

Maximo **Linear Asset Management**

Ken Donnelly, Worldwide Maximo Industry Leader Louis Stoop, Tivoli Tiger Team - Asia Pacific

Agenda

- Why Linear?
- Product Overview
- What is new
- Questions

Why Linear? Many Challenges

Roadway

Railway

- - Pipeline

© 2011 IBM Corporation

• Integration to GIS

- Track Occupancy
- Managing Leaks

- Aging infrastructure and declining funding
- Supporting growing service demands
- Managing continuous assets with dynamic segmentation
- Supporting visual & automated inspection systems
- Adhering to government regulatory requirements
- Minimizing risk with new systems

Hierarchical and Linear Models

Hierarchical Model

- Works well for most traditional assets, such as facilities and rolling stock
- Uses parent-child relationships to link system, assembly, component, part type hierarchies
- Difficult to manage with linear or continuous assets

Linear Model

- Ideal for linear assets
- Uses measurements and point locations, allowing for dynamic segmentation
- Difficult to manage fleet, facility and production assets in this mode

Asset Challenges

	Non linear Assets	Linear Assets
Examples	Pumps – <i>fixed location</i> Trucks - <i>mobile</i> Aircraft – <i>component-based</i>	Railway – track, signals, structures Roads – pavement, signs, etc. Pipelines
Characteristics	Occupy a finite and bound space Modeled using a hierarchy Installed, maintained and replaced as a whole or by component	Length that impacts maintenance Often modeled as a network Preserved and restored in place, and in segments

© 2011 IBM Corporation

Asset Challenges

	Non linear Assets	Linear Assets
Examples	Pumps – <i>fixed location</i> Trucks - <i>mobile</i> Aircraft – <i>component-based</i>	Railway – track, signals, structures Roads – pavement, signs, etc. Pipelines
Details	Material - Steel Location – BR430 Date of Last Repair – 1 May 2010	 Material – Wood sleepers (0-3 kms) Concrete sleepers (3-5) Wood sleepers (5-10) Relations – Parallels service road (2-10) Intersects Rte 2 (4.2) Crossing Repair – 1 May 2010 (4.2)

EAM Application Challenges

- Assets are maintained in sections
- As assets change, the system needs to be updated
- Traditional hierarchical systems can require creating all new assets, resulting in lost history
- A solution using a linear model solves this problem

Agenda

- Why Linear?
- Product Overview
- What is new
- Questions

© 2011 IBM Corporation

Maximo Linear Asset Manager

- Offered as an Add-On solution to Maximo Asset Management 7.x (requires license key)
- Designed to manage all types of linear assets
- Works with all Maximo industry solutions and add-on solutions
- Available in the same languages as Maximo

Linear concepts in a Network Model

- Allow users to identify assets as 'linear'
- Allow them to virtually segment linear assets without impacting the underlying geometry
- Utilizes concepts such as Features, Attributes and Relationships

Maximo Linear Asset Manager

- Provides capabilities beyond Maximo Asset Management
 - Linear Assets Assets that have a start and end measure
 - Features Physical objects, such as kilometer posts, that identify where maintenance will take place
 - Linear Attributes The same attribute to be applied multiple times to a linear asset
 - User-defined relationships Extend beyond parent-child hierarchies by creating user-defined relationships such as "Intersects with"

Asset, Features, Attributes, Relationships

Asset (South-bound Track)

> Features (Level crossing)

Relationships (Service road parallels track)

Features (Trees, grass, signs, signals, chain markers,)

Asset (North-bound Track, service road)

Attributes (Track number, speed, ballast wooden ties)

Maximo Linear Asset Manager

- Provides capabilities beyond Maximo Asset Management
 - Asset/Feature/Relationship History Display the state of an asset's attributes, features or relationships at any point in its history
 - Linear Work Search Allow users to locate work by asset as well as measure
 - Linear Work Progress Track progress against linear asset work orders
 - Linear Self-Service Service Requests Add measures for more effective incident management
 - Dynamic Gauge and Characteristic Meters Allows meter readings at any point along the linear asset

Agenda

- Why Linear?
- Product Overview
- What is new
- Questions

ist Asset	Spare Pa	rta Safety Hetera	Specifications	Features Relationships Work									
Asset T	RACK 1	Track 1 - Ragen-Devis		Ste 1	EDFORD		fn	rm, 159,917.0	0		T0: 220,945.00		
assification. R	AL		>>	Class Description:		e,							
Specifications	Fitter:	· · · · · · · · ·	- 9 of 9										of Demoked
Allohule		Description	Data Type	Appaquenetic Value		Numeric Value	Uniters	leasure	Table Value			Start Measure *	End Measure
INST_DT	9	Installation Date	ALN	1/1/72	9	6	1	۹,			>>	159,917.00	200,000.00
RIST_DT	9	Installation Date	ALN	3/2/2011	Q,	5	t.	9,			>>	200,000.00	220,945.0
SPEED	Q.	Speed Limit	NUMERIC		0,	85.0 (NHH J	а,			>>	159,917.00	169,000.0
SPEED	la.	Speed Limit	NUMERIC		4	90.0	MPH	4			39	169,000.00	180,000.0
SPEED	0,	Speed Limit	NUMERIC		9,	85.0 E	NPH	9,			30	180,000.00	200,000.0
SPEED	A	Speed Limit	NUMERIC		9	90.0	MPH	Q.			*	200,000.00	220,000
STATUS	9,	Degree of Serviceability	ALN	3	٩,	0	4	9			>>	158,917.00	220,845.0
STATUS	0,	Degree of Serviceability	ALN		۹,	6	1	۹,			»		
TTYPE	0,	Track Type	ALN	Main	0			9			>	159,917.00	220,945.0
													Nev
ise the slider	control below	the graph to change the start and	d end measures an	d to zoom in. Drag the graph to scroll. <u>More i</u>	nformation								
Specificatio	ns 🔺												
INST_DT					1/1/72	11/72					3	22011	
SPEED		85		90					95		9	0	
STATUS	_												
Work									isan .				
👝 Work Ö	ders												
 						Bi-Wesky							
🗷 🗀 119)					Di.Weekh/	Vaking Inso	ection					

What's New: Linear Visual Control **PRODUCT DEMONSTRATION**

Questions? © 2011 IBM Corporation

Thank You!

