

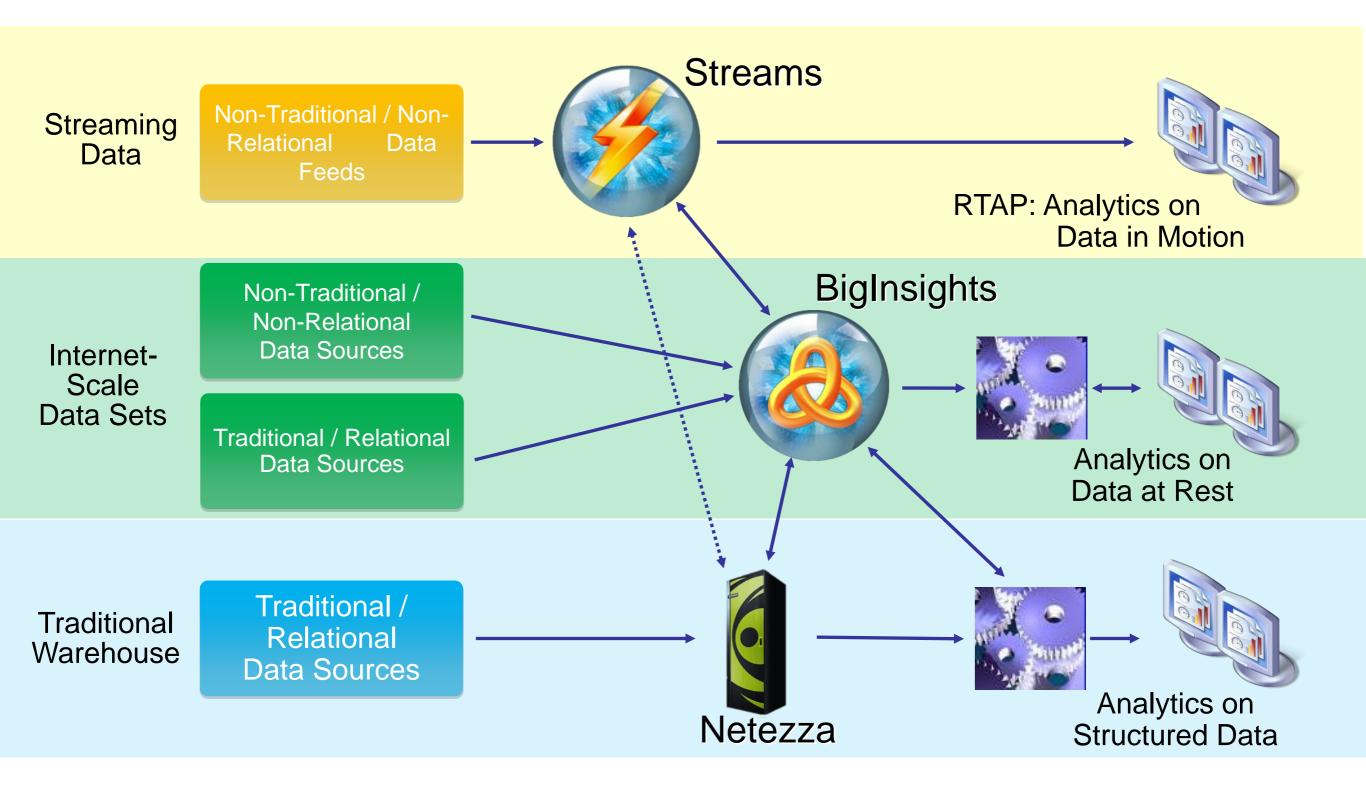
Big Data Spatial Analytics at Ordnance Survey with IBM Netezza Spatial

Matt Kadillak – Spatial Architect, IBM Netezza Neil Taylor – Head of Commercial Markets, Ordnance Survey

Agenda

- Introductions
- IBM Netezza & Netezza Spatial Overview
- What is Big Spatial Data?
- IBM Netezza and Esri
- Introduction to Ordnance Survey
- Spatial Analytics at Ordnance Survey
- Business Benefits
- Conclusion

IBM Netezza Overview



"Big Data Ecosystem": Interoperability is Key

The Netezza Performance Server[™]

IBM Netezza 1000

Core Value Proposition

- A high-performance, peta-scale data appliance that combines database, server and storage, and integrates easily into existing environments
- Delivers 10-100X the performance at half the cost of existing solutions
- Simplicity → installs in 1.5 days, load n' go architecture, no tuning or configuration

Speed – Simplicity – Time to Value

Managing The Netezza Appliance

No indexes and tuning

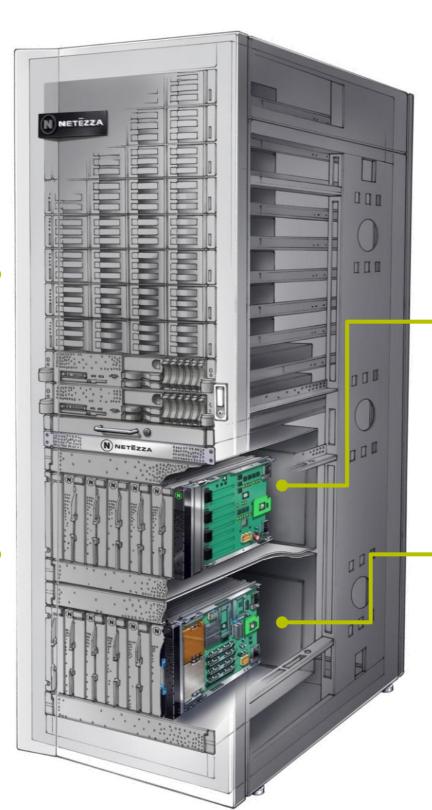
No storage administration

- No dbspace/tablespace sizing and configuration
- No redo/physical/Logical log sizing and configuration
- No page/block sizing and configuration for tables
- No extent sizing and configuration for tables
- No Temp space allocation and monitoring
- No RAID level decisions for dbspaces
- No logical volume creations of files
- No integration of OS kernel recommendations
- No maintenance of OS recommended patch levels
- No JAD sessions to configure host/network/storage

No software installation

Resources become Data Managers instead of Database Administrators

IBM Netezza TwinFinTM Architecture


Inside the IBM Netezza 1000

Optimized Hardware + Software

Purpose-built for high performance analytics; requires no tuning

True MPP

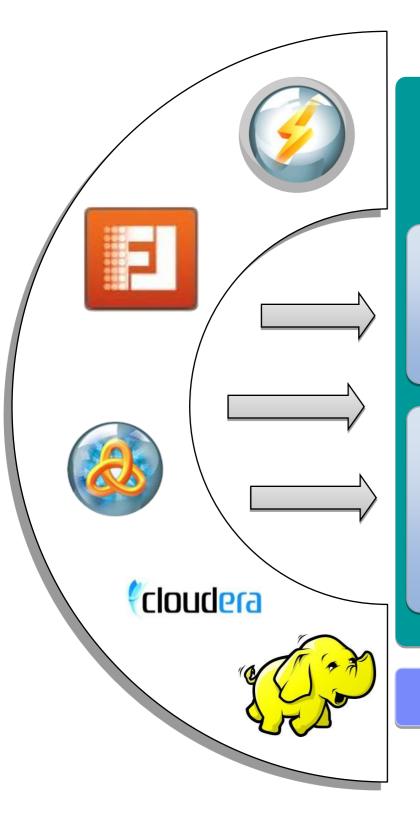
All processors fully utilized for maximum speed and efficiency

Streaming Data

Hardware-based query acceleration for blistering fast results

Deep Analytics

Complex analytics executed in-database for deeper insights



IBM Netezza Analytics

Software Development Kit

User-Defined Extensions (UDF,UDX, UDTF,UDAP)

Language Support (MapReduce, Java, Python, Lua, Perl, C, C++, Fortran, PMML) 3rd Party In-Database

Revolution

Analytics

Analytics

Fuzzy Logix

SAS 9.3+

Zementis

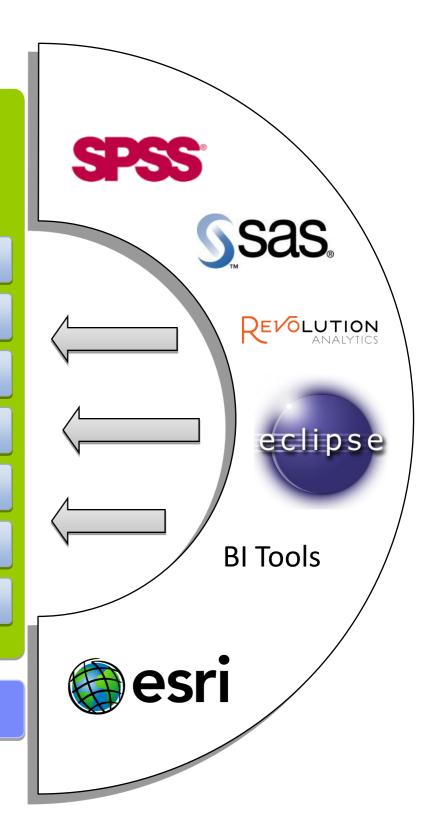
IBM SPSS

Mathworks

Netezza In-Database Analytics

Transformations

Mathematical


Geospatial

Predictive

Statistics

Time Series

Data Mining

IBM Netezza AMPP Platform

Appliance Family for Data Lifecycle Management

Skimmer	TwinFin	High Capacity Appliance
(Netezza 100)	(Netezza 1000)	(Netezza 1000C)
Development & Test System	Data Warehouse Analytics	Queryable Archiving Back-up/DR
1 TB to 10 TB	1 TB to 1.5 PB	100 TB to 10 PB

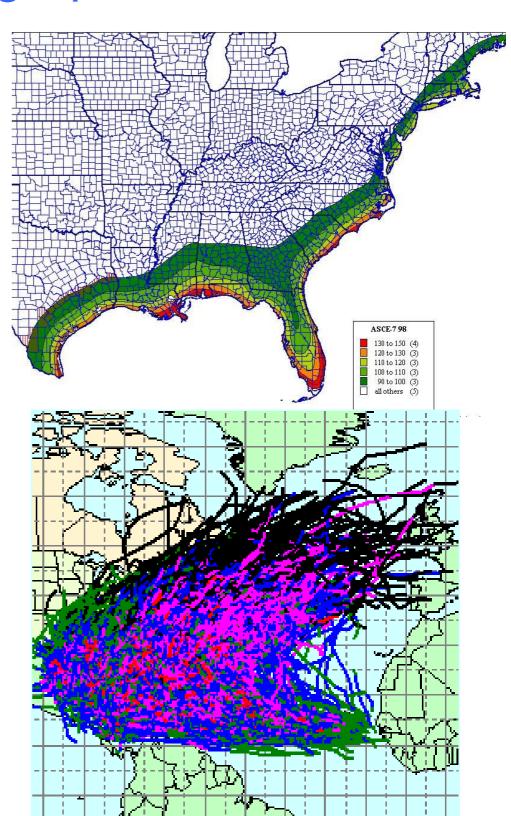
IBM Netezza Evaluation Approach

- Prove the value at no risk to us, our business, or our timelines.
- In about two weeks, they will:
 - Install a machine in your data center
 - Load all of your data.
 - Integrate with existing applications
 - Train / advise our staff
 - Work with us to scope and deliver analysis to meet our business requirements (no smoke & mirrors)
 - Improve performance by 10-100x
 - Provide complete and full disclosure.
- No pre-tuning of systems or applications for the purposes of the evaluation.
- Open access to the machine throughout the evaluation.
- New queries welcomed
 - An analytical environment should be flexible to meet new business requirements

IBM Netezza Spatial™

- Standard extension to the market leading NPS® DWA
- Native understanding of location and shape (vector)
- Orders of magnitude performance via parallelism
- Scales linearly
- Open, standards-based interface and data model
 - OGC Simple Features Specification 1.2.x
 - POSTGIS Libraries (GEOS/GGL/Custom)
 - ESRI Libraries Shape/PE/Custom
- ETL via Plug-In for Safe Software FME (Desktop/Server)
 - High Speed LAT/LONG import via NZ Loader

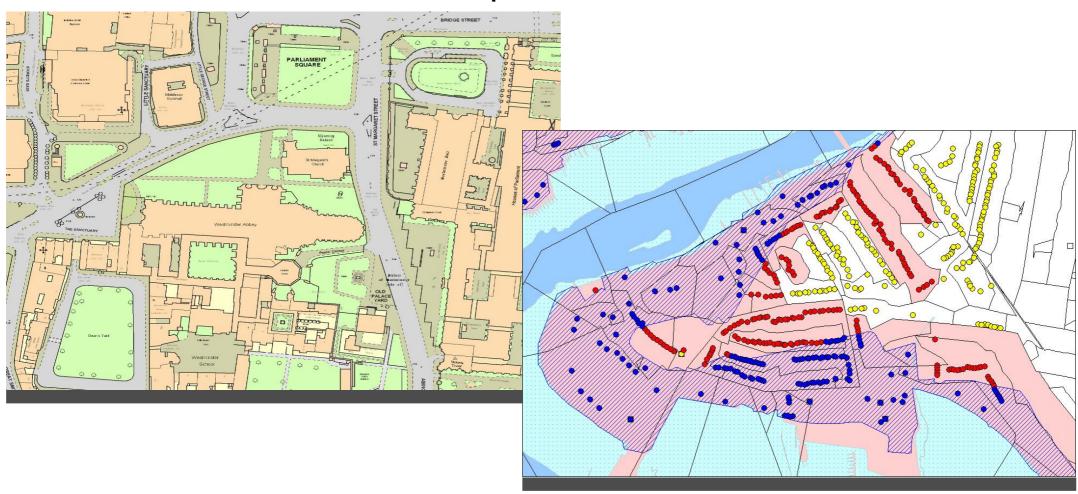
Analyze all your data all the time



Spatial Analytic Applications - Big Spatial Data

- Insurance Demographics Data/ Risk Analysis
 - 120 million points (+/-) from Demographics providers
 - Coastal distance, elevation extraction (DTED), distance to Firestations, risk accumulation
- UK Government Mapping/Data Provider
 - 460 million features
- Government Intel
 - 400+ Million Points/Polygons
 - Spheroidal Buffer/Distance Calculations/Intersects
- Telco Location Data
 - 187 Billion Call Locations (CDR)
- Telematics/GPS in Rail, Trucking, Troop Movement, etc.
 - 50 Billion Lat/Long Locations
- Agriculture
 - -40-60 millions polygons (soil and land parcel)
- Cable Provider (Marketing)
 - Demographic assignment to market zones every 6-8 weeks
 - 116 million points
- Utilities Smart Grid

Netezza Spatial scales to these data volumes and more.....



It's About Place, not Space

Neil Taylor Head of Commercial Markets July 2012

Location

- Everything happens somewhere
- Location is a key driver of decision-making for the public and private sectors
- Over 80% of data has a spatial element

Ordnance Survey Great Britain

- Ordnance Survey is 220 years old
- Civilian organisation since 1983; 1150 staff
- Independent Government Department and Executive Agency reporting directly to a Government Minister
- Turnover of £140m £30m profit

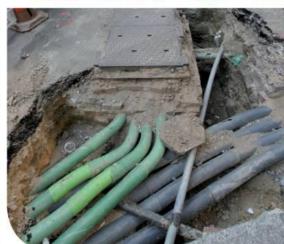
Ordnance Survey today

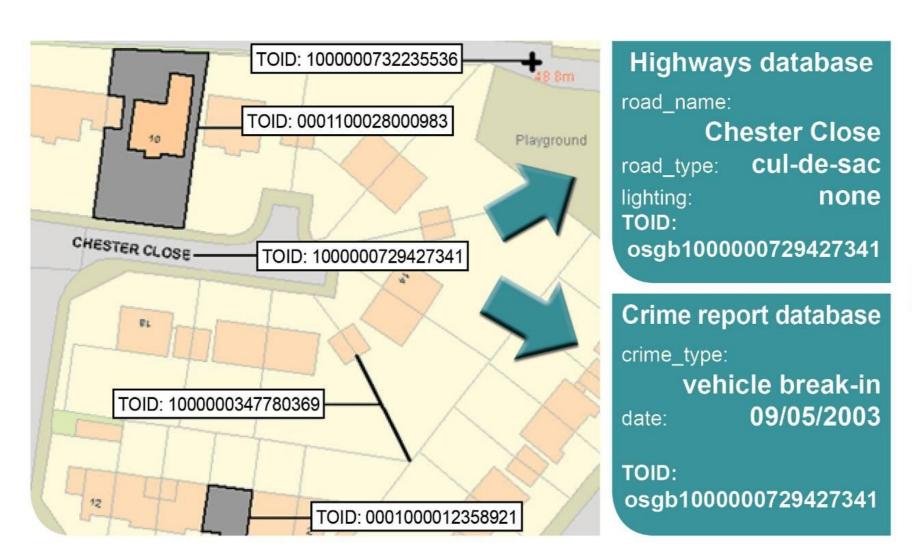
- Creates and maintains the 'master spatial database' of Great Britain from which others derive benefit
- Manages complete national large scale digital data down to building level detail
- Maintains a database of 460 million features with approximately 5,000 changes made daily
- In 2010/11, 99.9% of real world features were represented in the database within six months of completion on the ground
- From the database, Ordnance Survey produces a range of digital data and paper maps for business, leisure, educational and administrative use

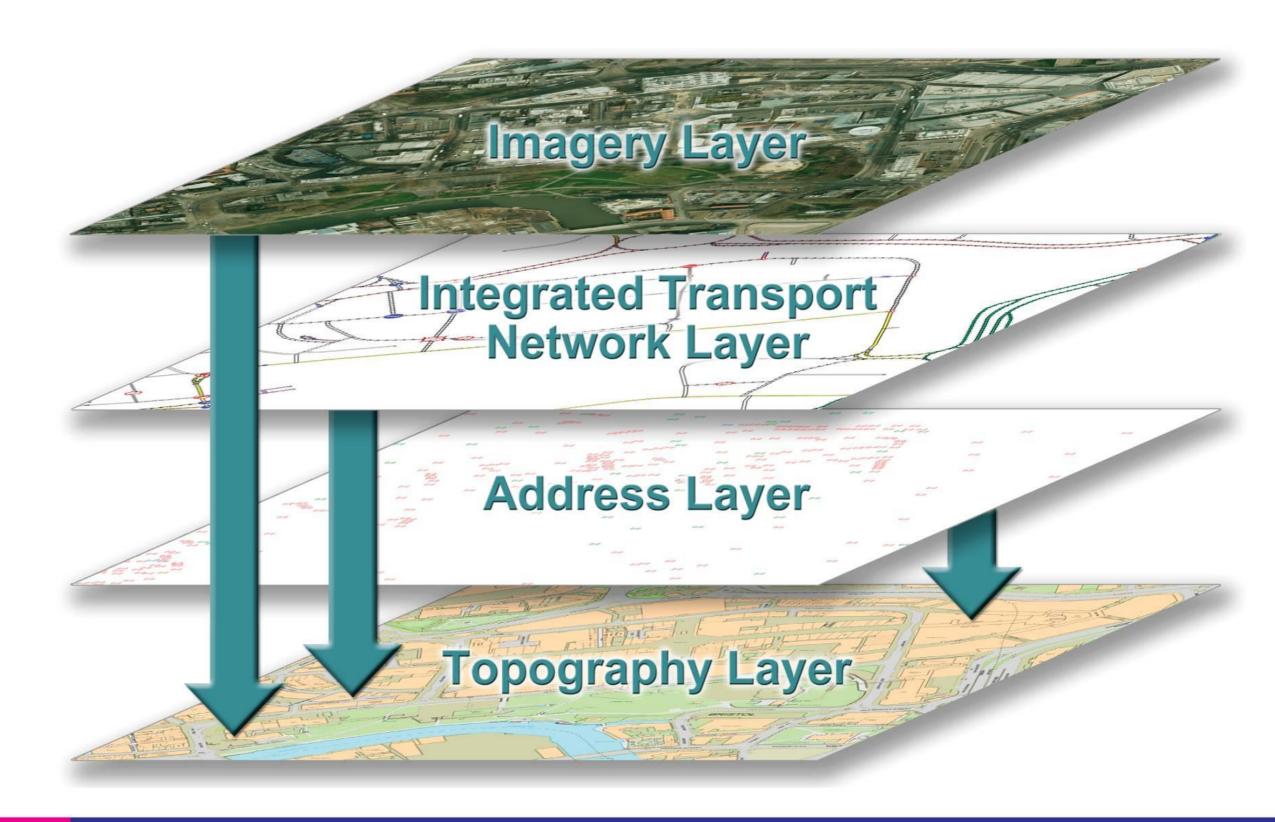
Provides the underpinning geographic framework for Great Britain

Updating the Ordnance Survey database

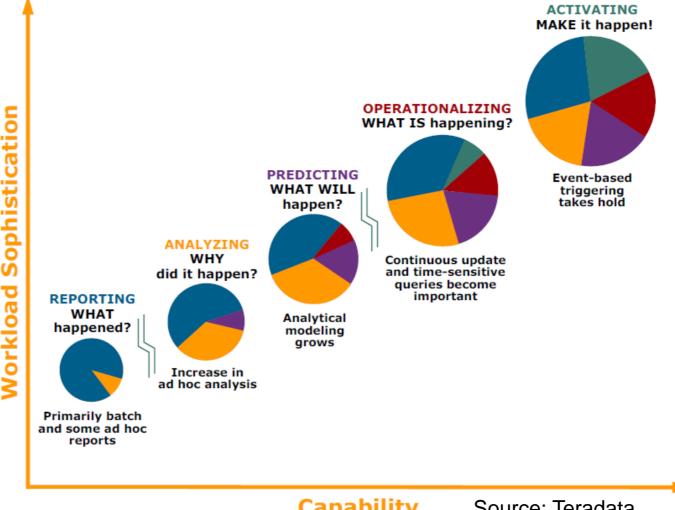
Wide Range of Customers and Markets






A database to connect via real world information

 Every object represented in OS MasterMap has a unique Reference identifier called a TOID. These TOIDs can be used to connect other information and are linked to other core references



OS MasterMap current layers

Big data and location analytics is changing the world

- Big data gives us the ability to:
 - harness structured and unstructured data
 - ask provocative questions of it

Stage 5 Stage 4 Stage 3 Stage 2 Stage 1

Capability

Source: Teradata

Ordnance Survey and IBM Netezza

What does TAFKAT do for us?

Stress Testing

Evaluation Results – Product Testing

Internal Analytics	Status	Current	Netezza
The Address Layer 2 queries listed in AI_M2_INTERFACE_DATA_SQL.sql (which test for any invalid combinations of attributes in the dataset).	Improve	~3 hours	17 mins
Topology check of OS MasterMap Topography Layer Topo Lines and Topo Areas.		N/A	3 mins 3 secs
Address Layer 2 features that are matched to Topography Layer buildings (TOID reference) but do not sit spatially within them.	New	N/A	25 mins
Features within each of the OS MasterMap layers which reference a feature that no longer exists in the product (e.g. Address Layer 2 "Reference to Cartographic Text TOID" to Topography Layer "TOID").	New	N/A	6x queries at ~1 min each
Count of OS MasterMap Topography Layer Topo Lines below 5cm (by length split at 1mm intervals).	New	N/A	37 secs
Number of OS MasterMap Topography Layer Topo Lines with a Descriptive Term of "Inferred Property Closing Links" which don't have a Topo Area with a Descriptive Term of "Multi Surface" on either side of them.	New	N/A	36 hrs

Data Queries

Evaluation Results – Stakeholder Questions

External Analytics	Status	Current	Netezza
What length of the GB coastline is made up of	Improve	~2 weeks	4 mins 26
"beach"?	Improve		secs
What is the remotest point (point farthest from a	Improve	~1 gav	27 mins 22
metalled road) in the country?			secs
at is the farthest point from the coastline?	Improve	∼1 day	9 mins 12
	Improve		secs
What is the number of each Address Layer 2 base	Improve	~2 days	1 min 9 secs
function falling within each of the GOR boundaries?	Improve		
Locate potential high rise blocks of flats (using OS	Improve	~3 days	49 secs
MasterMap Address Layer 2 and Topography Layer).			45 3CC3

```
Find the derivative = \lim_{h \to 0} (x+h).

Find the derivative = \lim_{h \to 0} (x+h).

|x| - x_0 = g(x+h) - g(x) = g(x+h) - g(x) = \lim_{h \to 0} (x+h) + x

|x| - x_0 = (x+h) - x = h

|x| - x_0 = (x+h) - x = h

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

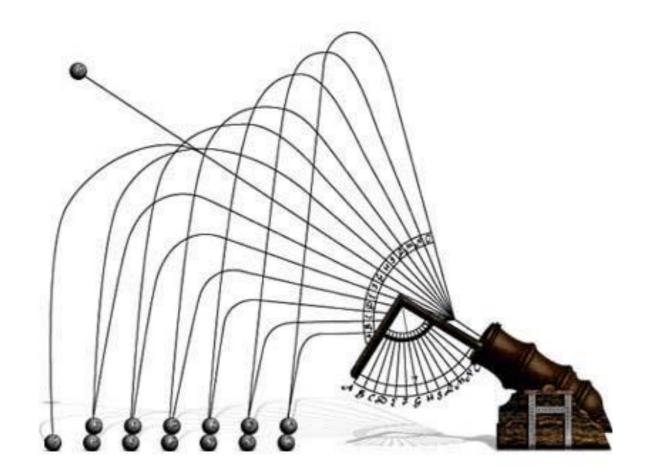
|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x

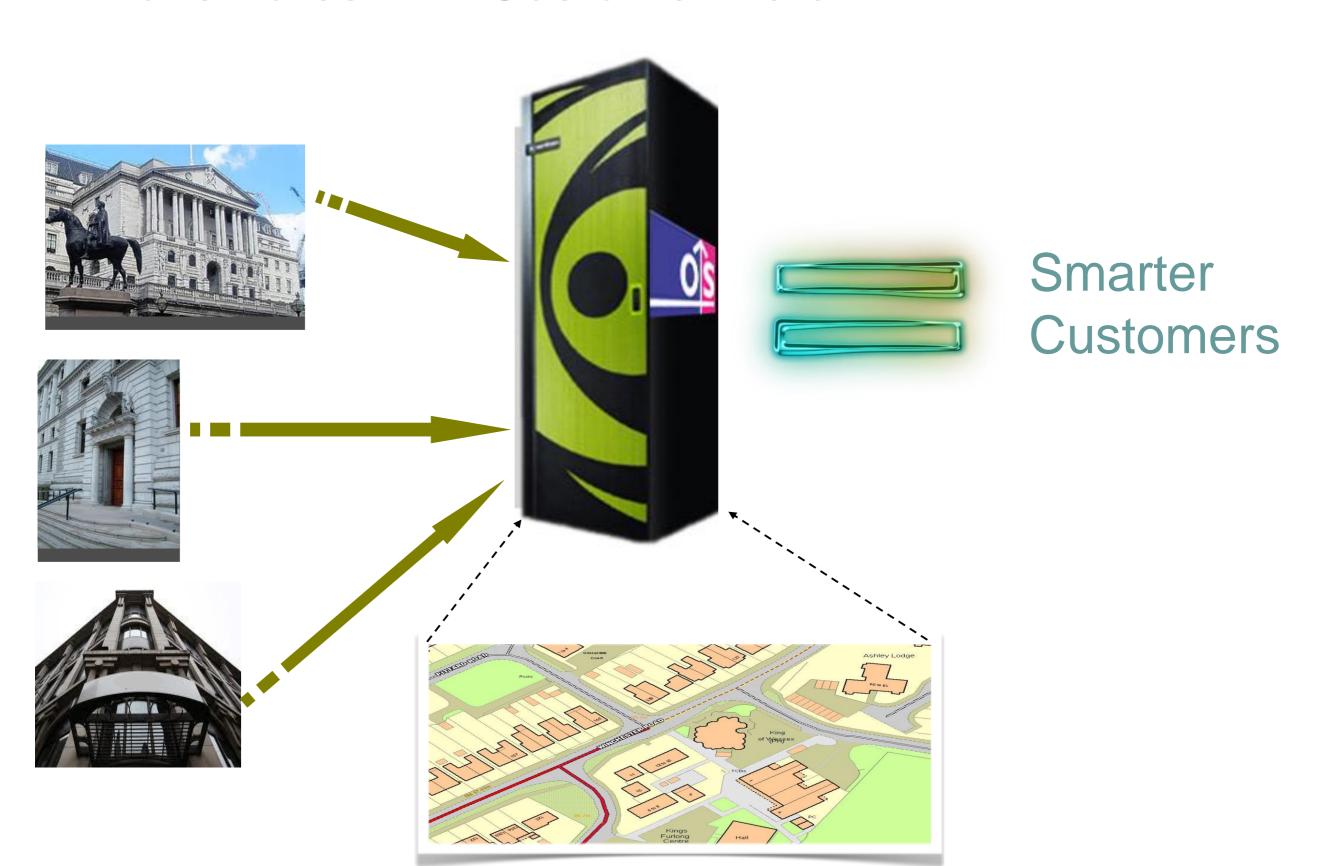
|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{h \to 0} (x+h) - x


|x| - x_0 = \lim_{h \to 0} (x+h) - x

|x| - x_0 = \lim_{
```

Develop Understanding


Evaluation Results – External Analytics

External Analytics	Status	Current	Netezza
Counts the numbers of postcodes [Code-Point]; addresses [Address Layer 2]; and addressable building polygons [Topography Layer] that fall with the Environment Agency flood polygons.	New	N/A	2 hrs 28 mins 24 secs

Customer Prototyping

Adventures with Customer Data

Conclusions

Stress Testing Data Queries

Develop Understanding Customer Prototyping

