

Planning For the Future

Understanding the Importance of Whole of Life Planning and Dynamic Life Cycle Costing 06/12/2013

- Asset life cycle planning
- Systematic approach to asset life cycle planning
- Maximo asset life cycle planning
- Questions
- Key Points to Take Home

Companies are facing one of the most challenging economic environments in over 50 years

- To gain the confidence of investors, there is a need to accurately forecast and control expenditure
- •Maintenance represents over 30% of expenditure costs are also the most volatile
- Looking for ways to control and reduce maintenance costs

"Good asset management maximises value-for-money and satisfaction of stakeholders expectations."

http://www.iso55000.info

Involves coordinating and optimising:

- planning
- asset selection
- acquisition/development
- utilisation
- care (maintenance)
- disposal or renewal

When it comes to assets; we undertake immediate planning and short-term planning (5 years).

Asset management is also long-term planning for the future (20 years +).

Future asset costs for long term planning requires:

Understanding of:

- The asset
- Maintenance, renewal and replacement tasks
- Asset condition
- Asset risk

Understand the asset:

Asset criticality

How important is the asset to the business?

- Asset duty What are the asset duty levels?
- **Design life** What is the asset design life?
- Service life What is the actual asset life (history) and service duty?

Degradation Curve 1.0 SURVEY STATE: 'Where' the condition of Very Good the asset is assessed to be 2.0 ASSET DUTY: The asset Duty (workload) STATES Good using CONDITION 31 Average R 40 Poor **REQUIRED STATE: The level of period maintenance** will affect the asset life. (more or less) 51 End Life 1.0 2.0 3.0 4.0 50 6.0 7.0 8.0 9.0 10.0 Elapsed Time /m Item Working Life (MITE)

Asset life degradation maintenance, renewal & replacement.

A System Approach to Asset Life Cycle Planning

Understand the maintenance, renewals and replacement tasks:

- Maintenance tasks
 - statutory & regulatory requirements
 - PM maintenance
 - Frequency, labour, materials,
- Renewal tasks
 - Planned intervention point
 - No. of life interventions
- Replacement Tasks
 - End of service life replacement

Understand the asset condition:

Assess condition

- Physical inspection
- Age based on service life
- Duty based on tonnage, cycles, hours

Condition score

- Planned intervention point
- No. of life interventions

Residual life

• Remaining service life

Description of SQUAT (SQ) Ref:CT-20320,1	Squats are surface or near s usually also associated with main sub-surface cracks, a crack is usually several tim Squats are often located in conditions, Squats may leas that cannot be detected by beam from reaching the track strack strack strack strack str	urface defects and initiate eithe gauge corner cracking (GCC) leading one that propagates in t es longer than the trailing crack Turnouts or at Signahs. A squat it on the initiation of Transverse conventional Ultrasonic testing nsverse defect (acoustic shadow ucture.	r at the crown of the rail head or a Squats appear as dark spots or " he direction of train travel, and a . Squats develop mainly in shallo is distinguishable from a wheel b Defects (TD) or multiple transve techniques (manual or automated r). The depression in the rail surfr	at the gauge corner, Squats locats ornises on the running surface of trailing one that propagates in th wer curves and tangent track, mu num, as a wheel bunusually affer se defects TDM. Squats may ha). This is because large squats ca ace due to squats also increases th	ed at the gauge corner are rail. Each Squat consists of tw e opposite direction. The leadh sinly in head hardened rails. cts both rails. Under certain ve underlying transverse defec in prevent the ultrasonic sound he impact loading, leading to	
Defect Limits (Ref: Section 2.14.3 CETS 2)	Depression depth < 0.5 mm / Length \$70 mm		ression depth ≥ 0.5 mm & ≤ 0.76 Length >70 mm	am / Depression depth > 0.75 mm / Visible head widening or cracking		
Category	Small (S)		Medium (M)		Large (L)	
Squat Photo	and a					
Condition Scale	1	2	3	4	5	
Condition Description	No squats visible/Asset is in Perfect/Excellent Condition	Squats visible, less than kk mm & not visible TD/TDM/GCC	Squats visible, < kk mm & evidence of minor TD/TDM/GCC	Major Squat < 70mm, evidence of bruises, leading to TDM/GCC	Multiple Squats > 70mm, visible > 1m length of rail surface & TDM/GCC	
Required Action	Regular Inspection	Frequent Monitoring & PM (Grinding) required	Continuous monitoring, Report on condition & describe growth with Photo proof	NDT testing, condition report and related defects and recommendations of any CM	Prioritise action for replacement	

Rail Defect Type - SQUAT (SQ)

Note: Please Refer to Rail Condition Assessment Table for more details on Condition Criteria.

Understand the asset risk:

- Consequence of failure
 - Determined by asset criticality and rated to be the impact on the required levels of service that an asset is required to deliver
- Probability of failure
 - Determined by the remaining residual life of an asset as it 'degraded' to failure.

Risk Likelihood

Determined by the condition and residual life of the asset. 'As an asset ages the probability of failure increases.

A System Approach to Asset Life Cycle Planning

Pulse

IBM. 👹

- Master Data
- Preventative Maintenance Strategies
- Forecasting
- Resource Allocation
- Visual Planning

Risk Management	Understand the future impact of maintenance decision made today. Identify risks within the thousands of equipment and components under management.		
Maintenance Strategy Optimisation	Continually review the maintenance strategy to provide the lowest cost per tonne or hour. Immediately see the impact of changing strategy.		
Resource forecasting	Understand the forward requirement for components, labour and resources based on the long term maintenance plan.		
Economic life determination	Optimise the life cycle cost and determine the most economic disposal point for assets.		
Equipment evaluation	Analyse and benchmark Cost per Hour, Cost per Tonne, Discounted Cash Flow, Discounted CPT		
Forecasting & Budgeting	'Real' zero based maintenance budgeting – costs, availability, resources, productivity.		

