
ibm.com/redbooks

Application
Development for CICS
Web Services

Chris Rayns
George Burgess

Paul Cooper
Tony Fitzgerald

Ankur Goyal
Peter Klein

Guo Qiang Li
SanYong Liu

Yan Sun

Overview of Web services in CICS
updated for CICS TS 4.1

Experience using RDz for
development

New SOA patterns for
CICS TS V4.1

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Application Development for CICS Web Services

January 2010

International Technical Support Organization

SG24-7126-01

© Copyright International Business Machines Corporation 2010. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Second Edition (January 2010)

This edition applies to Version 4, Release 1, of CICS Transaction Server.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team who wrote this book . xi
Become a published author . xiii
Comments welcome. xiv

Summary of changes . xv
January 2010, Second Edition . xv

Chapter 1. Overview of Web services . 1
1.1 Introduction . 2
1.2 Service-oriented architecture . 2

1.2.1 Characteristics . 4
1.2.2 Web services versus SOAs. 4

1.3 Web services. 5
1.3.1 Properties of a Web service . 5
1.3.2 Core standards . 6
1.3.3 Web Services Interoperability group . 9
1.3.4 Additional standards . 9

1.4 IBM WebSphere Service Registry and Repository 11
1.5 SOAP . 11

1.5.1 The envelope . 11
1.5.2 Communication styles . 16
1.5.3 Encodings . 16
1.5.4 Messaging modes . 17

1.6 WSDL . 18
1.6.1 WSDL Document . 18
1.6.2 WSDL document anatomy . 19
1.6.3 WSDL definition . 23
1.6.4 WSDL bindings . 29

Chapter 2. CICS implementation of Web services 31
2.1 Support for Web services in CICS. 32

2.1.1 Core aspects of Web services in CICS . 32
2.2 Tools for application deployment. 34

2.2.1 CICS Web Services Assistant . 34
2.2.2 IBM Rational Developer for System z . 35
© Copyright IBM Corp. 2010. All rights reserved. iii

2.2.3 Other Options . 35
2.3 CICS as a service provider . 36

2.3.1 Preparing to run a CICS application as a service provider 36
2.3.2 Processing the inbound service request . 38

2.4 CICS as a service requester . 40
2.4.1 Preparing to run a CICS application as a service requester 40
2.4.2 Processing the outbound service request . 42

2.5 The CICS resource definitions . 43
2.5.1 URIMAP . 43
2.5.2 PIPELINE . 45
2.5.3 WEBSERVICE . 48
2.5.4 The Web service binding file (WSBind). 50
2.5.5 SOAPFAULT commands . 52
2.5.6 Mapping levels . 53
2.5.7 Additional enhancements with CICS TS V3.2. 55
2.5.8 Additional enhancements with CICS TS 4.1 57
2.5.9 Use of WS-Addressing in CICS TS V4.1 applications 59
2.5.10 Comparing CICS TS V3.1 with later CICS TS versions 59

Chapter 3. Development approaches . 61
3.1 Introduction . 62
3.2 Bottom-up approach . 63
3.3 Top-down approach . 65
3.4 Meet-in-the-middle approach . 66
3.5 The advantages of using RDz . 68
3.6 Web services versus CICS TCP/IP connectivity . 70
3.7 Conclusions. 71

Chapter 4. CICS catalog manager example application 73
4.1 Samples for use with CICS Web Services . 74
4.2 Introduction to the catalog manager application . 74
4.3 Installation and set up of the base application . 75

4.3.1 Creating the VSAM data sets . 76
4.3.2 Defining the base application to CICS . 76
4.3.3 Configuring the example application . 77
4.3.4 Configuring code page support . 80

4.4 Web service support for the example application 81
4.4.1 The Web client front end . 81
4.4.2 The CICS Web service client front end . 83
4.4.3 Order dispatch Web services endpoints . 84
4.4.4 Alternative Web service provider configuration. 84

4.5 Web services setup . 85
4.5.1 Creating the zFS directories . 86
iv Application Development for CICS Web Services

4.5.2 Creating the PIPELINE definition . 86
4.5.3 Creating a TCPIPSERVICE . 88
4.5.4 Dynamically installing WEBSERVICE and URIMAP resources 89
4.5.5 Creating the WEBSERVICE resources with RDO 92
4.5.6 Creating the URIMAP resources with RDO 93
4.5.7 Completing the installation . 94

4.6 Installing the client application. 94
4.6.1 FTP the client application . 95
4.6.2 Install the client . 95
4.6.3 Start the client . 98
4.6.4 Testing the client . 98

Chapter 5. Rational Developer for System z (RDz). 103
5.1 What is Rational Developer for System z? . 104
5.2 RDz and CICS application development . 104
5.3 Components of RDz . 104

5.3.1 Workspace . 104
5.3.2 Workbench . 105
5.3.3 Perspective . 106
5.3.4 View . 108
5.3.5 Editor. 109
5.3.6 Projects and subprojects. 110

5.4 Writing your first COBOL Program with RD/z . 111
5.4.1 Property groups. 114
5.4.2 Compiler options . 115
5.4.3 SQL options . 116
5.4.4 CICS options . 116
5.4.5 Property Group Manager view . 119
5.4.6 Property Group editor . 121

5.5 Writing your first Java program with RD/z . 123
5.6 Overview of Debugging with RDz . 126

5.6.1 Supported languages and environments . 126
5.6.2 Local and remote debug . 127
5.6.3 Basic debugging features and tools . 127

5.7 Establishing Connection to remote Websphere Application Server 129
5.8 Import and Export EAR/WAR files. 132
5.9 Summary . 136

Chapter 6. Exposing the Catalog Sample CICS application as
a Web service . 137

6.1 Introduction . 138
6.2 Install the provider mode resources . 140
6.3 Create the provider mode deployment artifacts 141
 Contents v

6.3.1 Using the CICS Web Services Assistant. 142
6.3.2 Use Rational Developer for System z . 148

6.4 Testing the Web service . 156
6.4.1 The Web Services Explorer . 156
6.4.2 Generate a client. 160

6.5 Publishing WSDL to WebSphere Service Registry and Repository 164
6.5.1 Changes to DFHLS2WS for WebSphere Service Registry and

Repository in CICS TS V4.1. . 165
6.5.2 Changes to DFHWS2LS for WSRR in CICS TS V4.1. 167
6.5.3 New parameters to support SSL encryption in CICS TS V4.1 168

6.6 Writing applications that process the XML . 169
6.6.1 Creating a custom application handler . 169
6.6.2 Creating an XML-ONLY WEBSERVICE . 170

Chapter 7. Create a CICS Web service requester application using the
catalog sample . 171

7.1 Introduction . 172
7.2 Create a Web service requester using the CICS Web Services Assistant174

7.2.1 Generate the required artifacts . 174
7.2.2 Set up the CICS infrastructure . 178
7.2.3 Test the requester application. 180

7.3 Creating and testing a Web service hosted in RDz. 183
7.3.1 Create a Web service skeleton with RDz . 183
7.3.2 Implement the RDz based Web service . 187
7.3.3 Test the Web service using RDz. 188
7.3.4 Test the Web service using the CICS sample application 192

Chapter 8. Componentization . 195
8.1 CICS applications as components . 196
8.2 Locally optimized Web services . 197
8.3 Using WSDL to describe COBOL components . 199
8.4 Further Options with CICS TS 4.1. 199

8.4.1 Linking to a target PROGRAM from a requester mode PIPELINE . 200
8.4.2 Invoking a local SERVICE from a requester mode PIPELINE 201

Chapter 9. New SOA patterns for CICS TS V4.1 . 203
9.1 Service Component Architecture. 204

9.1.1 Introduction to SCA . 204
9.2 CICS TS V4.1: Implementation of SCA. 208

9.2.1 BUNDLE resources. 208
9.2.2 Creating services from existing CICS applications 208
9.2.3 Deploying SCA services . 209
9.2.4 RDz SCA tooling . 210
9.2.5 Creating and deploying an SCA service from an existing CICS
vi Application Development for CICS Web Services

application. 210

Chapter 10. Hints and tips . 213
10.1 Custom handlers programs for pipelines. 214

10.1.1 A simple example handler program . 214
10.1.2 Handling state information . 218
10.1.3 Propagating user identity tokens. 219

10.2 The SOAP fault API. 220
10.2.1 How to create a SOAP Fault in an application 220
10.2.2 Parsing SOAP Fault messages in CICS TS V4.1 221

10.3 Handling variably recurring XML elements . 227
10.3.1 In-lined variably recurring data . 227
10.3.2 Container based variably recurring data: inbound 229
10.3.3 Container based variably recurring data: outbound 232

10.4 Handling undefined XML (xsd:any) . 233
10.5 Handling enumerated XML constructs . 235
10.6 Modifying generated WSDL . 237

10.6.1 Background to MTOM/XOP . 237
10.6.2 Support for xsd:base64Binary and MTOM/XOP 238
10.6.3 Mapping a single field as binary data with DFHLS2WS 238
10.6.4 Handling variable length values and white space 240

10.7 WSDL types not supported by DFHWS2LS . 245
10.8 Problem determination . 247

10.8.1 Problems using DFHWS2LS and DFHLS2WS 247
10.8.2 Using the execution diagnostic facility to debug Web services. . . 248
10.8.3 Debugging CICS SFR applications . 249
10.8.4 Runtime SOAP validation . 251

10.9 XML parsing in CICS application. 252
10.9.1 XML Toolkit for z/OS . 253
10.9.2 COBOL High Speed XML parser . 254
10.9.3 CICS API: EXEC CICS TRANSFORM . 256

Chapter 11. COBOL samples . 257
11.1 Introduction . 258
11.2 Example 1: The <xsd:any> tag . 258

11.2.1 The WSDL. 259
11.2.2 Web Services Assistant: z/OS . 265
11.2.3 The COBOL program . 265
11.2.4 CICS resource definitions . 277

11.3 Example 2: The <choice> tag . 278
11.3.1 The WSDL. 278
11.3.2 Generation of COBOL and CICS artifacts. 279
11.3.3 The COBOL program . 279
 Contents vii

11.3.4 CICS Resource Definitions . 282
11.4 Example 3: minoccurs and maxoccurs . 283

11.4.1 Generation of COBOL and CICS artifacts. 284
11.4.2 The COBOL Program . 284
11.4.3 CICS Resource Definitions . 286
11.4.4 Results of calling the service. 286

Appendix A. Sample Web services . 289
Preparation of your RDz environment . 290
Loading an .ear file into a new or existing project . 291
Description of examples A1–A3 . 293

The XML any passthrough Web service example. 293
The XML choice Web service example. 297
The XML occurs Web service example. 301

Appendix B. Sample COBOL programs . 307
Program to call <xsd:any> example service. 308
WSDL - <xsd:any> . 314
Request Language Structure - inlinI01. 318
Response Language Structure - inlinO01 . 321
Program to call <xsd:choice> example service . 324
WSDL <xsd:choice>. 330
Request Language Structure - choicI01. 334
Response Language Structure - choicO01 . 336
Program to call minOccurs/maxOccurs example service. 338
WSDL - minOccurs/maxOccurs . 344
Request Language Structure - redboI01 . 348
Response Language Structure - redboO01 . 350

Related publications . 353
IBM Redbooks . 353
Other publications . 353
Online resources . 353
How to get Redbooks . 354
Help from IBM . 354

Appendix C. Additional material . 355
Locating the Web material . 355

How to use the Web material . 355

Index . 359
viii Application Development for CICS Web Services

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2010. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS Explorer™
CICSPlex®
CICS®
DataPower®
DB2®
IBM®

IMS™
Language Environment®
OMEGAMON®
Rational®
Redbooks®
Redbooks (logo) ®

System z®
Tivoli®
WebSphere®
z/OS®
zSeries®

The following terms are trademarks of other companies:

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
x Application Development for CICS Web Services

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication focuses on developing Web service
applications in CICS®. It takes the broad view of developing and modernizing
CICS applications for XML, Web services, SOAP, and SOA support, and lays out
a reference architecture for developing these kinds of applications.

We start by discussing Web services in general, then review how CICS
implements Web services. We offer an overview of different development
approaches: bottom-up, top-down, and meet-in-the-middle. After laying out the
foundations, we review the CICS catalog manager sample application, as this is
the application we used as a basis.

We then look at how you would go about exposing a CICS application (namely,
the catalog manager sample application) as a Web service provider, again
looking at the different approaches. The book then steps through the process of
creating a CICS Web service requester.

We close out by looking at CICS application aggregation (including 3270
applications) with Rational® Application Developer for System z®. The final
chapter offers hints and tips to help you when implementing this technology.

The team who wrote this book

This book was produced by a team of specialists from around the world working
at the China Development Lab, Beijing.

Chris Rayns is an IT Specialist and the CICS project leader at the International
Technical Support Organization, Poughkeepsie Center. He writes extensively on
all areas of CICS. Before joining the ITSO, Chris worked in IBM Global Services
in the United Kingdom as a CICS IT Specialist.

George Burgess is currently working as the CICS Transaction Server on z/OS®
Subject Matter Expert for the Peoples Republic of China and is based in Beijing.
He has 24 years of experience as an Application Programmer, Systems
Programmer, CICS Developer and OMEGAMON® XE for CICS Developer. His
areas of expertise include Common Business Oriented Language (COBOL),
CICS, DB2®, WebSphere® MQ, IMS™ DL/1, VSAM, JCL,z/OS, and
OMEGAMON.
© Copyright IBM Corp. 2010. All rights reserved. xi

Paul Cooper has been a member of the CICS development team in IBM Hursley
for over 10 years. He has spent most of that time working on the Java™ support
in CICS and the Web services support in CICS. He is often involved in customer
support activities around CICS Web services

Tony Fitzgerald is a Software Support Specialist in the UK. He has worked for
IBM as CICS Level 2 Support for five years and has 15 years of experience
working with CICS and DB2 as a Systems Programmer and an Applications
Programmer. He holds a degree in Computer Science and Management Science
from the University of Keele.

Ankur Goyal is an IT Specialist with IBM with the Rational Software Technical
Sales team in India. He consults and supports customer solutions on IBM
middleware, open source, open standards, and emerging technologies. Prior to
this role he was part of the IBM Academic Initiative-Ecosystem group, where his
team was responsible for building an ecosystem around IBM middleware in the
emerging market of India. His areas of interest include software development
best practices, Eclipse, and integrating Web technologies with the help of open
standards. He joined IBM in 2004 after gaining expertise in application
development as a Software Engineer. He holds a Bachelor’s degree in
information technology from National Institute of Technology, Durgapur, and is
also IBM certified for J2EE, DB2, WebSphere, Rational, XML, and SOA.

Peter Klein is a CICS Team Leader at the IBM Germany Customer Support
Center. He has 18 years of experience working as a Technical Support Specialist
with IBM software products. His expertise includes WebSphere MQ, CICSPlex®
System Manager, and distributed transaction systems. Peter has contributed to
several other IBM Redbooks publications and ITSO projects sponsored by IBM
Learning Services.

Guo Qiang Li is a Software Engineer with the China CICS Team, which is the
first team in CDL working on CICS Transaction Server. He focuses on CICS
Dynamic LIBRARY management testing and CICS Web Service support testing.
His experiences on CICS include CPSM and Web services. He graduated from
Tianjin University with a Master’s degree and joined the China CICS Team in
2006.

SanYong Liu is an Advisory IT Specialist with Technical Sales Support for the
IBM software products in China. His expertise includes CICS Transaction Server,
WebSphere Application Server, WebSphere MQ, and WebSphere software
portfolio for SOA. He has several years of customer experience for consulting
and supporting large banks in China with IBM mainframe solutions. He holds a
Bachelor's degree in Software Engineering from XiDian University.
xii Application Development for CICS Web Services

Yan Sun is a CICS Team Leader at Data Center(Beijing), Industrial and
Commercial Bank of China. She has seven years of experience working as a
Systems Programmer. Her areas of expertise include CICS Transaction Server,
WebSphere MQ, and Encryption Facility for z/OS. She holds a Master’s degree in
Information Management from Beijing Jiaotong University.

Thanks to the following people for their contributions to this project:

Richard Conway
International Technical Support Organization, Poughkeepsie Center

Mark Pocock, CICS 390 Change Team
IBM Hursley

Thanks to the authors of the previous editions of this book.

� Authors of the first edition, Application Development for CICS Web Services,
published in May 2006, were:

Isabel Arnold, Chris Backhouse, Leigh Compton, David Evans, Jim
Hollingsworth, William Yates

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with
specific products or solutions, while getting hands-on experience with
leading-edge technologies. You will have the opportunity to team with IBM
technical professionals, Business Partners, and Clients.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
xiv Application Development for CICS Web Services

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition might also include minor corrections and
editorial changes that are not identified.

January 2010, Second Edition

This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
� Chapter 5 Rational Developer for System z (RD/z)
� Chapter 9 Componenization
� Chapter 10 SCA
� Chapter 12 COBOL Samples
� Appendix A Sample Web services
� Appendix B Sample COBOL programs

Changed information
� All chapters have been updated to reflect the changes in CICS TS 4.1
© Copyright IBM Corp. 2010. All rights reserved. xv

xvi Application Development for CICS Web Services

Chapter 1. Overview of Web services

In this chapter, we focus on some of the architectural concepts that have to be
considered in a Web services project. We define and discuss service-oriented
architecture (SOA) and the relationship between SOAs and Web services.

We then take a closer look at Web services, a technology that enables you to
invoke applications using Internet protocols and standards. The technology is
called Web services because it integrates services (applications) using Web
technologies (the Internet and its standards).

1

© Copyright IBM Corp. 2010. All rights reserved. 1

1.1 Introduction
There is a strong trend for companies to integrate existing systems to implement
IT support for business processes that cover the entire business cycle. Today,
interactions already exist using a variety of schemes that range from rigid
point-to-point electronic data interchange (EDI) interactions to open Web
auctions. Many companies have already made some of their IT systems available
to all of their divisions and departments, or even their customers or partners on
the Web. However, techniques for collaboration vary from one case to another
and are thus proprietary solutions. Systems often collaborate without any vision
or architecture.

Thus, there is an increasing demand for technologies that support the connecting
or sharing of resources and data in a flexible and standardized manner. Because
technologies and implementations vary across companies and even within
divisions or departments, unified business processes cannot be smoothly
supported by technology. Integration has been developed only between units that
are already aware of each other and that use the same static applications.

Furthermore, there is a requirement to further structure large applications into
building blocks to use well-defined components within different business
processes. A shift towards a service-oriented approach (SOA) not only can
standardize interaction, but also allows for more flexibility in the process. The
complete value chain within a company is divided into small modular functional
units, or services. A SOA thus has to focus on how services are described and
organized to support their dynamic, automated discovery and use.

Companies and their sub-units should be able to provide services easily. Other
business units can use these services to implement their business processes.
This integration can ideally be performed during the runtime of the system, not
just at the design time.

1.2 Service-oriented architecture

This section is a short introduction to the key concepts of a SOA. The
architecture makes no statements about the infrastructure or protocols it uses.
Therefore, you can implement a SOA using technologies other than Web
technologies.
2 Application Development for CICS Web Services

As shown in Figure 1-1, a SOA contains three basic components:

� Service provider

The service provider creates a Web service and possibly publishes to the
service broker the information necessary to access and interface with the
Web service.

� Service broker

The service broker (also known as a service registry) makes the Web service
access and interface information available to any potential service requester.

� Service requester

The service requester binds to the service provider to invoke one of its Web
services, having optionally placed entries in the broker registry using various
find operations.

Figure 1-1 Web services components and operations

Each component can also act as one of the two other components. For example,
if a service provider requires information that it can only acquire from some other
service, it acts as a service requester while still serving the original request.

� The service provider creates a Web service and possibly publishes its
interface and access information to the service broker.

� The service broker (also known as service registry) is responsible for making
the Web service interface and implementation access information available to
any potential service requester.

� The service requester binds to the service provider to invoke one of its Web
services, having optionally placed entries in the broker registry using various
find operations.

Service
Broker

Service
Requester

Service
Provider

Publish Discover

Request / Response
 Chapter 1. Overview of Web services 3

1.2.1 Characteristics

The SOA uses a loose coupling between the participants. Such a loose coupling
provides greater flexibility as follows:

� Old and new functional blocks are encapsulated into components that work
as services.

� Functional components and their interfaces are separated. Therefore, new
interfaces can be plugged in more easily.

� Within complex applications, the control of business processes can be
isolated. A business rule engine can be incorporated to control the workflow
of a defined business process. Depending on the state of the workflow, the
engine calls the respective services.

1.2.2 Web services versus SOAs

SOAs have been used under various guises for many years. It can be, and has
been, implemented using a number of different distributed computing
technologies, such as CORBA or messaging middleware. The effectiveness of
SOAs in the past has always been limited by the ability of the underlying
technology to interoperate across the enterprise.

Web services technology is an ideal technology choice for implementing a SOA:

� Web services are standards-based. Interoperability is a key business
advantage within the enterprise and is crucial in B2B scenarios.

� Web services are widely supported across the industry. For the first time, all
major vendors are recognizing and providing support for Web services.

� Web services are platform and language neutral. There is no bias for or
against a particular hardware or software platform. Web services can be
implemented in any programming language or toolset. This is important
because continued industry support exists for the development of standards
and interoperability between vendor implementations.

� This technology provides a migration path to enable existing business
functions gradually, as Web services are required.

� This technology supports synchronous and asynchronous, RPC-based, and
complex message-oriented exchange patterns.

Conversely, there are many Web services implementations that are not a SOA.
For example, the use of Web services to connect two heterogeneous systems
directly together is not a SOA. These uses of Web services solve real problems
and provide significant value on their own. They can form the starting point of a
SOA.
4 Application Development for CICS Web Services

In general, a SOA has to be implemented at an enterprise or organizational level
to harvest many of the benefits.

For more information about the relationship between Web services and SOAs, or
the application of IBM Patterns for e-business to a Web services project, refer to
Patterns: Service-Oriented Architecture and Web Services, SG24-6303.

1.3 Web services

Web services perform encapsulated business functions, ranging from simple
request-reply to full business process interactions. These services can be new
applications or just wrapped around existing business functions to make them
network-enabled. Services can rely on other services to achieve their goals.

It is important to note from this definition that a Web service is not constrained to
using SOAP over HTTP/S as the transport mechanism. Web services are equally
at home in the messaging world.

1.3.1 Properties of a Web service

All Web services share the following properties:

� Self-contained

On the client side, no additional software is required. A programming
language with XML and HTTP client support is enough to get you started. On
the server side, an HTTP server and a SOAP server are required.

� Self-describing

Using Web Services Description Language (WSDL), all the information
required to implement a Web service as a provider, or to invoke a Web
service as a requester, is provided.

� Published, located, and invoked across the Web

This technology uses established lightweight Internet standards such as
HTTP. It makes use of the existing infrastructure.

� Modular

Simple Web services can be aggregated to more complex ones, either using
workflow techniques or by calling lower-layer Web services from a Web
service implementation. Web services can be chained together to perform
higher-level business functions. This shortens development time and enables
best-of-breed implementations.
 Chapter 1. Overview of Web services 5

� Language-independent and interoperable

The client and server can be implemented in different environments.
Theoretically, any language can be used to implement Web service clients
and servers.

� Inherently open and standard-based

XML and HTTP are the major technical foundations for Web services. A large
part of the Web service technology has been built using open-source
projects. Vendor independence and interoperability are realistic goals.

� Loosely coupled

Traditionally, application design has depended on tight interconnections at
both ends. Web services require a simpler level of coordination that allows a
more flexible reconfiguration for an integration of the services in question.

� Programmatic access

The approach provides no graphical user interface. It operates at the code
level. Service consumers have to know the interfaces to Web services, but do
not have to know the implementation details of services.

� Wraps existing applications

Already existing stand-alone applications can easily be integrated into the
SOA by implementing a Web service as an interface.

1.3.2 Core standards

Web services are built upon four core standards, as explained in the following
sections.

Extensible Markup Language (XML)
XML is the foundation of Web services. However, because much information has
already been written about XML, we do not describe it in this document. You can
find information about XML at the following Web page:

http://www.w3.org/XML/

SOAP
Originally proposed by Microsoft®, SOAP was designed to be a simple and
extensible specification for the exchange of structured, XML-based information in
a decentralized, distributed environment. As such, it represents the main means
of communication between the three actors in an SOA:

� Service provider
� Service requester
� Service broker
6 Application Development for CICS Web Services

http://www.w3.org/XML/

A group of companies, including IBM, submitted SOAP to the W3C for
consideration by its XML Protocol Working Group. There are currently two
versions of SOAP: Version 1.1 and Version 1.2.

The SOAP 1.1 specification contains three parts:

� An envelope that defines a framework for describing message content and
processing instructions. Each SOAP message consists of an envelope that
contains an arbitrary number of headers and one body that carries the
payload. SOAP messages might contain faults. Faults report failures or
unexpected conditions.

� A set of encoding rules for expressing instances of application-defined data
types.

� A convention for representing remote procedure calls and responses.

A SOAP message is, in principle, independent of the transport protocol that is
used, and can, therefore, potentially be used with a variety of protocols, such as
HTTP, JMS, SMTP, or FTP. Right now, the most common way of exchanging
SOAP messages is through HTTP.

The way SOAP applications communicate when exchanging messages is often
referred to as the message exchange pattern (MEP). The communication can be
either one-way messaging, where the SOAP message only goes in one direction,
or two-way messaging, where the receiver is expected to send back a reply.

Due to the characteristics of SOAP, it does not matter what technology is used to
implement the client, as long as the client can issue XML messages. Similarly,
the service can be implemented in any language, as long as it can process XML
messages.

Web Services Description Language (WSDL)
This standard describes Web services as abstract service end points that
operate on messages. Both the operations and the messages are defined in an
abstract manner, while the actual protocol used to carry the message and the
end point’s address are concrete.

WSDL is not bound to any particular protocol or network service. It can be
extended to support many different message formats and network protocols.
However, because Web services are mainly implemented using SOAP and
HTTP, the corresponding bindings are part of this standard.

Note: The authors of the SOAP 1.1 specification declared that the acronym
SOAP stands for Simple Object Access Protocol. The authors of the SOAP
1.2 specification decided not to give any meaning to the acronym SOAP.
 Chapter 1. Overview of Web services 7

The WSDL 1.1 specification only defines bindings that describe how to use
WSDL in conjunction with SOAP 1.1, HTTP GET and POST, and MIME. The
specification for WSDL 1.1 can be found at the following Web page:

http://www.w3.org/TR/wsdl

WSDL 2.0 provides a model as well as an XML format for describing Web
services. It enables you to separate the description of the abstract functionality
offered by a service from the concrete details of a service description. It also
describes extensions for MEPs, SOAP modules, and a language for describing
such concrete details for SOAP1.2 and HTTP.

There are eight MEPs defined. CICS TS V4.1 supports four of them:

� In-Only

A request message is sent to the Web service provider, but the provider is not
allowed to send any type of response to the Web service requester.

� In-Out

A request message is sent to the Web service provider, and a response
message is returned. The response message can be a normal SOAP
message or a SOAP fault.

� In-Optional-Out

A request message is sent to the Web service provider, and a response
message is optionally returned to the requester. The response message can
be a normal SOAP message or a SOAP fault.

� Robust-In-Only

A request message is sent to the Web service provider, and no response
message is returned to the requester unless an error occurs. In this case, a
SOAP fault message is sent to the requester.

The four MEPs that CICS TS V4.1 does not support are:

� Out-Only
� Robust-Out-Only
� Out-In
� Out-Optional-In

The specification for WSDL 2.0 can be found at the following Web page:

http://www.w3.org/TR/wsdl20
8 Application Development for CICS Web Services

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20

Universal Description, Discovery, and Integration standard
The Universal Description, Discovery, and Integration (UDDI) standard defines a
means to publish and to discover Web services. As of this writing, UDDI Version
3.0 has been finalized, but UDDI Version 2.0 is still more commonly used. For
more information, refer to the following Web pages:

http://www.uddi.org/
http://www.oasis-open.org/specs/index.php#wssv1.0

1.3.3 Web Services Interoperability group

Web services can be used to connect computer systems together across
organizational boundaries. Therefore, a set of open non-proprietary standards
that all Web services adhere to maximizes the ability to connect disparate
systems together.

The Web Service Interoperability (WS-I) group is an organization that promotes
open interoperabiltity between Web services regardless of platform, operating
systems, and programming languages. To promote this cause, the WS-I group
has released a basic profile that outlines a set of specifications to which WSDL
documents and Web services traffic (SOAP over HTTP transport) must adhere to
be WS-I compliant. The full list of specifications can be found at the WS-I Web
site:

http://www.ws-i.org/

IBM is a member of the WS-I community, and CICS support for Web services is
fully compliant with the WS-I basic profile 1.0.

1.3.4 Additional standards

There are other Web services specifications that are now supported by CICS.
For a list of the limitations of CICS support, refer to CICS Web Services Guide,
SC34-6838.

Web Services Atomic Transaction
This specification, commonly known as WS-Atomic Transaction, defines the
atomic transaction coordination type for transactions of a short duration.
Together with the Web Services Coordination specification, it defines protocols
for short-term transactions that enable transaction processing systems to
interoperate in a Web services environment. Transactions that use WS-Atomic
Transaction have the properties of atomicity, consistency, isolation, and durability
(ACID).
 Chapter 1. Overview of Web services 9

http://www.uddi.org/
http://www.oasis-open.org/specs/index.php#wssv1.0
http://www.ws-i.org/

Web Services Security: SOAP Message Security
This specification is a set of enhancements to SOAP messaging that provides
message integrity and confidentiality. The specification provides three main
mechanisms that can be used independently or together:

� The ability to send security tokens as part of a message, and for associating
the security tokens with message content

� The ability to protect the contents of a message from unauthorized and
undetected modification (message integrity)

� The ability to protect the contents of a message from unauthorized disclosure
(message confidentiality)

Web Services Trust Language
This specification, commonly known as WS-Trust, defines extensions that build
on Web Services Security to provide a framework for requesting and issuing
security tokens, and broker trust relationships.

SOAP Message Transmission Optimization Mechanism
(MTOM)

This specification is one of a related pair of specifications that define how to
optimize the transmission and format of a SOAP message. MTOM defines:

� How to optimize the transmission of base64 binary data in SOAP messages.

� How to implement optimized MIME multipart serialization of SOAP messages
in a binding, independent way.

� The implementation of MTOM relies on the related XML-binary Optimized
Packaging (XOP) specification. As these two specifications are so closely
linked, they are normally referred to as MTOM/XOP.

Web Services Addressing
This specification, usually referred to as WS-Addressing, provides a standard
way to address Web services and to provide addressing information in SOAP
messages. The WS-Addressing specification introduces two primary concepts:
endpoint references, and message addressing properties.

� Endpoint reference

This is a way to encapsulate information about specific Web service
endpoints. Endpoint references can be propagated to other parties and then
used to target the Web service endpoint that they represent.
10 Application Development for CICS Web Services

� Message addressing properties

MAP are a set of defined WS-Addressing properties that can be represented
as elements in SOAP headers and provide a standard way of conveying
information, such as the endpoint to which message replies should be
directed, or information about the relationship that the message has with
other messages.

1.4 IBM WebSphere Service Registry and Repository

IBM provides an enterprise strength solution that enables governance of SOA
artifacts, most of which are related to Web services. The IBM WebSphere
Service Registry and Repository product is such a solution.

The product provides an integrated service metadata repository to govern
services and manage the service life cycle, promoting visibility and consistency,
and reducing redundancy in your organization. You can seamlessly publish and
find capabilities across all phases of SOA, enriching connectivity with dynamic
and efficient interactions between services at runtime.

1.5 SOAP

In this section we focus mainly on SOAP 1.1.

1.5.1 The envelope

A SOAP message is an envelope containing zero or more headers and one
body:

� The envelope is the root element of the XML document, providing a container
for control information, the addressee of a message, and the message itself.

� Headers contain control information, such as quality of service attributes.

� The body contains the message identification and its parameters.

� Both the headers and the body are child elements of the envelope element.
 Chapter 1. Overview of Web services 11

Figure 1-2 shows a simple SOAP request message.

� The header tells who must deal with the message and how to deal with it.
When the actor is next or when the actor is omitted, the receiver of the
message must do what the body says. Furthermore, the receiver must
understand and process the application-defined <TranID> element.

� The body tells what has to be done: Dispatch an order for quantityRequired 1
of itemRefNumber 0010 to customerID CB1 in chargeDepartment ITSO.

Figure 1-2 Example of a simple SOAP message

Namespaces
Namespaces play an important role in SOAP messages. A namespace is simply
a way of adding a qualifier to an element name to ensure that it is unique.

For example, we might have a message that contains an element <customer>.
Customers are fairly common, so it is likely that many Web services have
customer elements. To ensure that we know what customer we are talking about,
we declare a namespace for it, for example, as follows:

xmlns:itso=”http://itso.ibm.com/CICS/catalogApplication

This identifies the prefix itso with the declared namespace. Then, whenever we
reference the element <customer> we prefix it with the namespace as follows:
<itso:customer>. This identifies it uniquely as a customer type for our application.
Namespaces can be defined as any unique string. They are often defined as
URLs because URLs are generally globally unique, and they have to be in URL
format. These URLs do not have to physically exist though.

The WS-I Basic Profile 1.0 requires that all application-specific elements in the
body must be namespace-qualified to avoid collisions between names.

<Envelope>
<Header>

<actor>http:// ...org/soap/actor/next</actor>
<TranID mustUnderstand=”1”>ABCD</TranID>

</Header>
<Body>

<dispachOrderRequest>
<itemRefNumber>0010</itemRefNumber>
<quantityRequired>1</quantityRequired>
<customerID>CB1</customerID>
<chargeDepartment>ITSO</chargeDepartment>

</dispatchOrderRequest>
</Body>
</Envelope>

Envelope

Header
[0..n]

Body
[1]
12 Application Development for CICS Web Services

Table 1-1 shows the namespaces of SOAP and WS-I Basic Profile 1.0 used in
this book.

Table 1-1 SOAP namespaces

SOAP envelope
The Envelope is the root element of the XML document representing the
message. It has the following structure:

<SOAP-ENV:Envelope >
<SOAP-ENV:Header>

<SOAP-ENV:HeaderEntry.... />
</SOAP-ENV:Header>
<SOAP-ENV:Body>

[message payload]
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

In general, a SOAP message is a (possibly empty) set of headers plus one body.
The SOAP envelope also defines the namespace for structuring messages. The
entire SOAP message (headers and body) is wrapped in this envelope.

Headers
Headers are a generic and flexible mechanism for extending a SOAP message in
a decentralized and modular way without prior agreement between the parties
involved. They allow control information to pass to the receiving SOAP server
and also provide extensibility for message structures.

Headers are optional elements in the envelope. If present, the Header element
must be the first immediate child element of a SOAP Envelope element. All
immediate child elements of the Header element are called header entries.

Namespace URI Explanation

http://schemas.xmlsoap.org/soap/envelope/ SOAP 1.1 envelope namespace

http://schemas.xmlsoap.org/soap/encoding/ SOAP 1.1 encoding namespace

http://www.w3.org/2001/XMLSchema-instance Schema instance namespace

http://www.w3.org/2001/XMLSchema XML Schema namespace

http://schemas.xmlsoap.org/wsdl WSDL namespace for WSDL
framework

http://schemas.xmlsoap.org/wsdl/soap WSDL namespace for WSDL
SOAP binding

http://ws-i.org/schemas/conformanceClaim/ WS-I Basic Profile
 Chapter 1. Overview of Web services 13

There is a predefined header attribute called SOAP-ENV:mustUnderstand. The
value of the mustUnderstand attribute is either 1 or 0. The absence of the SOAP
mustUnderstand attribute is semantically equivalent to the value 0.

If the mustUnderstand attribute is present in a header entry and set to 1, the
service provider must implement the semantics defined by the element:

<Header>
<thens:TranID mustUnderstand=”1”>ABCD</thens:TranID>

</Header>

In the example, the header entry specifies that a service invocation must fail if the
service provider does not support the ability to process the TranID header.

A SOAP intermediary is an application that is capable of both receiving and
forwarding SOAP messages on their way to the final destination. In realistic
situations, not all parts of a SOAP message might be intended for the ultimate
destination of the SOAP message, but, instead, might be intended for one or
more of the intermediaries on the message path. Therefore, a second predefined
header attribute, SOAP-ENV:actor, is used to identify the recipient of the header
information. In SOAP 1.2 the actor attribute is renamed SOAP-ENV:role. The
value of the SOAP actor attribute is the URI of the mediator, which is also the
final destination of the particular header element (the mediator does not forward
the header).

If the actor is omitted or set to the predefined default value, the header is for the
actual recipient and the actual recipient is also the final destination of the
message (body). The predefine value is:

http://schemas.xmlsoap.org/soap/actor/next

If a node on the message path does not recognize a mustUnderstand header
and the node plays the role specified by the actor attribute, the node must
generate a SOAP MustUnderstand fault. Whether the fault is sent back to the
sender depends on the message exchange pattern in use. For request/response,
the WS-I BP 1.0 requires the fault to be sent back to the sender. Also, according
to WS-I BP 1.0, the receiver node must discontinue normal processing of the
SOAP message after generating the fault message.

Headers can carry authentication data, digital signatures, encryption information,
and transactional settings. They can also carry client-specific or project-specific
controls and extensions to the protocol. The definition of headers is not just up to
standards bodies.

Note: The header must not include service instructions (that would be used by
the service implementation).
14 Application Development for CICS Web Services

Body
The SOAP Body element provides a mechanism for exchanging information
intended for the ultimate recipient of the message. The Body element is encoded
as an immediate child element of the SOAP Envelope element. If a Header
element is present, the Body element must immediately follow the Header
element. Otherwise, it must be the first immediate child element of the Envelope
element.

All immediate child elements of the Body element are called body entries. Each
body entry is encoded as an independent element within the SOAP Body
element. In the most simple case, the body of a basic SOAP message consists of
an XML message as defined by the schema in the types section of the WSDL
document. It is legal to have any valid XML as the body of the SOAP message,
but WS-I conformance requires that the elements be namespace qualified.

Error handling
One area where there are significant differences between the SOAP 1.1 and 1.2
specifications is in the handling of errors. Here we focus on the SOAP 1.1
specification for error handling.

SOAP itself predefines one body element, the fault element, which is used for
reporting errors. If present, the fault element must appear as a body entry and
must not appear more than once. The children of the fault element are defined as
follows:

� faultcode is a code that indicates the type of the fault. SOAP defines a small
set of SOAP fault codes covering basic SOAP faults:

– soapenv:Client

This code indicates that the client sent an incorrectly formatted message

– soapenv:Server,

This code is for delivery problems

– soapenv:VersionMismatch,

This code can report any invalid namespaces specified on the Envelope
element

– soapenv:MustUnderstand

This code is for errors regarding the processing of header content

� faultstring is a human-readable description of the fault. It must be present in a
fault element.
 Chapter 1. Overview of Web services 15

� faultactor is an optional field that indicates the URI of the source of the fault.
The value of the faultactor attribute is a URI identifying the source that caused
the error. Applications that do not act as the ultimate destination of the SOAP
message must include the faultactor element in a SOAP fault element.

� detail is an application-specific field that contains detailed information about
the fault. It must not be used to carry information about errors belonging to
header entries. The absence of the detail element in the fault element
indicates that the fault is not related to the processing of the body element
(the actual message).

For example, a soapenv:Server fault message is returned if the service
implementation throws a SOAP exception. The exception text is transmitted in
the faultstring field.

Although SOAP 1.1 permits the use of custom-defined faultcodes, the WS-I
Basic Profile only permits the use of the four codes defined in SOAP 1.1.

1.5.2 Communication styles

SOAP supports two different communication styles:

� Document

Also known as message-oriented style, this is a flexible communication style
that provides the best interoperability. The message body is any legal XML as
defined in the types section of the WSDL document.

� Remote procedure call (RPC)

The remote procedure call is a synchronous invocation of an operation which
returns a result; it is conceptually similar to other RPCs.

1.5.3 Encodings

In distributed computing environments, encodings define how data values
defined in the application can be translated to and from a protocol format. We
refer to these translation steps as serialization and deserialization, or,
synonymously, marshalling and unmarshalling.

When implementing a Web service, we have to choose one of the tools and
programming or scripting languages that support the Web services model.
However, the protocol format for Web services is XML, which is independent of
the programming language. Thus, SOAP encodings tell the SOAP runtime
environment how to translate from data structures constructed in a specific
programming language into SOAP XML and vice versa.
16 Application Development for CICS Web Services

The following encodings are defined:

� SOAP encoding

SOAP encoding enables marshalling/unmarshalling of values of data types
from the SOAP data model. This encoding is defined in the SOAP 1.1
standard.

� Literal

The literal encoding is a simple XML message that does not carry encoding
information. Usually, an XML Schema describes the format and data types of
the XML message.

1.5.4 Messaging modes

The two styles (RPC and document) and the two common encodings (SOAP
encoding and literal) can be freely intermixed to produce what is called a SOAP
messaging mode. Although SOAP supports four modes, only three of the four
modes are generally used, and further, only two are preferred by the WS-I Basic
Profile.

� Document/literal

Provides the best interoperability between language environments. The WS-I
Basic Profile states that all Web service interactions should use the
Document/literal mode.

� RPC/literal

Possible choice between certain implementations. Although RPC/literal is
WS-I compliant, it is not frequently used in practice. There are a number of
usability issues associated with RPC/literal.

� RPC/encoded

Early Java implementations supported this combination, but it does not
provide interoperability with other implementations and is not recommended

� Document/encoded

Not used in practice.

You can find the SOAP 1.1 specification at the following Web page:

http://www.w3.org/TR/2000/NOTE-SOAP-20000508

The SOAP 1.2 specification is at the following Web page:

http://www.w3.org/TR/SOAP12
 Chapter 1. Overview of Web services 17

http://www.w3.org/2000/xp/Group/
http://www.w3.org/TR/SOAP12

1.6 WSDL

This section introduces Web Services Description Language (WSDL) 1.1. WSDL
uses XML to specify the characteristics of a Web service: what the Web service
can do, where it resides, and how it is invoked. WSDL can be extended to allow
descriptions of different bindings, regardless of what message formats or
network protocols are used to communicate. WSDL enables a service provider to
specify the following characteristics of a Web service:

� Name of the Web service and addressing information

� Protocol and encoding style to be used when accessing the public operations
of the Web service

� Type information—Operations, parameters, and data types comprising the
interface of the Web service, plus a name for this interface

1.6.1 WSDL Document
A WSDL document contains the following main elements:

� Types

This element is a container for data type definitions using some type system,
usually XML Schema.

� Message

This element is an abstract, typed definition of the data being communicated.
A message can have one or more typed parts.

� Port type

This element is an abstract set of one or more operations supported by one or
more ports.

� Operation

This element is an abstract description of an action supported by the service
that defines the input and output message and optional fault message.

� Binding

This element is a concrete protocol and data format specification for a
particular port type. The binding information contains the protocol name, the
invocation style, a service ID, and the encoding for each operation.

� Port

This element is a single endpoint, which is defined as an aggregation of a
binding and a network address.

� Service

This element is a collection of related ports.
18 Application Development for CICS Web Services

WSDL does not introduce a new type definition language. WSDL recognizes the
requirement for rich type systems for describing message formats and supports
the XML Schema Definition (XSD) specification.

WSDL 1.1 introduces specific binding extensions for various protocols and
message formats. There is a WSDL SOAP binding, which is capable of
describing SOAP over HTTP. WSDL does not define any mappings to a
programming language. Rather, the bindings deal with transport protocols. This
is a major difference from interface description languages, such as the CORBA
Interface Definition Language (IDL), which has language bindings.

You can find the WSDL 1.1 specification at the following Web page:

http://www.w3.org/TR/wsdl

1.6.2 WSDL document anatomy

Figure 1-3 shows the elements comprising a WSDL document and the various
relationships between them.

Figure 1-3 WSDL elements and relationships

type

binding

service
port

Input

Output

portType

message

definition

operation

abstract
service
interface
definition

how the
service is
implemented

location of
service
 Chapter 1. Overview of Web services 19

http://www.w3.org/TR/wsdl

The diagram should be interpreted in the following way:

� One WSDL document contains zero or more services. A service contains
zero or more port definitions (service endpoints), and a port definition
contains a specific protocol extension.

� The same WSDL document contains zero or more bindings. A binding is
referenced by zero or more ports. The binding contains one protocol
extension, where the style and transport are defined, and zero or more
operations bindings. Each of these operation bindings is composed of one
protocol extension, where the action and style are defined, and one to three
messages bindings, where the encoding is defined.

� The same WSDL document contains zero or more port types. A port type is
referenced by zero or more bindings. This port type contains zero or more
operations, which are referenced by zero or more operations bindings.

� The same WSDL document contains zero or more messages. An operation
usually points to an input and an output message, and optionally to some
faults. A message is composed of zero or more parts.

� The same WSDL document contains zero or more types. A type can be
referenced by zero or more parts.

� The same WSDL document points to zero or more XML schemas. An XML
schema contains zero or more XSD types that define the different data types.

Example
Example 1-1 is an example of a simple, complete, and valid WSDL file. As
Example 1-1 shows, even a simple WSDL document contains quite a few
elements with various relationships to each other. Example 1-1 contains the
WSDL file example. This example is analyzed in detail later in this section.

Example 1-1 Complete WSDL document

<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:reqns="http://www.exampleApp.dispatchOrder.Request.com"
xmlns:resns="http://www.exampleApp.dispatchOrder.Response.com"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.exampleApp.dispatchOrder.com"
targetNamespace="http://www.exampleApp.dispatchOrder.com">

 <types>
 <xsd:schema xmlns:tns="http://www.exampleApp.dispatchOrder.Request.com"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="qualified"
elementFormDefault="qualified"
targetNamespace="http://www.exampleApp.dispatchOrder.Request.com"
xmlns:reqns="http://www.exampleApp.dispatchOrder.Request.com">

 <xsd:element name="dispatchOrderRequest" nillable="false">
20 Application Development for CICS Web Services

 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="itemReferenceNumber" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:maxInclusive value="9999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="quantityRequired" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:maxInclusive value="999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

</xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 <xsd:schema xmlns:tns="http://www.exampleApp.dispatchOrder.Response.com"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="qualified"
elementFormDefault="qualified"
targetNamespace="http://www.exampleApp.dispatchOrder.Response.com">

 <xsd:element name="dispatchOrderResponse" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="confirmation" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="20"/>
 <xsd:whiteSpace value="preserve"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </types>
 <message name="dispatchOrderResponse">
 <part element="resns:dispatchOrderResponse" name="ResponsePart"/>
 </message>
 <message name="dispatchOrderRequest">
 <part element="reqns:dispatchOrderRequest" name="RequestPart"/>
 </message>
 Chapter 1. Overview of Web services 21

 <portType name="dispatchOrderPort">
 <operation name="dispatchOrder">
 <input message="tns:dispatchOrderRequest" name="DFH0XODSRequest"/>
 <output message="tns:dispatchOrderResponse" name="DFH0XODSResponse"/>
 </operation>
 </portType>
 <binding name="dispatchOrderSoapBinding" type="tns:dispatchOrderPort">
 <soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="dispatchOrder">
 <soap:operation soapAction="" style="document"/>
 <input name="DFH0XODSRequest">
 <soap:body parts="RequestPart" use="literal"/>
 </input>
 <output name="DFH0XODSResponse">
 <soap:body parts="ResponsePart" use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="dispatchOrderService">
 <port binding="tns:dispatchOrderSoapBinding" name="dispatchOrderPort">
 <soap:address

location="http://myserver:54321/exampleApp/services/dispatchOrderPort"/>
 </port>
 </service>
</definitions>

Namespaces
WSDL uses the XML namespaces listed in Table 1-2.

Table 1-2 WSDL namespaces

Namespace URI Explanation

http://schemas.xmlsoap.org/wsdl/ Namespace for WSDL framework.

http://schemas.xmlsoap.org/wsdl/soap/ SOAP binding.

http://schemas.xmlsoap.org/wsdl/http/ HTTP binding.

http://www.w3.org/2000/10/
XMLSchema

Schema namespace as defined by XSD.

(URL to WSDL file) The this namespace (tns) prefix is used as
a convention to refer to the current
document. Do not confuse it with the XSD
target namespace, which is a different
concept.
22 Application Development for CICS Web Services

The first three namespaces are defined by the WSDL specification itself. The
next definition references a namespace that is defined in the SOAP and XSD
standards. The last one is local to each specification.

1.6.3 WSDL definition

The WSDL definition contains types, messages, operations, port types, bindings,
ports, and services.

Also, WSDL provides an optional element called wsdl:document as a container
for human-readable documentation.

Types
The types element encloses data type definitions used by the exchanged
messages. WSDL uses XML Schema Definition (XSD) as its canonical and
built-in type system:

<definitions >
<types>

<xsd:schema /> (0 or more)
</types>

</definitions>

The XSD type system can be used to define the types in a message regardless
of whether or not the resulting wire format is XML. In our example we have two
schema sections. One defines the message format for the input and the other
defines the message format for the output.

In our example, the types definition, shown in Example 1-2 on page 24, is where
we specify that there is a complex type called dispatchOrderRequest, which is
composed of two elements:

� itemReferenceNumber
� quantityRequired
 Chapter 1. Overview of Web services 23

Example 1-2 Types definition of our WSDL example for the input

<types>
 <xsd:schema xmlns:tns="http://www.exampleApp.dispatchOrder.Request.com"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
attributeFormDefault="qualified"
elementFormDefault="qualified"
targetNamespace="http://www.exampleApp.dispatchOrder.Request.com"
xmlns:reqns="http://www.exampleApp.dispatchOrder.Request.com">

 <xsd:element name="dispatchOrderRequest" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="itemReferenceNumber" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:maxInclusive value="9999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 <xsd:element name="quantityRequired" nillable="false">
 <xsd:simpleType>
 <xsd:restriction base="xsd:short">
 <xsd:maxInclusive value="999"/>
 <xsd:minInclusive value="0"/>
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>

</xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
.
.
</types>

Messages
A message represents one interaction between a service requester and a
service provider. If an operation is bidirectional at least two message definitions
are used to specify the transmissions to and from the service provider. A
message consists of one or more logical parts.

<definitions >
<message name="nmtoken"> (0 or more)

<part name="nmtoken" element="qname"(0 or 1) type="qname" (0 or 1)/>
(0 or more)

</message>
</definitions>
24 Application Development for CICS Web Services

The abstract message definitions are used by the operation element. Multiple
operations can refer to the same message definition.

Operations and messages are modeled separately to support flexibility and
simplify reuse of existing definitions. For example, two operations with the same
parameters can share one abstract message definition.

In our example, the messages definition, shown in Example 1-3, is where we
specify the different parts that compose each message. The request message
dispatchOrderRequest is composed of an element dispatchOrderRequest as
defined in the schema in the parts section. The response message
dispatchOrderResponse is similarly defined by the element
dispatchOrderResponse in the schema. There is no requirement for the names
of the message and the schema-defined element to match. In our example we
did this merely for convenience.

Example 1-3 Message definition in our WSDL document

<message name="dispatchOrderResponse">
<part element="resns:dispatchOrderResponse" name="ResponsePart"/>

</message>
<message name="dispatchOrderRequest">

<part element="reqns:dispatchOrderRequest" name="RequestPart"/>
</message>

Port types
A port type is a named set of abstract operations and the abstract messages
involved:

<definitions >
<portType name="nmtoken">

<operation name="nmtoken" /> (0 or more)
</portType>

</definitions>

WSDL defines four types of operations that a port can support:

� One-way

In this operation, the port receives a message. There is an input message
only.

� Request-response

In this operation, the port receives a message and sends a correlated
message. There is an input message followed by an output message.
 Chapter 1. Overview of Web services 25

� Solicit-response

In this operation, the port sends a message and receives a correlated
message. There is an output message followed by an input message.

� Notification

In this operation, the port sends a message. There is an output message only.
This type of operation could be used in a publish/subscribe scenario.

Each of these operation types can be supported with variations of the following
syntax. Presence and order of the input, output, and fault messages determine
the type of message:

<definitions >
<portType > (0 or more)

<operation name="nmtoken" parameterOrder="nmtokens">
<input name="nmtoken"(0 or 1) message="qname"/> (0 or 1)
<output name="nmtoken"(0 or 1) message="qname"/> (0 or 1)
<fault name="nmtoken" message="qname"/> (0 or more)

</operation>
</portType >

</definitions>

A request-response operation is an abstract notion. A particular binding must be
consulted to determine how the messages are actually sent:

� Within a single transport-level operation, such as an HTTP request/response
message pair, which is the preferred option

� As two independent transport-level operations, which can be required if the
transport protocol only supports one-way communication

In our example, the portType and operation definitions, shown in Example 1-4,
are where we specify the port type, called dispatchOrderPort, and a set of
operations. In this case, there is only one operation, called dispatchOrder. We
specify the interface the Web service provides to possible clients, with the input
message DFH0XODSRequest and the output message DFH0XODSResponse.
Because the input element appears before the output element in the operation
element, our example shows a request-response type of operation.

Example 1-4 Port type and operation definitions in our WSDL document example

<portType name="dispatchOrderPort">
<operation name="dispatchOrder">

<input message="tns:dispatchOrderRequest" name="DFH0XODSRequest"/>
<output message="tns:dispatchOrderResponse" name="DFH0XODSResponse"/>

</operation>
</portType>
26 Application Development for CICS Web Services

Bindings
A binding contains:

� Protocol-specific general binding data, such as the underlying transport
protocol and the communication style for SOAP.

� Protocol extensions for operations and their messages.

Each binding references one port type. One port type can be used in multiple
bindings. All operations defined within the port type must be bound in the
binding. The pseudo XSD for the binding looks like this:

<definitions >
<binding name="nmtoken" type="qname"> (0 or more)

<-- extensibility element (1) --> (0 or more)
<operation name="nmtoken"> (0 or more)

<-- extensibility element (2) --> (0 or more)
<input name="nmtoken"(0 or 1) > (0 or 1)

<-- extensibility element (3) -->
</input>
<output name="nmtoken"(0 or 1) > (0 or 1)

<-- extensibility element (4) --> (0 or more)
</output>
<fault name="nmtoken"> (0 or more)

<-- extensibility element (5) --> (0 or more)
</fault>

</operation>
</binding>

</definitions>

As we have already seen, a port references a binding. The port and binding are
modeled as separate entities to support flexibility and location transparency. Two
ports that merely differ in their network address can share the same protocol
binding.

The extensibility elements <-- extensibility element (x) --> use XML namespaces
to incorporate protocol-specific information into the language- and
protocol-independent WSDL specification.

In our example, the binding definition, shown in Example 1-5 on page 28, is
where we specify our binding name, dispatchOrderSoapBinding. The connection
must be SOAP HTTP, and the style must be document. We provide a reference
to our operation, dispatchOrder, and we define the input message
DFH0XODSRequest and the output message DFH0XODSResponse, both to be
SOAP literal.
 Chapter 1. Overview of Web services 27

Example 1-5 Binding definition in our WSDL document example

<binding name="dispatchOrderSoapBinding" type="tns:dispatchOrderPort">
<soap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="dispatchOrder">
<soap:operation soapAction="" style="document"/>
<input name="DFH0XODSRequest">

<soap:body parts="RequestPart" use="literal"/>
</input>
<output name="DFH0XODSResponse">

<soap:body parts="ResponsePart" use="literal"/>
</output>

 </operation>
</binding>

Service definition
A service definition merely bundles a set of ports together under a name, as the
following pseudo XSD definition of the service element shows.

<definitions >
<service name="nmtoken"> (0 or more)

<port /> (0 or more)
</service>

</definitions>

Multiple service definitions can appear in a single WSDL document.

Port definition
A port definition describes an individual endpoint by specifying a single address
for a binding:

<definitions >
<service > (0 or more)

<port name="nmtoken" binding="qname"> (0 or more)
<-- extensibility element (1) -->
</port>

</service>
</definitions>

The binding attribute is of type QName, which is a qualified name (equivalent to
the one used in SOAP). It refers to a binding. A port contains exactly one network
address. All other protocol-specific information is contained in the binding.

Any port in the implementation part must reference exactly one binding in the
interface part.
28 Application Development for CICS Web Services

The <-- extensibility element (1) --> is a placeholder for additional XML elements
that can hold protocol-specific information. This mechanism is required because
WSDL is designed to support multiple runtime protocols.

In our example, the service and port definition, shown in Example 1-6, is where
we specify our service, called dispatchOrderService, which contains a collection
of our ports. In this case, there is only one that uses the
dispatchOrderSoapBinding and is called dispatchOrderPort. In this port, we
specify our connection point as, for example,
http://myserver:54321/exampleApp/services/dispatchOrderPort.

Example 1-6 Service and port definition in our WSDL document example

<service name="dispatchOrderService">
<port binding="tns:dispatchOrderSoapBinding" name="dispatchOrderPort">

<soap:address
location="http://myserver:54321/exampleApp/services/dispatchOrderPort"/>

</port>
</service>

1.6.4 WSDL bindings

We now investigate the WSDL extensibility elements supporting the SOAP
transport binding.

SOAP binding
WSDL includes a binding for SOAP 1.1 endpoints, which supports the
specification of the following protocol-specific information:

� An indication that a binding is bound to the SOAP 1.1 protocol

� A way of specifying an address for a SOAP endpoint

� The URI for the SOAPAction HTTP header for the HTTP binding of SOAP

� A list of definitions for headers that are transmitted as part of the SOAP
envelope
 Chapter 1. Overview of Web services 29

Table 1-3 lists the corresponding extension elements.

Table 1-3 SOAP extensibility elements in WSDL

Extension and attributes Explanation

<soap:binding ...> Binding level; specifies defaults for all operations.

 transport="uri"
(0 or 1)

Binding level; transport is the runtime transport protocol used
by SOAP (HTTP, SMTP, and so on).

style="rpc|document"
(0 or 1)

The style is one of the two SOAP communication styles, rpc or
document.

<soap:operation ... > Extends operation definition.

soapAction="uri"
(0 or 1)

URN.

style="rpc|document"
(0 or 1)

See binding level.

<soap:body ... > Extends operation definition; specifies how message parts
appear inside the SOAP body.

parts="nmtokens" Optional; allows externalizing message parts.

use="encoded|literal" literal: messages reference concrete XSD (no WSDL type)

encoded: messages reference abstract WSDL type elements

encodingStyle extension used.

encodingStyle=
"uri-list"(0 or 1)

List of supported message encoding styles.

namespace="uri"
(0 or 1)

URN of the service.

<soap:fault ... > Extends operation definition; contents of fault details element.

name="nmtoken" Relates soap:fault to wsdl:fault for operation.

use, encodingStyle,
namespace

See soap:body.

<soap:address ... > Extends port definition.

location="uri" Network address of RPC router.

<soap:header ... > Operation level; shaped after <soap:body ...>.

<soap:headerfault ... > Operation level; shaped after <soap:body ...>.
30 Application Development for CICS Web Services

Chapter 2. CICS implementation of Web
services

In Chapter 1, “Overview of Web services” on page 1 we learned that a Web
service is a software system identified by a URI, whose public interfaces and
bindings are defined and described using XML. Other systems might interact
with the Web service in a manner prescribed by its definition, using XML-based
messages conveyed by Internet protocols.

In this chapter we discuss how CICS TS V3.1, V3.2, and v4.1 implement Web
services. We begin by reviewing the support for SOAP that CICS provides with
CICS TS V3. We then discuss the enhancements that CICS TS V4.1 brings to
CICS support for SOAP and Web services.

We continue by showing you how to prepare for running a CICS application as a
service provider and what happens inside CICS when a service request arrives
for a service provider application. Likewise, we discuss preparing to run a CICS
application as a service requester and how CICS processes the outbound
service request. This leads us to a discussion of the resource definitions that
support Web services, namely, the URIMAP, PIPELINE, and WEBSERVICE
definitions.

2

© Copyright IBM Corp. 2010. All rights reserved. 31

2.1 Support for Web services in CICS

The CICS implementation of Web services consists of several components.
There are tools that are used by the application developer to prepare applications
for use with the CICS Web services infrastructure. There are CICS resources for
administering Web services, and there are optional enhancements that an
administrator can enable to extend the capabilities of CICS.

In this chapter we will focus on subjects relevant to application development, but
will consider other subjects that might be of interest to application developers
outside the typical application development role.

2.1.1 Core aspects of Web services in CICS

Web services first became available as part of CICS in CICS TS V3.1. The core
part of that infrastructure is common to all subsequent versions of CICS, and
provides the following functions:

� It includes the Web Services Assistant utility.

The Web Services Assistant is the part of CICS that is most relevant for
application developers. It consists of JCL-based tooling for preparing
applications for Web services. It is made up of two programs, DFHWS2LS
and DFHLS2WS.

� It supports several different approaches to developing your CICS applications
in a Web services environment.

– You can enable CICS to convert SOAP messages to application data

You can use either the Web Services Assistant or Rational Application
Developer for System Z (RDz) to generate artifacts that can be deployed
to CICS. These artifacts interface between the application and the rest of
CICS and handle all of the SOAP based messaging. This approach
minimizes the application programming effort.

In this scenario an artifact referred to as the Web service binding file (also
known as the WSBind file) is generated and deployed to CICS.

– You can take complete control of the processing of your data.

If you prefer to write applications that handle XML natively, or have existing
in-house or commercial XML processing tools, you might use them instead
of using the Web Services Assistant.
32 Application Development for CICS Web Services

� It has the concept of a PIPELINE resource. A CICS pipeline is shared by
many different Web services, and is used to configure shared qualities of
service. It is usually the CICS system programmer who is responsible for
configuring PIPELINE resources. This is done using a pipeline configuration
file.

WSBind files are installed into a PIPELINE resource in CICS. For each
WSBind file that is installed CICS creates a WEBSERVICE resource.

� It has the concept of handler programs that can be added to a pipeline by the
system programmer. Handler programs enable sophisticated additional
processing to be performed as part of the process of sending and receiving
SOAP messages in CICS.

Several handler programs are supplied with CICS and can be used to add
support for additional services such as WS-Security (for identity propagation)
and WS-AT (for distributed two-phase commit).

� It has the concept of a URIMAP resource. A URIMAP associates a particular
WEBSERVICE and PIPELINE combination with a specific URI. The system
programmer is usually responsible for the URIMAPs, though the application
developer might be responsible for selecting the URI for a Web service.

If a SOAP message is received by a CICS region then CICS begins
processing it using the associated URI. CICS looks for a URIMAP resource
that has been installed for that URI. If a match is found, the URIMAP indicates
which PIPELINE to use for the subsequent processing. It also indicates which
WEBSERVICE resource CICS should use to transform the XML into
application data.

� It provides an application programming interface (API) to allow CICS
applications to interact with the Web services support in CICS. The main
commands for doing this are:

– SOAPFAULT ADD | CREATE | DELETE

This is used by provider mode applications that want to return
application-specific diagnostics as a SOAP Fault message

– INVOKE WEBSERVICE

This is used by requester mode applications that want to invoke a remote
Web service.

� It conforms to open standards including:

– SOAP 1.1 and 1.2
– HTTP 1.1
– WSDL 1.1
 Chapter 2. CICS implementation of Web services 33

� It ensures maximum interoperability with other Web services implementations
by conforming with the Web Services Interoperability Organization (WS-I)
Basic Profile 1.0. This profile is a set of non-proprietary Web services
specifications, along with clarifications and amendments to those
specifications, which, taken together, promote interoperability between
different implementations of Web services.

2.2 Tools for application deployment

In this section, we provide a brief overview of the main application development
tools for CICS Web services.

2.2.1 CICS Web Services Assistant

The CICS Web Services Assistant is a pair of JCL utilities that are used by
application developers to prepare applications as Web services. It contains two
utility programs:

� DFHLS2WS

DFHLS2WS is used to expose existing CICS applications as provider mode
Web services. It takes as input a pair of language structures (typically COBOL
copybooks) that define the commarea for the application, and generates a
WSDL document that describes a SOAP interface to that same application.

� DFHWS2LS

DFHWS2LS does the reverse of DFHLS2WS. It takes as input a WSDL
document, and generates language structures suitable for use in a new
application program. This new application can either implement a Web
service in CICS, or invoke a remote Web service from CICS.

Both DFHLS2WS and DFHWS2LS generate a file called the WSBind file. This is
installed into a CICS region and contains the meta-data that CICS needs to
transform SOAP messages to and from application data.

The Web Services Assistant support the following programming languages:

� COBOL
� PL/I
� C
� C++

However, the assistant does have some limitations. There are some WSDL
documents that are not supported by DFHWS2LS, and some language
structures that are not supported by DFHLS2WS.
34 Application Development for CICS Web Services

2.2.2 IBM Rational Developer for System z

IBM Rational Developer for System z is an integrated development environment
that helps application developers create applications for the mainframe. RDz
offers a significant range of tools of interest to CICS application developers. In
this book, however, we focus on those tools that are relevant for CICS Web
services.

The Enterprise Services Toolkit (EST) perspective within RDz can be used to
simplify the process of exposing existing CICS applications as Web services. It
has wizards that guide you through the process of generating and deploying
WSBind files for CICS. It also has a compiled technology that compliments the
capabilities of DFHLS2WS, but goes beyond it by removing many of the
limitations of DFHLS2WS.

Other capabilities that might be of interest to a CICS application developer
include:

� Editors and interactive development environments (IDEs) for Java, COBOL,
PL/I, and Enterprise Generation Language (EGL) components including
language understanding, syntax checking, and unit testing in CICS

� Remote z/OS support including data set access, job submission, queue
management, UNIX® file system management, and TSO command
processing

� Interactive testing and remote debugging for applications running within CICS

� A local CICS development environment.

2.2.3 Other Options

There are scenarios where you might decide not to use the Web services
Assistants or RDz. For example:

� You want to create XML aware Web services.

You might want to handle the XML from the body of a SOAP message in your
applications rather than allowing CICS to do so.

� You do not want to use SOAP messages.

If you prefer to use a non-SOAP protocol for your messages, you can do so.
However, your application programs will be responsible for parsing inbound
messages and constructing outbound messages.

� You have an application written in an unsupported programming language.

In this case you should either write a wrapper program in a supported
language, or write a program to process the XML in your preferred language.
 Chapter 2. CICS implementation of Web services 35

� The CICS Web Services Assistant does not support your application’s data
structure.

Although the CICS Web Services Assistant supports the most common data
types and structures, some exist that are not supported. That is, there might
not always be a 1-1- mapping between XML data types and the data types in
your language structure. In this situation, you should first consider providing a
“wrapper” program that maps your application’s data to a format that the
assistant can support. If this is not possible, consider using Rational
Application Developer for System z. As a last resort you might need to change
your application’s data structure.

2.3 CICS as a service provider

When CICS is acting in the role of a Web service provider, it receives SOAP
messages from the network and passes them through a pipeline to a target
application program. The response from the application is returned to the service
requester through the same pipeline. In this section we discuss how to prepare
for running a CICS application as a service provider, and how CICS processes
the incoming service request.

Most of the actions described in this section are performed by a system
programmer. It is helpful for the application developer to be aware of how CICS
handles provider mode Web services, but typical service provider applications
are unaware that they are being driven as Web services. The following
information is therefore provided for background understanding.

2.3.1 Preparing to run a CICS application as a service provider

Suppose that we have an existing commarea-based CICS application that we
want to expose as a Web service through HTTP. Suppose also that we want to
use the Web Services Assistant to expose the application as a Web service. We
go through the following steps:

1. Generate the WSBind and WSDL files (application developer).

a. Create an HFS directory in which to store the generated files. For
example, we might create a directory named
/u/SharedProjectDirectory/MyFirstWebServiceProvider.
36 Application Development for CICS Web Services

b. Run the JCL for DFHLS2WS. The input we provide includes:

• The name of the CICS PROGRAM resource for the application

• The names of the partitioned data set members that contain the
high-level language structures used by the application program to
describe the input and output commarea formats

• The fully qualified HFS names of the WSBind file and of the file into
which the Web service description is to be written (the WSDL file)

• The URI that a client will use to access the Web service

• How CICS should pass data to the target application program
(COMMAREA or container)

Typically, an application developer would perform this step.

2. Create a TCPIPSERVICE resource definition (system programmer).

The resource definition should specify PROTOCOL(HTTP) and supply
information about the port on which inbound requests are received.

Typically, a system programmer would perform this step.

3. Create a PIPELINE resource definition (system programmer).

a. Create a service provider pipeline configuration file.

A pipeline configuration file is an XML file that describes, among other
things, the message handler programs and the SOAP header processing
programs that CICS invokes when it processes the pipeline.

b. Create an HFS directory in which to store installable WSBind and WSDL
files.

We call this directory the pickup directory, as CICS will pick up the
WSBind and WSDL files from this directory and store them on a shelf
directory.

c. Create an HFS directory for CICS to store installed WSBind files.

We call this directory the shelf directory.
d. Create a PIPELINE resource definition to handle the Web service request.

i. Specify the CONFIGFILE attribute to point to the file created in step 3a.
ii. Specify the WSDIR attribute to point to the directory created in step 3b.
iii. Specify the SHELF attribute to point to the directory created in step 3c.

e. Copy the WSBind and WSDL files created in step 1 on page 36 to the
pickup directory created in step 3b.
 Chapter 2. CICS implementation of Web services 37

4. Install the TCPIPSERVICE and PIPELINE resource definitions (system
programmer).

When the CICS system programmer installs the PIPELINE definition, CICS
scans the pickup directory for WSBind files. When CICS finds the WSBind file
created in step 1 on page 36, CICS dynamically creates and installs a
WEBSERVICE resource definition. CICS derives the name of the
WEBSERVICE definition from the name of the WSBind file. The
WEBSERVICE definition identifies the name of the associated PIPELINE
definition and points to the location of the WSBind file in the HFS.

During the installation of the WEBSERVICE resource:

– CICS dynamically creates and installs a URIMAP resource definition.
CICS bases the definition on the URI specified in the input to DFHLS2WS
in step 1 on page 36 and stored by DFHLS2WS in the WSBind file.

– CICS uses the WSBind file to create main storage control blocks to map
the inbound service request (XML) to a COMMAREA or a container and to
map to XML the outbound COMMAREA or container that contains the
response data.

5. Publish WSDL to clients.

a. Customize the location attribute on the <address> element in the WSDL
file so that its value specifies the TCP/IP server name of the machine
hosting the service and the port number defined in step 2 on page 37.

b. Publish the WSDL to any parties wanting to create clients to this Web
service.

2.3.2 Processing the inbound service request

Figure 2-1 on page 39 shows the processing that occurs when a service
requester sends a SOAP message over HTTP to a service provider application
running in a CICS TS V4.1 region.
38 Application Development for CICS Web Services

Figure 2-1 Web service runtime service provider processing

The CICS-supplied sockets listener transaction (CSOL) monitors the port
specified in the TCPIPSERVICE resource definition for incoming HTTP requests.
When the SOAP message arrives, CSOL attaches the transaction specified in
the TRANSACTION attribute of the TCPIPSERVICE definition. Normally, this will
be the CICS-supplied Web attach transaction CWXN.

CWXN finds the URI in the HTTP request and scans the URIMAP resource
definitions for a URIMAP that has its USAGE attribute set to PIPELINE and its
PATH attribute set to the URI found in the HTTP request. If CWXN finds such a
URIMAP, it uses the PIPELINE and WEBSERVICE attributes of the URIMAP
definition to get the name of the PIPELINE and WEBSERVICE definitions that it
uses to process the incoming request. CWXN also uses the TRANSACTION
attribute of the URIMAP definition to determine the name of the transaction that it
should attach to process the pipeline. Often, this will be the CPIH transaction.

CPIH starts the pipeline processing. It uses the PIPELINE definition to find the
name of the pipeline configuration file. CPIH uses the pipeline configuration file
to determine which pipeline handler programs and SOAP header processing
programs to invoke.
 Chapter 2. CICS implementation of Web services 39

A message handler in the pipeline (typically, a CICS-supplied SOAP message
handler) removes the SOAP envelope from the inbound request and passes the
SOAP body to the application handler program. Usually this will be the CICS
supplied application handler, DFHPITP.

DFHPITP uses the DFHWS-WEBSERVICE container to pass the name of the
required WEBSERVICE definition to the data mapper. The data mapper uses the
WEBSERVICE definition to locate the main storage control blocks that it needs to
map the inbound service request (XML) to a COMMAREA or a container.

The data mapper links to the target service provider application program,
providing input in the format that it expects. The application program is not aware
that it is being executed as a Web service. The program performs its normal
processing, then returns an output COMMAREA or container to the data mapper.

The output data from the CICS application program cannot just be sent back to
the pipeline code. The data mapper must first convert the output from the
COMMAREA or container format into a SOAP body.

The response message is passed back through the pipeline handler programs
and is returned to the requester over HTTP.

2.4 CICS as a service requester

When CICS is acting in the role of a Web service requester, a CICS application
program sends a SOAP message to a remote Web service through a requester
mode pipeline. The response from the service provider is returned to the
application program through the same pipeline. In this section we discuss how to
prepare for running a CICS application as a service requester, and how CICS
processes the outbound service request.

This scenario always involves the creation of a new application program, so it
does involve more actions for the application developer than is typically required
in provider mode.

2.4.1 Preparing to run a CICS application as a service requester

Suppose we want to write a new CICS application that invokes a remote Web
service. Suppose also that we want to use the Web Services Assistant rather
than taking control of the processing ourselves.
40 Application Development for CICS Web Services

We go through the following steps:

1. Generate the WSBind file and the language structures (application
developer).

a. Create an HFS directory in which to store the WSBind file. For example,
we might create a directory named
/u/SharedProjectDirectory/MyFirstWebServiceRequester.

b. Run the JCL for DFHWS2LS. The input we provide to the program
includes:

• The fully qualified HFS name of the WSDL file that describes the Web
service that we want to invoke.

• The names of the partitioned data set members into which DFHWS2LS
should put the high-level language structures that it generates. The
application program uses the language structures to describe the Web
service request and the Web service response.

2. Create a PIPELINE resource definition (system programmer).

a. Create a service requester pipeline configuration file.

A pipeline configuration file is an XML file that describes, among other
things, the pipeline handler programs and the SOAP header processing
programs that CICS invokes when it processes the pipeline.

b. Create an HFS directory in which to store installable WSBind files.

We call this directory the pickup directory because CICS will pick up the
WSBIND file from this directory and store it on a shelf directory.

c. Create an HFS directory for CICS to store installed WSBind files.

We call this directory the shelf directory.
d. Create a PIPELINE resource definition to handle the Web service request:

i. Specify the CONFIGFILE attribute to point to the file created in step 2a.
ii. Specify the WSDIR attribute to point to the directory created in step 2b.
iii. Specify the SHELF attribute to point to the directory created in step 2c.

e. Copy the WSBind file created in step 1 to the pickup directory from step
2b.

3. Install the PIPELINE resource definition (system programmer).

When the CICS system programmer installs the PIPELINE definition, CICS
scans the pickup directory for WSBind files. When CICS finds the WSBind file
created in step 1, CICS dynamically creates and installs a WEBSERVICE
resource definition for it. CICS derives the name of the WEBSERVICE
definition from the name of the WSBind file. The WEBSERVICE definition
identifies the name of the associated PIPELINE definition and points to the
location of the WSBind file in the HFS.
 Chapter 2. CICS implementation of Web services 41

During the installation of the WEBSERVICE resource, CICS uses the WSBind
file to create main storage control blocks to map the outbound service request
to an XML document and to map the inbound XML response document to a
language structure.

4. Use the language structure generated in step 1 on page 41 to write the
application program (application developer).

a. It issues the following command to place the outbound data into container
DFHWS-DATA:

EXEC CICS PUT CONTAINER(DFHWS-DATA) CHANNEL(name_of_channel)
FROM(data_area)

b. It issues the following command to invoke the Web service:

EXEC CICS INVOKE WEBSERVICE(name_of_WEBSERVICE_definition)
CHANNEL(name_of_channel) OPERATION(name_of_operation)

2.4.2 Processing the outbound service request

Figure 2-2 shows the processing that occurs when a service requester running in
a CICS TS V4.1 region sends a SOAP message to a service provider.

Figure 2-2 Web service requester resources

Note: From CICS TS 4.1 onwards, the EXEC CICS INVOKE SERVICE command
should be used for all new Web service applications, rather than the INVOKE
WEBSERVICE command which is a synonym
42 Application Development for CICS Web Services

When the service requester issues the EXEC CICS INVOKE SERVICE
command, CICS uses the information found in the WSBind file that is associated
with the specified WEBSERVICE definition to convert the language structure into
an XML document. CICS then invokes the pipeline handlers specified in the
pipeline configuration file, and they convert the XML document into a SOAP
message.

CICS will send the request SOAP message to the remote service provider either
through HTTP or WebSphere MQ.

When the response SOAP message is received, CICS will pass it back through
the pipeline. The message handlers will extract the SOAP body from the SOAP
envelope, and the data mapping function will convert the XML in the SOAP body
into a language structure that is passed to the application program in container
DFHWS-DATA.

2.5 The CICS resource definitions

We now look in more detail at what CICS resources a systems programmer must
provide to enable Web services in a CICS environment. Some of these resources
are influenced by decisions made by the application developer.

2.5.1 URIMAP

URIMAP definitions are relevant in both provider and requester mode for
associating CICS processing with a URI. They are also used with the EXEC
CICS WEB API, but that usage scenario is not considered here.

� Provider mode

URIMAP definitions for Web service requests have a USAGE attribute of
PIPELINE. These URIMAP definitions associate a URI for an inbound Web
service request (that is, a request by which a client invokes a Web service in
CICS) with a PIPELINE or WEBSERVICE resource that specifies the
processing to be performed. They might also be used to specify:

– The name of the transaction that CICS should use to run the pipeline

– The user ID under which the pipeline transaction runs

� Requester mode

Under CICS TS V3.2 and CICS TS V4.1, URIMAP resources that specify a
USAGE of CLIENT can be used when an INVOKE command is processed.

In CICS TS V3.2 a client mode URIMAP can be used to specify cryptographic
information for INVOKE commands than involve SSL. CICS will look for an
 Chapter 2. CICS implementation of Web services 43

appropriate client mode URIMAP as the outbound HTTP or HTTPS
connection is established and will use the characteristics of the URIMAP if
one is found.

In CICS TS V4.1 the application program might specify the name of a client
mode URIMAP as a parameter in the INVOKE command. This provides the
same benefits as in CICS TS V3.2, but it also allows the URI for the remote
Web service to be defined declaratively in a CICS resource. This makes it
easier for the system programmer to customize the URI between Test and
Production environments.

Figure 2-3 illustrates the purpose of a URIMAP definition in provider mode.

Figure 2-3 Purpose of URIMAP resource in provider mode

You can create URIMAP resource definitions in the following ways:

� Using the Web services assistant (using a PIPELINE SCAN)
� Using the CICS Explorer™
� Using the CEDA transaction
� Using the DFHCSDUP batch utility
� Using CICSPlex SM Business Application Services
� Using the EXEC CICS CREATE URIMAP command

ServiceService
ProviderProvider

WSBIND

WSDL

HFS

SOAP
message

CICS TS V4.1
User Transaction

Business
Logic

PIPELINE

WEBSERVICE

dynamic
install

Language
structure

CICS Web services
assistant

data mapping

Pipeline

handlers

handlers

handlers

pipeline
config
44 Application Development for CICS Web Services

The most common mechanism for creating the provider mode URIMAP is for the
application developer to decide (in consultation with the system programmer) on
the URI to use, and to specify it when the Web Services Assistant is used. This
will result in the URI being stored within the WSBind file.

The application developer might also indicate a default TRANSACTION to add to
the URIMAP, instead of CPIH. The application developer might also indicate a
default user ID under which the Web service should execute. These options are
also specified using the Web Services Assistant and are stored in the WSBind
file.

When you issue a PERFORM PIPELINE SCAN command (using CEMT or the
CICS system programming interface), CICS scans the directory specified in the
PIPELINE’s WSDIR attribute (the pickup directory), and creates URIMAP and
WEBSERVICE resources dynamically using the information from the WSBind
files. For each Web service binding file in the directory (that is, for each file with
the .wsbind suffix), CICS installs a WEBSERVICE and a URIMAP if one does not
already exist. Existing resources are replaced if the information in the binding file
is newer than the existing resources.

2.5.2 PIPELINE

A PIPELINE resource definition provides information about the pipeline handlers
that will act on a service request and on the response. The information about the
pipeline handlers is supplied indirectly. The PIPELINE definition specifies the
name of an HFS file, called the pipeline configuration file, which contains an XML
description of the pipeline configuration. The most important attributes of the
PIPELINE resource definition are as follows:

� WSDIR

The WSDIR attribute specifies the name of the Web service binding directory
(also known as the pickup directory). The Web service binding directory
contains Web service binding files that are associated with the PIPELINE,
and that are to be installed automatically by the CICS scanning mechanism.
When the PIPELINE definition is installed, CICS scans the directory and
automatically installs any Web service binding files it finds there.

If you specify a value for the WSDIR attribute, it must refer to a valid HFS
directory to which the CICS region has at least read access. If this is not the
case, any attempt to install the PIPELINE resource will fail.

If you do not specify a value for WSDIR, no automatic scan takes place on
installation of the PIPELINE, and PERFORM PIPELINE SCAN commands
will fail.
 Chapter 2. CICS implementation of Web services 45

� SHELF

The SHELF attribute specifies the name of an HFS directory where CICS will
copy information about installed Web services. CICS regions into which the
PIPELINE definition is installed must have full permission to the shelf
directory: read, write, and the ability to create subdirectories.

A single shelf directory might be shared by multiple CICS regions and by
multiple PIPELINE definitions. Within a shelf directory each CICS region uses
a separate subdirectory to keep its files separate from those of other CICS
regions. Within each region’s directory, each PIPELINE uses a separate
subdirectory.

After a CICS region performs a cold or initial start, its deletes its
subdirectories from the shelf before trying to use the shelf.

� CONFIGFILE

This attribute specifies the name of the PIPELINE configuration file.

Figure 2-4 illustrates the purpose of the PIPELINE resource definition.

Figure 2-4 Purpose of PIPELINE resource

pipeline
config

WSBIND

WSDL

HFS

CICS TS V4.1

CPIH

Pipeline

data mapping

Business
Logic

handlers
URIMAP

PIPELINE

WEBSERVICE

dynamic
install

dynamic
install

Language
structure

CICS Web services
assistant

handlers

handlers
46 Application Development for CICS Web Services

Pipeline configuration file
When CICS processes a Web service request, it uses a pipeline of one or more
handler programs to process the request. The configuration of the pipeline is
something that the application developer rarely needs to know about. The system
programmer is responsible for the PIPELINE configuration and decides what
handler programs are required.

The configuration of a pipeline that is used to handle a Web service request is
specified in an XML document, known as a pipeline configuration file. Use a
suitable XML editor or text editor to work with your pipeline configuration files.

There are two distinct types of PIPELINE, a requester mode PIPELINE, and a
provider mode PIPELINE. This indicates the directionality of the communication.
The WSBind files have to be installed into a PIPELINE of the appropriate type.
Provider mode PIPELINEs are used when exposing CICS applications as Web
services. Requester mode PIPELINEs are used for invoking remote Web
services.

In requester mode, and from CICS TS V3.2 forwards, PIPELINES might specify a
time-out value using the RESPWAIT attribute. This is the length of time that CICS
will wait for a response.

It is often sufficient to use one of the example pipeline configuration files that
CICS provides. These are:

� basicsoap11provider.xml

This file defines the pipeline configuration for a service provider that uses the
SOAP 1.1 message handler supplied by CICS.

� basicsoap11requester.xml

This file defines the pipeline configuration for a service requester that uses
the SOAP 1.1 message handler supplied by CICS.

For most deployments this is all that the application developer needs to know
about the PIPELINE resources. Interested readers can find a lot more
information about the content of the PIPELINE configuration files and the nature
of pipeline handler programs in the CICS Information Center.
 Chapter 2. CICS implementation of Web services 47

2.5.3 WEBSERVICE

This resource encapsulates a WSBind file in CICS.

Three artifacts define the execution environment that enables a CICS application
program to operate as a Web service provider or a Web service requester:

� The Web service description (WSDL)
� The Web service binding file (WSBind)
� The pipeline

These three objects are defined to CICS on the following attributes of the
WEBSERVICE resource definition:

� WSDLFILE
� WSBIND
� PIPELINE

The WEBSERVICE definition has a fourth attribute, VALIDATION, which
specifies whether full validation of SOAP messages against the corresponding
schema in the Web service description should be performed at run time.
Validation of a SOAP message against a schema incurs considerable processing
overhead. You should normally specify VALIDATION(NO) in a production
environment. VALIDATION(YES) ensures that all SOAP messages that are sent
and received are valid XML with respect to the WSDL. If VALIDATION(NO) is
specified, sufficient validation is performed to ensure that the message contains
well-formed XML, but more subtle errors might not be detected by CICS.

Figure 2-5 on page 49 illustrates the purpose of the WEBSERVICE resource
definition.
48 Application Development for CICS Web Services

Figure 2-5 Purpose of WEBSERVICE resource

You can create WEBSERVICE resource definitions in the following ways:

� Using the Web services assistant (using a PIPELINE SCAN)
� Using the CICS Explorer
� Using the CEDA transaction
� Using the DFHCSDUP batch utility
� Using CICSPlex SM Business Application Services
� Using the EXEC CICS CREATE WEBSERVICE command

When you install a PIPELINE resource, or when you issue a PERFORM
PIPELINE SCAN command (using CEMT or the CICS system programming
interface), CICS scans the directory specified in the PIPELINE’s WSDIR attribute
(the pickup directory), and creates URIMAP and WEBSERVICE resources
dynamically. For each Web service binding file in the directory (that is, for each
file with the .wsbind suffix), CICS installs a WEBSERVICE and a URIMAP if one
does not already exist. Existing resources are replaced if the information in the
binding file is newer than the existing resources.

pipeline
config

WSBIND

WSDL

HFS

CICS TS V4.1

CPIH

Pipeline

data mapping

Business
Logic

handlers

WEBSERVICE

Language
structure

CICS Web services
assistant

handlers

handlers
 Chapter 2. CICS implementation of Web services 49

The CEMT INQUIRE WEBSERVICE command is used to obtain information
about a WEBSERVICE resource definition. The data that is returned depends
slightly on the type of Web service. Figure 2-6 shows the types and the data
returned for each.

Figure 2-6 CEMT INQUIRE WEBSERVICE command output

2.5.4 The Web service binding file (WSBind)

The WSBind file is a key artifact in the CICS Web services infrastructure as it
bridges the gap between the application development tasks, and the CICS
runtime. It contains the transformation instructions that CICS uses for
transforming application data to and from XML. It also contains deployment
information used for creating the WEBSERVICE and URIMAP resources.

INQUIRE WEBSERVICE command
• depends on the type of WEBSERVICE

YesYesYesSTATE

YesYesYesLASTMODTIME

YesYesYesVALIDATIONST

NoYes if Channel is
used

Yes if Channel is
used

CONTAINER

NoYesYesPGMINTERFACE

emptyYesYesPROGRAM

YesemptyemptyENDPOINT

YesYesYesBINDING

emptyemptyYes if dynamic
installed

URIMAP

YesYesYesPIPELINE

YesYesYesWSBIND

YesYesYesWSDLFILE

Service
Requester

to a remote
service

Service
Requester

to a local
service

Service
Provider

Attributes

YesYesYesSTATE

YesYesYesLASTMODTIME

YesYesYesVALIDATIONST

NoYes if Channel is
used

Yes if Channel is
used

CONTAINER

NoYesYesPGMINTERFACE

emptyYesYesPROGRAM

YesemptyemptyENDPOINT

YesYesYesBINDING

emptyemptyYes if dynamic
installed

URIMAP

YesYesYesPIPELINE

YesYesYesWSBIND

YesYesYesWSDLFILE

Service
Requester

to a remote
service

Service
Requester

to a local
service

Service
Provider

Attributes
50 Application Development for CICS Web Services

The connection between the tooling and the runtime, apart from the language
structures that the application programs use, is the WSBind file, as shown in
Figure 2-7.

Figure 2-7 WSBind file

The application developer is usually responsible for creating the WSBind file, but
it is typically the system programmer who will deploy it into the CICS region.
 Chapter 2. CICS implementation of Web services 51

Figure 2-8 shows CICS usage of the WSBind file as part of the data mapping
process within provider and requester mode pipelines.

Figure 2-8 CICS usage of the WSBind file

2.5.5 SOAPFAULT commands

Provider mode Web services that are attached using a Channel have the option
of sending a SOAP Fault message in response to the requester instead of
sending the normal response message. There are three API commands to
manage SOAP faults, though for most applications the first one is sufficient:

� EXEC CICS SOAPFAULT CREATE

Use this command to create a SOAP fault. If a SOAP fault already exists in
the context of the SOAP message that is being processed by the message
handler, the existing fault is overwritten. When the application returns control
to CICS the SOAP Fault message will be generated and sent as a response
to the requester.

CICS as a service provider

CICS as a service requester

CICS usage of the WSBind file

business
logic

pipelineService
Requester

CICS

Data mapping

WSDL

CICS Web services

business
logic

pipeline Service
Provider

CICS

Data mapping

WSDL

CICS Web services

HLL data structureSOAP body

SOAP bodyHLL data structure

WSBind
file

WEBSERVICE
resource

WEBSERVICE
resource

WSBind
file
52 Application Development for CICS Web Services

� EXEC CICS SOAPFAULT ADD

Use this command to add either of the following items to a SOAPFAULT
object that was created with an earlier SOAPFAULT CREATE command:

– A subcode

– A fault string for a particular national language

If the fault already contains a fault string for the language, then this
command replaces the fault string for that language. In SOAP 1.1, only the
fault string for the original language is used.

� EXEC CICS SOAPFAULT DELETE

Use this command to delete a SOAPFAULT object that was created with an
earlier SOAPFAULT CREATE command.

These commands require information that is held in containers on the channel of
the CICS-supplied SOAP message handler. To use these commands, you must
have access to the channel. Only the following types of programs have this
access:

� Programs that are invoked directly from a CICS-supplied SOAP message
handler, including SOAP header processing programs

� Programs deployed with the Web Services Assistant that have a channel
interface. Programs with a COMMAREA interface do not have access to the
channel.

Many of the options on the SOAPFAULT CREATE and SOAPFAULT ADD
commands apply to SOAP 1.1 and SOAP 1.2 faults, although their behavior is
slightly different for each level of SOAP. Other options apply to one SOAP level or
the other, but not to both, and if you specify any of them when the message uses
a different level of SOAP, the command will raise an INVREQ condition. To help
determine which SOAP level applies to the message, container
DFHWS-SOAPLEVEL contains a binary fullword with one of the following values:

� 1: The request or response is a SOAP 1.1 message.
� 2: The request or response is a SOAP 1.2 message.
� 10: The request or response is not a SOAP message.

2.5.6 Mapping levels

The Web Services Assistant has evolved over time. Many new capabilities have
been added to the Assistant beyond the original capabilities. In some cases
those enhancements involve changes to the application bindings shared
between CICS and the applications. Where this happens there’s a version
number, called the mapping level, that is used to allow the application developer
to select precisely which version of the mapping rules to apply.
 Chapter 2. CICS implementation of Web services 53

It is suggested that you use the most recent mapping level that’s available to you.

The options are:

� Mapping Level 1.0

This was the initial level of capability introduced with CICS TS V3.1.

� Mapping Level 1.1

This level was introduced in APAR PK15904 for CICS TS V3.1. This APAR
introduced a number of changes, including support for xsd:list and xsd:union
data types in the XML schema language.

� Mapping Level 1.2

This level was introduced in APAR PK23547 for CICS TS V3.1. This APAR
extended the support for COBOL data types and for supporting variable
length data values.

� Mapping Level 2.0

This was the initial level of capability introduced with CICS TS V3.2. It’s similar
to mapping level 1.2.

� Mapping Level 2.1

This level was introduced in APAR PK59794 for CICS TS V3.2. It adds
support for xsd:any and xsd:anyType.

� Mapping Level 2.2

This level was introduced in APAR PK69738 for CICS TS V3.2. It adds
support for substitution groups and abstract data types.

� Mapping Level 3.0

This is the initial level of capability introduced for CICS TS V4.1. It adds
support for timestamps and truncated data structures.

For a more complete list of capabilities added at each new mapping level, refer to
the CICS Information Center. Some additional information is supplied in the
following sections.
54 Application Development for CICS Web Services

2.5.7 Additional enhancements with CICS TS V3.2

In this section we will briefly discuss some of the changes to the Web Services
support in CICS TS V3.2.

� Web Services Assistant

– Under CICS TS 3.2 several new mapping levels are introduced. In the
previous section we briefly described some of the new capabilities. It is
strongly recommended that applications are developed at the most recent
mapping level possible. For CICS TS V3.2 that is currently mapping level
2.2.

– At mapping level 2.1 DFHWS2LS adds ‘pass-through’ support for xsd:any,
and in-line support for variably repeating data.

• Pass-through support for xsd:any

This provides a mechanism at mapping level 2.1 by which WSDL
documents that make use of the xsd:any and xsd:anyType constructs
can be supported by DFHWS2LS. There is an example of this
technique in the chapter on ‘Hints & Tips’.

• In-line support for variably recurring data

A new parameter has been added to DFHWS2LS at mapping level 2.1
which allows simple variably recurring data to be handled in arrays.
This can significantly simplify the application programming model
involved. There is an example of this technique in the chapter on ‘Hints
& Tips’.

– At mapping level 2.2 DFHWS2LS adds support for enumerated content
models. This includes improved support for xsd:choice constructs,
together with support for abstract data types and substitution groups.
There is an example of this technique in the chapter on ‘Hints & Tips’.

� CICS TS V3.2 support for external standards

– WSDL 2.0 support

WSDL 2.0 is a newer, updated version of the WSDL specification.
However, it is not widely implemented in Web services implementations
from other vendors. DFHLS2WS can generate WSDL 2.0 documents, and
DFHWS2LS can parse them, but until there is wider support for WSDL 2.0
from other vendors it is advisable to continue to use WSDL 1.1.
 Chapter 2. CICS implementation of Web services 55

– Support for binary attachments (MTOM/XOP)

This is a wire-level optimization that the system programmer might
implement in the PIPELINE configuration file that will result in improved
efficiency in moving binary data that is embedded within SOAP messages
compared to normal techniques.

Any Web service that involves xsd:base64Binary data types is eligible for
this optimization. If they are enabled, the optimizations happen
automatically within the pipeline without application changes.
An example of the use of binary data is included in Chapter 10, “Hints and
tips” on page 213.

– CICS TS 3.2 support of WS-TRUST

This is a special purpose specification that can be used in combination
with WS-Security to use exotic security tokens with CICS Web services.
The security infrastructure for Web services is not exposed to the CICS
applications, so this is not something most application developers will
need to know about. However, the following discussion might be of interest
for readers who are familiar with the details of WS-Security.

The Web Services Trust Language specification enhances Web Services
Security further by providing a framework for requesting and issuing
security tokens, and managing trust relationships between Web service
requesters and providers.

This extension to the authentication of SOAP messages enables Web
services to validate and exchange security tokens of different types using
a trusted third party. This third party is called a Security Token Service
(STS).

CICS support for securing Web services has been enhanced to include an
implementation of the Web Services Trust Language (or WS-Trust)
specification. CICS can now interoperate with a Security Token Service
(STS), such as Tivoli® Federated Identity Manager, to validate and issue
security tokens in Web services. This enables CICS to send and receive
messages that contain a wide variety of security tokens, such as SAML
assertions and Kerberos tokens, to interoperate securely with other Web
services.

You can configure the CICS-supplied security handler to define how CICS
should interact with an STS. The <wsse_handler> element in the pipeline
configuration file includes additional elements and attributes to configure
this support. CICS can either validate or exchange the first security token
or the first security token of a specific type in the message header. If you
want more sophisticated processing to take place, CICS provides a
56 Application Development for CICS Web Services

separate Trust client interface that you can use in a custom message
handler. You can use the Trust client instead of the security handler or in
addition to it.

2.5.8 Additional enhancements with CICS TS 4.1

In this section we will briefly discuss some of the changes to the Web Services
support introduced with CICS TS V4.1.

� CICS generic XML mapping

Under CICS TS V4.1 you can use the CICS XML transformation capability
programatically from within your applications. The CICS XML Assistant is
provided to perform the equivalent function of the CICS Web Services
Assistant. This utility helps you to create the required artifacts to transform
application binary data to XML or transform XML to application binary data.

The XML assistant can create the artifacts in a bundle directory or another
specified location on z/OS UNIX.

– Create the mappings using the CICS XML assistant.

– Create the resources in CICS to make the mappings available.

– Create or update an application program to use the TRANSFORM API
command. The application must use a channel-based interface.

– Run the application to test that the transformation works as you intended.
You can turn on validation to check that CICS converts the data correctly.

� CICS V4.1 mapping improvements

CICS TS V4.1 supports mapping level 3.0 which in turn adds support for:

– Timestamps. xsd:dateTime fields can be mapped as CICS ABSTIME
fields.

– Truncated data structures. If an application provides less data to CICS
than was expected, CICS can be configured to tolerate this.

– Bottom-up Web service enablement of sophisticated channel-based
applications in DFHLS2WS. You can provide an XML channel description
file that tells CICS about the set of containers expected by the application.
The channel description file identifies each of the containers used by the
application, together with an indication of whether they are optional or
required, and whether they have text, binary, or structured content.
 Chapter 2. CICS implementation of Web services 57

� CICS Web Services Addressing in CICS TS V4.1

Figure 2-9 is an example of a Web service that used WS-Adressing to route
the reply message to a network address other than the one used by the
requester.

Figure 2-9 A Web service that uses WS-Addressing to route the reply message to a
network address other than the one used by the requester

CICS TS V4.1 implements the Worldwide Web Consortium (W3C) Web Services
Addressing (WS-Addressing) specifications. This family of specifications
provides transport-neutral mechanisms to address Web services and facilitate
end-to-end addressing.

WS-Addressing can be used to construct applications with loosely coupled
semantics and exotic message exchange patterns.

CICS implements both the W3C WS-Addressing 1.0 Core and W3C
WS-Addressing 1.0 SOAP Binding specifications that are identified by the
http://www.w3.org/2005/08/addressing namespace.

For interoperability, CICS uses the W3C WS-Addressing Submission
specification with the http://schemas.xmlsoap.org/ws/2004/08/addressing
namespace.

CICS Transaction Server V4.1

© 2009 IBM Corporation1 XML and Web Services

CICS Web Services Addressing…

CICS2

CICS1

response

request
request

response

Reply To:
endpoint CICS2

to:
endpoint CICS1

to:
endpoint CICS2
58 Application Development for CICS Web Services

2.5.9 Use of WS-Addressing in CICS TS V4.1 applications

WS-Addressing is not something most applications will need to be concerned
with. Its most common use is as a middle-ware service used when servers such
as WebSphere Application Server and CICS communicate with each other.

However, there are advanced scenarios in which WS-Addressing aware
applications can participate in the decisions made by the middle-ware. There are
new EXEC CICS API commands available in CICS TS V4.1 to facilitate these
scenarios. Developers who want to know more about the EXEC CICS
WSACONTEXT and EXEC CICS WSAEPR commands are advised to review the
CICS Information Center for details.

2.5.10 Comparing CICS TS V3.1 with later CICS TS versions

Table 2-1 summarizes some of the differences between the support for Web
services found in CICS TS V3.1 and the later versions of CICS TS.

Table 2-1 Comparison of CICS TS V3.1 Web services with newer releases

Description CICS TS V3.1 CICS TS V3.2 CICS TS 4.1

MTOM Support No Yes Yes

SOAP protocol level SOAP 1.1 and 1.2 SOAP 1.1 and 1.2 1.1 and 1.2

Mapping level 1.0, 1.1, 1.2 1.0, 1.1, 1.2, 2.1, 2.2 1.0, 1.1, 1.2, 2.1, 2.2,
3.0

WSDL version 1.1 1.1, 2.0 1.1, 2.0
 Chapter 2. CICS implementation of Web services 59

Pipeline container
names

� DFHWS-APPHANDLER
� DFHWS-BODY
� DFHWS-DATA
� DFHWS-OPERATION
� DFHWS-PIPELINE
� DFHWS-SOAPACTION
� DFHWS-SOAPLEVEL
� DFHWS-TRANID
� DFHWS-URI
� DFHWS-USERID
� DFHWS-WEBSERVICE
� DFHWS-XMLNS
� DFHERROR
� DFHFUNCTION
� DFHHEADER
� DFHNORESPONSE
� DFHREQUEST
� DFHRESPONSE
� DFH-HANDLERPLIST
� DFH-SERVICEPLIST

Additional
Containers

� DFHWS-CID-DOMAIN
� DFHWS-MTOM-IN
� DFHWS-MTOM-OUT
� DFHWS-XOP-IN
� DFHWS-XOP-OUT
� DFHWS-MEP
� DFHWS-CTX

� Additional
Containers

� DFH-XML-ERRORMSG

CICS resource
definitions

� PIPELINE
� URIMAP
� WEBSERVICE

� PIPELINE
� URIMAP
� WEBSERVICE

� PIPELINE
� URIMAP
� WEBSERVICE

CICS API and SPI � CREATE PIPELINE
� CREATE URIMAP
� CREATE

WEBSERVICE
� INQUIRE

WEBSERVICE
� INVOKE

WEBSERVICE
� PERFORM PIPELINE

SCAN
� SOAPFAULT ADD
� SOAPFAULT CREATE
� SOAPFAULT DELETE

� INQ PIPELINE
– New information

returned
� SET PIPELINE

– RESPWAIT
might be
changed

� INQ WEBSERVICE
– New information

returned

� WSAEPR CREATE
� WSACONTEXT

BUILD
� WSACONTEXT

GET
� WSACONTEXT

DELETE
� SET / INQ

XMLTRANSFORM
� INVOKE SERVICE

XML parsing CICS WSBind file
generated by either CICS
Web service assistant or
RDz

CICS WSBind file
generated by either
CICS Web service
assistant or RDz

CICS WSBind file
generated by either
CICS Web service
assistant or RDz, and
CICS
XMLTRANSFORM
resource

Description CICS TS V3.1 CICS TS V3.2 CICS TS 4.1
60 Application Development for CICS Web Services

Chapter 3. Development approaches

This chapter looks at the application interface and discusses three alternative
approaches to developing an application. We also consider the advantages of
Rational Application Developer for System Z (RDz) for developing CICS Web
services, and compare typical high-function, highly coupled approaches with the
Web services style.

3

© Copyright IBM Corp. 2010. All rights reserved. 61

3.1 Introduction
There are three major application development scenarios involving CICS Web
services applications:

� We have an existing application that we want to expose as a Web service.

� We want to develop a new application and make it available as a Web service.

� We want to invoke an existing Web service, probably hosted on another
platform.

In all three of these scenarios we have either an existing application or a WSDL
description of a Web service.

In the first scenario we want to expose an existing application as a Web service.
We will usually use an approach referred to as bottom-up Web service
enablement. (See 3.2, “Bottom-up approach” on page 63) We start with the
language structures that describe the commarea for the existing application.
From them, we generate the WSDL and other infrastructure elements until we
have a full fledged, published Web service. This approach involves the use of
either DFHLS2WS or RDz.

In the second scenario we want to host a new Web service in CICS. We will
usually use an approach referred to as top-down Web service enablement. (See
3.3, “Top-down approach” on page 65) We start with the WSDL description of the
service. From that we generate a set of language structures from which a new
application can be constructed. This approach involves the use of either
DFHWS2LS or RDz.

In the third scenario we want to invoke a remote Web service from CICS. We
usually use the top-down approach in this scenario too, and generate language
structures from the WSDL description of the remote Web service. This approach
involves the use of either DFHWS2LS or RDz.

There is a special variation of the first scenario in which there is both an existing
application in CICS, an existing WSDL description of a service, and a
requirement to match the existing application to the existing WSDL. The
approach used is referred to as meet-in-the-middle. (See 3.4,
“Meet-in-the-middle approach” on page 66) One common scenario where this
approach is used is where bottom-up enablement of an existing application is
performed, followed by customization of the resultant WSDL. After which it is
necessary to match the existing application to the new WSDL. This method often
involves the use of a wrapper or driver program.

See Figure 3-1 on page 63 for a diagram showing the different approaches.
62 Application Development for CICS Web Services

In some advanced scenarios it might be desirable to write applications that are
XML-aware and opt-out of the CICS- and RDz-supplied Web services tooling. In
this case, you can write applications that interface directly with the CICS pipeline.

Figure 3-1 Development approaches

In summary, the three approaches can be mapped as shown in Table 3-1.

Table 3-1 The different approaches

3.2 Bottom-up approach
This approach is usually the starting point when we have an existing CICS
application that is already in production and has either a COMMAREA or
Channel-based interface. See Figure 3-2 on page 64. We now want to expose
this application to remote client applications using CICS Web services support.

Approach Application WSDL Type

Bottom-up Existing New Service provider

Top-down New Existing Service provider

Top-down New Existing Service requester

Meet-in-the-middle Existing Existing Service provider

Development approaches
“Top down” approach

• create a service from an existing WSDL
– create a new Web service application

> better interfaces for the requester
> development cost

“Bottom up” approach
• create a WSDL from an existing application

– expose the application as a Web service
> quicker implementation of the service
> more complex interface for the requester

“Meet in the middle” approach
• create a WSDL from an existing application,

modify the WSDL and create a wrapper from
the modified WSDL
– indirectly expose the application as a Web service

> more suitable interface for the requester
> minimum development

Service

WSDL

location
protocol
operation
message format

Service

WSDL

location
protocol
operation
message format

Service

WSDL

location
protocol
operation
message format

Wrapper
 Chapter 3. Development approaches 63

We can either use DFHLS2WS to do this, or RDz.

Figure 3-2 Bottom-up approach

Typically the process works this way:

1. Identify the language structures that document the input and output
COMMAREA formats for the application:

– If DFHLS2WS is used, ensure that the language structures are available
as separate copybooks in a partitioned data set. Also ensure that the
language structures restrict themselves to constructs that are supported
by DFHLS2WS. This might involve creating simplified versions of the
copybooks if the originals are complicated.

– If using RDz rather than DFHLS2WS, there is no requirement to separate
the language structures out into separate copybooks, and the range of
supported language constructs is broader.

2. Generate the WSDL file and the WSBind file for the Web service using either
DFHLS2WS or RDz. You must specify the name of the existing PROGRAM
resource in CICS and the URI under which you want the Web service to be
exposed as input parameters.

3. Identify a PIPELINE into which the WSBind file can be deployed. For unit
testing purposes it is common to have a shared PIPELINE in the CICS region.
The PIPELINE must be a provider mode PIPELINE. Cause the WSBind file to
be placed in the WSDIR for the PIPELINE. This can be done by manually
copying the file to the relevant destination on the UNIX file system, or by using
RDz.

CICS Web services assistant

DFHLS2WS (Language structure to Web service)
• For a bottom up approach development
• Input

– Programming language data structure
> In COBOL or PL/I or C or C++
> Interface to the program can be COMMAREA or CHANNEL

– Control statements (SYSIN)
• Output

– Web services binding file
– Web services description (WSDL)

Service definition
(WSDL)

generate
DFHLS2WS

WSBind
file

language
structure

input COBOL
PL/I

C/C++
64 Application Development for CICS Web Services

4. Cause a PIPELINE SCAN command to be issued that will install a
WEBSERVICE and URIMAP resource for you. This can be done using the
CEMT transaction in CICS, or by allowing RDz to install the artifacts on your
behalf.

3.3 Top-down approach
This approach is usually the starting point when we have an existing WSDL
document for a Web service, and we want to either implement or invoke the Web
service within CICS.

We can either use DFHWS2LS to do this, or RDz, as shown in Figure 3-3.

Figure 3-3 Top-down approach

Typically the process works this way:

1. Identify the WSDL that describes the Web service. If using DFHWS2LS, store
a copy of the WSDL in a directory in the UNIX file system.

2. Generate the language structures and WSBind file for the new application
from the WSDL using either DFHWS2LS or RDz. If the service is being
implemented in CICS, you will have to specify the name of the new
PROGRAM resource and the URI under which you want the Web service to
be exposed as input parameters. If the service is being invoked from CICS, do
not specify the name of a PROGRAM resource.

CICS Web services assistant

DFHWS2LS (Web service to language structure)
• For a top down approach and service requester development
• Input

– Web services description (WSDL)
• Output

– Web services binding file
– high level language data structure

> In COBOL or PL/I or C or C++
> Interface to the program can be COMMAREA or CHANNEL

Service definition
(WSDL)

generate

DFHWS2LS

WSBind
file

language
structure

input COBOL
PL/I

C/C++
 Chapter 3. Development approaches 65

3. Identify a PIPELINE into which the WSBind file can be deployed. For unit
testing purposes it is common to have a shared PIPELINE in the CICS region.
The PIPELINE must be of the correct type. If the Web service is being
implemented in CICS, it must be a provider mode PIPELINE. If the Web
service is being invoked from CICS, it must be a requester mode PIPELINE.
Cause the WSBind file to be placed in the WSDIR for the PIPELINE. This can
be done by manually copying the file to the relevant destination on the UNIX
file system, or by using RDz.

4. Cause a PIPELINE SCAN command to be issued, which will install a
WEBSERVICE resource and, in provider mode, a URIMAP resource for you.
This can be done using the CEMT transaction in CICS, or by allowing RDz to
install the artifacts on your behalf.

5. Implement the new application using the generated language structures.

6. Test and deploy the Web service.

3.4 Meet-in-the-middle approach
This third approach can be used in more complicated scenarios. For example:

� If an existing application’s COMMAREA interface has fields that are
unsupported by DFHLS2WS

� If the programming language used is not supported by DFHLS2WS (for
example an assembler program)

� If WSDL generated by DFHLS2WS is modified to make it more fully address a
business requirement

� If an industry standard WSDL document is to be implemented in CICS using
existing applications that are known to satisfy the requirements

This is a hybrid technique and often involves the use of a wrapper program that
maps between the data format generated by DFHWS2LS (or RDz) and the
desired data format used by the existing application. In some cases the existing
application can be modified to use the language structures generated by
DFHWS2LS (or RDz). See Figure 3-4 on page 67.
66 Application Development for CICS Web Services

Figure 3-4 Meet-in-the-middle approach

The process flow for this approach is as follows:

1. Start with the WSDL. In some scenarios this might have been generated by
DFHLS2WS (or RDz) following the bottom-up approach described in 3.2,
“Bottom-up approach” on page 63 (perhaps using a simplified version of the
language structures). In some scenarios generated WSDL might have been
modified so that it is no longer suitable for use with the original application.

2. Generate new language structures and a WSBind file from the WSDL using
DFHWS2LS or RDz.

3. Create a new application that expects input in the form described by the new
language structures and which LINKs to the existing PROGRAM using data in
the form described by the old language structures.

4. Deploy and test the artifacts as previously described.

RDz contains a set of tools that can simplify the process of performing
meet-in-the-middle application development. It can be used to match an existing
application to an existing WSDL without writing new application code.

Meet In The Middle
If you have an existing application and…

• an existing WSDL is to be used as interface to the client
– e.g. WSDL defined from a requesters perspective

• only want to expose fields that are necessary to the requester
– existing language structure may be complex, contain unnecessary fields for the requester
– use an interface more suitable for the requester

• the existing language structure uses data types not supported by the utility
– wrapper program converts the data type to a supported data type

• the existing application is written in a language not supported by the utility
– Assembler or Java programs

• etc.

existing
business

logic
Wrapper
programpipeline conversion

binding
file

existing
commarea
structure

new
language
structure

CICS Web service

CICS
Web services

assistant new lang.
structure

•COBOL
•PL/I
•C/C++

WSDL
 Chapter 3. Development approaches 67

3.5 The advantages of using RDz

RDz contains a lot of tools that simplify the application development exercise for
CICS Web services.

For bottom-up development RDz supports two different technologies for
transforming SOAP data into application data:

� Interpreted conversion
� Compiled conversion

For top-down development it only has Interpreted conversion.

It also has additional capabilities, such as the ability to deploy generated artifacts
to a unit testing CICS region, or the ability to view the contents of a WSBind file
and to change the deployment information within that file. It can validate that
WSDL documents are standards compliant, and it can be used to test Web
services deployed in CICS.

The Interpretive XML Conversion (see Figure 3-5 on page 69):

� Provides a wizard that invokes the CICS Web Services Assistant Java
classes ‘under the covers’ within RDz to produce the WSDL and WSBind file

� Uses the same CICS-supplied SOAP transformation technology as used by
DFHLS2WS and DFHWS2LS

� Provides additional options beyond the capabilities of the Web services
assistants, such as the ability to identify language structures from anywhere
within a COBOL program, or the ability to suppress undesirable fields from
the WSDL interface during bottom-up enablement

� Generates source code for a skeleton service implementation for top-down
provider mode scenarios

� Generates source code for a skeleton program containing the Web service
INVOKE command for top-down requester mode scenarios
68 Application Development for CICS Web Services

Figure 3-5 RDz interpretive XML conversion

The Compiled XML Conversion (see Figure 3-6 on page 70)

� Provides a similar wizard to the Interpreted conversion that also generates a
WSBind file and WSDL.

� Generates the source code for a COBOL converter program that implements
the XML transformations. This converter program can make use of the z/OS
XML System Services XML parser.

� Supports a broader range of COBOL data structures than are supported by
DFHLS2WS, including OCCURS DEPENDING ON.

� Allows you to modify the generated code for local requirements.

� Provides the same additional capabilities available with the Interpreted
conversions (advanced input selection and field suppression), along with
further options to control the mappings on a field by field basis.

� Requires the generated converter program to be compiled and deployed to
the CICS environment.

RDz “Interpretive” XML Conversion

WSDL

COBOL
source

import

XML Enablement
tool

Web Services
wizard

IDE tools

generate

create

xsd

pipelineService
Requester DFHPITP

WSDL

CICS Web services

HLL data structureSOAP body

WSBind
file

WEBSERVICE
resource

CICS

Invokes the CICS Web Services Assistant
– Same Java classes as used on mainframe supplied with CICS

– Graphical user interface

– WSBind and WSDL file generation is performed on your workstation

business
logic

business
logic
 Chapter 3. Development approaches 69

Figure 3-6 RDz compiled XML conversion

3.6 Web services versus CICS TCP/IP connectivity
It is worth looking at the key differences between CICS Web services and the
other ways for interacting with CICS over TCP/IP. The main alternative options
are:

� CICS Web Support (the EXEC CICS WEB api)
� CICS Transaction Gateway
� z/OS Communications Server IP CICS Socket Interface
� Link3270 Bridge

All of these components involve a tightly coupled approach. The CICS programs
might have to be Web or Sockets aware. The client programs often require
detailed knowledge of the commarea (or equivalent) interface with CICS, or are
limited to a browser-like interface to the CICS application.

This contrasts with the whole philosophy of Web services where, due to the
published WSDL, the client application can determine the required interface and
is totally unaware of the language and environment of the runtime executable.

Most developers who write Web service client applications do not know or care
that the target service is implemented in COBOL or hosted in CICS.

RDz “Compiled” XML Conversion

WSDL

import

XML Enablement
tool

Web Services
wizardIDE tools

generate

create

xsd

pipelineService
Requester DFHPITP

WSDL

CICS Web services

HLL data structureSOAP body

WSBind
file

WEBSERVICE
resource

Input/output
converter

CICS

Generates COBOL programs that have to be compiled
– Graphical user interface

– WSBind and WSDL file generation is performed on your workstation

– Use of a “Vendor Segment” in the WSBind file tells DFHPITP to use the converter
program instead of using its own conversion mechanism.

COBOL
source

business
logic

business
logic
70 Application Development for CICS Web Services

3.7 Conclusions
This chapter looked at the application interface and discuss the current
approaches to developing a Web service, especially in light of the additional
CICS V3 and V4 tools (such as the Web Services Assistant) that are now
available.

We looked at the bottom-up, top-down, and meet-in-the-middle approaches and
examined when each was most appropriate.

We also attempted to put into perspective how the Web services facilities in
CICS V3, and V4 differed from the plethora of components in the CICS Web
support area, the key difference being the concepts behind tightly coupled and
loosely coupled interfaces.
 Chapter 3. Development approaches 71

72 Application Development for CICS Web Services

Chapter 4. CICS catalog manager
example application

The CICS catalog example application is a working COBOL application that is
designed to illustrate best practice when connecting CICS applications to
external clients and servers. This sample is available in CICS TS 4.1.

In this chapter we review the steps that are required to install this in your CICS
environment.

4

© Copyright IBM Corp. 2010. All rights reserved. 73

4.1 Samples for use with CICS Web Services

There are several sample applications available to demonstrate the use of Web
services in CICS. In this chapter we focus on the CICS Catalog Sample
Application, which is a sample distributed with CICS and which demonstrates
many different aspects of the CICS Web services infrastructure.

There are other samples available that also demonstrate CICS Web services. In
particular, it is recommended that you review the samples in CICS SupportPac
CA1P, which is available at the following Web page:

http://www-01.ibm.com/support/docview.wss?uid=swg24020774

Chapter 6, “Exposing the Catalog Sample CICS application as a Web service” on
page 137 demonstrates how to expose the catalog sample application as a Web
service, and how to test it using the Web Services Explorer in Rational Developer
for System z (RDz) (or the free Eclipse product).

4.2 Introduction to the catalog manager application

The Web services example application demonstrates how you can use SOAP
and Web services to make existing, CICS-controlled information available to
SOA service requesters.

The catalog manager example application accesses an order catalog stored in a
VSAM file.

The example application is a catalog-management, purchase order style
application. It is a simple application that provides the functions to list details of
an item in the catalog and then select a quantity of that item to order. The catalog
is then updated to reflect the new stock levels. If selected in the application
configuration, an outbound Web service call is then made to an external dispatch
manager Web service. Figure 4-1 on page 75 shows an overview of this.

Before we can consider the Web service enablement of this sample, it is first
necessary to install the sample.
74 Application Development for CICS Web Services

http://www-01.ibm.com/support/docview.wss?uid=swg24020774

Figure 4-1 Catalog sample overview

4.3 Installation and set up of the base application

The base application is an implementation of the catalog manager application
using a 3270 interface initiated by running transaction EGUI.

Before you can run the base application, you must define and populate two
VSAM data sets:

� EXMPCAT: The application configuration file
� EXMPCONF: The VSAM catlog data file

 Catalog manager
 (DFH0XCMN)

or

 Outbound WebService?
 N Y

or

 Datastore Type =
 STUB VSAM

Catalog data
(EXMPCAT) VSAM

CICS1
 BMS
 presentation manager
 (DFH0XGUI)

EGUI

Order dispatch endpoint
(DispatchOrderV6.ear)

 Outbound WebService URI

Order dispatch endpoint
 (DFH0XODE)

Websphere Application ServerCICS2

SOAP RequestSOAP Request

commareas

 Dummy
stock manager
 (DFH0XSSM)

 VSAM
 data handler
(DFH0XVDS)

 Dummy
dispatch manager
 (DFH0XSOD)

 Dispatch
 manager
(DFH0XWOD)

 Dummy
 data handler
(DFH0XSDS)

01STKO...01DSPO...01INQS...01INQC... 01ORDR...

01INQS...01INQC... 01ORDR...

CA-REQUEST-ID Explanation
01INQC Inquire catalog
01INQS Inquire single item
01ORDR Place order
01 DSPO Dispatch order
01STKO Notify stock mgr

 Pipeline
(EXPIPE02)

Item #
Description
Dept, Cost
in stock
on order

Mapsets
DFH0XS1
DFH0XS2

commareas
 Chapter 4. CICS catalog manager example application 75

You must also install two transaction definitions:

� ECFG
� EGUI

4.3.1 Creating the VSAM data sets

The SDFHINST dataset, created when you installed CICS TS 4.1, supplies JCL
to create and load both the configuration file and the catalog data file.

The two members required are as follows:

� DFH$ECNF

This member contains the JCL required to generate the configuration data
set. The job contains two IDCAMS steps. The first defines the dataset and the
second loads the configuration data for the application. The configuration data
can be changed after the dataset is loaded by using the ECFG transaction as
shown by Figure 4-2

� DFH$ECAT

This member contains the JCL required to generate the catalog data set. The
job contains two steps. The first defines the dataset and the second loads the
dataset with the all the items in the catalog.

Both of these jobs should be modified as necessary and run.

Figure 4-2 Catalog sample configuration

4.3.2 Defining the base application to CICS

The example application is supplied with a 3270 interface to customize and run
the application. This interface consists of two transactions (EGUI and ECFG)
which, along with the two files created earlier (EXMPCAT and EXMPCONF),
must be defined to CICS.

Configuring the sample application

ECFG

Config data
(EXMPCONF)

key (bytes 1-9)

EXMP-CONF
OUTBNDURL
VSAM-NAME
WS-SERVER

VSAM KSDSCICS1

mapset
DFH0XS3

Configuration
manager

(DFH0XCFG)
76 Application Development for CICS Web Services

The definitions for these (and related) resources can be found in CICS-supplied
CSD group DFH$EXBS. You will need to modify the definitions for the two files to
use the DSNAMEs that you have selected.

Copy the definitions into your own CSD group from the CICS-supplied group:
DFH$EXBS (for example, SOADEV). Your group should be similar to that in
Example 4-1

Example 4-1 Base application files

EXMPCAT FILE SOADEV
EXMPCONF FILE SOADEV

Ensure that the both files are defined with Add, BRowse, DELete, READ, and
UPDATE all set to Yes, as in Example 4-2.

Example 4-2 Catalog file attributes in CICS

OPERATIONS
 Add : Yes No | Yes
 BRowse : Yes No | Yes
 DELete : Yes No | Yes
 READ : Yes Yes | No
 UPDATE : Yes No | Yes

Now install this group in CICS using CEDA I G(SOADEV).

4.3.3 Configuring the example application

The base application includes a transaction (ECFG) that can be used to
configure the example application.

The configuration transaction uses mixed-case information. You must use a
terminal that can handle mixed-case information correctly. Use the CEOT
transaction (CEOT UCTRAN) to switch off uppercase translation.

The transaction enables you to specify several aspects of the example
application, including:

� The overall configuration of the application, such as the use of Web services

� The network addresses used by the Web services components of the
application

� The names of resources, such as the file used for the data store

� The names of programs used for each component of the application
 Chapter 4. CICS catalog manager example application 77

The configuration transaction enables you to replace CICS-supplied components
of the example application with your own, without restarting the application.

Enter the transaction ECFG to start the configuration application. CICS displays
the screen shown in Figure 4-3.

Figure 4-3 shows that the application is configured to use the VSAM datastore
and that we will not use an outbound Webservice at this stage (that is, the
dummy dispatch manager program DFH0XSOD program will be used).

Figure 4-3 Configure CICS CATALOG sample application

A full description for each of the fields on the configuration screen follows:

� Datastore Type

– Specify STUB if you want to use the Data Store Stub program.
– Specify VSAM if you want to use the VSAM data store program.

CONFIGURE CICS EXAMPLE CATALOG APPLICATION

 Datastore Type ==> VSAM STUB|VSAM
 Outbound WebService? ==> NO YES|NO
 Catalog Manager ==> DFH0XCMN
 Data Store Stub ==> DFH0XSDS
 Data Store VSAM ==> DFH0XVDS
 Order Dispatch Stub ==> DFH0XSOD
Order Dispatch WebService ==> DFH0XWOD
 Stock Manager ==> DFH0XSSM
 VSAM File Name ==> EXMPCAT
 Server Address and Port ==> myserver:99999
 Outbound WebService URI ==> HTTP://9.42.170.141:9081/EXAMPLEAPP/SERVICES
 ==> /DISPATCHORDERPORT
 ==>
 ==>
 ==>
 ==>

PF 3 END 12
CNCL
78 Application Development for CICS Web Services

� Outbound WebService

– Specify YES if you want to use a remote Web service for your Order
Dispatch function (that is, if you want the catalog manager program to link
to the Order Dispatch Web service program).

– Specify NO if you want to use a stub program for your Order Dispatch
function (that is, if you want the catalog manager program to link to the
Order Dispatch Stub program).

� Catalog Manager

Specify the name of the catalog manager program. The program supplied
with the example application is DFH0XCMN.

� Data Store Stub

If you specified STUB in the Datastore Type field, specify the name of the
Data Store Stub program. The program supplied with the example application
is DFH0XSDS.

� Data Store VSAM

If you specified VSAM in the Datastore Type field, specify the name of the
VSAM data store program. The program supplied with the example
application is DFH0XVDS.

� Order Dispatch Stub

If you specified NO in the Outbound WebService field, specify the name of the
Order Dispatch Stub program. The program supplied with the example
application is DFH0XSOD.

� Order Dispatch WebService

If you specified YES in the Outbound WebService field, specify the name of
the program that functions as a service requester. The program supplied with
the example application is DFH0XWOD.

� Stock Manager

Specify the name of the Stock Manager program. The program supplied with
the example application is DFH0XSSM.

� VSAM File Name

If you specified VSAM in the Datastore Type field, specify the name of the
CICS FILE definition. The name used in the example application as supplied
is EXMPCAT.

� Server Address and Port,

If you are using the CICS Web service client, specify the IP address and port
of the system on which the example application is deployed as a Web service
 Chapter 4. CICS catalog manager example application 79

� Outbound WebService URI

If you specified YES in the Outbound WebService field, specify the location of
the Web service that implements the dispatch order function. If you are using
the supplied CICS endpoint, set this to:

http://myserver:myport/exampleApp/dispatchOrder

In the above location, myserver and myport are your CICS server address
and port, respectively.

4.3.4 Configuring code page support

As supplied, the example application uses two coded character sets. You must
configure your system to enable data conversion between the two character sets.

The CCSID description for the coded character sets used in the example
application are:

� 037 EBCDIC Group 1: USA, Canada (z/OS), Netherlands, Portugal, Brazil,
Australia, New Zealand)

� 1208 UTF-8 Level 3

You must have support for the following statements added to the conversion
image for your z/OS system:

� CONVERSION 037,1208;
� CONVERSION 1208,037;

To determine whether support is already there, issue the following command
from SDSF:

/DISPLAY UNI,ALL

This returns a display similar to Figure 4-4 on page 81.
80 Application Development for CICS Web Services

Figure 4-4 DISPLAY UNI, ALL command

If the conversion is not evident, this should be discussed with the z/OS system
programmer to have such support added. This will involve the system
programmer in generating a conversion image using the CUNMIUTL utility
program and enabling access to the image through the corresponding
SYS1.PARMLIB member updates. For more details about conversion images,
read z/OS Support for Unicode: Using Conversion Services, SA22-7649.

4.4 Web service support for the example application

After the base application has been implemented successfully we extend it
further to use Web services. Web service support extends the example
application by providing:

� A Web client front end
� A CICS Web service client
� Two versions of a Web service endpoint for the order dispatcher component

4.4.1 The Web client front end

The Web client front end is a Web-based front end to the catalog manager
application, which can be used in place of the 3270 front end used in the base
application.

RESPONSE=system
 CUN3000I 13.50.10 UNI DISPLAY 611
 ENVIRONMENT: CREATED 07/02/2005 AT 08.59.15
 MODIFIED 07/02/2005 AT 08.59.17
 IMAGE CREATED 10/22/2004 AT 10.43.15
 SERVICE: CHARACTER CASE NORMALIZATION COLLATION
 STORAGE: ACTIVE 440 PAGES
 LIMIT 51200 PAGES
 CASECONV: NORMAL
 NORMALIZE: DISABLED
 COLLATE: DISABLED
 CONVERSION: 00850-01047-ER 01047-00850-ER
 00037-01200-ER 01200-00037-ER
 00037-01208-ER 01208-00037-ER
 00437-01208-ER 01208-00437-ER
 00037-00367-ER 01252-00037-ER
 Chapter 4. CICS catalog manager example application 81

The Web client front end is supplied as an enterprise archive file (EAR) that can
be deployed into an application server such as one of the following:

� WebSphere Application Server Version 6 or later.

� Rational Application Developer Version 7 (RAD) or later with a WebSphere
unit test environment (version 6 or higher)

� Rational Application Developer for zSeries® Version 7 (RDz) or later with a
WebSphere unit test environment (version 6 or higher)

The supplied ear file is ExampleAppClientV6.ear.

The Web client front end is configured to call the catalog manager application as
a Web service provider that has three endpoints in CICS. These correspond to
the three commarea interfaces that the catalog manager program (DFH0XCMN)
uses in the base application. This client replaces the BMS interface used in the
base application (DFH0XGUI).

The Web client front end can be seen in Figure 4-5 on page 83.
82 Application Development for CICS Web Services

Figure 4-5 Web service client enablement

4.4.2 The CICS Web service client front end

As we have seen in the Web client front end we were able to replace the BMS
presentation layer in the base application with a client application that runs on an
application server such as Websphere Application Server. This client application
makes a Web service call to one of three end points.

CICS also provides a CICS client application that runs within CICS and uses a
CICS INVOKE SERVICE call to call the catalog manager application.

This is invoked in CICS by running the transaction ECLI. The configuration
transaction ECFG must be used to change the server address and port field to
specify where the CICS Web service client will find the catalog manager service
end point.

This can also be seen in Figure 4-5.

 Client's calls
 (DFH0XECC)

PUT CONTAINER('DFHWS-DATA')
 CHANNEL('Service-Channel')
 FROM(data in input commarea)

INVOKE WEBSERVICE(........)
 CHANNEL('Service-Channel')
 OPERATION('DFH0XCMN')

CICS1

ECLI

 Dispatch
 manager
(DFH0XWOD)

01DSPO...

 VSAM
 data handler
(DFH0XVDS)

01INQS...01INQC... 01ORDR...

 Dummy stock
 manager
 (DFH0XSSM)

01STKO...

 SOAP
 Request

 Pipeline
(EXPIPE01)

CPIH
 BMS
 presentation manager
 (DFH0XCUI)

inquire
Catalog
Client.

commareas

Order dispatch endpoint
 (DFH0XODE)

CICS3

SOAP Request
 Pipeline
(EXPIPE02)

Catalog data
(EXMPCAT)VSAM
Item #
Description
Dept, Cost
in stock
on order

01INQS...01INQC... 01ORDR...

 Catalog manager
 (DFH0XCMN)

01INQS... 01ORDR...01INQC...

place
Order
Client.

inquire
Catalog
Client.

inquire
Single
Client.

W
EB

SE
R

VI
C

E
s

 Pipeline
(EXPIPE02)

CICS2

Websphere Application Server or RDz

Workstation

Browser Servlet JSPs
ExampleAppClientV6.ear

Mapsets
DFH0XS1
DFH0XS2

Order dispatch endpoint
 (DispatchOrderV6.ear)

Websphere Application Server
 Chapter 4. CICS catalog manager example application 83

4.4.3 Order dispatch Web services endpoints

The catalog manager supplies two endpoints for the dispatch order component of
the application.

The first version of the dispatch order endpoint is supplied as an ear file
(DispatchOrderV6.ear) that can be deployed to any of the application server
environments listed in 4.4.1, “The Web client front end” on page 81. Using this
version of the order dispatch end point demonstrates how CICS can call a Web
Service which runs in another application server such as Websphere Application
Server.

The external dispatch order end point will be called when the “Outbound
WebService?” field is set to Yes in the configuration file.

The second version of the dispatch order endpoint is supplied as a CICS service
provider application program (DFH0XODE). This will be called when the
“Outbound WebService?” field is set to No in the configuration file.

The dispatch order endpoints can be seen in Figure 4-5 on page 83

4.4.4 Alternative Web service provider configuration

In this configuration, the Web browser client is connected to WebSphere
Application Server, in which ExampleAppWrapperClient.ear is deployed. In CICS,
three wrapper applications (for the inquire catalog, inquire single, and place order
functions) are deployed as service provider applications. They link to the base
application. This configuration can be seen in Figure 4-6 on page 85.
84 Application Development for CICS Web Services

Figure 4-6 Web service provider alternate configuration

4.5 Web services setup

Before you can run the Web service support for the example application, you
must create two zFS directories, and create and install several CICS resource
definitions.

CICS1

 Pipeline
(EXPIPE01)

CPIH

01ORDR...commareas 01INQC... 01INQS...

 Catalog manager
 (DFH0XCMN)

01DSPO...01INQS...01INQC... 01ORDR... 01STKO...

Dispatch manager
 (DFH0XWOD)

 Dummy stock manager
 (DFH0XSSM)

 Pipeline
(EXPIPE02)

SOAP Request
Catalog data
(EXMPCAT)VSAM
Item #r
Description
Dept, Cost
in stock
on order

Websphere Application Server or RDz

Workstation

Browser
ServletJSPs

ExampleAppWrapperClient.ear

SOAP Request

Container
DFHWS-DATA

VSAM data handler
 (DFH0XVDS)

 Wrapper for
 place order
(DFH0XPOW)

 Wrapper for
inquire catalog
(DFH0XICW)

 Wrapper for
inquire single
(DFH0XISW)

Order dispatch endpoint
 (DFH0XODE)

CICS2

Order dispatch endpoint
 (DispatchOrderV6.ear)

Websphere Application
Server
 Chapter 4. CICS catalog manager example application 85

4.5.1 Creating the zFS directories

Web service support for the example application requires two directories to be
created in the zFS (zSeries file system):

� A shelf directory
� A pickup directory

Shelf
The shelf directory is used to store the Web service binding files that are
associated with WEBSERVICE resources. Each WEBSERVICE resource is, in
turn, associated with a PIPELINE. The shelf directory is managed by the
PIPELINE resource, and you should not modify its contents directly. Several
PIPELINES can use the same shelf directory, as CICS ensures a unique
directory structure beneath the shelf directory for each PIPELINE.

The example application uses /var/cicsts for the shelf directory.

Pickup
The pickup directory contains the Web service binding files associated with a
PIPELINE. When a PIPELINE is installed, or in response to a PERFORM
PIPELINE SCAN command, information in the binding files is used to
dynamically create the WEBSERVICE and URIMAP definitions associated with
the PIPELINE.

A pipeline will read an XML pipeline configuration file at install time. It is therefore
also useful to define a directory in which to store these.

4.5.2 Creating the PIPELINE definition

The complete definition of a pipeline consists of a PIPELINE resource and a
pipeline configuration file. The file is an XML file that contains the details of the
message handlers that will act on Web service requests and responses as they
pass through the pipeline.

The example application uses the CICS-supplied SOAP 1.1 handler to deal with
the SOAP envelopes of inbound and outbound requests. CICS provides sample
pipeline configuration files that you can use in your service provider and service
requester.

More than one WEBSERVICE can share a single PIPELINE, so you only have to
define one pipeline for the inbound requests of the example application, but you
must define a second PIPELINE for the outbound requests because a single
86 Application Development for CICS Web Services

PIPELINE cannot be configured to be both a provider and requester pipeline at
the same time.

You can copy the PIPELINE definition from CICS-supplied group DFH$EXWS.
You must update the following additional attributes (Figure 4-7 and Figure 4-8 on
page 88 show our details):

STATUS(Enabled)
CONFIGFILE(/usr/lpp/cicsts41/samples/pipelines/basicsoap11provider.xml)
SHELF(var/cicsts)
WSDIR(/usr/lpp/cicsts/cicsts41/samples/Webservices/wsbind/provider/)

Figure 4-7 EXPIPE01 definition

Note: The zFS entries are case sensitive and assume a default CICS zFS
install root of /usr/lpp/cicsts.

OBJECT CHARACTERISTICS CICS RELEASE = 0660
 CEDA View PIpeline(EXPIPE01)
 PIpeline : EXPIPE01
 Group : CATMGR
 DEScription :
 STatus : Enabled Enabled | Disabled
 Respwait : Deft Default | 0-9999
 COnfigfile : /usr/lpp/cicsts/cicsts41/samples/pipelines/basicsoap11prov
 (Mixed Case) : ider.xml
 :
 :
 :
 SHelf : /var/cicsts/
 (Mixed Case) :
 :
 :
 :
 Wsdir : /usr/lpp/cicsts/cicsts41/samples/webservices/wsbind/provid
 (Mixed Case) : er
 Chapter 4. CICS catalog manager example application 87

Figure 4-8 EXPIPE02 definition

4.5.3 Creating a TCPIPSERVICE

As the client connects to your Web services over an HTTP transport, you must
define a TCPIPSERVICE to receive the inbound HTTP traffic. Figure 4-9 on
page 89 shows our example.

1. Use the CEDA transaction to create a TCPIPSERVICE definition to handle
inbound HTTP requests.

2. Enter CEDA DEF TCPIPSERVICE(EXMPPPORT) G(EXAMPLE)

Alternatively, you can copy the TCPIPSERVICE definition from CICS-supplied
group DFH$EXWS.

3. Enter the following additional attributes:

– URM(NONE) PORTNUMBER(port)

port is an unused port number in your CICS system.

– PROTOCOL(HTTP) TRANSACTION(CWXN)

Use the default values for all other attributes.

OBJECT CHARACTERISTICS CICS RELEASE = 0660
 CEDA View PIpeline(EXPIPE02)
 PIpeline : EXPIPE02
 Group : CATMGR
 DEScription :
 STatus : Enabled Enabled | Disabled
 Respwait : Deft Default | 0-9999
 COnfigfile : /usr/lpp/cicsts/cicsts41/samples/pipelines/basicsoap11requ
 (Mixed Case) : ester.xml
 :
 :
 :
 SHelf : /var/cicsts/
 (Mixed Case) :
 :
 :
 :
 Wsdir : /usr/lpp/cicsts/cicsts41/samples/webservices/wsbind/reques
 (Mixed Case) : ter
88 Application Development for CICS Web Services

Figure 4-9 EXMPPORT example

4.5.4 Dynamically installing WEBSERVICE and URIMAP resources

Each function exposed as a Web service requires:

� A WEBSERVICE resource to map the incoming XML of the SOAP BODY and
the COMMAREA interface of the program,

� A URIMAP resource that routes incoming requests to the correct PIPELINE
and WEBSERVICE.

OBJECT CHARACTERISTICS CICS RELEASE = 0660
 CEDA View TCpipservice(TCPIPSIN)
 TCpipservice : TCPIPSIN
 GROup : CATMGR
 DEScription :
 Urm : NONE
 POrtnumber : 03071 1-65535
 STatus : Open Open | Closed
 PROtocol : Http IIop | Http | Eci | User | IPic
 TRansaction : CWXN
 Backlog : 00001 0-32767
 TSqprefix :
 Host : ANY
 (Mixed Case) :
 Ipaddress : ANY
 SOcketclose : No No | 0-240000 (HHMMSS)
 Maxdatalen : 000032 3-524288
 SECURITY
 SSl : No Yes | No | Clientauth CErtificate :
 (Mixed Case)
 PRIvacy : Notsupported | Required | Supported
 CIphers :
 AUthenticate : No No | Basic | Certificate | AUTORegister
 | AUTOMatic | ASserted
 Realm :
 (Mixed Case)
 ATtachsec : Local | Verify
 DNS CONNECTION BALANCING
 DNsgroup :
 GRPcritical : No No | Yes
 DEFINITION SIGNATURE
 DEFinetime : 08/24/09 04:10:55
 CHANGETime : 08/31/09 23:21:22
 CHANGEUsrid : CICSUSER
 CHANGEAGEnt : CSDApi CSDApi | CSDBatch
 Chapter 4. CICS catalog manager example application 89

Although you can use RDO to define and install your WEBSERVICE and
URIMAP resources, you can also have CICS create them dynamically when you
install a PIPELINE resource.

Install the PIPELINE resources. Use the following commands:

CEDA INSTALL PIPELINE(EXPIPE01) G(SOASDEVWS)
CEDA INSTALL PIPELINE(EXPIPE02) G(SOADEVWS)

When you install each PIPELINE resource, CICS scans the directory specified in
the PIPELINE’s WSDIR attribute (the pickup directory). For each Web service
binding file in the directory (that is, for each file with the .wsbind suffix), CICS
installs a WEBSERVICE and a URIMAP if one does not already exist. Existing
resources are replaced if the information in the binding file is newer than the
existing resources.

If the PIPELINE is later disabled and discarded, all associated WEBSERVICE
and URIMAP resources will also be discarded.

If you have already installed the PIPELINE and later update the wsbind files in
the WSDIR directory, use the PERFORM PIPELINE SCAN command to initiate
the scan of the PIPELINE’s pickup directory. CICS will then install any new files.
Any files that are already installed will be reinstalled if the file in the directory is
newer than the one currently in use.

When you have installed the PIPELINEs, the following WEBSERVICEs and their
associated URIMAPs will be installed in your system:

� dispatchOrder
� dispatchOrderEndpoint
� inquireCatalog
� inquireSingle
� placeOrder

The names of the WEBSERVICEs are derived from the names of the Web
service binding files. The names of the URIMAPs are generated dynamically. You
can view the resources with a CEMT INQUIRE WEBSERVICE command, as
shown in Figure 4-10 on page 91.
90 Application Development for CICS Web Services

Figure 4-10 CEMT inquire Web command

For each WEBSERVICE the display shows the following information that is
associated with each WEBSERVICE:

� The PIPELINE name
� The URIMAP
� The target program

I WEBS
STATUS: RESULTS - OVERTYPE TO MODIFY
 Webs(dispatchOrder) Pip(EXPIPE02)
 Ins Ccs(00000)
 Webs(dispatchOrderEndpoint) Pip(EXPIPE01)
 Ins Ccs(00000) Uri(£246340) Pro(DFH0XODE) Com
 Webs(inquireCatalog) Pip(EXPIPE01)
 Ins Ccs(00000) Uri(£246341) Pro(DFH0XCMN) Com
 Webs(inquireCatalogClient) Pip(EXPIPE02)
 Ins Ccs(00000)
 Webs(inquireCatalogWrapper) Pip(EXPIPE01)
 Ins Ccs(00000) Uri(£246344) Pro(DFH0XICW) Cha
 Webs(inquireSingle) Pip(EXPIPE01)
 Ins Ccs(00000) Uri(£246342) Pro(DFH0XCMN) Com
 Webs(inquireSingleClient) Pip(EXPIPE02)
 Ins Ccs(00000)
 Webs(inquireSingleWrapper) Pip(EXPIPE01)
 Ins Ccs(00000) Uri(£246345) Pro(DFH0XISW) Cha
 Webs(placeOrder) Pip(EXPIPE01)
 Ins Ccs(00000) Uri(£246343) Pro(DFH0XCMN) Com

Note: in this example, there is no URIMAP or target program displayed for
WEBSERVICE(dispatchOrder) because the WEBSERVICE is for an outbound
request.

Also in this example note that WEBSERVICE(dispatchOrderEndpoint)
represents the local CICS implementation of the dispatch order service
 Chapter 4. CICS catalog manager example application 91

4.5.5 Creating the WEBSERVICE resources with RDO

As an alternative to using the PIPELINE scanning mechanism to install
WEBSERVICE resources, you can create and install them using Resource
Definition Online (RDO).

� Use the CEDA transaction to create a WEBSERVICE definition for the inquire
catalog function of the example application.

– Enter CEDA DEF WEBSERVICE(EXINQCWS) G(EXAMPLE)

– Enter the following additional attributes:

PIPELINE(EXPIPE01)
WSBIND(/usr/lpp/cicsts/samples
/webservices/wsbind/inquireCatalog.wsbind)

� Repeat the preceding step for each of the functions of the example
application shown in Table 4-1.

Table 4-1 Example application functions

Note: If you use RDO to define the WEBSERVICE and URIMAP resources,
you must ensure that their Web service binding files are not in the PIPELINE’s
pickup directory.

Function WEBSERVICE
name

PIPELINE
attribute

WSBIND attribute

INQUIRE SINGLE ITEM EXINQSWS EXPIPE01 /usr/lpp/cicsts/samples
/webservices/wsbind
/provider/inquireSingle.
wsbind

PLACE ORDER EXORDRWS EXPIPE01 /usr/lpp/cicsts/samples
/webservices/wsbind
/provider/placeOrder.
wsbind

DISPATCH STOCK EXODRQWS EXPIPE02 /usr/lpp/cicsts/samples
/webservices/wsbind
/requester/dispatch
Order.wsbind

DISPATCH STOCK
(endpoint optional)

EXODEPWS EXPIPE01 /usr/lpp/cicsts/samples
/webservices/wsbind
/provider/dispatch
OrderEndpoint.wsbind
92 Application Development for CICS Web Services

4.5.6 Creating the URIMAP resources with RDO

As an alternative to using the PIPELINE scanning mechanism to install URIMAP
resources, you can create and install them using RDO.

� Use the CEDA transaction to create a URIMAP definition for the inquire
catalog function of the example application.

– Enter CEDA DEF URIMAP(INQCURI) G(EXAMPLE)

– Enter the following additional attributes:

USAGE(PIPELINE)
HOST(*)
PATH(/exampleApp/inquireCatalog)
TCPIPSERVICE(SOAPPORT)
PIPELINE(EXPIPE01)
WEBSERVICE(EXINQCWS)

� Repeat the preceding step for each of the remaining functions of the example
application. Use the names in Table 4-2 for your URIMAPs.

Table 4-2 URIMAP names

Note: If you use RDO to define the WEBSERVICE and URIMAP resources,
ensure that their Web service binding files are not in the PIPELINE’s pickup
directory.

Function URIMAP name

INQUIRE SINGLE ITEM INQSURI

PLACE ORDER ORDRURI

DISPATCH STOCK Not required

DISPATCH STOCK endpoint (optional) ODEPURI
 Chapter 4. CICS catalog manager example application 93

– Specify the distinct attributes in Table 4-3 for each URIMAP.

Table 4-3 URIMAP attributes

– Enter the following additional attributes (same for all URIMAPs):

USAGE(PIPELINE)
HOST(*)
TCPIPSERVICE(SOAPPORT)
PIPELINE(EXPIPE01)

4.5.7 Completing the installation

To complete the installation, install the RDO group that contains your resource
definitions.

Enter the CEDA I G(EXAMPLE) command at a CICS terminal.

At this point all CICS aspects of the Catalog application should now be installed
and fully functional.

4.6 Installing the client application

To run the client application it must be installed into an application server such as
Websphere Application Server or into the test environment of Rational
Application Developer or Rational Application Developer for System z (RDz)

We installed the supplied client application into the Websphere Application
Server 7.0 test client installed with IBM Rational Developer for System z (RDz).
This enabled us to run the client and access it from our Web browser. The client
code will then use Web services to talk to our CICS system, and we should be
able to drive the CICS application with a friendly graphical user interface.

Figure 4-11 on page 95 shows the Websphere test server in RDz 7.5.1.

Function URIMAP
name

PATH WEBSERVICE

INQUIRE SINGLE
ITEM

INQSURI /exampleApp/inquireSingle EXINQSWS

PLACE ORDER ORDRURI /exampleApp/placeOrder EXORDRWS

DISPATCH STOCK
endpoint (optional)

ODEPURI /exampleApp/dispatchOrder EXODEPWS
94 Application Development for CICS Web Services

Figure 4-11 Rational Application Developer for System z test environment

4.6.1 FTP the client application

Before we can install the client application we downloaded it from the CICS
install directory on UNIX Systems Services (USS). The directory that contains
the client ear file is <cics install directory>/samples/webservices/client
We downloaded the ear file using FTP ensuring that it was downloaded to our
workstation in binary,

The ear file for the client application is ExampleAppClientV6.ear

4.6.2 Install the client

The client is installed using the Wepshere Admin Console. This can be started
either by right-clicking the Websphere Application Server and then selecting
Administration followed by Run Administrative Console

Alternatively, the console can be accessed from a Web browser (as it would be
for Websphere Application Server) by entering the following URL:

http://localhost:9060/ibm/console
 Chapter 4. CICS catalog manager example application 95

Replace localhost and the port number (if necessary) for your system. After you
have logged onto the Administrative Console, the window should look like
Figure 4-12.

Figure 4-12 Websphere Application Server Admin Console
96 Application Development for CICS Web Services

You must then install the client application in to the Application Server by opening
up the Applications tab on the left then selecting New Applications and then
New Enterprise Application. The window should look like Figure 4-13.

Figure 4-13 Ear file installation

Use the Browse button to locate the ear file on your system. We took all the
default options when installing the application into Websphere.
 Chapter 4. CICS catalog manager example application 97

4.6.3 Start the client

After the client application is installed successfully the application must be
started so it can be called. From the Administrative console open the
Applications tab on the left and click Application Types followed by Websphere
Enterprise Applications. You should now see a window similar to Figure 4-14.

Figure 4-14 Installed applications.

Start the application by clicking the checkbox next to the ExampleAppClientV6
application and click Start.

4.6.4 Testing the client

The application is now started so now we can test it from a Web browser.

If you have installed the client application on your local workstation in the
Websphere Test Environment, for example, then you should be able to enter the
following URL into your Web browser:

http://localhost:9080/ExampleAppClientV6Web
98 Application Development for CICS Web Services

Alternatively, the IP address of your workstation can be obtained by issuing the
ipconfig command in a Windows® command window. In this case replace
localhost with the IP address of your workstation.

You should now see a window like Figure 4-15 in your browser.

Figure 4-15 Initial client application window
 Chapter 4. CICS catalog manager example application 99

Configure the application
The client, at this point, has no idea where our CICS region is or what port use,
so click CONFIGURE. This opens a window to send this information to the client.
Figure 4-16 shows an example of the CICS configuration screen.

Figure 4-16 CICS Example application configure screen.

Update the three New lines with the correct local host URL and the correct port
for your CICS region. To determine this data, go to your CICS region and enter
the CEMT I TCPIPS command.

This will show you the installed TCPIP services on your region. If you select the
correct TCPIP service and expand the details you can determine the correct
ipaddress and port number to be used.

After the New lines have been updated click Submit. The application is now
ready to be tested.
100 Application Development for CICS Web Services

List Items
Click LIST ITEMS and wait for the client to talk to your CICS system. You should
see the window in Figure 4-17.

Figure 4-17 Client List Catalog window
 Chapter 4. CICS catalog manager example application 101

Allow the two fields to default and click SUBMIT. You should see a window
showing a list of items as in Figure 4-18.

Figure 4-18 Client listing of items

At this point, we have proven that our client is working and making the
appropriate Web service requests across our CICS region.

You might want to try some other testing variations at this point.
102 Application Development for CICS Web Services

Chapter 5. Rational Developer for
System z (RDz)

This chapter introduces you to using the development productivity tool Rational
Developer for System z for CICS application development. In Chapter 6,
“Exposing the Catalog Sample CICS application as a Web service” on page 137
we demonstrate how RDz can be used to generate and test CICS Web services.

5

© Copyright IBM Corp. 2010. All rights reserved. 103

5.1 What is Rational Developer for System z?

Rational Developer for System z (RDz) consists of a common workbench and an
integrated set of tools that support application development and maintenance,
run-time testing, and rapid deployment of simple and complex applications. It
offers an integrated development environment (IDE) with advanced, easy-to-use
tools and features to support application development for multiple runtimes like
CICS, WebSphere, IMS, and DB2. It helps developers rapidly design, code, and
deploy complex applications.

RDz provides support for Cobol, Assembler, PL/I, Java, JEE, C/C++, SQL, and
stored procedures.

5.2 RDz and CICS application development

CICS application developers can use IBM Rational Developer for System z to
significantly increase productivity and efficiency when creating and maintaining
CICS applications. Some of the tasks being performed by developers on a
routine basis can be significantly simplified with the help of the features and tools
available with RDz.

The following list details some of the tasks that CICS developers can perform
efficiently with the help of RDz:

� View and edit source code with full syntax checking
� Edit, compile, debug and test application code
� Handle Web services and XML development
� Develop BMS maps using visual productivity tools
� Generate JCL
� Use the Enterprise Generation Language (EGL)

5.3 Components of RDz

In this section we introduce the different components of RDz.

5.3.1 Workspace

The workspace is a place where all the artifacts related to our work will be stored.
It is equivalent to a folder in the file system. We need to specify a workspace as a
follow up step of launching RDz. See Figure 5-1 on page 105.
104 Application Development for CICS Web Services

The RDz workspace is a private work area created for the individual developer. It
holds the following information:

� RDz environment, configuration information, and temporary files

� Projects that developers have created, which include source code, project
definition, configuration files and generate files

Resources that are modified and saved are reflected on the local file system.
Users can have many workspaces on their local file system to contain different
projects that they are working on, or different versions.

Figure 5-1 Workspace Launcher

5.3.2 Workbench

The workbench is the user interface for RDz. The workbench features an
integrated development environment with customizable perspectives that support
role-based development. The workbench provides a common way for all
members of your project team to create, manage, and navigate resources easily.
It consists of interrelated views and editors. (See Figure 5-2 on page 106.) Views
provide different ways of looking at the resources you are working on. Editors
allow you to create and modify code.
 Chapter 5. Rational Developer for System z (RDz) 105

The workbench is made up of several components, such as the Perspective,
View, and Editor. See Figure 5-2 for an example workbench window.

Figure 5-2 Rational Developer for System z Workbench

5.3.3 Perspective

RDz supports a role-based development model, which means that the
development environment provides different tools, depending on the role of the
user. It does this by providing several different perspectives that contain different
editors and views necessary to work on tasks associated with each role.

For each perspective, RDz defines an initial set and layout of views and editors
for performing a particular set of development activities. For example, a
developer working on System z projects will work with the z/OS Projects
perspective. Similarly, a Java programmer responsible for writing, debugging and
testing Java code will work using the Java perspective, and so on.

The layout and the preferences in each perspective can be changed and saved
as a customized perspective and used again later.
106 Application Development for CICS Web Services

There are two ways to open another perspective:

� Click the Open a perspective icon in the top right corner of the workbench
working area and select the appropriate perspective from the list. See
Figure 5-3.

� Select Window → Open Perspective and select one from the drop-down list.
See Figure 5-3.

In both cases, there is also an Other option, which when selected displays the
“Open Perspective” dialog box that shows a list of perspectives (see Figure 5-3).
To show the complete list of perspectives, select the Show all check box, if it
exists. Here you can select the required perspective and click OK.

Figure 5-3 List of all perspectives
 Chapter 5. Rational Developer for System z (RDz) 107

5.3.4 View

Views provide different presentations of artifacts and resources or ways of
navigating through the information in your workspace. For example, the Remote
Systems view can help you to connect to z/OS remotely and provides a
hierarchical view of the local or remote systems and navigate through
folders/datasets hierarchy. From here, you can open files for editing or create,
copy and delete datasets. (See Figure 5-4).

Figure 5-4 Remote Systems view
108 Application Development for CICS Web Services

The Outline view displays an outline of a structured file (COBOL source code in
this case) that is currently open in the editor area, and lists structural elements.
(See Figure 5-5).

Figure 5-5 Outline view

RDz provides synchronization between views and editors, so that changing the
focus or a value in an editor or view can automatically update another. In
addition, some views display information obtained from other software products,
such as database systems or software configuration management (SCM)
systems.

5.3.5 Editor

When you open a file, RDz opens the editor that is associated with that file type.
For example, the System z LPEX editor is opened for COBOL copybook files
(see Figure 5-6 on page 110), while the Java editor is opened for Java files.

Editors that have been associated with specific file types open in the editor area
of the workbench. By default, editors are stacked in a notebook arrangement
inside the editor area. If there is no associated editor for a resource, RDz will
open the file in the default editor, which is a text editor.
 Chapter 5. Rational Developer for System z (RDz) 109

I

Figure 5-6 System z LPEX editor

5.3.6 Projects and subprojects

A project is the top level of organization of resources in the workbench. It can
contain one or more subprojects. A subproject contains files and folders that are
grouped into buildable units. Projects are used for building, version management,
sharing, testing, and deployment. You can create several different types of
projects in RDz, such as COBOL, PL/I, C/C++ projects targeted for CICS, or Web
and Java projects. Different types of projects have different structures, different
associated builders, and different automatic validation routines.

When you create a project or subproject, you indicate a file system location
(folder) to store all associated resources.

A project can be created by navigatin to File → New → Project.
110 Application Development for CICS Web Services

Select the type of project from New Project window (Figure 5-7).

Figure 5-7 New Project window

5.4 Writing your first COBOL Program with RD/z

In this section we write and test our first COBOL program with RDz. With the help
of this exercise we will also understand some basic concepts involved in COBOL
development with RDz. You may find some differences in screen shots in parts of
the excercise depending upon which version of RDz you are using.

1. First, we need to Switch to z/OS Projects perspective. Do that by navigating to
Window → Open perspective → z/OS Projects.

2. To create a new cobol sample program, navigate to File → New → Other.
 Chapter 5. Rational Developer for System z (RDz) 111

3. Expand Examples → Workstation COBOL and choose COBOL Sample 1
(see Figure 5-8).

Cobol Sample 1 is sample program provided with RDz, it will create a local
z/OS project.

Figure 5-8 Select a wizard

4. Click Next.
112 Application Development for CICS Web Services

5. Insert name of the z/OS project as Local Cobol Program. (see Figure 5-9).

You need to associate a property group with the project. Property group
maintains all configuration information required to compile, link, and build the
program. We have added a detailed discussion about property groups in the
next few pages.

Figure 5-9 z/OS local project
 Chapter 5. Rational Developer for System z (RDz) 113

6. Select the COBOL Sample Property Group check box as well.

You can also click the Edit button in Figure 5-9 on page 113 for checking
properties of propertygroup and in case you want to change any parameters.

See Figure 5-10.

Figure 5-10 Edit property group

5.4.1 Property groups

You can create property groups with property values that can be shared by z/OS
projects, subprojects, and resources.

A property group is a set of property values that you define for local COBOL and
PL/I projects or specific remote systems. Once defined, the values in a property
group can be applied to the z/OS projects, subprojects, and resources that you
create on that system. Property groups provide a way to manage resource
properties, share them easily across systems, projects, resources, and users,
and maintain consistency in your development and build environment.

You can, for example, define a property group with values required for debugging
in your environment and apply that property group to your resources when you
need to debug the programs in your project or subproject. If you need to change
a specific property value, for example, the JCL job card and data set, you can
change this property once in the property group and the change is propagated to
all resources associated with that property group.
114 Application Development for CICS Web Services

System programmers can create property groups and default property values
and make them available to users. When a connection is made to a system, RDz
searches the system for system property group and default value files. If these
files are found, then those property groups or default values are loaded and can
be used.

Figure 5-11 show the “Edit Property Group” window, in which you can change
complier options.

Figure 5-11 Local COBOL settings

5.4.2 Compiler options

� TEST

This option produces object code that contains the symbol and statement
information that enables the debugger to perform symbolic source-level
debugging.

� ADATA

Use this option when you want the compiler to create a SYSADATA file, which
contains records of additional compilation information.

� EXIT

This option allows the compiler to accept user-supplied modules in place of
SYSIN, SYSLIB (or copy library), and SYSPRINT. When ADEXIT is specified,
the compiler loads the exit module during initialization. The exit module is
called for each record written to the SYSADATA data set.

� SYSLIB

Specify paths to directories to be used in searching for COBOL copybooks
when you do not specify an explicit library-name on the COPY statement.
 Chapter 5. Rational Developer for System z (RDz) 115

5.4.3 SQL options

Use the SQL compiler option to enable the DB2 coprocessor and to specify DB2
suboptions. The DB2 suboption string that you provide in the SQL compiler
option is made available to the DB2 coprocessor. Only the DB2 coprocessor
views the contents of the string.

5.4.4 CICS options

Use the CICS compiler option to enable the integrated CICS translator and to
specify CICS suboptions. The COBOL compiler makes available to the integrated
CICS translator the CICS suboption string that you provide in the CICS compiler
option. Only that translator views the contents of the string.

Note that the option for Local Link is EXE. This means that when a COBOL
program from this project is built, a name.exe is generated instead of a name.dll.
Also note the option /de means that the program will include debugging
information. See Figure 5-12.

Figure 5-12 Local link options
116 Application Development for CICS Web Services

Project structure in z/OS projects view will have .project file and COBOL folder.
See Figure 5-13.

Figure 5-13 z/OS projects - Local cobol project structure

You can build this sample COBOL program by selecting Project → Build All
from the menu bar of the RDz workbench. After succesfully building the program,
you will see the BuildOutput folder added in the project structure. (See
Figure 5-14.)

Figure 5-14 Local COBOL program - BuildOutput folder
 Chapter 5. Rational Developer for System z (RDz) 117

The BuildOutput folder includes all binaries related to the program. You willl also
notice a StartApp.exe file there. Double-click this exe file and you will see a
window with the COBOL program results will display. (see Figure 5-15)

Figure 5-15 Sample Cobol program - End screen

You have successfully developed and tested your first COBOL program with
RDz.

At the time of writing this IBM Redbooks publication, the latest version of RDz is
7.6. There has been significant additions in the property group management area
in this release. The following list details these improvements:

� Manageable property groups of build/syntax check properties can easily be
created and applied to a separate z/OS project. This simplifies the tedious
process of setting up and determining which properties apply to which z/OS
application projects.

� The usability of property groups has improved through the use of an editor
dialog rather than a wizard dialog. This allows you to view property groups
and source code side-by-side, allowing editing of both concurrently.

� The property group editor includes new validation logic to help developers
locate missing information, missing datasets, or improperly formatted inputs.

We discuss Property Group view (5.4.5, “Property Group Manager view” on
page 119) and Property Group editor (5.4.6, “Property Group editor” on
page 121), two major additions in RDz 7.6, are discussed in the following
sections.
118 Application Development for CICS Web Services

5.4.5 Property Group Manager view

The Property Group Manager view provides tools for creating, deleting, editing,
importing, exporting, and copying property groups.

To open the Property Group Manager view, follow these steps:

1. From the menu bar, click Window → Show View → Other. In the “Show
View” window, expand z/OS Project Views (see Figure 5-16).

Figure 5-16 Open Property Group Manager view
 Chapter 5. Rational Developer for System z (RDz) 119

2. Select Property Group Manager and click OK. The “Property Group
Manager” window will display.(see Figure 5-17)

Figure 5-17 Property Group Manager view

3. To create a property group and associate it with a resource from a Property
Group Manager, follow the steps below:

a. Connect to a remote system.

b. Select a connected remote system and create a new property group for it
(see Figure 5-18). Add property values to the group and save the group.

Figure 5-18 Add new property group

c. Select the resource you want to assign the properties to and associate the
group with the resource. Once the property group is created it can be
edited, exported, copied or deleted from property group manager itself. (
see Figure 5-19)

Figure 5-19 Edit, Delete, Export ,or Copy property groups
120 Application Development for CICS Web Services

5.4.6 Property Group editor

To create a new property group or edit an existing property group, the Property
Group editor can be used. In RDz 7.6 it has been changed to the form of an
editor from a wizard based window.

From a property group editor you can change the property categories or values
defined for a property group. Editing a property group enables you to select new
or different property categories for the group or to change specific property
values for the group. This action is a good way to propagate property changes
across multiple projects, subprojects, or data sets because it enables you to
make a property change in one place and have it take effect for all resources
associated with the property group.

To edit a property group:

1. From the Property Group Manager view, double-click a property group name
or select a property group to edit and select Edit from the pop-up menu. The
the Group Editor will display. See Figure 5-20.

Figure 5-20 Property Group Editor.

You can edit the name and description for the property group.

2. Click the Categories tab and select the check boxes beside the categories for
which you want to enter values for this property group. See Figure 5-21 on
page 122.

You can choose from the following categories:

– Assembler Settings
– COBOL Settings
– C/C++ Settings
– PL/I Settings
– BMS Settings
– MFS Settings
 Chapter 5. Rational Developer for System z (RDz) 121

– JCL Job Card and Data Set
– Link Options
– Runtime Options

The selections you make on this page determine the property tabs that
appear in the editor. As you select or clear check boxes, the corresponding
tabs are added or removed from the editor. (See Figure 5-21.)

Figure 5-21 Property group editor categoroes and property tabs

3. Select each property category tab to open the property page for that category.

4. On each property category page, specify property values to be included in the
property group.

For fields that take partitioned data sets as their value, you can drag a PDS
name from the Remote Systems view, z/OS Projects view, or Remote z/OS
Search results view and drop it in the field.

To change the order of PDS names in a field, place the cursor in the field and
click Change Order from the pop-up menu. The property group editor checks
that the value in a data set field is valid:

– The system for the data set is compared to the system for the property
group. If the system for the data set is different, an error message is
displayed.

– The property group editor verifies that the value is an MVS data set rather
than a PDS member, z/OS UNIX System Services file, or local file.
122 Application Development for CICS Web Services

– If multiple data sets are dropped in a field that accepts only one data set,
an error message is displayed.You can also click the Check Data Sets
button to check that data sets specified in the step options field exist on
the remote system.

When you close the Property Group Editor, RDz prompts you to save your
changes.

5.5 Writing your first Java program with RD/z

Perform the following steps to write a Java program with RD/z

1. Switch to Java perspective. Navigate to Window → Open Perspective →
Other.

2. Select Java from pop-up menu and click OK.

3. Navigate to File → New → Project, expand the Java folder in the pop-up
window and select Java Project.

4. Click Next and enter project name as HelloRDz, everything else as default.

5. Click Finish.

6. Add a new package. Select File → New → Package and enter the package
name (all in lower case, as per Java coding conventions) in the pop-up
window. Click Finish. (See Figure 5-22.)

Figure 5-22 New Java package - insert package name
 Chapter 5. Rational Developer for System z (RDz) 123

7. Navigate to File → New → Class. Browse for package name
com.itso.redbook.rdz and insert class name as HelloWorld. Select the
public static void main(String args[]) check box. Click Finish. (See
Figure 5-23.)

Figure 5-23 Adding a new Java Class

The HelloWorld.java source file is opened in Java editor.
124 Application Development for CICS Web Services

8. Replace statement

// TODO Auto-generated method stub

with

System.out.println("Hello to RDz.");

The Editor code will now look as shown Figure 5-24.

Figure 5-24 Sample Java code for HelloWorld program

9. Select File → Save to save the program.

10.Select Run → Run As → Java Application to run the program. You should
see results in the Console view. (Figure 5-25)

Figure 5-25 Result of HelloWorld program

You have successfully written and executed first Java program with Rational
Developer for System z.

package com.itso.redbook.rdz;

public class HelloWorld {

/**

 * @param args

 */

public static void main(String[] args) {

System.out.println("Hello to RDz.");

}
}

 Chapter 5. Rational Developer for System z (RDz) 125

5.6 Overview of Debugging with RDz

RDz can also be of great help in debugging programs and applications. We can
debug with RDz by switching to the Debug perspective.

The following tasks can be performed for debugging purposes:

� Set and clear breakpoints at a specific line.

� Set and clear breakpoints for an error or warning-level error that is based on
Language Environment® severities.

� Run to a breakpoint.

� Step into a procedure.

� Step over a procedure.

� View variable values and change them as you step through the code.

� View variable values in the context of a larger area of storage.

� View the call stack.

5.6.1 Supported languages and environments

RDz includes support for debugging many different languages and environments.
These are as follows:

� COBOL
� PL/I
� C/C++
� CICS / IMS
� Java
� JavaScript
� DB2 stored procedures
� XSL transformations (XSLT)
� SQLJ
� Jython Scripts for WebSphere Application Server administration
� Mixed language applications (for example XSLT called from Java)
� WebSphere Application Server (servlets, JSPs, EJBs, Web services)

Applications in all these languages and environments can be debugged within
RDz using a similar process of setting breakpoints, running the application in
debug mode and, within the Debug perspective, stepping through the code to
track variables and logic in order to find and fix problems. Furthermore, the
interface for debugging within the Debug perspective is intended to be consistent
across all these languages and environments.
126 Application Development for CICS Web Services

5.6.2 Local and remote debug

Using RDz, you can debug a wide range of applications in several languages,
running either on local test environments or on remote servers, such as CICS,
IMS or WebSphere Application Server.

Local
RDz can use the workstation-based debugging engine to debug code in a local
project

Remote
This is one area where productivity could increase substantially. With the
interactive remote debugging feature, you can run a program on z/OS and view
and change data contents, establish breakpoints, jump backward and forward in
the execution, recover data exceptions, and more. The remote debugger
supports debugging of code that runs in the following z/OS environments:

� CICS
� Batch
� TSO
� IMS, both IMS Database Manager and IMS Transaction Manager, with or

without Batch
� Terminal Simulator (BTS)
� DB2 (including stored procedures)
� WebSphere Application Server

The debugging sessions are cooperative. The remote distributed debugger
resides on the workstation and interfaces with the IBM Debug Tool Utilities and
Advanced Functions, which runs on the host with your application. The
workstation interface communicates with the host z/OS products through TCP/IP.

5.6.3 Basic debugging features and tools

In this section we look at the basic debugging features and tools of RDz.

Views within the Debug perspective
When you run an application in debug mode and reach a breakpoint, you are
prompted to switch to the Debug perspective. Although you can debug in any
perspective, the Debug perspective includes views that are the most helpful for
debugging. Therefore, we recommend that you use the Debug perspective. By
default, when debugging, the views shown in the Debug perspective are as
follows:
 Chapter 5. Rational Developer for System z (RDz) 127

� Source view

This view shows the file of the source code that is being debugged,
highlighting the current line being executed.

� Outline view

This view contains a list of variables and methods for the code listing shown in
the display view.

� Debug view

This view shows a list of all active threads, and a stack trace of the thread that
is currently being debugged.

� Servers view

This view is useful if the user wants to start or stop test servers while
debugging.

� Variables view

Given the selected source code file shown in the Debug view, this view shows
all the variables available to that program and their values. Also, step-by-step
debugging variables that change value are highlighted in a different color.

� Breakpoints view

This view shows all breakpoints in the current workspace and gives a facility
to activate/de-activate them, remove them, change their properties, and to
import/export a set of them to other developers.

� Display view

This view allows the user to execute any Java command or evaluate an
expression in the context of the current stack frame.

� Expressions view

During debugging, the user has the option to inspect or display the value of
expressions from the code or even evaluate new expressions. The
Expressions view contains a list of expressions and values which the user has
evaluated and then selected to track.

� Console view

This view shows the output to System.out.

� Tasks view

This view shows any outstanding source code errors, warnings or
informational messages for the current workspace.

� Error Log

This view shows all errors and warnings generated by plug-ins running in the
work space.
128 Application Development for CICS Web Services

5.7 Establishing Connection to remote Websphere
Application Server

There are two editions of RDz available, RDz with Java and RDz with EGL. If you
have the first of these variants then you will have access to the Java Enterprise
Edition (J2EE) tools described below.

Rational Developer for System z can help you test and debug J2EE applications
on local test environments as well as remote servers. To test the application
locally you can install the WebSphere Application Server test environment and
make a connection to local test environment from the Server view. In this section
we list the steps to connect to a remote Websphere Application Server for
application testing purposes.

1. Define a new server. See Figure 5-26.

Figure 5-26 Define a new server - need to select as per server availability
 Chapter 5. Rational Developer for System z (RDz) 129

2. Update ports for RMI and SOAP. (Figure 5-27)

Figure 5-27 New Server definition - define port and security settings

3. Click Finish.

Once you finish with the new server wizard you can see the status of the server
in the Servers view (Check Figure 5-28). The Server state shows as Started. We
have established a connection to the remote server for application development
and testing purposes.

Figure 5-28 Screen showing servers - Server is started
130 Application Development for CICS Web Services

In case you want to update the setting of a server connection configuration you
can double click the server in the Servers view, which opens the overview page.
The Server connection configuration information can be updated here. (See
Figure 5-29.)

Figure 5-29 Overview screen - server connection configuration

To run administration console on the application server right-click the server in
the Servers view and select Administration → Run administration console.
(See Figure 5-30.)

Figure 5-30 Server - launch administration console
 Chapter 5. Rational Developer for System z (RDz) 131

You will see the administration console opened in RDz and if security is enabled
at the remote WebSphere Application Server it will prompt you to provide a user
ID and password. (See Figure 5-31.)

Figure 5-31 Sign on screen - Administration console

After succesfully establishing a connection to a remote server you can also
perform various administrative tasks on server, provided you have administrative
access.

5.8 Import and Export EAR/WAR files

In this section we discuss importing and exporting of EAR/WAR files. This
function is usually required by developers to export these archive files and then
deploy or test it on application server. Perform the following steps to import an
ear file to RDz.

1. Switch to the Java EE perspective. Navigate to Window → Open
Perspective → Others and select JavaEE from the window.

You will see the Project Explorer view in your workbench.
132 Application Development for CICS Web Services

2. Select File → Import. Expand the Java EE folder on the window and select
EAR file. (See Figure 5-32.)

Figure 5-32 Import screen - EAR File.

3. Click Next. The window in Figure 5-33 will display.

Figure 5-33 Browse for ear file location
 Chapter 5. Rational Developer for System z (RDz) 133

4. Browse for the ear file location and specify the target application server. Click
Next.

5. Select any utility jars or web libraries required related to the ear file. Click
Next. The window in Figure 5-34 will display.

Figure 5-34 List of all utility jars or modules as part of EAR file.
134 Application Development for CICS Web Services

6. Click Finish. The ear file and related modules will be imported. You can
browse for all these modules in Project Explorer. (See Figure 5-35.)

Figure 5-35 - EAR file project hierarchy / structure

Similary you can export any Web project or enterprise Java project as a WAR or
EAR file. Right-click any project in Project Explorer and select Export from the
context menu. Select the appropriate format of the project being exported and
specify a destination as a path to the location where you want to save the
exported project. Click Finish.
 Chapter 5. Rational Developer for System z (RDz) 135

5.9 Summary

In this chapter we have introduced RDz, an IDE for System z application
development and maintainance. We have observed different features,
components, and tools available as part of RD/z for editing, debugging, and
testing of COBOL as well as Java/J2EE applications.
136 Application Development for CICS Web Services

Chapter 6. Exposing the Catalog
Sample CICS application as
a Web service

This chapter demonstrates how an existing CICS application can be exposed as
a Web service. The focus is on how to:

� Create Web service resources
� Set up the CICS runtime infrastructure
� Test the Web service provider

The CICS Catalog Manager Application is used as an example. It is assumed
that you have completed Chapter 4, “CICS catalog manager example
application” on page 73.

6

© Copyright IBM Corp. 2010. All rights reserved. 137

6.1 Introduction

In principle, there are two ways to expose a CICS program as a Web service:

� Use the Web Services Assistant (or RDz) to expose an existing application as
a Web service with little or no application changes.

� Write programs that interact directly with the CICS pipeline and that handle
the XML natively.

The second scenario is an advanced concept that usually involves more effort.
As such it is only discussed at the end of the chapter.

Figure 6-1 gives a basic overview of a Web service scenario. It assumes an
existing CICS program (scenario A in Figure 6-1), which is partitioned to ensure
a separation between the communication (or presentation) logic and business
logic. Access to the business logic is performed using commareas and EXEC
CICS LINK. The application is ideally structured for reuse of the business logic in
a provider mode Web service.

Figure 6-1 CICS as Web service provider: basic overview

In most cases, you can deploy the business logic directly as a Web service as
shown in scenario B. You use DFHLS2WS or RDz to create the WSBIND file and
deploy it to CICS. This is the technique previously referred to as bottom-up Web
service enablement.
138 Application Development for CICS Web Services

Although option B generally works, it is sometimes necessary to write a wrapper
program, as in option C. This is the technique previously referred to as a
meet-in-the-middle Web service enablement.

Figure 6-2 shows the components of the CICS Catalog sample application,
together with the additional components added for the provider mode Web
service.

Figure 6-2 CICS as Web service provider for the Catalog sample
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 139

This figure shows the parts of the CICS Catalog Manager Application that you
will use in this chapter. You will focus on the inquireSingle function, which returns
a single item from the catalog upon request. The request ID is 01INQS. The
original application uses a BMS map as graphical user interface.

In this chapter we create the Web service enablement artifacts and set up CICS
Web Service Support with them. A first approach (6.3.1, “Using the CICS Web
Services Assistant” on page 142) uses the Web Services Assistant to create
inquireSingleSelf.wsbind and inquireSingleSelf.wsdl, which are equivalent
to inquireSingle.wsbind and inquireSingle.wsdl (provided with the example).

In 6.3.2, “Use Rational Developer for System z” on page 148, we show how to
create the enablement components using the Rational Developer for System z.
We create inquireSingleDriverSelf.wsbind, inquireSingleDriverSelf.wsdl,
and the converter and driver files CMNISD01, CMNISI01, and CMNISO01.

In 6.3.1, “Using the CICS Web Services Assistant” on page 142 we focus on best
practice and demonstrate how to optimize the WSDL file and work with a
wrapper program. You will learn how the provided inquireSingleWrapper.wsbind
file and the wrapper copy books DFH0XWC3 and DFH0XWC4 have been
created and how to write a wrapper program using those copybooks.

In 6.4, “Testing the Web service” on page 156, we test those Web services using
a Web service client in the Rational Developer for System z test environment.
You will also learn how to create your own client from a WSDL file using the
Rational Developer.

6.2 Install the provider mode resources

To set up the CICS Web service runtime, you need both a TCPIPSERVICE and a
PIPELINE resource. We considered the installation of these resources in
Chapter 4, “CICS catalog manager example application” on page 73.

When you are ready to install WSBind files (as discussed in the subsequent
sections), do so by following these instructions:

1. Copy the WSBind file into the WSDIR directory for the PIPELINE.

2. Cause CICS to scan the WSDIR directory by issuing the command:

CEMT PERFORM PIPELINE(EXPIPE01) SCAN
140 Application Development for CICS Web Services

3. To check whether your Web service was installed properly, use the following
command:

CEMT INQUIRE WEBSERVICE

The inquireSingleSelf Web service which will be described shortly should
appear as shown in Figure 6-3.

Figure 6-3 Inquire the created WEBSERVICE resource

4. Note that a URIMAP resource was assigned to this WEBSERVICE. Inquire on
this URIMAP using the identifier. For this example:

CEMT INQUIRE URIMAP($509340)

This should yield a result similar to that shown in Figure 6-4.

Figure 6-4 Inquire the created URIMAP resource

6.3 Create the provider mode deployment artifacts
This section shows two different approaches to creating the WSBind file used to
enable an existing CICS COBOL program as a Web service. As an example, we
use the inquire single operation of the CICS catalog manager example
application, which returns a single item from a catalog.

We consider two approaches to Web service enablement. First we look at using
the Web Services Assistant, then we consider the use of RDz. We see that using
RDz simplifies the steps involved.

We consider both the bottom-up and meet-in-the-middle scenarios.

INQUIRE WEBSERVICE
STATUS: RESULTS - OVERTYPE TO MODIFY
 Webs(inquireSingleSelf) Pip(EXPIPE03)
 Ins Uri($509340) Pro(DFH0XCMN) Cha Xopsup Xopdir

INQUIRE URIMAP($509340)
STATUS: RESULTS - OVERTYPE TO MODIFY
 Uri($509340) Pip Ena Http
 Host(*)
Path(/exampleApp/inquireSingleSelf)
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 141

6.3.1 Using the CICS Web Services Assistant
The Web Services Assistant was introduced in chapters 2 and 3. It can be used
to generate the WSBind file that, in turn, contains the conversion instructions
used by CICS to transform SOAP messages into application data.

In provider mode, this will usually involve bottom-up enablement through
DFHLS2WS. However, advanced users might consider modifying the generated
WSDL resource as part of a meet-in-the-middle scenario. Both scenarios are
discussed in the following sections.

The bottom-up approach with DFHLS2WS
As shown in Chapter 3, “Development approaches” on page 61, the bottom-up
approach implies creating a WSDL file from an existing application. This is done
using DFHLS2WS.

There is however a complication. The CICS catalog sample application makes
use of COBOL ‘REDEFINES’ statements, and these are not supported by
DFHLS2WS. Therefore, there is an additional step required that would not
normally be needed, and that is to simplify the language structure.

A simplified copybook is provided in DFH0XCP4.

Some example JCL for calling DFHLS2WS is shown in Example 6-1. This JCL is
suitable for use with CICS TS V4.1. For earlier versions of CICS you should
change the USSDIR and MAPPING-LEVEL accordingly. You will also have to
modify the dataset and UNIX System Services (USS) directory names to
whatever is suitable at your site.

Example 6-1 DFHLS2WS JCL

//LS2WSIS JOB (999,POK),'CICS LS2WS TOOL',MSGCLASS=T,
// CLASS=A,NOTIFY=&SYSUID,TIME=1440,REGION=0M
//*
// JCLLIB ORDER=CICSTS41.CICS.SDFHINST
//*
// SET QT=''''
//LS2WS EXEC DFHLS2WS,
// JAVADIR='java/J6.0',
// USSDIR='cicsts41',
// PATHPREF=''
//INPUT.SYSUT1 DD *
 PDSLIB=//CICSTS41.CICS.SDFHSAMP
 PGMNAME=DFH0XCMN
 LANG=COBOL
 PGMINT=COMMAREA
142 Application Development for CICS Web Services

 REQMEM=DFH0XCP4
 RESPMEM=DFH0XCP4

MAPPING-LEVEL=3.0
 LOGFILE=/u/cicsrs9/provider/wsbind/inquireSingleSelf.log
 WSBIND=/u/cicsrs9/provider/wsbind/inquireSingleSelf.wsbind
 WSDL=/u/cicsrs9/provider/wsdl/inquireSingleSelf.wsdl
 URI=exampleApp/inquireSingleSelf
*/

These are the input parameters:

PDSLIB The library containing DFH0XCP4.

PGMNAME The name of the program for the CICS catalog manager example
application DFH0XCMN.

LANG: Specifies the programming language DFH0XCP4 is written in

PGMINT Describes the program input. DFH0XCMN uses a COMMAREA.

REQMEM and RESPMEM
Defines the copybooks for request and response. In this example
they are both set to DFH0XCP4.

LOGFILE, WSBIND, and WSDL
Specifies the fully qualified UNIX file names of the files to be
generated.

URI This is the URI at which you want the resultant Web service to be
available. In this example a relative URI has been specified, but it
is advisable to use a full URI if you have CICS TS V3.2 or above
(as this will avoid having to change the generated WSDL later).

MAPPING-LEVEL
Specifies the level of mapping that DFHLS2WS uses when
generating the Web service binding file and Web service
description. For CICS TS v3.1 you are recommended to use 1.2.
For CICS TS v3.2 you are recommended to use 2.2. For CICS
TS v4.1 you are recommended to use 3.0.

For the detailed difference of each mapping level. Refer to
Chapter 2, “CICS implementation of Web services” on page 31

Submit the job. DFHLS2WS creates the WSDL and the WSBind file. A log file is
also produced, but you will not need to use this unless you have to contact IBM
support.

Deploy the generated WSBind file to your CICS region by copying it into the
WSDIR directory of your provider mode PIPELINE and issuing a SCAN
command against that PIPELINE.
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 143

Enhancing the generated service (Meet-in-the-middle)
The bottom-up approach is adequate for most purposes. However, the service
you expose to the outside world using the bottom-up approach will appear
machine-generated to your client-side developers.

You might consider modifying the generated WSDL for several reasons, such as:

� You want to minimize your network traffic. Look at the WSDL you just
generated. The Web Services Assistant maps the whole copybook, which is
reflected in the WSDL, so for every request a client sends conforming to this
WSDL the complete data structure has to be provided. This includes
elements that might not be necessary for a request, such as the return code
and response message. At some mapping level it might even include filler
fields. So you might want an optimized WSDL that specifies requests
consisting only of the required elements and responses that contain only
relevant information.

� The Web Services Assistant maps the names from the copybook. For
convenience you might want to change them (for example, from
ca_return_code to rc).

� You might not like some of the mappings used by CICS. You might decide that
a particular field would be better expressed in the WSDL with a different set of
restrictions.

� You might want to add version control fields to the data structures to help with
future application evolution.

� You might want to combine multiple generated WSDL documents together as
one composite Web service with multiple operations.

In these cases you have to approach the problem from the WSDL side to meet
the solution in the middle. This approach is considered to be a best-practice.

The following steps are an example of changing the WSDL that has just been
generated using DFHLS2WS.

1. Modify the generated WSDL file. A simplified WSDL file for the CICS catalog
manager application example is available here:

/cicsts41/samples/webservices/wsdl/inquireSingleWrapper.wsdl

Look at the simplified WSDL file. See Example 6-2 on page 145 for details.
Note that only the ‘itemRequiredReference’ is required for a request.

Important: If you change the WSDL file, you must also regenerate the
WSBind file and the language structures. This, in turn, will require application
changes.
144 Application Development for CICS Web Services

Example 6-2 Excerpt from inquireSingleWrapperwsdl

<xsd:element name="inquireSingleRequest" nillable="false">
<xsd:complexType mixed="false">

<xsd:sequence>
<xsd:element name="itemRequiredReference" nillable="false">

<xsd:simpleType>
<xsd:restriction base="xsd:unsignedShort">

<xsd:maxInclusive value="9999" />
<xsd:minInclusive value="0" />

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>

2. This time, use the DFHWS2LS batch job from the Web Services Assistant to
create language structures and a new WSBind file. Some example JCL for
doing this with CICS TS V4.1 follois shown in Example 6-3. It takes as input
your modified WSDL.

Example 6-3 WS2LSISW.jcl - sample jobcard to execute DFHWS2LS

//WS2LS1 JOB (999,POK),'CICS LS2WS TOOL',MSGCLASS=T,
// CLASS=A,NOTIFY=&SYSUID,TIME=1440,REGION=0M
//*
//JOBPROC JCLLIB ORDER=CICSTS41.CICS.SDFHINST
//*
//WS2LS EXEC DFHWS2LS,
// JAVADIR='java/J6.0',
// USSDIR='cicsts41',
// PATHPREF=''
//INPUT.SYSUT1 DD *

PDSLIB=//CICSRS9.COPYLIB
LANG=COBOL
PGMINT=CHANNEL
CONTID=DFHWS-DATA
REQMEM=ISWCRQ
RESPMEM=ISWCRS
MAPPING-LEVEL=1.0
LOGFILE=/u/cicsrs9/provider/wsbind/inquireSingleWrapperSelf.log
WSBIND=/u/cicsrs9/provider/wsbind/inquireSingleWrapperSelf.wsbind
WSDL=/u/cicsrs9/provider/wsdl/inquireSingleWrapperSelf.wsdl
URI=/exampleApp/inquireSingleWrapperSelf
BINDING=exampleAppInquireSingleHTTPSoapBinding
PGMNAME=DFH0XISW

/*
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 145

Take a closer look at the parameters:

PDSLIB The PDS library where the new language structures will be
created.

LANG The programming language to use. COBOL in this
example.

PGMINT Specifies how CICS passes data to the target application
program. This time we’re going to use a CHANNEL.

CONTID Specifies the name of the container to use for the
application data.

REQMEM and RESPMEM
The names of the copybooks that will be produced. These
are restricted to 6 characters in length so that
DFHWS2LScan add a 2 character suffix. For more
complicated WSDL documents DFHWS2LS might need to
produce multiple output files, typically one per Operation.

LOGFILE and WSBIND
The fully qualified UNIX file names of the generated
WSBind file and log file.

WSDL The fully qualified name of the UNIX file containing the
modified WSDL.

BINDING A required parameter if you WSDL contains multiple
bindings such as inquireSingleWrapper.wsdl. Specify the
name of your <binding> element from the WSDL.

PGMNAME The name of a program that will implement the new We3b
service. The example specifies CMNISW for catalog
manager inquire single wrapper.

MAPPING-LEVEL
Specifies the level of mapping that DFHLS2WS uses when
generating the Web service binding file and Web service
description. Normally you should use the most recent
version that is available to you, however we have used
mapping level 1.0 as there is a CICS supplied example
PROGRAM that implements the language structures
generated at this mapping level.

3. Write a wrapper program with the name you specified in the JCL. It uses the
generated copybooks, maps between them, and the original application, and
is responsible for calling the original application.

For the CICS catalog manager example application, a suitable program has
been provided called DFH0XISW. It implements the new (mapping level 1.0)
generated interface and links to the existing DFH0XCMN program.
146 Application Development for CICS Web Services

The previously generated language structures can be found in copybooks
DFH0XWC3 (See Example 6-4)and DFH0XWC4. See Example 6-5. See
Example 6-6.

Example 6-4 DFH0XWC3 copybook

05 inquireSingleRequest.
10 itemRequiredReference PIC 9(4) DISPLAY.

Example 6-5 DFH0XWC4 copybook

05 inquireSingleResponse.
10 returnCode PIC 9(2) DISPLAY.
10 responseMessage PIC X(79).
10 singleItem.

15 itemReferenceNumber PIC 9(4) DISPLAY.
15 itemDescription PIC X(40).
15 department PIC 9(3) DISPLAY.
15 unitCost PIC X(6).
15 inStock PIC 9(4) DISPLAY.
15 onOrder PIC 9(3) DISPLAY.

Example 6-6 DFH0XISW excerpts

WORKING-STORAGE SECTION.
...
01 REQUEST-CONTAINER-DATA.

COPY DFH0XWC3.
01 RESPONSE-CONTAINER-DATA.

COPY DFH0XWC4.
01 CATALOG-COMMAREA.

COPY DFH0XCP1.
PROCEDURE DIVISION.

...
EXEC CICS GET CONTAINER('DFHWS-DATA')

INTO(inquireSingleRequest)
RESP(WS-RESP)

END-EXEC

INITIALIZE CATALOG-COMMAREA
MOVE itemRequiredReference TO CA-ITEM-REF-REQ
MOVE '01INQS' TO CA-REQUEST-ID

EXEC CICS LINK PROGRAM(DFH0XCMN)
COMMAREA(CATALOG-COMMAREA)

END-EXEC
...
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 147

4. Deploy the generated WSBind file to your CICS region by copying it into the
WSDIR directory of your provider mode PIPELINE and issuing a SCAN
command against that PIPELINE.

The Top-Down approach with DFHWS2LS
We’ve just seen an example of using DFHWS2LS top-down as part of the
meet-in-the-middle scenario. The top-down scenario isn’t considered any further
as part of this chapter (though it will be seen again in the following chapter).”

6.3.2 Use Rational Developer for System z
Instead of using the Web Services Assistant, you can also create the Web
service enablement components using RDz. A wizard guides you through this
process.

Prearrangements
To start, you need a local project in Rational Developer that contains the program
you want to expose as a Web service and all copybooks it uses:

1. Select File → New → Project.

2. Expand the Simple folder and select Project to create a simple project. Click
Next.

3. Name your project (for example, LocalSOA) and click Finish.

4. Import the Catalog Manager program (DFH0XCMN) and the copybooks it is
using (DFH0XCP1 and DFH0XCP2) into this project.

Generate enablement components
To generate enablement components:

1. Right-click your copybook, and select Enable Enterprise Web service. A
wizard guides you through the generation process. See Figure 6-5 on
page 149.

2. On the first page, select ‘compiled XML Conversion’ at dropdown list
Conversion type
148 Application Development for CICS Web Services

Figure 6-5 Enterprise Services Toolkit (EST) wizard Launchpad

3. Specify your data structures.

4. The first tab (Figure 6-6) asks you to specify your inbound data structure.
Expand DFHCOMMAREA and select CA-REQUEST-ID. Expand
CA-INQUIRE-SINGLE and select CA-ITEM-REF-REQ. These two
parameters are required for a single request.

Figure 6-6 Specify inbound data structure
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 149

5. Select the other panel to specify your outbound data structure on the second
tab (Figure 6-7). This panel offers the possibility to optimize your response to
only the elements you really need. Select CA-RETURN-CODE,
CA-RESPONSE-MESSAGE, and the complete CA-SINGLE-ITEM element
from the CA-INQUIRE-SINGLE element. Click Next.

Figure 6-7 Specify outbound data structure

6. The second page (Figure 6-8 on page 151) prompts for properties of the
generated artifacts.

– Select Web Services for CICS as converter type.

– Type CMNIS for Catalog Manager Inquire Single.

– For the Business program name, specify the name of the CICS catalog
manager example application: DFH0XCMN. This is the program to be
exposed as a Web service.

– Make sure that all code page entries are set to the code page of your host
system.

Important: The Program name prefix tells the WSBIND file the name of
the driver it has to invoke for XML conversion. Be sure this name
matches the prefix of the program names on the XML converters panel
(Figure 6-11 on page 154). The generated WSBIND file will expect a
driver program called CMNISD.
150 Application Development for CICS Web Services

Figure 6-8 XML Converter Options tab
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 151

7. On the next panel, specify WSDL and XSD options (see Figure 6-9).

– Insert the address of your Web service provider here in the following
format:

http://<hostname>:<soap_port>/<web_service_uri>

You can change this parameter later in your WDSL file. The local part of
your URI (excluding server and port) will be taken as default for the local
URI on the Advanced WSBIND Properties panel (

– If you want to customise the namespaces for the XML schemas in the
generated WSDL then specify Inbound and Outbound namespace here. In
this example leave the defaults here.

Click Next.

Figure 6-9 WSDL and XSD options

In the next two panels, you will set the WSBIND properties.

8. Specify general options on the WSBind Properties panel (Figure 6-10).
152 Application Development for CICS Web Services

– The WSBind file folder is the local project where your WSBIND file will be
created. Leave the default /LocalSOA.

– Enter the WSBind file name: inquireSingleDriverSelf.

– Select the program interface of your CICS program, which is
COMMAREA.

Click Next.

Figure 6-10 WSBind properties
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 153

9. Enter the name of your converter files on the following panel (Figure 6-11).

Converter driver CMNISD
Inbound Converter CMNISI
Outbound Converter CMNISO

Click Next.

Figure 6-11 XML Converters

10.On the last panel (Figure 6-12), specify the WSDL file name:

inquireSingleDriverSelf

Click Finish.

Figure 6-12 WSDL and XSD

Important: Check that the names are equal to the name you specified for
the XML Converter Options panel (Figure 6-8) except the last letter, which
should be D for driver, I for inbound and O for outbound converter.
154 Application Development for CICS Web Services

11.Copy your driver and converter programs to the host where they must be
compiled and statically linked with the converter driver program as the main
entry point.

12.Example 6-7 shows a sample JCL. Your z/OS system requires a version of
Enterprise COBOL that supports XML parsing (Version 3.1 or later). The
target PDSE should be in the DFHRPL concatenation of the target CICS
region so that CICS can find the load module. Submit the JCL.

Example 6-7 SVLCOB.jcl, compile and link driver and converter

//CICSRS9B JOB (999,POK),NOTIFY=&SYSUID,
// CLASS=A,MSGCLASS=T,MSGLEVEL=(1,1),TIME=1440
//**
//* COMPILE INBOUND CONVERTER
//**
//INBOUND EXEC IGYWC,PARM.COBOL='LIB'
//COBOL.SYSIN DD DSN=CICSRS9.COBOL(CMNISI),DISP=SHR
//COBOL.SYSLIB DD DSN=CICSTS41.CICS.SDFHSAMP,DISP=SHR
// DD DISP=SHR,DSN=CICSTS41.CICS.SDFHCOB
//COBOL.SYSLIN DD DSN=CICSRS9.COBOL.OBJ(CMNISI),DISP=SHR
//**
//* COMPILE OUTBOUND CONVERTER
//**
//OUTBOUND EXEC IGYWC,PARM.COBOL='LIB'
//COBOL.SYSIN DD DSN=CICSRS9.COBOL(CMNISO),DISP=SHR
//COBOL.SYSLIB DD DSN=CICSTS41.CICS.SDFHSAMP,DISP=SHR
// DD DISP=SHR,DSN=CICSTS41.CICS.SDFHCOB
//COBOL.SYSLIN DD DSN=CICSRS9.COBOL.OBJ(CMNISO),DISP=SHR
//**
//* COMPILE AND LINK CONVERTERS AND DRIVER STATICALLY
//**
//IGYWCL EXEC IGYWCL,PARM.LKED='MAP',
// LIBPRFX='CEE'
//COBOL.SYSIN DD DSN=CICSRS9.COBOL(CMNISD),DISP=SHR
//COBOL.SYSLIB DD DSN=CICSRS9.COBOL,DISP=SHR
// DD DSN=CEE.SCEESAMP,DISP=SHR
// DD DSN=CICSTS41.CICS.SDFHSAMP,DISP=SHR
//COBOL.STEPLIB DD
// DD DSN=CICSTS41.CICS.SDFHLOAD,DISP=SHR
//LKED.OBJECT DD DSN=CICSRS9.COBOL.OBJ,DISP=SHR
//LKED.SYSLIB DD
// DD DSN=CICSTS41.CICS.SDFHLOAD,DISP=SHR
//LKED.SYSLMOD DD DSN=CICSSYSF.ERWW.LOADLIB(CMNISD),DISP=SHR
//LKED.STUFF DD DSN=CICSSYSF.ERWW.LOADLIB,DISP=SHR
//LKED.SYSIN DD *
 INCLUDE OBJECT(CMNISI)
 INCLUDE OBJECT(CMNISO)
/*
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 155

13.Load your program into CICS.

Deploy the generated WSBind file to your CICS region by copying it into the
WSDIR directory of your provider mode PIPELINE and issuing a SCAN
command against that PIPELINE.

In this example we have used the Compiled technology in RDz. Another option is
to use the Interpreted approach. If the Interpreted approach is used, we can go
on to use the Application Deployment Manager to install all of the necessary
resources into a Test CICS region from within the RDz tool.

RDz also has wizards to assist with meet-in-the-middle scenarios.

6.4 Testing the Web service
In this section we look at how you can test the Web service using the Web
Services Explorer in RDz. The Web Services Explorer is part of the Eclipse
platform on which RDz is built. This means that if you do not have RDz you can
still use the free Eclipse tool to test your CICS Web Service using the techniques
described below.

6.4.1 The Web Services Explorer
RDz gives you an excellent opportunity to test your CICS Web service. You just
need the WSDL file. This chapter shows how to test inquireSingle.wsdl and
inquireSingleWrapper.wsdl. However, no matter which file you want to test you
will have to import it to your workspace if it was not generated in RDz.

To define which Web service you want to invoke, specify the Web services end
point in the following format:

http://<host_address>:<soap_port>/<web_service_uri>

You can edit the endpoint in several ways:

� Change the <soap:address> element in your WSDL source code by pointing
its location attribute to the required end point; for example, for inquireSingle:

<soap:address
location="http://9.12.4.42:03702/exampleApp/inquireSingle" />

Important: Be aware that in this case CICS is not parsing the request directly.
The parsing is delegated to the driver and the converter programs using the
information specified in the WSBind file.
156 Application Development for CICS Web Services

� Or if you use the inquireSingleWrapper:

<soap:address
location="http://9.12.4.42:03702/exampleApp/inquireSingleWrapper" />

� Use the graphical WSDL editor in Rational Developer. Right-click your WSDL
file and select Open With → WSDL Editor. Click port‘DFH0XCMNPort’.
Then click the Properties tab to specify the Address. See Figure 6-13.

Figure 6-13 Using the WSDL Editor
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 157

You might also set the endpoint directly in the Web Services Explorer in the
Actions window:

1. To start the Web Services Explorer, right-click your WSDL file and select Web
Services → Test with Web Services Explorer. This opens a new window
(Figure 6-14) that has three panes.

Figure 6-14 The Web Services Explorer after startup

– The Navigator shows all previously tested WSDL files. For each file you
can navigate to its services, bindings, and operations.

– The Actions pane is used to change the endpoint at runtime or to execute
an operation.

– The Status pane yields any output messages.
158 Application Development for CICS Web Services

2. To issue a Web service request, click the DFH0XCMNOperation link. The
Web Services Explorer provides a form where you enter your request-specific
data.

Figure 6-15 shows this form for inquireSingle and inquireSingleWrapper.

Figure 6-15 Issue a Web service request for inquireSingle and inquireSingleWrapper

3. Fill in the values shown in Table 6-1.

Table 6-1 Sample Web service request values

4. Click Go.

Value inquireSingle inquireSingleWrapper

request id ca_request_id:01inqs n/a

item reference ca_item_ref_req:0010 itemRequiredReference: 0010

any other value 0a

a. Although your CICS program does not use these parameters, you must still
provide dummy values for them to conform to your WSDL. You might want to
optimize the WSDL file to submit request id and item reference only. Refer to
Chapter 4, “CICS catalog manager example application” on page 73 as further
changes are required.

n/a b

b. This WSDL is optimized, so you do not have to insert any dummy values.
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 159

The responses of both requests look similar (see Figure 6-16), but where
inquireSingle returns the complete dataset, inquireSingleWrapper yields only
data you requested because its response was optimized.

Figure 6-16 Web service responses for inquireSingle and inquireSingleWrapper

You have now performed a simple test of the Web service in CICS.

6.4.2 Generate a client
To invoke a Web service, you might want to generate a more complete client
application that can be hosted in an environment such as Websphere Application
Server. An example of such a client is the Example Application Client, which is
shipped with the CICS Catalog Manager Example Application and can be found
at:

/cicsts41/samples/webservices/client/ExampleAppClient.ear

This enterprise application provides a client to invoke the three functions of the
catalog manager:

� inquireSingle
� inquireCatalog
� placeOrder

For more information about the client and installation guidance, refer to
Chapter 3, “Development approaches” on page 61.
160 Application Development for CICS Web Services

If you want to generate your own client, you can use RDz. It generates all the
required Java classes to create a Web service request and to receive a Web
service response. It can also build a basic graphical user interface to interact with
those classes.

For this chapter, you will create a client to invoke the inquireSingle Web service.
The corresponding WSDL file is located at:

/cicsts41/samples/webservices/wsdl/inquireSingle.wsdl

A precondition for the client generation is that the Web service description file
(WSDL file) is in your workspace.

1. Right-click your WSDL file and select Web Services → Generate Client. If
the Web services option is not displayed, ensure you enabled the Web
service role in your Rational Developer profile.

The first panel (Figure 6-17) of the client generation wizard opens.

Figure 6-17 Select client type and options

2. Choose to generate a Java Proxy. Select the Monitor the Web service check
box to enable the TCP/IP Monitor to monitor your traffic. Move the slider to set
the level of client generation. In this sample, we move it to top. Click Next.
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 161

3. On the next panel (Figure 6-18), configure security. For this example, leave
the defaults and click Next.

Figure 6-18 Client Security
162 Application Development for CICS Web Services

4. On the last panel (Figure 6-19), specify the test options. Choose Web service
sample JSPs as the test facility, leave the default for the Folder name
(sampleDFH0XCMNPortProxy), and select all of the methods. Click Finish.

Figure 6-19 Test options
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 163

You can now invoke the Web service with the newly generated JSPs as shown in
Figure 6-20. But be sure that you installed the Web services runtime environment
of the CICS Catalog Manager Example application as described in Chapter 4,
“CICS catalog manager example application” on page 73.

Figure 6-20 Sample JSPs of the generated client

Explore the generated files and classes to adapt the client to your requirements.

6.5 Publishing WSDL to WebSphere Service Registry
and Repository

Some organizations like to have a central repository for WSDL-based services.
The WebSphere Service Registry and Repository exists to help satisfy this
requirement. WebSphere Service Registry and Repository helps you to manage
and govern services and processes. A central repository can help you to find
164 Application Development for CICS Web Services

Web services quickly and it can also help to enforce version control for your Web
services.

If you use RDz to generate CICS Web Services, then you can publish WSDL to
WebSphere Service Registry and Repository by simply clicking on the WSDL
and following the instructions in the associated wizard.

In CICS TS V4.1 the Web services assistant also includes the ability to interact
with WSRR. Both DFHLS2WS and DFHWS2LS have been extended to include
parameters to interoperate with WebSphere Service Registry and Repository,
optionally using SSL encryption. DFHLS2WS also includes an optional
parameter so that you can add your own customized metadata to the WSDL
document in WebSphere Service Registry and Repository.

Publishing and retrieving WSDL to and from WebSphere Service Registry and
Repository is optional. The following information is provided to assist you to use
WebSphere Service Registry and Repository with the Web Services Assistant in
CICS TS V4.1, if you want to do so.

6.5.1 Changes to DFHLS2WS for WebSphere Service Registry and
Repository in CICS TS V4.1.

When you create a new Web service from a language structure, you can now
decide whether you want to publish it on a WebSphere Service Registry and
Repository server. Example 6-8 is an example of how to use DFHLS2WS to
publish generated WSDL to WebSphere Service Registry and Repository.

Example 6-8 sample jobcard to execute DFHLS2WS with WSRR

//LS2WSIS JOB (999,POK),'CICS LS2WS TOOL',MSGCLASS=T,
// CLASS=A,NOTIFY=&SYSUID,TIME=1440,REGION=0M
//*
// JCLLIB ORDER=CICSTS41.CICS.SDFHINST
//*
// SET QT=''''
//LS2WS EXEC DFHLS2WS,
// JAVADIR='java/J6.0',
// USSDIR='cicsts41',
// PATHPREF=''
//INPUT.SYSUT1 DD *
 PDSLIB=//CICSTS41.CICS.SDFHSAMP
 PGMNAME=DFH0XCMN
 LANG=COBOL
 PGMINT=COMMAREA
 REQMEM=DFH0XCP4
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 165

 RESPMEM=DFH0XCP4
MAPPING-LEVEL=3.0

 LOGFILE=/u/cicsrs9/provider/wsbind/inquireSingleSelf.log
 WSBIND=/u/cicsrs9/provider/wsbind/inquireSingleSelf.wsbind
 WSDL=/u/cicsrs9/provider/wsdl/inquireSingleSelf.wsdl
 URI=exampleApp/inquireSingleSelf

WSRR-SERVER=9.12.4.45:3001
WSRR-NAME=inquireSingleSelf.wsdl
WSRR-USERNAME=cicsrs9
WSRR-PASSWORD=cicsrs9
WSRR-VERSION=1
WSRR-ENCODING=UTF-8

*/

The following new parameters are added to DFHLS2WS:

� WSRR-ENCODING=value

Use this optional parameter to specify the character set encoding of the
WSDL document. If the WSRR-ENCODING parameter is not specified,
WSRR uses the value specified in the WSDL document.

Use this parameter only when the WSRR-SERVER parameter is specified.

� WSRR-PASSWORD=value

Use this optional parameter if you must enter a password to access WSRR.

If the WSRR-USERNAME parameter is specified, you must also specify this
parameter.

Use this parameter only when the WSRR-SERVER parameter is specified.

� WSRR-NAME=value

Specifies the name of the WSDL document to retrieve from WSRR. Use this
parameter only when the WSRR-SERVER parameter is specified

� WSRR-SERVER={domain name:port number}|{IP address:port number}

Use this parameter to specify the location of the IBM? WebSphere? Service
Registry and Repository (WSRR) server. If this parameter is specified, WSRR
parameter validation is used.

� WSRR-USERNAME=value

Use this optional parameter if you are required to specify a user name to
access WSRR. This user name is used by WSRR to set the owner property.

Use this parameter only when the WSRR-SERVER parameter is specified.
166 Application Development for CICS Web Services

� WSRR-VERSION=1|value

Use this parameter to set the version property of the WSDL document in
WSRR.

Use this parameter only when the WSRR-SERVER parameter is specified.

6.5.2 Changes to DFHWS2LS for WSRR in CICS TS V4.1

When you create a language structure from a WSDL document, you can now
decide whether you want to use a WSDL document that is published on a
WebSphere Service Registry and Repository server. Example 6-9 shows how to
get a WSDL from WebSphere Service Registry and Repository and generate
language structure base on this WSDL.

Example 6-9 Sample jobcard to execute DFHWS2LS with WSRR

//WS2LS1 JOB (999,POK),'CICS LS2WS TOOL',MSGCLASS=T,
// CLASS=A,NOTIFY=&SYSUID,TIME=1440,REGION=0M
//*
//JOBPROC JCLLIB ORDER=CICSTS41.CICS.SDFHINST
//*
//WS2LS EXEC DFHWS2LS,
// JAVADIR='java/J6.0',
// USSDIR='cicsts41',
// PATHPREF=''
//INPUT.SYSUT1 DD *

PDSLIB=//CICSRS9.COPYLIB
LANG=COBOL
PGMINT=CHANNEL
CONTID=DFHWS-DATA
REQMEM=ISWCRQ
RESPMEM=ISWCRS
MAPPING-LEVEL=3.0
LOGFILE=/u/cicsrs9/provider/wsbind/inquireSingleWrapperSelf.log
WSBIND=/u/cicsrs9/provider/wsbind/inquireSingleWrapperSelf.wsbind
WSDL=/u/cicsrs9/provider/wsdl/inquireSingleWrapperSelf.wsdl
URI=/exampleApp/inquireSingleWrapperSelf
BINDING=exampleAppInquireSingleHTTPSoapBinding
PGMNAME=CMNISW
WSRR-SERVER=9.12.4.45:3001
WSRR-NAME=inquireSingleSelf.wsdl
WSRR-USERNAME=cicsrs9
WSRR-PASSWORD=cicsrs9
WSRR-VERSION=1

/*
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 167

The following new parameters are added to DFHWS2LS:

� WSRR-NAME=value

Specifies the name of the WSDL document to retrieve from WSRR. Use this
parameter only when the WSRR-SERVER parameter is specified.

� WSRR-PASSWORD=value

Use this optional parameter if you must enter a password to access WSRR.

If the WSRR-USERNAME parameter is specified, you must also specify this
parameter.

Use this parameter only when the WSRR-SERVER parameter is specified.

� WSRR-SERVER={domain name:port number}|{IP address:port number}

Use this parameter to specify the location of the IBM WebSphere Service
Registry and Repository (WSRR) server. If this parameter is specified, WSRR
parameter validation is used.

� WSRR-USERNAME=value

Use this optional parameter if you are required to specify a user name to
access WSRR. This user name is used by WSRR to set the owner property.

Use this parameter only when the WSRR-SERVER parameter is specified.

� WSRR-VERSION=value

Specifies the version of the WSDL document to retrieve from WSRR. You can
optionally use this parameter when the WSRR-SERVER parameter is
specified.

6.5.3 New parameters to support SSL encryption in CICS TS V4.1

The following new parameters are added to DFHWS2LS and DFHLS2WS to
support SSL:

� SSL-KEYSTORE=value

This optional parameter specifies the fully qualified location of the key store
file.

Use this parameter if you want the Web services assistant to use secure
sockets layer (SSL) encryption to communicate across a network to an IBM
WebSphere Service Registry and Repository (WSRR).

� SSL-KEYPWD=value

This optional parameter specifies the password for the key store.
168 Application Development for CICS Web Services

Use this parameter if you want the Web services assistant to use secure
sockets layer (SSL) encryption to communicate across a network to an IBM
WebSphere Service Registry and Repository (WSRR).

� SSL-TRUSTSTORE=value

This optional parameter specifies the fully qualified location of the trust store
file.

Use this parameter if you want the Web services assistant to use secure
sockets layer (SSL) encryption to communicate across a network to an IBM
WebSphere Service Registry and Repository (WSRR).

� SSL-TRUSTPWD=value

This optional parameter specifies the password for the trust store.

Use this parameter if you want the Web services assistant to use secure
sockets layer (SSL) encryption to communicate across a network to an IBM
WebSphere Service Registry and Repository (WSRR).

For the full list of all the parameters to support WSRR, refer to DFHWS2LS and
DFHLS2WS in the CICS Information Center.

6.6 Writing applications that process the XML

You might want to write application programs that work directly with the XML
rather than use the transformation capabilities of CICS or RDz. There are several
ways you can do this.

6.6.1 Creating a custom application handler

One option is to configure the PIPELINE resource to invoke a user-supplied
program to perform the message transformations, and the most straightforward is
to specify your program within the <apphandler> element in the pipeline
configuration file (Example 6-10).

Example 6-10 Sample pipeline configuration file

<?xml version="1.0" encoding="EBCDIC-CP-US"?>
<provider_pipeline
xmlns="http://www.ibm.com/software/htp/cics/pipeline"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/software/htp/cics/pipeline

provider.xsd ">
 <service>
 <terminal_handler>
 Chapter 6. Exposing the Catalog Sample CICS application as a Web service 169

 <cics_soap_1.1_handler/>
 </terminal_handler>
 </service>
 <apphandler>LYC1PROG</apphandler>
</provider_pipeline>

In this example <apphandler> has been set to LYC1POG rather than the more
typical DFHPITP application handler. In this configuration CICS will handle the
SOAP envelope (and any SOAP headers included in the envelope), but
LYC1PROG will be driven as the application handler.

LYC1PROG will be attached with a channel, which will include all of the control
containers from the PIPELINE, including both (DFHWS-XMLNS and
DFHWS-BODY.

This particular program is a simple example that gathers up some information
about the system in which it is running and returns this in the SOAP body to the
caller. It also records environmental information to Transient Data. Source
programs and WSDL file are included in the supplemental materials.

6.6.2 Creating an XML-ONLY WEBSERVICE

A second mechanism for working directly with the XML exists for CICS TS V3.2
and above. This is to create an XML-ONLY WEBSERVICE resource. This is a
special type of WEBSERVICE for which CICS knows not to attempt any data
transformations, but which otherwise acts like a normal WEBSERVICE.

The advantage of using an XML-ONLY WEBSERVICE is that you have a single
deployment model for all of your Web services, and you have access to all of the
normal processing for a WEBSERVICE, including the PIPELINE SCAN, the
INVOKE command, normal CICS statistics and monitoring and diagnostics, the
resolution of the Operation name, and so forth.

To generate a XML-ONLY WSBind file you must start from a WSDL description of
the service. You process this WSDL using DFHWS2LS (or RDz) and set the the
XML-ONLY parameter to TRUE. In this scenario DFHWS2LS will not create any
language structures. A WSBind file will be produced as normal.

An application will have to be created as in the previous example. It can access
the XML from the DFHWS-BODY and DFHWS-XMLNS containers, and then do
whatever is required with that XML. On output it will have to write XML back into
these same containers.
170 Application Development for CICS Web Services

Chapter 7. Create a CICS Web service
requester application using
the catalog sample

This chapter guides you through setting up a CICS Web service requester. It
focuses on how to:

� Create Web service enablement artifacts
� Set up the CICS runtime environment
� Test the Web service requester

7

© Copyright IBM Corp. 2010. All rights reserved. 171

7.1 Introduction
In the previous chapter you learned how to expose an existing CICS application
as a Web service. Another common requirement is to create or extend an
application in CICS to invoke a remote Web service.

Figure 7-1 shows a scenario where an existing application is to be extended to
invoke a Web service.

Figure 7-1 CICS as Web service requester: basic scenario

Option A shows a typical application that is partitioned to ensure a separation
between communication (or presentation) logic and business logic. The
application is ideally structured for code reuse. To invoke a remote Web service
you require a copy of the WSDL that describes that service. You use DFHWS2LS
(or RDz) to generate application bindings (language structures) and a WSBind
file from the WSDL, and deploy the WSBind file as a WEBSERVICE in CICS.

Option B shows an application that uses the EXEC CICS INVOKE
(WEB)SERVICE command to interact with the remote Web service. This will
typically be a new application that implements this new business requirement,
but it could be an existing application that is modified to invoke the Web service.

Option C shows a scenario that requires slightly more work, but is often
preferable to option B. In this scenario the application uses EXEC CICS LINK to
link to a wrapper program. The wrapper program in turn issues the EXEC CICS
INVOKE command.

Business
Logic

Communication
Logic

Wrapper
Program

CICS Web
Service Support

 Web
Service Provider

 CICS

a. EXEC CICS LINK

b. EXEC CICS INVOKE SERVICE

c. EXEC CICS INVOKE SERVICE

c.
EX

E
C

 C
IC

S
LI

N
K

172 Application Development for CICS Web Services

The wrapper, in this case, has two purposes:

� It encapsulates the Web service interaction away from the rest of the
application.

� It provides an opportunity to distribute the workload across multiple CICS
regions. The business logic can exist in an application owning region (AOR)
while the wrapper program exists in another region that specializes in hosting
WEBSERVICE resources. This means that you avoid the need for PIPELINE
(and similar resources) in your AOR environment.

As an example, we will explore some functionalities of the catalog manager, in
this case the dispatch order function that is illustrated in Figure 7-2. In previous
examples, the order function of the catalog manager called a simple order
dispatcher that returned a basic confirmation message.

Figure 7-2 Overview over the catalog manager dispatch order function

Catalog Manager
(DFH0XCMN)

Simple Order
Dispatcher

(DFH0XSOD)

Wrapper
Order Dispatcher

(DFH0XWOD)

01DSPO

BMS
Presentation manager

(DFH0XGUI)

01DSPO

N Y

outbound web service?

Pipeline
(EXPIPE02)

VSAM

EXMPCONF
PDS (copybooks)

DFH0XCP7 (DOWCRQ01*)
DFH0XCP8 (DOWCRS01*)

Chapter 3

RDz test
environment

Order
dispatch endpoint

ExampleAppDispatchOrder.ear
DispatchOrderRDzear*

http://<jp>:<port>/<context_root>/
services/dispatchOrderPort

Chapter 2

CICS2

Order
dispatch endpoint

dispatchOrderEndpoint.wsbind
DFH0XODE

http://<host_address>:<soap_port>
/exampleApp/dispatchOrder

HFS

dispatchOrder.wsbind
(dispatchOrderSelf.wsbind*)
basicsoap11requester.xml

Chapter 2

EGUI

CICS1
 Chapter 7. Create a CICS Web service requester application using the catalog sample 173

In 7.2, “Create a Web service requester using the CICS Web Services Assistant”
on page 174, we show how to use the Web Services Assistant to generate all
required artifacts to request an existing Web service end point in CICS.

In 7.3, “Creating and testing a Web service hosted in RDz” on page 183, we
show how you can create a dispatch order end point hosted in RDz that will be
invoked by the sample application.

This chapter assumes that you have set up the CICS catalog manager
application as described in Chapter 4, “CICS catalog manager example
application” on page 73.

7.2 Create a Web service requester using the CICS Web
Services Assistant

To generate a Web service requesting application, the following steps are
necessary:

1. Create the deployment artifacts:

a. Use DFHWS2LS to generate a WSBind file and the associated language
structures.

b. Write a program to invoke the Web service using the generated language
structures.

2. Install the requester mode WEBSERVICE in CICS

3. Test your Web service requesting application using a provider mode Web
service hosted in CICS.

7.2.1 Generate the required artifacts
In this step we use DFHWS2LS to process the WSDL using almost the same
techniques as we used in the previous chapter.

Example 7-1 on page 175 shows a sample job card to generate the artifacts for
the dispatch order requester that uses as input:

/usr/lpp/cicsts/cicsts41/samples/webservices/wsdl/dispatchOrder.wsdl

Important: You are using DFHWS2LS to generate a WSBind file that will be
used for a Web service requester. Therefore, the PGMNAME parameter must
be omitted, If not, CICS will think the WSBind file is for a provider mode Web
service. Furthermore, PGMNINT and URI will not be specified either.
174 Application Development for CICS Web Services

This file has been renamed to dispatchOrderSelf.wsdl and copied to a user
UNIX file system directory. The example JCL is suitable for use with CICS TS
V4.1.

Example 7-1 WS2LS Sample JCL

//WS2LS JOB (MYSYS,AUSER),MSGCLASS=T,
// CLASS=A,NOTIFY=&SYSUID,REGION=0M
//*
//JOBPROC JCLLIB ORDER=CICSTS41.CICS.SDFHINST
//*
//WS2LS EXEC DFHWS2LS,
// JAVADIR='java/J6.0',
// USSDIR='cicsts41',
// PATHPREF=''
//INPUT.SYSUT1 DD *
PDSLIB=//CICSRS6.COPYLIB
LANG=COBOL
REQMEM=DOWCRQ
RESPMEM=DOWCRS
LOGFILE=/u/cicsrs6/requester/wsbind/dispatchOrderSelf.log
WSBIND=/u/cicsrs6/requester/wsbind/dispatchOrderSelf.wsbind
WSDL=/u/cicsrs6/requester/wsdl/dispatchOrderSelf.wsdl
BINDING=dispatchOrderSoapBinding
OPERATIONS=dispatchOrder
MAPPING-LEVEL=1.0
/*

PDSLIB The PDS library where the language structures (copybooks) will
be generated.

LANG Specifies the programming language of the language structure to
be created.

REQMEM and RESPMEM
Defines the names of the request and the response language
structure respectively. These names are limited to 6 characters
so that DFHWS2LS can add a generated suffix.

WSBIND and LOGFILE parameters
The fully qualified UNIX file names of the WSBind file and log file
to be generated.

WSDL Specifies name and location of your input WSDL file.

BINDING Must specify if your WSDL contains multiple <binding> elements.
 Chapter 7. Create a CICS Web service requester application using the catalog sample 175

OPERATIONS

Specify the WSDL Operations you want to invoke to avoid the
generation of unnecessary language structures and meta-data.
This parameter is only available in CICS TS V3.2 and later.

MAPPING-LEVEL

Set the mapping level to the most recent version available to you.
However, in this example we have used mapping level 1.0 to
ensure that the generated language structures will be the same
for all versions of CICS.

Submit your job and look at the generated copybooks (Example 7-2 and
Example 7-3).

Example 7-2 request copybook:- DOWCRQ01 (DFH0XCP7)

05 dispatchOrderRequest.
 10 itemReferenceNumber PIC S9(4) DISPLAY.
 10 quantityRequired PIC S9(3) DISPLAY.
 10 customerId PIC X(8).
 10 chargeDepartment PIC X(8).

Example 7-3 response copybook: DOWCRS01 (DFH0XCP8)

05 dispatchOrderResponse.
 10 confirmation PIC X(20).

Now you would have to write a program that uses those copybooks to invoke a
Web service. CICS provides an example of such a program called DFH0XWOD
(wrapper order dispatcher). It uses the copybooks DFH0XCP7 and DFH0XCP8,
which are equivalent to the copybooks you just created. Example 7-4 shows
some excerpts.

Example 7-4 Excerpts from the outbound WebService order dispatcher (DFH0XWOD)

 WORKING-STORAGE SECTION.
 * WebService Message Structures
 01 WS-DISPATCH-ORDER-MESSAGES.
 COPY DFH0XCP7.
 COPY DFH0XCP8.

 LINKAGE SECTION.
 01 DFHCOMMAREA.
 COPY DFH0XCP2.

 PROCEDURE DIVISION.
176 Application Development for CICS Web Services

 MOVE 'DFHWS-DATA' TO WS-SERVICE-CONT-NAME
 MOVE 'SERVICE-CHANNEL' TO WS-CHANNELNAME
 MOVE 'dispatchOrder' TO WS-WEBSERVICE-NAME
 MOVE 'dispatchOrder' TO WS-OPERATION

 MOVE CA-ORD-ITEM-REF-NUMBER
 TO itemReferenceNumber IN dispatchOrderRequest
 MOVE CA-ORD-QUANTITY-REQ
 TO quantityRequired IN dispatchOrderRequest
 MOVE CA-ORD-USERID
 TO customerId IN dispatchOrderRequest
 MOVE CA-ORD-CHARGE-DEPT
 TO chargeDepartment IN dispatchOrderRequest

 EXEC CICS PUT CONTAINER(WS-SERVICE-CONT-NAME)
 CHANNEL(WS-CHANNELNAME)
 FROM(dispatchOrderRequest)
 END-EXEC

 EXEC CICS INVOKE WEBSERVICE(WS-WEBSERVICE-NAME)
 CHANNEL(WS-CHANNELNAME)
 URI(WS-ENDPOINT-URI)
 OPERATION(WS-OPERATION)
 RESP(RESP) RESP2(RESP2)
 END-EXEC.

The program receives the data from the 3270 interface in a format according to
copybook DFH0XCP2. It extracts all necessary data to build a
dispatchOrderRequest according to DFH0XCP7 and puts it into a container
which is placed into a channel. The channel is then passed as a parameter on
the INVOKE WEBSERVICE command, which has this syntax:

>>-INVOKE-WEBSERVICE(name)--CHANNEL(name)------------------------->

>--OPERATION(data-area)--+----------------+--------------------><
 '-URI(data-area)-'

CICS uses the OPERATION parameter as a Web service might have many
different operations, each of which has a different programmatic interface. The
URI parameter allows the application to override the default endpoint for the Web
service request from the WSDL.
 Chapter 7. Create a CICS Web service requester application using the catalog sample 177

7.2.2 Set up the CICS infrastructure
When CICS acts as a Web service requester you will need a WEBSERVICE and
a PIPELINE resource. For the dispatch order example, the PIPELINE was
supplied by installing the CICS catalog manager application.

The pipeline to use is EXPIPE02. Perform a CEMT INQUIRE on this pipeline to
yield a result similar to Figure 7-3.

Figure 7-3 The requester pipeline

This uses the basic requester pipeline configuration file that is provided with
CICS. The WSDIR of this pipeline is the CICS sample directory for requester
mode WSBind files. The provided dispatchOrder.wsbind file should be stored in
this directory.

Upon Pipeline installation, the corresponding dispatch order Web service is
discovered and installed by CICS. Perform a CEMT INQUIRE on the Web
service. This should return a screen similar to Figure 7-4 on page 179.

INQUIRE PIPELINE(EXPIPE02)
 RESULT - OVERTYPE TO MODIFY
 Pipeline(EXPIPE02)
 Enablestatus(Enabled)
 Mode(Requester)
 Mtomst(Nomtom)
 Sendmtomst(Nosendmtom)
 Mtomnoxopst(Nomtomnoxop)
 Xopsupportst(Noxopsupport)
 Xopdirectst(Noxopdirect)
 Soaplevel(1.1)
 Respwait()

Configfile(/usr/lpp/cicsts/cicsts41/samples/pipelines/basicsoap11request
)
 Configfile(er.xml)
 Shelf(/var/cicsts/)
 Wsdir(/usr/lpp/cicsts/cicsts41/samples/webservices/wsbind/requester/)
 Ciddomain(cicsts)
 Installtime(08/19/09 04:36:56)
 Installusrid(CICSUSER)
 + Installagent(Csdapi)
 Definesource(CATMGR6)
 Definetime(08/19/09 04:34:32)
 Changetime(08/19/09 04:34:32)
 Changeusrid(CICSUSER)
 Changeagent(Csdapi)
 Changeagrel(0660)
178 Application Development for CICS Web Services

Figure 7-4 The dispatchOrder Web service

Note that the endpoint specified for this WEBSERVICE is invalid. It will be
supplied by the wrapper program programmatically.

Before you start testing your requester, have a look at the Web service you are
going to invoke. In this example we have used a CICS Web service called
dispatchOrderEndpoint that is supplied as part of the catalog sample and
installed in provider mode PIPELINE EXPIPE01. To see a result similar to
Figure 7-5 on page 180, perform:

CEMT INQUIRE WEBSERVICE(dispatchOrderEndpoint)

 INQUIRE WEBSERVICE(dispatchOrder)
 RESULT - OVERTYPE TO MODIFY
 Webservice(dispatchOrder)
 Pipeline(EXPIPE02)
 Validationst(Novalidation)
 State(Inservice)
 Ccsid(00000)
 Urimap()
 Program()
 Pgminterface(Notapplic)
 Xopsupportst(Noxopsupport)
 Xopdirectst(Noxopdirect)
 Mappinglevel(1.0)
 Minrunlevel(1.0)
 Datestamp(20090708)
 Timestamp(22:46:34)
 Container()
 Wsdlfile()

Wsbind(/usr/lpp/cicsts/cicsts41/samples/webservices/wsbind/requester/dis
)
 Wsbind(patchOrder.wsbind)
 Endpoint(http://my-server:9080/exampleApp/dispatchOrder)
 Binding(dispatchOrderSoapBinding)
 Installtime(08/19/09 04:36:56)
 Installusrid(CICSRS1)
 Installagent(Dynamic)
 Definesource(EXPIPE02)
 Definetime(08/19/09 04:36:56)
 Changetime(08/19/09 04:36:56)
 Changeusrid(CICSRS1)
 Changeagent(Dynamic)
 Changeagrel(0660)
 Chapter 7. Create a CICS Web service requester application using the catalog sample 179

Figure 7-5 The dispatchOrderEndpoint Web service

This Web service provider returns a simple confirmation for a successfully placed
order. A more typical example might involve a Web service hosted in WebSphere
Application Server, or elsewhere on the network. This example uses a provider
mode Web service hosted in CICS to avoid external dependencies within the
sample.

7.2.3 Test the requester application
Before you can test the Web service requester, you must change the business
logic to invoke the new wrapper program. The CICS catalog manager example
application enables you to change the program name to be invoked without

INQUIRE WEBSERVICE(dispatchOrderEndpoint)
 RESULT - OVERTYPE TO MODIFY
 Webservice(dispatchOrderEndpoint)
 Pipeline(EXPIPE01)
 Validationst(Novalidation)
 State(Inservice)
 Ccsid(00000)
 Urimap($246340)
 Program(DFH0XODE)
 Pgminterface(Commarea)
 Xopsupportst(Noxopsupport)
 Xopdirectst(Noxopdirect)
 Mappinglevel(1.0)
 Minrunlevel(1.0)
 Datestamp(20090708)
 Timestamp(22:46:34)
 Container()
 Wsdlfile()

Wsbind(/usr/lpp/cicsts/cicsts41/samples/webservices/wsbind/provider/disp
)
 Wsbind(atchOrderEndpoint.wsbind)
 Endpoint(http://my-server:9080/exampleApp/dispatchOrder)
 Binding(dispatchOrderSoapBinding)
 Installtime(08/19/09 04:36:56)
 Installusrid(CICSRS1)
 Installagent(Dynamic)
 Definesource(EXPIPE01)
 Definetime(08/19/09 04:36:56)
 Changetime(08/19/09 04:36:56)
 Changeusrid(CICSRS1)
 Changeagent(Dynamic)
 Changeagrel(0660)
180 Application Development for CICS Web Services

changing the application. You can also specify the network endpoint at which the
provider mode target service is available.

1. Type ECFG in CICS to start the configuration program. Change these parameters:

– Set Outbound WebService? to YES.

This option forces the catalog manager to use the Order Dispatch
WebService (DFH0XWOD) instead of the Order Dispatch Stub
(DFH0XSOD).

– Set Outbound WebService URI to the address of the dispatch order
endpoint in your CICS region:

http://<hostname>:<port>/exampleApp/dispatchOrder

Press Enter to confirm your changes.

Figure 7-6 Adapt the catalog manager configuration

 CONFIGURE CICS EXAMPLE CATALOG APPLICATION

 Datastore Type ==> VSAM STUB!VSAM
 Outbound WebService? ==> YES YES!NO
 Catalog Manager ==> DFH0XCMN
 Data Store Stub ==> DFH0XSDS
 Data Store VSAM ==> DFH0XVDS
 Order Dispatch Stub ==> DFH0XSOD
 Order Dispatch WebService ==> DFH0XWOD
 Stock Manager ==> DFH0XSSM
 VSAM File Name ==> EXMPCAT
 Server Address and Port ==> 9.12.4.42:03702
 Outbound WebService URI ==> http://9.12.4.42:03702/exampleApp/dispatchOr
 ==> der
 ==>
 ==>
 ==>

==>

Important: URIs are case sensitive. If the characters you type are
transformed to upper case after saving, you should set your terminal to mixed
case by typing:

CEOT Tra

This capitalizes transaction IDs only.
 Chapter 7. Create a CICS Web service requester application using the catalog sample 181

2. Start the catalog manager by typing EGUI. Select option 2 with, for example,
element 0010, which returns a panel similar to Figure 7-7. Insert some
parameters and press Enter.

Figure 7-7 Dispatch an order in CICS

CICS will tell you that your order has been placed successfully, as shown in
Figure 7-8.

Figure 7-8 Successfully dispatched order in CICS

CICS EXAMPLE CATALOG APPLICATION - Details of your order

Enter order details, then press ENTER

Item Description Cost Stock On
Order
--
0010 Ball Pens Black 24pk 2.90 0047 000

 Order Quantity: 2
 User Name: cicsuser
 Charge Dept: cicsdptm

 CICS EXAMPLE CATALOG APPLICATION - Main Menu

 Select an action, then press ENTER

 Action 1. List Items
 2. Order Item Number
 3. Exit

 ORDER SUCESSFULLY PLACED
182 Application Development for CICS Web Services

7.3 Creating and testing a Web service hosted in RDz

This chapter will show you how you can create a Web service from a WSDL file
and host it (for testing purposes) in RDz. You will create a basic dispatch order
Web service from dispatchOrder.wsdl, which can be requested by the Web
service requester you created in the previous chapter.

If you do not want to create your own Web service you can use the one that is
supplied with CICS in the example directory:

/usr/lpp/cicsts/cicsts41/samples/webservices/client/ExampleAppDispatchO
rder.ear

In this case, import this EAR file and proceed to 7.3.2, “Implement the RDz
based Web service” on page 187.

7.3.1 Create a Web service skeleton with RDz
In this example we create an RDz-based Web service by generating a JavaBean
skeleton. The precondition is that your WSDL file must be either in your
workspace or available through remote connection. If this is not already the case,
you must transfer this file to your local machine:

/usr/lpp/cicsts/cicsts41/samples/webservices/wsdl/dispatchOrder.wsdl

Import it into a simple project.
 Chapter 7. Create a CICS Web service requester application using the catalog sample 183

To generate the Web service, select File → New → Other. Expand Web
Services and select Web Service. This starts the Web service wizard.

1. On the first panel (Figure 7-9), select the Web service type (in this example,
Top down Java bean Web Service). Use the slide bar to display the Test
Service option. You also can select the Monitor the Web service check box
to enable a TCP/IP monitor to listen to the service port. Click Next.

Figure 7-9 RDz Web service wizard: Web service type
184 Application Development for CICS Web Services

2. Browse the service definition to open the second panel (Figure 7-10), locate
the WSDL file using Browse, and click OK.

Figure 7-10 RDz Web service wizard: WSDL selection

3. From the first panel, select the service project name from the Configuration
part to open the third panel. The third panel (Figure 7-11) prompts you for the
name of your enterprise application (EAR project: DispatchOrderRDzEAR)
and for the name of its contained Web project (Service project:
DispatchOrderRDz) that will contain your business logic. Click Next.

If the projects do not exist already, they will be created and deployed on the
internal test server.

Figure 7-11 RDz Web service wizard: Specify enterprise application

Note: An alternative method is to right-click dispatchOrder.wsdl in the
Project Explorer panel and then generate the Web service by selecting
File → New → Other. Expand Web Services and select Web Service.
This will preselect the Service Definition
 Chapter 7. Create a CICS Web service requester application using the catalog sample 185

4. The fourth panel (Figure 7-12) asks for the name of the source folder that will
contain your Java code. Accept the default, /DispatchOrderRDz/src, and click
Next.

Figure 7-12 Rational Developer for System z Web service wizard: Skeleton folder

5. You specified on the first panel that you wanted to test your Web service. Now
you choose your test facility (Figure 7-13). Choose the Web Services
Explorer, which will start after the wizard has finished. Click Next.

Figure 7-13 RDz Web service wizard: Test facility

6. The last panel (Figure 7-14) shows publishing details. Do not select anything
for this example. Click Finish. You have created a simple Web service.

Figure 7-14 RDz Web service wizard - Publishing
186 Application Development for CICS Web Services

7.3.2 Implement the RDz based Web service
Open the Java EE perspective to look at all generated projects. If you have
imported the sample end point, it should look similar to Figure 7-15.

Figure 7-15 Workspace after creating a Web service

Expand the dispatchOrderService, as shown in Figure 7-16.

Figure 7-16 Expand the dispatchOrderService

You see your WSDL file on which the service is based, as well as the actual
service implementation in the Service Classes folder. Open the implementation.
If you have imported the sample endpoint, it will contain the dispatchOrder public
method (Example 7-5 on page 188), which builds an answer object to be
returned at the end.
 Chapter 7. Create a CICS Web service requester application using the catalog sample 187

Example 7-5 DispatchOrderSoapBindingImpl.java from sample

public DispatchOrderResponse dispatchOrder(DispatchOrderRequest
requestPart)

throws java.rmi.RemoteException
{

Confirmation confirmation = new Confirmation();
confirmation.setValue("Order in Dispatch");
DispatchOrderResponse response = new DispatchOrderResponse();
response.setConfirmation(confirmation);
return response;

}

If you have created the service yourself, this implementation will return null.
Modify the code as shown in Example 7-6. If the response string you set is longer
than 20 characters according to the WSDL, a request from CICS will fail.

Example 7-6 DispatchOrderSoapBindingImpl.java self-generated

package com.dispatchOrder.exampleApp.www;
import com.Response.dispatchOrder.exampleApp.www.*;
import com.Request.dispatchOrder.exampleApp.www.*;

public class DispatchOrderSoapBindingImpl implements DispatchOrderPort{
 public DispatchOrderResponse dispatchOrder(DispatchOrderRequest
request)
 throws java.rmi.RemoteException

{
 DispatchOrderResponse response = new DispatchOrderResponse();
 response.setConfirmation("RDz dispatched order");
 return response;
 }
}

7.3.3 Test the Web service using RDz
The Web Services Explorer starts automatically after the Web service wizard
finishes. If you closed the window or imported the Web service from the sample
directory, start it manually. Right-click the WSDL file in the Web Services folder of
the J2EE project explorer. Select Test with Web Services Explorer. Select the
dispatchOrder operation.

Select the endpoint with port 9081. The complete URI is constructed similar to:

http://localhost:9081/<context_root>/services/<name_of_your_portType>
188 Application Development for CICS Web Services

The name of your portType can be found in the dispatchOrder.wsdl file as
shown in Example 7-7. This maps to the operation dispatchOrder that you will
invoke.

Example 7-7 Excerpt from dispatchOrder.wsdl: portType

<portType name="dispatchOrderPort">
<operation name="dispatchOrder">

<input message="tns:dispatchOrderRequest"
name="DFH0XODSRequest"/>
<output message="tns:dispatchOrderResponse"
name="DFH0XODSResponse"/>

</operation>
</portType>

The context root, which is defined in your EAR file, describes which application
on the server (EAR file) will be addressed with the request. In the J2EE
perspective, expand your EAR file and the META-INF folder. Open
application.xml (Example 7-8) to find your context root.

Example 7-8 Excerpts from application.xml of the self-generated endpoint

<application version="5"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/application_5.xsd" >
 <display-name> DispatchOrderRDzEAR</display-name>
 <module>
 <web>
 <web-uri> DispatchOrderRDz.war</web-uri>
 <context-root> /DispatchOrderRDz</context-root>
 </web>
 </module>
 </application>

Go back to the Web Services Explorer to test your Web service. Select the
dispatchOrder operation. You should see a window similar to Figure 7-17 on
page 190 (if you use your self-created endpoint) or Figure 7-18 on page 191 (if
you use the sample endpoint). Enter parameters, being sure to conform to your
WSDL. Your strings in this case must be exactly eight characters long. Click Go.
You should get the answer string you just specified in your Java program (RDz
dispatched order) or, if you are using the provided sample, the answer is Order
in Dispatch.
 Chapter 7. Create a CICS Web service requester application using the catalog sample 189

Figure 7-17 Web Services Explorer testing newly created Web service
190 Application Development for CICS Web Services

Figure 7-18 Web Services Explorer testing provided Web service
 Chapter 7. Create a CICS Web service requester application using the catalog sample 191

7.3.4 Test the Web service using the CICS sample application
The following steps show how to invoke this new Web service from CICS.

1. Open the configuration application of your CICS catalog manager example
application (Figure 7-19). Make sure Outbound WebService is set to YES and
insert the Outbound WebService URI of your end point. Use the TCP/IP
address of the workstation on which you are running RDz. Refer to 7.2.3,
“Test the requester application” on page 180 for further details. Press Enter to
confirm your change.

Figure 7-19 Configure CICS CATALOG application

Important: URIs are case sensitive. If the characters you type are
transformed to upper case after saving then you should set your terminal to
mixed case by typing CEOT Tra.

This capitalizes transaction IDs only.

 CONFIGURE CICS EXAMPLE CATALOG APPLICATION

 Datastore Type ==> VSAM STUB|VSAM
 Outbound WebService? ==> YES YES|NO
 Catalog Manager ==> DFH0XCMN
 Data Store Stub ==> DFH0XSDS
 Data Store VSAM ==> DFH0XVDS
 Order Dispatch Stub ==> DFH0XSOD
 Order Dispatch WebService ==> DFH0XWOD
 Stock Manager ==> DFH0XSSM
 VSAM File Name ==> EXMPCAT
 Server Address and Port ==> 9.12.4.75:30072
 Outbound WebService URI ==> http://wtsc66.itso.ibm.com:9108/DispatchOrde
 ==> rRDz/services/dispatchOrderPort
 ==>
 ==>
 ==>
 ==>
192 Application Development for CICS Web Services

2. Start the catalog manager by typing EGUI, select option 2 with, for example,
element 0010, which will give you a panel similar to Figure 7-20. Insert some
parameters and press Enter.

Figure 7-20 Dispatch an order in CICS

CICS tells you that your order has been placed successfully (Figure 7-21).

Figure 7-21 Successful dispatched order in CICS.

 CICS EXAMPLE CATALOG APPLICATION - Details of your order

 Enter order details, then press ENTER

 Item Description Cost Stock On Order

--
 0010 Ball Pens Black 24pk 2.90 0095 000

 Order Quantity: 2
 User Name: CICSUSER
 Charge Dept: CICSDEPT

 CICS EXAMPLE CATALOG APPLICATION - Main Menu

 Select an action, then press ENTER

 Action 1. List Items
 2. Order Item Number
 3. Exit

 ORDER SUCCESSFULLY PLACED
 Chapter 7. Create a CICS Web service requester application using the catalog sample 193

194 Application Development for CICS Web Services

Chapter 8. Componentization

In this chapter, we consider the concept of componentization and how software
components can be used to improve traditional CICS application development.
We also look at some of the new features of CICS TS 4.1 that extend the benefits
of Web services for ordinary applications.

8

© Copyright IBM Corp. 2010. All rights reserved. 195

8.1 CICS applications as components
Part of the value of Web services is the ability to reuse existing applications as
building blocks within a wider context. The existing applications might be
complicated and involve many CICS PROGRAMs, but to the outside world they
are simple XML-based interfaces. A lot of complexity is hidden behind the
Service interface. The associated WSDL document describes the interface to the
application without any implementation complexities.

Traditional CICS application development has some similarities. CICS
applications are normally made up of multiple executable modules. These
modules might interact through the EXEC CICS LINK command, through
COBOL call statements, and through similar mechanisms. Code can be built into
libraries and shared between applications, or made into callable routines.

Applications in turn can interact with each other, typically using further EXEC
CICS LINK commands. It is this application-to-application interaction that
introduces a subtle problem. It can be difficult do determine the logical
boundaries between applications. There is no way to know whether an EXEC
CICS LINK between CICS PROGRAMs marks a boundary within an application,
or between applications. This confusion is something that CICS administrators
have learned to live with, but it does have an impact. It is not unusual for CICS
administrators to experience significant difficulties in understanding what their
PROGRAMs do, how they interact, and what impact changes will introduce. See
Figure 8-1 for a typical CICS system example, and all the complexities of
programs linking to each other.

Figure 8-1 A typical CICS system with many PROGRAMs linking to each other

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM
196 Application Development for CICS Web Services

One way to reduce this problem is to introduce a formal boundary for
application-to-application interactions. A target CICS application can be exposed
as a Service, and be invoked from another application. The LINK command is
used within applications, but the INVOKE command is used between
applications. Ordinary CICS applications can be treated as Services, with the
associated advantages and characteristics. See Figure 8-2, for an example of
CICS applications being treated as services.

Figure 8-2 The same CICS system with component boundaries identified

In this chapter Component is used to describe a Service used within a CICS
region.

8.2 Locally optimized Web services

One technique that can be used to formalize application boundaries within a
CICS region is to deploy the target applications as Web services. This is done
using the same techniques as would normally be used when exposing an
existing PROGRAM as a Web service. The difference is that both the requester

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM

CICS
PROGRAM
 Chapter 8. Componentization 197

and provider applications are local to the same CICS system. The client program
uses the EXEC CICS INVOKE WEBSERVICE command to call the target Web
service.

There is an important optimization in CICS that facilitates componentization. As
part of the INVOKE processing CICS looks to see whether the named
WEBSERVICE resource is hosted in a requester mode PIPELINE or a provider
mode PIPELINE. For normal uses of EXEC CICS INVOKE WEBSERVICE the
target is in a requester mode PIPELINE and this results in a SOAP message
being sent to the remote Service. But, if the WEBSERVICE is hosted in a
provider mode PIPELINE, CICS behaves differently. CICS instead issues an
EXEC CICS LINK to the PROGRAM that implements the local WEBSERVICE.

An application can issue EXEC CICS INVOKE WEBSERVICE, but CICS can
automatically optimize that into EXEC CICS LINK.

This results in several benefits compared to coding EXEC CICS LINK in the
source application:

� CICS knows about the application boundary. The boundary can be seen in
CICS monitoring, statistics, and diagnostics. CICS has the opportunity to add
value to the invocation by modifying the processing based on configuration
settings.

� The client application is only loosely bound to the target service. For example,
the target PROGRAM can be changed by the administrator based upon the
WEBSERVICE resource definition. If there is ever a requirement to move the
target service to another platform, a simple administrative change in the CICS
region will result in the requester making an outbound SOAP call to the target
Web service without any application changes being required.

� A formal WSDL-based description of the interface exists. The target service
might optionally be exposed to the outside world through the SOAP interface,
but this is not a requirement. If at some point in the future there is a
requirement for it to become an external Web service, no effort is required to
implement it. The work has already been done.

In CICS TS 4.1 a new API command has been introduced called EXEC CICS
INVOKE SERVICE. This is a synonym for EXEC CICS INVOKE WEBSERVICE.
It emphasizes that a Service does not have to involve external interactions, a
Service can be local.
198 Application Development for CICS Web Services

8.3 Using WSDL to describe COBOL components

If you use the INVOKE command to call a Web service, a WSDL description of
that service will exist. It might have been generated by DFHLS2WS (or RDz)
from an existing set of copybooks. This is likely to be the case when existing
applications are turned in to components.

For top-down development there is an opportunity to use modern software
design tools as part of the development process for new CICS components.

For example, you could consider using Rational Software Architect (RSA) and
the Universal Modelling Language (UML) to describe the abstract interfaces
between the desired software components. After you have a UML-based
description of the interfaces to the new component, you can generate a
WSDL-based description from it. After you have a WSDL-based description of
the interface you can generate COBOL bindings using DFHWS2LS (or RDz).

From there you can implement a CICS Service that exactly conforms to the
architectural intentions encoded by the application architect in the UML
document. The CICS components are just one more box in the architect’s
palette, with the implementation complexities abstracted away as with any other
Web service.

8.4 Further Options with CICS TS 4.1

Locally-optimized Web service invocations offer the best possible performance
for an EXEC CICS INVOKE call, but they do involve some limitations compared
to remote Web service invocations:

� The requester and provider must share the same copybooks. This might not
be a significant limitations, but it does mean that both the requester and the
provider applications must be implemented in the same programming
language.

� The requester and provider applications will run in the same CICS unit of
work (UOW). If an abend occurs in the provider application, this will also
back-out changes made in the requester application unless the application
manages its own transactions.

� The CICS pipelines are not used. This means that none of the handler
programs associated with the PIPELINE resource are called. None of the
diagnostics normally associated with a pipeline will be available. The
optimization from INVOKE WEBSERVICE to LINK completely optimizes the
pipeline out of the processing.
 Chapter 8. Componentization 199

� Many of the control containers that are normally available to the provider
mode Web service on the default channel are unavailable. This includes and
containers that normally hold XML data such as DFH-REQUEST,
DFH-RESPONSE and DFHWS-BODY.

In CICS TS 4.1 there is a new option available that allows a compromise between
performance and flexibility for local components. The new capability involves
using a WEBSERVICE resource in a requester mode PIPELINE together with a
special URI format that gives the application control over what processing should
occur. This results in two new options that weren’t available with earlier version of
CICS:

� Use INVOKE SERVICE calls to link to a local CICS component after the
requester mode pipeline processing has been performed.

� Use INVOKE SERVICE calls to link to a local CICS component after both a
requester mode pipeline and a provider mode pipeline have been called, but
without sending the request out to the network.

These two new scenarios are discussed in the following sections. There is a third
new URI format to allow chaining of requester mode PIPELINEs, but that
capability is not discussed here.

8.4.1 Linking to a target PROGRAM from a requester mode PIPELINE

In this scenario the requester application calls:

EXEC CICS INVOKE SERVICE(servicename) OPERATION(operationName) URI(uri)

specifying a URI in the form:

cics://PROGRAM/program

where program is the name of the target CICS PROGRAM to which to link. CICS
finds the SERVICE or WEBSERVICE identified by servicename and starts the
processing through the associated requester mode PIPELINE. At the end of the
pipeline processing CICS issues an EXEC CICS LINK to the program specified
in the URI.

Note: The DFHWS-URI, DFHWS-OPERATION and
DFHWS-SOAPACTION containers will all be available.
200 Application Development for CICS Web Services

This scenario is similar to the locally optimized scenario, except that the
requester mode pipeline is used and the associated pipeline handler programs
are called by CICS. However, the application data passed to the target
PROGRAM is the same data provided by the source application.

See Figure 8-3 for example for an example of linking to a program from a
requestor mode pipline.

Figure 8-3 LINKING to a PROGRAM from a requester mode PIPELINE

This provides some additional flexibility that the locally optimized INVOKE
doesn’t offer, but there are some restrictions remain.

8.4.2 Invoking a local SERVICE from a requester mode PIPELINE

In this scenario the requester application calls:

EXEC CICS INVOKE SERVICE(servicename) OPERATION(operationName) URI(uri)

specifying a URI in the form:

cics://SERVICE/service?targetServiceUri=targetServiceUri

where service is the name of a provider mode CICS SERVICE (typically a
WEBSERVICE) to invoke and targetServiceUri is the URI associated with the
provider mode SERVICE.

CICS finds the SERVICE or WEBSERVICE identified by the servicename and
starts the processing through the associated requester mode PIPELINE. At the
end of the pipeline processing CICS locates the provider mode SERVICE or
WEBSERVICE identified in the URI by service. CICS then starts the provider
mode PIPELINE associated with this service using the specified
targetServiceUri.

Requester
Mode

PIPELINE
Source Application Target Service

EXEC CICS INVOKE SERVICE EXEC CICS LINK
 Chapter 8. Componentization 201

This scenario is similar to making an ordinary EXEC CICS INVOKE
WEBSERVICE call with a URI that addresses a provider mode WEBSERICE
hosted in CICS, except that the call through the networking layer of code is
optimized out of the execution path. See Figure 8-4 for example of invoking a
local service from a requestor mode pipeline.

Figure 8-4 INVOKING a local service from a requester mode PIPELINE

This scenario offers a a lot of flexibility for scenarios where both the requester
and provider components are hosted in CICS, but it does involve generating XML
from application data and parsing that XML back into application data. This is in
addition to the cost of running both the requester mode pipeline and the provider
mode pipeline.

Requester
Mode

PIPELINE
Source Application

Target Service

EXEC CICS INVOKE SERVICE

EXEC CICS LINK
Provider
Mode

PIPELINE
202 Application Development for CICS Web Services

Chapter 9. New SOA patterns for CICS
TS V4.1

9

© Copyright IBM Corp. 2010. All rights reserved. 203

9.1 Service Component Architecture

in this section we discuss the fundamentals of the Service Component
Architecture (SCA), which is a new service-oriented architecture (SOA) based
programming model available as part of CICS TS V4.1.

SCA has similar goals and ideals to Web services, and many of the concepts and
benefits overlap, but the implementation is quite different.

SCA is based on the idea that business function is provided as a series of
services (or components), which are assembled together to create solutions that
serve a particular business need. SCA is both platform and programming
language neutral, and is suitable for creating new business services by means of
composition of both new and existing components. SCA provides a model for the
composition of services and for the deployment of service components, including
the reuse of existing applications.

In the following sections we discuss the concepts and terminology of SCA.

9.1.1 Introduction to SCA

In this section we introduce SCA, basic concepts, and components.

Basic concepts
SCA is designed around components, which encapsulate services that can be
invoked. SCA components expose interfaces that define the information that
must be supplied to invoke a service. Each interface can be defined using either
a Java Interface, or a WSDL Port Type. The CICS implementation of SCA is
based around WSDL, so that is the interface format upon which we will
concentrate.

SCA components can also invoke services that are exposed by other SCA
components. We say that one SCA component references the other. As with
Web services, service invocation is an entirely black-box affair. It does not matter
to one component how another is implemented. An interface can have one or
more operations (also sometimes called functions). When a component is
invoked, an operation name is specified. These operations can be one-way
(in-only in WSDL) or two-way (in-out in WSDL).

The major difference between SCA and Web services is that SCA focuses on the
assembly of composite services, whereas Web services focuses on wire-level
interoperability between services. SCA can be bound to Web services, but it
does not require an XML-based messaging system.
204 Application Development for CICS Web Services

Figure 9-1 shows a simplified UML model of the SCA architecture.

Figure 9-1 Simplified SCA component UML model

The Open Service Oriented Architecture group documents the SCA model:

http://www.osoa.org/display/Main/Home

Collections of components are referred to as composites. SCA composites are
defined using Service Component Definition Language (SCDL) files. As with
WSDL, SCDL is usually machine-generated and not intended for direct use by
application developers. You would normally use tools such as RDz to produce
the SCDL.

SCA components
A component is the basic unit of composition in SCA. Components are used to
define which services are available and can be invoked within the SCA runtime
environment.

Example 9-1 on page 206 shows a fragment of SCDL that defines a component
called SampleComponent that is instantiated by a Java class called
MyJavaClass. This class implements the methods that are specified in interface
MyInterface. A property has also been specified that will be available to the SCA
component at runtime. The service name is the name of business function
provided by the SampleComponent. This example uses a Java class, therefore it
is not appropriate for deployment to CICS, but could be used with other SCA
compliant application environments.

Interface

Operation

Operation Type

OneWay Request/Reply

Component

Component Type

Implementation

Provides Has
Reference

Requires

<<use>>
Invokes
 Chapter 9. New SOA patterns for CICS TS V4.1 205

http://www.osoa.org/display/Main/Home

Example 9-1 Component element

<component name="SampleComponent">
 <implementation.java class="ibm.com.MyJavaClass" />
 <property name="pname">pattributes</property>
 <service name="MyService">
 <interface.java interface="ibm.com.MyInterface" />
 </service>
</component>

SCA services
The service element allows you to define which specific business function or
services the component (or composite) provides. A reference can be used to
describe dependencies on services provided by another component. Both
service and reference elements can be further specified using the interface and
binding elements.

SCA operations
SCA supports two types of operations.

� One-way operations (also called fire-and-forget) have data that flows into the
SCA component from the caller, but the SCA component returns no data back
to the caller.

� Two-way operations (also called request/reply) have data flowing into the
component (request), and then back to the caller (reply).

Some architectural models call one-way operations asynchronous and two-way
operations synchronous (Unified Modelling Language [UML] uses these terms).
SCA does not impose this concept.

SCA composites
A composite is the deployable unit for SCA. It can contain components, services,
references, property declarations, and the wiring that describes the connection
between these elements.

A composite can be made up of a number of components that are wired together.
The composite exposes an external interface as Services, and can call external
services through References.
206 Application Development for CICS Web Services

Figure 9-2 Composites and components

The SCDL fragment in Example 9-2 shows a typical composite definition. The
sample shows a composite named sampleCatalog. The composite exposes a
service called Catalog. The business methods are defined within a component
element called CatalogComponent. The component contains the implementation
of an interface called ibm.com.sampleCatalog, which specifies the available
operations. The example also shows that the externally visible service is actually
a Web service. The binding.ws element defines the Web services-based access
method used to invoke the service.

Example 9-2 Composite element

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0"
 targetNamespace="http://ibm.com/sampleCatalog"
 name="sampleCatalog" >
 <service name="Catalog" promote="CatalogComponent">
 <interface.java interface="ibm.com.sampleCatalog"/>
 <binding.ws port="http://ibm.com/Catalog
 wsdl.endpoint(Catalog/CatalogWS)"/>
 </service>
 <component name="CatalogComponent">
 <implementation.java class="ibm.com.sampleCatalog"/>
 </component>
 </composite>

Component

Component

Properties

ReferencesServices

Composite

SCA Concept
 Chapter 9. New SOA patterns for CICS TS V4.1 207

9.2 CICS TS V4.1: Implementation of SCA

In this section we look at CICS implementation of SCA.

9.2.1 BUNDLE resources

CICS TS V4.1 introduces a new packaging format called a bundle for deploying
some types of CICS resources, including the artifacts needed for SCA. A
BUNDLE resource represents a group of artifacts that can be installed and
managed together. Conceptually it is similar to a Java ARchives (JAR) file that
might be familiar from Java environments.

The BUNDLE involves one or more files installed in the UNIX file system, the
most important of which is the Manifest file. This is an XML file that acts as an
index for identifying the rest of the contents of the bundle. A BUNDLE resource in
CICS encapsulates the artifacts in the bundle directory on the UNIX file system.

Unlike traditional CICS CSD groups, the relationship between the resources
installed from a bundle persist after installation. This means that you can manage
all the related resources as a single composite entity. For example, if you disable
a BUNDLE resource because you want to stop an application from running,
CICS disables all of the related application resources for you. You can manage
the contents of a bundle and its constituent parts using the CICS Explorer.

Bundles for SCA composites are normally created using RDz.

9.2.2 Creating services from existing CICS applications

You can create two types of service from your CICS applications:

� Channel-based services that are local to a CICS environment
� XML-based services that are exposed externally as Web services.

In both cases, the application program that you expose as a service is defined in
the <Implementation> element of the SCDL for the SCA component.

Channel-based SCA services
Channel-based services are CICS applications that are deployed as SCA
components and assembled together using a tool such as RDz. These services
are available to other CICS applications that use the INVOKE SERVICE API
command and pass binary data in containers on a channel.
208 Application Development for CICS Web Services

The interface to the application program is described in WSDL. For a
channel-based service, the binding is described in the binding.cics section of the
SCDL. There are no WSBind files required in this scenario.

XML-based SCA services
XML-based services are SCA services that wrapper CICS WEBSERVICE
resources and use a SOAP-based messaging protocol. XML-based services are
available to CICS applications that use the INVOKE SERVICE API command, but
they are also available to external requesters from the network. You can either
create Web services using the Web Services Assistant, or you can use RDz. If
you use RDz, you can also create an SCA component for your Web service.
There are some advantages to creating a component from a Web service:

� You can reuse the components to develop future composite applications
rapidly using RDz.

� You can use SCDL to describe the Web service, thereby moving the
configuration information out of the application and WSBind file and into the
SCDL. This can make it easier to implement changes without having to
change the WSBind file. For example, if you want to run a Web service under
different default transactions and user IDs, you can change the SCDL without
having to regenerate the WSBind file.

The interface to the application program is described in WSDL. For an
XML-based service, the binding is described in the binding.ws section of the
SCDL. The bundle also includes the WSBind files that allow CICS to transform
the application data to SOAP messages.

9.2.3 Deploying SCA services

In the following sections, we look at deploying SCA services.

The bundle resource
SCA bundles are created using RDz. A bundle contains the resources that are
required by the service, typically the SCDL and any WSBind files used. Any
system resources that the service requires can be defined as prerequisites in the
bundle manifest file, but they are not included in the bundle itself.

After your bundle has been created you must deploy it to the UNIX file system as
a directory structure. Then you must create and install a CICS BUNDLE resource
that points at this directory. CICS then installs each of the SCA composites that
are referenced from the bundle manifest file.
 Chapter 9. New SOA patterns for CICS TS V4.1 209

Domains
SCA domains are the runtime environments for the assembled business
services. To use your application composites in CICS you have to deploy it using
a bundle. Each bundle has a scope, which represents the deployment domain.
By default this value is empty, but you can specify a specific BASESCOPE to act
as a domain (or naming context) for the bundle if you want to do so.

9.2.4 RDz SCA tooling

The Enterprise Service Tools perspective in RDz 7.6 has been extended to
provide views and wizards that allow you to develop CICS SCA projects.

You can use the RDz SCA tooling to compose SCA objects visually by wiring
services and references together. A wire is a connector that passes control and
data from a component to a target.

9.2.5 Creating and deploying an SCA service from an existing CICS
application

The steps in Figure 9-3 on page 211 can be used to design, implement,
compose, and run a CICS SCA application using RDz SCA tooling.
210 Application Development for CICS Web Services

Figure 9-3 Steps to design,implement, compose and run a CICS SCA application

1. Create SCA Project

You can use the SCA project wizard to create a new CICS SCA project. The
implementation type for the SCA component can be set to CICS

2. Create SCA composite

The composite wizard allows to configure the composite to be created.

3. Create SCA components and services

Create a component type from CICS application source code.

4. Connect the components by wiring

The composite editor can be used to visually connect the components.

5. Deploy the SCA application to CICS TS

The deploy bundle wizard can be used to deploy the assembled application to
the UNIX file system

You can test the SCA service using the Web Services Explorer.
 Chapter 9. New SOA patterns for CICS TS V4.1 211

212 Application Development for CICS Web Services

Chapter 10. Hints and tips

This chapter focuses on hints and tips in the following areas:

� Custom handlers for pipelines
� SOAP fault API
� Handling variable cardinality elements
� Using WSDL generated by Rational Developer
� WSDL types not supported by WS2LS
� Problem determination
� XML parsing in CICS application

10
© Copyright IBM Corp. 2010. All rights reserved. 213

10.1 Custom handlers programs for pipelines

CICS supplies a set of special purpose SOAP header and message handler
programs for use within a pipeline configuration. These can enhance CICS to
implement external specifications such as WS-Security, WS-AT or
WS-Addressing (at CICS TS V41).

You can also create your own handler programs to satisfy local requirements. For
example, you could have a logging service that records SOAP messages, or a
diagnostics service that e-mails diagnostics to an operator in the event of a
failure. The advantage of using a handler program to implement these sorts of
requirements is that the handler will be active for all Web services in the
PIPELINE.

10.1.1 A simple example handler program

In this section we explore creating a simple handler program that uses the WEB
API to discover the value of a HTTP header. We then write that value into a
container on the current channel.

A problem: Operation resolution
A single Web service might implement many different operations. A common
requirement in provider mode applications is the need to know which of the
operations has been invoked. CICS makes the operation name available to the
application in the DFHWS-OPERATION container. However, this container is
populated by the CICS-supplied application handler (DFHPITP), so if you do not
use the CICS-supplied application handler program, or if you have handlers that
run in the pipeline before DFHPITP has executed, you might have difficulty
discovering which operation is being invoked.

The official way to resolve the operation is to consider the signature of the body
of the SOAP message. This involves calculating the operation based on the
pattern of XML tags within the SOAP body. This is a complicated operation to
perform. However, many WSDL authors offer a useful clue by ensuring that the
operation name is encoded in a special HTTP header called the SOAPAction
header. In many cases you can read this HTTP header and use the value to infer
the operation that was called, without having to parse any XML.

CICS does this for you. You can find the value of the SOAPAction HTTP header
in the DFHWS-SOAPACTION container. However, for the purposes of this
example we pretend that you need to discover the SOAPAction header
programmatically using the WEB API.
214 Application Development for CICS Web Services

Example 10-1 shows an HTTP header including the SOAPAction field. In this
instance a URI value is supplied. This information could be used by the service
provider to determine the intent of the request.

Example 10-1 HTTP header with SOAPAction URI

POST /exampleApp/inquireCatalog HTTP1.1
Content-Type: text/xml; charset="UTF-8"
SOAPAction: "http://itsocatalog.org/index#MyMessage"

The value that is specified in the SOAPAction header need not be a fully qualified
URI. A single word might be used instead of a URI (Example 10-2).

Example 10-2 HTTP header with non-URI SOAPAction value

POST /exampleApp/inquireCatalog HTTP1.1
Content-Type: text/xml; charset="UTF-8"
SOAPAction: "index"

PIPELINE states
A handler program can be written to obtain the value of the SOAPAction URI (if
present) and place it into the SOAPACTION container. The application program
can use this container to retrieve this value if required.

The handler program will be called twice during the normal execution of a Web
service request: once during the inbound phase and once during the outbound
phase. However, the handler only has to perform steps during the inbound phase
of the request. At runtime, the current phase of execution is stored in container
DFHFUNCTION. Possible values within this container are:

� RECEIVE-REQUEST
� SEND-RESPONSE
� SEND-REQUEST
� RECEIVE-RESPONSE
� PROCESS-REQUEST
� NO-RESPONSE
� HANDLER-ERROR

More information about these states can be found in CICS Transaction Server for
z/OS Internet Guide Version 3 Release 1, SC34-6450.

We can check the value in this container and test whether it equals the literal
value RECEIVE-REQUEST. If the value in the container does not equal this
value, then the message handler is not being invoked during the desired phase of
execution and we can return execution back to the CICS pipeline handler. See
Example 10-3 on page 216.
 Chapter 10. Hints and tips 215

Example 10-3 Checking execution phase

 CHECK-INBOUND SECTION.
 *CHECK WE ARE EXECUTING DURING THE RECEIVE-REQUEST PHASE
 EXEC CICS GET CONTAINER('DFHFUNCTION ')
 INTO(FUNC-BUFFER)
 RESP(RESP)
 RESP2(RESP2)
 END-EXEC.
 IF FUNC-BUFFER NOT EQUAL TO 'RECEIVE-REQUEST'
 EXEC CICS RETURN END-EXEC.

CHECK-INBOUND-END. EXIT.

Using the WEB api to access HTTP headers
When the execution phase has been determined, the EXEC CICS WEB READ
command can be used to obtain the SOAPAction header. The retrieved value can
be placed in a new container on the current channel. The name of the container
used to store the SOAPAction URI value must be known to both the message
handler and the application program. See Example 10-4.

Example 10-4 Retrieving the SOAPAction header and storing it in a container

 RETREIVE-SOAP-ACTION SECTION.
 *RETREIVE THE SOAPACTION HEADER
 EXEC CICS WEB READ HTTPHEADER(HEADER-NAME)
 NAMELENGTH(10)
 VALUE(URI-BUFFER)
 VALUELENGTH(LENGTH OF URI-BUFFER)
 RESP(RESP)
 RESP2(RESP2)
 END-EXEC.

 RETREIVE-SOAP-ACTION-END. EXIT.

 ADD-HEADER-TO-CONTAINER SECTION.
 *ADD THE SOAPACTION HTTP HEADER TO A CONTAINER
 *DID THE LAST OPERATION SUCCEED
 IF RESP EQUAL TO DFHRESP(NORMAL)
 EXEC CICS PUT CONTAINER(CONT-NAME)
 FROM(URI-BUFFER)
 FLENGTH(LENGTH OF URI-BUFFER)
 RESP(RESP)
216 Application Development for CICS Web Services

 RESP2(RESP2)
 END-EXEC
 END-IF.
 ADD-HEADER-TO-CONTAINER-END. EXIT.

Setting the PIPELINE state after execution
When this message handler is called, containers DFHREQUEST and
DFHRESPONSE exist on the channel. This gives the message handler the
ability to either allow processing to continue to the next handler in the pipeline or
to construct a response to the request and terminate any further request
processing. In this case we want execution to continue, so DFHRESPONSE
must be deleted from the channel. Otherwise, when the handler returned
execution to CICS, both DFHREQUEST and DFHRESPONSE would still exist on
the channel. This situation causes ambiguity and will cause CICS to re-call the
handler for exception processing. See Example 10-5.

Example 10-5 Deleting container DFHRESPONSE

 DELETE-DFHRESPONSE SECTION.
 *Deleting DFHRESPONSE will ensure that the message is
 *passed to the next stage of the pipeline
 EXEC CICS DELETE CONTAINER('DFHRESPONSE ')
 RESP(RESP)
 RESP2(RESP2)
 END-EXEC.
 DELETE-DFHRESPONSE-END. EXIT.

Changes to the PIPELINE configuration file
This application (SOAPACT) was integrated into the pipeline by using the
pipeline configuration file shown in Example 10-6 on page 218.
 Chapter 10. Hints and tips 217

Example 10-6 Pipeline configuration with a message handler

<?xml version="1.0" encoding="UTF-8"?>
<provider_pipeline>
 <service>
 <service_handler_list>
 <handler>
 <program>SOAPACT</program>
 <handler_parameter_list/>
 </handler>
 </service_handler_list>
 <terminal_handler>
 <cics_soap_1.1_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

The SOAP specification 1.2 has removed the requirement for the HTTP
SOAPAction header field to be present in a SOAP request.

10.1.2 Handling state information

Sometimes it is desirable to implement a stateful service. For example, a
pagination service that maintains a cursor to an entry in a data stream and
always returns the next 10 records. Or a service that maintains the concept of a
session across multiple uses.

A method to allow stateful transactions to take place would require three steps:

1. A method to generate unique session tokens
2. An initial message to obtain a session token
3. A mechanism for subsequent messages to reference the session token.

You could embed the token in the application data. This will require the client to
know to return that token on subsequent calls. You could embed the token in a
SOAP header, and require the infrastructure to propagate the token. You could
make use of WS-Addressing to manage session state.

Attention: Applicable message handlers are executed in the order that they
are listed within the pipeline configuration file. This is important if a handler
requires another handler to have executed.
218 Application Development for CICS Web Services

In general it is best to maintain session tokens in the applications themselves as
this allows the flexibility to propagate and use the tokens wherever they are
needed.

To help you implement this mechanism in your Web services, a suggested
mechanism for persisting state information over several transactions is
mentioned in CICS Transaction Server for z/OS Internet Guide Version 3
Release 1, SC34-6450.

This book outlines two sample modules, DFH$WBST and DFH$WBSR, which
provide a mechanism for managing state tokens. Functions are provided for the
creation and destruction of tokens as well as storing and retrieving state data
given a token value. A method is also provided for the cleanup of state
information and tokens that have not been used for a set period of time.

10.1.3 Propagating user identity tokens

Often there is a requirement for a specific user of a Web service to identify
themselves to CICS for authentication.

There are a number of mechanisms by which this can be done. In many
scenarios the user will authenticate to an intermediate server such as
WebSphere Application Server, which, in turn, communicates with CICS. In this
case you are advised to use WS-Security to implement the identity propagation
between WebSphere Application Server and CICS.

You can also use transport layer encryption (SSL/TLS) to secure the
communication channels. Advanced deployments could make use of a
WebSphere DataPower® appliance to sit between CICS and the external
network.

Simpler deployments might make use of HTTP basic authentication to send a
simple user ID and password to CICS.

Application developers rarely need to be concerned with these issues as the
security is normally implemented in the infrastructure. Typically the systems
programmer will enable identity propagation in WebSphere Application Server
and in CICS, and the applications will run as before. The identity information is
flowed wither as HTTP headers or as SOAP headers without requiring
application changes.

For further information you are advised to refer to the CICS Information Center.
 Chapter 10. Hints and tips 219

10.2 The SOAP fault API

The SOAP specification provides a mechanism by which error diagnostics can
be returned from a provider to a requester. This mechanism is the SOAP fault
message. CICS automatically returns fault messages to requesters in the event
of an application abend or system failure, but SOAP aware provider mode
applications can return application specific fault messages programmatically.

CICS supplies three EXEC CICS commands that can be used to create a SOAP
FAULT message:

� SOAPFAULT CREATE

Creates a new SOAPFAULT object.

� SOAPFAULT ADD

Adds extra information to the current SOAPFAULT object.

� SOAPFAULT DELETE

Deletes the current SOAPFAULT object.

Find more information about these commands in the CICS Information Center.
These CICS APIs require one of the CICS-supplied SOAP handlers to be in the
execution stack at the time the API is driven. This means that the API is not
available to some handler programs in the pipeline, but is available for Web
services. The API also requires that the application programs were linked to
using a Channel.

10.2.1 How to create a SOAP Fault in an application

Example 10-7 shows an application throwing a SOAP fault programatically.

Example 10-7 Example of creating a SOAP fault

dcl msgDetail char(*)
constant('<ati:ExampleFaultxmlns="http://www.example.org/faults"
xmlns:ati="http://www.example.org/faults">Detailed error message goes
here.</ati:ExampleFault>');
dcl msgFaultString char(*) constant('Something went wrong');

EXEC CICS SOAPFAULT
 CREATE CLIENT
 DETAIL(msgDetail) DETAILLENGTH(length(msgDetail))
 FAULTSTRING(msgFaultString)
 FAULTSTRLEN(length(msgFaultString))
 RESP(RESP) RESP2(RESP2);
220 Application Development for CICS Web Services

10.2.2 Parsing SOAP Fault messages in CICS TS V4.1

In this section we consider parsing SOAP fault messages received by a Web
service requesting application in CICS. For most purposes it is sufficient to know
that a fault has been returned. This is indicated by an INVREQ response from the
INVOKE command with a RESP2 value of 6. If you want to access
application-specific diagnostics embedded within the SOAP fault message then
the following technique might be useful.

In CICS TS V3.1 and CICS TS V3.2 you have the option of reading the
DFHWS-BODY container returned by CICS to access the XML representation of
the SOAP fault message. You can then parse the XML data using a mechanism
of your choice.

In CICS TS V4.1 there is a new XML parsing API command you can use to help
in this process. Example 10-8 demonstrates the use of DFHSC2LS and the CICS
TRANSFORM command. The example is included here both as an example of
parsing SOAP fault messages, but also as an example of using the
TRANSFORM command. You could go on to use the TRANSFORM command
for other purposes.

DFHSC2LS
First, use DFHSC2LS to build COBOL bindings for SOAP faults. Start by
down-loading a copy of the XML schema for SOAP Envelopes from here the
following Web page:

http://schemas.xmlsoap.org/soap/envelope/

For example, you could save it to a location in the UNIX file system called
/u/example/source/SOAP11.xsd.

Next, use DFHSC2LS to process the XML schema and create as output a set of
COBOL bindings for the schema, and an XSDBind file in an bundle directory. You
could use JCL similar to the following:

Example 10-8 JCL of DFHSC2LS

//EXAMPLE EXEC DFHSC2LS,
 //INPUT.SYSUT1 DD *
 MAPPING-LEVEL=3.0
 ELEMENTS=Body,Fault
 SCHEMA=/u/example/source/SOAP11.xsd
 LANG=COBOL
 PDSLIB=//EXAMPLE.COBOL.LIBRARY
 PDSMEM=SOAP11
 XSDBIND=SOAP11.xsdbind
 Chapter 10. Hints and tips 221

http://schemas.xmlsoap.org/soap/envelope/

 BUNDLE=/u/example/output/bundle/SOAP11
 LOGFILE=/u/example/output/logfile.log
 */

DFHSC2LS will create several COBOL language structures as shown in
Example 10-9.

Example 10-9 Bindings for the 'Body' of the SOAP Envelope

03 Body.
 06 Body-num PIC S9(9) COMP-5 SYNC.
 06 Body-cont PIC X(16).
01 SOAP1101-Body.
 03 Body-xml-cont PIC X(16).
 03 Body-xmlns-cont PIC X(16).

This language structure contains bindings to allow any number of XML tags to
appear within the SOAP Body. The number of tags found will be stored by CICS
in the Body-num field, and information about the data will be stored by CICS in
the container named by the Body-cont field. Each XML tag from the body will
then have two fields associated with it that provide the XML for the tag in a
container named in Body-xml-cont and the in-scope XML namespace
declarations in a container named in Body-xmlns-cont. See Example 10-10.

Example 10-10 Bindings for the 'Fault' within the Body of a SOAP Envelope

03 Fault.
 06 faultcode-length PIC S9999 COMP-5 SYNC.
 06 faultcode PIC X(255).
 06 faultstring-length PIC S9999 COMP-5 SYNC.
 06 faultstring PIC X(255).
 06 faultactor-num PIC S9(9) COMP-5 SYNC.
 06 faultactor.
 09 faultactor2-length PIC S9999 COMP-5 SYNC.
 09 faultactor2 PIC X(255).
 06 detail3-num PIC S9(9) COMP-5 SYNC.
 06 detail2.
 09 Xdetail-num PIC S9(9) COMP-5 SYNC.
 09 Xdetail-cont PIC X(16).
01 SOAP1102-Xdetail.
 03 detail-xml-cont PIC X(16).
 03 detail-xmlns-cont PIC X(16).
222 Application Development for CICS Web Services

This language structure contains bindings to allow a single SOAP Fault to be
parsed. It provides access to the 'faultcode', 'faultstring' and 'faultactor' fields,
together with structures to map any number of XML tags found within the 'detail'
section of the SOAP Fault.

Install the bundle
The next task is to install the bundle into CICS.

Create and install a BUNDLE definition such as the following:

 BUNDLE: SOAP11
 GROUP: EXAMPLE
 DESCRIPTION: Bundle for mapping SOAP 1.1 SOAP Faults
 BUNDLEDIR: /u/example/output/bundle/SOAP11

The BUNDLEDIR points to the location that was specified using the BUNDLE
parameter of DFHSC2LS. If you run DFHSC2LS on a different z/OS image from
the one used by CICS, you might need to copy the bundle directory to the target
machine. In this case, you can use a different directory path and set the value of
BUNDLEDIR accordingly. The name of the bundle is arbitrary. You can pick
something other than SOAP11 if you prefer.

After installing into CICS you will have a BUNDLE resource called SOAP11 and
an XMLTRANSFORM resource also called SOAP11. The XMLTRANSFORM
name is derived from the value of the XSDBIND parameter of DFHSC2LS.

An Example SOAP fault message
Example 10-11 is an example SOAP fault message that might be found within
the DFHWS-BODY container following an EXEC CICS INVOKE WEBSERVICE
command.

Example 10-11 SOAP fault

<SOAP-ENV:Body>
 <SOAP-ENV:Fault xmlns="">
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>Conversion to SOAP failed</faultstring>
 <detail>
 <CICSFault xmlns="http://www.ibm.com/software/htp/cics/WSFault">
 DFHPI1010 *** XML generation failed. A conversion error
 INVALID_PACKED_DEC) occurred when converting field 'example' for
 WEBSERVICE 'testWebservice'.
 </CICSFault>
 </detail>
 </SOAP-ENV:Fault>
</SOAP-ENV:Body>
 Chapter 10. Hints and tips 223

This example is of a fault message created by CICS when a conversion error
occurs. When this is processed by the TRANSFORM command CICS will set
Body-num to 1 to indicate that there is a single XML tag within the Body tag. It
will also set Body-cont to the name of a Container such as DFHPICC-00000001.

Inside container DFHPICC-00000001 CICS will place the names of two further
container, for example DFHPICC-00000002 and DFHPICC-00000003.

Container DFHPICC-00000002 will contain the first tag from within the body. See
Example 10-12.

Example 10-12 SOAP fault in container DFHPICC-00000002

<SOAP-ENV:Fault xmlns="">
 <faultcode>SOAP-ENV:Server</faultcode>
 <faultstring>Conversion to SOAP failed</faultstring>
 <detail>
 <CICSFault xmlns="http://www.ibm.com/software/htp/cics/WSFault">
 DFHPI1010 *** XML generation failed. A conversion error
 INVALID_PACKED_DEC) occurred when converting field 'example' for
 WEBSERVICE 'testWebservice'.
 </CICSFault>
 </detail>
</SOAP-ENV:Fault>

Container DFHPICC-00000003 will contain any in-scope namespace
declarations. For example:

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

If the DFHPICC-00000002 container is then parsed through a second EXEC
CICS TRANSFORM command, further output will be created by CICS. The
faultcode and faultcode-length fields will be set to SOAP-ENV:Server and 15. The
faultstring and faultstring-length fields will be set to Conversion to SOAP failed
and 25. The faultactor-num field will be set to 0. The detail3-num field will be set
to 1 to indicate that the optional detail tag is present in the fault. The detail2-num
field will be set to 1 to indicate that there is one sub-tag within the optional detail
tag. The detail2-cont field will be set to the name of a container, for example
DFHPICC-00000004.

Container DFHPICC-00000004 will contain the names of two further containers,
for example DFHPICC-00000005 and DFHPICC-00000006.
224 Application Development for CICS Web Services

Container DFHPICC-00000005 will contain the first XML tag found within the
detail section of the SOAPult. In this example it will contain the information shown
in Example 10-13.

Example 10-13 CICSFault in container DFHPICC-00000005

<CICSFault xmlns="http://www.ibm.com/software/htp/cics/WSFault">
DFHPI1010 *** XML generation failed. A conversion error
(INVALID_PACKED_DEC) occurred when converting field 'example' for
WEBSERVICE 'testWebservice'.
</CICSFault>

Container DFHPICC-00000006 will contain the in-scope namespace
declarations. For example:

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Application Code
To implement an application to parse the SOAP Fault you will have to do the
following:

1. Call the TRANSFORM command to query the contents of the DFHWS-BODY
container. For example:

EXEC CICS TRANSFORM XMLTODATA CHANNEL(channel-name)
XMLCONTAINER('DFHWS-BODY') NSCONTAINER('DFHWS-XMLNS')
ELEMNAME(element-name) ELEMNAMELEN(element-name-len) END-EXEC

2. If the element-name is set to Body then parse the container, if not then
something went wrong. To parse the body use the following commands:

EXEC CICS TRANSFORM XMLTODATA CHANNEL(channel-name)
XMLTRANSFORM('SOAP11') XMLCONTAINER('DFHWS-BODY')
NSCONTAINER('DFHWS-XMLNS') DATCONTAINER('PARSEDBODY') END-EXEC
EXEC CICS GET CONTAINER('PARSEDBODY') SET(body-ptr) END-EXEC

3. Address the parsed data. For example:

SET ADDRESS OF Body TO body-ptr

Check Body-num to ensure there is at least one entry in the Body. Assuming
that there is, read the container that lists the details. For example:

EXEC CICS GET CONTAINER(Body-cont) SET(body-cont-ptr) END-EXEC
SET ADDRESS OF SOAP1101-Body TO body-cont-ptr
 Chapter 10. Hints and tips 225

4. Call TRANSFORM a second time to query the first tag from within the Body:

EXEC CICS TRANSFORM XMLTODATA CHANNEL(channel-name)
XMLCONTAINER(Body-xml-cont) NSCONTAINER(Body-xmlns-cont)
ELEMNAME(element-name) ELEMNAMELEN(element-name-len) END-EXEC

5. If the element-name is set to Fault, parse the container:

EXEC CICS TRANSFORM XMLTODATA CHANNEL(channel-name)
XMLTRANSFORM('SOAP11') XMLCONTAINER(Body-xml-cont)
NSCONTAINER(Body-xmlns-cont) DATCONTAINER('PARSEDFAULT') END-EXEC
EXEC CICS GET CONTAINER('PARSEDFAULT') SET(fault-ptr) END-EXEC

6. SET ADDRESS OF Fault TO fault-ptr

You can now query the data from the fault. For example, you might find the
faultstring to be useful. If you want to parse application specific details from the
detail section of the fault, you can do so by building further application-specific
COBOL bindings using DFHSC2LS and issuing further TRANSFORM
commands in the application.

Optional: Editing the Schema
Advanced users could consider editing the XML schema in such a way as to
simplify the application code that is required. The XML schema currently
describes a SOAP Body tag as in Example 10-14.

Example 10-14 current schema of SOAP Body

<xs:complexType name="Body" >
<xs:sequence>
<xs:any namespace="##any" minOccurs="0" maxOccurs="unbounded"
processContents="lax" />
</xs:sequence>
...
</xs:complexType>

You could change this so that it explicitly claims to hold a single SOAP Fault as in
Example 10-15 on page 227.

Note: It is valid to combine steps 1 and 2 into a single TRANSFORM
command. Similarly steps 5 and 6 can be combined.
226 Application Development for CICS Web Services

Example 10-15 edited schema of SOAP Body

<xs:complexType name="Body" >
<xs:sequence>
<xs:element ref="tns:Fault"/>
</xs:sequence>
...
</xs:complexType>

If you process the edited XML schema with DFHSC2LS, you will get a simpler set
of language structures created with less container-based indirection. The
application code will therefore be simpler and could be written with a single call to
the TRANSFORM command.

10.3 Handling variably recurring XML elements

WSDL enables a Web service to define any xsd:element as being optional. It
also allows for elements to appear multiple times. Elements that might appear an
undefined number of times are known as variably recurring elements. Because
the number of occurrences of the data that will be present in a SOAP message is
not known until the request is received by CICS, writing an application program to
access all occurrences of the element can be difficult.

There are two major mechanisms for handling variably recurring data top-down.
The first is to use a technique that became available at mapping level 2.1 called
in-lineing. The second is to used a mechanism based around CICS containers.

10.3.1 In-lined variably recurring data

In this scenario DFHWS2LS maps the variably recurring data into a simple array
together with a num field to indicate the number of instances of the data that are
actually present.

The application program can the access the instance of the data as they would a
normal array, with the restriction that the num field must be used appropriately.

To use in-lineing you have to set a value for the INLINE-MAXOCCURS-LIMIT
parameter of DFHWS2LS. This parameter was introduced at mapping level 2.1
and it indicates which values of maxOccurs to in-line. It defaults to a value of 1,
indicating that optional fields should be in-lined, but nothing else. You can
increase the value to in-line a greater number of variably recurring elements.
 Chapter 10. Hints and tips 227

Figure 10-1 shows a fragment of a WSDL document viewed in RDz. It includes
an xsd:element called recs that can be used anywhere from one to 10 times. The
data therefore can consist of at least one instance and it can have 10 instances
at most.

Figure 10-1 In-line mapping example - WSDL

If DFHWS2LS is used with an INLINE-MAXOCCURS-LIMIT value set to at least
10, the following COBOL language structure is generated, as shown in
Figure 10-2.

Figure 10-2 In-line mapping example - generated Cobol structure

You can see that an array has been allocated sufficient to hold 10 instances of
the data. In this example, each instance of the data is only 80 bytes long. But in
real WSDL individual data instances might be much longer, in which case you
228 Application Development for CICS Web Services

should think carefully about whether in-lining the data is a good idea. If, for
example, each instance of the data is a one MB in size, in-lineing up to 10
instances will result in a lot of storage being allocated, even if only a single
instance is normally used.

Furthermore, if the WSDL specified maxOccurs=”unbounded” then in-lineing the
data is not an option. In this case, the container based strategy is used.

10.3.2 Container based variably recurring data: inbound

The fragment of WSDL in Example 10-16 defines an element of type s:string
called name that optionally might appear in the SOAP message.

Example 10-16 Defining an optional element

<s:element name=”name” type=”s:string” minOccurs=”0” maxOccurs=”1”>

When DFHWS2LS parses this element declaration without in-lineing being
active, it places two fields in the generated language structure. Example 10-17
shows the output for the C / C++ language.

Example 10-17 Output from DFHWS2LS for variable cardinality element

int name_num;
char name_cont[16];

The first variable references how many occurrences of the element name were
found in the input message. The second variable gives the name of the container
where the occurrences of the element were stored.

Where we are just using an optional element, we can use the numeric variable to
test whether the optional element was included in the input message. If the
variable is set to 1, the optional element was sent and the data value was placed
in a container. The second variable holds the name of this container.

Example 10-18 declares an instance of the structure generated by DFHWS2LS,
then uses that to hold a local copy of the data in the container.

Example 10-18 Accessing an optional element

struct Name
{

char name[255];
}

struct Name myName;
 Chapter 10. Hints and tips 229

if(name_num == 1)
{

EXEC CICS GET CONTAINER(name_cont)
NODATA
FLENGTH(length);

EXEC CICS GET CONTAINER(name_cont)
INTO(&name)
FLENGTH(length);

}

sprintf(message, “value of optional element name was
%.255s”,myName.name);

The maxOccurs and minOccurs attributes can also be used to define an array of
elements that can have a maximum number of elements. The WSDL extract in
Example 10-19 redefines the name element to be an unbounded array.

Example 10-19 Defining a variable cardinality element

<s:element name=”name” type=”s:string” minOccurs=”0”
maxOccurs=”unbounded”>

At run time, CICS will take all instances of the element name that were sent on
the request, concatenate them, and place the concatenation into a single
container. The Web service then has to navigate this structure. One method of
doing this is to use pointer arithmetic to access all data items in the container.

In Example 10-20, instead of declaring a single instance of the structure we
declare a pointer of the type structure and set it to the address of the container
that is used to store the concatenation. This enables us to navigate through the
whole structure easily.

Example 10-20 Processing an optional element in C

struct Name
{

char name[255];
}

struct Name*names;
int counter = 0;
char current_name[255];

if(name_num > 0)
230 Application Development for CICS Web Services

{
/*If a collection of names was sent process them*/
EXEC CICS GET CONTAINER(name_cont)
NODATA
FLENGTH(length);

EXEC CICS GET CONTAINER(name_cont)
SET(names)
FLENGTH(length);

/*For each name sent print it out*/
for(counter=0;counter<name_num;counter++)
{

memcpy(current_name,names(counter).name,255);
sprintf(message, “value of name %.255s”,names(counter).name);

}
}

Example 10-21 shows a similar technique in COBOL.

Example 10-21 Processing an optional element in COBOL

WORKING-STORAGE SECTION.
 01 W-S-VARIABLES.
 03 NAME-PTR USAGE IS POINTER.
 03 X-PTR USAGE IS POINTER.
 03 IX PIC S9(8) COMP-4 VALUE 1.
 03 ITEM-COUNT PIC S9(9) COMP-4 VALUE 0.
*
 LINKAGE SECTION.
 01 X PIC X(659999).
*
 01 NAME.
 05 productName PIC X(255).
*
 EXEC CICS GET CONTAINER(NAME-cont OF WS-STARTI)
 SET(NAME-PTR)
 FLENGTH(NAME-FLENGTH)
 RESP(RESP)
 RESP2(RESP2)
 END-EXEC.
*
* Get addressability to NAME-cont
 SET ADDRESS OF X TO NAME-PTR
 SET ADDRESS OF NAME TO ADDRESS OF X
 Chapter 10. Hints and tips 231

*
* Work through NAME-cont processing the data fields within
* each NAME record
*
 PERFORM WITH TEST AFTER
 UNTIL NAME-COUNT = NAME-num OF WS-STARTI
**
* Display productName field

 DISPLAY 'productname is now: ' productName
*
* Move to the next NAME record
 ADD LENGTH OF NAME TO IX

SET NAME-PTR TO ADDRESS OF X(IX:1)
 SET ADDRESS OF NAME TO NAME-PTR
 ADD 1 TO NAME-COUNT
 END-PERFORM.

10.3.3 Container based variably recurring data: outbound

When creating a Web service that will use an outbound list of elements or
optional elements, all instances of the element must be concatenated and placed
into a new container on the current channel. The container used to hold the
concatenation must have a unique name on the channel. The name can be any
16-character string. However, it must not start with “DFH” as names beginning
with these characters are reserved for CICS. After the container has been
populated, the element_cont / element_num fields declared in the language
structure created by the Web Services Assistant must be populated to allow
CICS to parse the container data into a SOAP message. Example 10-22 shows a
method that generates five instances of the name element and places them in a
container.

Example 10-22 Global function to generate unique container names

char* generate_names()
{
 struct Name *names;
 int counter = 0;
 char name_container[16];

 /*Generate 5 name structures and place them in a container*/
 /*Allocate storage for 5 concatenated Name strucutres*/
 names = (struct Name*) calloc(5,sizeof(struct Name));
 /*Populate the names with data*/
 strcpy(names[0].name,"Test_User");
232 Application Development for CICS Web Services

 strcpy(names[1].name,"Another_User");
 /*...etc...*/

 /*Using a global function to generate a unique container name*/
 memcpy(name_container,get_container_name(),16);

 /*Add the concatenation to a container*/
 EXEC CICS PUT CONTAINER(name_container)
 FROM(names)
 FLENGTH(sizeof(struct Name) * 5);

 /*populate the name_cont and name_num variables*/
 memcpy(name_cont,name_container,16);
 name_num = 5;
}

10.4 Handling undefined XML (xsd:any)

Some WSDL documents allow sections of arbitrary well-formed XML to be
included within the application data. For example, you could embed an XHTML
document within the body of the SOAP message. Where this technique is used
the WSDL will use either an xsd:any tag, or an xsd:anyType data type.

Prior to mapping level 2.1, DFHWS2LS did not support these constructs. At
mapping level 2.1 they are supported using a pass-through technique that allows
the application to handle that subset of the SOAP directly as XML.

For example, consider the fragment of WSDL viewed in RDz shown in
Figure 10-3 on page 234. It specifies an optional undefined XML tag might
appear on the end of an xsd:sequence. This is a technique that can be used to
support future evolution of the WSDL. If version 2 can add something specific to
the end of the list, the resultant SOAP message will still validate with respect to
the original WSDL.
 Chapter 10. Hints and tips 233

Figure 10-3 A fragment of WSDL with an optional xsd:any

The language structures generated by DFHWS2LS are as shown in Figure 10-4.

Figure 10-4 Generated language structures for xsd:any
234 Application Development for CICS Web Services

In this example two significant fields have been generated:

� Customer-xml-cont PIC X(16)

This field indicates the name of the container in which the associated XML
can be found.

� Customer-xmlns-cont PIC X(16).

This field indicates the name of a container in which any in-scope XML
namespace prefix declarations can be found. If the XML in the first container
is not self contained, you might need namespace prefixes from the second
container to understand the XML.

An application that wants to understand the contents of these containers might
do so with the EXEC CICS TRANSFORM command in CICS TS V4.1. It provides
a mechanism that is suited to parsing or generating the XML in these containers.

10.5 Handling enumerated XML constructs

Certain constructs in the XML schema definition language are interpreted by
DFHWS2LS at mapping level 2.2 and above as having enumerated content
models. This means that there are a fixed number of possible options, only one
of which can actually used. For example, the xsd:choice construct indicates a set
of options, but only one of the options can be used.

When DFHWS2LS parses xsd:choice constructs at mapping level 2.2 or above, it
places two fields in the generated language structure. Example 10-23 shows the
output for the C / C++ language.

Example 10-23 Output from DFHWS2LS for xsd:choice at mapping level 2.2

char name_enum;
char name_cont[16];

The first variable indicates which of the possible options is used, the second
variable gives the name of the container where the application data associated
with that option can be found.
 Chapter 10. Hints and tips 235

Figure 10-5 shows how we use DFHWS2LS at mapping level 2.2 to generate a
COBOL language structure from an XML <xsd:choice> construct with two
options.

Figure 10-5 WSDL - <xsd:choice> element

The ridData-enum field indicates which option from a set of possible values is
being used. The associated value is stored in the container referenced in
ridData-cont. A value of X'00' indicates no content. A value of X'01' indicates an
instance of structure inlinI01-ridfld1. A value of X'02' indicates an instance of
structure inlinI01-ridfld2. See Figure 10-6.

Figure 10-6 Generated COBOL language structures for xsd:choice
236 Application Development for CICS Web Services

Other constructs from XML that are handled in a similar way. This includes:

� Substitution groups

This is an advanced concept that allows an xsd:element to be substituted with
any other xsd:element from a specific set of options.

� Abstract data types

This is an object orientated concept where the schema references an abstract
parent data type, but where one of a set of child data types will actually be
used in the SOAP messages.

In all of these scenarios, DFHWS2LS generates language structures to map the
individual options, and an enum field to indicate which option is actually used.

10.6 Modifying generated WSDL

If you are unsatisfied with the WSDL bindings for an application that has been
processed using DFHLS2WS, a useful technique is to edit the generated WSDL
until it matches your expectations. You can then reprocess that WSDL using
DFHWS2LS, and potentially write a wrapper program to map data between the
new generated language structures, and the original ones.

In the following example we use this technique to demonstrate how individual
fields within a language structure can be mapped as xsd:base64Binary data
rather than xsd:string data. This makes those fields eligible for optimization using
the MTOM/XOP protocol in CICS TS V3.2.

10.6.1 Background to MTOM/XOP

If MTOM is enabled, some SOAP messages that contain binary data might be
processed faster in the PIPELINE and on the network than would otherwise be
the case. In standard SOAP messages, any binary data that is sent (such as an
image file) is encoded using a representation called base64 encoding. This
representation increases the size of the binary data and can impact transmission
time.

Enabling MTOM/XOP in the pipeline reduces the size of SOAP messages that
contain base64 encoded data. The SOAP Message Transmission Optimization
Mechanism (MTOM) and XML-binary Optimized Packaging (XOP) specifications,
(often referred to as MTOM/XOP) define a method for optimizing the
transmission of large xsd:base64Binary data objects within SOAP messages.
The MTOM specification conceptually defines a method for optimizing SOAP
messages by separating out binary data that would otherwise be base64
 Chapter 10. Hints and tips 237

encoded, and sending it in separate binary attachments using a MIME
Multipart/Related message. This type of MIME message is called an MTOM
message.

Sending the data in binary format reduces its size, optimizing the transmission of
the SOAP message. The XOP specification defines an implementation for
optimizing XML messages using binary attachments in a packaging format that
includes, but is not limited to, MIME messages. The size of the base64binary
data is reduced because the attachments are encoded in binary format. The
XML in the SOAP message is converted to XOP format by replacing the
base64binary data with a special <xop:Include> element that references the
relevant MIME attachment using a URI.

Measurements show that sending large binary fields as MTOM/XOP attachments
offers significant performance improvements in CICS compared to using ordinary
xsd:base64Binary data. The size of the XML part of the data is smaller, so there
is a lot less data for CICS to parse through searching for XML markup.

However, use of MTOM/XOP does require that the partner process must also
understand this protocol. There are some scenarios where enabling MTOM/XOP
is not advisable. Refer to the CICS Information Center for further details.

10.6.2 Support for xsd:base64Binary and MTOM/XOP

If your WSDL documents contain fields defined with type xsd:base64Binary, and
if you use DFHWS2LS at mapping level 1.2 or higher, then you are eligible for the
MTOM/XOP optimisations.

If you are using DFHLS2WS and want to treat all of the text fields as binary data
(and thereby make them eligible for MTOM/XOP optimisation), do so by
specifying CHAR-VARYING=BINARY as a parameter in DFHLS2WS. However, if
you are using DFHLS2WS and only want to treat a single field as having binary
content then you will have to use the following more complicated technique.

10.6.3 Mapping a single field as binary data with DFHLS2WS

If you have an application that you want to enable as a Web service and use a
binary mapping for a single field, you should perform the following steps:

1. Run DFHLS2WS to generate the WSDL as normal;

2. Modify the WSDL so that the field in question specifies data type
xsd:base64Binary;

3. Run DFHWS2LS on the generated WSDL to generate a WSBind file and
language structures;
238 Application Development for CICS Web Services

4. Review the generated language structures to ensure that they are compatible
with the original language structures. In this scenario it is likely that they will
be. In which case no further action is required.

5. If the new language structures are not compatible with the original language
structures, either modify the existing program, or implement a wrapper
program that maps between the new and old data formats.

The scenario in Example 10-24 demonstrates how to generate a WSBind file that
can be used to interpret base64Binary data. We use the Cobol data structure as
shown in the following example to generate a WSDL using DFHLS2WS. We
intend to move a maximum of 60000 bytes of binary data to the imgData field.

Example 10-24 COBOL structure

01 ws-data.
 03 cafld1 PIC X(15).
 03 cafld2 PIC X(15).
 03 cafld3 PIC X(6).
 03 imglength PIC X(8).
 03 imgData PIC X(60000).

After running DFHLS2WS, the generated WSDL contains the imgData element
which is defined as an element of type xsd:string. See Example 10-25.

Example 10-25 Binary field imgData after running DFHLS2WS

<xsd:element name="imgData" nillable="false">
<xsd:simpleType>

<xsd:annotation>
:::::
:::::

</xsd:annotation>
<xsd:restriction base="xsd:string">

<xsd:maxLength value="60000"/>
<xsd:whiteSpace value="collapse"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
 Chapter 10. Hints and tips 239

To generate a WSBind file that can interpret the element as base64Binary, We
modified the WSDL as shown in Example 10-26.

Example 10-26 Modified binary field imgData

<xsd:element name="imgData" nillable="false">
<xsd:simpleType>

<xsd:annotation>
:::::
:::::

</xsd:annotation>
<xsd:restriction base="xsd:base64Binary">

<xsd:maxLength value="60000"/>
<xsd:whiteSpace value="collapse"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

We then reprocess the WSDL using DFHWS2LS.

10.6.4 Handling variable length values and white space

A common requirement is to process variable length values as part of your SOAP
messages. For example, if you have a field whose content might vary in size from
zero bytes to 1 Mb, you will not want an every message to be padded to the
maximum length with spaces.

There are several characteristics of WSDL that need to be considered when
discussing this problem.

maxLength, minLength, and length facets
An XML Schema facet identifies a specific type of restriction to apply to a data
type. The technical definition of these facets can be read in the XML Schema
specification at the following Web page:

http://www.w3.org/TR/xmlschema-2/#rf-facets

The facets are used to restrict the range of values for a data type. If the length
facet is specified for a data type, that data type is of fixed length. If the
maxLength facet is supplied, there is a maximum length for the data type.
Similarly, if a minLength is specified, there is a minimum length for the data type.

If none of these facets are set then a String based data type is considered to
have an unbounded maximum length and a minimum length of 0. See
Example 10-27 on page 241.
240 Application Development for CICS Web Services

http://www.w3.org/TR/xmlschema-2/#rf-facets

Example 10-27 A string with a maximum length specified

<xsd:element name="thing">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:maxLength value="3000"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

In Example 10-27 an xsd:element called thing has been defined with a data type
derived from xsd:string. A maximum length of 3000 characters has been
specified.

whiteSpace facet
The whiteSpace facet is used to define the desired behavior with respect to white
space around a data value. There are three possible values for this facet,
preserve, replace, and collapse. The definition for this facet is available at the
following Web page:

http://www.w3.org/TR/xmlschema-2/#rf-whiteSpace

If a value of preserve is used, any spaces, tabs, new lines, and so forth, within
the value are considered to be deliberate. If a value of replace is used, tabs and
new lines are replaced with an appropriate number of spaces. If a value of
collapse is used, leading and trailing white space is removed.

A value of preserve is implied if the WSDL does not specify a value for this facet.
See Example 10-28.

Example 10-28 A string with ‘collapse’ processing for white space

<xsd:element name="thing2">
<xsd:simpleType>

<xsd:restriction base="xsd:string">
<xsd:maxLength value="3000"/>
<xsd:whiteSpace value="collapse"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>

In Example 10-28, an xsd:element called thing2 has been defined that has the
same definition as the thing in Example 10-27, but the WSDL author has
specified that white space within the XML tag at runtime should be collapsed.
 Chapter 10. Hints and tips 241

http://www.w3.org/TR/xmlschema-2/#rf-whiteSpace

Null characters (x'00') are not valid in XML
XML documents are not allowed to contain null values. This is a general
requirement in all XML documents including SOAP messages. If at runtime CICS
is asked to include a text value within a generated SOAP message that includes
a null character, CICS will treat that character as the end of the string and the
value will be truncated.

This is true for all values of the whiteSpace, length, minLength, and maxLength
facets. Care must be taken if a variable length mapping strategy is used and the
text strings might contain null characters.

How DFHWS2LS handles variable length values
The behavior of DFHWS2LS with respect to variable length values can be
changed using input parameters at mapping level 1.2 or higher.

Three issues that must be considered are the default maximum string length
imposed by DFHWS2LS if such a length is not specified in the WSDL, the
mapping of variable length values into CICS containers, and the mapping of
variable length values into fixed length character arrays.

� The default maximum string length

DFHWS2LS requires that all xsd:strings defined in the WSDL have a
maximum length. If the WSDL does not specify a maximum length,
DFHWS2LS imposes one. By default this maximum length is set to 255
characters.

The default maximum length imposed by DFHWS2LS is configurable using
the DEFAULT-CHAR-MAXLENGTH input parameter. If you would prefer a
default maximum length of 20 characters then you could specify
DEFAULT-CHAR-MAXLENGTH=20. If you would like a default maximum
length of 2K then you could set DEFAULT-CHAR-MAXLENGTH=2048.

In general it is best to specify in the WSDL the precise maximum character
length you would like DFHWS2LS to use as this avoids the problem of having
one global default being applied to all xsd:string based data types. It also
avoids the runtime problem of a partner process sending a data value to CICS
which is longer than the maximum data length imposed by DFHWS2LS.

You can specify maxLength="unbounded" in the WSDL to indicate that there
really is no theoretical maximum length to the String.
242 Application Development for CICS Web Services

� Mapping variable length values into a CICS container

You can tell CICS to use a container for storing variable length xsd:string
values. CICS does this automatically for xsd:strings which are known to have
a maximum length greater than 32K characters (at mapping level 1.1 and
above). CICS containers are a convenient way to address long variable length
values.

You can specify the threshold at which this container based mapping is used
by setting a value for the CHAR-VARYING-LIMIT parameter. For example, if
you want all variable length xsd:strings with maximum lengths of 255 or
greater to be mapped into CICS containers then you would do so by
specifying CHAR-VARYING-LIMIT=255. You can, for example, combine this
parameter with the DEFAULT-CHAR-MAXLENGTH parameter to specify that
all xsd:strings with an unspecified maximum length are mapped into CICS
containers.

If the container mapping is used then a language structure is created by
DFHWS2LS with a field for the container name to be stored.

The container used must always be read from and written to in BIT mode.

� Fixed Length mappings for variable length Strings

There are three different mechanisms available that DFHWS2LS can use for
mapping variable length values to fixed length character arrays. These
mechanisms are most appropriate where the maximum length of the
xsd:string is known to be relatively short, therefore causing low overhead in
terms of wasted space in storage.

These mechanisms are: basic fixed length character arrays; null terminated
character arrays and 'varying' character arrays. You can select which one is
used by setting a value for the CHAR-VARYING parameter.

– Basic fixed length character arrays

These are often the default at lower mapping levels. DFHWS2LS allocates
a field within the language structure based on the maximum length of the
xsd:string (as defaulted using the DEFAULT-CHAR-MAXLENGTH
parameter). At runtime CICS will pad the value that arrives on the wire with
spaces to fill this field. If the value that arrives on the wire is too large for
the field then a conversion error is reported.

For outbound communication the application should place a value into the
character array and either null terminate the value or pad it with spaces. If
the value of the whiteSpace facet was 'collapse' then CICS will remove
any trailing white space. If the field was null terminated then CICS will
truncate the value at the first null.

You can specifically request this variable length mapping strategy by
specifying the CHAR-VARYING=NO input parameter.
 Chapter 10. Hints and tips 243

– Null terminated character arrays

In this scenario DFHWS2LS behaves in a similar way as for fixed length
character arrays, but CICS will add a null terminator to the end of the data
in any character array it populates. The application program can therefore
recognize the end of the significant data. For example, the application can
detect white space that is deliberately present due to the use of the
whiteSpace="preserve" facet.

For outbound communication the application must null terminate any
character arrays it populates.

You can specifically request this variable length mapping strategy by
specifying the CHAR-VARYING=NULL input parameter.

– Varying character arrays

DFHWS2LS can produce character arrays that are prefixed with an explicit
length field that is used to identify the significant characters from the fixed
length buffer. This format of representation is particularly common in PL/I.

You can specifically request this variable length mapping strategy by
specifying the CHAR-VARYING=YES input parameter.

If this mapping strategy is used then CICS will generate SOAP messages
that contain the requested number of characters for the field. This
mapping strategy usually results in the best performance as there is no
need to scan the text fields to identify the significant characters.

The choice of which variable length mapping strategies to use is mostly a matter
of application development strategy. In general it is a good idea to specify both
the whiteSpace and maxLength facets in your WSDL documents for each
xsd:element as the defaults might not be appropriate, and to set a value for the
CHAR-VARYING-LIMIT input parameter.

How DFHLS2WS handles variable length values
DFHLS2WS has fewer options for processing variable length values. The most
common technique in COBOL for defining variable length values is to use the
OCCURS DEPENDING ON data type, but this is not supported by DFHLS2WS.
By default CICS treats all character arrays as fixed length. As with the equivalent
DFHWS2LS scenario, if the application null terminates any character arrays
used, CICS will truncate values at the null character rather than including any
padding characters in the outbound SOAP messages.

You can specify CHAR-VARYING=NULL under DFHLS2WS so that CICS will
always treat character arrays as being null terminated. If you use this option, the
maximum length of the field is effectively one character less than specified as the
null terminator takes up one character.
244 Application Development for CICS Web Services

There is a further options available at mapping level 2.1. You can specify a value
of CHAR-VARYING=COLLAPSE. This tells CICS to remove automatically any
trailing spaces from the end of character arrays when generating XML. This is the
default value of the CHAR-VARYING option at mapping level 2.1 for all
programming languages other than C and C++.

10.7 WSDL types not supported by DFHWS2LS

Although the Web Services Assistant will accept most WSDL documents, some
elements of WSDL are not accepted or are ignored. This section will introduce
several techniques that can be used if DFHWS2LS rejects your WSDL.

Start by validating the WSDL. Sometimes DFHWS2LS rejects a document
because there is something subtly wrong with it. RDz and Eclipse are both good
at doing WSDL validation.

Make sure that the most recent mapping level is being used. On CICS TS V3.1
this means mapping level 1.2. On CICS TS V3.2 this means mapping level 2.2.
For CICS TS V4.1 this means mapping level 3.0. Many elements that are not
supported in CICS TS V3.1 are supported in CICS TS V3.2 or CICS TS V4.1, so
in some cases, an upgrade to a new version of CICS might be advisable.

Look at modifying a local copy of the WSDL to work around problematic
constructs. In CICS TS V3.2 and above a good technique is to replace
unsupported constructs with xsd:any or xsd:anyType fields. That passes the
problem of parsing and generating the problematic XML to the application, but at
least the application only has to parse the subset of the XML that CICS does not
support. Example 10-29 show an element which is not supported.

Example 10-29 minOccurs and maxOccurs in <xsd:sequence> element

<xsd:element name="testElement1">
<xsd:complexType>
 <xsd:sequence minOccurs="2" maxOccurs="5">
 <xsd:element name="shipTo" type="xsd:string""/>
 <xsd:element name="billTo" type="xsd:string"/>
 </xsd:sequence>
</xsd:complexType>
</xsd:element>
 Chapter 10. Hints and tips 245

The use of minOccurs and maxOccurs attributes are not supported for the
<xsd:sequence> element. The exceptions to this rule are when minOccurs="0"
and maxOccurs="1" or minOccurs="1" and maxOccurs="1". In Example 10-30,
we can use <xsd:anytype> to replace the unsupported constructs.

Example 10-30 Valid WSDL

<xsd:element name="testElement1" type="xsd:anyType"">
</xsd:element>

Another approach is rewriting the WSDL using supported elements.
Example 10-31 show a nested <xsd:choice> that is not supported by
DFHWS2LS.

Example 10-31 nested choice

<xsd:choice>
 <xsd:element name ="name1" type="string"/>
 <xsd:choice>
 <xsd:element name ="name2a" type="string"/>
 <xsd:element name ="name2b" type="string"/>
 </xsd:choice>
</xsd:choice>

We can change the WSDL as shown in Example 10-32. These two WSDL
fragments are equivalent.

Example 10-32 valid WSDL

<xsd:choice>
 <xsd:element name ="name1" type="string"/>
<xsd:element name ="name2a" type="string"/>
<xsd:element name ="name2b" type="string"/>
</xsd:choice>

You can also use this approach to add restrictions that would not otherwise have
been present such as setting the maxLength for xsd:strings to something
sensible.

If modifying the WSDL is not acceptable or is not possible, you should consider
writing applications that work directly with the XML. For example, you can create
your own XML-aware Web service applications.

For the detailed information about how to do this, refer to the following Web page:

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/
com.ibm.cics.ts.webservices.doc/tasks/dfhws_creating_xmlapps.html
246 Application Development for CICS Web Services

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.webservices.doc/tasks/dfhws_creating_xmlapps.html
https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.webservices.doc/tasks/dfhws_creating_xmlapps.html

An important variant of this concept is to use Java in CICS to handle the XML.
This idea is discussed on the following Web page:

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/
com.ibm.cics.ts.webservices.doc/concepts/javacics.html

If these are not acceptable, it might be necessary to host a transformative
technology off-platform that can map between the original WSDL and something
CICS can support. This could involve having a simpler Web service hosted in
CICS, and a mapping technology in one of the broker products such as WESB,
WMB, or DataPower.

10.8 Problem determination

While preparing material for this publication, we discovered user faults that
caused errors. In this section we outline problems that you might discover and
the relevant solutions.

10.8.1 Problems using DFHWS2LS and DFHLS2WS

When using the Web Services Assistants DFHWS2LS and DFHLS2WS, several
errors might occur. This section includes some of the most common errors and
solutions to fix the problem.

If OMVSEX fails with a return code of 127 and the following error is seen:

FSUM7351 not found

The IBM LookAt tool can be used to get further diagnostic information from this
error message. The LookAt tool can be found at the following Web page:

http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

Note: In scenarios where CICS is a requester and the response comes back
with large volumes of superfluous data that would otherwise be ignored in
CICS, this is a good technique for stripping the bloat from the XML before
passing the useful data on to CICS.
 Chapter 10. Hints and tips 247

https://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.webservices.doc/concepts/javacics.html
http://www.ibm.com/servers/eserver/zseries/zos/bkserv/lookat/

In this case the definition in Example 10-33 is given in response to the error
code.

Example 10-33 Response from LookAt tool

Explanation: You attempted to execute a command that could not be
found.

User Response: Ensure that the command exists and that the PATH
environment variable is valid.

This error states that the PATH environment variable is invalid. Because the Web
Services Assistant is a Java program, more paths have to be correct for the
program to run.

In some situations, the line numbers along the right column of the JCL job card
can be passed to the Java program, which will attempt to use them as part of the
input parameters. This underlying fault can result in different error codes.
Sometimes JES will truncate the characters after column 72. In this situation the
job will run and only result in a return code of 4 in the OMVSEX step. Another
result that stems from the same problem is if the Java program throws a
java.lang.IllegalArgumentException when attempting to parse a parameter that
has line numbers attached to the end of the parameter. This problem can be
resolved by setting NUMBERS OFF in your JCL profile.

The user ID under which the Web Services Assistant job runs must be defined to
OMVS and have read access to HFS and write access to the directory specified
on the LOGFILE parm. Because the assistants are Java programs, the user ID
must have a large enough storage allocation to run Java.

Neither of the Web Services Assistant programs lock the temporary HFS files
that they create. Therefore a batch of these jobs cannot be run in parallel and
must be run sequentially. Failure to do this can cause undocumented errors.

10.8.2 Using the execution diagnostic facility to debug Web services

CEDX can be used to debug a request as it is processed by CICS. To turn on the
execution diagnostic facility to debug Web services, use the CEDX CPIH,ON
command.

The CPIH transaction is the CICS inbound HTTP inbound routing transaction, so
it is run when CICS is servicing an inbound Web service over the HTTP
transport. After the command above has been issued, any inbound Web service
request can be debugged. CEDX will debug all EXEC CICS commands in any
custom message handlers that are executed and the terminal application
248 Application Development for CICS Web Services

program. Although only EXEC CICS commands are shown during the debug
session, this is useful to see the flow of execution through message handlers.

When you have finished debugging your Web service, turn off CEDX using
CEDX CPIH,OFF.

10.8.3 Debugging CICS SFR applications

When using Service Flow Modeler-deployed flows in CICS Integrator Adapter
runtime, the following debugging points might help provide diagnostic
information.

The CICS SFR properties file contains information relating to each adapter
deployed within the CICS SFR environment. This file is updated each time a new
adapter is deployed through a JCL job run by JES that executes DFHMAMUP,
which adds a record to the properties file (DFHMAMPF). The contents of this file
can be used to ensure that the parameters used to run the deployed service are
correct. JCL job DFHMAMPD dumps the contents of the properties file. Each
record in the file corresponds to a particular service adapter that has been
deployed within the CICS SFR environment. Figure 10-7 shows the output from
job DFHMAMPD.

Figure 10-7 Sample CICS SFR property file dump

The CICS Integrator Adapter Error Listener load module (DFHMAERQ) is
triggered whenever an error message is written to intrapartition transient data
queue CMAQ and writes to the CICS SFR error file (DFHMAERF). This file
contains information about the cause of the error and the specific error code. An
error is written only if CICS SFR has encountered an error running the deployed
adapter. An error will not be written if the deployed service ran correctly but the
data was unexpected. The contents of the error file can be dumped by using
sample JCL job DFHMAMED, which runs module DFHMAEUP. To ensure that all
data has been flushed to the error file before running the dump JCL, it is
recommended that you close and re-open the error file definition inside CICS.
Figure 10-8 on page 250 shows a dump from the CICS SFR error file.

Property type: R (Request properties) Name: MAIVPREQ Version: 2
Request type: 1 (Sync) Nav/Init name: DFHMAIP1 Nav/Init transid: CMA5 Type: 0 (Navigator)
Persistence: 1 (Yes) XML parse name: Deployment: 2 (COMPLEX)

Property type: R (Request properties) Name: NCDPLAA Version: 2
Request type: 0 (Async) Nav/Init name: NCDPLAN Nav/Init transid: NDAN Type: 0 (Navigator)
Persistence: 1 (Yes) XML parse name: Deployment: 2 (COMPLEX)
 Chapter 10. Hints and tips 249

Figure 10-8 Sample CICS SFR error file dump

The error field is a key area of interest in this dump file. This field defines the
CICS SFR error code that has caused the deployed flow to fail. The full list of
CICS SFR error codes can be found in the CICS Integrator Adapter for z/OS Run
Time User’s Guide and Reference, SC34-5899-05. The program field shows
which program CICS SFR was executing when the failure happened.

Some of the most common error messages are:

� CIA01001E

This designates a VSAM file read error. The most common reason for this is
that DFHMADPL has attempted to read the properties file (DFHMAMPF) for a
misspelled request name. This can be verified by checking that the program
field in the error dump reads DFHMADPL and the file being read is
DFHMADPL. The error dump also shows the value used in the file read
operation.

� CIA03001E

This error message means that an EXEC CICS LINK to the resource being
modelled in the deployed flow has failed. A common reason is an incorrect
SYSID value in the property file. Check the TYPE=2 PARM02 value in the
property file to ensure that it is set to the system ID that is hosting the DPL
application.

Because CICS SFR uses Business Transaction Services to process requests,
the BTS audit level feature can be used to provide further diagnostic information.
Each CICS SFR request runs under a BTS process type. This is defined at
runtime in the CICS SFR DFHMAH header field DFHMAH-PROCESSTYPE. The
process type defined in the header also must have been defined to CICS. This
can be done using CEDA DEFINE PROCESSTYPE.

Processed: Date: 07/07/05 Time: 11:14:54: PutApplid: PutTranid:
 Error: CIA08002E Normal processing

 Userid: CICSUSER Applid: IYK3ZWY1 Tranid: CKBP Eibtaskn: 0000271 AbsTime: 003329723694270
 Request: MAIVPREQ Mode: Sync Program: DFHMADPL Type: System
 Activity: Node Name:
 Event: Event type: None Step: MAIN
 Proctype: DFHMAINA Process: CICSUSER0000271003329723694270
Failed Processtype: Failed Process:
 ReplyToQ: ReplyToQMgr:
 MQ MsgId: MQ CorrelId:

Error detail: Application
250 Application Development for CICS Web Services

Within the CICS definition an audit level variable is set. Possible values are:

� Activity
� Full
� Process
� None

If an audit level other than none is specified, audit log records are written to an
MVS logstream by the CICS Log Manager. You can read the records offline using
the CICS audit trail utility program (DFHATUP). A sample job, DFHMABAP, is
provided to run this program.

You might want to consider defining a specific process type for debug use and
another for use within an production environment.

Another way to debug a deployed flow is to check the use counts of all generated
programs before and after flow execution. This will enable you to track the
execution of the flow and establish where in the flow the error is happening.
When the failing module is known, it can be useful to run that application using
the debug facility CEDF for further diagnostic information.

10.8.4 Runtime SOAP validation

Each Web service that is deployed onto CICS through the Web Services
Assistant performs simple validation of each SOAP request before it is parsed
and the data transformed into the language structure. This validation checks that
the SOAP request is a well-formed XML document. Any SOAP request that fails
this validation will be refused by CICS. It is possible for CICS to validate each
SOAP request against the WSDL schema. Because the WSDL schema defines
the syntax of a valid SOAP request, such validation ensures that the request
contains all of the necessary elements. Such validation does incur a significant
overhead to the processing of a Web service request and is not recommended to
be used in a production environment. However, when used in a testing
environment, runtime validation can be useful to ensure that SOAP requests
reaching your Web service are correct.

To turn validation on, use the CEMT S WEBSERVICE(WEBSERVICENAME)
VALIDATION command.

(WEBSERVICENAME is the name of the Web service definition you want to
debug.)

Also, ensure that the WSDLFILE attribute of the Web service definition is set to
the path for the WSDL file that you want SOAP validation to be performed
against.
 Chapter 10. Hints and tips 251

10.9 XML parsing in CICS application

XML allows you to tag data in a way that is similar to how you tag data when
creating an HTML file. XML incorporates many of the successful features of
HTML, but was also developed to address some of the limitations of HTML. XML
tags might be user-defined through a schema for later validation, which can
either be a Document Type Definition (DTD) or a document written in the XML
Schema language. In addition, namespaces can help ensure you have unique
tags for your XML document. The syntax of XML has more restrictions than
HTML, but this results in faster and cheaper browsing. The ability to create your
own tagging structure gives you the power to categorize and structure data for
both ease of retrieval and ease of display. XML is already being used for
publishing, as well as for data storage and retrieval, data interchange between
heterogeneous platforms, data transformations, and data displays. As it evolves
and becomes more powerful, XML might allow for single-source data retrieval
and data display.

The benefits of using XML vary but, overall, marked-up data and the ability to
read and interpret that data provide the following benefits:

� With XML, applications can more easily read information from a variety of
platforms. The data is platform-independent, so now the sharing of data
between you and your customers can be simplified.

� Companies that work in the business-to-business (B2B) environment are
developing DTDs and schemas for their industry. The ability to parse
standardized XML documents gives business products an opportunity to be
exploited in the B2B environment.

� XML data can be read even if you do not have a detailed picture of how that
data is structured. Your clients will no longer need to go through complex
processes to update how to interpret data that you send to them because the
DTD or schema gives the ability to understand the information.

Tip: If you need to turn validation on a Web service that has a mixed case
name, be sure to activate mixed-case mode on your terminal by issuing the
CEOT TRANIDONLY command:

Note: Having a TCP/IP port mismatch will result in a similar scenario
252 Application Development for CICS Web Services

� Changing the content and structure of data is easier with XML. The data is
tagged so you can add and remove elements without impacting existing
elements. You will be able to change the data without having to change the
application.

However, despite all the benefits of using XML, there are some things of which to
be aware. First of all, working with marked up data can be additional work when
writing applications because it physically requires more pieces to work together.
Given the benefits of using XML, this additional work can reduce the amount of
work needed to make a change in the future. Second, although it is a
recommendation developed by the World Wide Web Consortium (W3C), XML
(along with its related technologies and standards including Schema, XPath, and
DOM/SAX APIs) is still a developing technology.

There are many methods we can use if we want to parse or generate XML in
CICS application. In this section, we will introduce three methods which can be
used to parse and generate XML.

� XML Toolkit for z/OS including Java edition and C edition
� COBOL High Speed XML parser
� CICS API - EXEC CICS TRANSFORM

10.9.1 XML Toolkit for z/OS

The XML Toolkit for z/OS provides the base infrastructure to integrate vertical
and industry-specific data formats, structures, schemas, and metadata to ensure
industry compliance of data representation and content. Some of its key uses
include categorizing and tagging data for exchange in disparate environments,
as well as transforming ad hoc unstructured data to XML records, enabling you to
search, cross-reference, and share records. The toolkit includes the XML Parser,
C++ Edition and the XSLT Processor, C++ Edition

XML Parser, C++ Edition allows an application to take advantage of the z/OS
XML System Services component. A set of z/OS-specific parser classes have
been implemented in the XML Parser, C++ Edition to provide this ability. These
classes were created to mimic the existing SAX2 and DOM interfaces. They
allow many applications to exploit the improved cost and performance
characteristics of the z/OS XML System Services component with minimal
changes to their code.

The toolkit supports applications running on both z/OS UNIX System Services
and MVS environments.
 Chapter 10. Hints and tips 253

For detailed information about the XML Toolkit for z/OS, you can refer to the
following Web site:

http://www.ibm.com/servers/eserver/zseries/software/xml/

10.9.2 COBOL High Speed XML parser

In this section we will look the COBOL high speed XML parser, looking into
processing XML input, and producing XML output.

Processing XML input
You can process XML input in a COBOL program by using the XML PARSE
statement.

The XML PARSE statement is the COBOL language interface to either of two
high-speed XML parsers. You use the XMLPARSE compiler option to select the
appropriate parser for your application:

� XMLPARSE(XMLSS) selects the z/OS XML System Services parser.

This option provides enhanced features such as namespace processing,
validation of XML documents with respect to an XML schema, and conversion
of text fragments to national character representation (Unicode UTF-16).

� XMLPARSE(COMPAT) selects the XML parser that is built into the COBOL
library.

This option provides compatibility with XML parsing in Enterprise COBOL
Version 3.
254 Application Development for CICS Web Services

http://www.ibm.com/servers/eserver/zseries/software/xml/

Processing XML input involves passing control between the XML parser and a
processing procedure in which you handle parser events. See Figure 10-9.

Figure 10-9 control between XML Parser and COBOL program

Producing XML output
You can produce XML output from a COBOL program by using the XML
GENERATE statement.

To transform COBOL data to XML, use the XML GENERATE statement as in
Example 10-34.

Example 10-34 XML GENERATE statement sample

XML GENERATE XML-OUTPUT FROM SOURCE-REC
COUNT IN XML-CHAR-COUNT
ON EXCEPTION
DISPLAY 'XML generation error ' XML-CODE
STOP RUN
NOT ON EXCEPTION
DISPLAY 'XML document was successfully generated.'
END-XML
 Chapter 10. Hints and tips 255

In the XML GENERATE statement, identify the data item (XML-OUTPUT in the
example above) that is to receive the XML output. Next, identify the source data
item that is to be transformed to XML format (SOURCE-REC in the example).
Optionally, you can code the COUNT IN phrase to obtain the number of XML
character encoding units that are filled during generation of the XML output.

10.9.3 CICS API: EXEC CICS TRANSFORM

You can write application programs to transform application binary data into XML
and vice versa. CICS supports a number of high-level languages and provides an
XML assistant to map how the data is transformed during runtime processing.
CICS uses the same technology for mapping application data to XML in SOAP
messages, as part of the Web services support.

The advantage of using this approach to transform application data to and from
XML is that CICS goes beyond the capabilities offered by an XML parser. CICS
can interpret the XML and perform record-based conversions of the application
data. Therefore, it is easier and faster for you to create applications that work with
XML using this approach.

The steps to use CICS TRANSFORM API are as follows:

1. Create the mappings using the XML assistant.

The CICS XML assistant is a supplied utility that helps you to create the
required artifacts to transform application binary data to XML or transform
XML to application binary data. The XML assistant can create the artifacts in
a bundle directory or another specified location on z/OS UNIXÆ.

2. Create the resources in CICS to make the mappings available.

3. Create or update an application program to use the TRANSFORM API
command. The application must use a channel-based interface.

4. Run the application to test that the transformation works as you intended. You
can turn on validation to check that CICS converts the data correctly.

In 10.2.2, “Parsing SOAP Fault messages in CICS TS V4.1” on page 221, there
is an example that shows the steps necessary to use CICS API TRANSFORM to
parse XML. In that example, XML is used as a soap fault in a soap message.
256 Application Development for CICS Web Services

Chapter 11. COBOL samples

In this chapter we provide a series of COBOL samples to demonstrate calling
Web services from a CICS transaction. We show how COBOL programs can be
written to handle several different XML constructs that can be found in a WSDL
file. In particular we demonstrate the use of the following:

� The <any> tag
� The <choice> tag
� The minOccurs and maxOccurs tags

11
© Copyright IBM Corp. 2010. All rights reserved. 257

11.1 Introduction

The development strategy for all of the examples included in this chapter has
been broadly similar.

1. Create a WSDL file to describe the Web service we have created.

2. Use this WSDL file in RDz to create a Web service skeleton.

3. Edit the Web service implementation code in the skeleton to do some
meaningful processing and pass pack some data to the client (which in our
case is a CICS transaction).

4. Run the WDSL file through the Web Services Assistant to produce the input
and output language structures and a CICS bind file that can be used in
defining the Web service to CICS.

5. Create a COBOL program that calls the Web service. We used RDz to create
a skeleton COBOL program that is updated to initialize the language
structures that are passed to the service and to process the reply received.

The goal is to provide working examples that can be implemented. We provide
the following information for each example:

� The WDSL file

� The input and output language structures

� The COBOL source for the client transaction

� An EAR file that can be deployed to an application server that contains the
Java source for the Web service.

11.2 Example 1: The <xsd:any> tag

In the first example we demonstrate the use of the XML <any> tag, which when
used in a WSDL file indicates that at this point in the data supplied to the Web
service there will be a section of XML which at this point is undefined. This then
allows the client application to insert any piece of well formed XML into the data
passed to the Web service. The client application is responsible for creating this
XML and the Web service receiving it is responsible for parsing it and processing
the data within it. In our example we pass a small piece of XML that is defined in
a working storage location as follows:

Move '<Whatever>.....</Whatever>' to WS-CUST-XML

The Web service will echo this back to the client.
258 Application Development for CICS Web Services

11.2.1 The WSDL

The WDSL used for this example contained the following section, which
represents a customer. The extract can be seen in Example 11-1

Example 11-1 WSDL extract showing xsd:any

<xsd:complexType abstract="false" block="#all" final="#all"
mixed="false" name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_reqarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="Customer">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Title"
 type="xsd:string" />
 <xsd:element name="FirstName"
 type="xsd:string" />
 <xsd:element name="Surname"
 type="xsd:string" />
 <xsd:any minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

The section of WSDL shows that we have three fields: Title, FirstName and
Surname, which are all string fields. This is followed by a field described using an
xsd:any tag that indicates the position a section of data that is undefined.

The complete WSDL can be seen in Appendix B, “Sample COBOL programs” on
page 307

Now that we have the WDSL describing our Web service, we need to produce
language structures (in our case COBOL copy books) that can be used in or
client program along with a bind file that will be used to create the CICS
resources need to call the Web service.
 Chapter 11. COBOL samples 259

The tooling with RDz includes the CICS Web Services assistant which will
produce these artifacts. In addition RDz will also produce a skeleton COBOL
program which is an excellent starting point for creating a client CICS transaction
from which we can call the Web service.

Web Services Assistant
The process for running the Web Services Assistant with RDz is simple. After
RDz is running, switch to the Enterprise Service Tools Perspective. From this
perspective you should then create a new Web Services for CICS Project, as
shown in Figure 11-1

Figure 11-1 Create new Web Services for CICS Project
260 Application Development for CICS Web Services

When you select this option a window will open where you should:

� Give the project a name
� Select Create New Service Implementation (Top Down)
� Select Service Requester
� Select Interpretive XML Conversion (the only option)

The New Web Services for CICS Project window will display, as in Figure 11-2.

Figure 11-2 New Web Services for CICS Project window
 Chapter 11. COBOL samples 261

Click Next. You will be presented with the window from which you will import the
WSDL to be used for this project. See Figure 11-3. This window gives a choice of
three locations from which you can import the WSDL file.

� The local file system
� Another workspace in RDz
� A file on a remote z/OS system

Locate the WSDL file by clicking the appropriate button. In our case the WSDL
file was stored on a local hard drive, so the File System button was used.

Figure 11-3 Import WSDL file
262 Application Development for CICS Web Services

Click Finish, RDz displays the “Web Services for CICS - Create New
Implementatio”n window. See Figure 11-4. We allowed all the fields and options
presented in this window to default. We did, however ensure that the mapping
level was set to at least 2.1 by pressing the Change WSBIND Preferences
button and selecting mapping level 2.1 from the drop-down list.

Figure 11-4 Create New Service Implementation
 Chapter 11. COBOL samples 263

When the Finish button is clicked, RDz invokes the Web Services Assistant and
several artifacts are created in your project. These include:

� Skeleton COBOL program
� Input copybook
� Output copybook
� Web services assistant log file
� wsbind file

These can be see in Figure 11-5.

Figure 11-5 Artifacts

At this point we now have a COBOL program, two copybooks, and a wsbind file.
The COBOL program is a skeleton and is discussed in more detail in 11.2.3, “The
COBOL program” on page 265.

The wsbind file should be copied to UNIX Systems Services on the z/OS system
where the CICS transaction will be run. This will be used when we install the
pipeline which will be discussed in 11.2.4, “CICS resource definitions” on
page 277.
264 Application Development for CICS Web Services

11.2.2 Web Services Assistant: z/OS

The Web Services Assistant can also be run on z/OS by executing a batch job. In
this example we would expect the copybooks produced to be identical to that of
the Web Services Assistant in RDz. An example of the JCL used to run
DFHWS2LS is included in Example 11-2.

A key difference between what the Web services assistant will produce in RDz to
that on z/OS is that there is no skeleton COBOL program produced.

Example 11-2 DFHWS2LS

//WS2LS EXEC DFHWS2LS,REGION=0M,
// PATHPREF='',
// TMPDIR='/tmp',
// USSDIR='cicsts41',
//* JAVADIR='java142s/J1.4/'
// JAVADIR='java/J6.0'
//INPUT.SYSUT1 DD *
PDSLIB=//WAFITZ.U.COPY
LANG=COBOL
REQMEM=inlinI
RESPMEM=inlinO
LOGFILE=/u/wafitz/inline/inlinetst.log
WSBIND=/u/wafitz/inline/inlinetst.wsbind
WSDL=/u/wafitz/inline/inlinetst.wsdl
MAPPING-LEVEL=2.2
/*
//

11.2.3 The COBOL program

The RDz tooling was able to produce a skeleton COBOL program which we used
as a starting point for our client program which will call our service.

The skeleton program in Example 11-3 on page 266 performs the following
tasks.

� Sets up the container, channel and Web service names
� Leaves an open section for the programmer to set up the input language

structure
� Puts the DFHWS-DATA container into the SERVICE-CHANNEL
� Invoke the Web service
� Retrieves the DFHWS-DATA container from the SERVICE-CHANNEL
� Leaves an open section to process the results of the service call
 Chapter 11. COBOL samples 265

Example 11-3 Skeleton Program

IDENTIFICATION DIVISION.
 *Begin Identification Divsion
 PROGRAM-ID. 'INLINETS'.
 AUTHOR. WD4Z.
 INSTALLATION. 9.1.200.V200903111338.
 DATE-WRITTEN. 17/09/09 13:47.
 *End Identification Divsion
 DATA DIVISION.
 *Begin Data Divsion
 WORKING-STORAGE SECTION.
 *Begin Working-Storage Section
 * ***
 * Operations Available On The Remote Web Service
 * ***
 1 OPERATION-NAME-1.
 2 PIC X(17) USAGE DISPLAY
 VALUE 'INLINE01Operation'.
 *End Working-Storage Section
 LOCAL-STORAGE SECTION.
 *Begin Local-Storage Section
 * ***
 * Program Work Variables
 * ***
 1 SOAP-PIPELINE-WORK-VARIABLES.
 2 WS-WEBSERVICE-NAME PIC X(32).
 2 WS-OPERATION-NAME PIC X(255).
 2 WS-CONTAINER-NAME PIC X(16).
 2 WS-CHANNEL-NAME PIC X(16).
 2 COMMAND-RESP PIC S9(8) COMP.
 2 COMMAND-RESP2 PIC S9(8) COMP.
 *Specify A URI To Override The Web Service Description
 1 URI-RECORD-STRUCTURE.
 2 FILLER PIC X(10).
 2 WS-URI-OVERRIDE PIC X(255).
 * ***
 * Language Structures
 * ***
 1 LANG-INLINI01.
 COPY inlinI01.
 1 LANG-INLINO01.
 COPY inlinO01.
 *End Local-Storage Section
 LINKAGE SECTION.
266 Application Development for CICS Web Services

 *Begin Linkage Section
 *End Linkage Section
 *End Data Divsion
 PROCEDURE DIVISION
 .
 *Begin Procedure Division
 MAINLINE SECTION.
 * ---
 * Initialize Work Variables
 * ---
 INITIALIZE SOAP-PIPELINE-WORK-VARIABLES.
 INITIALIZE URI-RECORD-STRUCTURE.
 * ---
 * Container DFHWS-DATA must be present when a service requeste
 * r program issues an EXEC CICS INVOKE WEBSERVICE command. Whe
 * n the command is issued, CICS converts the language structur
 * e that is in the container into a SOAP request. When the soa
 * p response is received, CICS converts it into another langua
 * ge structure that is returned to the application in the same
 * container.
 * ---
 MOVE 'DFHWS-DATA'
 TO WS-CONTAINER-NAME
 * ---
 * Channel Passed To The Web Service Call
 * ---
 MOVE 'SERVICE-CHANNEL'
 TO WS-CHANNEL-NAME
 * ---
 * WEBSERVICE resource installed in this CICS region
 * ---
 MOVE 'inlinetst'
 TO WS-WEBSERVICE-NAME
 * ---
 * Operation To Invoke On The Remote Web Service
 * ---
 MOVE OPERATION-NAME-1
 TO WS-OPERATION-NAME
 * ---
 * Populate Request Language Structure
 * ---
 INITIALIZE LANG-INLINI01
 *
 *
 *
 Chapter 11. COBOL samples 267

 * ---
 * Put Request Language Structure Into SOAP Container
 * ---
 EXEC CICS PUT CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(LANG-INLINI01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND
 * ---
 * Invoke The Web Service
 * ---
 EXEC CICS INVOKE WEBSERVICE(WS-WEBSERVICE-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 * URI(WS-URI-OVERRIDE)
 OPERATION(WS-OPERATION-NAME)
 RESP(COMMAND-RESP) RESP2(COMMAND-RESP2)
 END-EXEC
 PERFORM CHECK-WEBSERVICE-COMMAND
 * ---
 * Receive Response Language Structure
 * ---
 EXEC CICS GET CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(LANG-INLINO01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND
 * ---
 * Process Response Language Structure
 * ---
 *
 *
 *
 * ---
 * Finished
 * ---
 EXEC CICS RETURN
 END-EXEC
 .
 CHECK-CONTAINER-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(CCSIDERR)
 *
 CONTINUE
 WHEN DFHRESP(CONTAINERERR)
 *
268 Application Development for CICS Web Services

 CONTINUE
 WHEN DFHRESP(INVREQ)
 *
 CONTINUE
 WHEN DFHRESP(LENGERR)
 *
 CONTINUE
 END-EVALUATE
 .
 CHECK-WEBSERVICE-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(INVREQ)
 *
 CONTINUE
 WHEN DFHRESP(NOTFND)
 *
 CONTINUE
 END-EVALUATE
 .
 *End Procedure Division
 END PROGRAM 'INLINETS'.

To change this skeleton into a working program we need to add code into the two
empty sections of code: one before we make the service call and one after.

Populate Request Language Structure
Prior to making the service call we must populate the input language structure,
which is in copy book inlinI01. We need to populate the Title, Firstname, and
Surname fields and set up the XML data we will be passing to the service.

Note: The version of RDz we used generates an INVOKE WEBSERVICE
command. From CICS TS 4.1 this command is now INVOKE SERVICE.
However INVOKE WEBSERVICE is retained as a synonym of the INVOKE
SERVICE command and is provided for compatibility with existing Web
service requester applications
 Chapter 11. COBOL samples 269

The first three fields require just simple moves of data into the appropriate
working storage areas. In addition we need to set the length of each of these
fields as seen in Example 11-4.

Example 11-4 Set up the request language structure

Move 'MR' TO XTitle of wsXreqarea
Move 2 to XTitle-length of wsXreqarea

Move 'Tony' TO FirstName of wsXreqarea
Move 4 to FirstName-length of wsXreqarea

Move 'Fitzgerald' TO Surname of wsXreqarea
MOVE 10 to Surname-length of wsXreqarea

The XML data that will be sent, is the undefined data area, which is defined by
the <xsd:any> tag in the WSDL is slightly more complicated.

The <xsd:any> tag results in the Web services assistant generating two working
storage fields of the form

� elementName-xml-cont PIC X(16)
� elementName-xmlns-cont PIC X(16)

in our case the generated language structures are

12 Customer-num PIC S9(9) COMP-5 SYNC.
12 Customer.

15 Customer-xml-cont PIC X(16).
15 Customer-xmlns-cont PIC X(16).

The first field, Customer-xml-cont, must be set to the name of a container that
holds the XML and the second Customer-xmlns-cont contains the name of a
container that holds any namespace prefix declarations that are in scope.

In our example we have moved a short simple piece of XML into the container.
This will be echoed back by the service.

The section of code that does this can be seen in Example 11-5.

Example 11-5 Populate the XML container

Move 1 to Customer-num of wsXreqarea
MOVE 'cust-xml-cont' TO Customer-xml-cont of wsXreqarea

 * --- the XML ---
Move '<Whatever>.....</Whatever>' to WS-CUST-XML

EXEC CICS PUT CONTAINER(Customer-xml-cont of wsXreqarea)
270 Application Development for CICS Web Services

CHANNEL(WS-CHANNEL-NAME)
FROM(WS-CUST-XML)
DATATYPE(DFHVALUE(CHAR))

END-EXEC

After the containers have been populated the service is called using an EXEC
CICS INVOKE SERVICE command. We uncommented the URI parameter so
that we could set the URI of the Web service being called. The URI parameter
specifies a data area containing the URI of the service to be invoked. If specified,
this option supersedes any URI specified in the WEBSERVICE resource
definition. If you omit this option, the WEBSERVICE binding file associated with
the resource definition must include either a provider URI or a provider
application name.

Additionally we added some code to the CHECK-CONTAINER-COMMAND and
CHECK-WEBSERVICE-COMMAND sections of the program

Processing the response language structure
Having called the Web service we must process the results that have been sent
back to our program. In our example we have displayed the results of the data
areas in the response structure.

The complete final program can be seen in Example 11-6.

Example 11-6 The FInal Program

 IDENTIFICATION DIVISION.
 *Begin Identification Divsion
 PROGRAM-ID. 'INLINETS'.
 AUTHOR. WD4Z.
 INSTALLATION. 9.1.200.V200903111338.
 DATE-WRITTEN. 09/09/09 15:16.
 *End Identification Divsion
 DATA DIVISION.
 *Begin Data Divsion
 WORKING-STORAGE SECTION.
 *Begin Working-Storage Section
 * ***
 * Operations Available On The Remote Web Service
 * ***
 1 OPERATION-NAME-1.
 2 PIC X(17) USAGE DISPLAY
 VALUE 'INLINE01Operation'.
 *End Working-Storage Section
 LOCAL-STORAGE SECTION.
 Chapter 11. COBOL samples 271

 *Begin Local-Storage Section
 * ***
 * Program Work Variables
 * ***
 1 SOAP-PIPELINE-WORK-VARIABLES.
 2 WS-WEBSERVICE-NAME PIC X(32).
 2 WS-OPERATION-NAME PIC X(255).
 2 WS-CONTAINER-NAME PIC X(16).
 2 WS-CHANNEL-NAME PIC X(16).
 2 COMMAND-RESP PIC S9(8) COMP.
 2 COMMAND-RESP2 PIC S9(8) COMP.
 *Specify A URI To Override The Web Service Description
 1 URI-RECORD-STRUCTURE.
 2 FILLER PIC X(10).
 2 WS-URI-OVERRIDE PIC X(255).

 1 WS-XML-PASSTHRU-DATA.
 2 WS-CUST-XML PIC X(255).
 2 WS-CUST-XMLns PIC X(255).

 1 WS-DFHWS-BODY PIC x(400).

 * ***
 * Language Structures
 * ***
 1 LANG-INLINI01.
 COPY inlinI01.
 1 LANG-INLINO01.
 COPY inlinO01.
 *End Local-Storage Section
 LINKAGE SECTION.
 *Begin Linkage Section
 *End Linkage Section
 *End Data Divsion
 PROCEDURE DIVISION
 .
 *Begin Procedure Division
 MAINLINE SECTION.
 * ---
 * Initialize Work Variables
 * ---
 INITIALIZE SOAP-PIPELINE-WORK-VARIABLES.
 INITIALIZE URI-RECORD-STRUCTURE.
 * ---
 * Container DFHWS-DATA must be present when a service requeste
272 Application Development for CICS Web Services

 * r program issues an EXEC CICS INVOKE WEBSERVICE command. Whe
 * n the command is issued, CICS converts the language structur
 * e that is in the container into a SOAP request. When the soa
 * p response is received, CICS converts it into another langua
 * ge structure that is returned to the application in the same
 * container.
 * ---
 MOVE 'DFHWS-DATA'
 TO WS-CONTAINER-NAME
 * ---
 * Channel Passed To The Web Service Call
 * ---
 MOVE 'SERVICE-CHANNEL'
 TO WS-CHANNEL-NAME
 * ---
 * WEBSERVICE resource installed in this CICS region
 * ---
 MOVE 'inlinetst'
 TO WS-WEBSERVICE-NAME
 * ---
 * Operation To Invoke On The Remote Web Service
 * ---
 MOVE OPERATION-NAME-1
 TO WS-OPERATION-NAME

 * ---
 * Populate Request Language Structure
 * ---
 INITIALIZE LANG-INLINI01

 Move 'MR' TO XTitle of wsXreqarea
 Move 2 to XTitle-length of wsXreqarea

 Move 'Tony' TO FirstName of wsXreqarea
 Move 4 to FirstName-length of wsXreqarea

 Move 'Fitzgerald' TO Surname of wsXreqarea
 MOVE 10 to Surname-length of wsXreqarea

 INITIALIZE WS-XML-PASSTHRU-DATA

 * --
 * Put the "any" XML data into the channel
 * --
 Chapter 11. COBOL samples 273

 Move 1 to Customer-num of wsXreqarea
 MOVE 'cust-xml-cont' TO Customer-xml-cont of wsXreqarea

 * --- the XML ---
 Move '<Whatever>.....</Whatever>' to WS-CUST-XML

 EXEC CICS PUT CONTAINER(Customer-xml-cont of wsXreqarea)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(WS-CUST-XML)
 DATATYPE(DFHVALUE(CHAR))
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 * --
 * Put the "any" XMLns data into the channel
 * --
 MOVE 'cust-xmlns-cont' to Customer-xmlns-cont
 of wsXreqarea
 * Move 'xmlns:ns1="http://myNS"' to WS-CUST-XMLns

 * ---
 * Put Request Language Structure Into SOAP Container
 * ---

 EXEC CICS PUT CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(LANG-INLINI01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 * ---
 * Invoke The Web Service
 * ---
 Move 'http://9.173.198.188:9080/RedbookWS4/INLINE01Service'
 to WS-URI-OVERRIDE

 EXEC CICS INVOKE SERVICE(WS-WEBSERVICE-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 URI(WS-URI-OVERRIDE)
 OPERATION(WS-OPERATION-NAME)
 RESP(COMMAND-RESP) RESP2(COMMAND-RESP2)
 END-EXEC
 PERFORM CHECK-WEBSERVICE-COMMAND
274 Application Development for CICS Web Services

 * ---
 * Receive Response Language Structure
 * ---
 EXEC CICS GET CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(LANG-INLINO01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 * ---
 * "Process" the Response Language Structure
 * ---
 DISPLAY 'XTitle data returned = ' XTitle of wsXretarea
 DISPLAY 'FirstName data returned = ' FirstName of wsXretarea
 DISPLAY 'Surname data returned = ' Surname of wsXretarea

 INITIALIZE WS-XML-PASSTHRU-DATA.

 EXEC CICS GET CONTAINER(Customer-xmlns-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-CUST-XMLns)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 EXEC CICS GET CONTAINER(Customer-xml-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-CUST-XML)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 DISPLAY 'Customer-xml-cont data = ' WS-CUST-XML
 DISPLAY 'Customer-xmlns-cont data = ' WS-CUST-XMLns

 * ---
 * Finished
 * ---
 EXEC CICS RETURN
 END-EXEC
 .

 CHECK-CONTAINER-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(CCSIDERR)
 EXEC CICS ABEND ABCODE('C001') END-EXEC
 Chapter 11. COBOL samples 275

 CONTINUE
 WHEN DFHRESP(CONTAINERERR)
 EXEC CICS ABEND ABCODE('C002') END-EXEC
 CONTINUE
 WHEN DFHRESP(INVREQ)
 EXEC CICS ABEND ABCODE('C003') END-EXEC
 CONTINUE
 WHEN DFHRESP(LENGERR)
 EXEC CICS ABEND ABCODE('C004') END-EXEC
 CONTINUE
 END-EVALUATE
 .

 CHECK-WEBSERVICE-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(INVREQ)
 PERFORM INVREQ-PROCESSING
 EXEC CICS ABEND ABCODE('WS01') END-EXEC
 CONTINUE
 WHEN DFHRESP(NOTFND)
 EXEC CICS ABEND ABCODE('WS02') END-EXEC
 CONTINUE
 END-EVALUATE
 .

 INVREQ-PROCESSING.
 IF EIBRESP2 = 6 THEN
 * ** An EIBRESP2 of 6 indicates a SOAP fault **
 * ** has been returned in DFHWS-BODY **
 EXEC CICS
 GET CONTAINER('DFHWS-BODY')
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-DFHWS-BODY)
 END-EXEC
 DISPLAY WS-DFHWS-BODY
 END-IF
 .

 *End Procedure Division
 END PROGRAM 'INLINETS'.
276 Application Development for CICS Web Services

11.2.4 CICS resource definitions

A minimum of two CICS resource definitions are required to run the example
program:

� A transaction Definition
� A pipeline Definition

If program auto install is not used, a program definition will be required.

The transaction definition should point to the name of the requester program we
have created. The program should have been compiled and linked into a load
library which is in the DFHRPL concatenation.

For the pipeline definition we set the Configfile to point to the supplied
basicsoap11requester.xml file. The Wsdir value must be set to point to the
directory where the wsbind file, created by the Web Services Assistant, has been
stored, as seen in Figure 11-6.

Figure 11-6 Pipeline definition

 COnfigfile ==>
/usr/lpp/cicsts/cicsts41/samples/pipelines/basicsoap11requ
 (Mixed Case) ==> ester.xml
 ==>
 ==>
 ==>
 SHelf ==> /var/cicsts/
 (Mixed Case) ==>
 ==>
 ==>
 ==>
 Wsdir : /wafitz/wsbind
 Chapter 11. COBOL samples 277

Results of calling the service
The Web service has been designed to echo back the contents of the fields sent
to it, including the XML text sent to it in the WS-CUST-XML field. The CICS job
log should show the resultant displayed data which can be seen in
Example 11-7.

Example 11-7 Results of <xsd:any> program

XTitle data returned = you said: MR

FirstName data returned = you said: Tony

Surname data returned = you said: Fitzgerald

Customer-xml-cont data = <Whatever
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">.....</Whate
ver>

Customer-xmlns-cont data =
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns="http://www.INLINE01.REQY.Request.com"
xmlns:ns2="http://www.INLINE01.RESPY.Response.com"

11.3 Example 2: The <choice> tag

This example demonstrates how a COBOL program can handle the use of the
<xsd:choice> tag in a WSDL describing a Web service to be called by a CICS
application. The <xsd:choice> tag indicates that only one of the options listed can
be used.

11.3.1 The WSDL

The part of the WSDL used in our example that describes the choice data used
can be seen in Example 11-8 on page 279.
278 Application Development for CICS Web Services

Example 11-8 WSDL extract showing <xsd:choice>

<xsd:complexType abstract="false" block="#all" final="#all" mixed="false"
name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_retarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="choiceData">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element name="firstchoice" type="xsd:string" />
 <xsd:element name="secondchoice" type="xsd:string" />
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

In our example we have an xsd:choice element called choiceData, which
contains two elements: one called firstchoice and the second called
secondchoice. The Web service when called should be supplied with only one of
the two elements.

The complete WSDL can be seen in “WSDL <xsd:choice>” on page 330.

11.3.2 Generation of COBOL and CICS artifacts

We generated the following artifacts from the Web services assistant in RDz.

� COBOL skeleton program
� Input and output copybooks
� wsbind file

11.3.3 The COBOL program

The COBOL skeleton program produced will be similar to the skeleton produced
for the <xsd:any> example and shown in Example 11-3 on page 266. In the
same way as we did for that example, we must add code to populate the request
language structure before calling the service and also to process the results
returned by the service.
 Chapter 11. COBOL samples 279

Setting up the Request language structure
In our example we are going to send data in the firstchoice field to the service.

Set firstchoice to true. When the language structure is generated from the WSDL
the <xsd:choice> tag results in a COBOL working storage area, which contains,
in addition to the data fields to be sent to the service, two further data fields. The
first is a flag field that indicates which of the choice variables is being sent to the
service. The second field is the name of the container that will contain the data
area being sent to the service. In our example this part of the language structure
is as follows:

03 INLINE01Operation.
 06 wsXreqarea.
 09 choiceData.

 12 choiceData-enum PIC X DISPLAY.
 88 empty VALUE X'00'.
 88 firstchoice VALUE X'01'.
 88 secondchoice VALUE X'02'.
 12 choiceData-cont PIC X(16).

This is followed by two data areas one representing each of the two possible data
areas which can be sent to the service. Only one of these will be set and then
placed into the container named in choiceData-cont.

01 choicI01-firstchoice.
 03 firstchoice-length PIC S9999 COMP-5 SYNC.
 03 firstchoice PIC X(255).

01 choicI01-secondchoice.
 03 secondchoice-length PIC S9999 COMP-5 SYNC.
 03 secondchoice PIC X(255).

The COBOL code to populate the request language structure can be seen in
Example 11-9.

Example 11-9 Populate request language structure

INITIALIZE LANG-CHOICI01

 DISPLAY 'data is being sent in the firstchoice field'
 *
 * The WSDL specfies that only one of the two fields can
 * be sent to the service
 * EITHER firstchoice or secondchoice
 *
 move 'first choice data' to firstchoice
 of choicI01-firstchoice
280 Application Development for CICS Web Services

 move 18 to firstchoice-length
 of choicI01-firstchoice

 DISPLAY 'data to be sent is ==>' firstchoice
 of choicI01-firstchoice

 set firstchoice of wsXreqarea to true

 move 'CHOICE-CONT' to choiceData-cont of wsXreqarea

 EXEC CICS PUT CONTAINER(choiceData-cont of wsXreqarea)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(choicI01-firstchoice)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

Processing the Response language structure
On return from the service call the response language structure will contain the
result of the call to the service. Our example consists of a COBOL EVALUATE
statement that tests which of the data areas have been sent back to the
requester and then displays the data sent back. This can be seen in
Example 11-10.

Example 11-10 Processing the response language structure

EVALUATE TRUE
 when empty of wsXretarea
 display 'nothing returned'

 when firstchoice of wsXretarea
 display 'data was returned in the firstchoice field'

 EXEC CICS GET CONTAINER(choiceData-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(choicO01-firstchoice)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 display 'data returned is ==>'
 firstchoice of choicO01-firstchoice

 when secondchoice of wsXretarea
 display 'data was returned in the secondchoice field'

 EXEC CICS GET CONTAINER(choiceData-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 Chapter 11. COBOL samples 281

 INTO(choicO01-secondchoice)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 display 'data returned is ==>'
 secondchoice of choicO01-secondchoice

END-EVALUATE

The complete COBOL program can be see in “<?xml version="1.0"?>” on
page 314.

11.3.4 CICS Resource Definitions

As for the <xsd:any> example we required two CICS resources to be defined to
run the service.

� Transaction Definition
� Pipeline Definition

See 11.2.4, “CICS resource definitions” on page 277 for full details.

Results of calling the service
The service is designed to receive one of the two choice fields and echo the data
back in the other of the two choice fields. The output written to the CICS joblog
should look something like Example 11-11.

Example 11-11 Results of choice test

data is being sent in the firstchoice field
data to be sent is ==>first choice data

data was returned in the secondchoice field
data returned is ==>first choice data
282 Application Development for CICS Web Services

11.4 Example 3: minoccurs and maxoccurs

This example demonstrates how a COBOL program can handle the use of the
minoccurs and maxoccurs tag in a WSDL describing a Web service to be called
by a CICS application. See Example 11-12 for WSDL showing minoccurs and
max occurs

Example 11-12 WDSL Showing minoccurs and max occurs

<xsd:complexType abstract="false" block="#all" final="#all" mixed="false"
name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_retarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element maxOccurs="10" minOccurs="1" name="recs"
nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="recs" nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.charlength=fixed

com.ibm.cics.wsdl.properties.synchronized=false</xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="80" />
 <xsd:whiteSpace value="collapse" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

In our example we have a single text field defined which must occur at least once
(minOccurs=1) but no more than 10 times (maxOccurs=10). The complete
WSDL can be seen in “WSDL - minOccurs/maxOccurs” on page 344.
 Chapter 11. COBOL samples 283

11.4.1 Generation of COBOL and CICS artifacts

As in our previous examples we have generated the following from RDz

� COBOL skeleton program
� Input and output copybooks
� wsbind file

11.4.2 The COBOL Program

The COBOL skeleton program requires us to set up the request language
structure prior to calling the service and then to add code to process the results.

Setting up the Request language structure
For our example we have a field called recs which is 80 bytes long and can occur
between 1 and 10 times. The Web services assistant has generated a copy book
which contains a working storage variable for the 80 byte record and two further
variables to define the number of records being sent and also the name of the
container which will contain the records. The working storage variables
concerned are as follows:

03 INLINE01Operation.
 06 wsXreqarea.
 09 recs-num PIC S9(9) COMP-5 SYNC.
 09 recs-cont PIC X(16).

We need to write the data records to the container using a loop in which we put
the data records into an array, which is then written to the container. The code to
set up the request language structure can be seen in Example 11-13. In our
example we have chosen to send four records to the Web service.

Example 11-13 minOccurs/maxOccurs request language structure setup

INITIALIZE LANG-REDBOI01

 *--- we are going to send 4 records
 move 4 to recs-num of wsXreqarea
 DISPLAY " "
 DISPLAY "=="
 DISPLAY "Sending " recs-num of wsXreqarea " records"

 *--- populate our array with our data
 Perform recs-num of wsXreqarea times
 add 1 to ws-count
 Move ws-record-data to recs2 of redboI01-recs
284 Application Development for CICS Web Services

 move redboI01-recs to WS-RECORD(ws-count)
 END-Perform

 *--- calculate how long the data is
 compute records-length =
 length of redboI01-recs * recs-num of wsXreqarea

 *--- store the name of our data container in the
 *--- request language structure
 move "RECS-CONTAINER" to recs-cont of wsXreqarea

 *--- put the array into the container
 EXEC CICS PUT CONTAINER(recs-cont of wsXreqarea)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(WS-RECORDS-ARRAY)
 FLENGTH(records-length)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

Processing the Response language structure
As in previous examples, the response language structure will contain the data
returned from the service. Our processing will be to display the results using
COBOL DISPLAY. The number of data records returned will be found in the
recs-num field of the response language structure. This allows the program to
loop around the required number of times to extract the data.

The response processing can be seen in Example 11-14.

Example 11-14 minOccurs/maxOccurs response processing

*--- get the returned data which is in the container
 *--- named in the response language structure
 EXEC CICS GET CONTAINER(recs-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-RECORDS-ARRAY)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 DISPLAY '==='
 DISPLAY recs-num of wsXretarea ' records returned'

 *--- Display each of the returned records.
 *--- The number of records returned is in recs-num
 *--- which has been extracted from the response container
 Chapter 11. COBOL samples 285

 *--- into the response language structure
 move 1 to ws-count
 PERFORM recs-num of wsXretarea times
 move ws-count to ws-returned-rec-num
 MOVE ws-record(ws-count) to ws-returned-rec-data
 DISPLAY ws-record-returned
 add 1 to ws-count

 END-PERFORM

The complete COBOL program can be seen in “Program to call
minOccurs/maxOccurs example service” on page 338.

11.4.3 CICS Resource Definitions

As for the previous examples we defined two CICS resources to call the service.

� Transaction definition
� Pipeline Definition

See 11.2.4, “CICS resource definitions” on page 277.

11.4.4 Results of calling the service

Our program calls the Web service passing it four data records. The Web service
is designed to send back the number of records we have sent plus two more.

The display output from a successful call to the service should look something
such as the following example output in Example 11-15.

Example 11-15 Results of the minOccurs/maxOccurs test

==
Sending 0000000004 records
===
0000000006 records returned
 returned record number 01===> string array number 0
 returned record number 02===> string array number 1
 returned record number 03===> string array number 2
 returned record number 04===> string array number 3
 returned record number 05===> string array number 4
 returned record number 06===> string array number 5
286 Application Development for CICS Web Services

We also ran a test to show what happens if you try to send more data to the
service than is allowed by the WDSL definition, In this case the maximum
number of records allowed is 10. We ran the program changing the number to 14.
The call to the service then failed and message DFHPI1008 was written to
MSGUSR.

DFHPI1008 10/19/2009 19:09:09 IV3A66A2 00186 XML generation failed
because of incorrect input (INPUT_ARRAY_TOO_LARGE recs2) for
 WEBSERVICE redbookWS6.

The pipeline has validated the number of records being sent against the WSDL
definition and has indicated through the message that the input array is too large.
The EXEC CICS INVOKE SERVICE call will return an INVREQ condition with an
EIBRESP2 value of 13. The full error message is also available to the program in
the DFH-XML-ERRORMSG container. We have extracted this and displayed it to
the console to demonstrate how to access the container when this condition is
encountered. See Example 11-16.

Example 11-16 Error handling example

 * ** An EIBRESP2 of 13 indicates an input error **
 * ** has been detected a message is returned **
 * ** in DFH-XML-ERRORMSG **
 IF EIBRESP2 = 13 THEN
 EXEC CICS
 GET CONTAINER('DFH-XML-ERRORMSG')
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-XML-ERRORMSG)
 END-EXEC
 DISPLAY WS-XML-ERRORMSG
 Chapter 11. COBOL samples 287

288 Application Development for CICS Web Services

Appendix A. Sample Web services

InExample A-1 on page 294 through Example A-3 on page 302 we list the
sample Web services that we use to demonstrate the COBOL requester
programs in Chapter 11, “COBOL samples” on page 257.

A

© Copyright IBM Corp. 2010. All rights reserved. 289

Preparation of your RDz environment

Make sure that your copy of the IBM Rational Developer for System z is open and
shows up in the Java EE perspective. If not, you can easily switch your
perspective by clicking Window → Open Perspective → Other from the menu
bar, then select Java EE. Your IDE should look like Figure A-1.

Figure A-1 RDZ Java EE perspective

You are ready to load the .ear files which contain the web service examples.
290 Application Development for CICS Web Services

Loading an .ear file into a new or existing project

Perform the following steps to load an .ear file in a new or existing project:

1. With your IDE in Java EE perspective, choose File → Import from the menu
bar, and select EAR file from the Java EE folder, as shown in Figure A-2.

Figure A-2 RDZ import selection box
 Appendix A. Sample Web services 291

2. Click Next.

3. Specify the location of the .ear file in the following window, as shown in
Figure A-3. Specify the Project's new name and the target runtime. We
recommend WebSphere Application Server v7.0.

Figure A-3 RDZ Enterprise Application Import Box

4. Click Next. Another “Enterprise Application Import” window displays. You
have the opportunity to include your existing projects to use them with the
example. Each of them get a subdirectory in the new project. You can choose
the modules from the .ear file to import into the new project. In our case, there
is just one module.
292 Application Development for CICS Web Services

5. Click Finish in the box shown in Figure A-4. IBM Rational Developer imports
the .ear file.

Figure A-4 RDZ Module and Utility box

Description of examples A1–A3

The following pages contain a short description about what these programming
examples do, plus their coding and a testing manual for each one.

The XML any passthrough Web service example

This example shows how a Web service can transmit XML code within a SOAP
message without interpreting the foreign code, so that the requester gets XML
code out of the envelope. You can install the file by following the steps in the

Note: To use the examples for testing, you also have to deploy the program on
the WebSphere server.
 Appendix A. Sample Web services 293

“Preparation of your RDz environment” on page 290 and “Loading an .ear file into
a new or existing project” on page 291.

Coding
The code given in Example A-1 is, for the most part, automatically derived from
the *.wsdl file. You only have to add the problems' solution to the Java skeleton.

Example A-1 Code of the XML any passthrough web service example

package com.reqy.inline01;

@javax.jws.WebService(endpointInterface="com.reqy.inline01.INLINE01Port
", targetNamespace="http://www.INLINE01.REQY.com",
serviceName="INLINE01Service", portName="INLINE01Port")

public class INLINE01HTTPSoapBindingImpl{

 public com.response.respy.inline01.ProgramInterface
inline01Operation(com.request.reqy.inline01.ProgramInterface
requestPart){
 // Here starts the actual problem solution
 // Allocating references for the exchange
com.response.respy.inline01.ProgramInterface respref = new
com.response.respy.inline01.ProgramInterface();
com.response.respy.inline01.ProgramInterface.WsRetarea wsarearef = new
com.response.respy.inline01.ProgramInterface.WsRetarea();
com.response.respy.inline01.ProgramInterface.WsRetarea.Customer custref
= new
com.response.respy.inline01.ProgramInterface.WsRetarea.Customer();

com.request.reqy.inline01.ProgramInterface reqref =new
com.request.reqy.inline01.ProgramInterface();
com.request.reqy.inline01.ProgramInterface.WsReqarea reqrefws = new
com.request.reqy.inline01.ProgramInterface.WsReqarea();
com.request.reqy.inline01.ProgramInterface.WsReqarea.Customer reqrefcus
= new com.request.reqy.inline01.ProgramInterface.WsReqarea.Customer();
// Processing the input
reqrefws = requestPart.getWsReqarea();
reqrefcus = reqrefws.getCustomer();
// Composition of the answer
custref.setTitle("you said: " + reqrefcus.getTitle());
custref.setFirstName("you said: " + reqrefcus.getFirstName());
custref.setSurname("you said: " + reqrefcus.getSurname());
custref.setAny(reqrefcus.getAny());
wsarearef.setCustomer(custref);
294 Application Development for CICS Web Services

respref.setWsRetarea(wsarearef);
 return respref;
 }
}

Testing
With the IBM Rational Developer for System z, you can easily test the function of
every .wsdl file using the Web services explorer. For this example, follow these
steps:

1. Open the Services subdirectory in your project's folder, then right-click
INLINE01Service, and choose Test with Web Services Explorer, as shown
in Figure A-5.

Figure A-5 Location of the Web Services Explorer in RDZ
 Appendix A. Sample Web services 295

2. Maximize the new window, the Web Services Explorer, by double-clicking on
its tab. Confirm the standard endpoint and click Go.

3. Invoke a new WSDL Operation. Type in strings for Title, FirstName,
Surname and an arbitrary regular XML statement in the
::inputRequestPart::0::0::1::0::0::1::0::0::4 box, as shown in Figure A-6.

Figure A-6 XML any passthrough web service data input
296 Application Development for CICS Web Services

4. Click Go and check for the results in the window below. The XML statement is
delivered without disturbing its own SOAP envelope, as shown in Figure A-7.

Figure A-7 XML any passthrough web service test result

The XML choice Web service example

This example of a Web service shows how you can deal with the XML choice
statement when using SOAP messages for data transfer. The program simply
interchanges the users' choice, returning the other possibility. You can install the
file by following the steps in “Preparation of your RDz environment” on page 290
and “Loading an .ear file into a new or existing project” on page 291.
 Appendix A. Sample Web services 297

Coding
The code given in Example A-2 is, for the most part, automatically derived from
the *.wsdl file. You only have to add the problems' solution to the Java skeleton.

Example A-2 Code of the XML choice web service example

package com.reqy.inline01;

@javax.jws.WebService
(endpointInterface="com.reqy.inline01.INLINE01Port",
targetNamespace="http://www.INLINE01.REQY.com",
serviceName="INLINE01Service", portName="INLINE01Port")
public class INLINE01HTTPSoapBindingImpl{

public com.response.respy.inline01.ProgramInterface
inline01Operation(com.request.reqy.inline01.ProgramInterface
requestPart) {
// Here starts the actual problem solution
// Allocating references for the exchange
com.response.respy.inline01.ProgramInterface respreference = new
com.response.respy.inline01.ProgramInterface();
com.response.respy.inline01.ProgramInterface.WsRetarea respwsarea = new
com.response.respy.inline01.ProgramInterface.WsRetarea();
com.response.respy.inline01.ProgramInterface.WsRetarea.ChoiceData
respchoice = new
com.response.respy.inline01.ProgramInterface.WsRetarea.ChoiceData();
com.request.reqy.inline01.ProgramInterface reqreference =new
com.request.reqy.inline01.ProgramInterface();
com.request.reqy.inline01.ProgramInterface.WsReqarea reqwsarea = new
com.request.reqy.inline01.ProgramInterface.WsReqarea();
com.request.reqy.inline01.ProgramInterface.WsReqarea.ChoiceData
reqchoice = new
com.request.reqy.inline01.ProgramInterface.WsReqarea.ChoiceData();
// Processing the input
reqwsarea = requestPart.getWsReqarea();
reqchoice = reqwsarea.getChoiceData();
// Changing the users' choice
respchoice.setFirstchoice(reqchoice.getSecondchoice());
respchoice.setSecondchoice(reqchoice.getFirstchoice());
// Composition of the answer
respwsarea.setChoiceData(respchoice);
respreference.setWsRetarea(respwsarea);return respreference;
 }
}

298 Application Development for CICS Web Services

Testing
With the IBM Rational Developer for System z, you can test the function of every
.wsdl file using the web services explorer. For this example, follow these steps:

1. Open the Services subdirectory in your project's folder, then right-click
INLINE01Service, and choose Test with Web Services Explorer, as shown
in Figure A-8.

Figure A-8 Location of the Web Services Explorer in RDZ

2. Maximize the new window, Web Services Explorer, by double-clicking its
tab.

3. Confirm the standard endpoint and click Go.
 Appendix A. Sample Web services 299

4. Invoke a new WSDL Operation. Mark either the firstchoice or secondchoice
checkbox before the values field, as shown in Figure A-9.

Figure A-9 XML choice web service data input 1/3

5. Click Add in the corresponding definition of your choice as shown in
Figure A-10.

Figure A-10 XML choice web service data input 2/3

6. Type in the value of your choice in the new line and select its checkbox.
Assure that the second value is not empty, so add a line there, too. The
windows should now look like Figure A-11.

Figure A-11 XML choice web service data input 3/3
300 Application Development for CICS Web Services

7. Click Go and check for the results in the window below. The choices are
interchanged, as shown in Figure A-12.

Figure A-12 XML choice web service test result

The XML occurs Web service example

This Web service demonstrates how you can deal with the both XML minoccurs-
and maxoccurs-statements if you are using SOAP messages to transfer variable
arrays between a modern and an old (non-dynamic, COBOL) program.It returns
the data tructure references by the XML statement and add two additional
instances to the array, these are added beneath the maxoccurs border.
 Appendix A. Sample Web services 301

Coding
The code given in Example A-3 is, for the most part, automatically derived from
the *.wsdl file. You only have to add the problems' solution to the Java skeleton.

Example A-3 Code of the XML occurs web service example

package com.reqy.inline01;

import java.util.ArrayList;
import java.util.List;
import com.request.reqy.inline01.ProgramInterface;

@javax.jws.WebService
(endpointInterface="com.reqy.inline01.INLINE01Port",
targetNamespace="http://www.INLINE01.REQY.com",
serviceName="INLINE01Service", portName="INLINE01Port")
public classINLINE01HTTPSoapBindingImpl{

public com.response.respy.inline01.ProgramInterface
inline01Operation(com.request.reqy.inline01.ProgramInterface
requestPart) {
// Here starts the actual problem solution
// Allocating space for reference
com.response.respy.inline01.ProgramInterface resp = new
com.response.respy.inline01.ProgramInterface();
com.response.respy.inline01.ProgramInterface.WsRetarea respwsretarea =
new com.response.respy.inline01.ProgramInterface.WsRetarea();
com.response.respy.inline01.ProgramInterface.WsRetarea.Recs resprecs =
new com.response.respy.inline01.ProgramInterface.WsRetarea.Recs();
com.request.reqy.inline01.ProgramInterface.WsReqarea reqwsarea = new
com.request.reqy.inline01.ProgramInterface.WsReqarea();
// Setting occur-borders
int location; int maxlocation;
System.out.println("Occurs Test....");
// Processing input data
reqwsarea = requestPart.getWsReqarea();
// Assure that field size per construct is correct
maxlocation = reqwsarea.getRecs().size(); maxlocation = maxlocation +2;
// Build new constructs
for (location = 0; location < maxlocation;)
{
resprecs = new
com.response.respy.inline01.ProgramInterface.WsRetarea.Recs();
resprecs.setRecs("string array number " +location);
respwsretarea.getRecs().add(location, resprecs);
302 Application Development for CICS Web Services

location++;
}
esp.setWsRetarea(respwsretarea);
return resp;
}

Testing
With the IBM Rational Developer for System z, you can test the function of every
.wsdl file using the web services explorer. For this example, follow these steps:

1. Open the Services subdirectory in your project's folder, then right-click
INLINE01Service, and choose Test with Web Services Explorer. See
Figure A-13.

Figure A-13 Location of the Web Services Explorer in RDZ
 Appendix A. Sample Web services 303

2. Maximize the new window, the Web Services Explorer, by double-clicking on
its tab.

3. Confirm the standard endpoint and click Go.

4. Invoke a new WSDL operation. Add as many as content boxes you want by
clicking Add and check them all by selecting the Content cell check box.

5. Type in random values for your boxes. Your window should look like
Figure A-14.

Figure A-14 XML accurs web service data input
304 Application Development for CICS Web Services

6. Click Go and look for the results in the window below. You receive the same
data constructs (that is, the boxes), but additionally, two dynamically added
extra constructs, as shown in Figure A-15.

Figure A-15 XML occurs web service test result
 Appendix A. Sample Web services 305

306 Application Development for CICS Web Services

Appendix B. Sample COBOL programs

In this appendix we list the COBOL programs used to call the sampleweb
services listed in Appendix A, “Sample Web services” on page 289.

We also list the WSDL that was used provided by the service provider, which we
used to generate the COBOL copybooks and the skeleton COBOL programs.

B

© Copyright IBM Corp. 2010. All rights reserved. 307

Program to call <xsd:any> example service

PROCESS CICS,NODYNAM,NSYMBOL(NATIONAL),TRUNC(STD)
 * ***
 * ************************RDz**7.5************************
 * ***
 * New CICS TS 3.x Web Service Requester
 * ***
 * ************************RDz**7.5************************
 * PROCESS CICS,NODYNAM,NSYMBOL(NATIONAL),TRUNC(STD)
 * ***
 * ************************RDz**7.5************************
 * ***
 * New CICS TS 3.x Web Service Requester
 * ***
 * ************************RDz**7.5************************
 * ***
 IDENTIFICATION DIVISION.
 *Begin Identification Divsion
 PROGRAM-ID. 'INLINETS'.
 AUTHOR. WD4Z.
 INSTALLATION. 9.1.200.V200903111338.
 DATE-WRITTEN. 09/09/09 15:16.
 *End Identification Divsion
 DATA DIVISION.
 *Begin Data Divsion
 WORKING-STORAGE SECTION.
 *Begin Working-Storage Section
 * ***
 * Operations Available On The Remote Web Service
 * ***
 1 OPERATION-NAME-1.
 2 PIC X(17) USAGE DISPLAY
 VALUE 'INLINE01Operation'.
 *End Working-Storage Section
 LOCAL-STORAGE SECTION.
 *Begin Local-Storage Section
 * ***
 * Program Work Variables
 * ***
 1 SOAP-PIPELINE-WORK-VARIABLES.
 2 WS-WEBSERVICE-NAME PIC X(32).
 2 WS-OPERATION-NAME PIC X(255).
 2 WS-CONTAINER-NAME PIC X(16).
308 Application Development for CICS Web Services

 2 WS-CHANNEL-NAME PIC X(16).
 2 COMMAND-RESP PIC S9(8) COMP.
 2 COMMAND-RESP2 PIC S9(8) COMP.
 *Specify A URI To Override The Web Service Description
 1 URI-RECORD-STRUCTURE.
 2 FILLER PIC X(10).
 2 WS-URI-OVERRIDE PIC X(255).

 1 WS-XML-PASSTHRU-DATA.
 2 WS-CUST-XML PIC X(255).
 2 WS-CUST-XMLns PIC X(255).

 1 WS-DFHWS-BODY PIC x(400).

 * ***
 * Language Structures
 * ***
 1 LANG-INLINI01.
 COPY inlinI01.
 1 LANG-INLINO01.
 COPY inlinO01.
 *End Local-Storage Section
 LINKAGE SECTION.
 *Begin Linkage Section
 *End Linkage Section
 *End Data Divsion
 PROCEDURE DIVISION
 .
 *Begin Procedure Division
 MAINLINE SECTION.
 * ---
 * Initialize Work Variables
 * ---
 INITIALIZE SOAP-PIPELINE-WORK-VARIABLES.
 INITIALIZE URI-RECORD-STRUCTURE.
 * ---
 * Container DFHWS-DATA must be present when a service requeste
 * r program issues an EXEC CICS INVOKE WEBSERVICE command. Whe
 * n the command is issued, CICS converts the language structur
 * e that is in the container into a SOAP request. When the soa
 * p response is received, CICS converts it into another langua
 * ge structure that is returned to the application in the same
 * container.
 * ---
 MOVE 'DFHWS-DATA'
 Appendix B. Sample COBOL programs 309

 TO WS-CONTAINER-NAME
 * ---
 * Channel Passed To The Web Service Call
 * ---
 MOVE 'SERVICE-CHANNEL'
 TO WS-CHANNEL-NAME
 * ---
 * WEBSERVICE resource installed in this CICS region
 * ---
 MOVE 'inlinetst'
 TO WS-WEBSERVICE-NAME
 * ---
 * Operation To Invoke On The Remote Web Service
 * ---
 MOVE OPERATION-NAME-1
 TO WS-OPERATION-NAME

 * ---
 * Populate Request Language Structure
 * ---
 INITIALIZE LANG-INLINI01

 Move 'MR' TO XTitle of wsXreqarea
 Move 2 to XTitle-length of wsXreqarea

 Move 'Tony' TO FirstName of wsXreqarea
 Move 4 to FirstName-length of wsXreqarea

 Move 'Fitzgerald' TO Surname of wsXreqarea
 MOVE 10 to Surname-length of wsXreqarea

 INITIALIZE WS-XML-PASSTHRU-DATA

 * --
 * Put the "any" XML data into the channel
 * --

 Move 1 to Customer-num of wsXreqarea
 MOVE 'cust-xml-cont' TO Customer-xml-cont of wsXreqarea

 * --- the XML ---
 Move '<Whatever>.....</Whatever>' to WS-CUST-XML

 EXEC CICS PUT CONTAINER(Customer-xml-cont of wsXreqarea)
310 Application Development for CICS Web Services

 CHANNEL(WS-CHANNEL-NAME)
 FROM(WS-CUST-XML)
 DATATYPE(DFHVALUE(CHAR))
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 * --
 * Put the "any" XMLns data into the channel
 * --
 MOVE 'cust-xmlns-cont' to Customer-xmlns-cont
 of wsXreqarea
 * Move 'xmlns:ns1="http://myNS"' to WS-CUST-XMLns

 * ---
 * Put Request Language Structure Into SOAP Container
 * ---

 EXEC CICS PUT CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(LANG-INLINI01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 * ---
 * Invoke The Web Service
 * ---
 Move 'http://9.173.198.188:9080/RedbookWS4/INLINE01Service'
 to WS-URI-OVERRIDE

 EXEC CICS INVOKE SERVICE(WS-WEBSERVICE-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 URI(WS-URI-OVERRIDE)
 OPERATION(WS-OPERATION-NAME)
 RESP(COMMAND-RESP) RESP2(COMMAND-RESP2)
 END-EXEC
 PERFORM CHECK-WEBSERVICE-COMMAND

 * ---
 * Receive Response Language Structure
 * ---
 EXEC CICS GET CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(LANG-INLINO01)
 END-EXEC
 Appendix B. Sample COBOL programs 311

 PERFORM CHECK-CONTAINER-COMMAND

 * ---
 * "Process" the Response Language Structure
 * ---
 DISPLAY 'XTitle data returned = ' XTitle of wsXretarea
 DISPLAY 'FirstName data returned = ' FirstName of wsXretarea
 DISPLAY 'Surname data returned = ' Surname of wsXretarea

 INITIALIZE WS-XML-PASSTHRU-DATA.

 EXEC CICS GET CONTAINER(Customer-xmlns-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-CUST-XMLns)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 EXEC CICS GET CONTAINER(Customer-xml-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-CUST-XML)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 DISPLAY 'Customer-xml-cont data = ' WS-CUST-XML
 DISPLAY 'Customer-xmlns-cont data = ' WS-CUST-XMLns

 * ---
 * Finished
 * ---
 EXEC CICS RETURN
 END-EXEC
 .

 CHECK-CONTAINER-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(CCSIDERR)
 EXEC CICS ABEND ABCODE('C001') END-EXEC
 CONTINUE
 WHEN DFHRESP(CONTAINERERR)
 EXEC CICS ABEND ABCODE('C002') END-EXEC
 CONTINUE
 WHEN DFHRESP(INVREQ)
 EXEC CICS ABEND ABCODE('C003') END-EXEC
 CONTINUE
 WHEN DFHRESP(LENGERR)
312 Application Development for CICS Web Services

 EXEC CICS ABEND ABCODE('C004') END-EXEC
 CONTINUE
 END-EVALUATE
 .

 CHECK-WEBSERVICE-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(INVREQ)
 PERFORM INVREQ-PROCESSING
 EXEC CICS ABEND ABCODE('WS01') END-EXEC
 CONTINUE
 WHEN DFHRESP(NOTFND)
 EXEC CICS ABEND ABCODE('WS02') END-EXEC
 CONTINUE
 END-EVALUATE
 .

 INVREQ-PROCESSING.
 IF EIBRESP2 = 6 THEN
 * ** An EIBRESP2 of 6 indicates a SOAP fault **
 * ** has been returned in DFHWS-BODY **
 EXEC CICS
 GET CONTAINER('DFHWS-BODY')
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-DFHWS-BODY)
 END-EXEC
 DISPLAY WS-DFHWS-BODY
 END-IF
 .

 *End Procedure Division
 END PROGRAM 'INLINETS'.
 Appendix B. Sample COBOL programs 313

WSDL - <xsd:any>

<?xml version="1.0"?>
<!--This document was generated using 'DFHLS2WS' at mapping level '2.2'. -->
<definitions targetNamespace="http://www.INLINE01.REQY.com"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:reqns="http://www.INLINE01.REQY.Request.com"
xmlns:resns="http://www.INLINE01.RESPY.Response.com"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.INLINE01.REQY.com">
 <types>
 <xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.INLINE01.REQY.Request.com"
 xmlns:tns="http://www.INLINE01.REQY.Request.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation source="http://www.ibm.com/software/htp/cics/annotations">
 This schema was generated by the CICS Web services
 assistant.</xsd:documentation>
 </xsd:annotation>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.mappingLevel=2.2</xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType abstract="false" block="#all" final="#all"
 mixed="false" name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_reqarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="Customer">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Title"
 type="xsd:string" />
 <xsd:element name="FirstName"
 type="xsd:string" />
 <xsd:element name="Surname"
 type="xsd:string" />
 <xsd:any minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
314 Application Development for CICS Web Services

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="INLINE01Operation" nillable="false"
 type="tns:ProgramInterface" />
 </xsd:schema>
 <xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.INLINE01.RESPY.Response.com"
 xmlns:tns="http://www.INLINE01.RESPY.Response.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation source="http://www.ibm.com/software/htp/cics/annotations">
 This schema was generated by the CICS Web services
 assistant.</xsd:documentation>
 </xsd:annotation>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.mappingLevel=2.2</xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType abstract="false" block="#all" final="#all"
 mixed="false" name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_retarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="Customer">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="Title"
 type="xsd:string" />
 <xsd:element name="FirstName"
 type="xsd:string" />
 <xsd:element name="Surname"
 type="xsd:string" />
 <xsd:any minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 Appendix B. Sample COBOL programs 315

 </xsd:complexType>
 <xsd:element name="INLINE01OperationResponse"
 nillable="false" type="tns:ProgramInterface" />
 </xsd:schema>
 </types>
 <message name="INLINE01OperationResponse">
 <part element="resns:INLINE01OperationResponse"
 name="ResponsePart" />
 </message>
 <message name="INLINE01OperationRequest">
 <part element="reqns:INLINE01Operation" name="RequestPart" />
 </message>
 <portType name="INLINE01Port">
 <operation name="INLINE01Operation">
 <input message="tns:INLINE01OperationRequest"
 name="INLINE01OperationRequest" />
 <output message="tns:INLINE01OperationResponse"
 name="INLINE01OperationResponse" />
 </operation>
 </portType>
 <binding name="INLINE01HTTPSoapBinding" type="tns:INLINE01Port">
 <!-- This soap:binding indicates the use of SOAP 1.1 -->
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <operation name="INLINE01Operation">
 <soap:operation soapAction="" style="document" />
 <input name="INLINE01OperationRequest">
 <soap:body parts="RequestPart" use="literal" />
 </input>
 <output name="INLINE01OperationResponse">
 <soap:body parts="ResponsePart" use="literal" />
 </output>
 </operation>
 </binding>
 <service name="INLINE01Service">
 <port binding="tns:INLINE01HTTPSoapBinding"
 name="INLINE01Port">
 <!-- This soap:address indicates the location of the Web service over HTTP.
 Please replace "my-server" with the TCPIP host name of your CICS
region.
 Please replace "my-port" with the port number of your CICS
TCPIPSERVICE. -->
 <soap:address location="http://my-server:my-port/inline/test" />
 <!-- This soap:address indicates the location of the Web service over HTTPS.
-->
316 Application Development for CICS Web Services

 <!-- <soap:address location="https://my-server:my-port/inline/test"/> -->
 <!-- This soap:address indicates the location of the Web service over WebSphere
MQSeries.
 Please replace "my-queue" with the appropriate queue name. -->
 <!-- <soap:address
location="jms:/queue?destination=my-queue&connectionFactory=()&targetService=
/inline/test&initialContextFactory=com.ibm.mq.jms.Nojndi" /> -->
 </port>
 </service>
</definitions>
 Appendix B. Sample COBOL programs 317

Request Language Structure - inlinI01

* ++
 * This file contains the generated request language structure(s)
 * for WSDL operation 'INLINE01Operation'.
 * The response message for this WSDL Operation may be replaced
 * with a SOAP Fault message.
 * This structure was generated using 'DFHWS2LS' at mapping level
 * '2.1'.
 *
 *
 * 03 INLINE01Operation.
 * 06 wsXreqarea.
 * 09 Customer1.
 *
 * Comments for field 'XTitle':
 * This field represents the value of XML element
 * '/INLINE01Operation/ws_reqarea/Customer/Title'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 * 12 XTitle-length PIC S9999 COMP-5
 * SYNC.
 * 12 XTitle PIC X(255).
 *
 * Comments for field 'FirstName':
 * This field represents the value of XML element
 * '/INLINE01Operation/ws_reqarea/Customer/FirstName'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 * 12 FirstName-length PIC S9999 COMP-5
 * SYNC.
 * 12 FirstName PIC X(255).
 *
 * Comments for field 'Surname':
 * This field represents the value of XML element
 * '/INLINE01Operation/ws_reqarea/Customer/Surname'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
318 Application Development for CICS Web Services

 * 12 Surname-length PIC S9999 COMP-5
 * SYNC.
 * 12 Surname PIC X(255).
 *
 *
 * Array 'Customer' contains a variable number of instances of
 * XML element
 * '/INLINE01Operation/ws_reqarea/Customer/Customer'. The number
 * of instances present is indicated in field 'Customer-num'.
 * There should be at least '0' instance(s).
 * There should be at most '1' instance(s).
 * 12 Customer-num PIC S9(9) COMP-5
 * SYNC.
 *
 *
 * 12 Customer.
 *
 * Comments for field 'Customer-xml-cont':
 * XML data type: 'any'.
 * This field contains the name of a CONTAINER which in turn
 * holds the XML data for an xsd:any or xsd:anyType. The
 * CONTAINER must be read from and written to in CHAR mode.
 * 15 Customer-xml-cont PIC X(16).
 *
 * Comments for field 'Customer-xmlns-cont':
 * XML data type: 'any'.
 * This field contains the name of a CONTAINER which in turn
 * holds namespace prefix definitions that may be used in the
 * XML. The CONTAINER must be read from in CHAR mode.
 * 15 Customer-xmlns-cont PIC X(16).
 *
 *
 * ++

 03 INLINE01Operation.
 06 wsXreqarea.
 09 Customer1.
 12 XTitle-length PIC S9999 COMP-5
 SYNC.
 12 XTitle PIC X(255).
 12 FirstName-length PIC S9999 COMP-5
 SYNC.
 12 FirstName PIC X(255).
 12 Surname-length PIC S9999 COMP-5
 SYNC.
 Appendix B. Sample COBOL programs 319

 12 Surname PIC X(255).

 12 Customer-num PIC S9(9) COMP-5
 SYNC.

 12 Customer.
 15 Customer-xml-cont PIC X(16).
 15 Customer-xmlns-cont PIC X(16).
320 Application Development for CICS Web Services

Response Language Structure - inlinO01

* ++
 * This file contains the generated response language
 * structure(s) for WSDL operation 'INLINE01Operation'.
 * The response message for this WSDL Operation may be replaced
 * with a SOAP Fault message.
 * This structure was generated using 'DFHWS2LS' at mapping level
 * '2.1'.
 *
 *
 * 03 INLINE01OperationResponse.
 * 06 wsXretarea.
 * 09 Customer1.
 *
 * Comments for field 'XTitle':
 * This field represents the value of XML element
 * '/INLINE01OperationResponse/ws_retarea/Customer/Title'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 * 12 XTitle-length PIC S9999 COMP-5
 * SYNC.
 * 12 XTitle PIC X(255).
 *
 * Comments for field 'FirstName':
 * This field represents the value of XML element
 * '/INLINE01OperationResponse/ws_retarea/Customer/FirstName'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 * 12 FirstName-length PIC S9999 COMP-5
 * SYNC.
 * 12 FirstName PIC X(255).
 *
 * Comments for field 'Surname':
 * This field represents the value of XML element
 * '/INLINE01OperationResponse/ws_retarea/Customer/Surname'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 Appendix B. Sample COBOL programs 321

 * 12 Surname-length PIC S9999 COMP-5
 * SYNC.
 * 12 Surname PIC X(255).
 *
 *
 * Array 'Customer' contains a variable number of instances of
 * XML element
 * '/INLINE01OperationResponse/ws_retarea/Customer/Customer'.
 * The number of instances present is indicated in field
 * 'Customer-num'.
 * There should be at least '0' instance(s).
 * There should be at most '1' instance(s).
 * 12 Customer-num PIC S9(9) COMP-5
 * SYNC.
 *
 *
 * 12 Customer.
 *
 * Comments for field 'Customer-xml-cont':
 * XML data type: 'any'.
 * This field contains the name of a CONTAINER which in turn
 * holds the XML data for an xsd:any or xsd:anyType. The
 * CONTAINER must be read from and written to in CHAR mode.
 * 15 Customer-xml-cont PIC X(16).
 *
 * Comments for field 'Customer-xmlns-cont':
 * XML data type: 'any'.
 * This field contains the name of a CONTAINER which in turn
 * holds namespace prefix definitions that may be used in the
 * XML. The CONTAINER must be read from in CHAR mode.
 * 15 Customer-xmlns-cont PIC X(16).
 *
 *
 * ++

 03 INLINE01OperationResponse.
 06 wsXretarea.
 09 Customer1.
 12 XTitle-length PIC S9999 COMP-5
 SYNC.
 12 XTitle PIC X(255).
 12 FirstName-length PIC S9999 COMP-5
 SYNC.
 12 FirstName PIC X(255).
 12 Surname-length PIC S9999 COMP-5
322 Application Development for CICS Web Services

 SYNC.
 12 Surname PIC X(255).

 12 Customer-num PIC S9(9) COMP-5
 SYNC.

 12 Customer.
 15 Customer-xml-cont PIC X(16).
 15 Customer-xmlns-cont PIC X(16).
 Appendix B. Sample COBOL programs 323

Program to call <xsd:choice> example service

PROCESS CICS,NODYNAM,NSYMBOL(NATIONAL),TRUNC(STD)
 * ***
 * ************************RDz**7.5************************
 * ***
 * New CICS TS 3.x Web Service Requester
 * ***
 * ************************RDz**7.5************************
 * ***
 IDENTIFICATION DIVISION.
 *Begin Identification Divsion
 PROGRAM-ID. 'CHOICETE'.
 AUTHOR. WD4Z.
 INSTALLATION. 9.1.200.V200903111338.
 DATE-WRITTEN. 21/09/09 11:45.
 *End Identification Divsion
 DATA DIVISION.
 *Begin Data Divsion
 WORKING-STORAGE SECTION.
 *Begin Working-Storage Section
 * ***
 * Operations Available On The Remote Web Service
 * ***
 1 OPERATION-NAME-1.
 2 PIC X(17) USAGE DISPLAY
 VALUE 'INLINE01Operation'.
 *End Working-Storage Section
 LOCAL-STORAGE SECTION.
 *Begin Local-Storage Section
 * ***
 * Program Work Variables
 * ***
 1 SOAP-PIPELINE-WORK-VARIABLES.
 2 WS-WEBSERVICE-NAME PIC X(32).
 2 WS-OPERATION-NAME PIC X(255).
 2 WS-CONTAINER-NAME PIC X(16).
 2 WS-CHANNEL-NAME PIC X(16).
 2 COMMAND-RESP PIC S9(8) COMP.
 2 COMMAND-RESP2 PIC S9(8) COMP.
 *Specify A URI To Override The Web Service Description
 1 URI-RECORD-STRUCTURE.
 2 FILLER PIC X(10).
 2 WS-URI-OVERRIDE PIC X(255).
324 Application Development for CICS Web Services

 1 WS-DFHWS-BODY PIC x(400).
 * ***
 * Language Structures
 * ***
 1 LANG-CHOICI01.
 COPY choicI01.
 1 LANG-CHOICO01.
 COPY choicO01.
 *End Local-Storage Section
 LINKAGE SECTION.
 *Begin Linkage Section
 *End Linkage Section
 *End Data Divsion
 PROCEDURE DIVISION
 .
 *Begin Procedure Division
 MAINLINE SECTION.
 * ---
 * Initialize Work Variables
 * ---
 INITIALIZE SOAP-PIPELINE-WORK-VARIABLES.
 INITIALIZE URI-RECORD-STRUCTURE.
 * ---
 * Container DFHWS-DATA must be present when a service requeste
 * r program issues an EXEC CICS INVOKE WEBSERVICE command. Whe
 * n the command is issued, CICS converts the language structur
 * e that is in the container into a SOAP request. When the soa
 * p response is received, CICS converts it into another langua
 * ge structure that is returned to the application in the same
 * container.
 * ---
 MOVE 'DFHWS-DATA'
 TO WS-CONTAINER-NAME
 * ---
 * Channel Passed To The Web Service Call
 * ---
 MOVE 'SERVICE-CHANNEL'
 TO WS-CHANNEL-NAME
 * ---
 * WEBSERVICE resource installed in this CICS region
 * ---
 MOVE 'choicetest'
 TO WS-WEBSERVICE-NAME
 * ---
 Appendix B. Sample COBOL programs 325

 * Operation To Invoke On The Remote Web Service
 * ---
 MOVE OPERATION-NAME-1
 TO WS-OPERATION-NAME
 * ---
 * Populate Request Language Structure
 * ---
 INITIALIZE LANG-CHOICI01

 DISPLAY 'data is being sent in the firstchoice field'
 *
 * The WSDL specfies that only one of the two fields can
 * be sent to the service
 * EITHER firstchoice or secondchoice
 *
 move 'first choice data' to firstchoice
 of choicI01-firstchoice
 move 18 to firstchoice-length
 of choicI01-firstchoice

 DISPLAY 'data to be sent is ==>' firstchoice
 of choicI01-firstchoice

 set firstchoice of wsXreqarea to true

 move 'CHOICE-CONT' to choiceData-cont of wsXreqarea

 EXEC CICS PUT CONTAINER(choiceData-cont of wsXreqarea)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(choicI01-firstchoice)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 * ---
 * Put Request Language Structure Into SOAP Container
 * ---
 EXEC CICS PUT CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(LANG-CHOICI01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND
 * ---
 * Invoke The Web Service
 * ---
 Move 'http://9.146.153.15:9080/RedbookWS5/INLINE01Service'
326 Application Development for CICS Web Services

 to WS-URI-OVERRIDE

 EXEC CICS INVOKE WEBSERVICE(WS-WEBSERVICE-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 URI(WS-URI-OVERRIDE)
 OPERATION(WS-OPERATION-NAME)
 RESP(COMMAND-RESP) RESP2(COMMAND-RESP2)
 END-EXEC
 PERFORM CHECK-WEBSERVICE-COMMAND
 * ---
 * Receive Response Language Structure
 * ---
 EXEC CICS GET CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(LANG-CHOICO01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND
 * ---
 * Process Response Language Structure
 * ---
 *
 * Check which of the "choice" fields have been returned
 * and process the result
 *
 EVALUATE TRUE
 when empty of wsXretarea
 display 'nothing returned'

 when firstchoice of wsXretarea
 display 'data was returned in the firstchoice field'

 EXEC CICS GET CONTAINER(choiceData-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(choicO01-firstchoice)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 display 'data returned is ==>'
 firstchoice of choicO01-firstchoice

 when secondchoice of wsXretarea
 display 'data was returned in the secondchoice field'

 EXEC CICS GET CONTAINER(choiceData-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 Appendix B. Sample COBOL programs 327

 INTO(choicO01-secondchoice)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 display 'data returned is ==>'
 secondchoice of choicO01-secondchoice

 END-EVALUATE

 * ---
 * Finished
 * ---
 EXEC CICS RETURN
 END-EXEC
 .
 CHECK-CONTAINER-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(CCSIDERR)
 EXEC CICS ABEND ABCODE('C001') END-EXEC
 CONTINUE
 WHEN DFHRESP(CONTAINERERR)
 EXEC CICS ABEND ABCODE('C002') END-EXEC
 CONTINUE
 WHEN DFHRESP(INVREQ)
 EXEC CICS ABEND ABCODE('C002') END-EXEC
 CONTINUE
 WHEN DFHRESP(LENGERR)
 EXEC CICS ABEND ABCODE('C002') END-EXEC
 CONTINUE
 END-EVALUATE
 .
 CHECK-WEBSERVICE-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(INVREQ)
 PERFORM INVREQ-PROCESSING
 EXEC CICS ABEND ABCODE('W001') END-EXEC
 CONTINUE
 WHEN DFHRESP(NOTFND)
 EXEC CICS ABEND ABCODE('W002') END-EXEC
 CONTINUE
 END-EVALUATE
 .

 INVREQ-PROCESSING.
 IF EIBRESP2 = 6 THEN
328 Application Development for CICS Web Services

 * ** An EIBRESP2 of 6 indicates a SOAP fault **
 * ** has been returned in DFHWS-BODY **
 EXEC CICS
 GET CONTAINER('DFHWS-BODY')
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-DFHWS-BODY)
 END-EXEC
 DISPLAY WS-DFHWS-BODY
 END-IF
 .

 *End Procedure Division
 END PROGRAM 'CHOICETE'.
 Appendix B. Sample COBOL programs 329

WSDL <xsd:choice>

<?xml version="1.0"?>
<!--This document was generated using 'DFHLS2WS' at mapping level '2.2'. -->
<definitions targetNamespace="http://www.INLINE01.REQY.com"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:reqns="http://www.INLINE01.REQY.Request.com"
xmlns:resns="http://www.INLINE01.RESPY.Response.com"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.INLINE01.REQY.com">
 <types>
 <xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.INLINE01.REQY.Request.com"
 xmlns:tns="http://www.INLINE01.REQY.Request.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation source="http://www.ibm.com/software/htp/cics/annotations">
 This schema was generated by the CICS Web services
 assistant.</xsd:documentation>
 </xsd:annotation>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.mappingLevel=2.2</xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType abstract="false" block="#all" final="#all"
 mixed="false" name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_reqarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="choiceData">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element name="firstchoice"
 type="xsd:string" />
 <xsd:element name="secondchoice"
 type="xsd:string" />
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
330 Application Development for CICS Web Services

 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="INLINE01Operation" nillable="false"
 type="tns:ProgramInterface" />
 </xsd:schema>
 <xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.INLINE01.RESPY.Response.com"
 xmlns:tns="http://www.INLINE01.RESPY.Response.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation source="http://www.ibm.com/software/htp/cics/annotations">
 This schema was generated by the CICS Web services
 assistant.</xsd:documentation>
 </xsd:annotation>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.mappingLevel=2.2</xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType abstract="false" block="#all" final="#all"
 mixed="false" name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_retarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="choiceData">
 <xsd:complexType>
 <xsd:choice>
 <xsd:element name="firstchoice"
 type="xsd:string" />
 <xsd:element name="secondchoice"
 type="xsd:string" />
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="INLINE01OperationResponse"
 nillable="false" type="tns:ProgramInterface" />
 </xsd:schema>
 </types>
 <message name="INLINE01OperationResponse">
 Appendix B. Sample COBOL programs 331

 <part element="resns:INLINE01OperationResponse"
 name="ResponsePart" />
 </message>
 <message name="INLINE01OperationRequest">
 <part element="reqns:INLINE01Operation" name="RequestPart" />
 </message>
 <portType name="INLINE01Port">
 <operation name="INLINE01Operation">
 <input message="tns:INLINE01OperationRequest"
 name="INLINE01OperationRequest" />
 <output message="tns:INLINE01OperationResponse"
 name="INLINE01OperationResponse" />
 </operation>
 </portType>
 <binding name="INLINE01HTTPSoapBinding" type="tns:INLINE01Port">
 <!-- This soap:binding indicates the use of SOAP 1.1 -->
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <operation name="INLINE01Operation">
 <soap:operation soapAction="" style="document" />
 <input name="INLINE01OperationRequest">
 <soap:body parts="RequestPart" use="literal" />
 </input>
 <output name="INLINE01OperationResponse">
 <soap:body parts="ResponsePart" use="literal" />
 </output>
 </operation>
 </binding>
 <service name="INLINE01Service">
 <port binding="tns:INLINE01HTTPSoapBinding"
 name="INLINE01Port">
 <!-- This soap:address indicates the location of the Web service over HTTP.
 Please replace "my-server" with the TCPIP host name of your CICS
region.
 Please replace "my-port" with the port number of your CICS
TCPIPSERVICE. -->
 <soap:address location="http://my-server:my-port/inline/test" />
 <!-- This soap:address indicates the location of the Web service over HTTPS.
-->
 <!-- <soap:address location="https://my-server:my-port/inline/test"/> -->
 <!-- This soap:address indicates the location of the Web service over WebSphere
MQSeries.
 Please replace "my-queue" with the appropriate queue name. -->
332 Application Development for CICS Web Services

 <!-- <soap:address
location="jms:/queue?destination=my-queue&connectionFactory=()&targetService=
/inline/test&initialContextFactory=com.ibm.mq.jms.Nojndi" /> -->
 </port>
 </service>
</definitions>
 Appendix B. Sample COBOL programs 333

Request Language Structure - choicI01

* ++
 * This file contains the generated request language structure(s)
 * for WSDL operation 'INLINE01Operation'.
 * The response message for this WSDL Operation may be replaced
 * with a SOAP Fault message.
 * This structure was generated using 'DFHWS2LS' at mapping level
 * '2.2'.
 *
 *
 * 03 INLINE01Operation.
 * 06 wsXreqarea.
 * 09 choiceData.
 *
 *
 * The 'choiceData-enum' field indicates which option from a set
 * of possible values is being used. The associated value is
 * stored in the container referenced in 'choiceData-cont'.
 * A value of X'00' indicates no content.
 * A value of X'01' indicates an instance of structure
 * 'choicI01-firstchoice'.
 * A value of X'02' indicates an instance of structure
 * 'choicI01-secondchoice'.
 * 12 choiceData-enum PIC X DISPLAY.
 * 88 empty VALUE X'00'.
 * 88 firstchoice VALUE X'01'.
 * 88 secondchoice VALUE X'02'.
 * 12 choiceData-cont PIC X(16).
 *
 *
 * This structure describes data associated with enumeration
 * 'choiceData-enum' with a value X'01'.
 * 01 choicI01-firstchoice.
 *
 * Comments for field 'firstchoice':
 * This field represents the value of XML element
 * '/INLINE01Operation/ws_reqarea/choiceData/firstchoice'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 * 03 firstchoice-length PIC S9999 COMP-5 SYNC.
 * 03 firstchoice PIC X(255).
334 Application Development for CICS Web Services

 *
 *
 * This structure describes data associated with enumeration
 * 'choiceData-enum' with a value X'02'.
 * 01 choicI01-secondchoice.
 *
 * Comments for field 'secondchoice':
 * This field represents the value of XML element
 * '/INLINE01Operation/ws_reqarea/choiceData/secondchoice'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 * 03 secondchoice-length PIC S9999 COMP-5 SYNC.
 * 03 secondchoice PIC X(255).
 *
 *
 * ++

 03 INLINE01Operation.
 06 wsXreqarea.
 09 choiceData.

 12 choiceData-enum PIC X DISPLAY.
 88 empty VALUE X'00'.
 88 firstchoice VALUE X'01'.
 88 secondchoice VALUE X'02'.
 12 choiceData-cont PIC X(16).

 01 choicI01-firstchoice.
 03 firstchoice-length PIC S9999 COMP-5 SYNC.
 03 firstchoice PIC X(255).

 01 choicI01-secondchoice.
 03 secondchoice-length PIC S9999 COMP-5 SYNC.
 03 secondchoice PIC X(255).

 Appendix B. Sample COBOL programs 335

Response Language Structure - choicO01

* ++
 * This file contains the generated response language
 * structure(s) for WSDL operation 'INLINE01Operation'.
 * The response message for this WSDL Operation may be replaced
 * with a SOAP Fault message.
 * This structure was generated using 'DFHWS2LS' at mapping level
 * '2.2'.
 *
 *
 * 03 INLINE01OperationResponse.
 * 06 wsXretarea.
 * 09 choiceData.
 *
 *
 * The 'choiceData-enum' field indicates which option from a set
 * of possible values is being used. The associated value is
 * stored in the container referenced in 'choiceData-cont'.
 * A value of X'00' indicates no content.
 * A value of X'01' indicates an instance of structure
 * 'choicO01-firstchoice'.
 * A value of X'02' indicates an instance of structure
 * 'choicO01-secondchoice'.
 * 12 choiceData-enum PIC X DISPLAY.
 * 88 empty VALUE X'00'.
 * 88 firstchoice VALUE X'01'.
 * 88 secondchoice VALUE X'02'.
 * 12 choiceData-cont PIC X(16).
 *
 *
 * This structure describes data associated with enumeration
 * 'choiceData-enum' with a value X'01'.
 * 01 choicO01-firstchoice.
 *
 * Comments for field 'firstchoice':
 * This field represents the value of XML element
 * '/INLINE01OperationResponse/ws_retarea/choiceData/firstchoice'
 * .
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 * 03 firstchoice-length PIC S9999 COMP-5 SYNC.
336 Application Development for CICS Web Services

 * 03 firstchoice PIC X(255).
 *
 *
 * This structure describes data associated with enumeration
 * 'choiceData-enum' with a value X'02'.
 * 01 choicO01-secondchoice.
 *
 * Comments for field 'secondchoice':
 * This field represents the value of XML element
 * '/INLINE01OperationResponse/ws_retarea/choiceData/secondchoice
 * '.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'preserve'.
 * This field contains a varying length array of characters or
 * binary data.
 * 03 secondchoice-length PIC S9999 COMP-5 SYNC.
 * 03 secondchoice PIC X(255).
 *
 *
 * ++

 03 INLINE01OperationResponse.
 06 wsXretarea.
 09 choiceData.

 12 choiceData-enum PIC X DISPLAY.
 88 empty VALUE X'00'.
 88 firstchoice VALUE X'01'.
 88 secondchoice VALUE X'02'.
 12 choiceData-cont PIC X(16).

 01 choicO01-firstchoice.
 03 firstchoice-length PIC S9999 COMP-5 SYNC.
 03 firstchoice PIC X(255).

 01 choicO01-secondchoice.
 03 secondchoice-length PIC S9999 COMP-5 SYNC.
 03 secondchoice PIC X(255).

 Appendix B. Sample COBOL programs 337

Program to call minOccurs/maxOccurs example service

PROCESS CICS,NODYNAM,NSYMBOL(NATIONAL),TRUNC(STD)
 * ***
 * ************************RDz**7.5************************
 * ***
 * New CICS TS 3.x Web Service Requester
 * ***
 * ************************RDz**7.5************************
 * ***
 IDENTIFICATION DIVISION.
 *Begin Identification Divsion
 PROGRAM-ID. 'REDBOOKW'.
 AUTHOR. WD4Z.
 INSTALLATION. 9.1.200.V200903111338.
 DATE-WRITTEN. 21/09/09 18:38.
 *End Identification Divsion
 DATA DIVISION.
 *Begin Data Divsion
 WORKING-STORAGE SECTION.
 *Begin Working-Storage Section
 * ***
 * Operations Available On The Remote Web Service
 * ***
 1 OPERATION-NAME-1.
 2 PIC X(17) USAGE DISPLAY
 VALUE 'INLINE01Operation'.
 *End Working-Storage Section
 LOCAL-STORAGE SECTION.
 *Begin Local-Storage Section
 * ***
 * Program Work Variables
 * ***
 1 SOAP-PIPELINE-WORK-VARIABLES.
 2 WS-WEBSERVICE-NAME PIC X(32).
 2 WS-OPERATION-NAME PIC X(255).
 2 WS-CONTAINER-NAME PIC X(16).
 2 WS-CHANNEL-NAME PIC X(16).
 2 COMMAND-RESP PIC S9(8) COMP.
 2 COMMAND-RESP2 PIC S9(8) COMP.
 *Specify A URI To Override The Web Service Description
 1 URI-RECORD-STRUCTURE.
 2 FILLER PIC X(10).
 2 WS-URI-OVERRIDE PIC X(255).
338 Application Development for CICS Web Services

 1 WS-DFHWS-BODY PIC x(400) value spaces.
 1 WS-XML-ERRORMSG PIC x(400) value spaces.

 1 WS-RECORDS-ARRAY.
 2 WS-RECORD PIC X(80) occurs 20 times.

 * used to display the records returned by the service
 1 ws-record-returned.
 2 Filler PIC X(26)
 value ' returned record number '.
 2 ws-returned-rec-num pic 99.
 2 Filler PIC X(05)
 value '===> '.
 2 ws-returned-rec-data pic X(80).

 1 records-length PIC s9(8) comp.
 1 ws-record-data.
 2 FILLER pic x(07) value 'Record '.
 2 ws-count pic 99 value zero.
 * ***
 * Language Structures
 * ***
 1 LANG-REDBOI01.
 COPY redboI01.
 1 LANG-REDBOO01.
 COPY redboO01.
 *End Local-Storage Section
 LINKAGE SECTION.
 *Begin Linkage Section
 *End Linkage Section
 *End Data Divsion
 PROCEDURE DIVISION
 .
 *Begin Procedure Division
 MAINLINE SECTION.
 * ---
 * Initialize Work Variables
 * ---
 INITIALIZE SOAP-PIPELINE-WORK-VARIABLES.
 INITIALIZE URI-RECORD-STRUCTURE.
 * ---
 * Container DFHWS-DATA must be present when a service requeste
 * r program issues an EXEC CICS INVOKE WEBSERVICE command. Whe
 * n the command is issued, CICS converts the language structur
 Appendix B. Sample COBOL programs 339

 * e that is in the container into a SOAP request. When the soa
 * p response is received, CICS converts it into another langua
 * ge structure that is returned to the application in the same
 * container.
 * ---
 MOVE 'DFHWS-DATA'
 TO WS-CONTAINER-NAME
 * ---
 * Channel Passed To The Web Service Call
 * ---
 MOVE 'SERVICE-CHANNEL'
 TO WS-CHANNEL-NAME
 * ---
 * WEBSERVICE resource installed in this CICS region
 * ---
 MOVE 'redbookWS6'
 TO WS-WEBSERVICE-NAME
 * ---
 * Operation To Invoke On The Remote Web Service
 * ---
 MOVE OPERATION-NAME-1
 TO WS-OPERATION-NAME
 * ---
 * Populate Request Language Structure
 * ---
 INITIALIZE LANG-REDBOI01

 *--- we are going to send 4 records
 move 4 to recs-num of wsXreqarea
 DISPLAY " "
 DISPLAY "=="
 DISPLAY "Sending " recs-num of wsXreqarea " records"

 *--- populate our array with our data
 Perform recs-num of wsXreqarea times
 add 1 to ws-count
 Move ws-record-data to recs2 of redboI01-recs
 move redboI01-recs to WS-RECORD(ws-count)
 END-Perform

 *--- calculate how long the data is
 compute records-length =
 length of redboI01-recs * recs-num of wsXreqarea

 *--- store the name of our data container in the
340 Application Development for CICS Web Services

 *--- request language structure
 move "RECS-CONTAINER" to recs-cont of wsXreqarea

 *--- put the array into the container
 EXEC CICS PUT CONTAINER(recs-cont of wsXreqarea)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(WS-RECORDS-ARRAY)
 FLENGTH(records-length)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 *
 *
 *
 * ---
 * Put Request Language Structure Into SOAP Container
 * ---
 EXEC CICS PUT CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 FROM(LANG-REDBOI01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND
 * ---
 * Invoke The Web Service
 * ---

 *--- override the URI - remove if the WSDL has the correct URI
 Move 'http://9.173.199.45:9080/RedbookWS6/INLINE01Service'
 to WS-URI-OVERRIDE

 EXEC CICS INVOKE WEBSERVICE(WS-WEBSERVICE-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 URI(WS-URI-OVERRIDE)
 OPERATION(WS-OPERATION-NAME)
 RESP(COMMAND-RESP) RESP2(COMMAND-RESP2)
 END-EXEC
 PERFORM CHECK-WEBSERVICE-COMMAND
 * ---
 * Receive Response Language Structure
 * ---
 EXEC CICS GET CONTAINER(WS-CONTAINER-NAME)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(LANG-REDBOO01)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND
 Appendix B. Sample COBOL programs 341

 * ---
 * Process Response Language Structure
 * ---

 *--- get the returned data which is in the container
 *--- named in the response language structure
 EXEC CICS GET CONTAINER(recs-cont of wsXretarea)
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-RECORDS-ARRAY)
 END-EXEC
 PERFORM CHECK-CONTAINER-COMMAND

 DISPLAY '==='
 DISPLAY recs-num of wsXretarea ' records returned'

 *--- Display each of the returned records.
 *--- The number of records returned is in recs-num
 *--- which has been extracted from the response container
 *--- into the response language structure
 move 1 to ws-count
 PERFORM recs-num of wsXretarea times
 move ws-count to ws-returned-rec-num
 MOVE ws-record(ws-count) to ws-returned-rec-data
 DISPLAY ws-record-returned
 add 1 to ws-count

 END-PERFORM

 * ---
 * Finished
 * ---
 EXEC CICS RETURN
 END-EXEC
 .
 CHECK-CONTAINER-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(CCSIDERR)
 EXEC CICS ABEND ABCODE('C001') END-EXEC
 CONTINUE
 WHEN DFHRESP(CONTAINERERR)
 EXEC CICS ABEND ABCODE('C002') END-EXEC
 CONTINUE
 WHEN DFHRESP(INVREQ)
342 Application Development for CICS Web Services

 EXEC CICS ABEND ABCODE('C003') END-EXEC
 CONTINUE
 WHEN DFHRESP(LENGERR)
 EXEC CICS ABEND ABCODE('C004') END-EXEC
 CONTINUE
 END-EVALUATE
 .
 CHECK-WEBSERVICE-COMMAND.
 EVALUATE COMMAND-RESP
 WHEN DFHRESP(INVREQ)
 PERFORM INVREQ-PROCESSING
 EXEC CICS ABEND ABCODE('W001') END-EXEC
 CONTINUE
 WHEN DFHRESP(NOTFND)
 EXEC CICS ABEND ABCODE('W002') END-EXEC
 CONTINUE
 END-EVALUATE
 .
 INVREQ-PROCESSING.
 IF EIBRESP2 = 6 THEN
 * ** An EIBRESP2 of 6 indicates a SOAP fault **
 * ** has been returned in DFHWS-BODY **
 EXEC CICS
 GET CONTAINER('DFHWS-BODY')
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-DFHWS-BODY)
 END-EXEC
 DISPLAY WS-DFHWS-BODY
 END-IF
 * ** An EIBRESP2 of 13 indicates an input error **
 * ** has been detected a message is returned **
 * ** in DFH-XML-ERRORMSG **
 IF EIBRESP2 = 13 THEN
 EXEC CICS
 GET CONTAINER('DFH-XML-ERRORMSG')
 CHANNEL(WS-CHANNEL-NAME)
 INTO(WS-XML-ERRORMSG)
 END-EXEC
 DISPLAY WS-XML-ERRORMSG
 END-IF
 .

 *End Procedure Division
 Appendix B. Sample COBOL programs 343

WSDL - minOccurs/maxOccurs

<?xml version="1.0"?>
<!--This document was generated using 'DFHLS2WS' at mapping level '2.2'. -->
<definitions targetNamespace="http://www.INLINE01.REQY.com"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:reqns="http://www.INLINE01.REQY.Request.com"
xmlns:resns="http://www.INLINE01.RESPY.Response.com"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://www.INLINE01.REQY.com">
 <types>
 <xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.INLINE01.REQY.Request.com"
 xmlns:tns="http://www.INLINE01.REQY.Request.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation source="http://www.ibm.com/software/htp/cics/annotations">
 This schema was generated by the CICS Web services
 assistant.</xsd:documentation>
 </xsd:annotation>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.mappingLevel=2.2</xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType abstract="false" block="#all" final="#all"
 mixed="false" name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_reqarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element maxOccurs="10" minOccurs="1"
 name="recs" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="recs" nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.charlength=fixed

com.ibm.cics.wsdl.properties.synchronized=false</xsd:appinfo>
 </xsd:annotation>
344 Application Development for CICS Web Services

 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="80" />
 <xsd:whiteSpace value="collapse" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="INLINE01Operation" nillable="false"
 type="tns:ProgramInterface" />
 </xsd:schema>
 <xsd:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.INLINE01.RESPY.Response.com"
 xmlns:tns="http://www.INLINE01.RESPY.Response.com"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:annotation>
 <xsd:documentation source="http://www.ibm.com/software/htp/cics/annotations">
 This schema was generated by the CICS Web services
 assistant.</xsd:documentation>
 </xsd:annotation>
 <xsd:annotation>
 <xsd:appinfo source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.mappingLevel=2.2</xsd:appinfo>
 </xsd:annotation>
 <xsd:complexType abstract="false" block="#all" final="#all" mixed="false"
name="ProgramInterface">
 <xsd:sequence>
 <xsd:element name="ws_retarea" nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element maxOccurs="10" minOccurs="1" name="recs"
nillable="false">
 <xsd:complexType mixed="false">
 <xsd:sequence>
 <xsd:element name="recs" nillable="false">
 <xsd:simpleType>
 <xsd:annotation>
 Appendix B. Sample COBOL programs 345

 <xsd:appinfo
source="http://www.ibm.com/software/htp/cics/annotations">
 com.ibm.cics.wsdl.properties.charlength=fixed

com.ibm.cics.wsdl.properties.synchronized=false</xsd:appinfo>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="80" />
 <xsd:whiteSpace value="collapse" />
 </xsd:restriction>
 </xsd:simpleType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:element name="INLINE01OperationResponse"
 nillable="false" type="tns:ProgramInterface" />
 </xsd:schema>
 </types>
 <message name="INLINE01OperationResponse">
 <part element="resns:INLINE01OperationResponse"
 name="ResponsePart" />
 </message>
 <message name="INLINE01OperationRequest">
 <part element="reqns:INLINE01Operation" name="RequestPart" />
 </message>
 <portType name="INLINE01Port">
 <operation name="INLINE01Operation">
 <input message="tns:INLINE01OperationRequest"
 name="INLINE01OperationRequest" />
 <output message="tns:INLINE01OperationResponse"
 name="INLINE01OperationResponse" />
 </operation>
 </portType>
 <binding name="INLINE01HTTPSoapBinding" type="tns:INLINE01Port">
 <!-- This soap:binding indicates the use of SOAP 1.1 -->
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <operation name="INLINE01Operation">
 <soap:operation soapAction="" style="document" />
346 Application Development for CICS Web Services

 <input name="INLINE01OperationRequest">
 <soap:body parts="RequestPart" use="literal" />
 </input>
 <output name="INLINE01OperationResponse">
 <soap:body parts="ResponsePart" use="literal" />
 </output>
 </operation>
 </binding>
 <service name="INLINE01Service">
 <port binding="tns:INLINE01HTTPSoapBinding"
 name="INLINE01Port">
 <!-- This soap:address indicates the location of the Web service over HTTP.
 Please replace "my-server" with the TCPIP host name of your CICS
region.
 Please replace "my-port" with the port number of your CICS
TCPIPSERVICE. -->
 <soap:address location="http://localhost:9080/RedbookWS6/INLINE01Service" />
 <!-- This soap:address indicates the location of the Web service over HTTPS.
-->
 <!-- <soap:address location="https://my-server:my-port/inline/test"/> -->
 <!-- This soap:address indicates the location of the Web service over WebSphere
MQSeries.
 Please replace "my-queue" with the appropriate queue name. -->
 <!-- <soap:address
location="jms:/queue?destination=my-queue&connectionFactory=()&targetService=
/inline/test&initialContextFactory=com.ibm.mq.jms.Nojndi" /> -->
 </port>
 </service>
</definitions>
 Appendix B. Sample COBOL programs 347

Request Language Structure - redboI01

* ++
 * This file contains the generated request language structure(s)
 * for WSDL operation 'INLINE01Operation'.
 * The response message for this WSDL Operation may be replaced
 * with a SOAP Fault message.
 * This structure was generated using 'DFHWS2LS' at mapping level
 * '2.2'.
 *
 *
 * 03 INLINE01Operation.
 * 06 wsXreqarea.
 *
 *
 * CONTAINER 'recs-cont' contains 'recs-num' instances of
 * structure 'redboI01-recs', each of which represents an
 * instance of XML element '/INLINE01Operation/ws_reqarea/recs'.
 * The CONTAINER must be read from and written to in BIT mode.
 * There should be at least '1' instance(s).
 * There should be at most '10' instance(s).
 * 09 recs-num PIC S9(9) COMP-5 SYNC.
 * 09 recs-cont PIC X(16).
 *
 *
 *
 * This structure describes one instance of the data in CONTAINER
 * 'recs-cont'.
 * 01 redboI01-recs.
 * 03 recs.
 *
 * Comments for field 'recs2':
 * This field represents the value of XML element
 * '/INLINE01Operation/ws_reqarea/recs/recs'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'maxLength' facet value: '80'.
 * 06 recs2 PIC X(80).
 *
 *
 * ++

 03 INLINE01Operation.
 06 wsXreqarea.
348 Application Development for CICS Web Services

 09 recs-num PIC S9(9) COMP-5 SYNC.
 09 recs-cont PIC X(16).

 01 redboI01-recs.
 03 recs.
 06 recs2 PIC X(80).

 Appendix B. Sample COBOL programs 349

Response Language Structure - redboO01

* ++
 * This file contains the generated response language
 * structure(s) for WSDL operation 'INLINE01Operation'.
 * The response message for this WSDL Operation may be replaced
 * with a SOAP Fault message.
 * This structure was generated using 'DFHWS2LS' at mapping level
 * '2.2'.
 *
 *
 * 03 INLINE01OperationResponse.
 * 06 wsXretarea.
 *
 *
 * CONTAINER 'recs-cont' contains 'recs-num' instances of
 * structure 'redboO01-recs', each of which represents an
 * instance of XML element
 * '/INLINE01OperationResponse/ws_retarea/recs'. The CONTAINER
 * must be read from and written to in BIT mode.
 * There should be at least '1' instance(s).
 * There should be at most '10' instance(s).
 * 09 recs-num PIC S9(9) COMP-5 SYNC.
 * 09 recs-cont PIC X(16).
 *
 *
 *
 * This structure describes one instance of the data in CONTAINER
 * 'recs-cont'.
 * 01 redboO01-recs.
 * 03 recs.
 *
 * Comments for field 'recs2':
 * This field represents the value of XML element
 * '/INLINE01OperationResponse/ws_retarea/recs/recs'.
 * XML data type: 'string'.
 * XML 'whiteSpace' facet value: 'collapse'.
 * XML 'maxLength' facet value: '80'.
 * 06 recs2 PIC X(80).
 *
 *
 * ++

 03 INLINE01OperationResponse.
350 Application Development for CICS Web Services

 06 wsXretarea.

 09 recs-num PIC S9(9) COMP-5 SYNC.
 09 recs-cont PIC X(16).

 01 redboO01-recs.
 03 recs.
 06 recs2 PIC X(80).
 Appendix B. Sample COBOL programs 351

352 Application Development for CICS Web Services

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on
page 354. Note that some of the documents referenced here may be available in
softcopy only.

� Securing CICS Web Services, SG24-7658
� CICS Web Services Workload Management and Availability, SG24-7144
� Considerations for CICS Web Services Performance, SG24-7687
� Implementing CICS Web Services, SG24-7206
� Architecting Access to CICS within an SOA, SG24-5466

Other publications

These publications are also relevant as further information sources:

� CICS Transaction Server for z/OS Version 4 Release 1, SC34-7020-00

Online resources

These Web sites are also relevant as further information sources:

� The CICS Web services knowledge collection

http://www-01.ibm.com/support/docview.wss?uid=swg27010507

� The Information Center for CICS TS V3.1

http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp

� The Information Center for CICS TS V3.2

http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/index.jsp

� The Information Center for CICS TS V4.1

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp
© Copyright IBM Corp. 2010. All rights reserved. 353

http://www-01.ibm.com/support/docview.wss?uid=swg27010507
http://publib.boulder.ibm.com/infocenter/cicsts/v3r1/index.jsp
http://publib.boulder.ibm.com/infocenter/cicsts/v3r2/index.jsp
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks
publications, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
354 Application Development for CICS Web Services

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Appendix C. Additional material

This book refers to additional material that can be downloaded from the Internet
as described below.

Locating the Web material

The Web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247126

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the IBM Redbooks form number, SG247126.

How to use the Web material

Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

C

© Copyright IBM Corp. 2010. All rights reserved. 355

ftp://www.redbooks.ibm.com/redbooks/SG247126
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

356 Application Development for CICS Web Services

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Application Developm
ent for CICS W

eb Services

Index

 tag 278
 tag 258

Numerics
3270 interface 177

A
assembler 104

B
base64 binary data 10
batch 127
BINDING 175
BMS map 140
bottom-up approach 63, 142
bundle directory 221

C
C 34
C/C++ 104
C++ 34
catalog manager 74, 79
CCSID

description 80
CEDA 88

DEF WEBSERVICE(EXINQCWS) G(EXAM-
PLE) 92
INSTALL PIPELINE(EXPIPE01) G(SOAS-
DEVWS) 90
INSTALL PIPELINE(EXPIPE02) G(SOAD-
EVWS) 90

CEDA transaction 44
CEMT

I TCPIPS 100
INQUIRE WEBSERVICE 90

CEMT INQUIRE 178
CEOT 77
channels and containers 59
CICS 127

applications 73
as a service provider 36
© Copyright IBM Corp. 2010. All rights reserved.
BMS map 140
catalog manager 137, 143
CEDA DEF TCPIPSERVICE(EXMPPPORT) 88
CEDA I G(SOADEV) 77
COBOL 141
commands

CEDA DEF URIMAP(INQCURI) G(EXAM-
PLE) 93
CEMT INQUIRE URIMAP($509340) 141
CEMT INQUIRE WEBSERVICE 141
CEMT PERFORM PIPELINE(EXPIPE03)
SCAN 140

Group
DFH$EXBS 77

infrastructure 178
transaction

CPIH 39
EGUI 182

transactions
ECFG 76, 78
EGUI 76

URIMAP 43
Web service provider 138
Web Services Assistant 34

CICS Explorer 44
CICS options 116
CICS SFR

debugger 249
CICS transaction

CWXN 39
CICS Transaction Gateway 70
CICS TRANSFORM 221
CICS TS

Web service resource definitions 43
CICS Web service APIs 60
CICS Web Services Addressing 58
CICSPlex® SM Business Application Services 44
CMNISD01 140
CMNISI01 140
CMNISO01 140
COBOL 34–35, 73
COBOL REDEFINES 142
code page support 80
COMMAREA 37–38, 40, 89, 143
 359

compiler options 115
ADATA 115
EXIT 115
SYSLIB 115
TEST 115

components of RDz 104
CONFIGFILE 37
container 38
CONTID 146
Copybook

DFH0XCP4 142
copybook 142
CORBA 4
CPIH 39

transaction 39
CREATE PIPELINE 60
CREATE URIMAP 60
CREATE WEBSERVICE 60
custom handlers 214
CWXN 39

transaction 39

D
Data Store Stub 79
Data Store VSAM 79
datastore type 78
DB2 stored procedures 126
Debugging with RDz 126
DFH$ECAT 76
DFH$ECNF 76
DFH$EXBS 77
DFH$EXWS 88
DFH$WBSR 219
DFH$WBST 219
DFH0XCMN 143
DFH0XCP1 148
DFH0XCP2 148, 177
DFH0XCP4 142
DFH0XCP7 176–177
DFH0XCP8 176
DFH0XSOD 78, 181
DFH0XWC3 140, 147
DFH0XWC4 140, 147
DFH0XWOD 79, 176, 181
DFHCSDUP 44
DFHERROR 60
DFHFUNCTION 60, 215

values

HANDLER-ERROR 215
NO-RESPONSE 215
PROCESS-REQUEST 215
RECEIVE-REQUEST 215
RECEIVE-RESPONSE 215
SEND-REQUEST 215
SEND-RESPONSE 215

DFHHANDLERPLIST 60
DFHHEADER 60
DFHLS2WS 32, 34–35, 37, 142

JCL 142, 165
DFHLS2WS with WSRR 165
DFHNORESPONSE 60
DFHPITP 40, 214
DFHREQUEST 60, 217
DFHRESPONSE 60, 217

deletion 217
DFHRPL 155
DFHSC2LS 221
DFH-SERVICEPLIST 60
DFHWS2LS 32, 34, 41, 174
DFHWS2LS with WSRR 167
DFHWS-APPHANDLER 60
DFHWS-BODY 60, 170, 221
DFHWS-DATA 42–43, 60
DFHWS-OPERATION 60, 214
DFHWS-PIPELINE 60
DFHWS-SOAPACTION 60, 214
DFHWS-SOAPLEVEL 60
DFHWS-TRANID 60
DFHWS-URI 60
DFHWS-USERID 60
DFHWS-WEBSERVICE 60

container 40
DFHWS-XMLNS 60, 170
Domains 210

E
EAR file 189
ECFG 76, 78, 181
editor 109
EGUI 75–76
electronic data interchange (EDI) 2
Enterprise Generation Language (EGL) 35, 104
Enterprise Services Toolkit (EST) 35
error

handling 15
EXEC CICS API commands
360 Application Development for CICS Web Services

INVOKE WEBSERVICE 33
SOAPFAULT ADD | CREATE | DELETE 33

EXEC CICS INVOKE WEBSERVICE 198
EXEC CICS LINK 196
EXEC CICS TRANSFORM XMLTODATA CHAN-
NEL(channel-name) 225
EXEC CICS WEB READ 216
EXINQSWS 92, 94
EXMPCONF 75
EXODEPWS 92, 94
EXODRQWS 92
EXORDRWS 92, 94
Extensible Markup Language (XML) 6, 9

F
FTP 7, 95

H
HFS

directory 37, 85–86, 175
HFS directory 36
HTTP

server support 70
traffic 88
transport 36, 88

HTTP client 5
HTTP header 214

I
INLINE-MAXOCCURS-LIMIT 227
INQSURI 93–94
INQUIRE WEBSERVICE 60
interactive development environments (IDEs) 35
interfaces 204
INVOKE WEBSERVICE 60
INVREQ 221

J
J2EE 188
Java 104
Java bean Web Service 184
Java EE 290
Java program with RDz 123
JavaBean 183
JCL 32

CMNISW 146
DFHLS2WS 142, 165

SVLCOB 155
WS2LS 175

JEE 104
JMS 7

L
LANG 175
Link3270 Bridge 70
LOGFILE 143

M
MAPPING-LEVEL 176
maxOccurs 227
meet-in-the-middle approach 66
message exchange pattern (MEP) 7
META-INF 189
MIME 10
minoccurs and maxoccurs 283
MTOM 10
mustUnderstand 14

N
Namespaces 12
namespaces 12

O
ODEPURI 93–94
OPERATIONS 176
ORDRURI 93–94
Outbound WebService 79, 181
Outbound WebService URI 80

P
PDSE 155
PDSLIB 175
PERFORM PIPELINE SCAN 60
perspective 106
PIPELINE 45, 178

definition 86
pipeline

configuration file 47
PL/I 34, 104
port definition 28
POST 8
PROTOCOL(HTTP) 37
 Index 361

R
Rational Developer for System z 104
Rational Developer for System Z (RDz) 32, 265

and CICS application development 104
RDz

components 104
RDz Debugging 126
RDz Java program 123
RDz SCA Tooling 210
RECEIVE-REQUEST 215
Redbooks Web site 354

Contact us xiv
remote procedure call (RPC) 16
REQMEM 146
REQMEM and RESPMEM 175
Resource Definition Online (RDO) 92
Resource Definition Online (RDO). 93
RESP2 221
RESPMEM 146
RPC 16

style 30

S
SCA

components 205
components, see service

component architecture
components

composites 206
operations 206
project 211
RDz tooling 210
runtime 205
services 206, 208

SCA, see service
component architecture

SCD, see service
component description language

service
component architecture 204, 206

components 204
component description language 205

service broker 3
Service Component Architecture (SCA) 204
service oriented architecture (SOA) 1–2, 205

service requestors 74
service provider 3, 40
SHELF 37

SMTP 7
SOAP 6

binding 29
body 15

inbound data conversion 40
outbound data conversion 40

communication styles 16
document 16
RPC 16

encodings 16
literal 17
SOAP encoding 17

envelope 11, 13
fault 15
fault API 213, 220
headers 13
intermediary 14
introduction 11
messaging mode 17
MustUnderstand 14
namespaces 12
request 218
validation 251

SOAP Body 214
SOAP header 214
SOAPFAULT 52, 220

commands
ADD 53
CREATE 53
DELETE 53

SOAPFAULT ADD 60, 220
SOAPFAULT CREATE 60, 220
SOAPFAULT DELETE 60, 220
SQL 104
SQL options 116
SQLJ 126
SSL/TLS 219
state information 218
SVLCOB

JCL 155

T
TCP/IP

server name 38
TCPIPSERVICE 37, 39

creation 88
definition 88

top-down approach 65, 148
362 Application Development for CICS Web Services

TSO 127

U
UDDI

Universal Description, Discovery, and Integra-
tion 9

UML model, see unified modelling language
unified modelling language 205
URIMAP 39

creation 93
resources 90

V
VSAM 75–76, 78

file 74
VSAM File 79

W
Web service

Interoperability 9
properties 5
skeleton 183

Web services 1
Web services assistant 260
Web Services Coordination 9
Web Services Description Language (WSDL) 5, 18,
164, 175

binding 18, 27
bindings 29
definition 23
document 18

anatomy 19
generated by Rational Developer 213
message 18, 24
namespaces 22
operation 18, 25
port 18, 28
port type 18, 25
service definition 28
SOAP binding 29
type 18
types 23, 245
types not supported by WS2LS 213
Web Services Description Language 7

Web Services Explorer 156
Web Services Trust Language 10
WEBSERVICE 178

WebSphere DataPower 219
WebSphere Developer for zSeries (WebSphere De-
veloper) 35
WebSphere Service Registry and Repository (WS-
RR) 11
workbench 105
WS2LS

sample JCL 175
WS-Addressing 214
WS-Atomic Transaction 9
WSBIND

file 50, 138
WSBind 35
WSBIND and LOGFILE 175
WSDIR 37, 178
WS-Security 214
WS-Trust 10

X
XML 5
XML (xsd

any) 233
XML choice web service 297
XML constructs 235
XML elements 227
XML occurs web service 301
XML parsing 60
XML-binary Optimized Packaging (XOP) 10
XSDBind 221
XSL transformations (XSLT) 126

Z
z/OS 265

Communications Server IP CICS Socket Inter-
face 70
 Index 363

364 Application Development for CICS Web Services

®

SG24-7126-01 0738433853

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

Application Development
for CICS Web Services

Overview of Web services
in CICS updated for CICS
TS 4.1

Experience using RDz for
development

New SOA patterns for
CICS TS V4.1

This IBM Redbooks publication focuses on developing Web
service applications in CICS. It takes the broad view of
developing and modernizing CICS applications for XML, Web
services, SOAP, and SOA support, and lays out a reference
architecture for developing these kinds of applications.

We start by discussing Web services in general, then review
how CICS implements Web services. We offer an overview of
different development approaches: bottom-up, top-down,
and meet-in-the-middle. After laying out the foundations, we
review the CICS catalog manager sample application, as this
is the application we used as a basis.

We then look at how you would go about exposing a CICS
application (namely, the catalog manager sample
application) as a Web service provider, again looking at the
different approaches. The book then steps through the
process of creating a CICS Web service requester.

We close out by looking at CICS application aggregation
(including 3270 applications) with Rational Application
Developer for System z. The final chapter offers hints and
tips to help you when implementing this technology.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Become a published author
	Comments welcome

	Summary of changes
	January 2010, Second Edition

	Chapter 1. Overview of Web services
	1.1 Introduction
	1.2 Service-oriented architecture
	1.2.1 Characteristics
	1.2.2 Web services versus SOAs

	1.3 Web services
	1.3.1 Properties of a Web service
	1.3.2 Core standards
	1.3.3 Web Services Interoperability group
	1.3.4 Additional standards

	1.4 IBM WebSphere Service Registry and Repository
	1.5 SOAP
	1.5.1 The envelope
	1.5.2 Communication styles
	1.5.3 Encodings
	1.5.4 Messaging modes

	1.6 WSDL
	1.6.1 WSDL Document
	1.6.2 WSDL document anatomy
	1.6.3 WSDL definition
	1.6.4 WSDL bindings

	Chapter 2. CICS implementation of Web services
	2.1 Support for Web services in CICS
	2.1.1 Core aspects of Web services in CICS

	2.2 Tools for application deployment
	2.2.1 CICS Web Services Assistant
	2.2.2 IBM Rational Developer for System z
	2.2.3 Other Options

	2.3 CICS as a service provider
	2.3.1 Preparing to run a CICS application as a service provider
	2.3.2 Processing the inbound service request

	2.4 CICS as a service requester
	2.4.1 Preparing to run a CICS application as a service requester
	2.4.2 Processing the outbound service request

	2.5 The CICS resource definitions
	2.5.1 URIMAP
	2.5.2 PIPELINE
	2.5.3 WEBSERVICE
	2.5.4 The Web service binding file (WSBind)
	2.5.5 SOAPFAULT commands
	2.5.6 Mapping levels
	2.5.7 Additional enhancements with CICS TS V3.2
	2.5.8 Additional enhancements with CICS TS 4.1
	2.5.9 Use of WS-Addressing in CICS TS V4.1 applications
	2.5.10 Comparing CICS TS V3.1 with later CICS TS versions

	Chapter 3. Development approaches
	3.1 Introduction
	3.2 Bottom-up approach
	3.3 Top-down approach
	3.4 Meet-in-the-middle approach
	3.5 The advantages of using RDz
	3.6 Web services versus CICS TCP/IP connectivity
	3.7 Conclusions

	Chapter 4. CICS catalog manager example application
	4.1 Samples for use with CICS Web Services
	4.2 Introduction to the catalog manager application
	4.3 Installation and set up of the base application
	4.3.1 Creating the VSAM data sets
	4.3.2 Defining the base application to CICS
	4.3.3 Configuring the example application
	4.3.4 Configuring code page support

	4.4 Web service support for the example application
	4.4.1 The Web client front end
	4.4.2 The CICS Web service client front end
	4.4.3 Order dispatch Web services endpoints
	4.4.4 Alternative Web service provider configuration

	4.5 Web services setup
	4.5.1 Creating the zFS directories
	4.5.2 Creating the PIPELINE definition
	4.5.3 Creating a TCPIPSERVICE
	4.5.4 Dynamically installing WEBSERVICE and URIMAP resources
	4.5.5 Creating the WEBSERVICE resources with RDO
	4.5.6 Creating the URIMAP resources with RDO
	4.5.7 Completing the installation

	4.6 Installing the client application
	4.6.1 FTP the client application
	4.6.2 Install the client
	4.6.3 Start the client
	4.6.4 Testing the client

	Chapter 5. Rational Developer for System z (RDz)
	5.1 What is Rational Developer for System z?
	5.2 RDz and CICS application development
	5.3 Components of RDz
	5.3.1 Workspace
	5.3.2 Workbench
	5.3.3 Perspective
	5.3.4 View
	5.3.5 Editor
	5.3.6 Projects and subprojects

	5.4 Writing your first COBOL Program with RD/z
	5.4.1 Property groups
	5.4.2 Compiler options
	5.4.3 SQL options
	5.4.4 CICS options
	5.4.5 Property Group Manager view
	5.4.6 Property Group editor

	5.5 Writing your first Java program with RD/z
	5.6 Overview of Debugging with RDz
	5.6.1 Supported languages and environments
	5.6.2 Local and remote debug
	5.6.3 Basic debugging features and tools

	5.7 Establishing Connection to remote Websphere Application Server
	5.8 Import and Export EAR/WAR files
	5.9 Summary

	Chapter 6. Exposing the Catalog Sample CICS application as a Web service
	6.1 Introduction
	6.2 Install the provider mode resources
	6.3 Create the provider mode deployment artifacts
	6.3.1 Using the CICS Web Services Assistant
	6.3.2 Use Rational Developer for System z

	6.4 Testing the Web service
	6.4.1 The Web Services Explorer
	6.4.2 Generate a client

	6.5 Publishing WSDL to WebSphere Service Registry and Repository
	6.5.1 Changes to DFHLS2WS for WebSphere Service Registry and Repository in CICS TS V4.1.
	6.5.2 Changes to DFHWS2LS for WSRR in CICS TS V4.1
	6.5.3 New parameters to support SSL encryption in CICS TS V4.1

	6.6 Writing applications that process the XML
	6.6.1 Creating a custom application handler
	6.6.2 Creating an XML-ONLY WEBSERVICE

	Chapter 7. Create a CICS Web service requester application using the catalog sample
	7.1 Introduction
	7.2 Create a Web service requester using the CICS Web Services Assistant
	7.2.1 Generate the required artifacts
	7.2.2 Set up the CICS infrastructure
	7.2.3 Test the requester application

	7.3 Creating and testing a Web service hosted in RDz
	7.3.1 Create a Web service skeleton with RDz
	7.3.2 Implement the RDz based Web service
	7.3.3 Test the Web service using RDz
	7.3.4 Test the Web service using the CICS sample application

	Chapter 8. Componentization
	8.1 CICS applications as components
	8.2 Locally optimized Web services
	8.3 Using WSDL to describe COBOL components
	8.4 Further Options with CICS TS 4.1
	8.4.1 Linking to a target PROGRAM from a requester mode PIPELINE
	8.4.2 Invoking a local SERVICE from a requester mode PIPELINE

	Chapter 9. New SOA patterns for CICS TS V4.1
	9.1 Service Component Architecture
	9.1.1 Introduction to SCA

	9.2 CICS TS V4.1: Implementation of SCA
	9.2.1 BUNDLE resources
	9.2.2 Creating services from existing CICS applications
	9.2.3 Deploying SCA services
	9.2.4 RDz SCA tooling
	9.2.5 Creating and deploying an SCA service from an existing CICS application

	Chapter 10. Hints and tips
	10.1 Custom handlers programs for pipelines
	10.1.1 A simple example handler program
	10.1.2 Handling state information
	10.1.3 Propagating user identity tokens

	10.2 The SOAP fault API
	10.2.1 How to create a SOAP Fault in an application
	10.2.2 Parsing SOAP Fault messages in CICS TS V4.1

	10.3 Handling variably recurring XML elements
	10.3.1 In-lined variably recurring data
	10.3.2 Container based variably recurring data: inbound
	10.3.3 Container based variably recurring data: outbound

	10.4 Handling undefined XML (xsd:any)
	10.5 Handling enumerated XML constructs
	10.6 Modifying generated WSDL
	10.6.1 Background to MTOM/XOP
	10.6.2 Support for xsd:base64Binary and MTOM/XOP
	10.6.3 Mapping a single field as binary data with DFHLS2WS
	10.6.4 Handling variable length values and white space

	10.7 WSDL types not supported by DFHWS2LS
	10.8 Problem determination
	10.8.1 Problems using DFHWS2LS and DFHLS2WS
	10.8.2 Using the execution diagnostic facility to debug Web services
	10.8.3 Debugging CICS SFR applications
	10.8.4 Runtime SOAP validation

	10.9 XML parsing in CICS application
	10.9.1 XML Toolkit for z/OS
	10.9.2 COBOL High Speed XML parser
	10.9.3 CICS API: EXEC CICS TRANSFORM

	Chapter 11. COBOL samples
	11.1 Introduction
	11.2 Example 1: The <xsd:any> tag
	11.2.1 The WSDL
	11.2.2 Web Services Assistant: z/OS
	11.2.3 The COBOL program
	11.2.4 CICS resource definitions

	11.3 Example 2: The <choice> tag
	11.3.1 The WSDL
	11.3.2 Generation of COBOL and CICS artifacts
	11.3.3 The COBOL program
	11.3.4 CICS Resource Definitions

	11.4 Example 3: minoccurs and maxoccurs
	11.4.1 Generation of COBOL and CICS artifacts
	11.4.2 The COBOL Program
	11.4.3 CICS Resource Definitions
	11.4.4 Results of calling the service

	Appendix A. Sample Web services
	Preparation of your RDz environment
	Loading an .ear file into a new or existing project
	Description of examples A1–A3
	The XML any passthrough Web service example
	The XML choice Web service example
	The XML occurs Web service example

	Appendix B. Sample COBOL programs
	Program to call <xsd:any> example service
	WSDL - <xsd:any>
	Request Language Structure - inlinI01
	Response Language Structure - inlinO01
	Program to call <xsd:choice> example service
	WSDL <xsd:choice>
	Request Language Structure - choicI01
	Response Language Structure - choicO01
	Program to call minOccurs/maxOccurs example service
	WSDL - minOccurs/maxOccurs
	Request Language Structure - redboI01
	Response Language Structure - redboO01

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Appendix C. Additional material
	Locating the Web material
	How to use the Web material

	Index
	Back cover

