
ibm.com/redbooks

Extend the CICS Explorer
A Better Way to Manage Your CICS

Chris Rayns
Scott Clee

Taku Miura
Shayla Robinson
Yusuke Tamura

John Taylor
Steve Wall

Add value to the CICS Explorer with
Eclipse plug-ins

Unlock the CICS Explorer
Software Development Kit

Follow examples of tool
integration

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Extend the CICS Explorer: A Better Way to Manage
Your CICS

October 2009

International Technical Support Organization

SG24-7819-00

© Copyright International Business Machines Corporation 2010. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (October 2009)

This edition applies to Version 4, Release 1, of CICS Transaction Server.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team who wrote this book . xi
Now you can become a published author, too! . xiii
Comments welcome. xiii

Part 1. Introduction . 1

Chapter 1. CICS Evolution . 3
1.1 Evolution of CICS system management . 4

1.1.1 The dark ages: CSMT and Assembler macros 4
1.1.2 The middle ages: CEMT and the first GUI . 4
1.1.3 The renaissance: CEDA and CICS System Definition 5
1.1.4 The enlightenment: CICSPlex SM . 6
1.1.5 The baby boom:The CICS Tools Suite . 7
1.1.6 The brave new world: CICS Explorer . 7

1.2 Overview of CICS Explorer . 8
1.2.1 Workbenches and Perspectives . 8
1.2.2 Views. 10
1.2.3 Menus and the menu bar . 12
1.2.4 Tool bars . 13
1.2.5 Editors . 14
1.2.6 Wizards . 15

1.3 Overview of Eclipse. 16

Part 2. Exploring CICS Explorer . 21

Chapter 2. CICS Explorer and the CICS Client Management Interface . . 23
2.1 CMCI . 24

2.1.1 CMCI is a RESTful implementation. 24
2.1.2 CMCI and CICSPlex SM resource tables . 25

2.2 CMCI caching . 25
2.2.1 Define a CICS resource definition with the CMCI 26
2.2.2 View a CICS resource definition using CMCI 29
2.2.3 Alter a URIMAP resource definition using CMCI. 31
2.2.4 Install a CICS resource definition using CMCI 33
2.2.5 Inquire on an installed CICS resource using CMCI. 35
© Copyright IBM Corp. 2010. All rights reserved. iii

2.2.6 Modify an installed CICS resource using CMCI 37
2.2.7 Discard an installed resource using CMCI . 39
2.2.8 A fun way to explore the CMCI Interface . 40
2.2.9 Comparing the Web user interface and CICS Explorer 41

Chapter 3. CICS Explorer SDK . 43
3.1 CICS Explorer SDK Java library . 44
3.2 The CICSPlex System Manager object. 44
3.3 Working with contexts . 46
3.4 CICS objects . 49

3.4.1 Get a CICS object . 49
3.4.2 Perform actions on CICS objects . 50
3.4.3 Update a CICS object . 51

3.5 Definitions . 52
3.5.1 Creating a definition . 52
3.5.2 Installing a definition . 53
3.5.3 Deleting a definition. 54

3.6 Resources . 54
3.6.1 Discard a resource . 54

Part 3. Extending CICS Explorer . 57

Chapter 4. Writing a plug-in for CICS Explorer. 59
4.1 Creating your CICS Explorer plug-in development environment. 60

4.1.1 Setting up the Java environment. 60
4.1.2 Installing the Eclipse SDK onto your workstation 61

4.2 An Eclipse RCP “Hello World” plug-in . 64
4.2.1 Creating your plug-in project . 64
4.2.2 What is in our HelloWorld plug-in project? . 71

4.3 Creating your first CICS Explorer plug-in . 76
4.3.1 Create your CICS Explorer plug-in project . 76
4.3.2 Add CICS Explorer to plug-in dependencies. 80
4.3.3 Add CICS Explorer code to the Eclipse Template code 80
4.3.4 CICS Explorer plug-in design consideration 88

Chapter 5. Extending CICS Explorer plug-ins . 93
5.1 Extending new CICS Explorer views. 94

5.1.1 Extending the URIMap information provided by CICS Explorer 94
5.1.2 Specification of new view . 94
5.1.3 Sample code . 96
5.1.4 Running the sample . 104

5.2 Using a pop-up menu to access URIMap information. 108
5.2.1 Specification of a new pop-up menu . 108
5.2.2 Sample code . 109
iv Extend the CICS Explorer: A Better Way to Manage Your CICS

5.2.3 Operation . 114
5.3 Extending actions of the toolbar and menu bar to

access URIMap information . 116
5.3.1 Specification of new actions . 116
5.3.2 Extending actions of the toolbar and menu bar to access

URIMap information . 117
5.3.3 Operation . 121

5.4 Extending a toolbar to search URIMap information
based on user input . 123

5.4.1 Specification of new textbox and button . 123
5.4.2 Sample code . 124
5.4.3 Operation . 135

5.5 Background process implementation . 136
5.5.1 Specifications of background process. 137
5.5.2 Sample code . 138
5.5.3 Operation . 139

5.6 Summary of extending functions . 140
5.7 Package extending functions into a plug-in. 141

5.7.1 Package plug-in into zip file . 141
5.7.2 Deploying plug-in to CICS Explorer . 148

Part 4. Integrating CICS Explorer with other Eclipse Components 157

Chapter 6. Combining OMEGAMON data with CICS Explorer 159
6.1 Environment and configuration . 160
6.2 Introduction to OMEGAMON. 160
6.3 The Tivoli Enterprise Web Services interface . 161

6.3.1 Connecting to the TEMS SOAP interface with the Web client 162
6.4 A simple OMEGAMON SOAP interface plug-in 167

6.4.1 Parsing the returned data . 172
6.4.2 Exposing the plug-in’s functions . 178

6.5 Displaying the OMEGAMON Managed System List 180
6.5.1 Creating the Managed System List plug-in 180
6.5.2 Displaying the Managed System List data in the plug-in 183
6.5.3 Sorting the Managed System List . 188
6.5.4 Requesting the Managed System List repeatedly. 191

6.6 Displaying OMEGAMON situations. 193
6.7 Displaying OMEGAMON data for specific CICS regions 196

6.7.1 Constructing SOAP queries for CICS data 196
6.7.2 Displaying the OMEGAMON CICS Region Overview report 199

6.8 Driving an OMEGAMON plug-in from CICS Explorer 205
6.8.1 Translating between CICS Explorer and OMEGAMON identifiers . 206
6.8.2 Detecting and understanding CICS Explorer selection events 209
 Contents v

6.9 Summary . 217
6.10 References and further reading. 218

6.10.1 IBM Tivoli Monitoring Information Center 218
6.10.2 OMEGAMON XE for CICS Information Center 218
6.10.3 IBM Open Process Automation Library (OPAL) 218
6.10.4 IBM Tivoli Monitoring Eclipse plug-in . 218
6.10.5 Using IBM Tivoli Monitoring V6.1 SOAP Services 218

Chapter 7. Setting CICS Trace Levels through CICS Explorer 219
7.1 The Trace Component Plug-in . 220
7.2 Create the project . 220
7.3 Create the model. 221
7.4 Create the view . 225

7.4.1 Add extension points and packages . 225
7.4.2 Modify the pop-up action class . 226
7.4.3 Modify the view class . 228

7.5 CICS TS Application . 243

Chapter 8. Adding a sticky note plug-in to CICS Explorer 245
8.1 The specification for your sticky note plug-in . 246
8.2 Overview of components. 248
8.3 Using a wizard to create your new plug-in . 249
8.4 Create the model. 249
8.5 Create the pop-up . 250

8.5.1 Add extension points and packages for pop-up 251
8.5.2 Adding extension points and packages for view 254
8.5.3 Add extension points and code for Delete View Action. 259
8.5.4 Add extension points and code for Save View Action. 262

Chapter 9. Implementing a CEBR view in CICS Explorer 271
9.1 The specification for your CEBR view . 272
9.2 Using the wizard to create your new plug-in . 273
9.3 Coding your TSQueue Browse plug-in . 276

9.3.1 Adding code to the TSQueue Browse pop-up menu. 276
9.4 CICS TS Application Specification . 287
9.5 Extending the connection preferences panel . 288

9.5.1 Creating the extension points . 288
9.5.2 Creating the connection classes . 290
9.5.3 Register WebConnectable with the resource manager. 295
9.5.4 Viewing sign-on status in the trim bar . 296
9.5.5 Using the CEBR Web Connection . 297
9.5.6 Update BrowseTSQueueView to use connection details 299

Appendix A. Reference list of CICS SDK elements 301
vi Extend the CICS Explorer: A Better Way to Manage Your CICS

CICS types . 301
CICS Resources . 301
CICS Definitions . 303
CPSM Definitions . 304
CPSM Managers. 304
CSD Definitions. 304

System manager actions . 304
Definition builders. 306
Mutable objects . 307
View IDs . 309

Resource views. 309
Definition views . 311

Appendix B. Additional material . 313
Locating the Web material . 313
Using the Web material . 314

How to use the Web material . 314

Related publications . 315
IBM Redbooks . 315
Other publications . 315
Online resources . 315
How to get Redbooks . 316
Help from IBM . 316
 Contents vii

viii Extend the CICS Explorer: A Better Way to Manage Your CICS

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2010. All rights reserved. ix

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corporation in the United States, other countries, or both. These and other IBM trademarked
terms are marked on their first occurrence in this information with the appropriate symbol (® or ™),
indicating US registered or common law trademarks owned by IBM at the time this information was
published. Such trademarks may also be registered or common law trademarks in other countries. A current
list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS Explorer™
CICSPlex®
CICS®
IBM®

OMEGAMON®
Redbooks®
Redbooks (logo) ®
System z®

Tivoli®
z/OS®
z/VSE™

The following terms are trademarks of other companies:

Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.
x Extend the CICS Explorer: A Better Way to Manage Your CICS

http://www.ibm.com/legal/copytrade.shtml

Preface

CICS® Explorer™ is the latest significant evolution in the management and
analysis of your CICS environment. It is a statement of intent from the CICS
Development organization, which is determined to ensure you can manage your
CICS estate in a simple and easily extensible way, using a combination of the
following approaches:

� Tried and trusted CICS expertise and technology

� The widely accepted user interfaces and integration power of the open source
Eclipse platform

� Web 2.0 and RESTful programming (this technology underpins the CICS
Explorer concept)

This IBM® Redbooks® publication shows how you can use the extensible design
of CICS Explorer to complement the functionality already provided, with added
functionality tailored to the needs of your business. We show you how to perform
the following tasks:

� Install the CICS plug-in SDK into your eclipse environment
� Develop a simple plug-in for the CICS Explorer
� Deploy the plug-in into CICS Explorer

We provide several useful examples of plug-ins that we developed during the
residency using the methodology we describe.

The starting point for the book is that you already have CICS Explorer installed
and configured with connectivity to your CICS region or CICSPlex®, and that you
are looking for ways to customize CICS Explorer.

The team who wrote this book

This book was produced by a team of specialists from around the world working
at the International Technical Support Organization (ITSO), Poughkeepsie
Center.

Chris Rayns is an IT Specialist and the CICS project leader at the ITSO,
Poughkeepsie Center. He writes extensively on all areas of CICS. Before joining
the ITSO, Chris worked in IBM Global Services in the United Kingdom as a CICS
IT Specialist.
© Copyright IBM Corp. 2010. All rights reserved. xi

Scott Clee is the CICS Test Architect for IBM in the United Kingdom. He
frantically architects the face of test by looking for new ways to push Testing
techniques, process, and technology. His areas of expertise include CICS,
Java™, Common Business Oriented Language (COBOL), Linux®, and Testing.
He has a degree in Mathematics and Computing from the University of Bath, UK.
Check out his blog at TestingBlues.com.

Taku Miura is a Project Manager for ISOL (IBM Global Services Japan Solution
and Services Company, Ltd.: a subsidiary of IBM Japan). He has 11 years of
experience of software development and 3 years of project management,
especially for mainframe system. He holds a degree in Productive System
Engineering from Otaru University of Commerce, Hokkaido in Japan.

Shayla Robinson is a Staff Software Engineer in CPSM Level II Technical
Support at Research Triangle Park, NC. Her areas of expertise include CICS,
CICSPlex SM, z/VSE™ and Java. She has a Bachelors degree in Computer
Science with a minor in Mathematics from Fayetteville State University in
Fayetteville, NC and is currently working towards a Masters degree in Information
Systems from Aspen University in Denver, CO.

Yusuke Tamura is an Assistant Manager for DIR (Daiwa Institute of Research
Ltd (Japan)). Since joining DIR in 2003, he is involved in the design and
development of self-developed software for online transaction processing. He
holds a Bachelor of Arts in Law from the University of Tokyo.

Steve Wall is a Software Engineer in CICS Development at Hursley Park, UK.
He has 13 years of experience as an Application Programmer, Tester, CICS
Developer, and OMEGAMON® XE for CICS Developer with IBM. His areas of
expertise include CICS, z/OS®, Java, OMEGAMON, and various forms of
tooling. He has a Bachelors degree in Digital Systems Engineering from the
University of the West of England, Bristol and a Masters degree in Software
Engineering from the University of Oxford.

 is an IT specialist working in the System z® Benchmark Center. He worked for
the CICS Transaction Server Development organization at Hursley, United
Kingdom, for over 20 years before joining the PSSC. Steve has a degree in
Linguistic and International Studies from the University of Surrey. He has written
and taught extensively about CICS e-business enablement using CICS Web
Support and the CICS Transaction Gateway.

Thanks to the following people for their contributions to this project:

Richard M Conway
International Technical Support Organization, Poughkeepsie Center

John Knutson, System z Product Marketing Manager - CICS Tools
IBM Hursley
xii Extend the CICS Explorer: A Better Way to Manage Your CICS

Joe Winchester, CICS Explorer, Interdependency Analyzer, Configuration
Manager, Performance Analyzer Software Developer
IBM Hursley

Matthew Webster, CICS Tools UI Strategist: CICS Explorer
IBM Hursley

Now you can become a published author, too!

Here's an opportunity to spotlight your skills, grow your career, and become a
published author - all at the same time! Join an ITSO residency project and help
write a book in your area of expertise, while honing your experience using
leading-edge technologies. Your efforts will help to increase product acceptance
and customer satisfaction, as you expand your network of technical contacts and
relationships. Residencies run from two to six weeks in length, and you can
participate either in person or as a remote resident working from your home
base.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about
this book or other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xiv Extend the CICS Explorer: A Better Way to Manage Your CICS

Part 1 Introduction

In part 1 we review the evolution of CICS management before taking a look at the
new CICS Explorer. We provide an overview of CICS Explorer and Eclipse.

Part 1
© Copyright IBM Corp. 2010. All rights reserved. 1

2 Extend the CICS Explorer: A Better Way to Manage Your CICS

Chapter 1. CICS Evolution

In this chapter we begin by taking a sideways look at the history of CICS System
Management, and the benefits that CICS Explorer brings to the CICS systems
management world. To develop new extensions to CICS Explorer, you need
understanding of how Eclipse presents information, and how CICS Explorer uses
the facilities that Eclipse provides. We therefore take a high-level overview of the
external aspects of CICS Explorer and Eclipse that you need to understand to
write your own CICS Explorer plug-ins.

1

© Copyright IBM Corp. 2010. All rights reserved. 3

1.1 Evolution of CICS system management

CICS Explorer is the latest significant evolution in the management and analysis
of your CICS environment, but CICS has a long history of building on, and
improving its system management tools.

CICS is now over 40 years old. Over the years, there have been significant
changes in the way in which CICS is managed. Here are several of the important
milestones in the evolution of CICS systems management.

1.1.1 The dark ages: CSMT and Assembler macros

When CICS first appeared, there were no nice graphical interfaces. CSMT is the
CICS transaction that was executed on these prehistoric devices. In these early
days there was no such thing as "CEMT PERF SHUT". It was CSMT you used to
close down your CICS region. If you try to run CSMT on your brand new CICSTS
4.1 region, it tells you that it is not defined. Dig around in the CICS-supplied CSD
definition and you will find it. Today, the only thing that remains of transaction
CSMT is the transient data queue to which many CICS messages are still routed.

As far as defining new CICS resources such as files, transactions, and programs,
look no further than a set of CICS resource tables coded using Assembler
macros. If you needed to install a new terminal, program, or transaction, you
needed to restart your CICS.

1.1.2 The middle ages: CEMT and the first GUI

With the advent of 3270 green panel devices, we had the ability to format entire
displays of data, and a new state of the art, full panel CICS management tool
was born. CEMT arrived, with its state of the art graphics interface (See
Figure 1-1 on page 5). With CEMT, the systems programmer can see the state of
the CICS region, and the resources installed in that region.
4 Extend the CICS Explorer: A Better Way to Manage Your CICS

Figure 1-1 Graphics interface

1.1.3 The renaissance: CEDA and CICS System Definition

CEMT was a great tool, but we were still obliged to assemble and compile our
DFHPCT, DFHPPT, DFHFCT, and DFHTCT macros (to mention but a few) to
modify or install new resources into our CICS region. The next great leap forward
in CICS systems management was the CICS System Definition (CSD) and a new
CICS-supplied transaction CEDA. Now we can add new files, programs,
transactions, and terminals to our CICS region with a few keystrokes, and without
having to stop and restart our CICS region.

 INQUIRE SYSTEM
 STATUS: RESULTS - OVERTYPE TO MODIFY
 Aging(00500) Progautoexit(DFHPGADX)
 Akp(02000) Progautoinst(Autoactive)
 Cicstslevel(030100) Reentprotect(Reentprot)
 Cmdprotect(Nocmdprot) Release(0640)
 Db2conn(DB2CONN) Runaway(0020000)
 Debugtool(Nodebug) Scandelay(0100)
 Dfltuser(HAIMO) Sdtran(CESD)
 Dsalimit(05242880) Sosstatus(Notsos)
 Dsrtprogram(NONE) Storeprotect(Active)
 Dtrprogram(DFHDYP) Time(0001000)
 Dumping(Sysdump) Tranisolate(Inactive)
 Edsalimit(0524288000)
 Forceqr(Noforce)
 Logdefer(00005)
 Maxtasks(200)
 Mrobatch(001)
 Oslevel(010900)
 Progautoctlg(Ctlgmodify)

 SYSID=ERW1
APPLID=SCSCERW1
 RESPONSE: NORMAL TIME: 11.06.19
DATE: 02.03.10
 PF 1 HELP 3 END 5 VAR 7 SBH 8 SFH 9 MSG 10 SB 11
SF
 Chapter 1. CICS Evolution 5

1.1.4 The enlightenment: CICSPlex SM

CEDA and CEMT made the job of the CICS system programmer easier, but as the
size of customer CICS installations grew, it became evident that a new approach
was needed. To execute CEDA or CEMT in each of tens or hundreds of CICS
regions was a logistical nightmare. The introduction of CICSPlex SM, with its new
APIs and system management tools, allowed system administrators to group
together CICS regions according to their particular requirements, and manage those
groups of CICS regions as single entities, installing, controlling, and monitoring
those CICS regions without the need to log on to each CICS region simultaneously.

CICSPlex SM used the advanced features of the latest 3270 terminal technology to
bring a rich user interface to the management of complex CICS environments. With
the advent of the Internet and the Web, the 3270 CICSPlex SM interface has been
superseded by a Web Browser interface called the Web User Interface. Figure 1-2
shows a CICSPlex SM WUI screen showing CICS regions on MVS image SC66.

Figure 1-2 CICSPlex SM WUI panel
6 Extend the CICS Explorer: A Better Way to Manage Your CICS

Although the face of CICSPlex SM changed with the advent of the WUI, the
underlying philosophy of CICSPlex SM is probably more important today than
when it was first conceived. It remains a key element in the management of
CICSPlexes big and small across the world. We see that CICS Explorer relies on
CICSPlex SM to provide it with timely and accurate information about the state of
the CICS resources it manages.

1.1.5 The baby boom: The CICS Tools Suite

In recent years, the CICS tools toolset has significantly improved the facilities at
the disposal of the CICS System Administrator, allowing them to simplify the
management and monitoring of their CICS real estate, and giving them the ability
to extract the underlying structure of their CICS applications even though the
programmers, the documentation, and sometimes the source code, of those
applications are long gone. CICS configuration manager took the best of CEDA
and CICSPlex SM resource management and created something simpler and
easier. CICS interdependencies analyzer allowed administrators to understand
the implications of proposed changes to their application suites. CICS
Performance Analyzer gave new insight into the performance of those
applications. However, each of the tools had its own user interface, its own set of
panels. CICS Explorer brings a common user interface and user experience to
the whole CICS toolset in a single (free) product. Do not forget the Tivoli®
Omegamon family of products, which also contain a rich set of functions for the
management of CICS resources.

1.1.6 The brave new world: CICS Explorer

All the systems management tools described previously have their own separate
user interfaces - CICS 3270 transactions, Web browser, TSO ISPF panels, batch
jobs. When you consider that there is also a whole host of third-party, vendor, or
customer home-grown CICS systems management tools, each with their own
user interface and implementation, you can see why CICS system administrators
and programmers tend to regard with suspicion yet another tool with yet another
user interface to learn.

CICS Explorer signals an end to this confusion. It allows all the tools and
applications that a user needs to perform a business task to present the same
structure and user interface. Tools that are built by IBM, vendors, and customers
extend and enhance CICS Explorer in a consistent way, adding value to CICS
management without the need to reinvent or redefine CICS Explorer's user
interface.
 Chapter 1. CICS Evolution 7

CICS Explorer has achieved this by embracing the Eclipse open source
community's extensible development platform, runtimes, and application
frameworks for building, deploying, and managing software.

1.2 Overview of CICS Explorer

It is worth spending a little time looking at the Eclipse user interfaces, and how
they are used by CICS Explorer. The better you understand these interfaces, the
easier it is for you to create useful new CICS Explorer plug-ins.

The intention here is to focus on the elements and concepts of Eclipse, which are
going to be interesting from a plug-in programming point of view. We can break
the Eclipse display down into a number of constituent parts.

1.2.1 Workbenches and Perspectives

When you start your CICS Explorer for the first time, you are presented with the
the CICS Explorer Workbench, shown in Figure 1-3 on page 9.

Note: To learn in detail about CICS Explorer and how you can use and
customize it without the need for programming, see IBM Redbooks publication
CICS Explorer, SG24-7778.
8 Extend the CICS Explorer: A Better Way to Manage Your CICS

Figure 1-3 CICS Explorer Workbench CICS SM perspective

Each Workbench window contains one or more perspectives. In Figure 1-3, we
see the default perspective for the CICS Explorer, provided by the CICS Explorer.
Think of an Eclipse Perspective as being a set of related tools grouped together
for a specific task or role. For example, the perspective used by a CICS Systems
Programmer is different from that used by a COBOL Application Developer, a
Java Application Developer, or a Web designer.

If you click Window Open Perspective Other you can see the list of
perspectives supplied with this version of CICS Explorer. The Resource
perspective is also provided by CICS Explorer. All the other perspectives you see
come with Eclipse RCP. In this book we look at and mostly work with the CICS
SM perspective. The Resource perspective is used to create and manage CICS
Event bindings and objects. Perspectives are a powerful way of creating displays
that are customized to show the tasks and information required for a specific job
or role (with no need for programming).
 Chapter 1. CICS Evolution 9

1.2.2 Views

Think of views as the primary Eclipse interface for displaying the information you
want to see. A perspective can be made up of many views, or of a single view.

Views can occur singly, or in what is called a tab group, or tabbed notebook. For
example, if you look at the default CICS SM perspective, you can see that the
welcome view is on the right hand side on its own. On the left, you can see that
there is a tab group made up of the CICSPlex Explorer and CICSPlex Repository
views. In the center, there is another tab group, which contains views for CICS
resources managed by CICS Explorer. Add a new view of another CICS resource
to the central tabbed notebook by simply clicking (for example) Operations
Web Services.

If you click the CICS regions listed in the CICSPlex Explorer view, the resources
displayed in the upper central tab group are changed to reflect that you are now
viewing the data associated with that region.

As a general rule, when using Eclipse, the left tab group to navigate around the
information available in the workspace, and the information you are interested
appears in the lower central tab group. This is a general rule that applies to most
Eclipse RCP implementations. Similarly, there is usually a tab group in the lower
central portion of the workspace, which tends to be used to signal problems,
errors, or (in the case of our CICS SM view) events that might present a potential
problem. The default view in this panel is for CICSPlex SM alerts. If one of our
CICS Regions raises an alert (for example, goes short on storage, or reaches
maxtask), the appropriate alert is displayed in this view.

Tip: If you are in a perspective with multiple views, and you want to
concentrate on a single view, double-click that view to get it in full-panel mode.
After you have finished, double-click its tab again, and you return to the
original perspective.
10 Extend the CICS Explorer: A Better Way to Manage Your CICS

Each view can have a menu of related actions or views associated with it. You
display this menu by right-clicking the view tab (see Figure 1-4).

Figure 1-4 View tab menu

The actions we see in the Tasks view are the defaults provided by Eclipse. There
are no CICS-specific ones unless we choose to add a plug-in that adds an action
we want to implement.
 Chapter 1. CICS Evolution 11

1.2.3 Menus and the menu bar

Each perspective has a menu bar, which has been designed and customized to
detail a menu of actions or views that are related to a specific menu item. So, for
example, the menu bar of the CICS SM perspective looks like Figure 1-5.

Figure 1-5 CICS SM perspective menu bar

As you click each item in the menu bar, a list of actions or views associated with
that item is presented, and you can select the one you want. You can see that
several of the menu items, such as File, or Edit are standard Eclipse user
interface menu items, but others, such as WLM, RTA, Operations, are provided
by plug-ins provided by CICS Explorer. If you want to add new menus that are
appropriate to your installation, write a plug-in to do it. Later we show how you
can create your own menus that you can add to a new or existing perspective’s
menu bar.
12 Extend the CICS Explorer: A Better Way to Manage Your CICS

1.2.4 Toolbars

A toolbar is a collection of graphical icons that when clicked, typically execute a
wizard associated with the task represented by the icon, or when right-clicked,
display a menu of actions or views associated with that icon.

There are five separate kinds of toolbars in Eclipse, so when writing a new
plug-in for a new tool, you need to give thought to the best place to invoke that
new plug-in. Figure 1-6 shows the kinds of toolbars in Eclipse.

Figure 1-6 Eclipse toolbars

The main toolbar (sometimes called the workspace toolbar) is associated with
the perspective. By default, when you define a new item on the menu bar (called
an action set, the Eclipse SDK generates a corresponding icon on the toolbar to
graphically represent the item.

A new plug-in that defines an action or view associated to a particular view can
be defined to be displayed in a view toolbar.
 Chapter 1. CICS Evolution 13

The perspective switcher is a tool that allows you to move quickly from one
perspective to another, with each open perspective represented by an icon.

To get instant access to your most commonly used views, add them to the fast
view toolbar by right-clicking the View tab and selecting Fast View.

1.2.5 Editors

When you want to define or modify Eclipse resources, depending on the
resource, Eclipse opens an appropriate editor in the Editor Area (usually the
center panel in the workspace). If the Eclipse resource is a plain text file, it is an
editor that works with plain text. If it is an XML file, Eclipse contains an editor with
functionality for working with XML data (such as syntax checking). As you
develop new plug-ins, you might need to invoke an editor.

In the case of the CICS Explorer, the CICS Explorer has a specific editors for
working with CICS resources. If you double-click a CICS resource (for example a
CICS region), CICS Explorer opens an editor session to the right of the current
view, showing the attributes for that resource. This is shown in Figure 1-7.

Figure 1-7 Double-click region object to invoke CICS Editor to display attributes
14 Extend the CICS Explorer: A Better Way to Manage Your CICS

1.2.6 Wizards

When you choose to create or modify a CICS resource, a wizard opens in a
separate pane, to the right of the tabular views. The wizard guides you through
the creation of the new resource, prompting you for the correct information.

For example, if you want to create a new Program definition for a CICS region,
you can right-click that region, and select New Program Definition and a
wizard opens to allow you to provide the necessary information. See Figure 1-8.

Figure 1-8 CICS Explorer CICS Resource Editor

There might be scenarios where you want to do something similar for your own
business needs. and you can do this by writing your own plug-in.
 Chapter 1. CICS Evolution 15

1.3 Overview of Eclipse

Because CICS Explorer is based on Eclipse, it is important to have idea of the
relationship between the two. In this section we take a high-level view of aspects
of Eclipse of which we need to be aware.

The Eclipse community has several separate ongoing focuses of activity. The
one on which CICS Explorer is based is called Eclipse Rich Client Platform
(RCP).

A rich client is a fat client. That means we have a fat, rich client. That is to say, it
is an application that uses the windowing and GUI features of the operating
system (for example, native widgets, drag and drop) and is integrated with the
operating system’s component model (for example, ActiveX). This is what we are
going to focus on.

Figure 1-9 is a description of Eclipse RCP taken from the following Web page:

http://www.eclipse.org/downloads/download.php?file=/technology/phoenix/
talks/What-is-Eclipse-and-Eclipse-RCP-3.2.6.ppt

Figure 1-9 Eclipse description

A consistent and native look and feel across applications and features
Provides common application services
Native look and feel
Window management
Standardized component model
Pervasive extensibility
Update Manager
Help system
First-class development tools
Middleware for building rich client applications
Allows programmers to focus on core application not the plumbing
Don't reinvent the wheel
16 Extend the CICS Explorer: A Better Way to Manage Your CICS

http://www.eclipse.org/downloads/download.php?file=/technology/phoenix/talks/What-is-Eclipse-and-Eclipse-RCP-3.2.6.ppt

Sounds like a good fit with the aims of CICS Explorer? That is what the CICS
development organization thought. Eclipse RCP provides a set of base functions
and services that handle, among other things, user interfaces, help panels, and
update management, as shown in Figure 1-10.

Figure 1-10 Eclipse RCP structure

Eclipse RCP

User Interface

Core/Model

Communications

Help
 Chapter 1. CICS Evolution 17

The base functions provided by Eclipse RCP are designed to be extensible, and
available for use by new components (plug-ins) that implement functionality
specific to a particular technical or business need. The plug-in developers use
the provided interfaces to write their own components, which can provide
functionality used by other plug-ins, as shown in Figure 1-11.

Figure 1-11 Eclipse RCP component model

To summarize, Eclipse RCP is a runtime environment providing a set of
commonly used services for use by components (plug-ins) developed to run
inside that runtime environment (sound familiar?).

Eclipse RCP

core.ui

explorer

core.ui.editors

ui.navigator

ep.editor cm.ui

ftp.ui bundle.ui

model core.model core.bundle

UI

Core/
Model

Communications

cm.model

core.comm sm.comm

sm.comm.sm sm.comm.cpsm sm.comm.ftp cm.comm

ep.help

cm.help

core.help
18 Extend the CICS Explorer: A Better Way to Manage Your CICS

Where it is necessary to connect to a remote system to retrieve information, a
plug-in can use the communications facilities provided by Eclipse, or implement
its own communication services. This might be made available to other plug-ins,
as shown in Figure 1-12.

Figure 1-12 Eclipse RCP Connectivity

As we see in more detail later, CICS Explorer uses the communications facilities
provided by Eclipse RCP to connect to CICS TS to retrieve and modify the data it
uses. The list of protocols to be used is not exclusive, you simply write a plug-in
to implement the transport protocol you need to use.

As well as the Eclipse RCP run-time itself, Eclipse provides a development
environment specifically for plug-in development. This development environment
is called the Eclipse plug-in SDK. It is also referred to as a Plug-in Development
Environment (PDE). We are using the Eclipse plug-in SDK to develop and test
our CICS Explorer plug-ins in this Redbooks publication.

Rich Client

V
ie

w

Local data

and logic

HTTP,Query Strings REST,XML IIOP

C
o

n
tr

o
l

SOAP
 Chapter 1. CICS Evolution 19

When developing Eclipse plug-ins, it is important to remember that you usually
deal with two separate Eclipse environments:

� The Eclipse plug-in SDK, where you develop and test your plug-in (it contains
a runtime environment to allow you to test).

� The target Eclipse environment, where you deploy the finished (and tested)
Eclipse RCP application. In our case the target environment is the CICS
Explorer runtime.

As a general rule, the default active view (the one you can see) on the left
contains a list of resources related to the perspective we are using. In this case,
the default view shown in pane 1 is a list of the plug-in projects that exist in the
Eclipse workspace in which you are working. Because you have not yet created
any plug-ins, the pane is blank. However, if we click the Plug-ins tab, to bring that
view to the front, we can see all the plug-ins that come with the Eclipse SDK.

When working with the CICS Explorer, it is important to remember that it is still a
work in progress. However, it is seen by the CICS development organization as a
critical element in the future of CICS. The plan is to roll out new versions of CICS
Explorer, with new functionality, several times per year.

We have already seen significant progress since the CICS Explorer first
appeared. In its original form, CICS Explorer is not able to update CICS
resources, only to view them. New in CICS TS version 4 was the ability to modify
and create CICS resources. Originally, you could only connect to a CICSPlex SM
WUI CICS region, but you can now connect to a single standalone CICS region.

We see in the course of this book that there is already a rich set of functions in
CICS Explorer, which are there to be used in new and innovative ways. We hope
that after you have read this book, and tried the samples, you will share your
ideas for new ways to use CICS Explorer with the wider CICS community through
the CICS Explorer forum at the following Web page:

http://www.developerworks/forums/forum.jspa?forumID=1475

If you have any questions about CICS Explorer, or about the topics discussed in
this book, you can post them on the forum.
20 Extend the CICS Explorer: A Better Way to Manage Your CICS

http://www.developerworks/forums/forum.jspa?forumID=1475

Part 2 Exploring CICS
Explorer

In this part of this Redbooks publication we show how CICS Explorer uses the
CICS Client Management Interface (CMCI). CMCI is the strategic interface for
CICS Explorer communications with CICS TS. We also we take an in depth look
at the CICS Explorer SDK.

Part 2
© Copyright IBM Corp. 2010. All rights reserved. 21

22 Extend the CICS Explorer: A Better Way to Manage Your CICS

Chapter 2. CICS Explorer and the CICS
Client Management Interface

In this chapter we take a more detailed look at the way CICS Explorer uses the
CICS Client Management Interface (CMCI). CMCI is the strategic interface for
CICS Explorer communications with CICS TS.

If you are simply using CICS Explorer as a user, the way CICS Explorer uses
CMCI is transparent to you.

If you plan to write additional functions to run inside CICS Explorer, you need to
understand how CICS Explorer uses the CMCI to create efficient new CICS
Explorer plug-ins, how it communicates with CICS, how it stores information
about the CICS environment, and how it is possible to manipulate the data that
CICS Explorer uses.

We also compare the CICS Explorer with the Web user interface to understand
how they differ, and why CICS Explorer is considered to be a better solution.

2

Note: CICS Explorer initially used a separate (non-RESTful) implementation
of HTTP to communicate with a CICS WUI region over TCP/IP, but CMCI is
the strategic interface, so it is what we focus on here.
© Copyright IBM Corp. 2010. All rights reserved. 23

2.1 CMCI

CMCI allows anyone to develop HTTP client applications that manage, install,
and define CICS resources. CMCI is a simple but extremely powerful tool. The
biggest user of the CMCI today is CICS Explorer.

CMCI is CICSPlex SM code. It runs either in a CICSPlex SM WUI server, or in a
stand-alone CICS region (in which case it is known as Systems Management
Single Server [SMSS]). Like CICS Explorer and CICSplex SM, you can divide
CICS Explorer activities into two categories:

� Operational activities

Enabling, disabling, or modifying installed resources, or system settings
(analogous to CEMT).

� Administration activities

Defining, installing, modifying or deleting CICS resources (analogous to
CEDA or CICSPlex SM’s Business Application Services (BAS)). When used
in CICSPlex mode CMCI works with CICS resources managed by BAS; when
used in a single standalone region it works with the CICS CSD. The
repository used for the resources being managed is completely transparent to
the user.

For a detailed description of the CMCI implementation and the API, enter the
search argument “CMCI” at the following Web page:

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

2.1.1 CMCI is a RESTful implementation

CMCI is a new system management API, based on Representational State
Transfer (RESTful) principles. The speed and flexibility of CICS Explorer are
derived largely from CMCI’s RESTful implementation. A RESTful application
makes use of the following methods (as defined in the HTTP Protocol) to define
actions that can be performed (in the case of CMCI, on a CICS resource):

� POST

Create resources on the data repository.

� GET

Retrieve information about resources.

� PUT

Update existing resources in the data repository, set attributes, or perform
actions on installed resources.
24 Extend the CICS Explorer: A Better Way to Manage Your CICS

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

� DELETE

Remove resources from the data repository or discard installed resources.

The key factor in a RESTful implementation is efficient use of the HTTP methods,
URI strings, and query strings.

2.1.2 CMCI and CICSPlex SM resource tables

Almost all CICS and CICSPlex SM resources that are managed by CICSPlex SM
are described and managed by means of a set of resource tables. CMCI uses
these resource tables. The CICSPlex SM resource table architecture has been
extended to allow it to work with the CMCI’s RESTful approach:

� Each resource type now has a new external resource name section. This
external name is the one specified by the CMCI client to select that resource
type. For example, the LOCFILE CICSPlex SM resource type (local VSAM
file) is defined with an external resource name of CICSLocalFile.

� Each resource type now has a valid CICS Management Client Interface HTTP
methods section, which defines the HTTP methods valid for the resource.

� The error codes returned by CICSPlex SM when accessing resource tables
have been re-ordered to make things simpler for CMCI users

Note: REST stands for Representational State Transfer. This is not the most
informative acronym, and this book is not the place for a lengthy discussion of
REST. For the official description, and useful background, try the following
Web pages:

� http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
� http://www.ibm.com/developerworks/web/library/wa-ajaxarch/
� http://www.surfscranton.com/architecture
� http://rest.blueoxen.net/cgi-bin/wiki.pl?whatIsREST
 Chapter 2. CICS Explorer and the CICS Client Management Interface 25

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ibm.com/developerworks/web/library/wa-ajaxarch/
http://www.surfscranton.com/architecture
http://rest.blueoxen.net/cgi-bin/wiki.pl?whatIsREST

2.2 CMCI caching

CMCI uses caching technology to provide faster access to data and reduce the
bandwidth and network latency associated with CMCI requests. The CMCI client
(CICS Explorer in our case) chooses to use this caching by specifying the
NODISCARD=NODISCARD parameter on the query string, which it uses to
articulate its CMCI request to CMCI. Read the sections that follow, which provide
examples of CMCI flows, and accessing the cache, to see how it is used. The
default behavior of CICS Explorer is to use caching.

Use both indexing and ranges to target your requests for cached data. For
example, to show the first five resource records from a previously created cache,
starting at record nine, the URI query string looks like this:

 ../CICSResultCache/C46DB57FAE2D8F64/9/5?NODISCARD

Where the string C46DB57FAE2D8F64 identifies a cache created earlier (see
the examples of the flows for separate activities).

You can also use the range value when creating the cache, to limit the cache to
the first ten records. The URI you submit looks like this:

/CICSSystemManagement/CICSProgram/EPRED///10?NODISCARD=NODISCARD&SUMMONLY

2.2.1 Defining a CICS resource definition with the CMCI

The resource upon which the action is to be performed is specified in the URI of
the HTTP request received by CMCI. So for example, if we look at the creation of
a URIMAP, with name MYURI, in BAS, we see the request flow in from CICS
Explorer over the CMCI, as shown in Example 2-1.

Example 2-1 HTTP request for to define a CICS resource using CMCI

POST /CICSSystemManagement/CICSDefinitionURIMap/EPRED HTTP/1.1
Authorization: Basic Q0lDU1JTMTpibHUzQjBvaw==
User-Agent: IBM_CICS_CICS Explorer/1.0.2.200909240951 (Windows XP)
Host: wtsc66.itso.ibm.com:16001
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive
Content-type: application/x-www-form-urlencoded
Content-Length: 141

Note: Cached results are stored in the CICS WUI region in its above the bar
domain storage pool WU_64, so make sure you set MEMLIMIT and the EDSA
limit carefully
26 Extend the CICS Explorer: A Better Way to Manage Your CICS

<request>
 <create>
 <attributes USAGE="PIPELINE" PIPELINE="MYPIPE" PATH="/path"
HOST="host.ibm.com" NAME="MYURI" DEFVER="1"/>
 </create>
</request>

Because we are creating a URIMAP resource, we use the HTTP verb POST. The
resource we are working with is a URIMAP definition so the URI specifies:

/CICSSystemManagement/CICSDefinitionURIMAP/EPRED

The EPRED at the end of the URI specifies the CICSPlex SM context (in our
case this resource is associated with the EPRED CICSplex). The body of the
HTTP request contains the XML data providing the attributes of the object we
want to create.

If we look at the HTTP response to our create request returned by the CICS WUI
region we see the information shown in Example 2-2.

Example 2-2 CMCI HTTP Response for defining a URIMAP

HTTP/1.1 200 OK..Cache-Control: no-store
Date: Wed, 14 Oct 2009 12:53:40 GMT
Server: IBM_CICS_Transaction_Server/4.1.0(zOS)
Content-Type: application/xml; charset=UTF-8
Transfer-Encoding: chunked
Connection: Keep-Alive

147
<?xml version="1.0"?>
<response xmlns="http://www.ibm.com/xmlns/prod/CICS/smw2int"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ibm.com/xmlns/prod/CICS/smw2int

http://wtsc66.itso.ibm.com:16001/CICSSystemManagement/schema/CICSSystem
Management.xsd"
 version="1.0"
 connect_version="0410">
<resultsummary
 api_response1="1024"
 api_response2="0"
 api_response1_alt="OK"
 api_response2_alt=""
 Chapter 2. CICS Explorer and the CICS Client Management Interface 27

 recordcount="1"
 displayed_recordcount="1" />
<records>
2A4
<cicsdefinitionurimap _keydata="D4E8E4D9C9404040014040404040404040"
 analyzer="NO" atomservice="" authenticate="NO"
 certificate=""
 changeagent="DREPAPI" changeagrel="0660"
changetime="2009-10-14T08:53:40"
 changeusrid="CICSRS1" characterset="" ciphers=""
converter=""
 createtime="2009-10-14T08:53:40" csdgroup=""
defver="1" desccodepage="37"
 description="" hfsfile="" host="host.ibm.com"
hostcodepage=""
 location="" mediatype="" name="MYURI"
path="/path" pipeline="MYPIPE"
 port="NO" program="" redirecttype="NONE"
scheme="HTTP" status="ENABLED"
 tcpipservice="" templatename="" transaction=""
usage="PIPELINE"
 userdata1="" userdata2="" userdata3="" userid=""
webservice="" />
D
</records>

B
</response>..

We can see that the XML schemas for the CICS XML data are specified on the
response tag, and can be retrieved for the CICS WUI region if required.

The attributes of the resultsummary tag show us whether our create was
successful or not. api_response1="1024" means the operation was successful.
api_response1_alt="OK" is the response code in human-readable form. The
number of new CICS Definition records created is also returned (recordcount=1).

The record element gives us the details of all the new resources created. Each
record’s first attribute is _keydata. This is a value that uniquely identifies this
record. It is also used to link records to feedback. In our case, we have a
cicsdefinitionurimap with all the attributes of our newly created URIMAP. The
records element provides a fully externalized interpretation of almost all CICS
resources and their attributes.
28 Extend the CICS Explorer: A Better Way to Manage Your CICS

2.2.2 Viewing a CICS resource definition using CMCI
The HTTP verb used for inquiring on a resource is GET. As with all CMCI calls,
the resource upon which the action is to be performed is specified in the URI of
the HTTP request received by CMCI. See Example 2-3.

Example 2-3 Get request for CMCI view

GET
/CICSSystemManagement/CICSDefinitionURIMap/EPRED?NODISCARD=NODISCARD&SUMMONLY&C
RITERIA=((NAME='MYURI')) HTTP/1.1
Authorization: Basic Q0lDU1JTMTpibHUzQjBvaw==
User-Agent: IBM_CICS_CICS Explorer/1.0.2.200909240951 (Windows XP)
Host: localhost:16001
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive

We see in Example 2-3 that the URI identifies the type of resource. The query
string NODISCARD=NODISCARD&SUMMONLY&CRITERIA=((NAME='MYURI')) identifies the
name of the resource we want to access (MYURI), and that we only want a
summary of its associated data. The NODISCARD name/value pair tells CMCI to
cache the information we are retrieving. The default behaviour of Explore is to
always request that retrieve data be cached by CMCI. If we look at the HTTP
response returned by CMCI (Example 2-4), we see that the inquire was
successful, but that CMCI has not returned the data for the inquire; instead it has
returned a cachetoken which can be saved and used to request information
about this and perhaps other URIMAPs.

Example 2-4 HTTP response returned by CMCI

HTTP/1.1 200 OK
Cache-Control: no-store
Date: Wed, 14 Oct 2009 15:26:20 GMT
Server: IBM_CICS_Transaction_Server/4.1.0(zOS)
Content-Type: application/xml; charset=UTF-8
Transfer-Encoding: chunked
Connection: Keep-Alive

<?xml version="1.0"?>
<response xmlns="http://www.ibm.com/xmlns/prod/CICS/smw2int"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/CICS/smw2int

Note: If you look at a CICS trace of the CMCI flows, you see that the various
parts of both the HTTP request and the HTTP response are split across a
number of Sockets domain SEND and RECEIVE calls.
 Chapter 2. CICS Explorer and the CICS Client Management Interface 29

http://localhost:16001/CICSSystemManagement/schema/CICSSystemManagement.xsd"
version="1.0" connect_version="0410">

<resultsummary api_response1="1024" api_response2="0"
api_response1_alt="OK" api_response2_alt="" recordcount="1"
cachetoken="C4EF7130DF20DC09" />B
</response>

To get the details about our URIMAP CICS Explorer now issues a second GET
HTTP request. This time the URI references the cached data identified by the
cachetoken received earlier:

/CICSSystemManagement/CICSResultCache/C4EF7130DF20DC09/1/1

Note that the cachetoken is suffixed by /1/1. This tells CMCI to return only one
record starting at record one. See Example 2-5.

Example 2-5 CMCI cached data HTTP GET request

GET ?NODISCARD=NODISCARD HTTP/1.1
Authorization: Basic Q0lDU1JTMTpibHUzQjBvaw==
User-Agent: IBM_CICS_CICS Explorer/1.0.2.200909240951 (Windows XP)
Host: localhost:16001
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive

This time the HTTP response contains the data we are looking for (Example 2-6).

Example 2-6 HTTP response to CICS Explorer inquire on URIMAP definition

HTTP/1.1 200 OK
Cache-Control: no-store
Date: Wed, 14 Oct 2009 15:26:20 GMT
Server: IBM_CICS_Transaction_Server/4.1.0(zOS)
Content-Type: application/xml; charset=UTF-8
Transfer-Encoding: chunked
Connection: Keep-Alive
13D
<?xml version="1.0"?>
<response xmlns="http://www.ibm.com/xmlns/prod/CICS/smw2int"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/CICS/smw2int
http://localhost:16001/CICSSystemManagement/schema/CICSSystemManagement
.xsd" version="1.0" connect_version="0410">
AF
30 Extend the CICS Explorer: A Better Way to Manage Your CICS

<resultsummary api_response1="1024" api_response2="0"
api_response1_alt="OK" api_response2_alt="" recordcount="1"
displayed_recordcount="1" cachetoken="C4EF7130DF20DC09" />
C

<records>
2A4

<cicsdefinitionurimap
_keydata="D4E8E4D9C9404040014040404040404040" analyzer="NO"
atomservice="" authenticate="NO" certificate="" changeagent="DREPAPI"
changeagrel="0660" changetime="2009-10-14T11:26:19"
changeusrid="CICSRS1" characterset="" ciphers="" converter=""
createtime="2009-10-14T11:26:19" csdgroup="" defver="1"
desccodepage="37" description="" hfsfile="" host="host.ibm.com"
hostcodepage="" location="" mediatype="" name="MYURI" path="/path"
pipeline="MYPIPE" port="NO" program="" redirecttype="NONE"
scheme="HTTP" status="ENABLED" tcpipservice="" templatename=""
transaction="" usage="PIPELINE" userdata1="" userdata2="" userdata3=""
userid="" webservice="" />
D

</records>
B
</response>

2.2.3 Altering a URIMAP resource definition using CMCI

To request CMCI to alter a resource definition, we use the PUT method on our
HTTP request. The URI identifies the resource to be updated as a resource
definition URIMAP (CICSDefinitionURIMap) in CICSPlex EPRED. The query
string identifies the resource to be altered as MYURI. See Example 2-7.

Example 2-7 HTTP request to CMCI to alter a CICS resource definition

PUT
/CICSSystemManagement/CICSDefinitionURIMap/EPRED//?CRITERIA=((NAME='MYU
RI')%20AND%20(DEFVER='1')) HTTP/1.1
Authorization: Basic Q0lDU1JTMTpibHUzQjBvaw==
User-Agent: IBM_CICS_CICS Explorer/1.0.2.200909240951 (Windows XP)
Host: localhost:16001
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive
Content-Length: 76
 Chapter 2. CICS Explorer and the CICS Client Management Interface 31

<request><update><attributes DESCRIPTION="Hello World"
/></update></request>

The body of the HTTP request contains the XML message that details the
change to be made to URIMAP. It is an update request to change the
DESCRIPTION attribute of our URIMAP to Hello World. We can see the HTTP
response sent on successful completion of the alter in Example 2-8 on page 32
with the good return code in the resultset element, and the updated description
attribute of the cicsdefinitionurimap element.

Example 2-8 HTTP response from CMCI for an alter to a CICS resource definition

HTTP/1.1 200 OK
Cache-Control: no-store
Date: Wed, 14 Oct 2009 15:26:20 GMT
Server: IBM_CICS_Transaction_Server/4.1.0(zOS)
Content-Type: application/xml; charset=UTF-8
Transfer-Encoding: chunked
Connection: Keep-Alive

13D
<?xml version="1.0"?>
<response xmlns="http://www.ibm.com/xmlns/prod/CICS/smw2int"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/CICS/smw2int
http://localhost:16001/CICSSystemManagement/schema/CICSSystemManagement
.xsd" version="1.0" connect_version="0410">
91

<resultsummary api_response1="1024" api_response2="0"
api_response1_alt="OK" api_response2_alt="" recordcount="1"
displayed_recordcount="1" />
C

<records>
2AF

<cicsdefinitionurimap
_keydata="D4E8E4D9C9404040014040404040404040" analyzer="NO"
atomservice="" authenticate="NO" certificate="" changeagent="DREPAPI"
changeagrel="0660" changetime="2009-10-14T11:26:20"
changeusrid="CICSRS1" characterset="" ciphers="" converter=""
createtime="2009-10-14T11:26:19" csdgroup="" defver="1"
desccodepage="37" description="Hello World" hfsfile=""
host="host.ibm.com" hostcodepage="" location="" mediatype=""
name="MYURI" path="/path" pipeline="MYPIPE" port="NO" program=""
redirecttype="NONE" scheme="HTTP" status="ENABLED" tcpipservice=""
32 Extend the CICS Explorer: A Better Way to Manage Your CICS

templatename="" transaction="" usage="PIPELINE" userdata1=""
userdata2="" userdata3="" userid="" webservice="" />
D

</records>
B
</response>

2.2.4 Installing a CICS resource definition using CMCI

The HTTP method used to install a CICS resource definition is PUT. See
Example 2-9.

Example 2-9 HTTP Put request for CMCI Install

PUT
/CICSSystemManagement/CICSDefinitionURIMap/EPRED/?CRITERIA=((NAME='MYURI')%20AN
D%20(DEFVER='1')) HTTP/1.1
Authorization: Basic Q0lDU1JTMTpibHUzQjBvaw==
User-Agent: IBM_CICS_CICS Explorer/1.0.2.200909240951 (Windows XP)
Host: localhost:16001
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive
Content-Length: 131

<request>
<action name="INSTALL">

<parameter name="USAGE" value="LOCAL"/>
<parameter name="TARGET" value="EPRED4"/>

</action>
</request>

The URI identifies:

� The kind of resource we want to work with: CICSDefinitionURIMAP
� The CICSPlex context EPRED.

The query string identifies the resource we want to install:

CRITERIA=((NAME='MYURI')%20AND%20(DEFVER='1')).

The body of the HTTP request contains an XML message with more detail about
the operation to be performed. The action to be performed is an install, and the
target region for the install is CICS region EPRED4.
 Chapter 2. CICS Explorer and the CICS Client Management Interface 33

If the install for a resource is successful, CMCI returns the HTTP response
shown in Example 2-10. We can see from the api_response1 attribute of the
resultset element that the operation completed normally. The details of the
requested resource MYURI are returned in the records element.

Example 2-10 HTTP Response for CMCI Isntall

HTTP/1.1 200 OK
Cache-Control: no-store
Date: Wed, 14 Oct 2009 15:26:21 GMT
Server: IBM_CICS_Transaction_Server/4.1.0(zOS)
Content-Type: application/xml; charset=UTF-8
Transfer-Encoding: chunked
Connection: Keep-Alive

13D
<?xml version="1.0"?>
<response xmlns="http://www.ibm.com/xmlns/prod/CICS/smw2int"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/CICS/smw2int
http://localhost:16001/CICSSystemManagement/schema/CICSSystemManagement
.xsd" version="1.0" connect_version="0410">
91

<resultsummary api_response1="1024" api_response2="0"
api_response1_alt="OK" api_response2_alt="" recordcount="1"
displayed_recordcount="1" />
C

<records>
2AF

<cicsdefinitionurimap
_keydata="D4E8E4D9C9404040014040404040404040" analyzer="NO"
atomservice="" authenticate="NO" certificate="" changeagent="DREPAPI"
changeagrel="0660" changetime="2009-10-14T11:26:20"
changeusrid="CICSRS1" characterset="" ciphers="" converter=""
createtime="2009-10-14T11:26:19" csdgroup="" defver="1"
desccodepage="37" description="Hello World" hfsfile=""
host="host.ibm.com" hostcodepage="" location="" mediatype=""
name="MYURI" path="/path" pipeline="MYPIPE" port="NO" program=""
redirecttype="NONE" scheme="HTTP" status="ENABLED" tcpipservice=""
templatename="" transaction="" usage="PIPELINE" userdata1=""
userdata2="" userdata3="" userid="" webservice="" />
D

</records>
B
</response>
34 Extend the CICS Explorer: A Better Way to Manage Your CICS

2.2.5 Inquiring on an installed CICS resource using CMCI

As well as installing and updating CICS resource definitions (either in the CSD or
in BAS), CMCI allows you to inquire on the operational status of resources that
are already installed and in use. The HTTP request shown in Example 2-11
shows an HTTP request sent by CICS Explorer to CMCI to inquire on the status
of our installed URIMAP. You can see that the HTTP method specified is GET. As
usual, the type of resource we are inquiring about is specified on the URI:

/CICSSystemManagement/CICSURIMap/EPRED/EPRED4

What do you notice about this URI compared to the one we have seen up until
now?

Example 2-11 HTTP request to Inquire on ain installed CICS resource using CMCI

GET
/CICSSystemManagement/CICSURIMap/EPRED/EPRED4?NODISCARD=NODISCARD&SUMMO
NLY&CRITERIA=((NAME='MYURI')) HTTP/1.1
Authorization: Basic Q0lDU1JTMTpibHUzQjBvaw==
User-Agent: IBM_CICS_CICS Explorer/1.0.2.200909240951 (Windows XP)
Host: localhost:16001
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive

Because we are inquiring on an installed resource rather than a resource
definition, the resource type is different from the one we have used in previous
examples. We are dealing with a CICSURIMap. The context is still CICSPlex
EPRED, but the scope of this request is to only target CICS Region EPRED4.

Example 2-12 shows the HTTP response returned by CMCI to reply to our
URIMAP inquiry. The body of the response shows that the operation was
successful. The results of the inquiry have been cached, in the cache identified
by the cachetoken attribute of the resultset attribute.

Example 2-12 HTTP response with cachetoken for CMCI Inquire

HTTP/1.1 200 OK
Cache-Control: no-store
Date: Wed, 14 Oct 2009 15:26:35 GMT
Server: IBM_CICS_Transaction_Server/4.1.0(zOS)
Content-Type: application/xml; charset=UTF-8
Transfer-Encoding: chunked
Connection: Keep-Alive

13D
<?xml version="1.0"?>
 Chapter 2. CICS Explorer and the CICS Client Management Interface 35

<response xmlns="http://www.ibm.com/xmlns/prod/CICS/smw2int"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/CICS/smw2int
http://localhost:16001/CICSSystemManagement/schema/CICSSystemManagement
.xsd" version="1.0" connect_version="0410">
95

<resultsummary api_response1="1024" api_response2="0"
api_response1_alt="OK" api_response2_alt="" recordcount="1"
cachetoken="C4EF713F93BD0F82" />
B
</response>

To retrieve the actual data corresponding to the inquire, CICS Explorer sends a
second HTTP request. The requested object type is CICSResultCache, and the
URI also contains the cachetoken returned to CICS Explorer by CMCI, and the
fact that CICS Explorer is only interested in one URIMAP, beginning at the first
one. See Example 2-13.

Example 2-13 HTTP Get request for data for CMCI Inquire

GET
/CICSSystemManagement/CICSResultCache/C4EF713F93BD0F82/1/1?NODISCARD=NO
DISCARD HTTP/1.1
Authorization: Basic Q0lDU1JTMTpibHUzQjBvaw==
User-Agent: IBM_CICS_CICS Explorer/1.0.2.200909240951 (Windows XP)
Host: localhost:16001
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive

This time the HTTP response contains the attributes of our installed URIMAP.
See Example 2-14.

Example 2-14 HTTP response with data for CMCI inquire

HTTP/1.1 200 OK
Cache-Control: no-store
Date: Wed, 14 Oct 2009 15:26:35 GMT
Server: IBM_CICS_Transaction_Server/4.1.0(zOS)
Content-Type: application/xml; charset=UTF-8
Transfer-Encoding: chunked
Connection: Keep-Alive

13D
<?xml version="1.0"?>
<response xmlns="http://www.ibm.com/xmlns/prod/CICS/smw2int"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
36 Extend the CICS Explorer: A Better Way to Manage Your CICS

xsi:schemaLocation="http://www.ibm.com/xmlns/prod/CICS/smw2int
http://localhost:16001/CICSSystemManagement/schema/CICSSystemManagement
.xsd" version="1.0" connect_version="0410">
AF

<resultsummary api_response1="1024" api_response2="0"
api_response1_alt="OK" api_response2_alt="" recordcount="1"
displayed_recordcount="1" cachetoken="C4EF713F93BD0F82" />
C

<records>
37A

<cicsurimap _keydata="D4E8E4D9C9404040" analyzerstat="NOANALYZER"
atomservice="" authenticate="NOAUTHENTIC" basdefinever="1"
certificate="" changeagent="DREPAPI" changeagrel="0660"
changetime="2009-10-14T11:26:20" changeusrid="CICSRS1" characterset=""
ciphers="" converter="" definesource="CPSMV01"
definetime="2009-10-14T11:26:19" enablestatus="ENABLED"
eyu_cicsname="EPRED4" eyu_cicsrel="E660" eyu_reserved="0" hfsfile=""
host="host.ibm.com" hostcodepage="" hosttype="NOTAPPLIC"
installagent="CREATESPI" installtime="2009-10-14T11:26:21"
installusrid="CICSRS1" ipfamily="UNKNOWN" ipresolved="0.0.0.0"
location="" maprefcount="0" matchdisabld="0" matchredirec="0"
mediatype="" name="MYURI" numciphers="0" path="/path" pipeline="MYPIPE"
port="-1" program="" redirecttype="NONE" scheme="HTTP" tcpipservice=""
templatename="" transaction="CPIH" usage="PIPELINE" userid=""
webservice="" />

</records>
B
</response>

2.2.6 Modifying an installed CICS resource using CMCI

To request CMCI to modify an installed resource, we use the PUT method on our
HTTP request. The URI identifies the resource to be updated as an installed
URIMAP (CICSURIMap) in region EPRED4 in CICSplex EPRED. See
Example 2-15.

Example 2-15 HTTP PUT request for a CMCI modification

PUT
/CICSSystemManagement/CICSURIMap/EPRED/EPRED4?CRITERIA=((NAME='MYURI'))
HTTP/1.1
Authorization: Basic Q0lDU1JTMTpibHUzQjBvaw==
User-Agent: IBM_CICS_CICS Explorer/1.0.2.200909240951 (Windows XP)
Host: localhost:16001
 Chapter 2. CICS Explorer and the CICS Client Management Interface 37

Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive
Content-Length: 51

<request><action name="DISABLE"></action></request>

The body of the HTTP request contains the XML message with the details of the
update we want to perform, in this case DISABLE the URIMAP. Example 2-16
shows the HTTP response returned by the CMCI. Note that the enablestatus
attribute of the cicsurimap element is set to DISABLED.

Example 2-16 HTTP response to CMCI disable request

HTTP/1.1 200 OK
Cache-Control: no-store
Date: Wed, 14 Oct 2009 15:26:36 GMT
Server: IBM_CICS_Transaction_Server/4.1.0(zOS)
Content-Type: application/xml; charset=UTF-8
Transfer-Encoding: chunked
Connection: Keep-Alive
13D
<?xml version="1.0"?>
<response xmlns="http://www.ibm.com/xmlns/prod/CICS/smw2int"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/CICS/smw2int
http://localhost:16001/CICSSystemManagement/schema/CICSSystemManagement
.xsd" version="1.0" connect_version="0410">
91

<resultsummary api_response1="1024" api_response2="0"
api_response1_alt="OK" api_response2_alt="" recordcount="1"
displayed_recordcount="1" />

C
<records>

386
<cicsurimap _keydata="D4E8E4D9C9404040" analyzerstat="NOANALYZER"

atomservice="" authenticate="NOAUTHENTIC" basdefinever="1"
certificate="" changeagent="DREPAPI" changeagrel="0660"
changetime="2009-10-14T11:26:20" changeusrid="CICSRS1" characterset=""
ciphers="" converter="" definesource="CPSMV01"
definetime="2009-10-14T11:26:19" enablestatus="DISABLED"
eyu_cicsname="EPRED4" eyu_cicsrel="E660" eyu_reserved="0" hfsfile=""
host="host.ibm.com" hostcodepage="" hosttype="NOTAPPLIC"
installagent="CREATESPI" installtime="2009-10-14T11:26:21"
installusrid="CICSRS1" ipfamily="UNKNOWN" ipresolved="0.0.0.0"
38 Extend the CICS Explorer: A Better Way to Manage Your CICS

location="Hello World" maprefcount="0" matchdisabld="0"
matchredirec="0" mediatype="" name="MYURI" numciphers="0" path="/path"
pipeline="MYPIPE" port="-1" program="" redirecttype="NONE"
scheme="HTTP" tcpipservice="" templatename="" transaction="CPIH"
usage="PIPELINE" userid="" webservice="" />
D

</records>
B
</response>

2.2.7 Discarding an installed resource using CMCI

In Example 2-17 we see the HTTP request sent to the CMCI by CICS Explorer
when it wants to discard an installed CICS resource. Note that now we are using
the DELETE method. The URI identifies the type of resource to be discarded, and
which CICS region in which CICSPlex, whilst the query string gives the name of
the resource to be discarded MYURI.

Example 2-17 HTTP request to CMCI discard an installed resource

DELETE
/CICSSystemManagement/CICSURIMap/EPRED/EPRED4/?CRITERIA=((NAME='MYURI')
) HTTP/1.1
Authorization: Basic Q0lDU1JTMTpibHUzQjBvaw==
User-Agent: IBM_CICS_CICS Explorer/1.0.2.200909240951 (Windows XP)
Host: localhost:16001
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive
 Chapter 2. CICS Explorer and the CICS Client Management Interface 39

When CICS has successfully discarded MYURI, it returns the HTTP response
shown in Example 2-18, with api_response1 set to 1024.

Example 2-18 HTTP Response from CMCI to a discard of an installed resource

HTTP/1.1 200 OK
Cache-Control: no-store
Date: Wed, 14 Oct 2009 15:26:37 GMT
Server: IBM_CICS_Transaction_Server/4.1.0(zOS)
Content-Type: application/xml; charset=UTF-8
Transfer-Encoding: chunked
Connection: Keep-Alive
13D
<?xml version="1.0"?>
<response xmlns="http://www.ibm.com/xmlns/prod/CICS/smw2int"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/CICS/smw2int
http://localhost:16001/CICSSystemManagement/schema/CICSSystemManagement
.xsd" version="1.0" connect_version="0410">
88

<resultsummary api_response1="1024" api_response2="0"
api_response1_alt="OK" api_response2_alt="" recordcount="1"
successcount="1" />
B
</response>

2.2.8 A fun way to explore the CMCI Interface

If you want to learn about the CMCI and better understand the messages that
flow between the client and CMCI, you can see some of it from a Web browser.
Enter the following URL on a Web browser:

http://9.12.4.75:16001/CICSSystemManagement/CICSURIMap/EPRED/EPREDW//1?
NODISCARD=NODISCARD&SUMMONLY

You see the XML response returned by the CMCI shown in Figure 2-1.
40 Extend the CICS Explorer: A Better Way to Manage Your CICS

Figure 2-1 Using a Web browser to drive the CMCI

2.2.9 Comparing the Web user interface and CICS Explorer

For a CICS person, probably the simplest way to appreciate the advantages of a
RESTful style application when compared with a more traditional Web
application is to compare the CICSPlex SM WUI with the CICS Explorer. They do
much the same thing, but most users agree that the CICS Explorer is a far
superior implementation.
 Chapter 2. CICS Explorer and the CICS Client Management Interface 41

WUI Plumbing
Figure 2-2 is an overview of how information about the CICSPlex is exchanged
between the WUI and its HTTP client.

Figure 2-2 Browser-based component architecture

The workstation element of the WUI is a Web browser (an HTTP client), that is,
Internet CICS Explorer, or Mozilla Firefox, or something similar. It is a thin client,
with almost no client-side programming logic other than Javascript to help with
formatting of the HTML data being passed from the CICS WUI region to the
browser. All the information about the CICS resources and the logic to manage
that information being passed to the user is executing in CICSPlex SM.

The data sent from CICS to the Web browser is in HTML format, and is often
large, resulting in large amounts of data flowing across the network, and slower
response times. This is because all the data relevant to a request from the user is
returned in a single response. If you repeat the request, all the information is
resent from CICS to the Web browser.

When you use the WUI, all communication between the Web browser is
synchronous. The user has to wait for the HTTP response to the last input be
returned from CICS before he can continue with his work.

CICS WUIWeb
Browser

View

Local data

and logic

Controller

HTTP Request

Query String

HTTP Response

HTML response
42 Extend the CICS Explorer: A Better Way to Manage Your CICS

CICS Explorer Plumbing
In Figure 2-3 we see a high-level view of the CICS Explorer architecture. There is
a lot more happening on the client side than in the WUI model. The client
(Eclipse RCP) incorporates logic and data to handle the interface with the user,
the state of the user session, and to hold information about the CICS
configuration being used. This information extends to a detailed model of the
CICSPlex being managed (based on the CICSPlex SM Resource Tables
Reference model).

Figure 2-3 CICS Explorer component architecture

There is logic in CICS Explorer to cache data and manage the session, so CICS
Explorer is not obliged to send an HTTP request to the WUI CICS region for each
user interaction. Because CICS Explorer is managing the user interface, the data
that flows from the WUI CICS region need not be HTML. In fact, CICS Explorer
exchanges XML messages with the target WUI CICS region.

Responsibility for holding information about CICS resources is shared between
CICS Explorer and CICSPlex SM. In several cases, when the user makes a
request for what might be a large amount of data, the WUI CICS region caches
the requested data, and passes subsets of the cached data to the CICS Explorer
only when they are requested. So, for example, as the user scrolls through a list
of CICS regions, CICS Explorer sends requests for the next subset of data at the
moment the user needs it.

CICS WUIExplorer

View

Local data

and logic

Controller

HTTP Request

XML Message

HTTP Response

XML Message

Local data

and logic
 Chapter 2. CICS Explorer and the CICS Client Management Interface 43

44 Extend the CICS Explorer: A Better Way to Manage Your CICS

Chapter 3. CICS Explorer SDK

In this chapter we take an in depth look at the CICS Explorer SDK. The SDK
provides a collection of Java objects that give a programmatic interface for
creating, updating, and performing actions on CICS resources and definitions.

3

© Copyright IBM Corp. 2010. All rights reserved. 45

3.1 CICS Explorer SDK Java library

As discussed in Chapter 2, “CICS Explorer and the CICS Client Management
Interface” on page 23, the CICS Explorer interacts with CICS using a RESTful
interface. To facilitate a more productive Java programming experience, a
collection of Java objects have been created that wrapper the generation of
RESTful requests and the parsing of XML response data. Collectively, these Java
objects are known as the CICS Explorer SDK.

You can download the latest version of the CICS Explorer SDK by following
these steps:

1. Go to the following Web site:

http://www-01.ibm.com/software/htp/cics/explorer/

2. Select Downloads CICS Explorer CICS Explorer for CICS TS V4
licensees Link to zip file.

3. Input your IBM ID or register if you do not have one.

4. Answer the questionnaire and agree to the license statement.

5. Select CICS Explorer for CICS Transaction Server for z/OS V4.1 (SDK)
and then click Download now. Your CICS Explorer SDK download then
begins.

6. After the download has finished follow the instructions detailed in “Creating
your CICS Explorer plug-in development environment” on page 62 for
installing into your Eclipse development environment.

CICS Explorer SDK grows in parallel with the CICS Explorer. With the frequently
planned code drops of the CICS Explorer, it is always worth investigating whether
you have the latest version of the CICS Explorer SDK.

The version discussed in this chapter is cicstsv41_explorer_sdk_v1002.zip.

In the following sections we highlight the important objects in the CICS Explorer
SDK, and explain how they are used.

3.2 The CICSPlex System Manager object

To get information about your CICSplex, or to perform actions on CICS systems,
you need to have an instance of the CICSPlex System Manager (ICPSM) object.
This is the main object you use to gain access to your CICS Explorer.
Example 3-1 on page 47 shows how you obtain a reference to the ICPSM object.
46 Extend the CICS Explorer: A Better Way to Manage Your CICS

http://www-01.ibm.com/software/htp/cics/explorer/

Example 3-1 Obtaining an instance of the ICPSM object

ICPSM cpsm = UIPlugin.getDefault().getCPSM();

With a reference to the cpsm object, you are able to retrieve basic information
about the CICS regions to which you are connected. Example 3-2 shows how to
obtain a selection of this information from the cpsm object.

Example 3-2 Getting information from the ICPSM object

System.out.println("Name: " + cpsm.getName());
System.out.println("Host: " + cpsm.getHost());
System.out.println("Port: " + cpsm.getPort());
System.out.println("UserID: " + cpsm.getUserID());
System.out.println("Connected: " + cpsm.isConnected());

The output generated from this code is shown in Example 3-2.

Example 3-3 Output from Example 3-2

Name: REDC // CMAS SYSIDNT
Host: wtsc66.itso.ibm.com// WUI hostname
Port: 16001 // WUI port no.
UserID: CICSRS1// Connected userid
Connected: true// CICS Explorer connection to CICSplex

The cpsm object also provides a mechanism for traversing the collection of
CICSplexes and their managed CICS regions. Example 3-4 shows how to do
this.

Example 3-4 Getting CICSplex information from the ICPSM object

// Iterate through the available CICSplexes and their regions
for (ICICSplex cicsPlex : cpsm.getCICSplexes())
{

System.out.println("CICSplex = " + cicsPlex.getName());

for (IManagedRegion region :
cpsm.getManagedRegions(cicsPlex))

{
System.out.println("\tRegion = " + region.getName());

}
}

 Chapter 3. CICS Explorer SDK 47

The output generated from this code is shown in Example 3-5.

Example 3-5 Our CICSplex and its CICS regions

CICSplex: EPRED
Region: EPREDW
Region: EPRED1
Region: EPRED2
Region: EPRED3
Region: EPRED4
Region: EPRED5
Region: EPRED6
Region: EPRED7
Region: EPRED8
Region: EPRED9

The cpsm object is also used for interacting with CICS resources and definitions.
To do this, familiarize yourself with using contexts in the SDK. Contexts are
discussed in 3.3, “Working with contexts” on page 48.

3.3 Working with contexts

In Example 3-4 on page 47 you retrieved the names of the CICSplexes known to
this instance of CPSM. Next, we define what subset of those CICS resources we
want to work with. Iit one particular CICSplex? Or one particular CICS region?

Contexts and scopes are mechanisms used in CICSPlex System Manager to
provide scoping on the collection of CICS regions with which you want to work. In
the simplest case you can set the context to the name of your CICSplex and the
scope to an individual CICS region. In the CICS Explorer SDK utility classes
have been created to represent contexts and scopes. There is also a class to
enable advanced filtering. Example 3-6 shows an instance of context that is set
to the name of a CICSplex.

Example 3-6 CICSplex context

Context plexContext = new Context("EPRED");

Example 3-7 on page 49 shows an instance of ScopedContext that is set to an
individual region in the preceding CICSplex. In addition to passing the preceding
object to the constructor of ScopedContext, you can also directly pass a string
containing the CICSplex name, as shown in Example 3-7 on page 49.
48 Extend the CICS Explorer: A Better Way to Manage Your CICS

Example 3-7 CICS region within CICSplex context

ScopedContext scopedContext
= new ScopedContext(plexContext, "EPRED4");

// An alternative way of instantiating a ScopedContext object
ScopedContext scopedContext

= new ScopedContext("EPRED", "EPRED4");

For advanced filtering you can use the AbstractFilteredContext Java class. This
class provides the ability to filter on any attribute of the resource on which you
are filtering. Because AbstractFilteredContext is an abstract class it requires you
to create a new Java class that extends it and implements the methods
getAttributeValue and getAttributeNames.

Example 3-8 shows an inner class that extends AbstractFilteredContext and
returns all URIMaps in a CICS region that have the name MYURI. To scope it to
a single CICS region, the scopedContext object is passed to the constructor of
AbstractFilteredContext.

Example 3-8 Filter on a URIMap resource in single CICS region within a CICSplex

IFilteredContext filteredScopedContext
= new AbstractFilteredContext(scopedContext)

{
public String getAttributeValue(String arg0)
{

return “MYURI”;
}

public Set<String> getAttributeNames()
{

return Collections.singleton(URIMapType.NAME.getCicsName());
}

};

The call to URIMapType.NAME.getCICSName() returns the internal key for that
attribute. This is used by CICSPlex System Manager to filter on that type. The
class name “URIMapType” can be changed for any other CICS type. The value
following it (which in this case is NAME) can be changed to any supported
attribute on that type. The call to getCicsName() returns the string representation
of that attribute.
 Chapter 3. CICS Explorer SDK 49

You are not limited to passing a ScopedContext object to the constructor of
AbstractFilteredContext. You can also pass in any other context object.
Example 3-9 shows the use of AbstractFilterContext to filter on all URIMap
definitions in a CICSplex. Note that a CICSplex wide context is passed to its
constructor.

Example 3-9 Filter on a URIMapDefinition resource in a CICSplex

IFilteredContext filteredPlexContext
= new AbstractFilteredContext(plexContext)

{
public String getAttributeValue(String arg0)
{

return “MYURI”;
}

public Set<String> getAttributeNames()
{

return Collections.singleton(URIMapDefinitionType.NAME.getCicsName());
}

};

The ability to filter on attributes doesn’t stop there. You can also filter on multiple
attributes at the same time. Example 3-10 shows a filter that looks for all
TSQueues in a CICSplex that have a name beginning with the letter “S” and a
queue length of 128.

Example 3-10 Filtering on multiple attributes

final HashMap<String, String> attributes
= new HashMap<String, String>();

attributes.put(TSQueueType.NAME.getCicsName(), "S*");
attributes.put(TSQueueType.QUEUE_LENGTH.getCicsName(), "128");

IFilteredContext multipleFilteredPlexContext
= new AbstractFilteredContext(plexContext)

{
public String getAttributeValue(String arg0)
{

return attributes.get(arg0);
}

public Set<String> getAttributeNames()
{

return attributes.keySet();
}

};
50 Extend the CICS Explorer: A Better Way to Manage Your CICS

3.4 CICS objects

When you retrieve resources using the CICS Explorer SDK, they are given as an
instance of ICICSObject. If you want to work with a specific type, whether it is a
resource or a definition, cast the ICICSObject to that type. Because all things are
treated as ICICSObjects, there are generic utility methods supplied for retrieving,
performing actions on, and updating them.

3.4.1 Getting a CICS object

To obtain a reference to a ICICSObject, provide a reference to the CICS type that
you are after, and a context instance. The getModel() method of the cpsm object
provides a mechanism which you can use to browse the results.

Call model.activate() for the result set size to be calculated. Next, you have the
ability to fetch results in chunks using the model.maybeFetch() method. The
parameters to the method are the start and end index values respectively. Using
this method enables you to minimize the results that are requested across the
network at any one point. Finally, to get hold of each ICICSObject in, call
model.get() and pass it an index value. Example 3-11 illustrates this.

Example 3-11 Getting all the URIMapDefinitions in a CICSplex

IResourcesModel model
= cpsm.getModel(CICSTypes.URIMapDefinition, plexContext);

model.activate(); // Initiate the model

if (model.size() > 0) // Check there are objects to get
{

ICICSObject[] cicsObjects = new ICICSObject[model.size()];

model.maybeFetch(0, model.size()); // Fetch the results

for (int i = 0; i < model.size(); i++)
cicsObjects[i] = model.get(i);

}

Note: For a full list of CICSTypes see Appendix A, “Reference list of CICS
SDK elements” on page 303.
 Chapter 3. CICS Explorer SDK 51

It is good practice only to retrieve the results that you need to show on the
display, and to do this in a just-in-time basis. This is how the CICS Explorer
works. You can use the model.size() method to get an idea of the result set size
by calling model.size(), and fetch the results in incremental chunks using
multiple calls to model.maybeFetch().

3.4.2 Performing actions on CICS objects

When you are able to get hold of CICS objects as shown in Example 3-11 on
page 51, performing actions on them is easy. Using the cpsm object, pass the
perform() method an array of CICSObjects and a reference to the action you
want to perform. The perform() method declares that it can throw a
CICSSystemManagerException if something goes wrong, so this needs to be
dealt with by wrapping the call in a try/catch block. Example 3-12 shows the
command for performing a disable action on CICS objects.

Example 3-12 Disabling multiple CICS objects

try
{

cpsm.perform(cicsObjects, SystemManagerActions.Disable);
}
catch (CICSSystemManagerException e) { e.printStackTrace(); }

To perform a separate action such as a pipeline scan, you need to swap
SystemManagerActions.Disable for SystemManagerActions.Scan. If you attempt
to perform an action on a resource that does not support it (such as a pipeline
scan on a program resource), a CICSSystemManagerException is thrown, as
shown in Example 3-13.

Example 3-13 Exception trace from performing an invalid command

com.ibm.cics.core.model.CICSSystemManagerException:
com.ibm.cics.sm.comm.sm.SMConnectionException: NOTFOUND,
ACTION

Note: For a full list of SystemManagerActions see Appendix A, “Reference list
of CICS SDK elements” on page 303.
52 Extend the CICS Explorer: A Better Way to Manage Your CICS

3.4.3 Updating a CICS object

To update a CICS object you first need to get a mutable version of it. This is done
by casting your ICICSObject it to an ICoreObject and calling the getAdapter()
method on the ICoreObject. The call to this method returns an instance of
IMutableCoreObject that you cast to a mutable version of the object with which
you are working. After updating various values on the object, feed the original
reference to the IMutableCoreObject to the cpsm.update() method to commit the
changes.

Example 3-14 shows how to do this with an IMutableURIMapDefinition. The final
call to the cpsm object needs to be wrapped in a try/catch block to deal with any
CICSSystemManagerExceptions that might occur.

Example 3-14 Updating a CICS object

// Cast ICICSObject instance to an ICoreObject
ICoreObject coreObject = (ICoreObject) cicsObjects[0];

// Get an instance of IMutableCoreObject
IMutableCoreObject mutableCoreObject = (IMutableCoreObject)

coreObject.getAdapter(IMutableCoreObject.class);

// Convert it to an IMutableURIMapDefinition
IMutableURIMapDefinition mutableURIMapDefinition

= (IMutableURIMapDefinition) mutableCoreObject;

// Update the description field
mutableURIMapDefinition.setDescription("New description");

try
{

// Commit the update
IMutableCoreObject updatedMutableCoreObject

= cpsm.update(mutableCoreObject);
}
catch (CICSSystemManagerException e) { e.printStackTrace(); }

The call to cpsm.update() returns you a reference to the updated object so that
you can continue working with it if required.

Note: For a full list of Mutable objects see Appendix A, “Reference list of CICS
SDK elements” on page 303.
 Chapter 3. CICS Explorer SDK 53

3.5 Definitions

When you want to create new resource instances using the CICS Explorer SDK,
you need to create definitions for those resources. These definitions map to
definitions in the CICS System Manager Business Application Services (BAS)
repository or in the CICS CSD, depending on how the CICS Explorer is
connected to your CICS systems. After creating a definition you are able to install
or delete it.

3.5.1 Creating a definition

To create a new definition you need to create a IDefinitionBuilder for the resource
type. The parameters you pass to the constructor of your definition builder are
the minimum ones that are needed to create and install that resource. The
remaining parameters inherit default values that can be updated by following the
steps in Example 3-14 on page 53 on the returned IMutableCoreObject.

Example 3-15 shows the code for creating a pipeline specific URIMap definition.

Example 3-15 Creating a definition resource for a URIMap

IDefinitionBuilder definitionBuilder
= new PipelineURIMapDefinitionBuilder("MYURIMap",

1L,
"www.ibm.com"
"/path",
"MYPIPE");

try
{

IMutableCoreObject mutableCoreObject
= cpsm.create(plexContext, definitionBuilder);

}
catch (CICSSystemManagerException e) { e.printStackTrace(); }

Note: For a full list of DefinitionBuilders see Appendix A, “Reference list of
CICS SDK elements” on page 303.
54 Extend the CICS Explorer: A Better Way to Manage Your CICS

3.5.2 Installing a definition

Having created a definition the next stage is to install it. To do this, call the
cpsm.install() method passing it the definition instance and a context in which
to install it. Example 3-16 shows code for installing a definition.

Example 3-16 Installing a definition

try
{

IDefinition installedDefinition
= cpsm.install(uriMapDefinition, scopedContext);

}
catch (CICSSystemManagerException e) { e.printStackTrace(); }

If you try to get hold of the resource immediately after the install command, you
might get no results back initially. This is because the install process causes an
asynchronous task to install the resource from the definition. When the install has
completed, you are able to retrieve a reference to it.

Example 3-17 shows code that loops around until the resource has been
installed. If you use this code you might want the loop to time out after a given
number of iterations. Additionally, you must ensure that any thread waits happen
on a background thread and not the main GUI thread, as discussed in 5.5,
“Background process implementation” on page 138.

Example 3-17 Looping while you wait for a resource to be installed

while (model.size() == 0)
{

try { Thread.sleep(1000); } // Sleep for 1 second
catch (InterruptedException e) {}

model = cpsm.getModel(CICSTypes.URIMap, plexContext);

Be aware: At the time of publishing there is an inconsistency in the error
handling of the create command. If you attempt to create a definition that
already exists then you get a com.ibm.cics.sm.comm.CreateException instead
of a CICSSystemManagerException. The CreateException is a
RuntimeException, so you are not forced to code a try/catch block for it. This
means that you might forget to code for this case. If this happens, exception
trace gets dumped to the stderr output stream if the error occurs.

This inconsistency is resolved in a future version of the CICS Explorer SDK.
 Chapter 3. CICS Explorer SDK 55

model.activate();
}

3.5.3 Deleting a definition

If you want to delete a definition, call cpsm.delete() and pass a reference to it.
Example 3-18 shows how this is done.

Example 3-18 Deleting a definition

try
{

cpsm.delete(uriMapDefinition);
}
catch (CICSSystemManagerException e) { e.printStackTrace(); }

3.6 Resources

Previous sections have shown how to get, perform actions on, and update
resources in CICS. The final stage of the life cycle is to be able to discard them.

3.6.1 Discard a resource

To discard a resource, you need to add them to an ICICSResource array, which
is then passed to cpsm.discardResources(). Example 3-19 on page 56 shows a
quick way of copying an array of ICICSObjects to an ICICSResource array, the
contents of which are then discarded.

Example 3-19 Discarding resources

ICICSResource[] cicsResources
= new ICICSResource[cicsObjects.length];

System.arraycopy(cicsObjects, 0,
cicsResources, 0,
cicsObjects.length);

try
{

cpsm.discardResource(cicsResources);
}
catch (CICSSystemManagerException e)
56 Extend the CICS Explorer: A Better Way to Manage Your CICS

{
SMConnectionException connectionException

= (SMConnectionException) e.getCause();

System.out.println("ReasonName: "
+ connectionException.getReasonName());

System.out.println("ResponseName: "
+ connectionException.getResponseName());

System.out.println("Resp1Name: "
+ connectionException.getResp1Name());

System.out.println("Resp1: "
+ connectionException.getResp1());

System.out.println("Resp2: "
+ connectionException.getResp2());

}

Additional error processing to visualize the difference between two separate error
situations is included in Example 3-19. With this knowledge in mind, you are able
to code for the separate situations. To get the response data, first obtain an
instance of SMConnectionException. This is done by calling the getCause()
method on the CICSSystemManagerException.

If you attempt to discard a resource that does not exist, you see the values
shown in Example 3-20.

Example 3-20 Response values when attempting to delete a non-existent resource

connectionException.getReasonName(): OK
connectionException.getResponseName(): NODATA
connectionException.getResp1Name(): null
connectionException.getResp1(): 0
connectionException.getResp2(): 0

If you attempt to discard a resource before it has been disabled, you see the
values shown in Example 3-21.

Example 3-21 Response values when attempting to discard an enabled resource

connectionException.getReasonName(): DATAERROR
connectionException.getResponseName(): TABLEERROR
connectionException.getResp1Name(): INVREQ
connectionException.getResp1(): 16
connectionException.getResp2(): 4
 Chapter 3. CICS Explorer SDK 57

58 Extend the CICS Explorer: A Better Way to Manage Your CICS

Part 3 Extending CICS
Explorer

In this part of this IBM Redbooks publication we discuss how to install and
configure the development environment you use to develop your CICS Explorer
plug-ins. We also provide more examples of plug-ins that can be coded to use
IBM CICS Explorer in useful ways.

Part 3
© Copyright IBM Corp. 2010. All rights reserved. 59

60 Extend the CICS Explorer: A Better Way to Manage Your CICS

Chapter 4. Writing a plug-in for CICS
Explorer

In this chapter we discuss how to install and configure the development
environment you use to develop your CICS Explorer plug-ins. After the
development environment is set up, we work through a “Hello World” plug-in
example to get us started. After we have got our “Hello World” example, we use it
as a vehicle to discover the various ways in which we can interact with the user
and with CICS Explorer.

4

© Copyright IBM Corp. 2010. All rights reserved. 61

4.1 Creating your CICS Explorer plug-in development
environment

Before you can develop your own CICS Explorer plug-ins, you need to install and
configure the development environment. There are three components that you
need to consider when setting this up:

� Java Virtual Machine
� Eclipse Classic SDK
� CICS Explorer SDK

We used the following software levels for this Redbooks publication:

� Java Version 1.6.0 (build pwi3260sr5-20090529_04(SR5))
� IBM CICS Explorer Version 1.0.0.2 [build id: 200909240951]
� Eclipse SDK Version 3.5.1 (Build id: M20090917-0800)
� IBM CICS Explorer Version 1.0.0.2 [build id: 200909240951]

4.1.1 Setting up the Java environment

Ensure that you have the correct JVM installed and configured before you install
the other components on your workstation. If you are using the latest version of
CICS Explorer, you need Java Version 1.6. To determine the default version of
Java running on your Windows® machine, open an MS-DOS window, and enter
the command java -version. This command tells you whether there is a version
of Java currently installed, and the version number. If it is not 1.6.0, download
and install the later JVM.

If you do not have the correct version of Java, you can download it from the
following Web page:

http://www.ibm.com/developerworks/java/jdk/

In this example, we downloaded the ibm-java-sdk-60-win-i386.zip file. After
you download the necessary .zip file, extract it. We extracted the file to the
C:\software\ibm-java-sdk-60-win-i386 directory.

Important: It is critical that you have the right software levels of all three of
these components, and that you are using the correct JVM when installing the
other components. Check the required levels for the version of the CICS
Explorer SDK that you are using.
62 Extend the CICS Explorer: A Better Way to Manage Your CICS

http://www.ibm.com/developerworks/java/jdk/

To make sure that the Java installation is successful, in an MS-DOS window, go
to the c:\ibm-java-sdk-60-win-i386\sdk\bin directory and enter the java
-version command. You see the messages shown in Figure 4-1.

Figure 4-1 Determining the installed Java version

Now that you have the correct version of Java installed in your machine, you can
install the Eclipse SDK.

4.1.2 Installing the Eclipse SDK onto your workstation

After you have verified which version of the Eclipse SDK you are working with (in
our case it is Eclipse SDK Version 3.5.1), you can download it from the following
Web page:

http://www.eclipse.org/downloads

We downloaded file eclipse-SDK-3.5.1-win32.zip, and extracted the contents
into directory eclipse-SDK-3.5.1-win32.

Before you run Eclipse for the first time, verify that it runs with the Version 1.6
JVM you installed earlier. We did this by creating an executable called
startEclipse.bat in the C:\software directory. This executable passes the
address of the correct JVM when starting Eclipse. The source code for this .bat
file is shown in Example 4-1.

Example 4-1 Source code to launch Eclipse pointing to correct JVM

C:\software\eclipse-SDK-3.5.1-win32\eclipse\eclipse -vm
C:\software\ibm-java-sdk-60-win-i386\sdk\bin
 Chapter 4. Writing a plug-in for CICS Explorer 63

http://www.eclipse.org/downloads

Using Windows CICS Explorer, open C:\software\ and double-click
startEclipse.bat to execute it. Your Eclipse workspace folder contains all the
Eclipse artifacts that you create in the course of your plug-in development. For
now, use the default workspace name and click OK. You see the Eclipse
welcome panel displayed in Figure 4-2.

Figure 4-2 Eclipse Welcome panel
64 Extend the CICS Explorer: A Better Way to Manage Your CICS

After you have Eclipse up and running, it is worth updating it to point to the Java
1.6 environment as its default runtime. Do this by clicking Window
Preferences Java Installed JREs. The panel shown in Figure 4-3 is
displayed.

Figure 4-3 Set default JRE for Eclipse (EclipseDefaultJVM.gif)

Click Add Standard JVM Next. Click Directory and select the home
directory of your Java 1.6 JRE (in our case this directory is
C:\software\ibm-java-sdk-60-win-i386\sdk), and click Finish. Select this JRE
as the default for Eclipse to use and click OK.

You have now successfully created your Eclipse SDK environment. You are
ready to develop your first Eclipse plug-in.

Note: So far, we have not installed any CICS code into Eclipse. We are just
working with the environment provided by the Eclipse platform.
 Chapter 4. Writing a plug-in for CICS Explorer 65

4.2 An Eclipse RCP “Hello World” plug-in

When you create your Eclipse SDK environment, it includes a set of templates
and wizards to generate code skeletons that you can modify to add your own
code. The Eclipse plug-in environment is Java-based, so you need to do Java
coding to handle communications with the user and invoke business functionality
behind (which might be Java). Working with the Eclipse “Hello World” samples is
a good way to learn about coding for the Eclipse user interface.

4.2.1 Creating your plug-in project

Whenever you do something in Eclipse, you do it in the context of a project. You
can think of a project as a folder in which Eclipse stores all the information and
resources associated with this activity. There are many projects, depending on
the task which you are executing. Because you want to create a new Eclipse
plug-in, you are going to create a plug-in project.

You begin by creating a new Workspace. Start your Eclipse workbench, and
create a new workspace. We called ours HelloWorldWorkspace. Because it is a
new workspace, you are presented with the Eclipse Welcome panel.

Close the Welcome panel. You are presented with the Java Developers
perspective. Click Window Open Perspective Other and select the
Plug-in Developer perspective. You can see the layout is similar to the default.
The difference is that the tab hidden behind the Package CICS Explorer view, in
the navigation pane tab group on the left side of the panel, is a view called
Plug-in. If you click the tab, you see the panel shown in Figure 4-4 on page 67.
66 Extend the CICS Explorer: A Better Way to Manage Your CICS

Figure 4-4 Plug-in view

These are all the plug-ins that make up the Eclipse SDK. They are available for
re-use by your new plug-in. After you have coded you own plug-ins, they can be
available for re-use in the same way. Click the Package CICS Explorer tab to
return to the Package CICS Explorer view. It is currently empty.
 Chapter 4. Writing a plug-in for CICS Explorer 67

To create your new plug-in package, click File New Project to start the
New Project wizard. Select Plug-in Project (not Plug-in-Development), and click
Next. You are presented with the panel shown in Figure 4-5.

Figure 4-5 New Plug-in project wizard

Give the new project a name. We called ours “HelloWorldOne.” Leave the other
values set to their default values. Click Next.

The next panel in the wizard asks you to give more details about the plug-in
content. You can keep all the default values. We need an activator class (more
about this later). We want to generate a plug-in that interfaces with the user. You
are not creating an entire new Eclipse RCP application. Click Next.
68 Extend the CICS Explorer: A Better Way to Manage Your CICS

Fortunately, Eclipse comes with a rich set of examples that can be used to
familiarize ourselves with programming in this environment. At this point in the
New Plug-in Project wizard, Eclipse gives a list of possible examples, or
templates, on which you can base your new plug-in. This is shown in Figure 4-6.

Figure 4-6 List of plug-in templates provided by Eclipse
 Chapter 4. Writing a plug-in for CICS Explorer 69

Try selecting each of the templates in turn. A description of the template appears
in the pane on the right. When you have finished browsing the list, select the
Hello, World template.

The wizard proceeds with the creation of your plug-in, and presents you with a
panel summarizing the plug-in that you are creating (see Figure 4-7). Click
Finish to create the plug-in.

Figure 4-7 First Hello World plug-in details
70 Extend the CICS Explorer: A Better Way to Manage Your CICS

After you have clicked Finish in the New Plug-in Project wizard, the plug-in is
created. In the Package CICS Explorer view on the left side, you can see the
various objects that have been created. See Figure 4-8.

Figure 4-8 Plug-in Overview view

Run the plug-in so that you can see exactly what it does. One of the great things
about Eclipse is that after you have written your plug-in, it is easy to test it.

To run the plug-in, in the Package CICS Explorer view, right-click the
HelloWorldOne project, and select Run as Eclipse Application. You see that
a completely new instance of Eclipse is started, with a new workspace. Close the
Welcome window, and look closely at your new workspace. Can you see what
has changed?

Hint: Look closely at the workspace menu bar and toolbar.
 Chapter 4. Writing a plug-in for CICS Explorer 71

Figure 4-9 shows the workspace generated when you test the HelloWorldOne
sample. This Hello world example adds a new item “Sample Menu” to the
workspace menu bar, and a new icon to the workspace toolbar (because no
specific icon is referenced in the sample, it uses the default Eclipse icon).

Figure 4-9 HelloWorldOne test

If you now left-click the icon, or left-click Sample Menu and select Sample
Action, a window appears in the workspace with our “Hello World” message
(see Figure 4-10).

Figure 4-10 Hello World One Sample Action

If you create and run projects using the other Hello World templates provided by
Eclipse, you see other examples of user interaction.
72 Extend the CICS Explorer: A Better Way to Manage Your CICS

4.2.2 What is in our HelloWorld plug-in project?

The manifest editor displays the Overview view of the plug-in in the upper central
panel. This gives a user-friendly version of the contents of the manifest.mf and
plugin.xml files. Double-click the Overview tab to get a full-panel display. Click
the MANIFEST.MF tab following this view (Example 4-2), and you see the raw file
(which is less verbose than the overview).

Example 4-2 HelloWorldOne manifest.mf

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: HelloWorldOne
Bundle-SymbolicName: HelloWorldOne; singleton:=true
Bundle-Version: 1.0.0.qualifier
Bundle-Activator: helloworldone.Activator
Bundle-Vendor: Steve
Require-Bundle: org.eclipse.ui,
 org.eclipse.core.runtime
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Bundle-ActivationPolicy: lazy

The manifest.mf contains information about the origin, version, and run-time
environment of the plug-in.

The details about the dependencies of our plug-in, and its relationship to other
plug-ins is provided in the plug-in.xml file. Click the plugin.xml tab, and you see
the HelloWorldOneplug-in.xml file (Example 4-3).

Example 4-3 HelloWorldOneplug-in.xml

<?xml version="1.0" encoding="UTF-8"?>
<?eclipse version="3.4"?>
<plugin>
 <extension point="org.eclipse.ui.actionSets">
 <actionSet
 label="Sample Action Set"
 visible="true"
 id="HelloWorldOne.actionSet">
 <menu label="Sample &Menu" id="sampleMenu">
 <separator name="sampleGroup">
 </separator>
 </menu>
 <action label="&Sample Action"
 icon="icons/sample.gif"
 class="helloworldone.actions.SampleAction"
 Chapter 4. Writing a plug-in for CICS Explorer 73

 tooltip="Hello, Eclipse world"
 menubarPath="sampleMenu/sampleGroup"
 toolbarPath="sampleGroup"
 id="helloworldone.actions.SampleAction">
 </action>
 </actionSet>
 </extension>
</plugin>

The extension tag tells Eclipse the Java class which this plug-in is extending (in
this case, the org.eclipse.ui.actionSets class). This is the class that manages the
Eclipse menu bar and toolbar. Our HelloWorldOne class is going to interact with
these two parts of the Eclipse workspace (you can also see this information by
clicking the Extensions tab). Within the extension tag are more details about the
additions to the menu bar and toolbar (the icon to appear on the toolbar, the
name of the new tab in the menu bar, and associated information). Most
important of all, the class parameter tells Eclipse which Java class to invoke to
perform our new action (helloworldone.actions.SampleAction).

Click the Dependencies tab underneath this view and you see that your new
plug-in relies on two packages that are provided by the Eclipse base platform:

� classes org.eclipse.ui
� org.eclipse.core.runtime

These two packages correspond to those specified on the Require-Bundle
parameter in the manifest.mf file.

If you click the Extension Points tab, you see that there are none. This is because
our plug-in does not expose any interfaces that are to be used by other plug-ins.

Double-click the Extension Points tab to return to the Plug-in perspective default
view showing the Package CICS Explorer view.

HelloWorldOne Java implementation
You can see that as well as creating the manifest.mf and plugin.xml code, the
wizard has generated other objects, including the Java packages that implement
the plug-in. In fact, two Java packages have been created; the helloworldone
package contains the Activator.java class, and the helloworldone.actions
package contains the SampleAction.java class, as shown in Figure 4-11 on
page 75.
74 Extend the CICS Explorer: A Better Way to Manage Your CICS

Figure 4-11 HelloWorldOne Java Packages

The Activator.java object has been created because during the creation of our
Plug-in project, we left the “Generate an activator” check box selected. The
Activator.java object is used to allow the programmer to execute any actions that
might need to be performed during the life cycle of our SampleAction object (for
example, there might be a need to execute code at the moment this object is
started, and at the moment it is stopped). It is also invoked to allow a caller to
inquire on the icon associated with our SampleAction object. The generated
object is effectively a no-op for the methods, which you modify to add the start
and stop functionality you want to implement.

Because our HelloWorldOne sample does not require any work to be done when
it is started and stopped, we could have chosen to clear the “Generate an
Activator” check box. In this case, the Activator.java class would not have been
generated for our plug-in. It still executes without error.

Click the SampleAction.java file, and you are presented with the Java source
code for our HelloWorldone plug-in. Double-click the SampleAction.java tag to
get a full panel view of the code.
 Chapter 4. Writing a plug-in for CICS Explorer 75

The generated code can be broken down into the parts shown in Example 4-4.

Example 4-4 HelloWorldOne package and import statements

package helloworldone.actions;

import org.eclipse.jface.action.IAction;
import org.eclipse.jface.viewers.ISelection;
import org.eclipse.ui.IWorkbenchWindow;
import org.eclipse.ui.IWorkbenchWindowActionDelegate;
import org.eclipse.jface.dialogs.MessageDialog;

Because you are using a function provided by Eclipse, you need to import the
necessary packages. These packages are all related to interacting with the
Eclipse user interface. When you start using the function provided by CICS
Explorer, you need to add import statements for packages supplied by CICS
Explorer, rather than by Eclipse.

IAction, ISelection, IworkbencWindow, and IworkbenchWindowActionDelegate
are interface classes. This means they define the interfaces used to
communicate between the Eclipse user interface component, and your
helloworldone component. As the implementer of helloworldone, it is your
responsibility to provide the code that implements the business function to be
executed when your action is invoked, and return the expected output.

MessageDialog is the class used to interact with the user by sending “hello
World” to the panel. Our code invokes this plug-in, which is provided by Eclipse.

In Example 4-5 we see the class definition and constructor for our class.
SampleAction implements the IWorkbenchWindowActionDelegate interface. This
is how the Eclipse plug-in architecture works. To create a new Eclipse entity such
as a perspective, a view, or (as in this case) an action, Eclipse creates a proxy
object and delegates responsibility for executing the requested method to the
associated object (as defined in the plugin.xml file). Make sure that all the
necessary code is in place.

Example 4-5 Class definition and constructor for SampleAction

public class SampleAction implements IWorkbenchWindowActionDelegate {
private IWorkbenchWindow window;
/**
 * The constructor.
 */
public SampleAction() {
}

76 Extend the CICS Explorer: A Better Way to Manage Your CICS

Methods associated with our HelloWorldOne class
The following methods (as defined in the IActionSet interface class) have been
generated for our SampleAction class:

� init

This method is invoked when your ActionSet becomes active. It gains access
to the Workspace window, and saves it for later use. See Example 4-6 for
example.

Example 4-6 Init method of HelloWorldOne

/**
 * We cache window object to be able to
 * provide parent shell for the message dialog.
 * @see IWorkbenchWindowActionDelegate#init
 */
public void init(IWorkbenchWindow window) {

this.window = window;
}

� run

The user has clicked on the icon or chosen this action from the menu bar. The
window object was initialized by the init method. We invoke its getShell
method to give ourselves the ability to write to the panel.

We use the MessageDialog class supplied by Eclipse to open an information
window and put out our Hello World text message. See Example 4-7.

Example 4-7 Run method of HelloWorldOne

/**
 * The action has been activated. The argument of the
 * method represents the 'real' action sitting
 * in the workbench UI.
 * @see IWorkbenchWindowActionDelegate#run
 */
public void run(IAction action) {

MessageDialog.openInformation(
window.getShell(),
"HelloWorldOne",
"Hello, Eclipse world");

� selectionChanged

The selectionChanged method is a no-op in this example. The
selectionChanged method is invoked when the cursor is clicked on our action.
Prior to running the init method.u rpr. having selected this action, the user
changes his mind, allowing you to undo anything done in the Run method.
 Chapter 4. Writing a plug-in for CICS Explorer 77

� dispose

The dispose method is a no-op in this example. The dispose method is
invoked to clean up when the object is being destroyed.

Java implementation summary
We have seen that Eclipse can generate useful Java code templates. Now we
see how we can take those templates and fill them out with more functionality,
and then we can start building messages with CICS content and putting them out
to the panel.

4.3 Creating your first CICS Explorer plug-in

Now that we have seen how the wizards provided by Eclipse can be used to
generate template code, we follow the process detailed in 4.2, “An Eclipse RCP
“Hello World” plug-in” on page 66, but we add CICS Explorer code to give our
HelloWorld a more CICS feel.

4.3.1 Creating your CICS Explorer plug-in project

Start the Eclipse SDK that has the CICS Explorer installed into it. Click
Window Open Perspective Other and select the Plug-in Developer
perspective. This is the perspective with which you are working.

If this is not already shown, click the Plug-in view in the left pane. Scroll through
the list. You see plug-ins that are provided in the CICS Explorer SDK, as shown
in Figure 4-12 on page 79.
78 Extend the CICS Explorer: A Better Way to Manage Your CICS

Figure 4-12 CICS Explorer content in Plug-in view

Click the Package Explorer tab to return to the Package Explorer view. It is
currently empty.
 Chapter 4. Writing a plug-in for CICS Explorer 79

To create your new plug-in package, click File New Project to start the
New Plug-in Project wizard. Select Plug-in Project a (not Plug-in-Development),
and click Next. You are presented with the window shown in Figure 4-13.

Figure 4-13 New Plug-in Project wizard

You need to give the new project a name. We called ours “CICS Explorer
HelloWorld.” The other values can remain with their default values. Click Next.

The next window in the wizard asks you to give more details about the plug-in
content. As we have already seen, you do not always need an Activator class.
Clear the box so that no Activator class is generated for your new plug-in. Allow
the other settings to default. You want to generate a plug-in that interfaces with
the user, and you do not want to create a new Eclipse RCP application. Click
Next.

On the next panel, where you are presented with a list of plug-in samples and
templates, select the same Hello, World template used in 4.2, “An Eclipse RCP
“Hello World” plug-in” on page 66. This time, we are going add CICS Explorer
functionality to the generated code.
80 Extend the CICS Explorer: A Better Way to Manage Your CICS

The wizard proceeds with the creation of the HelloWorld plug-in, and presents
you with a panel summarizing the plug-in that you are creating (see Figure 4-14).
Change the Action Class Name to CICS Explorer HelloWorld and click Finish to
create the plug-in (we are going to add code to change the Message Box Text).

Figure 4-14 CICS Explorer Hello World plug-in details

After you have clicked Finish in the New Plug-in Project wizard, the plug-in is
created. In the Package Explorer view on the left side, you can see the various
objects that have been created. See Figure 4-15.

Figure 4-15 CICS Explorer HelloWorld Plug-in Overview view
 Chapter 4. Writing a plug-in for CICS Explorer 81

At this stage, the only difference between our CICS Explorer HelloWorld plug-in
and the one we created in4.2, “An Eclipse RCP “Hello World” plug-in” on page 66
is the name of the generated package file and Java class class file.

4.3.2 Adding CICS Explorer to plug-in dependencies

You are going to use Java code provided by the CICS Explorer SDK, so you need
to tell Eclipse that your ExplorerHelloWorld project has dependencies on plug-ins
supplied by the CICS Explorer SDK. Do this by clicking the Dependencies tab in
the central pane at the bottom of the Overview Editor .

Click Add in the Imported Packages pane on the right side of the Dependencies
view, and add the following packages:

� com.ibm.cics.core.comm
� com.ibm.cics.core.model
� com.ibm.cics.core.ui
� com.ibm.cics.model

4.3.3 Adding CICS Explorer code to the Eclipse Template code

Now you are going to modify the code in the generated Java code to use
functionality provided by the CICS Explorer SDK. Replace the supplied run
method of your ExplorerHelloWorld class with the one shown in Example 4-8.

Example 4-8 ExplorerHelloWorld run method

public void run(IAction action) {

 ICPSM cpsm = (ICPSM)
UIPlugin.getDefault().getResourceManager
(UIPlugin.SYSTEM_MANAGER_CONNECTION_ID);

 ICICSplex[] plexes = cpsm.getCICSplexes();.

 String plexString = "";

 for (ICICSplex plex : plexes) plexString += plex.getName()
+ "
";

 // DELME
 IManagedRegion[] regions =
cpsm.getManagedRegions(plexes[0]);
82 Extend the CICS Explorer: A Better Way to Manage Your CICS

 String regionString = "";

 for (IManagedRegion region : regions) regionString +=
region.getName() + " ";

 MessageDialog.openInformation(
 window.getShell(),
 "Hello_World",
 "Hello" +
 "\nYou are logged in to CPSM as " + cpsm.getUserID()
+
 "\nYour server name is " + cpsm.getName() +
 "\nYour CICSplex name is " + plexString +
 "\nYour regions are is " + regionString);

After you have copied the code in Example 4-8 on page 82 into the editor in
Eclipse, you see that there are now a number of errors signalled by Eclipse, as
shown in Figure 4-16.

Figure 4-16 ExplorerHelloWorld dependencies
 Chapter 4. Writing a plug-in for CICS Explorer 83

Your ExplorerHelloWorld plug-in now has dependencies on other plug-ins. You
must tell Eclipse which plug-ins or packages are to be used to resolve those
dependencies.

You are going to be working with CICS Explorer objects that are scattered across
a large number of CICS Explorer-supplied plug-ins. Eclipse provides the
Navigate facility to find the Java package containing an object that you want to
use. However, you have to tell Eclipse that you want the CICS Explorer plug-ins
to be included in its searches. Click the Plug-in tab to show the Plug-in view on
the left pane, then click the last icon on the toolbar of the Plug-in view in the left
pane (As you hold the cursor over this icon you see the text “Add All Plug-ins to
Java Search.” See Figure 4-17). Eclipse now includes the CICS Explorer plug-ins
in its searches for Java artifacts.)

Figure 4-17 Add All Plug-ins to Java Search

You only have to add all plug-ins to a Java search in this manner when you have
added more plug-ins.

Return to the editor view containing your ExplorerHelloWorld.java file, and
identify the first Java statement that is in error. It appears to be the ICPSM object
that is causing the problem.

Click the Navigate tab on the workspace action bar, and select Open Type. The
panel shown Figure 4-18 on page 85 is displayed, showing that the ICPSM
object is to be found in package com.ibm.core.model.

Tip: Follow this suggestion to avoid spending time trying to map CICS
Explorer objects to their appropriate packages.
84 Extend the CICS Explorer: A Better Way to Manage Your CICS

Figure 4-18 ICPSM object is to be found in package com.ibm.core.model.

You need to declare package com.ibm.core.model as an external dependency.
Do this by returning to the Manifest Editor view, which was opened when we
created our ExplorerHelloWorld project. Double-click the Dependencies tab at
the bottom of the central pane, and then double-click the tab to get the panel view
shown in Figure 4-19.

Figure 4-19 Declare package com.ibm.core as dependency
 Chapter 4. Writing a plug-in for CICS Explorer 85

Click Add in the Required Plug-ins pane. The Plug-in selection window displays.
Enter the name of the package you found with navigator. (The window prompts
you with a list of suitable matches as you type in the characters) Click OK to add
this plug-in to the list of dependencies. See Figure 4-20.

Figure 4-20 Plug-in added

You need to add import statements for the CICS Explorer packages you are
using to the ExplorerHelloWorld.java file. When you have the correct
dependencies in place, you can resolve missing imports by placing the cursor
over unresolved objects. Eclipse offers to find the missing import for you. Put the
cursor on the Import option in the list, and Eclipse adds the required import
statement. See Figure 4-21 on page 87.
86 Extend the CICS Explorer: A Better Way to Manage Your CICS

Figure 4-21 Using Eclipse to resolve missing objects

If you put the cursor over an object, and Eclipse cannot find it, then you need to
add another dependency as described previously.

After you have successfully resolved all the missing objects, press Ctrl+S to save
the changes to the workspace.

When you are ready to run the plug-in, in the Package CICS Explorer view,
right-click the ExplorerHelloWorld project, and select Run as Eclipse.
Application. You see that a completely new instance of Eclipse is started, with a
new workspace.
 Chapter 4. Writing a plug-in for CICS Explorer 87

Figure 4-22 shows the workspace generated when you test the
ExplorerHelloWorld sample. You can see that it looks much the same as our
original HelloWorldOne example. The “Sample Menu” item is in the workspace
menu bar, and the new icon is in the workspace toolbar.

Figure 4-22 ExplorerHelloWorld Test

Because your ExplorerHelloWorld plug-in accesses CICSPlex SM, you need to
make sure we are connected to CICSPlex SM before we try to run it. Click
Window Open Perspective Other and select the CICS SM perspective.
Configure the connection to your CICS WUI Server using the CMCI interface.
When you have successfully connected to your CICS WUI Server you are ready
to try out your new plug-in.

If you left-click the icon, or left-click Sample Menu, and select Sample Action, a
window appears in the workspace (Figure 4-23 on page 89).
88 Extend the CICS Explorer: A Better Way to Manage Your CICS

.

Figure 4-23 ExplorerHelloWorld Sample Action

Our plug-in has requested CICSPlex SM configuration information from the CICS
WUI region. The server name is the SYSID of the CMAS to which the CICS WUI
Server is connected, the rest is self-explanatory.

You can now close down the Eclipse in which your ExplorerHelloWorld is
running.

You can make the plug-in look a lot more CICS-centric by changing some of the
information in the plugin.xml file. Return to the Package Explorer view of your
development Eclipse, and double-click the plugin.xml file. to open the
plugin.xml editor. Make the changes highlighted in red in Example 4-9, presse
Ctrl+S to save the changes, and re-run the test.

Example 4-9 Plug-in XML changes in red

<plugin>
<extension
 point="org.eclipse.ui.actionSets">
 <actionSet
 label="CICS Explorer Hello World"
 visible="true"
 id="ExplorerHelloWorld.actionSet">
 <menu
 label="CICS Explorer &Menu"
 id="sampleMenu">
 <separator
 name="sampleGroup">

Note: You need to copy an appropriate icon into the icons directory of your
ExplorerHelloWorld project.
 Chapter 4. Writing a plug-in for CICS Explorer 89

 </separator>
 </menu>
 <action
 label="&CICS Explorer Hello World"
 icon="icons/CICSExplorerIcon.GIF"
 class="explorerhelloworld.actions.ExplorerHelloWorld"
 tooltip="Hello, Eclipse world"
 menubarPath="sampleMenu/sampleGroup"
 toolbarPath="sampleGroup"
 id="explorerhelloworld.actions.ExplorerHelloWorld">
 </action>
 </actionSet>
 </extension>

</plugin>

When you re-run the test, you get a more CICS-centric action tab and icon
(Figure 4-24), although the function has not changed.

Figure 4-24 Customized ExplorerHelloWorld

4.3.4 CICS Explorer plug-in design consideration

When your ExplorerHelloWorld plug-in requested information from CICSPlex SM
itself, there was a delay between requesting the action, and CICSPlex SM Hello
World message appearing on the window. During this period you were not able to
do anything in your Eclipse environment.

When you want to use the CICS Explorer classes to connect to the CICS WUI
region, create a new thread specifically for executing the call to the WUI region.
Then your workspace GUI thread can execute while you wait for the call to
CICSPlex SM to complete. When the operation completes, the communication
thread passes the results back to the workspace thread for display.
90 Extend the CICS Explorer: A Better Way to Manage Your CICS

You are now going to modify ExplorerHelloWorld to work in this way. To achieve
this you must insert inline class methods into the existing code, and modify the
existing code to use them.

Move the variables accessed by the CPSM to be global across all methods of the
class, as shown in Example 4-10.

Example 4-10 Move the variables accessed by the CPSM

private String plexString = "";
private String regionString = "";

Change the run() method of the ExplorerHelloWorld object as shown in
Figure 4-25.

Figure 4-25 Change the run() method of our ExplorerHelloWorld object

The statement final Job job = new Job(“MYJob”) tells Eclipse that you are
going to be running a piece of work job under a separate execution thread. This
piece of work is executed when you invoke the schedule method of your job
object job.schedule. You can see that there is more code between these two
statements. The code between the two contains the inline run() method that
contains the code to be executed on the separate thread. If you click the cross on
the right side of the display, Eclipse expands the inline class and you see the
code shown in Example 4-11 on page 91. We have highlighted the interesting
parts of the text.

Example 4-11 Progress bar run method

protected IStatus run(final IProgressMonitor monitor)
 {
 // Start the progress bar running
 monitor.beginTask("MyJob", IProgressMonitor.UNKNOWN);

 // Do the CPSM stuff here
 Chapter 4. Writing a plug-in for CICS Explorer 91

 // This is the big CPSM call that gives us the CPSM
 // context we can use to invoke CPSM !!!!
 final ICPSM cpsm = UIPlugin.getDefault().getCPSM();

 // Get the names of the CICSPlexes
 // that this WUI knows about
 ICICSplex[] plexes = cpsm.getCICSplexes();

 // Write out the CICSPlexes returned
 for (ICICSplex plex : plexes) plexString += plex.getName() + "
";

 // Ask CPSM for the CICS regions it knows about
 IManagedRegion[] regions =
cpsm.getManagedRegions(plexes[0]);

 // Write out the CICS region names returned
 for (IManagedRegion region : regions) regionString
+=
 region.getName() + " ";

 //Tell the GUI thread that we want it to do some
 //stuff that we have implemented by an inline run()
 //method.
 Display.getDefault().asyncExec(new Runnable()
 {

@Override
public void run() {

// TODO Auto-generated method stub
// Moved the CPSM screen formatting to
// be executed when we have grabbed back
// the GUI thread.
MessageDialog.openInformation(

 window.getShell(),
 "Hello_World",
 "Hello" +
 "\nYou are logged in to CPSM as " +

cpsm.getUserID() +
 "\nYour server name is " + cpsm.getName() +
 "\nYour CICSplex name is " + plexString +
 "\nYour regions are " + regionString);

}
 });

92 Extend the CICS Explorer: A Better Way to Manage Your CICS

 monitor.done();

 return Status.OK_STATUS;
 }
 };
 Chapter 4. Writing a plug-in for CICS Explorer 93

94 Extend the CICS Explorer: A Better Way to Manage Your CICS

Chapter 5. Extending CICS Explorer
plug-ins

In this chapter we provide meaningful examples of plug-ins that can be coded to
use IBM CICS Explorer in ways specific to a business or enterprise, or which
allow the CICS data managed by CICS Explorer to be accessed in new and
interesting ways (which are not possible with the standard CICS Explorer
implementation). We look at the separate user interfaces which Eclipse provides
to do this.

We take a step by step approach:

� Extending new CICS Explorer views
� Using a pop-up menu to access URIMap information
� Extending a toolbar to access URIMap information
� Extending a toolbar to add a filter based on user input
� Background process implementation
� Summary of extending functions
� Package all extending functions into a plug-in

5

© Copyright IBM Corp. 2010. All rights reserved. 95

5.1 Extending new CICS Explorer views

In this section we look at how we can extend new CICS Exploerer views.

5.1.1 Extending the URIMap information provided by CICS Explorer

We provided details on developing a sampleView”in Chapter 4, “Writing a plug-in
for CICS Explorer” on page 61. In this section, we describe how to modify a
sampleView to be a more practical one. As a practical example, we apply
URIMap resource information to the sampleView. A URIMap is CICS resource
definition that maps the URI of an incoming HTTP or Web service request to how
CICS processes the request. URIMap attributes have a hierarchical structure.

We use URIMap related information as an example of how to create a new view
showing CICS resources. Our sample code in this chapter implements separate
processes depending on the URIMap attribute: SERVER, CLIENT, PIPELINE, or
ATOM as USAGE parameter. For example, if USAGE=SERVER, you can get and
display PROGRAM information.

5.1.2 Specification of new view

The new CICS Explorer view provides detailed information about a URIMAP,
which can be selected by clicking on it in the URIMap view. The URIMap view is
provided by CICS Explorer. See Figure 5-1.

Figure 5-1 URIMap view
96 Extend the CICS Explorer: A Better Way to Manage Your CICS

To show the structured URIMAP information in our sampleView, we implement a
tree view displaying hierarchical URIMap information that is not available in the
CICS Explorer provided view. See Figure 5-2.

Figure 5-2 Tree view for URIMap detailed information

It is also possible to implement automatic Get and Display functions in the view
for the following additional related information depending on the selected
URIMAP USAGE value:

� If URIMAP USAGE is SERVER|PIPELINE|ATOM, the view gets and displays
TCPIPService instance information.

� If URIMAP USAGE is SERVER, the view gets and displays Program instance
information.

� If URIMAP USAGE is PIPELINE, the view gets and displays Pipeline instance
information.

You can show a sampleView from the menu bar by navigating to Window
Show View Other. Then, click record in the URIMap view. The sampleView
shows the URIMap detailed information.
 Chapter 5. Extending CICS Explorer plug-ins 97

5.1.3 Using our sample code

All code to get and display the URIMap detailed information is integrated into the
populateInformation method for better extensibility. This view has the following
process steps:

1. createPartControl method

– Create the Tree View to display URIMap detailed information, as an initial
process.

2. populateInformation method

– Integrate a process to get and display target URIMap detailed information.
This process is done only when the following two conditions are both
satisfied, because both conditions are required to allow the target to get
detailed URIMap information.

• URIMap view is opened
• One line in the URIMap is selected

3. selectionListener method

– The left-click operation in the URIMap view causes this selectionListener
event. You can invoke populateInformation here.

Example 5-1 Sample code: MySampletreetableView.java

package my_treetableview.views;

import helper.FilteredContext;

import java.net.URL;

import org.eclipse.core.runtime.FileLocator;
import org.eclipse.core.runtime.IProgressMonitor;
import org.eclipse.core.runtime.IStatus;
import org.eclipse.core.runtime.Path;
import org.eclipse.core.runtime.Platform;
import org.eclipse.core.runtime.Status;
import org.eclipse.core.runtime.jobs.Job;
import org.eclipse.jface.resource.ImageDescriptor;
import org.eclipse.jface.viewers.ISelection;
import org.eclipse.jface.viewers.StructuredSelection;
import org.eclipse.swt.SWT;
import org.eclipse.swt.graphics.Image;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Display;
import org.eclipse.swt.widgets.Tree;
98 Extend the CICS Explorer: A Better Way to Manage Your CICS

import org.eclipse.swt.widgets.TreeColumn;
import org.eclipse.swt.widgets.TreeItem;
import org.eclipse.ui.ISelectionListener;
import org.eclipse.ui.IViewSite;
import org.eclipse.ui.IWorkbenchPart;
import org.eclipse.ui.PartInitException;
import org.eclipse.ui.part.ViewPart;
import org.osgi.framework.Bundle;

import com.ibm.cics.core.model.CICSTypes;
import com.ibm.cics.core.model.Context;
import com.ibm.cics.core.model.ICPSM;
import com.ibm.cics.core.model.IResourcesModel;
import com.ibm.cics.core.ui.UIPlugin;
import com.ibm.cics.model.IAtomService;
import com.ibm.cics.model.ICICSObject;
import com.ibm.cics.model.ICICSType;
import com.ibm.cics.model.ICICSplex;
import com.ibm.cics.model.IPipeline;
import com.ibm.cics.model.IProgram;
import com.ibm.cics.model.ITCPIPService;
import com.ibm.cics.model.IURIMap;
import com.ibm.cics.model.IWebService;

public class MySampletreetableView extends ViewPart {

private Tree tree;
private TreeItem itemURIMapUsageKey, itemURIMapTCPIPServiceKey;
private String uriMapString;
private ICPSM cpsm;
private IURIMap iurimap;
private ITCPIPService itcpipservice;
private IPipeline ipipeline;
private IWebService iwebservice;
private IProgram iprogram;
private IAtomService iatomservice;
private Context context;
private IResourcesModel model;

// Load images from icons directory
private Bundle bundle = Platform.getBundle(my_treetableview.Activator.PLUGIN_ID);

private URL imageEnableURL = FileLocator.find(bundle, new Path(
"icons/ENABLED.gif"), null);

private URL imageDisableURL = FileLocator.find(bundle, new Path(
 Chapter 5. Extending CICS Explorer plug-ins 99

"icons/DISABLED.gif"), null);
private URL imageErrorURL = FileLocator.find(bundle, new Path(

"icons/Error.gif"), null);

private Image imageEnable = ImageDescriptor.createFromURL(imageEnableURL)
.createImage();

private Image imageDisable = ImageDescriptor.createFromURL(imageDisableURL)
.createImage();

private Image imageError = ImageDescriptor.createFromURL(imageErrorURL)
.createImage();

private FilteredContext filteredContext;

@Override
public void createPartControl(Composite arg0) {

// tree(table) definition
tree = new Tree(arg0, SWT.BORDER | SWT.FULL_SELECTION);
// add attribution
tree.setHeaderVisible(true); // display header
tree.setLinesVisible(true); // display lines
// set headers
String[] cols = { "Property", "Value" };
for (int i = 0; i < cols.length; i++) {

TreeColumn col = new TreeColumn(tree, SWT.LEFT);
col.setText(cols[i]);
col.setWidth(200);

}
}

/** populateInformation
 * @param uriMap **/
public void populateInformation(final String urimapstring) {

// reserve argument(urimap)
uriMapString = urimapstring;
if (IO() == true) {

GUI();
} else {

ngGUI();
}

}

public void connectCPSM() {
// get CPSM information
cpsm = (ICPSM) UIPlugin.getDefault().getResourceManager(

UIPlugin.SYSTEM_MANAGER_CONNECTION_ID);
100 Extend the CICS Explorer: A Better Way to Manage Your CICS

// get CICSplexes
ICICSplex[] cicsplexes = cpsm.getCICSplexes();
// set scopedContext(CPSM,CPSM)
context = new Context(cicsplexes[0].getName());
filteredContext = new FilteredContext(context);

}

private ICICSObject getCICSObject(ICICSType cicsType, String resourceName) {
filteredContext.setFilterValues(cicsType.getNameAttribute(), resourceName);
model = cpsm.getModel(cicsType, filteredContext);
model.activate();
model.maybeFetch(0, model.size());
return model.size() > 0 ? model.get(0) : null;

}

public void getURIMapResource() {
iurimap = (IURIMap) getCICSObject(CICSTypes.URIMap, uriMapString);

}

public void getTCPIPServiceResource() {
itcpipservice = (ITCPIPService) getCICSObject(CICSTypes.TCPIPService,

iurimap.getTCPIPService());
}

public void getProgramResource() {
iprogram = (IProgram) getCICSObject(CICSTypes.Program, iurimap

.getProgram());
}

public void getAtomServiceResource() {
iatomservice = (IAtomService) getCICSObject(CICSTypes.AtomService,

iurimap.getAtomservice());
}

public void getPipelineResource() {
ipipeline = (IPipeline) getCICSObject(CICSTypes.Pipeline, iurimap

.getPipeline());
}

public void getWebServiceResource() {
iwebservice = (IWebService) getCICSObject(CICSTypes.WebService, iurimap

.getWebService());
}

private boolean IO() {
 Chapter 5. Extending CICS Explorer plug-ins 101

connectCPSM();
getURIMapResource();
if (model.size() == 0) { return false; }
getTCPIPServiceResource();
if (iurimap.getUsage().toString() == "SERVER") {

getProgramResource();
} else if (iurimap.getUsage().toString() == "CLIENT") {

// ** no related resources **
} else if (iurimap.getUsage().toString() == "ATOM") {

getAtomServiceResource();
} else if (iurimap.getUsage().toString() == "PIPELINE") {

getPipelineResource();
getWebServiceResource();

}
return true;

}

public void GUI() {
// delete all items
tree.removeAll();
tree.setHeaderVisible(true); // display header
tree.setLinesVisible(true); // display lines
// URI Maps
TreeItem itemURIMap = new TreeItem(tree, SWT.NULL);
itemURIMap.setText(0, "URI Map");
itemURIMap.setText(1, "");

TreeItem itemURIMapName = new TreeItem(itemURIMap, SWT.NULL);
itemURIMapName.setText(0, "Name");
itemURIMapName.setText(1, iurimap.getName());

TreeItem itemURIMapUsage = new TreeItem(itemURIMap, SWT.NULL);
itemURIMapUsage.setText(0, "Usage");
itemURIMapUsage.setText(1, iurimap.getUsage().toString());

TreeItem itemURIMapStatus = new TreeItem(itemURIMap, SWT.NULL);
itemURIMapStatus.setText(0, "Status");

if (iurimap.getStatus().toString() == "ENABLED") {
itemURIMapStatus.setImage(1, imageEnable);

} else if (iurimap.getStatus().toString() == "DISABLED") {
itemURIMapStatus.setImage(1, imageDisable);

}
itemURIMapStatus.setText(1, iurimap.getStatus().toString());
102 Extend the CICS Explorer: A Better Way to Manage Your CICS

TreeItem itemURIMapReferenceCount = new TreeItem(itemURIMap, SWT.NULL);
itemURIMapReferenceCount.setText(0, "Reference Count");
itemURIMapReferenceCount.setText(1, iurimap.getReferenceCount().toString());

itemURIMapUsageKey = new TreeItem(itemURIMap, SWT.NULL);

if (iurimap.getUsage().toString() == "SERVER") {
itemURIMapUsageKey.setText(0, "Program");
itemURIMapUsageKey.setText(1, iurimap.getProgram());

} else if (iurimap.getUsage().toString() == "CLIENT") {
itemURIMapUsageKey.setText(0, "Port");
itemURIMapUsageKey.setText(1, iurimap.getPort().toString());

} else if (iurimap.getUsage().toString() == "ATOM") {
itemURIMapUsageKey.setText(0, "Atomservice");
itemURIMapUsageKey.setText(1, iurimap.getAtomservice());

} else if (iurimap.getUsage().toString() == "PIPELINE") {
itemURIMapUsageKey.setText(0, "Pipeline");
itemURIMapUsageKey.setText(1, iurimap.getPipeline());

}

if (iurimap.getUsage().toString() != "CLIENT") {
itemURIMapTCPIPServiceKey = new TreeItem(itemURIMap, SWT.NULL);
itemURIMapTCPIPServiceKey.setText(0, "TCP/IP Service");
itemURIMapTCPIPServiceKey.setText(1, iurimap.getTCPIPService());

}

// if (tcpipserviceModel.size() > 0){
if (itcpipservice != null) {

TreeItem itemTCPIPServiceIPResolved = new TreeItem(
itemURIMapTCPIPServiceKey, SWT.NULL);

itemTCPIPServiceIPResolved.setText(0, "Ipresolved");
itemTCPIPServiceIPResolved.setText(1, itcpipservice.getIpresolved());

TreeItem itemTCPIPServicePort = new TreeItem(
itemURIMapTCPIPServiceKey, SWT.NULL);

itemTCPIPServicePort.setText(0, "Port");
itemTCPIPServicePort.setText(1, itcpipservice.getPort().toString());

}

// items related with URIMap
if (iurimap.getUsage().toString() == "SERVER") {

if (iprogram != null) {
// Program resource
TreeItem itemProgramStatus = new TreeItem(itemURIMapUsageKey, SWT.NULL);
itemProgramStatus.setText(0, "Status");
if (iprogram.getStatus().toString() == "ENABLED") {
 Chapter 5. Extending CICS Explorer plug-ins 103

itemProgramStatus.setImage(1, imageEnable);
} else if (iprogram.getStatus().toString() == "DISABLED") {

itemProgramStatus.setImage(1, imageDisable);
}
itemProgramStatus.setText(1, iprogram.getStatus().toString());

}
} else if (iurimap.getUsage().toString() == "CLIENT") {
} else if (iurimap.getUsage().toString() == "ATOM") {

if (iatomservice != null) {
// Atomservice resource
TreeItem itemAtomservice = new TreeItem(itemURIMapUsageKey, SWT.NULL);
itemAtomservice.setText(0, "Atomservice");
itemAtomservice.setText(1, "");

TreeItem itemAtomserviceEnablestatus = new TreeItem(
itemAtomservice, SWT.NULL);

itemAtomserviceEnablestatus.setText(0, "Status");
if (iatomservice.getEnablestatus().toString() == "ENABLED") {

itemAtomserviceEnablestatus.setImage(1, imageEnable);
} else if (iatomservice.getEnablestatus().toString() == "DISABLED") {

itemAtomserviceEnablestatus.setImage(1, imageDisable);
}
itemAtomserviceEnablestatus.setText(1, iatomservice

.getEnablestatus().toString());
}

} else if (iurimap.getUsage().toString() == "PIPELINE") {
if (ipipeline != null) {

// Pipeline resource
TreeItem itemPipelineStatus = new TreeItem(itemURIMapUsageKey, SWT.NULL);
itemPipelineStatus.setText(0, "Status");
if (ipipeline.getStatus().toString() == "ENABLED") {

itemPipelineStatus.setImage(1, imageEnable);
} else if (ipipeline.getStatus().toString() == "DISABLED") {

itemPipelineStatus.setImage(1, imageDisable);
}
itemPipelineStatus.setText(1, ipipeline.getStatus().toString());

TreeItem itemURIMapWebService = new TreeItem(itemURIMap, SWT.NULL);
itemURIMapWebService.setText(0, "WebService");
itemURIMapWebService.setText(1, iurimap.getWebService());

if (iwebservice != null) {
// Pipeline resource
TreeItem itemWebServiceState = new TreeItem(

itemURIMapWebService, SWT.NULL);
itemWebServiceState.setText(0, "State");
104 Extend the CICS Explorer: A Better Way to Manage Your CICS

if (iwebservice.getState().toString() == "ENABLED") {
itemWebServiceState.setImage(1, imageEnable);

} else if (iwebservice.getState().toString() == "DISABLED") {
itemWebServiceState.setImage(1, imageDisable);

}
itemWebServiceState.setText(1, ipipeline.getStatus().toString());

}
}

}
}

public void ngGUI() {
// delete all items
tree.removeAll();
tree.setHeaderVisible(false); // display header
tree.setLinesVisible(false); // display lines
// URI Maps
TreeItem itemURIMap = new TreeItem(tree, SWT.NULL);
itemURIMap.setImage(0, imageError);
itemURIMap.setText(0, "No URIMap found.");

}

@Override
public void init(IViewSite site) throws PartInitException {

super.init(site);
site.getPage().addPostSelectionListener(new ISelectionListener() {

@Override
public void selectionChanged(IWorkbenchPart arg0,

ISelection selection) {
if (isVisible() && !selection.isEmpty()) {

Object firstElement = ((StructuredSelection) selection)
.getFirstElement();

if (firstElement instanceof IURIMap) {
final IURIMap urimap2 = (IURIMap) firstElement;
populateInformation(urimap2.getName());

}
}

} // the end of selectionChanged
}); // the end of site.getPage().addSelectionListener

} // the end of Override init method

private boolean isVisible() { return getSite().getPage().isPartVisible(this); }

public void setFocus() {} // the end of setFocus method
} // the end of this class
 Chapter 5. Extending CICS Explorer plug-ins 105

5.1.4 Running the sample

We now look at running our sample.

1. Run the plug-in as an Eclipse application.

2. Open the new view (Figure 5-3).

Figure 5-3 Select sampleView as Eclipse standard operation

Note: The ngGUI() method is only used for extending the function for new
textbox and “GO” button in the toolbar. See 5.4, “Extending a toolbar to search
URIMap information based on user input” on page 125 for more detail
106 Extend the CICS Explorer: A Better Way to Manage Your CICS

3. Open the URIMap view (Figure 5-4).

Figure 5-4 Open URIMap view
 Chapter 5. Extending CICS Explorer plug-ins 107

4. Connect your CICS system using preferences (Figure 5-5).

Figure 5-5 Connect to CICS System by Preference window

5. Click this in the URIMap (Figure 5-6).

Figure 5-6 URIMap click in the URIMap view
108 Extend the CICS Explorer: A Better Way to Manage Your CICS

6. You can get URIMap detailed information in the new view (Figure 5-7).

Figure 5-7 URIMap detailed information display results

In 5.2, “Using a pop-up menu to access URIMap information” on page 110, we
describe how to further extend and modify based on the new view shown in
Figure 5-7.
 Chapter 5. Extending CICS Explorer plug-ins 109

5.2 Using a pop-up menu to access URIMap information

To reach the target URIMap detailed information easier and faster, you can
modify your plug-ins. The following sections discuss how to implement a pop-up
menu function in the URIMap view.

5.2.1 Specification of a new pop-up menu

The URIMap view is provided by CICS Explorer. You can add a new function to
show the selected URIMap detailed information more quickly using a new pop-up
menu.

1. Right-click to display pop-up menu list.
2. Select New Submenu.
3. Select New Action.
4. If hidden, open sampleView.
5. If a URIMap is selected in the URI Maps view, its information is retrieved.
6. The URIMap information is then displayed in the sampleView.

Figure 5-8 New action pop-up menu
110 Extend the CICS Explorer: A Better Way to Manage Your CICS

5.2.2 Sample code

Add an extension point, erg.eclipse.ui.popupMenus, to allow for easier
implementation using the eclipse template.

1. Click Add (Figure 5-9) in the Extensions tab to open the Extensions dialog
box.

Figure 5-9 Start adding Extension from Extensions tab
 Chapter 5. Extending CICS Explorer plug-ins 111

2. Choose org.eclipse.ui.popupMenus as the extension point. In the “Available
templates for pop-up menus” window, and click “Popup Menu” to generate the
template source code (Figure 5-10). Click Next.

Figure 5-10 Extension Point Selection dialog window
112 Extend the CICS Explorer: A Better Way to Manage Your CICS

3. Modify the Target Object’s Class into “com.ibm.cics.model.IURIMap” to relate
this new pop-up menu to the URIMap view (Figure 5-11). Click Next.

Figure 5-11 Sample pop-up menu dialog window
 Chapter 5. Extending CICS Explorer plug-ins 113

4. After the template source code and required XML is generated (Figure 5-12),
modify the source code to meet your needs.

Figure 5-12 Sample pop-up menu dialog window

To get and display the detailed URIMap information, modify the run and
selectionChanged methods in object PopupAction.java.

� run method

a. If the view is closed, open the view by double-clicking the
PopupAction.Java object.

b. Invoke the populateInformation method in the sampleView with the target
URIMap name.

� selectionChanged method

– You can get URIMap resource information from URIMap view to invoke
populateInformation in the sampleView. Example 5-2 on page 115
shows the PopupAction class after these changes have been applied to
the generated template class.
114 Extend the CICS Explorer: A Better Way to Manage Your CICS

Example 5-2 Sample code: PopupAction.java

package my_treetableview.popup.actions;

import my_treetableview.views.MySampletreetableView;

import org.eclipse.jface.action.IAction;
import org.eclipse.jface.viewers.ISelection;
import org.eclipse.jface.viewers.StructuredSelection;
import org.eclipse.ui.IActionDelegate;
import org.eclipse.ui.IObjectActionDelegate;
import org.eclipse.ui.IViewPart;
import org.eclipse.ui.IWorkbench;
import org.eclipse.ui.IWorkbenchPage;
import org.eclipse.ui.IWorkbenchPart;
import org.eclipse.ui.IWorkbenchWindow;
import org.eclipse.ui.PartInitException;
import org.eclipse.ui.PlatformUI;

import com.ibm.cics.model.IURIMap;

public class PopupAction implements IObjectActionDelegate {

private IURIMap uriMap;

/** Constructor for Action1. **/
public PopupAction() { super(); }

/** @see IObjectActionDelegate#setActivePart(IAction, IWorkbenchPart) **/
public void setActivePart(IAction action, IWorkbenchPart targetPart) {}

/** @see IActionDelegate#run(IAction) **/
public void run(IAction action) {

IWorkbench workbench = PlatformUI.getWorkbench();
IWorkbenchWindow window = workbench.getActiveWorkbenchWindow();
IWorkbenchPage page = window.getActivePage();
try {

IViewPart sampleView = page
.findView("my_treetableview.views.MySampletreetableView");

if (sampleView == null) {
sampleView = page

.showView("my_treetableview.views.MySampletreetableView");
}
((MySampletreetableView) sampleView).populateInformation(uriMap.getName());

} catch (PartInitException e) {e.printStackTrace(); }
}
/** @see IActionDelegate#selectionChanged(IAction, ISelection) **/
public void selectionChanged(IAction action, ISelection selection) {

uriMap = (IURIMap) ((StructuredSelection) selection).getFirstElement();
}

}

 Chapter 5. Extending CICS Explorer plug-ins 115

5.2.3 Operation

1. To get and show detailed information, right click the target URIMap in the
URIMap view, and select pop-up menu (Figure 5-13).

Figure 5-13 Pop-up menu on the URIMap
116 Extend the CICS Explorer: A Better Way to Manage Your CICS

2. If the sampleView is hidden, it appears automatically, and displays the results,
as shown in Figure 5-14.

Figure 5-14 Results of pop-up menu
 Chapter 5. Extending CICS Explorer plug-ins 117

5.3 Extending actions of the toolbar and menu bar to
access URIMap information

To access the detailed URIMap information more quickly, you can implement the
view as an actions with an icon button in a toolbar or menu bar.

5.3.1 Specification of new actions

In our generated example, you can view the detailed information of a selected
URIMap by performing the following steps in the workbench perspective:

1. Click Sample Menu in the menu bar, or press New in the toolbar, as shown in
Figure 5-15.

2. If hidden, the sampleView appears.

3. The detailed information is fetched for the selected URIMap..

4. The sampleView displays the URIMap information as a hierarchical structure.

Figure 5-15 New actions by new menu bar, and toolbar(icon button)

Select the target URIMap line in the URIMap view in advance to show the new
action. If you do not open the URIMap view or select any URIMap in advance, the
view is shown with no information.
118 Extend the CICS Explorer: A Better Way to Manage Your CICS

5.3.2 Extending actions of the toolbar and menu bar to access
URIMap information

Perform the following steps to extend the toolbar and menu bar to access
URIMap information:

1. You can add the views Extension point from the Extensions tab of the project
as shown in Figure 5-16. Select the views extension and click Add.

Figure 5-16 Selecting Add in the Extensions tab
 Chapter 5. Extending CICS Explorer plug-ins 119

2. You can choose the “Hello, World” action set template from the Extension
Wizards tab. This template is suitable for the purpose of extending the icon
button in the toolbar and menu bar. See Figure 5-17.

Figure 5-17 Choose “Hello, World” action set template
120 Extend the CICS Explorer: A Better Way to Manage Your CICS

3. Enter Java Package name and Action class, as shown in Figure 5-18. The
Message Box text is not required so leave it with the default values.

Figure 5-18 Sample Action Set dialog window

4. Click Finish to generate the sample source code.

This sample uses an extension point called org.eclipse.ui.actionSets. To get and
display URIMap detailed information, you modify the run method in the
SampleAction.

1. Investigate the status of sampleView. If the view is closed, open the view first.

2. Get the name of the URIMap for which you want more information from the
URIMap view.

3. Invoke the populateInformation method in the sampleView with the target
URIMap name.
 Chapter 5. Extending CICS Explorer plug-ins 121

Example 5-3 shows the sample code.

Example 5-3 Sample code: SampleAction.java

package my_treetableview.actions;

import my_treetableview.views.MySampletreetableView;

import org.eclipse.jface.action.IAction;
import org.eclipse.jface.viewers.ISelection;
import org.eclipse.jface.viewers.IStructuredSelection;
import org.eclipse.ui.IViewPart;
import org.eclipse.ui.IWorkbench;
import org.eclipse.ui.IWorkbenchPage;
import org.eclipse.ui.IWorkbenchWindow;
import org.eclipse.ui.IWorkbenchWindowActionDelegate;
import org.eclipse.ui.PartInitException;
import org.eclipse.ui.PlatformUI;

import com.ibm.cics.model.IURIMap;

/** @see IWorkbenchWindowActionDelegate **/
public class SampleAction implements IWorkbenchWindowActionDelegate {

/** The constructor. **/
public SampleAction() {}

/** @see IWorkbenchWindowActionDelegate#run **/
public void run(IAction action) {

IWorkbench workbench = PlatformUI.getWorkbench();
IWorkbenchWindow window = workbench.getActiveWorkbenchWindow();
IWorkbenchPage page = window.getActivePage();
try {

IViewPart sampleView = page
.findView("my_treetableview.views.MySampletreetableView");

if (sampleView == null) {
sampleView = page

.showView("my_treetableview.views.MySampletreetableView");
}
IViewPart uriMapView = page.findView("com.ibm.cics.sm.ui.views.uriMaps");
if (uriMapView != null) {

IStructuredSelection structuredSelection = (IStructuredSelection) uriMapView
.getSite().getSelectionProvider().getSelection();

if (!structuredSelection.isEmpty()) {
IURIMap uriMap = (IURIMap) structuredSelection.getFirstElement();
((MySampletreetableView) sampleView)

.populateInformation(uriMap.getName());
}

}

122 Extend the CICS Explorer: A Better Way to Manage Your CICS

} catch (PartInitException e) { e.printStackTrace(); }
}

/** @see IWorkbenchWindowActionDelegate#dispose **/
public void dispose() {}

/** @see IWorkbenchWindowActionDelegate#init **/
public void init(IWorkbenchWindow window) {}

@Override
public void selectionChanged(IAction action, ISelection selection) {}

}

5.3.3 Operation

Now we can test our sample action and look at the deatils for a URIMap.

1. Select the target URIMap in the URIMap view, then click Sample Action in
the toolbar, or select a new action in the menu bar. See Figure 5-19.

Figure 5-19 Select target URIMap, and select Sample Action menu bar icon
 Chapter 5. Extending CICS Explorer plug-ins 123

2. If the sampleView is hidden, it appears automatically, and displays the results.
If you click the new toolbar button instead of menu bar icon, you get the same
results. See Figure 5-20.

Figure 5-20 Results of new action
124 Extend the CICS Explorer: A Better Way to Manage Your CICS

5.4 Extending a toolbar to search URIMap information
based on user input

To access URIMap detailed information easier and faster, you can implement a
textbox and button in the toolbar, like a URIMap filter search box.

5.4.1 Specification of new textbox and button

You can use a new function to show the target URIMap detailed information more
quickly using a textbox and GO button in the toolbar workbench perspective:

1. Enter the target URIMap name in the new textbox in the toolbar.

2. Press the enter key, or click the new GO button.

3. If hidden, sampleView appears.

4. Get the specified URIMap detailed information.

5. Show this in the sampleView as hierarchy structure.

This function can execute if the URIMap view is hidden, or if no URIMap item has
been selected in URIMap view. See Figure 5-21.

Figure 5-21 New textbox and GO button to show target URIMap information

If the URIMap name does not exist in the URIMap resources, a view is displayed
with the message No URIMap found. This message handling is implemented by
noGUI method in the sampleView. For this detailed sample code, see 5.1.3,
“Using our sample code” on page 98.
 Chapter 5. Extending CICS Explorer plug-ins 125

5.4.2 Sample code
To add a text box in the workbench toolbar, perform the following steps:

1. Select the views extension point, and click Add in the Extensions tab in the
project. See Figure 5-22.

Figure 5-22 Clicking Add in the Extensions tab

2. Type org.eclipse.ui.menus in the Extension Point filter, then click Finish.

Figure 5-23 Extension Point Selection dialog window
126 Extend the CICS Explorer: A Better Way to Manage Your CICS

3. Right-click org.eclipse.ui.menus, then click New menuContribution.

Figure 5-24 Add menuContribution to extension point

4. Enter toolbar:org.eclipse.ui.main.toolbar in the locationURI textbox. See
Figure 5-25.

Figure 5-25 Overwrite locationURI
 Chapter 5. Extending CICS Explorer plug-ins 127

5. Right-click toolbar:org.eclipse.ui.main.toolbar and select New Toolbar.
See Figure 5-26.

Figure 5-26 Add toolbar to new menuContribution
128 Extend the CICS Explorer: A Better Way to Manage Your CICS

6. Right-click the new generated toolbar, then click New Control. See
Figure 5-27.

Figure 5-27 Add new control for textbox
 Chapter 5. Extending CICS Explorer plug-ins 129

7. This new control references the new class for our textbox. Click class to bring
up a dialog box that prompts you to specify the name of this class. See
Figure 5-28.

Figure 5-28 Click class link to overwrite new class file
130 Extend the CICS Explorer: A Better Way to Manage Your CICS

8. Specify your new class name in the Name field, then click Finish. See
Figure 5-29.

Figure 5-29 Specify new class information
 Chapter 5. Extending CICS Explorer plug-ins 131

The sample code is now generated, you are able to modify the source code for
your new textbox.

After the Enter key has been pressed, the selectionListener is generated. To get
and display the URIMap detailed information based on the specified URIMap
name in the textbox, you can now modify selectionListener.

� createControl method

– Create a textbox instance, and specify the detailed attribute.

� getText method

– Get a URIMap name, which is specified in the textbox as String attribute.
This method is also invoked by the GO button. Integrate this function here.

� selectionListener method

a. Invoke getText method to get URIMap name.

b. Investigate the status of sampleView. If the view is closed, you can open
the view at first.

c. Get URIMap resource information from URIMap view to invoke
populateInformation in the sampleView.

The sample code for adding a textbox is shown in Example 5-4.

Example 5-4 Sample code: WorkbenchWindowControlContribution2_textbox.java

package my_treetableview;

import my_treetableview.views.MySampletreetableView;

import org.eclipse.swt.SWT;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.events.SelectionListener;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.Text;
import org.eclipse.ui.IViewPart;
import org.eclipse.ui.IWorkbench;
import org.eclipse.ui.IWorkbenchPage;
import org.eclipse.ui.IWorkbenchWindow;
import org.eclipse.ui.PartInitException;
import org.eclipse.ui.PlatformUI;
import org.eclipse.ui.menus.WorkbenchWindowControlContribution;

public class WorkbenchWindowControlContribution2_textbox extends
WorkbenchWindowControlContribution {

static private Text text;
132 Extend the CICS Explorer: A Better Way to Manage Your CICS

public WorkbenchWindowControlContribution2_textbox() {}

public WorkbenchWindowControlContribution2_textbox(String id) {super(id); }

@Override
protected Control createControl(Composite parent) {

text = new Text(parent, SWT.SINGLE | SWT.BORDER);
// specify maximum number of character
text.setTextLimit(8);
// add listener for the case that enter-key is pushed.
text.addSelectionListener(new myListener());
return text;

}

public String getTextbox() {
// get the string from the textbox
String textMessage = text.getText();
textMessage = textMessage.toUpperCase();
return textMessage;

}

public class myListener implements SelectionListener {
@Override
public void widgetDefaultSelected(SelectionEvent e) {

// get strings from the textbox by getTextbox() method
String textMessage = getTextbox();
// get workbench information and judge whether sampleView is open or not.
IWorkbench workbench = PlatformUI.getWorkbench();
IWorkbenchWindow window = workbench.getActiveWorkbenchWindow();
IWorkbenchPage page = window.getActivePage();

try {
IViewPart sampleView = page

.findView("my_treetableview.views.MySampletreetableView");
// if sampleView is not opened, invoke showView method.
if (sampleView == null) {

sampleView = page
.showView("my_treetableview.views.MySampletreetableView");

}
((MySampletreetableView) sampleView).populateInformation(textMessage);

} catch (PartInitException e1) { e1.printStackTrace(); }
}
@Override
public void widgetSelected(SelectionEvent e2) {}

}
}

 Chapter 5. Extending CICS Explorer plug-ins 133

A GO button control (again with a text entry box) can also be added, this would
be done in the same way as shown in Figure 5-27 on page 129. The generated
source code has to be modified to add the GO button.

Clicking GO generates a SelectionEvent, so we need a SelectionListener that
gets and displays the URIMap detailed information based on the URIMap name
specified in the textbox. The changes are as follows:

� createControl method

– You can create button instance, and specify detailed attribute.

� selectionListener method

a. Invoke getText method in the textbox to get the URIMap name.

b. Investigate the status of the sampleView. If the view is closed, open the
view first.

c. Get the URIMap resource information from URIMap view to invoke
populateInformation in the sampleView.

The sample code for textbox is shown in Example 5-5.

Example 5-5 Sample code: WorkbenchWindowControlContribution3_button.java

package my_treetableview;

import my_treetableview.views.MySampletreetableView;

import org.eclipse.swt.SWT;
import org.eclipse.swt.events.SelectionEvent;
import org.eclipse.swt.events.SelectionListener;
import org.eclipse.swt.widgets.Button;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;
import org.eclipse.ui.IViewPart;
import org.eclipse.ui.IWorkbench;
import org.eclipse.ui.IWorkbenchPage;
import org.eclipse.ui.IWorkbenchWindow;
import org.eclipse.ui.PartInitException;
import org.eclipse.ui.PlatformUI;
import org.eclipse.ui.menus.WorkbenchWindowControlContribution;

public class WorkbenchWindowControlContribution3_bottun extends
WorkbenchWindowControlContribution {

public WorkbenchWindowControlContribution3_bottun() {}
134 Extend the CICS Explorer: A Better Way to Manage Your CICS

public WorkbenchWindowControlContribution3_bottun(String id) { super(id); }
@Override
protected Control createControl(Composite parent) {

Button button = new Button(parent, SWT.PUSH);
button.setText("GO");
// add listener for the case that the bottun is pushed.
button.addSelectionListener(new myListener());
return button;

}

class myListener implements SelectionListener {
@Override
public void widgetDefaultSelected(SelectionEvent e) {}

@Override
public void widgetSelected(SelectionEvent e) {

WorkbenchWindowControlContribution2_textbox sampleclass = new
WorkbenchWindowControlContribution2_textbox();

String textMessage = sampleclass.getTextbox();
// get workbench information and judge whether sampleView is open or not.
IWorkbench workbench = PlatformUI.getWorkbench();
IWorkbenchWindow window = workbench.getActiveWorkbenchWindow();
IWorkbenchPage page = window.getActivePage();
try {

IViewPart sampleView = page
.findView("my_treetableview.views.MySampletreetableView");

// if sampleView is not opened, invoke showView method.
if (sampleView == null) {

sampleView = page
.showView("my_treetableview.views.MySampletreetableView");

}
((MySampletreetableView) sampleView).populateInformation(textMessage);

} catch (PartInitException e2) { e2.printStackTrace(); }
}

}
}

 Chapter 5. Extending CICS Explorer plug-ins 135

In Example 5-6 the label is also added for a better user interface. In the
createControl method, you specify detailed attributes for the label.

Example 5-6 Sample code: WorkbenchWindowControlContribution1_label.java

package my_treetableview;

import org.eclipse.swt.SWT;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Control;
import org.eclipse.swt.widgets.Label;
import org.eclipse.ui.menus.WorkbenchWindowControlContribution;

public class WorkbenchWindowControlContribution1_label extends
WorkbenchWindowControlContribution {

public WorkbenchWindowControlContribution1_label() {}

public WorkbenchWindowControlContribution1_label(String id) { super(id); }

@Override
protected Control createControl(Composite parent) {

Composite composite = new Composite(parent, SWT.NONE);
Label label = new Label(composite, SWT.NONE);
label.setText("URIMap Name:");
label.pack();
label.setLocation(0, 3);
return composite;

}
}

Note: Simple setText method into label makes the text upper location. To
avoid this, Example 5-6 uses Composite class, and pack method.
136 Extend the CICS Explorer: A Better Way to Manage Your CICS

5.4.3 Operation

Now we can test our input textbox with GO button and look at the details for a
URIMap.

1. Input the URIMap name in the text box, and hit the return key or click GO. See
Figure 5-30.

Figure 5-30 Input target URIMap name, and click GO.
 Chapter 5. Extending CICS Explorer plug-ins 137

2. If sampleView is hidden, it appears automatically, and displays results. See
Figure 5-31.

Figure 5-31 Results of new textbox and GO button

5.5 Background process implementation

In the above examples where we extend the URIMap view, accessing processes
to get CICS resource information is done as a synchronous process in Eclipse
using the main thread. This basically stops Eclipse. You cannot do anything with
Eclipse in the period, from getting and receiving CICS resource information, to
completion of drawing them in the sampleView.

To solve this problem, you can access CICS resource information about a
separate thread as a background process. This method is described in the
following sections.
138 Extend the CICS Explorer: A Better Way to Manage Your CICS

5.5.1 Specifications of the background process

Implementing background processing in your plug-in achieves the following:

� Access to actual CICS information using another thread in CICS Explorer.

� Requires drawing a view process as an asynchronous type process, from
another thread to main thread. Eclipse can do GUI process only in main
thread, so you can NOT draw view from new another thread.

� Implement the progress bar into a workbench window, to allow background
process status percentage visually. We divide the progress into 4 steps, and
completing each step means 25% progress.

a. Connect to CICS.
b. Get URIMap information.
c. Get TCP/IP service resource information.
d. Get other information depending on the URIMap USAGE value.

� Invoke “display.getDefault().asyncExec” in another thread to invoke drawing
view process to main thread.

These steps are shown in Figure 5-32.

Figure 5-32 Multithread processing

CICSCICS Explorer

main thread new thread(job)

can do
other

process

Display.getDefault.asyncExe

job.schedule{}

get resource
information from
CICS

update GUI

connect CPSM

get URIMap info

get TCP/IP Service info

get Program info

add progress
monitor counter with
each process
 Chapter 5. Extending CICS Explorer plug-ins 139

5.5.2 Sample code

Example 5-7 is the sample code, the key points are how to do the process as a
job and implement the progress bar.

To implement this, modify only two methods in the MySampletreetableView.java.
See Example 5-7 and Example 5-8 for details.

Example 5-7 Background processing sample code_1: populateInformation method

public void populateInformation(final String urimapstring) {
// reserve argument(urimap)
uriMapString = urimapstring;
final Job job = new Job("Getting CICS Resource Information") {

@Override
protected IStatus run(final IProgressMonitor monitor) {

// Do your IO stuff here
if (IO(monitor) == true) {

Display.getDefault().asyncExec(new Runnable() {
public void run() { GUI(); } // Do your GUI updates here

});
} else {

Display.getDefault().asyncExec(new Runnable() {
public void run() {ngGUI(); } // Do your GUI updates here

});
}
monitor.done();
return Status.OK_STATUS;

}
};
job.schedule();

}

Example 5-8 Background processing sample code_2: IO method

private boolean IO(IProgressMonitor monitor) {
monitor.beginTask("Getting CICS Resource Information", 4);
connectCPSM();
monitor.worked(1); // progress monitor + 1 -> 1(25%)
getURIMapResource();
if (model.size() == 0) { return false; }
monitor.worked(1); // progress monitor + 1 -> 2(50%)
getTCPIPServiceResource();
monitor.worked(1); // progress monitor + 1 -> 3(75%)
if (iurimap.getUsage().toString() == "SERVER") {

getProgramResource();
} else if (iurimap.getUsage().toString() == "CLIENT") {
140 Extend the CICS Explorer: A Better Way to Manage Your CICS

// ** no related resources **
} else if (iurimap.getUsage().toString() == "ATOM") {

getAtomServiceResource();
} else if (iurimap.getUsage().toString() == "PIPELINE") {

getPipelineResource();
getWebServiceResource();

}
monitor.worked(1); // progress monitor + 1 -> 4(100%)
return true;

}

5.5.3 Operation
When you click URIMap view, another thread is generated by the main thread to
access the CICS resource information. This new thread is used for this access
process, but the main thread is not used and can continue GUI process. You can
see the background process progress with the progress bar in the right corner of
the window, as shown in Figure 5-33.

Figure 5-33 Background process indicated with progress bar
 Chapter 5. Extending CICS Explorer plug-ins 141

5.6 Summary of extending functions

All the extending functions described in this chapter can be implemented into one
plug-in, summarized in Figure 5-34. This diagram helps you understand the
relationship of all functions, objects, classes, and methods easier.

Figure 5-34 Summary of extending functions in this chapter
142 Extend the CICS Explorer: A Better Way to Manage Your CICS

5.7 Package extending functions into a plug-in

When your new plug-in is complete, it can be packaged as a zip file. The zip file
can then be distributed, or deployed into your environment. The plug-in zip file is
available for:

� CICS Explorer, running environment
� CICS Explorer SDK, developing environment

5.7.1 Package plug-in into zip file

This chapter has described many ways in which you can extend functions as a
plug-in. To make the plug-in an archive file, export your plug-in into a zip file using
the following steps.

1. When you finish developing your plug-in, you can open the new project which
includes the plug-in function. See Figure 5-35.

Figure 5-35 Create new project
 Chapter 5. Extending CICS Explorer plug-ins 143

2. Select Feature Project on the “Select a wizard” window (Figure 5-36) to
create a feature project. This is an archive plug-in file later.

Figure 5-36 Select a Feature project
144 Extend the CICS Explorer: A Better Way to Manage Your CICS

3. Enter a name in the “Project name” field (Figure 5-37), then click Next to
specify more information.

Figure 5-37 Feature project properties
 Chapter 5. Extending CICS Explorer plug-ins 145

4. In the “Referenced the Plug-ins and Fragments” dialog window (Figure 5-38),
select and check your plug-in in the plug-ins list. Then, click Finish.

Figure 5-38 Select referenced plug-in
146 Extend the CICS Explorer: A Better Way to Manage Your CICS

5. When the “Open Associated Perspective?” window (Figure 5-39) displays,
click Yes.

Figure 5-39 Open Associated Perspective dialog
 Chapter 5. Extending CICS Explorer plug-ins 147

6. The plug-in development perspective (Figure 5-40) displays for this new
project. Export the project as an archive file. You can export the project using
Export Wizard which is launched from Overview tab.

Figure 5-40 Start Export Wizard to export the feature project
148 Extend the CICS Explorer: A Better Way to Manage Your CICS

7. In the Deployable features window, confirm selected features, and specify the
zip file name and target directory by clicking Browse. Then click Finish
(Figure 5-41).

Figure 5-41 Select Available Features and specify Archive file name

The Export Features window shows the progress of the export. This window
disappears automatically.

8. After you have archived your plug-in to an archive file, this zip file is
deployable to both CICS Explorer (as running environment) and CICS
Explorer SDK (as developing environment).
 Chapter 5. Extending CICS Explorer plug-ins 149

5.7.2 Deploying plug-in to CICS Explorer

The following procedure details how to deploy your plug-in archive file to a CICS
Explorer running environment.

1. Start CICS Explorer, which is installed into your environment.

2. Select Help Software Updates on the menu bar (Figure 5-42).

Figure 5-42 Select Help Software Updates on the menu bar
150 Extend the CICS Explorer: A Better Way to Manage Your CICS

3. Click Add Site to specify plug-in archive file and file path (Figure 5-43).

Figure 5-43 Push “Add Site” button to specify the plug-in
 Chapter 5. Extending CICS Explorer plug-ins 151

4. Click Archive to specify the plug-in location as file path and archive file
(Figure 5-44).

Figure 5-44 Click Archive to specify plug-in archive file

5. Select your previously created plug-in archive file (Figure 5-45).

Figure 5-45 Select zip file
152 Extend the CICS Explorer: A Better Way to Manage Your CICS

6. Confirm location information and click OK (Figure 5-46).

Figure 5-46 Click OK to proceed
 Chapter 5. Extending CICS Explorer plug-ins 153

The deployable plug-in name is shown on the Available Software tab
(Figure 5-47).

Figure 5-47 Plug-in name is shown
154 Extend the CICS Explorer: A Better Way to Manage Your CICS

7. Select the plug-in you want to deploy, and click Install (Figure 5-48).

Figure 5-48 Select plug-in

The Progress Information window shows progress of the export. This window
disappears automatically.
 Chapter 5. Extending CICS Explorer plug-ins 155

8. Confirm whether the selected plug-in is the one you want to deploy in the
“Install” window (Figure 5-49). If correct, click Finish to start install process.

Figure 5-49 Confirm plug-in to be installed

The Install window shows installation progress. This window disappears
automatically.

9. Restart CICS Explorer to make the installation effective. Click Yes in the
Software Updates window (Figure 5-50).

Figure 5-50 CICS Explorer restart confirmation
156 Extend the CICS Explorer: A Better Way to Manage Your CICS

This completes the deployment of your plug-in into the CICS Explorer
perspective (Figure 5-51). You can now use the plug-in function in the CICS
Explorer.

Figure 5-51 Plug-in deployed CICS Explorer perspective
 Chapter 5. Extending CICS Explorer plug-ins 157

158 Extend the CICS Explorer: A Better Way to Manage Your CICS

Part 4 Integrating CICS
Explorer with other
Eclipse Components

In this part we write a small collection of plug-ins that display data from an
OMEGAMON server. We also describe the necessary steps to create an CICS
Explorer plug-in that allows you to set CICS trace levels dynamically for each
trace component, similar to the functionality provided by the CICS CETR
transaction.

Finally we show you how to extend the functionality provided by the Operations
view of the CICS Explorer, to implement a CEBR-like interface which, when you
have right-clicked a TS queue, allows you to view the contents of that queue.

Part 4
© Copyright IBM Corp. 2010. All rights reserved. 159

160 Extend the CICS Explorer: A Better Way to Manage Your CICS

Chapter 6. Combining OMEGAMON
data with CICS Explorer

In this chapter we write a small collection of plug-ins that display data from an
OMEGAMON server. Although this chapter is aimed specifically at displaying
OMEGAMON data, many of the techniques and code samples can be re-used
with minimal modifications when accessing data from other products.

First we briefly describe OMEGAMON and the Web services interface that we
are using to access the data. We then create a simple plug-in to fetch data from
the Web services interface and parse it to find the interesting information.

Next, we create several simple plug-ins that display data that has been fetched
from OMEGAMON.

Finally, we add processing to drive an OMEGAMON plug-in to display the
OMEGAMON region overview report for a CICS region when that region is
selected in the CICS Explorer.

6

© Copyright IBM Corp. 2010. All rights reserved. 161

6.1 Environment and configuration
We used the following software levels for this section of this book, in addition to
those specified earlier for the CICS Explorer environment:

� IBM Tivoli Monitoring version 6.2 (minimum version 6.1 required for the SOAP
interface

� OMEGAMON XE for CICS version 4.1

� For the examples of interaction between CICS Explorer and OMEGAMON we
required CICS systems that were both monitored by OMEGAMON for CICS
and managed by CPSM. We used CICS TS version 3.2 regions for this, but
earlier or later versions work equally well.

6.2 Introduction to OMEGAMON

OMEGAMON XE for CICS on z/OS is a complete monitoring solution that
enables you to monitor and manage complex CICS systems by addressing
potential problems quickly.

OMEGAMON XE for CICS is part of the IBM Tivoli Monitoring (ITM) architecture
and uses the Tivoli Enterprise Portal (TEP) as its user interface. The TEP is a
highly customizable Java application that can either be run as a desktop
application or run as an applet in a browser. Through this interface, you can
monitor all your CICS regions, and the other systems in your enterprise.

Figure 6-1 on page 163 shows a simplified ITM architecture working in
conjunction with the CICS Explorer. The CICS regions are monitored by the
CICS agents, which pass their data along to the Tivoli Enterprise Monitoring
Server (TEMS). The data is presented to the user through the TEP client, which
extracts its data from the TEMS through the Tivoli Enterprise Portal Server
(TEPS). The CICS Explorer extracts its data from CICS through the CMCI
interface. There is also the option of the CICS Explorer accessing CICS data
through CPSM, but that is not shown here, because it complicates the diagram
further.

The TEP, however, is not an Eclipse application, and as such, does not integrate
readily with the CICS Explorer. The ITM architecture also provides a Web
services interface. This chapter discusses how we used this interface to access
OMEGAMON data in an Eclipse plug-in by sending and receiving SOAP
messages. Accessing OMEGAMON data in an Eclipse plug-in makes it easier to
use these complementary CICS tools together.
162 Extend the CICS Explorer: A Better Way to Manage Your CICS

Figure 6-1 The ITM Architecture with the CICS Explorer

6.3 The Tivoli Enterprise Web Services interface

Tivoli Enterprise Web Services is an open interface into Tivoli Monitoring and
although it provides access to data from most Tivoli monitoring applications, we
are concerned solely with looking at CICS data.

Tivoli Enterprise Web Services implements client/server architecture. The client
sends SOAP requests to the Tivoli Monitoring SOAP server, which is part of the
TEMS. The server receives and processes the SOAP requests on behalf of the
client, and returns with an appropriate response. Although there is much that can
be achieved through the Tivoli Web Services interface, this plug-in only uses the
CT_Get command, which allows us to request OMEGAMON data from server.

This plug-in communicates with the TEMS through the TEMS SOAP interface,
which must be configured as described in the IBM Tivoli Monitoring:
Administrator’s Guide. We do not include support for connections to the SOAP
interface over secure (SSL) connections in this chapter.

z/OS

z/OS

CICS TG

CICS

CICS

CICS

CICS

CICS

CICS

TEMS

TEPS

CICS Agent

CICS Agent

Other Agent

CICS TG
Agent

CMCI

SOAP
 Chapter 6. Combining OMEGAMON data with CICS Explorer 163

6.3.1 Connecting to the TEMS SOAP interface with the Web client
Note the host name (or IP address) and port number for the SOAP interface, as
this is required later. When we point a browser at the host system containing the
TEMS (and port 1920), we see a view similar to that shown in Figure 6-2.

Figure 6-2 ITM Service Index list
164 Extend the CICS Explorer: A Better Way to Manage Your CICS

When we click one of the listed IBM Tivoli Monitoring Web Services we see the
Tivoli generic SOAP client, as shown in Figure 6-3.

We can use this simple Web client to test the TEMS SOAP interface and to try
out commands that we might like to implement in the Eclipse plug-ins that we are
implementing.

Figure 6-3 ITM Generic SOAP client
 Chapter 6. Combining OMEGAMON data with CICS Explorer 165

We can issue a simple query against the TEMS server’s SOAP interface using
the Web client. We shall issue a request for the Managed System List. This is a
list of the Tivoli monitoring systems and the systems they are monitoring (such as
your CICS regions). The Web client offers this query as one of its predefined
queries. The list of queries is shown in Figure 6-4.

Figure 6-4 List of queries available in the SOAP Web client

We select the option for the Get Object CT Method (CT_GET), and this fills in the
other entry text boxes for us. The endpoint text box gets filled in with the default
URL for a SOAP server running on the local machine.

As we are not connecting to a server on the local machine, we have to overwrite
this value with the host and port from the browser’s address bar. We then look at
the Payload text box, which contains the message that is sent to the SOAP sever.
166 Extend the CICS Explorer: A Better Way to Manage Your CICS

Because the TEMS server to which we are connecting does not have security
enabled, we do not have to change the user ID from “sysadmin”, or specify a
password. This gives us a request ready to be issued, as shown in Figure 6-5.

Figure 6-5 Web client Managed System List request

Click Make SOAP Request and the client issues the SOAP request to the server
and displays the response. The response can be quite large, depending on how
many Tivoli monitoring systems you have and how many systems they are
monitoring. The start of our results are shown in Figure 6-6 on page 168.

We can see in these results that our request was successful as the response
contains the text SOAP-CHK:Success near the start of the message, and we have a
long response made up of numerous XML fields containing information about our
managed systems.

The Web client does not parse this XML into a more meaningful format, such as
a table for us, but we write suitable parsing and formatting code as part of our
Eclipse plug-ins.
 Chapter 6. Combining OMEGAMON data with CICS Explorer 167

Figure 6-6 Extract from the SOAP Web client response

We have issued a simple request against the SOAP interface, we can be
confident that our SOAP interface is working, and that we know exactly which
host name and port on which it is listening for requests. Now we can move on to
writing an Eclipse plug-in that issues the same request, and build upon that
plug-in.

Tip: The SOAP Web client can be a useful tool when you are trying to test a
new request against the SOAP interface, as it can be invoked from a browser
without having to write any code. You can see exactly what response is
returned from the server.
168 Extend the CICS Explorer: A Better Way to Manage Your CICS

6.4 A simple OMEGAMON SOAP interface plug-in

We start with a simple plug-in that can connect to the TEMS SOAP interface,
issue a request, and receive the returned SOAP data. We then add the ability to
parse the returned data.

We request the Managed System List. This is a list of all the systems that are
known to the Tivoli monitoring system, and the Tivoli servers that make up the
monitoring architecture. The returned data includes:

� The name of the monitored system
� An indicator of whether the system is online or offline
� A product code identifier that identifies the Tivoli monitoring product

The returned list includes products other than CICS if you have other Tivoli
monitoring products installed

The plug-in is written with a JUnit (v3) test harness to allow us to build up the
code in small chunks, explaining and testing each as we go. This plug-in initially
does the minimum required to issue a request to the SOAP server and receive a
response. We then build on this functionality.

First, we create the plug-in project. We can create the plug-in using the plug-in
wizard (Navigate to File New project and select Plug-in project in the
New Project dialog box). We name the plug-in OMEGAMON_SOAP and accept the
defaults, with one exception. Clear the This plug-in will make contributions to
the UI option, and we do not use a template for the plug-in. This plug-in does not
make any contributions to the user interface, because its role is to capture data
that is presented to the user by other plug-ins.
 Chapter 6. Combining OMEGAMON data with CICS Explorer 169

After we have created the plug-in project, the workspace looks something like
Figure 6-7.

Figure 6-7 Newly created OMEGAMON_SOAP plug-in

We now need to create the class that fetches the data from the Web services
interface. We create a new class SoapInterface in the ‘omegamon_soap’
package. See Example 6-1.

Example 6-1 SoapInterface class listing

package omegamon_soap;

import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.ConnectException;
import java.net.HttpURLConnection;
import java.net.MalformedURLException;
import java.net.SocketException;
import java.net.URL;

public class SoapInterface {

public static final String MANAGED_SYSTEM_LIST_REQUEST =
"<object>ManagedSystem</object><target>ManagedSystemName</target>";

 //(1)

private String ctGet;
170 Extend the CICS Explorer: A Better Way to Manage Your CICS

private URL url;

public SoapInterface(String hostName, int port, String userid, String
password) { //(2)

if (password == null) {
password = "";

}
ctGet = "<CT_Get><userid>" + userid + "</userid><password>" +

password + "</password>";
try {

this.url = new URL("http://" + hostName + ":" + port +
"///cms/soap");

}
catch (MalformedURLException e) {

e.printStackTrace();
}

}

/**
 * issue a request for some data from the SOAP interface and return
 * the response
 * @param payload the request to be issued
 * @param url the url of the SOAP interface we wish to connect to
 * @return the results of the request
 */
public String getData(String request) {

//(3)
String payload = ctGet + request + "</CT_Get>";
HttpURLConnection urlConnection = null;

 try {
 // create a HTTP connection configure it for a SOAP request
 urlConnection = (HttpURLConnection) url.openConnection();
 urlConnection.setRequestMethod("POST");
 urlConnection.setDoOutput(true);

 // issue our request
 urlConnection.getOutputStream().write(payload.getBytes());

 // ensure the request has been issued and close the output stream
 urlConnection.getOutputStream().flush();
 urlConnection.getOutputStream().close();

 // read the response from the SOAP interface
 InputStream in = urlConnection.getInputStream();
 BufferedReader reader = new BufferedReader(new
InputStreamReader(in));
 StringBuffer result = new StringBuffer();
 Chapter 6. Combining OMEGAMON data with CICS Explorer 171

 String line;
 do {
 line = reader.readLine();
 if (line != null) {
 result.append(line);
 }
 } while (line != null);

 return result.toString();
 }
 catch (ConnectException e) {
 System.out.println("Connect exception - check host and port");
 e.printStackTrace();
 return null;
 }
 catch (SocketException e) {
 System.out.println("Socket exception- check host and port");
 e.printStackTrace();
 return null;
 }
 catch (Exception e)
 {
 System.out.println("Other exception.");
 e.printStackTrace();
 return null;
 }
 finally
 {
 // always clean up before we leave
 if (urlConnection != null) {
 urlConnection.disconnect();
 }
 }

}
}

Notes on Example 6-1 on page 170:

� The static final String MANAGED_SYSTEM_LIST_REQUEST contains a
simple request for a list of managed systems from the Web services interface

� The constructor builds up the URL for the Web service and constructs a
‘CT_GET’ request String that can be combined with a request for data to
drive the Web service.

� The getData(…) method constructs a request for data, sends it to the Web
service, and returns the reply from the Web service. This reply is in the form
of an XML String.
172 Extend the CICS Explorer: A Better Way to Manage Your CICS

We now want to drive this code to ensure that it works. We do this with a JUnit
test class.We create the JUnit test class in the omegamon_soap_tests package.
This is shown in Example 6-2.

Example 6-2 SoapInterfaceTester class listing

/* Get the value of ARRAY_VAL. Note: arrayIndex starts at 0 */
package omegamon_soap_tests;

import omegamon_soap.SoapInterface;
import junit.framework.Test;
import junit.framework.TestCase;
import junit.framework.TestSuite;

public class SoapInterfaceTester extends TestCase {

// useful test data

/**
 * create a test suite for the tests in this class
 * @return the test suite
 */
public static Test suite() {

return new TestSuite(SoapInterfaceTester.class);
}

@Override
protected void setUp() throws Exception {

// TODO Auto-generated method stub
super.setUp();

}

public void testNothing() {

}

public void testSoapRequest() {
SoapInterface soapInterface = new SoapInterface("winmvs2c.hursley.ibm.com",

47587, "sysadmin", "");
String result = soapInterface.getData(SoapInterface.MANAGED_SYSTEM_LIST_REQUEST);
assertNotNull("Result should not be null", result);
assertTrue("Result length should be greater than zero", result.length() > 0);
assertTrue("SOAP request failed. result {" + result + "}",

result.contains("<SOAP-CHK:Success"));
}

@Override
protected void tearDown() throws Exception {

// TODO Auto-generated method stub
super.tearDown();

}
}

 Chapter 6. Combining OMEGAMON data with CICS Explorer 173

You have to change the host name, port, user ID and password to match those
for your system. These values are those used in 6.3.1, “Connecting to the TEMS
SOAP interface with the Web client” on page 164.

This test code merely creates an instance of the SoapInterface class and issues
a request for a managed system list. The returned data is checked to ensure that
something is returned, and that the returned data includes the
<SOAP-CHK:Success string. If this string is found, the request has been
processed successfully.

6.4.1 Parsing the returned data
Now that we have data being returned from OMEGAMON, we need to parse it to
find the interesting data, and to convert it into a more useful format. Because we
are reading the complete SOAP reply before processing it, we can use the DOM
SOAP parser, which simplifies the parsing code.

The XML parsing code is contained in a new SoapXMLParser class in the
omgamon_soap package. The XML parsing reuses a single DocumentBuilder
instance, so this can be declared as a static instance field and initialized in a
static code block. This means that the SoapXMLParser class starts off looking
like the listing shown in Example 6-3.

Example 6-3 SoapXMLParser static code

public class SoapXMLParser {
// the DocumentBuilder will enable us to parse the XML easily
private static DocumentBuilder documentBuilder;

/**
 * Create the document builder that will be used to parse the SOAP data
 */
static {

// Create the factory that will be used to create the document builder
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
try {

// and create the document builder
documentBuilder = dbf.newDocumentBuilder();

}
catch (ParserConfigurationException e) {

System.out.println(e);
e.printStackTrace();

}
}

}

174 Extend the CICS Explorer: A Better Way to Manage Your CICS

The parser extracts all the interesting data from the XML when the constructor is
invoked, so we do not need instance fields to store the XML, but we do need
instance fields to store the interesting information extracted from the XML. We
add the following instance fields to the class:

// the parsed data
private String[][] dataTable;
private String[] columnNames;
private int rowCount;

Next, we need the constructor that accepts XML to be parsed as its input, and
initialize the instance fields with data extracted from the XML. This method is
shown in Example 6-4.

Example 6-4 SoapXMLParser constructor

/**
 * parse the passed String of XML data
 * @param xml the data to be parsed
 * @throws Exception thrown if we fail to parse the passed data
 */
public SoapXMLParser(String xml) throws Exception {
 NodeList nodeList = null;
 try {
 // load the XML String into an XML Document
 Document document = documentBuilder.parse(

new ByteArrayInputStream(xml.getBytes("UTF-8")));

 // first find the root of the XML document
 Element root = document.getDocumentElement();

 // extract the interesting data as a list of rows
 nodeList = root.getElementsByTagName("ROW");
 }
 catch (DOMException dom) {
 System.out.println(dom.getMessage());
 dom.printStackTrace();
 throw dom;
 }

Note: We are reusing a single DocumentBuilder instance to parse all our
XML. This might not be a good idea if you expect to be fetching data on
multiple threads that might overlap, and would be bad if you wanted to do any
parsing outside of the constructor call as there might be a clash with another
instance using the same DocumentBuilder
 Chapter 6. Combining OMEGAMON data with CICS Explorer 175

 catch (IOException ioe) {
 System.out.println(ioe);
 ioe.printStackTrace();
 throw ioe;
 }

 // now construct a table from the XML document
 rowCount = nodeList.getLength();
 if (rowCount > 0) {
 dataTable = new String[rowCount][];
 for (int i = 0; i < rowCount; i++) {
 Node rowNode = nodeList.item(i);
 dataTable[i] = getRowValues(rowNode);
 }
 // extract the column headers
 columnNames = getRowFieldNames(nodeList.item(0));
 }
}

This method introduces compile errors as we have not yet added the methods it
calls. One of the advantages of parsing the XML in the constructor is that we
know that if any problems are found, then we are not left with an invalid instance
of the class. The constructor either completes successfully with valid data or
throws an Exception. Extracting the data we want from the XML is implemented
in two methods:

� getRowValues(…)
� getRowFieldNames(…)

These methods are shown in Example 6-5.

Example 6-5 XML data extraction methods

/**
 * return the passed node's values as an array of Strings
 * @param node the Node to be processed
 * @return a String[] containing the Node's values
 */
private static String[] getRowValues(Node node) {
 NodeList children = node.getChildNodes();
 String[] values = null;
 if (children != null && children.getLength() > 0) {
 int childCount = children.getLength();
 values = new String[childCount];

 for (int i = 0; i < childCount; i++) {
176 Extend the CICS Explorer: A Better Way to Manage Your CICS

 Node childNode = children.item(i);
 Text valueNode = (Text)
childNode.getFirstChild();
 if (valueNode != null) {
 values[i] = valueNode.getNodeValue();
 }
 }
 }
 return values;
}

/**
 * return the names of the nodes that make up the passed row.
 * Effectively, these are the column headers for a table containing
this row.
 * @param row the row from which to extract the names
 * @return a list of names, or null if the row has no elements
 */
private String[] getRowFieldNames(Node row) {
 NodeList children = row.getChildNodes();
 if (children != null && children.getLength() > 0) {
 int childCount = children.getLength();
 String[] values = new String[childCount];
 for (int i = 0; i < childCount; i++) {
 Node child = children.item(i);
 values[i] = child.getNodeName();
 }
 return values;
 }
 else {
 return null;
 }
}

These two methods are quite similar, which is unsurprising as they both walk
through the XML document looking for fields of interest. There is other data in the
returned SOAP message, such as the data type of the returned data, but we do
not extract that data here. These plug-ins treat all returned data as strings. If we
were to add code that checks the data types, then we could implement better
formatting of the returned data, such as digit grouping for numbers and display of
timestamps as date-times rather than long strings of digits.
 Chapter 6. Combining OMEGAMON data with CICS Explorer 177

Finally, we need getter methods to expose the parsed data to any callers. These
are shown in Example 6-6. There is no need for setter methods, as these fields
are initialized in calls from the constructor.

Example 6-6 SoapXMLParser getter methods

public String[][] getDataTable() {
return dataTable;

}
public int getRowCount() {

return rowCount;
}
public String[] getColumnNames() {

return columnNames;
}

In the writing of this parsing code, we wrote unit test code. This code was
implemented as another JUnit test class, as shown in <REF
SoapXMLParserTester class>. The test data (field testData1) was copied from
the returned data in a request issued using the SOAP Web client, as described in
Example 6-7.

Example 6-7 SoapXMLParserTester class

package omegamon_soap_tests;

import omegamon_soap.SoapXMLParser;
import junit.framework.TestCase;

public class SoapXMLParserTester extends TestCase {

// useful test data
private String testData1
= "<?xml version=\"1.0\" encoding=\"UTF-8\"?><SOAP-ENV:Envelope " +
"xmlns:SOAP-ENV=\"http://schemas.xmlsoap.org/soap/envelope/\" " +
"SOAP-ENV:encodingStyle=\"http://schemas.xmlsoap.org/soap/" +
"encoding/\"> <SOAP-ENV:Body><SOAP-CHK:Success xmlns:SOAP-CHK " +
"= \"http://soaptest1/soaptest/\" xmlns=\"urn:candle-soap:" +
"attributes\"><TABLE name=\"O4SRV.ISITSTSH\"><OBJECT>" +
"O4SRV.ISITSTSH</OBJECT><DATA>" +
"<ROW><HSITNAME>KS3_Vol_Fragment_Index_Critical" +
"</HSITNAME><HNODE>GBURGESS</HNODE><ATOMIZE>" +
"</ATOMIZE><HGBLTMSTMP>1090906205846000</HGBLTMSTMP>" +
"<HORIGINNODE>OMEGTMS4:MV2C:STORAGE</HORIGINNODE>" +
"<PATHNAME></PATHNAME><TYPE dt=\"number\">0</TYPE></ROW>" +
"<ROW><HSITNAME>KS3_LCU_IO_Rate_Sec_Warning</HSITNAME>" +
178 Extend the CICS Explorer: A Better Way to Manage Your CICS

"<HNODE>GBURGESS</HNODE><ATOMIZE></ATOMIZE><HGBLTMS"+
"TMP>1090924201345001</HGBLTMSTMP><HORIGINNODE>OMEGTMS4:"+
"MV2C:STORAGE</HORIGINNODE><PATHNAME></PATHNAME><TYPE" +
" dt=\"number\">0</TYPE></ROW></DATA></TABLE>" +
"</SOAP-CHK:Success></SOAP-ENV:Body></SOAP-ENV:Envelope>";

public void testConstructor() {
try {

SoapXMLParser parser1 = new SoapXMLParser(testData1);
assertNotNull("Null parser", parser1);
assertEquals("Incorrect row count. Expected 2. Found " +

parser1.getRowCount(), 2, parser1.getRowCount());

String[][] dataTable = parser1.getDataTable();
assertNotNull("Null data table", dataTable);
assertEquals("Incorrect table row count. Expected 2. Found " +

dataTable.length, 2, dataTable.length);

String[] firstRow = dataTable[0];
assertNotNull("Null First Row", firstRow);
assertEquals("Incorrect column count. Expected 7. Found "

+ firstRow.length, 7, firstRow.length);

String[] columnHeaders = parser1.getColumnNames();
assertNotNull("Null column headers", columnHeaders);
assertEquals("Incorrect column count. Expected 9. Found "

+ columnHeaders.length, firstRow.length,
columnHeaders.length);

}
catch (Exception e) {

e.printStackTrace();
}

}
}

The next section uses this parser with real data returned from the SOAP
interface to provide suitable data to be displayed in tables in plug-in views.
 Chapter 6. Combining OMEGAMON data with CICS Explorer 179

6.4.2 Exposing the plug-in’s functions

Now that we have a plug-in that can retrieve OMEGAMON data, we need to
make this functionality available to other plug-ins. In production code, we create a
package containing just the functions that we want to expose, but here we export
the package containing all of our interesting code, the omegamon_soap
package.

Usually when you want to export a package in a plug-in to be used by other
plug-ins, you open the plugin.xml file in the plug-in development perspective
and add the package to the exported packages section on the Runtime tab. The
options that we selected when we created this plug-in using the wizard meant
that we did not get a plugin.xml file created for us, so we have to use a slightly
different approach. In the plug-ins view, double-click the OMEGAMON_SOAP
plug-in to bring up the OMEGAMON_SOAP plug-in’s properties. Click the
Runtime tab and click Add in the exported packages section. This brings up the
exported packages dialog panel, shown in Figure 6-8.

Figure 6-8 Exported Packages dialog menu
180 Extend the CICS Explorer: A Better Way to Manage Your CICS

Select the omegamon_soap package and click OK. The package is then added
to the list of exported packages. See Figure 6-9.

Figure 6-9 Exported packages

We have made all the code in the omegamon_soap package available to other
plug-ins (subject to the usual Java code visibility restrictions). Now we can write
code in other plug-ins that calls the public methods in these classes.
 Chapter 6. Combining OMEGAMON data with CICS Explorer 181

6.5 Displaying the OMEGAMON Managed System List

Now that we have a plug-in that retrieves data, we need to present that data in an
Eclipse view. Our first view displays the Managed System List.

6.5.1 Creating the Managed System List plug-in

We need a new plug-in to display the data, so we start with the new plug-in
wizard (Navigate to File New project and select Plug-in project in the
New Project dialog box). Name the plug-in ManagedSystemList and accept the
defaults on the first two panels. Ensure that the This plug-in will make
contributions to the UI check box is selected. On the third panel, create the
plug-in using a template, and select plug-in with a view, as shown in
Figure 6-10.

Figure 6-10 Select plug-in with a view
182 Extend the CICS Explorer: A Better Way to Manage Your CICS

We are creating other visual plug-ins, so it is a good idea to group them so that
they can be found together when a user selects the menu option Window
Show View. We create our own category for these views, called OMEGAMON.
We achieve this on the next panel, by overriding several of the default names. We
also select a table viewer as the type of viewer that is added to the view, as
shown in Figure 6-11.

Figure 6-11 Managed System List Main view settings dialog

Click Finish to complete the creation of the sample plug-in that we use as the
basis for our view.The wizard has created a plug-in project for us with two
packages, each containing one class.
 Chapter 6. Combining OMEGAMON data with CICS Explorer 183

We need to modify the ManagedSystemListView class, but before we start
modifying it, we can run it in its current formIf. We invoke run (From the Run
menu or the Run icon, select Run Eclipse Application. Then launch another
Eclipse instance. In this instance, navigate to Window Show View Other.
This brings up the “Show View” dialog box, shown in Figure 6-12.

Figure 6-12 Show view (ManagedSystemList) dialog

The views listed in your dialog box might vary a little, depending on what plug-ins
you have been writing or have imported into your Eclipse environment. Select
ManagedSystemList View and click OK. This adds a new view to your Eclipse
workspace that looks like Figure 6-13.

Figure 6-13 Sample ManagedSystemList view before code changes

We can see that the plug-in view generated by the wizard already works and
displays sample data. We just need to change the code to display our Managed
System List as returned by the SOAP interface.
184 Extend the CICS Explorer: A Better Way to Manage Your CICS

A brief inspection of the generated code is useful at this time. There are several
key components in the code that we are modifying so they are worth mentioning
at this time:

� This view uses a TableViewer instance to display its data.

� The data that is displayed by the table is provided by the ViewContentProvider
inner class.

� The presentation of the data in the table is handled by the ViewLabelProvider
inner class.

� Sorting of the data in the class is implemented in the NameSorter inner class
(which currently has an empty implementation).

� The createPartControl(…) method creates all the required objects and
connects them to each-other.

The generated code also provides dummy implementations of context menus
and toolbar icons and dummy actions to be invoked from the toolbar and menu
options.

6.5.2 Displaying the Managed System List data in the plug-in

Now we have a sample plug-in that displays a table of data, we can start
modifying this code to display our managed system list.

Because we are going to use the OEMGAMON_SOAP plug-in to provide our
data, we need to specify a dependency on this plug-in. To do this, from the
ManagedSystemList Overview panel, select the Dependencies tab at the bottom
of the panel.

On the Dependencies tab, add OMEGAMON_SOAP to the list of required
plug-ins, and save. This ensures that we can access any exported code from that
plug-in.

We next update the ViewContentProvider to display our data rather than the
sample data. We add a tableData private instance field to hold the data to be
displayed, a setter method for this field, and we update the getElements()
method to return this field rather than the sample data. The updated version of
the ViewContentProvider is shown in Example 6-8 on page 186.

Note: Double-click plugin.xml in the center of the window if you cannot see
this panel
 Chapter 6. Combining OMEGAMON data with CICS Explorer 185

Example 6-8 Updated ViewConentProvider

class ViewContentProvider implements IStructuredContentProvider {
 // the data to be displayed in the table
 private String[][] tableData = new String[0][0];

 public void setTableData(String[][] tableData) {
 this.tableData = tableData;
 }

 public Object[] getElements(Object parent) {
 return tableData;
 }

 public void inputChanged(Viewer v, Object oldInput, Object
newInput) {
 }
 public void dispose() {
 }
}

We need a new instance field in the ManagedSystemListView to hold a reference
to the SoapInterface object that provides our data, and instance fields that
contains the connection details so add the following lines after the existing field
declarations in the managedSystemListView class.:

// the source of our managed system list data
private SoapInterface soapInterface;
// connection details for the SOAP interface
private String hostname = "winmvs2c.hursley.ibm.com";
private int port = 47587;
private String userid = "sysadmin";
private String password = "";

You have to change the host name, port, user ID, and password to match those
for your system. These values are those used in 6.3.1, “Connecting to the TEMS
SOAP interface with the Web client” on page 164.

At the end of the ManagedSystemListView constructor, add a call to a new
requestData() method. This method requests the ManagedSystemList and
update the table with the returned data.

The implementation of the requestData() method is shown in Example 6-9 on
page 187.
186 Extend the CICS Explorer: A Better Way to Manage Your CICS

Example 6-9 requestData() method

private void requestData() {
 if (soapInterface == null) {
 soapInterface = new SoapInterface(hostname, port,
userid, password);
 }
 SoapXMLParser parser =
soapInterface.getParsedData(SoapInterface.MANAGED_SYSTEM_LIST_REQUEST);
 if (parser != null) {
 String[][] dataTable = parser.getDataTable();
 ((ViewContentProvider)
viewer.getContentProvider()).setTableData(dataTable);

viewer.refresh();
 }
 else {
 showMessage("No data returned - Check host & port");
 }
}

This method creates an instance of the SoapInterface class if it has not already
been created, and requests data from this instance. If data is returned, it is
passed to the ViewContentProvider to be displayed in the table. If no data is
returned, this is reported in a message.

If we run the code with these changes, we see a separate but not useful version
of the managed system list, as displayed in Figure 6-14.

Figure 6-14 Managed System List without columns

Each row in this panel is a reference to an entry in the managed system list table,
but we have not yet added the code to extract each row’s data and display it in
columns. We now add that code.
 Chapter 6. Combining OMEGAMON data with CICS Explorer 187

We need to change the presentation of the table so that the column headers are
displayed and the lines that mark the cells in the table are visible. Do this in
createPartControl(…) method. After the viewer.setInput(getViewSite());
method, add the information in Example 6-10.

Example 6-10 Changing the table presentation

Table table = viewer.getTable();
table.setHeaderVisible(true);
table.setLinesVisible(true);

We need to update the ViewLabelProvider (which handles the presentation of the
data in the table) to display each row of data as multiple columns, rather than the
single reference that we saw previously. This is achieved by replacing the existing
getColumnText(…) method with the information in Example 6-11.

Example 6-11 Updating the ViewLabelProvider

public String getColumnText(Object obj, int index) {
 if (obj != null) {
 String[] row = (String[]) obj;
 return row[index];
 }
 else {
 return null;
 }
}

This method simply returns the appropriate cell data from the passed row
according to the passed column number. Although we are looking at the
ViewLabelProvider, we can stop icons being displayed in the cells by changing
the getColumnImage(…) method to return null.

Finally, we need define the new columns in the table, and specify the text for the
column headers. We define a new method in the ManagedSystemListView class,
which creates these column definitions as in Example 6-12.

Example 6-12 Defining new columns

private void defineTableColumns(Table table, SoapXMLParser parser) {
 String[] columnHeaders = parser.getColumnNames();
 for (int i = 0; i < columnHeaders.length;i++) {
 TableColumn column = new TableColumn(table, SWT.CENTER);
 column.setText(columnHeaders[i]);
 column.setWidth(100);
 }
}

188 Extend the CICS Explorer: A Better Way to Manage Your CICS

This method can only be called when we have data returned from the SOAP
interface, as our columns and their names are specified in the returned data. We
invoke this method in the requestData() method. Add the information in
Example 6-13 before the viewer.refresh() method.

Example 6-13 Adding before the viewer.refresh() method

// if we have not previously defined the columns that make up the table
do it now
Table table = viewer.getTable();
if (table.getColumnCount() == 0) {
 defineTableColumns(table, parser);

With these changes in place, we can run the code again. We see a table with
multiple columns and with headers on each of the columns. It resembles
Figure 6-15.

Figure 6-15 Managed System List view with columns

In this view, we can see the names of all the managed systems in our
OMEGAMON XE monitoring environment, and we also see any other IBM Tivoli
Monitoring systems visible to our TEMS. One column of particular interest is the
Status column, which tells us whether the systems are online or offline.

Now that we have a list of the systems being monitored, we have several options
for what we can do next with the plug-in. These include:

� Moving the requests for data to a more suitable thread
� Refreshing the data in the table either on demand, or at regular intervals
� Sorting the data in the table
� Filtering the data displayed in the table by specific values.
 Chapter 6. Combining OMEGAMON data with CICS Explorer 189

We discuss sorting of the data in the table and refreshing the data at a regular
interval in 6.5.3, “Sorting the Managed System List” on page 190, and leave the
filtering item and the refreshing of the data when prompted by the user as an
exercise for the user. A useful side effect of the code that are added to fetch the
data at regular intervals is that the requests for data is moved to a more suitable
thread.

6.5.3 Sorting the Managed System List

The column to be sorted can be selected by clicking the column header, so we
need to add code to detect the user clicking the column header. We start by
defining a Listener class as in Example 6-14. Add this code as an inner class in
the ManagedSystemListView class. This simple code detects column header
selection events. When a selection event is detected, it sets the selected column
and drives a re-sort of the data in the table.

Example 6-14 ColumnHeaderSelectionListener class

// the selection listener for the column headers
class ColumnHeaderSelectionListener implements Listener {
 private final ManagedSystemListView owner;

 ColumnHeaderSelectionListener(ManagedSystemListView owner) {
 this.owner = owner;
 }

 public void handleEvent(Event e) {
 TableColumn currentColumn = (TableColumn)e.widget;
 Table table = currentColumn.getParent();

 int colIndex = -1;
 for (int i = 0;i<table.getColumnCount();i++) {
 if (table.getColumn(i) == currentColumn) {
 colIndex = i;
 }
 }
 owner.setSortColumn(colIndex);
 table.setRedraw(false);
 owner.sort();
 table.setRedraw(true);
 viewer.refresh();
 }
}

190 Extend the CICS Explorer: A Better Way to Manage Your CICS

Adding the ColumnHeaderSelectionListener class introduces a couple of errors,
as we need to add further code to the class. To remove the errors, add the
missing methods and fields to the ManagedSystemListView class. This code is
shown in Example 6-15.

Example 6-15 ‘Sort’ fields and methods for ManagedSystemListView class

// support for column sorting
private int sortColumn = 0;
private boolean sortUp = false;

void setSortColumn(int column) {
 if (sortColumn == column) {
 sortUp = !sortUp;
 }
 this.sortColumn = column;
}

void sort() {
 viewer.getSorter().sort(viewer, ((IStructuredContentProvider)
viewer.getContentProvider()).getElements(null));
}

We also need to associate the selection listener with the table columns, so we
modify the defineTableColumns(…) method to look like that shown in
Example 6-16. The only change is to add the line in bold that registers the
listener with each of the columns as they are created.

Example 6-16 Updated defineTableColumns(...) method

private void defineTableColumns(Table table, SoapXMLParser parser) {
 String[] columnHeaders = parser.getColumnNames();
 for (int i = 0; i < columnHeaders.length;i++) {
 TableColumn column = new TableColumn(table,
SWT.CENTER);
 column.setText(columnHeaders[i]);
 column.setWidth(100);
 column.addListener(SWT.Selection, new
ColumnHeaderSelectionListener(this));
 }
}

 Chapter 6. Combining OMEGAMON data with CICS Explorer 191

Finally, we need to add code to the ColumnSorter class that was created for us
when the plug-in was created by the wizard. Replace the (currently empty)
existing implementation of the NameSorter inner class with the version shown in
Example 6-17. This class provides an implementation of a ViewerSorter class
that is invoked by the TableViewer’s underlying code when its sort() method is
invoked.

Example 6-17 Updated NameSorter class

class NameSorter extends ViewerSorter {
 private final ManagedSystemListView owner;

 public NameSorter(ManagedSystemListView owner) {
 this.owner = owner;
 }

 public int compare(Viewer viewer, Object e1, Object e2) {
 // find the two values to be compared (depends on the
current sort column)
 String value1 = ((String[]) e1)[sortColumn];
 String value2 = ((String[]) e2)[sortColumn];

 // guard against null values
 if (value1 == null || value2 == null) {
 return 0;
 }
 if (owner.sortUp) {
 return value1.compareTo(value2);
 }
 else {
 return value2.compareTo(value1);
 }
 }
}

The final change is in the createPartControl(…) class. Replace
viewer.setSorter(new NameSorter()) with viewer.setSorter(new
NameSorter(this));

We now have a plug-in that displays the managed system list and can sort the
displayed data by the values in any of the columns. This can be useful to group
systems by their product code, or to group all the offline systems at the top of the
view.
192 Extend the CICS Explorer: A Better Way to Manage Your CICS

6.5.4 Requesting the Managed System List repeatedly

The plug-in currently requests the managed system list once when it is created.
We have two concerns with this:

� We are doing network I/O on the Display thread. The GUI does not respond
while the I/O operation is in process.

� The list is not updated and so does not reflect changes to system status.

We can address both of these problems by driving the request for data regularly
on another thread. The changes are simple.

First, we update the createPartControl(…) method. Remove the last line
‘requestData();’ and replace it with the code shown in Example 6-18.

Example 6-18 requestThread

Thread requestThread = new Thread() {
 public void run() {
 while (true) {
 // request the situations
 requestData();

 // and sleep for a bit before fetching the
situations again
 try {
 Thread.sleep(60000);
 }
 catch (InterruptedException e) {
 // woken early - ignore
 }
 }
 }
};
requestThread.start();

This code creates a thread that issues and processes the request and then waits
for one minute (60,000 milliseconds) before repeating, and then starts the thread.

If we run the plug-in now, we see an org.eclipse.swt.SWTException, as we are
trying to update the table (an SWT widget) on a thread other than the Display
thread (the thread that we created previously). We need to change the
requestData() method to make the updates on the Display thread. The updated
version of the requestData() method is shown in Example 6-19 on page 194.
 Chapter 6. Combining OMEGAMON data with CICS Explorer 193

Example 6-19 Updated requestData() method

private void requestData() {
 if (soapInterface == null) {
 soapInterface = new SoapInterface(hostname, port,
userid, password);
 }
 final SoapXMLParser parser =
soapInterface.getParsedData(SoapInterface.MANAGED_SYSTEM_LIST_REQUEST);
 if (parser != null) {
 Display display = viewer.getTable().getDisplay();
 display.asyncExec(new Runnable() {
 public void run() {
 String[][] dataTable =
parser.getDataTable();

 // update the table model with the
passed data
 ((ViewContentProvider)
viewer.getContentProvider()).setTableData(dataTable);

 // if we have not previously defined
the columns that make up the table, do it now
 Table table = viewer.getTable();
 if (table.getColumnCount() == 0) {
 defineTableColumns(table,
parser);
 }
 viewer.refresh();
 }
 });
 }
 else {
 showMessage("No data returned - Check host & port");
 }
}

The changes (all additions) are highlighted in bold. The reference to the
SoapXMLParser has been flagged as final so it can be access by the Display
thread. The code that updates the table is now invoked in an anonymous inner
class that is invoked on the Display thread.

We can now run the plug-in knowing that the managed system list updates every
minute.
194 Extend the CICS Explorer: A Better Way to Manage Your CICS

6.6 Displaying OMEGAMON situations

Now that we have a plug-in that requests the managed system list from the
TEMS SOAP interface and displays the list, it is easy to create another plug-in
that requests and displays Tivoli monitoring situations. These situations are
user-defined alerts that can be defined to trigger if certain criteria evaluate to
true. These criteria are typically undesirable performance values (such as CPU
usage too high, short or storage or transactions blocked waiting for resources) or
necessary resources becoming unavailable (connection not open or file
unavailable). Tivoli situations are defined through the TEP interface and can be
viewed there, but we can also retrieve a list of situations from the SOAP interface.

First, we need to define the new request that is used to request the situations.
Add the following instance variable to the SoapInterface class:

public static final String SITUATIONS_REQUEST =
"<table>O4SRV.ISITSTSH</table><sql>SELECT SITNAME, NODE, ATOMIZE,

GBLTMSTMP, LCLTMSTMP, ORIGINNODE, PATHNAME, TYPE, DELTASTAT FROM
O4SRV.ISITSTSH WHERE DELTASTAT = 'Y' </sql>";

This SOAP request uses native SQL to request the data from the TEMS. As you
can see, the SOAP requests can be constructed from tags that describe the table
from which the data is extracted, what data is required, and any filters that are
used to restrict the returned data. In this case, we use SQL to specify this
information.

The request syntax is consistent with SQL statements issued against database
engines and so requires little explanation. The Select statement specifies that we
want data returned and the columns that are required, the From clause specifies
the table that is searched for the data, and the Where clause specifies the
constraints that is applied when choosing which rows from the table are returned.

Creating a plug-in that displays current situations requires little more than
copying the plug-in we created to display the managed system list and changing
the request that is issued to the SOAP interface. Obviously this approach creates
a significant amount of duplicate code in the two plug-ins and it is a good idea to
factor out much of this code into common code that is shared by the plug-ins, but
we do not discuss that here.

To create the new view, create a new plug-in project, called “SituationView” with
the new plug-in wizard, following the steps described in 6.5.1, “Creating the
Managed System List plug-in” on page 182. This time, select the same options in
the wizard, but with different names on the final panel. See Figure 6-16 on
page 196.
 Chapter 6. Combining OMEGAMON data with CICS Explorer 195

Figure 6-16 Create Situation View - wizard last panel

We are going to use the OEMGAMON_SOAP plug-in to provide our data so we
need to specify a dependency on this plug-in. We select the Dependencies tab,
this time in the plugin.xml file in the SituationsView project that we have just
created. On the Dependencies tab, add OMEGAMON_SOAP to the list of
required plug-ins (and save) to allow us to access the code exported from that
plug-in.

Next, replace the generated code in the SituationView class with the code from
the class ManagedSystemListView, but with a few modifications to fetch
OMEGAMON Situation data rather than the ManagedSystemList.
196 Extend the CICS Explorer: A Better Way to Manage Your CICS

The steps to make these changes are as follows:

1. Delete all the code after the package statement in class SituationView, and
copy the entire contents of ManagedSystemListView (other than the package
statement in its place.

2. Replace all instances of ‘ManagedSystemListView’ with ‘SituationView’.

3. In the requestData() method, change the following line:

final SoapXMLParser parser =
soapInterface.getParsedData(SoapInterface.MANAGED_SYSTEM_LIST_REQUEST);

Replace the preceding code with the following line

final SoapXMLParser parser =
soapInterface.getParsedData(SoapInterface.SITUATIONS_REQUEST);

Save.

Run the program and we now have a new view that we can select from the
Window Show View Other menu option as shown in: Figure 6-17.

Figure 6-17 Show view - Situation view
 Chapter 6. Combining OMEGAMON data with CICS Explorer 197

Selecting this view displays the current situations (if any) in the monitored
systems, as shown in Figure 6-18.

Figure 6-18 OMEGAMON Situations View

6.7 Displaying OMEGAMON data for specific CICS
regions

This chapter has focused on displaying data that applies across the Tivoli
monitoring systems. We now look at requesting data for specific CICS regions.
There are a large number of reports supplied as part of the OMEGAMON for
CICS product, with more being added with new releases to reflect new features
in CICS. Most of these reports can be driven through the SOAP interface using a
similar request to that used previously to request the managed system list or
situations.

6.7.1 Constructing SOAP queries for CICS data

Before we code our next plug-in, now is a good time to look at the SOAP request
format a little more closely. The general form of the SOAP request we are going
to use to request data about specific CICS regions is as follows:

<CT_Get>
<userid>sysadmin</userid><password></password>
<object>report_name</object>
<target>region_originnode</target>
<afilter>column_name;operator;value</afilter>
</CT_Get>

The first and last lines mark the start and end of the request. Again, we are using
a CT_GET request to request data.

The second line is also familiar. It contains our user ID and password.
198 Extend the CICS Explorer: A Better Way to Manage Your CICS

The ‘object’ tag (third line) specifies which of the many available reports we are
interested in. We discuss how you can find a list of these reports in the text that
follows.

The ‘target’ tag (fourth line) contains the ORIGINNODE of the CICS region we
are interested in. This value we can get from the managed system list.

The ‘afilter’ tag (fifth line) contains the constraints that are used when the data is
requested. There can be more than one of these tags, each specifying additional
constraints. These are analogous to the WHERE clause in an SQL SELECT
statement. The column_name field is the name of the column to which the filter
applies. The value field is the value that is compared with the column value when
the server chooses the data to be returned. The operator field is the operator that
is used in the comparison. Valid operator field values are the usual comparator
values:

� EQ (equals),
� NE (not-equal),
� GT (greater than)
� LT (less than)
� GE (greater than or equal to)
� LE (less than or equal to)

Example 6-20 is a sample request for the CICSplex Region Overview report for
CICS region ZT01.CICSDM25.

Example 6-20 Sample request

<CT_Get>
<userid>sysadmin</userid><password></password>
<object>CICSplex_Region_Overview</object>
<target>ZT01.CICSDM25</target>
<afilter>Origin_Node;EQ;ZT01.CICSDM25</afilter>
</CT_Get>

It can be useful to experiment with values in the SOAP request fields either in the
plug-in code that we create in the section that follows, or using the supplied Web
client as described in 6.3.1, “Connecting to the TEMS SOAP interface with the
Web client” on page 164.
 Chapter 6. Combining OMEGAMON data with CICS Explorer 199

Finding values to use in the XML requests
Because there is a large number of reports that can be driven to request data
from OMEGAMON CICS, it can be a problem finding out what reports are
available and what their names are. There are several approaches to this, but
one approach is as follows:

1. View the TEP client and choose a query that contains the data that you are
interested in.

2. Right-click the report of interest, and select Properties in the menu.

3. In the Properties dialog box, click the Click here to assign query button.

4. Read the query name from the list on the right of the query editor dialog box,
as shown in Figure 6-19. In this list, the query has spaces between the words
that make up the name, but we require underscore characters instead of
spaces.

Figure 6-19 TEP Query View

5. Open the DOCKCP file in your TEPS install directory (typically on windows
this is in c:\ibm\itm\cnps.

6. Find the query name in the DOCKCP file. It should be on a line that starts
*OBJECT:

7. Scroll down from here to read the column names. These are on lines that start
with the tag *ATTR:

When you reach a block of text that includes another *OBJECT: tag, you have
reached the definitions for another report.
200 Extend the CICS Explorer: A Better Way to Manage Your CICS

This gives you the appropriate values to use in the object and afilter tags of the
SOAP request.

Alternatively, the report names can be derived from the kcp.atr and kcp.cat
files. Although these files are more difficult to read, they can be scanned easily
with a simple program to list all the available reports. This alternative approach is
described, along with an excellent overview of the SOAP interface, in a technote
that can be found at the following Web page:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD104290

6.7.2 Displaying the OMEGAMON CICS Region Overview report

Requesting and displaying the CICS region overview report from OMEGAMON
requires a similar approach to display the managed system list and the
situations, but now we must construct the request with the name of the CICS
system in which we are interested. This requires additional input, as we cannot
specify the region when we write the code. We are going to allow the user to
specify the CICS region in two ways:

� By selecting a monitored CICS region in the managed system list

� By selecting a CICS region in the CICS Explorer navigation tree.

Before we implement either of these selection methods, we need to write the
plug-in that displays the region overview information.

Tip: Although this example demonstrates requesting the CICS region
overview, it is a simple matter to change the code to request a different report,
or to request one of several reports depending on user input or other context.
 Chapter 6. Combining OMEGAMON data with CICS Explorer 201

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TD104290

We create the Region Overview in the same way that we created the Situation
View plug-in; by copying the Managed System List plug-in code and making
changes as required. Again, we create a plug-in project using the wizard that has
a Table view. We call the plug-in project RegionOverview and specify the values
on the wizard’s final panel, as shown in Figure 6-20.

Figure 6-20 Create Situation View - wizard last panel

We add OMEGAMON_SOAP to the list of required plug-ins to allow us to access
the code exported from that plug-in.

As with the situationView, delete the entire contents of the RegionOverviewView
class, with the exception of the package statement at the top. Replace this with
the ManagedSystemListView class, and replace all instances of
ManagedSystemListView with RegionOverviewView.

Now we can address the code that requests the region overview for a specific
CICS region. As we are constructing the SOAP request at runtime, we need an
instance field to hold the identifier of the CICS region that we are going to
request data for. The code in Example 6-21 on page 203 contains the field with
its getters and setters. Add this to the RegionOverviewView class.
202 Extend the CICS Explorer: A Better Way to Manage Your CICS

Example 6-21 originNode field

private String originNode;
public String getOriginNode() {
 return originNode;
}
public void setOriginNode(String originNode) {
 this.originNode = originNode;
}

Next, replace the hard-coded SOAP request in the requestData() method with
the code to construct the request based on the current value of the ‘originNode’
field. Replace the following line in the requestData() method with the code in
Example 6-22:

final SoapXMLParser parser =
soapInterface.getParsedData(SoapInterface.MANAGED_SYSTEM_LIST_REQUEST);

Example 6-22 Construct cics region overview request

if (originNode == null) {
 return;
}
String request = "<object>CICSplex_Region_Overview</object>" +

"<target>" + originNode + "</target>" +
"<afilter>Origin_Node;EQ;" + originNode + "</afilter>";

final SoapXMLParser parser = soapInterface.getParsedData(request);

This code checks to see if the originNode value has been set and returns if it hs
not, because we cannot issue a request without it. It then constructs the request,
inserting the originNode value as required and then issues the request as before.

Next we need a way to trigger the issuing of the request. We can achieve this by
waking the thread that issues the request in the inner class in the
createPartControl(…) method. We have to gain access to this thread, so we
change the requestThread local variable in the createPartControl(…) method
into an instance field in the RegionOverviewView class:

1. Add an instance variable ‘private Thread requestThread; to the
RegionOverviewView class.

2. Change the line Thread requestThread = new Thread() { in the
createPartControl(…) method, to requestThread = new Thread() {.
 Chapter 6. Combining OMEGAMON data with CICS Explorer 203

3. Replace the setOriginNode(…) method with the code shown in Example 6-23,
which wakes the request thread when we receive new value for originNode.

Example 6-23 Updated setOriginNode(...) method

public void setOriginNode(String originNode) {
 this.originNode = originNode;
 requestThread.interrupt();
}

We now need code to drive this view. We make this view display the CICS region
overview report for the selected CICS region in the managed system list, and
then we add code to react to selection events in the CICS Explorer.

We need to tell the Managed System View to make its selection events visible to
other plug-ins, so add the following lines to the end of the createPartControl(…)
method of the ManagedSystemListView class:

// ensure that this table issues selection events that can be detected
by other plug-ins
getSite().setSelectionProvider(viewer);

In its current form, the managed system list table only detects selection events in
the first column. Although this is sufficient, it is not ideal, so we need to change it
to detect selections anywhere in the row. We can do this by changing the first line
of the createPartControl method in the ManagedSystemList class. We need to
add the SWT.FULL_SELECTION flag in the call to the TableViewer constructor,
so that the first line becomes:

viewer = new TableViewer(parent, SWT.MULTI | SWT.H_SCROLL |
SWT.V_SCROLL | SWT.FULL_SELECTION);

Now that the Managed System List is issuing selection events, we can add code
to the Region Overview view to listen for them. This code is a new method that is
shown in Example 6-24.

Example 6-24 init(..) method

public void init(IViewSite site) throws PartInitException {
 super.init(site);
 // register ourselves as interested in selection events in
other views
 site.getPage().addSelectionListener(new ISelectionListener(){
 public void selectionChanged(IWorkbenchPart arg0,
ISelection selection) {
 if(!selection.isEmpty()) {
 Object firstElement =
204 Extend the CICS Explorer: A Better Way to Manage Your CICS

((StructuredSelection)selection).getFirstElement();
 if (firstElement instanceof String[]) {
 String[] selectedRow =
(String[]) firstElement;
 if (selectedRow.length < 7) {
 // not an MSL row -
insufficient columns
 return;
 }
 String originNode =
selectedRow[1];
 String productCode =
selectedRow[6];
 if ("CP".equals(productCode) ==
false || originNode == null ||

originNode.indexOf('.') < 1) {
 // not a CICS region
 return;
 }
 // this is probably a CICS
region in the Managed System List
 setOriginNode(originNode);
 }
 }
 }
 });
}

As this method overrides a method in the super class, it starts with a call to the
super class’s implementation. The code then creates an inner class that listens
for selection events from plug-ins within Eclipse. As these selection events might
come from many plug-ins other than the events we are looking for, the code has
to check for and reject unexpected values. Most of the code is checking for
unexpected values, and if one is found, the code returns without further
processing.

If the selection event has a String[] as its data component, and if the string array
is long enough to have come from the Managed System List view, the code
attempts to read the product code and origin node values from the row. Only if
the product code matches that for CICS (CP) and if the origin node is of the
correct format does the code invoke the setOriginNode(…) method to drive a
request for the region overview for the selected CICS region.
 Chapter 6. Combining OMEGAMON data with CICS Explorer 205

We can now run the application to try out our new plug-in. We need to display the
new view. Navigate to Window Show View Other, as shown in
Figure 6-21.

Figure 6-21 Show view: Region Overview view

Tip: Because the Managed System List view uses a simple array of string
arrays to contain its data, the selection listener for events from it requires
detailed knowledge of the order of the columns in the table. If this ordering
were to change, the code fails. A better approach is to use a dedicated class
to encapsulate the row’s values and provide suitable getter methods to return
the required values from the row. This approach has not been followed here as
it increases the complexity of this example, but it is not be advisable to use this
simple approach in production code.
206 Extend the CICS Explorer: A Better Way to Manage Your CICS

Selecting this view displays an empty table, as we have not yet selected a row in
the managed system list. However, if we select a CICS region in the managed
system list, we see the region overview report for that CICS region, as shown in
Figure 6-22.

Figure 6-22 Region Overview view

6.8 Driving an OMEGAMON plug-in from CICS Explorer

The Region Overview view reacts to selection events in the managed system list.
Although this can be useful, it is useful to make this plug-in also react to selection
events in the CICS Explorer.

To make the Region Overview plug-in react to selections in the CICS Explorer,
we need two extensions to the code we have so far:

� The Region Overview plug-in must detect (and understand) CICS Explorer
selection events

� We need to translate between the way that the CICS Explorer identifies a
CICS Region, and the way that OMEGAMON identifies a CICS Region.

We deal with these the translation problems first, and then move on to the
selection events.

Note: For the code that follows to work, your CICS regions must be both
monitored by OMEGAMON and accessible by the CICS Explorer, either
through the CMCI interface or CPSM.
 Chapter 6. Combining OMEGAMON data with CICS Explorer 207

6.8.1 Translating between CICS Explorer and OMEGAMON identifiers

OMEGAMON identifies CICS regions by their ORIGINNODE. This is a
concatenation of the z/OS System ID (SMFID) and CICS region name separated
by a period character (.).

The CICS Explorer identifies the CICS region by the value in the NAME field of
the EYUPARM in the CICS region's JCL. This is typically the CICS region’s
APPLID, but it might not be.

Although we are discussing this conversion in the context of the region overview
report, it can be used in other plug-ins, so it is useful to place the conversion
routine in a common location that can be accessed easily by multiple plug-ins.
The OMEGAMON_SOAP plug-in that we created earlier in this chapter is already
accessed by several plug-ins, so that is a suitable place for this lookup code to be
implemented.

When a CICS Explorer event is received by the Region Overview plug-in, the
plug-in queries the CICS Explorer API to discover the CICS region’s jobname,
and then it queries the managed system list to find the ORIGINNODE value of
that CICS region. We can ease the process of looking up the ORIGINNODE
value by extracting the CICS jobname from the ORIGINNODE value when the
managed system list is retrieved from the host and maintaining a lookup table
that maps CICS jobnames to their ORIGINNODE values. The best time to do this
is when we process a request for the managed system list, and the ideal place to
do it is in the OMEGAMON_SOAP plug-in.

We need to make several changes to support a lookup of ORIGINNODE values
from a CICS jobname. All of these changes are applied to the SoapInterface The
first of these changes is simply to add a static field to a Java Map that contains
the following data:

private static Map<String, String> jobnameMap;

Next, add code to the getParsedData() method that invokes the creation (or
update) of the map if a managed system list has been requested and returned.
The updated method is shown in Example 6-25 on page 209.
208 Extend the CICS Explorer: A Better Way to Manage Your CICS

Example 6-25 Updated getParsedData(…) method

public SoapXMLParser getParsedData(String request) {
 String xmlResult = getData(request);
 if (xmlResult != null) {
 try {
 SoapXMLParser parser = new
SoapXMLParser(xmlResult);

 // if we were asked for a managed system list,
create a map
 // of cics jobnames to their ORIGINNODE values
 if
(request.equals(MANAGED_SYSTEM_LIST_REQUEST)) {
 createJobnameMap(parser);
 }
 return parser;
 }
 catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 }
 else {
 return null;
 }
}

Finally, we need the createJobnameMap(…) method, which populates the map,
and the getOriginNode(…) method, which returns an ORIGINNODE value for a
passed jobname if found. These methods are shown in Example 6-26.

Example 6-26 New SoapInterface methods

public static String getOriginNode(String jobname) {
 if (jobnameMap == null) {
 return null;
 }
 else {
 return jobnameMap.get(jobname);
 }
}

private void createJobnameMap(SoapXMLParser parser) {
 // ensure we have an empty map to fill
 if (jobnameMap == null) {
 Chapter 6. Combining OMEGAMON data with CICS Explorer 209

 jobnameMap = new HashMap<String, String>();
 }
 else {
 jobnameMap.clear();
 }
 String[][] table = parser.getDataTable();
 if (table != null) {
 for (String[] row : table) {
 if (row.length > 6) {
 String originnode = row[3];
 String productCode = row[6];
 if ("CP".equals(productCode) &&
originnode != null) {
 int separatorIndex =
originnode.indexOf(".");
 String jobname = null;
 if (separatorIndex > 0 &&

separatorIndex < originnode.length()-1) {
 jobname =
originnode.substring(separatorIndex+1);
 }
 if (jobname != null) {
 jobnameMap.put(jobname,
originnode);
 }
 }
 }
 }
 }
}

Tip: Once again, we have code that requires detailed knowledge of the
managed system list report. Again, this code would be better if we had a
dedicated class that encapsulated the report data and provided suitable getter
methods
210 Extend the CICS Explorer: A Better Way to Manage Your CICS

6.8.2 Detecting and understanding CICS Explorer selection events

Our first issue is finding out what events are fired when a selection is made in a
CICS Explorer view. We already have most of the code we require to find out
about these events. The SelectionListener for the OMEGAMON Region
Overview report captures selection events published in Eclipse, including those
from the CICS Explorer. We can see the class of the selection events by adding a
line to the selection listener immediately after we have assigned the firstElement
variable, such as:

System.out.println("Selection, class: " + firstElement.getClass() + "
toString " + firstElement);

We can now run the code, connect our CICS Explorer to a server, and select
items in the CICS Explorer to view their classes in standard output.

The first of these selection events was caused by clicking a CICS region in the
CICS Explorer topology view, the second by clicking a row in the CICS Explorer
Regions view. Figure 6-23 shows these items selected in the CICS Explorer.

Figure 6-23 CICS Explorer CICS region selected

An example of the output for these selection events is shown in Example 6-27,
where we have the output for the two events

Example 6-27 Selection events shown in standard output

Selection, class: class com.ibm.cics.core.model.internal.ManagedRegion
toString: ManagedRegion[IYK2ZGV1]

Selection, class: class com.ibm.cics.core.model.internal.Region
toString: com.ibm.cics.core.model.internal.Region[IYK2ZGV1]

We can see from these two events that we have received instances of two
separate classes:

� com.ibm.cics.core.model.internal.ManagedRegion
� com.ibm.cics.core.model.internal.Region
 Chapter 6. Combining OMEGAMON data with CICS Explorer 211

We cannot add either of these classes to the dependencies for our plug-ins, as
they are not made available to us by the SDK plug-ins, but we can go looking for
Interfaces that they implement. For many of the internal CICS Explorer classes,
there is a publicly visible interface that has the same name as the class, but with
a letter ‘I’ as a prefix. When we look for these interfaces (Navigate to Menu
Open type) we see that these interfaces are both defined in the
com.ibm.cics.model (as shown in Figure 6-24) package, which we can access
from our plug-ins.

Figure 6-24 Open type IRegion & IManagedRegion

Tip: This technique can be applied to detecting and identifying any selection
events from the CICS Explorer.
212 Extend the CICS Explorer: A Better Way to Manage Your CICS

Now that we know what events we are expecting from the CICS Explorer, our
next challenge is extracting the information we require from these events that we
have received. If we look at the methods in these interfaces we see that the
IRegion Interface has a getJobname() method that returns a string. This is what
we need to find the CICS region in our managed system list, with a little work.
The IManagedRegion Interface does not have such a useful method and
presents us with additional challenges, so for now we focus on getting the
IRegion selection event working and come back to the IManagedRegion event
later.

We can react to the IRegion event from the CICS Explorer with a simple piece of
code, but we need to give the Region Overview plug-in access to the
com..ibm.cics.model package so that we can cast the received event into the
appropriate type. Select plugin.xml in the RegionOverview and go to the
Dependencies tab. Here we add the package to the Imported Packages list as
shown in Figure 6-25.

Figure 6-25 Region Overview add dependencies

Next, add another clause to the IF statement in our selection listener in
RegionOverviewView, as shown in Example 6-28.

Example 6-28 IRegion clause in selection listener

if(!selection.isEmpty()) {
 Object firstElement =
((StructuredSelection)selection).getFirstElement();
 if (firstElement instanceof String[]) {
 .
 .
 .
 }
 else if (firstElement instanceof IRegion) {
 IRegion region =(IRegion) firstElement;
 String jobname = region.getJobName();
 Chapter 6. Combining OMEGAMON data with CICS Explorer 213

 // try to find an ORIGINNODE for this jobname
 String originNode =
SoapInterface.getOriginNode(jobname);
 if (originNode != null) {
 setOriginNode(originNode);
 }
 }
}

This additional code extracts the jobname from the received event and uses the
code we wrote to look up the ORIGINNODE of CICS region. Given the
ORIGINNODE, we can drive the Region Overview report in the same way as
when a CICS region was selected in the managed system list.

As the IRegion event is fired when a row is selected in the Regions table view in
the CICS Explorer, we can now test this code. We get results like those shown in
Figure 6-26.

Figure 6-26 CICS Explorer Regions and OMEGAMON

We can now move on to the challenge of handling events from the navigation
tree, the IManagedRegion events. The IManagedRegion does not have a
reference to a jobname, so we have to go through several other steps.

To get the jobname, we have to get an instance of an IRegion object for ourselves
by driving the CICS Explorer’s API. The IManagedRegion object has a reference
to the name that CICS Explorer uses to identify the CICS region. This is the main
thing that we need when we want to get an IRegion instance. Because we expect
to use this several plug-ins, we place this code in the OMEGAMON_SOAP
plug-in. The code we use is based on the code introduced in 5.1.3, “Using our
sample code” on page 98, but with a few differences. For simplicity, we have
placed all this code in static methods in a new class called ExplorerWrapper in
the OMEGAMON_SOAP plug-in. This new class is shown in Example 6-29 on
page 215. We have included the import statements for clarity.
214 Extend the CICS Explorer: A Better Way to Manage Your CICS

Example 6-29 ExplorerWrapper.java

package omegamon_soap;

import com.ibm.cics.core.model.CICSTypes;
import com.ibm.cics.core.model.ICPSM;
import com.ibm.cics.core.model.IResourcesModel;
import com.ibm.cics.core.model.ScopedContext;
import com.ibm.cics.core.ui.UIPlugin;
import com.ibm.cics.model.ICICSplex;
import com.ibm.cics.model.IManagedRegion;
import com.ibm.cics.model.IRegion;

public class ExplorerWrapper {
public static String getJobName(IManagedRegion managedRegion) {

ICPSM cpsm = (ICPSM)
UIPlugin.getDefault().getResourceManager(
UIPlugin.SYSTEM_MANAGER_CONNECTION_ID);

if (cpsm != null) {
// we need to find the context for the passed managed region
String context = getContext(cpsm, managedRegion);
if (context != null) {

ScopedContext scopedContext =
new ScopedContext(context, managedRegion.getName());

IResourcesModel regionModel =
cpsm.getModel(CICSTypes.Region, scopedContext);

if (regionModel != null) {
regionModel.activate();
regionModel.maybeFetch(0,-1);
if (regionModel.size() > 0) {

regionModel.maybeFetch(0,regionModel.size());
IRegion region = (IRegion) regionModel.get(0);
String jobname = region.getJobName();
return jobname;

}
}

}
}
// failed to find the jobname
return null;

}

private static String getContext(ICPSM cpsm, IManagedRegion
managedRegion) {

// find the plex containing the passed managed region
 Chapter 6. Combining OMEGAMON data with CICS Explorer 215

ICICSplex[] plexes = cpsm.getCICSplexes();
if (plexes != null) {

if (plexes.length == 1) {
// only one plex - must be the right one
return plexes[0].getName();

}
else {

// test each plex in turn
String searchRegionName = managedRegion.getName();
for (ICICSplex plex : plexes) {

IManagedRegion[] regions = cpsm.getManagedRegions(plex);
for (IManagedRegion region : regions) {

if (region.getName().equals(searchRegionName)) {
// found the owning cmas
return plex.getName();

}
}

}
}

}
// we have failed to find the owning cmas
return null;

}
}

216 Extend the CICS Explorer: A Better Way to Manage Your CICS

When you create the ExplorerWrapper class as shown in Example 6-29 on
page 215, you have multiple compile errors due to the plug-in not having
dependencies on the necessary CICS Explorer plug-ins. By a process of
searching for the classes referenced in the errors using the technique described
in 4.3.3, “Adding CICS Explorer code to the Eclipse Template code” on page 82,
we found that the required dependencies that have to be added to
OMEGAMON_SOAP are as shown in Figure 6-27.

Figure 6-27 OMEGAMON_SOAP Explorer dependencies

The code in Example 6-29 on page 215 deserves discussion. The only public
method is the getJobName(…) method. It is passed an IManagedRegion instance,
and it returns the jobname for that CICS region. It starts by getting a connection
to the host through the CICS Explorer API (the cpsm reference). After we have
this reference, we need to find the context for the passed IManagedRegion. This
is achieved by the getContext method, which queries every CICS region name
on every plex until it finds a matching region name. It can then return the owning
CMAS.

After we have the context, we can query the IManagedRegion for its name, which
is the scope for the query we are about to issue. Given the context and scope, we
can now request the CICSTypes.Region (IRegion) that we require. When we
receive this object we cast it into an IRegion and extract the jobname that we
return.

This code can be easily modified to retrieve a jobname based on other objects
received from the CICS Explorer.

Note: The ManagedRegion object actually has a reference to its context, but
this is not currently available through the IManagedRegion interface. As the
CICS Explorer SDK is still evolving, this reference might become available in
the future, which removes the need for the getContext(…) method.
 Chapter 6. Combining OMEGAMON data with CICS Explorer 217

The final piece of code is another clause in the if statement in our selection
listener in RegionOverviewView, as shown in Example 6-30.

Example 6-30 IManagedRegion clause in selection listener

if(!selection.isEmpty()) {
 Object firstElement =
((StructuredSelection)selection).getFirstElement();
 if (firstElement instanceof String[]) {
 .
 .
 .
 }
 else if (firstElement instanceof IRegion) {
 .
 .
 .
 }
 else if (firstElement instanceof IManagedRegion) {
 IManagedRegion managedRegion = (IManagedRegion) firstElement;
 String jobname = ExplorerWrapper.getJobName(managedRegion);
 String originNode = SoapInterface.getOriginNode(jobname);
 if (originNode != null) {
 setOriginNode(originNode);
 }
 }
}

This code drives the getJobName(…) method we described and then drives the
OMEGAMON code to fetch the region overview for the selected CICS region.

If we run the code now, we can see the OMEGAMON Region Overview for any
CICS region selected in the tree, without having to select that CICS region in the
CICS Explorer Regions view, as shown in Figure 6-28.

Figure 6-28 CICS Explorer tree selection and OMEGAMON
218 Extend the CICS Explorer: A Better Way to Manage Your CICS

We now have a plug-in that displays OMEGAMON data related to the currently
selected CICS region in CICS Explorer. It is a simple matter to modify this code
to display other OMEGAMON reports based on other selections in the CICS
Explorer.

6.9 Summary

In this chapter we have discussed the SOAP interface into the Tivoli Enterprise
Management Server (TEMS) that allows access to a variety of OMEGAMON
data. We have used this interface to provide information for several plug-ins that
are useful in their own right, but that also provide examples from which to create
your own reports displaying other OMEGAMON data.

We have also demonstrated how to drive OMEGAMON reports based on
selections in the CICS Explorer. This code can be used as a basis for other
reports that you might want to create.

The code and techniques described here can also be used when writing other
extensions to the CICS Explorer for data sources other than OMEGAMON.
Additionally, these examples can be used to integrate OMEGAMON data with
products other than CICS Explorer.

Other possible extensions to the plug-ins created here include other
representations of the data, such as graphs or a hierarchical view of the
managed system list that is similar to the to the physical navigation tree view in
the Tivoli Enterprise Portal (TEP) client. That requires interesting code to convert
the data into a tree structure, but after this had been done, it provides a useful
plug-in from which to navigate through the available data that can be retrieved
from the SOAP interface.
 Chapter 6. Combining OMEGAMON data with CICS Explorer 219

6.10 References and further reading

The information and code presented in this chapter gives you a good starting
point when writing your own Eclipse plug-ins that integrate OMEGAMON data
and features with the CICS Explorer. The following is a list of several other
sources of information that might prove useful.

6.10.1 IBM Tivoli Monitoring Information Center

This is the definitive guide to the components that make up the ITM architecture,
and includes extensive details about the configuration and usage of the TEMS
Web services interface. This includes a discussion of the other commands
available in the SOAP interface that have not been discussed in this chapter.

6.10.2 OMEGAMON XE for CICS Information Center

This provides detailed information about the features available in OMEGAMON
XE for CICS, and provides detailed information about the available reports that
you can exploit in your plug-ins.

6.10.3 IBM Open Process Automation Library (OPAL)

This site brings together a selection of documents, best practices and tools for
products across the range of Tivoli software:

http://www-01.ibm.com/software/brandcatalog/portal/opal/

6.10.4 IBM Tivoli Monitoring Eclipse plug-in

This plug-in makes use of many of the concepts demonstrated in this chapter
and provides access to data from CICS and CICS Transaction Gateway:

http://www-01.ibm.com/software/brandcatalog/portal/opal/details?catalog
.label=1TW10OM1D

6.10.5 Using IBM Tivoli Monitoring V6.1 SOAP Services

This document provides an excellent overview of the TEMS Web services
interface and its usage:

http://www-01.ibm.com/software/brandcatalog/portal/opal/details?catalog
.label=1TW10TM4M
220 Extend the CICS Explorer: A Better Way to Manage Your CICS

http://www-01.ibm.com/software/brandcatalog/portal/opal/
http://www-01.ibm.com/software/brandcatalog/portal/opal/details?catalog.label=1TW10OM1D
http://www-01.ibm.com/software/brandcatalog/portal/opal/details?catalog.label=1TW10TM4M

Chapter 7. Setting CICS Trace Levels
through CICS Explorer

CICS tracing is a great tool for understanding how and why a system or
application is experiencing a problem. It traces the flow of execution through
CICS code and through user applications. You can see what functions are being
performed, which parameters are being passed, and the values of important data
fields at the time trace calls are made.

At defined trace points, CICS writes variable length tracing entries into the CICS
trace table. Trace points are used to make trace entries when exception
conditions occur. These trace points are always captured. Other trace points are
used to trace the mainline execution of CICS code. These trace points are each
associated with a level attribute. CICS allows you to control how much CICS
system tracing is to be done based on the trace level setting for each trace
component.

This chapter describes the necessary steps to create an CICS Explorer plug-in
that allows you to set CICS trace levels dynamically for each trace component,
similar to the functionality provided by the CICS CETR transaction.

7

© Copyright IBM Corp. 2010. All rights reserved. 221

7.1 The Trace Component Plug-in

In this example you create an Eclipse JFace viewer to display the CICS trace
components and accept the users input of which components to turn on or off
and what levels to set. It is important to understand three main concepts of
viewers when dealing with JFace viewers:

� Viewer: The user interface (for example, the tableviewer in this example)
� Content provider: Provides the model objects to the viewer
� Label provider: Defines how the model objects are displayed

This project consists of three main components:

� A model that represents the data for the plug-in
� A view that displays the data
� A pop-up display that allows the view to be displayed

Begin by creating a blank plug-in and add the necessary extension points,
packages, classes, and methods as you go along. This plug-in requires two
images that must be located in the icons folder for the project. After you create
your project, make sure you have the following two images in the icons folder:

� checked.gif
� unchecked.gif

You can find the images for these two icons in the additional materials for this
IBM Redbooks publication.

7.2 Creating the project

Start off by creating a project to contain all the classes for your plug-in. Switch to
the Plug-in Development perspective and select File New Project
Plug-in project and click Next. The first page of the wizard displays. Enter the
project name as cics.set.trace and click Next.

On the second page of the wizard, set the default properties. Click Next.

Note: You are going to create a blank plug-in without using a template.
However, if you want to create this plug-in using a template as in prior
examples, in the third page of the wizard, select Custom plug-in wizard and
click Next. Then, in the Template Selection page select Popup Menu and
View and click Next. You need to add appropriate names for the view and
pop-up menu settings. See 7.4.1, “Adding extension points and packages” on
page 227 for naming conventions for this example.
222 Extend the CICS Explorer: A Better Way to Manage Your CICS

In the third page of the wizard, clear the Create a plug-in using one of the
templates check box and click Finish. Your plug-in project has now been
created along with the default manifest files and the activator class. Because you
did not use a template, the view class was not generated. You create this class in
a later step.

An activator class controls the lifecycle of a plug-in as well as any images used in
the plug-in that are managed by the ImageRegistry. If the project has a class that
extends AbstractUIPlugin (for example, Activator.java), there must be a
getImageDescriptor() method to access ImageDescriptors given a path to
the image. In this example, you are using two check box images, so you must
add this method to the Activator.java class.

Open the Activator.java class in the “set.cics.trace” package and add the code in
Example 7-1.

Example 7-1 getImageDescriptor method

public static ImageDescriptor getImageDescriptor(String path) {
return imageDescriptorFromPlugin(PLUGIN_ID, path);

}

You get an error because the ImageDescriptor class must be imported. Add the
following import

import org.eclipse.jface.resource.ImageDescriptor;

Save and close the activator class. Next, you create the model structure for your
project.

7.3 Creating the model

This project uses two simple classes that represents the data model in your
design. The Component class is a simple object representing a trace component
with getters and setters for the following properties:

private String compId;
private String stdTraceLevel;
private String spcTraceLevel;
private boolean selected;

Note: If you used a template to create this plug-in, the getImageDescriptor()
method was generated automatically when the activator class was created.
 Chapter 7. Setting CICS Trace Levels through CICS Explorer 223

The ComponentModel class is used to hold a collection of Component instances.
So, let’s create the model.

Within your project, create the package cics.set.trace.model (right-click the
project, select New Package). Create the Component class (Example 7-2) in
this package.

Example 7-2 Component class

package cics.set.trace.model;

import java.beans.*;

public class Component {
private String compId;
private String stdTraceLevel;
private String spcTraceLevel;
private boolean selected;

private PropertyChangeSupport propertyChangeSupport =
new PropertyChangeSupport(this);

public Component() { }

public Component(boolean selected, String compId,
String stdTraceLevel, String spcTraceLevel) {

super();
this.selected = selected;
this.compId = compId;
this.stdTraceLevel = stdTraceLevel;
this.spcTraceLevel = spcTraceLevel;

}

public void addPropertyChangeListener(
String propertyName,PropertyChangeListener listener) {

propertyChangeSupport
.addPropertyChangeListener(propertyName, listener);

}

public void removePropertyChangeListener(
PropertyChangeListener listener) {

propertyChangeSupport
.removePropertyChangeListener(listener);

}

public String getCompId() { return compId; }
public String getSpcTraceLevel() { return spcTraceLevel; }
public String getStdTraceLevel() { return stdTraceLevel; }
public boolean isSelected() { return selected; }
224 Extend the CICS Explorer: A Better Way to Manage Your CICS

public void setCompId(String compId) {
this.compId = compId;

}

public void setSpcTraceLevel(String spcTraceLevel) {
propertyChangeSupport.firePropertyChange("spcTraceLevel",

this.spcTraceLevel,
this.spcTraceLevel = spcTraceLevel);

}

public void setStdTraceLevel(String stdTraceLevel) {
propertyChangeSupport.firePropertyChange("stdTraceLevel",

this.stdTraceLevel,
this.stdTraceLevel = stdTraceLevel);

 }

public void setSelected(Boolean isSelected) {
propertyChangeSupport.firePropertyChange("selected",

this.selected, this.selected = isSelected);
}

public String toString() {
String text = compId + "1=";

if (stdTraceLevel.equals("1")) text += "1";
else if (stdTraceLevel.equals("1-2")) text += "2";
else if (stdTraceLevel.equals("OFF")) text += "0";
else text += stdTraceLevel;

text += "&" + compId + "2=";
if (spcTraceLevel.equals("1-2")) text += "2";
else if (spcTraceLevel.equals("OFF")) text += "0";
else text += spcTraceLevel;

return text;
}

}

As you review this class, notice there is one additional parameter specified,
properChangeSupport. This parameter is used to add a PropertyChangeListener
to each property. A Property Change Event occurs when a property value has
changed. In this plug-in you have three properties that can change:

� selected
� stdTraceLevel
� spcTraceLevel

You add a PropertyChangeListener to the setter methods for each property to
listen for any changes.
 Chapter 7. Setting CICS Trace Levels through CICS Explorer 225

Next, create the ComponentModel class in this same package (Example 7-3). This
module initializes each of the trace components levels for both standard and
special and provides a collection of all the trace components. It sets all standard
tracing to level 1 and all special tracing to level 1–2, unless that component only
has level 1 tracing.

Example 7-3 ComponentModel class

package cics.set.trace.model;

import java.util.*;

public class ComponentModel {
private static ComponentModel content;
private List<Component> components;
// there are 65 trace components total
public String[] compId = {

"AP","BA","BM","BR","CP","DC","DD","DH","DM","DP",
"DS","DU","EI","EJ","EM","EP","FC","GC","IC","IE",
"II","IS","KC","KE","LC","LD","LG","LM","ME","ML",
“MN","NQ","OT","PA","PC","PG","PI","PT","RA","RI",
"RL","RM","RS","RX","RZ","SC","SH","SJ","SM","SO",
"ST","SZ","TC","TD","TI","TR","TS","UE","US","WB",
“WU","W2","XM","XS" };

// these components only have Level 1 tracing
private String[] spcL1Only = {

"BM","DC","KC","PC","SC","SZ","TD","UE" };

public ComponentModel() {
components = new ArrayList<Component>();
// initialize each entry
for (int i=0; i<compId.length; i++) {

Component component = new Component();
component.setSelected(false);
component.setCompId(compId[i]);
component.setStdTraceLevel("1");

if (Arrays.asList(spcL1Only).contains(compId[i]))
component.setSpcTraceLevel("1");

else
component.setSpcTraceLevel("1-2");

components.add(component);
}

}

public static synchronized ComponentModel getInstance() {
if (content != null)

return content;
226 Extend the CICS Explorer: A Better Way to Manage Your CICS

content = new ComponentModel();
return content;

}

public List<Component> getComponents() {
return components;

}
}

7.4 Creating the view

Now that you have the data model structure complete, you can create the view.
Because you are working with a blank plug-in, you need to add the extension
points and import any packages required for this plug-in.

7.4.1 Adding extension points and packages

First, add the extension points. In the manifests files, click the Extensions tab and
click Add under All Extensions. On the “Extension Point Selection” page, select
org.eclipse.ui.views under “Extension Points” and select Sample View under
“Available templates”. Click Next. On the next page, specify the following values:

� View Class Name: TraceComponentView
� View Name: Trace Component View
� View Category Name: CICS Category

You are using a table viewer for this view, so ensure it is selected. Click Finish to
add this extension point and create the plug-in class. Notice that three extensions
have been added to the Extensions tab for your plug-in.

You just added the view template to your project. Because this plug-in uses a
pop-up menu as well, you need to add one more extension for the pop-up menu
extension point. Click Add again and select org.eclipse.ui.popupMenus under
“Extension Points” and select Popup Menu under “Available templates” and click
Next. On the next page add this pop-up menu to the Regions resource, so
specify the following values

� Target Object’s Class: com.ibm.cics.model.IRegion
� Submenu Name: CICS Trace
� Action Label: Set Components

Note: If you used a template in the earlier step, some of these extension
points might already be added to your plug-in project.
 Chapter 7. Setting CICS Trace Levels through CICS Explorer 227

� Action Class: SetComponents

Click Finish. You might get a pop-up window asking to save the changes made
to the plug-in. Click Yes. Notice that following extensions have been added to the
Extensions tab for the plug-in:

� org.eclipse.ui.views
� org.eclipse.ui.perspectiveExtensions
� org.eclipse.help.contexts
� org.eclipse.ui.popupMenus

Next, add the CICS packages this plug-in requires. Because it is activated when
a CICS region is selected, you are using the Region resource. Add that package
and a few others. In the manifests files, click the Dependencies tab and click Add
under “Required Plug-ins”. Add the following packages for the plug-in:

� com.ibm.cics.core.comm
� com.ibm.cics.core.model
� com.ibm.cics.core.ui

You are now ready to code the view and pop-up classes.

7.4.2 Modifying the pop-up action class

This view is opened when you right-click a CICS region and select CICS
Trace Set Components. You now add the code to make that happen. Open
the pop-up class, SetComponents.java, in the cics.set.trace.pop-up.actions
package. In this class you need to declare a global variable, region, and alter the
selectionChanged() and run() methods. Modify this class to look like
Example 7-4.

Example 7-4 SetComponents class

package cics.set.trace.popup.actions;

import org.eclipse.jface.action.IAction;
import org.eclipse.jface.viewers.*;
import org.eclipse.swt.widgets.Shell;
import org.eclipse.ui.*;

import com.ibm.cics.model.IRegion;

public class SetComponents implements IObjectActionDelegate {

Note: If you do not know what packages are required, you can add them at a
later time.
228 Extend the CICS Explorer: A Better Way to Manage Your CICS

@SuppressWarnings("unused")
private Shell shell;
@SuppressWarnings("unused")
private IRegion region;

public SetTrace() {
super();

}

public void setActivePart(IAction action,
IWorkbenchPart targetPart) {

shell = targetPart.getSite().getShell();
}

public void run(IAction action) {
final IWorkbenchPage page =

PlatformUI.getWorkbench().getActiveWorkbenchWindow()
.getActivePage();

try {
@SuppressWarnings("unused")
IViewPart view = page

.showView("cics.set.trace.views.TraceComponentView");
} catch (PartInitException e) {

e.printStackTrace();
}

}
public void selectionChanged(IAction action,

ISelection selection) {
region = (IRegion)((StructuredSelection)selection)

.getFirstElement();
}

}

Test your pop-up menu. Run the plug-in as an Eclipse application and connect to
a WUI region. Right click a region in the Region view. See Figure 7-1.
 Chapter 7. Setting CICS Trace Levels through CICS Explorer 229

Figure 7-1 Set Components pop-up menu option

If you select Set Components, the view looks like Figure 7-2.

Figure 7-2 Trace Component View: Default

This shows that the pop-up is working as it opens the view. You might notice
there is not much to this view, as this is the default view.

7.4.3 Modifying the view class

It is time to add the code for how the view looks. Expand the cics.set.trace.views
package and open the TraceComponentView.java class. There are several
230 Extend the CICS Explorer: A Better Way to Manage Your CICS

default methods that were generated in this class. You modify a few of these
classes and add a few more to create your view, but there are some you do not
use. All other methods except for those in the following list might be deleted, as
they are not used by this plug-in:

� NameSorter()
� makeActions()
� contributeToActionBars()
� fillLocalToolBar()
� setFocus()
� showMessage()

You also need to alter the contributeToActionBars() method and remove the
reference to fillLocalPullDown(). Also alter the createPartcontrol() method
and remove hookContextMenu() and hookDoubleClickAction().

Begin coding. First, import your data model.

import java.io.*;
import java.net.*;
import java.util.List;
import cics.set.trace.model.*;
import com.ibm.cics.model.*;
import com.ibm.cics.core.model.*;
import com.ibm.cics.core.ui.*;

This class is defined with four variables already. You are using them all but you
rename a few. Define the following global variables for your view:

private Table table;
private ICPSM cpsm;
private IRegion region;
private Context context;
private int portNum;
private String host;
List<Component> componentList =

ComponentModel.getInstance().getComponents();

Then, perform the following steps:

1. Rename all references to action1 to selectAll.
2. Rename all references to action2 to deselectAll.
3. Rename all references to doubleClickAction to submit.

These parameters are used as you build the necessary methods. If you have all
the dependencies and imported packages set up correctly, you do not receive
any errors. Now, create the table by adding the following method, createTable(),
 Chapter 7. Setting CICS Trace Levels through CICS Explorer 231

to the class. This method creates a table of four columns to hold your data. See
Example 7-5.

Example 7-5 createTable method

public void createTable(Composite parent) {
String[] titles = { "!", "Component", "Standard", "Special" };
int[] bounds = { 20, 100, 100, 100 };

table = viewer.getTable();
table.setHeaderVisible(true);
table.setLinesVisible(true);

for (int i = 0; i < titles.length; i++) {
TableViewerColumn column =

new TableViewerColumn(viewer, SWT.NONE);
column.getColumn().setText(titles[i]);
column.getColumn().setWidth(bounds[i]);
column.getColumn().setResizable(true);

}
}

You need to add a call to the createTable() method in the createPartControl()
method for the table to be set up. The modified version of this class looks like
Example 7-6.

Example 7-6 Modified createPartcontrol method

public void createPartControl(Composite parent) {
System.out.println("In createPartControl...");
viewer =

new TableViewer(parent, SWT.MULTI | SWT.V_SCROLL
| SWT.FULL_SELECTION);

createTable(parent);

viewer.setContentProvider(new ViewContentProvider());
viewer.setLabelProvider(new ViewLabelProvider());
viewer.setSorter(new NameSorter());
viewer.setInput(getViewSite());

// Create the help context id for the viewer's control
PlatformUI.getWorkbench().getHelpSystem()

.setHelp(viewer.getControl(), "cics.set.trace.viewer");
makeActions();
contributeToActionBars();

}

232 Extend the CICS Explorer: A Better Way to Manage Your CICS

If you run the example, the view contains a table with four columns, as shown in
Figure 7-3.

Figure 7-3 Trace Component View: Table with four columns

Next, alter the ContentProvider to indicate what data objects to use and the
LabelProvider to define how the data is displayed. Instead of creating your own
classes, alter the ViewContentProvider() and ViewLabelProvider() methods.
You need to import the Activator, so add the following import statement:

import cics.set.trace.Activator;

The updated ViewContentProvider and ViewLabelProvider are shown in
Example 7-7.

Example 7-7 Modified ViewContentProvider and VIewLabelProvider methods

class ViewContentProvider implements IStructuredContentProvider {
@SuppressWarnings("unchecked")
public Object[] getElements(Object inputElement) {

List<Component> components = (List<Component>) inputElement;
return components.toArray();

}
public void dispose() {
}
public void inputChanged(Viewer viewer, Object oldInput,

Object newInput) {
}

}

class ViewLabelProvider extends LabelProvider
 Chapter 7. Setting CICS Trace Levels through CICS Explorer 233

implements ITableLabelProvider {
private final Image CHECKED = Activator.getImageDescriptor(

"icons/checked.gif").createImage();
private final Image UNCHECKED = Activator.getImageDescriptor(

"icons/unchecked.gif").createImage();

public Image getColumnImage(Object element, int columnIndex) {
// In case you don't like image just return null here
if (columnIndex == 0) {

if (((Component) element).isSelected()) {
return CHECKED;

} else {
return UNCHECKED;

}
}
return null;

}
public String getColumnText(Object element, int columnIndex) {

Component component = (Component) element;
switch (columnIndex) {

case 0: return String.valueOf(component.isSelected());
case 1: return component.getCompId();
case 2: return component.getStdTraceLevel();
case 3: return component.getSpcTraceLevel();
default: throw new RuntimeException("Should not happen");

}
}

}

Before you can test the plug-in, verify the two icon files are in the icons folder for
your project. You must alter the createPartControl() method to set the input. In
createPartControl() change the statement viewer.setInput(getViewSite()) to
viewer.setInput(componentList);
234 Extend the CICS Explorer: A Better Way to Manage Your CICS

Run the plug-in as an Eclipse application. In the new Eclipse window that opens,
connect to the host and right-click a region in the Regions tab as shown in
Figure 7-4.

Figure 7-4 Set Components pop-up menu option
 Chapter 7. Setting CICS Trace Levels through CICS Explorer 235

Select CICS Trace Set Components. The view shown in Figure 7-5 displays.

Figure 7-5 Trace Component View - using data model

At this point, you can scroll up and down but none of the fields are yet editable.
Add this part next so that you can select which components to set and what level
to which to set them. Use the JFace CellEditor class to specify how the user can
edit each cell in the table. Each column contains the following items:

� Column 1: A selectable check box
� Column 2: An uneditable text field
� Column 3 and 4: Drop-down list boxes displaying possible options to set.

Create a new class, TraceEditor, which extends the EditingSupport class in the
cics.set.trace.models package to define what each column is and what data it
displays. Create the class shown in Example 7-8.

Example 7-8 TraceEditor class

package cics.set.trace.model;

import java.util.Arrays;

import org.eclipse.jface.viewers.*;
import org.eclipse.swt.SWT;
import org.eclipse.swt.widgets.*;

public class TraceEditor extends EditingSupport {
236 Extend the CICS Explorer: A Better Way to Manage Your CICS

private CellEditor editor;
 private Composite parent;

private int column;
// arrays for the various levels of tracing

 private String[] level1= { "OFF", "1" };
 private String[] level2 = { "OFF", "1", "1-2" };
 private String[] level3 = { "OFF", "1", "1-2", "3" };
 // arrays for components with level 1 tracing only

private String[] l1Only = {
"BM","DC","KC","PC","SC","SZ","TD","UE" };

 // arrays for components with level 1 and 2 tracing only
 private String[] l2Only = {

"AP","BR","CP","EC","EI","FC","IC","RA",
"RI","SJ","TC","WB","WU" };

 public TraceEditor(ColumnViewer viewer, int column) {
super(viewer);
parent = ((TableViewer) viewer).getTable();
this.column = column;

}

protected boolean canEdit(Object element) {
return true;

}

protected CellEditor getCellEditor(Object element) {
Component c = (Component) element;
// create the correct editor based on the column index
switch (this.column) {
case 0:

editor = new CheckboxCellEditor(null, SWT.CHECK |
SWT.READ_ONLY);

break;
case 1:

editor = new TextCellEditor(parent, SWT.READ_ONLY);
break;

case 2:
if (Arrays.asList(l1Only).contains(c.getCompId()))

editor = new ComboBoxCellEditor(parent, level1);
else if (Arrays.asList(l2Only).contains(c.getCompId()))

editor = new ComboBoxCellEditor(parent, level2);
else

editor = new ComboBoxCellEditor(parent, level3);
break;

case 3:
if (Arrays.asList(l1Only).contains(c.getCompId()))

editor = new ComboBoxCellEditor(parent, level1);
else if (Arrays.asList(l2Only).contains(c.getCompId()))

editor = new ComboBoxCellEditor(parent, level2);
 Chapter 7. Setting CICS Trace Levels through CICS Explorer 237

else
editor = new ComboBoxCellEditor(parent, level3);

break;
default:break;
}
return editor;

}

protected Object getValue(Object element) {
Component c = (Component) element;
switch (this.column) {
case 0:return c.isSelected();
case 1:return c.getCompId();
case 2:if (c.getStdTraceLevel().equals("OFF"))

return 0;
else if (c.getStdTraceLevel().equals("1"))

return 1;
else if (c.getStdTraceLevel().equals("1-2"))

return 2;
else if (c.getStdTraceLevel().equals("3"))

return 3;
case 3:if (c.getSpcTraceLevel().equals("OFF"))

return 0;
else if (c.getSpcTraceLevel().equals("1"))

return 1;
else if (c.getSpcTraceLevel().equals("1-2"))

return 2;
else if (c.getSpcTraceLevel().equals("3"))

return 3;
default:break;
}
return null;

}

protected void setValue(Object element, Object value) {
Component c = (Component) element;
switch (this.column) {
case 0:c.setSelected((Boolean) value);

break;
case 1:c.setCompId(String.valueOf(value));

break;
case 2:if (((Integer) value) == 1) {

c.setStdTraceLevel("1");
c.setSelected(true);

} else if (((Integer) value) == 2) {
c.setStdTraceLevel("1-2");
c.setSelected(true);

} else if (((Integer) value) == 3) {
c.setStdTraceLevel("3");
238 Extend the CICS Explorer: A Better Way to Manage Your CICS

c.setSelected(true);
} else {

c.setStdTraceLevel("OFF");
c.setSelected(true);

}
break;

case 3:if (((Integer) value) == 1) {
c.setSpcTraceLevel("1");
c.setSelected(true);

} else if (((Integer) value) == 2) {
c.setSpcTraceLevel("1-2");
c.setSelected(true);

} else if (((Integer) value) == 3) {
c.setSpcTraceLevel("3");
c.setSelected(true);

} else {
c.setSpcTraceLevel("OFF");
c.setSelected(true);

}
break;

default:break;
}
getViewer().update(element, null);

}
}

The main methods within this class do the following:

� The getCellEditor method returns the celleditor you want to use. This is
implemented using a switch statement and is based on the column.

� The setValue method receives a new value from the user input and sets the
new value to the object.

� The getValue method receives the object that was changed and returns the
value for the table.

Next, assign the editors to the table columns. This is done in the createTable()
method in the TraceComponentView.java class. Modify this method as shown in
Example 7-9.

Example 7-9 Modified createTable method

public void createTable(Composite parent) {
System.out.println("In createTable...");
String[] titles = { "!", "Component", "Standard", "Special" };
int[] bounds = { 20, 100, 100, 100 };

table = viewer.getTable();
table.setHeaderVisible(true);
 Chapter 7. Setting CICS Trace Levels through CICS Explorer 239

table.setLinesVisible(true);

for (int i = 0; i < titles.length; i++) {
TableViewerColumn column = new TableViewerColumn(viewer,

SWT.NONE);
column.getColumn().setText(titles[i]);
column.getColumn().setWidth(bounds[i]);
column.getColumn().setResizable(true);
column.setEditingSupport(new TraceEditor(viewer, i));

}
}

Run the plug-in. You are now able to edit the columns as shown in Figure 7-6.
The check boxes are now selectable and the fields in the Standard and Special
columns are now drop-down lists displaying all the available trace settings for
each given component.

Figure 7-6 Plug-in with editable fields

You now have your view the way you want it. The next step is to add functionality
so that you can submit the changes to the table to the host system, setting the
actual trace components to the specified level. You start with the three action
buttons you renamed in an earlier step (that is, selectAll, deselectAll, and
240 Extend the CICS Explorer: A Better Way to Manage Your CICS

submit). Edit the fillLocalToolBar() method as shown in Example 5-10 to add
each of these buttons to the local toolbar for your view.

Example 7-10 Modified fillLocalToolBar methods

// add the 3 buttons to the local tool bar
private void fillLocalToolBar(IToolBarManager manager) {

manager.add(selectAll);
manager.add(deselectAll);
manager.add(submit);

}

Edit the makeActions() method as shown in Example 5-11 to specify what each
button does when it is selected.

Example 7-11 Modified makeActions method

// specify the action for each button
private void makeActions() {

selectAll = new Action() {
public void run() {

for (Component c: componentList) {c.setSelected(true);}
viewer.refresh();

}
};
selectAll.setText("Select All");

deselectAll = new Action() {
public void run() {

for (Component c: componentList) {c.setSelected(false);}
viewer.refresh();

}
};
deselectAll.setText("Deselect All");

submit = new Action() {
private String text;

public void run() {
text = "";
for (Component c : componentList) {

if (c.isSelected()) { text += c + "&"; }
}
// submit request if port available
if (portNum > 0) {

text = text.substring(0, text.length() - 1);
setTracing(portNum, text);

} else {
 Chapter 7. Setting CICS Trace Levels through CICS Explorer 241

showMessage("You must first define a TCPIPService”
+ "number to submit this request.");

}
}

};
submit.setText("Submit");

}

The selectAll and deSelectAll buttons toggle the check box on and off for all
components. The main button here is the Submit button, which calls the
setTracing() method. When this button is clicked, a URL request is built based
on the selected trace components. For this example to work, a TCPIPService
definition with a valid port must be available for the selected CICS region (for
example, HTTPNSSL). Before you take a look at the setTracing() method that
creates the URL and sends the request to CICS, create an init() method that
obtains the region name and available port number each time a region is
selected. Add the method shown in Example 7-12 to the TraceComponentView
class.

Example 7-12 init method

public void init(IViewSite site) throws PartInitException {
super.init(site);
// add selection listener to look for when users click a
// Region entry in the Region view to acquire region name
site.getPage().addSelectionListener(new ISelectionListener() {

public void selectionChanged(IWorkbenchPart arg0,
ISelection selection) {

if (!selection.isEmpty()) {
Object firstElement =

((StructuredSelection)selection).getFirstElement();
if (firstElement instanceof IRegion) {

region = (IRegion) firstElement;
portNum = getTcpipPort(region);

}
}

}
});

}

As you can see, this method calls the getTcpipPort() method to obtain the
available port number. Add the method in Example 7-13 to the class.

Example 7-13 getTcpipPort method

public int getTcpipPort(IRegion region) {
int port = 0;
242 Extend the CICS Explorer: A Better Way to Manage Your CICS

cpsm = UIPlugin.getDefault().getCPSM();
ICICSplex[] cicsplexes = cpsm.getCICSplexes();
//set scopedContext(CPSM,CPSM)
host = cpsm.getHost();
ScopedContext scopedContext = new ScopedContext

(cicsplexes[0].getName(),cicsplexes[0].getName());
plexContext = new Context(scopedContext.getContext());
ITCPIPService[] tcpipServices = null;
IResourcesModel model = cpsm.getModel(CICSTypes.TCPIPService,

plexContext);
model.activate(); // Initiate the model
if (model.size() > 0) { // Check there are objects to get

tcpipServices = new ITCPIPService[model.size()];
model.maybeFetch(0, model.size()); // Fetch the results
for (int i = 0; i < model.size(); i++)

tcpipServices[i] = (ITCPIPService) model.get(i);
}
for (ITCPIPService tcpipService : tcpipServices) {

if ("HTTPNSSL".equals(tcpipService.getName())) {
if(tcpipService.getRegionName().equals(region.getName()))

port = tcpipService.getPort().intValue();
else {

port = 0;
showMessage("There is currently no port available "

+ ”in region " + region.getName()
+ ". You need to define a TCPIPService
+ "definition for HTTPNSSL");

} }
}
return port;

}

The getTcpipPort() method does the following:

� Obtain the host name of the connected CICSPlex SM
� Obtain the name of the Context for the selected CICSPlex
� Obtain a list of all TCPIPService definitions within the sysplex
� Search this list for a TCPIPService named HTTPNSSL
� Check this HTTPNSSL definition is defined in the selected CICS region

If yes, get the port number. Otherwise, put out a message that a
TCPIPService definition is required for the selected region.

Return the port number and then call the setTracing() method to build the URL
request and send it to the host system. Next, create the setTracing() method
(Example 7-14).
 Chapter 7. Setting CICS Trace Levels through CICS Explorer 243

Example 7-14 setTracing method

private void setTracing(int port, final String t) {
HttpURLConnection conn = null;
BufferedReader rd = null;
StringBuilder sb = null;
String line = null;
String url = null;
URL serverAddress = null;

try {
url = "http://"+host+":"+port+"/CICS/CWBA/COBSETTR?"+t;
serverAddress = new URL(url);
//set up out communications stuff
conn = null;
//Set up the initial connection
conn = (HttpURLConnection)serverAddress.openConnection();
conn.setRequestMethod("GET");
conn.setDoOutput(true);
conn.setReadTimeout(10000);
conn.connect();

//read the result from the server
rd = new BufferedReader(new

InputStreamReader(conn.getInputStream()));
sb = new StringBuilder();

while ((line = rd.readLine()) != null) {
sb.append(line + '\n');

}
MessageDialog.openInformation(

viewer.getControl().getShell(),
"Result",
sb.toString());

} catch (MalformedURLException e) {
e.printStackTrace();

} catch (ProtocolException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

} finally {
//close the connection, set all objects to null
conn.disconnect();
rd = null;
sb = null;
conn = null;

}
}

244 Extend the CICS Explorer: A Better Way to Manage Your CICS

7.5 CICS TS Application

You have now completed all the coding necessary on the front-end. The last
piece required is the back-end program that gets called (COBSETTR). This
program is a CICS Web Support SPI program written in COBOL which performs
the following tasks:

� Executes an EXEC CICS INQUIRE TRACETYPE (STANDARD|SPECIAL) for
each component to inquire on the current value

� Parses the HTML data sent by CICS Explorer to extract each component
name and level to set for both standard and special tracing

� Executes an EXEC CICS SETTRACETYPE (STANDARD|SPECIAL) for each
component to set the new value

� Returns an HTTP response to indicate the success of the request to CICS
Explorer

The COBSETTR program is supplied in the additional materials for this book.
You need to make sure you have a TCPIPService definition called HTTPNSSL
set with CWBA in the host system.

After you have the back-end program in place and loaded into the load library,
execute this plug-in and the following actions occur:

� When you click the Select All button, all components are selected.

� When you click the De-select All button, all components are unselected.

� When you click the Submit button, the URL request is sent to the host system
kicking off the COBSETTR API program, the trace components are set for the
selected region, and the message in Figure 7-7 is displayed upon completion.

Figure 7-7 Message box indicating trace successfully set on host

Press the Enter key after making your last selection before clicking the Submit
button in order for all changes to take affect.
 Chapter 7. Setting CICS Trace Levels through CICS Explorer 245

Note: There are few features that could be added to this plug-in if time
allowed. They are listed here for future reference:

� The plug-in does not poll the host system to query what the current
settings for CICS trace components are. Therefore, it does not recall what
was set or is set in the region.

� An option to turn all trace components off by the click of a button.
246 Extend the CICS Explorer: A Better Way to Manage Your CICS

Chapter 8. Adding a sticky note plug-in
to CICS Explorer

In this chapter we document a plug-in that implements a sticky note memo
function in your CICS Explorer. You can use this facility to annotate the resources
in your CICS Explorer workspace, and to view and manage the sticky notes that
have been created.

From the point of view of writing plug-ins for CICS Explorer, what is interesting
about this plug-in is that it demonstrates how you can provide additional input
data that is useful to you, but which is not related to mainline CICS Explorer
function. This pluf, and have that data saved and managed by a plug-in beyond
the standard provide input date and data this wtin

The plug-in implements a pop-up that can be opened from any CICS Explorer
resource or definition view.

In this chapter we describe:

� A specification for the memo plug-in
� The code created to implement the plug-in
� How to use the plug-in

8

© Copyright IBM Corp. 2010. All rights reserved. 247

8.1 The specification for your sticky note plug-in

Start your CICS Explorer, and connect to the target CICS WUI region, then
left-click the Operations tab in the action bar, and select any of the resources.
You get a view like that shown in Figure 8-1, showing all the programs installed in
the CICSPlex scope within which you are working.

Figure 8-1 CICS Explorer operations view

If you right-click one of the programs, CICS Explorer presents you with a pop-up
menu offering a number of actions that you can perform on that program (for
example, Disable, Enable, or New Copy).

This plug-in adds a new action, Add Sticky Notes, to the pop-up menu presented
when you right-click any CICS Explorer resource, allowing you to associate a
piece of text with that resource.

The plug-in allows you to view and manage the sticky notes that have been
created within your CICS Explorer.

In this example you create an Eclipse JFace viewer to display the sticky notes
that have been created. you also create a pop-up to allow users to create new
sticky notes.
248 Extend the CICS Explorer: A Better Way to Manage Your CICS

We are working with three main concepts:

� Viewer

The user interface (the tableviewer in this example)

� Content provider

Provides the model objects (sticky notes) to the viewer

� Label provider

Defines how the sticky notes are displayed

This project consists of three main components:

� A model

Represents the data for the plug-in

� A view

Displays the data

� A pop-up menu

Allows the view to be displayed

We begin by creating a blank plug-in and then add the necessary extension
points, packages, classes, and methods as we go along.
 Chapter 8. Adding a sticky note plug-in to CICS Explorer 249

8.2 Overview of components

The diagram in Figure 8-2 gives an overview of the components created and
modified to produce this plug-in. The white boxes are the Java packages created
either by the Eclipse wizards or by you. The colored boxes are the different
classes either modified or created for this project.

Figure 8-2 Overview of sticky notes Packages

The createPartControl(), ViewContentProvider(), ViewLabelProvider() and
CellModifierSample() methods are Eclipse-plug-in extension methods that have
been modified with custom code for our purposes. The addSnoteObject()
saveNotes(), and deleteNotes() methods are methods we added to the
StickyNotesView package generated by Eclipse for our new view.

stickyNotesViews.snote() is a new standalone object containing the code which
manages the internals of the sticky notes object.

The stickyNotesViews package (which in retrospect we should have named
stickyNotesViewsActions) contains the actions associated with our sticky notes
view. You can click actions in the toolbar of the sticky notes views to save or
delete the sticky notes (StickyNotesViewsSave() and
StickyNotesViewsDelete()).

stickyNotesViews,snote

stickyNotesViews.popup.act ions

stickyNotesViews

stickyNotesViews.views

SNoteObject manage Snote data

stickyNotesViewsSave
(the button on the view)
save st icky notes as CSV file

stickyNotesViewsAddNotes
ISelectionChanged
get the object from
ICPSM/ICICSObject views

stickyNotesViewsDelete
(the button on the view)
delete all st icky notes

saveNotes() - To CSV file

deleteNotes()
delete individual object from view

createPartControl
make tableviewer and set
ContentsProvider, LabelProvider,and
Celleditor

ViewContentProvider

ViewLabelProvider

CellModif ierSample

addSNoteObject
add SNoteObject to LinkedHashMap

readf ile()

NameSorter
250 Extend the CICS Explorer: A Better Way to Manage Your CICS

The stickyNotesViews.pop-up.actions package is generated by Eclipse tooling to
contain the code associated with the actions you can perform when you
right-click a CICS object and select sticky notes. You can add a note through the
pop-up menu (stickyNotesViewAddNotes()).

8.3 Using a wizard to create your new plug-in

Start your Eclipse development environment, and select File New Project.
Select Plug-in Project, then click Next. The first page of the wizard displays.
Enter the project name as StickyNotes and click Next.

In the second page of the wizard, set the default properties. Click Next.

In the third page of the wizard, clear the Create a plug-in using one of the
templates check box and the Activator class, then click Finish. Your plug-in
project has been created with the default manifest files and no activator class.
Because you did not use a template, no view or pop-up class was generated. You
create this class in a later step.

You are now ready to create the model structure for our project.

8.4 Creating the model

This project uses a single class that represents the data model in our design. The
SNoteObject class is a simple object representing a sticky note component with
getters and setters for the following properties:

private String SnoteName;
private String SnoteType;
private String SNoteComment;

Note: We are going to create a blank plug-in without using a template.
However, if you want to create this plug-in using a template as in prior
examples, on the third page of the wizard, select Custom plug-in wizard and
click Next. In the Template Selection page, select Popup Menu and View and
click Next. You need to add appropriate names for the view and popup
settings. See 5.4.1, “Specification of new textbox and button” on page 125 for
naming conventions for this example.
 Chapter 8. Adding a sticky note plug-in to CICS Explorer 251

Within your project, create the package stickynotes.snote (right-click the
project, select New Package). Create the SNoteObject class in this package,
and copy in the code shown in Example 8-1.

Example 8-1 SNoteObject

package stickyNotesViews.snote;

public class SNoteObject{
String SNoteName;
String SNoteType;
String SNoteComment;
public SNoteObject(String snotename,String snotetype,String

snotecomment){
SNoteName = snotename;
SNoteType = snotetype;
SNoteComment = snotecomment;

}
public String getSNoteName(){return SNoteName;}
public String getSNoteType(){return SNoteType;}
public String getSNoteComment(){return SNoteComment;}

public String setSNoteName(String string){
SNoteName = string;
return null;}

public String setSNoteType(String string){
SNoteType = string;
return null;}

public String setSNoteComment(String string){
SNoteComment = string;
return null;}

}

8.5 Creating the pop-up

Now that the data model structure is complete for your sticky notes object, you
can create the pop-up which is going to allow users to create a sticky note.
Because you are working with a blank plug-in, you need to add the extension
points and import any packages required for this plug-in.

Note: If you used a template in the earlier step, some of these extension
points might already be added to your plug-in project.
252 Extend the CICS Explorer: A Better Way to Manage Your CICS

8.5.1 Adding extension points and packages for pop-up

You need to add an extension for the pop-up menu extension point. Open the
manifest editor for your StickyNotes project by double-clicking the MANIFEST.MF
object. Click Add and select org.eclipse.ui.pop-upMenus under Extension
Points. Select pop-up Menu under Available templates and click Next.

As you are going to make sticky notes available to be used with any CICS
resource, you need to associate your new function with the generic CICS
Explorer object representing a CICS resource or definition. On the next page,
add this pop-up menu to the ICICSObject resource by specifying the following
values:

� Target Object’s Class: com.ibm.cics.model.ICICSObject
� Submenu Name: sticky notes
� Action Label: Add Sticky Notes
� Action Class: StickyNotesViewsAddNotes

Click Finish. You might get a pop-up window asking to save the changes made
to the plug-in. Click Yes. When you have saved your new AddStickyNotes action,
click it. See Figure 8-3.

Figure 8-3 Add Sticky Notes Extension details
 Chapter 8. Adding a sticky note plug-in to CICS Explorer 253

Add global variables to the class as shown in Example 8-2. (The imports
generated by Eclipse have been suppressed in this figure.)

Example 8-2 .StickyNotes pop-up globals

package sticky.notes.popup.actions;

import org.eclipse.jface.action.IAction;
..
import sticky.notes.snote.SNoteObject;

import com.ibm.cics.model.ICICSObject;

public class StickyNotesViewsAddNotes implements IObjectActionDelegate
{

private Shell shell;
public ICICSObject icicsobject;
private String notetext;

You need to update the run() method of the StickyNotesViewsAddNotes_object.
This is the code invoked when the user clicks this action in the pop-up menu.
When the user selects Add Sticky Note, the updated run() method
(Example 8-3) invokes the addSNoteobject() method of the sticky notes view to
update the list object containing the list of sticky notes.

Example 8-3 run() method of StickyNotesViewsAddNotes

public void run(IAction action) {
String dialogTitle =

icicsobject.getCICSType().getInterfaceType().getName();

dialogTitle = dialogTitle.substring(dialogTitle.lastIndexOf(".") +
2);

String dialogMessage = "Resource name : " + icicsobject.getName();
String initialValue = "input text notes";

InputDialog inputdialog = new InputDialog(shell, dialogTitle,
dialogMessage, initialValue,

new IInputValidator() {
@Override

public String isValid(String newText) {
if (newText.length() == 0) {

return "input text !";
} else {

notetext = newText;
254 Extend the CICS Explorer: A Better Way to Manage Your CICS

return null;
}
}

});

if (inputdialog.open() == Dialog.OK) {
IWorkbench workbench = PlatformUI.getWorkbench();
IWorkbenchWindow window = workbench.getActiveWorkbenchWindow();
IWorkbenchPage page = window.getActivePage();

try {
ViewPart sampleView = (ViewPart) page

.findView("stickyNotesViews.views.StickyNotesView");

if (sampleView == null) {
sampleView = (ViewPart) page

.showView("stickyNotesViews.views.StickyNotesView");

}
SNoteObject snoteobject = new SNoteObject(

icicsobject.getName(), dialogTitle, notetext);
((StickyNotesView) sampleView).addSNoteObject(snoteobject,

sampleView);
} catch (PartInitException e) {

e.printStackTrace();
}

}

}

At this point, you might have an error flagged in Eclipse because you have not yet
defined your sticky notes view.

You also need to modify the Selectionchanged() method so that when the user
clicks a CICS resource to add a sticky note, information about that resource is
saved. See Example 8-4.

Example 8-4 SelectionChanged() method of tickyNotesViewsAddNotes

public void selectionChanged(IAction action, ISelection selection) {
icicsobject = (ICICSObject) ((StructuredSelection) selection)

.getFirstElement();

}

Next, you have to write the code to manage the new sticky notes view.
 Chapter 8. Adding a sticky note plug-in to CICS Explorer 255

8.5.2 Adding extension points and packages for view

To add the extension points, open the manifest file for your plug-in, click the
Extensions tab, and perform the following steps

1. Click All Extensions Add.

2. In the Extension Point Selection panel, select Extension Points
org.eclipse.ui.views, and Available templates Sample View. Click Next.

3. Specify the following values

– View Class Name: StickyNotesView
– View Name: Sticky Notes View
– View Category Name: Sticky Notes

4. You are using a table viewer for this view so ensure it is selected. Click Finish
to add this extension point and create the plug-in class.

Notice that three extensions have been added to the Extensions tab for our
plug-in: one for the eclipse view plug-in, one for the eclipse perspective extension
plug-in, and one for the eclipse help context plug-in. You have added the view
template to your project and Eclipse has created a StickyNotesView.java file for
you. You are ready to insert the code to implement the sticky notes view. In
Example 8-5 you can see the global variables that you need to add.

� Initialize the table columns for the table in our view
� Create a hashmap item to manage your sticky notes objects.
� Use the Java Memento object to create a sticky note

Example 8-5 Global variables for StickyNotesView.java

public class StickyNotesView extends ViewPart {
/** The ID of the view as specified by the extension. **/
public static final String ID =

"sticky_notes.views.StickyNotesView";
private static final String[] columnNames = { "Name", "Type",

"Comment" };
private static final int[] columnWidths = { 100, 120, 300 };
private TableViewer viewer;
private Action action1;
private TableColumn column;
final String DIRECTORY_PATH =

ResourcesPlugin.getWorkspace().getRoot().getLocation().toOSString();
final String TEMP_CSVFILE = "stickyNotesTemp";
final LinkedHashMap<SNoteObject, ViewPart> items = new

LinkedHashMap<SNoteObject,
ViewPart>();
256 Extend the CICS Explorer: A Better Way to Manage Your CICS

In Example 8-6 you see the changes you need to make to the
ViewContentProvider class in the template generated by Eclipse. Change the
getElements() method of this class to return an array of sticky notes objects from
the entries in the items hash table.

Example 8-6 Changed code to return array of sticky notes objects

class ViewContentProvider implements IStructuredContentProvider {
public void inputChanged(Viewer v, Object oldInput, Object

newInput) {}
public void dispose() {}
public Object[] getElements(Object parent) {

return items.keySet().toArray();}
}

In Example 8-7 you see the changes to the ViewLabelProvider class. It is called
to populate the table that is being created. Depending on the column that is being
called to populate, it returns the appropriate sticky note name, type or, text.

Example 8-7 Changes to ViewLabelProvider

class ViewLabelProvider extends LabelProvider implements
ITableLabelProvider {

public String getColumnText(Object obj, int index) {
SNoteObject snoteobject = (SNoteObject) obj;
switch (index) {
case 0:return snoteobject.getSNoteName();
case 1:return snoteobject.getSNoteType();
case 2:return snoteobject.getSNoteComment();}
return null;}

public Image getColumnImage(Object obj, int index) {return null;}
public Image getImage(Object obj) {

return PlatformUI.getWorkbench().getSharedImages().getImage(
ISharedImages.IMG_OBJ_ELEMENT);}}

Modify the CellModifierSample class as shown in Example 8-8, to use the
SNoteObject.

Example 8-8 CellModifierSample

public class CellModifierSample implements ICellModifier {
private TableViewer viewer;
public CellModifierSample(TableViewer viewer) {

this.viewer = viewer;}
@Override
public boolean canModify(Object element, String property) {
 Chapter 8. Adding a sticky note plug-in to CICS Explorer 257

return true;}
@Override
public Object getValue(Object element, String propety) {

SNoteObject snoteobject = (SNoteObject) element;
Object snote = null;
if (propety.equals("Comment")) {

snote = snoteobject.getSNoteComment();}
return snote;}

@Override
public void modify(Object element, String propety, Object value)

{
TableItem tableItem = (TableItem) element;
SNoteObject snoteobject = (SNoteObject) tableItem.getData();
if (propety.equals("Comment")) {

snoteobject.setSNoteComment((String) value);}
viewer.update(snoteobject, null);}}

It is the createPartControl() method, as shown in Example 8-9 that builds the
view. In our case, it builds a view suited to our sticky notes display. It invokes a
series of methods to set up the action bars, context help, and so forth. Because
sticky notes are saved across restarts of Eclipse, this method invokes the
readfile() method to retrieve the sticky notes saved the last time Eclipse was
run.

Example 8-9 createPartControl Method

public void createPartControl(Composite parent) {
viewer = new TableViewer(parent, SWT.MULTI | SWT.H_SCROLL

| SWT.V_SCROLL | SWT.FULL_SELECTION);
viewer.setContentProvider(new ViewContentProvider());
viewer.setLabelProvider(new ViewLabelProvider());
viewer.setInput(getViewSite());
// Create the help context id for the viewer's control

PlatformUI.getWorkbench().getHelpSystem().setHelp(viewer.getControl(),
"Sticky_Notes.viewer");

makeActions();
hookContextMenu();
contributeToActionBars();
Table table = viewer.getTable();
table.setHeaderVisible(true);
table.setLinesVisible(true);
// Set the column headers
for (int i = 0; i < columnNames.length; i++) {

column = new TableColumn(table, SWT.LEFT);
258 Extend the CICS Explorer: A Better Way to Manage Your CICS

column.setText(columnNames[i]);
column.setWidth(columnWidths[i]);}

CellEditor[] celleditor = new CellEditor[] { new
TextCellEditor(table),

new TextCellEditor(table), new TextCellEditor(table) };
viewer.setColumnProperties(columnNames);
viewer.setCellEditors(celleditor);
viewer.setCellModifier(new CellModifierSample(viewer));
readFile(TEMP_CSVFILE);}

We are going to add an action which allows the user to delete the selected sticky
note from the list. Example 8-10 shows the makeActions() method that
implements this action. You can see that it invokes the remove() method of the
items object to remove the selected object. It then refreshes the view, with the
object removed.

Example 8-10 makeActions() method of StickyNotesView

private void makeActions() {
action1 = new Action() {

public void run() {
final StructuredSelection selection = (StructuredSelection)

viewer
.getSelection();

for (Object obj : selection.toArray())
items.remove(obj);

viewer.refresh();
try {saveNotes(TEMP_CSVFILE);
} catch (UnsupportedEncodingException e) {

e.printStackTrace();}}
};
action1.setText("Delete Sticky Note");
action1.setToolTipText("Remove this Sticky Note");

action1.setImageDescriptor(PlatformUI.getWorkbench().getSharedImages()
.getImageDescriptor(ISharedImages.IMG_OBJS_INFO_TSK));

;}

In Example 8-11 on page 260, we see the addSnoteObject() method that is
invoked to add a new StickyNote into the table. We then refresh the view. This
code is invoked by the pop-up action code to add a sticky note to our list, and
then refreshes the view to pick up the new sticky note. You can see that each
time a sticky note is added to the list, we save the entire list to a temporary .csv
file.
 Chapter 8. Adding a sticky note plug-in to CICS Explorer 259

Example 8-11 addSNoteObject() method

public void addSNoteObject(SNoteObject snoteobject, ViewPart
sampleView) {

items.put(snoteobject, sampleView);
viewer.refresh();
try {saveNotes(TEMP_CSVFILE);
} catch (UnsupportedEncodingException e) {}}

In Example 8-12 we see the deleteNotes() method of our StickyNotes view.
When invoked, this method deletes all the StickyNotes in the list.

Example 8-12 deleteNotes() method

public void deleteNotes() {
items.clear();
viewer.refresh();
try {saveNotes(TEMP_CSVFILE);
} catch (UnsupportedEncodingException e) {}}

The code that manages the saving of the sticky notes to a .csv file is in the
saveNotes() method is shown in Example 8-13.

Example 8-13 saveNotes() method

public void saveNotes(String fileName) throws
UnsupportedEncodingException {

String filePath = DIRECTORY_PATH + "\\" + fileName + ".csv";
try {FileOutputStream fos = new FileOutputStream(filePath, false);

OutputStreamWriter osw = new OutputStreamWriter(fos, "UTF-8");
BufferedWriter bw = new BufferedWriter(osw);
Table table = viewer.getTable();
for (int i = 0; i < table.getItemCount(); i++) {

TableItem items = table.getItem(i);
bw.write(items.getText(0) + "," + items.getText(1) + ","

+ items.getText(2));
bw.newLine();}

bw.flush();
bw.close();
osw.close();
fos.close();

} catch (FileNotFoundException e) {e.printStackTrace();
} catch (UnsupportedEncodingException e) {e.printStackTrace();
} catch (IOException e) {e.printStackTrace();}}
260 Extend the CICS Explorer: A Better Way to Manage Your CICS

The routine that reads saved sticky notes from the .csv file can be found in
Example 8-14. The .csv file is created within the Eclipse workspace in the home
directory of the Eclipse being used, with the name TEMP_CSVFILE.csv. If Eclipse is
closed down and restarted, the data is retrieved by the createPartControl
method when the sticky notes view is opened.

Example 8-14 readFile() method

public void readFile(String file_name) {
String filePath = DIRECTORY_PATH + "\\" + TEMP_CSVFILE + ".csv";
try {File file = new File(filePath);

BufferedReader br = new BufferedReader(new FileReader(file));
String str;
while ((str = br.readLine()) != null) {

String[] strArray = str.split(",");
SNoteObject snoteobject = new SNoteObject(strArray[0],

strArray[1], strArray[2]);
items.put(snoteobject, null);
viewer.refresh();}

br.close();
} catch (FileNotFoundException e) {
} catch (IOException e) {}}

Although we have added code to the view to handle the saving and deletion of
our sticky notes, we have not yet added extensions to the view to create the
actions on the toolbar that you can click to perform the save and the delete.

8.5.3 Adding extension points and code for Delete View Action

We need to create the extensions and code that deletes a sticky notes list, or
save a sticky notes list to a .csv file so that it can be saved across starts of CICS
Explorer.

If it is not already open, double-click the MANIFEST.MF object in the package
explorer, and select the Extensions tab in the view. We are going to add an
exention to the org.eclipse.ui.vewActions plug-in. Click Add, and then select the
org.eclipse.ui.vewActions plug-in. Now we can add our new View Actions.
 Chapter 8. Adding a sticky note plug-in to CICS Explorer 261

Right-click the org.eclipse.ui.vewActions object in the extensions list, and select
New viewContribution. See Figure 8-4.

Figure 8-4 Add viewContirbution

Call the new viewContribution StickyNotes, and give it a target ID of
StickyNotesView.

Right-click your new StickyNotesviewContribution1, and select New, then an
action. Give this action an ID of StickyNotes.action1. You are prompted for the
name of the class that is going to execute the new action. Click class to create
the new class in the stikyNotesView package, and call it
stickyNotesViews.StickyNotesViewsDelete. (We create this class and add it to
the stickyNotesViews package shortly).

Next, we are going to add a graphic to the toolbar, which the user can click to
delete all the sticky notes. Right-click the StickyNotesviewContribution1 again but
this time select New Menu. Give the new menu a name of
StickyNotes.menu1. In the path box, enter additions, and in the icon box, add
icons/delete_config.gif. (You need to have copied the red “x” graphic into the
icons directory of StickyNotesView project before you try to run the plug-in.)
262 Extend the CICS Explorer: A Better Way to Manage Your CICS

Now you are ready to put the delete code into the new class file you have
created. See Example 8-15.

This new class identifies the current view, and issues the deleteNotes() call to
delete all sticky notes assciated with it.

Example 8-15 StickyNotesViewDelete class

package stickyNotesViews;

import org.eclipse.jface.action.IAction;
import org.eclipse.jface.dialogs.MessageDialog;
import org.eclipse.jface.viewers.ISelection;
import org.eclipse.swt.widgets.Shell;
import org.eclipse.ui.IViewActionDelegate;
import org.eclipse.ui.IViewPart;
import org.eclipse.ui.IWorkbench;
import org.eclipse.ui.IWorkbenchPage;
import org.eclipse.ui.IWorkbenchWindow;
import org.eclipse.ui.PlatformUI;

import stickyNotesViews.views.StickyNotesView;

public class StickyNotesViewsDelete implements IViewActionDelegate {

private Shell shell;
@Override
public void init(IViewPart view) {}
@Override
public void run(IAction action) {

if (MessageDialog
.openConfirm(shell, "Comfirm Delete",

"Are you sure you want to permanently delete all
sticky notes?") == true) {

IWorkbench workbench = PlatformUI.getWorkbench();
IWorkbenchWindow window = workbench.getActiveWorkbenchWindow();
IWorkbenchPage page = window.getActivePage();
IViewPart sampleView = (IViewPart) page

.findView("stickyNotesViews.views.StickyNotesView");
((StickyNotesView) sampleView).deleteNotes();

}
}
@Override
public void selectionChanged(IAction action, ISelection selection) {}

}

 Chapter 8. Adding a sticky note plug-in to CICS Explorer 263

8.5.4 Adding extension points and code for Save View Action

We need to create the extensions and code that saves a sticky notes list to a .csv
file so that it can be saved across starts of CICS Explorer.

If it is not already open, double-click the MANIFEST.MF object in the package
explorer, and select the Extensions tab in the view. We are going to add an
exention to the org.eclipse.ui.vewActions plug-in. Click Add, and select the
org.eclipse.ui.vewActions plug-in. Now we can add our new View Actions.

Right-click the org.eclipse.ui.vewActions object in the extensions list, and select
New viewContribution (Ssee Figure 8-4 on page 262).

Figure 8-5 Add viewContribution

Call the new viewContribution StickyNotes, and give it a target ID of
StickyNotesView.

Right-click your new StickyNotesviewContribution2, and select New action.
Give this action an ID of StickyNotes.action2. You are prompted for the name of
the class that is going to execute the new action. Click class to create the new
class in the stikyNotesView package, and call it
stickyNotesViews.StickyNotesViewsSave. (We create this class and add it to the
stickyNotesViews package shortly.)
264 Extend the CICS Explorer: A Better Way to Manage Your CICS

Next, we are going to add a graphic to the toolbar, which the user can click to
delete all the sticky notes. Rright-click the StickyNotesviewContribution2 again,
but this time select New Menu. Give the new menu a name of
StickyNotes.menu2. In the path box, enter additions, and in the icon box, add
icons/save.gif (you need to have copied the diskette save graphic into the icons
directory of StickyNotesView project before you try to run the plug-in).

You are now ready to put the save code into the new class file you have just
created. See Example 8-16.

This new class identifies the current view, and then issues the saveNotes() call to
save all sticky notes associated with it to a .csv file in the Eclipse workspace.

Example 8-16 StickyNotesViewSave class

package stickyNotesViews;

import java.io.UnsupportedEncodingException;

import org.eclipse.jface.action.IAction;
import org.eclipse.jface.dialogs.Dialog;
import org.eclipse.jface.dialogs.IInputValidator;
import org.eclipse.jface.dialogs.InputDialog;
import org.eclipse.jface.viewers.ISelection;
import org.eclipse.swt.widgets.Shell;
import org.eclipse.ui.IViewActionDelegate;
import org.eclipse.ui.IViewPart;
import org.eclipse.ui.IWorkbench;
import org.eclipse.ui.IWorkbenchPage;
import org.eclipse.ui.IWorkbenchWindow;
import org.eclipse.ui.PartInitException;
import org.eclipse.ui.PlatformUI;
import org.eclipse.ui.part.ViewPart;

import stickyNotesViews.views.StickyNotesView;

public class StickyNotesViewsSave implements IViewActionDelegate {

private Shell shell;
private String notetext;
@Override
public void init(IViewPart view) {}
@Override
public void run(IAction action) {

String dialogTitle = "Save Sticky Notes";
 Chapter 8. Adding a sticky note plug-in to CICS Explorer 265

String dialogMessage = "input CSV FILE name (Extention(.csv) is
automatically added.) ";

String initialValue = "";
InputDialog inputdialog = new InputDialog(shell, dialogTitle,

dialogMessage, initialValue, new IInputValidator() {
@Override
public String isValid(String newText) {

if (newText.length() == 0) {
return "input filename.";

} else {
notetext = newText;
return null;

}
}

});

if (inputdialog.open() == Dialog.OK) {
IWorkbench workbench = PlatformUI.getWorkbench();
IWorkbenchWindow window =

workbench.getActiveWorkbenchWindow();
IWorkbenchPage page = window.getActivePage();
try {

ViewPart sampleView = (ViewPart) page
.findView("stickyNotesViews.views.StickyNotesView");

if (sampleView == null) {
sampleView = (ViewPart) page

.showView("stickyNotesViews.views.StickyNotesView");
}
((StickyNotesView) sampleView).saveNotes(notetext);

} catch (PartInitException e) {e.printStackTrace();
} catch (UnsupportedEncodingException e) {

e.printStackTrace();}
}

}
@Override
public void selectionChanged(IAction action, ISelection selection)

{}
}

266 Extend the CICS Explorer: A Better Way to Manage Your CICS

If you have copied the images into the icon directory, we are now ready to test
our new plug-in. Right-click the the resource to which you want to add a sticky
note. For this test we are using a file. See Figure 8-6.

Figure 8-6 Add sticky note to file
 Chapter 8. Adding a sticky note plug-in to CICS Explorer 267

This opens a box to add the description for the sticky note. See Figure 8-7.

Figure 8-7 Sticky note description
268 Extend the CICS Explorer: A Better Way to Manage Your CICS

You see the note display in the sample view shown in Figure 8-8.

Figure 8-8 New sticky note added
 Chapter 8. Adding a sticky note plug-in to CICS Explorer 269

Save this note to a CSV file. Click the disk on the window (denoted by the red
arrow in the bottom right of the figure) as shown in Figure 8-8 on page 269.
When clicked, you get the text box shown in Figure 8-9.

Figure 8-9 Save Sticky note as CSV file
270 Extend the CICS Explorer: A Better Way to Manage Your CICS

You can also delete the sticky if you want. To do so, click the red X next to the
save sticky note to CSV file, you get the message shown in Figure 8-10.

Figure 8-10 Delete sticky note

If you select OK the sticky note is deleted.
 Chapter 8. Adding a sticky note plug-in to CICS Explorer 271

272 Extend the CICS Explorer: A Better Way to Manage Your CICS

Chapter 9. Implementing a CEBR view
in CICS Explorer

In this chapter we look at how you can extend the functionality provided by the
Operations view of the CICS Explorer, to implement a CEBR-like interface which,
when you have right-clicked a TS queue, allows you to view the contents of that
queue.

� The skill profile of the person who implemented this sample is a CICS
Systems Programmer who knows only what is in Chapter 5 of this book (And
a bit of Chapter 4), with no real experience with Java other than a bit of
playing around with Java primer material and the samples you find earlier in
this book.

� The author found that with the help of searching on the Web, and timely
interventions from a colleague familiar with Java who was also working on this
Redbooks publication, the author managed to implement the sample.

� The author adopted a top-down approach to this sample. The starting point
was a new interface the author wanted to achieve using CICS Explorer. The
author designed the user interface, and then looked at the user interface code
the author had to write in Eclipse. The author then looked at the code required
in our new plug-in to connect to CICS and retrieve the TS Queue. Finally, the
author wrote the backend code CICS TS code to retrieve the TS queue
records and return them to his new plug-in.

9

© Copyright IBM Corp. 2010. All rights reserved. 273

9.1 The specification for your CEBR view

If you start your CICS Explorer, and connect to the target CICS WUI region, then
left-click the Operations tab in the action bar, and select Queues TS Queues,
you get a view like Figure 9-1, showing all the TS queues known in the CICSPlex
scope within which you are working.

Figure 9-1 CICS Explorer view of TS queues

If you right-click one of the TS queues shown in the list, CICS Explorer presents
you with two possible actions: Open or Delete. Wouldn’t it be nice if there were ?
To achieve a third option, Browse, which allows you to browse the contents of
the queue , you are must create a new Eclipse plug-in. This plug-in has two
Eclipse user interface objects:

� View

This object displays the records in your TS queue

� Pop-up menu

This object gives the option of displaying the new TS queue browse view

Use the wizard provided by Eclipse to create a template for your new plug-in.
After you have created the template, add the code required to:

� Retrieve the name of the queue to be browsed.

� Build an HTTP request to invoke a CICS TS Cobol program that retrieves the
contents of the requested TS queue and handle the HTTP response
containing the contents of TS queue.

� Display the contents of the TS queue in a new CEBR view.
274 Extend the CICS Explorer: A Better Way to Manage Your CICS

9.2 Using the wizard to create your new plug-in

Start your Eclipse development environment, and select File New Project.
Select Plug-in Project, and click Next.

Name your new project BrowseTSQueue and click Next. You are prompted to
select a template to use for this project (Figure 9-2). This time you are going to
be more specific about what kind of plug-in you want. Select Custom Plug-in
wizard and click Next.

Figure 9-2 Create custom plug-in template

Your plug-in provides the following advantages:

� Manage a pop-up menu that allows a TS queue to be selected for browsing
� Create the view in which the contents of the TS queue are shown.

Check the View and Pop-up Menu boxes and click Next.
 Chapter 9. Implementing a CEBR view in CICS Explorer 275

The wizard presents you with the sample pop-up menu to ask for more
information about the pop-up menu. It needs to know the class that defines the
object to be managed by your pop-up menu. In this case, the Target Object’s
class is the Explorer class used to manage TS queues:
com.ibm.cics.model.ITSQueue.

Name your new class BrowseTSQueue and give suitable names for the submenu
name and action label, as shown in Figure 9-3, and click Next.

Figure 9-3 TS Queue Browse sample pop-up menu

The wizard presents you with the Main View Settings panel. Select appropriate
names (it is suggested to specify what kind of class you are creating in the name,
so call this Action class BrowseTSQueueAction), and click Finish.

The wizard creates the plug-in and presents us with the overview editor view for
our new plug-in BrowseTSQueue.

At this point, although you have not written any new code yet, run your
BrowseTSQueue plug-in to see what it does.

In the Package Explorer view on the left side of the workspace, right-click the
BrowseTSQueue package and select Run as Eclipse Application.

Note: On the subject of appropriate names, when you have more than one
class in your plug-in (here we have an Action and a View), make sure the
name you choose for your class uniquely identifies that class within your
plug-in. Otherwise, you might have to manage two different classes with the
same name that reference each other, which creates complications.
276 Extend the CICS Explorer: A Better Way to Manage Your CICS

A new instance of Eclipse starts with the new plug-in installed. If it has not
already started with the CICSPlex SM perspective, click Window Show
View CICS Explorer. Then choose your scope by selecting the CICSPlex or
CICS region you want to look at in the left pane, and select Operations
Queues TS Queues. Right-clicking one of the TS Queues in this list displays
a new option in the pop-up menu, as shown in Figure 9-4.

Figure 9-4 Browse TS Queue option on pop-up menu

You have created your desired GUI interface without the need to write a single
line of code. Select TSQueueBrowse Browse TS Queue to see Figure 9-5.

Figure 9-5 Dummy action for TSQueue Browse plug-in

You now have to write the code to turn this dummy action into your desired
function.
 Chapter 9. Implementing a CEBR view in CICS Explorer 277

9.3 Coding your TSQueue Browse plug-in

Now comes the tricky part. You need to modify the code generated by Eclipse to
implement your TS Queue Browse function. Remember, there are two objects
you are working with:

� TS Queue Browse view
� TS Queue Browse pop-up action

9.3.1 Adding code to the TSQueue Browse pop-up menu

You need to modify the pop-up menu to do two things:

� Remember which TS queue the user has clicked so that we can use this
information to retrieve the contents of that queue.

� Create the TS queue Browse view that displays the contents of the TS queue

Browse TS Queue pop-up menu function
In the Explorer package, expand the src folder and double-click the java source
file BrowseTSQueueAction.java in the browsetsqueue.popup.actions package.
The Java editor view displays. Double-click the BrowseTSQueueAction.java tab
to get a full window edit session.

Change the selectionChanged() method
The method you modify to remember which TS queue you are working with is the
selectionChanged() method. This method is invoked each time the user
right-clicks a TS queue in the Explorer TS Queue view. Replace the no-op
method that is generated by Eclipse with the code in Example 9-1.

Example 9-1 Browse TSQueue pop-up menu selectionChanged method

public void selectionChanged(IAction action, ISelection selection)
{

tsqueue = (ITSQueue) ((StructuredSelection)
selection).getFirstElement();

}

Eclipse flags errors when you put this code in. This is because you need to
declare this plug-in’s dependency on the relevant CICS Explorer object (in this
case the ITSQueue object).

If you are unsure about the name of the CICS Explorer class you need to use to
manipulate your CICS object, use the Navigator tab on the workspace menu bar
to help locate it.
278 Extend the CICS Explorer: A Better Way to Manage Your CICS

Click the Navigator tab in the workspace action bar, and select Open Type. In the
pop-up menu that displays, enter string com.ibm.cics. Eclipse presents you
with a list of all the Java classes it has found in packages beginning with that
name. When you are working with classes that manipulate CICS Explorer
objects, you usually are working with the interface for those objects, so it is a
good idea to enter the string string com.ibm.cics.i into the search field. You
get a list that probably contains the object you want to manipulate. In our case,
we are going to be working with the ITSQueue interface, as in Figure 9-6.

Figure 9-6 Finding the right TS Queue object using the Eclipse Navigator

We have now identified the object we want to work with. We can start modifying
the copied code to work with TS queues.
 Chapter 9. Implementing a CEBR view in CICS Explorer 279

In the Package Explorer view, double-click the plugin.xml file of the
BrowseTSQueue project to open the overview editor, and click the Dependencies
tab. Click Add if the Required plug-ins pane, and enter the name of the CICS
Explorer plug-in which contains the ITSQueue object com.ibm.cics.model

Press Ctrl+S to save the change, and double-click BrowseTSQueue.java view
to return there. If you pass the cursor across the ITSQueue object, Eclipse offers
to generate the import statement for you. Click this option, and the error
associated with ITSQueue disappears. If you pass the cursor across the
StructuredSelection object, you see that you have a similar problem. Eclipse
offers to add the import statement because it already knows about the package
that contains this class. Ask Eclipse to do the necessary import.

Finally, note that the tsqueue variable has not been previously declared. Because
you need to access this variable across several different methods, it needs to be
declared at the object level, and not at the method level. Add the declaration for
tsqueue just after the class definition as shown in Example 9-2.

Example 9-2 Declaration for global variable tsqueue

public class BrowseTSQueue implements IObjectActionDelegate {

private Shell shell;
private ITSQueue tsqueue;

Change the run() method
The run method of your BrowseTSQueue pop-up action object is invoked when
the user has clicked the Browse TS queue action in the pop-up menu. Replace
the default code (which outputs the text shown in Figure 9-5 on page 277), with
code that displays the Browse TS Queue view. Replace the default code with the
code shown in Example 9-3 on page 281.

You see that there are errors associated with various objects, which Eclipse can
resolve if you place the cursor over the error and select the appropriate import
option. The only error that you cannot resolve in this way is the error associated
with the populateInformation() method of the BrowseTSQueue view object.
You have not yet defined this method, so this is normal (you define this method
shortly).
280 Extend the CICS Explorer: A Better Way to Manage Your CICS

Example 9-3 run method of BrowseTSQueue pop-up action object

public void run(IAction action) {

final IWorkbenchPage page =
PlatformUI.getWorkbench().getActiveWorkbenchWindow().getActivePage();

try
{

IViewPart view =
page.showView("browsetsqueue.views.BrowseTSQueue");

((BrowseTSQueueView) view).populateInformation(tsqueue);
}
catch (PartInitException e) { e.printStackTrace(); }

}

Press Ctrl+S to save your changes, and close the pop-up action package
BrowseTSQueueAction.java.

You have now made all the modifications to the Browse TSQueue pop-up action
menu object. The next step is to add the corresponding code in the Browse
TSQueue view object.

Add code to the Browse TSQueue view object
Double-click the BrowseTSQueueView.java object in the browsetsqueue.views
package to open an edit session. You are going to add code to do the following
tasks:

� Ask to always be notified when an action is performed
� Populate the view with the contents of the requested TS Queue
� Show the populated view

Update ViewContentProvider() method
This method is responsible for providing objects to the associated view. In our
case, the TS queue data is held in an array of strings, which are accessible
globally throughout the class. The populateInformation() method calls CICS
and puts the TS queue records into a global string array variable tsrecord, which
is accessed through this method. Example 9-4 on page 282 shows the string
array tsrecord being returned to the caller by this method.
 Chapter 9. Implementing a CEBR view in CICS Explorer 281

Example 9-4 ViewContentProvider() method of BrowseTSQueueView class

class ViewContentProvider implements IStructuredContentProvider {
public void inputChanged(Viewer v, Object oldInput, Object

newInput) {
}
public void dispose() {
}
public Object[] getElements(Object parent) {

return tsrecord;
}

}

Add init() method
You are going to add code to your view object to ensure that whenever an action
is performed on a TS queue, you update the TS queue contents so that they are
current. This is done by creating a Listener at the time your view object is
created.

By default, Eclipse does not generate an init method for a view object, as it is
implicit. However, in this case, you are adding function to be executed after the
implicit init (what is termed a super.init method). You add code to create a
SelectionListener for your view.

Each time a TS queue browse view is opened, Eclipse adds a selection listener
to that view, to wait for selection events. When an object is selected in the TS
queue browse view, the inline selectionChanged() method coded in
Example 9-5 is invoked.

Example 9-5 BrowseTSQueue view object super.init method

@Override
public void init(IViewSite site) throws PartInitException
{

super.init(site);

// Add a selection listener to look for when people click TSQueue
entries
// in the main TSQueue view and then populate this view with their
contents

site.getPage().addSelectionListener(new ISelectionListener()
{

@Override
public void selectionChanged(IWorkbenchPart arg0,ISelection

selection)
{

282 Extend the CICS Explorer: A Better Way to Manage Your CICS

if (!selection.isEmpty())
{

Object firstElement = ((StructuredSelection)
selection).getFirstElement();

if (firstElement instanceof ITSQueue)
{

 final ITSQueue tsqueue = (ITSQueue) firstElement;

 populateInformation(tsqueue);
}

}
}
});

}

Because this selectionChanged() method is driven for any action requested in
your view, it checks to see if the requested action is for a TS queue object, and if
so, refreshes the TS queue contents by invoking the populateInformation()
method described in the following section.

Add populateInformation() method
This is the key method of your new implementation. It is here that you call CICS
TS to retrieve the contents of the TS queue being processed. This method
performs the following tasks:

� Build an HTTP Request to send to CICS TS
� Process the HTTP response containing the TS queue records
� Make the processed records available to the other methods of the Browse TS

queue view object.

Note: This selectionChanged() method is unrelated to the pop-up action
selectionChanged() method discussed in “Change the selectionChanged()
method” on page 278. The methods have the same name but they are for
different objects.
 Chapter 9. Implementing a CEBR view in CICS Explorer 283

Because the call to CICS TS might take time to complete, it is executed
asynchronously, on a background thread. This method is shown in Example 9-6.

Example 9-6 populateInformation() method

public void populateInformation(final ITSQueue tsqueue) {
Job job = new Job("MyJob") {

@Override
protected IStatus run(final IProgressMonitor monitor) {

monitor.beginTask("myJob", IProgressMonitor.UNKNOWN);

IO(monitor,tsqueue);

Display.getDefault().asyncExec(new Runnable()
{

public void run()
{

// Do your GUI updates here
GUI();

}
});

monitor.done();

return Status.OK_STATUS;
}

};
job.schedule();

To make it easier to split out the code that needs to execute asynchronously, the
function that actually makes the call to CICS has been separated into a routine
called IO() and a code that communicates with the user put into a method called
GUI(). These two method calls are bracketed by calls associated with a job
object (which separates them out into a separate job for execution on a separate
thread) and a monitor object used to track the progress of the job (which
generates a little progress bar at the foot of the workspace). See Figure 9-7

Figure 9-7 Eclipse Progress Bar

This separation of IO and GUI routines is suggested when working with CICS
Explorer.
284 Extend the CICS Explorer: A Better Way to Manage Your CICS

In Example 9-7 we can see the IO() method, which is invoked by
populateInformation(). In Example 9-7 we see the call to CICS over an HTTP
connection using the classes supplied in java.net.

Example 9-7 IO() method called by populateInformation()

void IO(final IProgressMonitor monitor,final ITSQueue tsqueue)
{

int length = tsqueue.getItemCount().intValue();
tsrecord = new String[length+1];
URL url = null;
String tsname = tsqueue.getName();

//Identify the HTTP connection to the target CICS Web Support
application

//with the URL expected by CICS Web Support
try {

url = new URL("http://9.12.4.74:2404/CICS/CWBA/CEBRWEB");
} catch (MalformedURLException e1) {

// TODO Auto-generated catch block
System.out.println("Entered populateInformation" +

e1.getMessage());
}

// Set up connection to the target CICS Web Support application
// this particular application expects a method of POST.
HttpURLConnection urlc = null;
try {

urlc = (HttpURLConnection) url.openConnection();
try {

urlc.setRequestMethod("POST");
} catch(ProtocolException e)
{ throw new Exception("Shouldn't happen - doesn't support POST

???",e);
}

// Build the body of the HTTP POST request.
// this particular application expects one input field

TSQUEUE=tsqname
urlc.setDoOutput(true);

Note: In our testing, the access to the CICS back-end application was so fast
that the progress bar associated with the monitor object never got the chance
to appear unless we trapped the alias transaction with CEDF.
 Chapter 9. Implementing a CEBR view in CICS Explorer 285

urlc.setDoInput(true);
urlc.setUseCaches(false);
urlc.setAllowUserInteraction(false);
OutputStream out = urlc.getOutputStream();

// Send the HTTP Request to CICS
try {

String outputstring = "TSQUEUE=" + tsname;
out.write(outputstring.getBytes());
out.flush();
} catch(IOException e) {
throw new Exception("IOException while posting data");

} finally {
if (out!=null)
out.close();

}

// Read the response returned by CICS
InputStream in = urlc.getInputStream();
BufferedReader rd = new BufferedReader(new

InputStreamReader(in));
String line;
int j = 0;
while ((line = rd.readLine()) != null) {

tsrecord[j] = line;
j+=1;

}
rd.close();

} catch(Exception e) {
System.out.println("Exception here!!");
e.printStackTrace();

}
}

The code handling the HTTP request and response is standard Java for
manipulating HTTP.
286 Extend the CICS Explorer: A Better Way to Manage Your CICS

The HTTP request sent to CICS by our plug-in is shown in Example 9-8.

Example 9-8 HTTP POST request to invoke program CEBRWEB

POST /CICS/CWBA/CEBRWEB HTTP/1.1
Cache-Control: no-cache..Pragma: no-cache
User-Agent: Java/1.6.0
Host: 9.12.4.74:2404
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive.
Content-type: application/x-www-form-urlencoded
Content-Length: 13

TSQUEUE=STEVE...........

The HTTP response returned by CICS looks like Example 9-9.

Example 9-9 HTTP response

HTTP/1.1 200 OK..Date: Thu, 22 Oct 2009 19:17:38 GMT
Server: IBM_CICS_Transaction_Server/4.1.0(zOS)
Content-Length: 000000000000412
Connection: Keep-Alive

ABCD
EFGH
IJKL
MNOP
QRST

The TS queue records are delimited by a CRLF sequence at the end of each
record (as it stands, this sample only works for TS queues that contain text).

The loop at the end of the IO() method loops through the body of the HTTP
response, and writes each line (TS queue record) out to a separate string in our
tsrecord string array.

The TS Browse view itself is only updated when the GUI() method is invoked to
perform a viewer.refresh() call.
 Chapter 9. Implementing a CEBR view in CICS Explorer 287

In Figure 9-8 we have selected Operations Queues TS Queues. When we
click the CICSPlex in the left pane to set the context, CICS Explorer populates
the view with information about TS queues in the CICSPlex.

Figure 9-8 Select a TS queue to be browsed

When you click the CICSplex name on the left, CICS Explorer populated the
upper TS Queue operations view with the details of the TS queues that exist in
CICSPlex EPRED. The Browse TS queue pane is still empty because we have
not yet selected a TS queue to browse. If we now right-click one of the TS
queues in the upper-center pane, and choose the option TS Queue Browse
Browse TS Queue, the lower-center pane is populated with the records of the
selected TS queue (Figure 9-9 on page 289). After the Browse TS queue is
displayed left-click the TS queue you are interested in to see what it contains.
288 Extend the CICS Explorer: A Better Way to Manage Your CICS

Figure 9-9 Populated Browse TS Queue Panel

9.4 CICS TS Application Specification

The back-end application that is invoked by the CICS Explorer Browse TS Queue
plug-in is a CICS Web Support COBOL SPI program that does the following:

� Parses the HTML forms data sent by CICS Explorer to extract the name of the
TS Queue to be returned

� Performs an EXEC CICS INQUIRE TS QUEUE to retrieve details about the
requested TS queue

� Executes a loop to retrieve the items in the TS queue and adds them to the
body of the HTTP response returned to CICS Explorer

� Returns an HTTP response containing the TS Queue contents to CICS
Explorer

The CEBRWEB program is supplied with the additional materials for this book.
 Chapter 9. Implementing a CEBR view in CICS Explorer 289

9.5 Extending the connection preferences panel

In this section, we extend the CICS Explorer connection preferences panel to
input connection details for the CICS service. This replaces the existing hard
coded values in the example code.

9.5.1 Creating the extension points

Starting with the BrowseTSQueueView workspace, double-click plugin.xml and
select the Extensions tab. Clear the Show only extension points from the
required plug-ins check box, select com.ibm.cics.core.comm, and click
Finish.

When prompted with the message “Do you want to add plug-in
com.ibm.cics.core.comm, declaring the connections extension point, to the list of
plug-in dependencies?” select Yes.

Repeat the same for extension com.ibm.cics.core.ui.connectionCustomizers.

Click the plugin.xml tab and observe that the extensions have been added to the
bottom of the XML.

Replace the content of the com.ibm.cics.core.comm extension with
Example 9-10 on page 291.

Note: We have a couple of “To Do” items for this sample, which we did not
have time to implement

� Support for exchanging and displaying binary data (between the
CEBRWEB program and the BrowseTSQueue plug-in)

� Ability to rewrite one of the records in the queue

If you want to implement any of them, you can download the Eclipse
workspace containing the existing code and add to the plug-in, and perhaps
share your new plug-in with the CICS Explorer community through the CICS
Explorer forum.
290 Extend the CICS Explorer: A Better Way to Manage Your CICS

Example 9-10 The connections extension point

<extension point="com.ibm.cics.core.comm.connections">
<category abbreviatedName="CEBR"
connectionType="browsetsqueue.connection.IWebConnection"
id="browsetsqueue.connection.category"
name="CEBR Category">
</category>
<connection category="browsetsqueue.connection.category"
class="browsetsqueue.connection.WebConnection"
id="browsetsqueue.connection.connection"
name="CEBR Web Connection">
</connection>

</extension>

Replace the content of the com.ibm.cics.core.ui.connectionCustomizers
extension with Example 9-11.

Example 9-11 The connectionCustomizer extension point

<extension point="com.ibm.cics.core.ui.connectionCustomizers">
<customizer
class="browsetsqueue.connection.ConnectionCustomizer"
connectionId="browsetsqueue.connection.connection"
id="browsetsqueue.connection.customizer"
name="CEBR Web Customizer">
</customizer>

 </extension>

Press CTRL+S to save the updates. You have now done enough for your new
connection type to be shown in the CICS Explorer connection preferences. You
can observe this by running the BrowseTSQueueView application and selecting
Windows Preferences Connections. From the Connection Type drop
down mneu select CEBR Web Connection. Input the correct values for your
connection and click Apply. The connection information is now saved.

Click the Connect button and you see that nothing happens. This is because you
have not yet created the classes that handles the connection activity. This is what
we do next.
 Chapter 9. Implementing a CEBR view in CICS Explorer 291

9.5.2 Creating the connection classes

Next, we can create the classes that provide a connection to he back-end
service. We need:

� An interface that is referenced by the CICS Explorer classes when handling
the connection

� A class that connects directly with the back-end service, and implement the
interface above

� A class that exposes the connection details on the connection preferences
panel

� A class that provides a bridge between CICS Explorer and the class that
connects to the back end service above.

IWebConnection interface
Back in your Eclipse development environment create a new interface with the
package browsetsqueue.connection and name IWebConnection. The interface
needs to extend com.ibm.cics.core.comm.IConnection. This interface matches
up with the connectionType entry in the category element of your plugin.xml.

You do not need to specify any methods in the interface. The interface is used by
proxies under the covers by the CICS Explorer and Java proxies only work with
interfaces. The IWebConnection interface is shown in Example 9-12.

Example 9-12 The IWebConnection interface

package browsetsqueue.connection;

import com.ibm.cics.core.comm.IConnection;

public interface IWebConnection extends IConnection {}

Important: In order for the CICS Explorer to work with the IWebConnection
interface, you must make its package visible from the plug-in. To do this
double-click plugin.xml and select the Runtime tab. Click the Add button next
to Exported Packages and select browsetsqueue.connection from the list.
Press CTRL+S to save the changes.

The package is now added to the export list and is visible to any Eclipse
plug-in that chooses to work with it.
292 Extend the CICS Explorer: A Better Way to Manage Your CICS

WebConnection class
A class is needed to directly deal with the connection to the back-end service. In
the case of BrowseTSQueueView all that is needed is the ability to store and
retrieve the host name and port number of the CICS TCPIPService to which the
view connects. Requests to the service are only made when needed and no
permanent connection state is maintained. Because of this, the class you use to
deal with the connection is simple.

In the same Java package create a class called WebConnection that extends
com.ibm.cics.core.comm.AbstractConnection and implements
browsetsqueue.connection.IWebConnection. Eclipse prompts you to add in the
required unimplemented methods. Move the mouse cursor of the
WebConnection class name and select Add unimplemented methods. The
finished version of WebConnection is shown in Example 9-13.

Example 9-13 The WebConnection class

package browsetsqueue.connection;

import com.ibm.cics.core.comm.AbstractConnection;
import com.ibm.cics.core.comm.ConnectionException;

public class WebConnection extends AbstractConnection
implements IWebConnection

{
private boolean connected = false;

@Override
public void connect() throws ConnectionException
{

connected = true;
}

@Override
public void disconnect() throws ConnectionException
{

connected = false;
}

@Override
public boolean isConnected()
{

return connected;
}

}

 Chapter 9. Implementing a CEBR view in CICS Explorer 293

ConnectionCustomizer class
Looking at plugin.xml, the connectionCustomizer extension references a class
under the customizer element. This class deals with modifications to the
connection preferences panel specific to your connection type. Even if you
choose to use the default entry fields on the connection preferences panel you
must still use the connectionCustomizer extension because this causes your
connection to get instantiated.

Alongside the above classes create one called ConnectionCustomizer that
implements the interface com.ibm.cics.core.ui.IConnectionCustomizer. Make
sure you add the necessary methods that the IConnectionCustomizer interface
requires you to implement.

The createControl() method provides an opportunity to extend the connection
preferences panel with additional widgets. For the CEBR Web connection we
add a Label widget that explains the purpose of this connection type.
Example 9-14 shows the finished version of the ConnectionCustomizer class.

Example 9-14 The ConnectionCustomizer class

package browsetsqueue.connection;

import org.eclipse.core.runtime.CoreException;
import org.eclipse.core.runtime.IConfigurationElement;
import org.eclipse.swt.SWT;
import org.eclipse.swt.widgets.Composite;
import org.eclipse.swt.widgets.Label;
import com.ibm.cics.core.comm.ConnectionConfiguration;
import com.ibm.cics.core.ui.IConnectionCustomizer;

public class ConnectionCustomizer implements IConnectionCustomizer
{

@Override
public void createControl(Composite arg0)
{

Label label = new Label(arg0, SWT.NONE);
label.setText("Connect to TCPIP service for " +

 "getting TSQueue contents");
}

@Override
public boolean performOk() { return true; }

@Override
public void setConfiguration(ConnectionConfiguration arg0)
{}
294 Extend the CICS Explorer: A Better Way to Manage Your CICS

@Override
public void setDirty(boolean arg0) {}

@Override
public void setInitializationData(IConfigurationElement config,

String propertyName, Object data) throws CoreException {}
}

Running the example and opening the connection preferences panel gives the
CEBR Web information, as shown in Figure 9-10.

Figure 9-10 Connection preferences panel with CEBR Web Connection details

If you fill in the fields and click Connect, you see that nothing happens. This is
due to the way the CICS Explorer interacts with connection objects. To get make
this function work, further objects need to be created.

WebConnectable class
Create a new Java class called WebConnectable. The new class must implement
the interface com.ibm.cics.core.comm.IConnectable and provide
implementations of all of its methods. The WebConnectable class provides a
bridging mechanism for the CICS Explorer to work with the WebConnection
object. Only one instance of it can exist in the system, so the relevant code must
 Chapter 9. Implementing a CEBR view in CICS Explorer 295

be in place to enforce this. The technique for creating a singleton of an object is
as follows:

1. Create a static instance of the object inside its own class.

2. Define a private constructor such that no one other than the class itself can
instantiate it.

3. Create a public static method called getDefault() that returns the static
instance of the class defined in step 1.

Example 9-15 shows the finished version of the WebConnectable class.

Example 9-15 The WebConnectable class

package browsetsqueue.connection;

import com.ibm.cics.core.comm.ConnectionException;
import com.ibm.cics.core.comm.IConnectable;
import com.ibm.cics.core.comm.IConnectableListener;
import com.ibm.cics.core.comm.IConnection;

public class WebConnectable implements IConnectable
{

// Singleton instance of this class
private static WebConnectable webConnectable

= new WebConnectable();

// Restrict others from instantiating this class
private WebConnectable() {}

// Return the singleton instance
public static WebConnectable getDefault()
{ return webConnectable; }

private IConnection webConnection;

@Override
public void addListener(IConnectableListener arg0) {}

@Override
public void disconnect()
{

try { webConnection.disconnect(); }
catch (ConnectionException e)
{ e.printStackTrace(); }
296 Extend the CICS Explorer: A Better Way to Manage Your CICS

}

@Override
public IConnection getConnection()
{ return webConnection; }

@Override
public Class<IWebConnection> getConnectionType()
{ return IWebConnection.class; }

@Override
public boolean isConnected()
{ return webConnection.isConnected(); }

@Override
public void setConnection(IConnection arg0)
{ webConnection = arg0; }

}

The final step is to register the WebConnectable class with the UIPlugin resource
manager. This enables the connection preferences panel to work with the object
when the Connect button is pressed.

9.5.3 Register WebConnectable with the resource manager

The WebConnectable class needs to be registered prior to the connection
preferences panel being shown. One place to do this is the Activator class of
your plug-in. If you do not have an Activator class, you can do it at static
initialization of the ConnectionCustomizer class. Example 9-16 shows the
additional code that is added to ConnectionCustomizer to perform the
registration.

Example 9-16 Registering the WebConnectable class with the resource manager

public class ConnectionCustomizer implements IConnectionCustomizer
{

static
{
UIPlugin.getDefault()
.setResourceManager("browsetsqueue.connection.category",
WebConnectable.getDefault());
}

...
 Chapter 9. Implementing a CEBR view in CICS Explorer 297

Next, run the plug-in and click Connect. You see the password dialog box shown
in Figure 9-11.

Figure 9-11 The sign-on dialog for your connection

Click OK in the dialog box to return to the connection preferences panel. Even
though it is not easy to see it at this point, you are signed in.

9.5.4 Viewing sign-on status in the trim bar

The CICS Explorer has a trim widget at the bottom right of the workspace for
showing signing status. Figure 9-12 shows the CICS Explorer trim widget.

Figure 9-12 The CICS Explorer trim widget

The CEBR Web Connection can make use of this trim whenever the CEBR view
is selected. This is done by overriding the getPartProperty() method of your
view. Add the code shown in Example 9-17 on page 299 to BrowseTSQueueView to
make use of the trim widget.

Note: Because we are not using authentication in this example, the password
field can be left blank. If you choose to use HTTP basic authentication, this is
where the appropriate login information is entered.
298 Extend the CICS Explorer: A Better Way to Manage Your CICS

Example 9-17 Override getPartProperty() to make use of the trim widget

public String getPartProperty(String key)
{

if (IConnectionCategory.class.getName().equals(key))
return "browsetsqueue.connection.category";
else return super.getPartProperty(key);

}

Next, run the plug-in, sign-in, and open the TSQueue Browse view. The trim
widget is updated to show your new connection. Figure 9-13 shows the trim
widget with a connection to the ITSO systems. The green icon indicates that the
connection is active.

Figure 9-13 The CEBR Web Connection widget

9.5.5 Using the CEBR Web Connection

At this point we have created the object for managing the connection to the
CEBR service in CICS. We next update the TSQueue Browse view to make use
of the connection.

The TSQueue Browse view must signify its interest in the CEBR Web
Connection to work with it. This is done by creating an class of type
IResourceManagerListener and registering it with the resource manager. After
the listener is registered it receives notifications about the connection status. Add
the code in Example 9-18 to BrowseTSQueueView as an inner class for receiving
notifications.

Example 9-18 WebConnectionListener inner class

private class WebConnectionListener
implements IResourceManagerListener

{
@Override
public void connected(IConnectable arg0)
{ connection = arg0.getConnection(); }

@Override
public void connecting(IConnectable arg0) {}

@Override
public void disconnected(IConnectable arg0)
 Chapter 9. Implementing a CEBR view in CICS Explorer 299

{ connection = null; }

@Override
public boolean disconnecting(IConnectable arg0)
{ return false; }

@Override
public void exception(IConnectable arg0,

Exception arg1) {}
}

Add an IConnection variable to BrowseTSQueueView, as shown in Example 9-19.
This holds a reference to the connection object that is given to the connected()
method of the inner class.

Example 9-19 IConnection instance for holding the connection object

private IConnection connection;

You must now register an instance of the WebConnectionListener with the
resource manager. This is done by adding the code in Example 9-20 to the end
of BrowseTSQueueView’s init() method.

Example 9-20 Registering the WebConnectionListener with the resource manager

UIPlugin.getDefault()
.addResourceManagerListener("browsetsqueue.connection.category",
new WebConnectionListener());

Whenever the connection status is modified, the WebConnectionListener
instance is notified.

The final stage is to make use of the connection details when retrieving the
TSQueue contents across HTTP.

Note: The WebConnectionListener only gets added when the TSQueue
Browse view is first opened. This implies that if you have signed on before the
view is opened then you miss the call to the connected(). This is not the case
however, because the connect() method of the inner class always gets called
by the resource manager when the view is opened, even if it 10 minutes after
you have signed on.
300 Extend the CICS Explorer: A Better Way to Manage Your CICS

9.5.6 Updating BrowseTSQueueView to use connection details

Currently the host name and port number of the CICS service to connect to are
hard coded in the IO() method of BrowseTSQueueView. Now that a connection
is available, the host name and port number need to be replaced with the values
given to the connection preferences panel. Do this by updating the URL object
creation in the IO() method so it looks like the code shown in Example 9-21.

Example 9-21 Creating a URL using the connection object information

url = new URL("http://" + connection.getHost() + ":" +
 connection.getPort() + "/CICS/CWBA/CEBRWEB");

If the connection object does not exist (that is, you have not yet signed on to the
CEBR Web Connection), a NullPointerException occurs when the preceding
code is run. To prevent this from happening make the call to IO() conditional on
the connection object existing and having a valid connection. Do this by
modifying the call to IO() in the populateInformation() method, as shown in
Example 9-22.

Example 9-22 Conditionally calling IO() depending on the connection status

if (connection != null && connection.isConnected())
IO(monitor, tsqueue);

Next, run the plug-in code, sign in, and connect. You can see that the TSQueue
information is being retrieved as before, but this time it is using the connection
information you specified in the connection preferences panel.

The finished code for this section is in the workspace titled
BrowseTSQueueWithConnectionPanel.

Note: The code in the preceding example shows a valid connection even if an
invalid IP address is entered. An enhancement to this code is to implement a
ping() method that validates the host name and port information.
 Chapter 9. Implementing a CEBR view in CICS Explorer 301

302 Extend the CICS Explorer: A Better Way to Manage Your CICS

Appendix A. Reference list of CICS SDK
elements

This appendix provides the listing of available CICS types, system manager
actions, definition builders and mutable objects.

A

© Copyright IBM Corp. 2010. All rights reserved. 303

CICS types

The following sections are a reference list of CICS SDK CICS types.

CICS Resources

� AtomService
� Bundle
� BundlePart
� CaptureSpecification
� CompletedTask
� Connection
� DB2Connection
� DB2Entry
� DB2Transaction
� DBCTLSubsystem
� DocumentTemplate
� EventBinding
� EventProcessing
� ExtrapartitionTDQueue
� GlobalDynamicStorageArea
� IndirectTDQueue
� IntrapartitionTDQueue
� IntervalControlRequest
� IPICConnection
� JVMClassCache
� JVMStatus
� JVMPool
� JVMProfile
� JVMServer
� Library
� LibraryDSName
� LocalFile
� LocalTransaction
� Pipeline
� ProcessType
� Program
� Region
� RemoteFile
� RemoteTDQueue
� RemoteTransaction
� RPLList
� Task
304 Extend the CICS Explorer: A Better Way to Manage Your CICS

� TCPIPService
� Terminal
� TransactionClass
� TSModel
� TSQueue
� UnitOfWorkEnqueue
� URIMap
� WebService
� WMQConnection
� WMQConnectionStatistics
� WMQInitiationQueue
� XMLTransform

CICS Definitions

� AtomServiceDefinition
� BundleDefinition
� ConnectionDefinition
� CorbaServerDefinition
� DB2ConnectionDefinition
� DB2EntryDefinition
� DB2TransactionDefinition
� DocumentTemplateDefinition
� DeployedJARFileDefinition
� EnqueueModelDefinition
� FileDefinition
� IPICConnectionDefinition
� JournalModelDefinition
� JVMServerDefinition
� LibraryDefinition
� LSRPoolDefinition
� MapSetDefinition
� PartnerDefinition
� PipelineDefinition
� ProcessTypeDefinition
� ProfileDefinition
� ProgramDefinition
� PartitionSetDefinition
� RequestModelDefinition
� SessionDefinition
� TCPIPServiceDefinition
� TDQueueDefinition
� TerminalDefinition
� TransactionDefinition
 Appendix A. Reference list of CICS SDK elements 305

� TransactionClassDefinition
� TSModelDefinition
� TypetermDefinition
� URIMapDefinition
� WebServiceDefinition
� WMQConnectionDefinition

CPSM Definitions

� CICSRegionDefinition
� CICSRegionGroupDefinition
� ResourceDescriptionDefinition
� ResourceGroupDefinition

CPSM Managers

� BatchedRepositoryUpdateRequest
� CICSplex
� CMASDetails
� Event
� ManagedRegion
� WLMActiveWorkload

CSD Definitions

� CSDGroupDefinition
� CSDListDefinition

System manager actions

� Acquire
� AddToGroup
� AllStatistics
� ARMRestart
� Backout
� Cancel
� Close
� CloseForce
� CloseImmediate
� CloseNoWait
� CloseWait
306 Extend the CICS Explorer: A Better Way to Manage Your CICS

� Commit
� Connect
� Delete
� DeleteShipped
� Deregister
� Disable
� DisableForce
� DisableNoWait
� DisableWait
� Discard
� DisconnectForce
� DisconnectNoWait
� DisconnectWait
� Drain
� Enable
� EndAffinity
� EventProcessing
� Force
� ForceCancel
� ForcePurge
� ForcePurgeJVMClassCacheAutoStart
� ForcePurgeJVMClassCacheNoAutoStart
� ForcePurgeTask
� Kill
� KillTask
� Inservice
� Install
� Lock
� NewCopy
� NoRecoveryData
� NotPending
� Open
� Outservice
� PhaseIn
� PhaseOut
� PhaseOutJVMClassCacheAutoStart
� PhaseOutJVMClassCacheNoAutoStart
� Purge
� PurgeJVMClassCacheAutoStart
� PurgeJVMClassCacheNoAutoStart
� PurgeTask
� Rebuild
� Release
� RemoveFromGroup
� ResetTime
 Appendix A. Reference list of CICS SDK elements 307

� Resynchronize
� Scan
� SecurityRebuild
� ShutdownImmediate
� ShutdownNormal
� ShutdownTakeover
� Start
� Stop
� Switch
� Unlock

Definition builders

Here is the list of all available definition builders. All entries that end with the word
Gen are abstract and cannot be instantiated. Instead you must use one of its
subclasses.

� AtomServiceDefinitionBuilderGen

– AtomServiceDefinitionBuilder

� BuilderHelper
� BundleDefinitionBuilder
� ConnectionDefinitionBuilder
� CorbaServerDefinitionBuilder
� DB2ConnectionDefinitionBuilder
� DB2EntryDefinitionBuilder
� DB2TransactionDefinitionBuilder
� DeployedJARFileDefinitionBuilder
� DocumentTemplateDefinitionBuilderGen

– DocumentTemplateDefinitionBuilder

� EnqueueModelDefinitionBuilder
� FileDefinitionBuilder
� IPICConnectionDefinitionBuilder
� JournalModelDefinitionBuilder
� JVMServerDefinitionBuilder
� LibraryDefinitionBuilder
� LSRPoolDefinitionBuilder
� MapSetDefinitionBuilder
� PartitionSetDefinitionBuilder
� PartnerDefinitionBuilder
� PipelineDefinitionBuilder
� ProcessTypeDefinitionBuilder
� ProfileDefinitionBuilder
308 Extend the CICS Explorer: A Better Way to Manage Your CICS

� ProgramDefinitionBuilder
� RequestModelDefinitionBuilder
� ResourceDescriptionDefinitionBuilder
� ResourceGroupDefinitionBuilder
� SessionDefinitionBuilder
� TCPIPServiceDefinitionBuilder
� TDQueueDefinitionBuilderGen

– ExtrapartitionTDQueueBuilder
– IndirectTDQueueBuilder
– IntrapartitionTDQueueBuilder
– RemoteTDQueueBuilder

� TerminalDefinitionBuilder
� TransactionClassDefinitionBuilder
� TransactionDefinitionBuilder
� TSModelDefinitionBuilder
� TypetermDefinitionBuilder
� URIMapDefinitionBuilderGen

– AtomURIMapDefinitionBuilder
– ClientURIMapDefinitionBuilder
– PipelineURIMapDefinitionBuilder
– ServerURIMapDefinitionBuilder

� WebServiceDefinitionBuilder
� WMQConnectionDefinitionBuilder

Mutable objects

� IMutableAtomService
� IMutableAtomServiceDefinition
� IMutableBundle
� IMutableBundleDefinition
� IMutableBundlePart
� IMutableCaptureSpecification
� IMutableCICSDefinition
� IMutableCICSResource
� IMutableConnection
� IMutableConnectionDefinition
� IMutableCorbaServerDefinition
� IMutableCPSMDefinition
� IMutableDB2Connection
� IMutableDB2ConnectionDefinition
� IMutableDB2Entry
� IMutableDB2EntryDefinition
� IMutableDB2Transaction
 Appendix A. Reference list of CICS SDK elements 309

� IMutableDB2TransactionDefinition
� IMutableDBCTLSubsystem
� IMutableDeployedJARFileDefinition
� IMutableDocumentTemplate
� IMutableDocumentTemplateDefinition
� IMutableEnqueueModelDefinition
� IMutableEventBinding
� IMutableEventProcessing
� IMutableExtrapartitionTDQueue
� IMutableFileDefinition
� IMutableGlobalDynamicStorageArea
� IMutableIndirectTDQueue
� IMutableIntervalControlRequest
� IMutableIntrapartitionTDQueue
� IMutableIPICConnection
� IMutableIPICConnectionDefinition
� IMutableJournalModelDefinition
� IMutableJVMClassCache
� IMutableJVMPool
� IMutableJVMProfile
� IMutableJVMServer
� IMutableJVMServerDefinition
� IMutableJVMStatus
� IMutableLibrary
� IMutableLibraryDefinition
� IMutableLibraryDSName
� IMutableLocalFile
� IMutableLocalTransaction
� IMutableLSRPoolDefinition
� IMutableMapSetDefinition
� IMutablePartitionSetDefinition
� IMutablePartnerDefinition
� IMutablePipeline
� IMutablePipelineDefinition
� IMutableProcessType
� IMutableProcessTypeDefinition
� IMutableProfileDefinition
� IMutableProgram
� IMutableProgramDefinition
� IMutableRegion
� IMutableRemoteFile
� IMutableRemoteTDQueue
� IMutableRemoteTransaction
� IMutableRequestModelDefinition
� IMutableResourceDescriptionDefinition
310 Extend the CICS Explorer: A Better Way to Manage Your CICS

� IMutableResourceGroupDefinition
� IMutableRPLList
� IMutableSessionDefinition
� IMutableTask
� IMutableTCPIPService
� IMutableTCPIPServiceDefinition
� IMutableTDQueueDefinition
� IMutableTerminal
� IMutableTerminalDefinition
� IMutableTransactionClass
� IMutableTransactionClassDefinition
� IMutableTransactionDefinition
� IMutableTSModel
� IMutableTSModelDefinition
� IMutableTSQueue
� IMutableTypetermDefinition
� IMutableURIMap
� IMutableURIMapDefinition
� IMutableWebService
� IMutableWebServiceDefinition
� IMutableWMQConnection
� IMutableWMQConnectionDefinition
� IMutableWMQConnectionStatistics
� IMutableWMQInitiationQueue
� IMutableXMLTransfor
 Appendix A. Reference list of CICS SDK elements 311

View IDs

Resource views

� com.ibm.cics.core.ui.view.cicsPlexRepositories
� com.ibm.cics.core.ui.view.cicsplexes
� com.ibm.cics.core.ui.view.connections
� com.ibm.cics.core.ui.view.eventbindings
� com.ibm.cics.core.ui.view.events
� com.ibm.cics.core.ui.view.files
� com.ibm.cics.core.ui.view.regions
� com.ibm.cics.core.ui.view.tasks
� com.ibm.cics.core.ui.view.tdqueues
� com.ibm.cics.core.ui.view.terminals
� com.ibm.cics.core.ui.view.transactions
� com.ibm.cics.core.ui.view.tsqueues

� com.ibm.cics.sm.ui.views.atomServices
� com.ibm.cics.sm.ui.views.batchedRepositoryUpdateRequests
� com.ibm.cics.sm.ui.views.bundleParts
� com.ibm.cics.sm.ui.views.bundles
� com.ibm.cics.sm.ui.views.captureSpecifications
� com.ibm.cics.sm.ui.views.cicsstors
� com.ibm.cics.sm.ui.views.cmasDetails
� com.ibm.cics.sm.ui.views.completedTasks
� com.ibm.cics.sm.ui.views.db2Connections
� com.ibm.cics.sm.ui.views.db2Entries
� com.ibm.cics.sm.ui.views.db2Transactions
� com.ibm.cics.sm.ui.views.dbctlsss
� com.ibm.cics.sm.ui.views.documentTemplates
� com.ibm.cics.sm.ui.views.eventProcessing
� com.ibm.cics.sm.ui.views.intervalControlRequests
� com.ibm.cics.sm.ui.views.ipicConnections
� com.ibm.cics.sm.ui.views.jvmClassCaches
� com.ibm.cics.sm.ui.views.jvmPools
� com.ibm.cics.sm.ui.views.jvmProfiles
� com.ibm.cics.sm.ui.views.jvmServers
� com.ibm.cics.sm.ui.views.jvmStatus
� com.ibm.cics.sm.ui.views.libraries
� com.ibm.cics.sm.ui.views.libraryDSNames
� com.ibm.cics.sm.ui.views.pipelines
� com.ibm.cics.sm.ui.views.processTypes
312 Extend the CICS Explorer: A Better Way to Manage Your CICS

� com.ibm.cics.sm.ui.views.programs
� com.ibm.cics.sm.ui.views.rplList
� com.ibm.cics.sm.ui.views.tcpipServices
� com.ibm.cics.sm.ui.views.transactionClasses
� com.ibm.cics.sm.ui.views.tsModels
� com.ibm.cics.sm.ui.views.unitOfWorkEnqueues
� com.ibm.cics.sm.ui.views.uriMaps
� com.ibm.cics.sm.ui.views.webServices
� com.ibm.cics.sm.ui.views.wlmActiveWorkloads
� com.ibm.cics.sm.ui.views.wmqConnectionStatistics
� com.ibm.cics.sm.ui.views.wmqConnections
� com.ibm.cics.sm.ui.views.wmqInitiationQueues
� com.ibm.cics.sm.ui.views.xmlTransforms

Definition views

� com.ibm.cics.core.ui.view.transactionDefinitions

� com.ibm.cics.sm.ui.views.atomServiceDefinitions
� com.ibm.cics.sm.ui.views.bundleDefinitions
� com.ibm.cics.sm.ui.views.connectionDefinitions
� com.ibm.cics.sm.ui.views.corbaServerDefinitions
� com.ibm.cics.sm.ui.views.db2ConnectionDefinitions
� com.ibm.cics.sm.ui.views.db2EntryDefinitions
� com.ibm.cics.sm.ui.views.db2TransactionDefinitions
� com.ibm.cics.sm.ui.views.deployedJARFileDefinitions
� com.ibm.cics.sm.ui.views.documentTemplateDefinitions
� com.ibm.cics.sm.ui.views.enqueueModelDefinitions
� com.ibm.cics.sm.ui.views.fileDefinitions
� com.ibm.cics.sm.ui.views.ipicConnectionDefinitions
� com.ibm.cics.sm.ui.views.journalModelDefinitions
� com.ibm.cics.sm.ui.views.jvmServerDefinitions
� com.ibm.cics.sm.ui.views.libraryDefinitions
� com.ibm.cics.sm.ui.views.lsrPoolDefinitions
� com.ibm.cics.sm.ui.views.mapSetDefinitions
� com.ibm.cics.sm.ui.views.partitionSetDefinitions
� com.ibm.cics.sm.ui.views.partnerDefinitions
� com.ibm.cics.sm.ui.views.pipelineDefinitions
� com.ibm.cics.sm.ui.views.processTypeDefinitions
� com.ibm.cics.sm.ui.views.profileDefinitions
� com.ibm.cics.sm.ui.views.programDefinitions
� com.ibm.cics.sm.ui.views.requestModelDefinitions
� com.ibm.cics.sm.ui.views.resourceDescriptionDefinitions
 Appendix A. Reference list of CICS SDK elements 313

� com.ibm.cics.sm.ui.views.resourceGroupDefinitions
� com.ibm.cics.sm.ui.views.sessionDefinitions
� com.ibm.cics.sm.ui.views.tcpipServiceDefinitions
� com.ibm.cics.sm.ui.views.tdQueueDefinitions
� com.ibm.cics.sm.ui.views.terminalDefinitions
� com.ibm.cics.sm.ui.views.transactionClassDefinitions
� com.ibm.cics.sm.ui.views.tsModelDefinitions
� com.ibm.cics.sm.ui.views.typetermDefinitions
� com.ibm.cics.sm.ui.views.uriMapDefinitions
� com.ibm.cics.sm.ui.views.webServiceDefinitions
� com.ibm.cics.sm.ui.views.wmqConnectionDefinitions
314 Extend the CICS Explorer: A Better Way to Manage Your CICS

Appendix B. Additional material

This book refers to additional material that can be downloaded from the Internet
as described.

Locating the Web material

The Web material associated with this book is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG247819

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the IBM Redbooks form number, SG247819.

B

© Copyright IBM Corp. 2010. All rights reserved. 315

ftp://www.redbooks.ibm.com/redbooks/SG247819
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material

The additional Web material that accompanies this paperbook includes the
following files:

File name Description

CETRTraceWorkSpace.zip CETRTrace sample Eclipse CICS Explorer
workspace

OMEGAMON Chapter source code (and project data).zip

OMEGAMON source code

Shaylaworkspaces.zip CETRTrace sample Eclipse CICS Explorer
workspace

Steveworkspaces.zip CEBR sample Eclipse CICS Explorer workspace

Workspace_cicsex1.zip Basic Hello World sample Eclipse CICS Explorer
workspace

Workspace_cicsex2_20091023.zip

Hello World sample Eclipse CICS Explorer
workspace

Workspace_cicsex6_20091028_fullspec.zip

Hello World full function sample Eclipse CICS
Explorer workspace

Workspace_sticky notes.zip Sticky Notes sample Eclipse CICS Explorer
workspace

How to use the Web material

Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.
316 Extend the CICS Explorer: A Better Way to Manage Your CICS

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this book.

IBM Redbooks

For information about ordering these publications, see “How to get Redbooks” on
page 318. Note that some of the documents referenced here might be available
in softcopy only.

� CICS Explorer, SG24-7778

Other publications

These publications are also relevant as further information sources:

� Eclipse Buildlng Commercial-Quality Plug-ins,Clayberg and Rubel
ISBN 0-321-42672-X

Online resources

These Web sites are also relevant as further information sources:

� Description of Eclipse RCP from www.eclipse.org

http://www.eclipse.org/downloads/download.php?file=/technology/phoen
ix/talks/What-is-Eclipse-and-Eclipse-RCP-3.2.6.ppt

� Architectural Styles and the Desgn of Network-based Software Architectures

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

http://www.surfscranton.com/architecture
http://rest.blueoxen.net/cgi-bin/wiki.pl?whatIsREST

� Ajax and REST, Part 1

http://www.ibm.com/developerworks/web/library/wa-ajaxarch/
© Copyright IBM Corp. 2010. All rights reserved. 317

http://www.eclipse.org/downloads/download.php?file=/technology/phoenix/talks/What-is-Eclipse-and-Eclipse-RCP-3.2.6.ppt
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.surfscranton.com/architecture
http://rest.blueoxen.net/cgi-bin/wiki.pl?whatIsREST
http://www.ibm.com/developerworks/web/library/wa-ajaxarch/

� Restful Architecture

http://www.surfscranton.com/architecture

� RESTwiki

http://rest.blueoxn.net/cgi-bin/wiki.pl?whatIsREST

� CICS TS Version 4.1 Information Center

http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

How to get Redbooks

You can search for, view, or download Redbooks, Redpapers, Technotes, draft
publications and Additional materials, as well as order hardcopy Redbooks
publications, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
318 Extend the CICS Explorer: A Better Way to Manage Your CICS

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.surfscranton.com/architecture
http://rest.blueoxn.net/cgi-bin/wiki.pl?whatIsREST
http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Extend the CICS Explorer: A Better W
ay to M

anage Your CICS

®

SG24-7819-00 0738434019

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

®

Extend the CICS Explorer
A Better Way to Manage Your CICS

Add value to the CICS
Explorer with Eclipse
plug-ins

Unlock the CICS
Explorer Software
Development Kit

Follow examples of
tool integration

CICS Explorer is the latest significant evolution in the management
and analysis of your CICS environment. It is a statement of intent
from the CICS Development organization, which is determined to
ensure you can manage your CICS estate in a simple and easily
extensible way, using a combination of the following approaches:

� Tried and trusted CICS expertise and technology
� The widely accepted user interfaces and integration power of

the open source Eclipse platform
� Web 2.0 and RESTful programming (this technology underpins

the CICS Explorer concept)

This IBM Redbooks publication shows how you can use the
extensible design of CICS Explorer to complement the functionality
already provided, with added functionality tailored to the needs of
your business. We show you how to perform the following tasks:

� Install the CICS plug-in SDK into your eclipse environment
� Develop a simple plug-in for the CICS Explorer
� Deploy the plug-in into CICS Explorer

We provide several useful examples of plug-ins that we developed
during the residency using the methodology we describe.

The starting point for the book is that you already have CICS
Explorer installed and configured with connectivity to your CICS
region or CICSPlex, and that you are looking for ways to customize
CICS Explorer.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Now you can become a published author, too!
	Comments welcome

	Part 1 Introduction
	Chapter 1. CICS Evolution
	1.1 Evolution of CICS system management
	1.1.1 The dark ages: CSMT and Assembler macros
	1.1.2 The middle ages: CEMT and the first GUI
	1.1.3 The renaissance: CEDA and CICS System Definition
	1.1.4 The enlightenment: CICSPlex SM
	1.1.5 The baby boom: The CICS Tools Suite
	1.1.6 The brave new world: CICS Explorer

	1.2 Overview of CICS Explorer
	1.2.1 Workbenches and Perspectives
	1.2.2 Views
	1.2.3 Menus and the menu bar
	1.2.4 Toolbars
	1.2.5 Editors
	1.2.6 Wizards

	1.3 Overview of Eclipse

	Part 2 Exploring CICS Explorer
	Chapter 2. CICS Explorer and the CICS Client Management Interface
	2.1 CMCI
	2.1.1 CMCI is a RESTful implementation
	2.1.2 CMCI and CICSPlex SM resource tables

	2.2 CMCI caching
	2.2.1 Defining a CICS resource definition with the CMCI
	2.2.2 Viewing a CICS resource definition using CMCI
	2.2.3 Altering a URIMAP resource definition using CMCI
	2.2.4 Installing a CICS resource definition using CMCI
	2.2.5 Inquiring on an installed CICS resource using CMCI
	2.2.6 Modifying an installed CICS resource using CMCI
	2.2.7 Discarding an installed resource using CMCI
	2.2.8 A fun way to explore the CMCI Interface
	2.2.9 Comparing the Web user interface and CICS Explorer

	Chapter 3. CICS Explorer SDK
	3.1 CICS Explorer SDK Java library
	3.2 The CICSPlex System Manager object
	3.3 Working with contexts
	3.4 CICS objects
	3.4.1 Getting a CICS object
	3.4.2 Performing actions on CICS objects
	3.4.3 Updating a CICS object

	3.5 Definitions
	3.5.1 Creating a definition
	3.5.2 Installing a definition
	3.5.3 Deleting a definition

	3.6 Resources
	3.6.1 Discard a resource

	Part 3 Extending CICS Explorer
	Chapter 4. Writing a plug-in for CICS Explorer
	4.1 Creating your CICS Explorer plug-in development environment
	4.1.1 Setting up the Java environment
	4.1.2 Installing the Eclipse SDK onto your workstation

	4.2 An Eclipse RCP “Hello World” plug-in
	4.2.1 Creating your plug-in project
	4.2.2 What is in our HelloWorld plug-in project?

	4.3 Creating your first CICS Explorer plug-in
	4.3.1 Creating your CICS Explorer plug-in project
	4.3.2 Adding CICS Explorer to plug-in dependencies
	4.3.3 Adding CICS Explorer code to the Eclipse Template code
	4.3.4 CICS Explorer plug-in design consideration

	Chapter 5. Extending CICS Explorer plug-ins
	5.1 Extending new CICS Explorer views
	5.1.1 Extending the URIMap information provided by CICS Explorer
	5.1.2 Specification of new view
	5.1.3 Using our sample code
	5.1.4 Running the sample

	5.2 Using a pop-up menu to access URIMap information
	5.2.1 Specification of a new pop-up menu
	5.2.2 Sample code
	5.2.3 Operation

	5.3 Extending actions of the toolbar and menu bar to access URIMap information
	5.3.1 Specification of new actions
	5.3.2 Extending actions of the toolbar and menu bar to access URIMap information
	5.3.3 Operation

	5.4 Extending a toolbar to search URIMap information based on user input
	5.4.1 Specification of new textbox and button
	5.4.2 Sample code
	5.4.3 Operation

	5.5 Background process implementation
	5.5.1 Specifications of the background process
	5.5.2 Sample code
	5.5.3 Operation

	5.6 Summary of extending functions
	5.7 Package extending functions into a plug-in
	5.7.1 Package plug-in into zip file
	5.7.2 Deploying plug-in to CICS Explorer

	Part 4 Integrating CICS Explorer with other Eclipse Components
	Chapter 6. Combining OMEGAMON data with CICS Explorer
	6.1 Environment and configuration
	6.2 Introduction to OMEGAMON
	6.3 The Tivoli Enterprise Web Services interface
	6.3.1 Connecting to the TEMS SOAP interface with the Web client

	6.4 A simple OMEGAMON SOAP interface plug-in
	6.4.1 Parsing the returned data
	6.4.2 Exposing the plug-in’s functions

	6.5 Displaying the OMEGAMON Managed System List
	6.5.1 Creating the Managed System List plug-in
	6.5.2 Displaying the Managed System List data in the plug-in
	6.5.3 Sorting the Managed System List
	6.5.4 Requesting the Managed System List repeatedly

	6.6 Displaying OMEGAMON situations
	6.7 Displaying OMEGAMON data for specific CICS regions
	6.7.1 Constructing SOAP queries for CICS data
	6.7.2 Displaying the OMEGAMON CICS Region Overview report

	6.8 Driving an OMEGAMON plug-in from CICS Explorer
	6.8.1 Translating between CICS Explorer and OMEGAMON identifiers
	6.8.2 Detecting and understanding CICS Explorer selection events

	6.9 Summary
	6.10 References and further reading
	6.10.1 IBM Tivoli Monitoring Information Center
	6.10.2 OMEGAMON XE for CICS Information Center
	6.10.3 IBM Open Process Automation Library (OPAL)
	6.10.4 IBM Tivoli Monitoring Eclipse plug-in
	6.10.5 Using IBM Tivoli Monitoring V6.1 SOAP Services

	Chapter 7. Setting CICS Trace Levels through CICS Explorer
	7.1 The Trace Component Plug-in
	7.2 Creating the project
	7.3 Creating the model
	7.4 Creating the view
	7.4.1 Adding extension points and packages
	7.4.2 Modifying the pop-up action class
	7.4.3 Modifying the view class

	7.5 CICS TS Application

	Chapter 8. Adding a sticky note plug-in to CICS Explorer
	8.1 The specification for your sticky note plug-in
	8.2 Overview of components
	8.3 Using a wizard to create your new plug-in
	8.4 Creating the model
	8.5 Creating the pop-up
	8.5.1 Adding extension points and packages for pop-up
	8.5.2 Adding extension points and packages for view
	8.5.3 Adding extension points and code for Delete View Action
	8.5.4 Adding extension points and code for Save View Action

	Chapter 9. Implementing a CEBR view in CICS Explorer
	9.1 The specification for your CEBR view
	9.2 Using the wizard to create your new plug-in
	9.3 Coding your TSQueue Browse plug-in
	9.3.1 Adding code to the TSQueue Browse pop-up menu

	9.4 CICS TS Application Specification
	9.5 Extending the connection preferences panel
	9.5.1 Creating the extension points
	9.5.2 Creating the connection classes
	9.5.3 Register WebConnectable with the resource manager
	9.5.4 Viewing sign-on status in the trim bar
	9.5.5 Using the CEBR Web Connection
	9.5.6 Updating BrowseTSQueueView to use connection details

	Appendix A. Reference list of CICS SDK elements
	CICS types
	CICS Resources
	CICS Definitions
	CPSM Definitions
	CPSM Managers
	CSD Definitions

	System manager actions
	Definition builders
	Mutable objects
	View IDs
	Resource views
	Definition views

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get Redbooks
	Help from IBM

	Back cover

