
Understanding Analytic Workloads
Meeting the complex processing demands of advanced analytics

http://www.netezza.com

Written by: Allan Edwards, Director, Competitive Benchmarking & Analysis,
and George Davies, IBM Netezza Strategic Marketing

Table of Contents
Introduction ..go to P.3

Characteristics of an Analytic Workload ...go to P.4

• Extreme Data Volume ...go to P.5

• Data Model Complexity ..go to P.5

• Variable and Unpredictable Data Traversal Paths,
Patterns, and Frequencies ...go to P.6

• Set-Oriented Processing and Bulk Operationsgo to P.6

• Multi-Step, Multi-Touch Analysis Algorithms......................................go to P.7

• Complex Computation ...go to P.7

• Temporary or Intermediate Staging of Datago to P.7

• Change Isolation/Data Stability Implicationsgo to P.7

Workload Types and Sample SQL ..go to P.8

• Online Transaction Processing (OLTP) ...go to P.8

• Light-to-Moderate Decision Support ...go to P.9

• Heavier Decision Support/Business Intelligence (BI)go to P.12

• Complex, In-Database Analytics ..go to P.14

Characteristics of an Analytic Processing Environmentgo to P.16

• Analytics vs. OLTP ..go to P.16

• Transactional/OLTP Environments ..go to P.16

• Analytic Processing Environment (APE) ...go to P.17

Conclusion ...go to P.19

3White Paper: Understanding Analytic Workloads

Introduction

ANALYTIC is the antonym of TRANSACTIONAL.
Curt Monash *

The practice of analytics involves applying science and computing technology to vast amounts of
raw data to yield valuable insights, and the “analytics” label covers a wide array of applications,
tools, and techniques.

While there are many analytic variants and subspecialties—predictive analytics, in-database
analytics, advanced analytics, web analytics, and so on—this text focuses on the characteristic
demands that nearly all analytic processing problems place on modern information systems.
We refer to these demands as an analytic workload. Every data processing problem has its own
unique workload, but analytic workloads tend to share a set of attributes, with strong design and
deployment implications for the processing systems assigned to handle these workloads.

Analytic vs. Transactional

Transactional processing is characterized by a large number of short, discrete, atomic transactions.
The emphasis of online transaction processing (OLTP) systems is (a) high throughput (transactions
per second), and (b) maintaining data integrity in multi-user environments.

Analytics processing is characterized by fewer users (business analysts rather than customers
and POS operators) submitting fewer requests, but queries can be very complex and resource-
intensive. Response time is frequently measured in tens to hundreds of seconds.

Transactional and analytics processing tasks constitute very different workloads, and transactional
and analytic information systems are designed with these differences in mind.

This text focuses on the server side of the analytics processing paradigm. After defining the key
characteristics of an analytic workload, we’ll present several public examples of different workload
types before moving on to outline the architectural characteristics of an analytic infrastructure,
or processing environment.

* Monash now prefers the term “Short Request” over “Transactional.”

http://www.netezza.com

4White Paper: Understanding Analytic Workloads

Before selecting, constructing, or deploying an analytic infrastructure, it makes sense to try to
understand the basic characteristics and requirements of an analytic workload. Later, in addition
to helping us outline an effective analytic infrastructure, these workload criteria can be used to
evaluate a specific project or problem, yielding a rough measure of analytic complexity.

An analytic workload will exhibit one or more of the following characteristics, each of which
elevates a given workload’s degree of difficulty:

• Extreme data volume

• Data model complexity

• Variable and unpredictable traversal paths, patterns, and frequencies

• Set-oriented processing and bulk operations

• Multi-step, multi-touch analysis algorithms

• Complex computation

• Temporary or intermediate staging of data

• Change isolation/data stability implications

Rating each of these characteristics on a 1-10 scale yields the following general comparison
for some idealized sample workloads:

Characteristics of an Analytic Workload

Figure 1: Analytic and Transactional Workloads

Quantification | Volume, “Big” | Variety | Complexity | Velocity

VolumeVelocity

Source: Gartner (March 2011)

Source: Open Insights, LLC

Variety Complexity

VolumeVelocity

tyy CCo

What
happened?

How many?
How often?

How many?
Where?

How much?
Where?

What will happen?
What is the best choice?

MIS
Standard Reports

EIS
Drill Down

DW & OLAP
Ad Hoc Queries

Analytics
BI/Forecasting

Advanced Analytics
Predictive Modeling/Optimization

What
How many?

?
How much?

W
W

ill h ?

2000199019801970 2010

Computational Complexity Data Volume Latency

Analytic Workload

Data Stability
Implications

Data Staging

Computational
Complexity

Multi-Pass
Algorithms

1
1

1

2

2

2

8

8

9

7
6

8

7

8

3
3

Set-Oriented Ops

Data Access
Variability

Data Volume

Data Complexity

OLTP Workload

http://www.netezza.com

5White Paper: Understanding Analytic Workloads

Extreme Data Volume

While there is no specific threshold that makes a data set “large,” it’s fair to say that data volumes
tend to be large in analytics processing. Applications like fraud detection, web analytics, and
decision support are all routinely associated with the largest data stores, often measured in
petabytes of data. Two direct metrics combine to drive up data volume:

• Row Cardinality (Number of Rows) – A single table’s rows may number in the billions,
tens of billions, or even hundreds of billions. Analytic workload requirements increase
directly with row numbers. Simple physics dictates that when analyzing billions of rows,
any inefficiency or overhead cost, no matter how small, becomes expensive.

• Row Width (Row Size) – It is not uncommon for tables to contain tens or hundreds of
columns. Workload complexity increases as column counts increase, because larger rows
consume more space, for both storage and processing. Larger row sizes also tend to
introduce physical data sparsity as columns are skipped during various operations.

Data volume is further multiplied by any database management system (DBMS) that implements
indexes, which store the indexed data redundantly, along with other metadata designed to
streamline serial and selective data retrieval.

Data Model Complexity

Talking only about big data can lead to self-delusion.
Merv Adrian, Gartner

Large data volumes amplify the need for efficient, streamlined processing. Compounding large
volume with complex data structures can result in processing demands that border on the
unachievable. In addition to sheer size, “big data” or “extreme data” generally involves several
dimensions, including:

• Data Object Complexity (Many Tables and Relations, Views, Data Structures, Etc.) –
Data representation is typically spread across multiple data objects that must be combined,
or “joined,” at run time by the processing platform. As the quantity of relationships increases,
so do the magnitude and complexity of the resultant processing. If virtual objects such as
views are introduced, additional processing ensues to either materialize the view or merge
the base objects (underneath the view) into the overall statement plan.

• Data Variety – Native system data types, data codification schemes, and other
implementation details tend to vary across applications, systems, and enterprises. Analytic
repositories often ingest data from many varied sources, encountering many different styles
and types of data. These representations frequently must be transformed and/or converted
so that consistent interpretation and logical cohesion can be achieved. While some systems
convert data upstream with analytic processing, it is also common for conversion to be
deferred until the point at which data are analyzed. This creates a spike of additional load
on the underlying processing system.

http://www.netezza.com

6White Paper: Understanding Analytic Workloads

• Data Model Style – Nearly any modeling style can be embraced in support of analytic
processing—normalized, dimensional, etc. The objective is to employ a modeling style that
constitutes a reasonable compromise and is sufficiently flexible to serve a variety of use
cases, such as loading, retrieval, and archiving. No single style can be considered
consummate or universal.

Analytic applications often characterized by data complexity include medical diagnostics,
predictive modeling, portfolio analysis, and many others. According to Gartner, mixed data
types—tables, media, clickstreams, sensor/metering data, text, and so on—comprise 70%-85%
of all data.

Variable and Unpredictable Data Traversal Paths, Patterns, and Frequencies

Effective analysis requires fast and reliable performance regardless of data traversal routes and
direction. Freedom to “roam the data” with consistent performance is essential in marketing
analytics, forensics, fraud detection, etc. Bottom-up, top-down, and random-path scanning are all
fair game for analytic practitioners, and this variable data path requirement is a distinctive aspect
of analytic workloads—one with profound architectural implications. OLTP architectures generally
presume predefined data access paths, which can be tuned and optimized for. Caching,
clustering, colocation, partitioning, and indexing are all access optimizations that reduce traverse
times for expected data access paths. Unfortunately, these structures tend to penalize traversal
via alternative paths—an unacceptable result on an analytic platform.

Set-Oriented Processing and Bulk Operations

In another distinctive feature of analytic workloads, inter-row pattern aggregates—working sets,
large or small—are frequent targets of research. This is in sharp contrast to the single-row,
row-at-time, scalar analysis associated with typical transactional workloads. In a single analytics
operation, working sets of hundreds, thousands, or millions of rows are common, and the data
footprint for a single query can be enormous. As working set row counts increase, workload
complexity escalates, sometimes exponentially. Sample applications include weather forecasting,
forensic analysis, and economic modeling, which challenge analytic infrastructure designers in a
way that transactional workloads do not.

Figure 2: The Four Axes of Big Data

Quantification | Volume, “Big” | Variety | Complexity | Velocity

VolumeVelocity

Source: Gartner (March 2011)

Source: Open Insights, LLC

Variety Complexity

VolumeVelocity

tyy CCo

What
happened?

How many?
How often?

How many?
Where?

How much?
Where?

What will happen?
What is the best choice?

MIS
Standard Reports

EIS
Drill Down

DW & OLAP
Ad Hoc Queries

Analytics
BI/Forecasting

Advanced Analytics
Predictive Modeling/Optimization

What
How many?

?
How much?

W
W

ill h ?

2000199019801970 2010

Computational Complexity Data Volume Latency

Analytic Workload

Data Stability
Implications

Data Staging

Computational
Complexity

Multi-Pass
Algorithms

1
1

1

2

2

2

8

8

9

7
6

8

7

8

3
3

Set-Oriented Ops

Data Access
Variability

Data Volume

Data Complexity

OLTP Workload

http://www.netezza.com

7White Paper: Understanding Analytic Workloads

Multi-Step, Multi-Touch Analysis Algorithms

Like variable traversal paths and set-oriented processing, multi-step/multi-pass data scanning
and analysis are commonplace during analytic research. Sophisticated pattern analysis, for
example, often requires multiple touches or passes of the same data during a single investigation.
Furthermore, analytic functions—programming primitives—often decompose into multiple internal
steps. Cross-correlation, lead-lag analysis, moving averages and aggregates, and many other
applications involve this approach. Analytic functions and capabilities embedded close to the
database, or within the database itself, can accomplish such work in a single pass or in fewer
passes than pure SQL, potentially reducing by orders of magnitude data movement and server
resource demand.

Complex Computation

Analytic processing frequently involves statistical analysis and/or additional sophisticated
computational methods. A wide variety of mathematic and statistical operations is employed
to help distill patterns, summaries, and other “interesting” results from raw data populations.
Computational complexity increases demands on the server layer and the amount of work to be
performed during a given request. As you might guess, computational complexity also travels
hand in hand with other analytic workload characteristics, such as set-oriented processing,
multi-pass analysis, and intermediate data-staging requirements.

Temporary or Intermediate Staging of Data

Analytic operations commonly stage intermediate data sets and interim results, particularly for
multi-step/multi-pass algorithms and other sophisticated modeling and analytic methods—what-if
scenario modeling, for example. These techniques presume the ability to write, retrieve, and
integrate intermediate data at high volumes and high speeds, raising the processing requirements
of the related queries substantially.

A Note Regarding the Data Movement Problem – Intermediate data staging is one of several
analytic workload characteristics (including large data, multi-pass analysis, and set-oriented
processing) with the potential to involve massive levels of internal data movement. Bulk
data movement is a primary bottleneck and kills analytics processing performance on
systems not optimized for these workloads. Architectural innovations that minimize data
movement are a key feature of any analytics-oriented system.

Change Isolation/Data Stability Implications

Because analytics research typically involves an iterative sequence of requests and traversals to
discover, drill, hypothesize, verify, and so on, it’s important that any change to the underlying data
be able to be isolated so as not to compromise or undermine active investigations. Predictive
modeling and what-if analysis, for example, may involve longer-running requests that rely on
stable underlying data sets.

Now, with the distinctive attributes of an analytic workload in mind, let’s take a closer look at
several workload types before moving on to outline the characteristics of an analytics processing
environment that might be expected to satisfy an analytic workload’s unique requirements.

http://www.netezza.com

8White Paper: Understanding Analytic Workloads

Workloads do not fall reliably into neat categories; they fall along a continuum with some
recognizable waypoints. We’ll look briefly at four points along the spectrum:

• Online Transaction Processing (OLTP)

• Light-to-Moderate Decision Support

• Heavier Decision Support and Business Intelligence (BI)

• Complex, In-Database Analytics

To illustrate various SQL usage patterns, let’s examine some SQL excerpts from several
benchmark suites developed by the Transaction Processing Performance Council (TPC).
These excerpts are comparatively realistic while remaining simple enough to be useful for
illustration. (You can skip the actual code examples without missing the key points about
workload types and how they differ.)

Online Transaction Processing (OLTP)

In OLTP, the primary operations are (a) creating data records; (b) updating data records;
and (c) retrieving data records, usually as singletons or small sets.

Optimal SQL for OLTP tends to be:

• Precise – Highly targeted to as few tables and rows as necessary. Each SQL data
manipulation language (DML) statement typically modifies data in only one table.

• Prescribed – Coded, compiled, and “locked in.” OLTP queries are almost never ad hoc
or adjusted at run time based on variables or other input.

• Minimalist – Touching only the necessary database objects and columns.

• Transactional – Multiple steps packaged in a single transaction, or “unit of work.”

The following SQL statements are excerpted from the TPC-C benchmark. Keep in mind that
additional, “invisible” statements (triggers, referential integrity, etc.) are often implied, and these
execute in the background, or “behind the scenes”:

Figure 3: Excerpts from TPC-C

TPC Benchmark™ C (TPC-C) is an OLTP benchmark.

Delivery Transaction:

 EXEC SQL SELECT o_c_id INTO :c_id FROM orders

 WHERE o_id = :no_o_id AND o_d_id = :d_id AND o_w_id = :w_id;

 EXEC SQL UPDATE orders SET o_carrier_id = :o_carrier_id

 WHERE o_id = :no_o_id AND o_d_id = :d_id AND o_w_id = :w_id;

Workload Types and Sample SQL

http://www.netezza.com
http://www.tpc.org/tpcc/default.asp

9White Paper: Understanding Analytic Workloads

 EXEC SQL UPDATE order_line SET ol_delivery_d = :datetime

 WHERE ol_o_id = :no_o_id AND ol_d_id = :d_id AND ol_w_id =

:w_id;

 EXEC SQL SELECT SUM(ol_amount) INTO :ol_total FROM order_line

 WHERE ol_o_id = :no_o_id AND ol_d_id = :d_id AND ol_w_id =

:w_id;

 EXEC SQL UPDATE customer SET c_balance = c_balance + :ol_total

 WHERE c_id = :c_id AND c_d_id = :d_id AND c_w_id = :w_id;

 EXEC SQL COMMIT WORK;

This SQL is compact, precise, and streamlined. There is no activity of an analytic nature
involved here.

It’s important to recognize that while basic operational facts are captured in the mainline OLTP
SQL, more complex calculations, if required, are often deferred to post-processing and/or
analytical phases in order to minimize the processing effort and data storage footprint of the
primary OLTP application.

Another Note Regarding Data Movement – Ultimately, most workloads consist of multiple steps,
or building blocks, and the fundamental building block is often an SQL statement. This is true for
nearly all workload types. In general, it is beneficial to accomplish as much as possible in each
step rather than subdivide processing tasks into a large number of discrete sub-steps. The goal is
to minimize data movement and its attendant performance penalty. More steps equal more
back-and-forth, more messaging, more data shipping and staging, more data movement, and
degraded performance.

Light-to-Moderate Decision Support

Next, we’ll look at SQL that was designed roughly a decade ago to represent “Decision Support
and Reporting.” This code differs substantially from the OLTP example, because the primary
usage pattern here is retrieval rather than data creation.

The following query excerpts are extracted from the TPC-H benchmark:

Figure 4: Excerpts from TPC-H

The TPC Benchmark™ H (TPC-H) is a decision support benchmark. It consists of a suite of
business-oriented ad hoc queries and concurrent data modifications. The queries and the data
populating the database have been chosen to have broad, industrywide relevance. This
benchmark illustrates decision support systems that examine large volumes of data, execute
queries with a high degree of complexity, and give answers to critical business questions.

TPC-H Q12

 select
 l_shipmode,

http://www.netezza.com
http://www.tpc.org/tpch/default.asp

10White Paper: Understanding Analytic Workloads

 sum(decode(o_orderpriority, ‘1-URGENT’, 1,
‘2-HIGH’, 1, 0)) as
 high_line_count,
 sum(decode(o_orderpriority, ‘1-URGENT’, 0,
‘2-HIGH’, 0, 1)) as
 low_line_count
 from
 orders,
 lineitem
 where
 o_orderkey = l_orderkey
 and l_shipmode in (‘[SHIPMODE1]’,
‘[SHIPMODE2]’)
 and l_commitdate < l_receiptdate
 and l_shipdate < l_commitdate
 and l_receiptdate >= date ‘[DATE]’
 and l_receiptdate < date ‘[DATE]’ + interval
‘1’ year
 group by
 l_shipmode
 order by
 l_shipmode;

TPC-H Q18

 select
 c_name,
 c_custkey,
 o_orderkey,
 o_orderdate,
 o_totalprice,
 sum(l_quantity)
 from
 customer,
 orders,
 lineitem
 where
 o_orderkey in (
 select l_orderkey
 from lineitem
 group by l_orderkey
 having sum(l_quantity) > [QUANTITY]
)
 and c_custkey = o_custkey
 and o_orderkey = l_orderkey
 group by
 c_name,
 c_custkey,
 o_orderkey,
 o_orderdate,
 o_totalprice
 order by

http://www.netezza.com

11White Paper: Understanding Analytic Workloads

 o_totalprice desc,
 o_orderdate;

TPC-H Q21

 select
 s_name,
 count(*) as numwait
 from
 supplier,
 lineitem l1,
 orders,
 nation
 where
 s_suppkey = l1.l_suppkey
 and o_orderkey = l1.l_orderkey
 and o_orderstatus = ‘F’
 and l1.l_receiptdate > l1.l_commitdate
 and exists (
 select *
 from lineitem l2
 where l2.l_orderkey = l1.l_orderkey
 and l2.l_suppkey <> l1.l_suppkey
)
 and not exists (
 select *
 from lineitem l3
 where
 l3.l_orderkey = l1.l_
orderkey
 and l3.l_suppkey <> l1.l_
suppkey
 and l3.l_receiptdate >
l3.l_commitdate
)
 and s_nationkey = n_nationkey
 and n_name = ‘[NATION]’
 group by
 s_name
 order by
 numwait desc,
 s_name;

These SQL segments differ from the OLTP example in several ways:

• The activity is retrieval only.

• Multiple database objects are involved in a single SQL statement.

• Some minor calculations are being performed.

http://www.netezza.com

12White Paper: Understanding Analytic Workloads

• The selectivity of the SQL is uncertain—depending on the data values supplied and the data
population, it could be selective or not.

• There is some aggregation and sorting happening via GROUP BY and ORDER BY clauses.

All in all, this SQL is still extremely simple and straightforward, presenting summarized facts rather
than deep analytical insights.

Heavier Decision Support/Business Intelligence (BI)

Now we’ll look at a slightly more complex retrieval example from TPC-DS, which is a little more
recent and also somewhat more sophisticated. This benchmark is positioned to model decision
support, which typically involves some amount of analytic activity.

Figure 5: Excerpts from TPC-DS

The TPC-DS benchmark models the decision support system of a retail product supplier,
including queries and data maintenance. Although the underlying business model of TPC-DS is a
retail product supplier, the database schema, data population, queries, data maintenance model,
and implementation rules have been designed to be broadly representative of modern decision
support systems.

TPC-DS Q36

 select
 sum(ss_net_profit)/sum(ss_ext_sales_price) as
gross_margin
 ,i_category
 ,i_class
 ,grouping(i_category)+grouping(i_class) as
lochierarchy
 ,rank() over (
 partition by grouping(i_
category)+grouping(i_class),
 case when grouping(i_class) = 0 then
i_category end
 order by sum(ss_net_profit)/sum(ss_
ext_sales_price) asc) as rank_within_parent
 from
 store_sales
 ,date_dim d1
 ,item
 ,store
 where
 d1.d_year = [YEAR]
 and d1.d_date_sk = ss_sold_date_sk
 and i_item_sk = ss_item_sk
 and s_store_sk = ss_store_sk
 and s_state in
(‘[STATE_A]’,’[STATE_B]’,’[STATE_C]’,’[STATE_D]’,’[STATE_E]’,’[S

http://www.netezza.com
http://www.tpc.org/tpcds/tpcds.asp

13White Paper: Understanding Analytic Workloads

TATE_F]’,’[STATE_G]’,’[STATE_H]’)
 group by rollup(i_category,i_class)
 order by
 lochierarchy desc
 ,case when lochierarchy = 0 then i_category end
 ,rank_within_parent

TPC-DS Q51

 WITH
 --
 web_v1 as (
 select
 ws_item_sk item_sk, d_date,
 sum(sum(ws_sales_price))
 over (partition by ws_item_sk order by d_
date rows between unbounded
 preceding and current row) cume_sales
 from web_sales
 ,date_dim
 where ws_sold_date_sk=d_date_sk and d_year=[YEAR] and ws_
item_sk is not NULL
 group by ws_item_sk, d_date),
 --
 store_v1 as (
 select
 ss_item_sk item_sk, d_date,
 sum(sum(ss_sales_price))
 over (partition by ss_item_sk order by d_
date rows between unbounded preceding
 and current row) cume_sales
 from store_sales
 ,date_dim
 where ss_sold_date_sk=d_date_sk
 and d_year=[YEAR]
 and ss_item_sk is not NULL
 group by ss_item_sk, d_date)
 --
 select *
 from (select item_sk
 ,d_date
 ,web_sales
 ,store_sales
 ,max(web_sales)
 over (partition by item_sk order by d_date
rows between unbounded preceding
 and current row)
 web_cumulative
 ,max(store_sales)
 over (partition by item_sk order by d_date
rows between unbounded preceding
 and current row)
 store_cumulative

http://www.netezza.com

14White Paper: Understanding Analytic Workloads

 from (select case when web.item_sk is not null
then web.item_sk else store.item_sk
 end item_sk
 ,case when web.d_date is not null then
web.d_date else store.d_date end d_date
 ,web.cume_sales web_sales
 ,store.cume_sales store_sales
 from web_v1 web full outer join store_v1 store
on (web.item_sk = store.item_sk and
web.d_date = store.d_date)
)x)y
 where web_cumulative > store_cumulative
 order by item_sk
 ,d_date;

These SQL segments include operations that are analytic in nature (particularly Q51), as evidenced by
the SQL Analytic functions Over (Partition by …), and these segments are considerably more
complex than our previous examples. In particular:

• The activity is retrieval only.

• Multiple database objects are involved in a single SQL statement.

• Some minor calculations are being performed, but no heavy, complex computation.

• The selectivity of the SQL is uncertain—depending on the data values supplied and the data
population, it could be selective or not.

• There is some aggregation and sorting happening via GROUP BY and ORDER BY clauses.

• Multiple sets of rows are being processed in a single execution using the SQL Analytic functions.

• There is sub-query refactoring. The SQL WITH clause represents an optimization commonly
found in complex retrieval statements.

• The statements themselves are larger and more involved, with multiple sub-queries, phrases,
features, etc.

Complex, In-Database Analytics

Finally, to get an idea of still greater analytic complexity, we’ll touch on the notion of in-database
analytics—sophisticated analytic functionality that resides within the data server platform and
that can perform advanced analytical operations very efficiently via simple, straightforward
application statements.

In market analysis, revenue forecasting, predictive modeling, and other business processes and
applications, important analytic exercises include:

• Segmentation

• Selection

• Response Attribution

http://www.netezza.com

15White Paper: Understanding Analytic Workloads

• Loyalty/Churn Analysis

• Geospatial Analysis

• And Many Others

Each of these analyses may involve very complex, sophisticated analytic operations against vast data
repositories. A given enterprise’s implementation typically involves a variety of integrated applications,
which are unique and tailored to the local procedures, data, and computing technology stack.
Common analytic primitives include:

• Linear Regression

• Quantile Calculation

• Random Sampling

• Principal Component Analysis

• Bayesian Network Analysis

• Canonical Correlation

• And Many Others

Unlike straight SQL systems, the interface to in-database analytics is not standardized, and the code
that interacts with them is less transportable. Accordingly, no public benchmarks exist in this space
and no code examples are offered here. However, note that on modern, state-of-the-art analytic
platforms, many of the analytic primitives listed above can be invoked with a single application
statement. A key benefit of systems architected for analytic workloads is that the advanced analytics
code has been optimized for the platform on which it executes, and ideally, this code executes
locally with a minimal amount of data movement or transport. This differs from traditional analytic
applications, which run on a separate tier and must physically move data from the storage
server(s) to the analytics server(s) for processing, after which any results must be moved back
again for safekeeping.

Figure 6: The Evolution of Analytics
Quantification | Volume, “Big” | Variety | Complexity | Velocity

VolumeVelocity

Source: Gartner (March 2011)

Source: Open Insights, LLC

Variety Complexity

VolumeVelocity

tyy CCo

What
happened?

How many?
How often?

How many?
Where?

How much?
Where?

What will happen?
What is the best choice?

MIS
Standard Reports

EIS
Drill Down

DW & OLAP
Ad Hoc Queries

Analytics
BI/Forecasting

Advanced Analytics
Predictive Modeling/Optimization

What
How many?

?
How much?

W
W

ill h ?

2000199019801970 2010

Computational Complexity Data Volume Latency

Analytic Workload

Data Stability
Implications

Data Staging

Computational
Complexity

Multi-Pass
Algorithms

1
1

1

2

2

2

8

8

9

7
6

8

7

8

3
3

Set-Oriented Ops

Data Access
Variability

Data Volume

Data Complexity

OLTP Workload

http://www.netezza.com

16White Paper: Understanding Analytic Workloads

Having examined the distinctive attributes and requirements of an analytic workload, we can now
outline the dimensions of a processing environment designed to handle such a workload. It will also
help contrast an analytic processing environment with the requirements of transactional workloads
and modern OLTP environments.

Analytics vs. OLTP

Transactional processing is characterized by a large number of short, discrete, atomic transactions.
The emphasis of OLTP systems is (a) high throughput (transactions per second), and (b) maintaining
data integrity in multi-user environments. OLTP systems are architected accordingly. OLTP databases
are usually highly normalized, with many tables. Other characteristic architectural features include
strongly codified and restricted code paths, infrastructure (indexes, partitioning, clustering, caches,
etc.) to optimize predictable usage patterns and ensure integrity, and so on.

Analytics processing is characterized by fewer users submitting fewer requests, but queries can
be very complex and resource-intensive. Response time is a key measure (not transactions per
second), and analytics systems are architected accordingly. For example, databases tend to be
denormalized, with fewer tables, in a star or snowflake schema; massive parallelism is employed
to favor fast scanning and ingestion over fast selection; and data movement is minimized by
in-database processing.

Conventional database systems exhibit dramatically variable performance when asked to process
analytic workloads; this variability is exacerbated when the same system handles transactional
workloads as well. On these systems, indexes, caches, partitioning, and clustering are all access
optimizations designed to accelerate a particular data traversal pattern. Unfortunately, retrieval
optimizations that benefit one access path are likely to penalize alternative paths. It is essential to be
aware of this, and to tune the system repeatedly when attempting to deploy analytics on conventional
or multi-use systems. This problem of unpredictable performance frequently plagues database
professionals’ early forays into the analytic realm.

Transactional/OLTP Environments

Transactional processing systems are typically characterized by small, simple, precise operations,
and these systems exhibit the following characteristics:

• Optimization for short, atomic, repetitive, select-oriented operations and transactions—finding or
updating very specific bits of data. Note that these access patterns lend themselves very much
to tuning, hence the proliferation of indexes, caches, and tuning parameters in a typical
OLTP environment.

• Prescribed, codified, discrete code paths.

• Heavy reliance on caching.

• Shared resources: shared data structures; shared memory; and the indexes, locks, latches,
triggers, and other infrastructure required to manage concurrency and referential integrity.

Characteristics of an Analytic Processing Environment

http://www.netezza.com

17White Paper: Understanding Analytic Workloads

• Data partitioning, data clustering, colocation, indexes, caches, and other tuning and configuration
options that can be used to tune a system for the expected access patterns and data
traversal paths.

In summary, the OLTP environment includes substantial infrastructure to support getting to one piece
of data or one record very quickly, by any subset of a potentially large user population. Note also that
the data partitions, indexes, caching, and tuning regimens result in a de facto “grain”—a set of
optimized traversal paths—in the data. This is desirable in an OLTP system, where you know in
advance (or come to know after a short time) exactly how you will need to traverse the data. However,
these structural elements—indexes, shared memory, locks, caches, etc.—all impose performance and
complexity penalties in an analytics environment, where unpredictable (“against the grain”) access
paths and patterns are the rule.

Analytic Processing Environment (APE)

The key virtues of an effective analytics environment include functional richness, processing speed,
and ease of use. Because analytic research is typically a guided discovery process, where future
questions depend on the outcome of the current question, speed and efficiency are paramount.
With faster answers, more questions can be asked.

Modeling, forecasting, decision support, forensics, and ad hoc analysis—variants and cornerstones
of analytic processing—require the agility to build and test models and queries very quickly, without
having to tune or otherwise redefine the underlying system. Furthermore, because analytic
requirements invariably evolve over time, some degree of flexibility will be expected of any analytics
environment. Server-side APE characteristics include:

• DW-Level Storage Capacity – Analytics and large data sets are inseparable.

• Massively Parallel Architecture – Analytic platforms are optimized for fast scanning and
ingestion rather than fast selection. Analytic workloads tend to operate on very large data
subsets, often in variable and unpredictable sequences, as opposed to the traditional OLTP
data access patterns involving small bits of data accessed more or less sequentially.

• Fast Data Movement Capacity – Because data movement can incur onerous performance
penalties during large data set operations, a fast intra-system network fabric is a common
feature of modern analytic environments. Data movement can be minimized, but it cannot be
eliminated entirely.

• Minimization of Data Movement – Processing happens close to the data, as demanded by
multi-touch/multi-pass processing algorithms. Dedicated disk-CPU combinations are a common
feature, as is an intelligent code optimizer. Note that most analytic architectures incorporate one
or more analytic client applications, each acting as a “workbench,” issuing a series of analytic
workload tasks to one or more data/analytics servers. Efficient, cooperative processing is vital.
The ability to perform the heavy lifting—the actual analytic computations—in the data tier
minimizes or eliminates the costly movement of data back and forth between servers and clients.
Because data payloads can be so immense, data movement becomes enemy #1, the most likely
barrier to success. When movement is eliminated through efficient execution in the data server
layer, query response times are reduced by orders of magnitude.

• “Shared Little” or “Shared Nothing” Environment – The shared structures (memory, caches,
etc.) common to transactional systems introduce unwanted contention and attendant
performance penalties in an analytics environment, so these structures are generally minimized
or omitted.

http://www.netezza.com

18White Paper: Understanding Analytic Workloads

• Set-Oriented (versus Cursor-Based) Functions – Analytic systems need functions that operate
on sets, not rows and cursors. (Set-related functions are common to most systems, whether
analytic or transactional, so the shift from OLTP to analytics infrastructure is, in this case,
largely a matter of adjusting programming style.)

• Analytic Functions Built into the Server – Beyond basic SQL operators, the server must include
analytic functions. Modern analytic systems typically include some combination of proprietary
and third-party analytic function libraries, some of which are in-database.

• Analytic Function Extensibility – An optimal analytics platform should include a user-visible
layer or interface to permit reasonably straightforward additions of end-user functions and
function libraries.

• Map-Reduce Options – Many systems include a built-in grid option (Hadoop or variant)
as required to process map-reduce tasks.

• Streamlined and Efficient Code Plans, Data Movement, and Processing; Minimal Instructions
per Data Element – This critical architectural “feature” is actually a full set of attributes
implemented to a greater or lesser degree, depending on the system, with various innovations
in code optimization, compression, hardware design, network fabrics, etc.

• Manageable by Business Users – To repeat, modeling, forecasting, decision support, forensics,
and ad hoc analysis all require the agility to build and test models and queries very quickly,
without having to tune or otherwise redefine the underlying system. Ease of use has become
business critical, owing more to the lost time and opportunity costs of tuning and maintenance
delays than to the real costs of personnel and expertise acquisition.

• Integration and Support for Sophisticated Analytic Client Applications – Although this text
focuses on the server side, modern analytic environments incorporate one or more analytic client
applications, each acting as a “workbench,” issuing a series of analytic workload tasks to the
server tier. Tight integration and support for a variety of client-side tools are mandatory.

• Genuine Scalability – More so than traditional systems, high-end analytic systems now
presume continued exponential growth in both data stores and analytic processing demands.
Hardware additions and system upgrades that yield nearly linear scaling have evolved to meet
this requirement.

• Limited Reliance on Caching – The combination of too much raw data and unpredictable usage
patterns greatly diminishes the worth of caching and cache-related overhead.

http://www.netezza.com

19White Paper: Understanding Analytic Workloads

We define an analytic workload as a workload that exhibits some of the following characteristics:

• Large data volume.

• Complex data model (many and complex relationships, large rows, and diverse data sources
and types).

• Unpredictable data traversal paths and patterns that cannot be easily anticipated or
optimized for.

• Computational complexity.

• Set-oriented processing (rather than cursor-based, row-by-row access) and intra-query analytic
operations involving many sets of rows.

• Intermediate and temporary data-staging requirements with high-speed access and short
transport paths.

• Multi-step, multi-touch, multi-pass data access algorithms.

• Data change isolation requirements (so multiple long-running investigations can execute
sequentially against a large, stable data store).

• Investigative query sets that cannot be predicted at the outset—guided-discovery analytic
progressions that often must be time-boxed.

Several of these attributes are especially distinctive analytic workload markers. Most of the attributes,
individually and collectively, have potent architectural implications as well. A server tier that can
accommodate workloads with these attributes requires capabilities above and beyond conventional
data serving. The demands of heavy computation—with multi-touch analytic algorithms using
variable traversal paths over large, set-oriented data tranches—greatly exceed the capabilities of
most general-purpose information systems. As a result, modern analytics processing platforms
exhibit a variety of innovations, including massive parallelism, in-database processing, and advanced
code optimization.

For analytics practitioners, the objective is to construct an analytics processing infrastructure to
match the size and complexity of current and projected analytic workloads. For analytics system
designers, vendors, integrators, and consultants, the goals are continued innovation and
improvements to the analytic environments deployed for customers and end users. We hope the
information herein can help with both of these objectives.

Advanced analytics brings out the real value of data.
Usama Fayyad, CEO, Open Insights

Conclusion

Netezza, an IBM Company
26 Forest Street
Marlborough, MA 01752

+1 508 382 8200 TEL
+1 508 382 8300 FAX

www.netezza.com
http://thinking.netezza.com

© 2011 Netezza Corporation, an IBM Company. All rights reserved. All other company, brand and product names contained herein may be trademarks or registered trademarks of their respective holders.

About Netezza Corporation:
Netezza, an IBM Company, is the global leader in data warehouse and analytic appliances that dramatically simplify high-performance analytics across an extended enterprise. Netezza’s technology enables organizations to process enormous amounts of captured
data at exceptional speed, providing a significant competitive and operational advantage in today’s data-intensive industries including digital media, energy, financial services, government, health and life sciences, retail, and telecommunications. Netezza is
headquartered in Marlborough, Massachusetts, and has offices in North America, Europe and the Asia Pacific region. For more information about Netezza, please visit www.netezza.com.

http://www.netezza.com
http://www.netezza.com
http://thinking.netezza.com/
http://www.netezza.com

