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Technology has changed expectations

A Do-It-Yourself mentality prevails
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Leveraging analytics faces many obstacles

Self-Service
Analytics

382%

... have a limited
understanding of how
to use analytics
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Rapid Decision
Making

Access to Data
Sources




IBM

helps you find what
matters most to your
business!
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A new way to work

Get Better Data

e Tell a Story
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IBM Watson Analytics

Self-sufficiency for business users and experts alike
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What do you want to explore in "Auto - US Sales™

Marketlng

Analyse test market campai

How do the values of totaldaysidentifiedthroughclosing compare by state and suppliesgroup
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Sales

Identify Opportunities

Sales by Product  Rep and Territory Performance

Part Group

Top Predictors of RouteToMarket

uences RouteToMarket?

The it w100 of DeataeCategor... 35 RatioDaysval
BeutaToMarket [Frec ot Strengt

. 65.1%

Predictive Strength
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Total Opportunity Value
5,286,743,512

Average Days in Sales Cycle Won
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Win or Loss Filter
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Prioritise Accounts Receivable ' R

®

Highest Target Values ¥ | These five decision rules predict the highest DaysLate values

Decision Table
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Main Insight

Main Insight

The interaction of FiledAgainst and TicketType drives daysOpen. (Predictive Strength: 58%)

Show this

- Input combination:
- Grouping the com!

n, and |

v daysOpen sverages h

Statistical Details

Average daysOpen
20

15

- 10

0

IBM Connect 2015

Inhovate. Understand. Engage.

¢

af2b15 IBMECOI

Details

0 .

FiledAgainst
Access/Login
Hardware
Software

— Systems

=

#WatsonAnalytics
#IBMConnect

¢



Operations

Shortterm supply and demand matching

Holiday

IBM Connect 2015
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Attrition is associated with OverTime and 8 other inputs.

HR

Retain your talent

Inputs are sized in proportion to their predictor importance

Target: Attrition

Ag € PercentSalaryHike YearSA tCO mpany

Predictor Importance

Prediction Table

Decision Tree

- For these data, there

Top Decision Rules
Decision Table
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EnvironmentSatisfaction J obLevel JobSatisfaction

o Maritalstatus OverTime StockOptionLevel

YearsAtCompany|
JobLevel

Age

| #WatsonAnalytics
IF (OverTime = No) AND (YearsAtCompany < 2) AND (Age > 34) THEN predicted Attrition = No . #I B M C o n n ect
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ibm.com/ibmandtwitter
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Hashtag Analysis

Leverage social data to achieve a more
complete view of your business

Tap into the expressions thoughts,
ideas and sentiment on Twitter

Simply type in a Twitter hashtag

Direct connection to Twitter - no need to
import data

#WatsonAnalytics
#BMConnect
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Welcome 2) KAREN HARDIE

X Hide panel Predict

Find predictive insights hidden in your data. Learn what drives
each behavior and outcome - and take your next steps with
confidence.

Learn more about

Watson Analytics Assemble

Explore

Explore powerful visualizations of your data and Create interactive dashboards to monitor key details, and
discover patterns and relationships that impact your infographics that tell persuasive stories. Share and collaborate

with others.

business.
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X Hide panel

Predict

Find predictive insights hidden in your data. Learn what drives
each behavior and outcome - and take your next steps with
confidence.

Learn more about (9" Create new exploration

Assemble

O, Search
Create interactive dashboards to monitor key details, and

Watson Ana|ytiCS Choose a data set D

Naie Modified infographics that tell persuasive stories. Share and collaborate
with others
#watsonanalytics twitter May 1,2015
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Q, Find tiles (® Add Y Filter = sort
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X Hide panel

Learn more about

Watson Analytics

O\ Find tiles

MEDIUM
(53 QUALITY
DATA SET | Twitter

#WatsonAnalytics

May 2, 2015

PREDICTION

WA Airline
Satisfaction...

Apr 27,2015

MEDIUM
(74 QUALITY

Welcome

Here are some starting points about '#WatsonAnalytics'.

What is the contribution of
the number of Tweet over
Day (Posted time) by
Sentiment?

How does the number of
Tweet compare by Year
(Posted time) and
Sentiment?

Hetinement
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Predict
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Find predictive insights hidden in your data. Learn what drives
each behavior and outcome - and take your next steps with

confidence.

on@ tart from scratch v

Assemble

Create interactive dashboards to monitor key details, and

What is the number of
Author name by Author
country?

What is the trend of Author
Tweet count over Year -

Year (Posted time) and (Posted time) by Author I'h‘}
Sentiment? gender?
Time Use
earnings Survey
Feb 24, 2015 Feb 24, 2015
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lographics that tell persuasive stories. Share and collaborate

with others.
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What do you want to explore next?

#WatsonAnalytics Exploration w

Author tweet count by author country

What are the values of Author Tweet count by Author

country?

What is the breakdown of
Author Tweet count by
Author country?

What is the contribution
of Author Tweet count over
Month (Posted time) by

How do the values of
Author Tweet count
compare by Author country

What is the grouping of
Tweet type by Author gender
and In reply to?

How do the values of Author Tweet count compare by

Author country?

What is the relationship
between Author listed count
and Author Tweet count by

What are the values of
Author listed count by
Author country?

(+) New

What is the trend of Author
Tweet count over Month
(Posted time) by Author

What are the values of
Author follower count by
Author country?
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What do you want to explore next?

#WatsonAnalytics Exploration w

breakdown of author followers count by author name

lalal@mlalalim@iGm el

ery relevant

What is the breakdown of Author follower count by Author

name?

How do the values of
Author follower count
compare by Author

What is the grouping of
Tweet type by Author gender
and In reply to?

How do the values of
Author follower count
compare by Author country

What is the breakdown of
Author follower count by
Author city and Author

What are the values of
Author follower count by
Author country?

What is the trend of Author
follower count over Month
(Posted time)?

What is the breakdown of
Author follower count by
Author country and Author

What is the relationship
between Author follower
count and Author friend

What is the contribution
of Author follower count
over Month (Posted time)
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Email
To KerrieHarrison@au1.ibm.com
cc Add recipients
Subject #WatsonAnalytics Twitter

Attachments 1

Hey Kerrie,

some interesting findings here
Regards

Kured
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X Hide panel Predict

Find predictive insights hidden in your data. Learn what drives
each behavior and outcome - and take your next steps with
confidence.

Learn more about

Watson Analytics

Here are some starting points about 'WA Airlines’.

How does averrage satisfaction compare by airline name X tart from scratch v Assemble

Create interactive dashboards to monitor key details, and
e Ty lographics that tell persuasive stories. Share and collaborate
How do the values of Satisfaction compare by Airline Name? What is the breakdown of Satisfaction by Airline Name? with others

O\ Find tiles V Filter _:\L Sort
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Satisfaction... Refinement earnings sSurvey Customer Lifetim...
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Type of Travel Personal Travel 3039 4029 50-59

p Satisfaction Top2 by Satisf: 3

yes — 42
no — 25

Satisfaction (Average)

Y1 applied filter

Preesl ml -l alesl&alal al;ilf=m ol S|

Satisfactic 91110

by No of 3
Flights S

pa. 511060

grouped  Highest Median Lowest

Airline status

Platinum

<® New

is the highest Satisfaction for
Arrival Delay greater 5 Mins no

78,201 4

i highest No of Flights p.a.
for Airline status Blue

is the high
Class Bus

How do the values of Satisfaction compareby Airline status® 2

Columns

Silver

Satisfaction for 25

ladlm = - - m noem o~/ = &~



4o — Flights
no — ) ) 9 30w ) . ‘ _ 27
is the lowest Satisfaction for Age p.a. [ JREL is the highest Satisfaction for is the highest No of Flights p.a. is the highest Satisfaction for 25
d — . : gt
Range 80+ Business . Personal - Mileage t. grouped  Highest Median Lowest Arrival Delay greater 5 Mins no for Airline status Blue Class Business

Top Satisfaction Top2 by Satisf: Top Type of Travel by No of Flig! Satisfactic s w10
42 3 . by NooF 3 78,201 4 12
o .

How do the values of Satisfaction compareby Airline status® and Type of Travel®

425 Columns
4 Type of Travel
Business travel
3.75

satisfaction (Average)

. Mileage tickets
Personal Travel

Bue Gold Platinum Silver
Airline status

Y1 applied filter - ‘ [ ] ‘ ) New ,\E.‘ |

- el AT ME S oA me I n @D = 0B e 504PM

Praml @ =lialieli@ @@l o i



Satisfactic w100

Top Type of Travel by No of Fligl

Top Satisfaction Top2 by Satisf:

by No of
yes —— 42 3 ’;\i” hi
no — 25 . . ights N
is the lowest Satisfaction for Age ® p.a. 511060
Range 80+ Business.. Personal .  Mileage ti grouped  Highest Median Lowest
4.25

4

1.75

2]
n

w
N

r
o i ~
o

r
o

satisfaction (Average)
9
o

N

=}

]

Blue Gold

Airline status

¥ 1 applied filter == | L ‘ @NEW

Airline status Arrival Delay gr.. Class Flight cancelled = Flight date

LT+ Year (Flightda.. Month (Flight.. | Airline Code

How do the values of Satisfaction compareby Airline status® and Type of Travel®

—
1.25 jethe v o
1
i
=
0.75 ]
| tree mar
0.25 i ..
K
0 L | | L L | - .

Platinum

No of Flights p...

78,201

is the highest No of Flights p.a.
for Airline status Blue

is the highest Satisfaction for
Class Business

is the highest Satisfaction for
Arrival Delay greater 5 Mins no

Columns
Type of Travel

. Business travel
. Mileage tickets

Personal Travel

Change the visualization

Silver

Satisfaction T..  Scheduled Dep.. = Type of Travel Day (Flight date) Gender




Top Satisfaction Top2 by Satisf:
yes — 42 3
no —

s the lowest Satisfaction for Age
Range 80

Top Type of Travel by No of Fligl

Business.

Personal

Mileage ti

Satisfactic 10100

by No of
Flights
p.a.
grouped

311040
511060
Highest Median Lowest

s the highest Satisfaction for
Arrival Delay greater 5 Mins no

What is the breakdown of Satisfaction by Type of Travel®

Silver
Business travel
Silver
Mileage tickets

Silver
Personal Travel

Y1 applied filter

T
e, =l alal sl ml sl clenilC= ol

B | @ ‘ G—;- New

78,201

s the highest No of Flights p.a.
for Airline status Blue

and Airline status »

Columns

Satisfaction

[ ]
20

Airline status

- Blue
B oo

Platinum

. Silver

417




Welcome w L KAREN HARDIE

X Hide panel Predict

Find predictive insights hidden in your data. Learn what drives
each behavior and outcome - and take your next steps with
confidence.

Learn more about

Watson Analytics

Explore Assemble

Explore powerful visualizations of your data and Create interactive dashboards to monitor key details, and
discover patterns and relationships that impact your infographics that tell persuasive stories. Share and collaborate
business. with others.
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Field Properties B e

Field Selection: Properties for Satisfaction:
Filter =
2500
Sort by: Role b
dl. Satisfaction B "
= s Label:
1 rsatisfaction Top2 3 1500
E Satisfaction
A Age i
2 1000
A, Age Range E Role:
|.. Airline status " 500 ® Target 5
. Avrival Delay greater 5 Mins
¥ Arrival Delay in Minutes ® 100 200 3.00 4.00 500
|. Class

* Show more

Day of Month

| ¥ Departure Delay in Minutes
Destination State

LY Eating and Drinking at Air
Flight date

Flight Distance

-
A
' Flight time in minutes
I Gender
L No. of other Loyalty Cards
A NoofFlightspa.

& Noof Flights p.a. grouped

QOrigin State

l' Percent of Flight with othe..
|,  Price Sensitivity
‘ Scheduled Departure Hour
l' Shopping Amount at Airport
Iy Typeof Travel
A Yearof First Flight

id Destination City

id  Origin City
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TARGETS
Th rkbook has 1 target

Edit

More Predictive

~a "
|Q| Combination
CQ Two Field

. I One Field

Easier to Understand

@ caticfantinn

DATA QUALITY

View

Satisfaction
Type of Travel is a predictor of

Satisfaction

53.4%
Predictive Strength

More details.
Associated fields
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ANALYSIS DETAILS

N\ A

rival Nalaw in

View

Top Predictors of Satisfaction

W Place N N af Manth

@ (® Satisfaction

View Export

What influences Satisfaction?

Type of Travel drives Satisfaction. (Predictive Strength: 53%)

View /

Number of Reco

Age Range drives Satisfaction (Predictive .
Strength 48%)

- N

- _inm

Type of Travel

@

I N

drives Satisfaction. (Predictive Strength:

M Naonartirs Nalaw @ N Noctinatian Qtata

N Fatinn and Nrinli

A

No of Flights p... drives (Predictive Strength
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® (®) Satisfaction

TARGETS
his @ @ @

DATA QUALITY ANALYSIS DETAILS

has 1 target

Edit View View View Export

Top Predictors of Satisfaction

What influences Satisfaction?

»
The interaction of Type of Travel and Arrival Delay rives Satisfaction. (Predictive Strength: 57%)
- . — —m .
J .
® — — . — —
. The interaction of Type of Travel and Airline status (.) The interaction of Type of Travel and

More Predictive ! drives Satisfaction. (Predictive Strength: 57%)

| .
Iﬁl WCOmblnatlon

Sati Strength: 55%)

n. (Pred

57.0%

Predictive Strength

More details

Q| @© satisfaction | M Age | W AgeRange | W Airlinestatus | M Arrival Delay are M Arrival Delayin ... ™ Class | ™ DayofMonth | M Departure Delay i M Destination State | M Eating and Drinki_._

. | _ml ]| | |
@ I Two Field Satisfaction ‘_ - i ‘ B ‘ ‘_ | N ‘
. I One Field S— —
Easier to Understand . ‘ ‘ ‘ ‘ ‘ ‘
|
= | |
Type of Travel AND Arrival
Delay greater 5 Mins together
are a predictor of Satisfaction
The interaction of Type of Travel and Age Range drives rture Delay... drive Satisfaction

View Al

@

M Flight Distance | M Flight date
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WA Airline Satisfaction Insights 0 KAREN HARDIE

DATA QUALITY

nhas 1 target

Edit View

More Predictive .

LA
l‘_.,i I Combination

(.) I Two Field
. I One Field

Easier to Understand

A combination of multiple fields
is a predictor of Satisfaction

61.6%
Predictive Strength

Fields Involved:

Type of Travel

Airline status

Arrival Delay greater 5 Mins
Age

Arrival Delay in Minutes
Gender

No of Flights p.a.

Age Range

Year of First Flight

Percent of Flight with other Airlines
Day of Month

Flight Distance

nra dataile
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(® Satisfaction

ANALYSIS DETAILS TOP FIELD ASSOCIATIONS o)

View Export

Top Predictors of Satisfaction

What influences Satisfaction?
A\

The interaction of Typ
drives Satisfaction. (Predic

(Predictive

m— i | —

The interaction of Type of Travel and Age Range drives
(Predictive Strength: 55%)
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Decision Tree

Satisfaction
[5.00
[ 4.00
[l 00
200
oo

Predictor Importance
Top Decision Rules

All Re

Highest Target Category

The decision tree shows how §

is significantly influenced by T

¥ | These five decision rules have leaf nodes with the highest percentages of | 1.0 *

Type of
Travel

- The mode within each node is the predicted target category. Show this

ko Personal
Travel

Dol Q| slele|w|@|e|w e &

Airline
status

Alirline
status

Airline
status

Blue;
Platinum

Gender

Arrival

Delay gre...

Arrival
Delay gre..

and 11 other inputs. ‘ o
» i
c
S
@
o
[
[=]
o
No of
Flights p.a
Day of
Month
>40
1.00 n=39 (13%)
2.00 n =244 (84%)
3.00 n=2(<1%)
400 n=4(1%)
5.00 n=0(0%)
Age —
Total n=289 (6%)
i
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Satisfaction is associated with Type of Travel and 11 other [nputs.

Inputs are sized in proportion to their predictor importance

;‘g Target: Satisfaction

Age Year of First Flight No of Flights p.a.
Percent of Flight with other Airlines Day of Month

Arrival Delay in Minutes Flight Distance AlI’hI’le Status

Age Range Gender Type Of Travel

Arrival Delay greater 5 Mins

Top Decision

Table




Predictor Importance

®
°
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c
o
]
o
o
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o
=]
=

Review the top five decision rules resulting in the highESt ¥ |percentagesof| 1.0 ¥

Review profiles with the strongest predictions for Satisfaction.

Show these rules in the tree=s

Satisfaction

13%

1.0

Satisfaction
4%

1.0

Type of Travel = Personal Travel
Airline status = Blue; Platinum
Arrival Delay greater 5 Mins = yes
Age > 40

Type of Travel = Personal Travel
Airline status = Blue; Platinum

Arrival Delay greater 5 Mins = yes

Age =40

Percent of Flight with other Airlines > 8

Type of Travel = Mileage tickets
Airline status = Blue; Gold; Platinum
Arrival Delay greater 5 Mins = yes

Type of Travel = Business travel
Airline status = Platinum
Gender = Male

Type of Travel = Personal Travel
Airline status = Blue; Platinum
Arrival Delay greater 5 Mins = no
No of Flights p.a. > 13.46

Day of Month > 19

Statistical Details

Statistical Details

Statistical Details

Statistical Details

Statistical Details

Decision Tree

Decision Table
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Learn more about

Watson Analytics
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Welcome

Explore

Explore powerful visualizations of your data and
discover patterns and relationships that impact your

business.
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Predict

@ KAREN HARDIE

Find predictive insights hidden in your data. Learn what drives
each behavior and outcome - and take your next steps with

confidence.
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Assemble

Create interactive dashboards to monitor key details, and
infographics that tell persuasive stories. Share and collaborate

with others.
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DATA SET | Twitter PREDICTION DATA SET | Ref DATA SET | XLSX PREDICTION DATA SET | CSV DATA SET | XLSX
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1. Name your view

WA Airlines View

2. Select a template

Dashboard Tabbed Layout

Freeform

single Page

]

Tabbed ) :
Infographics
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E :, ....... &
T\ : :
Slide Show

vertical Slide Show

Time Journey
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Satisfaction (Average)

Fr WA Airlines

Rows Satisfaction Satisfaction Top2 Airline status

Airline Name

Age Gender Age Range Price Sensitivity Year of First Flight
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Satisfaction (Sum) Horizontal axis
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Hashtag Analysis

Leverage social data to achieve a more
complete view of your business

Tap into the expressions thoughts,
ideas and sentiment on Twitter

Simply type in a Twitter hashtag

Direct connection to Twitter - no need to
import data

#WatsonAnalytics
#BMConnect

@ 1BM Connect 2015  QNOULIRELINOLINO L I\ N

Inhovate. Understand. Engage.




Weather Forecast Analysis

Weather data services in the IBM cloud

Taps into the 10’s of thousands of sensors
around the world

10 billion forecasts a day

Easy integration of historical and real-time
weather

Bring weather data into decision making

"¢ IBM Connect 2015

Innovate. Understand. Engzge.

Weather
Company

#WatsonAnalytics
#IBMConnect




Watson Analytics Editions
Free _ Professional

Amount of storage included 500MB 100GB

Number of users Single Multiple
Collaboration @

Connector to Cognos List report @

Access to data in the cloud (i.e. a &
Dropbox, Box, etc) * LY 4

RDBMS support (DB2, Oracle) * & &

Access to social data from Twitter 25K tweets per 50K tweets per
dataset dataset

Additional storage available Q Q

File size parameters (csv or xIs) 50 columns by 256 columns by 1M rows 500 columns by 10M rows
100K rows

Choose your plan FREE $80USD a month per user

¢’ IBM Connect 2015

Innovats. UnderStanngpa%ﬁﬁees' and Features for IBM Wat§6/n;’§




Drop by the Experience Zone
today with your questions

#WatsonAnalytics
#IBMConnect

IBM Connect 2015

e. Understand. Engage.




