Rational Team Concert and Rational
Quality Manager for ALM interoperability.

Extending the process configurations
In “Configuring ClearQuest ALM system-wide settings for interoperability” on page 571, we
discuss that the ClearQuest ALM solution comes with a set of system-wide settings. These
settings provide consistent classification across the integrated ALM solution. We also explain
how to extend the ALMTypeLabels and ALMResolutionCodeLabels in Rational ClearQuest to
match the corresponding labels in Rational Team Concert and Rational Quality Manager.

An alternate configuration is to keep the ready-to-use ALM system-wide settings and align the
enumerations that are defined in Rational Team Concert and Rational Quality Manager.

Modifying the priority values
To modify the Priority enumerations in the Team Area Process:

1. Open the AccountOpening Project Area from the Team Artifacts view.

2. Click the Process Configuration tab.

3. From the Configuration expand and select Project Configuration → Configuration
Data → Work Items → Enumerations.

4. In the Enumeration view, select the Priority enumerations.

ID Item property I/O ID Element property

Estimate Out RTCEstimate

Due Date Out RTCDueDate

Synchronization rule property Property value

Reference synchronization rule

Value transformer Timestamp/Days Transformer

Synchronization rule property Property value

Reference synchronization rule

Value transformer Timestamp/Days Transformer
614 Collaborative Application Lifecycle Management with IBM Rational Products

5. In sequence, select each Priority enumeration value, click Edit, and rename the priority
values as indicated in the following list and shown in Figure B-17:

– For High, type a name of P1 - Urgent.
– For Medium, type a name of P2 - Important.
– For Unassigned, type a name of P3 - Moderate.
– For Low, type a name of P4 - Low.

6. From the Default Literal list, choose P3 - Moderate.

7. Click the Save button to save and deploy the changes.

Figure B-17 Modifying Priority labels in Rational Team Concert to define a consistent classification across the integrated
ALM solution

Important: The ClearQuest Connector synchronization rules require a literal match
between Priority enumerations in Rational ClearQuest, Rational Team Concert, and
Rational Quality Manager.
Appendix B. Configuring interoperability 615

ALMResolutionCodeLabels
The ClearQuest ALM solution and the Jazz process definitions both contribute with unique
resolution codes.

The following resolution codes are provided by the ClearQuest ALM:

� Complete
� Duplicate
� Fixed
� Rejected
� Unreproducible
� Works as Designed

To modify the resolution codes in Rational Team Concert:

1. Click the Process Configuration tab in the AccountOpening Project Area (Figure B-18).

2. Expand Project Configuration → Configuration Data → Work Items → Workflows.

3. Modify the Resolutions list, by choosing Remove and Edit to create a match between the
available resolution codes in ClearQuest ALMResolutionCodeLables and the Resolutions
in the Jazz process configuration.

4. Click Save to save and deploy the changes.

Figure B-18 Modifying the resolution codes in the process configuration
616 Collaborative Application Lifecycle Management with IBM Rational Products

Extending the work items definitions
The ClearQuest ALM solution provides work items to govern work processes. These work
items include Request, Task and Activity record. Each of these work items can take a type
label, for example, an Enhancement or a Defect. The type labels are also used to categorize
the type of work, for example Define Requirements, Design Architecture, Implementation, or
Test.

In Rational Team Concert, the work item types are specified as, for example, Task, Defect, or
Enhancement.

ALM interoperability must map both the ClearQuest Task/Activity classification and the
subtype classification to the Jazz Work Items types. The default mapping used in this
example maps ALMTasks to Work Items of type Task, and ALMActivities to Work Items of
type Defect. The default mapping also maps the Task/Activity label types to the Work Item
Tags property.

Extending the work item type definitions, and their custom attributes, in Rational Team
Concert and Rational Quality Manager can create a more flexible ALM interoperability
mapping.

Adding an Activity Work Item type
To add a new Activity Work Item type:

1. Click the Process Configuration tab in the AccountOpening Project Area.

2. Expand Project Configuration → Configuration Data → Work Items → Types and
Attributes.

3. In the Type Category list, select com.ibm.team.workitem.workItemType.

4. Click Add to create a new Work Item Type.

5. In the Add Type window, for Name, type activity. For Icon, type general.gif. Click OK to
add the new type.

6. Click Save to save and deploy the changes.
Appendix B. Configuring interoperability 617

Figure B-19 shows the new Activity types that are added to the process specification.

Figure B-19 Adding a new Activity work item type to the process configuration

Adding a Subtype property
To add a new Subtype property to a work item:

1. Click the Process Configuration tab in the AccountOpening Project Area.

2. Expand Project Configuration → Configuration Data → Work Items → Types and
Attributes.

3. Click Add to create a new Custom Attribute.

4. In the Add Custom Attribute window, type a name of Subtype, and choose the type
smallString. Click OK to add the new attribute.

5. Expand Project Configuration → Configuration Data → Work Items → Editor
Presentations.

6. In the Editor Presentation view, expand Overview → Details → Type (enumeration).

7. Click Add Presentation to add a new attribute to the Work Item editor.

8. In the Add Presentation window, for Id, type Subtype, for Kind, select String, and for
Attribute, select Subtype. Click OK to save the editor presentation changes.

9. Click Save to save and deploy the changes
618 Collaborative Application Lifecycle Management with IBM Rational Products

Figure B-20 shows the new Subtype attribute that is added to the Work Item editor
presentation.

Figure B-20 Adding the Subtype attribute to the Work Item editor presentation
Appendix B. Configuring interoperability 619

Modifying the synchronization rules
The synchronization rules must be updated to include the Activity types and Subtype attribute
mappings. Figure B-21 shows the ALMActivity synchronization rules updated.

Figure B-21 Modifying the ALMActivity Synchronization Rule to map the Type.Name property to the new Subtype
property

Make the following changes to the com.ibm.rational.clearquest.CQALM.ALMActivity
synchronization rule:

1. Open the com.ibm.rational.clearquest.CQALM.ALMActivity synchronization rule.
2. Select the mapping of the Tags item property and the Type.Name external property.
3. Replace the Tags item property with the new Subtype item property.
4. Select the mapping of the Type item property.
5. In the Value Mappings list, select defect mapping and click Change.
6. In the Define Value Mapping window, replace defect with the activity value. Click OK.
7. Click Save to save the changes to the synchronization rule.

Make the following changes to the com.ibm.rational.clearquest.CQALM.ALMType
synchronization rule:

1. Open the com.ibm.rational.clearquest.CQALM.ALMType synchronization rule.
2. Select the mapping of the Tags item property and the Type.Name external property.
3. Replace the Tags item property with the new Subtype item property.
4. Click Save to save the changes to the synchronization rule.
620 Collaborative Application Lifecycle Management with IBM Rational Products

Adding permission to create and modify new Activity work items
To add permissions to create and modify Activity Work Items do the following:

1. Click the Process Configuration tab in the AccountOpening Project Area.

2. Expand Team Configuration → Permissions.

3. In the Permissions view, select Everyone.

4. In the Permitted Actions section, expand Work Items → Save Work Items → Create a
work item → Create a work item of a specific type. Validate that permissions are
granted for a new Activity work item to be created and modified (Figure B-22).

5. Click Save to save and deploy the new permissions.

Figure B-22 Permissions granted to create new Activity work items

Adding a new Type category
By using the ClearQuest Connector and multiple synchronization rules, it is possible to map
multiple ClearQuest record types to specific Work Item types. In the example in this book, we
use the following mapping:

� ALMTask records <> Work Items of type Task
� ALMActivity records <> Work Items of type Defect (or to an added Activity type)

It is required that the type category mapping is uniquely specified in the synchronization rule
for each mapping. Mapping multiple Rational ClearQuest record types to the same Work Item
type, or the same Work Item type category, causes the synchronization rules to fail.
Appendix B. Configuring interoperability 621

In some cases, it is beneficial to create groups of Work Item types, organized by Work Item
Type Categories, and map a Rational ClearQuest record type to such a type category. Note
that a single work item type can only be a part of one category.

To create a new Type Category for a Task, while keeping a Defect, Enhancement, and Activity
type in the default Work Item category:

1. Open the Select the AccountOpening Project Area and click the Process
Configuration tab.

2. Add a Type category:

a. Expand Project Configuration → Configuration Data → Work Items → Types and
Attributes.

b. In the Work Items Types section, select the Task type and click Remove.

c. In the Types and Attributes view, click the Add button to create a new Type Category.

d. Enter a new Type Category Id, for example
com.ibm.team.workitem.workItemType.task. Then click OK.

e. With the new type category selected, in the Work Item Types section, click Add. Enter
the name Task, select the task.gif icon, and click OK.

f. In the Permitted Actions section, expand Work Items → Save Work Items → Create a
work item → Create a work item of a specific type. Validate that permissions are
granted for a new Activity work item to be created and modified (Figure B-22 on
page 621).

g. Click Save to save and deploy the new permissions.

3. Add a workflow for the new Type Category:

a. Expand Project Configuration → Configuration Data → Work Items → Workflows.
b. Select the Default workflow and click the Duplicate button.
c. Type a new workflow ID, for example taskWorkflow, and click OK.
d. Edit the name of the new workflow, for example Task Workflow.

4. Add a workflow binding:

a. Expand Project Configuration → Configuration Data → Work Items → Workflow
Bindings.

b. From the Type Category list, select the com.ibm.team.workitem.workItemType.task
category.

c. From the Workflow list, select the taskWorkflow.

5. Click Save to save and deploy the changes to the process configuration.

To use the new type category in a synchronization rule, open the synchronization rule editor
and choose the new type category in the Item type qualifier property. Save the changes to the
synchronization rule.
622 Collaborative Application Lifecycle Management with IBM Rational Products

Appendix C. Rational Build Forge adapter
templates

The Rational Build Forge product provides adapter templates for all kinds of applications as
listed in Table C-1.

You can find detailed information about adapters in Rational Build Forge in “Rational
ClearCase, Rational ClearQuest, and Rational Software Analyzer adapters” on page 380.

Table C-1 Rational Build Forge adapter templates

C

Licensing: The templates for Rational ClearCase and Rational ClearQuest do not require
a separate license key, but other application templates are licensed through the Rational
Build Forge Adapter Toolkit.

Adapter template name Description Type

ClearCaseBaseline.xml � Scans a directory in a Rational ClearCase view.
� Writes branch and version information reported by Rational

ClearCase to the Bill of Materials report.

Source

ClearCaseByBaselineActivities.xml � Creates a new baseline from the contents of a Rational
ClearCase view.

� Compares the new baseline and the baseline from the previous
adapter execution to identify change activity.

� For each change activity, writes the activity, files changed, user,
date, comments, and version to the Bill of Materials report.

� For each changed file, writes change details (from the diff
command output) to the Bill of Materials report.

Source
© Copyright IBM Corp. 2008. All rights reserved. 623

ClearCaseByBaselineVersions.xml � Creates a new baseline from the contents of a Rational
ClearCase view.

� Compares the new baseline and the baseline from the previous
adapter execution to identify changed files.

� For each changed file, writes the file name, version, date, user,
and comments to the Bill of Materials report.

� For each changed file, writes change details (from diff command
output) to the Bill of Materials report.

Source

ClearCaseByDate.xml � Queries a Rational ClearCase view for changes between two
dates. The default dates are the current time stamp and the time
stamp of the previous adapter execution.

� For each changed file, writes the file name, version, date, user,
and comments to the Bill of Materials report.

� For each changed file, writes change details (from the diff
command output) to the Bill of Materials report.

Source

ClearCaseByLabel.xml � Creates and applies a new label to the contents of a Rational
ClearCase view.

� Compares the new label and the label from the previous adapter
execution to identify changed files.

� For each changed file, writes the file name, version, date, user,
and comments to the Bill of Materials report.

� For each changed file, writes change details (from the diff
command output) to the Bill of Materials report.

Source

ClearQuestCaseByActivity.xml � Finds Rational ClearQuest defect records that are associated with
a list of Rational ClearCase activities. For each defect record that
is found, it adds job information to resolve the defect record within
Rational ClearQuest if the Rational ClearQuest status allows it to
be resolved.

� Writes the files that are associated with Rational ClearCase
activity IDs and the Rational ClearQuest defect status to the Bill of
Materials report.

Defect

ClearQuestCaseByDate.xml � Queries a Rational ClearCase view for changes between two
dates. The default dates are the current time stamp and the time
stamp of the previous adapter execution.

� For each changed file, looks for a CrmRequest hyperlink attribute
that identifies a Rational ClearQuest change ID. Attempts to
resolve the change ID by adding job information to resolve the
defect record in Rational ClearQuest if the Rational ClearQuest
status allows it to be resolved.

� For each changed file, writes the file name, defect ID, defect
status, and any Rational ClearQuest errors to the Bill of Materials
report.

Defect

CVSv1Baseline.xml � Scans a CVS directory on a Rational Build Forge agent looking
for changed files.

� Writes the changed file name, status, working version, repository
version, and sticky tag to the Bill of Materials report.

Source

CVSv1ByDate.xml � Queries a CVS view for changes between two dates. The default
dates are the current time stamp and the time stamp of the
previous adapter execution.

� Writes the change type, date, user name, version, and file name
to the Bill of Materials report.

� For each changed file, writes change details (from the diff
command output) to the Bill of Materials report.

Source

Adapter template name Description Type
624 Collaborative Application Lifecycle Management with IBM Rational Products

CVSv1ByTag.xml � Applies a new tag to a CVS module. Compares the differences
between the newly tagged module and a module that is tagged
during the previous adapter execution.

� Writes the file name, revision, state, date, time, change author,
and commit comments to the Bill of Materials report.

� For each changed file, writes change details (from the diff
command output) to the Bill of Materials report.

Source

CVSv2ByDate.xml � Queries a CVS view for changes between two dates. The default
dates are the current time stamp and the time stamp of the
previous adapter execution.

� Writes the change type, date, user name, version, and file name
to the Bill of Materials report.

� For each changed file, writes change details (from the diff
command output) to the Bill of Materials report.

Source

PerforceByDate.xml � Queries a perforce client for changes that occurred since the
adapter execution.

� Writes the change, date, time, user, perforce client, and
comments to the Bill of Materials report.

� Writes change details (from the diff command output) to the Bill
of Materials report.

Source

PerforceByRev.xml � Queries a perforce client for changes that occurred since the last
repository revision.

� Writes the change, date, time, user, perforce client, and
comments to the Bill of Materials report.

� Writes change details (from the diff command output) to the Bill
of Materials report.

Source

Quota.xml � Queries a folder to determine if any of its subfolders exceed a
specified threshold size.

� For each subfolder, writes the folder size, owner, and last modified
date to the Bill of Materials report.

� Writes to the Bill of Materials report a list of subfolders that
exceeded the threshold size.

Source

StarTeamBaseline.xml � Queries the folder for a StarTeam view to gather information
about files.

� Writes the file name, status, revision, and branch to the Bill of
Materials report.

Source

StarTeamByDate.xml � Uses the StarTeam API to query a StarTeam view to identify
changes between the current date and the previous adapter
execution.

� Writes the changed files and directories, user, version, date, and
change comments to the Bill of Materials report.

� Writes change details (from the diff command output) to the Bill
of Materials report.

Source

SubversionByDate.xml � Queries subversion for repository changes that occurred between
a past date and the current date.

� Writes the change type, revision, user, file or directory, and
change date to the Bill of Materials report.

� Writes the file name, status, revision, and branch to the Bill of
Materials report.

Source

Adapter template name Description Type
Appendix C. Rational Build Forge adapter templates 625

SubversionByRev.xml � Queries subversion for changes to a repository that occurred
between the current revision and an earlier revision.

� For each change, writes the revision, user, change type, file or
directory path, and change date to the Bill of Materials report.

� Writes change details (from the diff command output) to the Bill
of Materials report.

Source

VSSByDate.xml � Queries a visual source safe directory for changes between an
earlier date and the current date.

� Writes change information for projects and files, which includes
the project or file, version, user, date, time, project activity, file
project and action information, to the Bill of Materials report.

� Writes change details (from the diff command output) to the Bill
of Materials report.

Source

Adapter template name Description Type
626 Collaborative Application Lifecycle Management with IBM Rational Products

Appendix D. Code review rules

The Code Review for Java domain comprises rule categories that contain rules that focus on
several aspects of software quality. Such aspects include design principles, globalization,
Java 2 Platform, Enterprise Edition (J2EE), and Java 2 Platform, Standard Edition (J2SE™),
best practices, J2EE security, and software performance. Java source code analyses apply
these rules to identify code that does not conform to recognized standards.

This appendix includes the following sections:

� “Rule categories and subcategories reference” on page 628
� “Architectural discovery patterns” on page 630

D

© Copyright IBM Corp. 2008. All rights reserved. 627

Rule categories and subcategories reference

Table D-1 describes the rule categories and subcategories that belong to the Code Review for
Java domain and that you can use in a Java code review.

Table D-1 Rule categories for Code Review for Java domain

Category Subcategory Description

Design
principles

Contains rules for the design principles of object-oriented
programming

Complexity Contains rules to prevent unnecessarily complex code

Globalization Contains rules that are based on globalization coding best
practices, which help to ensure that code runs correctly in
localized environments

Cultural
formatting

Contains rules that address data formatting options that are
used in different parts of the world

Encoding Contains rules that validate encoding for globalization

Locale handling Contains rules that validate locales for globalization

String handling Contains rules that validate string operations for globalization

Translation Contains rules that validate code for translation

UI specific Contains rules that validate user-interface layout and content
for globalization

J2EE best
practices

Contains rules based on the best J2EE development practices
and supports Web projects that are targeted for IBM
WebSphere servers

Correctness Contains rules to detect incorrect method calls

Data race Contains rules to detect method invocations that can cause
data race conditions in J2EE applications

Garbage
collection

Contains rules to detect method invocations that can delay
garbage collection

Maintainability Contains rules to detect code that might be difficult to maintain
in J2EE applications

Performance
and scalability

Contains rules to detect method invocations that hinder the
performance or limit the scalability of a J2EE application

J2EE security Contains rules that validate compliance with Java security
standards

J2EE security Contains rules that validate compliance with Java security
standards in a J2EE perspective
628 Collaborative Application Lifecycle Management with IBM Rational Products

J2SE best
practices

Contains rules that validate code for compliance with J2SE best
practices for Java development

Abstract Window
Toolkit (AWT)

Contains rules that detect issues that are related to using the
AWT library

Casting Contains rules that detect issues that are related to casting and
coercion

Clonable Contains rules that detect issues that are related to object
cloning

Comparison Contains rules that detect issues that are related to comparing
objects and testing object equality

Conditional Contains rules that detect issues that are related to the usage
of conditionals

Constructors Contains rules that detect issues that are related to defining and
implementing constructors

Declaration Contains rules that detect issues that are related to declaring
constants, variables, and fields

Exceptions Contains rules that detect issues that are related to exception
handling

Initialization Contains rules that detect issues that are related to the
initialization of primitives and objects

Loop Contains rules that detect issues that are related to using loops

Null Contains rules that detect issues that are related to using null

Portability Contains rules that detect issues that are related to portability

Reflection Contains rules that detect issues that are related to using
reflection

Serialization Contains rules that detect issues that are related to serialization

Statement Contains rules that detect general issues in statements

Switch Contains rules that detect issues that are related to using switch
statements

Threads Contains rules that detect issues that are related to using
threads

J2SE security Contains rules that validate compliance with Java security
standards

J2SE security Contains rules that validate compliance with Java security
standards in a J2SE perspective

Naming Contains rules for naming conventions for elements in Java
source code

Conflicts Contains rules to ensure that elements are named consistently
in Java source code

Category Subcategory Description
Appendix D. Code review rules 629

Architectural discovery patterns

The Architectural Discovery for Java domain comprises four rule categories that contain the
rules for identifying patterns and antipatterns in Java source code:

� Design Patterns rule category
� Object-oriented Patterns rule category
� Structural Patterns rule category
� System Patterns rule category

This section explores each of these categories, which describes the patterns that an
architectural discovery analysis can detect automatically.

Design Patterns rule category

The Design Patterns rule category for architectural analysis contains common solutions or
pitfalls in designing and writing source code, including some of the classic Gang of Four
patterns. Table D-2 lists each pattern and its purpose in the Design Patterns rule category.

Table D-2 Design Patterns rule category

Performance Contains rules that enforce suggestions for improving
performance and reducing the memory footprint in Java
applications

Memory Contains rules that detect performance issues that are related
to memory usage

Profiling Contains rules that detect potential performance issues that are
related to profiling activities

Speed Contains rules that suggest ways to improve the speed of Java
code execution

Private API Contains rules that locate APIs that do not belong in Java code

Sun™ Contains rules that locate APIs that do not belong in Java code

WebSphere Contains rules that locate APIs that do not belong in Java code

Category Subcategory Description

Pattern Purpose

Decorator The Decorator pattern adds responsibilities to an object dynamically,
without changing its interface. The Decorator pattern acts as a wrapper
because it implements the original interface, adds capabilities, and
delegates work to the original object, so that you can use it as an alternative
to creating a subclass. The architectural discovery algorithm identifies this
pattern as consisting of two classes: decorator and the wrapped
component.
630 Collaborative Application Lifecycle Management with IBM Rational Products

Object-oriented Patterns rule category

The Object-oriented Patterns rule category contains patterns that show abstraction and
inheritance trees. Table D-3 lists each pattern and its purpose in the Object-oriented Patterns
category.

Table D-3 Object-oriented Patterns rule category

Factory method The Factory method pattern defines an interface for creating objects without
knowing the class of the object it creates. Each Factory method pattern can
define the class to be instantiated based on the input parameters and
specifics of the situation. The architectural discovery algorithm identifies this
pattern as consisting of a Creator class, Concrete Creator subclass, Product
interface, and Concrete Product object. The Creator class specifies the
interface for creating a product. The Concrete Creator subclass implements
this interface by instantiating a Concrete Product object.

Marker The Marker pattern declares a semantic attribute of a class. The
architectural discovery algorithm identifies the Marker pattern as a single
empty interface without methods or constants.

Observer/Observable The Observer/Observable pattern communicates the changes in the state
of an object to other system objects. The architectural discovery algorithm
identifies this pattern as consisting of Observer and Observable. The
Observable class maintains a list of Observer classes that it notifies when a
state change occurs.

Singleton The Singleton pattern ensures that a class allows only one object instance.
The architectural discovery algorithm identifies the Singleton pattern as a
class with a private constructor and a public static field or method that
provides global access to the instance of a Singleton class.

Utility The Utility pattern models a stateless utility function. The architectural
discovery algorithm identifies Utility as a class with a private constructor that
contains only static methods.

Visitor The Visitor pattern performs specific operations on the elements of an
object structure. The Visitor pattern allows additional operations without
changing the classes of the elements on which they operate. The
architectural discovery algorithm identifies the Visitor pattern as consisting
of Visitor class, Concrete Visitor subclass, Element (optional) class, and
Concrete Element subclass. The Visitor pattern is an interface that declares
the Visit operation for every element. The Concrete Visitor subclass
implements the Visitor interface and acts on each Concrete Element
subclass.

Pattern Purpose

Pattern Purpose

Abstraction The Abstraction pattern represents a system concept. The architectural discovery
algorithm identifies abstraction as an abstract class or an interface.

Inheritance tree The Inheritance tree pattern is based on standard object-oriented inheritance
relationships between objects in a system. The architectural discovery algorithm
identifies inheritance as the implementation of an interface or an extension of a
class.
Appendix D. Code review rules 631

Structural Patterns rule category

The Structural Patterns rule category contains patterns that show various types of structural
elements, including structural antipatterns. Table D-4 lists each pattern and its purpose in the
Structural Patterns category.

Table D-4 Structural Patterns rule category

Pattern Purpose

Component cyclic
dependency

A Component cyclic dependency pattern is a structural antipattern that
consists of interdependent components. A cyclic dependency between
components is considered a major architectural flaw. Such a dependency
makes the code difficult to understand and maintain. More important, cyclic
dependencies compromise software testing, parallel development, and
reuse. Large-scale software with many cyclic dependencies is fragile and
unstable.

Component global
breakable

A Component global breakable pattern is a structural antipattern for a
system component that is often affected when any other component is
changed. Except for high-level concrete implementations, global
breakables are undesirable because they indicate fragility and a lack of
modularity in the system.

Component global
butterfly

A Component global butterfly pattern is a structural pattern for an object
that has many global dependents. Changes to a global butterfly often have
a significant impact on the rest of the system. For this reason, a global
butterfly should only be either a basic system interface or a utility class.

Component global hub A Component global hub pattern is a structural antipattern for a component
that has many global dependencies and many global dependents. A global
hub is often affected when anything is changed, and it affects a significant
percentage of the system when it changes. Global hubs are undesirable
because they indicate fragility and lack of modularity in the system.

Component local
breakable

A Component local breakable pattern is a structural antipattern for a
component that has many immediate dependencies. Such a component
carries excessive responsibility and is usually identified by many long
methods. Breakables make the code difficult to understand, maintain, and
reuse.

Component local
butterfly

A Component local butterfly pattern is a structural pattern for a component
that has many immediate dependents. Changes to a local butterfly often
have a significant immediate impact on the rest of the system. For this
reason, a local butterfly should only be either a basic system interface or a
utility class.

Component local hub A Component local hub pattern is a structural antipattern for a component
that has many immediate dependencies and many immediate dependents.
Such a component carries excessive responsibility and serves as a utility
or commonly used component. Hubs make the code difficult to understand,
maintain, and reuse. Hubs also make the code fragile and unstable.

Package cyclic
dependency

A Package cyclic dependency pattern is a structural antipattern that
consists of interdependent packages. A cyclic dependency between
packages is considered a major architectural flaw. Such a dependency
makes the code difficult to understand and to maintain. More importantly,
cyclic dependencies undermine testability, parallel development, and
reuse. Large-scale software with many cyclic dependencies is fragile and
unstable.
632 Collaborative Application Lifecycle Management with IBM Rational Products

System Patterns rule category

The System Patterns category contains one pattern, the Package pattern, that detects all
packages in a project or resource working set of source code. Table D-5 describes this
pattern and its purpose in the System Patterns rule category.

Table D-5 System Patterns rule category

Package global
breakable

A Package global breakable pattern is a structural antipattern for a
package that has many global dependencies. Such a package carries
excessive responsibility and usually contains several components with
many global dependencies.

Package Global
Butterfly

A Package global butterfly pattern is a structural pattern for a package that
has many global dependents. Changes to a global butterfly often have a
significant impact on the rest of the system. For this reason, a global
butterfly package should only consist of either basic system interfaces or
utility classes.

Package global hub A Package global hub pattern is a structural antipattern for a package that
has many immediate dependencies. Such a package carries globally
excessive responsibility and serves as a utility or commonly used package.
The package usually contains many components that have several global
dependencies and dependents. A Package global hub pattern breaks the
reusability of modules and makes the code difficult to understand and
maintain.

Package local
breakable

A Package local breakable pattern is a structural antipattern for a package
that has many immediate dependencies. Such a package carries
excessive responsibility. The package usually contains a large number of
components or several components with many immediate dependencies.
A Package local breakable pattern makes the code difficult to understand,
maintain, and reuse.

Package local butterfly A Package local butterfly pattern is a structural pattern for a package that
has many immediate dependents. Such a package serves as a utility or
commonly used package.

Package local hub A Package local hub pattern is a structural antipattern for a package that
has many immediate dependencies and dependents. Such a package
carries excessive responsibility and also serves as a utility or commonly
used package. The package usually contains many components that can
have many immediate dependencies. Hubs make the code difficult to
understand, maintain, and reuse. Hubs also make the code fragile and
unstable.

Pattern Purpose

Pattern Purpose

Package The Package pattern represents logical and physical groupings of classes and
interfaces. The architectural discovery algorithm identifies all classes and interfaces
that belong to a certain package and presents them as a group.
Appendix D. Code review rules 633

634 Collaborative Application Lifecycle Management with IBM Rational Products

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on page 636.
Note that some of the documents referenced here may be available in softcopy only.

� Application Lifecycle Management with SCLM on System z, SG24-7592

� Global Development and Delivery in Practice: Experiences of the IBM Rational India Lab,
SG24-7424

� Software Configuration Management: A Clear Case for IBM Rational ClearCase and
ClearQuest UCM, SG24-6399

Online resources

These Web sites are also relevant as further information sources:

� Jazz

http://jazz.net

� The Eclipse Way (presentation)

http://www.eclipsecon.org/2005/presentations/econ2005-eclipse-way.pdf

� Rational Unified Process

http://www-306.ibm.com/software/awdtools/rup/

� JUnit

http://www.junit.org/

� The Enterprise Unified Process

http://www.enterpriseunifiedprocess.com/

� “Generalizing Specialists: Improving Your IT Career Skills”

http://www.agilemodeling.com/essays/generalizingSpecialists.htm

� Examining the ‘Big Requirements Up Front (BRUF) Approach’

http://www.agilemodeling.com/essays/examiningBRUF.htm

� Open Unified Process (OpenUP)

http://www.eclipse.org/epf/

� OpenUP

http://epf.eclipse.org/wikis/openup/

� “Application lifecycle management with ClearQuest 7.1.0.0: Part I”

http://ltsbwass001.sby.ibm.com/cms/developerworks/rational/library/edge/08/mar0
8/pampino-pierce/index.html
© Copyright IBM Corp. 2008. All rights reserved. 635

http://www.eclipse.org/epf/
http://www.agilemodeling.com/essays/generalizingSpecialists.htm
http://epf.eclipse.org/wikis/openup/
http://jazz.net
http://www.eclipsecon.org/2005/presentations/econ2005-eclipse-way.pdf
http://www-306.ibm.com/software/awdtools/rup/
http://www.junit.org/
http://ltsbwass001.sby.ibm.com/cms/developerworks/rational/library/edge/08/mar08/pampino-pierce/index.html
http://ltsbwass001.sby.ibm.com/cms/developerworks/rational/library/edge/08/mar08/pampino-pierce/index.html
http://www-306.ibm.com/software/awdtools/rup/
http://www.enterpriseunifiedprocess.com/
http://www-306.ibm.com/software/awdtools/rup/

� Business Intelligence Reporting Tool (BIRT) Eclipse project

http://www.eclipse.org/birt/phoenix

� “IBM Rational ClearQuest general schema design performance”

http://www.ibm.com/developerworks/rational/library/07/0717_patel/index.html

� Rational technical resources and best practices for the Rational software platform from
IBM developerWorks

http://www.ibm.com/developerworks/rational

� Jazz Platform Technical Overview (sign-on required)

https://jazz.net/learn/LearnItem.jsp?href=content/docs/platform-overview/index.
html

� Manifesto for Agile Software Development

http://agilemanifesto.org

� “How to use the Scrum project management method with IBM Rational Team Concert and
the Jazz platform”

http://www.ibm.com/developerworks/rational/library/08/0701_ellingsworth/index.h
tml?ca=drs-

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft publications
and Additional materials, as well as order hardcopy Redbooks, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
636 Collaborative Application Lifecycle Management with IBM Rational Products

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.eclipse.org/birt/phoenix
http://www.ibm.com/developerworks/rational/library/07/0717_patel/index.html
http://agilemanifesto.org
http://www.ibm.com/developerworks/rational
http://www.ibm.com/developerworks/rational/library/08/0701_ellingsworth/index.html?ca=drs-
https://jazz.net/learn/LearnItem.jsp?href=content/docs/platform-overview/index.html

Index

Symbols
.bom command 381
.include statement 385
.scan command 377
.source command 335, 383

A
access property 346
Account Opening project 49, 228, 300, 359, 426, 487,
511

area 500, 606
collaborative development platform 74
community 487, 511
release 228
repositories 74
run details 4 350
software package 512
solution 50, 222
solution asset 487, 511
team 414
UI branding 187

Act 1: Responding to a change request 60, 77
Act 2: Collaborative development 61, 211
Act 3: Enterprise integration builds 63, 313
Act 4: Managing quality 64, 387
Act 5: Delivering the solution 65, 479
actionable enterprise architecture 29
activities 91, 120–121

linked requirement 174
activity cycles 35
actors 106, 222, 327, 398, 484
adapter 380–381

installation 474
template 381, 623

administration 322
agile approach 189
agile development 38

changes toward 215
complexity changes 41
estimation 546
generalizing specialists 85
planning 236
points to estimate the amount of project work 547
Rational Team Concert 246
scaling 38
small teams 44, 69

agile development team 54
manager 51
products used 10

Agility at Scale 52, 67
approaches to 43

agility relativity 39
ALM (Application Lifecycle Management) 3, 16, 214,
328, 369, 387, 404, 426, 497, 533, 565
© Copyright IBM Corp. 2008. All rights reserved.
asset synchronization 578
fundamentals 5
market changes 16
people, process, information, tools 4
process formality 534
scope 4
synchronization rules 196

ALM activity 229, 519, 574
ALM interoperability 565, 604

ClearQuest Connector 604
configuration of Rational ClearQuest 195
configuration, extended 610
extended configurations 610
Rational Quality Manager 614

ALM packages
adding 567
applying to a schema 568
installation 567

ALM Packages for Rational ClearQuest 119, 194, 567
ALM property 371
ALM record 571
ALM schema 509, 565–566

adding packages 569
ClearQuest Schema Repository Explorer view 610
performance 204
Rational ClearQuest 188
sample database 566

ALM Task 229
ALMActivity record 570

creating for reviews 135
ALMBaseline record 67, 367
ALMCategory record 129
ALMRequest asset 67
ALMRequest record 91

submitting 127–128
triaging 132

ALMTask record 72, 506, 570, 598
iteration planning 133
opening 160

ALMType record 573
ALMTypeLabel record 570
analysis 330

domain 333
rules 334
scope 334
source code 404
type 333

Analyze module 377
application complexity 38
application integration 17
application lifecycle 6
Application Lifecycle Management (ALM) 3, 16, 214,
328, 369, 387, 404, 426, 497, 533, 565

asset synchronization 578
fundamentals 5
 637

market changes 16
people, process, information, tools 4
process formality 534
scope 4
synchronization rules 196

application suites 17
approvals

ALM configuration 521
OpenUp 195

architect 71
architectural discovery

algorithm 630
analysis 630
patterns 630

Architectural Discovery for Java domain 630
architectural patterns 26
architecture management and reuse 26
artifacts

change request 126
traceability 245

assembly line 318
asset

browsing in Rational Team Concert 266
import in Rational Team Concert 267
shared 214

asset management 220
changes toward 216

Assign To Owner option 251
audit 18, 38
audit trail 219, 316, 342, 466
authentication box 358
automated build process 332
automated code review

analysis, build process 332
reference scenario 335

automated functional tests, configuration 473
automated repetitive tasks 562
automated scans 403
automated testing 402
automation 32, 81

for lab management 476
automation script 327

in-depth view 327
awareness barriers 19

B
baseline 239

records 64
Big Requirements Up Front (BRUF) approach 83
bill of materials 331
Bill of Materials report 623
bill-of-materials section 332
BIRT (Business Intelligence Reporting Tool) 178

Designer 179
Rational ClearQuest report 179
reporting 178

team health 182
BIRT Designer 179
blockers 292
Blocking report 293

blocking tasks 292
blueprint

CALM 24
collaborative development 217
enterprise build management 318
enterprise software development 28
requirements definition and management 93

bottlenecks, change management 182
bottom-up approach 58
bridging roles 492
BRUF (Big Requirements Up Front) approach 83
BTBuild record 67, 339, 369
build

artifacts 329
automation 330, 466
awareness 20
clarity 317, 331

quality 46
definitions 240, 310
deployment 443
failure, resolution of 64
inspection 442
management 219, 316
quality 317
records 64
result 219, 226, 241, 328, 357
static analysis 332
success, failure notification 64
test automation framework 483
trend 296

build engine 240, 309
Rational Team Concert 309

build process 63
automated code review 332
static analysis 332

build script 226, 322, 342
extending with Jazz Build Ant tasks 311

build server 317, 358, 442
build verification testing 34
build.xml script 241
business context 16
Business Intelligence Reporting Tool (BIRT) 178

Designer 179
Rational ClearQuest report 179
reporting 178
reporting team health 182

business objectives 98
test plan 146

business outcomes 17
business process 4, 17, 98, 220

C
cadence 33
CALM (Collaborative Application Lifecycle Management)
15–16

best practices 30
build clarity and quality 46
discipline, life-cycle service integration 28
Rational Team Concert 228
reference scenario 47
638 Collaborative Application Lifecycle Management with IBM Rational Products

requirements 85
requirements driven 45
solution 58, 558

collaboration 81
success indicators 30
team member interaction 48
third-party solutions 28

CALM blueprint 24
discipline-specific modules 26
enterprise architecture, software development gover-
nance 28
IBM and the partner ecosystem 28
project health and dashboard 25

CCMDB (Change and Configuration Management Data-
base) 489–490, 512, 561
central repository 27, 93, 411
chaining 383
change

accommodation 103
approval for work items 280
detail 623
requirements, prioritizing 96

Change and Configuration Management Database (CCM-
DB) 489–490, 512, 561
change management 77, 80, 82, 218, 317, 323

bottlenecks 182
centralized data repository 118
collaborative development blueprint 88
considerations 112
flow measurement 182
governance aspects 81
market 80
planning, measuring success 177
process 24
Rational Team Concert 219
workflows in collaborative development 82

change request 60, 77, 79, 103, 116, 399, 465, 535, 555
developer 51
life-cycle collaboration artifacts 126
management of 90
Rational ClearQuest 124
Rational RequisitePro 124
responding to 105
submitted 108

change set 217–218, 226, 239, 332, 502
change sets

review of 279
charts 178
CI (configuration items) 489

relationship 492
clarity, building 331
class 347, 349
ClearCase Connector 122, 124, 285

configuration 308
Rational Team Concert 72

ClearCase Synchronized Streams 124, 288
configuration 308

ClearCaseSnapshot adapter template 383
ClearQuest ALM 227, 566

query 509

record 574
record type 448, 578
reporting 177
system-wide settings 568

ClearQuest ALM configurations, extended 610
ClearQuest ALM schema 72, 229, 566, 569

configuration 194, 566
configuration for OpenUp 195
essential concepts 120

ClearQuest ALM schema for interoperability 195, 570
configuration 569
system-wide settings 571

ClearQuest ALM solution 119, 194, 228, 497, 511,
565–566

ALMRequest 91
ClearQuest Connector 122, 448, 477, 521, 565, 581

ALM interoperability 604
configuration 124, 309
Jazz platform-based repositories 72
synchronization rule 577
work assignment 123

ClearQuest Connector Gateway configuration 196
ClearQuest Gateway 196, 577, 581

connection 586
dedicated user 582
log traces 604
Rational Query Manager users 582
Rational Team Concert 582
server 74, 581
server use 583
synchronization managers 196, 586
user 582
users 582

ClearQuest Manager 589
cleartool command 381
client logging 206
closed loop process 173
code analysis 64, 226, 330
code analysis and review planning 333

analysis domain and type 333
analysis rules 334
scope of analysis 334

code review 218, 279, 330, 404, 627
request 278
scenario 335

collaboration 5, 30, 43, 81, 88, 92
code review and analysis standards 335
reusable assets 261

Collaborative Application Lifecycle Management (CALM)
15–16

best practices 30
build clarity and quality 46
discipline

life-cycle service integration 28
Rational Team Concert 228
reference scenario 47
requirements 85
requirements driven 45
solution 58, 558

collaboration 81
 Index 639

success indicators 30
team member interaction 48
third-party solutions 28

collaborative asset management 229
collaborative development 27, 61, 211, 213–214

change management workflows 82
changes toward 214
changing market 214
considerations 227
core capabilities 218
life-cycle collaboration 286
market trends 214
planning, measuring success 288
Rational Team Concert 217
reference scenario 213, 221
Unified Change Management (UCM) 228

collaborative development blueprint 217
change management 88
team health 178

collector 354
community 258
competitive advantage 18
complexity

choice of process 42
choice of tools 41

compliance 18, 38
scans 396, 403

compliance scans 403
component 239

health monitoring 253
component team 51, 211, 213, 222, 327, 483, 486, 500
compound reports 178
configuration

ALM for approvals 521
ALM for retrospectives 524
automated functional tests 473
ClearCase Connector 308
ClearCase Synchronized Streams 308
data 506
Rational Team Concert 471
section 506
synchronization rules 585

configuration items (CI) 489
relationship 492

confirmatory testing 37
connectors 122
construct 321
Construction phase 36, 56, 395, 415, 483

final iteration 58
iteration 7

content change 104
continuous improvement 33, 82, 214
contributors in Rational Team Concert 587
core site 73
coverage analysis 101, 103
cqconnector user 581, 584

Rational ClearQuest 582
Rational Quality Manager 582
Rational Team Concert 582

cqconnector.properties 578

cross-organizational stakeholders 220
crosstabs 178
cross-team adoptions 301
cross-team expectations 301
customer 95

D
dashboard 411, 551
Data Security Standards (DSS) 403
decision making 551
Defect Arrival and Resolution report 463
definition process 99
definitive media library 489
definitive software library (DSL) 489
delivery 117, 483

operations 489
solution integration 285
work item 283

deployment 483
automating 336, 338
challenge 337
Rational Quality Manager 471
Rational Team Concert 302
synchronization rules 585

deployment record
Rational ClearQuest 339

deployment record in Rational ClearQuest 338
Description field 373
design patterns rule category 630
detailing 99
developer 70

change request 51
testing 34, 466

development
activity cycles 35
costs 18
cycle, iteration 36
efficiency 18
iteration plan 109
lead 70, 222, 333, 484
line 237
managers 13
organization 230, 331, 482
process 4, 214, 219, 500

OpenUP 58
team 214, 337, 343, 391, 402, 471, 482, 497–498,
547–548, 558

challenges 19
diagnostics core tracing 205
diff command output 623
discipline-specific modules 26
discovery library adapter (DLA) 492
distributed development 17

changes toward 215
distributed teams 73
distribution 31, 81

archive 328, 357, 512
DLA (discovery library adapter) 492
documentation 99
documents 178
640 Collaborative Application Lifecycle Management with IBM Rational Products

download link 487, 511
DSL (definitive software library) 489
DSS (Data Security Standards) 403

E
effort estimation 548
Elaboration phase 36
element property mapping settings 593
e-mail notification 383
end game 485, 499
enterprise

build 63
build management 27, 316
integration 318, 341
solution team 51

enterprise ALM solution 186, 301, 379, 470, 520
reference architecture 186
software configuration 186

enterprise architecture 4, 22, 558
architectural patterns 26
software development governance 28

enterprise build management
changing market 316
considerations 329
reference scenario 325

enterprise build management blueprint 318
enterprise integration build 63, 313, 357
enterprise software development blueprint 28
environment property 347
environment variable 321, 356
environments 322, 351

section in test plan 147
evaluation 104
Execution 418
execution

record 419
status 469
steps 434

Execution and Defects by Owner report 469
Execution results 423
Execution Status per Tester report 469
Execution Trend report 463, 469
existing processes 39
exit criteria 393, 415, 482, 498

assessment 486, 504
component delivery 484
teams progress 462
test plan 141, 393

extended ALM interoperability configuration 610
extended ClearQuest ALM configurations 610
External Repository Connection 586

F
Fail Notify property 347
failed build 63
failure

project level 386
system level 385
unmaintained project 386

feature requirement 189
feedback 33
File Transfer Protocol (FTP) 338
filter

patterns 348–349
queries 578

flow 182
flow target 282
football analogy 87
frequent integration tests 330, 466
FTP (File Transfer Protocol) 338
functional barriers 20
functional change 104
functional test 57, 396, 402, 423, 474, 507

automated 402
functional verification test (FVT) 87
FVT (functional verification test) 87

G
gap analysis 101
GDD (Geographically Distributed Development) 82, 118
generalizing specialists 85
geographical barriers 20
Geographically Distributed Development (GDD) 82, 118
glossary 98
going live 336
governance, internal mandates 38
green-thread technique 48

H
health monitoring 253
Home module 377

I
IBM and partner ecosystem 28
IBM TechWorks 339
IDE (integrated development environment) 344
impact analysis 101
implementation task

assigning 133
Import Synchronization Rules 588
improvement, continuous 33, 82, 214
Inception phase 36
integrated development environment (IDE) 344
integration 34

build 44, 57, 69, 315, 387, 396, 410
module 492
Rational Build Forge 311
Rational Build Forge source adapters 383
Rational ClearQuest and RequisitePro 199
Rational Team Concert and Rational ClearCase 304
stream 69, 226, 325, 466
testing 44, 69

internal governance mandates 38
interoperability

adding packages to ALM schema 569
ClearQuest ALM schema 195

system-wide settings 571
 Index 641

Jazz repositories 583
Rational RequisitePro 197

investigative testing 57
IT Information Library (ITIL), change management pro-
cess 24
IT Lifecycle Management 6
Item type

qualifier 589
qualifier property 622
qualifier sync property 592

iteration 35, 56, 237
approaches 404
burndown, timeboxing scope of work 294
completion 58
Construction phase 7
development cycle 36
incorporating testing 406
management 183
testing at end 405
testing at the end 405
tracking a single request 8

iteration plan 60, 220–221, 236, 306, 486, 497, 504, 548,
610

Rational Team Concert 249, 504
updating for work item 137
updating the project plan 108

Iteration Plan view 289
iteration planning 88–89, 218, 465, 497, 565

ALMTask record creation 133
iteration release 484, 498, 504

candidate 487, 511
new release package 487
quality exit criteria 486
team 495

iterative development 43, 68, 215, 405, 538
iterative process 56
iterative refinement 103
ITIL (IT Information Library), change management pro-
cess 24

J
Java Architectural Discovery 333
Java Data Flow Analysis 333
Java Software Metrics 333
Java source code 287
Jazz Build Ant to extend build scripts 311
Jazz platform 13, 92, 217, 233

configurations, extended 614
development plans 301
interoperability 122, 196
repositories 72, 196, 578
repositories for interoperability 583
risks 301

Jazz server 74, 584
Jazz.net 235
JazzInterop package 570

configuration 195
Jobs module 349
JUnit source code 287
JUnit test 34, 87, 226, 541

K
keyword 436
known workarounds for stakeholder requests 203

L
lab management 419, 467, 469

automation configuration 476
lab resource 419

confirmation 151
streamline 394

Lab Resource Utilization report 469
labels in Rational Team Concert 614
leadership team 485, 499
lean governance 58
lessons learned, retrospectives 553
letters 178
libraries 356, 384
libraries module 384
licenses, user 584
life-cycle asset 375, 464, 499

in scenario 66
life-cycle collaboration 66, 375, 463, 499, 519

change request 126
collaborative development 286
management 30
perspective 331
stakeholder requests 176

life-cycle service integration 28
life-cycle solution for small teams 227
lists 178
log filter 332, 348

filter patterns 348

M
Machine Free Time Rate report 470
manifest 355
manual test 395, 411, 417, 433, 436

script 417
Max Threads property 347
measure of success 376

by role 298
project lead 300
Rational Team Concert 288

measurements for project health 104
measurements, shared 214
measuring success 534
metrics capture 104
metrics, measurements driving team success 545
mobility 73
monitor quality 455, 458
multiple approach 318, 402
multiple project 228, 392, 566

consistent classification 566
My Test Execution Records 421
My Work view 254

N
Name field 358, 579
642 Collaborative Application Lifecycle Management with IBM Rational Products

need statement 87
needs definition 96
news feed, Rational Build Forge 475
non-user record 589
Notes 5.1 package 569–570

O
Object Management Group (OMG) 489
object-oriented patterns rule category 631
ODA (Open Data Access) model 179
OMG (Object Management Group) 489
Open Data Access (ODA) model 179
Open Unified Process (OpenUP) 527, 538, 562, 583

phases 83
sizing, approvals, retrospectives 195

OpenUP 527, 538, 562, 583
configuration in ClearQuest ALM schema 195
phases 83
sizing, approvals, retrospectives 195

operations, delivery to 489
organization, requirements 99
organizational barriers 20
organizational productivity 18
organizational type 95

P
packages for interoperability to ALM schema 569
pair-programming perspective 95
Pass Notify property 347
Pass/Fail Chain property 383
Payment Card Industry Data Security Standards (PSI
DSS) 403
performance

ALM schema 204
module 377
Rational RequisitePro 208
Rational RequisitePro Web 208

performance test 393, 423, 488
performance testing 402
personal build 276
phases 35, 56
planning 33

activities 94
success in collaborative development 288
success in quality management 467

plans 5
platform suites 17
points, agile sizing 547
portfolio alignment 94
practices 604

shared 214
preflight build 319
prioritization of change requirements 96
problem determination 385, 477

stakeholder request 203
process 5

awareness 241
configuration in Rational Team Concert, Rational
Quality Manager 605

linking roles and accessing multiple repositories 562
understanding and implementation, project success
with predictability and repeatability 534

process automation framework 320, 343
process definition 528, 531, 535, 562, 572
process description, team understanding of the enacted
process 543
process enactment 214, 535, 542

Rational Team Concert 536, 542
process role 539
process specification 525, 535, 618

process implementation in software delivery 535
process-enabled tool component 242
Product Lifecycle Management 6
product list 71
product owner 51, 68, 70, 220

products used 10
production environment 336, 402, 483

scaled-down version 402
Production phase 36
program office 220
project 49, 383

Account Opening 49
areas 305

Rational Team Concert 579
awareness 19
complexity 40
execution 117
health measurements 104
iteration 60
module 345, 359
rework 117
templates in Rational RequisitePro 189
velocity, aligning team capacity to project work 550

project health and dashboard 25
project iteration plan 61

confirmation 110
Rational ClearQuest 508
updating 108, 130

project leader 51, 95
collaboration on code review and analysis standards
335

project manager 13, 70, 219, 502, 521, 535, 562
products used 10

project plan 219, 549, 562
Project Starter template 190
project success 534
project team 322, 404, 466, 485, 496, 531, 535, 558, 578

continuous process improvement 609
iteration retrospective 519
member 541, 555, 577
process consumable 544

project-level failures 386
property mapping 590

setting 594
property value 355, 589
proposal evaluation 22
prototypes 98
PSI DSS (Payment Card Industry Data Security Stan-
dards) 403
 Index 643

Q
quality 18

baseline from initial code review 335
monitoring 467
objectives 147

quality goal 218, 400, 415, 486, 507
quality management 27, 64, 317, 330, 387, 389–390,
411, 465

additional considerations 401
considerations 401
planning, measuring success 467
problem determination 477
reference scenario 389, 397
workarounds 477

quality management blueprint 391
quality manager 335, 409, 497, 565

test plan 473
queries module 377
Quick Report 377

R
RAS (Reusable Asset Specification) 489
Rational ALM solution 82

retrospectives 518
solution delivery 497–498

Rational AppScan 73, 403
Rational AppScan Tester Edition 410, 477

Rational Quality Manager 425
test script 425

Rational Asset Manager 220, 257, 483, 487, 511–512
asset type configuration 490
asset types 490
release date 514
reuse repository 484

Rational Build Forge 73, 219, 328, 332, 335, 342–343,
442, 497, 623

account 475
adapter 333, 379
adapter templates 623
Adaptor Toolkit 383, 623
Administration Messages window 442
agent 385, 624
bill of materials 331
build auditing capabilities 338
build process 333
core component 344
CQALM_PASS environment variable 386
ecosystem 344
e-mail notification group 335
Engine 344
Engine act 345
enterprise integration build 357
framework 343
Help 381
IDE 343
integration 311
job 443
log filter 332
management 343

messages window 475
news feed 475
problem determination 385
project 333, 367, 476, 512
repository 379
RSS feed 475
sample report 376
scenario configuration 380
server module 358
solution delivery 497
source adapter 383

integration 383
specific purpose 345
system 331, 351
task automation 67
user interface 442

Rational CALM solutions 82
Rational ClearCase 73, 323, 329, 342, 511

adapters 380
baseline 364
deployment unit 339
integration with Rational Team Concert 304
repositories 196
server 379
source code 328
synchronization 309
view 623
workspace 304

Rational ClearQuest 72–73, 118, 328, 342, 471,
495–496, 562, 565–566

adapters 380
advantages 119
ALM artifacts 74
ALM Packages 119, 194
ALM schema 188, 566
ALM schema for interoperability 195
BIRT report 179
change request 124
ClearQuest Connectors to Jazz platform-based repos-
itories 72
closed loop process 173
configuration for ALM interoperability 195
cqconnector user 582
deployment record 338–339
diagnostics core tracing 205
feed setup for queries 202
following actions 521
group 577
integration considerations with Rational RequisitePro
209
integration with Rational RequisitePro 199
project iteration plan 508
queries 565
record 570
reporting team health 182
requirement creation 173
retrospectives 519
solution delivery 497, 521
stakeholder requests 115
system-wide settings 120
644 Collaborative Application Lifecycle Management with IBM Rational Products

troubleshooting 204
Eclipse client 204
packages 204
Web client 204

Rational ClearQuest Eclipse client 179
Rational ClearQuest MultiSite

configuration 569
replicas 74

Rational ClearQuest Test Manager 471
Rational development team 48
Rational Functional Tester 11, 424

8.0 410
adapter 475
adapter window 474
automated test script 402

Rational Performance Tester 11
Rational Policy Tester 11, 403
Rational Quality Manager 73, 402, 410, 423, 425, 471,
497, 562, 565

ALM interoperability 614
corresponding adapter 474
cqconnector user 582
dashboard 411, 456
deployment 471
manual test 444
Rational AppScan Tester Edition 410, 425

test script 425
Rational ClearQuest Test Manager 471
reports 457
solution delivery 497
test asset 473
tool usage 470
user accounts 472

Rational Requirements Composer 72, 117–118
configuration 189
definition techniques 162
integration points with Rational RequisitePro 191
Project Starter template 190
sketching technique 162
stakeholder requests 115
template 190
usage model 187

Rational RequisitePro 72, 117
advantages 117
change request 124
close loop process 173
configuration 189
integration 472

considerations with Rational ClearQuest 209
points with Rational Requirements Composer
191
with Rational ClearQuest 199

interoperability 197
project templates 189
Rational ClearQuest requirement creation 173
requirements 189

refinement 171
stakeholder requests 115
troubleshooting 206

client logging 206

performance considerations 208
usage model 187

Rational RequisitePro Web 208
performance considerations 208

Rational RequisiteWeb 208
Rational Services Tester 11
Rational Software Analyzer 64, 73, 328, 331–332, 342,
365, 404

7.0.0.0 71
adapter 380–381
API 381
code analysis and review planning 333
result 365
server 333
static analysis on source code 73

Rational Team Concert 214, 218, 448, 471, 496, 536,
555, 562, 565

agile development 246
browsing assets 266
build engine 309
CALM 228
change management 219
ClearCase Connector 72
ClearQuest Gateway 582
collaborative development 217
corresponding labels 614
cqconnector user 582
deployment 302
feed setup for ClearQuest queries 202
following actions 500
importing assets 267
integration with Rational ClearCase 304
iteration plan 249, 504
Jazz platform 92
key configurations 471
measuring success 288
new contributors 587
outgoing synchronization processes 582
overview 232
priority labels 615
process configuration 605
process enactment 536, 542
project areas 579
record synchronization 570
resolution codes 616
retrospective editor 529
retrospectives 518
solution delivery 497, 525
source changes 72
source code management capabilities 218
stakeholder requests 114
synchronization rule editor 589
synchronized work items 570
Team Advisor 541
team area 605
team health 292
team health capabilities 219
work item 570
WorkItem attachments 591

Rational Team Concert Web 252
 Index 645

Rational Test Lab Manager 457
Rational Unified Process (RUP) 36, 488, 562

phases 83
traditional phased-based approach 41

ratl_diagnostics table 205
read-only snapshot of test plan 415
real-time meeting 555
record synchronization 570
record type 329, 374, 566
Redbooks Web site

Contact us xvii
reference architecture and configuration 301, 379, 470,
520
reference scenario 11, 47, 59, 221, 325–326, 347, 402,
465, 471, 481

architecture and configuration 69
automated code review and analysis 335
collaborative development 221
development process 58
enterprise build management 325
life-cycle assets 66
product integrations 72
product list 71
products used 10
project 49
quality management 397
responding to change request 105
software delivery team 50
solution delivery 483
team approach 55
team of teams 51

reference synchronization rule 593
regulatory compliance 18
release archive 487, 512

release assets 487
release delivery 67
release engineer 51, 71, 313, 315, 398, 484

products used 10
release package 487, 511
release page 487, 511
release process 342, 376
remote site 73
repetitive tasks, automated 562
reporting

Business Intelligence Reporting Tool (BIRT) 178
ClearQuest ALM 177
team health in Rational Team Concert 292

reports 424
analysis results 336
Business Intelligence Reporting Tool (BIRT) 178
creation 378
existing 378

repositories 489
accessing multiple 562
Account Opening project 74
central 27, 93, 118
Jazz for interoperability 583
schema 567
separate 61, 81
shared 6

Request Response Time report 470
request type 121
requests 60, 97, 120

analysis and prioritization 112
change 108
code review 278
management 184
sizing 113
submitting 127
tracking through an iteration 8
work review 140

requirements 61, 413
CALM 85
CALM driven 45
context 97
coverage 460, 469
definition and management 111
development 84
linking to activity 174
organization 99
supplementary 189
technical refinement 171
testing 467
verification 101

requirements change 79
actors 106
workflow 106

requirements definition 4, 77, 79, 84, 94, 117, 158
changing market 83

requirements definition and management blueprint 93
requirements management 26, 84, 94, 158, 167

Big Requirements Up Front (BRUF) 83
changing market 83
strategy 96

resolution code 510, 525, 566
Rational Team Concert 616
work item 574

resource groups 420
response to change request 60
results assessment 92
retrospective editor in Rational Team Concert 529
retrospectives 33, 104, 518

ALM configuration 524
lessons learned 553
OpenUP 195
Rational ALM solution 518
Rational ClearQuest 519
Rational Team Concert 518
work items 527

reusable asset 26, 61, 220, 467, 483
collaboration 261
searching for 258

Reusable Asset Specification (RAS) 489
reviews

ALMActivity record 135
test plan 146

rich text documents 98
role map 13
rule categories and subcategories reference 628
rules 334
646 Collaborative Application Lifecycle Management with IBM Rational Products

Run Limit property 347
RUP 36, 488, 562

phases 83
traditional phased-based approach 41

S
sample database 72, 566–567

vendor database option 567
sandbox environment 34
scaling agile methods 38
scaling to a heterogeneous platform 234
scans

automated 403
security and compliance 403
static analysis 404

schedule 350
scheduling work 254
schema repository 567
scope of analysis 334
SDLC (software development lifecycle) 6

manual and mundane processes 560
security 322
security scans 396, 400, 403, 425, 450
security test 423
selector 353, 385
Selector property 347
senior line of business managers 13
server 352

authentication 356
manifest 355

server.shutdown.bat command 583
server.startup.bat command 583
service test 423
shared assets 214
shared dashboards 551
shared measurements 214
shared practices 214
shared repositories 6
shared vocabulary 214
simplicity first 560
single iteration 407
sizing

OpenUP 195
project work 547

sketching 162
snapshot 239, 288
software delivery 13, 81, 214, 316, 481–482, 534

CALM blueprint 24
increased business demands 482
normal course 535
normal part 544
process specifications 535
team 50

software development 4, 21, 221, 318, 364, 393, 533,
558

assembly line 319
software development lifecycle (SDLC) 6

manual and mundane processes 560
software solution 217, 396, 558

existing investments 559

solution architect 51
products used 10

solution delivery 65, 479, 495
additional considerations 488
considerations 488
Rational ALM 498
Rational ALM solution 497–498
Rational Build Forge 497
Rational ClearQuest 497, 521
Rational Quality Manager 497
Rational Team Concert 497, 525
reference scenario 483

solution integration 221, 327, 484, 504
accepting changes 286
delivery 285

solution team 405
leads 53

solution test plan 61
updating 109, 139, 141

solution test team 55, 389
source code 4, 217, 316, 329, 390, 466, 559, 627

entire application assembly process 321
Rational ClearCase 328
Rational Team Concert

changes 72
management capabilities 218

regular analysis 404
right version 219
static analysis 73

source code (Java and JUnit) 287
source code control 64
source code management 218
source configuration management 239, 307
sprint backlog 548
Sprint Burndown report 294
sprint burndown, timeboxing scope of work 294
stabilization testing 36
staff productivity 18
stakeholder requests 189

definition 160
known workarounds 203
problem determination 203
Rational ClearQuest 115
Rational Requirements Composer 115
Rational RequisitePro 115
Rational Team Concert 114

stakeholders 22, 95, 214, 321, 343, 488, 504
communication 117
cross-organizational 220

Start Notify property 347
static analysis 319, 324, 357, 404, 466

during the build 332
static code analysis 64
step 345
story

context 49
product list 71
project 49

storyboard 12, 98, 387, 465
actors 106
 Index 647

objectives 49
stream 239
structural antipattern 632
structural patterns rule category 632
submitted change request 108
success measure

collaborative development 288
quality management 467

success, measurement of 376
by role 298
project lead 300
Rational Team Concert 288

supporting requirements 189
SVT (system verification test) 87
syncengine.startup.bat script 309
synchronization

outgoing 605
Rational ClearCase 309

synchronization managers, ClearQuest Gateway 196
synchronization process in Rational Team Concert 582
synchronization rule editor

Rational Team Concert 589
synchronization rules 196, 577, 582, 588, 609

ClearQuest Connector 577
configuration and deployment 585
file system 588
property 582

system patterns rule category 633
system test 405, 413, 466
system verification test (SVT) 87
system-level failures 385
systems development lifecycle 6
system-wide settings 120, 566, 572

ClearQuest ALM 568
configuration properties 571

T
Tag Format property 347
Tag Sync 383
tasks 120–121

closing 155
management 185
updating 155

TDD (test-driven development) 34, 37, 226
team

approach in scenario 55
awareness 19
distributed 73
distribution 38
globally distributed 50
size 9, 38
success, metrics and measurements 545
transparency 289

Team Advisor
Rational Team Concert 541

team area 305, 420, 501, 542, 605
disable outgoing synchronization 605
Rational Team Concert 1.0 605

team build 240, 309
Team Central view 290

Team Central, component health 253
team collaboration 243

with team contributors 220
team health 33, 88, 92, 217, 219, 456, 507

assessment 458
collaborative development blueprint 178
Rational Team Concert 219, 292
reporting with Rational ClearQuest and BIRT 182

team leads 13, 53
team member 95, 214, 317, 367, 391, 395, 414, 504,
540, 555, 558

in-context discussions 570
interaction 48
weak communication environment 386

team of teams 51
Team Velocity report 295
technical principles 561
technology barriers 20
TechWorks 339
test

analysis 397, 424
asset in Rational Quality Manager 473
changing market 390
execution 401, 444
management 392
quality 57
resources 442
tools 396

test case 61, 224, 317, 392, 413, 415–416, 489, 502, 558
associated requirements 431
clickable link 436
code coverage 486
execution environments 438
execution work item 474
expected result 464
test plan 143
test script 444

test construction 395
execution 467

test effort 324, 392–393, 410–411
test environment 319, 337, 393, 413, 483, 577

test suite 444
test execution 396, 411

record 415, 438
test lab 396, 410, 488

setup 396
test lead 51, 71, 395, 471, 484
test plan 61, 397, 400, 410, 428, 484, 497, 559

business objectives 146
environments section 147
exit criteria 141, 393
quality manager 473
quality objectives 147
read-only snapshot 415
requirements section 428
review 146
sections 415
test case 143
test scripts 415

test planning 35, 392–393, 411, 465
648 Collaborative Application Lifecycle Management with IBM Rational Products

test script 228, 386, 397, 411, 415, 417, 436
manual test script 400
test case 444

test server 319, 387, 396, 411
test suite 417, 558
test team 55, 317, 387, 392, 410, 486, 502, 562

important function 460
important task 469
products used 11

test-driven development (TDD) 34, 37, 226
tester 51, 71
testing 34

automated 402
confirmatory 37
end of an iteration 405
functional 402
incorporated into the iteration 406
integration 44
performance 402
stabilization 36

testing effort 81, 331, 393, 413, 561
testing team 325, 397

integrated solution 325
third-party provider 317
time stamp 624
time to market 18
Tivoli Change and Configuration Management Database
(CCMDB) 489–490, 512, 561
Tivoli Provisioning Manager 338–339
tool administrators 13
tools 6

usage in Rational Quality Manager 470
top-down approach 58
trace relationships 100
traceability 32, 81, 100
Transition phase 36, 56, 483, 499
transition to production 488
transparency 33, 88, 92
trend reports 463, 469
troubleshooting

Rational ClearQuest 204
Rational RequisitePro 206

U
UCM (Unified Change Management) 67, 121, 227, 330,
374
UI (user interface) 221, 345, 416, 566, 628
UI branding 60, 105, 127, 187, 221, 483

corporate assets 222
UI change 226

design pattern 226
UI form 225
unaligned work 185
Unified Change Management (UCM) 121, 227, 330, 374

collaborative development 228
view 67

unit test 57, 70, 226, 325, 366, 397, 442, 559
unmaintained project failures 386
usage model 187
use case 98, 189, 349, 538

green thread 48
user accounts

Rational Quality Manager 472
user interface (UI) 221, 345, 416, 566, 628
users

configuration 577
licenses 584

V
validation 99

result 226
test 226

value transformer 593
variables 385
vendor database option 567
verification point 434
verification test 219, 316, 357, 391, 466
verification testing 330, 466
versioned object base (VOB) 364
viewlet 411, 506
VOB (versioned object base) 364
vocabulary, shared 214

W
Web client 431
Web dashboard 291
Web interface 220, 471
Web-based dashboard 27, 344
WebSphere Service Registry and Repository (WSRR)
230
work

effort 411
review of request 140
scheduling 254
unaligned 185

work assignment 61, 225, 458, 549, 562, 565
alignment 44, 91
ClearQuest Connector 123

work configuration 509, 577
primary owner 577

work item 217, 219, 237, 414, 458, 501, 525, 546, 549,
555, 586

approving changes 280
delivery and resolution of 283
disable outgoing synchronization 605
in progress 264
management 88
management and planning 218
outgoing synchronization 605
Rational Team Concert 570
resolution codes 574
type retrospective 527
updating iteration plan 137

work management 89
practices 90

workarounds 477
worker machines 322
workflow 215, 222, 327, 397, 399, 482, 497, 535, 622

change request 127
 Index 649

requirement change 106
solution delivery 485

WorkItem attachment 591
workspace 239, 287

creation 265
WSRR (WebSphere Service Registry and Repository)
230

X
XLM section 528
650 Collaborative Application Lifecycle Management with IBM Rational Products

(1.0” spine)
0.875”<

->
1.498”

460 <
->

 788 pages

Collaborative Application Lifecycle M
anagem

ent w
ith IBM

 Rational

Collaborative Application Lifecycle
M

anagem
ent w

ith IBM
 Rational Products

Collaborative Application Lifecycle
M

anagem
ent w

ith IBM
 Rational

Products

Collaborative Application Lifecycle M
anagem

ent w
ith IBM

 Rational Products

Collaborative Application Lifecycle
M

anagem
ent w

ith IBM
 Rational

Products

Collaborative Application Lifecycle
M

anagem
ent w

ith IBM
 Rational

Products

®

SG24-7622-00 ISBN 0738431974

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

Collaborative Application
Lifecycle Management with
IBM Rational Products

An IBM blueprint for
Collaborative
Application Lifecycle
Management

Green-thread
reference scenario
showing the
Agility-at-Scale
approach

IBM Jazz products
incorporated into an
enterprise solution

In this IBM Redbooks publication, we provide a blueprint for
Collaborative Application Lifecycle Management (CALM) and show how
the new IBM Rational products support this evolving market. Driven by
the business demands of global software delivery, many large
organizations are seeking guidance in how to incorporate agile methods.

In this book, we provide a reference scenario and tool architectures for
deploying the new IBM Rational products into an existing enterprise
environment. We also provide a set of blueprints that define each of the
key disciplines in the development life cycle to help you understand the
domain and how the Rational products support the need of that
discipline. Our primary focus is to highlight the value of CALM by
providing a user view of the solution that is used to support a distributed
enterprise development team that incorporates aspects of the
“Agility-at-Scale” approach.

While most Redbooks publications provide details about a single
product, this book provides a “green-thread” reference scenario that
details one end-to-end path through an iteration of a software
development project. The scenario demonstrates a reference
architecture for an enterprise that uses the new Rational Jazz
technology-based products along with the existing Rational team
products. The scenario includes Rational Build Forge Enterprise Edition,
Rational ClearCase, Rational ClearQuest, and Rational RequisitePro, and
introduces Rational Quality Manager, Rational Requirements Composer,
Rational Software Analyzer, and Rational Team Concert.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this book
	Become a published author
	Comments welcome

	Part A Collaborative Application Lifecycle Management defined
	Chapter 1. Introduction to Application Lifecycle Management and this book
	1.1 The scope of Application Lifecycle Management
	1.1.1 People, process, information, and tools that drive the life cycle
	1.1.2 The scope of this book

	1.2 Using this book
	1.2.1 Goals and objectives
	1.2.2 How this book is organized
	1.2.3 Target audience and chapters of interest

	Chapter 2. Collaborative Application Lifecycle Management
	2.1 Understanding Collaborative Application Lifecycle Management
	2.1.1 Changes in the ALM market
	2.1.2 A CALM blueprint to streamline software delivery

	2.2 Life-cycle collaboration and management
	2.2.1 Success indicators
	2.2.2 Cycles of activity in the development organization
	2.2.3 Scaling agile methods
	2.2.4 Aligning work assignments
	2.2.5 Being requirements driven
	2.2.6 Striving for build clarity and quality

	Chapter 3. A scenario for CALM
	3.1 A story telling a tale of integrations
	3.1.1 Story objectives
	3.1.2 The context for the story

	3.2 The project
	3.3 The software delivery team
	3.3.1 A team of teams
	3.3.2 The solution team leads
	3.3.3 The agile development team
	3.3.4 The solution testing team

	3.4 The approach
	3.4.1 Phases and iterations for establishing cadence
	3.4.2 Frequent builds to drive clarity and quality
	3.4.3 Testing to drive quality
	3.4.4 Lean governance

	3.5 A story told act by act: Completing an iteration
	3.5.1 Act 1: Responding to a change request
	3.5.2 Act 2: Collaborative development
	3.5.3 Act 3: Enterprise integration builds
	3.5.4 Act 4: Managing quality
	3.5.5 Act 5: Delivering the solution

	3.6 Life-cycle collaboration
	3.6.1 Life-cycle assets in this CALM scenario
	3.6.2 Agility at Scale

	3.7 Reference architecture and configuration
	3.7.1 An enterprise CALM solution
	3.7.2 Product integrations for this scenario
	3.7.3 Supporting distributed teams

	Part B Act 1: Responding to a change request
	Chapter 4. The team responds to a requirement change
	4.1 Introduction to change management
	4.1.1 The changing change management market
	4.1.2 The changing requirements definition and management market
	4.1.3 Collaborative development blueprint and change management
	4.1.4 Requirements definition and management blueprint

	4.2 A reference scenario for responding to a change request
	4.2.1 The actors
	4.2.2 The workflow
	4.2.3 Bob submits a request
	4.2.4 Patricia updates the project iteration plan
	4.2.5 Marco updates the development iteration plan
	4.2.6 Tammy updates the solution test plan
	4.2.7 Patricia confirms the project iteration plan
	4.2.8 Bob defines and manages the requirements

	4.3 Considerations in change management
	4.3.1 Analyzing and prioritizing requests
	4.3.2 Sizing requests
	4.3.3 Rational Team Concert for stakeholder requests

	Chapter 5. Rational ClearQuest, Requirements Composer, and RequisitePro to manage stakeholder requests
	5.1 Act 1: Responding to a change request
	5.2 Rational RequisitePro and Rational Requirements Composer
	5.3 Rational ClearQuest
	5.4 Jazz interoperability
	5.4.1 ClearQuest Connectors
	5.4.2 ClearCase Connectors

	5.5 Managing a change request with Rational RequisitePro and Rational ClearQuest
	5.5.1 Bob submits a request
	5.5.2 Patricia updates the project iteration plan
	5.5.3 Marco updates the development iteration plan
	5.5.4 Tammy updates the solution test plan
	5.5.5 Patricia confirms the project iteration plan
	5.5.6 Bob defines and manages the requirements

	5.6 Life-cycle collaboration
	5.7 Planning and measuring success in change management
	5.7.1 Reporting with ClearQuest ALM
	5.7.2 Reporting with the Business Intelligence Reporting Tool
	5.7.3 Reporting team health with Rational ClearQuest and BIRT

	5.8 Reference architecture and configuration
	5.8.1 Fitting into the enterprise ALM solution
	5.8.2 Configuring Rational RequisitePro and Rational Requirements Composer
	5.8.3 Configuring Rational ClearQuest and the ALM schema

	5.9 Problem determination and known workarounds
	5.9.1 General techniques
	5.9.2 Troubleshooting Rational ClearQuest
	5.9.3 Troubleshooting Rational RequisitePro

	Part C Act 2: Collaborative development
	Chapter 6. An agile team implements a change
	6.1 Introduction to collaborative development
	6.1.1 The changing collaborative development market
	6.1.2 Collaborative development blueprint

	6.2 A reference scenario for collaborative development
	6.2.1 The actors
	6.2.2 The workflow
	6.2.3 Marco monitors component health
	6.2.4 Al identifies an asset the team can use
	6.2.5 Marco and Diedrie do just enough design
	6.2.6 Diedrie develops, builds, and tests her changes
	6.2.7 Diedrie delivers her changes and builds the component

	6.3 Considerations in collaborative development
	6.3.1 Lifecycle solution for small teams
	6.3.2 Collaborative development with UCM
	6.3.3 Collaborative asset management

	Chapter 7. Rational Team Concert for collaborative development
	7.1 Act 2: Collaborative development
	7.2 Overview of Rational Team Concert
	7.3 Rational Team Concert for agile development
	7.3.1 Marco monitors component health
	7.3.2 Al identifies an asset that the team can reuse
	7.3.3 Diedrie, Marco, and Al do ‘just enough’ design
	7.3.4 Diedrie develops, builds, and tests her changes
	7.3.5 Diedrie delivers her changes and builds the component

	7.4 Life-cycle collaboration
	7.5 Planning and measuring success in collaborative development
	7.5.1 Measuring success with Rational Team Concert
	7.5.2 Reporting team health with Rational Team Concert
	7.5.3 Measuring success by role

	7.6 Reference architecture and configuration
	7.6.1 Fitting into the enterprise ALM solution
	7.6.2 How the products are configured for this scenario

	Part D Act 3: Enterprise integration builds
	Chapter 8. The release engineer conducts the integration build
	8.1 Introduction to enterprise build management
	8.1.1 The changing enterprise build management market
	8.1.2 Enterprise build management blueprint

	8.2 A reference scenario for enterprise build management
	8.2.1 The actors
	8.2.2 The workflow
	8.2.3 Rebecca inspects the integration build
	8.2.4 Rebecca runs the integration build

	8.3 Considerations in enterprise build management
	8.3.1 Managing the build artifacts
	8.3.2 Managing quality
	8.3.3 Building clarity
	8.3.4 Running static analysis during the build
	8.3.5 Automating deployment

	Chapter 9. Rational Build Forge for enterprise integration build
	9.1 Act 3: Enterprise integration build
	9.2 Rational Build Forge Enterprise Edition
	9.2.1 Process automation framework
	9.2.2 Projects
	9.2.3 Jobs
	9.2.4 Schedule
	9.2.5 Environments
	9.2.6 Servers
	9.2.7 Libraries

	9.3 Using Rational Build Forge for an enterprise integration build
	9.3.1 Rebecca inspects the build
	9.3.2 Rebecca runs the integration build

	9.4 Life-cycle collaboration
	9.5 Measuring success
	9.6 Reference architecture and configuration
	9.6.1 Fitting into the enterprise ALM solution
	9.6.2 How Rational Build Forge is configured for this scenario

	9.7 Problem determination

	Part E Act 4: Managing quality
	Chapter 10. The solution test team manages quality
	10.1 Introduction to managing quality
	10.1.1 The changing test market
	10.1.2 Quality management blueprint

	10.2 A reference scenario for managing quality
	10.2.1 The actors
	10.2.2 The workflow
	10.2.3 Tammy monitors quality
	10.2.4 Tanuj constructs tests
	10.2.5 Tammy prepares the test lab
	10.2.6 The team executes the tests
	10.2.7 Tammy monitors quality

	10.3 Considerations in quality management
	10.3.1 Automated testing
	10.3.2 Automated scanning
	10.3.3 Approaches to iterations
	10.3.4 Many test phases on the path to production

	Chapter 11. Rational Quality Manager for managing quality
	11.1 Act 4: Managing quality
	11.2 Rational Quality Manager
	11.3 Rational Functional Tester
	11.4 Rational AppScan Tester Edition for Rational Quality Manager
	11.5 Rational Quality Manager
	11.5.1 Tammy monitors quality
	11.5.2 Tanuj constructs the tests
	11.5.3 Tammy configures the test lab
	11.5.4 The team executes the tests
	11.5.5 Monitoring quality

	11.6 Life-cycle collaboration
	11.6.1 Managing quality
	11.6.2 Requirements-driven testing

	11.7 Planning and measuring success in quality management
	11.8 Reference architecture and configuration
	11.8.1 Fitting into the enterprise ALM solution
	11.8.2 How the products are configured for this scenario

	11.9 Problem determination and known workarounds

	Part F Act 5: Delivering the solution
	Chapter 12. The team delivers the solution
	12.1 Introduction to software delivery
	12.1.1 The changing of software delivery

	12.2 Reference scenario for solution delivery
	12.2.1 The actors
	12.2.2 The workflow
	12.2.3 The team moves to the end game
	12.2.4 The team leads assess their exit criteria
	12.2.5 Rebecca publishes the release
	12.2.6 Marco conducts a retrospective

	12.3 Considerations in solution delivery
	12.3.1 Transitioning to production
	12.3.2 Delivering to operations

	Chapter 13. The Rational ALM solution for solution delivery
	13.1 Act 5: Delivering the solution
	13.2 The Rational ALM solution and solution delivery
	13.2.1 Rational ClearQuest and solution delivery
	13.2.2 Rational Team Concert, Rational Quality Manager, and solution delivery
	13.2.3 Rational Build Forge and Solution Delivery

	13.3 The Rational ALM solution for solution delivery
	13.3.1 The team moves to the end-game
	13.3.2 The team leads assess their exit criteria
	13.3.3 Rebecca publishes the release
	13.3.4 Marco conducts a retrospective

	13.4 Life-cycle collaboration
	13.5 Reference architecture and configuration
	13.5.1 Fitting into the enterprise ALM solution
	13.5.2 How the products are configured for this scenario

	Part G Measuring team success in Application Lifecycle Management
	Chapter 14. Delivering and measuring success in Application Lifecycle Management
	14.1 Introduction to measuring success
	14.2 Process understanding and implementation: Improving project success with predictability and repeatability
	14.2.1 Process specifications: Implementing your process in software delivery
	14.2.2 Process descriptions: Team understanding of the enacted process

	14.3 Using metrics and measurements effectively to drive team success
	14.3.1 Selecting the right metrics
	14.3.2 Agile estimation

	14.4 Using dashboards for decision making
	14.5 Using retrospectives to capture lessons learned and make adjustments

	Appendix A. Principles for Collaborative Application Lifecycle Management
	Philosophical principles
	Development is not an island unto itself
	Software solutions are the product of many conversations
	Solutions are rarely sunset; they are refined and maintained for years
	Many cycles are ripe for automation and recommendation
	Simplicity first

	Technical principles
	Focus on the team’s ability to produce a release of software
	Use multiple repositories
	Processes link roles and access multiple repositories
	Automate repetitive tasks
	Link people and the assets they access

	Appendix B. Configuring interoperability
	Configuring the ClearQuest ALM schema
	ClearQuest and the ALM schema
	Using the ALM schema and sample database
	Adding packages for the ALM schema

	Configuring ClearQuest ALM schema for interoperability
	Adding packages for interoperability to the ALM schema
	Configuring ClearQuest ALM system-wide settings for interoperability
	Configuring users
	Configuring filter queries
	Configuring the ClearQuest Gateway

	Configuring Jazz repositories for interoperability
	Configuring users and licenses
	Configuring and deploying synchronization rules

	Practices for using ALM interoperability
	Extended ALM interoperability configuration
	Extended ClearQuest ALM configurations
	Extended Jazz configurations

	Appendix C. Rational Build Forge adapter templates
	Appendix D. Code review rules
	Rule categories and subcategories reference
	Architectural discovery patterns
	Design Patterns rule category
	Object-oriented Patterns rule category
	Structural Patterns rule category
	System Patterns rule category

	Related publications
	IBM Redbooks
	Online resources
	How to get Redbooks
	Help from IBM

	Index
	Back cover

